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Abstract5

We introduce REST, a novel term rewriting technique for theorem proving that uses online termi-6

nation checking and can be integrated with existing program verifiers. REST enables flexible but7

terminating term rewriting for theorem proving by: (1) exploiting newly-introduced term orderings8

that are more permissive than standard rewrite simplification orderings; (2) dynamically and iter-9

atively selecting orderings based on the path of rewrites taken so far; and (3) integrating external10

oracles that allow steps that cannot be justified with rewrite rules. Our REST approach is designed11

around an easily implementable core algorithm, parameterizable by choices of term orderings and12

their implementations; in this way our approach can be easily integrated into existing tools. We13

implemented REST as a Haskell library and incorporated it into Liquid Haskell’s evaluation strategy,14

extending Liquid Haskell with rewriting rules. We evaluated our REST implementation by comparing15

it against both existing rewriting techniques and E-matching and by showing that it can be used16

to supplant manual lemma application in many existing Liquid Haskell proofs.17
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1 Introduction21

For all disjoint sets s0 and s1, the identity (s0 ∪ s1) ∩ s0 = s0 can be proven in many ways.22

Informally accepting this property is easy, but a machine-checked formal proof may require23

the instantiation of multiple set theoretic axioms. Analogously, further proofs relying on this24

identity may themselves need to apply it as a previously-proven lemma. For example, proving25

functional correctness of any program that relies on a set data structure typically requires26

the instantiation of set-related lemmas. Manual instantiation of such universally quantified27

equalities is tedious, and the burden becomes substantial for more complex proofs: a proof28

author needs to identify exactly which equalities to instantiate and with which arguments;29

in the context of program verification, a wide variety of such lemmas are typically available.30

Given this need, most program verifiers provide some automated technique or heuristics for31

instantiating universally quantified equalities.32

For the wide range of practical program verifiers that are built upon SMT solvers (e.g.,33

[33, 23, 49, 37, 45, 43]), quantified equalities can naturally be expressed in the SMT solver’s34

logic. However, relying solely on such solvers’ E-matching techniques [19] for quantifier35

instantiation (as the majority of these verifiers do) can lead to both non-termination and36

incompletenesses that may be unpredictable [32] and challenging to diagnose [7]. The the-37

ory of how to prove that an E-matching-based encoding of equality reasoning guarantees38

termination and completeness is difficult and relatively unexplored [21].39

A classical alternative approach to automating equality reasoning is term rewriting [26],40

which can be used to encode lemma properties as (directed) rewrite rules, matching terms41

against the existing set of rules to identify potential rewrites; the termination of these42

systems is a well-studied problem [16]. Although SMT solvers often perform rewriting as43

an internal simplification step, verifiers built on top typically cannot access or customize44

these rules, e.g., to add previously-proved lemmas as rewrite rules. By contrast, many45
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mainstream proof assistants (e.g., Coq [11], Isabelle/HOL [38], Lean [5]) provide automated,46

customizable term rewriting tactics. However, the rewriting functionalities of mainstream47

proof assistants either do not ensure the termination of rewriting (potentially resulting in48

divergence, for example Isabelle) or enforce termination checks that are overly restrictive in49

general, potentially rejecting necessary rewrite steps (for example, Lean).50

In this paper, we present REST (REwriting and Selecting Termination orderings): a novel51

technique that equips program verifiers with automatic lemma application facilities via term52

rewriting, enabling equational reasoning with complementary strengths to E-matching-based53

techniques. While term rewriting in general does not guarantee termination, our tech-54

nique weaves together three key technical ingredients to automatically generate and explore55

guaranteed-terminating restrictions of a given rewriting system while typically retaining56

the rewrites needed in practice: (1) REST compares terms using well-quasi-orderings derived57

from (strict) simplification orderings; thereby facilitating common and important rules such58

as commutativity and associativity properties. (2) REST simultaneously considers an entire59

family of term orderings; selecting the appropriate term ordering to justify rewrite steps60

during term rewriting itself. (3) REST allows integration of an external oracle that generates61

additional steps outside of the term rewriting system. This allows the incorporation of rea-62

soning steps awkward or impossible to justify via rewriting rules, all without compromising63

the termination and relative completeness guarantees of our overall technique.64

Contributions and Overview We make the following contributions:65

1. We design and present a new approach (REST) for applying term rewriting rules and66

simultaneously selecting appropriate term orderings to permit as many rewriting steps67

as possible while guaranteeing termination (Sec. 3).68

2. We introduce ordering constraint algebras, an abstraction for reasoning effectively about69

multiple (and possibly infinitely many) term orderings simultaneously (Sec. 4).70

3. We introduce and formalize recursive path quasi-orderings (RPQOs) derived from the71

well-known recursive path ordering [15] (Sec. 4.1.2). RPQOs are more permissive than72

classical RPOs, and so let us prove more properties.73

4. We formalize and prove key results for our technique: soundness, relative completeness,74

and termination (Sec. 5).75

5. We implement REST as a stand-alone library, and integrate the REST library into Liquid76

Haskell to facilitate automatic lemma instantiation (Sec. 6).77

6. We evaluate REST by comparing it to other term rewriting tactics and E-matching-based78

axiomatization, and show that it can substantially simplify equational reasoning proofs79

(Sec. 7).80

We discuss related work in Sec. 8; we begin (Sec. 2) by identifying five key problems that81

all need solving for a reliable and automatic integration of term rewriting into a program82

verification tool.83

2 Five Challenges for Automating Term Rewriting84

In this section, we describe five key challenges that naturally arise when term rewriting is85

used for program verification and outline how REST is designed to address them. To illustrate86

the challenges, we use simple verification goals that involve uninterpreted functions and the87

set operators (∅, ∪, ∩) that satisfy the standard properties of Figure 1. The variables x, y, z88
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Name Formula
idem-union x ∪ x = x

idem-inter x ∩ x = x

empty-union x ∪ ∅ = x

empty-inter x ∩ ∅ = ∅
commut-union x ∪ y = y ∪ x

symm-inter x ∩ y = y ∩ x

distrib-union (x ∪ y) ∩ z = (x ∩ z) ∪ (y ∩ z)
distrib-inter (x ∩ y) ∪ z = (x ∪ z) ∩ (y ∪ z)
assoc-union x ∪ (y ∪ z) = (x ∪ y) ∪ z

Figure 1 Set identities used for examples in this section. Variables x, y, z are implicitly quantified.
We write the binary functions ∪, ∩ infix; along with (nullary) ∅ these are fixed function symbols.

are implicitly quantified1 in these rules. In formalizations of set theory, such properties may89

be assumed as (quantified) axioms, or proven as lemmas and then used in future proofs.90

Term rewriting systems (defined formally in Sec. 5.1) are a standard approach for formally91

expressing and applying equational reasoning (rewriting terms via known identities). A term92

rewriting system consists of a finite set of rewrite rules, each consisting of a pair of a source93

term and a target term, representing that terms matching a rule’s source can be replaced94

by corresponding terms matching its target. For example, the rewrite rule x ∪ ∅ → x can95

replace set unions of some set x and the empty set with the corresponding set x. Rewrite96

rules are applied to a term t by identifying some subterm of t which is equal to a rule’s97

source under some substitution of the source’s free variables (here, x, but not constants98

such as ∅); the subterm is then replaced with the correspondingly substituted target term.99

This rewriting step induces an equality between the original and new terms. For instance,100

the example rewrite rule above can be used to rewrite a term f(s0 ∪ ∅) into f(s0), inducing101

an equality between the two.102

Rewrite rules classically come with two restrictions: the free variables of the target103

must all occur in the source and the source must not be a single variable. This precludes104

rewrite rules which invent terms, such as ∅ → x ∩ ∅, and those that trivially lead to infinite105

derivations. Under these restrictions, the first four identities induce rewrite rules from left-106

to-right (which we denote by e.g., idem-inter→), while the remaining induce rewrite rules107

in both directions (e.g., assoc-union→ vs. assoc-union←).108

Next, we present a simple proof obligation taken from [34] in the style of equational109

reasoning (calculational proofs) supported in the Dafny program verifier [33].110

▶ Example 1. We aim to prove, for two sets s0 and s1 and some unary function f on sets,111

that, if the sets are disjoint (that is, s1 ∩ s0 = ∅), then f((s0 ∪ s1) ∩ s0) = f(s0).112

Equational Proof: f((s0 ∪ s1) ∩ s0) = f((s0 ∩ s0) ∪ (s1 ∩ s0)) (distrib-union→)
= f(s0 ∪ (s1 ∩ s0)) (idem-inter→)
= f(s0 ∪ ∅) (disjointness ass.→)
= f(s0) (empty-union→)

(Possible Term Ordering, as explained shortly: RPO instance with ∩ > ∪)

113

1 over sets; we omit explicit types in such formulas, whose type-checking is standard.



XX:4 REST: Integrating Term Rewriting with Program Verification

This manual proof closely follows the user annotations employed in the corresponding114

Dafny proof [34]; the application of the function f serves only to illustrate equational rea-115

soning on subterms. Every step of the proof could be explained by term rewriting, hinting116

at the possibility of an automated proof in which term rewriting is used to solve such proof117

obligations. In particular, taking the term rewriting system naturally induced by the set118

identities of Figure 1 along with the assumed equality expressing disjointness of s0 and s1119

results in a term rewriting system in which the four proof steps are all valid rewriting steps.120

In the remainder of the section, we consider what it would take to make term rewriting121

effective for reliably automating such verification tasks. Perhaps unsurprisingly, there are122

multiple problems with the simplistic approach outlined so far. The first and most serious123

is that term rewriting systems in general do not guarantee termination; a proof search124

may continue indefinitely by repeatedly applying rewrite rules. For example, the rules125

distrib-union and distrib-inter can lead to an infinite derivation (s0 ∪ s1) ∩ s2 → (s0 ∩ s2) ∪126

(s1 ∩ s2)→ (s0 ∪ (s1 ∩ s2)) ∩ (s2 ∪ (s1 ∩ s2))→ . . .127

Challenge 1: Unrestricted term rewriting systems do not guarantee termination.
128

To ensure termination (as proved in Theorem 22) REST follows the classical approach of129

restricting a term-rewriting system to a variant in which sequences of term rewrites (rewrite130

paths) are allowed only if each consecutive pair of terms is ordered according to some term131

ordering which rules out infinite paths.132

For example, Recursive path orderings (RPOs) [15] define well-founded orders >T on133

terms T based on an underlying well-founded strict partial order > on function symbols.134

Intuitively, such orderings use > to order terms with different top-level function symbols,135

combined with the properties of a simplification order [14] (e.g., compatibility with the136

subterm relation). Different choices of the underlying > parameter yield different RPO137

instances that order different pairs of terms; in particular, potentially allowing or disallowing138

certain rewrite paths.139

In Example 1, the RPO based on the partial order ∩ > ∪ and ∩ > ∅ permits all the140

rewriting steps, that is, the left-hand-side of each equation is greater than the right-hand-141

side.142

Sadly, this ordering will not permit the rewriting steps required by our next example.143

▶ Example 2. We aim to prove, for two sets s0 and s1 and some unary function f on sets,144

that, if s1 is a subset of s0 (that is, s0 ∪ s1 = s0), then f((s0 ∩ s1) ∪ s0) = f(s0).145

Equational Proof: f((s0 ∩ s1) ∪ s0) = f((s0 ∪ s0) ∩ (s1 ∪ s0)) (distrib-inter→)
= f(s0 ∩ (s1 ∪ s0)) (idem-union→)
= f(s0 ∩ (s0 ∪ s1)) (commut-union→)
= f(s0 ∩ s0) (subset ass.→)
= f(s0) (idem-inter→)

(Possible Term Ordering: RPQO instance, explained shortly, with ∩ > ∪)

146

An RPO based on the function symbol ordering ∩ > ∪ (as required by Example 1) will147

not permit the first step of this proof (since the RPO ordering first compares the top level148

function symbols). Instead, this step requires an RPO based on the ordering ∪ > ∩. To149

accept both this proof step and the Example 1 we need different restrictions of the rewrite150

rules for different proofs; in particular, different rewrite paths may be ordered according to151

RPOs that are based on different function orderings.152
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To generalize this problem we will call RPOs a term ordering family that is paramet-153

ric with respect to the underlying function ordering. Thus, a concrete RPO term ordering154

(called an instance of the family) is obtained after the parametric function ordering is in-155

stantiated. With this terminology, the next challenge can be stated as follows:156

Challenge 2: Different proofs require different term orderings within a family.
157

Note that enumerating all term orderings in a term ordering family is typically impractical158

(this set is often very large and may be infinite). To address this challenge, REST uses a novel159

algebraic structure (Sec. 4.2) to allow for an abstract representation of sets of term orderings160

with which one can efficiently check whether any instance of a chosen term ordering family161

can orient the necessary rewrite steps to complete a proof.162

Going back to Example 2, the RPO instance with ∪ > ∩ will permit all the steps,163

apart from the commutativity axiom expressed by (commut-union→). To permit this step164

we need an ordering for which t1 ∪ t2 >T t2 ∪ t1. But for RPO instances, as well as for165

many other term orderings, the terms t1 ∪ t2 and t2 ∪ t1 are equivalent and thus cannot be166

oriented; associativity axioms are also similarly challenging. Since many proofs require such167

properties, it is important in practice for rewriting to support them.168

Challenge 3: Strict orderings restrict commutativity and associativity steps.
169

To address this challenge REST relaxes the strictness constraint by requiring the chosen term170

ordering family to consist (only) of thin well-quasi-orderings (Sec. 4). Intuitively, such171

orderings permit rewriting to terms which are equal according to the ordering, but such172

equivalence classes of terms must be guaranteed to be finite. In Sec. 4 we show how to lift173

well-known families of term orderings to analogous and more-permissive families of thin well-174

quasi-orders. In particular, we show how to lift RPOs to a particularly powerful family of175

term orderings that we call recursive path quasi-orderings (RPQOs), whose instances allow176

us to accept Example 2.177

Despite the permissiveness of RPQOs, there remain some rewrite derivations that will178

be rejected by all term orderings in the RPQO family. For example, consider the following179

proof that set union is monotonic with respect to the subset relation:180

▶ Example 3. We aim to prove, for sets s0, s1, and s2, that, if s1 is a subset of s0 (that is,181

s0 ∪ s1 = s0), then (s2 ∪ s1) ∪ (s2 ∪ s0) = s2 ∪ s0.182

Equational Proof: (s2 ∪ s1) ∪ (s2 ∪ s0) = s2 ∪ (s1 ∪ (s2 ∪ s0)) (assoc-union←)
= s2 ∪ ((s1 ∪ s2) ∪ s0) (assoc-union→)
= s2 ∪ ((s2 ∪ s1) ∪ s0) (commut-union→)
= s2 ∪ (s2 ∪ (s1 ∪ s0)) (assoc-union←)
= s2 ∪ (s2 ∪ (s0 ∪ s1)) (commut-union→)
= s2 ∪ (s2 ∪ s0) (subset ass.→)
= (s2 ∪ s2) ∪ s0 (assoc-union→)
= s2 ∪ s0 (idem-union→)

(Possible Term Ordering: any KBQO instance)

183

The above rewrite rule steps cannot be oriented by any RPQO, but are trivially oriented184

by a quasi-ordering that is based on the syntactic size of the term, e.g., a quasi-ordering185

based on the well-known Knuth-Bendix family of term orderings [29]. Yet, a Knuth-Bendix186

quasi-ordering (KBQO, defined in Sec. 4) cannot be used on our previous two examples;187

fixing even a single choice of term ordering family would still be too restrictive in general.188
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Challenge 4: Some proofs require different families of term orderings.
189

To address this challenge, REST (Sec. 3.2) is defined parametrically in the choice and repre-190

sentation of a term ordering family.191

Finally, although equational reasoning is powerful enough for these examples, general192

verification problems usually require reasoning beyond the scope of simple rewriting. For193

example, simply altering Example 1 to express the disjointness hypothesis instead via car-194

dinality as |s0 ∩ s1| = 0 means that, to achieve a similar proof, reasoning within the theory195

of sets is necessary to deduce that this hypothesis implies the equality needed for the proof;196

this is beyond the abilities of term rewriting.197

Challenge 5: Program verification needs proof steps not expressible by rewriting.
198

To address this challenge, our RESTapproach allows the integration of an external oracle that199

can generate equalities not justifiable by term rewriting, while still guaranteeing termination200

(Sec. 3.3).201

3 The REST Approach202

We develop REST to tackle the above five challenges and integrate a flexible, expressive,203

and guaranteed-terminating term rewriting system with a verification tool. REST consists of204

an interface for defining term orderings and an algorithm for exploring the rewrite paths205

supported by the term orderings. In Sec. 3.1 we describe the representation of term orderings206

in REST and how they address Challenges 2 and 4. In Sec. 3.2 we describe the REST algorithm207

that is parametric to these orderings and Sec. 3.3 describes the integration with external208

oracles (Challenge 5).209

3.1 Representation of Term Orderings in REST210

Rather than considering individual term orderings, REST operates on indexed sets (families)211

of term orderings (whose instances must all be thin well-quasi-orderings).212

▶ Definition 4 (Term Ordering Family). A term ordering family Γ is a set of thin well-quasi-213

orderings on terms, indexed by some parameters P . An instance of the family is a term214

ordering obtained by a particular instantiation of P .215

For example, the concept of recursive path ordering is defined parametrically with respect216

to a precedence on function symbols, and therefore defines a term ordering family indexed217

by this choice of function symbol ordering.218

A core concern of REST is determining whether any instance of a given term ordering219

family can orient a rewrite path. However, term ordering families cannot directly compare220

terms; doing so requires choosing an ordering inside the family. The root of Challenge 2221

is that choosing an ordering in advance is too restrictive: different orderings are necessary222

to complete different proofs. The idea behind REST’s search algorithm is to address this223

challenge by simultaneously considering all orderings in the family when considering rewrite224

paths and continuing the path so long as it can be oriented by any ordering.225

To demonstrate the technique, we show how REST’s approach can be derived from a226

naïve algorithm. The purpose of the algorithm is to determine if any ordering in a family Γ227

can orient a path t1 → . . .→ tn; i.e., if there is a >T ∈ Γ such that t1 >T . . . >T tn.228
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orients : (Set O × List T )→ Bool
orients(Γ, ts) =

os := Γ; (1)
for i ∈ 1 to |ts| − 1 {

os := {>T ∈ os | tsi >T tsi+1}; (2)
if (os = ∅) (3)

return false;
}
return true;

orients : (OCA× List T ))→ Bool
orients(⟨⊤, refine, sat⟩, ts) =

c := ⊤;
for i ∈ 1 to |ts| − 1 {

c := refine(c, tsi, tsi+1);
if (not(sat(c)))

return false;
}
return true;

Figure 2 Two algorithms that determine if an ordering in the term ordering family Γ can orient
a path of terms ts. Left presents the naïve, exhaustive algorithm. Right is using the ordering
constraint algebra ⟨⊤, refine, sat⟩ that returns true iff an ordering in Γ can orient ts without explicitly
constructing any term orderings. Ois the type of a term ordering.

The naïve algorithm is depicted on the left of Figure 2. The naïve algorithm works229

iteratively, computing the set of orderings os that can orient an increasingly-long path,230

short-circuiting if the set becomes empty. The algorithm enumerates each ordering in Γ231

and compares terms with each ordering (potentially multiple times). Unfortunately, this232

enumeration is not practical: some term ordering families have infinite or prohibitively large233

numbers of instances. REST avoids these issues by allowing the set of term orderings to be234

abstracted via a structure called an Ordering Constraint Algebra (OCA, Def. 14 of Sec. 4.2).235

An OCA for a term ordering family Γ consists of a type C along with four parameters236

γ : C → P(Γ), ⊤ : C, refine : C → T → T → C, and sat : C → Bool. C is a type whose237

elements represent subsets of Γ. The function γ is the concretisation function of the OCA,238

not needed programmatically but instead defining the meaning of elements of C in terms239

of the subsets of the term ordering family they represent. The remaining three functions240

correspond to the operations on sets of term orderings used in lines (1), (2), and (3) of241

the naïve algorithm. ⊤ represents the set of all term orderings in Γ, refine(c, t, u) filters242

the set of orderings represented by c to include only those where t >T u, and sat(c) is a243

predicate that returns true if the set of orderings represented by c is nonempty. Figure 2 on244

the right shows how the ordering constraint algebra can be used to perform an equivalent245

computation to the naïve algorithm, without explicitly instantiating sets of term orderings.246

The OCA plays a role similar to abstract interpretation in a program analysis, where C is247

an abstraction over sets of term orderings, and the results of the abstract operations on C248

correspond to their concrete equivalents. Namely, we have γ(⊤) = Γ, γ(refine(c, tl, tr)) =249

{≽ | ≽ ∈ γ(c) ∧ tl ≽ tr}, and sat(c) ⇔ γ(c) ̸= ∅.250

The ordering constraint algebra enables three main advantages compared to direct com-251

putation with sets of term orderings:252

1. The number of term orderings can be very large, or even infinite, thus making enumera-253

tion of the entire set intractable.254

2. An OCA can provide efficient implementations for refine and sat by exploiting properties255

of the term ordering family. Comparing terms using the constituent term orderings256

requires repeating the comparison for each ordering, despite the fact that most orderings257

will differ in ways that are irrelevant for the comparison.258

3. The OCA does not impose any requirements on the type of C or the implementation259

of ⊤, refine, and sat. For example, an OCA can use ⊤ and refine to construct logical260
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REST : (OCA×R× T × (T → Set T ))→ Set T
REST(⟨⊤, refine, sat⟩, R, t0, E) =

o := ∅;
p := [([t0],⊤)];
while (p is not empty){

pop(ts, c) from p;
t := last ts;
o := o ∪ {t};
foreach (t′such that t′ ̸∈ ts ∧ (t→R t′ ∨ t′ ∈ E(t))){

if (t′ ∈ E(t) ∨ (t→R t′ ∧ sat(refine(c, t, t′)))){
push (ts ++ [t′], refine(c, t, t′)) to p

}
}

}
return o;

Figure 3 The REST algorithm.

formulas, with sat using an external solver to check their satisfiability. Alternatively,261

it could define C to be sets of term orderings that are reasoned about explicitly, and262

implement ⊤, refine, and sat as the operations of the naïve algorithm.263

We now describe how the REST algorithm uses the OCA to explore rewrite paths.264

3.2 The REST Algorithm265

Figure 3 presents the REST algorithm. The algorithm takes four parameters. The first266

parameter is an OCA ⟨⊤, refine, sat⟩, as discussed above. The algorithm’s second parameter,267

R, is a finite set of term rewriting rules (not required to be terminating); for example, we268

could pass the oriented rewrite rules corresponding to Figure 1. The third parameter t0 is269

the term from which term rewrites are sought. The final parameter E acts as an external270

oracle, generating additional rewrite steps that need not follow from the term rewriting rules271

R. To simplify the explanation, we will initially assume that E = λt.∅, i.e., this parameter272

has no effect. Our algorithm produces a set of terms, each of which are reachable by some273

rewrite path beginning from t0, and for which some ordering allows the rewrite path. The274

algorithm addresses Challenge 1 (termination; Theorem 22) because every path must be275

finite: no ordering could orient an infinite path.276

Our algorithm operates in worklist fashion, storing in p a list of pairs (ts, c) where ts is277

a non-empty list of terms representing a rewrite path already explored (the head of which278

is always t0) and c tracks the ordering constraints of the path so far. The set o records the279

output terms (initially empty): all terms discovered (down any rewrite path) equal to t0 via280

the rewriting paths explored.281

While there are still rewrite paths to be extended, i.e., p is not empty, a tuple (ts, c) is282

popped from p. REST puts t, i.e., the last term of the path, into the set of output terms283

o and considers all terms t′ that are: (a) not already in the path and (b) reachable by a284

single rewrite step of R (or returned by the function E explained later). The crucial decision285

of whether or not to extend a rewrite path with the additional step t → t′ is handled in286

the if check of REST. This check is to guarantee termination, by enforcing that we only add287
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f(s0) f(s0) f(s0)

f(s0 ⋃ ∅) f(s0 ⋂ s0)f(s0 ⋃ ∅)

f(s0 ⋃ (s1 ⋂ s0)) f((s0 ⋂ s0) ⋃ ∅)

f((s0 ⋂ s0) ⋃ (s1 ⋂ s0))

f((s0 ⋃ s1) ⋂ s0)
(x ⋃ y) ⋂ z → (x ⋂ z) ⋃ (y ⋂ z)

x ⋂ x → x s1 ⋂ s0 → ∅

s1 ⋂ s0 → ∅ x ⋂ x → x x ⋃ ∅ → x

x ⋂ x → xx ⋃ ∅ → xx ⋃ ∅ → x

f((s0 ⋃ ∅) ⋂ (s0 ⋃ ∅)

f((s0 ⋃ (s1 ⋂ s0)) ⋂ (s0 ⋃ (s1 ⋂ s0)))

f((s0 ⋃ s1) ⋂ (s0 ⋃ s0))

Figure 4 A visualization of REST running on the term from Example 1. Each path through the
tree shown represents a rewrite path uncovered by our algorithm; the edge labels show the rewrite
rule applied. The red dotted lines indicate rewrite steps rejected by REST.

rewrite steps which would leave the extended path still justifiable by some term ordering,288

as enforced by the sat check.289

Figure 4 visualizes the rewrite paths explored by our algorithm for a run correspond-290

ing to the problem from Example 1, using the OCA for the recursive path quasi-ordering291

(Sec. 4.2.1)2. The manual proof in Example 1 corresponds to the right-most path in this tree;292

the other paths apply the same reasoning steps in different orders. In our implementation,293

we optimize the algorithm to avoid re-exploring the same term multiple times unless this294

could lead to further rewrites being discovered (cf. Sec. 6).295

The arrow from the root of the tree to its child corresponds to the first rewrite REST296

applies: f((s0 ∪ s1) ∩ s0)→ f((s0 ∩ s0) ∪ (s1 ∩ s0)). This rewrite step can only be oriented297

by RPQOs with precedence ∩ > ∪; therefore applying this rewrite constrains the set of298

RPQOs that REST must consider in subsequent applications. For example, the rewrite to the299

left child of f((s0 ∩ s0) ∪ (s1 ∩ s0)) can only be oriented by RPQOs with precedence ∪ > ∩.300

Since no RPQO can have both ∩ > ∪ and ∪ > ∩, no RPQO can orient the entire path from301

the root; REST must therefore reject the rewrite. On the other hand, the rewrite to the right302

child can be oriented by any RPQO where s0 > ∅, s1 > ∅, or ∩ > ∅. The path from the root303

can thus continue down the right-hand side, as there are RPQOs that satisfy both ∩ > ∪304

and the other conditions. The subsequent rewrites down the right-hand side do not impose305

any new constraints on the ordering: f((s0 ∩ s0)∪ ∅) >T f(s0 ∩ s0) >T f(s0) in all RPQOs.306

Similarly, REST will prove Example 2 but will reject Example 3 when the input OCA307

represents RPQO orderings. As shown in our benchmarks (Table 2 of Sec. 7), Example 3 is308

solved by REST with an OCA for the Knuth-Bendix term ordering family.309

3.3 Integrating an External Oracle310

Finally, to tackle Challenge 5, we turn to the (so far ignored) third parameter of the algo-311

rithm, the external oracle E . In the example variant presented at the end of Sec. 2, such312

a function might supply the rewrite step s0 ∩ s1 → ∅ by analysis of the logical assumption313

|s0∩s1| = 0, which goes beyond term-rewriting. More generally, any external solver capable314

of producing rewrite steps (equal terms) can be connected to our algorithm via E . In our315

implementation in Liquid Haskell, we use the pre-existing Proof by Logical Evaluation (PLE)316

2 We omit the commutativity rules from this run, just to keep the diagram easy to visualize, but our
implementation handles the example easily with or without them.
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technique [50], which complements rewriting with the expansion of program function defini-317

tions, under certain checks made via SMT solving. Our only requirements on the oracle E318

are that the binary relation on terms generated by calls to it is bounded (finitely-branching)319

and strongly normalizing (cf. Sec. 5).320

Our algorithm therefore flexibly allows the interleaving of term rewriting steps and those321

justified by the external oracle; we avoid the potential for this interaction to cause non-322

termination by conditioning any further rewriting steps on the fact that the entire path323

(including the steps inserted by the oracle) can be oriented by at least one candidate term324

ordering.325

The combination of our interfacing for defining term orderings via ordering constraint326

algebras, a search algorithm that effectively explores all rewrites enabled by the orderings,327

and the flexible possibility of combination with external solvers via the oracle parameter328

makes REST very adaptable and powerful in practice.329

4 Well-Quasi-Orderings and the Ordering Constraint Algebra330

Term orderings are typically defined as strict well-founded orderings; this requirement en-331

sures that rewriting will obtain a normal form. However, as mentioned in Challenge 3, the332

restriction to strict orderings limits what can be achieved with rewriting. In this section we333

describe the derivation of well-quasi-orderings from strict orderings (Sec. 4.1) and introduce334

Knoth-Bendix quasi-orderings (Sec. 4.1.1) and recursive path quasi-orderings (Sec. 4.1.2),335

two novel term ordering families respectively based on the classical recursive path and Knoth-336

Bendix orderings. In addition, we formally introduce ordering constraint algebras (Sec. 4.2)337

and use them to develop an efficient ordering constraint algebra for RPQOs.338

4.1 Well-Quasi-Orderings339

We define well-quasi-orderings in the standard way.340

▶ Definition 5 (Well-Quasi-Orderings). A relation ⩾ is a quasi-order if it is reflexive and341

transitive. Given elements t and u in S, we say t ≈ u if t ⩾ u and u ⩾ t. A quasi-order ⩾342

is also characterized as:343

1. WQO, when for all infinite chains x1, x2, . . . there exists an i, j, i < j such that xj ⩾ xi,344

2. thin, when forall t ∈ S, the set {u ∈ S | t ≈ u} is finite, and345

3. total, when for all t, u ∈ S either t ⩾ s or s ⩾ t.346

Well-quasi-orderings are not required to be antisymmetric, however the corresponding347

strict part of the ordering must be well-founded. Hence, a WQO derives a strict ordering348

over equivalence classes of terms; REST also requires that these equivalence classes are finite349

(i.e., the ordering is thin). With this requirement, REST guarantees termination by exploring350

only duplicate-free paths.351

Many simplification orderings can be converted into more permissive WQOs. Intuitively,352

given an ordering >o its quasi-ordering derivation also accepts equal terms, so we denote it353

as ⩾o. We next present two such derivations.354

4.1.1 Knuth-Bendix Quasi-Orderings (KBQO)355

The Knuth-Bendix ordering [29] is a well-known simplification ordering used in the Knuth-356

Bendix completion procedure. Here, we present a simplified version of the ordering, used by357

REST that is using ordering to only compare ground terms.358
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▶ Definition 6. A weight function w is a function F → N, where w(f) > 0 for all nullary359

functions symbols, and w(f) = 0 for at most one unary function symbol. w is compatible with360

a quasi-ordering ⩾F on F if, for any unary function f such that w(f) > 0, we have f >F g361

for all g. w(t) denotes the weight of a term t, such that w(f(t1, . . . , tn)) = w(f)+
∑

1⩽i⩽n

w(ti)362

▶ Definition 7 (Knuth-Bendix ordering (KBO) on ground terms). The Knuth-Bendix Order-363

ing >kbo for a given weight function w and compatible precedence order ⩾F is defined as364

f(t1, . . . , tm) = t >kbo u = g(u1, . . . , un) iff w(t) ⩾ w(u), and:365

1. w(t) > w(u), or366

2. f >F g, or367

3. f ⩾F g, and (t1, . . . , tm) >kbolex (u1, . . . , un).368

Where >kbolex performs a lexicographic comparison using >kbo as the underlying ordering.369

Intuitively, KBO compares terms by their weights, using ⩾F and the lexicographic com-370

parison as “tie-breakers” for cases when terms have equal weights. However, as ⩾ is already371

a well-quasi-ordering on N, we can derive a more general ordering by removing these tie-372

breakers and the need for a precedence ordering at all.373

▶ Definition 8 (Knuth-Bendix Quasi-ordering (KBQO)). Given a weight function w, the374

Knuth-Bendix quasi-ordering ⩾kbo is defined as t ⩾kbo u iff w(t) ⩾ w(u).375

The resulting quasi-ordering is considerably simpler to implement and is more permissive:376

t >kbo u implies t ⩾kbo u; and also enables arbitrary associativity and commutativity axioms377

as rewrite rules, since it only considers the weights of the function symbols and no structural378

components of the term. However, one caveat is that REST operates on well-quasi-ordering379

that are thin (Def. 5) and therefore can only consider KBQOs where w(f) > 0 for all unary380

function symbols f .381

However, the fact that KBO and KBQO largely ignore the structure of the term in382

their comparison has a corresponding downside: it is not possible to orient distributivity383

axioms, or many other axioms that increase the number of symbols in a term. Therefore,384

we have found that a WQO derived from the recursive path ordering [15] to be more useful385

in practice.386

4.1.2 Recursive Path Quasi-Orderings (RPQO)387

In this section, we define a particular family of orderings designed to be typically useful for388

term-rewriting via REST. Our family of orderings is a novel extension of the classical notion389

of RPO, designed to also be more compatible with symmetrical rules such as commutativity390

and associativity (cf. Challenge 3, Sec. 2).391

Like the classical RPO notions, our recursive path quasi-ordering (RPQO) is defined in392

three layers, derived from an underlying ordering on function symbols:393

The input ordering ≽F can be any quasi-ordering over F .394

The corresponding multiset quasi-ordering ≽M(X) lifts an ordering ≽X over X to an395

ordering ≽M(X) over multisets of X. Intuitively T ≽M(X) U when U can be obtained396

from T by replacing zero or more elements in T with the same number of equal (with397

respect to ≽X) elements, and replacing zero or more elements in T with a finite number398

of smaller ones (Def. 9).399
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Finally, the corresponding recursive path quasi-ordering ≽rpo is an ordering over terms.400

Intuitively f(ts) ≽rpo g(us) uses ≽F to compare the function symbols f and g and the401

corresponding ≽M(rpo) to compare the argument sets ts and us (Def. 10).402

Below we provide the formal definitions of the multiset quasi-ordering and recursive path403

quasi-ordering respectively generalized from the multiset ordering of [18] and the recursive404

path ordering [15] to operate on quasi-orderings. For all the three orderings, we write405

xl < xr
.= xl ̸≽ xr and xl > xr

.= xl ≽ xr ∧ xr ̸≽ xl.406

▶ Definition 9 (Multiset Ordering). Given a ordering ≽X over a set X, the derived multiset407

ordering ≽M(X) over finite multisets of X is defined as T ≽M(X) U iff:408

1. U = ∅, or409

2. t ∈ T ∧ u ∈ U ∧ t ≈ u ∧ (T − t) ≽M(X) (U − u), or410

3. t ∈ T ∧ (T − t) ≽M(X) (U \ {u ∈ U | u <X t}).411

▶ Definition 10 (Recursive Path Quasi-Ordering). Given a basic ordering ≽F , the recursive412

path quasi-ordering (RPQO) is the ordering ≽rpo over T defined as follows: f(t1, . . . , tm) ≽rpo413

g(u1, . . . , un) iff414

1. f >F g and {f(t1, . . . , tm)} >M(rpo) {u1, . . . , un}, or415

2. g >F f and {t1, . . . , tm} ≽M(rpo) {g(u1, . . . , un)}, or416

3. f ≈ g and {t1, . . . , tm} ≽M(rpo) {u1, . . . , un}.417

▶ Example 11. As a first example, any RPQO ≽T used to restrict term rewriting will418

accept the rule x + y → y + x, since x + y ≽T y + x always holds. Since the top level419

function symbol is the same + ≈ +, by Def. 10(3) we need to show {x, y} ≽M(rpo) {y, x}.420

By Def. 9(2) (choosing both t and u to be x), we can reduce this to {y} ≽M(rpo) {y}; the421

same step applied to y reduces this to showing ∅ ≽M(rpo) ∅ which follows directly from422

Def. 9(3).423

From this example, we can see that both x + y ≽rpo y + x and y + x ≽rpo x + y hold, in424

this case independently of the choice of input ordering ≽F on function symbols. In our next425

example, the choice of input ordering makes a difference.426

▶ Example 12. As a next example, we compare the terms s(x)+y and s (x+y). Now that the427

outer function symbols are not equal, the order relies on the ordering between + and s. Let’s428

assume that + >F s. Now to get s(x)+y ≽rpo s (x+y), the 1st case of Definition 10 further429

requires {s(x)+y} >M(rpo) {x+y}, which holds if s(x)+y >rpo x+y. The outermost symbol430

for both expressions is +, so we must check the multiset ordering: {s(x), y} >M(rpo) {x, y},431

which holds because by case splitting on the relation between s and x, we can show that432

s(x) is always smaller than x. In short, if + >F s, then s(x) + y ≽rpo s (x + y).433

Developing on our RPQO notion (Def. 10), we consider the set of all such orderings that434

are generated by any total, well-quasi-ordering over the operators. We prove that such term435

orderings satisfy the termination requirements of Theorem 22. Concretely:436

▶ Theorem 13. If ≽F is a total, well-quasi-ordering, then437

1. ≽rpo is a well-quasi-ordering,438

2. ≽rpo is thin, and439

3. ≽rpo is thin well-founded.440

Proof. The detailed proofs can be found in App. B. (1) uses the well-foundedness theorem441

of Dershowitz [15] and the fact that ≽rpo is a quasi-simplification ordering. (2) relies on442

the fact that a finite number of function symbols can only generate a finite number of equal443

terms. (3) is a corollary of (1) and (2) combined. ◀444
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4.2 Ordering Constraint Algebras445

Ordering constraint algebras play a crucial role in the REST algorithm (Sec. 3.2), by enabling446

the algorithm to simultaneously consider an entire family of term orderings during the447

exploration of rewrite paths. In this section, we provide a formal definition for ordering448

constraint algebras and describe the construction of an algebra for the RPQO.449

▶ Definition 14 (Ordering Constraint Algebra). An Ordering Constraint Algebra (OCA)450

A(T,Γ) over a set of terms T and term ordering family Γ, is a five-tuple A(T,Γ)
.= ⟨C, γ,⊤, refine, sat⟩,451

where:452

1. C, the constraint language, can be any non-empty set. Elements of C are called con-453

straints, and are ranged over by c.454

2. γ, the concretization function of A(T,Γ), is a function from elements of C to subsets of455

Γ.456

3. ⊤, the top constraint, is a distinguished constant from C, satisfying γ(⊤) = Γ.457

4. refine, the refinement function, is a function C → T → T → C, satisfying (for all458

c, tl, tr) γ(refine(c, tl, tr)) = {≽ | ≽ ∈ γ(c) ∧ tl ≽ tr}.459

5. sat, the satisfiability function, is a function C → Bool, satisfying (for all c) sat(c) =460

true ⇔ γ(c) ̸= ∅.461

The functions ⊤, refine, and sat are all called from our REST algorithm (Figure 3), and462

must be implemented as (terminating) functions when implementing REST. Specifically, REST463

instantiates the initial path with constraints c = ⊤. When a path can be extended via a464

rewrite application tl →R tr, REST refines the prior path constraints c to c′ .= refine(c, tl, tr).465

Then, the new term is added to the path only if the new constraints are satisfiable (sat(c′)466

holds); that is, if c′ admits an ordering that orients the generated path. The function γ need467

not be implemented in practice; it is purely a mathematical concept used to give semantics468

to the algebra.469

Given terms T and a finite term ordering family Γ, a trivial OCA is obtained by letting470

C = P(Γ), and making γ the identity function; straightforward corresponding elements ⊤,471

refine, and sat can be directly read off from the constraints in the definition above.472

However, for efficiency reasons (or in order to support potentially infinite sets of order-473

ings, which our theory allows), tracking these sets symbolically via some suitably chosen474

constraint language can be preferable. For example, consider lexicographic orderings on475

pairs of constants, represented by a set T of terms of the form p(q1, q2) for a fixed function476

symbol p and q1, q2 chosen from some finite set of constant symbols Q. We choose the477

term ordering family Γ = {≽lex(≽) | ≽ is a total order on Q} writing ≽lex(≽) to mean the478

corresponding lexicographic ordering on p(q1, q2) terms generated from an ordering ≽ on Q.479

A possible OCA over these T and Γ can be defined by choosing the constraint language480

C to be formulas: conjunctions and disjunctions of atomic constraints of the forms q1 > q2481

and q1 = q2 prescribing conditions on the underlying orderings on Q. The concretization482

γ is given by γ(c) = {≽lex(≽) | ≽ satisfies c}, i.e., a constraint maps to all lexicographic483

orders generated from orderings of Q that satisfy the constraints described by c, defined in484

the natural way. We define ⊤ to be e.g., q = q for some q ∈ Q. A satisfiability function sat485

can be implemented by checking the satisfiability of c as a formula. Finally, by inverting486

the standard definition of lexicographic ordering, we define:487

refine(c, p(q1, q2), p(r1, r2)) = c ∧ (q1 > r1 ∨ (q1 = r1 ∧ q2 > r2))488
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Using this example algebra, suppose that REST explores two potential rewrite steps489

p(a1, a2) → p(b1, a2) → p(a1, a1). Starting from the initial constraint c0 = ⊤, the con-490

straint for the first step c1
.= refine(c0, p(a1, a2), p(b1, a2)) = a1 > b1 ∨ (a1 = b1 ∧ a2 > a2) is491

satisfiable, e.g., for any total order for which a1 > b1. However, considering the subsequent492

step, the refined constraint c2
.= refine(c1, p(b1, a2), p(a1, a1)), computed as c2 = c1 ∧ (a2 >493

a2 ∨ (a2 = a2 ∧ b1 > a1)) is no longer satisfiable. Note that this allows us to conclude that494

there is no lexicographic ordering allowing this sequence of two steps, even without explicitly495

constructing any orderings.496

We now describe an OCA for RPQOs (Sec. 4.1.2), based on a compact representation of497

sets of these orderings.498

4.2.1 An Ordering Constraint Algebra for ≽rpo499

The OCA for RPQOs enables their usage in REST’s proof search. One simple but computa-500

tionally intractable approach would be to enumerate the entire set of RPQOs that orient a501

path; continuing the path so long as the set is not empty. This has two drawbacks. First,502

the number of RPQOs grows at an extremely fast rate with respect to the number of func-503

tion symbols; for example there are 6, 942 RPQOs describing five function symbols, and504

209, 527 over six. Second, most of these orderings differ in ways that are not relevant to the505

comparisons made by REST.506

Instead, we define a language to succinctly describe the set of candidate RPQOs, by507

calculating the minimal constraints that would ensure orientation of the path of terms;508

REST continues so long as there is some RPQO that satisfies the constraints. Crucially the509

satisfiability check can be performed effectively using an SMT solver, as described in Sec. 6.2,510

without actually instantiating any orderings.511

Before formally describing the language, we begin with some examples, showing how the512

ordering constraints could be constructed to guide the termination check of REST.513

▶ Example 15 (Satisfiability of Ordering Constraints). Consider the following rewrite path
given by the rules r1

.= f(g(x), y)→ g(f(y, y)) and r2
.= f(x, x)→ f(k, x):

f(g(h), k)→r1 g(f(h, h))→r2 g(f(k, h))

To perform the first rewrite REST has to ensure that there exists an RPQO ≽rpo such514

that f(g(h), k) ≽rpo g(f(h, h)). Following from Definition 10, we obtain three possibilities:515

1. f >F g and {f(g(h), k)} >M(rpo) {f(h, h)}, or516

2. g >F f and {g(h), k} ≽M(rpo) {g(f(h, h))}, or517

3. f ≈ g and {g(h), k} ≽M(rpo) {f(h, h)}.518

We can further simplify these using the definition of the multiset quasi-ordering (Def. 9).
Concretely, the multiset comparison of (1) always holds, while the multiset comparisons of
(2) and (3) reduce to k >F f ∧ k >F g ∧ k >F h. Thus, we can define the exact constraints
c0 on ≽rpo to satisfy f(g(h), k) ≽rpo g(f(h, h)) as

c0
.= f >F g ∨ (k >F f ∧ k >F g ∧ k >F h)

Since there exist many quasi-orderings satisfying this formula (trivially, the one containing519

the single relation f >F g), the first rewrite is satisfiable.520

Similarly, for the second rewrite, the comparison g(f(z, z)) ≽rpo g(f(k, z)) entails the521

constraints c1
.= z ≽F k. To perform this second rewrite the conjunction of c0 and c1522

must be satisfiable. Since the second disjunct of c0 contradicts c1, the resulting constraints523

f >F g ∧ z ≽F k is satisfiable by an RPQO, thus the path is satisfiable.524
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▶ Example 16 (Unsatisfiable Ordering Constraint). As a second example, consider the rewrite
rules r1

.= f(x) → g(s(x)) and r2
.= g(s(x)) → f(h(x)). These rewrite rules can clearly

cause divergence, as applying rule r1 followed by r2 will enable a subsequent application of
r1 to a larger term. Now let’s examine how our ordering constraint algebra can show the
unsatisfiability of the diverging path:

f(z)→r1 g(s(z)) ̸→r2 f(h(z))

f(z) ≽rpo g(s(z)) requires c0
.= f > g ∧ f > s which is satisfiable, but g(s(z)) ≽rpo f(h(z))525

requires c1
.= (g ⩾ f ∧ g ⩾ h)∨ (g ⩾ f ∧ s ⩾ h)∨ (s > f ∧ s > h), which, although satisfiable526

on it’s own, conflicts with c0. Since no RPQO can satisfy both c0 and c1, the rewrite path527

is not satisfiable.528

Having primed intuition through the examples, we now present a way to compute such
constraints. First, it is clear that we can define an RPQO based on the precedence over
symbols F . Therefore, we define our language of constraints to include the standard logical
operators as well as atoms representing the relations between elements of F , as:

CF
.= f >F g | f ≈ g | CF ∧ CF | CF ∨ CF | ⊤ | ⊥

Next, we lift our definition of RPQO and the multiset quasi-ordering to derive functions:529

rpo : T → T → CF , and mul : (T → T → CF )→M(T )→M(T )→ CF . rpo is derived by530

a straightforward translation of Def. 10:531

rpo(f(t1, . . . , tm), g(u1, . . . , un)) = f >F g ∧ mul′(rpo, {f(t1, . . . , tm)}, {u1, . . . , un}) ∨
g >F f ∧ mul(rpo, {t1, . . . , tm}, {g(u1, . . . , un)}) ∨

f ≈ g ∧ mul(rpo, {t1, . . . , tm}, {u1, . . . , un})
532

where mul′ is the strict multiset comparison: mul′(f, T, U) = mul(f, T, U) ∧ ¬mul(f, U, T ).533

¬ : CF → CF inverts the constraints, with ¬(f >F g) = f ≈ g ∨ g >F f and ¬(f ≈ g) =534

f >F g ∨ g >F f ; the other cases are defined in the typical way.535

The definition for mul is more complex. Recall that T ≽M(X) U when U can be obtained536

from T by replacing zero or more elements in T with the same number of equal (with respect537

to ≽X) elements, and by replacing zero or more elements in T with a finite number of smaller538

ones. Therefore each justification for {t1, . . . , tm} ≽M(X) {u1, . . . , un} can be represented539

by a bipartite graph with nodes labeled t1, . . . , tm and u1, . . . , un, such that:540

1. Each node ui has exactly one incoming edge from some node tj .541

2. If a node ti has exactly one outgoing edge, it is labeled either GT or EQ.542

3. If a node ti has more than one outgoing edge, it is labeled GT.543

mul(f, {t1, . . . , tm}, {u1, . . . , un}) generates all such graphs: for each graph converts each544

labeled edge (t, u, EQ) to the formula f(t, u) ∧ f(u, t), each edge (t, u, GT) to the formula545

f(t, u)∧¬f(u, t), and finally joins the formulas for the graph via a conjunction. The resulting546

constraint is defined to be the disjunction of the formulas generated from all such graphs.547

Having defined the lifting of recursive path quasi-orderings to the language of constraints,548

we define our ordering constraint algebra A(T ,Γ) as the tuple ⟨CF ,⊤, refine, γ, sat⟩ where:549

refine(c, t, u) = c ∧ rpo(t, u),550

Γ is the set of all RPQOs,551

γ(c) is the set of RPQOs derived from the underlying quasi-orders ≽F that satisfy c, and552

sat(c) = true if and only if there exists a quasi-order ≽F satisfying c.553
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That A(T ,Γ) is an OCA, i.e., satisfies the requirements of Def. 14, follows by construction.554

Namely, the function rpo(t, u) produces constraints c such that, for any RPQO ≽rpo, t ≽rpo u555

if and only if its underlying ordering ≽F satisfies c. In Sec. 6.2 we further discuss how the556

satisfiability check is mechanized and implemented using an SMT solver.557

Having shown that using RPQOs as a term ordering is useful for theorem proving, sat-558

isfies the necessary properties for REST, and admits an efficient ordering constraint algebra,559

we continue our formal work by stating and proving the metaproperties of REST.560

5 REST Metaproperties: Soundness, Completeness, and Termination561

We now present the metaproperties of the REST algorithm defined in Figure 3. We show562

correctness (Theorem 17), completeness (Theorem 19) relative to the input term ordering563

family (recall that its instances must all be thin well-quasi-orderings), and termination564

(Theorem 22) which requires that calls to the OCA functions used in the algorithm, as well565

as the external oracle function, themselves terminate. The property that the orderings are566

thin well-founded guarantees in particular that any duplicate-free path (such as those that567

REST generates) that can be oriented by any of these orderings is guaranteed to be finite.568

We provide here the key invariants and statements of the formal results, and relegate the569

detailed proofs to App. A.570

5.1 Formal Definitions571

Our formalism of rewriting is standard; based on the terminology of [28]. Our language572

consists of the following:573

1. An infinite set of meta-variables (the variables for rewrite rules) V with elements X, Y ,574

. . . .575

2. A finite set of function symbols F with elements f , g, . . . , x, y, . . .576

Each operator is associated with a fixed numeric arity and types for its arguments and577

result (elided here, for simplicity). By convention, we use the variables x, y to range over578

zero-arity function symbols (constants).579

3. A set of terms T with elements t, u, . . . inductively defined as follows: (a) X ∈ V ⇒ X ∈ T580

and (b) f ∈ F , f has arity n, t1, . . . , tn ∈ T ⇒ f(t1, . . . , tn) ∈ T .581

We use FV (t) to refer to the set of meta-variables in t. A term t is ground if FV (t) = ∅.582

A substitution σ ⊆ V × T is a mapping from meta-variables to terms. We write σ · t to583

denote the simultaneous application of the substitution: namely, σ·t replaces each occurrence584

of each meta-variable X in t with σ(X). A substitution σ grounds t if, for all X ∈ FV (t),585

σ(X) is a ground term. A substitution σ unifies two terms t and u if σ · t = σ · u.586

A context E is a term-like object that contains exactly one term placeholder •. If t is a587

term, then E[t] is the term generated by replacing the • in E with t.588

A rewrite rule r is a pair of terms r
.= (t, u) such that FV (u) ⊆ FV (t) and t /∈ V. Each589

rewrite rule r
.= (t, u) defines a binary relation →r which is the smallest relation such that,590

for all contexts E and substitutions σ grounding t (and therefore u), E[σ · t]→r E[σ · u].591

We use R to range over sets of rewrite rules. We write v →R w iff v →r w for some592

r ∈ R.593

For oracle functions (from terms to sets of terms) E , we write t →E t′ iff t′ ∈ E(t). We594

write t →R+E t′ if t →R t′ or t →E t′. For a relation → we write →∗ for its reflexive,595

transitive closure. A path is a list of terms. A binary relation ≽ orients a path t1, . . . , tn if596

∀i, 1 ≤ i < n, ti ≽ ti+1.597
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5.2 Soundness598

Soundness of REST means that any term of the output (u ∈ REST(A, R, t0, E)) can be derived599

from the original input term by some combination of term rewriting steps from R and steps600

via the oracle function E (in other words, t0 →∗
R+E u).601

Our proof relies on the following simple invariant of REST: any path stored in the stack602

during the execution of the algorithm can be derived by the rewrite rules in R or the external603

oracle E .604

▶ REST Invariant 1 (Path Invariant). For any execution of REST(A, R, t0, E), at the start of605

any iteration of the main loop, for each (ts, c) ∈ p, the list ts is a path of R + E starting606

from t0.607

Proof. (Sketch:) By straightforward induction on iterations of the main loop. ◀608

▶ Theorem 17 (Soundness of REST). For all R, u, and t0, if u ∈ REST(A, R, t0, E), then609

t0 →∗
R+E u.610

Proof. In each iteration of REST, the term t added to the output o is the last element of the611

list ts for the tuple (ts, c) ∈ p. By Invariant 1, t must be on the path of R + E starting from612

t0. ◀613

5.3 Completeness614

A naïve completeness statement for REST might be that, for any terms t0 and u, if t0 →∗
R+E u615

then u is in our output (u ∈ REST(A, R, t0, E)). This result doesn’t hold in general by design,616

since REST explores only paths permitted by at least one candidate instance of its input term617

ordering family. We prove this relative completeness result in two stages. First (Theorem 18),618

we show that completeness always holds if all steps only involve the external oracle. Then619

(Theorem 19), we prove relative completeness of REST with respect to the provided term620

ordering family. We begin by stating another simple invariant of our algorithm: that any621

term appearing in a path in the stack p, will belong to the final output:622

▶ REST Invariant 2. For any execution of REST(A, R, t0, E), at the start of any iteration of623

the main loop, if t ∈ ts and (ts, c) ∈ p, then, when the algorithm terminates, we will have624

t ∈ REST(A, R, t0, E).625

Proof. (Sketch:) We can prove inductively that terms contained in any list in p either626

remain in p or end up in o; since p is empty on termination, the result follows. ◀627

▶ Theorem 18 (Completeness w.r.t. E). For all R, u, and t0, if t0 →∗
E u, then u ∈628

REST(A, R, t0, E).629

Proof. (Sketch:) Since, E is strongly normalizing, the path of terms t0 →E . . . →E u will630

not contain any duplicates; REST will therefore insert each term in the path into ts. Since u631

is in that path, Invariant 2 ensures u ∈ REST(A, R, t0, E). ◀632

▶ Theorem 19 (Relative Completeness). For all R, u, and t0, if t0 →∗
R+E u and there exists633

an ordering ≽ ∈ γ(⊤) that orients the path justifying t0 →∗
R+E u, then u ∈ REST(A, R, t0, E).634

Proof. (Sketch:) The proof structure is similar to Theorem 18; in this case the terms in the635

path are guaranteed to be in ts because some ordering in γ(⊤) can orient the path. ◀636
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5.4 Termination637

Termination of REST requires appropriate conditions on the external oracle E and the order-638

ing constraint algebra A employed. We formally define these requirements and then prove639

termination of REST.640

▶ Definition 20 (Well-Founded ordering constraint algebras). For ordering constraint algebras641

A = ⟨C,⊤, refine, sat, γ⟩, for c, c′ ∈ C, we say c′ strictly refines c (denoted c′ ⊏A c) if642

c′ = refine(c, t, u) for some terms t and u, and γ(c′) ⊂ γ(c). Then, we say A is well-founded643

if ⊏A is.644

Down every path explored by REST, the tracked constraint is only ever refined; well-foundedness645

of A guarantees that finitely many such refinements can be strict.646

We note that if the OCA describes a finite set of orderings, then it is trivially well-647

founded: ⊂ is well-founded on finite sets. For example, the ordering constraint algebra for648

RPQOs (Sec. 4.2.1) is well-founded when the set of functions symbols F is finite, as there649

are a only a finite number of possible RPQOs over a finite set of function symbols.650

▶ Definition 21. A relation tl → tr is normalizing if it does not admit an infinite path and651

bounded if for each tl it only admits finite tr.652

▶ Theorem 22 (Termination of REST). For any finite set of rewriting rules R, if:653

1. →E is normalizing and bounded,654

2. The refine and sat functions from A are decidable (always-terminating, in an implemen-655

tation),656

3. A is well-founded,657

then, for all terms t0, REST(A, R, t0, E) terminates.658

Proof. (Sketch:) The paths constructed by REST implicitly constructs a finitely branching659

tree, and the four restrictions ensures that all paths down the tree are finite. This ensures660

that the resulting tree is finite; and thus that REST’s implicit construction of the tree will661

terminate. ◀662

Note that any deterministic, terminating external oracle function satisfies the first re-663

quirement. Having completed the formalization, we now move on to the details of our664

implementation.665

6 Implementation of REST666

We implemented REST as a standalone library, comprising 2337 lines of Haskell code (Sec. 6.1).667

Our implementation includes the REST algorithm, several ordering constraint algebra imple-668

mentations (including RPQOs [Def. 10]) and exposes the API for implementing ordering669

constraint algebras (Sec. 6.2). We integrated this library into the Liquid Haskell program670

verifier [49] (Sec. 6.3), where we chose the task of applying lemmas in Liquid Haskell proofs671

as a suitable target problem for automation via REST.672
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-- Interface of OC Algebra

data OC C T = OC

{ top :: C

, refine :: C → T → T → C

, sat :: C → IO Bool

}

-- Language of Logical Formulas

data LF A = LTrue | LFalse

| A :>: A | A :=: A

| LF A :∧: LF A | LF A :∨: LF A

-- Implementation of OC Algebra

rpoOC :: OC (LF F) T
rpoOC = OC LTrue refine sat where

refine :: LF F → T → T → LF F
refine c t u =

c :∧: rpo t u -- As in Def 10

sat :: LF F → IO Bool

sat = smtSat . toSMT -- SMT Interface

Figure 5 The implementation of our RPQO Ordering Constraint Algebra

6.1 The REST Library673

Our REST implementation is developed in Haskell and can be used directly by other Haskell674

projects. The library is designed modularly; for example, a client of the library can decide to675

use REST only for comparing terms via an OCA, without also using the proof search algorithm676

of Sec. 3.2. In addition, our library has a small code footprint and can be used with or677

without external solvers, making it ideal for integration into existing program analysis tools678

and theorem provers.679

Furthermore, we include in the library built-in helper utilities for encoding and solving680

constraints on term orderings. Although the library enables integration of arbitrary solvers;681

it provides several built-in solvers for constraints on finite WQOs and also provides an682

interface for solving constraints with external SMT solvers. These utilities comprise the683

majority of the code in the REST library (1369 out of the 2337 lines).684

Our implementation defines the OCA interface of Sec. 4.2 and provides three built-in685

instances for RPQOs, LPQOs (derived from the Lexicographic path ordering), and KBQOs686

(Sec. 4.1.1). The helper utilities included in the library enable a concise implementation of687

these OCAs: the three OCA implementations consist of 200 lines of code in total.688

To facilitate debugging and evaluation of OCAs, the library also provides a standalone689

executable that produces visualizations of the rewrite paths that REST explores when using690

the OCA to compute the rewrites paths from a given term. Figure 4 and Figure 8 were691

produced using this functionality; we also note that the visualization is also capable of692

displaying the accumulated constraints on the ordering at each node in the tree.693

We now describe the interface for defining OCAs in our REST implementation, via a694

presentation of the RPQO algebra in the library.695

6.2 Efficient Implementations of OCAs in REST696

Figure 5 presents REST’s library interface for ordering constraint algebras and the implemen-697

tation of RPQOs. The interface OC is parametric in the language of constraints C and the698

type of terms t. The logical formulas LF A describe constraints on WQOs over A, in the case699

of RPQOs, LF F tracks constraints on the underlying precedence of function symbols.700

Our implementation rpoOC defines the initial constraints top to be LTrue, (intuitively,701

permitting any RPQO). The function refine c t u conjoins the current constraints c with702

the constraints rpo t u, ensuring t ≽ u. Finally the sat function converts the constraints703

into an equisatisfiable SMT formula, by encoding each distinct function symbol as an SMT704

integer variable, encoding the logical operators as their SMT equivalent, and checking for705
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{-@ example1 :: s0 : Set → { s1 : Set | IsDisjoint s0 s1 } → f : (Set → a) → { f ((s0

\/ s1) /\ s0) = f s0 } @-}

example1 :: Set → Set → (Set → a) → Unit

example1 s0 s1 f =

f ((s0 \/ s1) /\ s0) ? distribUnion s0 s1 s0

=== f ((s0 /\ s0) \/ (s1 /\ s0)) ? idemInter s0

=== f (s0 \/ (s1 /\ s0)) ? symmInter s1 s0

=== f (s0 \/ (s0 /\ s1)) -- Disjoint

=== f (s0 \/ emptySet) ? emptyUnion s0

=== f s0

*** QED

Figure 6 Liquid Haskell version of the proof from Example 1.

satisfiability of the resulting formula.706

REST’s interface supports arbitrary implementations for ordering constraints and is not707

dependent on any particular ordering, constraint language, or solver. For example, the sat708

function for RPQOs could evaluate the formulas using an alternative solver; in fact REST709

includes a built-in solver for this purpose, although it does not achieve as high performance710

as the SMT-based approach.711

6.3 Integration of REST in Liquid Haskell712

We used REST to automate lemma application in Liquid Haskell. Here we provide a brief713

overview of Liquid Haskell (Sec. 6.3.1), how REST is used to automate lemma instantiations714

(Sec. 6.3.2) and how it mutually interacts with the existing Liquid Haskell automation715

(Sec. 6.3.3).716

6.3.1 Liquid Haskell and Program Lemmas717

Liquid Haskell performs program verification via refinement types for Haskell; function types718

can be annotated with refinements that capture logical/value constraints about the func-719

tion’s parameters, return value and their relation. For example, the function example1720

in Figure 6 ports the set example of Example 1 to Liquid Haskell, without any use of REST.721

User-defined lemmas amount to nothing more than additional program functions, whose722

refinement types express the logical requirements of the lemma. The first line of the figure723

is special comment syntax used in Liquid Haskell to introduce refinement types; it expresses724

that the first parameter s0 is unconstrained, while the second s1 is refined in terms of s0: it725

must be some value such that IsDisjoint s0 s1 holds. The refinement type on the (unit)726

return value expresses the proof goal; the body of the function provides the proof of this727

lemma. The proof is written in equational style; the ? annotations specify lemmas used to728

justify proof steps [48]. The penultimate step requires no lemma; the verifier can discharge729

it based on the refinement on the s1 parameter.730

Lemmas already proven can be used in the proof of further lemmas; as is standard for731

program verification, care needs to be taken to avoid circular reasoning. Liquid Haskell732

ensures this via well-founded recursion: lemmas can only be instantiated recursively with733

smaller arguments.734
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6.3.2 REST for Automatic Lemma Application in Liquid Haskell735

We apply REST to automate the application of equality lemmas in the context of Liquid736

Haskell. The basic idea is to extract a set of rewrite rules from a set of refinement-typed737

functions, each of which must have a refinement type signature of the following shape:738
739

{-@ rrule :: x1:t1 → . . . → xn:tn → {v:() | el = er } @-}740741

In particular, the equality el = er refinement of the (unit) return value generates potential742

rewrite rules to feed to REST, in both directions. Let FV (e) be the free variables of e,743

if FV (er) ⊆ FV (el) and el ̸∈ {x1, . . . , xn} then el → er is generated as a rewrite rule.744

Symmetrically, if FV (el) ⊆ FV (er) and er ̸∈ {x1, . . . , xn} then er → el is generated as a745

rewrite rule. These rewrite rules are fed to REST along with the current terms we are trying746

to equate in the proof goal; any rewrites performed by REST are fed back to the context of747

the verifier as assumed equalities.748

Since the extracted rewrite rules are defined as refinement-typed expressions, our imple-749

mentation technically goes beyond simple term rewriting, since instantiations of these rules750

in our implementation are also refinement-type-checked; i.e., it instantiates only the rules751

with expressions of the proper refined type, achieving a form of conditional rewriting [27].752

Selective Activation of Lemmas: Local and Global Rewrite Rules In our Liquid Haskell753

extension, the user can activate a rewrite rule globally or locally, using the rewrite and754

rewriteWith pragmas, resp.. For example, with the below annotations755
756

{-@ rewrite global @-}757

{-@ rewriteWith theorem [local] @-}758759

the rule global will be active when verifying every function in the current Haskell module,760

while the rule local is used only when verifying theorem.761

Preventing Circular Reasoning Our implementation finally ensures that rewrites cannot762

be used to justify circular reasoning, by checking that there are no cycles induced by our763

rewrite and rewriteWith pragmas. For example, the below, unsound, circular dependency764

will be rejected with a rewrite error by our implementation.765
766

{-@ rewriteWith p1 [p2] @-}767

{-@ rewriteWith p2 [p1] @-}768

{-@ p1, p2 :: x:Int → { x = x + 1 } @-}769

p1 _ = () ; p2 = p1770771

To prevent circular dependencies, we check that the dependency graph of the rewrite rules772

(which are made available for proving with) has no cycles. This simple restriction is stronger773

than strictly necessary; a more-complex termination check could allow rewrites to be mu-774

tually justified by ensuring that recursive rewrites are applied with smaller arguments. In775

practice, our coarse check isn’t too restrictive: because Haskell’s module system enforces776

acyclicity of imports, rewrite rules placed in their own module can be freely referenced by777

importing the library.778

Lemma Automation Using our implementation, the same Example 1 proven manually in779

Figure 6 can be alternatively proven (with all relevant rewrite rules in scope) as follows:780
781

{-@ example1 :: s0 : Set → { s1 : Set | IsDisjoint s0 s1 } → f : (Set → a) →782

{ f ((s0 \/ s1) /\ s0) = f s0 } @-}783

example1 s0 s1 _ = ()784785
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Figure 7 Interaction between PLE and REST.

The proof is fully automatic: no manual lemma calls are needed as these are all handled786

by REST. Integrating REST into Liquid Haskell required around 500 lines of code, mainly for787

surface syntax.788

6.3.3 Mutual PLE and REST Interaction789

Liquid Haskell includes a technique called Proof by Logical Evaluation (PLE) [50] for au-790

tomating the expansion of terminating program function definitions. PLE expands function791

calls into single cases of their (possibly conditional) bodies exactly when the verifier can792

prove that a unique case definitely applies. This check is performed via SMT and so can793

condition on arbitrary logical information; in our implementation, this forms a natural com-794

plement to the term rewriting of REST, and plays the role of its external oracle (cf. Sec. 3).795

Since PLE is proven terminating [50], the termination of this collaboration is also guaranteed796

(cf. Sec. 5).797

Figure 7 summarizes the mutual interaction between PLE and REST on a verification798

condition Φ ⊢ p, where Φ is an environment of assumptions. PLE also takes as input a799

set F of (provably) terminating, user-defined function definitions that it iteratively evalu-800

ates. Meanwhile, REST is provided with the rewrite rules extracted from in-scope lemmas in801

the program (cf. Sec. 6.3.2); these two techniques can then generate paths of equal terms in-802

cluding steps justified by each technique. For example, consider the following simple lemma803

countPosExtra, stating that the number of strictly positive values in xs ++ [y] is the number804

in xs, provided that y <= 0, and a lemma stating that countPos of two lists appended gives805

the same result if their orders are swapped.806

807
{-@ lm :: xs : [Int] → ys : [Int] → { countPos (xs ++ ys) = countPos (ys ++ xs) } @-}808

809

{-@ rewriteWith countPosExtra [lm] @-}810

{-@ countPosExtra :: xs : [Int] → {y : Int | y <= 0 } →811

{ countPos (xs ++ [y]) = countPos xs } @-}812

countPosExtra :: [Int] → Int → ()813

countPosExtra _ _ = () -- proof is fully automatic!814815

The proof requires rewriting countPos(xs ++ [y]) first via lemma lm (by REST), expanding816

the definition of ++ twice (via PLE) to give countPos(y:xs), and finally one more PLE step817

evaluating countPos, using the logical fact that y is not positive. Note in particular that the818

first step requires applying an external lemma (out of scope for PLE) and the last requires819

SMT reasoning not expressible by term rewriting. The two techniques together allow for a820

fully automatic proof.821



Anonymous author(s) XX:23

a + (b + a)

(b + a) + a

(a + b) + a

a + (a + b)

(a + a) + b

(a + a) + b

b + (a + a)

b + (a + a)

(b + a) + a

(a + b) + a

a + (a + b)

(a + b) + a

(b + a) + a

(a + b) + a

(b + a) + a a + (a + b)

(a + a) + b

b + (a + a)

(b + a) + a

with optimization

without optimization

Figure 8 Associative-commutative rewrites of a + (b + a) generated by REST. Paths explored by
REST with the explored terms optimization are within the dashed line. Using the explored terms
optimization, REST only considers each term once.

6.4 Further Optimizing the REST Algorithm822

When a rewrite system is branching, REST may encounter different rewrite paths from an823

initial term t to an arbitrary term u. For example, in Figure 8, the term (b + a) + a is824

explored in 5 different paths. In general, REST cannot always ignore the repeat encounters of825

u, as a new path from t to u may impose ordering constraints enabling more rewrites in the826

future. Nonetheless, reducing the number of explored paths naturally improves performance.827

Therefore, we optimize REST based on the following observations:828

1. A term t does not need to be revisited if all of it’s rewrites have already been visited.829

2. If a term t was previously visited at constraints c, revisiting t at constraints c′ is not830

necessary if c permits all orderings permitted by c′, i.e., γ(c′) ⊆ γ(c).831

To implement this optimization, REST maintains a mapping M from terms to the logical
constraints c each term was explored with (initially mapping all terms to top). To explore a
term t under logical constraints c, the algorithm checks that this term is explorable, formally
defined by:

explorable(t, c) .= t ̸∈M ∨ (¬(c⇒M [t]) ∧ ∃u.(t→R u ∧ explorable(u, c)))

This predicate ensures that either this term was not explored before or it comes with weaker832

constraints that can derive at least one new term in the path.833

After exploring a new term, REST weakens the mapping M for this term to the disjunction834

of the constraints under which it was newly explored and those previously mapped to in835

M . With this optimization, a term will appear in more than one path in the REST graph836

only when it can lead to different terms in the path. This optimization critically reduces the837

number of explored terms even for small examples: as shown in Figure 8 where 19 vertices838

of the REST graph shown reduced to only the 6 in the dotted region.839

7 Evaluation840

Our evaluation seeks to answer three research questions:841

§ 7.1: How does REST compare to existing rewriting tactics?842



XX:24 REST: Integrating Term Rewriting with Program Verification

Property LH+ Coq Agda Lean Isabelle Zeno Isa+

Diverge OK loop loop fail loop OK OK
Plus AC OK loop loop fail fail OK OK
Congruence OK OK OK OK OK fail OK

Table 1 Comparison of REST with existing theorem provers. LH+ is Liquid Haskell with rewriting.
The potential outcomes are OK when the property is proved; loop when no answer is returned
after 300 sec; and fail when the property cannot be proven. Isa+ is Isabelle/HOL with Sledgehammer.

§ 7.2: How does REST compare to E-matching based axiomatization?843

§ 7.3: Does REST simplify equational proofs?844

We evaluate REST using the Liquid Haskell implementation described in Sec. 6. In Sec. 7.1,845

we compare our implementation’s rewriting functionality with that of other theorem provers,846

with respect to the challenges mentioned in Sec. 2. In Sec. 7.2, we compare against Dafny [33]847

by porting Dafny’s calculational proofs to Liquid Haskell, using rewriting to handle axiom848

instantiation. Finally, in Sec. 7.3, we port proofs from various sources into Liquid Haskell849

both with and without rewriting, and compare the performance and complexity of the850

resulting proofs.851

7.1 Comparison with Other Theorem Provers852

To compare REST with the rewriting functionality of other theorem provers, we developed853

three examples to test the five challenges described in Sec. 2 and compare our implemen-854

tation to that of other solvers. We chose to evaluate against Agda [39], Coq [11], Lean [5],855

Isabelle/HOL [38], and Zeno [44], as they are widely known theorem provers that either856

support a rewrite tactic, or use rewriting internally. Agda, Lean, and Isabelle/HOL allow857

user-defined rewrites. In Lean and Isabelle/HOL, the tactic for applying rewrite rules mul-858

tiple times is called simp; for simplification. Agda, Coq, and Isabelle/HOL’s implementation859

of rewriting can diverge for nonterminating rewrite systems [11, 1, 38]. On the other hand,860

Lean enforces termination, at least to some degree, by ensuring that associative and commu-861

tative operators can only be applied according to a well-founded ordering [4]. Zeno [44] does862

not allow for user-defined rewrite rules, rather it generates rewrites internally based on user-863

provided axioms. Sledgehammer [36, 42, 41] is a powerful tactic supported by Isabelle/HOL864

that (on top of the built-in rewriting) dispatches proof obligations to various external provers865

and succeeds when any of the external provers succeed; this tactic operates under a built-in866

(customizable) timeout.867

1. Diverge tests how the prover handles the challenges 1 and 5: restricting the rewrite868

system to ensure termination and integrating external oracle steps. This example encodes869

a single (terminating) rewrite rule f(x) → g(s(s(x))) and terminating, mutually recursive870

function definitions for f and g. However, the combination of the rules and function expan-871

sions can cause divergence. This test also requires a simple proof that follows directly from872

the function definitions.873

2. Plus AC tests the challenges 2 and 3 by encoding a task that requires a permissive term874

ordering. This example encodes p, q, and r, user-defined natural numbers, and requires that875

expressions such as (p + q) + r can be rewritten into different groupings such as (r + q) + p,876

via associativity and commutativity rules.877

3. Congruence is an additional test to ensure that the implementation of the rewrite878

system is permissive enough to generate the expected result. This test evaluates a basic879
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expected property, that the expressions f(g(x)) and f(g′(x)) can be proved equal if there880

exists a rewrite rule of the form g(x)→ g′(x).881

We present our results in Table 1. As expected, Coq, Agda, and Isabelle/HOL diverge on882

the first example, as they do not ensure termination of rewriting. Lean does not diverge, but883

it also fails to prove the theorem. Unsurprisingly, the commutativity axiom of Plus AC causes884

theorem provers that don’t ensure termination of rewriting to loop. Although Lean ensures885

termination, it does not generate the necessary rewrite application in every case, because886

it orients associative-commutative rewriting applications according to a fixed order. With887

the exception of Zeno, all of the theorem provers tested were able to prove the necessary888

theorem for the final example. Our implementation succeeds on these three examples by889

implementing a permissive termination check based on non-strict orderings.890

For this selection of simple but illustrative examples, the only tools to succeed on all891

cases are our implementation, and Isabelle’s Sledgehammer. The latter combines a great892

many techniques which go beyond term rewriting. Nonetheless, we note that our novel893

approach provides a clear and general formal basis for incorporation with a wide variety of894

verifiers and reasoning techniques (due to its generic definition and formal requirements), and895

provides strong formal guarantees for such combinations. In particular, REST provides general896

termination and relative completeness guarantees, which Sledgehammer (via its timeout897

mechanism) does not.898

7.2 Comparison with E-matching899

To evaluate REST against the E-matching based approach to axiom instantiation, we com-900

pared with Dafny [33], a state-of-the-art program verifier. Dafny supports equational reason-901

ing via calculational proofs [34] and calculation with user-defined functions [2]. We ported902

the calculational proofs of [34] to Liquid Haskell, using rewriting to automatically instantiate903

the necessary axioms.904

7.2.1 List Involution905

Figure 9 shows an example taken directly from Dafny [34], proving that the reverse operation906

on lists is an involution, i.e., ∀xs.reverse(reverse(xs)) = xs. In this example, both Liquid907

Haskell and Dafny operate on inductively defined lists with user-defined functions ++ and908

reverse. The original Dafny proof goes through via the combination of a manual application909

of a lemma called ReverseAppendDistrib (stating that for all lists xs and ys, reverse(xs ++910

ys) = reverse(ys) ++ reverse(xs)) and induction on the size of the list.911

Using term rewriting as enabled by our REST library, Liquid Haskell is able to simplify the912

proof, with PLE expanding the function definitions for reverse and append, and REST applying913

the necessary equality reverse (reverse xs ++ [x]) = reverse [x] ++ reverse (reverse914

xs).915

In Dafny, a similar simplification of the calculational proof is not possible; the proof916

fails if the manual equality steps are simply removed. We experimented further and found917

that the lemma ReverseAppendDistrib can be alternatively encoded as a user-defined axiom918

which, by itself, does not appear to cause trouble for E-matching, and with this change919

alone the proof succeeds without the need for this single lemma call. On the other hand, the920

equalities must still be mentioned for the calculational proof to succeed. Perhaps surprisingly,921

removing these intermediate equality steps caused Dafny to stall3; analysis with the Axiom922

3 We include this version in App. D
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lemma LemmaReverseTwice(xs: List)

ensures reverse(reverse(xs)) == xs;

{

match xs {

case Nil =>

case Cons(x, xrest) =>

calc {

reverse(reverse(xs));

reverse(append(reverse(xrest), Cons(x, Nil)));

{ ReverseAppendDistrib(reverse(xrest), Cons(x, Nil)); }

append(reverse(Cons(x, Nil)), reverse(reverse(xrest)));

{ LemmaReverseTwice(xrest); }

append(reverse(Cons(x, Nil)), xrest);

append(Cons(x, Nil), xrest);

xs;

}

}

}

(a) Calculation-style proof in Dafny, from [34].

{-@ involutionP :: xs:[a] → {reverse (reverse xs) == xs } @-}

{-@ rewriteWith involutionP [distributivityP] @-}

involutionP [] = ()

involutionP (x:xs) = involutionP xs

(b) An equivalent proof implemented in Liquid Haskell extended with REST

Figure 9 List Involution proofs in Liquid Haskell and Dafny

Profiler [7] indicated the presence of a (rather complex) matching loop involving the axiom923

ReverseAppendDistrib in combination with axioms internally generated by the verifier itself.924

This illustrates that achieving further automation of such E-matching-based proofs is not925

straightforward, and can easily lead to performance difficulties due to matching loops which926

can be hard to predict and understand, even in this state-of-the-art verifier. By contrast, REST927

can automatically provide the necessary equality steps for this proof without introducing928

any risk of non-termination.929

7.2.2 Set Properties930

Figure 10 shows the Dafny and Liquid Haskell proofs for the implication s0 ∩ s1 = ∅ =⇒931

f((s0 ∪ s1) ∩ s0) = f(s0).932

Dafny uses a calculational proof to show the equality (s0 ∪ s1) ∩ s0 = s0, seemingly by933

applying distributivity. In fact, the distributivity aspect is not relevant to the proof; rather,934

the set equality in the proof syntax causes Dafny to instantiate the set extensionality axiom935

discharging the proof. It is for this reason that Dafny requires an extra proof step to prove936

f((s0 ∪ s1) ∩ s0) = f(s0), as this term does not include an equality on sets, but rather on937

applications of f . Dafny’s set axiomatization does not include the distributivity axiom, as938

such an axiom could easily lead to matching loops.939

Using REST, it is safe to encode arbitrary lemmas as rewrite rules, as the termination is940

guaranteed; in this case the distributivity lemma can be used to complete the proof (and is941

permitted as a rewrite rule with the precedence ∩ > ∪).942

In conclusion, we have shown that using REST to apply rewrites could be used as an943
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lemma Proof<a>(s0: set<int>, s1: set<int>, f: set<int> → a)

requires s0 * s1 == {}

ensures f((s0 + s1) * s0) == f(s0) {

calc {

(s0 + s1) * s0; (s0 * s0) + (s1 * s0);

s0;

}

}

(a) Proof in Dafny using built-in set axiomatization

{-@ assume unionEmpty :: ma : Set → {v : () | ma \/ emptySet = ma } @-}

{-@ assume intersectComm :: ma : Set → mb : Set → {v : () | ma /\ mb = mb /\ ma } @-}

{-@ assume intersectSelf :: s0 : Set → { s0 /\ s0 = s0 } @-}

{-@ assume unionIntersect :: s0 : Set → s1 : Set → s2 : Set →
{ (s0 \/ s1) /\ s2 = (s0 /\ s2) \/ (s1 /\ s2) } @-}

{-@ rwDisjoint :: s0 : Set → {s1 : Set | IsDisjoint s0 s1} → { s0 /\ s1 = emptySet } @-}

{-@ example1 :: s0 : Set → { s1 : Set | IsDisjoint s0 s1 } → f : (Set → a) →
{ f ((s0 \/ s1) /\ s0) = f s0 } @-}

example1 s0 s1 _ = ()

(b) An equivalent proof implemented in Liquid Haskell, with a user-defined axiomatization of sets.

Figure 10 Set Proofs in Liquid Haskell and Dafny

alternative to E-matching based axiomatization. Furthermore, the termination guarantee944

of REST enables axioms that may give rise to matching loops to, instead, be encoded as945

rewrite rules.946

7.3 Simplification of Equational Proofs947

Finally, we evaluate how REST can simplify equational proofs. We chose to include the set948

example from [34] (described in Sec. 7.2.2), data structure proofs from [48], examples from949

the Liquid Haskell test suite, as well as our own case study. We developed each example950

in Liquid Haskell both with and without rewriting, and compared the timing and proof951

complexity. Each proof using rewriting was evaluated using each different ordering constraint952

algebras built-in to our Haskell REST library. The proofs in [48] were selected because they953

require induction, expansion of user-defined functions, and equational reasoning steps to954

prove properties about trees and lists. The examples from the Liquid Haskell test suite were955

taken to evaluate the rewriting across a range of representative proofs.956

Our DSL case study evaluates the performance of our implementation using a larger set957

of rewrite rules, by verifying optimizations for a simple programming language, contain-958

ing statements (i.e., print, sequence, branches, repeats and no-ops) and expressions (i.e.,959

constants, variables, arithmetic and boolean expressions) using 23 rewrite rules. Our rewrit-960

ing technique can prove the kind of equivalences used in techniques such as supercompi-961

lation [8, 52, 46], by encoding the basic equality axioms as rewrite rules and using them962

to prove more complicated theorems. A full list of the axioms and proved theorems are963

available in App. C. We note that we encoded arithmetic operations as uninterpreted SMT964

functions, so that the built-in arithmetic theory of the SMT does not aid proof automation.965

We present our results in Table 2. By using rewriting, we were able to eliminate all but966

two of the non-inductive axiom instantiations, while maintaining a reasonable verification967
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Name Orig. Cut Rules
Time

Orig. RPQO LPQO KBQO Fuel
Set-Dafny 4 4 5 1.11s ✓1.15s ✓1.19s 71.13s ✓1.22s
Set-Mono 7 7 4 1.16s 71.40s 71.41s ✓1.47s ✓1.60s
List 3 3 3 2.46s ✓3.17s 74.21s 72.24s ✓3.54s
Tree 3 3 3 1.61s ✓2.64s ✓3.40s ✓3.08s ✓3.12s
DSL 43 43 23 2.89s ✓5.46s 73.85s 74.19s ✓6.54s
LH-FingerTree 2 1 1 5.55s ✓5.60s ✓5.57s ✓5.64s ✓5.95s
LH-T1013 1 1 1 1.11s ✓1.06s ✓1.00s ✓1.02s ✓1.06s
LH-T1025 2 2 2 1.03s ✓1.05s ✓1.08s ✓1.07s ✓1.13s
LH-T1548 1 1 1 1.45s ✓1.33s ✓1.38s ✓1.32s ✓1.45s
LH-T1660 1 1 1 1.09s ✓1.12s ✓1.12s ✓1.12s ✓1.20s
LH-MapReduce 4 3 2 14.38s ✓29.50s ✓518.91s ✓28.49s 7Timeout

Table 2 Results from simplification of proofs with rewriting. Set-Dafny is the set example
from[34], Set-Mono describes a similar property. List and Tree are equational proofs from [48].
DSL is the program equivalence case study. The remaining proofs are from the Liquid Haskell test
suite folder tests/pos, excluding those using only inductive or mutually inductive lemmas. Orig. is
the number of non-inductive lemma applications in the original proof. Cut is the number of lemma
applications that were removed by rewriting. Rules is the number of axioms encoded as rewrite
rules. Time (Orig.) is verification time in seconds for the original proof. LPQO and KBQO are
OCAs derived from the Lexicographic Path Ordering and Knuth-Bendix ordering respectively, and
Fuel is an OCA allowing up to 5 rewrite applications per proof goal.

time. As expected, no ordering constraint algebra was able to complete all the proofs using968

rewriting; however, each proof could be verified with at least one of them.969

The test cases LH-FingerTree and LH-MapReduce required manual axiom instantiations be-970

cause the structure of the term did not match the rewrite rule for the axiom. LH-MapReduce,971

requires proving the identity op (f (take n is)) (mapReduce n f op (drop n is)) = f is.972

An inductive lemma application generates the background equality mapReduce n f op (drop973

n is) = f (drop n is), and a rewrite matching the term op (f (take n is)) (f (drop n974

is)) must be instantiated to complete the proof. However, since the background equality975

is neither a rewrite rule nor an evaluation step, the necessary term op (f (take n is)) (f976

(drop n is)) never appears. Therefore, it is necessary to manually instantiate the lemma.977

As future work, a limited form of E-matching [12] could be used to address this issue in the978

general case.979

In conclusion, we’ve shown that extending Liquid Haskell to use REST enables rewriting980

functionality not subsumed by existing theorem provers, that REST is effective for axiom981

instantiation, and that REST can simplify equational proofs.982

8 Related Work983

Theorem Provers & Rewriting Term rewriting is an effective technique to automate theo-984

rem proving [25] supported by most standard theorem provers. § 7.1 compares, by examples,985

our technique with Coq, Agda, Lean, and Isabelle/HOL. In short, our approach is different986

because it uses user-specified rewrite rules to derive, in a terminating way, equalities that987

strengthen the SMT-decidable verification conditions generated during program verification.988

SMT Verification & Rewriting Our rewrite rules could be encoded in SMT solvers as989

universally quantified equations and instantiated using E-matching [12], i.e., a common990

algorithm for quantifier instantiation. E-matching might generate matching loops leading991
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to unpredictable divergence. [32] refers to this unpredictable behavior of E-matching as the992

“the butterfly effect” and partially addresses it by detecting formulas that could give rise to993

matching loops. Our approach circumvents unpredictability by using the terminating REST994

algorithm to instantiate the rewrite rules outside of the SMT solver.995

Z3 [13] and CVC4 [6] are state-of-the-art SMT solvers; both support theory-specific rewrite996

rules internally. Recent work [40] enables user-provided rewrite rules to be added to CVC4.997

However, using the SMT solver as a rewrite engine offers little control over rewrite rule998

instantiation, which is necessary for ensuring termination.999

Rewriting in Haskell Haskell itself has used various notions of rewriting for program veri-1000

fication. GHC supports the RULES pragma with which the user can specify unchecked, quan-1001

tified expression equalities that are used at compile time for program optimization. [10] pro-1002

poses Inspection Testing as a way to check such rewrite rules using runtime execution and1003

metaprogramming, while [22] prove rewrite rules via metaprogramming and user-provided1004

hints. In a work closely related to ours, Zeno [44] is using rewriting, induction, and further1005

heuristics to provide lemma discovery and fully automatic proof generation of inductive1006

properties. Unlike our approach, Zeno’s syntax is restricted (e.g., it does not allow for ex-1007

istentials) and it does not allow for user-provided hints when automation fails. HALO [51]1008

enables Haskell verification by converting Haskell into logic and using an SMT solver to1009

verify user-defined formulas. However, this approach relies on SMT quantifiers to encode1010

user functions, thus the solver can diverge and verification becomes unpredictable.1011

Termination of Rewriting and Runtime Termination Checking Early work on proving1012

termination of rewriting using simplification orderings is described in [15]. More recent1013

work involves dependency pairs [3] and applying the size-change termination principle [31]1014

in the context of rewriting [47]. Tools like AProVE [24] and NaTT [54] can statically prove1015

the termination of rewriting.1016

In contrast, REST is not focused on statically proving termination of rewriting; rather1017

it uses a well-founded ordering to ensure termination at runtime. This approach enables1018

integration of arbitrary external oracles to produce rewrite applications, as a static analysis1019

is not possible in principle. Furthermore, our approach enables nonterminating rewriting1020

systems to be useful: REST will still apply certain rewrite rules to satisfy a proof obligation,1021

even if the rewrite rules themselves cannot be statically shown to terminate.1022

We choose to use a well-quasi-ordering [30] because it enables rewriting to terms that1023

are not strictly decreasing in a simplification ordering. WQOs are commonly used in online1024

termination checking [35], especially for program optimization techniques such as supercom-1025

pilation [9].1026

Equality Saturation In our implementation, REST passes equalities to the SMT environ-1027

ment, ultimately used for equality saturation via an E-graph data structure [20]. Equality1028

saturation has also been used for supercompilation[46]. REST does not currently exploit equal-1029

ity saturation (unless indirectly via its oracle). However, as future work we might explore1030

local usage of efficient E-graph implementations. (e.g., [53]) for caching the equivalence1031

classes generated via rewrite applications.1032

Associative-Commutative Rewriting Traditionally, enforcing a strict ordering on terms1033

prevents the application of rewrite rules for associativity or commutativity (AC); this prob-1034

lem motivates REST’s use of well-quasi orders. However, another solution is to omit the1035

rules and instead perform the substitution step of rewriting modulo AC. Termination of the1036
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resulting system can be proved using an AC ordering [17]; the essential requirement is that1037

the ordering also respects AC, such that t > u implies t′ > u′ for all terms t′ AC-equivalent1038

to t and u′ AC-equivalent to u.1039

REST’s use of well-quasi-orderings enables AC axioms to be encoded as rewrite rules,1040

guaranteeing completeness if the AC-equivalence class of a term is a subset of the equivalence1041

class induced by the ordering. This is a significant practical benefit as it does not require1042

REST to identify AC symbols and treat them differently for unification.1043

However, we note that treating AC axioms as rewrite rules can lead to an explosion in1044

the number of terms obtained via rewriting. As future work, it could be possible to extend1045

REST to support AC rewriting and unification in order to reduce the number of explicitly1046

instantiated terms.1047

9 Conclusion1048

We have presented REST, a novel approach to rewriting that uses an online termination check1049

that simultaneously considers entire families of term orderings via a newly introduced Or-1050

dering Constraint Algebra. We defined our algebra on well-quasi orderings that are more1051

permissive than standard simplification orderings, and demonstrated how to derive well-1052

quasi orderings from well-known simplification orderings. In addition, we proved correct-1053

ness, relative completeness, and (online) termination of our algorithm. Our REST approach1054

is designed, via a generic core algorithm and the pluggable abstraction of our OCAs, to be1055

simple to (re-)implement and adapt to different programming languages or efficient imple-1056

mentations of term ordering families. We demonstrated this by writing an implementation1057

of REST as a small Haskell library suitable for integration with existing verification tools. To1058

evaluate REST we used our library to extend Liquid Haskell, and showed that the resulting1059

system compares well with existing rewriting techniques, it can be used as an alternative1060

to E-matching based axiomatizations approaches without risking non-termination, and can1061

substantially simplify proofs requiring equational reasoning steps.1062
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A Metaproperty Proofs1230

▶ REST Invariant 1 (Path Invariant). For any execution of REST(A, R, t0, E), at the start of1231

any iteration of the main loop, for each (ts, c) ∈ p, the list ts is a path of R + E starting1232

from t0.1233

Proof. By induction on the loop iterations of the algorithm. p is initialized with the single1234

element ([t0], c). [t0] is a valid path of R + E , because it only contains a single term; clearly1235

this path also starts with t0.1236

At each loop iteration, new elements are potentially pushed to p. Suppose the path ts is1237

popped from p at the beginning of the loop. The element to be pushed is a pair (ts++[t′], c)1238

where last(ts) →R+E t′. This exactly satisfies the inductive hypothesis: if ts is a path of1239

R +E , then ts++[t′] is also a path of R +E . Furthermore, this operation preserves the head1240

of the list: t0 is still the first element. ◀1241

▶ Theorem 18 (Completeness w.r.t. E). For all R, u, and t0, if t0 →∗
E u, then u ∈1242

REST(A, R, t0, E).1243

Proof. The proof goes by induction on the number of steps of the path.1244

Assume the path has n steps: t0 →E t1 →E . . .→E tn−1 →E tn ≡ u.1245

For the base case, n = 0 and u ≡ t0. Since p is initialized with ([t0],⊤), by the Invariant 2,1246

t ∈ REST(A, R, t0, E).1247

For the inductive case, assume that t0 →∗
E tn−1 →E tn. By inductive hypothesis, tn−1 ∈1248

REST(A, R, t0, E). When tn−1 was added in the result, it was the last element of a path ts1249

that was popped from the stack p. Since tn−1 →E tn, we split cases on whether or not1250

tn ∈ ts. If tn ∈ ts, then by Invariant 2 tn ∈ REST(A, R, t0, E). Otherwise, (ts ++ [tn], c) will1251

be pushed into p and, again, by Invariant 2 it will appear in the output. ◀1252

▶ Theorem 19 (Relative Completeness). For all R, u, and t0, if t0 →∗
R+E u and there exists1253

an ordering ≽ ∈ γ(⊤) that orients the path justifying t0 →∗
R+E u, then u ∈ REST(A, R, t0, E).1254

First, we observe the (somewhat standard) property that if any path justifies t0 →∗
R+E u,1255

there is a duplicate-free variant of such path (intuitively, obtained by cutting out all subpaths1256

leading from a term to itself).1257

Below, we prove that if t0 →∗
R+E u and the ordering ≽ orients the path, then a duplicate-1258

free variant path ts belongs in the stack p with some constraints c and ≽ ∈ γ(c).1259

▶ REST Invariant 3. For any execution of REST(A, R, t0, E), if t0 →∗
R+E tn and ≽ ∈ γ(⊤) is1260

an ordering that orients t0 →∗
R+E u, then at some iteration of the main loop, a duplicate-free1261

variant path ts of this path is stored in p, with some ordering constraints c and ≽ ∈ γ(c).1262

Proof. The proof goes by strong induction on the length n+1 of the path justifying t0 →∗
R+E1263

tn.1264

First, consider the case n = 0, where the path is [t0] and the constraints ⊤. ([t0],⊤) ∈ p1265

by initialization and trivially ≽ ∈ γ(⊤).1266

Otherwise, when n > 0, assume that t0 →∗
R+E tn−1 →R+E tn. If there are any duplicate1267

terms in this path, a duplicate-free variant exists of shorter length, and we can conclude by1268

our induction hypothesis. Otherwise, consider this path with the last element tn removed.1269

Being already duplicate-free, by our induction hypothesis we must have that, at some iter-1270

ation of our main loop, this path is contained in p along with a constraint cn−1 such that1271

≽ ∈ γ(cn−1). By the assumption that ≽ orients the original path, in particular we must1272

have tn−1 ≽ tn, and so, by Def. 14, ≽ ∈ γ(refine(cn−1, t, t′)) and therefore refine(cn−1, t, t′)1273
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is satisfiable. Therefore, the original path will be pushed to p with this constraint in this1274

loop iteration. ◀1275

Proof. The proof is similar to Theorem 18, but now we need to also show that the relation1276

that orients the path satisfies all the ordering constraints generated by the respective REST1277

path. By Invariant 3, at some iteration of the main loop, there must be some path ending1278

in u contained in p. Then, by Invariant 2 it follows that all the elements of the path, thus1279

also u, belong in the result.1280

◀1281

▶ Theorem 22 (Termination of REST). For any finite set of rewriting rules R, if:1282

1. →E is normalizing and bounded,1283

2. The refine and sat functions from A are decidable (always-terminating, in an implemen-1284

tation),1285

3. A is well-founded,1286

then, for all terms t0, REST(A, R, t0, E) terminates.1287

Proof. At every iteration of REST, a path with length n is popped off the stack and due1288

to Requirement 1, and the fact that only a finite number of new terms can be generated1289

by single applications of the rules R to an arbitrary term, a finite number of paths with1290

length n + 1 is pushed on. Therefore, REST implicitly builds (via its set of paths p) a finitely-1291

branching tree starting from t0. For REST to not terminate, there must be an infinite path1292

down the tree (note that Requirement 2 eliminates the possibility that the operations called1293

from the ordering constraint algebra cause non-termination).1294

Consider an arbitrary path down the tree explored by REST, represented by the (ts, c)1295

pairs iteratively generated. Firstly, due to the first condition in the foreach of REST (cf.1296

Figure 3), this path will remain duplicate-free. By Requirement 3, at only finitely many1297

steps is the constraint tracked strictly refined. Consider then, the postfix of the path after1298

the last time that this happens; at every step, the constraint c remains identical. The1299

normalization assumption (Requirement 1) of E entails that this path contains no infinite1300

sequence of steps all justified by E . However, for each step justified instead by a rewriting1301

step from R, the additional condition sat(c) must hold; by Def. 14 this means that there is1302

some ≽ ∈ γ(c) which orients all of these steps. As ≽ must be an instance of a term ordering1303

family (Def. 4), it is a thin well-quasi-order. Therefore ≽ can only orient a finite number of1304

steps, and the path down the tree must be finite.1305

Since every path in the finitely-branching tree explored is finite, the algorithm (always)1306

terminates. ◀1307
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B Proofs on Orderings1308

▶ Lemma 23. If T ≽M(X) U , then T ≽M(X) U ′ for all U ′ ⊂ U .1309

Proof. It is sufficient to show that T ≽M(X) U implies T ≽M(X) (U − u′), for any u′ ∈ U ,1310

since the subset can be obtained by removing a finite number of elements. That is, if U ′ was1311

obtained by removing elements u1, . . . , un from U , we can show that T ≽M(X) (U \ {u1})1312

implies T ≽M(X) (U \ {u1, u2}) and so on.1313

The proof goes by induction on the size of T and case analysis on T ≽M(X) U .1314

For case one there are no u′ in U , so the proof holds vacuously.1315

For case two, we have either u = u′ or u ̸= u′. If u = u′, a proof of T ≽M(X) (U − u)1316

can be made by modifying the proof of (T − t) ≽M(X) (U − u). The base case of that proof1317

must be of the form T ′ ≽M(X) ∅. We modify the base case to be (T ′ + t) ≽M(X) ∅. Each1318

recursive case is also modified to replace T ′ with (T ′ + t), yielding (T ′ + t) ≽M(X) (U − u)1319

= T ≽M(X) (U − u), as required. The proof that T ≽M(X) (U − u′) for all other u′ ∈ U is1320

obtained by induction. By the inductive hypothesis, we have (T−t) ≽M(X) (U−u−u′), since1321

u ̸= u′, we also have u ∈ (U − u′). Therefore applying case two we get T ≽M(X) (U − u′).1322

For case three, we have either u′ < t or u′ ≮ t. If u′ < t, then the proof (T − t) ≽M(X)1323

(U \ {u ∈ U | u < t}) is also a proof of (T − t) ≽M(X) ((U − u′) \ {u ∈ U | u < t}),1324

thus we obtain obtain the proof directly. The proof for all other u′ ∈ U is obtained by1325

induction. By the inductive hypothesis we have (T − t) ≽M(X) ((U \{u ∈ U | u < t})−u′).1326

Then, applying the same top-level proof yields T ≽M(X) (U − u′), since u′ is not in the set1327

{u ∈ U | u < t}.1328

◀1329

▶ Lemma 24. If ≽X is a quasi-order, then the multiset extension ≽M(X) is also a quasi-1330

order.1331

Proof. To show that ≽M(X) is a quasi-order, we define a single-step version ⩾mul, and show1332

that T ≽M(X) U if and only if T ⩾mul∗ U , where ⩾mul∗ is the reflexive transitive closure of1333

U .1334

We define ⩾mul as:1335

1. For all elements t, u if t ∈ T and u ≈ t, then T ⩾mul (T − t + u)1336

2. For all elements t ∈ T and finite multisets U , if t > u for all u ∈ U , then T ⩾mul1337

((T − t) ∪ U)1338

First, observe that ⩾mul∗ is monotonic with respect to multiset union: for all multisets1339

T , U , and V , T ⩾mul∗ U implies (T ∪ V ) ⩾mul∗ (U ∪ V ).1340

The reflexive case is given by T ∪ V = T ∪ V ; we show the transitive case by showing1341

there is a correspondence for each single-step. The proof for each case assumes an arbitrary1342

multiset V .1343

In case one we must show for all t, u ∈ T , T ⩾mul∗ (T − t + u) implies (T ∪ V ) ⩾mul∗1344

((T − t+u)∪V ). t and u are also in T ∪V , therefore we have (T ∪V ) ⩾mul∗ ((T ∪V )− t+u).1345

We have (T ∪ V )− t + u = (T − t + u)∪ V , giving us the desired result. Case two is similar:1346

t ∈ T implies t ∈ (T ∪ V ), and ((T ∪ V )− t) ∪ U = ((T − t) ∪ U) ∪ V for all U , V .1347

Now we show the if direction by case analysis.1348

Case 1: U = ∅.1349

If T = ∅, then we have T ⩾mul∗ U via reflexivity. Otherwise we can select an arbitrary t1350
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to remove from T , and by definition of ⩾mul we have T ⩾mul ((T − t) ∪ ∅). Then by in-1351

duction on the size of T we have ((T−t)∪∅) ⩾mul∗ ∅. Then T ⩾mul ((T−t)∪∅) ⩾mul∗ ∅,1352

as required.1353

1354

Case 2: t ∈ T ∧ u ∈ U ∧ t ≈ u ∧ (T − t) ⩾mul (U − u).1355

Let T ′ = T − t and U ′ = U − u. Then we have (T ′ + t) ⩾mul (T ′ + u) by definition and1356

T ′ ≽M(X) U ′ implies T ′ + u ⩾mul∗ U ′ + u via the inductive hypothesis and monotonicity.1357

Thus T = (T ′ + t) ⩾mul (T ′ + u) ⩾mul∗ (U ′ + u) = U as required.1358

1359

Case 3: t ∈ T ∧ (T − t) ⩾mul (U \ {u ∈ U | u < t})1360

Partition U into two sets U1 and U2 where U1 = {u ∈ U | u ̸< t} and U2 = {u ∈1361

U | u < t}. By definition we have U = U1 ∪ U2. As before T ′ = T − t. Then we have1362

(T ′ + t) ⩾mul (T ′∪U2). T ′ ≽M(X) U1 implies (T ′∪U2) ⩾mul∗ (U1∪U2) via monotonicity1363

and induction. Thus T = (T ′ + t) ⩾mul (T ′ ∪ U2) ⩾mul∗ (U1 ∪ U2) = U as required.1364

Now the only-if direction. First we have that ≽M(X) is reflexive via induction on size1365

with base case T = U = ∅ handled by case 1, and recursive case by case 2, similar to above,1366

we remove an arbitrary t from T . Now we show how to handle one or more steps from ⩾mul1367

in a single step of ≽M(X).1368

The key observation is that all elements u of U , have exactly one “responsible” element1369

t in T that justifies T ⩾mul∗ U : we must have either t > u or t ≈ u (in which case t is1370

uniquely responsible for u and no other elements of U). To prove T ≽M(X) U , for each t in1371

T , we recursively build a tuple (T ′, U ′, p) where T ′, and U ′ are multisets and p is the proof1372

that T ′ ≽M(X) U ′. The tuple is initialized to (∅, ∅, U = ∅).1373

For each t uniquely responsible for one u, we update the tuple to (T ′ + t, U ′ + u, t ∈1374

T ∧ u ∈ U ∧ t ≈ u ∧ p). The new proof state is valid because by induction we have p being1375

a proof of T ′ ≽M(X) U ′, as required.1376

Now consider each t ∈ T where t justified some multiset U ′′. By induction, we have a1377

proof of T ′ ≽M(X) U ′; we need a proof that T ′ ≽M(X) ((U ′∪U ′′)\{u ∈ (U ′∪U ′′) | u < t}).1378

Since we have t > u for all u ∈ U ′′, this simplifies to: T ′ ≽M(X) (U ′ \ {u ∈ U ′ | u < t}),1379

which we can obtain via the hypothesis T ′ ≽M(X) U ′ and lemma 23.1380

◀1381

▶ Lemma 25. If ≽X is a well-quasi-order, the strict part of it’s multiset extension defined1382

as t >M(X) u if t ≽M(X) u and u ̸≽M(X) t is a well-founded order.1383

Proof. This proof operates on the single-step relation defined in 24. Proving the well-1384

founded property is done by showing that an infinite descent in >M(X) would correspond1385

to an infinite descent in the underlying ordering.1386

Now, consider a tree built from an infinite path T1, T2, . . . of multisets related by ≽M(X).1387

With the exception of special nodes ⊤ and ⊥, each node in the tree represents an element in1388

a multiset, and the vertices connect the elements to the smaller ones they were replaced with1389

via an application of ⩾mul. Crucially, every edge represents an descent in a well-founded1390

order.1391

The tree is constructed as follows: let ⊤ be the root of the tree, and let the elements1392

of T1 be the children of ⊤. Then, for each Ti in the infinite list, it was either obtained by1393

replacing some element in Ti−1 with a same-sized element, or by removing some element t1394

and replacing it with a finite number of smaller elements ts.1395

In the former case, the tree is not modified.1396
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In the latter case, if ts = ∅, add a single child ⊥ to the t in the tree. Otherwise, let ts be1397

the children of t.1398

Now, we note that the case one of ⩾mul is symmetric. Therefore, each pair of terms1399

related by >M(X) must correspond to at least one step in case two of ⩾mul, Therefore in an1400

infinite path of terms related by >M(X) contains an infinite number of applications of case1401

two in ⩾mul.1402

Therefore, an infinite number of vertices will be added to the tree. Since the tree is finitely1403

branching, it must have an infinitely descending path. However, this infinitely descending1404

path would correspond to an infinite descent in the underlying ordering, contradicting that1405

hypothesis that ≽X is a WQO. ◀1406

▶ Lemma 26. If ≽F is a total quasi-ordering, then ≽rpo is a quasi-simplification ordering.1407

Proof. We must show that ≽rpo is a quasi-ordering, i.e it is reflexive and transitive; and1408

also that it satisfies the replacement, subterm, and deletion properties.1409

Reflexivity occurs via case 3 and 24.Replacement and deletion follow from case 3 of RPO1410

and the definition of the multiset ordering.1411

To prove the subterm property, we show a slightly stronger property: for all terms1412

t = f(t1, . . . , tm) and (not necessarily immediate) subterms u = g(u1, . . . , un), t >rpo u.1413

The proof goes by induction on the term size, where terms are bigger than their subterms,1414

and by case analysis on the relationship between f and g. Because ≽F is total, we have1415

either f >F g, f ≈ g, or g >F f .1416

If f >F g, then to get t ≽rpo u we must show {t} >M(rpo) {u1, . . . , un}. Via induction,1417

we have t >rpo ui for all 1 ⩽ i ⩽ n, as each ui is a subterm of u. To show u ̸≽rpo t, observe1418

that we need {u1, . . . , un} ≽M(rpo) {t}. This is impossible via the inductive hypothesis and1419

the definition of ≽M(rpo): we already have t >rpo ui for all ui.1420

If f ≈ g, then we must show {t1, . . . , tm} >M(rpo) {u1, . . . , un}. If u is a direct subterm1421

of t, then u = ti for some i. By the inductive hypothesis we have ti ≈ u >rpo uj for all1422

uj , which implies {t1, . . . , tm} >M(rpo) {u1, . . . , un}. If u is a nested subterm, then we have1423

some ti >rpo uj for all uj via the induction hypothesis: all uj are subterms of ti.1424

If g >F f , to get t ≽rpo u then we must show {t1, . . . , tm} ≽M(rpo) {u}. If u was a1425

direct subterm, then ti = u gives us the desired result; otherwise we have ti >rpo u via1426

the inductive hypothesis. To show u ̸≽rpo t, observe that showing u ≽rpo t would require1427

{u} >M(rpo) {t1, . . . , tm}. However we already have some ti ≈ u, which prevents this1428

possibility.1429

Transitivity is also proven via induction on size. Assume we have s = f(s1, . . . , sm) ≽rpo1430

t = g(t1, . . . , tn) and t ≽rpo u = h(u1, . . . , up). We proceed to show s ≽rpo u by for each1431

relationship between f , g, and h.1432

1. f >F g >F h, or f >F g > h: Via transitivity of >F we have f >F h, therefore we must1433

show {s} >M(rpo) {u1, . . . , up}. {s} ≽M(rpo) {t} follows from our assumption s ≽rpo t,1434

and {t} >M(rpo) {u1, . . . , up} follows from t ≽rpo u. By the inductive hypothesis, we1435

have s ≽rpo t ≽rpo ui for all ui, and therefore {s} ≽M(rpo) {t} >M(rpo) {u1, . . . , up}.1436

2. h >F g: There must exist some subterm ti such that ti ≽rpo u. Therefore we have1437

s ≽rpo ti and ti ≽rpo u, the inductive hypothesis gives us s ≽rpo ti ≽rpo u.1438

3. g >F f : There must exist some subterm si such that si ≽rpo t. As above, using the1439

induction hypothesis allows us to show si ≽rpo u, by the subterm property we have1440

s ≽rpo si. We show s ≽rpo u by the definition of ≽rpo.1441

4. f ≈ g ≈ h. We clearly have f ≈ h, we need to show {s1, . . . , sm} ≽M(rpo) {u1, . . . , up},1442

which we have via 24.1443
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◀1444

▶ Theorem 27. If ≽F is a total WQO, then ≽rpo is a WQO.1445

Proof. To show that ≽rpo is WQO, via the well-foundedness theorem of Dershowitz [15],1446

which states that a quasi-simplification ordering ⩾′ is WQO if there exists a well-quasi1447

ordering ⩾ such that f ⩾ g implies f(t1, . . . , tn) ⩾′ g(t1, . . . , tn).1448

By 26 we have that ≽rpo is a quasi-simplification ordering, and there exists an ordering1449

over function symbols to satisfy the condition of the well-foundedness theorem: namely the1450

underlying order ≽F from which ≽rpo is constructed.1451

◀1452

▶ Theorem 28. If ≽F is a total WQO, then ≽rpo is thin1453

Proof. We show that for any term t = f(t1, . . . , tm), the set of terms {u | t ≈ u =1454

g(u1, . . . , um)} is finite.1455

If t ≈ u, then we must have t ≽rpo u and u ≽rpo t. Assume we have t ≽rpo u.1456

First, we show that if f > g then u ̸≽rpo t. Assume u ≽rpo t, then there must have1457

some ui such that ui ≽rpo t. But via the subterm property, we have u >rpo ui ≽rpo t,1458

contradicting t ≽rpo u.1459

Likewise, if g > f , then there is some ti ≽rpo u. Then t >rpo ti ≽rpo u. Therefore we1460

also have u ̸≽rpo t.1461

Therefore, t ≈ u only if f ≈ g. Since there are only a finite number of function symbols,1462

then to show thinness we must show that only a finite number of multisets {u1, . . . , un}1463

such that {t1, . . . , tm} ≽M(rpo) {u1, . . . , un} and {u1, . . . , un} ≽M(rpo) {t1, . . . , tm}. If1464

{t1, . . . , tm} = ∅, then the only such set is ∅. Otherwise, only such multisets are those where1465

{u1, . . . , un} is obtained from {t1, . . . , tm} by removing zero or more terms ti and replacing1466

them the same number of terms uj where ti ≈ uj . If {t1, . . . , tm} ≽M(rpo) {u1, . . . , un} was1467

justified by removing ti from {t1, . . . , tm} and removing smaller terms {u′ | u′ < ti} from1468

{u1, . . . , un}, then we would have {t1, . . . , tm} >M(rpo) {u1, . . . , un}: this corresponds to the1469

irreflexive single-step operation shown to form a well-founded order in lemma 25.1470

Since the multisets contain a finite number of elements, and each term only has a finite1471

number of equivalent terms (by induction on term size), there are only a finite number of1472

such multisets. ◀1473
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C Basic Equalities and Proved Theorems in the Program Equivalence1474

Case Study1475

Name Formula
1. addDist (x ∗ y) + (z ∗ y) = (x + z) ∗ y

2. subDist (x ∗ y) − (z ∗ y) = (x − z) ∗ y

3. times2Plus x ∗ 2 = x + x

4. plus0 x + 0 = x

5. mul0 x ∗ 0 = 0
6. mul1 x ∗ 1 = x

7. subSelf x − x = 0
8. divSelf x/x = 1
9. subAdd x − y = x + (−y)
10. mulSym e ∗ e′ = e′ ∗ e

11. addSym e + e′ = e′ + e

12. mulAssoc (x ∗ y) ∗ z = x ∗ (y ∗ z)
13. addAssoc (x + y) + z = x + (y + z)
14. ifT if True then lhs else rhs = lhs

15. ifF if False then lhs else rhs = rhs

16. seqNop seq lhs nop = lhs

17. seqNop' seq nop rhs = rhs

18. repeatNop repeat 0 body = nop

19. repeatN1 repeat (S n) body = seq body (repeat n body)

20. ifJoin if c1 then (if c2 then op else nop) else nop

= if (c1 and c2) then op else nop

21. mapFusion map g (map f xs) = map (g . f) xs

22. foldMap (foldr f e) . (map g) = foldr (f . g) e

23. foldFusion ∀ x y . h (f x y) = f' x (h y)

=⇒ h . (foldr f e) xs = foldr f' (h e) xs

Table 3 Basic Equality Axioms used in our Program Equivalence Case Study
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Formula Rewrites
(−(x + x)) + (x + x) = 0 7, 11, 9
(x ∗ 2) ∗ 2 = (x + x + x + x) 3, 13
(x ∗ y) + (y ∗ x) = (x ∗ 2 ∗ y) 3, 10, 12
(x ∗ y) + (y ∗ z) − ((x + z) ∗ y) = 0 1, 7, 10
(x ∗ y) − (0 ∗ y) = x ∗ y 2, 9, 7, 4
x ∗ (1 − (x/x)) = 0 5, 7, 8
x ∗ 1 = x + 0 4, 6
if true then (seq nop hw) else nop = hw 17, 14
repeat (S (S Z)) hw = seq hw hw 16, 18, 19
if True then (if False then hw else nop) else nop

= if (True and False) then hw else nop 20
map p1 (map p2 list) = map p3 list 21
( (foldr add 0) . (map p1)) list = foldr addP1 0 list 22
double . (foldr add 0) list = foldr twicePlus 0 list 23

Table 4 Theorems Proved via Rewriting using the Basic Equality axioms in 3
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D Dafny Matching Loop Example1476

datatype List = Nil | Cons(head: int, tail: List)

function append(xs: List, ys: List): List

{

match xs

case Nil => ys

case Cons(x, xrest) => Cons(x, append(xrest, ys))

}

function reverse(xs: List): List

{

match xs

case Nil => Nil

case Cons(x, xrest) => append(reverse(xrest), Cons(x, Nil))

}

lemma AppendNil(xs: List)

ensures append(xs, Nil) == xs; {}

lemma AppendAssoc(xs: List, ys: List, zs: List)

ensures append(xs, append(ys, zs)) == append(append(xs, ys), zs); {}

lemma ReverseAppendDistrib(xs: List, ys: List)

ensures reverse(append(xs, ys)) == append(reverse(ys), reverse(xs));

{

forall xs : List {AppendNil(xs);}

forall xs : List, ys: List, zs: List {AppendAssoc(xs, ys, zs);}

}

lemma ReverseInvolution(xs: List)

ensures reverse(reverse(xs)) == xs;

{

// Axiom definition inserted here

{ forall (xs, ys) { ReverseAppendDistrib(xs, ys); } }

match xs {

case Nil =>

case Cons(x, xrest) =>

calc { // Equational reasoning steps removed here

reverse(reverse(xs));

{ReverseInvolution(xrest);}

xs;

}

}

}

Figure 11 A version of the reverse involution proof (Figure 9) from [34] with intermediate
equality steps removed. Attempting to verify this code causes a matching loop when using Dafny
version 3.3.0 and Z3 version 4.8.5
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