TABLE OF CONTENTS v

o Table of Contents

Preface iz

Chapter 1. Computer Science: The Mechanization of Abstraction 1
1.1. What This Book Is About 3
1.2. What This Chapter Is About 6
1.3. Data Models 6
1.4. The C Data Model 13
1.5. Algorithms and the Design of Programs 20
1.6. Some C Conventions Used Throughout the Book 22
1.7. Summary of Chapter 1 23
1.8. Bibliographic Notes for Chapter 1 24

Chapter 2. Iteration, Induction, and Recursion 25
2.1. What This Chapter Is About 27
2.2. Tteration 27
2.3. Inductive Proofs 34
2.4. Complete Induction 44
2.5. Proving Properties of Programs 52
2.6. Recursive Definitions 59
2.7. Recursive Functions 69
2.8. Merge Sort: A Recursive Sorting Algorithm 75
2.9. Proving Properties of Recursive Programs 84
2.10. Summary of Chapter 2 87
2.11. Bibliographic Notes for Chapter 2 88

Chapter 3. The Running Time of Programs 89
3.1. What This Chapter Is About 89
3.2. Choosing an Algorithm 90
3.3. Measuring Running Time 91
3.4. Big-Oh and Approximate Running Time 96
3.5. Simplifying Big-Oh Expressions 101
3.6. Analyzing the Running Time of a Program 109
3.7. A Recursive Rule for Bounding Running Time 116
3.8. Analyzing Programs with Function Calls 127
3.9. Analyzing Recursive Functions 132
3.10. Analysis of Merge Sort 136
3.11. Solving Recurrence Relations 144
3.12. Summary of Chapter 3 154
3.13. Bibliographic Notes for Chapter 3 155

Chapter 4. Combinatorics and Probability 156
4.1. What This Chapter Is About 156
4.2. Counting Assignments 157
4.3. Counting Permutations 160
4.4. Ordered Selections 167

vi TABLE OF CONTENTS

4.5. Unordered Selections 170

4.6. Orderings With Identical Items 178
4.7. Distribution of Objects to Bins 181
4.8. Combining Counting Rules 184

4.9. Introduction to Probability Theory 187
4.10. Conditional Probability 193

4.11. Probabilistic Reasoning 203

4.12. Expected Value Calculations 212
4.13. Some Programming Applications of Probability 215
4.14. Summary of Chapter 4 220

4.15. Bibliographic Notes for Chapter 4 221

Chapter 5. The Tree Data Model 223
5.1. What This Chapter Is About 223
5.2. Basic Terminology 224
5.3. Data Structures for Trees 231
5.4. Recursions on Trees 239
5.5. Structural Induction 248
5.6. Binary Trees 253
5.7. Binary Search Trees 258
5.8. Efficiency of Binary Search Tree Operations 268
5.9. Priority Queues and Partially Ordered Trees 271
5.10. Heapsort: Sorting with Balanced POTs 280
5.11. Summary of Chapter 5 284
5.12. Bibliographic Notes for Chapter 5 285

Chapter 6. The List Data Model 286
6.1. What This Chapter Is About 286
6.2. Basic Terminology 287
6.3. Operations on Lists 291
6.4. The Linked-List Data Structure 293
6.5. Array-Based Implementation of Lists 301
6.6. Stacks 306
6.7. Implementing Function Calls Using a Stack 312
6.8. Queues 318
6.9. Longest Common Subsequences 321
6.10. Representing Character Strings 327
6.11. Summary of Chapter 6 334
6.12. Bibliographic Notes for Chapter 6 335

Chapter 7. The Set Data Model 337
7.1. What This Chapter Is About 337
7.2. Basic Definitions 338
7.3. Operations on Sets 342
7.4. List Implementation of Sets 351
7.5. Characteristic-Vector Implementation of Sets 357
7.6. Hashing 360
7.7. Relations and Functions 366
7.8. Implementing Functions as Data 373
7.9. Implementing Binary Relations 380

TABLE OF CONTENTS

7.10. Some Special Properties of Binary Relations
7.11. Infinite Sets 396

7.12. Summary of Chapter 7 401

7.13. Bibliographic Notes for Chapter 7 402

Chapter 8. The Relational Data Model 403
8.1. What This Chapter Is About 403
8.2. Relations 404
8.3. Keys 411

8.4. Primary Storage Structures for Relations 414

8.5. Secondary Index Structures 419

8.6. Navigation among Relations 423

8.7. An Algebra of Relations 428

8.8. Implementing Relational Algebra Operations
8.9. Algebraic Laws for Relations 440

8.10. Summary of Chapter 8 449

8.11. Bibliographic Notes for Chapter 8 450

Chapter 9. The Graph Data Model 451
9.1. What This Chapter Is About 451
9.2. Basic Concepts 452
9.3. Implementation of Graphs 459

9.4. Connected Components of an Undirected Graph

9.5. Minimal Spanning Trees 478
9.6. Depth-First Search 484
9.7. Some Uses of Depth-First Search 495

9.8. Dijkstra’s Algorithm for Finding Shortest Paths

9.9. Floyd’s Algorithm for Shortest Paths 513
9.10. An Introduction to Graph Theory 521
9.11. Summary of Chapter 9 526

9.12. Bibliographic Notes for Chapter 9 527

386

436

466

502

Chapter 10. Patterns, Automata, and Regular Expressions 529

10.1. What This Chapter Is About 530

10.2. State Machines and Automata 530

10.3. Deterministic and Nondeterministic Automata
10.4. From Nondeterminism to Determinism 547

10.5. Regular Expressions 556

10.6. The UNIX Extensions to Regular Expressions
10.7. Algebraic Laws for Regular Expressions 568
10.8. From Regular Expressions to Automata 571
10.9. From Automata to Regular Expressions 582
10.10. Summary of Chapter 10 588

10.11. Bibliographic Notes for Chapter 10 589

Chapter 11. Recursive Description of Patterns 591
11.1. What This Chapter Is About 591
11.2. Context-Free Grammars 592
11.3. Languages from Grammars 599
11.4. Parse Trees 602

536

564

vii

viii TABLE OF CONTENTS

11.5. Ambiguity and the Design of Grammars 610
11.6. Constructing Parse Trees 617

11.7. A Table-Driven Parsing Algorithm 625

11.8. Grammars Versus Regular Expressions 634
11.9. Summary of Chapter 11 640

11.10. Bibliographic Notes for Chapter 11~ 641

Chapter 12. Propositional Logic 642
12.1. What This Chapter Is About 642
12.2. What Is Propositional Logic? 643
12.3. Logical Expressions 645
12.4. Truth Tables 649
12.5. From Boolean Functions to Logical Expressions 655
12.6. Designing Logical Expressions by Karnaugh Maps 660
12.7. Tautologies 669
12.8. Some Algebraic Laws for Logical Expressions 674
12.9. Tautologies and Methods of Proof 682
12.10. Deduction 686
12.11. Proofs by Resolution 692
12.12. Summary of Chapter 12 697
12.13. Bibliographic Notes for Chapter 12 698

Chapter 13. Using Logic to Design Computer Components 699
13.1. What This Chapter is About 699
13.2. Gates 700
13.3. Circuits 701
13.4. Logical Expressions and Circuits 705
13.5. Some Physical Constraints on Circuits 711
13.6. A Divide-and-Conquer Addition Circuit 716
13.7. Design of a Multiplexer 723
13.8. Memory Elements 730
13.9. Summary of Chapter 13 731
13.10. Bibliographic Notes for Chapter 13 732

Chapter 14. Predicate Logic 733
14.1. What This Chapter Is About 733
14.2. Predicates 734
14.3. Logical Expressions 736
14.4. Quantifiers 739
14.5. Interpretations 745
14.6. Tautologies 751
14.7. Tautologies Involving Quantifiers 753
14.8. Proofs in Predicate Logic 759
14.9. Proofs from Rules and Facts 762
14.10. Truth and Provability = 768
14.11. Summary of Chapter 14 774
14.12. Bibliographic Notes for Chapter 14 775

Index 776

Preface

This book was motivated by the desire we and others have had to further the evolu-
tion of the core course in computer science. Many departments across the country
have revised their curriculum in response to the introductory course in the science
of computing discussed in the “Denning Report,” (Denning, P. J., D. E. Comer, D.
Gries, M. C. Mulder, A. Tucker, J. Turner, and P. R. Young, “Computing as a Dis-
cipline,” Comm. ACM 32:1, pp. 9-23, January 1989.). That report draws attention
to three working methodologies or processes — theory, abstraction, and design —
as fundamental to all undergraduate programs in the discipline. More recently,
the Computing Curricula 1991 report of the joint ACM/IEEE-CS Curriculum Task
Force echoes the Denning Report in identifying key recurring concepts which are
fundamental to computing, especially: conceptual and formal models, efficiency,
and levels of abstraction. The themes of these two reports summarize what we have
tried to offer the student in this book.

This book developed from notes for a two-quarter course at Stanford — called
CS109: Introduction to Computer Science — that serves a number of goals. The
first goal is to give beginning computer science majors a solid foundation for fur-
ther study. However, computing is becoming increasingly important in a much
wider range of scientific and engineering disciplines. Therefore, a second goal is
to give those students who will not take advanced courses in computer science the
conceptual tools that the field provides. Finally, a more pervasive goal is to expose
all students not only to programming concepts but also to the intellectually rich
foundations of the field.

Our first version of this book was based on programming in Pascal and appeared
in 1992. Our choice of Pascal as the language for example programs was motivated
by that language’s use in the Computer Science Advanced Placement Test as well
as in a plurality of college introductions to programming. We were pleased to see
that since 1992 there has been a significant trend toward C as the introductory
programming language, and we accordingly developed a new version of the book
using C for programming examples. Our emphasis on abstraction and encapsulation
should provide a good foundation for subsequent courses covering object-oriented
technology using C++.

At the same time, we decided to make two significant improvements in the
content of the book. First, although it is useful to have a grounding in machine
architecture to motivate how running time is measured, we found that almost all
curricula separate architecture into a separate course, so the chapter on that subject
was not useful. Second, many introductory courses in the theory of computing
emphasize combinatorics and probability, so we decided to increase the coverage
and cluster the material into a chapter of its own.

Foundations of Computer Science covers subjects that are often found split
between a discrete mathematics course and a sophomore-level sequence in computer
science in data structures. It has been our intention to select the mathematical
foundations with an eye toward what the computer user really needs, rather than
what a mathematician might choose. We have tried to integrate effectively the
mathematical foundations with the computing. We thus hope to provide a better
feel for the soul of computer science than might be found in a programming course,

ix

X PREFACE

a discrete mathematics course, or a course in a computer science subspecialty. We
believe that, as time goes on, all scientists and engineers will take a foundational
course similar to the one offered at Stanford upon which this book is based. Such a
course in computer science should become as standard as similar courses in calculus
and physics.

Prerequisites

Students taking courses based on this book have ranged from first-year undergrad-
uates to graduate students. We assume only that students have had a solid course
in programming. They should be familiar with the programming language ANSI
C to use this edition. In particular, we expect students to be comfortable with C
constructs such as recursive functions, structures, pointers, and operators involving
pointers and structures such as dot, =>, and &.

Suggested Outlines for Foundational Courses in CS

In terms of a traditional computer science curriculum, the book combines a first
course in data structures — that is, a “CS2” course — with a course in discrete
mathematics. We believe that the integration of these subjects is extremely desir-
able for two reasons:

1. Tt helps motivate the mathematics by relating it more closely to the computing.

2. Computing and mathematics can be mutually reinforcing. Some examples
are the way recursive programming and mathematical induction are related in
Chapter 2 and the way the free/bound variable distinction for logic is related
to the scope of variables in programming languages in Chapter 14. Suggestions
for instructive programming assignments are presented throughout the book.

There are a number of ways in which this book can be used.

A Two-Quarter or Two-Semester Course

The CS109A-B sequence at Stanford is typical of what might be done in two quar-
ters, although these courses are rather intensive, being 4-unit, 10-week courses each.
These two courses cover the entire book, the first seven chapters in CS109A and
Chapters 8 through 14 in CS109B.

A One-Semester “CS2” Type Course

It is possible to use the book for a one-semester course covering a set of topics similar
to what would appear in a “CS2” course. Naturally, there is too much material in
the book to cover in one semester, and so we recommend the following:

1. Recursive algorithms and programs in Sections 2.7 and 2.8.

2. Big-oh analysis and running time of programs: all of Chapter 3 except for
Section 3.11 on solving recurrence relations.

3. Trees in Sections 5.2 through 5.10.

6.

PREFACE xi

Lists: all of Chapter 6. Some may wish to cover lists before trees, which
is a more traditional treatment. We regard trees as the more fundamental
notion, but there is little harm in switching the order. The only significant
dependency is that Chapter 6 talks about the “dictionary” abstract data type
(set with operations insert, delete, and lookup), which is introduced in Section
5.7 as a concept in connection with binary search trees.

Sets and relations. Data structures for sets and relations are emphasized in
Sections 7.2 through 7.9 and 8.2 through 8.6.

Graph algorithms are covered in Sections 9.2 through 9.9.

A One-Semester Discrete Mathematics Course

For a one-semester course emphasizing mathematical foundations, the instructor
could choose to cover:

1.
2.

© 0 N> U w

10.
11.

Mathematical induction and recursive programs in Chapter 2.

Big-oh analysis, running time, and recurrence relations in Sections 3.4 through
3.11.

Combinatorics in Sections 4.2 through 4.8.

Discrete probability in Sections 4.9 through 4.13.

Mathematical aspects of trees in Sections 5.2 through 5.6.
Mathematical aspects of sets in Sections 7.2, 7.3, 7.7, 7.10, and 7.11.
The algebra of relations in Sections 8.2, 8.7, and 8.9.

Graph algorithms and graph theory in Chapter 9.

Automata and regular expressions in Chapter 10.

Contezt-free grammars in Sections 11.2 through 11.4.

Propositional and predicate logic in Chapters 12 and 14, respectively.

Features of This Book

To help the student assimilate the material, we have added the following study aids:

1.

Each chapter has an outline section at the beginning and a summary section
at the end highlighting the main points.

Marginal notes mark important concepts and definitions. However, items men-
tioned in section or subsection headlines are not repeated in the margin.

“Sidebars” are separated from the text by double lines. These short notes serve
several purposes:

O Some are elaborations on the text or make some fine points about program
or algorithm design.

O Others are for summary or emphasis of points made in the text nearby.
These include outlines of important kinds of proofs, such as the various
forms of proof by induction.

O A few are used to give examples of fallacious arguments, and we hope that
the separation from the text in this way will eliminate possible miscon-
struction of the point.

xii PREFACE

O A few give very brief introductions to major topics like undecidability or
the history of computers to which we wish we could devote a full section.

4. Most of the sections end with exercises. There are more than 1000 exercises
or parts spread among the sections. Of these roughly 30% are marked with a
single star, which indicates that they require more thought than the unstarred
exercises. Approximately another 10% of the exercises are doubly starred, and
these are the most challenging.

5. Chapters end with bibliographic notes. We have not attempted to be exhaus-
tive, but offer suggestions for more advanced texts on the subject of the chapter
and mention the relevant papers with the most historical significance.

About the Cover

It is a tradition for computer science texts to have a cover with a cartoon or drawing
symbolizing the content of the book. Here, we have drawn on the myth of the world
as the back of a turtle, but our world is populated with representatives of some of
the other, more advanced texts in computer science that this book is intended to
support. They are:

The teddy bear: R. Sethi, Programming Languages: Concepts and Constructs,
Addison-Wesley, Reading, Mass., 1989.

The baseball player: J. D. Ullman, Principles of Database and Knowledge-Base
Systems, Computer Science Press, New York, 1988.

The column: J. L. Hennessy and D. A. Patterson, Computer Architecture: a Quan-
titative Approach, Morgan-Kaufmann, San Mateo, Calif., 1990.

The dragon: A. V. Aho, R. Sethi, and J. D. Ullman, Compiler Design: Principles,
Techniques, and Tools, Addison-Wesley, Reading, Mass., 1986.

The triceratops: J. L. Peterson and A. Silberschatz, Operating Systems Concepts,
second edition, Addison-Wesley, Reading, Mass., 1985.

Acknowledgments

We are deeply indebted to a number of colleagues and students who have read this
material and given us many valuable suggestions for improving the presentation.
We owe a special debt of gratitude to Brian Kernighan, Don Knuth, Apostolos
Lerios, and Bob Martin who read the original Pascal manuscript in detail and
gave us many perceptive comments. We have received, and gratefully acknowledge,
reports of course testing of the notes for the Pascal edition of this book by Michael
Anderson, Margaret Johnson, Udi Manber, Joseph Naor, Prabhakar Ragde, Rocky
Ross, and Shuky Sagiv.

There are a number of other people who found errors in earlier editions, both
the original notes and the various printings of the Pascal edition. In this regard,
we would like to thank: Susan Aho, Michael Anderson, Aaron Edsinger, Lonnie
Eldridge, Todd Feldman, Steve Friedland, Christopher Fuselier, Mike Genstil, Paul
Grubb III, Barry Hayes, John Hwang, Hakan Jakobsson, Arthur Keller, Dean Kelley,
James Kuffner Jr., Steve Lindell, Richard Long, Mark MacDonald, Simone Mar-
tini, Hugh McGuire, Alan Morgan, Monnia Oropeza, Rodrigo Philander, Andrew
Quan, Stuart Reges, John Stone, Keith Swanson, Steve Swenson, Sanjai Tiwari,
Eric Traut, and Lynzi Ziegenhagen.

PREFACE xiii

We acknowledge helpful advice from Geoff Clem, Jon Kettenring, and Brian
Kernighan during the preparation of the C edition of Foundations of Computer
Science.

Peter Ullman produced a number of the figures used in this book. We are grate-
ful to Dan Clayton, Anthony Dayao, Mat Howard, and Ron Underwood for help
with TEX fonts, and to Hester Glynn and Anne Smith for help with the manuscript
preparation.

On-Line Access to Code, Errata, and Notes

You can obtain copies of the major programs in this book by anonymous ftp to host
ftp-cs.stanford.edu. Login with user name anonymous and give your name and
host as a password. You may then execute

cd fcsc

where you will find programs from this book. We also plan to keep in this directory
information about errata and what course notes we can provide.

A V. A
Chatham, NJ

J.D. U.
Stanford, CA

July, 1994

CHAPTER

Abstraction

Exam
scheduling

Computer Science:
The Mechanization
of Abstraction

Though it is a new field, computer science already touches virtually every aspect
of human endeavor. Its impact on society is seen in the proliferation of computers,
information systems, text editors, spreadsheets, and all of the wonderful application
programs that have been developed to make computers easier to use and people more
productive. An important part of the field deals with how to make programming
easier and software more reliable. But fundamentally, computer science is a science
of abstraction — creating the right model for thinking about a problem and devising
the appropriate mechanizable techniques to solve it.

Every other science deals with the universe as it is. The physicist’s job, for
example, is to understand how the world works, not to invent a world in which
physical laws would be simpler or more pleasant to follow. Computer scientists,
on the other hand, must create abstractions of real-world problems that can be
understood by computer users and, at the same time, that can be represented and
manipulated inside a computer.

Sometimes the process of abstraction is simple. For example, we can model the
behavior of the electronic circuits used to build computers quite well by an abstrac-
tion called “propositional logic.” The modeling of circuits by logical expressions is
not exact; it simplifies, or abstracts away, many details — such as the time it takes
for electrons to flow through circuits and gates. Nevertheless, the propositional
logic model is good enough to help us design computer circuits well. We shall have
much more to say about propositional logic in Chapter 12.

As another example, suppose we are faced with the problem of scheduling final
examinations for courses. That is, we must assign course exams to time slots so
that two courses may have their exams scheduled in the same time slot only if there
is no student taking both. At first, it may not be apparent how we should model
this problem. One approach is to draw a circle called a node for each course and
draw a line called an edge connecting two nodes if the corresponding courses have
a student in common. Figure 1.1 suggests a possible picture for five courses; the
picture is called a course-conflict graph.

Given the course-conflict graph, we can solve the exam-scheduling problem by
repeatedly finding and removing “maximal independent sets” from the graph. An

1

Maximal
independent
set

2 COMPUTER SCIENCE: THE MECHANIZATION OF ABSTRACTION

Eng Math

Fig. 1.1. Course-conflict graph for five courses. An edge between two
courses indicates that at least one student is taking both courses.

independent set is a collection of nodes that have no connecting edges within the
collection. An independent set is mazimal if no other node from the graph can be
added without including an edge between two nodes of the set. In terms of courses,
a maximal independent set is any maximal set of courses with no common students.
In Fig. 1.1, {Econ, Eng, Phy} is one maximal independent set. The set of courses
corresponding to the selected maximal independent set is assigned to the first time
slot.

We remove from the graph the nodes in the first maximal independent set,
along with all incident edges, and then find a maximal independent set among the
remaining courses. One choice for the next maximal independent set is the singleton
set {C'S}. The course in this maximal independent set is assigned to the second
time slot.

We repeat this process of finding and deleting maximal independent sets until
no more nodes remain in the course-conflict graph. At this point, all courses will
have been assigned to time slots. In our example, after two iterations, the only
remaining node in the course-conflict graph is Math, and this forms the final maxi-
mal independent set, which is assigned to the third time slot. The resulting exam
schedule is thus

TIME SLOT | COURSE EXAMS

1 Econ, Eng, Phy
2 cS
3 Math

This algorithm does not necessarily partition the courses among the smallest
possible number of time slots, but it is simple and does tend to produce a schedule
with close to the smallest number of time slots. It is also one that can be readily
programmed using the techniques presented in Chapter 9.

Notice that this approach abstracts away some details of the problem that may
be important. For example, it could cause one student to have five exams in five
consecutive time slots. We could create a model that included limits on how many
exams in a row one student could take, but then both the model and the solution

Knowledge
representation

0
00 1.1

SEC. 1.1 WHAT THIS BOOK IS ABOUT 3

Abstraction: Not to Be Feared

The reader may cringe at the word “abstraction,” because we all have the intu-
ition that abstract things are hard to understand; for example, abstract algebra
(the study of groups, rings, and the like) is generally considered harder than the
algebra we learned in high school. However, abstraction in the sense we use it im-
plies simplification, the replacement of a complex and detailed real-world situation
by an understandable model within which we can solve a problem. That is, we
“abstract away” the details whose effect on the solution to a problem is minimal
or nonexistent, thereby creating a model that lets us deal with the essence of the
problem.

to the exam-scheduling problem would be more complicated.

Often, finding a good abstraction can be quite difficult because we are forced
to confront the fundamental limitations on the tasks computers can perform and
the speed with which computers can perform those tasks. In the early days of com-
puter science, some optimists believed that robots would soon have the prodigious
capability and versatility of the Star Wars robot C3PO. Since then we have learned
that in order to have “intelligent” behavior on the part of a computer (or robot),
we need to provide that computer with a model of the world that is essentially
as detailed as that possessed by humans, including not only facts (“Sally’s phone
number is 555-1234”), but principles and relationships (“If you drop something, it
usually falls downward”).

We have made much progress on this problem of “knowledge representation.”
We have devised abstractions that can be used to help build programs that do
certain kinds of reasoning. One example of such an abstraction is the directed
graph, in which nodes represent entities (“the species cat” or “Fluffy”) and arrows
(called arcs) from one node to another represent relationships (“Fluffy is a cat,”
“cats are animals,” “Fluffy owns Fluffy’s milk saucer”); Figure 1.2 suggests such a
graph.

Another useful abstraction is formal logic, which allows us to manipulate facts
by applying rules of inference, such as “If X is a cat and Y is the mother of X, then
Y is a cat.” Nevertheless, progress on modeling, or abstracting, the real world or
significant pieces thereof remains a fundamental challenge of computer science, one
that is not likely to be solved completely in the near future.

What This Book Is About

This book will introduce the reader, who is assumed to have a working knowledge of
the programming language ANSI C, to the principal ideas and concerns of computer
science. The book emphasizes three important problem-solving tools:

1. Data models, the abstractions used to describe problems. We have already men-
tioned two models: logic and graphs. We shall meet many others throughout
this book.

4 COMPUTER SCIENCE: THE MECHANIZATION OF ABSTRACTION

Fluffy’s
milk
saucer

Fig. 1.2. A graph representing knowledge about Fluffy.

2. Data structures, the programming-language constructs used to represent data
models. For example, C provides built-in abstractions, such as structures and
pointers, that allow us to construct data structures to represent complex ab-
stractions such as graphs.

3. Algorithms, the techniques used to obtain solutions by manipulating data as
represented by the abstractions of a data model, by data structures, or by other
means.

Data Models

We meet data models in two contexts. Data models such as the graphs discussed in
the introduction to this chapter are abstractions frequently used to help formulate
solutions to problems. We shall learn about several such data models in this book:
trees in Chapter 5, lists in Chapter 6, sets in Chapter 7, relations in Chapter 8,
graphs in Chapter 9, finite automata in Chapter 10, grammars in Chapter 11, and
logic in Chapters 12 and 14.

Data models are also associated with programming languages and computers.
For example, C has a data model that includes abstractions such as characters,
integers of several sizes, and floating-point numbers. Integers and floating-point
numbers in C are only approximations of integers and reals in mathematics because
of the limited precision of arithmetic available in computers. The C data model also
includes types such as structures, pointers, and functions, which we shall discuss in
more detail in Section 1.4.

Data Structures

When the data model of the language in which we are writing a program lacks a
built-in representation for the data model of the problem at hand, we must represent
the needed data model using the abstractions supported by the language. For this
purpose, we study data structures, which are methods for representing in the data
model of a programming language abstractions that are not an explicit part of

SEC. 1.1 WHAT THIS BOOK IS ABOUT 5

that language. Different programming languages may have strikingly different data
models. For example, unlike C, the language Lisp supports trees directly, and the
language Prolog has logic built into its data model.

Algorithms

An algorithm is a precise and unambiguous specification of a sequence of steps that
can be carried out mechanically. The notation in which an algorithm is expressed
can be any commonly understood language, but in computer science algorithms are
most often expressed formally as programs in a programming language, or in an
informal style as a sequence of programming language constructs intermingled with
English language statements. Most likely, you have already encountered several im-
portant algorithms while studying programming. For example, there are a number
of algorithms for sorting the elements of an array, that is, putting the elements in
smallest-first order. There are clever searching algorithms such as binary search,
which quickly finds a given element in a sorted array by repeatedly dividing in half
the portion of the array in which the element could appear.

These, and many other “tricks” for solving common problems, are among the
tools the computer scientist uses when designing programs. We shall study many
such techniques in this book, including the important methods for sorting and
searching. In addition, we shall learn what makes one algorithm better than another.
Frequently, the running time, or time taken by an algorithm measured as a function
of the size of its input, is one important aspect of the “quality” of the algorithm;
we discuss running time in Chapter 3.

Other aspects of algorithms are also important, particularly their simplicity.
Ideally, an algorithm should be easy to understand and easy to turn into a work-
ing program. Also, the resulting program should be understandable by a person
reading the code that implements the algorithm. Unfortunately, our desires for a
fast algorithm and a simple algorithm are often in conflict, and we must choose our
algorithm wisely.

Underlying Threads

As we progress through this book, we shall encounter a number of important uni-
fying principles. We alert the reader to two of these here:

1. Design algebras. In certain fields in which the underlying models have become
well understood, we can develop notations in which design trade-offs can be
expressed and evaluated. Through this understanding, we can develop a theory
of design with which well-engineered systems can be constructed. Propositional
logic, with the associated notation called Boolean algebra that we encounter in
Chapter 12, is a good example of this kind of design algebra. With it, we can
design efficient circuits for subsystems of the kind found in digital computers.
Other examples of algebras found in this book are the algebra of sets in Chapter
7, the algebra of relations in Chapter 8, and the algebra of regular expressions
in Chapter 10.

0

= 1.2
0

= 1.3

Type system

Data object

6 COMPUTER SCIENCE: THE MECHANIZATION OF ABSTRACTION

2. Recursion is such a useful technique for defining concepts and solving problems
that it deserves special mention. We discuss recursion in detail in Chapter 2
and use it throughout the rest of the book. Whenever we need to define an
object precisely or whenever we need to solve a problem, we should always ask,
“What does the recursive solution look like?” Frequently that solution has a
simplicity and efficiency that makes it the method of choice.

What This Chapter Is About

The remainder of this chapter sets the stage for the study of computer science. The
primary concepts that will be covered are

O Data models (Section 1.3)
O The data model of the programming language C (Section 1.4)
O The principal steps in the software-creation process (Section 1.5)

We shall give examples of several different ways in which abstractions and mod-
els appear in computer systems. In particular, we mention the models found in
programming languages, in certain kinds of systems programs, such as operating
systems, and in the circuits from which computers are built. Since software is a
vital component of today’s computer systems, we need to understand the software-
creation process, the role played by models and algorithms, and the aspects of
software creation that computer science can address only in limited ways.

In Section 1.6 there are some conventional definitions that are used in C pro-
grams throughout this book.

Data Models

Any mathematical concept can be termed a data model. In computer science, a
data model normally has two aspects:

1. The values that objects can assume. For example, many data models contain
objects that have integer values. This aspect of the data model is static; it tells
us what values objects may take. The static part of a programming language’s
data model is often called the type system.

2. The operations on the data. For example, we normally apply operations such
as addition to integers. This aspect of the model is dynamic; it tells us the
ways in which we can change values and create new values.

Programming Language Data Models

Each programming language has its own data model, and these differ from one
another, often in quite substantial ways. The basic principle under which most
programming languages deal with data is that each program has access to “boxes,”
which we can think of as regions of storage. Each box has a type, such as int or
char. We may store in a box any value of the correct type for that box. We often
refer to the values that can be stored in boxes as data objects.

Name

Dereferencing

The list data
model

SEC. 1.3 DATA MODELS 7

We may also name boxes. In general, a name for a box is any expression that
denotes that box. Often, we think of the names of boxes as the variables of the
program, but that is not quite right. For example, if x is a variable local to a
recursive function F', then there may be many boxes named x, each associated with
a different call to F'. Then the true name of such a box is a combination of x and
the particular call to F.

Most of the data types of C are familiar: integers, floating-point numbers,
characters, arrays, structures, and pointers. These are all static notions.

The operations permitted on data include the usual arithmetic operations on
integers and floating-point numbers, accessing operations for elements of arrays or
structures, and pointer dereferencing, that is, finding the element pointed to by a
pointer. These operations are part of the dynamics of the C data model.

In a programming course, we would see important data models that are not part
of C, such as lists, trees, and graphs. In mathematical terms, a list is a sequence of
n elements, which we shall write as (a1, az, . ..,ay), where a; is the first element, as
the second, and so on. Operations on lists include inserting new elements, deleting
elements, and concatenating lists (that is, appending one list to the end of another).

Example 1.1. In C, a list of integers can be represented by a data structure
called a linked list in which list elements are stored in cells. Lists and their cells can
be defined by a type declaration such as

typedef struct CELL *LIST;
struct CELL {

int element;

struct LIST next;
}s;

This declaration defines a self-referential structure CELL with two fields. The first
is element, which holds the value of an element of the list and is of type int.

The second field of each CELL is next, which holds a pointer to a cell. Note
that the type LIST is really a pointer to a CELL. Thus, structures of type CELL can
be linked together by their next fields to form what we usually think of as a linked
list, as suggested in Fig. 1.3. The next field can be thought of as either a pointer
to the next cell or as representing the entire list that follows the cell in which it
appears. Similarly, the entire list can be represented by a pointer, of type LIST, to
the first cell on the list.

aq ®

Y

a *— > — dp L]

Fig. 1.3. A linked list representing the list (a1, az2,...,an).

Cells are represented by rectangles, the left part of which is the element, and
the right part of which holds a pointer, shown as an arrow to the next cell pointed
to. A dot in the box holding a pointer means that the pointer is NULL.! Lists will
be covered in more detail in Chapter 6. [

1 NULL is a symbolic constant defined in the standard header file stdio.h to be equal to a value
that cannot be a pointer to anything. We shall use it to have this meaning throughout the
book.

Operating
systems

Files

Directories

8 COMPUTER SCIENCE: THE MECHANIZATION OF ABSTRACTION

Data Models Versus Data Structures

Despite their similar names, a “list” and a “linked list” are very different concepts. A
list is a mathematical abstraction, or data model. A linked list is a data structure. In
particular, it is the data structure we normally use in C and many similar languages
to represent abstract lists in programs. There are other languages in which it is
not necessary to use a data structure to represent abstract lists. For example, the
list (a1,as2,...,a,) could be represented directly in the language Lisp and in the
language Prolog similarly, as [a1, ag, ..., ap).

Data Models of System Software

Data models are found not only in programming languages but also in operating
systems and applications programs. You are probably familiar with an operating
system such as UNIX or MS-DOS (perhaps with Microsoft Windows).2 The func-
tion of an operating system is to manage and schedule the resources of a computer.
The data model for an operating system like UNIX has concepts such as files, di-

rectories, and processes.

al a2 a3 b1l b2

Fig. 1.4. A typical UNIX directory/file structure.

1. The data itself is stored in files, which in the UNIX system are strings of
characters.

2. Files are organized into directories, which are collections of files and/or other
directories. The directories and files form a tree with the files at the leaves.3
Figure 1.4 suggests the tree that might represent the directory structure of a
typical UNIX operating system. Directories are indicated by circles. The root
directory / contains directories called mnt, usr, bin, and so on. The directory
/usr contains directories ann and bob; directory ann contains three files: ail,
a2, and a3.

If you are unfamiliar with operating systems, you can skip the next paragraphs. However,
most readers have probably encountered an operating system, perhaps under another name.
For example, the Macintosh “system” is an operating system, although different terminology
is used. For example, a directory becomes a “folder” in Macintosh-ese.

However, “links” in directories may make it appear that a file or directory is part of several
different directories.

Processes

Pipes

Text editors

SEC. 1.3 DATA MODELS 9

3. Processes are individual executions of programs. Processes take zero or more
streams as input and produce zero or more streams as output. In the UNIX
system, processes can be combined by pipes, where the output from one process
is fed as input into the next process. The resulting composition of processes
can be viewed as a single process with its own input and output.

Example 1.2. Consider the UNIX command line
bc | word | speak

The symbol | indicates a pipe, an operation that makes the output of the process
on the left of this symbol be the input to the process on its right. The program
bc is a desk calculator that takes arithmetic expressions, such as 2 + 3, as input
and produces the answer 5 as output. The program word translates numbers into
words; speak translates words into phoneme sequences, which are then uttered over
a loudspeaker by a voice synthesizer. Connecting these three programs together
by pipes turns this UNIX command line into a single process that behaves like a
“talking” desk calculator. It takes as input arithmetic expressions and produces as
output the spoken answers. This example also suggests that a complex task may
be implemented more easily as the composition of several simpler functions. [

There are many other aspects to an operating system, such as how it manages
security of data and interaction with the user. However, even these few observations
should make it apparent that the data model of an operating system is rather
different from the data model of a programming language.

Another type of data model is found in text editors. Every text editor’s data
model incorporates a notion of text strings and editing operations on text. The
data model usually includes the notion of lines, which, like most files, are character
strings. However, unlike files, lines may have associated line numbers. Lines may
also be organized into larger units such as paragraphs, and operations on lines are
normally applicable anywhere within the line — not just at the front, like the most
common file operations. The typical editor supports a notion of a “current” line
(where the cursor is) and probably a current position within that line. Operations
performed by the editor include various modifications to lines, such as deletion or
insertion of characters within the line, deletion of lines, and creation of new lines.
It is also possible in typical editors to search for features, such as specific character
strings, among the lines of the file being edited.

In fact, if you examine any other familiar piece of software, such as a spread-
sheet or a video game, a pattern emerges. Each program that is designed to be
used by others has its own data model, within which the user must work. The
data models we meet are often radically different from one another, both in the
primitives they use to represent data and in the operations on that data that are
offered to the user. Yet each data model is implemented, via data structures and
the programs that use them, in some programming language.

The Data Model of Circuits

We shall also meet in this book a data model for computer circuits. This model,
called propositional logic, is most useful in the design of computers. Computers
are composed of elementary components called gates. Fach gate has one or more

Bit

One-bit adder

10 COMPUTER SCIENCE: THE MECHANIZATION OF ABSTRACTION

inputs and one output; the value of an input or output can be only 0 or 1. A
gate performs a simple function — such as AND, where the output is 1 if all the
inputs are 1 and the output is 0 if one or more of the inputs are 0. At one level
of abstraction, computer design is the process of deciding how to connect gates
to perform the basic operations of a computer. There are many other levels of
abstraction associated with computer design as well.

Figure 1.5 shows the usual symbol for an AND-gate, together with its truth table,
which indicates the output value of the gate for each pair of input values.* We
discuss truth tables in Chapter 12 and gates and their interconnections in Chapter
13.

AND z

Y
0
1
0
1

Fig. 1.5. An AND-gate and its truth table.

Example 1.3. To execute the C assignment statement a = b+c, a computer
performs the addition with an adder circuit. In the computer, all numbers are
represented in binary notation using the two digits 0 and 1 (called binary digits, or
bits for short). The familiar algorithm for adding decimal numbers, where we add
the digits at the right end, generate a carry to the next place to the left, add that
carry and the digits at that place, generate a carry to the next place to the left,
and so on, works in binary as well.

Fig. 1.6. A one-bit adder: dz is the sum =z + y + c.

Out of a few gates, we can build a one-bit adder circuit, as suggested in Fig.
1.6. Two input bits, and y, and a carry-in bit ¢, are summed, resulting in a sum
bit z and a carry-out bit d. To be precise, d is 1 if two or more of ¢, x, and y are 1,
while z is 1 if an odd number (one or three) of ¢, z, and y are 1, as suggested by

4 Note that if we think of 1 as “true” and 0 as “false,” then the AND-gate performs the same
logical operation as the && operator of C.

SEC. 1.3 DATA MODELS 11

R R R OOOO|8
— R, OO, RF~,OO|Iw
— O M= O~ OO0
_ = Ok OO0 O
_H O OO MM O|N

Fig. 1.7. Truth table for the one-bit adder.

The Ripple-Carry Addition Algorithm

We all have used the ripple-carry algorithm to add numbers in decimal. To add
456 4 829, for example, one performs the steps suggested below:

1 0
4 5 6 4 5 6 4 5 6
8 2 9 8 2 9 8 29
5 8 5 1285

That is, at the first step, we add the rightmost digits, 6+9 = 15. We write down the
5 and carry the 1 to the second column. At the second step, we add the carry-in, 1,
and the two digits in the second place from the right, to get 1+5+2 = 8. We write
down the 8, and the carry is 0. In the third step, we add the carry-in, 0, and the
digits in the third place from the right, to get 0 + 4 + 8 = 12. We write down the
2, but since we are at the leftmost place, we do not carry the 1, but rather write it
down as the leftmost digit of the answer.

Binary ripple-carry addition works the same way. However, at each place, the
carry and the “digits” being added are all either 0 or 1. The one-bit adder thus
describes completely the addition table for a single place. That is, if all three bits
are 0, then the sum is 0, and so we write down 0 and carry 0. If one of the three is
1, the sum is 1; we write down 1 and carry 0. If two of the three are 1, the sum is
2, or 10 in binary; we write down 0 and carry 1. If all three are 1, then the sum is
3, or 11 in binary, and so we write down 1 and carry 1. For example, to add 101 to
111 using binary ripple-carry addition, the steps are

1 1
1 01 1 01 101
1 11 1 11 111
0 00 1100

the table of Fig. 1.7. The carry-out bit followed by the sum bit — that is, dz —
forms a two-bit binary number, which is the total number of z, y, and ¢ that are 1.
In this sense, the one-bit adder adds its inputs.

Many computers represent integers as 32-bit numbers. An adder circuit can

Ripple-carry
adder

12 COMPUTER SCIENCE: THE MECHANIZATION OF ABSTRACTION

then be composed of 32 one-bit adders, as suggested in Fig. 1.8. This circuit is often
called a ripple-carry adder, because the carry ripples from right to left, one bit at a
time. Note that the carry into the rightmost (low-order bit) one-bit adder is always
0. The sequence of bits x31z30 - - xo represents the bits of the first number being
added, and y31¥y30 - - - Yo is the second addend. The sum is dzs123¢ - - - 20; that is, the
leading bit is the carry-out of the leftmost one-bit adder, and the following bits of
the sum are the sum bits of the adders, from the left.

31 T30 Zo
Y31 Y30 Yo

' ' '

d <e—] a— 0

1
!

<31 <30 20

Fig. 1.8. A ripple-carry adder: dzs1230---20 = 31230 - - - To + Y31Y30 - - - Yo.

The circuit of Fig. 1.8 is really an algorithm in the data model of bits and the
primitive operations of gates. However, it is not a particularly good algorithm. The
reason is that until we compute the carry-out of the rightmost place, we cannot
compute z; or the carry-out of the second place. Until we compute the carry-out of
the second place, we cannot compute z5 or the carry-out of the third place, and so
on. Thus, the time taken by the circuit is the length of the numbers being added —
32 in our case — multiplied by the time needed by a one-bit adder.

One might suspect that the need to “ripple” the carry through each of the one-
bit adders, in turn, is inherent in the definition of addition. Thus, it may come as
a surprise to the reader that computers have a much faster way of adding numbers.
We shall cover such an improved algorithm for addition when we discuss the design
of circuits in Chapter 13. O

EXERCISES

1.3.1: Explain the difference between the static and dynamic aspects of a data
model.

1.3.2: Describe the data model of your favorite video game. Distinguish between
static and dynamic aspects of the model. Hint: The static parts are not just the
parts of the game board that do not move. For example, in Pac Man, the static
part includes not only the map, but the “power pills,” “monsters,” and so on.

1.3.3: Describe the data model of your favorite text editor.
1.3.4: Describe the data model of a spreadsheet program.

EQF

0
= 1.4

SEC. 1.4 THE C DATA MODEL 13

The C Data Model
In this section we shall highlight important parts of the data model used by the C

programming language. As an example of a C program, consider the program in
Fig. 1.10 that uses the variable num to count the number of characters in its input.

#include <stdio.h>

main()

{
int num;
num = 0;

while (getchar() != EOF)
++num; /* add 1 to num */
printf ("%d\n", num);

Fig. 1.10. C program to count number of input characters.

The first line tells the C preprocessor to include as part of the source the
standard input/output file stdio.h, which contains the definitions of the functions
getchar and printf, and the symbolic constant EOF, a value that represents the
end of a file.

A C program itself consists of a sequence of definitions, which can be either
function definitions or data definitions. One must be a definition of a function
called main. The first statement in the function body of the program in Fig. 1.10
declares the variable num to be of type int. (All variables in a C program must
be declared before their use.) The next statement initializes num to zero. The
following while statement reads input characters one at a time using the library
function getchar, incrementing num after each character read, until there are no
more input characters. The end of file is signaled by the special value EOF on the
input. The printf statement prints the value of num as a decimal integer, followed
by a newline character.

The C Type System

We begin with the static part of the C data model, the type system, which describes
the values that data may have. We then discuss the dynamics of the C data model,
that is, the operations that may be performed on data.

In C, there is an infinite set of types, any of which could be the type associated
with a particular variable. These types, and the rules by which they are constructed,
form the type system of C. The type system contains basic types such as integers,
and a collection of type-formation rules with which we can construct progressively
more complex types from types we already know. The basic types of C are

1. Characters (char, signed char, unsigned char)

2. Integers (int, short int, long int, unsigned)

3. Floating-point numbers (float, double, long double)
4

Enumerations (enum)

Members of a
structure

14 COMPUTER SCIENCE: THE MECHANIZATION OF ABSTRACTION

Integers and floating-point numbers are considered to be arithmetic types.

The type-formation rules assume that we already have some types, which could

be basic types or other types that we have already constructed using these rules.
Here are some examples of the type formation rules in C:

1.

Array types. We can form an array whose elements are type T with the decla-
ration

T Aln]

This statement declares an array A of n elements, each of type T. In C, array
subscripts begin at 0, so the first element is A[0] and the last element is
Aln—1]. Arrays can be constructed from characters, arithmetic types, pointers,
structures, unions, or other arrays.

Structure types. In C, a structure is a grouping of variables called members or
fields. Within a structure different members