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Who, for love of truth, 
Take from their own wants 
By taxes and gifts, 
And now and then send forth 
One of themselves 
As dedicated servant, 
To forward the search 
Into the mysteries and marvelous simplicities 
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Our home. 





PREFACE 

This is a textbook on gravitation physics (Einstein's "general relativity" or "geometrodynamics"). It supplies two tracks through the subject. The first track is focused on the key physical ideas. It assumes, as mathematical prerequisite, only vector analysis and simple partial-differential equations. It is suitable for a one-semester course at the junior or senior level or in graduate school; and it constitutes-in the opinion of the authors-the indispensable core of gravitation theory that every advanced student of physics should learn. The Track-I material is contained in those pages of the book that have a 1 outlined in gray in the upper outside corner, by which the eye of the reader can quickly pick out the Track-I sections. In the contents, the same purpose is served by a gray bar beside the section, box, or figure number. The rest of the text builds up Track 1 into Track 2. Readers and teachers are invited to select, as enrichment material, those portions of Track 2 that interest them most. With a few exceptions, any Track-2 chapter can be understood by readers who have studied only the earlier Track-I material. The exceptions are spelled out explicitly in "dependency statements" located at the beginning of each Track-2 chapter, or at each transition within a chapter from Track 1 to Track 2. The entire book (all of Track 1 plus all of Track 2) is designed for a rigorous, full-year course at the graduate level, though many teachers of a full-year course may prefer a more leisurely pace that omits some of the Track-2 material. The full book is intended to give a competence in gravitation physics comparable to that which the average Ph.D. has in electromagnetism. When the student achieves this competence, he knows the laws of physics in flat spacetime (Chapters 1-7). He can predict orders of magnitude. He can also calculate using the principal tools of modern differential geometry (Chapters 8-15), and he can predict at all relevant levels of precision. He understands Einstein's geometric framework for physics (Chapters 
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16-22). He knows the applications of greatest present-day interest: pulsars and 
neutron stars (Chapters 23-26); cosmology (Chapters 27-30); the Schwarzschild 
geometry and gravitational collapse (Chapters 31-34); and gravitational waves 
(Chapters 35-37). He has probed the experimental tests of Einstein's theory (Chap
ters 38-40). He will be able to read the modern mathematical literature on differential 
geometry, and also the latest papers in the physics and astrophysics journals about 
geometrodynamics and its applications. If he wishes to go beyond the field equations, 
the four major applications, and the tests, he will find at the end of the book 
(Chapters 41-44) a brief survey of several advanced topics in general relativity. 
Among the topics touched on here, superspace and quantum geometrodynamics 
receive special attention. These chapters identify some of the outstanding physical 
issues and lines of investigation being pursued today. 

Whether the department is physics or astrophysics or mathematics, more students 
than ever ask for more about general relativity than mere conversation. They want 
to hear its principal theses clearly stated. They want to know how to "work the 
handles of its information pump" themselves. More universities than ever respond 
with a serious course in Einstein's standard 1915 geometrodynamics. What a contrast 
to Maxwell's standard 1864 electrodynamics! In 1897, when Einstein was a student 
at Zurich, this subject was not on the instructional calendar of even half the 
universities of Europe.1 "We waited in vain for an exposition of Maxwell's theory," 
says one of Einstein's classmates. "Above all it was Einstein who was disappointed," 2 

for he rated electrodynamics as "the most fascinating subject at the time" 3-as many 
students rate Einstein's theory today! 

Maxwell's theory recalls Einstein's theory in the time it took to win acceptance. 
Even as-late as 1904 a book could appear by so great an investigator as William 
Thomson, Lord Kelvin, with the words, "The so-called 'electromagnetic theory of 
light' has not helped us hitherto ... it seems to me that it is rather a backward 
step ...  the one thing about it that seems intelligible to me, I do not think is 
admissible ...  that there should be an electric displacement perpendicular to the 
line of propagation." 4 Did the pioneer of the Atlantic cable in the end contribute 
so richly to Maxwell electrodynamics-from units, and principles of measurement, 
to the theory of waves guided by wires-because of his own early difficulties with 
the subject? Then there is hope for many who study Einstein's geometrodynamics 
today! By the 1920's the weight of developments, from Kelvin's cable to Marconi's 
wireless, from the atom of Rutherford and Bohr to the new technology of high
frequency circuits, had produced general conviction that Maxwell was right. Doubt 
dwindled. Confidence led to applications, and applications led to confidence. 

Many were slow to take up general relativity in the beginning because it seemed 
to be poor in applications. Einstein's theory attracts the interest of many today 
because it is rich in applications. No longer is attention confined to three famous 
but meager tests: the gravitational red shift, the bending of light by the sun, and 

1G. Holton (1965) 3A Einstein (1949a) 2 L. Kolbros (I 956). 4 W. Thomson ( I 904). 
Citations for references will be found in the bibliography 
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the precession of the perihelion of Mercury around the sun. The combination of 
radar ranging and general relativity is, step by step, transforming the solar-system 
celestial mechanics of an older generation to a new subject, with a new level of 
precision, new kinds of effects, and a new outlook. Pulsars, discovered in 1968, find 
no acceptable explanation except as the neutron stars predicted in 1934, objects with 
a central density so high (~1014g/cm3) that the Einstein predictions of mass differ 
from the Newtonian predictions by 10 to 100 per cent. About further density increase 
and a final continued gravitational collapse, Newtonian theory is silent. In contrast, 
Einstein's standard 1915 geometrodynamics predicted in 1939 the properties of a 
completely collapsed object, a "frozen star" or "black hole." By 1966 detailed digital 
calculations were available describing the formation of such an object in the collapse 
of a star with a white-dwarf core. Today hope to discover the first black hole is 
not least among the forces propelling more than one research: How does rotation 
influence the properties of a black hole? What kind of pulse of gravitational radiation 
comes off when such an object is formed? What spectrum of x-rays emerges when 
gas from a companion star piles up on its way into a black hole? 5 All such investi
gations and more base themselves on Schwarzschild's standard 19 I 6 static and 
spherically symmetric solution of Einstein's field equations, first really understood 
m the modern sense in 1960, and in 1963 generalized to a black hole endowed with 
angular momentum. 

Beyond solar-system tests and applications of relativity, beyond pulsars, neutron 
stars, and black holes, beyond geometrostatics ( compare electrostatics!) and station
ary geometries (compare the magnetic field set up by a steady current!) lies geo
metrodynamics in the full sense of the word (compare electrodynamics!). Nowhere 
does Einstein's great conception stand out more clearly than here, that the geometry 
of space is a new physical entity, with degrees of freedom and a dynamics of its 
own. Deformations in the geometry of space, he predicted in 1918, can transport 
energy from place to place. Today, thanks to the initiative of Joseph Weber, detectors 
of such gravitational radiation have been constructed and exploited to give upper 
limits to the flux of energy streaming past the earth at selected frequencies. Never 
before has one realized from how many kinds of processes significant gravitational 
radiation can be anticipated. Never before has there been more interest in picking 
up this new kind of signal and using it to diagnose faraway events. Never before 
has there been such a drive in more than one laboratory to raise instrumental 
sensitivity until gravitational radiation becomes a workaday new window on the 
um verse. 

The expansion of the universe is the greatest of all tests of Einstein's geometro
dynamics, and cosmology the greatest of all applications. Making a prediction too 
fantastic for its author to credit, the theory forecast the expansion years before 1t 
was observed (1929). Violating the short time-scale that Hubble gave for the expan
sion, and in the face of "theories" ("steady state"; "continuous creation") manufac
tured to welcome and utilize this short time-scale, standard general relativity 
resolutely persisted in the prediction of a long time-scale, decades before the astro-

5 As of April 1973, there are significant indications that Cygnus X-1 and other compact x-ray sources 
may be black holes. 
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physical discovery (1952) that the Hubble scale of distances and times was wrong, and had to be stretched by a factor of more than five. Disagreeing by a factor of the order of thirty with the average density of mass-energy in the universe deduced from astrophysical evidence as recently as 1958, Einstein's theory now as in the past argues for the higher density, proclaims "the mystery of the missing matter," and encourages astrophysics in a continuing search that year by year turns up new indications of matter in the space between the galaxies. General relativity forecast the primordial cosmic fireball radiation, and even an approximate value for its present temperature, seventeen years before the radiation was discovered. This radiation brings information about the universe when it had a thousand times smaller linear dimensions, and a billion times smaller volume, than it does today. Quasistellar objects, discovered in 1963, supply more detailed information from a more recent era, when the universe had a quarter to half its present linear dimensions. Telling about a stage in the evolution of galaxies and the universe reachable in no other way, these objects are more than beacons to light up the far away and long ago. They put out energy at a rate unparalleled anywhere else in the universe. They eject matter with a surprising directivity. They show a puzzling variation with time, different between the microwave and the visible part of the spectrum. Quasistellar objects on a great scale, and galactic nuclei nearer at hand on a smaller scale, voice a challenge to general relativity: help clear up these mysteries! If its wealth of applications attracts many young astrophysicists to the study of Einstein's geometrodynamics, the same attraction draws those in the world of physics who are concerned with physical cosmology, experimental general relativity, gravitational radiation, and the properties of objects made out of superdense matter. Of quite another motive for study of the subject, to contemplate Einstein's inspiring vision of geometry as the machinery of physics, we shall say nothing here because it speaks out, we hope, in every chapter of this book. Why a new book? The new applications of general relativity, with their extraordinary physical interest, outdate excellent textbooks of an earlier era, among them even that great treatise on the subject written by Wolfgang Pauli at the age of twenty-one. In addition, differential geometry has undergone a transformation of outlook that isolates the student who is confined in his training to the traditional tensor calculus of the earlier texts. For him it is difficult or impossible either to read the writings of his up-to-date mathematical colleague or to explain the mathematical content of his physical problem to that friendly source of help. We have not seen any way to meet our responsibilities to our students at our three institutions except by a new exposition, aimed at establishing a solid competence in the subject, contemporary in its mathematics, oriented to the physical and astrophysical applications of greatest present-day interest, and animated by belief in the beauty and simplicity of nature. 
High Island 
South Bristol, Maine 
September 4, 1972 

Charles W Misner 
Kip S. Thorne 
John Archibald Wheeler 
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GRAVITATION 





PART I 

S PAC ETI M E  P HYS I CS 

Wherein the reader is led, once quickly (§ 1 .  1 ) ,  
then again more slowly, down the highways and 

a few byways of Einstein 's geometrodynamics
without benefit of a good mathematical compass. 





CHAPTER 1 
G EO M ETRO DYNAM I CS I N  B R I EF 

§ 1 . 1 . THE PARAB LE O F  THE APPLE 

One day in the year 1 666 Newton had gone to the country, 
and seeing the fall of an apple, as his niece told me, let himself 

be led into a deep meditation on the cause which thus 
draws every object along a line whose extension would pass 

almost through the center of the Earth. 
VO LTA I R E  ( 1 738) 

Once upon a time a student lay in a garden under an apple tree reflecting on the difference between Einstein's and Newton's views about gravity. He was startled by the fall of an apple nearby. As he looked at the apple, he noticed ants beginning to run along its surface (Figure I . I ). His curiosity aroused, he thought to investigate the principles of navigation followed by an ant. With his magnifying glass, he noted one track carefully, and, taking his knife, made a cut in the apple skin one mm above the track and another cut one mm below it. He peeled off the resulting little highway of skin and laid it out on the face of his book. The track ran as straight as a laser beam along this highway. No more economical path could the ant have found to cover the ten cm from start to end of that strip of skin. Any zigs and zags or even any smooth bend in the path on its way along the apple peel from starting point to end point would have increased its length. "What a beautiful geodesic," the student commented. His eye fell on two ants starting off from a common point P in slightly different directions. Their routes happened to carry them through the region of the dimple at the top of the apple, one on each side of it. Each ant conscientiously pursued 
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Figure 1 . 1 .  
The R1emanruan geometry of the spacetime of general relativity is here symbolized by the two-dimen
sional geometry of the surface of an apple The geodesic tracks followed by the ants on the apple's 
surface symbolize the world !me followed through spacetime by a free particle. In any sufficiently localized 
region of spacetime, the geometry can be idealized as flat, as symbolized on the apple's two-dimensional 
surface by the straight-line course of the tracks viewed in the magnifying glass ("local Lorentz character" 
of geometry of spacetime) . In a region of greater extension, the curvature of the manifold (four-dimen
sional spacetime in the case of the real physical world, curved two-dimensional geometry in the case 
of the apple) makes itself felt Two tracks Cl and ?/3, originally diverging from a common point tJ', later 
approach, cross, and go off in very different directions. In Newtonian theory this effect is ascribed to 
gravitation acting at a distance from a center of attraction, symbolized here by the stem of the apple. 
According to Einstein a particle gets its moving orders locally, from the geometry of spacetime right 
where it is. Its instructions are simple. to follow the straightest possible track (geodesic). Physics is as 
simple as it could be locally Only because spacetime is curved m the large do the tracks cross Geome
trodynarnics, in brief, is a double story of the effect of geometry on matter (causing originally divergent 
geodesics to cross) and the effect of matter on geometry (bending of spacetime initiated by concentration 
of mass, symbolized by effect of stem on nearby surface of apple). 

his geodesic. Each went as straight on his strip of appleskin as he possibly could. 
Yet because of the curvature of the dimple itself, the two tracks not only crossed 
but emerged in very different directions. 

"What happier illustration of Einstein's geometric theory of gravity could one 
possibly ask?" murmured the student. "The ants move as if they were attracted 
by the apple stem. One might have believed in a Newtonian force at a distance. 
Yet from nowhere does an ant get his moving orders except from the local geometry 
along his track. This is surely Einstein's concept that all physics takes place by 
'local action. ' What a difference from Newton's 'action at a distance' view of physics ! 
Now I understand better what this book means." 

And so saying, he opened his book and read, "Don't try to describe motion 
relative to faraway objects. Physics is simple only when analyzed locally. And locally 



§ 1 2 S PACETI M E  WITH AN D WITH OUT CO O R D I NATES 5 

the world line that a satellite follows [in spacetime, around the Earth] is already 
as straight as any world line can be. Forget all this talk about 'deflection' and 'force 
of gravitation. ' I'm inside a spaceship. Or I'm floating outside and near it. Do I 
feel any 'force of gravitation'? Not at all . Does the spaceship 'feel' such a force? 
No. Then why talk about it? Recognize that the spaceship and I traverse a region 
of spacetime free of all force. Acknowledge that the motion through that region 
is already ideally straight. '' 

The dinner bell was ringing, but still the student sat, musing to himself. "Let me 
see if I can summarize Einstein's geometric theory of gravity in three ideas : ( 1 )  
locally, geodesics appear straight; (2) over more extended regions of  space and time, 
geodesics originally receding from each other begin to approach at a rate governed 
by the curvature of spacetime, and this effect of geometry on matter is what we 
mean today by that old word 'gravitation' ; (3) matter in tum warps geometry. The 
dimple arises in the apple because the stem is there. I think I see how to put the 
whole story even more briefly: Space acts on matter, telling it how to move. In turn, 
matter reacts back on space, telling it how to curve. In other words, matter here," 
he said, rising and picking up the apple by its stem, "curves space here. To produce 
a curvature in space here is to force a curvature in space there," he went on, as 
he watched a lingering ant busily following its geodesic a finger's breadth away from 
the apple's stem. "Thus matter here influences matter there. That is Einstein's 
explanation for 'gravitation.' " 

Then the dinner bell was quiet, and he was gone, with book, magnifying glass-and 
apple. 

§ 1 . 2 .  SPACETI ME WITH AND WITH O UT COORD INATES 

Now it came to me: . . .  the independence of the 
gravitational acceleration from the nature of the falling 

substance, may be expressed as follo ws: In a 
gravitational field (of small spatial extension) things 

behave as they do in a space free of gravitation . . . .  This 
happened in 1 908. Why were another seven years required 

for the construction of the general theory of rela tivity? 
The main reason lies in the fact that  it is not so easy to 

free oneself from the idea that  coordinates must  have an 
immediate metrical meaning. 

ALBERT E I N STEI N [in Schi lpp ( 1 949), pp 65-67 ] 

S pace te l ls matter how to 
move 

M atter te l l s  space how to 
cu rve 

Nothing is more distressing on first contact with the idea of "curved spacetime" than Problem how to measure i n  

the fear that every simple means of  measurement has lost its power in this unfamiliar cu rved spaceti me 

context. One thinks of oneself as confronted with the task of measuring the shape 
of a gigantic and fantastically sculptured iceberg as one stands with a meter stick 
in a tossing rowboat on the surface of a heaving ocean. Were it the rowboat itself 
whose shape were to be measured, the procedure would be simple enough. One 
would draw it up on shore, tum it upside down, and drive tacks in lightly at strategic 
points here and there on the surface. The measurement of distances from tack to 



Resol ut1on · characterize 
events by what happens 
there 

6 1 G EO M ETR O DYNAM I CS I N  B R I EF 

Figure 1 . 2 .  
The crossing of straws in a barn full of hay is a symbol fo r  the world lines that fill up spacetime. By 
their crossings and bends, these world lines mark events with a uniqueness beyond all need of coordinate 
systems or coordinates. Typical events symbolized in the diagram, from left to right (black dots), are: 
absorption of a photon, reemission of a photon; collision between a particle and a particle; collision 
between a photon and a particle; another collision between a photon and a particle; explosion of a 
firecracker; and collision of a particle from outside with one of the fragments of that firecracker. 

tack would record and reveal the shape of the surface. The precision could be made arbitrarily great by making the number of tacks arbitrarily large. It takes more daring to think of driving several score pitons into the towering iceberg. But with all the daring in the world, how is one to drive a nail into spacetime to mark a point? Happily, nature provides its own way to localize a point in spacetime, as Einstein was the first to emphasize. Characterize the point by what happens there! Give a point in spacetime the name "event." Where the event lies is defined as clearly and sharply as where two straws cross each other in a barn full of hay (Figure 1 .2). To say that the event marks a collision of such and such a photon with such and such a particle is identification enough. The world lines of that photon and that particle are rooted in the past and stretch out into the future. They have a rich texture of connections with nearby world lines. These nearby world lines in turn are linked in a hundred ways with world lines more remote. How then does one tell the location of an event? Tell first what world lines participate in the event. Next follow each 
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Above: Assigning "telephone numbers" to events by way of a system of coordinates. To say that the 
coordinate system is "smooth" is to say that events which are almost in the same place have almost 
the same coordinates. Below: Putting the same set of events into equally good order by way of a different 
system of coordmates. Picked out specially here are two neighboring events · an event named "!2" with 
coordinates (x0, x1) = (77.2, 22 6) and (x0, x1) = (18.5,  5 1 .4); and an event named "6i'" with coordinates 
(x0, x1) = (79 .9, 20 . 1) and (x0, x1) = (18 4, 47 . 1 ). Events !2 and 6i' are connected by the separation "vector" 
(. (Precise definition of a vector in a curved spacetime demands going to the mathematical limit in 
which the two points have an indefinitely small separation [N-fold reduction of the separation 6i' - !2], 
and, in the resultant locally flat space, multiplying the separation up again by the factor N [lim N ----> oo ,  
"tangent space", "tangent vector"]. Forego here that proper way of stating matters, and forego complete 
accuracy; hence the quote around the word "vector" ) In each coordinate system the separation vector 
f is characterized by "components" ( differences in coordinate values between 6i' and !2) :  

(�, �1) = (79 .9 - 77 2, 20 I - 22 6) = (2 .7, - 2.5), 

(t, �I) = (18 4 - 18.5,  47 . 1  - 5 1 .4) = ( -0 I ,  -4.3). 

See Box 1 . 1  for further discussion of events, coordinates, and vectors 
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of these world lines . Name the additional events that they encounter. These events 
pick out further world lines. Eventually the whole barn of hay is catalogued. Each 
event is named. One can find one's way as surely to a given intersection as the city 
dweller can pick his path to the meeting of St. James Street and Piccadilly. No 
numbers. No coordinate system. No coordinates. 

That most streets in Japan have no names, and most houses no numbers, illustrates 
one's ability to do without coordinates. One can abandon the names of two world 
lines as a means to identify the event where they intersect. Just as one could name 
a Japanese house after its senior occupant, so one can and often does attach arbitrary 
names to specific events in spacetime, as in Box 1 . 1 .  

Coordinates, however, are convenient. How else from the great thick catalog of 
events, randomly listed, can one easily discover that along a certain world line one 
will first encounter event Trinity, then Baker, then Mike, then Argus-but not the 
same events in some permuted order? 

To order events, introduce coordinates ! (See Figure 1 .3 . )  Coordinates are four 
indexed numbers per event in spacetime;  on a sheet of paper, only two. Trinity 
acquires coordinates 

(x0, x1 , x2, x3) = (77, 23, 64, 1 1 ). 

In christening events with coordinates, one demands smoothness but foregoes every 
thought of mensuration. The four numbers for an event are nothing but an elaborate 
kind of telephone number. Compare their "telephone" numbers to discover whether 
two events are neighbors. But do not expect to learn how many meters separate 
them from the difference in their telephone numbers ! 

Nothing prevents a subscriber from being served by competing telephone systems, 
nor an event from being catalogued by alternative coordinate systems (Figure 1 .3). 
Box I. I illustrates the relationships between one coordinate system and another, as 
well as the notation used to denote coordinates and their transformations. 

Choose two events, known to be neighbors by the nearness of their coordinate 
values in a smooth coordinate system. Draw a little arrow from one event to the 
other. Such an arrow is called a vector. (It is a well-defined concept in flat spacetime, 
or in curved spacetime in the limit of vanishingly small length; for finite lengths 
in curved spacetime, it must be refined and made precise, under the new name 
"tangent vector," on which see Chapter 9.) This vector, like events, can be given 
a name. But whether named "John" or "Charles" or "Kip," it is a unique, well
defined geometrical object. The name is a convenience, but the vector exists even 
without it. 

Just as a quadruple of coordinates 

(x0, x1, x2, x3) = (77, 23, 64, I I )  

is a particularly useful name for the event "Trinity" (it can b e  used to identify what 
other events are nearby), so a quadruple of "components" 

(t0, t1, t2, t3) = ( 1 .2, - 0.9, 0, 2 . 1 )  



Box 1 . 1 MATHEMATI CAL N OTATI O N  FOR EVENTS, COO RD I NATES, AN D VECTO RS 

Events are denoted by capital script, one-letter Latin names such as 
Sometimes subscripts are used :  

Coordinates of an event '!i' are denoted by 
or by 

or more abstractly by 
where it is understood that Greek indices can take on any value 0, l ,  
2 ,  or 3 .  

Time coordinate (when one of the four is picked to play this role) 

Space coordinates are 
and are sometimes denoted by 
It is to be understood that Latin indices take on values l, 2 ,  or 3 .  

Shorthand notation: One soon tires o f  writing exphcit!y the functional depen
dence of the coordinates, x f3 (<!P); so one adopts the shorthand notation 
for the coordinates of the event '!i', and 
for the space coordinates . One even begms to think of x /3 as representing 
the event '!i' itself, but must remind oneself that the values of x0 , x 1 , x2 , 
x3 depend not only on the choice of '!i' but also on the arbitrary choice 
of coordinates ! 

Other coordinates for the same event '!i' may be denoted 

EXAMPLE : In Figure 1 .3 (x0, x1) = (77 .2, 22.6) and (x5, x1) = ( 1 8 .5 , 5 1 .4) 
refer to the same event. The bars, primes, and hats distmguish one 
coordinate system from another; by putting them on the mdices rather 
than on the x's, we simplify later notation. 

Transformation from one coordinate system to another 1s achieved by the four 
functions 

which are denoted more succinctly 

Separation vector* (little arrow) reaching from one event !2 to neighboring event 
'!i' can be denoted abstractly by 
It can also be characterized by the coordinate-value differencest between 
'!i' and !2 (called "components" of the vector) 

Transformation of components of a vector from one coordinate system to another 
is achieved by partial derivatives of transformation equations 

smce �" = x"('!i') - x"(:2) = (ox" /ox f3 )[x 13 ('!P) - x 13 (!2)] .t 

Einstein summation convention is used here : 
any index that is repeated in a product 1s automatically summed on 

'!i', !2, {!, �13 . 
q, o, q, v ?B6 . 

t('!i') ,  x('!i') ,  y('!i') ,  z('!i') ,  
xo('!i'), x l('!i'),  x2(<!P), 
x3(P), 
x 1<('!i') or x"('!i'), 

xl(<!P), x2('!i') ,  x3(<!P) 
x i('!i') or x k(<!P) or . . . .  

x"('!i') or just x", 
x"'('!i') or just x"' ,  
x"('!i') or just x". 

xD(xo , x1 , xz , x3) ,  
x1(x0 , x 1 , x2 , x3) ,  
x2(xo , x1 , x2 , x3) ,  
x3(x0 , x 1 , x2 , x3) ,  
x"(x 13) .  

u or  v or  (, or  '!i' - !2 .  

�a = x"('!i') - x"(:2) ,  
�a - x"('!i') - x"(:2).  

* This definition of a vector is valid only in flat spacetime The refined definition ("tangent vector") in curved spacetime 
is not spelled out here (see Chapter 9), but flat-geometry ideas apply with good approximation even in a curved geometry, 
when the two points are sufficiently close 

t These formulas are precisely accurate only when the reg10n of spacetime under consideration is flat and when in addition 
the coordinates are Lorentzian. Otherwise they are approximate-though they become arbitrarily good when the separation 
between points and the length of the vector become arbitrarily small 
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is a convenient name for the vector "John" that reaches from 

(x0, x1, x2, x3) = (77,  23,  64, 1 1 ) 

to 

(x0, x1, x2, x3) = (78.2, 22. 1 ,  64.0, 1 3 . 1 ). 

How to work with the components of a vector is explored in Box 1 . 1 . 
There are many ways in which a coordinate system can be imperfect. Figure 1 .4 

illustrates a coordinate singularity. For another example of a coordinate singularity, 
run the eye over the surface of a globe to the North Pole. Note the many meridians 
that meet there ("collapse of cells of egg crates to zero content"). Can't one do better? 
Find a single coordinate system that will cover the globe without singularity? A 
theorem says no. Two is the minimum number of "coordinate patches" required 
to cover the two-sphere without singularity (Figure 1 .5) . This circumstance empha
sizes anew that points and events are primary, whereas coordinates are a mere 
bookkeeping device. 

Figures 1 .2 and 1 .3 show only a few world lines and events. A more detailed 
diagram would show a maze of world lines and of light rays and the intersections 
between them. From such a picture, one can in imagination step to the idealized 
limit: an infinitely dense collection of light rays and of world lines of infinitesimal 
test particles. With this idealized physical limit, the mathematical concept of a 
continuous four-dimensional "manifold" (four-dimensional space with certain 
smoothness properties) has a one-to-one correspondence; and in this limit continu
ous, differentiable (i.e . ,  smooth) coordinate systems operate. The mathematics then 
supplies a tool to reason about the physics. 

A simple countdown reveals the dimensionality of the manifold. Take a point 9 
in an n-dimensional manifold. Its neighborhood is an n-dimensional ball (i.e . ,  the 
interior of a sphere whose surface has n - 1 dimensions). Choose this ball so that 
its boundary is a smooth manifold. The dimensionality of this manifold is (n - 1 ). 
In this (n - 1 )-dimensional manifold, pick a point !2 .  Its neighborhood is an 
(n - 1 )-dimensional ball. Choose this ball so that . . .  , and so on. Eventually one 
comes by this construction to a manifold that is two-dimensional but is not yet known 
to be two-dimensional (two-sphere) . In this two-dimensional manifold, pick a point 
<!}/l. Its neighborhood is a two-dimensional ball ("disc") . Choose this disc so that 
its boundary is a smooth manifold (circle) . In this manifold, pick a point 9l. Its 
neighborhood is a one-dimensional ball, but is not yet known to be one-dimensional 
("line segment"). The boundaries of this object are two points. This circumstance 
tells that the intervening manifold is one-dimensional ; therefore the previous mani
fold was two-dimensional; and so on. The dimensionality of the original manifold 
is equal to the number of points employed in the construction. For spacetime, the 
dimensionality is 4 .  

This kind of mathematical reasoning about dimensionality makes good sense at 
the everyday scale of distances, at atomic distances ( I0-8 cm), at nuclear dimensions 
( l 0-13 cm), and even at lengths smaller by several powers of ten, if one judges by 
the concord between prediction and observation in quantum electrodynamics at high 
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How a mere coordinate singularity arises. Above · A coordinate system becomes singular when the "cells 
in the egg crate" are squashed to zero volume Below· An example showing such a singularity in the 
Schwarzschild coordinates r, t often used to describe the geometry around a black hole (Chapter 3 1 )  
For simplicity the angular coordinates 0 ,  q, have been suppressed. The singularity shows itself in  two 
ways. First, all the pomts along the dotted line, while quite distinct one from another, are designated 
by the same pair of (r, t) values; namely, r = 2m, t = oo. The coordinates provide no way lo distinguish 
these points. Second, the "cells in the egg crate," of which one is shown grey in the diagram, collapse 
to zero content at the dotted line In summary, there is nothing strange about the geometry al the dotted 
line; all the singularity lies in the coordinate system ("poor system of telephone numbers"). No confusion 
should be permitted to arise from the accidental circumstance that the t coordinate attains an infinite 
value on the dotted line. No such infinity would occur if t were replaced by the new coordinate t, defined 
by 

(t/2m) = lan(t/2m). 
When t = oo, the new coordinate t is t = 1rm. The r, t coordinates still provide no way to distinguish 
the points along the dotted line They still give "cells in the egg crate" collapsed to zero content along 
the dotted line. 
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Figure 1 . 5 .  
Singularities in familiar coordinates o n  the two-sphere can b e  eliminated by covering the sphere with 
two overlapping coordinate patches. A Spherical polar coordinates, singular at the North and South 
Poles, and discontinuous al the international date line. B. Projection of the Euclidean coordinates of 
the Euclidean two-plane, tangent at the North Pole, onto the sphere via a line running to the South 
Pole; coordinate singularity at the South Pole. C. Coverage of two-sphere by two overlapping coordinate 
patches. One, constructed as in B, covers without singularity the northern hemisphere and also the 
southern tropics down to the Tropic of Capricorn. The other (grey) also covers without singularity all 
of the tropics and the southern hemisphere besides. 

energies (corresponding de Broglie wavelength 10-16 cm). Moreover, classical general 
relativity thinks of the spacetime manifold as a deterministic structure, completely 
well-defined down to arbitrarily small distances. Not so quantum general relativity 
or "quantum geometrodynamics." It predicts violent fluctuations in the geometry 
at distances on the order of the Planck length, 

L* = (nG/c3) 11 2 

= [( 1 .054 X 10-27 g cm2 /sec)(6 .670 X 10-s cm3 /g sec2)]112 x 

= 1 .6 1 6  X 10-33 cm. 

X (2 .998 X 1010 cm/sec)-312 ( 1 . 1 )  

N o  one has found any way t o  escape this prediction. As nearly as one can estimate, 
these fluctuations give space at small distances a "multiply connected" or "foamlike" 
character. This lack of smoothness may well deprive even the concept of dimension
ality itself of any meaning at the Planck scale of distances.  The further exploration 
of this issue takes one to the frontiers of Einstein's theory (Chapter 44) . 

If spacetime at small distances is far from the mathematical model of a continuous 
manifold, is there not also at larger distances a wide gap between the mathematical 



§ 1 3 WE IG HTLES S N ESS 1 3  

idealization and the physical reality? The infinitely dense collection of light rays 
and of world lines of infinitesimal test particles that are to define all the points of 
the manifold: they surely are beyond practical realization. Nobody has ever found 
a particle that moves on timelike world lines (finite rest mass) lighter than an electron. 
A collection of electrons, even if endowed with zero density of charge ( e+ and e
world lines present in equal numbers) will have a density of mass. This density will 
curve the very manifold under study. Investigation in infinite detail means unlimited 
density, and unlimited disturbance of the geometry. 

However, to demand investigatability in infinite detail in the sense just described 
is as out of place in general relativity as it would be in electrodynamics or gas 
dynamics. Electrodynamics speaks of the strength of the electric and magnetic field 
at each point in space and at each moment of time. To measure those fields, it is 
willing to contemplate infinitesimal test particles scattered everywhere as densely 
as one pleases. However, the test particles do not have to be there at all to give 
the field reality. The field has everywhere a clear-cut value and goes about its 
deterministic dynamic evolution willy-nilly and continuously, infinitesimal test 
particles or no infinitesimal test particles. Similarly with the geometry of space. 

In conclusion, when one deals with spacetime in the context of classical physics, 
one accepts ( I )  the notion of "infinitesimal test particle" and (2) the idealization 
that the totality of identifiable events forms a four-dimensional continuous manifold. 
Only at the end of this book will a look be taken at some of the limitations placed 
by the quantum principle on one's way of speaking about and analyzing spacetime. 

§ 1 .3 . WEI G HTLESSNESS 

"Gravity is a great mystery. Drop a stone. See it fall. Hear it hit. No one understands 
why." What a misleading statement! Mystery about fall? What else should the stone 
do except fall? To fall is normal. The abnormality is an object standing in the way 
of the stone. If one wishes to pursue a "mystery," do not follow the track of the 
falling stone. Look instead at the impact, and ask what was the force that pushed 
the stone away from its natur<j:l "world line," (i.e. , its natural track through space
time). That could lead to an interesting issue of solid-state physics, but that is not 
the topic of concern here. Fall is. Free fall is synonymous with weightlessness : 
absence of any force to drive the object away from its normal track through space
time. Travel aboard a freely falling elevator to experience weightlessness. Or travel 
aboard a spaceship also falling straight toward the Earth. Or, more happily, travel 
aboard a spaceship in that state of steady fall toward the Earth that marks a circular 
orbit. In each case one is following a natural track through spacetime. 

The traveler has one chemical composition, the spaceship another; yet they travel 
together, the traveler weightless in his moving home. Objects of such different nuclear 
constitution as aluminum and gold fall with accelerations that agree to better than 
one part in 1011, according to Roll, Krotkov, and Dicke (1964), one of the most 
important null experiments in all physics (see Figure 1 .6). Individual molecules fall 
in step, too, with macroscopic objects [Estermann, Simpson, and Stern ( 1938)) ; and 
so do individual neutrons [Dabbs, Harvey, Paya, and Horstmann ( 1965)), individual 

( continued on page 16) 
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Figure 1 . 6 .  
Principle of the Roll-Krotkov-Dicke experiment, which showed that the gravitational accelerations of 
gold and aluminum are equal lo I part in 1011 or better (Princeton, 1964). In the upper lefthand corner, 
equal masses of gold and aluminum hang from a supporting bar. This bar in turn is supported at its 
midpoint Tf both objects fall toward the sun with the same acceleration of g = 0 .59 cm/sec2 , the bar 
does not turn. If the Au mass receives a higher acceleration, g + 8g, then the gold end of the bar starts 
to turn toward the sun in the Earth-fixed frame. Twelve hours later the sun is on the other side, pulling 
the other way. The alternating torque lends itself to recognition against a background of noise because 
of its precise 24-hour period. Unhappily, any substantial mass nearby, such as an experimenter, located 
at M, will produce a torque that swamps the effect sought. Therefore the actual arrangement was as 
shown in the body of the figure One gold weight and two aluminum weights were supported at the 
three comers of a horizontal equilateral tnangle, 6 cm on a side (three-fold axis of symmetry, giving 
zero response to all the simplest nonuniformities in the gravitational field) Also, the observers performed 
all operations remotely lo eliminate their own gravitational effects* .  To detect a rotation of the torsion 
balance as small as ~ 10-9 rad without disturbing the balance, Roll, Krotkov, and Dicke reflected a 
very weak light beam from the optically flat back face of the quartz triangle The image of the source 
sht fell on a wire of about the same size a� the slit image The light transmitted past the wire fell on 
a photomultiplier. A separate oscillator circuit drove the wire back and forth across the image at 3,000 
hertz. When the image was centered perfectly, only even harmomcs of the oscillation frequency appeared 
in the light intensity. However, when the image was displaced slightly to one side, the fundamental 
frequency appeared in the light intensity. The electrical output of the photomultiplier then contained 
a 3,000-hertz component. The magnitude and sign of this component were determined automatically. 
Equally automatically a proportional o.c. voltage was applied to the electrodes shown in the diagram. 
It restored the torsion balance to its zero position. The o.c. voltage required to restore the balance to 
its zero position was recorded as a measure of the torque acting on the pendulum. This torque was 
Fourier-analyzed over a period of many days. The magnitude of the Fourier component of 24-hour 
period indicated a ratio 8g/g = (0 .96 ± 1 .04) x 10-11• Aluminum and gold thus fall with the same 
acceleration, despite their important differences summarized in the table 

Ratios Al Au Number of neutrons Number of protons I 08 I 5 Mass of kinetic energy of K-electron 
0 005 0 16 Rest mass of electron Electrostatic mass-energy of nucleus 
0.00 1 0 004 Mass of atom 

The theoretical implications of tlus experiment will be discussed in greater detail in Chapters 16 and 38. 
Braginsky and Panov (197 1)  at Moscow University performed an experiment identical in principle 

to that of Dicke-Roll-Krotkov, but with a modified experimental set-up. Companng the accelerations 
of platinum and aluminum rather than of gold and aluminum, they say that 

8g/g � l X 10-12. 

* Other perturbations had to be, and were, guarded against. (1) A bit of iron on the torsion balance 
as big as 10-3 cm on a side would have contributed, in the Earth's magnetic field, a torque a hundred 
times greater than the measured torque. (2) The unequal pressure of radiation on the two sides of a 
mass would have produced an unacceptably large perturbation if the temperature difference between 
these two sides had exceeded 10-4 °K. (3) Gas evolution from one side of a mass would have propelled 
it hke a rocket. If the rate of evolution were as great as 10-s g/day, the calculated force would have 
been ~ 10-7 g cm/sec2, enough to affect the measurements. (4) The rotation was measured with respect 
to the pier that supported the equipment. As a guarantee that this pier did not itself rotate, it was anchored 
to bed rock. (5) Electrostatic forces were eliminated; otherwise they would have perturbed the balance 
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electrons [Witteborn and Fairbank ( 1967)] and individual mu mesons [Beall ( 1970)]. 
What is more, not one of these objects has to see out into space to know how to 
move. 

Contemplate the interior of a spaceship, and a key, penny, nut, and pea by accident 
or design set free inside. Shielded from all view of the world outside by the walls 
of the vessel, each object stays at rest relative to the vessel. Or it moves through 
the room in a straight line with uniform velocity. That is the lesson which experience 
shouts out. 

Forego talk of acceleration !  That, paradoxically, is the lesson of the circumstance 
that "all objects fall with the same acceleration."  Whose fault were those accelera
tions, after all? They came from allowing a groundbased observer into the act. The 

Box 1 . 2 MATERIALS OF THE MOST DIVERSE COMPOSITION FALL WITH 
THE SAME ACCELERATION ("STANDARD WORLD LINE") 

Aristotle: "the downward movement of a mass of 
gold or lead, or of any other body endowed with 
weight, is quicker in proportion to its size." 

Pre-Galilean literature: metal and wood weights 
fall at the same rate. 

Galileo: ( 1 )  "the variation of speed in air between 
balls of gold, lead, copper, porphyry, and other 
heavy materials is so slight that in a fall of 100 
cubits [ about 46 meters] a ball of gold would surely 
not outstrip one of copper by as much as four 
fingers. Having observed this, I came to the con
clusion that in a medium totally void of resistance 
all bodies would fall with the same speed." (2) 
later experiments of greater precision "diluting 
gravity" and finding same time of descent for 
different objects along an inclined plane. 

Newton: inclined plane replaced by arc of pendu
lum bob; "time of fall" for bodies of different 
composition determined by comparing time of 
oscillation of pendulum bobs of the two materials. 
Ultimate limit of precision in such experiments 
limited by problem of determining effective length 
of each pendulum: (acceleration) = (2'17/pe
riod )2(length). 

Lorand von Eotvos, Budapest, 1 889 and 1 922 : 
compared on the rotating earth the vertical defined 
by a plumb bob of one material with the vertical 
defined by a plumb bob of other material. The 
two hanging masses, by the two unbroken threads 
that support them, were drawn along identical 
world lines through spacetime (middle of the labo
ratory of Eotvos !) .  If cut free, would they also 
follow identical tracks through spacetime ("normal 
world line of test mass")? If so, the acceleration 
that draws the actual world line from the normal 
free-fall world line will have a standard value, a. 
The experiment of Eotvos did not try to test agree
ment on the magnitude of a between the two 
masses. Doing so would have required ( l)  cutting 
the threads and (2) following the fall of the two 
masses. Eotvos renounced this approach in favor 
of a static observation that he could make with 
greater precision, comparing the direction of a for 
the two masses. The direction of the supporting 
thread, so his argument ran, reveals the direction 
in which the mass is being dragged away from its 
normal world line of "free fall" or "weightless
ness." This acceleration is the vectorial resultant 
of ( 1 )  an acceleration of magnitude g, directed 
outward against so-called gravity, and (2) an ac
celeration directed toward the axis of rotation of 
the earth, of magnitude w2 R sin B (w, angular ve-
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push of the ground under his feet was driving him away from a natural world line. Through that flaw in his arrangements, he became responsible for all those accelerations. Put him in space and strap rockets to his legs. No difference! * Again the responsibility for what he sees is his. Once more he notes that "all objects fall with 

* "No difference" spelled out amounts to Einstein's (191  I) principle of the local equivalence between a 
"grav1tational field" and an acceleration: " We arrive at a very satisfactory t"itterpretation of this law of 
experience, if we assume that the systems K and K' are physically exactly equivalent, that is, if we assume 
that we may just as well regard the system K as being in a space free from gravitational fields, if we then 
regard K as uniformly accelerated. This assumption of exact physical equivalence makes it impossible for 
us to speak of the absolute acceleration of the system of reference, just as the usual theory of relativity 
forbids us to talk of the absolute velocity of a system; and it makes the equal falling of all bodies in a 
gravitational field seem a matter of course. " 

locity; R, radius of earth; 0, polar angle measured from North Pole to location of experiment). This centripetal acceleration has a vertical component - w2 R sin2 0 too small to come into discussion. The important component is w2 R sin 0 cos 0, directed northward and parallel to the surface of the earth. It deflects the thread by the angle horizontal acceleration vertical acceleration w2 R sin 0 cos 0 
g 

= 3.4 cm/sec2 sin 0 cos 0 980 cm/sec2 

= 1 .7 X 10-3 radian at 0 = 45 ° from the straight line connecting the center of the earth to the point of support. A difference, og, of one part in 108 between g for the two hanging substances would produce a difference in angle of hang of plumb bobs equal ·to 1 .7 X 10-11 radian at Budapest (0 = 42.5 ° ). Eotvos reported og/ g less than a few parts in 109• 

Roll, Krotkov, and Dicke, Princeton, 1964 : employed as fiducial acceleration, not the 1 .7 cm/sec2 steady horizontal acceleration, produced by the earth's rotation at 0 = 45 ° ,  but the daily altemat-

ing 0.59 cm/sec2 produced by the sun's attraction. Reported lg(Au) - g(Al)l /g less than I X 10-11. See Figure 1 .6 .  
Braginsky and Panov, Moscow, 1971 : like Roll, Krotkov, and Dicke, employed Sun's attraction as fiducial acceleration. Reported lg(Pt) - g(Al)I /  g less than 1 X 10-12 . 

Beall, 1970 : particles that are deflected less by the Earth's or the sun's gravitational field than a photon would be, effectively travel faster than light. If they are charged or have other electromagnetic structure, they would then emit Cerenkov radiation, and reduce their velocity below threshold in less than a micron of travel. The threshold is at energies around 103 mc2 • Ultrarelativistic particles in cosmic-ray showers are not easily identified, but observations of 1013 eV muons show that muons are not "too light" by as much as 5 X 10-5 _ Conversely, a particle P bound more strongly than photons by gravity will transfer the momentum needed to make pair production y - P + P occur within a submicron decay length. The existence of photons with energies above 1013 eV shows that e± are not "too heavy" by 5 parts in 109, µ,± not by 2 in 104, A, z-, SJ- not by a few per cent. 
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"Weightlessness" as lest for a local inertial frame of reference ("Lorentz frame"), Each spring-driven 
cannon succeeds in driving its projectile, a steel ball bearing, through the aligned holes in the sheets 
of lucite, and into the woven-mesh pocket, when the frame of reference is free of rotation and in free 
fall ("normal world line through spacetime") A cannon would fail (curved and ncocheting trajectory 
at bottom of drawing) if the frame were hanging as indicated when the cannon went off ("frame drawn 
away by pull of rope from its normal world line through spacetime"). Harold Waage at Prmceton has 
constructed such a model for an inertial reference frame with lucite sheets about I m square. The "fuses" 
symbolizing time delay were replaced by electric relays. Penetration fails if the frame ( I )  rotates, (2) 
accelerates, or (3) does any combination of the two. It is difficult to cite any easily realizable device 
that more fully illustrates the meaning of the term "local Lorentz frame." 

the same acceleration."  Physics looks as complicated to the jet-driven observer as 
it does to the man on the ground. Rule out both observers to make physics look 
simple. Instead, travel aboard the freely moving spaceship. Nothing could be more 
natural than what one sees: every free object moves in a straight line with uniform 
velocity. This is the way to do physics! Work in a very special coordinate system: 
a coordinate frame in which one is weightless; a local inertial frame of reference. 
Or calculate how things look in such a frame. Or-if one is constrained to a ground
based frame of reference-use a particle moving so fast, and a path length so limited, 
that the ideal, freely falling frame of reference and the actual ground-based frame 
get out of alignment by an amount negligible on the scale of the experiment [Given 
a 1,500-m linear accelerator, and a 1 GeV electron, time of flight � ( 1 .5 X 105 cm)/ 
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(3 X 1010 cm/sec) = 0 .5 X 10-5 sec; fall in this time ~½ gt2 = (490 cm/sec2)(0 .5 X 
10-5 sec)2 � 10-s cm.]  

In analyzing physics in a local inertial frame of reference, or following an ant 
on his little section of apple skin, one wins simplicity by foregoing every reference 
to what is far away. Physics is simple only when viewed locally: that is Einstein's 
great lesson. 

Newton spoke differently : "Absolute space, in its own nature, without relation 
to anything external, remains always similar and immovable." But how does one 
give meaning to Newton's absolute space, find its cornerstones, mark out its straight 
lines? In the real world of gravitation, no particle ever follows one of Newton's 
straight lines. His ideal geometry is beyond observation. "A comet going past the 
sun is deviated from an ideal straight line." No. There is no pavement on which 
to mark out that line. The "ideal straight line" is a myth. It never happened, and 
it never will. 

"It required a severe struggle [for Newton] to arrive at the concept of independent 
and absolute space, indispensible for the development of theory . . . .  Newton's decision 
was, in the contemporary state of science, the only possible one, and particularly the 
only fruitful one. But the subsequent development of the problems, proceeding in a 
roundabout way which no one could then possibly foresee, has shown that the resistance 
of Leibniz and Huygens, intuitively well-founded but supported by inadequate argu
ments, was actually justified . . . .  It has required no less strenuous exertions subsequently 
to overcome this concept [of absolute space]" 

[A. EINSTEIN ( 1954)]. 

What is direct and simple and meaningful, according to Einstein, is the geometry 
in every local inertial reference frame. There every particle moves in a straight line 
with uniform velocity. Define the local inertial frame so that this simplicity occurs 
for the first few particles (Figure 1 .7). In the frame thus defined, every other free 
particle is observed also to move in a straight line with uniform velocity. Collision 
and disintegration processes follow the laws of conservation of momentum and 
energy of special relativity. That all these miracles come about, as attested by tens 
of thousands of observations in elementary particle physics, is witness to the inner 
workings of the machinery of the world. The message is easy to summarize : ( 1 )  
physics i s  always and everywhere locally Lorentzian; i .e . ,  locally the laws of  special 
relativity are valid; (2) this simplicity shows most clearly in a local Lorentz frame 
of reference ("inertial frame of reference" ;  Figure 1 .7) ;  and (3) to test for a local 
Lorentz frame, test for weightlessness !  

§ 1 .4 .  LOCAL LO RENTZ G EOMETRY, 
WITH AN D WITH O UT COO R D INATES 

On the surface of an apple within the space of a thumbprint, the geometry is 
Euclidean (Figure 1 . 1 ;  the view in the magnifying glass). In spacetime, within a 
limited region, the geometry is Lorentzian. On the apple the distances between point 
and point accord with the theorems of Euclid. In spacetime the intervals ("proper 
distance," "proper time") between event and event satisfy the corresponding theo
rems of Lorentz-Minkowski geometry (Box 1 .3) .  These theorems lend themselves 

(continued on page 23) 
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Box 1 . 3 LOCAL LORENTZ GEOMETRY AND LOCAL EUCLIDEAN GEOMETRY: 
WITH AND WITHOUT COORDINATES 

I .  Loca l Eucl idean Geometry 

What does it mean to say that the geometry of 
a tiny thumbprint on the apple is Euclidean? 

A. Coordinatefree language (Euclid): 
Given a line Cle. Extend it by an equal 
distance e£. Let £8 be a point not on Cl£ 
but equidistant from Cl and £. Then 

sdi = sde2 + s6f!e2 • 

(Theorem of Pythagoras; also other theo
rems of Euclidean geometry.) 

B. Language of coordinates (Descartes): 
From any point Cl to any other point £8 
there is a distance s given in suitable (Eucli
dean) coordinates by 

sd,i = [x1(£8) _ xl(tl)]2 + [x2(£8) _ x2(tl)]2 . 

If one succeeds in finding any coordinate 
system where this is true for all points Cl 
and £8 in the thumbprint, then one is guar
anteed that ( i) this coordinate system is 
locally Euclidean, and (ii) the geometry of 
the apple's surface is locally Euclidean. 

1 1 .  Loca l Lorentz Geometry 

What does it mean to say that the geometry of 
a sufficiently limited region of spacetime in the 
real physical world is Lorentzian? 

A. Coordinatefree language (Robb 1936): 
Let Cl:£ be the world line of a free particle. 
Let £8 be an event not on this world line. 
Let a light ray from !:l1 strike Cl£ at the 
event 2. Let a light ray take off from such 
an earlier event '!? along Cl Z that it reaches 
£8. Then the proper distance sd,,1 (spacelike 
separation) or proper time -rd,,1 (timelike 
separation) is given by 
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Proof of above criterion for local Lorentz 
geometry, using coordinate methods in the 
local Lorentz frame where particle remains 
at rest: 

'Tt1,i = t2 - x2 = (t - x)(t + x) 
= 'T {/q>'T {/ff!,· 

B. Language of coordinates (Lorentz, Poincare, 
Minkowski, Einstein): 
From any event {l to any other nearby 
event !'13, there is a proper distance sd,,I or 
proper time 'Tt1,,i given in suitable (local 
Lorentz) coordinates by 

St1ei = - 'T d'i = - [xO(!'J3) - xO(tl)]2 

+ [xl(!'J3) _ xl(tl)]Z 
+ [x2(!'J3) - xz(tl)]Z 
+ [x3(!'J3) - x3(tl)]2 . 

If one succeeds in finding any coordinate 
system where this is locally true for all 
neighboring events {l and !'13, then one is 
guaranteed that (i) this coordinate system 
is locally Lorentzian, and (ii) the geometry 
of spacetime is locally Lorentzian. 

1 1 1 .  Statements of Fact 

The geometry of an apple's surface is locally Eu
clidean everywhere. The geometry of spacetime is 
locally Lorentzian everywhere. 
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1 . 3 (continued) 

IV.  Local G eometry i n  the Language of 
M odern M athematics 

A. The metric for any manifold: 
At each point on the apple, at each event 
of spacetime, indeed, at each point of any 
"Riemannian manifold," there exists a geo
metrical object called the metric tensor g. 
It is a machine with two input slots for the 
insertion of two vectors : 

g( 

slot 1 slot 2 
+ + 

) .  

If one inserts the same vector u into both slots, 
one gets out the square of the length of u :  

g(u, u) = u2 . 

If one inserts two different vectors, u and v 
(it matters not in which order!) , one gets out 
a number called the "scalar product of u on 
v'' and denoted u · v: 

g(u, v) = g(v, u) = u · v = v · u. 

The metric is a linear machine : 

g(2u + 3 w, v) = 2g(u, v) + 3g(w, v), 
g(u, av + bw) = ag(u, v) + bg(u, w). 

Consequently, in a given (arbitrary) coordi
nate system, its operation on two vectors can 
be written in terms of their components as a 
bilinear expression: 

g(u, v) = g0'-13u°'vf3 

(implied summation on a, /3) 
= g11u1v1 + g12u1v2 + g21u2v1 + . . . . 

The quantities ga/3 = g13a (a and /3 running 
from O to 3 in spacetime, from 1 to 2 on the 
apple) are called the "components of g in the 
given coordinate system." 

B .  Components of the metric in local Lorentz and 
local Euclidean frames: 
To connect the metric with our previous de
scriptions of the local geometry, introduce 

local Euclidean coordinates (on apple) or 
local Lorentz coordinates (in spacetime ) .  

V 

Let ( be the separation vector reaching from 
{l to !'B. Its components in the local Eucli
dean (Lorentz) coordinates are 

l°' = x°'(!'B) - x°'(tl) 

(cf. Box 1 . 1 ). Then the squared length of ud,ii , 
which is the same as the squared distance 
from {! to !¥3, must be (cf. LB. and ll.B. above) 

( · ( = g((, fl = ga13l°'l13 

= s{l
,i = (e)2 + (l2)2 on apple 

= - (lo)2 + (e)2 + (l2)2 + (l3)2 

in spacetime. 

Consequently, the components of the met
nc are 

gll = g22 = 1 ,  g12 = g21 = O ; 
i .e . ,  ga/3 = oa/3 on apple, in 

local Euclidean 
coordinates ; 

goo = - 1 , gok = 0, gik = 0;k 
in spacetime, in 
local Lorentz 
coordinates. 

These special components of the metric in 
local Lorentz coordinates are written here 
and hereafter as ga/3 or T/a/3 ' by analogy 
with the Kronecker delta 8af3 • In matrix 
notation : 

- {3 -+ 
0 1 2 3 

I 0 - 1  0 0 0 
l lg&,13 1 1  = l lr,a/3 1 1  = a 1 0 I 0 0 

t 2 0 0 I 0 
3 0 0 0 I 
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to empirical test in the appropriate, very special coordinate systems : Euclidean coordinates in Euclidean geometry; the natural generalization of Euclidean coordinates (local Lorentz coordinates; local inertial frame) in the local Lorentz geometry of physics. However, the theorems rise above all coordinate systems in their content. They refer to intervals or distances. Those distances no more call on coordinates for their definition in our day than they did in the time of Euclid. Points in the great pile of hay that is spacetime; and distances between these points: that is geometry! State them in the coordinate-free language or in the language of coordinates: they are the same (Box 1 .3). 
§ 1 . 5 .  TIME 

Time is defined so that motion looks simple. 
Time is awake when all things sleep. 

Time stands straight when all things fall. 
Time shuts in all and will not be shut. 

Is, was, and shall be are Time 's children. 
0 Reasoning, be witness, be s table. 

VYASA, the Mahabarata (ca A D 400) 

Relative to a local Lorentz frame, a free particle "moves in a straight line with uniform velocity." What "straight" means is clear enough in the model inertial reference frame illustrated in Figure 1 .7 .  But where does the "uniform velocity" come in? Or where does "velocity" show itself? There is not even one clock in the drawing! A more fully developed model of a Lorentz reference frame will have not only holes, as in Fig. 1 .7, but also clock-activated shutters over each hole. The projectile can reach its target only if it ( 1 ) travels through the correct region in space and (2) gets through that hole in the correct interval of time ("window in time"). How then is time defined? Time is defined so that motion looks simple! No standard of time is more widely used than the day, the time from one high noon to the next. Take that as standard, however, and one will find every good clock or watch clashing with it, for a simple reason. The Earth spins on its axis and also revolves in orbit about the sun. The motion of the sun across the sky arises from neither effect alone, but from the two in combination, different in magnitude though they are. The fast angular velocity of the Earth on its axis (roughly 366.25 complete turns per year) is wonderfully uniform. Not so the apparent angular velocity of the sun about the center of the Earth (one tum per year). It is greater than average by 2 per cent when the Earth in its orbit (eccentricity 0 .0 17) has come I per cent closer than average to the sun (Kepler's law) and lower by 2 per cent when the Earth is I per cent further than average from the sun. In the first case, the momentary rate of rotation of the sun across the sky, expressed in turns per year, is approximately 366 .25 - (1 + 0 .02); 

The t ime coordi nate of a 
local Lorentz fra m e  is so 
defi ned that motion looks 
s im ple 
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in the other, 366 .25 - (I - 0 .02). Taking the "mean solar day" to contain 24 X 3,600 = 86,400 standard seconds, one sees that, when the Earth is I per cent closer to (or further from) the sun than average, then the number of standard seconds from one high noon to the next is greater ( or less) than normal by 0.02 (drop in turns per year) 86 00 4 7 ,4 sec ~ . sec. 365.25 (turns per year on average) This is the bookkeeping on time from noon to noon. No standard of time that varies so much from one month to another is acceptable. If adopted, it would make the speed of light vary from month to month! This lack of uniformity, once recognized (and it was already recognized by the ancients), forces one to abandon the solar day as the standard of time; that day does not make motion look simple. Turn to a new standard that eliminates the motion of the Earth around the sun and concentrates on the spin of the Earth about its axis : the sidereal day, the time between one arrival of a star at the zenith and the next arrival of that star at the zenith. Good! Or good, so long as one's precision of measurement does not allow one to see changes in the intrinsic angular velocity of the Earth. What clock was so bold as first to challenge the spin of the Earth for accuracy? The machinery of the heavens. Halley (1693) and later others, including Kant (1754), suspected something was amiss from apparent discrepancies between the paths of totality in eclipses of the sun, as predicted by Newtonian gravitation theory using the standard of time then current, and the location of the sites where ancient Greeks and Romans actually recorded an eclipse on the day in question. The moon casts a moving shadow in space. On the day of a solar eclipse, that shadow paints onto the disk of the spinning Earth a black brush stroke, often thousands of kilometers in length, but of width generally much less than a hundred kilometers. He who spins the globe upon the table and wants to make the shadow fall rightly on it must calculate back meticulously to determine two key items : ( I )  where the moon is relative to Earth and sun at each moment on the ancient day in question; and (2) how much angle the Earth has turned through from then until now. Take the eclipse of Jan. 14, A.D. 484, as an example (Figure 1 .8), and assume the same angular velocity for the Earth in the intervening fifteen centuries as the Earth had in 1900 (astronomical reference point). One comes out wrong. The Earth has to be set back by 30 ° (or the moon moved from its computed position, or some combination of the two effects) to make the Athens observer fall under the black brush. To catch up those 30 ° (or less, if part of the effect is due to a slow change in the angular momentum of the moon), the Earth had to turn faster in the past than it does today. Assigning most of the discrepancy to terrestrial spin-down (rate of spin-down compatible with modern atomic-clock evidence), and assuming a uniform rate of slowing from then to now 
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Calculated path of totality for the eclipse of January 14, A.D. 484 (left; calculation based on no spin-down 
of Earth relative to its 1900 angular velocity) contrasted with the same path as set ahead enough lo 
put the center of totality ( al sunrise) at Athens [ displacement very close to 30 ° ; actual figure of deceleration 
adopted in calculations, 32.75 arc sec/(century)2] .  This is "undoubtedly the most reliable of all ancient 
European eclipses," according lo Dr. F. R. Stephenson, of the Department of Geophysics and Planetary 
Physics of the University of Newcastle upon Tyne, who most kindly prepared this diagram especially 
for this book He has also sent a passage from the original Greek biography of Proclus of Athens (died 
at Athens A.D. 485) by Marinus of Naples, reading, "Nor were there portents wanting in the year which 
preceded his death; for example, such a great eclipse of the Sun that night seemed to fall by day. For 
a profound darkness arose so that stars even appeared in the sky. This happened in the eastern sky 
when the Sun dwelt in Capricorn" [from Westermann and Boissonade ( 1 878) ] .  

Does this 30 ° for this eclipse, together with corresponding amounts for other eclipses, represent the 
"right" correction? "Right" is no easy word. From one total eclipse of the sun in the Mediterranean 
area lo another is normally many years. The various provinces of the Greek and Roman worlds were 
far from having a uniform level of peace and settled hfe, and even farther from having a uniform standard 
of what it is to observe an eclipse and put it down for posterity. If the scores of records of the past 
are unhappily fragmentary, even more unhappy has been the willingness of a few uncritical "investigators" 
in recent times to rush in and identify this and that historical event with this and that calculated eclipse. 
Fortunately, by now a great literature is available on the secular deceleration of the Earth's rotation, 
in the highest tradition of critical scholarship, both astronomical and historical. In addition to the books 
of 0. Neugebauer (1959) and Munk and MacDonald ( 1960), the paper of Curott ( 1966), and items cited 
by these workers, the following are key items. (For direction lo them, we thank Professor Otto Neuge
bauer-no relation lo the other Neugebauer cited below!)  For the ancient records, and for calculations 
of the tracks of ancient eclipses, F. K. Ginzel ( 1 882, 1883, 1884); for an atlas of calculated eclipse tracks, 
Oppolzer ( 1 887) and Ginzel (1 899) ; and for a critical analysis of the evidence. P. V Neugebauer ( 1927, 
1929, and 1930) . This particular eclipse was chosen rather than any other because of the great reliability 
of the historical record of it. 



Good clocks make spacetime 
trajectories of free particles 
look straight 

Our choice of unit for 
measuring time the 
geometrodynamic centimeter. 
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(angular velocity correction proportional to first power of elapsed time: angle cor
rection itself proportional to square of elapsed time), one estimates from a correction 
of 

30 ° or 2 hours 1 ,500 years ago 

the following corrections for intermediate times: 

30 ° /102 , or 1 .2 min 

30 ° /104 , or 0.8 sec 

150 years ago, 

15  years ago. 

Thus one sees the downfall of the Earth as a standard of time and its replacement 
by the orbital motions of the heavenly bodies as a better standard : a standard that 
does more to "make motion look simple." Astronomical time is itself in turn today 
being supplanted by atomic time as a standard of reference (see Box 1 .4, "Time 
Today"). 

Look at a bad clock for a good view of how time is defined. Let t be time on 
a "good" clock (time coordinate of a local inertial frame); it makes the tracks of 
free particles through the local region of spacetime look straight. Let T(t) be the 
reading of the "bad" clock; it makes the world lines of free particles through the 
local region of spacetime look curved (Figure 1 .9). The old value of the acceleration, 
translated into the new ("bad") time, becomes 

d2x d (dT dx ) d2T dx (dT)
2 d2x O = 

dt2 = 
dt dt dT = 

dt2 dT 
+ 

dt dT2 • 

To explain the apparent accelerations of the particles, the user of the new time 
introduces a force that one knows to be fictitious: 

( dx ) ( d2 T) dT dt2 
- m (!;)2 ( 1 .2) 

It is clear from this example of a "bad" time that Newton thought of a "good" time 
when he set up the principle that "Time flows uniformly" (d2 T/dt2 = 0). Time is 
defined to make motion look simple ! 

The principle of uniformity, taken by itself, leaves free the scale of the time 
variable. The quantity T = at + b satisfies the requirement as well as t itself. The 
history of timekeeping discloses many choices of the unit and origin of time. Each 
one required some human action to give it sanction, from the fiat of a Pharaoh to 
the communique of a committee. In this book the amount of time it takes light to 
travel one centimeter is decreed to be the unit of time. Spacelike intervals and 
timelike intervals are measured in terms of one and the same geometric unit : the 
centimeter. Any other decision would complicate in analysis what is simple in nature. 
No other choice would live up to Minkowski's words, "Henceforth space by itself, 
and time by itself, are doomed to fade away into mere shadows, and only a kind 
of union of the two will preserve an independent reality." 
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Figu re 1 . 9 .  
Good clock (left) vs bad clock (right) as seen in the maps they give o f  the same free particles moving 
through the same region of spacetime. The world lines as depicted at the right give the impression that 
a force is at work. The good definition of time eliminates such fictitious forces. The dashed lines connect 
corresponding instants on the two time scales. 

One can measure time more accurately today than distance. Is that an argument 
against taking the elementary unit to be the centimeter? No, provided that this 
definition of the centimeter is accepted : the geometrodynamic standard centimeter 
is the fraction 

1 /(9.460546 X 1017) ( 1 .3 )  

of the interval between the two "effective equinoxes" that bound the tropical year 
1900. 0. The tropical year 1 900.0 has already been recognized internationally as the 
fiducial interval by reason of its definiteness and the precision with which it is known. 
Standards committees have defined the ephemeris second so that 3 1 ,556 ,925 .974 sec 
make up that standard interval. Were the speed of light known with perfect precision, 
the standards committees could have given in the same breath the number of 
centimeters in the standard interval. But it isn't ; it is known to only six decimals. 
Moreover, the international centimeter is defined in terms of the orange-red wave
length of Kr86 to only nine decimals ( 16 ,507.6373 wavelengths) . Yet the standard 
second is given to 1 1  decimals. We match the standard second by arbitrarily defining 
the geometrodynamic standard centimeter so that 

9 .4605460000 X 101 7  

such centimeters are contained in the standard tropical year 1 900.0. The speed of 
light then becomes exactly 

9.4605460000 X 1017 

3 1 ,556,925 _974 
geometrodynam1c cm/sec. ( 1 .4) 

This is compatible with the speed of light, as known in 1 967, in units of "international 
cm/sec" : 

29 ,979,300,000 + 30,000 international cm/sec. 



Box 1 .4 TI M E  TO DAY Prior to 1956 the second was defined as the fraction 1 /86,400 of the mean solar day. From 1956 to 1967 the "second" meant the ephemeris second, defined as the fraction l /(31 ,556,925.9747) of the tropical year 00h00m00s December 3 1 ,  1 899 . Since 1967 the standard second has been the SI (Systeme International) second, defined as 9 , 192,631 ,770 periods of the unperturbed microwave transition between the two hyperfine levels of the ground state of Cs133 . Like the foregoing evolution of the unit for the time interval, the evolution of a time coordinate has been marked by several stages. Universal time, UTO, is based on the count of days as they actually occurred historically; in other words, on the actual spin of the earth on its axis; historically, on mean solar time (solar position as corrected by the "equation of time"; i.e. , the faster travel of the earth when near the sun than when far from the sun) as determined at Greenwich Observatory. UTl ,  the "navigator's time scale," is the same time as corrected for the wobble of the earth on its axis (Lit ~ 0.05 sec). UT2 is UTl as corrected for the periodic fluctuations of unknown origin with periods of onehalf year and one year (Lit ~ 0.05 sec; measured to 3 ms in one day). Ephemeris Time, ET (as defined by the theory of gravitation and by astronolnical observations and calculations), is essentially determined by the orbital motion of the earth around the sun. "Measurement uncertainties lilnit the realization of accurate ephemeris time to about 0.05 sec for a nine-year average." Coordinated Universal Time (UTC) is broadcast on stations such as WWV. It was adopted internationally in February 1971 to become effective January 1 ,  1972. The clock rate is controlled by atomic clocks to be as uniform as possible for one year (atomic time is measured to ~0. 1  microsec in 1 min, with diffusion rates of 0 . 1  microsec per day for ensembles of clocks), but is changed by the infrequent addition or deletion of a second-called a "leap second" -so that UTC never differs more than 0.7 sec from the navigator's time scale, UTI .  

THE TIMES 
Wednesday 

June 21 1972 

Time suspended 
for a second 

Time wil l  stand sti l l  throughout 
the world for one second at mid
night, June 30. All radio time 
signal� wi l l  i nsert a " leap second " 
to bri ng Greenwich Mean Time into 
line with the earth's loo� of three 
thousandths of a second a dav. 

The signal from the Royal Green• 
wich Ohservatory to Broadcasting 
House at midnight GMT (1  am 
BST July I) will be six short pips 
marking the seconds 55 to 60 inclu• 
sive, followed by a lengthened sig• 
nal at the following second to mark 
the new minute. 

The foregoing account is abstracted from J. A. Barnes ( 1971 ). The following is extracted from a table (not official at time of receipt), kindly supplied by the Time and Frequency Division of the U.S. National Bureau of Standards in Boulder, Colorado. Timekeeping capabilities of some familiar clocks are as follows: Tuning fork wrist watch (1960), I min/mo. Quartz crystal clock (1921 - 1930), 1 µsec/day, 1 sec/yr. Quartz crystal wrist watch (1971), 0 .2 sec/2 mos., 1 sec/yr. Cesium beam (atolnic resonance, Cs133), (1952-1955), 0 . 1  µsec/day, 0 .5 µsec/mo. Rubidium gas cell (Rb87 resonance), (1957), 0 . 1 µsec/day, 1 -5 µsec/mo. Hydrogen maser (1960), 0.0 1 µsec/2 hr, 0 . 1  µsec/day. Methane stabilized laser ( 1969), 0.0 1 µsec/100 sec. 
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Recent measurements [Evenson e t  al. (1972)] change the details of the foregoing 1967 argument, but not the principles. 
§ 1 . 6 .  CURVATURE 

Gravitation seems to have disappeared. Everywhere the geometry of spacetime is locally Lorentzian. And in Lorentz geometry, particles move in a straight line with constant velocity. Where is any gravitational deflection to be seen in that? For answer, turn back to the apple (Figure 1 . 1  ). Inspect again the geodesic tracks of the ants on the surface of the apple. Note the reconvergence of two nearby geodesics that originally diverged from a common point. What is the analog in the real world of physics? What analogous concept fits Einstein's injunction that physics is only simple when analyzed locally? Don't look at the distance from the spaceship to the Earth. Look at the distance from the spaceship to a nearby spaceship! Or, to avoid any possible concern about attraction between the two ships, look at two nearby test particles in orbit about the Earth. To avoid distraction by the nonlocal element (the Earth) in the situation, conduct the study in the interior of a spaceship, also in orbit about the Earth. But this region has already been counted as a local inertial frame! What gravitational physics is to be seen there? None. Relative to the spaceship and therefore relative to each other, the two test particles move in a straight line with uniform velocity, to the precision of measurement that is contemplated (see Box 1 .5, "Test for Flatness"). Now the key point begins to appear : precision of measurement. Increase it until one begins to discern the gradual acceleration of the test particles away from each other, if they lie along a common radius through the center of the Earth; or toward each other, if their separation lies perpendicular to that line. In Newtonian language, the source of these accelerations is the tide-producing action of the Earth. To the observer in the spaceship, however, no Earth is to be seen. And following Einstein, he knows it is important to analyze motion locally. He represents the separation of the new test particle from the fiducial test particle by the vector �k(k = I ,  2, 3; components measured in a local Lorentz frame). For the acceleration of this separation, one knows from Newtonian physics what he will find : if the Cartesian z-axis is in the radial direction, then 
= 

dze - 2Gmconv �z 
dt2 - c2r3 

( 1 .5) 
Proof: In Newtonian physics the acceleration of a single particle toward the center of the Earth in conventional units of time is Gmconvl r2, where G is the Newtonian constant of gravitation, 6.670 X 10-s cm3/g sec2 and mconv is the mass of the Earth in conventional units of grams. In geometric units of time (cm of light-travel time), 

G ravitatio n  is man ifest i n  
re lative acce leratio n  of 
ne ighbor ing  test part ic les 
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the acceleration is Gmconvl c2r 2• When the two particles are separated by a distance 
� perpendicular to r, the one downward acceleration vector is out of line with the 
other by the angle Ur. Consequently one particle accelerates toward the other by 
the stated amount. When the separation is parallel to r, the relative acceleration 
is given by evaluating the Newtonian acceleration at r and at r + t and taking the 
difference (� times d/dr) Q.E.D. In conclusion, the "local tide-producing acceleration" 
of Newtonian gravitation theory provides the local description of gravitation that 
Einstein bids one to seek. 

Relative acceleration is 
caused by curvature 

What has this tide-producing acceleration to do with curvature? (See Box 1 .6 . )  
Look again at the apple or, better, at  a sphere of radius a (Figure 1 . 1 0). The 
separation of nearby geodesics satisfies the "equation of geodesic deviation," 

d2�/ ds2 + R� = 0. ( 1 .6)  

Here R = l /a2 i s  the so-called Gaussian curvature of the surface. For the surface 
of the apple, the same equation applies, with the one difference that the curvature 
R varies from place to place. 

Box 1 . 5 TEST FO R FLATN ESS 

1 .  Specify the extension in space L (cm or m) 
and extension in time T ( cm or m of light travel 
time) of the region under study. 

2. Specify the precision o� with which one can 
measure the separation of test particles in this 
reg10n. 

3. Follow the motion of test particles moving 
along initially parallel world lines through this 
region of spacetime. 

4. When the world lines remain parallel to the 
precision o� for all directions of travel, then one 
says that "in a region so limited and to a precision 
so specified, spacetime is flat." 

EXAMPLE: Region just above the surface of the 
earth, 100 m X 100 m X 100 m (space extension), 
followed for 109 m of light-travel time (Tconv ~ 
3 sec). Mass of Earth, mconv = 5 .98 X 1027 g, 
m = (0 .742 X 10-28 cm/g) X (5 .98 X 1027 g) = 
0 .444 cm [see eq. ( l . 12)] .  Tide-producing accelera
tion Rz ozo (relative acceleration in z-direction of 
two test particles initially at rest and separated 
from each other by 1 cm of vertical elevation) is 

(d/dr)(m/r2) = - 2m/r3 

= - 0.888 cm/(6 .37 x 108 cm)3 

= - 3 .44 X 10-27 cm-2 

("cm of relative displacement per cm of light
travel time per cm of light-travel time per cm of 
vertical separation"). Two test particles with a ver
tical separation e = 104 cm acquire in the time 
t = 1011 cm ( difference between time and proper 
time negligible for such slowly moving test parti
cles) a relative displacement 

se = -½RZ Oz0t2e 
= 1 .72 X 10-27 cm-2( 1011 cm)2 104 cm 
= 1 .72 mm. 

(Change in relative separation less for other direc
tions of motion) . When the minimum uncertainty 
o� attainable in a measurement over a 100 m 
spacing is "worse" than this figure (exceeds 1 .72 
mm), then to this level of precision the region of 
spacetime under consideration can be treated as 
flat. When the uncertainty in measurement is 
"better" (less) than 1 .72 mm, then one must limit 
attention to a smaller region of space or a shorter 
interval of time or both, to find a region of space
time that can be regarded as flat to that precision. 
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Figu re 1 . 1 0 . 
Curvature as manifested in the "acceleration of the separation" of two 
nearby geodesics. Two geodesics, originally parallel, and separated by the 
distance ("geodesic deviation") t0 , are no longer parallel when followed 
a distance s. The separation is � = �o cos cf, = �o cos (s/a), where a is 
the radius of the sphere The separation follows the equation of simple 
harmonic motion, d2t/ds2 + (l/a2) t = 0 ("equation of geodesic devia
tion"). 
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The direction of the separation vector, (, is fixed fully by its orthogon

ality to the fiducial geodesic. Hence, no reference to the direction of ( 
is needed or used in the equation of geodesic deviation, only the magni
tude t of ( appears there, and only the magnitude, not direction, of the 
relative acceleration appears 

In a space of more than two dimensions, an equation of the same general form 
applies, with several differences. In two dimensions the direction of acceleration of 
one geodesic relative to a nearby, fiducial geodesic is fixed uniquely by the demand 
that their separation vector, (, be perpendicular to the fiducial geodesic (see Figure 
1 . 10). Not so in three dimensions or higher. There ( can remain perpendicular to 
the fiducial geodesic but rotate about it (Figure 1 . 1 1  ). Thus, to specify the relative 
acceleration uniquely, one must give not only its magnitude, but also its direction. 

The relative acceleration in three dimensions and higher, then, is a vector. Call 
it "D2( / ds2," and call its four components "D2�°' / ds2." Why the capital D? Why 
not "d2�°' / ds2"? Because our coordinate system is completely arbitrary ( cf. § 1 .2). The 
twisting and turning of the coordinate lines can induce changes from point to point 
in the components �°' of (, even if the vector ( is not changing at all. Consequently, 
the accelerations of the components d2�°' / ds2 are generally not equal to the compo
nents D2�°' / ds2 of the acceleration! 

How, then, in curved spacetime can one determine the components D2�°' / ds2 of 
the relative acceleration? By a more complicated version of the equation of geodesic 
deviation ( 1 .6). Differential geometry (Part III of this book) provides us with a 
geometrical object called the Riemann curvature tensor, "Riemann." Riemann is 

(continued on page 34) 

Figure 1 . 1 1 .  
The separation vector ( between two geodesics in a curved three
dimensional manifold. Here ( can not only change its length from 
point to point, but also rotate at a varymg rate about the fiducial 
geodesic. Consequently, the relative acceleration of the geodesics must 
be characterized by a direction as well as a magnitude; it must be 
a vector, D2( /ds2 . 

C u rvatu re is cha racterized by 
R iemann  tensor 



Box 1 . 6 CU RVATU R E  O F  WHAT? 

Nothing seems more attractive at first glance than 
the idea that gravitation is a manifestation of the 
curvature of space (A), and nothing more ridicu
lous at a second glance (B). How can the tracks 
of a ball and of a bullet be curved so differently 
if that curvature arises from the geometry of 
space? No wonder that great Riemann did not give 
the world a geometric theory of gravity. Yes, at 
the age of 28 (June 10, 1 8 54) he gave the world 
the mathematical machinery to define and calcu
late curvature (metric and Riemannian geometry). 
Yes, he spent his dying days at 40 working to find 
a unified account of electricity and gravitation. But 
if there was one reason more than any other why 
he failed to make the decisive connection between 
gravitation and curvature, it was this, that he 
thought of space and the curvature of space, not 

Photograph of stars 
when sun (echpsed 

,f-by moon) lies " i' as indicated * -; 
f- I 

I 
I 

Photograph of stars 
when sun swims 
elsewhere '" .. "' * • 

of spacetime and the curvature of spacetime. To 
make that forward step took the forty years to 
special relativity ( 1905 : time on the same footing 
as space) and then another ten years ( 1 9  I 5 :  gen
eral relativity). Depicted in spacetime (C), the 
tracks of ball and bullet appear to have compara
ble curvature. In fact, however, neither track has 
any curvature at all. They both look curved in (C) 
only because one has forgotten that the spacetime 
they reside in is itself curved-curved precisely 
enough to make these tracks the straightest lines 
in existence ("geodesics"). 

If it is at first satisfying to see curvature, and 
curvature of spacetime at that, coming to the fore 
in so direct a way, then a little more reflection 
produces a renewed sense of concern. Curvature 
with respect to what? Not with respect to the labo-
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A. Bending of light by the sun depicted as a conse
quence of the curvature of space near the sun. Ray of 
light pursues geodesic, but geometry in which it travels 
is curved (actual travel takes place in spacetime rather 
than space; correct deflection is twice that given by 
above elementary picture). Deflection inversely propor
tional to angular separation between star and center of 
sun. See Box 40. I for actual deflections observed at time 
of an echpse. 

[32] 
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ratory. The earth-bound laboratory has no simple 
status whatsoever in a proper discussion. First, it 
is no Lorentz frame. Second, even to mention the 
earth makes one think of an action-at-a-distance 
version of gravity (distance from center of earth 
to ball or bullet). In contrast, it was the whole 
point of Einstein that physics looks simple only 
when analyzed locally. To look at local physics, 
however, means to compare one geodesic of one 
test particle with geodesics of other test particles 
traveling ( 1 )  nearby with (2) nearly the same di
rections and (3) nearly the same speeds. Then one 
can "look at the separations between these nearby 
test particles and from the second time-rate of 
change of these separations and the 'equation of 
geodesic deviation' (equation 1 .8) read out the 
curvature of spacetime." 

B. Tracks of  ball and bullet through space a s  seen in 
laboratory have very different curvatures. 

z 

Ball 

S m  

t11eters 0 ve\ tit11e 
f \ight-tra 

C. Tracks of ball and bullet through spacetime, as re
corded in laboratory, have comparable curvatures. 
Track compared to arc of circle: (radius) = (horizontal 
distance)2 /8 (rise). 

[33]  



Riemann tensor, through 
equa�1on of geodesic 
deviation ,  produces relative 
accelerations 
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the higher-dimensional analog of the Gaussian curvature R of our apple's surface. 
Riemann is the mathematical embodiment of the bends and warps in spacetime. And Riemann is the agent by which those bends and warps ( curvature of spacetime) produce the relative acceleration of geodesics. 

Riemann, like the metric tensor g of Box 1 .3, can be thought of as a family of machines, one machine residing at each event in spacetime. Each machine has three slots for the insertion of three vectors : 
Riemann ( 

slot 1 slot 2 slot 3 
+ + + 

). Choose a fiducial geodesic (free-particle world line) passing through an event !2, and denote its unit tangent vector (particle 4-velocity) there by 
u = dx/dr; components, ua = dxa/dr. ( 1 .7 )  Choose another, neighboring geodesic, and denote by ( its perpendicular separation from the fiducial geodesic. Then insert u into the first slot of Riemann at !2, ( into the second slot, and u into the third. Riemann will grind for awhile; then out will pop a new vector, 

Riemann (u, (, u). The equation of geodesic deviation states that this new vector is the negative of the relative acceleration of the two geodesics : D2( /dr2 + Riemann (u, (, u) = 0 .  ( 1 .8) 

The Riemann tensor, like the metric tensor (Box 1 .3), and like all other tensors, is a linear machine. The vector it puts out is a linear function of each vector inserted into a slot : 
Riemann (2u, aw + bv, 3r) 

= 2 X a X 3 Riemann (u, w, r) + 2 X b X 3 Riemann (u, v, r). (1 .9)  Consequently, in any coordinate system the components of the vector put out can be written as a "trilinear function" of the components of the vectors put in: 
r = Riemann (u, v, w) -<==>- ,a = R a

13Y8 u f3 vY w8 . ( 1 . 10) 
(Here there is an implied summation on the indices /3, y, o; cf. Box 1 . 1 .) The 4 X 4 X 4 X 4 = 256 numbers R a 

f3Y8 are called the "components of the Riemann tensor in the given coordinate system." In terms of components, the equation of geodesic deviation states D2�a dx/3 dx 8 -d z + R a
f3 y8 -- P -- = 0.  

r dr dr 
(1 .8') 
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In Einstein's geometric theory of gravity, this equation of geodesic deviation 
summarizes the entire effect of geometry on matter. It does for gravitation physics 
what the Lorentz force equation, 

Equation  of geodesic 
deviatio n  is analog of Lorentz 
force law 

D2x°' e dx °' 

-d 2 - - F
°'

/3 -d = 0, 
'T m -r 

does for electromagnetism. See Box 1 .7. 

( 1 . 1 1) 

The units of measurement of the curvature are cm-2 just as well in spacetime 
as on the surface of the apple. Nothing does so much to make these units stand 
out clearly as to express mass in "geometrized units" :  G eometrized u n its 

m(cm) = (G/c2)mconvCg) 
= (0 .742 X 10-28 cm/g)mconv(g). ( 1 . 12) 

Box 1. 7 EQUATI O N  O F  M OTI O N  U N DE R  TH E I N FLU E N C E  O F  A GRAVITATI O NAL F I E LD 
AN D AN E LECTRO MAGN ETI C FI E LD,  CO M PARE D AN D CONTRAST E D  

Acceleration i s  defined for 
one particle? 

Acceleration defined how? 

Acceleration depends on all 
four components of the 
4-velocity of the particle? 

Universal acceleration for all 
test particles in same 
locations with same 
4-velocity? 

Driving field 

Ostensible number of distinct 
components of driving 
field 

Actual number when allowance 
is made for symmetries of 
tensor 

Names for more familiar of 
these components 

Electromagnetism 
[Lorentz force, equatJOn ( 1 1 1 )] 

Yes 

Actual world line compared to 
world line of uncharged 
"fiducial" test particle 
passing through same point 
with same 4-velocity. 

Yes 

No; is proportional to e/m 

Electromagnetic field 

4 X 4 = 16 

6 

3 electric 
3 magnetic 

Gravitation [Equation of 
geodesic deviation ( 1 .  8')] 

No 

Already an uncharged test 
particle, which can't 
accelerate relative to 
itself! Acceleration 
measured relative to a 
nearby lest particle as 
fiduciary standard. 

Yes 

Yes 

Riemann curvature tensor 

44 = 256 

20 

6 components of local 
Newtonian tide-producing 

acceleration 
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This conversion from grams to centimeters by means of the ratio G/c2 = 0 .742 X 10-28 cm/g is completely analogous to converting from seconds to centimeters by means of the ratio 9 .4605460000 X 1017 cm C = ----------31 ,556,925.974 sec 
(see end of § l .5). The sun, which in conventional units has mconv = 1 .989 X 1033 g, has in geometrized units a mass m = 1 .477 km. Box 1 .8 gives further discussion. 

Components of Riemann 
tensor evaluated from relative 
accelerations of slowly 
moving particles 

Using geometrized units, and using the Newtonian theory of gravity, one can readily evaluate nine of the most interesting components of the Riemann curvature tensor near the Earth or the sun. The method is the gravitational analog of determining the electric field strength by measuring the acceleration of a slowly moving test particle. Consider the separation between the geodesics of two nearby and slowly moving (v � c) particles at a distance r from the Earth or sun. In the standard, nearly inertial coordinates of celestial mechanics, all components of the 4-velocity of the 

Box 1.8 GEO M ETRIZED U N ITS Throughout this book, we use "geometrized units," in which the speed of light c, Newton's gravitational constant G, and Boltzman's constant k are all equal to unity. The following alternative ways to express the number 1 .0 are of great value: 1 .0 = c = 2.997930 . . .  X 1010 cm/sec 1 .0 = G/c2 = 0 .7425 x 10-28 cm/g; 1 .0 = G/c4 = 0.826 X 10-49 cm/erg; 1 .0 = Gk/c4 = 1 . 140 X 10-s5 cm/K; l .0 = c2/G112 = 3.48 X 1024 cm/gauss-1• One can multiply a factor of unity, expressed in any one of these ways, into any term in any equation without affecting the validity of the equation. Thereby one can convert one's units of measure 

from grams to centimeters to seconds to ergs to . . . .  For example: Mass of sun = M0 = 1 .989 X 1033 g 
= (1 .989 X 1033 g) X (G/c2) 

= 1 .477 X 105 cm 
= (1 .989 X l Q33 g) X (c2) 
= 1 .788 X 1054 ergs. The standard unit, in terms of which everything is measured in this book, is centimeters. However, occasionally conventional units are used; in such cases a subscript "conv" is sometimes, but not always, appended to the quantity measured: 

M0conv = l .989 X l Q33 g. 
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fiducial test particle can be neglected except dx0 / dr = I .  The space components of 
the equation of geodesic deviation read 

( 1 . 1 3 )  

Comparing with the conclusions of  Newtonian theory, equations ( 1 .5), we  arrive at 
the following information about the curvature of spacetirne near a center of mass : 

Rx", Oa,O RY", Oa,O R'""' Oa,O = m/r3 0 0 
Rx", OyO RY", OyO R'"· " OyO 0 m/r3 0 ( 1 . 14) 
Rx", OzO R L, OzO RzfJ" zO 0 0 - 2m/r3 

(units cm-2) .  Here and henceforth the caret or "hat" is used to indicate the compo
nents of a vector or tensor in a local Lorentz frame of reference ("physical compo
nents," as distinguished from components in a general coordinate system). Einstein's 
theory will determine the values of the other components of curvature ( e.g. , 
Rx

zxz = - m/r3) ; but these nine terms are the ones of principal relevance for 
many applications of gravitation theory. They are analogous to the components 
of the electric field in the Lorentz equation of motion. Many of the terms not 
evaluated are analogous to magnetic field components-ordinarily weak unless the 
source is in rapid motion. 

This ends the survey of the effect of geometry on matter ("effect of curvature 
of apple in causing geodesics to cross" -especially great near the dimple at the top, 
just as the curvature of spacetime is especially large near a center of gravitational 
attraction). Now for the effect of matter on geometry ("effect of stem of apple in 
causing dimple") ! 

§ 1 . 7 . EFFECT OF MATTER ON GEOMETRY 

The weight of any heavy body of known weight at a particular 
distance from the center of the world varies according to the 

variation of its distance therefrom; so that as often as it is 
remo ved from the center, it becomes heavier, and when brought 

near to it, is lighter. On this account, the relation of gravity to 
gravity is as the relation of distance to distance from the center. 

AL KHAZI NI (Merv, A D  1 1 15) ,  Book of the Balance of Wisdom 

Figure 1 . 12 shows a sphere of the same density, p = 5 .52 g/cm3, as the average 
density of the Earth. A hole is bored through this sphere. Two test particles, A and 
B, execute simple harmonic motion in this hole, with an 84-rninute period. Therefore 
their geodesic separation (, however it may be oriented, undergoes a simple periodic 
motion with the same 84-minute period: 

j = x or y or z. ( 1 . 1 5 )  
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Box 1 . 9 GALILEO GALILEI 
Pisa, February 1 5 , 1 564-Arcetri, Florence, January 8, 1 642 

Uffizi Gal lery. Florence 

"In questions of science the authority 
of a thousand is not worth the humble 

reasoning of a single individual. " 
GALI LEO GALI LE I  ( 1 6 32) 

' 'The spaces described by a body falling from rest  
with a uniformly accelerated motion are to  each other 

as the squares of the time intervals employed in 
traversing these distances , ,  

GALI LEO GALILE I  ( 1 6 38) 

"Everything that has been said before and imagined by other people [about the 
tides] is in my opinion completely invalid. But among the great men who have 

philosophised about this marvellous effect of nature the one who surprised me the 
most is Kepler. More than other people he was a person of independent genius, 

sharp, and had in his hands the motion of the earth. He later pricked up his ears 
and became interested in the action of the moon on the water, and in o ther occult 

phenomena, and similar childishness. , ,  
GALI LEO GALI LE I  ( 1 632) 

"ft is a most beautiful and delightful sight to behold [with the new telescope] the 
body of the Moon . . .  the Moon certainly does not possess a smooth and polished 

surface, but one rough and uneven . . .  full of vast  protuberances, deep chasms 
and sinuosities . . .  stars in myriads, which have never been seen before and 

which surpass the old, previously known, s tars in number more than ten times. I 
have discovered four planets, neither known nor observed by any one of the 

astronomers before my time . . .  got rid of disputes about the Galaxy or Milky 
Way, and made its nature clear to the very senses, not to say to the 

understanding . . .  the galaxy is nothing else than a mass of luminous stars 
planted together in clusters . . . the number of small ones is quite beyond 

determination- the stars which have been called by every one of the astronomers 
up to this day nebu lous are groups of small stars set thick together in a wonderful 

way. 
GALI LEO GALILE I  IN SIDEREUS NUNCIUS ( 1 6 1 0) 

"So the principles which are set forth in this treatise will, when taken up by 
thoughtful minds, lead to many another more remarkable result; and it is to be 

believed that it will be so on account of the nobility of  the subject, which is 
superior to any other in nature. " 

GALI LEO GALI LE I  ( 1 638) 
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t 
84 min 

A 

5 .52 g/cm3 

Figu re 1 . 1 2 . 
Test particles A and B move up and down a hole bored through 
the Earth, idealized as of uniform density. At radius r, a parti
cle feels Newtonian acceleration 

d,,-2 c2 dtcon/ 

G (mass inside radius r) 
c2 ,2 

_ ( G )(41r 3) 
- - ,2c2 3 Pconv' 

= - w2r. 

Consequently, each particle oscillates in simple harmonic mo
tion with precisely the same angular frequency as a satellite, 
grazing the model Earth, traverses its circular orbit· 

2 ( -2) _ 41rG (g/ 3) w conv sec - -3- Pconv cm · 

Comparing this actual motion with the equation of geodesic deviation ( 1 . 1 3) for 
slowly moving particles in a nearly inertial frame, we can read off some of the 
curvature components for the interior of this model Earth. 

Rx, , ,  Oa:O R "- --
Oa:O Rz, , ,  Oa:O 1 0 0 

Rx, , ,  OyO R "- --
OyO Rz, , . OyO = (4'1Tp/3) 0 1 0 ( 1 . 16)  

Rx, ,, OzO R "- --
OzO Rz, ,, OzO 0 0 

This example illustrates how the curvature of spacetime is connected to the distribu
tion of matter. 

Let a gravitational wave from a supernova pass through the Earth. Idealize the 
Earth's matter as so nearly incompressible that its density remains practically un
changed. The wave is characterized by ripples in the curvature of spacetime, propa
gating with the speed of light. The ripples will show up in the components Ri

oko 
of the Riemann tensor, and in the relative acceleration of our two test particles. 
The left side of equation ( 1 . 16)  will ripple ; but the right side will not. Equation 
( 1 . 16) will break down. No longer will the Riemann curvature be generated directly 
and solely by the Earth's matter. 

Nevertheless, Einstein tells us, a part of equation ( 1 . 16)  is undisturbed by the 

The Riemann tensor inside 
the Earth 

Effect of gravitational wave 
on Riemann tensor 
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waves : its trace 

Ro·" = Rx . • . + R 11· · · + Rz . •. = 4wp v - Oa:O OyO OzO ( 1 . 17) 

Even in the vacuum outside the Earth this is valid; there both sides vanish [cf. ( 1 . 14)] . 
More generally, a certain piece of the Riemann tensor, called the Einstein tensor 

and denoted Einstein or G, is always generated directly by the local distribution 
of matter. Einstein is the geometric object that generalizes Ril/l, the lefthand side 

Box 1 . 1 0  I SAAC N EWTO N  
Woolsthorpe, L incol nshire, England, December 25 ,  1 642-
Kensington , London, M a rch 20, 1 726 

'The description of right lines and circles, upon which geometry 

is founded, belongs to mechanics. Geometry does not teach 
us to draw these lines, but requires them to be drawn. " 

[FROM P 1 OF N EWTON "S  PR EFACE TO 
TH E F IRST ( 1 687) ED ITION  OF TH E PRINCIPIA] 

"Absolute space, in its o wn nature, 
without relation to anything external, remains 

always similar and immovable 
"Absolute, true, and mathematical time, 
o f  itself, and from its o wn nature, flows 

equably without relation to anything external. " 

[FROM TH E SCHOL/UM I N  TH E PRINCIPIA] 

"I have not been able to discover the cause of those properties of gravity from 
phenomena, and I frame no hypotheses; for whatever is not reduced from the 

phenomena is to be called an hypothesis; and hypotheses . . .  have no place in 
experimental philosophy . . . .  And to us it is enough that  gravity does really exist, 
and act according to the laws which we have explained, and abundantly serves to 

account  for all the motions of the celestial bodies, and of our sea. " 

[FROM TH E GENERAL SCHOL/UM ADDED AT THE END  OF TH E THI R D  BOOK OF TH E PRINCIPIA I N  
TH E SECOND ED IT ION OF 1 7 1 3 , ESPECIALLY FAMOUS F O R  T H E  PHRASE OFTEN QUOTED FROM 

N EWTO N 'S O R I G I NAL LATI N ,  "HYPO THESES NON FINGO "]  

"And the same year [ 1 665 or 1 666] I began to think of gravity extending to the 
orb of the Moon, and having found out. . . .  All this was in the two plague years 
of 1 665 and 1 666, for in those days I was in the prime of my age for invention, 

and minded Mathematicks and Philosophy more than at any time since. " 

[FROM M EMORAN D U M  I N  N EWTON 'S  HAN DWR IT I N G  ABOUT H I S  D I SCOVER I ES ON FLUXIONS ,  TH E 
B I NOM IAL TH EOREM,  OPTICS,  DYNAM ICS, AND  G RAVITY, BELI EVED TO HAVE BEEN WRITTEN 

ABOUT 1 7 1 4, AND FOU N D  BY ADAMS ABOUT 1 887  IN TH E " PORTSMOUTH COLLECT ION" OF 
N EWTON PAPERS) 
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of equation ( 1 . 17) . Like R00, Einstein is a sort of average of Riemann over all 
directions. Generating Einstein and generalizing the righthand side of ( 1 . 16) is a 
geometric object called the stress-energy tensor of the matter. It is denoted T. No 
coordinates are need to define Einstein, and none to define T; like the Riemann 
tensor, Riemann, and the metric tensor, g, they exist in the complete absence of 
coordinates. Moreover, in nature they are always equal, aside from a factor of 8w : 

Einstein G = 8wT. ( 1 . 1 8 )  

"For hypotheses ought . . .  to explain the properties of things and n o t  attempt to 
predetermine them except in so far as they can be an aid to experiments. , ,  

[FROM LETTER O F  N EWTO N T O  I M PAR D I ES. 1 6 72 ,  A S  QUOTED I N  THE  CAJ O R I  N OTES A T  T H E  
E N D  O F  N EWTON ( 1 687) ,  P 673] 

"That one body may act upon another at a distance through a vacuum, without 
the mediation of any thing else, by and through which their action and force may 

be conveyed from one to another, is to me so great an absurdity, that I believe no 
man, who has in philosophical matters a competent faculty of thinking, can ever 

fall into it " 
[PASSAG E O FTEN QUOTED BY M I CHAEL FARADAY FROM LETTERS OF N EWTON TO R I CHARD 

BENTLY, 1 6 92- 1 693 ,  AS QUOTED I N  TH E N OTES O F  THE CAJ O R I  ED IT ION OF N EWTON ( 1 687) ,  P 

643] 

"The attractions of gravity, magnetism, and electricity, reach to very sensible 
distances, and so have been observed . . .  ; and there may be others which reach 

to so small distances as hitherto escape observation; . . .  some force, which in 
immediate contract is exceeding strong, at small distances performs the chemical 

operations above-mentioned, and reaches not far from the particles with any 
' ·  sensible effect. " 

[FROM QU ERY 3 1  AT THE E N D  OF N EWTON"S  OPTICKS ( 1 730)] 

"What is there in places almost empty of matter, and whence is it that  the sun 
and planets gravitate towards one another, without dense matter between them? 

Whence is it that  nature doth nothing in vain; and whence arises all that  order and 
beauty which we see in the world? To what end are comets, and whence is it that  

planets move all one and the same way in orbs concentrick, while comets move all 
manner of ways in orbs very excentrick; and what hinders the fixed stars from 

falling upon one another?" 
[FROM QUERY 28] 

"He is not eternity or infinity, but eternal and infinite; He is not duration or space, 
but He endures and is present. He endures forever, and is everywhere present; and 

by existing always and everywhere, He constitutes duration and space . . . .  And 
thus much concerning God; to discourse of whom from the appearances of things, 

does certainly belong to natural philosophy. " 
[FROM THE GENERAL SCHOL/UM AT THE  E N D  OF THE PRINCIPIA ( 1 68 7)] 

Stress-energy tensor 
introduced 
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This Einstein field equation, rewritten in terms of  components in an arbitrary coordi
nate system, reads 

( 1 . 19)  

The Einstei11 field equation is  elegant and rich. No equation of physics can be 
written more simply. And none contains such a treasure of applications and conse
quences. 

The field equation shows how the stress-energy of matter generates an average 
curvature (Einstein G) in its neighborhood. Simultaneously, the field equation 
is a propagation equation for the remaining, anisotropic part of the curvature: it 
governs the external spacetime curvature of a static source (Earth); it governs the 
generation of gravitational waves (ripples in curvature of spacetime) by stress-energy 
in motion; and it governs the propagation of those waves through the universe. The 
field equation even contains within itself the equations of motion ("Force = 

Box 1 . 1 1  
/ ALBERT E I N STE I N  

U lm, Germany, 
March 1 4, 1 879-
Princeton, New Jersey, 
April 1 8 , 1 95 5  

Library of E T Hochschule. Zurich Academia des Sciences, Paris Archives of Cal ifornia Institute of Technology 

SEAL Courtesy of the Lewis and Rosa Strauss Foundation and Princeton University Press 



§ 1 7 E F FECT O F  M ATTE R  O N  G E O M ETRY 43 

mass X acceleration") for the matter whose stress-energy generates the curvature. 
Those were some consequences of G = 8?TT. Now for some applications . 
The field equation governs the motion of the planets in the solar system; it governs 

the deflection of light by the sun; it governs the collapse of a star to form a black 
hole; it determines uniquely the external spacetime geometry of a black hole ("a 
black hole has no hair") ; it governs the evolution of spacetime singularities at the 
end point of collapse; it governs the expansion and recontraction of the universe.  
And more; much more. 

In order to understand how the simple equation G = 8?TT can be so all powerful, 
it is desirable to backtrack, and spend a few chapters rebuilding the entire picture 
of spacetime, of its curvature, and of its laws, this time with greater care, detail, 
and mathematics. 

Thus ends this survey of the effect of geometry on matter, and the reaction of 
matter back on geometry, rounding out the parable of the apple. 

"What really interests me is whether God had any choice in the creation of the 
world" 

EI N STE IN  TO AN ASSISTANT, AS QUOTED BY G H O LTON ( 1 9 7 1 ) ,  P 20 

"But the years of anxious searching in the dark, with their intense longing, their 
alternations of confidence and exhaustion, and the final emergence into the 

light-only those who have experienced it can understand that "  
E I N STE I N ,  A S  QUOTED B Y  M KLEI N ( 1 9 7 1 ) ,  P 1 3 1 5  

"Of all the communities available to us there is not one I would want to devote 
myself to, except for the society of the true searchers, which has very few living 

members at any time . . .  , ,  
EI NSTE I N  LETTER T O  BOR N ,  QUOTED B Y  BORN ( 1 9 7 1 ) ,  P 82 

"I am studying your great works and- when I get stuck anywhere-now have the 
pleasure of seeing your friendly young face before me smiling and explaining " 

E I N STEI N ,  LETTER OF MAY 2, 1 9 20, AFTER M EETI N G  N I ELS BOH R 

"As far as the laws of mathematics refer to reality, they are not certain; and as far 
as they are certain, they do not refer to reality , ,  

E I N STE IN  ( 1 9 2 1 ) ,  P 2 8  

"The most incomprehensible thing about the world is that  it is comprehensible " 
E I N STEI N ,  I N  SCH I LPP ( 1 949), P 1 1 2  

Applications of Einstein field 
equation 
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Exercise 1 . 1 .  CURVATURE OF A CYLINDER Show that the Gaussian curvature R of the surface of a cylinder is zero by showing that geodesics on that surface (unroll ! ) suffer no geodesic deviation. Give an independent argument for the same conclusion by employing the formula R = 1/p1p2, where p1 and p2 are the principal radii of curvature at the point in question with respect to the enveloping Euclidean three-dimensional space. 
Exercise 1 . 2 .  SPRING TIDE VS . NEAP TIDE Evaluate ( I )  in conventional units and (2) in geometrized units the magnitude of the Newtonian tide-producing acceleration Rmono(m, n = l ,  2, 3) generated at the Earth by ( l )  the moon (mconv = 7 .35 X 1025 g, r = 3 .84 X 1010 cm) and (2) the sun (mconv = l .989 X 1033 g, r = l .496 X 1013 cm) . By what factor do you expect spring tides to exceed neap tides? 
Exercise 1 . 3 .  KEPLER ENCAPSULATED A small satellite has a circular frequency w(cm-1) in an orbit of radius r about a central object of mass m(cm). From the known value of w, show that it is possible to determine neither r nor m individually, but only the effective "Kepler density" of the object as averaged over a sphere of the same radius as the orbit. Give the formula for w2 in terms of this Kepler density. It is a reminder of the continuity of history that Kepler and Galileo (Box l .9) wrote back and forth, and that the year that witnessed the death of Galileo saw the birth of Newton (Box I . IO) .  After Newton the first dramatically new synthesis of the laws of gravitation came from Einstein (Box l . l l ) . 

And what the dead had no speech for, when living, 
They can tell you, being dead; the communication 

Of the dead is tongued with fire beyond 
the language of the living. 

T S EL I OT. in LITTLE GIDD/NG ( 1 942) 

I measured the skies 
Now the shadows I measure 

Skybound was the mind 
Earthbound the body rests 

J O HAN N ES KEPLER,  d November 1 5 , 1 630 

He wrote h is epitaph m Latin ,  

it ,s translated by Coleman ( 1 9 6 7) ,  p 1 09 

Ubi materia, ibi geometria. 
J OHAN N ES KEPLER 
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P H YS I CS I N  F LAT 

S PAC ETI M E  

Wherein the reader meets an old friend, Special Relativity, 
outfitted in new, mod attire, and becomes more 

intimately acquainted with her charms 





§2 . 1 . OVERVIEW 

CHAPTE R 2 
FO U N DATI O N S  O F  

S P ECIAL R E LATIV ITY 

In geometric and physical applications, it always turns out that  a 
quantity is characterized not only by its tensor order, 

but also by symmetry. 
H E R MAN WEYL ( 1 925) 

Undoubtedly the most striking development of geometry during 
the last 2, 000 years is the continual expansion of the concept  

"geometric object. , ,  This concept began by  comprising only the 
few curves and surfaces of Greek synthetic geometry; it was 

stretched, during the Renaissance, to cover the whole domain of 
those objects defined by analytic geometry; more recently, it has 

been extended to cover the boundless universe treated by 
point-set theory. 

KAR L  M E N G E R .  I N  SCH I LPP ( 1 949),  P 466 

Curvature in geometry manifests itself as gravitation. Gravitation works on the 
separation of nearby particle world lines. In tum, particles and other sources of 
mass-energy cause curvature in the geometry. How does one break into this closed 
loop of the action of geometry on matter and the reaction of matter on geometry? 
One can begin no better than by analyzing the motion of particles and the dynamics 
of fields in a region of spacetime so limited that it can be regarded as flat. (See 
"Test for Flatness," Box 1 .5) .  

Chapters 2-6 develop this flat-spacetime viewpoint (special relativity). The reader, 
it is assumed, is already somewhat familiar with special relativity : *  4-vectors in 
general ; the energy-momentum 4-vector; elementary Lorentz transformations ; the 
Lorentz law for the force on a charged particle ; at least one look at one equation 

* For example, see Goldstein ( 1959), Leighton ( 1959), Jackson ( 1962), or, for the physical perspective 
presented geometrically, Taylor and Wheeler ( 1966) . 

Background assumed of 
reader 



Every p hysica l  quantity can 
be descri bed by a geometric 
o bject 

A l l  laws of p hysics can be 
expressed geometrica l ly 
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in one book that refers to the electromagnetic field tensor Fµ, ;  and the qualitative 
features of spacetime diagrams, including such points as ( 1 )  future and past light 
cones, (2) causal relationships ("past of," "future of," "neutral," or "in a spacelike 
relationship to"), (3) Lorentz contractiof!-, (4) time dilation, (5) absence of a universal 
concept of simultaneity, and (6) the fact that the T and z axes in Box 2 .4 are 
orthogonal even though they do not look so. If the reader finds anything new in 
these chapters, it will be :  (i) a new viewpoint on special relativity, one emphasizing 
coordinate-free concepts and notation that generalize readily to curved spacetime 
("geometric objects," tensors viewed as machines-treated in Chapters 2-4); or ( ii )  
unfamiliar topics in special relativity, topics crucial to the later exposition of gravita
tion theory ("stress-energy tensor and conservation laws," Chapter 5 ;  "accelerated 
observers," Chapter 6). 

§ 2 . 2 .  GEOMETRIC O BJECTS 

Everything that goes on in spacetime has its geometric description, and almost every 
one of these descriptions lends itself to ready generalization from flat spacetime to 
curved spacetime. The greatest of the differences between one geometric object and 
another is its scope: the individual object (vector) for the momentum of a certain 
particle at a certain phase in its history, as contrasted to the extended geometric 
object that describes an electromagnetic field defined throughout space and time 
("antisymmetric second-rank tensor field" or, more briefly, "field of 2-forms"). The 
idea that every physical quantity must be describable by a geometric object, and 
that the laws of physics must all be expressible as geometric relationships between 
these geometric objects, had its intellectual beginnings in the Erlanger program of 
Felix Klein (1 872), came closer to physics in Einstein's "principle of general covari
ance" and in the writings of Hermann Weyl ( 1925), seems to have first been formu
lated clearly by Veblen and Whitehead (1932), and today pervades relativity theory, 
both special and general. 

A. Nijenhuis ( 1952) and S.-S. Chem (1960, 1966, 197 1) have expounded the mathe
matical theory of geometric objects. But to understand or do research in geometro
dynamics, one need not master this elegant and beautiful subject. One need only 
know that geometric objects in spacetime are entities that exist independently of 
coordinate systems or reference frames. A point in spacetime ("event") is a geometric 
object. The arrow linking two neighboring events ("vector") is a geometric object 
in flat spacetime, and its generalization, the "tangent vector," is a geometric object 
even when spacetime is curved. The "metric" (machine for producing the squared 
length of any vector; see Box 1 .3 )  is a geometric object. No coordinates are needed 
to define any of these concepts. 

The next few sections will introduce several geometric objects, and show the roles 
they play as representatives of physical quantities in flat spacetime. 



§ 2 3 VECTO R S  

A 

Figure 2 . 1 .  

• !iJ 

Two events 

Vector v,r!ii 
conceived as 

arrow {l!)/J or !iJ - {l 
(not valid in 

curved space) 

'!i'(\ = 0 .7) 

c / A = i  

Parametrized 
lin 

A = 0 
'!i'(\) = tl / \(!il - tl) 

D 

/ 

Vector v,r!ii 
conceived as 

d'!i' 

(valid in c:ved space) 

From vector as connector of two points to vector as derivative 
("tangent vector"; a local rather than a btlocal concept). 
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Begin with the simplest idea of a vector (Figure 2 . 1 B) :  an arrow extending from Ways of defi n i ng  vector 

one spacetime event tl ("tail") to another event !'13 ("tip"). Write this vector as As arrow 

For many purposes (including later generalization to curved spacetime) other com
pletely equivalent ways to think of this vector are more convenient. Represent the 
arrow by the parametrized straight line 9(;\) = tl + ;\(!'13 - tl), with ;\ = 0 the tail As parametrized stra ight l i ne 
of the arrow, and ;\ = 1 its tip. Form the derivative of this simple linear expression 
for 9(;\) : 

(d/d;\)[tl + ;\(!'13 - tl)] = !'13 - tl = 9(1 )  - 9(0) (tip) - (tail) vdqi• 

This result allows one to replace the idea of a vector as a 2-point object ("bilocal") 
by the concept of a vector as a I -point object ("tangent vector"; local) : 

(2 . 1 )  As derivative o f  po int  a long 

Example: if 9(7) is the straight world line of a free particle, parametrized by its 
proper time, then the displacement that occurs in a proper time interval of one second 
gives an arrow u = 9(1 )  - 9(0). This arrow is easily drawn on a spacetime diagram. 
It accurately shows the 4-velocity of the particle . However, the derivative formula 
u = d9/d7 for computing the same displacement ( 1 )  is more suggestive of the 
velocity concept and (2) lends itself to the case of accelerated motion. Thus, given 
a world line 9(7) that is not straight, as in Figure 2.2, one must first form d9/d7, 
and only thereafter draw the straight line 9(0) + ;\(d9 /d7)0 of the arrow u = d9 /d7 
to display the 4-velocity u. 

curve 
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Figure 2.2.  
Same tangent vector derived from two very different curves. That parame
trized straight line is also drawn which best fits the two curves at '!I 0• The 
tangent vector reaches from O to 1 on this straight line. 

The reader may be unfamiliar with this viewpoint. More familiar may be the 
components of the 4-velocity in a specific Lorentz reference frame: 

where 

uo = !!:!._ = I 
dr vr=.;z '  

· dxi v i u' = - = ----
dr vr=.;z '  

vi = dxi / dt = components of "ordinary velocity," 
v2 = (v"')2 + (v Y)2 + (vz)2 . 

(2.2) 

Even the components (2.2) of 4-velocity may seem slightly unfamiliar if the reader 
is accustomed to having the fourth component of a vector be multiplied by a factor 
i = v=-f If so, he must adjust himself to new notation. (See "Farewell to 'ict,' "  
Box 2. 1 .) 

More fundamental than the components of a vector is the vector itself. It is a 
geometric object with a meaning independent of all coordinates. Thus a particle 
has a world line 9(r), and a 4-velocity u = d9/dr, that have nothing to do with 
any coordinates. Coordinates enter the picture when analysis on a computer is 
required (rejects vectors ; accepts numbers). For this purpose one adopts a Lorentz 
frame with orthonormal basis vectors (Figure 2.3) e0, e1, e2, and e3. Relative to 
the origin e of this frame, the world line has a coordinate description 

Expressed relative to the same Lorentz frame, the 4-velocity of the particle is 



§ 2 4 M ET R I C  TENSOR 

Box 2. 1 FAR EWELL TO "ict" One sometime participant in special relativity will have to be put to the sword: "x4 = ict." This imaginary coordinate was invented to make the geometry of spacetime look formally as little different as possible from the geometry of Euclidean space; to make a Lorentz transformation look on paper like a rotation; and to spare one the distinction that one otherwise is forced to make between quantities with upper indices (such as the components pµ of the energy-momentum vector) and quantities with lower indices (such as the components Pµ of the energy-momentum I -form). However, it is no kindness to be spared this latter distinction. Without it, one cannot know whether a vector (§2.3) is meant or the very different geometric object that is a I -form (§2.5). Moreover, there is a significant difference between an angle on which everything depends periodically (a rotation) and a parameter the increase of which gives rise to ever-growing momentum differences (the "velocity parameter" of a Lorentz transformation; Box 2.4). If the imaginary time-coordinate hides from view the character of the geometric object being dealt with and the nature of the parameter in a transformation, it also does something even more serious : it hides the completely different metric structure (§2.4) of + + + geometry and 
- + + + geometry. In Euclidean geometry, when the distance between two points is zero, the two 

5 1 

points must be the same point. In Lorentz-Minkowski geometry, when the interval between two events is zero, one event may be on Earth and the other on a supernova in the galaxy M3 l ,  but their separation must be a null ray (piece of a light cone). The backward-pointing light cone at a given event contains all the events by which that event can be influenced. The forward-pointing light cone contains all events that it can influence. The multitude of double light cones taking off from all the events of spacetime forms an interlocking causal structure. This structure makes the machinery of the physical world function as it does (further comments on this structure in Wheeler and Feynman 1945 and 1949 and in Zeeman 1964). If in a region where spacetime is flat, one can hide this structure from view by writing 
with x4 = ict, no one has discovered a way to make an imaginary coordinate work in the general curved spacetime manifold. If "x4 = ict" cannot be used there, it will not be used here. In this chapter and hereafter, as throughout the literature of general relativity, a real time coordinate is used, x0 = t = ctconv (superscript O rather than 4 to avoid any possibility of confusion with the imaginary time coordinate). 

The components w"' of any other vector w in this frame are similarly defined as the coefficients in such an expansion, Expansion of vector in terms 
of basis 

w =  w"'ea. (2.4) Notice: the subscript a on ea tells which vector, not which component! 
§2 .4 .  TH E M ETR I C  TENSOR 

The metric tensor, one recalls from part IV of Box 1 .3, is a machine for  calculating the squared length of a single vector, or the scalar product of two different vectors. 



M etnc defi ned as machine 
for computing scalar 
products of vectors 
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Figure 2 . 3 .  
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The 4-velocity of a particle in flat spacetime. The 4-velocity u is the unit vector 
(arrow) tangent to the particle's world line-one tangent vector for each event on 
the world line. In a specific Lorentz coordinate system, there are basis vectors of 
unit length, which point along the four coordinate axes: e0, e1,e2, e3. The 4-velocity, 
like any vector, can be expressed as a sum of components along the basis vectors. 

u = u0e0 + u1e1 + u2e2 + u3e3 = u"'ea . 

More precisely, the metric tensor g is a machine with two slots for inserting vectors slot 1 slot 2 
g( 

+ + 
) . Upon insertion, the machine spews out a real number: (2 .5) 

g(u, v) = "scalar product of u and v," also denoted u · v. (2.6) 
g(u, u) = "squared length of u," also denoted u2 . Moreover, this number is independent of the order in which the vectors are inserted ("symmetry of metric tensor"), 

g(u, v) = g(v, u) ; (2 .7) and it is linear in the vectors inserted 
g(au + bv, w) = g(w, au + bv) = ag(u, w) + bg(v, w). (2.8) Because the metric "machine" is linear, one can calculate its output, for any input, 
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as  follows, if  one knows only what i t  does to  the basis vectors ea of a Lorentz frame. 
( 1 )  Define the symbols ("metric coefficients") 1laf3 by M etric coefficients 

(2 .9) 

(2) Calculate their numerical values from the known squared length of the separation 
vector ( = L1xaea between two events : 

(L1s)2 = - (L1xo)2 + (L1xl)2 + (L1x2)2 + (L1x3)2 

= g(L1xae", L1xf3e13) = L1x"L1xf3g(e", e13) 
= L1x"L1xf371"13 for every choice of L1xa 

- 1  0 0 0 
0 1 0 0 

� 1 111"13 1 1  0 0 1 0 in any Lorentz frame. 

0 0 0 1 

(2 . 1 0) 

(3) Calculate the scalar product of any two vectors u and v from 

u · v = g(u, v) = g(u"ea , uf3e13) = u"uf3g(e", e13) ;  
u · v = u"uf31/af3 = - u0u0 + u1u1 + u2u 2 + u3u3 . (2 . 1 1 ) Scalar products computed 

from components of vectors 
That one can classify directions and vectors in spacetime into "timelike" (negative 

squared length), "spacelike" (positive squared length), and "null" or "lightlike" (zero 
squared length) is made possible by the negative sign on the metric coefficient 7100 . 

Box 2 .2 shows applications of the above ideas and notation to two elementary 
problems in special relativity theory. 

§ 2 . 5 .  D I FFERENTIAL FORMS 

Vectors and the metric tensor are geometric objects that are already familiar from 
Chapter I and from elementary courses in special relativity. Not so familiar, yet 
equally important, is a third geometric object : the "differential form" or "1 form. "  

Consider the 4-momentum p of a particle, an electron, for example. To spell out 
one concept of momentum, start with the 4-velocity, u = dtJ> /dr, of this electron 
("spacetime displacement per unit of proper time along a straightline approximation 
of the world line"). This is a vector of unit length. Multiply by the mass m of the 
particle to obtain the momentum vector 

p = mu. 

But physics gives also quite another idea of momentum. It associates a de Broglie 
wave with each particle. Moreover, this wave has the most direct possible physical 
significance. Diffract this wave from a crystal lattice. From the pattern of diffraction, 
one can determine not merely the length of the de Broglie waves, but also the pattern 
in space made by surfaces of equal, integral phase cf> =  7, cf> = 8, cf> =  9, . . . .  This 

The 1-form i llustrated by de 
Broglie waves 
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Box 2 . 2  WORKED EXERCISES USING THE METRIC 

Exercise: Show that the squared length of a test particle's 4-velocity u is - I .  
Solution: In any Lorentz frame, using the components (2 .2), one calculates as follows 

u2 = g(u, u) = u°'uf3
1/af3 = - (u0)2 + (u1)2 + (u2)2 + (u3)2 

= _ __ l_ + _v_2_ = - 1 . 
I - v 2 I - v2 

Exercise: Show that the rest mass of a particle is related to its energy and momen
tum by the famous equation 

(mc2)2 = E2 _ (pc)2 

or, equivalently (geometrized units ! ), 

m 2 = E2 _ p 2 . 

First Solution: The 4-momentum is defined by p = mu, where u is the 4-velocity 
and m is the rest mass. Consequently, its squared length is 

p 2 = m 2u2 = - m 2 

m 2 m 2v2 

- -1--2 + -1--2 . - V - V 

t t 
E2 p 2 

Second Solution: In the frame of the observer, where E and p are measured, the 
4-momentum splits into time and space parts as 

p o = E, 

hence, its squared length is 

But in the particle's rest frame, p splits as 

p o = m, p l = p 2 = p 3 = O ; 

hence, its squared length is p 2 = - m2 . But the squared length is a geometric object 
defined independently of any coordinate system; so it must be the same by whatever 
means one calculates it : 

-p 2 = m 2 = E2 _ p 2 . 
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Figure 2.4. 
The vector separation v = '3' - '3' 0 between two neighboring events 
'3' 0 and '3'; a I -form u; and the piercing of u by v to give the number 

(u, v) = (number of surfaces pierced) = 4.4 

(4.4 "bongs of bell"). When u is made of surfaces of constant phase, 
q, = 17, q, = 18, q, = 19, . . .  of the de Broglie wave for an electron, 
then (u, v) is the phase difference between the events '3'0 and '3'. Note 
that u is not fully specified by its surfaces; an orientation is also 
necessary. Which direction from surface to surface is "positive"; i.e., 
in which direction does q, increase? 

5 5  

pattern of surfaces, given a name "k," provides the simplest illustration one can 
easily find for a 1 -form. 

The pattern of surfaces in spacetime made by such a I -form: what is it good for? 
Take two nearby points in space time, tJ> and '!I 0. Run an arrow v = tJ> - tJ> 0 from 
tJ> 0 to '!I. It will pierce a certain number of the de Broglie wave's surfaces of integral Vector p ierces 1-form 
phase, with a bong of an imaginary bell at each piercing. The number of surfaces 
pierced (number of "bongs of bell") is denoted 

(k, v) ; 

I -form pierced __J [vector that pierces 

in this example it equals the phase difference between tail ('!10) and tip ('!I) of v, 

( k, v) = cp('!f) - cp('!f o) -

See Figure 2 .4 .  
Normally neither tJ> 0 nor tJ> will lie at a point of integral phase. Therefore one 

can and will imagine, as uniformly interpolated between the surfaces of integral 
phase, an infinitude of surfaces with all the intermediate phase values.  With their 
aid, the precise value of (k, v) = cp('!f) - cp('!f 0) can be determined. 

To make the mathematics simple, regard k not as the global pattern of de Broglie
wave surfaces, but as a local pattern near a specific point in spacetime. Just as the 
vector u = d'!f / dr represents the local behavior of a particle's world line (linear 
approximation to curved line in general), so the I -form k represents the local form 

The 1-form viewed as family 
of f lat, equal ly spaced 
surfaces 



The 1-form viewed as linear 
function of vectors 
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- �  
k = d,P, with three extra 

surfaces interleaved 
to show its structure 

more clearly 

Figure 2. 5 .  
This is a dual-purpose figure. (a) I t  illustrates the de Broglie wave I -form k at an event '3' 0 (family 
of equally spaced, flat surfaces, or "hyperplanes" approximating the surfaces of constant phase). (b) 
It illustrates the gradient d<p of the function ,p ( concept defined in §2.6), which is the same oriented 
family of flat surfaces 

"ii = d,J>. 
At different events, k = def, is different-different orientation of surfaces and different spacing. The 
change in cf, between the tail and tip of the very short vector v is equal to the number of surfaces of 
d<p pierced by v, (def,, v) ; it equals -0.5 m this figure. 

of the de Broglie wave's surfaces (linear approximation; surfaces flat and equally spaced; see Figure 2.5). Regard the I -form k as a machine into which vectors are inserted, and from which numbers emerge. Insertion of v produces as output (k, v) . Since the surfaces of k are flat and equally spaced, the output is a linear function of the input : (k, au + bv) = a(k, u) + b(k, v) . (2. I2a) This, in fact, is the mathematical definition of a I -form: a I form is a linear, real
valued function of vectors; i.e., a linear machine that takes in a vector and puts out a number. Given the machine k, it is straightforward to draw the corresponding surfaces in spacetime. Pick a point 9 0 at which the machine is to reside. The surface 
ofk that passes through 90 contains points 9 for which (k, 9 - 90) = 0 (no bongs of bell). The other surfaces contain points with (k, 9 - 90) = + l ,  +2, +3,  . . . .  
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Positive J u 
sense I I I 

Figure 2. 6. 
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Positive sense 
------... q 

+ u u 

The addition of two I -forms, a and P, to produce the I -form u. Required is a pictorial construction 
that starts from the surfaces of a and P, e.g., (a, '!I' - '!!'0) = • • • - 1 , 0, I, 2, . . . , and constructs those 
of u = a + p. Such a construction, based on linearity (2 . 12b) of the addition process, is as follows. 
( I )  Pick several vectors u, v, . . .  that lie parallel to the surfaces of P (no piercing!), but pierce precisely 
3 surfaces of a; each of these must then pierce precisely 3 surfaces of u:  

(u, u) = (a +  p, u) = (a, u) = 3 .  
(2) Pick several other vectors w, . . .  that lie parallel to the surfaces of a but pierce precisely 3 surfaces 
of P; these will also pierce precisely 3 surfaces of u. (3) Construct that unique family of equally spaced 
surfaces in which u, v, . . .  , w, . . .  all have their tails on one surface and their tips on the third succeeding 
surface. 

Sometimes I -forms are denoted by boldface, sans-serif Latin letters with tildes over them, e.g., k; but more often by boldface Greek letters, e.g., a, /J, o. The output of a I -form o, when a vector u is inserted, is called "the value of o on u" or "the 
contraction of o with u. " 

+ 
I Positive 
I 
I 
I 

sense 

Also, I -forms, like any other kind of function, can be added. The I -form aa + b/J Addit ion of 1 -forms is that machine (family of surfaces) which puts out the following number when a vector u is put in: ( aa + b/J, u) = a(a, u) + b(/J, u) . (2. 12b) Figure 2.6 depicts this addition in terms of surfaces. One can verify that the set of all I -forms at a given event is a "vector space" in the abstract, algebraic sense of the term. Return to a particle and its de Broglie wave. Just as the arrow p = md'!l I dr represents the best linear approximation to the particle's actual world line near '!l 0, so the flat surfaces of the I -form k provide the best linear approximation to the curved surfaces of the particle's de Broglie wave, and k itself is the linear function that best approximates the de Broglie phase cf> near 90 : 

</>('!?) = <t>Wo) + (k, '!l - '!lo) 
+ terms of higher order in ('!l - '!l 0). (2 . 1 3) 
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B, B 
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� 
, sense 
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� 

Several vectors, A ,  B, C, D, E, and corresponding I-forms A, ii, C, D, E. The process of drawing iJ 
corresponding to a given vector U is quite simple. (I) Orient the surfaces of iJ orthogonal to the vector 
U. (Why? Because any vector V that is perpendicular to U must pierce no surfaces of iJ 
(0 = U · V = ( iJ, V)) and must therefore lie in a surface of iJ )  (2) Space the surfaces of iJ so that 
the number of surfaces pierced by some arbitrary vector Y (e.g., Y = U) is equal to Y ·  U. 

Note that in the figure the surfaces of ii are, indeed, orthogonal to B, those of C are, indeed, orthogonal 
to C, etc. If they do not look so, that is because the reader is attributing Euclidean geometry, not Lorentz 
geometry, to the spacetime diagram He should recall, for example, that because C is a null vector, it 
is orthogonal to itself ( C · C = 0), so it must itself lie in a surface of the I -form C. Confused readers 
may review spacetime diagrams in a more elementary text, e.g., Taylor and Wheeler (1966). 

Actually, the de Broglie I -form k and the momentum vector p contain precisely 
the same information, both physically (via quantum theory) and mathematically. 
To see their relationship. relabel the surfaces of k by n X phase, thereby obtaining 
the "momentum I form" p. Pierce this I -form with any vector v, and find the result 
( exercise 2 . 1 ) that 

p • V = (p, V) .  (2. 14) 

In words: the projection of v on the 4-momentum vector p equals the number of 
surfaces it pierces in the 4-momentum I -form p. Examples: Vectors v lying in a 
surface of p (no piercing) are perpendicular to p (no projection); p itself pierces 
p 2 = - m2 surfaces of p. 

Corresponding to any vector p there exists a unique I -form (linear function of 
vectors) p defined by equation (2. 14). And corresponding to any I -form p, there 
exists a unique vector p defined by its projections on all other vectors, by equation 
(2. 14). Figure 2.7 shows several vectors and their corresponding I -forms. 
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A single physical quantity can b e  described equally well by a vector p or by the 
corresponding I -form p. Sometimes the vector description is the simplest and most 
natural ; sometimes the I -form description is nicer. Example: Consider a I -form 
representing the march of Lorentz coordinate time toward the future-surfaces 
x0 = . . .  , 7, 8, 9, . . . .  The corresponding vector points toward the past [ see Figure 
2.7 or equation (2 . 14)] ; its description of the forward march of time is not so nice ! 

One often omits the tilde from the I -form p corresponding to a vector p, and 
uses the same symbol p for both. Such practice is justified by the unique correspond
ence (both mathematical and physical) between p and p.  

Exercise 2 . 1 .  EXERCISE 
Show that equation (2 . 14) is in accord with the quantum-mechanical properties of a de Broglie 
wave, 

if; = ei ¢> = exp [ i (k · x - wt)] . 

§ 2 . 6 .  GRAD IENTS AND D I RECT I ONAL DERIVATIVES 

There is no simpler I -form than the gradient, "df," of a function/ Gradient a I -form? 
How so? Hasn't one always known the gradient as a vector? Yes, indeed, but only 
because one was not familiar with the more appropriate I -form concept. The more 
familiar gradient is the vector corresponding, via equation (2 . 14), to the I -form 
gradient. The hyperplanes representing df at a point '!F O are just the level surfaces 
of/itself, except for flattening and adjustment to equal spacing (Figure 2 .5 ; identify 
(here with </> there). More precisely, they are the level surfaces of the linear function 
that approximates f in an infinitesimal neighborhood of '!F 0 • 

Why the name "gradient"? Because df describes the first order changes in f in 
the neighborhood of 90 : 

f('!F) = f('!f 0) + ( df, '!F - 90) + (nonlinear terms) .  (2 . 1 5 )  

[Compare the fundamental idea of "derivative" of  something a s  "best linear ap
proximation to that something at a point"-an idea that works even for functions 
whose values and arguments are infinite dimensional vectors ! See, e.g. , Dieudonne 
(1 960) . ]  

Take any vector v ;  construct the curve '!F(A) defined by '!F(A) - 90 = Av;  and 
differentiate the function f along this curve : 

(2 . 16a) 

The "differential operator," 

av = (d/dA)at >- = O, alongcurve 9(>-) - 9o = >-v , (2 . 1 6b) 

Grad ient of a function as a 
1-form 



D i rectiona l  der ivative 
operator defi ned 

Bas is  1 -forms 
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which does this differentiating, is called the "directional derivative operator along 
the vector v. " The directional derivative o vf and the gradient df are intimately related, as one sees by applying o v to equation (2. 15) and evaluating the result at the point '!F 0 : ovf = ( df, d'!F /d"11.) = (df, v) .  (2. 17) This result, expressed in words, is : df is a linear machine for computing the rate of change off along any desired vector v. Insert v into df; the output ("number of surfaces pierced; number of bongs of bell") is o vf-which, for sufficiently small 
v, is simply the difference in f between tip and tail of v. 

§ 2 . 7 .  COO RDINATE REPRESENTATION O F  
GEOMETRIC O BJECTS 

In flat spacetime, special attention focuses on Lorentz frames. The coordinates x0('!F), 
x1('!F), x2('!F), x3('!F) of a Lorentz frame are functions; so their gradients can be calculated. Each of the resulting "basis I -forms," 

W°' = dx °' , (2. 1 8) has as its hyperplanes the coordinate surfaces x°' = const; see Figure 2.8. Consequently the basis vector eo: pierces precisely one surface of the basis I -form w°' , 

Positive I sense I 
Positive/ 
�2u 

X L_J-

Figure 2.8. 

t 

� 

� 

wl 

Positive sense 

w2 

The basis vectors and I -forms of a particular Lorentz coordinate frame. The basis I-forms are so laid out that 
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while the other three basis vectors lie parallel to the surfaces of u.P and thus pierce 
none : 

(2 . 1 9) 

(One says that the set of basis I -forms { w"'} and the set of basis vectors { e,a } are 
the "duals" of each other if they have this property.) 

Just as arbitrary vectors can be expanded in terms of the basis ea, v = v"'ea , so 
arbitrary I -forms can be expanded in terms of w/3 : Expansion of 1-form in terms 

(2 .20) 

The expansion coefficients a 13 are called "the components of u on the basis w/3 . "  
These definitions produce an elegant computational formalism, thus : Calculate 

how many surfaces of u are pierced by the basis vector e"' ; equations (2 . 19) and 
(2 .20) give the answer: 

i .e. , 

Similarly, calculate ( w"' , v) for any vector v = e13 vf3 ; the result is 

( u.P, v) = v "' . 

(2 .2 1 a) 

(2 .2 1b) 

Multiply equation (2 .2 1 a) by v"' and sum, or multiply (2 .2 1 b) by a"' and sum; the 
result in either case is 

(2 .22) 

This provides a way, using components, to calculate the coordinate-independent 
value of (u, v) . ,J1 

Each Lorentz frame gives a coordinate-dependent representation of any geometric 
object or relation : v is represented by its components v"' ; u, by its components a"' ; 
a point '!F, by its coordinates x"' ; the relation (u, v) = 17 .3 by aav"' = 17 .3 . 

To find the coordinate representation of the directional derivative operator av, 
rewrite equation (2 . 16b) using elementary calculus 

the result is 

a = (_E__) = ( dx"' ) (-a ) · 
V dA. 9'o dA. at !J'o along !J' ( )I.) - 9'o = AV ox"' ' 

v"' ; see equation (2 .3) 

of basis 

Calculation and manipulation 
of vector and 1-form 
components 

a v = v"' o/ox"' . (2 .23) Directional derivative in  terms 
of coordinates 

In particular, the directional derivative along a basis vector e"' ( components 
[eaJ /3 = ( w/3 , ea) = o/3 a) is 

a"' - ae. = o/ox"' . (2 .24) 

This should also be obvious from Figure 2 .8 .  
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The components of the gradient I -form df, which are denoted fa 

d1 - f W°' 
'J - ,a , 

are calculated easily using the above formulas : 

J,o: = ( df, eo:) [standard way to calculate components ; equation (2 .2 l a)]  

(2 .25a) 

= oaf [by relation (2 . 17) between directional derivative and gradient] 
= of/ox°' [by equation (2 .24)) . 

Thus, in agreement with the elementary calculus idea of gradient, the components 
of df are just the partial derivatives along the coordinate axes : 

f - 0 1/ox°' · ,a - 'J I ' i .e . ,  df = (of/ox°') dx°' . (2 .25b) 

(Recall : w°' = dx°' .) The formula df = (of/ox°') dx°' suggests, correctly, that df is 
a rigorous version of the "differential" of elementary calculus; see Box 2 .3 .  

Other important coordinate representations for geometric relations are explored 
in the following exercises. 

Derive the following computationally useful formulas : 

Exercise 2 . 2 .  LOWE R I N G  I N D EX TO G ET THE 1 -FORM 
CO RRESPO N D I N G  TO A VECTO R 

The components ua of the I -form 'ii that corresponds to a vector u can be obtained by 
"lowering an index" with the metric coefficients Y/af3 : 

Exercise 2 . 3 .  RAI SI NG I N D EX T O  RECOVER THE VECTO R 
One can return to the components of u by raising indices, 

the matrix l l11afl 1 1  is defined as the inverse of I IYJa/3 1 1 ,  and happens to equal I IYJa/3 1 1 :  

11af3 = Y/af3 fo r  all a , /3. 

Exercise 2 .4 .  VARI E D  RO UTES TO TH E SCALAR P RO D U CT 
The scalar product of u with v can be calculated in any of the following ways : 

(2 .26a) 

(2.26b) 

(2 .27) 

(2 .28) 
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Box 2 .3  D I FFERENTIALS 

The "exterior derivative" or "gradient" df of a 
function f is a more rigorous version of the ele
mentary concept of "differential ." 

In elementary textbooks, one is presented with 
the differential df as representing "an infinitesimal 
change in the function/(9)'' associated with some 
infinitesimal displacement of the point '!P; but one 
will recall that the displacement of '!P is left arbi
trary, albeit infinitesimal. Thus df represents a 
change in f in some unspecified direction. 

But this is precisely what the exterior derivative 
df represents. Choose a particular, infinitesimally 
long displacement v of the point '!P. Let the dis-

§ 2 . 8 .  THE CENTR I FUGE AN D THE PHOTON 
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placement vector v pierce df to give the number 
( df, v) = a vf That number is the change off in 
going from the tail of v to its tip . Thus df, before 
it has been pierced to give a number, represents 
the change off in an unspecified direction. The 
act of piercing df with v is the act of making 
explicit the direction in which the change is to be 
measured. The only failing of the textbook presen
tation, then, was its suggestion that df was a scalar 
or a number; the explicit recognition of the need 
for specifying a direction v to reduce df to a num
ber ( df, v) shows that in fact df is a I -form, the 
gradient off 

Vectors, metric, I -forms, functions, gradients, directional derivatives : all these geo
metric objects and more are used in flat spacetime to represent physical quantities ; 
and all the laws of physics must be expressible in terms of such geometric objects. 

As an example, consider a high-precision redshift experiment that uses the Moss
bauer effect (Figure 2 .9) .  The emitter and the absorber of photons are attached to 

Absorber al 

Absorber at time 
of absorption 

Emitter at time 
of emission 

w 

Figure 2. 9 .  
The centrifuge and the photon. 

the rim of a centrifuge at points separated by an angle a, as measured in the inertial 
laboratory. The emitter and absorber are at radius r as measured in the laboratory, 
and the centrifuge rotates with angular velocity w. PROBLEM : What is the redshift 
measured, 

in terms of w, r, and a? 

Geometric objects in action· 
exam ple of centrifuge and 
photon 
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SOLUTION: Let ue be the 4-velocity of the emitter at the event of emission of a given photon; let ua be the 4-velocity of the absorber at the event of absorption; and let p be the 4-momentum of the photon. All three quantities are vectors defined without reference to coordinates. Equally coordinate-free are the photon energies Ee and Ea measured by emitter and absorber. No coordinates are needed to describe the fact that a specific emitter emitting a specific photon attributes- to it the energy Ee ; and no coordinates are required in the geometric formula (2.29) for Ee . [That this formula works can be readily verified by recalling that, in the emitter's frame, ue O = 1 and u/ = O; so 
in accordance with the identification "(time component of 4-momentum) = (energy."] Analogous to equation (2.29) is the purely geometric formula 
for the absorbed energy. The ratio of absorbed wavelength to emitted wavelength is the inverse of the energy ratio (since E = hv = he/A) :  -p · ue -p · ua This ratio is most readily calculated in the inertial laboratory frame 

A.a poueo - piu/ - p oueo - P .  ue A.e p oua o - piuai pOua o - p . ua . (2 .30) 

(Here and throughout we use boldface Latin letters for three-dimensional vectors in a given Lorentz frame; and we use the usual notation and formalism of threedimensional, Euclidean vector analysis to manipulate them.) Because the magnitude of the ordinary velocity of the rim of the centrifuge, v = wr, is unchanging in time, ue O and ua O are equal, and the magnitudes-but not the directions-of ue and ua are equal : 
From the geometry of Figure 2.9 , one sees that ue makes the same angle with p as does ua . Consequently, p · ue = p · ua , and A.absorbed/A.emitted = 1 .  There is no 
redshift! Notice that this solution made no reference whatsoever to Lorentz transformations-they have not even been discussed yet in this book! The power of the geometric, coordinate-free viewpoint is evident ! 
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One must have a variety of coordinate-free contacts between theory and experiment in order EXERCI SES 
to use the geometric viewpoint. One such contact is the equation E = -p · u for the energy 
of a photon with 4-momentum p, as measured by an observer with 4-velocity u. Verify the 
following other points of contact. 

Exercise 2.5.  E N E RGY AN D VELOCITY FROM 4-M O M E NTUM 
A particle of rest mass m and 4-momentum p i s  examined by an observer with 4-velocity 
u. Show that just as (a) the energy he measures is 

E =  -p · u; 

so (b) the rest mass he attributes to the particle is 

(c) the momentum he measures has magnitude 

!Pl = [(p . u)2 + (p . p)J112 ; 

(d) the ordinary velocity v he measures has magnitude 

IPI l v l = E , 

(2 .3 1 )  

(2 .32) 

(2 .33) 

(2 .34) 

where !Pl and E are as given above ; and (e) the 4-vector v, whose components in the 
observer's Lorentz frame are 

V O = 0,  v i = ( dx i I dt)ro, particle = ordinary velocity, 

is given by 

p + (p · u)u V = ----- . 
-p · u  (2.35) 

Exercise 2. 6 .  T E M P E RATU RE GRAD I E NT 
To each event !2, inside the sun one attributes a temperature T(2), the temperature measured 
by a thermometer at rest in the hot gas there. Then T(2) is a function; no coordinates are 
required for its definition and discussion. A cosmic ray from outer space flies through the 
sun with 4-velocity u. Show that, as measured by the cosmic ray's clock, the time derivative 
of temperature in its vicinity is 

(2 .36) 

In a local Lorentz frame inside the sun, this equation can be written 

(2 .37) 

Why is this result reasonable? 



Lorentz transformations· of 
coordinates 

Of basis vectors 

Of basis 1-forms 

Of components 
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§ 2 . 9 .  LO RENTZ TRANSFO RMATIONS 

To simplify computations, one often works with the components of vectors and I -forms, rather than with coordinate-free language. Such component manipulations sometimes involve transformations from one Lorentz frame to another. The reader is already familiar with such Lorentz transformations; but the short review in Box 2.4 will refresh his memory and acquaint him with the notation used in this book. The key entities in the Lorentz transformation are the matrices I IA"',e l l  and I IA.B ,,, 1 1 ;  the first transforms coordinates from an unprimed frame to a primed frame, while the second goes from primed to unprimed 
(2.38) 

Since they go in opposite directions, each of the two matrices must be the inverse of the other : 
Aa' A.8 _ <' a' • ,8 y' - u y , A.a A"' '-' .B a' y = u y- (2.39) 

From the coordinate-independent nature of4-velocity, u = (dx"/dr)e,,, one readily derives the expressions 
(2.40) 

for the basis vectors of one frame in terms of those of the other; and from other geometric equations, such as 
v = e,,v" = e.B'v.B ' ,  

( u, v) = a,,v" = a,e ,v.B ' ,  

u = a,, w" = a,e,w .B ' , 

one derives transformation laws 
w"' - A<>' w .B - ,8 , (2.4 1 )  

(2.42) (2.43) 
One need never memorize the index positions in these transformation laws. One need only line the indices up so that ( I )  free indices on each side of the equation are in the same position; and (2) summed indices appear once up and once down. Then all will be correct! (Note: the indices on A always run "northwest to southeast.") 



Box 2 .4  LO R ENTZ TRANSFORMAT IONS 

Rotation of  Frame of  Reference by  Angle (J i n  x-y Plane Slope s = tan 0 ;  

t = T 
x = x cos 0 - y sin 0 : : T + Jcos O 

. 0 s 
Sill = (1 + s2)1/2 : 

y y 

1 cos 0 = (1 + s2)1;2 

T= t 
x =  x cos 0 + y sin 0  y = -x sin 0 + y cos 0 z = z  

All signs follow from sign of this term. Positive by inspection of point '!P. 
Combi nation of Two S uch Rotations 

S1 + S2 s = ----"'--"-
I - S1S2 

or 
Boost of Frame of Reference by Velocity Parameter a i n  z-t Plane 

Velocity /3 = tanh a ;  

x, X  

t = Tcosh a + zsinh a x = x  
y = y 

. h /3 
Sill a = ( 1  - f32)1/2 ; 

t 

1 cosh a = (1 _ /32)112 = "y" 

tan 0 = velocity /3 
= tanh a 

T = t cosh a - z sinh a 
X = X 

J = y z = Tsinh a + z cosh a z = - t sinh a + z cosh a All signs follow from sign of this term. Positive because object at rest at z = 0 in rocket frame moves in direction of increasing z in lab frame. Matrix notation: xµ = Aµvxv, xv = Av xµ 
µ, cosh a 0 0 sinh a cosh a 0 0 - sinh a 0 I 0 0 

, I I A\1 1  = 0 1 0 0 
I IAµ,vl l = 0 0 1 0 0 0 I 0 sinh a 0 0 cosh a - sinh a 0 0 cosh a 



Box 2.4 (continued) Energy-momentum 4-vector 
E = E cosh a + /i sinh a p"' = p"' 

Charge density-current 4-vector 
p = p cosh a + / sinh a 

j"' = j"' p Y = p Y jY = jY pz = E sinh O' + pz cosh O' f = p sinh a + / cosh a Aberration, incoming photon: . -p 1- (I - 13 2)112 sin 0 sm 8 = -- = ------ sin 0 = -p_1_ 
= (1 - 13 2)112 sin 8 

E 1 - f3 cos 0 if 1 + f3 cos 8 -pz cos 0 - /3 cos 8 = -- = ----- cos 0 = -'jr = cos 8 + /3 
E 1 - f3 cos 0 E 1 + f3 cos 8 tan (8/2) = e"' tan (0/2) tan (0/2) = e-"' tan (8 /2) 

Combi nation of Two Boosts i n  Same D i rection 

or 
General Combinations of Boosts and Rotations 

Spinor formalism of Chapter 4 1  
Poinca re Transformation 

Condition on the Lorentz part of this transformation: ds'2 = 1/a'/3' dx"'' dxf3' = ds2 = 1/µvAµ a'Av /3' dx"'' dxf3' or AT71A = 1/ (matrix equation, with T indicating "transposed," or rows and columns interchanged). Effect of transformation on other quantities: uµ = Aµ «u"" pµ = Aµ«P"'' Fµv = Aµ a'Av 13,Fa'f3' 
ea, = eµ:1µ a w"' = A"' µwµ 

u = e ,u"'' = e uµ = u a µ 

( 4-velocity) (4-momentum) ( electromagnetic field) (basis vectors) ; (basis I -forms) ; (the 4-velocity vector) .  

u,,, = uµAµ « ; Pa' = PµAµ a ; Fa'/3' = FµvAµ ,,,Av /3' ; 
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Exercise 2 . 7 .  B OOST I N  AN A R B I TRARY D I R ECTI O N  
An especially useful Lorentz transformation has the matrix components 

AO' = = 1 
o Y - � , 

Ao'i = Ai'o = - f3yn i, 
Ai'k = Ak 'i = (y - l )n in k + 8ik , 
Aµ v' = (same as A"'µ but with /3 replaced by - /3) ,  

6 9  

(2.44) 

where /3, n 1 , n 2 , and n3 are parameters, and n2 (n 1) 2 + (n 2) 2 + (n3) 2 = I .  Show (a) that 
this does satisfy the condition A T11A = 11 required of a Lorentz transformation (see Box 2 .4) ; 
(b) that the primed frame moves with ordinary velocity f3n as seen in the unprimed frame ; 
( c) that the unprimed frame moves with ordinary velocity - f3n (i.e. , v1' = -f3n1, v2' = - f3n2, 

v3' = - f3n3) as seen in the primed frame; and ( d) that for motion in the z direction, the 
transformation matrices reduce to the familiar form 

I IA") I = 
y 
0 
0 

- f3y 

§ 2 . 1 0 . CO LL IS I ONS 

0 0 
1 0 
0 1 
0 0 

- f3y 
0 
0 , 
y 

y O O f3y 
0 1 0 0 
0 0 1 0 

f3y O O y 
(2.45) 

Whatever the physical entity, whether it is an individual mass in motion, or a torrent 
of fluid, or a field of force, or the geometry of space itself, it is described in classical 
general relativity as a geometric object of its own characteristic kind. Each such object 
is built directly or by abstraction from identifiable points, and needs no coordinates 
for its representation. It has been seen how this coordinate-free description translates 
into, and how it can be translated out of, the language of coordinates and compo
nents, and how components in a local Lorentz frame transform under a Lorentz 
transformation. Tum now to two elementary applications of this mathematical 
machinery to a mass in motion. One has to do with short-range forces ( collisions, 
this section) ; the other, with the long-range electromagnetic force (Lorentz force law, 
next chapter) . 

EXERCISE 

In a collision, all the change in momentum is concentrated in a time that is short Scattering of particles 
compared to the time of observation. Moreover, the target is typically so small, and 
quantum mechanics so dominating, that a probabilistic description is the right one. 
A quantity 

do = ( ;� t dil (2 .46) 

gives the cross section ( cm2) for scattering into the element of solid angle dil at 
the deflection angle O ;  a more complicated expression gives the probability that the 



Conservation of 
energy-momentum in a 
collis ion 
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original particle will enter the aperture dil at a given polar angle 0 and azimuth 
<P and with energy E to E + dE, while simultaneously products of reaction also 
emerge into specified energy intervals and into specified angular apertures. It would 
be out of place here to enter into the calculation of such cross sections, though it 
is a fascinating branch of atomic physics. It is enough to note that the cross section 
is an area oriented perpendicular to the line of travel of the incident particle. 
Therefore it is unaffected by any boost of the observer in that direction, provided 
of course that energies and angles of emergence of the particles are transformed 
in accordance with the magnitude of that boost ("same events seen in an altered 
reference system"). 

Over and above any such detailed account of the encounter as follows from the 
local dynamic analysis, there stands the law of conservation of energy-momentum: 

original final particles, J particles, K 
(2 .47) 

Out of this relation, one wins without further analysis such simple results as the 
following. ( 1 )  A photon traveling as a plane wave through empty space cannot split 
(not true for a focused photon!). (2) When a high-energy electron strikes an electron 
at rest in an elastic encounter, and the two happen to come off sharing the energy 
equally, then the angle between their directions of travel is less than the Newtonian 
value of 90 ° , and the deficit gives a simple measure of the energy of the primary. 
(3) When an electron makes a head-on elastic encounter with a proton, the formula 
for the fraction of kinetic energy transferred has three rather different limiting forms, 
according to whether the energy of the electron is nonrelativistic, relativistic, or 
extreme-relativistic. (4) The threshold for the production of an (e+ , e-) pair by a 
photon in the field of force of a massive nucleus is 2me . (5) The threshold for the 
production of an (e+ , e-) pair by a photon in an encounter with an electron at rest 
is 4me ( or 4me - £ when account is taken of the binding of the e+ e-e- system in 
a very light "molecule"). All these results (topics for independent projects!) and more 
can be read out of the law of conservation of energy-momentum. For more on this 
topic, see Blaton (1950), Hagedorn ( 1964), and Chapter 4 and the last part of Chapter 
5 of Sard ( 1970). 



CHAPTER 3 
THE ELECTRO MAG NETIC 

F IELD 

The ro tating armatures of every generator and every motor in this 
age of electricity are steadily proclaiming the truth of the 

relativity theory to all who have ears to hear. 

LEI G H  PAG E ( 1 941 ) 

§3 . 1 .  THE LO RENTZ FO RCE AN D 
THE ELECTROMAG NETIC F IELD TENSO R 

At the opposite extreme from an impulsive change of momentum in a collision (the 
last topic of Chapter 2) is the gradual change in the momentum of a charged particle 
under the action of electric and magnetic forces (the topic treated here). 

Let electric and magnetic fields act on a system of charged particles. The accelera
tions of the particles reveal the electric and magnetic field strengths. In other words, 
the Lorentz force law, plus measurements on the components of acceleration of test 
particles, can be viewed as defining the components of the electric and magnetic 
fields. Once the field components are known from the accelerations of a few test 
particles, they can be used to predict the accelerations of other test particles (Box 
3. 1 ). Thus the Lorentz force law does double service (I)  as definer of fields and (2) 
as predicter of motions. 

Here and elsewhere in science, as stressed not least by Henri Poincare, that view 
is out of date which used to say, "Define your terms before you proceed. " All the laws 
and theories of physics, including the Lorentz force law, have this deep and subtle 
character, that they both define the concepts they use (here B and E) and make 
statements about these concepts. Contrariwise, the absence of some body of theory, 
law, and principle deprives one of the means properly to define or even to use concepts. 
Any forward step in human knowledge is truly creative in this sense: that theory, 
concept, law, and method of measurement-forever inseparable-are born into the 
world in union. 

Lorentz force as definer of 
fields and p redicter of 
motions 
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Box 3 . 1  LORENTZ FO RCE LAW AS BOTH D E FI N E R  O F  FI E LDS AND 
PRED I CTER O F  M OTI O N S  

How one goes about determining the components 
of the field from measurements of accelerations is 
not different in principle for electromagnetism and 
for gravitation. Compare the equations in the two 
cases : 

and 

d2xa e -
d 2 = - pa 

13u13 in a Lorentz frame, ( 1 )  r m 

n 2�a 

dr2 = -Ra 
13y8u13Pu 8 in any coordinate system. 

(2) 

To make explicit the simpler procedure for elec
tromagnetism will indicate in broad outline how 
one similarly determines all the components of 
Ra 

f3y8 for gravity. Begin by asking how many test 
particles one needs to determine the three compo
nents of B and the three components of E in the 
neighborhood under study. For one particle, three 
components of acceleration are measurable; for a 
second particle, three more. Enough? No! The 
information from the one duplicates in part the 
information from the other. The proof? Whatever 
the state of motion of the first test particle, pick 
one's Lorentz frame to be moving the same way. 
Having zero velocity in this frame, the particle has 
a zero response to any magnetic field. The electric 
field alone acts on the particle. The three compo
nents of its acceleration give directly the three 
components E.,, Ey, Ez of the electric field. The 
second test particle cannot be at rest if it is to do 
more than duplicate the information provided by 
the first test particle. Orient the x-axis of the frame 

of reference parallel to the direction of motion of 
this second particle, which will then respond to 
and measure the components BY and Bz of the 
magnetic field. Not so B,,! The acceleration in the 
x-direction merely remeasures the already once 
measured E,, . To evaluate B.,, a third test particle 
is required, but it then gives duplicate information 
about the other field components. The alternative? 
Use all N particles simultaneously and on the same 
democratic footing, both in the evaluation of the 
six Fa/3 and in the testing of the Lorentz force, by 
applying the method of least squares. Thus, write 
the discrepancy between predicted and observed 
acceleration of the Kth particle in the form 

it K - .!!.._ F u/3 ,K = Sa K (3) a m a/3 a · 

Take the squared magnitude of this discrepancy 
and sum over all the particles 

S = L T/af3{jaaK[jaK
f3

• 
k 

(4) 

In this expression, everything is regarded as known 
except the six Faw Minimize with respect to these 
six unknowns. In this way, arrive at six equations 
for the components of B and E. These equations 
once solved, one goes back to (3) to test the Lor
entz force law. 

The 6 X 6 determinant of the coefficients in the 
equation for the Fa/3 automatically vanishes when 
there are only two test particles. The same line of 
reasoning permits one to determine the minimum 
number of test particles required to determine all 
the components of the Riemann curvature tensor. 
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The Lorentz force law, written in familiar three-dimensional notation, with E = electric field, B = magnetic field, v = ordinary velocity of particle, p = momentum of particle, e = charge of particle, reads 
(dp/dt) = e(E + v x B) . (3 . 1 )  Useful though this version of the equation may be, i t  is far from the geometric spirit of Einstein. A fully geometric equation will involve the test particle's energy-momentum 4-vector, p, not just the spatial part p as measured in a specific Lorentz frame; and it will ask for the rate of change of momentum not as measured by a specific Lorentz observer (d/dt), but as measured by the only clock present a priori in the problem: the test particle's own clock (d/dr). Thus, the lefthand side of a fully geometric equation will read 

dp/dr = .  The righthand side, the Lorentz 4-force, must also be a frame-independent object. It will be linear in the particle's 4-velocity u, since the frame-dependent expression dp 
dr 

1 dp e vf=v2 = ------;:::== (E + v x B) = e(u0E + u x B) 
dt yl - v2 

(3.2a) 
is linear in the components of u. Consequently, there must be a linear machine named Faraday, or F, or "electromagnetic field tensor," with a slot into which one inserts the 4-velocity of a test particle. The output of this machine, multiplied by the particle's charge, must be the electromagnetic 4-force that it feels : 

dp/dT = eF(u) . (3 .3) By comparing this geometric equation with the original Lorentz force law ( equation 3.2a), and with the companion energy-change law 1 dE 1 = ----;=== eE • v = eE • u, 
vf=°v2 dt yl - v2 

(3.2b) 
one can read off the components of F in a specific Lorentz frame. The components of dp/dT are dp"/dT, and the components of eF(u) can be written (definition of F"p ! ) eF" .Bu.B . Consequently 

(3 .4) must reduce to equations (3.2a,b). Indeed it does if one makes the identification 
/3 = 0 /3 = I /3 = 2 /3 = 3 

a = O  0 E,, EY Ez 
a =  I E,, 0 Bz - By I IF"p l l  = a = 2  EY - Bz 0 B,, (3 .5 )  
a = 3 Ez BY - B,, 0 

The three-dimensio 
of the Lorentz force 1c1w 

Electromagnetic field tensor 
defined 

G eometrical version of 
Lorentz force law 

Components of 
electromagnetic field tensor 
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More often seen in the literature are the "covariant components," obtained by 
lowering an index with the metric components : 

Fcx/3 = T/cxyFY/3 ; (3 .6) 

0 - Ex - Ev - Ez l l  
1 1Fa13 1 1  E,T 0 Bz - B 

Ev - Bz 0 
�

w 

I I Ez Bv - Bx 

(3 .7) 

This matrix equation demonstrates the unity of the electric and magnetic fields. 
Neither one by itself, E or B, is a frame-independent, geometric entity. But merged 
together into a single entity, F = Faraday, they acquire a meaning and significance 
that transcends coordinates and reference frames. 

Exercise 3. 1 .  

Derive equations (3 .5 ) and (3 .7) for the components of Faraday by comparing (3 .4) with 
(3.2a,b), and by using definition (3.6). 

§ 3 . 2 .  TENSO RS IN ALL GENERALITY 

A digression is in order. Now on the scene are several different tensors : the metric 
tensor g (§2 .4), the Riemann curvature tensor Riemann (§ 1 .6), the electromagnetic 
field tensor Faraday (§3. 1 ) .  Each has been defined as a linear machine with input 
slots for vectors, and with an output that is either a real number, e.g., g(u, v), or 
a vector, e.g., Riemann (u, v, w) and Faraday (u). 

Should one make a distinction between tensors whose outputs are scalars, and 
tensors whose outputs are vectors? No! A tensor whose output is a vector can be 
reinterpreted trivially as one whose output is a scalar. Take, for example, Fara
day = F. Add a new slot for the insertion of an arbitrary I -form u, and gears and 
wheels that guarantee the output 

F(u, u) = (u, F(u)) = real number. (3 .8) 

Then permit the user to choose whether he inserts only a vector, and gets out the 
vector F( . . .  , u) = F(u), or whether he inserts a form and a vector, and gets out 
the number F(u, u). The same machine will do both jobs. Moreover, in terms of 
components in a given Lorentz frame, both jobs are achieved very simply: 

F( . . .  , u) is a vector with components Fa13uf3 ; 
F(u, u) is the number (u, F( . . .  , u)> = aa£<X13uf3 . (3.9) 
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By analogy, one defines the most general tensor H and its rank (:) as follows : 
H is a linear machine with n input slots for n I -forms, and m input slots for m vectors ; given the requested input, it puts out a real number denoted H(u, A, . . .  , P, u, v, . . .  , w). n I -forms m vectors (3 . 10) 

For most tensors the output changes when two input vectors are interchanged, Riemann(u, u, v, w) i- Riemann(u, v, u, w), (3 . 1 1 ) or when two input I -forms are interchanged. Choose a specific tensor S, of rank (D for explicitness. Into the slots of S, insert the basis vectors and I -forms of a specific Lorentz coordinate frame. The output is a "component of S in that frame" : 

Definition of tensor  as linear 
machine that converts 
vectors and 1-forms into 
numbers 

(3. 12) Com ponents of a tensor This defines components. Knowing the components in a specific frame, one can easily calculate the output produced from any input forms and vectors : S(u, p, v) = S(aawa, p13w13, vYey) = aap13vYS(wa, w13, ey) 
= sa/3 yOaPpVY. (3. 13) Tensor 's m achi ne action 

expressed in terms of 
com ponents And knowing the components of S in one Lorentz frame (unprimed), plus the Lorentz transformation matrices 1 1Aa'13 1 1  and I IA/3 a' I I  which link that frame with another (primed), one can calculate the components in the new (primed) frame. As shown in exercise 3.2, one need only apply a matrix to each index of S, lining up the matrix indices in the logical manner Sµ'v' - sa/3 Aµ' A•' AY >< - y a /3 >-.' · (3. 14) Lorentz transformation of 
com ponents A slight change of the internal gears and wheels inside the tensor enables one of its I -form slots to accept a vector. All that is necessary is a mechanism to convert an input vector n into its corresponding I -form 'ii and then to put that I -form into the old machinery. Thus, denoting the modified tensor by the same symbol S as was used for the original tensor, one demands 

or, in component notation S(u, n, v) = S(u, 'ii, v);  
sa/3 a n/3vY - sa/3 a n13vY y a  - y a  · 

(3. 15) Modifying a tensor  to accept 
either a vector or a 1-fo rm 
into each slot 

(3. 15') This is achieved if one raises and lowers the indices of S using the components of the metric : 
Saµ - 1/ µfJsa 

Y - /3r (3. 16) Raising and lowering indices (See exercise 3.3 below.) By using the same symbol S for the original tensor and 
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the modified tensor, one allows each slot to accept either a I -form or a vector, so one loses sight of whether S is a (D tensor, or a @ tensor, or a @ tensor, or a (�) tensor; one only distinguishes its total rank, 3. Terminology: an "upstairs index" is called "contra variant" ; a "downstairs" index is called "covariant." Thus in sex f3y, 
"a" is a contravariant index, while "/3" and "y" are covariant indices. Because tensors are nothing but functions, they can be added (if they have the same rank!) and multiplied by numbers in the usual way: the output of the rank-3 tensor aS + bQ, when vectors u, v, w are put in, is 

(aS + bQ)(u, v, w) aS(u, v, w) + bQ(u, v, w). (3 . 17) Several other important operations on tensors are explored in the following exercises. They and the results of the exercises will be used freely in the material that follows. 

Exercise 3. 2.  T RANSFORMAT ION LAW FOR COM P ONENTS OF A TEN SOR From the transformation laws for components of vectors and I -forms, derive the transformation law (3 . 14). 
Exercise 3. 3. RAISIN G A N D  LOWERING IN DICES Derive equations (3 . 1 6) from equation (3 . 1 5 ') plus the law na = T/af3n f3 for getting the components of the I -form n from the components of its corresponding vector n. 
Exercise 3.4. TENSOR P RODUCT Given any two vectors u and v, one defines the second-rank tensor u © v ("tensor product of u with v") to be a machine, with two input slots, whose output is the number 

(u © v)(q, A) = (q, u)(A, v) (3 . 1 8) 
when I -forms q and A are inserted. Show that the components of T = u © v are the products of the components of u and v: 

Taf3 = u avf3 , Ta/3 = uav/3 , 

Extend the definition to several vectors and forms, 
(u © v © P © w)(q, A, n, () = (q, u)(A, v)( P, n)((, w) , 

and show that the product rule for components still holds : 
S = u © v © p © w has components SP-"->._f = u P-u"f3xw t . 

Exercise 3. 5. BASIS TEN SORS 

(3 . 1 9) 
(3 .20) 

(3 .2 1 )  
Show that a tensor M with components Maf3 Y 

8 in a given Lorentz frame can be reconstructed from its components and from the basis I -forms and vectors of that frame as follows : 
(3 .22) 

(For a special case of this, see Box 3 .2 .) 



Box 3 . 2  TH E M ETR I C  I N  D I FF E R E NT LAN G UAGES 

A. G eometric Language 

g is a linear, symmetric machine with two slots for insertion of vectors. When vectors 
u and v are inserted, the output of g is their scalar product: 

g(u, v) = u · v. 

B .  Com ponent Language 

TJ µv are the metric components .  They are used to calculate the scalar product of two 
vectors from components in a specific Lorentz frame: 

C. Coord i nate-Based G eometric Language 

The metric g can be written, in terms of basis I -forms of a specific Lorentz frame, 
as 

[see equations (2. 1 8) and (3.22)]. 

D .  Con nection to t h e  E lementary Concept of L ine E lement 

Box 2.3 demonstrated the correspondence between the gradient df of a function, 
and the elementary concept df of a differential change of f in some unspecified 
direction. There is a similar correspondence between the metric, written as T/µv dxµ 

® dx', and the elementary concept of "line element," written as ds2 = T/µv dxµ dx• .  
This elementary line element, as  expounded in many special relativity texts, repre
sents the squared length of the displacement "dxW ' in an unspecified direction. The 
metriC TJµv dxµ ® dx' does the same. Pick a specific infinitesimal displacement vector 
f, and insert it into the slots of T/µv dxµ ® dx' .  The output will be f 2 = TJµ,gµgv , 
the squared length of the displacement. Before f is inserted, T/µv dxµ ® dx' has the 
potential to tell the squared length of any vector; the insertion of f converts potenti
ality into actuality: the numerical value of f2 • 

Because the metric rJµ, dxµ ® dx' and the line element ds2 = T/µv dxµ dx• perform 
this same function of representing the squared length of an unspecified infinitesimal 
displacement, there is no conceptual distinction between them. One sometimes uses 
the symbols ds2 to denote the metric; one sometimes gets pressed and writes it as 
ds2 = T/µv dxµ dx', omitting the " ® "; and one sometimes even gets so pressed as 
to use nonbold characters, so that no notational distinction remains at all between 
metric and elementary line element: 

g = ds2 = ds2 = T/µv dxµ dx•. 
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Exercise 3 . 6 .  Faraday MAC H I N E RY AT WORK An observer with 4-velocity u picks out three directions in spacetime that are orthogonal and purely spatial (no time part) as seen in his frame. Let e1, e2, e3 be unit vectors in those directions and let them be oriented in a nghthanded way (e1 · e2 X e3 = + l in three-dimensional language) . Why do the following relations hold? 
e; - u = 0, 

What vectors are to be mserted in the two slots of the electromagnetic field tensor Faraday if one wants to get out the electric field along e I as measured by this observer? What vectors must be mserted to get the magnetic field he measures along e;? 

§ 3 . 3 .  THREE-P LUS-ONE VIEW VERSUS GEOMETR I C  VIEW 

Great computational and conceptual power resides in Einstein's geometric view of physics. Ideas that seem complex when viewed in the everyday "space-plus-time" or "3 + I"  manner become elegant and simple when viewed as relations between geometric objects in four-dimensional spacetime. Derivations that are difficult in 3 + I language simplify in geometric language. The electromagnetic field is a good example. In geometric language, it is described by a second-rank, antisymmetric tensor ("2-form") F, which requires no coordinates for its definition. This tensor produces a 4-force on any charged particle given by dp/dr = eF(u) .  It is all so simple! By contrast, consider the "3 + l "  viewpoint. In a given Lorentz frame, there is an electric field E and a magnetic field B. They push on a particle in accordance with dp/dt = e(E + v x B). But the values of p, E, v, and B all change when one passes from the given Lorentz frame to a new one. For example, the electric and magnetic fields viewed from a rocket ship ("barred" frame) are related to those viewed in the laboratory ("unbarred" frame) by 
Ej, = Ej,, (3.23) 

(Here " I I "  means component along direction of rocket's motion; ".l.."  means perpendicular component; and 13; = dx;rocketf dt is the rocket's ordinary velocity.) The analogous transformation laws for the particle's momentum p and ordinary velocity 
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v ,  and for  the coordinate time t ,  all conspire-as if by magic, it seems, from the 
3 + 1 viewpoint-to maintain the validity of the Lorentz force law in all frames. 

Not only is the geometric view far simpler than the 3 + 1 view, it can even derive 
the 3 + I equations with greater ease than can the 3 + 1 view itself. Consider, for 
example, the transformation law (3.23) for the electric and magnetic fields. The 
geometric view derives it as follows : ( 1 )  Orient the axes of the two frames so their 
relative motion is in the z-direction. (2) Perform a simple Lorentz transformation 
( equation 2 .45) on the components of the electromagnetic field tensor: 

- - a fJ _ 2 n 2  2F, Eu = Ez = Fw = A 3A oFafJ - y F30 + ,_, y 03 

= (1 - /32)Y2 F30 = F30 = Ez = Eu, 

E:t = Fro = A"rAfJoFafJ = yFlO + /3yF13 = y(E:t - /3By), 

etc. 

(3.24) 

By contrast, the 3 + 1 view shows much more work. A standard approach is based 
on the Lorentz force law and energy-change law (3.2a,b), written in the slightly 
modified form 

(3.25) 

. . .  (three additional equations) . . . .  

It proceeds as follows ( details omitted because of their great length!): 

(1) Substitute for the d2x/dT2, etc., the expression for these quantities in terms 
of the d2x/dr2, . . • (Lorentz transformation). 

(2) Substitute for the d2x/dT2, • . .  the expression for these accelerations in terms 
of the laboratory E and B (Lorentz force law). 

(3) In these expressions, wherever the components dx/dT of the 4-velocity in the 
laboratory frame appear, substitute expressions in terms of the 4-velocities 
in the rocket frame (inverse Lorentz transformation). 

(4) In (3.25) as thus transformed, demand equality of left and right sides for all 
values of the dx/ dr, etc. (validity for all test particles). 

(5) In this way arrive at the expressions (3.23) for the E and ii in terms of the 
E and B. 

The contrast in difficulty is obvious ! 

§3 .4 . MAXWELL'S EQUATIONS 

Turn now from the action of the field on a charge, and ask about the action of a 
charge on the field, or, more generally, ask about the dynamics of the electromagnetic 
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field, charge or no charge. Begin with the simplest of Maxwell's equations in a specific Lorentz frame, the one that says there are no free magnetic poles : 
. oB oB oB V · B = div B = --"' + __ Y + __ z = 0. - ox oy oz (3.26) 

This statement has to be true in all Lorentz frames. It is therefore true in the rocket frame: 
oB"' oBv oBz _ 

0 - + - + -ox oJ oz - · (3.27) 
For an infinitesimal Lorentz transformation in the x-direction (nonrelativistic velocity /3), one has (see Box 2 .4 and equations 3.23) 

o o 

oJ - oy ' 
o 
oz 

o 
oz 

(3.28) (3.29) 
Substitute into the condition of zero divergence in the rocket frame. Recover the original condition of zero divergence in the laboratory frame, plus the following additional information (requirement for the vanishing of the coefficient of the arbitrary small velocity /3) :  

(3.30) 
Had the velocity of transformation been directed in the y- or z-directions, a similar equation would have been obtained for oB/ot or oBz/ot. In the language of threedimensional vectors, these three equations reduce to the one equation 

oB _ oB - + V X E = - + curl E = 0 .  ot o t  (3.31 )  
How beautiful that ( 1 )  the principle of covariance (laws of physics are the same in every Lorentz reference system, which is equivalent to the geometric view of physics) plus (2) the principle that magnetic tubes of force never end, gives (3) Maxwell's dynamic law for the time-rate of change of the magnetic field ! This suggests that the magnetostatic law V · B = 0 and the magnetodynamic law 

oB/ot + V x E = 0 must be wrapped up together in a single frame-independent, geometric law. In terms of components of the field tensor F, that geometric law must read Fa/3,Y + F13y,a + Fya,{3 = 0, (3.32) 
since this reduces to V · B = 0 when one takes a = 1 ,  /3 = 2, y = 3; and it reduces to oB/ot + V X E = 0 when one sets any index, e.g., a, equal to zero (see exercise 3.7 below). In frame-independent geometric language, this law is written (see §3.5 , exercise 3. 14, and Chapter 4 for notation) 
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dF = 0, or, equivalently, V · *F = O ; 

8 1  

(3.33) 

and it says, "Take the electromagnetic 2-form F (a geometric object defined even 
in absence of coordinates) ; from it construct a new geometric object dF (called the 
"exterior derivative of F") ; dF must vanish. The details of this coordinate-free 
process will be spelled out in exercise 3. 1 5  and in §4.5 (track 2). 

Two of Maxwell's equations remain : the electrostatic equation 

V · E =  4'1Tp, 

and the electrodynamic equation 

oE/ot - V X B = - 4'1TJ. 

(3.34) 

(3.35) 

They, like the magnetostatic and magnetodynamic equations, are actually two 
different parts of a single geometric law. Written in terms of field components, that 
law says 

pa/3 ,/3 = 4'1TJa , 

where the components of the "4-current" J are 

J0 = p = charge density, 
(J1, J2 , J3) = components of current density. 

(3.36) 

(3.37) 

Written in coordinate-free, geometric language, this electrodynamic law says 

d *F = 4'1T *J or, equivalently, V · F = 4'1TJ. (3.38) 

(For full discussion, see exercise 3. 1 5  and §4.5, which is on Track 2 .) 

Exercise 3 .  7 .  MAXWE LL'S EQUATI O N S  Show, by  explicit examination of  components, that the geometric laws 
do reduce to Maxwell's equations (3 .26) , (3 .3 1 ) ,  (3 .34) , (3 .35 ) ,  as claimed above . 

§ 3 . 5  WO R KIN G WITH TENSO RS 

Another mathematical digression is needed. Given an arbitrary tensor field, S, of 
arbitrary rank (choose rank = 3 for concreteness), one can construct new tensor 
fields by a variety of operations. 

One operation is the gradient V. (The symbol d is reserved for gradients of scalars, 
in which case VJ df, and for "exterior derivatives of differential forms;"  a Track-2 

Electrodynamics and 
electrostatics unified i n  one 
geometric law 

EXERCISE 

Ways to p roduce new tensors 
from old: 

Gradient 
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concept, on which see §4.5.) Like S, VS is a machine. It has four slots, whereas 
S has three. It describes how S changes from point to point. Specifically, if one 
desires to know how the number S(u, v, w) for fixed u, v, w changes under a 
displacement (, one inserts u, v, w, ( into the four slots of VS: 

VS(u, v, w, () a(S(u, v, w) with u, v, w fixed 
� + [value of S(u, v, w) at tip of fl 

- [value of S(u, v, w) at tail of (]. 

In component notation in a Lorentz frame, this says 

VS(u, v, w, fl - a/S,,13 yu"'vf3 wY) = 
c::!

y �8 ) u"'v f3 wY 

- S u"'v f3 wyts - af3y, 8  <; • 

(3 .39) 

Thus, the Lorentz-frame components of VS are nothing but the partial derivatives 
of the components of S. Notice that the gradient raises the rank of a tensor by 1 
(from 3 to 4 for S). 

Contraction is another process that produces a new tensor from an old one. It 
seals off ("contracts") two of the old tensor's slots, thereby reducing the rank by 
two. Specifically, if R is a fourth-rank tensor and M is obtained by contracting the 
first and third slots of R, then the output of M is given by (definition!) 

3 
M(u, v) = � R(e,,, u, w"' , v). (3.40) 

a=O 

Here e,, and w"' are the basis vectors and I -forms of a specific but arbitrary Lorentz 
coordinate frame. It makes no difference which frame is chosen; the result will always 
be the same (exercise 3.8 below). In terms of components in any Lorentz frame, 
equation (3.40) says (exercise 3.8) 

so that 
(3 .4 1 ) 

Thus, in terms of components, contraction amounts to putting one index up and 
the other down, and then summing on them. 

Divergence is a third process for creating new tensors from old. It is accomplished 
by taking the gradient, then contracting the gradient's slot with one of the original 
slots : 

( divergence of S on first slot) V · S 

i.e. V · S has components S°' 
f3 y,a ·  

is a machine such that 

(3 .42) 
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Transpose i s  a fourth, rather trivial process for creating new tensors. I t  merely Transpose interchanges two slots : 
N obtained by transposing second and third slots of S = 

N(u, v, w) = S(u, w, v). (3.43) 
Symmetrization and antisymmetrization are fifth and sixth processes for producing new tensors from old. A tensor is completely symmetric if its output is unaffected by an interchange of two input vectors or I -forms: 

S(u, v, w) = S(v, u, w) = S(v, w, u) = (3.44a) It is completely antisymmetric if it reverses sign on each interchange of input 
S(u, v, w) = - S(v, u, w) = + S(v, w, u) = • • • .  (3.44b) Any tensor can be symmetrized or antisymmetrized by constructing an appropriate linear combination of it and its transposes ;  see exercise 3. 12. 

Sym metrization and 
antisym metnzation 

Wedge product is a seventh process for producing new tensors from old. It is merely Wedge product an antisymmetrized tensor product : given two vectors u and v, their wedge product, the "bivector" u I\ v, is defined by Bivecto r 

U I\ V U @ V - V @ u; similarly, the "2jorm" a I\ /J constructed from two I -forms is 
a I\ /J a ® /J - /J ® a .  From three vectors u ,  v, w one constructs the "trivector" 

u /\ v /\ w  � /\ � /\ w  u /\ � /\ �  

(3.45a) 
(3.45b) 

= u ® v ® w + terms that guarantee complete antisymmetry 
= u ® v ® w + v ® w ® u + w ® u ® v 0 � tj  

- V @ U @  W - U @  W @  V - W @  V @  U. From I -forms a, /J, y one similarly constructs the "3-forms" a I\ /J I\ y. The wedge product gives a simple way to test for coplanarity (linear dependence) of vectors : if u and v are collinear, so u = av, then 
u I\ v = av I\ v = 0 (by antisymmetry of " /\  "). If w is coplanar with u and v so w = au + bv ("collapsed box"), then 

w I\ u I\ v = au I\ u I\ v + bv I\ u I\ v = 0 .  The symbol " /\ "  is  called a "hat" or "wedge" or "exterior product sign." Its properties are investigated in Chapter 4 .  

2-form 

Tnvector 

Taking the dual is an eighth process for constructing new tensors. It plays a Dual fundamental role in Track 2 of this book, but since it is not needed for Track 1 ,  its definition and properties are treated only in the exercises (3. 14 and 3. 1 5). 
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Because the frame-independent geometric notation is somewhat ambiguous (which slots are being contracted? on which slot is the divergence taken? which slots are being transposed?), one often uses component notation to express coordinate-independent, geometric relations between geometric objects. For example, 
means "J is a tensor obtained by taking the divergence on the first slot of the tensor 
S". Also, 

vY = (F pµv), Y = (F pµv) 1/(3y 
µv - µv , (3 means "v is a vector obtained by (1 ) constructing the tensor product F ® F of F with itself, (2) contracting F ® F on its first and third slots, and also on its second and fourth, (3) taking the gradient of the resultant scalar function, (4) converting that gradient, which is a I -form, into the corresponding vector." "Index gymnastics," the technique of extracting the content from geometric equations by working in component notation and rearranging indices as required, must be mastered if one wishes to do difficult calculations in relativity, special or general. Box 3.3 expounds some of the short cuts in index gymnastics, and exercises 3.8-3. 1 8  offer practice. 

Exercise 3 . 8 .  CO NTRACTI O N  I S  FRAM E-I N D E PE N D ENT Show that contraction, as  defined in equation (3 .40), does not depend on which Lorentz frame ea and w a are taken from. Also show that equation (3 .40) implies 
Exercise 3 . 9 .  D I FFERENTIATI O N  (a) Justify the formula 
by considering the special case µ = 0, v = I .  (b) Explain why 
Exercise 3 . 1 0 . M O RE D I FFE RENTIATI O N  (a) Justify the formula, 
by writing out the summation u /J-u,,_ = 1/µvu/J-u" explicitly. (b) Let o indicate a variation or small change, and justify the formula 
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Box 3 . 3  TECH N I QU E S  O F  I N D EX GYM NASTI CS 

Equation 

S"/J r  = S(w", efJ , ey) 

S"fJr = S(w", w /3 , ey) 

Go:/3 = FcafJJ = ½(Fo:/3 - F/Jo:) 

Ho:fJ = Fi.am =  ½(Fo:fJ + F/Jo:) 

Name and Discussion 

Computing components. 

Computing other components. 

Reconstructing the rank-@ version of S. 

Reconstructing the rank-(il) version of S. [RecaU. one does 
not usually distinguish between the various versions, see equa
tion (3 . 15) and associated discussion.] 

Raising an index. 

Lowering an index. 

Contraction of S to form a new tensor M. 

Tensor product of S with M to form a new tensor T. 

Squared length of vector A produced by forrrung tensor product 
A 181 A and then contracting, which is the same as forming the 
corresponding l-formA and thenpiercing· A 2 = (A, A )  = A"Aa . 

The matrix formed from the metric's "covariant components," 
l l710:fl l l ,  is the mverse of that formed from its "contravariant 
components," l l71"ll l l .  Equivalently, raising one index of the 
metric '110:fl produces the Kronecker delta. 

Gradient of N to form a new tensor S. 

Divergence of N to form a new tensor R. 

Taking gradients and raising or lowering indices are operations 
that commute 

Contravanant index on a gradient is obtained by raising covari
ant index. 

Gradient of a tensor product; says V(R 181 M) = 
Transpose (VR 181 M) + R 181 VM. 

Antisymmetrizing a tensor F to produce a new tensor G. 

Symmetrizing a tensor F to produce a new tensor H. 

Forming the rank-3 tensor that is dual to a vector (exercise 
3 . 14). 

Forming the antisymmetric rank-2 tensor that is dual to a given 
antisymmetric rank-2 tensor (exercise 3 . 14). 

Forming the I-form that is dual to an antisymmetric rank-3 
tensor (exercise 3 . 14). 
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Exercise 3 . 1 1 .  SYM M ETR I ES 
Let Aµv be an antisymmetric tensor so that Aµv = - A vµ ; and let SI'" be a symmetric tensor 
so that SI'" = S"I'. 

(a) Justify the equations Aµvsµv = 0 in two ways : first, by writing out the sum exphcitly 
(all sixteen terms) and showing how the terms in the sum cancel in pairs ; second, by giving 
an argument to justify each equals sign in the following string : 

(b) Establish the following two identities for any arbitrary tensor Vµv : 

Vl'"A = _!_ ( VI'" - V"l')A µv 2 µv • 

Exercise 3 . 1 2 . SYM M ETR IZAT I O N  A N D  ANTISYM M ETR IZATI O N  
To "symmetrize" a tensor, one averages it with all of its transposes. The components of the 
new, symmetrized tensor are distingmshed by round brackets : 

_ l  Vcµv) = 2 ( vµv + vvµ) ;  
(3 .46) 

One "antisymmetrizes" a tensor (square brackets) similarly: 

(3 .47) 

(a) Show that such symmetrized and antisymmetrized tensors are, indeed, symmetric and 
antisymmetric under interchange of the vectors inserted into their slots : 

Vcafiy)u"vfiwY = + Vcafiy)v"u fiwY = . . .  , 
VcafiyJu"vfiwY = - ViafiyJv"u fiwY = . . .  . 

(b) Show that a second-rank tensor can be reconstructed from its symmetric and antisym
metric parts, 

(3 .48) 

but that a third-rank tensor cannot; Jii«fly) and Vc«/lYI contain together "less information" 
than Vafir "Young diagrams" (see, e .g. ,  Messiah [ 1 96 1 ] ,  appendix D) describe other symme
tries, more subtle than these two, which contain the missing information. 

(c) Show that the electromagnetic field tensor satisfies 

Fiam = O, (3 .49a) 

(d) Show that Maxwell's "magnetic" equations 

can be rewritten m the form 

Fi.a{i , y) = 0. (3.49b) 
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Exercise 3. 1 3. LEVI-CIVITA TEN SOR 

8 7  

The "Levi-Civita tensor" c in spacetime is a fourth-rank, completely antisymmetric tensor : 

c (n, u, v, w) changes sign when any two of the 
vectors are interchanged. 

(3 .50a) 

Choose an arbitrary but specific Lorentz frame, with e0 pointing toward the future and with 
e1 , e2 , e3 a righthanded set of spatial basis vectors. The covariant components of c in this 
frame are 

(3 .50b) 

[Note : In an n-dimensional space, c 1s the analogous completely antisymmetric rank-n tensor. 
Its components are 

when computed on a "positively oriented," orthonormal basis e1 , . . .  , en . J  

(a) Use the antisymmetry to show that 

(b) Show that 

Eaf3y� = 0 unless a, /3, y, 8 are all different, 

(+ I for even permutations of 0, I, 2, 3, and 
e,,,.0

"'
1

"'
2

"'
3 = - I for odd permutations. 

E'lTO'lTl '1T2'1T3 = _ E 
'1T0'7TI '1T2'1T3 

(3 .50c) 

(3 .50d) 

(3 .50e) 

(3 .50f) 

( c) By means of a Lorentz transformation show that ealJyF, and E;,µ=ya have these same values 
in any other Lorentz frame with e0 pointing toward the future and with er, e2, e3 a 
righthanded set. Hmt: show that 

(3 .50g) 

from AT17A = 17 , show that detjAii v i =  ± l ;  and verify that the determinant is + I for trans
formations between frames with e0 and e0 future-pointing, and with e1 , e2 , e3 and er, e2, 
e3 righthanded. 

(d) What are the components of c in a Lorentz frame with past-pointing e0? with 
lefthanded er, e2, e 3? 

(e) From the Levi-Civita tensor, one can construct several "permutation tensors." In index 
notation :  

Show that: 

1 l (i <X/3 = _ 0af3/\ = _ -,-Ea/31\pE /J,P - 2 /J,PA 2 /J,PAP'  

�a = __!_ �a/3 _ __!_ �a/31\ _ I a/31\p u 
µ, 

_ 
3 

u 
µ,
{3 - 6 

u 
µ,/31\ - - (i E E

µ,/31\p · 

[+ I if af3y is an even permutation of /WA, 
oaf3y µ,vi\ = - I if af3y is an odd permutation of µvA, 

0 otherwise ;  

(3 .50h) 

(3 .50i) 

(3 .50j ) 

(3 .50k) 
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[je</3 µv = {j<X µ{j/3 P - {j<X P{j/3 µ 

(+ 1 if a/3 is an even permutation of µ,v, = - 1 if a/3 is an odd permutation of µ,v, 0 otherwise ; 
sa - { + l if a = µ,, 

µ - 0 otherwise. 
Exercise 3. 1 4. DUALS 

(3 .501) 
(3 .50m) 

From any vector J, any second-rank antisymmetric tensor F(Fa/3 = Fram), and any third-rank antisymmetric tensor B (Baf3 y = B[afJ yJ) ,  one can construct new tensors defined by 
*F - 1 FµP a{J - 2 €µ va{3 •  *B - _!_ BAµ P a - 3 ! €°/,,µva · (3 .5 1 )  

One calls *J the "dual" of J,  *F the dual of F, and *B the dual of B. [A previous and entirely distinct use of the word "dual" (§2 .7) called a set of basis one-forms { w a} dual to a set of basis vectors {ea} if (wa , e/3 ) = saf3 • Fortunately there are no grounds for confusion between the two types of duality. One relates sets of vectors to sets of I -forms. The other relates antisymmetric tensors of rank p to antisymmetric tensors of rank 4 - p.] (a) Show that 
* *J = J, * *F = - F, * *B = B. (3 .52) 

so (aside from sign) one can recover any completely antisymmetric tensor H from its dual *H by taking the dual once again, * *H. This shows that H and *H contain precisely the same information. (b) Make explicit this fact of same-information-content by writing out the components * Aaf3 y in terms of Aa , also * Fa/3 in terms of Faf3 , also * Ba in terms of Baf3 y . 
Exercise 3. 1 5. GEOMETRIC VERSIONS OF M AXWELL EQUAT IONS Show that, if  F is the electromagnetic field tensor, then V · *F = 0 i s  a geometric frame-independent version of the Maxwell equations 

Fa/3 , y + F{Jy,a + Fya,{3 = 0.  
Similarly show that V · F = 4'TTJ ( divergence on second slot of F) is  a geometric version of Faf3 ,/3 = 4'TTJa . 
Exercise 3. 1 6. CHARGE CONSERVATION From Maxwell's equations F°'/3,/3 = 4'TTJa , derive the "equation of charge conservation" 

l°',a = 0.  (3 .53) 
Show that this equation does, indeed, correspond to conservation of charge. It will be studied further in Chapter 5 .  
Exercise 3. 1 7. VECTOR P OTENTIAL The vector potential A of electromagnetic theory generates the electromagnetic field tensor via the geometric equation 

F = - ( antisymmetric part of VA),  (3 .54) 
i .e . ,  Fµp = Av,µ - Aµ, v · (3 .54') 
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(a) Show that the electric and magnetic fields in  a specific Lorentz frame are given by 

B =  V X A , E = - oA/ot - VA0 . 

(b) Show that F will satisfy Maxwell's equations if and only if A satisfies 

A"',µ. - Aµ. ,a = - 4wJ"' . ,µ. ,µ. 

(c) Show that "gauge transformations" 

ANEW = AoLD + def,, 

leave F unaffected. 

cf, = arbitrary function, 

(d) Show that one can adjust the gauge so that 

V · A = 0 ("Lorentz gauge"), 
□A = - 4wJ. 

Here □ is the wave operator ("d'Alembertian") : 

Exercise 3. 1 8. D I VE RG E N C E  O F  E LECTRO MAG N ET I C  
STRESS- E N E RGY TENSO R 

(3 .55) 

(3 .56) 

(3 .57) 

(3 .58a) 
(3 .58b) 

(3 .59) 

From an electromagnetic field tensor F, one constructs a second-rank, symmetric tensor T 
("stress-energy tensor," to be studied in Chapter 5) as follows : 

yµ.v = _l_ (pµ.apv _ l_ 11wp pa/3 ) 
4w "' 4 a/3 · 

As an exercise in index gymnastics : 
(a) Show that V · T has components 

(b) Manipulate this expression into the form 

T " - _!_ [ - F F"'" - __!_ F"'f3(F F + "' )] · µ. • " - 4w µ.a • "  2 a/3 ,µ. + µ.a,{3 r13µ.,a , 

note that the first term of (3 .62) arises directly from the second term of (3 .6 1 ) .  
( c) Use Maxwell's equations to conclude that 

(3 .60) 

(3.6 1 )  

(3 .62) 

(3 .63) 



CHAPTER 4 
ELECTRO MAG NETI S M  AN D 

D I FFERENTIAL FORM S 

This chapter is a l l  Track 2 .  It is 
needed as preparation for 
§§ 1 4. 5  and 1 4 . 6  (computation 
of curvature using d ifferentia l  
forms) and for Chapter 1 5  
(B ianchi identities and 
boundary of a boundary), but is 
not needed for the rest of the 
book. 

§4. 1 . EXTERIOR CALCU LUS 

Th e  ether trembled at his agitations 
In a manner so familiar that I only need to say, 

In accordance with Clerk Maxwell's six equations 
It tickled peoples · optics far away. 

You can feel the way it 's done, 
You may trace them as they run-

dy by dy less d/3 by dz is equal KdX/dt . .  

While the curl of (X, Y, Z) is the 
minus d/dt of the vector (a, b, c) 

From The Revolution of the Corpuscle, 
written by A A Robb 

( to  the tune of  The Interfering Parrott) 
for a d i n ner  of the research students 

of the Cavend ish La boratory 
,n the days of the old mathematics 

Stacks of surfaces, individually or intersecting to make "honeycombs," "egg crates," 
and other such structures ("differential forms"), give unique insight into the geometry 
of electromagnetism and gravitation. However, such insight comes at some cost in 
time. Therefore, most readers should skip this chapter and later material that depends 
on it during a first reading of this book. 

Analytically speaking, differential forms are completely antisymmetric tensors; 
pictorially speaking, they are intersecting stacks of surfaces. The mathematical 
formalism for manipulating differential forms with ease, called "exterior calculus," 
is summarized concisely in Box 4.1 ;  its basic features are illustrated in the rest of 
this chapter by rewriting electromagnetic theory in its language. An effective way 
to tackle this chapter might be to ( 1 )  scan Box 4.1 to get the flavor of the formalism; 
(2) read the rest of the chapter in detail; (3) restudy Box 4.1 carefully; (4) get practice 
in manipulating the formalism by working the exercises .* 

(continued on page 99) * Exterior calculus is treated in greater detail than here by . E. Cartan ( 1945) , de Rham (1955) , Nickerson, Spencer, and Steenrod (1959) ; Hauser ( 1970) ,  Israel (1 970) ;  especially Flanders ( 1963, relatively easy, with many applications) ; Spivak ( 1965 , sophomore or junior level, but fully in tune with modem mathematics) , H. Cartan ( 1970) ;  and Choquet-Bruhat ( 1 968a) . 
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Box 4. 1 DIFFERENTIAL FORM S AN D 
EXTERIOR CALCU LU S  IN B RIEF 

9 1  

The fundamental definitions and formulas of exterior calculus are summarized here 
for ready reference. Each item consists of a general statement (at left of page) plus 
a leading application (at right of page) . This formalism is applicable not only to 
spacetime, but also to more general geometrical systems (see heading of each section) . 
No attempt is made here to demonstrate the internal consistency of the formalism, 
nor to derive it from any set of definitions and axioms. For a systematic treatment 
that does so, see, e .g. ,  Spivak ( 1965), or Misner and Wheeler ( 1957) .  

A. Algebra I (appl icable  to any vector space) 

1 .  Basis 1 forms. 
a. Coordinate basis w i = dx i 

(j tells which I -form, not which component) . 
b. General basis wi = L\, dxk' _ 

An application 
Simple basis I -forms for analyzing Schwarzschild ge
ometry around static spherically symmetric center of 
attraction : 

w0 = (1 - 2m/r) 11 2 dt ; 
w 1 = ( 1  - 2m/r)-11 2 dr; 
w2 = r d0; 
w3 = r sin 0 def>. 

2 .  General pjorm (or p-vector) is a completely anti
symmetric tensor of rank (�) [or (B)] .  It can be 
expanded in terms of wedge products (see §3 .5 and 
exercise 4 . 12) :  

(Note : Vertical bars around the indices mean sum
mation extends only over i1 < i2 < • • • < ip .) 

Two applications 
Energy-momentum I -form is of type a = aiwi or 

p = - E dt + Px dx + Pv dy + Pz dz. 

Faraday is a 2-form of type P = (3 1 µv l wµ I\ w" or in 
flat spacetime 

F = - � � /\ � - � � /\ � - � � /\ � 
+ Bx dy I\ dz + By dz I\ dx + Bz dx I\ dy 
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Box 4. 1 (continued) 

3. Wedge product. 
All familiar rules of addition and multiplication hold, such as (aa + bf]) I\ y = aa I\ y + bf] I\ y, (a I\ /J) I\ y = a I\ (/J I\ y) a I\ /J I\ Y, 
except for a modified commutation law between a p-form a and a q-form /J: a I\ /J = ( - l )Pq/J I\ a. 

p q q p 

Applications to l forms a, /J: a I\ P = - /J  I\ a, a I\ a = O ;  a I\ /J = (a;wi) I\ (f3kwk) = a;f3kw; I\ wk 
1 · k = 2 (a;/3k - f3;ak)w1 I\ w 

4. Contraction of pform on p-vector. 

<i, 1 >  
= a . . A li1 . . . ;. 1(wi i /\ . . .  /\ wi •, e1· , I\ . . . I\ e1•p > 1 • 1  . . . ,p I [ Si ,. .. i. (see exercises 3.13 and 4. 12)] 1 ,  . . .  1. 

= a . . Aii . . .  ip  
I •  , . . . ip I · 

Four applications a. Contraction of a particle's energy-momentum 1 -form 
p = Pawa with 4-velocity u = uaea of observer (a 1 -vector): 

- (p, u) = - paua = energy of particle. b. Contraction of Faraday 2-form F with bivector S<!I I\ .d<!I [ where S<!I = ( d<!I I dA1)L1A1 and .d<!I = (d<!I /dA2).dA2 are two infinitesimal vectors in a 2-surface <!l(A1, A2), and the bivector represents the surface element they span] is the magnetic flux <I> = (F, S<!I I\ .d<!I) through that surface element. c. More generally, a p-dimensional parallelepiped with vectors Bi, a2, . • . , aP for legs has an oriented volume described by the "simple" p-vector a1 /\ a2 /\ • • • aP ( oriented because interchange of two legs changes its sign). An egg-crate type of structure with walls made from the hyperplanes of p different 1 -forms o-1, 
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5. Simple forms. 

u2 , . . .  , uP is described by the "simple" p-fonn u1 

/\ u2 /\ . . .  /\ uP. The number of cells of u1 /\ u2 /\ . . . /\ uP sliced through by the infinitesimal p-volume a1 /\ a2 /\ • • • /\ av is (u 1 /\ q2 /\ . . .  /\ uv, a1 /\ a2 /\ . . .  /\ av> ·  d. The Jacobian determinant of a set of p functions Jk(x1, . . .  , xn) with respect to p of their arguments is 
a'!P a'!P o'!P ) . . .  /\ djP - /\ - /\ . . .  /\ -' OX1 OX2 'cJx'P 
I I ( ofk ) I I - o(f1,f2, . .  ,JP) = <let --. = i 2 OX 1 . o (x , X , . . .  , xP) 

a. A simple p-form is one that can be written as a wedge product of p I -forms: u = a /\ P /\ • • • /\ y .  'P 
p factors . b. A simple p-form a /\ p /\ • • • /\ y is represented by the intersecting families of surfaces of a, P, . . .  , y (egg-crate structure) plus a sense of circulation ( orientation). 

Applications: a. In four dimensions (e.g. , spacetime) all 0-forms, ! forms, 3-forms, and 4-forms are simple. A 2-form F is generally a sum of two simple forms, e.g., F = - e dt /\ dx + h dy /\ dz; it is simple if and only if 
F /\ F = 0. b. A set of I -forms a, P, . . .  , y is linearly dependent (one a linear combination of the others) if and only if a /\ p /\ . .  • /\ y = 0 (egg crate collapsed). 

B.  Exterior Derivat ive (appl icab le to any "differentiab le  manifo ld, " 
with or without metric) 

I .  d produces a (p + 1)-form du from a p-form u. 2. Effect of d is defined by induction using the 
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Box 4. 1 (con tinued) (Chapter 2) definition of df, and f a function (0-form), plus d(a I\ {)) = da I\ /J + (- l )Pa I\ d/J, 
p q d2 = dd = 0. 

Two applications d(a I\ d/J) = da I\ d/J. For the p-form </J, with 
one has (alternative and equivalent definition of d<P) d</J = d<f, 1 - . 

1 
/\ dxi i I\ . . .  I\ dxiv. i 1  . . .  i p  

C. Integration (appl icable to any "differentiable manifold, " with or 

without metric) 

1 .  Pictorial interpretation. Text and pictures of Chapter 4 interpret fa (integral of specified I -form a along specified curve from specified starting point to specified end point) as "number of a-surfaces pierced on that route"; similarly, they interpret f <P (integral of specified 2-form </J over specified bit of surface on which there is an assigned sense of circulation or "orientation") as "number of cells of the honeycomb-like structure </J cut through by that surface"; similarly for the egg-crate-like structures that represent 3-forms; etc. 
2 .  Computational rules for integration. To evaluate fa, the integral of a p-form a = a 1 i i . . .  iv l (x1, . . .  , xn) dxi i I\ . • • I\ dxiv, over a p-dimensional surface, proceed in two steps. a. Substitute a parameterization of the surface, 

x k (V, . . . , ;\P) into a, and collect terms in the form a = a(;\i) d;\1 I\ . . .  I\ d;\P (this is a viewed as a p-form in the p-dimensional surface) ; 
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b.  Integrate 

J a = J a(t,. i) dA 1 dA2 . . .  dAP 

using elementary definition of integration. 

Example: See equations (4.12) to (4.14). 
3. The differential geometry of integration. 

Calculate fa for a p-form a as follows. 
a. Choose the p-dimensional surface S over which 

to integrate. 
b. Represent S by a parametrization giving the 

generic point of the surface as a function of the 
parameters, 9(A 1, A2, . . .  AP). This fixes the ori
entation. The same function with A1 - A2 , 

9(A 2, A 1 , . . .  , AP), describes a different (i.e., op
positely oriented) surface, - S. 

c. The infinitesimal parallelepiped 

is tangent to the surface. The number of cells 
of a it slices is 

This number changes sign if two of the vectors 
o9 /oA k are interchanged, as for an oppositely 
oriented surface. 

d. The above provides an interpretation motivat
ing the definition 

I a ff . . .  J (a o9 A �  A . . . A o9) 
' 0/\1  0/\2 0/\p 

dA1 d/\2 • . .  d/\P .  

This definition is identified with the computa
tional rule of the preceding section (C.2) in 
exercise 4.9. 

An application 

9 5  

Integrate a gradient df along a curve, 9(A) from 9(0) 
to 9(1) : 

1 1 

f df = f ( df, d9 Id/\) d/\ = J ( df/ d/\) d/\ 
0 ( I  

= /[9(1)] - /[9(0)]. 

e. Three different uses for symbol "d": First, light
face d in explicit derivative expressions such as 
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Box 4 .  1 (continued) 

d/ da, or df/ da, or d<!P / da; neither numerator nor denominator alone has any meaning, but only the full string of symbols. Second, lightface d inside an integral sign; e.g., ff da. This is an instruction to perform integration, and has no meaning whatsoever without an integral sign; 
"f . . .  d . . .  " lives as an indivisible unit. Third, sans-serif d; e.g., d alone, or df, or da . This is an exterior derivative, which converts a p-form into a (p + 1)-form. Sometimes lightface d is used for the same purpose. Hence, d alone, or 
df, or dx, is always an exterior derivative unless coupled to an f sign (second use), or coupled to a / sign (first use). 4. The generalized Stokes theorem (see Box 4 .6). a. Let oo/ be the closed p-dimensional boundary of a (p + 1 )-dimensional surface o/. Let a be a p-form defined throughout o/. Then 
[integral of p-form a over boundary oo/ equals integral of (p + 1 )-form da over interior o/] .  b. For the sign to come out right, orientations of o/ and oo/ must agree in this sense: choose coordinates y0, y1 , . . .  , yP on a portion of o/, with y0 specialized so y0 :=:;; 0 in o/, and y0 = 0 at the boundary oo/; then the orientation 

}!!__ I\ a<!P I\ . . . I\ aqp oyO oy 1 oyP for o/ demands the orientation 
for oo/. c .  Note : For a nonorientable surface, such as a Mobius strip, where a consistent and continuous choice of orientation is impossible, more intricate mathematics is required to give a definition of "o" for which the Stokes theorem holds. 

Applications: Includes as special cases all integral theorems for surfaces of arbitrary dimension in spaces of arbitrary dimension, with or without metric, generaliz-
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ing all versions of theorems of Stokes and Gauss. Examples: a. 'V a curve, o'V its endpoints, a = f a 0-form (function): 

1 

f df = f (df/dA) dA = I f = f(I)  - f(0) . 
'V O B'V b. 'V a 2-surface in 3-space, o'V its closed-curve boundary, v a I -form; translated into Euclidean vector notation, the two integrals are 
f dv = f (V X v) • dS; f v = f v · di. 

'V 'V B'V B'V c. Other applications in §§5.8, 20.2, 20 .3, 20.5, and exercises 4 .10, 4 .1 I ,  5.2, and below. 
D .  Algebra I I  (appl icable to any vector space with metric) 

I .  Norm of a pform. l la l 1 2 a . . a.i t . . . i p _ 
l i 1 . . .  ip I 

Two applications: Norm of a I -form equals its squared length, l l a 1 1 2 = a ·  a. Norm of electromagnetic 2-form or Faraday: I IF 1 1 2 = B 2 - E2 . 

2 . Dual of a pform. a. In an n-dimensional space, the dual of a p-form 
a is the (n - p)-form *a, with components 

(*a) - a l i t . . . ip I E:  
k 1  . . . kn - p  - i 1  . . .  ip k 1  . . .  k n - p  • b. Properties of duals : 
**a = (- l ) P-1a in spacetime; 

a I\ *a = l l a l l 2c in general. c. Note: the definition of c (exercise 3.13) entails choosing an orientation of the space, i.e., deciding which orthonormal bases (1) are "righthanded" and thus (2) have c (e1 , . . .  , en) = + 1. 
Applications a. For f a 0-form, */ = Jc, and J/d(volume) = J *f b. Dual of charge-current I -form J is charge-current 3-form *J. The total charge Q in a 3-dimensional hypersurface region S is 

Q(S) = f *J. 
s 
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Box 4. 1 (con tinued) 

4 ELECTROMAGN ETIS M AN D DIFFERENTIAL FORM S 

Conservation of charge is stated locally by d *J = 0. 
Stokes' Theorem goes from this differential conserva
tion law to the integral conservation law, 

0 = i d * J = i * J. 
'V o'V 

This law is of most interest when o'V = S2 - S1 con
sists of the future S2 and past S1 boundaries of a 
space time region, in which case it states Q( S2) = 
Q(S1) ;  see exercise 5.2. 

c. Dual of electromagnetic field tensor F = Faraday is 
* F = Maxwell. From the d * F = 4'17 * J Maxwell 
equation, find 4'1TQ = 4'1Tfs *J = fs d *F = fas *F. 

3. Simple forms revisited. 
a. The dual of a simple form is simple. 
b. Egg crate of •a is perpendicular to egg crate 

of a = a A /J A . . .  A µ in this sense: 
(1) pick any vector V lying in intersection of 

surfaces of a 
((a, V) = ( /J, V) = · · · = ( µ, V) = O); 

(2) pick any vector W lying in intersection of 
surfaces of *a;  

(3) then V and W are necessarily perpendicu-
lar: V ·  W = 0. 

Example: a = 3 dt is a simple 1-form in spacetime. 
a. *a = - 3  dx A dy A dz is a simple 3-form. 
b. General vector in surfaces of a is 

V = V"'e., + VYey + vzez. 

c. General vector in intersection of surfaces of •a is 

d. W ·  V = O. 



§4 2 E LECTROMAGN ET I C  2-FORM AN D LORENTZ FORCE 

§4 . 2 .  ELECTROMAGNETIC 2-FO RM AN D LO RENTZ FO RCE 

9 9  

The electromagnetic field tensor, Faraday = F, is an antisymmetric second-rank 
tensor (i.e . ,  2-form) . Instead of expanding it in terms of the tensor products of basis 
I -forms, 

F = Fa/3 dx "' ® dx f3 , 

the exterior calculus prefers to expand in terms of antisymmetrized tensor products 
("exterior products, " exercise 4 . 1 ) :  

I F = 2 Fa/3 dx a I\ dx f3 , 

dx a I\ dx /3  dx a ® dx/3 - dx /3 ® dxa . 

(4 . 1 )  

(4 .2) 

Any 2-form (antisymmetric, second-rank tensor) can be so expanded. The symbol 
" I\ "  is variously called a "wedge," a "hat," or an "exterior product sign" ; and 
dx a I\ dx /3 are the "basis 2-forms" of a given Lorentz frame (see §3 .5 , exercise 3 . 12 ,  
and Box 4 . 1 ) . 

There is no simpler way to illustrate this 2-form representation of the electromag
netic field than to consider a magnetic field in the x-direction : 

(4 .3) 
F = Bx dy I\ dz. 

The I -form dy = grad y is the set of surfaces (actually hypersurfaces) y = 1 8  (all 
t, x, z) , y  = 19 (all t, x, z),y = 20 (all t, x, z) , etc. ; and surfaces uniformly interpolated 
between them. Similarly for the I -form dz. The intersection between these two sets 
of surfaces produces a honeycomb-like structure. That structure becomes a "2-form" 
when it is supplemented by instructions (see arrows in Figure 4. 1 )  that give a "sense 
of circulation" to each tube of the honeycomb ( order of factors in the "wedge 
product" of equation 4.2 ; dy I\ dz = - dz I\ dy) .  The 2-form F in the example 
differs from this "basis 2-form" dy I\ dz only in this respect, that where dy I\ dz 
had one tube, the field 2-form has Bx tubes. 

When one considers a tubular structure that twists and turns on its way through 
spacetime, one must have more components to describe it. The 2-form for the general 
electromagnetic field can be written as 

F = � � /\ � + � � /\ � + � � /\ � + � � /\ � 

+ � � /\ � + � � /\ � �� 

(6 components, 6 basis 2-forms) . 
A I -form is a machine to produce a number out of a vector (bongs of a bell as 

the vector pierces successive surfaces) . A 2-form is a machine to produce a number 
out of an oriented surface (surface with a sense of circulation indicated on it : Figure 
4. 1 ,  lower right) . The meaning is as clear here as it is in elementary magnetism: 

E lectromagn et ic 2-fo rm 
expressed in terms of exter ior  
products 

A 2-fo rm as a honeyco m b  of 
tu bes with a sense of 
c i rcu lat ion 

A 2-fo rm as a mach i n e  to 
produce a n u m ber out  of a n  
or iented su rface 
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Figure 4. 1. Construction of the 2-form for the electromagnetic field F = Bx dy /\ dz out of the I -forms dy and 
dz by "wedge multiplication" (formation of honeycomb-like structure with sense of circulation indicated by arrows). A 2-form is a "machine to construct a number out of an oriented surface" (illustrated by sample surface enclosed by arrows at lower right; number of tubes intersected by this surface is 

f F =  1 8 ;  
(Uus surface) Faraday's concept of "magnetic flux"). This idea of 2-form machinery can be connected to the "tensoras-machine" idea of Chapter 3 as follows. The shape of the oriented surface over which one integrates 

F does not matter, for small surfaces. All that affects JF is the area of the surface, and its orientation. Choose two vectors, u and v, that lie in the surface. They form two legs of a parallelogram, whose orientation (u followed by v) and area are embodied in the exterior product u /\ v. Adjust the lengths of u and v so their parallelogram, u /\ v, has the same area as the surface of integration. Then 
J F = J F = F(u, v). 

surface u A v  .._,_., machinery idea1 t t -machinery idea of this chapte:J---1 t of Chapter 3 
Exercise: derive this result, for an infinitesimal surface u /\ v and for general F, using the formalism of Box 4 . 1 .  
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the number of Faraday tubes cut by that surface. The electromagnetic 2-form F 
or Faraday described by such a "tubular structure" (suitably abstracted; Box 4.2) 
has a reality and a location in space that is independent of all coordinate systems 
and all artificial distinctions between "electric" and "magnetic" fields. Moreover, 
those tubes provide the most direct geometric representation that anyone has ever 
been able to give for the machinery by which the electromagnetic field acts on a 
charged particle. Take a particle of charge e and 4-velocity 

(4.5) 

Let this particle go through a region where the electromagnetic field is described 
by the 2-form 

F = Bx dy I\ dz (4.6) 

of Figure 4.1. Then the force exerted on the particle (regarded as a I -form) is the 
contraction of this 2-form with the 4-velocity (and the charge); 

j, = dp/dT = eF(u) e(F, u), (4.7) 

as one sees by direct evaluation, letting the two factors in the 2-form act in turn 
on the tangent vector u: 

j, = eBx(dy I\ dz, u) 
= eB,,{dy(dz, u) - dz(dy, u) } 
= eB,,{dy(dz, uzez) - dz( dy, uYey) }  

or 

(4.8) 

Comparing coefficients of the separate basis I -forms on the two sides of this equa
tion, one sees reproduced all the detail of the Lorentz force exerted by the magnetic 
field Bx : 

(4.9) 

By simple extension of this line of reasoning to the general electromagnetic field, 
one concludes that the time-rate of change of momentum ( I form) is equal to the charge 
multiplied by the contraction of the Faraday with the 4-velocity. Figure 4.2 illustrates 
pictorially how the 2-form, F, serves as a machine to produce the I -form, j,, out 
of the tangent vector, eu. 

(continued on page 105) 

Lorentz force as contract ion 
of electromagnetic 2-fo rm 
with particle's 4-velocity 
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Box 4. 2 ABSTRACT I N G  A 2-FORM FROM T H E  CON CEPT OF " H ONEYCOM B

LI KE STRU CTU RE, " IN 3-SPACE AN D IN SPACET I M E  

Open up a cardboard carton containing a dozen 
bottles, and observe the honeycomb structure of 
intersecting north-south and east-west cardboard 
separators between the bottles. That honeycomb 
structure of "tubes" ("channels for bottles") is a 
fairly apt illustration of a 2-form in the context 
of everyday 3-space. It yields a number (number 
of tubes cut) for each choice of smooth element 
of 2-surface slicing through the three-dimensional 
structure. However, the intersecting cardboard 
separators are rather too specific. All that a true 
2-form can ever give is the number of tubes sliced 
through, not the "shape" of the tubes. Slew the 
carton around on the floor by 45 ° .  Then half the 
separators run NW-SE and the other half run 
NE-SW, but through a given bit of 2-surface fixed 
in 3-space the count of tubes is unchanged. There
fore, one should be careful to make the concept 
of tubes in the mind's eye abstract enough that 
one envisages direction of tubes (vertical in the 
example) and density of tubes, but not any specific 
location or orientation for the tube walls. Thus all 
the following representations give one and the 
same 2-form, u :  

u = B dx /\ dy; 

u = B(2 dx) /\ G dy) 

(NS cardboards spaced twice as close as before ; EW cardboards spaced twice as wide as before) ; 
u = B d ( x ;!) /\ d ( x Yz) 
(cardboards rotated through 45 ° ) ;  

a dx + /3 dy y dx + o dy u - B ---,----:-'= /\ -------,-- (a.o _ f3y)ll2 (a.o _ f3y)ll2 (both orientation and spacing of "cardboards" changing from point to pomt, with all four 

functions, o:, /3, y, and o ,  depending on posit10n) . 

What has physical reality, and constitutes the real 
geometric object, is not any one of the I -forms just 
encountered individually, but only the 2-form u 
itself. This circumstance helps to explain why in 
the physical literature one sometimes refers to 
"tubes of force" and sometimes to "lines of force." 
The two terms for the same structure have this in 
common, that each yields a number when sliced 
by a bit of surface. The line-of-force picture has 
the advantage of not imposing on the mind any 
specific structure of "sheets of cardboard"; that is, 
any specific decomposition of the 2-form into the 
product of I -forms. However, that very feature is 
also a disadvantage, for in a calculation one often 
finds it useful to have a well-defined representa
tion of the 2-form as the wedge product of I -forms. 
Moreover, the tube picture, abstract though it 
must be if it is to be truthful, also has this advan
tage, that the orientation of the elementary tubes 
(sense of circulation as indicated by arrows in 
Figures 4.1 and 4.5, for example) lends itself to 
ready visualization. Let the "walls" of the tubes 
therefore remain in all pictures drawn in this book 
as a reminder that 2-forms can be built out of 
I -forms; but let it be understood here and here
after how manyfold are the options for the indi
vidual I -forms! 

Turn now from three dimensions to four, and 
find that the concept of "honeycomb-like struc
ture" must be made still more abstract. In three 
dimensions the arbitrariness of the decomposition 
of the 2-form into I -forms showed in the slant and 
packing of the "cardboards," but had no effect on 
the verticality of the "channels for the bottles" 
("direction of Faraday lines of force or tubes of 
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force"); not so in four dimensions, or at least not in the generic case in four dimensions. In special cases, the story is almost as simple in four dimensions as in three. An example of a special case is once again the 2-form a = B dx I\ dy, with all the options for decomposition into I -forms that have already been mentioned, but with every option giving the same "direction" for the tubes. If the word "direction" now rises in status from "tube walls unpierced by motion in the direction of increasing z" to "tube walls unpierced either by motion in the direction of increasing z, or by motion in the direction of increasing t, or by any linear combination of such motions," that is a natural enough consequence of adding the new dimension. Moreover, the same simplicity prevails for an electromagnetic plane wave. For example, let the wave be advancing in the z-direction, and let the electric polarization point in the x-direction; then for a monochromatic wave, one has 
Ex = BY

= E0 cos w(z - t) = - F01 = F31 , 

and all components distinct from these equal zero. 
Faraday is 

F = F01 dt I\ dx + F31 dz I\ dx 
= E0 cos w(z - t) d(z - t) I\ dx, which is again representable as a single wedge product of two I -forms. Not so in general! The general 2-form in four dimensions consists of six distinct wedge products, 

F = F01 dt I\ dx + F02 dt I\ dy + · · · 
+ F23 dy I\ dz. It is too much to hope that this expression will reduce in the generic case to a single wedge product of two I -forms ("simple" 2-form) . It is not even 
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true that it will. It is only remarkable that it can be reduced from six exterior products to two (details in exercise 4.1 ); thus, 
F = nI I\ ( 1 + n2 I\ (2. Each product n i I\ ( i individually can be visualized as a honeycomb-like structure like those depicted in Figures 4.1,  4.2, 4.4, and 4.5. Each such structure individually can be pictured as built out of intersecting sheets (I -forms), but with such details as the tilt and packing of these 1-forms abstracted away. Each such structure individually gives a number when sliced by an element of surface. What counts for the 2-form F, however, is neither the number of tubes of n 1 /\ ( 1 cut by the surface, nor the number of tubes of n2 /\ (2 cut by the surface, but only the sum of the two. This sum is what is referred to in the text as the "number of tubes of F" cut by the surface. The contribution of either wedge product individually is not well-defined, for a simple reason: the decomposition of a six-wedge-product object into two wedge products, miraculous though it seems, is actually far from unique ( details in exercise 4.2). In keeping with the need to have two products of I -forms to represent the general 2-form note that the vanishing of dF ("no magnetic charges") does not automatically imply that d(n 1 I\ ( 1) or 

d(n2 I\ (2) separately vanish. Note also that any spacelike slice through the general 2-form F (reduction from four dimensions to three) can always be represented in terms of a honeycomb-like structure ("simple" 2-form in three dimensions; Faraday's picture of magnetic tubes of force). Despite the abstraction that has gone on in seeing in all generality what a 2-form is, there is no bar to continuing to use the term "honeycomb-like structure" in a broadened sense to describe this object; and that is the practice here and hereafter. 



F 

Contract eu 
with ------------► 

- 3  

+ 

Figure 4. 2. 

The Faraday or 2-form F of the electromagnetic field is a machine to produce a I -form (the time-rate 
of change of momentum p of a charged particle) out of a tangent vector (product of charge e of the 
particle and its 4-velocity u). In spacetune the general 2-form is the "superposition" (see Box 4.2) of 
two structures like that illustrated at the top of this diagram, the tubes of the first being tilted and packed 
as indicated, the tubes of the second being tilted in another direction and having a different pack
ing density. 
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§4. 3 .  FORMS I LLUMI NATE ELECTROMAGNETI SM, AND 
ELECTROMAGNETI SM I LLUMINATES FORMS 
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All electromagnetism allows itself to be summarized in the language of 2-forms, 
honeycomb-like "structures" (again in the abstract sense of "structure" of Box 4.2) 
of tubes filling all spacetime, as well when spacetime is curved as when it is flat. 
In brief, there are two such structures, one Faraday = F, the other Maxwell = *F, 
each dual ("perpendicular," the only place where metric need enter the discussion) 
to the other, each satisfying an elementary equation: 

(4.10) 

("no tubes of Faraday ever end") and 

d *F = 477 *J ( 4. 1 1) 

("the number of tubes of Maxwell that end in an elementary volume is equal to 
the amount of electric charge in that volume"). To see in more detail how this 
machinery shows up in action, look in turn at: (1) the definition of a 2-form; (2) 
the appearance of a given electromagnetic field as Faraday and as Maxwell; (3) 
the Maxwell structure for a point-charge at rest; (4) the same for a point-charge 
in motion; (5) the nature of the field of a charge that moves uniformly except during 
a brief instant of acceleration; (6) the Faraday structure for the field of an oscillating 
dipole; (7) the concept of exterior derivative; (8) Maxwell's equations in the language 
of forms; and (9) the solution of Maxwell's equations in flat spacetime, using a I -form 
A from which the Lienard-Wiechert 2-form F can be calculated via F = dA . 

A 2-form, as illustrated in Figure 4.1, is a machine to construct a number ("net 
number of tubes cut") out of any "oriented 2-surface" (2-surface with "sense of 
circulation" marked on it): 

of tubes = f F. ( 
number

) 
cut surface 

For example, let the 2-form be the one illustrated in Figure 4.1 

F = Bx dy I\ dz, 

(4.12) 

and let the surface of integration be the portion of the surface of the 2-sphere 
x2 + y2 + z2 = a2, t = constant, bounded between 0 = 70 ° and 0 = 110 ° and 
between cp = 0 ° and cp = 90 ° ("Atlantic region of the tropics"). Write 

y = a sin 0 sin cp, 
z = a cos 0, 

dy = a (cos 0 sin cp d0 + sin 0 cos cp dcp), 
dz = -a sin 0 d0, 

dy I\ dz = a2 sin20 cos cp d0 I\ dcp. (4.13) 

P review of key po i nts i n  
e lectromag netism 

A 2-fo rm as mach i n e  for 
n u m ber  of tu bes cut 

N u m ber  of tu bes cut 
ca lcu lated in one exam ple 
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D 

B 

Figure 4 . 3 .  
Spacehke slices through Faraday, the electromagnetic 2-form, a geometric object, a honeycomb o f  tubes 
that pervades all spacetime ("honeycomb" in the abstract sense spelled out more precisely in Box 4.2). 
The surfaces in the drawing do not look like a 2-form (honeycomb), because the second family of surfaces 
making up the honeycomb extends in the spatial direction that is suppressed from the drawing. Diagram 
A shows one spacelike slice through the 2-form (time increases upwards in the diagram). In diagram 
B, a projection of the 2-form on this spacelike hypersurface gives the Faraday tubes of magnetic force 
in tlus three-dimensional geometry (if the suppressed dimension were restored, the tubes would be tubes, 
not channels between lines). Diagram C shows another spacehke slice (hypersurface of simultaneity for 
an observer in a different Lorentz frame). Diagram D shows the very different pattern of magnetic tubes 
in this reference system. The demand that magnetic tubes of force shall not end (V · B = 0), repeated 
over and over for every spacelike slice through Faraday, gives everywhere the result oB/ot = - V X E. 
Thus (magnetostatics) + (covariance) --+- (magnetodynamics) .  Similarly-see Chapters 17 and 2 1 -
(geometrostatics) + ( covariance) --+- (geometrodynamics). 

The structure d0 I\ d0 looks like a "collapsed egg-crate" (Figure 1 .4, upper right) and has zero content, a fact formally evident from the vanishing of a I\ p = - P  I\ a when a and /J are identical. The result of the integration, assuming constant Bv is 
110 ° 90 ° 

f F = a2Bx f sin20 d0 f cos cp dcp 
surface 70 ° 0 ° 

(4 .14) 
It is not so easy to visualize a pure electric field by means of its 2-form F (Figure 4 .4, left) as it is to visualize a pure magnetic field by means of its 2-form F (Figures 4.1,  4 .2, 4 .3). Is there not some way to treat the two fields on more nearly the same footing? Yes, construct the 2-form * F (Figure 4 .4, right) that is dual ("perpendicular"; Box 4 .3 ; exercise 3 .14) to F. 
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F 

y 

X 

Figure 4.4.  
The Faraday structure 

*F 

I I I F = 2 Fµ,v dxµ, /\ dx" = 2 F01 
dt /\ dx + 2 F10 dx /\ dt = Ex dx /\ dt 
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associated with an electric field in the x-direction, and the dual ("perpendicular") Maxwell honeycomb
like 2-form 

I *F = 2 * F,,,v dxµ, /\ dx" = *F23 dx2 /\ dx3 = F01 dx2 /\ dx3 = F10 dx2 /\ dx3 = Ex dy /\ dz. 

Represent in geometric form the field of a point-charge of strength e at rest at the origin. Operate in flat space with spherical polar coordinates :  
ds2 = - dr2 = g dxµ dx' µv 

- dt2 + dr2 + r2 d82 + r2 sin28 d<p
2 • (4 . 1 5 )  The electric field in the r-direction being Er = e/r2 , it follows that the 2-form F or Faraday is 1 e F = - F dxµ I\ dx' = - Er dt I\ dr = - -2 dt I\ dr. 

2 � r Its dual, according to the prescription in exercise 3 . 14 ,  is Maxwell: 

Maxwell = * F = e sin 8 d8 I\ d<p , as illustrated in Figure 4.5. 

(4 . 16)  

Pattern of tubes in dua l 
structure Maxwell for 

(4 . 17) point-charge at rest 

Take a tour in the positive sense around a region of the surface of the sphere illustrated in Figure 4.5 . The number of tubes of *F encompassed in the route will be precisely ( number ) ( solid ) of tubes = e angle · The whole number of tubes of *F emergent over the entire sphere will be 4'1Te, in conformity with Faraday's picture of tubes of force. 



Field of a po int-charge in 
motion 
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Box 4. 3 DUALITY O F  2-FORM S I N  S PACETIME 

Given a general 2-form (containing six exterior or wedge products) 
F = E,, dx I\ dt + Ev dy I\ dt + · · · + Bz dx I\ dy, one gets to its dual ("perpendicular") by the prescription 

*F = - B,, dx I\ dt - · · · + Ev dz I\ dx + Ez dx I\ dy. 

Dua l ity Rotations 

Note that the dual of the dual is  the negative of the original 2-form; thus 
* *F = - E,, dx I\ dt - · · · - Bz dx  I\ dy = - F. In this sense * has the same property as the imaginary number i: * *  = ii = - 1.  Thus one can write 

e *" = cos a + *sin a . This operation, applied to F, carries attention from the generic 2-form in its simplest representation (see exercise 4.1) 
F = E,, dx I\ dt + B,, dy I\ dz to another "duality rotated electromagnetic field" 

e *"F = (E,, cos a - B,, sin a) dx I\ dt + (B,, cos a + E,, sin a) dy I\ dz. If the original field satisfied Maxwell's empty-space field equations, so does the new field. With suitable choice of the "complexion" a, one can annul one of the two wedge products at any chosen point in spacetime and have for the other 
(B,,2 + E,,2) 112 dy I\ dz. 

How can one determine the structure of tubes associated with a charged particle moving at a uniform velocity? First express * F in rectangular coordinates moving with the particle (barred coordinates in this comoving "rocket" frame of reference; unbarred coordinates will be used later for a laboratory frame of reference). The relevant steps can be listed: 
(a) 

*F = e sin 0 d0 I\ dip = - e(d cos O') I\ dip; 
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(b) 

(c) 

cj5 = arctan � ; 
X 

Figure 4.5.  
The field of 2-forms Maxwell = *F = e sin 0 d0 I\ de/> that 
describes the electromagnetic field of a charge e at rest at the 
origin. This picture is actually the intersection of *F with a 
3-surface of constant time t; i.e., the time direction is sup
pressed from the picture. 

_ x dy - y dx  
dffJ = - 2  - 2  ; X + y 

- z 
cos O = - ;  - d(cos O) = -!!z + � (x dx  + y dy + zdz) ; r r 

( d) combine to find 

*F = (e/r3)(x dy /\  dz + y dz /\ dx + zdx I\ dy) (4. 18) 

( electromagnetic field of point charge in a comoving Cartesian system; spherically 
symmetric). Now transform to laboratory coordinates :  

(a) 

(b) 

velocity parameter a 

velocity /3 = tanh a 

1 -;:=== = cosh a, Vl - /32 
---;=/3== = sinh a 
Vl - /32 

[ t = t cosh a - x sinh a, 
� =  - t si�h a  + x cosh a, 
y = y  z = z;  

r = [(x cosh a - t sinh a)2 + y2 + z2] 112 ; 

(c) *F = (e/r3)[(x cosh a - t sinh a) dy I\ dz + y dz I\ 
(cosh a dx - sinh a dt) + z(cosh a dx - sinh a dt) I\ dy] ;  (4. 19) 



H ow an accelerat ion causes 
rad iat ion 
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(d) compare with the general dual 2-form, 

*F = E,, dy A dz + EY dz A dx + Ez dx A dy 
+ B,, dt A dx + By dt A dy +  Bz dt A dz; 

and get the desired individual field components 

(e) 
[
E,, = (ejr3)(x cosh a - t sinh a), 
EY = (e/r3)y cosh a, 
Ez = (e/r3)z cosh a, 

B,, = 0, 
BY = - (ejr3)z sinh a ,  
Bz = (e/r3)y sinh a .  

One can verify that the invariants 

B2 - £2 = _!__ F px/3 
2 a/3 , 

E · B = _!__ F * F"'/3 
4 a/3 

(4 .20) 

(4.2 1 )  

(4 .22) 

have the same value in the laboratory frame as in the rocket frame, as required. 
Note that the honeycomb structure of the differential form is not changed when 
one goes from the rocket frame to the laboratory frame. What changes is only the 
mathematical formula that describes it. 

§4.4 .  RAD IATION FIELDS 

The Maxwell structure of  tubes associated with a charge in uniform motion i s  more 
remarkable than it may seem at first sight, and not only because of the Lorentz 
contraction of the tubes in the direction of motion. The tubes arbitrarily far away 
move on in military step with the charge on which they center, despite the fact that 
there is no time for information "emitted" from the charge "right now" to get to 
the faraway tube "right now." The structure of the faraway tubes "right now" must 
therefore derive from the charge at an earlier moment on its uniform-motion, 
straight-line trajectory. This circumstance shows up nowhere more clearly than in 
what happens to the field in consequence of a sudden change, in a short time LIT, 
from one uniform velocity to another uniform velocity (Figure 4.6) .  The tubes have 
the standard patterns for the two states of motion, one pattern within a sphere of 
radius r, the other outside that sphere, where r is equal to the lapse of time ("cm 
of light-travel time") since the acceleration took place. The necessity for the two 
patterns to fit together in the intervening zone, of thickness Llr = LlT, forces the field 
there to be multiplied up by a "stretching factor," proportional to r. This factor is 
responsible for the well-known fact that radiative forces fall off inversely only as 
the first power of the distance (Figure 4.6). 

When the charge continuously changes its state of motion, the structure of the 
electromagnetic field, though based on the same simple principles as those illustrated 
in Figure 4.6, nevertheless looks more complex. The following is the Faraday 2-form 
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..._ _ __________________ ��:� ____  ___.. __ _ 
-/3  

Figu re 4 . 6 .  
Mechanism of radiation. 1 .  1 .  Thomson's way to understand why the strength of an electromagnetic wave 
falls only as the inverse first power of distance r and why the amplitude of the wave varies (for low 
velocities) as sin O (maximum in the plane perpendicular to the line of acceleration). The charge was 
moving to the left at uniform velocity. Far away from it, the Imes of force continue to move as if this 
uniform velocity were going to continue forever (Coulomb field ofpoint-<.:harge in slow motion). However, 
closer up the field is that of a point-change moving to the right with uniform velocity ( l/r2 dependence 
of strength upon distance). The change from the one field pattern to another is confined to a shell of 
thickness J.,. located at a distance r from the point of acceleration (amplification of field by "stretching 
factor" r sin O J/3/ J-r , see text). We thank C. Teitelboim for the construction of this diagram 

for the field of an electric dipole of magnitude Pi oscillating up and down parallel F ie ld  of an osc i l lat i n g d ipo le  to the z-axis: 
F = Ex dx A dt + . · · + Bx dy A dz + . . .  = real part of {Pieiwr- iwt [2 cos 0 (J... - iw ) dr A dt + sin 0 (J...

3 
- i� - _w_2 ) r d0 A dt 

r
3 

r
2 r r r '---------' gives E.,. 

+ sin 0 ( - iw - �) dr A r d0] }  r2 r gives B<t> 

gives £8 

(4 .23) 



Tak ing exter ior  der ivative 
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and the dual 2-form Maxwell = *F is 

*F = - Bx dx I\ dt - · · · + Ex dy I\ dz + .. . = real part of {Pieiwr- iwt 

[ sin 0 ( � - �} dt I\ r sin 0 def> 

gives B</J 

+ 2 cos 0 C\ - �� } r d0 I\ r sin 0 def> 

gives Er 

+ sin 0 (__!_ - iw - �} r sin 0 def> I\ dr] } .  r3 r2 r 

gives E6 

§4. 5 .  MAXWELL'S EQUATI ONS 

(4.24) 

The general 2-form F is written as a superposition of wedge products with a 
factor ½, 

(4.25) 

because the typical term appears twice, once as Fxy dx I\ dy and the second time 
as Fyx dy I\ dx, with Fyx = - Fxy and dy I\ dx = - dx I\ dy. 

If differentiation ("taking the gradient" ; the operator d) produced out of a scalar 
a I -form, it is also true that differentiation (again the operator d, but now generally 
known under Cartan's name of "exterior differentiation") produces a 2-form out 
of the general I -form; and applied to a 2-form produces a 3-form; and applied to 
a 3-form produces a 4-form, the form of the highest order that spacetime will 
accommodate. Write the general /-form as 

(4.26) 

where the coefficient <f>a1a2 
• • •  a, , like the wedge product that follows it, is antisym

metric under interchange of any two indices. Then the exterior derivative of <P is 

1 acf> 
d<P - "' 1

"'
2 · · ·"'r dx "' 0 I\ dx "' 1 I\ dx"' 2 I\ · · · I\ dx "'r. 

f! axao (4.27) 

Take the exterior derivative of Faraday according to this rule and find that it 
vanishes, not only for the special case of the dipole oscillator, but also for a general 
electromagnetic field. Thus, in the coordinates appropriate for a local Lorentz frame, 
one has 
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dF = d(Ex dx I\ dt + · · · + Bx dy I\ dz + · · · )  

( aE aE aE aE 
) = __ x dt + __ x dx + __ x dy + __ x dz I\ dx I\ dt 

a t ax ay az 

+ • • • (5 more such sets of 4 terms each) . . . .  

1 1  3 

(4 .28) 

Note that such a term as dy I\ dy I\ dz is automatically zero ("collapse of egg-crate 
cell when stamped on"). Collect the terms that do not vanish and find 

( aB aB aB ) dF = __ x + __ Y + __ z dx I\ dy I\ dz 
ax ay az 

( 
a Bx aEz aEY ) + - + - - - dt I\ dy I\ dz 
a t  ay az 

( 
a By a Ex aEZ ) + -- + -- - - dt I\ dz I\ dx 
a t az ax 

( 
aBZ aEY a Ex ) + - + - - - dt I\ dx I\ dy. 
a t ax ay 

Each term in this expression is familiar from Maxwell's equations 

div B = V · B  = 0 

and 
curl E = V X E =  - B. 

(4 .29) 

Each vanishes, and with their vanishing Faraday itself is seen to have zero exterior 
derivative :  

dF = 0. (4 .30) 

In other words, "Faraday is a closed 2-form" ; "the tubes of F nowhere come to Faraday structu re tu bes 

an end." nowhere end 

A similar calculation gives for the exterior derivative of the dual 2-form Maxwell 
the result 

d *F = d( - Bx dx I\ dt - · · · + Ex dy I\ dz +  · · · ) 

( aE aE aE
) = __ x + __ Y + __ z dx I\ dy I\ dz 

ax ay az 

( 
a Ex aBz a By ) + - - - + - dt I\ dy I\ dz 
a t ay az 

+ . . .  
= 4'1T(p dx I\ dy I\ dz 

- Jx dt I\ dy I\ dz 
- ly dt I\ dz I\ dx 
- Jz dt I\ dx I\ dy) = 4'77 *J; 

d *F = 4'77 *J. 

Maxwell structure ·  dens i ty 
of tube end ings  g iven by 

( 4 .3 1 ) charge-cu rrent 3-form 



Dua l ity:  the on ly  p lace i n  
e lectromag net ism where 
metr ic m ust enter 

Closed 2-form contrasted 
with genera l  2-fo rm 
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In empty space this exterior derivative, too, vanishes; there Maxwell is a closed 2-form; the tubes of *F, like the tubes of F, nowhere come to an end. In a region where charge is present, the situation changes. Tubes of Maxwell take their origin in such a region. The density of endings is described by the 3-form * J = charge, a "collection of eggcrate cells" collected along bundles of world lines. The two equations 
dF = 0  and 

d *F = 4'7T *J 

summarize the entire content of Maxwell's equations in geometric language. The forms F = Faraday, and *F = Maxwell, can be described in any coordinates one pleases-or in a language (honeycomb and egg-crate structures) free of any reference whatsoever to coordinates. Remarkably, neither equation makes any reference whatsoever to metric. As Hermann Weyl was one of the most emphatic in stressing (see also Chapters 8 and 9), the concepts of form and exterior derivative are metricfree. Metric made an appearance only in one place, in the concept of duality ("perpendicularity") that carried attention from F to the dual structure *F. 

§4 . 6 . EXTERI OR D ERIVATIVE AND CLOSED FORMS 

The words "honeycomb" and "egg crate" may have given some feeling for the geometry that goes with electrodynamics. Now to spell out these concepts more clearly and illustrate in geometric terms, with electrodynamics as subject matter, what it means to speak of "exterior differentiation." Marching around a boundary, yes ; but how and why and with what consequences? It is helpful to return to functions and ! -forms, and see them and the 2-forms Faraday and Maxwell and the 3-form 
charge as part of an ordered progression (see Box 4.4). Two-forms are seen in this box to be of two kinds : (1) a special 2-form, known as a "closed" 2-form, which has the property that as many tubes enter a closed 2-surface as emerge from it (exterior derivative of 2-form zero; no 3-form derivable from it other than the trivial 
zero 3-form!); and (2) a general 2-form, which sends across a closed 2-surface a non-zero net number of tubes, and therefore permits one to define a nontrivial 3-form ("exterior derivative of the 2-form"), which has precisely as many egg-crate cells in any closed 2-surface as the net number of tubes of the 2-form emerging from that same closed 2-surface (generalization of Faraday's concept of tubes of force to the world of spacetime, curved as well as flat). 

(continued on page 120) 
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Box 4. 4 THE PROGRESSION OF FORM S AN D EXTERIOR DERIVATIVES 

0-Form or Scalar, f 

An example in the context of 3-space and Newtonian physics is temperature, T(x, y, z), and in the context of spacetime, a scalar potential, cf>(t, x, y, z) . 

General 1 -Form {J = f3a dxa 

From Scalar to 1 -Form Take the gradient or "exterior derivative" of a scalar f to obtain a special I -form, y = df Comments: (a) Any additive constant included in f is erased in the process of differentiation; the quantity n in the diagram at the left is unknown and irrelevant. (b) The I -form y is special in the sense that surfaces in one region "mesh" with surfaces in a neighboring region ("dosed I -form"). ( c) Line integral J� df is independent of path for any class of paths equivalent to one another under continuous deformation. (d) The I -form is a machine to produce a number ("bongs of bell" as each successive integral surface is crossed) out of a displacement (approximation to concept of a tangent vector). 

This is a pattern of surfaces, as illustrated in the diagram at the right ; i.e., a machine to produce a number ("bongs of bell" ; ( /J, u)) out of a vector. A I -form has a reality and position in space independent of all choice of coordinates. Surfaces do not ordinarily mesh. Integral J/J around indicated closed loop does not give zero ("more bongs than anti bongs"). 
o/3 

From 1 -Form to 2-Form ( = d{J = __ a dxµ I\ dx a oxµ f is a pattern of honeycomb-like cells, with a direction of circulation marked on each, so stationed 
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Box 4 . 4  (con tinued) 

that the number of cells encompassed in the dotted 
closed path is identical to the net contribution 
(excess of bongs over antibongs) for the same path 
in the diagram of /J above. The "exterior deriva
tive" is defined so this shall be so; the generalized 
Stokes theorem codifies it. The word "exterior" 
comes from the fact that the path goes around the 
periphery of the region under analysis. Thus the 
2-form is a machine to get a number (number of 
tubes, (.(, u I\ v)) out of a bit of surface (u I\ v) 
that has a sense of circulation indicated upon 
it. The 2-form thus defined is special in this sense : 
a rubber sheet "supported around its edges" by 
the dotted curve or any other closed curve is 
crossed by the same number of tubes when: (a) 
it bulges up in the middle; (b) it is pushed down 
in the middle; (c) it experiences any other continu
ous deformation. The Faraday or 2-form F of 
electromagnetism, always expressible as F = dA 
(A = 4-potential, a I -form), also has always this 
special property ("conservation of tubes"). 

0-Form to 1-Form to 2-Form? No !  

Go from scalar f to I -form y = df The next step 
to a 2-form a is vacuous. The net contribution of 
the line integral f y around the dotted closed path 
is automatically zero. To reproduce that zero result 
requires a zero 2-form. Thus a = dy = ddf has 
to be the zero 2-form. This result is a special in
stance of the general result dd = 0. 

General 2-Form O' = � aa/3 dxa I\ dxf3 , with aaf3 = - a13a 

Again, this is a honeycomb-like structure, and 
again a machine to get a number (number of 
tubes, (a, u I\ v)) out of a surface (u I\ v) that 
has a sense of circulation indicated on it. It is 
general in the sense that the honeycomb structures 
in one region do not ordinarily mesh with those 
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in  a neighboring region. In consequence, a closed 2-surface, such as the box-like surface indicated by dotted lines at the right, is ordinarily crossed by a non-zero net number of tubes. The net number of tubes emerging from such a closed surface is, however, exactly zero when the 2-form is the exterior derivative of a 1 -form. 

From 2-Form to 3-Form µ = da = 00 1a.B I dxY I\ dxa I\ dx.B,  
oxY 

where dxY I\ dxa I\ dx.B 3 !  dx [Y © dxa © dx .Bl 

This egg-crate type of structure is a machine to get a number (number of cells (µ, u I\ v I\ w)) from a volume (volume u I\ v I\ w within which one counts the cells). A more complete diagram would provide each cell and the volume of integration itself with an indicator of orientation ( analogous to the arrow of circulation shown for cells of the 2-form). The contribution of a given cell to the count of cells is + I or - 1 , according as the orientation indicators have same sense or opposite sense. The number of egg-crate cells of 
µ = du in any given volume (such as the volume indicated by the dotted lines) is tailored to give precisely the same number as the net number of tubes of the 2-form u (diagram above) that emerge from that volume (generalized Stokes theorem). For electromagnetism, the exterior derivative of 
Faraday or 2-form F gives a null 3-form, but the exterior derivative of Maxwell or 2-form *F gives 47T times the 3-form *J of charge : * J = p dx I\ dy I\ dz - J:c dt I\ dy I\ dz - Jv dt I\ dz I\ dx - Jz dt I\ dx I\ dy. 

1 1  7 
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Box 4 .4  (continued) 

From 1 - Form to 2-Form to 3-Form ? N o !  

Starting with a I -form ( electromagnetic 4-potential) , construct its exterior deriva
tive, the 2-form F = dA (Faraday) . The tubes in this honeycomb-like structure never 
end. So the number of tube endings in any elementary volume, and with it the 3 -form 
dF = ddA ,  is automatically zero. This is another example of the general result that 
dd = 0.  

From 2-Form to 3-Form to 4-Form? No!  

Starting with 2-form *F (Maxwell), construct its exterior derivative, the 3-form 
477 • J. The cells in this egg-crate type of structure extend in a fourth dimension 
("hypertube"). The number of these hypertubes that end in any elementary 4-vol
ume, and with it the 4-form 

d(477 *J) = dd *F, 

is automatically zero, still another example of the general result that dd = 0 .  This 
result says that 

( 
ap a1 a1 a1 ) 

d *J = - + _x + _Y + _z dt A dx A dy A dz = 0 
at ax ay az 

("law of conservation of charge") . Note : 

dxa A dx/3 A dxY A dx 8 4 !  dx [a 0 dx/3 0 dxY 0 dx 81 . 

This implies dt A dx A dy A dz = c. 

From 3-Form to 4-Form r = di; = o v la,B y l  dx 0 A dx a A dx /3  A dxY 
ox 0 

This four-dimensional "super-egg-crate" type structure is a machine to get a number 
(number of cells, (r, n A u  A v A w)) from a 4-volume n A u A v A w. 
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From 4-Form to 5-Form ? No ! 

1 1  9 

Spacetime, being four-dimensional, cannot accommodate five-dimensional egg-crate structures. At least two of the dxµ 's in dxa I\ dx fJ I\ dxY I\ dx 8 I\ dx e must be the same; so, by antisymmetry of " /\ ," this "basis 5-form" must vanish. 
Results of Exter ior D ifferentiat ion, Su m marized 

0-form f I -form df 2-form ddf 0 3-form 4-form 5-form? No! 
A 

F =  dA 
dF = ddA 0 *F 4'17 *J = d *F d(4'1T *J) = dd *F 0 LI 

T = c/LI 
dr 0 

New Forms from Old by Taking Dual (see exercise 3 . 14) 
Dual of scalar f is 4-form: *f = f dx0 I\ dx 1 I\ dx2 I\ dx3 = Jc. 

µ 
dµ 0 

Dual of I -form J is 3-form: *J = 1° dx 1 I\ dx2 I\ dx3 - J1 dx2 I\ dx3 I\ dx0 + J2 dx3 I\ dx0 I\ dx1 - 13 dx0 I\ dx 1 I\ dx2 . Dual of 2-form F is 2-form: *F = F lafJ IE (J I  I dx µ  I\ dx" where a µv , FafJ = 1Ja/\1JfJ s FM . Dual of 3-form K is I -form: *K = K012 dx3 - K123 dx0 + K230 dx 1 - K301 dx2 , where KafJy = 17a�fJ"17YAKµv/\ · Dual of 4-form L is a scalar : L = L0123 
dx0 I\ dx1 I\ dx2 I\ dx3 ; 

*L = Lo 1 2 3  = - Lo 12 3 • Note 1: This concept of duality between one form and another is to be distinguished from the concept of duality between the vector basis ea and the 1 form basis wa of a given frame. The two types of duality have nothing whatsoever to do with each l other' 
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Box 4 .4  (con tinued) 

Note 2: In spacetime, the operation of taking the dual, applied twice, leads back to the original form for forms of odd order, and to the negative thereof for forms of even order. In Euclidean 3-space the operation reproduces the original form, regardless of its order. 
Dual ity P l us Exterior D ifferentiation 

Start with scalar <j>. Its gradient d<j> is a 1-form. Take its dual, to get the 3-form *d<j>. Take its exterior derivative, to get the 4-form d *d<j>. Take its dual, to get the scalar Ocp _ - *d *d<j>. Verify by index manipulations that □ as defined here is the wave operator; i.e., in any Lorentz frame, Ocp = </> ,a = - (a2cp/at2) + V 2cp. ,a 
Start with 1 form A .  Get 2-form F = dA .  Take its dual *F = *dA ,  also a 2-form. Take its exterior derivative, obtaining the 3-form d *F (has value 4'17 *J in electromagnetism). Take its dual, obtaining the 1 -form *d *F = *d *dA = 4?TJ ("Wave equation for electromagnetic 4-potential"). Reduce in index notation to 

F , P = A , P 

-
A , P = 4?T] . µv v,µ µ, v  µ [More in Flanders (1963) or Misner and Wheeler (1957); see also exercise 3.17.] 

§4. 7 .  D I STANT ACTION FROM LOCAL LAW 

Differential forms are a powerful tool in electromagnetic theory, but full power requires mastery of other tools as well. Action-at-a-distance techniques ("Green's functions," "propagators") are of special importance. Moreover, the passage from Maxwell field equations to electromagnetic action at a distance provides a preview of how Einstein's local equations will reproduce (approximately) Newton's l /r2 law. In flat spacetime and in a Lorentz coordinate system, express the coordinates of particle A as a function of its proper time a, thus : daµ _ · µ( ) - a a ,  da d2aµ _ "µ( ) da 2 - a a . (4.32) 
Dirac found it helpful to express the distribution of charge and current for a particle of charge e following such a motion as a superposition of charges that momentarily 
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flash into existence and then flash out of existence. Any such flash has a localization in space and time that can be written as the product of four Dirac delta functions [see, for example, Schwartz (1950-1951), Lighthill (1958)] : 84(xµ - aµ) = 8[x0 - a0(a)] 8[x1 - a1(a)] 8[x2 - a2(a)] o[x3 - a3(a)]. (4.33) Here any single Dirac function o(x) ("symbolic function"; "distribution"; "limit of a Gauss error function" as width is made indefinitely narrow and peak indefinitely high, with integrated value always unity) both (1)  vanishes for x =/:- 0, and (2) has the integral J�: o(x) dx = 1 .  Described in these terms, the density-current vector for the particle has the value ("superposition of flashes") Jµ = e f 84[x" - a"(a)]aµ(a) da. (4.34) 

The density-current (4.34) drives the electromagnetic field, F. Write F = dA to satisfy automatically half of Maxwell's equations (dF = ddA _ 0): 
In flat space, the remainder of Maxwell's equations (d *F = 4'7T *J) become aF • _µ_ = 4'7TJ or ax" µ 

a aA• a 2A -- -- - 'I/""' µ = 4'7TJµ . ax µ ax" ax" ax"' 

(4.35) 

(4.36) 
Make use of the freedom that exists in the choice of 4-potentials A" to demand aA"  - = 0  ax• (Lorentz gauge condition; see exercise 3. 17). Thus get 

(4.37) 

World l i ne  of charge 
rega rded as success ion of 

f lash-o n ,  f lash-off charges 

(4.38) The e lectromagnet ic  wave 
equat ion The density-current being the superposition of "flashes," the effect (A ) of this density-current can be expressed as the superposition of the effects E of elementary flashes ; thus (4.39) The solut ion of the wave 
equat ion where the "elementary effect" E ("kernel"; "Green's function") satisfies the equation 

□E(x) = - 4'7T 84(x). (4.40) One solution is the "half-advanced-plus-half-retarded potential," (4 .41) 
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It vanishes everywhere except on the backward and forward light cones, where it has equal strength. Normally more useful is the retarded solution, 
R (x) = {�E(x) if XO > 0, if XO < 0, (4.42) 

which is obtained by doubling (4.4 1 )  in the region of the forward light cone and nullifying it in the region of the backward light cone. All electrodynamics (Coulomb forces, Ampere's law, electromagnetic induction, radiation) follows from the simple expression (4.39) for the vector potential [see, e.g., Wheeler and Feynman (1945) and (1949), also Rohrlich (1965)]. 
Exercise 4. 1 .  GENERI C LOCAL ELECTROMAGNET I C  F IELD 

EXPRESSED IN S I M P LEST FORM In the laboratory Lorentz frame, the electric field is E, the magnetic field B. Special cases are : ( 1 )  pure electnc field (B = O) ;  (2) pure magnetic field (E = O) ;  and (3) "radiation field" or "null field" (E and B equal in magnitude and perpendicular in direction) . All cases other than ( 1 ) ,  (2) ,  and (3) are "generic." In the generic case, calculate the Poynting density of flow of energy E X B/4'lT and the density of energy (E2 + B 2)/87T. Define the direction of a unit vector n and the magnitude of a velocity parameter a by the ratio of energy flow to energy density :  
2E X B n tanh 2a = E2 + B2 . 

View the same electromagnetic field in a rocket frame moving in the direction of n with the velocity parameter a (not 2a ; factor 2 comes in because energy flow and energy density are components, not of a vector, but of a tensor) . By employing the formulas for a Lorentz transformation (equation 3 .23) ,  or otherwise, show that the energy flux vanishes in the rocket frame, with the consequence that JI and ii are parallel. No one can prevent the z-axis from being put in the direct10n common to JI and ii. Show that with this choice of direction, 
Faraday becomes 

F = ii, dz I\ dt + ii, dx I\ dy 

(only two wedge products needed to represent the generic local field; "canonical representation" ; valid in one frame, valid in any frame) . 
Exercise 4. 2 .  FREEDOM OF C H O I CE OF 1 -FORM S I N  CAN ON I CAL 

REP RESENTAT I ON OF GENERI C LOCAL F IELD Deal with a region so small that the variation of the field from place to place can be neglected. Write Faraday in canonical representation m the form 
where p A (A = I or II) and qA are scalar functions of position m space time. Define a "canonical transformation" to new scalar functions of position p x and qA by way of the "equation of transformation" 
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(di; ff@ 
Q(;j!J 

Figu re 4. 7 .  

v =  df 
("curl-free") 

Some simple types of I -forms compared and contrasted 

V = h df 
("rotallon-free") 

1 2 3 

(has rotation) 

where the "generating function" S of the transformation is an arbitrary function of the qA 

and the qA : 

(a) Derive expressions for the two PA 's and the two p;r's in terms of S by equating 
coefficients of dq1, dq11, dq1, dq11 md1v1dually on the two sides of the equation of trans
formation. 

(b) Use these expressions for the p/s and p;r's to show that F = dpA I\ dqA and F = 
dp;r I\ dqA , ostensibly different, are actually expressions for one and the same 2-form in 
terms of alternative sets of I -forms. 

Exercise 4.3 .  A C LOSED OR CURL-FREE 1 -FORM I S  A GRADIENT 

Given a ! -form a such that da = 0, show that a can be expressed in the form a = df, 
where/ is some scalar. The I -form a is said to be "curl-free," a narrower category of I -form 
than the "rotation-free" I -form of the next exercise (expressible as a = h df),  and it in turn 
is narrower (see Figure 4.7) than the category of " I -forms with rotation" (not expressible 
in the form a = h df) . When the I -form a is expressed in terms of basis ! -forms dx °' , 
multiplied by corresponding components a,, , show that "curl-free" implies aca , /l l  = 0 . 

Exercise 4.4. CAN ON I CAL EX PRESSION FOR A ROTATI ON-FREE 1 -FORM 

In three dimensions a rigid body turning with angular velocity w about the z-axis has 
components of velocity vY = wx, and vx = - wy. The quantity curl v = V x v has z-com
ponent equal to 2w, and all other components equal to zero . Thus the scalar product of v 
and curl v vanishes :  

The same concept generalizes to  four dimensions, 

and lends itself to expression m coordinate-free language, as the requirement that a certain 
3-form must vanish : 

dv I\ v = 0 . 
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Any I -form v satisfying this condition is said to b e  "rotation-free." Show that a I -form is rotation-free if and only if it can be written in the form 
V = h df, 

where h and f are scalar functions of position (the "Frobenius theorem"). 
Exercise 4. 5. FOR M S  EN DOWED WITH POLAR S IN GU LA R ITIES List the principal results on how such forms are representable, such as 

and the conditions under which each applies (for the meaning and answer to this exercise, see Lascaux ( 1 968)] . 
Exercise 4. 6. THE FIELD OF THE OSCILLATING DIPOLE Verify that the expressions given for the electromagnetic field of an oscillating dipole in equations (4 .23) and (4.24) satisfy dF = 0 everywhere and d *F = 0 everywhere except at the origin. 
Exercise 4. 7. THE 2-FO R M  MACH INERY TRANS LATED 

INTO TEN S OR MACH INERY This exercise is stated at the end of the legend caption of Figure 4. 1 .  
Exercise 4. 8. PAN CAKING THE COU LOM B FIELD Figure 4.5 shows a spacelike slice, t = canst, through the Maxwell of a point-charge at rest. By the following pictorial steps, verify that the electric-field lines get compressed into the transverse direction when viewed from a moving Lorentz frame: ( I )  Draw a picture of an equatorial slice (0 = 'IT/2 ; t, r, cf, variable) through Maxwell = *F. (2) Draw various spacelike slices, corresponding to constant time in various Lorentz frames, through the resultant geometric structure. (3) Interpret the intersection of Maxwell = *F with each Lorentz slice in the manner of Figure 4.3 . 
Exercise 4.9.  COM PUTATION OF S U R FACE INTEGRALS In Box 4 . 1  the definition 

J a = f . . .  f (a, !0 /\ • . . /\ ;� ) dA 1 . . . d}.P 
is given for the integral of a p-form a over a p-surface !5P(A 1, . . .  , A P )  in n-dimensional space. From this show that the following computational rule (also given in Box 4 . 1 )  works : ( 1 )  substitute the equation for the surface, 
into a and collect terms in the form 
(2) integrate 

f a = J . . .  J a(>-1, . . .  , >. P) d>. 1 . . . d>. P 
using the elementary definition of integration. 
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Exercise 4. 1 0 . W H I TAKER' S CALU M O I D, OR, THE L I FE OF A LOOP 

1 2 5 

Take a closed loop, bounding a 2-dimensional surface S. It entraps a certain flux of Faraday tPF = f5 F ("magnetic tubes") and a certain flux of Maxwell tPM = fs *F ("electric tubes"). (a) Show that the fluxes tPF and tPM depend only on the choice of loop, and not on the choice of the surface S bounded by the loop, If and only If dF = d *F = 0 (no magnetic charge ; no electric charge) . Hint: use generalized Stokes theorem, Boxes 4 . 1 and 4.6. (b) Move the loop in space and time so that it continues to entrap the same two fluxes. Move it forward a little more here, a little less there, so that it continues to do so. In this way trace out a 2-dimensional surface ("calumoid" ; see E. T. Whitaker 1 904) <!J' = <!J'(a, b) ; 
xµ, = x µ,(a, b) . Show that the elementary bi vector in this surface, E = o<!l' /oa I\ o<!l' /ob satisfies (F, E) = 0 and ( *F, E) = 0 .  (c) Show that these differential equations for xµ,(a, b) can possess a solution, with given initial condition xµ, = x µ,(a, 0) for the initial location of the loop, if dF = 0 and d *F = 0 (no magnetic charge, no electric charge). ( d) Consider a static, uniform electric field F = - Ex dt I\ dx. Solve the equations, ( F, E ) = 0 and ( *F, E ) = 0 to find the equat10n <!l' (a, b) for the most general calumoid. 
[Answer: y = y(a), z = z(a) , x = x(b), t = t(b) .] Exhibit two special cases : ( i )  a calumoid that lies entirely in a hypersurface of constant time [loop moves at infinite velocity; analogous to super-light velocity of point of crossing for two blades of a pair of scissors] ; ( ii )  a calumoid whose loop remains forever at rest in the I, x, y, z Lorentz frame. 
Exercise 4. 1 1 .  DI FFERENTIAL FORMS AND HAM I LTON IAN MECHAN I CS Consider a dynamic system endowed with two degrees of freedom. For the definition of this system as a Hamiltonian system (special case : here the Hamiltonian is independent of time), one needs ( ! )  a definition of canonical variables (see Box 4.5) and (2) a knowledge of the Hamiltonian H as a function of the coordinates q i , q2 and the canonically conjugate momenta Pi , p2 . To derive the laws of mechanics, consider the five-dimensional space of Pi , p2, q 1 , q 2, and t, and a curve in this space leading from starting values of the five coordinates (subscript A) to final values (subscript B), and the value 

B B 

I = J Pi dq I + p2 dq2 - H(p, q) dt = J w 
A A 

of the integral I taken along this path. The difference of the integral for two "neighboring" paths enclosing a two-dimensional region S, according to the theorem of Stokes (Boxes 4 . 1  and 4.6), is 
8J = ¢.w  = f dw. 

s 

The principle of least action (principle of "extremal history") states that the representative point of the system must travel along a route in the five-dimensional manifold (route with tangent vector d<!J' /dt) such that the variation vanishes for this path ; i .e . ,  
dw( . . .  , d<!J' /dt) = 0 

(2-form dw with a single vector argument supplied, and other slot left unfilled, gives the I -form in 5-space that must vanish) . This fixes only the direction of d<!J' /dt ; its magnitude can be normalized by requiring ( dt, d<!J' / dt) = 1 .  (a) Evaluate dw from the expression w = Pi dqi - H dt. (b) Set d<!J' /dt = q i(o<!J' /oq i) + pp<!l' /opi) + t(o<!l' /o t) ,  and expand dw( . . .  , d<!J' /dt) = 0 in terms of the basis { dpi , dqk , dt} . 
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Box 4. 5 M ETRI C STRUCTU RE AN D HAM I LTON IAN OR "SY M P LECT I C  STRU CTU RE" 
COM PARED AN D CONTRASTED 

I .  Physical application 

2. Canonical structure 

3. Nature of "metric" 

4. Name for given coordinate 
system and any other set of 
four coordinates in which 
metric has same form 

5 .  Field equation for this metric 

6 The four-dimensional manifold 

7. Coordinate-free description of 
the structure of this manifold 

8. Canonical coordinates 
distinguished from other 
coordinates (allowable but 
less simple) 

Metnc structure 

Geometry of spacetime 

Symplect,c 
s tructure 

Hamiltonian mechanics 

. .  · . . .  ) = "ds2" = - dt ® dt 0 = dfi /\ dq1 + dp2 /\ dq2 

+ dx ® dx + dy ® dy 
+ dz ®  dz 

Symmetric 

Lorentz coordinate system 

Rµ.vaf3 = 0 (zero Riemann 
curvature, flat spacetime) 

Spacetime 

Riemann = 0 

Make metnc take above form 
(item 2) 

Antisymmetric 

System of "canonically" ( or 
"dynamically") conjugate 
coordinates 

d0 = 0 ("closed 2-form";  
condition automatically 
satisfied by expression above). 

Phase space 

d0 = 0 

Make metric take above form 
(item 2) 

(c) Show that this five-dimensional equation can be written in the 4-dimensional phase 
space of { q i, Pk } as 

0( . . .  , d?l' /dt) = dH, 

where 0 is the 2-form defined in Box 4 .5 . 
(d) Show that the components of 0( . . .  , d?J' /dt) = dH in the { qi , Pk } coordinate system 

are the familiar Hamilton equations. Note that this conclusion depends only on the form 
assumed for 0, so that one also obtains the standard Hamilton equations m any other 
phase-space coordinates { qi, pk } ("canonical variables") for which 

Exercise 4. 1 2. SYM METRY OPERATIONS AS TEN SORS 

We define the meaning of square and round brackets enclosing a set of indices as follows : 
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Box 4. 6 B I RTH OF STOKES' THEOREM 

1 2 7 

Central to the mathematical formulation of electromagnetism are the theorems of 
Gauss (taken up in Chapter 5) and Stokes. Both today appear together as one unity 
when expressed in the language of forms . In earlier times the unity was not evident. 
Everitt ( 1 970) recalls the history of Stokes' theorem: "The Smith's Prize paper set 
by [G. C.] Stokes (Lucasian Professor of Mathematics] and taken by Maxwell in 
(February] 1 854 . . .  

5 . Given the centre and two points of an ellipse, and the length of the major axis, find its direction by a geometrical construction. 6. Integrate the differential equation 
(a2 

- x2) dy2 + 2xydydx + (a2 
- y2) dx2 = 0 .  Has i t  a singular solution? 7. In a double system of curves of double curvature, a tangent is always drawn at the variable point P; shew that, as P moves away from an arbitrary fixed point Q, 1t must begm to move along a generating line of an elliptic cone having Q for vertex in order that consecutive tangents may ultimately mtersect, but that the conditions of the problem may be impossible .  8 .  If X, Y, Z be functions of the rectangular co-ordinates x, y, z, dS an element of any limited surface, /, m, n the cosines of the inclmations of the normal at dS to the axes, ds an element of the bounding line, shew that 

J.f { t ( dZ _ dY ) + m ( dX _ dZ ) + n ( dY _ dX )} ds 
dy dz dz dx dx dy 

I ( dx dy dz ) = X ds + y ds + z ds 
ds, 

the differential coefficients of X, Y, Z bemg partial , and the single integral being taken all round the perimeter of the surface 
marks the first appearance in print of the formula connecting line and surface 
integrals now known as Stokes' theorem. This was of great importance to Maxwell's 
development of electromagnetic theory. The earliest explicit proof of the theorem 
appears to be that given in a letter from Thomson to Stokes dated July 2, 1 850." 
[Quoted in Campbell and Garnett ( 1 8 82), pp. 1 86- 1 87 . ]  
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Here the sum i s  taken over all permutations 1r of  the numbers 1 , 2 ,  . . .  , p, and ( - I ).,,. is 
+ I or - I depending on whether the permutation is even or odd. The quantity V may have 
other indices, not shown here, besides the set of p indices a 1 , a2 , . . .  , ap , but only this set 
of indices is affected by the operations described here. The numbers 1r1, 1r2, . • •  , 1rP are the 
numbers I, 2, . . .  , p rearranged according to the permutation 1r. (Cases p = 2, 3 were treated 
in exercise 3 . 12 .)  We therefore have machinery to convert any rank-p tensor with components 
V"', . · ·"'• into a new tensor with components 

Since this machinery Alt is linear, it can be viewed as a tensor which, given suitable argu
ments u, v, . . .  , w, a, /3, . . . , y produces a number 

(a) Show that the components of this tensor are 

(Alt)13 , . .. 13.a• · · ·"'• = (p !)-1 o'K::.'i!, (Note : indices of o are 
almost never raised or 
lowered, so this notation 
leads to no confusion.) 

where 

[

+ I �f (a1 , . . .  , ap) �s an even permuta�ion of (/31 , . . .  , f3p) ,  
- 1  1f  (a 1 , . . •  , ap) 1s an odd permutat10n of (/31 , • . .  , /3p) ,  

otJ�:::i� = 0 if  ( i )  any two of  the a 's are the same, 
0 if ( ii )  any two of the /3's are the same, 
0 if ( iii) the a 's and f3's are different sets of integers. 

Note that the demonstration, and therefore these component values, are correct in any 
frame. 

(b) Show for any "alternating" (i .e . ,  "completely antisymmetric") tensor Aa, . . . a, = A ca, . . . a,J 
that 

_!_ A o "'• 
.
o:p /3 , . . 13• 

p !  a,. ·°'p Y ,  . . . Y,Ypu-··Yp
+q 

"1 A o"'•· · ·"'•13 • · ·13• L..J a1 • . •  aP Y 1 . . . . . . . . . . . . . Yp+q a1<a2<···<ap 

= A 0"'•· · ·"'• 13 •· · ·13 • - i"'1·· ·"'• I Y, . . . . . . . . . . . . .  Y
p
+; 

The final line here introduces the convention that a summation over indices enclosed between 
vertical bars includes only terms with those indices in increasing order. Show, consequently 
or similarly, that 

(c) Define the exterior ("wedge") product of any two alternating tensors by 

and similarly 

(a I\ /3) - oµ., . . . µ., v,  . . .  v q  n . 
i\ 1 .. Ap+ q - } q  . . .  Ap Ap+ 1 . .  Ap + q a l µ 1  . µp l f-' l v 1 . . .  vq l '  
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Show that this implies equation (3.45b) .  Establish the associative law for this product rule by showing that 
[(a I\ P) /\ Y]", .  "•+•+, 
= t;>,, . . . x.µ., . . . µ..v , . . v,a /3 y a1 .ap+q+.,. I A1 · · ·Ap ] l µ1· · •µq l l v 1 ... P,.I 
= [a I\ (P I\ Y)]" 1 • "P+•H; 

and show that this reduces to the 3 -form version of Equation (3 .45c) when a, P, and y are all I -forms. ( d) Derive the following formula for the components of the exterior product of p vectors 
(u1 I\ u2 I\ · • • I\ up)"' "·"• = 8�_' :;"•(u1) µ. . . .  (up)" 

= p ! u1 C"' ut' . . .  uv"•1 
= 8"" ' 2 . .  "• det [(u ) x] . 1 2 . p µ. 
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CHAPTE R 5 
STR ESS-EN ERGY TENSOR 

AN D CO NSERVATI O N  LAWS 

The rest of this chapter is 
Track 2 .  

I t  depends o n  no preceding 
Track-2 materia l .  

I t  is needed as preparation 
for Chapter 20 (conservation 
laws for mass and angular 
momentu m) . 

It wi l l  be extremely helpful in  
a l l  applications of  gravitation 
theory (Chapters 1 8-40) . 

§5 . 1 . TRACK- 1 OVERVIEW 

"Geometry tells matter how to move, and matter tells geometry how to curve." However, it  will do no good to look into curvature (Part III) and Einstein's law for the production of curvature by mass-energy (Part IV) until a tool can be found to determine how much mass-energy there is in a unit volume. That tool is the stress-energy tensor. It is the focus of attention in this chapter. The essential features of the stress-energy tensor are summarized in Box 5 . 1  for the benefit of readers who want to rush on into gravitation physics as quickly as possible. Such readers can proceed directly from Box 5 . 1  into Chapter 6-though by doing so, they close the door on several later portions of track two, which lean heavily on material treated in this chapter. 
§5 . 2 .  THREE-D I MENSI ONAL VOLUMES AND DEFINIT ION 

O F  THE STRESS-ENERGY TENSO R 

Spacetime contains a flowing "river" of 4-momentum. Each particle carries its 4-momentum vector with itself along its world line. Many particles, on many world lines, viewed in a smeared-out manner ( continuum approximation), produce a continuum flow-a river of 4-momentum. Electromagnetic fields, neutrino fields, meson fields : they too contribute to the river. How can the flow of the river be quantified? By means of a linear machine : the stress-energy tensor T. Choose a small, three-dimensional parallelepiped in spacetime with vectors A ,  
B ,  C for edges (Figure 5 . 1 ) .  Ask how much 4-momentum crosses that volume in 



§ 5  1 TRACK- 1  OVERVI EW 

Box 5. 1 C HAPTER 5 SU M MARIZED 

A. STRESS-ENERGY TENSOR AS A MACHINE 

1 3 1  

At each event in spacetime, there exists a stress-energy tensor. It is a machine that 
contains a knowledge of the energy density, momentum density, and stress as 
measured by any and all observers at that event. Included are energy, momentum, 
and stress associated with all forms of matter and all nongravitational fields. 

The stress-energy tensor is a linear, symmetric machine with two slots for the 
insertion of two vectors : T( . . .  , . . .  ) .  Its output, for given input, can be summarized 
as follows. 
( 1 )  Insert the 4-velocity u of an observer into one of the slots; leave the other slot 

empty. The output is 

T(u, . . .  ) = T( . . .  , u) = -

density of 4-momentum, 
"dp/dV," i .e . ,  4-momentum 
per unit of three-dimensional volume, 
as measured in observer's 
Lorentz frame at event where 
T is chosen 

i .e . ,  T'\3 uf3 = r13auf3 = - (dp
a/dV) for observer with 4-velocity ua . 

(2) Insert 4-velocity of observer into one slot; insert an arbitrary unit vector n into 
the other slot. The output is 

(

component, "n · dp/dV", of 

) 
4-momentum density along the . T u n = T n u = - . . . , ( ' ) ( ' ) n direct10n, as measured m 
observer's Lorentz frame 

i .e . ,  Ta13uanf3 = TafJnaufJ = - nµdp
µ/dV. 

(3) Insert 4-velocity of observer into both slots. The output is the density of mass
energy that he measures in his Lorentz frame : 

T(u, u) = (mass-en�rgy per u�it volume _as measured
) . 

m frame with 4-velocity u 

(4) Pick an observer and choose two spacelike basis vectors, ei and ek , of his Lorentz 
frame. Insert e; and ek into the slots of T. The output is the j,k component of 
the stress as measured by that observer: 

½k = T(ei , ek) = Tki = T(ek , ei ) 

(

j-component of force acting 

) 
from side x k - e to side xk + e, 

- across a unit surface area with 
perpendicular direction e k 

(

k-component of force acting 

) from side xi - e to side xi + e, 
- across a unit surface area with 

perpendicular direction e i 
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Box 5. 1 (continued) 

B . STRESS-ENERGY TENSOR FOR A PERFECT FLU ID 

One type of matter studied extensively later in this book is a "perfect fluid. " A perfect 
fluid is a fluid or gas that ( 1 )  moves through spacetime with a 4-velocity u which 
may vary from event to event, and (2) exhibits a density of mass-energy p and an 
isotropic pressure p in the rest frame of each fluid element. Shear stresses, anisotropic 
pressures, and viscosity must be absent, or the fluid is not perfect. The stress-energy 
tensor for a perfect fluid at a given event can be constructed from the metric tensor, 
g, the 4-velocity, u, and the rest-frame density and pressure, p and p :  

T = (p + p)u ® u + pg, 

In the fluid's rest frame, the components of this stress-energy tensor have the 
expected form (insert into a slot of T, as 4-velocity of observer, just the fluid's 
4-velocity): 

i.e., 

also 

T'\3uf3 = ((p + p)u"u13 + po"13 ]uf3 = - (p + p)u" + pu" = - pu"; 

T0
13uf3 = - p  = - (mass-energy density) = - dp

0/dV, 

Ti
13uf3 = 0 = - (momentum density) = - dp i/dV; 

½k = T(ej, ek) = poik = stress-tensor components. 

C. CONSERVATION O F  ENERGY-MOMENTUM 

In electrodynamics the conservation of charge can be expressed by the differential 
equation 

a (charge density)/a t  + V · (current density) = O ; 

i.e., J0,0 + V · J = O ; i.e. J",a  = O ; i.e., V · J = 0. Similarly, conservation of 
energy-momentum can be expressed by the fundamental geometric law 

V · T = O. 

(Because T is symmetric, i t  does not matter on which slot the divergence is  taken.) 
This law plays an important role in gravitation theory. 
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�

y 

Figure 5 . 1 . 

1 3 3 

The "river" of 4-momentum flowing through spacetime, and three different 3-volumes across which it 
flows. (One dimension is suppressed from the picture; so the 3-volumes look like 2-volumes.) The first 
3-volume is the interior of a cubical soap box momentarily at rest in the depicted Lorentz frame. Its 
edges are Lez, Ley, Le, ; and its volume I -form, with "positive" sense toward future ("standard 
orientation"), is .l" = L3 dt = - Vu(V = L3 = volume as measured m rest frame; u = - dt = 4-velocity 
of box). The second 3-volume is the "world sheet" swept out in time LIT by the top of a second cubical 
box. The box top's edges are Lez and Le, ; and its volume I -form, with "positive" sense away from 
the box's interior, in direction of increasing y, is .l" = L2 LIT dy = t1 LITu (tl = L2 = area of box top;  
u = dy = unit I-form containmg world tube). The third 3-volume is  an arbitrary one, with edges A ,  
B, C and volume I -form Iµ = £µaf3yA"'Bf3 CY. 

its positive sense (i.e . ,  from its "negative side" toward its "positive side") . To calculate the answer: ( 1 ) Construct the "volume 1 form" M athematica l representation  

(5 . 1 )  the parallelepiped lies in one of the I -form surfaces, and the positive sense across the parallelepiped is defined to be the positive sense of the I -form :E. (2) Insert this volume I -form into the second slot of the stress-energy tensor T. The result is 
:E ( momentum crossing from ) T(. · · ' ) = P = negative side toward positive side · emp-2'_j slot 

(5 .2) 

(3) To get the projection of the 4-momentum along a vector w or I -form a, insert the volume I -form :E into the second slot and w or a into the first: 
T(w, :E) = w · p, T(a, :E) = (a, p) .  (5 .3) This defines the stress-energy tensor. 

of 3-vo l u m es 

M omentum cross ing  a 
3-vo lume  calcu lated,  us ing 
stress-energy tensor 



I nter i o r  of a soap box 

I ts vo l u m e  1 -form 

I ts 4-momentum content 

I ts energy dens ity 
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The key features of 3-volumes and the stress-energy tensor are encapsulated by the above three-step procedure. But encapsulation is not sufficient; deep understanding is also required. To gain it, one must study special cases, both of 3-volumes and of the operation of the stress-energy machinery. 
A Special Case 

A soap box moves through spacetime. A man at an event '!PO on the box's world line peers inside it, and examines all the soap, air, and electromagnetic fields it contains. He adds up all their 4-momenta to get a grand total Pbox at dfo • How much is this grand total? One can calculate it by noting that the 4-momentum inside the box at 90 is precisely the 4-momentum crossing the box from past toward future there (Figure 5.1). Hence, the 4-momentum the man measures is 
Pbox at Po = T(. · · , 1:), (5.4) where E is the box's volume I -form at 90 • But for such a soap box, E has a magnitude equal to the box's volume V as measured by a man in its momentary rest frame, and the box itself lies in one of the hyperplanes of E;  equivalently, 

E = - Vu, (5.5) where u is the soap box's 4-velocity at 90 (minus sign because u, regarded as a I -form, has positive sense toward the past, u0 < O); see Box 5.2. Hence, the total 4-momentum inside the box is 
Pbox at Po = T(. • • , - Vu) = - VT( . . .  , u), or, in component notation, (p")box at Po = - VT"13u13 , 

(5.6) 
(5.6 ') The energy in the box, as measured in its rest frame, is minus the projection of the 4-momentum on the box's 4-velocity: 

so energy density as 1 l measured in box's = ; = T(u, u) . rest frame 
Another Special Case 

(5.7) 

A man riding with the same soap box opens its top and pours out some soap. In a very small interval of time L1T, how much total 4-momentum flows out of the box? 



Box 5 .2  T H REE-DI MENSI ONAL VOLU MES 

A. General Para l lel epiped 

1 .  Edges of parallelepiped are three vectors A ,  
B ,  C .  One must order the edges ; e .g. ,  "A 
is followed by B is followed by C." 

B 
(One dimension, that orthogonal 
to the parallelepiped, is 
suppressed here.) 

2. Volume trivector is defined to be A I\ B I\ C. It enters into the sophisticated 
theory of volumes (Chapter 4), but is not used much in the elementary theory. 

3 .  Volume 1 form is defined by .X µ = £.µaf3 yAaBf3 CY. (A , B, C must appear here 
in standard order as chosen in step I .) Note that the vector "corresponding" 
to E and the volume trivector are related by E = - *(A I\ B I\ C). 

4. Orientation of the volume is defined to agree 
with the orientation of its I -form E. More 
specifically : the edges A ,  B, C lie in a hyper
plane of E((E, A ) = (E, B) = (E, C) = O ; 
no "bongs of bell") . Thus, the volume itself 
is one of E 's hyperplanes! The positive sense 
moving away from the volume is defined to 
be the positive sense of E. Note: reversing 
the order of A ,  B, C reverses the positive 
sense ! 

Positive sense 

(One dimension, that along which C 

extends, is suppressed here.) 

5 .  The "standard orientation" for a spacelike 3-volume has the positive sense of 
the I -form E toward the future, corresponding to A ,  B, C forming a righthanded 
triad of vectors. 

B. 3-Vo lu mes of Arbitrary Shape 

Can be analyzed by being broken up into union of parallelepipeds. 

C. Interior of a Soap Box (Example) 

I . Analysis in soap box 's rest frame. Pick an event on the box's world line. The 
box's three edges there are three specific vectors A ,  B, C. In the box's rest frame 
they are purely spatial : A0 = B0 = c0 = 0. Hence, the volume 1 -form has 
components .X i = 0 and 



Box 5 . 2  (continued) 

Al A2 A3 
X O = £0iikAiBiCk = det B1 B2 B3 

c1 c2 c3 
= A · (B x C), in the standard notation of 3-dimensional vector analysis; 

+ V ( V  = volume of box) if (A ,  B, C) are righthand ordered (positive 
sense of E toward future; standard orientation); 

- V ( V = volume of box) if (A , B, C) are lefthand ordered (positive sense 
of E toward past). 

2. This result reexpressed in geometric language: Let u be the box's 4-velocity 
and V be its volume, as measured in its rest frame. Then either 
E = - Vu, in which case the "positive side" of the box's 3 -surface is the future side, 

and its edges are ordered in a righthanded manner-the standard orien
tation ; 

or else 

E = + Vu, in which case the "positive side" is the past side, and the box's edges 
are ordered in a lefthanded manner. 

D .  3-Vo lume Swept Out i n  Time Llr  by  Two-D imensional  Top 
of a Soap Box (Example) 

1. Analysis in box 's rest frame: Pick an event on 
box's world line. There the two edges of the 
box top are vectors A and B. In the box's 
rest frame, orient the space axes so that A 
and B lie in the y,z-plane. During the lapse 
of a proper time Lh, the box top sweeps out 
a 3-volume whose third edge is u Lh (u = 
4-velocity of box). In the box's rest-frame, 
with ordering "A followed by B followed by 
u Lh," the volume I -form has components 

X O = X 2 = X 3 = 0, and 
x l = £ljkaAiB k .:::huO = -£0ljkAiBk Lh 

B 

- {l  Lh ({l = area of box top) if (ex , A ,  B) are righthand ordered 
= + a  Lh ({l = area of box top) if (ex , A ,  B) are lefthand ordered. 

(Note: No standard orientation can be defined in this case, because E can be 
carried continuously into - E by purely spatial rotations.) 

2. This result reexpressed in geometric language: Let {l be the area of the box 
top as measured in its rest frame; and let a be a unit I -form, one of whose 
surfaces contains the box top and its 4-velocity (i.e., contains the box top's 
"world sheet"). Orient the positive sense of a with the (arbitrarily chosen) 
positive sense of the box-top 3-volume. Then 

E = {l Lir a. 
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To answer this question, consider the three-dimensional volume swept out during Llr by the box's opened two-dimensional top ("world sheet of top"). The 4-momen- The top of a soap box.  tum asked for is the 4-momentum that crosses this world sheet in the positive sense (see Figure 5.1); hence, it is 
Pnows out = T(. · · , I ) , (5.8) where I is the world sheet's volume I -form. Let {l be the area of the box top, and I ts vo lume 1-form CT be the outward-oriented unit I -form, whose surfaces contain the world sheet (i.e. , contain the box top and its momentary 4-velocity vector). Then 

I = « Lh <T  (see Box 5.2) ; so the 4-momentum that flows out during .1-r is 
Pnows out = {l .1-r T(. • . ,  CT). 

§5 . 3 . COMPONENTS OF STRESS-ENERGY TENSOR 

(5.9) 
(5 .10) 

Like all other tensors, the stress-energy tensor is a machine whose definition and significance transcend coordinate systems and reference frames. But any one observer, locked as he is into some one Lorentz frame, pays more attention to the components of T than to T itself. To each component he ascribes a specific physical significance. Of greatest interest, perhaps, is the "time-time" component. It is the total density of mass-energy as measured in the observer's Lorentz frame: 

I ts 4-momentum that flows 
across 

Physical interpretation of 
stress-energy tensor 's  
com ponents. 

T00 = - T0 ° = T°0 = T( e0, e0) = density of mass-energy (5 . 1 1) r00
: energy density (cf. equation 5.7, with the observer's 4-velocity u replaced by the basis vector e0 = u) . The "spacetime" components Ti0 can be interpreted by considering the interior of a soap box at rest in the observer's frame. If its volume is V, then its volume I -form is I = - Vu = + V dt; and the µ-component of 4-momentum inside it is 

Thus, the 4-momentum per unit volume is 
or, equivalently: T00 = density of mass-energy (units: g/cm3, or erg/cm3, or cm-2) ;  Ti0 = density of j-component of momentum (units: g (cm/sec) cm-3, or cm-2) .  

(5.12a) 
(5.13a) 
(5 .13b) Ti0 : momentum density 

The components Tµk can be interpreted using a two-dimensional surface of area (l, at rest in the observer's frame with positive normal pointing in the k-direction. 



T0k energy flux 

Tik - stress 

Number-flux vecto r for 
swarm of part ic les defi ned 
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During the lapse of time Lit, this 2-surface sweeps out a 3 -volume with volume 1 -form 
X = {f Lit dx k (see Box 5 .2) .  The (-t-Component of 4-momentum that crosses the 
2-surface in time Lit is 

Thus, the flux of 4-momentum (4-momentum crossing a unit surface oriented 
perpendicular to ek , in unit time) is 

or, equivalently : 

T0k = k-component of energy flux 
(units : erg/cm2 sec, or cm-2) ;  

T;k = j ,  k component of "stress" 
k-component of flux of }-component of momentum 

-}-component of force produced by fields and matter at x k - E acting 
on fields and matter at x k + E across a unit surface, the perpendicular 
to which is ek 
(units : dynes/cm2, or cm-2) . 

(Recall that "momentum transfer per second" is the same as "force.") 

(5 . 1 2b) 

(5 . 1 3 c) 

(5 . 1 3d) 

The stress-energy tensor is necessarily symmetric, Taf3 = Tf3a ; but the proof of 
this will be delayed until several illustrations have been examined. 

§5.4. STRESS-ENERGY TENSOR FOR A SWARM 
OF PARTI CLES 

Consider a swarm of particles. Choose some event '!P inside the swarm. Divide the 
particles near '!P into categories, A = I ,  2, . . .  , in such a way that all particles in 
the same category have the same properties :  

rest mass ; 

4-velocity ; 

4-momentum. 

Let Nw be the number of category-A particles per unit volume, as measured in the 
particles' own rest frame. Then the "number-flux vector" Sw , defined by 

(5 . 1 4) 

has components with simple physical meanings. In a frame where category-A parti
cles have ordinary velocity vw , the meanings are : 
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sei> = Nwuei> = Nw [ 1  - vw21-11 2 = number density; 
� � Number density in particles' rest frame Lorentz contraction factor for volume Sw = Nwuw = siivw = flux of particles. 

Consequently, the 4-momentum density has components TlS = Pu>seii = mwuuiNwueii 
= mwNwu uiu2.ti ; 

1 3 9 

(5.15a) 

(5.15b) 

and the flux of µ,-component of momentum across a surface with perpendicular direction ei is TtJ.i = PuiSfAi = mwufAiNwu fA> 
= mwN<A>u uiu fA> · These equations are precisely the µ,, 0 and µ,,)  components of the geometric, frameindependent equation (5.16) The total number-flux vector and stress-energy tensor for all particles in the swarm near <!P are obtained by summing over all categories : 

(5.17) 
(5 . 1 8) 

A A 

§ 5 . 5 .  STRESS-ENERGY TENSOR FOR A PERFECT FLU ID 

Stress-energy tensor for 
swarm of part icles 

There is no simpler example of a fluid than a gas of noninteracting particles ("ideal I deal gas defined gas") in which the velocities of the particles are distributed isotropically. In the Lorentz frame where isotropy obtains, symmetry argues equality of the diagonal space-space components of the stress-energy tensor, 
(5 . 1 9) 

and vanishing of all the off-diagonal components. Moreover, (5.19) represents a product :  the number of particles per unit volume, multiplied by velocity in the x-direction (giving flux in the x-direction) and by momentum in the x-direction, 



Stress-energy tensor  fo r ideal 
gas or perfect fluid 

Perfect fluid defi ned 

1 40 5 STR ESS-E N E RGY TENSOR AN D CO N S E RVAT I O N  LAWS 

giving the standard kinetic-theory expression for the pressure, p. Therefore, the 
stress-energy tensor takes the form 

p O O 0 

0 p O 0 
Ta/3 = 

0 0 p 0 

0 0 0 p 
(5.20) 

in this special Lorentz frame-the "rest frame" of the gas. Here the quantity p has 
nothing directly to do with the rest-masses of the constituent particles. It measures 
the density of rest-plus-kinetic energy of these particles. 

Rewrite (5.20) in terms of the 4-velocity ua = (1, 0, 0, 0) of the fluid in the gas's 
rest frame, and find 

p 0 0 0 0 0 0 0 
0 0 0 0 0 p 0 0 Ta/3 = 0 0 0 0 + 0 0 0 p 
0 0 0 0 0 0 0 p 

= puau
/3 

+ p(Y/a/3 + uau13), 

or, in frame-independent, geometric language 

T = pg + (p + p)u ® u. (5 .21) 

Expression (5 .21) has general application. It is exact for the "ideal gas" just consid
ered. It is also exact for any fluid that is "perfect" in the sense that it is free of 
such transport processes as heat conduction and viscosity, and therefore (in the rest 
frame) free of shear stress (diagonal stress tensor; diagonal components identical, 
because if they were not identical, a rotation of the frame of reference would reveal 
presence of shear stress). However, for a general perfect fluid, density p of 
mass-energy as measured in the fluid's rest frame includes not only rest mass plus 
kinetic energy of particles, but also energy of compression, energy of nuclear binding, 
and all other sources of mass-energy [total density of mass-energy as it might be 
determined by an idealized experiment, such as that depicted in Figure 1.12, with 
the sample mass at the center of the sphere, and the test particle executing oscillations 
of small amplitude about that location, with w2 = ( 4'17 /3)p]. 

§ 5 . 6 .  ELECTROMAGN ETIC STRESS-EN ERGY 

Faraday, with his picture of tensions along lines of force and pressures at right angles 
to them (Figure 5.2), won insight into new features of electromagnetism. In addition 
to the tension £2 /8?T ( or B 2 /8?T) along lines of force, and an equal pressure at right 
angles, one has the Poynting flux (E X B)/4'17 and the Maxwell expression for the 
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Figu re 5 . 2 .  

1 4 1 

Faraday stresses at work. When the electromagnet is connected 
to an alternating current, the aluminum ring flies into the air. 

energy density, (E2 + B2)/87T. All these quantities find their places in the Maxwell stress-energy tensor, defined by 
(5 .22) 

Exercise 5. 1 .  

Show that expression (5 .22), evaluated in a Lorentz coordinate frame, gives 

TOi = TiO = (E X B) i/47T, 
(5 .23) 

Show that the stress tensor does describe a tension (E2 + B 2)/87T along the field lines and 
a pressure (E2 + B 2)/87T perpendicular to the field lines, as stated in the text. 

§5 . 7 .  SYMMETRY O F  THE STRESS-ENERGY TENSOR 

All the stress-energy tensors explored above were symmetric. That they could not have been otherwise one sees as follows. 

Stress-energy tensor  for 
electromag netic field 

EXERCI SE 

Calculate in a specific Lorentz frame. Consider first the momentum density Proof that stress-energy (components Ti0) and the energy flux (components T°i). They must be equal because tensor  is symmetric energy = mass ("E = Mc2 = M"): T0i = ( energy flux) = (energy density) X (mean velocity of energy flow)i = (mass density) X (mean velocity of mass flow)i = (momentum density) = TiO .  (5 .24) 

Only the stress tensor Tik remains. For it, one uses the same standard argument as in Newtonian theory. Consider a very small cube, of side L, mass-energy r00L3 , 



I nteg ral conservat ion law for 
4-momentum f T · d3I = 0 
a ·l 
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and moment of inertia ~ T°0L5 . With the space coordinates centered at the cube, the expression for the z-component of torque exerted on the cube by its surroundings is (L/2) + � ( - L/2) 

(y��o;:�:n�;t)(a�:e;o ) (y��o;:�:n�;tv a�:e;o ) 
+ x face + x face - x face A-x face 

( - PY L2) (L/2) (PY L2) ( - L/2) 
'---" � 

(x��o;:�:n�;t)(a�e;e�
0 

) 
+y face +y face (x-component)( lever ) of force on arm to 

-y face -y face 
= (PY - TY")L3. Since the torque decreases only as L3 with decreasing L, while the moment of inertia decreases as L5, the torque will set an arbitrarily small cube into arbitrarily great angular acceleration-which is absurd. To avoid this, the stresses distribute themselves so the torque vanishes :  TY" =  T"Y. Put differently, if the stresses were not so distributed, the resultant infinite angular accelerations would instantaneously redistribute them back to equilibrium. This condition of torque balance, repeated for all other pairs of directions, is equivalent to symmetry of the stresses :  (5.25) 

§5 .8 .  CONSERVATION OF 4-MOMENTUM:  
I NTEGRAL FORMU LATION 

Energy-momentum conservation has been a cornerstone of physics for more than a century. Nowhere does its essence shine forth so clearly as in Einstein's geometric formulation of it (Figure 5.3,a). There one examines a four-dimensional region of spacetime 'V bounded by a closed, three-dimensional surface a 'V. As particles and fields flow into 'V and later out, they carry 4-momentum. Inside 'V the particles collide, break up, radiate; radiation propagates, jiggles particles, produces pairs. But at each stage in this complex maze of physical processes, total energy-momentum is conserved. The energy-momentum lost by particles goes into fields; the energymomentum lost by fields goes into particles. So finally, when the "river" of 4-momentum exits from 'V, it carries out precisely the same energy-momentum as it carried in. Restate this equality by asking for the total flux of 4-momentum outward across a 'V. Count inflowing 4-momentum negatively. Then "inflow equals outflow" means "total outflow vanishes" : 
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, 
(a) ' 

\ 
\ 

I ' 
a'v = ac ·rr-2 - 'V1) = s - 5 

(c) 

I 
I 
t 

I 

a'V = s - 5 + ff 

(e) 

I 
I 
! 

---. 

(a) A four-dimensional region of spacetime 'V bounded by a closed three-dimensional surface a'V. The 
positive sense of a 'V is defined to be everywhere outward (away from 'V). Conservation of energy
momentum demands that every bit of 4-momentum which flows into 'V through a 'V must somewhere 
flow back out; none can get lost inside, the interior contains no "sinks."  Equivalently, the total flux 
of 4-momentum across a 'V in the positive (outward) sense must be zero: 

j 7l"' d3Ia = 0 
a v  

Figures (b), (c), (d), and (e) depict examples to  which the text applies this law of conservation of 
4-momentum. All symbols 'V (or 5) in these figures mean spacetime volumes (or spacelike 3-volumes) 
with standard orientations The dotted arrows indicate the positive sense of the closed surface a 'V used 
in the text's discussion of 4-momentum conservation How a 'V is constructed from the surfaces 5 and 
ff is indicated by formulas below the figures. For example, in case (b), a 'V = 52 - 51 means that a 'V 
is made by joining together 52 with its standard orientation and 51 with reversed orientation. 



Special cases of i n teg ral 
conservat ion law. 
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Total flux of 4-momentum outward across a closed 
three-dimensional surface must vanish. (5 .26) 

To calculate the total outward flux in the most elementary of fashions, approximate 
the closed 3 -surface oo/ by a large number of flat 3 -volumes ("boiler plates") with 
positive direction oriented outward (away from o/). Then 

Ptotal out = T( . . .  , Iw) = 0, (5 .27) boiler plates A 

where I (A) is the volume I -form of boiler plate A. Equivalently, m component 
notation 

Pµtotal out = � Tµa:5:(A)a · 
A 

(5 .27 ') 

To be slightly more sophisticated about the calculation, take the limit as the number 
of boiler plates goes to infinity and their sizes go to zero. The result is an integral 
(Box 5 .3 ,  at the end of this section) , 

P µtotal out = f Tµa d3 ;Ea = 0 . 
i)'V 

(5 .28) 

Think of this (like all component equations) as a convenient way to express a 
coordinate-independent statement : 

Ptotal out = f T ·  d3I = 0 .  
il'V 

(5 .29) 

To be more sophisticated yet (not recommended on first reading of this book) and 
to simplify the computations in practical cases, interpret the integrands as exterior 
differential forms (Box 5 .4,  at the end of this section) . 

But however one calculates it, and however one interprets the integrands, the 
statement of the result is simple : the total flux of 4-momentum outward across a 
closed 3 -surface must vanish. 

Several special cases of this "integral conservation law," shown in Figure 5 .3 ,  are 
instructive. There shown, in addition to the general case (a), are : 

Case (b) 

The closed 3 -surface oo/ is made up of two slices taken at constant time t of a specific 
Lorentz frame, plus timelike surfaces at "infinity" that join the two slices together. 
The surfaces at infinity do not contribute to �a'V Tµa d3 :Ea if the stress-energy tensor 
dies out rapidly enough there. The boundary oo/ of the standard-oriented 4-volume 
o/, by definition, has its positive sense away from o/. This demands nonstandard 
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orientation of 51 (positive sense toward past), as is indicated by writing o'V = 52 - 51 ; and it produces a sign flip in the evaluation of the hypersurface integral 

0 = f Taµ d3 .X µ = -f yao dx dy dz + f Tao dx dy dz. 
o'V S 1 S2 Because po is the density of 4-momentum, this equation says 

( total 4-momentum in ) = f yao dx d dz 
Total 4-momentum conserved all of space at time t1 s Y i n  time 

1 (5 .30) 

Case (c) 

= ( total 4-momentum in ) = f Tao dx d dz. all of space at time t2 s !Y 
2 

Here one wants to compare hypersurface integrals over S and S, which are slices of constant time, t = const and t = const in two different Lorentz frames. To form a closed surface, one adds time-like hypersurfaces at infinity and assumes they do not contribute to the integral. The orientations fit together smoothly and give a closed surface o'V = S - S + (surfaces at infinity) only if one takes 'V = 'V 2 - 'V 1-i.e., only if one uses the nonstandard 4-volume orientation in o/1 . (See part A. I of Box 5 .3 for "standard" versus "non-standard" orientation.) The integral conservation law then gives 
or, equivalently, 

0 = L T · d3 L - f T · d3 L' s s 
L T ·  d3E = (total 4-momentum p on S) s 

= f T ·  d3E = (total 4-momentum p on S) .  
s 

(5 .31 )  
This says that observers in different Lorentz frames measure the same total 4-momentum p. It does not mean that they measure the same components (pa =J:. pa); rather, it means they measure the same geometric vector 
a vector whose components are connected by the usual Lorentz transformation law (5 .32) 

Total 4-momentum the same 
in al l Lorentz frames 



Total 4-momentum 
independent of hypersurface 
where measured 

Change with t ime of 
4-momentum in a box equals 
flux of 4-momentum across 
its faces 

Different ial conservation law 
for 4-momentum V · T = 0 
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Case (d) 

Here the contribution to the integral comes entirely from two arbitrary spacelike hypersurfaces, SA and SB, cutting all the way across spacetime. As in cases (a) and (b), the integral form of the conservation law says (5 .33) 
i.e., the total 4-momentum on a spacelike slice through spacetime is independent of 
the specific slice chosen-so long as the energy-momentum flux across the "hypersurface at infinity" connecting SA and SB is zero. 

Case (e) 

This case concerns a box whose walls oscillate and accelerate as time passes. The three-dimensional boundary o 'V is made up of (I ) the interior S of the box, at an initial moment of time t = constant in the box's initial Lorentz frame, taken with nonstandard orientation; (2) the interior S of the box, at t = constant in its final Lorentz frame, with standard orientation; (3) the 3-volume � swept out by the box's two-dimensional faces between the initial and final states, with positive sense oriented outward. The integral conservation law f,wT · d3E = 0 says 
(total 4-mo�entum) _ (total 4-momentum) in box at S in box at S (5.34) 

= ( total 4-momentum that enters �ox through) . its faces between states S and S 
§ 5 . 9 . CONSERVATION OF 4-MOMENTUM: 

D I FFERENTIAL FORMU LATION 

Complementary to any "integral conservation law in flat spacetime" is a "differential conservation law" with identical information content. To pass back and forth between them, one can use Gauss's theorem. Gauss's theorem in four dimensions, applied to the law of 4-momentum conservation, converts the surface integral of Tµo: into a volume integral of TW',a : 

0 = f pa d3�a = I Tµa,a dt dx dy dz. 
o'V 'V 

(5 .35) 
(See Box 5.3 for elementary discussion; Box 5.4 for sophisticated discussion.) If the integral of Tµa,a is to vanish, as demanded, for any and every 4-volume 'V, then 
Tµa ,a must itself vanish everywhere in spacetime : 

Tµa ,a = O ;  i.e., V · T = 0 everywhere. (5.36) 
(continued on page 152) 



§ 5  9 CO N S E RVATI O N  LAWS D I FFER ENT IAL  FO R M U LATI O N  

Box 5 . 3  VO LU M E  I NTEG RALS, SURFACE I NTEGRALS , AN D 
GAUSS'S  TH EOREM I N  CO M PON ENT NOTATI ON 

A. Vol ume Integra ls  i n  S pacet ime 

1 47 

I .  By analogy with three-dimensional space, the volume of a "hyperparallelepiped" with vector edges A ,  B, C, D is 
Ao Al A2 A3 4-volume il f.af3 y8Ao:Bf3 CYD 8 = det Bo B l  B 2  B3 
co Cl c2 C3 no n 1  n 2  n 3 

= * (A A B  A C A D).  

Here, as for 3-volumes, orientation matters; interchange of any two edges reverses the sign of il. The standard orientation for any 4-volume is the one which make� il positive; thus, e0 A e1 A e2 A e3 has standard orientation if 
e0 points toward the future and e1 , e2 , e3 are a righthanded triad. 

2. The "volume element" whose edges in a specific, standard-oriented Lorentz frame are Ao: = (Llt, 0, 0, 0), Ba = (0, Llx, 0, 0), ca = (0, 0, Lly, 0), n o: = (0, 0, 0, Llz) 

has a 4-volume, according to the above definition, given by 
L14il = E0123 Llt Llx Lly Llz = Llt Llx Lly Llz. 

3. Thus, the volume integral of a tensor S over a four-dimensional region 'V of spacetime, defined as 
Lim 

( number of) (elementary ) elementary volumes (/ volumes in 'Y 
----> OO  

Sat center ow (volume of tl), 

can be calculated in a Lorentz frame by 
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Box 5. 3 (con tinued) 

B . Integrals over 3-Surfaces in Spaceti m e  

1 .  Introduce arbitrary coordinates a, b ,  c on the three-dimensional surface. The elementary volume bounded by coordinate surfaces a0 < a < a0 + Lia, c0 < c < c0 + Lie has edges 
b0 < b < b0 + Lib, 

A"' = ax"' Lia B/3 = ax/3 Lib CY = ax Y Lie aa ' ab ' ac  ' 

so its volume I -form is 
3 _ ax"' ax/3 axY LI �µ - Eµ<>f3Y __ _ b -- Lia Lib Lie. aa a ac  2 .  The integral of  a tensor S over the 3-surface S thus has components 

An equivalent formula involving a Jacobian is often used (see exercise 5.5): 

C. Gauss's Theorem Stated 

1. Consider a bounded four-dimensional region of spacetime 'V with closed boundary a'V. Orient the volume I -forms on a'V so that the "positive sense" is away from 'V. 2. Choose a tensor field S. Integrate its divergence over 'V, and integrate it itself over a'V. The results must be the same (Gauss 's 
theorem) : 

'-�ositive sense 
', 

'V 

I Positive I sense 
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D.  Proof of  Gauss's Theorem 

1 4 9 

1 . The indices a and f3 of sa 13 Y "go along for a free ride," so one can suppress them from the proof. Then the equation to be derived is 
f SY, y dt dx dy dz = f SY d3 X y· 

'V acv 2. Since the integral of a derivative is just the original function, the volume integral of s0 ,0 is 
f s0 ,0 dt dx dy dz 

'V 

= fup" S
0 dx dy dz - fdown" S

0 dx dy dz. 

' ------- / ' / , ...... __ ,,Down'' - - -.,,... 

3. The surface integral facv s0 d3X0 can be reduced to the same set of terms: a. Use x, y, z as coordinates on ao/. On the "up" side, d3 XO must be positive to achieve a "positive" sense pointing away from o/, so (see part B above) 
3 _ ax" ax /3 ax Y _ _ d XO - £oaf3 y -- -- -- dx dy dz - £0123 dx dy dz - dx dy dz . 

ax ay az b. On the "down" side, d3 XO must be negative, so 
d3X0 = - dx dy dz. c. Hence, 

f s0 d3X0 = f s0 dx dy dz - f s0 dx dy dz. 
o"V "up" "down" 

4. Equality is proved for the other components in the same manner. Adding components produces the result desired : 



FOR THE READER WHO HAS STU DIED CHAPTER 4 

Box 5 .4 I .  EVERY I NTEGRAL I S  THE I NTEGRAL OF A FORM . 

I I .  THE THEOREM OF GAU SS I N  THE LAN GUAGE OF FORM S. 

I . Every integral encountered in Chapter 5 can be interpreted as rhe integrul of an 
exterior differential form. This circumstance shows up in fot1 1 r'u l d  . 1 11d  t lm:c t',1 ld 
integrals, for example, in the fact that 

d4il = c = * 1 = E0123 dt I\ dx I\ dy I\ dz 

and 

are basis 4- and 3 -forms. (Recall : the indices af3y between vertical bars are to be 
summed only over O � a < f3 < y � 3 .) A more extensive glossary of notations is 
found in C below. 

IL Gauss 's Theorem for a tensor integral in flat space reads 

J (V · S) d4il = f S · dE 
o/ ao/ 

for any tensor, such as S = sa
13 

Yea ® w /3 ® ey (see Box 5 .3 for component form). 
It is an application of the generalized Stokes Theorem (Box 4. 1 ) , and depends on 
the fact that the basis vectors ea and w /3 of a global Lorentz frame are constants, 
i .e . ,  are independent of x. The definitions follow in A; the proof is in B .  

A .  Tensor-valued integrals can be defined in flat spaces because one uses constant 
basis vectors. Thus one defines 

J S · d3E = ea ® w /3 J sa
13

Y d3.Xy 

for a tensor of the indicated rank. One justifies pulling basis vectors and forms outside 
the integral sign because they are constants, independent of location in spacetime. 
Each of the numbers f sa 

13 

Y d3 X Y (for a, f3 = 0, 1 ,  2,  3) is then evaluated by substi
tuting any properly oriented parametrization of the hypersurface into the 3 -form 
sa 

13 

Y d3 X Y as described in Box 4 . 1  (arbitrary curvilinear parametrization in the part 
of the calculation not involving the "free indices" a and /3). In other words, 
S · d3 E = ea ® w /3 ® sa 

13 

Y d3 X Y is considered a "tensor-valued 3 -form." Under 
an integral sign, it is contracted with the hyperplane element tangent to the 3 -surface 
9(>-1 , >.2 , >.3) of integration to form the integral 

Jacobian 
determinant 

Although constant basis vectors ea , w /3 derived from rectangular coordinates are 
essential here, a completely general parametrization of the hypersurface may be used. 

B. The proof of Gauss 's Theorem is a computation : 



f S ·  d3I = ea ® w/3 f sa13y d3.Xy (ea, w/3 are constant) il'V il'V = ea ® w/3 f d(Sa13 Y d3Xy) 'V 
= e ® w/3 f sa Y * 1  a /3 ' y 'V 
= f (V · S) d4il. 'V The missing computational step above is d(Sa/3 y d3Xy) = (asa/3 Y /ox P) dx P I\ d3.Xy = (oSa13Y/oxY ) * l .  

(Stokes Theorem) 
(see below) 

(merely notation) 

Here the first step uses d(d3 X y) = 0 (which follows from Eµaf3 y  = const in flat spacetime). The second step uses dx P A d3XY = o� * l . [Write the lefthand side of this identity as Ey lµ• A I  dx P A dxµ A dx' A dx h . The only possible non-zero term in the sum over µ,v'A is the one with µ, < v < 'A all different from p. The righthand side is the value of this term.] C. Glossary of notations. Charge density 3-form: 
*J = P d3Xµ = J · d3I 

= J�Eµaf3 y  dxa A dx/3 A dx Y /3\ 
c::::.__x:::: \ (* J)af3 y  d3 X µ Maxwell and Faraday 2-forms : 

Basis 2-forms : 
*F = _!,_ Fµv d2S 2 µv , 

dx a A dx f3 ; d2Sµ, = Eµv laf3 I dxa A dx /3. Energy-momentum density 3-form: 
T ·  d3I = e Tµ• d3X = * T· - µ p - ' 

(one way to label) (dual way to label) 

dual on last index, (* T)µaf3 y  = Tµ"E vaf3 r  Angular momentum density 3-form: 
1 d • d3I = - e I\ e {/ µva d3X = * d · 

t:I - 2 µ v tf'  a - t:I , (* {/)µv - {/µ VA J' af3 y  - J' EAaf3 y • 



N ewton ian fluid characterized 
by I vi i <11; 1, p <11; p 

Stress-energy tensor and 
equation of motion for a 
Newton ian fluid 

App l i cation of V · T = 0 to 
an electrical ly  charged, 
vibrati ng rubber block 
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(In the frame-independent equation V · T = 0, one need not worry about which 
slot of T to take the divergence on; the slots are symmetric, so either can be used.) 

The equation V · T = 0 is the differential formulation of the law of 4-momentum 
conservation. It is also called the equation of motion for stress-energy, because it places 
constraints on the dynamic evolution of the stress-energy tensor. To examine these 
constraints for simple systems is to realize the beauty and power of the equation 
V · T = 0 . 

§5 . 1 0 . SAMP LE APP LI CATIONS OF V · T = 0 

The equation of motion V · T = 0 makes contact with the classical (Newtonian) 
equations of hydrodynamics, when applied to a nearly Newtonian fluid. Such a fluid 
has low velocities relative to the Lorentz frame used, I v i i � 1 ;  and in its rest frame 
its pressure is small compared to its density of mass-energy, p/p = p/pc2 � 1 .  For 
example, the air in a hurricane has 

l v i l ~ 100 km/hour ~ 3 ,000 cm/sec ~ 10-7 c = 10-7 � 1 ,  

-p 
~ 

1 atmosphere 106 dynes/cm2 
9 cm2 

10_ 12 2 1 0_12 1 --,------,,- ~ ---,------,,-- = 10 -- ~ C = � . 
p 10-� g/cm-1 10-3 g/cm3 sec2 

The stress-energy tensor for such a fluid has components 

7'°0 = (p + p)uOuO - p ::::; P, 

7'°i = TiO = ( p  + p)uOui ::::; pvi , 

Tik = (p + p)uiuk + p oik ::::; pv ivk + p oik ; 

and the equation of motion V · T = 0 has components 

T°0 
0 + TOi . = ap/at + V · (pv) = 0 ' ,1 

("equation of continuity") ; 

and 
Ti0 , o + Tik ,k = a(pvi)/at + a(pvivk)/ax k + ap;ax i = 0, 

or, equivalently (by combining with the equation of continuity), 

a v  1 - + (v • V)v = - - V p 
a t p 

("Euler's equation"). 

Box 5 .5 derives and discusses these results from the Newtonian viewpoint. 

(5 .37a) 

(5 .37b) 

(5 .37c) 

(5 .38a) 

(5 .38b) 

As a second application of V · T = 0, consider a composite system: a block of 
rubber with electrically charged beads imbedded in it, interacting with an electro
magnetic field. The block of rubber vibrates, and its accelerating beads radiate 
electromagnetic waves ; at the same time, incoming electromagnetic waves push on 
the beads, altering the pattern of vibration of the block of rubber. The interactions 
shove 4-momentum back and forth between beaded block and electromagnetic field. 
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Box 5 .5  NEWTON IAN HYDRODYNAM I CS REVIEWED 

1 5 3 

Consider a classical, nonrelativistic, perfect fluid. Apply Newton's law F = ma to 
a "fluid particle";  that is, to a small fixed mass of fluid followed in its progress 
through space : 

1 (momentum per unit mass) = (force per unit mass) 

(force per unit volume) 
(density) 

- (gradient of pressure) 
(density) 

or 
dv 
dt 

1 - - Vp. 
p 

( 1 )  

Translate from time-rate of  change following the fluid to time-rate of  change as 
measured at a fixed location, finding 

or 

or 

(
rate of change

) (
rate of chang

e) 1 . f h · h · . h . ve oc1ty rate o c ange 
wit time = wit time at + . · . . . 

.- 11 . fl . d fi d 1 . ( of fluid } ( with pos1t10n } 
10 owmg m xe ocat10n 

a v  1 - + (v • V)v = - - Vp 
a t  P 

(2) 

(Latin indices run from I to 3 ;  summation convention; upper and lower indices used 
indifferently for space dimensions in flat space ! )  This is Euler 's fundamental equation 
for the hydrodynamics of a perfect fluid. 

Two further equations are needed to complete the description of a perfect fluid. 
One states the absence of heat transfer by requiring that the specific entropy (entropy 
per unit mass) be constant for each fluid "particle" :  

ds = o 
dt ' or as - + (v • V)s = 0 .  a t 

The final equation expresses the conservation of mass: 

or 

op at + V · (pv) = 0, 

op 
-
a 

+ (pvk) k = O ; t ' 

(3 ) 

(4) 
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Box 5 .5  (continued) 

it is analagous in every way to the equation that expresses conservation of charge in electrodynamics and that bears the same name, "equation of continuity. "  The Newtonian stress-energy tensor, like its relativistic counterpart, is linked to conservation of momentum and mass. Therefore examine the time-rate of change of the density of fluid momentum, pv; ,  contained in a unit volume; thus, 
(5) Momentum flows into the little volume element on the left ("force equals time-rate of change of momentum") and out on the right; similarly at the other faces. Therefore the righthand side of (5) must represent the divergence of this momentum flux: a (pv; )/at  = - T,k ,k · Consequently, we take for the momentum flux itself 

"convection" "push" For the momentum density, the Newtonian value is 

(6) 
(7) 

(8) With this notation, the equation for the time-rate of change of momentum becomes (9) and with T00 = p, the equation of continuity reads (10) In conclusion, these Newtonian considerations give a reasonable approximation to the relativistic stress-energy tensor : P : pv i 
( 1 1 )  
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The 4-momentum of neither block nor field is conserved; neither V · 7<biockl nor V · 7<em field) vanishes. But total 4-momentum must be conserved, so V . (7<block) + 7<em field)) must vanish. (5 .39) For a general electromagnetic field interacting with any source, V · 7<em fieJd) has the form (5.40) 
(This was derived in exercise 3. 1 8  by combining P•. • = 0 with expression 5.22 for the electromagnetic stress-energy tensor, and with Maxwell's equations.) For our beaded block, J is the 4-current associated with the vibrating, charged beads, and F is the electromagnetic field tensor. The time component of equation (5.40) reads To• - - Fok Jk = -E . J (em field), v - - (rate at which electric field E does work ) on a unit volume of charged beads · (5 .4 1 )  
For comparison, rybqock) , o is the rate at which the block's energy density changes with time, - T?tlockl , i is the contribution of the block's energy flux to this rate of change of energy density, and consequently their difference ryblockl , • has the meaning 

(rate at which mass-energy of block per) 0 unit volume increases due to actions T(wockl, • = other than internal mechanical forces · between one part of block and another Hence, the conservation law 
(5.42) 

says that the mass-energy of the block increases at precisely the same rate as the electric field does work on the beads. A similar result holds for momentum: Tk • e - - Fk•J .. ek = - (J0E + J X B) (em field) , v k - , - ( Lorentz force per unit volume ) acting on beads ' 
(rate at which momentum per unit volume) Trblock) , vek = of block increases due to actions ; other than its own stresses so the conservation law 

(5.43) 
(5.44) 

says that the rate of change of the momentum of the block equals the force of the electromagnetic field on its beads. 



Angular momentum defined 
and its integ ral conservation 
law derived 

EXERCISES 

1 5 6  5 STRES S-EN ERGY TEN SOR AN D CON S ERVATION LAWS 

§5 . 1 1 . ANG U LAR MOMENTUM 

The symmetry, Tµ" = T"µ, of the stress-energy tensor enables one to define a 
conserved angular momentum Jaf3 , analogous to the linear momentum pa . The 
angular momentum is defined relative to a specific but arbitrary origin-an event 
{l with coordinates, in a particular Lorentz frame, 

(5 .45 ) 

The angular momentum about {l is defined using the tensor 

(5 .46) 

(Note that xa - aa is the vector separation of the "field point" xa from the "origin" 
{l; Tay is here evaluated at the "field point".) Because of the symmetry of T, j af3y 
has vanishing divergence : 

= Tf3a - Taf3 = 0 .  
(5 .47) 

Consequently, its integral over any closed 3 -surface vanishes 

(5 .48) 

("integral form of the law of conservation of angular momentum"). 
The integral over a spacelike surface of constant time t is 

Recalling that Tf3° is momentum density, one sees that (5 .49) has the same form 
as the equation "J = r X p" of Newtonian theory. Hence the name "total angular 
momentum" for Ja/3 . Various aspects of this conserved angular momentum, including 
the tie to its Newtonian cousin, are explored in Box 5 .6 .  

Exercise 5. 2 .  C HARGE CON SERVAT I ON Exercise 3 . 16 revealed that the charge-current 4-vector J satisfies the differential conservation law V · J = 0. Write down the corresponding integral conservation law, and interpret it for the four closed surfaces of Fig. 5 .3 . 
Exercise 5 .3. PART I C LE PRODU CTI ON Inside highly evolved, massive stars, the temperature is so high that electron-positron pairs are continually produced and destroyed. Let S be the number-flux vector for electrons and positrons, and denote its divergence by 

€ = V · S. (5 .50) 



Box 5 . 6  AN G U LAR M O M ENTU M 

A. Defi n it ion of Angu lar  M omentu m 

(a) Pick an arbitrary spacelike hypersurface S and an arbitrary event {l with 
coordinates x"'({l) a"' . (Use globally inertial coordinates throughout.) 

(b) Define cctotal angular momentum on S about {l" to be 

Jµv f jP"' d3.J:a, 
s 

jµva (xµ - aµ)T'"' - (x• - a')Tµa . 

( c) If S is a hypersurface of constant time t, this becomes 

Jµ• = f j µ•O dx dy dz. 

B .  Conservation of Angu l a r  M omentu m 

(a) Tµ•, • = 0 implies jµv"',a = 0. 
(b) This means that Jµv is independent of the hypersurface S on which it is calculated 

(Gauss's theorem): 
Jµ"(SA) - Jµv(Ss) 

= f P""' d3.J:a 
c)'V 

= f jµv"' ,a d4x = 0. 
'V 

(Note : o'V _ (boundary of 'V)  includes SA , Ss, and timelike surfaces at spatial 
infinity; contribution of latter dropped-localized source.) 

C. Change of Point About Which Angular  Momentum is Calcu lated 

P'(about {!1) - Jµ•(about {!0) 

= - bµ f T""' d3.J:a + b· f Tµa d3.J:a 
s s 

= - bµpv + b•Pµ, --+------------ x  

where pµ is total 4-mornentum. 



Box 5 . 6  (continued) 

D .  Intrinsic Angu lar Momentum 

(a) Work, for a moment, in the system's rest frame, where 
po = M, pi = 0, x0,j = � f x iT00 d3x = location of center of mass. 

Intrinsic angular momentum is defined as angular momentum about any event 
(a0, x0,j) on center of mass's world line. Its components are denoted sµv and work out to be 
where 

S f (x - x0M) X (momentum density) d3x "intrinsic angular momentum vector." (b) Define "intrinsic angular momentum 4-vector" Sµ to be that 4-vector whose components in the rest frame are (0, S); then the above equations say 
Sµv - U S f.a:(3µv 

- a: (3 , U13 P13/M = 4-velocity of center of mass, U13 Sf3 = 0. 
E. Decom position of Angu lar Momentu m into Intrinsic 

and Orbital Parts 

(a) Pick an arbitrary event tl, whose perpendicular displacement from centerof-mass world line is - Y°', so 

X 
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(b) Then, by Part C, the angular momentum about {l is 

Jµv = Ua S{3€ a{3µv + yµpv _ yvpµ_ 

sµv (intrinsic) U" (orbital) 
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(c) Knowing the angular momentum about {l, and the 4-momentum (and hence 
4-velocity), one can calculate the vector from {l to the center-of-mass world line, 

and the intrinsic angular momentum 

S _ l ua1µv 
p - 2 f. aµvp · 

Use Gauss's theorem to show that £ is the number of particles created (minus the number 
destroyed) in a unit four-dimensional volume of spacetime. 

Exercise 5.4.  I N ERTIAL MASS PER U N IT VO LU M E  
Consider a stressed medium in motion with ordinary velocity l v l <{ 1 with respect to a specific 
Lorentz frame. 

(a) Show by Lorentz transformations that the spatial components of the momentum density 
are 

(5 .5 1 ) 

where 
(5 .52) 

and T,,_,; are the components of the stress-energy tensor in the rest frame of the medium. 
Throughout the solar system r00 ► I T1ii J  (see, e .g. ,  discussion of hurricane in §5 . 10) ,  so one 
is accustomed to write T°i = T66vi , i . e . ,  "(momentum density) = (rest-mass density) X (ve
locity)" . But inside a neutron star r00 may be of the same order of magnitude as T1ii, so 
one must replace "(momentum density) = (rest-mass density) X (velocity)" by equations 
(5 .5 1 ) and (5 .52), at low velocities. 

(b) Derive equations (5 .5 1 )  and (5 .52) from Newtonian considerations plus the equivalence 
of mass and energy. (Hint: the total mass-energy carried past the observer by a volume V 
of the medium includes both the rest mass T00 V and the work done by forces acting across 
the volume's faces as they "push" the volume through a distance .) 

(c) As a result of relation (5 .5 1 ) ,  the force per unit volume required to produce an 
acceleration dv k /dt in a stressed medium, which is at rest with respect to the man who applies 
the force, is 

Fi = dT0i/dt = I m ik dvk/dt. 
k 

(5 .53) 
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This equation suggests that one call m ik the "inertial mass per unit volume" of a stressed 
medium at rest. In general m ik is a symmetric 3-tensor. What does it become for the special 
case of a perfect fluid? 

(d) Consider an isolated, stressed body at rest and in equilibrium (T"/3 ,0 = 0) in the 
laboratory frame. Show that its total inertial mass, defined by 

f mii dx dy dz, 

stressed 
body 

is isotropic and equals the rest mass of the body 

Mii = B ii f yoo dx dy dz. 

Exercise 5.5 .  DETERM I NANTS A N D  JACOBIANS 

(a) Write out explicitly the sum defining d2S01 in 

Thereby establish the formula 

2 _ ox" ox .B 
d db d Sµ v = £µvo:f3 3a a[;  a . 

2 -
o (x" ,  x .B) 

db - ___!_ o(x", x .B ) 
d db d Sµ v - €µ v ia.B l o (a, b) 

da - 2 ! €µvaf3 o(a, b) 
a . 

(5 .54) 

(5 .55) 

(Expressions such as these should occur only under integral signs. In this exercise one may 
either supply an f . . .  wherever necessary, or else interpret the differentials in terms of the 
exterior calculus, da db -+ da I\ db; see Box 5 .4.) The notation used here for Jacobian 
determinants is 

o(f, g) 
o(a, b) 

of of 
oa ob 

og og 
oa ob 

(b) By a similar inspection of a specific case, show that 

3 _ OX °' ox/3 oxY 
_ 1 o(x", x /3 , xY) 

d Iµ = €µa.B y -- -
b 

-- da db de - -3 , €µa.B Y o( b ) 
da db de. 

oa O oe . a, , e 

(c) Cite a precise definition of the value of a determinant as a sum of terms (with suitably 
alternating signs), with each term a product containing one factor from each row and 
simultaneously one factor from each column. Show tliat this definition can be stated (in the 
4 X 4 case, with the p X p case an obvious extension) as 

( d) Show that 

det A = J_ 8 µvpa A"' A.B AY ,1 a  
4 ! a/3y8 µ V p'" (J 

(for a definition of 8�'f!-7a , see exercises 3 . 1 3 and 4. 12) .  
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(e) Use properties of the o-symbol to show that the matrix A- 1 inverse to A has entries (A-1) µ a given by 
(A-1) µ (det A) = _!_ oµvpu Af3 n ,i s a 3 ! a/3yS r• p" u · 

(f) By an "index-mechanics" computation, from the formula for det A in part ( d) derive the following expression for the derivative of the logarithm of the determinant 
dln l det A I = trace(A-1 dA).  

Here dA i s  the matrix l l dAaµ I I  whose entries are I -forms. 
Exercise 5.6 .  CENTROIDS AN D SIZES Consider an isolated system with stress-energy tensor Tµ", total 4-momentum p a , magnitude of 4-momentum M =  ( - P · P) 11 2, intrinsic angular momentum tensor saf3 , and intrinsic angular momentum vector sa . (See Box 5 .6 . )  An observer with 4-velocity u a defines the 
centroid of the system, at his Lorentz time x0 = t and in his own Lorentz frame, by 

Xt(t) = ( 1 /  po) J x i Too d3x in Lorentz frame where u = o<!i' /ox0. (5 .56)  xO = t This centroid depends on ( i )  the particular system being studied, ( ii )  the 4-velocity u of the observer, and ( iii ) the time t at which the system is observed. (a) Show that the centroid moves with a uniform velocity 
(5 .57) 

corresponding to the 4-velocity 
U = P/M. (5 .57') 

Note that this "4-velocity of centroid" is independent of the 4-velocity u used in defining the centroid. (b) The centroid associated with the rest frame of the system (i.e . , the centroid defined with u = U) is called the center of mass; see Box 5 .6 .  Let ( u be a vector reaching from any event on the center-of-mass world !me to any event on the world line of the centroid associated with 4-velocity u; thus the components of ( u in any coordinate system are 
(5 .58)  

Show that ( u satisfies the equation 
(5 .59) 

[Hint: perform the calculation in a Lorentz frame where u = o<!i' /ox0 . ]  (c) Show that, as seen in the rest-frame of the system at any given moment of time, the above equation reduces to the three-dimensional Euclidean equation 
�u = - (v X S)/M, (5 .59 ') 

where v = u/u 0 is the ordinary velocity of the frame associated with the centroid. ( d) Assume that the energy density measured by any observer anywhere in spacetime is 
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non-negative (u • T · u � 0 for all timelike u) . In the rest frame of the system, construct the smallest possible cylinder that is parallel to S and that contains the entire system (Ta/3 = 0 everywhere outside the cylinder). Show that the radius r0 of this cylinder is limited by 
ro � ISI /M. (5 .60) 

Thus, a system with given intrinsic angular momentum S and given mass M has a minimum possible size ro min = ISi / M as measured in its rest frame. 



CHAPTER 6 
ACCE LERATED O BSERVERS 

The objective world simply is, it does not happen Only to 
the gaze of my consciousness, crawling upward along the life 

line [world line] of my body, does a section of this world 

come to life as a fleeting image in space 
which continuously changes in time. 

H E R MAN WEYL ( 1 949.  p 1 1 6) 

§ 6 . 1 . ACCELERATED O BSERVERS CAN B E  ANALYZED 
USI N G  SPECI AL RELATIVITY 

It helps in analyzing gravitation to consider a situation where gravity is mocked 
up by acceleration. Focus attention on a region so far from any attracting matter, 
and so free of disturbance, that (to some proposed degree of precision) spacetime 
there can be considered to be flat and to have Lorentz geometry. Let the observer 
acquire the feeling that he is subject to gravity, either because of jet rockets strapped 
to his legs or because he is in a rocket-driven spaceship. How does physics look 
to him? 

Dare one answer this question? At this early stage in the book, is one not too 
ignorant of gravitation physics to predict what physical effects will be measured by 
an observer who thinks he is in a gravitational field, although he is really in an 
accelerated spaceship? Quite the contrary; special relativity was developed precisely 
to predict the physics of accelerated objects-e.g., the radiation from an accelerated 
charge. Even the fantastic accelerations 

anuclear ~ u 2 /r ~ 1031 cm/sec2 ~ 1028 "earth gravities" 

suffered by a neutron bound in a nucleus, and the even greater accelerations met 
in high-energy particle-scattering events, are routinely and accurately treated within 

Accelerated motion and 
accelerated observers can be 
analyzed using special 
relativity 



6. 1 GENERAL RELATIVITY IS B U ILT ON SPECIAL RELATIVITY 

A tourist in a powered interplanetary rocket feels 
"gravity." Can a physicist by local effects convince 
him that this "gravity" is bogus? Never, says Ein
stein's principle of the local equivalence of gravity 
and accelerations. But then the physicist will make 
no errors if he deludes himself into treating true 
gravity as a local illusion caused by acceleration. 
Under this delusion, he barges ahead and solves 
gravitational problems by using special relativity : 
if he is clever enough to divide every problem into 
a network of local questions, each solvable under 
such a delusion, then he can work out all influ-

ences of any gravitational field. Only three basic 
principles are invoked: special-relativity physics, 
the equivalence principle, and the local nature of 
physics. They are simple and clear. To apply them, 
however, imposes a double task : ( 1 )  take space
time apart into locally flat pieces (where the prin
ciples are valid), and (2) put these pieces together 
again into a comprehensible picture. To undertake 
this dissection and reconstitution, to see curved 
dynamic spacetime inescapably take form, and to 
see the consequences for physics : that is general 
relativity. 

the framework of special relativity. The theoretician who confidently applies special 
relativity to antiproton annihilations and strange-particle resonances is not about 
to be frightened off by the mere illusions of a rocket passenger who gullibly believed 
the travel brochures advertising "earth gravity all the way." When spacetime is flat, 
move however one will, special relativity can handle the job. (It can handle bigger 
jobs too; see Box 6. 1 .) The essential features of how special relativity handles the 
job are summarized in Box 6.2 for the benefit of the Track- I reader, who can skip 
the rest of the chapter, and also for the benefit of the Track-2 reader, who will find 
it useful background for the rest of the chapter. 

Box 6. 2 ACCELERATED OBSERVERS IN BRIEF 

An accelerated observer can carry clocks and measuring rods with him, and can 
use them to set up a reference frame ( coordinate system) in his neighborhood. 

His clocks, if carefully chosen so their structures are affected negligibly by acceler
ation (e.g., atomic clocks), will tick at the same rate as unaccelerated clocks moving 
momentarily along with him: 

( 

time interval ticked off 

) L1-r = by observer's cl?cks as he = _ 112 _ 
- moves a vector displacement [ g((, ()] 

( along his world line 

And his rods, if chosen to be sufficiently rigid, will measure the same lengths as 
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momentarily comoving, unaccelerated rods do. (For further discussion, see § 16 .4, and Boxes 16 .2 to 16 .4.) Let the observer's coordinate system be a Cartesian latticework of rods and clocks, with the origin of the lattice always on his world line. He must keep his latticework small: 1 (spatial dim_ensions) <{ ( the acceleration measure� )-1 _!_ _ of lattice by accelerometers he cames g At distances I away from his world line, strange things of dimensionless magnitude 
gl happen to his lattice-e.g., the acceleration measured by accelerometers differs from g by a fractional amount ~gl (exercise 6 .7); also, clocks initially synchronized with the clock on his world line get out of step (tick at different rates) by a fractional amount ~gl (exercise 6 .6). (Note that an acceleration of one "earth gravity" corresponds to g-1 ~ 10-3 sec2 /cm ~ 1018 cm ~ 1 light-year, so the restriction I <{  I /g is normally not severe.) To deduce the results of experiments and observations performed by an accelerated observer, one can analyze them in coordinate-independent, geometric terms, and then project the results onto the basis vectors of his accelerated frame. Alternatively, one can analyze the experiments and observations in a Lorentz frame, and then transform to the accelerated frame. As deduced in this manner, the results of experiments performed locally (at 
I <{ I/  g) by an accelerated observer differ from the results of the same experiments performed in a Lorentz frame in only three ways : 

( I )  There are complicated fractional differences of order gl <{ I mentioned above, that can be made negligible by making the accelerated frame small enough. (2) There are Coriolis forces of precisely the same type as are encountered in Newtonian theory ( exercise 6 .8). These the observer can get rid of by carefully preventing his latticework from rotating-e.g., by tying it to gyroscopes that he accelerates with himself by means of forces applied to their centers of mass (no torque!) .  Such a nonrotating latticework has "Fermi-Walker transported" basis vectors (§6 .5), 
( 1 )  

where u = 4-velocity, and a = du/dT = 4-acceleration. (3) There are inertial forces of precisely the same type as are encountered in Newtonian theory (exercise 6 .8). These are due to the observer's acceleration, and he cannot get rid of them except by stopping his accelerating. 



The rest of this chapter is 

Track 2 .  

I t  depends o n  n o  preceding 

Track-2 materia l .  

It  is needed as prepaJation 

for 

( 1 ) the mathematical 

analysis of gyroscopes 

in  curved spacetime 

(exercise 1 9 .2 ,  §40. 7),  

and 

(2) the mathematical 

theory of the proper 

reference frame of an 

accelerated observer 

(§ 1 3 . 6 ) .  

It  wi l l  b e  helpful in  many 

appl ications of gravitation 

theory (Chapters 1 8-40) . 

Uniformly accelerated 
observer moves on hyperbola 
in spacetime diagram 
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§ 6 . 2 .  HYP ERBOLIC MOTI ON 

Study a rocket passenger who feels "gravity" because he is being accelerated in flat 
spacetime. Begin by describing his motion relative to an inertial reference frame. 
His 4-velocity satisfies the condition u2 = - 1 .  To say that it is fixed in magnitude 
is to say that the 4-acceleration, 

a =  du/dT, 

is orthogonal to the 4-velocity : 

0 = (d/dT)( - 1 /2) = (d/dT) G u · u) = a · u. 

(6 . 1 )  

(6 .2) 

This equation implies that a0 = 0 in the rest frame of the passenger (that Lorentz 
frame, where, at the instant in question, u = e0) ;  in this frame the space components 
of aµ reduce to the ordinary definition of acceleration, ai = d2x i/dt2 • From the 
components aµ = (0 ; ai ) in the rest frame, then, one sees that the magnitude of the 
acceleration in the rest frame can be computed as the simple invariant 

a 2 = aµaµ = (d2x/dt2)2 
as measured in rest frame· 

Consider, for simplicity, an observer who feels always a constant acceleration g. 
Take the acceleration to be in the x1 direction of some inertial frame, and take 
x2 = x3 = 0. The equations for the motion of the observer in that inertial frame 
become 

dt _ o - - U , 
dT 

dx - ul 
dT 

- , 

Write out the three algebraic equations 

uµuµ = - 1 , 

du1 

- = al . dT 

uµaµ = - u0a0 + u1a1 = 0, 

and 

Solve for the acceleration, finding 

du1 

al = - =  guo . 
dT 

(6 .3) 

(6 .4) 

These linear differential equations can be solved immediately. The solution, with 
a suitable choice of the origin, reads 

t = g-1 sinh gT, x = g-1 cosh gT. (6 .5) 

Note that x2 - t2 = g-2 . The world line is a hyperbola in a spacetime diagram 
("hyperbolic motion" ; Figure 6 . 1 ) . Several interesting aspects of this motion are 
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Figu re 6. 1 .  

Hyperbolic motion. World line of an object that (or an ob
server who) experiences always a fixed acceleration g with 
respect to an inertial frame that is instantaneously comoving 
( different inertial frames at different instants !). The 4-acceler
ation a is everywhere orthogonal (Lorentz geometry !)  to the 
4-velocity u 

treated in the exercises . Let the magnitude of the constant acceleration g be the 
acceleration of gravity, g = 980 cm/sec2 experienced on earth : g '.::::'. ( 103 cm/sec2)/ 

(3 X 1010 cm/sec)2 = (3 X 10 7 sec · 3 X 1 010 cm/sec)-1 = (1 light-year)- 1 . Thus the 
observer will attain relativistic velocities after maintaining this acceleration for 
something like one year of his own proper time. He can outrun a photon if he has 
a head start on it of one light-year or more. 

Exercise 6. 1 .  A TRI P TO THE GALACTI C  N U CLEUS EXERCISES 
Compute the proper time required for the occupants of a rocket ship to travel the ~30,000 
light-years from the Earth to the center of the Galaxy. Assume that they maintain an 
acceleration of one "earth gravity" ( 103 cm/sec2) for half the trip, and then decelerate at 
one earth gravity for the remaimng half. 

Exercise 6. 2 .  ROCKET PAYLOAD 

What fraction of the initial mass of the rocket can be payload for the journey considered 
m exercise 6 . 1 ?  Assume an ideal rocket that converts rest mass into radiat10n and ej ects all 
the radiation out the back of the rocket with J OO per cent efficiency and perfect collimation. 

Exercise 6. 3. TWI N PARADOX 

(a) Show that, of all timelike world lines connecting two events d' and :13, the one with the 
longest lapse of proper time is the unaccelerated one. (Hint: perform the calculation in the 
inertial frame of the unaccelerated world line .) 

(b) One twm chooses to move from {l to q, along the unaccelerated world .line. Show that 
the other twm, by an appropriate choice of accelerations, can get from {l to :13 in arbitrarily 
small proper time. 

(c) If the second twin prefers to ride in comfort, with the acceleration he feels never 
exceedmg one earth gravity, g, what 1s the shortest proper time-lapse he can achieve between 
{l and ?13 ?  Express the answer in terms of g and the proper time-lapse .dT measured by the 
unaccelerated twin. 

(d) Evaluate the answer numerically for several interesting trips. 



D ifficult ies i n  construct ing "the coord i nate system of an accelerated observer · · :  

B reakdown i n  commun icat ion between observer and events at d istance 
l > (accelerat ion)-1 
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Exercise 6 .4 .  RADAR S P E E D  I N D I CATO R  A radar set measures velocity by emitting a signal at a standard frequency and comparing it with the frequency of the signal reflected back by another obj ect. This redshift measurement is then converted, using the standard special-relativistic formula, into the corresponding velocity, and the radar reads out this velocity. How useful is this radar set as a velocity-measuring instrument for a uniformly_ accelerated observer? (a) Consider this problem first for the special case where the object and the radar set are at rest with respect to each other at the instant the radar pulse is reflected. Compute the redshift 1 + z = w,/w0 that the radar set measures in this case, and the resulting (incorrect) velocity it infers. Simplify by making use of the symmetries of the situation. (b) Now consider the situation where the obj ect has a non-zero velocity in the momentary rest frame of the observer at the instant it reflects the radar pulse. Compute the ratio of the actual relative velocity to the velocity read out by the radar set. 
Exercise 6 . 5 .  RADAR D I STAN C E  I N D I CATO R  Use radar as a distance-measuring device. The radar set measures its proper time -r between the instant at which it emits a pulse and the later instant when it receives the reflected pulse . It then performs the simple computation L0 = T /2 and supplies as output the "distance" 
L0• How accurate is the output reading of the radar set for measuring the actual distance 
L to the object, when used by a uniformly accelerated observer? (L is defined as the distance in the momentary rest frame of the observer at the instant the pulse is reflected, which is at the observer's proper time halfway between emitting and receiving the pulse .) Give a correct formula relating L0 T /2 to the actual distance L. Show that the reading L0 becomes infinite as L approaches g-1 , where g is the observer's acceleration, as measured by an accelerometer he carries. 

§ 6 . 3 .  CONSTRAINTS ON SIZE OF AN ACCELERATED FRAME 

It is very easy to put together the words "the coordinate system of an accelerated 
observer," but it is much harder to find a concept these words might refer to. The 
most useful first remark one can make about these words is that, if taken seriously, 
they are self-contradictory. The definite article "the" in this phrase suggests that 
one is thinking of some unique coordinate system naturally associated with some 
specified accelerated observer, such as one whose world line is given in equation 
(6.5). If the coordinate system is indeed natural, one would expect that the coordi
nates of any event could be determined by a sufficiently ingenious observer by sending 
and receiving light signals. But from Figure 6. 1 it is clear that the events composing 
one quarter of all spacetime (Zone III) can neither send light signals to, nor receive 
light signals from, the specified observer. Another half of spacetime suffers lesser 
disabilities in this respect: Zone II cannot send to the observer, Zone IV cannot 
receive from him. It is hard to see how the observer could define in any natural 
way a coordinate system covering events with which he has no causal relationship, 
which he cannot see, and from which he cannot be seen! 

Difficulties also occur when one considers an observer who begins at rest in one 
frame, is accelerated for a time, and maintains thereafter a constant velocity, at rest 
in some other inertial coordinate system. Do his motions define in any natural way 
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Figure 6 . 2 .  
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World line of an observer who has undergone a brief period of acceleration. In each phase of motion at constant velocity, an inertial coordinate system can be set up. However, there is no way to reconcile these discordant coordinates in the region of overlap (beginning at distance g-1 to the left of the region of acceleration) . 
a coordinate system? Then this coordinate system (I ) should be the inertial frame x µ in which he was at rest for times x0 less than 0, and (2) should be the other inertial frame x µ' for times x0' > T' in which he was at rest in that other frame. Evidently some further thinking would be required to decide how to define the coordinates in the regions not determined by these two conditions (Figure 6.2). More serious, however, is the fact that these two conditions are inconsistent for a region of spacetime that satisfies simultaneously x0 < 0 and x0' > T'. In both examples of accelerated motion (Figures 6.1 and 6.2), the serious difficulties about defining a coordinate system begin only at a finite distance g- 1 from the world line of the accelerated observer. The problem evidently has no solution for distances from the world line greater than g-1 . It does possess a natural solution in the immediate vicinity of the observer. This solution goes under the name of "Fermi-Walker transported orthonormal tetrad." The essential idea lends itself to simple illustration for hyperbolic motion, as follows. 
§ 6 .4 .  TH E TETRAD CAR R I ED BY A UN I FO RMLY 

ACCELE RATED O BSERVER 

An infinitesimal version of a coordinate system is  supplied by a "tetrad," or "moving frame" (Cartan's "repere mobile"), or set of basis vectors e0, , e1, , e2, , e3, (subscript tells which vector, not which component of one vector!) Let the time axis be the time axis of a comoving inertial frame in which the observer is momentarily at rest. Thus the zeroth basis vector is identical with his 4-velocity: eO' = u. The space axes e2 and e3 are not affected by Lorentz transformations in the I -direction. Therefore take e2, and e3, to be the unit basis vectors of the all-encompassing Lorentz frame relative to which the hyperbolic motion of the observer has already been described in equations (6 .5) : e2, = e2 ; e3, = e3 . The remaining basis vector, e1, , orthogonal to the other three, is parallel to the acceleration vector, e1, = g-1a [see equation (6.4)]. There is a more satisfactory way to characterize this moving frame: the time axis e◊' is the observer's 4-velocity, so he is always at rest in this frame; and the 

N atu ra l  coord i nates 
i ncons istent at d i stance 

l > (acce lerat ion)-1 

O rthonormal  tet rad of basis 
vectors carried by u n iform ly 
accelerated o bserver 



Ortho normal tetrad of 
arbitrar i ly accelerated 
observer should be 
" non rotati n g "  

" N on rotati n g "  means 
rotat ion on ly in  timel ike 
p lane of 4-velocity and 
4-acceleration  

Mathematics o f  rotation  i n  
3-space 
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other three vectors e1, are chosen in such a way as to be (I) orthogonal and (2) 
nonrotating. These basis vectors are : 

(e0Y = (cosh gr ; sinh gr, 0, 0) ; 

(e1 ,) µ = (sinh gr ; cosh gr, 0, 0); 

(e2,) µ = (0 ; 0 ,  I , 0) ;  

(e3,) µ = (0 ; 0, 0, I ) .  (6 .6) 

There is a simple prescription to obtain these four basis vectors . Take the four basis 
vectors e0, e1 , e2, e3 of the original global Lorentz reference frame, and apply to 
them a simple boost in the I -direction, of such a magnitude that e0, comes into 
coincidence with the 4-velocity of the observer. The fact that these vectors are all 
orthogonal to each other and of unit magnitude is formally stated by the equation 

eµ' . ev' = 1/µ' v' · 

§ 6 . 5. THE TETRAD FERMI-WALKER TRANSPORTED BY 
AN OBSERVER WITH ARB ITRARY ACCELERATION 

(6 .7) 

Tum now from an observer, or an object, in hyperbolic motion to one whose 
acceleration, always finite, varies arbitrarily with time. Here also we impose three 
criteria on the moving, infinitesimal reference frame, or tetrad : ( I )  the basis vectors 
eµ, of the tetrad must remain orthonormal [equation (6 .7)] ; (2) the basis vectors must 
form a rest frame for the observer at each instant (e0, = u) ; and (3) the tetrad should 
be "nonrotating." 

This last criterion requires discussion. The basis vectors of the tetrad at any proper 
time r must be related to the basis vectors e0, e1 , e2, e3 of some given inertial frame 
by a Lorentz transformation eµ, (r) = A" µ,(r)ev . Therefore the basis vectors at two 
successive instants must also be related to each other by a Lorentz transformation. 
But a Lorentz transformation can be thought of as a "rotation" in spacetime. The 
4-velocity u, always of unit magnitude, changes in direction. The very concept of 
acceleration therefore implies "rotation" of velocity 4-vector. How then is the re
quirement of "no rotation" to be interpreted? Demand that the tetrad eµ,(r) change 
from instant to instant by precisely that amount implied by the rate of change of 
u = e0, ,  and by no additional arbitrary rotation. In other words, ( I )  accept the 
inevitable pseudorotation in the timelike plane defined by the velocity 4-vector and 
the acceleration, but (2) rule out any ordinary rotation of the three space vectors . 

Nonrelativistic physics describes the rotation of a vector (components v;) by an 
instantaneous angular velocity vector ( components w;), This angular velocity appears 
in the formula for the rate of change of v, 

(6 .8) 

For the extension to four-dimensional spacetime, it is helpful to think of the rotation 
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as occurring in the plane perpendicular to the angular velocity vector w. Thus rewrite 
(6.8) as 

(6.9) 

where 

(6.10) 

has non-zero components only in the plane of the rotation. In other words, to speak 
of "a rotation in the (1, 2)-plane" is more useful than to speak of a rotation about 
the 3-axis. The concept of "plane of rotation" carries over to four dimensions. There Mathematics of rotat ion in 
a rotation in the (1, 2)-plane will leave constant not only the v3 but also the v0 

spacetime 

component of the velocity. The four-dimensional definition of a rotation is 

duµ - _ nµv dr - �� vv, with (6.11) 

To test the appropriateness of this definition of a generalized rotation or infinitesimal 
Lorentz transformation, verify that it leaves invariant the length of the 4-vector: 

(6.12) 

The last expression vanishes because gµv is antisymmetric, whereas vµvv is symme
tric. Note also that the antisymmetric tensor gµv ("rotation matrix" ; "infinitesimal 
Lorentz transformation") has 4 X 3/2 = 6 independent components. This number 
agrees with the number of components in a finite Lorentz transformation (three 
parameters for rotations, plus three parameters for the components of a boost). The 
"infinitesimal Lorentz transformation" here must (1) generate the appropriate Lor
entz transformation in the timelike plane spanned by the 4-velocity and the 4-accel
eration, and (2) exclude a rotation in any other plane, in particular, in any spacelike 
plane. The unique answer to these requirements is 

i.e., n = a I\ u. (6.13) 

Apply this rotation to a spacelike vector w orthogonal to u and a, (u · w = 0 and 
a ·  w = 0). Immediately compute gµvwv = 0. Thus verify the absence of any space 
rotation. Now check the over-all normalization of gµv in equation (6.13). Apply the 
infinitesimal Lorentz transformation to the velocity 4-vector u of the observer. Thus 
insert vµ = uµ in (6.11). It then reads 

This result is an identity, since u · u = - 1 and u · a = 0. 
A vector v that undergoes the indicated infinitesimal Lorentz transformation, 

(6.14) 

is said to experience "Fermi-Walker transport" along the world line of the observer. 

Fermi-Walker law of transport 
for "nonrotat ing · ·  tetrad of 
basis vectors carried by an 
accelerated observer 
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Figure 6 . 3 .  
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Construction of spacehke hyperplanes (dashed) orthogonal to 
the world line (heavy line) of an accelerated particle at selected 
moments along that world line. Note crossing of hyperplanes 
at distance g-1(-r) (time-dependent acceleration!)  from the 
world line. 

Tetrad used to construct 
" loca l coord i nate system of 
accele rated observer"  

The natural mouing frame associated with an accelerated observer consists of four 
orthonormal vectors, each of which is Fermi- Walker transported along the world line 
and one of which is e0, = u (the 4-velocity of the observer). Fermi-Walker transport of the space basis vectors er can be achieved in practice by attaching them to gyroscopes (see Box 6 .2 and exercise 6 .9). 
§ 6 . 6 .  THE LO CAL COO R D INATE SYSTEM O F  

AN ACCELE RATED O BSERVER 

Extend this moving frame or "infinitesimal coordinate system" to a "local coordinate system" covering a finite domain. Such local coordinates can escape none of the problems encountered in "hyperbolic motion" (Figure 6 . 1 )  and "briefly accelerated motion" (Figure 6 .2). Therefore the local coordinate system has to be restricted to a region within a distance g-1 of the observer, where these problems do not arise. Figure 6 .3 illustrates the construction of the local coordinates �µ' _ At any given proper time 'T the observer sits at a specific event !Y'(T) along his world line. Let the displacement vector, from the origin of the original inertial frame to his position !'i'(T), be z(T). At !'i'(T) the observer has three spacelike basis vectors e1,(T), e2,(T), e3,(T). The point !Y'(T) plus those basis vectors define a spacelike hyperplane. The typical point of this hyperplane can be represented in the form 
X = e'e1,('T) + �2'e2,('T) + �3'e3,('T) + Z('T) 

= (separation vector from origin of original inertial frame). (6 . 15) 
Here the three numbers � k' play the role of Euclidean coordinates in the hyperplane. This hyperplane advances as proper time unrolls. Eventually the hyperplane cuts through the event q> 0 to which it is desired to assign coordinates. Assign to this event 
as coordinates the numbers �o' = T, � k ' given by (6. 15). Call these four numbers 
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"coordinates relative to the accelerated observer. " In detail, the prescription for the 
determination of these four coordinates consists of the four equations 

(6.16) 

in which the xµ, are considered as known, and the coordinates -r, e' are considered 
unknowns. 

At a certain distance from the accelerated world line, successive spacelike hyper
planes, instead of advancing with increasing -r, will be retrogressing. At this distance, 
and at greater distances, the concept of "coordinates relative to the accelerated 
observer" becomes ambiguous and has to be abandoned. To evaluate this distance, 
note that any sufficiently short section of the world line can be approximated by 
a hyperbola ("hyperbolic motion with acceleration g"), where the time-dependent 
acceleration g(-r) is given by the equation g2 = aµ,aµ,-

Apply the above general prescription to hyperbolic motion, arriving at the equa
tions 

XO = (g-l + e')sinh{g�0'), 

xl = (g-1 + e')cosh(g�O'), 

x2 = �2' ,  

x3 = �3' . (6.17) 

The surfaces of constant �0' are the hyperplanes with x0 / x1 = tanh g�0' sketched in 
Figure 6.4. Substitute expressions (6.17) into the Minkowski formula for the line 
element to find 

ds2 = 1/ dx µ, dx" µ,v 
= - (1 + gg 1')2(d�0')2 + (dg 1')2 + (d�2 ')2 + (d� 3')2 . 

Figure 6.4. 

(6.18) 

Local coord i nate system for 
u n iform ly accelerated 
observer 

Local coordinate system associated with an ob
server in hyperbolic motion (heavy black world 
line). The local coordinate system fails for �1' less 
than - g-1. 
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The coefficients of d�µ' d e ' in this expansion are not the standard Lorentz metric 
components. The reason is clear. The � µ' do not form an inertial coordinate system. 
However, at the position of the observer, e' = 0, the coefficients reduce to the 
standard form. Therefore these "local coordinates" approximate a Lorentz coordinate 
system in the immediate neighborhood of the observer. 

Exercise 6 . 6 .  CLO C K  RATES VERSUS C O O R D I NATE TI M E  
I N  ACC E LE RATED COORDI NATES 

Let a clock be attached to each grid pomt, (F, e', �3') = constant, of the local coordinate 
system of an accelerated observer. Assume for simplicity that the observer is in hyperbolic 
motion. Use equation (6 . 1 8) to show that proper time as measured by a lattice clock differs 
from coordinate time at its lattice point : 

dr/d�0' = I + g� 1' . 

(Of course, very near the observer, at F � g-1 , the discrepancy is negligible .)  

Exercise 6 .  7 .  ACCELERATI O N  O F  LATTICE P O I NTS 
IN ACCELERATE D  COORDI NATES 

Let an accelerometer be attached to each grid point of the local coordinates of an ohserver 
in hyperbolic motion. Calculate the magmtude of the acceleration measured by the acceler
ometer at (F, e·, �3') .  

Exercise 6 . 8 .  O BSERVER WITH ROTATI NG TETRAD 
An observer moving along an arbitrarily accelerated world line chooses not to Fermi-Walker 
transport his orthonormal tetrad. Instead, he allows it to rotate . The antisymmetric rotation 
tensor n that enters mto his transport law 

deo:,/dr = - 0 · eo:' 

splits into a Fermi-Walker part plus a spatial rotation part : 

!J µv = Q µU v 
- QvU µ + Uo:W

13
€ 0:/3µv 

!JtFW) !J fsR) 

w = a vector orthogonal to 4-velocity u. 

(6 . 1 9) 

(6.20) 

(a) The observer chooses his time basis vector to be e0, = u. Show that this choice is 
permitted by his transport law (6 . 1 9) ,  (6 .20) . 

(b) Show that ilts'm produces a rotation in the plane perpendicular to u and w-i.e . ,  that 

O(SR) • U = 0, O(SR) • W = 0 .  (6 .2 1)  

(c) Suppose the accelerated observer Fermi-Walker transports a second orthonormal tetrad 
eo:" •  Show that the space vectors of his first tetrad rotate relative to those of his second tetrad 
with angular velocity vector equal to w. Hint: At a moment when the tetrads coincide, show 
that (in three-dimensional notat10n, referring to the 3-space orthogonal to the observer's world 
line) : 

(6.22) 
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( d) The observer uses the same prescription [ equat10n (6 . 16 )] to set up local coordinates based on his rotating tetrad as for his Fermi-Walker tetrad. Pick an event f2 on the observer's world line, set -r = 0 there, and choose the original inertial frame of prescription (6 . 1 6) so ( I ) it comoves with the accelerated observer at f:2, (2) its origin is at f:2, and (3) its axes coincide with the accelerated axes at f:2. Show that these conditions translate into 
(6 .23) 

( e) Show that near f:2 ,  equations (6 . 1 6) for the rotating, accelerated coordinates reduce to : xO = (O' + ak,(k '(O' + O([(a']3) ;  (6 .24) x i = gr + ½ ai(0'2 + £ ik1w k(l'(O' + O([(a' ]3) .  
(f) A freely moving particle passes through the event f2 with ordinary velocity v as measured m the inertial frame. By transforming its straight world l ine  x i = v ix0 to the accelerated, rotating coordinates, show that its coordinate velocity and acceleration there are : (d(i'/d(0')at :2 = v i ; 

(d2(i'/d(0'2) at :2 = - ai _ 2£ik1wk u1 + 2 viak
v

k . 
._.,_, ,.____, --..-

inertial _J Coriots reltiv1sitc acceleration acceleration correction to inertial acceleration 
Exercise 6. 9. T H OMAS P RECESSION 

(6 .25 ) 

Consider a spinning body (gyroscope, electron, . . .  ) that accelerates because forces act at its center of mass. Such forces produce no torque ; so they leave the body's intrinsic angularmomentum vector S unchanged, except for the unique rotation in the u I\ a plane required to keep S orthogonal to the 4-velocity u. Mathematically speaking, the body Fermi-Walker transports its angular momentum (no rotation in planes other than u I\ a) : 
dS/d-r = (u I\ a) · S. (6 .26) 

This transport law applies to a spmnmg electron that moves m a circular orbit of radius 
r around an atomic nucleus . As seen m the laboratory frame, the electron moves in the x, y-plane with constant angular velocity, w. At time t = 0, the electron is at x = r, y = 0 ;  and its spin (as treated classically) has components 

s0 = 0 ,  S" = -1- tz v'i , SY = 0, sz = l_ tz . 2 
Calculate the subsequent behavior of the spin as a function oflaboratory time, Sµ(t) . Answer :  

S" = � tz ( cos wt  cos wyt  + y sin wt  sin wyt) ; 
SY = � tz (sin wt cos wyt - y cos wt sm wyt) ; 
sz = 1- tz ; 2 

v = wr; 

s0 = - _I_ tz uy sin wyt · 
v'i , 

y = ( 1  _ u2)- ll2 _ 
(6 .27) 
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Rewrite the time-dependent spatial part of this as 
S" + iSY = _tz_ [e-i<y - l)wt + i( l - y)sin(wyt)e i"'1] . v'i The first term rotates steadily in a retrograde direction with angular velocity 

WThomas = (y - l )w 
(6 .28) 

(6 .29) 
It is called the Thomas precession. The second term rotates in a righthanded manner for part of an orbit (0 < wyt < 'IT) and in a lefthanded manner for the rest ('IT < wyt < 2'11') . Averaged in time, it does nothing. Moreover, in an atom it is very small (y - 1 <{ 1 ) .  It must be present, superimposed on the Thomas precession, in order to keep 

S · u = S · u - s0u0 = 0, (6 .30) 

and 
S2 = S2 

- (S0)2 = 3tz2/4 = constant. (6 .3 1 )  

It comes into play with righthanded rotation when S · u i s  negative ; i t  goes out o f  play when 
S · u = 0; and it returns with lefthanded rotation when S · u turns positive. The Thomas precession can be understood, alternatively, as a spatial rotation that results from the combination of successive boosts in slightly different directions. [See, e .g . ,  exercise 103 of Taylor and Wheeler ( 1 966).] For an alternative derivation of the Thomas precession (6 .29) from "spinor formalism,"  see §4 1 .4. 



CHAPTE R 7 
I N CO M PATI B I L ITY O F  G RAVITY 

AN D S P EC IAL R E LATIV ITY 

§ 7 . 1 . ATTEMPTS TO I NCORPORATE GRAVITY 
I NTO SPECIAL RELATIVITY 

The discussion of special relativity so far has consistently assumed an absence of 
gravitational fields. Why must gravity be ignored in special relativity? This chapter 
describes the difficulties that gravitational fields cause in the foundations of special 
relativity. After meeting these difficulties, one can appreciate fully the curved-space
time methods that Einstein introduced to overcome them. 

Start, then, with what one already knows about gravity, Newton's formulation 
of its laws: 

d2xi/dt2 = - ot/J/oxi, 

V2t/J = 41TGp.  

(7.1) 

(7.2) 

These equations cannot be incorporated as they stand into special relativity. The 
equation of motion (7. I) for a particle is in three-dimensional rather than four-di
mensional form; it requires modification into a four-dimensional vector equation 
for d2xµ/dr2 • Likewise, the field equation (7.2) is not Lorentz-invariant, since the 
appearance of a three-dimensional Laplacian operator instead of a four-dimensional 
d'Alembertian operator means that the potential t/J responds instantaneously to 
changes in the density p at arbitrarily large distances away. In brief, Newtonian 
gravitational fields propagate with infinite velocity. 

One's first reaction to these problems might be to think that they are relatively 
straightforward to correct. Exercises at the end of this section study some relatively 
straightforward generalizations of these equations, in which the gravitational poten
tial t/J is taken to be first a scalar, then a vector, and finally a symmetric tensor field. 
Each of these theories has significant shortcomings, and all fail to agree with obser
vations. The best of them is the tensor theory (exercise 7.3, Box 7.1), which, however, 

This cha pter is enti rely 
Track 2 .  

I t  depends on no preced ing 
Track-2 materia l .  

I t  is not needed as  
preparation for  any later 
chapter, but wi l l  be 
helpful in  Chapter 1 8  (weak 
gravitat ional  fields) , and in  
Cha pters 3 8  and 39  
(experimental tests and other 
theories of gravity) . 

Newton 's  gravitat ional laws 
must be modified i nto 
four-dimensional, geometric 
form 

All straightforward 
modificat ions are 
unsatisfactory 



Best mod1f icat 1on (tensor 
theory in f lat spacet ime) is 
i n ternal ly i n consistent, when 
repai red, 1t becomes general 
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EXERCISES 

1 7 8 7 INCO M PAT I B I L ITY OF GRAV ITY AN D SPEC IAL  RELATIV ITY 

is internally inconsistent and admits no exact solutions.  This difficulty has been 
attacked in recent times by Gupta ( 1954, 1957 , 1962), Kraichnan ( 1955) ,  Thirring 
( 196 1 ), Feynman ( 1 963), Weinberg ( 1965), Deser ( 1 970). They show how the flat
space tensor theory may be modified within the spirit of present-day relativistic field 
theory to overcome these inconsistencies. By this field-theory route (part 5 of Box 
17 .2), they arrive uniquely at standard 1 9 1 5  general relativity. Only at this end point 
does one finally recognize, from the mathematical form of the equations, that what 
ostensibly started out as a flat-space theory of gravity is really Einstein's theory, 
with gravitation being a manifestation of the curvature of spacetime. This book 
follows Einstein's line of reasoning because it keeps the physics to the fore. 

EXE RC ISES  O N  FLAT-S PACETI M E  THEO R I ES OF G RAVITY The following three exercises provide a solid challenge . Happily, all three require similar techniques, and a solution to the most difficult one (exercise 7 .3)  is presented in Box 7 . 1 .  Therefore, i t  i s  reasonable to proceed a s  follows. (a) Work either exercise 7 . 1  (scalar theory of gravity) or 7 .2 (vector theory of gravity) , skimming exercise 7 .3 and Box 7 . 1  (tensor theory of gravity) for outline and method, not for detail, whenever difficulties arise .  (b) Become familiar with the results of the other exercise (7 .2 or 7 . I) by discussing it with someone who has worked it m detail. (c) Read in detail the solution to exercise 7 .3 as presented in Box 7 . 1 ,  and compare with the computed results for the other two theories. (d) Develop computational power by checking some detailed computations from Box 7. I .  
Exercise 7 . 1 .  SCALAR G RAVITAT IONAL F I E LD ,  <P A. Consider the variational principle oJ = 0, where 

J ( dz" dz !3 )
11 2 

I = - m e "' - 11af3 d"°A dt.. 
dt.., (7 .3) 

Here m = (rest mass) and z"(t..) = (parametrized world line) for a test particle in the scalar gravitational field <P. By varying the particle's world line, derive differential equations governing the particle's motion. Write them using the particle's proper time as the path parameter, 
( dz" dz !3 )1/2 

dr = - 1Jaf3 dt.. dt.. 
dt.., 

so that u"  = dz"/ dT satisfies u"u f31/af3 = - I .  B .  Obtain the field equation fo r  <P(x) implied by the variational principle 8/ = 0 ,  where 
I = JE d4x and 

E = - _l_ 'T/a{3 a<P _.l!!!_ - f me "' 84[x - z(T)] dT. 
8?TG ax" ax f3 (7.4) 

Show that the second term here gives the same integral as that studied in part A (equation 7 .3) .  
Discussion: The field equations obtained describe how a single particle of mass m generates the scalar field. If many particles are present, one includes in E a  term -Jme "' 84[x - z(T)] dT for each particle .  C. Solve the field equation of part B, assuming a single source particle at rest. Also assume that e<P = I is an adequate approximation in the neighborhood of the particle. Then check this assumption from your solution;  i .e . ,  what value does it assign to e<P at the surface of the earth? (Units with c = I are used throughout ; one may also set G = I ,  if one wishes .) 



§ 7 1 G RAVITY BU RSTS O U T  O F  S P ECIAL R E LAT IVITY 1 7 9 

D. Now treat the static, spherically symmetric field <P from part C as the field of the sun acting as a given external field m the variat10nal principle of part A, and study the motion of a planet determined by this variational principle. Constants of motion are available from the spherical symmetry and time-independence of the integrand. Use spherical coordinates and assume motion in a plane . Derive a formula for the perihelion precession of a planet. E.  Pass to the limit of a zero rest-mass particle in the equations of motion of part A. Do this by using a parameter "A different from proper time, so chosen that k µ = dx µ/d"A is the energy-momentum vector, and by taking the limit m ----+ 0 with k0 = ym = E remaining finite (so u 0 = y ----+ oo ). Use these equations to show that the quantities qµ = k µe<P are constants of motion, and from this deduce that there is no bending of light by the sun in this scalar theory. 
Exercise 7 . 2 .  VECTO R G RAVITAT IO NAL F I E LD,  <Pµ A. Verify that the variational principle 8/ = 0 gives Maxwell's equations by varying Aw and the Lorentz force law by varying z µ(-r) , when 

- I J I J dz µ dz J dz µ I = 1 6w Fµv Fµv d4x + 2 m d-r � d-r + e d-r Aµ(z) d-r . (7 .5) 
Here Fµv is an abbreviation for A v ,µ - Aµ , v · Hint: to vary Aµ(x), rewrite the last term as a spacetime integral by introducing a delta function 84[x - z(-r)] as in exercise 7 . 1 ,  parts A and B .  B .  Define, by analogy to the above, a vector gravitational field <P µ with G µv = <P v ,µ - <P µ , v using a variational principle with 

I J I J 
dzµ dz J dz µ 

I = + -- G Gµ" d4x + - m  -- --1!:. d-r + m <P -- d-r. I 6wG µv 2 d-r d-r µ d-r (7 .6) 
(Note : if many particles are present, one must augment I by terms ½mf(dz µ/d-r)(dzµ/d-r) d-r + mf<P µ(dz µ I d-r) d-r for each particle.) Find the "Coulomb" law in this theory, and verify that the coefficients of the terms in the variational principle have been chosen reasonably. C . Compute the perihelion precession in this theory. D .  Compute the bending of light in this theory (i.e., scattering of a highly relativistic particle u 0 = y ----+ oo ), as It passes by the sun, because of the sun's <P µ field. E.  Obtain a formula for the total field energy corresponding to the Lagrangian implicit in part B. Use the standard method of Hamiltonian mechanics, with 

E is the Lagrangian density and L = f E d3x IS the Lagrangian. The corresponding Hamiltonian density (= energy density) is 
ae X = L <Pµ ,0 -<P - E. 

µ 0 µ, O  

Show that vector gravitational waves carry negative energy. 
Exercise 7 . 3 .  SYM M ETR I C  TE N S O R  G RAVITATI O NAL F I E LD,  hµv = h vµ Here the action principle is, as for the vector field, 81 = 0, with I = /field + /particle + 
/interaction· /particle is the same as for the vector field : 

(7 .7) 
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However, /field and /interaction are different : 

with 
I - 1- f h TW d4 interaction - 2 µ11 X. 

�Note that ] one h her<:_ , 1s not an h 
(7 .S a) 
(7 .8b) 
(7 .8c) 
(7 .9) 

Here Tµv is the stress-energy tensor for all nongravitational fields and matter present. For a system of point particles (used throughout this exercise), 
J dz µ dz" P"(x) = m drdT 84[x - z('r)] dT. (7 . 10) 

A. Obtain the equations of motion of a particle by varying zµ(T) in 8(/particle + /interaction) = 0. Express your result in terms of the "gravitational force field" 
I I'va/3 = 2 (h va , /3 + h v/3 ,a - hap , v) (7 . 1 1 )  

derived from the tensor gravitational potentials hµv = h vw B. Obtain the field equations from 8(/field + /interaction) = O ; express them in terms of 
(7 . 12) 

Discuss gauge invariance, and the condition "Jiµa a = 0.  C. Find the tensor gravitational potentials hµ: due to the sun (treated as a point mass). D .  Compute the perihelion precession. E. Compute the bending of light. F. Consider a gravitational wave "fiµv = Aµv exp(ikax") .  
What conditions are imposed by the field equations? By the gauge condition hµa = O? , a Show that, by further gauge transformations hµv --+ hµv + �µ , v + t,µ that preserve the "fiµ",a = 0 restrictions, further conditions 

(7 . 13) 
(7 . 14) 
(7 . 1 5)  
(7 . 16) 

can be imposed, where u" is a fixed, timelike vector. It is sufficient to consider the case, obtained by a suitable choice of reference frame, where u" = ( I ;  0 ,  0,  0) and k" = (w ;  0, 0, w).  G. From the Hamiltonian density (7 . 17) 
for the field, show that the energy density of the waves considered in part F is positive . H. Compute Tµv v for the stress-energy tensor of particles Tµ " that appears in the action integral I. Does P� " vanish ( e.g. ,  for the earth in orbit around the sun)? Why? Show that the coupled equatio�s for fields and particles obtained from 8J = 0 have no solutions . 

( continued on page 187) 



Box 7 . 1  A N  ATTEM PT TO DESCR I B E  G RAVI TY B Y  A SYM M ETR I C  
TE N S O R  F I E LD I N  F LAT S PACETI M E  [Solution t o  exercise 7 . 3) 

Attempts to describe gravity within the framework of special relativity would natu
rally begin by considering the gravitational field to be a scalar ( exercise 7 .  I )  as it 
is in Newtonian theory, or a vector (exercise 7 .2) by analogy to electromagnetism. 
Only after these are found to be deficient ( e .g . ,  no bending of light in either theory; 
negative-energy waves in the vector theory) would one face the computational 
complexities of a symmetric tensor gravitational potential, hµv = hvµ • which has more 
indices. 

The foundations of the most satisfactory of all tensor theories of gravity in flat 
space time are laid out at the beginning of exercise 7 .3 .  The choice of the Lagrangian 
made there ( equations 7 .8) is dictated by the demand that hµv be a "Lorentz covari
ant, massless, spin-two field ." The meaning of this demand, and the techniques of 
special relativity required to translate it into a set of field equations, are customarily 
found in books on elementary particle physics or quantum field theory; see, e .g. ,  
Wentzel ( 1 949), Feynman ( 1963), or Gasiorowicz ( 1966). Fierz and Pauli ( 1 939) 
were the first to write down this Lagrangian and investigate the resulting theory. 
The conclusions of the theory are spelled out here in the form of a solution to exercise 
7 .3 .  

A. Equat ion of Motion for a Test Particle (exercise 7 . 3A) 

Carry out the integration in equation (7 .9), using the particle stress-energy tensor 
of equation (7 . 10), to find 

where 

I = I  I - l  J <  h ) · µ · v a p + i - particle + interaction -
2 

m 1/µv + µv Z Z 'T, ( I )  

Then compute of P + i • and find that the coefficient o f  the arbitrary variation in path 
8zµ vanishes if and only if 

Rewrite this equation of motion in the form 

where I' µaf3 is defined in equation (7 . 1 1  ) .  

B1 . Field Equations (exercise 7 . 3 8) 

(2) 

Use /field and /interaction in the forms given in equations (7 .8) and (7 .9) ; but for the 
quickest and least messy derivation, do not use the standard Euler-Lagrange 
equations. Instead, compute directly the first-order change 8£1 produced by a small 
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Box 7 .  1 (continued) 

variation oh,,13 of the field. For the second term of e1 , it is clear (by relabeling dummy 
indices as needed) that varying each factor gives the same result, so the two terms 
from the product rule combine : 

o(h ,a h µf3 
13) = 2h µf3 

13 oh •" . µa , , µa 

A similar result holds for the first term of e1 , in view of the identity aµvb µv = aµvbµv , 
which holds for the "bar" operation of equations (7 .8) ;  each side here is just aµvbµv 

- ½aµ 
µb" v · Consequently, 

- (32'77G) oe1 = li, v/3 ,a oh 13 - 2hµf3 13 oh •" . v ,a , µa (3) 

Next use this expression in oJfieid ; and, by an integration by parts, remove the 
derivatives from ohµv , giving 

olfield = (32'77G)-l J [h"13 ·",a ohv/3 - 2hµf3 ,/3 ,a oh
µ,,) d4x. 

To find the coefficient of ohµv in this expression, write (from equation 7 .8c) 

,<:,h- - (,<:,µ ,<:, - _!_ µv) ,<:,h • u a/3 - u a u v/3 2 1J,,131J u µv • 

and then rearrange and relabel dummy (summation) indices to obtain 

olfield = (32'77G)-l J [hµf3 ,a,a ohv/3 - 2hµf3 ,/3 ,a ohµ,,) d4x. 

By combining this with olinteraction = ½Tµv ohµv d4x, and by using the symmetry 
ohµv = ohvµ• obtain 

- hµv ,a _ 1) µvhaf3 + hµa , v + h"" ,µ = 16'7TGTµv _ , a  ,a/3 ,a  ,a  

The definition made in equation (7 . 1 2) allows this to be rewritten as 

B2 • Gauge Invariance (exercise 7 . 3 B , cont inued) 

The symmetries, 
Hµav/3 = fi[µa] [v/3] = Hvf3µa , 

of Hµav/3 imply an identity 

Hµa v/3 _ Hµa[v/3] - 0 ,a{3 v - ,a( {3 v) = 

analogous to F µ" , vµ 
- 0 in electromagnetism. 

(4) 

(4') 

Thus Tµv , v = 0 is required of the sources, just as is P,µ = 0 in electromagnetism 
(exercise 3 . 16) .  These identities make the field equations (4') too weak to fix hµv 
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completely. In particular, by direct substitution in equations (4), one verifies that 
to any solution one can add a gauge field 

without changing Tµ" .  

h (gauge) = � + � , µv µ, v v ,µ 

Jj (gauge) _ c + t _ ca 
µv - £µ, v £v , µ Ylµv':i ,a, 

(5) 

Let �µ vanish outside some finite spacetime volume, but be otherwise arbitrary. 
Then hµv and hµv = hµv + hµ}gauge) both satisfy the source equation (4) for the same 
source Tµv and the same boundary conditions at infinity. We therefore expect them 
to be physically equivalent. 

By a specialization of the gauge analogous to the "Lorentz" specialization Aa

, a = 0 
of electromagnetism (equation 3 .5 8a;  exercise 3 . 17) ,  one imposes the condition 

h-µa - 0 ,a - . 

This reduces the field equations (4) to the simple d'Alembertian form 

□Jiµv = Jiµv a = - 16'1TTµv - ,a 

(see exercise 1 8 .2). Here and henceforth we set G = I ("geometrized units"). 

C. Fie ld of a Point Mass (exercise 7 . 3 C) 

For a static source, the wave equation (7) reduces to a Laplace equation 

(6) 

(7) 

The stress-energy tensor for a static point mass (equation 7 . 10) is 7'°0 = Ml>3(x) and 
Tµk = 0. Put this into the Laplace equation, solve for hµv • and use equation (7 .8c) 
to obtain hµv · The result is : 

h00 = 2M/r; 

(see equation 1 8 . 1 5 a) .  

D .  Peri he l ion Precession (exercise 7 . 3D) 

(8) 

Direct substitution of the potential (8) into the equations of motion (2) is tedious 
and not very instructive. Variational principles are popular in mechanics because 
they simplify such calculations. Return to the basic variational principle 8lv + i = 0 
(equation I ), and insert the potential (8) for the sun. Convert to spherical coordinates 
so oriented that the orbit lies in the equatorial (0 = 'TT /2) plane : 

IP + i = J L dr; 

L = ½ m[ - (1  - 2Mr- 1)t 2 + ( I  + 2Mr- 1)(f2 + r2<j> 2)] . 

(9) 

( 10) 
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Box 7 .  1 (continued) 

From the absence of explicit t-, cf>-, and T-dependence in L, infer three constants 
of motion : the canonical momenta 

Pt - my = aL;ai  

(this defines y)  and 
P¢ ma = oL/otp 

(this defines a) ; and the Hamiltonian 

which can be set equal to -½m by appropriate normalization of the path parameter 
'T.  From these constants of the motion, derive an orbit equation as follows : ( 1 )  
calculate H = -½m in terms of r ,  f, cp ,  and i ;  (2) eliminate i and � in favor of  the 
constants y and a ;  (3) as in Newtonian orbit problems, define u = M/r, and write 

du it Mr M - = -:- = - �. = - - (1 + 2u)r; 
def> cf> r2cf> a 

(4) in H, eliminate f in favor of du/def> via the above equation, and eliminate r in 
favor of u; (5 ) solve for du/def>. The result is 

( du )2 M 2 [ 1 + 2u ] 
def> 

+ u2 = (y 2 - 1 + 2u)
---;;z 1 - 2u . ( 1 1 )  

Neglecting cubic and higher powers o f  u = GM/c2r ~ ( l  - y 2) in this equation, 
derive the perihelion shift. (For details of method, see exercise 40 .4, with the y and 
a of this box renamed E and 1, and with the y and /3 of that exercise set equal 
to 1 and 0.)  The resulting shift per orbit is 

Llcf> = 81TM/r0 + O([M/r0]2) .  (12) 

This is j the prediction of general relativity ; and it disagrees with the observations 
on Mercury (see Box 40 .3 ) .  

E. Bend ing of Light (exercise 7 . 3E) 

The deflection angle for light passing the sun is, on dimensional grounds, a small 
quantity, Llcf> ~ M0/ R0 ~ 10-6 ; from the outset, one makes approximations based 
on this smallness. A diagram of the photon trajectory, set in the x, z-plane, shows 
that, for initial motion parallel to the z-axis, the deflection angle can be expressed 
in terms of the final momentum as Llcf> = PxlPz · Compute the final Px by an integral 
along the trajectory, 

+ oo  

Px = {00 
(dpx/ dz) dz, 



§ 7 . 1 G RAVITY BU RSTS OUT O F  S P EC IAL R E LATIVITY 

X 

P initial 

M 

1 8 5 

Px 

treating Pz as essentially consiant. This computation requires generalization of the 
equation of motion (2) to the case of zero rest mass. To handle the limit m -+ 0, 
introduce a new parameter A = -r/m; then pJJ. = m(dzJJ./d-r) = dzJJ./d")-...  Also define 
Pµ. = (Ttµ.v + hµ.v)P v , since this quantity appears simply in equation (2) and agrees 
with p µ. in the limit r -+ oo ,  where one will need to evaluate it. Then equation (2) 
reads, for any m, including m = 0, 

On the righthand side here, since haf3 , µ. is small, a crude approximation to p JJ. suffices; 
p 1 = p 2 = O, p 0 = p 3 = dz/d")-.. = w = constant. Thus, 

and 

dP1 _ 1 2 
d")-.. - 2 (hoo + 2h03 + h33), 1w 

1 dP1 1 
- -d 

= -2 (hoo + 2h03 + hd 1 ·  p3 z 

For the sun, h00 = h33 = 2M/r, and h03 = 0 (equation 8), so 

_ - (Pi ) _ - ( P1
) 

-J
"" 2MJ., dz _ 2M

J

"" d{ _ 4M l3  Ll<f> - P3 final - P3 final - -oo (J., 2 + Z2)312 - J., -oo (1 + 52)312 - J., · ( ) 

For light grazing the sun, J., = R0, this gives Ll<t> = 4M0/ R0 radians = l ".75, which 
is also the prediction of general relativity, and is consistent with the observations 
(see Box 40. 1 ). 

F. G ravitat ional  Waves (exercise 7 . 3 F) 

The field equations ( 4) and gauge properties (5) of the present flat-spacetime theory 
are identical to those of Einstein's "linearized theory." Thus, the treatment of 
gravitational waves using linearized theory, which is presented in §§ 18.2, 35.3 , and 
35.4, applies here. 

G .  Posit ive Energy of the Waves (exercise 7 . 3 G )  

Computing a general formula for X from equation (7 . 1 7) is tedious, but it is sufficient 
to consider only the special case of a plane wave (equation 7. 13)-or better still, 



Box 7 .  1 (con tinued) 

a plane wave with only h12 = h21 = f(z - t). Any gravitational wave can be con
structed as a superposition of such plane waves. First compute the Langrangian for 
this case. According to equation (7.8), it reads 

E1 = (32?T)-1 [(h12 , 0>
2 - (h12 , 3)

2] . 

Now the full content of the formula (7.17) defining X is precisely the following: 
start from the Lagrangian; keep all terms that are quadratic in time derivatives; 
omit all terms that are linear in time derivatives; and reverse the sign of terms that 
contain no time derivatives. The result is 

which is positive. 

H .  Self- I nconsistency of the Theory (exercise 7 . 3 H) 

From equation (7.10), find 

J dzµ, dz" o T/J.V = m - - - o4[x - z('r)] dr. , v dT dT ox" 

(14) 

But o4(x - z) depends only on the difference x µ, - z/1,, so - o /oz" can replace o /ox" 
when acting on the a-function. Noting that 

dz" o d -
d 

-
0 

o 4[x - z(T)] = -
d 

o4[x - z(T)], 
T z" T 

rewrite Tµ,", v as 

P", v = - m J i/J.(d/dT) o4[x - z(T)] dT = + m  J z/1, o4[x - Z(T)] dT. 

(The last step is obtained by an integration by parts.) Thus P", v = 0 holds if and 
only if i/J. = 0. But i/J. = 0 means that the gravitational fields have no effect on the 
motion of the particle. But this contradicts the equation of motion (2), which follows 
from the theory's variational principle. Thus, this tensor theory of gravity is incon
sistent. [Stated briefly, equation (4) requires Tµ,v v = 0, while equation (2) excludes 
it.] 

The fact that, in this theory, gravitating bodies cannot be affected by gravity, also 
holds for bodies made of arbitrary stress-energy (e.g., rubber balls or the Earth). 
Since all bodies gravitate, since the field equations imply T/J.", v = 0, and since this 
"equation of motion for stress-energy" implies conservation of a body's total 4-mo
mentum pµ, = JTµ,o d3x, no body can be accelerated by gravity. The Earth cannot 
be attracted by the sun; it must fly off into interstellar space! 

Straightforward steps to repair this inconsistency in the theory lead inexorably 
to general relativity (see Box 17 .2 part 5). Having adopted general relativity as 
the theory of gravity, one can then use the present flat-spacetime theory as an 
approximation to it ("Linearized general relativity" ; treated in Chapters 18, 19, and 
35; see especially discussion at end of § 18.3). 
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§ 7 . 2 .  GRAVITATIONAL RED SHI FT DERIVED 
FROM ENERGY CONSERVATION 

1 8 7 

Einstein argued against the existence of any ideal, straight-line reference system such 
as is assumed in Newtonian theory. He emphasized that nothing in a natural state 
of motion, not even a photon, could ever give evidence for the existence or location 
of such ideal straight lines. 

That a photon must be affected by a gravitational field Einstein ( 1 9 1 1 )  showed Gravitat ional redshift derived 
from the law of conservation of energy, applied in the context of Newtonian gravita- from energy considerat ions 

tion theory. Let a particle of rest mass m start from rest in a gravitational field g 
at point tl and fall freely for a distance h to point qJ _  It gains kinetic energy mgh. 
Its total energy, including rest mass, becomes 

m + mgh. (7 . 1 8) 

Now let the particle undergo an annihilation at qJ, converting its total rest mass 
plus kinetic energy into a photon of the same total energy. Let this photon travel 
upward in the gravitational field to tl. If it does not interact with gravity, it will 
have its original energy on arrival at tl. At this point it could be converted by a 
suitable apparatus into another particle of rest mass m (which could then repeat 
the whole process) plus an excess energy mgh that costs nothing to produce. To avoid 
this contradiction of the principal of conservation of energy, which can also be stated 
in purely classical terms, Einstein saw that the photon must suffer a red shift. The 
energy of the photon must decrease just as that of a particle does when it climbs 
out of the gravitational field. The photon energy at the top and the bottom of its 
path through the gravitational field must therefore be related by 

(7 . 1 9) 

The drop in energy because of work done against gravitation implies a drop in 
frequency and an increase in wavelength (red shift; traditionally stated in terms of 
a red shift parameter, z = .:t;\j;\); thus, 

1 + Z = � = hvbottom = Ebottom = 1 + gh. 
A bottom hv top Etop 

(7 .20) 

The redshift predicted by this formula has been verified to 1 percent by Pound and 
Snider ( 1 964, 1965) ,  refining an experiment by Pound and Rebka ( 1 960). 

§ 7 . 3 .  GRAVITATIONAL REDSHI FT IMP LIES 
SPACETIME I S  CURVED 

An argument by Schild ( 1960, 1 962, 1 967) yields an important conclusion : the 
existence of the gravitational redshift shows that a consistent theory of gravity cannot 
be constructed within the framework of special relativity. 



Assume gravity 1s described 
by an (unspecified) f ield in 
flat spaceti m e  

1 8 8 7 INCO M PAT I B I L ITY OF GRAV I TY AN D S PEC IAL  RELAT IV ITY 

+ + 
z z 

I • f-4-- -r top ------.-J 

A 
- I _.,.  

B 
- I _.,. 

Figure 7 . 1 .  
Successive pulses of light rising from height z1 , to height z2 = z1 + h against the gravitational field of 
the earth The paths y1 , and y2 must be exactly congruent, whether sloped at 45 ° (left) or having variable 
slope (right). 

Whereas Einstein's argument (last section) was formulated in Newtonian theory, 
Schild's is formulated in special relativity. It analyzes gravitational redshift experi
ments in the field of the Earth, using a global Lorentz frame tied to the Earth's 
center. It makes no demand that free particles initially at rest remain at rest in this 
global Lorentz frame (except far from the Earth, where gravity is negligible). On 
the contrary, it demands that free particles be accelerated relative to the Lorentz 
frame by the Earth's gravitational field. It is indifferent to the mathematical nature 
of that field (scalar, vector, tensor, . . .  ), but it does insist that the gravitational 
accelerations agree with experiment. And, of course, it demands that proper lengths 
and times be governed by the metric of special relativity. 

Schild's argument proceeds as follows. Consider one observer at rest on the Earth's 
surface at height z1 , and a second above the Earth's surface at height z2 = z1 + h 
(Figure 7.1). The observers may verify that they are at rest relative to each other 
and relative to the Earth's Lorentz frame by, for instance, radar ranging to free 
particles that are at rest in the Earth's frame far outside its gravitational field. The 
bottom experimenter then emits an electromagnetic signal of a fixed standard 
frequency wb which is received by the observer on top. For definiteness, let the signal 
be a pulse exactly N cycles long. Then the interval of time* OTbot required for the 
emission of the pulse is given by 2'TTN = wb OT bot· The observer at the top is then 
to receive these same N cycles of the electromagnetic wave pulse and measure the 
time interval* O'Ttop required. By the definition of "frequency," it satisfies 2'TTN = 
wt OT top · The redshift effect, established by experiment (for us) or by energy conserva
tion (for Einstein), shows wt < wb; consequently the time intervals are different, 
OT top > OT bot· Transfer this information to the special-relativity spacetime diagram of 
the experiment (Figure 7.1). The waves are light rays; so one might show them as 
traveling along 45 ° null lines in the spacetime diagram (Figure 7.1,A). In this 

* Proper time equals Lorentz coordinate time for both observers, since they are at rest in the Earth's 
Lorentz frame. 
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simplified but slightly inadequate form of the argument, one reaches a contradiction 
by noticing that here one has drawn a parallelogram in Minkowski spacetime in 
which two of the sides are unequal, Ttop > Tbot, whereas a parallelogram in flat 
Minkowski spacetime cannot have opposite sides unequal. One concludes that special 
relativity cannot be valid over any sufficiently extended region. Globally, spacetime, 
as probed by the tracks of light rays and test particles, departs from flatness ("curva
ture" ;  Parts III and IV of this book), despite the fine fit that Lorentz-Minkowski 
flatness gives to physics locally. 

Figure 7 .  l ,B, repairs an oversimplification in this argument by recognizing that 
the propagation of light will be influenced by the gravitational field. Therefore 
photons might not follow straight lines in the diagram. Consequently, the world lines 
y1 and y2 of successive pulses are curves. However, the gravitational field is static 
and the experimenters do not move. Therefore nothing in the experimental setup 
changes with time. Whatever the path Yi , the path y2 must be a congruent path 
of exactly the same shape, merely translated in time. On the basis of this congruence 
and the fact that the observers are moving on parallel world lines, one would again 
conclude, if flat Minkowski geometry were valid, that Tbot = Ttop , thus contradicting 
the observed redshift experiment. The experimenters do not need to understand the 
propagation of light in a gravitational field. They need only use their radar apparatus 
to verify the fact that they are at rest relative to each other and relative to the source 
of the gravitational field. They know that, whatever influence the gravitational field 
has on their radar apparatus, it will not be a time-dependent influence. Moreover, 
they do not have to know how to compute their separation in order to verify that 
the separation remains constant. They only need to verify that the round-trip time 
required for radar pulses to go out to each other and back is the same every time 
they measure it. 

Schild's redshift argument does not reveal what kind of curvature must exist, or 
whether the curvature exists in the neighborhood of the observational equipment 
or some distance away from it. It does say, however, quite unambigously, that the 
flat spacetime of special relativity is inadequate to describe the situation, and it 
should therefore motivate one to undertake the mathematical analysis of curvature 
in Part III. 

§ 7 .4.  GRAVITATIONAL REDSHI FT AS EVIDENCE FOR 
THE PRI NCIP LE OF EQU IVALENCE 

Einstein ( 1 908,  19 1 1 ) elevated the idea of the universality of gravitational interactions 
to the status of a fundamental principle of equivalence, that all effects of a uniform 
gravitational field are identical to the effects of a uniform acceleration of the coordinate 
system. This principle generalized a result of Newtonian gravitation theory, in which 
a uniform acceleration of the coordinate system in equation (7 . 1 )  gives rises to a 

This assum ption 1s  
i n com patible with 
g ravitational redshift 

Conclusion spaceti me 1 s  
curved 

Principle of equivalence. a 
uniform gravi tational field is 
i ndisti n guishable from a 
un iform acceleration of a 
reference frame 
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supplementary uniform gravitational field. However, the Newtonian theory only 
gives this result for particle mechanics. Einstein's principle of equivalence asserts 
that a similar correspondence will hold for all the laws of physics, including Max
well's equations for the electromagnetic field. 

The rules of the game-the "scientific method" -require that experimental support 
be sought for any new theory or principle, and Einstein could treat the gravitational 
redshift as the equivalent of experimental confirmation of his principle of equival
ence. There are two steps in such a confirmation: first, the theory or principle must 
predict an effect (the next paragraph describes how the equivalence principle implies 
the redshift); second, the predicted effect must be observed. With the Pound-Rebka
Snider experiments, one is in much better shape today than Einstein was for this 
second step. Einstein himself had to rely on the experiments supporting the general 
concept of energy conservation, plus the necessity of a redshift to preserve energy 
conservation, as a substitute for direct experimental confirmation. 

The existence of the gravitational redshift can be deduced from the equivalence 
principle by considering two experimenters in a rocket ship that maintains a constant 
acceleration g. Let the distance between the two observers be h in the direction of 
the acceleration. Suppose for definiteness that the rocket ship was at rest in some 
inertial coordinate system when the bottom observer sent off a photon. It will require 
time t = h for the photon to reach the upper observer. In that time the top observer 
acquires a velocity v = gt = gh. He will therefore detect the photon and observe 
a Doppler redshift z = v = gh. The results here are therefore identical to equation 
(7.20). The principle of equivalence of course requires that, if this redshift is observed 
in an experiment performed under conditions of uniform acceleration in the absence 
of gravitational fields, then the same redshift must be observed by an experiment 
performed under conditions where there is a uniform gravitational field, but no 
acceleration. Consequently, by the principle of equivalence, one can derive equation 
(7.20) as applied to the gravitational situation. 

§ 7 . 5 .  LO CAL FLATN ESS, GLO BAL CU RVATU R E  

The equivalence principle helps one to discern the nature of the spacetime curvature, 
whose existence was inferred from Schild's argument. Physics is the same in an 
accelerated frame as it is in a laboratory tied to the Earth's surface. Thus, an 
Earth-bound lab can be regarded as accelerating upward, with acceleration g, relative 
to the Lorentz frames in its neighborhood.* Equivalently, relative to the lab and 
the Earth's surface, all Lorentz frames must accelerate downward. But the downward 
(radial) direction is different at different latitudes and longitudes. Hence, local 
Lorentz frames, initially at rest with respect to each other but on opposite sides of 
the Earth, subsequently fall toward the center and go flying through each other. 
Clearly they cannot be meshed to form the single global Lorentz frame, tied to the 

* This upward acceleration of the laboratory, plus equation (6 . 1 8) for the line element in an accelerated 
coordinate system, explains the nonequality of the bottom and top edges of the parallelograms in Fig
ure 7 . 1 .  
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Earth, that was assumed in Schild's argument. This nonmeshing of local Lorentz 
frames, like the nonmeshing of local Cartesian coordinates on a curved 2-surface, 
is a clear manifestation of spacetime curvature. 

Geographers have similar problems when mapping the surface of the earth. Over 
small areas, a township or a county, it is easy to use a standard rectangular coordinate 
system. However, when two fairly large regions are mapped, each with one coordi
nate axis pointing north, then one finds that the edges of the maps overlap each 
other best if placed at a slight angle (spacetime analog: relative velocity of two local 
Lorentz frames meeting at center of Earth). It is much easier to start from a picture 
of a spherical globe, and then talk about how small flat maps might be used as 
good approximations to parts of it, than to start with a huge collection of small 
maps and try to piece them together to build up a picture of the globe. The exposition 
of the geometry of spacetime in this book will therefore take the first approach, 
Now that one recognizes that the problem is to fit together local, flat spacetime 
descriptions of physics into an over-all view of the universe, one should be happy 
to jump, in the next chapter, into a broadscale study of geometry, From this more 
advantageous viewpoint, one can then face the problem of discussing the relationship 
between the local inertial coordinate systems appropriate to two nearby regions that 
have slightly different gravitational fields, 

There are actually two distinguishable ways in which geometry enters the theory 
of general relativity. One is the geometry of lengths and angles in four-dimensional 
spacetime, which is inherited from the metric structure ds2 of special relativity, 
Schild's argument already shows (without a direct appeal to the equivalence princi
ple) that the special-relativistic ideas of length and angle must be modified, The 
modified ideas of metric structure lead to Riemannian geometry, which will be 
treated in Chapters 8 and 13, However, geometry also enters general relativity 
because of the equivalence principle. An equivalence principle can already be stated 
within Newtonian gravitational theory, in which no concepts of a spacetime metric 
enter, but only the Euclidean metric structure of three-dimensional space. The 
equivalence-principle view of Newtonian theory again insists that the local standard 
of reference be the freely falling particles. This requirement leads to the study of 
a spacetime geometry in which the curved world lines of freely falling particles are 
defined to be locally straight. They play the role in a curved spacetime geometry 
that straight lines play in flat spacetime. This "affine geometry" will be studied in 
Chapters 10-12. It leads to a quantitative formulation of the ideas of "covariant 
derivative" and "curvature" and even "curvature of Newtonian spacetime"! 

Nonmeshi n g  of local Lorentz 
fram es motivates study of 
geom etry 

Two types of geometry 
relevant to spacet1 me ·  

R 1eman n i an geom etry 
( lengths and angles) 

Affi ne geom etry ( " straight 
l i n es" and curvature) 





PART I I I 

TH E MATH E MATI CS O F  

CU RVE D S PAC ETI M E  

Wherein the reader is exposed to the charms of a new temptress
Modern Differential Geometry-and makes a decision: 

to embrace her for eigh t full chap ters; or, 
having drunk his fill, to escape after one. 





CHAPTER 8 
D I FFER ENTIAL G EO M ETRY: 

AN OVERVI EW 

I am coming more and more to the con viction that  the necessity 
of our geometry cannot be demonstra ted, at least  neither by, nor 

for, the human intellect . . . .  geometry should be ranked, not 
with arithmetic, which is purely aprioristic, but with mechanics. 

( 1 8 1 7) 

We mus t confess in all humility that, while number is a produc t 
of our mind alone, space has a reality beyond the mind whose 

rules we cannot completely prescribe. ( 1 830) 
CAR L  FR I ED R I CH GAUSS 

§8 . 1 . AN OVERVIEW OF PART I l l  

Gravitation is a manifestation of spacetime curvature, and that curvature shows up 
in the deviation of one geodesic from a nearby geodesic ("relative acceleration of 
test particles"). The central issue of this part of the book is clear: How can one 
quantify the "separation, " and the "rate of change" of "separation, " of two "geodesics" 
in "curved" spacetime? A clear, precise answer requires new concepts. 

"Separation" between geodesics will mean "vector." But the concept of vector as 
employed in flat Lorentz spacetime (a bilocal object : point for head and point for 
tail) must be sharpened up into the local concept of tangent vector, when one passes 
to curved spacetime. Chapter 9 does the sharpening. It also reveals how the passage 
to curved spacetime affects I -forms and· tensors. 

It takes one tool (vectors in curved geometry, Chapter 9) to define "separation" 
clearly as a vector; it takes another tool (parallel transport in curved spacetime, 
Chapter 10) to compare separation vectors at neighboring points and to define the 
"rate of change of separation." No transport, no comparison; no comparison, no 
meaning to the term "rate of change" ! The notion of parallel transport founds itself 

Concepts to be develo ped in 
Part I l l  

Tangent vector 



Covariant derivative 

Geodesic deviation 

Spacetime curvature 

This chapter: a Track-1 
overview of differential 
geometry 
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on the idea of "geodesic, " the world line of a freely falling particle. The special 
mathematical properties of a geodesic are explored in Chapter 1 0. That chapter uses 
geodesics to define parallel transport, uses parallel transport to define covariant 
derivative, and-completing the circle-uses covariant derivative to describe geo
desics. 

Chapter 1 1  faces up to the central issue : geodesic deviation ("rate of change of 
separation vector between two geodesics"), and its use in defining the curvature of 
space time. 

But to define curvature is not enough. The man who would understand gravity 
deeply must also see curvature at work, producing relative accelerations of particles 
in Newtonian spacetime (Chapter 12); he must learn how, in Einstein spacetime, 
distances (metric) determine completely the curvature and the law of parallel trans
port (Chapter 1 3); he must be the master of powerful tools for computing curvature 
(Chapter 14); and he must grasp the geometric significance of the algebraic and 
differential symmetries of curvature (Chapter 15). 

Unfortunately, such deep understanding requires time-far more time than one 
can afford in a ten-week or fifteen-week course, far more than a lone reader may 
wish to spend on first passage through the book. For the man who must rush on 
rapidly, this chapter contains a "Track- I"  overview of the essential mathematical 
tools (§§8.4-8.7). From it one can gain an adequate, but not deep, understanding 
of spacetime curvature, of tidal gravitational forces, and of the mathematics of curved 
spacetime. This overview is also intended for the Track-2 reader; it will give him 
a taste of what is to come. The ambitious reader may also wish to consult other 
introductions to differential geometry (see Box 8. 1 ). 

Box 8 . 1 BOOKS O N  D I FFERENTIAL GEOM ETRY 

There are several mathematics texts that may be 
consulted for a more detailed and extensive dis
cussion of modern differential geometry along the 
line taken here. Bishop and Goldberg (1968) is the 
no. I reference. Hicks (1965) could be chosen as 
a current standard graduate-level text, with 
O'Neill (1966) at the undergraduate level intro
ducing many of the same topics without presuming 
that the reader finds easy and obvious the current 
style in which pure mathematicians think and 
write. Auslander and MacKenzie ( 1963) at a 
somewhat more advanced level also allow for the 
reader to whom differential equations are more 

familiar than homomorphisms. Willmore (1 959) is 
easy to read but presents no challenge, and leads 
to little progress in adapting to the style of current 
mathematics. Trautman (1965) and Misner ( 1964a, 
1969a) are introductions somewhat similar to ours, 
except for deemphasis of pictures; like ours, they 
are aimed at the student of relativity. Flanders 
( 1963) is easy and useful as an introduction to 
exterior differential forms; it also gives examples 
of their application to a wide variety of topics in 
physics and engineering. 



§ 8 . 2  TRACK 1 V E R S U S  TRACK 2 

§ 8 . 2 .  TRACK 1 VE RSUS TRACK 2 :  
D I FFE R ENCE I N  O UTLO O K  AN D POWER 

1 9 7 

Nothing is more wonderful about the relation between Einstein's theory of gravity and Newton's theory than this, as discovered by Elie Cartan (1923,  1924): that both theories lend themselves to description in terms of curvature; that in both this curvature is governed by the density of mass-energy; and that this curvature allows itself to be defined and measured without any use of or reference to any concept of metric. The difference between the two theories shows itself up in this: Einstein's theory in the end ( or in the beginning, depending upon how one presents it ! )  does define an interval between every event and every nearby event; Newton's theory not only does not, but even says that any attempt to talk of spacetime intervals violates Newton's laws. This being the case, Track 2 will forego for a time (Chapters 9-12) any use of a spacetime metric ("Einstein interval"). It will extract everything possible from a metric-free description of spacetime curvature (all of Newton's theory; important parts of Einstein's theory). Geodesic deviation is a measurer and definer of curvature, but the onlooker is forbidden to reduce a vector description of separation to a numerical measure of distance (no metric at this stage of the analysis) : what an impossible situation ! Nevertheless, that is exactly the situation with which Chapters 9-12 will concern themselves : how to do geometry withbut a metric. Speaking physically, one will overlook at this stage the fact that the geometry of the physical world is always and everywhere locally Lorentz, and endowed with a light cone, but one will exploit to the fullest the Galileo-Einstein principle of equivalence : in any given locality one can find a frame of reference in which every neutral test particle, whatever its velocity, is free of acceleration. The tracks of these neutral test particles define the geodesics of the geometry. These geodesics provide tools with which one can do much : define parallel transport (Chapter 10), define covariant derivative (Chapter 10), quantify geodesic deviation (Chapter 1 1  ), define spacetime curvature (Chapter 1 1 ), and explore Newtonian gravity (Chapter 12). Only after this full exploitation of metric-free geodesics will Track 2 admit the Einstein metric back into the scene (Chapters 13-15). But to forego use of the metric is a luxury which Track 1 can ill afford; too little time would be left for relativistic stars, cosmology, black holes, gravitational waves, experimental tests, and the dynamics of geometry. Therefore, the Track- I overview in this chapter keeps the Einstein metric throughout. But in doing so, it pays a heavy price : ( 1 )  no possibility of seeing curvature at work in Newtonian spacetime (Chapter 12); (2) no possibility of comparing and contrasting the geometric structures of Newtonian spacetime (Chapter 12) and Einstein spacetime (Chapter 13), and hence no possibility of grasping fully the Newtonian-based motivation for the Einstein field equations (Chapter 17) ;  (3) no possibility of understanding fulry the mathematical interrelationships of "geodesic," "parallel transport," "covariant derivative," "curvature," and "metric" (Chapters 9 ,  10, 1 1 , 13) ;  (4) no possibility of introducing the mathematical subjects "differential topology" (geometry without metric or covariant 

Preview of Track-2 
di fferential geometry 

What the Track-1 reader will 
miss 



Geometry from three 
viewpoints: pictorial, abstract, 
component 
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derivative, Chapter 9) and "affine geometry" (geometry with covariant derivative but no metric, Chapters IO and 1 1  ), subjects which find major application in modern analytical mechanics [see, e.g., Arnold and Avez ( 1968); also exercise 4 . 1 1 of this book], in Lie group theory with its deep implications for elementary particle physics [see, e.g., Hermann ( 1966); also exercises 9 . 12, 9 . 13 ,  10 . 16, and 1 1 . 12 of this book], in the theory and solution of partial differential equations [see, e.g., Sternberg ( 1969)], and, of course, in gravitation theory. 
§ 8 . 3 .  THREE ASPECTS O F  G EOMETRY: 

P ICTO R I AL, ABSTRACT, COMPON ENT 

Gain the power in §8 .4 and Chapter 9 to discuss tangent vectors, I -forms, tensors in curved spacetime; gain the power in §8 .5 and Chapter IO to parallel-transport vectors, to differentiate them, to discuss geodesics ; use this power in §8 .7 and Chapter 1 1  to discuss geodesic deviation, to define curvature; . . . .  But full power this will be only if it can be exercised in three ways : in pictures, in abstract notation, and in component notation (Box 8 .3 ). Elie Cartan (Box 8 .2) gave new insight into both 
Box 8 . 2  EL I E  CARTAN, 1 869- 1 95 1  he invented the exterior derivative [Cartan (190 1 )], which he used then mostly in differential equations and the theory of Lie groups, where he had already made significant contributions. He was about fifty when he began applying it to geometry, and sixty before Riemannian geometry specifically was the object of this research, including his text [Cartan (1928)], which is still reprinted and worth studying. Although universally recognized, his work did not find responsive readers until he neared retirement around 1940, when the "Bourbaki" generation of French mathematicians began to provide a conceptual framework for ( among other things) Cartan's insights and methods. This made Cartan communicable and teachable as his own writings never were, so that by the time of his death at 82 in 1951 his influence was obviously dominating the revolutions then in full swing in all the fields (Lie groups, differential equations, and differential geometry) in which he had primarily worked. Elie Cartan is a most remarkable figure in recent mathematical history. One learns from his obituary [Chern and Chevalley ( 1952)] that he was born a blacksmith's son in southern France, and proved the value of government scholarship aid by rising through the system to a professorship at the Sorbonne in 19 12 when he was 43 . At the age of 32 

The modern, abstract, coordinate-free approach to geometry, which is used extensively in this book, is due largely to Elie Cartan. He also discovered the geometric approach to Newtonian gravity that is developed and exploited in Chapter 12.  
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Box 8 . 3  TH R E E  LEVE LS O F  D I FF E R E NTIAL G E O M ETRY 

(I) Purely pictorial treatment of geometry: 
tangent vector is conceived in terms of the 

separation of two points in the limit in which 
the points are indefinitely close; 

vectors are added and subtracted locally as in 
flat space; 

vectors at distinct points are compared by par
allel transport from one point to another; 

this parallel transport is accomplished by a 
"Schild's ladder construction" of geodesics 
(Box 10.2); 

diagrams, yes; algebra, no; 
it is tied conceptually as closely as possible to 

the world of test particles and measure
ments. 

(2) Abstract differential geometry: 
treats a tangent vector as existing in its own 

right, without necessity to give its break
down into components, 

A = A0e0 + A1e1 + A2e2 + A3e3 , 

just as one is accustomed nowadays in elec
tromagnetism to treat the electric vector E, 
without having to write out its components ; 

uses a similar approach to differentiation 
( compare gradient operator V of elementary 
vector analysis, as distinguished from coor
dinate-dependent pieces of such an opera
tor, such as o/ox, o/oy, etc.); 

is the quickest, simplest mathematical scheme 
one knows to derive general results in differ
ential geometry. 

(3) Differential geometry as expressed in the lan
guage of components: 

is indispensible in programming large parts of 
general relativity for a computer; 

is convenient or necessary or both when one 
is dealing even at the level of elementary 
algebra with the most simple applications of 
relativity, from the expansion of the Fried
mann universe to the curvature around a 
static center of attraction. 

Newtonian gravity (Chapter 12) and the central geometric simplicity of Einstein's 
field equations (Chapter 15), because he had full command of all three methods 
of doing differential geometry. Today, no one has full power to communicate with 
others about the subject who cannot express himself in all three languages. Hence 
the interplay between the three forms of expression in what follows. 

It is not new to go back and forth between the three languages, as witnesses the 
textbook treatment of the velocity and acceleration of a planet in Kepler motion 
around the sun. The velocity is written 

(8. 1 )  

(The hats " :' on e,.  and e;J, signify that these are unit vectors.) The acceleration 
is 

dv du,. du¢ , de · , de -
a = - = - e· + -- e - + v r _r + v ¢ __ ¢ _ 

dt dt r dt ¢ dt dt 
(8.2) 

P laneta ry orb it  as exam ple of 
th ree viewpo in ts 
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Figure 8 . 1 .  

e• r 

t = 17 

A Keplerian orbit in the sun's gravitational field, as treated using the standard Euclidean-space version of Newtonian gravity. The basis vectors themselves change from point to point along the orbit [equations (8 .3) ). This figure illustrates the pictorial aspect of differential geometry. Later ( exercise 8 .5) it will illustrate the concepts of "covariant derivative" and "connection coefficients." 
The unit vectors are turning (Figure 8. 1 )  with the angular velocity w = dcp/dt ;  so 

de
;. 

def, 
dt 

= we¢ = dt e ¢' 

de · def, 
dt 

= - we
;.

= - dt
e

;.
. 

Thus the components of the acceleration have the values 

ar = du;;. 

- u¢ def,
= 

d2r 
-

, (dcp }2 
dt dt dt2 dt 

and 

(8 .3) 

(8 .4a) 

(8 .4b) 

Here is the acceleration in the language of components; a was the acceleration 
in abstract language; and Figure 8. 1 shows the acceleration as an arrow. Each of 
these three languages will receive its natural generalization in the corning sections 
and chapters from two-dimensional flat space (with curvilinear coordinates) to 
four-dimensional curved spacetime, and from spacetime to more general manifolds 
(see §9.7 on manifolds). 

Turn now to the Track- I overview of differential geometry. 
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§8.4 .  TENSO R ALG E B RA IN CU RVED SPACETIME 

20 1 

To see spacetime curvature at work, examine tidal gravitational forces (geodesic 
deviation); and to probe these forces, make measurements in a finite-sized laboratory. 
Squeeze the laboratory to infinitesimal size; all effects of spacetime curvature become 
infinitesimal; the physicist cannot tell whether he is in flat spacetime or curved 
spacetime. Neither can the mathematician, in the limit as his domain of attention 
squeezes down to a single event, qj\. 

At the event 9
0 

(in the infinitesimal laboratory) both physicist and mathematician 
can talk of vectors, of I -forms, of tensors; and no amount of spacetime curvature 
can force the discussion to change from its flat-space form. A particle at 9

0 
has a 

4-momentum p, with squared length 

p Z = p · p = g(p, p) = - m z . 

The squared length, as always, is calculated by inserting p into both slots of a linear 
machine, the metric g at 9

0
• The particle also has a 4-acceleration a at 9

0
; and, 

if the particle is charged and freely moving, then a is produced by the electromag
netic field tensor F: 

ma = eF( . . .  , u). 

In no way can curvature affect such local, coordinate-free, geometric relations. And 
in no way can it prevent one from introducing a local Lorentz frame at 9

0
, and 

from performing standard, flat-space index manipulations in it: 

p = paea, 

But local Lorentz frames are not enough for the man who would calculate in 
curved spacetime. Non-Lorentz frames (nonorthonormal basis vectors { ea})  often 
simplify calculations. Fortunately, no effort at all is required to master the rules 
of "index mechanics" in an arbitrary basis at a fixed event 9

0
• The rules are identical 

to those in flat spacetime, except that ( l ) the covariant Lorentz components 11af3 of 
the metric are replaced by 

Tensor algebra 

(1) occurs in infinitesimal 
neighborhood of an event 

(2) is same in curved 
spacetime as in flat 

(3) rules for component 
manipulation change slightly 
when ,using nonorthonormal 
basis 

ga/3 ea . e/3 g(ea, e13); (8 .5) Components of metric 

(2) the contravariant components 1Jaf3 are replaced by gaf3 , where 

i.e., 

l lga/3 1 1  l lga/3 1 1-1 (matrix inverse); 

g g/3-Y = s -y . 
a/3 a , 

(8 .6) 

(8 .6') 

(3) the Lorentz transformation matrix 1 1Aa'
13 i i  and its inverse I IA/3 a' I I  are replaced 

by an arbitrary but nonsingular transformation matrix I IL"''13 i i  and its inverse I IL/3 a, 1 1 : 

La' e/3 = ea' 13, (8 .7) Transformation of basis 

(8 .8) 



Com ponents of Levi-Civita 
tensor 
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(4) in the special case of "coordinate bases," ea = o9 /axa, ef3 , = o9 /ox f3 ', 

(8.9) 

and (5) the Levi-Civita tensor c, like the metric tensor, has components that depend 
on how nonorthonormal the basis vectors are (see exercise 8 .3) : if e0 points toward 
the future and e1, e2, e3 are righthanded, then 

E
a(3 y8 = ( -g)ll2[a,By8], 

E a(3 y 8 = g-1E
a(3 yS = - (-g)-112[a,By8], 

where [a,ByS] is the completely antisymmetric symbol 

I
+ I if a,ByS is an even permutation of 0123, 

[a,ByS] - 1  if a,ByS is an odd permutation of 0 123, 
0 if a,ByS are not all different, 

and where g is the determinant of the matrix l lgaf3 1 1  

(8 . 10a) 

(8 . 1 0b) 

(8 . 1 1 ) 

Read Box 8 .4 for full discussion and proofs; work exercise 8 . 1  below for fuller 
understanding and mastery. 

Several dangers are glossed over in this discussion. In flat spacetime one often 
does not bother to say where a vector, I -form, or tensor is located. One freely moves 
geometric objects from event to event without even thinking. Of course, the unwritten 
rule of transport is : hold all lengths and directions fixed while moving; i.e., hold 
all Lorentz-frame components fixed; i.e., "parallel-transport" the object. But in 

Box 8 .4  TENSOR A LG E B RA AT A F IXED EVE NT I N  AN ARBITRARY BAS I S  

A .  Bases 

Tangent-vector basis : Pick e0, e1, e2 , e3 at 9 0 arbitrarily-but insist they be 
linearly independent. 

"Dual basis" for I -forms: The basis { ea} determines a I -form basis { wa} (its "dual 
basis") by 

[see equation (2. 19)] . 
Geometric interpretation (Figure 9.2) : e2, e3, e0 lie parallel to surfaces of w1 ; 

e1 pierces precisely one surface of w1 . 

Function interpretation : ( wa, e f3 ) = ta 
f3 determines the value of wa on any vector 

u = uf3ef3 (number of "bongs of bell" as u pierces wa) :  
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( wa, u )  = <wa, uf3e13 ) = uf3( wa, e13 ) = uf3oa/3 = ua. 

203 

Special case : coordinate bases. Choose an arbitrary coordinate system { xa(9)} . 
At 9 0 choose ea = o'!l /axa as basis vectors. Then the dual basis is wa = dxa. 
Proof the general coordinate-free relation (df, v) = avf[equation (2 . 1 7)], with 
f = xa and V = a'!l /ox/3

' reads 

B . Algebra of Tangent Vectors and 1 -Forms 

The Lorentz-frame discussion of equations (2 . 19) to (2 .22) is completely unchanged 
when one switches to an arbitrary basis. Its conclusions : 

expansion, u = eaua, q = aawa; 
calculation of components, ua = (wa, u), aa = (u, ea) ;  
value of form on vector, (u, u) = aaua. 

Application to gradients of functions : 
expansion, df = J,awa [defines /,a] ;  
calculation of  components, /,a = ( df, ea ) = oe/ [see equation (2 . 1 7)] .  

Raising and lowering of indices is accomplished with ga/3 and ga/3 [equations 
(8 .5 )  and (8 .6)]. Proof: 

ii, the I -form corresponding to u, is defined by (ii, v) = u · v for all v; 
thus, ua (ii, ea) = u · ea = uf3e13 · ea = u13g13a ; 
inverting this equation yields u /3 = gf3aua. 

C. Change of Basis 

The discussion of Lorentz transformations in equations (2 .39) to (2 .43) is applicable 
to general changes of basis if one replaces I IAa' 13 1 1  by an arbitrary but nonsingular 
matrix I IU'13 I I  [equations (8 .7) ,  (8.8)] .  Conclusions : 

ea, = e13Lf3 «' 
wa' = La'13 wf3 , 
va' = La'13 vf3 , 
<Ja, = <J13L13a' , 

e13 = ea,La'13 ; 
w/3 = L/3 a' wa' ; 
v/3 = L/3 a'va' ;  

La' <J/3 
= <Ja, (3 ·  

When both bases are coordinate bases, then L/3 a' = ox/3 /axa', La'13 = axa'/ox/3 . 
Proof 

. . axa' s1m1larly e13 = -13- ea' · ax 
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Box 8 .4 (continued) 

D .  Algebra of Tensors 

The discussions of tensor algebra given in §3 .2 [equations (3 .8) to (3 .22)] and in §3 .5 (excluding gradient and divergence) are unchanged, except that Aa' La' /3 -+- /3 ' and the components of the Levi-Civita tensor are changed from (3 .50) to (8 . 1 0) [see exercise 8 .3 [ .  Chief conclusions : expansion, S = Saf3 y
ea (8) w/3 ® wY ; components, saf3Y = S(wa, e13 , ey) ;  raising and lowering indices, Sµ/3 " = gµag•Ysa

13y ; change of basis, S ">--'µ'v' = L">--'aL/3 µ,LY.,Sa
13 Y ; machine operation, S(a, u, v) = sa

13 y
aau f3 vY ; tensor product, T = u ® v � ya/3 = uav/3 ; contraction, "M = contraction of R on slots l and 3" � Mµv = Ra µav ; wedge product, a A p has components a µ/3" - f3µa• ;  Dual *J - Jµc *F - lFµPc *B - lB ">--µvE , af3y - Lµaf3 y

, a/3 - 2 Lµva/3 > a - 6 ">-..µva · 
E .  Com mutators (exercise 8 . 2 ;  § 9 . 6 ;  Box 9 . 2) 

If u and v are tangent vector fields, one takes the view that u = ou and v = a v, and one defines 
This commutator is itself a tangent vector field. Components in a coordinate basis: 

[u, v] = (u!3 if,/3 - vf3ua,/3)(o/oxOI.) .  
L [ = eal 

Commutation coefficients of a basis: 
Coordinate basis ("holonomic") ca/3 Y = O ;  Noncoordinate basis ("anholonomic") some ca/3 Y f:. 0 (see exercise 9 .9) .  
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curved spacetime there i s  no global Lorentz coordinate system in which to hold 
components fixed; and objects initially parallel, after "parallel transport" along 
different curves cease to be parallel ("geodesic deviation";  Earth's meridians, parallel 
at equator, cross at north and south poles). Thus, in curved spacetime one must 
not blithely move a geometric object from point to point, without carefully specifying 
how it is to be moved and by what route. Each local geometric object has its own 
official place of residence (event 90) ; it can interact with other objects residing there 
(tensor algebra); but it cannot interact with any object at another event :2, until 
it has been carefully transported from 90 to :2.  

This line of  reasoning, pursued further, leads one to speak of  the "tangent space" 
at each event, in which that event's vectors (arrows) and I -forms (families of surfaces) 
lie, and in which its tensors (linear machines) operate. One even draws heuristic 
pictures of the tangent space, as in Figure 9 .I (p. 23 1 ). 

Another danger in curved spacetime is the temptation to regard vectors as arrows 
linking two events ("point for head and point for tail")-i.e., to regard the tangent 
space of Figure 9. I as lying in spacetime itself. This practice can be useful for heuristic 
purposes, but it is incompatible with complete mathematical precision. (How is the 
tangent space to be molded into a warped surface?) Four definitions of a vector 
were given in Figure 2. 1 (page 49) : three definitions relying on "point for head 
and point for tail"; one, "d9 / d>..", purely local. Only the local definition is wholly 
viable in curved spacetime, and even it can be improved upon, in the eyes of 
mathematicians, as follows. 

There is a one-to-one correspondence ( complete "isomorphism") between vectors 
u and directional derivative operators au . The concept of vector is a bit fuzzy, but 
"directional derivative" is perfectly well-defined. To get rid of all fuzziness, exploit 
the isomorphism to the full: define the tangent vector u to be equal to the corre
sponding directional derivative 

(8 . 1 2) 

(This practice, unfamiliar as it may be to a physicist at first, has mathematical power; 
so this book will use it frequently. For a fuller discussion, see §9.2.) 

Exercise 8 . 1 .  P RACT I C E  WITH TENSO R  ALG E B RA 
Let t, x, y, z be Lorentz coordinates in flat spacetime, and let 

r = (xz + y2 + z2) 112 , 8 = cos-1(z/r) , 
be the corresponding spherical coordinates. Then 

e0 = oP/ot, 
is a coordinate basis, and 

oP eti =
ai • 

is a noncoordinate basis. 

e, = oP/or, 

oP 
e,. =

ar · 

e8 = oP/38, e,t, = aP/ocJ> 

l 3P e · = -- -,t, r sin 8 ocJ, 

Vecto rs and tensors must not 
be moved bl i thely from point 
to point 

Tangent space defined 

Defin it ions of vecto r in 
cu rved spacetime :  
( 1 )  a s  dP/d"A. 

(2) as d i rect iona l  derivative 

EXERCISES 
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(a) Draw a picture of e8 , e¢ , e (I ,  and e if> at several different points on a sphere of constant 
t, r. [Answer for e8 , e"' should resemble Figure 9 . 1 . ] 

(b) What are the I -form bases { w"}  and { w"} dual to these tangent-vector bases? [Answer: 
w 0 = dt, w' = dr, w 8 = d8, w ¢ = dq,; w 6 = dt, w' = dr, w 8 = r d8, w if> = r sin 8 dq,.] 

(c) What is the transformation matrix linking the original Lorentz frame to the spherical 
coordinate frame {e"} ?  [Answer: nonzero components are 

Lt
o = I ,  

La:, = sin 8 cos q,, 

LY, = sin 8 sin </>, 

Lz = � = cos 8 ,  r or 

La: 
8 = r cos 8 cos </>, 

LY 8 = r cos 8 sin q,, 

Lz -
OZ - . 8 e - ao - - r sm , 

La:
¢

= - r sin 8 sin q,, 

LY
¢

= r sin 8 cos q,.) 

( d) Use this transformation matrix to calculate the metnc components ga/3 in the spherical 
coordinate basis, and invert the resulting matrix to get g"/3 . [Answer: 

goo = - 1 , 

gOO = - J , 
g,, = I , 

g" = I ,  

gee = '2 , 

gee = r-2, 

g¢¢ = r2 sin2 8, 

g¢¢ = r-2 sin-2 8,  

all other ga/3 = 0.  

all other g"/3 = 0. )  

(e)_ Show that the noncoordinate basis {e,.}  1s  orthonormal everywhere ; i .e . ,  that gz,p = 
1/a/3 ; 1 .e .  that 

(f) Write the gradient of a function/ in terms of the spherical coordinate and noncoordi
nate bases. [Answer: 

df = �f dt + of dr + of d8 + of dq, 
o f  o r  08 oq, 
olf • of - l oif - 1 al_f . = - w 0 + ----'-- W ' + - - w 8 + -.- - w ¢ .]  
of or  r 08 r sm 8 oq, 

(g) What are the components of the Levi-Civita tensor in the spherical coordinate and 
noncoordinate bases? [Answer for coordinate basis: 

€Ore¢ = - €r0e¢ = + £,no¢ = · · · = r2 sin 8, 
€ ore¢ = - €

r08¢ = + £ r8¢0 = . . .  = - r-2 sin-1 8.)  

Exercise 8. 2 .  CO M M UTATO RS 

Take the mathematician's viewpoint that tangent vectors and directional derivatives are the 
same thing, u = ilu . Let u and v be two vector fields, and define their commutator in the 
manner familiar from quantum mechanics 

(8 . 1 3a) 

(a) Derive the following expression for [u, v] , valid in any coordinate basis, 

(8 . l 3b) 

Thus, despite the fact that it looks like a second-order differential operator, [u, v] is actually 
of first order-i .e . ,  it is a tangent vector. 

(b) For any basis {ea} ,  one defines the "commutation coefficients" c13 y" and cf3 ya by 

(8 . 14) 

Show that c13y" = cf3 ya = 0 for any coordinate basis. 
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( c) Calculate c py"' fo r  the spherical non coordinate basis o f  exercise 8 . 1 .  [Answer: All vanish except 
c;i = - cu/1 = - I/r, 

c;.i' = - c¢,¢ = - I/r, 

cu/!' = - c1,i = - cot 8/r.] 

Exercise 8 . 3 .  CO M PO N E NTS O F  LEVI-CIVITA TENSOR I N  
NONORTHO N O R MAL FRAM E (a) Show that expressions (8 . 10) are the components of c in an arbitrary basis, with e0 pointing toward the future and e1 , e2 , e3 right-handed. [Hints : ( I )  Review the discussion of c in Lorentz frames, given in exercise 3 . 1 3 .  (2) Calculate e,,13y8 and e <>/3Y8 by transforming from a local Lorentz frame { e1- ,} , e.g. , 

- LIL L;; L� LP . . . Ea/3y8 - a /3 y 8€ µv�p·  (3) Show that these expressions reduce to 
(4) Show, from the transformation law for the metric components, that 

(detl lUj, 1 1 )2 detl lg,,13 1 1  = - 1 .  
(5) Combine these results t o  obtain expressions (8 . 10) .] (b) Show that the components of the permutation tensors [defined by equations (3.50h)(3.50j ) ]  have the same values (equations (3 .50k)-(3 .50m)] in arbitrary frames as in Lorentz frames. Additional exercises on tensor algebra : exercises 9 .3 and 9 .4 (page 234) . 
§ 8 . 5 .  PARALLEL TRANSPORT, COVARIANT DERIVATIVE, 

CONNECTION COEFFICIENTS, GEODESI CS 

The vehicle that carries one from classical mechanics to quantum mechanics is the 
correspondence principle. Similarly, the vehicle between flat spacetime and curved 
spacetime is the equivalence principle : "The laws of physics are the same in any 
local Lorentz frame of curved spacetime as in a global Lorentz frame of flat space
time." But to apply the equivalence principle, one must first have a mathematical 
representation of a local Lorentz frame. The obvious choice is this : A local Lorentz 
frame at a given event '!f O is the closest thing there is to a global Lorentz frame at 
that event; i.e . ,  it is a coordinate system in which 

(8. 15a) 

and in which gµv holds as tightly as possible to 1/µv in the neighborhood of '!10 : 

(8. 15b) 

More tightly than this it cannot hold in general [gµv ,a/J ('!f 0) cannot be set to zero] ; 
spacetime curvature forces it to change. [Combine § 1 1 .5 with equations (8.24) and 
(8.44).] 

Equ iva lence pr inc ip le  as veh ic le between flat spacet ime and cu rved 
Local Lo rentz frame  mathematica l  representat ion  



Parallel transport defined 

Covariant derivative defined 

Gradient defined 

Connection coefficients 
defined 
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An observer in a local Lorentz frame in curved spacetime can compare vectors 
and tensors at neighboring events, just as he would in flat spacetime. But to make 
the comparison, he must parallel-transport them to a common event. For him the 
act of parallel transport is simple: he keeps all Lorentz-frame components fixed, 
just as if he were in flat spacetime. But for a man without a local Lorentz frame
perhaps with no coordinate system or basis vectors at all-parallel transport is less 
trivial. He must either ask his Lorentz-based friend the result, or he must use a more 
sophisticated technique. One technique he can use-a "Schild's ladder" construction 
that requires no coordinates or basis vectors whatsoever-is described in § 10.2 and 
Box 10.2 . But the Track- I reader need not master Schild's ladder. He can always 
ask a local Lorentz observer what the result of any given parallel transport is, or 
he can use general formulas worked out below. 

Comparison by parallel transport is the foundation on which rests the gradient 
of a tensor field, VT. No mention of parallel transport was made in §3 .5, where 
the gradient was first defined, but parallel transport occurred implicitly: one defined 
VT in such a way that its components were T°'

/3 ,Y = a ra/3/axY [for T a (D tensor] ; 
i.e., one asked VT to measure how much the Lorentz-frame components of T change 
from point to point. But "no change in Lorentz components" would have meant 
"parallel transport," so one was implicitly asking for the change in T relative to 
what T would have been after pure parallel transport. 

To codify in abstract notation this concept of differentiation, proceed as follows. 
First define the "covariant derivative" Vu T of T along a curve 9(:\), whose tangent 
vector is u = d9/d;\ : 

( - T) _ L" { T[9(e)Jparallel-transported to 9(0) - T[&'(O)] }  
"u at 9(0) - lIIl --��--�--��---- · 

E--->0 E 
(8 . 1 6) 

(See Figure 8 .2 for the special case where T is a vector field v.) Then define VT 
to be the linear machine, that gives Vu T when u is inserted into its last slot: 

VT( . . .  , . . .  , u) Vu T. (8 . 1 7) 

The result is the same animal ("gradient") as was defined in §3 .5 (for proof see 
exercise 8 .8). But this alternative definition makes clear the relationship to parallel 
transport, including the fact that 

Vu T = 0 -<=>- T is parallel-transported along u = d9 / d;\. (8 . 1 8) 

In a local Lorentz frame, the components of V T  are directional derivatives of 
the components of T: Tf3a,r Not so in a general basis. If {ei9)} is a basis that 
varies arbitrarily but smoothly from point to point, and { w"'(9)} is its dual basis, 
then VT = V(T/3 ae/3 ® w"') will contain contributions from Ve/3 and Vw"' , as well 
as from V T/3 a - dTf3 a = Tf3 a, ywY . 

To quantify the contributions from Ve/3 and V w"', i.e., to quantify the twisting, 
turning, expansion, and contraction of the basis vectors and I -forms, one defines 
"connection coefficients": 
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A =  l 

A = 3  
Figure 8 . 2 .  
Definition o f  the covariant derivative "Vu v'' o f  a vector field v along a curve &'(A), 
with tangent vector u = d9 / dA :  (I) choose a point 9(0) on the curve, at which to 
evaluate Vu v· (2) Choose a nearby point <9'(e) on the curve. (3) Parallel-transport 
v[9(e)] along the curve back to !f(O), getting the vector v1 1[9(e)). (4) Take the 
difference Bv = Vi il9(e)) - v[9(0)). (5) Then Vu v is defined by 

Vuv = Lim 
Bv = Lim { v11[9(e)] - v[9(0)J } .  

E-+0 € e-0 E 
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I'" _ a V [Note reversal of /3 and y to make the
] f3Y  = (w ' ye13 ) differentiating index come last on I' (S . l9a) 

� Ve ] 
y 

= (a component of change in e13 , relative) , 
to parallel transport, along ey 

and one proves (exercise 8 . 1 2) that 

( Vyw", e13 ) = - I'"/3 r  

In terms of these coefficients and 

the components of the gradient, denoted T/3 a;y, are 

T/3 - Tf3 + I' /3 Tµ - I'µ Tf3 a ;y - a,y µy a ay µ 

(8 . 1 9b) 

(8 .20) 

(8 .2 1 )  

(see exercise 8 . 1 3) .  I f  the basis at the event where VT is calculated were a local 
Lorentz frame, the components of VT would just be T/3 a, r Because it is not, one 
must correct this "Lorentz-frame" value for the twisting, turning, expansion, and 
contraction of the basis vectors and I -forms. The "I'T" terms in equation (8 .2 1 )  
are the necessary corrections-one for  each index of T. The pattern of these correction 
terms is easy to remember: ( 1 )  "+ "  sign if index being corrected is up, " - " sign 
if it is down; (2) differentiation index (y in above case) always at end of I';  (3) 
index being corrected (/3 in first term, a in second) shifts from T onto I' and gets 
replaced on T by a dummy summation index (µ). 

Com ponents of gradient in 
arbitrary frame 



Components of covariant 
derivative 

Calculation of connection 
coeff1c1ents from metric and 
com mutators 
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Knowing the components (8 .2 1 )  of the gradient, one can calculate the components 
of the covariant derivative Vu T by a simple contraction into uY [see equation (8 . 1 7)] : 

(8 .22) 

When u is the tangent vector to a curve P(;\.), u = dP Id;\., one uses the notation 
D T/3 ,,/ d;\. for the components of Vu T: 

,[if basis is a coordinate basis so uY = dxYld;\.] 

D T/3 
a = 13 Y 

! 13 dxY 

d;\. - T a ,yu - T a ;y d;\. 
= (Tf3 

a,y + "I' T" corrections) dxY Id;\. (8 .23) 

_ dT/3 
a 13 µ _ µ 13 

dxY 
- d;\. 

+ (I' µy T a I' ay T µ) d;\. 
. 

The " ; "  in Tf3 a ,y reminds one to correct T/3 
a ,y with "I' T" terms; similarly, the "D " 

in D T/3 
al d;\. reminds one to correct dT/3 

al d;\. with "I' T" terms. 
This is all well and good, but how does one find out the connection coefficients 

ra
13Y for a given basis? The answer is derived in exercise 8 . 1 5 .  It says : ( 1 )  take the 

metric coefficients in the given basis ; (2) calculate their directional derivatives along 
the basis directions 

(3) calculate the commutation coefficients of the basis [equations (8 . 14) in general; 
cµf3y = 0 in special case of coordinate basis] ; (4) calculate the "covariant connection 
coefficients" 

I'µ{3y = � (gµ/3 ,Y + gµy ,{3 - g{3 y ,µ + Cµ{3y + Cµy/3 - C13 yµ) ;  

[ these terms a,e O for  j 
coordinate basis }--J 

(5) raise an index to get the connection coefficients : 

(8 .24b) 

(8 .24c) 

[Note on terminology: a coordinate basis always has caf3 y  = 0, and is sometimes called 
holonomic; a noncoordinate basis always has some of its caf3 y  nonzero, and is 
sometimes called anholonomic. In the holonomic case, the connection coefficients 
are sometimes called Christoffel symbols.] 

The component notation, with its semicolons, commas, D 's, connection coefficients, 
etc. , looks rather formidable at first. But it bears great computational power, one 
discovers as one proceeds deep into gravitation theory; and its rules of manipulation 
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are simple enough to be learned easily. By contrast, the abstract notation (VT, Vu T, 
etc.) is poorly suited to complex calculations; but it possesses great conceptual power. 

This contrast shows clearly in the way the two notations handle the concept of 
geodesic. A geodesic of spacetime is a curve that is straight and uniformly parame
trized, as measured in each local Lorentz frame along its way. If the geodesic is 
timelike, then it is a possible world line for a freely falling particle, and its uniformly 
ticking parameter A ( called "affine parameter") is a multiple of the particle's proper 
time, A = a-r + b. (Principle of equivalence: test particles move on straight lines in 
local Lorentz frames, and each particle's clock ticks at a uniform rate as measured 
by any Lorentz observer.) This definition of geodesic is readily translated into 
abstract, coordinate-free language: a geodesic is a curve 9(A) that parallel-transports 
its tangent vector u = d9 / dA. along itself-

(8.25) 

(See Figure 10 . 1  .) What could be simpler conceptually? But to compute the geodesic, 
given an initial event 9

0 
and initial tangent vector u(9

0
) there, one must use the 

component formalism. Introduce a coordinate system x"(9), in which u" = dx" / dA., 
and write the component version of equation (8.25) as 

O = D(dx"/dA) = d(dx"/d"}-.._) 
( " dxµ

) dxY 

dA. d"}-.._ + I' µy dA. dA. 

[see equation (8.23), with one less index on T] ; i.e., 

Geodesic and affine 
parameter defined 

(8.26) Geodesic equation 

This geodesic equation can be solved (in principle) for the coordinates of the geodesic, 
x"(A), when initial data [x" and dx" / dA. at A = A.0] have been specified. 

The geodesics of the Earth's surface (great circles) are a foil against which one 
can visualize connection coefficients; see Figure 8.3. 

The material of this section is presented more deeply and from a different view
point in Chapters 10  and 13 .  The Track-2 reader who plans to study those chapters 
is advised to ignore the following exercises. The Track- I  reader who intends to skip 
Chapters 9- 15  will gain necessary experience with the component formalism by 
working exercises 8.4-8.7 . Less important to him, but valuable nonetheless, are 
exercises 8.8-8. 15, which develop the formalism of covariant derivatives and con
nection coefficients in a systematic manner. The most important results of these 
exercises will be summarized in Box 8.6 (pages 223 and 224). 

Exercise 8 .4 .  P RACTICE I N  WRITI N G  C O M P O N E NTS O F  GRADI ENT 
Rewrite the following quantities in terms of ordinary derivatives (f,y = oe/= Vy./) and 
"I' T" correction terms : (a) T,y where T is a function. (b) ra

,Y where T is a vector. (c) Ta ,y 
where T is a I-form. (d) ra

/J � • .r [Answer: 

EXERCI SES 



2 1 2 

p V 

Figure 8 . 3 .  
The why of connection coefficients, schematically portrayed. The aviator pursuing his great circle route 
from Peking to Vancouver finds himself early going north, but later going south, although he is navigating 
the straightest route that is at all open to him (geodesic). The apparent change in direction indicates 
a turning, not in his route, but in the system of coordinates with respect to which his route is described. 
The vector v of his velocity ( a vector defined not on spacetime but rather on the Earth's two-dimensional 
surface), carried forward by parallel transport from an earlier moment to a later moment, finds itself 
in agreement with the velocity that he is then pursuing; or, in the abstract language of coordinate-free 
differential geometry, the covariant derivative Vvv vanishes along the route ("equation of a geodesic") . 
Though v is in this sense constant, the individual pieces of which the navigator considers this vector 
to be built, v = v0e0 + v<J>e

<J>
, are not constant. 

In the language of components, the quantities v0 and v<J> are changing along the route at a rate that 
annuls the covariant derivative of v; thus 

Vvv = a =  a<J>e
<J> 

+ a0e0 = 0, 
or 

In this sense the connection coefficients I'i mn serve as "turning coefficients" to tell how fast to "tum" 
the components of a vector m order to keep that vector constant (against the turning mfluence of the 
base vectors). 

Alternatively, the navigator can use an "automatic pilot system" which parallel-transports its own base 
vectors along the plane's route . 

solid vectors at tl become dotted vectors at qJ_ Then the components of v must be kept fixed to achieve 
a great-crrcle route, 

dvO' = du¢' = O ; 
dt dt 

and the turning coefficients are used to describe the turning of the lines of latitude and longitude relative 
to this parallel-transported basis : 

Vveo = emI'm
onvn, 

Vve
<J> 

= emrm
<J>
nvn. 

The same turning coefficients enter into both viewpoints. The only difference is in how these coefficients 
are used. 
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Exercise 8 . 5. A SH E ET OF PAP E R  IN P O LAR C O O R D I NATES 

2 1 3 

The two-dimensional metnc for a flat sheet of paper in polar coordinates (r, B) is ds 2 = dr2 + r2 dcf,2-or, in modem notation, g = dr 18> dr + r2 def> 18> def>. ( a) Calculate the connection coefficients using equations (8 .24) . [Answer: I''¢¢ = - r; 
I' ¢,¢ = I' ¢ <t,r = I/r; all others vanish.] (b) Write down the geodesic equation in (r, cf>) coordinates. [Answer: d2r/d"}..2 -

r(dcf>/d"}..)2 = O ; d2
cf>/d"}..2 + (2/r)(dr/d"}..)(dcf>/d"}..) = O.] (c) Solve this geodesic equation for r("}..) and cf,(A), and show that the solution is a uniformly parametrized straight line (x = r cos cf> = a}.. + b for some a and b; y _ r sin cf, = J"}.. + k for some j and k) . (d) Verif)'._ that the noncoordinate basis e:;. = e, = 0'7!/or, e i = r1e¢ r-1 aq>/ocf> , w' = dr, w ¢ = r def> is orthonormal, and that (w", efj) = 8 "/j · Then calculate the connection coefficients of this basis from a knowledge [part (a)] of the connection of the coordinate basis. [Answer: 

I' ¢i;. = (w 4' , V:;.ei) = (r def,, V,(r-1e,t,) 
= r(dc/>, (V,r-1)e ,t, + r 1(V,e ,t,)) = r(dc/>, - r-2e ,t,) + (de/>, V,e ,t,) 
= - r-1 + I' ¢

¢, = - r-1 + r-1 = O ; 
similarly, r i,i = + 1/r, r\i = - I /r; all others vanish.] ( e) Consider the Keplerian orbit of Figure 8 . 1  and §8 .3 as a nongeodesic curve in the sun's two-dimensional, Euclidean, equatorial plane. In place of the old notation dv/dt, de:;./dt, etc. , use the new notation Vv v, Vve:;. ,  etc. Then v = dqj' /dt is the tangent to the orbit, and a = Vv v is the acceleration. Derive equations (8 .4) for a:;. and a¢ using component manipulations and connection coefficients in the orthonormal basis. 
Exercise 8. 6. SP H ER I CAL C O O R D I NATES I N  FLAT SPACETI M E  The spherical noncoordinate basis {ea}  of Exercise 8 . 1  was orthonormal, ga/j = ·11ap ,  but had nonvanishing commutation coefficients [part (c) of Exercise 8 .2] .  (a) Calculate the connection coefficients for this basis, using equations (8 .24). [Answer: 

r o,o = I' ¢
:;¢ = - I' :;

o o  = - I' :;¢¢ = l /r; 

I' ¢
8¢ = - I' 8ii = cot B/r; 

all others vanish.] (b) Write down expressions for V°' ep in terms of ey, and verify the correctness of these expressions by drawing sketches of the basis vectors on a sphere of constant t and r. [Answer: 

Va,e8 = (cot B/r) ei, 

All others vanish.] (c) Calculate the divergence of a vector, V · A = A°'
°' ' in this basis . [Answer: 

oA1 l o (r2A:;) 1 o(sin BA8) l oA¢ = _o_t
_ + � -o-r- + 

r sin B  __ o_B _
_ + -r-s-in_B _ _ o_cf> 

_ _ 

This answer should be familiar from flat-space vector analysis.] 
Exercise 8. 7. SYM M ETRI ES OF C O N N E CTI O N  C O E FFI C I E NTS From equation (8 .24b), the symmetry of the metric, and the antisymmetry (cpyµ = - cypµ ) 
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of the commutation coefficients, show that : I'a[ f3 yJ = 0 (last two indices are symmetric) in a coordinate basis ; I'<a/J>y = 0 (first two indices are antisymmetnc) in a globally orthonormal basis, g,,fj = 1/afJ ·  

SYSTEMATI C DERIVATION OF RESU LTS I N  §8 .5  

Exercise 8 . 8 .  N EW D E F I N ITI O N  O F  VT CO M PARED WITH 
O LD D E FI N ITI O N  The new definition o f  VT is given by equations (8 . 16) and (8 . 17) .  Use the fact that parallel transport keeps local-Lorentz components fixed to derive, from (8. 16) , the Lorentz-frame equation VuT = T/3",YuYe/3 ® w". From this and equation (8 . 17), infer that the Lorentz-frame components of V T  are T/3 "· Y-which accords with the old definition of V T.  

Exercise 8 . 9 .  CHAI N RU LE FO R Vu T (a) Use calculations in a local Lorentz frame to show that "Vu" obeys the standard chain rule for derivatives : 
(8 .27) 

Here A and B are arbitrary vectors, I -forms, or tensors ; and/is an arbitrary function. [Hint: assume for concreteness that A is a (D tensor and B is a vector. Then this equation reads, in Lorentz-frame component notat10n, 
(8 .27 ') 

(b) Rewrite equation (8 .27) m component notation in an arbitrary basis. [Answer: same as (8 .27'), except "," is replaced everywhere by " ; " .  But note thatf, 8u 8 = f. 8u 8 , because the function f "has no components to correct".] 
Exercise 8 . 1 0 . COVARIANT D E RIVATIVE CO M M UTES WITH 

CO NTRACTI O N  (a) Let S b e  a m tensor. Using components in a local Lorentz frame show that 
Vu ( contraction on slots I and 2 of S) = ( contraction on slots 1 and 2 of VuS) .  (8 .28) 

[Hint : in a local Lorentz frame this equation makes the trivial statement 
(L S"a/3 ) uY = L (S"a/3 ,YuY) . ]  

a ,Y a 

Exercise 8 . 1 1 .  ALGE BRAIC P RO P E RTI ES O F  V Use calculations in a local Lorentz frame to show that 
for all tangent vectors u, v and numbers a, b; also that 
for any two tensor fields S and M of the same rank; also that 

(8 .29) 
(8 .30) 
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Vuw - Vwu = [u, w], � 

for any two vector fields u and w. 

t oommutato, of u =d w;] 4 discussed in exercise 8 .2 
Exercise 8 . 1 2 .  CO N N ECTI O N  COEFF I C I E NTS FOR 1 -FO R M  BAS IS  

2 1 5 
(8 .3 1 ) 

Show that the same connection coefficients I' o: 
/3 Y that describe the changes in { e /3 } from point to point [definition (8 . 19a)] also describe the changes in {wo:} ,  except for a change in sign [equation (8 . 19b)]. {Answer: ( 1 )  (w o: , e/3 ) = ao:

/3 
is a constant function (0 or 1 ,  depending on whether a = /3). (2) Thus, Vy(w o:, e/3) = o

e 
(w o: , e/3 ) = 0. (3) But (wo: , e/3 ) is the contraction of w o: ® ef3 , so equation (8.28) implie; 0 = Vy(contraction of w o: ® e/3) 

= contraction of [ Vy(w" ® e/3) ] .  (4) Apply the cham rule (8 .27) to conclude 0 = contraction of [(Vyw o:) ® e/3 + w" ® (Vye/3)] = ( Vyw a , e/3 ) + (w a , VYe/3 ) . (5) Finally, use definition (8 . 1 9a) to arrive at the desired result, (8 . 19b) . }  
Exercise 8 . 1 3 . "I' T" CORRECT ION  TERMS FOR TP

a;y Derive equation (8.2 1 )  for T/3 
a ,

y 
in an arbitrary basis by first calculating the components of Vu T for arbitrary u, and by then using equation (8 . 1 7) to mfer the components of V T.  

[Answer: ( 1 )  Use the cham rule (8 .27) to get 
Vu T = Vu(Tf3

ae
/3 

® w a) 
= (Vu T/3 o,)e/3 ® wa + T/3 o,(Vue/3) ® w a + T/3 ae

/3 
® (Vuw a) .  

(2) Write u in terms of its components, u = uYe
y
; use linearity of Vu in u from equat10n (8.29), to get Vu = uYV

y
; and use this in Vu T: 

Vu T = uY{ T/Ja,
y
e

/3 
® w a + Tf3

a(V
y
ef3) ® w a + Tf3

aef3 ® (Vyw a) } .  
(3) Use equations (8 . 19a,b), rewritten as 
to put Vu T in the form 

VU T = uY{ T/3
0,, y

e
/3 

® W O{ + I' P-
/3Y T/3

o,eµ, ® WO{ - r a
µ,y

T/3
0,e

/3 
® w P-} .  

(4) Rename dummy indices s o  that the basis tensor e/3 ® w a can b e  factored out: 
Vu T = uY{ T/3a ,y 

+ I' /3 µ,y
TP-

a - I' P-ay
T/3

µ,
} e

/3 
® wa . 

(5) By comparison with 
Vu T = V T( . . .  , . . .  , u) = ( T/3 

a ,
y
uY)e

/3 
® w a , 

read off the value of T/3 a ,rl 
Exercise 8 . 1 4 . M ETR I C  IS COVARIANTLY CONSTANT Show on physical grounds (using properties of local Lorentz frames) that 

Vg = 0  

(8 .32) 

(8 .33) 
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or, equivalently, that Vug = 0 for any vector u. Then deduce as a mathematical consequence the obviously desirable product rule 
[Answer: ( I )  As discussed following equation (8 . 1 8) ,  the components of Vg in a local Lorentz frame are gµ.v , a · Just use g for T in that discussion. But these components all vanish by equation (8 . 1 5b). Therefore equation (8.33) holds in this frame, and-as a tensor equation-in all frames. (2) The product rule is also a tensor equation, true immediately via components in a local Lorentz frame. (3) Prove the product rule also the hard way, to see where equation (8 .33 )  enters. Use the chain rule of exercise 8 .9 to write 

Vu(9 ® A ® B )  = (Vug) ® A ® B + g ® (V�) ® B 
+ g ® A ® (VuB) .  

Use tquation (8 .33) to  drop one term, then contract, forming 
A · B = contraction (g ® A ® B) 

and the other inner products. Exercise 8 . 1 0  i s  used to  justify commuting the contraction with Vu on the lefthand side.] 
Exercise 8. 1 5. CO N N ECTI O N  CO EFFI C I E NTS 

I N  TERMS O F  M ETRIC Use the fact that the metric is covariantly constant [equation (8.33)] to  derive equation (8 .24b) for the connection coefficients. Treat equation (8 .24c) as a definition of I'µ.f3y in terms of 
r a

f3 Y- [Answer: ( 1 )  Calculate the components of Vg in an arbitrary frame: 
gaf3 ,Y = O = gaf3

,Y - I' µ.
aygµ./3 - I' µ.

13 yg
µ.a = ga/3, Y - I'f3ay - I'a{3y ;  thereby conclude that ga/3 , Y = 2I'(af3Jy- (Round brackets denote symmetric part.) (2) Construct the metric terms in the claimed answer for I' µ.f3 y : 

1 2 (gµ.13
, y + gµ.y, {3 - g

13 y,
µ.

) = r(
µ.f3Jy + r<

µ.y>
f3 

- r<
f3y)

µ. 

1 = 2 [I'µ.{3y + I'13 µ.y + I'µ.y/3 + I'yµ.{3 - I'13 yµ. - I'y13 µ.] = I'µ.f3 y + ( - I'µ.( f3 yl + I'13 ( µ.yl + I'y( µ./31 ) .  ( 3 )  Infer from equation (8.3 1 ) ,  with u and w chosen as  two basis vectors (u = ew w = ev) that 
i .e . ,  

(8 .34) 
(4) This, combined with step (2) yields the desired formula for I'µ.f3y-] 
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§ 8 . 6 .  LOCAL LO R ENTZ FRAMES: 
MATHEMATICAL D ISCUSSION 

2 1 7 

An observer falling freely in curved spacetime makes measurements in his local 
Lorentz frame. What he discovers has been discussed extensively in Parts I and II 
of this book. Try now to derive his basic discoveries from the formalism of the last 
section. 

Pick an event '!i\ on the observer's world line. His local Lorentz frame there is Local Lorentz frame. 
a coordinate system x"('!i') in which 

(8 .35a) 

(Lorentz metric at 9 0) , and in which 

(8 .35b) 

(metric as Lorentz as possible near 90) .  [See equation (8 . 15).] In addition, by virtue 
of equations (8 .24), 

(8 .36) 

(no "correction terms" in covariant derivatives). Of course, the observer must be 
at rest in his local Lorentz frame; i.e., his world line must be 

x0 varying. (8.37) 

Query: Equations (8 .35) to (8 .37) guarantee that the observer is at rest in a local 
Lorentz frame. Do they imply that he is freely falling? (They should !) Answer: 
Calculate the observer's 4-acceleration a = du/dr (notation of chapter 6) = Vu u 

(notation of this chapter). His 4-velocity, calculated from equation (8 .37) is 

so his 4-acceleration is 

u = (dx"/dr)e" = (dx0/dr)e0 = e0 ; 

[because u and e0 both l t 
have unit length J 

a = Vu u = Voeo = I'"ooea 
= 0 at 9o. 

(8.38) 

(8 .39) 

Thus, he is indeed freely falling (a = O); and he moves along a geodesic (Vu u = 0). 
Query: Do freely falling particles move along straight lines (d2x"/dr2 = 0) in the 

observer's local Lorentz frame at 9 0? (They should !) Answer: A freely falling particle 
experiences zero 4-acceleration 

a t· I = V u u I = O · 
par lC e upartlclc par c e ' 

i.e., it parallel-transports its 4-velocity; i.e., it moves along a geodesic of spacetime 

Origin falls freely along a 
geodesic 

Freely falling particles move 
on straight lines 



Basis vectors at orig in are 
Ferm i-Walker transported 
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with affine parameter equal to its proper time. The geodesic equation for its world 
line, in local Lorentz coordinates, says 

= 0 at '!i\. 

The particle's world line is, indeed, straight at 9
0

• 

Query: Does the freely falling observer Fermi-Walker-transport his spatial basis 
vectors e;; i.e., can he attach them to gyroscopes that he carries? (He should be 
able to !) Answer: Fermi-Walker transport (Box 6.2) would say 

de; 
dr 
t 

old 
notation 

t 
new 

notation 

But u = e0 , e0 • e; = 0, and a = 0 for the observer; so Fermi-Walker transport in 
this case reduces to parallel transport along e0 : thus V0e; = 0. This is, indeed, how 
e; is transported through 9

0
, because 

§ 8 .  7 .  G EO D ES I C  D EVIATI O N  AN D 

TH E R I E MAN N CU RVATU R E  TEN S O R  

"Gravitation is a manifestation of spacetime curvature, and that curvature shows 
up in the deviation of one geodesic from a nearby geodesic (relative acceleration 
of test particles)." To make this statement precise, first quantify the "deviation" or 
"relative acceleration" of neighboring geodesics. 

Focus attention on a family of geodesics '!P(A, n) ; see Figure 8 .4. The smoothly 
varying parameter n ("selector parameter") distinguishes one geodesic from the next. 
For fixed n, '!P(A, n) is a geodesic with affine parameter A and with tangent vector 

u = a'!P /aA; 

thus Vuu = 0 (geodesic equation). The vector 

(8.40) 

(8 .41 )  

measures the separation between points with the same value of A on neighboring 
geodesics. 

An observer falling freely along the "fiducial geodesic" n = 0 watches a test 
particle fall along the "test geodesic" n = I .  The velocity of the test particle relative 
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Figure 8.4. 

I 
I 

I 
I 

I 
I 

I 

I 
I 
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11 ::: 0  

A family of geodesics 9(1', n) The selector parameter n tells "which" geodesic; the affine parameter 
A tells "where" on a given geodesic The separation vector n = o9 /on at a point '!i'(l\, 0) along the 
fiducial geodesic, n = 0, reaches (approximately) to the point '!i'(l\, 1) with the same value of A on the 
test geodesic, n = I .  

to him he  quantifies by  Vun. This relative velocity, like the separation vector n, 
is an arbitrary "initial condition." Not arbitrary, however, is the "relative accelera
tion," Vu Vun of the test particle relative to the observer (see Boxes 1 1 .2 and 1 1 .3) .  
I t  would be zero in flat spacetime. In curved spacetime, i t  is  given by 

Vu Vun + Riemann ( . . .  , u, n, u) = 0, 

or, in component notation, 

D 2n a 
a /3 'Y 8 -

dA.2 + R f3Y8 u n u - 0.  

Riemann curvature tensor 
(8 .42) defined by relative 

acceleration of geodesics 

(8 .43) 

This equation serves as a definition of the "Riemann curvature tensor; " and it can 
also be used to derive the following expressions for the components of Riemann Components of Riemann 
in a coordinate basis: 

(8 .44) 



u 
/ 

Effects of curvature 
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(For proof, read Box 1 1  .4, Box 1 1 .5 ,  and exercise 1 1 .3, in that order.) For a glimpse 
of the man who first analyzed the curvature of spaces with three and more dimen
sions, see Box 8 .5. 

Spacetime curvature causes not only geodesic deviation, but also route dependence 
in parallel transport (parallel transport around a closed curve changes a vector or 
tensor-Box 1 1 .7); it causes covariant derivatives to fail to commute [equation 
(8 .44)] ; and it prevents the existence of a global Lorentz coordinate system (§ 1 1 .5) . 

At first sight one might think Riemann has 4 X 4 X 4 X 4 = 256 independent 
components. But closer examination (§ 13.5) reveals a variety of symmetries 

Sym metries of Riemann Rca{J-ysJ = 0, (8 .45) 

Box 8 . 5  GEORG  FR I EDR ICH  B E R N HARD R I EMANN 

September 1 7, 1 826, Breselenz, Hanover-Ju ly 2 0 ,  1 866, 
Selasca, Lake M aggiore 

With his famous doctoral thesis of 1 851 , "Founda
tions for a general theory of functions of a single 
complex variable," Riemann founded one branch 
of modern mathematics (the theory of Riemann 
surfaces) ; and with his famous lecture of three 
years later founded another (Riemannian geom
etry). These and other writings will be found in 
his collected works, edited by H. Weber ( 1953). 

"The properties which distinguish space from 
other conceivable triply-extended magnitudes are 
only to be deduced from experience . . . .  At every 
point the three-directional measure of curvature 
can have an arbitrary value if only the effective 
curvature of every measurable region of space 
does not differ noticeably from zero." [G. F. B. 
Riemann, "On the hypotheses that lie at the foun
dations of geometry," Habilitationsvorlesung of 
June 10, 1 854, on entry into the philosophical 
faculty of the University of Gottingen.] 

Dying of tuberculosis twelve years later, occu-
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(antisymmetry on first two indices; antisymmetry on last two; symmetry under exchange of first pair with last pair; vanishing of completely antisymmetric parts). These reduce Riemann (in four dimensions) from 256 to 20 independent components. Besides these algebraic symmetries, Riemann possesses differential symmetries called "Bianchi identities, " R"' 
/J [ Aµ ; v] = 0, (8 .46) B ianch i  identit ies which have deep geometric significance (Chapter 15). From Riemann one can form several other curvature tensors by contraction. The easiest to form are the "Ricci curvature tensor, " 

pied with an attempt at a unified explanation of gravity and electromagnetism, Riemann communicated to Betti his system of characterization of multiply-connected topologies (which opened the door to the view of electric charge as "lines of force trapped in the topology of space"), making use of numbers that today are named after Betti but that are identified with a symbol, Rn, that honors Riemann. "A more detailed scrutiny of a surface might disclose that what we had considered an elementary piece in reality has tiny handles attached to it which change the connectivity character of the piece, and that a microscope of ever greater magnification would reveal ever new topological complications of this type, ad infinitum. The Riemann point of view allows, also for real space, topological conditions entirely different from those realized by Euclidean space. I believe that only on the basis of the freer and more general conception of geometry which had been brought out by the development of mathematics during the last century, and with an open mind for the imaginative possibilities which it has revealed, can a philosophically fruitful 

attack upon the space problem be undertaken." H. Weyl (1949, p. 9 1 ). "But . . .  physicists were still far removed from such a way of thinking; space was still, for them, a rigid, homogeneous something, susceptible of no change or conditions. Only the genius of Riemann, solitary and uncomprehended, had already won its way by the middle of the last century to a new conception of space, in which space was deprived of its rigidity, and in which its power to take part in physical events was recognized as possible." A. Einstein ( 1934, p. 68). Riemann formulated the first known model for superspace (for which see Chapter 43), a superspace built, however, not of the totality of all 3-geometries with positive definite Riemannian metric (the dynamic arena of Einstein's general relativity), but of all conformally equivalent closed Riemannian 2-geometries of the same topology, a type of superspace known today as Teichmiiller space, for more on Riemann's contributions to which and the subsequent development of which, see the chapters by L. Bers and J. A. Wheeler in Gilbert and Newton ( 1970). 



J re tensor 

Sca lar  curvatu re 

E inste in  curvatu re tensor 

Contracted B ianch i  ident1t 1es 

EXERCISE 
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R = R"' - I'"' - I'"' + I' "' I' /3 - I'"' I'/3 
µv - µav - µv,a µa, v f3a µv {3 v  µa• 

½in a coordinate frame] 
(8 .47) 

and the "scalar curvature, " 

(8.48) 

But of much greater geometric significance is the "Einstein curvature tensor" 

G µ = l_ µaf3YR pu l R µ I 
8 µ R 

V - 2 f /3)' 2 Evapu = V - 2 V • 
(8 .49) 

Of all second-rank curvature tensors one can form by contracting Riemann, only 
Einstein = G retains part of the Bianchi identities (8.46): it satisfies 

(8 .50) 

For the beautiful geometric meaning of these "contracted Bianchi identities" ("the 
boundary of a boundary is zero"), see Chapter 15. 

Box 8.6 summarizes the above equations describing curvature, as well as the 
fundamental equations for covariant derivatives. 

[The following exercises from Track 2 are appropriate for the Track- I reader who wishes 
to solidfy his understanding of curvature : 1 1 .6 , 1 1 .9 , 1 1 . 10, 1 3 .7- 1 1 , and 14.3 .] 

Exercise 8 . 1 6 .  SO M E  U SEFU L FO RM U LAS I N  C O O R D I NATE FRAMES 
In any coordinate frame, define g to  be  the determinant of  the matrix g"/3 [ equation 8 . 1 1  ] . 
Derive the following relat10ns, valid in any coordinate frame. 

(a) Contraction of connection coefficients : 

[Hint: Use the results of exercise 5 .5 .] 
(b) Components of Ricci tensor: 

( c) Divergence of a vector A" or antisymmetric tensor pa/3 : 

A" .a = _ i--:= ( \/-gA") "' , v -g , F"/3 /3 = _1_ ( \/-g F"/3) f3 • ' \/-g ' 

(8 .5 l a) 

(8 .5 1 b) 

(8 .5 l c) 

( d) Integral of a scalar field '¥ over the proper volume of a 4-dimensional reg10n 'V : 

.[ '¥ d(proper volume) = .[ '¥ \/-g dt dx dy dz. 
o/ o/ 

(8 .5 1 d) 
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[Hint: In a local Lorentz frame, d(proper volume) = df dx dy di. Use a Jacobian to transform this volume element to the given coordmate frame, and prove from the transformation law 
that the Jacobian is equal to yC°g.] 

Box 8. 6 COVARIANT DERIVAT IVE A N D  CU RVATU RE:  F U N DAMENTAL EQUAT IONS 

Entity Covariant Derivative 
algebraic properties (Exercise 8. 1 1 ) 
chain rule 
Vu and contraction commute * metric covariantly constant Gradient Connection Coefficients 

* Local Lorentz frame at '!i'0 Parallel transport 

Abstract notation VuT = VT( . . .  , . . .  , u) 
vau + bvT = a VU T + b VVT Vu(S + M) = VuS + VuM Vuw - Vwu = [u, w] for u, w both vector fields Vu(A ® 8) = (VuA) ® B + A ® (VuB) Vu(/A) = (Vuf)A + fVuA Vu(contraction of S) 

= (contraction of VuS) 
VT 

Component notation TfJa ;yuY = DTfJ,,/d),. (u = dq>/d>,.) dTfJ = --" + (I'/J T' - r• TfJ )uµ 
cfA. vµ a aµ v 

TfJ ,,,y(auY + bvY) = aTfJ a ,yuY + bTfJ a,yvY (SfJ,, + Mf3,,) ,yuY = SfJ,,,YuY + MfJ,,,YuY I'P1µ,J = - ½cµ/ [equation (8.34)] (A"pBy) ,µuµ = A"p ,µByuµ + A"pBy ,µuµ (fA"p) ,µuµ = J.µAa
pUµ + fA"p ,µUµ 

( :I S",,y) uµ = L (S",,y ,µuµ) 
a ;µ a 

I'" {Jy = g"µI' µ[Jy> * 1 rµ{Jy = z (gµp ,y + gµy , fJ  - gpy ,µ + Cµ{Jy + Cµy{J - Cpyµ)*  Cpyµ = gµaC
py" = gµa(w", [ep, ey] ) *  Coordinate system with gµ,('!i' o) = 1/µ,, I'" py('!i' o) = 0 
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Box 8. 6 (continued) 

En tity Geodesic Equation Riemann Curvature Tensor 
Ricci Curvature Tensor 

* Curvature Scalar * Einstein Curvature Tensor 

* Symmetries of Curvature Tensors Bianchi Identities * Contracted Bianchi Identities Geodesic Deviation Parallel Transport around closed curve (§ 1 1 .4) 

Abstract notation 

V.,u = 0 

Riemann (q, C, A, B) = ( q, !W(A ,  B)C) 
!W(A , B) = [VA , Vs] - v[A ,8] (not track-one formulas; see Chapter I I ) 
Ricci = contraction on slots I and 3 of Riemann 

R = ( contraction of Ricci) 

G = Ricci - ½ gR 

Vu Vun + Riemann (. , u, n, u) = 0 

oA + Riemann ( . . .  A, u, v) = 0 if u, v are edges of curve 
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Component noiat,on d2x"'/dA2 + I'"µ, (tbNdA)(dx'/dA) = 0 in a coordinate basis 
a - oI'"' {3 8 oI'"' {Jy R fJy8 - � - � 

+ I'"'
µrrµ

/3 8 - I'"'
µ8 rµ

/J r  in coordinate frame (see equation (I I. 13) for formula in noncoordinate frame] RµP = R"'
µav = I'"'

µv,o. - I'"'
µa, v + I'"'

13,,I'/J
µv - I'"'

13 ,I' /J µa in coordinate frame 
I G,,13 = R,,13 - 2 g,,13R Useful formulas for computing G"'

13 (derived in § 1 4.2) · Go
o = - (R l\2 + R23

23 + R3\1), 

Ra{Jy8 = R[a{JJ[y8J = Rly8lla{JJ > Rla{Jy8] = 0, RaI{Jy8] = 0 R,,13 = R(a/J)> G,,13 = G(a/J) 

* If metric is absent, these starred formulas cannot be formulated All other formulas are valid in absence of metric 



CHAPTE R 9 
D I FFER ENTIAL TO PO LOGY 

In analytic geometry, many rela tions which are independent of 
any frame must be expressed with respect to some particular 

frame. It is therefore preferable to devise new methods
methods which lead directly to intrinsic properties without any 

mention of coordinates. The developmen t of the topology of  
general spaces and of the objects which occur in them, as  well 

as the development of the geometry of general metric spaces, 
are steps in this direction. 

KA R L  M E N G E R ,  in  Sch i lpp ( 1 949), p 467 

§ 9 . 1 . GEOMETRI C  OBJECTS IN METRI C-FREE, 
GEODESI C-FREE SPACETIME 

This chapter is entirely Track 2 .  
I t  depends o n  no preceding 

Track-2 materia l .  

Curved spacetime without metric or geodesics or parallel transport, i .e . ,  "differential 
topology," is the subject of this easy chapter. It is easy because all the necessary 
geometric objects (event, curve, vector, I -form, tensor) are already familiar from 
flat spacetime. Yet it is also necessary, because one's viewpoint must be refined when 
one abandons the Lorentz metric of flat spacetime. 

Events 

The primitive concept of an event 9 (Figure 1 .2) needs no refinement. The essential 
property here is identifiability, which is not dependent on the Lorentz metric struc
ture of spacetime. 

I t  is needed as preparation 
for 

( 1 )  Chapters 1 0- 1 3  
(differential  geometry; 
Newtonian gravity) , 
and 

(2) Box 30 . 1  (mixmaster 
cosmology) . 

It wi l l  be helpful in 
( 1 )  Chapter 1 4  (calcu lation 

of curvature) and in  
(2 )  Chapter 1 5 (Bianchi  

identities) . 
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Metric is  abandoned Curves 

Geometr ic concepts must be 
refi ned 

Old defi n i tions of vector 
break down when metr ic  is 
abandoned 

Again no refinement. A "curve" 9(11.) is also too primitive to care whether spacetime 
has a metric-except that, with metric gone, there is no concept of "proper length" 
along the curve. This is in accord with Newton's theory of gravity, where one talks 
of the lengths of curves in "space," but never in "spacetime." 

Vectors 

Here refinement is needed. In special relativity one could dress primitive ("identifi
able") events in enough algebraic plumage to talk of vectors as differences 9 - !2 
between "algebraic" events . Now the plumage is gone, and the old bilocal ("point 
for head and point for tail") version of a vector must be replaced by a purely local 
version (§9 .2) . Also vectors cannot be moved around;  each vector must be attached 
to a specific event (§§9 .2 and 9 .3) .  

1 -Forms 

Almost no refinement needed, except that, with metric gone, there is no way to tell 
which I -form corresponds to a given vector (no way to raise and lower indices), 
and each I -form must be attached to a specific event (§9 .4). 

Tensors 

Again almost no refinement, except that each slot of a tensor is specific: if it accepts 
vectors, then it cannot accommodate I -forms, and conversely (no raising and lower
ing of indices) ; also, each tensor must be attached to a specific event (§9 .5) .  

§ 9 . 2 .  "VECTO R" AN D " D I RECTI ONAL DER IVATIVE" 
REF INED INTO TAN G ENT VECTO R 

Flat spacetime can accommodate several equivalent definitions of a vector (§2 .3) :  
a vector is an arrow reaching from an event 9 0 to an event 520 ; it is the parameterized 
straight line, 9(11.) = 9 0 + 11. (520 - 9 0) extending from 9 0 at A = 0 to 520 at A = I ;  
it is the rate of change of the point 9(11.) with increasing A, d!J' / d\. 

With Lorentz metric gone, the "arrow" definition and the "parametrized-straight 
line" definition must break down. By what route is the arrow or line to be laid out 
between 90 and !20? There is no concept of straightness; all routes are equally straight 
or bent. 

Such fuzziness forces one to focus on the "rate-of-change-of-point-along-curve" 
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Box 9 .  1 TANG ENT VECTO RS AND TANG E NT S PACE 

A tangent vector d'!f /d>.. is defined to be "the limit, when N -►- oo ,  of N times the displacement of 
'ff as >.. ranges from 0 to 1 /  N." One cannot think of this final displacement d'!f / d>.. as lying in spacetime; fuzziness forbids (no concept of straightness) . Instead, one visualizes d'!f / d>.. as lying in a "tangent plane" or "tangent space," which makes contact with spacetime only at '!/ (0), the event where 
d'!f / d>.. is evaluated. All other tangent vectors at '!f(0)-e.g., d'!f I dp, d'!f I dq,  d'!f I dt-lie in this same tangent space. To make precise these concepts of tangent space and tangent vector, one may regard spacetime as embedded in a flat space of more than four di-

mensions. One can then perform the limiting process that leads to d'!f /d>.., using straight arrows in the flat embedding space. The result is a higherdimensional analog of the figure shown above. But such a treatment is dangerous. It suggests, falsely, that the tangent vector d'!f Id>.. and the tangent space at 'ff O depend on how the embedding is done, or depend for their existence on the embedding process. They do not. And to make clear that they do not is one motivation for defining the directional derivative operator "did>.." to be the tangent vector, rather than using Cartan's more pictorial concept "d'!f Id>..". 

definition, d'!f / d>... It, under the new name "tangent vector, " is explored briefly in Box 9 . 1 ,  and in greater depth in the following paragraphs. Even "d'!f Id>.." is a fuzzy definition of tangent vector, most mathematicians would argue. More acceptable, they suggest, is this definition: the tangent vector u to a 
curve '!/(>..) is the directional derivative operator along that curve 

U = 0u = (d/d>..)alongcurve· (9 . 1 )  
Tangent vector equals directional derivative operator? Preposterous ! A vector started out as a happy, irresponsible trip from 'ff O to !20 • It ended up loaded with the social responsibility to tell how something else changes at 'ff 0• At what point did the vector get saddled with this unexpected load? And did it really change its character all that much, as it seems to have done? For an answer, go back and try 

Best new definit ion: "tangent 
vector equals directional 
derivative operator" 
u = d/dA 



Alternative defi n i t ion ,  
u = d'!l'/d"A , requ i res 
e m bedd ing in flat space of 
h igher  d i m ens iona l ity 

R efi nement of d'!l'/d"A i nto 
d/d"A 
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to redo the "rate-of-change-of-point" definition, d'!l / dA., in the form of a limiting 
process : 

0. Choose a curve '!l(A) whose tangent vector d'!l I dA. at A = 0 is desired. 
I .  Take the displacement of 9 as A ranges from 0 to I ;  that is not d9 I dA.. 
2 .  Take twice the displacement of 9 as A ranges from 0 to ½; that is not d9 I dA.. 
N. Take N times the displacement of 9 as A ranges from 0 to 1 /N; that is not 

d9/dA . 
oo .  Take the limit of such displacements as N -+  oo ;  that is d9 I dA.. 

This definition has the virtue that d9 / dA. describes the properties of the curve 9(A), 
not over the huge range from A = 0 to A = I ,  where the curve might be doing wild 
things, but only in an infinitesimal neighborhood of the point 9 0 = 9(0). 

The deficiency in this definition is that no meaning is assigned to steps 1, 2 ,  . . .  , 
N, . . .  , so there is nothing, yet, to take the limit of. To make each "displacement 
of 9" a definite mathematical object in a space where "limit" has a meaning, one 
can imagine the original manifold to be a low-dimensional surface in some much 
higher-dimensional flat space . Then 9(1 / N) - 9(0) is just a straight arrow connect
ing two points, i .e. a segment of a straight line, which, in general, will not lie in 
the surface itself-see Box 9 .  I .  The resulting mental picture of a tangent vector makes 
its essential properties beautifully clear, but at the cost of some artifacts. The picture 
relies on a specific but arbitrary way of embedding the manifold of interest (metric
free spacetime) in an extraneous flat space . In using this picture, one must ignore 
everything that depends on the peculiarities of the embedding. One must think like 
the chemist, who uses tinkertoy molecular models to visualize many essential prop
erties of a molecule clearly, but easily ignores artifacts of the model ( colors of the 
atoms, diameters of the pegs, its tendency to collapse) that do not mimic quantum
mechanical reality. 

Elie Cartan's approach to differential geometry, including the d'!l / dA. idea of a 
tangent vector, suggests that he always thought of manifolds as embedded in flat 
spaces this way, and relied on insights that he did not always formalize to separate 
the essential geometry of these pictures from their embedding-dependent details. 
Acceptance of his methods of calculation came late. Mathematicians, who mistrusted 
their own ability to distinguish fact from artifact, exacted this price for acceptance : 
stop talking about the movement of the point itself, and start dealing only with 
concrete measurable changes that take place within the manifold, changes in any 
or all scalar functions f as the point moves. The limiting process then reads : 

0 .  Choose a curve 9(A) whose tangent vector at A = 0 is desired. 
I .  Compute the number /[9( 1)] - /[9(0)], which measures the change in f as 

the point 9(A) moves from 9 0 = 9(0) to j!0 = 9(1 ) .  
2 .  Compute 2{/W(½)] - /[9(0)]} , which is twice the change in f as the point 

goes from 9(0) to 9(½) . 
N. Compute N{/[9( 1/  N)] - /[9(0)] } ,  which is N times the change in f as the 

point goes from 9(0) to 9( 1/N).  
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oo. Same in the limit as N -r oo: ( change in f) = df/ di\ . 

2 2 9  

0 .  The vector is not itself the change inf It is instead the operation d/dA, which, 
when applied to f, gives the change df/ di\. Thus 

tangent vector = d/ di\ 

[cf. definition (9.1)] . 

The operation d/ di\ clearly involves nothing but the last steps N -r oo in this 
limiting process, and only those aspects of these steps that are independent off 
But this means it involves the infinitesimal displacements of the point t!f and nothing 
more. 

One who wishes both to stay in touch with the present and to not abandon Cartan's 
deep geometric insight (Box 9 . 1 )  can seek to keep alive a distinction between: 

(A) the tangent vector itself in the sense of Cartan, the displacement dt!f /di\ of 
a point; and 

(B) the "tangent vector operator," or "directional derivative operator," telling 
what happens to a function in this displacement: (tangent vector operator) 
= d/dA. 

However, present practice drops ( or, if one will, "slurs") the word "operator" in (B), 
and uses the phrase "tangent vector" itself for the operator, as will be the practice 
here from now on. The ideas (A) and (B) should also slur or coalesce in one's mind, 
so that when one visualizes an embedding diagram with arrows drawn tangent to 
the surface, one always realizes that the arrow characterizes an infinitesimal motion 
of a point dt!f / di\ that takes place purely within the surface, and when one thinks 
of a derivative operator d/dA, one always visualizes this same infinitesimal motion 
of a point in the manifold, a motion that must occur in constructing any derivative 
df(t!f)/ di\. In this sense, one should regard a vector dt!f / di\ d/ di\ as both "a 
displacement that carries attention from one point to another" and "a purely geo
metric object built on points and nothing but points." 

The hard-nosed physicist may still be inclined to say "Tangent vector equals 
directional derivative operator? Preposterous! " Perhaps he will be put at ease by 
another argument. He is asked to pick an event t!f 0 • At that event he chooses any 
set of four noncoplanar vectors (vectors defined in whatever way seems reasonable 
to him); he names them e0 , e1, e2, e3 ; and he uses them as a basis on which to 
expand all other vectors at t!f O : 

(9 .2) 

He is asked to construct the four directional derivative operators a" ae. along his 
four basis vectors. As in flat spacetime, so also here; the same expansion coefficients 
that appear in u = u"ea also appear in the expansion for the directional derivative: 

av = v" a" . (9 .3 ) 

I somorphism between 
directional derivatives and 
vectors 



Tangent space defi ned 

Coordi n ate- i nduced basis 
defi ned 

Changes of basis 
transfo rmat ion matr ices 
defi ned 
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Hence, every relation between specific vectors at '!IO induces an identical relation 
between their differential operators: 

u = aw + bv -<=>-- ua = awa + bva 
-<=>-- au = a aw + b av · 

(9.4) 

There is a complete "isomorphism" between the vectors and the corresponding 
directional derivatives. So how can the hard-nosed physicist deny the hard-nosed 
mathematician the right to identify completely each tangent vector with its direc
tional derivative? No harm is done; no answer to any computation can be affected. 

This isomorphism extends to the concept "tangent space." Because linear relations 
(such as au = a aw + b o v) among directional derivatives evaluated at one and the 
same point '!IO are meaningful and obey the usual addition and multiplication rules, 
these derivative operators form an abstract (but finite-dimensional) vector space 
called the tangent space at '!/0 . In an embedding picture (Box 9.1)  one uses these 
derivatives (as operators in the flat embedding space) to construct tangent vectors 
u = ou'!f, v = o v'!f, in the form of straight arrows. Thereby one identifies the abstract 
tangent space with the geometrically visualized tangent space. 

§ 9 . 3 .  BASES, COMPONENTS, AND 
TRANSFORMATION LAWS FOR VECTORS 

An especially useful basis in the tangent space at an event '!/0 is induced by any 
coordinate system [four functions, x0{'!1), x1{'!1), x2('!f), x3{'!1)]: 

e0 --0 = curve with constant (x1, x2 , x3) ( 0 ) (
directio�al derivative along the

) ox 1 2 3 , \ 0 

a el = -- , 
OX1 

(See Figure 9.1.) 

x ,x ,x and with parameter A = x at ei'o' 

a 
ez = --, 

ox2 
a e3 = --

3 . 
ox 

(9.5) 

A transformation from one basis to another in the tangent space at '!I 0, like any 
change of basis in any vector space, is produced by a nonsingular matrix, 

(9.6) 

and, as always (including the Lorentz frames of flat spacetime), the components of 
a vector must transform by the inverse matrix 

ua' - La' u /3 · - /3 ' 

{
La' L/3 - 8a' I IU' I I  = I I L/3 , 1 1-1 i.e. /3 Y' - y, 

/3 y ' , 
Lil La' - s:, 1,  a' /3 - u 13 · 

(9.7) 

(9.8) 
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Figure 9. 1 .  The basis vectors induced, by a coordinate system, into the tangent space at each event. Here a truncated, two-dimensional spacetime is shown (two other dimensions suppressed), with coordinates xW) and ,{;(9), and with corresponding basis vectors o/ox and o/o,f;. 

This "inverse" transformation law guarantees compatibility between the expansions 
u = e°',u°'' and u = e/3 uf3 : 

u = e°',u°'' = (eyLY°',)(L°''/3 uf3) = e/JY
/J u/3 

= e/J u/3 . 

In the special case of transformations between coordinate-induced bases, the 
transformation matrix has a simple form: 

so 

0 ox /3 0 
-

-:i
-, = -

-:i
-, --

/3 
(by usual rules of calculus), 

uX°' ux °' ox 

Lf3 - (o f3/o °'') « - X X at event q>0 where tangent space hes · (9 .9) 

(Note: this generalizes the Lorentz-transformation law x /3 = Af3 
°',x°'' , which has the 

differential form Af3 a' = ox /3 /ox°'' ;  also, it provides a good way to remember the 
signs in the A matrices.) 

§ 9 .4 .  1 -FO RMS 

When the Lorentz metric is removed from spacetime, one must sharpen up the 
concept of a I -form CT by insisting that it, like any tangent vector u, be attached 
to a specific event 9 0 in spacetime. The family of surfaces representing CT resides 
in the tangent space at 9 0, not in spacetime itself. The piercing of surfaces of CT 
by an arrow u to produce the number ( CT, u) ("bongs of bell") occurs entirely in 
the tangent space. 
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wz 

.-----------
Positive sense 

w3 

Figure 9 . 2 .  
The basis vectors e0 and dual basis I -forms w /3  in the tangent space of an event '.1'0 The condition 

( wf1 , e
a

> = r,/3 <X 

dictates that the vectors e2 and e3 lie parallel to the surfaces of w 1, and that e1 extend from one surface 
of w 1 to the next (precisely 1 .00 surfaces pierced). 

Notice that this picture could fit perfectly well into a book on X-rays and crystallography There the 
vectors e1 , e2, e3 would be the edges of a unit cell of the crystal; and the surfaces of w1 , w2, w3 would 
be the surfaces of unit cells. Also, for an X-ray diffraction experiment, with wavelength of radiation 
and orientation of crystal appropriately adjusted, the successive surfaces of w1 would produce Bragg 
reflection. For other choices of wavelength and orientation, the surfaces of w2 or w3 would produce 
Bragg reflection. 

Given any set of basis vectors { e0 , e1 , e2 , e3 } at an event '!i' 0, one constructs the 
Dua l  basis of 1 -forms defi ned "dual basis" of I -forms {w0

, w 1 , w 2, w3 } by choosing the surfaces of w/3 such that 
that 

Com ponent-ma n i p u lat ion 
form u l as 

(9 . 10) 

See Figure 9 .2 .  A marvelously simple formalism for calculating and manipulating 
components of tangent vectors and I -forms then results : 

a =  a13wf3 

ua = (wa , u) 

(definition of components of u), 

(definition of components of a), 

(way to calculate components of u), 

(way to calculate components of a), 

(way to calculate (a, u) using 
components), 

(transformation law for I -form 
basis, corresponding to equation 9 .6), 

(transformation law for I -form 
components). 

(Exercise 9 . 1  below justifies these equations .) 

(9 . 1  l a) 

(9 . 1 1 b) 

(9 . 1  l c) 

(9 . 1  l d) 

(9 . 1 1  e) 

(9 . 1  l f) 

(9 . 1  l g) 
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In the absence of a metric, there is no way to pick a specific I -form ii at an event '!PO and say that it corresponds to a specific tangent vector u at '!i' 0. The correspondence set up in flat spacetime, 
(ii, v) = U • V for all v, was rubbed out when " · " was rubbed out. Restated in component language: the raising of an index, u"' = r,"'f3u13 , is impossible because the r,°'/3 do not exist; similarly, lowering of an index, u13 = r,13,,u"', is impossible. 

Correspondence between 
vectors and 1-forms rubbed 
out 

The I -form gradient df was introduced in §2.6 with absolutely no reference to Gradient of a function metric. Consequently, it and its mathematical formalism are the same here, without metric, as there with metric, except that, like all other I -forms, df now resides in the tangent space rather than in spacetime itself. For example, there is no change in the fundamental equation relating the projection of the gradient to the directional derivative : 
(df, u) = auf = u[f] . 

r old notation foil t t 1new notation ;] Ldirectional derivativej �ecall u = a u· 
Similarly, there are no changes in the component equations, ( expansion of df in arbitrary basis), (way to calculate components of df), if { e,,} is a coordinate basis, 

(9 .12) 

(9 .13a) 
(9 .13b) 

except that they work in arbitrary bases, not just in Lorentz bases. And, as in Lorentz frames, so also in general: the one-form basis { dx "' } and the tangent-vector basis { a/ax"'} ,  which are induced into a tangent space by the same coordinate system, are the duals of each other, (9 .14) (See exercise 9 .2 for proofs.) Also, most aspects of Cartan's "Exterior Calculus" (parts A, B, C of Box 4.1) are left unaffected by the removal of metric. 
§ 9 . 5 . TENSORS 

A tensor S, in the absence of Lorentz metric, differs from the tensors of flat, Lorentz spacetime in two ways. (I ) S must reside at a specific event '3'0, just as any vector or I -form must. (2) Each slot of S is specific; it will accept either vectors or I -forms, Specifi city of tensor slots but not both, because it has no way to convert a I -form ii into a "corresponding 
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vector" u as it sends ii through its linear machinery. Thus, if S is a @ tensor 
S( . . .  ' . . . ' . . .  ), insert I -form hereJ r linsert vector here insert vector here 

(9 . 1 5 ) 

then it cannot be converted alternatively to a (i) tensor, or a @  tensor, or a (�) tensor by the procedure of §3 .2 . In component language, the indices of S cannot be raised and lowered.  Except for these two restrictions ( attachment to a specific event; specificity of slots), a tensor S is the same linear machine as ever. And the algebra of component manipulations is the same : 
sa/3Y = S(wa, e13 , ey) (S, wa, e13 must all reside at same event) 

S = Sa13yea Q9 w/3 Q9 wY, S(O', u, v) = saf3yaauf3 vY. 

Exercise 9 . 1 .  CO M PO N ENT MAN I P U LATI O N S 

(9 . 1 6) (9 . 1 7) 
(9 . 1 8) 

Derive equations (9 . 1  l c) through (9 . 1  l g) from (9 . 10) ,  (9 . 1  l a, b), (9 .6), (9 .7), and (9 .8) .  
Exercise 9 . 2 .  CO M PO N ENTS O F  G RAD I E NT, A N D  D UALITY O F  

CO O R D I NATE BAS ES In an arbitrary basis, define !," by the expansion (9 . 1 3a) .  Then combine equations (9 . I l d) and (9 . 12) to obtain the method (9 . 1 3b) of computing f,". Finally, combine equations (9 . 12) and (9 . 1 3b) to show that the bases { dx")  and { il/iJx fl )  are the duals of each other. 
Exercise 9 . 3 .  P RACTICE  MAN I PU LATI N G  TAN G E NT VECTO RS Let  '!i' 0 be the point with coordinates (x  = 0, y = I ,  z = 0) in  a three-dimensional space ; and define three curves through '!i' 0 by 

'!i'(t..) = (>..,  I , >..) ,  '!i'(n = (sin t, cos t, n, 
'!i'(p) = (sinh p, cosh p, p + p 3) . 

(a) Compute (d/d>..)j, (d/dt)f, and (d/dp)f for the function f = x2 - y2 + z2 at the point 
tJ> 0 • (b) Calculate the components of the tangent vectors d/ d>.. , d/ dt, and d/ dp at '!i' 0, using the basis { il/ilx, a;ay, a;az) . 
Exercise 9 .4 .  MORE P RACT I C E  WITH TAN G E N T  VECTO RS In a three-dimensional space with coordinates (x ,  y, z) , introduce the vector field v = y2 
o/ox - x o/oz, and the functions f = xy, g = z3 . Compute 

(a) v[f] 
(b) v[g] 

(c) v[fg] 
(d) fv[g] - gv[f] 

(e) v[/2 + g2] (/) v { v[f]) 
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Exercise 9 . 5. P ICT U RE OF BASIS 1 -FORM S IN DUCED BY COORDINATES 

2 3 5  

In the tangent space of Figure 9 . 1 ,  draw the basis I -forms dip and dx induced by the 
if;, x-coordinate system. 

Exercise 9 . 6 . P RACT ICE WITH DUAL BASES 

In a three-dimensional space with spherical coordinates r, 0, </>, one often likes to use, mstead 
of the basis a;ar, a;ae, a/a</>, the basis 

a e, = ar ' 
I a e · = -- -

¢ r sin e a<1> ' 

(a) What 1s the I -form basis {w', w 8 , w <P) dual to this tangent-vector basis? (b) On the 
sphere r = I ,  draw pictures of the bases { a/ar, a;ae, a/a</>) , {e,, e 0 , e <t>) ,  {dr, dO, d</>} ,  
and {w', w 8 , w <t>) .  

§9 . 6 .  COMMUTATORS AND P I CTORIAL TECHN I QUES 

A vector u0 given only at one point 90 suffices to compute the derivative u0[/] 
au f, which is simply a number associated with the point ':P 0 . In contrast, a vector 
field u provides a vector u('!P)-which is a differential operator au('<'l-at each point 
9 in some region of space time. This vector field operates on a function f to produce 
not just a number, but another function u[f] auf A second vector field v can 
perfectly well operate on this new function, to produce yet another function 

Does this function agree with the result of applying v first and then u? Equivalently, 
does the "commutator" [u, v][f] u { v[/]} - v{u[/]} (9 . 1 9) Com mutator defi ned 

vanish? 
The simplest special case is when u and v are basis vectors of a coordinate system, 

u = a;axa, v = a;ax /3. Then the commutator does vanish, because partial deriva
tives always commute : 

[a/ax a, a;ax f3 ][J] = a 2J1ax f3 ax a - a 2J1axa ax /3 = 0 .  

But in general the commutator i s  nonzero, as  one sees from a coordinate-based 
calculation :  

[u, v]f = ua _a_ ( v/3 
aJ ) - va _a_ (u/3 aJ ) axa ax /3 ax a ax /3 

= [cuav /3 - vau /3 ) -a-]! ,a ,a ax /3 



Commutator of two vector 
fields is a vector f ield 

Commutator as a " closer of 
curves" 
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Notice however, that the commutator [u, v] , like u and v themselves, is a vector 
field, i .e . ,  a linear differential operator at each event : 

(9 .20) 

Such results should be familiar from quantum theory's formalism for angular mo
mentum operators (exercise 9 .8) .  

The three levels of geometry-pictorial, abstract, and component-yield three 
different insights into the commutator. ( 1 )  The abstract expression [u, v] suggests 
the close connection to quantum theory, and brings to mind the many tools devel
oped there for handling operators. But recall that the operators of quantum theory 
need not be first-order differential operators. The kinetic energy is second order and 
the potential is zeroth order in the familiar Schrodinger equation. Only first-order 
operators are vectors. (2) The component expression uav /3 ,a - vauf3 ,a , valid in any 
coordinate basis, brings the commutator into the reaches of the powerful tools of 
index mechanics. (3) The pictorial representation of [u, v] (Box 9 .2) reveals its 
fundamental role as a "closer of curves" -a role that will be important in Chapter 
1 1  's analysis of curvature. 

Commutators find application in the distinction between a coordinate-induced 
basis, { ea} = { a /oxa} ,  and a noncoordinate basis. Because partial derivatives always 
commute, 

[ea, e13 ] = [ o/axa , o/ox f3 ] = 0 in any coordinate basis. (9 .2 1 )  

Box 9 . 2  TH E CO M M UTATO R A S  A CLO S E R  O F  QUAD R I LATE RALS 

A. P ictoria l  Representat ion in Flat S pacet ime 
I .  For ease of  visualization, consider flat space

time, so the two vector fields u({j') and v(9) 
can be laid out in spacetime itself. 

2 .  Choose an event <:P0 where the commutator 
[u, v] is to be calculated. 

3. Give the names 9i , 92 , 93 , 94 to the events 
pictured in the diagram. 

4. Then the vector 94 - 93 , which measures 
how much the four-legged curve fails to close, 
can be expressed in a coordinate basis as 

'3'2 

turns out to 
be [u, v] 

,./ 
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'!i\ - '!i\ = [uWo) + v('!i\)] - [uWz) + vWo)J 
= [ v( !Y\) - vW o)] - [ u(9 2) - u(9 o) J 
= (vfl ,auae{J)9o - (ufl

,avae{J)9o + errors 
= [u, v]9 + errors. 

0 

4terms such as vfl ,µvuµu ve/J ] 
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5. Notice that if u and v are halved everywhere, then [u, v] is cut down by a 
factor of 4, while the error terms in the above go down by a factor of 8. Thus, 
[u, v] represents accurately the gap in the four-legged curve ("quadrilateral") 
in the limit where u and v are sufficiently short; i.e., [u, v] "closes the quadrila
teral" whose edges are the vectors fields u and v. 

B .  P ictoria l  Representat ion i n  Absence of M etric, 
or i n  Cu rved S pacet ime with a Metric 

,\ == - 0 .5 

,\ "" - 0.5 ,\ = 0 0 
II ,...,, 

,\ == 0 .5 

l .  The same picture must work, but now one 
dares not (at least initially) lay out the vector 
fields in spacetime itself. Instead one lays out 
two families of curves : the curves for which 
uW) is the tangent vector; and the curves for 
which vW) is the tangent vector. 

2. The gap "'!/ 4 - '!/ 3" in the four-legged curve 
can be characterized by the difference 
JW 4) - /W 3) in the values of an arbitrary 
function at '!I 4 and '!I 3 • That difference is, in 
a coordinate basis, 
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Box 9.2 (continued) 

/(94) - /(93) = [f(!Y\) - f(!Y\)] {r,a v a + ; J,af3 v a v f3 ) 
P, 

+ lf(!Y\) - /Wo)l {r,au a + ; J,a13 u au f3 ) 
Po - IJW2) - /Wo)l lf{93) - JW2)l {r,a v a + ; J,a13

Vav f3 ) 
Po 

{r,au a + ; J,af3 u au f3 ) 
= [(J,a v a),13 u 13 - (J,au a),13

v f3 ]p0 
+ "cubic errors" 

= [(u f3 v a,13 - v f3 u a ,13
)aJ!axa]p0 

+ "cubic errors" 
= { [u, v][f]} p + "cubic errors." 

0 

P2 

Here "cubic errors" are cut down by a factor of 8, while [u, v]f is cut down by one of 4, whenever u and v are cut in half. 3. The result 
says that [u, v] is a tangent vector at '3'0 that describes the separation between the points '!I 3 and '!I 4. Its description gets arbitrarily accurate when u and v get arbitrarily short. Thus, [u, v] closes the quadrilateral whose edges are the projections of u and v into spacetime. 

C. Phi losophy of Pictures 

I .  Pictures are no substitute for computation. Rather, they are useful for (a) suggesting geometric relationships that were previously unsuspected and that one verifies subsequently by computation; (b) interpreting newly learned geometric results. 2. This usual noncomputational role of pictures permits one to be sloppy in drawing them. No essential new insight was gained in part B over part A, when one carefully moved the tangent vectors into their respective tangent spaces, and permitted only curves to lie in spacetime. Moreover, the original picture (part A) was clearer because of its greater simplicity. 3. This motivates one to draw "sloppy" pictures, with tangent vectors lying in spacetime itself-so long as one keeps those tangent vectors short and occasionally checks the scaling of errors when the lengths of the vectors are halved. 
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Conversely, if one is given a field of basis vectors ("frame field") { e,,W)} ,  but one 
does not know whether a coordinate system {x "'W)} exists in which { e,,} = { o/ox "'} ,  
one can find out by a simple test : calculate all (4 X 3)/2 = 6 commutators [e,, , e,a ] ;  
if they all vanish, then there exists such a coordinate system. I f  not, there doesn't. 
Stated more briefly, {e,,W)} is a coordinate-induced basis if and only if [ea , e,a ] = 0 
for all e"' and e 13 • (See exercise 9 .9 for proof; see § 1 1 .5 for an important application.) 
Coordinate-induced bases are sometimes called "holonomic. "  In an "anholonomic 
basis" (noncoordinate basis), one defines the commutation coefficients cµ v

"' by 

(9 .22) 

They enter into the component formula for the commutator of arbitrary vector fields 
u and v: 

(9 .23) 

(see exercise 9 . 10). 
[ Warning! In notation for functions and fields, mathematicians and physicists often 

use the same symbols to mean contradictory things. The physicist may write i when 
considering the length of some critical component in an instrument he is designing, 
then switch to i(T) when he begins to analyze its response to temperature changes. 
Thus i is a number, whereas i(T) is a function. The mathematician, in contrast, 
will write f for a function that he may be considering as an element in some 
infinite-dimensional function space. Once the function is supplied with an argument, 
he then contemplates f(x), which is merely a number: the value off at the point 
x. Caught between these antithetical rituals of the physics and mathematics sects, 
the authors have adopted a clear policy : vacillation. Usually physics-sect statements, 
like "On a curve !J'(l\) . . .  ," are used; and the reader can translate them himself 
into mathematically precise language : "Consider a curve e on which a typical point 
is 9 = e (l\) ;  on this curve . . . .  " But on occasion the reader will encounter a pedan
tic-sounding paragraph written in mathematics-sect jargon (Example : Box 23 .3) .  
Such paragraphs deal with concepts and relationships so complex that standard 
physics usage would lead to extreme confusion. They also should prevent the reader 
from becoming so conditioned to physics usage that he is allergic to the mathematical 
literature, where great advantages of clarity and economy of thought are achieved 
by consistent reliance on wholly unambiguous notation.] 

Exercise 9 . 7 .  P RACTICE WITH CO M M UTATO RS 
Compute the commutator [e  8 , e il of the vector fields 

I a e - - -- 
¢ - r sin O o<f, . 

Express your result as a linear combination of e 8 and e <i, · 

Van ishi ng  commutator. a test 
for coordinate bases 

Commutation coeff icients 
defined 

Physicists' notation vs 
mathematicians' notation 

EXERCI SES 
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Exercise 9 .8. ANGU LAR M OMENTU M OPERATORS In Cartesian coordinates of three-dimensional Euclidean space, one defines three "angular
momentum operators" (vector fields) L i by 

L i = €;ux k (o/ox1) .  
Draw a picture of these three vector fields. Calculate their commutators both pictorially and analytically. 
Exercise 9.9.  COM M UTATORS A N D  COORDINATE-IN DUCED BASES Let u and v be vector fields in spacetime. Show that in some neighborhood of any given point there exists a coordinate system for which 

U = o/ox1 , V = o/ox2 , 
if and only if u and v are linearly independent and commute : 

[u, v] = 0 . First make this result plausible from the second figure in Box 9 .2 ;  then prove it mathematically. Note: this result can be generalized to four arbitrary vector fields e0 , e1, e2, e3 . There exists a coordinate system in which e" = o/ox" if and only if e0 , e 1 , e 2, e 3 are linearly independent and [e µ, e . ] = 0 for all pairs e µ, e • .  
Exercise 9 . 1 0 . COM PONENTS OF COM M UTATOR IN N ON-COORDINATE BASIS Derive equation (9.23) .  
Exercise 9 . 1 1 .  LIE DERIVAT IVE The "Lie derivative" of a vector field v(P) along a vector field u(P) is defined by 

(9 .24) 
Draw a space-filling family of curves (a "congruence") on a sheet of paper. Draw an arbitrary vector v at an arbitrary point PO on the sheet. Transport that vector along the curve through 
P0 by means of the "Lie transport law" £uv = 0, where u = d/dt is the tangent to the curve. Draw the resulting vector v at various points P(t) along the curve. 
Exercise 9 . 1 2 . A CH IP OFF THE OLD B LOCK (a) Prove the Jacobi identity 

[u, [v, w]] + [v, [w, u]] + [w, [u, v]] = 0 (9 .25) 
by picking out all terms of the form au av aw, showing that they add to zero, and arguing from symmetry that all other terms, e .g . ,  aw au o v terms, must similarly cancel. (b) State this identity in index form. (c) Draw a picture corresponding to this identity (see Box 9 .2) .  

§ 9 . 7 .  MAN I FOLDS AN D D I FFERENTIAL TOPOLOGY 

Spacetime is not the only arena in which the ideas of this chapter can be applied. 
Points, curves, vectors, I -forms, and tensors exist in any "differentiable manifold." 



§ 9 7 .  MANI FOLDS AN D D I FFER ENTIAL TO POLOGY 2 4 1  Their use to study differentiable manifolds constitutes a branch of mathematics called 
"differential topology"-hence the title of this chapter. The mathematician usually begins his development of differential topology by introducing some very primitive concepts, such as sets and topologies of sets, by building a fairly elaborate framework out of them, and by then using that framework to define the concept of a differentiable manifold. But most physicists are satisfied with a more fuzzy, intuitive definition of manifold :  roughly speaking, an n-dimensional differentiable manifold is a set of "points" tied together continuously and differentiably, so that the points in any sufficiently small region can be put into a one-to-one correspondence with an open set of points of Rn . [Rn is the number space of n dimensions, i.e. , the space of ordered n-tuples (x1 , x2, • • •  , xn).] That correspondence furnishes a coordinate system for the neighborhood. A few examples will convey the concept better than this definition. Elementary examples (Euclidean 3-spaces, the surface of a sphere) bring to mind too many geometric ideas from richer levels of geometry; so one is forced to contemplate something more complicated. Let R 3 be a three-dimensional number space with the usual advanced-calculus ideas of continuity and differentiability. Points � of R3 are triples, � = (�i, �2, �3) ,  of real numbers. Let a ray ?I' in R3 be any half-line from the origin consisting of all � of the form � = )\''I for some fixed r, -f:. 0 and for all positive real numbers "J-... > 0. (See Figure 9 .3.) A good example of a differentiable manifold then is the set S2 of all distinct rays. If f is a real-valued function with a specific value /(?!') for any ray ?I' [so one writes f S2 -+ R: ?I' -+ /(?!')], it should be intuitively ( or even demonstrably) clear that we can define what we mean by saying 

f is continuous or differentiable. In this sense S2 itself is continuous and differentiable. Thus S2 is a manifold, and the rays ?I' are the points of S2. There are many other manifolds that differential topology finds indistinguishable from S2 • The simplest is the two-dimensional spherical surface (2-sphere ), which is the standard representation of S2 ; it is the set of points � of R3 satisfying (�1)2 + (�2)2 + (�3)2 = 1 .  Clearly a different point ?I' of S2 (one ray in R 3) intersects each point of this standard 2-sphere surface, and the correspondence is continuous and differentiable in either direction (ray to point; point to ray). The same is true for any ellipsoidal surface in R3 enclosing the origin, and for any other surface enclosing the origin that has 

Figure 9. 3. 

Differentiable manifold 
"defined" " 

Examples of differentiable 
manifolds 

The manifold S2 

Three different representations of the differentiable manifold S2 • The first is the set of all rays emanating from the origin; the second is the sphere they intersect; the third is an oddshaped, closed surface that each ray intersects precisely once. 



The m an ifold T2 

The man ifold S0(3) (rotat ion 
group) 

Affine geom etry and 
Rieman n ian geometry defi ned 
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a different ray through each point of itself. They each embody the same global continuity and differentiability concepts, and represent the same abstract differentiable manifold S2 , the 2-sphere. They, and the bundle of rays we started with, all have the same geometric properties at this rudimentary level of geometry. A two-dimensional manifold that has a different geometric structure at this level (a different "differentiable structure") is the torus T2, the surface of a donut. There is no way to imbed this surface smoothly in R3 so that a distinct ray '3' E S 2 intersects each of its points; there is no invertible and differentiable correspondence between 
T2 and S2 . Another example of a manifold is the rotation group S0(3), whose points '3' are all the 3 X 3 orthogonal matrices of unit determinant, so '3' = I I P;; I I  with q>Tq> = I and det q> = I .  This is a three-dimensional space (one often uses the three Eulerangle parameters in computations), where differential ideas (e.g., angular velocity) are employed; hence, it is a manifold. So is the Lorentz group. The differentiability of a manifold (i.e., the possibility of defining differentiable functions on it) permits one to introduce coordinate systems locally, if not globally, and also curves, tangent spaces, tangent vectors, I -forms, and tensors, just as is done for spacetime. But the mere fact that a manifold is differentiable does not mean that such concepts as geodesics, parallel transport, curvature, metric, or length exist in it. These are additional layers of structure possessed by some manifolds, but not by all. Roughly speaking, every manifold has smoothness properties and topology, but without additional structure it is shapeless and sizeless. That branch of mathematics which adds geodesics, parallel transport, and curvature (shape) to a manifold is called affine geometry; that branch which adds a metric is called Riemannian geometry. They will be studied in the next few chapters. 

EXE RC ISES  O N  TH E R OTATI O N  G R O U P  As the exposition o f  differential geometry becomes more and more sophisticated in the following chapters, the exercises will return time and again to the rotation group as an example of a manifold. Then, in Box 30. 1 ,  the results developed in these exercises will be used to analyze the "Mixmaster universe," which is a particularly important cosmological solution to Emstem's field equation. Before workmg these exercises, the reader may wish to review the Euler-angle parametrization for rotation matrices, as treated, e .g. , on pp. 107- 109 of Goldstein ( 1 959) .  
Exercise 9 . 1 3 . ROTAT I O N  G R O U P :  G E N E RATO RS Let .'X1 be three 3 X 3 matrices whose components are (K1)mn = £ imn (a) Display the matrices X1 , (.'41) 2 , (X1)3 , and (.'41)4 . (b) Sum the series 

(9 .26) 

Show that M,x(0) is a rotation matrix and that it produces a rotation through an angle 0 about the x-axis. 
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(c) Show similarly that 6-il,(c/>) = exp(.X3cp) and 6-ily(x) = exp(X2x) are rotat10n matrices, and that they produce rotations through angles cf, and x about the z- and y-axes, respectively. (d) Explain why '!i' = 6il,(f)6ilx(0)6il,(cp) defines the Euler-angle coordinates, f, 0 , cp for the generic element '!i' E S0(3) of the rotation group. (e) Let e be the curve '!i' = 6-il.(t) through the identity matrix, e(O) = .if E S0(3) .  Show that its tangent, (df! /dt)(O) 6'(0) does not vanish by computing e(0)/12 , where fi2 is the function fi2(g>) = P12 , whose value is the 12 matrix element of '!i'.  ( f) Define a vector field e3 on S0(3) by letting ei'!i') be the tangent (at t = 0) to the curve f!(t) = 6-il,(t)'!I through '!i'. Show that ei'!i') is nowhere zero. Note: ei'!i') is called the "generator of rotations about the z-axis," because it points from '!i' toward neighboring rotations, 6-ilz(t)'!I, which differ from '!i' by a rotation about the z-axis. (g) Show that e3 = (o/of ) 0¢ •  
(h) Derive the following formulas, valid for t � 1 :  

6ilx(t) 6il,(f ) r.jlx(0) 6il,(cp) = 6-il,(f - t sin lfl cot 0)6ilx(0 + t cos lfl ) 6ilz(c/> + t sin lflisin 0) ; 6ily(t) 6il,(f ) 6ilx(0) 6il,(cp) = 6-il,(f + t cos f cot 0) 6ilx(0 + t sin f ) 6il,(cp - t cos lflisin 0) .  
( i )  Define e 1('!i') and ei'!i') to  be the tangent vectors (at t = 0) to  the curves f!(t) = 6-ilxCtW and f!(t) = 6-ily(t)'!I, respectively. Show that 

o . ( o 1 o ) e = cos f - - sm f cot 0 - - -- -1 o0 of sin 0 ocp , 
. o ( o 1 o ) e2 = sm f -0 + cos f cot 0 - - -.-0 -0 . 0 of sm cf, 

e1 and e2 are the "generators of rotations about the x- and y-axes." 
Exercise 9 . 1 4 . ROTATI O N  G R O U P :  STR U CTU R E  CONSTANTS Use the three vector fields constructed in the last exercise, 

a . ( o 1 o ) e = cos f - - sm f cot 0 - - -.- - , 1 o0 of sm 0 ocp . o ( o 1 o ) e2 = sm f aii + cos f cot 0 a,j; - sin 0 ocp , 
e3 = of , 

(9.27) 

as basis vectors for the manifold of the rotation group. The above equations express this "basis of generators" in terms of the Euler-angle basis. Show that the commutation coefficients for this basis are 
(9.28) 

independently of location '!i' m the rotation group. These coefficients are also called the structure constants of the rotation group. 



CHAPTER 1 0  

AFF I N E  G EO M ETRY: 

G EO D ES I CS,  PARALLE L TRAN S PO RT, 

AN D COVAR IANT D E R IVATIVE 

This chapter is entirely Track 2 .  
Chapter 9 is necessary 

preparation for it .  
I t  wi l l  be needed as 

preparation for 
( 1 )  Chapters 1 1 - 1 3  

(d ifferential  geometry; 
Newtonian gravity) , 

(2) the second half of 
Chapter 1 4  (calculation 
of curvature) , and 

(3)  the deta i ls,  but not the 
message, of Chapter 1 5  
(Bianchi  identities) . 

Freely fal l ing particles and 
their clocks 

Ga!ilei's Principle of Inertia is sufficien t in itself to prove 
conclusively that the world is affine in character 

H ER MANN WEYL 

§ 1 0 . 1 . GEODESI CS AND THE EQU IVALENCE PRI NCIP LE 

Free fall is the "natural state of motion," so natural, in fact, that the path through 
spacetime of a freely falling, neutral test body is independent of its structure and 
composition (the "weak equivalence principle" of Einstein, Eotvos, Dicke; see Box 1 .2 and §38.3). Picture spacetime as filled with free-fall trajectories. Pick an event. Pick a velocity there. They determine a unique trajectory. Be more precise. Ask for the maximum amount of information tied up in each trajectory. Is it merely the sequence of points along which the test body falls? No; there is more. Each test body can carry a clock with itself (same kind of clock-"good" clock in sense of Figure 1 .9 -regardless of structure or composition of test body). The clock ticks as the body moves, labeling each event on its trajectory with a number: the time A the body was there. Result : the free-fall trajectory is not just a sequence of points; it is a parametrized sequence, a "curve" 9(A). But is the parametrization unique? Not entirely. Quite arbitrary are (I ) the choice of time origin, 9(0); and (2) the units (centimeters, seconds, furlongs, . . .  ) in which clock time A is measured. Hence, A is unique only up to linear transformations 

/\new = a/\old + b; ( IO . I )  
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'A = O  

Figure 1 0. 1 .  

245 

A geodesic viewed as a rule fo r  "straight-on parallel transport." Pick an event <J' 0 and a tangent vector 
u = d/d'A there. Construct the unique geodesic <J'('A) that ( 1)  passes through <J'0 <J'(O) = <J'0 ; and (2) 
has u as its tangent vector there: (d<J' /d'Ah = o = u. This geodesic can be viewed as a rule for picking 
up u from <J'(O) and laying it down again at its tip, <J'( l), in as straight a manner as possible, 

u, = 1 = (d<J'/d'A)x = 1 ; 
and for then picking it up and laying it down as straight as possible again at <J'(2), 

u, = 2 = (d'J'/d'Ah = 2 ; 
etc. This sequence of "straight as possible," "tail-on-tip" transports gives meaning to the idea that 
(d'J' /d'A)x = 17 and u = (d'J' /d'Ah=o  are "the same vector" at different points along the geodesic; or, 
equivalently, that one has been obtained from the other by "straight-on parallel transport." 

b ("new origin of clock time") is a number independent of location on this specific 
free-fall trajectory, and a ("ratio of new units to old") is also. 

In the curved spacetime of Einstein (and in that of Cartan-Newton, Chapter 12) ,  
these parametrized free-fall trajectories are the straightest of all possible curves. 
Consequently, one gives these trajectories the same name, "geodesics, " that mathe
maticians use for the straight lines of a curved manifold; and like the mathematicians, 
one uses the name "affine parameter" for the parameter A along a free-fall geodesic. 
Equation ( 10 . 1 )  then says "the affine parameter of a geodesic is unique up to linear 
transformations." 

The affine parameter ("clock time") along a geodesic has nothing to do, a priori, 
with any metric. It exists even in the absence of metric (e.g. , in Cartan-Newtonian 
spacetime) . It gives one a method for comparing the separation between events on 
a geodesic (!:8 and Cl are "twice as far apart" as tjl and f2 if [A qi - \1 ] = 2[>,. Sl'. - A q ]) .  
But the affine parameter measures relative separations only along its own geodesic. 
It has no means of reaching off the geodesic. 

The above features of geodesics, and others, are summarized in Figure 10 . 1  and 
Box 10 . 1 .  

§ 1 0 . 2 .  PARALLEL TRANSPORT AND COVARIANT 

DERIVATIVE: P I CTORIAL APPROACH 

Two test bodies, initially falling through spacetime on parallel, neighboring geodesics, 
get pushed toward each other or apart by tidal gravitational forces (spacetime 
curvature) . To quantify this statement, one must quantify the concepts of "parallel" 
and "rate of acceleration away from each other." Begin with parallelism. 

Geodesic defined as a 
free-fal l trajecto ry 

Affine param eter defined as 
clock ti me along free-fal l 
trajecto ry 
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Geodesic i n  brief 

Geodesic :  in context of 
g ravitat ion  physics 

Comparison of vectors at 
different events by paral lel 
transport 
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Give point, give tangent vector; get unique, affine-parametrized curve 
("geodesic") . 

World line of a neutral test particle ("Einstein's geometric theory of 
gravity" ; also "Cartan's translation into geometric terms of Newton's 
theory of gravity") : 

( 1 )  "given point" : some event on this world line;  

(2) "given vector" : vector ("displacement per unit increase of parameter") 
tangent to world line at instant defined by that event ; 

(3) "unique curve" :  every neutral test particle with a specified initial 
position and a specified initial velocity follows the same world line, 
regardless of its composition and regardless of its mass (small ; test 
mass ! ;  "weak equivalence principle of Einstein-Eotvos-Dicke") ;  

(4) "affine parameter" : in Cartan-Newton theory, Newton's "universal 
time" (which is measured by "good" clocks) ; in the real physical 
world, "proper time" (as measured by a "good" clock) along a timelike 
geodesic; 

(5 ) "parametrized curve" : (a) affine parameter unique up to a transfor
mation of the form ;\ -+ a/\ + b, where a and b are constants (no 
arbitrariness along a given geodesic other than zero of parameter and 
unit of parameter) ; or equivalently (b) given any three events tl, 913, 
e on the geodesic, one can find by well-determined physical con
struction ("clocking") a unique fourth event 6j) on the geodesic such 
that (A"i) - Ae) is equal to (A,R - \1) ;  or equivalently (c) [differential 
version] given a tangent vector with components (dxa/d;\)tl at 
point tl, one can find by physical construction (again "clocking") 
"the same tangent vector" at point e with uniquely determined 
components (dx a/dA)e (vector "equal" ; components ordinarily not 
equal because of twisting and turning of arbitrary base vectors be
tween tl and e) .  

Consider two neighboring events {l and 913 connected by a curve q,P(;\). A vector 
vtl lies in the tangent space at tl, and a vector vqi lies in the tangent space at 913 .  
How can one say whether vtl and v91 are parallel, and how can one compare their 
lengths? The equivalence principle gives an answer : an observer travels (using rocket 
power as necessary) through spacetime along the world line q,P(;\) . He carries the 
vector vtl with himself as he moves, and he uses flat-space Newtonian or Minkows
kian standards to keep it always unchanging (flat-space physics is valid locally 
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according to the equivalence principle !) .  On  reaching event !'B the observer compares 
his "parallel-transported vector" ve1 with the vector v,r If they are identical, then 
the original vector v d was (by definition) parallel to v.,i , and they had the same length. 
(No metric means no way to quantify length; nevertheless, parallel transport gives 
a way to compare length !)  

The equivalence principle entered this discussion in a perhaps unfamiliar way, 
applied to an observer who may be accelerated, rather than to one who is freely 
falling. But one cannot evade a basic principle by merely confronting it with an 
intricate application. (Ingenious perpetual-motion machines are as impossible as 
simpleminded ones !)  The equivalence principle states that no local measurement 
that is insensitive to gravitational tidal forces can detect any difference whatsoever 
between flat and curved spacetime. The spaceship navigator has an inertial guidance 
system (accelerometers, gyroscopes, computers) capable of preserving an inertial 
reference frame in flat spacetime; and in flat spacetime it can compute the attitude 
and velocity of any object in the spaceship relative to a given inertial frame. The 
purchaser may specify whether he wants a guidance computer programmed with 
the laws of zero-gravity Newtonian mechanics, or with those of special-relativity 
physics. Use this same guidance system-including the same computer program-in 
curved spacetime. A vector is being parallel transported if the guidance system's 
computer says it is not changing. 

Will the result of transport in this way be independent of the curve used to link 
Cl and qJ? Clearly yes, in gravity-free spacetime, since this is a principal performance 
criterion that the purchaser of an inertial guidance system can demand of the 
manufacturer. But in a curved spacetime, the answer is "NO !"  If ve1 agrees with 
v,1i after parallel transport along one curve, it need not agree with vqi after parallel 
transport along another. Spacetime curvature produces discrepancies. But one is not 
ready to study and quantify those discrepancies (Chapter 1 1  ), until one has developed 
the mathematical formalism of parallel transport, which, in turn, cannot be done 
until one has made precise the "flat-space standards for keeping the vector vd always 
unchanging" as it is transported along a curve. 

The flat-space standards are made precise in Box 10 .2 .  They lead to ( I )  a "Schild's 
ladder" construction for performing parallel transport; (2) the concept "covariant 
derivative," Vu v, of a vector field v along a curve with tangent u; (3) the "equation 
of motion" V'uu = 0 for a geodesic, which states that "a geodesic parallel transports 
its own tangent vector along itself; " and (4) a link between the tangent spaces at 
adjacent events (Figure 10 .2) . 

§ 1 0 . 3 .  PARALLEL TRANSPORT AND COVARIANT 
DERIVATIVE: ABSTRACT APPROACH 

From the "Schild's ladder" construction of Box 10 .2 ,  one learns the following 
properties of spacetime's covariant derivative : 

(continued on page 252) 

Paral lel transport defined 
using inertial guidance 
systems and equivalence 
princip le 

Result of paral lel transport 
depends on route 

Schild's ladder for performing 
paral lel transport; i ts 
consequences 
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Box 1 0 . 2  FROM GEODESICS TO PARALLE L  T RANSPORT TO COVARIANT 
DIFFERENTIATION TO GEODESICS TO . . .  

" Parallel transport" as 
defined by geodesics 

{1 
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A. Transport any sufficiently short stretch of a 
curve {l'!X, (i.e., any tangent vector) parallel to 
itself along curve {lt!i, to point tJ, as follows: 

1. Take some point '3/Z along {lt!i, close to {l. 
Take geodesic X'!JlZ through X and '3/Z. Take 
any affine parametrization A of X'!JlZ and 
define a unique point 9}l by the condition 
A� = ½("Ax + Aqill) ("equal stretches of time 
in X£t and 9}{'3/Z"). 

2. Take geodesic that starts at {l and passes 
through 9}{, and extend it by an equal pa
rameter increment to point '!/. 

3. Curve '3/Z'!f gives vector {l'!X, as propagated 
parallel to itself from {l to '3lZ (for suffi
ciently short {l'!X, and {!'3/Z). This construc
tion certainly yields parallel transport in flat 
spacetime (Newtonian or Einsteinian). 
Moreover, it is local (vectors ax, {!'3/Z, etc., 
very short). Therefore, it must work even in 
curved spacetime. (It embodies the equival
ence principle.) 
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4. Repeat process over and over, and eventually end up with tltX propagated parallel to itself from t1 to q,B _  Call this construction "Schild's Ladder," from Schild's (1970) similar construction. [See also Ehlers, Pirani, and Schild ( 1972).) Note that curve {lq,B need not be a geodesic. There is no requirement that 9Jl§!, be the straight-on continuation of t19/l similar to the geodesic requirement in the "cross-brace" that 'Jl<!I be the straight-on continuation of tl'Jl. 
5. Result of propagating tltX parallel to itself from t1 to qB depends on choice of world line {lq,B ("evidence of curvature of spacetime"). B. Ask how rapidly a vector field v is changing along a curve with tangent vector u = d/dA. The answer, dv/dA Vu v "rate of change of v with respect to A" "covariant derivative of v along u," is constructed by the following obvious procedure: ( 1 )  Take v at A = A0 + e .  (2) Parallel transport it back to A = A0 . (3) Calculate how much it differs from v there. (4) Divide by e (and take limit as e --+ 0): 
V - L· {

[v(Ao + e)]parallel transported to A0 - v(Ao) } U V  - J m  
E --->  0 € 

If u = d/dA is short compared to scale of inhomogeneities in the vector field v, then Vu v can be read directly off drawing I, or, equally well, off drawing IL 

249  

"Sch i l d ' s  Ladder" 

" Covar iant d i fferentiat i o n "  as 
defi ned by para l l e l  transport 

V,,v 
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Box 1 0 . 2  (con tinued) 

" Symmetry" of covariant 
differentiation 

C. Take two vector fields. Combine into one the 
two diagrams for Vu v and Vvu. Thereby dis
cover that Vu v - Vvu is the vector by which 

V,,v - V,,u = [u, v) the v-u-v-u quadrilateral fails to close-i.e. 

Chain rule for covariant 
differentiation 

Additivity for covariant  
different iation 
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(see Box 9 .2), it is the commutator [u, v] : 
Vu v - Vvu = [u, v] . 

Terminology: V is said to be a "symmetric" or 
"torsionjree" covariant derivative when Vu v 
- Vvu = [u, v] . Other types of covariant de
rivatives, as studied by mathematicians, have 
no relevance for any gravitation theory based 
on the equivalence principle . 

D. The "take-the-difference" and "take-the-limit" 
process used to define Vu v guarantees that it 
obeys the usual rule for differentiating prod
ucts : 

Vu (fv) = fVu v + (u[f])v � 

•sc21a}

t 

,vcl1o,' '"derivtvc off along 

1field 1 1fiel
1
d I u," denoted auf in first 

part of book ; actually 
equal to df/dA if u = d/dA ; 
also sometimes denoted Vuf 

(for proof, see exercise 10 .2.) 
E. In the real physical world, be it Newtonian or 

relativistic, parallel transport of a triangle can
not break its legs apart : ( 1 )  A ,  B, C initially 
such that A + B = C; (2) A,  B, C each paral
lel transported with himself by freely falling 
(inertial) observer; (3) then A + B = C 
always. Any other result would violate the 
equivalence principle ! 
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1. Consequence of this (as seen by following through definition of covariant derivative, and by noting that any vector u can be regarded as the tangent vector to a freely falling world line) :  
for any vector u and vector fields v and w. 2. Consequence of this, combined with symmetry of covariant derivative, and with additivity of the "closer of quadrilaterals" [u, v] :  
(See exercise 10.1.) This can be inferred, alternatively, from the equivalence principle : in a local inertial frame, as in special rela tivity or Newtonian theory, the change in v along u + n should equal the sum of the changes along u and along n.  3. Consequence of above : choose n to be a multiple of u; thereby conclude 

F. The "Schild's ladder" construction process for parallel transport (beginning of this box), applied to the tangent vector of a geodesic (exercise 10.6) guarantees :  a geodesic parallel trans
ports its own tangent vector along itself. Translated into covariant-derivative language : 

(u = d/d11. is a tangent) (the curve is) vector to a curve, and = a geodesic · Vuu = 0 Thus closes the circle : geodesic to parallel transport to covariant derivative to geodesic. 

2 5 1 

Geodesics as defined by 
paral lel  transport or covariant 
different iat ion 



Cova r iant derivative : bas ic  
propert ies 
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Symmetry: Vu v - Vvu = [u, v] for any vector fields u and v; 

Chain rule: Vu (fv) = fVu v + v ouf for any function f, 

Additivity: 

vector field v, and vector u; 

Vu (v + w) = Vu v + Vu w for any vector 
fields v and w, and vector u; 

( 10 .2a) 

( 10 .2b) 

( 10 .2c) 

vau + bn v = a vu v + b vn v for any vector ( 10 .2d) 
field v, vectors or vector fields u and n, 
and numbers or functions a and b. 

Figure 1 0 . 2. 
The link between the tangent spaces at neighboring points, made possible by a parallel-transport law. 
Choose basis vectors e1 and e2 at the event d. Parallel transport them to a neighboring event !'13. (Schild's 
ladder for transport of e1 is shown in the figure.) Then any other vector v that is parallel transported 
from (l to !'B will have the same components at the two events (parallel transport cannot break the legs 
of a triangle; see Box 10.2) · 

n
me numerically as at d] 

v = v1e 1 + v2e2 at (l = v = v1e 1 + v2e2 at !'13. 

t b t 
parallel transported from (l to '1l] 

Thus, parallel transport provides a unique and complete link between the tangent space at d and the 
tangent space at !'13 .  It identifies a unique vector at !'a with each vector at (l in a way that preserves 
all algebraic relations. Similarly (see § 10 .3), it identifies a unique I -form at !'B with each I-form at d, 
and a unique tensor at !'B with each tensor at d, preserving all algebraic relations such as (O", v) = 19.9 
and S(u, v, w) = 37 I .  

Actually, all this is true only in the limit when (l and !'B are arbitrarily close to each other. When 
(l and !'B are close but not arbitrarily close, the result of parallel transport is slightly different for different 
paths ; so the link between the tangent spaces is slightly nonunique. But the differences decrease by a 
factor of 4 each time the affine-parameter distance between (l and !'B is cut in half, see Chapter I 1 .  
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Any "rule" V, for producing new vector fields from old, that satisfies these four 
conditions, is called by differential geometers a "symmetric covariant derivative. " 
Such a rule is not inherent in the more primitive concepts (Chapter 9) of curves, 
vectors, tensors, etc. In the arena of a spacetime laboratory, there are as many ways 
of defining a covariant derivative rule V as there are of rearranging sources of the 
gravitational field. Different free-fall trajectories (geodesics) result from different 
distributions of masses. 

Given the geodesics of spacetime, or of any other manifold, one can construct 
a unique corresponding covariant derivative by the Schild's ladder procedure of Box 
10 .2 .  Given any covariant derivative, one can discuss parallel transport via the 
equation 

dv I d"A. Vu v = 0 � the vector field v is parallel transported 
along the vector u = d/d"A. ; 

( 10 .3) Equation for paral lel transport 

and one can test whether any curve is a geodesic via 

Vuu = 0 � the curve !J'("A.) with tangent vector u = d/d"A. 
parallel transports its own tangent vector u 

� !J'("A.) is a geodesic. 
( 10 .4) 

Thus a knowledge of all geodesics is completely equivalent to a knowledge of the 
covariant derivative. 

The covariant derivative V generalizes to curved spacetime the flat-space gradient 
V. Like its flat-space cousin, it can be viewed as a machine for producing a number 
( u, Vu v) out of a I -form u, a vector u, and a vector field v. This machine viewpoint 
is explored in Box 10 .3 .  Note there an important fact : despite its machine nature, 
V is not a tensor; it is a nontensorial geometric object. 

In curved as in flat spacetime, V can be applied not only to vector fields, but 
also to functions, I -form fields, and tensor fields. Its action on functions is defined 
in the obvious manner : 

VJ df; ( 10 .5)  

Its action on I -form fields and tensor fields is  defined by the curved-space generali
zation of equation (3 .39) : VS is a linear machine for calculating the change in output 
of S, from point to point, when "constant" (i .e . ,  parallel transported) vectors are 
inserted into its slots. Example : the gradient of a (�) tensor, i .e . ,  of a I -form field 
u. Pick an event 9 0 ; pick two vectors u and v in the tangent space at 9 0 ; construct 
from v a "constant" vector field v(q') by parallel transport along the direction of 
u, Vu v = 0. Then Vu is a @  tensor, and Vuu is a (�) tensor defined at 90 by 

( 10 .6) 

where u = d/d"A.. This defines Vu and Vuu, because it states their output for any 
(continued on page 257) 

Knowledge of al l geodesics is 
equivalent to knowledge of 
covariant derivative 

Covariant derivative 
general izes flat-space gradient 

Action of covariant derivative 
on functions, 1-forms, and 
tensors 
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Box 1 0 . 3  COVARIANT DER IVATIVE V I EWED AS A MACH I N E; 
CO N N ECTI O N  COEFF I C I ENTS AS ITS CO M PO N E NTS 

A. The M ach ine  View 

1. The covariant derivative operator V, like most other geometric objects, can 
be regarded as a machine with slots. There is one such machine at each event t!f 0 
in spacetime. In brief, the machine interpretation of V at '!f O says 

V( .'! . , v(t!f) , u )  <a, Vu v). 

,--I -�t� : ,T�-------,1 1F1rst slot; insert 1Second slot; insert 1 Thud slot, msert I A new vector: 
a I -form u that a vector field v(qj') a vector u that "the covariant de-
resides in the tan- defined on a neigh- resides in the rivative of the vec-
gent space at g> 0 borhood of g> 0 tangent space at g> 0 tor field v with 

respect to u." 

[Note: this slot notation for V serves no useful purpose except to emphasize the 
"machine"-nature of V. This box is the only place it will be used.] 

2. Geometrically, the output of the machine, <a, Vu v), is obtained as follows : 
(a) Calculate the rate of change of v, Vu v, along the vector u; when u and v 

are infinitesimally small, the calculation can be represented pictorially : 

v at tail 
of u 9 � o 

v at tip of u 

� 

( 
v at tip of u, after 
parallel transport back to tail 

V,,v, a vector that resides 
in the tangent space at '!i' 0 

(b) Cqunt how many surfaces of the I -form a are pierced by the vector Vu v 
(piercing occurs in tangent space at '::f 0) 
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This number is the output of the machine V ,  when a ,  v(9) and u are inserted into 
its slots. 

3. Another, equivalent, statement of covariant derivative as a machine. Leave first 
slot empty (no mention of any I -form a); get a new vector field from original vector 
field v: 

V( , v(qj'), u) Vu v 

empty 

= "covariant derivative of vector field v along vector u." 

4. A third machine operation. Leave first and third slots empty (no mention of 
any I -form a; no mention of any vector u along which to differentiate) ; get a (D 
tensor field from original vector field v: 

V( , v(9), ) Vv 
,:_:-:, � 

empty empty 

= "covariant derivative" or "gradient" of vector field v. 

This tensor field, V v, is the curved-space generalization of the flat-space V v studied 
in §3 .5 .  It has two slots (the two left empty in its definition) . Its output for given 
input is 

empty 

Vv(a, u) = ( a, Vu v) . 

5 .  Summary of the quantities defined above : 
(a) V is a covariant derivative operator; to get a number from it, insert a, v(9), 

and u; the result is ( a, Vu v) . 
(b) Vv is the gradient of v; to get a number from it, insert a and u; the result 

is (a, Vu v) (same as in (a)] .  
(c) Vu v is the covariant derivative of v along u ;  to get a number from it, insert 

a; the result is (a, Vu v) [same as in (a) and (b)] . 

B . How V Differs from a Tensor 

The machine V differs from a tensor in two ways. ( I )  The middle slot of V will 
not accept a vector; it demands a vector field-the vector field that is to be differ
entiated. (2) V is not a linear machine (whereas a tensor must be linear ! ) :  
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Box 1 0 . 3  (con tinued) 

V (aa,f('!l)v('!l), bu) (au, Vbufv) 
= abf<a, Vu v) + ab(a, v) Vuf 

[this would be absent if V were a7 t 
L linear machine. r 

C .  T h e  " Connection Coeffi ci ents" a s  Com pon ents of V 

Given a tensor S of rank @, a basis of tangent vectors { ea} at the event '3' 0 where 
S resides, and the dual basis of I -forms {wa} ,  one defines the components of S 
by 

sa
13y S(wa, e13, ey)-

One defines the components of V similarly, except that for V one needs not only 
a basis { ea} at the event '3' 0, but also a basis { eaW)} at each event '3' in its neighbor
hood: 

r a13Y components of V = V(wa, e13('!l), ey) 
(wa, veye/3 ) 

~ ("a-component of change in basis vector e13, when) . 
in evaluating e13 one moves from tail to tip of ey 

These components of V are called the "connection coefficients" of the basis {ea} .  
They are the "coordinate representation" of the covariant derivative operator V.  

The covariant derivative operator V and the connection coefficients r« 
µ v  provide 

different mathematical representations of the same geometric animal? Preposterous! 
The one animal runs from place to place and barks, or at least bites (takes difference, 
for example, between vector fields at one place and at a nearby place). The other 
animal, endowed with forty faces (see exercise 10.9) sits quietly at one spot. It would 
be difficult for two animals to look more different. Yet they do the same jobs in any 
world compatible with the equivalence principle: (1) they summarize the properties 
of all geodesics that go through the point in question; and, so doing, (2) they provide 
a physical means (parallel transport) to compare the values of vector fields and tensor 
fields at two neighboring events. 
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given input vectors v and u. If v(9) is not constrained to be "constant" along 
u = d/d"A, then (d/d"A) (a, v) has contributions from both the change in v and the change in a :  

(10 .7) 
(see exercise 10 .3). Similarly, if S is a @  tensor field, then its gradient VS is a G) tensor field defined as follows. Pick an event 9 0 ; pick three vectors u, v, w, and a I -form q in the tangent space at 9 o,· turn v, w, and a into "constant" vector fields and a "constant" I -form field near 90 by means of parallel transport (Vu v = Vu w = Vu o- = 0 at 90) ;  then define VS(o-, v, w, u) (VuS)(o-, v, w) Vu [S(o-, v, w)] 

= o u [S(o-, v, w)]. 

Exercise 1 0 . 1 .  A D D ITIVITY OF COVARIANT D I FFE RE NTIATI O N  Show that the commutator ("closer o f  quadrilaterals") is additive : 
[u, v + w] = [u, v] + [u, w] ;  [u + n, v] = [u, v] + [n, v] . 

(10.8) 

Use this result, the additivity condition Vu(v + w) = Vu v + Vu w, and symmetry of the covariant derivative, Vu v - Vvu = [u, v] , to prove that 
Exercise 1 0 . 2. CHAI N RU LE FO R COVARIANT D I FFE RENTIATI O N  Use pictures, and the "take-the-difference-and-take-the-limit" definition of Vu v (Box 10 .2) to show that 

( 1 0 .9) 
Exercise 1 0 . 3 .  ANOTH ER CHAI N RU LE Derive equat10n ( 10 .7) ,  using the "take-the-difference-and-take-the-limit" definitions of derivatives. Hint: Before taking the differences, parallel transport u(§'(,\)] and v[P(,\)] back from ?J'(,\) to P(O) .  
Exercise 1 0 .4 .  STI LL ANOTH ER CHAI N RU LE Show that, as in flat spacetime, so also in curved spacetime, 

( 10 . 10) 
Write down the more familiar component version of this equat10n in flat spacetime. 

Solution to first part of exercise: Choose I -forms CT and p at the event P0 in question, and extend them along the vector u = d/d,\ by parallel transport, Vup = Vuu = 0.  Then 

EXERCI SES 
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d [ Vu(v 181 w))(P, a) = £A [(v 181 w)(p , a)] 

d = d"l,. [( P , v) (a, w)] 

d( p, v) d(O", w) = d"l,. (a, w) + ( p, v) d"l,. 
= ( P , Vu v)(<T, w) + ( P , v)(O", Vu w) 

( def of Vu on a tensor) 
( def of tensor product " 181  ") 

( ch am rule for derivatives) 
(by equation 10 .7 with p, a const) 

= [(Vu v) 181 w)(p, a) + [v 181 (Vu w) ](P , O") (def of tensor product " 181 ") .  
Exercise 1 0 .5 .  O N E  M ORE CHAIN RU LE Show, using techniques similar to those in exercise 10 .4 ,  that 
Exercise 1 0 . 6. GEODES IC EQUATION Use the "Schild's ladder" construction process for parallel transport (beginning of Box 10 .2) to show that a geodesic parallel transports its own tangent vector along itself ( end of Box 10 .2) .  

§ 1 0.4 .  PARALLEL TRANSPORT AND COVARIANT 

DERIVATIVE: COMPONENT APPROACH 

The pictorial approach motivates the mathematics ; the abstract approach makes the 
pictorial ideas precise ; but usually one must use the component approach in order 
to actually do complex calculations. 

To work with components, one needs a set of basis vectors { ea } and the dual 
set of basis I -forms {wa} .  In flat spacetime a single such basis suffices; all events 
can use the same Lorentz basis. Not so in curved spacetime ! There each event has 
its own tangent space, and each tangent space requires a basis of its own. As one 
travels from event to event, comparing their bases via parallel transport, one sees 
the bases twist and turn. They must do so. In no other way can they accommodate 
themselves to the curvature of spacetime. Bases at points 9 0 and 9 1,  which are the 
same when compared by parallel transport along one curve, must differ when 
compared along another curve (see "Curvature" ;  Chapter 1 1 ) .  

To quantify the twisting and turning of a "field" of basis vectors { ea<9)} and 
forms {wa(9) } ,  use the covariant derivative. Examine the changes in vector fields 
along a basis vector e13 , abbreviating 

(def of V13) ;  ( 10 . 12) 

and especially examine the rate of change of some basis vector : V 13ea . This rate 
of change is itself a vector, so it can be expanded in terms of the basis : 
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V13 ea = e,,I' ,,
a/3 

(def of I'µ,a/3
); 

'-.--' '-'-' 
( 1 0 . 1 3) Co nnect ion coefficients 

defi ned 
note reversal of order of a and /3! 

and the resultant "connection coefficients" I' µ, a/3 
can be calculated by projection on 

the basis I -forms : 

( 10. 1 4) 

(See exercise 10.7; also Box 10.3.) Because the basis I -forms are "locked into" the 
basis vectors ( (w v, ea) = s v 

a), these same connection coefficients r v 
a/3 

tell how the 
I -form basis changes from point to point: 

(See exercise 10.8.) 

V13 w v = - I' v
af3 wa, 

( V13 w v, ea) =  - I' v
af3

· 

( 10. 15) 

( 1 0 . 1 6) 

The connection coefficients do even more. They allow one to calculate the compo
nents of the gradient of an arbitrary tensor S. In a Lorentz frame of flat spacetime, 
the components of VS are obtained by letting the basis vectors ea = a<J> ;ax a = 
a;axa act on the components of S. Thus for a G) tensor field S one finds that 

VS has components sa
/3 Y , o  = a! o [Sa

13 y
] . 

Not so in curved spacetime, or even in a non-Lorentz basis in flat spacetime. There 
the basis vectors turn, twist, expand, and contract, so even if S were constant 
(VS = 0), its components on the twisting basis vectors would vary. The connection 
coefficients, properly applied, will compensate for this twisting and turning. As one 
learns in exercise 10. 10, the components of VS, called sa

f3 y
; o so that 

( 10. 1 7) 

can be calculated from those of S by the usual flat-space method, plus a correction 
applied to each index (i.e., to each basis vector) : 

[" + " when· correcting "up" indices) �nterchange and sum 
J j Lon index being corrected 

A +:differentiating index] 

Here 

sa
{3 y ; o = sa

{3 y , o + sµ,f3 y r a
,,. - sa

,,y r µ,/3 0 - sa
/3µ,I'µ,yo · ( 10.18) 

[" - "  when correcting "down" indices�
� � Pnterchange and sum differentiatingl 

Lon index being corrected index J 

( 1 0 . 1 9) 

Components of the g radient 
of a tensor  field 



Components of the covariant 
derivative of a tensor f ield 

Chain rule for gradient 

EXERCI SES 
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Equation ( 10 . 1 8) looks complicated ; but it is really very simple, once the pattern 
has been grasped. 

Just as one uses special notation, S"
f3 y , 8 , for the components of VS, so one 

introduces special notation, DS" 
f3 y! di\, for components of the covariant derivative 

V"S along u = d/dA : 

( 10 .20) 

Since for any f 

this reduces to 

The power of the component approach shows up clearly when one discusses chain 
rules for covariant derivatives. The multitude of abstract-approach chain rules 
(equations 10 .2b, 10 .7 ,  IO . IO, 10 . 1 1 )  all boil down into a single rule for components : 
The gradient operation " ; "  obeys the standard partial-differentiation chain rule of 
ordinary calculus. Example : 

(Ju") = f u" + Ju" . , µ  ,µ ,µ 

Y = jµ because f has no indices to correct] 

(contract this with uµ to get chain rule 10 .2b). Another example : 

( 10 .22a) 

(aau") ,µ = aa ,µu" + aau" ,µ 
( 10 .22b) 

Lr = (aa u"),µ because aa u" has no free indices to correct] 

(contract this with uµ to get chain rule 10 .7) . Another example : 

( 10 .22c) 

(contract this with uµ to get chain rule 10 . 1 1 ) .  Another example : see Exercise ( 10 . 12) 
below. 

Exercise 1 0 . 7 .  CO M P UTAT I O N  O F  CO N N E CT I O N  CO E F F I C I ENTS Derive equation ( 10 . 1 4) for I' P-o:f3 from equation ( 10 . 1 3 ) .  
Exercise 1 0 . 8 .  CO N N ECTI O N  FO R 1 -FORM BAS I S  Derive equations ( 10 . 1 5 ) and ( 10 . 16) ,  which relate v13 w v t o  r vo:/3 • from equation ( 10 . 1 4) .  
Hint: use equation ( 10 .7) .  
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Exercise 1 0 . 9 .  SYM M ETRY O F  CO N N ECT ION COEFF IC I ENTS Show that the symmetry of spacetime's covariant derivative ( equation 10 .2a) is equivalent to the following symmetry condition on the connection coefficients : 
( antisymmetric part of I' µ o:/3) = ½ (I' µ o:/3 - I' µ 

f3o:) 
= r µ - - l_ (wµ [e ] ) - 1 µ - [o:f3J - 2 ' � = - 2 co:f3 

( 1 0 .23) 
[commutato, of basis ,octo,sJ 

As a special case ,  I' µ o:/3 is symmetric in a and /3 when a coordinate basis ( eo: = a ;ax o:) is used. Show that in a coordinate basis this symmetry reduces the number of independent connection coefficients at each event from 4 X 4 X 4 = 64 to 4 x 10 = 40 . 
Exercise 1 0 . 1 0 . CO M PO N E NTS O F  G RADI ENT Derive equation ( 10 .  I 8) for the components of  the gradient, so: f3y , a ·  Hint: Expand S in terms of the given basis, and then evaluate the righthand side of 
for an arbitrary vector u. Use the chain rules ( 10 .2b) and ( 10 . 1 1 ) .  By comparing the result with VuS = 50:/3 y

, S u 8 eo: @ w /3 @ wY, read off the components so:
f3 y , s · 

Exercise 1 0 . 1 1 .  D IVERGENCE  Let T be  a (5) tensor field, and define the divergence on  its second slot by  the same process as in flat spacetime :  V · T = contraction of VT; i .e . ,  
( 1 0 .24) 

Write the components To:/3 ,/3 m terms of To:/3 ,/3 plus correction terms for each of the two indices of T. [Answer: 
Exercise 1 0 . 1 2 . VE R I F I CATI O N  O F  CHAI N R U LE Let 50:/3 Y be components of a (D tensor field, and M13 Y be components of a (D tensor field. By contracting these tensor fields, one obtains a vector field so:/3 yM/3 Y .  The chain rule for the divergence of this vector field reads 
Verify the validity of this chain rule by expressing both sides of the equation in terms of directional derivatives ( 1 e) plus connection-coefficient corrections. Hint: the left side becomes 
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The nght side has many more correction terms (three on S"f\,a ; two on Mr/;a) ,  but they must cancel against each other, leaving only one. 
Exercise 1 0 . 1 3 . TRANSFORMAT ION LAW FO R CO NNECTI ON COEFF IC I ENTS Let { e" } and { eµ' } be two different fields of basis vectors related by the transformation law 
Show that the corresponding connection coefficients are related by 

ra'f)'y' = L"'pLµ
13
,L"y,I' Pµv + L"'µLµ/3 ' , y' standard transformat10n law for components of a tensor 

Exercise 1 0 . 1 4 . POLAR CO O R D I NATES I N  FLAT 2-D I M ENS I O NAL S PACE 

( 1 0 .25) 

( 10 .26) 

On a sheet of paper draw an (r, </>) polar coordinate system. At neighboring points, draw the basis vectors e,. = a;ar and e i>  _ r- 1 a/a</>. (a) Use this picture, and Euclid's version of parallel transport, to justify the relations 
V,.e,. = 0, V,.ei, = 0, 

(b) From these relations write down the connection coefficients. (c) Let A = Ai-e,.  + Aif>e i, be a vector field. Show that its divergence, V · A = A",a = A",a + I'";:,,aA ;:,, , can be calculated using the formula 

(which should be familiar to most readers) . 

§ 1 0. 5 .  GEODESI C EQUATION 

Geodesics-the parametrized paths of freely falling particles-were the starting point 
of this chapter. From them parallel transport was constructed (Schild's ladder; Box 
10 .2) ; and parallel transport in turn produced the covariant derivative and its 
connection coefficients. Given the covariant derivative, one recovered the geodesics : 
they were the curves whose tangent vectors, u = d'!P Id\, satisfy Vuu = 0 (u is 
parallel transported along itself) . 

Let a coordinate system { x"'('!P)}  be given. Let it induce basis vectors e,, = o /ox"' 

into the tangent space at each event. Let the connection coefficients I'"' /3Y for this 
"coordinate basis" be given. Then the component version of the "geodesic equation" 
Vuu = 0 becomes a differential equation for the geodesic x"'(A) : 

( 1 )  d dx "' o U = - = -- --d\ d\ ox"' 
dx"' 

components of u are u"' = 
d\ ; 
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(2) then components of Vuu = 0 are 

0 = Ua ;/3uf3 = (ua,/3 + ra 
y13U Y)u/3 

= a I dxa
) dx13 

+ ra dxY dx13 
3.03\ d'}.._ d'}.._ Y/3 d'}.._ dA. ' 

which reduces to the differential equation 

2 6 3  

( 10 .27) Com ponent vers ion 

This component version of the geodesic equation gives an analytic method 
("translation" of Schild's ladder) for constructing the parallel transport law from 
a knowledge of the geodesics . Pick an event 9 0 and set up a coordinate system in 
its neighborhood. Watch many clock-carrying particles pass through (or arbitrarily 
close to) 90 . For each particle read off the values of d2xa/dA2 and dxa/dA at '!10 . 

Insert all the data for many particles into equation ( 10 .27), and solve for the connec
tion coefficients. Do not be disturbed that only the symmetric part of ra 

Y/3 is obtained 
thereby; the antisymmetric part, ra

[yf3J , vanishes identically in any coordinate frame ! 
(See exercise 10 .9 .) Knowing r a 

Y/3 ' use them to parallel transport any desired vector 
along any desired curve through '!10 : 

dua 
a y dx /3 _ O dA. 

+ r yf3 v dA. - . 

Exercise 1 0 . 1 5 . CO M PO N ENTS O F  PARALLE L-TRAN S P O RT LAW 

( 10 .28) 

Show that equation ( 10 .28) is the component version of the law for parallel transporting 
a vector v along the curve P(,\) with tangent vector u = d?J' /d,\ . 

Exercise 1 0 . 1 6 . G E O D E S I CS I N  P O LAR C O O R D I NATES 
In rectangular coordinates on a flat sheet of paper, Euclid's straight lines (geodesics) satisfy 
d2x/d,\2 = d2y/d,\2 = 0. Transform this geodesic equation into polar coordinates (x = 
r cos cp, y = r sin cp) ; and read off the resulting connection coefficients by comparison 
with equation ( 10 .27) . These are the connection coefficients for the coordinate basis (o/or, 
o/ocp) .  From them calculate the connection coefficients for the basis 

a e,. = or ' 
I o e · - - 

¢ - r ocp . 
The answer should agree with the answer to part (b) of Exercise 10 . 14 .  Hint: Use such 
relations as 

How to construct para l l e l  
transport law from 
knowledge of geodesics 

EXERCI SES 
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Exercise 1 0 . 1 7 . ROTAT ION  G R O U P :  G E O D E S I CS AN D CO N N ECT I O N  
COEFF I C I E NTS [Continuation of exercises 9 . 13 and 9 . 14 . ]  In discussing the rotation group, one must make a clear distinction between the Euclidean space ( coordinates x, y, z; basis vectors a /ax, a ;ay, a;az) in which the rotation matrices act, and the group manifold S0(3) (coordinates if;, 8, <f,; coordinate basis a;a,f;, a;ae, a1a<1>;  basis of "generators" e 1 , e 2, e 3) ,  whose points q> are rotation matrices. (a) Pick a vector 

n = n" a;ax + n Y a;ay + nZ a;az 
in Euclidean space. Show that 

( 1 0 .29) 
is a rotation matrix that rotates the axes of Euclidean space by an angle 
about the direction n. (Xi are matrices defined in exercise 9 . 1 3 .) (b) In the group manifold S0(3) ,  pick a point (rotation matrix) P, and pick a tangent vector u = u ae

a 
at P. Let u be a vector in Euclidean space with the same components as 

u has in S0(3 ) :  
U = u1 a/ax + u2 a/ay + u3 a/az. ( 1 0 .30) 

Show that u is the tangent vector (at t = 0) to the curve 
( 1 0 .3 1 )  

The curve e(t) through the arbitrary point q> with arbitrary tangent vector u = (de /dt)t = 0 is a very special curve : every point on it differs from q> by a rotation 'il/t) about one and the same direction u. No other curve in S0(3) with "starting conditions" {P,  u} has such beautiful simplicity. Hence it is natural to decree that each such e(t) is a geodesic of the group manifold S0(3) .  This decree adds new geometric structure to S0(3 ) ;  it converts S0(3) from a differentiable manifold into something more special : an affine manifold. One has no guarantee that an arbitrarily chosen family of curves in an arbitrary manifold 
can be decreed to be geodesics .  Most families of curves simply do not possess the right geometric properties to function as geodesics. Most will lead to covariant derivatives that violate one or more of the fundamental conditions ( 1 0.2) . To learn whether a given choice of geodesics is possible, one can try to derive connection coefficients r a f3 Y (for some given basis) corresponding to the chosen geodesics. If the derivation is successful, the choice of geodesics was a possible one. If the derivation produces inconsistencies, the chosen family of curves have the wrong geometnc properties to function as geodesics. (c) For the basis of generators {ea } derive connection coefficients corresponding to the chosen geodesics, e(t) = 'ilu(t)'!l, of S0(3) .  Hint: show that the components u"  = < w", u) of the tangent u = de /dt to a given geodesic are independent of position e(t) along the geodesic. Then use the geodesic equation Vuu = 0, expanded in the basis { e

a
} ,  to calculate the symmetric part of the connection r a(f3y>· Finally use equation ( 10 .23) to calculate r a[ f3 yJ · 

[Answer: 
r a 

-
1 

{3
y - 2 £aµ

y
, 

( 1 0 .32) 
where £a

f3 y  is the completely antisymmetric symbol with £123 = + 1. This answer is independent of location q> in S0(3 ) ! ]  



CHAPTER 1 1  
G EO D ES I C  D EVIATI O N  AN D 

S PACETI M E  CU RVATU R E  

§ 1 1 . 1 .  CURVATURE, AT LAST! 

Spacetime curvature manifests itself as gravitation, by means of the deviation of 
one geodesic from a nearby geodesic (relative acceleration of test particles). 

Let the geodesics of spacetime be known. Then the covariant derivative V and 
its connection coefficients I'"13 y  are also known. How, from this information, does 
one define, calculate, and understand geodesic deviation and spacetime curvature? 
The answer unfolds in this chapter, and is summarized in Box 1 I .I .  To disclose the 
answer one must (1) define the "relative acceleration vector" Vu Vun, which meas
ures the deviation of one geodesic from another (§11.2); (2) derive an expression 
in terms of V or I'"f3y for the "Riemann curvature tensor," which produces the 
geodesic deviation (§ 11.3); (3) see Riemann curvature at work, producing changes 
in vectors that are parallel transported around closed circuits (§ 11.4); (4) see Riemann 
curvature test whether spacetime is flat (§ 11.5); and (5) construct a special coordinate 
system, "Riemann normal coordinates," which is tied in a special way to the Riemann 
curvature tensor (§ 11.6). 

§ 1 1 . 2 . THE RELATIVE ACCELERATION OF 
NEI G HBORI NG GEODESI CS 

Focus attention on a family of geodesics (Figure 11.1). Let one geodesic be distin
guished from another by the value of a "selector parameter" n. The family includes 
not only geodesics n = 0, I ,  2, ... but also geodesics for all intervening values of 

r 
This chapter is entirely 

Track 2. Chapters 9 and 1 0  are 
necessary preparation for it .  

I t  wil l  be needed as 
preparation for 

( 1 )  Chapters 1 2  and 1 3  
(Newtonian gravity; 
Riemannian geometry) , 

(2) the second half of 
Chapter 1 4  (calculation 
of curvature) , and 

(3) the deta i ls ,  but not the 
message, of Chapter 1 5  
(Bianchi  identities) . 

Overview of chapter 

G eometry of a family of 
geodesics 

Selector parameter 
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Box 1 1 . 1 G EO D E S I C  D EVIATI O N  AN D R I E MAN N CU RVATU R E  I N  B R I E F  

"Geodesic separation" n i s  displacement (tangent 
vector) from point on fiducial geodesic to point on 
nearby geodesic characterized by same value of 
affine parameter "A .  

Geodesic separation changes with respect to  "A 
(i.e . ,  changes along the tangent vector u = d/d"A) 
at a rate given by the equation of geodesic deviation 

Vu Vun + Riemann ( . . .  , u, n, u) = 0 ( 1 )  

(second-order equation; see §§ 1 .6 and 1 .7 ;  Figures 
1 . 10, 1 . 1 1 ,  1 . 12) .  

In terms of components of the Riemann tensor 
the driving force ("tidal graviational force") is 

Riemann ( . . . , u, n, u) = eaR"-
13y0u f3nYu8 . (2) 

The components of the Riemann curvature ten
sor in a coordinate frame are given in terms of 
the connection coefficients by the formula 

a - aI'"-
/3 0 

aI' "-
13y R -- - --

f3 Yo - axY ax" 
+ I' "-

µyI' µ
/3 0 

- I' "-
µ 0 I' µ

13y· 
(3) 

This curvature tensor not only quantifies the 
concept of "tidal gravitational force," but also 
enters into Einstein's law, by which "matter tells 
spacetime how to curve."  That law, to be studied 

in later chapters, takes the following operational
computational form in a given coordinate system: 

(a) Write down trial formula for dynamic evol
ution of metric coefficients gµv with time. 

(b) Calculate the connection coefficients from 

I'"- - g"-f3I' . (4) 
µ v - f3µ v • 

r = _!_ ( 
agf3 v + ag

/3 µ -
agµv ) (5) f3 µ v 2 ax µ ax v ax13 

(derived in Chapter 1 3) . 
(c) Calculate Riemann curvature tensor from 

equation (3) .  
( d) Calculate Einstein curvature tensor from 

(6) 

(geometric significance in Chapter 1 5 ) .  
(e) Insert into Einstein's equations (Chapter 

17) : 

(empty space), 
Gµv = 87rT

µv (when mass-energy is 
present) . 

(f) Test whether the trial formula for the dy
namic evolution of the geometry was cor
rect, and, if not, change it so it is. 

Affi ne param eter 
n. The typical point '!I on the typical geodesic will be a continuous, doubly differen
tiable function of the selector parameter n and the affine parameter "A ;  thus 

'!I = '!/("A, n ) .  ( 1 1 . 1 )  

Tangent vector The tangent vector 

(Cartan notation) 

or 

u = -
a"J\ 

(notation of this book) ( 1 1 .2) 

is constant along any given geodesic in this sense : the vector u at any point, trans-
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I 

I I 
I 

I 

Figure 1 1 . 1 .  

I 
I 
I 
I 

I 
I 

I 
I 

I 

I 
I I 

fl 

One-parameter family of geodesics. The "selector parameter" n tells 
which geodesic. The affine parameter 'A tells where on a given 
geodesic. The two tangent vectors indicated in the diagram are u = 
a;a'A (Cartan · ag, /a'A) and n = a;an (Cartan : ag, /an). 

2 6 7  

ported parallel to itself along the geodesic, arrives at a second point coincident in 
direction and length with the u already existing at that point. 

or 

The "separation vector" 

oP n = 
on 

n = 
on 

(Cartan notation) 

(notation of this book) ( 1 1 .3)  

measures the separation between the geodesic n, regarded as the fiducial geodesic, 
and the typical nearby geodesic, n + Lin (for small Lin), in the sense that 

i Lin oP 

) 

i position 

l (Lln)n = 
on measures _the 
0 change m any 

Lin -on function 

( l l .4) 

brought about by transfer of attention from the one geodesic to the other at a fixed 
value of the affine parameter /\. This vector is represented by the arrow '31l!:2 in the 
first diagram in Box l l .2 .  

(continued on page 2 70) 

Separation vector 
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Box 11.2 GEODESIC DEVIATION REPRESENTED AS AN ARROW 

"Fiducial geodesic" n. Separation vector n Lin = 

9/l52 leads from point 9/l on it, to point 52 with 
same value of affine parameter A (timelike quan
tity) on neighboring "test geodesic" n + Lin. 

Cl
'-. 

'x 
/ ' 

/ 
/ 

e / 

/ 

/ 
/ 

�l 

B 

Parallel transport of 9/l52 by "Schild's ladder con
struction" (Box 10.2) to :?Z:'E and Erl. If the test 

geodesic n + Lin had kept a constant separation 
from the fiducial geodesic n, its tracer point would 
have arrived at r1 at the value (A - LIA) of the 
affine parameter, and at :'E at (A + LIA). 

n + Lin 

n 

o/l n + Lin 

Actual location of tracer point of test geodesic at 
values of the timelike affine parameter (A - LIA), 
A, and (A + LIA). 

,\ + LI,\ 

C 

Confrontation between actual course of tracer 
point on test geodesic and "canonical course": 
course it would have had to take to keep constant 
separation from the tracer point moving along the 
fiducial geodesic. 
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Test geodesic same as before, except for uniform 
stretchout in scale of affine parameter. Any meas
ure of departure of the actual course of geodesic 
from the canonical course (Cl52'!B), to be useful, 
should be independent of this stretchout. Hence, 
take as measure of geodesic deviation, not the 
vector '!BiJl alone, nor the vector ClrJ>, but the 
stretch-independent combination 02 = ('!BiJl) + 
(ClrJ>). Here the sign of addition implies that the 
two vectors have been transported parallel to 
themselves, before addition, to a common point 
(52 in the diagram; 97l in the differential calculus 
limit Lin ---r 0, LI,\ ---r 0). 
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6Jl 

Alternative courses that the test geodesic of D 
could have taken through 52 (families of geodesics 
characterized by different degrees of divergence 
from the left or convergence towards the right). 
Tilt changes values of ClrJ> (to Cl?!>) and '!BiJl (to qJj) 
individually, but not value of the sum 02 = (£1'3'!1l) 
+ (ClrJ>) ("lever principle"). 

Note that arrow '!BiJl is of first order in LI,\ and 
of first order in Lin; similarly for ClrJ>; hence the 
combination 02 is of second order in LI,\ and first 
order in Lin. Conclude that the arrow 02/(LIA)2(Lln) 
is the desired measure of geodesic deviation in the 
sense that: 

size of mesh (ultimately to go to zero) cancels 
out; 

parameterization of test geodesic cancels out; 
slope of test geodesic cancels out. 

Give this arrow the name "relative-acceleration 
vector':· and by examining it more closely (Box 
11.3), discover the formula 

02/(LIA)2(Lln) = Vu Vun 

for it. 
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Relative-acceleration vector 

Box 11.2 illustrates what it means to speak of geodesic deviation. One transports 
the separation n Lln = 97U2 parallel to itself along the fiducial geodesic. The tip of 
this vector traces out the canonical course that the nearby tracer point would have 
to pursue if it were to maintain constant separation from the fiducial tracer point. 
The actual course of the test geodesic deviates from this "canonical" course. The 
deviation, a vector ((l(j> of Box 11.2 ), changes with the affine parameter ((l(j> at (l, 
0 at 52, '!JJt!Jl at '!13). The first derivative of this vector with respect to the affine parameter 
is sensitive to the scale of parameterization along the test geodesic, and to its slope 
(Box 11.2 , F). Not so the second derivative. It depends only on the tangent vector 
u of the fiducial geodesic, and on the separation vector n Lln. Divide this second 
derivative of the deviation by Lln and give it a name: the "relative-acceleration 
vector". Discover (Box 11.3) a simple formula for it 

(relative-acceleration vector) = Vu Vun. 

§11.3. TIDAL GRAVITATIONAL FORCES AND 

RIEMANN CURVATURE TENSOR 

(11.5) 

With "relative acceleration" now defined, turn to the "tidal gravitational force" (i.e., 
"spacetime curvature") that produces it. Use a Newtonian analysis of tidal forces 

Box 11.3 GEODESIC DEVIATION: ARROW CORRELATED WITH 

SECOND COVARIANT DERIVATIVE 

The arrow b2 in Box 11.2 measures, not the rate of change of the separation of 
the test geodesic n + Lln from the "canonical course" (l 52'!13 as baseline, but the second 
derivative: 

(first derivative at A + 
2
1 Ll"A) = V"n = '!Jlt!Jl - '!Jl'!JJ - '!JJt!Jl · 

Ll"A Lln Ll"A Lln ' 

( first derivative at "A - ..!_ Ll"A) = V n = E (l - E(j> = -(l(j> . 
2 " Ll"A Lln Ll"A Lln 

Transpose to common location "A, take difference, and divide it by Ll"A to obtain the 
second covariant derivative with respect to the vector u; thus 

('!JJt!Jl + (l{j>)vectors transported to 
common location 

(Ll"A)2 Lln (&)2 Lln 
= "relative acceleration vector" for neighboring geodesics. 
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(left half of Box 11. 4) to motivate the geometric analysis (right half of same box). 
Thereby arrive at the remarkable equation 

"relative 

1 acceleration"
1 

+ 

"tide-producing 1 

1gravitational forces "
1 

Tide-producing gravitational 
(11.6) forces expressed in terms of 

a commutator 

This equation is remarkable, because at first sight it seems crazy. The term 
[Vn , Vu Ju involves second derivatives of u, and a first derivative of Vn : 

(11.7) 

It thus must depend on how u and n vary from point to point. But the relative 
acceleration it produces, Vu Vun, is known to depend only on the values of u and 
n at the fiducial point, not on how u and n vary (see Box 11. 2 , F). How is this 
possible? 

Somehow all derivatives must drop out of the tidal-force quantity [Vn , Vu Ju. One 
must be able to regard [V ___ , V_..J . . .  as a purely local, algebraic machine with 
three slots, whose output is a vector. If it is purely local and not differential, then 
it is even linear (as one sees from the additivity properties of V), so it must be a 
tensor. Give this tensor the name Riemann, and give it a fourth slot for inputting 
a 1-form: 

Riemann( ... , C,A, B) [VA, V8 ]C; 

Riemann (a, C,A, B) (a, [VA, V8 ]C). 

This is only a tentative definition of Riemann. Before accepting it, one should 
verify that it is, indeed, a tensor. Does it really depend on only the values of A, 
B, Cat the point of evaluation, and not on how they are changing there? The answer 
( derived in Box 11. 5) is "almost. " It fails the test, but with a slight modification 
it will pass. The modification is to replace the commutator [VA , V8 ] by the "curvature Curvature operator defined 
operator" 

q;/,(A, B) [VA , V8] - VfA ,BJ, (11.8) 

where VrA ,Bl is the derivative along the vector [A, BJ (commutator of A and B). 
(qJl(A, B) [VA , V8] for the fields A = n and B = u of the geodesic-deviation 
problem, because [n, u] = 0.) Then the modified and acceptable definition of the Riemann curvature tensor 

Riemann curvature tensor is defined 

Riemann( ... , C, A, B) qJl(A, B)C; 

Riemann (a, C, A, B) (a, q;/,(A, B)C). 
(11.9) 

To define Riemann thus, and to verify its tensorial character ( exercise 11. 2 ), does 
not by any means teach one what curvature is all about. To understand curvature, 
one must scrutinize Riemann from all viewpoints. That is the task of the rest of 
this chapter. 

(continued on page 275) 
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Box 11.4 RELATIVE ACCELERATION OF TEST PARTICLES-
GEOMETRIC ANALYSIS PATTERNED ON NEWTONIAN ANALYSIS 

Newtonian Analysis 

I. Consider a family of test-particle trajectories 
x i(t, n) in ordinary, three-dimensional space: 
"t" is time measured by particle's clock, or any 
clock; "n" is "selector parameter." 

2. Equation of motion for each trajectory: 

( o 2x i ) o<l> --- +- 0 ot2 ox i - ' n 

where <I> is Newtonian potential. 

3. Take difference between equations of motion 
for neighboring trajectories, n and n + Jn, and 
take limit as Jn -+ 0-i.e., take derivative 

(�) [(a zx i ) + �]- 0 
on t ot2 n ox i - . 

4. When o/on acts on second term, rewrite it as 

( 
a

0
n )t = ( 

0
a:

k 

)t a!k = nk 
a!k ; 

Thereby obtain 

(�) (l_) (ox i ) + a2<1> nk _ 0 on t ot n ot n ox i OXk - . 

Geometric Analysis 

I. Consider a family of test-particle trajectories 
(geodesics), q?(;\, n), in spacetime: ";\" is affine
parameter, i.e., time measured by particle's 
clock; "n" is "selector parameter." 

2. Geodesic equation for each trajectory: 

Vuu = 0. 

[Looks like first-order equation; is actually 
second-order because the "u" being differen
tiated is itself a derivative, u = (aq? /o;\)n -l 

3. Take difference between geodesic equations for 
neighboring geodesics n and n + Jn, and take 
limit as Jn -+ 0-i.e., take covariant deriva
tive 

4. There is no second term, so leave equation in 
form 



5. To obtain equation for relative acceleration, 
move (a/a n)t through both of the (a/a t)n terms 
(permissible because partial derivatives com
mute!): 

(:t
)J;JJ

a
;:)

t 
+ 

a:/:x k nk = o. 

This is equivalent to 

( a
2n;) a 2tJ> 

-- +---nk - 0 at2 axj ax k - . 

['relative 7J tf'tide-producing 7 
acceleration"j l gravitational forces] 

Box 11.5 RIEMANN CURVATURE TENSOR 

A. Definition of Riemann Motivated by 
Tidal Gravitational Forces: 

5. To obtain equation for relative acceleration, 
Vu Vu n, move Vn through Vu and through the 
a;a/\ of u = a<J> /aA: 
a. First step: In Vn Vuu = 0, move Vn through 

Vu. The result: 

t 1commutator; must be included 1 
as protection against possibility 
that Vu Vn -:/= Vn Vu . 

b. Second step: Move Vn through a/aA of 
u = a<J> ;al\; i.e., write 

a<J> a<J> Vn � = Vnu = Vu n = Vu -

[def of
} �

def :: n] 

Why? Because symmetry of covariant 
derivative says Vnu - Vu n = [n, u] 

[ a a ] 0 2 a 2 

= a;;-·a>: =�-� = 0. 

c. Result: 

1 "relative 1 "tide-producing 
acceleration", gravitational forces"; 

1 i.e., "spacetime curvature" 1 

1. Tidal forces (spacetime curvature) produce relative acceleration of test particles 
(geodesics) given by 

(I) 
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Box 11.5 (continued) 

2. This motivates the definition 
Riemann( ... , C,A, B) = [VA , V8 ]C. 4empty slot for inserting a one-form] 

B. Failure of this Definition 

(2) 

1. Definition acceptable only if Riemann ( ... , C, A, B) is a linear machine, independent of how A, B, C vary from point to point. 2. Check, in part: change variations of C, but not C itself, at event q> 0: 

CNEwW) = f((j>)CoLDW). 

'4 arbitrary function except JW 0) = 1] 3. Does this change [VA , Vs ] C? Yes! Exercise 11.1 shows 
C. Modified Definition of Riemann: 1. The term causing trouble, C0LD V[A ,sif, can be disposed of by subtracting a "correction term" resembling it from Riemann-i.e., by redefining 

Riemann ( ... , C, A, B) S'l(A, B)C, 

S'l(A,B) [VA , Vs ] - v[A,S] 

(3) 

(4) 2. The above calculation then gives a result independent of the "modifying function" f 

D. Is Modified Definition Compatible with Equation 
for Tidal Gravitational Forces? 1. One would like to write Vu Vu n + Riemann( ... , u, n, u) = 0. 2. This works just as well for modified definition of Riemann as for original definition, because 
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6Jl(n, u) = [Vn, Vu] - Vrn,uJ = [Vn, Vu], 

t I= 0 because n = (o/on),_ and
] L" = (a/a;\)n commute 
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Geodesic deviation and tidal forces cannot tell the difference between 6Jl(n, u) 
and [Vn , Vu ], nor consequently between old and new definitions of Riemann. 

E. Is Modified Definition Acceptable? 

I.e., is Riemann( ... , C, A, B) 6Jl(A, B)C a linear machine with output independ-
ent of how A, B, C vary near point of evaluation? YES! (See exercise 11.2 .) 

Take stock, first, of what one knows already about the Riemann curvature tensor. 
(1) Riemann is a tensor; despite the appearance of V in its definition (11.9), no 
derivatives actually act on the input vectors A, B, and C. (2 ) Riemann is a G) tensor; 
its first slot accepts a I-form; the others, vectors. (3) Riemann is determined entirely 
by V, or equivalently by the geodesics of spacetime, or equivalently by spacetime's 
parallel transport law; nothing but V and the input vectors and I-form are required 
to fix Riemann's output. (4) Riemann produces the tidal gravitational forces that 
pry geodesics (test-particle trajectories) apart or push them together; i.e., it charac
terizes the "curvature of spacetime": 

Vu Vun + Riemann ( ... , u, n, u) = 0. (11.10) 

(This "equation of geodesic deviation" follows from equations 11.6, 11.8, and 11.9, 
and the relation [n, u] = 0.) 

All these facets of Riemann are pictorial ( e.g., geodesic deviation; see Boxes 11.2 
and 11.3) or abstract ( e.g., equations 11.8 and 11.9 for Riemann in terms of V ). 

Tide-producing gravitational 
forces expressed in terms of 
Riemann 

Riemann's component facet, Components of Riemann 
expressed in terms of 

(11.11) connection coefficients 

is related to the component facet of V by the following equation, valid in any 
coordinate basis {e,,} = {o/ox "'}: 

ar "' ar "' 
R"' - {38 

fJY + I'"' rµ I'"' rµ {Jy8 ---- ---8- µy {38 - µ8 /JY' oxY ox 
(11.12 ) 

(See exercise 11.3 for derivation, and exercise 11.4 for the extension to noncoordinate 
bases.) These components of Riemann, with no sign of any derivative operator 
anywhere, may leave one with a better feeling in one's stomach than the definition 
(11.8) with its nondifferentiating derivatives! 
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Exercise 11.1. [VA, V8 ]C DEPENDS ON DERIVATIVES OF C 
(Based on Box 11.5.) Let CNEW and C0LD be vector fields related by 

CNEw('!P) = /('!P)CoLD('!P). 

�arbitrary function, except/('3'0) = I] 

Show that 

Exercise 11.2. PROOF THAT Riemann IS A TENSOR 
Show from its definition (11.8, 11.9) that Riemann is a tensor. Hint: Use the following 
procedure. 

(a) If /(<J') is an arbitrary function, show that 

<!il(A, B)JC = f<!il(A, B)C. 

(b) Similarly show that 

tll(JA,B)C =f:'ll(A,B)C 

(c) Show that <!il(A, B)C is linear; i.e., 

and 'Jl(A,JB)C = f'Jl(A, B)C. 

<!il(A + a, B)C = <!il(A, B)C + <!il(a, B)C; 

<!il(A,B + b)C = <!il(A,B)C + <!il(A,b)C; 

<!il(A, B)(C + c) = <!il(A, B)C + <!il(A, B)c. 

(d) Now use the above properties to prove the most crucial feature of<!il(A, B)C: Modify 
the vanations (gradients) of A, B, and Cm an arbitrary manner, but leave A, B, C unchanged 
at '!F 0 : 

A--+ A+ a"eo: 
B--+ B + b°'eo: 
C--+ C + co:eo: l ao:('!P), b°'('!P), c°'('!P) arbitrary except 

they all vanish at '!F = '!F 0 . 

Show that this modification leaves <!il(A, B)C unchanged at '3'0• 

( e) From these facts, conclude that Riemann is a tensor. 

Exercise 11.3. COMPONENTS OF Riemann IN COORDINATE BASIS 
Derive equation (11.12) for the components of the Riemann tensor in a coordinate basis. 
[Solution: 

= (w o:, <!il(ey, es)e13) 

= (w o:,(Vy Vs - Vs Vy)e13) 

[ standard way to ] calculate components 
[by definition (11.9)] 

[by definition (11.8) plus 
] [ey, e8] = 0 in coord. basis 

= (w "',eµI'µ
138 ,y + (e,I'"µy)I'µ

138 - eµI'µ
13y ,s - (e,I'"µs)I'µ

13y) 
= (I'µ

/38 ,y - rµ/Jy ,s)(w o:,eµ) + (I'"µy rµ
/38 - I'"µs I'µ

13y)(wo:,e,), 

which reduces (upon usmg (w o:,eµ) = o "'
µ.) to (11.12).] 
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Exercise 11.4. COMPONENTS OF RIEMANN 
IN NONCOORDINATE BASIS 
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In a noncoordinate basis with commutation coefficients ca/3 Y defined by equation (9.22), derive 
the following equation for the components of Riemann: 

§11.4. PARALLEL TRANSPORT AROUND A CLOSED CURVE 

( l l.l3) 

What are the effects of spacetime curvature, and how can one quantify them? One 
effect is geodesic deviation (relative acceleration of test bodies), quantified by equa
tion (I 1.10). Another effect, almost as important, is the change in a vector caused 
by parallel transport around a closed curve. This effect shows up most clearly in 
the same problem, geodesic deviation, that motivated curvature in the first place. 
The relative acceleration vector Vu Vun is also the change 8u in the vector u caused 
by parallel transport around the curve whose legs are the vectors n and u: 

(See Box 11.6 for proof.) Hence, in this special case one can write 

8u + Riemann ( . . .  , u, n, u) = 0. 

The expected generalization is obvious: pick a closed quadrilateral with legs u Lia 
and v Lib (Figure 11.2; Lia and Lib are small parameters, to go to zero at end of 
discussion). Parallel transport the vector A around this quadrilateral. The resultant 
change in A should satisfy the equation 

Change in a vector due to 
parallel transport around a 
closed curve· 

Related to geodesic deviation 

8A + Riemann ( . . .  , A, u Lia, v Lib) = O; 

or, equivalently, 

(11.14) Equation for change 

8A + Lia Lib &l(u, v)A = O; 

or, more precisely, 

Lim ( ,t BA
A 

) + Riemann( . . .  , A, u, v) = 0. 
Lla--->0 1.Ja 1.Jb 
Llb--->0 

(11.14') 

(11.14") 

The proof is enlightening, for it reveals the geometric origin of the correction term 
Vru,vJ in the curvature operator. 

The circuit of transport (Figure 11.2) is to be made from two arbitrary vector Derivation of equation for 
fields u Lia and v Lib. However, a circuit made only of these fields has a gap in it, change 

for a simple reason. The magnitude of u varies the wrong way from place to place. 
The displacement u Lia that reaches across at the bottom of the quadrilateral from 



[v, u] Lla Llb 

V Lib 

u Ll a  

A before transport 

F igure 1 1 . 2 .  
The change oA i n  a vector A as a result o f  parallel transport around 
a closed curve. The edges of the curve are the vector fields u Lia and 
v Lib, plus the "closer of the quadrilateral" [v Lib, u Lia] = [v, u] Lia 
Lib (see Box 9 .2) .  

one line of v's to another cannot make the connection at the top of the quadrilateral. Similarly the v's vary the wrong way from place to place to connect the u 's. To close the gap and complete the circuit, insert the "closer of quadrilaterals" [ v Lib, 
u Lia] = [v, u] Lia Lib. (See Box 9 .2 for why this vector closes the gap.) With the route now specified, the vector A is to be transported around it. One way to do this, "geometrical construction" by the method of Schild's ladder applied over and over, is the foundation for planning a possible experiment. For planning an abstract and coordinate-free calculation (the present line of action), introduce a "fiducial field," only to take it away at the end of the calculation. Plan: Conceive of A, not as a localized vector defined solely at the start of the trip, but as a vector field ( defined throughout the trip) . Purpose: To provide a standard of reference ( comparison of A transported from the origin with A at the place in question). 
Principle: The standard of reference will cancel out in the end. Procedure: 

(Net change made in taking the vector A, originally localized at the ) start of the circuit, and transporting it parallel to itself ("mobile A") 
- oA - around the closed circuit. This quantity cannot be evaluated until completion of circuit because there is no preexisting standard of reference along the way. 

+ 

A quantity subject to analysis for each leg of circuit individually. This new quantity is defined by introducing throughout the whole region a vector field A <fieldl , smoothly varying, and in agreement at starting point with the original localized A, but otherwise arbitrary. This new quantity is then given by A (fieldl at starting point (same as A Oocalized) at starting point) minus A <mobile) at finish point (after transit) . 
( Change in A (fieldl relative to A <mobile) in the course of transport along ) specified leg. Value for any one leg depends on the arbitrary choice L of A (field), but this arbitrariness cancels out in end because of closure 

legs of f . 
circui t O ClfCUit .  



§ 1 1  4 PARALLEL TRANSPORT AROUND A CLOSED CURVE 279 Change in A (field) relative to the parallel-transported A <mobile) as standard of reference, made up of contributions along following legs of Figure 11.2 : v LJb, giving VvA Weldl LJb (on line displaced u LJa from start) - v  LJb, giving - VvA <fieldl LJb (on line through starting point) - u LJa, giving - VuA <fieldl LJa (on line displaced v LJb from start) + u  LJa, giving VuA (fieldl LJa (on line through starting point) + [ v, u] LJa LJb, giving V[v,ulA <fieidl LJa LJb 
= { Vu vv - vv vu + v[v,u] } A (field) LJa ,:jb = Riemann ( . . .  , A <fieldl , u, v) LJa LJb = rJl (u, v)A <field) LJa LJb. ( I  1.15) 

Profit: The curvature operator 
Riemann ( . . . ' . . .  ' u, v) = rJl(u, v) = [Vu, Vvl - v[u,v] , 

Box 11. 6 GEODESIC DEVIATION AND PARALLEL TRANSPORT AROUND 
C LOSED C URVE: TWO ASPECTS OF SAME CONSTRUCTION 

Geodesic Deviation 

(See Boxes 11.2 and 11.3) 
/ 

Geodesic Deviation Same result; different construction. To simplify the connection with closed-curve transport, change the tilt and dilate the parametrization of geodesic rJ>f2rJl in A. The result : B, where q> and {l coincide. From F of Box 11.2 one knows drJ> + '!BrJl = {lq> + '!iJqi-i.e. Vu Vun is the 



Box 11 . 6 (continued) 

same for this family of geodesics as for the original family 
V V n = Lim ( qJj } u u ii>-. __. o (..1A)2 Lin . 

iln ----> 0 Also, to simplify discussion set Lin = LIA = l ,  and assume n and u are small enough that one can evaluate Vu Vu n without taking the limit: 
Parallel Transport Around Closed Curve, Performed by 
Same Construction 

Plan: Parallel transport the vector u LIA = !2?i counterclockwise around the curve f2 -+ 9 -+  E -+ 97l -+  !2. Execution: (1) Call transported vector u <m> ("m" for "mobile"). (2) At !2, u<m> = !2?i. (3) At 9, u<ml = 9!2 because 9!2?i is a geodesic and u<m> is its tangent vector. (4) At E, u <ml = E'Vll according to Schild's ladder of the picture. (5) At 'Vll, u<ml = 'Vll'!ll because E'Vll'!ll is a geodesic and u<rnl is now its tangent vector. (6) At !2, u<m> = f2qJ according to Schild's ladder. Result : The change in u<m> is - ?iJ?l. Had the curve been circuited in opposite direction (E -+ 9 -+  f2 -+  97l -+  E), the change would have been + ?iJ?i :  

(ou)due to parallel transport up n , out u , down -n , and = qJj = Vu Vun. 
back along -u to starting point 

applied to the vector field A (field) , gives the negative of the change in the localized vector A Oo cahzed) (called A (mobile) during the phase of travel) on parallel transport around the closed circuit. It does not give the change in A (field) on traversal of that circuit, for A (field) has the same value at the end of the journey as at the beginning. Equation ( l  l .14') expresses that change in terms of the conveniently calculated differential operator, '!Jl (u, v) = [Vu , Vv J - Vru,vl · Paradox: Neither wanted nor evaluated is the change in the quantity A <field) acted on by this operator. Payoff: Ostensibly differential in the character of its action on A, the operator Riemann ( . . .  , . . .  , u, v) = '!Jl(u, v) is actually local. Thus, replace the proposed smoothly varying vector field A (field) by a quite different but also smoothly varying vector field A (field, new>.  Then the two fields need agree only at the one point in question for them to give the same output Riemann ( . . .  , A, u, v) = '!Jl(u, v)A at that point. This one 
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knows from the fact that 8A, the quantity calculated, has an existence and value 
independent of the choice of A (fieldl _ This one can also verify by detailed calculation 
( exercise 11.2 ). Power: Although they cancel out in their response to any change 
of A with location, the several differentiations in the curvature operator respond 
directly to the "rate of change of geometry with location" ("geodesic deviation"). 
Prolongation: The closed curve need not be a quadrilateral. The curvature operator 
tells how a vector changes on parallel transport about small curves of arbitrary shape 
(Box 11.7). 

Exercise 11.5. COPLANARITY OF C LOSED CURVES 
Let f1 and f2 be the bivectors (see Box 11.7) for two small closed curves at the same event. 
Show that the curves are coplanar if and only if f1 = a f2 for some number a. 

Box 11. 7 THE LAW FOR PARALLEL TRANSPORT ABOUT A C LOSED C URVE 

A. Special Case 

Curve is closed quadrilateral formed by vector fields u and v. 

I. Law says (in component form) 

2 .  On what characteristics of the closed curve does this depend? 

EXERCISE 

(I) 

a. Notice that R"'
13 y8 = - R"'

13 8 y (antisymmetry in last two indices; obvious in 
equation 11.12 for components; also obvious because reversing the direction 
the curve is traversed-i.e., interchanging u and v-should reverse sign of oA). 

b. Equation (I) contracts u © v into these antisymmetric, last two indices. 
The symmetric part of u © v must give zero. Only the antisymmetric part, 
u A v = u © v - v © u can contribute : 

oA"' + _!_ R "' Af3(u A v)Y8 - 0 
2 f3 Y8 - • (2 ) 

3. This antisymmetric part is a "bivector. " It is independent of the curve's shape; 
it depends only on (a) the plane the curve lies in, and (b) the area enclosed by 
the curve. [Although without metric "area" is meaningless, "relative areas at an 
event in a given plane" have just as much meaning as "relative lengths at an 
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event along a given direction." Two vectors at the same event lie on the same 
line if they are multiples of each other; their relative length in that case is their 
ratio. Similarly, two small closed curves at the same event lie in the same plane 
if their bi vectors are multiples of each other ( exercise 11.5); their relative area 
in that case is the ratio of their bivectors.] 

B .  General Case 

Arbitrary but small closed curve. 

I. Break the curve down into a number 
of quadrilaterals, all lying in the same 
plane as the curve. 

2 .  Traverse each quadrilateral once in the 
same sense as the curve is to be tra
versed. Result : all interior edges get 
traversed twice in opposite directions 
(no net traversal); the outer edge (the 
curve itself ) gets traversed once. 

3. Thus, oA due to traversing curve is the sum of the oA's from traversal of each 
quadrilateral: 

I 
2 

� R c,
f3 y 8Af3 (u I\ Vfor given quadrilateraJ)Y 8 , 

quadrilaterals 

Define the bivector f for the curve as the sum of the bivectors for its component 
quadrilaterals: 

f ( U /\ v\uadrilateral 
quadrilaterals 

(add "areas"; keep plane the same). 
4. Then 

C. Warning 

This is valid only for closed curves of small compass: oA doubles when the area 
doubles; but the error increases by a factor ~2312 [oA ex: Lia Lib in calculation of 
§11.4; but error cx: (Lla)2 Lib or Lia (Llb)2] . 
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To say that space or spacetime or any other manifold is flat is to say that there 
exists a coordinate system {x "(rJ>)} in which all geodesics appear straight: 

x "(.\) = a" + b".\. (11.16) 

(Example: Lorentz spacetime of special relativity, where test bodies move on such 
straight lines.) They can appear so if and only if the connection coefficients in the 
geodesic equation 

(11.17) 

expressed in the same coordinate system, all vanish: 

I'/3
µ, = 0. (11.18) 

From the vanishing of these connection coefficients, it follows immediately (equation 
11.12 ) that all the components of the curvature tensor are zero: 

(11.19) 

[Geometric restatement of (11.16) -+ (11.18) -+ (11.19): For all geodesics to be 
straight in a given coordinate system means that initially parallel geodesics preserve 
their separation; the geodesic deviation is zero; and therefore the curvature vanishes.) 

Is the converse true? Does zero Riemann curvature imply the existence of a 
coordinate system in which all geodesics appear straight? Yes, as one sees by the 
following construction. 

Flatness of a manifold 
defined 

Flatness implies 
Riemann = 0 

Transport a vector parallel to itself from 9
0 

to !:2, and then back from !:2 to 90 
Proof that Riemann = 0 

along a slightly different route. It returns to its starting point with no alteration in implies flatness 

magnitude or direction, because Riemann everywhere vanishes. Therefore parallel 
transport of a base vector e µ from rJ> 0 to !:2 yields at !:2 a base vector e µ that is 
independent, both in magnitude and in direction, of the route of transportation (for 
routes obtainable one from the other by any continuous sequence of deformations). 
As for !:2, so for all points of the manifold; and as for the one base vector ew so 
for a complete set of base vectors (µ = 0, I, 2 ,  3): Parallel transport of a basis 
{ e"(rJ> 0)} yields everywhere a field of frames ("frame field"), each base vector of 
which suffers zero change (relative to the frame field) on parallel transport from 
any point to any nearby point : thus, 

(11. 2 0) 
or 

(11. 2 1) 

With the vanishing of these individual derivatives, there also vanishes the commuta
tor of any two basis-vector fields: 

(11. 2 2 )  



Lorentz coordinates exist if 
and only if Riemann = 0 

Flatness does not imply 
Euclidean topology 

2 8 4  1 1  GEODESIC DEVIATION AND SPACETIME CURVAT URE 

The gap in the quadrilateral of Figure 11.2 (there read "eµ" for "u," "e." for "v'') 
closes up completely. Thereupon one can introduce coordinates x µ, each of which 
increases with a motion in the direction of the corresponding vector field; and with 
appropriate scaling of these coordinates, one can write 

e = --µ ox µ 
(11. 2 3) 

(see exercise 9.9). With this coordinate basis in hand, one can employ the formula 

(11.2 4) 

to calculate the connection coefficients. From the vanishing of the quantities on the 
left, one concludes that all the connection coefficients on the right ("bending of 
geodesics") must be zero; so spacetime is indeed flat. 

Summary: Spacetime is .fiat-i.e., there exist "flat coordinates" in which I'µ af:J = 0 
everywhere and geodesics are straight lines, x "-(;\) = a"- + b"-;\-if and only if 
Riemann = 0. 

Note: In the spacetime of Einstein, which has a metric, one can choose {eµ(&>0)}  
in the above argument to be orthonormal, eµ · e. = 'rlµv at '!10 . The resulting field 
of frames will then be orthonormal everywhere, and the resulting coordinate system 
will be Lorentz. Thus, in Einsteinian gravity the above summary can be rewritten : 
spacetime is fiat (there exists a Lorentz coordinate system) if and only if Riemann = 0. 

Warning: Flatness does not necessarily imply Euclidean topology. Take a sheet 
of paper. It is flat. Roll it up into a cylinder. It is still flat, intrinsically. The tracks 
of geodesics over it have not changed. Distances between neighboring points have 
not changed. Only the topology has changed, so far as an observer confined forever 
to the sheet is concerned. (The "extrinsic geometry"-the way the sheet is embedded 
in the surrounding three-dimensional space-has also changed; but an observer on 
the sheet knows nothing of this, and it is not the subject of the present chapter. 
See, instead § 2 1.5.) 

Take this cylinder. Bend it around and glue its two ends together, without changing 
its flat intrinsic geometry. Doing so is impossible if the cylinder remains embedded 
in flat, three-dimensional Euclidean space; perfectly possible if it is embedded in 
a Euclidean space of 4 dimensions. However, embedding is unimportant to observers 
confined to the cylinder, since all they ever measure is intrinsic geometry; so all 
that matters to them is the topological identification of the two ends of the cylinder 
with each other. The result is topologically a torus; but the tracks of geodesics are 
still unchanged; the intrinsic geometry is flat; Riemann vanishes. 

By analogy, take flat Minkowskii spacetime. Pick some Lorentz frame, and in it 
pick a cube 1010 light years on each side (0 < x < 1010 light years; similarly for 
y and z) .  Identify opposite faces of the cube so that a geodesic exiting across one 
face enters across the other. The result is topologically a three-torus: a "closed 
universe" with finite volume, with flat, Minkowskii geometry, and with a form that 
changes not at all as Lorentz time t passes (no expansion, no contraction) . 
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In curved spacetime one can never find a coordinate system with ra 
f3 Y = 0 every

where. But one can always construct local inertial frames at a given event 90 ; and 
as viewed in such frames, free particles must move along straight lines, at least 
locally-which means ra 

f3 Y must vanish, at least locally. 
A very special and useful realization of such a local inertial frame is a Riemann

normal coordinate system. Pick an event 90 and a set of basis vectors {ea(9
0
) }  to 

be used there by an inertial observer. Fill spacetime, near 9 0, with geodesics radiating 
out from 9 0 like the quills of a hedgehog or porcupine. Each geodesic is determined 
by its tangent vector v at 9 

0
; and the general point on it can be denoted 

9 = § (;\ ;  v). 

[affine parameter; 7 t U- tangent vector at 9 
0
; } 

tells "where" on geodesicr L tells "which geodesic " 

(11.2 5) 

Actually, this gives more geodesics than are needed. One reaches the same point 
after parameter length ½\ if the initial tangent vector is 2 v, as one reaches after 
;\ if the tangent vector is v: 

Thus, by fixing ;\ = I and varying v in all possible ways, one can reach every point 
in some neighborhood of 9 0. This is the foundation for constructing Riemann normal 
coordinates. Choose an event 9. Find that tangent vector v at 90 for which 9 = 
§ (1; v). Expand that v in terms of the chosen basis and give its components the 
names xa: 

9 = § (1; x aea). (11. 2 6) 

The point 9 determines x a uniquely (if 9 is near enough to 9 0 that spacetime 
curvature has not caused geodesics to cross each other). Similarly, x a determines 
9 uniquely. Hence, x a can be chosen as the coordinates of &>-its "Riemann-normal 
coordinates, based on the event 9 0 and basis { eaWo)} . "  

Equation (11. 2 6) summarizes Riemann-normal coordinates concisely. Other 
equations, derived in exercise 11.9, summarize their powerful properties : 

r a 
f3 y

(9 0) = O; 

ra
f3 y

j9o) = - ! (Ra
f3 yµ 

+ Ra
yf3 µ

). 

(11. 2 7) 

(11. 2 8) 

(11. 2 9) 

If spacetime has a metric (as it does in actuality), and if the observer's frame at 
90 has been chosen orthonormal (ea · ef3 = 1Jaf3

), then 

Riemann normal coordinates· 
a realization of local inertial 
frames 

Geometric construction of 
Riemann normal coordinates 

Mathematical properties of 
Riemann normal coordinates 



Other mathematical 
rea l izations of a local inertial 
frame 

EXERCISES 
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grx{3Wo) = 11rxf3 ' 
grxf3 _irJ>o) = 0, 

I grx{3 ,µ.vWo) = - 3 (R,xµ.[3 v + Rrxv{3µ.) 

2 - 3 Jrxf3 µ.v• 

(11.30) 

(11.31) 

(11.32 ) 

(11.32 ') 

Here Jrxf3 µ.v are components of the Jacobi curvature tensor (see exercise 11.7). 
Is this the only coordinate system that is locally inertial at rJ>0 (i.e., has I'"'

f3 y = 0 
there) and is tied to the basis vectors e"' there (i.e., has o/ox "' = e"' there)? No. But 
all such coordinate systems ( called "normal coordinates" ) will be the same to second 
order: 

x�rnwW) = x gLD(rJ>) + corrections of order (xgLD)3. 

Moreover, only those the same to third order, 

x�rnwW) = xgLD(rJ>) + corrections of order (xgLD)4, 

will preserve the beautiful ties (11. 2 9) and (11.32 ) to the Riemann curvature tensor. 

Exercise 11 . 6 .  SYM METRIES OF Riemann 

(To be discussed in Chapter 13 ). Show that Riemann has the following symmetries: 

R"13 y8 = R"13 [y8 J 
R"[p y81 = 0 

( antisymmetric on last 2 indices) ( 1 1.33a) 
(vanishing of completely antisymmetric part) ( l  l.33b) 

Exercise 11 . 7 .  GEODESIC DEVIATION MEASURES ALL 

CURVATURE COMPONENTS 

The equation of geodesic deviation, written up to now in the form 

Vu Vun + Riemann ( . . .  , u, n, u) = 0 
or 

also lets itself be written in the Jacobi form Vu Vun + j(u, u)n = 0. Here j(u, v) , the "Jacobi 
curvature operator, " is defined by 

j(u, v)n = ½ [!Yl(n, u) v  + !!il(n, v)u] , ( 1 1 .34) 

and is related to the "Jacobi curvature tensor" by 

Jacobi ( . . .  , n, u, v) _ j(u, v) n, ( 1 1.35) 
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which implies 

(a) Show that Jµ
<af3y) = 0 follows from Rµ

af3y = R µ
a[f3 yJ · 
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(11.36) 

(b) Show that by studying geodesic deviation (allowing arbitrary u and n in Vu Vun + 
j(u, u)n = 0) one can measure all components of Jacobi. 

(c) Show that Jacobi contains precisely the same information as Riemann. [Hint : show 
that 

µ - l  µ - µ R a v/3 - 3 (J va/3 J {3av), (11.37) 

this plus equation (11.36) for P,af3 proves "same information content".] Hence, by studying 
geodesic deviation one can also measure all the components of Riemann. 

(d) Show that the symmetry of Rµ
rvaf3J = 0 is essential in the equivalence between Jacobi 

and Riemann by exhibiting proposed values for Rµva/3 = - Rµvf3a for which Rµ
cvaf3J =I- 0, 

and from which one would find Jµ vaf3 = 0. 

Exercise 1 1 . 8 .  G EO D E S I C  D EV IATI O N  I N  G O RY D ETAI L 
Write out the equation of geodesic deviatio.n in component form in a coordinate system. 
Expand all covariant derivatives (semicolon notation) in terms of ordinary ( comma) deriva
tives and in terms of I''s to show all I' and a terms explicitly. 

Exercise 1 1 . 9 .  R I E MANN N O R MAL COO R D I NATES I N  G E N E RAL 
Derive properties (11.27), (11.28), (11.29), ( 11.3 I), (11.32), and (11.32') of Riemann normal 
coordinates. Hint: Proceed as follows. 

(a) From definition (11.26), derive (o9 /ox")90 
= e". 

(b) Similarly, from definition (11.26), show that each of the curves x" = u" A (where the 
v" are constants) is a geodesic through 9 0, with affine parameter A. 

(c) Show that I'"
13y(90) = 0 by substituting x" = v" A into the geodesic equation. 

( d) Since the curves x" = v" A are geodesics for every choice of the parameters v", they 
provide not only a geodesic tangent u - (o/oA) •' but also several deviation vectors 
N<a> _ (o/ov")i_.  Compute the components of these tectors in the Riemann normal coordi
nate system, and substitute into the geodesic deviation equation as written in exercise 11.8 . 

( e) Equate to zero the coefficients of the zeroth and first powers of A in the geodesic 
deviation equation of part ( d), using 

I'"
13y \ ,.=v" '  = AVµI'"

13yj9o) + 0(A2), 

which is a Taylor series for I'. In this way arrive at equation (11.29) for I'" /3Y,µ in terms 
of the Riemann tensor. 

(f ) From equations (11.28), (11.29), and (8.24) for the connection coefficients in terms 
of the metric, derive equations (11.31), (11.32), and (11.32'). 

Exercise 1 1 . 1 0 . B IANCH I I D ENTIT I ES 
Show that the Riemann curvature tensor satisfies the following "Bianchi identities" 

R"
my 8 , ,1 = 0. (11.38) 

The geometric meaning of these identities will be discussed in Chapter 15. [Hint: Perform 
the calculation at the origin of a Riemann normal coordinate system.] 
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Exercise 11 .11 . CURVATURE OPERATOR ACTS ON 1-FORMS 

Let '!Jl(u, v) be the operator '!Jl(u, v) = [Vu, Vv] - V[u, vl when acting on I-forms a ( or other 
tensors) as well as on tangent vectors. Show that 

( '!!l(u, v)a, w) = - (a, '!Jl(u, v) w). 

Exercise 11 .12.  ROTATION GROUP:  RIEMANN CURVATURE 

[Continuation of exercises 9 .13 , 9.14, and 10 .17 .] Calculate the components of the Riemann 
curvature tensor for the rotation group's manifold S0(3); use the basis of generators { e,, }. 
[Answer: 

R "'  
I o "'/3 /3-yS = 2 -ys ,  

where o�q i s  the permutation symbol defined in  equation (3 .501) : 

o �q (8"'
-y8 13 8 - 8 "'

8 8 13
-y) -

Note that this answer is  independent of  location '!I in the group manifold.] 

(11.39) 



CHAPTER 1 2 

N EWTO N IAN G RAVITY I N  TH E 

LAN G UAG E O F  CU RVED S PAC ETI M E  

The longes t period of time for which a modern pain ting has hung 
upside down in a public gallery unno ticed is 4 7 days This 

occurred to Le Bateau by Matisse in the Museum of Modern Art, 
New York City. In this time 1 1 6, 000 people 

had passed through the gallery. 

McWH I RTER A N D  M cWH I RTER ( 1 9 7 1 )  

§ 1 2 . 1 .  N EWTO N IAN GRAVITY I N  BRIEF 

The equivalence principle is not unique to Einstein's description of the facts of 
gravity. What is unique to Einstein is the combination of the equivalence principle 
and local Lorentz geometry. To return to the world of Newton, forget everything 
discovered in the last century about special relativity, light cones, the limiting speed 
of light, and proper time. Return to the "universal time " t of earlier centuries. In 
terms of that universal time, and of rectangular, "Galilean " space coordinates, 
Newtonian theory gives for the trajectories of neutral test particles 

r 
This chapter is entirely 

Track 2. Cha pters 9 - 1 1 a re 
necessary preparation for it.  

I t  is not needed for any 
later cha pter, but it will  be 
helpful in 
( 1 )  Chapter 1 7  (E inste i n  field 

equations) and 
(2) Chapters 38 and 39 

(experimental  tests and 
other theories of gravity) . 

dzx ; + 1!!,_ _ O · 
dt2 ox ; - ' (12 .1) "----------� 

<P (sometimes denoted - U) = Newtonian potential. (12 . 2 ) 

Customarily one interprets these equations as describing the "curved paths " x ;(t) 
along which test particles fall in Euclidean space (not spacetime). These curved paths 
include circular orbits about the Earth and the parabolic trajectory of a baseball. 
Cartan (192 3 ,  192 4) asks one to abandon this viewpoint. Instead, he says, regard 
these trajectories as geodesics [t(;\), x ;(;\)) in curved spacetime. (This change of 
viewpoint was embodied in Figures B and C of Box 1.6.) Since the "affinely ticking " 

Newtonian gravity original 
formulation 

Newtonian gravity 
translation into language of 
curved spacetime 
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290 1 2  NEWTONI AN GRAVITY I N  LANGUAGE OF CURVED SPACETI ME Newtonian clocks carried by test particles read universal time (or some multiple, A = at + b, thereof ), the equation of motion (12.1) can be rewritten 
d2t d"Az = 0, d2x i o<J> ( dt )2 _ d"A2 + oxi d"A - O. By comparing with the geodesic equation d2x''-/d"A2 + I'" 13y(dx/3 /d"A)(dxY /d"A) = 0, one can read off the values of the connection coefficients: all other I'"13 y vanish. 

(12.3) 

(12.4) And by inserting these into the standard equation (11.12) for the components of the Riemann tensor, one learns (exercise 12.1) Ri - Ri - a z<J> . 
0k0 - - 00k - · k ' ox1 ox all other R" f3ys vanish. Finally, the source equation for the Newtonian potential V 2<J> I <l>,ii = 41Tp one can rewrite with the help of the "Ricci curvature tensor" R"13 R µ 

aµf3 
( contraction of Riemann) in the geometric form ( exercise 12 .2) Roo = 4?Tp ; all other R"13 vanish. 

(12.5) 
(12.6) 
(12.7) 
(12.8) Equation (12.4) for I'" /3 Y' equation (12.5) for R" f3ys, equation (12.8) for R"/3 ' plus the law of geodesic motion are the full content of Newtonian gravity, rewritten in geometric language. It is one thing to pass quickly through these component manipulations. It is quite another to understand fully, in abstract and pictorial terms, the meanings of these equations and the structure of Newtonian spacetime. To produce such understanding, and to compare Newtonian spacetime with Einsteinian spacetime, are the goals of this chapter, which is based on the work of Cartan (1923, 1924), Trautman (1965), and Misner (1969a). 

Exercise 12.1. RIEMANN CURVATURE OF NEWTONIAN SPACETIME 

Derive equation (12.5) for R"
f3ya from equation (12.4) for I'"

f3 r  

Exercise 12.2. NEWTONIAN FIELD EQUATION 

Derive the geometric form (12.8) of the Newtonian field equation from (12.5) through (12.7). 
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§ 1 2 . 2 .  STRATIF ICATIO N O F  N EWTO N IAN SPACETIME 
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Galileo and Newton spoke of a flat, Euclidean "absolute space" and of an "absolute time," two concepts distinct and unlinked. In absolute space Newtonian physics took place; and as it took place, absolute time marched on. No hint was there that space and time might be two aspects of a single entity, a curved "spacetime"-until Einstein made the unification in relativity physics, and Cartan (1923) followed suit in Newtonian physics in order to provide clearer insight into Einstein's ideas. How do the absolute space of Galileo and Newton, and their absolute time, fit into Cartan's "Newtonian spacetime"? The key to the fit is stratification; stratification produced by the universal time coordinate t. Regard t as a function (scalar field) defined once and for all in Newtonian spacetime 
t = t(rJ>). (12.9) Without it, spacetime could not be Newtonian, for "t" is every bit as intrinsic to Newtonian spacetime as the metric "g" is to Lorentz spacetime. The layers of spacetime are the slices of constant t-the "space slices"-each of which has an identical geometric structure : the old "absolute space." Adopting Cartan's viewpoint, ask what kind of geometry is induced onto each space slice by the surrounding geometry of spacetime. A given space slice is endowed, by the Galilean coordinates of § l2. l ,  with basis vectors e; = o/ox ; ; and this basis has vanishing connection coefficients, I' \t = 0 [cf. equation (12.4)]. Consequently, 

The geometry of Newtonian 
spacetime : 

" Universal time" as a scalar 
field 

the geometry of each space slice is completely fiat. Space slices with Euclidean "Absolute space" is Euclidean in its geometry, according to the old viewpoint, geometry and the Galilean coordinates are Cartesian. Translated into Cartan's language, this says: not only is each space slice (t = constant) flat, and not only do its Galilean coordinates have vanishing connection coefficients, but also each space slice is en-
dowed with a three-dimensional metric, and its Galilean coordinate basis is orthonormal, (12.10) If the space slices are really so flat, where do curvature and geodesic deviation enter in? They are properties of spacetime. Parallel transport a vector around a closed curve lying entirely in a space slice; it will return to its starting point unchanged. But transport it forward in time by Llt, northerly in space by Jx k , back in time by - Llt, and southerly by - Jx k to its starting point; it will return changed by 
I .e . ,  

oA0 = o, 

8A = - 6il (Llt 1- , Jx k ---;.)A; a t  ax 

(12.11) Geodesics of a space slice (Euclid's straight lines) that are initially parallel remain 

Curvature acts in spacetime, 
not in space slices 



EXERCISE 

Galilean coordinates defined 
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always parallel. But geodesics of spacetime (trajectories of freely falling particles) 
initially parallel get pried apart or pushed together by spacetime curvature, 

or equivalently in Galilean coordinates: 

n° = dn° / dt = 0 initially =- n° = 0 always; 

(see Box 12 .1 and exercise 12 .3). 

d2n1 a2<1> + n k = 0 
dt2 ax j ax k 

Exercise 12.3. GEODESIC DEVIATION DERIVED 

(12 .12 a) 

(12 .12 b) 

Produce a third column for Box 1 1 .4, one that carries out the "geometric analysis" in component notation using the Galilean connection coefficients ( 12 .4) of Newtonian spacetime. Thereby achieve a deeper understanding of how the geometric analysis parallels the old Newtonian analysis. 

§12.3. GALILEAN COORD I NATE SYSTEMS 

The Lorentz spacetime of special relativity has an existence and structure completely 
independent of any coordinate system. But a special property of its geometry (zero 
curvature) allows the introduction of a special class of coordinates (Lorentz coordi
nates), which cling to spacetime in a special way 

(a/ax ") · (a/ax /3) = 1/a,e everywhere. 

By studying these special coordinate systems and the relationships between them 
(Lorentz transformations), one learns much about the structure of spacetime itself 
(breakdown in simultaneity; Lorentz contraction; time dilatation; . . . ). 

Similarly for Newtonian spacetime. Special properties of its geometry (explored 
in abstract later; Box 12 .4) permit the introduction of special coordinates (Galilean 
coordinates), which cling to spacetime in a special way 

x0({j>) = t({j>); 

(a/ax j) . (a/axk) = O;k; 

I';
00 = <I>,; for some scalar field P, and all other I'"'

,e y vanish. 

To understand Newtonian spacetime more deeply, study the relations between these 
Galilean coordinate systems. 



Box 1 2 . 1  G E O D E S I C  D EVIAT I O N  I N  N EWTO N IAN S PACETI M E  

Coordinate system for calculation: Galilean space 
coordinates x i and universal time coordinate t. 
General component form of equation: 

D 2no: dx /3 dx 8 

d\Z + Ro:
13ys d"A 

nY 
d"A 

= 0. 

Special conditions for this calculation: let the par
ticles' clocks ( affine parameters) all be normalized 
to read universal time, "A = t. This means that the 
separation vector 

y 35 mi, 

� '---,, 

/ -----------

nc, = (ax o:;an) ,,_  }--, 
t = 25 m

LJ=:V
·n. n 

I I 
I / 

between geodesics has zero time component, 
n° = O; i.e., in abstract language, 

( dt, n )  = t,,, no: = n° = O; 

i.e., in geometric language, n lies in a space slice 
(surface of constant t). 
Evaluation of covariant derivative: 

Dna dna dx µ dno: 

x t = 1 5  min. 

D "A 
= 

d"A + 
� n 

13 
d"A 

= 
d"A ' 

(0 unless p = OJ lo unless p ;, a space ;ndex (n" = O)] 

d(Dn ,,/d"A) dn /3 dx µ d(Dn ,,/d"A) d2no: d2na 

d"A + [:_I!!!:, d"A d"A d"A - d\2 - dt2 • 

1 J t L since "A = t] 

[O unless /3 = 0 0 unless /3 is space index] 

Evaluation of tidal accelerations: 

Ro dx 13 y dx 8 
_ 0 13ys d"A 

n 
d"A - since R\ko and R\ok are only nonzero components. 

Ri dx 13 y dx 8 
_ Ri !!:!.._ k !!:!.._ _ Ri k _ 0 2<1> k 

� d"A t d"A - OkO d"A 
n 

d"A - Oko n - ox i ox k n . 

t 4o unless y is space index] 

for y a space index: 0 unless /3 = 8 = O] 

Resultant equation of geodesic deviation: 

( agrees with result n° = 0 always, which ) 
followed from choice "A = t for all particles 

(agrees with Newton-type calculation) _  
in Box 11.4; see also exercise 12 .3  

/M ,,,,.,, .,,,,.,, 
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Point of principle: how can one write down the laws of gravity and properties 
of spacetime in Galilean coordinates first (§12 .1), and only afterward (here) come 
to grip with the nature of the coordinate system and its nonuniqueness? Answer: 
(a quotation from §3.1, slightly modified): "Here and elsewhere in science, as 
emphasized not least by Henri Poincare, that view is out of date which used to say 
'Define your terms before you proceed. '  All the laws and theories of physics, includ
ing Newton's laws of gravity, have this deep and subtle character, that they both 
define the concepts they use (here Galilean coordinates) and make statements about 
these concepts." 

The Newtonian laws of gravity, written in a Galilean coordinate system 

XO = t, 

make the statement "I'\0 = '1>,i and all other I'" f3Y = 0" about the geometry of 
spacetime. This statement in turn gives information about the relationships between 
different Galilean systems. Let one Galilean system { x"(g>)} be given, and seek the 
most general coordinate transformation leading to another, {x"'W)}. The following 
constraints exist: (I) x0' = x0 = t (both time coordinates must be universal time); 
(2 ) at fixed t (i.e., in a fixed space slice) both sets of space coordinates must be 
Euclidean, so they must be related by a rotation and a translation: 

x i' = Ai'kx k + ai' 

L 4translation] 

rotation matrix, i.e., AnAk'l = oi'k'] 

(12 .13a) 

k _ A i' k " h k - A i' x - i'kx - a , wit a = i'ka . (12 .13b) 

The rotation and translation might, a priori, be different on different slices, Ai'k = 
Ai 'k(t) and ai = ai(t); but (3) they must be constrained by the required special form 
of the connection coefficients. Calculate the connection coefficients in the new 
coordinate system, given their form in the old. The result (exercise 12 . 4) is: 

(produces "Coriolis forces"); 

• atP - I' k r, O'O' = --., + Ai'k(Anx - ii ); 

["centrif:;:I forces"J 4"inertial forces"] 
all other I'"'

/3'Y ' vanish 

(12 .14) 

("Euclidean" index conventions; repeated space indices to be summed even if both 
are down; dot denotes time derivative). These have the standard Galilean form (12 . 4) 
if and only if 

Ai'k = 0, '1>' = '1> - akx k + constant. 

[Newtonian potential in l t t fNewtonian potential in
] new coordinate system J L old coordinate system 

( 1 2 .1 5) 
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These results can be restated in words : any two Galilean coordinate systems are 
related by ( l ) a time-independent rotation of the space grid (same rotation on each 
space slice), and (2 ) a time-dependent translation of the space grid (translation 
possibly different on different slices) 

x i' = Ai'k x k + aj'(t). 

[constant] t Wtime-dependent] 

(12 .16) 

The Newtonian potential is not a function defined in spacetime with existence 
independent of all coordinate systems. (There is no coordinate-free way to measure 
it.) Rather, it depends for its existence on a particular choice of Galilean coordinates ; 
and if the choice is changed via equation (12 .16), then <I> is changed: 

(12 .17) 

(By contrast, an existence independent of all coordinates is granted to the universal 
time t('!F) and the covariant derivative V.) 

Were all the matter in the universe concentrated in a finite region of space and 
surrounded by emptiness ("island universe"), then one could impose the global 
boundary condition 

(12 . 1 8) 

This would single out a subclass of Galilean coordinates ("absolute" Galilean coor
dinates), with a unique, common Newtonian potential. The transformation from one 
absolute Galilean coordinate system to any other would be 

fconsta:� 

= 
t

�
•

x

' + a
!

' +  r I constant
] �otatlon J 7veloc1ty 

constant 

I displacemenq 

( 1 2 .1 9) 

("Galilean transformation"). But, ( l ) by no local measurements could one ever 
distinguish these absolute Galilean coordinate systems from the broader class of 
Galilean systems (to distinguish, one must integrate the locally measurable quantity 
<I>,; = I'j

00 out to infinity); and (2 ) astronomical data deny that the real universe 
is an island of matter surrounded by emptiness. 

It is instructive to compare Galilean coordinates and Newtonian spacetime as 
described above with Lorentz coordinates and the Minkowskii spacetime of special 
relativity, and with the general coordinates and Einstein spacetime of general rela
tivity ; see Boxes 12.2 and 12.3 . 

(continued on page 298) 

Transformations lin king 
Galilean coordinate systems 

N ewtonian potential depends 
on choice of Galilean 
coordinate system 

Absolute Galilean coordinates 
defined 

Transformations lin king 
absolute Galilean coordinate 
systems 



Box 12 .2 NEWTONIAN SPACETIME, MINKOWSKIIAN SPACETIME, AND EINSTEINIAN SPACETIME: 
COMPARISON AND CONTRAST 

Query 

What a prwn geometric structures 
does spacelime possess? 

What preferred coordmate systems 
are present? 

What 1s requlfed to select out a 
particular preferred coordinate 
system? 

Under what conditions 1s "'!i' and :2 
are simultaneous" well-defined? 

Under what cond11Ions is "'!i' and :2 
occur at same point m space" well
defined? 

Under what conditions 1s "u and v, 
at different events, pomt in same 
d!feclion" well-defined? 

Under what conditions 1s "the 
invariant distance between '!i' and :2" 
well-defined? 

Newtonian spacettme 

( I )  Universal time function t 
(2) Covanant derivative V 
(3) Spatial metnc " ·  " ,  but spacetime 

metnc can not be defined 
( exercise 12 .  10) 

(l) Galilean coordinates m general 
(2) Absolute Galilean coordmates m 

an island umverse (this case not 
considered here) 

( I )  A smgle spalial orientalion, the 
same throughout all spacelime 
( three Euler angles) 

(2) The arbitrary world line of the 
ongm of space coordmates 
(three functions of lime) 

In general ; 1t 1s a coordmate-free 
geometnc concept 

Only after choice of Galilean 
coordmates has been made 

Only if u and v are both spatial 
vectors ((dt, u) = (dt, v) = O); or 
1f they lie m the same space slice 
and are arbitrary vectors ; or if 
there exists a preferred route 
connecting their locat10ns, along 
which to compare them by parallel 
transport 

Only 1f '!i' and :2 he m the same 
space slice 

Mmkowskiian spacetime 
(special relativity) 

A spacellme metric that 1s flat 
(vamshmg Riemann curvature) 

Lorentz coordmates 

( 1 )  A single spatial orientation, the 
same throughout all spacelime 
(three Euler angles) 

(2) The locat10n of the origin of 
coordinates (four numbers) 

(3) The velocity of the ongin of 
space coordinates (three numbers) 

Only after a choice of Lorentz frame 
has been made; "simultaneity" depends 
on the frame's velocity 

Only after ch01ce of Lorentz 
coordinates has been made 

Always 

Always 

Einstem,an spacettme 
(general relat1V1ty) 

A spacetime metric 

In general, every coordmate system 
is equally preferred (though m 
special cases with symmetry there 
are special preferred coordmates) 

All four functions of pos1t10n xa('!i') 

Only after arbitrary choice of time 
coordmate has been made 

Only after arbitrary choice of space 
coordinates has been made 

Only 1f u and v lie at events 
infinitesimally close together; or 
if there exists a preferred route 
(e.g. ,  a unique geodesic) connectmg 
their locat10ns, along which to 
compare them by parallel transport 

Only if '!i' and :2 are sufficiently 
close together; or 1f there exists 
a unique preferred world lme ( e .g . ,  
a geodesic) linking them, along 
which to measure the distance 

� 
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Box 12.3 NEWTONIAN GRAVITY A LA CARTAN, AND EINSTEINIAN GRAVITY: 
COMPARISON AND CONTRAST 

Property 

Idea in brief (formulations of the equivalence principle of very different scope) 

Idea even more briefly stated 

Consequence (tested to one part in 1011  by Roll-KrotkovDicke experiment) 

Another consequence 

Consequence of way light rays travel in real physical world? 

Summary of spacetime structure 

This structure expressed in mathematical language 

Newton- Cartan 

Laws of motion of free particles in a local, freely falling, nonrotating frame are identical to Newton's laws of motion as expressed in a gravity-free Galilean frame 
Point mechanics simple in a local inertial frame 
Test particles of diverse composition started with same initial position and same initial velocity follow the same world line ("definition of geodesic") 
In every local region, there exists a local frame ("freely falling frame") in which all geodesics appear straight (all I'"µ, = 0) 
Disregarded or evaded. All light rays have same velocity? Speed depend on motion of source? Speed depend on motion of observer? Possible to move fast enough to catch up with a light ray? No satisfactory position on any of these issues 
Stratified into spacelike slices ;  geometry in each slice Euclidean; each slice characterized by value of universal time (geodesic parameter) ; displacement of one slice with respect to another not specified; no such thing as a spacetime interval 

I'" µ;s, yes ; space time metric K,, ,,,, no, 
r; - o<P ( '  - I 2 3) ·  oo - --. l - , , , ox' 
all other I'" w vanish 

Einstein 

Laws of physics in a local, freely falling, nonrotating frame are identical with the laws of physics as formulated in special relativity in a Lorentz frame 
Everything simple in a local inertial frame 
Test particles of diverse composition started with same initial position and same initial velocity follow the same world line ("definition of geodesic") 
In every local region there exists a local frame ("freely falling frame") in which all geodesics appear straight (all I'"µ, = 0) 
Spacetime always and everywhere has local Lorentz character 

No stratification. Well-defined interval between every event and every nearby event; spacetime has everywhere local Lorentz character, with one local frame (specific space and time axes) as good as another ( other space and time axes) ; "homogeneous" rather than stratified 
I'" .;s have no independent existence ;  all derived from 

I'" = cr/3 _!._ ( oge , µv g 2 oxµ 
+ og13µ _ ogµ, ) ox" ox/3 

("metric theory of gravity") 
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z '  

y' l � ------- x ' 

� 
I =  10 

Figure 1 2 . 1 .  

The coordinate system carried by an orbital laboratory 
as it moves in a circular orbit about the Earth. 

z '  

I =  10 + w/2w 

Exercise 1 2 .4 .  CO N N E CTI O N  C O E F F I C I E NTS F O R  R OTAT I N G ,  

ACC E L E RATI N G  C O O R D I NATES 

Beginning with equation (12.4) for the connection coefficients of a Galilean coordinate system 
{xa(P)}, derive the connection coefficients (12.14) of the coordinate system {xa'W)} of 
equations ( 12.13). From this, verify that (12.15) are necessary and sufficient for {xa'(P)} to 
be Galilean. 

Exercise 1 2 . 5 .  E I NSTE I N 'S E LEVATO R  

Use the formalism of this chapter to discuss "Einstein's elevator"-i.e., the equivalence of 
"gravity" to an acceleration of one's reference frame. Which aspects of "gravity" are equiva
lent to an acceleration, and which are not? 

Exercise 1 2 . 6 .  G E O D E S I C  D EVIATI O N  ABOVE T H E  EARTH 

A manned orbital laboratory is put into a circular orbit about the Earth [radius of orbit = r0, 

angular velocity = w = (M/r0
3) 11 2-why?] An astronaut Jetisons a bag of garbage and 

watches it move along its geodesic path. He observes its motion relative to (non-Galilean) 
space coordmates {xi' (P)} which-see Figure 12. 1 -(1 )  are Euclidean at each moment of 
universal time [(il/iJxi') · (il/iJxk ') = o1k] ,  (2) have origin at the laboratory's center, (3) have 
il/ilx' pointing away from the Earth, (4) have il/ilx' and il/ily' in the plane of orbit. Use 
the equation of geodesic deviation to calculate the motion of the garbage bag in this coordi
nate system. Verify the answer by examining the Keplerian orbits of laboratory and garbage. 
Hints: (1) Calculate R a'f3 'Y'� ' in this coordinate system by a trivial transformation of tensorial 
components. (2) Use equation ( 12.14) to calculate r a'P'Y' at the center of the laboratory (i.e., 
on the fiducial geodesic). 

§12 .4. GEOMETRIC, COORD I NATE-FREE FORMULATION 

OF NEWTONIAN G RAVITY 

To restate Newton's theory of gravity in coordinate-independent, geometric language 
is the principal goal of this chapter. It has been achieved, thus far, with extensive 
assistance from a special class of coordinate systems, the Galilean coordinates. To 
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climb out of Galilean coordinates and into completely coordinate-free language is 
straightforward in principle. One merely passes from index notation to abstract 
notation. 

Example: Restate in coordinate-free language the condition r 0
af3 

= 0 of Galilean 
coordinates. 

Solution: Write r 0
af3 

= - (Vf3 dt, e°' ); the vanishing of this for all a means 
Vf3 dt = 0 for all /3, which in turn means Vu dt = 0 for all u. In words: the gradient 
of universal time is covariantly constant. 

By this process one can construct a set of coordinate-free statements about New
tonian spacetime (Box 12 . 4) that are completely equivalent to the standard, non
geometric version of Newton's gravitation theory. From standard Newtonian theory, 
one can deduce these geometric statements (exercise 12 .7); from these geometric 
statements, regarded as axioms, one can deduce standard Newtonian theory ( exercise 
12 .8). 

Exercise 12. 7. FROM NEWTON TO CARTAN 
From the standard ax10ms of Newtonian theory (last part of Box 12.4) derive the geometric 
ax10ms (first part of Box 12.4). Suggested procedure: Verify each of the geometric axioms 
by a calculation in the Galilean coordinate system. Make free use of the calculations and 
results in §12.1 . 

Exercise 12. 8 .  FROM CARTAN TO NEWTON 
From the geometric axioms of Newtonian theory (first part of Box 12.4) derive the standard 
axioms (last part of Box 12.4). Suggested procedure: ( I) Pick three orthonormal, spatial basis 
vectors (e; with e; · e k = o;k) at some event <!f 0 • Parallel transport each of them by arbitrary 
routes to all other events in spacetime. 

(2) Use the condition tJl (u, n) ei = 0 for all u and n [axiom (3)] and an argument hke 
that in § I 1.5 to conclude: ( a) the resultant vector fields e ;  are independent of the arbitrary 
transport routes, (b) V e ; = 0 for the resultant fields, and ( c) [ e ;, ek] = 0. 

(3) Pick an arbitrary "time line", which passes through each space slice (slice of constant 
t) once and only once. Parametrize it by t and select its tangent vector as the basis vector 
e0 at each event along it . Parallel transport each of these e0 's throughout its respective space 
slice by arbitrary routes. 

(4) From axiom (4) conclude that the resultant field is independent of the transport routes ; 
also show that the above construction process guarantees V;e0 = V0e; = 0 .  

(5) Show that [ea, ef3 ] = 0 for all pairs of  the four basis-vector fields, and conclude from 
this that there exists a coordinate system ("Galilean coordinates") in which ea = o/oxa (see 
§11.5 and exercise 9.9). 

(6) Show that in this coordinate system e; · ek = oik everywhere (space coordinates are 
Euclidean), and the only nonzero components of the connection coefficient are I' i00 ; here 
axioms (6) and (2) will be helpful. 

(7) From the self-adjoint property of the Jacobi curvature operator (axiom 7) show that 
R ioko = R k

0;0; show that in terms of the connection coefficients this reads I'ioo . k = F k
00. ; ;  

and from this conclude that there exists a potential tfJ such that I' i00 = <P,; · (8) Show that the geometric field equation (axiom 5) reduces to Poisson's equation 
V 2t/J = 4'1Tp . 

(9) Show that the geodesic equation for free fall (ax10m 8) reduces to the Newtonian 
equation of motion d2x i /dt2 + tfJ i = 0 . 

(continued on page 302) 

Coo[dinate-free, geometric 
axioms for Newton 's theory 
of gravity 

EXE R C I S ES 
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Box 12.4 NEWTONIAN GRAVITY: GEOMETRIC FORMULATION 
CONTRASTED WITH STANDARD FORMULATION 

Geometric Formu lat ion 

Newton's theory of gravity and the properties of Newtonian spacetime can be derived 
from the following axioms. (For derivation see exercise 12 .8.) 

(I) There exists a function t called "universal time", and a symmetric covariant 
derivative V (with associated geodesics, parallel transport law, curvature opera
tor, etc.). 

(2 ) The I-form dt is covariantly constant; i.e., 

Vu dt = 0 for all u. 

[Consequence: if w is a spatial vector field (i.e., w lies everywhere in a surface of 
constant t ;  i.e. ( dt, w )  = 0 everywhere), then Vu w is also spatial for every u, 

( dt, Vu w )  = Vu ( dt, w )  - (Vu dt, w ) = O.] ..__, ..__, 

(0 alway) to always] 

(3) Spatial vectors are unchanged by parallel transport around infinitesimal closed 
curves; i.e., 

'!Jl(u, n) w = 0 if w is spatial, for every u and n. 

(4) All vectors are unchanged by parallel transport around infinitesimal, spatial, 
closed curves; i.e., 

'!Jl( v, w) = 0 for every spatial v and w. 

( 5) The Ricci curvature tensor, Raf:! _ Rµ
aµf:J , has the form 

Ricci = 4'7Tp dt ® dt, 

where p is the density of mass. 
(6) There exists a metric " · "  defined on spatial vectors only, which is compatible 

with the covariant derivative in this sense: for any spatial w and v, and for 
any u whatsoever, 

[Note: axioms (1), (2 ), and (3) guarantee that such a spatial metric can exist; 
see exercise 12 .9.] 
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(7) The Jacobi curvature operator j(u, n), defined for any vectors u, n, p by I j(u, n)p = 
2 [

?ll(p, n)u + ?ll(p, u)n], is "self-adjoint" when operating on spatial vectors; i.e., 
v · [ j(u, n)w] = w · [ j(u, n)v] for all spatial v, w; and for any u, n. 

30 1 

(8) "Ideal rods" measure the lengths that are calculated with the spatial metric; "ideal clocks" measure universal time t (or some multiple thereof ) ;  and "freely falling particles" move along geodesics of V. [Note : this can be regarded as a definition of "ideal rods," "ideal clocks," and "freely falling particles." A more complete theory ( e.g., general relativity ; see § 16.4) would predict in advance whether a given physical rod or clock is ideal, and whether a given real particle is freely falling. ]  Note : For an alternative but equivalent set of axioms, see pp. 106-107 of Trautman (1965) .  
Standard Form u l at ion The following standard axioms are equivalent to the above. ( I )  There exist a universal time t, a set of Cartesian space coordinates x i ( called "Galilean coordinates"), and a Newtonian gravitational potential <P. (2) The density of mass p generates the Newtonian potential by Poisson's equation, 
(3) The equation of motion for a freely falling particle is 
(4) "Ideal rods" measure the Galilean coordinate lengths; "ideal clocks" measure universal time. 



The pr inc ip le  of genera l  cova r iance has no fo rc ib le  content 
Twent ieth-centu ry v iewpo int j udges a theory by s imp l ic ity of i ts geometr ic form u lat ion 
E i nste in 's theory of g rav i ty is s imp le ;  Newton 's is complex 
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Exercise 12. 9. SPATIAL METRIC ALLOWED BY OTHER AXIOMS Show that the geometric axioms ( 1 ) ,  (2) ,  and (3 )  of Box 12 .4 permit one to introduce a spatial metric satisfying axiom (6) .  Hint: Pick an arbitrary spatial basis {e ; }  at some event. Define it to be orthonormal, e; · ek = oik ' Extend this basis through all spacetime by the method used in ( I )  of exercise 12 . 8 .  Define e; · ek = oik everywhere in spacetime for this basis. Then prove that the resulting metric satisfies the compatibility condition of axiom (6) .  
Exercise 12 .10. SPACETIME METRIC FORBIDDEN BY OTHER AXIOMS Show that in Newtonian spacetime it is impossible to construct a nondegenerate spacetime metric g, defined on all vectors, that is compatible with the covariant derivative in the sense that Vug(n, p) = g(V.,n, p) + g(n, Vup) . ( 1 2 .20) 
Note: to prove this requires mastery of the material in Chapter 8 or 1 3 ;  so study either 8 or 1 3  before tackling 1t. Hint: Assume that such a g exists. Show, by the methods of exercise 12 . 8 ,  that in a Galilean coordinate system the spatial components gik are independent of position in spacetime. Then use this and the form of R "-

/J
Y 8 in Galilean coordinates to prove 

R;oko and - Ro;ko are not identical, a result that conflicts with the symmetries of the Riemann tensor [eq. (8 .45)] in a manifold with compatible metric and covariant derivative. 
§ 1 2 .5 .  TH E G EO METRIC VIEW OF P HYSICS: 

A CRITIQU E An important digression is in order. "Every physical quantity must be describable by a (coordinate-free) geometric object, and the laws of physics must all be expressible as geometric relationships between these geometric objects." This view of physics, sometimes known as the 
"principle of general covariance," pervades twentieth-century thinking. But does it have any forcible content? No, not at all, according to one viewpoint that dates back to Kretschmann (1917) .  Any physical theory originally written in a special coordinate system can be recast in geometric, coordinate-free language. Newtonian theory is a good example, with its equivalent geometric and standard formulations (Box 12.4). Hence, as a sieve for separating viable theories from nonviable theories, the principle of general covariance is useless. But another viewpoint is cogent. It constructs a powerful sieve in the form of a slightly altered and slightly more nebulous principle: "Nature likes theories that are simple when stated in coordinate-free, geometric language." * According to this principle, Nature must love general relativity, and it must hate Newtonian theory. Of all theories ever conceived by physicists, general relativity has the simplest, most elegant geometric foundation (three axioms: (1) there is a metric; (2) the metric is governed by the Einstein field equation G = 8wT; (3) all special relativistic laws of physics are valid in local Lorentz frames of metric] . By contrast, what diabolically 

* Admittedly, this principle is anthropomorphic : twentieth-century physicists like such theories and 
even find them effective in correlating observational data. Therefore, Nature must like them too ! 



§ 1 2  5 GEOMETRIC VIEW OF PHYSICS A CRITIQUE 303  clever physicist would ever foist on man a theory with such-a complicated geometric foundation as Newtonian theory? Of course, from the nineteenth-century viewpoint, the roles are reversed. It judged simplicity of theories by examining their coordinate formulations. In Galilean coordinates, Newtonian theory is beautifully simple. Expressed as differential equations for the metric coefficients in a specific coordinate system, Einstein's field equations (ten of them now!) are horrendously complex. The geometric, twentieth-century view prevails because it accords best with experimental data (see Chapters 38-40) . In Chapter 17 it will be applied ruthlessly to make Einstein's field equation seem compelling. 
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CHAPTER 1 3 

R I EMAN N IAN G EO M ETRY: 

M ETR I C  AS FO U N DATI O N  OF ALL 

This cha pter is entirely Track 2 .  
Cha pters 9 - 1 1 are n ecessa ry 
preparation for it .  It wi l l  be 
needed as preparation for 

( 1 )  the second half  of 
Chapter 1 4  (ca lculation 
of curvatu re) , and 

(2)  the deta i ls,  but not  the 
message, of Chapter 1 5  
(Bianchi  identities) . 

§ 1 3 . 6  (proper reference 
frame) will be useful 
throughout the appl ications of 
gravitation theory (Cha pters 
1 8-40) . 

Philosophy is written in this great book (by which I mean the 
universe) which s tands always open to our view, but it canno t  
be unders tood unless one firs t  learns how t o  comprehend the 

language and interpre t the symbols in which it is written, and its 
symbols are triangles, circles, and other geometric figures, 

without which it is not  humanly possible to comprehend even 
one word of it; without these one wanders in a dark labyrin th . 

GALI LEO GAL I LE I  ( 1 623)  

§ 1 3. 1 .  N EW FEATURES IMPOSED ON G EO METRY BY 

LOCAL VALIDITY OF SPECIAL RELATIVITY 

Freely falling particles (geodesics) define and probe the structure of spacetime. This 
spacetime is curved. Gravitation is a manifestation of its curvature. So far, so good, 
in terms of Newton's theory of gravity as translated into geometric language by 
Cartan. What is absolutely unacceptable, however, is the further consequence of 
the Cartan-Newton viewpoint (Chapter 12 ): stratification of spacetime into slidable 
slices, with no meaning for the spacetime separation between an event in one slice 
and an event in another. 

.... � 

Of all the foundations of physics, none is more firmly established than special 
relativity; and of all the lessons of special relativity none stand out with greater 
force than these. (I) Spacetime, far from being stratified, is homogeneous and 
isotropic throughout any region small enough ("local region") that gravitational 
tide-producing effects ("spacetime curvatures") are negligible. (2 ) No local experi
ment whatsoever can distinguish one local inertial frame from another. (3) The speed 
of light is the same in every local inertial frame. (4) It is not possible to give 
frame-independent meaning to the separation in time ("no Newtonian stratifica-

Constraints imposed on 
spacet1me by special relativity 
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tion"). ( 5) Between every event and every nearby event there exists a frame
independent, coordinate-independent spacetime interval ("Riemannian geometry"). 
(6) Spacetime is always and everywhere locally Lorentz in character ("local Lorentz 
character of this Riemannian geometry"). 

What mathematics gives all these physical properties? A metric; a metric that is Metric · the instrument which 

locally Lorentz (§§13.2 and 13.6). All else then follows. In particular, the metric imposes the conStraints 

destroys the stratified structure of Newtonian spacetime, as well as its gravitational 
potential and universal time coordinate. But not destroyed are the deepest features 
of Newtonian gravity: (1) the equivalence principle (as embodied in geodesic de-
scription of free-fall motion, §§ 13.3 and 13. 4); and (2 ) spacetime curvature (as 
measured by tidal effects, § 13. 5). 

The skyscraper of vectors, forms, tensors (Chapter 9), geodesics, parallel transport, 
covariant derivative (Chapter IO), and curvature (Chapter 11) has rested on crum
bling foundations-Newtonian physics and a geodesic law based on Newtonian 
physics. But with metric now on the scene, the whole skyscraper can be transferred 
to new foundations without a crack appearing. Only one change is necessary: the 
geodesic law must be selected in a new, relativistic way; a way based on metric 
(§§ 13.3 and 13. 4). Resting on metric foundations, spacetime curvature acquires 
additional and stronger properties (the skyscraper is redecorated and extended), 
which are studied in §13. 5 and in Chapters 14 and 1 5, and which lead almost 
inexorably to Einstein's field equation. 

§13 . 2 .  METRI C 

A spacetime metric; a curved spacetime metric; a locally Lorentz, curved spacetime 
metric. This is the foundation of spacetime geometry in the real, physical world. 
Therefore take a moment to recall what "metric" is in three contrasting languages. 

In the language of elementary geometry, "metric" is a table giving the interval 
between every event and every other event (Box 13. I and Figure 13 .I). In the 
language of coordinates, "metric" is a set of ten functions of position, gµv(x"), such 
that the expression 

(13.1) 

gives the interval between any event x"  and any nearby event x"  + Llx" .  In the 
language of abstract differential geometry, metric is a bilinear machine, 
g _ ( . . .  · . . .  ), to produce a number ["scalar product g(u, v) (u · v)"] out of two 
tangent vectors, u and v. 

The link between the abstract, machine viewpoint and the concrete coordinate 
viewpoint is readily exhibited. Let the tangent vector 

( _ Llx "e" = Llx"(a/ax") 

represent the displacement between two neighboring events. The abstract viewpoint 
gives 

Lls 2 ( · (  _ g(Llx 1<el " Llx"e v) = Llx l' Llx"g(eµ, e v) 
(continued on page 310) 

Metric described in three 
languages 
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Box 13 .1 METRIC DISTILLED FROM DISTANCES 

Raw Data on D istances 

Let the shape of the earth be described as in Figure 13. I, by giving distances between 
some of the principal identifiable points: buoys, ships, icebergs, lighthouses, peaks, 
and flags: points to a total of n = 2 X 107 • The total number of distances to be 
given is n(n - I )/2 = 2 X 1014 . With 2 00 distances per page of printout, this means 

First Second Distance First Seco, point point (Nautical miles) point pr 

9,3 16,434 14, 1 1 7, 103 1 4 1 0.3 1 6  9,3 1 6,434 
9,3 1 6,434 14, 1 1 7, 1 04 1 8 1 2.7 1 7  9,3 16,41d 
9,3 1 6,434 14, 1 1 7, 1 05 1 629 29 1 9Y 
9 'l l f  A "l ,t  , ,  

1012 pages weighing 6 g each, or 6 X 106 metric tons of data. With 6 tons per truck 
this means 106 truckloads of data; or with one truck passing by every 5 seconds, 

� 

5 X 10' seconds or 2 months of night and day traffic to get ;n the data. 

� � � 

F i rst D isti l lat ion : D istances to N earby Poi nts O n ly 

Get distances between faraway points by adding distances covered on the elementary 
short legs of the trip. Boil down the table of distances to give only the distance 
between each point and the hundred nearest points. Now have 100 n = 2 X 109 

distances, or 2 X 109 /2 00 = 107 pages of data, or 60 tons of records, or 10 truckloads. 

Second D ist i l lat ion : D istances Between N earby 

Poi nts i n  Terms of M etric 

Idealize the surface of the earth as smooth. Then in any sufficiently limited region 
the geometry is Euclidean. This circumstance has a happy consequence. It is enough 
to know a few distances between the nearby points to be able to determine all the 
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( 1 3 )  
-�=====-=-==...;- --t 3 ( 10 )  O I 

/ (23)  (20) / 

2 
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distances between the nearby points. Locate point 2 so that (102) is a right triangle; thus, (12)2 = (10)2 + (20)2 • Consider a point 3 close to 0. Define x(3) = (13) - (10) and 
y(3) = (23) - (20). Then the distance (03) does not have to be supplied independently; it can be calculated from the formula* (03)2 = [x(3)]2 + [ y(3)]2. Similarly for a point 4 and its distance (04) from the local origin 0. Similarly for the distance (mn) between any two points m and n that are close to 0 :  

(mn)2 = [x(m) - x(n)]2 + [ y(m) - y(n)]2 . Thus it is only needful to have the distance ( l m) (from point 1) and (2 m) (from point 2) for each point m close to 0 (m = 3, 4, ... , N + 2) to be able to work out 
* If the distance (03) is given arbitrarily, the resulting four-vertex figure will burst out of the plane. 

Regarded as a tetrahedron in a three-dimensional Euclidean space, it has a volume given by the formula 
of Niccolo Fontana Tartaglia ( 1 500- 1557), generalized today (Blumenthal 1 953)  to 

C"me of ) 
n_-dimensiona l  ( - 1 )n +  1 112 1 simplex = ( ) -
spanned by 2n n '  

( 11 + I )  points 

0 I 
0 

( 10)2 

(n0)2 

I I 1/2 

(0 1 )2 (02)2 (On)2 

0 ( 1 2)2 ( 1 11 )2 

(n I )2 (n2)2 0 
which reduces for three pomts to the standard textbook formula of Hero of Alexandria (A D 62 to 
A .D .  1 50) .  

area = { s[s - (0 1 )1[s - (02)1[s - ( 1 2)] } 112 , 
2s = (0 1 )  + (02) + ( 12) ,  

for the area of a triangle. Conversely, if the four points are to remain in two-dimensional Euclidean 
space, the tetrahedron must collapse to zero volume. This requirement supplies one condition on the 
one distance (03) .  It simplifies the discussion of this condition to take (03) small and ( 1 02) to be a right 
triangle, as above. However, the general principle 1s independent of such approximations, and follows 
directly from the extended H ero-Tartaglia formula. It is enough in a locally Euclidean or Lorentz space 
of n dimensions to have laid down (n + I) fiducial points 0, I ,  2, . , n, and to know the distance of 
every other point j, k, . . .  from these fiducial points, in order to be able to calculate the d istance of 
these points), k, . from one another ("distances between nearby points in terms of coordinates" , metric 
as distillation of distance data). 
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Box 13. 1 (continued) its distance from every point n close to 0. The prescnphon to determine the 
N(N - 1 )/2 distances between these N nearby points can be reexpressed to advantage in these words: ( I )  each point has two coordinates, x and y; and (2) the distance is given in terms of these coordinates by the standard Euclidean metric; thus 

(Lls)2 = (Llx)2 + (Lly)2 . Having gone this far on the basis of "distance geometry" (for more on which, see Robb 1914 and 1936), one can generalize from a small region (Euclidean) to a large region (not Euclidean). Introduce any arbitrary smooth pair of everywhere-independent curvilinear coordinates x k, and express distance, not only in the immediate neighborhood of the point 0, but also in the immediate neighborhood of every point of the surface ( except places where one has to go to another coordinate patch; at least two patches needed for 2-sphere) in terms of the formula 
Thus out of the table of distances between nearby points one has distilled now five numbers per point (two coordinates, x1, x2, and three metric coefficients, g11 , g12 = g21 , and gzz), down by a factor of 100/5 = 20 from what one had before (now 3 tons of data, or half a truckload). 
Third Distillation: Metric Coefficients Expressed as Analytical 

Functions of Coordinates Instead of giving the three metric coefficients at each of the 2 X 107 points of the surface, give them as functions of the two coordinates x1, x2, in terms of a power series or an expansion in spherical harmonics or otherwise with some modest number, say 100, of adjustable coefficients. Then the information about the geometry itself (as distinct from the coordinates of the 2 X 107 points located on that geometry) is caught up in these three hundred coefficients, a single page of printout. Goodbye to any truck! In brief, metric provides a shorthand way of giving the distance between every point and every other point-but its role, its justification and its meaning lies in these distances and only in these many distances. 
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Figure 1 3 . 1 .  

Distances determine geometry. Upper left: Sufficiently great tidal forces, applied to the earth with tailored 
timing, have deformed it to the shape of a tear drop. Lower left: This tear drop is approximated by 
a polyhedron built out of triangles ("skeleton geometry") . The approximation can be made arbitrarily 
good by making the number of triangles sufficiently great and the size of each sufficiently small. Upper 
right: The geometry in each triangle is Euclidean: givmg the three edge lengths fixes all the features 
of the figure, including the indicated angle. Lower nght: The triangles that belong to a given vertex, 
laid out on a flat surface, fail to meet. The deficit angle measures the amount of curvature concentrated 
at that vertex on the tear-drop earth. The sum of these deficit angles for all vertices of the tear drop 
equals 4?T. This "Gauss-Bonnet theorem" is valid for any figure with the topology of the 2-sphere; for 
the simplest figure of all, a tetrahedron, four vertices with a deficit angle at each of 1 80 ° are needed-3 
triangles X 60 ° per triangle available = 1 80 ° deficit. In brief, the shape of the tear drop, in the given 
skeleton-geometry approximation, is determined by its 50 visible edge lengths plus, say, 32 more edge 
lengths hidden behind the figure, or a total of 82 edge lengths, and by nothing more ("distances determine 
geometry") . "Metric" tells the distance between every point and every nearby point. If volcanic action 
raises Rejkjavtk, the distances between that Icelandic capital and nearby pomts increase accordingly; 
distances again reveal shape. Conversely, that there is not a great bump on the earth in the vicinity 
of Iceland, and that the earth does not now have a tear-drop shape, can be unambiguously established 
by analyzing the pattern of distances from point to point in a sufficiently well-distributed network of 
points, with no call for any observations other than measurements of distance. 
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for the interval between those events; comparison with the coordinate viewpoint 
[equation (13.1)] reveals 

(13.2 ) 

(standard equation for calculating components of a tensor). 
Just as modern differential geometry replaces the old style "differential" df by 

the "differential form" df (Box 2 .3, page 63), so it also replaces the old-style "line 
element" 

ds2 = gµ, dx µ dx• = ("interval between x "' and x "' + dx "'") 

by the bilinear machine ("metric tensor") 

(13.3) 

(13.4) 

The output g((, () of this machine, for given displacement-vector input, is identical 
to the old-style interval. Hence, ds 2 = gµ, dxµ ® dx' represents the interval of an 
unspecified displacement; and the act of inserting ( into the slots of ds 2 is the act 
of making explicit the interval g((, () = gµ, Llx µ Llx• of an explicit displacement. 

In curved spacetime with metric, just as in flat spacetime with metric (§ 2 .5), a 
particular I-form 'ii corresponds to any given tangent vector u:  

'ii is  defined by "('ii, v )  _ g(u, v) for all v" (13.5) 

("representation of the same physical quantity in the two alternative versions of 
vector and I-form"; "corresponding representations" as (J)-tensor and as (�)-tensor). 
Example: the I-form 'ii corresponding to a basis vector u = e"' has components 

thus 

u13 = ('ii, e13 ) g(u, e13) = g(e"', e13) = g"'13 ; 

[standard way jJ 
J 

t - �equation (13.2 )] 
to compute u13 �by u = e"'] 

[definition (13.5) 

g"'13 w f3 is the I-form e"' corresponding to e"'. (13.6) 

Also as in flat spacetime (§3.2 ), a tensor can accept either a vector or a I-form into 
any given slot 

S('ii, u, v) S(u, u, v). (13.7) 

Equivalently, in component language, the indices of a tensor can be lowered with 
the covariant components of the metric 

S/y = S(e"', w/3 , e y) = S(e"', w/3 , e y) = S(gaµwµ, wf3 , e y) = gaµ Sµf3
r 

l[definition of S/y] l[by equation (13.6)] 

(13.8) 
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The basis vectors { e,, } can be chosen arbitrarily at each event. Therefore the 
corresponding components g,,13 of the metric are quite arbitrary (though symmetric : 
g,,13 = g13 ,,). But the mixed components g" 13 are not arbitrary. In particular, equations 
(1 3.5) and ( 1 3.7) imply 

g(u, v) g(u, v) (ii, v ). ( 1 3.9) 

Therefore one concludes that the metric tensor in mixed representation is identical Mixed and contravariant 
with the unit matrix : components of metric 

( 1 3. 10) 

This feature of the metric in turn fixes the contra variant components of the metric: 

g"µ
gµ/3 = g"13 = 8"13 ; 

l["lowering an index" of g"µ] 

( 1 3.1 1 )  

i.e., 

l lg"/3 1 1  is the matrix inverse of l lg,,13 1 1 . ( 1 3.1 2 ) 

This reciprocity enables one to undo the lowering of tensor indices (i.e., raise indices) Raising indices 
with g"/3 : 

0µ/3 = 8µ <'a/3 = g
µ•g 

<'a/3 = g
µv <' f3 

.1.) y 0: .1.l y PO: ,.} y Ll p y •  

The last two paragraphs may be summarized in brief: 

(I) g"13 = 8"13 ; 
(2 ) l lg"/3 1 1  = l lg,,13 1 1 -1 ; 

(3) tensor indices are lowered with g,,13 ; 
(4) tensor indices are raised with g"/3. 

( 1 3.1 3) 

In this formalism of metric and index shuffling, a big question demands attention : 
how can one tell whether the metric is locally Lorentz rather than locally Euclidean 
or locally something else? Of course, one criterion (necessary; not sufficient!) is 
dimensionality-a locally Lorentz spacetime must have four dimensions. (Recall the 
method of § 1 .2 to determine dimensionality.) Confine attention, then, to four
dimensional manifolds. What else must one demand? One must demand that at 
every event (j) there exist an orthonormal frame ( orthonormal set of basis vectors 
{ e0J)  in which the components of the metric have their flat-spacetime form 

g0,13 ea · e� = 11,,13 diagonal ( - 1 , 1 , 1 , 1 ). (13.1 4) 

To test for this is straightforward ( exercise 1 3.1 ). ( 1 )  Search for a timelike vector 
u (u · u < 0). If none exist, spacetime is not locally Lorentz. If one is found, then 
(2 ) examine all non-zero vectors v perpendicular to u. If they are all spacelike 
( v · v > 0), then spacetime is locally Lorentz. Otherwise it is not. 

Metric must be locally 
Lorentz 
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Exercise 13.1. TEST WHETHER SPACETIME IS LOCAL LORENTZ Prove that the above two-step procedure for testing whether spacetime is locally Lorentz is valid :  i .e . ,  prove that if the procedure says "yes," then there exists an orthonormal basis with g;,p = Y/a/3 at the event in question; if it says "no," then no such basis exists . 
Exercise 13.2. PRACTICE WITH METRIC A four-dimensional manifold with coordinates v, r, 0, cf, has line element (old-style notation) 

ds 2 = - ( 1 - 2M/r) dv2 + 2 du dr + r 2(d02 + sin20 dcp2) ,  

corresponding to metric (new-style notation) 
ds 2 = - (l - 2M/r) du ® du + du ® dr + dr ® du + r2(d0 ® d0 + sin20 def, ® def,), 

where M is a constant. ( a) Find the "covariant" components g"13 and "contravariant" components g"/3 of the metric in this coordinate system. [Answer: gvv = - ( I  - 2M/r), gv, = g,v = l, g8 8  = r2 , g¢¢ = r2 sin2 0 ;  all other ga/3 vanish; gvr = grv = l, grr = ( I  - 2M/r), g 8 8  = r-2, g¢¢ = r-2 sin-20 ,  all other g"/3 vanish. ] (b) Define a scalar field t by 
t = v - r - 2M ln[(r/2M) - l ] . 

What are the covariant and contravariant components (u" and u") of the ! -form 'ii =  dt? What is the squared length u 2 = u • u, of the corresponding vector? Show that u is timelike in the region r > 2M. [Answer: uv = l, u, = - 1 /(1  - 2M/r), u 8 = u¢ = O ; u v = - 1 /( l  -
2M/r), u '  = 0, u 8 = u 1' = O ; u 2 = - 1 /(l - 2M/r).] ( c) Find the most general non-zero vector w orthogonal to u in the region r > 2M, and show that it is spacelike. Thereby conclude that spacetime is locally Lorentz in the region 
r > 2M. [Answer: Since w · u = wau" = - wvf( I - 2M/r), wv must vanish, but w,, w8 , w¢ are arbitrary, and w2 = ( 1  - 2M/r) w,2 + r-2wi + r-2 sin-20w/ > O . ] ( d) Let t, r, 0, cf, be new coordinates for spacetime. Find the line element in this coordinate system. [Answer: This is the "Schwarzschild" line element 

ds 2 = - ( 1  - 2M ) dt2 + dr2 
+ r2 d02 + r2 sin20 dcp2 . ] r l - 2M/r 

(e) Find an orthonormal basis, for which g;,p = Y/a/3 in the region r > 2M. [Answer : 
e 0 - ( 1  - 2M/r)-112 o/o t, e , ( l  - 2M/r)11 2 o/or, e 8 = r-1 0/08, e :;, = (r sin 8)-1 o/ocp.] 

§13 . 3 .  CONCORD BETWEEN GEODESI CS OF 

CURVED SPACETI ME GEOMETRY AND STRAI G HT 

LI NES OF LOCAL LORENTZ GEOMETRY More could be said about the mathematical machinery and physical implications of "metric," but an issue of greater urgency presses for attention. What has metric ( or spacetime interval) to do with geodesic ( or world line of test particle)? Answer : 
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Two mathematical objects ("straight line in a local Lorentz frame" and "geodesic 
of the over-all global curved spacetime geometry") equal to the same physical object 
("world line of test particle") must be equal to each other ("condition of consist
ency"). As a first method to spell out this consistency requirement, examine the two 
mathematical representations of the world line of a test particle in the neighborhood 
of a given event t!l0 . The local-Lorentz representation says : 

"Pick a local Lorentz frame at t!l0 • [As spelled out in exercise 1 3 .3 ,  such a local 
Lorentz frame is the closest thing there is to a global Lorentz frame at t!l 0 ; i.e., 
it is a coordinate system in which 

ga13W 0) = Y/af3 (flat-spacetime metric), 

ga:13 , y(t!lo) = O, 

ga/3 , y8(P 0) f:. 0 except in special cases, such as flat space.] 

The world line in that frame has zero acceleration, 

d2x a; dT2 = 0 at t!l O ("straight-line equation"), 

where T is proper time as measured by the particle's clock." 
The geodesic representation says 

( 1 3 .1 5a) 

( 1 3 .1 5b) 

( 1 3.1 5c) 

( 1 3 .1 6) 

"In the local Lorentz frame, as in any coordinate frame, the world line satisfies 
the geodesic equation 

( 13 .17)  

(T is an affine parameter because i t  is  time as measured by the test particle's clock)." 
Consistency of the two representations for any and every choice of test particle ( any 
and every choice of dx a / dT at t!l 0) demands 

ra
13 y(t!l0) = 0 in any local Lorentz frame [coordinate 

system satisfying equations ( 1 3 .1 5) at t!l0] ; 
( 1 3 .1 8) 

i.e., it demands that every local Lorentz frame is a local inertial frame. (On local 
inertial frames see § 1 1 .6.) In such a frame, all local effects of "gravitation" disappear. 
That is the physical shorthand for ( 1 3  .1 8). 

One does not have to speak in the language of a specific coordinate system when 
one demands identity between the geodesic (derived from the ra

13 y) and the straight 
line of the local Lorentz geometry (gµv)- The local Lorentz specialization of coordi
nates may be the most immediate way to see the physics ("no local effects of 
gravitation"), but it is not the right way to formulate the basic mathematical re
quirement in its full generality and power. The right way is to demand 

V g = 0 ("compatibility of g and V "). ( 1 3.1 9) 

Stated in the language of an arbitrary coordinate system, this requirement reads 

( 1 3 .1 9') 

Local-Lorentz description of 
straight lines 

G eodesic description of 
straight lines 

Condit ion of consistency 
r a 

/JY = 0 in local Lorentz 
frame 

Consistency reformulated 
Vg = 0 .  
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That this covariant requirement is fulfilled in every coordinate system follows from 
its validity in one coordinate system: a local Lorentz frame. (The first term in this 
equation, and the last two terms, are separately required to vanish in the local 
Lorentz frame at point q,P

0
-and required to vanish by the physics.) From Vg = 0, 

one can derive both the abstract chain rule 

(13.2 0) 

(Exercise 13.4) and the following equations for the connection coefficients in any 
frame in terms of (I) the metric coefficients, ga/3 

= ea · e 13 , and (2 ) the covariant 
commutation coefficients 

of that frame: 

ra
/3 Y  

= gaµ rµf3y (definition of I'µ13 y), 

1 I'µf3y = 2 (gµ/3 , Y 
+ Cµf3y + gµY ,/3 

+ Cµy/3 
- g13 y ,µ - C13 yµ) 

= � (gµ/3 , Y 
+ gµy,/3 

- g13 y,µ) in any coordinate frame. 

(See Exercise 13.4). 

(13.2 1) 

(13.2 2 )  

(13.2 3) 

Equations (13.23) are the connection coefficients required to make the geodesics of 
curved spacetime coincide with the straight lines of the local Lorentz geometry. And 
they are fixed uniquely; no other choice of connection coefficients will do the job!  

Summary: in curved spacetime with a local Lorentz metric, the following seemingly 
different statements are actually equivalent: (I) the geodesics of curved spacetime 
coincide with the straight lines of the local Lorentz geometry; (2 ) every local Lorentz 
frame [coordinates with ga13W0) = 'rla/3 ' ga13 _ y(q,P0) = O] is a local inertial frame 
[ r a 

/3 Y
(q,P 0) = O]; (3) the metric and covariant derivative satisfy the compatibility 

condition Vg = O; (4) the covariant derivative obeys the chain rule (13. 2 0); ( 5) the 
connection coefficients are determined by the metric in the manner of equations 
(13.2 3). A sixth equivalent statement, derived in the next section, says (6) the 
geodesics of curved spacetime coincide with world lines of extremal proper time. 

Exercise 13.3. MATHEMATICAL REPRESENTATION OF LOCAL 
LORENTZ FRAME 

By definition, a local Lorentz frame at a given event 90 is the closest thing there to a global 
Lorentz frame. Thus, it should be a coordinate system with gµ,('!f 0) = 1/µ,, and with as many 
derivatives of gµ, as possible vanishing at '!I 0 • Prove that there exist coordinates in which 
gµ,('!f 0) = 1/µv and gµ,j'!f 0) = 0, but that gµ,, pc,('!f 0) cannot vanish in general. Hence, such 
coordinates are the mathematical representation of a local Lorentz frame. [Hint : Let { xo:' ('!!)} 
be an arbitrary but specific coordinate system, and {xµ('!f)}  be a local Lorentz frame, both 
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with origins at q> 0 . Expand the coordinate transformation between the two in powers of xP-

, I I X" = M"' xP- + - N"' xP-x• + - P"' xP-x•xP + µ, 2 µ,v 6 µ,vp .
. . , 

and use the transformation matrix L"''µ, = ox"''/oxP- to get gµ,,('!F0) , gµ,,j'!F0) ,  and gµ,, , paWo) 
in terms of ga'/3' and its derivatives and the constants M" µ,, N"' µ,v ' P"' µ,vp • Show that whatever 
ga'/3' may be (so long as it is nonsingular, so g"'/3 ' exists ! ) ,  one can choose the 16 constants 
M" µ, to make gµ,, = 1/µ,, (ten conditions) ; one can choose the 4 X 10 = 40 constants NY µ,v 
to make the 1 0  X 4 = 40 gµ,,j'!F 0) vanish ; but one cannot in general choose the 4 X 20 = 
80 P"µ,vp to make the 10 X 10 = 100 gµ,, , pa vanish.] 

Exercise 13 .4 .  CONSEQUENCES OF COMPATIBILITY BETWEEN g AND V 

(a) From the condition of compatibility Vg = 0, derive the chain rule ( 1 3 .20). 
(b) From the condition of compatibility V g = 0 and definitions ( 1 3 .2 1 )  and ( 1 3 .22) ,  derive 

equation ( 1 3 .23) for the connection coefficients. [Answer : See exercise 8 . 1 5 ,  p. 2 16 . ]  

§13 .4. GEODESI CS AS WORLD LI NES OF 

EXTREMAL PROPER T IME 

In a local Lorentz frame, it is easy to distinguish a world line that is straight from 
one that is not. Position the Lorentz frame and so orient it that the starting point 
of the world line, rl, lies at the origin and the end point, !'13, lies at x = 0, y = 0, 
z = 0, t = T. As an example of a nonstraight world line, consider passage at uniform 
velocity from r1 to point rJ> with coordinates (½ T; 0, 0, ½R) and from there again with 
uniform velocity to point !'13. The lapse of proper time from start to finish ("length 
of world line") is 

Thus the lapse of proper time is diminished from its straight-line value, and dimin
ished moreover for any choice of R whatsoever, except for the zero or straight-line 
value R = 0. As for this simple nonstraight curve, so also for any other nonstraight 
curve: the lapse of proper time between r1 and !'B is less than the straight-line lapse 
(Exercise 6.3). Thus, in flat spacetime, extremal length of world line is an indicator 
of straightness. 

Any local region of the curved spacetime of the real, physical world is Lorentz 
in character. In this local Lorentz geometry, it is easy to set up Lorentz coordinates 
and carry out the extremal-length analysis just sketched to distinguish between a 
straight line and a nonstraight line: 

qJ qJ 

'T = J d-r = J ( -'IJµ,v dx P- dx•)11 2 

(l (l 

( 
a maximum for straight line 

) = as compared to any variant of . 
the straight line 

( 1 3. 2 4) 

In f lat spacetime, straight 
lines have extremal length 

Extremal length in curved 
spacet1 me 



Proof that curves of extremal 
length are geodesics 
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Such a test for straightness can be carried out separately in each local Lorentz region 
along the world line, or, with greater efficiency, it can be carried out over many 
local Lorentz regions simultaneously, i.e., over a region with endpoints r1 and '.'l3 
so widely separated that no single Lorentz frame can possibly contain them both. 
To carry out the analysis, one must abandon local Lorentz coordinates. Therefore 
introduce a general curvilinear coordinate system and find 

J6/3 J6j/ T = d-r = ( -gµ.v dx µ. dx•)11 2 

{l {l 

(

an extremum for timelike world line that 

) 
is straight in each local Lorentz frame 

- along its path, as compared to any "nearby " · 
variant of this world line 

(13.2 5) 

In the real world, the path of extremal -r, being straight in every local Lorentz frame, 
must be a geodesic of spacetime. 

Notice that the word "maximum " in equation (13.2 4) has been replaced by 
"extremum " in the statement (13.2 5). When {l and q3 are widely separated, they 
may be connected by several different geodesics with differing lapses of proper 
time (Figure 13.2 ). Each timelike geodesic extremizes -r with respect to nearby de
formations of itself, but the extremum need not be a maximum. When several 
distinct geodesics connect two events, the typical one is not a local maximum ("moun
tain peak ") but a saddle point ("mountain pass ") in such a diagram as Figure 13. 2 
or 13.3. 

Concord between locally straight lines (lines of extremal -r) and geodesics of curved 
spacetime demands that timelike geodesics have extremal proper length. If so, then 
any curve x µ.(A) between {l (where A = 0) and !'13 (where A = 1) that extremizes -r 
should satisfy the geodesic equation. To test for an extremal by comparing times, 
pick a curve suspected to be a geodesic, and deform it slightly but arbitrarily: 

original curve, xµ. = aµ.(A); 

deformed curve, xµ. = aµ.(A) + 8aµ.(A). 

Along either curve the lapse of proper time is 

- J6/3 - f 1 ( dx µ. dx• )
112 

-r - d-r - - gµ.v dA dA 
dA. 

{l 0 

(13. 2 6) 

(13.2 7) 

At fixed A the metric coefficient gµ.. [x "'(A)] differs from one curve to the other by 

(13.2 8) 

and the components dx• /d;\. of the tangent vector differ by 

8 ( 
dx• ) = d(a• + 8a•) _ da• = _!___ 8a• . 
d;\. - d;\. dA dA

( ) (13. 2 9) 
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These changes in gµ, and dx• /d\, at fixed >.., produce corresponding changes in the 
lapse of proper time in equation (13.2 7): 

1 - gµ.(da µ /d\)d(oa')/d\ - ½ (gµ,, u 8a
u )(da µ /d\)(da• /d\) 

07 = 1 { [- gys(daY /d\)(da
8 /d\)]112 } d\. 

Integrate the first term by parts. Strike out the end-point terms, because both paths 
must pass through {l and !'13 (8a µ = 0 at >.. =  0 and >.. =  1). Thus find 

J
A = l [ daY da

ll

]
112 

OT = fu(\) 8a
u - gyll - -

d 
d\. 

A = O d\ A 
(13.30) 

Here the fu ("force terms") in the integrand are abbreviations for the four expressions 

da• 
d g(Tp dA fu(\) = �

[
-
_
--

d-a_Y_d_a_0�
]
�11�2 d\ [ - daY da

8 ] 112 
gyll d\ d\ gyll d\ d\ 

l ag da µ da• _ ::..E.l!J!...  __ _ _ 
2 ax u d\ d\ 

[ daY da
8 ] · -gyll d\ d\ 

(13.31) 

An extremum is achieved, and the first-order change OT vanishes for every first-order 
deformation 8a

u(\) from an optimal path x u = a
u(>._), when the four quantities fu 

that multiply the oa
u all vanish. Thus one arrives at the four conditions 

Ju(\) = 0 (13.32 ) 

for the determination of an extremal world line. (An alternative viewpoint on the 
extremization is spelled out in Figure 13.3.) 

Sufficient these four equations are, but independent they are not, by reason of a 
"bead argument" (automatic vanishing of OT for any set of changes that merely slide 
points, like beads, along an existing world line). The operation of mere "sliding of 
beads " implies the trivial change 

8a
u(>._) = h(\) �; , (13.33) 

where h(\) is an arbitrary function of position along the world line ("more sliding 
here than there"). Already knowing that this operation cannot change T, one is 
guaranteed that the integrand in (13.30) must vanish when one inserts (13.33) for 
oa

u; and must vanish, moreover, whatever choice is made for the arbitrary "magni
tude of slide" factor h(\). This requirement implies and demands that the scalar 
product fu da

u / d\ must automatically vanish; or, otherwise stated, 

(1 3.34) 

The argument applies, and this equation holds, whether one is or is not dealing 
with an optimal world line. An equation of this type, valid whether or not the world 
line is an allowable track for a free test particle (track of extremal lapse of proper 



3 1 8  1 3 .  R IEM ANNIAN GEOMETRY METRI C  AS FOUNDATI ON OF ALL time), is known as an identity. Equation (13.34), an important identity in the realm of spacetime geodesics, is an appropriate forerunner for the Bianchi identities of Chapter 15 : the most important identities in the realm of spacetime curvature. The freedom that exists to "slide .\-values along the world line" can be exploited to replace the arbitrary parameter .\ by the physically more interesting parameter of proper time itself, (13.35) 
Figure 13.2. 
Star oscillating back and forth through the plane of a disc galaxy, as an example of a situation where 

two events ti and !13 can be connected by more than one geodesic. Upper left · The galaxy seen edge-on, 
showing ( dashed line) the path of the star in question, referred to a local frame partaking of and comoving 
with the general revolution of the nearby "disc stars ."  Upper right : The effective potential sensed by 
the star, according to Newtonian gravitation theory, is like that experienced by a ball which rolls down 

one inclined plane and up another ("free fall toward galactic plane" with acceleration g = ½ in the units 
used here) .  The three central frames :  Possible and impossible world lines for the star connecting two 

given events Cl (plane of galaxy at I = 0) and !13 (plane of galaxy at I = 2). Right : Throw star up from 
the galactic plane with enough velocity so that it just gets back to the plane at I = 2. Left : Throw it 

up with half the velocity and it will come back in half the time (very contrary to behavior of a simple 

harmonic oscillation, but in accord with galaxy's v-shaped potential ! ) ,  thus being able to make two 

excursions in the allotted time between Cl and !13. Center: A conceivable world line (conceivable with 
rocket propulsion ! )  but not a geodesic. Bottom :  Comparison of these and any other paths that allow 
themselves to be approximated in the form 

z = a1 sin ('TTl/2) + a2 sin (2,,,t/2). 
Here the two adjustable parameters, a1 and a2, provide the coordinates in a two-dimensional "function space" (approximation to the infinite-dimensional function space required to depict all conceivable world 
lines connecting Cl and !13 ;  note companson in right center frame between one-term Fourier approximation 

and exact, parabolic law of free fall ; similarly in left center frame , where the two curves agree too closely 
to be shown separate on the diagram). Details .  In the context of general relativity, take an arbitrary 
world line that connects Cl and !13,  evaluate lapse of proper time , repeat for other world lines, and say 
that a given world line represents a possible motion ("geodesic") when for it the proper time is an 
extremum with respect to all nearby world lines .  In the Newtonian approximation, the difference between 
the lapse of proper time and the lapse (l,IJ - f(l ) of coordinate time is all that comes to attention, in the form of the "action integral" ( on a "per-unit-mass basis") 

1 = J qi [(kinetic) _ (potential)] d energy energy 1 (l 
= f [ ½ ( !: r - I z I ] dt 

(maximum, or other extremum, in the proper time implies minimum, or corresponding other extremum, 
in the action /). The integration gives 

I =  ('TT2aif8) - (4 la1 1/,,,) + ('TT2a�/2) 
for la2 I < ½ la1 1 (one-excursion motions), and for la2 1 > ½ la1 1 (two-excursion motions) , 

I =  ('TT2aif8) + ('TT2a�/2) - (4 la2 1 /,,,) - (aif,,, la2 I ) .  
The one-excursion motion minimizes the action (maximizes the lapse of proper time) .  The two-excursion 
motion extremizes the action but does not minimize it ("saddle point" ;  "mountain pass" in the topogr:i
phy) Choquard ( 1 955) gives other examples of problems of mechanics where there is more than one 
extremum. Morse ( 1 934) and Morse and Cairns ( 1 969) give a theorem connecting the number of saddles 
of various types with the numbers of maxima and minima ("critical-point theorem of the calculus of 
variations in the large"). 
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Cl ·• .. 

Figu re 13.3. 
Extremizing lapse of proper time by suitable choice of world line. Left: Spacetime; and world line 
F that extremizes the lapse of proper time -r from Cl to qJ compared to other world lines. The specific 
world lines depicted in the diagram happen to be distinguished from fiducial world !me G by two "Fourier 
amphtudes" a1 and a2 : 

liaµ(A) = a1 sin ('1TA) + a2 sin (2'1TA), 
where the arbitrary scaling of A ,  and its zero, are so adjusted that A (d) = 0, A (qJ) = I .  

Right: "Path space." The coordinates in this space are the Fourier amplitudes a 1 and a2 • Only these 
two amplitudes ("two dimensions") are shown out of what in principle are infinitely many amplitudes ("infinite-dimensional path space") required to represent the general timelike world line connecting Cl 
and qJ_ Any given contour curve runs through all those points (in path space) for which the corresponding 
world lines (in spacetime) rack up the indicated lapse of proper time -r. Foregoing description is classical; 
according to quantum mechanics, all the timelike world lines connecting Cl and qJ occur with the same 
probability amplitude ("principle of democracy of histories") with the only difference from one to another 
being the phase of this complex probability amplitude exp ( - im-r/h)  (m = mass of particle, tz = quantum 
of angular momentum) . In the sum over these probability amplitudes, however, destructive interference 
wipes out the contributions from all those histories which differ too much from the optimal or classical 
history ("Fresnel wave zone" ; "Feynman's principle of sum over histories" ; see Feynman and Hibbs, 
1 965) .  Capitalizing on this wave-mechanical background to show how the machinery of the physical 
world works, Box 25.3 spells out the Hamilton-Jacobi method ("short-wavelength hmit of quantum 
mechanics") for determining geodesics, a method considerably more convenient for most applications 
than the usual "second-order differential equations for geodesics" ( equation 10 .27) . 

Focus on a specific world line, x µ. = aµ.(;\), with all deformations of it gone from 
view; one may replace aµ.(;\) by x µ.(;\) everywhere. Then the differential equations 
(13.32 ) for an extremal world line reduce to 

(13.36) 
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As an aside, note that the identity (1 3.34) now follows by one differentiation (with 
respect to 'T) of the equation 

dx u dx• g(JV d'T d'T 
+ 1 = 0. (1 3.37) 

Thus the identity is to be interpreted as saying that 4-velocity and 4-acceleration 
are orthogonal for any world line, extremal or not. Now return to (1 3.36), raise an 
index with gf3u, and thereby bring the equation for a straight line of local Lorentz 
geometry into the form 

(1 3.38) 

Compare with the standard form of the equation for a geodesic in "premetric 
geometry," 

(1 3.39) 

Conclude that the geodesics of the premetric geometry will agree with the straight 
lines of the local Lorentz geometry if and only if two conditions are satisfied: ( 1 )  
the 40 connection coefficients I' /3 µv that define geodesics, covariant derivatives, and 
parallel transport must be given in terms of the IO metric coefficients gµv ("Einstein 
gravitation potentials") by the equations ( 13.22) and (1 3.23) previously derived; and 
(2) the geodesic parameter A must agree with the proper time 'T up to an arbitrary 
normalization of zero point and an arbitrary but constant scale factor; thus 

A = a'T + b. 

(Nothing in the formalism has any resemblance whatsoever to the universal time 
t of Newton "flowing everywhere uniformly" ; rather, there is a separate proper time 
'T for each geodesic). See Box 13.3 for another variational principle, which gives in 
one step both the extremal world line and the right parametrization on that line. 

With this step, one has completed the transfer of the ideas of curved-space 
geometry from a foundation based on geodesics to a foundation based on metric. 
The resulting geometry always and everywhere anchors itself to the principle of "local 
Lorentz character," as the geometry of Newton-Cartan never did and never could. 

Exercise 1 3 . 5 .  O N C E  TI M E LI KE ,  ALWAYS TI M E LI KE Show that a geodesic of spacetime which is timelike at one event is everywhere timelike .  Similarly, show that a geodesic initially spacelike is everywhere spacelike, and a geodesic initially null is everywhere null. [Hint: This is the easiest exercise in the book ! ]  
(continued on  page 324) 

EXERCISES 
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Box 13.2 " GEODESIC" VERSUS "EXTREMAL WORLD LINE" Once the connection coefficients I'" µ.v have been expressed in terms of Einstein's gravitational potentials gµ.v by the equations (13.22) and (13.23), as they are now and hereafter will be in this book ("Riemannian or metric geometry"), it is permissible and appropriate to subsume under the one word "geodesic" two previously distinct ideas : ( l )  a parametrized world line that satisfies the geodesic equation d2x" dx µ. dx• d\2 + I'"µ.v d\ d\ = O ; and (2) a world line that extremizes the proper time (or, if spacelike, a curve that extremizes the proper distance) between two events Cl and :'E. The one possible source of confusion is this, that ( l )  

presupposes a properly parametrized curve (as was essential, for example, in the Schild's ladder construction employed for parallel transport in Chapter 10), whereas (2) cares only about the course of the world line through spacetime, being indifferent to what parametrization is used or whether any parametrization at all is introduced. This is not to deny the possibility of "marking in afterward" along the extremal curve the most natural and easily evaluated of all parameters, the proper time itself, whereupon the extremal curve of (2) satisfies the geodesic equation of ( l  ). Ambiguity is avoided by insisting on proper parametrization : henceforth the word "curve" means a parametrized curve, the word "geodesic" means a properly parametrized geodesic. 

Box 13.3 "DYNAMIC" VARIATIONAL PRINCIPLE FOR GEODESICS If the principle of extremal length 
f 6/3 [ dx µ. dx• ]112 -r = 

11 
- gµ.v d\ d\ d\ = extremum ( l )  

is indifferent to choice of parametrization ["d\ " canceling out in ( l  )] and if the geodesic equation finds the proper parametrization a matter of concern, it is appropriate to search for another extremal principle that yields in one package both the right curve and the right parameter. By analogy with elementary mechanics, one expects that an equation of motion [the geodesic equation 
whose leading term has the form "x" can be derived from a Lagrangian with leading term "½.x:2" ("kinetic energy" ; "dynamic" term). The simplest coordinate invariant generalization of ½.x:2 is 
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Thus one is led to try, in place of the "geometric" principle of extremal length, a 
new "dynamic" extremal principle : 

Jqi ( dx u
) = 

11 

L x u, 
dA 

dA. = extremum 

(2 ) 

(replacement of square root in previous variational principle by first power). The 
condition for an extremum, here as before [equations (13.30) to (13.32 )) is annulment 
of the so-called Euler-Lagrange "functional derivative" 

0 = __§J__ = (coefficient of ox u in) 
ox u - the integrand of 81 

or, written out in full detail, 

aL d aL 
ax u - d11. a ( tt;A(J) ' 

or, after multiplication by the reciprocal metric, 

which translates into the geodesic equation 

(3) 

(4) 

( 5) 

(6) 

Thus, the new "dynamic" expression (2 ) is indeed extremal for geodesic curves
and, by contrast with proper length, (I), it is extremal when and only when the 
geodesic is affinely parametrized. [Its "Euler-Lagrange equations" (6) remain satisfied 
only under parameter changes 11.00w = a11.01d + b, which keep the parameter affine; 
by contrast, the Euler-Lagrange equations (13.31) and (13.32 ) for the "principle of 
extremal length" (1) remain satisfied for any change of parameter whatsoever.] 



Symmetries of Riemann in 
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New symmetries imposed by 
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Exercise 1 3 . 6 .  SPACELIKE GEODESICS HAVE EXTREMAL LENGTH 

Show that any spacehke curve linking two events (1 and !!i, is  a geodesic if  and only if  it 
extremizes the proper length 

[Hint: This is almost as easy as exercise 13.5 if one has already proved the analogous theorem 
for timelike geodesics.] 

Exercise 13 .  7 .  METRIC TENSOR MEASURED B Y  LIGHT SIGNALS AND 

FREE PARTICLES [Kuchar]  

(a) Instead of  parametrizing a timelike geodesic by the proper time T, parametrize i t  by an 
arbitrary parameter µ., 

,,. = F(µ.). 

Write the geodesic equation in the µ.-parametrization. 
(b) Use now the coordinate time t as a parameter. Throw out a cloud of free particles 

with different "velocities" v i = dx i/dt and observe their "accelerations" a i = d2x i/dt2 . 

Discuss what combinations of the components of the affine connection I' 'Kl\ one can measure 
in this way. (Assume that no standard clocks measuring ,,. are available !) 

( c) Show that one can measure the conformal metric gw i.e., the ratios of the components 
of the metric tensor g,K to a given component (say, g00) 

using only the light signals moving along the null geodesics g,K dx ' dx K = 0. 
(d) Combine now the results of (b) and (c). Assume that I''KA is generated by the metric 

tensor by (13 .22), (13.23), in the coordinate frame x '. Show that one can determine A 
everywhere, if one prescribes it at one event ( equivalent to fixing the unit of time). 

§13.5. METRI C- I NDUCED PROPERTIES OF RIEMANN 

In Newtonian spacetime, in the real, physical spacetime of Einstein-indeed, in any 
manifold with covariant derivative-the Riemann curvature tensor has these sym
metries ( exercise 11.6) :  

R a 
f:J ys R"' 

f:J [ys J (antisymmetry on last two indices) (13. 40) 

R "'r f:J ysJ 0 (vanishing of completely antisymmetric part). (13.41) 

In addition, it satisfies a differential identity ( exercise I I.I 0) : 

R"'
f:J rys ; ,J 0 ("Bianchi identity") (13.42 ) 

(see Chapter 1 5  for geometric significance). 
When metric is brought onto the scene, whether in Einstein spacetime or elsewhere, 

it impresses on Riemann the additional symmetry (exercise 13. 8) 
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Ro:f:J ya R [o:f:J J ya (antisymmetry on first two indices). 

3 25 

(13. 43) 

This, together with (13.40) and (13. 41), forms a complete set of symmetries for 
Riemann; other symmetries that follow from these (exercise 13.10) are 

( symmetry under pair exchange), (13. 44) 

and 

(vanishing of completely antisymmetric part). (13. 4 5) 

These symmetries reduce the number of independent components of Riemann from 
4 X 4 X 4 X 4 = 2 56 to 2 0  (exercise 13.9). 

With metric present, one can construct a variety of new curvature tensors from 
Riemann. Some that will play important roles later are as follows. 

(1) The double dual of Riemann, 6 *Riemann* (analog of Maxwell The curvature tensor G 
*Faraday), which has components 

( exercise 13 .11 ). 

L'o:f:J = _!_ o:f:Jµv R pa _!_ - - _!_ oo:f:!µv R pa u y8 - 2 E' µv 2 E'pay8 - 4 pay8 µv 

(2 ) The Einstein curvature tensor, which is symmetric (exercise 13.11) 

(13. 46) 

(13. 47) 

(3) The Ricci curvature tensor, which is symmetric, and the curvature scalar 

Rf:! = Rµf:J 8 - µ8 , R = Rf:J - f:J ' 
which are related to the Einstein tensor by ( exercise 13 .12 ) 

(4) The Wey! conformal tensor (exercise 13.13) 

Co:f:J - Ro:f:J 2 s:> [o: Rf:!1 + l s:> lo: s:>f:J J R y8 - y8 - U [y 8] 3 U [yU 8] , 

(13. 48) 

(13. 49) 

(13. 50) 

Einstein tensor 

Ricci tensor 

Curvature scalar 

Weyl conformal tensor 

The Bianchi identity (13. 42 ) takes a particularly simple form when rewritten in Bianchi 1dent 1ties 
terms of the double dual 6: 

("Bianchi identity ") 

(exercise 13.11); and it has the obvious consequence 

G,,f:J ,f:J _ O ("contracted Bianchi identity "). 

(13. 51) 

(13. 52 ) 

Chapter 1 5  will be devoted to the deep geometric significance of these Bianchi 
identities. 



EXERCISES 
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Exercise 13 .8 .  RIEMANN ANTISYMMETRIC IN FIRST 
TWO INDICES 

(a) Derive the antisymmetry condition ( 1 3.43). [Hint : Prove by abstract calculations that any 
vector fields s, u, v, w satisfy 0 = q/,(u, v)(s · w) = s · [q/,(u, v)w] + w · [q/,(u, v)s]. Then 
from this infer ( 1 3 .43).] 

(b) Explain in geometric terms the meaning of this antisymmetry. 

Exercise 13.9 .  NUMBER OF INDEPENDENT COMPONENTS 
OF RIEMANN 

(a) In the absence of metric, a complete set of symmetry conditions for Riemann is R "
fl

y8 = 
R "

fl [y8 1 and R "c/lr8 1 = 0. Show that in four-dimensional spacetime these reduce the number 
of independent components from 4 X 4 X 4 X 4 = 256 to 4 X 4 X 6 - 4 X 4 = 96 -
16 = 80. 

(b) Show that in a manifold of n dimensions without metric, the number of independent 
components is 

n3(n - l) 
2 

n2(n - l )(n - 2) 
6 

n2(n2 - l) 
3 

( 1 3.53) 

(c) In the presence of metric, a complete set of symmetries is Rafi y8 = R caflHy8 1 , and 
R a[fl y8 1 = 0. Show that in four-dimensional spacetime, these reduce the number of inde
pendent components to 6 X 6 - 4 X 4 = 36 - 16 = 20. 

(d) Show that in a manifold of n dimensions with metric, the number of independent 
components is 

( 1 3.54) 

Exercise 13 .10.  RIEMANN SYMMETRIC IN EXCHANGE OF PAIRS; 
COMP LETELY ANTISYMMETRIC PART VANISHES 

From the complete set of symmetries in the presence of a metric, Rafl
y8 = R [aflHy81 and 

Ra[ fi y8 1 = 0, derive : (a) symmetry under pair exchange, Rafl
y8 = Ry8afi '  and (b) vanishing 

of completely antisymmetric part, R cafl
y81 = 0. Then ( c) show that the following form a 

complete set of symmetries : 

Ra{l y8 = R [a{l] [y8 ] = Ry8afl • R [a{l y 8 ] = 0. 

Exercise 13 .11 .  DOUBLE DUAL  OF RIEMA NN; EINSTEIN 

( 1 3.55) 

(a) Show that G = *Riemann* contains precisely the same amount of information as 
Riemann, and satisfies precisely the same set of symmetries [( 1 3.40), ( 1 3.4 1), ( 1 3.43) to 
( 1 3.45)]. 

(b) From the symmetries of G, show that Einstein (defined in ( 1 3.47)] is symmetric 
( G [ fl 8 l  = 0). 

( c) Show that the Bianchi identities ( 1 3 .42), when written in terms of G, take the form 
( 1 3.5 1)  ("vanishing divergence," V • G = 0). 

( d) By contractmg the Bianchi identities V · G = 0, show that G = Einstein has vanishing 
divergence [ equation ( 1 3.52)]. 

Exercise 13.12 .  RICCI AND EINSTEIN RELATED 

(a) From the symmetries of Riemann, show that Ricci is symmetric (R c /l 8l = 0). 
(b) Show that Ricci is related to Einstein by equation ( 1 3.49). 
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Exercise 13.13. THE WEYL CONFORMAL TENSOR 

3 27 

(a) Show that the Wey! conformal tensor (13.50) possesses the same symmetries [(13.40), 
(13.41), (13.43) to (13.45)] as the Riemann tensor. 

(b) Show that the Wey! tensor is completely "trace-free" ; i.e., that 

contraction of Capya on any pair of slots vanishes . (13.56) 

Thus, Capy a can be regarded as the trace-free part of Riemann, and R"13 can be regarded 
as the trace of Riemann. Riemann is determined entirely by its trace-free part Capy a and 
its trace R"13 [see equation (13.50), and recall R = R"al 

( c) Show that in spacetime the Wey! tensor has 10 independent components. 
(d) Show that in an n-dimensional manifold the number of independent components of 

Wey/ [ defined by a modification of (13.50) that maintains (13.56)] is 

n 2( n 2 - l) n( n + l )  � 3 12 - 2 
or n � , 0 for n :::;: 3. (13.57) 

Thus, in manifolds of l ,  2, or 3 dimensions, the Wey! tensor is identically zero, and the 
Ricci tensor completely determines the Riemann tensor. 

§13 . 6 .  THE PROPER REFERENCE FRAME OF 

AN ACCELERATED OBSERVER 

A physicist performing an experiment in a jet airplane ( e.g., an infrared astronomy 
experiment) may use several different coordinate systems at once. But a coordinate 
system of special utility is one at rest relative to all the apparatus bolted into the 
floor and walls of the airplane cabin. This "proper reference frame " has a rectangular 
"x, j, i" grid attached to the walls of the cabin, and one or more clocks at rest 
in the grid. That this proper reference frame is accelerated relative to the local 
Lorentz frames, the physicist knows from his own failure to float freely in the cabin, 
or, with greater precision, from accelerometer measurements. That his proper refer
ence frame is rotating relative to local Lorentz frames he knows from the Coriolis 
forces he feels, or, with greater precision, from the rotation of inertial-guidance 
gyroscopes relative to the cabin walls. 

Exercise 6.8 gave a mathematical treatment of such an accelerated, rotating, but 
locally orthonormal reference frame in flat spacetime. This section does the same 
in curved spacetime. In the immediate vicinity of the spatial grid's origin x 1 = 0 
(region of spatial extent so small that curvature effects are negligible), no aspect 
of the coordinate system can possibly reveal whether spacetime is curved or flat. 
Hence, all the details of exercise 6. 8 must remain valid in curved spacetime. Never
theless, it is instructive to rediscuss those details, and some new ones, using the 
powerful mathematics of the last few chapters. 

Begin by making more precise the coordinate grid to be used. The following is 
perhaps the most natural way to set up the grid. 

(1) Let -r be proper time as measured by the accelerated observer's clock ( clock at 
center of airplane cabin in above example). Let P = Po( -r) be the observer's world 
line, as shown in Figure 13.4,a. 

Proper reference frame 
described physica l ly  

Six-step construction of 
coordinate grrd for proper 
frame 
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(a) 

-r = 4  
s = I ---,i-=::--•...,,_ --

I 

Geodesic 
§ [4 2 \12 e · _ ..!.. e .  s] , 3 1 3 2 , 

--
e s =! '-...  ----
\ '-........ ----� • s = 2 '-.....__ 

� 
\ -.....__ 

(b) 

� s = 3 -.....__'-... 
\ '-... 
\ " e s = 4 "' 

1 Geodesic 
§ [ 4, .}i (ei + e2) , s ] 

Figure 13!4. 
The proper reference frame of an accelerated observer. Diagram (a) shows the observer's orthonormal 
tetrad {e1x} being transported along his world line '1'0(-r) [transport law ( 1 3 .60) ] .  Diagram (b) shows 
geodesics bristling out perpendicularly from an arbitrary event '1'0(4) on the observer's world lrne. Each 
geodesic is specified uniquely by ( 1 )  the proper time -r at which it originates, and (2) the direction (unit 
tangent vector n = d(ds = nle; along which it emanates) . A given event on the geodesic is specified 
by -r, n, and proper distance s from the geodesic's emanation point; hence the notation 

'!i' = §[-r, n, s] 
for the given event. The observer's proper reference frame attributes to this given event the coordinates 

x6(9'[-r, n, s] ) = -r, 
xl(§[-r, n, s]) = sn1. 

(2 ) The observer carries with himself an orthonormal tetrad { e;,} (Figure 13. 4,a), 
with 

e0 = u = drJ>0/dr = (4-velocity of observer) 

(e0 points along observer's "time direction"), and with 

e;, · e fj = 1Ja,t3 
( orthonormality). 

(13. 58) 

(13 . 59) 
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(3) The tetrad changes from point to point along the observer's world line, relative 
to parallel transport: 

Vuea = - D · ea, (13.60) 

g µ v = QµU v - U µQ v + Uc,W
f3

f. c,f3 µv (13.61) 
= "generator of infinitesimal Lorentz transformation." 

This transport law has the same form in curved spacetime as in flat (§6.5 and 
exercise 6.8) because curvature can only be felt over finite distances, not over 
the infinitesimal distance involved in the "first time-rate of change of a vector" 
(equivalence principle). As in exercise 6.8, 

a = Vu u = (4-acceleration of observer), 

( 

angular velocity of rotation of spatial 

) 
w = basis vectors e; relative to Fermi-

Walker-transported vectors, i.e., 
relative to inertial-guidance gyroscopes 

(13.62 ) 

u · a  = u · w = 0 .  
If  w were zero, the observer would be Fermi-Walker-transporting his tetrad 
(gyroscope-type transport). If both a and w were zero, he would be freely falling 
(geodesic motion) and would be parallel-transporting his tetrad, Vuea = 0. 

(4) The observer constructs his proper reference frame (local coordinate system) in 
a manner analogous to the Riemann-normal construction of § 11.6. From each 
event &> 0( T) on his world line, he sends out purely spatial geodesics (geodesics 
orthogonal to u = d&> 0/ d'T ), with affine parameter equal to proper length, 

[
proper time; tells 
"starting point" of 
geodesic 

I 

9 = § [T, n, s]. 

1 
tangent vector to 
geodesic at starting 
point; tells "which" 
geodesic 

(13.63) 

proper length along 

� 
geodesic from starting 
point; tells "where" 
on geodesic 

(See Figure 13.4,b.) The tangent vector has unit length, because the chosen affine 
parameter is proper length: 

nµ = (dx µ/ds) along geodesic, 

(dx µ) ( dx ') ds 2 
n . n = gµ, -;Is -;Is = ds 2 = I. 

(13.64) 

( 5) Each event near the observer's world line is intersected by precisely one of the 
geodesics §[T, n, s]. [Far away, this is not true; the geodesics may cross, either 
because of the observer's acceleration, as in Figure 6.3, or because of the curva
ture of spacetime ("geodesic deviation").] 

Transport law for observer 's 
tetrad 



Connection coefficients along 
observer 's world line 

3 3 0  1 3 .  RIEMANNIAN GEOMETRY METRIC A S  FOUNDATION OF ALL (6) Pick an event rJ> near the observer's world line. The geodesic through it originated on the observer's world line at a specific time 'T, had original direction n = nie;, and needed to extend a distance s before reaching rJ>. Hence, the four numbers (13.65) are a natural way of identifying the event rJ>. These are the coordinates of rJ> in the observer's proper reference frame. (7) Restated more abstractly, x0(§['T, n, s]) = 'T, xi(§['T, n, s]) = sni = sn; = sn · e;. (13.65 ') 
In flat spacetime this construction process and the resulting coordinates x"'(rJ>) are identical to the process and resulting coordinates �"'' ((j>) of exercise 6 .8. For use in calculations one wants not only the coordinate system, but also its metric coefficients and connection coefficients. Fortunately, gafi and I'" M are needed only along the observer's world line, where they are especially simple. Only a foolish observer would try to use his own proper reference frame far from his world line, where its grid ceases to be orthonormal and its geodesic grid lines may even cross! (See §6 .3.) All along the observer's world line rJ>0(T), the basis vectors of his coordinate grid are identical (by construction) to his orthonormal tetrad 

o/ox"' - e ·  - "'' and therefore its metric coefficients are (13.66) 
(13.67) Some of the connection coefficients are determined by the transport law (13 .60) for the observer's orthonormal tetrad: V e · =  V· e ·  = e "' r fi  . .  u a O a p aO 

= -n . ea = - efi il fi;,. Thus (13.68) Since n has the form (13.61) and the observer's 4-velocity and 4-acceleration have components u0 = - 1, u; = 0, a0 = 0 in the observer's own proper frame, these connection coefficients are 
r 0 . .  - r . . .  - o oo - ooo - , (13.69a) 
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The remaining connection coefficients can be read from the geodesic equation for 
the geodesics .9'[-r, n, s] that emanate from the observer's world line. According to 
equation (13.6 5), the coordinate representation of each such geodesic is 

x0(s) = -r = constant, xi(s) = nJs; 

hence, d2x"  I ds2 = 0 all along the geodesic, and the geodesic equation reads 

d2x "  , dx /3 dxY · , , 0 = -- + ra " -- -- = ra,, nJnk 
ds2 f3 Y ds ds Jk · 

This equation is satisfied on the observer's world line for all spatial geodesics (all 
n1) if and only if 

I'";r. = I'z,;r. = 0 all along 90
(-r). (13.69b) 

The values (13.69) of the connection coefficients determine uniquely the partial 
derivatives of the metric coefficients [see equation (13.19')] : 

gz,!J ,o = o, 
goo,i = - 2 a;, 

(13.70) 

and these, plus the orthonormality condition gz,(3 (9
0
(-r)] = 1laf3 ' imply that the line 

element near the observer's world line is 

ds2 = - (I + 2 a1x 1) dx02 - 2 (E jfc1X kw1) dx0 dx1 

+ o1k dx1 dx k + O(lx1 1 2) dx" dx /3 . 

Several features of this line element deserve notice, as follows. 
(1) On the observer's world line 9o(-r)-i.e., x1 = 0-ds2 = 11af3 dx" dx /3 . 
(2 ) The observer's acceleration shows up in a correction term to g00, 

(13.71) 

(13.7 2 a) 

which is proportional to distance along the acceleration direction. For the flat-space
time derivation of this correction term, see §6.6. 

(3) The observer's rotation relative to inertial-guidance gyroscopes shows up in 
a correction term to g01, which can be rewritten in 3-vector notation 

(13.7 2 b) 

(4) These first-order corrections to the line element are unaffected by spacetime 
curvature and contain no information about curvature. Only at second order, 
O(lx1 12), will curvature begin to show up. 

( 5) In the special case of zero acceleration and zero rotation (a = w = 0), the 
observer's proper reference frame reduces to a local Lorentz frame (g'ix/1 = 11af3 , 
I'"  M = 0) all along his geodesic world line! By contrast, the local Lorentz coordinate 

Metric of proper reference 
frame, and its physical 
interpretation 
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systems constructed earlier in the book ("general" local Lorentz coordinates of § 8.6, 
"Riemann normal coordinates" of § 11.6) are local Lorentz only at a single event. 

In the case of zero rotation and zero acceleration, one can derive the following 
expression for the metric, accurate to second order in lx; I :  

(13.73) 

[see, e.g., Manasse and Misner (1963)]. Here Ra Ms are the components of the 
Riemann tensor along the world line xi = 0. Such coordinates are called "Fermi 
Normal Coordinates." 

Exercise 13.14. INERTIAL AND CORIOLIS FORCES 
An accelerated observer studies the path of a freely falling particle as it passes through the 
origin of his proper reference frame. If 

(13.74) 

is the particle's ordinary velocity, show that its ordinary acceleration relative to the observer's 
proper reference frame is 

d2xl 
dxO' 

e1 = -r - 2w x
r 

v + 2(a

½

· v)v. (13.75) 

[inertial acceleration� . . . relativistic correction 
J [Conohs accelerat10n] to inertial acceleration 

Here a is the observer's own 4-acceleration, and w is the angular velocity with which his 
spatial basis vectors e, are rotating [see equations (13.62)]. [Hint: Use the geodesic equation 
at the point xf = 0 of the particle's trajectory. Note: This result was derived in flat spacetime 
in exercise 6.8 using a different method.] 

Exercise 13.15. ROTATION GROUP:  METRIC 
(Continuation of exercises 9 .13, 9.14, 10.17 and 11.12). Show that for the manifold S0(3) 
of the rotation group, there exists a metric g that is compatible with the covariant derivative 
V. Prove existence by exhibiting the metric components explicitly in the noncoordinate basis 
of generators { e "}. [Answer: 

(13.76) 

Restated in words : If one postulates that : ( I) the manifold of the rotation group is locally 
Euclidean; (2) the generators of infinitesimal rotations { e "} are orthonormal, e " · e 13 = o"13; 
and (3) {e "} obey the standard rotation-group commutation relations 

(13.77) 

then the resulting geodesics of S0(3) agree with the geodesics chosen in exercise 10.17.] 



CHAPTER 1 4  

CALCU LATI O N  OF  C U RVATU R E  

§ 1 4. 1 .  CURVATURE AS A TO O L  FOR 

U N DERSTAN DIN G  P HYSICS 

Elementary physics sometimes allows one to shortcircuit any systematized calculation 
of curvature (frequency of oscillation of test particle; tide-producing acceleration 
near a center of attraction; curvature of a closed 3-sphere model universe; effect 
of parallel transport on gyroscope or vector; see Figures 1.1, 1.10, and 1.12 , and 
Boxes 1.6 and 1.7); but on other occasions a calculation of curvature is the quickest 
way into the physics. This chapter is designed for such occasions. It describes three 
ways to calculate curvature and gives the components of the Einstein curvature tensor 
for a plane gravitational wave (Box 14.4, equation 5), for the Friedmann geometry 
of the universe (Box 14. 5), and for Schwarzschild geometry, both static (exercise 

, 
This chapter is enti rely Track 2 .  

Chapter 4 (differentia l  forms) 

and Chapter 1 0 , 1 1 , and 1 3  
(differential  geometry) are 
necessary preparation for 

§ § 1 4 .5- 1 4 . 6 .  
This chapter i s  needed a s  

preparation for Chapter 1 5  
(Bianchi  identit ies) . 

It wi l l  be he lpful  in many 

a ppl ications of gravitation 
theory (Cha pters 2 3-40) .  

14.13) and dynamic (exercise 14.16). These and other calculations of curvature "'"-------------� 
elsewhere are indexed under "curvature tensors." 

It is enough to look at an expression for a 4-geometry as complicated as 

ds2 = - (x/3112L + y2/1 2 L2)-31 12 ( f u:zt\ - z/L)3- 112 dt2 

( d )1 + 2;3 112 
+(x/3112L + y2 /1 2 L2)1 + 3 112 J u 

z 
z (- z/ L)-1 + 3- 112 dx2 

( d )1 + 2;3 112 
+(x/3ll2L + y2/12 L2)2 + 3 112 J u 

z 
z (- z/Lt3-112 dy

2 

( I d )1 + 2;3 112 
+(x;3112L + y2/J 2 L2)3 + 3 112 u 

z 
z ( - z/ L)-2 - 3- 112 X 

X ( u2 - 1 ) dz2 ( 1 4. 1 )  
-I - z/L 
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[Harrison (1959)] to realize that one might understand the physical situation better 
if one knew what the curvature is; similarly with any other complicated expressions 
for metrics that arise from solving Einstein's equations or that appear undigested 
in the literature. In any such case, the appropriate method often is: curvature first, 
understanding second. 

Curvature is the simplest local measure of geometric properties (see Box 14.1). 
Curvature is therefore a good first step toward a more comprehensive picture of 
the spacetime in question. 

One sometimes has an expression for a spacetime metric first, and then makes 
calculations of curvature to understand it. But more often one makes calculations 
of curvature, subject to specified conditions of symmetry in space and time, as an 
aid in arriving at an expression for a physically interesting metric (stars, Chapters 
2 3  to 2 6; model cosmologies, Chapters 2 7  to 30; collapse and black holes, Chapters 
31 to 34; and gravitational waves, Chapters 35  to 37). 

The basic "standard procedure for computing curvature" is illustrated in Box 14. 2 . 
Two formulas in Box 14. 2 , derived previously, are used in succession. The first 
(equations 1 and 2 )  has the form I' ~ g og and provides the I'µ

af3 • The other 
( equation 3) has the form R ~ ar + I'2 and gives the curvature components Rµ 

vaf3 • 
After the curvature components have been computed, there are helpful ways to 

present the results. (I) Form the Ricci tensor Rµv = R"'
µa v and the scalar curvature 

R = Rµ w (2 ) Form other invariants such as Rµ" af3 Raf3 
µv · (3) Form components R.u•,,.e 

in a judiciously chosen orthonormal frame w"' = L"' 
13 dx f3 , and (4) display R [.u•\,,m 

as a 6 X 6 matrix (in four dimensions; a 3 X 3 matrix in three dimensions) where 
[µv] = [0 1] ,  [02], [03] ,  [23] ,  [3 1 ] ,  [ 12] labels the rows and [am labels the columns 
(exercises 14.14 and 14.1 5). ( 5) Last, but by far the most important for general 
relativity, form the Einstein tensor G.u;; as described in §14. 2 . 

The method of computation outlined above and described in more detail in Box 
14. 2  is used wherever it is quicker to employ a standard method than to learn or 
invent a better method. The standard method is always preferable for the student 
in a short course where physical insight has higher priority than technical facility. 
It is, however, a dull method, better suited to computers than to people. Even the 
algebra can be handled by a computer (see Box 14.3). 

Exercise 14.1. CURVATURE OF A TWO-DIMENSIONAL HYPERBO LOID 
Compute the curvature of the hyperboloid t2 - x2 - y2 = T2 = const in 2 + 1 Minkowski 
spacetime with ds3

2 = - dt2 + dx2 + dy
2 • First show that intervals within this two-dimen

sional surface can be expressed in the form ds 2 = T2(da2 + sinh2a d<f>2) by a suitable choice 
of coordinates a, </>, on the hyperboloid. 

Exercise 14.2. RIEMANNIAN C URVATURE EXPRESSIBLE IN TERMS OF 
RICCI CURVATURE IN TWO AND THREE DIMENSIONS 

In two dimensions, there is only one independent curvature component, R1212 • Evidently 
the single scalar quantity R must carry the same information. The two-dimensional identity 
Rµ,a/3 = ½R (gµag,13 - gµ13g,a) is established by noting that it is the only tensor formula giving 

(continued on page 343) 
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Box 14 .1 PERSPECTIVES ON CURVATURE 1. Historical point of departure: a curved line on a plane. There is no way to define the curvature of a line by measurements confined to ("intrinsic to") the line itself. One needs, for example, the azimuthal bearing 0 of the tangent vector relative to a fixed direction in the plane, as a function of proper distance s measured along the curve; thus, 0 = 0(s). Then curvature K and its reciprocal, the radius of curvature p, are given by K(s) = 1/p(s) = d0(s)/ds. Alternatively, one can examine departure, y, measured normally off from the tangent line as a function of distance x measured along that tangent line ; then K = 1/p = d2y/dx2 • 

3 3 5  

• 
\ s \ I \ 

p 
\ 
\ 

Reference 
)➔ll ... 

azimuth 

2. This concept was later extended to a curved surface embedded in flat (Euclidean) 3-space. Departure, z, of the smooth curved surface from the flat surface tangent to it at a given point is described in the neighborhood of that point by the quadratic expression 
1 1 z = - ax2 + bxy + - cy2. 
2 2 Rotation of the axes by an appropriate angle a, 

x = t cos a + r, sin a, 

y = -t sin a + r, cos a, reduces this expression to 
with and 
representing the two "principal curvatures" of the surface. 3. Gauss (1827) conceived the idea of defining curvature by measurements confined entirely to the surface ("society of ants"). From a given point q> on the surface, proceed on a geodesic on the surface for a proper distance t: measured entirely within the surface. Repeat, starting at the original point but proceeding in other directions. 



3 36 1 4 . CALCU LAT I O N  O F  C U RVATU R E  

Box 14 . 1 (continued) 

Obtain an infinity of points. They define a "circle". Determine its proper circum
ference, again by measurements confined entirely to the surface. Using the metric 
corresponding to the embedding viewpoint 

ds2 = dz2 + d� 2 + dri 2 (Euclidean 3-space) 

(
metric intrinsic

) to the curved , 
2 -geometry 

one can calculate the result of such an "intrinsic measurement." One calculates that 
the circumference differs from the Euclidean value, 2 w£, by a fractional correction 
that is proportional to the square of £ ; specifically, 

. 6 
( 

circumference) 1 
d (a Lim - 1 - ------ = K 1 K2 = -- = et 

,-.o  £2 2 wf. P1 P2 b !) -
Note especially the first equality sign. Gauss did not conceal the elation he felt on 
discovering that something defined by measurements entirely within the surface 
agrees with the product of two quantities, K1 and K2 , that individually demand for 
their definition measurements extrinsic to the surface. 

4. The contrast between "extrinsic" and "intrin
sic" curvature is summarized in the terms, 

(extrinsic curvature) = K = (K1 + K2)(cm-1) ,  

(intrinsic or Gaussian) _2 
curvature = K i Kicm ) 

(the latter being identical with half the scalar cur-
vature invariant, R, of the 2 -geometry). Draw a 
3 : 4 : 5 triangle on a flat piece of paper; then curl 
up the paper. The Euclidean 2 -geometry intrinsic 
to the piece of paper is preserved by this bending. 
The Gaussian curvature intrinsic to the surface 
remains unaltered; it keeps the Euclidean value 
of zero (K2, non-zero; Ki , zero; product, K1 K2 = 
zero). However, the extrinsic curvature is changed 
from K1 + K2 = 0 to a non-zero value, K1 + 
Kz 'P 0. 

5. The curvature dealt with in this chapter is curvature intrinsic to spacetime; that 
is, curvature defined without any use of, and repelling every thought of, any em
bedding in any hypothetical higher-dimensional flat manifold (concept of Riemann, 
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Clifford, and Einstein that geometry is a dynamic participant in physics, not some God-given perfection above the battles of matter and energy). 6 .  The curvature of the geometry of spacetime imposes curvature on any spacelike slice (3-geometry; "initial-value hypersurface") through that spacetime ( see "relations of Gauss and Codazzi" in Chapter 21, on the initial-value problem of geometrodynamics). 7. Rotation of a vector transported parallel to itself around a closed loop provides a definition of curvature as useful in four and three as in two dimensions. (In a curved two-dimensional geometry, at a point there is only one plane. Consequently only one number is required to describe the Gaussian curvature there. In three and four dimensions, there are more independent planes through a point and therefore more numbers are required to describe the curvature.) In the diagram, start with a vector at position 1 (North Pole). Transport it parallel to itself (position 2, 3, . . .  ) around a 90° -90°-90° spherical triangle. It arrives back at the starting point (position 4) turned through 90 ° : (angle turned) ( Gaussian ) through curvature - (are� circum-) -navigated (?T/2 ) (1 /8)( 4?Ta2) 

(positive; sense of rotation same as sense of circumnavigation) . 
az 

8 .  Still staying for simplicity with a curved twodimensional manifold, describe the curvature of the 2-surface as a 2-form ("box-like structure") defined over the entire surface. The number of boxes enclosed by any given route gives immediately the angle in radians ( or tenths or hundredths of a radian, etc., depending on chosen fineness of subdivision) turned through by a vector carried parallel to itself around that route. The contribution of a given box is counted as positive or negative depending on whether the sense of the arrow marked on it (see magnified view) agrees or disagrees with the sense of circumnavigation of the route. 

N 
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Box 14. 1 (continued) 

9. Curvature 2-form for the illustrated surface of rotational symmetry ("pith helmet") with metric ds2 = da 2 + r2(a) d</>2 is 
I d2r curvature = - ---2 da I\ r d</> 
r da 

( I )  (positive on crown of helmet, negative around brim, as indicated by sense of arrows in the "boxes of the 2-form" shown at left). "Meaning" of r is illustrated by imbedding the surface in Euclidean 3-space, a convenience for visualization; but more important is the idea of a 2-geometry defined by measurements intrinsic to it, with no embedding. 10. How lengths ("metric") determine curvature in quantitative detail is shown nowhere more clearly than in this two-dimensional example, a model for "what is going on behind the scene" in the mathematical calculations done in this chapter with I -forms and 2-forms in four-dimensional spacetime. a. Net rotation in going around element of surface (lq3'!J3{l{l is 8 - 8 (no turn of vector to left or to right in its transport along a meridian {l cf or qJiitJ). b. Rotation of vector in going from {l to qJ, relative to coordinate system ( directions of meridians), is (an le 8) = � = r(a + da) J.<t> - r(a) J.<t> ( dr ) g length da 
= 

da u 
J.<f>. 
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c. Rotation of vector in going from a to qj is similarly 

d. Thus net rotation is: 

(angle 8) = ( �r ) Llcp. 
a a + .:'.la 

- ( d2r ) o - o = -
da 2 " 

Lla Llcp. 

e. Expressed as a form, this gives immediately equation (I). 

3 3 9  

f. Ideas and calculations are more complicated in four dimensions, primarily 
because one has to deal with different choices for the orientation of the surface 

to be studied at the point in question. 

11. Translation of these geometric ideas into the language of forms is most immediate 

when one stays with this example of two dimensions. A sample vector Ai = (A 1, A2) 
carried around the boundary of an element of surface comes back to its starting 
point slightly changed in direction: 

_ (
change) _ , i i . Ai - qi, ;A .  m (2 ) 

a. To be more specific, it is convenient to adopt as the basis I-forms w 1 = da 
and w 2 = r dcp, and have A1 as the component of A along the direction of 
increasing a, A2 as the component of A along the direction of increasing cp.  
The matrix '3l 1; is a rotation matrix, which produces a change in direction but 
no change in length (zero diagonal components); thus here 

(3) 

In this example, '3l 1z evidently represents the angle through which the vector 
A turns on transport parallel to itself around the element of surface. 

b. So far the rotation is "indefinite" because the size of the element of surface 

has not yet been specified. It is most conveniently conceived as an elementary 
parallelogram, defined by two vectors ("bi vector"). Thus '3l 1;, or, specifically, 
the one element that counts, '3l12 (the "angle of rotation"), has to be envisaged 
as a mathematical obj ect ("2 -form") endowed with two slots, into which these 

two vectors are inserted to get a definite number (angle in radians). In the 

example of the pith helmet, one has, from equation (I) 

gz, L  = _ _!_ d2r w i I\ wz 
2 r da 2 

Thus the gz, µ v in the text are called "curvature 2 -forms." 

(4) 
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Box 14. 1 (continued) 

c. The text tells one how to read out of such expressions the components of the 
Riemann curvature tensor; for example here, 

R\m = - R1221 = ( - l /r)(d2r/da 2) (coefficients of w 1 /\ w 2 or w 2 I\ w 1). 

d. Generalizing to four dimensions, one understands by R"'
f:J µ v the factor that one 

has to multiply by three numbers to obtain a fourth. The number obtained 
is the change (with reversed sign) that takes place in the ath component of 
a vector when that vector is transported parallel to itself around a closed path, 
defined, for example, by a parallelogram built from two vectors u and v. The 
factors that multiply R"' 

f:J µ v are (1) the component of the vector A in the /3th 
direction and (2 , 3) the µ,v component of the extension of the parallelogram, 
(uµv• - u•vµ) .  Thus 

Box 14.2 STRAI GHTFORWARD CURVATURE COMPUTAT ION 
( I l l ustrated for a G lobe) 

The elementary and universally applicable method for computing the components 
Rµ 

va f:J 
of the Riemann curvature tensor starts from the metric components g

µ
, in 

a coordinate basis, and proceeds by the following scheme: 
I' --'- og R - ar + rr 

g
µ
, --+ I'

µaf:J --+ I'µ
a f:J ----+- R µ

va f:J
• 

The formulas required for these three steps are 

and 

r = 2- (ag
µa 

ag
µ{:J -

ag
a {:J ) 

µa {:J 2 ox /3 + ox" ax µ ' 

r µ
a {:J 

= gµ•rva {:J > 

ar µ ar µ 

Rµ - __ v_{:J - __ v_a + r µ I'P - r µ I'P va {:J 

- /3 pa v{:J p{:J va · ox " ax 

The metric of the two-dimensional surface of a sphere of radius a is 

(I) 

(2 ) 

(3) 

(4) 

To compute the curvature by the standard method, use the formula for ds2 as a 
table of gk1 values. It shows that ge e  = a2, ge ¢ = 0, g¢¢ = a2sin20. Compute the six 
possible different I';ki = I';1k (there will be 40 in four dimensions) from formula 
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(1) . Thus 
Raise the first index: 

r0 ¢¢ = - a2sin 0 cos 0 = - I'¢¢ 0 ' I'0 0 0  = I'¢¢¢ = 0, I'0 0¢ = rq,0 0  = o . 

r 0 ¢¢ = - sin 0 cos 0' I' ¢ ¢ 0 = cot 0, r 0 0 0  = r 0 
0 ¢ = o = I' ¢0 0  = I'

¢
¢¢ • 

3 4 1  

(5) 
(6) 

Choose a suitable curvature component (one that is not automatically zero by reason of the elementary symmetry Rµ,vaf3 = R [ µ,vHaf3J , nor previously computed in another form, as by Rµ,vaf3 = Raf3 µ,v) - In this two-dimensional example, there is only one choice (compared to 21 such computations in four dimensions) ; it is 
0 - ar 0 

¢¢ ar 0 
¢0 o k 0 k R ¢8 ¢ - --- - --- + r k0 r ¢¢ - r k¢r ¢0 a0 acp 

= 
a r 0 

¢¢ 
- o + o - r 0 r ¢ a0 ¢¢ ¢ 0 

= sin20 - cos20 + sin 0 cos 0 cot 0 ; so or R B · 20 ¢0 ¢ = sm 
R 0¢ - 1 

0 ¢ - 2 • a Contraction gives the components of the Ricci tensor, 1 R 0 0 = R¢ ,,_ = - R 0 ,,_ = 0, 
"' a2 , "' and further contraction gives the curvature scalar 
R = 2/a2 . A convenient orthonormal frame in this manifold is 

w 0 = a d0, w if> = a sin 0 dcp. 

(7) 
(8) 
(9) 

(10) 
(11) More generally one writes wa = La13 dx /3 . To transform the curvature tensor to orthonormal components in this simple but illuminating example of a diagonal metric requires a single normalization factor for each index on a tensor. Thus v 0 = av 0, v if> = a sin 0 v ¢, v0 = a-1v0 , vi = (a sin 0)- 1 v¢ . Similarly, from R 0 ¢0 ¢ = sin20 one finds the components of the curvature tensor, 

in the orthonormal frame. R 0 " .  - _!_ - R 8¢ . .  ( 12) ¢ 0¢ - a2 - 0 ¢' 
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Box 14.3 ANALYTICAL CALCU LATIONS ON A COMPU TER 

Research in gravitation physics and general rela
tivity is sometimes beset by long calculations, re
quiring meticulous care, of such quantities as the 
Einstein and Riemann curvature tensors for a 
given metric, or the divergence of a given stress
energy tensor, or the Newman-Penrose tetrad 
equations under given algebraic assumptions. 
Such calculations are sufficiently straightforward 
and deductive in logical structure that they can be 
handled by a computer. Since 1966, computers 
have been generally taking over such tasks. 

There are several computer languages in which 
the investigator can program his analytic calcula
tions. The computer expert may wish to work in 
a machine-oriented language such as LISP [see, 
e.g., the work of Fletcher (1966) and of Hearn 
(1970)]. However, most appliers of relativity will 
prefer user-oriented languages such as REDUCE 
[created by Hearn (1970) and available for the 
IBM 360 and 370, and the PDP 10 computers], 
ALAM [created by D'lnverno (1969) and available 
on Atlas computers], CAMAL [created by Barton, 
Bourne, and Fitch (1970) and available on Atlas 
computers], and FORMAC [created by Tobey et 
al. (1967) and available on IBM 7090, 7094, 360, 
and 370]. For a review of activity in this area, see 
Barton and Fitch (1971 ). Here we describe only 
FORMAC. It is the most widely available and 
widely used of the languages; but it is probably 
not the most powerful [see, e.g., D'Inverno (1969)]. 
FORMAC is to analytic work what the earliest and 
most primitive versions of FORTRAN were to 
numerical work. 

FORMAC manipulates algebraic expressions 
involving: numerical constants, such as 1/3; sym
bolic constants, such as x or u; specific elementary 
functions, such as sin (u) or exp (x);  and symbolic 
functions of several variables, such as f(x, u) or 
g(u). For example, it can add ax + bx2 to 2 x  + 
(3 + b)x2 and get (a + 2 )x + (3 + 2 b)x2 ; it can 
take the partial derivative of x2uf(x, u) + cos (x) 
with respect to x and get 

2 xuf(x, u) + x2u aJ(x, u)/ax - sin (x). 
It can do any algebraic or differential-calculus 

computation that a human can do-but without 
making mistakes! Unfortunately, it cannot inte
grate analytically; integration requires inductive 
logic rather than deductive logic. 

PL/1 is a language that can be used simulta
neously with FORMAC or independently of it. 
PL/1 manipulates strings of characters-e.g., 
"Z/1 X 2 9 - + /." It knows symbolic logic; it can 
tell whether two strings are identical; it can insert 
new characters into a string or remove old ones; 
but it does not know the rules of algebra or differ
ential calculus. Thus, its primary use is as an ad
junct to FORMAC (though from the viewpoint of 
the computer system FORMAC is an adjunct of 
PL/1). 

FORMAC programs for evaluating Einstein's 
tensor in terms of given metric components and 
for doing other calculations are available from 
many past users [see, e.g., Fletcher, Clemens, 
Matzner, Thorne, and Zimmerman (1967);  Ernst 
(1968) ; Harrison (1970)]. However, programming 
in FORMAC is sufficiently simple that one ordi
narily does not have difficulty creating one's own 
program to do a given task. If a difficulty does 
arise, it may be because the analytic computation 
exhausts the core of the computer. It is easy to 
create an expression too large to fit in the core of 
any existing computer by several differentiations 
of an expression half a page long! 

Users of FORMAC, confronted by core
exhaustion, have devised several ways to solve 
their problems. One is to remove unneeded parts 
of the program and of the FORMAC system from 
the core. Routines called PURGE and KILL have 
been developed for this purpose by Clemens and 
Matzner (1967). Another is to create the answer 
to a given calculation in manageable-sized pieces 
and output those pieces from the computer's core 
onto its disk. One must then add all the pieces 
together-a task that is impossible using 
FORMAC alone, or even FORMAC plus PL/1, 
but a task that James Hartle has solved [see 
Hartle and Thorne (197 4)] by using a combination 
of FORMAC, PL/1, and IBM data-manipulation 
routines called SORT. 
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Rµ vaf3 as  a linear function of R, constructed from R and the metric alone, and with the correct contracted value R µv 
µv = R. Establish a corresponding three-dimensional identity expressing 

Riiki  in terms of the Ricci tensor Rik and the metric. 
Exercise 14 . 3 .  CURVATURE OF 3-SPHERE IN ORTHONORMAL FRAME Compute the curvature tensor for a 3-sphere 
or for a 3-hyperboloid 

(14.2) 

(14.3) 

Convert th� coordinate-based components R\u to a corresponding orthonormal basis, R {
jkl · Display R i\1 = R CiJ\u1 as a 3 X 3 matrix with appropriately labeled rows and columns. 

§14. 2 .  FORM ING THE EINSTEIN TENSOR 

The distribution of matter in space does not immediately tell all details of the local 
curvature of space, according to Einstein. The stress-energy tensor provides infor
mation only about a certain combination of components of the Riemann curvature 
tensor, the combination that makes up the Einstein tensor. Chapter 13 described 
two equivalent ways to calculate the Einstein tensor : (1) by successive contractions 
of the Riemann tensor 

(14. 4) 

[equations (13. 48) and (13. 49)]; (2 ) by forming the dual of the Riemann tensor and 
then contracting : 

G 8 _ L' a8 
(3 - ua/3 

(14. 5a) 

(14. 5b) 

[equations (13. 46) and (13. 47)). A third method, usually superior to either of these, 
is discovered by combining equations (14.Sa,b) : 

G 8 - G 8 - - 8 8 pu R lµv l 
(3 - (3 - (3 µv l pu l ·  (14.6) 

[Note: in any frame, orthonormal or not, the permutation tensor 8 8 P" f3 µv has compo
nents 

[+ 1 if 8pa is an even permutation of /3µ,11, 
8 8P" f3 µv = 8

13 µ
/P" = - 1  if 8pa is an odd permutation of /3µ,11, 

0 otherwise; 

Three ways to compute the 
Einstein tensor from the 
Riemann tensor 



Standard method of 
computing curvature is 
wasteful 

Ways to avoid "waste" 

( 1 )  geodesic Lagrangian 
method 

(2)  method of curvature 
2-forms 
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to see this, simply evaluate 88 P" f3 µv using definition (3.50h) and using the components 
(8 . 10) of £af3 µv and £. pays . ] Equation (14.6) for the Einstein tensor, written out explic
itly, reads 

Go
o = - (R 1212 + R 23

23 + R 3\1) , 

G\ = - (R o202 + R o303 + R 23
23), 

G\ = R o\2 + R o3
13 , 

G\ = R 10
20 + R 13

23 , 

( 14 .7) 

and every other component is given by a similar formula, obtainable by obvious 
permutations of indices. 

§14.3. MORE EFF I CIENT COMPUTATION 

If the answer to a problem or the result of a computation is not simple, then there 
is no simple way to obtain it. But when a long computation gives a short answer, 
then one looks for a better method. Many of the best-known applications of general 
relativity present one with metric forms in which many of the components gµ,, I' µ 

af3 , 
and Rµvaf3 are zero; for them the standard computation of the curvature (Box 14.2) 
involves much "wasted" effort. One computes many I'µ a/3 that turn out to be zero. 
One checks off many terms in a sum like - I'µ r/3 I' Paµ that are zero, or cancel with 
others to give zero. Two alternative procedures are available to eliminate some of 
this "waste." The "geodesic Lagrangian" method provides an economical way to 
tabulate the I'µ 

a/3 . The method of "curvature 2-forms" reorganizes the description 
from beginning to end, and computes both the connection and the curvature. 

The geodesic Lagrangian method is only a moderate improvement over the 
standard method, but it also demands only a modest investment in the calculus of 
variations, an investment that pays off in any case in other contexts in the world 
of mathematics and physics. In contrast, the method of curvature 2-forms is efficient, 
but demands a heavier investment in the mathematics of I-forms and 2-forms than 
anyone would normally find needful for any introductory survey of relativity. Anyone 
facing several days' work at computing curvatures, however, would do well to learn 
the algorithm of the curvature 2-forms. 

§14.4. THE GEODES I C  LAGRANG IAN METHOD 

One normally thinks that the connection coefficients I'µ 
af3 must be known before 

one can write the geodesic equation 

·· µ + r µ · "  · /3 - o X a{3 X X - . ( 14 .8)  

(Here and below dots denote derivative with respect to the affine parameter, ,\ . )  
However, the argument can be reversed. Once the geodesic equations have been 



§14 4 GEODESIC LAGRANGIAN METH OD 345 written down, the connection coefficients can be read out of them. For instance, on the 2-sphere as treated in Box 14 .2, the geodesic equations are 0 - sin 0 cos 0 �2 = 0, � + 2 cot 0 �0 = 0. (14.90) (14 .9<j>) The first equation here shows that I' 8 <1><1> = - sin 0 cos 0; the second equation shows that I' "' ¢8 = I' ¢ 
8</J = cot 0 ;  and the absence of any further terms shows that all other I'\k are zero. The first essential principle is thus clear: an explicit writing out of the geodesic equation is equivalent to a tabulation of all the connection coefficients I'µaf3 · The second principle says more: one can write out the geodesic equation without ever having computed the I'µaf3 • In order to arrive at the equations for a geodesic (see Box 13.3), one need only recall that a geodesic is a parametrized curve that extremizes the integral (14 .10) in the sense 

81 = 0. In practical applications of this variational principle, the first step is to rewrite 
equation (14. 10) in the simplest possible form, inserting the specific values of gµ, for 
the problem at hand. If one's interest attaches to the geodesics themselves, one can recognize many constants of motion even without carrying out any variations (see Chapter 25 on geodesic motion in Schwarzschild geometry, especially §25 .2 on conservation laws and constants of motion) . For the purpose of computing the I'µa/3 ' one proceeds to vary each coordinate in turn, obtaining four equations. Next these equations are rearranged so that their leading terms are xµ .  In this form they must be precisely the geodesic equations (14.8) .  Consequently, the I'µ af3 are immediately available as the coefficients in these four equations. For the final step in computing curvature by this method, one returns to the standard method and to formulas of the type R ~ ar + I' I', treated in the standard way (Box 14 .2) ; and as the need arises for each I' in turn, one scans the geodesic equation to find it. The procedure is best understood by following an example : Box 14 .4 provides one. 
Exercise 14.4. EINSTEIN EQUATIONS FOR THE C LOSED FRIEDMANN 

UNIVERSE CALC U LATED BY USING THE GEODESIC 
LAGRANGIAN METHOD 

The line element of interest here is (see Chapter 27) 

ds2 = - dt2 
+ a2(t) [dx 2 

+ sin2x (d82 
+ sin28 dq,2)). 

(continued on page 348) 

Geodesic Lagrangian method 
in 4 steps 

( 1 )  write / in simple form 

(2)  vary I to get geodesic 
equation 

(3)  read off I' "f3 y  

(4 )  compute R" /3Y� etc by 
standard method 

EXERCISE 
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Box 14.4 GEODESIC LAGRANGIAN METHOD SHORTENS SOME 
CURVATURE COMPU TATIONS 

Aim: Compute the curvature for the line element 

ds2 = L2(e2f3 dx2 + e-2/3 dy2) - 2 du du (I) 

where L and /3 are functions of u only. [This metric is discussed as an example of 
a gravitational wave in §§35.9-3 5.12 .] 

Method: Obtain the I'P-,,_13 from the geodesic equations as inferred from the varia
tional principle (14.10), then compute Rµvaf3 ~ ar + I'2 as in Box 14. 2 . 

Step 1. State the variational integral. For the metric under consideration, equation 
(14.10) requires 81 = 0 for 

l = J [ ; L2(e2f3 x2 + e-2f3j2) - uv] d;\. (2 ) 

A world line that extremizes this integral is a geodesic. 

Step 2: Vary the coordinates of the world line, one at a time, in their dependence 
on ;\. First vary x(;\), keeping fixed the functions y(;\), u(;\), and u(;\). Then 

81 = J (L2e2f3 x) 8:x d;\ = -J (L2e2f3 x) · ox d;\ . 

The requirement that 81 = 0 for this variation (among others) gives 

Varying y, u, v, in the same way gives 

0 = (L2e-2f3y) " = L2e-2f3y + ju _l_ (L2e-2f3 ), O U 

0 = v + _!_ x2 _l__ (L2e2f3 ) + _!_ j2 _l__ (L2e-2f3 ), 2 au 2 au 
0 = u .  

Step 3 :  Rearrange to get xµ leading terms. If this step is  not straightforward, this 
method will not save time, and the technique of either Box 14. 2  or Box 14. 5 will 
be more suitable. In the example here, one quickly writes, using a prime for a /ou, 

0 = X + 2 (L - l L' + /3 '):xu, (3x) 

0 = j + 2 (L-1L' - /3' )ju, (3y) 

0 = v + (L2e2f3 )(L-1L' + /3'):x2 + (L2e-2f3 )(L-1L' - /3 ')j2, (3v) 

0 = u. (3u) 
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Step 3': Interpret these equations as a tabulation of I' µaf3 • Equations (3) are the standard equations for a geodesic, ·· µ + r µ · a · /3 - o X a{3 X  X - . Therefore it is enough to scan them to find the value of any desired I'. For instance 
I' '\u must appear in the coefficient ( I' '\u + I' "'uy) = 2I' "'vu of the ju term in the equation for x. But no ju term appears in equation (3x). Therefore I' "'vu is zero in this example. Note that equations (3) are simple, in the sense that they contain few terms; therefore most of the I' µa/3 must be zero. For instance, it follows from equation (3u) that all ten r ua/3 are zero. The only non-zero I' 's are I' "'

xu = I' "'ux = (L- 1 L' + /3 1
) from equation (3x), I' Yyu = I' Yuy = (L-1L' - /3 ') from equation (3y), and rv

xx and r vvv from equation (3v). 

Step 4: Compute each Rµ vaf3 , etc. There is little relief from routine in systematically applying equation (3) from Box 14.2. One must list 21 components Rµvaf3 that are not related by any of the symmetries Rµva/3 = Raf3µv = - Rµvf3 a ' and compute each. In the example here, one notes that r u a/3 = 0 implies Ru af3y = - Rvaf3y = 0. Therefore 15 of the list of 21 vanish at one swat. The list then is: Rva{3y  = - Ruaf3 y = 0, Ruxux = - R V

XUX 
= - (I' V

xxY + rv
xx I' "'

xu 
= - (L2e2f3 ) (�' + /3" + 2 f /3 ' + /3 ' 2) ,  Ruxxy = - Rv 

xxy = 0, Ruxyu = - R V 

xyu = 0, Ruyuy = - Rvyuy = - ( I' Vyy) '  + rvyy I' Yyu 

= - (L2e-2f3 ) ( �' - /3 11 - 2 1;,' /3 ' + {3 '2 ) , Ruyxy = - RV yxy = 0, Rxyxy = (L2e2f3 ) R"'yxy = 0. 

(4) 

One can now calculate the Einstein tensor via equation (14.7). In the example here, however, it is equally simple to form first the Ricci tensor by the straightforward contraction Rµaµf3 • Only µ, = x and µ, = y give any contribution, because no superscript index can be a u, and no subscript a v. Thus one finds 
and 

Ruu = - 2[L-1L" + /3 ' 2], all other Ra/3 = 0, 
R = 0. 

(5) 
(6) From this last result, it follows that here the desired Einstein tensor is identical with the Ricci tensor. 



Concepts needed for method 
of curvature 2-forms 
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(a) Set up the variational integral ( 14 . 10) for a geodesic in this metric, then successively 
vary t, X, 0, and cf, to obtain, after some rearrangement, four equations O = i' + • • • ,  0 = 
x + • • • ,  etc. displaying the I' 's in the form of equation ( 14 .8) .  

(b) Use this display as a table of I' 's to compute R \µ.v and RX8µ, ,  of which only R \tx 
and RX8x8 are non-zero (consequence of the complete equivalence of all directions tangent 
to the x0cf, sphere) . 

(c) Convert to an orthonormal frame with w 1 = dt, w x = a dx, w 8 = ?, w <t> = ?, and list 
R 1\x and RX8x.8 . Explain why all other components are known by symmetry in terms of 
these two. 

( d) Calculate, using equations ( 14.7) ,  all independent components of the Einstem ten
sor GfJ.,. (Answer: See Box 14 .5 . ]  

§ 1 4 . 5 .  CU RVATU RE  2-FO RMS 

In electrodynamics the abstract notation 

F = dA  

saves space compared to the explicit notation 

F. _ aA1 _ oA3 
31 - cJx3 cJxl ' 

F. - oAz - oAl 
12 - cJxl OXZ ' 

. . . , etc. (six equations); 

there is no reason to shun similar economies in dealing with the dynamics of 
geometry. Cartan introduced the decisive ideas, seen above, of differential forms 
(where a simple object replaces a listing of four components; thus, u = aµ dx J1.), 
and of the exterior derivative d. He went on (192 8, 1946) to package the 2 1  compo
nents Rµ,af:J of the curvature tensor into six curvature 2 -forms, 

Regarded purely as notation, these 2 -forms automatically produce a profit. They 
cut down the weight of paper work required to list one's answer after one has it. 
They also provide a route into deeper insight on "curvature as a geometric object," 
although that is not the objective of immediate concern in this chapter. 

Cartan's exterior derivative d automatically effects many cancelations in the 
calculation of curvature. It often cancels terms before they ever need to be evaluated. 

Extension of Cartan's calculus from electromagnetism and other applications 
(Chapter 4) to the analysis of curvature (this chapter) requires two minor additions 
to the armament of forms and exterior derivative: (1) the idea of a vector-valued 
(or tensor-valued) exterior differential form; and (2 ) a corresponding generalization 
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of the exterior derivative d. This section uses both these tools in deriving the key 
formulas (I4.18), (14.2 5), (14.3I), and (14.32 ). Once derived, however, these formulas 
demand no more than the standard exterior derivative for all applications and for 
all calculations of curvature (§ 14.6 and Box 14.5). 

The extended exterior derivative leads to nothing new in the first two contexts Extended exterior derivative : 
to which one applies it : a scalar function ("0-form") and a vector field ("vector-valued 
0-form"). Thus, take any function f Its derivative in an unspecified direction is a ( 1 )  acting on a scalar 
I-form; or, to make a new distinction that will soon become meaningful, a "scalar-
valued I-form." Specify the direction in which differentiation is to occur ("fill in 
the slot in the I-form"). Thereby obtain the ordinary derivative as it applies to a 
function 

( df, u) = ouf (14.11) 

Next, take any vector field v. Its covariant derivative in an unspecified direction (2)  acting on a vector 
is a "vector-valued I-form." Specify the direction u in which differentiation is to 
occur ("fill in the slot in the I-form"). Thereby obtain the covariant derivative 

( dv, u) _ Vu
v. (14.12 a) 

This object too is not new; it is the covariant derivative of the vector v taken in 
the direction of the vector u. When one abstracts away from any special choice of 
the direction of differentiation u, one finds an expression that one has encountered 
before, though not under its new name of "vector-valued I-form." This expression 
measures the covariant derivative of the vector v in an unspecified direction ("slot 
for direction not yet filled in"). From a look at (14.12 a), one sees that this extended 
exterior derivative is applied to v, without reference to u, is 

dv = Vv. (14.12 b) 

Similarly, for any "tensor-valued 0-form" [i.e. (8) tensor] S, dS VS. 
Before proceeding further with the exterior (soon to be marked as "antisymmetric") 

differentiation of tensors, write down a formula (see exercise 14.5) for the exterior 
(antisymmetric) derivative of a product of forms: 

d(a I\ {3) = (da) I\ f3 + ( - l )Pa I\ d/3, (14.13a) 

where a is a p-form and f3 is a q-form. 
Now extend the exterior derivative from elementary forms to the exterior product (3 )  defined i n  general 

of a tensor-valued p-form S with any ordinary q-form, {3 ; thus, 

d(S I\ /3) = dS I\ /3 + ( - I)PS /\ d/3. (14.13b) 

This equation can be regarded as a general definition of the extended exterior 
derivative. For example, if S is a-tensor-valued 2 -form, S = S"',B

I YS l ea e ,B dxY I\ dx 8 , 

then equation (14.13b) says 
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As another example, use ( 1 4.13b) to calculate d(ua), where u is a vector-valued 
0-form (vector) and a is a scalar-valued I-form (I-form): 

d(ua) = (du) I\ a + u da. 

If one were following the practice of earlier chapters, one would have written u ® a 
where ua appears here, u ® da instead of u da, and ea ® e f3 instead of e ae f3 . 
However, to avoid overcomplication in the notation, all such tensor product symbols 
are omitted here and hereafter. 

Equations ( 1 4. 1 2 ) and (1 4. 1 3) do more than define the (extended) exterior deriva
tive d and provide a way to use it in computations. They also allow one to define 
and calculate the antisymmetrized second derivatives, e.g., d2 v. The relation 

where v is a vector will then introduce the "operator-valued" or "(½)-tensor valued" 
curvature 2 -form tjj/,,_ The notation of the extended exterior derivative puts a new 
look on the old apparatus of base vectors and parallel transport, and opens a way 
to calculate the curvature 2 -form tjjl,,_ 

Let the vector field v be expanded in terms of some field of basis vectors e µ; 
thus 

Then the exterior derivative of this vector is 

Expand the typical vector-valued I-form deµ in the form 

(1 4. 1 4) 

Here the "components" w •µ in the expansion of deµ are I-forms. Recall from 
equation ( 10. 1 3) that the typical w "µ is related to the connection coefficients by 

W •  = r • w A 

µ µA • 

Therefore the expansion of the "vector" (really, "vector-valued I-form") is 

Now differentiate once again to find 

d2 v = dea I\ (dva + wa.v•) 
+ eµ(d2vµ + dwµ.vv - wµ

v 
I\ du•) 

= eµ(wµ
a I\ dva + wµ

a I\ wa.v• 
+ d2vµ + dw µ .v• - wµ 

a I\ dva). 

( 1 4. 1 5) 

( 1 4. 1 6) 

The simplifications made here use (I) the equation ( 1 4. 1 4), for a second time; and 
(2 ) the product rule (14.13a), which introduced the minus sign in the last term, ready 
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to cancel the first term. Now consider the term d2v µ . Recall that any given compo
nent, for example, v3 , is an ordinary scalar function of position (as contrasted to 
v or e 3 or e 3 v3) .  Therefore the standard exterior derivative (Chapter 4) as applied 
to a scalar function is all that d can mean in d2v µ . But for the standard exterior 
derivative applied twice, one has automatically d2v µ = 0 (Box 4. 1 ,  B; Box 4.4). This 
circumstance reduces the expansion for d2v to the form Curvature 2-forms (Jl µ , :  

where the '!llµ v are abbreviations for the curvature 2jorms 

(14 . 17) ( 1 )  in terms of d2 v 

(14. 1 8) (2 )  in terms of w µ, 

Ordinarily, equation (14. 1 8) surpasses in efficiency every other known method for 
calculating the curvature 2-forms. 

The remarkable form of equation (14. 17) deserves comment. On the left appear 
two d's, reminders that one has twice differentiated the vector field v. But on the 
right, as the result of the differentiation, one has only the vector field v at the point 
in question, undifferentiated. How v varies from place to place enters not one whit 
in the answer. All that matters is how the geometry varies from place to place. Here 
is curvature coming into evidence. It comes into evidence free of any special features 
of the vector field v, because the operation d2 is an antisymmetrized covariant 
derivative [ compare equation (l l .8) for this antisymmetrized covariant derivative 
in the previously developed abstract language, and see Boxes 1 1 .2 and 1 1 .6 for what 
is going on behind the scene expressed in the form of pictures]. In brief, the result 
of operating on v twice with d is an algebraic linear operation on v; thus, 

Here iJl is an abbreviation for the "(½)-tensor valued 2-form," 

(14. 19)  Tensor-valued curvature 
2-form (jl 

(14.20) 

If d is a derivative with a "slot in it" in which to insert the vector saying in what 
direction the differentiation is to proceed, then the d2w of d2 w = '!llw has two slots 
and calls for two vectors, say, u and v. These two vectors define the plane in which 
the antisymmetrized exterior derivative of (14 . 19)  is to be evaluated (change in w 
upon going around the elementary route defined by u and v and coming back to 
its starting point; Boxes 1 1 .6 and 1 1 .7). To spell out explicitly this insertion of vectors 
into slots, return first to a simpler context, and see the exterior derivative of a I-form 
(itself a 2-form) "evaluated" for a bivector u I\ v ("count of honeycomblike cells 
of the 2-form over the parallelogram-shaped domain defined by the two vectors 
u and v "), and see the result of the evaluation (exercise 14.6) expressed as a com
mutator, 

( da, u I\ v) = au(a, v) - av(a, u) - (a, [u, v) ) . (14 .2 1 )  
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This result generalizes itself to a tensor-valued I-form S of any rank in an obvious 
way; thus, 

( dS, u I\ v) = Vu ( S, v) - Vv ( S, u) - ( S, [u, v]) .  (14. 2 2 )  

Apply this result to the vector-valued I-form S = dw. Recall the expression for 
a directional derivative, ( dw, u )  = Vu w. Thus find the result 

(d2w, u I\ v) = vu Vv w - vv Vu w - v[u,v] W 
= t!Jl(u, v) w, 

(14. 2 3) 

where t!Jl(u, v) is the curvature operator defined already in Chapter 11 [equation 
(11. 8)]. The conclusion is simple: the (D-tensor-valued 2 -form t!Jl of (14.19), evaluated 
on the bivector ("parallelogram") u I\ v, is identical with the curvature operator 
t!Jl(u, v) introduced previously; thus 

( t!Jl, u I\ v) = t!Jl(u, v). (14. 2 4) 

Now go from the language of abstract operators to a language that begins to make 
components show up. Substitute on the left the expression (14. 2 0) and on the right 
the value of the curvature operator from (11.11 ); and rewrite (14. 2 4) in the form 

Compare and conclude that the typical individual curvature 2 -form is given by the 
formula 

(14. 2 5) 

(sum over a, /3, restricted to a < {3; so each index pair occurs only once). 
Equation (14. 2 5) provides the promised packaging of 2 1  curvature components 

into six curvature 2 -forms; and equation (14.18) provides the quick means to calcu
late these curvature 2 -forms. It is not necessary to take the key calculational equations 
(14.18) on faith, or to master the extended exterior derivative to prove or use them. 
Not one mention of any d do they make except the standard exterior d of Chapter 
4. These key equations, moreover, can be verified in detail (exercise 14.8) by working 
in a coordinate frame. One adopts basis I-forms w"' = dx "' . One goes on to use 
wµv = I'µ,1,, dx "/\ from equation (14.1 5). In this way one obtains the "standard 
formula for the curvature" [equation (11.12 ) and equation (3) of Box 14. 2 ] by 
standard methods. 

In summary, the calculus of forms and exterior derivatives reduces the 

calculation to the 

computation. Now look at the other link in the chain that leads from metric to 
curvature. It used to be 
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It now reduces to the calculation of "connection I-forms"; thus 

3 5 3  

Two principles master this first step in the curvature computation :  (1) the symmetry 
of the covariant derivative; and (2 ) its compatibility with the metric. Condition (1 ), 
symmetry, appears in hidden guise in the principle 

Symmetry of covariant 
derivative · 

d2(jf = 0. (14. 2 6) ( 1 )  expressed as d2'!F = 0 

Here the notation "(jf for point" comes straight out of Cartan. He thought of a vector 
as defined by the movement of one point to another point infinitesimally close to 
it. To write d(jf was therefore to take the "derivative of a point" [ make a construction 
with a "point deleted" (tail of vector) and "point reinserted nearby" (tip of vector)]. 
The direction of the derivative d in d(jf is indefinite. In other words, d(jf contains 
a "slot." Only when one inserts into this slot a definite vector v does d(jf give a 
definite answer for Cartan's vector. What is that vector that d(jf then gives? It is 
v itself. "The movement that is v tells the point (jf to reproduce the movement that 
is v";  or in concrete notation, 

( d{jf, v) = v. (14. 2 7) 

Put the content of this equation into more formalistic terms. The quantity d(jf is 
a (½)-tensor 

(14. 2 8) 

It is distinguished from the generic (D-tensor 

by the special value of its components 

In this sense it deserves the name of "unit tensor." Insert this tensor in place of 
S into equation (14. 2 2 )  and obtain the result 

(14. 2 9) 

The zero on the right is a restatement of equation (10. 2 a) or of "the closing of the 
vector diagram" in the picture called "symmetry of covariant differentiation" in Box 
10.2 . The vanishing of the righthand side for arbitrary u and v demands the vanish
ing of d2(jf on the left; and conversely, the vanishing of d2(jf demands the symmetry 
of the covariant derivative. The other principle basic to the forthcoming computa
tions is "compatibility of covariant derivative with metric," as expressed in the form 

d(u · v) = (du) · v + u · (dv). (14.30) 

It is essential here to ascribe to the metric (the "dot") a vanishing covariant deriva
tive; thus 

d( · ) = O . 



(2)  expressed as 
dwJJ- + wJJ-, I\ w "  = 0 

Compatibility of g and V 
expressed as 
dg µ, v = wµ, , + w,µ. 

Method of curvature 2-forms 
in 4 steps : 

( 1 )  select metric and frame 

(2)  calculate connection 
1 -forms w µ, , 
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Capitalize on the symmetry and compatibility of the covariant derivative by using 
basis vectors (and where appropriate the basis I-forms dual to these basis vectors) 
in equations (14.2 6) and (14.30). Thus from 

compute 

and conclude that the coefficient of e µ must vanish; or 

("symmetry"). (14.31a) 

Next, into (14.30) in place of the general u and v insert the specific eµ and e ,, 
respectively, and find 

("compatibility"), (14.31b) 

where 

(14.31c) 

In equations (14.31) one has the connection between metric and connection forms 
expressed in the most compact way. 

§14. 6 .  COMPUTATION OF CURVATURE USING 

EXTERIOR D I FFERENTIAL FORMS 

The use of differential forms for the computation of curvature is illustrated in Box 
14.5. This section outlines the method. There are three main steps: compute wµ ,; 
compute <!fl JJ-,; and compute GJJ-,. More particularly, first select a metric and a frame. 
Thereby fix the basis forms w JJ- = LJJ-

a' dx a' and the metric components gµ, in 
ds 2 = gµ, wµ ® w•. Then determine the connection forms wJJ-,, and determine them 
uniquely, as solutions of the equations 

0 = dw µ + wJJ-, I\ w ", 

dgµ, = wµ, + w ,µ · 

(14.31a) 

(14.31b) 

The "guess and check" method of finding a solution to these equations ( described 
and illustrated in Box 14.5) is often quick and easy. [Exercise (14.7) shows that a 
solution always exists by showing that the Christoffel formula (14.36) is the unique 
solution in coordinate frames.] It is usually most convenient to use an orthonormal 
frame with gµ, = 11µ, (or some other simple frame where gµ, = const, e.g., a null 
frame). Then dgµ, = 0 and equation (14.31b) shows that wµ, = - w ,µ. Therefore 
there are only six w µv for which to solve in four dimensions. 

(continued on page 358) 
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Box 14 . 5  CURVATURE COMPU TED USING EXTERIOR DIFFERENTIAL FORMS 
(METRIC FOR FRIEDMANN COSMOLOGY) 

The Friedmann metric 

ds2 = - dt2 + a2(t)[dx2 + sin2x(d0 2 + sin20 d<j> 2)] 

(Box 2 7.1) represents a spacetime where each constant-t hypersurface is a three
dimensional hypersphere of proper circumference 2 '1Ta(t). An orthonormal basis is 
easily found in this spacetime; thus, 

where 
w f = dt, 

w x = a dx, 

w 8 = a sin x d0, 

w if> = a sin x sin 0 d<j>. 

A. Con nection Computat ion 

Equation (14.31b) gives, since dgµ, = dr, µ, = 0,  just 

(1) 

(2 ) 

so there are only six I-forms wµ, to be found. Turn to the second basic equation 
(14.31a). The game now is to guess a solution (because this is so often quicker than 
using systematic methods) to the equations 0 = dwµ + wµ, I\ w " in which the w " 
and thus also dwµ are known, and wµ, are unknown. The solution wµ, is known 
to be unique; so guessing (if it leads to any answer) can only give the right answer. 

Proceed from the simplest such equation. From w f = dt, compute 

dw 1 = 0. 

Compare this with dw 1 = - w 1
µ I\ wµ or (since w1

1 = - Wff = 0, by wµ, = - w,µ) 

dw 1 = - w 1
k I\ wk = 0. 

This equation could be satisfied by having w 1
k a: wk , or in more complicated ways 

with cancelations among different terms, or more simply by w 1
k = 0. Proceed, not 
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Box 14.5  (continued) 

looking for trouble, until some non-zero wµ. v is required. From w x = a dx, find 

dw X = a dt I\ dx 
= (a/a)w i I\ w x = - (a/a)w x I\ w i. 

Compare this with 

dwx = - wx I\ w µ. 
µ. 

- w x
r I\ w i - wx

e I\ w e - w x
i I\ w i. 

Guess that w x
i = (a/a)w x from the first term; and hope the other terms vanish. 

(Note that this allows w i , I\ w x - - W "  I\ w x - w . . I\ w x - 0 in the dw i 
x - tx - xt -

equation.) Look at w e = a sin x d0, and write 

dw e = (a/a)w i I\ w e + a- 1 cot x w x I\ w e 

= - w e
i I\ w i - w e

-;_ 
I\ w x - w e

i I\ w 1>. 

Guess, consistent with previously written equations, that 

w e
r = wi

e = (a/a)w e, 

Finally from 

W 8
x = - w X

(J = a-1 cot x w 8. 

dw if> = (a/a)w i I\ w if> + a-1 cot x w x I\ w 1> 

+ (a sin x)-1 cot 0 w 8 I\ w if> 

= - wif>,  I\ w i - wif>,  I\ w x - w if>,  I\ w 8 
t X 8 ' 

deduce values of wif>f, wif>-;_, and w if>
e · These are not inconsistent with previous 

assumptions that terms like w 8 
if> I\ w if> vanish (in the dw e equation); so one has 

in fact solved dwµ. = - wµ." I\ w " for a set of connection forms wµ." ' as follows: 

wk
i = w� = (a/a)wk , 

W e
X = - W X

8 = a-1 COt X W e 

= cos x d0, 

w if>
x = - w x.

¢, = a-1 cot X w 1> 

= cos x sin 0 dcp, 

w if>
e = - w e 

i = (a sin x)- 1 cot 0 w if> 

= cos 0 dcp. 

(3) 

Of course, if these hit-or-miss methods of finding w µ. v do not work easily in some 
problem, one may simply use equations (14.32 ) and ( 1 4.33). 
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B .  Curvature Computation 
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The curvature computation is a straightforward substitution of wµ, from equations 
(3) above into equation (14.34), which is 

This equation is short enough that one can write out the sum 

t!Jl i . = dw i . + w i , /\ w 0 · + w f , /\ wif> , X X 9 X </> X 

in contrast to the ten terms in the corresponding R = ar + I'2 equation [equation 
(3) of Box 14. 2 ] .  Warning!: From w i

x = (a/a)wx, do not compute dw i
x = 

(a/a)' w i /\ wx . Missing is the term (a/a) dw x . Instead write w 1
x = (a/a)w X = 

a dx, and then find dw i
x = ii dt /\ dx = (ii/a)w 1 /\ w x . With elementary care, 

then, in correctly substituting from (3) for the wµ, in the formula for t!Jl µ ,, one finds 

t!Jl 1
x = (ii/a)w f /\ wx, 

and 

This completes the computation of the Rµ•a/3 ' since in this isotopic model universe, 
all space directions in the orthonormal frame wµ are algebraically equivalent. One 
can therefore write 

t!Jl f
k = (ii/a)w f /\ wk , 

t!Jl k
1 = a-2(1 + a2)w k /\ w 1 , 

for the complete list of t!Jl µ , .  Specific components, such as 

or 

are easily read out of this display of t!Jlµ , .  

C.  Contract ion 

From equations (14.7), find 

Gff = + 3a-2(1 + a 2), 

and 

(4) 

(Sa) 

(Sb) 

(Sc) 

(6) 



(3 )  calculate curvature 
2-forms 'JI, µ, 

(4) calculate components of 
curvature tensors 

EXERCISES 

3 58 14.  CALCULATION OF CURVAT URE If guessing is not easy, there is a systematic way to solve equations (14.31) in an orthonormal frame or in any other frame in which dgµv = 0. Compute the dwµ and arrange them in the format (14.32) In this way display the 24 "commutation coefficients" c µv"' . These quantities enter into the formula (14 .33) to provide the six w µ v ( exercise 14 .12) . Once the wµv are known, one computes the curvature forms tif/._ µ, (again only six in four dimensions, since tifl µ• = - tJl vµ) by use of the formula (14 .34) Out of this tabulation, one reads the individual components of the curvature tensor by using the identification scheme (14.35) The Einstein tensor Gµv is computed by scanning the tiflµ" display to find the appropriate R µv 
af:J components for use in formulas (14.7) . 

Exercise 14 .5 .  EXTERIOR DERIVATIVE OF A PRODUCT OF FORMS Establish equation ( 14.1 3a) by working up recursively from forms of lower order to forms of higher order. [Hints: Recall from equation (4.27) that for a p-form 
the exterior derivative is defined by 
Applied to the product a I\ {J of two 1 -forms, this formula gives 

d(a I\ {J) = d[(ax dx x ) I\ (/3µ dx µ ) ] = d[(a xf3µ)(dx x I\ dxµ) ] 
= o (a xf3µ.) dx K I\ dx x I\ dx µ OX K 

= ( 0a x dx K I\ dx x) I\ f3 dx µ - (a x dx x ) I\ ( 013µ. dx K I\ dx µ) OX K µ ox K 

= (da) I\ {J - a I\ d/3.  Extend the reasoning to  forms of higher order. ] 
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Establish formula (14.21) by showing ( a) that the righthand side is an algebraic linear function 
of u and an algebraic linear function of v, and (b) that the equation holds when u and 
v are coordinate basis vectors u = o/oxk , v = a;ax1. 

Exercise 14. 7 .  CHRISTOFFEL FORMULA DERIVED FROM CONNECTION FORMS 

In a coordinate frame w JJ- = dx JJ- , show that equation (14.31a) requires I'1\,_13 
= I'JJ-

13 a , and 
that , with this symmetry established, equation ( 14 .31 b) gives an expression for agµ.

,/i'Jx a which 
can be solved to give the Christoffel formula 

(14.36) 

Exercise 14.8 . RIEMANN-CHRISTOFFEL CURVATURE FORMULA 
RELATED TO CURVATURE FORMS 

Substitute w JJ-, = I'µ. ,>-. dx >-. into equation (14 .18), and from the result read out, according 
to equation (14.25), the classical formula (3) of Box 14.2 for the components R JJ- vaf3 • 

Exercise 14 . 9 .  MATRIX NOTATION FOR REVIEW OF CARTAN 
STRUCTURE EQUATIONS 

Let e (e1 , . . .  , e n) be a row matrix whose entries are the basis vectors, and let w be a 
column of basis I-forms w JJ-. Similarly let il = l lw JJ-,1 1  and '!il = l l '!il JJ-,1 1  be square matrices 
with I-form and 2-form entries. This gives a compact notation in which de µ. = e ,w 'µ. and 
d<!f = e µwµ read 

de = ell and d<!f = ew, 

respectively. 
(a) From equat10ns (14.37) and d2<!f = 0, derive equation (14.31a) in the form 

0 = dw + il I\ w .  

[Solution: d2<!! = de I\ w + e dw = e(il I\ w + dw).] 
(b) Compute d2

e as motivation for definition (14.18), which reads 

'!il = dil + il I\ il. 

(14.37) 

(14.38) 

(14.39) 

(c) From d2w = 0, deduce '!il I\ w = 0 and then decompress the notation to get the 
antisymmetry relation R JJ-

[af3 yl = 0. 
(d) Compute d'!il from equation (14.39), and relate it to the Bianchi identity R JJ-,[a/3 , Yl 

= 0. 
( e) Let u = { u JJ-} be a column of functions; so v = eu = e µ u

JJ- is a vector field. Compute, 
in compact notation, dv and d 2v to show d2 v = e'!ilu (which is equation 14.17). 

Exercise 14.10. TRANSFORMATION RULES FOR CONNECTION FORMS 
IN COMPACT NOTATION 

Using the notation of the previous exercise, write e' = eA in place of e µ.' = e ,A'µ• ,  and 
similarly w' = A-1w,  to represent a change of frame. Show that d<!f _ ew = e'w'. Substitute 
e' = eA in de' = e'il' to deduce the transformation law 

(14.40) 

Rewrite this in decompressed notation for coordinate frames with A'
µ.' = ax• /axµ' as a 

formula of the form I'µ'
a'/3 ' = ( ?). 
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Exercise 14 .11 . SPACE IS F LAT IF THE CURVATURE VANISHES (see §11 . 5) If coordinates exist in which all straight lines (d2x JJ-/d"J\2 = 0) are geodesics, then one says the space is flat. Evidently all I' JJ-afl and R JJ- vafl vanish in this case, by equation ( 1 4.8) and equation (3) in Box 14.2 .  Show conversely that, if '!il = 0, then such coordinates exist. Use the results of the previous problem to find differential equations for a transformation A to a basis e' where il' = 0 .  What are the conditions for complete integrability of these equations? [Note that dfx = Fx (x,f) is completely integrable if d3/x = 0 modulo the original equations.) Why will the basis forms w µ.' in this new frame be coordinate differentials w µ.' = dx JJ-' ? 

Exercise 14.12 . SYSTEMATIC COMPU TATION OF CONNECTION FORMS 

IN ORTHONORMAL FRAMES Deduce equation ( 14 .32) by applying equation ( 14 .2 1 )  to basis vectors, using equations (8 . 14) to define cµ./· Then show that, in an orthonormal frame (or any frames with gµ. , = const), equation ( 14 .33) provides a solution of equations ( 14.3 1 ) ,  which define w JJ-, .  [Compare also equation (8 .24b). ] 
Exercise 14 .13 . SCHWARZSCHILD CURVATURE FORMS Use the obvious orthonormal frame w i = e<P dt, w '  = eA dr, w e = r d0, w 4' = r sin 0 def> for the Schwarzschild metric 

ds2 = - e2<P dt2 + e2A dr2 + r2( d02 + sin20 dcf>2) ,  ( 14.4 1 )  
i n  which tfJ and A are functions of  r only; and compute the curvature forms '!il '-', and the Einstein tensor G°1.1, by the methods of Box 14 .5 .  [Answer: '!il 1' = Ew f I\ w', '!il fe = Ew f I\ w e , '!il f¢ = Ew 1 I\ w 4' , '3l 8¢ = Fw 8 I\ w 4>, '!il ¢' = Fw 4' I\ w', '!il 'e = Fw' I\ w e , with 

and then 

E = - e-2A(tfJ" + tfJ' 2 - t/J'A'), 
E- _ I -2A,,,, - - - e y., , r 

F - _!_ ( 1  - e-2A) - , 2  ' 

- l F = - e-2AA'; 
r 

f -G r = - (F + 2F), 
:; -

G:; = - (F + 2£) ,  
e :;, - -G e = G 1, = - (E + E + F), 
f f f r r e G:; = G e = G¢ = 0 = G e = G¢ = G 4, . ] 

( 14 .42) 

( 14.43) 
Exercise 14 .14. MATRIX DISPLAY OF THE RIEMANN-TENSOR COMPONENTS Use the symmetries of the Riemann tensor to justify displaying its components in an orthonormal frame in the form 

0 1  02 " 03 Rµ.v • •  -afl - 23 3 1  1 2  

I E I H I 
I ( 14 .44) -------+------- , 
I 
I 

- HT I F I 
I 
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where the rows are labeled by index pairs 1W = 01, 02, etc., as shown; and the columns aJ3, 
similarly. Here E, F, and H are each 3 X 3 matrices with (why?) 

trace H = 0, 

where £T means the transpose of E. 

Exercise 14.15 . RIEMANN MATRIX WITH VANISHING 

EINSTEIN TENSOR 

(14.45) 

Show that the empty-space Emstem equations G;,.,  = 0 allow the matrix in equation (14.44) 
to be simplified to the form 

(14.46) 

where now, in addit10n to the equality E = F that this form implies, the further conditions 

trace E = 0, H = HT 

hold. 

Exercise 14 .16 .  COMPU TATION OF CURVATURE FOR A PU LSATING 

OR COLLAPSING STAR 

(14.47) 

Spherically symmetric motions of self-gravitating bodies are discussed in Chapters 26 and 
32. A metric form often adopted in this situation is 

ds 2 = - e2</J dT2 + e2A dR 2 + r2(d82 + sin28 d<f>2) , (14.48) 

where now <I>, A, and r are each functions of the two coordinates R and T. Compute the 
curvature 2-forms and the Einstein tensor for this metric, using the methods of Box 14.5. 
In the guessing of the w tJ. ,, most of the terms will already be evident from the corresponding 
calculation in exercise 14.13. [Answer, in the obvious orthonormal frame w i' = et/J dT, w R = 
eA dR, w 8 = r d8, w <I> = r sin 8 d<f> : 

qz t
ii, = Ew i' I\ w R , 

qz lf
iJ = Ew i' I\ w 8 + Hw R I\ w 8 , 

qz t
<I> 

= Ew t I\ w <I> + Hw ii, I\ w<i> ,  

qz 9
<1> = Fw 8 I\ w <I> , 

qz ii,
9 = Fw R I\ w 8 - Hw 'i' I\ w 8 , 

qz ii,<1> = Fw ii, I\ w <!>  - Hw i' I\ w <I> , 

which, in the matnx display of exercise 14.14, gives 

E 
E 

I 
I .  
I 
I .  H 

- 1  
. . E I . - H  . 

----------+----------
. . . I F  . . 

- H  

H I  F 
I 
I 
I F 

(14.49) 

(14.50) 
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Here 

E = e-2<1>( .ii + A 2 - AtP) - e-2A ( <P" + </>' 2 - <P' A'), 

E- _ l -2<1>( •• .:Ai.) 
l -2A '<I>' - - e r - r-,, - - e r , 

r r 

H - l -4> - A( ' '  �, 'A) - ----;: e r - - r , 

- l . · l F = - e-2<1>r A + - e-2A(r ' A' - r"). r r 

The Einstein tensor is 

G 'f'li' = - G tt = F + 2F, 

G tk = G t
k = 2H, 

G T
8 = G t

¢, = 0, 

G k
k = - (2£ + F), 

G 8
8 = G1'

1, 
= - (E + E + F), 

G k
8 = G k

1, 
= G 8

1, 
= 0.] 

Exercise 14.17. BIANCHI IDENTITY IN dtJl = 0 FORM 
Define the Riemann tensor as a bivector-valued 2-form, 

"" - _!_ /\ a, µ v  :n - 2 eµ e ,:n , 

and evaluate dtJl to make it manifest that dtJl = 0. Use 

( 1 4.5 1) 

( 1 4.52) 

( 14.53) 

( 1 4.54) 

which is derived easily in an orthonormal frame (adequate for proving dtJl = 0), or (as a 
test of skill) in a general frame where tJl P." = tJl P.ag"'" and (why?) dgP." = - gW'(dga13)gf3". 
[Note: only wedge products between forms (not those between vectors) count in fixing signs 
in the product rule ( 14. 13) for d.] 

Exercise 14.18. LOCAL CONSERVATION OF ENERGY AND MOMENTUM: 
d * T = O MEANS V · T = O  

Let the duality operator *, as defined for exterior differential forms in Box 4. l, act on the 
forms, but not on the contravariant vectors, which appear when the stress-energy tensor T 
or the Einstein tensor G is written as a mixed (D tensor : 

or 

(a) Give an expression for * T  (or * G )  expanded in terms of basis vectors and forms. 
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(b) Show that 

where d3S, = £ , la/Jy l w "  /\ w /l /\ w Y [see Box 5 .4 and equations (8.10)] . 
( c) Compute d * T using the generalized exterior derivative d; find that 

d *T = e µ, TP-' ; v v']glw 0 /\ w 1 /\ w 2 /\ w 3 • 
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CHAPTER 1 5  

B IAN C H I I D E NTITI ES AN D 

TH E B O U N DARY O F  A BO U N DARY 

This cha pter is entirely Track 2 .  
A s  preparation, o n e  needs to 

have covered ( 1 )  Chapter 4 
(differentia l  forms) and (2) 
Chapter 1 4  (com putation of 
curvatu re) . 

I n  reading it, one wi l l  be 
hel ped by Cha pters 9 - 1 1 
and  1 3 . 

It is not needed as 
pre paration for any later 
cha pter, but it wil l  be helpful 
in  Chapter 1 7  (E i nstei n  f ield 
equations) . 

Identities and conservation of 
the source e lectromagnetism 
and gravitation compared . 

§ 1 5 . 1 .  B IANCH I IDENTITIES IN BRIEF 

Geometry gives instructions to matter, but how does matter manage to give instruc
tions to geometry? Geometry conveys its instructions to matter by a simple handle : 
"pursue a world line of extremal lapse of proper time (geodesic)." What is the handle 
by which matter can act back on geometry? How can one identify the right handle 
when the metric geometry of Riemann and Einstein has scores of interesting features? 
Physics tells one what to look for: a machinery of coupling between gravitation 
(spacetime curvature) and source (matter; stress-energy tensor T) that will guarantee 
the automatic conservation of the source ( V  · T = 0). Physics therefore asks mathe
matics: "What tensor-like feature of the geometry is automatically conserved?" 
Mathematics comes back with the answer: "The Einstein tensor." Physics queries, 
"How does this conservation come about?" Mathematics, in the person of Elie 
Cartan, replies, "Through the principle that 'the boundary of a boundary is zero' " 
(Box 1 5.1). 

Actually, two features of the curvature are automatically conserved; or, otherwise 
stated, the curvature satisfies two Bianchi identities, the subject of this chapter. Both 
features of the curvature, both "geometric objects," lend themselves to representation 
in diagrams, moreover, diagrams that show in action the principle that "the boundary 
of a boundary is zero. " In this respect, the geometry of spacetime shows a striking 
analogy to the field of Maxwell electrodynamics. 

In electrodynamics there are four potentials that are united in the I-form A 
Aµ dx µ. Out of this quantity by differentiation follows the Faraday, F = dA .  This 
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field satisfies the identity dF = 0 (identity, yes; identity lending itself to the definition dF = O 
of a conserved source, no). 

In gravitation there are ten potentials (metric coefficients g µ,) that are united in 
the metric tensor g = gµ, dx µ ® dx• . Out of this quantity by two differentiations 
follows the curvature operator 

This curvature operator satisfies the Bianchi identity d?Jl = 0, where now "d" is a 
generalization of Cartan's exterior derivative, described more fully in Chapter 14 
(again an identity, but again one that does not lend itself to the definition of a 
conserved source). 

In electromagnetism, one has to go to the dual, *F, to have any feature of the 
field that offers a handle to the source, d *F = 4'77 *J. The conservation of the 
source, d *J = 0, appears as a consequence of the identity dd *F = O; or, by a 
rewording of the reasoning (Box 1 5.1), as a consequence of the vanishing of the 
boundary of a boundary. 

Box 15 .1  THE BOUNDARY OF A BOUNDARY IS ZERO 

A. The Idea in Its 1 -2-3-Dimensional Form 

Begin with an oriented cube or approximation to 
a cube (3-dimensional). 

Its boundary is composed of six oriented faces, 
each two-dimensional. Orientation of each face is 
indicated by an arrow. 

Boundary of any one oriented face consists of 
four oriented edges or arrows, each one-dimen
sional. 

Every edge unites one face with another. No 
edge stands by itself in isolation. 

"Sum" over all these edges, with due regard to 
sign. Find that any given edge is counted twice, 
once going one way, once going the other. 

Conclude that the one-dimensional boundary of 
the two-dimensional boundary of the three-di
mensional cube is identically zero. 

(continued on page 370) 

d(Jl = 0 

dd *F O p lus Maxwe l l  
equations =- d *J = 0 
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Box 15. 1 (continued) 

B .  The Idea in Its 2-3-4-Dimensional Form 

Begin with an oriented four-dimensional cube or 
approximation thereto. The coordinates of the 
typical corner of the four-cube may be taken to 
be (t0 + ½ .Jt, x0 + ½ .Jx, Yo + ½ .Jy, z0 + ½ .Jz); 
and, accordingly, a sample corner itself, in an 
obvious abbreviation, is conveniently abbreviated 
+ - - + .  There are 16 of these corners. Less com
plicated in appearance than the 4-cube itself are 

+---

+---

I 
� z 

\. +---

its three-dimensional faces, which are "exploded 
off of it" into the surrounding area of the diagram, 
where they can be inspected in detail. 

The boundary of the 4-cube is composed of eight 
oriented hyperfaces, each of them three-dimen
sional (top hyperface with extension .Jx .Jy .Jz, 
for example; a "front" hyperface with extension 
.Jt .Jy .Jz; etc.) 

++++ 

++++ 
I 
� z 

X 

---+-�--= --++ 

>----� -+++ 

-+-- �--= -++-
( = - 1/2  Li t  



§ 15 1 BIANCHI IDENTITIES IN BRIEF 367 

Boundary of any one hyperface ("cube") consists of six oriented faces, each 
two-dimensional. 

Every face (for example, the hatched face Llx Lly in the lower lefthand corner) 
unites one hypersurface with another (the "3-cube side face" Llt Llx Lly in the lower 
lefthand corner with the "3-cube top face" Llx Lly Llz, in this example). No face stands 
by itself in isolation. The three-dimensional boundary of the 4-cube exposes no 
2 -surface to the outside world. It is faceless. 

"Sum" over all these faces, with due regard to orientation. Find any given face 
is counted twice, once with one orientation, once with the opposite orientation. 

Conclude that the two-dimensional boundary of the three-dimensional boundary 
of the four-dimensional cube is identically zero. 

C. The Idea in Its General Abstract Form 

aa = 0 (the boundary of a boundary is zero). 

D. Idea Behind Application to G ravitation and Electromagnetism 

The one central point is a law of conservation ( conservation of charge; conservation 
of momentum-energy). 

The other central point is "automatic fulfillment" of this conservation law. 
"Automatic conservation" requires that source not be an agent free to vary 

arbitrarily from place to place and instant to instant. 
Source needs a tie to something that, while having degrees of freedom of its own, 

will cut down the otherwise arbitrary degrees of freedom of the source sufficiently 
to guarantee that the source automatically fulfills the conservation law. Give the 
name "field" to this something. 

Define this field and "wire it up" to the source in such a way that the conservation 
of the source shall be an automatic consequence of the "zero boundary of a boundary." 
Or, more explicitly: Conservation demands no creation or destruction of source inside 
the four-dimensional cube shown in the diagram. Equivalently, integral of "creation 
events" (integral of d * J for electric charge; integral of d * T for energy-momentum) 
over this four-dimensional region is required to be zero. 

Integral of creation over this four-dimensional region translates into integral of 
source density-current (*J or * T) over three-dimensional boundary of this region. 
This boundary consists of eight hyperfaces, each taken with due regard to orientation. 
Integral over upper hyperface ("Llx Lly Llz)" gives amount of source present at later 
moment; over lower hyperface gives amount of souce present at earlier moment; 
over such hyperfaces as "Llt Llx Lly" gives outflow of source over intervening period 
of time. Conservation demands that sum of these eight three-dimensional integrals 
shall be zero (details in Chapter 5). 



3 6 8  1 5  B IANCH I I D E NT IT IES  A N D  TH E BO U N DARY O F  A BO U N DARY 

Box 15 .1 (con tinued) 

Vanishing of this sum of three-dimensional integrals states the conservation 
requirement, but does not provide the machinery for "automatically" ( or, in mathe
matical terms, "identically") meeting this requirement. For that, turn to principle 
that "boundary of a boundary is zero." 

Demand that integral of source density-current over any oriented hyperface 'V 
(three-dimensional region; "cube") shall equal integral of field over faces of this 
"cube" (each face being taken with the appropriate orientation and the cube being 
infinitesimal): 

4'1T I *J = I *F; 
'V iW 

'IT * T  = 8 I I (moment of) 
err acrr rotation 

Sum over the six faces of this cube and continue summing until the faces of all 
eight cubes are covered. Find that any given face (as, for example, the hatched face 
in the diagram) is counted twice, once with one orientation, once with the other 
("boundary of a boundary is zero"). Thus is guaranteed the conservation of source: 
integral of source density-current over three-dimensional boundary of four-dimen
sional region is automatically zero, making integral of creation over interior of that 
four-dimensional region also identically zero. 

Repeat calculation with boundary of that four-dimensional region slightly dis
placed in one locality [the "bubble differentiation" of Tomonaga (1946) and Schwin
ger (1948)], and conclude that conservation is guaranteed, not only in the four-di
mensional region as a whole, but at every point within it, and, by extension, 
everywhere in spacetime. 

E .  Relat ion of  Source to F ie ld 

One view: Source is  primary. Field may have other duties, but its prime duty is 
to serve as "slave" of source. Conservation of source comes first; field has to adjust 
itself accordingly. 

Alternative view: Field is primary. Field takes the responsibility of seeing to it 
that the source obeys the conservation law. Source would not know what to do in 
absence of the field, and would not even exist. Source is "built" from field. Conser
vation of source is consequence of this construction. 

One model illustrating this view in an elementary context: Concept of "classical" 
electric charge as nothing but "electric lines of force trapped in the topology of a 
multiply connected space" [Weyl ( 1924b); Wheeler ( 1955); Misner and Wheeler 
(1957)] . 

On any view: Integral of source density-current over any three-dimensional region 
(a "cube" in simplified analysis above) equals integral of field over boundary of 
this region (the six faces of the cube above). No one has ever found any other way 
to understand the correlation between field law and conservation law. 
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F.  E lectromagnet ism as a Model : How to "Wire Up" Source to F ield 

to G ive Automatic Conservat ion of Sou rce Via "oo = O" i n  I ts 

2-3-4-D imensiona l  Form 

Conservation means zero creation of charge (zero creation in four-dimensional 
region il). 

Conservation therefore demands zero value for integral of charge density-current 
over three-dimensional boundary of this volume; thus, 

in the Track-I language of Chapters 3 and 5. Equivalently, in the coordinate-free 
abstract language of §§ 4.3-4.6, one has 

where 

* J = * J123 dx 1 I\ dx 2 I\ dx 3 + * J023 dx 0 I\ dx 2 I\ dx 3 
+ * J031 dx 0 I\ dx 3 I\ dx 1 + * J012 dx 0 I\ dx 1 I\ dx 2 

("eggcrate-like structure" of the 3-form of charge-density and current-density). 
Fulfill this conservation requirement automatically ("identically") through the 

principle that "the boundary of a boundary is zero" by writing 4'1T *J = d *F; thus, 

4'1T I *J = I d *F = I *F 0 
an an aamzero !) 

or, in Track-I language, write 4'1TP = Fµv ; v ' and have 

4'1T I P d 3,Xµ = I Fµv , v d 3,Xµ = I Fµa d2,Xµa _ o. 
an an aall(zero I) 

In other words, half of Maxwell's equations in their familiar flat-space form, 

div E = V · E = 4'1Tp, curl B = V X B = E + 4'1TJ, 

"wire up" the source to the field in such a way that the law of conservation of source 
follows directly from "ooil = O." 

G .  E lectromagnet ism Also Employs " o o  = O "  i n  its 

1 -2-3 -D imensiona l  Form ( " N o  M agnet ic Charge") 

Magnetic charge is linked with field via 4'1TJmag = dF (see point F above for transla
tion of this compact Track-2 language into equivalent Track-I terms). Absence of 
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Box 15 .1 (continued) 

any magnetic charge says that integral of Jmag over any 3-volume 'V is necessarily 
zero; or ("integration by parts," generalized Stokes theorem) 

0 = f dF = f F = ( to��l magnetic flux ) . J'V o'V ex1tmg through cl'V 

In order to satisfy this requirement "automatically," via principle that "the boundary 
of a boundary is zero," write F = dA ("expression of field in terms of 4-potential"), 
and have 

i F = i dA = i A = 0. 
o'V o'V oo'V (zero r )  

H .  Structure of Electrodynamics i n  O utl ine Form 

Duality 
A (potential) 

F (field; Faraday) = dA 

♦ 
dF = 0 (identity based on aa = 0) 

- *F (dual field; Maxwell) 

t 
d*F = 4'1T*J 

♦ d *J = 0 (expressed as an identity based on aa = 0) 
d*J = 0 or V · J = 0  
("automatic" conservation of source) 

In gravitation physics, one has to go to the "double dual" (two pairs of alternating 
indices, two places to take the dual) 6 = * R* of Riemann to have a feature of 
the field that offers a handle to the source: 

G = Tr-G = Einstein = 8'1TT = 8'1T X ( density of energy-momentum). 

The conservation of the source T eµ Tµvw " can be stated V · T = 0. But better 
suited for the present purpose is the form (see Chapter 1 4  and exercise 14. 1 8) 
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I .  Structure of  Geometrodynamics in  Outl ine  Form 

where 

Duality 
g (metric) 
! V = d (parallel transport; covariant derivative; ! generalized exterior derivative) 

q/, = d2 (curvature - 6 = *R * (double i operator) dual) 

(full Bianchi identity; based on aa = O) 

d * T = 0, 

-- •G = 8w * T 

d* G = 0 ( contracted Bianchi identity based on aa = 0) 

or V·T = 0 
("automatic conservation of source) 

This conservation law arises as a consequence of the "contracted Bianchi identity", 
d *G = 0, again interpretable in terms of the vanishing of the boundary of a 
boundary. 

d *G = 0 p lus Ei nste in f ie ld 
equation ==>- d * T  = 0 



B ianch i identity, dq{ - 0 ,  
interpreted in terms of 
paral le l  t ransport around the 
six faces of a cube.  
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z 

oA 

X 

Figure 15 .1 .  
Combine rotations associated with each o f  the six faces of the illus
trated 3-volume and end up with zero net rotation ("full Bianchi 
identity"). Reason: Contribution of any face is measured by change 
in a test vector A carried in parallel transport around the perimeter 
of that face. Combine contributions of all faces and end up with each 
edge traversed twice, once in one direction, once in the other direction 
[boundary (here one-dimensional) of boundary (two-dimensional) of 
indicated three-dimensional figure is zero]. Detail: The vector A,  
residing at  the indicated site, is transported parallel to  itself over to 
the indicated face, then carried around the perimeter of that face by 
parallel transport, experiencing in the process a rotation measured by 
the spacetime curvature associated with that face, then transported 
parallel to itself back to the original site. To the lowest relevant order 
of small quantities one can write 

(change in A) = - Lly Liz 'Jl(ey, e,) A 

in operator notation; or in coordinate language, 
- llA"' = R"'

pv,(at x + Llx)Afl Lly Liz. 

§ 1 5 . 2 .  B IANCH I IDENTITY dq[ = 0 AS A MAN IFESTATIO N 

O F  " B O U N DARY O F  BOU N DARY = 0 "  

Such is the story of the two Bianchi identities in outline form; it is now appropriate 
to fill in the details. Figure 1 5.1 illustrates the full Bianchi identity, drJl = 0 (see 
exercise 14.17), saying in brief, "The sum of the curvature-induced rotations associ
ated with the six faces of any elementary cube is zero." The change in a vector A 
associated with transport around the perimeter of the indicated face evaluated to 
the lowest relevant order of small quantities is given by 

- '5A" = R"/3 vz (at x + L1x)Af3 Lly Llz. (15.1) 

The opposite face gives a similar contribution, except that now the sign is reversed 
and the evaluation takes place at x rather than at x + Llx. The combination of the 
contributions from the two faces gives 

oR"  /3 vz Af3 L1x Llv Llz ox ✓ ' (15. 2 ) 
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when Riemann normal coordinates are in use. In such coordinates, the vanishing 
of the total - oA" contributed by all six faces implies 

(1 5.3) 

Here semicolons (covariant derivatives) can be and have been inserted instead of 
commas (ordinary derivatives), because the two are identical in the context of 
Riemann normal coordinates; and the covariant version (1 5.3) generalizes itself to 
arbitrary curvilinear coordinates. Turn from an xyz cube to a cube defined by any 
set of coordinate axes, and write Bianchi's identity in the form 

(15. 4) 

(See exercise 14.17 for one reexpression of this identity in the abstract coordinate
independent form, d?ll = 0, and § 15.3 for another.) This identity occupies much the 
same place in gravitation physics as that occupied by the identity dF = ddA 0 
in electromagnetism: 

§15.3. MOMENT OF ROTATION: KEY TO CONTRACTED 

B I ANCH I IDENTITY 

(15. 5) 

The contracted Bianchi identity, the identity that offers a "handle to couple to the 
source," was shown by Elie Cartan to deal with "moments of rotation" [Cartan 
(192 8) ; Wheeler (1964b); Misner and Wheeler (197 2 )]. Moments are familiar in 
elementary mechanics. A rigid body will not remain at rest unless all the forces acting 
on it sum to zero: 

� p(i) = 0. (1 5.6) 

Although necessary, this condition is not sufficient. The sum of the moments of these 
forces about some point <J> must also be zero: 

(15.7) 

Exactly what point these moments are taken about happily does not matter, and 
this for a simple reason. The arbitrary point in the vector product (15.7) has for 
coefficient the quantity XJ(i>, which already has been required to vanish. The 
situation is similar in the elementary cube of Figure 15.1. Here the rotation associated 
with a given face is the analog of the force F(i) in mechanics. That the sum of these 
rotations vanishes when extended over all six faces of the cube is the analog of the 
vanishing of the sum of the forces p(i> _ 

What is the analog for curvature of the moment of the force that one encounters 
in mechanics? It is the moment of the rotation associated with a given face of the 



Net moment of rotation over 
al l six faces of a cube : 

( 1 )  described 

( 2) equated to integral of 
source, J * T,  over interior of 
cube 

(3)  conserved 
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cube. The value of any individual moment depends on the reference point tJ>. 
However, the sum of these moments taken over all six faces of the cube will have 
a value independent of the reference point tJ>, for the same reason as in mechanics. 
Therefore tJ> can be taken where one pleases, inside the elementary cube or outside 
it. Moreover, the cube may be viewed as a bit of a hypersurface sliced through 
spacetime. Therefore tJ> can as well be off the slice as on it. It is only required that 
all distances involved be short enough that one obtains the required precision by 
calculating the moments and the sum of moments in a local Riemann-normal 
coordinate system. One thus arrives at a tJ>-independent totalized moment of rotation 
(not necessarily zero; gravitation is not mechanics!) associated with the cube in 
question. 

Now comes the magic of "the boundary of the boundary is zero." Identify this 
net moment of rotation of the cube, evaluated by summing individual moments of 
rotation associated with individual faces, with the integral of the source density
current (energy-momentum tensor * T) over the interior of the 3-cube. Make this 
identification not only for the one 3-cube, but for all eight 3-cubes (hyperfaces) that 
bound the four-dimensional cube in Box 15.1. Sum the integrated source density
current * T not only for the one hyperface of the 4-cube, but for all eight hyperfaces. 
Thus have 

( 
source 

) f creation 
4-cube d * T 

f 
3-boundary 
of this 4-cube 

( source current-) density, * T 

( net moment of rotation 

) L associated with speci
these ei_ght fi d C be bounding e U 
3-cubes 

L 
eight 

bounding 
3-cubes 

six faces 
bounding 

given 3-cube 

(zero!) 

( moment of rotation 
) associated with specified 

face of specified cube 
(1 5.8) 

Let the moments of rotation, not only for the six faces of one cube, but for all the 
faces of all the cubes, be taken with respect to one and the same point tJ>. Recall 
(Box 1 5.1) that any given face joins two cubes or hyperfaces. It therefore appears 
twice in the count of faces, once with one orientation ("sense of circumnavigation 
in parallel transport to evaluate rotation") and once with the opposite orientation. 
Therefore the double sum vanishes identically (boundary of a boundary is zero!) 
This identity establishes existence of a new geometric object, a feature of the curva
ture, that is conserved, and therefore provides a handle to which to couple a source. 
The desired result has been achieved. Now to translate it into standard mathematics! 
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§ 1 5.4. CALCU LATIO N  O F  TH E MO MENT OF ROTATIO N  
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It remains to find the tensorial character and value of this conserved Cartan moment 
of rotation that appertains to any elementary 3-volume. The rotation associated with (4) evaluated 
the front face .:ly .:lze y I\ ez of the cube in Figure 15.1 will be represented by the 
bivector 

(rotation associated ) = e I\ e R l;>,._,u l  .:1 .:lz 
with front .:ly .:lz face ;>,._ .u yz I}' (15.9) 

located at 9front = (t - ½ .:lt, x + .:lx, y + ½ .:ly, z + ½ .:lz). This equation uses Rie
mann normal coordinates; indices enclosed by strokes, as in l,\f-t l ,  are summed with 
the restriction ,\ < fl· The moment of this rotation with respect to the point 9 will 
be represented by the trivector 

( 
moment of rotation 

) associated with = Wcenter - 9) I\ e),._ I\ e .UR I ;>,._µ 1 
yz .:1 y .:lz . 

f ,1 of front ront .:Jy t.JZ face face 
(1 5.10) 

Here neither 9center front nor 9 has any well-defined meaning whatsoever as a vec
tor, but their difference is a vector in the limit of infinitesimal separation, .:19 = 
9center front - 9. With the back face a similar moment of rotation is associated, 
with the opposite sign, and with 9 center front replaced by 9 center back' In the difference 
between the two terms, the factor 9 is of no interest, because one is already assured 
it will cancel out [Bianchi identity (15. 4); analog of IF(il = 0 in mechanics] . The 
difference 9center front - 9center back has the value .:lxe.,. Summing over all six faces, 
one has 

( 

net moment of 

) rotation associated = 
with cube or hyper
face .:lx .:ly .:lz 

e., I\ e ),._ I\ e.uRl;>,._,u l
yz .:lx .:ly .:lz (front and back) 

+ e y I\ e ),._ I\ e.uRl;>,._,u lzx .:ly .:lz .:lx (sides) 
+ ez I\ e ;>,._ I\ e.u Rl;>,._,u lxy .:lz .:lx .:ly (top and bottom). (1 5.11) 

This sum one recognizes as the value (on the volume element e., I\ e Y I\ ez .:lx 
.:ly .:lz) of the 3-form 

Moreover this 3-form is defined, and precisely defined, at a point, whereas (15.11), 
applying as it does to an extended region, does not lend itself to an analysis that 
is at the same time brief and precise. Therefore forego (15 .11) in favor of the 3-form. 
Only remember, when it comes down to interpretation, that this 3-form is to be 



(5 )  abstracted to give 
d'!i' I\ o/l 

(6)  abstracted to give 
* (d'!i' I\ o/l) = eaG "r d3 � r 
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evaluated for the "cube" e., I\ e y I\ ez Llx Lly Llz. Now note that the "trivector
valued moment-of-rotation 3-form" can also be written as 

(moment of) - dh/) I\ hi) _  I\ I\ R l;>,._µ I d v I\ d a I\ d /3 . - y ;:tz, - e e ),._ eµ l <>/3 1 x x x . 
rotat10n v 

Here 

(15.12 ) 

(1 5.13) 

is Cartan's (D unit tensor. Also 'JI, is the curvature operator, treated as a bivector
valued 2 -form: 

'JI, = e I\ e Rl),._µ I dx "' I\ dx f3 
;>,._ µ la/3 1  • (1 5.14) 

Using the language of components as in (15.11), or the abstract language intro
duced in (15.12 ), one finds oneself dealing with a trivector. A trivector can be left 
a trivector, as, in quite another context, an element of 3-volume on a hypersurface 
in 4-space can be left as a trivector. However, there it is more convenient to take 
the dual representation, and speak of the element of volume as a vector. Denote 
by * a duality operation that acts only on contravariant vectors, trivectors, etc. (but 
not on forms). Then in a Lorentz frame one has *(e1 /\ e2 /\ e3) = e0 ; but 
*(dx3) = dx3 . More generally, 

In this notation, the "vector-valued moment-of-rotation 3-form" is 

(moment ) 
f . = *(d?f I\ 'JI,) =  ecl; v;>,._/ R l ;>,._µ l

l af3 I 
dx v I\ dx "' I\ dx f3 

o rotat10n 
= e u(*R)v" i af3 I  dx v I\ dx "' I\ dx f3 , 

or, in one more step, 

(mom en� ) = *( d?f I\ 'JI,) = e (* R*) av-r d3 � . 
of rotat10n a v r 

Here d 3 � r is a notation for basis 3-forms, as in Box 5.4; thus, 

dx v I\ dx "' I\ dx /3 = E vaf3 r d3 � r· 

(In a local Lorentz frame, dx 1 I\ dx2 I\ dx3 = d 3 �0.) 

(15.15) 

(1 5.16) 

(1 5.17) 

Nothing is more central to the analysis of curvature than the formula (1 5.16). 
It starts with an element of 3-volume and ends up giving the moment of rotation 
in that 3-volume. The tensor that connects the starting volume with the final moment, 
the "contracted double-dual" of Riemann, is so important that it deserves and 
receives a name of its own, G Einstein; thus 

(15.18) 

This tensor received attention in §§13.5 and 14.2 , and also in the examples at the 
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end of Chapter 14. In terms of Einstein, the connection between element of 3-vol
ume and "vector-valued moment of rotation" is 

(momen� ) = *(d'!P I\ q/,) = e car d3 X . of rotat10n a r (15.19) 

The amount of "vector-valued moment of rotation" contained in the element of 
3-volume d3 X µ is identified by general relativity with the amount of energy-mo
mentum contained in that 3-volume. However, defer this identification for now. 
Concentrate instead on the conservation properties of this moment of rotation. See 
them once in the formulation of integral calculus, as a consequence of the principle 
"aa O." See them then a second time, in differential formulation, as a consequence 
of "dd O." 

§ 1 5 . 5 .  CO NSERVATIO N O F  MO MENT O F  ROTATIO N SEEN 

FRO M " B O U N DARY OF A BO U N DARY IS ZERO " 

The moment of rotation defines an automatically conserved quantity. In other words, 
the value of the moment of rotation for an elementary 3-volume Llx Lly Liz after the 
lapse of a time Lit is equal to the value of the moment of rotation for the same 
3-volume at the beginning of that time, corrected by the inflow of moment of rotation 
over the six faces of the 3-volume in that time interval ( quantities proportional to 
Lly Liz Lit, etc.) Now verify this conservation of moment of rotation in the language 
of"the boundary of a boundary." Follow the pattern of equation (1 5.8), but translate 
the words into formulas, item by item. Evaluate the amount of moment of rotation 
created in the elementary 4-cube [], and find 

( 
"creation of moment of 

) "creation" f rotation" in the elementary = f d * G; 

t 4-cube of spacetime [] t n 
definition definition 

moment of rotation 

2 * f d *G = f * G = f *(d'!P I\ q/,) = 
n 

)

'" ) M 

l 

the eight 
3-cubes 

that bound ll 

I (d'!P I\ q/,) 
3-cube 

associated with 
specified 3-cube 

step 1 step 2 step 3 

2 1 eight bounding 
3-cubes 

step 4 

2 * 
six faces bounding 

specified 3-cube 

moment of rotation 

f ('!P /\ qi) 
face 

associated with 
specified face of 
specified cube 

0. 

step 5 

l 
step 4 

(1 5. 2 0) 

Conservation of net moment 
of rotation 

( 1 )  derived from " o o  = O "  



(2)  derived from " dd = O "  

378 1 5 B IANCH I I DENTIT I ES AN D TH E B O U N DARY OF A BO U N DARY 

Here step I is the theorem of Stokes. Step 2 is the identification established by (15.19) 
between the Einstein tensor and the moment of rotation. Step 3 breaks down the 
integral over the entire boundary oil into integrals over the individual 3-cubes that 
constitute this boundary. Moreover, in all these integrals, the star * is treated as 
a constant and taken outside the sign of integration. The reason for such treatment 
is simple: the duality operation * involves only the metric, and the metric is locally 
constant throughout the infinitesimal 4-cube over the boundary of which the inte
gration extends. Step 4 uses the formula 

d(qf I\ rJl) = d<!F I\ rJl + <!F I\ drJl = d<!F I\ rJl (15. 2 1) 

and the theorem of Stokes to express each 3-cube integral as an integral of <!F I\ rJl 
over the two-dimensional boundary of that cube. The culminating step is 5. It has 
nothing to do with the integrand. It depends solely on the principle aa _ 0. 

In brief, the conservation of moment of rotation follows from two circumstances. 
(1) The moment of rotation associated with any elementary 3-cube is by definition 
a net value, obtained by adding the six moments of rotation associated with the 
six faces of that cube. (2 ) When one sums these net values for all eight 3-cubes 
in (1 5. 2 0), which are the boundary of the elementary 4-cube il, one counts the 
contribution of a given 2 -face twice, once with one sign and once with the opposite 
sign. In virtue of the principle that "the boundary of a boundary is zero," the 
conservation of moment of rotation is thus an identity. 

§ 1 5 . 6 .  CO NSERVATIO N O F  MO MENT O F  ROTATIO N 

EXPRESSED IN DIF FERENTIAL FORM 

Every conservation law stated in integral form lends itself to restatement in differ
ential form, and conservation of moment of rotation is no exception. The calculation 
is brief. Evaluate the generalized exterior derivative of the moment of rotation in 
three steps, and find that it vanishes ; thus : 

d *G = d[ *(d<!F I\ rJl)] 
= *[d(d<!F I\ rJl)] ) step I 

= * [d2<!F I\ rJl _ d<!F I\ drJl] } step 2 

= 0 } step 3 

Step I uses the relation d* = *d. The star duality and the generalized exterior 
derivative commute because when d is applied to a contravariant vector, it acts as 
a covariant derivative, and when * is applied to a covariant vector or I-form, it 
is without effect. Step 2 applies the standard rule for the action of d on a product 
of tensor-valued forms [see equation (14. l 3b)]. Step 3 deals with two terms. The 
first term vanishes because the first factor in it vanishes; thus, d2<!F = 0 [Cartan's 
equation of structure; expresses the "vanishing torsion" of the covariant derivative; 
see equation (14. 2 6)]. The second term also vanishes, in this case, because the second 
factor in it vanishes; thus, drJl = 0 (the full Bianchi identity). Thus briefly is conser
vation of moment of rotation established. 



Box 15 .2  THE SOURCE OF GRAVITATION AND THE MOMENT OF ROTATION: 
THE TWO KEY QUANTITIES AND THE MOST USEFU L MATHEMATICAL 
REPRESENTATIONS FOR THEM 

Representation as a vector-valued 
3-form, a coordinate-independent 
geometric object 

Representation as a @-tensor 
( also a coordinate independent 
geometric object) 
Representation in language of 
components (values depend on 
choice of coordinate system) 
Conservation law in language of 
components 
Conservation in abstract lan
guage, for the @-tensor 
Conservation in abstract lan
guage, as translated into exterior 
derivative of the dual tensor (vec
tor-valued 3-form) 

Same conservation law expressed 
in integral form for an element 
of 4-volume il 

Energy-momentum as source of 
gravitation ( curvature of space
time) 
Machine to tell how much energy
momentum is contained in an 
elementary 3-volume: 

* T  = e;fYIT d35:T 

("dual of stress-energy tensor") 

Stress-energy tensor itself· 
T = e.T•reT 

V · T =  0 

d*T = 0 

f *T = 0 oil 

Moment of rotation as automati
cally conserved feature of the 
geometry 
Machine to tell how much net 
moment of rotation-expressed 
as a vector-is obtained by add
ing the six moments of rotation 
associated with the six faces of 
the elementary 3-cube ·  
* (d9 I\ "il) = * G  = e.c•r d35:T 

("dual of Einstein") 
Einstein itself· 

d*G = 0 or 
d* (d9 I\ 6il) = 0 

f *G = 0 or illl 
* f (d0P I\ o/l) = 0 or oil 
* I w I\ 11 )  = o aail 

§ 1 5. 7 .  FRO M CO NSERVATIO N O F  MO MENT O F  ROTATIO N TO 

EINSTEIN 'S G EO METRO DYNAMICS: A PREVIEW 

Mass, or mass-energy, is the source of gravitation. Mass-energy is one component 
of the energy-momentum 4-vector. Energy and momentum are conserved. The 
amount of energy-momentum in the element of 3-volume d 3E is 

* T  = e a rar d 3XT 
(1 5. 2 2 )  

(see Box 1 5.2 ). Conservation of energy-momentum for an elementary 4-cube {2 

expresses itself in the form 

(15.2 3) 

Einstein field equation 
"derived" from demand that 
(conservation of net moment 
of rotation) = (conservation 
of source) 



EXERCISES 
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This conservation is not an accident. According to Einstein and Cartan, it is "auto
matic"; and automatic, moreover, as a consequence of exact equality between 
energy-momentum and an automatically conserved feature of the geometry. What 
is this feature? It is the moment of rotation, which satisfies the law of automatic 
conservation, 

f *G = 0. 
an 

(15.2 4) 

In other words, the conservation of momentum-energy is to be made geometric in 
character and automatic in action by the following prescription: Identify the stress
energy tensor (up to a factor 81T, or 8?TG/c4, or other factor that depends on choice 
of units) with the moment of rotation; thus, 

*(d<!l I\ ?il) = *G  = 81T * T; 

or equivalently (still in the language of vector-valued 3-forms) 

(mom_ent of) =  *(d<!F I\ ?il) = e G"r d3:J: = 81Te T"r d3:J: ; 
rotat10n " r " r 

or, in the language of tensors, 

or, in the language of components, 

(15.2 5) 

(15. 2 6) 

(15.2 7) 

(1 5.2 8) 

(Einstein's field equation; more detail, and more on the question of uniqueness, will 
be found in Chapter 17;  see also Box 1 5 .3). Thus simply is all of general relativity 
tied to the principle that the boundary of a boundary is zero. No one has ever 
discovered a more compelling foundation for the principle of conservation of mo
mentum and energy. No one has ever seen more deeply into that action of matter 
on space, and space on matter, which one calls gravitation. 

In summary, the Einstein theory realizes the conservation of energy-momentum as 
the identity, "the boundary of a boundary is zero." 

Exercise 15.1. THE BOUNDARY OF THE BOUNDARY OF A 4-SIMPLEX 
In the analysis of the development in time of a geometry lacking all symmetry, when one 
is compelled to resort to a computer, one can, as one option, break up the 4-geometry into 
simplexes [four-dimensional analog of two-dimensional triangle, three-dimensional tetrahe
dron; vertices of "central simplex" conveniently considered to be at (t, x, y, z) = (0, 1 ,  1 ,  1 ) ,  
(0 ,  1 , - 1 , - 1 ) ,  (0 ,  - 1 , 1 , - 1 ) ,  (0 , - 1 , - 1 , 1 ) ,  (5 112, 0, 0, 0), for example] , sufficiently nu
merous, and each sufficiently small, that the geometry inside each can be idealized as flat 
(Lorentzian) , with all the curvature concentrated at the join between simplices (see discussion 
of dynamics of geometry via Regge calculus m Chapter 42) .  Determme ("give a mathematical 
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Box 1 5 . 3  OTH ER I D ENTITI ES SATIS F I E D  BY TH E CU RVATU R E  

(I) The source of gravitation is energy-momentum. 
(2 ) Energy-momentum is expressed by stress
energy tensor ( or by its dual) as a vector-valued 
3-form ("energy-momentum per unit 3-volume"). 
(3) This source is conserved (no creation in an 
elementary spacetime 4-cube). 

These principles form the background for the 
probe in this chapter of the Bianchi identities. That 
is why two otherwise most interesting identities 
[Allendoerfer and Weil (1943); Chern (19 55, 1962 )] 
are dropped from attention. One deals with the 
4-form 

JI - _I_ gay {3 8 a,  I\ a, - 2 4'17 2 g ':na/3 ':nya , 

and the other with the 4-form 

I r = 
8'1T 2 1 det gµv l l/2 (rJl,12 /\ rjl,30 + rjl,13 /\ rjl,02 

(I) 

+ rjl,10 /\ rjl,23) , 
(2 ) 

Both quantities are built from the tensorial "cur
vature 2 -forms" 

The four-dimensional integral of either quantity 
over a four-dimensional region il has a value that 
(I) is a scalar, (2 ) is not identically equal to zero, 
(3) depends on the boundary of the region of 
spacetime over which the integral is extended, but 
(4) is independent of any changes made in the 

spacetime geometry interior to that surface (pro
vided that these changes neither abandon the con
tinuity nor change the connectivity of the 4-geom
etry in that region). Property (I) kills any 
possibility of identifying the integral, a scalar, with 
energy-momentum, a 4-vector. Property (2 ) kills 
it for the purpose of a conservation law, because 
it implies a non-zero creation in il. 

Also omitted here is the Bel-Robinson tensor 
(see exercise 15.2 ), built bilinearly out of the cur
vature tensor, and other tensors for which see, e.g., 
Synge (1962 ). 

One or all of these quantities may be found 
someday to have important physical content. 

The integral of the 4-form I' of equation (2 ) 
over the entire manifold gives a number, an inte
ger, the so-called Euler-Poincare characteristic of 
the manifold, whenever the integral and the inte
ger are well-defined. This result is the four-dimen
sional generalization of the Gauss-Bonnet integral, 
widely known in the context of two-dimensional 
geometry: 

J invariant (value 2 /a2 g112 d 2x. ( 
Riemannian scalar curvature

) 
for a sphere of radius a) 

This integral has the value 8'17 for any closed, 
oriented, two-dimensional manifold with the to
pology of a 2 -sphere, no matter how badly dis
torted; and the value O for any 2 -torus, again no 
matter how rippled and twisted; and other equally 
specific values for other topologies. 

description of") the boundary (three-dimensional) of such a simplex. Take one piece of this boundary and determine its boundary (two-dimensional) . For one piece of this two-dimensional boundary, verify that there is at exactly one other place, and no more, in the bookkeeping on the boundary of a boundary, another two-dimensional piece that cancels it ("facelessness" of the 3 -boundary of the simplex) . 
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Exercise 15.2. THE BEL-RO BINSON TENSOR [Bel (1958,  1959 ,  1962),  
Robinson (195 9 b) ,  Sejnowski (19 73) ; see a lso Pira ni (1957) 
and  Lich nerowicz (1962)]. 

Define the Bel-Robinson tensor by 

Show that in empty spacetime this tensor can be rewritten as 

Show also that in empty spacetime 

T°'
13ys ,a = 0, 

Tapys is symmetric and traceless on all pairs of indices. 

(15 .29) 

(15.30a) 

(15.30b) 
(15.30c) 

Discussion: It turns out that Einstein's "canonical energy-momentum pseudotensor" (§20.3) 
for the gravitational field in empty spacetime has a second derivative which, in a Riemann
normal coordinate system, is 

(15.31a) 

Here Tap ys is the completely symmetric Bel-Robinson tensor, and Sap ys is defined by 

(15.31b) 

Sap ys appears in the empty-space covariant wave equation 

where L1 is a variant of the Lichnerowicz-de Rham wave operator [Lichnerowicz (1964)], 
when one rewrites this wave equation as 

(15.31d) 



PART IV  

E I N STE I N 'S G EO M ETR I C  

TH EO RY O F  G RAVITY 

Wherein the reader is seduced in to marriage with the most elegan t 
temptress of all- Geometrodynamics-and learns from her 

the magic potions and incan tations that  con trol the universe. 





§ 1 6 . 1 . JVERVI EW 

CHAPTER 1 6  

EQU IVALENCE  PR I NC I P LE AN D 

M EAS U R EM ENT O F  TH E 

"G RAVITATI O NAL F I E LD" 

Rather than have one global frame with gravitational forces we 
have many local frames without gravitational forces. 

STE P H E N  SCH UTZ ( 1 9 6 6) 

With the mathematics of curved spacetime now firmly in hand, one is tempted to 
rush headlong into a detailed study of Einstein's field equations. But such temptation 
must be resisted for a short time more. To grasp the field equations fully, one must Purpose of th is chapter 

first understand how the classical laws of physics change, or do not change, in the 
transition from flat spacetime to curved (§§ 16 .2 and 16 .3) ; and one must understand 
how the "gravitational field" (metric; covariant derivative; spacetime curvature; . . .  ) 
can be "measured" (§§ 16 .4 and 1 6 .5) .  

§ 1 6 . 2 .  TH E LAWS OF PHYSICS IN CURVED SPACETI ME 

Wherever one is and whenever one probes, one finds that then and there one can 
introduce a local inertial frame in which all test particles move along straight lines. 
Moreover, this local inertial frame is also locally Lorentz: in it the velocity of light 
has its standard value, and light rays, like world lines of test particles, are straight. 
But physics is more, and the analysis of physics demands more than an account 
solely of the motions of test particles and light rays. What happens to Maxwell's 
equations, the laws of hydrodynamics, the principles of atomic structure, and all 
the rest of physics under the influence of "powerful gravitational fields"? 



Einstein's equivalence 
principle 

Equivalence principle as tool 
to mesh nongravitational 
laws with gravity 

3 8 6  1 6  EQUIVALENCE PRINCIPLE AND MEASUREMENT OF GRAVITATIONAL FIELD 

The answer is simple : in any and every local Lorentz frame, anywhere and anytime 
in the universe, all the (nongravitational) laws of physics must take on their familiar 
special-relativistic forms. Equivalently : there is no way, by experiments confined to 
infinitesimally small regions of spacetime, to distinguish one local Lorentz frame 
in one region of spacetime from any other local Lorentz frame in the same or any 
other region. This is Einstein's principle of equivalence in its strongest form-a 
principle that is compelling both philosophically and experimentally. (For the 
relevant experimental tests, see §38 .6 .) 

The principle of equivalence has great power. With it one can generalize all the 
special relativistic laws of physics to curved spacetime. And the curvature need not 
be small. It may be as large as that in the center of a neutron star; as large as that 
at the edge of a black hole; arbitrarily large, in fact-or almost so. Only at the 
endpoint of gravitational collapse and in the initial instant of the "big bang," i.e., 
only at "singularities of spacetime," will there be a breakdown in the conditions 
needed for direct application of the equivalence principle (see §§28 .3, 34.6 , 43.3, 
43.4, and chapter 44). Everywhere else the equivalence principle acts as a tool to 
mesh all the nongravitational laws of physics with gravity. 

Example: Mesh the "law of local energy-momentum conservation," V · T = 0, 
with gravity. Solution: 
( 1 )  The law in flat spacetime, written in abstract geometric form, reads 

V · T = 0. 

(2) Rewritten in a global Lorentz frame of flat spacetime, it reads 

TJLV = 0. , v 

( 16 . l a) 

( 16 . 1  b) 

(3) Application of equivalence principle gives same equation in local Lorentz frame 
of curved spacetime: 

T!1• , = 0 at origin of local Lorentz frame. ( 16 . l c) 

Because the connection coefficients vanish at the origin of the local Lorentz frame, 
this can be rewritten as 

T!1' ; ,  = 0 at origin of local Lorentz frame. ( 16 . ld) 

(4) The geometric law in curved spacetime, of which these are the local-Lorentz 
components, is 

V · T = 0; ( 16 . l e) 

and its component formulation in any reference frame reads 

(1 6 . l f) 

Compare the abstract geometric law ( 1 6 . l e) in curved spacetime with the corre
sponding law ( 1 6 . l a) in flat spacetime. They are identical! That this is not an accident 
one can readily see by tracing out the above four-step argument for any other law 
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of physics (e.g., Maxwell's equation V · F = 4'7TJ). The laws of physics, written in 
abstract geometric form, differ in no way whatsoever between curved spacetime and 
fiat spacetime; this is guaranteed by, and in fact is a mere rewording of, the equiva
lence principle. 

Compare the component version of the law V · T = 0, as written in an arbitrary 
frame in curved spacetime [equation (16 . l f)], with the component version in a global 
Lorentz frame of flat spacetime [equation ( 16. l b)] .  They differ in only one way: the 
comma (partial derivative; flat-spacetime gradient) is replaced by a semicolon 
(covariant derivative; curved-spacetime gradient). This procedure for rewriting the 
equations has universal application. The laws of physics, written in component form, 
change on passage from flat spacetime to curved spacetime by a mere replacement of 
all commas by semicolons (no change at all physically or geometrically; change due 
only to switch in reference frame from Lorentz to non-Lorentz!) .  This statement, 
like the nonchanging of abstract geometric laws, is nothing but a rephrased version 
of the equivalence principle. 

The transition in formalism from flat spacetime to curved spacetime is a trivial 
process when performed as outlined above. But it is nontrivial in its implications. 
It meshes gravity with all the laws of physics. Gravity enters in an essential way 
through the covariant derivative of curved spacetime, as one sees clearly in the 
following exercise. 

Exercise 1 6 . 1 .  HYDR O DYNAM I CS I N  A WEAK G RAVITATIO NAL F I E LD (a) In § 1 8 .4 it will be shown that for a nearly Newtonian system, analyzed in an appropriate nearly global Lorentz coordinate system, the metric has the form 
ds2 = - (1 + 2tP) dt2 + (1 - 1tP)(dx2 + dy2 + dz2) ( 16 .2a) 

where tP is the Newtonian potential ( - 1 � tP < 0). Consider a nearly Newtonian perfect fluid [stress-energy tensor 
T"/3 = (p + p)u"u/3 + pg"/3 , p � p ; ( 16 .2b) 

see Box 5 . 1  and §5 . 10] moving in such a spacetime with ordinary velocity 
( 16 .2c) 

Show that the equations Tµ" · v = 0 for this system reduce to the familiar Newtonian law of mass conservation, and th� Newtonian equation of motion for a fluid in a gravitational field: 

where d/ dt is the time derivative comoving with the matter 
!L = l._  + v1 -l .. -c .  

dt - o t  ox' 

( 16 .3a) 

( 16 .3b) 

' '  Comma-goes-to-semicolon · ·  
rule 

EXERCISES 



Factor-order ing problems and 
coupl ing to curvature 
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(b) Use these equations to calculate the pressure gradient in the Earth's atmosphere as 
a function of temperature and pressure. In the calculation, use the nonrelativistic relation 
p = nMµ,M, where nM is the number density of molecules and µ,M is the mean rest mass per 
molecule ; use the ideal-gas equation of state 

(k = Boltzmann's constant) ; 

and use the spherically symmetric form, <P = - Mir, for the Earth's Newtonian potential. 
If the pressure at sea level is 1 .0 1  X 106 dynes/cm2, what, approximately, is the pressure 
on top of Mount Everest (altitude 8,840 meters)? (Make a reasonable assumption about the 
temperature distribution of the atmosphere.) 

Exercise 1 6 . 2 .  WO R LD LI N E S  OF P H OTO N S  

Show that in flat spacetime the conservation law for  the 4-momentum of  a freely moving 
photon can be written 

( 16 .4a) 

According to the equivalence principle, this equation must be true also in curved spacetime. 
Show that this means photons move along null geodesics of curved spacetime with affine 
parameter "A related to 4-momentum by 

p = d/d"A ( 16 .4b) 

In exercise 1 8 .6 this result will be used to calculate the deflection of light by the sun. 

§16 . 3 .  FACTOR-ORDERING PROBLEMS 

IN THE EQUIVALENCE PRINCIPLE 

On occasion in applying the equivalence principle to get from physics in flat space
time to physics in curved spacetime one encounters "factor-ordering problems" 
analogous to those that beset the transition from classical mechanics to quantum 
mechanics. *  Example: How is the equation (3. 56) for the vector potential of electro
dynamics to be translated into curved spacetime? If the flat-spacetime equation is 
written 

then its transition ("comma goes to semicolon") reads 

( 16. 5) 

However, if the flat-spacetime equation is written with two of its partial derivatives 
interchanged 

* For a discussion of quantum-mecharucal factor-ordering problems, see, e.g., Merzbacher (1961) ,  pp. 
138-39 and 334-35 ; also Pauli ( 1934). 
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then its translation reads 

which can be rewritten 

3 89 

(16. 5') 

(Ricci tensor appears as result of interchanging covariant derivatives; see exercise 
16.3.) Which equation is correct-(16. 5) or (16. 5')? This question is nontrivial, just 
as the analogous factor-ordering problems of quantum theory are nontrivial. For 
rules-of-thumb that resolve this and most factor-ordering problems, see Box 16.1. 
These rules tell one that (16. 5') is correct and (16. 5) is wrong (see Box 16.1 and 
§ 2 2 . 4) .  

Exercise 1 6 . 3 .  NONCOM M U TATION O F  COVARIANT DERIVATIVES Let B be a vector field and S be a second-rank tensor field. Show that 
Bµ ,a/3 = Bµ ,{3a + R µ v{3a B" Sµ" ,a/3 = Sµ" ,{3a + R µµ{3a SP" + R"pf3a Sµp_ 

From equation ( 16 .6a), show that 
( 16 .6a) ( 16 .6b) 
( 16 .6c) 

[Hint for Track- I calculation: Work in a local Lorentz frame, where I' "-
13y = 0 but I' "-

13y, 8 # O ; expand the lefthand side in terms of Christoffel symbols and partial derivatives ; and use equation (8 .44) for the Riemann tensor. An alternative Track-2 calculation notices that V13 V,,_B is not linear in e,,_, and that Bµ ,a/3 are not its components ; but, rather, that 
Bµ ,"-/3 - VVB (w µ, e

,,_
, e 13) .  4Third-rank tensor] 

The calculation then proceeds as follows : 

Consequently 

(wµ , V13 V,,_B )  = (w µ, V13 (e,,_ · VB)) 
= (wµ , (V13 e,,_) · VB + e,,_ · (V13 VB)) 
= (wµ, r v

,,_13 ev · VB + VVB ( . . .  , e,,_, e13)) 
= Bµ , v I' ",,_13 + Bµ ,a(3 · 

Bµ ,a/3 - Bµ ;f3a = (w µ , [V13 , V,,_]B )  - Bµ ; vCI' ",,_13 - I' "13,,_) 
= (wµ, [V13 , V,,_]B )  - (w µ, v(Vp ea- Vaep)B )  
= (w µ, ([V13 , V,,_] - Vrep ,e}B)  = (w µ , o/l(e 13 , e,,_)B )  
= R µv{3a B", 

( 16 .7) 

in agreement with ( 16 .6a) .  Note : because of slight ambiguity in the abstract notation, one must think carefully about each step in the above calculation. Component notation, by contrast, is completely unambiguous.] 
(continued on page 392) 

EXERCISES 
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Box 1 6 . 1  FACTOR ORDERING AND CURVATURE COUPLI NG I N  APPLICATIONS 
OF THE EQU IVALENCE PRI NCIPLE 

The Problem 

In what order should derivatives be written when applying the "comma-goes-to
semicolon rule" ? Interchanging derivatives makes no difference in flat spacetime, 
but in curved spacetime it produces terms that couple to curvature, e.g., 2B";£yf3 J 
B";y/3 - B";/3Y = R"µt3 yBµ for any vector field (see exercise 1 6 .3). Hence, the 
problem can be restated: When must the comma-goes-to-semicolon rule be augmented 
by terms that couple to curvature? 

The S olution 

There is no solution in general, but in most cases the following types of mathematical 
and physical reasoning resolve the problem unambiguously. 

A. Mathematically, curvature terms almost always arise from the noncommutation of 
covariant derivatives. Consequently, one needs to worry about curvature terms in 
any equation that contains a double covariant derivative ( e.g., -A",µµ + Aµ,µ" = 
4wJ") ; or in any equation whose derivation from more fundamental laws 
involves double covariant derivatives (e.g. VuS = 0 in Example B(3) below). But 
one can ignore curvature coupling everywhere else ( e.g., in Maxwell's first-order 
equations). 

B. Coupling to curvature can surely not occur without some physical reason. Therefore, 
if one applies the comma-goes-to-semicolon rule only to physically measurable 
quantities ( e.g., to the electromagnetic field, but not to the vector potential), one 
can "intuit" whether coupling to curvature is likely. Examples: 

(I ) Local energy-momentum conservation. A coupling to curvature in the equa
tions T"/3 ;/3 = 0-e.g., replacing them by T"/3 , /3 = R"13 y8 Tf3Yu 8-would not 
make sense at all. In a local inertial frame such terms as R" f3yS Tf3Yu 8 would 
be interpreted as forces produced at a single point by curvature. But it should 
not be possible to feel curvature except over finite regions (geodesic deviation, 
etc.) ! Put differently, the second derivatives of the gravitational potential 
(metric) can hardly produce net forces at a point; they should only produce 
tidal forces! 
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(2 ) Maxwell's equations for the electromagnetic field tensor. Here it would also 
be unnatural to introduce curvature terms. They would cause a breakdown 
in charge conservation, in the sense of termination of electric and magnetic 
field lines at points where there is curvature but no charge. To maintain 
charge conservation, one omits curvature coupling when one translates 
Maxwell's equations (3.32 ) and (3.36) into curved spacetime: 

Moreover, one continues to regard Fµ, as arising from a vector potential by 
the curved-spacetime translation of (3. 54') 

These points granted, one can verify that the second of Maxwell's equations 
is automatically satisfied, and verify also that the first is satisfied if and only 
if 

(See § 2 2 . 4 for fuller discussion and derivation.) 

(3) Transport law for Earth's angular-momentum vector. If the Earth were in flat 
spacetime, like any other isolated body it would parallel-transport its angu
lar-momentum vector S along the straight world line of its center of mass, 
Vu S = 0 ("conservation of angular momentum").  When translating this 
transport law into curved spacetime (where the Earth actually resides!), can 
one ignore curvature coupling? No! Spacetime curvatures due to the moon 
and sun produce tidal gravitational forces in the Earth; and because the Earth 
has an equatorial bulge, the tidal forces produce a nonzero net torque about 
the Earth's center of mass. (In Newtonian language: the piece of bulge nearest 
the Moon gets pulled with greater force, and hence greater torque, than the 
piece of bulge farthest from the Moon.) Thus, in curved spacetime one expects 
a transport law of the form 

V"S = (Riemann tensor) X (Earth's quadrupole moment). 

This curvature-coupling torque produces a precession of the Earth's rotation 
axis through a full circle in the plane of the ecliptic once every 2 6,000 years 
("general precession" ;  "precession of the equinoxes" ; discovered by Hip
parchus about 1 50 B.c.). The precise form of the curvature-coupling term 
is derived in exercise 16. 4. 
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Exercise 1 6 .4 .  PRECESSION OF THE EQU I NOXES 

(a) Show that the transport law for the Earth's intrinsic angular momentum vector sa in 
curved spacetime is 

( 16 .8) 

Here d/dT = u is 4-velocity along the Earth's world line ; f
/J

µ is the Earth's "reduced quadru
pole moment" (trace-free part of second moment of mass distribution), defined in the Earth's 
local Lorentz frame by 

( 16 .9) 

and Rµ•Yf is the Riemann curvature produced at the Earth's location by the moon, sun, and 
planets. (Hint: Derive this result in the Earth's local Lorentz frame, ignoring the spacetime 
curvature due to the Earth. (In this essentially Newtonian situation, curvature components 
R'firn due to the Earth, sun, moon, and planets superpose linearly; "gravity too weak to be 
nonlinear"). Integrate up the torque produced about the Earth's center of mass by tidal 
gravitational forces ("geodesic deviation") : 

( 
acceleration at xi, relative to center of mass (x' = 0), 

) produced by tidal gravitational forces but counterbalanced 
in part by Earth's internal stresses 

( dzxi<
) k . = --- . = - R  6foX1 [see equation ( 1 .8')] ; 

dt 2 geodes.,c 
deV1at1on 

( 
force per unit volume due to this

)
f< 

1 
mass density 

acceleration, relative to center + dzxfc • • 
of mass = p -_- = - pR k0wx 1 • 

dt2 ' 

(torque per unit volume relative) = £•w xi( - Rk . ·xl) -
to center of mass i o,,k P olo ' 

( total torque about center) _ J . .. 1 _ L. 1 3 
_ 

of mass , - [£oi1kx ( pR owx )] d x . ' 
Put this expression into a form involving f;r, equate it to dSr/dT, and then reexpress it in 
frame-independent, component notation. The result should be equation ( 16 .8).] 

(b) Rewrite equation ( 16 .8) in the Earth's local Lorentz frame, using the equation 

Ri
0r,0 = o2if> /oxi ox f< 

for the components of Riemann in terms of the Newtonian gravitational potential. (Newto
nian approximation to Einstein theory. Track-2 readers have met this equation in Chapter 
12 ;  track-one readers will meet it in § 17 .4.) 

(c) Calculate dSi/df using Newton's theory of gravity from the beginning. The answer 
should be identical to that obtained in part (b) using Einstein's theory. 

(d) Idealizing the moon and sun as point masses, calculate the long-term effect of the 
spacetime curvatures that they produce upon the Earth's rotation axis. Use the result of part 
(b), together with moderately accurate numerical values for the relevant solar-system param
eters. [Answer: The Earth's rotation axis precesses relative to the axes of its local Lorentz 
frame ("precession of the equinoxes"; "general precession"); the precession period is 26 ,000 
years. The details of the calculation will be found in any textbook on celestial mechanics.] 
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§16.4. T H E  RODS AND CLOCKS USED TO MEASURE 

SPACE AND TIME INTERVALS 

3 9 3  

Turn attention now from the laws of physics in the presence of gravity to the nature 
of the rods and clocks that must be used for measuring the length and time intervals 
appearing in those laws. 

One need not-and indeed must not !-postulate that proper length s is measured 
by a certain type of rod ( e.g., platinum meter stick), or that proper time 7' is measured 
by a certain type of clock (e.g., hydrogen-maser clock) . Rather, one must ask the 
laws of physics themselves what types of rods and clocks will do the job. Put 
differently, one defines an "ideal" rod or clock to be one which measures proper " I deal " rods and clocks 
length as given by ds = (ga/3 dxa dx /3)112 or proper time as given by dT = defined 

( - ga/3 dxa dx f3 )112 (the kind of clock to which one was led by physical arguments 
in § 1. 5) . One must then determine the accuracy to which a given rod or clock is H ow ideal are real clocks? 

ideal under given circumstances by using the laws of physics to analyze its behavior. 
As an obvious example, consider a pendulum clock. If it is placed at rest on the ( 1 )  pendulum clocks 

Earth's surface, if it is tiny enough that redshift effects from one end to the other 
and time dilation effects due to its swinging velocity are negligible, and if the 
accuracy one demands is small enough that time variation� in the local gravitational 
acceleration due to Earth tides can be ignored, then the laws of physics report (Box 
16. 2 ) that the pendulum clock is "ideal." However, in any other context (e.g., on 
a rocket journey to the moon), a pendulum clock should be far from ideal. Wildly 
changing accelerations, or no acceleration at all, will make it worthless !  

Of  greater interest are atomic and nuclear clocks of various sorts. Such a clock (2)  atomic clocks 
is analyzed most easily if it is freely falling. One can then study it in its local Lorentz 
rest frame, using the standard equations of quantum theory; and, of course, one 
will find that it measures proper time to within the' precision (,1.t/t ~ 10-9 to 10-14) 

of the technology used in its construction. However, one rarely permits his atomic 
clock to fall freely. (The impact with the Earth's surface can be expensive!) Never-
theless, even when accelerated at " l g" = 980 cm/sec2 on the Earth's surface, and 
even when accelerated at "2 g" in an airliner trying to avoid a midair collision 
(Box 16.3), an atomic clock-if built solidly-will still measure proper time dT = 
( - ga/3 dxn dx/3)112 along its world line to nearly the same accuracy as if it were freely 
falling. To discover this one can perform an experiment. Alternatively, one can 
analyze the clock in its own "proper reference frame" (§13.6), with Fermi-Walker-
transported basis vectors, using the standard local Lorentz laws of quantum me-
chanics as adapted to accelerated frames (local Lorentz laws plus an "inertial force," 
which can be treated as due to a potential with a uniform gradient. 

Of course, any clock has a "breaking point," beyond which it will cease to function 
properly (Box 16.3) .  But that breaking point depends entirely on the construction 
of the clock-and not at all on any "universal influence of acceleration on the march 
of time." Velocity produces a universal time dilation; acceleration does not. 

The aging of the human body is governed by the same electromagnetic and (3 )  human clocks 

quantum-mechanical laws as govern the periodicities and level transitions in atoms 
and molecules. Consequently, aging, like atomic processes, is tied to proper time 

( continued on page 396) 
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Box 1 6 . 2  P R O O F  T H AT  A P E N D U LU M  CLOCK AT R EST 
ON TH E EARTH'S S U R FACE IS I D EAL 

That is, a proof that it measures the interval dT = (- gcr./3 dxcr. dx/3 )112 •  

A. Constraint on the Pendulum 

It must be so small that it cannot couple to the spacetime curvature-i.e. , so small 
that the Earth's gravitational field looks uniform in its neighborhood-and that 
the velocity of its ball is totally negligible compared to the speed of light. 

B .  Coordinate System and Metric 

( 1 )  General coordinate system : because the Earth's field is nearly Newtonian, one 
can introduce the coordinates of "linearized theory" (§ 1 8 .4; one must take 
this on faith until one reaches that point) in which 

z' ds2 = - (1 + 2<P) dt'2 + (I - 2<P)(dx'2 + dy '2 + dz'2), 

m t  -----+----- x' 

where <P is the Newtonian potential. 

I 
I 

(2) Put the origin of coordinates at the pendulum's equilibrium position, and 
orient the x ',z '-plane so the pendulum swings in it. 

(3) Renormalize the coordinates so they measure proper length and proper time 
at the equilibrium position 

t = [I + 2<P(O)]ll2t', xi = [ I  - 2<P(0)]112xf . 

Then near the pendulum (inhomogeneities in the field neglected!) 
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<l> = <l>(O) + gz, g = "acceleration of gravity, " 

ds2 = - (I + 2 gz) dt2 + (I - 2 gz)(dx 2 + dy2 + dz2) .  

C.  Analysis of  Pendulum Motion 

3 9 5  

(I) 

(2 ) 

(I) Put the total mass m of the pendulum in its ball (negligible mass in its rod) . 
Let its rod have proper length l. 

(2 ) Calculate the 4-acceleration a = Vuu of the pendulum's ball in terms of 
d2x "-/dt2 , using the velocity condition v < < < I and dt/dT ;:::::; I:  

a"' = d2x/dT2 + I' "'
00(dt/dT)2 = d2x/dt2 + I' "'

00 = d2x/dt2, 

az = d2z/dT2 + r zoo(dt/dT)2 = d2z/dt2 + r zoo = d2z/dt2 + g. 
(3) 

(3) This 4-acceleration must be produced by the forces in the rod, and must be 
directed up the rod so that (for x � l so g ► d2z/ dt2) 

d2x/dt2 = a"' = - (x/l)az = - (g/l)x. 

( 4) Solve this differential equation to obtain 

X = Xo COS (t-vili). 

(4) 

( 5) 

( 5) Thus conclude that the pendulum is periodic in t, which is proper time at 
the ball's equilibrium position (see equation 2 ) . This means that the pendulum 
is an ideal clock when it is at rest on the Earth's surface. 

Note: The above analysis ignores the Earth's rotation; for an alternative analysis 
including rotation, one can perform a similar calculation at the origin of the pendu
lum's "proper reference frame " [§ 13.6; line element (13.71)] . The answer is the same; 
but now "g" is a superposition of the "gravitational acceleration, " and the "centrifu
gal acceleration produced by Earth's rotation. " 
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Box 1 6 . 3  RESPONSE OF CLOCKS TO ACCELERATION A N D  TO TIDAL GRAVITATIONAL FORCES Consider an atomic clock with frequency stabilized by some atomic or molecular process-for example, fixed by the "umbrella vibrations" of ammonia molecules [see Feynman et. al. (1964)). When subjected to sufficiently strong accelerations or tidal forces, such a clock will cease to measure proper time with its normal precision. Two types of effects could lead to such departures from "ideality" : 
A.  Influence of the acceleration or tidal force on the 
atomic process that provides the frequency stability. Example: If tidal forces are significant over distances of a few angstroms ( e.g., near a spacetime "singularity" terminating gravitational collapse), then they can and will deform an ammonia molecule and destroy the regularity of its umbrella vibrations, thereby making useless any ammonia atomic clock, no matter how constructed. Similarly, if an ammonia molecule is subjected to accelerations of magnitude comparable to its internal atomic accelerations (a ~ 1012"g" ~ 1015 cm/ sec2),  which change in times of the order of the "umbrella" vibration period, then it must cease to vibrate regularly, and any clock based on its vibrations must fail. Such limits of principle on the ideality of a clock will vary from one atomic process to another. However, they are far from being a limiting factor on clock construction in 1973. Much more important today is: 
B. Influence of the acceleration or tidal force on the 
macroscopic structure of the clock-a structure dic
tated by current technology. The crystal oscillator, 

which produces the periodic signal output, must be locked to the regulating atomic process in some way. The lock will be disturbed by moderate accelerations. The toughest task for the manufacturer of aircraft clocks is to guarantee that precise locking will be maintained, even when the aircraft is maneuvering desperately to avoid collision with another aircraft or with a missile. In 1972 a solidly built rubidium clock will maintain its lock, with no apparent degradation of stability [ Llt/t ~ 10-12 (1 sec/t)112 for 1 sec � t � 103 sec] under steady-state accelerations up to 50 "g" or more. But, because of the finite bandwidth of the lock loop (typically Liv ~ 20 to 50 Hz), sudden changes in acceleration will temporarily break the lock, degrading the clock stability to that of the unlocked crystal oscillator-for which an acceleration a produces a change in frequency of about (a/1 "g") x 10-9 _ But the lock to the rubidium standard is restored quickly (8t ~ 1/ Liv), bringing the clock back to its normal highly stable performance. *  Tidal forces are so small in the solar system that the clock manufacturer can ignore them. However, a 1973 atomic clock, subjected to the tidal accelerations near a spacetime singularity, should break the "lock" to its atomic process long before the tidal forces become strong enough to influence the atomic process itself. 
* For tins information on the response of rubidium clocks 

to acceleration, we thank H P. Stratemeyer of General Radio 
Company, Concord, Massachusetts. 

as governed by the metric-though, of course, it is also tied to other things, such as cigarette smoking. 
Ideal rods and clocks 
constructed f rom geodesic 
world l ines 

In principle, one can build ideal rods and clocks from the geodesic world lines of freely falling test particles and photons. (See Box 16.4.) In other words, spacetime has its own rods and clocks built into itself, even when matter and nongravitational fields are absent ! 
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Box 1 6 .4 IDEAL RODS AND CLOCKS BUILT FROM GEODESIC WORLD LI NES* 

The Standard Interval. A specific timelike inter
val-the interval between two particular neigh
boring events {l and !'.8-is chosen as the standard 
interval, and is assigned unit length. It is used to 
calibrate a huge set of geodesic clocks that pass 
through a. 

Each geodesic clock is constructed and calibrated 
as follows : 

(1) A timelike geodesic ae (path of freely falling 
particle) passes through {l. 

(2 ) A neighboring world line, everywhere parallel 
to ae (and thus not a geodesic), is constructed 
by the method of Schild's ladder (Box 10. 2 ), 
which relies only on geodesics. 

(3) Light rays (null geodesics) bounce back and 
forth between these parallel world lines; each 
round trip constitutes one "tick." 

(4) The proper time lapse, 'To , between ticks is 
related to the interval {l!'B by 

- 1 ({1'!'.8)2 = - (N1To)(Nz'To), 

where N1 and N2 are the number of ticks be
tween the events shown in the diagrams. 
[Proof see diagram at right.] 

Spacetime is filled with such geodesic clocks. 
Those that pass through {l are calibrated as above 
against the standard interval {l!'B, and are used 
subsequently to calibrate all other clocks they 
meet. 

* Based on Marzke and Wheeler ( 1964). 

to point e 

{l X 

In local Lorentz rest frame of geodesic clock: 
(N1-r0)(N2-r0) = (t - x)(t + x) 

= 12 - x2 = - (tltJ3)2 
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Box 16 .4 (continued) 

Any interval '3'!2 along the world line of a geodesic 
clock can be measured by the same method as was 
used in calibration. The interval '3'!2 can be time
like, spacelike, or null; its squared length in all 
three cases will be 

To achieve a precision of measurement good to 
one part in N, where N is some large number, take 
two precautions : 

(I) Demand that the intervals {lqJ and '3'!2 be 
sufficiently small compared to the scale of cur
vature of spacetime; or specifically, 

R(AB)(tl'!J3)2 � I/N 

and 

R(PQ>('!i'f2)2 � I/N, 

where R<AB> and R(PQ> are the largest relevant 
components of the curvature tensor in the two 
regions in question. 

(2 ) Demand that the time scale, -r0, of the geodesic 
clocks employed be small compared to {lqJ and 
'3'!2 individually; thus, 

-r0 � tltJJ/N, 

'To � '3'!2/N. 
The Einstein principle that spacetime is de

scribed by Riemannian geometry exposes itself to 
destruction by a "thousand" tests. Thus, from the 
fiducial interval, tltJJ, to the interval under meas
urement, '3'!2, there are a "score" of routes of in
tercomparison, all of which must give the same 
value for the ratio '3'!2/tltJJ. Moreover, one can 
easily select out "fifty" intervals '3'!2 to which the 
same kind of test can be applied. Such tests are 
not all items for the future. 

Some 5 X 109 years ago, electrons arrived by 
different routes at a common location, a given 
atom of iron in the core of the earth. This iron 
atom does not collapse. The Pauli principle of 
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exclusion keeps the electrons from all falling into 
the K-orbit. The Pauli principle would not apply 
if the electrons were not identical or nearly so. 
From this circumstance it would appear possible 
to draw an important conclusion (Marzke and 
Wheeler) . With each electron is associated a 
standard length, its Compton wavelength, n/mc. 
If these lengths had started different, or changed 
by different amounts along the different routes, 
and if the resulting difference in properties were 
as great as one part in 
~(5 X 109 yr) X (3 X 107 sec/yr) 

X (5 X 1018 rev /sec) ~ 1036, 

by now this difference would have shown up, the 
varied electrons would have fallen into the K
orbit, and the earth would have collapsed, contrary 
to observation. 

The Marzke-Wheeler construction expresses an 
arbitrary small interval rJ>f!!,, anywhere in space
time, in terms of the fiducial interval Cl'!B, an inter
val which itself may be taken for definiteness to 
be the "geometrodynamic standard centimeter" of 
§ 1 .5 .  This construction thus gives a vivid meaning 
to the idea of Riemannian geometry. 

The M-W construction makes no appeal what-

399 

soever to rods and clocks of atomic constitution. 
This circumstance is significant for the following 
reasons. The length of the usual platinum meter 
stick is some multiple, N1(n 2 /me2), of the Bohr 
atomic radius. Similarly, the wavelength of the 
Kr86 line is some multiple, Nz(nc/e2)(n2/me2), of 
a second basic length that depends on the atomic 
constants in quite a different way. Thus, if there 
is any change with time in the dimensionless ratio 
nc/e2 = 1 37 .038 ,  one or the other or both of these 
atomic standards of length must get out of kilter 
with the geometrodynamic standard centimeter. In 
this case, general relativity says, "Stick to the geo
metrodynamic standard centimeter." 

Hermann Weyl at first thought that one could 
carry out the comparison of lengths by light rays 
alone, but H. A. Lorentz pointed out that one can 
dispense with the geodesics neither of test particles 
nor of light rays in the measurement process, the 
construction for which, however, neither Weyl nor 
Lorentz supplied [literature in Marzke and 
Wheeler (1964)) . Ehlers, Pirani, and Schild ( 1972) 
have given a deeper analysis of the separate parts 
played in the measurement process by the affine 
connection, by the conformal part of the metric, 
and by the full metric. 

§16 . 5 .  TH E M EASUREMENT OF THE GRAVITATIONAL F IELD 

"I know how to measure the electromagnetic field using test charges; what is the 
analogous procedure for measuring the gravitational field?" This question has, at 
the same time, many answers and none. 

It has no answers because nowhere has a precise definition of the term "gravita
tional field" been given-nor will one be given. Many different mathematical entities 
are associated with gravitation: the metric, the Riemann curvature tensor, the Ricci 
curvature tensor, the curvature scalar, the covariant derivative, the connection 
coefficients, etc. Each of these plays an important role in gravitation theory, and 
none is so much more central than the others that it deserves the name "gravitational 
field." Thus it is that throughout this book the terms "gravitational field" and 
"gravity" refer in a vague, collective sort of way to all of these entities. Another, 
equivalent term used for them is the "geometry of spacetime." 

The many faces of gravity, 
and how one measures them 
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To "measure the gravitational field," then, means to "explore experimentally 
various properties of the spacetime geometry." One makes different kinds of meas
urements, depending on which geometric property of spacetime one is interested 
in. However, all such measurements must involve a scrutiny of the effects of the 
spacetime geometry (i.e. ,  of gravity) on particles, on matter, or on nongravitational 
fields. 

For example, to "measure" the metric near a given event, one typically lays out 
a latticework of rods and clocks (local orthonormal frame, small enough that curva
ture effects are negligible), and uses it to determine the interval between neighboring 
events. To measure the Riemann curvature tensor near an event, one typically studies 
the geodesic deviation (relative accelerations) that curvature produces between the 
world lines of a variety of neighboring test particles; alternatively, one makes 
measurements with a "gravity gradiometer" (Box 16. 5) if the curvature is static or 
slowly varying; or with a gravitational wave antenna (Chapter 37) if the curvature 
fluctuates rapidly. To study the large-scale curvature of spacetime, one examines 
large-scale effects of gravity, such as the orbits of planets and satellites, or the bending 
of light by the sun's gravitational field. 

But whatever aspect of gravity one measures, and however one measures it, one 
is studying the geometry of spacetime. 

Exercise 1 6 . 5 .  G RAVITY G RAD I O M ETER 

The gravity gradiometer of Box 16 .5 moves through curved spacetime along an accelerated 

world line. Calculate the amplitude and phase of oscillation of one arm of the gradiometer 

relative to the other. [Hint: Perform the calculation in the gradiometer's "proper reference 
frame" (§ 1 3 .6), with Fermi-Walker-transported basis vectors .  Use, as the equation for the 

relative angular acceleration of the two arms, 

where 

2m,£2(a + ix/r + w 2a) = (Drivin_g torque produced by) , 
0 0 Riemann curvature 

2ml 2 = (moment of inertia of one arm), 
a = (angular displacement of one arm from equilibrium), 

1' + 2a = (angular separation of the two arms), 

2ml 2w0
2 = (torsional spring constant), 

w0 = (angular frequency of free vibrations), 
r0 = (decay time for free vibrations to damp out due to 

internal frictional forces) . 

If ( is the vector from the center of mass of the gradiometer to mass I ,  then one has 

( 

curvature-produced 

) 
acceleration of mass I _ D2�rc _ - R ... c .. - - fcowsz , 
relative to center of 

( 
dr2 

) 
geodesic 

. deVIation 
grad10meter ;; 

(continued on page 403) 
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Box 1 6 . 5  GRAVITY GRADIOMETER FOR MEASURI NG THE RIEMAN N 
CURVATURE OF SPACETI ME 

40 1 

This gravity gradiometer was designed and built by Robert M. Forward and his 
colleagues at Hughes Research Laboratories, Malibu, California. It measures the 
Riemann curvature of spacetime produced by nearby masses. By flying a more 
advanced version of such a gradiometer in an airplane above the Earth's surface, 
one should be able to measure subsurface mass variations due to varying geological 
structure. In an Earth-orbiting satellite, such a gradiometer could measure the 
gravitational multipole moments of the Earth. Technical details of the gradiometer 
are spelled out in the papers of Forward ( 1972), and Bell, Forward, and Williams 
( 1970). The principles of its operation are outlined below. 

The gradiometer consists of two orthogonal arms 
with masses m on their ends, connected at their 
centers by a torsional spring. When the arms are 
twisted out of orthogonal alignment, they oscillate. 
A piezoelectric strain transducer is used to meas
ure the oscillation amplitude. 

m 

m 

m 

m 
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Box 1 6 . 5  (continued) 

When placed near an external mass, M, the gra
diometer experiences a torque: because of the gra
dient in the gravitational field of M (i.e. , because 
of the spacetime curvature produced by M), the 
Newtonian forces F1 and F2 are greater than F3 
and �; so a net torque pulls masses I and 2 to
ward each other, and 3 and 4 toward each other. 
[ Note: the forces F1, F2, F3, F4 depend on whether 
the gradiometer is in free fall (geodesic motion; 
Vuu = 0) or is moving on an accelerated world 
line. But the net torque is unaffected by accelera
tion; acceleration produces equal Newtonian 
forces on all four masses, with zero net torque.] 

3 4 

3 

2 

Net torque 

4 

I 

4 2 

....___, 
Net 

2 torque 

_.,,, 
3 

D D D 
wt = 0 wt = w/4 wt = w/2 

When in operation the gradiometer rotates with 
angular velocity w about its center. As it rotates, 
the torques on its arms oscillate: 

at wt = 0 net torque pushes I and 2 toward each 
other; 

at wt =  ?T/4 net torque is zero; 
at wt = '7T /2 net torque pushes 1 and 2 away from 

each other. 

The angular frequency of the oscillating torque is 
2 w. If 2 w is set equal to Wo (natural oscillation 
frequency of the arms), the oscillating torque 
drives the arms into resonant oscillation. The re
sulting oscillation amplitude, in the 1 970 prototype 

of the gradiometer, was easily detectable for grav
ity gradients (Riemann curvatures) of magnitude 

[ 
2(mass of earth) ] > 0.0002 d. f h)3 ~ (ra ms o eart 

~ 1 x 10-30 cm-2 ~ .01 g/cm3 !Riemann curvature produced by a two-kilometer

! 
high mountain, idealized as a two-kilometer high 
cube, at a distance of 15 kilometers. (Neglected 
m this idealization are isostacy and any lowering 
of density of Earth's crust in regions of mountain 
uplift.) 

For a mathematical analysis of the gradiometer, 
see exercise 16 . 5 .  
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(torque acting on mass 1) relat�ve to center of = t:mi;( - mRr.010�1) -grad10meter 
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The torque on mass 4 is identical to this (replace ( by - fl, so the total torque on arm 
1 -4 is twice this. The components R k6lo of Riemann can be regarded as components of a 3 X 3 symmetric matrix. By appropriate orientation of the reference frame's spatial axes ( orientation along "principal axes" of Rico16), one can make Rr.6w diagonal at some initial moment of time 

R;0;0 -::j: 0, R;;0;;0 -::j: 0, Rzozo -::j: 0, all others vanish. 
Assume that Riemann changes sufficiently slowly along the gradiometer's world line that throughout the experiment R;Mo remains diagonal and constant. For simplicity, place the gradiometer in the x, j-plane, so it rotates about the i axis with angular velocity w ;::::: ½w0 : 

(Angl� of arm 1 :4) = wt. relative to x axis 
Show that the resultant equation of oscillation is 

and that the steady-state oscillations are 

Thus, for fixed w ( e.g. , 2w = w0), by measuring the amplitude and phase of the oscillations, one can learn the magnitude and sign of R;0;0 - R iioiib · The other differences, R ;;0;;0 -Rzozo and Rzozo - R;0;0 can be measured by placing the gradiometer's rotation axis along the x and y axes, respectively.] 



CHAPTE R 1 7  
H OW MASS-EN ERGY 

G EN E RATES CU RVATU RE  

Th is section derives the 
" E instein f ie ld equation" 

The physical world is represented as a four-dimensional 
contin uum. If in this I adopt a Riemannian metric, and look for 

the simplest laws which such a metric can satisfy, I arrive at  the 
relativistic gravitation theory of emp ty space. If I adop t in this 

space a vector field, or the antisymmetrical tensor field derived 
from it, and if I look for the simples t  laws which such a field 
can satisfy, I arrive at the Maxwell equa tions for free space . 

. . a t  any given momen t, out of all conceivable constructions, 
a single one has always pro ved itself absolutely 

superior to all the res t  . . .  
ALBERT E I N STE I N  ( 1 934, p 1 8) 

§ 1 7  . 1 .  AUTO MATIC CO NSERVATIO N O F  TH E SO URCE AS 

T H E  CENTRAL IDEA IN TH E FORMU LATIO N O F  

TH E F IELD EQUATIO N 

Tum now from the response of matter to geometry (motion of a neutral test particle 
on a geodesic; "comma-goes-to-semicolon rule" for the dynamics of matter and 
fields), and analyze the response of geometry to matter. 

Mass is the source of gravity. The density of mass-energy as measured by any 
observer with 4-velocity u is 

p = u · T ·  u = u"Taf3 uf3 . (17.1) 

Therefore the stress-energy tensor T is the frame-independent "geometric object" 
that must act as the source of gravity. 
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This source, this geometric object, is not an arbitrary symmetric tensor. I t  must 
have zero divergence 

V · T = 0, (17. 2 )  

because only so can the law of conservation of momentum-energy be upheld. 
Place this source, T, on the righthand side of the equation for the generation of 

gravity. On the lefthand side will stand a geometric object that characterizes gravity. 
That object, like T, must be a symmetric, divergence-free tensor; and if it is to 
characterize gravity, it must be built out of the geometry of spacetime and nothing 
but that geometry. Give this object the name "Einstein tensor" and denote it by 
G, so that the equation for the generation of gravity reads 

G = K T. 

l[proportionality factor; ] to be evaluated later 

(17.3) 

(Do not assume that G is the same Einstein tensor as was encountered in Chapters 
8, 13, 14, and 1 5; that will be proved below!) 

Equation descri b ing how 
matter generates gravity 
must have form G = KT, 
where T is stress-energy 
tensor 

The vanishing of the divergence V · G is not to be regarded as a consequence Propert ies that the tensor G 
of V · T = 0. Rather, the obedience of all matter and fields to the conservation law must have 

V · T = 0 is to be regarded (1) as a consequence of the way [equation (17.3)] they 
are wired into the geometry of spacetime, and therefore (2 ) as required and enforced 
by an automatic conservation law, or identity, that holds for any smooth Riemannian 
spacetime whatsoever, physical or not :  V · G 0. (See Chapter 1 5  for a fuller 
discussion and §17. 2  below for a fuller justification.) Accordingly, look for a symme-
tric tensor G that is an "automatically conserved measure of the curvature of 
spacetime" in the following sense: 

( I )  G vanishes when spacetime is flat. 
(2 ) G is constructed from the Riemann curvature tensor and the metric, and from 

nothing else. 
(3) G is distinguished from other tensors which can be built from Riemann and 

g by the demands (i) that it be linear in Riemann, as befits any natural 
measure of curvature; (ii) that, like T, it be symmetric and of second rank; 
and (iii) that it have an automatically vanishing divergence, 

(17. 4) 

Apart from a multiplicative constant, there is only one tensor (exercise 17.1) that 
satisfies these requirements of being an automatically conserved, second-rank tensor, 
linear in the curvature, and of vanishing when spacetime is flat. It is the Einstein 
curvature tensor, G, expressed in Chapter 8 in terms of the Ricci curvature tensor: 

(17 . 5) 

Proof that G must be the 
E instein curvature tensor of 
Chapter 8 



Evaluat ion of K (in G = KT) 
by comparing with 
N ewton ian theory of gravity 

406 1 7 . HOW MASS-EN ERGY GEN ERATES CURVATURE This quantity was given vivid meaning in Chapter 15 as the "moment of rotation of the curvature" or, more simply, the "moment of rotation," constructed by taking the double-dual 
-G = *Riemann• (17 .6a) of the Riemann curvature tensor, and then contracting this double dual, (17 .6b) In Chapter 15 the vanishing of V · G was shown to follow as a consequence of the elementary principle of topology that "the boundary of a boundary is zero." To evaluate the proportionality constant K in the "Einstein field equation" G = KT, one can compare with the well-tested Newtonian theory of gravity. To facilitate the comparison, examine the relative acceleration (geodesic deviation) of particles that fall down a pipe inserted into an idealized Earth of uniform density p (Figure 1.12). According to Newton, the relative acceleration is governed by the density; according to Einstein, it is governed by the Riemann curvature of spacetime. Direct comparison of the Newtonian and Einstein predictions using Newtonian coordinates (where gµv ;::::: Y/µ,) reveals the relation (17 .7) (See § 1.7 for details of the derivation; see Chapter 12 for extensive discussion of Newtonian gravity using this equation.) When applied to the Earth's interior, the Einstein field equation G = KT must thus reduce to R00 = 41rp. In component form, the Einstein field equation reads 

Its trace reads - R  = R - 2R = KT. In consequence, it predicts 

which reduces to 

I 1 Roo = 2gooR + KToo = 2K(2Too - �T) 
1 0 . = 2 K[2T00 + (T  O + 1"";)] 
I = 2K(Too + T';), 

- 1  

(17 .8) 
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when one recalls that for the Earth-as for any nearly Newtonian system-the 
stresses ½k are very small compared to the density of mass-energy T00 = p :  

I T I pressure dp 
---1!:._ ~ . ~ - ~ (velocrty of sound)2 <{ l . 
T00 density dp 

The equation R00 = 4'1Tp (derived by comparing relative accelerations in the Newton 
and Einstein theories) and the equation R00 = ½KP (derived directly from the Einstein 
field equation) can agree only if the proportionality constant K is 8'17. 

Thus, the Einstein field equation, describing the generation of curvature by 
mass-energy, must read 

G = 8'1TT. (17 .9) 

The lefthand side ("curvature") has units cm-2, since a curvature tensor is a linear 
machine into which one inserts a displacement (units: cm) and from which one gets 
a relative acceleration (units: cm/sec2 ~ cm/cm2 ~ cm-1) .  The right-hand side also 
has dimensions cm-2 , since it is a linear machine into which one inserts 4-velocity 
(dimensionless) and from which one gets mass density [units : g/cm3 ~ cm/cm3 ~ 
cm-2 ; recall from equation (1.12 ) and Box 1.8 that lg =  (l g) x (G/c2) = (l g) X 
(0.7 42 X 10-28 cm/g) = 0.7 42 x 10-28 cm]. 

This concludes the simplest derivation of Einstein's field equation that has come 
to hand, and establishes its correspondence with the Newtonian theory of gravity 
under Newtonian conditions. That correspondence had to be worked out to deter
mine the factor K = 8'17 on the righthand side of (17 .9) .  Apart from this factor, the 
central point in the derivation was the demand for, and the existence of, a unique 
tensorial measure of curvature G with an identically vanishing divergence. 

Exercise 1 7 . 1 .  U N I QU E N ESS O F  THE  E I NSTE I N  TENSOR (a) Show that the most general second-rank, symmetric tensor constructable from Riemann and g, and linear in Riemann, is 
aRaf) + bRgaf) + Agaf) 

= aRµaµ/J + bRµ"µvga/J + Agaf) • ( 1 7 . IO) 

where a, b, and A are constants . (b) Show that this tensor has an automatically vanishing divergence if and only if b = - ½a. (c) Show that, in addition, this tensor vanishes in flat spacetime, if and only if A = 0-i.e . , if and only if it is a multiple of the Einstein tensor Gall = Rall - ½Rgafl • (Do not bother to prove that V • G = O ; assume it as a result from Chapter 1 3 .) 
Exercise 1 7 . 2 .  N O  TENSOR CO NSTR U CTAB LE FROM F I RST 

D E R IVATIVES OF M ETR IC  Show that there exists no  tensor with components constructable from the ten metric coefficients gall and their 40 first derivatives ga/J ,µ-except the metric tensor g, and products of 1t with itself; e .g. ,  g ® g. [Hint: Assume there exists some other such tensor, and examine its hypothesized components in a local inertial frame.] 

Result ·  " E i nste in  fie ld  
equation"  G = 81TT 

EXERCISES 



E i nste i n  f ie ld equation 
governs the evolution of 
spacetime geometry 
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Exercise 1 7 .3. RIEMANN AS THE ONLY TENSOR CONSTRUCTABLE 
F R O M ,  A N D  LI N EA R  I N  S E C O N D  D E R IVATIVES O F  M ET R I C  

Show that ( I )  Riemann, (2) g, and (3) tensors (e.g., Ricci) formed from Riemann and 
g but linear in Riemann, are the only tensors that (a) are constructable from the ten g,,13 , 
the 40 g,,13,w and the 100 g,,13 ,µ"'  and (b) are linear in the g,,13 , µp •  [Hint: Assume there exists 
some other such tensor, and examine its hypothesized components in an orthonormal, 
Riemann-normal coordinate system. Use equations ( 1 1 .30) to (l l .32).] 

Exercise 1 7 .4 .  U N I QU E N ESS OF TH E E I NSTE I N  T E N S O R  

(a) Show that the Einstein tensor, G,,13 = R,,13 - ½Rg,,13 , i s  the only second-rank, symmetric 
tensor that ( l )  has components constructable solely from g,,13 , g,,13 ,w g,,13,µ" ; (2) has components 
linear in g,,13 ,µ " ; (3) has an automatically vanishing divergence, V · G = O; and (4) vanishes 
in flat spacetime. This provides added motivation for choosing the Einstem tensor as the 
left side of the field equation G = 8wT. 

(b) Show that, when condition (4) is dropped, the most general tensor is G + Ag, where 
A is a constant. (See § I 7 .3 for the significance of this.) 

§ 1 7 . 2 .  AUTO MATIC CO NSERVAT IO N  O F  T H E  SO URCE: 

A DYNAMIC N ECESSITY 

The answer G = 8'1TT is now on hand; but what is the question? An equation has 
been derived that connects the Einstein-Cartan "moment of rotation" G with the 
stress-energy tensor T, but what is the purpose for which one wants this equation 
in the first place? If geometry tells matter how to move, and matter tells geometry 
how to curve, does one not have in one's hands a Gordian knot? And how then 
can one ever untie it? 

The story is no different in character for the dynamics of geometry than it is for 
other branches of dynamics. To predict the future, one must first specify, on an 
"initial" hypersurface of "simultaneity," the position and velocity of every particle, 
and the amplitude and time-rate of change of every field that obeys a second-order 
wave equation. One can then evolve the particles and fields forward in time by means 
of their dynamic equations. Similarly, one must give information about the geometry 
and its first time-rate of change on the "initial" hypersurface if the Einstein field 
equation is to be able to predict completely and deterministically the future time
development of the entire system, particles plus fields plus geometry. (See Chap
ter 2 1  for details.) 

If a prediction is to be made of the geometry, how much information has to be 
supplied for this purpose? The geometry of spacetime is described by the metric 

ds2 = g,,13 (!'?) dxa dxf3 ; 

that is, by the ten functions gcr./3 of location <!I in spacetime. It might then seem that 
ten functions must be predicted; and, if so, that one would need for the task ten 
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equations. Not so. Introduce a new set of coordinates xµ by way of the coordinate 
transformations 

xa = xa(xµ) ,  

and find the same spacetime geometry, with all the same bumps, rills, and waves, 
described by an entirely new set of metric coefficients g-,;p(?f). 

It would transgress the power as well as the duty of Einstein's "geometrodynamic 
law" G = 8'1TT if, out of the appropriate data on the "initial-value hypersurface," 
it were to provide a way to calculate, on out into the future, values for all ten 
functions gap W). To predict all ten functions would presuppose a choice of the 
coordinates ; and to make a choice among coordinate systems is exactly what the 
geometrodynamic law cannot and must not have the power to do. That choice resides 
of necessity in the man who studies the geometry, not in the Nature that makes the 
geometry. The geometry in and by itself, like an automobile fender in and by itself, 
is free of coordinates. The coordinates are the work of man. 

It follows that the ten components Gap = 8'1TTap of the field equation must not 
determine completely and uniquely all ten components g11, of the metric. On the 
contrary, Gap = 8'1TTap must place only six independent constraints on the ten gw(<Y), 
leaving four arbitrary functions to be adjusted by man's specialization of the four 
coordinate functions xa(<!J) . 

How can this be so? How can the ten equations Gap = 8'1TTap be in reality only 
six? Answer: by virtue of the "automatic conservation of the source." More specifi
cally, the identity caP ;P _ 0 guarantees that the ten equations Gap = 8'1TTap contain 
the four "conservation laws" raP ;P = 0. These four conservation laws-along with 
other equations-govern the evolution of the source. They do not constrain in any 
way the evolution of the geometry. The geometry is constrained only by the six 
remaining, independent equations in Gap = 8'1TTap ·  

When viewed in this way, the "automatic conservation of the source" is not merely 
a philosophically attractive principle. It is, in fact, an absolute dynamic necessity. 
Without "automatic conservation of the source," the ten Gap = 8'1TTap would place 
ten constraints on the ten gap , thus fixing the coordinate system as well as the 
geometry. With "automatic conservation," the ten Gap = 8'1TTap place four con
straints (local conservation of energy and momentum) on the source, and six con
straints on the ten gap , leaving four of the gap to be adjusted by adjustment of the 
coordinate system. 

§ 1 7 . 3 .  COS M O LO G I CAL CONSTANT 

In 1 9 1 5 ,  when Einstein developed his general relativity theory, the permanence of 
the universe was a fixed item of belief in Western philosophy. "The heavens endure 
from everlasting to everlasting." Thus, it disturbed Einstein greatly to discover 
(Chapter 27) that his geometrodynamic law G = 8'1TT predicts a nonpermanent 
universe; a dynamic universe; a universe that originated in a "big-bang" explosion, 

G = 81TT must determine 
only six metric components, 
the other four are adjustable 
by changes of _coordinates 

G = 81TT leaves four 
components of metric free 
because it sat isfies four 
identit ies 
0 = V · G = 81TV · T 
( " automatic conservation of 
source" )  

E instein's motivation for 
introducing a cosmological 
constant 



E i nste i n 's f ie ld equation with 
the cosmological constant 

Why E instei n  abandoned the 
cosmological constant 
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or will be destroyed eventually by contraction to infinite density, or both. Faced 
with this contradiction between his theory and the firm philosophical beliefs of the 
day, Einstein weakened; he modified his theory. 

The only conceivable modification that does not alter vastly the structure of the 
theory is to change the lefthand side of the geometrodynamic law G = 8'1TT. Recall 
that the lefthand side is forced to be the Einstein tensor, Ga/3 = Ra/3 - ½Rga13 , by 
three assumptions : 

( 1 )  G vanishes when spacetime is flat. 
(2 ) G is constructed from the Riemann curvature tensor and the metric and 

nothing else. 
(3) G is distinguished from other tensors that can be built from Riemann and 

g by the demands ( 1 )  that it be linear in Riemann, as befits any natural 
measure of curvature; (2 ) that, like T, it be symmetric and of second rank; 
and (3) that it have an automatically vanishing divergence, V · G 0. 

Denote a new, modified lefthand side by "G", with quotation marks to avoid 
confusion with the standard Einstein tensor. To abandon V · "G" 0 is impossible 
on dynamic grounds (see § 17 . 2 ) .  To change the symmetry or rank of "G" is impossi
ble on mathematical grounds, since "G" must be equated to T. To let "G" be 
nonlinear in Riemann would vastly complicate the theory. To construct "G" from 
anything except Riemann and g would make "G" no longer a measure of spacetime 
geometry and would thus violate the spirit of the theory. After much anguish, one 
concludes that the assumption which one might drop with least damage to the beauty 
and spirit of the theory is assumption (1 ), that "G" vanish when spacetime is flat. 
But even dropping this assumption is painful: ( 1 )  although "G" might still be in 
some sense a measure of geometry, it can no longer be a measure of curvature; 
and (2 ) flat, empty spacetime will no longer be compatible with the geometrodynamic 
law (G =/; 0 in flat, empty space, where T = 0). Nevertheless, these consequences 
were less painful to Einstein than a dynamic universe. 

The only tensor that satisfies conditions ( 2 ) and (3) [with ( 1 )  abandoned] is the 
Einstein tensor plus a multiple of the metric: 

(exercise 17 . 1 ;  see also exercise 17 .4). Thus was Einstein ( 1917) led to his modified 
field equation 

G + Ag = 8'1TT. (17 . 1 1 )  

The constant A he called the "cosmological constant" ; i t  has dimensions cm-2• 

The modified field equation, by contrast with the original, admits a static, un
changing universe as one particular solution (see Box 2 7 . 5) .  For this reason, Einstein 
in 1917  was inclined to place his faith in the modified equation. But thirteen years 
later Hubble discovered the expansion of the universe. No longer was the cosmo
logical constant necessary. Einstein, calling the cosmological constant "the biggest 
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blunder of my life," abandoned it and returned to his original geometrodynamic 
law, G = 8wT [Einstein ( 1970)] . 

A great mistake A was indeed!-not least because, had Einstein stuck by his 
original equation, he could have claimed the expansion of the universe as the most 
triumphant prediction of his theory of gravity. 

A mischievous genie, once let out of a bottle, is not easily reconfined. Many 
workers in cosmology are unwilling to abandon the cosmological constant. They insist 
that it be abandoned only after cosmological observations reveal it to be negligibly 
small. As a modern-day motivation for retaining the cosmological constant, one 
sometimes rewrites the modified field equation in the form 

G = 8w[T + r-vAc>] ,  
r-vAC) - (A/8w)g 

( 17 . 12a) 

(17 . 1 2b) 

and interprets r-vAc> as a stress-energy tensor associated with the vacuum. This 
viewpoint speculates [Zel'dovich ( 1967)] that the vacuum polarization of quantum 
field theory endows the vacuum with the nonzero stress-energy tensor ( 17  . 12 b ), which 
is completely unobservable except by its gravitational effects. Unfortunately, today's 
quantum field theory is too primitive to allow a calculation of r-vAc> from first 
principles. (See, however, exercise 1 7 .5 .) 

The mass-energy density that the cosmological constant attributes to the vacuum 
is 

( 17 . 1 3) 

A modern-day motivation for 
the cosmological constant 
vacuum polarization 

If A =I= 0, it must at least be so small that p<vAC) has negligible gravitational effects O bservational l imit  on the 

[ l p <vAc) I < p <MATTER>] wherever Newton's theory of gravity gives a successful account cosmological conStant 

of observations. The systems oflowest density to which one applies Newtonian theory 
with some (though not great) success are small clusters of galaxies. Hence, one can 
place the limit 

I P (vAc) I = IAl /8w � p <CLUSTER) ~ 10-29 g/cm3 ~ 10-57 cm-2 ( 17 . 1 4) 

on the value of the cosmological constant. Evidently, even if A =I= 0, A is so small 
that it is totally unimportant on the scale of a galaxy or a star or a planet or a 
man or an atom. Consequently it is reasonable to stick with Einstein's original 
geometrodynamic law (G = 8wT; A = 0) everywhere, except occasionally when 
discussing cosmology (Chapters 27-30). 

Exercise 1 7 . 5 .  MAGN ITUDE OF COSMOLOGICAL CONSTANT (a) What is the order of magnitude of the influence of the cosmological constant on the celestial mechanics of the solar system if A ~ 1 0-57 cm-2? 

Why one ignores the 
cosmological constant 
everywhere except in 
cosmology 

EXERCISE 
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(b) Show that the mass-energy density of the vacuum p<vAc> = A/8w ~ 10-29 g/cm3 , 
corresponding to the maximum possible value of A, agrees in very rough magnitude with 

rest mass of an elementary particle . . 
(C 1 th f . 1 )3 X (grav1tat10nal fine-structure constant) ompton wave eng o partic e 

m m 2 m 6 
= 

(tz/m)3 T = 7rf" 

[Zel'dovich ( 1967, 1968)] . This numerology is suggestive, but has not led to any believable 
derivation of a stress-energy tensor for the vacuum. 

§17.4. THE NEWTONIAN LIMIT Just as quantum mechanics reduces to classical mechanics in the "correspondence limit" of large actions, I ► ti, so general relativity reduces to Newtonian theory in the "correspondence limit" of weak gravity and low velocities. (On "correspondence limits," see Box 17 .1.) This section elucidates, in some mathematical detail, the correspondence between general relativity and Newtonian theory. It begins with "passive" aspects of gravitation (response of matter to gravity) and then turns to "active" aspects (generation of gravity by matter). Consider an isolated system-e.g., the solar system-in which Newtonian theory is highly accurate. In order that special relativistic effects not be noticeable, all 
Box 1 7 . 1  CORRESPONDENCE PRINCIPLES 

A. General Remarks and 

Specific Examples I .  As physics develops and expands, its unity is maintained by a network of correspondence principles, through which simpler theories maintain their vitality by links to more sophisticated but more accurate ones. a. Physical optics, with all the new diffraction and interference phenomena for which it accounted, nevertheless also had to account, and did account, for the old, elementary, geometric optics of mirrors and lenses. Geometric optics is recovered from physical optics in the mathematical "correspondence 

principle limit" in which the wavelength is made indefinitely small in comparison with all other relevant dimensions of the physical system. b. Newtonian mechanics is recovered from the mechanics of special relativity in the mathematical "correspondence principle limit" in which all relevant velocities are negligibly small compared to the speed of light. c. Thermodynamics is recovered from its successor theory, statistical mechanics, in the mathematical "correspondence principle limit" in which so many particles are taken into account that fluctuations in pressure, 
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particle number, and other physical quanti
ties are negligible compared to the average 
values of these parameters of the system. 

d. Classical mechanics is recovered from quan
tum mechanics in the "correspondence prin
ciple limit" in which the quantum numbers 
of the quantum states in question are so 
large, or the quantities of action that come 
into play are so great compared to n, that 
wave and diffraction phenomena make neg
ligible changes in the predictions of standard 
deterministic classical mechanics. Niels Bohr 
formulated and took advantage of this cor
respondence principle even before any 
proper quantum theory existed. He used it 
to predict approximate values of atomic en
ergy levels and of intensities of spectral lines. 
He also expounded it as a guide to all physi
cists, first in searching for a proper version 
of the quantum theory, and then in elucidat
ing the content of this theory after it was 
found. 

2 .  In all these examples and others, the newer, 
more sophisticated theory is "better" than its 
predecessor because it gives a good description 
of a more extended domain of physics, or a 
more accurate description of the same domain, 
or both. 

3. The correspondence between the newer theory 
and its predecessor (a) gives one the power to 
recover the older theory from the newer; 
(b) can be exhibited by straightforward mathe
matics; and (c), according to the historical rec
ord, often guided the development of the 
newer theory. 

B .  Correspondence Structure of 
General Relativity 

1. Einstein's theory of gravity has as distinct limit
ing cases (a) special relativity; (b) the "linear-

4 1 3 

ized theory of gravity" ; (c) Newton's theory of 
gravity; and (d) the post-Newtonian theory of 
gravity. Thus, it has a particularly rich corre
spondence structure. 
a. Correspondence with special relativity: Gen

eral relativity has two distinct kinds of corre
spondence with special relativity. The first is 
the limit of vanishing gravitational field 
everywhere (vanishing curvature) ; in this 
limit one can introduce a global inertial 
frame, set gµv = 1/µv • and recover completely 
and precisely the theory of special relativity. 
The second is local rather than global; it is 
the demand ("correspondence principle" ; 
"equivalence principle") that in a local iner
tial frame all the laws of physics take on 
their special relativistic forms. As was seen 
in Chapter 16, this puts no restrictions on the 
metric (except that gµv = 1/µv and gµv,a = 0 
in local inertial frames) ; but it places severe 
constraints on the behavior of matter and 
fields in the presence of gravity. 

b. Correspondence with Newtonian theory: In 
the limit of weak gravitational fields, low 
velocities, and small pressures, general rela
tivity reduces to Newton's theory of gravity. 
The correspondence structure is explored 
mathematically in the text of § 17 . 4. 

c. Correspondence with post-Newtonian theory: 
When Newtonian theory is nearly valid, but 
"first-order relativistic corrections" might be 
important, one often uses the "post-Newton
ian theory of gravity." Chapter 39 expounds 
the post-Newtonian theory and its corre
spondence with both general relativity and 
Newtonian theory. 

d. Correspondence with linearized theory: In the 
limit of weak gravitational fields, but possi
bly large velocities and pressures ( v ~ I, 
½k ~ T00) general relativity reduces to the 
"linearized theory of gravity". This corre
spondence is explored in Chapter 18. 
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velocities in the system, relative to its center of mass and also relative to the Newto
nian coordinates, must be small compared to the speed of light 

V <{ 1. (17 .15a) 

As a particle falls from the outer region of the system to the inner region, gravity 
accelerates it to a kinetic energy ½mv2 ~ lmtP lmruc [Here tP < 0 is Newton's gravita
tional potential, so normalized that tP(oo) = O.] The resulting velocity will be small 
only if 

(17 .15b) 

Internal stresses in the system also produce motion-e.g. , sound waves. Such waves 
have characteristic velocities of the order of I Ti; /T00 ! 112-for example, the speed 
of sound in a perfect fluid is 

v = (dp/dp)112 ~ (p/p)112 ~ I Ti'/Too 1 112 _  

In order that these velocities be small compared to the speed of light, all stresses 
must be small compared to the density of mass-energy 

(17 .15c) 

When, and only when conditions (17.15) hold, one can expect Newtonian theory 
to describe accurately the system being studied. Correspondence of general relativity 
with Newtonian theory for gravity in a passive role then demands that the geodesic 
world lines of freely falling particles reduce to the Newtonian world lines 

(17 .16) 

Moreover, they must reduce to this form in any relativistic coordinate system where 
the source and test particles have low velocities v <{ 1, and where coordinate lengths 
and times agree very nearly with the lengths and times of the Newtonian coor
dinates-which in tum are proper lengths and times as measured by rods and clocks. 
Thus, the relevant coordinates (called "Galilean" or "Newtonian" coordinates) are 
ones in which 

(17 .17) 

(weak gravitational field; nearly inertial coordinates ; low velocities). In such a 
coordinate system, the geodesic world lines of test particles have the form 

- I'i dxa dx f3 
af3 dr dr 

- I'\o 

- I'wo 

1 = - hoo · - ho - o 2 , i  i ,  

(since dt/dr ;:::; 1 when l hµ, I <{ 1 and l v' I <{ 1) 

(geodesic equation) 

(since dt/dr ;:::; 1 and ldx1/dr l <{ 1) 
(since gµ, ;:::; 1/µ,) 

(equation for raf3 y in terms of gaf3 , y) 

1 = -hoo 2 , i 
( 

all velocities small compared to c implies time 
) de�ivatives small compared to space derivatives 

-1.e., haf3 ,o ~ uha/3 ,i 
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These geodesic world lines do, indeed, reduce to those of Newtonian theory [equation 
(17 . 1 6)] if one makes the identification 

. 1 I''oo = - 2 hoo, i = <l>,i • ( 17 . 1 8) 

Together with the boundary conditions <l>(r = oo) = 0 and hµ/r = oo) = 0 ( coor
dinates Lorentz far from the source), this identification implies h00 = - 2 <1>; i.e., 

g00 = - 1 - 2 <1>  for nearly Newtonian systems in Newtonian coordinates. (17 . 1 9) 

Note that the correspondence tells one the form of h00 for nearly Newtonian 
systems, but not the forms of the other components of the metric perturbation. In 
fact, the other hµ, could perfectly well be of the same order of magnitude as h00 ~ <l>, 
without influencing the world lines of slowly moving particles, because they always 
enter the geodesic equation multiplied by the small numbers v or u2 , or differentiated 
by t rather than by x i _ The forms of the other hµ, and their small corrections to 
the Newtonian motion will be explored in Chapters 1 8 ,  39 , and 40. 

The relation g00 = - 1  - 2 <1>  is the mathematical embodiment of the correspondence 
between general relativity theory and Newtonian theory for passive aspects of gravity. 
Together with the "validity conditions" ( 17 . 1 5 ,  1 7 . 1 7), it is a foundation from which 
one can derive all other aspects of the correspondence for "passive gravity," including 
the relation 

( 17 .20) 

( exercise 1 7  .6). Alternatively, all other aspects of this correspondence can be derived 
by direct comparison of Newton's predictions with Einstein's. For example, to derive 
equation ( 17 .20), examine the relative acceleration of two test particles, one at xi + ti 
and the other at x i . According to Newton 

dt2 = 
dt2 

= - a<t>_ I + a<t>_ I = ax• at xi+ �; ax• at xi  

For comparison, Einstein predicts ( equation of geodesic deviation) 

n 2ti d 2f . . 
-2- = -2- = - R'o;o�-dr dt 

t[by conditions ( 1 7  . 1 5)  and ( 17 . 1 7)] 

Direct comparison gives relation ( 17 .20). 
Turn now from correspondence for passive aspects of gravity to correspondence 

for active aspects. According to Einstein, mass generates gravity (spacetime curva
ture) by the geometrodynamic law G = 8?TT. Apply this law to a nearly Newtonian 
system, and by the chain of reasoning that preceeds equation (17 .8) derive the 
relation 

Roo = 4'1Tp. ( 17 .2 1 )  

E inste in  gravity reduces to 
N ewton gravity on ly if , i n  
N ewtonian coordinates, 
goo

= - 1  - 2</J 

The correspondence between 
E i nstei n  theory and Newton 
theory for a l l  "passive" 
aspects of gravity 

The Newtonian l imit  of the 
E i nste in  f ie ld equation is 
V 2</J = 4wp 

u 



EXERCISES 

There are many ways (Box 
1 7 .  2) to derive the E i nste in  
field equation 
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Combine with the contraction of (17 . 2 0), 

Roo = R i 
Oi O + Ro 

000 = o2if> /ox i ox i = v z'1>, 
i 
0 

and thereby obtain Newton's equation for the generation of gravity by mass 

V 2'1> = 4'1Tp. (17 . 2 2 )  

Thus, Einstein's field equation reduces to Newton's field equation in the Newtonian 
limit. 

The correspondence between Newton and Einstein, although clear and straight
forward as outlined above, is even more clear and straightforward when Newton's 
theory of gravity is rewritten in Einstein's language of curved spacetime (Chapter 
12 ; exercise 17 .7). 

Exercise 1 7 . 6 .  RAMIFICATIONS OF CORRESPONDENCE FOR GRAVITY IN 
A PASSIVE ROLE 

From the correspondence relation g00 = -1 - 2<P, and from conditions (17 .15) and (17 .17) 
for Newtonian physics, derive the correspondence relations 

I'\0 = o<P /ox i , 

Exercise 1 7. 7 .  CORRESPONDENCE IN THE LANGUAGE OF 
CURVED SPACETIME [Track 2] 

Exhibit the correspondence between the Einstein theory and Cartan's curved-spacetime 
formulation of Newtonian theory (Chapter 12). 

§17 . 5 .  AX IOMATIZE E INSTEIN'S THEORY ? 

Find the most compact and reasonable axiomatic structure one can for general 
relativity? Then from the axioms derive Einstein's field equation, 

G = 8'1TT? 

That approach would follow tradition. However, it may be out of date today. More 
than half a century has gone by since November 2 5, 1915. For all that time the 
equation has stood unchanged, if one ignores Einstein's temporary "aberration" of 
adding the cosmological constant. In contrast the derivations have evolved and 
become more numerous and more varied. In the beginning axioms told what equa
tion is acceptable. By now the equation tells what axioms are acceptable. Box 17 . 2  
sketches a variety of sets of axioms, and the resulting derivations of Einstein's 
equation. 

(continued on page 429) 



§ 17 . 5 .  AXIOMATIZE EINSTEIN 'S THEORY? 

Box 1 7 .2  SIX ROU TES TO EI NSTE IN 'S GEOMETRODYNAM IC LAW 
OF THE EQUALI TY OF CURVATURE AND ENERGY DENSITY 
("EI NSTEIN'S F IELD EQUATION") 

41 7 

[Recommended to the attention of Track-I readers are only route 1 (automatic 
conservation of the source, plus correspondence with Newtonian theory) and 
route 2 (Hilbert's variational principle) ; and even Track-2 readers are advised to 
finish the rest of this chapter before they study route 3 (physics on a spacelike slice), 
route 4 (going from superspace to Einstein's equation), route 5 (field of spin 2 in 
an "unobservable flat spacetime" background), and route 6 (gravitation as an 
elasticity of space that arises from particle physics) . ]  

1 .  Model geometrodynamics after electrodynamics and treat "automatic conserva
tion of the source" and correspondence with the Newtonian theory of gravity 
as the central considerations. 
a. Particle responds in electrodynamics to field; in general relativity, to geometry. 
b. The potential for the electromagnetic field is the 4-vector A ( components Aµ) 

The potential for the geometry is the metric tensor g ( components g µ,). 
c. The electromagnetic potential satisfies a wave equation with source term 

(4-current) on the right, 

(I) 

so constructed that conservation of the source, }µ ;µ = 0, is automatic (conse
quence of an identity fulfilled by the lefthand side) . By analogy, the geometro
dynamic potential must also satisfy a wave equation with source term (stress
energy tensor) on the right, 

(2 ) 

so constructed that conservation of the source, Tµ/ = 0 (Chapter 16)  is 
"automatic. "  This conservation is automatic here because the lefthand side 
of the equation is a tensor (the Einstein tensor; see Box 8 .6 or Chapter 1 5), 
built from the metric components and their second derivatives, that fulfills 
the identity Gµ/ 0. 

d. No other tensor which ( 1 )  is linear in the second derivatives of the metric 
components, (2) is free of higher derivatives, and (3) vanishes in flat spacetime, 
satisfies such an identity. 

e. The constant of proportionality (8'17) is fixed by the choice of units [here 
geometric; see Box 1 .8 ]  and by the requirement ("correspondence with Newto
nian theory") that a test particle shall oscillate back and forth through a 
collection of matter of density p, or revolve in circular orbit around that 
collection of matter, at a circular frequency given by w 2 = (4'1T/3)p (Figure 
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Box 1 7 . 2  (continued) 

1 . 12) .  The foregoing oversimplifies, and omits Einstein's temporary false turns, 
but otherwise summarizes the reasoning he pursued in arriving at his field 
equation. This reasoning is spelled out in more detail in the text of Chap
ter 17 .  

2 .  Take variational principle a s  central. 
a. Construct out of the metric components the only scalar that exists that ( 1 )  

is linear in the second derivatives of  the metric tensor, (2) contains no higher 
derivatives, and (3) vanishes in flat spacetime: namely, the Riemann scalar 
curvature invariant, R. 

b. Construct the invariant integral, 

I = _1_ f R(-g)l/2 d4x . 
1 6'17  JS] 

(3) 

c. Make small variations, l>gµv , in the metric coefficients gµv in the interior of 
the four-dimensional region il, and find that this integral changes by the 
amount 

(4) 

d. Demand that I should be an extremum with respect to the choice of geometry 
in the region interior to il (M = 0 for arbitrary l>gµv ; "principle of extremal 
action"). 

e. Thus arrive at the Einstein field equation for empty space, 

Gµv = 0. (5) 

f. The continuation of the reasoning leads to the identity 

Chapter 2 1 ,  on the variational principle, gives more detail and takes up the 
additional term that appears on the righthand side of (5) when matter or fields 
or both are present. 

g. This approach goes back to David Hilbert (19 1 5) .  No route to the field equa
tions is quicker. Moreover, it connects immediately (see the following section 
here, 2') with the quantum principle of the "democracy of all histories" [Feyn
man ( 1942); Feynman and Hibbs ( 1965)] . The variational principle is spelled 
out in more detail in Chapter 2 1 .  

2'. An aside on the meaning of the classical action integral for the real world of 
quantum physics. 
a. A "history of geometry," H, is a spacetime, that is to say, a four-dimensional 

manifold with four-dimensional - + + + Riemann metric that ( 1 )  reduces on 
one spacelike hypersurface ("hypersurface of simultaneity") to a specified 
"initial value 3-geometry," A, with positive definite metric and (2) reduces on 
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another spacelike hypersurface to a specified "final value 3-geometry," B, also 
with positive definite metric. 

b. The classical variational principle of Hilbert, as reformulated by Arnowitt, 
Deser, and Misner, provides a prescription for the dynamical path length, IH, 
of any conceivable history H, classically allowed or not, that connects A and 
B (see Chapter 2 1  for a fuller statement for what can and must be specified 
on the initial hypersurface of simultaneity, and on the final one, and for 
alternative choices of the integrand in the action principle). 

c. Classical physics says that a history H is allowed only if it extremizes the 
dynamic path length I as compared to all nearby histories. Quantum physics 
says that all histories occur with equal probability amplitude, in the following 
sense. The probability amplitude for "the dynamic geometry of space to transit 
from A to B" by way of the history H with action integral I H• and by way 
of histories that lie within a specified infinitesimal range, 6i)H, of the history 
H, is given by the expression 

probability amplitude 
to transit from A to 
B by way of history H ~ exp ( ilH/h)NqJH. 
and histories lying 
within the range 6j) H 
about H 

(6) 

Here the normalization factor, N, is the same for all conceivable histories H, 
allowed or not, that lead from A to B ("principle of democracy of histories"). 
The quantum of angular momentum, ti = h/2 '7T, expressed in geometric units, 
has the value 

(7) 

where L * is the Planck length, L * = I .6 x I 0-33 cm. 
d. The classically allowed history receives "preference without preference." That 

history, and histories H that differ from it so little that 8I = I H - lczass is only 
of the order ti and less, give contributions to the probability amplitude that 
interfere constructively. In contrast, destructive interference effectively wipes 
out the contribution (to the probability amplitude for a transition) that comes 
from histories that differ more from the classically allowed history. Thus there 
are quantum fluctuations in the geometry, but they are fluctuations of limited 
magnitude. The smallness of ti ensures that the scale of these fluctuations is 
unnoticeable at everyday distances (see the further discussion in Chapters 43 
and 44). In this sense classical geometrodynamics is a good approximation to 
the geometrodynamics of the real world of quantum physics. 

3. "Physics on a spacelike slice or hypersurface of simultaneity," again with electro
magnetism as the model. 
a. Say over and over "lines of magnetic force never end" and come out with 

half of Maxwell's equations. Say over and over "lines of electric force end 

The rest of this 
chapter is Track 
2 .  No  previous 

track-2 material  
is needed as 

preparation for 
it, nor is it 

necessary prep
a ration for any 

later  chapter, 

but it wi l l  be 

helpful in  Chap
ter 2 1  ( init ial
va lue equations 
and variational 
principle) and 

in  Chapter 39 
(other theories 
of gravity) . 
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Box 1 7.2 (continued) 

t 
Time 

L space ---. 

s 

only on charge " and arrive at the other half of Maxwell's equations. Similarly, 
say over and over 

( 
intrinsic l 
curvature 
scalar 

( 
extrinsic 

) ( 
local density

) + curvature = 1677 of mass-
scalar energy 

(8) 

and end up with all ten components of Einstein's equation. To "say over and 
over " is an abbreviation for demanding that the stated principles hold on every 
spacelike slice through every event of spacetime. 

b. Spell out explicitly this "spacelike-slice formulation" of the equations of 
Maxwell and Einstein. Consider an arbitrary point of spacetime, <J> ("event "), 
and an arbitrary "simultaneity " S through <J> (hypersurface of simultaneity; 
spacelike slice through spacetime). Magnetic lines of force run about through
out S, but nowhere is even a single one of them permitted to end. Recall (§3.4) 
that the demand "lines of magnetic force never end, " when imposed on all 
reference frames at <J> (for all choices of the "simultaneity " S), guarantees not 
only V · B = 0, but also V x E + aB/at = 0. Similarly (§ 3.4) the demand 
that "electric lines of force never end except on electric charge," V · E = 4?TJ0, 

when imposed on all "simultaneities" through <J>, guarantees the remaining 
Maxwell equation V x B = oE/ot + 4?TJ. 

c. Each simultaneity S through <J> has its own slope and curvature. The possibility 
of different slopes (different local Lorentz frames at <J>) is essential for deriving 
all of Maxwell's equations from the requirements of conservation of flux. 
Relevant though the slope thus is, the curvature of the hypersurface S never 
matters for the analysis of electromagnetism. It does matter, however, for any 
analysis of gravitation modeled on the foregoing treatment of electromagne
tism. 

C, 

b 

"Simultaneity " S (spacelike hypersurface or "slice 
through spacetime") that cuts through event <J>. 
The "simultaneity " may be considered to be de
fined by a set of "observers " a,b,c, . . . .  Their 
world lines cross the simultaneity orthogonally, 
and their clocks all read the same proper time at 
the instant of crossing. Another simultaneity 
through <J> may have at <J> a different curvature or 
a different slope or both; and it is defined by a 
different band of observers, with other wrist 
watches. 
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d .  "Mass-energy curves space" is the central principle of gravitation. To spell out 
this principle requires one to examine in succession the terms "space" and 
"curvature of space" and "density of mass-energy in a given region of space." 
"Space" means spacelike hypersurface; or, more specifically, a hypersurface 
of simultaneity S that includes the point <J> where the physics is under exami
nation. 

e. Denote by u the 4-vector norrµal to S at <J>. Then the density of mass-energy 
in the spacelike hypersurface· S at <J> is 

(9) 

in accordance with the definition of the stress-energy tensor given in Chap
ter 5. 

f. This density is a single number, dependent on the inclination of the slice one 
cuts through spacetime, but independent of how curved one cuts this slice. 
If it is to be equated to "curvature of space," that curvature must also be 
independent of how curved one cuts the slice. 

g. Conclude that the geometric quantity, "curvature of space," must (1) be a single 
number (a scalar) that (2 ) depends on the inclination u of the cut one makes 
through spacetime at <J> in constructing the hypersurface S, but (3) must be 
unaffected by how one curves his cut. The demand made here appears para
doxical. One seems to be asking for a measure of curvature that is independent 
of curvature ! 

h. A closer look discloses that three distinct ideas come into consideration here. 
One is the scalar curvature invariant <3> R of the 3-geometry intrinsic to the 
hypersurface S at <J>: "intrinsic" in the sense that it is defined by, and depends 
exclusively on, measurements of distance made within the hypersurface. The 
second is the "extrinsic curvature" of this 3-geometry relative to the 4-geometry 
of the enveloping spacetime ("how curved one cuts his slice"; see Box 14.1 
for more on the distinction between extrinsic and intrinsic curvature). The third 
is the curvature of the four-dimensional spacetime itself, "normal to u," in 
some sense yet to be more closely defined. This is the quantity that is inde
pendent of how curved one cuts his slice. It is the quantity that is to be 
identified, up to a factor that depends on the choice of units, with the density 
of mass-energy. 
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Box 1 7 .  2 (continued) 

1. These three quantities are related in the following way: 

scalar curvature invariant, 
(3> R, of the 3-geometry 
intrinsic to the spacelike 
hypersurface S, a quantity 
dependent on "how curved 
one cuts the slice" 

a measure of the curvature 
of spacetime that depends 
on the 4-geemetry of 
the spacetime and on 
the inclination u of the 
spacelike slice S cut 
through spacetime, but is 
independent, by construc
tion, of "how curved one 
cuts the slice" 

+ 

(

2 uaGaf3 u f3 , where Ga/3 is

) = the Einstein curvature = 2 
tensor of equation 8.49 
and Box 8.6 

a correction term that (a) 
depends only on the "ex
trinsic curvature" Ka/3 (Box 
14. l  and Chapter 2 1) of the 
hypersurface relative to 
the four-dimensional geometry 
in which it is imbedded, and 
(b) is so calculated ( a 
uniquely determinate calcu
lation) that the sum of this 
correction term and (3> R is 
independent of "how curved 
one cuts his slice," and (c) 
has the precise value 
(Tr K)2 - Tr K2 (Ka 

a)2 - Ka/J KafJ 

a scalar quantity that 
(a) is completely defined 
by what has just been 
said and (b) can there
fore be calculated in all 
completeness by standard 
differential geometry 
( details in Chapter 2 1) 

a quantity interpreted in 
Track 2 ,  Chapter 15, as the 
"moment of rotation" asso
ciated with a unit element 
of 3-volume located at qr 
in the hypersurface orth
ogonal to u 

(10) 

j. Conclude that the central principle, "mass-energy curves space," translates to 
the formula 

(3>R + (Tr K)2 - Tr K2 = 16?Tp, (11) 
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or, in shorthand form, 

423 

(moment of
} ( intrinsic 

} ( extrinsic 
} ( density of 

} rotation 
= 

curvature + 
curvature 

= 
mass-energy ' (12 ) 

valid for every spacelike slice through spacetime at any arbitrary point <J>. 
k. All of Einstein's geometrodynamics is contained in this statement as truly as 

all of Maxwell's electrodynamics is contained in the statement that the number 
of lines of force that end in an element of volume is equal to 4'7T times the 
amount of charge in that element of volume. The factor 16'77 is appropriate 
for the geometric system of units in use in this book ( density p in cm-2 given 
by G/c2 = 0.7 42 X 10-zs cm/g multiplied by the density Pconv expressed in 
the conventional units of g/cm3). 

1. Reexpress the principle that "mass-energy curves space" in the form 

(13) 

Demand that this equation should hold for every simultaneity that cuts 
through <J>, whatever its "inclination" u. 

m. Conclude that the coefficients on the two sides of (13) must agree; thus, 

(14) 

Einstein's equation in the language of components; or, in the language of 
abstract geometric quantities, 

G = 81T T (1 5) 

4. Going from superspace to Einstein's equation rather than from Einstein's equa
tion to superspace. 
a. A fourth route to Einstein's equation starts with the advanced view of geome

trodynamics that is spelled out in Chapter 43. One notes there that the 
dynamics of geometry unfolds in superspace. Superspace has an infinite 
number of dimensions. Any one point in superspace describes a complete 
3-geometry, <3>�,  with all its bumps and curvatures. The dynamics of geom
etry leads from point to point in superspace. 

b. Like the dynamics of a particle, the dynamics of geometry lends itself to 
distinct but equivalent mathematical formulations, associated with the names 
of Lagrange, of Hamilton, and of Hamilton and Jacobi. Of these the most 
convenient for the present analysis is the last ("H-J"). 

c. In the problem of one particle moving in one dimension under the influence 
of a potential V(x), the H-J equation reads 

_ as = _l_( a S)2 + V(x). a t 2 m  ax (16) 
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Box 17.2 (continued) 

It has the solution 
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SE(x,t) = - Et + j
x
[2 m(E - V)]112 dx. (17) 

Out of this solution one reads the motion by applying the "condition of 
constructive interference," 

o SE(x,t) --=--- = 0 oE (18) 

( one equation connecting the two quantities x and t; for more on the condition 
of constructive interference and the H-J method in general, see Boxes 2 5.3  
and 2 5. 4). 

d. In the corresponding equation for the dynamics of geometry, one deals with 
a function S = S((3>-%J) of the 3-geometry. It depends on the 3-geometry itself, 
and not on the vagaries of one's choice of coordinates or on the corresponding 
vagaries in the metric coefficients of the 3-geometry, 

(19) 

((3> to indicate 3-geometry omitted hereafter for simplicity). This function obeys 
the H-J equation [the analog of (16)] 

(2 0) 

e. Out of this equation for the dynamics of geometry in superspace one can 
deduce the Einstein field equation by reasoning similar to that employed in 
going from (17) to (18) (Gerlach 1969). 

f. It would appear that one must break new ground, and establish new founda
tions, if one is to find out how to regard the "Einstein-Hamilton-Jacobi equa
tion" (2 0) as more basic than the Einstein field equation that one derives from 
it. [Since done, by Hojman, Kuchar, and Teitelboim (1973 preprint).] 

5. Einstein's geometrodynamics viewe.d as the standard field theory for a field of 
spin 2 in an "unobservable flat spacetime" background. 
a. This approach to Einstein's field equation has a long history, references to 

which will be found in §7.1 and §18.1. (Further discussion of this approach 
will be found in those two sections and in Box 7.1, exercise 7.3, and Box 18.1). 

b. The following summary is quoted from Deser (1970): "We wish to give a simple 
physical derivation of the nonlinearity . . .  , using a now familiar argument 
. . .  leading from the linear, massless, spin-2 field to the full Einstein equa
tions . . . .  
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c. "The Einstein equations may be derived nongeometrically by noting that the 
free, massless, spin-2 field equations, 

I RL
µv(c/>) - 2 R

L
aa(c/>)1/µv - GL

µv(c/>) [(11µa1/ vfl - 1lµv1lafl )D 

+ 1/µv a a a /l + 1/afl ai v - 1/µaa v a /l - 1/ vfl aµ a aJc/>a/l = 0, (2 1) 

whose source is the matter stress-tensor Tµv , must actually be coupled to the 
total stress-tensor, including that of the <t>-field itself. That is, while the free-field 
equations (2 I) are of course quite consistent as they stand, [they are not] when 
there is a dynamic system's Tµv as a source. For then the left side, which is 
identically divergenceless, is inconsistent with the right, since the coupling 
implies that Tµ" , v , as computed from the matter equations of motion, is no 
longer conserved. 

d. "To remedy this [violation of the principle of conservation of momentum and 
energy], the stress tensor <2>0 µv arising from the quadratic Lagrangian <2> L 
responsible for equation (2 1) is then inserted on the right. 

e. "But the Lagrangian <3> L leading to these modified equations is then cubic, 
and itself contributes a cubic <3>0 µv · 

f. "This series continues indefinitely, and sums (if properly derived!) to the full 
nonlinear Einstein equations, Gµv ([calculated from] 1/afl + c/>a/l ) = - K Tµv 

[ + 8'7T Tµv in the geometric units and sign conventions of this book], which are 
an infinite series in the deviation c/>µv of the metric gµv from its Minkowskian 
value 1/µv · 

g. Once the iteration is begun (whether or not a Tµv is actually present), it must 
be continued to all orders, since conservation only holds for the full series 

� <n>o µv · Thus, the theory is either left in its (physically irrelevant) free linear 
n=2 

form (2 1 ), or it must be an infinite series." 
h. For details, see Deser (1970); the paper goes on (I) to take advantage of a 

well-chosen formalism (2 ) to rearrange the calculation, and thus (3) to "derive 
the full Einstein equations, on the basis of the same self-coupling requirement, 
but with the advantages that the full theory emerges in closed form with just 
one added (cubic) term, rather than as an infinite series." 

1. Deser summarizes the analysis at the end thus: "Consistency has therefore led 
us to universal coupling, which implies the equivalence principle. It is at this 
point that the geometric interpretation of general relativity arises, since all 
matter now moves in an effective Riemann space of metric gµ" 1/ µv + hµ" . 
. . . [The] initial flat 'background' space is no longer observable." In other 
words, this approach to Einstein's field equation can be summarized as "cur
vature without curvature" or-equally well-as "flat spacetime without flat 
spacetim e" ! 



426 1 7  H OW MASS-E N ERGY G EN E RATES C U RVATU R E  

Box 17.2 (continued) 

6. Sakharov's view of gravitation as an elasticity of space that arises from particle 
physics. 
a. The resistance of a homogeneous isotropic solid to deformation is described 

by two elastic constants, Young's modulus and Poisson's ratio. 

b. The resistance of space to deformation is described by one elastic constant, 
the Newtonian constant of gravity. It makes its appearance in the action 
principle of Hilbert 

I = _l_ J <4>R(- g)1;2 d4x 
16'7TG 
+ J (Lmatter + Lfields)( - g)l/2 d4x = extremum. 

(2 2 )  

c. According to the historical records, it was first learned how many elastic 
constants it takes to describe a solid from microscopic molecular models of 
matter (Newton, Laplace, Navier, Cauchy, Poisson, Voigt, Kelvin, Born), not 
from macroscopic considerations of symmetry and invariance. Thus, count the 
energy stored up in molecular bonds that are deformed from natural length 
or natural angle or both. Arrive at an expression for the energy of deformation 
per unit volume of the elastic material of the form 

e = A(Tr s)2 + B Tr(s 2) .  (2 3) 

Here the strain tensor 

(2 4) 

measures the strain produced in the elastic medium by motion of the typical 
point that was at the location x m to the location x m + tm(x). The constants 
A and B are derived out of microscopic physics. They fix the values of the 
two elastic constants of the macroscopic theory of elasticity. 

d. Andrei Sakharov (1967) (the Andrei Sakharov) has proposed a similar micro
scopic foundation for gravitation or, as he calls it, the "metric elasticity of 
space." He identifies the action term of Einstein's geometrodynamics [the first 
term in (2 2 )] "with the change in the action of quantum fluctuations of the 
vacuum [ associated with the physics of particles and fields and brought about] 
when space is curved." 

e. Sakharov notes that present-day quantum field theory "gets rid by a renor
malization process" of an energy density in the vacuum that would formally 
be infinite if not removed by this renormalization. Thus, in the standard 
analysis of the degrees of freedom of the electromagnetic field in flat space, 
one counts the number of modes of vibration per unit volume in the range 
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of circular wave numbers from k to k + dk as (2 · 4'77 /8'773)k2 dk. Each mode 
of oscillation, even at the absolute zero of temperature, has an absolute irre
ducible minimum of "zero-point energy of oscillation," ½hv = ½tzck [the fluctu
ating electric field associated with which is among the most firmly established 
of all physical effects. It acts on the electron in the hydrogen atom in supple
ment to the electric field caused by the proton alone, and thereby produces 
most of the famous Lamb-Retherford shift in the energy levels of the hydrogen 
atom, as made especially clear by Welton (1948) and Dyson (1954)]. The 
totalized density of zero-point energy of the electromagnetic field per unit 
volume of spacetime (units: cm4) formally diverges as 

(tz/2 '77 2) I 00 

k 3 dk. 
0 

(2 5) 

Equally formally this divergence is "removed" by "renormalization" [for more 
on renormalization see, for example, Hepp (1969)]. 

f. Similar divergences appear when one counts up formally the energy associated 
with other fields and with vacuum fluctuations in number of pairs of electrons, 
µ-mesons, and other particles in the limit of quantum energies large in com
parison with the rest mass of any of these particles. Again these divergences 
in formal calculations are "removed by renormalization." 

g. Removed by renormalization is a contribution not only to the energy density, 
and therefore to the stress-energy tensor, but also to the total Lagrange function 
£ of the variational principle for all these fields and particles, 

I = f £ d4x = extremum. (2 6) 

h. Curving spacetime alters all these energies, Sakharov points out, extending 
an argument of Zel'dovich (1967). Therefore the process of "renormalization" 
or "subtraction" no longer gives zero. Instead, the contribution of zero-point 
energies to the Lagrangian, expanded as a power series in powers of the 
curvature, with numerical coefficients A, B, . . .  of the order of magnitude of 
unity, takes a form simplified by Ruzmaikina and Ruzmaikin (1969) to the 
following: 

£(R) = Atz f k3 dk + Btz (4)R f k dk 
+ tz [C(<4>R)2 + DR"f3Ra13 J f  k-1 dk 
+ (higher-order terms). ( 2 7) 

[For the alteration in the number of standing waves per unit frequency in a 
curved manifold, see also Berger (1966), Sakharov (1967), Hill in De Witt 
(1967c), Polievktov-Nikoladze (1969), and Berger, Gauduchon, and Mazet 
(1971 ).] 

1. Renormalization physics argues that the first term in (2 7) is to be dropped. 
The second term, Sakharov notes, is identical in form to the Hilbert action 
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Box 1 7 . 2  (continued) 

principle, equation (3) above, with the exception that there the constant 
that multiplies the Riemann scalar curvature invariant is - c3/ 16?TG (in con
ventional units), whereas here it is Bnf k dk (in the same conventional units). 
The higher order terms in (27) lead to what Sakharov calls "corrections . . .  to 
Einstein's equations."  

j .  Overlooking these corrections, one evidently obtains the action principle of 
Einstein's theory when one insists on the equality 

G = ( Newtonian ) = c3 
. 

constant of gravity 16?TBnfk dk 
(28) 

With B a dimensionless numerical factor of the order of unity, it follows, 
Sakharov argues, that the effective upper limit or "cutoff" in the formally 
divergent integral in (28) is to be taken to be of the order of magnitude of 
the reciprocal Planck length [see equation (7)], 

kcut orr ~ (c3/n G)11 2 = 1 /L* = 1 / 1 .6 X I0-33 cm. (29) 

In effect Sakharov is saying (I ) that field physics suffers a sea change into 
something new and strange for wavelengths less than the Planck length, and 
for quantum energies of the order of nckcutoff ~ 1028 eV or 10-5 g or more ; 
(2) that in consequence the integral fk dk is cut off; and (3) that the value 
of this cutoff, arising purely out of the physics of fields and particles, governs 
the value of the Newtonian constant of gravity, G. 

k. In this sense, Sakharov's analysis suggests that gravitation is to particle physics 
as elasticity is to chemical physics: merely a statistical measure of residual 
energies. In the one case, molecular bindings depend on departures of mole
cule-molecule bond lengths from standard values. In the other case, particle 
energies are affected by curvatures of the geometry. 

1. Elasticity, which looks simple, gets its explanation from molecular bindings, 
which are complicated; but molecular bindings, which are complicated, receive 
their explanation in terms of Schrodinger's wave equation and Coulomb's law 
of force between charged point-masses, which are even simpler than elasticity. 

m. Einstein's geometrodynamics, which looks simple, is interpreted by Sakharov 
as a correction term in particle physics, which is complicated. Is particle physics, 
which is complicated, destined some day in its turn to unravel into something 
simple-something far deeper and far simpler than geometry ("pregeometry" ;  
Chapter 44)? 
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§ 1 7. 6 .  " N O  PRIOR G EO METRY" : A FEATURE DISTIN G U ISH IN G 

EINSTEIN 'S TH EORY FRO M OTH ER TH EORIES 

O F  GRAVITY 

Whereas Einstein's theory of gravity is exceedingly compelling, one can readily 
construct less compelling and less elegant alternative theories. The physics literature 
is replete with examples [see Ni (197 2 ), and Thorne, Ni, and Will (1971) for reviews]. 
However, when placed among its competitors, Einstein's theory stands out sharp 
and clear: it agrees with experiment; most of its competitors do not (Chapters 38-40). 
It describes gravity entirely in terms of geometry; most of its competitors do not. 
It is free of any "prior geometry"; most of its competitors are not. 

Set aside, until Chapter 38, the issue of agreement with experiment. Einstein's 
theory remains unique. Every other theory either introduces auxiliary gravitational 
fields [ e.g., the scalar field of Brans and Dicke (1961 )], or involves "prior geometry," 
or both. Thus, every other theory is more complicated conceptually than Einstein's 
theory. Every other theory contains elements of complexity for which there is no 
experimental motivation. 

The concept of "prior geometry" requires elucidation, not least because the 
rejection of prior geometry played a key role in the reasoning that originally led 
Einstein to his geometrodynamic equation G = 81rT. By "prior geometry" one means 
any aspect of the geometry of spacetime that is fixed immutably, i.e., that cannot be 
changed by changing the distribution of gravitating sources. Thus, prior geometry is 
not generated by or affected by matter; it is not dynamic. Example: Nordstrnm (1913) 
formulated a theory in which the physical metric of spacetime g (the metric that 
enters into the equivalence principle) is generated by a "background" flat-spacetime 
metric IJ, and by a scalar gravitational field <1>: 

r,a/3,J,. = - 4'7T,J,.r,a/3 T ·, '1',a/3 'f'• ,  a/3 (generation of </> by) , 
stress-energy 

(construction of g) . 
from </> and lJ 

(17.2 3a) 

(17.2 3b) 

In this theory, the physical metric g (governor of rods and clocks and of test-particle 
motion) has but one changeable degree of freedom-the freedom in </>. The rest of 
g is fixed by the flat spacetime metric ("prior geometry") IJ. One does not remove 
the prior geometry by rewriting Nordstrnm's equations (17.2 3) in a form 

R = 2 4 1rT, 
!curvature scalar 7 t t .  
Lconstructed from g J �a/3 Ta.ii] 

ca/3 = 0 µv t rweyl tensor J Lconstructed from g 

(17 .2 4) 

devoid of reference to lJ and </> [Einstein and Fokker (1914); exercise 17.8]. Mass 
can still influence only one degree of freedom in the spacetime geometry. The other 
degrees of freedom are fixed a priori-they are prior geometry. And this prior 
geometry can perfectly well (in principle) be detected by physical experiments that 
make no reference to any equations (Box 17 .3). 

Einstein ·s theory compared 
with other theories of gravity 

All other theories introduce 
auxiliary gravitational fields 
or prior geometry 

" Prior geometry" defined 

Nordstrom's theory as an 
illustration of prior geometry 
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Box 1 7 . 3  AN EX P E R I M E N T  TO D ETECT O R  EXC L U D E  C E RTAI N TYP E S  O F  P R I O R  G E O M ETRY 

(Based on December 1 9 70 d iscussions between Alfred Schi ld  and Charles W. M isner) 

Choose a momentarily static universe populated 
with a large supply of suitable pulsars. The pulsars 
should be absolutely regular, periodically emitting 
characteristic pulses of both gravitational and 
electromagnetic waves. 

Two fleets of spaceships containing receivers are 
sent out "on station" to collect the experimental 
data. Admiral Weber's fleet carries gravitational
wave receivers; Admiral Hertz's fleet, electromag
netic receivers. The captain of each spaceship 
holds himself "on station" by monitoring three 
suitably chosen pulsars (of identical frequency) 
and maneuvering so that their pulses always arrive 
in coincidence. The experimental data he collects 
consist of the pulses received from all other pul
sars, which he is not using for station keeping, each 
registered as coincident with or interlaced among 
the reference (stationary) pulses. [For display pur
poses, the pattern produced by any single pulsar 
can be converted to acoustic form. The reference 
pulses can be played acoustically (by the data
processing computer) on one drum at a fixed rate, 
and the pulses from other pulsars can be played 
on a second drum. A pattern of rythmic beats will 
result.] 

When the data fleet is checked out and tuned 
up, each captain reports stationary patterns. Now 
the experiment begins. One or more massive stars 
are towed in among the fleet. The fleet reacts to 
stay on station, and reports changes in the data 
patterns. The spaceships on the outside edges of 
the fleet verify that no detectable changes occur 
at their stations; so the incident radiation from the 
distant pulsars can be regarded as unaffected by 
the newly placed stars. Data stations nearer the 
movable stars report the interesting data. 

What are the results? 
In a universe governed by the laws of special 

relativity (spacetime always flat), no patterns 
change. (Weber's fleet was unable to get checked 

out in the first place, as no gravitational waves 
were ever detected from the pulsars). Neither stars, 
nor anything else, can produce gravitational fields. 
All aspects of the spacetime geometry are fixed a 
priori (complete prior geometry!). There is no 
gravity; and no light deflection takes place to make 
Hertz's captains adjust their positions. 

In a universe governed by Nordstrnm's theory 
of gravity (see text) both fleets get checked out
i.e., both see waves. But neither fleet sees any 
changes in the rhythmic pattern of beats. The stars 
being towed about have no influence on either 
gravitational waves or electromagnetic waves. The 
prior geometry (IJ) present in the theory precludes 
any light deflection or any gravitational-wave 
deflection. 

In a universe governed by Whitehead's (192 2 )  
theory of gravity [ see Will (I 971 b) and references 
cited therein], radio waves propagate along geo
desics of the "physical metric" g, and get deflected 
by the gravitational fields of the stars. But gravita
tional waves propagate along geodesics of a fiat 
background metric IJ, and are thus unaffected by 
the stars. Consequently, Hertz's captains must ma
neuver to keep on station; and they hear a chang
ing beat pattern between the reference pulsars and 
the other pulsars. But Weber's fleet remains on 
station and records no changes in the beat pattern. 
The prior geometry (IJ) shows itself clearly in the 
experimental result. 

In a universe governed by Einstein's theory, 
both fleets see effects (no sign of prior geometry 
because Einstein's theory has no prior geometry). 
Moreover, if the fleets were originally paired, one 
Weber ship and one Hertz at each station, they 
remain paired. No differences exist between the 
propagation of high-frequency light waves and 
high-frequency gravitational waves. Both propa
gate along geodesics of g. 
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Mathematics was not sufficiently refined in 1 9 1 7  to cleave apart the demands for 
"no prior geometry" and for a "geometric, coordinate-independent formulation of 
physics." Einstein described both demands by a single phrase, "general covariance." 
The "no-prior-geometry" demand actually fathered general relativity, but by doing 
so anonymously, disguised as "general covariance," it also fathered half a century 
of confusion. [See, e.g., Kretschmann ( 19 17). ] 

A systematic treatment of the distinction between prior geometry ("absolute 
objects") and dynamic fields ("dynamic objects") is a notable feature of Anderson's 
(1 967) relativity text. 

Exercise 17.8 . EINSTEIN-FOKKER REDUCES TO NORDSTRszjM 

The vanishing of the Wey! tensor [equation (13.50)] for a spacetime metric g guarantees 
that the metric is conformally flat-i.e., that there exists a scalar field </> such that g = q,21] , 

where fJ is a flat-spacetime metric. [See, e.g., Schouten (1954) for proof.] Thus, the Einstein
Fokker equation (17 .24), C"-/3 µ. v = 0, is equivalent to the Nordstrom equation (17.23b). With 
this fact in hand, show that the Einstein-Fokker field equation R = 24wT reduces to the 
Nordstrom field equation (17.23a). 

§ 1 7 . 7 .  A TASTE O F  TH E H ISTORY O F  EINSTEIN 'S EQUATIO N 

Nothing shows better what an idea is and means today than the battles and changes 
it has undergone on its way to its present form. A complete history of general 
relativity would demand a book. Here let a few key quotes from a few of the great 
papers give a little taste of what a proper history might encompass. 

Einstein (1908) : "We . . .  will therefore in the following assume the complete physical 
equivalence of a gravitational field and of a corresponding acceleration of the reference 
system . . . .  the clock at a point P for an observer anywhere in space runs (1 + <P/c 2) 
times faster than the clock at the coordinate origin . . . .  it follows that light rays are 
curved by the gravitational field . . . .  an amount of energy E has a mass E/c 2 . "  

Einstein and Grossmann (19 1 3) : "The theory described here originates from the 
conviction that the proport10nality between the inertial and the gravitational mass of 
a body is an exact law of nature that must be expressed as a foundation principle 
of theoretical physics . . . .  An observer enclosed in an elevator has no way to decide 
whether the elevator 1s at rest in a static gravitational field or whether the elevator 
is located in gravitation-free space m an accelerated motion that is maintained by forces 
acting on the elevator (equivalence hypothesis) . . . .  In the decay of radium, for 
example, that decrease [of mass] amounts to 1/10,000 of the total mass. If those changes 
in inertial mass did not correspond to changes in gravitational mass, then deviations 
of inertial from gravitational masses would arise that are far larger than the Eotvos 
experiments allow . It must therefore be considered as very probable that the identity 
of gravitational and inertial mass is exact. 

" No prior geometry" as a 
part of Einstein 's principle of 
"general covariance" 

EXERCISE 
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"The sought for generalization will surely be of the form 

where K is a constant and I' µv is a contravariant tensor of the second rank that arises 
out of the fundamental tensor gµ, through differential operations . . . .  it proved 
impossible to find a differential expression for I' µv that is a generalization of [Poisson's] 
Ll<f>, and that is a tensor with respect to arbitrary transformations . . . .  It seems most 
natural to demand that the system of equations should be covariant against arbitrary 
transformations. That stands in conflict with the result that the equations of the 
gravitational field do not possess this property." 

Einstein and Grossman (1914) : "In a 1913 treatment . . .  we could not show general 
covariance for these gravitational equations. [Origin of their difficulty : part of the 
two-index curvature tensor was put on the left, to constitute the second-order part of 
the field equation, and part was put on the right with Tµ, and was called gravitational 
stress-energy. It was asked that lefthand and righthand sides transform as tensors, which 
they cannot do under general coordinate transformations.] 

Einstein (1915a) : "In recent years I had been trying to found a general theory of 
relativity on the assumption of the relativity even of nonuniform motions. I believed 
in fact that I had found the only law of gravitation that corresponds to a reasonably 
formulated postulate of general relativity, and I sought to establish the necessity of 
exactly this solution in a paper that appeared last year in these proceedings. 

"A renewed analysis showed me that that necessity absolutely was not shown in 
the approach adopted there; that it nevertheless appeared to be shown rested on an 
error. 

"For these reasons, I lost all confidence in the field equations I had set up, and 
I sought for an approach that would limit the possibilities in a natural way. In this 
way I was led back to the demand for the general covariance of the field equations, 
from which I had departed three years ago, while working with my friend Grossmann, 
only with a heavy heart. In fact we had already at that time come quite near to the 
solution of the problem that is given in what follows. 

"According to what has been said, it is natural to postulate the field equations of 
gravitation in the form 

since we already know that these equations are covariant with respect to arbitrary 
transformations of determinant 1. In fact, these equations satisfy all conditions that 
we have to impose on them. [Here Rµv 1s a piece of the Ricci tensor that Einstein 
regarded as covariant.] . . .  

"Equations (22a) give in the first approximation 

a 2gaf3 
axaax/3 = O. 

By this [condition] the coordinate system is still not determined, in the sense that for 
this determination four equations are necessary." (Session of Nov. 4, 1915, published 
Nov. 11.) 

Einstein (1915b) : "In a recently published investigation, I have shown how a theory 
of the gravitational field can be founded on Riemann's covariant theory of many-di-
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mens1onal manifolds. Here i t  will now be  proved that, by  introducing a surely bold 
additional hypothesis on the structure of matter, a still tighter logical structure of the 
theory can be achieved . . . .  it may very well be possible that in the matter to which 
the given expression refers, gravitational fields play an essential part. Then Tµ, 

µ, can 
appear to be positive for the entire structure, although in reality only Tµ, 

µ, + f /L 
µ, is 

positive, and Tµ, 
µ, vanishes everywhere. We assume in the following that in fact the 

condition P µ, = 0 is fulfilled [ quite] generally. 
"Whoever does not from the beginning reject the hypothesis that molecular [small

scale] gravitational fields constitute an essential part of matter will see in the following 
a strong support for this point of view. 

"Our hypothesis makes it possible . . .  to give the field equations of gravitation in 
a generally covariant form . . .  

Gµ,v = - K Tµ,v 

[where Gµ, v is the Ricci tensor]." (Session of Nov. I 1, 1915 ; published Nov. 18.) 
Einstein (19 15c): "I have shown that no objection of principle stands in the way 

of this hypothesis [the field equations], by which space and time are deprived of the 
last trace of objective reality. In the present work I find an important confirmation 
of this most radical theory of relativity: it turns out that it explains qualitatively and 
quantitatively the secular precession of the orbit of Mercury in the direction of the 
orbital motion, as discovered by Leverrier, which amounts to about 45" per century, 
without calling on any special hypothesis whatsoever." 

Einstein (1915d; session of Nov. 25, 1915 ; published Dec. 2) : "More recently I have 
found that one can proceed without hypotheses about the energy tensor of matter when 
one introduces the energy tensor of matter in a somewhat different way than was done 
in my two earlier communications. The field equations for the motion of the perihelion 
of Mercury are undisturbed by this modification . . . .  

"Let us put 

[where G;m is the Ricci tensor]." . . .  
. . . these equations, in contrast to (9), contain no new condition, so that no other 

assumption has to be made about the energy tensor of matter than obedience to the 
energy-momentum [conservation] laws. 

"With this step, general relativity is finally completed as a logical structure. The 
postulate of relativity in its most general formulation, which makes the spacetime 
coordinates into physically meaningless parameters, leads compellingly to a completely 
determinate theory of gravitation that explains the perihelion motion of Mercury. In 
contrast, the general-relativity postulate is able to open up to us nothing about the 
nature of the other processes of nature that special relativity has not already taught. 
The opinion on this point that I recently expressed in these proceedings was erroneous. 
Every physical theory compatible with special relativity can be aligned into the system 
of general relativity by means of the absolute differential calculus, without [general 
relativity] supplying any criterion for the acceptability of that theory." 

Hilbert (1915): "Axiom I [notation changed to conform to usage in this book]. The 
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law of physical events is determined through a world function [Mie's terminology; better known today as "Lagrangian"] L, that contains the following arguments : 

and specifically the variation of the integral 
J L( - g)1;2 d4x 

must vanish for [changes in] every one of the 14 potentials g.,, ,  A., . . . .  "Axiom II (axiom of general invariance) . The world function L is invariant with respect to arbitrary transformations of the world parameters [coordinates] x" . . . .  "For the world function L, still further axioms are needed to make its choice unambiguous. If the gravitation equations are to contain only second derivatives of the potentials g"", then L must have the form 
L = R + Lelec• where R is the invariant built from the Riemann tensor ( curvature of the four-dimensional manifold." (Session of Nov. 20, 1 9 1 5 .) Einstein ( 1 9 1 6c) : "Recently H. A. Lorentz and D. Hilbert have succeeded in giving general relativity an especially transparent form in deriving its equations from a single variation principle. This will be done also in the following treatment. There it is my aim to present the basic relations as transparently as possible and in a way as general as general relativity allows." Einstein ( 1 9 16b) : "From this it follows, first of all, that gravitational fields spread out with the speed of light. . . .  [plane] waves transport energy . . . .  One thus gets . . .  the radiation of the system per unit time . . . .  

_!!___ "  ( o 3Ja/J )2 " 
2477 L. a 13 

a. {3 Hilbert ( 1 9 1 7 ) :  "As for the principle of causality, the physical quantities and their time-rates of change may be known at the present time in any given coordinate system; a prediction will then have a physical meaning only when it is invariant with respect to all those transformations for which exactly those coordinates used for the present time remain unchanged. I declare that predictions of this kind for the future are all uniquely determined;  that is, that the causality principle holds in this formulation: "From the knowledge of the 14  physical potentials g/L, , A., , in the present, all predictions about the same quantities in the future follow necessarily and uniquely insofar as they have physical meaning." 



CHAPTER 1 8  

WEAK G RAVITATI O NAL F I E LDS 

The way that  can be walked on is not the perfect way. 
The word that can be said is not the perfect word. 

LAO-TZU (~3rd century B C )  

§18 .1. THE LINEARIZED THEORY OF GRAVITY 

Because of the geometric language and abbreviations used in writing them, Einstein's 
field equations, Gµv = 87TTµv • hardly seem to be differential equations at all, much 
less ones with many familiar properties. The best way to see that they are is to apply 
them to weak-field situations 

(1 8 . 1 )  

e.g., to the solar system, where l hµv l ~ it.P l :S M0/ R0 ~ 10-6 ; or to a weak gravita
tional wave propagating through interstellar space. 

In a weak-field situation, one can expand the field equations in powers of hµv • 
using a coordinate frame where ( 1 8 . 1 )  holds; and without much loss of accuracy, 
one can keep only linear terms. The resulting formalism is often called "the linearized 
theory of gravity," because it is an important theory in its own right. In fact, it is 
precisely this "linearized theory" that one obtains when one asks for the classical 
field corresponding to quantum-mechanical particles of ( 1 )  zero rest mass and (2) 
spin two in (3) flat spacetime [see Fierz and Pauli ( 1939)]. Track-2 readers have 
already explored linearized theory somewhat in §7 . 1 ,  exercise 7 .3, and Box 7 . 1 .  There 
it went under the alternative name, "tensor-field theory of gravity in flat spacetime." 

" Linearized theory of 
gravity" : 

( 1 )  as weak-f ie ld l i m it of 
general relativity 

(2) as standard 
"f ie ld-theory" description of 
gravity in "f lat spacet ime" 



(3)  as a foundation for 
"derivi ng" general re lat iv i ty 

Detai ls of l inearized theory 

( 1 )  connection coefficients 

(2) "gravitational potent ials" 

1iµv 
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Just as one can "descend" from general relativity to linearized theory by linearizing 
about flat spacetime (see below), so one can "bootstrap" one's way back up from 
linearized theory to general relativity by imposing consistency between the linearized 
field equations and the equations of motion . or, equivalently, by asking about : (1) 
the stress-energy carried by the linearized gravitational field h

µ v ; (2 ) the influence 
of this stress-energy acting as a source for corrections H11

µ
v to the field; (3) the 

stress-energy carried by the corrections H11
µ v

; ( 4) the influence of this stress-energy 
acting as a source for corrections H21 

µv 
to the corrections h<11 

µv ; ( 5) the stress-energy 
carried by the corrections to the corrections; and so on. This alternative way to derive 
general relativity has been developed and explored by Gupta (1954, 19 57, 1962 ), 
Kraichnan (195 5), Thirring (1961), Feynman (1963a), Weinberg (1965), and Deser 
(1970). But because the outlook is far from geometric (see Box 18.1), the details 
of the derivation are not presented here. (But see part 5 of Box 17. 2 .) 

Here attention focuses on deriving linearized theory from general relativity. Adopt 
the form (18.1) for the metric components. The resulting connection coefficients 
[equations (8. 2 4b)], when linearized in the metric perturbation h

µ v • read 

I' µ _ _!_ µ v(h h - h ) a/3 - 2 1/ av ,/3 + f3 v ,a a/3 , v 

= _!_ (h µ h µ - h ,µ) - 2 a ,/3 + f3 ,a a/3 · 
(18. 2 ) 

The second line here introduces the convention, used routinely whenever one ex
pands in powers of h

µv • that indices of h
µ v are raised and lowered using 1/µ v and 

1/µ v • not gµ v and g
µv · A similar linearization of the Ricci tensor [equation (8. 47)] yields 

R
µv = I' "-

µv ,a - I'"-
µa , v 

= � (h/, va + hv
"- ,µa - h

µ v ,aa - h,µ v), 
(18.3) 

where 

h = h"- - "-f3h - a - 1)  af3 • (18. 4) 

After a further contraction to form R gµ v R 
µ v :::::: 1/µ v R 

µ v , one finds that the Einstein 
equations, 2 G

µv = 16?TT
µv , read 

h
µa , v

a + hva ,µ

a - h
µ v ,aa - h,µv 

- 1/µ v(haf3 'af3 - h,/) = 16?T T
µv · 

(18. 5) 

The number of terms has increased in passing from R
µ v (18.3) to G

µv = R
µv - fa

µ vR 
(18. 5), but this annoyance can be counteracted by defining 

(18.6) 

and using a bar to imply a corresponding operation on any other symmetric tensor. 
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Box 18 .1 DER IVATIONS OF GENERAL RELATIVITY FROM GEOMETR IC 
VIEWPOI NT AND F ROM SPIN-TWO VIEWPOI NT, COMPARED 
AND CONTRASTED 

Nature of primordial spacetime geometry? 
Topology (multiple connectedness) of spacetime? 

Vision of physics? 

Starting points for this derivation of general relativity 

Resulting equations 

Emstein 
derivation 

Not primordial; geometry is a dynamic participant in physics 
Laws of physics are local; they do not specify the topology 
Dynamic geometry is the "master field" of physics 

I .  Equivalence principle (world lines of photons and test particles are geo-desics of the spacetime geometry) 
2. That tensorial conserved quantity which is derived from the curvature (Cartan's moment of rotation) is to be identified with the tensor of stress-momentum-energy (see Chapter 15) 
Einstein's field equations 

Resulting assessment of the Fundamental dynamic partici-spacetime geometry from which pant in physics derivation started 

View about the greatest single Central to understanding the crisis of physics to emerge nature of matter and the from these equations. complete universe gravitational collapse 

Spm-2 
derivation 

"God-given" flat Lorentz spacetime manifold 
Simply connected Euclidean topology 

This field, that field, and the other field all execute their dynamics in a flatspacetime manifold 
I .  Begin with field of spin two and zero rest mass in flat spacetime. 
2. Stress-energy tensor built from this field serves as a source for this field. 

Einstein's field equations 
None Resulting theory eradicates original flat geometry from all equations, showing it to be unobservable 
Unimportant or at most peripheral 

Thus Gµv = Rµv to first order in the hµ, , and hµv = hµ, ;  i.e., hµv = hµv - ½11µ, h.  With 
this notation the linearized field equations become 

(18.7) (3) l inearized f ie ld equations 

The first term in these linearized equations is the usual flat-space d'Alembertian, 
and the other terms serve merely to keep the equations "gauge-invariant" (see Box 



(4) gauge conditions 

(5)  f ield equations and metric 
i n  Lorentz gauge 

EXERCISES 
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18. 2 ) . In Box 18.2 it is shown that, without loss of generality, one can impose the 
"gauge conditions" 

h-µa - 0 ,a - . (18.8a) 

These gauge conditions are the tensor analog of the Lorentz gauge A« ,a = 0 of 
electromagnetic theory. The field equations (18.7) then become 

(18.8b) 

The gauge conditions (18.Ba), the field equations (18.Bb), and the definition of the 
metric 

(18.8c) 

are the fundamental equations of the linearized theory of gravity written in Lorentz 
gauge. 

Exercise 18 .1 .  GAU GE INVARIANCE OF THE RIEMANN CURVATURE Show that in linearized theory the components of the Riemann tensor are 
( 1 8 .9) 

Then show that these components are left unchanged by a gauge transformation of the form discussed in Box 18 .2 [equation (4b) ] .  Since the Einstein tensor is a contraction of the Riemann tensor, this shows that it is also gauge-invariant. 
Exercise 1 8 .2 .  J USTI F ICATION OF LORENTZ GAU GE Let a particular solution to the field equations ( 1 8 .7) of linearized theory be given, in an arbitrary gauge. Show that there necessarily exist four generating functions �µ (t, x i) whose gauge transformation [Box 18 .2, eq. (4b)] makes 

Jinew µa = 0 
,a (Lorentz gauge) . 

Also show that a subsequent gauge transformation leaves this Lorentz gauge condition unaffected if and only if its generating functions satisfy the sourceless wave equation 
�a ,{3/3 = 0 .  

Exercise 18 .3 .  EXTERNAL F IELD OF A STATIC, SPHERICAL BODY Consider the external gravitational field of a static spherical body, as described in the body's (nearly) Lorentz frame-i.e. ,  in a nearly rectangular coordinate system l hµv l � 1 , in which the body is located at x = y = z = 0 for all t. By fiat, adopt Lorentz gauge. (a) Show that the field equations ( 1 8 .8b) and gauge conditions ( 18 .8a) imply 
hoo = 4M/(x2 + y2 + z2)11 2 , hoo = h,," = hyy = hzz = 2M/(x2 + y2 + z2) 11 2 , 

where M is a constant (the mass of the body; see § 1 9 .3) .  
hoi = hik = 0, ha/3 = 0 if a :f:. /3, 
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Box 1 8 .2 GAUGE TRANSFORMATIONS AND COORDI NATE TRANSFORMATIONS 
IN L I NEARIZED THEORY 

A. The Basic Equations of Linearized Theory, written in any coordinate system that 
is nearly globally Lorentz, are ( 1 8 . 1 )  and ( 1 8 .7) : 

(I) 

(2) 

Two different types of coordinate transformations connect nearly globally Lorentz 
systems to each other: global Lorentz transformations, and infinitesimal coordinate 
transformations. 

1. Global Lorentz Transformations: 

(3a) 

These transform the metric coefficients via 

oxll ox" 
1/a'/3' + ha'/3 ' = ga'/3' = axa' ox/3' gllV = Alla,A",y(1/llv + hllV) 

= 1/c,'{3' + Alla' A•
/3, hll• ·  

Thus, hll"-and likewise hll,-transform like components of a tensor in flat 
spacetime 

(3b) 

2. Infinitesimal Coordinate Transformations (creation of "ripples" in the coordi
nate system) : 

(4a) 

where tll{q>) are four arbitrary functions small enough to leave lhll' •' I � I. 
Infinitesimal transformations of this sort make tiny changes in the functional 
forms of all scalar, vector, and tensor fields. Example: the temperature T is 
a unique function of position, T(<J>); so when written as a function of coordinates 
it changes 

T(xll' = all) = T(xll + tll = all) = T(xll = all - tll) 
= T(xll = all) - T,ill; 

i.e., if t0 = 0.001 sin(x1), and if T = cos2(x0), then 

T = cos2(x0') + 0.002 sin(x1') cos(x0') sin(x0').  
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Box 1 8 . 2  (continued) 

These tiny changes can be ignored in all quantities except the metric, where 
tiny deviations from 11,,, contain all the information about gravity. The usual 
tensor transformation law for the metric 

when combined with the transformation law (4a) and with 

reveals that 

gp'a'(xa.' = aa.) = 11pa + hpa(xa. = aa.) - tp,a - ta ,p 

+ negligible corrections ~ hpa ,a.ta. and ~ hpa. ta. ,a · 

Hence, the metric perturbation functions in the new (x µ') and old (x µ) coordinate 
systems are related by 

hnew _ hold t. t. 
µv - µv - Sµ, v - c;,v,µ, (4b) 

whereas the functional forms of all other scalars, vectors, and tensors are unaltered, 
to within the precision of linearized theory. 

B. Gauge Transformations and Gauge Invariance. In linearized theory one usually 
regards equation (4b) as gauge transformations, analogous to those 

(Sa) 

of electromagnetic theory. The fact that gravitational gauge transformations do not 
affect the functional forms of scalars, vectors, or tensors (i.e., observables) is called 
"gauge invariance." Just as a straightforward calculation reveals the gauge invariance 
of the electromagnetic field, 

pnew _ Anew _ Anew _ Aold + yr _ Aold _ yr - pold (Sb) µv - v,µ µ, v - v,µ , vµ µ, v  , µv - µv , 

so a straightforward calculation (exercise 1 8. 1 )  reveals the gauge invariance of the 
Riemann tensor 

Rnew _ R old 
µva.{3 - µva.{3 · (6) 

Such gauge invariance was already guaranteed by the fact that R,,,a./3 are the 
components of a tensor, and are thus essentially the same whether calculated in 
an orthonormal frame gj,,, = 11,,, , in the old coordinates where g,,v = 11µ,v + h�1:, or 
in the new coordinates where g,,v = 11,,. + h�;w . 
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Like the Riemann tensor, the Einstein tensor and the stress-energy tensor are 
unaffected by gauge transformations. Hence, if one knows a specific solution liµ, to 
the linearized field equations (2) for a given TW, one can obtain another solution that 
describes precisely the same physical situation (all observables unchanged) by the change 
of gauge ( 4), in which �µ are four arbitrary but small functions. 

C. Lorentz Gauge. One can show (exercise 1 8 .2) that for any physical situation, 
one can specialize the gauge (i.e., the coordinates) so that Jiµa = 0. This is the ,a  
Lorentz gauge introduced in § 1 8. 1 . The Lorentz gauge is not fixed uniquely. The 
gauge condition Jiµa,a = 0 is left unaffected by any gauge transformation for which 

t.a,/3 - 0 
.. 

/3 - . 

(See exercise 1 8 .2.) 

D. Curvilinear Coordinate Systems. Once the gauge has been fixed by fiat for a 
given system ( e.g., the solar system), one can regard hµ, and liµ, as components of 
tensors in flat spacetime; and one can regard the field equations (2) and the chosen 
gauge conditions as geometric, coordinate-independent equations in flat spacetime. 
This viewpoint allows one to use curvilinear coordinates ( e.g., spherical coordinates 
centered on the sun), if one wishes. But in doing so, one must everywhere replace 
the Lorentz components of the metric, 1/µ, , by the metric's components gµ, in flat 
the flat-spacetime curvilinear coordinate system; and one must replace all ordinary 
derivatives ("commas") in the field equations and gauge conditions by covariant 
derivatives whose connection coefficients come from gµ, . See exercise 1 8 .3 for an flat 
example. 

(b) Adopt spherical polar coordinates, 

x = r sin 0 cos ,t,, y = r sin 0 sin ,t,, z = r cos 0. 

By regarding hµ.v and hµ.v as components of tensors in flat spacetime (see end of Box 1 8.2), 
and by usmg the usual tensor transformation laws, put the solution found in (a) into the 
form 

h00 = 4M/r, 

2M hoo = -- , r 

where gap flat are the components of the flat-spacetime metric in the spherical coordinate 
system 

goo flat = - 1 , 

g¢¢ = r2 sin20 ,  flat 

g,.,. flat = l , g - r2 88 nat - ' 
gap = 0 when a -::j; /3. 

flat 



Linearized theory and 
e lectromagnetic theory 
compared 

P lane gravitational waves 

H ow to analyze effects of 
weak gravity on matter 
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Thereby conclude that the general relativistic line element, accurate to linearized order, is 
ds2 = - (1  - 2M/r) dt2 + (l + 2M/r)(dr2 + r2 d02 + r2 sin20 dcp2) . 

( c) Derive this general, static, spherically symmetric, Lorentz-gauge, vacuum solution to the linearized field equations from scratch, working entirely in spherical coordinates. [Hint: As discussed at the end of Box 1 8 .2, 11µ v  in equation ( 1 8 .8c) must be replaced by gµv ; and in the field equations and gauge conditions ( l 8 .8a, b), all commas (partial derivativ0e"°J) must be replaced by covariant derivatives, whose connection coefficients come from gµv flat•l ( d) Calculate the Riemann curvature tensor for this gravitational field. The answer should agree with equation ( 1 . 14). 

§18 . 2 .  GRAVITATIONAL WAVES 

The gauge conditions and field equations ( 1 8 .8a, b) of linearized theory bear a close 
resemblance to the equations of electromagnetic theory in Lorentz gauge and flat 
space time, 

Aa,a = 0, 

-AIL a = 47rJIL. ,a 

(1 8 . I0a) 

( 1 8 . I0b) 

They differ only in the added index (hlL" versus AIL, TIL" versus JIL). Consequently, 
from past experience with electromagnetic theory, one can infer much about linear
ized gravitation theory. 

For example, the field equations ( 1 8 .8b) must have gravitational-wave solutions. 
The analog of the electromagnetic plane wave 

A'" = A'"(t - z), A0 = 0, 

will be the gravitational plane wave 

h'"'" = h'"'"(t - z), h'"Y = h'"Y(t - z), h,YY = h,YY(t _ z), 

h,IL0 = fiµ,z = 0 for all µ. 
( 1 8 . 1 1 )  

Although a detailed study of such waves will be delayed until Chapters 35-37, some 
properties of these waves are explored in the exercises at the end of the next section. 

§18 . 3 .  EFFECT O F  GRAVITY ON MATTER 

The effects of weak gravitational fields on matter can be computed by using the 
linearized metric (1 8 . 1 )  and Christoffel symbols (1 8 .2) in the appropriate equations 
of motion-i.e. ,  in the geodesic equation (for the motion of particles or light rays), 
in the hydrodynamic equations (for fluid matter), in Maxwell's equations (for elec
tromagnetic waves), or in the equation V · T = 0 for the total stress-energy tensor 



§ 1 8 . 3 .  EFFECT OF GRAVITY O N  MATTER 443 of whatever fields and matter may be present. Exercises 18 .5 ,  18 .6 and 18 .7 provide examples, as do the Newtonian-limit calculations in exercises 16 .1 and 16 .4, and in §17 .4 .  If, however, the lowest-order (linearized) gravitational "forces" (Christoffel-symbol terms) have a significant influence on the motion of the sources of the gravitational field, one finds that the linearized field equation (18 .7) is inadequate, and better approximations to Einstein's equations must be considered. [Thus emission of gravitational waves by a mechanically or electrically driven oscillator falls within the scope of linearized theory, but emission by a double-star system, or by stellar oscillations that gravitational forces maintain, will require discussion of nonlinear terms (gravitational "stress-energy") in the Einstein equations; see §§36.9 to 36 .11.] The above conclusions follow from a consideration of conservation laws associated with the linearized field equation. Just as the electromagnetic equations (18 . lOa, b) guarantee charge conservation JI',µ = 0, f J0(t, x) dx dy dz - Q = canst, 
all space so the gravitational equations (18 .8a, b) guarantee conservation of the total 4-momentum and angular momentum of any body bounded by vacuum: 

f P0(t, x) dx dy dz pµ = canst; 
body (x" Tf3µ - xf3 T"µ) = 0, , µ  

f (x" Tf3° - x f3 T"0) dx dy dz J"f3 = canst. 
body 

(18 .12a) (18 .12b) (18 .13a) (18 .13b) (See §5 .11 for the basic properties of angular momentum in special relativity. The angular momentum here is calculated relative to the origin of the coordinate system.) Now it is important that the stress-energy components Tµv ,  which appear in the linearized field equations (18 .7) and in these conservation laws, are precisely the components one would calculate using special relativity (with gµ, = 11µ,). As a result, the energy-momentum conservation formulated here contains no contributions or effects of gravity! From this one sees that linearized theory assumes that gravitational forces do no significant work. For example, energy losses due to gravitational radiation-damping forces are neglected by linearized theory. Similarly, conservation of 4-momentum pµ for each of the bodies acting as sources of hµ, means that each body moves along a geodesic of 11µ, (straight lines in the nearly Lorentz coordinate system) rather than along a geodesic of gµ, = 11µ, + hµ, ·  Thus, linearized theory can be used to calculate the motion of test particles and fields, using gµ, = 11µ, + hµ, ;  but to include gravitational corrections to the motion of the sources themselves-to allow them to satisfy Tµ• ; • = 0 rather than Tµ•, • = 0-one must reinsert into the field equations the nonlinear terms that linearized theory discards. (See, e.g., Chapter 20 on conservation laws; §§36 .9-36 .11 on the generation of gravitational waves and radiation reaction; and Chapter 39 on the post-Newtonian approximation.) 

Conservation of 4-momentum 
and angular momentum i n  
l i nearized theory 

Limit on val idity of l i nearized 
theory: gravity must not 
affect motions of sources 
signif icantly 



EXERCISES 

444 1 8  WEAK GRAVITATIONAL FIELDS 

The energy, momentum, and angular momentum radiated by gravitational waves 
in linearized theory can be calculated by special-relativistic methods analogous to 
those used in electromagnetic theory for electromagnetic waves [Fiertz and Pauli 
( 1939)], but it will be more informative and powerful to use a fully gravitational 
approach (Chapters 35 and 36) .  

Exercise 1 8 .4.  S PACETI M E  CU RVATU R E  FO R A P LAN E 

GRAVITATIONAL WAVE 

Calculate the components of the Riemann curvature tensor [ equations (18.9)] for the gravita
tional plane wave (18.11). [Answer: 

R - - R - + R - R - l h · xOyO - xOyz - :r:zyz - - :czyO - - 2 xy, t t ,  

all other components vanish except those obtainable from the above by the symmetries 
R af3y8 = R[af3)1y8] = Ry8af3 · 

Exercise 1 8 . 5 .  A P R I M ITIVE G RAVITATI O N AL-WAVE D ETECTO R 

(see Figure 1 8 . 1 )  

Two beads slide almost freely on a smooth stick ;  only slight friction impedes their slidmg. 
The stick falls freely through spacetime, with its center moving along a geodesic and its ends 
attached to gyroscopes, so they do not rotate. The beads are positioned equidistant (distance 
½ 1) from the stick's center. Plane gravitational waves [equation (18.11) and exercise 18.4], 
impinging on the stick, push the beads back and forth ("geodesic deviation";  "tidal gravita
tional forces"). The resultant friction of beads on stick heats the stick; and the passage of 
the waves 1s detected by measuring the rise in stick temperature.* (Of course, this is not the 
best of all conceivable designs ! )  Neglectmg the effect of frict10n on the beads' motion, 
calculate the proper distance separating them as a function of time. [Hints: Let ( be the 
separation between the beads ; and let n = ( / If ! be a unit vector that points along the stick 
in the stick's own rest frame. Then their separation has magnitude 1 = ( · n. The fact that 
the stick 1s nonrotating 1s embodied in a parallel-transport law for n, Vu n = 0. ("Fermi
Walker transport" of§§6.5, 6 .6, and 13.6 reduces to parallel transport, because the stick moves 
along a geodesic with a = Vuu = 0.) Thus, 

di/dT = Vu(f · n) = (Vuf l · n, 

d21/dT2 = Vu Vu(( · n) = (Vu Vufl · n, 

where T is the stick's proper time. But Vu Vu( is produced by the Riemann curvature of 
the wave (geodesic deviat10n) : 

Vu Vuf = projection along n of [ - Riemann ( . . .  , u, (, u)]. 

(The geodesic-deviation forces perpendicular to the stick, i.e., perpendicular to n, are coun-

* This thought experiment was devised by Bondi ( 1 957, 1 965 , Bondi and McCrea ( 1 960)) as a means 
for convincing skeptics of the reality of gravitational waves. 
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Gyroscope Bead 

445 

Gyroscope 
Figure 1 8 . 1 .  
A primitive detector for gravitational waves, consisting of a 
beaded stick with gyroscopes on its ends [Bondi ( 1957)). See 
exercise 18.5 for discussion. 

terbalanced by the stick's pushing back on the beads to stop them from passing through it-no penetration of matter by matter ! )  Thus, 
d21/dT 2 = - Riemann ( . . .  , u, (, u) · n = - Riemann (n, u, (, u) . 

Evaluate this acceleration in the stick's local Lorentz frame. Orient the coordinates so the waves propagate in the z-direction and the stick's direction has components n z = cos 0, 
n" = sin 0 cos </>, nY = sin 0 sin <J>. Solve the resulting differential equation for L(T).] [Answer: 

where h;k are evaluated on the stick's world line (x = y = z = 0). Notice that, if the stick is oriented along the direction of wave propagation (if 0 = 0), the beads do not move. In this sense, the effect of the waves (geodesic deviation) is purely transverse. For further discussion, see §§35 .4 to 35 .6 . ]  

§18 .4.  NEARLY NEWTONIAN GRAVITATIONAL F IELDS 

The general solution to the linearized field equations in Lorentz gauge [equations 
( 1 8. 8a, b)] lends itself to expression as a retarded integral of the form familiar from 
electromagnetic theory: 

hµ,(t, x) = f 4Tµ, (t 
1: � 

:,I 

x' I , x') d3x'. ( 1 8.1 4) 

The gravitational-wave aspects of this solution will be studied in Chapter 36. Here 
focus attention on a nearly Newtonian source: T00 ► I T0; I ,  T00 ► I I;k l , and velocities 
slow enough that retardation is negligible. In this case, ( 1 8.1 4) reduces to 

hoo = - 4$, ho; = h;k = 0, 

$(t, x) = -f TooU
, x') d3x' = Newtonian potential. 

lx - x' I 

The corresponding metric ( 1 8.8c) is 

( 1 8.1 5a) 

(1 8.1 5b) 

ds2 = - ( 1  + 2$) dt2 + ( 1  - 2 $)(dx2 + dy2 + dz2) ( 1 8.1 5c) 
;::::: - (1 - 2 M/r) dt2 + (I + 2 M/r)(dx2 + dy2 + dz2) far from source. 

Retarded-integral solut ion of 
l inearized f ie ld equat ion 

N ewtonian gravity as a l imit  
of l inearized theory 



Bending of l ight and 
gravitational redsh i ft 
predicted by l inearized theory 
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The errors in this metric are : ( 1 )  missing corrections of order <1>2 due to nonlinearities 
of which linearized theory is oblivious; (2) missing corrections due to setting h0; = 0 
(these are of order h0; ~ <l>v, where v ~ 1 To; I /T00 is a typical velocity in the source) ; 
(3) missing corrections due to setting h;k = 0 [these are of order h;k ~ <l>(I T;k l / T00)] . 

In the solar system all these errors are ~ 10-12, whereas <I> ~ 10-6. 

Passive correspondence with Newtonian theory demanded only that g00 = 
- (1  + 2<1>) ;  see equation (1 7 . 1 9). However, linearized theory determines all the 
metric coefficients, up to errors of ~<l>v, ~<1>2 , and ~<l>(I T;k l / To0) .  This is sufficient 
accuracy to predict correctly (fractional errors ~ 10-6) the bending of light and the 
gravitational redshift in the solar system, but not perihelion shifts. 

Exercise 1 8 . 6 .  BEND I N G  O F  L I G H T  BY T H E  S U N  

To high precision, the sun i s  static and spherical, so its external line element is (18.15c) with 
<P = - M/r; i.e. , 

ds2 = - (1 - 2M/r) dt2 + (1 + 2M/r)(dx2 + dy2 + dz2) everywhere outside sun. (18.16) 

A photon moving in the equatorial plane (z = 0) of this curved spacetime gets deflected 
very slightly from the world line 

X = t, y = b = "impact parameter," z = 0. 

Calculate the amount of deflection as follows. 
(a) Write down tlle geodesic equation (16.4a) for the photon's world line, 

dp"' 
I'"' /3 Y - 0 

dt..* + f3yP p - . 

(18.17) 

(18.18) 

[Here p = d/dt.. * = (4-momentum of photon) = (tangent vector to photon's null geodesic) .] 
(b) By evaluating the connection coefficients in the equatorial plane, and by using the 

approximate values, 1pv 1  � p0 :::::: p", of the 4-momentum components corresponding to the 
approximate world line (18.17), show that 

- 2Mb x dx 
(xz + b2)3;2 P dt.. * 

, 

(c) Integrate this equation for p v, assuming p Y  = 0 at x = - oo (photon moving precisely 
in x-direction initially) ; thereby obtain 

4M p Y(x = + oo) = - -p". b 

( d) Show that this corresponds to deflection of light through the angle 

Ll<j, = 4M/b = l ".75 (R 0/b),  (18 . 19) 

where R0 is the radius of the sun. For a comparison of this prediction with experiment, 
see Box 40.1. 
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Exercise 1 8 . 7 .  G RAVI TATIONAL REDSH I FT (a) Use the geodesic equation for a photon, written in the form 
dp,,,ld>...* - I' °'µ,13PaP/3 = 0, 
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to  prove that any photon moving freely in  the sun's gravitational field [line element ( 1 8 . 1 6)] has dp0/ d>... * = O ; i .e. , 
Po = constant along photon's world line. ( 1 8 .20) 

(b) An atom at rest on the sun's surface emits a photon of wavelength >...,, as seen in its orthonormal frame. [Note : 
hv, = h/>..., = (energy atom measures) = -p · u,, ( 1 8 .2 1 )  

where p is the photon's 4-momentum and u, i s  the emitter's 4-velocity.] An atom at rest far from the sun receives the photon, and measures its wavelength to be >...,. [Note : h/>..., = 
-p · u,.] Show that the photon is redshifted by the amount 

= >..., - >..., - Mo - 2 10-a z --- - - X . - >..., R o 
( 1 8 .22) 

[Hint: u, = o/o t; u, = ( I - 2M/r)-11 2 o/ot .  Why?] For further discussion of the gravitational redshift and experimental results, see §§7.4 and 38 .5 ; also Figures 3 8 . 1  and 38 .2 .  



CHAPTER 1 9  

MASS AN D AN G U LAR M O M ENTU M 

O F  A G RAVITATI N G  SYSTEM 

M etric far from a weakly 
gravitating system, as a 
power senes in 1 /r: 

( 1 )  denvat1on 

§ 1 9 . 1 . EXTERNAL F IELD O F  A WEAKLY 

GRAVITATIN G SO URCE 

Consider an isolated system with gravity so weak that in calculating its structure 
and motion one can completely ignore self-gravitational effects. (This is true of an 
asteroid, and of a nebula with high-energy electrons and protons spiraling in a 
magnetic field; it is not true of the Earth or the sun.) Assume nothing else about 
the system-for example, by contrast with Newtonian theory, allow velocities to be 
arbitrarily close to the speed of light, and allow stresses Tik and momentum densities 
T°i to be comparable to the mass-energy density T°0• 

Calculate the weak gravitational field, 

gµv = 1/µv + hµv > 

h = h = J 4 Tµv(t - Ix - x' I ,  x') d3x' µv - µv Ix - x' I ' 

(19.1) 

(19. 2 ) 

produced by such a system [see "barred" version of equation (18.14)]. Restrict 
attention to the spacetime region far outside the system, and expand hµv in powers 
of x' /r x' /lxl , using the relations 

_ 
00 1 

[ a
n _ ] T (t - Ix - x' I x') = "' - - T (t - r, x') (r - Ix - x' lt, (19.3a) µv ' L..., n! a rn µv 

n = O  

( Xj' ) 1 xixk 
(

xfxk ' - r' 2 o -
) r - Ix - x' I = xi - + - -- Jk + . . . 

r 2 r r2 ' 

1 1 x i xl I xixk (3xlxk ' - r' 2 o -k) --- = - + - - + - -- J + · • • . Ix - x' I r r2 r 2 r3 r2 

( 1 9.3b) 

(19.3c) 
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Perform the calculation in the system's rest frame, where 

p; -I T0j d3 X = 0, 

with origin of coordinates at the system's center of mass 

I x;roo d 3x = 0. 

The result, after a change of gauge to simplify h00 and h0;, is 

ds2 = - [1 - 2 � + o C1a)] dt2 - [ 4t;usk ;; + o (/a
)] dt dx; 

+ [( 1 + 2 M) s .
k + (gravit�tional radiation terms)] dx; dxk . 

r 1 that die out as 0(1/r) 
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(19. 4a) 

(19. 4b) 

(19. 5) 

(see exercise 19.1 for derivation.) Here M and Sk are the body's mass and intrinsic 
angular momentum. 

M =  I T°0 d 3x, 

s - f ( xl rmo d3x k - klm 

The corresponding Newtonian potential is 

I M ( I ) <P = - 2 
(goo - 1Joo) = - 7 + 0 � . 

(19.6a) 

(19.6b) 

(19.6c) 

Conclusion: With an appropriate choice of gauge, <P and g00 far from any weak 
source are time-independent and are determined uniquely by the source's mass M; 
g0; is time-independent and is fixed by the source's intrinsic angular momentum 
S;; but g;k has time-dependent terms (gravitational waves !)  of 0(1/r). 

The rest of this chapter focuses on the "imprints" of the mass and angular mo
mentum in the gravitational field; the gravitational waves will be ignored, or almost 
so, until Chapter 35. 

Exercise 1 9 . 1 .  DERIVATION OF METRIC FAR OUTSIDE A WEAKLY 
GRAVITATIN G  BODY 

(a) Derive equation ( 1 9.5) .  [Hints: ( I )  Follow the procedure outlined in the text. (2) When 
calculating h00, write out explicitly the n = 0 and n = I terms of ( 19 .2), to precision O( l/r2) ,  
and simplify the n = 0 term using the identities 

( 19.7a) 

( 19.7b) 

(2) result 

H ow m etr ic depends on 
system 's mass M and 
angular momentum S 

EXERCISE 



For a weakly gravitat ing system :  

( 1 )  tota l mass M can be measured by apply ing Kepler 's  " 1 -2-3 " law to orbit i ng  pa rtic les 

450 1 9  MASS AN D AN G U LAR M O M E NTU M O F  A G RAVITATI N G  SYSTEM 

(Verify that these identities follow from T"-fl ,13 = 0.) (3) When calculating how write out explicitly the n = 0 term of ( 1 9 .2) ,  to precision 0( l /r2) ,  and simplify it using the identity 
( 1 9 .7c) 

(Verify that this follows from T"-fl ,/3 = 0.) (4) Simplify h00 and h0m by the gauge transformation generated by 

00 l an - l (r - Ix - x' lr 
+ 

n�2 n !  a in - 1 I (Too' + Tk/) I x  - x' I d3x', 
� = - 2xi I T, 'xi'x m' d3x' + 4 � l 

a
n

-
1 J T, , (r - Ix - x' lr d3x' m r3 00 L.., n' a in - 1 Om Ix - x' I n = I  

+ 
x m � _ l(l) J r, 'r' 2 d3x' - ( x k ) J ( T0i'xi'x k' _ .!.. Tok 'r ' 2) d3x' 
r o 2 r oo r2 2 .m , m 

x l an - 2 

J , , [ (r - Ix - x' lr ] 3 , - � n !  ain - 2 ( Too + Tkk ) Ix - x' I d X 
n = 2  ,m 

Here Tµ/ denotes Tµv(t - r, x') . J  (b)  Prove that the system's mass and angular momentum are conserved. [Note: Because T"-fl ,/3 = 0 (self-gravity has negligible influence), the proof is no different here than in flat spacetime (Chapter 5) .] 

§19 . 2 .  MEASUREMENT O F  THE MASS AND 

ANGULAR MOMENTUM 

The values of a system's mass and angular momentum can be measured by probing 
the imprint they leave in its external gravitational field. Of all tools one might use 
to probe, the simplest is a test particle in a gravitationally bound orbit. If the particle 
is sufficiently far from the source, its motion is affected hardly at all by the source's 
angular momentum or by the gravitational waves; only the spherical, Newtonian 
part of the gravitational field has a significant influence. Hence, the particle moves 
in an elliptical Keplerian orbit. To determine the source's mass M, one need only 
apply Kepler's third law (perhaps better called "Kepler's 1 -2-3 law") : 

M = ( 2'7T )
2
(Semi-major axis)

3 · 

orbital period of ellipse ' i.e., M1 = w2a3 • ( 19 .8) 

The source's angular momentum is not measured quite so easily. One must use 
a probe that is insensitive to Newtonian gravitational effects, but "feels" the off
diagonal term, 

( 1 9 .9) 
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in the metric ( 19 .5) .  One such probe is the precession of the perihelion of a corevolv
ing satellite, relative to the precession for a counterrevolving satellite. A gyroscope 
is another such probe. Place a gyroscope at rest in the source's gravitational field. 
By a force applied to its center of mass, prevent it from falling. As time passes, 
the g0; term in the metric will force the gyroscope to precess relative to the basis 
vectors a;ax ;; and since these basis vectors are "tied" to the coordinate system, which 
in turn is tied to the Lorentz frames at infinity, which in turn are tied to the "fixed 
stars" ( cf. §39 . 1 2), the precession is relative to the "fixed stars." The angular velocity 
of precession, as derived in exercise 1 9 .2, is 

( 1 9 . 10) 

One sometimes says that the source's rotation "drags the inertial frames near the 
source," thereby forcing the gyroscope to precess. For further discussion, see §§2 1 . 12, 
40.7 ,  and 33.4. 

Exercise 1 9 . 2 .  GYROSCO P E  P R ECESS I O N  

Derive equation ( 19 . 10) for the angular velocity o f  gyroscope precession. [Hints: Place an 
orthonormal tetrad at the gyroscope's center of mass. Tie the tetrad rigidly to the coordinate 
system, and hence to the "fixed stars" ;  more particularly, choose the tetrad to be that basis 
{ e0J which is dual to the following I-form basis : 

w I = [ l  + (2M/r)]112 dxi . ( 19. l l ) 

The spatial legs of the tetrad, e1, rotate relative to the gyroscope with an angular velocity 
"' given by [see equation ( 1 3 .69)] 

Consequently, the gyroscope's angular momentum vector L precesses relative to the tetrad 
with angular velocity n = - w :  

€ "' [J k = I'"o' 1,JIG '1,J • ( 19 . 12) 

Calculate I'r,0 for the given orthonormal frame, and thereby obtain equation (19. 10) for O .] 

§ 1 9 . 3 .  MASS AN D AN G U LAR MO MENTU M O F  FU LLY 

RELATIVISTIC SO URCES 

Abandon, now, the restriction to weakly gravitating sources. Consider an isolated, 
gravitating system inside which spacetime may or may not be highly curved-a black 
hole, a neutron star, the Sun, . . .  But refuse, for now, to analyze the system's interior 
or the "strong-field region" near the system. Instead, restrict attention to the weak 

(2 )  total angular momentum 
S can be measured by 
examining the precession of 
gyroscopes 

EXERCISE 



LJ 

Metric fa r from any 
gravitati ng system, as a 
power series in 1 /r 

Fa i lure of volume i ntegra ls 
for M and S when source 
has strong i nterna l gravity 
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gravitational field far from the source, and analyze it using linearized theory in 
vacuum. Expand hµ, in multipole moments and powers of 1/r; and adjust the gauge, 
the Lorentz frame, and the origin of coordinates to simplify the resulting metric. 
The outcome of such a calculation is a gravitational field identical to that for a weak 
source [equation (19.5)] ! (Details of the calculation are not spelled out here because 
of their length; but see exercise 19.3.) 

But before accepting this as the distant field of an arbitrary source, one should 
examine the nonlinear effects in the vacuum field equations. Two types of nonlinear
ities turn out to be important far from the source: (I) nonlinearities in the static, 
Newtonian part of the metric, which generate metric corrections 

8g00 = - 2 M2/r2 , 

(see exercise 19.3 and § 39.8), thereby putting the metric into the form 

ds2 = - [1 - 2 M  + 2 M2 
+ 0 fJ_)] dt2 - [4t: - Sk xi 

+ 0 (J_)] dt dxi 
r r2 \ r3 Jk i  

r3 r3 
(19 .13) 

+ [( 1 + 2 M  + 3M2 ) 8 _ + (gravit�tional radiation terms)] dx i dx k ; r 2 r2 Jk that die out as 0(1/r) 

(2 ) a gradual decrease in the source's mass, gradual changes in its angular momen
tum, and gradual changes in its· "rest frame" to compensate for the mass, angular 
momentum, and linear momentum carried off by gravitational waves (see Box 19. l , 
which is best read only after finishing this section) . 

By measuring the distant space time geometry ( 19 .13) of a given source, one cannot 
discover whether that source has strong internal gravity, or weak. But when one 
expresses the constants M and S;, which determine g00 and g0;, as integrals over 
the interior of the source, one discovers a crucial difference: if the internal gravity 
is weak, then linearized theory is valid throughout the source, and 

(19.14) 

but if the gravity is strong, these formulas fail. Does this failure prevent one, for 
strong gravity, from identifying the constants M and S; of the metric (19.13) as 
the source's mass and angular momentum? Not at all, according to the following 
argument. 

Consider, first, the mass of the sun. For the sun one expects Newtonian theory 
to be highly accurate (fractional errors ~ M0/ R0 ~ 10-6) ;  so one can assert that 
the constant M appearing in the line element (19.13) is, indeed 

M = f p d 3x = f T00 d 3x = total mass. 

But might this assertion be wrong? To gain greater confidence and insight, adopt 
the viewpoint of "controlled ignorance"; i.e., do not pretend to know more than what 
is needed. (This style of physical argument goes back to Newton's famous "Hypoth
eses non fingo," i.e. "I do not feign hypotheses.") In evaluating the volume integral 
of T00 (usual Newtonian definition of M), one needs a theory of the internal structure 
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of the sun. For example, one must know that the visible surface layers of the sun 
do not hide a massive central core, so dense and large that relativistic gravitational 
fields IIP I ~ I exist there. If one makes use in the analysis of a fluid-type stress-energy 
tensor T1,. ,  one needs to know equations of state, opacities, and theories of energy 
generation and transport. One needs to justify the fluid description as an adequate 
approximation to the atomic constitution of matter. One needs to assume that an 
ultimate theory of matter explaining the rest masses of protons and electrons will 
not assign an important fraction of this mass to strong (nonlinear) gravitational fields 
on a submicroscopic scale. It is plausible that one could do all this, but it is also 
obvious that this is not the way the mass of the sun is, in fact, determined by 
astronomers ! Theories of stellar structure are adjusted to give the observed mass ; 
they are not constructed to let one deduce the mass from nongravitational observa
tions. The mass of the sun is measured in practice by studying the orbits of planets 
in its external gravitational field, a procedure equivalent to reading the mass M off 
the line element ( 19 . 13), rather than evaluating the volume integral fT°0 d 3x. 

To avoid all the above uncertainties, and to make theory correspond as closely 
as possible to experiment, one defines the "total mass-energy" M of the sun or any 
other body to be the constant that appears in the line element (19. 13) for its distant 
external spacetime geometry. Similarly, one defines the body's intrinsic angular mo
mentum as the constant 3-vector S appearing in its line element (19. 13). Operationally, 
the total mass-energ_y M is measured via Kepler's third law; the angular momentum 
S is measured via its influence on the precession of a gyroscope or a planetary orbit. 
This is as true when the body is a black hole or a neutron star as when it is the 
sun. 

What kind of a geometric object is the intrinsic angular momentum S? It is defined 
by measurements made far from the source, where, with receding distance, spacetime 
is becoming flatter and flatter (asymptotically flat) . Thus, it can be regarded as a 
3-vector in the "asymptotically flat spacetime" that surrounds the source. But in what 
Lorentz frame is S a 3-vector? Clearly, in the asymptotic Lorentz frame where the 
line element ( 19 . 1 3) is valid; i.e., in the asymptotic Lorentz frame where the source's 
distant "coulomb" ("M/r") field is static; i.e., in the "asymptotic rest frame" of the 
source. Alternatively, one can regard S as a 4-vector, S, which is purely spatial 
(S0 = 0) in the asymptotic rest frame. If one denotes the 4-velocity of the asymptotic 
rest frame by U, then the fact that S is purely spatial can be restated geometrically 
as S ·  U = 0, or 

where 

S · P  = 0, 

P MU "total 4-momentum of source" 

( 1 9 . 1 5 )  

( 19 . 1 6) 

is still another vector residing in the asymptotically flat region of spacetime. 
The total 4-momentum P and intrinsic angular momentum S satisfy conservation 

laws that are summarized in Box 1 9 . 1 .  These conservation laws are valuable tools 
in gravitation theory and relativistic astrophysics, but the derivation of these laws 
(Chapter 20) does not compare in priority to topics such as neutron stars and basic 
cosmology; so most readers will wish to skip it on a first reading of this book. 

(continued on page 456) 

Definit ion of "total 
mass-energy" M and 
"angular momentum" S in 
terms of external gravitational 
f ie ld 

S as a geometric object in an 
asymptotical ly f lat region far 
outside source 

"Asymptotic rest frame" and 
"total 4-momentum " 

Conservation laws for total 
4-momentum and angular 
momentum 



Box 1 9 . 1  TOTAL MASS-ENERGY, 4-MOMENTUM,  AND ANGU LAR 
MOMENTU M OF AN ISOLATED SYSTEM 

A. Spacetime is divided into ( 1 )  the source's inte
rior; which is surrounded by (2) a strong-field 
vacuum region; which in turn is surrounded by 
(3) a weak-field, asymptotically flat, near-zone re
gion; which in turn is surrounded by (4) a weak
field, asymptotically flat, radiation-zone region. 
This box and this chapter treat only the asympto
tically flat regions. The interior and strong-field 
regions are treated in the next chapter. 

X J-- y  
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-
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x Asymptotic rest frame 

B. The asymptotic rest frame of the source is that 
global, asymptotically Lorentz frame ( coordinates 
t, x, y, z) in which the distant, "coulomb" part of 
the source's field is at rest (see diagram). The 
asymptotic rest frame does not extend into the 
strong-field region; any such extension of it would 
necessarily be forced by the curvature into a highly 
non-Lorentz, curvilinear form. The spatial origin 
of the asymptotic rest frame is so adjusted that 
the source is centered on it-i.e., that the distant 
Newtonian potential is <I> = - M/(x2 + y2 + 
z2)112 + O(l/r3) ;  i.e., that <l> has no dipole term, 
D • x/r3, such as would originate from an offset 
of the coordinates. 

C. To the source one can attribute a total mass-energy M, a 4-velocity U, a total 
4-momentum P, and an intrinsic angular momentum vector, S. The 4-vectors U, P, 
and S reside in the asymptotically flat region of spacetime and can be moved about 
freely there (negligible curvature = parallel transport around closed curves does not 
change U, P, or S).  The source's 4-velocity U is defined to equal the 4-velocity of 
the asymptotic rest frame ( U0 = 1 ,  U = 0 in rest frame). The total mass-energy M 
is measured via Kepler's third (" 1 -2-3") law [equation ( 19 .8)) . The total 4-momentum 
is defined by P MU. The intrinsic angular momentum S is orthogonal to the 
4-velocity U, S · U = 0 (so s0 = O ;  S f:.  0 in general in asymptotic rest frame) ; S 
is measured via gyroscope precession or differential perihelion precession (§ 1 9.2). 

In the asymptotic rest frame, with an appropriate choice of gauge (i.e., of ripples 
in the coordinates), the slight deviations from jlat-spacetime geometry are described 
by the line element 

[4 5 4] 



ds2 = - [ 1 - 2 M  + 2M2 
+ 0 (_!_}] dt2 - [4: - Sk xi 

+ 0 (_!_)] dt dx; 
r rZ r3 Jki r3 r3 

(I ) 
+ [ ( I + 2 -:: + 3

2
� } 8;k + (gravitational radiation terms)] dx; dxk . 
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X J--, 
D. Conservation of 4-momentum and angular mo
mentum: Suppose that particles fall into a source 
or are ejected from it; suppose that electromag
netic waves flow in and out; suppose the source 
emits gravitational waves. All such processes break 
the source's isolation and can change its total 4-
momentum P, its intrinsic angular momentum S, 
and its asymptotic rest frame. Surround the source 
with a spherical shell S, which is far enough out 
to be in the asymptotically flat region. Keep this 
shell always at rest in the source's momentary 
asymptotic rest frame. By probing the source's 
gravitational field near S, measure its 4-momen
tum P and intrinsic angular momentum S as func
tions of the shell's proper time T. An analysis given 
in the next chapter reveals that the 4-momentum 
is conserved, in the sense that 

Interstellar debris falls into a black hole, 
and gravitational waves emerge. 

dPa f . d (
rate at which 4-momentum} -- = - ra1n . (area) = , dT s 1 flows inward through shell 

(2) 

where n is the unit outward normal to S and the integral is performed in the shell's 
momentary rest frame. In words : the rate at which 4-momentum flows through the 
shell, as measured in the standard special relativistic manner, equals the rate of change 
of the source's gravitationally measured 4-momentum. Similarly, the angular momen
tum is conserved in the sense that 

dS. 
(

rate at which angular 

) d7
' = - f (f. i;k x;Tk1)n1 d(area) = momentum flows inward , 

s through the shell 

- - - - S -dS0 dUa 
( 

change required to keep S orthogonal to U; } 
dT - dT a - "Fermi-Walker-transport law"; cf. §§6 .5 , 1 3.6 · 

(3a) 

(3b) 

In these conservation laws p/J is the total stress-energy tensor at the shell, including 
contributions from matter, electromagnetic fields, and gravitational waves. The 
gravitational-wave contribution, called r-aw>afJ , is treated in Chapter 35 . 

Note: The conservation laws in the form stated above contain fractional errors 
of order M/r ( contributions from "gravitational potential energy" of infalling mate
rial), but such errors go to zero in the limit of a very large shell (r -+ oo ). 

Note: The formulation of these conservation laws given in the next chapter is 
more precise and more rigorous, but less physically enlightening than the one here. 

[45 5] 
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Exercise 1 9 . 3 .  GRAVITATIONAL F IELD FAR FROM A STATIONARY, 

FULLY RELATIVISTIC SOURCE Derive the line element ( 1 9 . 13 )  for the special case of a source that is time-independent (gµ v , t = 0). This can be a difficult problem, if one does not proceed carefully along the following outlined route. ( I )  Initially ignore all nonlinearities in the Einstein field equations. The field is weak far from the source. These nonlinearities will be absent from the dominant terms. (2) Calculate the dominant terms using linearized theory in the Lorentz gauge [equations ( 1 8 .8)] .  (3) In particular, write the general solution to the vacuum, time-independent wave equation ( 1 8 .8b) in the following form involving n; = x; ;r - (unit vector in radial direction) : 
- A0 B�; ( I ) hoo = - + -2- + 0 3 • r r r - _ A; B;k n k (_!_) ho; - + 2 + 0 3 • r r r _ _ A;k B;ktnl (_!_) h;k - + 2 + 0 3 ' r r r B;kt = B(jk)l_ 

( 1 9 . 1 7) 

(Round brackets denote symmetrization.) (4) Then impose the Lorentz gauge conditions h)3 ,/J = 0 on this general solution, thereby learning 
A; = 0, Ajk = 0, B;k(lJ;k - 3n ;n k) = 0, Bjkl(lJkl _ 3n knl) = 0 .  ( 1 9 . 1 8) 

(5) Write Bik as the sum of its trace 3B, its traceless symmetric part S;k , and its traceless antisymmetric part (these are its "irreducible parts") : 
s;; = o. ( 1 9 . 19) 

Show that any tensor B;k can be put into such a form. Then show that the gauge conditions ( 1 9 . 1 8) imply S;k = 0. (6) Similarly show that any tensor B;kt that is symmetric on its first two indices can be put into the form 
B;kt = lJikA1 + c<;lJk)1 + €ml(i£k)m + Sikt, £km symmetric and traceless, i .e . ,  £km = £<km>, £kk = 0, Sikl symmetric and traceless, i .e . ,  Sikt = s<;k l>, Sijt = Sikk = Siki = 0.  

( 1 9 .20) 

Then show that the gauge conditions ( 1 9 . 1 8) imply Ci = - 2A; and £km = S;kt = 0 .  (7)  Combining al l  these results, conclude that 
- A0 Bin i ( 1 ) hoo = - + -2- + 0 3 • r r r 

( 19 .2 1 )  
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Then use gauge transformations, which stay within Lorentz gauge, to eliminate B and Ai 

from h0; and h;k ; so 

(19.22) 

(8) Translate the origin of coordinates so x i new = x i old - (Bi + A i)/ A0 ; in the new coordinate 
system ha/3 has the same form as (19.22), but with Bi + A i removed. From the resultant 
ha/3 • construct the metric and redefine the constants A0 and F1 to agree with equation ( 19 . 13) .  
(9) All linear terms in the metric are now accounted for. The dominant nonlinear terms 
must be proportional to the square, (M/r)2 , of the dominant linear term. The easiest way 
to get the proportionality constant is to take the Schwarzschild geometry for a fully relativistic, 
static, spherical source [equation (31.1)], by a change of coordinates put it in the form 

ds2 = - ( l - M/2r )
2 

dt2 + ( 1 + Af )4 (dx2 + dy2 + dz2) l + M/2r 2r 
( 19 .23) 

( exercise 25 .8), and expand it in powers of M/r. 

§19.4. MASS AND ANGULAR MOMENTUM OF 

A CLOSED UNIVERSE 

''There are no snakes in Ireland. , ,  
Statement o f  S t  Patrick 
after driving the snakes 
out of I re land (legend*) 

There is no such thing as "the energy ( or angular momentum, or charge) of a closed 
universe," according to general relativity, and this for a simple reason. To weigh 
something one needs a platform on which to stand to do the weighing. 

To weigh the sun, one measures the periods and semimajor axes of planetary orbits, 
and applies Kepler's " 1 -2-3" law, M = w2a3 . To measure the angular momentum, 
S, of the sun (a task for space technology in the 1 970's or 1 980's !), one measures 
the precession of a gyroscope in a near orbit about the sun, or one examines some 
other aspect of the "dragging of inertial frames." To determine the electric charge 

* Stokes ( 1 887) and other standard references deny this legend. In part I of Stokes the basic manuscript 
references are listed, including especially codex manuscript Rawlmson B.5 12 in 1 54 folios, in double 
columns, written hy various hands in the fourteenth and fifteenth centuries (cf Catalogi codicum 
manuscriptorum Bibliothecae Bodleianae Partis Quintae Fasciculus Primus, Oxford, 1 862, col. 728-732). 
In this manuscript, folio 97b 1 ,  line 14, reads in the translation of Stokes, Part I, p. xxx. "as Paradise 
is without beasts, without a snake, without a lion, without a dragon, without a scorpion, without a mouse, 
without a frog, so is Ireland in the same manner without any harmful animal, save only the wolf . . .  " 

For a closed u n iverse the 
tota l mass-energy M and 
angu la r  momentum S a re 
u ndefi ned and  undefi nable 
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of a body, one surrounds it by a large sphere, evaluates the electric field normal 
to the surface at each point on this sphere, integrates over the sphere, and applies 
the theorem of Gauss. But within any closed model universe with the topology of 
a 3-sphere, a Gaussian 2 -sphere that is expanded widely enough from one point 
finds itself collapsing to nothingness at the antipodal point. Also collapsed to 
nothingness is the attempt to acquire useful information about the "charge of the 
universe" : the charge is trivially zero. By the same token, every "surface integral" 
(see details in Chapter 2 0) to determine mass-energy or angular momentum collapses 
to nothingness. To make the same point in another way: around a closed universe 
there is no place to put a test object or gyroscope into Keplerian orbit to determine 
either any so-called "total mass" or "rest frame" or " 4-momentum" or "angular 
momentum" of the system. These terms are undefined and undefinable. Words, yes; 
meaning, no. 

Not having a defined 4-momentum for a closed universe may seem at first sight 
disturbing; but it would be far more disturbing to be given four numbers and to 
be told authoritatively that they represent the components of some purported 
"total energy-momentum 4-vector of the universe." Components with respect to what 
local Lorentz frame? At what point? And what about the change in this vector on 
parallel transport around a closed path leading back to that strangely preferred 
point? It is a happy salvation from these embarrassments that the issue does not 
and cannot arise! 

Imagine a fantastically precise measurement of the energy of a y-ray. The experi
menter wishes to know how much this y-ray contributes to the total mass-energy 
of the universe. Having measured its energy in the laboratory, he then corrects it 
for the negative gravitational energy by which it is bound to the Earth. The result, 

is the energy the photon will have after it climbs out of the Earth's gravitational 
field. But this is only the first in a long chain of corrections for energy losses (redshifts) 
as the photon climbs out of the gravitational fields of the solar system, the galaxy, 
the local cluster of galaxies, the supercluster, and then what? These corrections show 
no sign of converging, unless to Ecorrected = 0. 

Quite in contrast to the charge-energy-angular-momentum facelessness of a closed 
universe are the attractive possibilities of defining and measuring all three quantities 
in any space that is asymptotically flat. One does not have to revolutionize present
day views of cosmology to talk of asymptotically flat space. It is enough to note 
how small is the departure from flatness, as measured by the departure of ( - g00

)112 

from unity, in cases of astronomical or astrophysical interest (Box 19. 2 ). Surrounding 
a region where any dynamics, however complicated, is going on, whenever the 
geometry is asymptotically flat to some specified degree of precision, then to that 
degree of precision it makes sense to speak of the total energy-momentum 4-vector 
of the dynamic region, P, and its total intrinsic angular momentum, S. Parallel 
transport of either around any closed curve in the flat region brings it back to its 
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Box 1 9 .2 METRIC CORRECTION TERM NEAR SELECTED HEAVENLY BODIES 

m 
1 - ( - 9ool112 m m r 

r 

At shoulder of Venus 2 X 105 g 1 .5 X 10-23 cm 30 cm 5 X 10-25 

de Milo 

At surface of Earth 6 X 1021 g 4 X 10-1 cm 6 .4 X 108 cm 6 X 10-10 

At Earth's distance 2 x 10aa g 1 .5 X 105 cm 1 5 X 1013 cm I X  10-s 
from sun 

At sun's distance from 2 x J044 g 1 .5 X 1016 cm 2 .5 X 1022 cm 6 X 10-7 
center of galaxy 

At distance of galaxy 6 X J047 g 4 X 1019 cm 3 X 1025 cm 1 X 10-6 
from center of Virgo 
cluster of galaxies 

starting point unchanged. Moreover, it makes no difference how enormous are the 
departures from flatness in the dynamic region (black holes, collapsing stars, intense 
gravitational waves, etc.); far away the curvature will be weak, and the 4-momentum 
and angular momentum will reveal themselves by their imprints on the spacetime 
geometry. 
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Chapter 5 (stress-energy 

tensor) is needed as 

preparation for this cha pter, 
which in  turn is needed as 
preparation for the Track-2 

portion of Chapter 36  

(generation of  gravitational 
waves) and wil l  be usefu l in 
understanding Chapter 35 
(propagation of gravitational 
waves) . 

We deno te as energy o f  a material sys tem in a certain s ta te 
the contribution of all effects (measured in mechanical units of  

work) produced outside the system when i t  passes in an  arbitrary 
manner from its s ta te to a reference s tate which has been 

defined ad hoc 

" §20. 1 .  OVERVIEW 

WI LL IAM TH O M PSON ( later Lord Kelv in) ,  

as quoted by Max van Laue , n  Schi lpp ( 1 949 ) ,  p 5 1 4  

Al l  forms o f  energy possess inertia. 
ALBERT E I N STE I N ,  conclus ion 

from h i s  paper of September  26, 1 90 5 ,  

as summarized b y  van La ue i n  Sch l i p p  ( 1 949 ) ,  p 5 2 3  

Chapter 19 expounded the key features of total 4-momentum P and total angular 
momentum S for an arbitrary, gravitating system. But one crucial feature was left 
unproved: the conservation laws for P and S (Box 19.1). To prove those conservation 
laws is the chief purpose of this chapter. But other interesting, if less important, 
aspects of P and S will be encountered along the route to the proof-Gaussian flux 
integrals for 4-momentum and angular momentum; a stress-energy "pseudotensor" 
for the gravitational field, which is a tool in constructing volume integrals for P 
and S; and the nonlocalizability of the energy of the gravitational field. 
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§20.2 .  GAUSSIAN F LUX INTEGRALS FOR 

4-MO MENTU M AN D AN G U LAR MO MENTU M 
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In electromagnetic theory one can determine the conserved total charge of a source 
by adding up the number of electric field lines emanating from it-i.e., by performing 
a Gaussian flux integral over a closed 2 -surface surrounding it: 

Q = _l_f Ei d2s. = _I f F°i d2s .. 
4'7T 1 4'7T 1 (2 0.l ) 

Similarly, in Newtonian theory one can determine the mass of a source by evaluating 
the Gaussian flux integral 

(2 0.2 ) 

These flux integrals work because the charge and mass of a source place indelible 
imprints on the electromagnetic and gravitational fields that envelop it. 

The external gravitational field (spacetime geometry) in general relativity possesses 
similar imprints, imprints not only of the source's total mass-energy M, but also of 
its total 4-momentum P and its intrinsic angular momentum S (see Box 19.1 ). Hence, 
it is reasonable to search for Gaussian flux integrals that represent the 4-momentum 
and angular momentum of the source. 

To simplify the search, carry it out initially in linearized theory, and use Maxwell 
electrodynamics as a guide. In electrodynamics the Gaussian flux integral for charge 
follows from Maxwell's equations pµv

" = 4'7T]µ, plus the crucial fact that pµv is 
antisymmetric, so that poµ,µ = F°i_ ;: 

Q = f 10 d3x = _l_ J pov 
" d3x = _l_J F°i . d3x = _l_f  F°i d2S .. 

4'77 ' 4'77 ,J 4'77 1 

[Gauss's theorem� 

To find analogous flux integrals in linearized theory, rewrite the linearized field 
equations (18.7) in an analogous form involving an entity with analogous crucial 
symmetries. The entity needed turns out to be 

Gaussian flux integrals for 
charge and Newtonian mass 

(2 0.3) Hw,vf3 defined 

As one readily verifies from this expression, it has the same symmetries as the 
Riemann tensor 

Hµ<xv/3 = Hvf3µa = H[µa] [ vf3J , 
Hµ[avf3J = 0. 

(2 0.4) 

This entity, like "fiµv , transforms as a tensor under the Lorentz transformations of 
linearized theory; but it is not gauge-invariant, so it is not a tensor in the general 
relativistic sense. 



Linearized fie ld equations in 
terms of HW'-"/3 

G aussian flux integrals in 
linearized theory :  ( 1 )  for 
4-momentum 

(2)  for angular momentum 

Generalization of G aussian 
f lux integrals to ful l general 
re lat 1v 1ty 
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In terms of sw,v/3, the linearized field equations ( 1 8 .7) take on the much simplified 
form 

(20.5) 

and from these, by antisymmetry of Hµ,avf3 in II and /3, follow the source conservation 
laws of linearized theory, 

Tµ,v - _I_ Hµ,avf3 - 0 , v - 1 6'77 
,af3 v - ' 

which were discussed back in § 1 8 .3. The same antisymmetry as yields these equations 
of motion also produces a Gaussian flux integral for the source's total 4-momentum: 

pµ, = f Tµ,O d3x = _l_J HµaO/3 d3x = _l_J Hµ,aOi . d3x 
1 6'77 ,a/3 1 6'77 ,aJ 

= _l_ f Hµ,aOj d2S, t 1 6'77  , a r 

4Gau:s's theorem] (20.6) 

Here the closed 2-surface of integration S must completely surround the source and 
must lie in a 3-surface of constant time x0 . The integral (20.6) for the source's energy 
P0 , which is used more frequently than the integrals for Pi, reduces to an especially 
simple form in terms of ga/3 = Y/af3 + ha/3: 

po = 
l
�'7T 1 (g;k,k - gkk,;) d2S; (20.7) 

(see exercise 20. 1 ). 
A calculation similar to (20.6), but more lengthy (exercise 20.2), yields a flux 

integral for total angular momentum about the origin of coordinates: 

J/J.V = I (x µrvo - x " Tµ,0) d3x 

= _l_f (xµ,HvaOj - x "Hµ,aOj + Hµ,jOv - fivi0µ,) d2S . .  
1 6'77 S 

,a ,a J (20.8) 

To evaluate the flux integrals in (20.6) to (20.8) (by contrast with the volume 
integrals), one need utilize only the gravitational field far outside the source. Since 
that gravitational field has the same form in full general relativity for strong sources 
as in linearized theory for weak sources, the flux integrals can be used to calculate 
pµ, and Jµ,v for any isolated source whatsoever, weak or strong: 

pµ, = _I_ f  Hµ,aOj d2S .  1 6'77 S 
,a J ' 

J/J.V = _I_f (xµ,Hvao; - x "Hµ,aOj 
16'77 S 

,a , " 

+ Hµ,iOv _ fiviOµ,) d2Sj . 

in full general relativity 
theory, for any isolated 
source, when the closed 
surface of integration S 
is in the asymptotically 
flat region surrounding 
the source, and when 
asymptotically Minkows-
kian coordinates are used. 

(20.9) 
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Knowing pµ and Jµv, one can calculate the source's total mass-energy Mand intrinsic 
angular momentum Sµ by the standard procedure of Box 5.6: 

( 
vector by which the source's asymptotic, l 

Y µ = -J µv Pvl M2 = "M / r", spherical field is displaced from 
being centered on the origin of coordinates 

1 S (Jµv yµpv + yv pµ)PCJ/M. 
p = 

2 "µvCJp -

(2 0.10) 

(2 0.1 1 )  

(2 0.1 2 ) 

Note especially that the integrands of the flux integrals (20.9) are not gauge-invari
ant. In any local inertial frame at an event P0 [gµvWo) = 'IJµv, gµv ,aWo) = O] they 
vanish, since 

g = h = 0 = Hµva(J = O · µv, a µv ,a ,a , g = 'I) = Hµva(J = 0 µv µv 

This is reasonable behavior; their Newtonian analog, the integrand <P,i = (gravita
tional acceleration) of the Newtonian flux integral (2 0.2 ), similarly vanishes in local 
inertial frames. 

Although the integrands of the flux integrals are not gauge-invariant, the total 
integrals pµ (4-momentum) and Jµv (angular momentum) most assuredly are ! They 
have meaning and significance independent of any coordinate system and gauge. 
They are tensors in the asymptotically flat region surrounding the source. 

The spacetime must be asymptotically flat if there is to be any possibility of 
defining energy and angular momentum. Only then can linearized theory be applied; 
and only on the principle that linearized theory applies far away can one justify 
using the flux integrals (2 0.9) in the full nonlinear theory. Nobody can compel a 
physicist to move in close to define energy and angular momentum. He has no need 
to move in close ; and he may have compelling motives not to: the internal structure 
of the sources may be inaccessible, incomprehensible, uninteresting, dangerous, 
expensively distant, or frightening. This requirement for far-away flatness is a 
remarkable feature of the flux integrals (2 0.9) ; it is also a decisive feature. Even 
the coordinates must be asymptotically Minkowskian; otherwise most formulas in 
this chapter fail or require modification. In particular, when evaluating the 4-momen
tum and angular momentum of a localized system, one must apply the flux integrals 
(20.9) only in asymptotically Minkowskian coordinates. If such coordinates do not exist 
(spacetime not flat at infinity), one must completely abandon the flux integrals, and 
the quantities that rely on them for definition: the total mass, momentum, and angular 
momentum of the gravitating source. In this connection, recall the discussion of§ 1 9  .4. 
It described, in physical terms, why "total mass-energy" is a limited concept, useful 
only when one adopts a limited viewpoint that ignores cosmology. (Compare "light 
ray" or "particle," concepts of enormous value, but concepts that break down when 
wave optics or wave mechanics enter significantly.) 

Summary: Attempts to use formulas (2 0.9) in ways that lose sight of the Minkowski 
boundary conditions (and especially simply adopting them unmodified in curvilinear 
coordinates) easily and unavoidably produce nonsense. 

Total mass-energy, center of 
mass, and intrinsic angular 
momentum 

G aussian flux integrals valid 
only in asymptotical ly f lat 
region of spacetime and in 
asymptotical ly Minkowsk1an 
coordinates 
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Exercise 20 . 1 .  FLUX I NTEG RAL FO R TOTAL MASS-E N E RGY I N  
L I N EAR IZED THEORY 

Show that the flux integral (20 .6) for po reduces to (20 .7) .  Then show that, when applied 
to a nearly Newtonian source [line element ( 1 8 . 1 5 c)] ,  it reduces further to the familiar 
Newtonian flux integral (20 .2). 

Exercise 20 .2 .  FLUX I NTEG RAL FO R AN G U LAR M O M E NTU M I N  
L I N EAR IZED TH EORY 

Derive the Gaussian flux integral (20 .8) for  JI'·" .  [Hint: use  the field equations (20 .5) to  show 

(20 . 1 3) 

and then use Gauss's theorem to evaluate the volume integral of equation (20 .8) ] .  

Exercise 20 . 3 .  F LUX I NTEG RALS FOR AN ARB ITRARY STATIO NARY S O U RCE 
(a) Use  the flux integrals (20 .9) to  calculate pµ and Jµ• for  an  arbitrary stationary source. 
For the asymptotically flat metric around the source, use ( 1 9 . 1 3) ,  with the gravitational 
radiation terms set to zero . 

(b) Verify that the "auxiliary equations" (20 . 10) to (20 . 12) give the correct answer for this 
source's total mass-energy M and intrinsic angular momentum Sµ. 

§ 2 0 . 3 .  VO LU ME INTEGRALS FOR 4-MO MENTU M 

AN D AN G U LAR MO MENTU M 

It is easy, in linearized theory, to convert the surface integrals for pµ and Jµ• into 
volume integrals over the source; one can simply trace backward the steps that led 
to the surface integrals in the first place [ equation (2 0.6); exercise 2 0. 2 ] .  How, in 
full general relativity, can one similarly convert from the surface integrals to volume 
integrals? The answer is rather easy, if one thinks in the right direction. One need 
only put the full Einstein field equations into the form 

(2 0.14) 

analogous to equations (2 0. 5) of linearized theory. Here Hµavf3 is to be defined in 
terms of hµ, gµv - 1/µv by equation (2 0.3), even deep inside the source where lhµv l 
might be ;::: 1. This form of the Einstein equations then permits a conversion of the 
Gaussian flux integrals into volume integrals, just as in linearized theory: 

pµ = _l_ f flWY.Oj d2S. = _l_ J nµaOj . d3x = _l_ J Hµ<Y.0/3 d3x 
16'77 ,a 1 16'77 ,aJ 16'77 ,a/3 

Similarly, 

= J T�& d3x.  (2 0.1 5) 

(2 0.16) 
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[Crucial to the conversion is  the use of partial derivatives rather than covariant 
derivatives in equations (2 0.14).] In these volume integrals, as throughout the pre
ceeding discussion, the coordinates must become asymptotically Lorentz (gµv - 11µv) 
far from the source. 

The form of T�ff. can be calculated by recalling that Hµ,xvf3 ,af3 is a linearized 
approximation to the Einstein curvature tensor (2 0.5). Define the nonlinear correc
tions by 

(2 0.17) 

(To calculate them in terms of gµv or hµv = gµv - 'Ylµv is straightforward but lengthy. 
The precise form of these corrections will never be needed in this book.) Then 
Einstein's equations read 

so that 

tµv ( "stress-energy 
pseudotensor' " )  defined 

(2 0.18) T![1 defined 

The quantity tµ" is sometimes called a "stress-energy pseudotensor for the gravita
tional field." The Einstein field equations (2 0.14) imply, because Hµavf3 ,af3 is anti
symmetric in II and /3, that 

(2 0.19) Conservation law for T![1 

These equations are equivalent to Tµ" ; v = 0, but they are written with partial 
derivatives rather than covariant derivatives-a fact that permits conversions back 
and forth between volume integrals and surface integrals. 

All the quantities Hµavf3, T�ff., and tµv depend for their definition and existence 
on the choice of coordinates; they have no existence independent of coordinates; 
they are not components of tensors or of any other geometric object. Correspond
ingly, the equations (2 0.14) to (2 0.19) involving T�ff. and tµ" have no geometric, 
coordinate-free significance; they are not "covariant tensor equations." There is, 
nevertheless, adequate invariance under general coordinate transformations to give 
the values pµ and Jµ" of the volume integrals (2 0.15) and (2 0.16) geometric, coor
dinate-free significance in the asymptotically flat region far outside the source. 
Although this invariance is hard to see in the volume integrals themselves, it is clear 
from the surface-integral forms (2 0.9) that no coordinate transformation which 
changes the coordinates only inside some spatially bounded region can influence 
the values of the integrals. For coordinate changes in the distant, asymptotically 
flat regions, linearized theory guarantees that under Lorentz transformations the 
integrals for pµ and Jµv will transform like special relativistic tensors, and that under 
infinitesimal coordinate transformations (gauge changes) they will be invariant. 

Because tµ" are not tensor components, they can vanish at a point in one coordinate 
system but not in another. The resultant ambiguity in defining a localized energy 
density t00 for the gravitational field has a counterpart in ambiguities that exist in 

Hµ,avf3 ,  tµ, v , and T![1 are 
coordinate-dependent objects 



Other, equa l ly  good versions 
of Hµ,avfJ ,  t/J." ,  T�k 

( 3 )  reL eff 

EXERCISE 
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the formal definition of tµv _ It is clear that any quantities H��:J which agree with 
the original Hµav/3 in the asymptotic weak-field region will give the same values as 
Hw,v/3 does for the pµ and Jµv surface integrals (2 0.9). One especially convenient 
choice has been given by Landau and Lifshitz (I 962 ; § 100), who define 

(2 0. 2 0) 

where gµv ( - g)112
g

µv _ Landau and Lifshitz show that Einstein's equations can 
be written in the form 

Hµav/3 = 16'1T( - g)(Tµv + f/J.P ) L-L,a/3 L-L , (2 0. 2 1) 

where the Landau-Lifshitz pseudotensor components 

( -g) taf3 = _I_ ( g
af3 !JA/J, _ gaA gf3µ + l_g

af3
g 

gAv 
gP/J. L-L 1 6'17 , A , µ , A , µ 2 Aµ ,P , v 

_ (gaAg gf3 v  g/J.P + gf3 A

g g
a v g/J.P ) + g g•Pg

aA 
gf3µ µv , P , A µv , P , A Aµ , v , P 

+ ! (2 g
a A

g
/3µ - g

af3
g

Aµ)(2 g,
p gCI T  - gpu g,r)!l"T, A gP",µ} (2 0. 2 2 )  

are precisely quadratic in the first derivatives of the metric. (Einstein also gave a 
pseudotensor t Eµ" with this property, but it was not symmetric and so did not lead 
to an integral for Jµv.) Because Ht':.;f has the same symmetries as Hµav/3 and equals 
Hµavf3 far from the source (exercise 2 0. 4), and because the field equations (2 0. 2 1) 
in terms of Ht':.{,/3 have the same form as in terms of Hµav/3, it follows that 

has all the properties of the T�Er introduced earlier in this section: 

TeL eff, v = 0, 

Pµ - J TµO d3 
- L-L eff X, 

Jµv = J (x µ TL�L eff - x " Tl{,�L eff) d3x. 

Exercise 20.4. FORM OF Ht"'.'f! FAR FROM SOURCE 

(2 0. 2 3a) 

(2 0. 2 3b) 

(2 0. 2 3c) 

(2 0. 2 3d) 

Show that the entities Ht"'.{P of equations (20.20) reduce to HµavfJ (20 .3) in the weak-field 
region far outside the source . 

§20.4 .  WHY TH E EN ERGY O F  T H E  GRAVITATIO NAL F IELD 

CAN N OT B E  LOCALIZED 

Consider an element of 3-volume dX" and evaluate the contribution of the "gravita
tional field" in that element of 3-volume to the energy-momentum 4-vector, using 



§ 2 0  4 ENERGY OF GRAV I TATI ONAL F IELD CANNOT BE LOCALIZED 467 in the calculation either the pseudotensor tµv or the pseudotensor teL discussed in the last section. Thereby obtain 
or 
Right? No, the question is wrong. The motivation is wrong. The result is wrong. The idea is wrong. To ask for the amount of electromagnetic energy and momentum in an element of 3-volume makes sense. First, there is one and only one formula for this quantity. Second, and more important, this energy-momentum in principle "has weight." It curves space. It serves as a source term on the righthand side of Einstein's field equations. It produces a relative geodesic deviation of two nearby world lines that pass through the region of space in question. It is observable. Not one of these properties does "local gravitational energy-momentum" possess. There is no unique formula for it, but a multitude of quite distinct formulas. The two cited are only two among an infinity. Moreover, "local gravitational energy-momentum" has no weight. It does not curve space. It does not serve as a source term on the righthand side of Einstein's field equations. It does not produce any relative geodesic deviation of two nearby world lines that pass through the region of space in question. It is not observable. Anybody who looks for a magic formula for "local gravitational energy-momentum" is looking for the right answer to the wrong question. Unhappily, enormous time and effort were devoted in the past to trying to "answer this question" before investigators realized the futility of the enterprise. Toward the end, above all mathematical arguments, one came to appreciate the quiet but rock-like strength of Einstein's equivalence principle. One can always find in any given locality a frame of reference in which all local "gravitational fields" (all Christoffel symbols ; all I'''µ.) disappear. No I' 's means no "gravitational field" and no local gravitational field means no "local gravitational energy-momentum." Nobody can deny or wants to deny that gravitational forces make a contribution to the mass-energy of a gravitationally interacting system. The mass-energy of the Earth-moon system is less than the mass-energy that the system would have if the two objects were at infinite separation. The mass-energy of a neutron star is less than the mass-energy of the same number of baryons at infinite separation. Surrounding a region of empty space where there is a concentration of gravitational waves, there is a net attraction, betokening a positive net mass-energy in that region of space (see Chapter 35) .  At issue is not the existence of gravitational energy, but the localizability of gravitational energy. It is not localizable. The equivalence principle forbids. Look at an old-fashioned potato, replete with warts and bumps. With an orange marking pen, mark on it a "North Pole" and an "equator". The length of the equator is very far from being equal to 2w times the distance from the North Pole to the 

Why one cannot define a 
local ized energy-momentum 
for the gravitational f ield 
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equator. The explanation, "curvature," i s  simple, just as the explanation, "gravita
tion", for the deficit in mass of the earth-moon system ( or deficit for the neutron 
star, or surplus for the region of space occupied by the gravitational waves) is simple. 
Yet it is not possible to ascribe the deficit in the length of the equator in the one 
case, or in mass in the other case, in any uniquely right way to different elements 
of the manifold (2 -dimensional in the one case, 3-dimensional in the other). Look 
at a small region on the surface of the potato. The geometry there is locally flat. 
Look at any small region of space in any of the three gravitating systems. In an 
appropriate coordinate system it is free of gravitational field. The over-all effect one 
is looking at is a global effect, not a local effect. That is what the mathematics cries 
out. That is the lesson of the nonuniqueness of the tµ"! 

§ 2 0 . 5. CO NSERVATIO N LAWS FOR TOTAL 4-MO MENTU M 

AN D AN G U LAR MO MENTU M 

Consider a system such as our galaxy or the solar system, which is made up of many 
gravitating bodies. Some of the bodies may be highly relativistic (black holes; neutron 
stars), while others are not. However, insist that in the regions between the bodies 
spacetime be nearly flat (gravity be weak)-so flat, in fact, that one can cover the 
entire system with coordinates which are (almost) globally inertial, except in a small 
neighborhood of each body where gravity may be strong. Such coordinates can exist 
only if the Newtonian gravitational potential, <P ;:::::; ½(1100 - g00) ,  in the interbody 
region is small: 

<Pinterbody 
~ (Mass of system)/(radius of system) <{ 1. 

The solar system certainly satisfies this condition ( <Pinterbody 
~ 10-1) ,  as does the 

Galaxy ( <Pinterbody 
~ 10-6) , as do clusters of galaxies ( <Pinterbody 

~ 10-6) ; but the 
universe as a whole does not ( <Pinterbody 

~ 1) ! 
In evaluating volume integrals for the system's total 4-momentum, split its volume 

into a region containing each body (denoted "A ") plus an interbody region; and 
neglect the pseudotensor contribution from the almost-flat interbody region : 

Ptystem 
= L f T�?c d 3x + f T�8 d3x 

A A mterbody 
reg10n 

= L p� + r yµo d3x. 
A Jin terbody 

reg10n 

(2 0. 2 4a) 

Because spacetime is asymptotically flat around each body, PA µ is the 4-momentum 
of body A as measured gravitationally by an experimenter near it. The integral of 
yµo over the interbody region is the contribution of any gas, particles, or magnetic 
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fields out there to the total 4-momentum. A similar breakup of the angular momen
tum reads 

j/LV = "' j/LV + f. (xµ,rvo - x" Tµ,0) d 3x system L..., A 
A interbody 

region 

(2 0.2 4b) 

In operational terms, these breakups show that the total 4-momentum and angular 
momentum of the system, as measured gravitationally by an experimenter outside it, 
are sums of pµ, and Jµ,v for each individual body, as measured gravitationally by an 
experimenter near it, plus contributions of the usual special-relativistic type from the 
interbody matter and fields. This is true even if some of the bodies are hurtling through 
the system with speeds near that of light; their gravitationally measured pµ, and 
J/L" contribute, on an equal footing with anyone else's, to the system's total pµ, and 
J/L"! 

Surround this asymptotically flat system by a two-dimensional surface S that is 
at rest in some asymptotic Lorentz frame. Then the 4-momentum and angular 
momentum inside S change at a rate (as measured in S's rest frame) given by 

and similarly 

dPµ, = .!J....J Tµ,o d3x = f Tµ,o d3x = f Tµ,i d3 
dt dt eff eff, 0 - eff, i X 

- f pi d2s - - eff ;, 

dJµ,v 
- - ,I; ( µ, Tvi - " Tµ,i ) d2S 

d - J_ X eff X eff j ·  t Sz 

(2 0.2 5) 

(2 0. 2 6) 

Although the pseudotensor tµ,", in the interbody region and outside the system, 
contributes negligibly to the total 4-momentum and angular momentum (by as
sumption), its contribution via gravitational waves to the time derivatives dPµ,/dt 
and dJµ,v /dt can be important when added up over astronomical periods of time. 
Thus, one must not ignore it in the flux integrals (2 0.2 5), (2 0.2 6). 

In evaluating these flux integrals, it is especially convenient to use the Landau
Lifshitz form of T�rr, since that form contains no second derivatives of the metric. 
Thus set 

where teL are given by equations (2 0.2 2 ). Only those portions of teL that die out 
as l /r2 or l /r3 at large r can contribute to the flux integrals (2 0.2 5), (2 0.2 6). For 
static solutions [!J

µ,v ~ const. + O(1/r)], teL dies out as l /r4. Hence, the only contri
butions come from dynamic parts of the metric, which, at these large distances, are 
entirely in the form of gravitational waves. The study of gravitational waves in 
Chapter 35  will reveal that when teL is averaged over several wavelengths, it 
becomes a stress-energy tensor r<aw)µ, v for the waves, which has all the properties 
one ever requires of any stress-energy tensor. (For example, via Einstein's equations 

Rates of change of total 
4-momentum and angular 
momentum . 

( 1 )  expressed as flux integrals 
of T�[t 



(2 )  exp ressed as f lux i nteg rals 
of pv + T(GW )µ.v 

EXERCISE 
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G<B lµv = 81T T<GWlµv , it contributes to the "background" curvature of the spacetime 
through which the waves propagate.) Moreover, averaging teL over several wave
lengths before evaluating the flux integrals (2 0.2 5), (2 0.2 6) cannot affect the values 
of the integrals. Therefore, one can freely make in these integrals the replacement 

thereby obtaining 

(2 0.2 7) 

(2 0.2 8) 

These are tensor equations in the asymptotically flat spacetime surrounding the 
system. All reference to pseudotensors and other nontensorial entities has disap
peared. 

Equations (2 0. 2 7) and (2 0.2 8) say that the rate of loss of 4-momentum and angular 
momentum from the system, as measured gravitationally, is precisely equal to the rate 
at which matter, fields, and gravitational waves carry off 4-momentum and angular 
momentum. 

This theorem is extremely useful in thought experiments where one imagines 
changing the 4-momentum or angular momentum of a highly relativistic body ( e.g., 
a rotating neutron star) by throwing particles onto it from far away [see, e.g., Hartle 
(1970)). 

Exercise 20 .5 .  TOTAL MASS-ENERGY IN NEWTONIAN LIMIT 

(a) Calculate t[�L for the nearly Newtonian metric 

ds 2 = - ( 1  + 2</>) dt 2 + ( 1  - 2</>) Bik dx i dx k 

(see § 18 .4) . Assume the source is slowly changing, so that time derivatives of <I> can be 
neglected compared to space derivatives. [Answer: 

00 - 7 ,,,. ,,,. (L-L - - 8?T '¥,j''' ,j , 

t'lf_L = 0, " k 1 1 
(i.-L = -4 

(</> 1·</> k - -2 8,.k<J> l</> 1) -] '1T ' ' ' ' 
(20 .29) 

(Note: tf'_L as given here is the "stress tensor for a Newtonian gravitational field" ;  cf exercises 
39.5 and 39.6 .) 

(b) Let the source of the gravitational field be a perfect fluid with 

p/p ~ v2 = (dx/dt)2 ~ l<l> I. 



§ 20 6 EQUATI O N S  O F  M O T I O N  D E R IV E D  F R O M  F I E LD EQUATI O N  

Let the Newtonian potential satisfy the source equation 

<P, ii = 4'1TP , 

Show that the energy of the source is 

p o = J ( Too + 100)( _ g) d3x 

= f [p/(1 - v 2 )1/ 2 + ½ pv2 + ½ p<P](gxxgyygzz)l/2 dx dy dz 
'---' '-..-'�------� 

[::::,:�tio.7 1 [::::�:Y 4;:::;:'aj 4;:;::',] 
factor J 

+ higher-order corrections. 
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(20.30) 

(c) Show that the "equations of motion" TeL eff v = 0 reduce to the standard equations 
(16 .3) of Newtonian hydrodynamics .  

§20. 6 .  EQUATIO NS OF MOTIO N DERIVED 

FRO M THE F IELD EQUATIO N  

Consider the Einstein field equation 

G = 81rT (2 0.31) 

under conditions where space is empty of everything except a source-free electro
magnetic field: 

TIL" = _l (FIL"-g p/J _ lgµ.v F par) 
41r d 4 

= (2 0.32 ) 

(cf the expression for stress-energy tensor of the electromagnetic field in § 5.6). To 
predict from (2 0.31) how the geometry changes with time, one has to know how 
the electromagnetic field changes with time. The field is expressed as the "exterior 
derivative" of the 4-potential, 

or 

F = dA (language of forms) 

oA oA 
Fµ.v = --" - __ µ. (language of components), oxµ. ox " (2 0.33) 

and the time rate of change of the field is governed by the Maxwell equation 

d*F = 0 

or 
(20.34) 



Vacuum M axwe l l  equations 
der ived f rom Einstein f ield 
equation 
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If it seems a fair division of labor for the Maxwell equation to predict the develop
ment in time of the Maxwell field and the Einstein equation to do the same for 
the Einstein field, then it may come as a fresh surprise to discover that the Einstein 
equation (2 0.31 ), plus expression (2 0.32 ) for the Maxwell stress-energy, can do both 
jobs. One does not have to be given the Maxwell "equation of motion" (2 0.34). One 
can derive it fresh from (2 0.31) plus (2 0.32 ). The proof proceeds in five steps (see 
also exercise 3.18 and § 5.10). Step one: The Bianchi identity V · G O implies 
conservation of energy-momentum V · T = 0. Step two: Conservation expresses 
itself in the language of components in the form 

(2 0.3 5) 

Step three : Leaving the middle term unchanged, rearrange the first term so that, 
like the last term, it carries a factor F'IT. Thus in that first term let the indices v/3 
of F "/3 be replaced in turn by a-r and by -ra, to subdivide that term into 

FW' ,ago:TF<JT + Fµ,o: ; Tgo:aF T<J 

= (Fµ, T ,a - Fµ, a ; T)F<JT 

= gµ,"(Fn ;a + Fav , T)FaT _ 

Step four: Combine the first and the last terms in (2 0.3 5) to give 

(2 0.36) 

(2 0.37) 

The indices on the derivatives of the field quantities stand in cyclic order. This 
circumstance annuls all the terms in the connection coefficients I'°' 

/3Y when one writes 
out the covariant derivatives explicitly. Thus one can replace the covariant derivatives 
by ordinary derivatives. Moreover, these three derivatives annul one another identi
cally when one substitutes for the fields their expressions (2 0.33) in terms of the 
potentials. Consequently, nothing remains in the conservation law (2 0.3 5) except 
the middle term, giving rise to four statements (µ, = 0, 1, 2 ,  3) 

Fµ, Ff3 P = 0 /3 ; p 

about the four quantities (/3 = 0, 1, 2 ,  3) 

(2 0.38) 

(2 0.39) 

Step five: The determinant of the coefficients in the four equations (2 0.38) for the 
four unknowns (2 0.39) has the value 

- (E · B)2 (2 0.40) 



§ 2 0  6 EQUATI O N S  O F  MOT I O N  D E R I V E D  F R O M  F I ELD  EQUATI O N  473 

(see exercise 2 0.6, part i). In the generic case, this one function of the four variables 
(t, x, y, z) vanishes on one or more hypersurfaces; but off any such hypersurface 
(i.e., at "normal points" in spacetime) it differs from zero. At all normal points, the 
solution of the four linear equations (2 0.38) with their nonvanishing determinant 
gives identically zero for the four unknowns (2 0.39); that is to say, Maxwell's 
"equations of motion" 

pf3 v = 0 ; v 

are fulfilled and must be fulfilled as a straight consequence of Einstein's field 
equation (2 0.31 )-plus expression 2 0.32 for the stress-energy tensor. Special cases 
admit counterexamples (see exercise 2 0.8); but in the generic case one need not 
invoke Maxwell's equations of motion; one can deduce them from the Einstein field 
equation. 

Turn from the dynamics of the Maxwell field itself to the dynamics of a charged 
particle moving under the influence of the Maxwell field. Make no more appeal 
to outside providence for the Lorentz equation of motion than for the Maxwell 
equation of motion. Instead, to generate the Lorentz equation call once more on 
the Einstein field equation or, more directly, on its consequence, the principle of 
the local conservation of energy-momentum. 

Keep track of the world line of the particle from t = t to t = t + Llt (Figure 2 0.1 ). 
Generate a "world tube" around this world line. Thus, at each value of the time 
coordinate t, take the location of the particle as center; construct a sphere of radius 
E around this center; and note how the successive spheres sweep out the desired 
world tube. Construct "caps" on this tube at times t and t + Llt. The two caps, 
together with the world tube proper, bound a region of spacetime in which energy 
and momentum can be neither created nor destroyed ("no creation of moment of 
rotation," in the language of the Bianchi identities, Chapter 15). Therefore the 
energy-momentum emerging out of the "top" cap has to equal the energy-momen
tum entering the "bottom" cap, supplemented by the amount of energy-momentum 
carried in across the world-tube by the Maxwell field. Out of such an analysis, as 
performed in flat spacetime, one ends up with the Lorentz equation of motion in 
its elementary form (see Chapters 3 and 4), 

Figure 20.1. 
"World tube." The change in the 4-momentum of the 
particle is governed by the flow of 4-momentum across 
the boundary of the world lube. 

Lorentz force equation 
derived from the Einstein 
field equation 



A particle acted on by its 
own electromagnetic field 
( " radiation dampi ng" )  

I nf in ite self-energy of a poi nt 
particle 

474 2 0  CONSERVATION LAWS FOR 4-M OMENTUM AND ANG ULAR M OMENTUM dp/dT = e(F, u) (language of forms) or in curved spacetime, the Lorentz equation of motion in covariant form, 
or (form language) 

m [ d2\Y. + raµ, dxµ dx " ] = eFa/3 
dx/3 (component language). (20.4 1 ) dT dT dT dT "One ends up with the Lorentz equation of motion"-but only after hurdling problems of principle along the way. One would understand what a particle is if one understood how to do the calculation of balance of energy-momentum with all rigor! Few calculations in all of physics have been done in so many ways by so many leading investigators, from Lorentz and his predecessors to Dirac and Rohrlich [see Teitelboim (1970, 1971) for still further insights] . Among the issues that develop are two that never cease to compel attention. ( l )  The particle responds according to the Lorentz force law (20.41) to a field. This field is the sum of a contribution from external sources and from the particle itself. How is the field exerted by the particle on itself to be calculated? Insofar as it is not already included in its effects in the "experimental mass" m in (20.41), this force is to be calculated as half the difference between the retarded field and the advanced field caused by that particle (see §36 . l  l for a more detailed discussion of the corresponding point for an emitter of gravitational radiation) . This difference is singularity-free. On the world line, it has the following simple value [valid in general for point particles; valid for finite-sized particles when and only when the particle changes its velocity negligibly compared to the speed of light during the light-travel time across itselfsee, e.g., Burke (1970)] (20.42) Every acceptable line of reasoning has always led to expression (20.42). It also represents the field required to reproduce the long-known and thoroughly tested law of radiation damping. (2) "Infinite self-energy." Around a particle at rest, or close to a particle in an arbitrary state of motion, the field is e/r2 and the field energy 

IS 

( l /8'1T) J ' (e/r2)24'1Tr2 dr = (e2/2 )(r;;Jn - c 1) .  (20.43) 
rmin This expression diverges as r min is allowed to go to zero. To hurdle this difficulty, one arranges the calculation of energy balance in such a way that there always appears the sum of this "self-energy" and the "bare mass." The two terms individually are envisaged as "going to infinity" as r min goes to zero; but the sum is identified with the "experimental mass" and is required to remain finite. Of course, no particle is a classical object. A proper calculation of the energy has to be conducted at the quantum level. There it is easier to hide from sight the separate infinities-but they 
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are still present, and promise to remain until the structure of a particle is understood. 
Before one turns from the Maxwell and Lorentz equations of motion to a final 

example ( deriving the geodesic equations of motion for an uncharged particle), is 
it not time to object to the whole program of "deriving an equation of motion from 
Einstein's field equation"?  First, is it not a pretensious parade of pomposity to say 
it comes "from Einstein's field equation" (and even more, "from Einstein's field 
equations ") when it really comes from a principle so elementary and long established 
as the law of conservation of 4-momentum? It cannot be contested that this conser
vation principle, in historical fact, came before geometrodynamics, just as it came 
before electrodynamics and before the theories of all other established fields. How
ever, in no theory but Einstein's is this principle incorporated as an identity. Only 
here does the conservation of energy-momentum appear as a fully automatic conse
quence of the inner working of the machinery of the world ( energy density tied to 
moment of rotation, and moment of rotation automatically conserved; see Chapter 
17) .  Out of Einstein's theory one can derive the equation of motion of a particle. 
Out of Maxwell's one cannot. Thus, nothing prevents one from acting on a charge 
with an "external" force, over and above the Lorentz force, nor from tailoring this 
force in such a way that the charge follows some prescribed world line ("engine
driven source "). It makes no difficulties whatsoever for Maxwell's equations that 
one has shifted attention from a world line that follows the Lorentz equation of 
motion to one that does not. Quite the contrary is true in general relativity. To shift 
from right world line (geodesic) to wrong world line makes the difference between 
satisfying Einstein's field equation in the vicinity of that world line and being unable 
to satisfy Einstein's field equation. 

The Maxwell field equations are so constructed that they automatically fulfill and 
demand the conservation of charge; but not everything has charge. The Einstein 
field equation is so constructed that it automatically fulfills and demands the conser
vation of momentum-energy; and everything does have energy. The Maxwell field 
equations are indifferent to the interposition of an "external" force, because that 
force in no way threatens the principle of conservation of charge. The Einstein field 
equation cares about every force, because every force is a medium for the exchange 
of energy. 

Electromagnetism has the motto, "I count all the electric charge that's here. " All 
that bears no charge escapes its gaze. 

"I weigh all that's here" is the motto of spacetime curvature. No physical entity 
escapes this surveillance. 

Why, then, is the derivation of the geodesic equation of motion of an object said 
to be based on "Einstein's geometrodynamic field equation" rather than on "the 
principle of conservation of 4-momentum"?  Because geometry responds by its 
curvature to mass-energy in every form. Most of all, because geometry outside tells 
about mass-energy inside, free of all concern about issues of internal structure 
(violent motions, unknown forces, tortuously curved and even multiply-connected 
geometry). 

If one objection to the plan to derive the equation of motion of a particle "from 
the field equation" has been disposed of, then the moment has come to deal with 

Why one is just if ied to regard 
equat ions of motion as 
consequences of the Einstein 
f ield equation 



How one can avoid 
complexities of particle 
structure when deriving 
equations of motion . the 
"external viewpoint " 

Derivation of geodesic 
motion from Einstein field 
equation : 

( 1 )  derivation in brief 

(2)  derivation with care 

Coupling of curvature to 
particle moments produces 
deviations from geodesic 
motion 

476 20 CO N S E RVAT I O N  LAWS FOR 4-M O M ENTU M A N D  ANG U LAR M O M ENTU M 

the other natural objection: Is there not an inner contradiction in trying to apply 
to a "particle" (implying idealization to a point) a field equation that deals with 
the continuum? Answer: There is a contradiction in dealing with a point. Therefore 
do not deal with a point. Do not deal with internal structure at all . Analyze the 
motion by looking at the geometry outside the object. That geometry provides all 
the handle one needs to follow the motion. 

Already here one sees the difference from the derivation of the Lorentz equation 
of motion as sketched out above. There ( 1 )  no advantage was taken of geometry 
outside as indicator of motion inside; (2) a detailed bookkeeping was envisaged of 
the localization in space of the electromagnetic energy; and (3) this bookkeeping 
brought up the issue of the internal structure of the particle, which could not be 
satisfactorily resolved. 

Now begin the analysis in the new geometrodynamic spirit. Surrounding "the 
Schwarzschild zone of influence" of the object, mark out a "buffer zone" (Figure 
20.2) that extends out to the region where the "background geometry" begins to 
depart substantially from flatness. Idealize the geometry in the buffer zone as that 
of an unchanging source merging asymptotically ("boundary qt, of buffer zone") into 
flat space. It suffices to recall the properties of the spacetime geometry far outside 
an unchanging (i.e., nonradiating) source (exercise 1 9.3) to draw the key conclusion : 
relative to this flat spacetime and regardless of its internal structure, the object 
remains at rest, or continues to move in a straight line at uniform velocity (conserva
tion of total 4-momentum; §20.5). In other words, it obeys the geodesic equation 
of motion. If this is the result in a flash, then it is appropriate to go back a step 
to review it, to find out what it means and what it demands. 

When the object is absent and the background geometry alone has to be consid
ered, then the geodesic is a well-defined mathematical construct. Moreover, Fermi
Walker transport along this geodesic gives a well-defined way to construct a comoving 
local inertial frame (see § 13.6). Relative to this frame, the representative point of 
the geodesic remains for all time at rest at the origin. 

In what way does the presence of the object change this picture? The object 
possesses an angular momentum, mass quadrupole moments, and higher multipole 
moments. They interact with the tide-producing accelerations (Riemann curvature) 
of the background geometry. Depending on the orientation in space of these mo
ments, the interactions drive the object off its geodesic course in one direction or 
another (see §40.9). These anomalies in the motion go hand in hand with anomalies 
in the geometry. On and near the ideal mathematical geodesic the metric is Min
kowskian. At a point removed from this geodesic by a displacement with Riemann 
normal coordinates P, e, l3 (see § I 1 .6), the metric components differ from their 
canonical values (- 1 ,  I, I , 1 )  by amounts proportional ( 1)  to the squares and 
products of the lm and (2) to the components of the Riemann curvature tensor 
(tide-producing acceleration) of the background geometry. These second-order terms 
produce departures from ideality in the buffer zone, departures that may be described 
symbolically as of order 

o(metric) ~ r2 • R · (spherical harmonic of order two). (20.44) 
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Figure 20.2.  
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"Buffer zone"· the shell of space between {l and !'B, where the geometry is appropriately idealized as 
the spherically symmetric "Schwarzschild geometry" of a localized center of attraction (the object under 
study) in an asymptotically flat space. Inside tl. the "zone of influence" of the object. In the general 
case where this object lacks all symmetry, the metric is found to depart more and more from ideal 
"Schwarzschild character" as the exploration of the geometry is carried inward from {l ( effect of angular 
momentum of the object on the metric; effect of quadrupole moment; effect of higher moments) . Outside 
!'13 the "background geometry." As this geometry is explored at greater and greater distances outside 
$, it is found to depart more and more from flatness (effect of concentrations of mass, gravitational 
waves, and other geometrodynamics) 

Here r is the distance from the geodesic and R is the magnitude of the significant 
components of the curvature tensor. The object produces not only the standard 
"Schwarzschild" departure from flatness, 

o(metric) ~ m/r, (2 0. 4 5) 

which by itself (in a flat background) would bring about no departure from geodesic 
motion, but also correction terms which may be symbolized as 
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o(metric) ~ (S/r2) (spherical harmonic of order one) (2 0.46) 

and 

o(metric) ~ (f/r3) (spherical harmonic of order two) (2 0.47) 

and higher-order terms. Here S( cm2) is a typical component of the angular momen
tum vector or "spin"; f( cm3) is a representative component of the moment of inertia 
or quadrupole tensor (see Chapter 36 for details), and higher terms have higher-order 
coefficients. 

Coupling of spin to curvature The tide-producing acceleration generated by the surroundings of the object 
("background geometry") acts on the spin of the object with a force of order RS 
and pulls it away from geodesic motion with an acceleration of the order 

. R(cm-2)S(cm2) 
acceleration (cm-1) ~ 

( ) m cm 
(2 0.48) 

(see exercise 40.8). Otherwise stated, the surrounding and the spin both put warps 
in the geometry, and these warps conspire together to push the object off track. 

The sum of the relevant two perturbations in the metric is qualitatively of the 
form 

og ~ r2R + S/r2 • 

The sum is least where r has a value of the order 

r ~ (SI R)114, 

and there it has the magnitude 

og ~ (SR)112. 

(2 0.49) 

(2 0.50) 

(2 0.5 I) 

To "derive the geodesic equation of motion with some preassigned accuracy E "  

may be defined to mean that the metric in the buffer zone is Minkowskian within 
the latitude E .  In the illustrative example, this means that (SR)112 is required to 
be of the order of E or less. Nothing can be done about the value of R because 
the background curvature R is a feature of the background geometry. One can meet 
the requirement only by imposing limits on the mass and moments of the object. 
In the example, where the dominating moment is the angular momentum, one must 
require that this parameter of the object be less in order of magnitude than the 
limit 

(2 0.52 ) 

Evidently this and similar conditions on the higher moments are most easily satisfied 
by demanding that the object have spherical symmetry (S = 0, f = 0, higher 



§ 2 0  6 EQUATI O N S  O F  M OT I O N  D E R IV E D  F R O M  F I E LD EQUATI O N  4 7 9  

moments = 0). Then the perturbation in the metric, again disregarding angle factors 
and indices, is qualitatively of the form 

og ~ r2R + m/r, 

and the buffer zone is best designed to bracket the minimizing value of r, 

r Cl ::; [r ~ (m/ R)113] ::; r,a . 

(2 0.53) 

(2 0.54) 

The departure of the metric from Minkowskian perfection in the buffer zone is of 
the order 

og ~ (m2R)113 _ (2 0.5 5) 

To achieve any preassigned accuracy £ for og, one must demand that the mass be 
less than a limit of the order 

m ~ £ 312;R11 2 _ (2 0.56) 

No object of finite mass moving under the influence of a complex background 
will admit a buffer zone where the geometry approaches Minkowskian values with 
arbitrary precision. Therefore it is incorrect to say that such an object follows a 
geodesic world line. It is meaningless to say that an object of finite rest mass follows 
a geodesic world line. World line of what? If the object is a black hole, there is 
no point inside its "horizon" (capture surface; one-way membrane; see Chapters 
33 and 34) that is relevant to the physics going on outside. Geodesic world line within 
what background geometry? It has no sense to speak of a geometry that "lies behind" 
or is "background to" a black hole. 

Turn from one motion of one object in one spacetime to a continuous one-param
eter family of spacetimes, with the mass m of the object being the parameter that 
distinguishes one of these solutions of Einstein's field equation from another. Go 
to the limit m = 0. Then the size of the buffer zone shrinks to zero and the departure 
of the metric from Minkowskian perfection in the buffer zone also goes to zero. 
In this limit ("test particle "), it makes sense to say that the object moves in a straight 
line with uniform velocity in the local inertial frame or, otherwise stated, it pursues 
a geodesic in the background geometry. Moreover, this background geometry is 
well-defined : it is the limit of the spacetime geometry as the parameter m goes to 
zero [see Infeld and Schild (1949)]. In this sense, the geodesic equation of motion 
follows as an inescapable consequence of Einstein's field equation. 

The concept of "background" as limit of a one-parameter family of spacetimes 
extends itself to the case where the object bears charge as well as mass, and where 
the surrounding space is endowed with an electromagnetic field. This time the 
one-parameter family consists of solutions of the combined Einstein-Maxwell equa
tions. The charge-to-mass ratio e/m is fixed. The mass m is again the adjustable 
parameter. In the limit when m goes to zero, one is left with (1) a background 
geometry, (2 ) a background electromagnetic field, and (3) a world line that obeys 

The sense in which no body 
can move on a geodesic of 
spacetime 

The sense 1n which test 
part ic les do move on 
geodesics of a background 
geometry 

Motion of a charged test 
part ic le in curved spacet 1me 
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480 20  CO N S E RVAT I O N  LAWS FOR  4-M O M ENTU M A N D  ANG U LAR M O M ENTU M the general-relativity version of the Lorentz equation of motion in this background as a consequence of the field equations [Chase (1954)]. In contrast, a so-called "unified field theory of gravitation and electromagnetism" that Einstein tentatively put forward at one stage of his thinking, as a conceivable alternative to the combination of his standard 1915 geometrodynamics with Maxwell's standard electrodynamics, has been shown [Callaway (1953)] to lead to the wrong equation of motion for a charged particle. It moves as if uncharged no matter how much charge is piled on its back. If that theory were correct, no cyclotron could operate, no atom could exist, and life itself would be impossible. Thus the ability to yield the correct equation of motion of a particle has today become an added ace in the hand of general relativity. The idea for such a treatment dates back to Einstein and Grommer (1927). Corrections to the geodesic equation of motion arising from interaction between the spin of the object (when it has finite dimensions) and the curvature of the background geometry are treated by Papapetrou (1951) and more completely by Pirani (1956) (see exercise 40.8). A book on the subject exists [Infeld and Plebanski (1960)]. Section 40.9 describes how corrections to geodesic motion affect lunar and planetary orbits. Some of the problems that arise when the object under study fragments or emits a directional stream of radiation, and unresolved issues of principle, are discussed by Wheeler (1961). When one turns from the limit of infinitesimal mass to an object of finite mass, no simpler situation presents itself then a system of uncharged black holes (Chapter 33). Everything about the motion of these objects follows from an application of the source-free Einstein equation G = 0 to the region of spacetime outside the horizons (see Chapter 34) of the several objects. The theory of motion is then geometrodynamics and nothing but geometrodynamics. It has to be emphasized that all the considerations on motion in this section are carried out in the context of classical theory. In the real world of quantum physics, the geometry everywhere experiences unavoidable, natural, zero-point fluctuations (Chapter 43). The calculated local curvatures associated with these fluctuations at the Planck scale of distances [L = (1i G/c3) 112 = 1.6 X 10-33 cm] are enormous [R ~ 1/ L2 ~ 0.4 X 1066 cm-2] compared to the curvature produced on much larger scales by any familiar object ( electron or star). No detailed analysis of the interaction of these two curvatures has ever been made. Such an analysis would define a smoothed-out average of the geometry over regions larger than the local quantum fluctuations. With respect to this average geometry, the object will follow geodesic motion: this is the expectation that no one has ever seen any reason to question-but that no one has proved. 
Exercise 2 0 . 6 .  S I M PLE  FEAT U R E S  O F  T H E  E LE CTRO MAG N ETIC F I E LD 

AND ITS STR ESS-E N E RGY T E N S O R  

(a) Show that the "scalar" - l/2Fa13 paf3 (invariant with respect to coordinate transforma
tions) and the "pseudoscalar" l/4Fa/F"f3 (reproduces itself under a coordinate transfor
mation up to a ± sign, according as the sign of the Jacobian of the transformation is positive 
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or negative) have in any local inertial frame the values £2 - B 2 and E · B, respectively ("the 
two Lorentz invanarlts" of the electromagnetic field). 

(b) Show that the Poynting flux (E X B)/47T is less in magnitude than the energy density 
(E2 + B 2)/87T, save for the exceptional case where both Lorentz invariants of the field vanish 
( case where the field is locally "null"). 

( c) A charged pith ball is located a small distance from the North Pole of a bar magnet. 
Draw the pattern of electric and magnetic lines of force, indicating where the electromagnetic 
field is "null" in character. Is it legitimate to say that a "null field" is a "radiat10n field"? 

( d) A plane wave is traveling in the z-direction. Show that the corresponding electromag
netic field is everywhere null. 

( e) Show that the superposition of two monochromatic plane waves traveling in different 
directions is null on at most a set of points of measure zero. 

(f ) In the "generic case" where the field (E, B) at the point of interest is not null, show 
that the Poynting flux is reduced to zero by viewing the field from a local inertial frame 
that is traveling in the direction of E X B with a velocity 

v = tanh a, 

where the velocity parameter a is given by the formula 

h 2 
(Poynting flux) 2 1£ x B l tan a = ( energy density) = E 2 + B 2 · 

(20 .57) 

(20 .58) 

(g) Show that all components of the electric and magnetic field m this new frame can 
be taken to be zero except Ex and Bx. 

(h) Show that the 4 X 4 determinant bmlt out of the components of the field in mixed 
representation, F,/3, is invariant with respect to general coordinate transformations. (Hint : 
Use the theorem that the determinant of the product of three matrices is equal to the product 
of the determinants of those three matrices .) 

(1) Show that this determinant has the value - (E · B)2 by evaluating it in the special local 
inertial frame of (f ). 

(j) Show that in this special frame the Maxwell stress-energy tensor has the form 

- 1 
E/ + B/ 0 

I I Tµ) I  = 87T 0 
0 

0 
- 1  

0 
0 

0 0 

0 0 

+ I  0 
0 + I  

(20 .59) 

(Faraday tension along the lines of force ; Faraday pressure at right angles to the lines of 
force). 

(k) In the other case, where the field is locally null, show that one can always find a local 
inertial frame in which the field has the form E = (0, F, 0), B = (0, 0, F) and the stress-energy 
tensor has the value 

I I P) I  

- 1 
p - 1 I 
4'1T O 0 

0 0 

0 0 

0 0 

0 0 

0 0 

( µ  for row, v for column). (20.60) 

(I) Regardless of whether the electromagnetic field is or 1s not null, show that the Maxwell 
stress-energy tensor has zero trace, Tµ µ = 0, and that its square is a multiple of the unit 
tensor , 

8µ Tµ T" = -"- [(E2 - B 2)2 + (2E • B)2] 
<X V (87r)2 

= � [(E2 + B 2)2 - (2E X B)2]. 
(87r)2 (20.61) 
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Exercise 20 .  7 .  THE STRESS-ENERGY TENSOR DETERMINES THE 
ELECTROMAGNETIC FIELD EXCEPT FOR ITS COMP LEXION 

(a) Given a non-zero symmetric 4 x 4 tensor T'"" which has zero trace T'"
'" = 0 and whose square is a multiple, M4/(81r)2 , of the unit matrix, show that, according as this multiple is zero ("null case") or positive, the tensor can be transformed to the form (20 .60) or (20 .59) by a suitable rotation in 3-space or by a suitable choice of local inertial frame, respectively. (b) In the generic (non-null) case in the frame in question, show that T'"" is the Maxwell tensor of the "extremal electromagnetic field" �µ, with components 

£(extremal) = (M, 0, 0) ,  

B(extremal) = (0 ,  0 ,  0) .  (20 .62) 
Show that it is also the Maxwell tensor of the "dual extremal field" •�w with components 

* £(extremal) = (0, 0, 0) , 
• B(extremal) = (M, 0, 0) . (20 .63) 

(c) Recalling that the duality operation • applied twice to an antisymmetric second-rank tensor (2-form) in four-dimensional space leads back to the negative of that tensor, show that the operator e •o: ("duality rotation") has the value 
e •o: = (cos a) + (sin a)* .  (20.64) 

( d) Show that the most general electromagnetic field which will reproduce the non-null tensor Tµ• in the frame in question, and therefore in any coordinate system, is 
(20 .65) 

( e) Derive a corresponding result for the null case. [The field Fµ, defined in the one frame and therefore in every coordinate system by ( d) and ( e) is known as the "Maxwell square root" of Tµ• ;  �µ v is known as the "extremal Maxwell square root" of Tµ" ;  and the angle a is called the "complexion of the electromagnetic field." See Misner and Wheeler ( 1 957) ; see also Boxes 20 . 1  and 20.2, adapted from that paper.] 

Box 20 .1 CONTRAST BETWEEN PROPER LORENTZ TRANSFORMATION 
AND DUALITY ROTATION 

Quantity 

Components of the Maxwell stress-energy tensor or the "Maxwell square" of the field F The invariants E2 - B2 and (E · B)2 

The combination ((E2 - B2)2 + (2E • B)2] = [(£2 + B2)2 - (2E X B)2] 

General proper 
Lorentz transformation 

Transformed Unchanged 
Unchanged 

Duality 
ro ta t,an 

Unchanged Transformed 
Unchanged 
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Box 20.2 TRANSFORMATION OF THE GENERIC (NON-NULL) 
ELECTROMAGNETIC FIELD TENSOR F = (E, B) IN 
A LOCAL INERTIAL FRAME 

483  

Field values A t  start 
A fter simplifying 

duality rotation 

At start E, B E and B perpendicular. and E 
greater than B 

A fter simplifymg Lorentz 
transformation 

E and B parallel to each other 
and parallel to x-axis 

E parallel to x-aXIs and B = 0 

Exercise 20.8. THE MAXWELL EQUATIONS CANNOT BE DERIVED FROM 
THE LAW OF CONSERVATION OF STRESS-ENERGY WHEN 
(E · B) = 0 OVER AN EXTENDED REGION 

Supply a counter-example to the idea that the Maxwell equations, 
follow from the Einstein equation; or, more precisely, show that ( 1 )  the condition that the Maxwell stress-energy tensor should have a vanishing divergence plus (2) the condition that this Maxwell field is the curl of a 4-potential Aµ can both be satisfied, while yet the stated Maxwell equations are violated. [Hint : It simplifies the analysis without obscuring the main point to consider the problem in the context of flat spacetime. Refer to the paper of Teitelboim ( 1 970) for the decomposit10n of the retarded field of an arbitrarily accelerated charge into two parts, of which the second, there called pµ•u, meets the stated requirements, and has everywhere off the worldline (E · B) = 0, but does not satisfy the cited Maxwell equations . ]  
Exercise 20.9. EQUATION OF MOTION OF A SCALAR FIELD AS 

CONSEQUENCE OF THE EINSTEIN FIELD EQUATION 

The stress-energy tensor of a massless scalar field is taken to be 
Derive the equation of motion of this scalar field from Einstein's field equation. 

(20.66) 



CHAPTER 2 1 

VAR IATI O NAL P R I N C I P LE 

AN D I N IT IAL-VALU E DATA 

This chapter is entirely Track 2 .  
N o  earl ier Track-2 materi a l  is 
needed as preparation for it, 
but Chapters 9 - 1 1 and 1 3 - 1 5  
wi l l  b e  helpfu l .  I t  is needed as 
preparation for Box 3 0 . 1 
(mixmaster u n iverse) and for 
Chapters 42 and 43 .  

Whenever any action occurs in nature, the quantity of  action 
employed by this change is the least possible. 

P I E R R E  M O R EAU  DE MAU PERTU I S  ( 1 746) 

In the theory o f  gravitation, as in all other branches of 
theoretical physics, a mathematically correct s tatemen t of a 

problem must be determinate to the exten t allo wed by the nature 
of the problem; if possible, it must ensure the 

uniqueness o f  its solution. 
VLAD I M I R  ALEXA N D R OVITCH FOCK ( 1 9 59) 

Things are as they are because they were as they were. 
THO MAS GOLD  ( 1 9 72) 

§ 2 1 . 1 .  DYNAMICS REQU IRES IN ITIAL-VALU E DATA 

Ca/cu/emus 
G W LE IBN IZ  

No plan for predicting the dynamics of geometry could be at the same time more mistaken and more right than this: "Give the distribution of mass-energy; then solve Einstein's second-order equation, 
G = 8?TT, (2 1.1) for the geometry." Give the distribution of mass-energy in spacetime and solve for the spacetime geometry? No. Give the fields that generate mass-energy, and their 

To Karel Kuchar, Claudio Teitelboim, and James York go warm thanks for their collaboration in 
the preparation of this chapter, and for permission to draw on the lecture notes of K K. and to quote 
results of K. K. (especially exercise 2 1 . 10] and of J. Y (especially equations (2 1 .87), (2 1 .88), and (2 1 . 1 52)] 
pnor to publication elsewhere. 
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time-rates of change, and give 3-geometry of space and its time-rate of change, all 
at one time, and solve for the 4-geometry of spacetime at that one time? Yes. And 
only then let one's equations for geometrodynamics and field dynamics go on to 
predict for all time, in and by themselves, needing no further prescriptions from 
outside (needing only work!), both the spacetime geometry and the flow of mass
energy throughout this spacetime. This, in brief, is the built-in "plan" of geometro
dynamics, the plan spelled out in more detail in this chapter. 

Contest the plan. Point out that the art of solving any coupled set of equations 
lies in separating the unknowns from what is known or to be prescribed. Insist that 
this separation is already made in (2 1 . 1  ). On the right already stands the source 
of curvature. On the left already stands the receptacle of curvature in the form of 
what one wants to know, the metric coefficients, twice differentiated. Claim therefore 
that one has nothing to do except to go ahead and solve these equations for the 
metric coefficients. However, in analyzing the structure of the equations to greater 
depth [see Cartan (1 922a) for the rationale of analyzing a coupled set of partial 
differential equations], one discovers that one can only make the split between "the 
source and the receptacle" in the right way when one has first recognized the still 
more important split between "the initial-value data and the future." Thus-to 
summarize the results before doing the analysis-four of the ten components of 
Einstein's law connect the curvature of space here and now with the distribution 
of mass-energy here and now, and the other six equations tell how the geometry 
as thus determined then proceeds to evolve. 

In determining what are appropriate initial-value data to give, one discovers no 
guide more useful than the Hilbert variational principle, 

I = J e d4x = J L(- g)112  d4x = J L d(proper 4-volume) = extremum (21 .2) 

4exercise 8.1 6] 

or the Arnowitt-Deser-Misner ("ADM") variant of it (§2 1 .6) and generalizations 
thereof by Kuchar (§21 .9). Out of this principle one can recognize most directly 
what one must hold fixed at the limits ( on an initial spacelike hypersurface and 
on a final spacelike hypersurface) as one varies the geometry (§21 .2) throughout 
the spacetime "filling of this sandwich," if one is to have a well-defined extremum 
problem. 

The Lagrange function L (scalar function) or the Lagrangian density e = 
(- g)11 2  L ( quantity to be integrated over coordinate volume) is built of geometry 
alone, when one deals with curved empty space, but normally fields are present as 
well, and contribute also to the Lagrangian; thus, 

I: = egeom + £field = (- g)11 2L; 

L = Lgeom + LfieJd• 
(2 1 .3) 

The variation of the field Lagrangian with respect to the typical metric coefficient 
proves to be, of all ways, the one most convenient for generating (that is, for 
calculating) the corresponding component of the symmetric stress-energy tensor of 
the field (§2 1 .3 ). 

G ive initial data, predict 
geometry 

Four of ten components of 
Einstein equation are 
conditions on initial-value 
data 

New view of stress-energy 
tensor 



H amil tonian as a dispersion 
relation 
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A computer, allowing for the effect of this field on the geometry and computing 
ahead from instant to instant the evolution of the metric with time, imposes its own 
ordering on the events of spacetime. In effect, it slices spacetime into a great number 
of spacelike slices. It finds it most convenient (§21 .4) to do separate bookkeeping 
on ( 1 )  the 3-geometry of the individual slices and (2) the relation between one such 
slice and the next, as expressed in a "lapse function" N and a 3-vector "shift func
tion" Ni . 

The 3-geometry internal to the individual slice or "simultaneity" defines in and 
by itself the three-dimensional Riemannian curvature intrinsic to this hypersurface; 
but for a complete account of this hypersurface one must know also the extrinsic 
curvature (§2 l .5) telling how this hypersurface is curved with respect to the envelop
ing four-dimensional spacetime manifold. 

In terms of the space-plus-time split of the 4-geometry, the action principle of 
Hilbert takes a simple and useful form (§21 .6). 

In the most elementary example of the application of an action principle in 
mechanics, where one writes 

J
x, t 

I = L(dx/dt, x, t) dt 
:c', t' 

(2 l .4) 

and extremizes the integral, one already knows that the resultant "dynamic path 
length" or "dynamic phase" or "action," 

S(x, t) = /extremum, (2 l .5) 

is an important quantity, not least because it gives (up to a factor Ii) the phase of 
the quantum-mechanical wave function. Moreover, the rate of change of this action 
function with position is what one calls momentum, 

p = oS(x, t)/ox; (2 l .6) 

and the (negative of the) rate of change with time gives energy (Figure 2 1 . l ), 

E = -oS(x, t)/ot; (2 l .7) 

and the relation between these two features of a system of wave crests, 

E = H(p, x), (2 l . 8) 

call it "dispersion relation" or call it what one will, is the central topic of mechanics. 
When dealing with the dynamics of geometry in the Arnowitt-Deser-Misner 

formulation, * one finds it convenient to think of the specified quantities as being 

• Historical remark. No one knew until recently what coordinate-free geometric-physical quantity really 
is fixed at limits in the Hilbert-Palatini variational principle. In his pioneering work on the Hamiltonian 
formulation of general relativity, Dirac paid no particular attention to any variational principle. He had 
to generalize the Hamiltonian formalism to accommodate it to general relativity, introducing "first- and 
second-class constraints" and generalizations of the Poisson brackets of classical mechanics. The work 
of Arnowitt, Deser, and Misner, by contrast, took the variational principle as the foundation for the 
whole treatment, even though they too did not ask what it is that is fixed at limits in the sense of 



Figu re 2 1 . 1 .  
Momentum and (the negative of the) energy viewed as rate of change 

of "dynamic phase" or "action," 

(
extremum

)J 
x, t 

S(x, t) = /extremum(x, I) = I f L(x, X, I) dt, va ue o ,', t' 

with respect to position and time ; thus, 

8S = p 8x - E 8t. 

( 1 )  

(2) 

The variation of the integral I with respect to changes of the history 
along the way, 8x(t) , is already zero by reason of the optimization 
of the history; so the only change that takes place is 

x + Jx , t  
8S = 8/extremum = L(x, X, I) 8t + f 8L dt 

x' , t '  
x + ax, t 

( 
aL aL 

) = L 8t + f -. 8x + - 8x dt 
x' , t' ax ax 
aL x +ax, I 

( 
aL d aL ) = L 8t + -. L1x + f - - --. 8x dt. 

ax ,' , t' ax dt ox 

fzero by reason 7 t 
l,s>f extremization_}J 

(3) 

When one contemplates only a change 8x in the coordinates (x, t) 
of the end point (change of history from 0'3' to 0:2) ,  one has L1x = 8x. 
When one makes only a change 8t in the end point (change of history 
from 0'3' to 0S), one has L1x = (indicator of change from '3' to 'Jl) = 
-x 81 For the general variation of the final point, one thus has 
L1x = 8x - x 81 and 

aL 
( 

aL 
) 8S = - 8x - x - - L 8t. 

ax ax 

i 

--- x -----i►-

(4) 

One concludes that the "dispersion relation" is obtained by taking the relations [compare (2) and (4)] 

and 

dynamic phase = (momentum) = p = ( 
rate of change of

) 
aL(x, x, t) 

with position ilx 

(
rate of change of

) 
aL 

- dynamic phase = ( energy) = E = x -. - L, 
w� ti= � 

and eliminating x from them [solve (5) for x and substitute that value of x into (6)] , thus 

E = H(p, x, t) 
or 

_ as = H( as x i) . 
at ax

, , 

Every feature of this elementary analysis has its analog in geometrodynamics 

(5) 

(6) 

(7) 

(8) 

a coordinate-free geometric-physical quantity. The great payoff of this work was recognition of the lapse 
and shift functions of equation (2 1 40) as Lagrange multipliers, the coefficients of which gave directly 
and simply Dirac's constraints. They did not succeed in arriving at a natural and simple time-coordmate, 
but that goal has in the meantime been achieved in the "extrinsic time" of Kuchar and York (§2 1 . 1 1 ) .  
However, the Arnowitt-Deser Misner approach opened the door to the "intrinsic time" of Sharp, 
Baierlein, and Wheeler, where 3-geometry is fixed at limits, and 3-geometry is the carrier of information 
about time , and this led directly to Wheeler's "superspace version" of the treatment of Arnowitt, Deser, 
and Misner 



Action viewed as dependent 
on 3-geometry 

H amiltonian versus 
super- Hami l tonian 
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the 3-geometry <3l� of the initial spacelike hypersurface and the 3-geometry <3l� of 
the final spacelike hypersurface. One envisages the action integral as extremized 
with respect to the choice of the spacetime that fills the "sandwich " between these 
two faces. If one has thus determined the spacetime, one has automatically by that 
very act determined the separation in proper time of the two hypersurfaces. There 
is no additional time-variable to be brought in or considered. The one concept <3l� 
thus takes the place in geometrodynamics of the two quantities x, t of particle 
dynamics. The action S that there depended on x and t here depends on the 
3-geometry of the face of the sandwich; thus, 

s = st3)�). (2 1.9) 

A change in the 3-geometry changes the action. The amount of the change in action 
per elementary change in 3-geometry defines the "field momentum " '7Ttue conjugate 
to the geometrodynamic field coordinate gi

i ' according to the formula 

8S = f '7Ttue 8gii d3x. (2 1.10) 

Comparing this equation out of the Arnowitt, Deser, and Misner (ADM) canonical 
formulation of geometrodynamics (§ 2 1.7) with the expression for change of action 
with change of endpoint in elementary mechanics, 

8S = p 8x - E 8t, (2 1.11) 

one might at first think that something is awry, there being no obvious reference 
to time in (2 1.10). However, the 3-geometry is itself automatically the carrier of 
information about time; and (2 1.10) is complete. Moreover, with no "time " variable 
other than the information that <3l� itself already carries about time, there is also 
no "energy. " Thus the "dispersion relation " that connects the rates of change of 
action with respect to the several changes that one can make in the "field coordinates " 
or 3-geometry takes the form 

(2 1.12 ) 

with the E-term of (2 1.8) equal to zero ( details in § 2 1.7). All the content of Einstein's 
general relativity can be extracted from this one Hamiltonian, or "super-Hamilton
ian, " to give it a more appropriate name [see DeWitt (1967a), pp. 1113-1118, for 
an account of the contributions of Dirac, of Arnowitt, Deser, and Misner, and of 
others to the Hamiltonian formulation of geometrodynamics; and see § 2 1.7 and 
subsequent sections of this chapter for the meaning and payoffs of this formulation]. 

The difference between a Hamiltonian and a super-Hamiltonian [see, for example, 
Kramers (19 57)] shows nowhere more clearly than in the problem of a charged 
particle moving in flat space under the influence of the field derived from the 
electromagnetic 4-potential, Aµ,(x "'). The Hamiltonian treatment derives the equation 
of motion from the action principle, 
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The super-Hamiltonian analysis gets the equations of motion from the action 
principle 

, f [ dxµ 13 ] , 0 = 81 = 8 Pµ dA - X(p,,, x  ) di\. 

Here the super-Hamiltonian is given by the expression 

The variational principle gives Hamilton's equations for the rates of change 

dx"/dA = oX/op,, 

and 

From these equations, one discovers that X itself must be a constant, independent 
of the time-like parameter A. The value of this constant has to be imposed as an 
initial condition, X = 0 ("specification of particle mass"), thereafter maintained by 
the Hamiltonian equations themselves. This vanishing of X in no way kills the partial 
derivatives, 

ax;ap,, and - ax;ax/3 ,  
that enter Hamilton's equations for the rates of change, 

dx"/dA and 

Whether derived in the one formalism or the other, the equations of motion are 
equivalent, but the covariance shows more clearly in the formalism of the super
Hamiltonian, and similarly in general relativity. 

Granted values of the "field coordinates" gi/x, y, z) (<3>�) and field momenta 
1r�u/x, y, z) = 8S/8gij compatible with (2 1 . 12), one has what are called "compatible 
initial-value data on an initial spacelike hypersurface." One can proceed as described 
in §21 .8 to integrate ahead in time step by step from one spacelike hypersurface Dynamic evolution of 

to another and another, and construct the whole 4-geometry. Here one is dealing geometry 

with what in mathematical terminology are hyperbolic differential equations that 
have the character of a wave equation. 

In contrast, one deals with elliptic differential equations that have the character 
of a Poisson potential equation when one undertakes in the first place to construct 
the needed initial-value data (§21 .9). In the analysis of these elliptic equations, it 



Another choice of what to fix 
at boundary hypersurface : 
conformal part of 3-geometry 
plus extrinsic time 

Mach updated : mass-energy 
there governs inertia here 
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proves helpful to distinguish in the 3-geometry between (I) the part of the metric 
that determines relative lengths at a point, which is to say angles ("the conformal 
part of the metric") and (2 ) the common multiplicative factor that enters all the 
components of the gii at a point to determine the absolute scale of lengths at that 
point. This breakdown of the 3-geometry into two parts provides a particularly simple 
way to deal with two special initial-value problems known as the time-symmetric 
and time-antisymmetric initial-value problems (§ 2 1.10). 

The ADM formalism is today in course of development as summarized in § 2 1.11. 
In Wheeler's (1968a) "superspace" form, the ADM treatment takes the 3-geometry 
to be fixed on each of the bounding spacelike hypersurfaces. In contrast, York 
(§ 2 1.11) goes back to the original Hilbert action principle, and discovers what it 
takes to be fixed on each of the bounding spacelike hypersurfaces. The appropriate 
data turn out to be the "conformal part of the 3-geometry" plus something closely 
related to what Kuchar (1971a and 197 2 ) calls the "extrinsic time." The contrast 
between Wheeler's approach and the Kuchar-York approach shows particularly 
clearly when one (1) deals with a flat spacetime manifold, (2 ) takes a flat spacelike 
section through this spacetime, and then (3) introduces a slight bump on this slice, 
of height E .  The 3-geometry intrinsic to this deformed slice differs from Euclidean 
geometry only to the second order in €. Therefore to read back from the full 3-geom
etry to the time ("the forward advance of the bump") requires in this case an 
operation something like extracting a square root. In contrast, the Kuchar-York 
treatment deals with the "extrinsic curvature" of the slice, something proportional 
to the first power of€, and therefore provides what is in some ways a more convenient 
measure of time [see especially Kuchar (1971) for the construction of "extrinsic time " 
for arbitrarily strong cylindrical gravitational waves; see also Box 30. l on "time" 
as variously defined in "mixmaster cosmology"]. York shows that the time-variable 
is most conveniently identified with the variable "dynamically conjugate to the 
conformal factor in the 3-geometry." 

The initial-value problem of geometrodynamics can be formulated either in the 
language of Wheeler or in the language of Kuchar and York. In either formulation 
(§ 2 1.9 or § 2 1.11) it throws light on what one ought properly today to understand 
by Mach's principle (§ 2 1.12 ). That principle meant to Mach that the "acceleration" 
dealt with in Newtonian mechanics could have a meaning only if it was acceleration 
with respect to the fixed stars or to something equally well-defined. It guided Einstein 
to general relativity. Today it is summarized in the principle that "mass-energy there 
governs inertia here," and is given mathematical expression in the initial-value 
equations. 

The analysis of the initial-value problem connected past and future across a 
spacelike hypersurface. In contrast, one encounters a hypersurface that accommo
dates a timelike vector when one deals (§ 2 1.13) with the junction conditions between 
one solution of Einstein's field equation (say, the Friedmann geometry interior to 
a spherical cloud of dust of uniform density) and another (say, the Schwarzschild 
geometry exterior to this cloud of dust). Section 2 1.13, and the chapter, terminate 
with notes on gravitational shock waves and the characteristic initial-value problem 
(the statement of initial-value data on a light cone, for example). 
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Five days before Einstein presented his geometrodynamic law in its final and now standard form, Hilbert, animated by Einstein's earlier work, independently discovered (1915a) how to formulate this law as the consequence of the simplest action principle of the form (21.2-21.3) that one can imagine : (21.13) (Replace l / l 61r by c3 / l61rG when going from the present geometric units to conventional units ; or divide by n ~ L * 2 to convert from dynamic phase, with the units of action, to actual phase of a wave function, with the units of radians). Here <4> R is the four-dimensional scalar curvature invariant, as spelled out in Box 8 .4. This action principle contains second derivatives of the metric coefficients. In contrast, the action principle for mechanics contains only first derivatives of the dynamic variables ;  and similarly only derivatives of the type aA"/ax /3 appear in the action principle for electrodynamics. Therefore one might also have expected only first derivatives, of the form agµ ,/axY, in the action principle here. However, no scalar invariant lets itself be constructed out of these first derivatives .  Thus, to be an invariant, Lgeom has to have a value independent of the choice of coordinate system. But in the neighborhood of a point, one can always so choose a coordinate system that all first derivatives of the gµ, vanish. Apart from a constant, there is no scalar invariant that can be built homogeneously out of the metric coefficients and their first derivatives. When one turns from first derivatives to second derivatives, one has all twenty distinct components of the curvature tensor to work with. Expressed in a local inertial frame, these twenty components are arbitrary to the extent of the six parameters of a local Lorentz transformation. There are thus 20 - 6 = 14 independent local features of the curvature ("curvature invariants") that are coordinate-independent, any one of which one could imagine employing in the action principle. However, 

Variational principle the 
simplest route to Einstein's 
equation 

<4> R is the only one of these 14 quantities that is linear in the second derivatives Scalar curvature invariant the of the metric coefficients. Any choice of invariant other than Hilbert's complicates only natural choice the geometrodynamic law, and destroys the simple correspondence with the Newto-nian theory of gravity (Chapter 17). Hilbert originally conceived of the independently adjustable functions of x, y, z, t in the variational principle as being the ten distinct components of the metric tensor in contravariant representation, gµ". Later Palatini (1919) discovered a simpler and more instructive listing of the independently adjustable functions: not the ten gµ" alone, but the ten gµ " plus the forty I' �" of the affine connection. To give up the standard formula for the connection r in terms of the metric g and let I' "flap in the breeze" is not a new kind of enterprise in mathematical physics. Even in the simplest problem of mechanics, one can give up the standard formula for the momentum p in terms of a time-derivative of the coordinate x and also let 



Idea of varying coordinate 
and momentum 
independent ly 

Variat ion of connect ion 1s a 
tensor 
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p "flap in the breeze. " Then x(t) and p(t) become two independently adjustable 
functions in a new variational principle, 

J
x, t 

[ 
dx(t) 

] I = p(t) -
d

- - H(p(t), x(t), t) dt = extremum. 
a:', t' t 

(2 1.14) 

Happily, out of the extremization with respect to choice of the function p(t), one 
recovers the standard formula for the momentum in terms of the velocity. The 
extremization with respect to choice of the other function, x(t), gives the equation 
of motion just as does the more elementary variational analysis of Euler and La
grange, where x(t) is the sole adjustable function. A further analysis of this equiva
lence between the two kinds of variational principles in particle mechanics appears 
in Box 2 1.1. In that box, one also sees the two kinds of variational principle as applied 
to electrodynamics. 

To express the Hilbert variational principle in terms of the F�" and g
"'/3 regarded 

as the primordial functions of t, x, y, z, note that the Lagrangian density is 

Here, as in any spacetime manifold with an affine connection, one has (Chap
ter 14) 

(2 1.16) 

where 

(2 1.17) 

and every F is given in advance (in a coordinate frame) as symmetric in its two 
lower indices. In order that the integral I of (2 1. 2 - 2 1.3) should be an extremum, 
one requires that the variation in I caused by changes both in the g

µ" and in the 
F 's should vanish; thus, 

0 = of = ( l/ l61r) J o[g
"'f3 R,,i - g)11 2J d4x + J o[Lne1i - g)11 2] d4x. (2 l .l 8) 

Consider now the variations of the individual factors in the first and second 
integrals in (2 1.18). The variation of the first factor is trivial, og

"'/3. In the variation 
of the second factor, R,,13 , changes in the g

"'/3 play no part; only changes in the F 's 
appear. Moreover, the variation oF�13 is a tensor even though F�13 itself is not. Thus 
in the transformation formula 

(2 l . l 9) 

the last term destroys the tensor character of any set of F�r individually, but subtracts 
out in the difference oF�r between two alternative sets of F 's. Note that the variation 
oR\µ13 of the typical component of the curvature tensor consists of two terms of 

(continued on page 500) 
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Box 21 .1 RATE OF CHANGE OF ACTION WITH DYNAMIC COORDINATE 
( =  "MOMENTUM") AND WITH TIME, AND THE DISPERSION 
RELATION ( =  "HAMILTONIAN") THAT CONNECTS THEM 
IN PARTICLE MECHANICS AND IN ELECTRODYNAMICS 

A. PRO LOG O N  TH E PARTICLE-MECHAN ICS ANALO G 

O F  TH E PALATIN I METH O D  

In particle mechanics, one considers the history x = x(t) to be adjustable be
tween the end points (x', t') and (x, t) and varies it to extremize the integral / = 
J L(x, x, t) dt taken between these two limits. 

Expressed in terms of coordinates and momenta 
(see Figure 2 1.1 ), the integral has the form 

1 = J [px - H(p, x, t)J dt, (1) 

where x(t) is again the function to be varied and 
p is only an abbreviation for a certain function of 
x and x; thus, p = aL(x, x, t)/a.x. Viewed in this 
way, the variation, 8p(t), of the momentum is gov
erned by, and is only a reflection of, the variation 
8x(t). 

------

x", t" 

_,,,-_,,,-
I 
I / 
I / 
1 /  
1/  

1 .  Momentum Treated as Independently 

Variable 

/'I // 
/ , .............. 

x' t' / �  ' 
I. :; ....... j, _,- ; I 

There miraculously exists, however, quite another 
way to view the problem (see inset). One can re
gard x(t) and p(t) as two quite uncorrelated and 
independently adjustable functions. One abandons 
the formula p = aL(x, x, t)/a.x, only to recover it, 
or the equivalent of it, from the new "independ
ent-coordinate-and-momentum version " of the 
variation principle. 

The variation of (1 ), as defined and calculated in this new way, becomes 

x",t" x", t" 
[( aH) ( aH) ] 

8l = p 8x l + f x - - 8p + -p - - 8x dt. 
x' , t' x' , t' ap ax 

Demand that the coefficient of 8p vanish and have the sought-for new version, 

. aH( p, x, t) 
x = ----

ap 

(2 ) 
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of the old relation, p = aL(x, .x, t)/a.x, between momentum and velocity. The van
ishing of the coefficient of 8x gives the other Hamilton equation, 

. aH(p, x, t) 
p = -

ax 

equivalent in content to the original Lagrange equation of motion, 

.!l... l£  _ l£ = 0. 
dt ax ax 

(3) 

(4) 

That p(t) in this double variable conception is-before the extremization!-a 
function of time quite separate from and independent of the function x(t) shows 
nowhere more clearly than in the circumstance that p(t) has no end point conditions 
imposed on it, whereas x' and x" are specified. Thus not only is the shape of the 
history subject to adjustment in x, p, t space in the course of achieving the extremum, 
but even the end points are subject to being slid along the two indicated lines in 
the inset, like beads on a wire. 

2 .  Action as Tool for Finding Dispersion Relation 

Denote by S(x, t) the "action, " or extremal value of /, for the classical history that 
starts with (x ', t ') and ends at (x, t) ( = ti times phase of de Broglie wave). To change 
the end points to (x + 8x, t) makes the change in action 

8S = p 8x .  ( 5) 

Thus momentum is "rate of change of action with dynamic coordinate. " 
To change the end point to 

(x + 8x, t + 8t) = ([x + x 8t] + [8x - x 8t], t + 8t) (6) 

makes the change in action 

8S = p[8x - x 8t] + L 8t = p 8x - H 8t. (7) 

Thus the Hamiltonian is the negative of "the rate of change of action with time. " 
In terms of the Hamiltonian H = H(p, x), the "dispersion relation " for de Broglie 

waves becomes 

_ as = H (as x) . 
at ax ' 

(8) 

In the derivation of this dispersion relation, one can profitably short-cut all talk 
of p(t) and x(t) as independently variable quantities, and derive the result in hardly 



more than one step from the definition I = f L(x, x, t) dt. Similarly in electrody
namics. 

The remainder of this box best follows a first perusal of Chapter 2 1 .  

B .  ANALO G O F  TH E PALATIN I MET H O D  IN ELECTRO DYNAMICS 

In source-free electrodynamics, one considers as given two spacelike hypersurfaces 
S' and S", and the magnetic fields-as-a-function-of-position in each, B '  and B "  (this 
second field will later be written without the " superscript to simplify the notation). 
To be varied is an integral extended over the region of spacetime between the two 
hypersurfaces, 

= 4 _ _ __ µ v _ 1/ 2 4 J i I /Maxwell - £Maxwell d X -
1 6 '77  

F F
µ

. (  g) d X. 

1 . Variation of Field on Hypersu rface and Variation of Location 

of Hypersu rface are Cleanly Separated Concepts 

in Electromagnetism 

(9) 

The electromagnetic field F is the physically relevant quantity in electromagnetism 
(compare the 3-geometry in geometrodynamics). By contrast, the 4-potential A has 
no direct physical significance. A change of gauge in the potentials, 

leaves unchanged the field components 

(compare the coordinate transformation that changes the gµ v while leaving un
changed the <3>�). The variation of the fields within the body of the sandwich is 
nevertheless expressed most conveniently in terms of the effect of changes 8Aµ in 
the potentials. 

One also wants to see how the action integral is influenced by changes in the 
location of the upper spacelike hypersurface ("many-fingered time"). Think of the 
point of the hypersurface that is presently endowed with coordinates x, y, z, t(x, y, z) 
as being displaced to x, y, z, t + 8t(x, y, z). Now renounce this use of a privi
leged coordinate system. Describe the displacement of the simultaneity in terms 
of a 4-vector 8n (not a unit 4-vector) normal to the hypersurface I. The ele
ment of 4-volume 8S2 included between the original upper face of the sandwich 
and the new upper face, that had in the privileged coordinate system the form 
( - g)11 2 8t(x, y, z) d3x, in the notation of Chapter 20 becomes 

(10) 

where the element of surface d3 Iµ already includes the previously listed factor 
( _ g)l/2 _ 



4 9 6  2 1  VAR I ATI ONAL  P R I N C I PLE  AN D I N IT IAL-VALU E DATA 

Box 21.1 (continued) 

Counting together the influence of changes in the field values on the upper 
hypersurface and changes in the location of that hypersurface, one has 

8S = 8Jextremal = - (1 / 1 677) f Fµ"Fµi8n • d3I) 
upper I 

+ (1 /477) I Fµp � d3 2 p (1 1 )  
upper I t 

1 replace by 1 

its equivalent 
(8Aµ - 8n "Aµ ;a) 

+ ( 1 /477) f �� 8Aµ(-g)11 2 d4x. 
4-volume t 
1 has to vanish 1 

because integral has 
1 been extremized 1 

Simplify this expression by arranging the coordinates so that the hypersurface 
shall be a hypersurface of constant t, and so that lines of constant x, y, z shall be 
normal to this hypersurface. Then it follows that the element of volume on that 
hypersurface contains a single non vanishing component, d3 2 0 = ( -g)112 d3x. The 
antisymmetry of the field quantity F0" in its two indices requires that v be a spacelike 
label, i = 1 ,  2, 3. The variation of the action becomes 

[ ( - g)ll2Fi0 { ( - g)ll2Fi0 } ] 
8S = f 477 

8A; -
477 A; ;o - EMaxwell 8t d3x. 

{ ( - g) l l 2Fi0 } 
add and subtract 477 Ao 8t . 

, i 

2.  Meaning of Field " Momentum" in Electrodynamics 

Identify this expression with the quantity 

8S = f 771M 8A; d3x - J X 8S2, 

where 

. SS 
( 

"density of electromagnetic 
) 77EM = � = momentum dynamically canon- = 

A, ically conjugate to A;" 

(-g)11 2F;o 

477 

(12 ) 

( 13) 

(14) 
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is a simple multiple of the electric field and where 

(
"density of 

) :JC = - 1� = electromagnetic = ( l /16'1T)[Fµ" Fµv + 4F i0(A; ;o - A0 , ;)J 
Hamiltonian" 

(1 5) 

= ( l/8'1T)(E2 + B 2) .  

The concept of dynamic Hamiltonian density agrees with the usual concept of density 
of electromagnetic energy, despite the very different context in which the two 
quantities are derived and used. However, the canonical momentum 'IT�M has nothing 
directly whatsoever to do with the density of electromagnetic momentum as defined, 
for example, by the Poynting vector, despite the confusing similarity in the standard 
names for the two quantities. Note that there is no term 8A0 in (13); that is, 'ITiM 0. 

3 .  Bubble Differentiation 

The "bubble differentiation" with respect to 
"many-fingered time" that appears in (1 5) was first 
introduced by Tomonaga (1946). One thinks of a 
spacelike hypersurface I 1 , a magnetic field B de
fined as a function of position on this hypersurface 
(by an observer on a world line normal to this 
hypersurface), and a prescription S that carries one 
from this information to a single number, the ac
tion. (Divided by n, this action gives the phase of 
the "wave function" or "probability amplitude" 
for the occurrence of this particular distribution 
of field values over this particular hypersurface.) 
One goes to a second hypersurface I 2 ( see inset), 
which is identical with I 1 , except in the immediate 
vicinity of a given point. Take a distribution of 
field values over I 2 that is identical with the origi
nal distribution over I 1, "identity of location" 
being defined by means of the normal. Evaluate 
the difference, oS, in the value of the dynamic 
phase or action in the two cases. Divide this differ
ence by the amount of proper 4-volume oil = 
J(on · d3E) contained in the "bubble" between the 
two hypersurfaces. Take the quotient, evaluate it 
in the limit in which the size of the bubble goes 
to zero, and in this way get the "bubble-time de
rivative," oS/oil, of the action. 

;s 2 
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Box 21 . 1 (continued) 

What does it mean to say that the action, S, besides depending on the hypersurface, 
.J:, depends also on the distribution of the magnetic field, B, over that hypersurface? 
The action depends on the physical quantity, B = V X A, not on the prephysical 
quantity, A. Thus a change in gauge oAi = oA/ox i, cannot make any change in S. 
On the other hand, the calculated value of the change in S for this alteration in 
A is 

(16) 

In order that there shall be no dependence of action on gauge, it follows that this 
expression must vanish for arbitrary ;\(x, y, z), a result only possible if S(.J:, B) = 
S(hypersurface, field on hypersurface) satisfies the identity 

( oS ) · · 
oA . . = ?T}iJM,i = - ( l/4'7T)&°', i = 0. 

i , i  

4. Hamilton-Jacobi " Propagation Law" for Electrodynamics 

(17) 

The "dispersion relation " or "Hamilton-Jacobi equation " for electromagnetism 
relates (1) the changes of the "dynamic phase " or "action " brought about by altera
tions in the dynamic variables Ai (the generalization of the x of particle dynamics) 
with (2 ) the changes brought about by alterations in many-fingered time (the gener
alization of the single time t of particle dynamics); thus (1 5) translates into 

ss (4'7T)2(os)2 1 2 - oil = � oA + (8'7T) 
(V X A) (18) 

C. DISP ERSIO N RELATIO NS FOR G EO METRO DYNAMICS AN D 

ELECTRO DYNAMICS CO MPARED AN D CO NTRASTED 

Geometrodynamics possesses a direct analog of equation (17) ("action depends 
on no information carried by the vector potential A except the magnetic field 
B = V X A "), in an equation that says the action depends on no information carried 
by the metric gij on the "upper face of the sandwich " except the 3-geometry there, 
<3l�. It also possesses a direct analog of equation (18) ("dynamic equation for the 
propagation of the action ") with this one difference: in electrodynamics the field 
variable B and the many-fingered time are distinct in character, whereas in geo
metrodynamics the "field " and the "many-fingered time " can be regarded as two 
aspects of one and the same <3l�: 
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D. ACTIO N PRINCIP LE AN D DISP ERSIO N RELATIO N ARE 

RO OTED IN TH E QUANTU M PRINCIP LE; FEYN MAN 'S 

PRINCIP LE OF TH E DEMOCRATIC EQUALITY 

O F  ALL H ISTORIES 

For more on action principles in physics, see for example Mercier (1953), Lanczos 
(1970), and Yourgrau and Mandelstam (1968). 

Newton (1687) in the first page of the preface to the first edition of his Principia 
notes that "The description of right lines . . .  , upon which geometry is founded, 
belongs to mechanics. Geometry does not teach us to draw these lines, but requires 
them to be drawn." 

Newton's remark is also a question. Mechanics moves a particle along a straight 
line, but what is the machinery b:¥,, which mechanics accomplishes this miracle? The 
quantum principle gives the answer. The particle moves along the straight line only 
by not moving along the straight line. In effect it "feels out" every conceivable world 
line that leads from the start, (x', t'), to the point of detection, (x", t"), "compares" 
one with another, and takes the extremal world line. How does it accomplish this 
miracle? 

The particle is governed by a "probability amplitude to transit from (x', t') to 
(x", t"). " This amplitude or "propagator," (x", t" lx', t' ), is the democratic sum with 
equal weight of contributions from every world line that leads from start to finish; 
thus, 

(x", t" lx', t' ) = N f eil"/11 ulJx .  

Here N is a normalization factor, the same for all histories. 

(1 5) 

6lJx is the "volume element" for the sum over histories. For a "skeleton history" 
defined by giving xn at tn = t0 + n .1t, one has 6lJx equal, up to a multiplicative 
constant, to dx 1 dx2 . . .  dxN. When the history is defined by the Fourier coefficients 
in such an expression as 

x'(t" - t) + x"(t - t') . (t - t') 
x(t) = -------- + "1 a sm mr --- (16) 

(t" - t') L., n ( t" - t') ' n 

the volume element, again up to a multiplicative factor, is da1 da2 • . . • 

Destructive interference in effect wipes out the contribution to the trans1t10n 
probability from histories that differ significantly from the "extremal history" or 
"classical history." Histories that are near that extremal history, on the other hand, 
contribute constructively, and for a simple reason: a small departure of the first order 
from the classical history brings about a change in phase which is only of the second 
order in the departure. 

In this elementary example, one sees illustrated why it is that extremal principles 
play such a large part in classical dynamics. They remind one that all classical physics 
rests on a foundation of quantum physics. The central ideas are (1) the principle 
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Box 2 1  . 1 (continued) 

of superposition of probability amplitudes, (2 ) constructive and destructive interfer
ence, (3) the "democracy of all histories, " and (4) the probability amplitude associ
ated with a history H is e iIHlti , apart from a normalizing factor that is a multiplicative 
constant. 

For more on the democracy of histories and the sum over histories see Feynman 
(1942 , 1948, 1949, 19 51, and 19 55), and the book of Feynman and Hibbs (196 5) ; 
also Hibbs (1951), Morette (19 51), Choquard (195 5), Polkinghorne (19 5 5), Fujiwara 
(1962 ), and the survey and literature references in Kursunoglu (1962 ); also reports 
of Dempster (1963) and Symanzik (1963). This outlook has been applied by many 
workers to discuss the quantum formulation of geometrodynamics, the first being 
Misner (19 57) and one of the latest being Faddeev (1971). 

the form 8I'">-
af:3 , µ and four terms of the form I' 8I' (indices being dropped for simplic

ity). One coordinate system is as good as another in dealing with a tensor. Therefore 
pick a coordinate system in which all the F 's vanish at the point under study. The 
terms I' 8I' drop out. In this coordinate system, the variation of the curvature is 
expressed in terms of first derivatives of quantities like 8I'�f:3' One then need only 
replace the ordinary derivatives by covariant derivatives to obtain a formula correct 
in any coordinate system, 

(2 1. 2 0) 

along with its contraction, 

(2 1.2 1) 

The third factor that appears in the variation principle is ( - g)11 2 . Its variation 
( exercise 2 1.1) is 

8( _ g)l/2 = _ � ( _ g)ll 2gµv 8gµv _ (2 1. 2 2 )  

The other integrand, the Lagrange density Lnetct, will depend on the fields present 
and their derivatives, but will be assumed to contain the metric only as gµv itself, 
never in the form of any derivatives of gµv _ 

In order for an extremum to exist, the following expression has to vanish: 

( l/ l61r) f [ ( Raf:3 - � gaf:3 R) 8g
af:3 + g

af:3(8I'�f:3 ; ">- - 8I'�">- ;f:3)] ( - g)11 2 d4x 

+ J ( 8Lnetd _ _!__
g L . ) 8g

af:3(- g)ll2 d4x = 0  
8 gaf:3 2 a(:3 field 

(2 1.2 3) 
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Focus attention on the term in (2 1.2 3) that contains the variations of I', 

(1/16'77) J gaf3(8I'�f3 )-. - 8I'�A ;/3 )( - g)112 d4x, 

50 1 

and integrate by parts to eliminate the derivatives of the 8I'. To prepare the way 
for this integration, introduce the concept of tensor density, a notational device widely Concept of tensor density 

applied in general relativity. The concept of tensor density aims at economy. Without 
this concept, one will treat the tensor 

€
µ,af3 y = ( -g)l/2[µ,a,By] 

(see exercise 3.13) as having 44 = 2 56 components, and its covariant derivative as 
having 45 = 1,02 4 components, of which one is 

€0123 , p  = a( - g)112 ;axP
€ [0123] - rgl u123 - I'fioa23 

- I'2p{Ola3 - I'sio12u 

= [( - g)l/2, P - I'�p( - g)l/2j[012 3j. 

The symbol [a,By8], with values (0, - 1, + 1), introduces what is largely excess bag
gage, doing mere bookkeeping on alternating indices. Drop this unhandiness. Intro
duce instead the non-tensor ( - g)112 and define for it the law of covariant differ
entiation, 

( - g)ll2 ; p = ( _ g)l/2, P _ I'�p( - g)l/2 _ (2 1.2 4) 

These four components take the place of the 1,02 4 components and communicate 
all the important information that was in them. 

Associated with the vector )
µ, 

is the vector density 

jµ, = ( _ g)l/2)µ,; 

with the tensor Tµ,v, the tensor density 

and so on; the German gothic letter is a standard indicator for the presence of the 
factor (-g)11 2 . On some occasions (see, for example, § 2 1.11) it is convenient to 
multiply the components of a tensor with a power of ( - g)11 2 other than 1. According 
to the value of the exponent, the resulting assemblage of components is then called 
a tensor density of this or that weight. 

The law of differentiation of an ordinary or standard tensor density formed from 
a tensor of arbitrary order, 

is 
(11'.C),r = (11'.L), r + (standard r:. terms of a standard covariant 

derivative multiplied into ©::.' )  - (©::- -)I'�r -

The covariant derivative of a product is the sum of two terms : the covariant deriva-
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tive of the first, times the second, plus the first times the covariant derivative of 
the second. 

Now return to the integral to be evaluated. Combine the factors ga/3 and ( - g)112 

into the tensor density ga/3. Integrate covariantly by parts, as justified by the rule 
for the covariant derivative of a product. Get a "term at limits," plus the integral 

- (l /16w) I (gaf3 ; A - o�gaY;y) oI'�/3 d4x. 

This integral is the only term in the action integral that contains the variations of 
the I' 's at the "interior points " of interest here. For the integral to be an extremum, 
the symmetrized coefficient of oI' �/3 must vanish, 

This set of forty equations for the forty covariant derivative ga/3 ' A has only the zero 
solution, 

ga/3 ; A = 0. (2 1. 2 5) 

Thus the "density formed from the reciprocal metric tensor " is covariantly constant. 
This simple result (1) brings many simple results in its train: the covariant con

stancy of (2 ) ( - g)112, (3) gaf3 , (4) gaf3 , and ( 5) llaf3 · Of these, (4) is of special interest 
here, and (2 ) is needed in proving it, as follows. Take definition (2 1. 2 4) for the 
covariant derivative of ( - g)112, and calculate the ordinary derivative that appears 
in the first term from exercise 2 1.1. One encounters in this calculation terms of the 
form aga/3 /ox A. Use (2 1. 2 5) to evaluate them, and end up with the result 

( - g)l/2 A = 0. 

From this result it follows that the covariant derivative of the (D-tensor density 
( -g) 112 o� is also zero. But this tensor density is the product of the tensor density 
ga/3 by the ordinary metric tensor g13 y. In the covariant derivative of this product 
by x \  one already knows that the derivative of the first factor is zero. Therefore 
the first factor times the derivative of the second must be zero, 

and from this it follows that 
(2 1. 2 6) 

as was to be proven; or, explicitly, 

Solve these equations for the I''s, which up to now have been independent of the 
g13y, and end up with the standard equation for the connection coefficients, 

(2 1. 2 7) 

as required for Riemannian geometry. 



§ 21 2 H ILBERT ACT ION PRINCIPLE AND PA LAT INI  METHOD OF VARIAT ION 503  Similarly, equate to zero the coefficient o f  og"/3 in the variation (21.23), and find all ten components of Einstein's field equation, in the form ( 2 oLfield ) G ,,13 = 8'/T g,,13 £field - 8gaf3 · 

t f identified in §21.3 with ] 7. the stress-energy tensor T,,13 Among variations of the metric, one of the simplest is the change 
brought about by the infinitesimal coordinate transformation 

(2 1. 2 8)  

(21.29) 
(21.30) Although the metric changes, the 3-geometry does not. It does not matter whether the spacetime geometry that one is dealing with extremizes the action principle or not, whether it is a solution of Einstein's equations or not ; the action integral I is a scalar invariant, a number, the value of which depends on the physics but not at all on the system of coordinates in which that physics is expressed. This invariance even obtains for both parts of the action principle individually (/geom and /fields). Therefore neither part will be affected in value by the variation (21.29). In other words, the quantity olgeom = (1/16'17) f G,,i�" ,/3 + �/3 ;")( - g)11 2  d4x 

= - (1/8'17) J G,,13 '13�"( - g)11 2  d4x �"covariant integration by parts"] (21.31) 
must vanish whatever the 4-geometry and whatever the change �" - In this way, one sees from a new angle the contracted Bianchi identities of Chapter 15, (21.32) The "neutrality" of the action principle with respect to a mere coordinate transformation such as (21.29) shows once again that the variational principle-and with it Einstein's equation-cannot determine the coordinates or the metric, but only the 4-geometry itself. 
Exercise 2 1 . 1 .  VAR IATI O N  O F  TH E D ETE R M I NANT OF T H E  M ETR IC  TENSOR 
Recalling that the change in the value o f  any determinant is given by multiplying the change 
in each element of that determinant by its cofactor and adding the resulting products ( exer
cise 5 .5) prove that 

8( - g) ll 2 = ½ ( - g) ll2gµv 8g/LV and 8( - g)112 = - ½ (- g) 1!2g/L V 8gl'' . 

Also show that 
and 

Act ion unaffected by mere 
change i n  coord i natizat 1on 
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§ 2 1 . 3 .  MATTER LAGRAN G IAN AN D STRESS-EN ERGY TENSOR 

The derivation of Einstein's geometrodynamic law from Hilbert's action principle 
puts on the righthand side a source term that is derived from the field Lagrangian. 
In contrast, the derivation of Chapter 17 identified the source term with the stress
energy tensor of the field. For the two derivations to be compatible, the stress-energy 
tensor must be given by the expression 

(2 1.33a) 

or 

(2 1.33b) 

What are the consequences of this identification? 
By the term "Lagrange function of the field" as employed here, one means the 

Lagrange function of the classical theory as formulated in flat spacetime, with the 
flat-spacetime metric replaced wherever it appears by the actual metric, and with 
the "comma-goes-to-semicolon rule" of Chapter 16 applied to all derivatives. 

Were one dealing with a general tensorial field, the comma-goes-to-semicolon rule 
would introduce, in addition to the derivative of the tensorial field with all its indices, 
a number of I''s equal to the number of indices. The presence of these I''s in the 
field Lagrangian would have unhappy consequences for the Palatini variational 
procedure described in § 2 1.2 . No longer would the I''s end up given in terms of 
the metric coefficients by the standard formula (2 1.2 7). No longer would the geom
etry, as derived from the Hilbert-Palatini variation principle, be Riemannian. Then 
what? 

These troublesome issues do not arise in two well-known simple cases, a scalar 
field and an electromagnetic field. In the one case, the field Lagrangian becomes 

(2 1.34) 

No connection coefficient comes in; the quantity being differentiated is a scalar. In 
the other case, the field Lagrangian is built on first derivatives of the 4-potential 
Aw Therefore I''s should appear, according to the standard rules for covariant 
differentiation (Box 8.4). However, the derivatives of the A's appear, never alone, 
but always in an antisymmetric combination where the I''s cancel, making covariant 
derivatives equivalent to ordinary derivatives: 

(2 1.35 ) 

In both cases, the differentiations of (2 1.33) to generate the stress-energy tensor 
are easily carried out ( exercises 2 1.2 and 2 1.3) and give the standard expressions 
already seen ((5 . 2 2 )  and (5 . 2 3)] for Tµv in one of these two cases in an earlier chapter. 

Field theory provides a quite other method to generate a so-called canonical 
expression for the stress-energy tensor of a field [see, for example, Wentzel (1949)]. 



§ 2 1  4 S P L ITTI N G  S PACETI M E  I N TO S PACE AN D T I M E  505  By the very manner of construction, such an expression is guaranteed also to satisfy the law of conservation of momentum and energy, and by this circumstance it too becomes useful in certain contexts. However, the canonical tensor is often not symmetric in its two indices, and in such cases violates the law of conservation of angular momentum (see discussion in §5 .7) .  Even when symmetric, it may give a quite different localization of stress and energy than that given by (21 .33) . Field theory in and by itself is unable to decide between these different pictures of where the field energy is localized. However, direct measurements of the pull of gravitation provide in principle [see, for example, Feynman ( 1 964)] a means to distinguish between alternative prescriptions for the localization of stress-energy, because gravitation responds directly to density of mass-energy and momentum. It is therefore a happy circumstance that the theory of gravity in the variational formulation gives a unique prescription for fixing the stress-energy tensor, a prescription that, besides being symmetric, also automatically satisfies the laws of conservation of momentum and energy ( exercises 21 .2 and 21 .3) .  [For an early discussion of the symmetrization of the stress-energy tensor, see Rosenfeld ( 1 940) and Belinfante ( 1 940) . A more extensive discussion is given by Corson ( 1 953) and Davis ( 1 970), along with extensive references to the literature.] When one deals with a spinor field, one finds it convenient to take as the quantities to be varied, not the metric coefficients themselves, but the components of a tetrad of orthonormal vectors defined as a tetrad field over all space [see Davis ( 1 970) for discussion and references] . 
Exercise 2 1 . 2 .  STRESS-E N E RGY T E N S O R  FO R A SCALAR F I E L D  Given the Lagrange function (2 1 .34) o f  a scalar field, derive the stress-energy tensor for  this field. Also write down the field equation for the scalar field that one derives from this Lagrange function (in the general case where the field executes its dynamics within the arena of a curved spacetime) . Show that as a consequence of this field equation, the stress-energy tensor satisfies the conservation law, Taf3 'f3 = 0 .  
Exercise 2 1 . 3 .  FARADAY-MAXWE L L  STRESS- E N E RGY T E N S O R  Given the Lagrangian density - Fµ., FP.• / 1677, reexpress i t  in  terms of  the variables Aµ. and gP.• ,  and by use of (2 1 .33) derive the stress-energy tensor as discussed in §5 .6 .  Also derive from the Lagrange variation principle the field equation Fap ' f3  = 0 (curved spacetime, but-for simplicity-a charge-free region of space) . As a consequence of this field equation, show that the Faraday-Maxwell stress-energy tensor satisfies the conservation law, Taf3 ' f3  = 0 .  For a more ambitious project, show that any stress-energy tensor derived from a field Lagrangian by the prescription of equation (2 1 .33)  will automatically satisfy the conservation law Tap ' f3  = 0 .  
§ 2 1 .4 .  SPLITTIN G SPACETIME INTO SPACE AN D TIME There are many ways to "push forward" many-fingered time and explore spacetime faster here and slower there, or faster there and slower here. However, a computer is most efficiently programmed only when it follows one definite prescription. The 
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Figure 21.2 .  
Building two 3-geometries into a thin sandwich 4-geometry, by interposing perpendicular connectors 
between the two, with preassigned lengths and shifts. What would otherwise be flexible thereupon 
becomes rigid. The flagged point illustrates equation (2 1 .40) . 

successive hypersurfaces on which it gives the geometry are most conveniently 
described by successive values ofa time-parameter t. One treats on a different footing 
the 3-geometries of these hypersurfaces and the 4-geometry that fills in between these 
laminations. 

The slicing of spacetime into a one-parameter family of spacelike hypersurfaces 
is called for, not only by the analysis of the dynamics along the way, but also by 
the boundary conditions as they pose themselves in any action principle of the form, 
"Give the 3-geometries on the two faces of a sandwich of spacetime, and adjust 
the 4-geometry in between to extremize the action." 

There is no simpler sandwich to consider than one of infinitesimal thickness (Figure 
21 .2). Choosing coordinates adapted to the (3 + I )-space-time split, designate the 
"lower" ( earlier) hypersurface in the diagram as t = constant and the "upper" (later) 
one as t + dt = constant (names, only names; no direct measure whatsoever of 
proper time). Compare the two hypersurfaces with two ribbons of steel out of which 
one wants to construct a rigid structure. To give the geometry on the two ribbons 
by no means fixes this structure; for that purpose, one needs cross-connectors between 
the one ribbon and the other. It is not even enough (I) to specify that these connectors 
are to be welded on perpendicular to the lower ribbon; (2) to specify where each 
is to be welded; and (3) to give its length. One must in addition tell where each 
connector joins the upper surface. If the proper distances between tops of the 
connectors are everywhere shorter than the distances between the bases of the 
connectors, the double ribbon will have the curve of the cable of a suspension bridge; 
if everywhere longer, the curve of the arch of a masonry bridge. The data necessary 
for the construction of the sandwich are thus ( 1 )  the metric of the 3-geometry of 
the lower hypersurface, 

(2 1.36) 

telling the (distance)2 between one point in that hypersurface and another; (2) the 
metric on the upper hypersurface, 
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507 (21.37) 
(21.38) 

of the connector that is based on the point (x, y, z) of the lower hypersurface; and (4) a formula for the place on the upper hypersurface, (21.39) where this connector is to be welded. Omit part of this information, and find the structure deprived of rigidity. The rigidity of the structure of the thin sandwich is most immediately revealed in the definiteness of the 4-geometry of the spacetime filling of the sandwich. Ask for the proper interval ds or dT between x" = (t, x i) and x" + dx" = (t + dt, x i + dx i) .  The Pythagorean theorem in its 4-dimensional form 
ds2 = (proper distance }2 

_ (proper time from }2 in base 3-geometry lower to upper 3-geometry yields the result (see Figure 21.2) . ds2 = gi; (dx i + Ni dt)(dx; + N; dt) - (N dt)2 (21.40) Here as in (21.36) the g;; are the metric coefficients of the 3-geometry, distinguished by their Latin labels from the Greek-indexed components of the 4-metric, ds2 - <4>g dx" dx/3 - a/3 ' (21.41) labeled here with a suffix <4> to reduce the possibility of confusion. Comparing (21.41) 

Metric of 4-geometry 
depends on lapse and shift of 
connectors of the two 
3-geometries 

and (21.40), one arrives at the following construction of the 4-metric out of the Detai ls of the 4-geometry 3-metric and the lapse and shift functions [Arnowitt, Deser, and Misner (1962)] : 
(21.42) 

The welded connectors do the job! In (21.42), the quantities Nm are the components of the shift in its original primordial contravariant form, whereas the N; = gimNm are the covariant components, as calculated within the 3-geometry with the 3-metric. To invert this relation, (21.43) 
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is to deal with the reciprocal 3-metric, a quantity that has to be distinguished sharply 
from the reciprocal 4-metric. Thus, the reciprocal 4-metric is 

-( l/N2) 

a result that one checks by calculating out the product 

(4)g (4)g/J Y  = (4)0 Y 
a{J a 

according to the standard rules for matrix multiplication. 
The volume element has the form 

( - (4>g)11 2 dx0 dx 1 dx2 dx3 = Ng11 2 dt dx 1 dx2 dx3 . 

(2 1. 44) 

(2 1.4 5) 

Welding the connectors to the two steel ribbons, or adding the lapse and shift 
functions to the 3-metric, by rigidifying the 4-metric, also automatically determines 
the components of the unit timelike normal vector n. The condition of normalization 
on this 4-vector is most easily formulated by saying that there exists a I-form, also 
called n for the sake of convenience, dual to n, and such that the product of this 
vector by this I-form has the value 

(n, n )  = - I. (2 1.46) 

This I-form has the value 

n = n/J dxfJ = -N dt + 0 + 0 + 0 .  (2 1. 47) 

Only so can this I-form, this structure of layered surfaces, automatically yield a 
value of unity, one bong of the bell, when pierced as in Figure 2 .4 by a vector that 
represents an advance of one unit in proper time, regardless of what x, y, and z 
displacements it also has. Thus the unit timelike normal vector in covariant I-form 
representation necessarily has the components 

n/J = ( - N, 0, 0, 0) (2 1. 48) 

Raise the indices via (2 1.44) to obtain the contravariant compvnents of the same 
normal, represented as a tangent vector; thus, 

na = [( l /N), - (Nm/N)J. (2 1. 49) 

This result receives a simple interpretation on inspection of Figure 2 1.2 . Thus the 
typical "perpendicular connector" in the diagram can be said to have the components 

(dt, - Nm dt) 

and to have the proper length dr = N dt; so, ratioed down to a vector n of unit 
proper length, the components are precisely those given by (2 1.49). 
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§2 1 . 5 . INTRINSIC AN D EXTRINSIC CURVATURE 

509  

The central concept in Einstein's account of gravity is curvature, so it is appropriate 
to analyze curvature in the language of the (3 + 1)-space-time split. The curvature 
intrinsic to the 3-geometry of a spacelike hypersurface may be defined and calculated 
by the same methods described and employed in the calculation of four-dimensional 
curvature in Chapter 14. Of all measures of the intrinsic curvature, one of the 
simplest is the Riemann scalar curvature invariant <3>R (written for simplicity of 
notation in what follows without the prefix, as R); and of all ways to define this 
invariant (see Chapter 14), one of the most compact uses the limit (see exercise 2 1. 4) 

(at point 
} R = Lim 18 under study ,_.o 

( 
proper area of a surface ( approximately

) 4m,2 - a �-sphere) defined �s the locus of the 
pomts at a proper distance c 

(2 1. 50) 

For a more detailed description of the curvature intrinsic to the 3-geometry, 
capitalize on differential geometry as already developed in Chapters 8 through 14, 
amending it only as required to distinguish what is three-dimensional from what 
is four-dimensional. Begin by considering a displacement 

(2 1. 51) 

within the hypersurface. Here the ei are the basis tangent vectors ei = a ; axi (in 
one notation) or ei = a?J ; ax i (in another notation) dual to the three coordinate 
I-forms dx i. Any field of tangent vectors A that happens to lie in the hypersurface 
lets itself be expressed in terms of the same basis vectors: 

(2 1. 52 ) 

The scalar product of this vector with the base vector e
i 

is 

(2 1. 53) 

Now turn attention from a vector at one point to the parallel transport of the vector 
to a nearby point. 

A vector lying on the equator of the Earth and pointing toward the North Star, 
transported parallel to itself along a meridian to a point still on the Earth's surface, 
but 1,000 km to the north, will no longer lie in the 2 -geometry of the surface of 
the Earth. A telescope located in the northern hemisphere has to raise its tube to 
see the North Star ! The generalization to a three-dimensional hypersurface imbedded 
in a 4-geometry is immediate. Take vector A, lying in the hypersurface, and transport 
it along an elementary route lying in the hypersurface, and in the course of this 
transport displace it at each stage parallel to itself, where "parallel" means parallel 
with respect to the geometry of the enveloping 4-manifold. Then A will ordinarily 

Scalar curvature as measure 
of area deficit 
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end up no longer lying in the hypersurface. Thus the "covariant derivative" of A 
in the direction of the i-th coordinate direction in the geometry of the enveloping 
spacetime (that is, the A at the new point diminished by the transported A) has 
the form ( see § 10 .4) 

<4lV A = <4)V,A = (4)V- (e -A;) = e - oA; + (<4)I'if. e )A;. e, . i J J ax• Ji µ (2 1.54) 

A special instance of this formula is the equation for the covariantly measured change 
of the base vector em itself, 

(2 1.5 5) 

In both (2 1.54) and (2 1.5 5) the presence of the "out-of-the-hypersurface component" 

(2 1.56) 

is quite evident. Now kill this component. Project (4)VA orthogonally onto the 
hypersurface. In this way arrive at a parallel transport and a covariant derivative 
that are intrinsic to the 3-geometry of the hypersurface. By rights this covariant 
derivative should be written <3lv; but for simplicity of notation it will be written 
as V in the rest of this chapter, except where ambiguity might arise. To get the 
value of the new covariant derivative, one has only to rewrite (2 1.54) with the suffix 
<4) replaced everywhere by a <3l, or, better, dropped altogether and with the "dummy 
index " of summation µ = (0, 1, 2 ,  3) replaced by m = (1, 2 ,  3). However, it is more 
convenient, following Israel (1966), to turn from an expression dealing with contra
variant components Ai of A to one dealing with covariant components Ai = (A · ei ). 
Thus the covariant derivative of A in the direction of the i-th coordinate direction 
in the hypersurface, calculated with respect to the 3-geometry intrinsic to the hyper
surface itself, has for its h-th covariant component the quantity [see equation (10.18)] 

Here the notation of the vertical stroke distinguishes this covariant derivative from 
the covariant derivative taken with respect to the 4-geometry, as, for example, in 
equations (10.17ff). The connection coefficients here for three dimensions, like those 
dealt with earlier for four dimensions [see the equations leading from (14.14) through 
(14.15)], allow themselves to be expressed in terms of the metric coefficients and 
their first derivatives, and have the interpretation 

(2 1.58) 

From the connection coefficients in turn, one calculates as in Chapter 14 the full 
Riemann curvature tensor <3)R\mn of the 3-geometry intrinsic to the hypersurface. 

Over and above the curvature intrinsic to the simultaneity, one now encounters 
a concept not covered in previous chapters ( except fleetingly in Box 14.1 ), the 
extrinsic curvature of the 3-geometry. This idea has no meaning for a 3-geometry 



§ 2 1 . 5  INTRI NS I C  AND EXTRINS IC  CURVATURE 

Figure 21.3. 

Sn = - K(S'!.P) 

Extrinsic curvature measures the fractional shrinkage and deformation 
of a figure lying in the spacelike hypersurface I that takes place when 
each point in the figure is earned forward a umt mterval of proper time 
"normal" to the hypersurface out into the enveloping spacetime. (No 
enveloping spacetime? No extrinsic curvature ! )  The extrinsic curvature 
tensor is a positive multiple of the unit tensor when elementary displace
ments S'!.P, in whatever direction within the surface they point, all experi
ence the same fractional shrinkage. Thus the extrinsic curvature of the 
hypersurface illustrated in the figure is positive. The dashed arrow repre
sents the normal vector n at the fiducial point '!.i' after parallel transport 
to the nearby point '!.i' + S'!.P. 

5 1 1 

conceived in and by itself. It depends for its existence on this 3-geometry's being imbedded as a well-defined slice in a well-defined enveloping spacetime. It measures the curvature of this slice relative to that enveloping 4-geometry (Figure 21.3). Take the normal that now stands at the point <J' and, "keeping its base in the hypersurface" X, transport it parallel to itself as a "fiducial vector" to the point <J' + o<J', and there subtract it from the normal vector that already stands at that point. The difference, on, may be regarded in the appropriate approximation as a "vector," the value of which is governed by and depends linearly on the "vector" of displacement o<J'. To obviate any appeal to the notion of approximation, go from the finite displacement o<J' to the limiting concept of the vector-valued "displacement I -form" d<J' [see equation 15 .13]. Also replace the finite but not rigorously defined vector on by the limiting concept of a vector-valued I -form dn. This quantity, regarded as a vector, being the change in a vector n that does not change in length, must represent a change in direction and thus stand perpendicular to n .  Therefore it can be regarded as lying in the hypersurface X. Depending linearly on d<J', it can be represented in the form 
dn = - K(d<J'). (21.59) Here the linear operator K is the extrinsic curvature presented as an abstract coordinate-independent geometric object. The sign of K as defined here is positive when the tips of the normals in Figure 21.3 are closer than their bases, as they are, for example, during the recontraction of a model universe, in agreement with the conventions employed by Eisenhart (1926), Schouten (1954), and Arnowitt, Deser and Misner (1962), but opposite to the convention of Israel (1966). Into the slots in the I -forms that appear on the lefthand and righthand sides of (21.59), insert in place of the general tangent vector [ which is to describe the general 

Extrinsic curvature as an 
operator 
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local displacement, so far left open, as in the discussion following (2 .12 a)] a very 
special tangent vector, the basis vector ei, for a displacement in the i-th coordinate 
direction. Thus find (2 1. 59) reading 

(2 1.60) 

where the K/ are the components of the linear operator K in a coordinate represen
tation. Take the scalar product of both sides of (2 1.60) with the basis vector em. 
Recall (em · n) = 0. Thus establish the symmetry of the tensor Kiw 

covariantly 
presented, in its two indices: 

K = Kig. = K.i(e - · e ) = - e  · <4>v. n = n · <4>v. e im i Jm i J m m i i m 

= (n . eoY4>r?,.i = n . (4) Vm e i = Kmi • 
Lsee (2 1. 5 5)] 

(2 1.61) 

A knowledge of the tensor Ki; of extrinsic curvature assists in revealing the changes 
of the four vectors n, ei , e2, e3 under parallel transport. Equation (2 1.60) already 
tells how n changes under parallel transport. The change of em is to be read off 
from (2 1. 5 5) as a vector. It is adequate identification of this vector to know its scalar 
product with each of four independent vectors: with the basis vectors e 1 , e 2 , and 
e3, or, more briefly, with e 8 , in (2 1. 58); and with the normal vector n in (2 1.61 ). 
Thus one arrives, following Israel (1966), at what are known as the equations of 
Gauss and Weingarten, in happy oversight of all change of notation in the interven
ing century: 

(2 1.62 ) 

Knowing from this equation how each basis vector in I changes, one also knows 
how to rewrite (2 1. 54) for the change in any vector field A that lies in I. The change 
in both cases is expressed relative to a fiducial vector transported from a fiducial 
nearby point. By the term "parallel transport " one now means "parallel with respect 
to the geometry of the enveloping spacetime": 

(2 1.63) 

Of special importance is the evaluation of extrinsic curvature when spacetime is 
sliced up into spacelike slices according to the plan of Arnowitt, Deser, and Misner 
as described in § 2 1. 4. The 4-geometry of the thin sandwich illustrated in Figure 
2 1. 2 , rudimentary though it is, is fully defined by the 3-metric on the two faces of 
the sandwich and by the lapse and shift functions N and Ni. The normal in covariant 
representation according to (2 1. 47) has the components 

(2 1.64) 

The change in n relative to "n transported parallel to itself in the enveloping 
4-geometry, " according to the definition of parallel transport, is 
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(2 1 .65)  
Compare to the same change as expressed in terms of the extrinsic curvature tensor, 
Conclude that this tensor has the value 

K _ - n _ N C4>ro _ - N[C4lgoo (4)r + C4lgop C4>r ] ik - i , k - - ik - Oik pik • or, with the help of equations (2 1 .42) and (2 1 .44), 

(2 1 .66) 

(2 1 .67) 

This is the extrinsic curvature expressed in terms of the ADM lapse and shift functions [Arnowitt, Deser, and Misner ( 1 962)]. As an example, let .J: have the geometry of a 3-sphere (2 1 .68)  Let the nearby spacelike slice in the one-parameter family of slices, the slice with the label t + dt ( only a label ! )  have a 3 -metric given by the same formula with the radius a replaced by a + da. The 4-geometry of the thin sandwich between these two slices is completely undetermined until one gives the lapse and shift functions. For simplicity, take the shift vector Ni (see Figure 2 1 .2) to be everywhere zero and the lapse function at every point on .J: to have the same value N. The separation in proper time between the two spheres is thus dT = N dt. Any geometric figure located in .J: expands with time. The fractional increase of any length in this figure per unit of proper time is the same in whatever direction that length is oriented, and has the value 
(fractional increa�e) 1 da 1 1 d(aZ) of length per umt = -- = - - --. . a dT 2 N  a2 dt of proper time (2 1 .69) 

The negative of this quantity, multiplied by the (D unit tensor, 1 = d<J', gives the extrinsic curvature tensor in (D representation, 
1 1 d(a2) 

K =  - - - -- 1. 
2 N  a2 dt 

(2 1.70) 

Extrinsic curvature in terms 
of shift and change of 
3-metric 

Extrinsic curvature of 
expanding 3-sphere 
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One confirms this result (exercise 21 .5) by direct calculation of the components K{ 
using the ADM formula (2 1 .67) as the starting point. 

The Riemann curvature R\cd = (3)R\cd intrinsic to the hypersurface �, together 
with the extrinsic curvature Ki;, give one information on the Riemann and Einstein 
curvatures of the 4-geometry. In the calculation, it is not convenient to use the 
coordinate basis, 

basis vectors, 
eo = d i, 
ei = ai , 

basis I-forms 
dt, 

dx i, 

because ordinarily the basis vector e0 does not stand perpendicular to the hypersur
face (see Figure 21 .2) . Adopt a different basis but one that is still self-dual, 

basis vectors, 
en n = N-l(iJ t - Nm om), 

ei = ai, 

basis I -forms, 
wn = N dt = (n · n)n 

w i dxi + Ni dt. 
(2 1 .7 1 )  

Also use Greek labels a =  n, I, 2, 3, instead of Greek labels a = 0, I, 2, 3, to list 
components. 

Recall that curvature is measured by the change in a vector on transport around 
a closed route; or, from equation (14.23), 

(2 1 .72) 

Let the vector transported be e i and let the route be defined by e; and ek . The 
latter two vectors belong to a coordinate basis. Therefore the "route closes automati
cally", [e;, ek ] = 0, and the final term in (2 1 .72) drops out of consideration. Call 
on (21 .62) and (21 .60) to find 

<4lV (4)V e - = (4lV [K _n __ + (3lrm
e ] e; ek t e; tk (n · n) tk m 

= K-k _ _  n __ - Kk K.me __ I_ + (3)I' 1flk - e t ,J (n . n) t J m (n . n) t ,J m 

+ (3lrm [K n + (3lr s e ] ik m; (n . n) mj s • 

(2 1 .73) 

Evaluate similarly the term with indices j and k reversed, subtract from (21 .73), 
simplify, and find 

<!il(e -, ek) e - = (Kk 1 . - K . 1k) _n_ 1 i i 1 ,1 (n . n) 
+ [(n . n)-l(Ki;Kk

m - Kik Kt) + (3)Rm
ijk ] e m . 

(2 1 .74) 

The coefficients give directly the desired components of the curvature tensor 

and 
(4lRn - (n • n)-i (4)R - (n · n)- 1(K K ) ijk - nijk - - ij lk - ik l j · 

(2 1 .75) 

(2 1 .76) 



§ 2 1 . 5 .  INTRI NSIC AND EXTRINSIC CURVATURE 5 1 5 Equations (21.75) and (21.76) are known as the equations of Gauss and Codazzi [for literature, see Eisenhart (1926)]. It follows from (21.75) that the components of the curvature of the 3-geometry will normally only then agree with the corresponding components of the curvature of the 4-geometry when the imbedding happens to be accomplished at the point under study with a hypersurface free of extrinsic curvature. The directly opposite situation is illustrated by the familiar example of a 2-sphere imbedded in a flat 3-space, where the lefthand side of (21.75) (with dimensions lowered by one unit throughout !) is zero, and the extrinsic and intrinsic curvature on the right exactly cancel. Important components of the Einstein curvature let themselves be evaluated from the Gauss-Codazzi results. In doing the calculation, it is simplest to think of e i, ei and ek as being an orthonormal tetrad, n being itself already normalized and orthogonal to every vector in the hypersurface. Then, employing (14 .7) and (21.75), one finds 
- G8 = (4)R 1212 + (4lR23

23 + (4)R 3\1 

= (3lR 12
12 + (3)R23

23 + <3lR 31
31 

+ (n · n)-1[(KiK� - K�KD + (K�K� - K�K�) 
+ (K!Kf - Kf K�)] 

= _!_ R - _!_ (n · n)-1 ((Tr K)2 - Tr (K2)] . 
2 2 

(21.77) 
Here R is the 3-dimensional scalar curvature invariant and Tr stands for "trace of" ;  thus, 
and Tr K = giiK .  = g - -Kii = Ki 

Q Q J Tr K2 = (K2)i = K.m K j = g - K•mg . Kii 
J J m Js mi • 

(21.78) 
(21.79) The result, though obtained in an orthonormal tetrad, plainly is covariant with respect to general coordinate transformations within the spacelike hypersurface; and it makes no explicit reference whatever to any time coordinate, in this respect providing a coordinate-free description of the Einstein curvature. The Einstein field equation equates (21.77) to 81Tp, where p is the density of mass-energy. Expression (21.77) is the "measure of curvature that is independent of how curved one cuts a spacelike slice." This measure of curvature is central to the derivation of Einstein's field equation that is sketched in Box 17 .2, item 3, "Physics on a Spacelike Slice." The other component of the Einstein curvature tensor that is easily evaluated by (14 .7) from the results at hand has the form 

G� = (4)Rn2
12 + (4)Rn3i3 

= - (n .  n)-l(Ki 1 2 - K� 1 1 + Kf 1 3 - K� 1 1), (21.80) when referred to an orthonormal frame. One immediately translates to a form valid for any frame e 1 , e2, e3 in the hypersurface, orthonormal or not, 

Einste in curvature in terms of 
extr ins ic curvature 

Equation (2 1 . 7 7 ) is the 
central E inste in equation ,  
"mass-energy fixes 
curvature" 

The other in it ial-value (21 .81) equation 
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The Einstein field equation equates this quantity to 8'7T times the i-th covariant 
component of the density of momentum carried by matter and fields other than 
gravity. 

The four components of the Einstein field equation so far written down will have 
a central place in what follows as "initial-value equations " of general relativity. The 
other six components will not be written out: (1) the dynamics lets itself be analyzed 
more simply by Hamiltonian methods; and (2 ) the calculation takes work. It demands 
that one evaluate the remaining type of object, '3l(ei, n)e i . One step towards that 
calculation will be found in exercise 2 1.7. Sachs does the calculation (1964, equation 
10) but only after specializing to Gaussian normal coordinates. These coordinates 
presuppose a very special slicing of spacetime: (1) geodesics issuing normally from 
the spacelike hypersurface n = 0 cut all subsequent simultaneities n = constant 
normally; and (2 ) the n coordinate directly measures lapse of proper time, or proper 
length, whichever is appropriate, * along these geodesics. In coordinates so special 
it is not surprising that the answer looks simple: 

(4)R n . = (n . n)-1 ( aKik + K Km ) ink an im k · (
Gaussia� normal) 

coordmates 
<2 1 · 82 ) 

Additional terms come into (2 1.82 ) when one uses, instead of the Gaussian normal 
coordinate system, the coordinate system of Arnowitt, Deser, and Misner. The ADM 
coordinates are employed here because they allow one to analyze the dynamics as 
one wants to analyze the dynamics, with freedom to push the spacelike hypersurface 
ahead in time at different rates in different places ("many-fingered time "). Fischer 
(1971) shows how to evaluate and understand the geometric content of such formulas 
in a coordinate-free way by using the concept of Lie derivative of a tensor field, 
an introduction to which is provided by exercise 2 1.8. 

* Here Sachs' equation (10) is generalized to the case where the unit normal n is not necessanly timelike. 
Sachs used n = a;at. 

Exercise 21 .4 .  SCALAR CURVATURE INVARIANT IN TERMS OF AREA DEFICIT 

It being 10,000 km from North Pole to equator, one would have 62,832 km for the length 
of the "equator" if the earth were flat, as contrasted to the actual ~40,000 km, a difference 
reflecting the fact that the surface 1s curved up into closure. Turn from this "pre-problem" 
to the actual problem, a 3 -sphere 

Measure off from x = 0 a 2-sphere of proper radius E = ax. Determine the proper area of 
this 2-sphere as a function of x. Verify that relation (21.50) on the area deficit gives in the 
limit E --+  0 the correct result R = 6/a2 . For a more ambitious exercise: (1) take a general 
(smooth) 3-geometry; (2) express the metric near any chosen point in terms of Riemann's 
normal coordinates as given in § 11 .6 ; (3) determine the locus of the set of points at the 
proper distance t to the lowest interesting power of E m terms of the spheri<.:al polar angles 0 
and </> (direction of start of geodesic of length c) ; (4) determine to the lowest interesting 
power of E the proper area of the figure defined by these points ; and thereby establish (21 .50) 
[for more on this topic see, for example, Cartan (1946), pp. 252-256] .  
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Confirm the result (21.70) for the extnns1c curvature by direct calculation from formula 
(21.67). 

Exercise 2 1 . 6 .  EVALUAT I O N  O F  !Jl(ei, e k) n  
Evaluate this quantity along the model of (21.74) or otherwise. How can it be foreseen that 
the coefficient of n in the result must vanish identically? Comparing coefficients of e m, find 
<4>R m

nik and test for equivalence to equation (21.76). 

Exercise 2 1 . 7 .  EVALUATI O N  O F  T H E  CO M M UTATO R [ei, n] 
The evaluation of this commutator is a first step toward the calculation of a quantity like 
!Jl (e i, n)e ;. Expressing e i as the differential operator a/ox i, use (21.49) to represent n also 
as a differential operator . In this way, show that the commutator in question has the value 
- (N,/N)n - (Nm,/N)e,,.. 

Exercise 2 1 . 8 .  L I E  D E R I VATIVE O F  A TENSOR (exercise provided by J .  W. York, Jr . )  
Define the Lie denvative of  a tensor field and explore some of its properties. The Lie 
derivative along a vector field n is a differential operator that operates on tensor fields T 
of type G), converting them into tensors .tnT, also of type G) . The Lie differentiation process 
obeys the usual chain rule and has additivity properties [compare equations (10.2b, 10 .2c, 
10.2d) for the covariant derivative). For scalar functions /, one has £nf _ n[f] = J,µnµ. The 
Lie derivative of a vector field u along a vector field v was defined in exercise 9 .11 by 

If the action of .tn on I-forms is defined, the extension to tensors of general type will be 
simple, because the latter can always be decomposed into a sum of tensor products of vectors 
and I-forms. If CT is a I-form and v is a vector, then one defines .tnCT to be that I-form 
satisfying 

(.tnCT, v) = n[(CT, v)) - (CT, [n, v]) 
for arbitrary v. 

(a) Show that in a coordinate basis 

(b) Show that in a coordinate basis 

where T 1s of type (g). 
(c) Show that in (a) and (b), all partial derivatives can be replaced by covariant derivatives. 

[Observe that Lie differentiation is defined independently of the existence of an affine 
connection. For more information, see, for example, Bishop and Goldberg (1968) and 
Schouten (1954)) . 

Exercise 2 1 . 9 .  EXPRESS I O N  FOR  DYNAM I C  CO M PO N E NTS O F  THE  
C U RVATU R E  TE N S O R  (exercise provided by  J .  W .  York, J r. )  

The Gauss-Codazzi equations can be viewed as giving 14 of the 20 algebraically independent 
components of the spacetime curvature tensor in terms of the intrinsic and extrinsic geometry 
of three-dimensional (non-null) hypersurfaces. In order to accomplish a space-plus-time 
splitting of the Hilbert Lagrangian M<4>R, one must express, in addition, the remaining 
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6 components of the curvature tensor in an analogous manner. It is convenient for this purpose to express all tensors as spacetime tensors, and to use Lie derivation in the direction of the timelike unit normal field of the spacelike hypersurfaces as a generalized notion of time differentiation. A number of preliminary results must be proven:  
(a) 

(b) 
.t,ugµ.v = uµ. ; v + uv ,µ., .t,u(gµ.v + Uµ. uJ = .t,u(Yµ.,) 

= Uµ. ; v + U v , µ. + Uµ.Qv + Qµ. U v , where y µ.v is the metric of the space like hypersurface, expressed in the spacetime coordinate basis, and a/J. = u >- 'il;.u µ. is the curvature vector (4-acceleration) of the timelike normal curves whose tangent field is u /J. . (Recall that uµ.aµ. = 0.)  (c) Prove that the extrinsic curvature tensor is given by 

( d) The unit tensor of projection into the hypersurface is defined by 
In terms of .l show that one can write 
where 
and 

( e) From the fact that u µ. is the unit normal field for a family of spacelike hypersurfaces, show that w"13 = 0. (f) The needed tools are now on hand. To obtain the result: ( i )  Write down £uKµ., (see exercise 2 1 .8) ; ( ii )  Insert this expression into the Ricci identity in the form 
( iii ) Project the two remaining free indices into the hypersurface using .l ,  and show that one obtains 

..l � ..l j\ (4)Rµ.vpCT u"u "  = .t,uKa/3 + Kay K� 
+ (3) 'iJ<aa

/J) + aaa13 , 
where <3>v aa/3 = ..l � ..l 13 'i/ µ.av can be shown to be the three-dimensional covariant derivative of a13 . In Gaussian normal coordinates, show that one obtains from this result 

RoiOi = :t K;i + K;k KJ. 
(g) Finally, in the construction of <4>R , one needs to show that 
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Exercise 21.10. EXPRESSION OF <4>R\;n IN TERMS OF EXTRINSIC 
CURVATURE, P LUS A COVARIANT DIVERGENCE 
(exercise provided by K. Kuch a r) 
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Let o:' be an arbitrary smooth set of four coordinates, not necessarily coordinated in any way with the choice of the I -parameter family of hypersurfaces. (a) Show that 
(b) Show that the covariant divergences 

and 
can be removed from this expression in such a way that what is left behind contains only first derivatives of the unit normal vector n. (c) Noting that the basis vectors e; and n form a complete set, justify the formula 
where wi is the I -form dual to e ; .  ( d )  Noting that na' ; /3 'n a' = 0 and 
show that 

<4>R \;n = (TrK)2 - TrK2 plus a covariant divergence. 
§2 1 . 6 .  TH E H ILBERT ACTIO N PRINCIP LE AN D 

TH E ARN OWITT-DESER-MISN ER MO DIFICATIO N  

TH EREO F I N  TH E SPACE-P LUS-TIME SPLIT 

For analyzing the dynamics, it happily proves unnecessary to possess the missing 
formula for (4) Rn ink · It is essential, however, to have the Lagrangian density, 

l 677t' = ( - (4)g)l/2 (4)R geom ' (2 1. 83) 

in the Hilbert action principle as the heart of all the dynamic analysis. In the present 
ADM (1962 ) notation, this density has the form 

Kuchar (1971b; see also exercise 2 1.10) shows how to calculate a sufficient part of 
this quantity without calculating all of it. The difference between the "sufficient part " 
and the "whole " is a time derivative plus a divergence, a quantity of the form 

(2 1.8 5) 

Drop a complete derivative 
from the Hi l bert action 
principle to get the A D M  
principle 
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When one multiplies (2 1 .83) by dt dx 1 dx2 dx3 and integrates to obtain the action 
integral, the term (2 1.85) integrates out to a surface term. Variations of the geometry 
interior to this surface make no difference in the value of this surface term. Therefore 
it has no influence on the equations of motion to drop the term (2 1.8 5). The result 
of the calculation (exercise 2 1.10) is simple: what is left over after dropping the 
divergence merely changes the sign of the terms in Tr K2 and (Tr K)2 in (2 1.84). 
Thus the variation principle becomes 

(extremum) = ]modified = J t'modified d4x 

= (1/16'77) J [R + (n · n)((Tr K)2 - Tr K2)]Ng11 2 dt d 3x + J t'fields d4x. 
(2 1.86) 

This expression, rephrased, is the starting point for Arnowitt, Deser, and Misner's 
analysis of the dynamics of geometry. 

Two supplements from a paper of York (197 2 b; see also exercise 2 1.9) enlarge one's 
geometric insight into what is going on in the foregoing analysis. First, the tensor 
of extrinsic curvature lets itself be defined (see also Fischer (1971)] most naturally 
in the form 

(2 1. 87) 

where g is the metric tensor of the 3-geometry, n is the timelike unit normal field, 
and £ is the Lie derivative as defined in exercise 2 1. 8. Second, the divergence (2 1. 8 5), 
which has to be added to the Lagrangian of (2 1.86) to obtain the full Hilbert 
Lagrangian, is 

- 2 (( _ (4lg)ll2(na'Tr K + aa)l,a•, 

where the coordinates are general (see exercise 2 1.10), and 

(2 1. 88) 

(2 1 .89) 

is the 4-acceleration of an observer traveling along the timelike normal n to the 
successive slices. 

§ 2 1 .  7. TH E ARN OWITT, DESER, AN D MISN ER FORMU LATIO N  
O F  TH E DYNAMICS O F  G EO METRY 

Dirac (19 59, 1964, and earlier references cited therein) formulated the dynamics of 
geometry in a (3 + 1 )-dimensional form, using generalizations of Poisson brackets 
and of Hamilton equations. Arnowitt, Deser, and Misner instead made the Hilbert
Palatini variational principle the foundation for this dynamics. Because of its sim
plicity, this ADM (1962 ) approach is followed here. The gravitational part of the 
integrand in the Hilbert-Palatini action principle is rewritten in the condensed but 
standard form (after inserting a 16?T that ADM avoid by other units) as 

16'7Tt'geom true = t'geom ADM = -gii 0'7T ii/ot - NX - Ni X i 

- 2 [ '7T ii� - ; Ni Tr n + Nl i(g)112 ] . • 
, , 

(2 1.90) 
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Here each item of abbreviation has its special meaning and will play its special part, 
a part foreshadowed by the name now given it: 

'lTij -true -
o(action) 

ogij 

"geometrodynamic 
field momentum" dyn
amically conjugate to 
the "geometrodynamic 
field coordinate" gij 

ij 
= 1:'TT 

; 'lTii = gll2(giiTr K _ Kii) 

(2 1 .91) 

(here the 'lTij of ADM is usually more convenient than 'lTttue) ;  and 

and 

.'JC true = .'JC('TTUue, gi;) = ("super-Hamiltonian") = .'JC/l 6'TT; 

.'JC('TTij, gij) = g-112 ( Tr n 2 - � (Tr n)2 ) - g ll 2R; 
(2 1.92 ) 

Here the covariant derivative is formed treating 'lTik as a tensor density, as its 
definition in (2 1.91) shows it to be (see § 2 1. 2 ). The quantities to be varied to 
extremize the action are the coefficients in the metric of the 4-geometry, as follows: 
the six gii and the lapse function N and shift function Ni; and also the six "geome
trodynamic momenta," 'TT ii. To vary these momenta as well as the metric is (I) to 
follow the pattern of elementary Hamiltonian dynamics (Box 2 1 . l ), where, by taking 
the momentum p to be as independently variable as the coordinate x, one arrives 
at two Hamilton equations of the first order instead of one Lagrange equation of 
the second order, and (2 )  to follow in some measure the lead of the Palatini variation 
principle of § 2 1. 2 . There, however, one had 40 connection coefficients to vary, 
whereas here one has come down to only six 'lTij_ To know these momenta and the 
3-metric is to know the extrinsic curvature. Before carrying out the variation, drop 
the divergence - 2 [  ] i from (2 1.90), since it gives rise only to surface integrals 
and therefore in no way affects the equations of motion that will come out of the 
variational principle. Also rewrite the first term in (2 1.90) in the form 

(2 1.94) 

and drop the complete time-derivative from the variation principle, again because 
it is irrelevant to the resulting equations of motion. The action principle now takes 
the form 

extremum = /true = IADM/l6'TT 

= ( l /16'TT) I ['TT ij ogi/ot - N.'JC('TTii, gii) - Ni.'JCi('TTii, gij)] d4x 

+ f t'field d4x. (2 1.95) 

The action principle itself, here as always, tells one what must be fixed to make 
the action take on a well-defined value (if and when the action possesses an extre
mum). Apart from appropriate potentials having to do with fields other than geom-

Momenta conjugate to the 
dynamic gii 
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3-geometry on each face of 
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What a 3-geometry is 
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example of momentum 
conjugate to "field 
coordinate" 
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etry, the only quantities that have to be fixed appear at first sight to be the values 
of the six gij on the initial and final spacelike hypersurfaces. However, the ADM 
action principle is invariant with respect to any change of coordinates x1, x2, x3 

� x1, x2, x3 within the successive spacelike slices. Therefore the quantities that 
really have to be fixed on the two faces of the sandwich are the 3-geometries <3lH 
(on the initial hypersurface) and <3l� (on the final hypersurface) and nothing more. 

In mathematical terms, a 3-geometry <3l� is the "equivalence class" of a set of 
differentiable manifolds that are isometrically equivalent to each other under <liffeo
morphisms. In the terms of the everyday physicist, a 3-geometry is the equivalence 
class of 3-metrics gi/x, y, z) that are equivalent to one another under coordinate 
transformations. In more homely terms, two automobile fenders have one and the 
same 2-geometry if they have the same shape, regardless of how much the coordinate 
rulings painted on the one may differ from the coordinate rulings painted on the 
other. 

To have in equation (2 1 .95 ) an example of a field Lagrangian that is at the same 
time physically relevant and free of avoidable complications, take the case of a 
source-free electromagnetic field. It would be possible to take the field Lagrangian 
to have the standard Maxwell value, 

(2 1 .96) 

with 

(2 1 .97) 

The variation of the Lagrangian with respect to the independent dynamic variables 
of the field, the four potentials Aa, would then immediately give the four second-order 
partial differential wave equations for these four potentials. However, to have instead 
a larger number of first-order equations is as convenient for electrodynamics as it 
is for geometrodynamics. One seeks for the analog of the Hamiltonian equations 
of particle dynamics, 

dx/dt = oH(x, p)/op, 

dp/dt = -oH(x, p)/ox. 
(2 1 .98) 

One gets those equations by replacing the Lagrange integral J L(x, x) dt by the 
Hamilton integral Jlpx - H(x, p)J dt. Likewise, here one replaces the action inte
grand of (21 .96) by what in flat spacetime would be 

(I/4w) [ Aµ , vpµv + ! Fµv pµv ] . (2 1 .99) 

In actuality, spacetime is to be regarded as not only curved but also sliced up into 
spacelike hypersurfaces. This (3 + 1 )  split of the geometry made it desirable to split 
the ten geometrodynamic potentials into the six gij and the four lapse and shift 
functions. Here one similarly splits the four Aµ into the three components Ai of the 
vector potential and the scalar potential A0 = - cf> (with the sign so chosen that, 
in flat spacetime in a Minkowski coordinate system, cf> = A0) .  In this notation, the 
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Lagrange density function, including the standard density factor ( _ <4>g) 11 2 but 
dropping a complete time integral (o /ot)(Ai G i) that has no influence on the equations 
of motion, is given by the formula 

4'77t'field = - G i oA/ot + <t>G\ i 

_ ; Ng-Il2gi/G iGi + � iqJi) + Ni[ij"k]GifB k. 
(2 1.100) 

Here use is made of the alternating symbol Wk], defined as changing sign on the 
interchange of any two labels, and normalized so that (12 3] = I. Note that the 
3-tensor e iik and the alternating symbol Wk] are related much as are the correspond
ing four-dimensional objects in equation (8.10), so that one can write 

(2 1.101) 

The quantities � i are the components of the magnetic field in the spacelike slice. 
They are not regarded as independently variable. They are treated as fully fixed 
by the choice of the three potentials Ai. The converse is the case for the components 
G i of the electric field : they are treated like momenta, and as independently variable. 

Extremizing the action with respect to the G i ( exercise 2 1.l l )  gives the analog 
of the equation dx/dt = p/m in particle mechanics, and the analog of the equation 

(2 l . 102 ) 

of flat-spacetime electrodynamics; namely, 

(2 l .103) 

Here the last term containing the shift functions Ni, arises from the obliquity of 
the coordinate system. ADM give the following additional but equivalent ways to 
state the result (2 1.103): 

G i - _!_ [ . "k] * F - 2 lj jk 

= ; Wk] { ; (Jkµv]( - (4)g)l/2(4)gµa(4)gr,8 Fa,8 } - (2 1.104) 

They note that Gi and qJi are not directly the contra variant components of the fields 
in the simultaneity �, 

but the contravariant densities, 

E - Eie .  B - Bie . - J ' - J ' (2 1.105) 

(2 1.106) 

Extremizing the action with respect to the three Ai ( exercise 2 1.12 ) gives the 
curved-spacetime analog of the Maxwell equations, 

oE/ot = V X B. (2 1.107) 

Lagrange density for 
electromagnet ism 

The init ia l-value equation of 
electromagnet ism 
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The remaining potential, </>, enters the action principle at only one point. Extre
mizing with respect to it gives immediately the divergence relation of source-free 
electromagnetism, 

(2 1.108) 

If an action principle tells in and by itself what quantities are to be fixed at the 
limits, what lessons does (2 1.100) give on this score? One can go back to the example 
of particle mechanics in Hamiltonian form, as in Box 2 1. l ,  and note that there the 
momentum p could "flap in the breeze." Only the coordinate x had to be fixed at 
the limits. Thus the variation of the action was 

of = 8 J [pi - H(x, p)] dt (2 1.109) 

= J {[i - oH/op] 8p + (d/dt)(p 8x) + [ -_p - oH/ox] 8x} dt. 

To arrive at a well-defined extremum of the action integral I, it was not enough 
to annul the coefficients, in square brackets, of 8p and 8x; that is, to impose Hamil
ton's equations of motion. It was necessary in addition to annul the quantities at 
limits, p 8x; that is, to specify x at the start and at the end of the motion. Similarly 
here. The quantities c/> and § i flap in the breeze, but the magnetic field has to be 
specified on the two faces of the sandwich to allow one to speak of a well-defined 
extremum of the action principle. Why the magnetic field, or the three quantities 

(2 1.110) 

why not the three Ai themselves? When one varies (2 1.100) with respect to the Ai, 
and integrates the variation of the first term by parts, as one must to arrive at the 
dynamic equations, one obtains a term at limits 

f § i 8Ai d 3x - f § i 8Ai d 3x. 
Iirubal I final 

(2 1.111) 

One demands that both these terms at limits must vanish in order to have a well
defined variational problem. Go from the given vector potential to another vector 
potential, Ai , by the gauge transformation 

new 

A . = A . + 8A . = A - + o;\/ox i. 
i

new 
i i i 

(2 1.112 ) 

The magnetic-field components given by the three Ainew differ in no way from those 
listed in (2 1.110). Moreover the "variation at limits, " 

(2 1.113) 

is automatically zero by virtue of the divergence condition (2 l .108), for any arbitrary 
choice of A. Therefore the quantities fixed at limits are not the three Ai themselves 
(mere potentials) but the physically significant quantities (2 1. l 10), the components 
of the magnetic field. Moreover, the divergence condition G\ i = 0 now becomes 
the initial-value equation for the determination of the potential </>. 
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In the preceding paragraph one need only replace "the three A;" by "the six gi/' 
and "the components of the magnetic field " by "the 3-geometry <3>�,, and "the 
potential </> "  by "the lapse and shift functions N and Ni " to pass from electro
dynamics to geometrodynamics. 

With this parallelism in view, turn back to the variational principle (2 1.9 5) of 
general relativity in the ADM formulation. With the 3-geometry fixed on the two 
faces of the sandwich, vary conditions in between to extremize the action, varying 
in turn the 'TT i;, the gi;, and the lapse and shift functions. The geometrodynamic 
momenta appear everywhere only algebraically in the action principle, except in 
the term - 2 Ni'TT i\. Variation and integration by parts gives 2 N; 1; O'TT ;; _ Collecting 
coefficients of o'TT ii and annuling the sum of these coefficients, one arrives at one 
of the several conditions required for an extremum, 

og;/ot = 2 Ng-11 2 ( 'TTi; - ½ gi;Trn} + N; 1; + N; i; · (2 1.114) 

This result agrees with what one gets from equations (2 1.91) defining geometrody
narnic momentum in terms of extrinsic curvature, together with expression (2 1.67) 
for extrinsic curvature in terms of lapse and shift. The result (2 1.114) here is no 
less useful than the result 

dx/dt = oH(x, p)/op = p/m 

in the most elementary problem in mechanics: it marks the first step in splitting 
a second-order equation or equations into twice as many first-order equations. 

Now vary the action with respect to the 
gi; and again, after appropriate integration 

by parts and rearrangement, find the remaining first-order dynamic equations of 
general relativity [simplified by use of equations (2 1.116) and (2 1.117)], 

O'TT ij jot = - N
g

112 ( R ij _ ; 
g

ij R) + ½ Ng
-11 2

g
ij ( Tr n 2 _ ; (Tr 'TT)2) 

- 2 N
g

-112 ( 'TT im'TTm
; - ; 'TT;;Tr n) 

+ g
112(Nl ij _ 

g
ijNim

lm) + ('TTijNm) lm (2 1.11 5) 

�
source terms arising from fields 

] 

i; 

- Ni
1m'TTmi - Ni 1m'TTmi + other than geometry, omitted here for 

simplicity, but discussed by ADM (1962 ) 

Finally extremize the action (2 1.9 5) with respect to the lapse function N and the 
shift functions N;, and find the four so-called initial-value equations of general 
relativity, equivalent to (2 1.77) and (2 1. 81) or to G� = 81T�; thus, 

- ( l /l 61T).X(1Tii, gi;) = ( l /87T)Ng~ll2g;/G iGi + qJJ i?JJi), 

- ( l /16'TT).Xi('TTii, gi;) = - (l /4'TT)[ijk]Gj£Bk _ 

(2 1.116) 

(2 1.117) 

A D M  principle reproduces 
formula for geometrodynam 1c 
momentum 

Dynamic and initial-value 
eq uations out of A D M  
form alism 



EXERCISES 

526 21 . VARIATIONAL PRINCIPLE AND INITIAL-VA LUE DATA 

Exercise 21 .11. F IRST EXP LO I TAT ION OF THE ADM VARIAT IONAL PRINCIPLE 
FOR THE ELECTROMAG NET I C  FIELD Extremize the action principle (2 1 . 100) with respect to the G i and derive the result (2 1 . 103) .  

Exercise 21.12 . SECO ND EXPLO I TATION OF THE ADM VARIATIONAL 
PR INCIPLE FOR THE ELECTROMAGNET I C  FIELD Extremize (2 1 . 1 00) with respect to the A; ,  and verify that the resulting equations in any Minkowski-flat region are equivalent to (2 1 . 1 07) .  

Exercise 21 .13. FARADAY-MAXWELL SOURCE TERM IN THE DYNAM I C  
EQUATIONS OF GENERAL RELATIV I TY Evaluate the final indicated source terms in (2 1 . 1 1 5 )  from the Lagrangian (2 1 . 1 00) of Maxwell electrodynamics, regarded as a function of the A; and the gii "  

Exercise 21 .14. THE CHO I CE OF c/> DOESN'T MATTER Prove the statement in the text that the dynamic development of the electric and magnetic fields themselves is independent of the choice made for the scalar potential </>(t, x, y, z) in the analysis (a) in flat spacetime in Minkowski coordinates and (b) in general relativity, according to equations (2 1 . 103) ,  and (2 1 . 107) as generalized in exercise 2 1 . 12 .  
Exercise 21.15 . THE CHO I CE OF SLI C I N G  OF SPACET IME DOESN'T MATTER Given a metric <3>g;i (x, y, z) and an extrinsic curvature Kii(x, y, z) on a spacelike hypersurface I, and given that these quantities satisfy the initial-value equations (2 1 . 1 16 )  and (2 1 . 1 17) ,  and given two alternative choices for the lapse and shift functions (N, N;) and (N + 8N, N; + 8N;) ,  show that the curvature itself (as distinguished from its components in these two distinct coordinate systems), as calculated at a point '!/ a "little way" (first order of small quantities) off the hypersurface, by way of the dynamic equations (2 1 . 1 14) and (2 1 . 1 1 5 ) ,  is independent of this choice of lapse and shift. 

§ 2 1 . 8. INTEGRATIN G FORWARD IN TIME 

In the Hamiltonian formalism of Arnowitt, Deser, and Misner [see also the many papers by many workers on the quantization of general relativity-primarily putting Einstein's theory into Hamiltonian form-cited, for example, in references I and 2 of Wheeler ( 1 968) ] , the dynamics of geometry takes a form quite similar to the Hamiltonian dynamics of geometry. There one gives x and p at a starting time and integrates two first-order equations for dx/dt and dp/dt ahead in time to find these dynamically conjugate variables at all future times. Here one gives appropriate values of gii and 'lT ii over an initial spacelike hypersurface and integrates the two first-order equations (2 1 . 1 14) and (2 1 . 1 1 5 )  ahead in time to find the geometry at future times .  For example, one can rewrite the differential equations as difference equations according to the practice by now familiar in modern hydrodynamics, and then carry out the integration on an electronic digital computer of substantial memory capacity. 
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Time in general relativity has a many-fingered quality very different from the 
one-parameter nature of time in nonrelativistic particle mechanics [see, however, 
Dirac, Fock, and Podolsky (1932 ) for a many-time formalism for treating the relati
vistic dynamics of a system of many interacting particles]. He who is studying the 
geometry is free to push ahead the spacelike hypersurface faster at one place than 
another, so long as he keeps it spacelike. This freedom expresses itself in the lapse 
function N(t, x, y, z) at each stage, t, of the integration. Equations (2 1.114) and 
(2 1.115) are not a conduit to feed out information on N to the analyst. They are 
a conduit for the analyst to feed in information on N. The choice of N is to be made, 
not by nature, but by man. The dynamic equations cannot begin to fulfill their 
purpose until this choice is made. The "time parameter " t is only a label to distinguish 
one spacelike hypersurface from another in a one-parameter family of hypersurface; 
but N thus tells the spacmg in proper time, as it varies from place to place, between 
the successive slices on which one chooses to record the time-evolution of the 
geometry. A cinema camera can record what happens only one frame at a time, 
but the operator can make a great difference in what that camera sees by his choice 
of angle for the filming of the scene. So here, with the choice of slicing. 

Another choice is of concern to the analyst, especially one doing his analysis on 
a digital computer. He is in the course of determining, via (2 1.114- 2 1.115) written 
as difference equations, what happens on a lattice work of points, typified by 
x = . . .  , 73, 7 4, 7 5, 76, 77, . . .  , etc. He finds that the curvatures are developing most 
strongly in a localized region in the range around x = 83 to x = 89. He wants to 
increase the density of coverage of his tracer points in this region. He does so by 
causing points at lesser and greater x values to drift into this region moment by 
moment as t increases : t = . . . , 12 2 ,  12 3, 12 4, . . . .  He makes the tracer points at 
lesser x-values start to move to the right (N

1 
positive) and points at greater x-values 

move to the left (N
1 

negative). In other words, the choice of the three shift functions 
N;(t, x, y, z) is just as much the responsibility of the analyst as is the choice of the 
lapse function N. The equations will never tell him what to pick. He has to tell the 
equations. 

These options, far from complicating dynamic equations (2 1.114-2 1.11 5), make 
them flexible and responsive to the wishes of the analyst in following the course 
of whatever geometrodynamic process is in his hands for study. 

The freedom that exists in general relativity in the choice of the four functions 
N, Ni, is illuminated from another side by comparing it with the freedom one has 
in electrodynamics to pick the one function cf>(t, x, y, z), the scalar potential. In no 
way do the dynamic Maxwell equations (2 1.103) and (2 1.107), as generalized in 
exercise 2 1.12 determine <f>. Instead they demand that it be determined (by the 
analyst) as the price for predicting the time-development of the vector potential A; ,  
An altered choice of cf>(t, x, y, z) in its dependence on position and time means altered 
results from the dynamic equations for the development of the three Ai in time and 
space. However, the physically significant quantities, the electric and magnetic fields 
themselves on successive hypersurfaces, come out the same ( exercise 2 1.14) regardless 
of this choice of cf>. Similarly in geometrodynamics : an altered choice for the four 

Lapse and shift chosen to 
push forward the integration 
in time as one finds most 
convenient 

Same 4-geometry regardless 
of lapse and shift options 
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Figure 21 .4. 

F 

Some of the many ways to make distinct spacelike slices through 
one and the same (4>J.:J, the complete Schwarzschild 4-geometry. 

functions N, Ni, means (a) an altered laying down of coordinates in spacetime, and 
therefore (b) altered results for the intrinsic metric <3>gii and extrinsic curvature Kii 
of successive spacelike hypersurfaces, but yields the same 4-geometry <4>� (Figure 
2 1.4) regardless of this choice of coordinatization (exercise 2 1.1 5). 

§ 2 1 . 9 .  TH E IN ITIAL-VALU E PRO B LEM IN 

TH E TH IN-SAN DWICH FORMU LATIO N 

Given appropriate initial-value data, one can integrate the dynamic equations ahead 
in time and determine the evolution of the geometry; but what are "appropriate 
initial-value data"? They are six functions <3>gi/x, y, z) plus six more functions 
'7T ii (x, y, z) or Kii(x, y, z) that together satisfy the four initial-value equations (2 1.116) 
and (2 l .117). To be required to give coordinates and momenta accords with the 
familiar plan of Hamiltonian mechanics; but to have consistency conditions or 
"constraints" imposed on such data is less familiar. A particle moving in two-dimen
sional space is catalogued by coordinates x, y, and coordinates p.,, Pv ; but a particle 
forced to remain on the circle x2 + y2 = a2 satisfies the constraint xp,, + YPv = 0. 
Thus the existence of a "constraint" is a signal that the system possesses fewer degrees 
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of freedom than one would otherwise suppose. Fully to analyze the four "initial
value" or "constraint" conditions (2 1.116) and (2 1.117) is thus to determine (1) how 
many dynamic degrees of freedom the geometry possesses and (2 ) what these degrees 
of freedom are; that is to say, precisely what "handles" one can freely adjust to 
govern completely the geometry and its evolution with time. The counting one can 
do today, with the conclusion that the geometry possesses the same count of true 
degrees of freedom as the electromagnetic field. The identification of the "handles," 
or freely adjustable features of the dynamics, is less advanced for geometry than 
it is for electromagnetism (Box 2 1. 2 ), but most instructive so far as it goes. 

By rights the identification of the degrees of freedom of the field, whether that 
of Einstein or that of Faraday and Maxwell, requires nothing more than knowing 
what must be fixed on initial and final spacelike hypersurfaces to make the appro
priate variation principle well-defined. One then has the option whether (1) to give 
that quantity on both hypersurfaces or (2 ) to give that quantity and its dynamic 
conjugate on one hypersurface or (3) to give the quantity on both hypersurfaces, 
as in (1), but go to the limit of an infinitely thin sandwich, so that one ends up 
specifying the quantity and its time rate of change on one hypersurface. This third 
"thin sandwich" procedure is simplest for a quick analysis of the initial-value 
problem in both electrodynamics and geometrodynarnics. Take electrodynamics first, 
as an illustration. 

Give the divergence-free magnetic field and its time-rate of change: on an arbitrary 
smooth spacelike hypersurface in curved spacetime in the general case; on the 
hypersurface t = 0 in Minkowski spacetime in the present illustrative treatment, 

£8 i(0, x, y, z) given, 

. . ( a£B i ) . £8'(0, x, y, z) = at also given. 

(2 1.118) 

(2 1.119) 

These quantities together contain four and only four independent data per space 
point. How is one now to obtain the momenta wi ~ - J;i so that one can start 
integrating the dynamic equations (2 1.103) and (2 1.107) forward in time? (1) Find 
a set of three functions Ai (0, x, y, z) such that their curl gives the three specified 
£B i. That this can be done at all is guaranteed by the vanishing of the divergence 
£8\ i • However, the choice of the Ai is not unique. The new set of potentials Ainew = 
Ai + o;\/ox i with arbitrary smooth A, provide just as good a solution as the original 
Ai. No matter. Pick one solution and stick to it. (2 ) Similarly, find a set of three 
A/0, x, y, z) such that their curl gives the specified � i(0, x, y, z), and resolve all 
arbitrariness of choice by fiat. (3) Recall that the electric field (negative of the field 
momentum) is given by 

(2 1.12 0) 

(formula valid without amendment only in flat space). The initial-value or constraint 
equation G\ = 0 translates to the form 

(2 1.12 1) 

In electromagnet ism, give 
magnetic f ield and its rate of 
change as init ia l  data 



Box 2 1 . 2  C O U NTI NG T H E  D E G R EES O F  F R E E D O M  O F  T H E  ELECTRO MAGN ETI C F I E LD 

A. First Approach: Number of 
" Field Coordinates" per 
S pace point Superficial tally of the degrees of freedom of the source-free electromagnetic field gives three field coordinates A/x, y, z) per spacepoint on the initial simultaneity -2), plus three field momenta 1rirue = 1r i/41r [with 1r i = - G i(x, y, z)] per spacepoint. Closer inspection reveals that the number of coordinate degrees of freedom per spacepoint is not three but two. Thus the change in vector potential Ai --+ Ai + oA.jox i makes no change in the actual physics, the magnetic field components, 

. 1 . B'  = 2 [ijk](oAk/ox J - oA/ox k). Moreover, though those components are three in number, they satisfy one condition per spacepoint, qj]\ i = 0, thus reducing the effective net number of coordinate degrees of freedom per spacepoint to two. The momentum degrees of freedom per spacepoint are likewise reduced from three to two by the one condition per spacepoint G\ i = 0. 
B. Alternative Approach: 

Count Fourier Coefficients In textbooks on field theory [see, for example, Wentzel (1949)], attention focuses on flat spacetime. The electromagnetic field is decomposed by Fourier analysis into individual running waves. Instead of counting degrees of freedom per point in coordinate space, one does the equivalent : counts up degrees of freedom per point in wavenumber space. Thus for each (kx, ky , kz), there are two independent states of polarization. Each state of polarization requires for its description an amplitude ("coordinate") and time-rate of change of amplitude ("momentum") at the initial time, t0. Thus the number of degrees of freedom per point in wave-number space is two for coordinates and two for momenta, in accord with what one gets by carrying out the count in coordinate space. 

In curved spacetime, Fourier analysis is a less convenient way of identifying the degrees of freedom of the electromagnetic field [for such a Fourier analysis, see Misner and Wheeler (1957), especially their Table X and following text] than direct analysis in space, as above. 
C. Another Alternative: 

Analyze " Deformation of 
Structure" Still a third way to get a handle on the degrees of freedom of a divergence-free field, whether 8 or CB, rests on the idea of deformation of structure [diagram from Wheeler (1964)]. Represent the 

a. b. C .  

magnetic field by Faraday's picture of lines of force (a) continuing through space without ever ending, automatic guarantee that qJ]i 
i is everywhere zero. Insert "knitting needles" (b) into the spaghetti-like structure of the lines of force and move these needles as one will. Sliding the "knitting needles" along a line of force causes no movement of the line of force. (c) With the help of two knitting needles perpendicular to each other and to the line of force, one can give any given line of force any small displacement one pleases perpendicular to its length : again two degrees of freedom per spacepoint. Granted any non-zero field to begin with, no matter how small, one can build it up by a sequence of such small deformations to agree with any arbitrary field pattern of zero divergence, no matter what its complexity and strength may be. 



§ 2 1  9 INITIAL-VAL UE PROBLEM IN THE THIN-SANDWICH FOR M ULATION 5 3 1 Solve for <f>. Then (4) equation (21.120) gives the initial-value electric field, or electrodynamic field momentum 'lTi ~ - G i , required ( along with the field coordinate Ai) for starting the integration of the dynamic equations (2l .103) and (21.107) .  (Misner and Wheeler (1957) deal with the additional features that come in when the space is multiply connected. Each wormhole or handle of the geometry is able to trap electric lines of force. The flux trapped in any one wormhole defines the classical electric charge qw associated with that wormhole. One has to specify all these charges once and for all in addition to the data (21 . l  18) and (21.119) in order to determine fully the dynamic evolution of the electromagnetic field. There is no geometrodynamic analog to electric charge, according to Unruh (1971) .] (5) In this integration, the scalar potential <f> at each subsequent time step is not to be calculated; it is to be chosen. Only when one has made this free choice definite do the dynamic equations come out with definite results for the Ai and the 'lT i or G i at these successive steps. In the thin-sandwich formulation of the initial-value problem of electrodynamics, to summarize, one gives q], i and £B i (equivalent to {B on two nearby hypersurfaces). One chooses the Ai and Ai with much arbitrariness to represent these initial-value data. The arbitrariness having been seized on to give the initial Ai and Ai , there is no arbitrariness left in the initial <f>. However, at all subsequent times the situation is just the other way around. All the arbitrariness is sopped up in the choice of the <f>, leaving no arbitrariness whatever in the three Ai (as given by the integration of the dynamic equation) . The situation is quite similar in geometrodynamics. One gives the beginnings of a I -parameter family of spacelike hypersurfaces; namely, <3>-b(0) given, (2 l .122) 
(21.123) Then (1) one picks a definite set of coordinates x i = (x, y, z) and in terms of those coordinates finds the unique metric coefficients gix, y, z) that describe that 3-geometry. The existence of a solution is guaranteed by the circumstance that <3>-b is a Riemannian geometry. However, one could have started with different coordinates and ended up with different metric coefficients for the description of the same 3-geometry. No matter. Pick one set of coordinates, take the resulting metric coefficients, and stick to them as giving half the required initial-value data. (2) Similarly, to describe the 3-geometry <3>-b + <3>t dt at the value of the parameter t + dt, make use of coordinates x i + x i dt and arrive at the metric coefficients gii + gii dt. The arbitrariness in the x i having thus been resolved by fiat, and the <3>-b being given as definite initial physical data, the gii are thereby completely fixed. (3) Recall that the components of the extrinsic curvature Kii or the momenta 'lT ii are given in terms of the gii and gii and the lapse and shift functions N and Ni by (21.67) or by (2 l .67) plus (2 l .91) or by (21.114). The four initial-value or "constraint" equations (21.116) and (21.117) thus become four conditions for finding the four 

Scalar potential : fixed at 
start; freely d isposable later 

In  ADM treatment, g ive 
3-geometry and its t i me-rate 
of change 



Lapse and shift init ia l ly 
determ inate , thereafter freely 
disposable 

Count ing init ia l -value data 
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quantities N, Ni . One can shorten the writing of these conditions by introducing 
the abbreviations 

and 

("shift ) Y? = = (Tr y )2 - Tr y 2 - anomaly" 

(both for functions of x, y, z on the initial simultaneity). Then one has 

for the one initial-value equation; and for the other three, 

[ y/ - o/Tr y ] = - 8wTt. 
N lk 

(2 1.12 4) 

(2 1.12 5)  

(2 1.12 6) 

(2 1.12 7) 

In summary, one chooses the gii and gii with much arbitrariness (because of the 
arbitrariness in the coordinates, not by reason of any arbitrariness in the physics) 
to represent the given initial-value data, <3>-b and <3>.i:J. The arbitrariness at the initial 
time all having been soaked up in this way, one expects no arbitrariness to be left 
in the initial N and Ni as obtained by solving (2 1.12 6) and (2 1.12 7). However, on 
all later spacelike slices, the award of the arbitrariness is reversed. The lapse and 
shift functions are freely disposable, but, with them once chosen, there is no arbi
trariness whatever in the six gii (and the six Kii or w ii) as given by the integration 
of the dynamic equations (2 1.114) and (2 1.115 ). The analogy with electrodynamics 
is clear. There the one "gauge-controlled" function c/> was fixed at the start by the 
elliptic equation (2 1.12 1 ), but was thereafter free. Here the four lapse and shift 
functions are fixed at the start by the four equations (2 1.12 6) and (2 1.12 7), but are 
thereafter free. 

Exercise 2 1.16 applies the initial-value equation (2 1.12 6) to analyze the whole 
evolution in time of any Friedmann universe in which one knows the equation 
p = p(p) connecting pressure with density. Exercise 2 1.17 looks for a variation 
principle on the spacelike hypersurface 2) equivalent in content to the elliptic 
initial-value equation (2 1.12 1) for the scalar potential </>. Exercises 2 1.18 and 2 1.19 
look for similar variation principles to determine the lapse and shift functions. 

How many degrees of freedom, or how many "handles, " are there in the specifica
tion of the 4-geometry that one will obtain? The metric coefficients of the initial 
3-geometry provided six numbers per space point. However, they were arbitrary to 
the extent of a coordinate transformation, specified by three functions of position, 

x = x(x', y', z'), 

y = y(x', y', z'), 

z = z(x', y', z'). 



§ 2 1  9 INITIAL-VAL UE PROBLEM IN THE THIN-SANDWICH FORM ULATION 5 3 3  The net number of quantities per space point with any physical information was therefore 6 - 3 = 3. One can visualize these three functions as the three diagonal components of the metric in a coordinate system in which gii has been transformed to diagonal form. Ordinarily it is not useful to go further and actually spell out the analysis in any such narrowly circumscribed coordinate system. Now think of the <3>� in question as imbedded in the <4>� that comes out of the integrations .  Moreover, think of that <4>� as endowed with the lumps, bumps, wiggles, and waves that distinguish it from other generic 4-geometries and that make Minkowski geometry and special cosmologies so unrepresentative. The <3>� is a slice in that <4>�. It partakes of the lumps, bumps, wiggles, and waves present in all those regions of the <4>� that it intersects. To the extent that the <4>� is generic, it does not allow the <3>� to be moved to another location without becoming a different 
<3>�. If one tries to push the <3>� "forward in time" a little in a certain locality, leaving it unchanged in location elsewhere, one necessarily changes the <3>�. By this circumstance, one sees that the <3>� "carries information about time" [Sharp (1960) ; Baierlein, Sharp, and Wheeler (1962)] . Moreover, this "forward motion in time" demands for its description one number per space point. It is possible to think of this number in concrete terms by imagining an arbitrary coordinate system t, x, j, z laid down in the <4>�. Then the hypersurface can be conceived as defined by the value t = t(x, j, z) at which it cuts the typical line x, j, z. A forward movement carries it to t(x, j, z) + ot(x, j, z), and changes shape and metric coefficients on <3>� accordingly. It is usually better not to tie one's thinking down to such a concrete model, but rather to recognize as a general point of principle ( I )  that the location of the <3>� in spacetime demands for its specification one datum per spacepoint, and (2) that this datum is already willy-nilly present in the three data per spacepoint that mark any <3>�. In conclusion, there are only two data per spacepoint in a <3>� that really tell anything about the <4>� in which it is imbedded, or to be imbedded (as distinguished from where the <3>� slices through that <4>�). Similarly for the other <3>� that defines the other "face of the sandwich," whether thick or thin. Thus one concludes that the specification of <3>� and <3>-b actually gives four net pieces of dynamic information per spacepoint about the <4>� (all the rest of the information being "many-fingered time," telling where the 3-geometries are located in that <4>�) . According to this line of reasoning, geometrodynamics has the same number of dynamic degrees of freedom as electrodynamics. One arrives at the same conclusion in quite another way through the weak-field analysis (§35 .3) of gravitational waves on a flat spacetime background: the same ranges of possible wave numbers as for Maxwell waves ; and for each wave number two states of polarization; and for each polarization one amplitude and one phase (the equivalent of one coordinate and one momentum). In electrodynamics in a prescribed spacetime manifold, one has a clean separation between the one time-datum per spacepoint (when one deals with electromagnetism in the context of many-fingered time) and the two dynamic variables per spacepoint; but not so in the superspace formulation of geometrodynamics. There the two kinds of quantities are inextricably mixed together in the one concept of 3-geometry. 

Four pieces of 
geometrodynamic information 
per space point on initial 
simultaneity 



Problem in assuring 
completeness and 
consistency of initial data 

The "thin sandwich 
conjecture" 
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Turn from initial- and final-value data to the action integral that is determined 
by ( 1 )  these data and (2) the principle that the action be an extremum, 

/ = 1extremum = S. 

The action depends on the variables on the final hypersurface, according to the 
formula 

S = S(X, B) 

in electrodynamics, but according to the formula 

S = S((3l�) 

(2 1 . 128) 

(2 1 . 129) 

in geometrodynamics. In each case, there are three numbers per spacepoint in the 
argument of the functional (one in X;  two in a divergence-free magnetic field; three 
in (3>�)-

This mixing of the one many-fingered time and the two dynamic variables in a 
3-geometry makes it harder in general relativity than in Maxwell theory to know 
when one has in hand appropriate initial value data. Give X and give !13 and qJ 
on X: that was enough for electrodynamics. For geometrodynamics, to give the six 
gi;(x, y, z) and the six g;;(x, y, z) is not necessarily enough. For example, let the time 
parameter t be a fake, so that dt, instead of leading forward from a given hypersur
face X to a new hypersurface X + dX, merely recoordinatizes the present hypersur
face: 

(2 1 . 1 30) 

A first inspection may make one think that one has adequate data in the six gii 
and the six 

(2 1 . 1 3 1 )  

but in the end one sees that one has not both faces of the thin sandwich, as required, 
but only one. Thus one must reject, as improperly posed data in the generic problem 
of dynamics, any set of six gii that let themselves be expressed in the form (2 1 . 1 3 1 )  
[Belasco and Ohanian (1 969)] . 

Similar difficulties occur when the two faces of the thin sandwich, instead of 
coinciding everywhere, coincide in a limited region, be it three-dimensional, two
dimensional, or even one-dimensional ("crossover of one face from being earlier 
than the other to being later"). Thus it is enough to have (21 . 13 1 ) obtaining even 
on only a curved line in X to reject the six gii as inappropriate initial-value data. 

That one can impose conditions on the gii and gii which will guarantee existence 
and uniqueness of the solution N(x, y, z), N/x, y, z) of the initial-value equations 
(2 1 . 126) and (21 . 127) is known as the "thin-sandwich conjecture," a topic on which 
there has been much work by many investigators, but so far no decisive theorem. 
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To presuppose existence and uniqueness is to make the first step in giving mathe
matical content to Mach's principle that the distribution of mass-energy throughout 
space determines inertia (§21 . 12). 

§ 2 1 . 1 0 . TH E TIME-SYMMETRIC AN D 

TIME-ANTISYMMETRIC IN ITIAL-VALU E PRO B LEMS 

Turn from the general initial-value problem to two special initial-value problems 
that lend themselves to detailed treatment, one known as the time-symmetric ini
tial-value problem, the other as the time-antisymmetric problem. 

A 4-geometry is said to be time-symmetric when there exists a spacelike hypersur
face .X at all points of which the extrinsic curvature vanishes. In this case the three 
initial value equations (21 . 127) are automatically satisfied, and the fourth reduces 
to a simple requirement on the three-dimensional scalar curvature invariant, 

R = l61Tp . (2 l . 1 32) 

Still further simplifications result when one limits attention to empty space. Simplest 
of all is the case of spherical symmetry in which (21 . 1 32) yields at once the full 
Schwarzschild geometry at the moment of time symmetry (two asymptotically flat 
spaces connected by a throat), as developed in exercise 21 .20. 

Consider a 3-geometry with metric 

(21 . 1 33) 

Call it a "base metric." Consider another 3-geometry with metric 

(2 1 . 134) 

Angles are identical in the two geometries. On this account they are said to be 
conformally equivalent. The scalar curvature invariants of the two 3-geometries are 
related by the formula [Eisenhart (1 926)] 

(2 1 . 135)  

where 

(21 . 1 36) 

Demand that the scalar curvature invariant R2 vanish, and arrive [Brill ( 1959)] at 
the "wave equation" 

(21 . 1 37) 

for the conformal correction factor ip.  Brill takes the base metric to have the form 
suggested by Bondi, 

(2 1 . 1 38) 



Wave amplitude determines 
mass-energy m = m(A) 
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and takes the conformal correction factor tf; also to possess axial symmetry. In the 
application: 

q1(p, z) measures the "distribution of gravitational wave amplitude," assumed for 
simplicity to vanish outside r = (p2 + z 2) 11 2 = a; 

A measures the "amplitude of the distribution of gravitational wave ampli
tude"; 

tf;(p, z) is the conformal correction factor, which varies with position at large 
distances as l + (m/2 r). The quantity m(cm) is uniquely determined by 
the condition that the geometry be asymtotically flat. It measures the 
mass-energy of the distribution of gravitational radiation. 

The mass m of the gravitational radiation is proportional to A2 for small values of 
the amplitude A. It is inversely proportional to the reduced wavelength A' = ( effective 
wavelength/2 '77) that measures the scale of rapid variations in the gravitational wave 
amplitude q

1
(p , z) in the "active zone." Thus the metric is dominated by wiggles, 

proportional in amplitude to A, in the active zone, and at larger distances dominated 
by something close to a Schwarzschild (1 + 2 m/r) factor in the metric. When the 
amplitude A is increased, a critical value is attained, A = Acrw at which m goes to 
infinity and the geometry curves up into closure ("universe closed by its own c_ontent 
of gravitational-wave energy"). Further analysis and examples will be found in 
Wheeler (1964a), pp. 399- 451, also in Wheeler (1964c). 

Brill has carried out a similar analysis [Brill (1961 )] for the vacuum case of what 
he calls time-antisymmetric initial-value conditions, sketched below as amended by 
York (1973). (1) The initial slice is maximal, Tr K = 0. (2 ) This slice is conformally 
flat, 

(2 l . l 39) 

(3) Work in the "base space" with metric oii and afterwards transform to the geometry 
(2 l .139). Three of the initial-value equations become 

Kii - o base, j - (2 l .140) 

To solve these equations, (I) take any localized trace-free symmetric tensor Bkm; 
(2 ) solve the flat-space Laplace equation v7 2A = (3/2 ) a2Bkm/ax k ax m for A; 
(3) define the six potentials Akm = Bkm + ¼A 8km ; and (4) calculate 

(2 l . l 41) 

that automatically satisfy (2 l .140) and give Tr K bas .. = 0. Then Kii = tf;- 1° K�ase also 
automatically satisfies these conditions, but now in the curved geometry (2 l . l 39). 
The final initial-value equation becomes a quasilinear elliptic equation, in the flat 
base space, for the conformal factor tf;, 

8v7�ase If' + lf'-7 2 (Kbase ii)2 = 0. 
i ,j 

The asymptotic form of tf; reveals that the mass of the wave is positive. 

(2 l . l 42 )  
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In addition to the time-symmetric and time-antisymmetric cases, there are at least 
two further cases where the initial-value problem possess special simplicity. One is 
the case of a geometry endowed with a symmetry, as, for example, for the Friedmann 
universe of Chapter 2 7  or the rnixmaster universe of Chapter 30 or cylindrical 
gravitational waves in the treatment of Kuchar (1971a). One starts with a spacelike 
slice on which the gii and w ii have a special symmetry, and makes all future spacelike 
slices in a way that preserves this symmetry. The geometry on any one of these 
simultaneities, though almost entirely governed by these symmetry considerations, 
still typically demands some countable number of parameters for its complete deter
mination, such as the radius of the Friedmann universe, or the three principal radii 
of curvature of the mixmaster universe. These parameters and the momenta conju
gate to them define a miniphase space. In this miniphase space, the dynamics runs 
its course as for any other problem of classical dynamics [see, for example, Box 30. l 
and Misner (1969) for the mixmaster universe; Kuchar (1971a) and (197 2 ) for waves 
endowed with cylindrical symmetry; and Gowdy (1973) for waves with spherical 
symmetry]. Even the evidence for the existence of many-fingered time, most charac
teristic feature of general relativity, is suppressed as the price for never having to 
give attention to any spacelike slice that departs from the prescribed symmetry. 

Exercise 21 .16 .  POOR MAN'S WAY TO DO COSMOLOGY 

Consider a spacetime with the metric 

corresponding to a 3-geometry with the form of a sphere of radius a(t) changing with time. 
Show that the tensor of extrinsic curvature as expressed in a local Euclidean frame of 
reference is 

K = - a-1(da/dt) 1 ,  

where 1 i s  the unit tensor. Show that the initial value equation (21.77) reduces to 

(6/a 2)(da/dt)2 + (6/a 2) = I 6?Tp (a) 

[for the value of the second term on the left , see exercise 14.3 and Boxes 14.2 and 14.5], 
and explain why it is appropriate to write the term on the right as 6a0/a3 for a "dust-filled 
model universe." More generally, given any equation of state, p = p( p), explain how one 
can find p = p(a) from 

and how one can thus forecast the history of expansion and recontraction, a = a(t) .  

Exercise 21 .1 7 .  THIN-SANDWICH VARIATIONAL PRINCIP LE FOR 
THE SCALAR POTENTIAL IN ELECTRODYNAMICS 

(a) Choose the unknown um in the expression 

Finite dimensional dynamics 
for geometries endowed with 
high symmetry 

EXERCISES 
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in such a way that this expression, multiplied by the volume element g11 2 d3x, and integrated over the simultaneity I, is extremized by a cf>, and only by a cf>, that satisfies the initial-value equation (2 1 . 108) of electrodynamics. (b) Show that the resulting variational principle, instead of having to be invented "out of the blue," is none other than what follows directly from the action principle build on the Lagrangian density (2 1 .  1 00) of electrodynamics (independent variation of cf> and the three A; everywhere between the two faces of a sandwich to extremize /, subject only to the prior specification of the A; on the two faces of the sandwich, in the limit where the thickness of the sandwich goes to zero). 
Exercise 21 . 1 8 . TH IN-SANDWICH VARIATIONAL PRI NCIPLE FOR THE LAPSE 

AND SH I FT FUNCTIONS IN GEOMETRODYNA M I CS (a) Extremize the action integral 
13 = f { [R - (TrK)2 + TrK2 - 2 T:nJN - 2 r:kNk} gll2 d3x 

with respect to the lapse and shift functions, and show that one arrives in this way at the four initial-value equations of geometrodynamics . It is understood that one has given the six gii and the six og;/ot on the simultaneity where the analysis is being done . The extrinsic curvature is considered to be expressed as in (2 1 .67) in terms of these quantities and the lapse and shift. The energy density and energy flow are referred to a unit normal vector n and three arbitrary coordinate basis vectors e ; within the simultaneity, as earlier in this chapter, and the asterisk is an abbreviation for an omitted factor of 877. (b) Derive this variational principle from the ADM variational principle by going to the limit of an infinitesimally thin sandwich [see derivation in Wheeler ( 1 964)]. 
Exercise 21 . 1 9 . CONDENSED TH IN-SANDWICH VARIATIONAL PRINCIPLE (a) Extremize the action /3 of the preceding exercise with respect to the lapse function N. (b) What is the relation between the result and the principle that "3-geometry is a carrier of information about time"? (c) By elimination of N, arrive at a "condensed thin-sandwich variational principle" in which the only quantities to be varied are the three shift functions N; . 
Exercise 21 .20.  POOR MAN'S WAY TO SCHWARZSCH I LD GEOMETRY On curved empty space evolving deterministically in time, impose the conditions ( I ) that it possess a moment of time-symmetry, a spacelike hypersurface, the extrinsic curvature of which, with respect to the enveloping spacetime, is everywhere zero, and (2) that this spacelike hypersurface be endowed with spherical symmetry. Write the metric of the 3-geometry in the form 

From the initial-value equation (2 1 . 127) ,  show that the conformal factor if; up to a multiplicative factor must have the form if; = ( I  + m/2r). Show that the proper circumference 27Trif,2(r) assumes a minimum value at a certain value of r, thus defining the throat of the 3-geometry. Show that the 3-geometry is mirror-symmetric with respect to reflection in this throat in the sense that the metric is unchanged in form under the substitution r ' = m 2/4r. Find the transformation from the conformal coordinate r to the Schwarzschild coordinate r. 
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§ 2 1 . 1 1 .  YORK'S " HAN DLES" T O  SP ECIFY A 4-G EO METRY 

On a simultaneity-or on the simultaneity-of extremal proper volume, give the 
conformal part of the 3-geometry and give the two inequivalent components of the 
dynamically conjugate momentum in order (I) to have freely specifiable, but also 
complete, initial-value data and thus (2) to determine completely the whole generic 
four-dimensional spacetime manifold. This in brief is York's extension ( 197 1 ,  1 972b) 
to the generic case of what Brill did for special cases (see the preceding section). 
York and Brill acknowledge earlier considerations of Lichnerowicz (l 944) and Bruhat 
(1 962 and earlier papers cited there on conformal geometry and the initial-value 
problem). But why conformal geometry, and why pick such a special spacelike 
hypersurface on which to give the four dynamic data per spacepoint? 

Few solutions of Maxwell's equations are simpler than an infinite plane mon
ochromatic wave in Minkowski's flat spacetime, and few look more complex when 
examined on a spacelike slice cut through that spacetime in an arbitrary way, with 
local wiggles and waves, larger-scale lumps and bumps, and still larger-scale general 
curvatures. No one who wants to explore electrodynamics in its evolution with 
many-fingered time can avoid these complexities; and no one will accept these 
complexities of many-fingered time who wants to see the degrees of freedom of the 
electromagnetic field in and by themselves exhibited in their neatest form. He will 
pick the simplest kind of timelike slice he can find. On that simultaneity, there are 
two and only two field coordinates, and two and only two field momenta per 
spacepoint. Similarly in geometrodynamics. 

When one wants to untangle the degrees of freedom of the geometry, as distinct 
from analyzing the dynamics of the geometry, one therefore retreats from the three 
items of information per spacepoint that are contained in a 3-geometry [or in any 
other way of analyzing the geometrodynamics, as especially seen in the "extrinsic 
time" formulation of Kuchar ( l97 l b  and 1 972)] and following York ( l )  picks the 
simultaneity to have maximal proper volume and (2) on this simultaneity specifies 
the two "coordinate degrees of freedom per spacepoint" that are contained in the 
conformal part of the 3-geometry. 

An element of proper volume g11 2  d3x on the spacelike hypersurface X undergoes, 
in the next unit interval of proper time as measured normal to the hypersurface, 
a fractional increase of proper volume [see Figure 2 1 .3 and equations 21 .59 and 
21 .66] given by 

- Tr K = _ _!_g- 112 Tr n.  
2 

(2 l . 143) 

For the volume to be extremal this quantity must vanish at every point of X. This 
condition is satisfied in a Friedmann universe (Chapter 27) and in a Taub universe 
(Chapter 30) at that value of the natural time-coordinate t at which the universe 
switches over from expansion to recontraction. It is remarkable that the same 
condition on the choice of simultaneity, X, lets itself be formulated in the same 
natural way, 

Tr K = 0 or Tr n = 0, (2 l . 144) 

The degrees of freedom of 
the geometry in brief 

Pick hypersurface of extremal 
proper volume 



Case of open 3 -geometry 

M eaning of conformal 
3-geometry 

540 21 VARIATIONAL PRINCIPLE AND INITIAL-VALUE DATA for a closed universe altogether deprived of any symmetry whatsoever. Alternatively, one can deal with a spacetime that is topologically the product of an open 3-space by the real line (time). Then it is natural to think of specifying the location in it of a bounding spacelike 2-geometry S with the topology of a 2-sphere. Then one has many ways to fill in the interior of S with a spacelike 3-geometry X ;  but of all these X's, only the one that is extremal, or only the ones that are extremal, satisfy (2 l . l 44). Who is going to specify this 2-geometry with the topology of a 2-sphere? The choice of that 2-geometry is not a matter of indifference. In a given 4-geometry, distinct choices for the bounding 2-geometry will ordinarily give distinct results for the extremizing 3-geometry, and therefore different choices for the "initial-value simultaneity," X. No consideration immediately thrusts itself forward that would give preference to one choice of 2-geometry over another. However, no such infinity of options presents itself when one limits attention to a closed 3-geometry. Therefore it will give concreteness to the following analysis to consider it applied to a closed universe, even though the analysis surely lets itself be made well-defined in an open region by appropriate specification of boundary values on the closed 2-geometry that bounds that open region. In brief, by limiting attention to a closed 3-geometry, one lets the obvious condition of closure take the place of boundary conditions that are not obvious. York's analysis remains simple when his extrinsic time 
7' = lr 112 Tr ll = ..i_ Tr K 

3 3 has any constant value on the hypersurface, not only the value r = 0 appropriate for the hypersurface of extremal proper volume. On the simultaneity X specified by the condition of constant extrinsic time, r = constant, begin by giving the conformal 3-geometry, 
< = (3) <  

the equivalence class of all those positive definite Riemannian three-dimensional metrics that are equivalent to each other under ( I )  diffeomorphism (smooth sliding of the points over the mainfold to new locations) or (2) changes of scale that vary smoothly from point to point, leaving fixed all local angles (ratios of local distances), but changing local distances themselves or (3) both. 
(21.145) 

The conformal 3-geometry is a geometric object that lends itself to definition and interpretation quite apart from the specific choice of coordinate system and even without need to use any coordinates at all. The conformal 3-geometry ( on the 
hypersurface X where r = constant) may be regarded much as one regards the magnetic field in electromagnetism. The case of conformally flat 3-geometry, ds2 = if;4(x, y, z) dslase (2 l . l 46) 



§ 2 1  1 1  YORK'S "HANDLES" TO SPECIFY A 4-GEOMETRY 54 1 (with gii base = oii), is analogous to those initial-value situations in electromagnetism where the magnetic field is everywhere zero (the time-antisymmetric initial-value problem of Brill) ; but now we consider the case of general ds�ase · The six metric coefficients gii of the conformal 3-geometry, subject to being changed by change of the three coordinates x i, and undetermined at any one point up to a common position-dependent multiplicative factor, carry 6 - 3 - 1 = 2 pieces of information per spacepoint. In this respect, they are like the components of the divergenceless magnetic field qt,, The corresponding field momentum ?T�M ex: S i (Box 2 1.1 ,  page 496) has its divergence specified by the charge density, and so also carries two pieces of information (in addition to the prescribed information about the density of charge) per spacepoint. (2 1 . 147) The comparison is a little faulty between the components of qt, and the metric coefficients. They are more like potentials than like components of the physically relevant field. The appropriate measure of the "field" in geometrodynamics is the curvature tensor; but how can one possibly define a curvature tensor for a geometry that is as rudimentary as a conformal 3-geometry? York ( 1 97 1 )  has raised and answered this question. The Weyl conformal-curvature tensor [equation ( 1 3.50) and exercise 1 3. 1 3] is independent [in the proper @ representation], in spaces of higher dimensionality, of the position-dependent factor i[;4 with which one multiplies the metric coefficients, but vanishes identically in three-dimensional space ( exercise 2 1.21 ). One arrives at a non-zero conformally invariant measure of the curvature only when one goes to one higher derivative (exercise 2 1 .22). In this way, one comes to York's York 's cu rvatu re tensor 
curvature 7Jab, here called yab, a tensor density with these properties : yab = yba (symmetric) ; Y� = 0 (traceless) ; yab lb = 0 (transverse) ; yab invariant with respect to position-dependent changes in the conformal scale factor; yab = 0 when and only when the 3-geometry is conformally flat. (21 .148) yab provides what York calls the pure spin-two representation of the 3-geometry intrinsic to .J:. It is the analog of the field qt, of electrodynamics on the spacelike initial-value simultaneity. It directly carries physical information about the conformal 3-geometry. In addition to the conformal geometry <3> < ,  specified by the "potentials" gi/ g1 13, and measured by the "field components" yii, one must also specify on .J: the corresponding conjugate momenta: 
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542 2 1 . VARIATIONAL PRINCIPLE AND INITIAL-VALUE DATA 7iab = wab (symmetric) ; w� = 0 (traceless) ; ?fab
l b = 0 (transverse) in case there is no flow of energy in space ; otherwise ?f ab

l b = 8?T (density of flow of energy}° ; two pieces of information (in addition to the prescribed information about the flow of energy) per spacepoint. (21.149) It might appear to be essential to specify with respect to which of the 3-geometries, distinguished from one another by different values of the conformal factor one calculates the covariant derivatives of tensor densities of weight 5 /3 (see §21.2) in (21.148) and (21.149). However, York has shown that the conditions (21.149) do not in any way depend on the value of the conformal factor if;4• These equations (21.149) for what York calls the "momentum density of weight 5/3," ?T ab = g il3 ( '7Tab _ � gab Tr n ) , (21.150) are linear, and therefore lend themselves to analysis by standard methods. It is a great help in this enterprise that York (1973a,b) has provided a "conformally invariant orthogonal decomposition of symmetric tensors on Riemannian manifolds" that allows one to generate solutions of these requirements ("transverse traceless," "conformal Killing," and "trace" parts, respectively, measure deformation of conformal part of geometry, mere recoordinatization, and change of scale) . It is a further assistance, as York notes, that one has the same ?fab for an entire conformal equivalence class of metrics ; that is, for a given 
- - 1/3  ga b = g gab > no matter how different the gab and if; themselves may be. (21.151) 

The conformal 3-geometry and the "momentum density of weight 5/3" once picked, the remaining initial-value equation (21.116) then becomes the "scale" equation, (21.152) for the determination of the conformal factor if;. Here V2 stands for the Laplacian V2ip = g-l/2(o /oxa)g ll 2gab (o ip /ox b) .  It, like <3> R, M, and Q, refers to the base space. It  is  interesting that v2 - ..!.<3>R 8 

(21.153) 
is a conformally invariant wave operator, whereas V2 itself is not. The quantity M in York's analysis is an abbreviation for (21.154a) and (21.154b) 
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One seeks a solution IP that is continuous over the closed manifold and everywhere 
real and positive. When does such a solution IP of the elliptic equation (2 1 . 1 52) exist? 
When is it unique? Always (when M > 0 and T f= 0), is the result of O'Murchadha 
and York (1 973); see also earlier investigations of Choquet-Bruhat (1 972). Some of 
the physical considerations that come into this kind of problem have been discussed 
by Wheeler (1 964a, pp. 370-38 1 ). 

§2 1 . 1 2 . MACH 'S PRINCIP LE AN D TH E ORIG IN O F  IN ERTIA 

In my opinion the general theory of relativity can only solve this problem [of 
inertia] satisfactorily if it regards the world as spatially self-enclosed. 

ALBERT E I N STE IN  ( 1 934) ,  p 52  

On June 25 , 1 9 1 3, two years before he had discovered the geometrodynamic law 
that bears his name, Einstein (1 9 1 3b) wrote to Ernst Mach (Figure 21 .5) to express 
his appreciation for the inspiration that he had derived for his endeavors from Mach's 
ideas. In his great book, The Science of Mechanics, Mach [(1 9 1 2), Chapter 2, section 
6] had reasoned that it could not make sense to speak of the acceleration of a mass 
relative to absolute space. Anyone trying to clear physics of mystical ideas would 
do better, he reasoned, to speak of acceleration relative to the distant stars. But how 
can a star at a distance of 109 light-years contribute to inertia in the here and the 
now? To make a long story short, one can say at once that Einstein's theory 
(1)  identifies gravitation as the mechanism by which matter there influences inertia 
here; (2) says that this coupling takes place on a spacelike hypersurface [in what 
one, without a closer examination, might mistakenly think to be a violation of the 
principle of causality ; see Fermi (1 932) for a discussion and clarification of the similar 
apparent paradox in electrodynamics ; see also Einstein (1934), p. 84: "Moreover 
I believed that I could show on general considerations a law of gravitation invariant 
in relation to any transformation of coordinates whatever was inconsistent with the 
principle of causation. These were errors of thought which cost me two years of 
excessively hard work, until I finally recognized them as such at the end of 1 9 1 5" ] ;  
(3) supplies in the initial-value equations of geometrodynamics a mathematical tool 
to describe this coupling; (4) demands closure of the geometry in space [one conjec
tures; see Wheeler (1 959, 1964c) and Honl (1962)], as a boundary condition on the 
initial-value equations if they are to yield a well-determined [and, we know now, 
a unique] 4-geometry; and (5) identifies the collection of local Lorentz frames near 
any point in this resulting spacetime as what one means quantitatively by speaking 
of inertia at that point. This is how one ends up with inertia here determined by 
density and flow of mass-energy there. 

There are many scores of papers in the literature on Mach's principle, including 
many-even one by Lenin (English translation, 1 927)-one could call anti-Mach
ian; and many of them make interesting points (see especially the delightful dialog 
by Weyl ( 1924a) on "inertia and the cosmos," and the article (1 957) and book ( 196 1 )  
of Sciama]. However, most of them were written before one had anything like the 
understanding of the initial-value problem that one possesses today. Therefore no 

(continued on page 546) 

No violation of causality , 
despite appearances 

An enormous literature 
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Figure 21.5.  
Einstein's appreciation of Mach, written to  Ernst Mach June 25 ,  19 13 ,  while Einstein was workmg hard 
at arriving at the final November 1 9 1 5  formulation of standard general relativity. Regarding confirmation 
at a forthcoming eclipse: "If so, then your happy investigations on the foundations of mechanics, Planck's 
unjustified criticism notwithstanding, will receive brilliant confirmation .  For it necessarily turns out that 
inertia originates in a kind of interaction between bodies, quite in the sense of your considerations on 
Newton's pail experiment. The first consequence is on p.  6 of my paper. The following additional points 
emerge: ( I )  If one accelerates a heavy shell of matter S, then a mass enclosed by that shell experiences 
an accelerative force. (2) If one rotates the shell relative to the fixed stars about an aXIs going through 
its center, a Coriolis force arises in the mterior of the shell ; that is, the plane of a Foucault pendulum 
is dragged around (with a practically unmeasurably small angular velocity) ." Following the death of 
Mach, Einstein ( 1 9 16a) wrote a tribute to the man and his work. Repnnted with the kind permission 
of the estate of Albert Einstein, Helen Dukas and Otto Nathan, executors. 
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attempt will be made to summarize or analyze the literature, which would demand 
a book in itself. Moreover, Mach's principle as presented here is more sharply 
formulated than Einstein ever put it in the literature [ except for his considerations 
arguing that the universe must be closed; see Einstein's book (1950), pp. 107- 108] ;  
and Mach would surely have disowned it, for he could never bring himself to accept 
general ( or even special) relativity. Nevertheless, it is a fact that Mach's principle
that matter there governs inertia here-and Riemann's idea-that the geometry of 
space responds to physics and participates in physics-were the two great currents 
of thought which Einstein, by means of his powerful equivalence principle, brought 
together into the present-day geometric description of gravitation and motion. 

"Specify everywhere the distribution and flow of mass-energy and thereby deter
mine the inertial properties of every test particle everywhere and at all times". 
Spelled out, this prescription demands ( 1 )  a way of speaking about "everywhere": 
a spacelike hypersurface .J:. Let one insist-in conformity with Einstein-(2) that 
it be a closed 3-geometry, and for convenience, not out of necessity, (3) that -r be 
independent of position on .J:. (4) Specify this 3-geometry to the extent of giving 
the conformal metric; without the specification of at least this much 3-geometry, 
there would be no evident way to say "where" the mass-energy is to be located. 
(5 ) Give density Pbase as a function of position in this conformal 3-geometry. 
(6) Recognize that giving the mass-energy only of fields other than gravity is an 
inadequate way to specify the distribution of mass-energy throughout space. For
malistically, to be sure, the gravitational fields does not and cannot make any 
contribution to the source term that stands on the righthand side of Einstein's field 
equation. However, the analysis of gravitational waves (Chapters 1 8  and 35) shows 
that perturbations in the geometry of scale small compared to the scale of observation 
have to be regarded as carrying an effective content of mass-energy. Moreover, one 
has in a geon [Wheeler ( 1955) ;  Brill and Hartle (1 964) ; for more on gravitational-wave 
energy, see §35. 14] an object built out of gravitational waves (or electromagnetic 
waves, or neutrinos, or any combination of the three) that holds itself together for 
a time that is long in comparison to the characteristic period of vibration of the 
waves. It looks from a distance like any other mass, even though nowhere in its 
interior can one put a finger and say "here is mass." Therefore it, like any other 
mass, must have "its influence on inertia." But to specify this mass, one must give 
enough information to characterize completely the gravitational waves on the simul
taneity .J:. For this, it is not enough merely to have given the two "wave-coordinates" 
per spacepoint that one possesses in <3> < .  One must give in addition (7) the two 
"wave-momenta" per spacepoint that appear in York's "momentum density of weight 
5 /3," 1fab ; and at the same time, as an inextricable part of this operation, one must 
(8) specify the density of flow of field energy. (9) Solve for the conformal factor 
if;. ( 10) Then one has complete initial-value data that satisfy the initial-value equa
tions of general relativity. (1 1 )  These data now known, the remaining, dynamic, 
components of the field equation determine the 4-geometry into the past and the 
future. ( 12) In this way, the inertial properties of every test particle are determined 
everywhere and at all times, giving concrete realization to Mach's principle. 

Much must still be done to spell out the physics behind these equations and to 
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see this physics in action. Some significant progress had already been made in this 
direction before the present stage in one's understanding of the initial-value equa
tions. Especially interesting are results of Thirring ( 19 1 8) and (1 921 ) and of Thirring 
and Lense (1 9 1 8), discussed by Einstein (1 950) in the third edition of his book, 
The Meaning of Relativity. 

Consider a bit of solid ground near the geographic pole, and a support erected 
there, and from it hanging a pendulum. Though the sky is cloudy, the observer 
watches the track of the Foucault pendulum as it slowly turns through 360 ° . Then 
the sky clears and, miracle of miracles, the pendulum is found to be swinging all 
the time on an arc fixed relative to the far-away stars. If "mass there governs inertia 
here," as envisaged by Mach, how can this be? 

Enlarge the question. By the democratic principle that equal masses are created 
equal, the mass of the earth must come into the bookkeeping of the Foucault 
pendulum. Its plane of rotation must be dragged around with a slight angular 
velocity, wdrag, relative to the so-called "fixed stars."  How much is wrlrag? And how 
much would wdrag be if the pendulum were surrounded by a rapidly spinning 
spherical shell of mass M and radius RshelJ, turning at angular velocity w shell? 

Einstein's theory says that inertia is a manifestation of the geometry of spacetime. 
It also says that geometry is affected by the presence of matter to an extent propor
tional to the factor G/c2 = 0.742 X 10-28 cm/g. Simple dimensional considerations 
leave no room except to say that the rate of drag is proportional to a expression 
of the form 

_ k G m shell, conv _ k m shell wdrag - 2 wshell - -- wsheIJ• C R shell R shell 
(2 l . 1 5 5 )  

Here k is a numerical factor to be found only by  detailed calculation. Lense and 
Thirring [(1 9 1 8) and (1921 )], starting with a flat background spacetime manifold, 
calculated in the weak-field approximation of Chapter 1 8  the effect of the moving 
current of mass on the metric. Expressed in polar coordinates, the metric acquires 
a non-zero coefficient g,w Inserted into the equation of geodesic motion, this off
diagonal metric coefficient gives rise to a precession. This precession ( defined here 
about an axis parallel to the axis of rotation, not about the local vertical) is given 
by an expression of the form (21 . 1 55), where the precession factor k has the value 

k = 4/3. (21 . 1 56) 

There is a close parallelism between the magnetic component of the Maxwell field 
and the precession component of the Einstein field. In neither field does a source 
at rest produce the new kind of effect when acting on a test particle that is also 
at rest. One designs a circular current of charge to produce a magnetic field; and 
a test charge, in order to respond to this magnetic field, must also be in motion. 
Similarly here : no pendulum vibration means no pendulum precession. Moreover, 
the direction of the precession depends on where the pendulum is, relative to the 
rotating shell of mass. The precession factor k has the following values : 

The Foucault pendulum 

The dragging of the inertial 
frame 



The "sum fo r i nert i a "  
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k = 4/3 for pendulum anywhere inside rotating 
shell of mass; 

k = 4/3 for pendulum at North or South pole; 

k = - 2 /3 for pendulum just outside the rotating 
shell at its equator. 

(2 l .157) 

This position-dependence of the drag, wc1rag, makes still more apparent the analogy 
with magnetism, where the field of a rotating charged sphere points North at the 
center of the sphere, and North at both poles, but South at the equator. 

Whether the Foucault pendulum is located in imagination at the center of the 
earth or in actuality at the North pole, the order of magnitude of the expected drag 
is 

mearth 0. 44 cm I radian 
wdrag ~ -R--wearth ~ 6 X I08 cm 13700 sec earth 

~ 5 X 10-14 rad/sec, 
(2 l .1 58) 

too small to allow detection, let alone actual measurement, by any device so far 
built-but perhaps measurable by gyroscopes now under construction (§ 40.7). By 
contrast, near a rapidly spinning neutron star or near a black hole endowed with 
substantial angular momentum, the calculated drag effect is not merely detectable; 
it is even important (see Chapter 33 on the physics of a rotating black hole). 

The distant stars must influence the natural plane of vibration of the Foucault 
pendulum as the nearby rotating shell of matter does, provided that the stars are 
not so far away (r ~ radius of universe) that the curvature of space begins to 
introduce substantial corrections into the calculation of Thirring and Lense. In other 
words, no reason is apparent why all masses should not be treated on the same 
footing, so that (2 l . l 58) more appropriately, if also somewhat symbolically, reads 

mshell wplane of ~ -
R-- wshell + 

vibration shell 
of Foucault 
pendulum 

2 far-away 
"stars" 

m"star" 
--- w"star" · 
'"star" 

(2 l .159) 

Moreover, when there is no nearby shell of matter, or when it has negligible effects, 
the plane of vibration of the pendulum, if experience is any guide, cannot turn with 
respect to the frame defined by the far-away "stars." In this event wFoucault must 
be identical with wstars; or the "sum for inertia," 

2 m"star" ,_, muniverse 
far-away '"star" r universe 
"stars" 

(2 l .160) 

must be of the order of unity. Just such a relation of approximate identity between 
the mass content of the universe and its radius at the phase of maximum expansion 
is a characteristic feature of the Friedman model and other simple models of a closed 
universe (Chapters 2 7  and 30). In this respect, Einstein's theory of Mach's principle 
exhibits a satisfying degree of self-consistency. 
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At phases of the dynamics of the universe other than the stage of maximum 
expansion, 'universe can become arbitrarily small compared to mumverse · Then the 
ratio (2 1.160) can depart by powers of ten from unity. Regardless of this circum
stance, one has no option but to understand that the effective value of the "sum 
for inertia " is still unity after all corrections have been made for the dynamics of 
contraction or expansion, for retardation, etc. Only so can wFoucault retain its inescap
able identity with wfar-away stars · Fortunately, one does not have to pursue the theology 
of the "sum for inertia " to the uttermost of these sophistications to have a proper 
account of inertia. Mach's idea that mass there determines inertia here has its 
complete m�hematical account in Einstein's geometrodynamic law, as already 
spelled out. For the first strong-field analysis of the dragging of the inertial 
reference system in the context of relativistic cosmology, see Brill and Cohen (1966) 
and Cohen and Brill (1967) ; see also §33.4 for dragging by a rotating black hole. 

Still another clarification is required of what Mach's principle means and how 
it is used. The inertial properties of a test particle are perfectly well-determined when 
that particle is moving in ideal Minkowski space. "Point out, please, " the anti-Ma
chian critic says, "the masses that are responsible for this inertia. " In answer, recall 
that Einstein's theory includes not only the geometrodynamic law, but also, in 
Einstein's view, the boundary condition that the universe be closed. Thus the section 
of spacetime that is flat is to be viewed, not as infinite, but as part of a closed universe. 
(For a two-dimensional analog, fill a rubber balloon with water and set it on a glass 
tabletop and look at it from underneath). The part of the universe that is curved 
acquires its curvature by reason of its actual content of mass-energy or-if animated 
only by gravitational waves-by reason of its effective content of mass-energy. This 
mass-energy, real or effective, is to be viewed as responsible for the inertial properties 
of the test particle that at first sight looked all alone in the universe. 

It in no way changes the qualitative character of the result to turn attention to 
a model universe where the region of Minkowski flatness, and all the other linear 
dimensions of the universe, have been augmented tenfold ("ten times larger balloon; 
ten times larger face "). The curvature and density of the curved part of the model 
universe are down by a factor of 100, the volume is up by a factor of 1,000, the 
mass is up by a factor of 10; but the ratio of mass to radius, or the "sum for inertia " 
(the poor man's substitute for a complete initial-value calculation) is unchanged. 

Einstein acknowledged a debt of parentage for his theory to Mach's principle 
(Figure 2 1. 5). It is therefore only justice that Mach's principle should in return today 
owe its elucidation to Einstein's theory. 

Exercise 2 1 . 2 1 . WHY TH E WEYL C O N FO RMAL CU RVATU R E  
TE N S O R  VAN I S H E S  How many independent components does the Riemann curvature tensor have i n  threedimensional space? How many does the Ricci curvature tensor have? Show that the two tensors are related by the formula 

Minkowski geometry as l imit 
of a closed 3-geometry 

EXERCISES 
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R d
abe = agRae  - B�Rab  + gaeR d

b - gabR � 
+ ½R (B�gab - aggae) 

with no need of any Wey! conformal-curvature tensor to specify (as in higher dimensions) the further details of the Riemann tensor. Show that the Wey! tensor, from an n-dimensional modification of equation ( 1 3 .50) as in exercise 1 3 . 1 3 ,  vanishes for n = 2 .  
Exercise 21 .22 . YORK'S CURVATURE [York ( 1 97 1 )] .  (a) Define the tensor [Eisenhart ( 1 926)] 

(b) Show that a 3-geometry is conformally flat when and only when Rabe = 0. (c) Show that the following identities hold and reduce to five the number of independent components of Rabe : 

( d) Show that Yorks' curvature 

R a 
ae  = g

a b  Rbae = O ;  Rabe + Raeb = O ; Rabe + Reab + Rbea = 0 .  
yab = g

ll3[aef] (R/ - _!_ 8/ R) 
4 l e  

= - ½ gll 3[aef] g
bmR mef 

is conformally invariant and has the properties listed in equations (2 1 . 148) .  
Exercise 21 .23 .  PU LLING THE POYNTING FLUX VECTOR "OU T OF THE AIR" From the condition that the Hamilton-Jacobi functional S(g;j ,  Am) (extremal of the action integral) for the combined Einstein and Maxwell fields, ostensibly dependent on the six metric coefficients g;i (x, y, z) and the three potentials Am(x, y, z), shall actually depend only on the 3-geometry of the spacelike hypersurface and the distribution of magnetic field strength on this hypersurface, show that the geometrodynamic field momentum 7r ii = 8S/Bg;i satisfies a condition of the form 
and evaluate the coefficient c in this equation [Wheeler ( 1 968b)] .  Hint : Note that the transformation 
in no way changes the 3-geometry itself, and therefore the corresponding induced change in S, 

must vanish identically for arbitrary choice of the t i (x, y, z), which measure the equivalent of the sliding of a ruled transparent rubber sheet over an automobile fender. 
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Exercise 21 .24.  THE EXTREMAL ACTION ASSOCIATED WITH THE HILBERT 
ACTION PRINCIPLE DEPENDS ON CONFORMAL 3-GEOMETRY 

AND EXTRINSIC TIME [K .  Kuchar (1972) and J .  York (1972)] Show that the data demanded by the Hilbert action principle 8J(4)R (  _ (4>g) 11 2 d4x = 0 on each of the two bounding spacelike hypersurfaces consist of ( 1 )  the conformal 3-geometry <3> < of the hypersurface plus (2) the extrinsic time variable defined by 
T = �g-11 2 Tr n = ± Tr K  3 3 ' 

conveniently represented by the pictogram H, measured by one number per spacepoint, and independent of the conformal factor in the metric of the 3-geometry. This done, explain in a few words why in this formulation of geometrodynamics the Hamilton-Jacobi function (n times the phase of the wave function in the semiclassical or JWKB approximation) is appropriately expressed in the form 
S = S(<3> < ,  H) . 

§ 2 1 . 1 3 . J U NCTIO N CO N DITIO N S  The intrinsic and extrinsic curvatures of a hypersurface, which played such fundamental roles in the initial-value formalism, are also powerful tools in the analysis of "junction conditions." Recall the junction conditions of electrodynamics : across any surface (e.g. ,  a Junction conditions for capacitor plate), the tangential part of the electric field, E1 1, and the normal part e lectrodynamics of the magnetic field, B .L, must be continuous; thus, [E1 1] ( discontinuity in £i 1) (E1 1 on "+ " side of surface) - (E1 1  on " - " side of surface) Et - E11 = 0, [B.L] B! - B1. = O ; (21.161 a) (21.161 b) while the "jump" in the parts E .L and B1 1  must be related to the charge density ( charge per unit area) a, the current density (current per unit area) j, and the unit normal to the surface n by the formulas [E.L] = E! - E1. = 4'1Tan, [B1 1] = Bt - B11 = 4'1Tj X n. 

(21.16 l c) (21.16 ld) Recall also that one derives these junction conditions by integrating Maxwell's equations over a "pill box" that is centered on the surface. Similar junction conditions, derivable in a similar manner, apply to the gravitational field (spacetime curvature), and to the stress-energy that generates it. * Focus 
* The original formulation of gravitational junction conditions stemmed from Lanczos ( 1922, 1924) . 

The formulation given here, in terms of intrinsic and extrinsic curvature, was developed by Darmois ( 1927), 
Misner and Sharp (1964) ,  and Israel ( 1 966). For further references to the extensive literature, see Israel. 



552  21 VARIATIONAL PRINCIPLE AND INITIAL VALUE DATA 

Figure 21.6. 
Gaussian normal coordinates in the neighborhood of a 3 -surface I. The metric 
in Gaussian normal coordinates has the form 

ds2 = (n · n)-1 dn2 + gii dx1 dxi 

with n = o/on, (n · n) = - 1  if the surface is spacelike, and (n · n) = 1 if it is 
timelike. (See exercise 27 .2.) The extnnsic curvature of the surfaces n = constant 
is K1; = -½ og1;!on, and the Einstein field equations written in "3 + I "  form are 
(2 1 . 162). 

attention on a specific three-dimensional slice through spacetime-the 3-surface 1: 
on Figure 2 1 .6 .  Let the surface be either spacelike [unit normal n timelike; 
(n · n) = - 1 ]  or timelike [n spacelike; (n · n) = + l ] . The null case will be discussed 
later. As an aid in deriving junction conditions, introduce Gaussian normal coordi
nates in the neighborhood of 1: [see the paragraph preceeding equation (21 .82)] . In 
terms of the intrinsic and extrinsic curvatures of 1: and of neighboring 3-surfaces 

Einstein equation in " 3  + 1 "  n = constant, the Einstein tensor and Einstein field equation have components 
form 

Surface stress-energy tensor 

Gn
n = - ; <3>R + ; (n · n)-1 { (Tr K)2 - Tr (K2) } = 8wPn, (2 1 . 1 62a) 

Gn
i = - (n · n)-1{Ki

m
lm - (Tr K) 1i } = 8wTn

i , (2 1 . 1 62b) 
Gi . = <3>Gi . + (n · n)-1{ (Ki . - oi . Tr K) J J J J ,n 

- (Tr K)K\ + ; o\(Tr K)2 + ; o\ Tr (K 2)} = 8wT\ (21 . 1 62c) 

[See equations (2 1 .77), (21 .8 1 ), (2 1 .76), and (21 .82).] 
Suppose that the stress-energy tensor P'-f3 contains a "delta-function singularity" 

at 1: -i.e., suppose that 1: is the "world tube" of a two-dimensional surface with 
finite 4-momentum per unit area (analog of surface charge and surface current in 
electrodynamics). Then define the surface stress-energy tensor on 1: to be the integral 
of P'-f:3 with respect to proper distance (n), measured perpendicularly through J:: 

S" f3 = ��� [ J +, P'-f3 dn] . 
-, 

(2 1 . 163) 
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To discover the effect of this surface layer on the spacetime geometry, perform a 
"pill-box integration " of the Einstein field equation (2 1.162 ) 

(2 1.164) 

Examine the integral of Ga 
13 • If the 3-metric gii were to contain a delta function 

or a discontinuity at ..r, then ..r would not have any well-defined 3-geometry-a 
physically inadmissible situation, even in the presence of surface layers. Absence 
of delta functions, o(n), in gii means absence of delta functions in <3)R; absence of 
discontinuities in gii means absence of delta functions in Ki; = - ½gii,n - Thus, 
equations (2 1.162 ) when integrated say 

J Gn dn = 0 = 8'1TSn 
n n , 

f Gn . dn = 0 = 8'1Tsn . 
i . ,  

J G\ · dn = (n · n)(y\ - o\ Tr y) = 8'1TS\ 

where y\ is the "jump " in the components of the extrinsic curvature 

y [K] (K on "n = +e side " of ..r )  - (K on "n = - e side " of ..r) 
K+ - K-. 

(2 1.165a) 

(2 1.165b) 

(2 1.165c) 

(2 1.166) 

In the absence of a delta-function surface layer, the above junction conditions 
say, simply, that y [K] = 0. In words: if one examines how ..r is embedded in 
the spacetime above its "upper "face, and how it is embedded in the spacetime below 
its "lower " face, one must discover identical embeddings-i.e., identical extrinsic 
curvatures K. Of course, the intrinsic curvature of ..r must also be the same, whether 
viewed from above or below. More briefly: 

(absence of surface layers) ("continuity " of gii and Ki;) - (2 1.167) 

Derivation of junction 
conditions 

Junction conditions in 
absence of surface layers 

If a surface layer is present, then ..r must be the world tube of a two-dimensional Junction conditions for a 

layer of matter, and the normal to ..r must be spacelike, (n · n) = +I. The junction surface layer 

conditions (2 1.16 5a,b) then have the simple physical meaning 

(

the momentum flow is entirely in ..r ;  ) 
i.e., no momentum associated with the 

S(n, · · .) = O surface layer flows out of ..r; i.e., ..r ' 
is the world tube of the surface layer 

(2 1.168a) 

which tells one nothing new. The junction condition (2 1.16 5c) says that the surface 
stress-energy generates a discontinuity in the extrinsic curvature ( different embedding 
in spacetime "above " ..r than "below " ..r ), given by 

(2 1.168b) 

Of course, the intrinsic geometry of ..r must be the same as seen from above and 
below, gii continuous across ..r. (2 1.169) 



Equation of motion for a 
surface layer 

G ravitational-wave shock 
fronts 

5 54 2 1 . VARIATIONAL PRINCIPLE AND INITIAL-VALUE DATA In analyzing surface layers, one uses not only the junction conditions (21.168a) to (21.169), but also the four-dimensional Einstein field equation applied on each side of the surface 2 separately, and also an equation of motion for the surface stressenergy. The equation of motion is derived by examining the jump in the field equation Gn
i = 81rT\ (equation 21.162b) ; thus [Gnd = 81r [Pd says 

and when reexpressed in terms of Sim by means of the junction condition (21.168 b ), it says (21.170) [For intuition into this equation of motion, see Exercises 21.25 and 21.26. For applications of the "surface-layer formalism" see exercise 21.27 ; also Israel (1966), Kuchar (1968), Papapetrou and Hamoui (1968).] When one turns attention to junction conditions across a null surface 2, one finds results rather different from those in the spacelike and timelike cases. A "pill-box" integration of the field equations reveals that even in vacuum the extrinsic curvature may be discontinuous. A discontinuity in Kii across a null surface, without any stress-energy to produce it, is the geometric manifestation of a gravitational-wave 
shock front (analog of a shock-front in hydrodynamics) . For quantitative details see, e.g., Pirani (1957), Papapetrou and Treder (1959, 1962), Treder (1962), and especially Choquet-Bruhat (1968b) .  That a discontinuity in the curvature tensor can propagate with the speed of light is a reminder that all gravitational effects, like all electromagnetic effects, obey a causal law. The initial-value data on a spacelike initial-value hypersurface uniquely determine the resulting spacetime geometry (see the work of Cartan, Stellmacher, Lichnerowicz, and Bruhat (also under the names Foures-Bruhat and Choquet-Bruhat) and others cited and summarized in the article of Bruhat (1962)] but determine it in a way consistent with causality. Thus a change in these data throughout a limited region of the initial value 3-geometry makes itself felt on a slightly later hypersurface solely in a region that is also limited, and only a little larger than the original region. When one turns from classical dynamics to quantum dynamics, one sees new reason to focus attention on a spacelike initial-value hypersurface : the observables at different points on such a hypersurface commute with one another; i.e., are in principle simultaneously observable. Not every four-dimensional manifold admits a global singularity-free spacelike hypersurface. Those manifolds that do admit such a hypersurface have more to do with physics, it is possible to believe, than those that do not. Even in a manifold that does admit a spacelike hypersurface, attention has been given sometimes, in the context of classical theory, to initial-value data on a hypersurface that is not spacelike but "characteristic," in the sense that it accomodates null geodesics [see, for example, Sachs (1964) and references cited there] . It is typical in such situations that one can predict the future but not the past, or predict the past but not the future. 



§ 21 . 13 .  J UNCTION COND IT IONS 5 5 5  Children of light and children of darkness is the vision of physics that emerges from this chapter, as from other branches of physics. The children of light are the differential equations that predict the future from the present. The children of darkness are the factors that fix these initial conditions. 
Exercise 21 .25 .  EQUATION OF MOTION FOR A SURFACE LAYER (a) Let u be the "mean 4-velocity" of the matter in a surface layer-so defined that an observer moving with 4-velocity u sees zero energy flux. Let a be the total mass-energy per unit proper surface area, as measured by such a "comoving observer." Show that the surface stress-energy tensor can be expressed in the form 

S = au 181 u + t, where (t · u) = 0,  (2 1 . 1 7 1 )  
and where t i s  a symmetric stress tensor. (b) Show that the component along u of the equation of motion (2 1 . 1 70) is 

(2 1 . 172) 
where d/dr = u. Give a physical interpretation for each term. ( c) Let ai be that part of the 4-acceleration of the comoving observer which lies in the surface layer :S. By projecting the equation of motion (2 1 . 1 70) perpendicular to u, show that 
where Pia is the proj ection operator 
Give a physical interpretation for each term of equation (2 1 . 1 82) .  
Exercise 21 .26 .  THIN SHELLS OF DUST 

(2 1 . 173) 
(2 1 . 1 74) 

For a thin shell of dust surrounded by vacuum ([Tin] = 0, t = 0), derive the following equations 
da/dr = - au b

1 b, a + + a - = 0,  a + - a - = (4?Ta)n 
y = 8?Ta (u 181 u + ½u) . 

(2 1 . 1 75a) (2 1 . 175b) (2 1 . 175c) 
(2 1 . 175d) 

Here a+ and a- are the 4-accelerations as measured by accelerometers that are fastened onto the outer and inner sides of the shell, and g is the 3-metric of the shell. Show that the first of these equations is the law of "conservation of rest mass ."  
Exercise 21 . 2 7 .  SPHERICAL SHELL OF DUST Apply the formalism of exercise 2 1 .25 to a collapsing spherical shell of dust [Israel ( 1967b)) .  For the metric inside and outside the shell, take the flat-spacetime and vacuum Schwarzschild expressions (Chapter 23) ,  

EXE R C I S ES 
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ds 2 = - dt2 + dr2 + r2(d02 + sin20 d<t>2) inside, (2 1 . 1 76a) 
ds 2 = - ( 1 - 2�) dt2 + 1 _d;�/r + r2(d02 + sin20 d<t>2) outside. (2 1 . 1 76b) 

Let the "radius" of the shell, as a function of proper time measured on the shell, be 
R = 21

7T X (proper circumference of shell) = R ('r) . 
Show that the shell's mass density varies with time as 

µ, = constant = "total rest mass" ;  
and derive and solve the equation of motion 

(2 1 . 1 76c) 

(2 1 . 176d) 

(2 1 . 1 76e) 



CHAPTER 22 

TH E R M O DYNAM I CS,  HYD R O DYNAM I CS,  

E LECTR O DYNAM I CS,  G EO M ETR I C  

O PTI CS, AN D K I N ETI C TH EO RY 

§22. 1 . TH E WHY O F  TH IS CHAPTER 

Astrophysical applications of gravitation theory are the focus of the rest of this book, 
except for Chapters 41-44. Each application-stars, star clusters, cosmology, collapse, 
black holes, gravitational waves, solar-system experiments-can be pursued by itself 
at an elementary level, without reference to the material in this chapter. But deep 
understanding of the applications requires a prior grasp of thermodynamics, hydro
dynamics, electrodynamics, geometric optics, and kinetic theory, all in the context 
of curved spacetime. Hence, most Track-2 readers will want to probe these subjects 
at this point. 

§22 . 2 .  TH ERMO DYNAMICS IN CURVED SPACETIME* 

Consider, for concreteness and simplicity, the equilibrium thermodynamics of a 
perfect fluid with fixed chemical composition ("simple perfect fluid")-for example, 
the gaseous interior of a collapsing supermassive star. The thermodynamic state of 
a fluid element, as it passes through an event '!I 0, can be characterized by various 
thermodynamic potentials, such as n, p, p, T, s, µ. The numerical value of each 
potential at '!IO is measured in the proper reference frame (§ 13 .6) of an observer 
who moves with the fluid element-i.e., in the fluid element's "rest frame." Despite 

* For more detailed treatments of this subject see, e .g. , Stueckelberg and Wanders ( 1953) ,  Kluitenberg 
and de Groot ( 1 954), Meixner and Reik ( 1959) ,  and references cited therein ; see also the references 
on hydrodynamics cited at the beginning of §22.3 ,  and the references on kinetic theory cited at the 
beginning of §22 6 . 

r 
This chapter is enti rely Track 2 .  
No earl ier Track-2 materia l  is 
needed as preparation for it, 
but Chapter 5 (stress-energy 

tensor) wi l l  be helpfu l .  

§ 2 2 . 5  (geometric optics) i s  
needed as preparation for 
Chapter 34 (singularities and 
g lobal  methods) . The rest of 
the chapter is not needed as 

preparation for any later 

chapter; but it will be 
extremely helpful in  most 

applications of gravitation 

theory (Chapters 23-40) . 

Thermodynamic potentials 
are defined in rest frame of 
fluid 



Defi n it ions of thermodynamic  
potentia l s  

Defi n it ion of  "s im ple fl u i d"  

Law o f  baryon conservat ion 
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this use of rest frame to measure the potentials, the potentials are frame-independent 
functions (scalar fields). At the chosen event tJ'0, a given potential (e.g. , n) has a 
unique value n(tJ'0) ;  so n is a perfectly good frame-independent function. 

The values of n, p, p, T, s, µ, measure the following quantities in the rest frame 
of the fluid element : 

n, baryon number density; i.e., number of baryons per unit three-dimensional 
volume of rest frame, with antibaryons (if any) counted negatively. 

p, density of total mass-energy; i.e., total mass-energy (including rest mass, ther
mal energy, compressional energy, etc.) contained in a unit three-dimensional 
volume of the rest frame. 

p, isotropic pressure in rest frame. 
T, temperature in rest frame. 
s, entropy per baryon in rest frame. (The entropy per unit volume is ns.) 
µ,, chemical potential of baryons in rest frame [see equation (22 .8) below]. 

The chemical composition of the fluid (number density of hydrogen molecules, 
number density of hydrogen atoms, number density of free protons and electrons, 
number density of photons, number density of 238U nuclei, number density of A 
hyperons . . .  ) is assumed to be fixed uniquely by two thermodynamic variables-e.g., 
by the total number density of baryons n and the entropy per baryon s. In this sense 
the fluid is a "simple fluid." Simple fluids occur whenever the chemical abundances 
are "frozen" (reaction rates too slow to be important on the time scales of interest; 
for example, in a supermassive star except during explosive burning and except at 
temperatures high enough for e- - e+ pair production). Simple fluids also occur 
in the opposite extreme of complete chemical equilibrium (reaction rates fast enough 
to maintain equilibrium despite changing density and entropy; for example, in 
neutron stars, where high pressures speed up all reactions). When one examines 
nuclear burning in a nonconvecting star, or explosive nuclear burning, or pair 
production and neutrino energy losses at high temperatures, one must usually treat 
the fluid as "multicomponent." Then one introduces a number density nJ and a 
chemical potential µ,J for each chemical species with abundance not fixed by n 
and s. For further details see, e.g., Zel'dovich and Novikov ( 197 1 ). 

The most fundamental law of thermodynamics-even more fundamental than the 
"first" and "second" laws-is baryon conservation. Consider a fluid element whose 
moving walls are attached to the fluid so that no baryons flow in or out. As the 
fluid element moves through spacetime, deforming along the way, its volume V 
changes. But the number of baryons in it must remain fixed, so 

d 
dr 

(n V) = 0. (22 . 1 )  

The changes in volume are produced by the flow of neighboring bits of fluid away 
from or toward each other-explicitly (exercise 22 . 1 )  

d V/dr = (V · u) V, (22 .2) 
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where u = d/ dr is the 4-velocity of the fluid. Consequently, baryon conservation 
[equation (22. 1 )] can be reexpressed as 

i.e., 

O = dn + .!!... d V = V n + n(V · u) = u · Vn + n(V · u) = V · (nu); 
dr V dr u 

V · S = 0, 

S = nu = baryon number-flux vector 

(22.3) 

(22.4) 

(see §5.4 and exercise 5 .3.) Moreover, this abstract geometric version of the law must 
be just as valid in curved spacetime as in flat (equivalence principle). 

Note the analogy with the law of charge conservation, V · J = 0, in electrody
namics (exercise 3. 16) and with the local law of energy-momentum conservation, 
V · T = 0 (§§5 .9 and 16.2). In a very deep sense, the forms of these three laws are 
dictated by the theorem of Gauss (§5.9, and Boxes 5 .3, 5.4). 

The second law of thermodynamics states that, in flat spacetime or in curved, Second law of 
entropy can be generated but not destroyed. Apply this law to a fluid element of thermodynamics 

volume V containing a fixed number of baryons N. The entropy it contains is S = Ns = ns V. 

Entropy may flow in and out across the faces of the fluid element ("heat flow" 
between neighboring fluid elements) ; but for simplicity assume it does not; or if 
it does, assume that it flows too slowly to have any significance for the problem 
at hand. Then the entropy in the fluid element can only increase: 

d(ns V)/dr ;:::: 0 when negligible entropy is exchanged between 
neighboring fluid elements; 

i.e. (combine with equation (22. 1 )] 

ds/dr ;:::: 0 (no entropy exchange). (22.5) 

So long as the fluid element remains in thermodynamic equilibrium, its entropy will 
actually be conserved (" = " in equation (22.5)] ; but at a shock wave, where equilib- Shock waves and heat flow 
rium is momentarily broken, the entropy will increase ( conversion of "relative kinetic 
energy" of neighboring fluid elements into heat). [For discussions of heat flow in 
special and general relativity, see Exercise 22.7. For discussion of shock waves, see 
Taub (1 948), de Hoffman and Teller ( 1950), Israel ( 1960), May and White (1 967), 
Zel'dovich and Rayzer (1 967), Lichnerowicz (1 967, 1 97 1 ), and Thome ( 1973a).] 

The first law of thermodynamics, in the proper reference frame of a fluid element, First law of thermodynamics 
is identical to the first law in flat spacetime ("principle of equivalence"); and in 
flat spacetime the first law is merely the law of energy conservation: 

d (energy in a volume element containing) d( 1 ) T d( t ) = -p vo ume + en ropy ; 
a fixed number, A, of baryons 



P ressure and temperature 
calculated from p(n, s) 
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I .e . ,  

Le . ,  

d(pA/n) = -p d(A/n) + T d(As) ;  

p + p 
dp = -- dn + nT ds. 

n 

Query: what kind of a "d " appears here? For a simple fluid, the values of two 
potentials, e.g., n and s, fix all the others uniquely; so any change in p must be 
determined uniquely by the changes in n and s. It matters not whether the changes 
are measured along the world line of a given fluid element, or in some other direction. 
Thus, the "d " in the first law can be interpreted as an exterior derivative 

p + p 
dp = -- dn + nT ds; 

n 
(2 2 .6) 

and the changes along a given direction in the fluid (along a given tangent vec
tor v) can be written 

p + p 
VvP - < dp, v )  = -- <dn, v )  + nT<ds, v )  

n 

Equation (2 2 .6) lends itself to interpretation in two opposite senses : as a way to 
deduce the density of mass-energy of the medium from information about pressure 
(as a function of n and s) and temperature (as a function of n and s); and conversely, 
as a way to deduce the two functions p(n, s) and T(n, s) from the one function p(n, s) . 
It is natural to look at the second approach first; who does not like a strategy that 
makes an intellectual profit? Regarding p as a known (or calculable) function of 
n and s, one deduces from (2 2 .6) 

p + p = (�) ' n on s 

nT = (�) , OS n 

and thence pressure and temperature individually, 

p(n, s) = n (�) - P, 
on s 

1 ( op )  
T(n, s) = - -

n OS n 

(2 2 .7a) 

(2 2 .7b) 

("two equations of state from one "). The analysis simplifies still further when the 
fluid, already assumed to be everywhere of the same composition, is also everywhere 
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endowed with the same entropy per baryon, s, and is in a state of adiabatic flow 
(no shocks or heat conduction). Then the density p = p(n, s) reduces to a function 
of one variable out of which one derives everything (p, p, µ,) needed for the hydro
dynamics and the gravitation physics of the system (next chapter). Other choices 
of the "primary thermodynamic potential" are appropriate under other circum
stances (see Box 2 2 .1 ). 

If differentiation leads from p(n, s) to p(n, s) and T(n, s), it does not follow that 
one can take any two functions p(n, s) and T(n, s) and proceed "backwards" (by 
integration) to the "primary function", p(n, s). To be compatible with the first law 
of thermodynamics (2 2 .6), the two functions must satisfy the consistency requirement 
["Maxwell relation"; equality of second partial derivatives of p] Maxwell relation 

(op/os)n = n2(oT/on)8 • (2 2 .7c) 

Box 22 . 1  P R I N C I PAL ALTERNATIVES FOR " P R I MARY T H E R M O DYNAM I C  POTENTIAL" 
TO DESCR I B E  A FLU I D  

Primary thermodynamic potential 
and quantities on which it is most 
appropriately envisaged to depend 

"Density" ; total amount of mass
energy (rest + thermal + . • . ) per 
unit volume 

p = p(n, s) 

"Physical free energy" 

a(n, T) = !!... - Ts 
n 

"Chemical free energy" 

P + p  
/(p, T) = -- - Ts 

"Chemical potential" ("energy to in
ject" expressed on a "per baryon" 
basis) 

p + p 
µ.(p, s) = -

n 

"Secondary" thermodynamic quanti
ties obtained by differentiation of 
primary with or without use of 

p(n, s) = n (�) - p 
an s 

T(n, s) = � (�) 
n as " 

µ.(n, s) = p + P = (�) 
n an s 

p(n, T) = n2 (�) 
an T 

s(n, T) = - (�) 
a T " 

[ 
a(a/T)

] p(n, T) = - n T2 
---

a T  " 

1/n(p, T) = (aJ;ap)T 

s(p, T) = - (aJ;a T)p 

/ - T(aJla T)p p(p, T) = 
(a//ap)T 

- p 

1 /n(p, s) = (aµ.;ap), 
T(p, s) = (aµ./as)p 

µ. p(p, s) = 
(aµ.;ap), - p 

Conditions under which convenient, 
appropriate, and relevant 

Conditions of adiabatic flow (no 
shocks or heat conduction), so that s 
stays constant along streamline 

Know or can calculate a ( or the 
"sum over states" of statistical me
chanics) for conditions of specified 
volume per baryon and temperature 

Relevant for determining equilibrium 
when pressure and temperature are 
specified 

When injection energy [ = Fermi en
ergy for an ideal Fermi gas, relati vis
tic or not; see exercise 22.3] is the 
center of attention 



Chemical potential equals 
"injection energy" at 
fixed entropy per baryon and 
total volume 

Laws of hydrodynamics for 
simple fluid without heat f low 
or viscosity : 
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The chemical potential µ, is also a unique function of n and s. It is defined as 
follows. ( 1 )  Take a sample of the simple fluid in a fixed thermodynamic state (fixed 
n and s). (2) Take, separately, a much smaller sample of the same fluid, containing 
8A baryons in the same thermodynamic state as the large sample (same n and s). 
(3) Inject the smaller sample into the larger one, holding the volume of the large 
sample fixed during the injection process. (4) The total mass-energy injected, 

8�niected = p X (volume of injected fluid) = p(8A/n), 

plus the work required to perform the injection 

8 W . . = (work done against pressure of large sample) miection to open up space in it for the injected fluid 

is equal to µ, 8A : 

= p(volume of injected fluid) = p(8A/n), 

p + p µ, 8A = 8Minjected + 8 winjection = --- 8A. 
n 

Stated more briefly: 

( 
total mass-energy required, per baryon, to "create" and

) µ, = inject a small additional amount of fluid into a given 
sample, without changing s or volume of the sample 

= p :  
p 

=t( ::t [by first law of thermodynamics (22.6)] 

(22.8) 

All the above laws and equations of thermodynamics are the same in curved 
spacetime as in flat spacetime; and the same in (relativistic) fl.at spacetime as in 
classical nonrelativistic thermodynamics-except for the inclusion of rest mass, 
together with all other forms of mass-energy, in p and µ, . The reason is simple: the 
laws are all formulated as scalar equations linking thermodynamic variables that 
one measures in the rest frame of the fluid. 

§22 . 3 .  HYDRO DYNAMICS IN CURVED SPACETIME* 

A simple perfect fluid flows through spacetime. It might be the Earth's atmosphere 
circulating in the Earth's gravitational field. It might be the gaseous interior of the 
Sun at rest in its own gravitational field. It might be interstellar gas accreting on
to a black hole. But whatever and wherever the fluid may be, its motion will be 
governed by the curved-spacetime laws of thermodynamics (§22.2) plus the local 

* For more detailed treatments of this subject see, e .g . ,  Ehlers ( 196 1 ) ,  Taub (197 1 ) ,  Ellis ( 197 1  ) ,  
Lichnerowicz ( 1967), Cattaneo ( 197 1 ) , and references cited therein ; see also the references on kinetic 
theory cited at the beginning of §22.6 . 
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law of energy-momentum conservation, V · T = 0. The chief objective of this section ( 1 )  Origins of laws 
is to reduce the equation V · T = 0 to usable form. The reduction will be performed 
in the text using abstract notation; the reader is encouraged to repeat the reduction 
using index notation. 

The stress-energy tensor for a perfect fluid, in curved spacetime as in flat ( equival
ence principle !), is 

T = (p + p)u ® u + pg. (22.9) 

(See §5 .5 .) Its divergence is readily calculated using the chain rule ; using the "com
patibility relation between g and V," Vg = O ;  using the identity (Vp) · g = Vp 
(which one readily verifies in index notation) ; and using 

0 = V · T = [V(p + p) · u]u + [(p + p) V · u]u + [(p + p)u] · Vu + (Vp) · g 

lr divergence on first slot l 
= [Vu p + Vup + (p + p)V · u]u + (p + p) Vuu + Vp. (22. 10) 

The component of this equation along the 4-velocity is especially simple (recall 
that u · Vuu = ½ Vuu2 = 0 because u2 - 1) :  

0 = u · (V · T) = - [Vup + Vup + (p + p) V · u] + Vup 
= - Vu p - (p + p) V · u. 

Combine this with the equation of baryon conservation (22.3) ;  the result is 

(2)  Local energy dp 
dr 

(p + p) dn 
n dr 

· (22. 1 1 a) conservat ion : adiabaticity of 
flow 

Notice that this is identical to the first law of thermodynamics (22.6) applied along 
a flow line, plus the assumption that the entropy per baryon is conserved along a 
flow line 

ds/dr = 0. (22. 1 1  b) 

There is no reason for surprise at this result. To insist on thermodynamic equilibrium 
and to demand that the entropy remain constant is to require zero exchange of heat 
between one element of the fluid and another. But the stress-energy tensor (22.9) 
recognizes that heat exchange is absent. Any heat exchange would show up as an 
energy flux term in T (Ex. 22.7); but no such term is present. Consequently, when 
one studies local energy conservation by evaluating u · (V · T) = 0, the stress-energy 
tensor reports that no heat flow is occurring-i.e. that ds/dr = 0. 

Three components of V · T = 0 remain: the components orthogonal to the fluid's 
4-velocity. One can pluck them out of V · T = 0, leaving behind the component 
along u, by use of the "projection tensor" 

p g + u ® u. (22 . 12) 



Box 22 . 2  THERMODYNAMICS AND HYDRODYNAMICS FOR A SIMPLE 
PERFECT FLUID IN CURVED SPACETIME 

A. Ten Quantities Characterize the Fluid 

Thermodynamic potentials all measured in rest 
frame 

n, baryon number density 
p , density of total mass-energy 
p, pressure 
T, temperature 
s, entropy per baryon 
µ,, chemical potential per baryon 

Four components of the fluid 4-velocity 

B .  Ten Equations Govern 

the Fluid's Motion 

Two equations of state 

p = p(n, s), T = T(n, s) (I), (2 ) 

subject to the compatibility constraint ("Max
well relation," which follows from first law of 
thermodynamics) 

(ap;as)n = n2(aTjan) • .  

First law of thermodynamics 

p + p 
dp = -- dn + nT ds, 

n 

which can be integrated to give p(n, s). 

(3) 

Equation for chemical potential 

µ, = (p + p)/n, (4) 

which can be combined with p(n, s) and p(n, s) 
to give µ,(n, s). 

Law of baryon conservation 
dn/dr Vun = - n V · u. (5) 

Conservation of energy along flow lines, which 
(assuming no energy exchange between adja
cent fluid elements) means "adiabatic flow" 

ds/dr = 0 except in shock waves, where 
ds/dr > 0. (6) 

[Shock waves are not treated in this book; see 
Taub (1 948), de Hoffman and Teller (1950), 
Israel ( 1960), May and White (1 967), Zel'do
vich and Rayzer (1 967); Lichnerowicz 
(1 967, 1 97 1 ) ;  and Thorne (l 973a).] 

Euler equations 
(p + p) Vu u = - (g + u ® u) · Vp, 

(7), (8), (9) 

which determine the flow lines to which u is 
tangent. 

Normalization of 4-velocity 

u · u  = - l .  (10) 

(See exercise 22.4.) Contracting P with V · T = 0 [equation (22. 10)] gives 

(3 )  Euler equation (p + p) V
u

u = - P · (Vp) - [Vp + (Vu p)u]. (22. 1 3) 

This is the "Euler equation" of relativistic hydrodynamics. It has precisely the same 
form as the corresponding flat-spacetime Euler equation: 

. ( 
-acce erat10n) . ( 

inertial mass 
) 

4 1 . 
( 

pressure gradient 
) per umt volume X f fl . d = - m the 3-surface . 

[ exercise 5 .4] 0 Ul orthogonal to 4-velocity 
(22. 1 3') 

The pressure gradient, not "gravity," is responsible for all deviation of flow lines 
from geodesics. 

Box 22.2 reorganizes and summarizes the above laws of thermodynamics and 
hydrodynamics. 



§ 2 2  3 HYDRODYNAM I CS I N  CURVED SPACET I M E  565 

Exercise 22 .1. DIVERGENCE OF FLOW LINES PRODUCES VOLUME CHANGES EXE R C I S E S  

Derive the equat10n dV/dT = (V · u) V [equation (22.2)] for the rate of change of volume 
of a flmd element. [Hint: Pick an event '!i\, and calculate m a local Lorentz frame at '!F 0 
which momentarily moves with the fluid ("rest frame at '!F 0") . ]  [Solution: At events near 
'!10 the fluid has a very small ordinary velocity vi = dxi/dt. Consequently a cube of fluid 
at '!F O with edges Llx = Lly = Liz = L changes its edges, after time 8t, by the amounts 

8(Llx) = [(dx/dt) 8tJat "front face" - [(dx/dt) 8tJat "back face" 

= (ou"' /ox)L 8t, 

8(Lly) = ( iJ u Y /oy)L 8t, 

8(Llz) = (ilu'  /oz)L 8t. 

The correspondmg change in volume 1s 

8(Llx Lly Liz) = (iJui /iJxi)L3 8t; 

so the rate of change of volume is 

But in the local Lorentz rest frame at and near '!F O (where x" = 0), the metric coefficients 
are gµ, = 1/µ, + 0( lx "' l 2) , and the ordinary velocity 1s vi = 0( lx "' I ) ;  so 

o _ dt _ dt _ l 0( I " l 2) u - dT - ( - gµ, dx µ dx")11 2 - + x ' 

. dxi . 
3 u 1 = - = v1 + 0( lx"' I ). 

dT 

Thus, the derivatives a V/ot and V(iJ ui /iJxi) at '!F O are 

iJ V/ot = u"iJ V/ox" = u" V,a = dV/dT 

= V(iJui/iJx i) = V(o u"/ox") = Vu "'
,, = V(V · u). Q . E . D . ]  

[Note that by working in flat spacetlme, one could have inferred more easily that a V/ot = 
dV/dT and iJvi /iJxi = V · u; one would then have concluded d V/dT = (V · u) V; and one 
could have invoked the equivalence principle to move this law into curved spacetime.] 

Exercise 22.2. EQUATION OF CONTINUITY 

Show that in the nonrelativistic limit in flat spacetime the equation of baryon conservation 
(22.3) becomes the "equat10n of contmuity" 

on a - + -. (nv1) = 0. 
ot ox1 

Exercise 22.3. CHEMICAL POTENTIAL FOR IDEAL FERMI GAS 

Show that the chemical potential of an ideal Fermi gas, nonrelativistic or relativistic, is (at 
zero temperature) equal to the Fermi energy (energy of highest occupied momentum state) 
of that gas. 

Exercise 22.4. PROJECTION TENSORS 

Show that contraction of a tangent vector B with the "projection tensor" P = g + u ® u 
projects B mto the 3 -surface orthogonal to the 4-velocity vector u. [Hint : perform the 
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calculation in an orthonormal frame with e 6 = u, and write B = Bae;, ; then show that 
P • B = Bie;. ] If n is a unit spacelike vector, show that P = g - n 181 n is the corresponding projection operator. Note : There is no unique concept of "the proj ection orthogonal to a null vector. " Why? [Hint : draw pictures in flat spacetime suppressing one spatial dimension.] 
Exercise 22 .5 .  PRESSURE GRADIENT IN STATIONARY GRAVITATIONAL FIELD A perfect fluid is at rest (flow lines have xi = constant) in a stationary gravitational field (metric coefficients are independent of x0) .  Show that the pressure gradient required to "support the fluid against gravity" (i .e . ,  to make its flow lines be xi = constant instead of geodesics) is 

op 
--0 = 0, OX op _ ( o In v - goo 

-. - - p + p) . . ox 1 ox 1 (22 . 14) 
Evaluate this pressure gradient in the Newtonian limit, using the coordinate system and metric coefficients of equation ( 1 8 . 1 5c) .  
Exercise 22 . 6. EXPANSION, ROTATION, AND SHEAR Let a field of fluid 4-velocities u('!l) be given. (a) Show that Vu can be decomposed in the following manner: 

where a is the 4-acceleration of the fluid 
8 is the "expansion" of the fluid world lines 

B = V · u = u a ;a ' 

P,,._/3 is the projection tensor 

a,,._/3 is the shear tensor of the fluid 

and w,,._13 is the rotation 2Jorm of the fluid 

(22 . 1 5 a) 
(22 . 1 5 b) 
(22 . 1 5 c) 
(22 . 1 5d) 
(22 . 1 5 e) 

(22 . 1 5[) 
(b) Each of the component parts of this decomposition has a simple physical interpretation in the local rest frames of the fluid. The interpretation of the 4-acceleration a in terms of accelerometer readings should be familiar. Exercise 22 . 1  showed that the expansion 8 = V · u describes the rate of increase of the volume of a fluid element, 

8 = ( 1 / V)(dV/dT) .  (22 . 1 5 g) 
Exercise 22.4 explored the meaning and use of the projection tensor P. Verify that in a local Lorentz frame (g;,fj = 1/afl ' r afj y  = 0) momentarily moving with the fluid (u a = s o-.

0) ,  a;,_fj and w;,_fj reduce to the classical (nonrelativistic) shear and rotation of the fluid. [See, e .g . ,  §§2.4 and 2 .5 of Ellis ( 1 97 1 )  for both classical and relativistic descriptions of shear and rotation. ] 



§ 2 2 . 3 HYDRODYNAM ICS IN CURVED SPACETIME 

Exercise 22.7 . HYDRODYNAMICS WITH VISCOSITY AND HEAT FLOW.* 
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(a) In §15 of Landau and Lifshitz (1959), one finds an analysis of viscous stresses for a 
classical (nonrelativistic) fluid. By carrying that analysis over directly to the local Lorentz 
rest frame of a relativistic fluid, and by then generalizing to frame-independent language, 
show that the contribution of viscosity to the stress-energy tensor is 

T(vis c> = _ 21JO _ 1;0 P, (22.16a) 

where 1J :2: 0 is the "coefficient of dynamic viscosity"; i; :2= 0 is the "coefficient of bulk viscosity"; 
and o, B, P are the shear, expansion, and projection tensor of the fluid. 

(b) An idealized description of heat flow in a fluid introduces the heat-flux 4-vector q 
with components in the local rest-frame of the fluid, 

q6 = 0, ; = (energy per unit time crossing unit ) . q surface perpendicular to e; (22.16b) 

By generalizing from the fluid rest frame to frame-independent language, show that the 
contribution of heat flux to the stress-energy tensor is 

T(heatl = u ® q + q ® u. (22.16c) 

Thereby conclude that, in this idealized picture, the stress-energy tensor for a viscous fluid 
with heat conduction is 

T''/3 = pu"u /3 + (p - l;B) P"/3 - 21)a"/3 + q"u /3 + u"q/3 . 

(c) Define the entropy 4-vector s by 

s = nsu + q/T. 

By calculations in the local rest-frame of the fluid, show that 

(22.16d) 

(22.16e) 

V . s = (rate of !ncrease of entropy) _ (rate at which �eat and �uid ) 
m a umt volume carry entropy mto a umt volume 

= (rate at which entropy is being) 
generated in a unit volume (22.16[) 

Thereby arrive at the following form of the second law of thermodynamics: 

V · s  :2: 0 . (22.16g) 

( d) Calculate the law of local energy conservation, u · V · T = 0, for a viscous fluid with 
heat flow. Combine with the first law of thermodynamics and with the law of baryon 
conservation to obtain 

(22.16h) 

Interpret each term of this equation as a contribution to entropy generation (example: 
21Jaa13a"/3 describes entropy generation by viscous heating). [Note: The term q"aa is rela
tivistic in origin. It is associated with the inertia of the flowing heat.] 

( e) When one takes account of the inertia of the flowing heat, one obtains the following 
generalization of the classical law of heat conduction: 

(22.16i) 

* Exercise supplied by John M. Stewart. 
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(Eckart 1940). Here K is the coefficient of thermal conductivity. Use this equation to show 
that, for a fluid at rest in a-stationary gravitational field (Exercise 22.5), 

(22.16j) 

[Thus, thermal equilibrium corresponds not to constant temperature, but to the redshifted 
temperature distribution Ty - g00 = constant; Tolman (1934a), p. 313.] Also, use the ideal
ized law of heat conduction (22.16i) to reexpress the rate of entropy generation as 

TV· s = tB2 + 2r,aaf3o af3 + (K/T)Paf3(T_a + Taa)(T_/3 + Ta/3) 
?: 0. (22.16k) 

[For further details about heat flow and for discussions of the limitations of the above 
idealized description, see e.g., §4.18 of Ehlers (1971); also Marie (1969), Anderson (1970), 
Stewart (1971), and papers cited therein.] 

§22.4. ELECTRODYNAMICS IN CURVED SPACETIME 

In a local Lorentz frame in the presence of gravity, an observer can measure the 
electric and magnetic fields E and B using the usual Lorentz force law for charged 
particles. As in special relativity, he can regard E and B as components of an 
electromagnetic field tensor, 

he can regard the charge and current densities as components of a 4-vector 1a, and 
he can write Maxwell's equations and the Lorentz force equation in the special 
relativistic form, 

Fa/3 13• = 4TTJa, F� • • + F"· • + p .. 13• = o, , a/3,Y py,a ya, 
• • " (m = mass of particle, q = charge, ) ma"- = F"-Pqu" P ua = 4-velocity, aa = 4-acceleration · 

In any other frame these equations will have the same form, but with commas 
replaced by semicolons 

F"-/3;(3 = 4TT]"-, 

Fa(3;y 
+ F13 y;a + F

ya;/3 = 0, 

ma"- = F "-f3qu13. 

(22.17 a) 

(22.17b) 

(22.17c) 

These are the basic equations of electrodynamics in the presence of gravity. From 
them follows everything else. For example, as in special relativity, so also here 
( exercise 22.9), they imply the equation of charge conservation 

(22.18a) 
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and for an electromagnetic field interacting with charged matter ( exercise 22.10) they 
imply vanishing divergence for the sum of the stress-energy tensors 

(T(EM)a/3 + y(MATTER)a/3);/3 = 0. (22.18b) Local conservation of 
energy-momentum 

As in special relativity, so also here, one can introduce a vector potential Aµ. Vector potential 
Replacing commas by semicolons in the usual special-relativistic expression for pµv 
in terms of Aµ, one obtains 

(22.19a) 

!fall is well, this equation should guarantee (as in special relativity) that the Maxwell 
equations (22.17b) are satisfied. Indeed, it does, as one sees in exercise 22.8. To derive 
the wave equation that governs the vector potential, insert expression (22. 19a) into 
the remaining Maxwell equations (22.17a), obtaining 

(22.19b) 

then commute covariant derivatives in the first term using the identity (16.6c), to 
obtain 

(22.19b') 

Finally, adopting the standard approach of special relativity, impose the Lorentz 
gauge condition 

(22.19c) Lorentz gauge condition 

thereby bringing the wave equation (22.19b') into the form 

(LldRAt - Aa;/3 /3 + Ra 13A /3 = 4TTJ a. (22.19d) 

The "de Rham vector wave operator" LI which appears here is, apart from sign, 
a generalized d'Alambertian for vectors in curved spacetime. Mathematically it is 
more powerful than -Aa;/3;/3' and than any other operator that reduces to (minus) 
the d'Alambertian in special relativity. [For a discussion, see de Rham (1955).] 

Although the electrodynamic equations (22.17a)-(22.19b) are all obtained from 
special relativity by the comma-goes-to-semicolon rule, the wave equation (22.19d) 
for the vector potential is not ("curvature coupling"; see Box 16.1 ). Nevertheless, 
when spacetime is flat (so Ra 13 = 0), (22.19d) does reduce to the usual wave equation 
of special relativity. 

Exercise 22.8. THE VECTOR POTENTIAL FOR ELECTRODYNAMICS 
Show that in any coordinate frame the connection coefficients cancel out of both equations 
(22.19a) and (22.17b), so they can be written 

Fµv = A v,µ - Aµ,,, 

Fa/3,Y + F13y,a + Fya,/3 = 0. 
(22.20a) 

(22.20b) 

Wave equation for vector 
potential 

EXERCISES 
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(In the language of differential forms these equations are F = dA, dF = 0.) Then use this 
form of the equations to show that equation (22.19a) implies equation (22.17b), as asserted 
in the text. 

Exercise 22.9. CHARGE CONSERVATION IN THE PRESENCE OF GRAVITY 
Show that Maxwell's equations (22.17 a,b) imply the equation of charge conservation (22.18a) 
when gravity is present, just as they do in special relativity theory. [Hints: Use the antisym
metry of F"/3; and beware of the noncommutation of the covariant derivatives, which must 
be handled using equations (16.6). Alternatively, show that in coordinate frames, equation 
(22.17a) can be written as 

and (22.18a) as 

I o . ;,:; -- -- ( v lglF"13) = 4'1TJ" 
vigjox/3 

J" ·a = _ � -0- ( vigjJ") = 0, ' 
V lgl ox" 

and carry out the demonstration in a coordinate frame.] 

Exercise 22.10. INTERACTING ELECTROMAGNETIC FIELD 
AND CHARGED MATTER 

(22.17a') 

(22.18a') 

As in special relativity, so also in the presence of gravity ("equivalence principle"), the 
stress-energy tensor for an electromagnetic field is 

T(EM) _ _!_(p F µ _ l. p pµv ) a/3 - 4'1T aµ (3 4 µv ga/3 · 

Use Maxwell's equations (22.17a,b) in the presence of gravity to show that 

(22.21) 

(22.22) 

But F"f3J13 is just the Lorentz 4-force per unit volume with which the electromagnetic field 
acts on the charged matter [see the Lorentz force equation (22.17c); also equation (5.43)]; 
i.e., it is r<MATTER)a/3 ;/3· Consequently, the above equation can be rewritten in the form 
(22.18b) cited in the text. 

§22.5. GEOMETRIC OPTICS IN CURVED SPACETIME* 

Radio waves from the quasar 3C279 pass near the sun and get deflected by its 
gravitational field. Light rays emitted by newborn galaxies long ago and far away 
propagate through the cosmologically curved spacetime of the universe, and get 
focused (and redshifted) producing curvature-enlarged (but dim) images of the 
galaxies on the Earth's sky. 

*Based in part on notes prepared by William L. Burke at Caltech in 1968. For more detailed treatments of geometric optics in curved spacetime, see, e.g., Sachs (1961), Jordan, Ehlers, and Sachs (1961), and Robinson (1961); also references discussed and listed in §41.11. 
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These and most other instances of the propagation of light and radio waves are 
subject to the laws of geometric optics. This section derives those laws, in curved 
spacetime, from Maxwell's equations. 

The fundamental laws of geometric optics are: (1) light rays are null geodesics; 
(2) the polarization vector is perpendicular to the rays and is parallel-propagated 
along the rays; and (3) the amplitude is governed by an adiabatic invariant which, 
in quantum language, states that the number of photons is conserved. 

The conditions under which these laws hold are defined by conditions on three 
lengths: (I) the typical reduced wavelength of the waves, 

A = .1_ = ("classical distance of closest approach for ) (22.23a) - 2'7T a photon with one unit of angular momentum" ' 

as measured in a typical local Lorentz frame ( e.g., a frame at rest relative to nearby 
galaxies); (2) the typical length £ over which the amplitude, polarization, and 
wavelength of the waves vary, e.g., the radius of curvature of a wave front, or the 
length of a wave packet produced by a sudden outburst in a quasar; (3) the typical 
radius of curvature qz of the spacetime through which the waves propagate, 

qz = I typical component of Riemann as measured,-1/2 

- in typical local Lorentz frame (22.23b) 

Geometric optics is valid whenever the reduced wavelength is very short compared 
to each of the other scales present, 

and (22.23c) 

so that the waves can be regarded locally as plane waves propagating through 
spacetime of negligible curvature. 

Mathematically one exploits the geometric-optics assumption, A � £ and A � q[, 
as follows. Focus attention on waves that are highly monochromatic over regions 
� £. (More complex spectra can be analyzed by superposition, i.e., by Fourier 
analysis.) Split the vector potential of electromagnetic theory into a rapidly changing, 
real phase, 

8 ~ ( distance propagated)/ A, 

and a slowly changing, complex amplitude (i.e. one with real and imaginary parts), 

A = Real part of{amplitude x ei8 } = n{amplitude x e i8 }. 

Imagine holding fixed the scale of the amplitude variation, £, and the scale of the 
spacetime curvature, q[, while making the reduced wavelength, A, shorter and shorter. 
The phase will get larger and larger (8 o: 1/ A) at any fixed event in spacetime, but 
the amplitude as a function of location in spacetime can remain virtually unchanged, 

A l·t d [dominant part, ] [small corrections (deviations from ] m 1u e= + p 
independent of A geometric optics) due to finite wavelength 

Overview of geometric optics 

Conditions for validity of 
geometric optics 

The "two-length-scale" 
expansion underlying 
geometric optics 



The vector potential in 
geometric optics 

Basic concepts of geometric 
optics 
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This circumstance allows one to expand the amplitude in powers of A:* 

Amplitude = a + b + c + .... 

[independent J l: A"] 4 ex: A- 2] 
of A f 

[Actually, the expansion proceeds in powers of the dimensionless number 

A"/(minimum of E and ?it)_ A/ L. (22.24) 

Applied mathematicians call this a "two-length-scale expansion"; see, e.g., Cole 
(1968). The basic short-wavelength approximation here has a long history; see, e.g., 
Liouville (1837), Rayleigh (1912). Following a suggestion of Debye, it was applied 
to Maxwell's equations by Sommerfeld and Runge (1911). It is familiar as the WKB 
approximation in quantum mechanics, and has many other applications as indicated 
by the bibliography in Keller, Lewis, and Seckler (1956). The contribution of higher 
order terms is considered by Kline (1954) and Lewis (1958). See especially the book 
of Froman and Froman (1965).] 

It is useful to introduce a parameter e that keeps track of how rapidly various 
terms approach zero (or infinity) as A/ L approaches zero: 

A = !\{(a + eb + e 2c + .. •)e i 8/e} µ µ µ µ (22.25) 

Any term with a factor en in front of it varies as (A"/Lt in the limit of very small 
wavelengths [0 ex: (A"/ L)-1; cµ ex: (A"/ L)2; etc.]. By convention, e is a dummy expan
sion parameter with eventual value unity; so it can be dropped from the calculations 
when it ceases to be useful. And by convention, all "post-geometric-optics correc
tions" are put into the amplitude terms b, c, . . .  ; none are put into 0. 

Note that, while the phase 0 is a real function of position in spacetime, the 
amplitude and hence the vectors a, b, c, . . .  are complex. For example, to describe 
monochromatic waves with righthand circular polarization, propagating in the z 
direction, one could set 0 = w(z - t) and a = 1/y2a(ex + iey) with a real; so 

A= l\{ .}i a(ex + iey)eiw<z-o} = .}i a {cos [w(z - t)Jex - sin [w(z - t)] ey} 

The assumed form (22.25) for the vector potential is the mathematical foundation 
of geometric optics. All the key equations of geometric optics result from inserting 
this vector potential into the source-free wave equation LIA = 0 [equation (22.19d)] 
and into the Lorentz gauge condition V · A = 0 [equation (22.19c)]. The resulting 
equations (derived below) take their simplest form only when expressed in terms 
of the following: 

*The equations for A are linear. Therefore the analysis would proceed eqljally well assuming, instead 
of an amplitude independent of A", a dominant term a ex ,tn, with b ex ,tn+ 1, c ex ,tn+2 , etc. The results 
are independent of n. Choosing n = I would give field strengths F

µ
, and energy densities T

µ
, ex F2 ex 

A 2 / A-2 ex constant as A" ----+ 0 
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"wave vector," k V0; (22.26a) (1) wave vector 

"scalar amplitude," a (a · a)112 = (atLa
µ)112; (22.26b) (2) scalar amplitude 

"polarization vector," f a/a= "unit complex vector along a". (22.26c) (3) polarization vector 

(Here a is the complex conjugate of a.) Light rays are defined to be the curves 9(11.) (4) light rays 
normal to surfaces of constant phase 0. Since k V0 is the normal to these surfaces, 
the differential equation for a light ray is 

(22.26d) 

Box 22.3, appropriate for study at this point, shows the polarization vector, wave 
vector, surfaces of constant phase, and light rays for a propagating wave; the scalar 
amplitude, not shown there, merely tells the length of the vector amplitude a. Insight 
into the complex polarization vector, if not familiar from electrodynamics, can be 
developed later in Exercise 22.12. 

So much for the foundations. Now for the calculations. First insert the geometric- Derivation of laws of 
optics vector potential (22.25) into the Lorentz gauge condition: geometric optics 

0 = AIL;µ = l\ {[; kµ(alL + eblL + ... ) + (alL + eblL + ... );µ] ei 8/E}. (22.27) 

The leading term (order 1/e) says 

k · a = 0 (amplitude is perpendicular to wave vector); 

or, equivalently 

k · f = 0 (polarization is perpendicular to wave vector). 

(22.28) 

(22.28') 

The post-geometric-optics breakdown in this orthogonality condition is governed by 
the higher-order terms [0(1), 0(e), 0(e 2), . • •  ] in the gauge condition (22.27); for 
example, the 0(1) terms say 

k·b = iV ·a. 

Next insert the vector potential (22.25) into the source-free wave equation (22.19d): 

0 = (LldRA)"' = -A"' ,/3 
/3 + R"'

13Af3 

= l\ {[J_ kl3k (a"' + eb"' + e 2c"' + • • •) - 2 !:_ kl3(a"' + eb"' + • • • );/3 e 2 /3 e 

- ;k/3 ,ia"' + eb"' + • • •) - (a"' + •• •}/3
13 + R"'ia/3 + .. •)]ei81•}. (22.29) 

Collect terms of order l/e 2 and 1/e (terms of order higher than 1/e govern post
geometric-optics corrections): 

(continued on page 576) 
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Box 22.3 GEOMETRY OF AN ELECTROMAGNETIC WAVE TRAIN 

direction of propagation as 
seen in local Lorentz frame one wavelength, 2 'ITA°, 

as seen in local Lorentz frame 

The drawing shows surfaces of constant phase, 0 = constant, emerging through the 
"surface of simultaneity", t = 0, of a local Lorentz frame. The surfaces shown are 
alternately "crests" (0 = 176477, 0 = 176677, . . .  ) and "troughs" (0 = 176577, 0 = 
176777, . . .  ) of the wave train. These surfaces make up a I-form, ii= d0. The 
"corresponding vector" k = V0 is the "wave vector." The wave vector is null, 
k · k = 0, according to Maxwell's equations [equation (22.30)]. Therefore it lies in 
a surface of constant phase: 

(number of surfaces
} 

~ 
. d b  k = (d0, k) = (k, k) = k · k = 0. pierce y 

But not only does it lie in a surface of constant phase; it is also perpendicular to 
that surface! Any vector v in that surface must satisfy k · v = < ii, v) = ( d0, v) = 0 
because it pierces no surfaces. 

Geometric optics assumes that the reduced wavelength ,.t, as measured in a typical 
local Lorentz frame, is small compared to the scale £ of inhomogeneities in the wave 
train and small compared to the radius of curvature of spacetime, t!Jl. Thus, over 
regions much larger than ,.t but smaller than E or t!Jl, the waves are plane-fronted 
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and monochromatic, and there exist Lorentz reference frames (Riemann normal 
coordinates). In one of these "extended" local Lorentz frames, the phase must be 

no other expression will yield V0 = k. The corresponding vector potential (equation 
(22.25)] will be 

Aµ = � { aµ exp[i(k · x - k0t)]} + ("post-geometric-optics corrections"); 

hence, 

k0 = 277/(period of wave)= 277v = w (angular frequency), 
lkl = 277/(wavelength of wave) = 1/ A = w, 

k points along direction of propagation of wave. 

At each event in spacetime there is a wave vector; and these wave vectors, tacked 
end-on-end, form a family of curves-the "light rays" or simply "rays"-whose 
tangent vector is k. The rays, like their tangent vector, lie both in and perpendicular 
to the surfaces of constant phase. 

The affine parameter 11. of a ray (not to be confused with wavelength= 277.t) 
satisfies k = d/d11.; therefore it is given by 

11. = t/k 0 + constant= t/w + constant, 

where t is proper time along the ray as measured, not by the ray itself (its proper 
time is zero!), but by the local Lorentz observer who sees angular frequency w. Thus, 
while w is a frame-dependent quantity and t is also a frame-dependent quantity, 
their quotient t/w when measured along the ray (not off the ray) is the frame-inde
pendent affine parameter. For a particle it is possible and natural to identify the 
affine parameter 11. with proper time -r. For a light ray this identification is unnatural 
and impossible. The lapse of proper time along the ray is identically zero. The 
springing up of 11. to take the place of the vanished -r gives one a tool to do what 
one might not have suspected to be possible. Given a light ray shot out at event 
tl and passing through event q,, one can give a third event e along the same null 
world line that is twice as "far" from tl as q, is "far," in a new sense of "far" that 
has nothing whatever directly to do with proper time (zero!), but is defined by equal 
increments of the affine parameter (11.e - 11.,,i = 11.,,i - 11.d)- The "affine parameter" 
has a meaning for any null geodesic analyzed even in isolation. In this respect, it 
is to be distinguished from the so-called "luminosity distance" which is sometimes 
introduced in dealing with the propagation of radiation through curved spacetime, 
and which is defined by the spreading apart of two or more light rays coming from 
a common source. 

Maxwell's equations as explored in the text [equation (22.28')] guarantee that 
the complex polarization vector f is perpendicular to the wave vector k and that, 
therefore, it lies in a surface of constant phase (see drawing). Intuition into the 
polarization vector is developed in exercise 22.12. 
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=- k · k = 0 (wave vector is null); 

!:!_k13,b
a - 2i(kf3aa , 13 +; kl3; 13 aa) = 0 

't..f= O] 

(22.30) 

=- Vka = - ; (V · k)a (propagation equation for vector amplitude). (22.31) 

These equations (22.30, 22.31) together with equation (22.28) are the basis from 
which all subsequent results will follow. As a first consequence, one can obtain the 
geodesic law from equation (22.30). Form the gradient of k · k = 0, 

and use the fact that k13 0, 13 is the gradient of a scalar to interchange indices, 
0 ,/30'. = 0;af3 or 

The result is 

Vkk = 0 (propagation equation for wave vector). (22.32) 

Notice that this is the geodesic equation! Combined with equation (22.30), it is the 
statement, derived from Maxwell's equations in curved spacetime, that light rays 
are null geodesics, the first main result of geometric optics. 

Turn now from the propagation vector k = V0 to the wave amplitude a = af, 

and obtain separate equations for the magnitude a and polarization f. Use equation 
(22.31) to compute 

so 

= - l (V · k)(a ·a+ a• a)= -a 2 V • k; 
2 

aka = - ; (V · k)a (propagation equation for scalar amplitude). (22.33) 

Next write a = af in equation (22.31) to obtain 
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or 

Vk f = 0 (propagation equation for polarization vector). 

577 

(22.34) 

This together with equation (22.28'), constitutes the second main result of geometric 
optics, that the polarization vector is perpendicular to the rays and is parallel-propa
gated along the rays. It is now possible to see that these results, derived from 
equations (22.30) and (22.31) are consistent with the gauge condition (22.28). The 
vectors k and f, specified at one point, are fixed along the entire ray by their 
propagation equations. But because both propagation equations are parallel-tran
sport laws, the conditions k · k = 0, f · f = 1, and k · f = 0, once imposed on the 
vectors at one point, will be satisfied along the entire ray. 

The equation (22.33) for the scalar amplitude can be reformulated as a conserva-
tion law. Since ok (k · V), one rewrites the equation as (k · V )a2 + a2V · k = 0, 
or 

(2)  po la nzat 1on  vecto r is  
perpend icu la r  to ray and i s  
para l l e l  propagated a long  ray 

V · (a2k) = 0. (22.35) (3)  conservat ion  of " photo n 
n u m ber" 

Consequently the vector a2k is a "conserved current," and the integral f a2kµ d3 � µ 
has a fixed, unchanging value for each 3-volume cutting a given tube formed of 
light rays. (The tube must be so formed of rays that an integral of a2k over the 
walls of the tube will give zero.) What is conserved? To remain purely classical, one 
could say it is the "number of light rays" and call a2k0 the "density of light rays" 
on an x 0 = constant hypersurface. But the proper correspondence and more concrete 
physical interpretation make one prefer to call equation (22.35) the law of conserva
tion of photon number. It is the third main result of geometric optics. Photon number, 
of course, is not always conserved; it is an adiabatic invariant, a quantity that is 
not changed by influences ( e.g., spacetime curvature, ~ 1 / !½'. 2) which change slowly 
(!½'. ► A) compared to the photon frequency. 

Box 22.4 summarizes the above equations of geometric optics, along with others 
derived in the exercises. 

Exercise 22 . 1 1 .  ELECTR O MAG N ET I C  F I ELD AN D STR ESS EN ERGY 

Derive the equations given in part D of Box 22.4 for F, E,  B,  and T. 

Exercise 22 . 1 2 . P O LAR IZATI O N  

A t  an event 90 through which geometric-optics waves are passing, introduce a local Lorentz 
frame with z-axis along the direction of propagation. Then k = w(e0 + ez)- Since the 
polarization vector is orthogonal to k, it is f = J0(e0 + ez) + f1ez + f2e u; and since 
f · f = I ,  it has 1 /

1 1 2 + 1 /
2

1
2 = 1. 

(a) Show that the component/0 of the polarization vector has no influence on the electric 
and magnetic fields measured in the given frame; i.e., show that one can add a multiple 
of k to f without affecting any physical measurements. 

(continued on page 581 ) 

EXERCISES 
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Box 22.4 GEOMETRIC OPTICS IN CURVED S PACETIME 
(S ummary of Results Derived i n  Text and  Exercises) 

A. G eometric O pt ics Assumpt ion 

Electromagnetic waves propagating in a source-free region of spacetime are locally 
plane-fronted and monochromatic (reduced wavelength A � scale E over which 
amplitude, wavelength, or polarization vary; and A � (jl = mean radius of curva
ture of spacetirne ). 

B . Rays, Phase, and Wave Vector (see Box 2 2 . 3) 

Everything (amplitude, polarization, energy, etc.) is transported along rays; and 
the quantities on one ray do not influence the quantities on any other ray. 

The rays are null geodesics of curved spacetime, with tangent vectors ("wave 
vectors")k: 

The rays both lie in and are perpendicular to surfaces of constant phase, 0 = 
const.; and their tangent vectors are the gradient of 0: 

k = V0. 

In a local Lorentz frame, k0 is the "angular frequency" and k0 /21r is the ordinary 
frequency of the waves, and 

n = k/k0 

is a unit 3-vector pointing along their direction of propagation. 

C. Ampl i tude and Polarization Vector 

The waves are characterized by a real amplitude a and a complex polarization 
vector f of unit length, f · f = 1. (Of the fundamental quantities 0, k, a, f, all 
are real except f. See exercise 22.12 for deeper understanding of f.) 

The polarization vector is everywhere orthogonal to the rays, k · f = O; and is 
parallel-transported along them, Vk f = 0. 

The propagation law for the amplitude is 
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This propagation law is equivalent to a law of conservation of photons ( classically: 
of rays); a2k is the "conserved current" satisfying V · (a 2k) = 0; and 
(8'1Ttzt1f a2k0 -vigf d 3x is the number of photons (rays) in the 3-volume of 
integration on any x 0 = constant hypersurface, and is constant as this volume 
is carried along the rays. 

The propagation law holds separately on each hypersurface of constant phase. 
There it can be interpreted as conservation of a a2tl, where Cl is a two-dimen
sional cross-sectional area of a pulse of photons or rays. See exercise 22.13. 

D .  Vector Potentia l ,  Electromagnet ic  F ield,  

and Stress-Energy-Momentum 

At any event the vector potential in  Lorentz gauge is 

where 3l\ denotes the real part. 
The electromagnetic field tensor is orthogonal to the rays, F · k = 0, and is given 

by 

The corresponding electric and magnetic fields in any local Lorentz frame are 

E = i\ { iak0ei 8(projection off perpendicular to k)} , 

B = n X E, where n k/k0 . 

The stress-energy tensor, averaged over a wavelength, is 

corresponding to an energy density in a local Lorentz frame of 

and an energy flux of 

so that energy flows along the rays (in n = k/k0 direction) with the speed of 
light. This is identical with the stress-energy tensor that would be produced by 
a beam of photons with 4-momenta p = tzk. 

Conservation of energy-momentum V · T = 0 follows from the ray conservation 
law V · (a2k) = 0 and the geodesic law Vkk (k · V )k = 0: 

8'17 V · T = V · (a2k © k) = [V · (a2k)]k + a2(k · V)k = 0. 
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Box 22 .4  (continued) 

The adiabatic (geometric optics) invariant "ray number" a2k0 or "photon number" 
(81rtz )-1a 2k0 in a unit volume is proportional to the energy, (81r)-1a 2(k0)2, 

divided by the frequency, k0-corresponding exactly to the harmonic oscillator 
adiabatic invariant E/w [Einstein (1912), Ehrenfest (1916), Landau and Lifshitz 
(1960)]. 

E .  Photon Rei nterpretation of G eometric O pt ics 

The laws of geometric optics can be reinterpreted as follows. This reinterpretation 
becomes a foundation of the standard quantum theory of the electromagnetic field 
(see, e.g., Chapters 1 and 13 of Baym (1969)]; and the classical limit of that 
quantum theory is standard Maxwell electrodynamics. 
Photons are particles of zero rest mass that move along null geodesics of spacetime 

(the null rays). 
The 4-momentum of a photon is related to the tangent vector of the null ray (wave 

vector) by p = tzk. A renormalization of the affine parameter, 

(new parameter)= (1/tz ) X (old parameter), 

makes p the tangent vector to the ray. 
Each photon possesses a polarization vector, f, which is orthogonal to its 4-mo

mentum (p • f = 0), and which it parallel-transports along its geodesic world 
line (Vpf = 0). 

A swarm of photons, all with nearly the same 4-momentum p and polarization 
vector f (as compared by parallel transport), make up a classical electromagnetic 
wave. The scalar amplitude a of the wave is determined by equating the 
stress-energy tensor of the wave 

I 1 ( a )2 T = - a 2k ® k = - - p ® p 81r 81r tz 

to the stress-energy tensor of a swarm of photons with number-flux vector S, 

[see equation (5.18)]. The result: 

or, in any local Lorentz frame, 

2 0 0 / 2 /2 ( 
number density of photons )

11 2 
a = (81rtz S Ip )1 = (81r)1 tz 

energy of one photon 
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(b) Show that the following polarization vectors correspond to the types of polarization 
listed : 

f = e,,, linear polarization in x direction; 

f = ey, linear polarization in y direction; 

f = }i (ex + iey), righthand circular polarization; 

f = }i (ex - iey), lefthand circular polarization; 

f = aex + i(l - a 2) 11 2e y, righthand elliptical polarization. 

(c) Show that the type of polarization (linear; circular; elliptical with given eccentricity 
of ellipse) is the same as viewed in any local Lorentz frame at any event along a given ray. 
[Hint: Use pictures and abstract calculations rather than Lorentz transformations and com
ponent calculations.] 

Exercise 22. 1 3. THE AREA OF A B UNDLE OF RAYS 
Write equation (22.31) in a coordinate system in which one of the coordinates is chosen 
to be x0 = 8, the phase (a retarded time coordinate). 

(a) Show that g00 = 0 and that no derivatives 0 /0 8  appear in equation (22.33); so propa
gation of a can be described within a single 8 = constant hypersurface. 

(b) Perform the following construction (see Figure 22.1). Pick a ray (30 along which a 
is to be propagated. Pick a bundle of rays, with two-dimensional cross section, that (i) all 
lie in the same constant-phase surface as e0, and (ii)  surround e0 • (The surface is three-di-

X 

z 

k 

Bundle has area d 
lying perpendicular 
to k 

(b) 

Figure 22. 1 .  
Geometric optics for a bundle of rays with two-dimensional cross section, all lying in a surface of constant 
phase, 8 = const. Sketch (a) shows the bundle, surrounding a central ray e0, in a spacetime diagram 
with one spatial dimension suppressed. Sketch (b) shows the bundle as viewed on a slice of simultaneity 
in a local Lorentz frame at the event '3'0• Slicing the bundle turns each ray into a "photon" ; so the 
bundle becomes a two-dimensional surface filled with photons. The area d of this photon-filled surface 
obeys the following laws (see exercises 22 . 1 3  and 22 . 14) : ( I )  d is independent of the choice of Lorentz 
frame; it depends only on location '3'0 along the ray e0 • (2) The amplitude a of the waves satisfies 

da2 = constant all along the ray e0 

("conservation of photon flux"). (3) d obeys the "propagation equation" (22 .36). 
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mensional, so any bundle filling it has a two-dimensional cross section.) At any event '3'0, 

in any local Lorentz frame there, on a "slice of simultaneity" x 0 = constant, measure the 
cross-sectional area {l of the bundle. (Note: the area being measured is perpendicular to 
k in the three-dimensional Euclidean sense; it can be thought of as the region occupied 
momentarily by a group of photons propagating along, side by side, in the k direction.) Show 
that the area tl is the same, at a given event '3'0, reg ardless of wh at Lorentz fr ame is used 
to me asure it; but the are a ch anges from point to point along the ray e O as a result of the 
r ays' divergence aw ay from e ach other or convergence tow ard e ach other : 

(22.36) 

Then show that tl a 2 is a constant everywhere along the ray 6'0 ("conservation of photon 
flux"). [Hints : (i) Any vector ( connecting adjacent rays in the bundle is perpendicular to 
k, because ( lies in a surface of constant 8 and k · ( = < k, ( )  = ( dB, ( )  = ( change in 8 
along O = 0. (ii) Consider, for simplicity, a bundle with rectangular cross section as seen 
in a specific local Lorentz frame at a specific event '3'0 [edge vectors v and w with v · w = 0 
(edges perpendicular) and v · e0 = w · e0 = 0 (edges in surface of constant time) and 
v · k = w · k = 0 (since edge vectors connect adjacent rays of the bundle)]. Show pictorially 
that in any other Lorentz frame at '3'0, the edge vectors are v' = v + ak and w' = w + /3k 
for some a and /3. Conclude that in all Lorentz frames at '3'0 the cross section has identical 
shape and identical area, and is spatially perpendicular to the direction of propagation 
(k · v = k • w = 0). (iii) By a calculation in a local Lorentz frame show that a k{l = (V · k )tl. 
(iv) Conclude from ak a =  - -½(V · k) a that ok(tl a2) = 0.] 

Exercise 22. 1 4. FOCUSING THEOREM 
The cross-sectional area {l of a bundle of rays all lying in the same surface of constant phase 
changes along the central ray of the bundle at t'he rate (22.36) (see Figure 22.1 ). 

(a) Derive the following equation (''focusing equ ation") for the second derivative of tl 11 2 : 

d2(l ll 2 = - ( 1a 1 2 + _!_ R k"kf3)(! 11 2 
d">-.2 2 af3 ' (22.37) 

where A is affine parameter along the central ray (k = d/d">-.), and the "magnitude of the 
shear of the rays", la l ,  is defined by the equation 

la l 2 - _!_ k o ka ,{3  - _!_ (kP. .  )2 . 
2 a ,,, 4 , µ,  

(22.38) 

[Hint : This is a vigorous exercise in index manipulations. The key equations needed in the 
manipulations are tl,a k" = (k",a)tl [ equation (22.36)]; k" ,p kP = 0 [geodesic equation (22.32) 
for rays]; ka , f3 = kp ,a [which follows from ka - 8,a] ;  and the rule (16.6c) for interchanging 
covariant derivatives of a vector. ]  

(b) Show that, in a local Lorentz frame where k = w(et + ez) at the origin, 

(22.39) 

Thus, la l 2 is nonnegative, which justifies the use of the absolute value sign. 
( c) Discussion: The quantity la l  is called the she ar of the bundle of rays because it measures 

the extent to which neighboring rays are sliding past each other [see, e.g., Sachs (1964)]. 
Hence, the focusing equation (22.37) says that shear focuses a bundle of rays (makes 
d2tl 11 2/d">-.2 < 0); and spacetime curvature also focuses it if Rap k"kf3 > 0, but defocuses it 
if Rap k"kf3 < 0. (When a bundle of toothpicks, originally circular in cross section, is squeezed 
into an elliptic cross section, it is sheared.) 
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( d) Assume that the energy density Tflo• as measured by any observer anywhere in space
time, is nonnegative. By combining the focusing equation (22.37) with the Einstein field 
equation, conclude that 

d2tl 11 2 
(

for any bundle of rays, all in the same
) � � 0 surfac� of constant phase, anywhere in 

spacetlme 
(22.40) 

(focusing theorem). This theorem plays a crucial role in black-hole physics (§34.5) and in 
the theory of singularities (§34.6). 

§2 2 . 6 .  KINETIC THEORY IN CURVED SPACETIME* 

The stars in a galaxy wander through spacetime, each on its own geodesic world 
line, each helping to produce the spacetime curvature felt by all the others. Photons, 
left over from the hot phases of the big bang, bathe the Earth, bringing with 
themselves data on the homogeneity and isotropy of the universe. Theoretical 
analyses of these and many other problems are unmanageable, if they attempt to 
keep track of the motion of every single star or photon. But a statistical description 
gives accurate results and is powerful. Moreover, for most problems in astrophysics 
and cosmology, the simplest of statistical descriptions-one ignoring collisions-is 
adequate. Usually collisions are unimportant for the large-scale behavior of a system 
( e.g.; a galaxy), or they are so important that a fluid description is possible ( e.g., 
in a stellar interior). 

Consider, then, a swarm of particles (stars, or photons, or black holes, or . . .  ) 
that move through spacetime on geodesic world lines, without colliding. Assume, 
for simplicity, that the particles all have the same rest mass. Then all information 
of a statistical nature about the particles can be incorporated into a single function, 
the "distribution function" or "number density in phase space", '!Jl. 

Define '!Jl in terms of measurements made by a specific local Lorentz observer 
at a specific event ?10 in curved spacetime. Give the observer a box with 3-volume 
'V., ( and with imaginary walls). Ask the observer to count how many particles, N, 
are inside the box and have local-Lorentz momentum components p; in the range 

· 1 · · · 1 · p i - 2 ,1p i < p' < p i + 2 ,1p i . 

(He can ignore the particle energies p 0 ; since all particles have the same rest mass 
m, energy 

*For more detailed and sophisticated treatments of this topic, see, e.g. , Tauber and Weinberg (1961), and Lindquist (1966), Marie (1969), Ehlers (1971), Stewart (1971), Israel (1972), and references cited therein. Ehlers (1971) is a particularly good introductory review article 

Volume in phase space for a 
group of identical particles 



Lorentz invariance of volume 
in phase space 

Liouvi l le 's theorem 
(conservation of volume in 
phase space) 

Number density in phase 
space (distribution function) 

584  22. THERMODYNAMICS, HYDRODYNAMICS, . . .  , AND KINETIC THEORY 

is fixed uniquely by momentum.) The volume in momentum space occupied by the 
N particles is 'VP= iJp" iJpY  iJpz ; and the volume in phase space is 

o/ o/,, o/p. (22.41) 

Other observers at rJJ 0, moving relative to the first, will disagree on how much spatial 
volume 'V,, and how much momentum volume 'VP these same N particles occupy: 

'Y,, and 'VP depend on the choice of Lorentz frame. (22.42) 

However, all observers will agree on the value of the product 'V 'V x 'VP ("volume 
in phase space"): 

The phase-space volume 'V occupied by a given set of N identical 
particles at a given event in spacetime is independent (22.43) 
of the local Lorentz frame in which it is measured. 

(See Box 22.5 for proof.) Moreover, as the same N particles move through spacetime 
along their geodesic world lines (and through momentum space), the volume 'V they 
span in phase space remains constant: 

The 'V occupied by a given swarm of N particles is 
independent of location along the world line of the 
swarm ("Liouville 's theorem in curved spacetime"). 

(See Box 22.6 for proof.) 

(22.44) 

More convenient for applications than the volume 'V in phase space occupied 
by a given set of N particles is the "number density in phase space" ("distribution 
function") in the neighborhood of one of these particles: 

'3l N/'V. (22.45) 

On what does this number density depend? It depends on the location in space
time, 9, at which the measurements are made. It also depends on the 4-momentum 
p of the particle in whose neighborhood the measurements are made. But because 
the particles all have the same rest mass, p cannot take on any and every value 
in the tangent space at 9. Rather, p is confined to the "forward mass hyperboloid" 
at 9: 

Thus, 

p lies inside future light cone. 

� 
1 . ,,;, 

(
4-momentum p, which must lie 

)� 
ocat1on, ✓ , 

'3l = 
'3l 

(. . ) , on the forward mass hyperboloid . m spacetime 
of the tangent space at 9 

(22.46) 

Pick some one particle in the swarm, with geodesic world line 9(A) [A = (affine 
parameter) = (proper time, if particle has finite rest mass)], and with 4-momentum 
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Box 22.5 VOLUME IN PHASE SPACE 

A. For Swarm of Ident ical  Part icles 

with Nonzero Rest M ass 

Pick an event ?10, through which passes a particle 
named "John" with a 4-momentum named "P ".  
In John's local Lorentz rest frame at ?10 ("barred 
frame", S), select a small 3-volume, 'V,, Llx Lly 
Liz, containing him. Also select a small "3-volume 
in momentum space," 'Vii _ Llp

i Llp Y Llp
z centered 

on John's momentum, which is pi = pv = 
pz = 0. Focus attention on all particles whose world 
lines pass through 'Vi and which have momenta 
p1 in the range 'Vii surrounding P1 = 0. 

-
I 

Examine this bundle in another local Lorentz 
frame ("unbarred frame", S) at ?10, which moves 
with speed /3 relative to the rest frame. Orient axes 
so the relative motion of the frames is in the x 
and .x directions. Then the space volume 'V,, occu
pied in the new frame has Lly = Lly, Liz = Liz (no 
effect of motion on transverse directions), and 
Llx = (1 - /3 2)112 Llx (Lorentz contraction in lon
gitudinal direction). Hence 'V,, = (1 - f3 2) 112 'V i 
("transformation law for space volumes") or, 
equivalently [since po = ml(l - 13 2)1; 2]: 

po'V = m'V _ = (constant, independent) . 
"' "' of Lorentz frame 

5 8 5  

A momentum-space diagram, analogous to the 
spacetime diagram, depicts the momentum spread 
for particles in the bundle, and shows that Lip

"' = 
Llp

il(l - /3 2)112 . The Lorentz transformation 
from S to S leaves transverse components of mo
menta unaffected; so Llp Y = Llp'ii, Llp

z = Llp
z. 

Hence 'VP = 'V iil(l - /3 2)112 ("transformation law 
for momentum volumes"); or, equivalently 

'VP = 'Vii" = (constant, independent) . p o m of Lorentz frame 

Although the spatial 3-volumes 'V,, and 'Vi 
differ from one frame to another, and the momen
tum 3-volumes 'VP and 'Vii differ, the volume in 
six-dimensional phase space is Lorentz-invariant: 

'Y 'V x'V:v = 'V,, 'VP. 

It is a frame-independent, geometric object! 

B .  For Swarm of Identical  Part ic les 

with Zero Rest Mass 

Examine a sequence of systems, each with particles 
of smaller rest mass and of higher velocity relative 
to a laboratory. For every bundle of particles in 
each system, P0 'V.,, 'V Pl P0, and 'V,, 'VP are Lorentz
invariant. Hence, in the limit as m � 0, as 
/3 � 1, and as p o = ml(l - /3 2) 112 � finite 
value (particles of zero rest mass moving with 
speed of light), P 0 'V,, and 'V pl p o and 'V,, 'VP are 
still Lorentz-invariant, geometric quantities. 
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Box 22.6 CONSERVATION OF VOLUME IN PHASE SPACE 

Examine a very small bundle of identical particles 
that move through curved spacetime on neighbor
ing geodesics. Measure the bundle's volume in 
phase space, 'V ('V = 'Vx'Vp in any local Lorentz 
frame), as a function of affine parameter A along 
the central geodesic of the bundle. The following 
calculation shows that 

d'V /dA = 0 ( "Liouville the?rem in) . 
curved spacetime" 

Proof for particles of finite rest mass: Examine 
particle motion during time interval OT, using local 
Lorentz rest frame of central particle. All velocities 
are small in this frame, so 

p1 = mdx1/ dt. 

Hence (see pictures) the spreads in momentum 
and position conserve L1.x Ltp°i, L1y Ltp v, and Liz Llr"; 
i.e., 

d'V = 8(L1.x L1y Liz Ltp
i LlpY Llpz) = 0. dT 8 t  

But 'T = aA + b for some arbitrary constants a and 
b; so d'V /dA = 0. 

Proof for particles of zero rest mass. Examine parti
cle motion in local Lorentz frame where central 
particle has P = P0(e0 + ex). In this frame, all 
particles have pY � p o, p z � p o, p" = p o + 
O([p Y]2/P0) ;:::::  P0 . Since p OI. = dxOl./dA for appro
priate normalization of affine parameters (see Box 
22.4), one can write dxi/dt = p i/p 0; i.e., 

dx = I + O([p Y I p op + [pz I pop) dt 
� 1, 

dy p Y 

d{ - pO ' 

'V 

X J--, 
'V 

p• p' 

t = O Each particle moves with speed dx/dt proportional to height in diagram 
dx/dt = p'/m, and conserves its momentum, dp'/dt = 0. Hence the region occupied by particles deforms, but maintains its area. Same is true for (y - p•) and (z - p') . 

p• 

---,f-----1► X 

t = O  

p• ot 

Llx 

-t--------1► X 

1 = ot Each particle ("photon") moves with dx/dt = I and 
dp• / dt = 0 in the local Lorentz frame. Area and shape of occupied region are preserved. 
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Hence (see pictures) Llx Llp 3' , Lly Llp Y, and Liz Llpz are all conserved; and do/ _ 8(Llx Lly Liz Llp x Llp Y Llpz) _ -
-

--'--------''-----=------=---
- 0.  

dt 8t But t and the affine parameter A of central particle are related by t = p o")-,._ [cf. equation ( 16 .4)] ; thus do//dA = 0 .  Lly 

t = O  

.. 

587 

pY 

Lly 

I =  ot Particle ("photon") speeds are proportional to height in diagram 
dy/dt = pY/P0, and dpY /dt = 0. Hence, occupied region deforms but maintains its area. Same is true of z - p'. 

p(A). Examine the density in phase space in this particle's neighborhood at each point along its world line : � = �[q>(A), p(A)]. Calculate �(A) as follows : ( 1 )  Pick an initial event 9(0) on the world line, and a phase-space volume o/ containing the particle. (2) Cover with red paint all the particles contained in o/ at 9(0). (3 ) Watch the red particles move through spacetime alongside the initial particle. (4) As they move, the phase-space region they occupy changes shape extensively; but its volume o/ remains fixed (Liouville's theorem). Moreover, no particles can enter or leave that phase-space region ( once in, always in; once out, always out ; boundaries of phase-space region are attached to and move with the particles) . (5) Hence, at any A along the initial particle's world line, the particle is in a phase-space region of unchanged volume o/, unchanged number of particles N, and unchanged ratio � = N/o/:  d�[q>(A), p(A)] = 0 dA (22 .47) 
This equation for the conservation of � along a particle's trajectory in phase space is called the "collisionless Boltzmann equation," or the "kinetic equation." Photons provide an important application of the Boltzmann equation. But when discussing photons one usually does not think in terms of the number density in phase space. Rather, one speaks of the "specific intensity" I, of radiation at a given frequency 11, flowing in a given direction, n, as measured in a specified local Lorentz frame : 

1 = d(energy) • - d(time) d(area) d(frequency) d(solid angle) (22 .48) 

Co l l r s ion less Boltzmann 
equat ion (k i net ic equat ion) 



Distri butio n  funct ion fo r 
photons expressed i n  terms 
of specif ic i ntensity, Iv 

I nvariance and conservation 
of lvfv3 

EXERCISES 

5 8 8  2 2 .  TH E R M O DYNAM I CS ,  HYD R O DYNAM ICS,  . . .  , AND  K I N ET IC  TH EO RY 

(See Figure 22.2), A simple calculation in the local Lorentz frame reveals that 

(22.49) 

where h is Planck's constant (see Figure 22.2). Thus, if two different observers at 
the same or different events in spacetime look at the same photon (and neighboring 
photons) as it passes them, they will see different frequencies v ("doppler shift," 
"cosmological red shift," "gravitational redshift"), and different specific intensities 
Iv ; but they will obtain identical values for the ratio lv/v3 . Thus lv/v3, like �, is 
invariant from observer to observer and from event to event along a given photon's 
world line. 

Exercise 22.15.  INVERSE SQUARE LAW FOR FLUX 
The specific flux of radiation entering a telescope from a given source is  defined by 

Fv = f Iv dil, (22 .50) 

where integration is over the total solid angle (assumed � 4'1T) subtended by the source on 
the observer's sky. Use the Boltzmann equation (conservation of Ivfv3) to show that 
Fv o:: (distance from source)-2 for observers who are all at rest relative to each other in flat 
spacetime. 

Exercise 22 .16 . BRIGHTNESS OF THE SUN 
Does the surface of the sun look any brighter to an astronaut standing on Mercury than 
to a student standing on Earth? 

Exercise 22. 1 7 . B LACK BODY RADIATION 
An "optically thick" source of black-body radiation ( e.g., the surface of a star, or the hot 
matter filling the universe shortly after the big bang) emits photons isotropically with a specific 
intensity, as seen by an observer at rest near the source, given (Planck radiation law) by 

2hv3 

Iv = ehv/kT _ I · (22.5 1 )  

Here T is the temperature of the source. Show that any observer, in any local Lorentz frame, 
anywhere in the universe, who examines this radiation as it flows past him, will also see 
a black-body spectrum. Show, further, that if he calculates a temperature by measuring the 
specific intensity Iv at any one frequency, and if he calculates a temperature from the shape 
of the spectrum, those temperatures will agree. (Radiation remains black body rather than 
being "diluted" into "grey-body.") Finally, show that the temperature he measures is red
shifted by precisely the same factor as the frequency of any given photon is redshifted, 

Tobserved = ( "observed ) for a given photon. 
r.mi tted JI em, tted 

(22 .52) 

[Note that the redshifts can be "Doppler" in origin, "cosmological" in origin, "gravitational" 
in origin, or some inseparable mixture. All that matters is the fact that the parallel-transport 
law for a photon's 4-momentum, Vpp = 0, guarantees that the redshift "observedl"emitted is 
independent of frequency emitted.] 
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z 

(/ 3-space volume 'V. 

Figure 22.2. 

p' 

t 

3-momentum volume, with direction of momentum vectors reversed for ease of visualization (telescope as an emitter, not a receiver ') 
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Number density in phase space for photons, interpreted in terms of the specific intensity I, . An astronomer has a telescope with filter that admits only photons arriving from within a small solid angle LID about the z-direction, and having energies between p0 and p0 + Llp
0 . The collecting area, (!, of his telescope lies in the x, y-plane (perpendicular to the incoming photon beam). Let oN be the number of photons that cross the area (! in a time interval &. [All energies, areas, times, and lengths are measured in the orthonormal frame ("proper reference frame; § 13.6) which the astronomer Fermi-Walker transports with himself along his (possibly accelerated) world line-or, equivalently, in a local Lorentz frame momentarily at rest with respect to the astronomer. ]  The oN photons, just before the time interval ot begins, lie in the cylinder of area (! and height oz = ot shown above. Their spatial 3-volume is thus 'Vx = Cl ot. Their momentum 3-volume is 'VP = (p0)2 Llp

0 LID (see drawing). Hence, their number density in phase space is � = __.E!_ =  oN oN 'V. 'VP tJ ot(p0)2(Llp0) LID h3 (l ot v2 Liv LID where v is the photon frequency measured by the telescope (p0 = hv). The specific intensity of the photons, I, (a standard concept in astronomy), is the energy per unit area per unit time per unit frequency per unit solid angle crossing a surface perpendicular to the beam i.e. , 
I = hv oN ' Cl ot Liv LID Direct comparison reveals � = h-4(Jjv3). Thus, conservation of � along a photon's world !me implies conservation of l,/v3 . This conservation law finds important applications in cosmology (e.g. , Box 29.2 and Ex. 29.5) and in the gravitational lens effect (Refsdal 1964), see also exercises 22.15-22.17 . 

Exercise 22. 1 8 . STRESS-ENERGY TENSOR 
(a) Show that the stress-energy tensor for a swarm of identical particles at an event '!i'0 can 
be written as an integral over the mass hyperboloid of the momentum space at '!i'0 : 

T = J (':Jlp ® p)(d'Vv!P o), 

d'Vp - dp • dp Y dp
Z 

�-��- in a local Lorentz frame. 7 = P o 

(22.53) 

(22.54) 
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(Notice from Box 22.5 that d'VP/p
0 is a Lorentz-invariant volume element for any segment 

of the mass hyperboloid.) 
(b) Verify that the Boltzmann equation, d�/dt... = 0, implies V · T = 0 for any swarm 

of identical particles . [Hint: Calculate V • T in a local Lorentz frame, using the above 
expression for T, and using the geodesic equation in the form Dpt.L/dt... = O.] 

Exercise 22.19. KINETIC THEORY FOR NONIDENTICAL PARTICLES 
For a swarm of particles with a wide distribution of rest masses, define 

(22 .55) 

where 'V x and 'VP are spatial and momentum 3-volumes, and LIN is the number of particles 
in the region 'V x 'VP with rest masses between m - Llm/2 and m + Llm/2 . Show the following. 

( a) 'V x 'VP Lim is independent of Lorentz frame and independent of location on the world 
tube of a bundle of particles. 

(b) � can be regarded as a function of location tJ1 in spacetime and 4-momentum p inside 
the future light cone of the tangent space at P :  

� = �(P, p) . 

(c) � satisfies the collisionless Boltzmann equation (kinetic equation) 

d�[P(t...), p(t...)] _ O dt... - along geodesic trajectory of any particle. 

( d) � can be rewritten in a local Lorentz frame as 

(22 .56) 

(22 .57) 

(22 .58) 

(e) The stress-energy tensor at an event tJ1 can be written as an integral over the interior 
of the future light cone of momentum space 

Tt.L• = J (�pt.Lp ")m-1 dp
0 dp

1 dp
2 dp

3 

in a local Lorentz frame (Track- I notation for integral; see Box 5 .3) ; 

T = f (�p ® p)m-1 * 1  in  frame-independent notation 

= J (�p ® p)m-1 dp
o I\ dp

1 I\ dp
2 I\ dp

3 

in a local Lorentz frame (Track-2 notation; see Box 5 .4). 

(22 .59) 

(22 .59') 



PART V 

R E LATIV I ST I C STARS 

Wherein the reader, armed 
with the magic potions and powers 

of Geometrodynamics, conquers the stars. 





CHAPTER 23  
S PH E R I CAL STARS 

§23 . 1 .  P RO LO G  

Beautiful though gravitation theory may be, it is a sterile subject until it touches 
the real physical world. Only the hard reality of experiments and of astronomical 
observations can bring gravitation theory to life. And only by building theoretical 
models of stars (Part V), of the universe (Part VI), of stellar collapse and black holes 
(Part VII), of gravitational waves and their sources (Part VIII), and of gravitational 
experiments (Part IX), can one understand clearly the contacts between gravitation 
theory and reality. 

The model-building in this book will follow the tradition of theoretical physics. 
Each Part (stars, universe, collapse, . . .  ) will begin with the most oversimplified 
model conceivable, and will subsequently add only those additional touches of 
realism necessary to make contact with the least complex of actual physical systems. 
The result will be a tested intellectual framework, ready to support and organize 
the additional complexities demanded by greater realism. Greater realism will not 
be attempted in this book. But the reader seeking it could start in no better place 
than the two-volume treatise on Relativistic Astrophysics by Zel'dovich and Novikov 
(1971, 1974). 

Begin, now, with models for relativistic stars. As a major simplification, insist 
(initially) that all stars studied be static. Thereby exclude not only exploding and 
pulsating stars, but even quiescent ones with stationary rotational motions. From 
the static assumption, plus a demand that the star be made of "perfect fluid" (no 
shear stresses allowed!), plus Einstein's field equations, it probably follows that the 
star is spherically symmetric. However, nobody has yet given a proof. [For proofs 
under more restricted assumptions, see Avez (1964) and Kunzie (1971 ).] In the 
absence of a proof, assume the result: insist that all stars studied be spherical as 
well as static. 

P review of the rest of th is  
book 

Static stars must be spherical  



Metric for any static, 
spherical system: 

( 1) generalized from flat 
spacetime 

(2) specialized to 
" Schwarzschild form" 

5 9 4  2 3  S PHERICAL STARS 

§ 2 3 . 2 .  COORDINATES AN D METRIC FOR A STATIC, 

SPHERICAL SYSTEM To deduce the gravitational field for a static spherical star-or for any other static, spherical system-begin with the metric of special relativity (no gravity) in the spherically symmetric form 
ds 2 = - dt 2 + dr 2 + r 2 dil 2, (23 . 1 )  where 

dil 2 = d02 + sin2 0 d</>2 • (23 .2) Try to modify this metric to allow for curvature due to the gravitational influence of the star, while preserving spherical symmetry. The simplest and most obvious guess is to allow those metric components that are already non-zero in equation (23 . 1 )  to assume different values : 
ds 2 = - e 2<P dt 2 + e 2A dr 2 + R 2 dil 2 , (23 .3) where <P, A, and R are functions of r only. (The static assumption demands ogµvl ot = 0.) To verify that this guess is good, use it in constructing stellar models, and check that the resulting models have the same generality (same set of quantities freely specifiable) as in Newtonian theory and as expected from general physical considerations. An apparently more general metric 

ds2 = - a 2 dt2 
- 2ab dr dt + c 2 dr2 + R 2 dil 2 (23 .4) actually is not more general in any physical sense. One can perform a coordinate transformation to a new time coordinate t' defined by 

e<P dt ' = a dt + b dr. (23 .5) By inserting this in equation (23 .4), and by defining e2A b 2 + c 2 , one obtains the postulated line element (23 .3), apart from a prime on the t. * The necessity to allow for arbitrary coordinates in general relativity may appear burdensome when one is formulating the theory; but it gives an added flexibility, something one should always try to turn to one's advantage when formulating and solving problems. The grt = 0 simplification (called a coordinate condition) in equation (23 .3)  results from an advantageous choice of the t coordinate. The r coordinate, however, is also at one's disposal (as long as one chooses it in a way that respects spherical symmetry; thus not r' = r + cos 0). One can turn this freedom to advantage by introducing a new coordinate r'(r) defined by 
r '  = R(r). (23 .6) 

* Of course, equation (23.5) only succeeds in defining a new time coordinate t' if  i t  i s  integrable as 
a differential equation for t'. By choosing the integrating factor e<P to be just e<P = a(r), one sees that 
t' = t + f[b(r)/a(r)) dr is the integral of (23.5) ;  thus the required t' coordinate always exists, no matter 
what the functions a(r), b(r), c(r) , and R(r) in equation (23.4) may be. 
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With this choice of the radial coordinate, and with the primes dropped, equation 
(23.3) reduces to 

ds 2 = - e 2<1> dt2 + e 2A dr 2 + r 2 dil 2, (23.7) 

a line element with just two unknown functions, <P(r) and A(r). This coordinate 
system and metric have been used in most theoretical models for relativistic stars 
since the pioneering work of Schwarzschild (1916b), Tolman (1939), and Oppen
heimer and Volkoff (1939). These particular coordinates are sometimes called "cur
vature coordinates" and sometimes "Schwarzschild coordinates." The central idea 
of these coordinates, in a nutshell, is (Schwarzschild r-coordinate) = (proper circum
ference)/2-rr. 

For a more rigorous proof that in any static spherical system Schwarzschild (3) derived more rigorously 
coordinates can be introduced, bringing the metric into the simple form (23.7), see 
Box 23.3 at the end of this chapter. 

Exercise 23 . 1 .  I SOTRO P IC  COORD I NATES AND N EWTON IAN L IM IT EXERC ISE  A n  alternative set o f  coordinates sometimes used for static, spherical systems i s  the "isotropic coordinate system" (t, r, 8, cJ>). The metric in isotropic coordinates has the form 
ds 2 = - e 2,p dt2 + e 2µ[dr2 + r2 dS.l 2], (23 .8) 

with <P and µ being functions of r. (a) Exhibit the coordinate transformation connecting the Schwarzschild coordinates (23 .7) to the isotropic coordinates (23 . 8) .  (b) From equation ( 1 6 .2a) [or equivalently ( 1 8 . 1 5 c)] , show that, in  the Newtonian limit, the metric coefficient <P of the isotropic line element becomes the Newtonian potential ; and µ becomes equal to - <P. By combining with part (a), discover that A =  r d<P/dr m the Newtonian limit. 

§23 . 3 .  PHYS I CAL I NTER P R ETATI O N  O F  

SCHWARZSCH I LD COO R D I NATES 

In general relativity, because the use of arbitrary coordinates is permitted, the 
physical significance of statements about tensor or vector components and other 
quantities is not always obvious. There are, however, some situations where the 
interpretation is almost as straightforward as in special relativity. The most obvious 
example is the center point of a local inertial coordinate system, where the principle 
of equivalence allows one to treat all local quantities ( quantities not involving 
spacetime curvature) exactly as in special relativity. Schwarzschild coordinates for 
a spherical system turn out to be a second example. 

One's first reaction when meeting a new metric should be to examine it, not in 
order to learn about the gravitational field, for which the curvature tensor is more 

The form of any metric can 
reveal the nature of the 
coordinates being used 
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directly informative, but to learn about the coordinates. (Are they, for instance, 
locally inertial at some point?) 

The names given to the coordinates have no intrinsic significance. A coordinate 

transformation t' = 0, r' = q,, 0 '  = r, q, '  = t is perfectly permissible, and has no 
influence on the physics or the mathematics of a relativistic problem. The only thing 
it affects is easy communication between the investigator who adopts it and his 
colleagues. Thus the names tr0q, for the Schwarzschild coordinates (23.7) provide 

a mnemonic device pointing out the geometric content of the coordinates.* In 
particular, the names 0, q, are justified by the fact that on each two-dimensional 
surface of constant r and t, the distance between two nearby events is given by 
ds2 = r 2 d[J Z, as befits standard 0, q, coordinates on a sphere of radius r. The area 
of this two-dimensional sphere is clearly 

A = f (r d0 )(r sin 0 dq,) = 4'1Tr2; (23.9) 

hence, the metric (23.7) tells how to measure the r coordinate that it employs. One 

can merely measure (in proper length units) the area A of the sphere, composed 
of all points rotationally equivalent to the point <J> for which the value r(<J>) is desired; 
and one can then calculate 

r(<J>) = (proper are� of sphere/4'17
)112 _ 

through pomt <J> 
(23.9') 

The Schwarzschild coordinates have been picked for convenience, and not for the 

ease with which one could build a coordinate-measuring machine. This makes it 
more difficult to design a machine to measure t than machines to measure r, 0, q,. 

The geometric properties of t on which a measuring device can be based are: 
(1) the time-independent distances (oga13/ o t  = 0) between world lines of constant 
r, 0, q,; (2) the orthogonality (gtr = gt e = gt¢ 

= 0) of these world lines to the t = 
constant hypersurfaces; and (3) a labeling of these hypersurfaces by Minkowski 
(special relativistic) coordinate time at spatial infinity, where spacetime becomes 
flat. This labeling produces a constraint 

<J>(oo) = 0 (23.10) 

in the metric (23.7). [Mathematically, this constraint is imposed by a simple rescaling 
transformation t' = e<P<00>t, and by then dropping the prime.] 

One "machine" design which constructs (mentally) such a t coordinate, and in 
the process measures it, is the following. Observers using radar sets arrange to move 

along the coordinate lines r, 0, q, = const. They do this by adjusting their velocities 
until each finds that the radar echos from his neighbors, or from "benchmark" 
reference points in the asymptotically flat space, require the same round-trip time 

at each repetition. Equivalently, each returning echo must show zero doppler shift; 

* For an example of misleading names, consider those in the equation 

c1s2 = - e2.P<o1 d<J,'2 + e2ACo'> d0'2 + 0•2 (dt'2 + sin2 1, dr'2) ,  

which is equivalent to equation (23 7), but employs the coordinates t' = 0, r' = <J,, 0 '  = r, <J,' = t 
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it must return with the same frequency at which it was sent out. Next a master clock 
is set up near spatial infinity (far from the star). It is constructed to measure proper 
time-which, for it, is Minkowski time "at infinity" -and to emit a standard one
Hertz signal. Each observer adjusts the rate of his "coordinate clock" to beat in time 
with the signals he receives from the master clock. To set the zero of his "coordinate 
clock," now that its rate is correct, he synchronizes with the master clock, taking 
account of the coordinate time Lit required for radar signals to travel from the master 
to him. [To compute the transit ti.me, he assumes that for radar signals (!reflection -
!emission) = (treturn - !reflection) = Lit, so that the echo is obtained by time-inversion 
about the reflection event. This time-reversal invariance distinguishes the time t in 
the metric (23.7) from the more general t coordinates allowed by equation (23.4).] 
Each observer moving along a coordinate line (r, 0, cf> = const.) now has a clock that 
measures coordinate time t in his neighborhood. 

The above discussion identifies the Schwarzschild coordinates of equation (23.7) 
by their intrinsic geometric properties. Not only are r and t radial and time variables, 
respectively (in that a;ar and a/ a t  are spacelike and timelike, respectively, and are 
orthogonal also to the spheres defined by rotational symmetry), but they have 
particular properties [4'1Tr2 = surface area; agµ,l a t  = 0; aj ar · a/ a t= grt = 0; 
a;at  • a;at  = gtt = - 1  at r = oo ]  that distinguish them from other possible coordi
nate choices [r' = j(r), t' = t + F (r)]. No claim is made that these are the only 
coordinates that might reasonably be called r and t; for an alternative choice 
("isotropic coordinates"), see exercise 23.1. However, they provide a choice that is 
reasonable, unambiguous, useful, and often used. 

§23 .4. DESCRIPTION OF THE MATTER INSIDE A STAR 

To high precision, the matter inside any star is a perfect fluid. (Shear stresses are 
negligible, and energy transport is negligible on a "hydrodynamic time scale.") Thus, 
it is reasonable in model building to describe the matter by perfect-fluid parameters : 

p = p(r) = density of mass-energy in rest-frame of fluid; 

p = p(r) = isotropic pressure in rest-frame of fluid; 

n = n(r) = number density of baryons in rest-frame of fluid; (23.11) 

uµ = uµ(r) = 4-velocity of fluid; 

P" = (p + p)uµu v + pgµv = stress-energy tensor of fluid. (23.12) 

(For Track-I discussion, see Box 5.1; for greater Track-2 detail, see §§22.2 and 22.3.) 
In order that the star be static, each element of fluid must remain always at rest 
in the static coordinate system; i.e., each element must move along a world line 

Other coord inates a re 
poss ib le ,  but Schwarzsch i l d  
a re particu larly s imp le  

M ateria l  i ns ide  sta r to be 
idea l ized as perfect fl u i d  

Parameters descri b ing  perfect 
fl u id  
( 1 )  p, p, n 

of constant r, 0, cf> ;  i.e., each element must have 4-velocity components (2) u 

ur = dr/dr = 0, u 0 = d0/dr = 0, ur/> = dcp/dr = 0. (23.13a) 



(3) T 

Proper reference frame of 
fluid 

Components of u and T in 
proper reference frame 

Equation of state : 
( 1) in general 

(2) idealized to 
"one-parameter form" 
p = p (n) , p = p(n) 

5 9 8  2 3 S P H E R I CAL  STARS The normalization of 4-velocity, 
then determines u 1 , u = e-if> o/ o t; (23 . 1 3b) and this, together with the general form (23 . 12) of the stress-energy tensor and the form (23 .7) of the metric, determines P" :  

ra/3 = 0 if  a =/:- /3. 
T¢¢ = pr-2 sin-2 0, (23 . 1 4) 

Although these components of the stress-energy tensor in Schwarzschild coordinates are useful for calculations, the normalization factors e-2if> , e-2.t1, r-2 , r2 sin-2 0 make them inconvenient for physical interpretations. More convenient are components on orthonormal tetrads carried by the fluid elements ("proper reference frames"; see § 1 3 .6 ) :  _ d I a ei = dr = � at ' wi = eif> dt, 

1 a e· - - 
r - eA ar ' 

wi- = e11 dr, u i = 1 ,  
1 a e n = --;: ae' 

w 8 = r d0, 

1 a e¢ = 
r sin 0 ocf> ; (23 . I S a) wifJ = r sin 0 def>; (23 . 1 5b) 

T:,.:,. = Too = Tif,¢ = p, T;,_/3 = 0 if a =f. /3. 
(23 . 1 5 c) (23 . 1 5 d) 

See exercise 23 .2 below. The structure of a star-i.e. , the set of functions <P(r), A(r), p(r), p(r), n(r)-is determined in part by the Einstein field equations, Gµv = 81rPv , and in part by the law of local conservation of energy-momentum in the fluid, Tµv ; v = 0. However, these are not sufficient to fix the structure uniquely. Also necessary is the functional dependence of pressure p and density p on number density of baryons n :  
p = p(n), P = p(n). (23 . 1 6) Normally one cannot deduce p and p from a knowledge solely of n .  One must know, in addition, the temperature T or the entropy per baryon s; then the laws of thermodynamics plus equations of state will determine all remaining thermodynamic variables : 

p = p(n, s), p = p(n, s), . . . .  (See §22 .2 and Box 22 . 1  for full Track-2 discussions.) To pass from the given thermodynamic knowledge, p(n, s) and p(n, s), to the desired knowledge, p(n) and p(n), one needs information about the star's thermal properties, and especially about the way in which energy generation plus heat flow have conspired to distribute the entropy, 
s = s(n) : 

p(n) = p[n, s(n)], p(n) = p [n, s(n)]. 
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There exist three important applications of the theory of relativistic stars: neutron 
stars, white dwarfs, and supennassive stars (stars with M � 103 M0, which may exist 
according to theory, but the existence of which has never yet been confirmed by 
observation). In all three cases, happily, the passage from p = p(n, s), p(n, s), to Just1ficat1on for idealized 

p = p(n), p = p(n), is trivial. equation of state: 

Consider first a neutron star. Though hot by ordinary standards, a neutron star ( 1 )  in neutron stars 
is so cold by any nuclear-matter scale of temperatures that essentially all its thermal 
degrees of freedom are frozen out ("degenerate gas"; "quantum fluid"). It is not 
important that a detailed treatment of the substance of a neutron star is beyond 
the capability of present theory ( allowance for the interaction between baryon and 
baryon; production at sufficiently high pressures of hyperons and mesons). The 
simple fact is that one is dealing with matter at densities comparable to the density 
of matter in an atomic nucleus (2 X 1014 g/cm3) and higher. Everything one knows 
about nuclear matter [see, for example, Bohr and Mottelson (1969)] tells one that 
it is degenerate, and that one can estimate in order of magnitude its degeneracy 
temperature by treating it as though it were an ideal Fermi neutron gas. (In a normal 
atomic nucleus, a little more than 50 per cent of all baryons are neutrons, the rest 
are protons; in a neutron star, as many as 99 per cent are neutrons.) When approxi-
mating the neutron-star matter as an ideal Fermi neutron gas, one considers the 
neutrons to occupy free-particle quantum states, with two particles of opposite spin 
in each occupied state, and a sharp drop from 100 per cent occupancy of quantum 
states to empty states when the particle energy rises to the level of the "Fermi energy" 
[for more on such an ideal Fermi gas, see Kittel, Section 19 (1958); or at an intro-
ductory level, see Sears, Section 16-5 (1953)]. In matter at nuclear density, the Fermi 
energy is of the order 

£Fermi ~ 30 MeV or 3 X 1011 K; 

and at higher density the temperature required to unfreeze the degeneracy is even 
greater. In other words, for matter at and above nuclear densities, already at zero 
temperature the kinetic energy of the particles (governed by the Pauli exclusion 
principle and by their Fermi energy) is a primary source of pressure. Nuclear forces 
make a large correction to this pressure, but for T � 30 MeV = 3 x 1011 K, energies 
of thermal agitation do not. 

A star, in collapsing from a normal state to a neutron-star state (see Chapter 24), 
emits a huge flux of neutrinos at temperatures � 101° K, and thereby cools to 
T � 3 X 1011 K within a few seconds after formation. Consequently, in all neutron 
stars older than a few seconds one can neglect thermal contributions to the pressure 
and density; i.e., one can set 

p(n, s) = p(n, s = 0) = p(n), p(n, s) = p(n, s = 0) = p(n). 

A white dwarf is similar, except that here electrons rather than neutrons are the (2) in white dwarfs 
source of Fermi gas pressure and degeneracy. Typical white-dwarf temperatures 
satisfy 

kT � £Fermi electrons ; 
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the Fermi kinetic energy (Pauli exclusion principle), and not random kT energy, 
is primarily responsible for the pressure and energy density; and one can set 

p(n, s) = p(n, s = 0) = p(n), p(n, s) = p(n, s = 0) = p(n). 

In a supermassive star (see Chapter 24), the situation is quite different. There 

temperature and entropy are almost the whole story, so far as pressure and energy 
density are concerned. However, convection keeps the star stirred up and produces 
a uniform entropy distribution 

s = const. independent of radius; 

so one can write 

p(n, s) = p. (n), p(n, s) = p8 (n). 

t
4

functions depending on JJ 
u�form entropy per baryon, 
s, m the star 

In all three cases-neutron stars, white dwarfs, supermassive stars-one regards 
the relations p(n) and p(n) as "equations of state"; and having specified them, one 

can calculate the star's structure without further reference to its thermal properties. 

Exercise 2 3 . 2 .  P R O P E R  R E F E R E N C E  FRAM ES O F  FLU I D  E LE M E NTS (a) Verify that equations (23 . 1 5 a,b) define an orthonormal tetrad and its dual basis of I -forms, at each event m spacetime. (b) Verify that the components of the fluid 4-velocity relative to these tetrads are given by equations (23 . 1 5 c) .  Why do these components guarantee that the tetrads form "proper reference frames" for the fluid elements? (c) Verify equations (23 . 1 5 d) for the components of the stress-energy tensor. 

§ 2 3 . 5 .  EQUATIO NS O F  STR UCTU RE 

The structure of a relativistic star is determined by five functions of radius r: the 

metric functions <P (r), A(r), the pressure p(r), the density of mass-energy p(r), and 
the number density of baryons, n(r). Hence, to determine the structure uniquely, 
one needs five equations of structure, plus boundary conditions. Two equations of 
structure, the equations of state p(n) and p(n), are already in hand. The remaining 
three must be the essential content of the Einstein field equations and of the law 
of local energy-momentum conservation, Tµ•

; • = 0. 
One knows that the law of local energy-momentum conservation for the fluid 

follows as an identity from the Einstein field equations. Without loss of information, 



§ 2 3  5 EQUATI O N S  O F  STR U CTU R E  60 1 one can therefore impose all ten field equations and ignore local energy-momentum conservation. But that is an inefficient way to proceed. Almost always the equations The most efficient Tµ" ; v = 0 can be reduced to usable form more easily than can the field equations. for solving EinStein equations Hence, the most efficient procedure is to : ( 1 )  evaluate the four equations Tµv , v  = O ;  (2) evaluate enough field equations (six) t o  obtain a complete set (6 + 4 = 10) ;  and (3) evaluate the remaining four field equations as  checks of the results of ( I )  and (2) .  The Track-2 reader has learned (§22 .3) that the equations P" ; v = 0 for a perfect fluid take on an especially simple form when projected ( I )  on the 4-velocity u of the fluid itself, and (2) orthogonal to u. Projection along u (uµ P"; v = 0) gives the local law of energy conservation (22 . 1  l a) ,  
dp p + p dn - =  - (p + p)V · u = ---, 
dr n dr where u = d/ d-r ; i .e. , -r is proper time along the world line of any chosen element of the fluid. For a static star, or for any other static system, both sides of this equation must vanish identically (no fluid element ever sees any change in its own density) . Projection of Tµ• ; v = 0 orthogonal to u gives the reasonable equation 

( inertial mass ) (4 1 . ) (pressure gradient, projected) . X -acce eratlon = - . per umt volume perpendicular to u 

1.e., (p + p)Vuu = - [Vp + (Vup)u]. [see equation (22 . 1 3)] .  When applied to a static star, this equation tells how much pressure gradient is needed to prevent a fluid element from falling. Only the radial component of this equation has content, since the pressure depends only on r. The radial component in the Schwarzschild coordinate system says [see the line element (23 .7) and the 4-velocity components (23 . 1 3)], (p + p)ur; vU " = - (p + p)I'a
rvUaU " = - (p + p)I' O

ro UoUO = (p + p)<l>,r = -P,r· (23 . 1 7) (Track- I readers can derive this from scratch at the end of the section, exercise 23 .3 .) In the Newtonian limit, <I> becomes the Newtonian potential (since g00 = - e2<P ;::::; - 1 - 2<1>), and the pressure becomes much smaller than the mass-energy density; consequently equation (23 . 1 7) becomes p<l>,r = -P,r · (23 . 17N) This is the Newtonian version of the equation describing the balance between gravitational force and pressure gradient. The pressure gradient that prevents a fluid element from falling appears in Einstein's theory as the source of an acceleration. This acceleration, by keeping the fluid element at a fixed r value, causes it to depart from geodesic motion (from "fiducial world line" ;  from motion of free fall into the center of the star) . Newtonian 
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theory, on the other hand, views as the fiducial world line the one that stays at a 
fixed r value. It regards the "gravitational force" as trying (without success, because 
balanced by the pressure gradient) to pull a particle from a fixed-r world line onto 
a geodesic world line. In the two theories the magnitudes of the acceleration, whether 
"actually taking place" (Einstein theory) or "trying to take place" (Newtonian 
theory), are the same to lowest order (but opposite in direction); so it is no surprise 
that (23 .17) and (23 .l 7N) differ only in detail. 

Turn next to the Einstein field equation. Here, as is often the case, the components 
of the field equation in the fluid's orthonormal frame [equations (23.15a,b)] are 
simpler than the components in the coordinate basis. One already knows the stress
energy tensor T&Jj in the orthonormal frame [equation (23.15d)]; and Track-2 readers 
have already calculated the Einstein tensor G&Jj (exercise 14.13; Track-l readers will 
face the task at the end of this section, exercise 23.4). All that remains is to equate 
G&Jj to 81TT&Jj · Examine first the 00 component of the field equations: 

G00 = r-2 - r-2e-2A - r-1(d/dr)(e-2A) 

= r-2(d/dr)[r(1 - e-2A)J = 87TT00 = 87Tp. 

This equation becomes easy to solve as soon as one notices that it is a differential 
equation linear in the quantity e-2A ; a bit of tidying up then focuses attention on 
the quantity r(I - e-2A). Give this quantity the name 2m(r) (so far only a name! ); 
thus, 

2m r(I - e-2A); e2A = (1 - 2m/r)-1 . 

In this notation the 00 component of the Einstein tensor becomes 

2 dm(r) 
Goo = z -d- = 87Tp. r r 

Integrate and find 

m(r) = f
r 
47Tr 2

p dr + m(O). 
0 

(23.18) 

(23.19) 

For the constant of integration m(O), a zero value means a space geometry smooth 
at the origin (physically acceptable); a non-zero value means a geometry with a 
singularity at the origin (physically unacceptable: no local Lorentz frame at r = 0): 

ds2 = [I - 2m(O)/rJ-1 dr2 + r2(d0 2 + sin20 d</> 2) 

;::::: - [r/2m(O)] dr2 + r2(d0 2 + sin20 d</> 2) at r ;:::::::  0 if m(O) f:. O; 
ds2 = [I - (87T/3)pcr2J-1 dr2 + r2(d0 2 + sin20 d</> 2) 

;::::: dr2 + r2(d0 2 + sin20 d<t> 2) at r ;:::::::  0 if m(O) = 0. 

(23.20) 

The quantity m(r), defined by equation (23.18) and calculated from equation 
(23.19) with m(O) = 0, is a relativistic analog of the "mass-energy inside radius r." 
Box 23.1 spells out the analogy in detail. 
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Box 23 . 1  MASS-ENERGY INSIDE RAD I US r 

6 0 3  

The total mass-energy M of an  isolated star is well-defined (Chapter 19). But not 
well-defined, in general, is the distribution of that mass-energy from point to point 
inside the star and in its gravitational field (no unique "gravitational stress-energy 
tensor"). This was the crucial message of §20.4 (Track 2). 

The message is true in general. But for the case of a spherical star-and only 
for that case-the message loses its bite. Spherical symmetry allows one to select 
a distribution of the total mass-energy that is physically reasonable. In Schwarzschild 
coordinates, it is defined by 

"total mass-energy inside radius r" _ m(r) = J
r 

4'1Tr 2p dr. (1) 
0 

The fully convincing argument for this definition is found only by considering a 
generalization of it to time-dependent spherically symmetric stars (pulsating, col
lapsing, or exploding stars; see Chapters 26 and 32, and especially exercise 32.7). 
For them one finds that the mass-energy m associated with a given ball of matter 
(fixed baryon number) can change in time only to the extent that locally measurable 
energy fluxes can be detected at the boundary of the ball. [Such energy fluxes could 
be the power expended by pressure forces against the moving boundary surface, 
or heat fluxes, or radiation (photon or neutrino) fluxes. But since spherically symme
tric gravitational waves do not exist (Chapters 35 and 36), neither physical intuition 
nor Einstein's equations require that problems oflocalizing gravitational-wave energy 
be faced.] Thus the energy m is localized, not by a mathematical convention, but 
by the circumstance that transfer of energy (with this definition of m) is detectable 
by local measurements. [For the mathematical details of m(r, t) in the time-depend
ent case, see Misner and Sharp (1964), Misner (1965), and exercise 32.7.] 

In addition to the critical "local energy flux" property of m(r) described above, 
there are three further properties that verify its identification as mass-energy. They 
are : (I) Everywhere outside the star 

() _ = (total mass-energy of star as measured from
} . m r - M - Kepler's third law for distant planets (2) 

see §23.6 for proof. (2) For a Newtonian star, where "mass inside radius r"  has a 
unique meaning, m(r) is that mass. (3) For a relativistic star, m(r) splits nicely into 
"rest mass-energy" mo(r) plus "internal energy" U(r) plus "gravitational potential 
energy" il(r). 

To recognize and appreciate the split 

m(r) = mo(r) + U(r) + il(r), (3) 

proceed as follows. First split the total density of mass-energy, p, into a part µ0n 
due to rest mass-where µ0 is the average rest mass of the baryonic species pres-
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Box 23 . 1  (continued) 

ent-and a part p - µ0n due to internal thermal energy, compressional energy, etc. 
Next notice that the proper volume of a shell of thickness dr is 

(4) 

not 4'1Tr2 dr. Consequently, the total rest mass inside radius r is 

(5) 

and the total internal energy is 

U = I r 
(p - µ0n) do/"= I r 

4'1Tr2(1 - 2m/r)-112(p - µ0n) dr. (6) 
0 0 

Subtract these from the total mass-energy, m; the quantity that is left must be 
the gravitational potential energy, 

(See exercise 23.7.) 

[l = - I r 
p [(l - 2m/r)-112 - 1]477r2 dr 

0 

;:::::: -I r 
(p m/r)4'1Tr2 dr. 

t[Ne:tonian limit, m/r � l] 

Turn next to the ff component of the field equations: 

G:;.:;. = - r-2 + r-2e-ZA + 2r-1e-ZA d<P/dr 
= 877T:;.:;. = 877p. 

(7) 

Solving this equation for the derivative of <P, and replacing e-zA by 1 - 2m/r, one 
obtains an expression for the gradient of the potential <P : 

d<P m + 4'1Tr3
p 

dr r(r - 2m) 

This expression reduces to the familiar formula 

d<P/dr = m/r2 

in the Newtonian limit. 

(23.21) 

(23.21N) 



§ 2 3 5 EQUATI O N S  O F  STR U CTU R E  6 0 5  I n  most studies of stellar structure, one replaces equation (23 . 17) by the equivalent equation obtained with the help of (23 .2 1 ), 
dp 
dr 

(p + p)(m + 4wr 3p) 
r(r - 2m) 

Equation of hydrostatic (23 .22) equi l ibrium rewritten in 
" OV" form This is called the Oppenheimer-Volk.off (OV) equation of hydrostatic equilibrium. Its Newtonian limit, 

dp/dr = - pm/r 2 , (23 .22N) is familiar. Compare two stellar models, one relativistic and the other Newtonian. Suppose that at a given radius r [determined in both cases by (proper area) = 4wr2], the two configurations have the same values of p, p, and m. Then in the relativistic model the pressure gradient is 
dp dp d(proper radial distance) - eA dr 

(p + p)(m + 4wr 3p) r2( 1  - 2m/r)112 In contrast, Newtonian theory gives for the pressure gradient 
dp d(proper radial distance) dp 

dr 
pm -�-

(23 .23) 
(23 .23N) 

The relativistic expression for the gradient is larger than the Newtonian expression ( 1 )  because the numerator is larger (added pressure term in both factors) and (2) because the denominator is smaller [shrinkage factor (1 - 2m/r)112] . Therefore, as one proceeds deeper into the star, one finds pressure rising faster than Newtonian gravitation theory would predict. Moreover, this rise in pressure is in a certain sense "self-regenerative." The more the pressure goes up, the larger the pressure-correction terms become in the numerator of (23 .23) ;  and the larger these terms become, the faster is the further rise of the pressure as one probes still deeper into the star. The geometric factor [l - 2m(r)/r]112 in the denominator of (23 .23) further augments this regenerative rise of pressure towards the center. It is appropriate to summarize the situation in short-hand terms by saying that general relativity predicts stronger gravitational forces in a stationary body than does Newtonian theory. These forces, among their other important effects, can pull certain white-dwarf stars and supermassive stars into gravitational collapse under circumstances (see Chapter 24) where Newtonian theory would have predicted stable hydrostatic equilibrium. As the most elementary indication that a new factor has surfaced in the analysis of stability, note that no star in hydrostatic equilibrium can ever have 2m(r)/r 2:'._ 1 (see Box 23 .2 for one illustration and §23 .8  for discussion), a phenomenon alien to Newtonian theory. Now in hand are five equations of structure [two equations of state (23 . 1 6 ) ;  equation (23 . 1 9), expressing m(r) = ½r( l - e-2A) as  a volume integral of p;  the source 

Comparison of pressure 
gradients in Newtonian and 
relativistic stars 

Equations of stel lar structure 
summarized 
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equation (23 .2 1 )  for tP ;  and the OV equation of hydrostatic equilibrium (23 .22)] for the five structure functions p, p, n, tP, A. If the theory of relativistic stars as outlined above is well posed, then each of the remaining eight Einstein field equations G;,_p = SwT;,_p must be either vacuous ("O = O"), or must be a consequence of the five equations of structure. This is, indeed, the case, as one can verify by straightforward but tedious computations. To construct a stellar model, one needs boundary conditions as well as structure equations. To facilitate the presentation of boundary conditions, the next section will examine the star's external gravitational field. 

Exercise 23. 3. LAW OF LOCAL ENERGY-MOMENTUM CONSERVATION 
(for readers who have n ot studied Chapter 22) Evaluate the four components of the equation T"/3 ,/3 = 0 for the stress-energy tensor (23 . 14) in the Schwarzschild coordinate system of equation (23.7) .  [Answer: only p/3 ;/3 = 0 gives a nonvacuous result; it gives equation (23 . 1 7) . ]  

Exercise 23 .4 .  EINSTEIN CURVATURE TENSOR 
(for readers who have n ot studied Chapter 1 4) Calculate the components of the Einstein curvature tensor, Gaf3 , in Schwarzschild coordinates. Then perform a transformation to obtain Gixp , the components in the orthonormal frame of equations (23 . 1 5 a,b) . [See Box 8 .6 ,  or Box 14 .2 and equation ( 14 .7) . ]  

Exercise 23. 5. TOTAL NUMBER OF BARYONS IN A STAR Show that, if r = R is the location of the surface of a static star, then the total number of baryons inside the star is 
R 

A = .[ 4'1Tr2neA dr. 
0 

[Hint : See the discussion of m0 in Box 23 . 1 .] 
Exercise 23.6 .  BUOYANT FORCE IN A STAR 

(23 .24) 

An observer at rest at some point inside a relativistic star measures the radial pressure-buoyant force, Fbuoy• on a small fluid element of volume V. Let him use the usual laboratory techniques. Do not confuse him by telling him he is in a relativistic star. What value will he find for .r;,uoy, in terms of p, p, m, V, and dp/ dr? If he equates this buoyant force to an equal and opposite gravitational force, F
grav, what will F

gr
av be in terms of p, p, m, V, and r? (Use equation 23 .22 .) How do these results differ from the corresponding Newtonian results? 

Exercise 23 . 7. GRAVITATIONAL ENERGY OF A NEWTONIAN STAR Calculate in Newtonian theory the energy one would gain from gravity if one were to construct a star by adding one spherical shell of matter on top of another, working from the inside outward. Use Laplace's equation (r2t/J r) r = 4'1Tr2p and the equation of hydrostatic equilibrium P,r = - ptf>,r to put the answer in th� following equivalent forms: 
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( energy gained from gravity) = - (gravitational potential energy) 
R R 

= f (pr <l>_r}4'7Tr 2 dr = f (pm/r)4'7Tr 2 dr 
0 0 

6 0 7  

I R I 00 

= -
2 � (p<l>)4'7Tr 2 dr = 8'7T � (<P,,)24'7Tr 2 dr 

R = 3 f 4'7Tr 2p dr. 
0 

§23 . 6 .  EXTERNAL GRAVITATIONAL FIELD 

Outside a star the density and pressure vanish, so only the metric parameters <P 
and A = -½ In (1 - 2m/r) need be considered. From equation (23.19) one sees that 
"the mass inside radius r," m(r), stays constant for values of r greater than R ( outside 
the star). Its constant value is denoted by M: 

m(r) = M for r > R (i.e., outside the star). (23.25) 

By integrating equation (23.21) with p = 0 and m = M, and by imposing the 
boundary condition (23.10) on <P at r = oo ("normalization of scale of time at 
r = oo "), one finds 

<P(r) = � In (1 - 2M/r) for r > R. 

Consequently, outside the star the spacetime geometry (23.7) becomes 

ds 2 = - (  1 - 2M ) dt2 + dr2 
+ r2(d0 2 + sin20 d</> 2) .  

r (I - 2M/r) 

(23.26) 

(23.27) 

This is called the "Schwarzschild geometry" or "Schwarzschild gratitational field" 
or "Schwarzschild line element," because Karl Schwarzschild (1916a) discovered it 
as an exact solution to Einstein's field equations a few months after Einstein formu
lated general relativity theory. 

In that region of spacetime, r ► 2M, where the geometry is nearly flat, Newton's 
theory of gravity is valid, and the Newtonian potential is 

<P = - M/r for r > R, r ► 2M. (23.26N) 

Spacet 1me o uts ide sta r 
possesses " Schwarzsch i ld " 
geometry 

Consequently, M is the mass that governs the Keplerian motions of planets in the Tota l mass-energy of sta r 
distant, Newtonian gravitational field-i.e., it is the star's "total mass-energy" (see 
Chapters 19 and 20). Since the metric (23.27) far outside the star is precisely diagonal 
(g1; 0), the star's total angular momentum must vanish. This result accords with 
the absence of internal fluid motions. 
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§ 2 3 .  7 .  H OW TO CO N STRUCT A STE LLAR M O D E L  

Equations of stellar structure The equations of stellar structure (23 . 1 6), (23 . 1 9), (23 .21 ), (23 .22), and associated 
collected together boundary conditions (to be discussed below), all gathered together along with the 

line element, read as follows. 

H ow to solve the equations 
of stellar structure 

Lin e  E lement 

ds2 = - e 2� dt2 + dr2 
+ r 2(d0 2 + sin20 dq, 2) (23 .27') 

1 - 2m/r 

= - ( 1 - 2M) dt2 + dr 2 + r 2(d0 2 + sin20 dq, 2) for r > R. 
r 1 - 2M/r 

M ass Equation 

m = J
r 

4'7Tr 2p dr, with m(r = 0) = 0 .  
0 

OV Equation of Hyd rostatic Equ i l i bri u m  

(23 .28a) 

dp _ (p + p)(m + 4'7Tr 3p) 
-d 

- -
( 2 ) 

, with p(r = 0) = Pc = central pressure. (23 .28b) r r r - m 

Equations of State 

Sou rce Equation for <J> 

d<P (m + 4'7Tr 3p) - = dr r(r - 2m) 

p = p(n), 

P = p(n). 

. 1 
with <P(r = R) = 

2 
ln (1 - 2M/ R). 

(23 .28c) 

(23 .28d) 

(23 .28e) 

To construct a stellar model one can proceed as follows. First specify the equations 
of state (23 .28c,d) and a value of the central pressure, Pc · Also specify an arbitrary 
(later to be renormalized) value, </>0, for <P(r = 0). The boundary conditions 
p(r = 0) = Pc, <P (r = 0) = <1>0 , m(r = 0) = 0 are sufficient to determine uniquely the 

_ solution to the coupled equations (23 .28). Integrate these coupled equations outward 
from r = 0 until the pressure vanishes. [The OV equation, (23 .28b), guarantees that 
the pressure will decrease monotonically so long as the equations of state obey the 
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reasonable restriction p ;;::: 0 for all p ;;::: O.] The point at  which the pressure reaches 
zero is the star's surface; the value of r there is the star's radius, R; and the value 
of m there is the star's total mass-energy, M. Having reached the surface, renormalize 
<P by adding a constant to it everywhere, so that it obeys the boundary condition 
(23.28e). The result is a relativistic stellar model whose structure functions <P, m, 
p, p, n satisfy the equations of structure. 

Notice that for any fixed choice of the equations of state p = p(n), p = p(n), the 
stellar models form a one-parameter sequence (parameter Pc). Once the central 
pressure has been specified, the model is determined uniquely. 

The next chapter describes a variety of realistic stellar models constructed numer
ically by the above prescription. For an idealized stellar model constructed analyti
cally, see Box 23.2. 

Exercise 23 . 8 .  NEWTONIAN STARS OF UNIFORM DENSITY Calculate the structures of uniform-density configurations in Newtonian theory. Show that the relativistic configurations of Box 23 .2 become identical to the Newtonian configurations in the weak-gravity limit. Also show that there are no mass or radius limits in Newtonian theory. 
(continued on page 612) 

Box 23 .2 RELATIVISTIC MODEL STAR OF UNI FORM DENSITY 

EXERCISE 

For realistic equations of state (see next chapter), the equations of stellar structure 
(23.28) cannot be integrated analytically; numerical integration is necessary. How
ever, analytic solutions exist for various idealized and ad hoc equations of state. One 
of the most useful analytic solutions [Karl Schwarzschild (1916b)] describes a star 
of uniform density, 

p = Po = constant for all p. (1) 

It is not necessary to indulge in the fiction of "an incompressible fluid" to accept 
this model as interesting. Incompressibility would imply a speed of sound, 
v = (dp/dp)112, of unlimited magnitude, therefore in excess of the speed of light, 
and therefore in contradiction with a central principle of special relativity ("principle 
of causality") that no physical effect can be propagated at a speed v > I. (If a source 
could cause an effect so quickly in one local Lorentz frame, then there would exist 
another local Lorentz frame in which the effect would occur before the source had 
acted! )  However, that the part of the fluid in the region of high pressure has the 
same density as the part of the fluid in the region of low pressure is an idea easy 
to admit, if only one thinks of the fluid having a composition that varies from one 



Box 2 3 . 2  (continued) 

r value to another ("hand-tailored"). Whether one thinks along this line, or simply 
has in mind a globe of water limited in size to a small fraction of the dimensions 
of the earth, one has in Schwarzschild's model an instructive example of hydrostatics 
done in the framework of Einstein's theory. 

The mass equation (23.28a) gives immediately 

for r < R
} for r > R 

from which follows the length-correction factor in the metric 

d(proper distance) A 1 2 _112 
dr = e = [ - m(r)/r] . 

(2) 

(3) 

When for ease of visualization the space geometry (r, </>) of an equatorial slice through 
the star is viewed as embedded in a Euclidean 3-geometry (z, r, </>) [see §23.8], the 
"lift" out of the plane z = 0 is 

{
(R 3 /2M)112[1 - (1 - 2Mr2 / R 3)11 2] for r � R, z(r) = 
(R 3 /2M)11 2[1 - (1 - 2M/ R)11 2] + [8M(r - 2M)J11 2  - [8M(R - 2M)]112 

for r � R. (4) 

The knowledge of m(r) from (2) allows the equation of hydrostatic equilibrium 
(23.28b) to be integrated to give the pressure: 

{ 
(1 - 2Mr2 / R 3) 112 - (1 - 2M/ R)112 

} p = Po 3(1 - 2M/ R)l/2 - (1 - 2Mr2 I R 3)112 for r < R. (5) 

The pressure in turn leads via (23.28e) to the time-correction factor in the metric. 

_d_(=--pr_o--=-p_e_r_t1_·m_e
--'-
) 

= e<JJ = \ 
� ( 1 - -21:-)112 - � ( 1 - -2-�-;-

2 )112 

dt 
(1 - 2M/r)112 

for r < R
l . (6) 

for r > R 

Several features of these uniform-density configurations are noteworthy. (1) For 
fixed energy density, p0, the central pressure 

{ 
1 - (1 - 2M/R)ll2 

} Pc = Po 3(1 - 2M/R)112 - 1 (7) 

increases monotonically as the radius, R, increases-and, hence, also as the mass, 
M = (4'1T/3)p0R 3, and the ratio ("strength of gravity") 

2M/R = (87T/3)p0R 2 (8) 



increase. This is natural, since, as more and more matter is added to the star, a 
greater and greater pressure is required to support it. (2) The central pressure 
becomes infinite when M, R, and 2M/ R reach the limiting values 

Rum = (9 /4)Mum = (3'1Tpo)-112, 
(2M/ R)um = 8/9. 

(9) 

(10) 

No star of uniform density can have a mass and radius exceeding these limits. These 
limits are purely relativistic phenomena; no such limits occur in Newtonian theory. 
(3) Inside the star the space geometry (geometry of a hypersurface t = constant) 
is that of a three-dimensional spherical surface with radius of curvature 

a = (3/81TP0)112 . (1 1 ) 

[See equation (4), above.] Outside the star the (Schwarzschild) space geometry 
is that of a three-dimensional paraboloid of revolution. The interior and exterior 
geometries join together smoothly. All these details are shown in the following three 
diagrams. There all quantities are given in the following geometric units (to convert 
mass in g or density in g/cm3 into mass in cm or density in cm-2, multiply by 
0 .742 X 10-28 cm/g) : lengths, in units (3/8'1Tp0)112 ; pressure, in units p0 ; mass, in 
units (3/32'1Tp0)112. 

1 .0 
20 

f to oo at r = 0 
t e"' 0.5 Pressure I Time factor 

t 0 0.5 1 .0 1 .5 
p 

I J O 

0 

M = 0.838 (critical) 

0.5 _,_.. 

1 .5 

t 
1 .0 

z 1 .0 I 0.5 

0 

- r ----. 

Embedding (case M = 0.838) 

0.5 1 .0 _,____,. 
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Box 2 3 . 2  (continued) 

The mass "after assembly" is what is called M. The mass of the same fluid, 
dispersed in droplets at infinite separation, is called Mbetore in the following table. 

Surface area of spheres, 4wr2 : 

( 1) increases monotonically 
from center of star 
outward 

Mbefore small 0 0882 0 .894 I 09 13  

M small 0.0828 0.636 0.729 

Difference 
(binding) · foM513 0.0054 0.258 0.362 

I 374 

0 838 ( critical) 

0 536 

§ 2 3 . 8 .  TH E S PACETI M E  G E O M ETRY FOR A STATIC  STAR 

For a highly relativistic star, the spacetime geometry departs strongly from Euclid
Lorentz flatness. Consequently, there is no a priori reason to expect that the surface 
area 477r2, and hence also the radial coordinate r, will increase monotonically as 
one moves from the center of the star outward. Fortunately, the equations of stellar 
structure guarantee that r will increase monotonically from O at the star's center to 
oo at an infinite distance away from the star, so long as p � 0 and so long as the 
star is static ( equilibrium). 

The monotonicity of r can be seen as follows. Introduce as a new radial coordinate 
proper distance, 1, from the center of the star. By virtue of expression (23.27') for 
the metric, 1 and r are related by 

dr = -+-(1 - 2m/r)112 di.  (23.29) 

Note that r is zero at the center of the star (where m a: r3), and note that r is always 
nonnegative by definition. Therefore r must at first increase with 1 as one moves 
outward from 1 = O; r(1) can later reach a maximum and start decreasing only at 
a point where 2m/r becomes unity [see equation (23.29)]. Such a behavior can and 
does happen in a closed model universe, a 3-sphere of uniform density and radius 
a, where 

r(1) = a sin (1/a) 

(see Chapter 27; especially the embedding diagram of Box 27.2(A)]. However, the 
field equations demand that such a system be dynamic. Here, on the contrary, 
attention is limited to a system where conditions are static. In such a system, the 
condition of hydrostatic equilibrium (23.28b) applies. Then the pressure gradient 
is given by an expression with the factor [1 - 2m(r)/r] in its denominator. If 2m/r 
approaches unity with increasing 1 in some region of the star, the pressure gradient 
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there becomes so large that one comes to the point p = 0 (surface of the star) before 
one comes to any point where 2m(r)/r might attain unit value. Moreover, after the 
surface of the star is passed, m remains constant, m(r) = M, and 2m(r)/r decreases. 
Consequently, 2m/r is always less than unity; and r(i,) cannot have a maximum, 
Q.E.D. (Details of the proof are left to the reader as exercise 23.9.) 

Although the radii of curvature, r, and corresponding spherical surface areas, 477r 2, 
increase monotonically from the center of a star outward, they do not increase at 
the same rate as they would in flat spacetime. In flat spacetime the rate of increase 
is given by dr / d(proper radial distance) = dr / d1 = 1. In a star it is given by 
dr/d1 = (1 - 2m/r)112 < 1. Consequently, if one were to climb a long ladder 
outward from the center of a relativistic star, measuring for each successive spher
ical shell its Schwarzschild r-value ("proper circumference" /277), one would find 
these r-values to increase surprisingly slowly. 

This strange behavior is most easily visualized by means of an "embedding 
diagram." It would be too much for any easy visualization if one were to attempt 
to embed the whole curved four-dimensional manifold in some higher-dimensional 
flat space. [See, however, Fronsdal (1959) and Clarke (1970) for a global embedding 
in 5 + 1 dimensions, and Kasner (192lb) for a local embedding in 4 + 2 dimensions. 
One can never embed a non-flat, vacuum metric (Gµv = 0) in a flat space of 5 
dimensions (Kasner, 192lc).] Therefore seek a simpler picture (Flamm 1916). Space 
at one time in the context of a static system has the same 3-geometry as space at 
another time. Therefore, depict 3-space only as it is at one time, t = constant. 
Moreover, at any one time the space itself has spherical symmetry. Consequently, 
one slice through the center, r = 0, that divides the space symmetrically into two 
halves (for example, the equatorial slice, 0 = 77 /2) has the same 2-geometry as any 
other such slice (any selected angle of tilt, at any azimuth) through the center. 
Therefore limit attention to the 2-geometry of the equatorial slice. The geometry 
on this slice is described by the line element 

ds2 = [ l  - 2m(r)/rJ-1 dr 2 + r 2 dcp 2 • (23.30) 

Now one may embed this two-dimensional curved-space geometry in the flat geom
etry of a Euclidean three-dimensional manifold. 

If the curvature of the two-dimensional slice is zero or negligible, the embedding 
is trivial. In this event, identify the 2-geometry with the slice z � 0 of the Euclidean 
3-space. Moreover, introduce into that 3-space the familiar cylindrical coordinates 
z, r, cp, that one employs for any problem with axial symmetry (see Fig. 23.1 and 
Box 23 .2 for more detail). Then one recognizes the flat two-dimensional slice as the 
set of points of the Euclidean space with z = 0, with cJ> running from O to 277, and 
r from O to oo .  One has identified the r and cJ> of the slice with the r and cJ> of the 
Euclidean 3-space. 

If the 2-geometry is curved, as it is when the equatorial section is taken through 
a real star, then maintain the identification between the r, cp, of the slice and the 
r, cp, of the Euclidean 3-geometry, but bend up the slice out of the plane z = 0 ( except 
at the origin, r = 0). At the same time, insist that the bending be axially symmetric. 
In other words, require that the amount of the "lift" above the plane z = 0 shall 

(2) but increases more slowly 
than in flat spacetime 

Embedding of spacetime in a 
flat space of higher 
dimensionality 

Construction of "embedding 
diagram" for equatorial slice 
through star 
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X 

Figure 23 . 1 .  

z 
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\ 

Geometry within (grey) and around (white) a star of radius R = 2.66M, schematically displayed. The star is in hydrostatic equilibrium and has zero angular momentum (spherical symmetry). The twodimensional geometry 
ds2 = [I - 2m(r)/rJ-1 dr2 + r2 dcj,2 of an equatorial slice through the star (8 = .,,;2 , t = constant) is represented as embedded in Euclidean 3-space, in such a way that distances between any two nearby points (r, r/>) and (r + dr, cj, + de/>) are correctly reproduced. Distances measured off the curved surface have no physical meaning; points off that surface have no physical meaning; and the Euclidean 3-space itself has no physical meaning. Only the curved 2-geometry has meaning. A circle of Schwarzschild coordinate radius r has proper circumference 2.,,, (attention limited to equatorial plane of star, 8 = "TT/2). Replace this circle by a sphere of proper area 4.,,,2, similarly for all the other circles, in order to visualize the entire 3-geometry in and around the star at any chosen moment of Schwarzschild coordinate time I. The factor [I - 2m(r)/rJ-1 develops no singularity as r decreases within r = 2M, because m(r) decreases sufficiently fast with decreasing r. 

be independent of cf,, whatever may be its dependence on r. Thus the whole story 
of the embedding is summarized by the single function, the lift, 

z = z(r) ("embedding formula"). 
The geometry on this curved two-dimensional locus in Euclidean space (a made-up 

3 -space ; it has nothing whatever to do with the real world) is to be identical with 
the geometry of the two-dimensional equatorial slice through the actual star; in other 
words, the line elements in the two cases are to be identical. To work out this 
requirement in mathematical terms, write the line element in three-dimensional 
Euclidean space in the form 

ds2 = dz2 + dr2 + r2 dcp 2 . (23 .3 1 )  
Restrict to the chosen locus ("lifted surface") by writing z = z(r) or dz =  (dz/dr) dr. 
Thus have 

ds2 = [ I +  ( d:�) rJ dr2 + r2 dcp 2 (23 .32) 
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on the two-dimensional locus in the 3-geometry, to be identified with 
ds2 = ( 1  - 2m(r)/rJ-1 dr2 + r2 dcp 2 

in the actual star. Compare and conclude 
( d��) r + 1 = ( 1  - 2m(r)/rJ-1 . 

6 1 5 

(23 .33) 
This equation is information enough to find the lift as a function of r; thus, 

f r dr z(r) = [ 
r ]112 everywhere, 

0 -- - 1  
2m(r) 

z(r) = (8M(r - 2M))112 + constant outside the star. 

(23 .34a) 

(23 .34b) 
Outside the star this embedded surface is a segment of a paraboloid of revolution. 
Its form inside the star depends on how the mass, m, varies as a function of r. Recall 
that m(r) varies as (4'17 /3)pcr3 near the center of the star. Conclude that the embedded 
surface there looks like a segment of a sphere of radius a = (3/8'1Tpc)112 ; thus, 

(a - z(r)J2 + r2 = a2 (23 .34c) 
In the special case of a star with uniform density (Box 23 .2), the entire interior is 
of the spherical form (23 .34c) ; in the general case it is not. In all cases, because 
r > 2m(r), equation (23 .34a) produces a surface with z and r as monotonically 
increasing functions of each other. This means that the embedded surface always 
opens upward and outward like a bowl; it always looks qualitatively like Figure 
23 . 1 ;  it never has a neck, and it never flattens out except asymptotically at r = oo .  
At the star's surface, even though the density may drop discontinuously to zero (p 
finite inside when p = O ;  p zero outside), the interior and exterior geometries will 
join together smoothly [dz/dr, as given by equation (23 .33), is continuous). 

It must be emphasized that only points lying on the embedded 2-surface have 
physical significance so far as the stellar geometry is concerned : the three-dimen
sional regions inside and outside the bowl of Figure 23 . 1  are physically meaningless. 
So is the Euclidean embedding space. It merely permits one to visualize the geometry 
of space around the star in a convenient manner. 

Exercise 23 .9 .  G O O D  BEHAVIOR OF r Carry out explicitly the full details of the proof, at the beginning of this section, that 2m/r is always less than unity and r is a monotonic function of i,. 
Exercise 23 . 1 0 . CENTER O F  STAR OCCU P I E D  BY I D EAL FE R M I  GAS AT 

EXTR E M E  R E LATIVISTIC LI M IT Opposite to the idealization of a star built from an incompressible fluid is the idealization in which it is built from an ideal Fermi gas [ideal neutron star; see Oppenheimer and Volkoff ( 1 939)] at zero temperature, so highly compressed that the particles have relativistic energies, 

Descri ption of em bedded 
su rface 

EXERCISES 
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in comparison with which any rest mass they possess is negligible . In this limit, with two particles per occupied cell of volume h 3 in phase space , one has 
(number_ density) =  n = (2/h 3)4w f PF 2 d = 8w 3/3h 3, of ferm10ns L P 'P PF 

0 

(density of ) 3 f PF 2 = p = (2/h )4w cp · p dp = 2wcp 4/h 3 mass-energy O F ' 
and finally d( energy ) = _ per particle = _ d(p/n) = 2wc 4/3h 3 = p/3, p d(volume d(l /n) PF per particle 

as if one were dealing with radiation instead of particles (PF = Fermi momentum; momentum of highest occupied state) .  

Box 23.3 RIGOROUS DERI VATION OF THE SPHERICALLY SYMMETRIC LINE ELEMENT 

Section 23.2 gave a heuristic derivation of the 
general spherically symmetric line element (23.7). 
This box attempts a more rigorous derivation, 
applicable to nonstatic systems, as well as static 
ones. 

Begin with a manifold M4 on which a metric 
ds 2 of Lorentz signature is defined. Assume M4 

to be spherically symmetric in the sense that to 
any 3 X 3 rotation matrix A there corresponds a 
mapping (rotation) of M4, also called A (A: M4 

� M4 : 9 � A9), that preserves the lengths of 
all curves. Further assumptions and constructions 
will be numbered (i), ( ii), etc., so one can see what 
specializations are needed to get to the line ele
ment (23.7). Daggers (t) indicate assumptions that 
are found inapplicable to some other physically 
interesting situations. 

For any point 9, form the set s = S(tJ') = 
{A9 E M4 IA E SO(3)} of all points equivalent 
to 9 under rotations. Assume (i)t that s is 
a two-dimensional surface ( except for center 
points, where s is zero-dimensional), and (ii) that 
the metric on s is that of a standard 2-sphere. Then 
on s one will have 

(I) 

where dil 2 is the standard metric of a unit sphere 
(dil 2 = d0 2 + sin20 dcp 2 for some 0, cp, defined on 
s), and where 2TT R is the circumference of s. If M2 

is the set of all such surfaces s, then S : M4 � 

M2 : 9 � s = S(tJ') allows one to obtain, from 
R : M2 � &l : s � R(s) [the "circumference" 
function on M2 as defined by equation (I)], a 
corresponding function R : M4 � &l : 9 � 
R(S(tJ')) on M4 which in some cases can eventually 
be used as a coordinate on M4 • (Note: &l denotes 
here the real numbers.) 

Now assume (iii)t there is a spherically symme
tric 4-velocity field u, defined so that if 9 = G'('r) 
is one trajectory of u with u = d/dT, then each 
curve 9 = AG'('r) obtained by a rotation must also 
be a trajectory of u. The orthogonal projection of 
u onto any sphere s must then vanish, as there 
are no rotation invariant non-zero vector fields on 
2-spheres. Thus u is orthogonal to each s. Also, 
if two trajectories of u start on some same sphere 
s, so e1(0) = AG'iO), then the same rotation A will 
always relate them, G'i(T) = AelT), since trajec
tories are uniquely defined by any one point on 
them. Then S (G'i('T)) and S(G'2(T)) are both the 
same curve in M2, whose tangent d/dT one can 
call also u; in this way one obtains a vector field 
u on M2 • Give each trajectory of u on M2 a differ
ent label r to define a function r(s) on M2 • Denote 
by r = r(S(tJ')) a corresponding function r on M4 

with dr/dT = 0. Since functions and their gradi
ents on M4 define corresponding quantities on M2, 
inner products such as df· dg can be defined on 
M2 by their values on M4 ; thus, from the metric 
on M4 one obtains a metric on M2 • Then by equa-
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(a) Write out the relativistic equation of hydrostatic equilibrium for a substance satisfying 
the equation of state p = p/3 . 

(b) Show that there exists a well-defined analytic solution for the limiting case of infinite 
central density, in which m(r)/r has the value 3/14. 

(c) Find p(r), p(r), and n(r). 
(d) Show that the number of particles out to any finite r-value is finite, despite the fact 

that n(r) is infinite at the origin. 
(e) Show that the 3-geometry has a "conical singularity" at r = 0. 
(f) Make an "embedding diagram" for this 3-geometry ["lift" z(r) as a function of r from 

(23.34)]. (Note that the conical singularity at r = 0, otherwise physically unreasonable, arises 
because the density of mass-energy goes to infinity at that point. Note also that the calculated 
mass of the system diverges to infinity as r -+  oo .  In actuality with decreasing density the 
Fermi momentum falls from relativistic to nonrelativistic values, the equation of state changes 
its mathematical form, and the total mass M converges to a finite value). 

tion (23.5) or equivalently by drawing curves in 
M2 orthogonal to the r = const. lines, and giving 
each a different label t, one obtains coordinates 
with grt = dr · dt = 0. Both r and t labels were 
assigned arbitrarily on the corresponding curves, 
so it is clear that transformations t '  = t '(t) and 
r '  = r '(r) are not excluded. 

On one 2-sphere s in M4, on the t = 0 hypersur
face, choose a set of 0, q, coordinates by picking 
the pole (0 = 0) and the prime meridian ('1> = 0) 
arbitrarily. Then extend the definition of 0,q,, over 

the t = 0 hypersurface by requiring 0 and q, to be 
constant on curves orthogonal to each 2-sphere s, 
i.e., by demanding that (o/ or)8¢ be orthogonal to 
each s at t = 0. Extend the definition of 0 and q, 
to t =/. 0 by requiring them to be constant on 

curves with tangent u, so (o/ o t)re¢ a: u. But each 
s is a surface of constant r and t; so (o/ o0 )rt¢ and 
(o/ oq,)rte are tangent to s, while u a: (o/ ot) is 
orthogonal to each s. Consequently, 

and 
gt e  = (o/ o t) • (0/ 00) = o 
gt¢= (o/ ot) • (o/ o<J>) = o 

(2) 

(3) 

in the tr0q, coordinate system just constructed. The 
vector (o/ or)i8¢ does not depend on the arbitrary 
directions introduced in the original choice of 0, q, 
coordinates on one sphere s; it is invariant under 

transformations 0 = 0(0 ', q, '), q, = q,(0 ', q, ') . But 
nothing except 0 and q, introduced nonrotationally 
invariant elements into the discussion; so ('iJ / or)t e¢ 
must be a rotationally invariant vector field (un-

like, say, o/oq,); so it is, like u, orthogonal to each 
2-sphere s. This invariance then gives 

gre = (o/ or) • (0/ 00 )  = 0, (4) 
gr¢= (o/ or) • (o/ oq,) = 0, (5) 

which, with gtr = 0 as previously established, gives 
gtr = 0. The result is a line element of the form 
(23.3). Further specialization, a change of radial 
and time coordinates to R and T, where R is de
fined by (I) above and 

dT = e"' [-1- oR dt - _1_ oR dr] , 
grr or gtt o t  

e"' = (integrating) , 
factor 

followed by a change of notation, leads to 
Schwarzschild coordinates and the line element 

(23.7)-though such a transformation is possible 
(i .e., nonsingular) only where dR I\ dT =/. 0:  

(V R)2 = (oR/ o t)2 
+ 

(oR/ or)2 
=/. o

. 
gt t  grr 

If (iv)t spacetime is asymptotically flat, so 
r --+ oo is a region where the metric can take on 
its special relativity values, then the arbitrariness 
in the t coordinate, t '  = t '(t), can be eliminated 
by requiring gt t  = -1 as r --+ oo.  Then (o/ ot)re¢ 
is uniquely determined by natural requirements 
(independent of the arbitrary 0, q,, choices), and 
whenever it is desired to make the further physical 
assumption (v)t of a time-independent geometry, 
this can be appropriately restated as ogµ,I  ot = 0. 



CHAPTER 24 

PU LSARS AN D N EUTRO N  STARS;  

QUASARS AN D 

SU P E R MASS IVE STARS 

Types of ste l l a r  configu rat ions 
where relativity should be 
i m portant 

§24. 1 .  OVERVI EW 

Go, wond'rous creature, mount where Science guides, 
Go, measure earth, weigh air, and state the tides; 

Instruct the planets in what orbs to run, 
Correct old time, and regulate the sun. 

ALEXANDER POPE ( 1 733) 

Five kinds of stellar configurations are recognized in which relativistic effects should 
be significant : white dwarfs, neutron stars, black holes, supermassive stars, and 
relativistic star clusters. The key facts about each type of configuration are summar
ized in Box 24. 1 ;  and the most important details are described in the text of this 
chapter (white dwarfs in §24.2 ; neutron stars and their connection to pulsars in 
§§24.2 and 24.3 ; supermassive stars and their possible connection to quasars and 
galactic nuclei in §§24.4 and 24.5 ; and relativistic star clusters in §24.6 ; a detailed 
discussion of black holes is delayed until Chapter 33) . 

The book Stars and Relativity by Zel'dovich and Novikov ( 197 1 )  presents a clear 
and very complete treatment of all these astrophysical applications of relativistic 
stellar theory. In a sense, that book can be regarded as a companion volume to 
this one ; it picks up, with astrophysical emphasis, all the topics that this book treats 
with gravitational emphasis . This chapter is meant only to give the reader a brief 
survey of the material to be found in Stars and Relativity. 

(continued on page 621) 
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Box 24. 1 .  STE LLAR C O N FI G U RATI O N S  WH E R E  R E LATIVISTIC EFFECTS ARE I M PO RTANT 

[For deta i led analyses and references on al l  these topics, 

A. 

see Zel 'dovich and Novikov ( 1 9 7 1  ) .] 

White Dwarf Stars 

Are stars of about one solar mass, with radii 
about 5 ,000 kilometers and densities about 
1 06 g/cm3 ~ 1 ton/cm3 ; support themselves 
against gravity by the pressure of degenerate 
electrons ; have stopped burning nuclear fuel, B .  and are gradually cooling as they radiate 
away their remaining store of thermal energy. Were observed and studied astronomically long 
before they were understood theoretically. Key points in history : 
August 1 926, Dirac ( 1926) formulated Fermi

Dirac statistics, following Fermi (February). 
December 1 926, R. H. Fowler (1 926) used 

Fermi-Dirac statistics to explain the nature 
of white dwarfs ;  he invoked electron degeneracy pressure to hold the star out 
against the inward pull of gravity. 

1 930, S. Chandrasekhar ( 1 93 l a,b) calculated 
white-dwarf models taking account of spe
cial relativistic effects in the electron-de
generacy equation of state ; he discovered that no white dwarf can be more massive 
than ~1.2 solar masses ("Chandrasekhar 
Limit"). 

1 932, L. D. Landau ( 1 932) gave an elementary explanation of the Chandrasekhar 
limit. 

1 949 , S. A. Kaplan ( 1949) derived the effects 
of general relativity on the mass-radius 
curve for massive white dwarfs, and de
duced that general relativity probably in
duces an instability when the radius be
comes smaller than I . I  X 103 km. 

Role of general relativity in white dwarfs : 
negligible influence on structure ; 
significant influence on stability, on pulsation 

frequencies, and on form of mass-radius curve near the Chandrasekhar limit (i.e., in 
massive white dwarfs). Electron capture also 
significant. See, e.g. , Zel'dovich and Novi
kov ( 197 1 ) ;  Faulkner and Gribbin ( 1968). 

Neutron Stars 

Are stars of about one solar mass, with radii 
about 10 km and densities about 1014 g/cm3 

(same as density of an atomic nucleus) ; are 
supported against gravity by the pressure of 
degenerate neutrons and by nucleon-nucleon 
strong-interaction forces; are not burning nu
clear fuel ;  the energy being radiated is the 
energy of rotation and the remaining store of 
internal thermal energy. 

Theoretical calculations predicted their exist
ence in 1 934, but they were not verified to 
exist observationally until 1 968 .  

Key points in history : 
1 932, neutron discovered by Chadwick ( 1932) . 
1 933-34, Baade and Zwicky ( 1934a,b,c) ( I )  

invented the concept of neutron star; (2) 
identified a new class of astronomical ob
jects which they called "supernovae" ; (3) 
suggested that supernovae might be created 
by the collapse of a normal star to form a 
neutron star. (See Figure 24. 1 .) 

1 939, Oppenheimer and Volkoff ( 1939) per
formed the first detailed calculations of the 
structures of neutron stars ; in the process, 
they laid the foundations of the general 
relativistic theory of stellar structure as pre
sented in Chapter 23 . (See Figure 24. 1 .) 

1 942, Duyvendak ( 1942) and Mayall and Oort 
( 1942) deduced that the Crab nebula is a 
remnant of the supernova observed by Chi-
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Box 24. 1 (continued) 

nese astronomers in A.D. 1054. Baade (1942) 
and Minkowskii (1942) identified the 
"south preceding star," near the center of 
the Crab Nebula, as probably the (col
lapsed) remnant of the star that exploded 
in 1054 (see frontispiece). 

1967, Pulsars were discovered by Hewish et 
al. (1968). 

1968, Gold (1968) advanced the idea that 
pulsars are rotating neutron stars; and sub
sequent observations confirmed this sug
gestion. 

1969, Cocke, Disney, and Taylor (1969) dis
covered that the "south preceding star" of 
the Crab nebula is a pulsar, thereby clinch
ing the connection between supernovae, 
neutron stars, and pulsars. 

Role of general relativity in neutron stars: 
significant effects (as much as a factor of 2) 

on structure and vibration periods; 
gravitational radiation reaction may be the 

dominant force that damps nonradial vi
brations. 

C. B lack Holes 

Are objects created when a star collapses to a 
size smaller than twice its geometrized mass 
(R < 2M ~ (Ml M0) X 3 km), thereby creat
ing such strong spacetime curvatures that it 
can no longer communicate with the external 
universe ( detailed analysis of black holes in 
Chapters 33 and 34). 

No one who accepts general relativity has found 
any way to escape the prediction that black 
holes must exist in our galaxy. This prediction 
depends in no way on the complexity of the 
collapse that forms the black holes, or on 
unknown properties of matter at high density. 
However, the existence of black holes has not 
yet been verified observationally. 

Key points in history: 
1795, Laplace (1795) noted that, according to 

Newtonian gravity and Newton's corpuscu
lar theory of light, light cannot escape from 
a sufficiently massive object (Figure 24.1 ). 

1939, Oppenheimer and Snyder (1939) calcu
lated the collapse of a homogeneous sphere 
of pressure-free fluid, using general rela
tivity, and discovered that the sphere cuts 
itself off from communication with the rest 
of the universe. This was the first calcula
tion of how a black hole can form (Figure 
24.1). 

1965, Beginning of an era of intensive theo
retical investigation of black-hole physics. 

Role of general relativity in black-hole physics : 
No sensible account of black holes possible 

in Newtonian theory. The physics of black 
holes calls on Einstein's description of grav
ity from beginning to end. 

D .  S u permassive Stars 

Are stars of mass between 103 and 109 solar 
masses, constructed from a hot plasma of 
density typically less than that in normal 
stars; are supported primarily by the pressure 
of photons, which are trapped in the plasma 
and are in thermal equilibrium with it; burn 
nuclear fuel (hydrogen) at some stages in their 
evolution. 

Theoretical calculations suggest (but not with 
complete confidence) that supermassive stars 
exist in the centers of galaxies and quasars, 
and perhaps elsewhere. Supermassive stars 
conceivably could be the energy sources for 
some quasars and galactic nuclei. However, 
astronomical observations have not yet 
yielded definitive evidence about their exist
ence or their roles in the universe if they do 
exist. 



§24 2 ENDPOINT OF STELLAR EVOLUTION 

Key points in history: 
1963, Hoyle and Fowler (1963a,b) conceived 

the idea of supermassive stars, calculated 
their properties, and suggested that they 
might be associated with galactic nuclei and 
quasars. 

1963-64, Chandrasekhar (1964a,b) and 
Feynman (1964) developed the general 
relativistic theory of stellar pulsations; and 
Feynman used it to show that supermassive 
stars, although Newtonian in structure, are 
subject to a general-relativistic instability. 

1964 and after, calculations by many workers 
have elaborated on and extended the ideas 
of Hoyle and Fowler, but have not pro
duced any spectacular breakthrough. 

Role of general relativity in supermassive stars : 
negligible influence on structure, except in the 

extreme case of a compact, rapidly rotating, 
disc-like configuration [see Bardeen and 
Wagoner (1971); Salpeter and Wagoner 
(1971)]. 

significant influence on stability. 

E .  Relativistic Star C lusters 

Are clusters of stars so dense that relativistic 
corrections to Newtonian theory modify their 
structure. 

6 2 1  

Theoretical calculations suggest that relativis 
star clusters might, but quite possibly do n 
form in the nuclei of some galaxies and qL 
sars; if they do try to form, they might be 
destroyed during formation by star-star colli
sions, which convert the cluster into super
massive stars or into a dense conglomerate of 
stars and gas. Astronomical observations have 
yielded no definitive evidence, as yet, about 
the existence of relativistic clusters. 

Key points in history: 
1965, Zel'dovich and Podurets (1965) con

ceived the idea of relativistic star clusters, 
developed the theory of their structure 
using general relativity and kinetic theory 
(cf. §25.7), and speculated about their sta
bility. 

1968, Ipser (1969) developed the theory of 
star-cluster stability and showed (in agree
ment with the Zel'dovich-Podurets specula
tions) that, when it becomes too dense, a 
cluster begins to collapse to form a black 
hole. 

Role of general relativity in star clusters : 
significant effect on structure when gravita

tional redshift from center to infinity ex
ceeds zc &/;\ ~ 0.05. 

induces collapse of cluster to form black hole 
when central redshift reaches zc z 0.50. 

§24 . 2 .  THE EN D POINT O F  STELLAR EVO LUTIO N 

After the normal stages of evolution, stars "die" by a variety of processes. Some 
stars explode, scattering themselves into the interstellar medium; others contract 
into a white-dwarf state; and others-according to current theory-collapse to a 
neutron-star state, or beyond, into a black hole. Although one knows little at present 
about a star's dynamic evolution into its final state, much is known about the final 
states themselves. The final states include dispersed nebulae, which are of no interest 
here; cold stellar configurations, the subject of this section; and "black holes," the 
subject of Part VII. 

(continued on page 624) 
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On Continued Gravitational Contraction 

J. R. 01'1'ENHEJMgR .\ND H .  SNYDER 
Unii•ersily of California, Berkeley, California 

( Received Ju ly 10 ,  1 939) 

When all thermonuclear sources of energy are exhauskd a sufficiently heavy star will 
collapse . Unless fission due to rotat ion, the radiation of mass, or the blowing off of mass by 
radiation , reduce the star' s  mass to the order of that of the sun, this contraction will continue 
indefinitely. In the present paper we study the solutions of the gravitational field equations 
which describe this process. In I , general and qualitative arguments are given on the 
behavior of the metrical tensor as thl! contraction progresses : the radius of the star ap
proaches asymptot ical ly its gravitational radius ; l ight from the surface of the star is pro
gressively reddened , and can escape over a progressively narrower range of angles. I n  I I ,  an 
analytic solution of the field equations confirming these general arguments is obtained for the 
case that the pressure within the star can be neglected . The total time of collapse for an ob
server comoving with the stellar matter is finite, and for this idealized case and typical stellar 
masses, of the order of a day ; an external observer sees the star asymptotical ly shrinking to 
its gravitat ional radius .  

-



"Final state of stellar 
evolution, "  and "cold, 
catalyzed matter" defined 

Equation of state for cold, 
catalyzed matter 

6 2 4  24 PU LSARS, NEUTRON STARS, QUASARS, SU PERMASSIVE STARS What does one mean in principle by the term "the final state of stellar evolution"? Start with a star containing a given number, A, of baryons and let it evolve to the absolute, burned-out end point of thermonuclear combustion (minimum massenergy possible for the A-baryon system). If the normal course of thermonuclear combustion is too slow, speed it up by catalysis. If an explosion occurs, collect the outgoing matter, extract its kinetic energy, and let it fall back onto the system. Repeat this operation as many times as needed to arrive at burnout (cold Fe56 for the part of the system under modest pressure; other nuclear species in the region closer to the center; "cold matter catalyzed to the end point of thermonuclear combustion" throughout) . End up finally with the system in its absolutely lowest energy state, with all angular momentum removed and all heat extracted, so that it sits at the absolute zero of temperature and has zero angular velocity. Such a "dead" system, depending upon its mass and prior history (two distinct energy minima for certain A-values), ends up as a cold stellar configuration (neutron star, or "white" dwarf), or as a "dead" black hole. The analysis of a cold stellar configuration demands an equation of state. The temperature is fixed at zero; the nuclear composition in principle is specified uniquely by the density; and therefore the pressure is also fixed uniquely once the density has been specified [equation of state p(p) for "cold catalyzed matter"]. The white dwarfs and neutron stars observed by astronomers are not really built of cold catalyzed matter. However, the matter in them is sufficiently near the end point of thermonuclear evolution and sufficiently cold that it can be idealized with fair accuracy as cold and catalyzed (see §23 .4) . The equation of state, p(p), for cold catalyzed matter is shown graphically in Figure 24.2. This version of the equation of state was constructed by Harrison and Wheeler in 1958 .  Other versions constructed more recently [see Cameron ( 1 970) and Baym, Bethe, and Pethick ( 197 1 )  for references] are almost identical to the Harrison-Wheeler version at densities well below nuclear densities, p < 3 X 10 13 g/cm3 • At nuclear and supernuclear densities, all versions differ because of differing assumptions about nucleon-nucleon interactions. Along with the equation of state, in Figure 24.2 are shown properties of the models of cold stars constructed from this equation of state by integrating numerically the equations of structure (23 .28) .  The equation of state can be understood by following the transformations that occur as a sample of cold catalyzed matter is compressed to higher and higher densities. At each stage in the compression, each possible thermonuclear reaction is to be catalyzed to its endpoint and the resultant thermal energy is to be removed. When the sample is at zero pressure, it is a ball of pure, cold Fe56, since Fe56 is the most tightly bound of all nuclei. It has the density 7 .86 g/cm3 • As the sample is compressed, its internal pressure is provided at first by normal solid-state forces ; but the atoms are soon squeezed so closely together that the electrons become quite oblivious of their nuclei, and begin to form a degenerate Fermi gas. By the time a density of p = 105 g/cm3 has been reached, valence forces are completely negligible, the degenerate electron pressure dominates, and the compressibility index, y (see legend for Figure 24.2), is 5/3 ,  the value for a nonrelativistically degenerate Fermi gas. Between 105 and 107 g/cm3, the pressure-providing electrons gradually 
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Figure 24. 2 .  The Harrison-Wheeler equation of state fo r  cold matter at the absolute end point of thermonuclear evolution, and the corresponding Harrison-Wakano-Wheeler stellar models. The equation of state is exhibited in the form of a plot of "compressibility index," 
P + p dp 

y = -- -, p dp as a function of density of mass-energy, p. (Small y corresponds to easy compressibility.) The curve is parameterized by the logarithm of the pressure, Iog10p, in units of g/cm3 (same units as p ;  note that p(g/cm3) = (l/c2) x p(dyne/cm2)]. The chemical composition of the matter as a function of density is indicated as follows: Fe, Fe56 nuclei; A, nuclei more neutron rich than Fe56 ; e, electrons; n, free neutrons; p, free protons. The first law of thermodynamics (equation (22.6) ], when applied to cold matter (zero entropy) says 
dp/(p + p) = dn/n; i.e., 

p + p 
( J

P dp 
) n = PTe/56 exp - o p + P 

. 
Here 11-Fe, the rest mass of an Fe56 atom, is the ratio between p + p ::::::  p and n/56 in the limit of zero density. Fr?m this equation and a knowledge of p(p)-(see Figure)-one can calculate n(p). The equilibrium configurations are represented by curves of total mass-energy, M, versus radius, R. 
(R is defined such that 4wR2 is the star's surface area.) The M(R) curve is parameterized by the logarithm of the central density, Iog10pc, measured in g/cm3 • Only configurations along two branches of the curve are stable against small perturbations and can therefore exist in nature· the white dwarfs, with Iog10pc < 8.38, and the neutron stars, with 13 43 < Iog10pc < 1 5 .78 (see Box 26. 1 ) .  For greater detail on both the equation of  state and the equihbrium configurations, see Harrison, Thorne, Wakano, and Wheeler (1965) ;  also, for an updated table of the equation of state, see Hartle and Thorne (1968). 



Equ i l i br i um configu rations for 
co ld ,  cata lyzed matter :  

( 1 )  fo rms and  stab i l i ty 

626 24 .  PULSARS,  N EUTRON  STARS ;  QUASARS,  SU PERMASSIVE STARS 

become relativistically degenerate, and y approaches 4/3 . Above p = 1 .4 X 107 

g/cm3, the rest mass of 62 Fe�� nuclei, plus the rest mass of 44 electrons, plus the 
rather large Fermi kinetic energy of 44 electrons at the top of the Fermi sea, exceeds 
the rest mass of 56 Ni�§ nuclei. Consequently, as the catalyzed sample of matter 
is compressed past p = 1 .4 X 107 g/cm3, the nuclear reaction 

62 Fe56 (highly compressed) --4-26 neutral atoms 
56 Ni62 (highly compressed ) 28 neutral atoms 

(24. 1 )  

goes to its end point, with a release of energy. As the compression continues beyond 
this point, the rising Fermi energy of the electrons induces new nuclear reactions 
similar to (24. 1 ), but involving different nuclei. In these reactions more and more 
electrons are swallowed up to form new nuclei, which are more and more neutron
rich. When the density reaches p = 3 X 1011 g/cm3 , the nuclei are so highly neutron
rich (Y !§2) that neutrons begin to drip off them. The matter now becomes highly 
compressible for a short time (3 x 1011 :S p :S 4 X 1011), since most of the re
maining electrons are swallowed up very rapidly by the dripping nuclei. Above 
p ~ 4 x 1 011 g/cm3 free neutrons become plentiful and their degeneracy pressure 
exceeds that of the electrons. Further compression to p ~ 1013 g/cm3 completely 
disintegrates the remaining nuclei, leaving the sample almost pure neutrons with 
y = 5/3 ,  the value for a nonrelativistically degenerate Fermi gas. Intermixed with 
the neutrons are just enough degenerate electrons to prevent the neutrons from 
decaying, and just enough protons to maintain charge neutrality. Compression 
beyond p ~ 1013 g/cm3 pushes the sample into the domain ofnuclear densities where 
the physics of matter is only poorly understood. This Harrison-Wheeler version of 
the equation of state ignores all nucleon-nucleon interactions at and above nuclear 
densities ; it idealizes matter as a noninteracting mixture of neutrons, protons, and 
electrons with neutrons dominating ; and it shows a compressibility index of5 /3 while 
the neutrons are nonrelativistic, but 4/3 after they attain relativistic Fermi energies. 
Other versions of the equation of state attempt to take into account the nucleon
nucleon interactions in a variety of ways [see Cameron ( 1970), Baym, Bethe, and 
Pethick ( 1 97 1) ,  and many references cited therein]. 

Corresponding to each value of the central density, Pc , there is one stellar equilib
rium configuration. Equilibrium, yes ; but is the equilibrium stable? Stability studies 
(Chapter 26, especially Box 26 . 1 )  show that many of the models are unstable against 
small radial perturbations, which lead to gravitational collapse. Only white-dwarf 
stars in the range log10 Pc < 8 .4 and neutron stars in the range 1 3 .4 :S log10 Pc :S 1 5 .8 
are stable. Instability for the region of log10 Pc values between 8 .4 and 1 3 .4 is caused 
by a combination of ( I )  relativistic strengthening of the gravitational forces, and 
(2) high compressibility of the matter due to electron capture and neutron drip by 



§24. 3 .  PU LSARS 6 2 7  

the atomic nuclei. Neutron stars are stable for a simple reason. Neutron-dominated 
matter is so difficult to compress that even the relativistically strengthened gravita
tional forces cannot overcome it. Above log10 Pc ~ 1 5 .8 ,  the gravitational forces 
become strong enough to win out over the pressure of the nuclear matter, and the 
stars are all unstable. [See Gerlach ( 1968) for the possibility-which, however, he 
rates as unlikely-that there might exist a third family of stable equilibrium con
figurations, additional to white dwarfs and neutron stars.] 

The white-dwarf stars have masses below 1 .2 M0 and radii between ~3000 and (2) white-dwarf sta rs 
~20,000 km. They are supported almost entirely by the pressure of the degenerate 
electron gas. Relativistic deviations from Newtonian structure are only a fraction 
of a per cent, but relativistic effects on stability and pulsations are important from 
Pc z 108 g/cm3 to the upper limit of the white-dwarf family at Pc = 108·4 g/cm3 (see, 
e.g., Faulkner and Gribbin (1 968)). The properties of white-dwarf models are fairly 
independent of whose version of the equation of state is used in the calculations. 

The properties of neutron stars are moderately dependent on the equation of state (3) neutron sta rs 
used. However, all versions lead to upper and lower limits on the mass and central 
density. The correct lower limits probably lie in the range 

1 3 .4 � log10 Pe rnin � 14 .0 ,  
0 .05 M0 � Mmln � 0 .2 M0 ; 

the correct upper limits are probably in the range 
1 5 .0 � log10 Pc ma.x � 16 .0, 
0 .5 M0 � Mma.x � 3 M0 

(24.2) 

(24.3) 

[see Rhoades ( 1 97 1 )) .  Neutron stars typically have radii between ~6 km and ~ 100 
km. Relativistic deviations from Newtonian structure are great, sometimes more than 
50 per cent. 

It appears certain that no cold stellar configuration can have a mass exceeding 
~5 M0 [Rhoades ( 197 1 )) ( 1 .2 M0 according to the Harrison-Wheeler equation of 
state, Figure 24.2). Any star more massive than this must reduce its mass below 
this limit if it is to fade away into quiet obscurity, otherwise relativistic gravitational (4) black ho les 
forces will eventually pull it into catastrophic gravitational collapse past white-dwarf 
radii, past neutron-star radii, and into a black hole a few kilometers in size (see 
Part VII) .  

§24. 3 . PU LSARS 

Theory predicts that, when a star more massive than the Chandrasekhar limit of 
1 .2 M0 has exhausted the nuclear fuel in its core and has compressed its core to 
white-dwarf densities, an instability pushes the star into catastrophic collapse. The 
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core implodes upon itself until nucleon-nucleon repulsion halts the implosion. The 
result is a neutron star, unless the core's mass is so great that gravity overcomes 
the nucleon-nucleon repulsion and pulls the star on in to form a black hole. Not 
all the star's mass should become part of the neutron star or black hole. Much of 
it, perhaps most, can be ejected into interstellar space by the violence that accom
panies the collapse-violence due to flash nuclear burning, shock waves, and energy 
transport by neutrinos ("stick of dynamite in center of star, ignited by collapse"). 

The collapsed core holds more interest for gravitation theory than the ejected 
envelope. That core, granted a mass small enough to avoid the black-hole fate, will 
initially be a hot, wildly pulsating, rapidly rotating glob of nuclear matter with a 
strong, embedded magnetic field (see Figure 24.3). The pulsations must die out 
quickly. They emit a huge flux of gravitational radiation, and radiation reaction 
damps them in a characteristic time of ~ 1  second [see Wheeler (1966) ; Thome 
(1969a)]. Moreover, the pulsations push and pull elementary particle reactions back 
and forth by raising and lowering the Fermi energies in the core's interior; these 
particle reactions can convert pulsation energy into heat at about the same rate as 
the pulsation energy is radiated by gravity. [See Langer and Cameron (1969); also 
§ 1 1 .5 of Zel' dovich and N ovikov (197 1)  for details and references .] 

The result, after a few seconds, is a rapidly rotating centrifugally flattened neutron 
star with a strong (perhaps 1 012 gauss) magnetic field; all the pulsations are gone. 
If the star is deformed from axial symmetry ( e.g., by centrifugal forces or by a 
nonsymmetric magnetic field), its rotation produces a steady outgoing stream of 
gravitational waves, which act back on the star to remove rotational energy. Whether 
or not this occurs, the rotating magnetic field itself radiates electromagnetic waves. 
They slow the rotation and transport energy into the surrounding, exploding gas 
cloud (nebula). [See Pacini (1968), Goldreich and Julian (1968), and Ostriker and 
Gunn (1969) for basic considerations .] 

Somehow, but nobody understands in detail how, the rotating neutron star beams 
coherent radio waves and light out into space. Each time the beam sweeps past the 
Earth optical and radio telescopes see a pulse of radiation. The light is emitted 
synchronously with the radio waves, but the light pulses reach Earth earlier ( ~ 1 
second for the pulsar in the crab nebula) because of the retardation of the radio 
waves by the plasma along the way. This is the essence of the 1973 theory of pulsars, 
accepted by most astrophysicists. 

Although the mechanism of coherent emission is not understood, the pulsar 
radiation can nevertheless be a powerful tool in the experimental study of neutron 
stars. Anything that affects the stellar rotation rate, even minutely (fractional changes 
as small as 1 0-9) will produce measurable irregularities in the timing of the pulses 
at Earth. If the star's crust and mantle are crystalline, as 1 973 theory predicts, they 
may be subject to cracking, faulting, or slippage ("starquake") that changes the 
moment of inertia, and thence the rotation rate. Debris falling into the star will also 
change its rotation. Whichever the cause, after such a disturbance the star may rotate 
differentially for awhile; and how it returns to rigid rotation may depend on such 
phenomena as superfluidity in its deep interior. Thus, pulsar-timing data may 
eventually give information about the interior and crust of the neutron star, and 
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"Collapse, pursuit, and plunge scenario" [schematic from Ruffini and Wheeler ( 197 l b)]. 

A star with white-dwarf core (A), slowly rotating, • evolves by straightforward astrophysics, • arrives at the point of gravitational instability, • collapses, and • ends up as a rapidly spinning neutron-star pancake (B,B'). • It then fragments (C) because it has too much angular momentum to collapse into a single stable object. If the substance of the neutron-star pancake were an incompressible fluid, the fragmentation would have a close tie to well-known and often observed phenomena ("drop formation"). However, the more massive a neutron star is, the smaller it is, so one's insight into this and subsequent stages of the scenario are of necessity subject to correction or amendment. One can not today guarantee that fragmentation takes place at all; nevertheless, fragmenta1ion will be assumed in what follows. The fragments dissipate energy and angular momentum via gravitational radiation. • One by one as they revolve they coalesce ("pursuit and plunge scenario"). In each such plunge a pulse of gravitational radiation emerges. • Fragments of debris fall onto the coalesced objects (neutron stars or black holes, as the case may be), changing their angular momenta • Eventually the distinct neutron stars or black holes or both unite into one such collapsed object with a final pulse of gravitational radiation. The details of the complete scenario differ completely from one evolving star to another, depending on • the mass of its core, and • the angular momentum of this core. • An entirely different kind of picture therefore has to be drawn for altered values of these two parameters. Even for the values of these parameters adopted in the drawing, the present picture can at best possess only qualitative validity. • Detailed computer analysis would seem essential for any firm prediction about the course of any selected scenario. 
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thence (by combination with theory) about its mass and radius. These issues are 
discussed in detail in a review article by Ruderman ( 1972) as well as in Zel'dovich 
and Novikov ( 197 1 ) . 

§24.4.  S UPERMASS IVE STARS AND 

STE LLAR I N STAB I LITI ES 

When a Newtonian star of mass M oscillates adiabatically in its fundamental mode, 
the change in its radius, 8R, obeys a harmonic-oscillator equation, 

M 8R = - k 8R, (24 .4) 
with a "spring constant" k that depends on the star's mean adiabatic index l\ [recall : 
I'1 = (n/p)(clp/cln)const. entropy], on its gravitational potential energy ll, on the trace 
I =  fpr2 d'V of the second moment of its mass distribution, and on its mass M, 

k = 3M(f 1 - 4/3) 1ll l/ I (24 .5) 
(See Box 24.2). If f1 > 4/3 the Newtonian star is stable and oscillates ; if f1 < 4/3 
the star is unstable and either collapses or explodes, depending on its initial condi
tions and overall energetics. This result is a famous theorem in Newtonian stellar 
theory-but it is relevant only for adiabatic oscillations. 

Box 24. 2 OSC I LLAT ION  OF A N EWTON IAN STAR 

The following is a volume-averaged analysis of the lowest mode of radial oscillation. 
Such analyses are useful in understanding the qualitative behavior and stability of 
a star. [See Zel'dovich and Novikov ( 197 1 )  for an extensive exploitation of them.] 
However, for precise quantitative results, one must perform a more detailed analysis 
[see, e.g., Ledoux and Walraven ( 1958) ;  also Chapter 26 of this book] . 
1 . Let M = star's total mass 

R = star's radius 
p = mean density = (3/4w)M/R3 

p = mean pressure 
f 1 = mean adiabatic index = (n/p)(op /cln)adiabatic = Ci5/p)(oJJ/clp)adiabatic in Newtonian limit, where p = const. X n. 

2 .  Then the mean pressure-buoyancy force i{uoy and the counterbalancing gravita
tional force Fgrav in the equilibrium star are 

£buoy = p/R 
= Fgrav = pM/ R2 = (4w/3)p2R. 
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3 .  When the oscillating star has expanded or contracted so its radius is R + 8R, 
then its mean density will have changed to 

p + 8p = (3/4w)M[R-3 + 8(R-3)] = p - 3(p/ R) 8R, 

and its mean pressure will be 

p + 8p = p + (p/p)l\ 8p = p - 3(l' J/R) 8R. 

The corresponding changes in the forces will be 

- 8p p p 8R - - ( 
8R) 8Fbuoy = R - R2 8R = - (3I'i + l )

R R  
= - (3I'i + l )Fbuoy R , 

8F = (4?T ) <i-R s- + -2 8R) - ( 4?7 - 2R) ( - s 8R ) = - 5F ( 8R) grav 3 p p p - 3 p R grav R . 

Consequently, the restoring force will be (recall : Fbuoy = Fgrav) 

- - ( - 4 ) - 8R 8Fgrav - 8Fbuoy = 3 I'1 - 3 Fgrav R '  

4 .  This restoring force produces an acceleration, 

8.F grav - 8.Fbuoy = - P 8R. 

Hence, the equation of motion for the oscillations is 

8R = - 3(f1 - 4/3)(4w/3)p 8R, 

corresponding to a "spring constant" k and angular frequency of oscillation w, 
given by w2 = 4w(.i\ - 4/3)p, and k = Mw2 • 

5 . A more nearly exact analysis (see exercise 39.7 for details, or Box 26.2 for an 
alternative derivation) yields the improved formula 

w2 = 3(f1 - 4/3) 1il l/I, 

n = (star's self-gravitational) = _!_f fP do/ = _ _!_f pp' do/ d'V' 
energy 2 P 2 Ix - x' I ' 

I = (trace of second moment of) =  f 2 do/ 
d. 'b . pr 

' star's mass 1stn ut10n 

for the square of the oscillation frequency. 
6. Note that f 1 > 4/3 corresponds to stable oscillations ; f1 < 4/3 corresponds to 

exponentially developing collapse or explosion. 



Stab i l ity theory p red icts 
"eng ine-dr iven osci l lat ions" 
and quick death for stars of 
M > 60M0 

Poss ib le  existence of 
supermassive sta rs 

Re lativistic i nstab i l it ies i n  a 
supermass ive sta r 

63 2 24 PU LSARS ,  NEUTR O N  STARS, QUASAR S,  S U PERMASSIVE STARS 

In a real star no oscillation is  precisely adiabatic. The oscillations in temperature 
cause corresponding oscillations in the stellar opacity and in nuclear burning rates. 
These insert energy into or extract energy from the gas vibrations. 

All main-sequence stars thus far observed and studied have masses below 60 M0 . 

For such small masses, theory predicts low enough temperatures that gas pressure 
dominates over radiation pressure, and the adiabatic index is nearly that of nonrela
tivistic gas, l\ :::::: 5/3 .  Such stars vibrate stably. The net effect of the oscillating 
opacity and burning rate is usually to extract energy from the vibrations. Thus, they 
damp. (The vibrations of Cepheid variable stars are a notable exception.) 

No one has yet seen a main-sequence star with mass above about 60 M0 . This 
is explained as follows. For masses above 60 M0, the temperature should be so high 
that radiation pressure dominates over gas pressure, and the adiabatic index J\ is 
only slightly above the value 4/3 for pure radiation. Consequently the "spring 
constant" of the star, although positive, is very small. On the inward stroke of an 
oscillation, the central temperature rises, and nuclear burning speeds up. (The 
nuclear burning rate goes as a very high power of the central temperature; for 
example, in a massive star HCNO burning releases energy at a rate eHcNo a: T,,11 .) 
Because the spring constant is so small, the inward stroke lasts for a long time, and 
the enhanced nuclear burning produces a significant excess of thermal energy and 
pressure. Hence, on the outward stroke the star expands more vigorously than it 
contracted ("engine"). Successive vibrations are driven to higher and higher ampli
tudes. Eventually, calculations suggest, the star either explodes, or it ejects enough 
mass by its vigorous vibrations to drop below the critical limit of M ~ 60 M0 . Hence, 
stars of mass above 60 M0 should not live long enough that astronomers could have 
a reasonable probability of discovering them. 

Of course, this "engine action" does not prevent massive stars from forming, living 
a short time, and then disrupting themselves. Such a possibility is particularly 
intriguing for supermassive stars [M between 1 03 M0 and 109 M0 ~ 0 .0 1  X (mass 
of a galaxy)]. Although such stars may be exceedingly rare, by their huge masses 
and huge release of explosive energy they might play an important role in the 
universe. Moreover, it is conceivable that the oscillations of such stars, like those 
of Cepheid variables, might be sustained at large amplitudes for long times ( a million 
years?), with nonlinear damping processes preventing their further growth. 

Theory predicts that general relativistic effects should strongly influence the 
oscillations of a supermassive star. The increase in "gravitational force," oF grav, acting 
on a shell of matter on the inward stroke is greater in general relativity than in 
Newtonian theory, and the decrease on the outward stroke is also greater. Conse
quently the "effective index" I'1 crit of gravitational forces is increased above the 
Newtonian value of 4/3 ; thus, 

fractional increase in 
"pressure-like force of 
gravity" per unit fractional I'1 crit = (4/3) + a(M/ R) + O(M2 

/ R 2), (24.6) 
change in baryon-number 
density 
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where a is a constant of the order of unity that depends on the structure of the 
star (see Box 26 .2). To resist gravity, one has only the elasticity of the relativistic 
material of the star : 

( 

fractional increase in 

) 
"pressure-like resisting 
force" per unit fractional 
change in baryon number 
density 

= r1 = /p ( ap )\ \n an ./effective average over star 
(24.7) 

The effective spring constant for the vibrations of the star is governed by the delicate 
margin between these two indices : 

k = ( 
effective 

) spring constant 
(

contribution
) = of "elastic -

forces" 
( 

contrib�tion ) of gravity 

(24.8) 

( derivation in Chapter 26). The relativistic rise in the effective index of gravity above 
4/3 [equation (24.6)] brings on the transition from stability (positive k; vibration) 
to instability (negative k; explosion or collapse) under conditions when one otherwise 
would have expected stability. For supermassive stars, Fowler and Hoyle (1964) show 
that 

where f is a constant of order unity. As a newly formed supermassive star contracts 
inward, heating up, but not yet hot enough to ignite its nuclear fuel, it approaches 
nearer and nearer to instability against collapse. Unless burning halts the contraction, 
collapse sets in at a radius Rcrit given by 

I'1 = 4/3 + f(M/M0)-112 = I'1 crit = 4/3 + aM/R; 

i.e., 

R = (a/2n(M/ M0)112 X (Schwarzschild Radius) 
~ 104 X (Schwarzschild Radius) if M = 108 M0. 

The relativistic instability occurs far outside the Schwarzschild radius when the star 
is very massive. Relativity hardly modifies the star's structure at all ; but because 
of the delicate balance between 8Fgrav and 8fi,uoy in the Newtonian oscillations (Box 
24.2), tiny relativistic corrections to these forces can completely change the stability. 

In practice, the story of a supermassive star is far more complicated than has been 
indicated here. Rotation can stabilize it against relativistic collapse for a while. 
However, after the star has lost all angular momentum in excess of the critical value 

Tem po ra ry sta b i l izat ion by 
rotat ion 
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Jcrlt = M2 ("extreme Kerr limit";  see Chapter 33) ,  and after i t  has contracted to 
near the Schwarzschild radius, rotation is helpless to stave off implosion. Depending 
on its mass and angular momentum, the star may ignite its fuel before or after 
relativistic collapse begins, and before or after implosion through the Schwarzschild 
radius. When the fuel is ignited, it can wreak havoc, because even if the star is not 
then imploding, its adiabatic index will be very near the critical one, and the burning 
may drive oscillations to higher and higher amplitudes. These processes are so 
complex that in 1973 one is far from having satisfactory analyses of them, but for 
reviews of what is known and has been done, the reader can consult Fowler ( 1966), 
Thorne ( 1967), and Zel'dovich and Novikov ( 197 1 ) . 

The theory of stellar pulsations in general relativity is presented for Track-2 readers 
in Chapter 26 of this book. 

§24 .5 .  QUASARS AN D EXPLOS IONS I N  GALACTIC NUCLE I  

Supermassive stars were first conceived by  Hoyle and Fowler ( 1963a,b) a s  an expla
nation for explosions in the nuclei of galaxies. Shortly thereafter, when quasars were 
discovered, Hoyle and Fowler quite naturally appealed to their supermassive stars 
for an explanation of these puzzles as well. Whether galactic explosions or quasars 
are driven by supermassive stars remains a subject of debate in astronomical circles 
even as this book is being finished, in 1973 . Hence, this book will avoid the issue 
except for the following remark. 

Whatever is responsible for quasars and galactic explosions must be a machine 
of great mass (M ~ 106 to 1010 M0) and small radius (light-travel time across the 
machine, as deduced from light variations, is sometimes less than a day). The 
machine might be a coherent object, i .e. , a supermassive star ;  or it might be a dense 
mixture of ordinary stars and much gas. Actually these two possibilities may not 
be distinct. Star-star collisions in a dense cluster can lead to stellar coalescence and 
the gradual building up of one or more supermassive stars [Sanders ( 1970) ; Spitzer 
( 197 1 ) ;  Colgate ( 1967)]. Thus, at one stage in its life, a galactic nucleus or quasar 
might be driven by collisions in a dense star cluster ; and at a later stage it might 
be driven by a supermassive star; and at a still later stage that star might collapse 
to leave behind a massive black hole ( 106- 109 M0), but a black hole that is still 
"live" and active (Chapter 33) .  

§24 .6 .  RELATIVISTIC STAR CLUSTERS 

The normal astrophysical evolution of  a galactic nucleus i s  estimated [Sanders ( 1 970) ; 
Spitzer ( 1 97 1 )] to lead under some circumstances to a star cluster so dense that 
general relativity influences its structure and evolution. The theory of relativistic 
star clusters is closely related to that of relativistic stars, as developed in Chapter 
23 . A star is a swarm of gas molecules that collide frequently; a star cluster is a 
swarm of stars that collide rarely. But the frequency of collisions is relatively unim-
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portant in a steady state. For the theory of relativistic star clusters, see : §25 .7 of 
this book; Zel'dovich and Podurets ( 1965 ) ;  Fackerell, Ipser, and Thorne ( 1969) ; 
Chapter 12 of Zel'dovich and Novikov (197 1 ) ;  and references cited there. A relativ
istic star cluster is a latent volcano. No future is evident for it except to evolve with 
enormous energy release to a massive black hole, either by direct collapse (possibly 
a star at a time) or by first coalescing into a supermassive star that later collapses. 



CHAPTER 25  
TH E 1 1 P I T  I N  TH E POTE NTIAL" AS TH E 

C E NTRAL N EW FEATU R E  O F  M OTI O N  

I N  SCHWARZSCH I LD G EO M ETRY 

This chapter is entirely Track 2 ,  
except for  Figures 25 .2  and 
25 .6 ,  and Boxes 25 .6  and 2 5 .  7 
(pp. 639, 660, 674,  and 6 7 7), 
which Track-1 readers should 
peruse for insight and flavor. 
No earlier Track-2 material  is 
needed as preparation for it. 

§25 .2  (symmetries) is needed 
as preparation for Box 30 .2  
(Mixmaster cosmology) . The 
rest of the chapter is not 
essential for any later chapter, 
but it will be helpfu l in 
understanding 

( 1 )  Chapters 3 1 -34 
(gravitational collapse 
and black holes), and 

(2) Chapter 40 (solar-system 
experiments) . 

Overview of th is chapter 

"Eccentric, intervolved, yet regular 
Then most, when most irregular they seem; 

And in their motions harmony divine " 
M I LTO N ,  1 66 5  

§25 . 1 . FROM KEPLER'S LAWS TO THE EFFECTIVE POTENTIAL 

FOR MOTION IN SCHWARZSCHILD GEOMETRY 

No greater glory crowns Newton's theory of gravitation than the account it gives 
of the principal features of the solar system: a planet in its motion sweeps out equal 
areas in equal times ; its orbit is an ellipse, with one focus at the sun; and the cube 
of the sernimajor axis, a, of the ellipse, multiplied by the square of the average 
angular velocity of the planet in its orbit (w = 2'17 /period) gives a number with the 
dimensions of a length, the same number for all the planets (Box 25 . 1 ), equal to 
the mass of the sun : 

Exactly the same is true for the satellites of Jupiter (Figure 25 . 1 ) ,  and of the Earth 
(Box 25 . 1 ), and true throughout the heavens. What more can one possibly expect 
of Einstein's theory of gravity when it in its turn grapples with this centuries-old 
theme of a test object moving under the influence of a spherically symmetric center 
of attraction? The principal new result can be stated in a single sentence : The particle 
is governed by an "effective potential" (Figure 25 .2 and §§25 .5 ,  25 .6) that possesses 
not only (1 ) the long distance - Mir attractive behavior and (2) the shorter distance 
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(angular momentum)2/r2 repulsive behavior of Newtonian gravitational theory, but 
also (3) at still shorter distances a pit in the potential, which (1) captures a particle 
that comes too close; (2) establishes a critical distance of closest approach for this 
black-hole capture process ; (3) for a particle that approaches this critical point 
without crossing it, lengthens the tum-around time as compared to Newtonian 
expectations ; and thereby (4) makes the period for a radial excursion longer than 
the period of a revolution; (5) causes an otherwise Keplerian orbit to precess ;  and 
(6) deflects a fast particle and a photon through larger angles than Newtonian theory 
would predict. 

The pit in the potential being thus the central new feature of motion in Schwarzs
child geometry and the source of major predictions (Box 25 .2), it is appropriate to 
look for the most direct road into the concept of effective potential and its meaning 
and application. In this search no guide is closer to hand than Newtonian mechanics. 

Analytic mechanics offers several ways to deal with the problem of motion in a 
central field of force, and among them are two of central relevance here : (1) the 
world-line method, which includes second-order differential equations of motion, 
Lagrange's equations, search for constants of integration, reduction to first-order 
equations, and further integration in rather different ways according as one wants 
the shape of the orbit, 0 = 0(r), or the time to get to a given point on the world 
line, t = t(r); and (2) the wave-crest method, otherwise known as the "eikonal 
method" or "Hamilton-Jacobi method," which gives the motion by the condition 
of "constructive interference of wave crests," thus making a single leap from the 
Hamilton-Jacobi equation to the motion of the test object. Both methods are em-
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(continued on page 641) 

Figure 25. 1 . Jupiter's satellites, as followed from night to night with field glasses or telescope, provide an opportunity to check for oneself the central ideas of gravitation physics in the Newtonian approximation (distances large compared to Schwarzschild radius) . For the practically circular orbits of these satellites, Kepler's law becomes M1 = w 2r3 ("1-2-3 principle") and the velocity in orbit is {J = wr Out of observations on any two of the quantities /J, M, w, r, one can find the other two. (In the opposite limiting case of two objects, each of mass M, going around their common center of gravity with separation r, one has M = w 2r3/2, fJ = wr/2).  The configurations of satellites I-IV of Jupiter as g1ven here for December 1964 (days 0.0, 1 .0, 2 .0 ,  etc. in "universal time," for which see any good dictionary or encyclopedia) are taken from The American Ephemeris and Nautical Almanac for 
1964 [U.S. Government Printing Office (1962)] .  
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Box 25 . 1 MASS FROM M EAN ANG U LAR FREQU ENCY AND 
S E M I MAJOR AXI S :  M = w2a3 

Appropriateness of Newtonian analysis shown by smallness of mass (or "half
Schwarzschild radius" or "extension of the pit in the potential") as listed in last 
column compared to the semimajor axis a in the next-to-last column. Basic data 
from compilation of Allen ( 1963). 
Object Perioda (days) w (cm-1) a (cm) w2a3 (cm) 

Planets 
Mercury 87.9686 275 .8 X 10-19 0.579 1 X 1013 1 .477 X 105 

Venus 224 .700 107.95 1 .082 1 1 .477 
Earth 365 .257 66 .4 1  1 .4960 1 .477 Mars 686 .980 35 .3 1 2 .2794 1 .477 
Jupiter 4332 .587 5 .599 7 .783 1 .478 
Saturn 10759 .20 2 .255 14 .27 1 .477 
Uranus 30685 0.7905 28.69 1 .476 
Neptune 60 188  0 .4030 44.98 1 .478 
Pluto 90700 0.2674 X 10-19 59 .00 X 1013 1 .469 X J05 

Major satellites of Jupiter 
lo 1 .769 138  1 3 .7 1 1  X 10-16 0.422 X 101 1  14 1 .3 
Europa 3 .55 1 1 8 1  6 .83 1 0.67 1 1 4 1 .0 
Ganymede 7 . 1 54 553 3 .39 1 1 .070 140.8 
Callisto 16 .689 0 1 8  1 .454 X 10-15 1 .883 X 101 1  14 1 . 1  

'.Two satellites of Earth 
OSO 5b 95.6 min. 3 .65 X 10- 14 6 . 9 16  X 108 0.442 
Moon 27.32 0.888 X 10-15 3 . 84 X 1010 0.446 

" Sidereal period: time to make one revolution relative to fixed stars. 
b Orbiting scientific observatory launched Jan. 22, 1 969, to observe x-rays and ultraviolet radiation from the sun. 

Perigee 5 3 1  km, apogee 560 km, above earth. 

S O M E  TYP ICAL MASSES AN D TI M ES I N  CONVENTI ONAL AND  

G E O M ETR I C  U N ITS .  Conversion factor for mass, 
Glc2 = 0 . 742 X 1 0-28 cm / g  

Mass 

Mconv (g) 
M (cm) 

Galaxy 

2.2 X 1044 
1 .6 X 1016 

Sun 

1 .989 X 10aa 
1 .47 X 105 

Jupiter 

1 .899 X 1030 

1 12 

Earth 

5 .977 X 1027 

0.444 

Conversion factor for time, c = 2.998 x 1010 cm/sec. One sidereal year = 365 .256 days or 3 . 1 558  X 107 

sec. 

Period 1 sec 1 min 1 hr 1 day 

wconv (sec-I) 6 .28 1 .046 X 10-1 1 .75 X 10-3 7 .28 X 10-5 
w (cm-1) 2 .09 X 10-10 3 .48 X 10-12 5 .80 X 10-14 2 .42 X 10-15 

1 week 1 month 1 year 

1 .04 X 10-5 2.39 X 10-6 1 .99 X 10-7 

3 .46 X 10-16 7 .95 X 10-17 6 .63 X 10-18 



Figure 26 .2 .  
Effective potential for motion of  a test particle in the Schwarzschild 
geometry of a concentrated mass M. Energy, in units of the rest mass 
µ, of the particle, is denoted E = E/µ,; angular momentum, 1., = L/µ,. 
The quantity r denotes the Schwarzschild r coordinate. The effective 
potential (also in units of µ,) is defined by equation (2S. 16) or, equiva
lently, by the equation 

(!)2 + P2(r) = e2 

(see also §2S.S) and has the value 

V = [ ( I - 2M/r)(I + z:2;,2) 1112 . 
It represents that value of E at which the radial kinetic energy of 
the particle, at r, reduces to zero (E-value that makes r into a "turning 
point" : P'(r) = E. Note that one could equally well regard P2(r) as 
the effective potential, and define a turning point by the condition 
P2 = E2• Which definition one chooses depends on convenience, on 
the intended application, on the tie to the archetypal differential 
equation ½x2 + V(x) = E, and on the stress one wishes to put on 
correspondence with the effective potential of Newtonian theory). 
Stable circular orbits are possible (representative point sitting at mini
mum of effective potential) only for 1., values in excess of 2 v'3 M. 
For any such fixed 1., value, the motion departs slightly from circu
larity as the energy is raised above the potential minimum (see the 
two heavy horizontal lines for l = 3.7S M). In classical physics, the 
motion is limited to the region of positive kinetic energy. In quantum 
physics, the particle can tunnel through the region where the kinetic 
energy, as calculated classically, is negative ( dashed prolongations of 
heavy horizontal lines) and head for the "pit in the potential" (capture 
by black hole). Such tunneling is absolutely negligible when the center 
of attraction has any macroscopic dimension, but in principle becomes 
important for a black hole of mass 1017 g (or 10-11 cm) if such an 
object can in principle exist. 

The diagram at the right gives values of the minimum and maxi
mum of the potential as they depend on the angular momentum of 
the test particle. The roots of a P'/ar are given in terms of the "reduced 
angular momentum parameter" Lt = l/M = L/Mµ, by 

6M r = 1 + (1 - 12/Lt 2)112 ' 

E2 = {Lt2 + 36) + (02 - 12)(1 - 12/ Lt2)112 

S4 
[ =  8/9 for Lt = (12)112 ; I for Lt = 4; (02/27) + (1/3) + (1/Lt2) 

+ . . .  for Lt -+ oo]  

(plus root for  maximum of the effective potential; minus root for 
minimum; see exercise 2S . 18). 
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Box 25.2 MOTION IN SCHWARZSCHILD GEOMETRY REGARDED AS A CENTRAL POINT OF 
DEPARTURE FOR MAJOR APPLICATIONS OF EINSTEIN'S GEOMETRODYNAMICS 

1 .  Newtonian effect of sun on planets and of earth 
on moon and man. 

2. Bending of light by sun. 
3. Red shift of light from sun. 
4. Precession of the perihelion of Mercury around 

the sun. 
5. Capture of a test object by a black hole as 

simple exemplar of gravitational collapse. 
6. Dynamics of Friedmann universe derived from 

model of Schwarzschild "lattice universe." Lat
tice universe is constructed from 120 or some 
other magic number of concentrations of mass, 
each mass in an otherwise empty lattice cell of 
its own. Each lattice cell, though actually po
lygonal, is idealized (see Wigner-Seitz approxi
mation of solid-state physics) as spherical. A 
test object at the interface between two cells 
falls toward the center of each [ standard radial 
motion in Schwarzschild geometry; see discus
sion following equation (25.27). Therefore the 
two masses fall toward each other at a calcula
ble rate. From this simple argument follows the 
entire dynamics of the closed 3-sphere lattice 
universe, in close concord with the predictions 
of the Friedmann model [see Lindquist and 
Wheeler (1957)). 

7. Perturbations of Schwarzschild geometry, I. 
Gravitational waves are incident on, scattered 
by, and captured into a black hole. Waves with 
wavelength short compared to the Schwarzs
child radius can be analyzed to good approxi
mation by the methods of geometric optics ( ex
ercises 35 . 1 5  and 35 . 1 6), as employed in this 
chapter to treat the motions of particles and 
photons. For longer wavelengths, there occur 
important physical-optics corrections to this 

geometric-optics idealization (see §35.8 and ex
ercises 32. 10, 32. 1 1  ). Similar considerations 
apply to electromagnetic and de Broglie waves. 

8. Lepton number for an electron in its lowest 
quantum state in the geometry ("gravitational 
field of force") of a black hole is calculated to 
be transcended ( capture of the electron!) or not 
according as the mass of this black hole is large 
or small compared to a certain critical mass 
M*e = M* 2/me (~ 1017  g or 10-1 1  cm) [Hartle 
(197 1 ,  1972); Wheeler (197 1 b,c) ;  Teitelboim 
(1972b,c)]. Similarly (with another value for the 
critical mass) for conservation of baryon num
ber [Bekenstein (1972a,b), Teitelboim (1972a)]. 
To analyze "transcendence or not" one must 
solve quantum-mechanical wave equations, of 
which the Hamilton-Jacobi equation for parti
cle and photon orbits is a classical limit. These 
quantum wave equations contain effective po
tentials identical-aside from spin-dependent 
and wavelength-dependent corrections-to the 
effective potentials for particle and photon mo
tion. 

9. Perturbations of Schwarzschild geometry, II. 
Those small changes in standard Schwarzschild 
black-hole geometry which remain stationary in 
time describe the alterations in a "dead" black 
hole that make it into a "live" black hole, one 
endowed with angular momentum as well as 
mass (see Chapter 33). To analyze such changes 
in black-hole geometry, one must again solve 
wave equations, but wave equations which are 
now classical. Once more the wave equations 
are closely related to the Hamilton-Jacobi 
equation, and their effective potentials are close 
kin to those for particle motion. 
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ployed here in turn because each gives special insights. The Hamilton-Jacobi method 
(Box 25.3) leads quickly to the major results of interest (Box 25.4), and it has a 
close tie to the quantum principle. The world-line method (§§25.2, 25.3, 25.4) starts 
with the geodesic equations of motion themselves. It provides a more familiar way 
into the subject for a reader not acquainted with the Hamilton-Jacobi approach. 
Moreover, in attempting to solve the geodesic equations of motion, one must analyze 
symmetry properties of the geometry, an enterprise that continues to pay dividends 
when one moves from Schwarzschild geometry to Kerr-Newman geometry (Chap
ter 33), and from Friedmann cosmology (Chapter 27) to more general cosmologies 
(Chapter 30). 

( continued on page 650) 

Box 25 . 3  THE HAMILTON-JACOBI DESCRIPTION OF MOTION: 
NATURAL BECAUSE RATIFIED BY THE QUANTUM PRINCIPLE 

1. Purely classical (nonquantum). 

2. Originated with William Rowan Hamilton out of conviction that mechanics is 
similar in its character to optics; that the "particle world line" of mechanics is 
an idealization an__alogous to the "light ray" of geometric optics. Localization 
of energy of light ray is approximate only. Its spread is governed by wavelength 
of light ("geometric optics"). Hamilton had glimmerings of same idea for parti
cles: "quantum physics before quantum physics." The way that he and Jacobi 
developed to analyze motion through the Hamilton-Jacobi function S(x, t)-to 
take the example of a dynamic system with only one degree of freedom, x
makes the leap from classical ideas to quantum ideas as short as one knows 
how to make it Moreover, the real world is a quantum world. Classical me
chanics is not born out of a vacuum. It is an idealization of and approximation 
to quantum mechanics. 

3. Key idea is idealization to a particle wavelength so short that quantum-mechan
ical spread or uncertainty in location of particle ( or spread of configuration 
coordinates of more complex system) is negligible. No better way was ever 
discovered to unite the spirit of quantum mechanics and the precision of location 
of classical mechanics. 

4. Call Hamiltonian H(p, x) = p2 /2m + V(x). Call energy of particle E. Then there 
is no way whatever consistent with the quantum principle to describe the motion 
of the particle in space and time. The uncertainty principle forbids (sharply 
defined energy LJE -+ 0, in LJE LJt z fl/2, implies uncertainty LJt -+ oo; also 
Ap -+ 0 in LJp LJx z fl/2 implies LJx -+ oo ). The quantum-mechanical wave 
function is spread out over all space. This spread shows in the so-called semi-
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Box 2 5 . 3  (continued) 

classical or Wentzel-Kramers-Brillouin ["WKB" ;  see, for example, Kemble 
( 1937)] approximation for the probability amplitude function, 

if; (x, t) = ( slowl� varying . ) eHltt>se<x, t) . E amplitude function 

A A /\ /\ C\ A  Real part 

.,1\./V V V �, of ,j,E + E 

V(x) 

- x ____..,. 

( 1 )  

5 .  I t  i s  of no help in localizing the probability distribution that tz = 1 .054 X 
10-27 g cm2 /s [or tz = ( 1 .6 x 10-33 cm)2 in geometric units] is very small com
pared to the "quantities of action" or "magnitudes of the Hamilton-Jacobi 
function, S "  or "dynamic phase, S "  encountered in most everyday applications. 

6 .  It is of no help in localizing the probability distribution that this dynamic phase 
obeys the simple Hamilton-Jacobi law of propagation, 

as ( a s  ) 1 ( as )2 
- - = H - , x = - - + V(x) . a t  ax  2m ax  

(2) 

7 .  It is of no help in localizing the probability distribution that the solution of this 
equation for a particle of energy E is extraordinarily simple, 

S(x, t) = - Et + J
x 

{2m[E - V(x)] } 112 dx + 8E 
Xo 

(3) 

(with 8E an arbitrary additive phase constant) . The probability amplitude is still 
spread all over everywhere. There is not the slightest trace of anything like a 
localized world line, x = x(t). 

8. To localize the particle, build a probability
amplitude wave packet by superposing mono
frequency (monoenergy) terms, according to a 
prescription qualitatively of the form 

i{;(x, t) = if; E(x, t) + if; E+ .::IE (x, t) + • • • • (4) 

Monoenergy wave 

Superposition of 
monoenergy waves 
to give wave packet 
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Destructive interference takes place almost 
everywhere. The wave packet is concentrated 
in the region of constructive interference. 
There the phases of the various waves agree; 
thus 

At last one has moved from a wave spread 
everywhere to a localized wave and thence, in 
the limit of indefinitely small wavelength, to 
a classical world line. This one equation of 
constructive interference ties together x and t 
(locus of world line in x, t, diagram). Smooth 
lines - 20, -19, - 18, etc. are wave crests of 
i/;E ; dashed lines, wave crests for IPE + ,iJE · 
Shaded area is region of constructive interfer
ence (wave packet). Black dots mark locus of 
classical world line, 

643 

t 
I 

I 

9. The Newtonian course of the world line through spacetime follows at once from 
this condition of constructive interference when one goes to the classical limit 
(h negligible compared to amounts of action involved; hence wavelength negli
gibly short; hence spread of energies ,1£ required to build well-localized wave 
packet also negligible); thus 

reduces to 
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Box 25.3 (con tinued) 

This condition in turn, applied to expression (3), gives the time required to travel 
to the point x; thus, 

I x 
dx 

- t + 
xo { (2/m)[E - V(x)]} 1/ 2 + to = 0. 

where t0 is an abbreviation for the quantity 

("difference in base value of dynamic phase per unit difference of energy"). 

10. Not one trace of the quantum of action comes into this final Newtonian result, 
for a simple reason: 1i has been treated as negligible and the wavelength has 
been treated as negligible. In this limit the location of the wave "packet" re
duces to the location of the wave crest. The location of the wave crest is precisely 
what is governed by SE(x, t); and the condition of "constructive interference" 
oSE(x, t)/oE = 0 gives without approximation the location of the sharply 
defined Newtonian world line x = x(t). 

11. Relevance in the context of motion in a central field of force? Quickest known 
route to the concept of effective potential (Box 25.4). 

Box 25 .4 MOTION UNDER GRAVITATIONAL ATTRACTION OF A CENTRAL MASS 
ANALYZED BY HAMILTON-JACOBI METHOD 

A. N ewtonian  Theory of G ravitat ion 

Hamiltonian (1 ) 

(tildes over energy, momentum, etc., refer to test object of unit mass; test particle 
of mass µ, follows same motion with energy E = µ,E, momentum p = µ,ji, etc.). 

Equation of Hamilton-Jacobi for propagation of wave crests: 

_ as _ 1_ ( as)2 + _1 ( as)2 
+ 1 ( as)2 _ M 

ot - 2 or 2r2 o0 2r2 sin20 o<f> r 
. (2) 
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Box 25 .4  (continued) 

645  

Solve by "method of separation of variables" with convention that # +a, 

8 ( - 2 )1/2 s = - Et + Pct>c/> + f I2 - :;20 
d0 

r [  ( M I2 )]11 2 
+ f 2 E + -;: - 2r2 dr + 8;;¢,l,E· 

(3) 

(Check by substituting into Hamilton-Jacobi equation. Solution as sum of four 
terms corresponding to the four independent variables goes hand in hand with 
expression of probability amplitude in quantum mechanics as product of four 
factors, because iS/li = iµ,S/li is exponent in approximate expression for the 
probability amplitude.) 

Constructive interference of waves: 
(1) with slightly different E values (impose "condition of constructive interfer

ence" asp- I, E(t, r, 0, cp)/aE = 0) tells when the particle arrives at a given r 
¢• ' 

(that is, gives relation between t and r); 
(2) with slightly different values of the "parameter of total angular momen

tum per unit mass," I (impose condition of constructive interference 
as;;¢,l,E(t, r, 0, cp)/al = 0) tells correlation between 0 and r (a major feature 
of the shape of the orbit); 

(3) with slightly different values of the "parameter of azimuthal angular mo
mentum per unit mass," ;\,, (impose condition as;ap<t> = 0) gives correlation 
between 0 and cp, 

(4) 

Planar character of the orbit. 
Puzzle out the value of this last integral with the help of a table of integrals? 
It is quicker and clearer to capture the content without calculation: the particle 
moves in a plane. The vector associated with the angular momentum I stands 
perpendicular to this plane. The projection of this angular momentum along 
the z-axis is p <t> = L cos a ( definition of orbital inclination, a). Straight line 
connecting origin with particle cuts unit sphere in a point qf>, As time runs on, 
qJ> traces out a great circle on the unit sphere. The plane of this great circle 
cuts the equatorial plane in a "line of nodes," at which "hinge-line" the two 
planes are separated by a dihedral angle, a. The orbit of the point qJ> is described 
by x = r cos i[;, y = r sin i[;, i = 0 in a Cartesian system of coordinates in which 
y runs along the line of nodes and in which .x lies in the plane of the orbit. 
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Box 25 .4  (continued) 

In a coordinate system in which y runs along the line of nodes and x lies in 
the plane of the equator, one has: 

r cos O = z = i cos a + x sin a = r cos if; sin a ; 

r sin U cos c:/> = x = -i sin a + x cos a = r cos if; cos a ; 

r sin O sin c:/> = y = y = r sin if;. 

Eliminate reference to the Cartesian coordinates and, by taking ratios, also 
eliminate reference to r. Thus find the equation of the great circle route in 
parametric form, 

tan c:/> = tan tf;/cos a 

and 
cos O = cos if; sin a. 

Here increasing values of if; spell out successive points on the great circle. 
Eliminate if; via the relation 

to find 

or, more briefly, 
sec c:/> = tan a tan 0. (5) 

One verifies that c:/> as calculated from (5) provides an integral of (4), thus 
confirming the physical argument just traced out. Moreover, the arbitrary 
constant of integration that comes from (4), left out for the sake of simplicity 
from (5), is easily inserted by replacing c:/> there by c:/> - c:/>o (rotation of line of 
nodes to a new azimuth). The kind of physics just done in tracing out the relation 
between O and c:/> is evidently elementary solid geometry and nothing more. The 
same geometric relationships also show up, with no relativistic corrections 
whatsoever (how could there be any?!) for motion in Schwarzschild geometry. 
Therefore it is appropriate to drop this complication from attention here and 
hereafter. Let the particle move entirely in the direction of increasing 0, not 
at all in the direction of increasing c:p; that is, let it move in an orbit of zero 
angular momentum P¢ (total angular momentum vector I inclined at angle 
a= 'TT/2 to z-axis). Consequently the dynamic phase S (to be divided by ti to 
obtain phase of Schrodinger wave function when one turns from classical to 
quantum mechanics) becomes 

~ ~ ~ 
J

r [ ( ~ M 1 2 )]11 2 
S = - Et + LO + 2 E + -;:- -

2,2 dr + ol,E· (6) 
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Shape of orbit: 

whence 

_ as _ fr L dr/r2 
0 - al - 0 - [2(E + M/r - L 2 /2r2)]112 ' 

L2/M r = ---''---. 
1 + e cos 0 

Here e is an abbreviation for the eccentricity of the orbit, 

e = (1 + 2EL2/M2)112 

(7) 

(8) 

(9) 

(greater than 1 for positive E, hyperbolic orbit; equal to 1 for zero £, parabolic 
orbit; less than 1 for negative E, elliptic orbit). A constant of integration has 
been omitted from (8) for simplicity. To reinstall it, replace 0 by 0 - 00 (rotation 
of direction of principal axis in the plane of the orbit). Other features of the 
orbit: 

( semimajor axis of ) 
orbit when elliptic 

( semiminor axis of ) 
orbit when elliptic 

(

"impact parameter" 

) 
for hyperbolic orbit, 
or "distan�e of closest 
approach m 
absence of deflection' 

(actual distance of) 
closest approach 

( angle of deflection ) 
in hyperbolic orbit 

(differenti�l scattering) 
cross section 

a = L 2/M = M_ ; 
1 - e 2 (-2E) 

b =  L 2/M _ I . 
(1 _ e2)112 ( _ 2E)112 , 

b = (angular momentum per unit mass) 
(linear momentum per unit mass) 

- I . - (2£)1/2 ' 

L 2/M r min = _
(
_
1 
_
+_2�E

=
L�2-'/-M-2)-1/

_
2
_

+_1_ ' 

8 = 'TT - 2 arc cos (1/e) 
= 2 arc tan [M/(2£)1121] 
= 2 arc tan [M/2Eb]; 

da 2'TTb db = ---'---'---'---
dil 2'TT sin 8 d8 

Af2 = 
(4E sin28/2)2 (Rutherford). 

(10) 

(11) 

(12) 

(13) 

(14) 

(15) 
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Box 2 5 . 4  (con tinued) 

Time as correlated with position: 

Write 

as fr dr 
o 

= 
o E 

= - t + 
[ ( - M I2 )]11 2 . 2 E + - - r 2,i 

r = M_ (1 - e cos u) 
( - 2E) 

(16) 

(17) 

to simplify the integration. Get 

t = "!.., (u - e sin u), (18) 
(- 2E)3;2 

(
mean circular

}= 
2'TT = w = 

(- 2£)31 2 
= (M}11 2 

_ (19) 
frequency (period) M a3 

Here u is the so-called "mean eccentric anomaly" (Bessel's time parameter). 
In terms of this quantity, one has also: 

(1 - e 2) 11 2 sin 0 
sin u = ------

1 + e cos 0 

cos 0 + e COS U=
l 0

; 
+ e cos 

cos 0 = cos u - e ; 
1 - e cos u 

. (1 - e 2)112 sin u sm 0 = ------; 
1 - e cos u 

x = r cos 0 = 
(-

1£) 
(cos u - e) ; 

. 0 I . y = r sm = (- 2£)11 2 sm u. 

(20) 

(21) 

These expressions lend themselves to Fourier analysis into harmonic functions 
of the time, with coefficients that are standard Bessel functions: 

1 J "' 
' ( . ) Jn(z) = -2 

e• z smu- nu du; 
'TT _,,,. 

3 +oo 
x/a = - 2

e + � k-11k _ 1(ke) cos kwt; 
k = - "" 
k ,t, O 

+oo 
y/a = (1 - e2)112 � k-1Jk _ 1(ke) sin kwt 

k = _ co  
k ,t, 0 

(22) 

(23) 

(24) 
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[for these and further formulas of this type, see, for example, Wintner (1941), 
Siegel (1956), and Siegel and Moser (1971)]. Via such Fourier analysis one is 
in a position to calculate the intensity of gravitational radiation emitted at the 
fundamental circular frequency w and at the overtone frequencies (see Chap
ter 36). 

B .  Ei nstei n 's Geometric Theory of G ravitation 

Connection between energy and momentum for a test particle of rest mass µ, 
traveling in curved space, 

(25) 

Gravitation shows up in no way other than in curvature of the geometry, in 
which the particle moves as free of all "real" force. Refer all quantities to basis 
of a test object of unit rest mass by dealing throughout with ji = p/µ,. Also 
write Pa = oS/ox"'. Thus Hamilton-Jacobi equation for propagation of wave 
crests in Schwarzschild geometry (external field of a star; §23.6) becomes 

1 ( a s)2 ( a s)2 1 ( a s)2 1 ( a s)2 
-

(1 - 2M/r) at + (1 - 2M/r) 
a";- + i2 a0 + 

r2 sin20 a</> 

+ 1 = 0, (26) 

Solve Hamilton-Jacobi equation. As in Newtonian problem, simplify by eliminat
ing all motion in direction of increasing <f>. Thus set O = P<t> = as/a</> (dynamic 
phase independent of </>) and have 

S = - Et + L0 + J
r 

[£2 - (1 - 2M/r)(I + L 2/r2)J112 
(1 _ 

d;M/r) , (27) 

Find shape of orbit by "principle of constructive interference"; thus, 

a s  
J

r I dr/r2 
O = al = 8 -

[E2 - (1 - 2M/r)(l + L 2/r2)]112 . (28) 

[See equation (25.41) and associated discussion in text; also Figure 25.6. ] 
Find time to get to given r by considering "interference of wave crests" belonging 

to slightly different E values: 

as  J
r E dr O = aE = - t  + [E2 - (1 - 2M/r)(l + L2/r2)]11 2 (1 - 2M/r) · <29) 

[See equation (25.32) and associated discussion in text; also Figure 25.5 and 
exercise 25.15.] 
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§25.2.  SYMMETRIES AND CONSERVATION LAWS 

In analytic mechanics, one knows that symmetries of a Lagrangian or Hamiltonian result in conservation laws. Exercises 25 . 1  to 25 .4 describe how these general principles are used to deduce, from the symmetries of Schwarzschild spacetime, constants of motion for the trajectories (geodesics) of freely falling particles in the gravitational field outside a star. The same constants of motion are obtained in a different language in differential geometry, where a "Killing vector" is the standard tool for the description of symmetry. This section considers the general question of metric symmetries before proceeding to Schwarzschild spacetime. Let the metric components gµv relative to some coordinate basis dxOI be independent of one of the coordinates xK, so agµvl'iJxOI = 0 for a = K. (25 . 1 )  This relation possesses a geometric interpretation. Any curve xOI = cOl(i\) can be translated in the xK direction by the coordinate shift JxK = e to form a "congruent" (equivalent) curve : xOI = cOl(i\) for a f K and xK = cK(i\) + e .  Let the original curve run from i\ = i\1 to i\ = i\2 and have length 
I

>-2 
L = [gµv(x(i\))(dxµ I di\)(dx" / di\)]11 2 di\.  >- 1  Then the displaced curve has length 

>-2 [ {  a } ]112 L(e) = i gµv(x(i\)) + e 0�{ (dxµ/di\)(dx" /di\) di\ .  
I But the coefficient of e in the integrand is zero. Therefore the length of the new curve is identical to the length of the original curve : dL/de = 0 .  The vector (25 .2) provides an infinitesimal description of these length-preserving "translations."  It is called a "Killing vector." It satisfies Killing's equation* (25 .3) ( condition on the vector field ( necessary and sufficient to ensure that all lengths are preserved by the displacement efl . This condition is expressed in covariant form. 

*Historical note: Wilhelm K. J. Killing, born May 10, 1847, in Burbach, Westphalia, died February 11 ,  1923 in Munster, Westphalia; Professor of Mathematics at the University of Munster, 1892-1920. The key article that gives the name "Killing vector" to the kind of isometries considered here appeared almost a century ago [Killing (1892)] . 
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Therefore it is enough to establish it in the preferred coordinate system of (25.1) 
in order to have it hold in every coordinate system. In that preferred coordinate 
system, the vector field, according to (25.2), has components 

�µ = O µ
K· 

Therefore the covariant derivative of this vector field has components 

- I'" - I' - 2-(
agµK agµv -

agvK ) - gµo: vK - µvK - 2 ax v + axK ax µ 

l = 2 (gµK, v - gvK,µ). 

(25.4) 

One sees that �µ; v is antisymmetric in the labels µ, and 11, as stated in Killing's equa
tion (25.3). 

The geometric significance of a Killing vector is spelled out in Box 25.5. 
From Killing's equation, �(µ; v) = 0, and from the geodesic equation Vpp = 0 for 

the tangent vector p = d/d'A to any geodesic, follows an important theorem: In any 
geometry endowed with a symmetry described by a Killing vector field (, motion along 
any geodesic whatsoever leaves constant the scalar product of the tangent vector with 
the Killing vector: 

PK = p · ( = constant. (25.5) 

In verification of this result, evaluate the rate of change of the constant PK along 
the course of the typical geodesic (affine parameter 'A; result therefore as applicable 
to light rays-with zero lapse of proper time-as to particles); thus, 

(25.6) 

Turn back from a general coordinate system to the coordinates of (25 .1 ), where 
the Killing vector field of the symmetry lets itself be written ( = a ;axK. Then the 
scalar product of (25.5) becomes constant Po:�" = Po:o"K = PK · The symmetry of 
the geometry guarantees the conservation of the K-th covariant coordinate-based 
component of the momentum. 

On a timelike geodesic in spacetime, the momentum of a test particle of mass 
µ, is 

p d/d'A = µ,u = µ,d/dr. (25.7) 

Thus the affine parameter 'A most usefully employed in the above analysis, when 
it is concerned with a particle, is not proper time T but rather the ratio 'A = T/µ,. 

When the metric gµv is independent of a coordinate xK, that coordinate is called 
cyclic, and the corresponding conserved quantity, PK, is called the "momentum 
conjugate to that cyclic coordinate" in a terminology borrowed from nonrelativistic 
mechanics. 

(continued on page 654) 

Conservat ion of p · ( for 
geodesic motion  

Term i no logy :  
" cyc l i c  coord i nate , " 
" conj ugate momentu m "  
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Box 25 . 5  KILLING VECTORS AND ISOMETRIES (Il l ustrated by a Donut) 

A. On a given manifold ( e.g., spacetime, or the donut 
pictured here), in a given coordinate system, the 
metric components are independent of a particular 
coordinate xK. Example of donut: 

ds2 = b2 d02 + (a - b cos 0)2 d<t>2; 

gµv independent of xK = <f>. 

B. Translate an arbitrary curve e through the infinitesi
mal displacement 

e( e(o /oxK) = e(O /o<f> ), € � 1 

to form a new curve e'. In coordinate language e 
is 0 = 0(A), </> = </>(A); while e' is 0 = 0(°A.), <f> = 
</>(A) + e. (Translation of all points through Ll<f> = e.) 
Because ogµvlo<f> = 0, the curves e and e' have the 
same length (see text). 

C. Pick a set of neighboring points a, £8, e, 6j) ;  and 
translate each of them through e( to obtain points 
{!', £8', e', 6j)'_ Since the length of every curve is 
preserved by this translation, the distances between 
neighboring points are also preserved: 

( distance between {l' and £8') = 
(distance between {l and £8). 

But geometry is equivalent to a table of all infinitesi
mal distances (see Box 13.1). Thus the geometry of 
the manifold is left completely unchanged by a trans
lation of all points through e(. [This is the coordinate
free version of the statement ogµvlo<f> = O.] One says 
that ( = o/o<f> is the generator of an "isometry" (or 
"group of motions") on the manifold. 

D. In general (see text), a vector field (('31) gener
ates an isometry if and only if it satisfies Killing's 
equation �(a ; ,8)  = 0. 
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E. If ((<!!) generates an isometry (i.e . if ( is a "Killing vector"), then the curves '!f(xK,_<X-1, . . .  ' a,J [parameter 7 t t flabels to tell ] on curve J L "which" curve to which ( is tangent [( = (o'!f /oxK)"'1> · · · ·"'.J are called "trajectories of the isometry." 
F. The geometry is invariant under a translation of all points of the manifold through the same LlxK along these trajectories ['!!(xx, a1, . . .  , an) -+ '!f(xK + LlxK, a i , . . .  , an) ;  "finite motion" built up from many "infinitesimal motions" e(.J 
G. This isometry is described in physical terms as follows. Station a family of observers throughout the manifold. Have each observer report to a central computer ( 1 )  all aspects of the manifold's geometry near him, and (2) the distances and directions to all neighboring observers ( directions relative to "preferred" directions that are determined by anisotropies in the local geometry) . Through each observer's position passes a unique trajectory of the isometry. Move each observer through the same fixed LlxK ( e .g. ,  LlxK = 17) along his trajectory, leaving the manifold itself unchanged. Then have each observer report to the central computer the same geometric information as before his motion. The information received by the computer after the motion will be identical to that received before the motion. There is no way whatsoever, by geometric measurements, to discover that the motion has occurred !  This is the significance of an isometry. 

653 

Three different trajectories on a donut 

Parameter on trajectories is xK = </> 
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Exercise 25 . 1 .  CONSTANT OF MOTION OBTAINED FROM 
HAMILTON'S PRINCIPLE Prove the above theorem of conservation of PK = p · ( from Hamilton's principle (Box 1 3 .3)  (25 .8) 

as applied to geodesic paths. Recall :  In this action principle, gµv is to be regarded as a known function of position, x, along the path; and the path itself, x µ( t,) , is to be varied. 
Exercise 25 .2. S U PER-HAMILTONIAN FORMALISM 

FOR GEODESIC MOTION Show that a set of differential equations in Hamiltonian form results from varying Pµ and x µ independently in the variational principle o/ = 0, where 

and 
I = f (pµ 

dx µ - .X dr..) (25 .9) 

(25 . 10) 
Show that the "super-Hamiltonian" X is a constant of motion, and that the solutions of these equations are geodesics. What do the choices X = +½, X = 0, X = - ½µ 2, or X = - ½  mean fo r  the geodesic and its parametrization? 
Exercise 25.3 . KILLING VECTORS IN FLAT S PACETIME Find ten Killing vectors in flat Minkowski spacetime that are linearly independent. (Restrict attention to linear relationships with constant coefficients) . 
Exercise 25 .4. POISSON BRACKET AS KEY TO CONSTANTS OF MOTION If f is a Killing vector, show that PK = � µ

Pµ 
commutes (has vanishing Poisson bracket) with the Hamiltonian X of the previous problem, [X, pK ] = 0, so dpK/dr.. = 0. (Hint: Use a convenient coordinate system.) 

Exercise 25 . 5. COMM UTATOR OF KILLING VECTORS IS A KILLING VECTOR Consider two Killing vectors, ( and 17, which happen not to commute (as differential operators ; i .e . ,  the commutator of equations (8 . 1 3)  does not vanish; consider rotations about perpendicular directions as a case in point] ; thus, 

(a) Show that no single coordinate system can be simultaneously adapted, in the sense of equation (25 . l ) ,  to both the f and 17 symmetries (see exercise 9 .9) .  (b) Let pg = Pµ � µ , p� = PµTJ µ , and Pt = pµ t µ , and derive the Poisson-bracket relationship [pg , p�] = -Pt ·  In a geometry, the symmetries of which are related in this way, show that Pr is also a constant of motion. (c) In a coordinate system where ( = (o/cJxK ) ,  define X as in (25 . 10) and show from [X, ptJ = 0 that ( is a Killing vector. 
Thus the commut ator of two Killing vectors is itself a Killing vector. 
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Exercise 25 . 6 .  EIGENVALUE PROBLEM FOR KILLING VECTORS 

Show that any Killing vector satisfies gµ, µ = 0, and is an eigenvector with eigenvalue K = 0 
of the equation 

gµ; v ; v + R µ, gv = Kgµ_ 

Find a variational principle (Raleigh-Ritz type) for this eigenvalue equation. 

§25 . 3 .  CO NSERVED QUANTITIES FOR M OTIO N 

IN SCHWARZSCHILD GEO METRY 

(25.11) 

Consider a test particle moving in the Schwarzschild geometry, described by the 
line element 

dr2 
ds 2 = - (1 - 2M/r) dt2 + ---- + r 2(d02 + sin20 d<f,2) .  (1 - 2M/r) 

(25.12) 

This expression for the geometry applies outside any spherically symmetric center 
of attraction of total mass-energy M. It makes no difference, for the motion of the 
particle outside, what the geometry is inside, because the particle never gets there; 
before it can, it collides with the surface of the star-if the center of attraction is 
a star, that is to say, a fluid mass in hydrostatic equilibrium. At each point throughout 
such an equilibrium configuration, the Schwarzschild coordinate r exceeds the local 
value of the quantity 2m(r); see §23.8. Therefore the Schwarzschild coordinate R 
of the surface exceeds 2M. Consequently, expression (25.12) applies outside any 
equilibrium configuration, no matter how compact (r > R > 2M implies that one 
need not face the issue of the "singularity" at r = 2M). The more compact the 
configuration, however, the more of the Schwarzschild geometry the test particle 
can explore. The ideal limit is not a star in hydrostatic equilibrium. It is a star that 
has undergone complete gravitational collapse to a black hole. Then (25.12) applies 
arbitrarily close to r = 2M. This idealization is assumed here ("black hole"), because 
the analysis can then cover the maximum range of possible situations. 

Wherever the test particle lies, and however fast it moves, project that point and 
project that 3-velocity radially onto a sphere of some fixed r value, say, the unit 
sphere r = I. The point and the vector together define a point and a vector on the 
surface of the unit sphere; and they in turn mark the beginning and define the totality 
of a great circle. As the particle continues on its way, the radial projection of its 
position will continue to lie on that great circle. To depart from the great circle on 
one side or the other would be to give preference to the one hemisphere or the other 
of the unit sphere, contrary to the symmetry of the situation. 

Orient the coordinate system so that the radial projection of the orbit coincides 
with the equator, 0 = w/2, of the polar coordinates (see Box 25.4 for the spherical 
trigonometry of a more general orientation of the orbit, and for eventual specializa-

Why attention focuses on 
particle orbits around a black 
hole 

Choice of coordinates to 
make particle orbit lie in 
"equator, " 0 = w/2 
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tion to a polar orbit, in contrast to the equatorial orbit considered here). In polar 

coordinates as so oriented, the particle has at the start, and continues to have, zero 
momentum in the 0 direction; thus, 

p 8 = d0/dA = 0. 

The expression (25 .12) for the line element shows that the geometry is unaffected 
by the translations t -+  t + Lit, <f> -+ <f> + Ll<f>. Thus the coordinates t and </> are 

"cyclic." The conjugate momenta p0 _ - E and p <t> _ + L (L 2 0) are therefore 

conserved. This circumstance allows one immediately to deduce the major features 
of the motion, as follows. 

The magnitude of the 4-vector of energy-momentum is given by the rest mass 
of the particle, 

or 

£ 2 1 ( dr )
2 L2 

- (1 - 2M/r) 
+ 

(1 - 2M/r) dA + --;z + µ, 2 = O. 

(25.13) 

(25.14) 

Moreover, one knows from the equivalence principle that test particles follow the 

same world line regardless of mass. Therefore what is relevant for the motion of 
particles is not the energy and angular momentum themselves, but the ratios 

Recall also 

E = El = (energy per unit) , µ, rest mass 

I= L/µ, = (angula� momentum) .  
per umt rest mass 

A = TIµ, = (pr�per time per) . 
umt rest mass 

(25.15) 

Then (25.14) becomes an equation for the change of r-coordinate with proper time 

in which the rest mass makes no appearance: 

Here 

( �� )2 = £2 - (1 - 2M/r)(l + L 2/r2) 

= JJ2 - fl2(r). 

V(r) = [(I - 2M/r)(l + L 2/r2)]112 

(25.16a) 

(25.16b) 

is the "effective potential" mentioned in §25.1 and Figure 25.2 and to be discussed 
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in §25.5. For the rate of change of the other two relevant coordinates with proper 
time, one has, assuming a "direct" orbit (d<j,/dr > 0; P¢ = + L rather than - L), 

and 
dt 
dr 

d<t, 1 d<t, p¢ g¢¢L I 
dr 

- - --
µ, dA µ, µ, 

I dt p 0 _ g 00£ 

µ, µ, di\ µ, 

,2 

E 
1 - 2M/r

. 

(25.17) 

(25.18) 

Knowing r as a function of r from (25.16), one can find <f, and t in their dependence 
on r from (25.17) and (25.18). Symmetry considerations have in effect reduced the 
four coupled second-order differential equations P µ;vP" = 0 of geodesic motion to 
the single first-order equation (25.16). 

For objects of zero rest mass, it makes no sense to refer to proper time, and a 
slightly different treatment is appropriate (§25.6). 

Before looking, in §25.5, at the motions predicted by equations (25.16) to (25.18), 
it is useful to analyze the physical significance of the constants Po and P¢, and to 
identify other physically significant quantities whose values will be of interest in 
studying these orbits. One calls E = -p

0 
the "energy at infinity"; and L = IP¢ 1 , 

for equatorial orbits, the "total angular momentum." To justify these names, compare 
them with standard quantities measured by an observer at rest on the equator of 
the Schwarzschild coordinate system as the test particle flies past him in its orbit. 
Let 

E1oca1 - P 6 (w 0, P) (lgoo l112 dt, p) = lgool 112p 0 

= lg00 l112 dt/dA = (1 - 2M/r)11 2 dt/dA 

be the energy he measures in his proper reference frame, and let 

v· = p if> = (w if>, p) _ ( lg¢¢ l112 d<f,, d/dA) 
<t, - • - -

P 0 Elocal Elocal 

r( d<t, I di\) � 
Elocal r Elocal 

(25.19) 

(25.20) 

be the tangential component of the ordinary velocity he measures. [Note: w°" are 
the basis one-forms of the observer's proper reference frame; see equations 
(23.15a,b).] In terms of these locally measured quantities, the energy-at-infinity is 

E = -Po= -gooP o = lgoo lll 2£local = (1 - 2M/r)ll2£local = constant. (25.21) 

It therefore represents the locally measured energy E10ca1, corrected by a factor 
lg00

i 112. For any particle that flies freely (geodesic motion) from this observer to 
r = oo,  the correction factor reduces to unity, and E,ocal (as measured by a second 
observer, this time at infinity) becomes identical with E. Similarly the angular 
momentum from (25.20) is 

P¢ = E,oca1V<1,r = constant. (25.22) 

I nterp retat ion of E as 
· · energy at i nfi n ity" and L as 
"angu la r  momentu m "  
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This, like E = -p0, represents a quantity that is conserved, and whose interpretation 
for r -+ oo on any orbit is familiar. Finally, recall that the total 4-momentum 
of two colliding particles p1 + p2 or (pµ )1 + (pµ)2 is conserved in a point collision 
( at any r). Therefore the totals (E)1 + (Eh = ( -p0)1 + ( -Poh and (p ,t,)1 + (p ,t,)2 
are also conserved. One of the colliding particles may be on an orbit that could 
never reach out to r = oo, but this makes no difference. This conservation principle 
allows and forces one to take over the terms E = "energy at infinity" and L = 
"angular momentum," valid for orbits that do reach to infinity, for an orbit that 
does not reach to infinity. 

Exercise 25 . 7 .  RADIAL VELOCITY OF A TEST PARTICLE 

Obtain a formula for the radial component of velocity v,. that an observer at r would measure 
[see (25.20) for v¢]. Express E10ca1, v;, and v¢ in terms of r and the constants E, P1> · 

Exercise 25 . 8 .  ROTATIONAL KILLING VECTORS FOR 
SCHWARZSCHILD GEOMETRY 

(a) Show that in the isotropic coordinates of exercise 23.1, the metric for the Schwarzschild 
geometry takes the form 

ds 2 = - ( I  - M/2r)2(1 + M/2r)-2 dt2 + (I + M/2r)4(dr2 + r2 d{J 2). (25.23) 

(b) Exhibit a coordinate transformation that brings this into the form 

ds2 = - ( I - M/2r)2(1 + M/2r)-2 dt2 + ( I  + M/2r)4(dx2 + dy2 + dz2) , (25.24) 

with r = (x2 + y
2 + z2)11 2 . 

(c) Show that ( x = y(o/oz) - z(o/oy) and similar vectors ( v and ( z are each Killing 
vectors, by verifying (see exercise 25.Sc) that the Poisson brackets [.'JC, Lxl  vanish for each 
LK = p . ( K • K = x, y, z. 

(d) Show that fz = (0/0<1>\,,, o; and show that for orbits in the equatorial plane Lz = P<t>, 
LX = Ly = 0. 

Exercise 25 . 9 .  CONSERVATION OF TOTAL ANGULAR MOMENTUM 
OF A TEST PARTICLE 

Prove by a Poisson-bracket calculation that the total angular momentum squared, L2 = 
p/ + (sin B)-2p/ 1s a constant of motion for any Schwarzschild geodesic. 

Exercise 25 . 1 0 . SELECTING EQUATION BY SELECTING WHAT IS VARIED 

Write out the integral I that is varied in (25.8) for the special case of the Schwarzschild 
metric (25.12). What equation results from the demand 81 = 0 if only q,(r,.) is varied? If 
only t(r,.)? 

Exercise 25 . 1 1 .  MOTION DERIVED FROM S U PER-HAMILTONIAN 

Write out the super-Hamiltonian (25.10) for the special case of the Schwarzschild metric. 
Deduce from its form that p0 and P1> are constants of motion. Derive (25.14), (25.17), and 
(25.18) from this super-Hamiltonian formalism. 
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§25 .4 .  GRAVITATIO NAL REDSHIFT 

The conservation law lg00 1 11 2E10ca1 = constant (equation 25.21), which is valid in this 
form for any time-independent metric with g0; = 0 and for particles with both zero 
and non-zero rest mass, is sometimes called the "law of energy red-shift." It describes 
how the locally measured energy of any particle or photon changes (is "red-shifted" 
or "blue-shifted") as it climbs out of or falls into a static gravitational field. For 
a particle of zero rest mass (photon or neutrino), the locally measured energy E10ca1, 
and wavelength ;\local (not to be confused with affine parameter!), are related by 
E10ca1 = h/;\10ca1, where h is Planck's constant. Consequently, the law of energy 
red-shift can be rewritten as 

(25.25) 

A photon emitted by an atom at rest in the gravitational field at radius r, and received 
by an astronomer at rest at infinity is red-shifted by the amount 

Z Ll;\/;\ = (;\received - Aemitted)/;\emitted = lgoo(r) l-11 2 - 1, 

z = (1 - 2M/r)-112 - 1, 

z ::::::  M/r in Newtonian limit. 

(25.26) 

(25.26N) 

Note that these expressions are valid whether the photon travels along a radial path 
or not. 

Exercise 25 .12. REDSHIFT BY TIMED PULSES Derive expression (25 .26) for the photon redshift by considering two pulses of light emitted successively by an atom at rest at radius r. [Hint: If .::hem is the proper time between pulses as measured by the emitting atom, and Ll-rrec is the proper time separation as measured by the observer at r = oo, then one can idealize ,\m as Ll-rem and "rec as Ll-rrec • l 
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Turn attention now from energy red-shift to the orbit of a particle in the Schwarzs
child geometry. The position as a function of proper time follows upon solving 
(25.16a), 

(25.16a) 

where V is the "effective potential" defined by 

V2(r) = (I - 2M/r)(l + L 2/r 2) (25.16b) 

Law of "energy redshift" 
("gravitational redshift") 

EXERCISE 



Qua l itative featu res of orb its 
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and illustrated in Figure 25 .2 and Box 25 .6 . The first diagram in Box 25 .6 gives 
V2(r) as a function of r. It is relevant even in the "domain inside the black hole" 
(r < 2M), where V2 is negative (see Chapter 3 1  ). It serves as a model for, and is 
closely related to, the "effective potential" B-2(r) used in §25 .6 to analyze photon 
orbits. The final diagram in Box 25 .6 gives V(r) itself as a function of r. Energy 
levels in this diagram or in Figure 25 .2 can be interpreted as in any conventional 
energy-level diagram. The difference in energy between two levels represents energy, 
as measured at infinity, of the photon given off in the transition from the one level 
to the other. Whether one plots V(r) or V2(r) as a function of r is largely a matter 
of convenience. The important point is this : a value of r where V(r) becomes equal 
to the available energy E, or P(r) becomes equal to E2 , is a turning point. A particle 
that was moving to larger r values, once arrived at a turning point, turns around 
and moves to smaller r values. Or when a particle moving to smaller r values comes 
to a turning point, it reverses its motion and proceeds to larger r values. A turning 
point is not a point of equilibrium. A stone thrown straight up does not sit at a 
point of equilibrium at the top of its flight. However, when E - V(r), or E2 - V2(r), 
instead of having a single root, has a double root, then one does deal with a point 
of equilibrium ( only possible because of "centrifugal force" fighting against gravity). 
When this equilibrium occurs at a minimum of V(r), it is a stable equilibrium; at 
a maximum, an unstable equilibrium. Thus all the major features of the motion 
in the r direction can be read from a plot of the effective potential as a function 
of r (plot depends on value of I) and from a knowledge of the E value (Figure 
25 .2, with further details in Box 25 .6). 

Box 25 . 6  QUALITATIVE FEATURES OF ORBITS OF A PARTICLE 
MOVING IN SCHWARZSCHILD GEOMETRY 

A. Equations G overn i ng Orbit  
(see text for derivation) 

1 .  Effective-potential equation for radial part 
of motion : 

(dr/dT)2 + V2(I, r) = E2, 

V2(L, r) = (1 - 2M/r)(l + I2/r 2), 

E = (energy at infinity per unit rest mass), 
I = ( angular momentum per unit rest 

mass). 
2. Supplementary equations for angular and 

time motion for "direct" orbit, d<j>/dT > 0 :  

d<j>/dT = l/r 2, 

dt E 
dT - 1 - 2M/r · 

2 
-

- -

- T - - - - -£

2 

t 
p2 

I 0 2 1 0 

- I  - r/M � 

"Turning points" of orbit occur where horizontal line of height £2 crosses V2 
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B .  N ewtonian Li m it, I E  - 1 1  � 1 ,  
M/r � 1 , I !r � 1 

I .  Speak not about "energy-at-infinity per 
unit rest mass," E = E/µ, = (1 - v!)-112, 
but instead about the "nonrelativistic en
ergy per unit rest mass," 

1 - - 1 
C 2 ( E

2 - 1 )  ::::: E - 1 ::::: 2 V ,,2 . 

2. Speak not about V2(L, r) but instead about 
the Newtonian effective potential, 

- 1 - M I 2 
VN(L, r) 2 (V

2 - 1) ::::: - 7 + 2r2 . 

3 .  Rewrite effective-potential equation in the 
form 

l ( dr )2 -

2 d-r 
+ VN(L, r) = c .  

4 .  From the effective-potential diagram and 
the subsidiary equation dcp/d-r = L/r2 , 

conclude that : 
a. Particles with e z O (E z 1) come in 

from r = oo along hyperbolic or pa
rabolic orbits, are reflected off the 
effective potential at c = VN[E2 = V2 ; 
"turning point" ; (dr/dr)2 = OJ, and 
return to r = oo . 

b. Particles with e < 0 (E < 1 )  move 
back and forth in an effective potential 
well between periastron (inner turning 
point of elliptic orbit) and apastron 
( outer turning point). 

C .  Relativistic Orbits 

Use the effective-potential diagram of part A 
(reproduced here for various L), in the same 
way one uses the Newtonian diagram of part 
B, to deduce the qualitative features of the 
orbits. The main conclusions are these. 

6 6 1  

- - .- > 0 - - - -... 
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-�� -� . 6  (continued) 

1. Orbits with periastrons at r ► M are Kep
lerian in form, except for the periastron 
shift (exercise 25.16; §40.5) familiar for 
Mercury. 

2. Orbits with periastrons at r � lOM differ 
markedly from Keplerian orbits. 

3. For L; M :s;; 2 y3 there is no periastron; 
any incoming particle is necessarily pulled 
into r = 2M. 

4. For 2 y3 < I; M < 4 there are bound 
orbits in which the particle moves in and 
out between periastron and apastron; but 
any particle coming in from r = oo (un
bound; £2 � 1 )  necessarily gets pulled into 
r = 2M. 

5. For Lt = L/M > 4, there are bound 
orbits; particles coming in from r = oo 
with 

£2 < V. 2 = (1 - 2u )(1 + U 2u 2) max m m ' 

1 + yl - 12/Lt 2 

um 6 
reach periastrons and then return to r = 
oo ;  but particles from r = oo with £2 > 
Vmax 

2 get pulled into r = 2M. 
6. There are stable circular orbits at the mini

mum of the effective potential; the mini
mum moves inward from r = oo for L = 
oo to r = 6M for Lt = LIM = 2 y3. The 
most tightly bound, stable circular orbit 
(LIM = 2 y3, r = 6M) has a fractional 
binding energy of 

p, - E  - _ rom  -- = 1 - E = 1 - v 8/9 = 0.0572. 
/J, 

7. There are unstable circular orbits at the 
maximum of the effective potential; the 
maximum moves outward from r = 3M for 
L = oo to r = 6M for L; M = 2 y3. A 
particle in such a circular orbit, if per
turbed inward, will spiral into r = 2M. If 
perturbed outward, and if it has £2 > 1 ,  
i t  will escape to r = 'X> .  If  perturbed out-
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ward, and if it has £2 < 1 ,  it will either 
reach an apastron and then enter a spiral
ing orbit that eventually falls into the star 
( e.g., if l3E > 0, with unchanged angular 
momentum); or it will move out and in 
between apastron and periastron, in a sta
ble bound orbit ( e.g., if l3E < 0, again with 
unchanged angular momentum). 
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When one turns from qualitative features to quantitative results, one finds it 
appropriate to write down explicitly the proper time LIT required for the particle 
to augment its Schwarzschild coordinate by the amount Llr ; thus (with the convention 
that square roots may be negative or positive, # +a) 

(25.27) 

The integration is especially simple for a particle falling straight in, or climbing Rad ia l  orbits:  
straight out, for then the angular momentum vanishes and the integral can be written 
in an elementary form that applies (with the change 'T - t) even in Newtonian 
mechanics, 

'T = f d'T = f dr 
[2M/r - 2M/ R]112 · (25.27') 

Here R 2M/(l - E2) is the radius at which the particle has zero velocity ("apas
tron"). The motion follows the same "cycloid principle" that is so useful in nonrela
tivistic mechanics (Figure 25.3). Thus, in parametric form, one has 

r = � (1 + cos 11), 

R ( R )11 2 'T = 
2 2M 

(11 + sin 11), (25.28) 

with the total proper time to fall from rest at r = R into r = 0 given by the expression 

'T = :!!.. R (L)l/2 
2 2M 

(25.29) 

(shorter by a factor l / y2  than the time for fall under pull of the same mass, 
distributed over a sphere of radius R;  see dotted curve in Figure 25.3). 

What about the Schwarzschild-coordinate time taken for a given motion? Take 
equation (25.16a) for general motion (radial or nonradial), and where dr/d'T appears, 
replace it by 

dr 
d'T 

dr dt 
dt d'T 

dr E = E dr* . 
dt 1 - 2M/r dt 

Here r* is an abbreviation for a new "tortoise coordinate," 

r * = f dr* = f 1 _ 
d
{M/r = r + 2Mln (2� - 1 ) , 

(25.30) 

(25.31) 

which was introduced by Wheeler (1955) and popularized by Regge and Wheeler 
(1957). Thus find the equation 

( 1!';
1
* )2 

+ v2 = J!2 . (25.32) 

( 1 )  " cyclo ida l"  form of r(-r) 
for rad ia l  bound  o rbits 

(2) "to rtoise" rad ia l  
coord inate as function of  
coordi nate t ime ,  r*(t) 
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Figure 25 . 3. 
A cycloid gives the relation between proper time and Schwarschild r coordinate for a test particle fallmg 
straight in toward center of gravitational attraction of negligible dimensions. The angle of tum of the 
wheel as it rolls on the base line and generates the cycloid is denoted by 71. In terms of this parameter, 
one has 

R r = - (I +  cos 71) 
2 

(Schwarzschild ,-coordinate) 

R ( R )
1n -r = - - (71 + sin 71) 

2 2M 
(proper time) 

(note difference in scale factors in expressions for r and for -r). The total lapse of proper time to fall 
from r = R to r = 0 is -r = (1r/2) (R3/2M)112 . The same cycloid relation and the same expression for 
time to fall holds in Newton's nonrelativistic theory of gravitation, except that there the symbol -r is 
to be replaced by the symbol t (ordinary time) . Were one dealing in Newtonian theory with the same 
attracting mass M spread uniformly over a sphere of radius R, with a pipe thrust through it to make 
a channel for the motion of the test particle, then that particle would execute simple harmonic oscillations 
(dotted curve above). The angular frequency w of these vibrations would be identical with the angular 
frequency of revolution of the test particle in a circle just grazing the surface of the planet, a frequency 
given by Kepler's law M = w2R3 . In this case, the time to fall to the center would be (1r/2) (R3/M)112, 
longer by a factor 2112 than for a concentrated center of attraction ( concentrated mass . stronger accelera
tion and higher velocity in the later phases of the fall) .  The expression for the Schwarzschild-coordinate 
time t required to reach any point r in the fall under the influence of a concentrated center of attraction 
is complicated and is not shown here (see equation 25.37 and Figure 25.5) .  

The same cycloidal relation that connects r with time for free fall of a particle also connects the radius 
of the "Friedmann dust-filled universe" with time (see Box 27 . 1) ,  except that there the cycloid diagram 
applies directly, without any difference in scale between the two key variables .  

(radius o} a a 
3 h = - (I - cos 71) coe - 712 (for small 71), -sp ere 2 4 

( 

coordinate time 

) 
identical with . a . a proper time as = 2 (71 - sm 71) coe 12 71

3 (for small 71). 
measured on dust 
particle 

The starting point of 71 is renormahzed to time of start of expansion; see Lindquist and Wheeler ( 1957) 
for more on correlation between fall of particle and expansion of universe. 

Here the effective potential is the same effective potential that one dealt with before, V = [(I - 2M/r)( l  + L 2/r2)jl/2 _ (25 .33) Moreover, the E on the righthand side is the same E that appeared in the earlier equation for (dr/dr)2 . Therefore the turning points and the qualitative description of the motion are both the same as before. "A turning point is a turning point is 
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a turning point." Right? Right about turning points; wrong about the conclusion. 
The story has it that Achilles never could pass the tortoise. Whenever he caught 

up with where it had been, it had moved ahead to a new location; and when he 
got there, it was still further ahead; and so on ad infinitum. Imagine the race between 
Achilles and the tortoise as running to the left and the expected point of passing 
as lying at r = 2M. The r-coordinate has no inhibition about passing through the 
value r = 2M. Not so r *, the "tortoise coordinate." It can go arbitrarily far in the 
direction of minus infinity ( corresponding to the infinitely many times when Achilles 
catches up with where the tortoise was) and still r remains outside r = 2M: 

r/2M 1 .00000 1 I 000 1 

r*/2M - 12.8 1 55 - 8 .2 1 02 

I .O J  I 278465 2 5 

- 3 .5952 0 2 6 386 

10 10 ,000 

12.303 10 ,009 2 10  

I t  follows that there i s  a great difference between the description of the motion 
in terms of the proper time r of a clock on the falling particle (r goes all the way 
from r = R down to r = 0 in the finite proper time of 25.29) and a description of 
the motion in terms of the Schwarzschild-coordinate time t appropriate for the 
faraway observer (r * goes all the way from r* = R * down to r * = - oo; infinite 
t required for this; but even in infinite time, as r* goes down to - oo,  r is only brought 
asymptotically down to r ~ 2M). Thus the second description of the motion leaves 
out, and has no alternative but to leave out, the whole range of r values from r = 2M 
down to zero : perfectly good physics, and physics that the falling particle is going 
to see and explore, but physics that the faraway observer never will see and never 
can see. If the tortoise coordinate did not exist, it would have to be invented. It 
invests each factor ten of closer approach to r = 2M with the same interest as the 
last factor ten and the next to come. It proportions itself in accord with the amount 
of Schwarzschild-coordinate time available to the faraway observer to study these 
more and more microscopic amounts of motion in more and more detail. 

Figure 25.4 shows the effective potential V of (25.33) and of Figure 25.2 replotted 
as a function of the tortoise coordinate. The approach of V to zero at r = 2M shows 
up as an exponential approach of V to zero as r* goes to minus infinity. Thus in 
moving "towards the black hole" (r = 2M, r * = - oo ), the particle, as described 
in coordinate time t, soon casts off any effective influence of any potential, and moves 
essentially freely toward decreasing r *, in accordance with the equation 

( - dr * )
2 ~ -2 • E 

dt -
E ' (25 .34) 

that is, "with the speed of light" (dr* / dt � - I). This dependence of r* on t implies 
at once an asymptotic dependence of r itself on Schwarzschild-coordinate time t, 
of the form 

r = 2M + ( constant X e-112M). (25.35) 

This result is independent of the angular momentum of the particle and independent 
also of the energy, provided only that the energy-per-unit-mass E is enough to 

(3) details of the approach to 
the Schwarzschild radius 
(r = 2M) 
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I 

Figu re 2 5 .4.  
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5 lO 
Effective potential for motion in Schwarzschild geometry, expressed as a function of the tortoise coordinate, for selected values of the angular momentum of the test particle. The angular momentum L is expressed in units 
Mµ, where M is the mass of the black hole and µ the mass of the test particle. The effective potential (including rest mass) is expressed in units µ; thus, V = V/µ. The tortoise coordinate r• = r + 2M In (r/2M - l )  is given in units M. 

surmount the barrier (Figure 25.4) of the effective potential-per-unit-mass V. (More 
will be said on the approach to r = 2M in Chapter 32, on gravitational collapse.) 

To replace the asymptotic formula (25.35) by a complete formula requires one 
to integrate (25.32); thus, 

t = f dt = f E dr* 
[£2 _ p21112 

J E dr = 
[£2 - (1 - 2M/r)(l + L 2/r 2)]112 (1 - 2M/r) · 

(25.36) 

The integration here is not easy, even for pure radial motion (I = 0), as is seen 
in the complication of the resulting expression (Khuri 1957): 

[( R ) ( R )
112

] R ( R )
112 

t = 2 + 2M 
2M - 1 'IJ + 2 2M - 1 sin 'IJ 

2M ln I (R/2M - 1)112 + tan ('IJ/2) I · + 
(R/2M - 1)112 - tan ('IJ/2) 

(25.37) 

Here 'IJ is the same cycloid parameter that appears in equation (25 .28) and Figure 
25.3 (see the detailed plot in Figure 25.5 of the correlation between r and t, illustrat-
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Figure 25.5. 
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Fall toward a Schwarzschild black hole as described (a) by  a comoving observer (proper time -r) and (b) by a faraway observer (Schwarzschild-coordinate time 1). In the one description, the point r = 0 is attained, and quickly [see equation (25 .28) ] .  In the other description, r = 0 is never reached and even 
r = 2M is attained only asymptotically [equations (25 .35) and (25 .37) ] .  The qualitative features of the motion in both cases are most easily deduced by inspection of the "effective potential-per-unit-mass" V in its dependence on r (Figure 25 .2) when one is interested in proper time; or the same effective potential V in its dependence on the "tortoise coordinate" r• [Figure 25 .4 and equation (25 .31) ] when one is interested in Schwarzschild-coordinate time t. 

ing the asymptotic approach to r = 2M). The difficulty in the integration for t, as 
compared to the ease of the integration for 7' (25.28), has a simple origin. Only two 
r-values appear in (25.27a) as special points when I is zero: the starting point, r = R, 
where the velocity vanishes, and the point r = 0, where dr / dT becomes infinite. In 
contrast (25.36), rewritten as 

I I 
[ l  - 2M/R]112 dr 

t = dt = 
[2M/r - 2M/ R]112 (1 - 2M/r) ' (2536') 

contains three special points: r = R, r = 0, and the added point with all the new 
physics, r = 2M. To admit angular momentum is to increase the number of special 
points still further, and to make the integral unmanageable except numerically or 
qualitatively (via the potential diagram of Figure 25.4), or in terms of elliptic 
functions [Hagihara (1931 )]. 

It is often convenient to abstract away from the precise value r = R at the start (4) free-fa l l  from r = oo 
of the collapse. In this event, one deals with the limit R -+ oo.  Then it is convenient 
to displace the zero of proper time to the instant of final catastrophe. In this limit, 
one has 

T/2M = -(2/3)(r/2M)312, 

t/2M = -(2/3)(r/2M)312 - 2(r/2M)1;2 + 1n �;��:;:;: � � . (25.38) 

At very large negative time, the particle is far away and approaching only very 
slowly. Then one can write 

r = (9MT2/2)113 c::::: (9Mt2/2)113 (25.39a) 



Nonradial orbits 
( 1) Fourier analysis 

(2) details of angular motion 
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whether one refers to coordinate time or to proper time. However, the final stages 
of infall are again very different, when expressed in terms of proper time ( r -+ 0, 
r -+ 0), from what they are as expressed in terms of Schwarzschild-coordinate 
time, 

r /2M = 1 + 4e-Bl3e-tl2M_ (25.39b) 

Turning from pure radial motion to motion endowed with angular momentum, 
one has a situation where one would like to express the principal quantities of the 
motion (components of displacement, velocity, and acceleration) in Fourier series 
(in Schwarzschild-coordinate time), these being so convenient in the Newtonian limit 
in analyzing radiation and perturbations of one orbit by another and tidal perturba
tions of the moving particle itself by the tide-producing action of the center of 
attraction. Any exact evaluation of these coefficients would appear difficult. For the 
time being, the values of the Fourier amplitudes would seem best developed by 
successive approximations starting from the Newtonian analysis (see Box 25.4 and 
references cited there). 

In connection with any such Fourier analysis, it is appropriate to recall that the 
fundamental frequency alone appears, and all higher harmonics have zero amplitude, 
when the motion takes place in an exactly circular orbit (opposite extreme from 
the pure radial motion of I = 0). Therefore it is of interest to note ( exercise 25 .19) 
that the circular frequency w of this motion, as measured by a faraway observer, 
is correlated with the Schwarzschild r-value of the orbit by exactly the Keplerian 
formula of non-relativistic physics: 

( exact; general relativity). (25.40) 

Turn now from the correlation between r and time to the correlation between 
r and angle of revolution (</> in the analysis here; 0 in the Hamilton-Jacobi analysis 
of Box 25.4; this difference in name is irrelevant in what follows). Return to equation 
(25.16), 

and recall also equation (25.17) 

d<t> _ I 
dr 

- � -

Solve the second equation for dr, and substitute into the first to find 

(� :r + p2(r) = £2, 

or equivalently, with u = M/r and Lt = I; M = L/ Mµ,, 

( !; r  = £2 _ (1 - 1�;(1 + u 2u2) 

(25.41) 

(25.42) 
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Exercise 25.16 presents an alternative differential equation derived from this for
mula, and uses it to obtain the following expression for the angle swept out by the 
particle or planet, moving in a nearly circular orbit, between two successive points 
of closest approach: 

2'7T 
.1</> = 

(1 - 6M/r0)11 2 (25.43) 

The radial motion turns around from ingoing to outgoing, or from outgoing to 
ingoing, whenever the quantity £2 - V2(r), or E - V(r), plotted as a function of 
r, undergoes a change of sign, and this as clearly here in the correlation between 
r and </> as in the earlier correlation between r and time. Recall again the curves 
of Figure 25.2 for V(r) as a function of r for selected L values. From them one can 
read out, without any calculation at all, the principal features of typical orbits (Box 
25.6) obtained by detailed numerical calculation. Characteristic features are 

(1) circular orbit when E coincides with a minimum of the effective potential V(r), 

(2) precession when E is a little more than Vmin' 
(3) temporary "orbiting" (many turns around the center of attraction) when E 

is close to a maximum Vmax of the effective potential, 
(4) "capture into the black hole" when E exceeds Vmax· 

A more detailed analysis appears in Box 25.6. [For explicit analytic calculation of 
orbits in the Schwarzschild geometry, see Hagihara (1931), Darwin (1959 and 1961), 
and Mielnik and Plebanski (1962).] 

For orbits of positive energy, no feature of the inverse-square force is better known 
than the Rutherford scattering formula. It gives the "effective amount of target area" 
presented by the center of attraction for throwing particles into a faraway receptor 
that picks up everything coming off into a unit solid angle at a specified angle of 
deflection 8: 

da 

dil 
_ M2 

2 2 (Rutherford; nonrelativistic) 
[4(£ - 1) sin 8/2] 

(25.44) 

(derivation in equations 8 to 15 of Box 25.4). When one turns from the Newtonian 
analysis to the general-relativity treatment, one finds two striking new features of 

(3) nearly circular orbits: 
periastron shift 

(4) qualitative features of 
angular motion 

Scattering of incoming 
particles 

(1) Rutherford 
(nonrelativistic) cross 
section 

the scattering associated with the phenomenon of orbiting. (1) The particles that (2) new features due to 
come off at a given angle of deflection 8 now include not only those that have really relativistic gravity 

been deflected by 8 (the only contribution in Rutherford scattering), but also those 
that have been deflected by 8 + 2'7T, 8 + 4'7T, . . .  etc. (an infinite series of contribu-
tions). (2) These supplementary contributions, while finite in amount, and even finite 
in amount "per unit range of 8," are not finite in amount when expressed "per 
unit of solid angle dil = 2'7T sin 8 d8" in either the forward direction (8 = 0) or 
the backward direction (8 = '7T). This circumstance produces no spectacular change 
in the forward scattering, for that is already infinite in the nonrelativistic approxi-
mation (infinity in Rutherford value of da I dQ as 8 = 0 is approached, arising from 
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particles flying past with large impact parameters and experiencing small deflections; 
see exercise 25.21). In contrast, the backward scattering, which was perfectly finite 
in the Rutherford analysis, acquires also an infinity: 

constant 
sin e (25.45) 

This concentration of scattering in the backward direction is known as a "glory." 
The effect is most readily seen by looking at the brilliant illumination that surrounds 
the shadow of one's plane on clouds far below (180 ° scattering of light ray within 
waterdrop ). It is also clearly seen in observations on the scattering of atoms by atoms 
near e = 180 ° . No dwarf star, not even any neutron star, is sufficiently compact 
to be out of the way of a high-speed particle trying to make such a 180 ° turn. Only 
a black hole is compact enough to produce this effect. 

Further interesting features of motion in Schwarzschild geometry appear in the 
exercises below. 

Exercise 2 5 . 1 3 . QUALITATIVE FO R M S  O F  PARTICLE O R B ITS Verify the statements about particle orbits made in part C of Box 25 .6 . 
Exercise 25 . 1 4 . I M PACT PARAM ETE R For a scattering orbit (i .e . ,  unbound orbit) , show that I = Ev.,b, where b is the impact parameter and v., the asymptotic ordinary velocity ;  also show that 

b = L/(£2 _ 1 ) 112 .  (25 .46) 
Draw a picture illustrating the physical significance of the impact parameter. 
Exercise 2 5 . 1 5 . TI M E  TO FALL TO r = 2M Show from equation (25 . 1 6)  and the first picture in Box 25 .6 that orbits (general I value ! )  which approach r = 2M do so  in a finite proper time, but  (equation 25 .32) an infinite coordinate time t. For equilibrium stars, which must have radii R > 2M, the coordinate time 
t to fall to the surface is finite, of course. 
Exercise 2 5 . 1 6 . PER IASTRO N S H I FT FO R N EARLY C I R C U LAR O R B ITS Rewrite equation (25 .42) in the form 

(25 .47) 
Express the constant u0 = M/r0 in terms of L/ M, and express £0 in terms of u0 • Show for a nearly circular orbit of radius r0 that the angle swept out between two successive periastra (points of closest approach to the star) is 

(25 .48) 
Sketch the shape of the orbit for r0 = 8M. 
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Exercise 25. 1 7. ANGULAR MOTION DURING INFALL 
From equation (25.42), deduce that the total angle .:!<f, swept out on a trajectory falling into 
r = 0 is finite. The computation is straightforward; but the interpretation, in view of the 
behavior of t(A) on the same trajectory (equation 25.32 and exercise 25.15), is not. The 
interpretation will be elucidated in Chapter 3 I .  

Exercise 25 . 1 8. MAXIMUM AND MINIMUM OF EFFECTIVE POTENTIAL 
Derive the expressions given in the caption of Figure 25.2 for the locations of the maximum 
and the minimum of the effective potential as a function of angular momentum. Determme 
also the limiting form of the dependence of barrier height on angular momentum in the 
limit in which I is very large compared to M. 

Exercise 25. 1 9. KEPLER LAW VALID FOR CIRCULAR ORBITS 
From dq,/dr of (25.17) and dt/dr of (25.18), deduce an expression for the circular frequency 
of revolution as seen by a faraway observer; and from the results of exercise 25.18 (or 
otherwise) show that it fulfills exactly the Kepler relation 

for any circular orbit of Schwarzschild r-value equal to r, whether stable (potential minimum) 
or unstable (potential maximum). 

Exercise 25.20. HAMILTON-JACOBI FUNCTION 
Construct the locus in the r, 8 diagram of points of constant dynamic phase S(t, r, 8) = 0 
for t = 0 and for values I = 4M, E = I ( or for I = 2 y3M, E = (8/9)112,  or for some other 
equally simple set of values for these two parameters). Show that the whole set of surfaces 
of constant S can be obtained by rotating the foregoing locus through one angle, then another 
and another, and recopying or retracing. Interpret physically the principal features of the 
resulting pattern of curves. 

Exercise 25 .21 . DEFLECTION BY GRAVITY CONTRASTED WITH 
DEFLECTION BY ELECTRIC FORCE 

A test particle of arbitrary velocity /3 flies past a mass M at an impact parameter b so great 
that the deflection is small. Show that the deflection is 

8 = ;;; (I + f3 2), (25.49) 

Derive the deflection according to Newtonian mechanics for a particle moving with the speed 
of light. Show that (25.49) in the limit f3 -+  I is twice the Newtonian deflection. Derive 
also (flat-space analysis) the contrasting formula for the deflection of a fast particle of rest 
mass µ. and charge e by a nucleus of charge Ze, 

(25.50) 

How feasible is it to rule out a "vector" theory of gravitation [see, for example, Brillouin 
(1970)], patterned after electromagnetism, by observations on the bending of light by the 
sun? [Hint : To simplify the mathematical analysis, go back to (25.42). Differentiate once 
with respect to <f, to convert into a second-order equation. Rearrange to put on the left all 
those terms that would be there in the absence of gravity, and on the right all those that 
originate from the - 2u term (gravitation) in the factor (1 - 2u). Neglect the right-hand 
side of the equation and solve exactly (straight-line motion). Evaluate the perturbing term 
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on the right as a function of cf, by inserting in it the unperturbed expression for u(<f,) . Solve 
again and get the deflection.] 

Exercise 25 .22. CAPTURE BY A BLACK HOLE 

Over and above any scattering of particles by a black hole, there is direct capture into the 
black hole. Show that the cross section for capture is ?Tb�rw with the critical impact parameter 
bcrit given by Lcrii/(E2 - µ2)11 2. From the formulas in the caption of Fig. 25.2 or otherwise, 
show that for high-energy particles this cross section varies with energy as 

a capt = 27'7TM2 ( 1 + 
3
�

2 
+ . . .  ) 

(photon limit for E --+  oo )  and for low energies as 

where /3 is the velocity relative to the velocity of light (Bogorodsky (1962)]. 

§ 2 5 . 6 .  ORBIT O F  A P H OTO N,  NEUTRINO,  OR 

GRAVITO N IN SCHWARZSCHILD GEO METRY 

(25.51)  

(25.52) 

The concepts of "energy per unit of rest mass" and "angular momentum per unit 
of rest mass" make no sense for an object of zero rest mass (photon, neutrino, even 
the graviton of exercise 35.16). However, there is nothing about the motion of such 
an entity that cannot be discovered by considering the motion of a particle of finite 
rest mass µ, and going to the limit µ, -+ 0. In this limit the quantities 

E = E/µ, 

and 
I =  L/µ, 

individually go to infinity; but the ratio 

(angular ) 
(impact para-) = b = momentum = L 

meter (linear ) (E2 - µ,2)112 

momentum 

goes to the finite value 

Lim f = b. 
ro E 

(£ 2 - 1)1/2 (25.53) 

(25.54) 

In this limit, equation (25 .41) for the shape of the orbit reduces at once to the simple 
form 
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or 

or 

(J_ dr )
2 

+ 1 - 2M/r _ J_ 
r2 d<t> r2 - b2 ' 

(du )
2 (M)2 1 - + u 2(1 - 2u) = - = -d<t> b - b2 . 
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(25.55) 

(25.56) 

(25.57) 

Whichever way the differential equation for the orbit is written, one term in it 
depends on the choice of orbit (the term l/b2) the other on the properties of the 
Schwarzschild geometry, but not on the choice of orbit. This second term defines 
a kind of effective potential, 

( 
"effective 

) potential for B-2(r) 1 -
r
�M/r . 

photon" 
(25 .58) (3 )  effective potent ia l  

No attempt is made here to take the square root, as was done for a particle of finite 
rest mass. There one took the root in order to have a quantity that reduced to the 
Newtonian effective potential (plus the rest mass) in the nonrelativistic limit; but 
for light (v = 1) there is no nonrelativistic limit. Therefore the effective potential 
(25.58) is plotted directly in Box 25.7, and used there to analyze some of the principal 
features of the orbits of a photon in Schwarzschild geometry. 

On occasion it has proved useful to plot as a function of r, not the "effective 
potential" of (25 .58), but the "potential impact parameter B(r)" calculated from that 
formula [see, for example, Power and Wheeler (1957), Zel'dovich and Novikov 
(1971)]. This potential impact parameter has the following interpretation: A ray, 
in order to reach the point r, must have an impact parameter b that is equal to 
or less than B(r): 

b � B(r) ("condition of accessibility"). (25.59) 

A ray with zero impact parameter (head-on impact), or any impact parameter less 
than bcrit = min[B(r)] = 3 -/3M, can get to any and all r values. (4) cr it ical  i m pact parameter 

The beautifully simple "effective potential" defined by (25.58) is used in (25.56) 
to determine the shape of an orbit; that is, the azimuth <f> that the photon has when 
it gets to a given r-value. In other connections, it can be equally interesting to know 
when, or at what Schwarzschild coordinate time, the photon gets to a given r value. 
More broadly, the geodesic of a photon, for which proper time has no meaning, (5)  affi ne parameter 
admits of analysis from first principles by way of an affine parameter A, as contrasted 
with the device of first considering a particle and then going to the limit µ, -+ 0. 

(continued on page 676) 
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Box 25 . 7  QUALITATI VE ANALYSIS OF ORB ITS OF A PHOTON 
IN SCHWARZSCHILD GEOMETRY 

A. Equations Govern ing Orbit 

I. Effective-potential equation for radial part of motion: 

(:�r + B-2(r) = b-2 ; 

B-2(r) = r-2(1  - 2M/r); 

b = (impact parameter). 

2. Supplementary equations to determine angular and time motion: 

d<t>/d'A = I/r 2 ; 

dt/d'A = b-1(1  - 2M/r)-1 . 

s-2(r) 

I 

b -2 I 

0 .04M-2 

1 /27 M2 

b - 2 2 

0 .02M-2 

0 

. . . . . . . . . . . . . . . . . . .  

0 2 

B .  Qua l itative Features of  Orbits 

3 4 

b, > 3 y'3 M ---=----.--
(dr/ dl-,. )2 

6 8 

- r/M ----..  

(deduced from effective-potential d iagram) 

I. A zero-mass particle with b > 3 y3M, which falls in from r = oo,  is "reflected 
off the potential barrier" (periastron; b = B;  dr/d"'A. = 0) and returns to 
infinity. 
a. For b ► 3 y3M, the orbit is a straight line, except for a slight deflection of 

angle 4M/b ( exercise 25.2 1 ;  §40.3). 
b. For 0 < b - 3 y3M � M, the particle circles the star many times ("un

stable circular orbit) at r ::::: 3M before flying back to r = oo .  
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2.  A zero-mass particle with b < 3 .../3M, which falls in from r = oo ,  falls into 
r = 2M (no periastron). 

3 .  A zero-mass particle emitted from near r = 2M escapes to infinity only if 
it has b < 3 y3M; otherwise it reaches an apastron and then gets pulled 
back into r = 2M. 

C.  Escape Versus Capture as a Function of  Propagation D i rection 

An observer at  rest in the Schwarzschild gravitational field measures the ordi
nary velocity of a zero-mass particle relative to his orthonormal frame [equa
tions (23 . 1 5)] : 

v, = r 
lgrrl l/2 dr/d>-. = +(l - b2/B2)1/2 . 
lgoo l 1;2 dt/d>-. ' 

lg 1 112 d<f>/d>-. 
v¢ = 

1:0: 1 112 dt/ d>-. 
= b/ B;  

(v;:)2 + (v
¢)2 = l ; 

8 (angle between propagation direction and radial direction) 
= cos-1 v;. = sin-1 vif>. 

To be able to cross over the potential barrier, the particle must have b < 3 .../3M, 
or v/B 2 < 27M2, or sin2 8 < 27M2/B 2 . This result, restated : 
1 .  A particle of zero rest mass at r < 3M will eventually escape to infinity, rather 

than be captured by a black hole at r = 2M if and only if vr is positive and 

sin 8 < 3 y3MB-1(r). 

2. A particle of zero rest mass at r > 3M will eventually escape to infinity if and 
only if: (1) vr is positive, or (2) vr is negative and 

sin 8 > 3 y3MB- 1(r). 

White, escape; black, to black hole; directions in proper reference frame 

0 

e(f. = r' o/o<J> 

• �•; �2MJ,)'" 0/� 
I I I 

2 4 6 

- r/M ___. 

8 

I 
I 

10  



(6) equat ions for orb i t  

( 7) scatter i ng cross sect ion 
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Return to the statement of the conservation laws (25.17) and (25.18) in the form 
that makes reference to the affine parameter A but no reference to the rest mass 
µ,; thus 

and 

dcp L 
d;\ r 2 

dt E = ----
di\ 1 - 2M/r . 

(25.60) 

(25.61) 

Recall that the course of a photon in a gravitational field is governed by its direction 
but not by its energy. Therefore neither E nor L individually are relevant but only 
their ratio, the impact parameter b = L/ E of (25.54) and exercise 25.14. This 
circumstance leads one to replace the affine parameter A by a new affine parameter, 

(25.62) 

that is equally constant along the world line of the photon. In this notation ( drop 
the subscript "new" hereafter), the conservation laws take the form 

dcp 1 
d;\ 

= 
r 2 ' 

dt 1 
d;\ 

-
b(l - 2M/r) . 

(25.63) 

(25.64) 

The statement that the world line of the photon is a line of zero lapse of proper 
time, 

(25.65) 

leads to the "radial equation" 

(25.66) 

Here one encounters again the "effective potential" B-2(r) of (25.58). The present 
fuller set of equations for the geodesic of a photon have the advantage that they 
reach beyond space to a description of the world line in spacetime. 

Return to space! Figure 25 .6 shows typical orbits for a photon in Schwarzschild 
geometry. Figure 25.7 shows angle of deflection as a function of impact parameter. 
From the information contained in this curve, one can evaluate the contributions 
to the differential scattering cross section 

da 
dll L I 2'TT

b db  I 
"branches " 2'TT sin 0 d0 (25.67) 

from the various "branches" of the scattering curve of Figure 25.7 [one turn around 
the center of attraction, two turns, etc.; for more on these branches and the central 



Figure 2 5 . 6 .  The orbit o f  a photon in the "equatorial plane" o f  a black hole, plotted in terms of the Schwarzschild coordinates r and cf,, for selected values of the turning point of the orbit, rTP/ M = 2.99, 3 .00 (unstable circular orbit), 3 .0 1 ,  3 .5 ,  4, 5, 6, 7, 8, 9. The impact parameter is given by the formula b = rTP( I  - 2 M/rTP)-112. In none of the cases shown, even for the inward plunging spiral, is the impact parameter less than 
bcr1t = (27)112 M, nor are any of these orbits able to cross the circle r = 3 M. That only happens for orbits with b less than bcrit• For such orbits there is no turning point; the photon comes in from infinity and ends up at r = 0: straight in for b = 0 (head-on impact) ; only after many loops near r = 3M, when b/ M = (27)112 - e, where e is a very small quantity. Appreciation is expressed to Prof. R. H. Dicke for permission to publish these curves, which he had a digital calculator compute and plot out directly from the formula d2u/dcp2 = 3u2 - u, where u = M/r. 

role of the deflection function e = 8(b) in the analysis of scattering, see, for example, 
Ford and Wheeler (1959a,b)] .  For small angles the "Rutherford" part of the scatter
ing predominates. The major part of the small-angle scattering, and in the limit 
e -+ 0 all of it, comes from large impact parameters, for which one has 

(25.68) 

(see exercises 25.21 and 25.24) . It follows that the limiting form of the cross section 
is 

.1!!_ = (4M)2 

dll 8 2 (small 0) . (25.69) 

Also, at e = 'lT one has a singularity in the differential scattering cross section, with 
the character of a glory [see discussion following equation (25.44)]. Writing down 
the contributions of the several branches of the scattering function to the differential 
cross section, and summing them, one has, near e = 'lT, 

da M2 M2 

dn = 'lT _ e (1.75 + 0.0029 _+ 0.0000055 + . . .  ) = 1.15 'lT _ e . (25.70) 

Thus, in principle, if one shines a powerful source of light onto a black hole, one 
gets a direct return of a few photons from it. Equation (25.70) provides a means 
to calculate the strength of this return. See exercise 25.26 . 



(8) g ravitationa l  lens effect 
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Deflection of  a photon by  a Schwarzschild black hole, o r  by  any spherically symmetric center of  attraction 
small enough not to block the trajectory of the photon. The accurate calculations (smooth curves) are 
compared with formulas ( dashed curves) valid asymptotically in the two limiting cases of an impact 
parameter, b :  ( 1 )  very close to bcrit = 3312M (many turns around the center of attraction) ; and (2) very 
large compared to bcrit (small deflection). The algorithm for the accurate calculation of the deflection 
proceeds as follows ( all distances being given, for simplicity, in units of the mass value, M). ( 1 )  Choose 
a value, r = R, for the Schwarzschild coordinate of the point of closest approach. (2) Calculate the im
pact parameter, b, from b2 = R3/(R - 2). (3) Calculate Q from Q2 = (R - 2) (R + 6) . (4) Determine 
the modulus, k, of an "elliptic integral of the first kind" from sin20 = k2 = (Q - R + 6)/2 Q. (5)  De
termine the so-called amplitude cf, = cf,min of the same elliptic function from sn2umin = sin2cf,min = 
(2 + Q - R)/(6 + Q - R).  (6) Then the total deflection is 

e = 4(R/Q)112[F('IT/2, 0) - F(cpmin' 0) l - 'IT . 

The values plotted here were kindly calculated by James A. Isenberg on the basis of the work of C. G. 
Darwin ( 1959, 1 96 1 ). 

When the source of illumination, instead of being on the observer's side of the 
black hole, is on the opposite side, then in addition to the "lens effect" experienced 
by photons flying by with large impact parameter [literature too vast to summarize 
here, but see, e.g., Refsdal (1964)], and subsumed in equation (25.68), there is a 
glory type of illumination (intensity ~ I/sin 0, with now, however, (9 close to zero) 
received from photons that have experienced deflections (9 = 21r, 41r, . . . .  This 
illumination comes from "rings of brightness" located at impact parameters given 
by b/ M - 3312 = 0.0065, 0.000012, . . . . Interesting though all these optical effects 
are as matters of principle, they are, among all the ways to observe a black hole, 
the worst; see part VI, C, of Box 33.3 for a detailed discussion. 



§ 2 5  7 S PHERICAL STAR CLU STERS 

Exercise 25 .23. QUALITATIVE FEATURES OF PHOTON ORBITS 

679 

Verify all the statements about orbits for particles of zero rest mass made in Box 25 .7 . 
Exercise 25.24. LIGHT DEFLECTION Using the dimensionless variable u = M/r in place of r itself, and ub = M/b in place of the impact parameter, transform (25 .55) into the first-order equation 

( du )2 dq, + ( I  - 2u)u2 = u� 
and thence, by differentiation, into 

d2u - z dq, 2 + u - 3u . 

(25 .7 1 )  

(25 .72) 
(a) In the large-impact-parameter or small-u approximation, in which the term on the right is neglected, show that the solution of (25 .72) yields elementary rectilinear motion (zero deflection) . (b) Insert this zero-order solution into the perturbation term 3u2 on the righthand side of (25 .72), and solve anew for u ("rectilmear motion plus first-order correction") . In this way, verify the formula for the bending of light by the sun given by putting (3 = I in equation (25 .49) .  

Exercise 25 .25 .  CAPTURE OF LIGHT BY A BLACK HOLE Show that a Schwarzschild black hole presents a cross section acapt = 27wM2 for capture of light. 
Exercise 25 .26. RETURN OF LIGHT FROM A BLACK HOLE Show that flashing a powerful pulse of light onto a black hole leads in principle to a return from rings of brightness located at b/ M - 331 2 = 0 . 1 5 1 ,  0 .00028 ,  . . . .  How can one evaluate the difference in time delays of these distinct returns? Show that the intensity I of the return (erg/cm2) as a function of the energy E0( erg/steradian) of the original pulse, the mass M(cm) of the black hole, the distance R to it, and the lateral distance r from the "flashlight" to the receptor of returned radiation is 

E0 "° 1 2b db 
I 

E0M2 I = R 3r L-- dB = �(1 .75 + 0 .0029 + 0 .0000055 + . . . ) 
8 = (2N + l),r 

under conditions where diffraction can be neglected. 

§ 2 5 . 7 .  SPHERICAL STAR CLUSTERS By combining orbit theory, as developed in this chapter, with kinetic theory in curved spacetime as developed in §22 .6, one can formulate the theory of relativistic star clusters. 

EXERCISES 

Consider, for simplicity, a spherically symmetric cluster of stars ( e.g. , a globular Static, spherical star clusters cluster, but one so dense that relativistic gravitational effects might be important) . 



(1) foundations for analysis 

(2) solution of Vlasoff 
equation 
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Demand that the cluster be static, in the sense that the number density in phase 
space q/{, is independent of time. (New stars, flying along geodesic orbits, enter a 
fixed region in phase space at the same rate as "old" stars leave it.) Ignore collisions 
and close encounters between stars; i.e. , treat each star's orbit as a geodesic in the 
spherically symmetric spacetime of the cluster as a whole. 

With these idealizations accepted, one can write down a manageable set of equa
tions for the structure of the cluster.* Since the cluster is static and spherical, so 
must be its gravitational field. Consequently, one can introduce the same kind of 
coordinate system ("Schwarzschild coordinates") as was used for a static spherical 
star in Chapter 23: ds 2 = - e2 if> dt2 + e2 A  dr2 + ,2 d[] 2 ; <P = <P(r), A = A(r). (25.73) 

In the tangent space at each event in spacetime reside the momentum vectors of 
the swarming stars. For coordinates in this tangent space ("momentum space"), it 
is convenient to use the physical components of 4-momentum, p°'-i.e., components 
on the orthonormal frame 

w i- = eA dr, w 8 = r d0, w¢ = r sin 0 d</>. (25.74) 

Then the number density of stars in phase space is a spherically symmetric, static 
function 

(25.75) 

[q/l is independent of t because the cluster is static; and independent of 0, </>, and 
angle 8 = tan-1(p1' /p 8) because of spherical symmetry.] 

The functions describing the structure of the cluster, <P, A, and q/l, are determined 
by the kinetic (also, in this context, called the Vlasoff) equation (§22.6) 

dq}{,/ dA = 0, i.e., qJ{, conserved along orbit 
of each star in phase space; 

and by the Einstein field equations 

(25.76a) 

(25.76b) 

[The Vlasoff equation for Newtonian star clusters is treated by Ogorodnikov (1965). 
The above expression for the stress-energy tensor of a swarm of particles (stars) was 
derived in exercise 22.18. Here, as in exercise 22.18, the particles (stars) are assumed 
not all to have the same rest mass. Note that rest mass is here denoted µ,, but in 
Chapter 22 it was denoted m.] 

To solve the Vlasoff equation, one need only note that qJ{, is conserved along stellar 
orbits and therefore must be a function of the constants of the orbital motion. There 
is a constant of motion corresponding to each Killing vector in the cluster's static, 
spherical spacetime (see exercise 25.8) : 

*These equations were first denved and explored by Zel'dovich and Podurets (1965) .  
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E = "energy at infinity"= -p · ('a/at)= -p0 , 

Lz = "z-component of angular momentum"= p · ( z = p · (a/a</>) = P,t,, 

6 8 1 

Ly = 'y-component of angular momentum"= p · ( Y' (25.77a) 

L., = "x-component of angular momentum"= p · ( .,. 

In addition, each star's rest mass 

(25.77b) 

is a constant of its motion. The general solution of the Vlasoff equation, then, has 
the form 

But this general solution is not spherically symmetric. For example, the distribution 
function 

9ll = H(E, µ,, Lz> o(Ly) o(L.,), 

corresponds to a cluster of stars with orbits all in the equatorial plane 0 = 
'TT /2 (Ly = L., = 0 for all stars in cluster). To be spherical the cluster's distribution 
function must depend only on the magnitude 

L = (L.,Z + L/ + L/)112 

of the angular momentum, and not on its direction (not on the orientation of a star's 
orbital plane). Thus, the general spherical solution to the Vlasoff equation in a static, 
spherical spacetime must have the form 

9ll = F(E, L, µ,). (25.78) 

To use this general solution, one must reexpress the constants of the motion E, 
L, µ,, in terms of the agreed-on phase-space coordinates (t, r, 0, </>, p 0, p r, p 9 , p if>). The 
rest mass of a star is given by (25.77b). The energy-at-infinity is obtained by red
shifting the locally measured energy 

(25.79a) 

For an orbit in the equatorial plane (p0 = p 0 = p 9 = O; L., = Ly = 0), the total 
angular momentum has the form 

L = ILzl = IP¢ 1 = lrpif> I  = r X ("tangential" component of 4-momentum). 

By symmetry, the equation L = r X ("tangential" component of p) must hold true 
also for orbits in other planes; it must be perfectly general: 

L = rp t, (25.79b) 

p r = (tangential component of 4-momentum) = [(p 9)2 + (p if>)2]112 (25.80) 

(see exercise 25.9). 



(3) "smeared-out" 
stress-energy tensor due 
to stars 
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Before solving the Einstein field equations, one finds it useful to reduce the 
stress-energy tensor to a more explicit form than (25.76b). The off-diagonal compo
nents r0i and rife (J -:j:. k) all vanish because their integrands are odd functions of 
p i. The integrands for the diagonal components r00, rrr, and ½(r9 9  + r1>1>) are 
independent of angle e tan-1(p if>/p 9) in the tangential momentum plane; so the 
momentum volume element can be rewritten as 

dp
0 dp" dp

9 dp if> � 2'TTp t dp
t dp" dp

0. 

Changing variables from (p t, p ", p
0) to (p i', µ,, p

0) where 

/J, = [(p 0)2 _ (pi)2 _ (p t)2p12, 

and recognizing that two values of p" (+p
1) correspond to each value of µ,, one 

brings the volume element into the form 

The diagonal components of T [equation (25.76b)) then read 

p r00 = (total density of mass-energy) 

= 4'TT J F (eq,
p

o, rp t, µ,)(p o 2
p

t/p� dp
i' dp

o dµ,, 

1 A A  A A  A A  A A  

Pr 2 
(r9 9  + r<1><1>) = r00  = r<1><1> = (tangential pressure) 

�by spherical symmetry) 

= 2'TT J F (eq,
p

0, rp t, µ,)[(p 1')3 /p"J dp
t dp

0 dµ,, 

Pr rrr = (radial pressure) 

= 4'TT J F (eq,
p

0, rp t, µ,)(p"p T) dp
t dp

0 dµ,. 

(25.81a) 

(25.81b) 

(25.81c) 

When performing these integrals, one must express p" in terms of the variables of 
integration, 

(25.8 ld) 

(4) solution of field equations The Einstein field equations for this stress-energy tensor and the metric (25.73), 
after use of expressions (14.43) for Ga!J and after manipulations analogous to those 
for a spherical star (§23.5), reduce to 

e2A = (1 - 2m/r)-1, m = f
r 
4'TTr 2

p dr; 
0 

d<J> m + 4'TTr3 Pr 
dr - r(r - 2m) · 

(25.82a) 

(25.82b) 

These equations, together with the assumed form F (E, L, µ,) of the distribution 



§25 . 7 SPHER I CAL STAR CLUSTERS 6 8 3  function and the integrals (25 .8 1 )  for p ,  P,., and PT• determine the structure of the cluster. Box 25 .8 gives an overview of these structure equations, and specializes them for an isotropic velocity distribution. Box 25 .9 presents and discusses the solution to the equations for an isothermal star cluster (truncated Maxwellian velocity distribution) . 
Exercise 25.27. ISOTROPIC STAR CLUSTER For a cluster with distribution function independent of angular momentum, derive properties B . l  to B .6 of Box 25 .8 .  
Exercise 25.28. SELF-SIMILAR CLUSTER [See B isnovatyi-Koga n and Zel 'dovich 

( 1 969) , B isnovatyi-Kogan and Thorne ( 1 970) .]  ( a) Find a solution to the equations of structure for a spherical star of infinite central density, with the equation of state P = yp, where y is a constant (0 < y < 1 /3) .  (b) Find an isotropic distribution function F(E, µ,)  that leads to  a star cluster with the same distributions of p, P, m, and <P as in the gas sphere of part (a) . (See Box 25 .8 .) [Answer : 

y 2  I 
p = yp = I + 6y + y2 27Tr2 ' e 2A = ( I - 2m/r)-1 = ( I + 6y + y 2)/( l + y)2, 

e2<1> = Br4Yl(l + Y>, B = const; 
A = const.] 

Exercise 25.29. CLUSTER WITH CIRCULAR ORBITS What must be the form of the distribution function to guarantee that all stars move in circular orbits? Specialize the equations of structure to this case . Analyze the stability of the orbits of individual stars in the cluster, using an effective-potential diagram. What conditions must the distribution function satisfy if all orbits are to be stable? [See Einstein ( 1 939), Zapolsky ( 1 968) . ]  

Box 25.8 EQUATIONS OF STRUCTURE FOR A SPHERICAL STAR CLUSTER 

A. To Bu i l d  a M odel for a Star  Cl uster, Proceed as Fol l ows l .  Specify the distribution function � = F(E, L, µ,), where 
E = energy-at-infinity of a star, 
L = angular momentum of a star, µ, = rest mass of a star. 

EXERCISES 

2 .  Solve the following two integro-differential equations for the metric functions 
m = ½r( l  - e-2A) and </J of the line element 



Box 25.8 (con tinued) 

where 

ds2 = -e2q, dt2 + e2A dr 2 + r2 d{t 2 : 

d<P m + 47Tr3 Pr = ----
dr r(r - 2m) ' 

p = 47T J F (eq,
p

o, rp 'i, µ,)[(pD)2p 'i/pi- ] dp
t dp

o dµ,, 

Pr= 27T J F (eq,
p

o, rp 'i, µ,)[(p 7)3/p; ] dp
t dp

o dµ,, 

pr = 47T f F (eq,
p

0, rp t, µ,)(p i-
p

t) dp
T dp

0 dµ,, 

P; = [(p o)2 _ (p t)2 _ µ,2]11 2_ 

The integrations for p, Pr, and Pr go over all positive p t, p 0, µ, for which 
(p 0)2 - (p 7)2 - µ,2 � 0. 

B .  I f  t h e  D istri bution Function is  I ndependent 
of Angu l a r  Moment u m ,  Then 

1. F = F(E, µ,). 
2. The distribution of stellar velocities at each point in the cluster is isotropic. 
3. P = 47Tf F (eq,

p
o, µ,)[(po)2 _ µ,2]11 2(po)2 dp o dµ, . 

4. The pressure is isotropic : 

pr = Pr p �7T I F (eq,
p

o, µ,)(p 0 2 _ µ,2)3/2 dp
o dµ, . 

5. The total density of mass-energy p, the pressure P, and the metric functions 
<P and m = ½rO - e-2A) satisfy the equations of structure for a gas sphere 
("star"), 

dP 
dr 

m = f 47Tr2p dr, 

d<P m + 47Tr3 P - - ' dr r(r - 2m) 

(p + P)(m + 47Tr3 P) 
r(r - 2m) 

6. Thus, to every static, spherical star cluster with isotropic velocity distribution, 
there corresponds a unique gas sphere that has the same distributions of 
p, P, m, and <P. 

7. Conversely [see Fackerell (1968)], given a gas sphere (solution to equations 
of stellar structure for p, P, m, and <P), one can always find a distribution 
function F(E, µ,) that describes a cluster with the same p, P, m, and <P. But 
for some gas spheres F is necessarily negative in part of phase space, and 
is thus unphysical. 
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Box 25.9 ISOTHERMAL STAR CLUSTERS 

A. D istri bution Function 

1 .  In any relativistic star cluster, one might expect that occasional close encounters between stars would "thermalize" the stellar distribution function. This suggests that one study isotropic, spherical clusters with the Boltzmann distribution function (tacitly assumed zero for p 0 = Ee-<P < µ,0) :?l = F(E, L, µ,) = Ke-EIT 8(µ, - µ,0) . (1) Here K is a normalization constant, T is a constant "temperature," and for simplicity the stars are all assumed to have the same rest mass µ0 • 2 .  In such a cluster, an observer at radius r sees a star of energy-at-infinity 
E to have locally measured energy 

p0 = (rest mass-energy) + (kinetic energy) = P.o 
2 11 2 = Ee-<P<r>. (2) ( 1  - V )  Consequently, the stars in his neighborhood have a Boltzmann distribution 

dN _ _ o d3ft d3:x dµ, - :?l - K exp( -p /Tioc) 8(µ, - JJ,o) with locally measured temperature 
(3) 

(4) Thus, the temperature of the cluster is subject to identically the same redshift-blueshift effects as photons, particles, and stars that move about in the cluster. (For a derivation of this same temperature-redshift law for a gas in thermal equilibrium, see part (e) of exercise 22 .7.) 3. Actually, the Boltzmann distribution (1) can never be achieved. Stars with 
E > µ,0 are gravitationally unbound from the cluster and will escape. The Boltzmann distribution presumes that, as such stars go zooming off toward 
r = oo ,  an equal number of stars with the same energies come zooming in from r = oo to maintain an unchanged distribution function. Such a situation is clearly unrealistic. Instead, one expects the escape of stars to truncate the distribution at some energy Ema:x. slightly less than µ0 • The result, in idealized form, is the "truncated Boltzmann distribution" 

:?l = F(E, L, µ,) = {Ke-EI T 8(µ, - P.o), E < Ema:x., 0 , E > Ema:x.· (5) 
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Box 25 . 9  (con tinued) 

B .  Structu re and Stab i l ity of  Cl uster M odels 

1. Models for star clusters with truncated Boltzmann distributions have been 
constructed by Zel'dovich and Podurets (1965), by Fackerell (1966), and by 
Ipser (1969), using the procedure of Box 25.8. Ipser has analyzed the colli
sionless radial vibrations of such clusters. 

2. In general, these clusters form a 4-parameter family (K, T, µ,0, EmruJ Replace 
the parameter K by the total rest mass of the cluster, M0 = µ,0N, where N 
is the total number of stars. Replace T by the temperature per unit rest 
mass, T = T/µ,0 • Replace Emax by the maximum energy per unit rest mass, 
£max = Emax/µ,0 . Then the clusters are parametrized by (M0 , T, µ,0 , £max). 
When one now doubles µ,0, holding M0, T, l!max fixed (and thus halving the 
total number of stars), all macroscopic features of the cluster remain un
changed. In this sense µ,0 is a "trivial parameter" and can henceforth be 
ignored or changed at will. The total rest mass of the cluster M0 can be 
regarded as a "scaling factor"; all dimensionless features of the cluster are 
independent of it. For example, if Pc is the central density of mass-energy 
[equation (25.81a), evaluated at r = OJ, then Pc Ml is dimensionless and is 
thus independent of M0 , which means that Pc a: M0 -

2 • Only two nontrivial 
parameters remain: T and £max · 

3. Consider as an instructive special case [Zel'dovich and Podurets (1965)] the 
one-parameter sequence with £max = 1 - fr. The following figure, com
puted by Ipser (1969), plots for this sequence the fractional binding energy, 

(6) 

(here M is total mass-energy); the square of the angular frequency for 
collisionless vibrations (vibration amplitude a: e-iwt) divided by central 
density of mass-energy, w2 / Pc; and the redshift, zc, of photons emitted from 
the center of the cluster and received at infinity. All these quantities are 
dimensionless, and thus depend only on the choice of T = T/µ,0 . 

4. Notice that all models beyond the point of maximum binding energy 
(zc � 0.5) are unstable against collisionless radial perturbations (w imagi
nary; amplitude of perturbation a: elw l t). When perturbed slightly, such 
clusters must collapse to form black holes. (See Chapter 26 for an analysis 
of the analogous instability in stars). 

5. These results suggest an idealized story of the evolution of a spherical cluster 
[Zel'dovich and Podurets (1965); Fackerell, Ipser, and Thorne (1969)). The 
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cluster would evolve quasistatically along a sequence of spherical equilibrium 
configurations such as those of the figure. The evolution would be driven 
by stellar collisions and by the evaporation of stars. When two stars collide 
and coalesce, they increase the cluster's rest mass and hence its fractional 
binding energy. When a star gains enough energy from such encounters to 
escape from the cluster, it carries away excess kinetic energy, leaving the 
cluster more tightly bound. Thus, both collisions and evaporation should 
drive the cluster toward states of tighter and tighter binding. When the cluster 
reaches the point, along its sequence, of maximum fractional binding energy, 
it can no longer evolve quasistatically. Relativistic gravitational collapse sets 
in: the stars spiral inward through the gravitational radius of the cluster 
toward its center, leaving behind a black hole with, perhaps, some remaining 
stars orbiting it. 

It is tempting to speculate that violent events in the nuclei of some galaxies 
and in quasars might be associated with the onset of such a collapse, or 
with encounters between an already collapsed cluster (black hole) and 
surrounding stars. 

- 0 5 

1 .0 
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CHAPTER 26  
STE LLAR PU LSATI O N S  

This chapter is  entirely 
Track 2, but i t  neither depends 
on nor prepares for any other 
chapter. 

The raison d 'etre of this 
chapte r 

§ 2 6 . 1 .  M OTIVATIO N 

In relativistic astrophysics, as elsewhere in physics, most problems of deep physical 
interest are too difficult and too complex to be solved exactly. They can be solved 
only by use of approximation techniques. And of all approximation techniques, the 
one that has the widest range of application is perturbation theory. 

Perturbation calculations are typically long, tedious, and filled with complicated 
mathematical expressions. Therefore, they are not appropriate for a textbook such 
as this. Nevertheless, because it is so important that aspiring astrophysicists know 
how to set up and carry out perturbation calculations in general relativity, the authors 
have chosen to present one example in detail. 

The example chosen is an analysis of adiabatic, radial pulsations of a nonrotating, 
relativistic star. Two features of this example are noteworthy: (1) it is sufficiently 
complex to be instructive, but sufficiently simple to be presentable; (2) in the results 
of the calculation one can discern and quantify the relativistic instability that is so 
important for modern astrophysics (see Chapter 24). 

The calculation presented here is patterned after that of Chandrasekhar (1964a,b), 
which first revealed the existence of the relativistic instability. For an alternative 
calculation, based on the concept of "extremal energy," see Appendix B of Harrison, 
Thorne, Wakano, and Wheeler (1965); and for a calculation based on extremal 
entropy, see Cocke (1965). 

The authors are deeply indebted to Mr. Carlton M. Caves, who found and corrected many errors in the equations of this chapter and of a dozen other chapters. 
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§2 6 . 2 .  S ETTI N G  U P  TH E P R O B LEM 

The system to be analyzed is  a sphere of perfect fluid, pulsating radially with very small amplitude. To analyze the pulsations one needs (a) the exact equations governing the equilibrium configuration about which the sphere pulsates ; (b) a coordinate system for the vibrating sphere that reduces, for zero pulsation amplitude, to the standard Schwarzschild coordinates of the equilibrium sphere; (c) a set of small functions describing the pulsation (radial displacement and velocity, pressure and density perturbations, first-order changes in metric coefficients), in which to linearize ; and ( d) a set of equations governing the evolution of these "perturbation functions ." 
a.  Equ i l i bri u m  Configuration The equations of structure for the equilibrium sphere are those summarized in §23 .7 . It will be useful to rewrite them here, with a few changes of notation ( use of subscript 

"o" to denote "unperturbed configuration"; use of A = -½ ln (1 - 2m/r) in place of m in all equations ; use of a prime to denote derivatives with respect to r) :  ds 2 = - e2<P0 dt 2 + e2A
0 dr2 + r2(d0 2 + sin20 d<f, 2), 

A/ = ir ( 1  - e2A.) + 4'7Trpoe2A. , 
Po ' = - (Po + Po)<Po ' , <Po ' = - J__ (1  - e2A•) + 4'7Trpoe2A. _ 

2r 

b.  Coord inates for Pertu rbed Configuration 

(26. l a) 

(26. l b) 

(26. l c) 

(26. l d) 

The gas sphere pulsates in a radial, i .e. , spherically symmetric, manner. Consequently, its spacetime geometry must be spherical. In Box 23.3 it is shown that for any spherical spacetime, whether dynamic or static, one can introduce Schwarzschild coordinates with a line element 

Setti ng  up the ana lysis of 
ste l l a r  pu lsations 

Equ i l i br i um confi g u ration of 
sta r 

ds 2 = - e2<P dt2 + e 2A dr2 + r2(d0 2 + sin20 d<f, 2), <P = <P(t, r) ,  A = A(t, r). 

(26.2) Coord i nates fo r pertu rbed 
confi gu rat ion 

One uses these coordinates for the pulsating sphere because they reduce to the unperturbed coordinates when the pulsations have zero amplitude. 
c. Pertu rbation Fu nctions When the pulsations have very small amplitude, the metric coefficients, <P and A, and the thermodynamic variables p, p, and n as measured in the fluid's rest frame 



Perturbation functions 

How to derive equations 
governing thE\ perturbation 
functions 

Eulerian perturbations 
defined 

Lagrangian perturbations 
defined 

6 9 0  2 6  STELLAR PU LSATIONS have very nearly their unperturbed values. Denote by 8'1>, oA, op, op, and on the perturbations at fixed coordinate locations : 
<l> (t, r) = <l>o(r) + o<l> (t, r), 
p(t, r) = p

0
(r) + op(t, r), A(t, r) = Ao (r) + oA(t, r), 

p(t, r) = p
0
(r) + op(t, r), 

n(t, r) = no (r) + on(t, r) .  (26 .3 a) 
Besides 8'1>, oA, op, op, and on, one more perturbation function is needed to describe the pulsations : the radial displacement � of the fluid from its equilibrium position: A fluid element located at coordinate radius r in the unperturbed configuration is displaced to coordinate radius r + Hr, t) at coordinate time t in the vibrating configuration. (26 .3b) 
To make the analysis of the pulsations tractable, all equations will be linearized in the perturbation functions t 8'1>, 8A, op, op, and on. 

d. Equations of Evol ut ion The evolution of the perturbation functions with time will be governed by the Einstein field equations, the local law of conservation of energy-momentum V · T = 0, and the laws of thermodynamics-all appropriately linearized. The analysis from here on is nothing but a reduction of those equations to "manageable form." Of course, the reduction will proceed most efficiently if one knows in advance what form one seeks. The goal in this calculation and in most similar calculations is simple : ( I )  obtain a set of dynamic equations for the true dynamic degrees of freedom ( only the fluid displacement � in this case; the fluid displacement and the amplitudes of the gravitational waves in a nonspherical case, where waves are possible) ; and (2) obtain a set of initial-value equations expressing the remaining perturbation functions (8'1>, oA, op, op, and on in this case) in terms of the dynamic degrees of freedom (n 

§26 . 3. EULERIAN VERSUS LAGRAN GIAN PERTURBATIONS Before deriving the dynamic and initial-value equations, it is useful to introduce a new concept : the "Lagrangian perturbation" in a thermodynamic variable. The perturbations op, op, and on of equations (26 .3) are Eulerian perturbations in p, p, and n; i .e. , they are changes measured by an observer who sits forever at a fixed point (t, r, 0, cp) in the coordinate grid. By contrast, the Lagrangian perturbationsdenoted Llp, Llp, and Lln-are changes measured by an observer who moves with 



§26 4 INITIAL-VALUE EQUATIONS 6 9 1 the fluid ; i .e . ,  by an observer who would sit at radius r in the unperturbed configuration, but sits at r + �(t, r) in the perturbed configuration : 
::Jp(t, r) = p[t, r + �(t, r)] - p0 (r) 

::::::; op + ro 't 

(26 .4a) Relat ion between Eu ler ian 
a n d  Lag rang i an  pertu rbati ons  

::Jp(t, r) = p[t, r + Ht, r)] - p0 (r) 
::::::; op + Po 't 

::Jn(t, r) = n[t, r + Ht, r)] - no (r) 

::::::; on + no 'f 

§26 .4 .  INITIAL-VALUE EQUATIONS 

a .  Baryon Conservation 

(26 .4b) 
(26 .4c) 

The law of baryon conservation, V · (nu) = 0 (§22.2), governs the evolution of perturbations ::Jn and on in baryon number. By applying the chain rule to the divergence and using the relation u · Vn = Vun = dn/dT, one can rewrite the conservation law as dn/d'T = - n(V · u). L__[derivative of n along fluid world line] In terms of ::Jn, the perturbation measured by an observer moving with the fluid, this equation can be rewritten as 
d ::Jn -- = - n(V · u). d'T (26 .5) 

To reduce this equation further, one needs an expression for the fluid's 4-velocity. It is readily derived from u: = ( dr/d'T ) = ( dr) = � t u dt/ d'T dt along world line o t (u l)2e24> - (ur)2e2A = I .  The result to first order in �' oA, and o<J> is 
Using these components in equation (26 .5), and using the relations 

d a - - u - u"--d'T - - ox" ' V · u = _ � ( v'-gu"),a, v - g 
(26 .6) 

together with the vibrating metric (26 .2), one reduces equation (26 .5) to a relation whose time integral is (26 .7) 

Derivat ion of i n it i a l  va lue  
equat ions ·  
( 1 )  fo r ba ryon pertu rbations  

Lln a n d  on 



(2)  fo r p ressu re pertu rbations 
LJp and 8p 

(3 )  fo r  dens ity pertu rbations 
LJp and 8p 
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This is the initial value equation for Jn in terms of the dynamic variable f The 
initial-value equation for 8n, which will not be needed later, one obtains by combin
ing with equation (26.4c). 

b. Ad iabaticity 

For adiabatic vibrations (negligible heat transfer between neighboring fluid ele
ments), the Lagrangian changes in number density and pressure are related by 

(
o lnp ) - r  _ n Jp 
o ln n s 

L
1 - pTn · 
[definition of adia- J 
batic index, I' 1 

(26.8) 

Combining this adiabatic relation with equation (26.7) for Jn, and equation (26.4a) 
for 8p in terms of .Jp, one obtains the following initial-value equation for 8p: 

(26.9) 

c. En ergy Conservation 

The local law of energy conservation [first law of thermodynamics; u · (V · T) = 0; 
see §§22.2 and 22.3] says that 

dp 
dT 

(p + p) dn 
n dT · 

Rewritten in terms of Lagrangian perturbations (recall: d/ dT is a time derivative 
as measured by an observer moving with the fluid), this reads 

d iJp p + p d .Jn 
dT 

-
n
-� ' 

which has as its time integral (first-order analysis! ) 

Jp = Po + Po Jn. 
no 

(26. 10) 

(The constant of integration is zero, because, when .Jn = 0, Lip must also vanish.) 
Combining this with equation (26.7) for .Jn and equation (26.4b) for 8p in terms 
of iJp, one obtains the following initial-value equation for 8p : 

(26.11) 
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d. E i nstei n F ie ld Equations 

Two of the Einstein field equations, when linearized, reduce to initial-value equations 
for the metric perturbations 8A and 8'1>. The equations needed, expressed in an 
orthonormal frame 

w 1 = eq, dt, w 8 = r d0,  w i> = r sin 0 def,, (26.12) 

are G:;r = 8'7TTrf, and G;.:; = 81TT:;:;. The components of the Einstein tensor in this 
orthonormal frame were evaluated in exercise 14.16: 

. +[linearized] 
. 

G;.1 = 2(A/r)e-<A + q,> = 2r-1e-U, + q,.> 8A; 
G;.;. = 2(</> 1/r)e-2A + r-2(e-2A - 1) 

= (G,.,.)0 + 2r-1e-2A, 8</>' - 2e-2A, (2r- 1<l>o' + r-2) 8A. 

L[linearized] 

(26.13a) 

(26.13b) 

The components of the stress-energy tensor, T;,_(3 = (p + p)u;,_uf3 + PT/af3 , as calcu
lated using the 4-velocity (26.6) [transformed into the form u,, = -1, u,. = teA0- q,0] 

and using expressions (26.3a) for p and p, reduce to 

T;.;. = Po + op. (26.14) 

Consequently, the field equation G:;r = 87TT,.1-after integration with respect to time 
and choice of the constant of integration, so that 8A = 0 when � = 0-reduces to 

8A = -47T(p0 + p0)re2A,� = -(A� + <P�K (26.15) 

This is the initial-value equation for 8A. The field equation G;.;. = 8'7TT,.,., after using 
(26.15) to remove 8A and (26.9) to remove op, and (26. l c) to remove <l>o', reduces 
to 

8</>' = -4'7T I'1Por-le2A, + q,, (r 2e-q,•�)' 
+ [4'7Tp /r - 47T(p0 + p0)]e2A,f 

This is the initial-value equation for 8</>. 

(26.16) 

§26 . 5 .  DYNAM I C  EQUATI ON  AND BO U N DARY CO ND ITI O N S  

The dynamic evolution of the fluid displacement Ht, r) is governed by the Euler 
equation (22.13): 

(p + p) X (4-acceleration) = -(projection of Vp orthogonal to u). (26.17) 

The 4-acceleration a = Vuu corresponding to the 4-velocity (26.6) in the metric (26.2) 
has as its only non-zero, linearized, covariant component: 

ar = <l>o' + 8</>' + e 2U, - q,,>{ 

(4) fo r metr ic perturbat ions 
8A and  o<P 

Derivat ion of equation  of  
motion fo r fl u i d  d i sp lacement 



Boundary conditions on fluid 
displacement 

S u mmary of theory of stellar 
pulsations 

6 9 4  2 6  STELLAR PU LSATIONS 

[The component at is trivial in the sense that it leads to an Euler equation that 
duplicates (26.lc).] Combining this with p + p = p

0 
+ p0 

+ op + op, with the radial 
component po' + op ' for the projection of Vp, and with the zero-order equation of 
hydrostatic equilibrium (26.lc), one obtains for the Euler equation 

(Po + Po )e2U, - 1>, >� = - op ' - (op + op)<Po' - (Po + Po) o<P '. (26.18) 

This equation of motion is put into its most useful form by using the initial-value 
equations (26.9), (26.11), and (26.16) to reexpress op, op, and o<P '  in terms of t and 
by then manipulating terms extensively with the aid of the zero-order equations 
of structure (26.1). The result is 

wf = (Pf ')' + Qf, (26.19) 

where f is a "renormalized displacement function," and W, P, Q are functions of 
radius determined by the structure of the equilibrium star: 

f r2e-1>,t (26.20) 

W (p
0 

+ p
0
)r-2e3A, H,; (26.21a) 

P I'1Por-2eA, + 31',; (26.21b) 

Q eA, + 3 1>, [  (p/)2 
r-2 - 4p/r-3 - 8'7T(Po + Po)Por-2e2A, ] . (26.21c) 

Po + Po 

Equation (26.19) is the dynamic equation governing the stellar pulsations. [This 
equation could be written in other forms; for instance, it could be multiplied by 
w-1 or any other non-zero factor, and terms could be regrouped. The form given 
in equation (26.19) is preferred because it leads to a self-adjoint eigenvalue problem 
for the oscillation frequencies, as indicated in Box 26.1.] 

Not all solutions of the dynamic equation are acceptable. To be physically accept
able, the displacement function must produce noninfinite density and pressure 
perturbations (op and op) at the center of the sphere, which means 

(Vr) finite or zero in limit as r -+  0 (26.22a) 

[see (26.9) and (26.11)]; also, it must leave the pressure equal to zero at the star's 
surface, which means 

fJp = - I'1p0
r-2e1>

0 (r2e-1>
0t)' -+ 0 as r -+  R 

[surface radius]_j 

[see (26.8), (26.7), and (26.15)]. 

§ 2 6 . 6 .  SU M MARY O F  RESU LTS 

(26.22b) 

If an initial displacement of the fluid, t(t = 0, r), is specified subject to the boundary 
conditions (26.22), then its subsequent evolution t(t, r) can be calculated by inte-
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grating the dynamic equation (26.19); and the form of the pressure, density, and 
metric perturbations can be calculated from �(t, r) using the initial-value equations 
(26.9), (26.11 ), (26.15), and (26.16). 

Several important consequences of these results are explored in Boxes 26.1 
and 26.2. ( continued on page 699) 

Box 26 . 1  EIGENVALUE PROBLEM AND VARIATIONAL PRINCIPLE 
FOR NORMAL-MODE PULSATIONS OF A STAR 

Assume that the renormalized displacement function (26.20) has a sinusoidal time 
dependence: 

Then the dynamic equation (26.19) and boundary conditions (26.22) reduce to 
an eigenvalue problem for the angular frequency w and amplitude f(r): 

(Pf')' + Qs + w2 Ws = 0, 

s /r3 finite or zero as r -+- 0, 

r 1l'or-2e<l>of I -+- 0 as r -+- R. 

(1) 

(2a) 

(2b) 

Methods for solving this eigenvalue problem are catalogued and discussed by 
Bardeen, Thorne, and Meltzer (1966). One method (but not the best for numerical 
calculations) is the variational principle: 

R [ f  (Ps'2 - Qf2) dr 
l w2 = extremal value of O 

R f Ws2 dr 
0 

(3) 

where s is varied over all functions satisfying the boundary conditions (2). [See e.g., 
§ 12.3 of Mathews and Walker (1965) for discussion of the equivalence between this 
variational principle and the original eigenvalue problem.] 

The absolute minimum value of expression (3) is the squared frequency of the 
fundamental mode of pulsation. If it is negative, the star is unstable (e-iwt grows 
exponentially in time). If it is positive, the star is stable against adiabatic, radial 
perturbations. Therefore, since the denominator of expression (3) is positive definite, 

adiabatic radial -<==>- i (Ps'2 - Qs2) dr > 0 for all_ fu�ctions . [
stability against

] [ 
R 

] perturbations 5 satisfymg (2) 
(4) 
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Box 26. 1  (continued) 

By numerical solution of the eigenvalue equation (1), the pulsation frequencies 
have been calculated for a wide variety of models of neutron stars and supermassive 
stars. Example: The figure gives a plot of pulsation frequency as a function of central 
density for the lowest four normal modes of the Harrison-Wakano-Wheeler models 
at the endpoint of stellar evolution. (Make a detailed comparison with Figure 24.2.) 
These curves are based on calculations by Meltzer and Thorne (1966), with correc
tions for the fundamental mode of massive white dwarfs by Faulkner and Gribbin 
(1968). 
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Box 26 ,2 THE CRITICAL AD IABATIC I N DEX FOR NEARLY NEWTONIAN STARS 

A. Fu l ly  Newton ian  Stars 

1 .  For a Newtonian star that pulsates sinusoidally, � = �(r)e-iwt, the dynamic 
equation (26 . 1 9) reduces to 

[I' i.P0r(Vr)'J ' + 3(I' i.Pi/r)' - 4po '�/r + w 2pi = 0. ( 1 )  
2 .  I f  I'1 = 4/3 throughout the star, the physically acceptable solution [solution 

satisfying boundary conditions (26 .22)] for the fundamental mode of vibra
tion (mode with lowest value of w2) is 

w2 = 0, � = £.Y, t: = const. (2) 
Thus, for I'1 = 4/3 the fundamental mode is "neutrally stable" and has 
a "homologous" displacement function-independent of the star's equation 
of state or structure. 

3. If I'1 is allowed to differ slightly from 4/3 in an r-dependent way, then �(r) 
will differ slightly from the homologous form: 

� = u[I + r-dependent corrections of magnitude (I'1 - 4/3)]. 
Consequently, if one uses the homologous expression � = t:r as a trial 
function in the variational principle of Box 26. 1 ,  one will obtain w2 accurate 
to O [(I'1 - 4/3)2] .  (Recall : first-order errors in trial function produce 
second-order errors in value of variational expression.) The Newtonian limit 
of the variational expression [equation (3) of Box 26 . 1 ]  becomes, with the 
homologous choice of trial function, 

(3) 

where I'1 is the pressure-averaged adiabatic index 

(4) 
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Box 26.2 (con tinued) By use of the Newtonian virial theorem for the nonpulsating star [equation (39 .2 1 b) or exercise 23 .7], one can convert equation (3) into the form w 2 = (31\ - 4) 1.f.? I/ I, (5) where .Q is the star's self-gravitational energy and I = f(p0r2)4'7Tr2 dr is the trace of the second moment of its mass distribution (see Box 24.2 and exercise 39 .6) .  
B. N early N ewton ian  Stars 

1 .  When one takes into account first-order relativistic corrections ( corrections of order M/ R), but ignores higher-order corrections, one can rewrite the variational expression [equation (3) of Box 26 . 1 ]  in the form 

where (6) 

r, = Vr3 = (�/r)( l - '1>0 ) ,  (7) and mo (r) is the equilibrium mass inside radius r. 2. For a relativistic star with I'1 - 4/3 of order M/ R and with M/ R � 1 ,  the homologous trial function � = u will still be highly accurate. Equally accurate, and easier to work with, will be � = ue<P0 ::::::: u(l + '1>0) ,  which corresponds to r, = t: = constant. Its fractional errors will be of order M/r; and the errors which it produces in w 2 will be of order (Ml R)2
. By inserting this trial function into the variational principle (6) and keeping only relativistic corrections of order M/ R, one obtains 

(8) Here l\ is the pressure-averaged adiabatic index, and the critical value of the adiabatic index I' 1 crit is 
4 rl crit = 3 + a.M/R, (9) 
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with a a positive constant of order unity given by 

1 R JR ( m 2 m ) a = 
3 Mill i o 

3po ,; + 4po-; 47Tr 2 dr. 

699  

(10) 

Expressions (8) and (9) for the pulsation frequency and the adiabatic index 
play an important role in the theory of supermassive stars (§24.4). 

3. For alternative derivations of the above result, see Chandrasekhar (1964a,b; 
1965c), Fowler (1964, 1965), Wright (1964). 

Exercise 26 . 1 .  DRAGGING OF INERTIAL FRAMES BY A SLOWLY 
ROTATING STAR A fluid sphere rotates very slowly. Analyze its rotation using perturbation theory;  keep only effects and terms line ar in the angular velocity of rotation. [Hints : ( I )  Centrifugal forces are second-order in angular velocity. Therefore, to first order the star is undeformed; its density and pressure distributions remain spherical and unperturbed. (2) Show, by symmetry and time-reversal arguments, that one can introduce coordinates in which 

where 
ds 2 = - e 2"' dt 2 + e 2A dr 2 + r 2[d8 2 + sin28 dq, 2] - 2(r2 sin28 )w dq, dt, 

<J> = <J> (r), A = A(r), and w = w(r, 8 ) .  

(26 .23) 

(26 .24) 
Show that <J> = <1>

0 
and A = A

0 
(no perturbations ! )  to first-order in angular velocity. (3) Adopt the following precise definition of the angular velocity il (r ,  8 ) :  

Q - u <P/u t = (dq,/dt)movrng with the fluid• (26 .25) 
Assuming u '  = u 8 = 0 (i .e . ,  rotation in the </> direction), calculate the 4-velociiy of the fluid. (4) Use the Einstein field equations to derive a differential equation for the metric perturbation w in terms of the angular velocity il. (5) Solve that differential equation outside the star in terms of elementary functions, and express the solution for w(r,  8) in terms of the star's total angular momentum S, as measured using distant gyroscopes (see Chapter 19) . ]  For the original analyses of this problem and of related topics, see Gurovich ( I  965) ,  Doroshkevich, Zel'dovich, and Novikov ( 1 965) ,  Hartle and Sharp ( 1 965) ,  Brill and Cohen ( 1 966), Hartle ( 1 967), Krefetz ( 1 967), Cohen and Brill ( 1 968) ,  Cohen ( 1 968) .  

EXERCISE 





PART VI  

TH E U N I VE R S E  

Wherein the reader, flushed with joy at his conquest of the 
stars, seeks to control the entire universe, and is foiled by an 

unfathomed mys tery: the Initial Singularity. 





CHAPTE R 2 7 

I D EAL IZED COSM O LOG I ES 

From my point  of view one cannot arrive, by way of theory, at any at least 
somewhat reliable results in the field of cosmology, if one makes no use of the 

principle of general relativity. 
ALBERT E I NSTE I N  ( 1 949b, p 6 84) 

§ 2 7 . 1 .  THE H O M O GENEITY AN D ISOTRO PY 

O F  THE U NIVERSE 

Astronomical observations reveal that the universe is homogeneous and isotropic 
on scales of ~ 108 light years and larger. Taking a "fine-scale" point of view, one 
sees the agglomeration of matter into stars, galaxies, and clusters of galaxies in 
regions of size ~ I light year, ~ 106 light years, and ~3 X 107 light years, respec
tively. But taking instead a "large-scale" viewpoint, one sees little difference between 
an elementary volume of the universe of the order of 108 light years on a side 
centered on the Earth and other elementary volumes of the same size located 
elsewhere. 

Cosmology, summarized in its simplest form in Box 27 . 1 ,  takes the large-scale 
viewpoint as its first approximation; and as its second approximation, it treats the 
fine-scale structure as a perturbation on the smooth, large-scale background. This 
chapter (27) treats in detail the large-scale, homogeneous approximation. Chapter 
28 considers such small-scale phenomena as the primordial formation of the ele
ments, and the condensation of galaxies out of the primeval plasma during the 
expansion of the universe. Chapter 29 discusses observational cosmology. 

Evidence for the large-scale homogeneity and isotropy of the universe comes from 
several sources. (1 ) There is evidence in the distribution of galaxies on the sky and 
in the distribution of their apparent magnitudes and redshifts [see, e.g., Hubble 
(1934b, 1936) ;  Sandage (1972a) ; Sandage, Tamman, and Hardy (1972) ; but note the 
papers claiming "hierarchic" deviations from homogeneity, which Sandage cites and 
attacks] .  (2) There is evidence in the isotropy of the distribution of radio sources 
on the sky (see, e.g., Holden (1966), and Hughes and Longair (1967)]. (3) There 
is evidence in the remarkable isotropy of the cosmic microwave radiation [see, e.g., 
Boughn, Fram, and Partridge (1 97 1 )] .  For a review of most of the evidence, see 
Chapter 2 of Peebles (197 1 ) . 

( continued on page 711) 

The u n iverse · fi ne-scale 
condensations contrasted 
with la rge-sca le  homogeneity 

Evidence for la rge-scale 
homogeneity and isotropy 
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Box 27 . 1  COSMOLOGY IN BRIEF 

Uniform density. Idealize the stars and atoms as scattered like dust through the 
heavens with an effective average density p of mass-energy everywhere the same. 

Geometry homogeneous and isotropic. Idealize the curvature of space to be every
where the same. 

Closure. Accept the term, "Einstein's geometric theory of gravity" as including 
not only his field equation G = 8wT, but also his boundary condition of closure 
imposed on any solution of this equation.* 

A three-sphere satisfies the three requirements of homogeneity, isotropy, and 
closure, and is the natural generalization of the metric on a circle and a 2-sphere: 

Spheres of selected 
dimensionality 

Sl 

s2 

S3 

Visualized as embedded 
in a Euclidean space of 
one higher dimension8 

x 2 + y2 = a2 

x2 + y2 + z2 = a2 

x2 + y2 + z2 + w2 = a2 

Transformation from 
Cartesian to polar 
coordinates 

x = a cos <f> 
y = a sin </> 
x = a sin O cos <f> y = a sin O sin </> 
z = a cos O 

x = a sin x sin O cos <f> 
y = a sin x sin O sin </> 
z = a sin x cos O 
w = a cos O 

Metric on sn expressed 
in terms of these polar 
coordinates 

ds2 = a2 42 

ds2 = a2[dx 2 + sin2x(d02 + sin20 d<f> 2)] 
• Excursion off the sphere is physically meaningless and is forbidden. The superfluous dimension is added to help the reason in 
reasoning, not to help the traveler in traveling. Least of all does it have anything whatsoever to do with time 

The spacetime geometry is described by the metric 

ds 2 = - dt2 + a2(t)[dx 2 + sin2x (d0 2 + sin20 d</> 2)] .  (1) 

The dynamics of the geometry is known in full when one knows the radius a as 
a function of the time t. 

* "Thus we may present the following arguments against the conception of a space-infinite, and for the conception of a space-bounded, universe : " I .  From the standpoint of the theory of relativity, the condition for a closed surface is very much simpler than the corresponding boundary condition at infinity of the quasi-Euclidean structure of the universe. "2. The idea that Mach expressed, that inertia depends upon the mutual action of bodies, is contained, to a first approximation, in the equations of the theory of relativity; . . .  But this idea of Mach's corresponds only to a finite universe, bounded in space, and not to a quasi-Euclidean, infinite universe" [Einstein ( 1950), pp. 107-108). Many workers in cosmology are skeptical of Einstein's boundary condition of closure of the universe, and will remain so until astronomical observations confirm it. 
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Einstein's field equation (doubled, for convenience), 2G = 16'7TT, has its whole 
force concentrated in its 00 ( or tt) component, 

6 ( da )
2 6 - - + - =  1 6'7Tp 

a2 dt a2 (2) 

[equation (Sa) of Box 14.5] . This component of Einstein's equation is as central as 
the component V · E = 4'7Tp of Maxwell's equations. It is described in the Track-2 
Chapter 21 as the "initial-value equation" of geometrodynamics. There the two terms 
on the left receive separate names: the "second invariant" of the "extrinsic curvature" 
of a "spacelike slice" through the 4-geometry (tells how rapidly all linear dimensions 
are being stretched from instant to instant); and the "intrinsic curvature" or three
dimensional scalar curvature invariant <3>R of the "spacelike slice" (here a 3-sphere) 
at the given instant itself. 

The amount of mass-energy in the universe changes from instant to instant in 
accordance with the work done by pressure during the expansion, 

[ (
density of } ] d x (volume) = -(pressure) d(volume). 
mass-energy 

(3) 

Today the pressure ofradiation is negligible compared to the density of mass-energy, 
and the righthand side of this equation ("work done") can be neglected. The same 
was true in the past, one estimates, back to a time when linear dimensions were 
about a thousand times smaller than they are today. During this "matter-dominated 
phase" of the expansion of the universe, the product 

(density of } 1 X vo ume mass-energy ( ) 

remained a constant, 

(4) 

Here the symbol M can look like mass in the form of matter, and can even be called 
mass; but one has to recall again (see §1 9.4) that the concept of total mass-energy 
of a closed universe has absolutely no well-defined meaning whatsoever, not least 
because there is no "platform" outside the universe on which to stand to measure 
its attraction via periods of Keplerian orbits or in any other way. More convenient 
than M, because more significant in what follows, is the quantity ama.x ("radius of 
universe at phase of maximum expansion") defined by 

ama.x = 4M/31r. (5) 
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Box 2 7 . 1 (continued) 

The decisive component of the Einstein field equation, in the terms of this notation, 
becomes 

or 

( !: r - _
am_a 

a:x._ = - 1. (6) 

The first term in (6) has the qualitative character of "kinetic energy" in an elementary 
problem in Newtonian mechanics. The second term has the qualitative character 
of a "potential energy," V(a) = 

a 

- a --..-Zero 
t Total 

V(a) Kinetic 
I 

A 

(see diagram A), resulting from an inverse-square Newtonian force. Pursuing the 
analogy, one identifies the " - l" on the righthand side with the total energy in the 
Newtonian problem. The qualitative character of the dynamics shows up upon an 
inspection of diagram A. Values of the radius of the universe, a, greater than ama:x. 
are not possible. If a were to become greater than ama:x.' the "potential energy" would 
exceed the total "energy" and the "kinetic energy" of expansion would have to 
become negative, which is impossible. Consequently the geometrodynamic system 
can never be in a state more expanded than a = ama:x.· Starting in a state of small 
a, (a <{ ama:x) and expanding, the universe has for each a value a perfectly definite 
da/ dt value. This velocity of expansion decreases as the expansion proceeds. It falls 
to zero at the turning point a = ama:x. · Thereafter the system recontracts. 
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Lack of option is the striking feature of the dynamics. Granted a specific amount 
of matter [specific M value in (5)], one has at his disposal no free parameter what
soever. The value of amax is uniquely specified by the amount of matter present, 
and by nothing more. There is no such thing as an "adjustable constant of energy," 
such as there would have been in a traditional problem of Newtonian dynamics. 
Where such an adjustable parameter might have appeared in equation (6), there 
appears instead the fixed number " - 1 ." This fixity is the decisive feature of a system 
bound up into closure. Were one dealing with a collection of rocks out in space, 
one would have a choice about the amount of dynamite one placed at their center. 
With a low charge of explosive, one would find the rocks flying out for only a limited 
distance before gravity halted their flight and brought them to collapse together 
again. With more propellant, they would fly out with escape velocity and never 
return. But no such options present themselves here, exactly because Einstein's 
condition of closure has been imposed; and once closed, always closed. Collapse 
of the universe is universal. This is simple cosmology in brief. 

Einstein's unhappiness at this result was great. At the time he developed general 
relativity, the permanence of the universe was a fixed item of belief in Western 
philosophy: "The heavens endure from everlasting to everlasting." Yet the reasoning 
that led to the fixed equation left open no natural way to change that equation or 
its fantastic prediction. Therefore Einstein ( 19 17), much against his will, introduced 
the least unnatural change he could imagine, a so-called cosmological term (§27 . 1 1  ), 
the whole purpose of which was to avoid the expansion of the universe. A decade 
later, Hubble ( 1 929) verified the predicted expansion. Thereupon Einstein aban
doned the cosmological term, calling it "the biggest blunder of my life" [Einstein 
( 1 970)] . Thus ended the first great cycle of apparent contradiction to general relativity, 
test, and dramatic vindication. Will one ever penetrate the mystery of creation? There 
is no more inspiring evidence that the answer will someday be "yes" than man's 
power to predict, and predict correctly, and predict against all expectations, so 
fantastic a phenomenon as the expansion of the universe. 

"Newtonian cosmology" provides an "equation of energy" similar to that of Einstein 
cosmology, but fails to provide any clean or decisive argument for closure or for 
the unique constant " - 1 ." It considers the mass in any elementary spherical region 
of space of momentary radius r, and the gravitational acceleration of a test particle 
at the boundary of this sphere toward the center of the sphere; thus, 

(mass) 
( distance )2 

( 4'17 /3 )pr3 4'17 p 
r 2 = - -

3-r. (7) 

Consider such imaginary spheres of varied radii drawn in the cosmological medium 
with the same center. Note that doubling the radius doubles the acceleration. This 
proportionality between acceleration and distance is compatible with a homogeneous 
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Box 27 . 1 (continued) 

deceleration of the expansion of the universe. Therefore define an expansion param
eter a* as the ratio between the radius of any one of these spheres now and the 
radius of the same sphere at some fiducial instant ; thus, a* = r/r

0 
is to be considered 

as independent of the particular sphere under consideration. Write p = p
0
r�/r3 , 

where p
0 

is the density at the fiducial instant. Insert this expression for p into the 
deceleration equation (7), multiply both sides of the equation through by dr/dt, 
integrate, and translate the result from an equation for dr/dt to an equation for 
da* / dt, finding 

(
da*

)
2 (8?Tp0/3) 

dt -
a* = constant, (8) 

in agreement with equation (6), except for (I ) the trivial differences that arise because 
a* is a dimensionless expansion ratio, whereas a is an absolute radius with the 
dimensions of cm, and (2) the all-important difference that here the constant is 
disposable, whereas in standard Einstein geometrodynamics it has the unique ca
nonical value " - 1 ." For more on Newtonian insights into cosmology, see especially 
Bondi (196 1 ). 

Free fall of a particle towards a Newtonian center of attraction according to 
Newtonian mechanics gives an equation of energy of the same form as (6), except 
that the "radius of the universe," a, is replaced by distance, r, from the center of 

attraction. The solution of this problem of free fall is described by a cycloid (diagram 
B ;  see also Figure 25 .3 and Box 25 .4), generated by rolling a circle of diameter amax 
on a line through an ever increasing angle 1/ ;  thus, 

1 a = 2amax(I - cos 11), 
(9) 

t = � amax.(1/ - sin 1/ ). 
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Immediately observable today is the present rate of expansion of the universe, with 
every distance increasing at a rate directly proportional to the magnitude of that 
distance : *  

(velocity of recession) 
of a galaxy . = (Hubble "constant," H0) ~ 55  km/sec megaparsec 

( distance to a galaxy) 

I ----- or ------
1 8  X 109 yr 1 .7 x 1 028 cm 

(rate of increase of the ) 
radius of the universe itself 

(radius of the universe) 
da/dt 

a 

(10) 

The Hubble time, H;;1 ~ 1 8  X 1 09 yr (linearly extrapolated back to zero separation 
on the basis of the expansion rate observed today, as illustrated in the diagram) 
is predicted to be greater by a factor 1 .5 or more (Box 27 .3) than the actual time 
back to the start of the expansion as deduced from the rate of the development 
of stars ( ~ 10 X 109 yr). No such satisfactory concord between prediction and obser
vation on this inequality existed in the 1940's. The scale of distances between galaxy 
and galaxy in use at that time was short by a factor more than five. The error arose 
from misidentifications of Cepheid variable stars and of HII regions, which are used 
as standards of intensity to judge the distance of remote galaxies. The linearly 
extrapolated time, 

. ( distance today) 
(Hubble time) = . . (recess10n velocity today) 

back to the start of the expansion was correspondingly short by a factor more than 
five. The Hubble time came out to be only of the order of 3 X 109 yr. This number 
obviously violates the inequality 

(�3 X 109 yr Hubble) > 1 .5 (~ 10 X 1 09 yr; actual t�me) . 
time - back to start of expansion 

It implies a curve for dimensions as a function of time not bending down, as in 
diagram B, but bending up. On some sides the proposal was made to regard the 
actual curve as rising exponentially. Thus began an era of "theories of continuous 
creation of matter," all outside the context of Einstein's standard geometrodynamics. 

* H
0 

is predicted to be independent of the choice of galaxy insofar as local motions are unimportant, and insofar as the difference between recession velocity now and recession velocity at the time when the light was emitted is unimportant. The latter condition is well fulfilled by galaxies close enough to admit of the necessary measurement of distance, for they have redshifts only of the order of z ~ 0 . 1  and less (little lapse of  time between emission of  light and its reception on earth; therefore little change in recession velocity between then and now; see §29.3 and Box 29.4 for a fuller analysis) 
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Box 2 7 . 1  (con tinued) 

This era ended when, for the first time, the distinction between stellar populations 
of classes I and II was recognized and as a result Cepheid variables were correctly 
identified, by Baade (1952, 1956) and when Sandage (1958) discovered that Hubble 
had misidentified as bright stars the HII regions in distant galaxies. Then the scale 
of galactic distances was set straight. Thus ended the second great cycle of an 
apparent contradiction to general relativity, then test, and then dramatic vindication. 

The mystery of the missing matter marks a third cycle of doubt and test with the 
final decision yet to come. It follows from equation (2) that, if Einstein's closure 
boundary condition is correct, then the density of mass-energy must exceed a certain 
lower limit given by the equation 

P > p  = _l_ H2 
- H 8'17 

o (I I ) 

("critical amount of mass-energy required to curve up the geometry of the universe 
into closure"). A Hubble expansion rate of H0 = 55 km/sec Megaparsec implies 
a lower limit to the density of 

3 I PH
= 

8'17 (1 .7 X 1 02s cm)2 or PH, conv = 5 X 10-30 g/cm3 (12) 

as compared to p ~ 2 x 10-31 g/cm3 of "luminous matter" observed in galaxies 
(§29 .6) and more being searched for today in the space between the galaxies .  

A fuller treatment of cosmology deals with conditions back in the past corresponding 
to redshifts of 1 0,000 or more and dimensions 10,000 times less than they are today, 
when radiation could not be neglected, and even dominated (§27 . 1 0). It also considers 
even earlier conditions, when anisotropy oscillations of the geometry of the universe 
as a whole (analogous to the transformation from a cigar to a pancake and back 
again) may conceivably have dominated (Chapter 30). More broadly, it takes_ up the 
evolution of the universe into its present state (Chapter 28) and the present state 
and future evolution of the universe (Chapter 29). The present chapter examines 
the basic assumptions that underlie the simple standard cosmology thus traced out, 
and §27 . 1 1 examines what kinds of qualitative changes would result if one or another 
of these assumptions were to be relaxed. 



§27.2 STRESS-ENERGY CONTENT OF UNIVERSE-FLUID IDEALIZATION 

§ 2 7 . 2 .  STRESS-ENERGY CO NTENT O F  THE U N IVERSE

THE F LUID IDEALIZATIO N 

7 1 1 

By taking the large-scale viewpoint, one can treat galaxies as "particles" of a "gas" 
that fills the universe. These particles have internal structure (stars, globular clusters, 
etc.); but one ignores it. The "particles" cluster on a small scale ( clusters of galaxies 
of size :S 3 X 107 light years); but one ignores the clustering. To simplify calculations, 
one even ignores the particulate nature of the "gas" [though one can take it into 
account, if one wishes, by adopting a kinetic-theory description; see §22.6 for kinetic 

r 
The rest of th is  chapter, except 
for Box 2 7 .4, is Track 2 .  

N o  earl ier track-2 material i s  
needed a s  preparation for it, 
but i t  is needed as preparation 
for Chapter 2 9  (Present state 
and future evolut ion of the 
un iverse) . 

theory, and Ehlers, Geren, and Sachs (1968) for its application to cosmology). One "-- � ____________ ,, 
removes the particulate structure of the gas from view by treating it in the perfect
fluid approximation. Thus, one characterizes the gas by a 4-velocity, u (the 4-velocity 
of an observer who sees the galaxies in his neighborhood to have no mean motion), 
by a density of mass-energy, p (the smoothed-out density of mass-energy seen in the 
frame with 4-velocity u; this includes the rest mass plus kinetic energy of the galaxies 
in a unit volume, divided by the volume), and by a pressure p (the kinetic pressure 
of the galaxies). The stress-energy tensor for this "fluid of galaxies" is the familiar 
one 

T = (p + p)u ® u + gp, (27.1) 

where g is the metric tensor. 
Astronomical observations reveal that the rest-mass density of the galaxies is much 

greater than their density of kinetic energy. The typical ordinary velocities of the 
galaxies-and of stars in them-relative to each other are 

(v) ~ 200 km/sec ~ 10-3. (27.2) 

Consequently, the ratios of kinetic-energy density and of pressure to rest-mass den
sity are 

I - I ( 2) ~ 10-6 ekin Prm - 2 V ~ ' 

I - I ( 2) ~ 10-6 P Prm - 3 V ~ 
(27.3) 

At least, these are the ratios today. Very early in the life of the universe, conditions 
must have been quite different. 

The total density of mass-energy, p, is thus very nearly the rest-mass density of 
the galaxies, Prm · Astronomical observations yield for Prm today 

Prm 2: 2 X 10-31 g/cm3 (27.4) 

(see §29.6). 

I dea l izat ion of matte r i n  
u n iverse as a pe rfect fl u i d  
("fl u i d  o f  ga lax ies") 

La rge-sca le condit ions i n  
u n iverse today: 

( 1 )  k i net ic energy and  
pressu re o f  sta rs and  
ga lax ies 

(2) dens ity of mass i n  
ga lax ies 
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71 2 27 IDEALIZED COSMOLOGIES Not all the matter in the universe is tied up in galaxies ; there is also matter in cosmic rays, with an averaged-out density of mass-energy Per � 10-33 g/cm3 , and, perhaps, gas in intergalactic space with Pig � 10-zs g/cm3 . 
(27 .5) 
(27 .6) [Delineating more sharply the value of Pig is one of the most important goals of current cosmological research. For a review of this question as of 1 97 1 ,  see "The mean mass density of the universe," pp. 56- 120 in Peebles ( 197 1 ) . ] These sources of mass density, and the associated pressures, one can lump together with the galaxies into the "cosmological fluid," with stress-energy tensor (27 . 1  ) .  Not all the stress-energy in the universe is in the form of matter. There are also magnetic fields, with mean energy density that almost certainly does not exceed the limit 

P < 10-35 g/cm3 mag _ (27 .7) ( corresponding to Bavg � 10-6 G), and radiation ( electromagnetic radiation, neutrino radiation, and perhaps gravitational radiation) totaling, one estimates, Pract ::::: 10-33 g/cm3 . (27 .8)  The magnetic fields will be ignored in this chapter; they are unimportant for largescale cosmology, except perhaps very near the "big-bang beginning" of the universe-if they existed then. However, the radiation cannot be ignored, for it plays a crucial role . Most of the radiation density is in the form of "cosmic microwave radiation," which was discovered by Penzias and Wilson ( 1965) [see also Dicke, Peebles, Roll, and Wilkinson ( 1965 )], and has been studied extensively since then [for a review, see Partridge (1 969)]. The evidence is very strong that this cosmic microwave radiation is a remnant of the big-bang beginning of the universe. This interpretation will be accepted here. The cosmic microwave radiation has just the form one would expect if the earth were enclosed in a box ("black-body cavity") with temperature 2.7K. The spectrum is a Planck spectrum with this temperature, and the radiation is isotropic [Boughn, Fram, and Partridge (197 1 )]. Consequently, its pressure and density of mass-energy are given by the formula, Pmicrowave = 3pmicrowave = aT4 

= 4 X 10-34 g/cm3 . (27 .9) 
Thermodynamic considerations (§27 . 10) suggest that the universe should also be filled with neutrino radiation and perhaps gravitational radiation that have Planck spectra at approximately the same temperature ( ~3K). However, they are not detectable with today's technology. 
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To high accuracy ( � 300 km/sec) the mean rest frame of the cosmic microwave 
radiation near Earth is the same as the mean rest frame of the galaxies in the 
neighborhood of Earth [Boughn, Fram and Partridge (1971)]. Consequently, the 
radiation can be included, along with the matter, in the idealized cosmological fluid. 

Summary: From the large-scale viewpoint, the stress-energy of the universe can 
be idealized as a perfect fluid with 4-velocity u, density of mass-energy p, pressure 
p, and stress-energy tensor 

T = (p + p)u ® u + pg. (27.10) 

The 4-velocity u at a given event <!f in spacetime is the mean 4-velocity of the galaxies 
near <!f; it is also the 4-velocity with which one must move in order to measure an 
isotropic intensity for the cosmic microwave radiation. The density p is made up 
of material density (rest mass plus negligible kinetic energy of galaxies; rest mass 
plus kinetic energy of cosmic rays; rest mass plus thermal energy of intergalactic 
gas-all "smeared out" over a unit volume), and also of radiation energy density 
( electromagnetic radiation, neutrino radiation, gravitational radiation). The pressure 
p, like the density p, is due to both matter and radiation. Today the pressure of 
the matter is much less than its mass-energy density, 

Pmatter � Pmatter today, (27.1 la) 

but this strong inequality cannot have held long ago. Always the pressure of the 
radiation is ¼ its mass-energy density: 

1 
Pradiation = 3 Prachation always. 

§2 7 . 3 .  GEO METRIC IM P LICATIO NS O F  H O M O GENEITY 

AN D ISOTRO PY 

(27.11 b) 

This chapter will idealize the universe to be completely homogeneous and isotropic. 
This idealization places tight constraints on the geometry of spacetime and on the 
motion of the cosmological fluid through it. In order to discover these constraints, 
one must first give precise mathematical meaning to the concepts of homogeneity 
and isotropy. 

Homogeneity means, roughly speaking, that the universe is the same everywhere 
at a given moment of time. A given moment of what time? Whose time? This is 
the crucial question that the investigator asks. 

In Newtonian theory there is no ambiguity about the concept "a given moment 
of time." In special relativity there is some ambiguity because of the nonuniversality 
of simultaneity, but once an inertial reference frame has been specified, the concept 
becomes precise. In general relativity there are no global inertial frames (unless 
spacetime is flat); so the concept of "a given moment of time" is completely ambigu
ous. However, another, more general concept replaces it: the concept of a three
dimensional spacelike hypersurface. This hypersurface may impose itself on one's 

Summary of fluid idealization 
of matter in universe 

Spacelike hypersurface as 
generalization of " moment of 
time" 



" Homogeneity of universe" 
defined in terms of spacelike 
hypersurfaces 

" Isotropy of universe" 
defined 

Isotropy implies fluid world 
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71 4 27 IDEALIZED COSMOLOGIES attention by reason of natural symmetries in the spacetime. Or it may be selected at the whim or convenience of the investigator. He may find it more convenient to explore spacetime here and there than elsewhere, and to push the hypersurface forward accordingly ("many-fingered time" ;  the dramatically new conception of time that is part of general relativity). At each event on a spacelike hypersurface, there is a local Lorentz frame whose surface of simultaneity coincides locally with the hypersurface. Of course, this Lorentz frame is the one whose 4-velocity is orthogonal to the hypersurface. These Lorentz frames at various events on the hypersurface do not mesh to form a global inertial frame, but their surfaces of simultaneity do mesh to form the spacelike hypersurface itself. The intuitive phrase "at a given moment of time" translates, in general relativity, into the precise phrase "on a given spacelike hypersurface." The investigator can go further. He can "slice up" the entire spacetime geometry by means of a "oneparameter family" of such spacelike surfaces. He can give the parameter that distinguishes one such slice from the next the name of "time." Such a one-parameter family of slices through spacetime is not required in the Regge calculus of Chapter 42 . However, such a "slicing" is a necessity in most other practical methods for analyzing the dynamics of the geometry of the universe (Chapters 2 1 ,  30, and 43) .  The choice of slicing may dissolve away the difficulties of the dynamic analysis or may merely recognize those difficulties. The successive slices of "moments of time" may shine with simplicity or may only do a tortured legalistic bookkeeping for the dynamics. Which is the case depends on whether the typical spacelike hypersurface is distinguished by natural symmetries or, instead, is drawn arbitrarily. 
Homogeneity of the universe means, then, that through each event in the universe 

there passes a spacelike "hypersurface of homogeneity" (physical conditions identical at every event on this hypersurface) . At each event on such a hypersurface the density, p, and pressure, p, must be the same; and the curvature of spacetime must be the same. The concept of isotropy must also be made precise. Clearly, the universe cannot look isotropic to all observers . For example, an observer riding on a 1020 eV cosmic ray will see the matter of the universe rushing toward him from one direction and receding in the opposite direction. Only an observer who is moving with the cosmological fluid can possibly see things as isotropic. One considers such observers in defining isotropy: 
Isotropy of the universe means that, at any event, an observer who is "mouing with 

the cosmological fluid" cannot distinguish one of his space directions from the others 
by any local physical measurement. Isotropy of the universe actually implies homogeneity; of this one can convince oneself by elementary reasoning ( exercise 27 . I ) .  

Isotropy guarantees that the world lines of the cosmological fluid are orthogonal 
to each hypersurface of homogeneity. This one sees as follows. An observer "moving with the fluid" can discover by physical measurements on which hypersurface through a given event conditions are homogeneous. Moreover, he can measure his own ordinary velocity relative to that hypersurface. If that ordinary velocity is nonzero, it provides the observer with a way to distinguish one space direction in 
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his rest frame from all others-in violation of isotropy. Thus in an isotropic universe, 
where the concept of "observer moving with the fluid" makes sense, each such 
observer must discover that he is at rest relative to the hypersurface of homogeneity. 
His world line is orthogonal to that hypersurface. 

Exercise 27. 1 .  ISOTROPY IMPLIES HOMOGENEITY Use elementary thought experiments to show that isotropy of the universe implies homogeneity. 

§ 2 7 .4 .  CO M OVIN G ,  SYNCHRO N O US CO ORDINATE 

SYSTEMS FOR THE U NIVERSE 

The results of the last section enable one to set up special coordinate systems in 
the spacetime manifold of an isotropic model universe (Figure 27.1). Choose a 
hypersurface of homogeneity SI. To all the events on it assign coordinate time, tI. 
Lay out, in any manner desired, a grid of space coordinates (x1, x2 , x3) on SI. 
"Propagate" these coordinates off SI and throughout all spacetime by means of the 
world lines of the cosmological fluid. In particular, assign to every event on a given 
world line the space coordinates (x1, x2 , x3) at which that world line intersects SI. 
This assignment has a simple consequence. The fluid is always at rest relative to 
the space coordinates. In other words, the space coordinates are "comoving':· they 
are merely labels for the world lines of the fluid. For the time coordinate t of a 
given event <!f, use the lapse of proper time, f dr, of <!f from SI> as measured along 
the fluid world line that passes through <!f, plus tI ("standard of time" on the initial 
hypersurface SI); thus, 

( '!i' ) t(<!f) = tI + f dr 
s, along world line of fluid 

(27.12) 

The surfaces t = constant of such a coordinate system will coincide with the hyper
surfaces of homogeneity of the universe. This one sees by focusing attention on 
observations made by two different observers, A and B, who move with the fluid 
along different world lines. At coordinate time tI (on SI) the universe looks the same 
to B as to A. Let A and B make observations again after their clocks have ticked 
away the same time interval Llr. Homogeneity of the initial hypersurface SI, plus 
the deterministic nature of Einstein's field equations, guarantees that A and B will 
again see identical physics. (Identical initial conditions on SI, plus identical lapses 
of proper time during which Einstein's equations govern the evolution of the universe 
near A and B, guarantee identical final conditions.) Therefore, after time lapse Llr, 
A and B are again on the same hypersurface of homogeneity-albeit a different 
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This fluid element carries the label (x 1, x 2, x 3) = (9, 2, 136) 

Figure 27. 1 .  

27 .  IDEALIZED COSMOLOGIES 

�-- A piece of the hypersurface t = t; + 5 
World lines of particles of the fluid with spatial grid attached to them ("comoving") f- A piece of the initial hyper-i- '\. "1/ �t-!) 'l'- ____ ..____,__ surface S1, with arbitrary i- - \\ "' x x coordinate grid on it 

\\ .. "' "' t-> v> 11 ...._ II 
,I:> V, 

Comoving, synchronous coordinate system for the universe, as constructed in §27.4 of the text. Key features of such a coordinate system are as follows (see §§27.4 and 27.5) .  ( 1 )  The spatial coordinates move with the fluid, and the time coordinate is proper time along the fluid world lines; i.e., the coordinate description of a particular fluid world !me is (x1 , x2 , x3) = constant, x0 = t = r + constant. 
t r proper time measuredl Laiong world line J (2) Any surface of constant coordinate time is a hypersurface of homogeneity of the universe. Every such hypersurface is orthogonal to the world lines of all particles of the fluid. (3) The spatial grid on some initial hypersurface S1 is completely arbitrary. (4) If Y;; dxi dxi is the metric on the initial hypersurface in terms of its arbitrary coordinates (with yii a function of x1, x2 , x3), then the metric of spacetime in terms of the comoving, synchronous coordinate system is <fs2 = - d12 + a2(t)Y;; dxi dxi. Thus, the entrre dynamics of the geometry of the universe is embodied in a single function of time, 

a(t) = "expansion factor"; while the shape (but not size) of the hypersurfaces of homogeneity is embodied in the spatial 3-metric Y;; dxi dxi . 

one from S1, where they began. By virtue of definition (27 . 12) of coordinate time, the time coordinate at the intersection of B 's world line with this new hypersurface is t = t1 + .::1-r; and similarly for A. Moreover, observers A and B were arbitrary. Consequently the new hypersurface of homogeneity, like S1, is a hypersurface of constant coordinate time. Q.E.D. Because the hypersurfaces of homogeneity are given by t = constant, the basis vectors a /ox i at any given event qp are tangent to the hypersurface of homogeneity that goes through that event. On the other hand, the time basis vector, o/ot, is tangent to the world line of the fluid through qp, since that world line has x i = constant along it. Consequently, orthogonality of the world line to the hypersurface guarantees orthogonality of o/ot to o/ox i : (o/ot) • (o/ox i) = o for i = 1 ,  2, 3 .  (27 . 1 3a) 
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The time coordinate has another special property: it measures lapse of proper 
time along the world lines of the fluid. Because of this, and because o/o t is tangent 
to the world lines, one can write 

o/ot = (d/dr)a1ong fluid's world lines 

= u, 
(27.13b) 

where u is the 4-velocity of the "cosmological fluid." The 4-velocity always has unit 
length, 

(a ;at) • (a ;at) = -1. (27.13c) 

Conditions (27.13a,c) reveal that, in the comoving coordinate frame [where 
ga/3 (o/ox°') · (o/ox f3)], the line element for spacetime reads 

(27.14) 

Any coordinate system in which the line element has this form is said to be 
"synchronous" (I) because the coordinate time t measures proper time along the 
lines of constant x i (i.e., gtt = - 1 ), and (2) because the surfaces t = constant are 
(locally) surfaces of simultaneity for the observers who move with x i = constant 
[i.e., gti = (o/o t) · (o/oxi ) = OJ; it is also called a "Gaussian normal coordinate 
system" (cf Figure 21.6). 

A hypersurface of homogeneity, t = constant, has a spatial, three-dimensional 
geometry described by equation (27.14) with dt = 0: 

(ds
2)on hypersurface of homogeneity = da 2 

= [gijlt = const dx i dx j . 
(27.15) 

To know everything about the 3-geometry on each of these hypersurfaces is to know 
everything about the geometry of spacetime. 

Exercise 27.2. SYNCHRONOUS COORDINATES IN GENERAL 

In an arbitrary spacetime manifold (not necessarily homogeneous or isotropic), pick an initial 
spacelike hypersurface SI> place an arbitrary coordinate grid on it, eject geodesic world lines 
orthogonal to it, and give these world lines the coordinates 

(x1 , x2, x3) = constant, 

where -r is proper time along the world line, beginning with -r = 0 on S1• Show that in this 
coordinate system the metric takes on the synchronous (Gaussian normal) form (27 . 14) . 

Form of the l i ne e lement i n  
th i s  coord i n ate system 
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§ 2 7 . 5 .  THE EXPANSIO N FACTOR 

To determine the 3-geometry, da2 = gi; (t, x
k) dx i dx;, of each of the hypersurfaces 

of homogeneity, split the problem into two parts: (I) the nature of the 3-geometry 
on an arbitrary initial hypersurface (dealt with in next section); and (2) the evolution 
of the 3-geometry as time passes, i.e., as attention moves from the initial hypersur
face to a subsequent hypersurface, and another, and another, . . .  (dealt with in this 
section). 

Assume that one knows the initial 3-geometry-i.e., the coefficients in the space 
part of the metric, 

(27.16) 

on the initial hypersurface Sr-in its arbitrary but explicitly chosen coordinate system. 
What form will the metric coefficients gik (t, x k) have on the other hypersurfaces of 
homogeneity? This question is easily answered by the following argument: Consider 
two adjacent world lines, tl and !'B, of the cosmological fluid, with coordinates 
(x1, x2, x3) and (x1 + Llx1, x2 + Llx2, x3 + Llx3) .  At time t1 (on surface S1) they are 
separated by the proper distance 

(27.17) 

At some later time t ( on surface S), they will be separated by some other proper 
distance Lla(t). Isotropy of spacetime guarantees that the ratio of separations 
Lla(t)/ Lla(t1) will be independent of the direction from tl to !'B (no shearing motion 
of the fluid). For any given direction, the additivity of small separations guarantees 
that Lla(t)/ Lla(t1) will be independent of Lla(t1) .  Thus Lla(t)/ Lla(t1) must be the same 
for all pairs of world lines near a given world line. Finally, homogeneity guarantees 
that this scalar ratio will be independent of position on the initial surface S1-i.e. ,  
independent of x1, x2 , x3 . Define a(t) to be this spatially constant ratio, 

a(t) Lla(t)/ Lla(t1).  (27.18) 

Thus, a(t) is the factor by which the separations of world lines expand between time 
t1 and time t. In other words, the function a(t) is a universal "expansion factor, " 
or "scale factor. " 

By combining equations (27.17) and (27.18), one obtains for the separation of 
adjacent world lines at time t 

Lla(t) = a(t)[Yi; (x k) Llx i Llx;]112. 

This corresponds to the spatial metric at time t, 

(27.19) 

and to the spacetime metric, 

(27.20) 
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Figure 2 7 . 2 .  
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Inflation of a balloon covered with pennies as a model for the expansion of the universe. 
Each penny A may well consider itself to be the center of the expansion because the distance 
from A to any neighbor B or C increases the more the more remote that neighbor was 
to begin with ("the Hubble relation") .  The pennies themselves do not expand (constancy 
of sun-Earth distance, no expansion of a meter stick, no increase of atomic dimensions). 
The spacing today between galaxy and galaxy ( ~ 106 !yr) is roughly ten times the typical 
dimension of a galaxy ( ~ 105 !yr). 

71 9 

Notice that the coefficients Yi/xk) describe the shape not only of the initial hypersurface, but also of all other hypersurfaces of homogeneity. All that changes in the geometry from one hypersurface to the next is the scale of distances. All distances between spatial grid points (fluid world lines) expand by the same factor 
a(t), leaving the shape of the hypersurface unchanged. This is a consequence of homogeneity and isotropy; and it is precisely true only if the model universe is precisely homogeneous and isotropic. Of all the disturbing implications of "the expansion of the universe," none is more upsetting to many a student on first encounter than the nonsense of this idea. The universe expands, the distance between one cluster of galaxies and another cluster expands, the distance between sun and earth expands, the length of a meter stick expands, the atom expands? Then how can it make any sense to speak of any expansion at all? Expansion relative to what? Expansion relative to nonsense ! Only later does he realize that the atom does not expand, the meter stick does not expand, the distance between sun and earth does not expand. Only distances between clusters of galaxies and greater distances are subject to the expansion. Only at this gigantic scale of averaging does the notion of homogeneity make sense. Not so at smaller distances. No model more quickly illustrates the actual situation than a rubber balloon with pennies affixed to it, each by a drop of glue. As the balloon is inflated (Figure 27 .2) the pennies increase their separation one from another but not a single one of them expands ! [For mathematical detail see, e.g. , Noerdlinger and Petrosian ( 197 1 ) . )  

What expands i n  the 
u n iverse, and what does not 
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Exercise 27 . 3 .  ARBITRARINESS IN THE EXPANSION FACTOR How much arbitrariness is there in the definition of the expansion factor a(I)? Civilization A started long ago at time IA . For it, the expansion factor is 
( proper distance between ) two particles of the "cosmological fluid" at time I 
( proper distanc� between ) 

= aA (I) . same two par(Icles at time IA 

Subsequently men planted civilization B at time Is on a planet in a nearby galaxy. [At this time, the expansion factor aA had the value aA (ls) ] .  Civilization B defines the expansion factor relative to the time of its own beginning : 
( proper distance between ) two particles of the "cos-mological fluid" at time t = a (t) . 
( proper distance between ) B the same two particles at time Is 

At two subsequent events, C and D, of which both civilizations are aware, they assign to the universe in their bookkeeping by no means identical expansion factors, 
aA (lc) # as Uc) , 
aA(1v ) # as Uv ) ,  

Show that the relative expansion of  the model universe in  passing from stage C to  stage D in its evolution is nevertheless the same in the two systems of bookkeeping : 
aA (lv ) = (relative expansion) = as Uv ) . aA (t0) from C to D as (t0) 

§ 2 7 . 6 .  POSSIBLE 3-GEO METRIES FOR 

A HYPERSURFACE OF H O M O GENEITY 

Turn now to the 3-geometry Yii dx i dxi for the arbitrary initial hypersurface SI. This 
3-geometry must be homogeneous and isotropic. A close scrutiny of its three-dimen
sional Riemann curvature must yield no "handles" to distinguish one point on SI 
from any other, or to distinguish one direction at a given point from any other. 
"No handles" means that <3>Riemann must be constructed algebraically from pure 
numbers and from the only "handle-free" tensors that exist : the 3-metric Yii and 



§ 2 7  6 3-G EO M ET R I E S  FO R H O M OG E N EO U S  HYPE R S U R FACES 721 the three-dimensional Levi-Civita tensor eijk · (All other tensors pick out preferred directions or locations .) One possible expression for <3>Riemann is 
<3>Ri;k z = K(yikY;z - Yi!Y;k) ;  K = "curvature parameter" = constant. (27 .2 1 )  Trial and error soon convince one that this is the only expression that both has the correct symmetries for a curvature tensor and can be constructed solely from constants, Y;;, and E;;k ·  Hence, this must be the 3 -curvature of Sr. [One says that any manifold with a curvature tensor of this form is a manifold of "constant curvature. "J As one might expect, the metric for Sr is completely determined, up to coordinate transformations, by the form (27 .2 1 )  of its curvature tensor. (See exercise 27.4 below). With an appropriate choice of coordinates, the metric reads (see exercise 27 .5 below), da 2 = Yi; dx i dx; = K-1[dx 2 + sin2x(d02 + sin20 d<j> 2)) if K > 0, da 2 = Yi; dx i dx; = dx 2 + x 2(d02 + sin20 d<j> 2) if K = 0, (27 .22) da 2 = Yi; dx i dx; = ( - K)-1(dx 2 + sinh2x(d02 + sin20 d<j> 2)) if K < 0 .  Absorb the factor K-112 or ( - K)-112 into the expansion factor a(t) [see exercise 27 .3 ] , and define the function � sin x, 

� X, 

� = sinh X, 

if k K/ IKI = + I ("positive spatial curvature"), if k K = 0 ("zero spatial curvature"), if k = K/ IKI = - I ("negative spatial curvature"). Thus write the full spacetime geometry in the form ds 2 = - dt2 + a2(t)Yi; dx i dx;, Yi; dx i dx; = dx 2 + � 2(d02 + sin20 d<j> 2), and the 3 -curvatures of the homogeneous hypersurfaces in the form 
<3>Rijk l = [k/a2(t)J[yikY;1 - Y;zY;k ] . The curvature parameter K, after this renormalization, is evidently 

K = k/a2(t). 

(27 .23) 

(27 .24) 
(27 .25 a) 
(27 .25b) Why is the word "renormalization" appropriate? Previously a(t) was a scale factor describing expansion of linear dimensions relative to the linear dimensions as they stood at some arbitrarily chosen epoch; but the choice of that fiducial epoch was a matter of indifference. Now a(t) has lost that arbitrariness. It has been normalized so that its value here and now gives the curvature of a spacelike hypersurface of homogeneity here and now. Previously the factor a(t) was conceived as dimensionless. Now it has the dimensions of a length. This length is called the "radius of the model universe" when the curvature is positive. Even when the curvature is negative one sometimes speaks of a(t) as a "radius." Only for zero curvature does the normaliza-

Metric for homogeneous, 
isotropic hypersurfaces: three 
possibilities- positive, zero, 
or negative spatial curvature 

Significance of normalization 
of the expansion factor 
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tion of a(t) still retain its former arbitrariness. Thus, for zero-curvature, consider 
two choices for a(t), one of them a(t), the other ii(t) = 2a(t). Then with x = ½x, one 
can write proper distances in the three directions of interest with perfect indifference 
in either of two ways : 

( 
proper distance

) in the direction 
of increasing x 

( 
proper distance

) in the direction 
of increasing 0 

(
proper distance

) in the direction 
of increasing <f, 

= a(t) dx = a(t) dx, 

= a(t)x d0 = a(t)x d0, 

= a(t)x sin 0 d<t, = a(t)x sin 0 d<t,, 

No such freedom of choice is possible when the model universe is curved, because 
then the x's in the last two lines are replaced by a function, sin x or sinh X, that 
is not linear in its argument. 

Despite the feasibility in principle of determining the absolute value of the 
"radius" a(t) of a curved universe, in practice today's accuracy falls short of what 
is required to do so. Therefore it is appropriate in many contexts to continue to 
regard a(t) as a factor of relative expansion, the absolute value of which one tries 
to keep from entering into any equation exactly because it is difficult to determine. 
This motivation will account for the way much of the analysis of expansion is carried 
out in what follows, with calculations arranged to deal with ratios of a values rather 
than with absolute a values. 

Box 27.2 explores and elucidates the geometry of a hypersurface of homogeneity. 

Exercise 27.4. UNIQUENESS OF METRIC FOR 3-SURFACE 
OF CONSTANT CURVATURE 

Let Yii and yi'i' be two sets of metric coefficients, in coordinate systems { xi } and { xi' } ,  that 
have Riemann curvature tensors [derived by equations (8.22) and (8.42)] of the constant
curvature type (27.2 I ) .  Let it be given in addition that the curvature parameters K and K' 
are equal. Show that Y;; and Yi 'i' are related by a coordinate transformation. [For a solution, 
see §8. 10  of Robertson and Noonan (1968), or §§ 10 and 27 of Eisenhart (1926).] 

Exercise 27 . 5. METRIC FOR 3-SURFACE OF CONSTANT CURVATURE 
(a) Show that the following metric has expression (27.21 )  as its curvature tensor 

* With this choice of spatial coordinates, the spacetime metric reads 
(dx2 + dy2 + dz2) 

ds2 = - dt2 + -----,-c-�-� [ I  + ¼K(x2 + y2 + z2)]2 

(27 .26)* 

This is often called the "Robertson- Walker line element, " because Robertson ( 1 935,  1 936) and Walker 
( 1 936) gave the first proofs that it describes the most general homogeneous and isotropic spacetime 
geometry. 
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(b) By transforming to spherical coordinates (R, 8, <f,) and then changing to a Schwarzs
child radial coordinate (2wr = "proper circumference"), transform this metric into the form 

da2 = dr 2 
+ r 2(d82 + sin28 d<t,2) .  

1 - Kr 2 (27.27) 

(c) Find a further change of radial coordinate that brings the metric into the form (27.22). 

Exercise 27 . 6 .  PROPERTIES OF THE 3-SURFACES 
Verify all statements made in Box 27.2. 

Exercise 27 . 7. ISOTROPY IMPLIES HOMOGENEITY 
Use the contracted Bianchi identity c3>G ik

l k = 0 (where the stroke indicates a covariant 
derivative based on the 3-geometry alone) to show (1) that C3>v K = 0 in equation (27 .21 ) ,  
and therefore to show (2) that direction-independence of the curvature [isotropy; curvature 
of form (27.21)] implies and demands homogeneity (K constant in space). 

(continued on page 726) 

Box 27.2 THE 3-GEOMETRY OF HYPERSURFACES OF HOMOGENEITY 

A.  U n iverse with  Posit ive S patia l  
Curvatu re " ' S pat i a l ly Closed 
U n iverse") 

Metric of each hypersurface is 

da 2 = a2[dx 2 + sin2x(d0 2 + sin20 d<t> 2)J . ( I ) Typical point with </> = "'  
w 

Typical point with </> = 0 To visualize this 3 -geometry, imagine embed
ding it in a four-dimensional Euclidean space 
(such embedding possible here ; not possible for 
general three-dimensional manifold; only four 
freely disposable functions [w, x, y, zJ of three vari
ables [a, /3, y] are at one's disposal to try to repro
duce six prescribed functions [gmn(a, /3, y)) of those 
same three variables) . 

� - - - - � X 

/
/ � a 

/ The embedding is achieved by 

w = a cos X, z = a sin x cos 0, x = a sin x sin 0 cos </>, 

y = a sin x sin 0 sin </>, 

since it follows that 

da 2 dw2 + dx 2 + dy 2 + dz 2 

(2) 

= a2[dx 2 + sin2x(d0 2 + sin20 d<t> 2)J .  (3) 

z 

A 3-surface of positive curvature embedded in four-dimensional Euclidean space. One rotational degree of freedom is suppressed by setting <j> = 0 and "' ("slice through pole," 3-sphere in 4-space looks like a 2-sphere in 3-space ). 
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Equations (2) for the embedded surface imply 
that wZ + x Z + y Z + z Z = a Z ; (4) 

i.e., the surface is a 3-dimensional sphere in 4-
dimensional Euclidean space. 

To verify homogeneity and isotropy, one need 
only notice that rotations in the four-dimensional 
embedding space can move any given point [any 
given (w, x, y, z) on the 3-sphere) and any given 
direction at that point into any other point and 
direction-while leaving unchanged the line ele
ment da 2 = dw2 + dx 2 + dy 2 + dz 2 . 

The above equations and the picture show that 
(1) The 2-surfaces of fixed x (which look like cir

cles in the picture, because one rotational de
gree of freedom is suppressed) are actually 
2-spheres of surface area 4'1Ta2 sin2x ;  and (0, <f> )  
are standard spherical coordinates on these 
2-spheres. 

(2) As x ranges from O to '17, one moves outward 
from the "north pole" of the hypersurface, 
through successive 2-spheres ("shells") of area 
4'1Ta 2 sin2x (2-spheres look like circles in pic
ture). The area of these shells increases rapidly 
at first and then more slowly as one ap
proaches the "equator" of the hypersurface, 
x = '1T /2. Beyond the equator the area de
creases slowly at first, and then more rapidly 
as one approaches the "south pole", (x = '17; 
area= 0). 

(3) The entire hypersurface is swept out by 

0 � X � 'IT, 

0 � 0 � 'IT, 

0 � </> � 2'17 
(</> is cyclic; <f> = 0 is same as <f> = 2'1T); 

its 3-volume is 

o/ = f (a dx )(a sin x d0)(a sin x sin 0 d<t> ) 
= f .,,. 

4'1Ta 2 sin2x(a dx )  = 2'1T 2a3 . (5) 
0 

B .  U n iverse with Zero S patia l  
Curvatu re ( " S pat ia l ly  F l a t  U n iverse") 

Metric of each hypersurface is da 2 = a 2[dx 2 + x 2(d0 2 + sin20 d<t> 2)) . (6) 

This is a perfectly flat, three-dimensional, Eucli
dean space described in spherical coordinates. In 
Cartesian coordinates 

the metric is 

x = ax sin 0 cos </>, 
y = ax sin 0 sin </>, 

z = ax cos 0, 
(7) 

da 2 = dx 2 + dy 2 + dz 2. (8) 

The entire hypersurface is swept out by 

0 � X < oo,  
0 � 0 � 'IT, 

and its volume is infinite. 

C.  U n iverse with N egative S patia l  
Curvatu re ( " S pat ia l ly  open 
U n iverse") 

Metric of each hypersurface is 

(9) 

da 2 = a 2[dx 2 + sinh2x(d0 2 + sin20 d<f> 2)) . (10) 

This 3-geometry cannot be embedded in a four
dimensional Euclidean space; but it can be em
bedded in a flat Minkowski space da 2 = - dw2 + dx 2 + dy2 + dz 2 • (11) 
To achieve the embedding, set 

w = a cosh X, z = a sinh x cos 0, 
x = a sinh x sin 0 cos </>, (12) y = a sinh x sin 0 sin <1>; 

insert this into equation (11 ), and thereby obtain 
(10). 

Equations (12) for the embedded surface imply 
that wZ - x Z - y Z - z Z = a Z ; (13) 

i.e., the surface is a three-dimensional hyperboloid 
in four-dimensional Minkowski space. (It has the 



z 

w t Typical point 
I 

� • = ' 

11 �• 
a 

,I---'--�- X 

A 3-surface of negative curvature embedded in four-dimensional Minkowski space. One rotational degree of freedom is suppressed by setting <j> = 0 and 1r ("slice through pole"; 3-hyperboloid in 4-space looks like 2-hyperboloid in 3-space ). 
same form as a mass hyperboloid in momentum 
space; see Box 22.5.) 

To verify homogeneity and isotropy, one need 
only notice that "Lorentz transformations" in the 
embedding space can move any given point on the 
3-hyperboloid and any direction through that 
point into any other point and direction-while 
leaving unchanged the line element 

da 2 = - dw2 + dx 2 + dy 2 + dz 2 . 
The above equations and the picture show that 
(1) The 2-surfaces of fixed x (which look like cir

cles in the picture because one rotational de
gree of freedom is suppressed) are actually 
2-spheres of surface area 4'7Ta 2 sinh2x; and (0, 
</>)  are standard spherical coordinates on these 
2-spheres. 

(2) As x ranges from 0 to oo ,  one moves outward 
from the (arbitrarily chosen) "pole" of the 
hypersurface, through successive 2-spheres 
("shells") of ever increasing area 4'7Ta 2 sinh2x. 
For large X, surface area increases far more 
rapidly than it would if the hypersurface were 
flat 
(proper surface area) 
4'77 (proper distance)2 

A 
4'77 12 

_ 4'7Ta 2 sinh2x 
4'7Ta 2x 2 (14) 

~ ( el/a )2 ~ -- --+- 00 .  
2 1/a 

The entire hypersurface is swept out by 
0 :::;;  X < oo,  
0 :::;;  0 :::;; '77, 
0 :::;;  </> :::;;  2'77 

(</> is cyclic; </> = 0 is same as </> = 2'77). 
The volume of the hypersurface is infinite. 

D .  Non u n iqueness of Topology 

(15) 

Warning: Although the demand for homogeneity 
and isotropy determines completely the local geo
metric properties of a hypersurface of homogene
ity up to the single disposable factor K, it leaves 
the global topology of the hypersurface undeter
mined. The above choices of topology are the most 
straightforward. But other choices are possible. 

This arbitrariness shows most simply when the 
hypersurface is flat (k = 0). Write the full space
time metric in Cartesian coordinates as 

ds 2 = - dt 2 + a 2(t)[dx 2 + dy2 + dz 2J .  (16) 

Then take a cube of coordinate edge L 

0 < x < L, 0 < y < L, 0 < z < L, 

and identify opposite faces (process similar to roll
ing up a sheet of paper into a tube and gluing 
its edges together; see last three paragraphs of 
§ 11.5 for detailed discussion). The resulting geom
etry is still described by the line element (16), but 
now all three spatial coordinates are "cyclic," like 
the </> coordinate of a spherical coordinate system: 

(t, x, y, z) is the same event as 
(t, x + L, y + L, z + L). 

The homogeneous hypersurfaces are now "3-tor
uses" of finite volume 

V = a3L3 , 

analogous to the 3-toruses which one meets under 
the name "periodic boundary conditions" when 
analyzing electron waves and acoustic waves in 
solids and electromagnetic waves in space. 

Another example: The 3-sphere described in 
part A above ( case of "positive curvature") has the 
same geometry, but not the same topology, as the 
manifold of the rotation group, SO(3) [see exer
cises 9.12, 9.13, 10.16, and 11.12]. For detailed 
discussion, see for example Weyl (1946), Coxeter 
(1963), and Auslander and Markus (1959). 
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§ 2 7 . 7 .  EQUATI O N S  OF M OTI O N  FOR  TH E FLU I D  

After the above analysis of any one hypersurface of homogeneity, return to the 
dynamics of the universe. Examine, first, the evolution of the fluid, as governed by 
the law V · T = 0. 

Recall (§22.3 and 23.5) that for a perfect fluid the equations of motion split into 
two parts. The component along the 4-velocity, u · (V · T) = 0, reproduces the first 
law of thermodynamics 

(d/dr)(p V) = -p(d V/dr), (27.28a) 

where V is the volume of any fluid element. The part orthogonal to the 4-velocity, 
(g + u ® u) · (V · T) = 0, gives the force equation ("Euler equation") 

(p + p) X (4-acceleration) = - (component of Vp orthogonal to u). (27 .28b) 

For a static star (§23.5) the first law of thermodynamics was vacuous, but the force 
equation was crucial. For a homogeneous universe, the converse is true; the force 
equation is vacuous (no accelerations), but the first law of thermodynamics is crucial. 

To see that the force equation is vacuous, notice that isotropy guarantees the 
vanishing of both sides of equation (27 .28b ). If either side were nonzero at any event 
'!J', it would distinguish a direction in the homogeneous hypersurface at '!J'. 

In applying the first law of thermodynamics (27.28a) to cosmology, divide the 
density and pressure into contributions due to matter and contributions due to 
radiation: 

P = Pm + Pr; P = Pm + Pr· (27.29) 

First discuss the density of mass-energy. Today Pm( � 10-31 g/ cm3) dominates over 
p,( ~ 10-33 g/cm3). Matter did not always dominate. Therefore, one cannot set Pr = 0. 
Now discuss the pressure. During that epoch of the universe when pressure was 
significant cosmologically, Pr dominated over Pm · Consequently, one can neglect Pm 
at all times, and one can use the "equation of state" for radiation, Pr = ¼Pr, to write 

P = Pm + Pr; P = 3 Pr· (27.30) 

When (27.30) is inserted into the first law of thermodynamics (27.28a), it yields the 
result 

I (d/dr)(pm V) + (d/dr)(pr V) = - 3 Pr d V/dr. (27.3 1) 

One cannot integrate this equation until one knows how mass-energy is fed back 
and forth between matter and radiation-i.e., until one knows another relationship 
between Pm V and Pr V All estimates indicate that, except in the first few seconds 
of the life of the universe, the energy exchanged between radiation and matter was 
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negligible compared to Pm Vand Pr Vindividually (see §28.1 ). Under these conditions, 
equation (27.31) can be split into two parts: 

and 

The solutions are simple: 

I (d/dr)(Pr V) + 3 Pr d V/dr = 0. 

Pm V = constant ( conservation of matter) 

and 
Pr V

413 = const = 
V

��13 V {constancy of number ) 
1 of photons 

'energy he/A of1 

one photon, up 
to a factor of 

1proportionality
1 

Now what is V? It is the volume of any fluid element. It has the value 

V = a3 X 2 sin 0 Llx .10 Llcf> 

(27.32a) 

(27.32b) 

(27.33a) 

(27.33b) 

for a fluid element with edges Llx, .10, Llcf>. Here x, 0, cf> are constant along each 
world line of the fluid (comoving coordinates). Therefore the element of hyperspher
ical solid angle X 2 sin 0 Llx .10 Llcf> ( or pseudohyperspherical solid angle for the model 
of an open universe) is constant throughout all time for any fluid element. Therefore 
the volume of the fluid element grows in direct proportion to the cube of the 
expansion parameter a; thus, 

V/a3 = constant. 

Combining this result with the constancy of Pm V and Pr V
413, one sees that 

Pma3 = constant, Pra4 = constant. (27.34) 

Let Pmo be the density of matter today, Pro be the density of radiation today, and a0 be the expansion factor for the universe today. Then, at any time in the past, 

and 

a3 a4 
p(t) = Pmo a3(t) + Pro a4(t) 

I a 4 
p(t) = 3 Pro a4(t) 

. 

(27.35a) 

(27.35b) 

Fi rst law of thermodynam ics 
used to express densit ies of 
radiat ion and  matter  in terms 
of expans ion facto r 
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These results were based on two key claims, which will be justified in detail later 
(Chapter 28) :  the claim that in the epoch when pressure was important Pm was much 
smaller than Pr ; and the claim that exchange of mass-energy between radiation and 
matter was always negligible ( except in the first few seconds after the "creation"). 

§27 . 8 .  THE EINSTEIN FIELD EQUATION 

Once the time evolution of the expansion factor, a(t), is known, one can read off 
the time evolution of the density and pressure directly from equations (27.35). The 
density and pressure, in turn, determine how the expansion proceeds in time, via 
Einstein's field equations. Thus the field equations "close the logic loop" and give 
one a closed mathematical system from which to determine all three quantities, a(t), 
p(t) and p(t). 

One can readily calculate the components of the Einstein tensor for the model 
universe using the orthonormal basis one-forms, 

wt dt, wx _ a(t) dx, w e a(t).E d8, 

The result [see equations (5) of Box 14.5 ]  is 

GM = 3 _i!_ + -, ( a )2 3k 
tt a a2 

Gj,,,, = 0 if µ, =I- V. 

w if> a(t).E sin 8 d<J>. (27.36) 

(27.37a) 

(27.37b) 

(27.37c) 

(With foresight, one will notice ahead of time that isotropy guarantees the equality 
Gxx = Gee = Gif>if>' and similar equalities for the Riemann tensor; and one will 
calculate only Gxx' the component that is most easily calculated.) 

The basis one-forms, wt, w X, w e, w if>, are the orthonormal basis carried along 
by an observer who moves with the "cosmological fluid." Consequently, Tu is the 
mass-energy density, p, that he measures; J;1 is the pressure, p; I'f; vanishes, because 
he sees no energy flux (no momentum density); and Tr; vanishes for i =I- j because 
he sees no shear stresses : 

4i = P,  
Txx = Tee = T1>1> = p, 
Tj,,,, = 0 when µ, =I- v. 

(27.3 8a) 

(27.3 8b) 

(27.3 8c) 

Equate the Einstein ("moment of rotation") tensor of equations (27.37) to the 
stress-energy tensor of equations (27 .3 8). And if one insists, include the so-called 
"A-term" or "cosmological term" in the field equations [Einstein (1970) : "the biggest 
blunder of my life"). Thus obtain two nonvacuous field equations. The first is an 
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"initial value equation," which relates a, t to a and p at any initial moment of time:  

k A 8'17 - - + - + - p. 
a2 3 3 

omit 

(27 .39a) 

The second is a "dynamic equation," which gives the second time-derivative of the 
expansion factor, and thereby governs the dynamic evolution away from the initial 
moment of time, 

(1) in itial value equation 

2 
a, tt = - (�)2 - � + A - 8'1Tp. a a a2 .__., 

(27 .39b) (2) dynamic equation 

omit 

If (27 .39b) is to be compared with anything in Newtonian mechanics, it is to be 
compared with an equation for acceleration ( equation of motion), and in the same 
spirit (27 .39a) is to be compared with a first integral of the equation of motion; 
that is, an equation of energy. In accordance with this comparison, note that one 
only has to differentiate (27 .39a) and combine it with the relation satisfied by the 
pressure, 

(pa3), t = -p(a3), t 

("law of conservation of energy") to get the acceleration equation (27 .39b). Without 
any loss of information, one can therefore ignore the "acceleration equation" or 
"dynamic equation" (27 .39b) henceforth, and work with the analog of an energy 
equation or what is more properly known as an "initial-value equation" (details of 
initial-value problem for Track-2 readers in Chapter 21). 

What shows up here in the limited context of Friedmann cosmology is appropri
ately viewed in the wider context of general geometrodynamics. Conservation of 
energy plus one field equation have just been seen to reproduce the other field 
equations. Conversely, by accepting both field equations, one can derive the law 
of conservation of energy in the form just stated. Thus, the very act of writing the 
field equation G = 8'1TT (or, if one insists upon the "cosmological term," 

G + Ag = 8'1TT) 
.__., 
omit 

was encouraged by and founded on the automatic vanishing of the divergence V · G 
( or the vanishing of the divergences of G and g), because one knew to begin with 
that energy and momentum are conserved, V · T = 0. It is not surprising, then, that 
there should be a redundancy between the conservation law, V · T = 0, and the 
field equations. Neither is it surprising in the dynamics of the Friedmann universe 
that one can use what is here the one and only interesting component of the conser
vation law, plus the one and only interesting initial value component ( Gn component) 
of the field equations, to obtain the one and only interesting dynamic component 
(Gxx component) of the field equations. 

Why the dynamic equation is 
superfluous 

Side remarks about initial 
value equations, dynamic 
equations, and Bianchi 
identities in more general 
contexts 
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7 3 0  2 7  IDEALIZED COSMOLOGIES In a similar way, in more general problems that lack symmetry, one can always eliminate some of the dynamic field equations, but when gravitational radiation is present, one cannot eliminate them all . The dynamic field equations that cannot be eliminated, even in principle, govern the propagation of the gravitational waves. No gravitational waves are present in a perfectly homogeneous and isotropic cosmological model; its high degree of symmetry-in particular, its spherical (2-sphere !) symmetry about x = 0-is incompatible with gravitational waves. Now turn back from general dynamics to Friedmann cosmology. To determine the time evolution of the expansion factor, a, insert into the initial-value equation (27.39a) the expression for the density of mass-energy given in (27 .35 a), and arrive at an equation ready for integration, 
(27 .40) omit (8'1T/3)p(a) When one has completed the integration of this equation for a = a(t), one turns back to equation (27 .35 a,b) to get p(t) and p(t), and to expression (27 .24) to get the geometry, 

thus completing the solution of the problem. 
§27 . 9 .  TIME PARAMETERS AND TH E 

HUBBLE CONSTANT 

(27 .4 1 )  

To the analysis of this dynamic problem, many investigators have contributed over the years, beginning with Friedmann himself in 1922 . They discovered, among other results, that there are three natural choices of time variable, the one of greatest utility depending on the application that one has at hand. First is t, the original time variable. This quantity gives directly proper time elapsed since the start of the expansion. This is the time available for the formation of galaxies. It is also the time during which radioactive decay and other physical processes have been taking place. Second is a(t), the expansion factor, which grows with time, which therefore serves to distinguish one phase of the expansion from another, and which consequently can be regarded as a parametric measure of time in its own right. The ratio of a(t) at two times gives the ratio of the dimensions of the universe ( cube root of volume) at those two times. It also gives the ratio (1 + z) of wavelengths at those two times (see §29 .2). A knowledge of the red shift, z, experienced in time past by radiation received today is equivalent to a knowledge of a(t)/a0 , where a0 is the expansion factor today. Specifically, radiation coming in with z = 999 is radiation coming in from a time in the history of the universe when it had 10-3 of its present dimensions and 10-9 of its present volume. During the interval of time while the expansion 
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parameter is increasing from a to a + da, the lapse of proper time, according to 
(27.40), is dt - da - [ - k  + (8?T/3)a2p(a) + (A/3)a2]112 • 

-------..--, 

omit 

(27.42) 

In terms of a as a new time parameter, it follows from this formula that the metric 
takes the form [Hughston (1969)] 

ds2 = - (da)2 
2[d 2 ._.. 2( ,.1'0 2 . 20 ,.] 2)] (27 43) -k + (8?T/3)a2p(a) + (A/3)a2 + a X + ..:. ui + sm ucp · 

-------..--, 

omit 

Third is ri(t), the "arc-parameter measure of time." During the interval of time (3) arc parameter, 'I/ dt, a photon traveling on a hypersphere of radius a(t) covers an arc measured in 
radians equal to dt dri = -. a(t) (27.44) 

When the model universe is open instead of closed, the same parameter lets itself 
be defined. Only the words "hypersphere" and "arc" have to be replaced by the 
corresponding words for a flat hypersurface of homogeneity (k = 0) or a hyperbol
oidal hypersurface (k = -1). In all three cases, the "arc parameter" is defined by 
the integral of this expression from the start of the expansion: 

I
t dt Y/ = 

0 a(t) ; (27.45) 

thus small values of the "arc parameter time," YJ, mean early times; and larger values 
mean later times. In terms of this "arc-parameter measure of time," the metric takes 
the form 

(27.46) 

Let a photon start at the "North Pole" of the 3-sphere (x = 0; any 0 and cp) at 
the "arc parameter time" Y/ = Y/ i · Then, by the "arc parameter time" YJ = Y/z, the 
photon has traveled to a new point on the hypersphere and encountered a new set 
of particles of the "cosmological fluid." They lie at the hyperpolar angle 

X = Y/2 - Y/1 · 

When one makes a spacetime diagram on a piece of paper to show what is happening 
when an effect propagates from one point to another in the universe, one finds it 
most convenient to take (I) the space coordinate to be x (the life histories of distinct 
particles of the "cosmological fluid" thus being represented by distinct vertical lines), 
and (2) the time coordinate to be Y/ (so that photons are described by lines inclined 
at +45 ° ). No time parameter is more natural to use than Y/ when one is tracing 
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out the course of null geodesics. For an example, see the treatment of the cosmologi
cal redshift in §29.2. It also turns out that it is simpler analytically (when A is taken 
to be zero) to give a = a(11) and t = t(11) than to give a directly as a function of 
time. Thus one gets the connection between the dimension a and the "arc-parameter 
time" Y/ from the formula 

Y/ = f dri = f a1�) 
= f [- ka2 + (81r/3)a�:(a) + (A/3)a4]112 · (27.47) 

------,-, 
omit 

From a knowledge of the dimension a as a function of this time parameter, one 
immediately gets proper time itself in terms of this time parameter, from the formula 

dt = a(11) m,. (27.48) 

An equation (27 .40) for the expansion factor and a choice of parameters for 
marking out time have now set the stage for a detailed analysis of idealized cosmol
ogy, and some of the relevant questions have even been asked: How does the 
characteristic dimension, a, of the geometry (radius of3-sphere, in the case of closure) 
change with time? What is the spacetime geometry? How do geodesics, especially 
null geodesics, travel in this geometry? However, additional questions are equally 
important: Is the expansion of the universe decelerating and, if so, how fast? How 
do density and pressure of matter and radiation vary with time? And finally, for 
the simplest and most immediate tie between theory and observation, what is the 
expansion rate? 

In speaking of expansion rate, one refers to the "Hubble constant," the fractional 
rate of increase of distances, 

ti(t) H= 
- a(t) ' (27.49) 

which is normally evaluated today H(today) H0 , but is in principle defined as 
a function of time for every phase of the history of the universe. The reciprocal 
of H is the "Hubble time," H-1 . This quantity represents the time it would have 
taken for the galaxies to attain their present separations, starting from a condition 
of infinite compaction, if they had maintained for all time their present velocities 
("time for expansion with dimensions linearly extrapolated back to the start"). For 
the conversion from astrophysical to geometric units and to years, take the currently 
accepted value, H0 = 55 km/sec megaparsec (Box 29.4), as an illustration: 

H _ 55 km/sec 
0 - (299,793 km/sec)(3.0856 X 1024 cm or 3.2615 X 106 yr of time) 
= 0.59 X 10-28 per cm of light-travel time 

or 5.6 x 10- 11 fractional expansion per yr, (27.50) 

H;1 = 1.7 x 1028 cm of light-travel time or 18 X 109 yr. 
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§ 2 7 . 1 0 . THE ELEMENTARY FRIED MAN N COSM O LOGY 

OF A CLOSED U NIVERSE 

Take the simplest cosmological model, an isotropic homogeneous closed universe with A = 0, and trace out its features in all detail in the two limiting cases where matter dominates and where radiation dominates . The term "Friedmann universe" is used here for both cases, although the matter-dominated model is sometimes referred to as the Friedmann universe and the radiation-dominated one as the Tolman universe. In this analysis, it will be appropriate to let the variable a(t) represent the radius of the universe, as measured in cm, because only by reference to this radius does one have the tool in hand to discuss all the interesting geometric effects that in principle lend themselves to observation. After this discussion, it will be enough, in dealing with other models, to summarize their principal parts and comment on their differences from this simple model, without repeating the full investigation. Any reference to an open universe or any so-called "cosmological constant" or its effects will therefore be deferred to a brief final section, §27 . 1 1 .  There the variable a(t) will sometimes be taken to represent only a parameter of relative expansion, as is appropriate for discussions reaching out only to, say, z = 0. 1 ,  where global geometric issues are not taken up. Rewrite the controlling component (27 .40) of Einstein's field equation in the form 
(27 .5 1 )  

According as  one neglects the radiation term or the matter term in this equation, the equation idealizes to 
or 

- 1 ,  a 

(da )
2 _ a* 2 = - 1 .  dt a2 

(27.5� ; matter) dommates 
(27 .5� ; radiation) dommates In both cases, the problem lends itself to comparison to the problem of particle motion in Newtonian mechanics with "total energy" - 1 and with an "effective potential energy" of the qualitative form shown in diagram A of Box 27 . 1 -apart from minor differences in shape according as the potential goes as - 1/a or as - 1 /a2. The principal features of the solution are collected in Box 27.3 . It is a striking feature of the radiation-dominated era of the early Friedmann universe that the density of the radiation depends on time according to a simple universal law, 

Pr = 3/321Tt2 (27 .53) (final line and final column of Box 27 .3) . This circumstance may someday provide 
(continued on page 736) 

Features of a closed 
Friedmann universe with 
A =  O· 

( 1) radius as function of time 

(2) early era, when radiation 
dominates· types of 
radiation 
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Box 27 .3  SOLUTIONS FOR THE ELEMENTARY FRIEDMANN 
COSMOLOGY OF A CLOSED UNIVERSE IN THE TWO LIMITING CASES IN WHICH 
( 1 )  MATTER DOMINATES AND RADIATION IS NEGLIGIB LE, AND 
(2) RADIATION DOMINATES AND MATTER IS NEGLIGIB LE 

Idealization for 
dynamics of 3-sphere 

Model relevant when? 

Effective "potential" in 
( da )2 

di + V(a) = - I 

Value of constant in this "potential" 
in terms of conditions at some 
standard epoch 

Solution of dynamic equation ex
pressed parametrically in terms of 
"arc parameter" T/ (radians of arc 
distance on 3-sphere covered by a 
photon travelling ever since start 
of expansion) 

Range of T/ from start of expansion 
to end of recontraction 

Nature of curve relating radius a to 
time t 

Hubble time 

H-1 = __ a_ = _a_2_ 
(da/dt) (da/m,) 

Matter dominated 

back into past to redshift z ~ 1 0,000 ; 
through today and through phase 
of maximum expansion, and re
contraction down to dimensions 
~ 10,000-fold smaller than today 

V(a) = 
a 

a 
a =  ;

ax (I - COS T/ )  

amax t = -
2

- (11 - sin 11) 

2,r ( one trip around the universe) 

cycloid 

a
max 

(I - COS 11)2 

2 sin T/ 

Radiation dominated 

very early phase of expansion, for 
redshifts z ~ 1 ,000 and greater; 
and corresponding phase in late 
stages of recontraction; not di
rectly relevant today. 

V(a) = a•2 
a2 

a =  a* sin 11 

I =  a*( l  - COS T/ )  

,r (gets only as  far as  antipodal point 
of universe) 

semicircle 

. sin2 T/ a --
cos 11 
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/deat,zatlon for 
dynamics o f  3-sphere Inequality between Hubble or "extrapolated" time and actual time back to start of expansion 

Density of mass-energy 
This density expressed in terms of Hubble expansion rate 
Inequality satisfied by density 
Analysis of magnification of distant galaxy by curvature of intervening space 
Limiting form of law of expansion for early times 

Other features of expansion at early times 

Matter dommated 

H- 1 2'. I .St 

p = --=--,------,-;:-
m 

'1TQ�ax(1 - COS 1))3 
3H2 2 Pm = 8'1T I + cos 1J 

§29.5 and Figure 29.2 

H- 1  -
amax

1)
3 - 1 5t 

- 8 
- . 

Pm = (8'1Ta3 /3) 1 3H2 

73 5 

Radiation dominated 

3H2 1 
p = -----T 81T cos2

11 

§29.5 

a =  (2a*t)112 

a•2 
p - 3p - ---T - T - (8'1Ta4j3) 3 3H2 
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a tool to tell how many kinds of radiation contributed to Pr in the early universe; 
or, in other words, to learn about field physics from observational cosmology. Express 
the density of radiation in the form 

_2 _ G 3 _ G/772 (kT)4 
picm ) - � Pr,conv(erg/cm ) - c4120 f13c3 . (27.54) 

It would be surprising if electromagnetism made the sole contribution to the radiation 
density, since the following additional mechanisms are available to sop up thermal 
energy from a violently radiating source: 

electromagnetic radiation (already considered), fem = 8; 
gravitational black body radiation, fv = 8; 
neutrino plus antineutrino radiation of the electron-

neutrino type [its contribution depends on the chemical 
potential of the neutrinos, on which see Brill and 
Wheeler (1 957); a zero value is assumed here for that 
potential], fe. = 7; 

neutrino plus antineutrino radiation of the muon-
neutrino type [with the same assumptions as for v/s], /µ, = 7; 

pairs of positive and negative electrons produced out 
of the vacuum when temperatures are of the order of 
T = mc 2/k = 0.59 x 1010 K and higher, evaluated in 
the approximation in which these particles are treated 
as overwhelmingly more numerous than the unpaired 
electrons that one sees today, fe+ e - = 14; 

other particles such as mesons created out of the vac
uum when temperatures are two orders of magnitude 
higher ( ~ 1012 K), and baryon-antibaryon pairs created 
out of the vacuum when temperatures are of the order 
of ~ 1013 K and higher, /µ+ µ- , /'IT, . . . ; 

sum of these f values, f (27.55) 

As the expansion proceeds and temperatures drop below 1013 K, then 1012 , then 
1010, the various particle pairs presumably annihilate and disappear [see, however, 
Alfven and Klein (1962), Alfven (1971), Klein (1971), and Omnes (1969)]. One is 
left with the radiations of zero rest mass, and only these radiations, contributing 
to the specific heat of the vacuum. At the phases of baryon-anti baryon and electron
positron annihilation, the thermal gravitational radiation present has already effec
tively decoupled itself from the matter, according to all current estimates. Therefore 
the energy set free by annihilation of matter and antimatter is expected to pour 
at first into the other two carriers of energy: neutrinos and electromagnetic radiation. 
However, the neutrinos also decouple early (after baryon-antibaryon annihilation; 
before full electron-positron annihilation), because the mean free path for neutrinos 
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rises rapidly with expansion. The energy of the subsequent annihilations goes almost 
exclusively into electromagnetic radiation. Thus the temperatures of the three radia
tions at the present time are expected to stand in the order 

(27 .56) 

Tern has been measured to be 2.7 K; T. is calculated to be (4/1 1)113 Tern = 1 .9 K, 
and � has been calculated to be 1 .5 K [Matzner (1968)] in a model where gravitons 
decouple during an early, quark-dominated era. 

Decoupled radiation, once in a Planck spectrum, remains in a Planck spectrum 
(see Box 29 .2). Expansion leaves constant the product Pr,decoupled a4 or the product 
T,.tdecoupled a4. Compare the temperature of this particular radiation now to the 
temperature of the same radiation at any chosen fiducial time tnd after its era of 
decoupling. Find 

anow Tr fid = -- Tr now = (1 + z)T,. now · 
' afid ' ' 

(27 .57) 

Here z represents the red shift of any "tracer" spectral line, given off at the fiducial 
time, and observed today, relative to the standard wavelength of the same transition 
as observed in the laboratory. 

If the three radiations could be catalyzed into thermodynamic equilibrium, then 
all radiations could be treated on the same footing during the radiation-domi
nated era of cosmology. Their individual f values could be added directly to give 
f = 8 + 8 + 7 + 7 = 30.  Temperature and time would then be connected by the 
formula 

(T/ 1010 K)2(t/ l sec) = 1 . 1 9 .  

This formula together with (27.57) implies the relation 

[( T,.,now ) (1 + z)]
2
(�) = 1 . 1 9 .  

10 1° K 1 sec 

(27 .58a) 

(27 .5 8b) 

This relation concerns two radiations : (1 ) the actual electromagnetic radiation with 
Planck spectrum (a continuum); and (2) the redshift and time of emission of a "tracer 
radiation" (a line spectrum). A measured departure from this relation could serve 
as one potential (indirect) indication that, in accordance with standard theory, 
neutrinos and gravitational radiation today are cooler than electromagnetic radiation. 

Turn now from the radiation-dominated era of cosmology to the matter-dominated 
era. Numbers sometimes elicit more response from the imagination than formulas. 
Therefore idealize to a matter-dominated cosmology, and for the moment arbitrarily 
adopt 20 x 109 yr and 10 X 109 yr as Hubble time and actual time, respectively, 
back to the start of the expansion. It is certain that future work will show both 
numbers to require revision, but probably not by more than a factor 2, in the opinion 
of observational cosmologists. Since any judgment on the best numbers is subject 

(3) later era , when matter 
dom inates 
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to uncertainty, one can pick the numbers to be simple as well as reasonable. From 
Box 27 .3,  one then deduces the present value of the arc parameter time T/,  

or 

20 X 109 lyr 
10  X 109 lyr 

amax ( 1  - cos TJ)2 

2 sin T/ 
amax (TJ - sin 11) 

2 

1/ = 1 .975 (or 1 1 3 .2 ° ) 

(27 .59) 

(27 .60) 

(arc traveled by a photon on the 3-sphere from the start of the expansion to today.) 
This fixed, all other numbers emerge as shown in Box 27 .4. 

Box 27.4 A TYPICAL COSMOLOGICAL MODEL COMPATI B LE WITH 
ASTRONOMICAL OBSERVATIONS AND WITH EINSTEIN'S 
CONCEPTION OF COSMOLOGY (A = O; U n iverse Closed) 

Radius at phase of maximum expansion, 
Time from start to maximum, 
Time from start to final recontraction, 
Time from start to today (adopted value), 
Radius today, 
Hubble time today (adopted value), 
Hubble expansion rate today, 
Deceleration parameter today, % 

[equation (29 . l b)] 
Density today (3/8wa0 

2 ) + (3m/8w), 

Volume today, 2w2a0 3, 
Density at maximum (3/8wa 2) + (3H2/8w), 

Volume at maximum, 
Rate of increase of radius today, 

1 8 .94 X 109 lyr; 
29 .76 X 109 yr; 
59 .52 X 109 yr; 
10 X 109 yr; 
1 3 . 19 X 109 lyr; 
20 X 109 yr; 
49.0 km/sec Megaparsec; 

1 .7 
(7 .67 + 3 .33) x 10-58 cm-2 

= I 1 .00 X 10-58 cm-2 

or 14.8 x 10-30 g/cm3; 

38 .3 X 1084 cm3 ; 
(3 .70 + 0.00) X 10-58 cm-2 

= 5 .0 X 10-3o g/cm3 ; 
1 14 x 1084 cm3 ; 
13 . 19 X 109 lyr/20 X 109 yr 
= 0.66 lyr/yr; 

Rate of increase of volume today, 1 .82 X 1068 cm3 /sec; 
Amount of matter, 5 .68 x 1056 g;  
Equivalent number of solar masses, 2 .86 x 1023 ; 

Equivalent number of baryons, 3 .39 x 1080. 
Fraction visible today 0.74 

It must be emphasized that these numbers do not deserve the title of "canonical," 
however convenient that adjective may be for describing them; they can at most 
be called illustrative. 



Figure 2 7 . 3 .  
Many Schwarzschild zones are fitted together to make a closed uni
verse. This universe is dynamic because a test particle at the interface 
between two zones rises up against the gravitational attraction of each 
and falls back under the gravitational attraction of each. Therefore 
the two centers themselves have to move apart and move back to
gether again. The same being true for all other pairs of centers, it 
follows that the lattice universe itself expands and recontracts, even 
though each Schwarzschiid geometry individually is viewed as static. 
This diagram is taken from Lindquist and Wheeler ( 1957) . 

If every five seconds a volume of space is added to the universe, a volume 
equivalent to a cube 105 lyr ( = 0.95 x 1023 cm) on an edge, about equal to the 
volume occupied by the Milky Way, where does that volume make its entry? Rather 
than look for an answer, one had better reexamine the question. Space is not like 
water. The o'utpouring of fresh water beneath the ocean at the Jesuit Spring off 
Mount Desert Island can be detected and measured by surrounding the site with 
flowmeters. There is no such thing as a flowmeter to tell "how fast space is streaming 
past." The very idea that "space flows" is mistaken. There is no way to define a 
flow of space, not least because there is no way to measure a flow of space. Water, 
yes; space, no. Life is very different for the flowmeter, according as it is stationary 
or moving with respect to the water. For a particle in empty space, however, physics 
is indistinguishable regardless of whether the particle is at rest or moves at high 
velocity relative to some chosen inertial frame. To try to pinpoint where those cubic 
kilometers of space get born is a mistaken idea, because it is a meaningless idea. 

One can get a fresh perspective on what is going on in expansion and recontraction 
by turning from a homogeneous isotropic closed universe to a Schwarzschild lattice 
closed universe. [Lindquist and Wheeler (1957)]. In the former case, the mass is 
idealized as distributed uniformly. In the latter, the mass is concentrated into 120 
identical Schwarzschild black holes. Each is located at the center of its own cell, 
of dodecahedral shape, bounded by 12 faces, each approximately a pentagon; and 
space is empty. The dynamics is easy to analyze in the approximation in which each 
lattice cell is idealized as spherical, a type of treatment long familiar in solid-state 
physics as the "Wigner-Seitz approximation" (references in Lindquist and Wheeler). 
In this approximation, the geometry inside each lattice cell is treated as having 
exactly the Schwarzschild character (Figure 27.3); a test particle placed midway 
between black hole A and black hole B rises against the attraction of each, and 
ultimately falls back toward each, according to the law developed in Chapter 25 
[equation (25.28) with a shift of 7T in the starting point for defining 11], 

r = � (I - cos 11), 

R ( R )112 
7' = 2 2M (11 - sm 11). 

(27 .61) 

Accordingly, the two masses in question must fall toward each other; and so it is 
with all the masses. One comes out in this way with the conclusion that the lattice 

(4) "Where is the new space 
created during 
expansion 7 '  ' -a 
meaningless question 



(5) causal isolation of various 
regions of universe from 
each other 
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universe follows the same law of expansion and recontraction as the Friedmann 
universe to an accuracy of better than 4 per cent [Lindquist and Wheeler; Wheeler 
(1964a), pp. 370-381]. Now ask again the same meaningless question about where 
the cubic kilometers of space pour into the universe while it is expanding, and where 
they pour out while it is recontracting. Receive a fuller picture why the question 
is meaningless. Surrounding each center of mass, the geometry is and remains the 
Schwarzschild geometry (until eventually the black holes come so close together that 
they coalesce). The situation inside each cell is therefore static. Moreover, lhe 
interface between cell and cell is defined in imagination by a sprinkling of test 
particles so light that they have no influence on the geometry or its dynamics. The 
matchup between the geometry in one cell and the next is smooth ("tangency 
between the two geometries"). There is nothing abnormal whatsoever in the space
time on and near the interface. One has as little right to say those cubic kilometers 
are "created" . here as anywhere else. To speak of the "creation" of space is a bad 
way of speaking, and the original question is a bad question. The right way of 
speaking is to speak of a dynamic geometry. So much for one question! 

In charting the dynamics of the geometry of a Friedmann universe, one often 
finds that it simplifies things to take as space coordinate the hyperpolar angle X, 
measured from some chosen world line (moving with the "cosmological fluid") as 
standard of reference; and to take as time coordinate the arc-parameter measure 
of time, 'I/, as illustrated in Figure 27.4. 

Inspection of the (X, '1))-diagram makes it clear that photons emitted from matter 
at one point cannot reach, in a limited time, any matter except that which is located 
in a limited fraction of the 3-sphere. In a short time t, according to Box 27.3, a 
photon can cover an arc distance on the 3-sphere equal only to 'I/ = (2t/a*)112 . 

Moreover, what is true of photons is true of other fields, forces, pressures, energies 
and influences : they cannot reach beyond this limit. Evidently the 3-sphere at time 
t is divided into a number of "zones," 

(hyperspherical solid } 
N = (number of

} = angl_e of en�ire 3-sphe�e = 277 2 

"zones" (hyperspherical solid) - 477x 3 /3 
angle of one zone 

= 377 ( a*
}

312 

2512  t ' 

(27.62) 

effectively decoupled one from the other. As time goes on, there are fewer separate 
zones, and ultimately every particle has been subjected to influences from every other 
particle in the model universe. 

Exercise 27.8. MATTER-DOMINATED AND RADIATION-DOMINATED REGIMES 
OF FRl � O MANN COSMOLOGY 

Derive the results listed in the last two columns of Box 27 .3, except for the focusing properties 
of the curved space_ 
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Use of "arc parameter" T/ as a time coordinate and hyperpolar angle x as a space coordinate to describe 
travel of a photon (±45 ° line) in a Friedmann universe that is matter-dominated (center) or radiation
dominated (right) The burst of photons is emitted from the "N-pole" of the 3-sphere at a time very 
little after the big bang, and the locus of the cloud of photons at subsequent stages of the expansion 
and recontraction is indicated by sections of the 3-sphere in the diagrams at the left. The matter-dominated 
Friedmann universe appears to be a reasonable model for the physical universe, except when its 
dimensions have fallen to the order of one ten-thousandth of those at maximum expansion or less 
("radiation regime") .  

Exercise 27 .9 .  TRANSITION FROM RADIATION-DOMINATED REGIME TO 
MATTER-DOMINATED REGIME 

Including both the radiation and the matter terms in equation (27 .51), restate the equation 
in terms of the arc parameter r, (with dri = dt/a) as independent variable, and integrate to 
find 

a = (ama,J2) - [(ama,/2)2 + a*2]11 2 cos (r, + 8), 

t = (amru/2)r, - [(ama,/2)2 + a*2]11 2[sin (r, + 8) - sin 8), 

where 

8 = arc tan [a* /(amru/2)]. 

(27.63) 

(27.64) 

(27 .65) 

(a) Verify that under appropriate conditions these expressions reduce at early times to 
a "circle" relation between radms and time and to a "cycloid" relation later. 



Open Friedmann universe 
with A =  0 

( 1) expansion factor as 
function of time 

(2) early stage-same as for 
closed universe 
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(b) Assign to a*2 the value a0ama,/ !O,000 (why?) and construct curves for the d1mens1onless 
measures of density, 

log10 [(8?Tama/ /3) [ :: ]] , Pm + Pr 
as a function of the dimensionless measure of time, 

What conclusions emerge from inspecting the logarithmic slope of these curves? 

Exercise 27. 1 0. THE EXPANDING AND RECONTRACTING 
SPHERICAL WAVE FRONT 

An explosion takes place at the "N-pole" of the matter-dominated Friedmann model universe 
at the value of the "arc parameter time" 'I/ = '1T /3, when the radius of the universe has reached 
half its peak value. The photons from the explosion race out on a spherical wave front. 
Through what fraction of the "cosmological fluid" has this wave front penetrated at that 
instant when the wave front has its largest proper surface area? 

§ 2 7 . 1 1 .  H O M O GENEO US ISOTRO PIC M O DEL U N IVERSES 

THAT VIO LATE EINSTEIN 'S CO NCEPTIO N 

O F  COSM O LOGY 

It violates Einstein's conception of cosmology (Box 27 .1 )-though not the equations 
of his theory-to replace the closed 3-sphere of radius a by the open hyperboloidal 
geometry of equation (27 .22) with the same scale length a. Even so, the results of 
Box 27.3 continue to apply in the two limiting regimes of matter-dominated and 
radiation-dominated dynamics when the following changes are made. (1) Change 
the constant - 1 on the righthand side of the analog of a "Newtonian energy 
equation" to + 1, thus going over from a bound system (maximum expansion) to 
an open system (forever expanding). (2) Replace (1 - cos lJ) by (cosh lJ - 1), sin lJ 
by sinh lJ, cos lJ by cosh lJ, and (lJ - sin lJ) by (sinh lJ - lJ). (3) The range of the "arc 
parameter" lJ now extends from O to oo,  and the curve relating "radius" a to time 
t changes from cycloid or circle to an ever-rising curve. (4) The listed inequalities 
on the Hubble time (as related to the actual time of expansion) and on the density 
(as related to 3H;/81T) no longer hold. (5) The formulas given in Box 27.3 for 
conditions at early times continue to hold, for a simple reason: at early times the 
curvature of spacetime "in the direction of increasing time" [the extrinsic curvature 
(6/a2)(da/dt)2 as it appears in Box 27.1, equation (2)] is overwhelmingly more 
important than the curvature within any hypersurface of homogeneity, +6/a2 (the 
intrinsic curvature); therefore it makes no detectable difference at early times whether 
the sign is plus or minus, whether the space is closed or open, or whether the 
geometry of space is spherical or hyperboloidal. 

Why doesn't it make a difference? Not why mathematically, but why physically, 
doesn't it make a difference in early days whether the space is open or closed? 
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Because photons, signals, pressures, forces, and energies cannot get far enough to 
"smell out" the difference between closure and openness. The "zones of influence" 
of (27.62) are too small for any one by itself to sense or to respond significantly 
to any difference between a negative space curvature -6/a2 and a positive space 
curvatu.re + 6/a2 . Therefore the simple power-law time-dependence of the density 
of the mass-energy of radiation given in Box 27.3 for a closed universe holds equally 
well in the earliest days of a radiation-dominated, open, isotropic model universe; 
thus, 

Pr= 3/32'7Tt2 . (27.66) 

Only at a later stage of the expansion, when the "extrinsic curvature" term [equation 
(2), Box 27.1], (6/a2)(da/dt)2 (initially varying as 1.s r-2, according to Box 27.3) has 
fallen to a value of the same order of magnitude as the "intrinsic curvature" term 
+6/ a2 (initially varying as +3a*-1r1), does the sign of the intrinsic curvature begin 
to matter. Only then do the differences in rate of expansion begin to show up that 
distinguish the open model universe from the closed one. 

The open model goes on expanding forever. Therefore the density of mass-energy, 
whether matter-dominated and proportional to amax/a3 , or radiation-dominated and 
proportional to a*2/a4, or some combination of the two, (1) ultimately falls to a level 
that is negligible in comparison with the intrinsic curvature, - 6 / a2 , and (2) thereafter 
can be neglected. Under these circumstances, the only term left to balance the 
intrinsic curvature is the extrinsic curvature. The important component of the field 
equation (after removal from all terms of a common factor 3) now reads 

J_ ( da )
2 

_ J_ _ O a2 dt a2 - · 
(27.67) 

For a closed universe, the two terms (one sixth the extrinsic curvature and one sixth 
the intrinsic curvature) have the same sign, and any equation like (27.67) leads to 
an impossibility. Here, however, rather than impossibility, one has the remarkably 
simple solution 

and the corresponding metric 

Write 

a = t, 

r = t sinh X, 

tnew = t cosh X, 

(27.68) 

(27.69) 

(27.70) 

and find that (27 .69), solution as it is of Einstein's empty-space field equation, is 
identical with the Lorentz-Minkowski metric of flat spacetime, 

ds 2 = -dt�ew + dr2 + r2(d82 + sin28 d<t>2) (27 .71) 

(see Box 27.2C). This geometry had acquired the flavor of an expanding universe 

(3) late stage-expansion 
forever 



Homogeneous cosmo log ies 
with A =/- 0 

( 1 )  equat ion for evo l ut ion of 
expans ion  facto r 

(2) qua l itat ive featu res of 
evo l ut ion 
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because the cosmological fluid, too thinly spread to influence the dynamics of the 
geometry, and serving only to provide marker points, was flying out in all directions 
[for a fuller discussion of this "expanding Minkowski universe," see, for example, 
Chapter 16 of Robertson and Noonan (1968)]. The typical spacelike hypersurface 
of homogeneity looks to have a curved 3-space geometry, and does have a curved 
geometry (instrinsic curvature), because the slice (27.70) through flat spacetime is 
itself curved ( extrinsic curvature). 

Turn nuw tu a second violation of Einstein's conception of cosmology : a cosmolog
ical term in the field equation (27.39), 

( da/ dt )2 k A 877 8?TPmo a�/3 8?TPro a!/3 -- + - - - = - p(a) = -...c..c..c.,--'---- + ---. 
a a2 3 3 a3 a4 

(27.72) 

In analyzing the implications of this broadened equation, turn attention from the 
"radius" a(t) itself, which was the focus of interest in the previous section, §27. 10, 
on Friedmann cosmology. Recognize that present measurements have not yet pro
vided a good, direct handle on the absolute dimension a(t) of the universe. However, 
they do give good figures for the redshift z and therefore for the ratio between a 

at the time of emission and a = a0 now, 

(27.73) 

For any comparison with observations designed to fix limits on k (Einstein value: 
k = + 1) and on A (expected to be zero), it is therefore appropriate to rewrite the 
foregoing equations so that they refer as much as possible only to ratios. Thus one 
rephrases (27.72) as the "generalized Friedmann equation," 

Here the quantity 

[ 
d 

( 
a(t) )] 2 k _ - - + V(a/a ) = - - = - K .  

dt ao 
o 

ao 
2 o 

V(a/a ) - 8?T [p (
ao ) + P (

ao )
2
] _ 2- A (!!_)

2 

o 3 mo a 
ro 

a 3 ao 

(27.74) 

(27.75) 

acts as an "effective potential" for the dynamics of the expansion. The constant term 
K

0 
represents one sixth of the intrinsic curvature of the model universe today. Its 

negative, - K0 , plays the role of an "effective energy" in the generalized Friedmann 
equation (Box 27.5). All the qualitative features of the cosmology can be read off 
from the curve for the effective potential as a function of (a/a0

) and from the value 
of K0 • 

For a quantitative analysis, the log-log diagram of Figure 27.5 is often more useful 
than the straight linear plot of V against (a/a0 ) of Box 27.5. 

All the limiting features shown in the varied types of cosmology have been 
encountered before in the analysis of the elementary Friedmann cosmology (big bang 
out of a configuration of infinite compaction; reaching a maximum expansion at 
a turning point, or continued expansion to a Minkowski universe; recollapse to 



§ 2 7  1 1 .  MODEL  U N IVERSES WITH k � 0 or A i=  0 745 infinite density) or lend themselves to simple visualization (static but unstable Einstein universe ; "hesitation" model ; "turnaround" model), except for the even more rapid expansion that occurs when A is positive and the dimension a has surpassed a certain critical value. In this expansion, a eventually increases as exp [(A/3)11 2t] irrespective of the openness or closure of the universe (k = 0, + 1 ) .  This expansion dominates every other feature of the cosmology. Therefore, in dis- (3) de Sitter universe cussing it, it is appropriate to suppress every other feature of the cosmology, take the density of matter to be negligible, and take k = 0 (hypersurfaces of homogeneity endowed with flat 3-space geometry) . In this limit, one has the following empty-space solution of Einstein's field equation with cosmological constant : (27 .76) This "de Sitter universe" [de Sitter ( 19 17a,b)] may be regarded as a four-dimensional surface, (27 .77) in a five-dimensional space endowed with the metric (27 .78) The correctness of this description may be checked directly by making the substitutions z0 = (3/ A)112 sinh [(A/3)11 2t] + l (A/3)11 2eW3)1121a;x 2, 2 z4 = (3 / A)11 2 cosh [(A/3)11 2t] - ½ (A/3)11 2eW3>1121a;x 2, z1 = a0e<A13>'12tX sin 0 COS cp, z2 = a0e<A13>'121
x sin 0 sin cp, z3 = aoe(A/3) 1121
X COS 0. 

(27 .79) 
Because of its beautiful group-theoretical properties and invariance with respect to 5 X 4/2 = 10 independent rotations, the de Sitter geometry has been the subject of scores of mathematical investigations . The physical implications of a cosmology following the de Sitter model are described for example by Robertson and Noonan ( 1968 ,  especially their § 16 .2) .  The de Sitter model is the only model obeying Einstein's equations (with A -:j; 0) which ( 1 )  continually expands and (2) looks the same to any observer who moves with the cosmological fluid, regardless of his position or his time. Any model of the universe satisfying condition (2) is said to obey the so-called "perfect cosmological principle ." This phrase arose in the past in studying models that lie outside the framework of general relativity, models in which matter is envisaged as continuously being created, and to which the name of "steady-state universe" has been given. Any such model has been abandoned by most investigators today, not least because it gives no satisfactory account of the 2 .7 K background radiation. 

(continued on page 748) 

Other non-Einsteinian 
cosmologies 

( 1) steady-state model 
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Box 27.5 EFFECT OF VALUE OF COSMOLOGICAL CONSTANT AND 
OF INTRINSIC CURVATURE OF MODEL UNIVERSE "TODAY" 
ON THE PREDICTED COURSE OF COSMOLOGY 

The "effective potential" V in the generalized Friedmann equation (27 .74) is represented schematically here as a function of the expansion ratio a/ a0 • The diagram illustrates the influence on the cosmology of ( 1 )  the cosmological constant A ( determines the behavior of the effective potential at large values of a/a0 ; see dashed curves) and (2) the value adopted for K0 = (one sixth of the intrinsic curvature of 3 -space at the present epoch) . The value of the quantity - K0 determines the "effective energy level" and is shown in the diagram as a horizontal line . The difference between this horizontal line and the effective potential determines (a;;-1 da/dt)2. Regions where this difference is negative are inaccessible . From the diagram one can read off the histories of 3 -space on the facing page. 

(Open universe 
A <  0 1 

I I I I 
t 

(will recontracl if A < 0) 
V 
I - (a/a0) _..  

0 1---------:==::::::;;.;::::::===A = 0 

( Closed universe - Ko l-'---...--'¥ 
(da/dt)2 

a/ 

I 
I 
I 

( Einstein static ) universe; A > 0, 
K > O; unstable 

- K
0 

level which give) "hesitation" solution for A > 0 

( - K0 level to give nonsingular "turn-around" solution, A > 0, K0 > 0 
The diagram is schematic, not quantitative. Representative values might be Aconv = 0 or -+-3 X 10-23 g/cm3 · p = 10-30 g/cm3 or p = 10-28 g/cm3 · and ' mo , conv mo, conv , (a;;-1 da/dt)2 = H; = ( 1/20 X 109 yr)2 or 3 .8 X 10-29 g/cm3 . At small values of a/ a0 the cosmological term - (A/3)(a/ a0)2 is negligible. Not negligible at small values of (a/a0) is the difference between a model universe curved only by the density of matter (the dashed curve in the diagram) and one curved also by a density of radiation (the full curve) . The different dependence of "radius" and density on time at early times in these two cases of a matter-dominated cosmology and a radiationdominated cosmology is spelled out in the last part of Box 27 .3 , giving in the one case p = l /6?Tt2 and in the other p = 3/32?Tt 2. 



§ 2 7  1 1  MODEL  U N IVERSES WITH k � 0 o r  A f:- 0 
Intrinsic curvature 
of space today 

Hyperbolic ; 
K

0 
negative 

Hyperbolic ; 
K

0 
negative 

Closed ,  
K0 positive 
Closed;  
K0 positive 
Closed; 
K0 positive 

Closed, 
K0 positive 

Closed, 
K

0 
positive 

A 
negative 

zero 

zero 
negative 
A more positive than a certain critical value ·  A > Acrit 

A positive and exactly equal to the critical value, A = Acrit' that puts the "summit of the potential" into coincidence with - K
0 

A less pos1t1ve than the critical value .  0 < A < Acri/K0 ) 
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Cosmology 

Universe starts in a condit10n of infinite density. It expands to a maximum extent (or minimum density) governed by the value of A. It then recontracts at an ever mcreasing rate to a condition of infinite density 
Universe starts in a condnion of infinite density It expands. Ultimately the rate of expansion reaches a steady rate, da/dt = I. The 4-geometry is Minkowski flat spacetime Only the curvature of the spacelike slices taken through this flat 4-geometry gives the 3-geometry i ts hyperbolic character [see equation (27 70)]. 
Standard Friedmann cosmology expansion from mfimte compaction to a finite radrns and recont raction and collapse 
Qualitatively same as foregomg. Quantitatively a slightly smaller radius at the phase of maximum expansion and a sligh tly shorter time from ,tart to end 
"Summit" of "effective polent1al" 1s reduced to a value slightly less than - K0 • The closed universe once again starts its expansion from a condition of infinite compaction This expansion once again slows down as the expansion proceeds and then looks almost as if i t  is going to stop ("moment of hesitation"). However, the representative point slowly passes over the summit of the potential Thereafter the expansion gathers more and more speed. It eventually follows the exponential law a = constant X exp [(A/3) 1121] .  
Situation similar to that of a pencil with its tip dug into the table and provided with just enough energy to rise asymptotically in infinite time lo the vertical position Umverse starts from a compact configuration and expanding approaches a certain radius ("Einstein radius", aE) according to a law of the form 

a =  aE - constant X exp ( - al) Or (Einstein's original proposal, when he thought that the universe is static, and added the "cosmological term," against his will ,  to the field equation to permit a static universe) the representative point sits forever at the "summit of the effective potential" (Einstein universe) . Aside from contradicting present-day evidence on expansion, this configuration has the same instability as does a pencil trying lo stand on its tip. The least dis turbance will cause ii lo "fall" either way, toward collapse or toward accelerating expansion, in the expansion case ultimately approaching the law 
a = constant X exp [(A/3) 1 121] Motion on the large a side of the "potential barrier " Far back in the past the model universe has enormous dimensions, but is also contracting with enormous rapidity, in approximate accord with the formula 

a = constant X exp [ - (A/3) 1121]. The radius a reaches a minimum value and thereafter the universe reexpands (" turn-around solution"), ultimately approaching the asymptotic law 
a = constant X exp [(A/3) ll2 t] .  
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Figure 27.5.  (facing page) 
Log-log plot of the effective potential V(a) of equation (27 .75) and Box 27.5 as it enters the generalized 
Friedmann equation 

[!__ ( a(1)
) ]

2 + v (�) = - \ = - K  • . 
dt a

0 
a

0 
a

0 

Horizontally is given the expansion ratio referred to (ala0),oday = I as standard of reference. Vertically 
is given the value of V(ala

0
) in the geometric units of cm-2. The supplementary scale at the right translates 

to - (c2IG) (318,r) V(ala
0

) as an equivalent density, expressed in glcm3 • The contribution of radiation 
density to the effective potential is indicated by the wavy line in the diagram. It is normalize<l lo a value 
of the radiation density today of Pro = 10-33 glcm3 and has a logarithmic slope of two. The contribution 
of matter density to the "effective potential" has a logarithmic slope of unity. Two choices are made 
for it, corresponding to a density of matter today of Pmo = 10-3o glcm3 and Pmo = 10-28 glcm3 (dashed 
lines in the diagram). The total effective potential in the two cases is also indicated in the diagram: 
a heavy line for the case Pmo = 10-3o glcm3 (no cosmological term included) and a light line for the 
case Pmo = 10-28 glcm3 . In this second case, a cosmological term is included, with the cosmological 
constant given by (318,r) (Al3) = 10-29 glcm3 • The line describing the contribution of this term has a 
negative slope of magnitude two (dashed line). The horizontal or "level line" is drawn for a value of 
the Hubble expansion rate today, H

0
, equal to 11 (20 x 109 years). The vertical separation on the log 

plot between the potential curve and the level line gives the ratio - VI ff;. This ratio as evaluated at 
any time t has the value a2(t)la; + K0H;;2, where a =  daldt. As evaluated "today" (ala0 = I) this ratio 
has the value I + K

0
H;;2 Knowing the Hubble expansion rate If; today, and knowing (or trying 

a certain set of parameters for) the potential curve, one can therefore deduce from the spread between 
the two the value of I + K

0
H;;2, hence the value of K

0
H;;2, hence the present value, K

0
, of the curvature 

factor. As an example, consider the case of the low-density universe (heavy line) and read off "today's" 
value, I + K0H;;2 = 0.223 . From this follows K0 = - 0.777 ff; (open or hyperbolic universe), hence 
k = - 1  and a

0 
= (kl K0 ) 112 = ( 1 10 .777) 112 20 x 109 yr = 22.7 X 109 yr. For the high-density model 

universe, with Pmo = 10-28 glcm3, one similarly finds I + K
0
H;;2 = 24.5, hence K

0 
= + 23 .5 lf;, hence 

k = + I (closed universe) and a
0 

= (kl K0) 112 = ( 1 123.5)112 20 x 109 yr = 4. 12  x 109 yr. Expansion 
stops, if and when it stops, at that stage when the ratio - VI ff; between the potential and the level 
line, or a2(t)la; + K

0
H;;2, falls from its "present value" of I + K

0
H;;2 to 0 + K

0
H;;2 ; that is, from 0.223 

to -0 .777 in the one case, and from 24.5 to 23.5 in the other case. This log-log plot should be replaced 
by the linear plot of Box 27 .5 when A <  0.  

However great a departure it is from Einstein's concept of cosmology to give any heed to a cosmological constant or an open universe, it is a still greater departure to contemplate a "hierarchic model" of the universe, in which clusters of galaxies, and clusters of clusters of galaxies, in this part of the universe are envisaged to grade off in density with distance, with space at great distances becoming asymptotically flat [Alfven and Klein ( 1962), Alfven ( 197 1 ), Klein ( 197 1  ), Moritz ( 1969), de Vaucouleurs ( 197 1 ), Steigman ( 197 1 )] .  The viewpoint adopted here is expressed by Oskar Klein in these words, "Einstein's cosmology was adapted to the discovery by Hubble that the observed part is expanding; the so-called cosmological postulate has been used as a kind of an axiomatic background which, when analyzed, makes it appear that this expansion is shared by a very big, but still bounded system. This implies that our expanding metagalaxy is probably just one of a type of stellar objects in different phases of evolution, some expanding and some contracting." 
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1 0-26 

10-25 

1 0-24 

The contrast between the hierarchic cosmology and Einstein's cosmology [Einstein ( 193 1 )  advocates a closed Friedmann cosmology] appears nowhere more strongly than here, that the one regards asymptotically flat spacetime as a requirement; the other, as an absurdity. "Only the genius of Riemann, solitary and uncomprehended," Einstein (1 934) puts it, "had already won its way by the middle of the last century to a new conception of space, in which space was deprived of its rigidity, and in which its power to take part in physical events was recognized as possible ." That statement epitomizes cosmology today. 



EXERCISES 

750 27 IDEALIZED COSMOLOGIES But today's view of cosmology, as dominated by Einstein's boundary condition of closure (k = + I) and his belief in A = 0, need not be accepted on faith forever. Einstein's predictions are clear and definite . They expose themselves to destruction. Observational cosmology will ultimately confirm or destroy them, as decisively as it has already destroyed the 1920 belief in a static universe and the 1948 steady-state models (see Box 27 .7 on the history of cosmology) . 

Exercise 27 . 1 1 .  ON SEEING THE BACK OF ONE'S HEAD 

Can a being at  rest relative to the "cosmological fluid" ever see the back of his head by 
means of photons that travel all the way around a closed model universe that obeys the 
Friedmann cosmology and has a non-zero cosmological constant (see the entries in Box 27.3 
for the case of a zero cosmological constant)? 

Exercise 27 . 1 2. DO THE CONSERVATION LAWS FORBID THE PRODUCTION OF 
PARTICLE-ANTIPARTICLE PAIRS OUT OF EMPTY S PACE BY 
TIDAL GRAVITATION FORCES? 

Find out what is wrong with the following argument : "The classical equations 

G"-13 = 8'1TT"-/3 

are not compatible with the production of pairs, since they lead to the identity T/ ,/3 = 0. 
Let the m1t1al state be vacuum, and let T"-13 and its derivative be equal to zero on the 
hypersurface t = const or I = - oo .  It then follows from T/ ,/3 = 0, that the vacuum is always 
conserved." [Answer : See Zel'dovich (1970, 1971, 1972). Also see §30.8.) 

Exercise 27 . 1 3 .  TURN-AROUND UNIVERSE MODEL NEGLECTING 

MATTER DENSITY 

If turn-around (minimum radius) occurs far to the right (large a) of the maximum of the 
potential V( a) in equation (27 .75), the matter terms will be negligible. Let Pmo = p,0 = 0. 
Then (what signs of k, A are needed for turn-around?), solve to show that A = 3(amin)-2 , 

H = (amin)-1 tanh (t/amin) near turnaround (t = 0) and that the deceleration parameter 
q _ - (I/H2 a)(d 2 a/dt2) has the value 

Exercise 27 . 1 4 . " HESITATION" UNIVERSE 

Neglect radiation in equation (27 .75) but assume K0 and A to be chosen so that the universe 
spent a very long time with a(t) near ah (ah measures location of highest point of the barrier, 
or the size of the universe at which the universe is most sluggish). Choose ah = a0/3 to 
produce an abnormally great number of quasar redshifts near z = 2 (as Burbidge and 
Burbidge (1969a,b) believe to be the case, though their opinion is not shared by all observers]. 
Show (a) that the density of matter now would account for only 10 per cent of the value 
of H; = (d/a)�

ow in equation (27 .75) ("m1ssmg matter", 1 .e. , K0 and A terms, account for 
90 per cent), (b) that ah = 2011 2H; 1 , and (c) that the deceleration parameter defined in the 
previous exercise, as evaluated "today", has the value % = - 13/10. 
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Exercise 2 7  . 1 5 . U N IVERSE O PAQU E TO B LACK- B O DY RADIATI O N  AT 
A N O NS I N G U LAR PAST TU R N-AR O U N D  REQU I RES 
I M POSS I B LE PARAM ETE RS 

From a plot like that in Box 27 .5 , construct a model of the universe that contains 2.7 K 
black-body radiation at the present, but, with k = + 1 and A > 0, had a past turn-around 
(minimum radius) at which the blackbody temperature reached 3,000 K where hydrogen 
would be ionized. Try to use values of H";;1 and Pmo that are as little as possible smaller 
than presently accepted values. 

Box 2 7 . 6  ALEXA N D E R  ALEXA N D ROVITCH F R I E D MA N N  
S t .  Petersbu rg, J u n e  1 7, 1 888-Leningrad, September 1 5 , 1 92 5  

Graduated from St. Petersburg University, 1909; 
doctorate, 1922; 1910, mathematical assistant in 
the Institute of Bridges and Roads; 1912, lecturer 
on differential calculus in the Institute of Mines; 
1913, physicist in the Aerological Institute of 
Pavlov; dirigible ascent in preparation for observ
ing eclipse of the sun of August 1914; volunteer 
in air corps on war front near Osovets, 1914; head 
of military air navigation service, 1916-1917; pro
fessor of mechanics at Perm University, 1918; St. 
Petersburg University, 1920; lectures in hydrody
namics, tensor analysis; author of books, Experi
ments in the Hydromechanics of Compressible Liq
uids and The World as Space and Time, and the 
path-breaking paper, On the Curvature of Space, 
1922; a director of researches in the department 
of theoretical meteorology of the Main Geophysi
cal Laboratory, Leningrad, and, from February 
1925 until his death of typhoid fever seven months 
later, director of that Laboratory; with L. V. Keller 
"introduced the concept of coupling moments, i.e., 
mathematical expectation values for the products 
of pulsations of hydrodynamic elements at differ
ent points and at different instants . . .  to elucidate 
the physical structure of turbulence" [ condensed 
from Polubarinova-Kochina (1963), which also 
contains a bibliography of items by and about 
Friedmann]. 
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Box 2 7 .  7 SOME STEPS IN COSMOLOGY ON THE WAY TO WIDER 
PERS PECTIVES AND FIRMER FOUNDATIONS [For genera l reference on 
the history of cosmology, see among others Mu nitz ( 1 957) ,  Nasr ( 1 964) , 
North ( 1 965) ,  Peebles ( 1 9 7 1  ) ,  Rind ler ( 1 969) ,  and Sci a ma ( 1 9 7 1  ) ;  and  
especia l ly  see Peebles and  Sciama for bibl iogra phica l references to  
modern developments listed below in abbreviated form .]  

A. Before the Twentieth Century 

Concepts of very early Indian cosmology (summarized by Zimmer (1 946)] : "One 
thousand mahayugas-4,320,000,000 years of human reckoning-constitute a single 
day of Brahma, a single kalpa . . . .  I have known the dreadful dissolution of the 
universe. I have seen all perish, again and again, at every cycle. At that terrible 
time, every single atom dissolves into the primal, pure waters of eternity, whence 
all originally arose." 

Plato, ca. 428 to ca. 348 B.c. [from the Timaeus, written late in his life, as translated 
by Cornford (1 937)] : "The world [universe] has been fashioned on the model of 
that which is comprehensible by rational discourse and understanding and is always 
in the same state . . . .  this world came to be . . .  a living creature with soul and 
reason . . . .  its maker did not make two worlds nor yet an indefinite number; but 
this Heaven has come to be and is and shall be hereafter one and unique . . . .  he 
fashioned it complete and free from age and sickness . . . .  he turned its shape 
rounded and spherical . . .  It had no need of eyes, for nothing visible was left outside; 
nor of hearing, for there was nothing outside to be heard . . . .  in order that Time 
might be brought into being, Sun and Moon and five other stars-'wanderers,' as 
they are called-were made to define and preserve the numbers of Time . . . .  the 
generation of this universe was a mixed result of the combination of Necessity and 
Reason . . .  we must also bring in the Errant Cause . . . .  that which is to receive 
in itself all kinds [all forms] must be free from all characters [all form] . . . .  For 
this reason, then, the mother and Receptacle of what has come to be visible and 
otherwise sensible must not be called earth or air or fire or water . . .  but a nature 
invisible and characterless, all-receiving, partaking in some very puzzling way of 
the intelligible, and very hard to apprehend." 

Aristotle, 384-322 B.C .  [from On the Heavens, as translated by Guthrie (1939)] : 
"Throughout all past time, according to the records handed down from generation 
to generation, we find no trace of change either in the whole of the outermost heaven 
or in any one of its proper parts . . . .  the shape of the heaven must be spherical. . . .  
From these considerations [motion invariably in a straight line toward the center; 
regularity of rising and setting of stars; natural motion of earth toward the center 
of the universe] it is clear that the earth does not move, neither does it lie anywhere 
but at the center. . . .  the earth . . .  must have grown in the form of a sphere. This 
(shape of segments cut out of moon at time of eclipse of moon; and ability to see 
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in Egypt stars not visible in more northerly lands] proves both that the earth is 
spherical and that its periphery is not large . . .  Mathematicians who try to calculate 
the circumference put it at 400,000 stades [l stade = 600 Greek feet = 606 English 
feet; thus 24.24 X 107 ft/(6080.2 ft/nautical mile) = 39,900 nautical miles-the 
oldest recorded calculation of the earth's circumference, and reportedly known to 
Columbus-85 per cent more than the true circumference, 60 x 360 = 21 ,600 
nautical miles]." 

Aristotle [from the Metaphysics, as translated by Warrington (1956)] : "Euxodus 
[of Cnidos, 408-355 B.c . ]  supposed that the motion of the sun and moon involves, 
in each case, three spheres . . . .  He further assumed that the motion of the planets 
involves, in each case, four spheres . . . . Calippus [of Cyzicus, flourished 330 B.c. ]  
. . .  considered that, in the light of observation, two more spheres should be added 
to the sun, two to the moon, and one more to each of the other planets." 

Eratosthenes, 276- 194 B.c .  [a calculation attributed to him by Claudius Ptolemy, 
who observed at Alexandria from 127 to 14 1  or 1 5 1 A.D. , in his Almagest, I, § 12; 
see the translation by Taliaferro (1952)] : 

(Maximum distance of moon from earth) = (64½) (radius of earth); 

(Minimum distance of sun from earth) = (1 , 1 60) (radius of earth). 

Abii 'Ali al-Husain ibn 'Abdallah ibn Sina, otherwise known as Avicenna, 980- 1037; 
physician, philosopher, codifier of Aristotle, and one of the most influential of those 
who preserved Greek learning and thereby made possible its transmission to me
diaeval Europe [quoted in Nasr (1964), p. 225 ] :  "Time is the measure of motion." 

From the Rasii'il, a 5 1 -treatise encyclopedia, sometimes known as the Koran after 
the Koran, of the Ikhwan al-Safa' or Brothers of Sincerity, whose main center was 
at Basra, Iraq, roughly A.D.  950- 1000 [as quoted by Nasr (1 964), p. 64; see p. 78 
for a list of distances to the planets (in terms of Earth radii) taken from the Rasii'il, 
as well as sizes of planets and the motions of rotation of the various Ptolemaic 
carrier-spheres] : Space is "a form abstracted from matter and existing only in the 
consciousness ."  

Abii Raihan al-Biriini, 973-1030, a scholar, but concerned also with experiment, 
observation, and measurement, who calculated the circumference of the Earth from 
measurements he made in India as 80,780,039 cubits (about 4 per cent larger than 
the value accepted today), and gave a table of distances to the planets [as quoted 
in Nasr (1964), pp. 120 and 130] : "Both [kinds of eclipses] do not happen together 
except at the time of the total collapse of the universe." 

Etiene Tern pier, Bishop of Paris, in 1277, to settle a controversy then dividing much 
of the French theological community, ruled that one could not deny the power of 
God to create as many universes as He pleases. 

Roger Bacon, 1214- 1294, in his Opus Majus (1268), gave the diameter of the sphere 
that carries the stars, on the authority of Alfargani, as 1 30,7 15 ,000 Roman miles 
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Box 27. 7 (continued) 

[mile equal to 1,000 settings down of the right foot] ; the volume of the sun, 170 
times that of the Earth; first-magnitude star, 107 times; sixth-magnitude, 18 times 
Earth. 

Nicolas Cusanus, 1401-1464 [from Of Learned Ignorance (1440), as translated by 
Heron (1954)]: ' 'Necessarily all parts of the heavens are in movement. . . .  It is 
evident from the foregoing that the Earth is in movement . . .  the world [universe], 
its movement and form . . .  will appear as a wheel in a wheel, a sphere in a sphere 
without a center or circumference anywhere . . . .  It is now evident that this Earth 
really moves, though to us it seems stationary. In fact, it is only by reference to 
something fixed that we detect the movement of anything. How would a person 
know that a ship was in movement, if . . .  the banks were invisible to him and he 
was ignorant of the fact that water flows?" 

Nicolaus Copernicus, February 19, 1473, to May 24, 1543 (from De Revolutionibus 
Orbium Coelestrum (1543), as translated by Dobson and Brodetsky (1 947)]: "I was 
induced to think of a method of computing the motions of the spheres by nothing 
less than the knowledge that the mathematicians are inconsistent in these investiga
tions . . . .  they cannot explain or observe the constant length of the seasonal year . 
. . . some use only concentric circles, while others eccentrics and epicycles . . . .  Nor 
have they been able thereby to discern or deduce the principal thing-namely the 
shape of the universe and the unchangeable symmetry of its parts . . . .  

"I found first in Cicero that Nicetas had realized that the Earth moved. Afterwards 
I found in Plutarch [ ~ A.D. 46-120] . . .  'The rest hold the Earth to be stationary, 
but Philolaus the Pythagorean (born ~480 B.c . ]  says that she moves around the 
( central) fire on an oblique circle like the Sun and Moon. Heraclides of Pontus 
[flourished in 4th century B.c . ]  and Ecphantus the Pythagorean also make the Earth 
to move, not indeed through space but by rotating round her own center as a wheel 
on an axle from West to East.' Taking advantage of this I too began to think of 
the mobility of the Earth . . . .  

"Should we not be more surprised if the vast Universe revolved in twenty-four 
hours, than that little Earth should do so? . . .  Idle therefore is the fear of Ptolemy 
that Earth and all thereon would be disintegrated by a natural rotation . . . .  That 
the Earth is not the center of all revolutions is proved by the apparently irregular 
motions of the planets and the variations in their distances from the Earth . . . .  We 
therefore assert that the center of the Earth, carrying the Moon's path, passes in 
a great orbit among the other planets in an annual revolution round the Sun; that 
near the Sun is the center of the Universe; and that whereas the Sun is at rest, any 
apparent motion of the Sun can be better explained by motion of the Earth . . . .  
Particularly Mars, when he shines all night, appears to rival Jupiter in magnitude, 
being distinguishable only by his ruddy color; otherwise he is scarce equal to a star 
of the second magnitude, and can be recognized only when his movements are 
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carefully followed. All these phenomena proceed from the same cause, namely 
Earth's motion . . . . That there are no such phenomena for the fixed stars proves 
their immeasurable distance, compared to which even the size of the Earth's orbit 
is negligible and the parallactic effect unnoticeable." 

Thomas Digges, 1 546- 1595 [in a Perfit Description of the Caelestiall Orbes accord
ing to the most aunciente doctrine of the Pythagoreans, latelye reuiued by Copernicus 
and by Geometricall Demonstrations approued ( 1 576), the principal vehicle by which 
Copernicus reached England, as quoted in Johnson ( 1 937)]: "Of whiche lightes 
Celestiall it is to bee thoughte that we onely behoulde sutch as are in the inferioure 
partes of the same Orbe, and as they are hygher, so seeme they of lesse and lesser 
quantity, euen tyll our sighte beinge not able farder to reach or conceyue, the greatest 
part rest by reason of their wonderfull distance inuisible vnto vs." 

Giordano Bruno, born ca. 1548, burned at the stake in the Campo dei Fiori 
in Rome, February 17, 1 600 [from On the Infinite Universe and Worlds, written on 
a visit to England in 1 583-1585, as translated by Singer (1 950)] : "Thus let this surface 
be what it will, I must always put the question, what is beyond? If the reply is 
NOTHING, then I call that the VOID or emptiness. And such a Void or Emptiness 
hath no measure and no outer limit, though it hath an inner; and this is harder 
to imagine than is an infinite or immense universe . . . . There are then innumerable 
suns, and an infinite number of earths revolve around those suns, just as the seven 
we can observe revolve around this sun which is close to us ." 

Johann Kepler established the laws of elliptic orbits and of equal areas (1 609), 
and established the connection between planetary periods and semimajor axes ( 16 19). 

Galileo Galilei observed the satellites of Jupiter and realized they provided support 
for Copernican theory, and interpreted the Milky Way as a collection of stars ( 16 10). 
In 1 638 he wrote: 

"Salvati. Now what shall we do, Simplicio, with the fixed stars? Do we want to 
sprinkle them through the immense abyss of the universe, at various distances from 
any predetermined point, or place them on a spherical surface extending around 
a center of their own so that each of them will be at the same distance from that 
center? 

"Simplicio. I had rather take a middle course, and assign to them an orb described 
around a definite center and included between two spherical surfaces . . .  " 

Isaac Newton ( 1 687): "Gravitation toward the sun is made up out of the gravita
tions toward the several particles of which the body of the sun is composed, and 
in receding from the sun decreases accurately as the inverse square of the distances 
as far as the orbit of Saturn, as evidently appears from the quiescence of the aphelion 
of the planets." 

Isaac Newton [in a letter of Dec. 10, 1 692, to Richard Bentley, quoted in Munitz 
( 1 957)] : "If the matter of our sun and planets and all the matter of the universe 
were evenly scattered throughout all the heavens, and every particle had an innate 
gravity toward all the rest, and the whole space throughout which this matter was 
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scattered was but finite, the matter on the outside of this space would, by its gravity, 
tend toward all the matter on the inside and, by consequence, fall down into the 
middle of the whole space and there compose one great spherical mass. But if the 
matter was evenly disposed throughout an infinite space, it could never convene 
into one mass; but some of it would convene into one mass and some into another, 
so as to make an infinite number of great masses scattered at great distances from 
one to another throughout all that infinite space. And thus might the sun and fixed 
stars be formed." 

Christiaan Huygens, 1629-1695 [in his posthumously published Cosmotheoros 
(1698)] : "Seeing then that the stars . . .  are so many suns, if we do but suppose 
one of them [Sirius, the Dog-star] equal to ours, it will follow [details, including 
telescope directed at sun; thin plate ; hole in it ; comparison with Sirius] . . .  that 
his distance to the distance of the sun from us is as 27,664 to 1. . . . Indeed it seems 
to me certain that the universe is infinitely extended." 

Edmund Halley (1720) : "If the number of the Fixt Stars were more than finite, 
the whole superficies of their apparent Sphere [i.e., the sky] would be luminous" 
[by today's reasoning the same temperature as the surface of the average star; this 
is known today as Olber's paradox, or the paradox of P. L. de Cheseaux (1744) and 
Heinrich Wilhelm Matthias Olbers (1 826)]. 

Thomas Wright of Durham (1750) :  "To . . .  solve the Phaenomena of the Via 
Lactea . . .  granted . . .  that the Milky Way is formed of an infinite number of small 
Stars . . .  imagine a vast infinite gulph, or medium, every way extended like a plane, 
and inclosed between two surfaces, nearly even on both sides . . . .  Now in this space 
let us imagine all the Stars scattered promiscuously, but at such an adjusted distance 
from one another, as to fill up the whole medium with a kind of regular irregularity 
of objects. [Considering its appearance] "to an eye situated . . .  anywhere about the 
middle plane" . . .  all the irregularity we observe in it at the Earth, I judge to be 
entirely owing to our Sun's position . . .  and the diversity of motion . . .  amongst 
the stars themselves, which may here and there . . .  occasion a cloudy knot of stars." 

Immanuel Kant, 1724- 1 804 (1755) :  "It was reserved for an Englishman, Mr. Wright 
of Durham, to make a happy step . . .  we will try to discover the cause that has 
made the positions of the fixed stars come to be in relation to a common plane . . . .  
granted . . .  that the whole host of [the fixed stars] are striving to approach each 
other through their mutual attraction . . .  ruin is prevented by the action of the 
centrifugal forces . . .  the same cause [centrifugal force] . . .  has also so directed 
their orbits that they are all related to one plane . . . .  [The needed motion is calcu
lated to be] one degree [or less] in four thousand years ; . . .  careful observers . . .  
will be required for it. . . .  Mr. Bradley has observed almost imperceptible displace
ments of the stars" [known from later work to be caused by aberration ( effect of 
observer velocity) rather than real parallax ( effect of position of observer)]. 
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Asks for the first t:me how a very remote galaxy would appear: "circular if its plane is presented directly to the eye, and elliptical if it is seen from the side or obliquely. The feebleness of its light, its figure, and the apparent size of its diameter will clearly distinguish such a phenomenon when it is presented, from all the stars that are seen single . . . . this phenomenon . . .  has been distinctly perceived by different observers [who] . . . have been astonished at its strangeness . . . .  Analogy thus does not leave us to doubt that these systems [planets, stars, galaxies] have been formed and produced . . .  out of the smallest particles of the elementary matter that filled empty space."  Goes on to  consider seriously "the successive expansion of the creation [of planets, stars, galaxies] through the infinite regions of space that have the matter for it. . . .  attraction is just that universal relation which unites all the parts of nature in one space. It reaches, therefore, to . . .  all the distance of nature's infinitude." 
Johann Heinrich Lambert, 1728- 1777 ( 176 1 ) :  "The fixed stars obeying central forces move in orbits . The Milky Way comprehends several systems of fixed stars . . . .  Each system has its center, and several systems taken together have a common center. Assemblages of their assemblages likewise have theirs. In fine, there is a universal center for the whole world round which all things revolve." [First spelling out of a "hierarchical model" for the universe, later taken up by C. V. I .  Charlier and by H. Alfven and 0. Klein ( 1962) ; see also 0. Klein ( 1966 and 197 1 )] .  
Auguste Comte ( 1 835) concluded that i t  is  meaningless to speak of the chemical composition of distant stars because man will never be able to explore them; "the field of positive philosophy lies wholly within the limits of our solar system, the study of the universe being inaccessible in any positive sense." The first successful determination of the parallax [1 second of parallax : 1 pc = 3 .08 x 10 18 cm = 3 .26 lyr] of any star was made in 1 838  (for a Centauri by Henderson, for a Lyrae by Struve, and for 6 1  Cygni by Bessel). 

B .  The Twentieth Century Derivation by James Jeans in 1902 of the critical wavelength that separates shortwavelength acoustical modes of vibration of a hot primordial gas and longer wavelength modes of commencement of gravitational condensation of this gas. Application of these considerations by P. J. E. Peebles and R. H. Dicke in 1968 to explain why globular star clusters have masses of the order of 105 M0 . Investigations of cosmic rays from first observation by V. F. Hess and W. Kolhorster in 19 1 1 - 1 9 1 3  to date ; determination that the energy density in interstellar space (in this galaxy) is about 1 eV /cm3 or 10-12 erg/cm3 , comparable to the density of energy of starlight, to the kinetic energy of clouds of ionized interstellar gas, averaged over the galaxy, and to the energy density of the interstellar 
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magnetic field ( ~ 10-5 gauss). In connection with this equality, see especially 
E. Fermi (1 949). 

Discovery by Henrietta Leavitt in 19 12 that there is a well-defined relation between 
the period of a Cepheid variable and its absolute luminosity. 

First determination of the radial velocity of a galaxy by V. M. Slipher in 19 12: 
Andromeda approaching at 200 km/sec. Thirteen galaxies investigated by him by 
1 9 1 5; all but two receding at roughly 300 km/sec. 

Albert Einstein (19 1 5d) :  Interpreted gravitation as a manifestation of geometry; 
gave final formulation of the law that governs the dynamic development of the 
geometry of space with the passage of time. 

Albert Einstein (19 17) : Idealized the universe as a 3 -sphere filled with matter at 
effectively uniform density; the radius of this 3 -sphere could not be envisaged as 
static without altering his standard 1 9 1 5  geometrodynamic law; for this reason 
Einstein introduced a so-called "cosmological term," which he later dropped as "the 
biggest blunder" in his life [Gamow (1970)]. 

Formulation by W. de Sitter in 1 9 1 7  of a cosmological model in which (1) the 
universe is everywhere isotropic (and therefore homogeneous) and (2) the universe 
does not change with time, so that the mean density of mass-energy and the mean 
curvature of space are constant, but in which perforce (3) a cosmological term 
("repulsion") of the Einstein type has to be added to balance the attraction of the 
matter. Observation by de Sitter that he could obtain another static model by 
removing all the matter from the original model, but that the A-term would cause 
test particles to accelerate away from one another. 

From 1 9 17 to 1920, debate about whether spiral nebulae are mere nebulous objects 
(Harlow Shapley) or are "island universes" or galaxies similar to but external to 
the Milky Way (H. D. Curtis). 

Discovery by Harlow Shapley in 1 9 1 8, by mapping distribution of about 100 
globular clusters of this Galaxy (104 to 106 stars each) in space that center is in 
direction of Sagittarius (present value of distance from sun ~ 10 kpc). 

Independent derivation of evolving homogeneous and isotropic cosmological 
models [also leading to the relation v = H ·  (distance)] by A. Friedmann in 1922 
and G. Lemaitre in 1 927, with Lemaitre tieing in his theoretical analysis with the 
then-ongoing Mt. Wilson work, to become the "father of the big-bang cosmology". 
(Universe, however, taken to expand smoothly away from Einstein's static A > 0 
solution in Lemaitre's original paper). 

Remark by H. Weyl in 1923 that test particles in de Sitter model will separate 
at a rate given by a formula of the form v = H • (distance). 

In 1924, resolution of debate about nature of spiral nebulae by Edwin P. Hubble 
with Mount Wilson 100-inch telescope;  discovery of Cepheid variables in Andromeda 
and other spiral nebulae, and consequent determination of distances to these nebulae. 
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Determination by Jan Oort in 1927 of characteristic pattern of radial velocities of stars near sun, our = Ar cos 2(0 - 8), 

showing that : ( I )  axis of rotation of stars in Milky Way is perpendicular lo Jisi.:; (2) sun makes a complete revolution in ~ 108 yr ; and (3) the effective mass pulling on the sun required to produce a revolution with this period is of the order ~ 1044 g or ~ 10 11  M0 . Age of a uranium ore as established from lead-uranium ratio : greatest value found up to 1927, 1 .3 X 109 yr (A. Holmes and R. W. Lawson) . Age of the lead in the "average" surface rocks of the earth as calculated from time required to produce this lead from the uranium in the same surface rocks, 2 x 109 yr to 6 X 109 yr. Age of elemental uranium as estimated by Rutherford from time required for U 235 and U 238 to decay from assumed roughly equal ratio in early days to known very unequal ratio today, ~3 x 109 yr. Establishment by Hubble in 1929 that out to 6 X 106 lyr the velocity of recession of a galaxy is proportional to its distance. Note by A. S. Eddington in 1930 that Einstein A > 0 static universe is unstable against any small increase or decrease in the radius of curvature. Recommendation from Einstein in 193 1 hereafter to drop the so-called cosmological term. Proposal by Einstein and de Sitter in 1 932 that one tentatively adopt the simplest assumption that A = 0, that pressure is negligible, and that the reciprocal of the square of the radius of curvature of the universe is neither positive nor negative (spherical or hyperbolic universe) but zero ("cosmologically flat"), thus leading to the relation p = 3H2 /87T (in geometric units) . Evidence uncovered by Grote Reber in 1934 for the existence of a discrete radio source in Cygnus ; evidence for this source, Cygnus A, firmed up by J. S. Hey, S. J. Parsons, and J. W. Phillips in 1946 ; six other discrete radio sources, including Taurus A and Centaurus A, discovered by J. G. Bolton in 1948 . Discovery by E. A. Milne and W. H. McCrea in 1 934 of close correspondence between Newtonian dynamics of a large gas cloud and Einstein theory of a dynamic universe, with the scale factor of the expansion satisfying the same equation in both theories, so long as pressure is negligible . Demonstration by H. P. Robertson and by A. G. Walker, independently, in 1 935 that the Lemaitre type of line element provides the most general Riemannian geometry compatible with homogeneity and isotropy. Classification of nebulae as spiral, barred spiral, elliptical, and irregular by Hubble in 1936 . First detailed theory of thermonuclear energy generation in the sun, H. A. Bethe, 1939 .  
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Reasoning by George Gamow in 1946 that matter in the early universe was dense 
enough and hot enough to undergo rapid thermonuclear reaction, and that energy 
densities were radiation-dominated. 

Proposal of so-called "steady-state cosmology" by H. Bondi, T. Gold, and 
F. Hoyle in 1948, lying outside the framework of Einstein's standard general rela
tivity, with "continuous creation of matter" taking place throughout the universe, 
and the mean age of the matter present being equal to one third of the Hubble 
time. 

Prediction by R. A. Alpher, H. A. Bethe, and G. Gamow in 1948 that the black
body radiation that originally filled the universe should today have a Planck spec
trum corresponding to a temperature of 25 K. Independent conception of same idea 
by R. H. Dicke in 1964 and start of an experimental search for this primordial 
cosmic-fireball radiation. Discovery of unwanted and unexpected 7 cm background 
radiation in 1965 by A. A. Penzias and R. W. Wilson with a temperature of about 
3.5 K; immediate identification of this radiation by Dicke, P. J. E. Peebles, P. G. 
Roll, and D. T. Wilkinson as the expected relict radiation. 

Radio sources Taurus A, Virgo A, and Centaurus A tentatively and, as it later 
proved, correctly identified with the Crab Nebula and with the galaxies NGC 4486 
and NGC 5 128 by J. G. Bolton, G. J. Stanley, and 0. B. Slee in 1949. 

Analysis by Lemaitre in 1 950 of big-bang expansion approaching very closely the 
Einstein static universe (A > 0) and then, at first slowly, subsequently more and 
more rapidly, going into exponential expansion. 

Discovery by Walter Baade in 1952 that there are two types of Cepheid variables 
with different period-luminosity relations; consequent increase in Hubble distance 
scale by factor of about 2.6, and a corresponding increase in the original value 
(roughly 2 X 1 09 yr) of the Hubble time, H;1. 

Identification of radio source Cygnus A by W. Baade and R. Minkowski in 1 954 
with the brightest member of a faint cluster of galaxies, contrary to the then widely 
held view that the majority of radio sources lie within the Milky Way. Determination 
of redshift in the optical spectrum of ot,./A = z = 0.057 by Minkowski, implying for 
Cygnus A a distance of 170 Mpc and a radio luminosity of 1045 erg/sec, 107 times 
the radio power and ten times the optical power of a normal galaxy. 

Resolution of radio source Cygnus A in 1956 into two components symmetrically 
located on either side of the optical galaxy, the first indication that most radio sources 
are double. Still unsolved is the mystery of the explosion or other mechanism that 
caused this and other double sources . 

Calculation by G. R. Burbidge in 1 956 of the kinetic energy in the electrons giving 
off synchrotron radiation in a radio galaxy and the energy of the magnetic field 
that holds these electrons in orbit; minimization of the sum of these two energies; 
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determination that this minimum is of the order of 1060 ergs ( energy of annihilation 
of half a million suns) for Hercules A, for example. 

Solar system determined to have an age of 4.55  X 109 yr or more from relative 
abundances of Pb204 , 206 , 207 and U235, 238 in meteorites and oceanic sediments by 
C. Patterson in 1956; and by others in 1965 and 1 969 from evidence on the processes 
Rb8 7 -+ Sr87 and K40 -+ A 40 in meteorites. 

Discovery by Allen Sandage in 1958 that what Hubble had identified in distant 
galaxies as bright stars were H II regions, clumps of hot stars surrounded by a plasma 
ionized by stars, and consequent upping of Hubble's distance scale by a further factor 
of about 2.2. 

Estimation by Jan Oort in 1958 ,  from luminosity of other galaxies, that matter 
in galaxies contributes to the density of mass-energy in the universe roughly 
3 x 10-31 g/cm3 [see Peebles (197 1)  for updated analysis], this being one or two 
orders of magnitude less than that called for by Einstein's concept that the universe 
is curved up into closure, and thereby giving rise to "the mystery of the missing 
matter," the focus of much present-day research. 

Discovery of celestial (nonsolar) X-rays in 1962 by Giacconi, Gursky, Paolini, and 
Rossi. Majority of sources in plane of the Milky Way, presumably local to this galaxy, 
as is the Crab nebula. Extragalactic sources include the radio galaxy Virgo A and 
the quasar 3 C273 . 

Revised "3C-catalog" of radio sources published in 1 962 by A. S. Bennett, con
taining 328 sources, nearly complete in coverage between declinations - 5 ° and 
+ 90 ° for sources brighter than 9 flux units (9 x 10-26 watt/m2Hz) at 178  MHz. 

Identification of the first quasistellar object (QSO) by Maarten Schmidt at Mt. 
Palomar in 1963 : radio-position determination of 3C273 to better than 1 second 
of arc by C. Hazard, M. B. Mackey, and A. J. Shimmins in 1962, followed by 
Schmidt's taking an optical spectrum of the star-like source and, despite all pre
sumptions that it was a star in this galaxy, trying to fit it, and succeeding, with a 
redshift of the magnitude (unprecedented for a "star") of oAf;\ = z = 0. 1 5 8. Distance 
implied by Hubble relation, 1 .5 X 109 lyr; optical brightness, 100 times brightest 
known galaxy. Largest redshift of any QSO known in 1972, z = 2.88 (4C05.34 ; 
C. R. Lynds). Such a source detectable even if it had a redshift of 3 ;  but no QSO's 
known in 1972 with such redshifts. See Box 28. 1 .  

Reasoning by Dennis Sciama in 1964 [see also Sciama (1 97 1)] that intergalactic 
hydrogen can best escape observation if at a temperature between 3 X 105 K and 
106 K. With as many as 10-5 protons and 10-5 electrons per cm3 and a temperature 
lower than 3 X 105 K, the number density of neutral atoms would be great enough 
and the resulting absorption of Lyman a from a distant galaxy (z = 2) would be 
strong enough to show up, contrary to observation. 

In 1964 J. E. Gunn and B. A. Peterson, E. J. Wampler, and others determined 
that, at a temperature greater than 106 K, the intensity of 0.25 keV or 50 A x-rays 
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from intergalactic space would be too high to be compatible with the observations. 
Emphasis by Wheeler (1964a) that the dynamic object in Einstein's general 

relativity is 3-geometry, not 4-geometry, and that this dynamics, both classical and 
quantum, unrolls in the arena of superspace. 

Discovery by Sandage in 1965 of quasistellar galaxies (radio-quiet QSO's). 
Discovery by E. M. Burbidge, G. R. Burbidge, C. R. Lynds, and A. N. Stockton 

in 1965 of a QSO, 3Cl91, with numerous absorption lines, implying the coexistence 
of several redshifts in one spectrum. 

Fraction (by mass) of matter converted to helium in early few minutes of universe 
nearly independent of the relative numbers of photons and baryons, over a 106 range 
in values of this number ratio, so long as the universe at 1010 K is still radiation
dominated. Value of this plateau helium abundance (following earlier work of 
others) first accurately calculated as 27 per cent by P. J. E. Peebles in 1966 and 
by R. V. Wagoner, W. A. Fowler, and F. Hoyle in 1967. 

Proposal by C. W. Misner in 1968 to consider as an important part of early 
cosmology the anisotropy vibrations of the geometry of space previously brought 
to attention by E. Kasner and by I. M. Khalatnikov and E. Lifshitz. [Misner's hope 
to account naturally in this way for the otherwise so puzzling homogeneity of the 
universe was later dashed.] 

Proof on the basis of standard general relativity by S. W. Hawking, G. F. R. 
Ellis, and R. Penrose in 1968 and 1969 [see also related work of earlier investigators 
cited in Chapter 44] that a model universe presently expanding and filled with matter 
and radiation obeying a physically acceptable equation of state must have been 
singular in the past, however wanting in symmetry it is today. 

Discovery of pulsars in 1968 by Hewish, Bell, Pilkington, Scott, and Collins, and 
their interpretation as spinning neutron stars (see Chapter 24). 

"No poet, nor artist of any art, has his complete meaning alone. His 
significance, his appreciation, is the appreciation of his relation to the dead poets 

and artists. You canno t  value him alone; you must set him, for contras t  and 
comparison, among the dead . . . when a new work of art is created . . . 

something . . . happens simultaneously to all the works of art which preceded it. 
The exis ting monuments form an ideal order among themselves, which is modified 

by the introduction of the new (the really new) work of art among them. " 
T S EL IOT ( 1 9 20) 



CHAPTER 28 
EVO LUTI O N  O F  TH E U N IVE R S E  

I NTO ITS P R E S E NT STATE 

Cosmology . . .  restrains the aberrations o f  the mere 
undisciplined imagination.  

ALFRED N O RTH WH ITEH EAD ( 1 929 ,  p 2 1 )  

§28 . 1 . T H E  "STANDARD MODEL" O F  THE UNIVERSE 

Since the discovery of the cosmic microwave radiation in 1965, extensive theoretical 
research has produced a fairly detailed picture of how the universe probably evolved 
into its present state. This picture, called the "standard hot big-bang model" of the 
universe, is sketched in the present chapter, and its main features appear in Figure 
28.1. Gravitation dominates the over-all expansion; but otherwise most details of 
the evolution are governed much less by gravitation than by the laws of thermody
namics, hydrodynamics, atomic physics, nuclear physics, and high-energy physics. 
This fact, and the existence of three excellent recent books on the subject [Sciama 
(1971); Peebles (1972); Zel'dovich and Novikov (1974)], encourage brevity here. 

The past evolution of the universe is qualitatively independent of the nature of 
the homogeneous hypersurfaces (k = -1, 0, or + 1) and qualitatively independent 
of the cosmological constant, since the contributions of k and A to the evolution 
are not important in early stages of the history (small a/a0) [see equation (27.40) 
and Figure 27.5]. One crucial assumption underlies the standard hot big-bang model: 
that the universe "began" in a state of rapid expansion from a very nearly homoge
neous, isotropic condition of infinite (or near infinite) density and temperature. 

During the first second after the beginning, according to this analysis, the temper
ature of the universe was so high that there was complete thermodynamic equilib-

Evolut ion of u n iverse 
accord ing  to · · standard hot 
b ig-bang model " •  

( 1 )  i n i t ia l  state 



(2 )  thermal  equ i l i bri u m ,  
decay o f  pa rt icles, 
reco m binat ion of pa i rs 
(0 < t � 1 0 sec ) 

(3)  decoup l i ng  and  free 
propagat ion of g ravitons 
and neutr in os (t  � 1 sec . )  
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Evolution of the universe into its present state, according to the standard hot big-bang model. The curves are drawn assuming Pmo = 5 X 10-30 g/cm3, Pro = 10-33 g/cm3 , k = O ;  but for other values of Pmo , Pro , and k withm the hmits of observation, the curves are virtually the same (see exercise 28 . 1 ) .  See text and Box 28. 1 for detailed discussion of the processes described at the bottom of the figure . [This figure is adapted from Dicke, Peebles, Roll, and Wilkinson ( 1965).] 
rium between photons, neutrinos, electrons, positrons, neutrons, protons, various 
hyperons and mesons, and perhaps even gravitons (gravitational waves) [see, e.g., 
Kundt (1971) and references cited therein]. However, by the time the universe was 
a few seconds old, its temperature had dropped to about 1010 K and its density was 
down to ~ 105 g/cm3 ; so all nucleon-antinucleon pairs had recombined, all hyperons 
and mesons had decayed, and all neutrinos and gravitons had decoupled from 
matter. The universe then consisted of freely propagating neutrinos, and perhaps 
gravitons, with black-body spectra at temperatures T ~ 101° K, plus electron-posi
tron pairs in the process of recombining, plus electrons, neutrons, protons, and 
photons all in thermal equilibrium at T ~ 1010 K. 

Since that early state, the gravitons (if present) and neutrinos have continued 



§28 1 THE "STANDARD MODEL" OF THE UNIVERSE 765 

to propagate freely, maintaining black-body spectra; but their temperatures have 
been redshifted by the expansion of the universe in accordance with the law 

T ex:  1/a (28. l) 

(Box 29.2). Consequently, today their temperatures should be roughly 3 K, and they 
should still fill the universe. Unfortunately, today's technology is far from being able 
to detect such a "sea" of neutrinos or gravitons. However, if and when they can 
be detected, they will provide direct observational information about the first one 
second of the life of the universe! 

As the universe continued to expand after the first few seconds, it entered a period 
lasting from t ~ 2 seconds to t ~ l ,000 seconds (T ~ 1010 to ~ 109 K, p ~ 10+5 to 
10-1 g/cm3), during which primordial element formation occurred. Before this 
period, there were so many high-energy protons around that they could blast apart 
any atomic nucleus ( e.g., deuterium or tritium or He3 or He4) the moment it formed; 
after this period, the protons were too cold (had kinetic energies too low) to penetrate 
each others' coulomb barriers, and all the freely penetrating neutrons from the 
earlier, hotter stage had decayed into electrons plus protons. Only during the short, 
crucial period from t ~ 2 seconds to t ~ l,000 seconds were conditions right for 
making elements. Calculations by Gamow (1948), by Alpher and Hermann (l948a,b;  
1950), by Fermi and Turkevitch (1950), by Peebles (1966), and by Wagoner, Fowler, 
and Hoyle (1967) reveal that about 25 per cent of the baryons in the universe should 
have been converted into He4 (alpha particles) during this period, and about 75 
per cent should have been left as H1 (protons) . Traces of deuterium, He3 , and Li 
should have also been created, but essentially no heavy elements. All the heavy 
elements observed today must have been made later, in stars [see, e.g., Fowler (1967) 
or Clayton (1968)] . Current astronomical studies of the abundances of the elements 
give some support for these predictions; but the observational data are not yet very 
conclusive [see, e.g., Danziger (1968) and pp. 268-275 of Peebles (1971)] . 

After primordial element formation, the matter and radiation continued to interact 
thermally through frequent ionization and recombination of atoms, keeping each 
other at the same temperature. Were the temperatures of radiation and matter not 
locked together, the radiation would cool more slowly than the matter (for adiabatic 
expansion, T,, ex: 1/a, but Tm ex: l/a 2). Thus thermal equilibrium was maintained only 
by a constant transfer of energy from radiation to matter. But the heat capacity 
of the radiation was far greater than that of the matter. Therefore the energy transfer 
had a negligible effect on Pr, p,,, and T,,. It held up the temperature of the matter 
(Tm = T,,) without significantly lowering the temperature of the radiation. On the 
other hand, the total mass-energy of matter was and is dominated by rest mass. 
Therefore the energy transfer had negligible influence on Pm · [This circumstance 
justifies the approximation of ignoring energy transfer when passing from equation 
(27.31) to (27.32).] 

When the falling temperature reached a few thousand degrees (a/a0 ~ 10-3, 

p ~ 10-20 g/cm3 , t ~ 105 years), two things of interest happened :  the universe ceased 
to be radiation-dominated and became matter-dominated [Pm= Pmo(a0/ a)3 came 
to exceed Pr = Pro(a0/ a)4]; and the photons ceased to be energetic enough to keep 

(4) primordial element 
formation 
(2 sec . � t � 1 ,000 sec ) 

(5) thermal interaction of 
matter and radiation 
(1 , 000 sec . < t < 1 05 

years) 
- -

(6) plasma recombination 
and transition to matter 
dominance (t ~ 1 05 yrs .) 



(7 )  su bsequent  p ropagat ion 
of photons (t  � 1 05 yrs ) 

(8) condensatio n  of sta rs, 
ga laxies and  c lusters ( 1 08 

yrs . _'.S t _'.S 1 09 yrs ) 

EXERCISE 
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hydrogen atoms ionized, so the electrons and protons quickly recombined. That these 
two events were roughly coincident is a result of the specific, nearly conserved value 
that the entropy per baryon has in our universe : 

_ b (number of photons in universe) 108 s = entropy per aryon ~ . ~ . (number of baryons m universe) 

Why the universe began with this value of s, rather than some other value ( e.g. 
unity), nobody has been able to explain. 

Recombination of the plasma at t ~ 105 years was crucial, because it brought an 
end to the interaction and thermal equilibrium between radiation and matter ("de
coupling"). Thereafter, with very few free electrons off which to scatter, and with 
Rayleigh scattering off atoms and molecules unimportant, the photons propagated 
almost freely through space. Unless energy-releasing processes reionized the inter
galactic medium sometime between a/a0 ~ 10-3 and a/a0 ~ 0.1, the photons have 
been propagating freely ever since the plasma recombined. Even if reionization 
occurred, the photons have been propagating freely at least since a/ a0 ~ 0.1. 

The expansion of the universe has redshifted the temperature of the freely propa
gating photons in accordance with the equation T a:  1/a (see Box 29.2). As a 
consequence, today they have a black-body spectrum with a temperature of 2.7 K. 
They are identified with the cosmic microwave radiation that was discovered in 1965, 
and they give one direct information about the nature of the universe at the time 
they last interacted with matter (a/a0 ~ 10-3, t ~ 105 years if reionization did not 
occur; a/a0 ~ 0.1, t ~ 5 X 108 years if reionization did occur.) 

Return to the history of matter. Before plasma recombination, the photon pressure 
("elasticity of the cosmological fluid") prevented the uniform matter (25 per cent 
He4, 75 per cent H) from condensing into stars, galaxies, or clusters of galaxies. 
However, after recombination, the photon pressure was gone, and condensation could 
begin. Small perturbations in the matter density, perhaps dating back to the begin
ning of expansion, then began to grow larger and larger. Somewhere between 
a/a0 ~ 1/30 and a/a0 ~ 1/10 (108 years � t � 109 years) these perturbations began 
developing into stars, galaxies, and clusters of galaxies. Slightly later, at a/a0 ~ 1/4, 
quasars probably "turned on," emitting light which astronomers now receive at Earth 
(see Box 28.1). 

Exercise 28. 1 . UNCERTAINTY IN EVOLUTION Current observations, plus the assumption of complete homogeneity and isotropy at the beginning of expansion, plus the assumption that the excess of leptons over antileptons is less than or of the order of the excess of baryons over antibaryons, place the following limits on the cosmological parameters today: 
Matter density today = Pmo , between 1 0-28 and 2 X 1 0-31 g/cm3 ; 

k = 0 or + I or - I ;  temperature of electromagnetic radiation today = 2 .7 ± 0 . 1  K. Total radiation density [observed photons, plus neutrinos and gravitons that presumably originated in big bang in thermal equilibrium with photons] = Pw between 0.7 X 10-33 and 1 .2 X 10-33 g/cm3 . 
(continued on page 769) 
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Box 28. 1 EVOLUTION OF THE QUASAR POPU LATION 

767 

That the large-scale, average properties of the universe are changing markedly with 
time one can infer from quasar data. In brief, there appear to have been about 50 
times more quasars in the universe at a redshift z :::::: 2 than at z :::::: 0.5; and there 
may well have been fewer, or none, at redshifts z > 3. (On the use of redshift to 
characterize time since the big bang, see Box 29.3.) In greater detail, Schmidt (1972) 
gives the following analysis of the data:* 

1. Schmidt assumes from the outset that quasar redshifts are cosmological in origin 
[redshift= (Hubble constant) x (distance); §29.2] . The evidence for this is 
a. Observational : Some quasars are located in clusters of galaxies [ as evidenced 

both by position on sky and by quasar having same redshift as galaxies in 
cluster; see Gunn (1971)] . Since the evidence for the cosmological distance
redshift relation for galaxies is overwhelming (Boxes 29.4 and 29.5), the 
redshifts of these particular quasars must be cosmological. 

b. Theoretical: Observed quasar redshifts of z ~ 1 to 3 cannot be gravitational 
in origin; objects with gravitational redshifts larger than z :::::: 0.5 are unstable 
against collapse (see Chapters 24 and 26 and Box 25.9). Nor are the quasar 
redshifts likely to be Doppler; how could so massive an object be accelerated 
to v :::::: 1 without complete disruption? The only remaining possibility is a 
cosmological redshift. For this reason, opponents of the cosmological hypothe
sis usually feel pressed to invoke in the quasars a breakdown of the laws of 
physics as one understands them today. [See, e.g., Arp (1971) and references 
cited therein. These references also describe evidence against the cosmological 
assumption, evidence that a few prominent investigators find compelling, but 
that most do not as of 1972.] 

2. Schmidt then asks how many quasars, N, there were in the universe at a time 
corresponding to the redshift z, and with absolute luminosity per unit frequency, 
L.(2,500 A) at the wavelength 2500 A as measured in the quasar's local Lorentz 
frame. 

3. The data on quasars available in 1972 are not at all sufficient to determine 
N[z, L.(2,500 A)] uniquely. But they are sufficient to show unequivocally that: 
a. There must have been evolution; N(z, L,) cannot be independent of z. 
b. The evolution cannot have resided primarily in the luminosities : the total 

number of quasars, 

Nt0tCz) � N(z, L,) 
L,(2, 500.Al 

must have changed markedly with time (with z). 
* Our version of Schmidt's ( 1972) argument is oversimplified The reader interested in greater precision 

should consult his original paper. 



Box 28 .  1 (continued) 

c. If the evolution was primarily in the total number, Nt0tCz), i.e., if the changes 
in the relative luminosity distribution at 2,500 A 

f (z, L.) [l/Nt0i(z)]N(z, L.) 

were negligible, and if the universe today is characterized by a0 = q0 = 1 (see 
Chapter 29 for notation), then the data show 

This steep increase in number as one goes backward in time-and all other 
basic features of the observed quasar redshift and magnitude distributions for 
z :S 2-can be fit in a universe with a0 = q0 = 1 by either of the evolution 
laws 

Nt0i(z) cc (1 + z)6, 

Ntot[ z(t)] cc I05(to - t)/to. 

Here t0 is the current age of the universe and t was the age at redshift z. 
d. These evolution laws, when extrapolated beyond a redshift z ;:::::; 2 and when 

combined with the observed relative luminosity function f (z, L.) for quasars 
near apparent magnitude 18, predict that an observer on Earth should see the 
following fractions of nineteenth and twentieth-magnitude quasars to have 
redshifts greater than 2.5 :  

evolution law fraction with z > 2.5 

(I + z)6 

J05(t0- t)/t0 

m = 19 m = 20 
29% 12% 49% 14% 

In 1972 about 30 quasars fainter than m = 18.5 are known, and of these only 
1 (3%) has z > 2.5. This shows, in Schmidt's words, "that the density law 
(1 + z)6 cannot persist beyond a redshift of around 2.5." Schmidt regards the 
105(to - tl/to law (which becomes nearly constant at z > 2.5) to be also in 
apparent conflict with the observations, but he says that "further spectroscopic 
work on faint quasars is needed to confirm this suspicion." 

One reason for caution is the difficult problem ofremoving "observational selection 
effects" from the data. Schmidt, Sandage, and others have independently searched 
for selection effects that might produce an artificial apparent decrease in the number 
of quasars at z > 2.5. None have been found. In the words of Sandage (1972d) "The 
apparent cutoff in quasar redshifts near z = 2.8 [has been] examined for selection 
effects that could produce it artificially. If the cutoff is real, it may be the time of 
the birth of the first quasars, although the suggested redshift is unexpectedly small. 
At z = 3 in a q0 = 1 universe, the look-back time is 89 per cent of the Friedmann 
age. Assessment of the observational selection effects shows that none are positively 
established that could produce the cutoff artificially." 
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(The uncertainties taken into account in Pro are uncertainty about whether quadrupole 
moments at early times were sufficient to create gravitons at the full level corresponding 
to thermal equilibrium, and uncertainty about the number and statistical weights of particle 
species in equilibrium at the time gravitons decoupled.) Use the equations in §27. 1 0  to 
calculate the uncertainties in the evolutionary history (Figure 28. 1 )  caused by these uncer
tainties in the present state of the universe. 

§28.2. STANDARD MODEL MODIFIED FOR 

PRIMORDIAL CHAOS 

The standard hot big-bang model is remarkably powerful and accords well with 
observations (primordial helium abundances; existence, temperature, and isotropy 
of cosmic microwave radiation; homogeneity and isotropy of universe in the large; 
close accord between age of universe as measured by expansion and ages of oldest 
stars; . . .  ). However, in 1972 it encounters apparent difficulty with one item: the 
origin of galaxies. In a universe that is initially homogeneous and isotropic it is not 
clear that random fluctuations will give rise (after plasma recombination) to pertur
bations in the density of matter of sufficient amplitude to condense into galaxies. 
The perturbations that eventually form galaxies might have to reside in the initial, 
exploding state of the universe. [See Zel'dovich and Novikov (1974) for detailed 
review and discussion; see also references cited in §30.1.] 

Is it reasonable to assume a small amount of initial inhomogeneity? Is it not much 
more reasonable to assume either perfect homogeneity ( one extreme) or perfect chaos 
(the other extreme)? 

Thus, if perfect initial homogeneity turns out to be incompatible with the origin 
of galaxies, it is attractive to try "perfect initial chaos" -i.e., completely random 
initial conditions, with a full spectrum of fluctuations in density, entropy, and local 
expansion rate [Misner (1968, 1969b)]. It is conceivable, but far from proved, that 
during its subsequent evolution such a model universe will quickly smooth itself 
out by natural processes (Chapter 30) such as "Mixmaster oscillations," neutrino
induced viscosity [see, e.g., Matzner and Misner (1971)], and gravitational curva
ture-induced creation of particle pairs [Zel'dovich (1972)] . Will one be left, after 
a few seconds or less, with a nearly homogeneous and isotropic, Friedmann universe, 
containing just enough remaining perturbations to condense eventually into galaxies? 
Theoretical calculations have not yet been carried far enough to give a clear answer. 
Of course, after the initial chaos subsides, if it subsides, such a model universe will 
evolve in accord with the standard big-bang model of the last section. 

§28.3. WHAT "PRECEDED" THE INITIAL SINGULARITY? 

No problem of cosmology digs more deeply into the foundations of physics than 
the question of what "preceded" the "initial state" of infinite ( or near infinite) density, 
pressure, and temperature. And, unfortunately, no problem is farther from solution 
in 1973. 

What if the u n iverse began 
chaot 1c7 



The initial singularity and 
quantum gravitational effects 

Cosmologies that v iolate 
general relativity 
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General relativity predicts, inexorably, that even if the "initial state" was chaotic 
rather than smooth, it must have involved a spacetime "singularity" of some sort 
[see Hawking and Ellis (1968); also §34.6 of this book]. And general relativity is 
incapable of projecting backward through the singularity to say what "preceded" 
it. Perhaps only by coming to grip with quantum gravitational effects (marriage of 
quantum theory with classical geometrodynamics) will one ever reach a clear under
standing of the initial state and of what, if anything, "preceded" it [ see Misner 
(1969c), Wheeler (197 l c)] . For further discussion of these deep issues, see §§34.6, 
43.4, the final section of Box 30.1, and Chapter 44. 

§28 .4 .  OTH ER  COSM O LOG ICAL TH EOR I ES 

This book confines attention to the cosmology of general relativity. If one were to 
abandon general relativity, one would have a much wider set of possibilities, includ
ing (1) the steady-state theory [Hoyle (1948); Bondi and Gold (1948)], which has 
not succeeded in accounting for the cosmic microwave radiation or in explaining 
observed evolutionary effects in radio sources and quasars [Box 28.1]; (2) the Klein
Alfven "hierarchic cosmology" of matter in an asymptotically flat spacetime [Alfven 
and Klein (1962), Alfven (1971), Klein (1971), Moritz (1969), de Vaucouleurs (1971)], 
which disagrees with cosmic-ray and gamma-ray observations [Steigman (1971)]; 
and the Brans-Dicke cosmologies [Dicke (1968), Greenstein (1968a,b), Morganstern 
(1973)], which are qualitatively the same and quantitatively almost the same as the 
standard hot big-bang model. However, no motivation or justification is evident for 
abandoning general relativity. The experimental basis of general relativity has been 
strengthened substantially in the past decade (Chapters 38-40); and the standard 
big-bang model of the universe predicted by general relativity accords remarkably 
well with observations-far better than any other model ever proposed! 



CHAPTER 29  
P R ESENT STATE AN D FUTU R E  

EVO LUTI O N  OF  TH E U N IVERS E 

§ 2 9 . 1 .  PARAM ETERS THAT DETERMINE THE FATE 

O F  THE U NIVERSE Will the universe continue to expand forever; or will it slow to a halt, reverse into contraction, and implode back to a state of infinite (or near infinite) density, pressure, temperature, and curvature? The answer is not yet known for certain. To discover the answer is one of the central problems of cosmology today. The only known way to discover the answer is to measure, observationally, the present state of the universe; and then to calculate the future evolution using Einstein's field equations. The field equations have already been solved in §§27 . 1 0  and 27  . 1 1 .  From those solutions one reads off  the following correlation between the present state of the universe and its future. If A = 0 [in accord with Einstein's firmly held principle of simplicity] : Expansion forever -¢=>- negative or zero spatial curvature for hypersurfaces of homogeneity, i .e. , k/a/ :s; 0 ("open" or "flat") ;  Recontraction -¢=>- positive spatial curvature for homogeneous hypersurfaces, i .e . ,  k/ a0 
2 > 0 ("closed"). If A =J:. 0 :  

. ( 0  if k < 0  Expans10n forever -¢=>- A > A ·t . - ' - en ( 4'7Tpmoao 3)-2 If k > 0 ;  Recontraction -¢=a>- A < Acrit• Evidently three parameters are required to predict the future : the cosmological constant, A ; the curvature parameter today for the hypersurface of homogeneity, 
k/a/; and the density of matter today, Pmo · (To extrapolate into the past, as was done in the last chapter, one needs, besides these quantities, the radiation density today, Pro · But Pro is so small now and is getting smaller so fast (Pr a: a-4; Pm a: a-3) that it can have no influence on the decision between the possibilities just listed. 

This chapter is entirely 
Track 2. Chapter 27 ( ideal ized 
cosmological models) is needed 
as preparation for it, but this 
chapter is not needed as 
preparation for any later 
chapter. 

Expansion forever vs 
recontraction of universe 

Parameters required to 
predict future of universe : 

(1) "relativity parameters" 
A, k/a/, Pmo 



(2)  "o bservationa l  
param ete rs" H

0
, % ,  <1

0 

(3 )  re lat ionsh i p  between 
relativity parameters and 
observationa l  parameters 

EXERCISE 

O bserved featu res of 
cosmo logica l  redsh ift 
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The task of predicting the future, then, reduces to the task of measuring the "rela
tivity parameters" A, k/a/, and Pmo · 

In tackling this task, observational cosmologists prefer to replace the three "rela
tivity parameters," which have immediate significance for relativity theory, by 
parameters that are more directly observable. One parameter close to the observa
tions is the Hubble expansion rate today, i.e., the "Hubble constant, " 

(29. l a) 

Another is the dimensionless "deceleration parameter" today, %, defined by 

- (
aa,!t ) 
a, t o 

And a third is the dimensionless "density parameter, " today, 

_ 47TPmo ao = 3H 2 . 
0 

(29. l b) 

(29. l c) 

The relationships between these three "observational parameters" and the three 
"relativity parameters" A, k/a/, and Pmo (together making six "cosmological param
eters") can be calculated by combining definitions (29 . 1 )  with the Einstein field 
equations (27.39), which, evaluated today, say 

H 2 = k A 87T 
o - � + 

3 
+ 

3 Pmo, 

(29 .2) 

By combining these equations, one finds the relationships shown in Box 29 . 1 ,  where 
the implications of several values of 00 and % are also shown. 

Exercise 29. 1 .  IMPLICATIONS OF PARAMETER VALUES 
Derive the results quoted in Box 29. I .  

§ 2 9 . 2 .  COSM O LOGICAL REDSHIFT 

One of the key pieces of observational data used in measurements of H
0

, %, and 
a

0 
is the cosmological redshift :  spectral lines emitted by galaxies far from Earth and 

received at Earth are found to be shifted in wavelength toward the red. For example, 
the [O Il];.\.3727 line, when both emitted and observed in an Earth-bound laboratory, 
has a wavelength of 3727 A.  However, when it is emitted by a star in the galaxy 
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Box 29. 1  OBSERVATIONAL PARAMETERS COMPARED TO RELATIVITY PARAMETERS 

A. Relativity Parameters 1 .  Matter density today, Pmo 
B .  O bservat ional  Parameters 

C.  

D .  

E.  

2 .  Curvature of  hypersurface of  homogeneity today, 
k/a/ 3 .  Cosmological constant, 

A 4. Radiation density today, Pro (unimportant for the present dynamics of the universe, and therefore ignored in this chapter) 
O bservat ional  Parameters i n  Terms 
of Relativity Parameters 

H/ = (8'1T/3)Pmo - k/a/ + A/3, % = ( 4'77 /3 )Pmo - A/3 (8'1T/3)Pmo - k/a/ + A/3 ' 

(J -n -
(4'1T/3)pmo (8'1T/3)Pmo - k/a/ + A/3 · 

Relat ivity Para meters i n  Terms 
of O bservat iona l  Parameters Pmo = (3/4'1T)H/a0 , 

k/a/ = H/(300 - % - 1 ), 
A = 3H/(a0 - q0) .  

I m pl i cat ions of S pecif ic Parameter Va l u es 

I .  Hubble constant (Hubble expansion rate today), 
H0 (a,/a)0 2 .  Deceleration parameter, 

a 1 
qo _ ___,!!_ H 2  a o 3 .  Density parameter, _ 4'7TPmo ao = 3H 2 

0 

(I) 

(2) 

(3) 

(4) 
(5) 
(6) 

1 .  A = 0 (in accord with Einstein's point of view) if and only if a0 = %· 2. Sign of A is same as sign of a0 - %· 
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Box 29 . 1 (con tinued) 3 .  If A = 0 (a) qo > ; -<=>- Pmo > Pcrit 8377 H/ -<=>- k > 0 (positive curvature; ) "closed" universe -<=>- universe will eventually recontract ; (b) I - = _l_H 2 -<=>- k - O qo = 2 -<=>- Pmo- Pcrit - 877 o -===>- universe will expand forever; (c) q0 < ; -<=>- Pmo < Pcrit 8377 H/ -<=>- k < 0 ===>- universe will expand forever. 4. If A =/= 0 
and in this case, 

(zero curvature; ) "flat" universe 
(negative curvature; ) "open" universe 

(positive curvature ; ) "closed" universe ' 
I ( q + I )3 a0 - q0 

� 
� a0 - -

0 
-3- -<=>- universe will expand forever, 

I ( q + I )3 a0 - q0 < -2 a0 - -
0 

-- -<=>- universe will eventually recontract ; a0 3 
and in this case, a0 

� q0 -<=>- universe will expand forever, 
(zero curvature ; ) "flat" universe ' 

a O < q O -<=>- universe will eventually recontract ; 
(negative curvature; ) "open" universe ' and in this case, a0 � % -<=>- universe will expand forever, a0 < % -<=>- universe will eventually recontract. 
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3C 295 (presumably with the same wavelength, "-em = 3727 A) and received at Earth, 
it is measured here to have the wavelength "-rec = 5447 A. The fractional change 
in wavelength is 

Z ("-rec - "-em)/"-em = 0.4614 for 3C 295. (29.3) 

The cosmological redshift is observed to affect all spectral lines alike, and not 
only lines in the visible spectrum. Thus, the 21 -cm line of hydrogen, with 400,000 
times the wavelength of the central region of the visible, undergoes a redshift that 
agrees (within the errors of the measurements) with the redshifts of lines in the visible 
for recession velocities of the order of v ~ 0.005, according to observation of thirty 
objects by Dieter, Epstein, Lilley, and Roberts (1962) and further observations by 
Roberts (1965). 

No one has ever put forward a satisfactory explanation for the cosmological 
redshift other than the expansion of the universe (see below). The idea has been 
proposed at various times by various authors that some new process is at work ("tired 
light") in which photons interact with atoms or electrons on their way from source 
to receptor, and thereby lose bits and pieces of their energy. Ya. B. Zel'dovich (1963) 
gives a penetrating analysis of the difficulties with any such ideas: 

(I ) "If the energy loss is caused by an mteraction with the intergalactic matter, it is 
accompanied by a transfer of momentum; that is, there is a change of the direction 
of mot10n of the photon. There would then be a smearing out of images ; a distant 
star would be seen as a disc, not a point, and that is not what is observed." (2) "Let 
us suppose that the photon decays, y -+  y '  + k, giving up a small part of its energy 
to some particle, k. It follows from the conservation laws that k must move in the 
direction of the photon (this, by the way, avoids a smearing out), and must have zero 
rest mass. Because of the statistical nature of the process, however, some photons would 
lose more energy than others, and there would be a spectral broadening of the lines, 
which is also not observed." 

(3) If there does exist any such decay process, then simple arguments of special 
relativity that Zel'dovich attributes to M. P. Bronshtein, and spells out in detail, 
demand the relationship 

( 
probability per

) 
(a uni�ersal _ constant with) 

second of = _t_h_e_d_1_m_e_n_s_1_o_n_s_s_e_c_2 
___ _ 

"photon decay" (frequency of photon in sec-1) 

"Thus," Zel'dovich concludes, "if the decay of photons is possible at all, those m rad10 
waves must decay especially rapidly! This would mean that the Maxwell equation for 
a static electric field would have to be changed . . . .  There is no experimental indication 
of such effects : the radio-frequency radiation from distant sources is transmitted to 
us not a bit more poorly than visible light, and the red shift measured in different 
parts of the spectrum is exactly the same . . . . Thus, suggestions that there is an 
explanation of the red shift other than Friedmann's fail completely." 

Why redsh i ft ca nnot be due 
to  "ti red l i g ht"  



Der ivat ion of redsh ift 
fo rm u l a ·  

;\ a: (expans ion ) factor 

7 7 6  

Figure 29 . 1 .  
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Emission 
atom excites n-node standing wave, 
universe small, a(t.) = aem ; 
wavelengths small, i\(1.) = >-,m 

Reception 
universe larger, a(tr) = arec ; 
wavelengths larger, i\(t,) = >-rec • 
number of nodes in standing 
wave unchanged, 

27T arec ae n = constant = --- = � 
277 A rec A em 

Redshift as an effect of standing waves. The ratio of wavelengths, i\reci>-em • is identical with the ratio 
of dimensions, areclaem in any closed spherically symmetrical (Friedmann) model universe. The atom 
excites an n-node standing wave in the universe. The number n stays constant during the expansion. 
Therefore wavelengths increase in the same proportion as the dimensions of the universe. One sees 
immediately in this way that the redshift is independent of all such details as ( I )  why the expansion 
came about (spherical symmetry, but arbitrary equation of state) ; (2) the rate-uniform or nonuni
form-at which it came about; and (3) the distance between source and receptor at emission, at reception, 
or at any time in-between. The reasoning in the diagram appears to depend on the closure of the universe 
(standing waves ; k = + I rather than O or - 1 ). That closure is not required for this simple result is 
seen from the further analysis given in the text. 

Not the least among the considerations that lead one to accept the general recession 
of the galaxies as the explanation for the redshift is the circumstance that this general 
recession was predicted [Friedmann (1922)] before the redshift was observed [Hubble 
(1929)]. 

The cosmological redshift is easily understood (Figure 29.1) in terms of the 
standard big-bang model for the universe. A detailed analysis focuses attention on 
three processes: emission of the light, propagation of the light through curved 
spacetime from emitter to receiver, and reception of the light. Emission and reception 
occur in the proper reference frames (orthonormal tetrads) of the emitter and 
receiver; they are special-relativistic phenomena. Propagation, by contrast, is a 
general-relativistic process; it is governed by the law of geodesic motion in curved 
spacetime. 

In calculating all three processes-emission, propagation, and absorption-one 
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needs a coordinate system. Use the coordinates (t, X, 0, </>) or ('IJ, x, 0, </>) introduced 
in Chapter 27; and orient the space coordinates in such a way that the paths of 
the light rays through the coordinate system are simple. This is best done by putting 
the origin of the coordinate system (x = 0) at the Earth. Then the emitting galaxy 
will lie at some "radius" Xe and some angular position (0 e , <l>e). The cosmological 
line element 

d�2 = - dt 2 + a2(t)(dx
2 + X 2(d0 2 + sin20 d</> 2)] 

= a2('1J)( - d'IJ 2 + dx
2 + X 2(d0 2 + sin20 d<t> 2)], 

X =  (
sin x 

�nh x 

if k = + l ,  
if k = 0, 
if k = - 1 ,  

(29.4a) 

(29.4b) 

is spherically symmetric about x = 0 (i.e., about the Earth) whether k = - l ,  0, or 
+ 1 .  Consequently, the geodesics (photon world lines) that pass through both Earth 
and the emitting galaxy must all be radial 

X = x(t). (29 .5) 

(One who wishes to forego any appeal to symmetry can examine the geodesic 
equation in the (t, x, 0, </>) coordinate system, and discover that if d0/dt... = 
d<t>/d>... = 0, then d 20/d>...2 = d 2<t>/dt...2 = 0. Consequently a geodesic that is initially 
radial will always remain radial.) 

Consider, now, emission. A galaxy at rest (moving with the "cosmological fluid") 
at (Xe, 0e, <l>e) emits two successive crests, A and B, of a wave train toward Earth 
at coordinate times tAe and tse · It has been arranged that proper time as measured 
on the galaxy is the same as coordinate time (t = T + const. was part of the con
struction process for the coordinate system in §27.4). Consequently the period of 
the radiation as seen by the emitter is Pem = teB - teA; and the wavelength is the 
same as the period when geometrized units are used : 

(29.6) 

Next examine propagation. Wave crests A and B propagate along null geodesics. 
This fact enables one to read the world lines of the wave crests, XA (t) and xs(t), 
directly from the line element (29.4) : ds 2 = 0 guarantees that a(t) dx = - dt ( - , not 
+ , because the light propagates toward the Earth at x = 0). Consequently, the world 
lines are 

t 

Xe - XA (t or 'IJ) = 'I) - 'IJeA = f a- 1 dt, 
t,A 

(29.7) 

t 
Xe - Xs U or 'IJ) = 'I) - 'IJes = f a-l dt. 

t,B 

Finally, examine reception. The receiver on Earth moves with the "cosmological 
fluid," just as does the distant emitter. (Ignore the Earth's "peculiar motion" relative 
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to the fluid-motion around the sun, motion around center of our Galaxy, etc.; 
it can be taken into account by an ordinary Doppler correction.) Thus, for receiver 
as for emitter, proper time is the same as coordinate time, and 

(29.8) 

where trB and trA are the times of reception of the successive wave crests. 
Now combine equations (29.6), (29.7), and (29.8) to obtain the redshift. The 

receiver is at x = 0. Therefore equations (29.7) say 

J t,A 
0 - X - a- 1 dt - e , 

t,A 

J t,B 
0 = Xe - a- 1 dt. t,s 

Subtract these equations from each other to obtain 

J t,B J t,B t - t t t = a-1 dt _ a-1 dt :::; rB rA _ eB - eA . t t a(tr) a(te) TA eA 

and combine with (29 .6) and (29 .8) to discover 

i.e., 

(29.9) 

(29.10) 

(29.1 1 )  

These redshift equations confirm the simple result of Figure 29.1: As the light 
ray propagates, its wavelength (as measured by observers moving with the "fluid") 
increases in direct proportion to the linear expansion of the universe. The ratio of 
the wavelength to the expansion factor, A/ a, remains constant. For important applica
tions of this result, see Boxes 29.2 and 29.3. 

Exercise 29.2.  ALTERNATIVE DERIVATION OF REDS HIFT 

Notice that the only part of the line element that i s  relevant for the light ray is 

ds 2 = - dt 2 + a 2(t)  dx 2, 

since dB = d</> = 0 along its world line (spherical symmetry ! ). Regard the light ray as made 



Box 29.2 COSMOLOGICAL REDSHIFT OF THE PRIMORDIAL RADIATION 

As an important application of the redshift for
mula 

A/ a = constant ( 1 )  

[equation (29. 10)], consider the radiation emerging 
from the hot big bang. Because it is initially in 
thermal equilibrium with matter, this primordial 
radiation initially has a Planck black-body spec
trum. Subsequent interactions with matter cannot 
change the spectrum, because the matter remains 
in thermal equilibrium with the radiation so long 
as interactions are occurring. The cosmological 
redshift can and does change the spectrum, how
ever. It was shown in exercise 22. 1 7, using kinetic 
theory, that radiation with a Planck spectrum as 
viewed by one observer has a Planck spectrum as 
viewed by all observers; but the observed temper
ature is redshifted in precisely the same manner 
as the frequency of an individual photon is red
shifted. Consequently, as seen by observers at rest 

in the "fluid," the temperature of the primordial 
radiation is redshifted 

T ex l/a. (2) 

This is true after plasma recombination, when the 
radiation and matter are decoupled, as well as 
before recombination, when they are interacting. 
And it is true not only for the primordial photons 
but also for thermalized neutrinos and gravitons 
emerging from the hot big bang. 

There is another way to derive the redshift 
equation (2). Combine the equation 

Pr ex T4 (3) 

for the energy density of black-body radiation in 
terms of temperature, with the equation 

Pr ex (volume)-413 ex (a3)-413 ex a-4 (4) 

for the decrease of energy density with adiabatic 
expansion. 

Box 29. 3  USE OF REDSHIFT TO CHARACTERIZE DISTANCES AND TIME 

Distance: When discussing objects within the 
Earth's cluster of galaxies, astronomers typically 
describe distances in units of lightyears or parsecs. 
But when dealing with more distant objects (gal
axies, quasars, etc.), astronomers find it more con
venient to describe distance in terms of what is 
actually observed: redshift. For example, the 
statement "the galaxy 3C 295 is at a redshift of 
0.4614" means that "3C 295 is at that distance 
from Earth [given by equation (29. 1 6)] which cor
responds to a redshift of z = 0.4614." 

Time: When discussing events that occurred dur
ing the last few 109 years, astronomers usually 
measure time in units of years. Example: "The 
solar system condensed out of interstellar gas 
4.6 X 109 years ago" [ see Wasserburg and Burnett 
( 1 968)]. But when dealing with events much nearer 
the beginning of the universe, all of which have 

essentially the same age, of about 12  X 109 years, 
astronomers find it more convenient to describe 
time in terms of redshift. Example: "The primor
dial plasma recombined at a redshift of 1 ,000" 
means that "If a photon had been emitted at the 
time of plasma recombination, and had propa
gated freely ever since, it would have experienced 
a total redshift between then and now of 
z = l,000." Equivalently, since 1 + z = (a0/a) [see 
equation (29. 1 1 )], "the plasma recombined when 
the universe was a factor of 1 + z ;:::;  1 ,000 smaller 
than it is today." [Application: In Figure 28. 1 ,  
where the past evolution of the universe is sum
marized, one can freely replace the horizontal 
scale a/a0 by 1 /(1 + z), and thereby see that pri
mordial element formation occurred at a redshift 
of z ;:::; 109 .)  The conversion from redshift units to 
time units is strongly dependent on the parameters 
Pmo' Pro, and k/a/ [see §§27. 10 and 27. 1 1 ;  also 
equation (29. 15)] . 
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of photons with 4-momenta p. From the geodesic equation ( or, for the reader who has studied 
chapter 25, from arguments about Killing vectors), show that 

Px - p · (o/ ox ) 
is conserved along the photon's world line. Use this fact, the fact that a photon's 4-momentum 
is null, p · p = 0, and the equation E = -p · u for the energy measured by an observer 
with 4-velocity u, to derive the redshift equation (29 . 1 1  ). 

Exercise 29.3. REDSHIFT OF PARTICLE DE BROGLIE WAVELENGTHS 
A particle of finite rest mass µ moves along a geodesic world line through the expanding 
cosmological fluid. Let 

P - ( ) 112 - µv = P .  P = ( I _ v 2)112 

be the spatial 4-momentum of the particle as measured by observers at rest in the fluid. 
(The ordinary velocity they measure in their proper reference frames is v.) The associated 
"de Broglie wavelength" of the particle is ;\ = h/p. 

(a) Show that this de Broglie wavelength is redshifted in precisely the same manner as 
a photon wavelength: 

;\/a = constant. 

(b) Employing this result, show that, for the molecules of an ideal gas that fills the universe, 
their mean kinetic energy decreases in inverse proportion to a2 when the gas is nonrelativistic 
and (like photon energies) in inverse proportion to a when the gas is highly relativistic. 

§ 2 9 . 3. THE DISTANCE-REDSH I FT RELATION; 

MEASUREMENT OF THE HUB B LE CONSTANT 

Equation (29.1 1 )  expresses the redshift in terms of the change in expansion factor 
between the event of emission and the event of reception. For "nearby" emitters 
( emitters at distances much less than 1/ H0 , the "Hubble length") it is more conven
ient to express the redshift in terms of the distance between the emitter and Earth. 
That distance ("present distance") is defined on the hypersurface of homogeneity 
that passes through Earth today, since that hypersurface agrees locally with the 
surface of simultaneity of the receiver today, and it is also, locally, a surface of 
simultaneity for any observer moving today with the "cosmological fluid." 

The distance between emitter and observer today [the distance along the spatial 
geodesic of constant (t, 0, </>)  connecting (tr 0, 0e, <f>e) and (tr, Xe, 0e, <f>e)l can be read 
directly from the line element (29.4): 

(29.12) 

Using expression (29.9) for Xe, one finds 

(29.1 2') 
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In the recent past, a(t) was given by 

a(t) = a(tr) + (a, 1)1 ,(t - tr) + � (a,u)1 ,(t - tr)2 + 
= a(tr)[I + H0 (t - tr) - ½ %H/(t - tr)2 + · · · ], 

781 

(29. 1 3) 

where definitions (29. I) for the Hubble constant H0 and the deceleration parameter 
% have been used. Putting this expression into equation (29. 12') and integrating, 
one finds for the distance the expression 

or, equivalently, 

t - t = l - l_H ,£ 2 + . . .  r e 2 o (29. 14) 

The redshift [equation (29. 1 1)] can be expressed as a power series in tr - te by using 
equation (29 . 13) :  

a(tr) - a(te) a(tr)[Ho(tr - te) + ½%Ho 
2Ur - te)2 + · · · ] z - --'----___.c� - -���-�-���-'---___.c�--� - a(te) 

- a(tr)[ I - Ho(tr - te) + · · · ] 
= Ho(tr - te) + H/( I + � % ) (tr - te)2 + · · ·. 

(29. 1 5) 

Combining this with equation (29 . 14) for tr - te in terms of l, one finally obtains 

(29. 1 6) 

This is the "distance-redshift relation" for the standard big-bang model of the uni
verse.  

Result  for d istance-redsh i ft 
relation  

By comparing this distance-redshift relation with astronomical observations (see M easurement of H u bble 
Box 29 .4, which is best read after the next section), Allan Sandage (1 972a) obtains constant Ho 
a Hubble constant of 

(29 . 17) 

I .e. , 

H0 -l = (1 8 + 2) X 109 years . (29. 1 8) 

(Note : I Mpc _ one Megaparsec is 3 .26 x 106 light years, or 3.08 X 1024 cm.) The 
uncertainty of +7 km sec-1 Mpc-1 quoted here is the "one-sigma" statistical uncer
tainty associated with the distance-redshift data. Systematic errors, not now under
stood, might be somewhat larger ; but the true value of H0 almost certainly is within 
a factor 2 of Sandage's value, 55 km sec-1 Mpc-1 . 
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Note that, if A = 0, then the "critical density" marking the dividing line between 
a "closed" universe and an "open" universe-i.e., between eventual recontraction 
and expansion forever-is 

- 3 H z - 5 1 0-30 I 3 Pcrit - 877 0 - X g cm . (29 .19) 

(As described in Box 29 .1, p > Pcrit - "closed" - recontraction; p < Pcrit -
"open" - expansion forever.) Comparison with the actual density will be de
layed until §29.6. 

The distance measurements are not accurate enough to yield useful information 
about the deceleration parameter, % ·  

§29.4. THE MAGNITUDE-REDSHIFT RELATION; 

MEASUREMENT OF THE DECELERATION PARAMETER 

Information about % is best obtained by comparing the apparent magnitudes of 
galaxies with their redshifts. 

In astronomy one defines the apparent (bolometric) magnitude, m, of an object 
by the formula 

m = - 2.5 log10(S/2.52 X 10-5 erg cm-2 sec-1) 

= -2.5 log10 S + constant, (29.20) 

where S is the flux of energy (energy per unit time per unit area) that arrives at 
Earth from the object. [Of course, one cannot measure the flux over the entire 
wavelength range O < A < oo ;  so one distinguishes various apparent magnitudes 
(mu, m8, mv, . . .  ) corresponding to fluxes in various wavelength ranges ("U" 
"ultraviolet"; "B" "blue"; "V" "visual"). However, these subtleties are too far 
from gravitation physics to be treated here.] 

Calculate the apparent magnitude for a galaxy of intrinsic luminosity L and 
redshift z. To simplify the calculation, put the emitter at the origin of the space 
coordinates (Xe = 0); and put the Earth at (Xr, 0r, <f>r)- (Note the reversal of locations 
corr.pared to redshift calculation of §29.2.) On Earth, place a photographic plate 
of area A perpendicular to the incoming light. Then at time tr the plate is a tiny 
segment of a spherical two-dimensional surface (t = tr, x = xr; 0 and </> vary) about 
the emitting galaxy. The total area of the 2-sphere surrounding the galaxy is 

(29.21) 

Therefore, the ratio of the area of the plate to the area of the 2-sphere is given 
by 

A A 

A 4?T[a(tr).2'(xr)J2
. (29.22) 

The plate catches a fraction A/ A of the energy that pours out through the 2-sphere. 
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If there were no redshift, the power crossing the entire 2-sphere at time tr would 
be precisely the luminosity of the emitter at time te. However, the redshift modifies 
this result in two ways. (1) The energy of each photon that crosses the 2-sphere is 
smaller, as measured in the local Lorentz frame of the fluid there, than it was as 
measured by the emitter : 

(29 .23) 

(2) Two photons with the same 0 and </>, which are separated by a time Lltr as 
measured by an observer stationary with respect to the "cosmological fluid" at the 
2-sphere, were separated by a shorter time Lite as measured by the emitter: 

(29 .24) 

The luminosity, L, as measured at the source, is the sum of the energies EemJ of 
the individual photons (labeled with the index J) emitted in a time interval Lite, 
divided by Lite : 

L = (l/ Lite) �  EemJ• 
J 

(29.25) 

The power that crosses the 2-sphere a time tr - te later, as measured by the fluid 
at the 2-sphere, is 

p = (l/ Lltr) � ErecJ, 
J 

where the summation runs over the same set of photons. 

(29.26) 

Combining equations (29.23) to (29.26), one sees that the power crossing the 
2-sphere is 

P = L/(l + z)2. 

Of this, a fraction, 

crosses the photographic plate ; so the flux measured at the Earth is 

(29.27) 

where R is the "radius of curvature" of the 2-sphere surrounding the emitter and 
passing through the receiver at the time of reception, 

[ 
a0 sinh (Xr - Xe) 

R ao.J:<xr - Xe) = ao[�r - Xel 
a0 sm (x, - Xe) 

if k = - l ,  
if k = 0, 
if k = + l 

(29.28) 
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[recall : Xe is O according to the present conventions, and a0 = a(tr)l - The correspond
ing apparent magnitude [equation (29 .20)] is 

m = + 5 log10[(1 + z)R ] - 2.5 log10L + constant. (29 .29) 

In order to relate the apparent magnitude to the redshift of the emitter, one must 
express the quantity R in terms of z. From equation (29 .7) for the photon propagation 
(with sign reversed because positions of receiver and emitter have been reversed), 
one knows that 

_ - f
t, _ 1 - J

a(t)/a(t,>
[
_a ] [!3-] [

a(tr) ] Xr Xe - a dt - ( ) d 
d , 

t, 1 a tr a a (29 .30) 

and from equation (29 . 1 1 ) one knows that 

Hence 

_ = J
l + z 

[-a ] [!3-] d [
a(tr) ] . Xr Xe 

1 a(tr) da a 
(29 .3 1)  

Equations (4) to (6) of Box 29 . 1 ,  and (27 .40), determine the function dt/da in terms 
of a/ a(tr) and the constants H0 , %, a 0 • By inserting that result into equation (29 .3 1) 
and integrating, one obtains Xr - Xe in terms of the redshift z and the cosmological 
parameters H0 , %, a O : 

l + z  
d - 1 1  3 1 112 J u (29 32 )  Xr - Xe - + % - <Jo 

1 [2aou3 + (I + % - 3ao)u 2 + <Jo - %]1/2 . . a 

The 2-sphere radius of curvature R is obtained by inserting this expression into the 
equation H -1 

R = 
J l + qo :._ 3ao 1 11 2 ..E (xr - Xe) (29 .32b) 

[ equation (29 .28), with a0 evaluated by equation (5) of Box 29 . 1  ] .  
Equations (29 .29) and (29 .32) determine the apparent magnitude, m, in terms of 

redshift, z. 
For the case of vanishing cosmological constant (00 = q0 ; A = 0), the integral 

(29 .32a) can be expressed in terms of elementary functions, yielding 

so that 

R = 27i
o-1 

) 
[ - qo + 1 + qoz + (% - l)(2qoz + 1 )112], 

qo + Z 

::::: H0- 1z [  1 - ½ (I + q0)z + O(z 2)] , (29 .33) 

m = 5 log10 [ l  - q0 + %Z + (% - l)(2q0z + 1)112] - 2.5 log10 L + const. 
::::: 5 log10 z + 1 .086(1 - q0)z + O(z 2) - 2.5 log10 L + const. (29 .34) 

for z � I . 
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(Note : the factor 1 .086 is actually 2.5/ln 10 .) A power-series solution for nonzero 
A (for a0 i- q0) reveals a dependence on a0 only at O(z 2) and higher : 

R ;:::: Ho-1= [  1 - ½o + qo)z + (corrections of O (z 2) depending on ao and qo)l 

(29 .35 a) 

m ;::::  5 log10 z + 1 .086(1 - q0)z + O (z2) - 2.5 log10 L + const. (29 .35b) 

Sheldon (1971 )  gives the exact solution for A -j. 0 in terms of the Weierstrass elliptic 
function. Refsdal et al. (1967) tabulate and plot the exact solution. 

By comparing the theoretical magnitude-redshift relation (29 .35b) with observa- Measurement of deceleration 
tions of the brightest galaxies in 82 clusters, Allan Sandage (1972a,c,d) obtains the parameter, qo 

following value for the deceleration parameter : 

% = 1 .0 -+- 0 .5 ,  if  a
0 

= % (i.e .  A = 0). (29 .36) 

(Note : 0 .5 is the "one-sigma" uncertainty. Sandage estimates with 68 per cent con
fidence that 0 .5 < q0 < 1 .5 ,  and with 95 per cent confidence that O < q0 < 2-
providing unknown evolutionary effects are negligible .)  The observations leading 
to this result and the uncertainties due to evolutionary effects are described in Box 
29 .4 . Box 29 .5 gives a glimpse of Edwin Hubble, the man who laid the foundations 
for such cosmological measurements. 

Box 2 9 . 4  M EAS U R E M ENT OF H U B B LE C O N STANT AND 
D ECELERATI O N  PARAM ETE R 

I. Hubble Constant, H0 

(continued on page 794) 

A. Objective: To measure the constant H0 by comparing observational data with 
the distance-redshift relation 

Here .f. is distance from Earth to source today; and z is redshift of source 
as measured at Earth. 

B. Key Difficulty: This distance-redshift relation does not apply to stars in our 
Galaxy : the Galaxy is gravitationally bound and therefore is impervious to 
the universal expansion. Nor does the distance-redshift relation apply to the 
separations between our Galaxy and nearby gahxies (the "local group"); 
gravitational attraction between our Galaxy and its neighbors is so great it 
perturbs their motions substantially away from universal expansion. Only on 
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Box 29 .4 (continued) 

scales large enough to include many galaxies (scales where each galaxy or 
cluster of galaxies can be thought of as a "grain of dust," with the grains 
distributed roughly homogeneously)-only on such large scales should the 
distance-redshift relation hold with good accuracy. But it is very difficult to 
obtain reliable measurements of the distances i, to galaxies that are so far 
away! 

C. Procedure by which H
0 

has been measured [Sandage and Tamman, as summar
ized in Sandage (1972a)] : 
1. Cepheid variables are pulsating stars with pulsation periods (as measured 

by oscillations in light output) that are very closely correlated with their 
luminosities L-or, equivalently, with their absolute (bolometric) magni
tudes, M: 

M = (apparent magnitude star would have were it at a) - distance of 10 parsecs= 32.6 light years (1) 
= -2.5 log10 (L/3.0 x 1035 erg sec- 1) 

[see equation (29.20).] By measurements within our Galaxy, astronomers 
have obtained the "period-luminosity relation" for cepheid variables. 

2. Cepheid variables are clearly visible in galaxies as far away as ~4 Mpc 
(4 Megaparsecs 4 x 106 parsecs). In each such galaxy one measures the 
periods of the cepheids; one then infers their absolute magnitudes M from 
the period-luminosity relation; one measures their apparent magnitudes 
m; and one then calculates their distances i, from Earth using the relation 

m - M = 5 Iog10 (i,/10 pc). (2) 

By this means one obtains the distances i, to all galaxies within ~4 Mpc 
of our own. Unfortunately, such galaxies are too close to participate cleanly 
in the universal expansion. (They include only the "local group," the "M8 l 
group," and the "south polar group.") Thus, one must push the distance 
scale out still farther before attempting to measure H0 • 

3. Galaxies of types Sc, Sd, Sm, and Ir within ~4 Mpc contain huge clouds 
of ionized hydrogen, which shine brightly in "Ha light." These clouds, 
called "H II regions," exhibit a very tight correlation between diameter 
D of the H II region and luminosity L of the galaxy ( or, equivalently, 
between D and absolute magnitude of galaxy, M). In fact, for a given 
galaxy luminosity L, the fractional spread in H II diameters is a( ,:JD/ D)  
:::::: 0.12. Using (a) the distances ( :S 4  Mpc) to these galaxies as determined 
via cepheid variables, (b) the apparent magnitudes of the galaxies, and 
(c) the angular diameters of H II regions in the galaxies, one calculates 
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the actual H II diameters D and galaxy luminosities L, and thereby obtains 
the "diameter-luminosity relation" D (L). 

4. H II regions are large enough to be seen clearly in galaxies as far away 
as ~60 M pc. By measuring the H II angular diameters a = DI l and 
galaxy apparent (bolometric) magnitudes 

- -2 5 1 ( L/4d2 
) m - · og10 2.52 x 10-5 erg cm-2 sec1 ' 

(3) 

and by combining with the diameter-luminosity relation, one obtains the 
distances l to all galaxies of types Sc, Sd, Sm, and Ir which possess H II 
regions and lie within ~60 Mpc of Earth. Unfortunately, this is still not 
far enough away for local motions to be negligible compared with the 
universal expansion. 

5. Within ~60 Mpc reside enough galaxies of type Sc I for one to discover 
that their luminosities ( absolute magnitudes) are rather constant ( difference 
in L from one Sc I galaxy to another :S 50 per cent). Using the distances 
to such Sc I galaxies, as measured via H II regions, and using measurements 
of their apparent magnitudes, one calculates their universal absolute 
magnitude (measured photographically) to be Mpg = -21.2 . 

The Sc I galaxy MIO!  at a distance 1 ~ 3 Mpc from Earth, as photographed with the 200-inch telescope. (Courtesy of Hale Observatories) 
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Box 29.4 (continued) 

N 
0 

6 .  One then examines all known Sc I galaxies with distances greater than 
~ 70 Mpc. For each, one measures the apparent magnitude and compares 
it with the universal absolute magnitude to obtain the distance 1 from 
Earth. And for each, one measures the redshift z = Lf\/A of the spectral 
lines. From the resulting redshift-distance relation-and taking into ac
count the statistical uncertainties in all steps leading up to it-Sandage 
and Tamman (work carried out in 1965- 1972) obtain the value 
H0 = dz/dl = 55 -+- 7 (km/sec) Mpc-1 = l/[(1 8 -+- 2) x 109 years]. [For 
a review see Sandage (1972a).] The quoted error is purely statistical. Sys
tematic errors are surely larger-but they almost surely do not exceed a 
factor 2 [i.e., 30 < H0 < 1 10 (km/sec) Mpc-1]. 
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IL Deceleration Parameter, q0 • 

A. Objective: To measure the constant % by comparing observational data with 
the magnitude-redshift relation : 

m = 5 log10 z + 1 .086(1 - %)z + O(z2) - 2.5 log10 L + const. (4) 



§29 4 MAG NITUDE-REDSHI FT RELATIO N ,  MEASUREMENT OF q0 789 

[Note: This relation is valid even if  the cosmological constant i s  nonzero, i.e., 
even if a0 i= q0 • Dependence on a0 occurs only at O (z 2) and higher.] 

B. Key Difficulty: One must use data for objects with the same absolute lumin
osity L ("standard candles"). But one cannot measure L at distances great 
enough for the effects of % to show up. 

C. The Search for a Standard Candle: One obvious choice for the standard candle 
would be Sc I galaxies, since they were found to all have nearly the same 
L (see above). But they are not bright enough to be seen at distances great 
enough for effects of % to show up. An alternative choice, quasars, are bright 
enough to be seen at very large redshifts (z as large as ~3). But their absolute 
luminosities have enormous scatter-or so one infers from the failure of 
quasars to fall on a straight line, even at small z, in the magnitude-redshift 
diagram. The best choice is the brightest type of object that has small scatter 
in L. Sandage (1972a,b,c) chooses the brightest galaxy in "recognized regular 
clusters of galaxies." Such clusters are composed predominately of E-type 
galaxies, and the brightest members are remarkably similar from one cluster 

The E-type galaxy M87 at a distance ,£ ~ 1 1  Mpc from Earth, as photographed with the 200-inch telescope (Courtesy of Hale Observatories) 
to another (scatter in L is ~25 per cent). The similarity shows up in their 
spectra and in the very precise straight lines they give when one plots angular 
diameter versus redshift (next page), or apparent magnitude versus redshift 
(next page), or angular diameter versus apparent magnitude. 
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D. Procedure by which % has been measured [Sandage (1972a,c)] : 

791 

1 .  Data on magnitude versus redshift have been gathered for the brightest 
galaxy in 82 recognized regular clusters (see above). 

2. The data, when fitted with a straight line, show a slope of 

dm/d log1 0 z = 5 . 150 + 0 .268 (rms), 

by comparison with a theoretical slope of 5 .  
3 .  The data, when fitted to the theoretical relation 

m = 5 log10 z + 1 .086(1 - q0)z + O (z 2) + const, 

(5) 

(6) 

[with the correct O(z 2) and higher terms included; see equations (29 .29), 
(29 .32), and (29 .34)] yield 

q0 = 1 + 0 .5 (one-sigma)
} if O = (A = 0). = 1 + 1 (two-sigma) 0 % (7) 

The data are inadequate to determine 00 and % simultaneously. [The O (z 2) 
terms, which depend on 00 , play a significant role in the fit to the data . 
For a graphical depiction of their theoretical effects see Figure 2 of Refsdal 
et. al (1967).] 

E. Evolutionary uncertainties 
1 .  Sandage's fit of data to theory assumes that the luminosities of his "stand

ard candles" are constant in time. If, because of evolution of old stars 
and formation of new ones, his galaxies were to dim by 0 .09 magnitudes 
per 109 years, then galaxies 109 light-years away, which one sees as they 
were 109 years ago, would be 0 .09 magnitudes brighter intrinsically than 
identical nearby galaxies .  Correction for this effect would lower the most 
probable value of % from 1 to 0 [Sandage (1 972c)]. 

2. Knowledge of the evolution of galaxies in 1972 is too rudimentary to 
confirm or rule out such an effect. [See references cited by Sandage 
(1972c).] 
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Box 29 . 5  EDWIN POWELL HU B BLE 
November 20, 1 889, Marshfield Missou ri
September 28, 1 953,  Pasadena, Ca l ifornia 

Edwin Hubble, at age 24, earned a law degree 
from Oxford University and began practicing law 
in Louisville, Kentucky. After a year of practice 
he became fed up and, in his own words, "chucked 
the law for astronomy, and I knew that even if 
I were second-rate or third-rate it was astronomy 
that mattered." He chose the University of Chi
cago and Yerkes Observatory as the site for his 

astronomy education, and three years later (1917) 
completed a Ph.D. thesis on "Photographic Inves
tigations of Faint Nebulae." 

When Hubble entered astronomy, it was sus
pected that some nebulae lie outside the Galaxy, 
but the evidence was exceedingly weak. During 
the subsequent two decades, Hubble, more than 
anyone else, was responsible for opening to man's 
purview the extragalactic universe. Working with 
the 60-inch and 100-inch telescopes at Mount Wil
son, Hubble developed irrefutable evidence of the 
extragalactic nature of spiral nebulae, elliptical 
nebulae, and irregular nebulae (now called gal
axies). He devised the classification scheme for 
galaxies which is still in use today. He systematized 
the entire subject of extragalactic research: deter
mining distance scales, luminosities, star densities, 
and the peculiar motion of our Galaxy; and ob
taining extensive evidence that the laws of physics 
outside the Galaxy are the same as near Earth (in 
Hubble's words : "verifying the principle of the 
uniformity of nature") .  He discovered and quan
tified the large-scale homogeneity of the universe. 
And-his greatest triumph of all!-he discovered 
the expansion of the universe. 

The details of Hubble's pioneering work are best 
sketched in his own words : 

"Extremely little is known of the nature of nebulae; and no classification has yet 
been suggested . . . .  The agreement [between the velocity of escape from a spiral 

nebula and that from our galaxy] is such as to lend some color to the hypothesis 
that  the spirals are s tellar systems at distances to be measured 

often in millions of light years. " 
( 1 920,  Ph D THESIS ,  PUBL ICATI O N  D E LAYED 3 YEARS BY WOR LD WAR I )  

This box is based largely on the biography of Hubble by Mayall ( 1 970). 
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"The present investigation [using Cepheid variables for the firs t  time as an 
indicator of dis tances beyond the Magellanic clouds] identifies NGC 6822 as an 
isola ted system of s tars and nebulae of the same type as the Magellanic clouds, 

although somewhat smaller and much more dis tan t. A consis tent s tructure is thus 
reared on the foundation of the Cepheid criterion, in which the dimensions, luminosities, and densities, both of the system [NGC 6822] as a whole and its 

separate members, are of orders of magnitude which are thoroughly familiar. The 
dis tance is the only quantity of a new order. The principle of  the uniformity of 

nature thus seems to rule undis turbed in this remote region of space. " 
( 1 9 2 5) 

"Critical tes ts made with the 1 00-inch reflector, the highest resolving power 
available, sho w  no difference between the photographic images of the so-called 
condensations in Messier 33 and the images of ordinary galactic s tars . . . .  The 

period-luminosity relation is conspicuous among the thirty- five Cepheids and 
indicates a dis tance about 8. 1 times that  of  the Small Magellanic Cloud. Using 

Shapley 's value for the la tter, the dis tance of the spiral 
is about 263, 000 parsecs. " 

( 1 92 6a) 

" [ To  the present paper ( 1 92 6b)] is prefaced a general classification of nebulae 
. . .  the various types [of extragalactic nebulae] are homogeneously dis tributed 

o ver the sky. . . . The data are now a vailable for deriving a value for the order of 
the density of  space. This is accomplished by means of the formulae for the 

numbers of nebulae to a given limiting magnitude and for the dis tance in terms of 
the magnitude. [ The result is] 

p = 1 .  5 X 1 0-3 1 grams per cubic cen timeter. 

This must  be considered as a lo wer limit, for loose material scattered between the 
systems is en tirely ignored. The mean density of space can be used to determine 

the dimensions of the finite but boundless universe of general relativity . 

R C 1 
y4rl VP 

. . .  = 2. 7 X 1 010 parsecs " 
( 1 9 2 6 b) 

"The data . . indicate a linear correlation between distances and velocities [for 
extragalactic nebulae] . Two solutions have been made, one using the 24 nebulae 

individually, the o ther combining them in to 9 groups according the proximity in 
direction and dis tance The results are . . 24 objects: K = 465 ± 50 km/sec per 

1 06 parsecs; 9 groups: K = 5 1 3  ± 60 km/sec per 1 06 parsecs . The 
outs tanding feature, however, is the possibility that  the velocity-dis tance relation 

may represen t the de Sitter effect, and hence that numerical data may be 
introduced into discussions of the general curvature of space. " 

( 1 929) * 

* Hubble's value of K (the "Hubble constant") was later revised downward by the work 
of Baade and Sandage, see section titled The Hubble Time in Box 27 I .  
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"The velocity-distance relation is re-examined with the aid of 40 new 
velocities. . . . The new data extend out to about eigh teen times the dis tance 

available in the firs t  formulation o f  the velocity-distance relation, but the form of 
the relation remains unchanged excep t for [Shapley 's 10 per  cen t] 

revision of the unit of distance. " 
( 1 9 3 1 ) .  WITH M L H U MASON 

"Many ways of  producing such effects [redshifts in extragalactic nebulae] are 
kno wn, but of  them all, only one will produce large redshifts without introducing 

o ther effects which should be conspicuous but actually are not  found. This one 
kno wn permissible explanation interprets redshifts as due 

to ac tual motion a way from the observer. " 

( 1 934a) 

"We now have a hasty ske tch of  some o f  the general fea tures of  the observable 
region as a unit. The next step will be to follo w the reconnaissance with a 

survey- to repeat carefully the explorations with an eye to accuracy and 
completeness. The program, with its emphasis on methods, will be a tedious 

series of successive approxima tions. " 
( 1 934b) 

Most of the remainder of Hubble's career was 
dedicated to this "tedious series of successive ap
proximations." Shortly before Hubble's death the 
200-inch telescope went into operation at Palomar 

Mountain; and Hubble's student, Alan Sandage, 
began using it in a continuation of Hubble's quest 
into the true nature of the universe. (See Box 
29.4). 

EXERCISES Exercise 29.4 .  m(z) DERIVED USING STATISTICAL PHYSICS 
Derive the magnitude-redshift relation using a statistical description of the photon distribution 
[cf. eq. (22.49) and associated discussion]. 

Exercise 29. 5 .  DOPPLER SHIFT VERS US COSMOLOGICAL REDSHIFT 
(a) Consider, in flat spacetime, a galaxy moving away from the Earth with velocity v, and 
emitting light that is received at Earth. Let the distance between Earth and galaxy, as 
measured in the Earth's Lorentz frame at some specific moment of emission, be r ; and let 
the Doppler shift of the radiation when it is eventually received be z = LI;\/;\ . Show that 
the flux of energy S received at the Earth is related to the galaxy's intrinsic luminosity L 
by 

S = L . 
477r 2(1 + z)4 

(29.37) 

[Track-2 readers will find it most convenient to use the statistical formalism of equation 
(22.49).] 

(b) Compare this formula for the flux with formula (29.27), where the redshift is of 
cosmological origin. Why is the number of factors of 1 + z different for the two formulas? 
[Mathematical answer: equation (6.28a) of Ellis (1971) . ]  
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§29 . 5 .  SEARCH FOR " LENS EFFECT" O F  THE U NIVERSE 

Curved space should act as a lens of great focal length. The curving of light rays 
has little effect on the apparent size of nearby objects. However, distant galaxies
galaxies from a quarter of the way up to halfway around the universe-are expected 
to have greatly magnified angular diameters [Klauder, Wakano, Wheeler, and Willey 
(1959)]. To see a normal galaxy at such a distance by means of an optical telescope 
seems out of the question. However, radio telescopes resolve features in quasistellar 
sources and other radiogalaxies at redshifts of z = 2 or more. Moreover, paired radio 
telescopes at intercontinental distances (for example, Goldstone, California, and 
Woomera, Australia) resolve distant sources to better than 0".001 or 4.8 X 10-9 

radians or 15 lightyears for an object at a distance of 3 X 109 lightyears (Euclidean 
geometry temporarily being assumed). A radio telescope in space paired with a radio 
telescope on earth will be able to do even better on angular resolution. Will one 
be able to find any fiducial distance characteristic of any one class of objects that 
will serve as a natural standard of length, for very great distances (z = 2 to z = 3) 
as well as for galaxies closer at hand? Perhaps not. However, it would seem unwise 
to discount this possibility, with all the advantages it would bring, in view of the 
demonstrated ability of skilled observers to find regularities elsewhere where one 
had no right to expect them in advance. 

Let L denote the actual length of a fiducial element (if any be found) in a galaxy; 
and let 80 (radians! ) denote the apparent length of the object, idealized as perpendi
cular to the line of sight, as seen by the observer. The ratio of these two quantities 
defines the "angle effective distance" of the source, 

(angle effective distance) = raed = L/80. (29 .38a) 

In flat space and for objects with zero relative velocity, this distance is to be identified 
with the actual distance, r, to the source or with the actual time of flight, t, of light 
from source to observer. The situation is changed in an expanding universe. 

To calculate the angle effective distance as a function of redshift, place the Earth 
(receiver) at x, = O; and place the object under study (emitter) at Xe · Let the fiducial 
length L lie on the sphere at Xe (perpendicular to line of sight), and let it run from 
Be to Be + 80 [one end of fiducial element at (Xe, Be, <f>e); other at (Xe, Be + 80, <l>e)J. 
Then 

and 

i.e. [see equation (29.28), with Xr and Xe reversed], 

raed = R/(1 + z). (29.38b) 

Here R is given as a function of redshift of source, z, and cosmological parameters 
H0 , %, a0 , by equations (29.32) in general, or by (29.33) if A = 0. [Equation (29.38b) 
is modified if the beam preferentially traverses regions of low mass density ("vacuum 
between the galaxies"); see equation (22.37) and Gunn (1967).] 

The hope fo r a fi duc ia l  l ength 
in d ista nt o bjects 

Ang le  effective d istance 
defi ned 

Angle effect ive d istance as 
funct ion of redsh ift 



Ang le  effective d ista nce as a 
tool for determ i n i n g  whether 
u n iverse is  c losed 

M easurements of mean mass 
dens ity of un i verse. 

( 1 )  l u m i nous matter i n  
ga lax ies 
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Angle effective distance versus redshift for two typical cosmo
logical models-one open (0 < a

0 = q. { I ) ;  the other closed 
(a

0 
= q. = l ) ;  both with zero cosmological constant; both with 

H
0 

- 1 = 1 8  X 1 09 lyr. 

Figure 29 .2 shows angle effective distance as a function of redshift for a few 
selected choices of the relevant parameters. It is evident that the angle effective 
distance has a maximum for a redshift roughly of the order z ~ l ,  provided that 
the universe is closed. However, there is a big difference if the universe is open 
(Figure 29.2). The rapid improvements taking place in radio astronomy make 
increasingly attractive the possibility it provides for testing whether the universe is 
closed, as Einstein argued it should be [Einstein (1950), pp. 107- 108]. Moreover, 
even with optical telescopes, in 1973 one may be on the verge of measuring % by 
studies of angle effective distance : preliminary studies [Sandage (1 972b )] suggest that 
the optical size of the brightest E-type galaxies may be a usable fiducial length. 

§ 2 9 . 6 .  DENSITY O F  T H E  U N IVERSE TO DAY 

It is exceedingly difficult to measure the mean density Prrw of the universe today. 
A large amount of matter may be in forms that astronomers have not yet managed 
to observe (intergalactic matter, black holes, etc.). Therefore, the best one can do 
is to add up all the luminous matter in galaxies and regard the resulting number 
as a lower limit on Pmo · Even adding up the luminous matter is a difficult and risky 
task, so difficult that even today no analysis is more definitive than the classic work 
of Oort (1958). [See, however, the very detailed review of the problem in Chapter 
4 of Peebles (197 1)]. Oort's result is 

P1uminous matter ~ (2 X 10-3l g/cm3)(H0/55 km sec-l Mpc-1)2 , 

corresponding to 

(independent of the value of H0) .  

(29.39) 

(29.40) 



§ 2 9 . 7  P R ES E N T  K N OWLED G E  O F  COS M O LO G I CAL PARA M ETERS 797 As an example (albeit an atypical one) of the danger inherent in any such estimate, Oort points to the Virgo cluster of galaxies. If the Virgo cluster is not gravitationally bound, then its ~2,500 galaxies will go flying apart, destroying any semblance of a cluster, in about one billion years. If it is gravitationally bound, then the mean velocity of its galaxies relative to each other, when combined with the virial theorem, yields an estimate of the cluster's total mass. That estimate is 25 times larger than the value one gets by Oort's method of adding up the luminous mass of the cluster. Although one has no definitive evidence for or against large amounts of matter (2) matter in i nterga lact ic ( enough to close the universe) in intergalactic space, one has tentative indirect limits : space (1) If A = 0 (in accord with Einstein), then a0 = q0 ; so Sandage's value of % � I-stretched to % < 10  under the most wild of assumptions about galaxy evolution-implies P;g < 10-28 g/cm3 (a0 = % < 10) .  (2) Gott and Gunn (197 1 )  point out that, if the density of gas in intergalactic space were 2: 10-3o g/cm3 (i.e. , if a
0 

were 2:0 , 1 ) ,  one would expect gas falling into the Coma cluster of galaxies to form a shock wave, which would emit large amounts of X-rays . From the current X-ray observations, one can place a limit on the amount of such infalling matter-and therefrom a limit 
P ·  < 10-ao g/cm3 

ig ~ on the density of gas in intergalactic space. But these limits, like others obtained in other ways [see Chapter 4 of Peebles ( 197 1 )  for a review] are far from definitive; they depend too much on theoretical calculations to make one feel fully comfortable. 
§29 . 7 .  SU M MARY OF PRESENT KNOWLEDGE ABO UT 

COSM O LOGICAL PARAMETERS 

The best data available in 1973 [equations (29 . 1 8), (29 .36), (29 .40)] reveal S ummary of o bservat iona l  parameters of u n iverse 
H0 -l = (1 8 -+- 2) X 109 years, % = 1 -+- 0.5 (one-sigma) if a0 = %(A = 0), (29 .4 1 )  a0 ('. 0 .02, for the observational parameters of the universe. These numbers are inadequate to reveal whether the universe is closed or open, and whether it will continue to expand forever or will eventually slow to a halt and recontract. If one is disappointed in this lack of knowledge, one can at least be consoled by Some quant itat ive tr i umphs  the following. ( 1 )  There is excellent agreement between theory and observation for of cosmo logy the linear (low-z) parts of the distance-redshift, magnitude-redshift, and angular diameter-redshift relations (Box 29 .4). (2) There is remarkably good agreement between (a) the age of the universe ( 1 8  billion years if q0 = a0 <{; 1 ;  12 billion years if q0 = a0 = ½) as calculated from the measured value of H0 ; (b) the ages of the 
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oldest stars ( ~ 10 x 109 years) as calculated by comparing the theory of stellar 
evolution with the properties of the observed stars; ( c) the time ( ~9 billion years) 
since nucleosynthesis of the uranium, thorium, and plutonium atoms that one finds 
on Earth, as calculated from the measured relative abundances of various nucleides; 
and (d) the ages (4.6 billion years) of the oldest meteorites and oldest lunar rock 
samples, as calculated from measured relative abundances of other nucleides. For 
further detail see, e.g., Sandage (1968, 1970), Wasserburg et al. (1969), Wasserburg 
and Burnett (1968), and Fowler (1972). (3) Observations of the cosmic microwave 
radiation and measurements of helium abundance are now capable of giving direct 
information about physical processes in the universe at redshifts z ► 1 (Chapter 28). 
(4) One may yet find "fiducial lengths" in radio sources, visible out to z � 1, with 
which to measure q0 and 00 by the angle-effective-distance method (§29.5). (5) The 
enigmas of the nature of quasars and of their peculiar distribution with redshift (great 
congregation at z ~ 2; absence at z � 3) may yet be cracked and may yield, in the 
process, much new information about the origin of structure in the universe 
(Box 28.1 ). (6) The next decade may well bring as many great observational surprises, 
and corresponding new insights, as has the last decade. 

Exercise 2 9 . 6 .  S O U RCE C O U NTS Suppose that one could find (which one cannot) a family of light or radio sources that ( 1 )  are all identical with intrinsic luminosities L, (2) are distributed uniformly throughout the universe, and (3) are born at the same rate as they die so that the number in a unit comoving coordinate volume is forever fixed. (a) Show that the number of such sources N(z) with redshifts less than z, as observed from Earth today, would be 
N(z) = (constant) · z 3 [ 1 - f (1 + q0)z + O (z 2) ] .  (29.42) 

(b) Show that the number of sources N(S) with fluxes greater than S as observed at Earth today would be 
( LH 2 )a; 2 [ ( LH 2 )112 ( LH 2 ) ]  

N(S) = (constant) · 
4'1T

� 1 - 3 
4'1T

� + 0 4'1T
� 

'-.-' 

L= z 2 + O(z 3) t f first-order correction ] [_independent of % and a0 

[Answer : See § 1 5 .7 of Robertson and Noonan ( 1968) . )  

(29.43) 

Exercise 2 9 . 7 .  COS M I C-RAY DENS ITY ( Problem devised by Maarten Sch midt) Suppose the universe has contained the same number of galaxies indefinitely into the past. Suppose further that the cosmic rays in the universe were created in galaxies and that a negligible fraction of them have been degraded or lost since formation. Derive an expression for the average density of energy in cosmic rays in the universe today in terms of: ( 1 )  the number density of galaxies, N0 , today; and (2) the nonconstant rate, dE/dz, at which the average galaxy created cosmic-ray energy during the past history of the universe. [ At redshift 
z in range dz, the average galaxy liberates energy (dE/dz) dz into cosmic rays . ]  
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Exercise 29. 8 .  FRACTION O F  SKY COVERED B Y  GALAXIES 

79 9 

Assume that the redshifts of quasars are cosmological. Let the number of galaxies per unit physical volume in the universe today be N0 , and assume that no galaxies have been created or destroyed since a redshift of ?:_ 7 .  Let D be the average angular diameter of a galaxy. Calculate the probability that the light from a quasar at redshift z, has passed through at least one intervening galaxy during its travel to Earth. (For a detailed discussion of this problem, see Wagoner ( 1 967) . )  
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CHAPTE R 30 
AN I SOTR O P I C  AN D 

I N H O M O G EN EOUS  COS M O LOG I ES 

This chapter is entirely Track 2 .  
T h e  m a i n  text requires no 

special preparation, although 
Chapters 27-29 would be 
helpfu l .  

Box 30. 1 contains more 
technical sections: ideal 
preparation for it would be 
Chapters 4, 9- 1 4, 2 1 ,  and 
2 7-29,  plus § 2 5 . 2 ;  minimal  
preparation would be 
exercises 9 . 1 3 , 9 . 1 4, and 
25 .2 ,  Chapter 2 1  through 
§ 2 1 . 8 ,  and § § 2 7 . 8 ,  2 7 . 1 1 ,  
and 2 9 . 2 .  

Chapter 30 i s  not needed as 
preparation for any later 
chapter. 

Motivation for studying 
inhomogeneous and 
anisotropic cosmologies: Why 
is universe so uniform7 

§30 . 1 .  WHY IS THE U N IVERSE SO H O M O GENEOUS 

AN D ISOTRO PIC? 

The last three chapters studied the Friedmann cosmological models and the relatively 
satisfactory picture they give of the universe and its evolution. This chapter describes 
less simplified cosmological models, and uses them to begin answering the question, 
"Why are the very simple Friedmann models satisfactory?" This question is intended 
to probe more deeply than the first, obvious answer-namely, that the models are 
satisfactory because they do not contradict observations. Accepting the agreement 
with observations, we want to understand why the laws of physics should demand 
(rather than merely permit) a universe that is homogeneous and isotropic to high 
accuracy on large scales. Because this question cannot be answered definitively in 
1972, many readers will prefer to omit this chapter on the first reading and return 
to it only after they have surveyed the major results in other areas such as black 
holes (Chapter 33), gravitational waves (Chapters 35-37), and solar-system experi
ments (Chapter 40). 

The approach described here to the question "Why is the universe so highly 
symmetric?" is to. ask Einstein's equations to describe what would have happened 
if the universe had started out highly irregular. 

The first step in this approach is to ask what would have happened if the universe 
had started a little bit irregular. This problem can be tackled by analyzing small 
perturbations away from the high symmetry of the Friedmann models. Such an 
analysis is most fruitful in its discussion of the beginnings of galaxy formation, and 
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in its ability to relate small upper limits on the present-day anisotropy of the 
microwave background radiation to limits on density and temperature irregularities 
that might have existed ten billion years ago, when the radiation was emitted. These 
studies are described so well in the book by Zel'dovich and Novikov (1 974) [see 
also Field ( 1973), Peebles ( 1969), Peebles and Yu ( 1970), Jones and Peebles ( 1972), 
and references cited therein] that we omit them here. 

Another approach is to allow large deviations from the symmetry of the Friedmann 
universes, but to put the asymmetries into only a few degrees of freedom. 

§30 . 2 .  THE KASNER M O DEL FOR 

AN ANISOTRO PIC U NIVERSE 

The prototype for cosmological models with great asymmetry in a few degrees of 
freedom is the Kasner ( 1921 a) metric, 

ds 2 = - dt2 + t2P, dx2 + t2P2 dy2 + t2P3 dz2 , (30 . 1 )  

which was first studied as a cosmological model by Schticking and Heckmann (195 8). 
In this metric the Pi are constants satisfying 

(30.2) 

Each t = constant hypersurface of this cosmological model is a flat three-dimensional 
space. The world lines of constant x, y, z are timelike geodesics along which galaxies 
or other matter, treated as test particles, can be imagined to move. This model 
represents an expanding universe, since the volume element 

M = Pi= t 
is constantly increasing. But it is an anisotropically expanding universe. The separa
tion between two standard (constant x, y, z) observers is tP1 Llx if only their x-coor
dinates differ. Thus, distances parallel to the x-axis expand at one rate, 1 1 ex: tP 1 , 

while those along the y-axis can expand at a different rate, 1 2 ex: t P 2 • Most remarkable 
perhaps is the fact that along one of the axes distances contract rather than expand. 
This contraction shows up mathematically in the fact that equations (30 .2) require 
one of the p's, say p1, to be nonpositive : 

1 - 3 s Pi s O . (30.3) 

As a consequence, in a universe of this sort, if black-body radiation were emitted 
at one time t and never subsequently scattered, later observers would see blue shifts 
near one pair of antipodes on the sky and red shifts in most other directions. In 
terms of this example, the fundamental cosmological question is why the Friedmann 
metrics should be a more accurate approximation to the real universe than is this 
Kasner metric. 

Kasner metric. an exam ple of 
an anisotropic model 
universe 



Kasner model with matter 
becomes isotropic in "old 
age" 

Anisotropy energy 

Adiabatic cooling of 
anisotropy 

8 0 2  30 AN I SOTR O P I C  A N D  I N H O M OG E N EO U S  COS M O LOG I ES 

§ 30 . 3 .  ADIABATIC CO O LIN G O F  ANISOTRO PY 

In seeking an answer, ask a question. Ask, in particular, what would become of a 
universe that starts out near t = 0 with a form described by the Kasner metric of 
equation (30.1). This metric is an exact solution of the vacuum Einstein equation 
G = 0. It approximates a situation where the matter terms in the Einstein equations 
are negligible by comparison with typical non-zero components of the Riemann 
tensor. Schiicking and Heckmann (1958) give solutions with matter included as 
a pressureless fluid. In this situation, the curvature of empty spacetime dominates 
both the geometry and the expansion rate at early times, t --+  0; but after some 
characteristic time tm the matter terms become more important, and the metric 
reduces asymptotically to the homogeneous, isotropic model with k = 0. 

This example illustrates the possibility that the universe might achieve a measure 
of isotropy and homogeneity in old age, even if it were born in a highly irregular 
state. Whether the symmetry of our universe can be explained along these lines is 
not yet clear in 1972. The model universe just mentioned is only a hint, especially 
since the critical parameter tm can be given any value whatsoever. 

The standard Einstein general-relativity physics of this model can be described 
in other language (Misner, 1968) by ascribing to the anisotropic motions of empty 
spacetime an "effective energy density" Paniso • which enters the G00 component of 
the Einstein equation on an equal footing with the matter-energy density, and 
thereby helps to account for the expansion of the universe: 

Hz _ ( I d 1n _ /(3):)2 _ 8'17 ( ) - 3 dt v ·~-g - 3 Pamso + Pmatter · 

The anisotropy energy density is found to have an equation of state 

Paruso a: <3>g-1 = (volume)-2, 

while 

Pmatter a: <3>g-YIZ = (volume)-Y. 

(30.4) 

For pressureless matter y = I; for a radiation fluid y = 4/3; for a nomelativistic 
ideal gas y = 5/3). 

This arrangement of the Einstein equation allows one to think of the anisotropy 
motions as being adiabatically cooled by the expansion of the universe, just as the 
thermal motions of an ideal gas would be. Since the adiabatic index for homogeneous 
anisotropy is y = 2, the anisotropy will be the dominant source of "effective energy" 
in a highly compressed state, whereas the matter will dominate in an expanded state. 

§30 .4 .  VISCO US DISSIPATIO N O F  ANISTRO PY 

The model universe sketched above can be further elaborated by introducing dissi
pative mechanisms that convert anisotropy energy into thermal energy. Suppose that 



§ 3 0 5 PARTICLE CREATION IN AN ANISOTROPIC UNIVERSE 803  such an anisotropic universe were filled a t  one time with thermal radiation. I f  the radiation were collisionless or nearly so, the quanta moving parallel to the contracting x-axis would get blueshifted and would develop an energy distribution corresponding to a high temperature. The quanta moving parallel to the other (expanding) axes would be redshifted to an energy distribution corresponding to a low temperature. Any collisions taking place between these two systems of particles would introduce a "thermal contact" between them, and would transfer energy from the hot system to the cold one, with a corresponding large production of entropy. This provides an irreversible dissipative process, which decreases Paniso and increases Pradiation relative to the values they would have had under conditions of adiabatic expansion. [For further details, see, e.g. , Matzner and Misner ( 1972).] It is possible that both the adiabatic cooling of anisotropy and the dissipation of anisotropy by its action on a gas of almost collisionless quanta have played significant roles in the evolution of our universe. In particular, neutrinos above 101° K may have undergone sufficient 11-e scattering to have provided strong dissipation during the first few seconds of the life of the universe. 
§ 3 0 . 5 .  PARTICLE CREATIO N  IN 

AN ANISOTRO PIC U N IVERSE 

Adiabatic cooling and viscous dissipation might not be the chief destroyers of anisotropy in an expanding universe. More powerful still might be another highly dissipative process, which might occur at still earlier times, very near the initial "singularity." This is a process of particle creation which was first treated by DeWitt ( 1953) ,  then explored by Parker ( 1966 and 1969) for isotropic cosmologies and finally by Zel'dovich ( 1970) in the present context of anisotropic cosmologies. In this process one again turns to the Kasner metric for the simplest example, but now quantummechanical considerations enter the picture. One realizes that not only would real quanta propagating in different directions be subject to red shifts and blue shifts, but that virtual quanta must be considered as well. Vacuum fluctuations (zero-point oscillations) entail a certain minimum number of virtual quanta, which are subject to the redshifting and blueshifting action of the strong gravitational fields. Virtual quanta that are blueshifted sufficiently violently can materialize as real particles, thanks to their energy gain. In this context "sufficiently violently" means not adia
batically. In an adiabatic expansion, the number of particles does not change, although the energy of each one does. This adiabatic limit is just the geometric-optics approximation to wave equations, which was discussed in §22.5 . There one saw that, if spacetime were not flat on the scale of a wavelength, then the wave equation could not be replaced by a particle description with conserved particle numbers. Thus, the adiabatic limit (geometric-optics approximation) is violated in the conditions of high curvature near the singularity at the beginning of the universe. By studying wave equations in the Kasner background metric, Zel'dovich and Starobinsky ( 197 1 )  find quantitatively the consequences of the failure of the adia-
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batic approximation near the singularity. Classically, the amplitudes of waves at 
frequencies comparable to the Hubble constant for any given epoch increase faster 
than a simple blue-shift calculation would imply (amplification through parametric 
resonance). Quantum-mechanically, the same amplification, applied to zero-point 
oscillations, leads to the creation of particle-antiparticle pairs. The calculations indi
cate that this effect is very strong at the characteristic time tq = y Gfz/ c5 c::::'. 10-43 

sec. (All calculations performed thus far are inadequate when the effect becomes 
strong, thus for t � tq). 

For the creation of massless particles, it is essential that an anisotropically ex
panding universe be postulated ( except for scalar particles, for which particle creation 
occurs already in the Friedmann universe, unless the particle satisfies the conformal
invariant wave equation). The isotropic Friedmann universes are all conformally 
flat, so that solutions of the wave equation for a field of zero rest mass can be given 
in terms of solutions for flat-space wave equations where there is no particle creation. 
There is some particle creation even in the isotropic Friedmann universe when the 
particle has finite rest mass and low energy. However, the particle-creation process 
normally uses anisotropy energy as the energy supply that it converts into radiation 
energy. 

The pioneering work by Parker and Zel'dovich suggests that one should study 
in detail cosmological models in which the initial conditions are a singularity, and 
in which quantum effects near the time t = tq dissipate all anisotropies and simulta
neously give rise to the matter content of the model. This program of research, which 
is in its infancy, seems to require extrapolating laws of physics down to the very 
natural looking but preposterously small dimension yGfz/c5 c::::'. 10-43 sec, or equiv
alently yGfz/c3 ~ 10-33 cm. 

§ 30 . 6 .  IN H O M O GENEO US COSM O LO G IES 

The model universes considered above were all homogeneous although anisotropic. 
It is also crucial to study inhomogeneous cosmological models, in which the metric 
has a nontrivial dependence on the space coordinates. One class of such models is 
spherically symmetric universes, where the matter density, expansion rate, and all 
other locally measurable physical quantities have spherical symmetry about some 
preferred origin. Models of this sort were first considered by Lemaitre (1933a,b), 
Tolman (1934b), and Datt (1 938), and were also treated by Bondi in 1947. These 
models provide a means for studying density perturbations of large amplitude. 

A recent tool is making it possible to study large-amplitude, spatially varying 
curvature perturbations of other symmetries; this tool is the Gowdy (1971, 1973) 
metrics. These metrics, which are exact solutions of the Einstein equations, represent 
closed universes with various topologies (S 3 , S 1 X S 2 , T3) containing gravitational 
waves. The wave form in these solutions is essentially arbitrary, but all the waves 
propagate along a single preferred direction and have a common polarization. 

A rather different approach to understanding the behavior of inhomogeneous and 
anisotropic solutions of the Einstein equations has been developed by Khalatnikov, 
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Lifshitz, and their colleagues. Rather than truncate the Einstein theory by limiting 
attention to specialized situations where exact solutions can be obtained, they have 
sought to study the widest possible class of solutions, but to describe their behavior 
only in the immediate neighborhood of the singularity. These studies give a greatly 
enhanced significance to some of the exact solutions, by showing that phenomena 
found in them are in fact typical of much broader classes of solutions. 

Thus, in the first large class of solutions studied [Lifshitz and Khalatnikov (1963)], 
it was found that near the singularity solutions containing matter showed no features 
not already found in the vacuum solutions. Furthermore, space derivatives in the 
Einstein equations became negligible near the singularity in these solutions, with 
the consequence that a metric of the Kasner form [equation (30. 1)] described the 
local behavior of spacetime near the singularity, but with a different set of Pi values 
possible at each point of the singular hypersurface. Subsequently, broadened studies 
of solutions near a singularity [Belinsky and Khalatnikov (1 970)] showed that the 
mixmaster universe [Misner (1 969b); Belinsky, Khalatnikov, and Lifshitz (1 970)] is 
a still better homogeneous prototype for singularity behavior than the Kasner metric. 

§ 30 . 7 .  THE MIXMASTER U NIVERSE 

The simplest example of a mixmaster universe is described in Box 30. 1 .  It shows 
how, near the singularity, the Kasner exponents Pi can become functions of time. 
The result is most simply described in terms of the Khalatnikov-Lifshitz param
eter u:  

Pi = - u/(1 + u + u2), 
P2 = (I + u)/(1 + u + u2), 
p3 = u(I + u)/(1 + u + u2). 

(30.5) 

As one extrapolates backward in time toward the singularity, one finds that the 
expansion rates in the three principal directions correspond to those of the Kasner 
metric of equation (30 . l  ), with Pi values corresponding to some fixed u parameter. 
In these rnixmaster models, however, the metric is not independent of the space 
coordinates (the spacelike hypersurfaces can, for instance, have the same 3-sphere 
topology as the closed Friedmann universes). 

The Kasner-like behavior at fixed u can persist through many decades of volume 
expansion before effects of the spatial derivatives of the metric come into play. The 
role then played by the space curvature is brief and decisive. The expansion is 
converted from a type corresponding to a parameter value u = u0 to a type corre
sponding to the value u = - u0 (which is equivalent, under a relabeling of the axes, 
to the value u = u0 - 1 ). Extrapolating still farther back toward the singularity, one 
finds a previous period with u = u0 - 2. Throughout an entire sequence u = u0, 
u0 - 1 ,  u0 - 2, u0 - 3, . . . , with u0 � 1 ,  nearly the entire volume expansion is due 
to expansion in the 3 -direction, whereas the 1 - and 2-directions change very little, 
alternating at each step between expansion and contraction. Sufficiently far in the 
past, however, such a sequence leads to a value of u between 0 and I. This value 
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can be interpreted as the starting point for another, similar sequence, through the 
transformation u --+ l/u, which interchanges the names of axes 2 and 3. 

The extrapolation of the universe's evolution back toward the singularity at t = 0 
therefore shows an extraordinarily complex behavior, in which similar but not 
precisely identical sequences of behavior are repeated infinitely many times. In terms 
of a time variable which is approximately log (log t-1) ,  these behaviors are quasi
periodic. In the generic example to which the Khalatnikov-Lifshitz methods lead, 
one has a metric whose asymptotic behavior near the singularity is at each point 
of the singular hypersurface described by a mixmaster-type behavior, but with the 
principal axes of expansion changing their directions as well as their roles (as 
characterized by the u parameter) at each step, and with the mixmaster parameters 
spatially variable. [For more details see Belinsky, Lifshitz, and Khalatnikov (1971), 
and Ryan (1971, 1972).] 

It is not yet (1972) known whether there are important solutions or classes of 
solutions relevant to the cosmological problem, with asymptotic singularity behavior 
not described by the Khalatnikov-Lifshitz generic case. The difficulty in reaching 
a definitive assessment here is that Khalatnikov and Lifshitz use essentially local 
methods, confined to a single coordinate patch, whereas the desired assessment poses 
an essentially global question. The global approaches (described in Chapter 34) have 
not, however, provided any comparable description of the nature of the singularity 
whose necessity they prove. One attempt to bridge these differences in technique 
and content is the work by Eardley, Liang, and Sachs (1972). 

(continued on page 8/5) 

Box 30. 1 THE MIXMASTER 
COSMOLOGY 

A G enera l ized Kasner Model 

The Mixmaster Cosmology is a valuable example. 
As described in §30.7, it shows a singularity be
havior which illustrates most of the features of the 
most general examples known. In particular, it 
shows how properties of empty space reminiscent 
of an elastic solid become evident near the cos
mological singularity. 

The mathematical path to this example, as given 
in this box, also illustrates several important tech
niques in using the variational principles for the 
Einstein equations to elucidate the solution of 
these equations. The Mixmaster example can also 
be used to provide simple examples of superspace 
ideas and of quantum formulations of the laws of 
gravity [Misner (1972a)]. 

Two generalizations must be implemented in order 
to progress from the Kasner example (30.1) of a 
cosmological singularity to the Mixmaster exam
ple. The first is to allow a more general time
dependence while preserving some of the sim
plicity of the conditions (30 .2) on the exponents pi. 
Note that these exponents satisfy, e.g., p2 
d In g 22/ d In g. Therefore one is led to parametrize 
the 3 x 3 spatial metric as 

gii = e2a( e2f3)ii (I) 

or equivalently, (In g)ii = 2a oii + 2/3ii' where /3ii 
is a traceless 3 X 3 symmetric matrix, and the 
exponential is a matrix power series, so det e2/3 = I 
and 

Vg = e3a _ (2) 

For the purposes of this paragraph only, define 
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Pii = d(ln g)i/ d ln det g. Then from equations (I) 
and (2), one computes 

1 Pii = 
3 

[oii + (d/3i/da)]; (3) 

so the one Kasner condition 

1 
1 = 2.., Pi trace Pii = 1 + 

3 
trace (d/3/da) 

is an identity in view of trace /3ii = 0. The second 
condition on the Kasner exponents is trace (p 2) = 
1 ,  and becomes (d/3i/da)2 = 6 by equation (3). 
This is not an identity, but a consequence of 
the Einstein equations in empty space. For the 
(Bianchi Type I) metric 

ds 2 = - dt2 + e2<>(e2f3)ii dx i dxi, (4) 

and in the case when /3ii is diagonal, the Einstein 
equations are, 

and 

(da )
2 = 877 [ roo + _l_ (d/3 - ./dt)2

] dt 3 1677 '1 (5) 

together with a redundant equation involving Tkk 
and the equation T0k = 0. [The stress components 
here refer to an orthonormal frame with basis 
I -forms wi = e<>(e f3)ii dxi.] From equation (5) one 
immediately derives 

Paniso<I >  = (c2/ l677G)(d/3i/dt)2 (7) 

as a formula for the effectiveness of Type I anisot
ropy in contributing to the Hubble constant H = 
da/dt on a basis comparable to matter energy, 
as in equation (30.4). Similarly, for equation (6) 
in the case of fluid matter (isotropic pressures), the 
stress terms vanish, and one obtains Panisome6<> = 
const., as in the equation following (30.4). The 
Kasner condition �p/ = 1 or (d/3i/da)2 = 6 fol
lows from equation (5) whenever T00 

� Paniso · 
In the diagonal case, /3ii has only two independ-
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ent components, and it is convenient at times to 
define them explicitly by the parameterization 

/311 = /3+ + y'3f3_, 
/322 = /3+ - y'3f3_, (8) 
/333 = -2/3+ -

For these the Kasner condition (d/3i/da)2 = 6 
becomes 

(d/3+/da)2 + (d/3_/da)2 = 1 .  (9) 

The /3± are related to the Kasner exponents Pi or 
the u parameter of equations (30.5) by 

1 d/3+/da = 
2 

(I - 3fs) 

= - 1 + (3/2)(1 + u + u2)-1 

d/3_/da = � v'3(Pi - f2) 
(10) 

= - ½ y'3(1 + 2u)(l + u + u2)- 1. 

Introduci ng Space Curvature 

The first step in generalizing the Kasner metric has 
focused attention on the "velocity" fr (d/3+/da, 
d/3_/da) which is a derivative of anisotropy with 
respect to expansion. The effects of matter or, as 
will soon appear, space curvature can change the 
magnitude l l{f l l  from the Kasner value of unity. 
The second step of generalization is to introduce 
space curvature. This one achieves in a simple 
example by retaining the metric components of 
equation (1 ), but employing them in a non-holo
nomic basis. Use the basis vectors introduced in 
exercises 9 . 1 3  and 9 . 1 4  on the rotation group 
S0(3), whose dual I -forms are 

a 1 = cos 1/J dB + sin 1/J sin 0 d</>, 
a 2 = sin ifl d0  - cos ifl sin 0 d<t>, (1 1) 
a 3 = di/I + cos 0 d</>, 

to form the metric 

ds 2 = - N2 dt2 + e2<>(e2f3)iia
iai, (12) 

where N, a, and /3ii are functions of t only. When 
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Box 30. 1  (continued) 

a = 0 = /3i;, the three-dimensional space metric 
here reduces to the one studied in exercise 13.15, 
which is the metric of highest symmetry on the 
group space SO(3). The simply connected covering 
space has the 3-sphere topology, and is obtained 
by extending the range of the Euler angle if-, to give 
it a 4'77 period [SU(2) or spin ½ covering of the 
rotation group]. With N = l ,  ½a= e'"-, and /3i; = 0, 
one obtains from equation (12) the same metric 
(in different coordinates) as that treated in exercise 
14.4 and in Chapter 27 in discussions of the closed 
Friedmann cosmological model. A non-zero value 
for f3i; allows the 3-sphere to have a different cir
cumference on great circles in each of 3 mutually 
orthogonal principal directions, thus destroying its 
isotropy but not its homogeneity. 

Let us consider only the case with f3i; diagonal, 
as in equation (8). Then the T00 Einstein equation 
becomes (with N = I as a time-coordinate condi
tion) 

3(a2 - i3+2 - i3_2) + i (3R1x) = 8'77Too, (13) 

where only the term 

3 R1x = _!_ e-2a trace (2e-2/3 - e4f3) (14) 2 

is different from equation (5). This term [see equa
tion (21.92)] is the scalar curvature of a three
dimensional slice, t = const [which has symmetry 
properties known as "Bianchi Type IX" for the 
metric of equations (11) and (12)]. If equation (13) 
is interpreted in terms of an anisotropy energy 
density contributing, with T00 , to the volume ex
pansiOJ?. a 2, then there are not only kinetic energy 
terms /3 2 [as in equations (5) and (7)], but also a 
potential energy term. This term shows that nega
tive scalar curvature, which can be produced by 
anisotropy (/3 -:j:. 0), is equivalent to a positive po
tential ( or "internal") energy, and suggests that 
empty space has properties with analogies to an 
elastic solid and resists shear strains. The more 
detailed analysis which follows shows that, near 
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the singularity, the scalar curvature is always neg
ligible when positive. 

Negative curvatures, however, arise in this 
closed universe from large shear (/3) deformations 
near the singularity and become large enough to 
reverse one Kasner shear motion [u-value, etc.; 
equation (10)] and change it to another. 

These conclusions and further details of the 
time-evolution of the "Mixmaster" metric (11, 12) 
require, in principle, the study of all the Einstein 
equations, not just equation (13) for T00 . As de
scribed in Chapter 21, however, this T00 constraint 
equation is central, and actually contains implicitly 
the full content of the Einstein equations when 
formulated properly. 

Variat ional  Pri nci p les 

One adequate formulation, adopted here, involves 
treating equation (13) not as an energy equation 
(involving velocities), but as a Hainiltonian (in
volving momenta). Take the Einstein variational 
principle (21.15) in ADM form (21.95) and carry 
out the space integration, using 

f a 1 /\ a 2 /\ a 3 = f sin 0 d</> I\ d0 I\ dif-, = ( 4'77 )2, 

to obtain the action integral in the form 

I= ('77) f { ?Ti; dgi; + Ne3" [ 3R1x 

+ e-6a ( � ('77\)2 - '7T ik'7Tik )] dt} .  
(15) 

When introducing the specific form ( I )  and (8) for 
gi;, it is convenient also to parameterize the diago
nal matrix '77\ as follows: 

with 
6P \ = P+ + P- 0, 
6p 2

2 = P+ - P- 0, 
6p 3

3 = - 2p+ 

(16) 

(17) 
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[see equation (8)). The result is 

I = f p + d/3 + + p _ d/3 _ + p "- da 
Ne-3"-

2 2 2 -
2477 

[ -p "- + p + + P-
- 24'7T 2e6a(3 R1x)l dt. 

This is cleaned up for further study as follows. 
Write 
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straint for its conjugate Hamiltonian. Here an ob
vious and satisfactory choice is to set t = a, and 
solve :JC = 0 for 

HADM = -p"- = [p/ + p_2 + e4a(V - 1))1;2 _ 
(23) 

The i:x. equation [vary Pa in equation (21 )] is 

(24) 

(1 8) and shows that the choice a = t (so i:x. = 1)  re
quires 

where 

V = V(/3) = _.!_ trace (1 - 2e-2f3 + e4f3) (1 9) 3 

so V(O) = O ;  and adjust the zero of a (a -+ 
a - a0) so that e2"- -+ (67T)-1e2"-.  Then the metric 
is 

ds2 = - N2 dt2 + (67T)-1e2"-(e2f3);p iai , (20) 

and the variational integral is 

with 

I = JP+ d/3+ + p_ d/3_ + Pa da 
- (37T/2)112Ne-3a:JC dt, 

(21)  

2:JC -p/ + p/ + p_ 2 + e4"-(V - 1). (22) 

One demands 81 = 0 for arbitrary independent var
iations of P±, Pa, /3±, a, N to obtain the Einstein 
equations. From varying N, one obtains the funda
mental constraint equation :JC =  0 [which would 
reduce to the vacuum version of equation (1 3) 
when the momenta are replaced by velocities (via 
equations obtained by varying the p's) if the coor
dinate condition N = I were imposed.) 

ADM Hami lton ian  

The standard ADM prescription for  reducing this 
variational principle to canonical (Hamiltonian) 
form is to choose one of the field variables or 
momenta as a time-coordinate, and solve the con-

(25) 

The reduced, canonical, variational principle 
which results when equation (23) is used to elimi
nate Pa reads 8Jred = 0 with 

Ired = f P+ d/3+ + p_ d/3_ - HADM da (26) 

and must be supplemented by equation (25). 

Su per-Hami lton ian  

A more convenient approach here is one more 
closely related to the Dirac Hamiltonian methods 
than those of ADM. Note, however, that one does 
not remove the arbitrariness in the lapse function 
by taking it to be some specified function N(t) of 
the coordinates. Instead the procedure adopted 
here is to eliminate N from the variational princi
ple (21)  by choosing it ( coordinate condition !) to 
be some chosen function of the field variables and 
momenta, N = N (a , /3±, Pa, pJ. Any such choice, 
inserted in equation (21 ), leaves a variational inte
gral in canonical Hamiltonian form. The content 
of this new variational principle becomes equiva
lent to the original one only when supplemented 
by the constraint 

X= O, (27) 

which can no longer be derived from the varia
tional principle. [The other Euler-Lagrange equa
tions for these two principles differ only by terms 
proportional to :JC, and thus are equivalent when 
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Box 30 .  1 (continued) 

X = 0 is imposed on the initial conditions. ]  The 
choice 

N = (2/3'1T)112e3a (28) 

is obvious and convenient. It makes X become a 
super-Hamiltonian in the resulting variational 
principle 

I = f P+ d/3+ + p_ d/3_ + Pa da - X dA, (29) 

where t A has been written to label the specific 
time-coordinate choice that equation (28) implies. 

M ixmaster Dynamics 

If matter terms with no additional degrees of free
dom are included, the super-Hamiltonian in equa
tion (29) is modified simply. For an example, 
choose 

T00 = - T0
0 = (3/4)2(µe-3a + re-4<x) (30) 

for the energy density of matter in a frame with 
time-axis e0 = N-1(o/o t). The two terms represent 
a nonrelativistic perfect fluid (p a: v- 1) and a 
radiation fluid (p a: v-413) ,  respectively, and lead 
to 

2X = -p} + P+
2 + p_2 + e4a(V - 1 )  

+ µe3a + reza _ (3 1) 

This Hamiltonian, with its simple quadratic mo
mentum dependence, differs in only two ways 
from the Hamiltonians of elementary mechanics, 
namely, (1) in the sign of the p} term and (2) in 
the detailed shape of the "potential" term as func
tion of a and /3±, the study of which reduces to 
a study of the function V(/3). Hamilton's equa
tions, from varying a, /3±, Pa, and P± in equation 
(29), yield 

1 4a a V - - e --
2 o/3± 

(32) 

and 
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+ oX = 2e4a(V - 1) + 1. 11 e3a + re2a 

oa 2 r . 

(33) 

Thus the sign of the Pa
2 term causes a to accelerate 

toward (rather than away from) higher values of 
the "potential" terms e 4a(V - 1) + µe 3a + re 2a _ 
When I V]  � 1 (small anisotropy), equation (33) is 
identical to its form in the isotropic Friedmann 
model, and allows a deceleration only when a is 
large enough that the positive curvature term 
( - e4a) dominates over matter (µe3a) and radiation 
(I'e2a). Near the singularity (a -+ - oo ), the 
positive curvature term is always negligible 
compared to radiation and matter. 

For studies of the singularity behavior, it is 
sufficient to study the simplified super-Hamilton
ian 

2X ~ -p} + P+2 + p_2 + e 4a V(/3), (34) 

since the other terms obviously vanish for a -+ 
- oo .  This form retains only the V term in 3 R1x = 
�e-2a(l - V), which dominates when the cur
vature of this closed universe becomes negative, 
V ► I . If the term in V(/3) were also negligible, 
then X = -p} + P+2 + p_2 would make each 
Pa, P± constant, giving the Kasner behavior with 

and ld/l/da l 2 = 1 as expected (since matter and 
curvature have been neglected). To proceed fur
ther, a study of V(/3) is required, based on equa
tions (19) and (8), and their immediate conse
quence : 

V(/3) = � e-8f3+ - : e-2f3+ cosh 2 y'3f3_ 

2 
(35) 

+ 1 + 
3

e4f3+(cosh 4 y'3f3_ - 1). 

One finds that V(/3) is a positive definite "potential 
well" which has the same symmetries as an equi-
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lateral triangle in the /3+!3- plane. Near the origin, 
/3± = 0, the equipotentials are circles, since 

V(/3) = 8(/3+ 2 + /3_ 2) + 0(/33). (36) 

For large /3 values, one finds 

/3+ --+ - oo, (37) 

and 

V(/3) ~ I + 16/3_ 2e4f3+, 
13+ --+ + oo, (38) 1/3- 1 � 1. 

These two asymptotic forms, together with the 
triangular symmetry, give a complete asymptotic 
description of V(/3), as sketched in the figure, 
where on successive levels separated by .J/3 = 1, 
the potential V increases by a factor of e8 = 
3 X 103• 

8 1 1 

" Bou nce" Interru pts Kasner- l i ke Steps 

Toward the Si ngu la ri ty 

The dominant feature of the V(/3) potential is 
evidently its steep ( exponential) triangular walls, 
with equation (37) representing the typical one for 
study. Under the influence of this potential wall, 
the evolution of this model universe is governed 
by the super-Hamiltonian 

2X ~ -pa2 + p/ + p_Z + � e4(a - 2/3.J. (39) 

If a --+  - oo with d/3+/da > 1/2 [recall d/3+/da 
= const., ld/3/da l  = 1, when the last term in (39) 
is small], then the potential term grows and will 
eventually become large enough to influence the 
motion. A simple "Lorentz" transformation, sug
gested by the superspace metric ( coefficients of the 

Some equipotentials, V(/3) = constant, are shown for 
the function defined in equation (35). Equipotentials 
near the origm of the /3-plane are closed curves for 
V < I and are omitted here. 
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Box 30 .  1 (continued) 

quadratic in the momenta) simplifies the compu
tation further. Set 

and find 

13+ = (P+ - � a) ; v'374,  

a =  (a - ½ P+) /v'3/4, 

2X = -p',/ + p/ + p_2 + � exp (- 4 v'3.B+)-

(40) 

For this super-Hamiltonian bot1!._ fa and p_ are 
constants of JE-Otion, whereas the /J+ -Hamiltonian, 
P+ 

2 + ¼e-40!1+, represents a simple bounce against 
a one-dimensional potential wall with the initial 
and final values of P+ different only in sign. The 
behavior of the anisotropy parameters /J± near the 
singularity thus consists of a simple Kasner step 
(where d/J±/da = const., with the d/J+/da 2:: ½, or 
conditions equivalent by symmetry, satisfied rela
tive to one of the three walls), followed by a 
bounce against that wall, beginning a new Kasner 
step with other Kasner parameters. [The most de
tailed description of this behavior and its relation 
to more general cosmological models can be found 
in Belinsky, Khalatnikov, and Lifshitz (1970)-see 
also the hriefer report, Khalatnikov and Lifshitz 
(1 970)-using quite different methods. For de
tailed developments by Hamiltonian methods, 
which supercede the partial Lagrangian methods 
of Misner (1969b), see Misner (1 970, 1972a), and 
Ryan (1972a,b).] 

Steady-State, Quasi period ic  Infi n i ty of 

" Bounces" Approach i n g  the  Si ngu larity 

Some comprehensive features of the singularity 
behavior, involving many Kasner-like steps, can 
be exhibited by another transformation of the 
parameter space (superspace) of the metric field. 
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The transformation introduces a "radial" t
coordinate out from the origin of a/J± space, while 
respecting the metric properties of this superspace 
implied by the form of the super-Hamiltonian. 
Thus one defines (for any constant a0) 

and finds 

a0 - a = et cosh s, 
/J+ = et sinh f cos </>, (4 1)  
/J_ = et sinh s sin </>, 

2X = e-2t [(-p/ + p/ + p/ sinh-20 + e2te4" V]. 
(42) 

The advantage of this transformation is that in the 
limit t ---+ oo (a ---+ - oo, singularity) the po
tential terms become, in first approximation, inde
pendent of t. Thus equation (37) gives, for one 
potential wall, 

e2te4" V ~ ½ e2t exp [ 4a0 

- Set ( sinh s cos </> + ½ cosh s)] . 
(43) 

For t ---+  oo this expression evidently tends to 
either zero or infinity, depending on the sign of 
the expre_ssion in parentheses. Therefore define the 
asymptotic potential walls by 

1 tanh s + 2 sec </> = 0 (44) 

in the sector I</> - '7TI < '7T /3, and equivalent for
mulae in which </> is replaced by </> + (2'7T /3) for 
the other sides of the triangle. Consequently, an 
asymptotic approximation to the super-Hamil
tonian is 

2X = e-2t [ -p/ + p/ + p/ sinh-2f + V'(s, </>)], 
(45) 

where V'(s, </>) vanishes inside the asymptotic walls 
(44) and equals + oo outside. Because the remain
ing t-dependence is a common factor in (45), a 
simple change of independent variable e-2t dA = 
dA' in equation (29)-equivalent to the choice 

N = (2/3'1T)112e-2t exp [3 (ao - et cosh rn (46) 
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in place of equation (28)-gives a new super
Hamiltonian X' = e2tX with the variational 
integral 

I= f Pi dt + ft d5  + p<t> d</> - X' dA'. (47) 

In the asymptotic approximation where 

2%' = -p/ + p/ + p/ sinh-25 + V'(t </>), (48) 

one immediately sees that Pt is a constant of mo
tion, and that the "bouncing" of the t</> values 
within the asymptotic potential walls is a station
ary, quasi-periodic process in this time-coordinate 
A' (or t, since dt/dA' = -p1 = const). [More de
tailed studies based on this asymptotic super
Hamiltonian show that the motion is even ergodic, 
with t</> approaching arbitrarily close to any given 
value infinitely many times as t -+ oo ;  see Chitre 
(1972a).] 

Su mmary 

One has found the singularity behavior in this 
Mixmaster example to be extraordinarily active. 
In the simple Kasner singularity, two axes col
lapse, but the third is stretched in a simple tidal 
deformation accompanied by volume compres
sion. But in the Mixmaster example, every such 
collapse attempt is defeated by the high negative 
curvature it implies. Or rather it is diverted to 
another attempt as compression continues in
exorably, but the tidal deformations attempt first 
one configuration, then another, in an infinitely 
recurring probing of all possible configurations. 

Specu lat ions on Ti me and the Si ngu lari ty 

The cosmological singularity (in all examples 
where its character is not known to be unstable) 
involves infinite curvature and infinite density. 
One's abhorence of such a theoretical prediction 
is particularly heightened by the correlative pre
diction that these infinities occurred at a finite 
proper time in the past, and would-if they 
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recur-occur again at some finite proper time in 
the future. The singularity prediction would be 
more tolerable if the infinite densities could be 
removed to the infinitely distant past. The universe 
could then, as now, find its natural state to be one 
of expansion, so every finite density will have been 
experienced at some suitably remote past time, but 
infinite density becomes a formal abstraction never 
realized in the course of evolution. 

To push infinite curvature out of the finite past 
might be achieved in two ways. It is not known 
which, if either, works. One way is to change the 
physical laws which require the singularity, chang
ing them perhaps only in obvious and desirable 
ways, such as stating the laws of gravity in a proper 
quantum language. Computations of quantum ge
ometry are not yet definitive, however, and some 
(perhaps inadequate) approximations [Misner 
(1972a)] do not remove the singularity problem. 

Another way to discard the singularity is to 
accept the mathematics of the classical Einstein 
equations, but reinterpret it in terms of an infinite 
past time. There are, of course, simple and utterly 
inadequate ways to do this by arbitrary coordinate 
transformations such as t = In T which change a 
T = 0 singularity into one at t = - oo.  But an 
arbitrary coordinate is without significance. The 
problem is that the singularity occurs at a finite 
proper time in the past, and proper time is the most 
physically significant, most physically real time we 
know. It corresponds to the ticking of physical 
clocks and measures the natural rhythms of actual 
events. To reinterpret finite past time as infinite, 
one must attack proper time on precisely these 
grounds, and claim it is inadequately physical. On 
a local basis, where special relativity is valid, no 
challenge to the physical significance of proper 
time can succeed. It is on a more global scale that 
the physical primacy of proper time needs to be 
reviewed. 

"The cosmological singularity occurred ten 
thousand million years ago." In this statement, 
take time to mean the proper time along the world 
line of the solar system, ephemeris time. Then the 
statement would have a most direct physical sig-
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Box 30 .  1 (continued) 

nificance if it meant that the Earth had completed 
1010 orbits about the sun since the beginning of 
the universe. But proper time is not that closely 
tied to actual physical phenomena. The statement 
merely implies that those 5 X 109 orbits which the 
earth may have actually accomplished give a 
standard of time which is to be extrapolated in 
prescribed ways, thus giving theoretical meaning 
to the other 5 X 109 years which are asserted to 
have preceeded the formation of the solar system. 

A hardier standard clock changes the details of 
the argument, but not its qualitative conclusion. 
To interpret 1010 years in terms of SI (Systeme 
Internationale) seconds assigns a past history con
taining some 3 X 1027 oscillations of a hyperfine 
transition in neutral Cesium. But again the critical 
early ticks of the clock (needed to locate the 
singularity in time by actual physical events) are 
missing. The time needed for stellar nucleo
synthesis to produce the first Cesium disqualifies 
this clock on historical grounds, and the still earlier 
high temperatures nearer the singularity would 
have ionized all Cesium even if this element had 
predated stars. 

Thus proper time near the singularity is not a 
direct counting of simple and actual physical 
phenomena, but an elaborate mathematical 
extrapolation. Each actual clock has its "ticks" 
discounted by a suitable factor-3 X 107 seconds 
per orbit from the Earth-sun system, 1.1 X 10-10 

seconds per oscillation for the Cesium transition, 
etc. Since no single clock (because of its finite size 
and strength) is conceivable all the way back to 
the singularity, a statement about the proper time 
since the singularity involves the concept of an 
infinite sequence of successively smaller and 
sturdier clocks with their ticks then discounted and 

30 ANISOTROPIC AND INHOMOGENEOUS COSMOLOG IES 

added. "Finite proper time," then, need not imply 
that any finite sequence of events was possible. It 
may describe a necessarily infinite number of 
events ("ticks") in any physically conceivable his
tory, converted by mathematics into a finite sum 
by the action of a non-local convergence factor, 
the "discount" applied to convert "ticks" into 
"proper time." 

Here one has the conceptual inverse of Zeno's 
paradox. One rejects Zeno's suggestion that a sin
gle swing of a pendulum is infinitely complicated
being composed of a half period, plus a quarter 
period, plus 2-n ad infinitum-because the terms 
in his infinite series are mathematical abstractions, 
not physically achieved discrete acts in a drama 
that must be played out. By a comparable stand
ard, one should ignore as a mathematical abstrac
tion the finite sum of the proper-time series for 
the age of the universe, if it can be proved that 
there must be an infinite number of discrete acts 
played out during its past history. In both cases, 
finiteness would be judged by counting the num
ber of discrete ticks on realizable clocks, not by 
assessing the weight of unrealizable mathematical 
abstractions. 

Whether the universe is infinitely old by this 
standard remains to be determined. The quantum 
influences, in particular, remain to be calculated. 
The decisive question is whether each present
epoch event is subject to the influence of infinitely 
many previous discrete events. In that case statisti
cal assumptions (large numbers, random phases, 
etc.) could enter in stronger ways into theories of 
cosmology. The Mixmaster cosmological model 
does have an infinite past history in this sense, 
since each "bounce" from one Kasner-like motion 
to another is a recognizable cosmological event, 
of which infinitely many must be realized between 
any finite epoch and the singularity. 
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§30 . 8 .  H ORIZO NS A N D  T H E  ISOTRO PY O F  

THE MICROWAVE BACKGRO U N D  

The fundamental cosmological question-"Must a universe that is born chaotic 
necessarily become as homogeneous and isotropic as our universe is, and do so before 
life evolves?" -entails one further issue. This issue is horizons. As was discussed in 
§27 .10, at any given epoch in the expansion of a Friedmann universe (e.g., the present 
epoch), there may be significant portions of the universe from which no light signal 
or other causally propagating influence will have yet reached Earth in the time 
available since the initial singularity. "If we should live so long," the question would 
arise, "will the new portions of the universe which first come into view during the 
next ten billion years look statistically identical to the neighboring portions which 
are already being seen?" 

Fortunately, this question need not be posed only for the future. It can be asked 
as of some past time, and the answer then is yes. Microwave background radiation 
arrives at the earth from all directions in the sky with very nearly the same tempera
ture. [The data of Boughn, Fram, and Partridge (1971) and of Conklin (1969) show 
'1 T/T � 0.004.] The plasma that emitted the microwave radiation coming to earth 
from one direction in the sky had not been able, before the epoch of emission, to 
communicate causally with the plasma emitting the radiation that arrives from other 
directions. If one adopts a Friedmann model of the universe, then different sectors 
of the microwave sky are disjoint from each other in this sense if they are separated 
from each other by more than 30 ° , even if the microwaves were emitted as recently 
as z = 7. (The critical angle is much smaller if the microwaves were last scattered 
at z = l,000.) From this, one concludes that the foundations for the homogeneity 
and isotropy of the universe were laid long before the universe became approximately 
Friedmann, for if statistical homogeneity and isotropy of the universe had not already 
been achieved at the longest wavelengths earlier, these horizon limitations would 
have prevented any further synchronization of conditions over large scales while 
the universe was in a nearly Friedmann state, and small amplitude (10%) deviations 
from isotropy should be observed now. 

The mixmaster universe received its name from the hope that it could contribute 
to the solution of this problem. The very large u values that occur sporadically an 
infinite number of times near the singularity in a mixmaster universe give a geometry 
close to that of the Kasner model with Pi = 1, P2 = P3 = 0. This model can be 
written in the form 

(30.6) 

where r, = ln t. If this metric is converted into a closed-universe model by inter
preting x, y, z as angle coordinates each with period 4'17, then one sees that a light 
ray can circumnavigate the universe in the x-direction in a time interval '1r, = 4'17, 
which corresponds to a volume expansion by a factor �/ � = e4

'7T .  Unfor
tunately, a quantitative analysis of the degree and frequency with which the mix
master universe achieves this specific Kasner form suggests that the horizon breaking 

Horizons in a Friedmann 
universe 

Observed isotropy of 
microwave radiation proves 
foundations for homogeneity 
were laid before universe 
became Friedmann-like 

What made the universe 
homogeneous and isotropic? 

(1) Mixmaster oscillations?-
probably not 



(2) particle creation near 
singularity? 
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is inadequate to explain the present state of the universe [Doroshkevich, Lukash, 
and Novikov (1 97 1); Chitre (1 972)]. It may turn out that particle creation near the 
singularity can solve this horizon question, as well as provide for the dissipation 
of anisotropy. Hope is provided by the fact that particle creation, when described 
in purely classical terms, has some acausal appearances, even though it is a strictly 
causal process at the quantum level [Zel'dovich (1 972)]. 



G RAVITATI O NAL CO L LAPS E 

AN D B LAC K H O LES 

Wherein the reader is transported to the land of black holes, and 
encounters colonies of  s tatic limits, ergospheres, 

and horizons-behind whose veils are hidden gaping, 
ferocious singularities .  





CHAPTER 3 1 
SCHWARZSCH I LD G EO M ETRY 

§3 1 . 1 . INEVITABILITY O F  CO LLAPSE FOR 

MASSIVE STARS 

There is no equilibrium state at the endpoint of thermonuclear evolution for a star 
containing more than about twice the number of baryons in the sun (A > Amax ~ 2A0) .  This is one of the most surprising-and disturbing-consequences of the discussion in Chapter 24 .  Stated differently: A star with A > Amax ~ 2A0 must eject all but Amax of its baryons-e.g., by nova or supernova explosions-before settling down into its final resting state ; otherwise there will be no final resting state for it to settle down into. What is the fate of a star that fails to eject its excess baryons before nearing the endpoint of thermonuclear evolution? For example, after a very massive supernova explosion, what will become of the collapsed degenerate-neutron core when it contains more than Amax baryons? Such a supercritical mass cannot explode, since it is gravitationally bound and it has no more thermonuclear energy to release. Nor can it reach a static equilibrium state, since there exists no such state for so large a mass. There remains only one alternative ; the supercritical mass must collapse through its "gravitational radius," r = 2M, leaving behind a gravitating "black hole" in space. The phenomenon of collapse through the gravitational radius, as described by classical general relativity, will be the subject of the next chapter. However, before tackling it, one must understand more fully than heretofore the Schwarzschild spacetime geometry, which surrounds black holes and collapsing stars as well as static stars. This chapter will concern itself with two topics that, at first sight, appear to be disconnected. One is the fall of a test particle in a preexisting Schwarzschild geometry, which is regarded as static, but can also be visualized as all that remains of a star that underwent collapse some time ago. The second topic is the physical 

This chapter, on 
Schwarzsch i l d  geometry, is 
key p reparat ion for 
understand ing  g ravitationa l  
co l l apse (next chapter) and 
b lack  ho les (fo l lowing 
chapter) 



The Schwarzschild line 
element becomes singular at 
r = 2M ("gravitational 
radius") 
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character of this geometry, regarded in and by itself. For the exploration of this 
geometry, the test particle serves as the best of all explorers. But the test particle 
may also be regarded in another light. It can be viewed as a rag-tag johnny-come
lately piece of the matter of the falling star. Regarded in this way, it provides the 
simplest of all illustrations of an asymmetry in the distribution of mass of a collapsing 
star. That this asymmetry irons itself out will therefore give one some preliminary 
insight into how more complicated asymmetries also iron themselves out. In brief, 
the motion of the test particle and the dynamics of the Schwarzschild geometry (for 
this geometry will prove to be dynamic), two apparently different problems, have 
the happy ability to throw light on each other. 

§ 3 1 . 2 .  THE N O NSIN G U LARITY O F  

THE GRAVITATIO NAL RADIUS 

The Schwarzschild spacetime geometry 

ds2 = - ( I - 2M) dt2 + dr2 
+ r 2(d82 + sin28 dcp2) 

r 1 - 2M/r 
(3 1 . 1 ) 

appears to behave badly near r = 2M; there gtt becomes zero, and grr becomes 
infinite. However, one cannot be sure without careful study whether this pathology 
in the line element is due to a pathology in the spacetime geometry itself, or merely 
to a pathology of the (t, r, 8, cf>) coordinate system near r = 2M. (As an example of 
a coordinate-induced pathology, consider the neighborhood of 8 = 0 on one of the 
invariant spheres, t = const and r = const. There g<t,<t, becomes zero because the 
coordinate system behaves badly; however, the intrinsic, coordinate-independent 
geometry of the sphere is well-behaved there. For another example, see Figure 1 .4 .  

The worrisome region of  the Schwarzschild geometry, r = 2M, i s  called the "grav
itational radius," or the "Schwarzschild radius," or the "Schwarzschild surface," 
or the "Schwarzschild horizon," or the "Schwarzschild sphere." It is also called the 
"Schwarzschild singularity" in some of the older literature; but that is a misnomer, 
since, as will be shown, the spacetime geometry is not singular there. 

To determine whether the spacetime geometry is singular at the gravitational 
radius, send an explorer in from far away to chart it. For simplicity, let him fall 
freely and radially into the gravitational radius, carrying his orthonormal tetrad with 
him as he falls. His trajectory through spacetime ["parabolic orbit" ; radial geodesic 
of metric (3 1 . 1)] is 

t 
2M 

'T 2 ( r )3/2 

2M 
= - 3 2M 

+ constant, 

- 2_ (-r )
3/2 

- (
_!.__

)
1;2 

ln I 
(r /2M)ll 2 + 1 1  

3 2M 2 2M + (r/2M)11 2 - 1 + constant. 

(3 1 .2) 

[See §25 .5 and especially equation (25 .38) for derivation and discussion.] One obtains 
the r coordinate of the explorer in terms of the proper time measured on a clock 



§ 3 1  2 NONSING U LARITY OF THE G RAVITATIONAL RADIUS 8 2 1 

he carries, r('r), by inverting the first equation; one finds his r coordinate in terms 
of coordinate time, r(t), by inverting the second equation. 

Of all the features of the traveler's trajectory, one stands out most clearly and 
disturbingly: to reach the gravitational radius, r = 2M, requires a finite lapse of 
proper time, but an infinite lapse of coordinate time: 

r/2M = I - ('r + constant)/2M when near r = 2M; 

r/2M = I + constant X exp (- t/2M) in limit as t --+  oo .  
(3 1 .3) 

(see Fig. 25 .5 .) Of course, proper time is the relevant quantity for the explorer's 
heart-beat and health. No coordinate system has the power to prevent him from 
reaching r = 2M. Only the coordinate-independent geometry of spacetime could 
possibly do that; and equation (3 1 .3) shows it does not !  

Let the explorer approach and reach r = 2M, then. What spacetime geometry does 
he measure there? Is it singular or nonsingular? Restated in terms of measurements, 
do infinite tidal gravitational forces tear the traveler apart and crush him as he 
approaches r = 2M, or does he feel only finite tidal forces which in principle his 
body can withstand? 

The tidal forces felt by the explorer as he passes a given radius r are measured 
by the components of the Riemann curvature tensor with respect to his orthonormal 
frame there ( equation of geodesic deviation). To calculate those curvature compo
nents at r, proceed in two steps. (1) Calculate the components, not in the traveler's 
frame, but rather in the "static" orthonormal frame 

w' = ( 1 - 2M)
112 

dt wr = dr w 0 = r d0 wif> = r sin 0 drh (3 1 .4a) 
r ' (1 - 2M/r)ll2 ' ' 'I' 

located at the event through which he is passing; the result [obtainable from equa
tions (14 .50) and (14.5 1)  by setting e2"' = e-2A = 1 - 2M/r] is 

- 2M R,,.f,- = --3 - , r 

2M Re(f,e(f, = -3 , r 

M Riete - Rt¢t¢ - 3 , 
r 

- M  R.-. - - R. - . - - -- · r0r0 - r<f,r<f, - r3 , 

all other R;,_fFt't, vanish except those obtainable 
from the above by symmetries of Riemann. 

(3 1 .4b) 

(2) Calculate the components in the explorer's frame by applying to the "static
frame" components (3 1 .4b) the appropriate transformation-for r > 2M, a Lorentz 
boost in the e:;. direction with ordinary velocity vr ; for r < 2M, not a "boost," but 
a transformation given by the standard boost formula (Box 2 .4) with vr > 1 .  Here 

v:;. = 
(grr)11 2 dr 

= 
dr/dt 

= - (
2M)

1/2 _ 
( - gu)11 2 dt 1 - 2M/r r 

(3 1 .5) 

The amazing result (a consequence of special algebraic properties of the Schwarzs
child geometry, and somewhat analogous to what happens-or, rather, does not hap-

An i nfa l h n g  observer reaches 
r = 2M i n  fi n ite proper t ime  
but  infi n ite coord i nate ti m e  



The infa l l i ng  o bserver does 
not feel i nfi n ite t ida l  forces at 
r = 2M 

Thus ,  the spacet ime 
geometry is we l l  behaved at 
r = 2M, but the coord inate 
system is patho log ical  
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pen-to the components of the electromagnetic field, E and B, when they are both 
parallel to a boost) is this : all the components of Riemann are left completely 
unaffected by the boost. If e'i, is the traveler's radial basis vector, and e .- = u is 
his time basis vector, then 

R, . , .  = - 2M/r3 
'Tp'Tp ' 

R,.  . ,  - 2M/r3 
8¢8¢ - , 

(See exercise 31.1.) 

R, . ,  , = R, , , ,  = M/r3 
T8T8 'T<f>T</> > 

R, , ,.  = R,. , .  = - M/r3 
p8p8 P<l>P<I> 

(31.6) 

The payoff of this calculation: according to equations (31.6), none of the compo
nents of Riemann in the explorer's orthonormal frame become infinite at the 
gravitational radius. The tidal forces the traveler feels as he approaches r = 2M are 
finite; they do not tear him apart-at least not when the mass M is sufficiently great, 
because at r = 2M the typical non-zero component Ra/Fti of the curvature tensor 
is of the order 1/ M2 • The gravitational radius is a perfectly well-behaved, nonsingular 
region of spacetime, and nothing there can prevent the explorer from falling on 
inward. 

By contrast, deep inside the gravitational radius, at r = 0, the traveler must 
encounter infinite tidal forces, independently of the route he uses to reach there. 
One says that "r = 0 is a physical singularity of spacetime." To see this, one need 
only calculate from equation (31.4b) or (31.6) the "curvature invariant" : 

(3 1 .7) 

Box 3 1 . 1  THE "SCHWARZSCHILD SINGU LARITY":  HISTORICAL REMARKS 

Although Eddington (1924) was the first to con
struct a coordinate system that is nonsingular at 
r = 2M, he seems not to have recognized the sig
nificance of his result. Lemaitre (1933c, especially 
p. 82) appears to have been the first to recognize 
that the so-called "Schwarzschild singularity" at 
r = 2M is not a singularity. He wrote, "La singu
larite du champ de Schwarzschild est done une 
singularite fictive, analogue a celle qui se presen
tait a }'horizon du centre dans la forme originale 
de l'univers de de Sitter". He also provided a 
coordinate system to go through r = 2M. How
ever, his coordinate system, like Eddington's, cov
ered only half of the Schwarzschild geometry: 

regions I and II of Figure 31.3. Synge (1950) was 
the first to discover the incompleteness in the Ed
dington and Lemaitre coordinate systems, and to 
provide coordinates that cover the entire geometry 
(regions I, II, III, IV of Figure 31.3). Fronsdal 
(1959), unaware of Synge's work, rediscovered the 
global structure of the Schwarzschild geometry by 
means of embedding diagrams and calculations. 
The coordinate system that provides maximum 
insight into the Schwarzschild geometry is the one 
generally known as the Kruskal-Szekeres coordi
nate system. It was constructed independently by 
Kruskal (1960) and by Szekeres (1960). 
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In every local Lorentz frame this will be a sum of products of curvature components, 
and it will have the same value 48M2/r6 • Thus, in every local Lorentz frame, 
including the traveler's, Riemann will have one or more infinite components as 
r -+ 0; i.e., tidal forces will become infinite. 

Exercise 3 1 . 1 .  TI DAL FORCES O N  I N FALLI N G  EXPLO R E R  

( a) Carry out the details o f  the derivation o f  the Riemann tensor components (31.6). 
(b) Calculate, roughly, the critical mass Merit such that, if M > Merit the explorer's body 

(a human body made of normal flesh and bones) can withstand the tidal forces at r = 2M, 
but if M < Merit his body is mutilated by them. (Answer: Merit ~ IOOOM0. Evidently, if 
M ~ M0 the physicist should transform himself into an ant before taking the plunge! For 
details see §32 .6.] 

§ 3 1 . 3 .  BEHAVIOR OF SCHWARZSCHILD 

CO ORDINATES AT r = 2M 

Since the spacetime geometry is  well behaved at the gravitational radius, the singular 
behavior there of the Schwarzschild metric components, gtt = - (1 - 2M/r) and 
grr = (1 - 2M/r)-1, must be due to a pathology there of the Schwarzschild coordi
nates t, r, 0, (/>. Somehow one must find a way to get rid of that pathology-i.e., one 
must construct a new coordinate system from which the pathology is absent. Before 
doing this, it is helpful to understand better the precise nature of the pathology. 

The most obvious pathology at r = 2M is the reversal there of the roles of t and 
r as timelike and spacelike coordinates. In the region r > 2M, the t direction, o/ot, 
is timelike (gtt < 0) and the r direction, a /or, is spacelike (grr > 0); but in the region 
r < 2M, o/ot  is spacelike (f?tt > 0) and o/or is timelike (grr < 0). 

What does it mean for r to "change in character from a spacelike coordinate to 
a timelike one"? The explorer in his jet-powered spaceship prior to arrival at r = 2M 
always has the option to turn on his jets and change his motion from decreasing 
r (infall) to increasing r (escape). Quite the contrary is the situation when he has 
once allowed himself to fall inside r = 2M. Then the further decrease of r represents 
the passage of time. No command that the traveler can give to his jet engine will 
turn back time. That unseen power of the world which drags everyone forward 
willy-nilly from age twenty to forty and from forty to eighty also drags the rocket 
in from time coordinate r = 2M to the later value of the time coordinate r = 0. 
No human act of will, no engine, no rocket, no force (see exercise 31.3) can make 
time stand still. As surely as cells die, as surely as the traveler's watch ticks away 
"the unforgiving minutes," with equal certainty, and with never one halt along the 
way, r drops from 2M to 0. 

At r = 2M, where r and t exchange roles as space and time coordinates, gtt vanishes 
while grr is infinite. The vanishing of gtt suggests that the surface r = 2M, which 

At r = 0 the cu rv: 
i nfi n ite 

EXERCISE 

N atu re of the coord inate 
pathology at r = 2M: 

( 1 )  t and  r reverse roles as 
t ime l i ke a n d  space l i ke 
coordi nates 



m r = 2M, 
'. < + oo is 

two-di mensional rather 
than three 

(3) radial geodesics reveal 
that the regions r = 2M, 
t = ± oo  are "finite" 
parts of spacet1 me 
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appears to be three-dimensional in the Schwarzschild coordinate system ( - oo < t < 
+ oo,  0 < 0 < 'TT, 0 < </> < 2'TT) has zero volume and thus is actually only two-di
mensional, or else is null; thus, 

f lgo11g<1><1> 1 112 dB d<t> = 4'TT(2M)2 . 
(r = 2M, t = const) 

(3 1 .8) 

The divergence of g,, at r = 2M does not mean that r = 2M is infinitely far from 
all other regions of spacetime. On the contrary, the proper distance from r = 2M 
to a point with arbitrary r is 

" [r(r - 2M)]112 + 2Mln l (r/2M - 1)112 + (r/2M)112 1 

when r > 2M, 

- 2M coi-1[r 112 /(2M - r)112] - [r(2M - r)J112 
(3 1 .9) 

when r < 2M, 

which is finite for all O < r < oc .  
Just how the region r < 2M is physically connected to the region r > 2M can 

be discovered by examining the radial geodesics of the Schwarzschild metric. Focus 
attention, for concreteness, on the trajectory of a test particle that gets ejected from 
the singularity at r = 0, flies radially outward through r = 2M, reaches a maximum 
radius r max ("top of orbit") at proper time -r = 0 and coordinate time t = 0, and 
then falls back down through r = 2M to r = 0. The solution of the geodesic equation 
for such an orbit was derived in §25.5 and described in Figure 25.3. It has the "cycloid 
form" (with the parameter r, running from - 'TT to + 'TT), 

1 r = 
2 

r max(l + cos r, ), 

'f = (rmax3/8M)ll2(r, + sin r,), 

t = 2Mln I (r maxf2M - 1 )112 + tan (r,/2) I (rmax12M - 1)112 - tan (r,/2) 

+ 2M( �m;; - 1 )112 [ r, + ( ;;; ) (r, + sin r,)] . 

(31. l0a) 

(31. l0b) 

(31. l0c) 

Figure 31.1 plots this orbit in the r, t-coordinate plane (curve F-F'-F"), along with 
several other types of radial geodesics. 

Every radial geodesic except a "set of geodesics of measure zero" crosses the 
gravitational radius at t = + oc (or at t = - oo, or both), according to Figure 31.1 
and the calculations behind that figure ( exercises for the student! See Chapter 25). 
One therefore suspects that all the physics at r = 2M is consigned to t = + oo by 
reason of some unhappiness in the choice of the Schwarzschild coordinates. A better 
coordinate system, one begins to believe, will take these two "points at infinity" and 
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A ', B', D ', F' 

Figure 3 1 . 1 .  Typical radial geodesics of the SchwarzschiJd geometry, as charted in Schwarzschild coordinates (schematic) FF' F" [see equations (3 1 . 10)] is the timelike geodesic of a test particle that starts at rest at r = 5 .2M and falls straight in, arriving in a finite proper time at the singularity r = 0 (zig-zag marking). The unhappiness of the Schwarzschild coordinate system shows in two ways ( 1 )  m the fact that t goes to oo partway through the motion; and (2) in the fact that t thereafter decreases as -r (not shown) continues to increase. The course of the same trajectory prior to t = 0 may be constructed by reflecting the diagram in the horizontal axis ("time inversion"). The time-reversed image of F" marks the ejection of the test particle from the singularity. AA'A" is a timelike geodesic which comes in from r = + oo .  BB' B" is the null geodesic travelled by a photon that falls straight in (no summit; never at rest ' )  DD'D" is a spacelike radial geodesic. So is CC', but E' E" is timelike Neither of the latter two ever succeed m crossing r = 2M (Unanswered questions about these geodesics will answer themselves in Figure 3 1 .4, where the same world lines are charted in a "Kruskal-Szekeres diagram") Described mathematically via equation (3 1 .  10), the geodesic F'\nverse F\nverse FF' F" starts with ejection at 
( r max )112 ( r max ) r = 0 at t = - 21rM 2M 

- 1 4M + 1 , 
it flies outward with increasing proper time -r, but decreasing coordinate time, t, until it reaches the gravitational radius 

r = 2M at I = - oo ,  -r = - ( rmax3 )112 cos-1 ( �M - 1 ) -
rmax ( 1  - 2M )1/2 , SM 1max rmax it then continues to fly on outward, but with coordinate time now increasing from t = - oo ,  until it reaches its maximum radius 

r = r max at I = 0, -r = 0 (event F in diagram) ; it then falls inward, with t continuing to increase, until it crosses the gravitational radius again 
r = 2M at t = + oo ,  -r = + ( rmax3 )112 cos-1 ( 4M -SM rmax (event F' in diagram) , 

) ( 2M )112 I + r max I -
r max 

and it finally falls on in with decreasing t (but, of course, still increasing -r) to 
( r )112 ( r ) � = + _1r2 ( r;�

3 )112 
r = 0 at I = + 21rM max - 1 � + I 2M 4M ' ( event F" in diagram). 



N ovikov coord i nates . 
( 1 )  h ow constructed 

(2)  l i ne  e lement 
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spread them out into a line in a new (r new' tnew)-plane; and will squeeze the "line" 
(r = 2M, t from - co to + co) into a single point in the (rnew' tnew)-plane. One is 
the more prepared to accept this tentative conclusion and act on it because one has 
already seen ( equation 31.8) that the region covering the (0, </>) 2-sphere at r = 2M, 
and extending from t = - co to t = + co ,  has zero proper volume. What timelier 
indication could one want that the "line" r = 2M, - co < t < co, is actually a point? 

§3 1 .4. SEVERAL WELL-BEHAVED COORDINATE SYSTEMS 

The well-behaved coordinate system that is easiest to visualize is one in which the 
radially moving test particles of equations (31.10) remain always at rest ("comoving 
coordinates"). Such coordinates were first used by Novikov (1963). Novikov attaches 
a specific value of his radial coordinate, R*, to each test particle as it emerges from 
the singularity of infinite tidal forces at r = 0, and insists that the particle carry that 
value of R * throughout its "cycloidal life" -up through r = 2M to r = r max, then 
back down through r = 2M to r = 0. For definiteness, Novikov expresses the R* 
value for each particle in terms of the peak point on its trajectory by 

R* = (rmax/2M - 1)112 . (31.11) 

As a time coordinate, Novikov uses proper time T of the test particles, normalized 
so T = 0 at the peak of the orbit. Every particle in the swarm is ejected in such 
a manner that it arrives at the summit of its trajectory (r = r max, T = 0) at one and 
the same value of the Schwarzschild coordinate time; namely, at t = 0. 

Simple though they may be conceptually, the Novikov coordinates are related 
to the original Schwarzschild coordinates by a very complicated transformation: (1) 
combine equations (31.lOb) and (31.11) to obtain YJ(T, R*); (2) combine YJ(T, R*) with 
(31. lOa) and (31.11) to obtain r(T, R*); (3) combine YJ(T, R*) with (31. 10c) and (31.11) 
to obtain t(T, R*). The resulting coordinate transformation, when applied to the 
Schwarzschild metric (31. l ), yields the line element 

ds 2 = - dT 2 + ( R*
;� l ) (a�* 

)2 dR*2 + r 2(d02 + sin20 d<J>2). (31.12a) 

("Schwarzschild geometry in Novikov coordinates".) Here r is no longer a radial 
coordinate; it is now a metric function r(T, R*) given implicitly by 

...!_ - + * 2 1 [-r- - (r/2M)2 

]
112 

2M - - (R + ) 2M R* 2 + 1 

+ (R* 2 + 1)312 cos-1 [( r/2M }
112

] R* 2 + 1 

(31.12b) 

Figure 31.2 shows the locations of several key regions of Schwarzschild spacetime 
in this coordinate system. The existence of two distinct regions with r = 0 (singulari
ties) and two distinct regions with r -+  co (asymptotically flat regions; recall that 
4wr2 = surface area!) will be discussed in §31.5. 
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Figure 3 1 . 2 .  
The Novikov coordinate system fo r  Schwarzschild 
spacetime (schematic). The dashed curves are curves of 
constant r (recall: 4'7Tr2 = surface area about center of 
symmetry). The region shaded gray is not part of 
spacetime, it corresponds to r < 0, a region that cannot 
be reached because of the singularity of spacetime at 
r = 0. Notice that the "line" (r = 2M, - oo < 
t < + oo) of the Schwarzschild coordinate diagram 
(Figure 3 1 . 1 )  has been compressed into a point here, 
in accordance with the discussion at the end of §3 1 .3 

Although Novikov's coordinate system is very simple conceptually, the mathe
matical expressions for the metric components in it are rather unwieldy. Simpler, 
more usable expressions have been obtained in a different coordinate system 
("Kruskal-Szekeres coordinates") by Kruskal (1960), and independently by Szekeres 
(1960). 

Kruskal and Szekeres use a dimensionless radial coordinate u and a dimensionless Kruskal-Szekeres coordinates 
time coordinate v related to the Schwarzschild r and t by 

u = (r/2M - 1 )11 2erl4M cosh (t/4M) } when r > 2M, 
v = (r/2M - 1)112erl4M sinh (t/4M) 

u = (1 - r/2M)112erl4M sinh (t/4M)
} when r < 2M. v = (1 - r/2M)112erl4M cosh (t/4M) 

(31.13a) 

(31.13b) 

(Motivation for introducing such coordinates is given in Box 31.2.) By making this 
change of coordinates in the Schwarzschild metric (31.1 ), one obtains the following 
line element : 

(31.14a) 

("Schwarzschild geometry in Kruskal-Szekeres coordinates"). Here r is to be regarded 
as a function of u and v defined implicitly by 

[cf. equations (31.13)]. 

(r /2M - 1 )er!ZM = uz - v2 (31.14b) 

(continued on page 833) 
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Box 3 1 . 2  M OTIVAT I O N  FO R K R U S KAL-SZ E K E R ES C O O R D I NATES* 

A. E D D I N GTO N-FI N KE LSTE I N  CO O R D I NATES 

The motivation for the Kruskal-Szekeres system begins by introducing a different 
coordinate system, first devised by Eddington ( 1924) and rediscovered by Finkelstein 
( 1958). Eddington and Finkelstein use as the foundation of their coordinate system, 
not freely falling particles as did Novikov, but freely falling photons. More par
ticularly, they introduce coordinates U and V, which are labels for outgoing and 
ingoing, radial, null geodesics. The geodesics are given by 

ds2 = 0 = - (1 - 2M/r) dt2 + (1 - 2M/rr1 dr 2 • 

Equivalently, outgoing geodesics are given by U = const, where 

U t - r * ; 

and ingoing geodesics are given by V = const, where 

v t + r *. 

Here r *  is the "tortoise coordinate" of §25 .5 and Figure 25 .4 : 

r* _ r + 2M ln /r/2M - 1 / . 

I ngoing Eddi ngton-Fin kelste in  Coord inates-Adopt r and i7 as 
coord i nates i n  place of r and t 

The Schwarzschild metric becomes. 

ds2 = - (1 - 2M/r) d V2 + 2 d V dr + r 2 dil 2 • 

The radial light cone, ds2 = 0, has one leg 

and the other leg 

d V 
dr 

d V/dr = 0, 

1 - 2M/r
. 

From this, and this alone, one can infer all features of the drawing. * This box is based on Misner ( 1969a) .  

(l a) 

( lb) 

( l e) 

(2) 

(3a) 

(3b) 
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Ingoing Eddington-Finkelstein coordinates ( one rotational degree of freedom 
is suppressed; i.e., () is set equal to 1r/2). Surfaces of constant V, being ingoing 
null surfaces, are plotted on a 45-degree slant, just as they would be in flat 
spacetime. Equivalently, surfaces of constant 

t = V - r = t + 2M ln lr/2M - I I  

are plotted as horizontal surfaces. 
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Outgoing Edd i ngton-F in kelste in  Coord i nates-Adopt r a n d  iJ as 
coord i n ates in pl ace of r and t 

The Schwarzschild metric becomes 

ds2 = - (l  - 2M/r) d fJ2 - 2 d fJ  dr + r 2 dSJ 2 . (4) 
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B ox 3 1 . 2  (continued) 

The radial light cone, ds2 = 0, has one leg 

d 'fJ/dr = 0, 

and the other leg 

2 d V 
dr 1 - 2M/r 

From this, and this alone, one can infer all features of the drawing. 

� iJ= o :  outgoing 
� ,._ "' '  
,__ .  

r = 2 M  is world l ine of in falling photons 

null surface 
-1>--

� 

t ,_ � I  

/1 

Outgomg Eddington-Finkelstein coordinates (one rotational degree of freedom is suppressed) .  (Surfaces of constant D, being outgoing null surfaces, are plotted on a 45-degree slant, just as they would be in flat spacetime.) 

(5a) 

(5b) 
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Notice that both Eddington-Finkelstein coordinate systems are better behaved at 
the gravitational radius than is the Schwarzschild coordinate system; but they are 
not fully well-behaved. The outgoing coordinates ( iJ, r, 0, 4>) describe in a non
pathological manner the ejection of particles outward from r = 0 through r = 2M; 
but their description of infall through r = 2M has the same pathology as the de
scription given by Schwarzschild coordinates (Figure 3 1 . 1 ). Similarly, the ingoing 
coordinates ( V, r, 0, 4>) describe well the infall of a particle through r = 2M, but they 
give a pathological description of outgoing trajectories .  Moreover, the contrast 
between the two diagrams seems paradoxical: in one the gravitational radius is made 
up of world lines of outgoing photons ; in the other it is made up of world lines 
of ingoing photons ! To resolve the paradox, one must seek another, better-behaved 
coordinate system. [But note: because the ingoing Eddington-Finklestein coordinates 
describe infall so well, they are used extensively in discussions of gravitational 
collapse (Chapter 32) and black holes (Chapters 33 and 34).] 

B. TRANSITION FROM EDDINGTON-FINKELSTEIN 
TO KRUSKAL-SZEKERES 

Perhaps one would obtain a fully well-behaved coordinate system by dropping 
r from view and using iJ, V, as the two coordinates in the radial-time plane. The 
resulting coordinate system is related to Schwarzschild coordinates by [see equations 
(I )] 

V - iJ = 2r*, 
v + iJ = 2t; 

and the line element in terms of the new coordinates reads 

ds2 = - (I - 2M/r) d iJ  d V  + r2(d02 + sin20 d4>2) . 

Contrary to one's hopes, this coordinate system is pathological at r = 2M. 

(6a) 
(6b) 

(7) 

Second thoughts about the construction reveal the trouble : the surfaces iJ = 
constant (outgoing null surfaces) used in constructing it are geometrically well
defined, as are the surfaces V = constant (ingoing null surfaces); but the way of 
labeling them is not. Any relabeling, u = F( iJ) and v = G( V), will leave the surfaces 
unchanged physically. What one needs is a relabeling that will get rid of the singular 
factor I - 2M/r in the line element (7). A successful relabeling is suggested by the 
equation 

exp [( V - iJ)/4M] = exp (r*/2M) = (r/2M - 1) exp (r/2M), (8) 
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which follows from equations (6a) and (l e). Experimenting with this relation quickly 
reveals that the relabeling 

u - e-Ul4M = - (r/2M _ I)112erl4Me-tl4M, 
v e+Vl4M = (r/2M _ I)ll2erl4Metl4M, 

(9a) 
(9b) 

will remove the offending I - 2M/r from the metric coefficients. In terms of these 
new coordinates, the line element reads 

ds2 = - (32M3/r)e-r/ZM av au  + r 2(d02 + sin20 dcp2) . (10a) 

Here r is still defined by 4'1Tr 2 = surface area, but it must be regarded as a function 
of v and u: 

(r /2M - I )erlZM = -uv. (IOb) 

One can readily verify that this equation determines r uniquely (recall : r > 0 !) in 
terms of the product uv [details in Misner (1969a)]. 

The coordinates, u, v, which label the ingoing and outgoing null surfaces, are null 
coordinates ; i.e., 

a;au • a/au = g;;;; = o, a;av • a;av = g;;;; = o 
[see equation (l0a)] . If one is not accustomed to working with null coordinates, it 
is helpful to replace u and v by spacelike and timelike coordinates, u and v (Kruskal
Szekeres coordinates !) defined by 

so that 

u _ � (v - u) = (r/2M - 1 )112erl4M cosh (t/4M), 

V � (v + u) = (r/2M - 1)112erl4M sinh (t/4M), 

dv2 - du2 = av du. 

(l l a) 

(1 1 b) 

(12) 

In terms of these coordinates, the line element has the Kruskal form (3 1 . 14), which 
is fully well-behaved at the gravitational radius .  

Although the Kruskal-Szekeres line element is well behaved at r = 2M, the 
transformation (1 1 )  from Schwarzschild to Kruskal-Szekeres is not; it becomes 
meaningless (u and v "imaginary") when one moves from r > 2M to r < 2M. Of 
course, this is a manifestation of the pathologies of Schwarzschild coordinates. By 
trial and error, one readily finds a new transformation, to replace (1 1 )  at r < 2M, 
leading from Schwarzschil<l to Kruskal-Szekeres coordinates :  

u = ( 1  - r/2M)112erl4M sinh (t/4M), 
u = (1 - r/2M)112erl4M cosh (t/4M). 

(l l c) 
(l l d) 
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§ 3 1 . 5 .  RELATIONSHIP BETWEEN KRUSKAL-SZEKERES 

CO ORDINATES A N D  SCHWARZSCHILD CO ORDINATES 
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In the K.ruskal-Szekeres coordinate system, the singularity r = 0 i s  located at 
v2 - u2 = I .  Thus there are actually two singularities, not one; both 

v = + (I + u2)112 and v = - (I + u2)112 correspond to r = 0 !  (3 1 . 1 5) 

This is not the only surprise that lies hidden in the Kruskal-Szekeres line element 
(3 1 . 1 4). Notice also that r ► 2M(the region of spacetime far outside the gravitational 
radius) is given by u2 ► v2 . Thus there are actually two exterior regions* ;  both 

u ► + lv l  and u � - lv l  correspond to r ► 2M! (3 1 . 16) 

How can this be? When the geometry is charted in Schwarzschild coordinates, 
it contains one singularity and one exterior region; but when expressed in Kruskal
Szekeres coordinates, it shows two of each. The answer must be that the Schwarzs
child coordinates cover only part of the spacetime manifold; they must be only a 
local coordinate patch on the full manifold. Somehow, by means of the coordinate 
transformation that leads to Kruskal-Szekeres coordinates, one has analytically 
extended the limited Schwarzschild solution for the metric to cover all ( or more 
nearly all) of the manifold. 

To understand this covering more clearly, transform back from Kruskal-Szekeres 
coordinates to Schwarzschild coordinates (see Figure 3 1 .3). The transformation 
equations, as written down in (3 1 . 1 3) were valid only for the quadrants u > l v l 
[equation (3 1 . 1 3 a)] and v > l u l [equation (3 1 . 1 3b)] of Kruskal coordinates. Denote 
these quadrants by the numerals I and II; and denote the other quadrants by III 
and IV (see Figure 3 1 .3). In the other quadrants, one can also transform the Kruskal
Szekeres line element (3 1 . 1 4) into the Schwarzschild line element (3 1 . 1  ); but slightly 
different transformation equations are needed. One easily verifies that the following 
sets of transformations work: 

Kruska l-Szekeres coord inates 
reveal  that Schwarzsch i ld  
spaceti me has two "r = 0 
s ingu la rit ies" and  two 
"r --+ oo exter ior reg ions" 

[
u = (r/2M - 1 )112erl 4M cosh (t/4M) 

(I) 
v = (r/2M - l)112erl4M sinh (t/4M) ' 

(
u = ( I  - r/2M)112erl 4M sinh (t/4M) 

Transformat ion between 
(3 1 . 1 7a) Schwarzsch i l d  coord i n ates 

and  Kruska l-Szekeres 
coord i nates 

(II) ' v = (I - r/2M)112erl 4M cosh (t/4M) 

(
u = - (r/2M - l)112erl 4M cosh (t/4M) 

(III) ' v = - (r/2M - 1 )112erl 4M sinh (t/4M) 

( u = - (I - r/2M)112erl4M sinh (t/4M) 
(IV) . 

v = - (I - r/2M)112erl4M cosh (t/4M) 

(3 1 . 17b) 

(3 1 . 1 7c) 

(3 1 . 1 7d) 

* The global structure of the Schwarzschild geometry, including the existence of two singularities and 
two exterior regions, was first discovered by Synge ( 1950). See Box 3 1 . 1 .  
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Schwarzschild patches 
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V 

I s:, 
- u Kruskal-Szekeres 

The transformation of the Schwarzschild vacuum geometry between Schwarzschild and Kruskal-Szekeres coordinates. Two Schwarzschild coordinate patches I, II, and III, IV (illustrated in the upper and lower portions of Figure 3 1 .5,a) are required to cover the complete Schwarzschild geometry, whereas a single Kruskal-Szekeres coordinate system suffices. The Schwarzschtld geometry consists of four regions I, II, III, IV. Regions I and III represent two distinct, but identical, asymptotically flat universes in which 
r > 2M; while regions II and IV are two identical, but time-reversed, regions in which physical singularities (r = 0) evolve. The transformation laws that relate the Schwarzschild and Kruskal-Szekeres coordinate systems to each other are given by equations (3 1 . 17) and (3 1 . 1 8) .  In the Kruskal-Szekeres u,u-plane, curves of constant r are hyperbolae with asymptotes u = ±u, while curves of constant t are straight lines through the origin. 

The inverse transformations are 

(r/2M - l )erlZM = u2 - v2 in I, II, III, IV; 

t = { 4M tanh-1(v/u) �n I and III, 
4M tanh-1(u/v) m II and IV. 

(3 1 . 1 8 a) 

(3 1 . 1 8b) 

These coordinate transformations are exhibited graphically in Figure 3 1 .3 .  Notice 
that two Schwarzschild coordinate patches, I, II, and III, IV, are required to cover 
the entire Schwarzschild geometry; but a single Kruskal coordinate system suffices. 
Schwarzschild patch T, TT, is divided into two regions-region I, which is outside 
the gravitational radius (r > 2M), and region II, which is inside the gravitational 
radius (r < 2M). Similarly, Schwarzschild patch III, IV, consists of an exterior 
region (III) and an interior region (IV). 
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(a) Typical radial timehke (A, E, F) ,  lighthke (B), and spacelike (C, D) geodesics of the Schwarzschild 
geometry, as seen in the Schwarzschild coordinate system (schematic only) . This is a reproduction of 
Figure 3 1 . 1 .  

(b) The same geodesics, as seen in the Kruskal-Szekeres coordinate system, and as extended either to 
infinite length or to the singularity of infinite curvature at r = 0 (schematic only). 

Equations (31 . 1 8) reveal that the regions of constant r (constant surface area) are 
hyperbolae with asymptotes u = +v in the Kruskal-Szekeres diagram, and that 
regions of constant t are straight lines through the origin. 

Several radial geodesics of the complete Schwarzschild geometry are depicted in 
the Kruskal-Szekeres coordinate system in Figure 31 .4. Notice how much more 
reasonable the geodesic curves look in Kruskal-Szekeres coordinates than in 
Schwarzschild coordinates. Notice also that radial, light like geodesics (paths of radial 
light rays) are 45-degree lines in the Kruskal-Szekeres coordinate system. This can 
be seen from the Kruskal-Szekeres line element (31 . 1 4), for which du = +dv guar
antees ds = 0. Because of this 45-degree property, the radial light cone in a 
Kruskal-Szekeres diagram has the same form as in the space-time diagram of special 
relativity. Any radial curve that points "generally upward" (i.e., makes an angle of 
less than 45 degrees with the vertical, v, axis) is timelike; and curves that point 
"generally outward" are spacelike. This property enables a Kruskal-Szekeres diagram 
to exhibit easily the causality relation between one event in spacetime and another 
(see exercises 31 .2 to 31 .4). 

Properties of the 
Kruska l-Szekeres coord inate 
system 
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Exercise 3 1 . 2 .  N O N RADIAL LI G HT C O N ES 

Show that the world line of a photon traveling nonradially makes an angle less than 45 
degrees with the verycal u-axis of a Kruskal-Szekeres wonlinate diagram. From this, infer 
that particles with finite rest mass, traveling nonradially or radially, must always move 
"generally upward" (angle less than 45 degrees with vertical u-axis). 

Exercise 3 1 . 3 .  TH E C RACK O F  D O O M  

Use a Kruskal diagram t o  show the following. 
(a) If a man allows himself to fall through the gravitational radius r = 2M, there is no 

way whatsoever for him to avoid hitting (and being killed in) the singularity at r = 0. 
(b) Once a man has fallen inward through r = 2M, there is no way whatsoever that he 

can send messages out to his friends at r > 2M, but he can still receive messages from them 
( e.g., by radio waves, or laser beam, or mfalling "CARE packages"). 

Exercise 3 1 .4 .  HOW LO N G  TO L IVE? 

Show that once a man falling inward reaches the gravitational radius, no matter what he 
does subsequently (no matter in what directions, how long, and how hard he blasts his rocket 
engines), he will be pulled into the singularity and killed m a proper time of 

T < Tmax = wM = 1.54 X I 0-5(M/M0) seconds. (31.19) 

[Hint: The traJectory of longest proper time lapse must be a geodesic. Use the mathematical 
tools of Chapter 25 to show that the geodesic of longest proper time lapse between r = 2M 
and r = 0 is the radial geodesic (31. l 0a), with rmax = 2M, for which the time lapse is wM.] 

Exercise 3 1 . 5 .  E D D I N GTON-F I N KE LSTE I N  A N D  K R U S KAL-SZEKERES CO M PARED 

Use coordinate diagrams to  compare the ingoing and outgoing Eddington-Finkelstein coor
dinates of Box 31.2 with the Kruskal-Szekeres coordinates. Pattern the comparison after that 
between Schwarzschild and Kruskal-Szekeres in Figures 31.3 and 31.4. 

Exercise 3 1 . 6 .  AN OTH ER C O O R D I NATE SYSTE M 

Construct a coordinate diagram for the D, V, 8, cp coordinate system of Box 31.2 [equations 
(6) and (7)]. Show such features as ( I )  the relationship to Schwarzschild and to Kruskal
Szekeres coordinates; (2) the location of r = 2M; and (3) radial geodesics. 

§ 3 1 . 6 .  DYNAMICS O F  THE SCHWARZSCHILD GEO METRY What does the Schwarzschild geometry look like? This question is most readily answered by means of embedding diagrams analogous to those for an equilibrium star (§23 .8 ; Figure 23 . 1 ; and end of Box 23 .2) and for Friedmann universes of positive and negative spatial curvature [equations (27 .23) and (27 .24) and Box 27.2] . Examine, first, the geometry of the spacelike hypersurface v = 0,  which extends from u = + oo (r = oo) into u = 0 (r = 2M) and then out to u = - oo (r = oo ) .  In  Schwarzschild coordinates this surface i s  a slice of  constant time, t = 0 [see equation (3 1 . 1 8b)] ; it is precisely the surface for which an embedding diagram was calculated in equation (23 .34b). The embedded surface, with one degree of rotational freedom suppressed, is described by the paraboloid of revolution 
r = 2M + z2/8M (3 1 .20) 



z 

(a) 

x 

(b) 

Figure 3 1 . 5 .  (a) The Schwarzschild space geometry at the "moment o f  time" t = v = 0, with one degree of rotational freedom suppressed (0 = 'lT/2). To restore that rotational freedom and obtain the full Schwarzschild 3-geometry, one mentally replaces the circles of constant r = (x2 + y2)112 with spherical surfaces of area 4'7Tr2. Note that the resultant 3-geometry becomes flat (Euclidean) far from the throat of the bridge in both directions (both "universes"). (b) An embedding of the Schwarzschild space geometry at "time" t = v = 0, which is geometrically identical to the embedding (a), but which is topologically different. Einstein's field equations fix the local geometry of spacetime, but they do not fix its topology; see the discussion at end of Box 27.2. Here the Schwarzschild "wormhole" connects two distant regions of a single, asymptotically flat universe. For a discussion of issues of causality associated with this choice of topology, see Fuller and Wheeler ( 1 962). 
in the flat Euclidean space with metric 

da 2 = dr2 + dz2 + r2 d�2• (3 1 .21 ) 

(See Figure 3 1 .5.) 
Notice from the embedding diagram of Figure 3 1 .5 ,a, that the Schwarzschild 
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geometry on the spacelik.e hypersurface t = const consists of a bridge or "wormhole" 
connecting two distinct, but identical, asymptotically flat universes. This bridge is 
sometimes called the "Einstein-Rosen bridge" and sometimes the "Schwarzschild 
throat" or the "Schwarzschild wormhole."  If one so wishes, one can change the 
topology of the Schwarzschild geometry by connecting the two asymptotically flat 
universes together in a region distant from the Schwarzschild throat [Fuller and 
Wheeler (1962); Fig. 3 1 .5b] . The single, unique universe then becomes multiply 
connected, with the Schwarzschild throat providing one spacelik.e path from point 
{! to point q,/,, and the nearly flat universe providing another. For concreteness, focus 
attention on the interpretation of the Schwarzschild geometry, not in terms of 
Wheeler's multiply connected single universe, but rather in terms of the Einstein
Rosen double universe of Figure 3 1 .5 ,a. 

One is usually accustomed to think of the Schwarzschild geometry as static. 
However, the static "time translations," t ----+ t + Lit, which leave the Schwarzschild 
geometry unchanged, are time translations in the strict sense of the words only in 
regions I and III of the Schwarzschild geometry. In regions II and IV, 
t ----+ t + Lit is a spacelike motion, not a timelike motion (see Fig. 3 1 .3). Conse
quently, a spacelike hypersurface, such as the surface t = const of Figure 3 1 .5 ,a, 
which extends from region I through u = v = 0 into region III, is not static. As 
this spacelike hypersurface is pushed forward in time (in the + v direction of the 
Kruskal diagram), it enters region II, and its geometry begins to change. 

In order to examine the time-development of the Schwarzschild geometry, one 
needs a sequence of embedding diagrams, each corresponding to the geometry of 
a spacelike hypersurface to the future of the preceding one. But how are the hyper
surfaces to be chosen? In Newtonian theory or special relativity, one chooses hyper
surfaces of constant time. But in dynamic regions of curved spacetime, no naturally 
preferred time coordinate exists. This situation forces one to make a totally arbitrary 
choice of hypersurfaces to use in visualizing the time-development of geometry, and 
to keep in mind how very arbitrary that choice was . 

Figure 3 1 .6 uses two very different choices of hypersurfaces to depict the time
development of the Schwarzschild geometry. (Still other choices are shown in Figure 
21 .4.) Notice that the precise geometry of the evolving bridge depends on the 
arbitrary choice of spacelike hypersurfaces, but that the qualitative nature of the 
evolution is independent of the choice of hypersurfaces .  Qualitatively speaking, the 
two asymptotically flat universes begin disconnected, with each one containing a 

singularity of infinite curvature (r = 0). As the two universes evolve in time, their 
singularities join each other and form a nonsingular bridge. The bridge enlarges, 
until it reaches a maximum radius at the throat of r = 2M (maximum circumference 
of 477M; maximum surface area of l677M2) .  It then contracts and pinches off, leaving 
the two universes disconnected and containing singularities (r = 0) once again. The 
formation, expansion, and collapse of the bridge occur so rapidly, that no particle 
or light ray can pass across the bridge from the faraway region of the one universe 
to the faraway region of the other without getting caught and crushed in the throat 
as it pinches off. (To verify this, examine the Kruskal-Szekeres diagram of Figure 
3 1 .3 ,  where radial light rays move along 45 -degree lines.) 
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A '''�A ''' 
A " A ' 

A � A  History 
A-W-X-D- Y-Z-G 

Dynamical evolution of the Einstein-Rosen bridge of the vacuum Schwarzschild geometry (schematic). Shown here are two sequences of embedding diagrams corresponding to two different ways of viewing the evolution of the bridge-History A-B-C-D-E-F-G, and History A- W-X-D- Y-Z-G. The embedding diagrams are skeletonized in that each diagram must be rotated about the appropriate vertical axis in order to become two-dimensional surfaces analogous to Figure 3 1 .5,a. [Notice that the hypersurfaces of which embedding diagrams are given intersect the singularity only tangentially Hypersurfaces that intersect the singularity at a finite angle m the u,v-plane are not shown because they cannot be embedded in a Euclidean space. Instead, a Minkowski space (indefinite metric) must be used, at least near r = 0. For an example of an embedding in Minkowski space, see the discussion of a universe with constant negative spatial curvature in equations (27 .23) and (27.24) and Box 27.2C.] Figure 2 1 .4 exhibits embedding diagrams for other spacelike slices in the Schwarzschtld geometry. 

From the Kruskal-Szekeres diagram and the 45-degree nature of its radial light 
rays, one sees that any particle that ever finds itself in region IV of spacetime must 
have been "created" in the earlier singularity; and any particle that ever falls into 
region II is doomed to be crushed in the later singularity. Only particles that stay 
forever in one of the asymptotically flat universes I or III, outside the gravitational 
radius (r > 2M), are forever safe from the singularities. 

Some investigators, disturbed by the singularities at r = 0 or by the "double-uni
verse" nature of the Schwarzschild geometry, have proposed modifications of its 
topology. One proposal is that the earlier and later singularities be identified with 
each other, so that a particle which falls into the singularity of region II, instead 
of being destroyed, will suddenly reemerge, being ejected, from the singularity of 
region IV. One cannot overstate the objections to this viewpoint : the region r = 0 
is a physical singularity of infinite tidal gravitation forces and infinite Riemann 
curvature. Any particle that falls into that singularity must be destroyed by those 

Creatio n  and  destruction i n  
the s ingu la rit ies 

N onviab le proposa ls  for 
mod ifyi ng  the topology of 
Schwarzsch i l d  spacet ime 
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forces. Any attempt to extrapolate its fate through the singularity using Einstein's 
field equations must fail; the equations lose their predictive power in the face of 
infinite curvature. Consequently, to postulate that the particle reemerges from the 
earlier singularity is to make up an ad hoc mathematical rule, one unrelated to 
physics. It is conceivable, but few believe it true, that any object of finite mass will 
modify the geometry of the singularity as it approaches r = 0 to such an extent 
that it can pass through and reemerge. However, whether such a speculation is correct 
must be answered not by ad hoc rules, but hy concrete, difficult computations within 
the framework of general relativity theory (see Chapter 34). 

A second proposal for modifying the topology of the Schwarzschild geometry is 
this : one should avoid the existence of two different asymptotically flat universes 
by identifying each point (v, u, 0, 4>) with its opposite point (- v, - u, 0, 4>) in the 
Kruskal-Szekeres coordinate system. Two objections to this proposal are : (I) it pro
duces a sort of "conical" singularity (absence of local Lorentz frames) at (v, u) = 

(0, 0), i.e., at the neck of the bridge at its moment of maximum expansion; and 
(2) it leads to causality violations in which a man can meet himself going backward 
in time. 

One good way for the reader to become conversant with the basic features of 
the Schwarzschild geometry is to reread §§3 1 . 1 -3 1 .4 carefully, reinterpreting every
thing said there in terms of the Kruskal-Szekeres diagram. 

Exercise 3 1 . 7 .  SCHWARZS CH I LD M ET R I C  
I N  I S OTR O P I C  C O O R D I N ATES 

(a) Show that, rewritten in the isotropic coordmates of Exercise 23.1, the Schwarzschild metric 
reads 

(31.22) 

and derive the transformation 

r = r(I + M/2r)2 (31.23) 

between the two radial coordinates. 
(b) Which regions of spacetime (I, II, III, IV; see Figure 31.3) are covered by the isotropic 

coordinate patch, and which are not? 
(c) Calculate and construct an embedding diagram for the spacelike hypersurface t = 0, 

O < r < oo .  
( d) Find a coordinate transformation that interchanges the reg10n near r = 0 with the 

region near r = oo ,  while leavmg the metric coefficients m their original form. 

Exercise 3 1 . 8 .  R E I S S N E R- N O R DSTR¢M G E O M ETRY 

(a) Solve the Einstem field equations for a sphencally symmetnc, static gravitational field 

ds2 = - e2,p(r) dt2 + e2ACr> dr2 + r 2(d82 + sin28 d<J:,2), 
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with no matter present, but with a radial electric field B = 0 ,  E = f(r)e:;.  in the static orthonormal frame 
w 1 = e"' dt, w i- = eA dr, w 8 = r d0, w ¢ = r sin 0 d<J,. 

Use as a source in the Einstein field equations the stress-energy of the electric field. [Answer: 

E = (Q/r 2) e:;., 

( 2M r>2 ) ( 2M Q2 )-1 
ds2 = - I - -- + ..=:.._ dt� + l - -- + - dr2 + r 2(d02 + sm20 d<J,2) .  

r r 2 r r2 

This is called the "Reissner ( 19 1 6)-Nordstrom (19 1 8) metric". ]  

(3 1 .24a) 
(3 1 .24b) 

(b) Show that the constant Q is the total charge as measured by a distant observer (r ► 2M and r ► Q), who uses a Gaussian flux integral, or who studies the coulomb-force-dominated orbits of test charges with charge-to-mass ratio e/µ ► M/Q. What is the charge-to-mass ratio, in dimensionless units, for an electron? Show that the constant M 1s the total mass as measured by a distant observer using the Keplerian orbits of electrically neutral particles. (c) Show that for Q > M, the Reissner-Nordstrnm coordinate system is well-behaved from r = oo down to r = 0, where there is a physical singularity and infinite tidal forces. ( d) Explore the nature of the spacetime geometry for Q < M, using all the techniques of this chapter (coordinate transformations, Kruskal-like coordinates, studies of particle orbits, embedding diagrams, etc.) .  
[Solution: see Graves and Bnll ( 1 960) ; also Fig. 34.4 of this book.] (e) Similarly explore the spacetime geometry for Q = M. [Solution: see Carter ( 1966b).] (f) For the case of a large rat10 of charge to mass [Q > M as in part (c)] , show that the region near r = 0 is unphysical. More precisely, show that any spherically symmetric distribution of charged stressed matter that gives rise to the fields (3 1 .24) outside its boundary must modify these fields for r < r0 = Q 2/2M. [Hint : Study the quantity m(r) defined in equations (23 . 1 8) and (32.22h), noting its values deduced from equation (3 1 .24), on the one hand, and from the appropriate Einstein equation within the matter distribution, on the other hand. See Figure 26 of Misner ( 1 969a) for a similar argument.] 



CHAPTER 32  
G RAVITATI O NAL CO LLAPS E 

The ro les and  re levance of 
the Schwarzsch i l d  geometry 

Now, here, you see, it takes all the running you can do, to keep in the same 
place. If you want to get somewhere else, you must run twice as fas t  as that. 

The Red Queen, m Through the Lookmg Glass, 
LEWIS CAR R O LL ( 1 8 7 1 )  

§32. 1 .  RELEVANCE OF SCHWARZSCHILD G EOMETRY 

The story that unfolded in the preceeding chapter was fantastic ! One began with 
the innocuous looking Schwarzschild line element 

ds2 = - ( 1 - 2M) dt2 + dr 2 + r 2(d0 2 + sin20 d<t> 2),  r 1 - 2M/r 
(32. 1)  

which was derived originally as the external field of a static star. One asked what 
happens if the star is absent ; i.e., one probed the nature of the Schwarzschild 
geometry when no star is present to generate it. One might have expected the 
geometry to be that of a point mass sitting at r = 0. But it was not. It turned out 
to represent a "wormhole" connecting two asymptotically flat universes. Moreover, 
the wormhole was dynamic. It was created by the ''joining together" of two "r = O" 
singularities, one in each universe ;  it expanded to a maximum circumference of 477 M; 
it then recontracted and pinched off, leaving the two universes disconnected once 
again, each with its own "r = 0" singularity. 

As a solution to Einstein's field equations, this expanding and recontracting 
wormhole must be taken seriously. It is an exact solution; and it is one of the simplest 
of all exact solutions. But there is no reason whatsoever to believe that such worm
holes exist in the real universe ! They can exist only if the expanding universe, 
~ 10 X 109 years ago, was "born" with the necessary initial conditions-with "r = O" 
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Schwarzschild singularities ready and waiting to blossom forth into wormholes .  There 
is no reason at all to believe in such pathological initial conditions ! 

Why, then, was so much time and effort spent in Chapter 3 1  on understanding 
the Schwarzschild geometry? ( 1 )  Because it illustrates clearly the highly non
Euclidean character of spacetime geometry when gravity becomes strong; 
(2) because it illustrates many of the techniques one can use to analyze strong 
gravitational fields ; and most importantly (3) because, when appropriately truncated, 
it is the spacetime geometry of a black hole and of a collapsing star-as well as 
of a wormhole. 

This chapter explores the role of the Schwarzschild geometry in gravitational 
collapse; the next chapter explores its role in black-hole physics. 

§32.2. BIRKHOFF'S TH EOREM 

That the Schwarzschild geometry is relevant to gravitational collapse follows from 
Birkhoff's (1923)  theorem: Let the geometry of a given region of spacetime (1 ) be 
spherically symmetric, and (2) be a solution to the Einstein field equations in vacuum. 
Then that geometry is necessarily a piece of the Schwarzschild geometry. The external 
field of any electrically neutral, spherical star satisfies the conditions of Birkhoff's 
theorem, whether the star is static, vibrating, or collapsing. Therefore the external 
field must be a piece of the Schwarzschild geometry. 

Birkhoff's theorem is easily understood on physical grounds. Consider an equilib
rium configuration that is unstable against gravitational collapse and that, like all 
equilibrium configurations (see §23 .6), has the Schwarzschild geometry as its external 
gravitational field. Perturb this equilibrium configuration in a spherically symmetric 
way, so that it begins to collapse radially. The perturbation and subsequent collapse 
cannot affect the external gravitational field so long as exact spherical symmetry 
is maintained. Just as Maxwell's laws prohibit monopole electromagnetic waves, so 
Einstein's laws prohibit monopole gravitational waves. There is no possible way for 
any gravitational influence of the radial collapse to propagate outward. 

Not only is Birkhoff's theorem easy to understand, but it is also fairly easy to 
prove. Consider a spherical region of spacetime. Spherical symmetry alone is suffi
cient to guarantee that conditions (i), (ii), and (iii) of Box 23 .3 are satisfied, and 
thus to guarantee that one can introduce Schwarzschild coordinates 

ds2 = - e 2<P dt2 + e 2A dr 2 + r 2(d0 2 + sin20 dcp 2) , 

<P = <P(t, r), and A = A(t, r). (32.2) 

[See Box 23 .3 for proof; and notice that: ( 1 )  for generality one must allow gtt = - e2<P 

and grr = e2A to be positive or negative (no constraint on sign ! ) ;  (2) at events where 
the gradient of the "circumference function" r is zero or null, Schwarzschild coor
dinates cannot be introduced. The special case (Vr)2 = 0 is treated in exercise 32. 1 . ] 

The un iqueness of the 
Schwarzsch i l d  geometry 
B i rkhoff ' s  theorem 

The physics under ly ing 
B i rkhoff 's theorem 

P roof of B i rkhoff ' s  theorem 
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Impose Einstein's vacuum field equation on the metric (32.2), using the orthonormal 
components of the Einstein tensor as derived in exercise I4 . 16 : 

Git = ,-2(1 - e-2A) + 2(A,r/r)e-2A = 0, 
Gr,. = Gr£ = 2(A,i/r)e-<A H >> = 0, 

G;.;. = 2(<P,r/r)e-2A + ,-2(e-2A - I) = 0, 

Ge e = G¢¢ = + (<P,rr + <P,/ - <P,rA,r + <P,r!r - A,rlr)e-2A 
- (A, tt + A/ - A, t<P, t)e-2<P = 0 .  

(32.3 a) 

(32.3b) 

(32.3c) 

(32.3d) 

Equation (32.3b) guarantees that A is a function of r only, and equation (32.3a) 
then guarantees that A has the same form as for the Schwarzschild metric: 

I A = - - In I I - 2M/r l . 
2 

(32.4a) 

Equations (32.3c,d) then become two equivalent equations for <P (t, r)-equivalent 
by virtue of the Bianchi identity, V · G = 0-whose solution is 

<P = ; 1n I I  - 2M/r l + f(t). (32.4b) 

Here f is an arbitrary function. Put expressions (32.4) into the line element (32.2) ; 
thereby obtain 

ds2 = - e2 t<i> ( I - 2,M} dt2 + dr2 + r 2(d02 + sin20 dcp 2) .  
1 - 2M/r 

Then redefine the time coordinate 

t = f et<t> dt new ' 

and thereby bring the line element into the Schwarzschild form 

ds2 = - ( 1 - 2M) dt2 + dr 2 + r 2(d0 2 + sin20 dcp 2). r 1 - 2M/r 

Conclusion : When the spacetime surrounding any object has spherical symmetry 
and is free of charge, mass, and all fields other than gravity, then one can introduce 
coordinates in which the metric is that of Schwarzschild. Conclusion restated in 
coordinate-free language :  the geometry of any spherically symmetric vacuum region 
of spacetime is a piece of the Schwarzschild geometry (Birkhoff's theorem). Q .E.D. 

Exercise 3 2 . 1 .  U N I QU E N ESS OF R E I SS N E R-N O R DSTR(/> M  
G E O M ETRY [Track 2] Prove the followmg generalization of Birkhoff's theorem. Let the geometry of a given region of space time ( 1 )  be spherically symmetric, and (2) be a solution to the Einstein field equations 
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with an  electromagnetic field a s  source. Then that geometry i s  necessarily a piece of  the Reissner-Nordstrnm geometry [equation (3 l .24b)] with electric and magnetic fields, as measured in the standard static orthonormal frames 
E = (Q ,/r 2)e:;, 

[Hints: ( 1 )  First consider regions of spacetime in which (Vr)2 =I 0, using the same methods as the text uses for Birkhoff's theorem. The result is the Reissner-Nordstr.0m solution. (2) Any region of dimensionality less than four, rn wluch (Vr)2 = 0 (e.g. ,  the Schwarzschild radius) , can be treated as the join between four-dimensional regions with (Vr)2 =I 0. Moreover, the geometry of such a region is determined uniquely by the geometry of the adjoining four-dimensional regions ("junction conditions"; §2 I . 1 3) .  Since the adjoinmg regions are necessarily Reissner-Nordstrnm (step 1 ) ,  then so are such "sandwiched" reg10ns. (3) Next consider four-dimensional regions in which Vr = dr is null and nonzero. Show that in such regions there exist coordinate systems with 
ds2 = - 2 '1'  dr dt + r 2(d0 2 + sin28 d<f, 2) , 

where '1' = 'J:t (r , t). Show further that the Ricci tensor for this line element bas an orthonormalized component 

whereas the stress-energy tensor for a spherically symmetric electromagnetic field bas 
Q = const. 

These quantities, Re e  and 81TTee , must be equal (Einstein's field equation) but cannot be because of their different r-dependence. Thus, an electromagnetic field cannot generate regions with dr =I 0, dr · dr = 0. (4) Finally, consider four-dimensional regions in which 
dr = 0. Denote the constant value of r by a ,  and show that any event can be chosen as the origin of a locally well-behaved coordinate system with 

A =  ,\(T, z), t-.(T = 0, z) = 0, >-(T = 0, z) = 0 .  
[Novikov-type coordmate system; see  §3 1 .4 . ]  Show that, in the associated orthonormal frame, spherical symmetry demands 

E = (Q ,/ a 2)e;, 

and that the Einstein field equations then require Q = a and e >- = COS T, so that 

(5) This solution of tbe field equations [sometimes called the "Bertotti ( 1959)-Robinson ( 1959a) Electromagnetic Universe," and explored in this coordinate system by Lindquist ( 1960)] is actually the throat of the Reissner-Nordstrnm solution for the special case Q = M. Verify this claim by performing the following coordinate transformation on the Reissner-Nordstr.0m throat region [equation (3 1 .24b) with Q = M and Ir - Q I � Q ] :  
r - Q = Qe-z COS T, I =  Qez tan'"i. 
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(6) Thus, each possible case leads either to no solution at all, or to a segment of the Reissner-Nordstrom geometry. Q.E.D.] Note : The missmg case, (Vr)2 = 0,  in the text's proof of Birkhoff's theorem, 1s resolved by notmg that, for Q = 0,  steps (3) and (4) above lead to no solutions at all. We thank G. F. R. Ellis for pointing out the omission of the case 
(Vr)2 = 0 in the preliminary version of this book. 

§32. 3 .  EXTERIOR GEOMETRY OF A COLLAPSING STAR 

Consider a star that is momentarily static, but will subsequently begin to collapse. 
Its space geometry at the initial moment of Schwarzschild coordinate time, t = 0, 
has two parts: in the exterior, vacuum region (r > R > 2M), it is the Schwarzschild 
geometry (Birkhoff's theorem!); but in the star's interior, it is some other, totally 
different geometry. Whatever the interior geometry may be, it has an embedding 
diagram at time t = 0 which is qualitatively like that of Figure 23.1. (For discussion 
and proof of this, see §23.8.) Notice that the star's space geometry is obtained by 
discarding the lower universe of the full Schwarzschild geometry (Figure 31.5,a), and 
replacing it with a smooth "bowl" on which the matter of the star is contained. 

To follow the subsequent collapse of this star in the Schwarzschild coordinate 
system, or in the Kruskal-Szekeres coordinate system, or in an ingoing Eddington
Finkelstein coordinate system, one can similarly discard that part of the coordinate 
diagram which lies inside the star's surface, and keep only the exterior Schwarzschild 
region. (See Figure 32.1.) In place of the discarded interior Schwarzschild region, 
one must introduce some other coordinate system, line element, and diagram that 
correctly describe the interior of the collapsing star. 

From truncated coordinate diagrams (such as Figures 32.1,a,b,c), one can readily 
discover and understand the various peculiar features of collapse through the gravi
tational radius. 

(I) No matter how stiff may be the matter of which a (spherical) star is made, 
once its surface has collapsed within the gravitational radius, the star will continue 
to collapse until its surface gets crushed in the singularity at r = 0. This one discovers 
by recalling that the star's surface cannot move faster than the speed of light, so 
its world line must always make an angle of less than 45 degrees with the v-axis 
of the Kruskal-Szekeres diagram. 

(2) No signal (e.g., photon) emitted from the star's surface after it collapses inside 
the gravitational radius can ever escape to an external observer. Rather, all signals 
emitted from inside the gravitational radius get caught and destroyed by the collapse 
of the surrounding geometry into the singularity at r = 0 as space "pinches off" 
around the star. 

(3) Consequently, an external observer can never see the star after it passes the 
gravitational radius; and he can never see the singularity that terminates its col
lapse-unless he chooses to fall through the gravitational radius himself and pay 
the price of death for the knowledge gained. 
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Does this mean that the collapsing star instantaneously and completely disappears 
from external view as it reaches the gravitational radius? No, not according to the 
analysis depicted in Figure 3 1 . 1 ,c :  Place an astrophysicist on the surface of a 
collapsing star, and have him send a series of uniformly spaced signals to a distant 
astronomer, at rest at r ► 2M, to inform him of the progress of the collapse. These 
signals propagate along null lines in the spacetime diagram of Figure 3 1 . 1  c. The 
signals originate on the world line of the stellar surface, and they are received by 
the distant astronomer when they intersect his world line, r = constant ► M. As the 
star collapses closer and closer to its gravitational radius, R = 2M, the signals, which 
are sent at equally spaced intervals according to the astrophysicist's clock, are 
received by the astronomer at more and more widely spaced intervals. The astrono
mer does not receive a signal emitted just before the gravitational radius is reached 
until after an infinite amount of time has elapsed; and he never receives signals 
emitted after the gravitational radius has been passed. Those signals, like the astro
physicist who sends them, after brief runs get caught and destroyed by the collapsing 
geometry in the singularity, at r = 0. It is not only the star that collapses. The 
geometry around the star collapses. 

Hence, to the distant astronomer, the collapsing star appears to slow down as it 
approaches its gravitational radius : light from the star becomes more and more 
red-shifted. Clocks on the star appear to run more and more slowly. It takes an 
infinite time for the star to reach its gravitational radius ; and, as seen by the distant 
astronomer, the star never gets beyond there. 

The optical appearance of a collapsing star was first analyzed mathematically, 
giving main attention to radially propagating photons, by J. R. Oppenheimer and 
H. Snyder (1939). More recently a number of workers have reexamined the problem 
[see, e.g., Podurets (1964), Ames and Thome (1968) and Jaffe (1969)]. The most 
important quantitative results of these studies are as follows. In the late stages of 
collapse, when the distant astronomer sees the star to be very near its gravitational 
radius, he observes its total luminosity to decay exponentially in time 

L ex: exp ( - � t 
} . 3 3 2M 

(32.5) 

Simultaneously, photons that travel to him along radial trajectories arnve with 
exponentially increasing redshifts 

(32.6) 

However, the light from the star is dominated in these late stages, not by photons 
flying along radial traj ectories from near the gravitational radius, but by photons 
that were deposited by the star in unstable circular orbits as its surface passed 
through r = 3M (see §25 .6 and Box 25 .7). As time passes, these photons gradually 
leak out the diffuse spherical shell of trapped photons at r = 3M and fly off to the 
distant observer, who measures them to have redshift z ;:::;  2. Consequently, in the 
late stages of collapse the star's spectral lines are broadened enormously, but they 
are brightest at redshift z ;:::;  2. 

(continued on page 850) 
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Figu re 3 2 .  1 .  The free-fall collapse of a star of initial radius R; = 10 M as depicted alternatively in (a) Schwarzschild coordinates, (b) Kruskal-Szekeres coordinates, and (c) ingoing Eddington-Finkelstein coordinates (see Box 3 1 .2) The region of spacetime inside the collapsing star is grey, that outside it is white. Only the geometry of the exterior region is that of Schwarzschild. The curve separating the grey and white regions is the geodesic world line of the surface of the collapsing star (equations [3 1 . 10] or [32 . 10] with rrnax = R; = IO M) This world line is parameterized by proper time, -r, as measured by an observer who sits on the surface of the star, the radial light cones, as calculated from ds2 = 0, are attached to it. Notice that, although the shapes of the light cones are not all the same relative to Schwarzschild coordinates or relative to Eddington-Finkelstein coordinates, they are all the same relative to KruskalSzekeres coordinates. This 1s because light rays travel along 45-degree lines in the u,v-plane (du = ±du), but they travel along curved paths in the r,t-plane and r, V-plane. The Kruskal-Szekeres spacetime diagram shown here is related to the Schwarzschild diagram by equations (3 1 . 13) plus a translation of Schwarzschild time· t -+ t  + 42 .8 M. The Eddington-Finklestein diagram is related to the Schwarzschild diagram by 

V = t + r* = t + r + 2 M in l r/2 M - I I  (see Box 3 1  2). It is evident from these diagrams that the free-fall collapse is characterized by a constantly diminishing radius, which drops from R = IO M to R = 0 in a finite and short comoving proper time interval, Ll-r = 35 . 1  M. The point R = 0 and the entire region r = 0 outside the star make up a physical "singularity" at which infinite tidal gravitational forces-according to classical, unquantized general relativity-can and do crush matter to infinite density (see end of §3 1 2 ,  also §32.6) 
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The Eddington-Finkelstein diagram depicts a series o f  photons emitted radially from the surface of the collapsing star, and received by an observer at r = �mtiaJ = 10 M. The observer eventualLy.-receives all photons emitted radially from outside the gravitational radius; all photons emitted after the star passes through its gravitational radius eventually get pulled into the singularity at r = 0; and any photon emitted radially at the gravitational radius stays at the gravitational radius forever. Non-free-fall collapse is similar to the collapse depicted here. When pressure gradients are present, only the detailed shape of the world line of the star's surface changes. 



EXERCISE 

The rest of this cha pter is 
Track 2 .  No previous Track-2 
material is needed as 
preparation for it, but it is 
needed as preparation for 
( 1 )  the Track-2 part of 
Chapter 33 (black holes), and 
(2) Chapter 34 (s ingula rities 
and global methods) . 
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Notice how short is the characteristic e-folding time for the decay of luminosity 
and for the radial redshift : 

-rchar = 2M -::::: l X 10-5(M/ M0) sec 

(light-travel time across a flat-space 
} - distance equal to the gravitational radius · 

Here M0 denotes one solar mass. 

Exercise 32.2. REDSHI FTS D URING COLLAPSE 

(32.7) 

(a) Let a radio transmitter on the surface of a collapsing spherical star emit monochromatic 
waves of wavelength A,; and let a distant observer, at the same 0, <f,, as the transmitter, receive 
the waves. Show that at late times the wavelength received varies as 

(32.8a) 

[equation (32.6)], where I is proper time as measured by the distant observer. 
(b) [Track 2] Use kinetic theory for the outgoing photons (conservation of density in phase 

space: Liouville's theorem; §22.6) to show that the energy flux of the radiation received 
(ergs/cm2 sec) varies as 

F a: e-t!M_ (32.8b) 

(c) Suppose that nuclear reactions at the center of the collapsing star generate neutrinos 
of energy E,, and that these neutrinos flow freely outward (negligible absorption in star). 
Show that the energy of the neutrinos received by a distant observer decreases at late times 
as 

Erecl E, ex: e-t/4M. 

( d) Show that the flux of neutrino energy dies out at late times as 

F a: e-t12M_ 

(32.9a) 

(32.9b) 

(e) Explain in elementary terms why the decay laws (32.8a) and (32.9a) for energy are 
the same, but the decay laws (32.8b) and (32.9b) for energy flux are different. 

(f) Let a collapsing star emit photons from its surface at the black-body rate 

dN ( 11 photons ) (surface area) (temperature)
3 

- = l .5 X l 0 2 3 X X f · dT cm sec K of star of sur ace 

Let a distant observer count the photons as they pass through his sphere of radius r ► M. 
Let him begin his count (time t = 0) when he sees (via photons traveling radially outward) 
the center of the star's surface pass through the radius r = 3M. Show that, in order of 
magnitude, the time he and his associates must wait, until the last photon that will ever 
get out has reached them, is 

t = (M/M0)[8 X 10-4 + 5 X 10-5 1og10(T11M/M0)] seconds, 

where T11 is the star's surface temperature in units of 1011  K. 

(32.9c) 
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§32 .4 .  CO LLAPSE O F  A STAR WITH U NIFORM DENSITY 

AN D ZERO PRESSURE 

8 5 1  

When one turns attention to the interior of a collapsing star and to the precise world 
line that its surface follows in the Schwarzschild geometry, one encounters rather 
complicated mathematics. The simplest case to treat is that of a "star" with uniform 
density and zero pressure ; and, indeed, until recently that was the only case which 
had been treated in detail. The original-and very complete-analysis of the collapse 
of such a uniform-density "ball of dust" was given in the classic paper of Oppen
heimer and Snyder (1939). More recently, other workers have discussed it from 
slightly different points of view and using different coordinate systems. The ap
proach taken here was devised by Beckedorff and Misner (1962). 

Because no pressure gradients are present to deflect their motion, the particles 
on the surface of any ball of dust must move along radial geodesics in the exterior 
Schwarzschild geometry. For a ball that begins at rest with finite radius, R = Ri , 
at time t = 0, the subsequent geodesic motion of its surface is given by equations 
(31.10): 

The co l l apse, from rest, of a 
u n iform-density ba l l  of 
" d ust" · 

R = (R;/2)(1 + cos 'IJ), 

t = 2Mln 
I (Ri/2M - 1)112 + tan ('IJ/2) I (RJ2M - 1)112 - tan ('1) /2) 

(32.l0a) ( 1 )  world l i ne  of ba l l ' s  
su rface i n  exter ior  
Schwarzsch i l d  
coord inates 

+ 2M(Ri/2M - 1)112 ['1) + (Ri/4M)('IJ + sin 'IJ)]. (32.IOb) 

Here R is the Schwarzschild radial coordinate (i.e., 4'1TR 2 is the star's surface area) 
at Schwarzschild time t. This world line is plotted in Figure 32.1 for Ri = IOM, in 
terms of Schwarzschild coordinates, Kruskal-Szekeres coordinates, and Eddington
Finkelstein coordinates. The proper time read by a clock on the surface of the 
collapsing star is given by equation (31.I0b): 

'T = (Rr /8M)112('1) + sin 'I)). (32.IOc) 

Note that the collapse begins when the parameter 'I) is zero (R = Ri , t = r = 0); 
and it terminates at the singularity (R = 0, 'IJ = 77) after a lapse of proper time, as 
measured on any test particle falling with the dust, equal to 

L:lr = 'IT(Rf/8M)112. 

It is interesting, though coincidental, that this is precisely the time-lapse required 
for free-fall collapse to infinite density in Newtonian theory [see equation (25.27'), 
Figure 25.3, and associated discussion]. 

What is the behavior of the interior of the ball of dust as it collapses? A variety 
of different interiors for pressureless dust can be conceived ( exercise 32.8). But here 
attention focuses on the simplest of them: an interior that is homogeneous and 
isotropic everywhere, except at the surface-i.e., an interior locally identical to a 
dust-filled Friedmann cosmological model (Box 27.1). Is the Friedmann interior to 
be "open" (k = - 1), "flat" (k = 0), or "closed" (k = + I)? Only the closed case 

(2)  in ter ior  of ba l l  is ident ica l  
to a porti on  of a c losed 
Fr iedmann  u n iverse 



(3) the join between 
Friedmann interior and 
Schwarzschild exterior 
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is appropriate, since one has already demanded [equation (32. 10)] that the star be 
at rest initially (initial rate of change of density equals zero; "moment of maximum 
expansion"). 

Using comoving hyperspherical coordinates, X, 0, cf>, for the star's interior, and 
putting the origin of coordinates at the star's center, one can write the line element 
in the interior in the familiar Friedmann form 

Here a('r) is given by the familiar cycloidal relation, 

I a = 
2

am(I + cos 11), 

'T = ; am(1J + sin 1) ) ;  

and the density i s  given by 

[see equations (I), (9), (4), and (5) of Box 27. 1 ,  with 1J replaced by 1J + ?Tj. 

(32. 1 1 ) 

(32. 12) 

(32. 13)  

There i s  one possible difficulty with this interior solution. In the cosmological case, 
the solution was homogeneous and isotropic everywhere. Here homogeneity and 
isotropy are broken at the star's surface-which lies at some radius 

X = Xo (32. 14) 

for all T, as measured in terms of the hyperspherical polar angle X, a comoving 
coordinate (first picture in Box 27.2). At that surface (i.e., three-dimensional world 
tube enclosing the star's fluid) the interior Friedmann geometry must match smoothly 
onto the exterior Schwarzschild geometry. If the match cannot be achieved, then 
the Friedmann line element (32. 1 1 ) cannot represent the interior of a collapsing star. 
An example of a case in which the matching could not be achieved is an interior 
of uniform and nonzero pressure, as well as uniform density. In that case there would 
be an infinite pressure gradient at the star's surface, which would blow off the outer 
layers of the star, and would send a rarefaction wave propagating inward toward 
its center. The uniform distribution of density and pressure would quickly be de
stroyed. 

For the case of zero pressure, the match is possible. As a partial verification of 
the match, one can examine the separate and independent predictions made by the 
interior and exterior solutions for the star's circumference, C = 2?TR, as a function 
of proper time T at the star's surface. The external Schwarzschild solution predicts 
the cycloidal relation, 

C = 2'1TR = 2?T (R;!2)(1 + COS 1J ) , 
T = (R;3/8M)11 2(11 + sin 11 )  

(32. 1 5 )  

[equations (32. 10)]. The interior Friedmann solution predicts a similar cycloidal 
relation : 
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C = 2'TTR = 2'TTa sin xo = 2'TT(½am sin xo) o + COS 'I) ), 

T = ; am('I/ + sin 'I) ). 

The two predictions agree perfectly for all time if and only if 

R; = am sin Xo, 

A more complete verification of the match is given in exercise 32.4. 

8 53 

(32. 16) 

(32. 17a) 

(32. 1 7b) 

For further insight into this idealized model of gravitational collapse, see Box 32. 1 .  

Exercise 32 . 3 .  E M B E D D I N G  D IAGRAMS A N D  P H OTO N P R O PAGATI O N  
FOR CO LLAPS I N G  STAR 

Verify in detail the features of homogeneous collapse described in Box 32.1. 

Exercise 32 .4 .  MATCH OF F R I E D M AN N  I NTE R I O R  
TO SCHWARZSCH I LD EXTE R I O R  

The Einstein field equations are satisfied o n  a star's surface if and only if the intrinsic and 
extrinsic geometries of the surface's three-dimensional world tube are the same, whether 
measured on its interior or on its exterior (see §21.13 for proof and discussion) . Verify that 
for the collapsing star discussed above, the intrinsic and extrinsic geometries match at the 
join between the Friedmann interior and the Schwarzschild exterior. [Hints: (a) Use 1/, 8, </>, 
as coordinates on the world tube of the star's surface, and show that the intrinsic geometry 
has the same line element 

(32.18a) 

whether measured in the Schwarzschild exterior or in the Friedmann interior. (b) Show that 
the extrinsic curvature of the world tube has the same components 

K�� = K� e = K�¢ = Ke¢ = 0, 

Ke e  = K¢¢/sin28 = - a(71) sin Xo cos Xo, 
(32.18b) 

whether measured in the Schwarzschild exterior or in the Friedmann mterior.] 

Exercise 32 . 5 .  STARS THAT CO LLAPSE FROM I N FI N ITY 

( a) Patch together a truncated Schwarzschild geometry and the geometry of a truncated "flat" 
(k = 0) , dust-filled Friedmann universe to obtain a model of a star that collapses from rest 
at an infinite initial radius. [Hint: The world line of the star's surface in the Schwarzschild 
geometry is given by equations (31.2) .] 

(b) Similarly patch together a truncated Schwarzschild geometry and the geometry of a 
truncated "open" (k = - 1 ),  dust-filled Friedmann universe to obtain a star which collapses 
from infinity with finite initial inward velocity. 

(continued on page 857) 

EXERCISES 
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Box 32 . 1  AN I D EALIZED COLLAPS I N G  STAR 
WITH F R I E D MA N N  I NTE R I O R  
AND SCHWARZSCH I LD EXTER I O R  

(See §32 .4 a n d  exercises 3 2 . 3  and 32 .4  
fo r  justification o f  the  resu l ts 
descri bed here. )  

In i t ia l  State 

(1 ) Take a Friedmann universe of radius a = am at its moment of maximum expansion, 
1J = O ;  and slice off and discard the region Xo < x :S; 1r, where Xo is some angle less 
than 1r/2. (2) Take a Schwarzschild geometry of mass M = (am/2) sin3 Xo at the 
moment t = O ;  and slice off and discard the region r < Ri = am sin Xo · (3) Glue 
the remaining pieces of Friedmann and Schwarzschild geometry together smoothly 
along their cut surfaces.  The resultant object will be a momentarily static star of 
uniform density Pi = 3/(81ram

2), of mass M = (am/2) sin3 Xo, and of radius Ri = 
am sin Xo · 

Subsequent Evolut ion 

Release this star from its intial state, and let i t  collapse in accord with Einstein's 
field equations. The interior, truncated Friedmann universe and the exterior, truncated 
Schwarzschild geometry will evolve just as though they had never been cut up and 
patched together; and this evolution will preserve the smoothness of the match 
between interior and exterior !  

Deta i ls of the Col lapse 

Probe the details of the collapse using sequences of embedding diagrams (histories 
ABCD and AWXY), and using photons that propagate radially outward (photons 
a, /3, y, o, t). The example shown here has Xo = 0.96 and R/ M = 2/sin2 Xo = 3. 



I 
7/ 

I n terior (Friedmann )  

W' 

1/ = 0 A �--� A '  
0 0 .96 = Xo 
- x ---

History of Col l apse as Probed 

by Hypersu rfaces ABCD : 

I 
V 

( 1 )  Initial configuration, A - A' - A", is that constructed by cutting and sewing at times r, = t = 0 .  (2) Each subsequent configuration has a s  its interior a slice of constant Friedmann time r, . (3) The interior remains always a spherical cup of half-angle x0 ; but it contracts from radius R = Ri = am sin Xo to R = 0 as time increases. (4) The matter in the star is all crushed simultaneously to infinite density when R reaches zero, and the external Schwarzschild "funnel" develops a cusp-like singularity at that point. (5) As time increases further, this cusp pulls the region r < 2M of the funnel into r = 0 so fast that the outward-traveling photon 8 is gobbled up and crushed. 

Exterior (KruskalSzekeres) 

--- U ----

A"  

B" 

D" 

A '  

A "  

A '  
A 

a 
B" 

/3 
D" 

D These embedding diagrams must be rotated about the vertical axes in order to become 2-dimensional surfaces analogous to Figure 23 . 1  



Box 32. 1 (continued) 

History as Probed by Hypersu rfaces AWXY ( 1 )  Initial configuration, A - A' - A", is again that constructed by cutting and sewing at 1/ = t = 0 .  (2) Subsequent hypersurfaces are very different from 1/ = const. (3) As time passes, a neck develops in the geometry just outside the surface of the star. (4) This neck becomes tighter and tighter and then pinches off, leaving the star completely isolated from the rest of the universe, and leaving a deadly cusp-like singularity in the exterior geometry where the star used to be. (5) The isolated star, in its own little closed universe, continues to contract until it is crushed to infinite density, while the external geometry begins to develop another neck and the cusp quickly gobbles up photon 8. 

A "  

Y' 

A '  
A 

w 

X' 
C3 {  

X 

y 

a 7  
A '  

y 
1/ 

fJ -
Y' 

A "  

W" 

The extreme difference between histories ABCD and AWXY dramatizes the "many-fingered time" of general relativity. The hypersurface on which one explores the geometry can be pushed ahead faster in time in one region, at the option of the party of explorers . Thus whether one region of the star collapses first, or another, or the entire star collapses simultaneously, is a function both of the spacetime geometry and of the choice of slicing. The party of explorers has this choice of slicing at their own control, and thus they themselves to this extent govern what kind of spacelike slices they will see as their exploration moves forward in time. The spacetime geometry that they slice, however, is in no way theirs to control or to change. To the extent that their masses are negligible and they serve merely as test objects, they have no influence whatsoever on the spacetime. It was fixed completely by the specification of the initial conditions for the collapse. In brief, spacetime is four-dimensional and slices are only three-dimensional (and in the pictures here look only two-dimensional or one-dimensional) . Any one set of slices captures only a one-sided view of the whole story. To see the entire picture one must either examine the dynamics of the geometry as it reveals itself in varied choices of the slicing or become accustomed to visualizing the spacetime geometry as a whole . 
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§32 . 5 .  SP HERICALLY SYM METRIC CO LLAPSE WITH 

INTERNAL PRESSURE FORCES 

8 57 

So far as the external gravitational field is concerned, the only difference between a freely collapsing star and a collapsing, spherically symmetric star with internal pressure is this : that the surfaces of the two stars move along different world lines in the exterior Schwarzschild geometry. Because the exterior geometry is the same in both cases, the qualitative aspects of freejall collapse as described in the last section 
can be carried over directly to the case of nonnegligible internal pressure. An important and fascinating question to ask is this : can large internal pressures in any way prevent a collapsing star from being crushed to infinite density by infinite tidal gravitational forces? From the Kruskal-Szekeres diagram of Figure 32 . 1 ,b, it is evident that, once a star has passed inside its gravitational radius (R < 2M), no internal pressures, regardless of how large they may be, can prevent the star's surface from being crushed in a singularity. The surface must move along a time-like world line, and all such world lines inside r = 2M hit r = 0 .  Although there is no such theorem now available, one can reasonably conjecture that, if the surface of a spherical configuration is crushed in the r = 0 singularity, the entire interior must also be crushed. The details of the interior dynamics of a spherically symmetric collapsing star with pressure are not so well-understood as the exterior Schwarzschild dynamics. However, major advances in one's understanding of the interior dynamics are now being made by means of numerical computations and analytic analyses [see Misner ( 1969a) for a review] . In these computations and analyses, no new features (at least, no unexpected ones) have been encountered beyond those that occurred in the simple uniform-density, free-fall collapse of the last section. 

Exercise 3 2 . 6 .  G E N ERAL S P H E R I CAL CO LLAPS E :  M ETR I C  
I N  C O M OVI N G  C O O R D I NATES 

Consider an inhomogeneous star with pressure, undergoing spherical collapse. Spherical 
symmetry alone is enough to guarantee the existence of a Schwarzschild coordinate system 
(t, r, 0, cf,) throughout the interior and exterior of the star (see equation (32.2) and preceding 
discussion]. Label each spherical shell of the star by a parameter a, which tells how many 
baryons are contained interior to that shell. Then r(a, t) is the world line of the shell with 
label a. The expression for these world lines can be inverted to obtain a(t, r), the number 
of baryons interior to radius r at time t. Show that there exists a new time coordinate t(t, r), 
such that the line element (32.2), rewritten in the coordinates (i, a, 0, cf,), has the form 

2 2� d-2 [ (or/oa)y da ]
2 

2 d'n 2  ds = - e  t + I' + r '" , 

ip = ip (i, a), r = r(i, a), r = r (i, a) . 
These are "comovmg, synchronous coordinates" for the stellar mterior. 

(32.19a) 

(32.19b) 

Spher ica l  co l l apse with 
pressure is qua l itatively the 
same as without pressu re 

EXERCISES 
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Exercise 32. 7 .  ADIABATIC S PHERICAL COLLAPSE: EQUATIONS 
OF EVOLUTION [Misner and  S harp ( 1 964)] 

Describe the interior of a collapsing star by the comoving, synchronous metric (32.19), by 
the number density of baryons n, by the total density of mass-energy p, and by the pressure 
p. The 4-velocity of the star's fluid is 

(32.20) 

since the fluid is at rest in the coordinate system. Let a dot denote a proper time derivative 
as seen by the fluid-e.g., 

and let a prime denote a partial derivative with respect to baryon number,-e.g. 

n' = (on/o a)r. 

Denote by U the rate of change of (l/2'1T) X (circumference of shell), as measured by a 
man riding in a given shell : 

U = r; 
and denote by m(i, a) the "total mass-energy interior to shell a at time 7: 

m(t, a) - f a 
4'1Tr 2p(t, a)r ' d a . 

0 

(32.21a) 

(32.21b) 

(See Box 23.1 for discussion of this method of localizing mass-energy.) Assume that the 
collapse is adiabatic (no energy flow between adjacent shells; stress-energy tensor entirely 
that of a perfect fluid). 

(a) Show that the equations of collapse [baryon conservation, (22.3) ;  local energy conser
vation, (22. I l a); Euler equation, (22.13); and Einstein field equations ( ex. 14.16)] can be 
reduced to the following eight equations for the eight functions <P, I', r, n, p, p, U, m: 

r = u ( dynamic equation for r); 

(nr 2)" U' ( dynamic equation for n); --;;;:z r ' 

i> n except at a shock front, where adiabaticity 
p + p n breaks down (dynamic equation for p); 

U
. 

-- _ _ r 2 p ' - m + 4'1Tr 3p (d . . ,. U) ynam1c equat10n ,or ; 
p + p r '  r 2 

p = p(n, p) (equation of state); 

<P' = -p '/(p + p), <P = 0 at star's surface (source equation for <P); 

m' = 4'1Tr 2pr ', m = 0 at a =  0, 

r = sign (r ')(l + U 2 - 2m/r)1l 2 

(source equation for m); 

(algebraic equation for I' ). 

(32.22a) 

(32.22b) 

(32.22c) 

(32.22d) 

(32.22e) 

(32.22f) 

(32.22g) 

(32.22h) 

(b) The preceding equations are in a form useful for numerical calculations. [For particular 
numerical solutions and for the handling of shocks, see May and White (1966).] For analytic 
work it is often useful to replace (32.22b) by 

n = r /(4'1Tr 2r '), (32.22b') 
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and (32.22d) by 

Derive these equations. 

8 59 

(32.22d') 

( c) Explain why equations (32.22g) and (32.22d') justify the remarks made in Box 23.1 
about localizability of energy. 

Exercise 32.8. ANALYTIC SOLUTIONS FOR PRESSURE-FREE COLLAPSE 
[Tol man ( 1 934b); Datt ( 1 938)] 

Show that the general solution to equations (32.22) in the case of zero pressure can be 
generated as follows. 

(a) Specify the mass inside shell a, m( a); by equation (32.22d'), with p = 0, it will not 
change with time 7. 

(b) Assume that all the dust particles have rest masses µ that depend upon radius, µ( a); 
so 

P = µn. (32.23a) 

(c) Calculate I' from the equation 

r = m'/µ; (32.23b) 

it will be mdependent of 7. 
( d) Specify an initial distribution of circumference 27Tr as function of a, and solve the 

dynamic equation 

c;r _ _ 2m_
,
_( a_) (32.23c) 

to obtain the subsequent evolution of r (i, a). Notice that this equation has identically the 
same form as in Newtonian theory! 

( e) Calculate the remaining quantities of interest from the algebraic equations 

ds 2 = - dt2 + (r ' d a/I' )2 + r 2 d[J 2, 

p = µn = m'/(47rr 2r '), 

<P = 0, u = or/ at. 

(32.23d) 

(32.23e) 

(32.23f) 

[Note: In this solution, successive "shells" may pass through each other, producing a surface 
of infinite density as they do (r ' -+ 0 where m' =I- 0), since there is no pressure built up 
to stop shell crossing. When this happens, the coordinate system becomes pathological ( a  
no longer increases monotonically outward), but spacetime remains well-behaved. The surface 
of infinite density ( I )  produces negligible tidal forces on neighboring dust particles; and (2) 
like the surface layers of §21.13, it is an idealization that gets smeared down to finite density 
by finite pressure.] 

Exercise 32.9. COLLAPSE WITH UNIFORM DENSITY 
Recover the Friedmann-Schwarzschild solution for collapse with uniform density and zero 
pressure by specifying appropriate forms for m( a) and r ( a) in the prescription of exercise 
32.8. In the interior of the star, give the dust particles nonzero rest masses, µ = constant =I- 0; 
in the exterior give them zero rest masses, µ = 0 ("imaginary dust particles" in vacuum). 
Reduce the resulting metric (32.23d) to that of Friedmann inside the star, and to that of 
Novikov for the Schwarzschild geometry outside the star [equations (31.12)]. 
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§ 3 2 . 6 .  THE FATE OF A MAN WHO FALLS INTO 

THE SIN G U LARITY AT r = 0 

Consider the plight of an experimental astrophysicist who stands on the surface of 
a freely falling star as it collapses to R = 0 .  

As  the collapse proceeds toward R = 0 ,  the various parts of  the astrophysicist's 
body experience different gravitational forces. His feet, which are on the surface 
of the star, are attracted toward the star's center by an infinitely mounting gravita
tional force; while his head, which is farther away, is accelerated downward by a 
somewhat smaller, though ever rising force. The difference between the two acceler
ations (tidal force) mounts higher and higher as the collapse proceeds, finally be
coming infinite as R reaches zero. The astrophysicist's body, which cannot withstand 
such extreme forces, suffers unlimited stretching between head and foot as R drops 
to zero. 

But this is not all. Simultaneous with this head-to-foot stretching, the astrophysicist 
is pulled by the gravitational field into regions of spacetime with ever-decreasing 
circumferential area, 477r2 . In order to accomplish this, tidal gravitational forces must 
compress the astrophysicist on all sides as they stretch him from head to foot. The 
circumferential compression is actually more extreme than the longitudinal stretch
ing; so the astrophysicist, in the limit R � 0, is crushed to zero volume and 
indefinitely extended length. 

The above discussion can be put on a mathematical footing as follows. 
There are three stages in the killing of the astrophysicist: (I) the early stage, when 

his body successfully resists the tidal forces; (2) the intermediate stage, when it is 
gradually succumbing; and (3) the final stage, when it has been completely over
whelmed. 

During the early stage, one can analyze the tidal forces by means of the equation 
of geodesic deviation, evaluated in the astrophysicist's orthonormal frame w r, w P , 
w 8 , w ,i, (see §3 1 .2) . In this frame, the nonvanishing components of the Riemann 
curvature tensor are given by equations (3 1 .6) : 

R;.;,;.;, = - 2M/r 3 , 

R8,;,8,;, = 2M/r3, R· " ·  - R· · · ·  - - M/r3 
p epe - P</>P</> -

(32.24a) 

The equation of geodesic deviation says that two freely moving particles, momentarily 
at rest in the astrophysicist's local inertial frame, and separated by the 3 -vector 

( = �Je;, 

must accelerate apart with a relative acceleration given by 

D 2�i/dr 2 = - Ri
rkr�k = - R)Tk T�k 

= - R;.;;.fc�ic . 
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Using the components (32.24a) of the curvature tensor, one sees that 

D 2�P/dr 2 = + (2M/r 3)�P, 

D 2� {j /dr 2 = - (M/r 3)� ii , 

D 2�¢/dr 2 = - (M/r3)�¢. 

8 6 1 

(32.24b) 

To apply these equations to the astrophysicist's body, idealize it (for simplicity) 
as a homogeneous rectangular box of mass µ, ;:::; 165 pounds ;:::; 75 kg, of length 
i ;:::; 70 inches ;:::; 1.8 m in the ei, direction, and of width and depth w ;:::; 10 inches 

;:::; 0.2 m in the ee and e(i, directions. Then calculate the stresses that must be set 
up in this idealized body to prevent its particles from moving along diverging (and 
converging) geodesics. 

From the form of equations (32.24), it is evident that the principal directions of 
the stress will be ei, , ee , and e(i, (i.e. ,  in the ei, , ee , e(i, basis , the stress tensor will 
be diagonal). The longitudinal component of the stress, at the astrophysicist's center 
of mass, can be evaluated as follows. A volume element of his body with mass dµ, , 
located at a height h above the center of mass (distance h measured along ei, 
direction) would accelerate with a = (2M/r 3)h away from the center of mass, if it 
were allowed to move freely. To prevent this acceleration, the astrophysicist's muscles 

must exert a force 

dF = a dµ, = (2M/r3)h dµ,. 

This force contributes to the stress across the horizontal plane (ee A e(i, plane) 
through the center of mass. The total force across that plane is the sum of the forces 
on all mass elements above it (which is also equal to the sum of the forces on the 

mass elements below it) : 

112 
(

2Mh )( µ, ) F = f a dµ, = f -- -- (w2 dh) 
(region above plane) o r3 i W 2 

1 µ,Mi 
- 4----;:s· 

The stress is this force divided by the cross-sectional area w2 , with a minus sign 

because it is a tension rather than a pressure : 

Ti,i, = _ 
4
1 µ,�! ;:::; _ 1 . 1 X 1015 M/ M0 dynes 

w r (r/ 1 km)3 cm2 
(32.25 a) 

The components of the stress in the e 8 and e(i, directions at the center of mass 
are, similarly, 

1 µ,M 
O 1013 M/ M0 dynes 

Tee = T(i,(i, = + 8 ir3 ;:::; + ·7 X 
(r/1 km)3 cm2 · 

(Recall that one atmosphere of pressure is 1 .0 1  x 106 dynes/cm2 .) 

(32.25b) 
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The human body cannot withstand a tension or pressure of � 100 atmospheres 
;:::; 108 dynes/cm2 without breaking. Consequently, an astrophysicist on a freely 
collapsing star of one solar mass will be killed by tidal forces when the star's radius 
is R ~ 200 km ► 2M :::::; 3 km. 

By the time the star is much smaller than its gravitational radius, the baryons 
of the astrophysicist's body are moving along geodesics; his muscles and bones have 
completely given way. In this final stage of collapse, the timelike geodesics are curves 
along which the Schwarzschild "timc"-coordinate, t, is almost constant [cf the nar
rowing down of the light cones near r = 0 in Figure 32. 1 ,a; also equation (31 .2) in 
the limit r � 2M]. The astrophysicist's feet touch the star's surface at one value of 
t-say t = t1-while his head moves along the curve t = th > t1. Consequently, the 
length of the astrophysicist's body increases according to the formula 

,fastroph = [gt t(R)]112[th - t,] = [2M/ R ]112[th - t,] 
ex R-112 ex (-r _ -r)-1/3 collapse (32.26a) 

Here -r = [-JR l g,,. 1 112 dr + constant] is proper time as it would be measured by 
the astrophysicist if he were still alive, and -rcollapse is the time at which he hits r = 0. 
The gravitational field also constrains the baryons of the astrophysicist's body to 
fall along world lines of constant 0 and </> during the final stages of collapse. Conse
quently, his cross-sectional area decreases according to the law 

a'astroph = [g9 & {R )g¢¢ CR)]112 ,10 iJcp ex R 2 ex (-rcollapse - -r)4/3 _ (32.26b) 

By combining equations (32.26a,b), one sees that the volume of the astrophysicist's 
body decreases, during the last few moments of collapse, according to the law 

'Vastroph = ,fastropha'astroph ex R 312 ex (-rcollapse - -r). (32.26c) 

This crushing of matter to infinite density by infinitely large tidal gravitational 
forces can occur not only on the surface of the collapsing star, but also at any other 
point along the r = 0 singularity outside the surface of the star. Hence, any foolish 
rocketeer who ventures below the radius r = 2M of the external gravitational field 
is doomed to destruction. 

For further discussion of spacetime singularities, and of the possibility that quan
tum gravitational effects might force a reconsideration of the singularities predicted 
by classical gravitation theory, see Chapter 30, §34.6, and Chapter 44. 

§32 . 7 .  REALISTIC GRAVITATIONAL CO LLAPSE

AN OVERVIEW 

Instability, implosion, horizon, and singularity; these are the key stages in the 
spherical collapse of any star. Instability: The star, having exhausted its nuclear fuel, 
and having contracted slowly inward, begins to squeeze its pressure-sustaining 
electrons or photons onto its atomic nuclei ; this softens the equation of state, which 
induces an instability [see, e.g., §§ 10. 15  and 1 1 .4 of Zel'dovich and Novikov (1 97 1 )  



§ 3 2  7 N O N S P H E R I CAL G R AVITATIO NAL CO LLAPSE 8 6 3  for details] . Implosion: Within a fraction of a second the instability develops into a full-scale implosion; for realistic density distributions, the stellar core falls rapidly inward on itself, and the outer envelopes trail along behind [see, e.g. , the numerical calculations of Colgate and White ( 1966), Arnett ( 1966,  1967), May and White ( 1966), and Ivanova, Imshennik, and Nadezhin ( 1 969)) . Horizon: In the idealized spherical case, the star's surface falls through its gravitational radius ("horizon" ; end of communication with the exterior; point of no return). From the star's vantage point this happens after a finite, short lapse of proper time. But from an external vantage point the star requires infinite time to reach the horizon, though it becomes black exponentially rapidly in the process [ e-folding time ~ M ~ 10-5(M/ M0) sec] . The result is a "black hole", whose boundary is the horizon (gravitational radius) , and whose interior can never communicate with the exterior. Singularity: From the star's interior vantage point, within a short proper time interval Lh ~ M ~ l o-5(M/ Mo) sec after passing through the horizon, a singularity is reached (zero radius, infinite density, infinite tidal gravitational forces). Does this basic picture-instability, implosion, horizon, singularity-have any relevance for real stars? Might complications such as rotation, nonsphericity, magnetic fields, and neutrino fluxes alter the qualitative picture? No, not for small initial perturbations from sphericity. Perturbation theory analyses described in Box 32.2 and exercise 32 . 10 show that realistic, almost-spherically symmetric collapse, like 
idealized collapse, is characterized by instability, implosion, horizon; and Penrose ( 1 965b ;  see §34.6) proves that some type of singularity then follows. Highly nonspherical collapse is more poorly understood, of course. Nevertheless, a number of detailed calculations and precise theorems point with some confidence to two conclusions : ( l )  horizons (probably) form when and only when a mass M gets 
compacted into a region whose circumference in E VER Y direction is e � 41r M (Box 32.3) ;  (2) the external gravitational field of a horizon (black hole), after all the "dust" 
and gravitational waves have cleared away, is almost certainly the Kerr-Newman 
generalization of the Schwarzschild geometry (Chapter 33) .  If so, then the external 
field is determined uniquely by the mass, charge, and angular momentum that went 
"down the hole." (This nearly proved theorem carries the colloquial title "A black hole has no hair.") The interior of the horizon, and the endpoint (if any) of the collapse are very poorly understood today. The various possibilities will be reviewed in Chapter 34. That a singularity occurs one can state with much certainty, thanks to theorems of Penrose, Hawking, and Geroch. But whether all, only some, or none of the collapsing matter and fields ultimately encounter the singularity one does not know. 
Exercise 3 2 . 1 0 . P R I CE 'S  T H E O R E M  F O R  A SCALAR F I E LD 

[See Price ( 1 9 7 1 , 1 9 7 2a),  also Thorne ( 1 972) ,  
for  more deta i ls  than are presented h ere.] 

A collapsing spherical star, with an arbitrary nonspherical "scalar charge distribution," 
generates an external scalar field <P. The vacuum field equation for <P is □<P = <P ,0,a = 0. 
Ignore the back-reaction of the field's stress-energy on the geometry of spacetime. 

( continued on page 868) 

Summary of 1 9 7 2  
knowledge a bout rea l i st ic ,  
nonspherica l co l la pse : 

( 1 )  horizon 

(2)  b lack ho le  

(3) s i ngu la rity 

EXERCISES 
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Box 32.2 COLLA PSE WITH SMALL NON-S PHERICAL PERTURBATIONS 
[based on detai led ca lcu lat ions by Richard H. Price ( 1 9 7 1 ,  1 9 72a , b)]. 

A. Density Pertu rbations 1 .  When star begins to collapse, i t  possesses a small nonspherical "lump" in its density distribution. 2. As collapse proceeds, lump grows larger and larger [instability of collapse against small perturbations-a phenomenon well known in Newtonian theory; see, e.g. , Hunter ( 1967) ; Lin, Mestel, and Shu (1 965)] . 3 .  The growing lump radiates gravitational waves. 4 .  Waves of short wavelength (;\ <{ M), emitted from near horizon (r - 2M � M), partly propagate to infinity and partly get backscattered by the "background" Schwarzschild curvature of spacetime. Backscattered waves propagate into horizon (surface of black hole ; gravitational radius) formed by collapsing star. 5 .  Waves of long wavelength (;\ ► M), emitted from near horizon (r - 2M � M), get fully backscattered by spacetime curvature ; they never reach out beyond r ~ 3M; they end up propagating "down the hole." 6 .  Is lump on star still there as star plunges through horizon, and does star thereby create a deformed (lumpy) horizon? Yes, according to calculations. 7. But external observers can only learn about existence of "final lump" by examining deformation (quadrupole moment) in final gravitational field. That final deformation in field does not and cannot propagate outward with infinite speed (no instantaneous "action at a distance"). It propagates with speed of light, in form of gravitational waves with near-infinite wavelength (infinite redshift from edge of horizon to any external radius) . Deformation in final field, like any other wave of long wavelength, gets fully backscattered by curvature of spacetime at r � 3M; it cannot reach external observers . External observers can never learn of existence 
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of final lump. Final external field is perfectly 
spherical, lumpjree, Schwarzschild geometry! 8 .  Even in region of backscatter (2M < r � 3M), final external field is lump-free. Backscattered waves, carrying information about existence of final lump, interfere destructively with outgoing waves carrying same information . Result is destruction of all deformation in external field and in horizon ! 9 .  Final black hole is a Schwarzschild black hole ! 

B .  Pertu rbations i n  Angu la r  Momentu m 1 .  When star begins to collapse, it possesses a small, nonzero intrinsic angular momentum ("spin") S. 2. As collapse proceeds, S is conserved (except for a tiny, negligible change due to angular momentum carried off by waves; that change is proportional to square of amplitude of waves, i .e . ,  to square of amplitude of perturbations in star, i .e . ,  to S 2) .  3. Consequently, external field always and everywhere carries imprint of angular momentum S (on imprints, see Chapter 19) .  There is no need for that imprint to propagate outward from 
near horizon . Moreover, it could not so propagate even if it tried, because of the conservation law for S (absence of dipole gravitational waves ; see §§36 . 1  and 36 . 10) .  4 .  Hence, the final external field is that of an undeformed, slowly rotating black hole : 
ds2 = - (1 - 2M ) dt 2 + dr 2 + r 2 dil 2 

r I - 2M/r Schwarzschild geometry - ( 4s ;!n 8 ) (r sin 0 d<t>) dt. rotational imprint, see exercise 26 . 1 ;  also Chapter 19 .  Here the polar axis has been oriented along S. 

8 6 5  

C. Pertu rbations in Electromagnet ic  F ie ld 

1 .  Star possesses a magnetic field generated by currents in its interior, and an electric field due to an arbitrary internal charge distribution ; and electromagnetic radiation is emitted by its hot matter. For simplicity, S is assumed zero. 2 .  Evolution of external electromagnetic field is similar to evolution of perturbations in external gravitational field. Distant observer can never learn "final" values of changeable quantities (magnetic dipole moment, electric dipole moment, quadrupole moments, . . .  ). Final values try to propagate out from horizon, carried by electromagnetic waves of near-infinite wavelength. But they cannot get out : spacetime curvature reflects them back down the hole ; and they superpose destructively with their outgoing counterparts, to produce zero net field. 3. By contrast with all other quantities, which are changeable, the electric monopole moment (total flux of electric field; equal to 4'77 times: total electric charge) is conserved. It never'. changes from before star collapses, through the, collapse stage, into the quiescent black-hole stage. 4. Hence, the final external electromagnetic field is a spherically symmetric coulomb field 
E = (Q/r2)e;.} as measured by static 
B = O observer (r, 0, <P, constant) ; and the final spacetime geometry is that of Reissner and Nordstrnm (charged black hole ; see exercises 3 1 .8 and 32 . 1 ) :  

ds 2 = - ( 1 - 2M + Q:_) dt 2 
r r 2 

dr 2 
+ 

(1 - 2M/r + Q2/r2) + r 2 dil 2. 
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Box 32.2 (continued) 

D .  G en era l izat ion;  P rice's Th eorem 

1 .  Let the star generate a "zero-rest-mass, integer
spin field." ["Zero rest mass" refers to the 
quantized particles associated with the classical 
field. Classically it means the field has a Cou
lomb-law (1/r) fall off at large distances. The 
spin also is a property of the quantized parti
cles ;  classically it is most easily visualized as 
describing the symmetries of a monochromatic 
plane wave under rotations about the direction 5 · 
of propagation; see §35.6. A scalar field has 
spin zero; an electromagnetic field has spin one ; 
Einstein's gravitational field has spin two; . . . .  
Of such fields, only gravitational (s = 2) and 
electromagnetic (s = 1) are known to exist in 6. 
the real universe. See, e.g., Dirac (1936), Gard-
ing (1945), Bargmann and Wigner (1948), Pen
rose (1965 a), for further discussion.] 

2. Let the spin-s field be sufficiently weak that its 
stress-energy perturbs the star's external, 
Schwarzschild geometry only very slightly. 
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nothing. The electromagnetic field (s = I )  con
serves only its monopole parts ( electric Cou
lomb field, and vanishing magnetic Coulomb 
field). The gravitational field (s = 2) conserves 
its monopole part (with imprint equal to mass), 
and its dipole parts (with imprints measuring 
the angular momentum, and the standard grav
itational dipole moment-which vanishes if 
coordinate system is centered on star). 

For i 2:: s, and only for 1 2:: s, radiation is pos
sible (scalar waves can have any multipolarity; 
electromagnetic waves must be dipole and 
higher; gravitational waves must be quadrupole 
and higher; see §36. 1 ). 

Price's theorem states that, as the nearly spheri
cal star collapses to form a black hole, all things 
that can be radiated (all multipoles 1 2:: s) get 
radiated completely away-in part "off to in
finity" ; in part "down the hole" ("what is per
mitted is compulsory"). The final field is char
acterized completely by its conserved quantities 
(multipole moments with i < s). 

3. Resolve the external field into spherical har
monics (scalar spherical harmonics for s = O; 
vector spherical harmonics for s = I; tensor 
spherical harmonics for s 2:: 2) ; and label the 
spherical harmonics by the usual integer i (i = 
0 for monopole; 1 = I for dipole; i = 2 for 
quadrupole ; etc.). 

7. For proof of Price's theorem in the case of a 
scalar field, see exercise 32. 10. 

4. All multipole fields with i < s are conserved 
during the collapse (theorem from classical ra
diation theory). A scalar field (s = 0) conserves 

E .  Genera l ization t o  Nonclassica l  Fields 

See Hartle (1 97 1 ,  1 972) and Teitelboim (1972b,c) 
for neutrino fields; Bekenstein (1 972a,b) and 
Teitelboim (1972a) for pion fields. 



§ 3 2  7 N O N S P H E R I CAL  G RAVITATI ONAL  COLLAPS E 867 

Box 32.3 COLLAPSE IN ONE AND TWO DIMENSIONS 

A. The Question 

To produce a black hole (horizon from which 
nothing can emerge), must one compact matter 
strongly in all three spatial dimensions, to circum
ferences e :S 4?TM(quasispherical compaction) ; or 
is it sufficient to compact only in one or two di
mensions? 

B .  The Answer for O n e  D i m ension 

Consider, as an example readily generalized, the 
gravitational collapse of a spheroid of dust (zero 
pressure). Let the spheroid be highly Newtonian 
(r > > '> 2M) in its initial, momentary state of rest ; 
an<l let it be slightly flattened (oblate). In Newto
!'tian theory, any homogeneous, nonrotating 
spheroid of dust remains homogeneous as it col
lapses; but its deformations grow [see, e.g., Lin, 
Mestel, and Shu (1965) for details]. Hence, the 
spheroid of interest implodes to form a pancake 
of infinite density but finite mass per unit surface 
area. The final kinetic energy of the dust particles 
is roughly equal to their final potential energy: 

1 2 M 
2 v ~ 

(e/2?T) 
M = mass of spheroid, 
e = circumference of final pancake. 

Consequently, so long as e /2?T ► 2M, the collapse 
velocities remain much smaller than light, and the 
gravitational energy remains much smaller than 
the rest mass-energy. This means that for e /2?T ► 
2M, the Newtonian analysis is an excellent ap
proximation to general relativity all the way down 
to the pancake endpoint. Hence, no horizon can 
form, hardly any gravitational waves are emitted, 
and the whole story is exceedingly simple and fully 
Newtonian. However, since the pancake endpoint 
is not a singularity of spacetime (see the remarks 
at end of exercise 32.8 ), the evolution can proceed 
beyond it ; and as e contracts to :S 4?TM, the evolu-

tion will become very complicated and highly rel
ativistic (see the "collapse, pursuit, and plunge 
scenario" of Figure 24.3). 

C .  Th e Answer for Two Di mensions 

Consider, as an example not so readily general
ized, the gravitational collapse of a homogeneous 
prolate spheroid of dust, initially highly Newto
nian. Such a spheroid collapses to form a thin 
"thread" or "spindle" [see Lin, Mestel, and Shu 
(1 965)). Assume that the spheroid is still Newto
nian when its threadlike state is reached. It 
then has a length 1, a mass per unit length 
A = Ml 1 � 1, and a rapidly contracting equato
rial radius R � 1. Subsequently, each segment of 
the thread collapses radially as though it were part 
of an infinite cylinder. [Ignore the instability of 
breakup into "beads" ; see, e.g. , Hunter (1967), 
Chandrasekhar (1968) . )  The radial collapse veloc
ity approaches the speed of light and the gravita
tional energy approaches the rest mass-energy 
only when the thread has become exceedingly 
thin, R :S Rcrit ~ 1 exp ( - 1/4"A). At this stage, 
relativistic deviations from Newtonian collapse 
come into play. Thome (1972) and Morgan and 
Thome (1973) have analyzed the relativistic effects 
using an idealized infinite-cylinder model. The 
results are very different from either the spherical 
case or the pancake case. The collapsing cylinder 
emits a large flux of gravitational waves ; but they 
are powerless to halt the collapse. The collapse 
proceeds inward to a thread-like singularity, without 
the creation of any horizon (no black hole! ). 

D .  O bjection to the Answer, a Reply, 
and a Conjecture 

One can object that the collapses of both pancake 
and cylinder can be halted short of their endpoints, 
especially that of the pancake. As the thickness of 



868 

Box 32.3 (continued) 
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not. Whether this is true also after the relativistic 
domain is reached, one does not yet know. 

the pancake approaches zero, the vertical pull of 
gravity remains finite, but the pressure gradient 
caused by any finite pressure goes to infinity. 
Hence, pressure halts the collapse. Subsequently 
the rim of the pancake contracts toward the relativ
istic regime e /21r � 2M. In the collapse of a 
cylinder according to Newtonian theory, with a 
pressure-density relation p ex p Y, the gravitational 
acceleration a9 and pressure-buoyancy accelera
tion av vary as 

Actually, the ability of pressure to halt the col
lapse is of no importance to the issue of black holes 
and horizons. The important thing is that in oblate 
collapse with final circumference e ► 41r M, and 
also in prolate collapse with final thread length 
i, ► 2M, no horizons are created. This, coupled 
with the omnipresent horizons in nearly spherical 
collapse (Box 32.2) suggests the following conjec
ture [Thorne (1 972)]: Black holes with horizons 
form when and only when a mass M gets compacted 
into a region whose circumference in E VER Y direc
tion is e � 41rM. (Like most conjectures, this one 
is sufficiently vague to leave room for many differ
ent mathematical formulations!) 

Hence, for y > 1 (the most common realistic case) 
pressure halts the collapse, but for y < 1 it does 

(a) Resolve the external field into scalar spherical harmonics, using Schwarzschild coor
dinates for the external Schwarzschild geometry: 

Show that the vacuum field equation reduces to 

( 
2M

)(
2M 1.(1, + 1 ) ) - '¥1, t t + '¥1,r'r' = 1 - -r- -;a + r2 '¥1 , 

where r* is the "tortoise coordinate" of §25.5 and Figure 25 .4 : 

r* = r + 1 M  in (r/1M - 1) .  

(32.27a) 

(32 .27b) 

(32 .27c) 

Notice that (32 .27b) is a flat-space, one-dimensional wave equation with effective potential 

( 
2M

)(
2M 1.(1, + 1 ) ) veff (r) = 1 - -,- -;a + r2 (32 .27d) 

Part of this effective potential [1.(1. + l )/r2] is the "centrifugal barrier," and part [2M/r] is 
due to the curvature of spacetime . Notice the similarity of this effective potential for scalar 
waves, to the effective potentials for particles and photons moving in the Schwarzschild 
geometry, 

- 2 _ - 2  2 ( V )particles - ( l - 2M/r)( l + L /r ) ,  
(B -2)photons = ( l - 1M/r)Y-2 

(Boxes 25 .6 and 25.7) . The scalar-wave potential, like the photon potential, 1s positive for 
all r > 1M. It rises, from O at r = 1M, to a barrier summit; then falls back to O at r = oo .  
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(b) Show that there exist no physic ally accept able, st atic sc al ar -w ave perturbations of a 
Schwarzschild black hole. [More precisely, show that all static solutions to equation (32.27b) 
become infinite at either the horizon (r = 1M, r* = - oo )  or at radial infinity.] This suggests 
that somehow the black hole formed by collapse must divest itself of the star's external scalar 
field before it can settle down mto a quiescent state. 

( c) The general solution to the wave equation (32.27b) can be written m terms of a Fourier 
transform. For waves that begin near the horizon, propagate outward, and are partially 
transmitted and partially reflected ("rightward-propagating waves"), show that the general 
solution is 

where 

'¥1(t, r *) = .r_: A(k)R/; (r *)e-ikt dk, 

d2RVdr *2 = [- k 2 + v.rrCr)JRL 
R{ = e ikr' + I' \cR>e-ikr' as r * --+ - oo ,  

Rr = T'{-leikr' as r * --+ 00 . 

(32.28a) 

(32.28b) 

(32.28c) 

Show that the "reflection and transmission coefficients for rightward-propagating waves," 
I' \cR> and T'{->, have the following asymptotic forms for lkl <{ 1/ M (short wave number; long 
wavelength) : 

I' \cR> = - 1 + a1Mik, 

produces complete reflection and complete 
destructive interference in limit k --+  O; 
see Box 32.2 for detailed discussion of 
consequences 

T\cR) = (21 � I )! !  (2Miki + l  (32.28d) 

1no transmiss10n 
in limit k --+  O; see 
1Box 32.2 

where a and /3 are constants of order unity. Give a similar analysis for waves that impinge 
on a Schwarzschild black hole from outside ("leftward-propagating waves"). 

( d) Show that, as the star collapses into the horizon, the world line of its surface in (t, r*) 
coordinates is 

r* = R *(t) = - t - R0 • exp (- t/1 M) + const., (32.29a) 

where R0 • is related to the magnitude a of the surface's 4-acceleration (a > 0 for outward 
4-acceleration) by 

R0* = (8M/e) { 1 + 16M a [ M a + ( M2 a 2 + ½ f2]} . (32.29b) 

Thus, the world line of the surface appears to become null near the horizon (t + r* = V = 
constant); of course, this is due to pathology of the coordinate system there. Show, further, 
that the scalar field on the star's surface ( V  = constant) must vary as 

,T, _ Q + Q -U/4M "' 1 - w ue , U _ t - r *. (32.29c) 

when the star is approaching the horizon (t --+ oo ,  r* --+ - oo ,  D --+  oo ), in order that 
the rate of change of '¥ 1 be finite as measured on the star's surface. Notice that Q 10 is the 
"final value" of the scalar field on the star's surface. It can be regarded as an outgoing wave 
with zero wave number (infinite wavelength); and, consequently, it gets completely and 
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destructively reflected by the effective potenti al [see equation (32.28d); also Box 32.2). Conclu
sion : All multi poles of the scalar field die out at finite r* as t --+ oo .  (Price's theorem for 
a scalar field.) For a more detailed analysis, including the rates at which the multipoles die 
out, see Price (1971, 1972a) or Thorne (1972). 

Exercise 32 . 1 1 .  N EWMAN-PEN ROSE " C O NSTANTS" 
[See Press and Bardeen ( 1 9 7 1 ) , Bardeen and Press ( 1 9 72) ,  
and Pi i r  ( 1 9 7 1 )  for more deta i ls than a re presented here . ]  

Wheeler (1955) showed that Maxwell's equations for an 1-pole electromagnetic field residing 
in the Schwarzschild geometry can be reduced to the wave equation 

( 2M ) 1(1 + 1) - '¥1 tt + '¥1 r•r• = 1 - -- 2 '¥1 · · r r 
(32.30) 

[electromagnetic analogue of (32.27b)). After this equation has been solved, the components 
of the electromagnetic field can be obtained by applying certain differential operators to 
'¥i(t, r*) Y1m(0, </> ). 

(a) Show that the general solution to the electromagnetic wave equation (32.30) for dipole 
(1 = 1) fields, with outgoing-wave boundary conditions at r* --+ + oo ,  has the form 

(32.31 a) 

where 
V = t - r* is "retarded time", and 

J;' = Jo, /2' = 0, 
, _ (n + l )(n - 2) 

fn - - 2n fn - 1 + (n - 2)Mfn _ 2. (32.31b) 

When spacetime is flat (M = 0), this solution becomes 

'¥1 = /i'( U) + J;(U)/r . (32.31N) 

[The 1/r fall-off of the radiation field J;'( U) has been factored out of '¥ 1 ; see the scalar-wave 
function (32.27a).] The terms f2(U)/r 2 + . . .  , which are absent in flat spacetime, are 
attributable to backscatter of the outgoing waves by the curvature of spacetime. They are 
sometimes called the "tail" of the waves. 

(b) Show that the general static dipole field has the form (32.3 l a) with 

(/o)static = 0; (/1)static = D = dipole moment; 

3 (fz)static = 2 MD; • · • • 
(32.32) 

(c) Consider a star (not a black hole ! ) with a dipole field that is initially static. At time 
t = 0, let the star suddenly change its dipole moment to a new static value D '. Equations 
(32.31b) demand that f; be conserved ("Newman-Penrose (1965) const ant"] . Hence, /2 will 
always exhibit a v alue, �MD, corresponding to the old dipole moment; it c an never ch ange 

to �MD '. This is a manifestation of the tail of the waves that are generated by the sudden 
change in dipole moment. To understand this tail effect more clearly, and to discover an 
important flaw in the above result, evaluate the solution (32.31) for retarded time V > 0, 
using the assumptions 

( I )  field has static form (32.32) for V < 0, 

(2) /1 = D ' for V > 0. 
(32.33) 
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Put the answer in the form 

lMD - -
_ !!.:_ _2 __ 

00 2M(D ' - D )(- I r + 1(n + l ) Un - 2 
( M2 M2 U)  

'l1i - + i + � c2 r + o 3 , 4 • r r n = 3 r r r 

871 

(32.34) 

(The terms neglected are small compared to those kept for all D /r, so long as r ► M.) 
Evidently, so long as the series converges the Newman-Penrose "constant" (coefficient of 
l /r 2) remembers the old D value and is conserved, as claimed above. Show, however, that 
the series diverges for D > 2r-i.e., it diverges inside a sphere that moves outward with 
asymptotically ¼ the speed of light. Thus, the Newman-Penrose "const ant" is well-defined and 
conserved only outside the "¼-speed-of-light cone." 

(d) Sum the series in (32.34) to obtain a solution valid even for V > 2r : 

'¥ = !!.:_ + 2_ MD '  _ 2M(D ' - D) ( U + 3r) + o ( Mr3
2

) 
r 2 r 2 r ( V + 2r)2 

new static 
solution 

"tail term" 

= the series (32.34) for D < 2r (domam of convergence of that series) 

= - + --- + 0 - - for V ► r ► M. D' 3 MD' ( M M2
) 

r 2 r2 Ur ' r3 

(32.35) 

From this result conclude that at fixed r and l ate times the electromagnetic field becomes 
asymptotic ally st atic, and the Newman-Penrose "const ant" assumes the new v alue ;MD ' 
appropri ate to the new dipole moment. 



CHAPTER 33  
B LAC K H O LES 

A d ia log  exp l a i n i ng why 
black ho les deserve the i r  
name 

A luminous star, of the same density as the Earth, and whose diameter should be 
two hundred and fifty times larger than that of the Sun, would not, in 

consequence of its attraction, allo w any of its rays to arrive at us; it is therefore 
possible that the largest luminous bodies in the universe may, through this cause, 

be invisible 
P S LAP LACE ( 1 7 98) 

§33 . 1 .  WHY " B LACK H O LE" ? 

Sagredus. What is all this talk about "black holes"? When an external observer watches a star collapse, he sees it implode with ever-increasing speed, until the relativistic stage is reached. Then it appears to slow down and become "frozen," just outside its horizon (gravitational radius) . However long the observer waits, he never sees the star proceed further. How can one reasonably give the name "black hole" to such a frozen object, which never disappears from sight? 
Salvatius. Let us take the name "black hole" apart. Consider first the blackness. Surely nothing can be blacker than a black hole. The very redshift that makes the collapsing star appear to freeze also makes it darken and become black. In the continuum approximation, where one ignores the discreteness of photons, the intensity of the radiation received by distant observers decreases exponentially as time passes, L a:. exp (- t/3 ,JiM), with an exceedingly short e-folding time 

r = 3 ,JiM = (2 .6 X 10-5 sec)(M/ M0) .  

Within a fraction of a second, the star is essentially black. Discreteness of photons makes it even blacker. The number of photons emitted before the star crosses its horizon is finite, so the exponential decay cannot continue For a more detailed exposiuon of the foundations of "black-hole physics," see DeWitt and DeWitt ( 1 973) 
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forever. Eventually-only 1 0-3(M/ M0) seconds after the star begins to dim 
(see exercise 32.2)-the last photon that will ever get out reaches the distant 
observers. Thereafter nothing emerges. The star is not merely "essentially 
black" ; it is "absolutely black. " 

Sagredus. Agreed. But it is the word "hole" that concerns me, not "black." How 
can one possibly regard the name "hole" as appropriate for an object that 
hovers forever just outside its horizon. True, absence of light makes the object 
invisible. But couldn't one always see it by shining a flashlight onto its surface? 
And couldn't one always fly down to its surface in a rocket ship and scoop 
up a few of the star's baryons? After all, as seen from outside the baryons 
at its surface will never, never, never manage to fall into the horizon! 

Salvatius. Your argument sounds persuasive. To test its validity, examine the collapse 
of a spherically symmetric system, using the ingoing Eddington-Finkelstein 
diagram of Figure 33 . 1 .  Let a family of external observers shine their flash
lights onto the star's surface, as you have suggested. Let the surface of the 
star be carefully silvered so it reflects back all light that reaches it. Initially 
(low down in the spacetime diagram of Figure 3 3 . 1 )  the ingoing light beams 

Figure 33 .  1 .  

.§ 
0 ::c 

j7 

t 

( 

I 
Spherical gravitational collapse of a star to form a black hole, as viewed in ingoing 
Eddington-Finkelstein coordinates. The "surface of last influence," 9l, is an mgoing null 
surface that intersects the horizon in coincidence with the surface of the collapsing star. 
After an external observer, moving forward in time, has passed through the surface of 
last influence, he cannot interact with and influence the star before it plunges through 
the horizon. Thus, one can think of the surface of last influence as the "birthpoint" of 
the black hole. Before passing through this surface, the external observer can say his 
flashbght is probing the shape of a collapsing star; afterwards, he can regard his signals 
as probes of a black hole. For further discussion, see text. 
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reach the star's surface and are reflected back to the flashlights with no 
difficulty. But there is a critical point-an ingoing radial null surface '.%
beyond which reflection is impossible. Photons emitted inward along 9l reach 
the star just as it is passing through its horizon. After reflection these photons 
fly "outward" along the horizon, remaining forever at r = 2M. Other photons, 
emitted inward after the flashlight has passed through '.%, reach the surface 
of the star and are reflected only after the star is inside its horizon. Such 
photons can never return to the shining flashlights. Once inside the horizon, 
they can never escape. Thus, the total number of photons returned is finite 
and is subject to the same blackness decay law as is the intrinsic luminosity 
of the star. Moreover, if the observers do not turn on their flashlights until 
after they pass through the null surface 9l, they can never receive back any reflec
ted photons! Evidently, flashlights are of no help in seeing the "frozen star." 

Sagredus. I cannot escape the logic of your argument. Nevertheless, seeing is not 
the only means of interacting with the frozen star. I have already suggested 
swooping down in a rocket ship and stealing a few baryons from its surface. 
Similarly, one might let matter fall radially inward onto the frozen star. When 
the matter hits the star's surface, its great kinetic energy of infall will be 
converted into heat and into outpouring radiation. 

Salvatius. Thus it might seem at first sight. But examine again Figure 33.1. No 
swooping rocket ship and no infalling matter can move inward faster than 
a light ray. Thus, if the decision to swoop is made after the ship passes through 
the surface '.%, the rocket ship has no possibility of reaching the star before 
it plunges through the horizon; the rocket and pilot cannot touch the star, 
sweep up baryons, and return to tell their tale. Similarly, infalling matter 
to the future of 9l can never hit the star's surface before passing through the 
horizon. The surface 9l is, in effect, a "surface oflast influence." Once anybody 
or anything has passed through '.%, he or it has no possibility whatever of 
influencing or interacting with the star in any way before it plunges through 
the horizon. Thus, from a "causal " or "interaction" standpoint, the collapsing 
star becomes a hole in space at the surface 9l. This hole is not black at first. 
Radiation from the collapsing star still emerges after 9l because of finite 
light-propagation times, just as radiation still reaches us today from the hot 
big-bang explosion of the universe. But if an observer at radius r ► 2M waits 
for a time 2r after passing through 9l (time for 9l to reach horizon, plus time 
for rays emitted at R ~ 3M to get back to observer), then he will see the 
newly formed hole begin to turn black; and within a time Lit ~ 00-3 

seconds)(M/ M0) thereafter, it will be completely black. 
Sagredus. You have convinced me. For all practical purposes the phrase "black hole" 

is an excellent description. The alternative phrases "frozen star" and "col
lapsed star," which I find in the pre-1969 physics literature, emphasize an 
optical-illusion aspect of the phenomenon. Attention must be directed away 
from the star that created the black hole, because beyond the surface of last 
influence one has no means to interact with that star. The star is irrelevant 
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to the subsequent physics and astrophysics. Only the horizon and its external 
spacetime geometry are relevant for the future. Let us agree to call that 
horizon the "surface of a black hole," and its external geometry the "gravita
tional field of the black hole." 

Salvatius. Agreed. 

§33 .2. THE GRAVITATIONAL AND ELECTROMAGNETIC 

FIELDS OF A BLACK HOLE 

The collapse of an electrically neutral star endowed with spherical symmetry pro
duces a spherical black hole with external gravitational field described by the 
Schwarzschild line element 

dr 2 
ds 2 = - (I  - 2M/r) dt2 + ---- + r 2(d02 + sin20 dcp2) .  I - 2M/r 

(33 . 1 )  

The surface o f  the black hole, i .e. , the horizon, i s  located at r = 2M = (gravitational 
radius) .  Only the region on and outside the black hole's surface, r � 2M, is relevant 
to external observers. Events inside the horizon can never influence the exterior. 

The gravitational collapse of a realistic star (nonspherical, collapse with small but 
nonzero net charge of one sign or the other) produces a black hole somewhat different 
from the simple Schwarzschild hole . For collapse with small charge and small 
asymmetries, perturbation-theory calculations (Box 32.2) predict a final black hole 
with external field determined entirely by the mass M, charge Q, and intrinsic angular 
momentum S of the collapsing star. For fully relativistic collapse, with large asym
metries and possibly a large charge, the final black hole (if one forms) is also 
characterized uniquely by M, Q, and S. This is the conclusion that strongly suggests 
itself in 1 972 from a set of powerful theorems described in Box 33 . 1 .  

Why M, Q, and S should be the complete governors of the final external field 
of the black hole, one can understand heuristically as follows. Of all quantities 
intrinsic to any isolated source of gravity and electromagnetism, only M, Q, and 
S possess ( and are defined in terms of) unique, conserved imprints in the distant 
external fields of the source (conserved Gaussian flux integrals ; see Box 1 9 . l  and 
§20 .2). When a star collapses to form a black hole, its distant external fields are 
forced to maintain unchanged the imprints of M, Q, and S. In effect, M, Q, and 
S provide anchors or constraints on the forms of the fields. Initially other constraints 
are produced by the distributions of mass, momentum, stress, charge, and current 
inside the star. But ultimately the star plunges through a horizon, cutting itself off 
causally from the external universe. (The nonpropagation of long-wavelength waves 
through curved spacetime plays a key role in this cutoff; see Box 32.2.) Subsequently, 
the only anchors remaining for the external fields are the conserved imprints of M, 
Q, and S. Consequently, the external fields quickly settle down into unique shapes 
corresponding to the given M, Q, and S. Of course, the settling down involves 
dynamic changes of the fields and an associated outflow of gravitational and electro-

The structu re of a b lack ho le 
is determ i ned u n i quely by its 
mass M, charge 0, and  
i ntr ins ic angu l a r  momentu m ,  S 

Heurist ic explanat ion of the 
M-0-S u n i qu eness 
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Box 3 3 . 1 A B LACK H O LE HAS N O  " H A I R "  

The following theorems come close to  proving that 
the external gravitational and electromagnetic fields 
of a stationary black hole (a black hole that has 
settled down into its "final" state) are determined 
uniquely by the hole 's mass M, charge Q, and intrin
sic angular momentum S-i.e., the black hole can 
have no "hair" (no other independent characteris
tics). For a detailed review, see Carter (1973). 

I. Stephen Hawking (197 1 b, 1 972a) : A station
ary black hole must have a horizon with 
spherical topology; and it must either be static 
(zero angular momentum), or axially sym
metric, or both. 

II. Werner Israel (1967a, 1 968) :  Any static black 
hole with event horizon of spherical topology 
has external fields determined uniquely by its 
mass M and charge Q; moreover, those exter
nal fields are the Schwarzschild solution if 
Q = 0, and the Reissner-Nordstr.om solution 
( exercises 3 1 .8  and 32. 1 )  if Q =j:. 0 (both special 
cases of Kerr-Newman; see §33.2). 

III. Brandon Carter (1970) : "All uncharged, sta
tionary, axially symmetric black holes with 
event horizons of spherical topology fall into 
disjoint families not deformable into each 
other. The black holes in each family have 
external gravitational fields determined 
uniquely by two parameters : the mass M and 
the angular momentum S." (Note: the "Kerr 
solutions"-i.e., "Kerr-Newman" with Q = 0 
-form one such family; it is very likely 
that there are no others, but this has not been 
proved as of December 1 972. It is also likely 
that Carter's theorem can be extended to the 
case with charge; but this has also not yet 
been done.) 
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IV. Conclusions made by combining all three the
orems : 
(a) All stationary black holes are axially sym

metric. 
(b) All static (nonrotating) black holes are 

characterized uniquely by M and Q, and 
have the Reissner-Nordstr.om form. 

(c) All uncharged, rotating black holes fall 
into distinct and disjoint families, with 
each black hole in a given family charac
terized uniquely by M and S. The Kerr 
solutions form one such family. There 
may well be no other family. 

V. Remarks and Caveats : 
(a) The above statements of the theorems are 

all somewhat heuristic. Each theorem 
makes several highly technical assump
tions, not stated here, about the global 
properties of spacetime. These assump
tions seem physically reasonable and in
nocuous, but they might not be. 

(b) Progress in black-hole physics is so rapid 
that, by the time this book is published, 
there may well exist theorems more pow
erful than the above, which really prove 
that "a black hole bas no hair." 

(c) For insight into the techniques of "global 
geometry" used in proving the above the
orems and others like them, see Chapter 
34 ;  for greater detail see the forthcoming 
book by Hawking and Ellis (1973). 

(d) For analyses which show that a black hole 
cannot exert any weak-interaction forces 
caused by the leptons which have gone 
down it, see Hartle (197 1 ,  1 972) and Tei
telboim (1 972b,c). For similar analyses 
which show absence of strong-interaction 
forces from baryons that have gone down 
the hole, see Bekenstein (1972a,b) and 
Teitelboim (1972a). 
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magnetic waves. And, of course, the outflowing waves carry off mass and angular 
momentum (but not charge), thereby leaving M and S changed. And, of course, 
the external fields must then readjust themselves to the new M and S. But the process 
will quickly converge, producing a black hole with specific final values of M, Q, 
and S and with external fields determined uniquely by those values. 

The problem of calculating the external fields for given M, Q, and S and their 
given imprints, is analogous to the problem of Plateau-to calculate the shape of 
a soap film anchored to a wire of given shape. * One calculates the shape of the 
soap film by seeking a surface of minimum area spanning the bent wire. The 
condition of minimum area leads to a differential equation describing the soap film, 
which must be solved subject to the constraint imposed by the shape of the wire. 

To calculate the external fields of a black hole, one can extremize the "action Variationa l  pr inc ip le  for 
integral" f(!Jl + E) M d4x for interacting gravitational and electromagnetic fields black-ho le  structure 

(see Chapter 21) subject to the anchored-down imprints of M, Q, and S at radial 
infinity, and subject to the existence of a physically nonsingular horizon (no infinite 
curvature at horizon!). Extremizing the action is equivalent to solving the coupled 
Einstein-Maxwell field equations subject to the constraints imprinted by M, Q, and 
S, and the existence of the horizon. The derivation of the solution and the proof 
of its uniqueness are much too complex to be given here. (See references cited in 
Box 33 . 1 .) However, the solution turns out to be the "Kerr-Newman geometry" and 
its associated electromagnetic field. t 

Written in the t, r, 0, <f> coordinates of Boyer and Lindquist (1 967) (generalization Deta i l s  of b lack-hole structure 
of Schwarzschild coordinates), the Kerr-Newman geometry has the form 

where 

ds2 = - � [dt - a sin20 d<t>]2 + sin:e [(r 2 + a2) d<f> - a dt]2 

p p 
2 

+ � dr2 + p2 d02, 

Ll r 2 - 2Mr + a2 + Q2 , 

P2 r 2 + a2 cos20, 

a S/ M angular momentum per unit mass. 

(33 .2) 

(33 .3 a) 

(33 .3b) 

(33 .4) 

The corresponding electromagnetic field tensor, written as a 2-form (recall : dxa I\ 
dx/3 dx<> ® dxf3 - dxf3 ® dx<>) is 

F = Qp-4(r 2 - a2 cos20) dr I\ [dt - a sin20 d<f>] 
+ 2Qp-4ar cos 0 sin 0 d0 I\ [(r 2 + a2) d<f> - a dt]. 

(33 .5) 

* On the problem of Plateau see, e.g., Courant ( 1937), Darboux ( 194 1 ) ,  or  p. 1 57 of Lipman Bers 
( 1 952). 

tThe uncharged (Q = 0) version was first found as a solution to Einstein's vacuum field equations 
by Kerr ( 1 963).  The charged generalization was first found as a solution to the Einstein-Maxwell field 
equations by Newman, Couch, Chinnapared, Exton, Prakash, and Torrence ( 1 965) Only later was the 
connection to black holes discovered; see Box 33. 1 .  

( 1 )  m etr ic ( " Kerr-Newma n  
geometry ' ' )  

( 2 )  e lectromagnetic f ie ld 
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Expressions (33 .2) for the metric and (33 .5)  for the electromagnetic field are 
sufficiently long to be somewhat frightening. Therefore, it is helpful to develop some 
qualitative insight into them and into their implications before attempting detailed 
computations with them. Boxes 33 .2, 33 .3 ,  and 33 .4 develop qualitative insight by 
presenting, without derivation, a summary of the key features of the Kerr-Newman 
geometry and a summary of the physics and astrophysics of black holes .  The re
mainder of this chapter is a Track-2 justification and derivation of some, but not 
all, of the results cited in Boxes 33 .2-33 .4 .  

(continued on  page 891) 

Box 33 .2  KERR-N EWMAN G E O M ETRY AND E LECTROMAG N ETIC F I E LD 

I. Equations for metric and electromagnetic field 

A. Parameters appearing in equations: 
M = mass, Q = charge, a S/ M = angular momentum per unit mass, all 
as measured by their standard imprints on the distant fields. 

B. Constraint on parameters : 
The Kerr-Newman geometry has a horizon, and therefore describes a black 
hole, if and only if M2 � Q 2 +· a2 . It seems likely that in any collapsing body 
which violates this constraint, centrifugal forces and/ or electrostatic repulsion 
will halt the collapse before a size ~M is reached; see equation (33 .56). 

C. Limiting cases : 
Kerr (1 963) geometry; Q = O, 

S = O, Reissner-Nordstrom geometry and electromagnetic field 
( exercises 3 1 .8 and 32. 1 ); 

Q = S = 0, 
M2 = Q2 + a2 

Schwarzschild geometry; 
"Extreme Kerr-Newman geometry." 

D. Boyer-Lindquist (1967) coordinates (t, r, 0, </>-generalization of Schwarzs
child coordinates ; black hole rotates in </> direction) : 

ds2 = - (Ll/p2)[dt - a sin20 d<J>]2 + (sin20/p2)[(r 2 + a2) d</> - a dt]2 
(1) + (p2 I LI) dr 2 + P 2 d02 ; 

LI r 2 - 2Mr + a2 + Q2
, p2 r 2 + a2 cos20. 

F = Qp-4(r2 - a2 cos20) dr I\ [dt - a sin20 d</>] 
+ 2Qp-4ar cos 0 sin 0 d0 I\ [(r2 + a2) d</> - a dt]. 

(2) 

(3) 

E. Kerr coordinates [ V, r, 0, �-generalization of ingoing Eddington-Finkelstein 
coordinates ; (V, 0, �) = constant is an ingoing, "radial," null geodesic; black 
hole rotates in � direction] : 
Relationship to Boyer-Lindquist : 
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dV = dt + (r2 + a2)( dr I LI), d� = dcp + a(dr/ LI). (4) ds2 = - [I - p-2(2Mr - Q2)] dV2 + 2 dr dV + p2 d02 

+ p-2[(r2 + a2)2 - Lla2 sin20] sin20 d�2 - 2a sin20 d� dr (5) - 2ap-2(2Mr - Q2) sin20 d� dV. F = Qp-4[(r2 - a2 cos20) dr I\ dV - 2a2r cos 0 sin 0 d0 I\ dV (6) - a  sin20(r2 - a2 cos20) dr I\ d� + 2ar(r2 + a2) cos 0 sin 0 dB I\ d�]-
II. Properties of spacetime geometry A. Symmetries (§33 .4) :  The metric coefficients in Boyer-Lindquist coordinates are independent of t and </>, and in Kerr coordinates are independent of V and �- Thus the spacetime geometry is "time-independent" (stationary) and axially symmetric. The "Killing vectors" (§25 .2) associated with these two symmetries are (o/c!Qr, o ,,t, = (o/o V)r, o ,¢ and (01°</>)i,r, 0 = (01°</>)v,r, 0 ·  B .  Dragging of inertial frames and static limit (§33 .4) :  1 .  The "dragging of inertial frames" by the black hole's angular momentum produces a precession of gyroscopes relative to distant stars. By this precession one defines and measures the angular momentum of the black hole (see §§ 19 .2 and 19 .3) .  2 .  The dragging becomes more and more extreme the nearer one approaches the horizon of the black hole. Before the horizon is reached, at a surface described by r = ro(B) M + yM2 - Q2 - a2 cos20, (7) the dragging becomes so extreme that no observer can possibly remain at rest there (i.e . ,  be "static") relative to the distant stars. At and inside this surface 

( called the "static limit"), all observers with fixed r and 0 must orbit the black hole in the same direction in which the hole rotates : 
a sin 0 - yLl > -----------(r2 + a2) sin 0 - yLla sin20 (?:  0 for a = S/ M > 0 and r � r0) .  No matter how hard an observer, at fixed (r, 0) inside the static limit, blasts his rocket engines, he can never halt his angular motion relative to the distant stars. 3 .  The mathematical foundation for the above statement is this : world lines of the form (r, 0, </>) = constant [tangent vector ex a /o t = "Killing vector in time direction"] change from being timelike outside the static limit to being spacelike inside it. Therefore, on and inside the static limit, no observer can remain at rest. C. Horizon (§33 .4) : I .  The horizon is located at r = r+ M + yM2 - Q2 - a2 • (8) 2 .  As with the Schwarzschild horizon of a nonrotating black hole, so also here, particles and photons can fall inward through the horizon; but no particle or 
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Box 33.2 (continued) 

photon can emerge outward through it. 3 .  The horizon is "generated" by outgoing null geodesics ( outgoing photon world lines). D. Ergosphere (§33 .4) : I .  The "ergosphere" is the region of spacetime between the horizon and the static limit. It plays a fundamental role in the physics of black holes (Box 33 .3 ;  §33 .7) .  2 .  The static limit and the horizon touch at the point where they are cut by the axis of rotation of the black hole 
(0 = 0, '77) ;  they are well-separated elsewhere with the static limit outside the horizon, unless a = 0 (no rotation) . When a = 0, the static limit and horizon coincide ; there is no dragging of inertial frames; there is no ergosphere. 

\ 
Qualltative representation of horizon, ergosphere, and static llmit [adapted from Ruffini and Wheeler ( 197 l b)]. 

E. Singularity in Boyer-Lindquist coordinates : I .  For a nonrotating black hole, the Schwarzschild coordinates become singular at the horizon. One manifestation 
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of the singularity is the infinite amount of coordinate time required for any particle or photon to fall inward through the horizon, t --+ oo as 
r --+ 2M. One way to remove the singularity (Eddington-Finkelstein way) is to replace t by a null coordinate V = t + r + 2M ln l r/2M - I I  attached to infalling photons [so (o/or)v, 8 , <t> is vector tangent to photon world lines] . 2. For a rotating black hole, the BoyerLindquist coordinates, being generalizations of the Schwarzschild coordinates, are also singular at the horizon. It requires an infinite coordinate time for any particle or photon to fall inward through the horizon, t --+ oo as 
r --+ r + · But that is not all. The dragging of inertial frames forces particles and photons near the horizon to orbit the black hole with (} _ d<J,/dt > 0.  Consequently, for a particle falling through the horizon (r --+ r +), just as t --+  oo ,  so also <J> --+  oo (infinite twisting of world lines around horizon). 3 .  To remove the coordinate singularity, one must perform an infinite compression of coordinate time, and an infinite untwisting in the neighborhood of the horizon. Kerr coordinates achieve this by replacing t with a null coordinate V, and <J> with an untwisted angular coordinate �: 

dV = dt + (r2 + a2)(dr/ LI), 
d� = d<J, + a(dr/ LI). Both of the new coordinates are attached to the world lines of a particular family of infalling photons ; (o/or)v, 8 , ; is the field of vectors tangent to the world lines of this family of photons (ingoing principal null congruence ; §33 .6) .  
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F. Spacetime diagram: 
I .  A spacetime diagram in Kerr coordi

nates looks much like an Eddington
Finkelstein diagram for the Schwarzs
child geometry. In both cases, one plots 
the surfaces of constant V not as hori
zontal planes, but as "backward light 
cones" ("45 -degree surfaces"), because 
they are generated by the world lines 
of ingoing photons. Equivalently, one 
plots surfaces of constant T V - r as 
horizontal planes. 

2. The key differences between a Kerr 
diagram and an Eddington-Finkelstein 
diagram are : (a) Because the Kerr
Newman geometry is not spherical, a 
Kerr diagram with one rotational de
gree of freedom suppressed loses infor
mation about the geometry. Kerr dia
grams are usually made for the 
equatorial "plane," 0 = w/2. (b) Just as 
the horizon pulls the light cones inward, 
so the dragging of inertial frames tilts 
the light cones in the direction of in
creasing �' for a > 0 and r = constant. 
(c) The ingoing edge of a light cone 
( dr / d V  = - oo )  does not tilt toward in
creasing �; the transformation from 
Boyer-Lindquist coordinates to Kerr 
coordinates untwists the tilt with de
creasing r, which would otherwise be 
produced by "frame dragging." 

3. The shapes of the light cones reveal the 
special features of the static limit and 
horizon. At the static limit, a vertical 
world line [r, 0, � constant ; (o/o V)r, II ,¢ 
= (a /ot)r, 11 , ¢ = tangent vector] lies on 
the light cone. At the horizon the light 
cones tilts fully inward, except for a 
single line of tangency to the horizon. 
Notice that the line of tangency has 
d;j;/d V  = a/(r/ + a2) =J. 0. Equiva
lently, the outgoing null geodesics, 
which generate the horizon, twist about 
it ("barber-pole-twist")-yet another 
manifestation of the dragging of inertial 
frames. 

8 8 1 

Kerr diagram for equatorial slice (0 = w/2) through the spacetime of an "extreme Kerr" black hole (Q = 0, a = M). 

(iJ/01),, 8 , "' 
= ca;a V>,, 0• ,i 

(o/or) v, 8, ;j, 

View from above showing the shapes of the light cones as a function of radius 
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Box 3 3 . 2  (continued) 

4. The Kerr diagram, like the Eddington
Finkelstein diagram, describes infall 
through the horizon in a faithful, non
singular way. 

5. [The term "Kerr diagram" is a misno
mer. Kerr has not published such dia
grams himself, though nowadays others 
construct such diagrams using his coor
dinate system. Penrose is the originator 
and greatest exploiter of such diagrams 
(see, e.g., Penrose, 1969). But several 
other types of diagrams bear Penrose's 
name, so it would be confusing to name 
them all after him.] 

G. Maximal analytic extension of Kerr-New
man geometry: 
1. When one abstracts the Schwarzschild 

geometry away from all sources (Chap
ter 31 ), one discovers that it describes 
an expanding and recontracting bridge, 
connecting two different universes. But 
in the context of black holes, only half 
of the Schwarzschild geometry (regions 
I and II) is relevant. The other half 
(regions III and IV) gets fully replaced 
by the interior of the star that collapsed 
to form the black hole. Because only a 

Surface of 
collapsing star 

part of the Schwarzschild geometry 
comes into play, ingoing Eddington
Finkelstein coordinates-which de
scribe I and II well, but III and IV 
badly-are well-suited to black-hole 
physics. 
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2. Similarly, when one abstracts the Kerr
Newman geometry away from all sour
ces, one discovers that it describes a 
much larger, and more complex space
time manifold than one might ever 
have suspected. This "maximum ana
lytic extension" of the Kerr-Newman 
geometry has been analyzed in de
tail by Boyer and Lindquist (1967) 
and by Carter (1966a, 1968a). But it is 
totally irrelevant to the subject of black 
holes, for two reasons. First, as with 
Schwarzschild, the star that collapsed to 
form the black hole replaces most of the 
inward extension of the Kerr-Newman 
manifold. Second, even outside the star, 
the Kerr-Newman geometry does not 
properly represent the true geometry at 
early times. At early times the star has 
not got far down the road to collapse. 
Gravitational moments of the star arise 
from mountains or prominences or tur
bulence or other particularities that 
have not yet gone into the meat grinder. 
The geometry departs from flatness (1) 
by a term that varies for large distances 
as mass divided by distance, and (2) by 
another term that varies as angular mo
mentum divided by the square of the 
distance and multiplied by a spherical 
harmonic of order one, but also (3) by 
higher-order terms proportional to 
higher-order mass moments multiplied 
by higher spherical harmonics. These 
higher-order terms normally will devi
ate at early times from the correspond
ing terms in the mathematical analysis 
of the Kerr-Newman geometry
though the deviations will die out as 
time passes. For a system endowed with 
spherical symmetry, no such higher
order terms do occur or can occur. 
Therefore the geometry outside is 
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Schwarzschild in character at all stages of the collapse. However, when the system lacks spherical symmetry, the geometry outside initially departs from Kerr-Newman character. Only well after 
the collapse occurs (asymptotic future), 
and in the region at and outside che hori
zon, is the Kerr-Newman geometry a 
faithful descriptor of a black hole. This region is described in a nonsingular manner by Kerr coordinates and Kerr diagrams; and it is the only region that this book will explore. H. Test-particle orbits See §§33 .5-33 .8 and Box 33 . 5 .  III. Properties of  electromagnetic field (§33 .3) : A. Far from the black hole, where spacetime is nearly flat, in the usual spherical orthonormal frame (w 1 = dt, wr = dr, w {j = r c/0, wif> = r sin 0 d</>), the electric and magnetic fields have dominant components 

Q 
E.- = 2 ; 

r 
2Qa Qa . B; = -3- cos 0, B {j = -3 sm 0.  r r 

Box 3 3 . 3  THE ASTRO PHYS I CS O F  B LACK H O LES Black holes in nature should participate in astrophysical processes that are as varied as those for stars. By searching for observable phenomena associated with these processes, astronomers have a good chance of discovering the first black hole sometime during the 1 970's. This box lists some possible astrophysical processes, and a few relevant references. 
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These reveal that 
Q = charge of black hole, qJfl, Qa = magnetic dipole moment of black hole. B. Notice that the gyromagnetic ratio, y = (magnetic moment)/(angular momentum), is equal to Q/M = (charge/mass), just as for an electron! C. Notice that the value of the magnetic moment, like all other features of the black hole, is determined uniquely by the hole's mass, charge, and angular momentum: (j)/l = QS/ M. This illustrates the theorem (Box 3 3 . 1 )  that a black hole has no "hair." D. Other electric and magnetic moments are nonzero, but are determined uniquely by 

M, S, and Q. E. Near the black hole, the curvature of spacetime deforms the electric and magnetic fields produced by the charged, rotating black hole. For a mathematical description of this deformed field, see Cohen and Wald ( 1 97 1 ) ; for a diagrammatic representation, Hanni and Ruffini ( 1973) .  

I. Mechanisms of Formation A. "Direct, in isolation" : A massive star (M > 
3M0) collapses, almost spherically, pr;ducing a collapsed neutron-star core that is too massive to support itself against gravity. Gravity pulls the core on inward, producing a horizon and black hole. [May 
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Box 3 3 . 3  (continued) 

and White ( 1 966, 1 967); Chapter 32 of this 
book.] 

B. "Indirect, in isolation" : "Collapse, pursuit, 
and plunge scenario" depicted in Figure 
24 .3 [Ruffini and Wheeler ( 1 97 1 b).] 

C. "In the thick of things" :  Stars collected 
into a dense cluster (e.g., the nucleus of 
a galaxy) exchange energy. Some acquire 
energy and move out into a halo. Others 
lose energy and make a more compact 
cluster. This process of segregation con
tinues. The cluster becomes so compact 
that collisions ensue and gas is driven off. 
The gas moves toward the center of the 
gravitational potential well. Out of it new 
stars form. The process continues. Eventu
ally star-star collisions may become suffi
ciently energetic and inelastic that the cen
ters of the colliding stars coalesce. In this 
way supermassive objects may be built up 
and may evolve. Ultimately ( 1 )  many 
"small" stars may collapse to form "small" 
black holes (M ~ M0); (2) one or more 
supermassive stars may collapse to form 
huge black holes (M ~ 104M0 to 109Mo); 
(3) the entire conglomerate of stars and gas 
and holes may become so dense that it 
collapses to form a single gigantic hole. 
[Sanders ( 1970), Spitzer ( 197 1), Lynden
Bell (1 967, 1 969), Colgate ( 1967), §§24.5, 
24 .6, 25 .7 of this book.] 

D.  "Primordially" : Perturbations in the initial 
density distribution of the expanding uni
verse may produce collapse, resulting in 
"primordial black holes." Those holes 
would subsequently grow by accretion of 
radiation and matter. By today all such 
holes might have grown into enormous 
objects [M ~ 1017  M0 ; Zel'dovich and 
Novikov ( 1966)] ; but some of them might 
have avoided such growth and might be 
as small as 10-5 grams [Hawking ( 197 l a)]. 
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IL How many black holes are there in our galaxy 
today? 

Peebles ( 1972) has given an excellent review 
of this issue and of prospects for finding black 
holes in the near future. He says "a good 
fraction of the mass of the disc of our galaxy 
was deposited [long ago] in stars capable of 
collapsing to black holes . . . .  The indication is 
that the galaxy's disk may contain on the 
order of 109 black holes." 

III. "Live" black holes versus "dead" black holes 

A. A Schwarzschild black hole is "dead" in 
the sense that one can never extract from 
it any of its mass-energy. One aspect of 
this "deadness" -the fact that a Schwarzs
child black hole is stable against small 
perturbations-is essential ( I )  to the iden
tification of a black hole with the ultimate 
"ground state" of a large mass, and (2) to 
any assertion that general relativity theory 
predicts the possible existence of black 
holes. [For a proof of stability see Vish
veshwara ( 1970). The problem was formu
lated, and most of the necessary tech
niques developed, by Regge and Wheeler 
( 1957), with essential contributions also by 
Zerilli (1 970a).] Thus a small pulse of gravi
tational ( or other) radiation impinging on 
a Schwarzschild black hole does not initi
ate a transition of the black hole into a 
very different object or state . 

B .  A Kerr-Newman black hole-which is ro
tating or charged or both-is not dead. 
The rotational and electromagnetic contri
butions to the mass-energy can be extracted. 
(See §§33 .7 and 33 .8 for mathematical de
tails.) Thus, such black holes are "live"; 
they can inject energy into their surround
ings. By a suitable arrangement of external 
apparatus, one can trigger an exponen
tially growing energy release [Press and 
Teukolsky ( 1972).] But for a perturbed 
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black hole in isolation, the release is al
ways "controlled" and damped; i.e., Kerr 
black holes are stable in any classical con
text [Press and Teukolsky (1 973)] . 

C. Most objects (massive stars; galactic nu
clei; . . .  ) that can collapse to form black 
holes have so much angular momentum 
that the holes they produce should be 
"very live" (a nearly equal to M; S nearly 
equal to M2).  [Bardeen (1970a).] 

D .  By contrast, it is quite probable (but far 
from certain) that no black hole in the 
universe has substantial charge-i.e., that 
all black holes have Q <{ M. A black hole 
with Q ~ M (say, Q > 0 for concreteness) 
would exert attractive electrostatic forces 
on electrons, and repulsive electrostatic 
forces on protons, that are larger than the 
hole's gravitational pull by the factor 

(electrostatic force) = eQ ~ !.__ ~ 1020 
(gravitational force) µ,M µ, 

Here e is the electron charge and µ, is the 
electron ( or proton) mass. Such huge 
differential forces are likely to pull in 
enough charge from outside the hole to 
neutralize it. 

E. But one has learned from the "unipolar 
induction process" for neutron stars [Gold
reich and Julian (1968)] that charge neu
tralization can sometimes be circum
vented. Whether any black-hole process 
can possibly prevent neutralization one 
does not know in 1 972. 

IV. Interaction of a black hole with its environ
ment 

A. Gravitational pull : A black hole exerts a 
gravitational pull on surrounding matter 
and stars. The pull is indistinguishable, at 
radii r ► M, from the pull of a star with 
the same mass. 

B. Accretion and emission of x-rays and y
rays : Gas surrounding a black hole gets 

8 8 5  

pulled inward and is heated by adiabatic 
compression, by shock waves, by turbu
lence, by viscosity, etc. Before it reaches 
the horizon, the gas may become so hot 
that it emits a large flux of x-rays and 
perhaps even y-rays. Thus, accreting mat
ter can convert a black hole into a glowing 
"white" body [for a review of the litera
ture, see Novikov and Thorne (1973)]. 
Accretion from a nonrotating gas cloud 
tends to decrease the angular momentum 
of a black hole [preferential accretion of 
particles with "negative" angular momen
tum; Doroshkevich (1966), Godfrey 
(1970a)] . But the gas surrounding a hole 
is likely to be rotating in the same direc
tion as the hole itself, and to maintain 
S ~ M2 [more precisely, S :::::;  0 .998M2 ; 

Thorne (1973b)]. 

C. A lump of matter (an "asteroid" or a 
"planet" or a star) falling into a black hole 
should emit a burst of gravitational waves 
as it falls. The total energy radiated is 
E ~ 0 .0 1µ,(µ,/ M), where µ, is the mass of 
the object. [Zerilli (1970b); Davis, Ruffini, 
Press, and Price (197 1 ); Figure 36 .2 of this 
book.] 

D. An object in a stable orbit around a black 
hole should spiral slowly inward because 
of loss of energy through gravitational ra
diation, until it reaches the most tightly 
bound, stable circular orbit . It should then 
fall quickly into the hole, emitting a "last
gasp burst" of waves. The total energy 
radiated during the slow inward spiral is 
equal to the binding energy of the last 
stable circular orbit : 
Eradiated = /1, - Elast orbit 

= {
0 .0572µ, for Schwarzschild hole, 
0 .4235µ, for Kerr hole with 

s = M2, Q = 0 .  
Here µ, is the rest mass of the captured 
object. [Box 33 .5 .] The total energy in 
the last-gasp burst is E ~ 0 .0 1µ,(µ,/ M) if 
µ, <{ M. [Fig. 36 .2.] 
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E. When matter falls down a black hole, it 
can excite the hole's external spacetime 
geometry into vibration. The vibrations 
are gradually converted into gravitational 
waves, some of which escape, others go 
down the hole . [Press (l 97 1 ,  Goebel (l972).] 
These vibrations are analogous to an 
"incipient gravitational geon" [Wheeler 
(1 962); Christodoulou (1 97 1 )]-except that 
for a vibrating black hole the background 
Kerr geometry holds the vibration energy 
together (prevents it from propagating 
away immediately), whereas in a geon it 
is curvature produced by the "vibration 
energy" itself that prevents disruption. 

F. By a non-Newtonian, induction-zone (i.e., 
nonradiative) gravitational interaction, a 
black hole gradually transfers its angular 
momentum to any non-axially-symmetric, 
nearby distribution of matter or fields. 
[Hawking (1972a); Ipser (1 97 1 ), Press 
(1972), Hawking and Hartle (1 972).] 

G. A star or planet falling into a large black 
hole will get tom apart by tidal gravita
tional forces. If the tearing occurs near but 
outside the horizon, it may eject a blob of 
stellar matter that goes out with relativis
tic velocity ("tube-of-toothpaste effect"). 
Moreover, the outgoing jet may extract a 
substantial amount of rotational energy 
from the hole's ergosphere-i.e., the hole 
might throw it off with a rest mass plus 
kinetic energy in excess of the rest mass 
of the original infalling object. [Wheeler 
(1 97 1 d); §§33 .7 and 33 .8 .] 

H. The magnetic field lines of a charged black 
hole may be anchored to surrounding 
plasma, may get wound up as the hole 
rotates, and may shake, twitch, and excite 
the plasma. 

3 3  B LACK HOLES 

V. Collisions between black holes 

A. Two black holes can collide and coalesce; 
but there is no way to blast a black hole 
apart into several black holes [Hawking 
(1972a); exercise 34 .4] .  

B .  When two black holes collide and coalesce, 
the surface area of the final black hole 
must exceed the sum of the surface areas 
of the two initial black holes ("second 
law of black-hole dynamics"; Hawking 
(197 1 a,b); Box 33 .4; §34.5). This constraint 
places an upper limit on the amount of 
gravitational radiation emitted in the colli
sion. For example, if all three holes are of 
the Schwarzschild variety and the two ini
tial holes have equal masses M/2, then 

4w(2Mfinai)2 � 4w[2(M/2)]2 + 4w[2(M/2)]2 , 

Mfina! � M/ y2, 

so the energy radiated is 

£radiated :S; M - M/ y2 = 0 .293M. 

VI. Where and how to search for a black hole [For 
a detailed review, see Peebles (197 1 )] : 

A. When it forms, by the burst or bursts of 
gravitational radiation given off during 
formation [Figure 24.3] .  

B .  In a binary star system: black-hole compo
nent optically invisible, but may emit 
x-rays and y-rays due to accretion; visible 
component shows telltale Doppler shifts 
[Hoyle, Fowler, Burbidge, and Burbidge 
(1964); Zel'dovich and Guseynov (1965); 
Trimble and Thome (1 969); Pringle and 
Rees (1972); Shakura and Sunyaev 
(1973)]. The velocity of the visible compo
nent and the period give information on 
the mass of the invisible component. If 
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mass of this invisible component is four 
solar masses or more, it cannot be an ordi
nary star, because an ordinary star of that 
mass would have (4)3 = 64 times the lu
minosity of the sun. Neither can it be a 
white dwarf or a neutron star because ei
ther object, so heavy, would instantly col
lapse to a black hole. Therefore, it is attrac
tive-though not necessarily compelling 
[see Trimble and Thorne (1 969)]-to iden
tify the invisible object as a black hole. 

C. [ But one must not expect to see any no
ticeable gravitational lens action from a 
black hole in a binary system: if it taxed 
the abilities of astronomers for decades to 
see the black disc of Mercury, 4,800 km 
in diameter, swim across the great face of 
the sun, little hope there is to see a black 
hole with an effective radius of only ~3 
km, enormously more remote, occult a 
companion star. Significant lens action re
quires that the lens (black hole) be sepa
rated by a normal interstellar distance 
from the star it focuses; whence the impact 
parameter of the focused rays is more than 
a stellar radius, so the lens action is not 
more than that of a normal star. Moreover, 

Box 33 .4  THE LAWS O F  B LACK-H O LE DYNAM I CS 
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even with 109 black holes in the galaxy, 
only one per year would pass directly be
tween the Earth and a more distant star, 
and produce significant lens action 
(Refsdal, 1 964). Chance of watching the 
right spot on the sky at the right time with 
a sufficiently strong telescope : nil! ] 

D. At the center of a globular cluster, where 
a black hole may settle down, attract nor
mal stars to its vicinity, and thereby pro
duce a cusp in the distribution of light 
from the cluster. [Cameron and Truran 
(1 971 ), Peebles ( 1 971 ).] 

E. In the nucleus of a galaxy, including even 
the Milky Way, where a single huge black 
hole (M ~ 104 to 108 M0) might sit as an 
end-product of earlier activity of the ga
lactic nucleus. Such a hole will emit gravi
tational waves, light, and radio waves as 
it accretes matter. Much of the light may 
be converted into infrared radiation by 
surrounding dust. The black hole may also 
produce jets and other nuclear activity. 
[Lynden-Bell ( 1 969), Lynden-Bell and 
Rees ( 1971 ), Wheeler ( 1 971 d), Peebles 
(1 97 1 ).] 

The black-hole processes described in Box 33.3 are governed by the standard laws 
of physics: general relativity, plus Maxwell electrodynamics, plus hydrodynamic, 
quantum mechanical, and other laws for the physics of matter and radiation. From 
these standard laws of physics, one can derive certain "rules" or "constraints," which 
all black-hole processes must satisfy. Those rules have a power, elegance, and 
simplicity that rival and resemble the power, elegance, and simplicity of the laws 
of thermodynamics. Therefore, they have been given the analogous name "the laws 
of black-hole dynamics" (Israel 1 971 ). This box states two of the laws of black-hole 
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Box 33 .4  (continued) 

dynamics and some of their ramifications. Two additional laws, not discussed here, 
have been formulated by Bardeen, Carter, and Hawking (1973). 

I .  The First and Second Laws of Black-Hole Dynamics. 

A. The first law. 
1 .  Like the first law of thermodynamics, the first law of black-hole dynamics 

is the standard law of conservation of total energy, supplemented by the 
laws of conservation of total momentum, angular momentum, and charge. 
For detailed discussions of these conservation laws, see Box 1 9 . l  and 
Chapter 20 . 

2. Specialized to the case where matter falls down a black hole and gravita
tional waves pour out, the first law takes the form depicted and discussed 
near the end of Box 19 . 1 .  

3 .  Specialized to the case of infalling electric charge, the first law says that 
the total charge Q of a black hole, as measured by the electric flux emerging 
from it, changes by an amount equal to the total charge that falls down 
the hole, 

LIQ = qthat faJ!s in• 

4. Specialized to the case where two black holes collide and coalesce ( example 
given in Box 33 .3), the first law says : (a) Let P1 and P2 be the 4-momenta 
of the two black holes as measured gravitationally, when they are so 
well-separated that they have negligible influence on each other. (P1 and 
P2 are 4-vectors in the surrounding asymptotically flat spacetime.) Simi
larly, let J1 and J2 be their total angular-momentum tensors (not intrinsic 
angular-momentum vectors !) relative to some arbitrarily chosen origin of 
coordinates, 90, in the surrounding asymptotically flat spacetime (J1 and 
J2 contain orbital angular momentum, as well as intrinsic angular mo
mentum; see Box 5 .6 .) .  (b) Let P3 and J3 be the similar total 4-momentum 
and angular momentum of the final black hole . (c) Let Pr and Jr be the 
total 4-momentum and angular momentum radiated as gravitational waves 
during the collision and coalescence. Then 

[Note : to calculate the mass and intrinsic angular momentum of the final 
black hole from a knowledge of P3 and J3, follow the prescription of Box 
5 .6 .  In that prescription, the world line of the final black hole is that world 
line, in the distant asymptotically Lorentz coordinates, on which the hole's 
distant spherical field is centered. 
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B. The second law [expounded and applied by Hawking (197 1 b, 1 972a)] . 
When anything falls down a black hole, or when several black holes collide 
and coalesce or collide and scatter, or in any other process whatsoever involv
ing black holes, the sum of the surface areas ( or squares of "irreducible 
masses" -see equation 3 below) of all black holes involved can never decrease. 
(See §34.5 for proof.) This is the second law of black-hole dynamics. 

II. Reversible and Irreversible Transformations ;  Irreducible Mass 
[Christodoulou (1970) ; Christodoulou and Ruffini (197 1)-results derived inde
pendently of and simultaneously with Hawking's discovery of the second law.] 

A. Consider a single Kerr-Newman black hole interacting with surrounding 
matter and fields. Its surface area, at any moment of time, is given in terms 
of its momentary mass M, charge Q, and intrinsic angular momentum per 
unit mass a S/M by 

A =  47T[r/ + a2] = 477[(M + yM2 - Q2 - a2) 2 + a2] (1) 

(exercise 3 3 . 12). Interaction with matter and fields may change M, Q, and 
a in various ways; M can even be decreased-i.e. , energy can be extracted 
from the black hole ! [Penrose (1969); §33 .7 . ]  But whatever may be the 
changes, they can never reduce the surface area A. Moreover, if any change 
in M, Q, and a ever increases the surface area, no future process can ever 
reduce it back to its initial value. 

B .  Thus, one can classify black-hole processes into two groups.  
1 .  Reversible transformations change M, Q, or a or any set thereof, while 

leaving the surface area fixed. They can be reversed, bringing the black 
hole back to its original state. 

2. Irreversible transformations change M, Q, or a or any set thereof, and 
increase the surface area in the process .  Such a transformation can never 
be reversed. The black hole can never be brought back to its original state 
after an irreversible transformation. 

C. Examples of reversible transformations and of irreversible transformations 
induced by infalling particles are presented in §§33 .7 and 33 . 8 .  

D .  The reversible extraction of  charge and angular momentum from a black hole 
( decrease in Q and a holding A fixed) necessarily reduces the black hole's 
mass (energy extraction !). By the time all charge and angular momentum 
have been removed, the mass has dropped to a final "irreducible value" of 

M = A l ?T = 6 112 (mass of Schwarzschild 
} ,r ( / ) black hole of surface area A (2) 
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Box 33 .4 (continued) 

E. Expressed in terms of this final, irreducible mass, the initial mass-energy of the black hole (with charge Q and intrinsic angular momentum S) is 
( Q2 )2 sz 

Mz = Mir + 
4M + 

4M z 
Ir Ir 

(3) 
[This formula, derived by Christodoulou and Ruffini, may be obtained by combining equations ( 1 ) ,  (2), and S = Ma].  F. Thus, one can regard the total mass-energy of a black hole as made up of an 
irreducible mass, an electromagnetic mass-energy, and a rotational energy. But one must resist the temptation to think of these contributions as adding linearly. On the contrary, they combine in a way [equation (3)] analogous to the way rest mass and linear momentum combine to give energy, E 2 = mZ + p z . G. Contours of constant Ml Mir are depicted below in the "charge-angular momentum plane." Black holes can exist only in the interior of the region depicted (Q2 + a2 � M2) . [Diagram adapted from Christodoulou ( 1 97 1 ) . ]  

M = 2M,, 
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H. Since a black hole's irreducible mass is proportional to the square root of 
its surface area, one can restate the second law of black-hole dynamics as 
follows: 

In black-hole processes the sum of the squares of the irreducible masses of 
all black holes involved can never decrease. 

§33 . 3 .  MASS, AN G U LAR M O M ENTU M ,  CHARG E, 

AN D MAG N ETIC M O M ENT 

I t  i s  instructive to verify that the constants M, Q,  and a, which appear in equations 
(33 .2)-(33 .5)  for the Kerr-Newman geometry and electromagnetic field, are actually 
the black hole's mass, charge, and angular momentum per unit mass, as claimed 
above. 

Mass and angular momentum are defined by their imprints on the spacetime 
geometry far from the black hole. Therefore, to calculate the mass and angular 

momentum, one can expand the line element (33 .2) in powers of 1 /r and examine 
the leading terms : 

r 
The rest of this chapter is 
Track 2. To be prepared for it,  
one needs to have covered the 
Track-2 part of Chapter 32 
(gravitational collapse) . I n  
reading it, one w i l l  b e  helped 
greatly by Chapter 2 5  (orbits in 
Schwarzschi ld geometry) . The 
rest of this chapter is needed 
as preparation for Chapter 34 
(singularities and g lobal 
methods) . 

ds2 = - [ l - 2� + O (:2
) ] dt2 - [ 4:

M sin20 + O (:2
)] dt dqi 

+ [ I + 0 ( � }] [dr2 + r 2(d02 + sin20 dqi2)] . 

(33 .6) The metric far outside a 
black ho le ·  i m pri nts of mass 
and angu la r  m omentum 

The examination is facilitated by transforming to asymptotically Lorentz coordi
nates-x = r sin 0 cos qi, y = r sin 0 sin qi, z = r cos 0 :  

ds 2 = - [ I - 2� + 0 (:2 )] dt2 - [ 4�:4 + O (;4 )] [x  dy - y dx] 
(33 .6 ') 

+ [ I + o(; ) ] rdx 2 + dy2 + dz2] .  
Direct comparison with the "standard form" [equation (19 . 1 3)] of the metric far from 
a stationary rotating source reveals that (I) the parameter M is, indeed, the mass 
of the black hole ;  and (2) the intrinsic angular momentum vector of the black hole 
lS 

S = (aM) o/oz = (aM) · (unit vector _ point�ng alon� polar axis) .  (33 _7) 
of Boyer-Lmdqmst coordmates 

The charge is defined for the black hole, as for any source, by a Gaussian flux 
integral of its electric field over a closed surface surrounding the hole. The electric 
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field in the asymptotic rest frame of the black hole has as its orthonormal components 

E .. = Er = F;.t = Q/r2 + O(l/r3), 

E8 = E8/r = F8/r = 0 (1 /r4), 

E,j, = E,/r sin 0 = F8/r sin 0 = 0. 

(33 .8) 

Hence, the electric field is purely radial with a Gaussian flux integral of 4?TQ, which 
reveals Q to be the black hole's charge. 

A similar calculation of the dominant components of the magnetic field reveals 

� Qa 
(

1 ) B .. = F8;p = 2 . ¢ 
O 

= 2 -3 cos 0 + 0 4 , 
r sm r r 

F<j,r Qa . 0 ( 1 ) B · = F- - = -- = - sm + 0 - , 8 ct,r r sin 0 r3 r4 

F;.8 BJ, = F:,8 = -,- = 0 .  

(33 .9) 

This is a dipole magnetic field, and from it one immediately reads off the value 

'!J!l = Qa = (Q/M)S = (charge/mass) X (angular momentum) (33. 10) 

t...{"gyromagnetic ratio"] 

for the magnetic moment of the black hole. 
Just as the rotation of the black hole produces a magnetic field, so it also produces 

nonspherical deformations in the gravitational field of the black hole [see Hernandez 
(1967) for quantitative discussion]. But those deformations, like the magnetic mo
ment, are not freely specifiable. They are determined uniquely by the mass, charge, 
and angular momentum of the black hole. 

§33 .4 .  SYM METRIES AN D FRAME DRAG GING 

The metric components (33.2) of  a Kerr-Newman black hole are independent of 
the Boyer-Lindquist time coordinate t and angular coordinate cf> . This means (see 
§25.2) that 

((t) (o/o t)r, o, ¢ and (<<t>> (o/ocf>)t,r, o (33.11) 

are Killing vectors associated with the stationarity (time-translation invariance) and 
axial symmetry of the black hole. The scalar products of these Killing vectors with 
themselves and each other are 
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(
LI - a2sin20 ) ( 2Mr - Q2

) ((t) . ( (t) = gt t = -
p

2 = - 1 -
p

2 ' 

(2Mr - Q 2)a sin20 
p

2 
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(33. 12a) 

(33. 12b) 

(33 . 12c) 

Since Killing vectors are geometric properties of spacetime, with existence inde
pendent of any and all coordinate systems, their scalar products also have coor
dinate-free meaning. It so happens (not by chance, but by careful choice of coordi
nates!) that the Boyer-Lindquist metric components gtt, g1</>, and g<t></> are equal to these 
coordinate-independent scalar products. Thus gtt, gt<t> • and g<t></> can be thought of 
as three scalar fields which embody information about the symmetries of spacetime. 
By contrast, the metric coefficients grr = p2 / LI and g6 6  = p2 carry no  information 
at all about the symmetries. * They depend, for their existence and values, on the 
specific Boyer-Lindquist choice of coordinates. 

Any observer who moves along a world line of constant (r, 0) with uniform angular 
velocity sees an unchanging spacetime geometry in his neighborhood. Hence, such 
an observer can be thought of as "stationary" relative to the local geometry. If and 
only if his angular velocity is zero, that is, if and only if he moves along a world 
line of constant (r, 0, </>), will he also be "static" relative to the black hole's asymptotic 
Lorentz frame (i.e., relative to the "distant stars"). 

The precise definition of "angular velocity relative to the asymptotic rest frame" 
-or simply "angular velocity"-is 

(33. 1 3a) 

(see exercise 33.2). In terms of St, the Killing vectors, and the scalar products of 
Killing vectors, the 4-velocity of a stationary observer is 

u = u1ca;at + ila/acp) = ((t) + .Q((</>) 
l f(t) + ilfc<t>> I 

((t) + .Q((rp) 

A stationary observer is static if and only if .Q vanishes. 

(33 . 1 3b) 

The stationary observers at given r, 0 cannot have any and every angular velocity. 
Only those values of St are allowed for which the 4-velocity u lies inside the future 
light cone-i.e., for which 

* This is not quite true. Kerr-Newman spacetime possesses, in addition to its two Killing vectors, also a "Killing tensor" which is closely lmked to the Boyer-Lindquist coordinates r and 8 . See Walker and Penrose ( 1 970) ; also §33.5 . 
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Thus, the angular velocities of stationary observers are constrained by 

where 
(33. 14) 

(33. 1 5a) 

(33 . 1 5b) 

(33. 16) 

and it is assumed that S/ M = a > 0. The following features of these limits are 
noteworthy. (1) Far from the black hole, one has rilmin = - 1 and rilmax. = + 1 ,  
corresponding to  the standard limits imposed by  the speed of  light in flat spacetime. 
(2) With decreasing radius, ilmin increases ("dragging of inertial frames"). Finally, 
when gtt reaches zero, i.e., at 

r = r0(0) M + yM2 - Q 2 - a2 cos20, (33 . 1 7) 

ilmin becomes zero. At and inside this surface, all stationary observers must orbit 
the black hole with positive angular velocity. Thus, static observers exist outside and 
only outside r = r0(0). For this reason r = r0(0) is called the "static limit" ;  see Box 
33.2. (3) As one moves through the static limit into the "ergosphere," one sees the 
allowed range of angular velocities become ever more positive ( ever more "frame 
dragging"). At the same time, one sees the allowed range narrow down, until finally, 
at the horizon 

r = r + M + V Af2 - Q2 - a2, (33. 1 8) 

the limits ilmin and ilmax. coalesce (w2 = gttl g<l><I>). Thus, at the horizon there are no 
stationary observers. All timelike world lines point inward. There is no escape from 
the black hole's "pull." 

Further features of stationary observers and "frame dragging" are explored in 
the exercises. 

Exercise 33 . 1 .  K E R R  D E S C R I PT I O N  OF KI LLI N G  VECTO RS 

(a) Use the transformation law from Boyer-Lindquist coordinates to Kerr coordinates 
(equation (4) of Box 33.2] to show that 

f<t> = (a/at),, 0 , ¢ = (a/a V),, 0 , ¢, 

((¢) - (o/oq,)t , r, 8 = (oja;p)v, r, 8 · 

Verify explicitly by examining metric components that 

m accordance with equations (33.19a,b). 

(33.19a) 

(33.19b) 

(33.19c) 
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(b) Show that for a stationary observer (world line of constant r, 8), the angular velocity 
expressed in terms of Kerr coordinates is 

so that the entire discussion of stationary observers in terms of Kerr coordinates is identical 
to the discussion in terms of Boyer-Lindquist coordinates. Differences between the coordinate 
systems show up only when one moves along world lines of changing r. Reconcile this 
fact with the fact that both coordinate systems use the s ame coordinates (r, 8) but different 
time and aximuthal coordinates (t, cf, versus V, ;p). 

Exercise 33.2. OBSERVATIONS OF ANG ULAR VELOCITY 
An observer, far from a black hole and at rest in the hole's asymptotic Lorentz frame, watches 
(with his eyes) as a particle moves along a stationary (nongeodesic) orbit near the black 
hole. Let Q = dcp/dt be the particle's angular velocity, as defined and discussed above. The 
distant observer uses his stopwatch to measure the time required for the particle to make 
one complete circuit around the black hole ( one complete circuit relative to the distant 
observer himself; i.e., relative to the hole's asymptotic Lorentz frame). 

(a) Show that the circuit time measured is 2'1T/il. Thus, [2 c an be reg arded as the p article 's 
" angul ar velocity as me asured from infinity. "  

(b) Let the observer moving with the particle measure its circuit time relative to the 
asymptotic Lorentz frame, using his eyes and a stopwatch he carries. Show that his answer 
for the circuit time must be 

,. _ 2'1T
( 2n n2 ) 1 / 2  ,:.,T - Q - gt t - av gt¢, - av g</></> (33.20) 

�"redshift factor") 

Exercise 33.3.  LOCALLY NONROTATING OBSERVERS 
( Bardeen 1 9 70b) 

(a) Place a rigid, circular mirror ("ring mirror") at fixed (r, 8) around a black hole. Let an 
observer at (r, 8) with angular velocity [2 emit a flash of light. Some of the photons will 
get caught by the mirror and will skim along its surface, circumnavigating the black hole 
in the positive-cf, direction. Others will get caught and will skim along in the negative-cf, 
direction. Show that the observer will receive back the photons from both directions simulta
neously only if his angular velocity is 

il = w(r, 8) = expression (33.16). 

Thus in this case, and only in this case, can the observer regard the + </>  and - cf,  directions 
as equivalent in terms of local geometry. Put differently, in this case and only in this case 
is the observer "nonrotating relative to the local spacetime geometry." Thus, it is appropriate 
to use the name "loc ally nonrot ating observer " for an observer who moves with the angular 
velocity [2 = w(r, 8). 

(b) Associated with the axial symmetry of a black hole is a conserved quantity, 
P<t> p · (<<t>> ' for geodesic motion. This quantity for any particle-whether it is moving along 
a geodesic or not-is called the "component of angular momentum along the black hole's 
spin axis," or simply the particle's "angular momentum." (See §33.5 below.) Show that of 
all stationary observers at fixed (r , 8), only the "locally nonrotating observer" has zero angular 
momentum. [Note: Bardeen, Press, and Teukolsky (1972) have shown that the "locally 
nonrotating observer" can be a powerful tool in the analysis of physical processes near a 
black hole. )  
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Exercise 33 .4 .  ORTHONORMAL FRAMES OF LOCALLY 
NONROTATING OBSERVERS 

(a) Let spacetime be filled with world lines of locally nonrotating observers, and let each 
such observer carry an orthonormal frame with himself. Show that the spatial orientations 
of these frames can be so chosen that their basis I -forms are 

w i - l g - w 2g 1 11 2 dt - tt  ¢¢ , 

w' = (p/ Ll 11 2) dr, 

w ¢ = (g¢¢)112(dc/> - w dt), 

w 8 = p d0. 
(33.21) 

More specifically, show that these I -forms are orthonormal and that the dual basis has 

o/ot = u 4-velocity of locally nonrotating observer. (33.22) 

Show that u = - w 1 is a rotation-free field of I -forms [dw 1 A w 1 = O ;  exercise 4.4]. 
(b) One sometimes meets the mistaken notion that a "locally nonrotating observer" is 

in some sense locally inertial. To destroy this false impression, verify that: (i) such an observer 
has nonzero 4-acceleration, 

I a = I'me; = 2 V In lgtt  - w 2g¢¢ 1 ; (33.23) 

(ii) if such an observer carries gyroscopes with himself, applying the necessary accelerations 
at the gyroscope centers of mass, he sees the gyroscopes precess relative to his orthonormal 
frame (33.21) with angular velocity 

(33.24) 

[Hints : See exercise 19.2, equation (13.69), and associated discussions. The calculation of 
the connection coefficients is performed most easily using the methods of differential forms; 
see §14.6.] 

Exercise 33 . 5 .  LOCAL LIGHT CONES 

Calculate the shapes of the light cones depicted in the Kerr diagram for an uncharged ( Q = 0) 
Kerr black hole (part II.F of Box 33.2). In particular, introduce a new time coordinate 

7 =  fl - r (33.25) 

for which the slices of constant 7 are horizontal surfaces in the Kerr diagram. Then the Kerr 
diagram plots 7 vertically, r radially, and � azimuthally, while holding 0 = w /2 ("equatorial 
slice through black hole"). 

(a) Show that the light cone emanating from given t, r, ;j; has the form 

dr ( 4) 2M/r j I r 2(d�/dt)2 

dt
= a 

dt 
-

I +  2M/r ± (I +  2M/r)2 - l + 2M/ 

(b) Show that the light cone slices through the surface of constant radius along the curves 

dr/dt = 0, d�/dt = ilmin and ilmax, (33.26b) 

where Umin and ilmax are given by expressions (33.15a,b) (mirumum and maximum allowed 
angular velocities for stationary observers). 

( c) Show that at the static limit, r = ro( w /2), the light cone is tangent to a curve of constant 
r , 0, �-
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( d) Show that the light cone slices the surface of constant ;p along the curves 

d;p 
-::: = 0, 
dt 

dr I - 2M/r 
-:::: = - 1 and ----. 
dt I + 2M/r 

(e) Show that the light cone is tangent to the horizon. 
(f) Make pictures of the shapes of the light cone as a function of radius. 
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(33.26c) 

(g) Describe qualitatively how the light cone must look near the horizon in Boyer-Lindquist 
coordinates. (Note: it will look "crazy" because the coordinates are singular at the horizon.) 

§ 33 . 5 .  EQUATIONS O F  M OTIO N FOR TEST PARTICLES 

[Carter ( 1 96 8a)] 

Let a test particle with electric charge e and rest mass µ, move in the external fields 
of a black hole. Were there no charge down the black hole, the test particle would 
move along a geodesic (zero 4-acceleration). But the charge produces an electromag
netic field, which in turn produces a Lorentz force on the particle : µ,a = eF · u. (Here 
u is the particle's 4-velocity, and a Vuu is its 4-acceleration.) 

The geodesic equation, a = 0, for the uncharged case is equivalent to Hamilton's 
equations 

where A is an affine parameter so normalized that 

d/ dA. = p = 4-momentum, 

and where 

:JC - "super-Hamiltonian" = ½ gµ•p,,p. 

(33.27 a) 

(33 .27b) 

(33.27c) 

(see exercise 25.2). Similarly (see exercise 33.6) the Lorentz-force equation, µ,a = 
eF · u, for the charged case is equivalent to Hamilton's equations written in terms 
of position x µ and "generalized momentum" 1r µ : 

(33.28a) 

The form of the superhamiltonian :JC, in terms of the metric coefficients at the 
particle's location, gµ•(x"'), and the particle's charge e and generalized momentum 
7T µ• lS 

(33.28 b) 

[See §7.3 of Goldstein (1959) for the analogous superhamiltonian in flat spacetime.] 

Su perh a m i lton 1 an  for a 
charged test part ic le  in any 
e lectromag netic f ie ld in  
cu rved spaceti me 
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b lack ho le  

" Consta nts of  motio n "  for a 
charged test part ic le m ov ing 
a round a cha rged b lack  ho le  

( 1 )  "energy at i nfi n ity" E 
(2 )  "ax ia l  com ponent of 

a n g u l a r  momentu m "  Lz 
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The first of Hamilton's equations for this superhamiltonian reduces to 

p
µ, (4-momentum) _ dxµ,/d>.. = 'TTµ, - eAµ, (33.29a) 

(value of 'TTµ, in terms of pµ,, e, and Aµ,); the second, when combined with the first, 
reduces to the Lorentz-force equation 

dp µ,/d>.. + I'µ,a:f3Pa:
P

f3 = eF µ,•p •. 

[Pv, not u. becausel t 
>.. = r/µ, J 

(33.29b) 

For a Kerr-Newman black hole, the vector potential in Boyer-Lindquist coordi
nates can be put in the form 

Qr 
A = - -2 (dt - a sm20 d<f,), (33.30) 

p 

as one verifies by checking that 

reduces to the Faraday 2-form of equation (33.5). 
There is good reason for going through all this formalism, rather than tackling 

head-on the Lorentz-force equation in its most elementary coordinate version, 

The Hamiltonian formalism enables one to discover immediately two constants of 
the motion; the elementary Lorentz-force equation does not. The key point is that 
the components Aµ, of A [equation (33.30)] and the components gµ,• of the metric 
[inverse of gµ,v of equation (33.2); see (33.35)] are independent of t and <f, 
(stationarity and axial symmetry of both the electromagnetic field and the spacetime 
geometry). Consequently, the superhamiltonian is also independent of t and <f, ;  and 
therefore Hamilton's equation 

guarantees that 'TTt and 'TT 
</J 

are constants of the motion. 
Far from the black hole, where the vector potential vanishes and the metric 

becomes 
ds 2 = -dt2 + dr2 + r2(d02 + sin20 d<f,2),  

the constants of the motion become 

'TTt = Pt= -p
t= - energy, 

_ _ 1' _ (projection of angular momentum) 'TT 
</J 

- p 
</J 

- rp - along black hole's rotation axis 
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Thus it is appropriate to adopt the names and notation 

E ("energy at infinity") - 1rt = - (pt + eAi), 

(
"axial component of angular

) Lz momentum", or simply 1r</J = P<t, + eA</J 
"angular momentum" 

for the constants of the motion - 1rt and 1r</>. 
A third constant of the motion is the particle's rest mass 

8 9 9  

(33.31a) 

(33.31b) 

(33.3 l c) 

In general, four constants of the motion are needed to determine uniquely the 
orbit of a particle through four-dimensional spacetime. If the black hole were to 
possess an additional symmetry-e.g., if it were spherical, rather than merely axially 
symmetric-then automatically there would be a fourth constant of the motion. But 
in general, black holes are not spherical; so test-particle motion around a black hole 
possesses only three obvious constants. It is rather remarkable, then, that a constant 
turns out to exist. It was discovered by Carter (1968a), using Hamilton-Jacobi 
methods. As of 1973, nobody has given a cogent geometric explanation of why this 
fourth constant should exist-although hints of an explanation may be found in 
Carter (1968c) and Walker and Penrose (1970). 

(3)  rest m ass µ 

Carter's "fourth constant" of the motion, as derived in exercise 33.7, is (4) "!2 " 

!2 = p/ + cos20 [a2(µ 2 - E2) + sin-20L/]. (33.31d) 

The constant of the motion 

(33.3 l e) 

obtained by combining !2, Lz, and E, is often used in place of fl,_ Whereas fl, can be 
negative, X is always nonnegative: X = p/ + (Lz - aE sin20 )2 /sin20 + a2µ 2 cos20 

� 0 everywhere 
= 0 only for case of photon (µ = 0) moving along polar axis (0 = 0, 1r). 

The contra variant components of the test particle's 4-momentum, p a = dxa I dA, 
are readily expressed in terms of the constants E, Lz, µ, fl,, by combining equations 
(33.31) with the metric coefficients (33.2) and the components of the vector potential 
(33.30). The result is 

p 2 d0/dA = VB, 

p 2 dr/dA = VR, 

p 2 d<j>/dA = - (aE - Lz/sin20) + (a/ Ll)P, 

p 2 dt/dA = - a(aE sin20 - L) + (r2 + a2)Ll-1P. 

(33.32a) 

(33.32b) 

(33.32c) 

(33.32d) 

Equat ions of mot ion for 
charged test part ic les 
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Here p 2 = r2 + a2 cos20 as defined in equation (33.3b), and the functions 8, R, P 
are defined by 

e = fl, - cos20 [a2(µ2 - £ 2) + L//sin20], 

P = E(r2 + a2) - Lza - eQr, 

R = P2 - Ll[µ 2r2 + (Lz - aE)2 + fl,]. 

(33 .33a) 

(33.33b) 

(33 .33c) 

When working in Kerr coordinates (to avoid the coordinate singularity at the 
horizon), one must replace equations (33.32c) and (33 .32d) by 

p 2 d V/dA = - a(aE sin20 - Lz) + (r2 + a2)Ll-1( \,IR  + P), 

p 2 d-;p/dA = - (aE - Lz/sin20) + aLl-1( \,IR  + P). 

(33 .32c') 

(33.32d') 

[These follow from (33.32) and the transformation between the two coordinate 
systems-see equations (4) of Box 33.2.) In the above equations, the signs of -JR 
and ye" can be chosen independently; but once chosen, they must be used consis
tently everywhere. 

Applications of these equations of motion will play a key role in the rest of this 
chapter. 

Exercise 3 3 . 6 .  S U PERHAM I LTO N IAN FOR  CHAR G E D-PARTI CLE M OTI O N  
Show that Hamilton's equations (33.28a) fo r  the Hamiltonian (33.28b) reduce to equation 
(33.29a) for the value of the generalized momentum, and to the Lorentz force equation 
(33.29b). [Hint: Use the relation (g"f3gpy),µ = O.] 

Exercise 33 .  7. HAM I LTO N-JAC O B I  DER IVATI O N  O F  EQUATI ONS  OF M OTI O N  
[Based o n  Carter ( 1 968a)] 

Derive the first-order equations of motion (33.32) for a charged particle moving in the external 
fields of a Kerr-Newman black hole. Use the Hamilton-Jacobi method [Boxes 25.3 and 25.4 
of this book; also Chapter 9 of Goldstein (1959)], as follows. 

(a) Throughout the superhamiltonian X of equation (33.28b), replace the generalized 
momentum 1r" by the gradient oS/ox" of the Hamilton-Jacobi function. 

(b) Write down the Hamilton-Jacobi equation (generalization of equation (2) of Box 25.4] 
in the form 

_ oS _ "r [ " ]_§__] _ _!_ o:/3 (]_§__ _ A ) (1£ - A ) 
a,\ - JL X ' ox/3 - 2 g OX" e " ox/3 e /3 . (33.34a) 

(c) Show that the metric components g"/3 for a Kerr-Newman black hole in Boyer-Lind
quist coordinates are given by 

= 0:/3 _a _ _  a _ _ _ _ 1_ [ c  2 2) 1_ .l.._]2 1 [.l_ . 20 1_]2 
g - g 

ox " ux/3 - .d
p

2 r + a at 
+ a oq, + p 2 sin20 O</> + a Sill at 

.1 ( 0 )
2 1 ( 0 )

2 
+ p2 or + p2 ae . (33.35) 
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( d) Use these metric components and the components (33.30) of the vector potential to 
bring the Hamilton-Jacobi equation (33.33) into the concrete form 

oS 
- �  - _!_ _l_ [ (r 2 + a2) oS + a oS - eQr ]

2 

2 Llp 2 at o<f, 

+ _!_ I [ as + a sin2e oS ]2 + _!_ � ( os)2 
+ _ !__J_ ( os)2 

2 p 2 sin20 o<f, at 2 p 2 or 2 p 2 0 8  
. 

(33.34b) 

( e) Solve this Hamilton-Jacobi equation by separation of variables. [Hint: Because the 
equat10n has no explicit dependence on A, </>, or t, the solution must take the form 

(33.36a) 

where the values of the "integration constants" follow from oS/oA = - .'!(, oS/ot = 1r1 , 
oS/o<f, = 1r 1> · Insert this assumed form into (33.35) and solve for Sr(r) and Se(B) to obtain 

Sr = f L1-l vR dr, S8 = f ye de, (33.36b) 

where R(r) and 8(0) are the functions defined in equation (33.33). Notice that the constant 
!2 arises naturally as a "separation-of-variables constant" in this procedure. It was in this 
way that Carter originally discovered !2, following Misner's suggestion that he seek analogies 
to a constant in Newtonian dipole fields (Corben and Stehle, 1960, p. 209).] 

(f) By successively setting oS/0 [!2 + (Lz - aE )2], oS/oµ2 , oS/oE, and oS/oLZ to zero, 
obtain the following equations describing the test-particle orbits: 

f 
8 

__!!___ = f
r

_!,:_ ye 
vii '  

- f 
8 a2 cos20 

f
r r 2 

A - ye dB + _ 1n dr, 
8 v R 

_ f 
8 - a( aE sin20 - Lz) 

f
r (r 2 + a2)P t - ye dB + yR dr, 

8 LI R 

r - ( aE sin20 - Lz) 
f 

aP </> =  ------ d0 + -- dr. • sin20 ye Ll yR 

(33.37a) 

(33.37b) 

(33.37c) 

(33.37d) 

(g) By differentiating these equations and combining them, obtain the equations of motion 
(33.32) cited in the text. 

(h) Derive equations (33.31) for E, Lz, µ, and 2 by setting oS/ox " = 1r,, = p,, + eA,, . 

§ 33 . 6 .  PRINCIPAL N U LL CO N GRUENCES 

Two special families of photon trajectories "mold themselves into" the Kerr-Newman 
geometry in an especially harmonious way. They are called the ''principal null 
congruences" of the geometry. ("Congruence" is an elegant word that means "space-

Pr inc ipa l  n u l l  congruences fo r 
the spaceti me  geometry of a 
b lack ho le  



S ign if icance of the pr inc ipa l  
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filling family of curves .") These congruences are the solutions to the test-particle 
equations of motion (33 .32) with 

µ = 0 (zero rest mass; photon), 

e = 0 (zero charge on photon), 

(
a permissible value for Lz) only because d0 / dt... turns , 
out to be zero 

f2 = - (Lz - aE)2 = - a2E2 cos40. 

(33 .38a) 

(33 .38b) 

(33 .38c) 

(33 .38d) 

For these values of the constants of motion, the equations of motion (33 .32) reduce 
to 

(" +" for outgoing photons, 
" - " for ingoing), 

kcfJ d<f>/dt... = aE/ J, 

(33 .39a) 

(33 .39b) 

(33 .39c) 

(33 .39d) 

In what sense are these photon trajectories more interesting than others? (1) They 
mold themselves to the spacetime curvature in such a way that, if C,,_13 y8 is the Weyl 
conformal tensor (§ 1 3 .5), and *C,,_13 y8 = f.af3 µ,, C iµ,• l y8 is its dual, then 

(33 .40) 

[This relationship implies that the Kerr-Newman geometry is of "Petrov-Pirani type 
D" and that these photon trajectories are "doubly degenerate, principal null con
gruences. "  For details of the meanings and implications of these terms see, e .g . ,  §8 
of Sachs (1964), or Ehlers and Kundt (1962), or the original papers by Petrov (1954, 
1 969) and Pirani (1 957).] (2) By suitable changes of coordinates (exercise 33 . 8), one 
can bring the Kerr-Newman metric into the form 

(33 .4 1 )  

where H is a scalar field and k,,_ are the components o f  the wave vector for one 
of the principal null congruences ( either one; but not both!) .  [This was the property 
of the Kerr-Newman metric that led to its original discovery (Kerr, 1 963). For further 
detail on metrics of this form, see Kerr and Schild (1965).] (3) In Kerr coordinates 
(Box 33 .2), the ingoing principal null congruence is 

r = - EA, 0 = canst, <f> = canst, 

�
arbitrary normalization

] factor; can be removed 
by redefinition of A 

V = canst. (33 .42a) 
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These ingoing photon world lines are the generators of the conical surface V = const. 
in the Kerr diagram of Box 33.2. (4) The only kind of particle that can remain forever 
at the horizon is a photon with world line in the outgoing principal null congruence 
(exercise 33.9). Such photon world lines are "generators" of the horizon (dotted 
curves with a "barber-pole twist" in Kerr diagram of Box 33.2). They have angular 
velocity 

[2 
= 

d<f> 
= 

d� 
= 

a 
dt d V  r/ + a2 

a 
2M2 _ Q2 + 2M(Mz _ a2 _ Q2)1; 2 · (33.42b) 

Exercise 33 . 8 .  KERR-SCH I LD C O O R D I NATES EXE R C I S ES 
(a) Show that m Kerr coordmates the mgoing null congruence (33.39) has the form (33.42a). 
Also show that the covariant components of the wave vector-after changing to a new affine 
parameter ,\new = ,\01dE-are 

k'-lnl = a sin20 
¢ ' 

(b) Introduce new coordinates 7, x, y, z, defined by 

x + iy = (r + i a)ei 1> sin 0 ,  z = r cos 0,  

k'-lnl = - 1. 

t = v - r ;  

and show that in this "Kerr-Schild coordinate system" the metric takes the form 

where 

Mr _  lQ2 
H - z - r 2 + a2(z/r)2 ' 

k<inl dx " = _ r (x dx + y dy) - a(x dy - y dx) _ z dz _ dt. 
a ,.2 + 02 r 

For the transformation to analogous coordinates in which 

see, e.g., Boyer and Lindquist (1967). 

Exercise 3 3 . 9 .  N U LL G E N E RATO RS O F  H O R IZON 

(33.43) 

(33.44a) 

(33.44b) 

(33.44c) 

(33.44d) 

(a) Show that in Kerr coordinates the outgoing principle null congruence is described by 
the tangent vector 

d0 
d,\ 

= 0, dr 
d,\ 

= E, dV - 2( z z) E 
d5: - r + a Lf •  (33.45) 

(b) These components of the wave vector become singular at the honzon (LI = 0), not 
because of a singularity in the coordinate system-the coordinates are well-behaved! -but 
because of poor normalization of the affine parameter. For each outgoing geodesic, let Ll0 



When a sma l l  object fa l l s  
down a l a rge ho le .  

( 1 )  energy rad iated 1s 
neg l i g i b le  com pared to 
object 's rest mass 

(2) ho le ' s  mass, charge, and 
angu la r  momentum 
change by LIM = E, 
LIQ  = e ,  LIS = Lz 
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be a constant, defined as the value of LI at the event where the geodesic slices the hypersurface 
V = 0. Then renormalize the affine parameter for each geodesic 

Show that the resulting wave vectors 

dB 
dA = O, 

dV LI 
- - 2(r 2 + a2) ----2.. dA - LI 

(33.46) 

(33.45') 

are well-behaved as one approaches the horizon; and show that the geodesics on the horizon 
have the form 

8 = const., r = r+ = const., � = 2 aA ,  (33.47) 

( c) Show that these are the only test-particle trajectories that remam forever on the honzon. 
[Hint: Examine the light cone.] 

§ 33 . 7 .  STORAGE AN D REM OVAL O F  ENERGY 

FRO M B LACK H O LES [Pen rose ( 1 9 6 9)] 

When an object falls into a black hole, it changes the hole's mass, charge, and 
intrinsic angular momentum (first law of black-hole dynamics ;  Box 33 .4). If the 
infalling object is large, its fall produces much gravitational and electromagnetic 
radiation. To calculate the radiation emitted, and the energy and angular momentum 
it carries away-which are prerequisites to any calculation of the final state of the 
black hole-is an enormously difficult task. But if the object is very small (size of 
object � size of horizon; mass of object � mass of hole), and has sufficiently small 
charge, the radiation it emits in each circuit around the hole is negligible. For 
example, for gravitational radiation 

(energy emitted per circuit) 
(rest mass of object) 

(rest mass of object) 
(mass of hole) 

(33.48) 

[see §36.5; also Bardeen, Press, and Teukolsky (1972)]. Because the energy emitted 
is negligible, radiation reaction is also negligible, and the object moves very nearly 
along a test-particle trajectory. In this case, application of the first law of black-hole 
dynamics is simple and straightforward. 

Consider, initially, a small object that falls directly into the black hole from far 
away. According to the first law, it produces the following changes in the mass, 
charge, and angular momentum of the black hole : 

iJ.M = E = ("energy at infinity" of infalling object), 

iJ.Q = e = (charge of infalling o�ject), 

(33.49a) 

(33 .49b) 

iJS iJ ISI = L = (component of object's angular momentum) . (33.49c) z on black hole's rotation axis 
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The infalling object will also change the direction of  S.  In the black hole's original 
asymptotic Lorentz frame, its initial angular momentum vector points in the z-direc
tion, 

(S,);nitiaJ = 0 ,  

Consequently, only the z-component of angular momentum of the infalling object 
can produce any significant change in the magnitude of S. But the x- and y-com
ponents, Lx and Ly , can change the direction of S. If the object has negligible speed 
at infinity, then it produces the changes (exercise 33. 10): 

LISx = Lx = - (sin </>00) \/e: - ( cot 0"" cos </>00)Lz , 

LISY = Ly = ( cos <l>oo) \/e: - ( cot 0"" sin <l>oo)Lz , 

Ll(S/ + S/)112 = # = (L2 _ L/)11 2 _ 

(33.49d) 

(33.49e) 

(33.49f) 

Here a subscript " oo "  means the value of a quantity at a point on the orbit far 
from the black hole (at "infinity"). 

Consider, next, a more complicated process, first conceived of by Penrose (1969) : 
(1) Shoot a small object A into the black hole from outside with energy-at-infinity 
EA, charge eA , and axial component of angular momentum LzA · (2) When the object 
is deep down near the horizon, let it explode into two parts, B and C, each of which 
subsequently moves along a new test-particle trajectory, with new constants of the 
motion eB and ee, EB and Ee, LzB and Lze· (3) So design the explosion that object 
B falls down the hole and gets captured, but object C escapes back to radial infinity. 
What will be the changes in mass, charge, and angular momentum of the black 
hole? According to the first law of black-hole dynamics, 

( 
total energy that distant observers see

) LIM = fall inward past themselves minus 
total energy that they see reemerge 

= EA - Ee. 

Similarly, LIQ = eA - ee and LIS = LzA - Lze· Not unexpectedly, these changes can 
be written more simply in terms of the constants of motion for object B, which went 
down the hole. View the explosion "A ----- B + C" in a local Lorentz frame down 
near the hole, which is centered on the explosive event. As viewed in that frame, 
the explosion must satisfy the special relativistic laws of physics ( equivalence princi
ple !). In particular, it must obey charge conservation 

(33.50a) 

and conservation of total 4-momentum 

(p A)immed!ately before explosion = (PB + Pe);mmed!ately after explosion· 



Changes i n  M, Q, S for any 
nonrad iat ive b lack-ho le 
p rocess 

Extract ion of energy from a 
b lack ho le  by p rocesses i n  
t h e  ergosphere 
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and hence also conservation of the components of generalized momentum along the vectors o/o t and o/o<J>, 
EA - 'TTtA = - 'TTtB - 'TTw = EB + Ee, 

L,.A 'TTrt>B + 'TTrt>c = L,.B + L,.c, 

(33 .50b) 

(33.50c) ( conservation of "energy-at-infinity" and "axial component of angular momentum" in explosion) . Combining these conservation laws with the expressions 
one obtains 

(33.5 1) This result restated in words: the changes in mass, charge, and angular momentum are equal to the "energy-at-infinity," charge, and "axial component of angular momentum" that object B carries inward across the horizon, even though B may have ended up on a test-particle orbit that does not extend back to radial infinity ! Straightforward extensions of the above thought experiment produce this generalization : In any complicated black-hole process that involves infalling, colliding, and 
exploding pieces of matter that emit negligible gravitational radiation, the total changes 
in mass, charge, and angular momentum of the black hole are 

(sum of values of energy-at-infinity, E, 

) LlM = for all objects which cross the horizon-with , 
E evaluated for each object at event of crossing LlQ = (similar sum, of charges, e, for) all objects crossing horizon LlS = ( similar sum of axial components of angular ) momentum, L,., for all obj ects crossing horizon 

(33.52a) 

(33 .52b) 

(33.52c) 

This result is not at all surprising. It is precisely what one might expect from the most naive of viewpoints. Not so expected, however, is the following consequence [Penrose ( 1969)] : By injecting matter into a black hole in a carefully chosen way, one 
can decrease the total mass-energy of the black hole-i.e., one can extract energy from 
the hole. For uncharged infalling objects, the key to energy extraction is the ergosphere [hence its name, coined by Ruffini and Wheeler ( 197 1 a) from the Greek word "Epyo11" for "work"] . Outside the ergosphere, the Killing vector ((t) - o/o t is timelike, as is the 4-momentum p of every test particle ; and therefore E = -p · ( (t) is necessarily positive. But inside the ergosphere (between the horizon and the static limit), ((t) 



§ 3 3 8. REVERSIBLE AND IRREVERSIB LE PROCESSES 907 

is spacelike, so for certain choices of timelike momentum vector ( certain orbits of 
uncharged test particles), E = -p · ((t) is negative, whereas for others it is positive. 
The orbits of negative E are confined entirely to the ergosphere. Thus, to inject an 
uncharged object with negative E into the black hole-and thereby to extract energy 
from the hole-one must always change its E from positive to negative and therefore 
also change its orbit, after it penetrates into the ergosphere. Of course, this is not 
difficult in principle-and perhaps not even in practice; see Figure 33.2. 

For a charged object, electromagnetic forces alter the region where there exist 
orbits of negative energy-at-infinity. If the charges of object and hole have opposite 
sign, then the hole's electromagnetic field pulls inward on the object, giving it more 
kinetic energy when near the hole than one would otherwise expect. Thus, -p · ((t) 
becomes an overestimate of E, 

E = - (p - eA) · ((t) = -p · fo> + fQrf.i:,; (33.53) 

t..[< o if eQ < o] 
and orbits with E < 0 exist in a region somewhat larger than the ergosphere. If, 
on the other hand, e and Q have the same sign, then orbits with E < 0 are confined 
to a region smaller than the ergosphere. For given values e, Q, and rest mass µ, 
the region where there exist orbits with E < 0 is called the "effective ergosphere. "  

Exercise 3 3 . 1 0 . AN G U LAR M O M E NTU M VECTO R FO R I N FALLI N G  PARTICLE 

Derive equations (33.49d,e,f) for the components Lx and LY of the orbital angular momentum 
of a particle falling into a black hole. Assume negligible initial speed, E 2 - µ 2 ;:::: 0. 

§33 . 8 .  REVERSIB LE AN D IRREVERSIB LE TRANSFORMATIONS 

[Christodou lou ( 1 9 70) ,  Ch ristodoulou and Ruffi n i  ( 1 9 7 1 ) ]  

Take a black hole of given mass M, charge Q, and angular momentum S. By injection 
of small objects, make a variety of changes in M, Q, and S. Can one pick an arbitrary 
desired change, LIM, LIQ, and LIS, and devise a process that achieves it? Or are there 
limitations? 

The second law of black-hole dynamics (nondecreasing surface area of black hole; 
Box 33.4; proof in §34.5 of next chapter) provides a strict limitation. 

Then can all values within that limitation be achieved-and can that limitation 
be discovered by a direct examination of test-particle orbits? 

The answer is yes; and, in fact, the limitation was discovered by Christodoulou 
(1970) and Christodoulou and Ruffini (1971) from an examination of test-particle 
orbits, independently of and simultaneously with Hawking's (1971) discovery of the 
second law of black-hole dynamics. 

The ' '  effective ergosphere' '  
for charged-particle processes 

EXERCISE 
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Figu re 3 3 . 2 .  An advanced civilization has constructed a ngid framework around a black hole, and has built a huge city on that framework. Each day trucks carry one million tons of garbage out of the city to the garbage dump. At the dump the garbage is shoveled into shuttle vehicles which are then, one after another, dropped toward the center of the hlack hole. Dragging of inertial frames whips each shuttle vehicle into a circling, inward-spiraling orbit near the horizon. When it reaches a certain "ejection point," the vehicle ejects its load of garbage into an orbit of negative energy-at-infinity, £garbage < 0. As the garbage flies down the hole, changing the hole's total mass-energy by ,1M = £garbage ejected < 0, the shuttle vehicle recoils from the ejection and goes flying back out with more energy-at-infinity than it took down 
Evelucle out = Evehlcle+ garbagedown - Egarbageejected 

> Evehlcle + garbage down· The vehicle deposits its huge kinetic energy in a giant flywheel adjacent to the garbage dump; and the flywheel turns a generator, producing electricity for the city, while the shuttle vehicle goes back for another load of garbage. The total electrical energy generated with each round trip of the shuttle vehicle is (Energy per trip} = Evelncle out - ( rest mass of vehicle) 
= (Evelncle + garbage down - Egarbage eject.J - (rest mass of vehicle) 
= (rest mass of vehicle + rest mass of garbage - ,1M) - (rest mass of vehicle) 
= (rest mass of garbage) + (amount, - ,1M, by which hole's mass decreases) . Thus, not only can the inhabitants of the city use the black hole to convert the entire rest mass of their garbage mto kinetic energy of the vehicle, and thence into electrical power, but they can also convert some of the mass of the black hole into electncal power! 



§ 3 3 . 8  REVERSIB LE AND IRREVERSIBLE PROCESSES 909  To derive the limitation of  nondecreasing surface area from properties of  testparticle orbits, one must examine what values of energy-at-infinity, E, are allowed at a given location (r, 0) outside a black hole. Equations (33 .32a,b), when combined, yield the value of E in terms of a test particle's location (r, 0), rest mass µ,, charge e, axial component of angular momentum Lz , and momentap r = dr/d"A,p e = d0/d>.. in the r and 0 directions : 
where a.E 2 - 2/3E + y = O; E - /3 + 

y/3
2 - a.y 

- ' a (33 .54a) 
a = (r2 + a2)2 - .1a2 sin20 > 0 everywhere outside horizon, (33 .54b) /3 = (Lza + eQr)(r 2 + a2) - Lza .1, (33 .54c) y = (Lza + eQr)2 - .:l(Lz/sin 0)2 - µ, 2 .1p 2 - p4[(p r)2 + .1(p e)2] . (33 .54d) 

(One must take the positive square root, + v' /3
2 - ay, rather than the negative square root; positive square root corresponds to 4-momentum pointing toward future; while negative square root corresponds to past-pointing 4-momentum; see Figure 3 3 .3 .) Several features of the energy equation (33 .54) are noteworthy. ( 1 )  For orbits in the equatorial "plane," 0 = 1r /2 and p e 0, the energy equation yields an effective potential for radial motion (Box 33 .5) .  (2) Orbits of negative E must have /3 < 0 and y > 0-which can be achieved only if Lza < 0 and/or eQ < 0 .  Thus, one cannot 

decrease the mass of a black hole without simultaneously decreasing the magnitude 
of its charge or angular momentum or both. (3) For an orbit at given (r, 0), with given 
e and Lz, E is a minimum if pr = p e = µ, = 0 .  Put differently, the rest mass and the 
r- and 0-components of momentum always contribute positively to E. By injecting an object into a black hole, produce small changes 

oM = E, oQ = e, 
in its mass, charge, and angular momentum. For given changes in Q and S, what range of changes in M is possible? Clearly oM can be made as large as one wishes by making the rest mass µ, sufficiently large. But there will be a lower limit on oM. That limit corresponds to the minimum value of E for given e and Lz. The orbit of minimum E crosses the horizon (otherwise no changes in M, Q, S would occur !) ,  so one can evaluate E there. At the horizon, as anywhere, a minimum for E is achieved if µ, = pr = p e = 0 .  Inserting these values and r = r+ (so .1 = 0) into equations (33 .54), one finds 

(33 .55)  

P ropert ies of test-part ic le 
o rbits :  

( 1 )  E as function of µ, e ,  Lz , 
r, 8 ,  p r 

(2) effective potent i a l  

(3)  negat ive E req u i res Lza < 0 and/or eQ < 0 

Changes in b lack-hole 
propert ies due to i nject ion of 
partic les · 
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- 0 .75 
Negative-root states of negative energy 1- 1 .0 
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r = 3M/2 

Figure 3 3 . 3 .  
Energy-at-infinity E allowed for  a particle of  angular momentum L, and rest mass µ, which i s  (I )  in 
the "equatorial plane" 0 = '1T/2, (2) at radius r = 3M/2, (3) of an uncharged (Q = 0) extreme-Kerr 
(S = M2) black hole. E is here plotted against L,. "Seas" of "positive and negative root" states are 
shown. The positive root states have energies-at-infinity given by equations (33 .54) 

/3 + 'lf/32 - ay E = -----
a 

and have 4-momentum vectors pointing into the future light cone. The negative root states (states of 
Dirac's "negative energy sea") have energies at infinity given by 

/3 - v/32 - ay 
£ = ------ , 

a 

and have 4-momentum vectors pointing into the past light cone. In the gap between the "seas" no orbits 
exist (forbidden region). The gap vanishes at the horizon r = M (infinite redshift of local energy gap, 
2µ, gives zero gap in energy-at-infinity). [Figure adapted from Christodoulou ( 197 1 ).] 

corresponding to changes in the black-hole properties of 

oM > _a_o_S_+_r +_
Q
_

o_Q_ 
- r+Z + a2 (

absolute �inimum value of
) .  

oM for given oS and oQ 
(33.56) 

Notice an important consequence [Bardeen (1970a)] : if the black hole is initially 
of the "extreme Kerr-Newman" variety, with M2 = a2 + Q2 , so that one might fear 
a change which makes M2 < a2 + Q2 and thereby destroys the horizon, one's fears 
are unfounded. Equation (33 .56) then demands (since r+ = M and S = Ma) 

M oM 2 a oa + Q oQ; 

so M2 remains greater than or equal to a2 + Q 2 , and the horizon is preserved. 
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Box 3 3 . 5  ORBITS OF TEST PARTICLE IN "EQUATORIAL PLANE" 
OF KERR-NEWMAN B LACK HOLE 

Radial motion is governed by energy equation (33 .54) with 8 = p 8 = 0 :  

9 1 1 

E = /3 + y/3 2 - ayo + ar4(pr)2 

a 

a, /3, y0 are functions of r and of constants of motion, 

a = (r 2 + a2)2 - Lla2 > 0, 

/3 = (Lza + eQr)(r2 + a2) - LzaLl, 

Yo = (Lza + eQr)2 - LIL/ - µ. 2r 2Ll;  

pr = (radial momentum) is 

Thus, equation (1 ) is an ordinary differential equation for dr/dA. 

(1 ) 

(2a) 

(2b) 

(2c) 

(3) 

Qualitative features of the radial motion can be read off an effective-potential 
diagram. The effective potential V(r) is the minimum allowed value of E at radius r :  

V(r) = /3 + y/3 2 
- ayo . 

a 

As in the Schwarzschild case (Figure 25 .2), the allowed regions for a particle of 
energy-at-infinity E are the regions with V(r) s:; E; and the turning points (pr = 
dr/dA = 0) occur where V(r) = E. 

Stable circular orbits occur at the minima of V(r) . By examining V(r) closely, one 
finds that for uncharged black holes the innermost stable circular orbit (most tightly 
bound orbit) has the characteristics here tabulated [table adapted from Ruffini and 
Wheeler (1 97 1 b) ]. 

Extreme Kerr 
(a 2 = M2 , 0 = 0) 

Sch warzschtld (see figure) 
Charac- Newtonian (a = 0 = 0) [Bardeen ( 1 9  70a)] 
tensttc (Figure 25 2) (Figure 25 2) tf L

z
a > 0 tf L,a < 0 

r/M 0 6 9 
E/µ - 00  2 \/'2/3 l / y3 5/(3 y3) 

(µ - £)/µ = + oo  0.0572 0.4226 0.0377 "fractional binding" 
[ L, [ /µM 0 2 y3 2/ y3 22/(3 v'3) 
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Box 3 3 . 5  (con tinued) 

For a charged extreme Kerr-Newman black hole (M2 = Q2 + a2 , Q -f 0 and a -f 0) 
stable circular orbits with 100 per cent binding (E = 0) are achieved in the limit 

- ----- - 00 
/J, 

' ; ----- 0 (so a ----- M), 

[Christodoulou and Ruffini (1 97 1 )) .  

and (: ) · (;) ----- - oo .  

The effective potential for an uncharged, extreme Kerr black hole (a = M) is 
shown in the figure [figure adapted from Ruffini and Wheeler (197 1 b)) .  For detailed 
diagrams of orbits in the equatorial plane, see de Felice (1968) .  For many interesting 
properties of orbits that are not confined to the equatorial plane, see Wilkins (1972). 
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§3 3  8 REVERSIBLE AND IRREVERSIBLE PROCESSES 9 1 3  The general limit (33 .56) on the change in mass can be rewritten in an alternative form [Christodoulou (1970), Christodoulou and Ruffini ( 197 1 )] :  (33 .57) where 
(33 .58)  (3)  1 r red uc 1b le  m ass 

is the "irreducible mass" of the black hole. Equation (33.57)  states that no black-hole 
transformation produced by the injection of small lumps of matter can ever reduce 
the irreducible mass of a black hole. This result is actually a special case of the second law of black-hole dynamics, since the surface area of a black hole is 

A =  1 6'1TM;/ (Exercise 33 . 12) . Equation (33 .58) can be combined with a = S/ M and inverted to yield 
( 

Q 2 
)

2 s2 
M2 = M;r + 4 M + 

4 M 2 · 
Ir lr 

[i1:ed�cible con- lel�ctr�magnetic con- t rr�tati�nal con- J tnbut10n to mass 1tnbution to mass 1 �tnbut10n to mass 

(33 .59) 

(33 .60) 

A black-hole transformation that holds fixed the irreducible mass is reversible; one that increases it is irreversible. The derivation of equation (33 .56) revealed that the only injection processes that actually achieve the minimum possible value for oM (and thus make 8M;r = 0) are those with µ, = pr = p e = 0 at the horizon, r = r+. Restated in words : To produce a reversible transformation by injecting an object into a black hole, one must ( 1 )  give the object a rest mass µ, extremely small compared to its charge £ or axial component of angular momentum Lz, 

µ,/e <{ 1 and/or µ, 2/L/ <{ 1 ;  
and (2) set the object down "extremely gently" (pr = p e = 0), extremely close to the horizon (r = r +)- This does not sound too difficult until one recalls that objects with pr = p e = 0 at the horizon must be moving outward with the speed of light, and that the nearer one approaches the horizon as one sets down the object, the greater one's danger of "slipping" and getting swallowed !  Clearly, any actual inj ection process will depart somewhat from irreversibility. Reversibility is an idealized limit, approachable but not attainable. 

(4) revers ib le  and  i r revers ib le  
transformat ions 
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EXERCISES Exercise 33. 1 1 .  IRREDUCIBLE MASS IS IRREDUCIBLE 
Show that condition (33.56) is equivalent to oMir � 0. 

Exercise 33. 1 2. S URFACE AREA OF A BLACK HOLE 
Show that the surface area of the horizon of the Kerr-Newman geometry [area of surface 
r = r + and I = const (Boyer-Lindquist coordinates) or V = const (Kerr coordinates)] is 
16'7TMi/• 

Exercise 33. 1 3. ANG ULAR VELOCITY OF A BLACK HOLE 
A general theorem [Hartle (1970) for relativistic case; Ostriker and Gunn (1969) for nonrela
tivistic case] says that, if one injects angular momentum into a rotating star while holding 
fixed all other contributions to its total mass-energy ( contributions from entropy and from 
baryonic rest mass), then the injection produces a change in total mass-energy given by 

(angular velocity of star) o(mass-energy) = . . . . o(angular momentum). 
at pomt of m1ect1on (33.61) 

By analogy, if one injects an angular momentum 8S into a rotating black hole while holding 
fixed all other contributions to its total mass-energy (contributions from irreducible mass 
and from charge), one identifies the coefficient Slh in the equation 

as the angular velocity of the hole: 

(33.62) 

(a) Show that the angular velocity of a black hole is equal to 

(33.63) 

Notice that this is precisely the angular velocity of photons that live forever on the horizon 
[equation (33.42b); "barber-pole twist" of null generators of horizon]. 

(b) Show that any object falling into a black hole acquires an angular velocity (relative 
to Boyer-Lindquist coordinates) of Sl = d<t,/dt = Sl.h in the late stages, as it approaches the 
horizon. (Recall that the horizon is a singularity of the Boyer-Lindquist coordinates. This 
is the reason that every object, regardless of its Lz, E, e, µ, !2, can approach and does approach 
Sl = Slh.) 

Exercise 3 3 . 1 4. SEPARATION OF VARIABLES FOR WAVE EQUATIONS 
This chapter has studied extensively the motion of small objects in the external fields of 
black holes. Of almost equal importance, but not so well-understood yet because of its 
complexity, is the evolution of weak electromagnetic and gravitational perturbations 
("waves") in the Kerr-Newman geometry. Just as one had no a priori reason to expect a 
"fourth constant" for test-particle motion in the Kerr-Newman geometry, so one had no 
reason to expect separability for Maxwell's equations, or for the wave equations describing 
gravitational perturbations-or even for the scalar wave equation Of = - f a"' = 0. Thus 
it came as a great surprise when Carter (1968c) proved separability for the scalar wave 
equation, and later when Teukolsky (1972, 1973) separated both Maxwell's equations and 
the wave equations for gravitational perturbations. 
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Show that separation of variables for the scalar-wave equation in the (uncharged) Kerr 
geometry yields solutions of the form 

(33.64a) 

where m and 1 are integers with O � 1ml � 1 ; Sm! is a spheroidal harmonic [see Meixner 
and Scharfke (1954)] ; and u1m satisfies the differential equation 

- d 2u/dr* 2 + Vu = 0 .  (33.64b) 

In order to put the equation in this form, define a Regge-Wheeler (1957) "torto1se"-type 
radial coordinate r* by 

dr* = L1-1(r 2 + a2) dr, 

and find an effective potential V(r*) given by 

V = - (w - 2 
ma 

2 )
2 

+ [(m - w a)2 + .'2](r 2 + a2)-2 LI 
r + a 

+ 2(Mr - a2) (r 2 + a2)-3 LI + 3 a2(r 2 + a2)-4 Ll2 . 

(33.64c) 

(33.64d) 

In this radial equation .'2 is a constant (analog of Carter's constant for particle motion), 
given in terms of m and 1 by 

.'2 = ;\ _ m2 • ;\ = [eigenfunction of spheroidal harmonic; ] - mL , ml . see Meixner and Scharfke (1954) 
(33.64e) 

[These details of the separated solution were derived by Brill et al. (1972). For studies of 
the interaction between fields and Kerr black holes-studies performed using the above 
solution, and using analogous solutions to the electromagnetic and gravitational wave 
equations-see Bardeen, Press, and Teukolsky ( 1972 ), Misner ( 1972 b ), Teukolsky ( 1972), Ipser 
(1971), Press and Teukolsky (1973), and Chrzanowski and Misner (1973).] 



r 

CHAPTE R 34 
G LO BAL TECH N I QU ES,  H O R IZO N S,  

AN D S I N G U LAR ITY TH EO R E M S  

This chapter is entirely 
Track 2. § 2 2 . 5  (geometric 
optics) and the Track-2 portions 
of Chapters 32 and 33 
(co l lapse and black holes) are 
necessa ry preparation for it .  I t  
is not  needed as preparation 
for any later cha pter. 

§34 . 1 .  G LO BAL TECH NIQUES VERSUS LOCAL TECH NIQUES 

Until the 1960's, computations in gravitation theory used local techniques almost 
exclusively : the Einstein field equation describes how the stress-energy tensor T at 
a given event generates curvature G at that same event (local physics). When reduced 
to differential equations for the metric coefficients, G = 81TT relates ga/3 •  oga13 ! oxµ, 
and o 2ga13 /axµax • at each given event to Tys at that same event (local equation). 
The solution of these differential equations is effected, on a computer or in any 

"- � initial-value-type analysis, by integrating forward in time from event to event to 
._ __________ _ 

Local  techn iques of ana lyz i ng  
spacet ime physics contrasted 
with g loba l  tech n iques 

event (local integration). The nongravitational laws of physics are obtained by 
invoking the equivalence principle in a local Lorentz frame at each individual event 
in spacetime. To build up an understanding of the global structure of spacetime, 
one performs local computations near each event, and then patches the local results 
together to form a global picture. Why this great reliance on local analyses? Because 
the laws of gravitation physics take on particularly simple forms when stated locally. 

That gravitation physics is also subject to powerful and simple global laws, physi
cists did not realize until the mid 1 960's. But since 1963, studies of black holes and 
of singularities have revealed global laws and global properties of spacetime that 
rival in their simplicity and elegance even the (local) equivalence principle. An 
example is the second law of black-hole dynamics : "In an isolated system, the sum 
of the surface areas of all black holes can never decrease." As a result, there has 
developed a powerful body of knowledge and techniques for analyzing directly the 
global properties of spacetime. 

To give a full treatment of global techniques would require many chapters. 
Fortunately, a full treatment is being published, almost simultaneously with this 
book, by Hawking and Ellis (1973). Because Hawking and Ellis are much better 
qualified to write on this subj ect than are we (Misner, Thorne, and Wheeler), we 
have chosen to not write a "competitive" treatment. Instead, we give in this chapter 
only a brief taste of the subject-enough of a taste to make the reader acquainted 
with the types of techniques involved and several of the most important results, but 
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not enough to give him a working knowledge of the subject. The topics we have 
chosen to treat are those that contact most closely the rest of this book: properties 
of "infinity" in an asymptotically flat spacetime (§34.2); causality and horizons 
(§§34.3 and 34.4) ; a proof of the second law of black-hole dynamics (§34.5); and 
theorems about the evolution of singularities in spacetime (§34.6). For greater detail 
on global techniques, one can consult not only the book of Hawking and Ellis (1 973), 
but also review articles by Geroch (197 1 ), by Penrose (1968a, 1972), and by Hawking 
( 1 973), the thesis of Godfrey (1970b), and the more specialized papers cited in the 
body of this chapter. 

§34 . 2 .  "IN FINITY" IN ASYM PTOTICALLY F LAT SPACETIMES 

When performing calculations in asymptotically flat spacetime, one often must 
examine the asymptotic forms of fields ( e.g., the metric, or the curvature tensor, or 
the electromagnetic field) "at infinity." For example, the mass and angular momen
tum of an isolated system are determined by the asymptotic form of the metric 
(Chapter 1 9). It is rarely sufficient to examine asymptotic forms near "spatial infin
ity." For example, if one wishes to learn how much mass was carried away by 
gravitational and electromagnetic waves during a supernova explosion, one must 
examine the asymptotic form of the metric not just at "spatial infinity," but at 
"future null infinity" ( see Figure 34. 1 ). 

Penrose (1 964, 1965a) has developed a powerful body of mathematical technique 
for studying asymptotic properties of spacetirne near "infinity." The key to his 
technique is a "conformal transformation" of spacetime, which brings "infinity" in 
to a finite radius and thereby converts asymptotic calculations into calculations at 
"finite points." Penrose's technique also provides rigorous definitions of several types 
of "infinity" that one encounters in asymptotically flat spacetimes. 

The details of Penrose's technique are not of importance to the rest of this chapter. 
However, this chapter will refer frequently to the various types of "infinity" defined 
by Penrose. In heuristic terms, they are as follows (see Figure 34.2a). 

J+ "future timelike infinity" : 
the region t ---- + oo at finite radius r 
(region toward which timelike lines extend). 

1- _ "past timelike infinity" : 
the region t ---- - oo at finite radius r 
(region from which timelike lines come). 

1° _ "spacelike infinity" : 
the region r ---- oo at finite time t 
(region toward which spacelike slices extend). 

!f+ "future null infinity" : 
the region t + r ---- oo at finite t - r 
(region toward which outgoing null lines extend). 

1- = "past null infinity" : 
the region t - r ---- - oo at finite t + r 
(region from which ingoing null lines come). 

Note: 1 is a script /, and is sometimes given the name "scri ." 

Refe rences on g loba l  
tech n iq ues 

Mot ivation  fo r study ing 
propert ies of spacet ime near 
i nf in ity 

Specif ic reg ions  of i nf in ity 
/+, 1°, ,-, 1+, 1-



Coord inate d iagrams for exh ibiti ng  structu re of i nf in ity 

2 
'5 

2M ... goo = - 1 + � r 

.....____ Supernova explosion begins ....________Star begins to collapse 
Star 

X 

Figure 34. 1 . Measurement of the mass-energy radiated as gravitational and electromagnetic waves by a supernova explosion in asymptotically flat spacetime. The mass-energy radiated equals the mass (Mbefore) of the presupernova star, minus the mass (Marter) of the neutron star and nebula after the explosion: 
Mradiated = Mbefore - Marter· To measure Mbefore' one can examine the asymptotic form (in suitable coordinates) of g00 at spatial infinity 

2M. ( I )  goo = - I + � + 0 -
r r2 as r --+  oo ,  t = constant 

But to measure Maner in the same way, one must wait, at any fixed r, until the radiation has flowed entirely past that point· 
- I + 2Marter + a (_!_) goo = 

r r2 

"th t (constant value sufficiently large} as r --+ oo w1 - r = to be inside the burst of waves Put differently, to measure Marter one must examine the asymptotic form of g00 
not at "spatial infinity," but rather at "future null infinity." 

It is often useful, in visualizing the asymptotic structure of spacetime, to introduce 
coordinates that attribute finite coordinate values to infinity. For example, in flat 
spacetime one can transform from the usual spherical coordinates t, r, 0, </>, with 

ds 2 = - dt2 + dr 2 + r2(d0 2 + sin20 d</> 2), 

to new spherical coordinates if;, t 0, </>, with 

(34 . 1 )  
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J+ 

t H H  'l g
+ 

"' 
� 

'l/ 
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';;!  
+ ?7  I J+ "' 

"' 
g

+ :s 
; -
0 r -- JO 

..0 JO 0 ------ -• g "' 
2 

-- ?T 

g -
0 g-b 

'\..'\.. 0 - ?T  
II 1-

�

g
- I • + + H 

1- (a) (b) 
Figure 34 . 2 .  Flat, "Minkowski" spacetime as depicted (a) i n  the usual spherical coordinates t, r, 0, <f, o f  a global Lorentz frame, and (b) rn the spherical coordinates of equations (34.2). The five regions of infinity-/+ , 1-, 1°, 1+ , 1--are shown in each coordinate diagram. In both coordinate systems, radial null lines make angles of 45 ° with the vertical axis, and nonradial null lines make angles less than 45 ° [see equations (34. 1 )  and (34.2c) ] .  See exercise 34. 1  for further detail. 

t + r = tan ; (if; + 0, 

t - r = tan ; (if; - 0, 

dsz = -dt/; 2 + d� z 
+ r2(d8 2 + sin20 dcp z). 

4 cos2 ; (if; + O cos2 ; (if; - �) 

(34.2a) 

(34.2b) 

(34.2c) 

The resulting if;, � coordinate diagram (Figure 34.2b) depicts J+, 1-, 1°, !f+, 1- more 
clearly than does the usual t, r, coordinate diagram. 

As another example, replace the Kruskal-Szekeres coordinates v, u, 0, cp for 
Schwarzschild spacetime by new coordinates if;, t 0, cp: 

l v + u = tan 2(tf; + 0, 

l v - u = tan 2(tf; - 0, 

( l  - r/2M)er!ZM = v2 - u 2 = tan _l (tf; + O tan _l(tf; - �), 
2 2 

d 2 32M3 e-r/2M( -dt/; 2 + d� 2) 2(,1'0 2 . 20 ,J 2) s = ----------- + r w + sm ucp . r I 1 4 cos2
2

(tf; + �) cos2
2(tf; - �)  

(34.3a) 

(34.3b) 

(34.3c) 

(34.3d) 

The resulting coordinate diagram (Figure 34.3) depicts clearly the causal connections 
between the horizons, the singularities, and the various regions of infinity. 



EXERCISES 

920 

1+ J+ �------

1- r = 0 singularity 1-

34 G LOBAL TECHN I QUES, HORIZONS, AND SIN G U LARITY THEOREMS 

'IT 

Figure 34. 3 .  Schwarzschild spacetime as depicted in the it, ,  t 0 ,  cp coordinates of equations (34.3) .  This coordinate diagram should be compared with the Kruskal-Szekeres coordinate diagram (Figure 3 1 .3) .  In both diagrams, radial null geodesics are 45 ° lines Each of the asymptotically flat regions ( one on each side of the "wormhole" of Figure 3 1  Sa) has its own set of infinities J+ , 1-, 1° , !!+ , and g-_ See exercise 34.2 for justification of this diagram. 

Exercise 34. 1 .  FLAT S PACETI M E  I N  if;, g, 0, </> C O O R D I NATES 

(a) Derive equation (34.2c) from (34.1) and (34.2a,b). 
(b) Show that the regions J+, 1-, J0, !f+, and g- of flat spacetime are located at 

J+ : if, = 7T, g = 0, 
J-: if; = - 7T, g = 0, 
JO : Ip = 0, g = 7T, 

!f+ : if; + g = 7T, - 7T  < if; - g < 7T, 

1-: if; - g = - 7T, -7T < if; + g < 7T. 

[see equations (34.2)]. These are the regions depicted in Figure 34.2. 

(34.4) 

( c) Show that in flat spacetime, in a if;, g coordinate diagram (Figure 34.2), radial null 
lines make angles of 45 ° with the vertical axis, and nonradial null lines make angles of less 
than 45 ° . 

Exercise 34 . 2 .  SCHWARZS CH I LD S PACETI M E  I N  if;, g, 0, </> CO O R D I NATES 
(a) Derive equations (34.3c,d) from (34.3a,b) and the Kruskal-Szekeres equations (31.14). 

(b) Use equations (34.3) to justify the precise form of the coordinate diagram in Fig
ure 34.3. 

Exercise 34 . 3 .  R E I S S N ER-N O R DSTR O M  S PACETI M E  

(a) Show that there exists a coordinate system in which the Reissner-Nordstrnm geometry 
with 0 < / Q I < M (exercises 31.8 and 32. 1 )  has the form 

ds2 = F2( - dif, 2 + dg 2) + r 2(d0 2 + sin20 d<f, 2) , 

F = F(,f;, 0,  r = r (,f;, g), 
(34.5) 

and in which the honzons and infinities are as shown m Figure 34.4. [Note: This is a very 
difficult exercise unless one has in hand the solution to exercise 31.8(d). For solution, see 
Carter (1966b).] 

(b) Use Figure 34.4 to deduce that the Reissner-Nordstrnm geometry describes a "worm
hole" or bridge, connecting two asymptotically flat spacetimes, which : (i) expands to a state 
of maximum circumference; (ii) recontracts toward a state of minimum circumference, and 
in the process disconnects its outer regions from the two J0's (spatial infinity) and reconnects 
them to a pair of r = 0 singularities; (iii) bounces; (iv) reexpands, and in the process 
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Figure 34.4.  Reissner-Nordstrom spacetime 
( 2M Q2 ) ds2 = - I - -- + - dt2 r r2 dr2 + r2(d02 + sin20 dq,2) + I - 2M/r + Q2/r2 with 0 < I Q I < M, as depicted in a new (,f,, t 0, <J,) coordinate system where the line element has the form ds2 = F2( - d,f,2 + dg2) + r2(d02 + sin20 d<J,2) .  (see exercise 34.3 .) This coordinate diagram re-veals the global structure of the geometry, in-eluding its singularities at r = 0, its horizons at r = r+ = M + -../M2 _ Q2 (which limit communication with g+ and 1-),  the null surfaces at r = r_ = M _ -../M2 _ Q2 (which limit communication with the singulari-ties), and the various asymptotically flat infinities, J+ , 1-, 1° , .1+, and .1-. From this diagram one can read off the "cam.al , tru<.:Lure" of the geome-try-i.e . ,  the abilities of various regions to com-municate with each other For detailed discussion of the geometry, see Graves and Brill ( 1960) and Carter ( 1 966b) . For discussions of collaps-ing charged stars, for which this geometry is the external gravitational field, see Novikov ( 1966a,b), de la Cruz and Israel ( 1967), and Bar-deen ( 1968) .  

disconnects its "outer regions" from the two singularities and reconnects them to a pair of 
J0 's in two new asymptotically flat universes; (v) slows its expansion to a halt; 
(vi) recontracts toward a state of minimum circumference, and in the process disconnects 
its outer regions from the two J0 's and reconnects them to a new pair of r = 0 singularities; 
etc. ad infinitum. 
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j-(<:P) 

Note: '3' -<  tJl, 9 { !2, 
g> � tJl, g> <t f2 , 
but f2 E j+<9) 

(a) 
Figure 34.5 .  

Note. S is a spacelike slice which 
extends from JO in to r = 2M, 
but does not include r = 2M. 
J+( S) does not include the 
leftmost horizon; but j+(S) 
is the leftmost horizon. 

(b) 

Spacetime diagrams illustrating various causal relationships. Diagram (a) is a hypo
thetical spacetime; diagram (b) is Schwarzschild spacetime (see Figure 34.3). In 
both diagrams, null lines have slopes of 45 °. 

§ 34 . 3 .  CAUSALITY AN D H ORIZO NS 

Turn now to global* techniques for analyzing black holes. The goals of the discussion 
will be (I) to define the concept of horizon (this section), (2) to deduce global 
geometric properties of horizons (next section), and (3) to prove the second law of 
black-hole dynamics (following section). The entire discussion will be confined to 
spacetime manifolds that (I) contain at least one asymptotically flat region ("the 
external universe"; region "outside black holes"), and (2) are "time-oriented." By 
"time-oriented" one means that at each event in spacetime a distinct choice has been 
made as to which light cone is the future cone and which is the past, and moreover 
that this choice is continuous from event to event throughout spacetime. 

The discussion begins with definitions of a variety of causal relationships between 
events and regions of spacetime (see Figure 34.5). 

Definition: '!I � :2 or equivalently :2 ► '!I ("the event '!I precedes the event :2"; 
"the event :2 follows the event '!/") means that there exists at least 
one smooth, future-directed timelike curve that extends from '!I to :2. 

Definition: A causal curve G'(;.\) is any smooth curve that is nowhere spacelike-i.e., 
that is timelike or null or "zero" [G'(;.\) = some fixed '!I, for all ;.\] or 
some admixture thereof. 

Definition: '!I < :2 or equivalently :2 >- '!I ("the event '!I causally precedes the event 

* Global, but not fully global; the "universe" of §§34.3-34.5 is asymptotically flat; no account is taken 
here of possible closure or collapse of the universe or of their consequences. 
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!2" ;  the event !2 causally follows the event P") means that there exists 
at least one future-directed causal curve that extends from P to !2. 

Definition : J-(9), called the causal past of P, is the set of all events that causally 
precede P-i.e., J-(9) = { 2 1 2 < P} . 

Definition: J+(q>), called the causal future of P, is the set of all events that causally 
follow P-i.e. , J+(q>) = { !2 1 !2 > P} .  

Definition : If  S i s  a region of  spacetime-e.g., a segment of  a spacelike hyper
surface-then J-(S) (the causal past of S) is the set of all events that 
causally precede at least one event in S-i.e. , 

J-(S) = { !2 1 !2 < P for at least one P E  S } . 

Definition: Similarly, J+(S) (the causal future of S) is the set of all events that 
causally follow at least one event in S-i.e., 

J+(S) = { !2 1 .!2 > P for at least one P E  S } .  

Definition: j+(S) i s  the boundary of  J+(S), 
j-(S) is the boundary of J-(S) .  

Definition: One defines the future of P, 1+(9) ;  the past of P, 1-(9); the future 
of S, 1+( S) ;  the past of S, 1-( S); the boundary of the future of S, j+( S); 
and the boundary of the past of S, j-( S) in precisely the same manner 
as above, except that the phrase "causally precede" is replaced by 
"precede," and "causally follow" is replaced by "follow." Example : 

1+(S) = { !2  I !2 ► P for at least one P E  S } .  

Not all these definitions are needed in the following discussion; but the literature 
on global methods uses these concepts so extensively that the reader should be 
familiar with them. 

Focus attention on a specific spacetime manifold, and in that manifold select out 
a specific asymptotically flat region. [In the external field of a star, there is but one 
asymptotically flat region. In the vacuum Schwarzschild geometry without source 
(Figure 34.3), there are two. In the Reissner-Nordstr.0m geometry without source 
(Figure 34.4), there are infinitely many different asymptotically flat regions.] The 
selected asymptotically flat region ("external universe") has one future timelike 
infinity 1+, one past timelike infinity 1-, one spacelike infinity 1°, one future null 
infinity 1+ , and one past null infinity 1-. It may also possess black holes, which 
form by stellar collapse, and which collide, coalesce, accrete matter, and generally 
wreak havoc in their immediate vicinities. The surfaces of all black holes ("future 
horizons") separate the external universe, which can send signals out to 1+, from 
the black-hole interiors, which cannot. One thus has the definition : 

Definition : The totality (or "union") of all future horizons (surfaces of all black 
holes) is the region j-(1+)-i.e., it is the boundary of the domain 
J-(1+) that can send future-directed causal curves out to future null 
infinity. 

Defi n it ion su rfaces of b lack 
ho les, futu re 
honzons-j-(_f+) 



Penrose 's  theorem on the structu re of J-(!J+ ) (futu re horizons) 
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X )-, 

Figu re 34. 6 .  

1 -u+l 17 
Surfa� 

L black hole at ________..- Surface of a "time" 52 -..,.v..,----,-,Vr--- black hole at "time" 52 

J

(
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Black holes m an asymptotically flat spacetime (schematic spacetime diagram). J-(!J+) is the "external universe"-i e. , the region which can send causal curves to future null infinity. J-(!J+), the greyish region, is the boundary of the "external universe"-i.e. ,  it is the union of all future horizons. At the "time" of spacelike slice Sv there are no black holes in the universe. Between 51 and S2 two stars collapse to form black holes. The two closed 2-surfaces, in which 52 intersects j-c1+) are the horizons of those black holes at "time" S2 . Between S2 and S3 , the two original black holes collide and coalesce, while a third black hole is being formed by stellar collapse. 

[Similarly, one can define the totality of all past horizons to be j+(!J-). But past 
horizons are of little interest for astrophysics. Whereas gravitational collapse pro
duces future horizons in a quite natural manner, past horizons must be primordial 
in origin-i.e., they must be postulated as initial structure in the origin of the universe 
[Novikov (1 964), Ne'eman (1965)) . There is no good reason to believe that the 
universe began with or should have begun with such strange initial structure.) 

Any given spacelike slice S through spacetime will intersect j-(!J+) in a number 
of disjoint, closed, two-dimensional surfaces. Each such 2-surface is the horizon of 
a single black hole at the "moment of time" S. See Figure 34.6 . 

§34.4 .  G LO BAL STRUCTURE O F  H ORIZO NS 

The union of all future horizons, j-(!f+), has an especially simple global geometric 
structure, as follows. 

THEOREM [Penrose (1968a)] : j-(!I+) is generated by null geodesics that have no 
future end points. Stated more precisely (see Figure 34.7) :  
(I ) Definition : The "generators" of j-(!I+) are null geodesics which 

(at least for some finite lapse of affine parameter) lie in j-c1+). 
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Once it enters j-(_if+), a generator �-.-,.-,.__. never leaves j-(_q+) nor passes through a caustic nor crosses any other generator 

//; I 
Figure 34. 7 .  

I I 
j-(_1+) 

)- y  
x ,,,.  

Through each non-caustic event 0P passes one and only one generator 

- caustic. Here generators enter j-ur+) from J-c.1+) 

\ \� 
The future horizon J-(!J+) produced by the spherical gravitational collapse of a star This horizon illustrates the global geometric structure of j-(!J+) as spelled out in Penrose's theorem (§34.4 of text). In this special case, there is only one caustic In general there will be many. 

9 2 5  

(2) Theorem: When followed into the past, a generator may (but 
does not have to ! )  leave j-(1+). Each event at which a generator 
leaves is called a "caustic" of j-(1+) .  When a generator leaves, 
it goes into 1-c1+). 

(3) Once a generator, being followed into the future, enters j-(1+) 
from J-(1+) at a caustic, it can never thereafter leave j-(1+), 
nor can it ever intersect another generator. [Generators can 
intersect only at the "caustics," where they enter j-(1+).] 

(4) Through each noncaustic event of j-(1+) there passes one and 
(aside from normalization of affine parameter) only one genera
tor. 

This theorem is proved in Box 34. 1 .  

For a Schwarzschild black hole, the generators of j-(1+) are the world lines of 
radially outgoing photons at the gravitational radius [r = 2M, 0 and </> constant, 



9 26 34 G LOBAL TECHNIQUES, HOR IZONS, AND SING U LAR ITY THEOREMS 

u = + v; dotted line on horizon in Figure 32. l (c)] .  For a Kerr-Newman black hole, 
the generators of j-(!J+) are the "barber-pole-twist" null geodesics of Box 
33 .2(F)-i.e . ,  they are those members of the outgoing principal null congruence that 
lie on the horizon, r = r + (§33 .6 ; exercise 33 .9) .  But the theorem is more general. 
It refers to any black hole-dynamic or static ; accreting matter, or coalescing with 
a neighboring black hole, or existing alone in isolation-in any time-oriented, 
asymptotically flat spacetime. 

Box 34. 1 HORIZONS ARE GENERATED BY NONTERMINATING 
NULL GEODESICS (Penrose 1 968a) 

A. Lemma: If (l ) G\(A) is a causal, future-directed curve 
from event '!J to event !2, (2) G'iA) is a causal, fu
ture-directed curve from event !2 to event t!!l, and 
(3) '!J 1 tfl ( '!J is not in the past of t!!l ), then G' 1 and 
G' 2 are null geodesics, and their tangent vectors coin
cide (aside from normalization) at event !2 .  

Proof* : 

I .  Suppose that G' 1 were not a null geodesic, or G' 2 
were not a null geodesic, or both. Then some-
where along G' 1 U G' 2 there would be a timelike 
segment, or a nongeodesic null segment, or both. 
a. If G' 1 U G' 2 contained a timelike segment, then 

a slight deformationt of G' 1 U G' 2 would pro
duce a smooth curve G' 3 from '!J to t!!l which 
is everywhere timeliket-contradicting the as
sumption '!J { t!!l.  

* The proof utilizes some elementary concepts of point-set topology, 
see, e.g., Wallace (1963) or Kelley ( 1 955). 

t One can always deform any curve m any spacetime manifold by 
a small amount in any direction one wishes, without running into 
singularities or into other boundaries of the manifold. This is possible 
because a manifold by definition is open. In physical terms, spacetime 
is open because each event in spacetime must possess a local Lorentz 
neighborhood which also lies in spacetime. 

tOne can convince oneself of this, and of similar claims made later 
in the proof, by arguments using local Lorentz frames. In the literature 
on global geometry, claims such as this are rarely substantiated� 
though each author is always convinced that he could do so if forced 
to by a skeptic Unfortunately, to substantiate such claims with rigor-
ous arguments would lengthen and complicate the discussion enor-
mously and would tend to obscure the simplicity of the underlying 
ideas. 

(continued un puge 931 )  
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b. If e 1 U e 2 contained a nongeodesic null seg
ment e reaching from event tl to event !'B, 
then, when compared to neighboring curves 
between tl and !'B, e would not have stationary 
length. This means that some curves from tl 
to !'B would have larger squared length-i.e., 
would be spacelike-while others would have 
smaller squared length-i.e., would be time
like. Thus, a slight deformation of e would 
produce a timelike segment from tl to $. Then 
a further deformation of e 1 U e 2 , as described 
in (a) above, would produce a smooth timelike 
curve from '!? to IJl, contradicting '!? { IJl. 

Thus, the supposition is wrong; i.e., both e 1 and 
e 2 must be null geodesics. 

2. Suppose that the tangent vectors of e 1 and e 2 
did not agree at their join point, 2. Then one 
could "round off the comer" at 2, producing a 
timelike segment there. One could then further 
deform e1 U e2 as in (la) above, to produce a 
smooth timelike curve from '!? to IJl-contradict
ing '!? { IJl. Thus, the supposition is wrong; i.e., 
the tangent vectors must agree at 2. Q.E.D. 

I 
Timelike / 

I 
I 

9 27 

I 
� 

e I Timelike 
/ segment 
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Box 34. 1 (continued) 

B. Lemma: If {l E j-(1+) and qJ3 E j-(1+), then {l { g,_  

Proof Assume {l <%; g, _ 

1. Then there exists a timelike curve from {l to g, _ 

2. A slight deformation of that curve which keeps 
it still timelike will make it link an arbitrary event 
!2 in some sufficiently small neighborhood �[{!] 
to an arbitrary event qi, in some small �[q],]. 

3. Pick qi, to lie in 1-(1+). Then join the timelike 
curve from !2 to qi, onto a causal curve from qi 
to 1+ . The resulting curve, when smoothed in a 
neighborhood of the join, becomes a causal curve 
from any arbitrary !2 E �[{!] to 1+ . 

4. The existence of such curves implies that �[ {lj c 
1-(1+), and hence that {l t/:. j-(1+)-in contra
diction to the original hypotheses. 

Conclusion: {l { g,_ Q.E.D. 

C. f:emma: Let 6'(,\) be a causal curve that intersects 
1-(1+) at some event g,_ Then when followed into 
the past from q],, 6'(,\) forever lies in j-(!J+) U 1-(1+). 

Proof 

1. Pick an arbitrary event {l on 6'(,\), with {l ..(, g, _  

2. Construct an arbitrarily small neighborhood 
�[{!], 

3. A small deformation of e, between {l and q],, 
produces a timelike curve 6j) from some event 
<!P E �[d] to g, _ 

4. Since qJ3 E j-(1+), a slight deformation of 6iJ, 
keeping it still timelike, produces a curve $ from 
<!P to some event !2 E 1-(1+). $ can then be pro
longed, remaining causal, until it reaches 1+ . The 
result is a causal curve from <!P to 1+ . Hence, 
<!P E  1-(!J+). 

5. But <!P was in an arbitrarily small neighborhood 
�[d]. Hence, {l must also be in 1-(1+) or else 
in its boundary, j-(1+). Q.E.D. 

ql/;(!'/JJ / I 
,,,..-

'-..._ 

tl 
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D. Theorem [Penrose (1968a)]: j-(!J+) is generated by 
null geodesics which have no future endpoints. [See 
text of §34.4 for more detailed statement of theo
rem.] 

Proof 
1. Pick an arbitrary event 9 in j-(!!+). Prove as 

follows that through 9 there passes a future-di
rected null geodesic which lies in j-(!J+): 
a. Construct an arbitrary neighborhood 9l[9]. [If 

j-(!/+) happens somewhere to encounter a 
singularity of spacetime, then 9l[9] must be 
chosen small enough to keep the singularity 
outside it.] 

b. In 9l[9) n 1-(!J+), construct a sequence of 
events { 9i} which converges to the event 9. 

c. For each i, construct a causal curve ei extend-
ing from 9i to 1+. 

d. Let 52i be the intersection of ei with 9l[9], the 
boundary of 9l[9). Since 0z [�] is a compact set, 
the sequence 52i must have a limit point, 52. 

e. Because there exist causal curves from events 
9; arbitrarily near 9 to events 52; arbitrarily 
near 52, there must be a causal curve from 9 
to 52. Call that curve e. 

f. Since 52 is a limit point of a sequence of events 
in 1-(!!+), 52 either lies in 1-(1+), or else lies 
on its boundary j-(1+), or both. Suppose 
52 ft j-(!!+). 

1. Then some small neighborhood 9l[52] is 
contained entirely in 1-(1+). 

11. Construct a causal curve from 9 to 1+ by 
going from 9 to 52 along the causal curve 
e, then from 52 along a timelike curve to 

some event (ij{ E 9l[ 52], and then from (ij{ to 
1+ along a causal curve-and by smooth
ing at the join points 52 and {ij{_ 

iii. Since this curve from 9 to 1+ has a time
like segment, it can be deformed smoothly, 
while being kept causal, so that it reaches 
any desired event S in some small neigh
borhood 9l'[9]. But this means that 
9l'[9] C 1-(!I+), hence that 9 ft j-(!l+)
which contradicts the original definition 
of 9. 

Conclusion: 52 E j-(1+). 

I 
I 
I 
I 
I 
\ 

/ / / 

\ \ 

9 2 9  
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Cannot occur' 

Toward g+ 
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Box 34. 1 (continued) 

g. By Lemma B, since '!l E j-(f+) and 
!!l. E j-(f+), then '!l { !!l.. But e is a future
directed causal curve from '!l to !!l.. Conse
quently, by Lemma A, e is !'I. null geodesic. 

h. Since the curve e intersects 1-(1+) at !!l., be
tween '!l and !!l. it must everywhere lie in 
j-(1+) U 1-(1+) [Lemma C]. Apply the rea
soning of (f) above, with !!l. replaced by an 
arbitrary point on e between '!l and !!l.. 
Thereby conclude that, everywhere between '!l 
and !!l., e lies in j-(1+). 

Summary: Through every event '!l E j-(1+) there 
passes a null geodesic e which, when followed into 
the future from '!l, lies in j-(1+). This null geodesic 
is called a "generator" of j-(1+). 

2. Follow the generator e from '!l to !!l. and then 
onward still further. Can it ever leave j-(1+)? No! 
J:or suppose it did leave, at some event '!l'  E 
1-(1+). 
a. Repeat the entire construction of step 1, with 

'!l' replacing '!l, to conclude that there is a null 
geodesic e 1 c j-(!f+) extending into the 
causal future from '!l'  to some event !£'. 

b. By Lemma B, since '!l E j-(1+) and !!l. '  E 
j-c1+), qp 1 2 '. 

c. Then by Lemma A the null geodesic e from 
'!l to '!l' and the null geodesic e'  from '!l' to 
!!l.' have tangents that coincide at '!l'  (aside 
from normalization). Thus, with a renormal
ization of affine parameter, e'  becomes the 
prolongation of e-which means that e does 
not leave j-(1+) at '!l'. 

Conclusion: Once a generator, being followed into 
the future, enters j-(1+), it can never thereafter 
leave j-(1+). 

3. Figure 34.7 provides an example of how a null 
geodesic, being following into the future, can 
enter j-(1+) and become a generator. Lemma C 
guarantees that, when a null geodesic enters 
j -(1+), it enters from 1-c1+). 

e cannot 
2' ' do this 

I 

e, 1 I 
I 

'!i'' 

e 

2 

e 

'!i' 
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4. As indicated by the example of Fig. 34.7, at a 
"caustic" [entry point of generators onto j-u·+)] 
generators can cross each other. Follow a genera
t?r e to the causal future from its entry point onto 
J -(!J+). Can it ever again cross another generator? 
No. For suppose that at an event 9 the generator 
e were to cross another generator 6j)_ 
a. To the causal future of 9, both generators 

always lie in j-(.1+). Thus, events tl and ?B of 
the picture are in j-(.1+). 

b. Since 9 is to the causal future of the caustic 
where e enters j-(!J+), there exists an event 
:!l, E j-(!J+) n e to the causal past of 9. 

c. Since :!l, E j-(!J+) and ?B E j-(!J+), :!l, � ?B 
[Lemma BJ. 

d. Lemma A, applied to the curves e from :!l, to 
9, and 6j) from 9 to ?B, then guarantees that 
the tangent vectors Ue and utij) coincide at 9 
(aside from normalization), and that therefore 
(aside from normalization) the geodesics e and 
6j) are identical. This contradicts the supposition 
that e and 6j) are different generators which 
cross at 9. 

Conclusion: Once a generator has entered j-(!J+), 
it can never thereafter cross any other generator. 

9 3 1 

§34 . 5 .  PRO O F  O F  SECO N D  LAW O F  B LACK-H O LE DYNAM ICS 

[Hawki ng ( 1 9 7 1 b, 1 9 72a ,  1 9 73)] 

All the tools are now in hand for a proof of the second law of black-hole dynamics. 
Consider the union of all future horizons, j-(f+), in an asymptotically flat space

time, as depicted in Figure 34.8. Divide up the null-geodesic generators of j-(.1+) 
into a large number of infinitesimal bundles, and give each bundle an identifying 
number, K. As one moves from past toward future along j-(.1+), one occasionally 
sees new bundles of generators created in "caustics" of the 3-surface j-(!J+). The 
caustic sources of new generators are created by such processes as the infall of matter 
through the horizon (example: bundle #42 in Figure 34.8), and the collision and 
coalescence of two black holes (example: bundle # 29). But each bundle, once 
created, can never be destroyed (no termination of null generators as one moves 
from past toward future). 

{l 

Proof of second law of 
black-hole dynamics 
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Bundle #42 

Figu re 34. 8 .  

Bundle 
# 1 7  

Schematic spacetime diagram used i n  proving the 
second law of black-hole dynamics. See text for 
details of the proof, and see Figure 34.6 for 
physical interpretation of the diagram. 

Focus attention on a specific bundle of generators-bundle # K. At a specific event '!I along that bundle, let various observers, moving with various velocities, measure its (two-dimensional) cross-sectional area tl K('!I). As shown in Figure 22. 1 ,  exercise 22 . 1 3 ,  and exercise 22 . 1 4 :  ( 1 )  the cross-sectional area tlK('!I) is independent of the velocity of the observer who measures it-i.e. , tl K('!I) depends only on location 9 along the bundle ; and (2) tl K changes from event to event along the bundle in a manner governed by the "focusing theorem" 
if the energy density TM, as measured by all observers along the bundle, is nonnegative. (34 .6) 

Here ">-..K is affine parameter along the bundle . Assume-in accord with all physical experience and the best assessments of modern physics-that energy density TM can 
never be negative. (This assumption underlies the second law of black-hole dynamics. 
If it were ever found to be invalid, then one would have to abandon the second law.) Suppose that dtl i1 2 / d">-..K were negative at some event '!I along the bundle. Then, according to the focusing theorem, dtl K11 2 /d">-..K would always remain at least as 
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negative as its value at q,'-and, hence, after a lapse of affine parameter given by 

( 
d 112 

) LI;\ < K 
K - - dd 112/d;\ ' K K at &' 

(34.7) 

d i1 2 would go to zero. At the point where d x112 reaches zero, adjacent null 
geodesics in the bundle cross each other, giving rise to events in j-(!J+) through 
which pass more than one null geodesic generator. But this violates Penrose's theorem 
on the global structure of horizons (§34.4). 

Thus either the supposition of negative dd i1 2 / d;\K is wrong; or else dd x112 / d;\K 
goes negative, but then, before the generators get a chance to cross [before the finite 
lapse (34.7) of affine parameter), the generators hit a singularity and cease to exist. 
To prove the second law of black-hole dynamics, one must assume that no singularity 
is hit by the horizon, and thereby conclude that dd x112 / d;\K never goes negative. 
Hawking (1971b, 1972a) makes an alternative assumption which implies ddx11 2/d;\K 
� 0: Hawking assumes that spacetime is "future asymptotically predictable. " In essence 
this means that spacetime possesses no "naked singularities"-i.e., no singularities 
visible from !J+. (Naked singularities could influence the evolution of the external 
universe; and, therefore, unless one knew the laws of physics governing singularities
which one does not-they would prevent one from predicting the future in the 
external universe.) 

Under either assumption (no naked singularities; or horizon never hits a singular
ity), one concludes that 

dd x112 / d;\K is nonnegative everywhere along bundle K. (34.8) 

This result says that the cross-sectional area (l K of each bundle can never decrease 
as one moves toward the future along j-(!J+). Since new bundles can be created, 
but old ones can never be destroyed as one moves toward the future, the total 
cross-sectional area of j-(!J+) cannot decrease toward the future. Equivalently, (see 
Figure 34.8), if S1 and S2 are spacelike hypersurfaces with S2 everywhere to the 
future of S1 , then the cross-sectional area of j-(!J+) at its intersection with S2 , d(S2), 

cannot be less than the cross-sectional area at S1, a(S1) . This is the second law of 
black-hole dynamics, reformulated in more precise language than that of Chapter 
33, and finally proved. 

Exercise 34.4.  A B LACK H O LE CAN N EVER B I FU RCATE [Hawking ( 1 972a)] 
Make plausible the theorem that no matter how hard one "zaps" a black hole, and no matter 
what one "zaps" it with, one can never make it bifurcate into two black holes. [Hint: By 
drawing pictures, make it plausible that, at any bifurcation point, some null geodesic genera
tors of j-(!J+) must leave j-(1+) as one follows them into the future-in violation of Penrose's 
theorem (§34.4). Assume that the surface of each hole is topologically a 2-sphere. Note: The 
same argument, time-reversed, shows that if two black holes coalesce, generators enter J-(1 +) 
from J-(.tf+) at the coalescence point; and the surface area of the horizon increases. ]  

Proof assumes that hor izon 
never h its a s i ngu l a rity (no 
na ked s i ngu l a r it ies) 

P recise form u lat ion of 
second law 

EXERCISE 



Overview of theorems on 
singularities 

Singularity defined 

Trapped surface defined 

9 3 4  3 4. G LO BAL TEC H N IQU ES,  H O R IZO N S ,  AN D S I N G U LAR ITY TH EO R E M S  

§34 . 6 .  THEOREMS O N  SIN G U LARITIES, AN D THE 

"ISSUE OF THE FINAL STATE" 

Just as global techniques are powerful tools in the analysis of horizons, so they also 
are powerful in the analysis of spacetime singularities. In fact, it was the proof of 
Penrose's (1965b) pioneering theorem on singularities that gave birth to global 
techniques for studying spacetime. 

For a detailed introduction to the global analysis of singularities, one can read 
the book of Hawking and Ellis (1973). Now that the reader has had a taste of global 
techniques, attention here will focus on a qualitative description of results : 

How does gravitational collapse terminate? Is the singularity at the end point of 
spherical collapse typical, or can asymmetries remove it? That singularities are very 
general phenomena, and cannot be wished away, has been known since 1965, thanks 
to theorems on singularities proved by Penrose, Hawking, and Geroch. [For a full 
list of references, see Hawking and Penrose (1969) or Hawking and Ellis (1973).] 

Before examining the theorems on singularities, one must make precise the concept 
of a singularity. This is not easy, as Geroch (1968) has emphasized in a long treatise 
on the wide variety of pathologies that can occur in spacetime manifolds. However, 
after vigorous efforts by many people, Schmidt (1970) finally produced a definition 
that appears to be satisfactory. Put in heuristic terms, Schmidt's highly technical 
definition goes something like this. In a spacetime manifold, consider all spacelike 
geodesics (paths of "tachyons"), all null geodesics (paths of photons), all timelike 
geodesics (paths of freely falling observers), and all timelike curves with bounded 
acceleration (paths along which observers are able, in principle, to move). Suppose 
that one of these curves terminates after the lapse of finite proper length ( or finite 
affine parameter in the null-geodesic case). Suppose, further, that it is impossible 
to extend the spacetime manifold beyond that termination point-e.g., because of 
infinite curvature there. Then that termination point, together with all adjacent 
termination points, is called a "singularity." (What could be more singular than the 
cessation of existence for the poor tachyon, photon, or observer who moves along 
the terminated curve?) 

Another concept needed in the singularity theorems is that of a trapped surface. 
This concept, devised by Penrose (1965b), is motivated by a close examination of 
the two-dimensional, spherical surfaces (r, t) = const. inside the horizon of the 
Schwarzschild geometry. These surfaces signal the nearness of a singularity (r = 0) 
by this property : light rays emitted from one of these surfaces in the perpendicular 
outward direction (i.e., outgoing, orthogonal, null geodesics) converge toward each 
other as they propagate; and inward light rays perpendicular to the 2-surface also 
converge. Penrose gives the name "trapped surface" to any closed 2-surface, spherical 
or not, that has this property. In Schwarzschild spacetime, the convergence of light 
rays, both outgoing and ingoing, can be attributed to the "intense pull of gravity," 
which sucks the photons into the singularity. That this might also be true in asym
metric spacetimes is suggested by the Hawking-Penrose (1 969) theorem [the most 
powerful of a wide class; see Hawking and Penrose (1969) for references to others; 
and see Boxes 34.2 and 34.3 for introductions to Hawking and Penrose] :  
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A spacetime M necessarily contains incomplete, inextendable timelike or null geo
desics (and is thus singular in the Schmidt sense) if, in addition to Einstein's equations, 
the following four conditions hold: (1) M contains no closed timelike curves (reason
able causality condition); (2) at each event in M and for each unit timelike vector u, 
the stress-energy tensor satisfies 

(reasonable energy condition); (3) the manifold is "general" (i.e., not too highly 
symmetric) in the sense that every timelike or null geodesic with unit tangent u passes 
through at least one event where the curvature is not lined up with it in a specific 
way : 

u[,,Rf3 J ya [ ,up1 uYu 8 =I- 0 at some point on the geodesic. 

(4) the manifold contains a trapped surface. 
All these conditions, except the trapped surface, seem eminently reasonable for 

any physically realistic spacetime! Note, especially, that the energy condition can 
be violated only if, as measured by some local observer in his proper frame, the 
total energy density E is negative or the principal pressures ( eigenvalues of stress 
tensor) Pi are so negative that 

� pi < - E. 

The relevance of the Hawking-Penrose theorem for collapse follows from the 
general expectation that, in the real universe, trapped surfaces will always exist just 
below all future horizons, j-(.1+). (Exceptions, such as the Kerr metric with a = M, 
are probably a "set of measure zero.") Since horizons and accompanying trapped 
surfaces are necessarily produced by slightly nonspherical collapse (Box 32.2), and 
since they probably also result from moderately deformed collapse (§32.7), such 
collapse presumably produces singularities-or a violation of causality, which is also 
a rather singular occurrence! 

If the singularities are really such a general feature of collapse, then the exact 
nature of the singularity is of life-and-death importance to anyone who falls through 
a horizon! Here one is on very shaky ground. Although the main results and 
conjectures described up to now in this section will probably survive all future 
research, opinions about the nature of the singularities are likely to change several 
times more before the whole story is in. Hence, it is safe only to describe the 
possibilities, not to attempt to judge them. 

Poss ib i l i ty 1 

The singularity at the endpoint of a realistic collapse is a region of infinite tidal 
gravitational forces (infinite curvature), which crushes the collapsing matter to infinite 
density. Examples : the very special, homogeneous crushing of the Oppenheimer
Snyder (1939) spherical collapse (§32.4); also the very special inhomogeneous but 
spherical crushing described by Podurets (1966); also the special inhomogeneous, 

(continued on page 940) 

The H awking-Pen rose 
theorem on s i ngu l a r it ies 

Re leva nce of the 
H awki ng-Pen rose theorem fo r 
g ravitat iona l  co l lapse 

The natu re of the s i ngu la r ity 
at the endpo int  of rea l ist ic 
co l l apse 4 possi b i l i t ies 
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Box 34. 2  R O G E R  P E N RO S E :  Born August 8 ,  1 93 1 ,  Colch ester, Essex, Eng land 

Roger Penrose started out as an algebraic geometer. However, while at Cambridge from 1952-55 and again from 1957-60, his interest in general relativity was aroused by Hermann Bondi and Dennis Sciama. Because of his pure mathematical background, his approach to the subject was different from those which had been adopted hitherto. He was particularly interested in the global light-cone structure of spacetime and in the equations of zero rest-mass fields, both of which are preserved under conformal transformations. He exploited this conformal invariance to give an elegant and powerful treatment of gravitational radiation in terms of a null surface g+ at infinity. More recently this interest has led him to develop the theory of twistors, which are the spinors corresponding to the conformal group of Minkowski space. These offer a new and very promising approach to the quantization of spacetime. His interest in conformal geometry also led him to study the properties of the causality relationships between points of spacetime. These in turn led him to the theorems on the occurrence of sin-
gularities in spacetime, which are probably the most important predictions of general relativity, since they seem to imply that spacetime has a beginning or an end. 

"If spacetime is considered from the point of  view of its conformal s tructure 
only, points at infinity can be treated on the same basis as finite poin ts "  

[PENR OSE, I N  I N FELD ( 1 964)) 

"The argumen t  will be to sho w  that  the exis tence of a trapped surface implies
irrespective of symmetry- that  singularities necessarily develop " 

[PEN ROSE ( 1 9 6 5 b)] 

"While the quantum effects of gravitation are normally thought to be significant 
only when curvatures approach 1 0 3 3  cm-1

, all our local physics is based on the 
Poincare group being a good approximation of a local symmetry group at 

dimensions greater than 1 0-1 3  cm. Thus, if  curvatures ever e ven approach 
1 0 1 3  cm-1

, there can be little doubt but tha t  extraordinary local effects are likely 
to take place " 

[HAWK I N G  A N D  PENROSE ( 1 9 6 9)) 
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"We are thus presented with what  is perhaps the most fundamental unans wered 
ques tion of general-relativistic collapse theory, namely: does there exis t a "cosmic 

censor" who forbids the appearance of naked singularities, clo thing each one in an 
absolute event horizon ? , ,  

[ PENROSE  ( 1 9 6 9) ]  

"Under normal circumstances, general relativity can, for practical purposes, 
remain remarkably apart-almost aloof- from the rest  of physics. A t  a space- time 

singularity, the very reverse must  surely be the easel , ,  
"/ do n o t  believe that a real understanding of the nature of  elementary particles 

can ever be achieved without a simultaneous deeper understanding of the nature 
of spacetime itself. But if we are concerned with a level of phenomena for which 

such an understanding is not necessary-and this will cover almost all of 
present-day physics- then the smooth manifold picture presents an 

(unreasonably!) excellent framework for the discussion of phenomena. , ,  
"The most important single lesson of  relativity theory is, perhaps, that  space 

and time are not concepts that can be considered independently of one another 
but must be combined together to give a four-dimensional picture of  phenomena: 

the description in terms of spacetime " 
[ PENROSE  ( 1 968a)] 

"ff a formalism enables one to treat myriads of non-exis tent types of universe, 
then (effectively) it contains 'arbitrary parameters, ' only special values of which 

will correspond to the world as it actually is. In the ordinary approach to 
spacetime as a pseudo-Riemannian differentiable manifold, the dimension of the 

manifold and the signature of the metric are two such arbitrary parameters. " 
"As we localize the position of a particle, it jumps essentially along the null 

cone. Other particles are produced, which leap backward and forward essentially 
along null directions, without apparent regard for continuity, heeding only the 
positions of the null cones themselves and "topology" only in the respect in 

which this term is applied to the s tructure of graphs " 
[ PENROSE  ( 1 9 6 6)] 

"My o wn view is that ultimately physical laws should find their most natural 
expression in terms of essentially combinatorial principles, that is to say, in terms 

of finite processes such as counting or other basically simple manipulative 
procedures. Thus, in accordance with such a view, should emerge some form of 

discre te or combinatorial spacetime " 
[ P ENROSE,  I N  KLA U D E R  ( 1 9 7 2)] 

"Complex numbers are . . .  a very important constituent of  the structure of 
physical laws. The twistor theory carries this further in suggesting that complex 
numbers may also be very basically involved in defining the nature of spacetime 

itself. " 
[PEN ROSE  A N D  MACCALLUM ( 1 9 73)] 

"ft is thus very tempting to believe that a link between spacetime curvature and 
quantum processes may be supplied by the use of  twistors. Then, roughly 

speaking, it is the continual sligh t 'shifting ' of the interpretations of the quantum 
(twistor) operators which results in the curvature of space time " 

[PEN ROSE ( 1 9 68b)] 
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Box 34. 3 STE P H E N  W. HAWK I N G :  Born January 8, 1 942, Oxford, England As a research student of Dennis Sciama's in Cambridge, Stephen Hawking's early interest in relativity theory centered mainly on the question of spacetime singularities. With Ellis, he showed that a large class of homogeneous cosmological models must be singular. Then, encouraged by work of Penrose on the singularities arising in gravitational collapse, he developed new techniques which, in a series of papers in the Royal Society of London during 1 966-67, established the important result that any plausible general-relativistic cosmology must be singular. The major portion of his later research has been concerned with black holes. He devised a series of arguments of great ingenuity which, together with the work of Israel and Carter, established to all intents and purposes the result that (vacuum) black holes in general relativity are described by Kerr metrics, that topologies other than spherical cannot occur, and that a certain limit on the energy emitted when two black holes congeal into one must be satisfied. Some of this work has had substantial pure mathematical interest ( e.g. ,  singularity theorems) , some of it is concerned with astrophysics ( e.g. ,  work with Taylor on helium production in the big bang), some with observations (work with Gibbons on the possibility of black holes in binary star 

systems) and even experimental developments (with Gibbons on gravitational-wave detectors). In such scope is exhibited not only a considerable insight, depth, and versatility, but also the gift of an extraordinary determination to overcome severe physical handicaps, to seek out and comprehend the truth. 
"The observed isotropy of the microwave background indicates that the universe 

is ro tating very little if at all. . . . This could possibly be regarded as an 
experimental verification of Mach 's Principle " 

[HAWKI N G  ( 1 969)) 

"Undoubtedly, the most important results are the theorems . . . on the 
occurrence of singularities. These seem to imply either that  the general theory of 

relativity breaks down or that there could be particles whose histories did not exis t 
before (or after) a certain time The author's own opinion is that the theory 

probably does break down but only when quantum gravitational 
effects become important " 

"Although we have omitted the singular points from the definition of spacetime, 
we can still recognize the 'holes ' left where they have been cut out by the 

existence of incomplete geodesics. , ,  
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"A good physical theory should not only correctly describe the currently 
experimental kno wledge, but should also predict new results which can be tes ted 

by experiment, the further the predictions from the original experiments, the 
greater the credit to the theory if they are found to be correct. Thus observations 
of whether or not singularities actually occurred, would provide a po werful tes t  of  

the general theory of relativity in strong fields , ,  
[HAWK I N G  ( 1 9 66a)l 

"The cons truction of gravitational radiation detectors may open up a whole new 
field of 'gravitational as tronomy '  which could be as fruitful as radio as tronomy has 
been in the las t  two decades Black hole collisions . . would be much more 

effective in converting res t-mass energy into radiation than nuclear reactions, 
which can release only about 1 per cent of the res t-mass energy. In addition, 

black holes formed by collisions of smaller black holes can undergo , further 
collisions, releasing more energy, whereas matter that  has been fully processed by 

nuclear reactions cannot  yield any more energy by the same means. . . we are 
witnessing something really cataclysmic at  the centre of  our galaxy " 

[HAWK I N G  ( 1 9 72b)] 

"One might suggest that  prior to the present expansion there was a collapsing 
phase. In this, local inhomogeneities grew large and isola ted singularities occurred. 

Most  of the matter avoided the singularities and reexpanded to give the present 
observed universe. , ,  

"ft seems that  we should draw a surface around regions where the radius of  
curvature is less than', say, 1 0-16  cm On our side of this surface, a manifold 

picture of  spacetime would be appropriate, but we have no idea what  s tructure 
spacetime would have on the o ther side " 

[HAWK I N G  A N D  ELL IS  ( 1 968)] 

"Presumably it would be necessary to consider quantum effects in very strong 
fields. Ho wever, these would not become importan t until the radius of curvature 

became of the order of 1 0-14  cm, which for practical purposes is pretty singular. , ,  

"The view has been expressed that  singularities are so objectionable that  i f  the 
Eins tein 'equations were to predic t their occurrence, this would be a compulsive 

reason for modifying them. Ho wever, the real tes t of a physical theory is not 
whether its predic ted results are aes thetically attractive but whether they agree 

with observation. So far there are no observations which would show that  
singularities do not occur" 

[HAWK I N G  ( 1 9 66 b)] 

"It is shown that a s ta tionary black hole must  have a topologically spherical 
boundary and must  be axisymmetric if it is rotating. These results, together with 

those of Israel and Carter, go most of the way toward establishing the conjecture 
that any s tationary black hole is a Kerr solution , , 

[HAWK I N G  ( 1 9 72a)] 

"The fact that  we have observed the universe to be 
iso tropic is only a consequence of  our exis tence. , ,  

[COLLI N S  AND HAWK I N G  ( 1 9 73)] 
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9 40 34  GLOBA L TECHNIQUES, HORIZON S, AND SIN GULARITY THEOREMS "Kasner-like" crushing of Lifschitz and Khalatnikov ( l963 a,b) ; also, most importantly, the very general "mixmaster" crushing (Chapter 30), discovered in the homogeneous case by Misner ( l969b) and by Belinsky and Khalatnikov ( l 969a), and analyzed in the inhomogeneous case by Belinsky and Khalatnikov ( 1969b, 1 970) and by Khalatnikov and Lifschitz ( 1970). The mixmaster singularities-and only they among all explicitly known singularities-appear to be generic in this sense: if one perturbs slightly but arbitrarily the initial conditions of a spacetime that evolves a mixmaster singularity, then the resultant perturbed spacetime will also evolve a mixmaster singularity. Because of this, the prevalent opinion today ( 1973) is that realistic collapse probably produces, inside the horizon, a mixmaster singularity. But that opinion might change tomorrow. 
Poss ib i l i ty 2 The singularity is a region of spacetime in which timelike or null geodesics terminate, not because of infinite tidal gravitational forces or infinite crushing, but because of other, more subtle pathologies. Example : "Taub-NUT space" [see Misner and Taub ( 1968)] .  For other examples created specially to exhibit various pathologies, see Geroch ( 1968) .  
Poss ib i l i ty 3 The singularity may be sufficiently limited in "size" and influence that all or most of the collapsing matter successfully avoids it. The matter cannot then explode back outward through the horizon that it went down; the horizon is a one-way membrane and will not let anything back out. Instead, the matter may reach a stage of maximum but finite contraction, and then reexplode into some other region of spacetime (multiply connected spacetime topology; "wormhole") . Analytical solutions for collapsing, charged spheres do reexplode in this manner [Novikov ( 1966) ;  de la Cruz and Israel ( 1 967) ; Bardeen ( 1968) ;  see Figure 34 .4] .  Such a process requires that the "exploding" end of the wormhole be huilt into the initial conditions of the universe, with mass and angular momentum (as measured by Keplerian orbits and frame dragging) precisely equal to those that go down the black-hole end. This seems physically implausible. So does the "explosion." 
Other Poss ib i l i t ies Various combinations of the above. If, as one suspects today, the singularities are of a very physical, infinite-curvature type, then one must face up to John Wheeler's ( 1964a) "issue of the final state" in its most raw and disturbing form. Wheeler, when faced with the issue, argues that -infinite-curvature singularities signal a breakdown in classical general relativity-a breakdown forced by the onset of quantum gravitational phenomena (see Chapter 44) .  Whether quantization of gravity will actually save spacetime from such singularities one cannot know until the "fiery marriage of general relativity with quantum physics has been consummated" [Wheeler (1 964a) ; see also Misner ( 1969c), and the last section of Box 30 . 1 ] . 
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G RAVITATI O NAL WAVES 

Wherein the reader voyages on stormy seas of  curvature ripples, 
searching for the ripple-generating s torm gods, and battles 

through an elec tromagnetic and thermal fog that  allows only 
uncertain visibility upon those seas 





CHAPTER 35  
PRO PAGATI O N  O F  

G RAVITATI O NAL WAVES 

Born · "/ should like to put to Herr Einstein a question, namely, how quickly the 
action of gravitation is propagated in your theory. That  it happens with the speed 

of  light does not elucidate it to me. There must  be a very complicated 
connection between these ideas. " 

E i nste i n :  "ft is extremely simple to write down the equations for the case when 
the perturbations tha t  one introduces in the field are infinitely small. Then the g 's 

differ only infinitesimally from those tha t  would be present without the 
perturbation. The perturbations then propagate with the same velocity as light " 

Born : "But  for great perturbations things are surely very complicated? " 
E i nstei n ·  "Yes, it is a mathematically complicated problem. It is especially 

difficult to find exac t  solutions of  the equations, as the equations are nonlinear. " 

Excerpts from discussion after E inste in 's  Fa l l  1 9 1 3  lecture in Vienna on "The present posit ion of the 
problem of gravitatio n , "  a l ready two yea rs before he had the fina l  field equations [E I N STEI N .  1 9 1 3a] 

§ 3 5 . 1 .  VIEWPOINTS 

Study one idealization after another. Build a catalog of idealizations, of their prop
erties, of techniques for analyzing them. This is the only way to come to grips with 
so complicated a subject as general relativity! 

Spherical symmetry is the idealization that has dominated most of the last 12 
chapters. Together with the idealization of matter as a perfect fluid, and of the 
universe as homogeneous, it has yielded insight into stars, into cosmology, into 
gravitational collapse. 

Tum attention now to an idealization of an entirely different type, one independent 
of any symmetry considerations at all: the idealization of a "gravitational wave." 

Just as one identifies as "water waves" small ripples rolling across the ocean, so 
one gives the name "gravitational waves" to small ripples rolling across spacetime. 

We are deeply indebted to Mr. James M. Nester, who found and corrected many errors in the equations 
of this chapter and of a dozen others throughout the book. 

G ravitat iona l  waves 
com pared to water waves on 
ocea n .  



( 1 )  approximate natu re of a 
wave 

(2) local  v iewpoint  vs . 
large-sca le  v iewpoint 

Li n earized theory of 
g ravitationa l  waves · 

( 1 )  Lorentz gauge condit ion 
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Ripples of what? Ripples in the shape of the ocean's surface; ripples in the shape 
(i.e., curvature) of spacetime. Both types of waves are idealizations. One cannot, 
with infinite accuracy, delineate at any moment which drops of water are in the 
waves and which are in the underlying ocean: Similarly, one cannot delineate 
precisely which parts of the spacetime curvature are in the ripples and which are 
in the cosmological background. But one can almost do so; otherwise one would 
not speak of "waves" ! 

Look at the ocean from a rowboat Waves dominate the seascape. Changes in 
angle and level of the surface occur every 30 feet or less. These changes propagate. 
They obey a simple wave equation 

(_J_2 � + £ + L) (height of surface) = 0. g a t4 ay2 ax 2 

Now get more sophisticated. Notice from a spaceship the large-scale curvature of 
the ocean's surface-curvature because the Earth is round, curvature because the 
sun and the moon pull on the water. As waves propagate long distances, this 
curvature bends their fronts and changes slightly their simple wave equation. Also 
important over large distance are nonlinear interactions between waves, interaction 
with the wind, Coriolis forces due to the Earth's rotation, etc. 

Spacetime is similar. Propagating through the universe, according to Einstein's 
theory, must be a complex pattern of small-scale ripples in the spacetime curvature, 
ripples produced by binary stars, by supernovae, by gravitational collapse, by 
explosions in galactic nuclei. Locally ("rowboat viewpoint") one can ignore the 
interaction of these ripples with the large-scale curvature of spacetime and their 
nonlinear interaction with each other. One can pretend the waves propagate in flat 
spacetime; and one can write down a simple wave equation for them. But globally 
one cannot. The large-scale curvature due to quiescent stars and galaxies will produce 
redshifts and will deform wave fronts; and the energy carried by the waves them
selves will help to produce the large-scale curvature. This chapter treats both view
points, the local (§§35.2-6), and the global (§§35.7- 15). 

§35 .2. REVIEW OF "LINEARIZED THEORY" I N  VACUUM 

Idealize, for awhile, the gravitational waves of our universe as propagating through 
flat, empty spacetime (local viewpoint). Then they can be analyzed using the "lin
earized theory of gravity," which was introduced in Chapter 1 8 .  

Linearized theory, one recalls, is a weak-field approximation to general relativity. 
The equations of linearized theory are written and solved as though spacetime were 
flat (special-relativity viewpoint); but the connection to experiment is made through 
the curved-space formalism of general relativity. 

More specifically, linearized theory describes gravity by a symmetric, second-rank 
tensor field hµv · In the standard ("Lorentz," or Hilbert) gauge, this field satisfies 
the "gauge" or "subsidiary" conditions ( coordinate conditions) 

h-µa - 0 ,a - . (35.la) 



§ 3 5 . 3  P LAN E-WAVE SO LUTI O N S  I N  LI N EA R IZED TH EO RY 945 (Here, and throughout linearized theory, indices of  hµ, are raised and lowered with the Minkowski metric 1/a/3 ·) In this gauge the propagation equations for vacuum gravitational fields are the familiar wave equations (35 . l b) (2) propagation equation Spacetime is really curved in linearized theory, although equations (35 . l )  are written and solved as though it were not. The global inertial frames of equations (35 . l )  are only almost inertial. In them the metric components are actually (35 .2a)* (3) metric and the "metric perturbation" hµ, is related to the "gravitational field" hµ, by 
(35 .2b) The metric (35 .2a) governs the motion of test particles, the propagation of light, etc. , in the usual general-relativistic manner. _ Recall the origin of the equations (35 . l )  that govern hµ, ·  The subsidiary conditions hµ "',a = 0 were imposed by specializing the coordinate system; and the Einstein field equations in vacuum then reduced to □hµ, = 0.  Actually, as was shown in Box 1 8 .2 ,  the coordinates of linearized theory are not fully fixed by the conditions hµ "',a = 0. There remains an ambiguity embodied in further "gauge changes" (infinitesimal coordinate transformations), �w which satisfy (4) residual gauge freedom a restrictive condition (35 .3a) in order to preserve conditions (35 . l a) .  Then (35 .3b) is the coordinate transformation and (35 .3c) is the gauge change. All this was derived and discussed in Chapter 1 8 .  

§35 . 3 .  P LAN E-WAVE S O LUTI O N S  I N  L I N EARIZED TH E O RY The simplest of all solutions to the linearized equations hµ,,a"' = hµ "',a = 0 is the monochromatic, plane-wave solution, Monochromatic, plane wave (35 .4a) 
* A more nearly rigorous treatment defines hw = gµ, - 1/µ,, and puts the small corrections O([hµ,]2) into the field equations . 
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Here R[ . . . . .  ] means that one must take the real part of the expression in brackets; 
while Aµ, (amplitude) and kµ (wave vector) are constants satisfying 

(k a null vector), 

(A orthogonal to k) 

(35.4b) 

(35.4c) 

(consequences of liµ,,a 
a = 0 and hµ�a = 0, respectively; see (35.10) below for the true 

physics associated with this wave, the curvature tensor]. Clearly, this solution de
scribes a wave with frequency 

w = ko = (k 2 + k 2 + k 2)112 - :c y z ' (35.5) 

which propagates with the speed of light in the direction (l/k0)(k.,,, ky, kz). 
At first sight the amplitude Aµ, of this plane wave appears to have six independent 

components (ten, less the four orthogonality constraints Aµaka = 0). But this cannot 
be right! As Track-2 readers have learned in Chapter 2 1 ,  the gravitational field in 
general relativity has two dynamic degrees of freedom, not six. Where has the 
analysis gone astray? 

One went astray by forgetting the arbitrariness tied up in the gauge freedom (35.3). 
The plane-wave vector 

(35.6) 

with four arbitrary constants C µ, generates a gauge transformation that can change 
arbitrarily four of the six independent components of Aµ, · One gets rid of this 
arbitrariness by choosing a specific gauge. 

§35 .4. THE TRANSVERSE TRACELESS (TT) GAUGE 

Select a 4-velocity u-not at just one event, but the same u throughout all of 
spacetime (special-relativistic viewpoint! ). By a specific gauge transformation (exer
cise 35.1 ), impose the conditions 

(35.7a) 

These are only three constraints on Aµ,, not four, because one of them-kµ(Aµ,u ') 
= 0-is already satisfied (35.4c). As a fourth constraint, use a gauge transformation 
( exercise 3 5 . 1 )  to set 

(35.7b) 

One now has eight constraints in all, Aµaua = Aµaka = Aa
a = 0, on the ten 

components of the amplitude ; and the coordinate system (gauge) is now fixed rigidly. 
Thus, the two remaining free components of Aµ, represent the two degrees of freedom 
(two polarizations) in the plane gravitational wave. 
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It is useful to restate the eight constraints Aµau"' = Aµak"' = Aµ
µ = 0 in a Lorentz 

frame where u0 = 1, u; = 0, and in a form where k"' does not appear explicitly: 

hkj,j = 0, 

i.e., only the spatial components 
h;k are nonzero; 

i.e., the spatial components are 
divergence-free; 

i.e., the spatial components are 
trace-free. 

(35.8a) 

(35.8b) 

(35.8c) 

(Here and henceforth repeated spatial indices are to be summed, even if both are 
down; e.g., hkk .1: f<=ihkk ·) Notice that, since h = h/ = hkk = 0, there is no dis
tinction between hµ, and hµ, in this gauge. 

Turn attention now away from plane waves to arbitrary gravitational waves in (2)  for any  wave 
linearized theory. Any electromagnetic wave can be resolved into a superposition 
of plane waves, and so can any gravitational wave. For each plane wave in the 
superposition, introduce the special gauge (35.8). Note that the gauge conditions 
are all linear in hµ, ·  Therefore the arbitrary wave will also satisfy conditions (35.8). 
Thus arises the theorem: Pick a specific global Lorentz frame of linearized theory 
(i.e., pick a specific 4-velocity u). In that frame (where u"' = 8"'

0), examine a specific 
gravitational wave of arbitrary form. One can always find a gauge in which hµ, satisfies 
the constraints (35.8). Moreover, in this gauge only the h;k are nonzero. Therefore, 
one need only impose the six wave equations 

(35.9) 

Any symmetric tensor satisfying constraints (35.8) [but not necessarily the wave 
equations (35.9)] is called a transverse-traceless (TT) tensor-transverse because it 
is purely spatial (hoµ = 0) and, if thought of as a wave, is transverse to its own 
direction of propagation (hi;,; = hi;k; = 0); traceless because hkk = 0. The most 
general purely spatial tensor Si; can be decomposed [see Arnowitt, Deser, and Misner 
(1962) or Box 35.1] into a part S'fl, which is "transverse and traceless"; a part 
Sf; = ½(8i;f,kk - f,i;), which is "transverse" (Sf;,; = 0) but is determined entirely by 
one function/ giving the trace of S (Sfk = 'i/2/); and a part Sf; = Sf,; + St, which 
is "longitudinal" and is determined by the vector field Sf. In linearized theory hf; 
is a purely gauge part of hµ,, whereas hf; and hf{ are gauge-invariant parts of hµ, · 
The special gauge in which hµ, reduces to its transverse-traceless part is called the 
TT or transverse-traceless gauge. The conditions (35.8) defining this gauge can be 
summarized as 

(35.8d) 

As exercise 35.2 illustrates, only pure waves (and not more general solutions of the 
linearized field equations with source, □hµ, = - 16wTµ,) can be reduced to TT 
gauge. 

Decom positio n  of spat ia l 
tensors 
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Cu rvature tensor in TT gauge In the TT gauge, the time-space components 

R;oko = Ro;ok = - R;ook = -Ro;ko 
of the Riemann curvature tensor have an especially simple form [see equation (18.9) 
and exercise 1 8.4): 

R _ 1 h TT 
j0k0 - - 2 jk,00·  (35.10) 

Recall that the curvature tensor is gauge-invariant (exercise 1 8. 1 ). It follows that 
hµp cannot be reduced to still fewer components than it has in the TT gauge. 

Box 35.1 describes methods to calculate h '{;{: from a knowledge of hµp in some 
other gauge. 

Box 3 5 . 1 M ETH O D S  TO CALCU LATE "TRANSVERS E-TRACELESS PART" O F  A WAVE 

Problem: Let a gravitational wave hµ.(t, x;) in an 
arbitrary gauge of linearized theory be known. 
How can one calculate the metric perturbation 
h '{;{:(t, x;) for this wave in the transverse-traceless 
gauge? 

Solution I (valid only for waves; i.e., when 
□hµp = 0). Calculate the components R;oko of 
Riemann in the initial gauge; then integrate 
equation (35.10) 

hf,{,oo = - 2R;oko ( 1 )  

to obtain hf,{. ·when the wave is  monochromatic, 
hµp = hµ.(x1)e-iwt ; then the solution of (1) has the 
simple form 

(2) 

Solution 2 (valid only for plane waves). "Project 
out" the TT components in an algebraic manner 
using the operator 

(3) 

Here 

is the unit vector in the direction of propagation. 
Verify that P;k is a projection operator onto the 
transverse plane: 

Then the transverse part of h;k is P;1h1mPmk (or in 
matrix notation, PhP); and the TT part is this 
quantity diminished by its trace: 

1 
hf,{= P;1Pmkhlm - 2 P;k (Pm1h1m) (4) 

(index notation), 

h TT - PhP - l_P Tr (Ph) - 2 
(matrix notation). (4') 

The sequence of operations that gives hf[ cuts two 
parts out of hw The first part cut out is 

(5) 

which is transverse but is built from its own trace, 
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Exercise 35 .  1 .  TRANSFORMATION O F  PLANE WAVE T O  T T  GAUGE EXERCISES 

Let a plane wave of the form (35.4) be given, in some arhitrary gauge of linearized theory. 
Exhibit explicitly the transformation that puts it into the TT gauge. [Hint: Work in a Lorentz 
frame where the 4-velocity uµ of the TT gauge is u 0 = I ,  ui = 0. Solve for the four constants 
Cµ of the generating function (35.6) by demanding that hµv satisfy the TT constraints (35.7).] 

Exercise 35 .2 .  LIMITATION ON EXISTENCE OF TT GAUGE 
Although the metric perturbation hµv for any gr avit ation al w ave in lineanzed theory can be 
put into the TT form (35.8), nonradiative hµ;s cannot. Consider, for example, the external 
field of a rotating, spherical star, which cannot be written as a superposition of plane waves :  

The second part cut out of hi; is the longitudinal 
part 

h\k = h;k - P;1Pmkhlm 

= n1nkh;l + n;n1h1k - n;nk (n1nmh1m); (6) 

or 
hL = h - PhP (6') 

Solution 3 (general case). Fourier analyze any 
symmetric array hi; = f hi;(k, t) exp (ikmxm) d3k, 
and apply the formulas (4) from solution 2 to each 
Fourier component individually. But note that in 
this case one can write the projection operator in 
the direction-independent form 

(7) 

or 
(8) 

(provided the formulas are written with all h's 
standing on the right), since a 1 = ik 1 under the 
Fourier integral. Of course the operation l/v'2 can 
be evaluated by other methods, e.g., by Green's 
functions, as well as by Fourier analysis. [The 

quantity if1 v-21 stands for the solution i/J of the 
Poisson equation v'2i/J = f] The advantage of this 
method is its power in certain analytic computa
tions (see, e.g., below). 

Gauge Transformations. The change in hµv due 
to a gauge transformation is 

(9) 

The transverse part of this change is 

To verify this formula for a plane wave (solution 
2), note that a1 = i lk ln1 and P;1n1 = 0. To verify 
the same result in general, use equation (7) to give 
the result 

(11) 

Thus both hf!' of equation (4), and hf; of equation 
(5) are gauge-invariant: 

ohf!' = oh[; = o. (12) 
In empty space (Tµv = 0), both hf; and another 
gauge-invariant quantity h0k ( discussed in exercise 
35.4) vanish, by virtue of the field equations. 
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2M hoo = -r 

r = (x 2 + y 2 + z 2) 11 2 

(see equation (19.5)]. Here M is the star's mass and S is its angular momentum. Show that 
this c annot be put into TT gauge. [Hint: Calculate R;oko and from it, by means of (35 . 1 0), 
infer h'f[. Then calculate Roxyz in both the original gauge and the new gauge, and discover 
that they disagree-not only by virtue of the mass term, but also by virtue of the angular
momentum term.] 

Exercise 3 5 . 3 . A CYLINDRICAL GRAVITATIONAL WAVE 
ro restore one's faith, which may have been shaken by exercise 35 .2, one can consider the 
radiative solution whose only nonvanishing component h

µv is 

hzz = 4A cos (wt) J0(w yx2 + y 2) , 

where 10 is the Bessel function. This solution represents a superposition of ingoing and 
outgoing cylindrical gravitational waves. For this gravitational field calculate R;okO• and from 
it infer hf[. Then calculate several other components of Rapyi (e.g., Rxyxy) in the original 
gauge and in TT gauge, and verify that the answers are the same. 

Exercise 35 .4 .  NON-TT PARTS OF METRIC PERTURBATION [Track 2] 
From Box 35 . 1  establish the formula h T = v-2(hkk ,H - hkl,kl) ;  then verify the gauge invan
ance of hT directly, by showing that hkk , ll - hkl,kl is gauge-invariant. Use oh;; = �i,i + �i, i · 
Show similarly that the quantities h0k defined by 

hok = hok - v-2 (lig, µk + hkl , 10) 

are gauge-invariant. Show from the gauge-invariant linearized field equations (1 8.5) that 

V2h T = - 16'1TT00, 

V2 h0k = - 1 6'1TT0k , 

so h T and h0k must varush for waves in empty space. 

§ 3 5 . 5 .  G E O D ES I C  D EVIATI O N  I N  A LI N EARIZED 

G RAVITATI O NAL WAVE 

The oscillating curvature tensor of a gravitational wave produces oscillations in the 
separation between two neighboring test particles, A and B. Examine the oscillations 
from the viewpoint of A. Use a coordinate system (''proper reference frame of A"), 
with spatial origin x1 = 0, attached to A's world line (comoving coordinates) ; with 
coordinate time equal to A's proper time (x 6 = ,,. on world line x' = O) ; and with 
orthonormal spatial axes attached to gyroscopes carried by A ("nonrotating frame").  
This coordinate system, appropriately specialized, is a local Lorentz frame not just 
at one event '!/0 on A's geodesic world line, but all along A's world line : 

(35.11) 
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[Proof: such a "proper reference frame" was set up for accelerated particles in 
Track 2's §13.6. The line element (13.71) derived there, when specialized to particle 
A (a; = 0 because A falls freely; wf = 0 because the spatial axes are attached to 
gyroscopes) reduces to the above form, as in equation (13.73).] 

As the gravitational wave passes, it produces an oscillating curvature tensor, which 
wiggles the separation vector n reaching from particle A to particle B: 

D 2ni/d'T 2 - - RL , ni< - - R""nk 
- 0k0 - j0k0 • (35.12) 

The components of the separation vector are nothing but the coordinates of 
particle B, since particle A is at the origin of its own proper reference frame; thus, 

Moreover, at xl = 0 [where the calculation (35.12) is being performed], the I'1\,.fi 
vanish for all x 0; so dI' i,,afi /dT also vanish. This eliminates all Christoffel-symbol 
corrections in D 2nl / DT 2 • Hence, equation (35.12) reduces to 

(35.13) 

There is a TT coordinate system that, to first order in the metric perturbation hf,[, 
moves with particle A and with its proper reference frame. To first order in hf,[, 
the TT coordinate time t is the same as proper time 'T, and R'J6k0 = R;oi<o · Hence, 
equation (35.13) can be rewritten 

d2x8i/dt2 __ R TT k _ I (-:> 2h TTj -:>t2) f< 
- jOkOXB - 2 u jk u XB • (35.14) 

Suppose, for concreteness, that the particles are at rest relative to each other before 
the wave arrives (x8

i = x8<o/ when hf,[ = 0). Then the equation of motion (35.14) 
can be integrated to yield 

j _ " [ 1 TT] x8 (T) _ x8<o> sjk + 2hjk 
at position of A 

(35.15) 

This equation describes the wave-induced oscillations of B's location, as measured 
in the proper reference frame of A. 

Tum to the special case of a plane wave. Suppose the test-particle separation lies 
in the direction of propagation of the wave. Then the wave cannot affect the separa
tion; there is no oscillation: 

Only separations in the transverse direction oscillate; the wave is transverse not only 
in its mathematical description (hf,[), but also in its physical effects (geodesic deviation) ! 

Transverse cha racter of 
relative acce lerations  
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Exercise 3 5 . 5 .  ALTERNATIVE CALCULATION OF RELATIVE OSCILLATIONS 
Introduce a TT coordinate system in which, at time t = 0, the two particles are both at rest. 
Use the geodesic equation to show that subsequently they both always remain at rest in the 
TT coordinates, despite the action of the wave. This means that the contra variant components 
of the separation vector are always constant in the TT coordinate frame: 

Call this constant xBw/. Tr ansform these components to the comoving orthonormal frame; 
the answer should be equation (35 . 1 5). 

§35 . 6 .  POLARIZATION O F  A PLANE WAVE 

Geodesic deviation in the transverse direction provides a means for studying and 
characterizing the polarizations of plane waves. 

Consider a plane, monochromatic wave propagating in the z direction. In the TT 
gauge the constraints h'[;{;. = 0, hf[; _ ik;h'!J = 0, and hf[ = 0 reveal that the only 
non vanishing components of hr; are 

hTT = - hTT = l\{A e-iw(t - z)} xx yy + , 

hTT = h TT = l\{A e-iw(t - z)} xy yx X 

(35.16) 

The amplitudes A+ and Ax represent two independent modes of polarization. 
As for electromagnetic plane waves (Figure 35.1), so also for gravitational plane 

waves (Figure 35.2), one can resolve a given wave into two linearly polarized 
components, or, alternatively, into two circularly polarized components. 

w(t - z) 
Displacement, ox ,  for polarization 

e ,  e v eR 

2mr • • t 

(2n + f )77 --- ; ---
(2n + l )w • • ; 
(2n + f )77 - t ...... 

eL 

; 
---
! 

---

Figure 35 .  1 .  
Plane Electromagnetic Waves. 
Polarization vector ep 
Vector Potential 

A = la [Aoe-iw(t -•>ep] 
Acceleration of a test charge 

a = (q/m)E = (q/m)( - oA /ot) 
= la[iw(q/m)A0

e-iw(t - z)ep] 
Displacement of charge relative 
to inertial frame· 
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For linearly polarized waves, the unit polarization vectors of electromagnetic theory 
are e,, and eY. A test charge hit by a plane wave with polarization vector e,, oscillates 
in the x-direction relative to an inertial frame; and similarly for eY. By analogy, 
the unit linear-polarization tensors for gravitational waves are 

e+ e,, ® e,, - ev ® ey, 

ex e,, ® eY + eY ® e,, . 

(35. 1 7a) 
(35. 1 7b) 

The plane wave (35.16), when Ax = 0, has polarization e+ and can be rewritten 

h. = l\{A e-iw(t - z>e . } Jk + +Jk · (35. 1 8) 

Its effect in altering the geodesic separation between two test particles depends on 
the direction of their separation. To see the effect in all directions at once, consider 
a circular ring of test particles in the transverse (x, y) plane, surrounding a central 
particle (Figure 35.2). As the plane wave (35. 1 8) (polarization e+) passes, it deforms 
what was a ring as measured in the proper reference frame of the central particle 
into an ellipse with axes in the x and y directions that pulsate in and out : 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

etc. By contrast (Figure 35.2), a wave of polarization ex deforms the ring at a 
45-degree angle to the x and y directions: O O O O O C) � C) O etc. 

For circularly polarized waves, the unit polarization vectors of electromagnetic (2) States of c i rcu lar  
theory are pola rizat ion 

w (t - z) 
e+ 

2mr Q 
(2n + ½)" 0 
(2n + l ),r e 
(2n + t)" 0 

eL = -1-(e - ie ) v'2 a, 
y 

Deformation of a ring of test particles 
ex eR eL 

e Q Q 
0 e � 

� e e 
0 � e 

(35.19) 

Figu re 35 . 2 .  Plane Gravitational Waves. Polarization tensor: ep Metric perturbation: h;k = R (Aoe-iw(t - z>ep;d Tidal acceleration between two test particles . D2nJ I o2h;k D-r2 = - R;okonk = 2 at2 nk 

- 1' [  .! w2A e-iw(t -z)
e n, ] - - 2 0 Pjk , Separation between two test particles . 

nJ = n/0> + � [ ½ Aoriw(t -z>ePiknk(O) ] 
Position of test particle B in proper reference frame of test particle A. (In drawing, A is the central particle and B is any peripheral particle) . 

J _ J + ,. [ l A e-iw(t -z)
e 

k] Xn - XB(o) -"' 2 0 PikXB(o) 
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Similarly, the unit circular polarization tensors of gravitation theory are 

(35 .20) 

A test charge hit by an electromagnetic wave of polarization eR moves around and 
around in a circle in the righthanded direction (counterclockwise for a wave propa
gating toward the reader); for eL it circles in the lefthanded (clockwise) direction 
(see Figure 35. 1 ). Similarly (Figure 35 .2) ,  a gravitational wave of polarization eR 
rotates the deformation of a test-particle ring in the righthanded direction, 

= o o o c:::-i c::::i = o  
while a wave of eL rotates it in the lefthanded direction. The individual test particles 
in the ring rotate in small circles relative to the central particle. However, just as 
the drops in an ocean wave do not move along with the wave, so the particles on 
the ring do not move around the central particle with the rotating ellipse. 

Notice from Figure 35 .2 that, at any moment of time, a gravitational wave is 
invariant under a rotation of 1 80 ° about its direction of propagation. The analogqus 
angle for electromagnetic waves (Figure 35 . 1 )  is 360 ° , and for neutrino waves it 
is 720 ° . This behavior is intimately related to the spin of the zero-mass particles 
associated with the quantum-mechanical versions of these waves: gravitons have 
spin 2, photons spin 1 ,  and neutrinos spin 1 /2. The classical radiation field of a 
spin-S particle is always invariant under a rotation of 360 ° / S about its propagation 
direction. 

A radiation field of any spin S has precisely two orthogonal states of linear 
polarization. They are inclined to each other at an angle of 90 ° / S; thus, for a 
neutrino field, with S = ½, the two states are distinguished as I t >  and I + >  (spin 
up and spin down; 1 80 ° angle). For an electromagnetic wave S = 1 and two ortho
gonal states of polarization are ex and ev (90 ° angle). For a gravitational wave S = 2, 
and two orthogonal states are e+ and ex (45 ° angle). 

Exercise 35 . 6 .  ROTATIONAL TRANSFORMATIONS FOR POLARIZATION STATES 

Consider two Lorentz coordinate systems, one rotated by an angle 8 about the z direction 
relative to the other: 

t' = t, X '  = X COS 8 + y sin 8 ,  y ' = y cos 8 - x sin 8, z' = z. (35.21)  

Let I t> and I +> be quantum-mechanical states of  a neutrino with spin-up and spin-down 
relative to the X direction; and similarly for I t '> and I + '> - Let ex, ey , ex' • ey' be the umt 
polarization vectors in the two coordinate systems for an electromagnetic wave traveling in 
the z-direction; and similarly e+ , ex ,  e+' • ex' for a gravitational wave in linearized theory. 
Derive the following transformation laws: 

I t '> = I t > cos ½ e + I + > sin ½ e ;  

e,,; = ex cos e + ey sin e ;  

e+' = e+ cos 28 + ex sin 28 ; 

I + '> = - I t> sin ½e + I +> cos ½e ;  

ey' = - ex sin 8 + ey cos 0 ;  

ex' = - e+ sin 28 + ex cos 28. 

(35.22) 
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What is the generalization to the linear-polarization basis states for a radiation field of arbitrary spin S? 
Exercise 3 5 .  7. ELLIPTICAL POLARIZATION Discuss elliptically polarized gravitational waves in a manner analogous to the discussion of linearly and circularly polarized waves in Figure 35 .2 .  

§35 . 7 .  THE STRESS-E N E RGY CAR R I E D  BY 

A G RAVITAT I O NAL WAVE 

Exercise 1 8.5 showed that in principle one can build detectors which extract energy 
from gravitational waves. Hence, it is clear that the waves must carry energy. 

Unfortunately, to derive and justify an expression for their energy requires a 
somewhat more sophisticated viewpoint than linearized theory. Such a viewpoint 
will be developed later in this chapter (§§35. 1 3  and 35. 1 5). But for the benefit of 
Track-I readers, the key result is stated here. 

In accordance with the discussions in §§ 1 9.4 and 20.4, the stress-energy carried 
by gravitational waves cannot be localized inside a wavelength. One cannot say 
whether the energy is carried by the crest of a wave, by its trough, or by its "walls." 
However, one can say that a certain amount of stress-energy is contained in a given 
"macroscopic" region (region of several wavelengths' size), and one can thus talk 
about a tensor for an effective smeared-out stress-energy of gravitational waves, 
T��w>. In a (nearly) inertial frame of linearized theory, T��w> is given by 

T(GW) _ 1 (hTT hTT ) µv - 32w jk,µ jk, v , (35.23) 

where ( ) denotes an average over several wavelengths and hf,{ means the (gauge
invariant) transverse-traceless part of hµv , which is simply h;k in the TT gauge. 
�other formula for T��w>, valid in any arhitrary gauge, with h =j:. 0, hµ ",a =j:. 0, and 
h0µ 

=j:. 0 is 

This stress-energy tensor, like any other, is divergence-free in vacuum 

T(GW) V = O· 
µ , 11 ' 

(35.23') 

(35.24) 

and it contributes to the large-scale background curvature (which linearized theory 
ignores) just as any other stress-energy does: 

G (B) = 8 w( T(GW) + T(matter) + T(other fields)) µv µv µv µv · (35.25) 

In writing here the term T��w> for the effective smeared-out energy density of the 
gravitational wave, one is foregoing any further insertion of the gravitational wave 
into the Einstein equation. Otherwise one might end up counting twice over the 

Approximate local izatio n  of 
energy in  a g ravitationa l  
wave 

Effective stress-energy tensor 
for g ravitationa l  waves 

( 1 )  expressed in terms of 
m etric pertu rbat ions 

(2) subject to conservat ion 
law 

(3)  role as source of 
backg round  cu rvatu re 



(4) for a p lane,  
monochromatic wave 

Condit ions for va l i d ity of 
g ravitationa l-wave formal ism 

Non l i near effects in  
g ravitationa l  waves: 

( 1 )  rad iat ion damp ing  

(2)  refract ion 
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contribution of the same wave to the background curvature of space, even though 
expressed in very different formalisms. 

is 

According to equation (35.23), the stress-energy tensor for the plane wave, 

h _ » { (A + A ) -iw(t - z) } µv - "" +e+µv x exµv e , 

r<GW) = r<GW) = - r<ow) = _l_w2( 1A 1 2 + IA 1 2) tt zz tz 32w + x · 

(35.26) 

(35.27) 

Notice that the background radius of curvature ?il (ignored by linearized theory), 
and the mean reduced wavelength ,t ( = wavelength/2w) and amplitude tl of the 
gravitational waves satisfy 

q1,-2 ~ typical magnitude of components of R�Jys 
~ r<owl ~ tl2/,t2 if r<ow> is chief source of background curvature µv µv ' 

::,.. r<0w> ~ tl2/,t2 if r<0w> is not chief source ::Y µv µv 

Consequently, the dimensionless numbers (l and ,t/?il, are related by 

(35.28) 

Thus, the whole concept of a small-scale ripple propagating in a background of 
large-scale curvature breaks down, and the whole formalism of this chapter becomes 
meaningless, if the dimensionless amplitude of the wave approaches unity. One must 
always have (l � I as well as ,t � ?il if the concept of a gravitational wave is to make 
any sense! 

§35 . 8 .  GRAVITATIONAL WAVES IN THE FULL THEORY 
OF GENERAL RELATIVITY 

Curving up of the background spacetime by the energy of the waves is but one 
of many new effects that enter, when one passes from linearized theory to the full, 
nonlinear general theory of relativity. 

In linearized theory one can consider a localized source of gravitational waves 
( e.g., a vibrating bar) in steady oscillation, radiating a strictly periodic wave. But 
the exact theory insists that the energy of the source decrease secularly, to counter
balance the energy carried off by the radiation ( energy conservation; gravitational 
radiation damping; see §§36.8 and 36.11 ). This makes an exactly periodic wave 
impossible, though a very nearly periodic one can certainly be emitted [Papapetrou 
(1958); Arnowitt, Deser, and Misner as reported by Misner (1964b)]. 

In the real universe there are spacetime curvatures due not only to the energy 
of gravitational waves, but also, and more importantly, to the material content of 
the universe (planets, stars, gas, galaxies). As a gravitational wave propagates through 
these curvatures, its wave fronts change shape ("refraction"), its wavelength changes 
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(gravitational redshift), and it backscatters off the curvatures to some extent. If the 
wave is a pulse, the backscatter will cause its shape and polarization to keep changing 
and will produce "tails" that spread out behind the moving pulse, traveling slower 
than light [see exercise 32. 10; also Riesz ( 1 949), DeWitt and Brehme ( 1 960), DeWitt 
and DeWitt ( 1 964a), Kundt and Newman (1 968), Couch et. al. ( 1 968)]. However, so 
long as tl � 1 and it/tJl � l, these effects will be extremely small locally. They can 
only build up over distances of the order of tJl-and sometimes not even then. Thus, 
locally, linearized theory will remain highly accurate. 

Even in an idealized universe containing nothing but gravitational waves, back
scatter and tails are produced by the interaction of the waves with the background 
curvature that they themselves produce. 

If the reduced wavelength it = A/2w and the mass-energy m of a pulse of waves 
satisfy it � m, it is possible (in principle) to focus the pulse into a region of size 
r < m, whereupon a part of the energy of the pulse will undergo gravitational 
collapse to a singularity, leaving behind a black hole [see Ruffini and Wheeler ( 1 970), 
and pp. 7-24 of Christodoulou ( 1971 )]. Short of a certain critical strength, no part 
of the pulse undergoes such a collapse. But it does undergo a time delay before 
reexpanding. This time delay is definable and measurable in the asymptotically flat 
space, far from the domain where the energy a little earlier underwent temporary 
focusing into dimensions of order it. 

All these effects can be analyzed in general relativity theory using approximation 
schemes which, in first order, are similar to or identical to linearized theory. Later 
in this chapter (§§35. 13-35. 1 5), one such approximation scheme will be developed. 
But first it is helpful to study an exact solution that exhibits some of these effects. 

§35 . 9 .  AN EXACT P LANE-WAVE SO LUTIO N 

Any exact gravitational-wave solution that can be given in closed mathematical form 
must be highly idealized; otherwise it could not begin to cope with the complexities 
outlined above. Consequently, mathematically exact solutions are useful for peda
gogical purposes only. However, pedogogy should not be condemned: it is needed 
not only by students, but also by veteran workers in the field of relativity, who 
even today are only beginning to develop intuition into the nonlinear regime of 
geometrodynamics ! 

From the extensive literature on exact solutions, we have chosen, as a compromise 
between realism and complexity, the following plane wave [Bondi et. al. ( 1 959), Ehlers 
and Kundt (1 962)] : 

(3 )  redsh ift 
(4) backscatter 
(5)  ta i l s  

(6)  se lf-g ravitationa l  
attract ion 

The rest of  th is  chapter is 
Track 2. No earlier Track-2 
materia l  is needed as 
preparation for it, but 
Cha pter 20 (conservation laws) 
and § 2 2 . 5  (geometric optics) 
wi l l  be found to be helpfu l .  I t  
is not  needed as preparation 
for any later cha pter. 

Exact p lane-wave solut ion of 
vacuum fie ld  equat ion 

ds2 = L2(e2f3 dx2 + e-2/3 dy 2) + dz 2 - dt2 

= L2(e 2f3 dx 2 + e-2/3 dy 2) - du du. 
(35.29a) ( 1 )  form of m etr ic 

Here 

u = t - z, V = t + Z, L = L(u), /3 = /3(u). (35.29b) 



(2) generation of 
" background factor" L 
by " wave factor" f3 

(3) linearized limit 

(4) special case a 
plane-wave pulse 
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The forms that the functions L(u) ("background factor") and /3 (u) ("wave factor") 
can take are determined by the vacuum field equations. In the null coordinate system 
u, v, x, y, the only component of the Ricci tensor that does not vanish identically 
is (see Box 14.4, allowing for the difference in coor<linales, 2uthere = uhere) 

Ruu = - 2L-1 [L" + (/3')2L], (35.30) 

where the prime denotes d/du. Thus, Einstein's equations in vacuum read 

L" + (/3')2 L = 0. (35.31) 

("effect of wave factor on background factor") 
The linearized version of this equation is L" = 0, since (/3')2 is a second-order 

quantity. Therefore the solution corresponding to linearized theory is 

L = l ,  /3(u) arbitrary but small. 

The corresponding metric is 

ds2 = (1 + 2/3) dx 2 + ( l  - 2/3) dy 2 + dz 2 - dt2 , /3 = /3(t - z). (35.32) 

Notice that this is a plane wave of polarization e+ propagating in the z-direction. 
(See exercise 35.10 at end of §35.12 for the extension to a wave possessing both 
polarizations, e+ and ex.) 

Return attention to the exact plane wave, and focus on the case where the "wave 
factor" /3(u) is a pulse of duration 2T, and 1 /3 ' 1 � l/T throughout the pulse. Then 
the exact solution (Figure 35.3) is: (1) for u < - T  (flat spacetime; pulse has not 
yet arrived), 

/3 = 0, L = I; 

(2) for - T  < u < + T (interior of pulse), 

/3 = /3 (u) is arbitrary, except that 1 /3 '1 � 1/T, 

L(u) = 1 - .r_: {.r_: [/3'(u)]2 du} du + O([/3'T]4) ; 

(3) for u > T (after the pulse has passed), 

(35.33a) 

(35.33b) 

/3 = 0, u 
L = l - -, a 

I O([/3 'T]2) a T + T . (35.33c) 
f (/3')2 du f (/3')2 du 

- T - T 

Before discussing the physical interpretation of this exact solution, one must come 
to grips with the singularity in the metric coefficients at u = a ► T. (There L = 0, 
so g.,., = gyy = 0.) Is this a physical singularity like the region r = 0 of the 
Schwarzschild geometry, or is it merely a coordinate singularity as r = 2M is in 
Schwarzschild coordinates (Chapters 31, 32, and 33)? The only nonzero compo
nents of the Riemann tensor for the metric (35.29) are (see Box 14.4) 
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r 
- r  

Figure 3 5 . 3 .  
Spacetime diagram and pulse profile fo r  an exact plane-wave solution to Einstein's 
vacuum field equations. The metnc has the form 

ds2 = L2(e2/J dx2 + e-2/J dy2) + dz2 - dt 2• 

The "wave factor" /3(u) = /3(1 - z) (short-scale apples) and the "background fac
tor" L(u) = L(t - z) (large-scale bending of the background geometry by the 
effective mass-energy of the "ripply" gravitational wave) are shown in the drawing 
and are given analytically by equations (35 .33). 

RX = _!_R - Q II - 2(L'/L) Q ' uxu 2 uu ,-, ,., , 

9 59 

(35 .34) 
Moreover, these components both vanish in any extended region where (3 = 0 .  Thus, 
spacetime is completely fiat in regions where the "wave factor" vanishes-which is 
everywhere outside the pulse ! In particular, spacetime is flat near u = a, so the singularity there must be a coordinate singularity, not a physical singularity. To eliminate this singularity, one can perform the coordinate transformation 

X y x = ----1 - U/a ' y = l - U/a ' u = U, 
xz + yz 

v = V + --- (35 .35) 
a - U throughout the region to the future of the pulse (u > T), where 

ds2 = ( 1  - u/a)2(dx 2 + dy2) - du du. (35 .36a) 

(5)  s paceti m e  is flat o utside 
the p u lse 
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In the new X, Y, U, V, coordinates the metric has the explicitly flat form 

ds2 = dX2 + d Y2 - dU d V  for U = u > T. (35 .36b) 

Exercise 3 5 .8. GLOBALLY WELL-BEHAVED COORDINATES FOR PLANE WAVE 
[based on Ehlers and  Kundt ( 1 962)] 

Find a coordinate transformation similar to (35.35), which puts the exact plane-wave solution 
(35 .29a), (35 .3 1 ), into the form 

ds 2 = dX 2 + d Y2 - dU d V  + (X2 
- Y 2)F dU2, 

F = F( U) completely arbitrary. 
(35 .37) 

This coordinate system has the advantage of no coordinate singularities anywhere ; while 
the original coordinate system has the advantages of an easy transition to linearized theory, 
and easy interpretation of the action of the wave on test particles. 

Exercise 3 5 . 9 .  GEODESIC COMPLETENESS FOR PLANE-WAVE MANIFOLD 
[based on Ehlers and  Kundt ( 1 962)] 

Prove that the coordinate system (X, Y, U, V) of exercise 35 .8 completely covers its spacet1me 
manifold. More specifically, show that every geodesic can be extended in both directions 
for an arbitrarily large affine-parameter length without leaving the X, Y, U, V coordinate 
system. (This property is called geodesic completeness.) [Hint: Choose an arbitrary event and 
an arbitrary tangent vector d/d'A there . They determine an arbitrary geodesic. Perform a 
coordinate transformation that leaves the form of the metric unchanged and puts d/ d"A either 
in the ( V, V) = constant 2-surface, or in the X, Y) = constant 2-surface . Verify that the two 
coordinate systems cover the same region of spacetime. Then analyze completeness of d/d'A's 
geodesic in (X, Y, V, V) coordinates.] 

§ 3 5 . 1 0 . PHYSICAL PRO PERTIES OF THE EXACT P LANE WAVE 

Spacetime is completely flat both before the arrival of the plane-wave pulse 
(u < - T) and after it has passed (u > T). This is the message of the last paragraph. 

Complete flatness outside the pulse is very atypical for gravitational waves in the 
full, nonlinear general theory of relativity. It occurs in this example only because 
the wave fronts (surfaces of constant u and v, i.e., constant z and t) are perfectly 
flat 2-surfaces. If the wave fronts were bent ( e.g., spherical), the energy carried by 
the pulse would produce spacetime curvature outside it. 

To see nonlinear effects in action, turn from the flat geometry outside the pulse 
to the action of the pulse on freely falling test particles. Consider a family of particles 
that are all at rest in the original t, x, y, z coordinate system (world lines: [x, y, z] 
= constant) before the pulse arrives. Then even while the pulse is passing, and after 
it has gone, the particles remain at rest in the coordinate system. (This is true for 
any metric, such as (35.29a), with g0µ = -8 °

µ, for then I' µ00 = 0, so xµ = 8µ0r + 
const. satisfies the geodesic equation.) 
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Two particles whose separation is in the direction of propagation of the pulse 
(z-direction) have not only constant coordinate separation, Llx = Lly = 0 and Liz -=I= 0; 
they also have constant proper separation, Lis = gzz 

112 Liz = Liz. Hence, the exact 
plane wave is completely transverse, like a plane wave of linearized theory. 

Neighboring particles transverse to the propagation direction, (Llx f: 0, Lly -=I= 0, 
Liz = 0) have a proper separation that wiggles as the pulse passes: 

Lis= L(t _ z)[e2/3(t - z'(Llx)2 + e-2/3(t - z>(Lly)2]ll2 

� L[(l + 2,B)(Llx)2 + (I - 2,B)(Lly)2]112. (35 .38) 

Superimposed on the usual linearized-theory type of wiggling, due to the "wave 
factor" ,8, is a very small net acceleration of the particles toward each other, due 
to the "background factor" L [note the form of L(u) in Figure 35.3] . This is an 
acceleration of almost Newtonian type, caused by the gravitational attraction of the 
energy that the gravitational wave carries between the two particles. The total effect 
of all the energy that passes is to convert the particles from an initial state of relative 
rest, to a final state of relative motion with speed 

v
fi

na1 = d Lls/dt = d(L Llsi)/dt = - Lis/a, 

where 

Lisi = [(Llx)2 + (Lly)2]112 = (initial particle separation). 

[Recall: LimtiaI = 1, L
fi

naI = 1 - u/a = l - (t - z)/a; equation (35.33).] 

(35.39) 

Precisely the same effect can be produced by a pulse of electromagnetic waves 
(§35.11). 

§35 . 1 1 .  CO M PARISO N O F  AN EXACT ELECTRO MAG NETIC 

P LANE WAVE WITH THE GRAVITATIO NAL 

P LANE WAVE 

Consider the metric 

ds2 = L2(u)(dx 2 + dy 2) - du du, ( u = t - z} 
v= t + z ' (35.40) 

which is always flat if it satisfies the vacuum Einstein equations (Rµ, = 0 or L" = 0), 
and therefore cannot represent a gravitational wave. In this metric the electromag
netic potential 

A = Aµ dxµ = A(u) dx (35.41) 

satisfies Maxwell's equations for arbitrary A(u). It represents an electromagnetic 
plane wave analogous to the gravitational plane wave of the last few sections. The 
only nonzero field components of this wave are 

Fux = A', i.e. , Fix = -�x = A'; (35.42) 

( 1 )  transverse character of 
relat ive acce lerations  

(2)  g ravitat iona l  attract ion 
due  to energy i n  pu lse 

An e lectromagnet ic  
p lane-wave pu lse 



Electromagnetic plane wave 
and gravitational plane wave 
produce same gravitational 
attractions 

Exact gravitational plane 
waves reexamined in the 
language of " short-wave 
approximation ' '  

(1) ripples vs background 

962 35 PROPAGATION OF GRAVITATIONAL WAVES so the electric vector oscillates back and forth in the x-direction, the magnetic vector oscillates in the y-direction, and the wave propagates in the z-direction. The stressenergy tensor in x, y, u, v, coordinates has only (35 .43) nonzero. The Maxwell equations are already satisfied by the potential (35 .4 1 )  in the background metric (35 .40), as the reader can verify. In order to make that metric itself equally acceptable, one need only impose the Einstein equations Gµv = 8wTµv · They read [see equation (35 .30) with f3 = O] L" + (4'TTTuu)L = 0 .  (35 .44) This has exactly the form of the equation L" + (f3 ')2L = 0 for the gravitational plane wave. Consequently, the relative motions of uncharged test particles produced by the "background factor" L(u) are the same whether L(u) -/; 1 is produced by the stress-energy of an electromagnetic wave, or by a corresponding gravitational wave with [(/3 ')2 /4'TT]grav wave = [Tuulem wave = (A')2/4wL2 . (35 .45) The analogy can be made even closer. Decrease the wavelength of the waves, while holding (/3 ')2/4w and (A')2/4wL2 fixed: ( (/3')2/4'TT) = ( (A')2 /4'TTL2) = const; ;t -+ 0. In the limit of very small wavelength (i.e . ,  from a viewpoint whose characteristic length is ► A), the two solutions are completely indistinguishable . Their metrics are identical (;t -+ 0 and ( (/3 ')2) = const. imply /3 -+ 0), and their jigglings of test particles are too small to be seen. Only their curving up of spacetime (L -/; 1) and the associated gravitational pull of their energy are detectable . 
§ 35 . 1 2 .  A NEW VIEWPOINT O N  THE EXACT P LANE WAVE The above comparison suggests a viewpoint that was sketched briefly in the introduction to this chapter and in §35 .8 . Think of the exact gravitational plane-wave solution [Figure 35 .3 ;  equations (35 .29) and (35 .33)] as ripples in the spacetime curvature, described by /3(u), propagating on a very slightly curved background spacetime, characterized by L(u). The most striking difference between the background and the ripples is not in the magnitude of their spacetime curvatures, but in their characteristic lengths . The ripples have characteristic length ;t (typical reduced wavelength, V2w, of waves) ; (35 .46) the background has characteristic length ("radius of curvature of background geometry") 
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(i_j{ ~ IL/ L" l112insidewave ~ 1/ 1 /3 ' 1 . 

963 

(35.47) 

Recall that ..t is somewhat smaller than the pulse length, 2T. Recall also that 
l/3 'TI � 1. Conclude that the characteristic lengths of the "wave factor" and the 
"background factor" differ greatly : 

(35.48) 

This difference in scales enables one to separale out the background from the ripples. 
The ripples are very much smaller in scale (;t � (i_/{) than the background. Never

theless the local curvature in a ripple is correspondingly larger than the background 
curvature [equations (35.30), (35.34)); thus, 

(R.,,
ua,u)background = (RY

uyu)background = - L"/L ~ 1/{i_/{ 2, 
(R.,,

ua,u)waves = - (RY
uyu)waves = -/3 " ~ 1 /3 ' 1 /..t ~ 1/(;t(i_/{) 

~ ((i_j{/ A")(R.,, 
ua:u)background· 

One is reminded of the mottled surface of an orange! 

(35.49) 

The metric for the background of the gravitational plane wave is the same as 
for the electromagnetic one [equation (35.40)): 

ds 2 = g�j dx µ dx • = L2(dx 2 + dy 2) - du du. (35.50) 

By comparison with equation (35.29a), one sees that the metric for the full spacetime 
(background plus ripple) is 

ds2 = (g<B> + h ) dxµ dx • µv µv , 

h.,,.,, = - hyy = 2/3, all other hµv = 0. 

(35.51) 

(35.52) 

(Recall, in the region where /3 i- 0, L is very nearly 1.) One can think of the ripples 
as a transverse, traceless, symmetric tensor field hµv analogous to the electromagnetic 
field Aw propagating in the background geometry. Just as the electromagnetic field 
produces the background curvature via 

Guu = - 2L"/L = 87TTuu• 

so the gravitational-wave ripples hµv produce the background curvature via equation 
(35.31), which one can rewrite as 

Here 

r<EFF> _ 1 (/3')2 _ 1 h h uu = 47T 
- 327T jk,u jk,u 

(35.53) 

(35.54) 

is the "effective stress-energy tensor" for the gravitational waves. Notice that it agrees, 
except for averaging, with the expression (35.23) that was written down without 
justification in §35 .7. 

(2) propagation of ripples in 
background 

(3) effective stress-energy 
tensor for ripples 
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Exercise 35 . 1 0. PLANE WAVE WITH TWO POLARIZATIONS PRESENT 
The exact plane-wave solution (35.29) has polarization e+. Construct a similar solution, 
containing two arbitrary amplitudes, f3 (u) and y (u), for polarizations e+ and ex.  Extend the 
discussions of §§35.9-35.12 to this solution. 

§ 3 5 . 1 3 . THE SH ORTWAVE AP PROXIMATION 

The remainder of this chapter extends the above viewpoint in a rigorous manner 
to very general gravitational-wave solutions. This extension is called the "shortwave 
formalism"; it was largely devised by Isaacson (1968a,b), though it was built on 
foundations laid by Wheeler (1964a) and by Brill and Hartle (1964). Versions that 
are even more rigorous have been given in the W.K.B. or geometric-optics limit by 
Choquet-Bruhat (1969), and by MacCallum and Taub (1973). 

Consider gravitational waves propagating through a vacuum background space
time. As in §35.7, let l!Jl be the typical radius of curvature of the background; let 
,,t and {[ be the typical reduced wavelength (A/277) and amplitude of the waves; 
and demand both {[ � l and ..t/l!Jl � I. The background curvature might be due 
entirely to the waves, or partly to waves and partly to nearby matter and nongravi
tational fields. 

The analysis uses a coordinate system closely "tuned" to spacetime in the sense 
that the metric coefficients can be split into "background" coefficients plus perturba
tions 

with these properties: (1) the amplitude of the perturbation is d 

hµv ,'.S (typical value of g�J) · {[; 

(2) the scale on which g�J varies is � l!Jl 

g <B> < (typical value of g <B>)/l!Jl · µv ,a:.  ,.._, µv , 

(3) the scale on which hµv varies is ~..t 

hµv,a ~ (typical value of hµv)/ ..t. 

Such coordinates are called "steady." 

(35.55) 

(35.56a) 

(35.56b) 

(35.56c) 

A rather long computation (exercise 35.11) shows that the Ricci tensor for an 
expanded metric of the form (35.55) is 

R = R <B> + Rrn (h) + R <2> (h) + error µv µv µv µv 

? {fj,,t2 ([2/,,t2 ([3/,,t2 
(35.57) 
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Here a marker (d / A-2, etc.) has been placed under each term to show its typical 
order of magnitude; R<tJ is the Ricci tensor for the background metric g<:J ;  and 
RZi and R�i are expressions defined by 

RZi (h) ; (- h l µ v - h
µ v l a

a + h
aµ I_°'  + h

a v 1/), 

R�i (h) ; [; h
af3

1
µ

h °'13 1 v + h
°'13(h

af3 1 µ v + h
µv l a/3 - h

a µ l v/3 - h
a v lµ/3) 

(35.58a) 

+ h .a l f3 (h
aµ l f3 

- h
f3 µ 1 a

) - ( h°'/3
1 /3 - 1  h i a ) <h

aµ l v + h
a v l µ 

- h
µ v la)] . 

(35.58b) 

In these expressions and everywhere below, indices are raised and lowered with g<tJ, 
and an upright line denotes a covariant derivative with respect to g<:J (whereas in 
Chapter 21 it denoted covariant derivative with respect to 3-geometry). 

At the heart of the shortwave formalism is its method for solving the vacuum 
field equations R

µ v = 0. One begins by selecting out of expression (35.57) the part 
linear in the amplitude of the wave d, and setting it equal to zero. The action of 
the waves to curve up the background is a nonlinear phenomenon (linearized theory 
shows no sign of it); so R<tJ cannot be linear in d. Hence, in expression (35.57), 
RZi(h) is the only linear term, and it must vanish by itself 

R W(h) = 0 
µ v (35.59a) 

[Of course h
µ
v may contain nonlinear correction terms-call them jµ.-of order d 2, 

which must not be constrained by this linear equation. They will be determined 
by (35.59c), below.] 

One next splits the remainder of R
µv into a part that is free of ripples-i.e., that 

varies only on scales far larger than t ("coarse-grain viewpoint"), and a second part 
that contains the fluctuations. This split can be accomplished by averaging over 
several wavelengths (see exercise 35.14 for a precise treatment of the averaging 
process, also see Choquet-Bruhat (1969) for a class of solutions where such averaging 
is not required): 

R':J + <R�;(h)> + error = 0 fsmoothl 
[part J 

? 

R <t�U) + R�i (h) - <R�i(h)> + error = 0 
(l 2jt2

�
(l 2jt2 (l 2/t2 (l 3jt2 

nonlinear cor-J 
rection to h 

f fluctuatingl 
[part J 

(35.59b) 

(35.59c) 

That's all there is to it! -except for reducing the equations to manageable form, 
and a fuller interpretation of the physics. 

Begin with the interpretation. 

S p l it of vac u u m  fie ld  
equat ions  i nto "wave pa rt" 
( ex: a') p l us  "coarse-gram 
part" ( ex: ,1' 2 and  sm ooth on 
sca le  A")  p l us  "fl uctuat 1ona l  
correct ions" ( ex: ,1' 2 and r i pp ly  
on sca le  A")  

Phys ica l  1 n terpretat 1on  of the 
th ree pa rts of f ie ld equat ions 



( 1) propagation of waves 

(2) production of background 
curvature by energy of 
waves; T��w> defined 

(3) nonlinear self-interaction 
of waves 

EXERCISE 

966 3 5  PROPAGATION OF GRAVITATIONAL WAVES Equation (35 .59a) is an equation for the propagation of the gravitational waves hµv · Equation (35 .59b) shows how the stress-energy in the waves creates the background curvature. It can be rewritten in the more suggestive form 
where 

c<B> = R<B> - .lR<B>g<B> = 8 '1TT<aw> in vacuum µv - µv 2 µv µv , (35 .60) 
(35 .6 1 )  

i s  the stress-energy tensor for the gravitational waves. Now one sees the origin of the statement in §35 .7 ,  that the stress-energy of gravitational waves is well-defined only in a smeared-out sense. Finally, equation (35 .59c) shows how the gravitational waves h generate nonlinear corrections j to themselves (wave-wave scattering, harmonics of the fundamental frequency, etc.) .  These higher-order effects will not be investigated in this chapter. 

Exercise 35 . 1 1 .  CO N N ECTI O N  COEFF IC I ENTS A N D  CU RVATU R E  
TE N S O RS F O R  A PERTU R B E D  M ETR I C  In a specific coordinate frame of an arbitrary spacetime, write the metric coefficients in covariant representation in the form 

(35.62a) 

(At the end of the calculation, one can split hµ, into two parts, hµv -+- hµv + }µ. ;  and out of this split obtain the formulas used in the text.) Assume that the typical components of hµv are much less than those of g�J ;  so one can expand Christoffel symhol s and curvature tensors in hµv · Raise and lower indices of hµ.v with g�J ;  and denote by a "i" covariant derivatives relative to g�J and by a " , "  covariant derivatives relative to gµv · ( a) Here gµv and g�J can be thought of as two different metrics coexisting in the space time manifold. Show that the difference between the corresponding covariant derivatives, V -v <B> = S-indeed, the difference between any two covariant derivatives ! -is a tensor with components 

[Hint : See part B of Box 10 .3 .) (b) Show that 

and also that 

s µ
/3 Y = r µ

/3 Y - r <B)µ
/3 Y  

(35.62b) 

(35.62c) 

(35.62c') 
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( c) By calculating in a local Lorentz frame of g�,! and then transforming back to the 
original frame, show that 

R"'13ys - R(B)af3yS = S"' 13 s 1y - S"'13y 1 s  + S"'µySµ13 s - S"'µs Sµ13y, 
R13 s - R(B)/3S = S"' 13s 1a - S"'13a 1 s  + S"'µasµ/3S - S"'µs Sµf3a• 

( d) Show that expression (35 .62f) reduces to 

R13 8 = R<B> 13 8 + R1Hh) + R�i (h) + 

where RW and R<2> are defined by equations (35 .58) .  

§ 35 . 1 4 . EFFECT OF BACKGRO U N D  CURVATURE 

O N  WAVE PRO PAGATION 

(35 .62d) 

(35 .62e) 
(35 .62f) 

(35 .62g) 

Focus attention on the propagation equation R�i(h) = 0. As in linearized theory, 
so also here, the propagation is studied more simply in terms of 

h- - h l h (B) 
µv = µv - 2 g µv • (35.63) hµv defi ned 

than in terms of hµv · Rewritten in terms of hµv • R�i (h) = 0 says 

h- "' +  g<B)h-<X/3 - 2h- "' + 2R(B) h-<X/3 - 2R(B) h- " - 0 µv ia µv l f3a a(µ I  v) aµf3v a(µ v) - · (35.64) 

[To obtain this, invert equation (35.63) obtaining hµv = Jiµv - -½gZ3Jh; insert this into 
(35.58a) and equate to zero; then commute covariant derivatives using the identity 
(1 6.6b); finally contract to obtain an expression for h1a" and substitute that back 
in.] 

The propagation equation (35.64) can be simplified by a special choice of gauge. 
An infinitesimal coordinate transformation 

(35.65a) 

induces a first-order change in the functional forms of the metric coefficients given 
by 

(35.65b) 

[analog of the gauge transformation of linearized theory, equation (35.3c); see 
exercise 35.12]. By an appropriate choice of the four functions �µ. one can enforce 
the four "Lorentz gauge conditions" 

(35.66) 

Propagat ion equat ion for 
waves on cu rved background 

Specia l izat ion to  " Lorentz 
gauge" 



Coupling of waves to Ricci 
tensor can be ignored 

Propagation equation 1n 
Lorentz gauge and its realm 
of validity 

Lists of effects absent from 
and contained in propagation 
equation 
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in the new coordinate system (exercise 35.13). This choice of gauge is analogous 
to that of linearized theory. It makes the second and third terms in the propagation 
equation vanish. (For additional gauge conditions of the "TT" type, see exercise 
35.13.) 

The last term of the propagation equation, -2RUj?/i.vt, vanishes to within the 
precision of the analysis, for this reason: attention has been confined to vacuum; 
so the only source of a nonvanishing Ricci tensor is the stress-energy carried by 
the gravitational waves themselves [equation (35.60)]; hence R�J ~ d' 2/A 2 and 

R(B) h, a~ (l3j,t2 
a(µ v) (35 .67) 

This is of the same order as R�i(h), the third-order correction to the Ricci tensor, 
which is far below the precision of the analysis. For consistency in the analysis it 
will therefore be neglected. 

Summary of this section thus far: by choosing a gauge where hµ 
a

la = 0, and by 
discarding terms of higher order than the precision of the analysis, one obtains the 
vacuum propagation equation 

h- a+ 2R(B) h-a/3 - 0 
µvia aµf3v - , 

subject to the Lorentz gauge condition 

h- la = 0 µa 

(35.68) 

Equation (35.68) is accurate to first order in the amplitude [corrections cx.{[2 are 
embodied in equation (35.59c)]; and its accuracy is independent of the ratio ..t/'!il, 
as one sees from equations (35.59). Thus, it can be applied whenever the waves are 
weak, even if the wavelength is large! 

All nonlinear interactions of the wave with itself are neglected in this first-order 
propagation equation. Absent is the mechanism for waves to scatter off each other 
and off the background curvature that they themselves produce. Also absent are 
any hints of a change in shape of pulse due to self-interaction as a pulse of waves 
propagates. There are no signs of the gravitational collapse that one knows must 
occur when a mass-energy m of gravitational waves gets compressed into a region 
of size :Sm. To see all these effects, one must turn to corrections of second order 
in Cl and higher [e.g., equations (35.59c) and (35.60)]. 

Actually contained in the propagation equation are all effects due to the linear 
action of the background curvature on the propagating wave. These effects are 
explored, for short wavelengths (..t/'!il � 1) and for nearly flat wave fronts, in 
exercises 35.15-35.17 at the end of the chapter. The effects considered include a 
gravitational redshift of gravitational radiation and gravitational deflection of the 
direction of propagation of gravitational radiation, identical to those for light; and 
also a rotation of the polarization tensor. When the wavelength is not small (..t/'!il 
not� 1), the propagation equation includes a back-scatter of the gravitational waves 
off the background curvature and a resultant pattern of wave "tails" analogous to 
that explored in exercise 32.10 [see, e.g., Couch et al. (1968), Price (1971a), Bardeen 
and Press (1972), Unt and Keres (1972)]. 
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Exercise 35.12. GAUGE TRANSFORMATIONS IN A CURVED BACKGROUND 
(a) Show that the infinitesimal coordinate transformat10n (35.65a) induces the change 
(35.65b) in the functional form of the metric perturbation. 

(b) Discuss the relationship between this gauge transformation and the concept of a Killing 
vector (§25.2). 

Exercise 35.13. TRANSVERSE-TRACELESS GAUGE FOR GRAVITATIONAL 
WAVES PROPAGATING IN A CURVED BACKGROUND 

(a) Show that, in vacuum in a curved background spacetime, the gauge condition h/ 1a = 0 
is preserved by transformations whose generator satisfies the wave equation �µla 

a = 0. 
(b) Locally ( over distances much smaller than qt) linearized theory is applicable; so there 

exists such a transformation which makes [see equations (35.7b) and (35.8a)] 

h = 0 + error, (35.69) 

Here u« is a vector field that is as nearly covariantly constant as possible (u«
1 /J = 0); i.e., 

it is a constant vector in the inertial coordinates of linearized theory; and the errors are 
small over distances much less than qt_ Show that h = 0 can be imposed globally along with 
hµa la = 0; i.e., show that, ifit is imposed on an initial hypersurface, the propagation equation 
(35 .68) preserves it. 

( c) Show that in general, the background curvature prevents any vector field from being 
covariantly constant (u" 1 s ~ u" /qt at best); and from this show that hµaua = 0 cannot be 
imposed globally along with h/1a = 0. 

§35.15. STRESS-ENERGY TENSOR FOR GRAVITATIONAL WAVES 

Turn now to an evaluation of the effective stress-energy tensor T��w> of equation 
(35.61). The evaluation requires averaging various quantities over several wave
lengths. Useful rules for manipulating quantities inside the averaging brackets < > 
are the following (see exercise 35.14 for justification). 

(1) Covariant derivatives commute; e.g., <h hµv ia/3> = <h hµvlf3a>· The fractional 
errors made by freely commuting are ~(..t/�)2, well below the inaccuracy of the 
computation. 

(2) Gradients average out to zero; e.g., <(h 1ahµv) 113 > = 0. Fractional errors made 
here are �,,t/�. 

(3) As a corollary, one can freely integrate by parts, flipping derivatives from one 
h to the other; e.g., <h hµv laf3> = <-h 113 hµv la>· 

A straightforward but long calculation using these rules, using equation (35.58b) 
for R�i(h), using definition (35.63) of hµv, using the propagation equation (35.64), 
and using the definition (35.61) of T��w), yields <R(2>(h)) = 0, and 

T(GW) - _l_<h h,a/3 
- l_h h - 2haf3 h ) 

µv - 32'7T 
af3 Iµ Iv 2 Iµ Iv 1/3 a(µlv) · (35.70) 

This is the result quoted in equation (35.23'), except that there one used an inertial 

EXERCISES 

The averaging process 
involved 1n "coarse-grain" 
viewpoint 

Evaluation of effective 
stress-energy tensor for 
gravitational waves, r<µc;,w> 



Accuracy of expression for T��W) 

Properties of r<l'�w> 

EXERCISES 

970 35 PROPAGATION OF GRAVITATIONAL WAVES coordinate system of linearized theory, where covariant derivatives and ordinary derivatives are the same. In a gauge where hµ '\, = 0, the last term vanishes. When, in addition, hµv is traceless (see exercise 35.13), the second term vanishes; and there remains only r<GW) - _l_(h lia/3 > µv - 32?T a/3[µ Iv if liµ °'ra = Ii= o. (35.70') 
These expressions for the effective stress-energy of a gravitational wave have fractional errors of order {!, due to the neglect of second-order corrections to hµv; they also have fractional errors of order ;t/<!il, due to the averaging process, which makes no sense when ;t approaches fJl in magnitude. Since {l � ;t/<!il (35.28), the dominant errors in T�<;,w> are ~;t/<!il. To this accuracy, the stress-energy tensor for gravitational waves is on an equal footing with any other stress-energy tensor. It plays the same role in producing background curvature; and it enters into conservation laws in the same way. For example, one can show, either by direct calculation or from the identity G <B)µvlv = 0, that T(GW)µv lv = 0 + error, (35.71) where the error ~(;t/<!il)(T<0w>µv /<!il) is negligible in the shortwave approximation. Some of the properties of T�<;,w> have already been explored in §35.7. Further properties are explored in exercises 35.18 and 35.19. 

Exercise 35.14. BRILL-HARTLE AVERAGE Isaacson (1968b) introduces the following averaging scheme, which he names "Brill-Hartle averaging." (a) In the small region, of size several times A", where the averaging occurs, there will be a unique geodesic of g�; connecting any two points P' and P; so given a tensor E(P') at P', one can parallel transport it along this geodesic to P, getting there a tensor E(P')-9. (b) Let f(P ', P) be a weighting function that falls smoothly to zero when P' and P are separated by many wavelengths, and such that (35.72) (c) Then the average of the tensor field E(P') over several wavelengths about the point P is (35.73) (i) Show that there exists an entity g:>a' (P, P'), whose primed index transforms as a tensor at P' and whose unprimed index transforms as a tensor at P, such that (for E second rank) (35.74) This entity is called the "bivector of geodesic parallel displacement"; see DeWitt and Brehme (1960) or Synge (1960a). 
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(ii) Rewriting expression (35.73) in coordinate language as 

971 

(Ea13(x)) = f g�lµ' (x, x')gW>"' (x, x')Eµ'p'(x')f(x, x') V -g <Bl(x') d4x', (35.73') 

derive the three averaging rules cited at the beginning of §35.15. [For solution, see Appendix 
of Isaacson (1968b).] 

Exercise 35.15. GEOMETRIC OPTICS 
Develop geometric optics for gravitational waves of small amplitude propagating in a curved 
background. Pattern the analysis after geometric optics for electromagnetic waves (§22.5). 
In particular, let hµ" have an amplitude that varies slowly ( on a scale 1. � '3l) and a phase 
8 that varies rapidly (8,;, ~ 1/ ..t). Expand the amplitude in powers of ..t/ 1., so that 

(35.75) 

Here £ is a formal expansion parameter, actually equal to unity, which reminds one that 
the terms attached to £" are proportional to (..t/'!il)". Define the following quantities (with 
A;" denoting the complex conjugate of Aµ"): 

"wave vector": ka = 8,a 

"scalar amplitude": A = (½ A:PAµP 
)112 

"polarization": ew = Aµ,/ A. 

(35.76a) 

(35.76b) 

(35.76c) 

By inserting expression (35.75) into the gauge condition (35.66) and the propagation equation 
(35.68), derive the fundamental equations of geometrical optics as follows. 

(a) The rays (curves perpendicular to surfaces of constant phase) are null geodesics; i.e. 

(35.77a) 

(35.77b) 

(b) The polarization is orthogonal to the rays and is parallel transported along them; 

eµaka = 0, 

eµPlaka = 0. 

(35.77c) 

(35.77d) 

(c) The scalar amplitude decreases as the rays diverge away from each other in accordance 
with 

i.e., (A2ka) la = 0 ("conservation of gravitons"). 

( d) The correction B µp to the amplitude obeys 

Bµaka = iAµa la, 

B k" I ka B I "A a ·R(B) A"/3 
µP ia = -2 la µP + 2 1 µ,la + 1 aµ/3P 

In accordance with exercise 35.13, specialize the gauge so that li = 0, i.e., 

(35.77e) 

(35.77f) 

(35.77g) 

(35.77h) 

(35.77i) 
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Then show that the stress-energy tensor (35.70') for the waves is 

r<aw> - I A2k k 
µp - 3277 µ p" 

(35.77j) 

This has the same form as the stress-energy tensor for a beam of particles with zero rest 
mass (see §5.4). Show explicitly that r<aw)µv

1" = 0. 

Exercise 35. 16. GRAVITONS 
Show that geometric optics, as developed in the preceding exercise, is equivalent to the 

following: "A graviton is postulated to be a particle of zero rest mass and 4-momentum 
p, which moves along a null geodesic (Vp11 = 0). It parallel transports with itself (Vp e = 0) 
a transverse ( e · p = 0) traceless ( ea 

a = 0) polarization tensor e. Geometric optics is the 

theory of a stream of such gravitons moving through spacetime." Exhibit the relationship 
between the quantities in this version of geometric optics and the quantities in the preceding 
version (e.g., p = nk, where n is Planck's reduced constant h/21r). 

Exercise 35.17. GRAVITATIONAL DEFLECTION 
OF GRAVITATIONAL WAVES 

Show that gravitational waves of short wavelength passing through the solar system experi
ence the same redshift and gravitational deflection as does light. (One should be able to 
infer this directly from exercise 35.15.) 

Exercise 35.18. GAUGE INVARIANCE OF Ji
µ
�w> 

Show that the stress-energy tensor T��w> of equation (35.70) is invariant under gauge trans
formations of the form (35.65). 

Exercise 35.19. T'
µ
�w> EXPRESSED AS THE AVERAGE OF 

A STRESS-ENERGY PSEUDOTENSOR 
Calculate the average over several wavelengths of the Landau-Lifshitz stress-energy pseu
dotensor [equation (20.22)) for gravitational waves with A/tJl � I . The result should be equal 
to T��w>_ [Hint: Work in a gauge where h/1a = h = 0, to simplify the calculation.) 

Exercise 35.20. SHORTWAVE APPROXIMATION FROM 
A VARIATIONAL VIEWPOINT 

Readers who have studied the variational approach to gravitation theory in Chapter 21 may 
find attractive the following derivation of the basic equations of the shortwave approximation. 
It was devised, independently, by Sandor Kovacs and Bernard Schutz, and by Bryce DeWitt 
(unpublished, 1971). MacCallum and Taub (1973) give a "non-Palatini" version. 

(a) Define 

h- - h I (B)h 
µP = µv - 2 g µv , (35.78a) 

(35.78b) 

Raise and lower indices on hµv and Wµ
/J Y with the background metric. Using the results 

of exercise 35 .11, derive the following expression for the Lagrangian of the gravitational 
field: 

E =-1-( - )112R = E' + (perfect divergence
) +  (

corrections of order 
), (35_7Sc) - 167T 

g 
of form a:2a;ax {)[ {l3/A2 R(B)(l and smaller , µv , 
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where 

E' = _1_ ( -g(B))ll2[R(B) - "Jiµv( wa - wa ) - 1677 µv i a µal v 

+ g(B)µv(W",aaw.aµv - wa
,av w.aµa)J. 

[Hint: recall that 

973 

(35.78d) 

for any B a.] Drop the corrections of order Cl3
/ ,t 2 from E; and, knowing in advance that 

the field equations will demand R�J ~ Cl 2/,t2, drop also the corrections of order R�Jtl. 
Knowing that a perfect divergence contributes nothing in an extremization calculation, drop 
the divergence term from E. Then E' is the only remaining part of E. 

(b) Extremize I _JE' d4x by the Palatini method (§21.2); i.e., abandon (temporarily) 
definition (35.78b) of Wµ,ay, and extremize I with respect to independent variations of 
Wµ/JY = Wµy,a, "fiµv = "fivµ, and gf8> = g[-G>· Show that extremization with respect to Wµ,ay 
lea�s back to equation (35.78b) for Wµ /JY in terms of hµv · Show that extremization with respect 
to hµ", when combined with equations (35.78a,b), leads to the propagation equation for 
gravitational waves (35.64). Show that extremization with respect to g(B)µv, when combined 
with equations (35.78a,b) and with the propagation equation (35.64), and when averaged 
over several wavelengths, leads to 

where T�<;_w> is given by equation (35.70). [Warning: The amount of algebra in this exercise 
is enormous, unless one chooses to impose the gauge conditions h = h/ 1,a = 0 from the 
outset.] 



CHAPTER 36 
GENERATION OF 

GRAVITATIONAL WAVES 

Generation of gravitational 
waves analyzed by 
electromagnetic analog 

Matter is represented by curvature, but not every curvature does represent matter; 
there may be curvature "in vacuo " 

G LEMAITRE in Schilpp (1949), p 440 

§36.1. THE QUADRUPOLE NATURE OF GRAVITATIONAL WAVES 

Masses in an isolated, nearly Newtonian system move about each other. How much 
gravitational radiation do they emit? 

For an order-of-magnitude estimate, one can apply the familiar radiation formulas 
of electromagnetic theory, with the replacement e2 --+ -m 2 , which converts the 
static coulomb law into Newton's law of attraction. This procedure treats gravity 
as though it were a spin-one (vector) field, rather than a spin-two (tensor) field; 
consequently, it introduces moderate errors in numerical factors and changes angular 
distributions. But it gives an adequate estimate of the total power radiated. 

In electromagnetic theory, electric-dipole radiation dominates, with a power output 
or "luminosity," L, given (see §4.4 and Figure 4.6) by 

Lelectricdipole = (2/3)e2a2 

for a single particle with acceleration a and dipole moment changing as d = e.i = ea; 

Lelectricdipole = (2/3) d2 

for a general system with dipole moment d. [Geometric units: luminosity in cm of 
mass-energy per cm of light travel time; charge in cm, e = ( G112 / c2)econv = (2.87 X 
10-25 cm/esu) X (4.8 X 10-10 esu) = 1.38 X 10-34 cm,acceleration in cm of distance 
per cm of time per cm of time. For conventional units, withe in esu or (g cm3 /sec2)112, 
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insert a factor c-3 on the right and get L in erg/sec]. The gravitational analog of 
the electric dipole moment is the mass dipole moment 

d= :S m
A

x
A

. 

particles A 

Its first time-rate of change is the total momentum of the system, 

d = :S m
AiA 

= p. 
particlesA 

The second time-rate of change of the mass dipole moment has to vanish because 
of the law of conservation of momentum, d = j, = 0. Therefore there can be no mass 
dipole radiation in gravitation physics. 

The next strongest types of electromagnetic radiation are magnetic-dipole and 
electric-quadrupole. Magnetic-dipole radiation is generated by the second time
derivative of the magnetic moment, ji,. Here again the gravitational analog is a 
constant of the motion, the angular momentum, 

p, = :S (position of A) X (current due to A)= :S r
A 

X (mv
A) = J; 

A A 

so it cannot radiate. Thus, there can be no gravitational dipole radiation of any sort. 
When one turns to quadrupole radiation, one finally gets a nonzero result (see 

Figure 36.1). The power output predicted by electromagnetic theory, 

(Q jk here = Q ;kin much other literature), has as its gravitational counterpart 

(36.1) 

(36.2) 

Formula (36.1) contains the correct factor of 1/5, which comes from tensor calcula
tions (see §36.10), instead of the incorrect factor 1/20 suggested by the electromag
netic analog; and the righthand side of(36.l) has been averaged("( )") over several 
characteristic periods of the source to accord with one's inability to localize the energy 
of gravitational radiation inside a wavelength. 

Why gravitational waves 
cannot be dipolar 

Gravitational-wave power 
output expressed in terms of 
'· reduced quadrupole 
moment" of source 



Source Receptor 

(a) 
):e 

_,::,.-1° ___________ - r _________ j 
ea sin 0 

r 

(b) 

(c) 

(d) 

\ \ \ 
(e) \,, /\ 

\ / \ 

\� 
\ ml 

\ I \  
\ I \ 
' I \ 
\-- ---- - - - - I - -

m � 2 ,  L cos 0 = ' difference in time of travel to receptor; 
gives rise to difference in phase 80 = wL cos 0 

Conclusion: (amplitude)0.t = (amplitude)1 0r 2 
80 

m1 a1 = -- 80 r 

( mw 2L sin 0 ) 0 ~ ---- (wL cos ) 
r 

w3mL2 sin 20 
r 

~ +ir 
(luminosity) ~ ( f°}2 

Figu re 36 .  1 .  
Why gravitational radiation is ordinarily weak In brief, contributions to the amplitude of the outgoing 
wave from the mass dipole moments of the separate masses cancel, (m1a1 + m2a2)/r = 0 (principle that 
action equals reaction). 

(a) Radiation from an accelerated charge (see §4.4 and Figure 4.6). 
(b) Representation of the field at the great distance r in terms of the typical rotating-vector diagram 

of electrical engineering; however, here, for ease of visualization, the vertical projection of the rotating 
vector gives the observed field (usual dipole-radiation field produced by a charge in circular orbit). 

(c) Corresponding rotating-vector diagram for gravitational radiation, based on the simplified model 
of the gravitation field as a spin-one or vector field ( to be contrasted with its true tensor character; hence 
details of angular distribution and total radiation as given by this simple diagram are not correct; but 
order of magnitude of luminosity is correct). 

( d) The two masses m1 and m2 that hold each other in orbit give equal and opposite contnbutions 
to the amplitude of the outgoing wave because of the principle that action equals reaction. (In electro
magnetic radiation from a hydrogen atom, the correspondmg radiation amplitudes do not cancel: 
eelecaelec + eprotap1ot ,_. e�z�ca�l�c f:. 0) . 

( e) In a better approximation, one has to allow for the difference in time of arrival at the receptor 
of the effects from the two masses. The two vectors that formerly opposed each other exactly are now 
drawn inclined, at the phase angle 80 The amplitude of the resulting field goes as I, where I is the 
reduced quadrupole moment; and the luminosity is proportional to 1°2 
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Notation: There is no ambiguity about the definition of the "second moment of 
the mass distribution" as it appears throughout the physics and mathematics literature 

Nor is there any ambiguity about how one constructs the moment of inertia tensor 
!l;k from this second moment of the mass distribution: 

The moments that characterize a source radiating quadrupole gravitational radiation 
are here taken, equally unambiguously, to be the "tracefree part of the second 
moment of the mass distribution ": 

This notation is adopted because it simplifies formulas, it simplifies calculations, it 
meshes well with much of the literature of gravitational-wave theory [e.g. Peters 
(1964), Peres and Rosen (1964)], and it is easy to remember. Another name for the 
quantities f;k is reduced quadrupole moment. This terminology makes clear the 
distinction between the quantities used here and the three-times-larger quantities 
that are called quadrupole moments in the standard text of Landau and Lifshitz 
(1962) and in the literature on nuclear quadrupole moments, and the 3 /2-times-larger 
quantities used in the theory of spherical harmonics : 

Q (
Landau and Lifshitz; also 

) = f p(3z2 _ r2) d3x, 
zz nuclear quadrupole moments 

Qzz (theory of spherical harmonics) = f p(; z2 - ; r2) d3x, 

fzz unambiguous measure of = f p( z2 - ! r2 )d3x. (
reduced quadrupole moment ;

) 
source strength adopted here 

Thus the f;k notation has the merit of circumventing the existing ambiguity in the 
literature. 

That electromagnetic radiation is predominantly di polar (spherical-harmonic index 
I = I ), and gravitational radiation is quadrupolar (/ = 2) are consequences of a 
general theorem. Consider a classical radiation field, whose associated quantum 
mechanical particles have integer spin S, and zero rest mass. Resolve that radiation 
field into spherical harmonics-i.e., into multipole moments. All components with 
I < S will vanish; in general those with / � S will not; and this is independent of 
the nature of the source! [See, e.g., Couch and Newman (1972).] Since the lowest 
nonvanishing multipoles generally dominate for a slowly moving source (speeds � c), 
electromagnetic radiation (S = 1) is ordinarily dipolar (/ = S = 1 ), while gravita-

Why gravitational waves are 
ordinarily quadrupolar 



Gravitational-wave power 
output in terms of internal 
power flow of source 
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tional radiation (S = 2) is ordinarily quadrupolar (1 = S = 2). Closely connected 
with this theorem is the "topological fixed-point theorem " [e.g., Lifshitz (1949)], 
which distinguishes between scalar, vector, and tensor fields. For a scalar disturbance, 
such as a pressure wave, there is no difficulty in having a spherically symmetric 
source. Thus, over a sphere of a great radius r, there is no difficulty in having a 
pressure field that everywhere, at any one time, takes on the same value p. In contrast, 
there is no way to lay down on the surface of a 2-sphere a continuous vector field, 
the magnitude of which is non-zero and everywhere the same ("no way to comb 
smooth the hair on the surface of a billiard ball"). Likewise, there is no way to lay 
down on the surface of a 2-sphere a continuous non-zero transverse-traceless 2 X 2 
matrix field that differs from one point to another at most by a rotation. Topology 
thus excludes the possibility of any spherically symmetric source of gravitational 
radiation whatsoever. 

§36.2. POWER RADIATED IN TERMS OF INTERNAL 
POWER FLOW 

Expression (36.1) for the power output can be rewritten in a form that is easier to 
use in order-of-magnitude estimates. Notice that the reduced quadrupole moment 
is 

(mass of that part of
) (

size of
)

2 

... system which moves X system 
f.k ~ ---''------------"-----,--

J 

(time for masses to move from)
3 

one side of system to other 

(nonspherical part) M(R/T)2 of kinetic energy . 
T T 

MR 2 

T3 

i L = (power flowing from one) . 
jk ~ internal - side of system to other 

(36.4) 

Consequently, equation (36.1) says that the power output in gravitational waves 
("luminosity") is roughly the square of the internal power flow 

(36.5) 

If this equation seems crazy (who but a fool would equate a power to the square 
of a power?), recall that in geometrized units power is dimensionless. The conversion 
factor to conventional units is 

L0 = c5/G = 3.63 X 1059 erg/sec = 2.03 X 105M0c2/sec. (36.6) 

One may freely insert this factor of L0 = 1 wherever one wishes in order to feel 
more comfortable with the appearance of the equations. For example, one can 
rewrite equation (36.5) in the form 

(36.7) 
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In applying the equation Law ~ (L;nternal)2, one must be careful to ignore those 
internal power flows that cannot radiate at all, i .e. , those that do not accompany 
a time-changing quadrupole moment. For example, in a star the internal power flows 
associated with spherical pulsation and axially symmetric rotation must be ignored. 

Conservation of energy guarantees that radiation reaction forces will pull down 
the internal energy of the system at the same rate as gravitational waves carry energy 
away (see Box 19 . 1). The characteristic time-scale for radiation reaction to change 
the system markedly is 

'Treact ~ [ 1 /(rate at which energy is lost)] X [energy in motions that radiate] 
~ [ 1 /  Law] X [(L;nternal) X (characteristic period T of internal motions)] 

(36 .8) 

Consequently, radiation reaction is important in one characteristic period on�y if the 
system achieves the enormous internal power flow 

Linternal 2 L0 = 3 .63 X 1059 ergs/sec = 1 ! 

§36.3. LABORATORY GENERATORS 
OF GRAVITATIONAL WAVES 

As a laboratory generator of gravitational waves, consider a massive steel beam of 
radius r = 1 meter, length I =  20 meters, density p = 7 .8 g/cm3, mass M = 4.9 X 
108 g (490 tons), and tensile strength t = 40,000 pounds per square inch or 
3 X 109 dyne/cm2 . Let the beam rotate about its middle (so it �otates end over end), 
with an angular velocity w limited by the balance between centrifugal force and 
tensile strength 

w = (8 t/ p/2)112 = 28 radians/sec. 

The internal power flow is 

L _ ( 1 T 2 ) _ 1 > -</2  3 internal - 2 J.W w - 24 1n, W 

� 2 X 1018 erg/sec � 10-41L0 • 

The order of magnitude of the power radiated is 

Law ~ (I0-41)2Lo ~ 10-23 erg/sec. (36 .9) 

(An exact calculation using equation (36 . 1) gives 2 .2 X 10-22 erg/sec; see Exercise 
36 . 1 .) Evidently the construction of a laboratory generator of gravitational radiation 
is an unattractive enterprise in the absence of new engineering or a new idea or 
both. 

To rely on an astrophysical source and to build a laboratory or solar-system 
detector is a more natural policy to consider. Detection will be discussed in the next 
chapter. Here attention focuses on astrophysical sources. 

Characteristic t ime-scale for 
radiation-reaction effects 

Power output from a rotating 
steel beam 
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Power output from violent 
astrophysical sources, in 
terms of mass and rad ius 

Upper l i m it on power output 
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Exercise 36 .1 .  GRAVITATIO NAL WAVES FRO M  ROTATING BEAM 
A long steel beam of length l and mass M rotates end over end with angular velocity w. 
Show that the power it radiates as gravitational waves is 

L - 2 Af2[4 6 GW - 45  W .  (36 . 10) 

Use this formula to verify that the rod described in the text radiates 2.2 X 10-22 ergs/sec. 

§36.4. ASTROPHYSICAL SOURCES OF GRAVITATIONAL WAVES: 
GENERAL DISCUSSION 

Consider a highly dynamic astrophysical system (a star pulsating and rotating wildly, 
or a collapsing star, or an exploding star, or a chaotic system of many stars). If its 
mass is M and its size is R, then according to the virial theorem (exercise 39.6) its 
kinetic energy is ~ M2 / R. The characteristic time-scale for mass to move from one 
side of the system to the other, T, is 

T ~  
R 

(mean velocity 
R = (R

M
3
)
112 

(M/R)llZ (36. l l a) 

( ~ time of free fall; ~ time to turn one radian in Kepler orbit; see Chapter 25). 
Consequently, the internal power flow is 

L. ~ (kinetic energy) ~ (M2 ) ( M )
1/2 ~ (M

)
5/2 

mterna! T R R3 R 
(36. l lb) 

The gravitational-wave output or "luminosity " is the square of this quantity, or 

(36.1 l c) 

(If the system is rather symmetric, or if only a small portion of its mass is in motion, 
then its quadrupole moment does not change much, and the estimate of L0w must 
be reduced accordingly. The wave amplitude goes down in proportion to the fraction 
of the mass in motion, and the power is reduced in proportion to the square of 
that fraction.) 

Clearly, the maximum power output occurs when the system is near its gravitational 
radius; and because nothing, not even gravitational waves, can escape from inside 
the gravitational radius, the maximum value of the output is ~L0 = 3. 63 X 1059 

ergs/second, regardless of the nature of the system! 
Actually, the above derivation of this limit and of equation (36.1 l c) uses approxi

mations to general relativity that break down near the gravitational radius. [Velocities 
small compared to light are required in deriving the standard formula (36.1) for 
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Law (see §36.7); nearly Newtonian fields are required for the virial theorem argu
ments of (36.1 l a), as well as for the Law formula.) Nevertheless, in rough order 
of magnitude, equation (36.1 l c) is valid to quite near the Schwarzschild radius, say, 
R ~ 3M; and inside that point gravity is so strong that no system can resist collapse 
for an effective length of time much longer than T ~ M. 

The time required for radiation-reaction forces to affect a system substantially 
[equation (36.8)] is of the order 

(36.1 ld) 

where T is the characteristic time (36. l la) of rotation or free fall. (Note how one 
inserts and removes the factor L0 = 1 at will ! )  Consequently, the effect of radiation 
reaction, as integrated over one period, is unimportant except when the system is near 
its gravitational radius. 

When a system such as a pulsating star is settling down into an equilibrium state, 
the radiation reaction will damp its internal motions. On the other hand, when the 
system, like a binary star system, is far from any state of equilibrium, then loss of 
energy ( and angular momentum) to radiation under certain circumstances may speed 
up the angular velocity or speed up the internal motions and augment the radiation. 

§36 . 5 .  G RAVITATI O NAL COLLAPSE,  B LACK H O LES,  

S U P E R N OVAE, AN D P U LSARS AS S O U RCES 

Since L0w ~ (M/R)5L0 , the most intense gravitational waves reaching Earth must 
come from a dynamic, deformed system near its gravitational radius (Low drops 
by a factor 100,000 with each increase by IO of R!). The scenario of Figure 24.3 
gives an impression of some of the dynamic processes that not only may happen 
but probably must happen. The sequence of events sketched out there includes pulses 
of gravitational radiation interspersed with intervals of continuous radiation of 
gradually increasing frequency. Pulse number one comes at the time of the original 
collapse of a star with white-dwarf core to a pancake-shaped neutron star. The details 
of what then goes on will differ enormously depending on the original mass and 
angular momentum of this "pancake. " In the illustration, this pancake fragments 
into a constellation of corevolving neutron stars, which then one by one undergo 
"pursuit and plunge. " 

Whether in this kind of scenario or otherwise, perhaps the most favorable source 
of gravitational radiation is a star (the original very temporary "pancake " or one 
of the fragments therefrom) collapsing through its gravitational radius in a highly 
nonspherical manner. Such a star should terminate life with a last blast of gravita
tional waves, which carry off a sizeable fraction of its rest mass. Thus an order-of
magnitude estimate gives 

. f (time during which ) ( energy radiated) = L0w dt ~ L0 • k 1 . • pea ummos1ty occurs 
~ L0M= M. 

(36.12) 

Radiation reaction in 
astrophysical sources 

Gravitational waves from · 
( 1 )  stellar collapse and 

formation of a black hole 



(2)  the fall of debris into a 
black hole 

(3)  collisions of black holes 

(4) supernova explosions 
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(Whether the energy radiated is 0 .9M, or 0 . I M, or 0.01M is not known for certain 
today; but it must lie in this range of orders of magnitude.) The radiation should 
be weak at low frequencies; it should rise to a peak at a frequency a little smaller 
than 1/ M; and it should cut off sharply for circular frequencies above w ~ 1 / M. 

Matter ("debris"; see Figure 24.3) falling into a black hole can also be a significant 
source of gravitational waves. The infalling matter will radiate only weakly when 
it is far from the gravitational radius; but as it falls through the gravitational radius 
(between r ~ 4M and r = 2M), it should emit a strong burst. If m is the mass of 
an infalling lump of matter and M is the total mass of the black hole, then the total 
energy in the final burst is 

£radiated ~ m2/M, (36.13) 

and it comes off in a time ~ M with a power output of Law ~ (ml M)2 L0 • (See 
exercise 36.2.) Actually, this is an extremely rough estimate of the energy output. 
In the limit where the infalling lump is small in both size and mass [(size of lump) � 
(gravitational radius of black hole); m � M; "delta-function lump "], one can 
perform an exact calculation of the spectrum and energy radiated by treating the 
lump and the waves as small perturbations on the Schwarzschild geometry of the 
black hole. The foundations for such a treatment were given by Zerilli (1970b). 
Zerilli's formula was corrected and applied to the case of head-on impact by Davis, 
Ruffini, Press, and Price (1971). They predict the spectrum of Figure 36.2 and the 
total energy output 

£radiated = 0 .0 104m2/M (36.14) 

for m� M and (size of lump) � M. 
A collision between black holes should also produce a strong burst of gravitational 

waves-through such collisions are probably very rare ! 
Not quite so rare, but still not common, are supernova explosions (about one per 

galaxy per 100 years). According to current theory as verified by pulsar observations, 
a supernova is triggered by the collapse of the core of a highly evolved star (see 
§24.3). The collapse itself and the subsequent wild gyrations of the collapsed core 
(neutron star) should produce a short, powerful burst of gravitational waves. The 
characteristics of the burst, as estimated with formulas (36.11 ), and assuming large 
departures from sphericity, are 

( energy radiated) ~ (neutron-star binding energy) 
~ M2/R ~ 0 . IM ~ 1053 ergs, 

(mean frequency) ~ 1/T ~ (Ml R3)112 ~ 0.03M-1 ~ 3000 Hz, (36.15) 

(power output) ~ (M/ R)5L0 ~ 10-5L0 ~ 3 X 1054 ergs/sec, 

time for gravitational 
radiation to damp the 
motion if turbulence, = r ~ M(M/R)-4 ~ 0.1 sec ~ 300 periods. 
heat conduction, and other 
effects do not damp it 
sooner 
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I =  2 (quadrupole) 
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Figure 3 6 . 2 .  

1 .0 1 .2 1 .4 

Spectrum of the gravitational waves emitted by a "delta-function" lump of matter 
of mass m, falling head-on into a nonrotating (Schwarzschild) black hole of mass 
M ► m. The total energy radiated is distributed among multipoles according to 
the empirical law 

(energy in /-pole waves) ::::: (0.44 m2/M)e-2 1 , 
and the total spectrum peaks at angular frequency 

"'max = 0.32/ M. 

These results were calculated by treating the infalling lump and the gravitational 
waves as small perturbations on the Schwarzschild geometry of the black hole. The 
relevant perturbation-theory equations were derived by Zerilli ( 1970), and were 
solved numerically to give these results by Davis, Ruffini, Press, and Price ( 1971 ) .  
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In the last stages of the stellar pulsations, when the amplitude � = l3r has dropped 
to l3r/r � 1, one can calculate the pulsation frequencies and damping times exactly 
by treating the fluid motions and gravitational waves as small perturbations of an 
equilibrium stellar model. The results of such a calculation, which are in good 
agreement with the above rough estimates, are shown in Box 36.1. 

Long after the pulsations of the neutron star have been damped out by gravita
tional radiation reaction and by other forces, the star will continue to rotate; and 
as it rotates, carrying along with its rotation an off-axis-pointing magnetic moment, 
it will beam out the radio waves, light, and x-rays that astronomers identify as "pulsar 
radiation. " In this pulsar phase, gravitational radiation is important only if the star 
is somewhat deformed from axial symmetry (axial symmetry ===>- constant quadru
pole moment ===>- no gravitational waves). According to estimates in exercise 36.3, 
a deformation that contains only 0.001 of the star's mass could radiate 1038 ergs 
per second for the youngest known pulsar (Crab nebula); and the accompanying 
radiation reaction could be a significant source of the pulsar's slowdown. However, 
it is not at all clear today (1973)-indeed, it seems unlikely-that the neutron star 
could support even so small a deformation. 

(continued on page 986) 

( 5) young pulsars 



Box 36.1 GRAVITATIO NAL WAVES FRO M  PULSATING NEUTRON STARS 

The table given here, taken from Thorne (1969a), shows vari
ous characteristics of the quadrupole oscillations of several 
typical neutron-star models. Note that the gravitational waves 
emitted by the most massive models ( 1 )  have frequencies 
v = 1/Tn ~ 3 ,000 Hz, (2) last for a time of ~½ second, (3) 
damp out the stellar vibrations after only ~ 1 ,000 oscillations, 
and (4) carry off a total energy of ~(1054 ergs) x (8R/ R)2 , 

where oR/ R is the initial fractional amplitude of vibration 
of the star's surface. 

These results are not based on the nearly Newtonian slow-

motion formalism of this chapter [equation (36 . 1 ), §§36.7 and 
36.8 ] ,  because that formalism is invalid here : the reduced wave
length of the radiation, ,,t ~ 1 5  km for waves from the most 
massive star, is not large compared to the star's gravitational 
radius, 2M ~ 6 km; and the star's internal gravitational field is 
not weak (Ml R as large as 0 .29). Consequently, these results 
were derived using an alternative technique, which is valid for 
rapid motions and strong internal fields, but which assumes 
small perturbations away from the equilibrium stellar model. 
See Thorne ( 1969a) and papers cited therein for details. 

QUADRU POLE P ULSATIO N S  OF NEUTR O N  STARS 

EM Power 

Equation Pc Tn 'Tn 
( (oR/R}2) ( (oR/R)2) (8R/R) 

of state (g cm-3) M/M0 2M/R n (msec) (sec) 7nf Tn (ergs) (ergs sec- 1) (8r/r)
c 

80,/80
c 

H-W 3 X 1014 0.405 0.0574 0 1 . 197 13  1 1000 7 . 8  X J05U 1 .2 X ]050 + 7 .4 + 3 . 1  

H-W 6 X 1015 0.682 0 .240 0 0.3 109 0 . 1 9  6 10  2 8 X J052 2 9 X 1053 + 5 .2 + 3 .7 
I 0 . 1 7 1 3  0.28 1 600 3 .6 X 105 1  2 .6 X 1052 - 14. - 3 .3 
2 0 . 1 179 1 .3 1 1000 2 .6 X J05o 3 .9  X 1050 + 55 .  + 5 .9 
3 0 .0938 24 250000 8.9 X J 048 7 .  X ]047 - 350.  - 24 

Vy 5 . 1 5  X 1014 0.677 0 . 1 59  0 0.699 1 1 .7 2400 5 .7  X J052 7 .  X 1052 + 1 .4 + 1 3  
1 0.2358  I I .  47000 6.0 X 1050 I . I  X 1050 - 38 .  - 4.7 

Vy 3 X 1015 1 954 0 .580 0 0.3777 0 .22 600 1 .7 X J054 1 .6 X J055 + 1 .9 + 3 . 1  
1 0 . 1 556 1 .6 10000 I 5 X 1 054 1 .9 X 1 054 - 2 . 1  - 0 .66 
2 0 . 1 026 2 6  25000 5 .2 X J053 4.0 X 1053 + 2.9 + 0.40 

� 



The columns in the table have the following meanings. 

Equation of state : the equation of state p(p) used in con
structing the equilibrium stellar model and in calculating the 
adiabatic index from y = [(p + p)/p] dp/dp; H-W is the 
Harrison-Wheeler equation of state in the tabular form given 
by Hartle and Thorne (1968), Table 1 ;  Vy is the Levinger
Simmons-Tsuruta-Cameron Vy equation of state in the tabu
lar form given by Hartle and Thorne (1968), Table 2. 

Pc : central density of total mass-energy for the equilibrium 
stellar model. 

M/ M0 : total mass-energy of the equilibrium model (i.e., 
the mass that governs distant Keplerian orbits), in units of 
the sun's mass. 

2M/ R = 2GM/ Rc2 : ratio of the gravitational radius of the 
equilibrium model to its actual radius (radii are defined by 
4?TR2 = surface area). 

n : the "order" of the pulsational normal mode under study 
(for all models given here, n is also the number of nodes in 
the radial relative eigenfunction, 8r/r.). Note : n = 0 is the 
fundamental (quadrupole) mode. 

[9 8 5] 

Tn = 2?T I wn : the pulsation period of the quasinormal mode 
measured in milliseconds. 

rn : the damping time for the amplitude of the normal mode 
measured in seconds. 

rn/Tn = wnrn/2?T : the number of pulsation periods required 
for the amplitude to drop by a factor of 1/e. 

E'!Jll/((8R/R)2): energy of pulsation of the star, divided by 
the square of the relative amplitude of radial motion of the 
star's surface averaged over its surface. 

Power/((8R/R)2): the power radiated as gravitational 
waves, divided by the averaged square of the relative ampli
tude at the star's surface. 

(8R/R)(8r/r)c-1 : relative amplitude of radial motion at the 
star's surface divided by relative amplitude at the star's center. 

80/80c = 8(/)8/8(/)c : amplitude of the angular displacement 
of the star's fluid at its surface divided by the same amplitude 
at its center. 

� 



EXERCISES 

Binary stars as sources of 
gravitational waves 
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Of the sources discussed in this section, most are "impulsive " rather than continu
ous (star collapsing through gravitational radius; debris falling into a black hole; 
collision between black holes; supernova explosion). They give rise to bursts of 
gravitational waves. An order-of-magnitude method of analyzing such bursts is 
spelled out in Box 36.2. 

It is difficult and risky to pass from the above description of processes that should 
generate gravitational waves to an estimate of the characteristics of the waves that 
actually bathe the earth. For such an estimate, made in 1972 and subject to extensive 
revision as one's understanding of the universe improves, see Press and Thorne 
(1972). 

Exercise 36 . 2 .  GRAVITATIO NAL WAVES FRO M  MATTER FALLING 
INTO A BLACK HOLE 

A lump of matter with mass m falls into a black hole of mass M. Show that a burst of 
gravitational waves is emitted with duration ~M and power LGw ~ (m/M)2L0 , so that the 
total energy radiated is given in crude order of magnitude by equation (36 . 13) .  
Exercise 36 . 3. GRAVITATIO NAL WAVES FRO M  A 

VIBRATING NEUTRON STAR 
Idealize a neutron star as a sphere of incompressible fluid of mass M and radius R, with 
structure governed by Newton's laws of gravity. Let the star pulsate in its fundamental 
quadrupole mode. Using Newtonian theory, calculate : the angular frequency of pulsation, 
w ;  the energy of pulsation EpuJs ; the quantity !( 1 2) ,  which, according to equation (36 . 1 ) ,  
is  the power radiated in gravitational waves, LGw ; and the e-folding time, 'T = Epuisl LGw • 
for radiating away the energy of the pulsations. Compare the answers with equations (36 . 1 5)
which are based on a much cruder approximation-and with the results in Box 36. 1 ,  which 
are based on much better approximations. [For solution, see Table 13 of Wheeler ( 1 966).] 
Exercise 36 .4. PULSAR SLOWDOWN 

The pulsar NPO532 in the Crab Nebula has a period of 0.033 seconds and is slowing down 
at the rate dP / dt = 1 .35 x 10-5 sec/yr. Assuming the pulsar is a typical neutron star, 
calculate the rate at which it is losing rotational energy. If this energy loss is due primarily 
to gravitational radiation reaction, what is the magnitude of the star's nonaxial deformation? 
[For solution, see Ferrari and Ruffini ( 1969) ; for a rigorous strong-field analysis, see Ipser 
( 1970).] 

§36 . 6 .  BINARY STARS AS SOURCES 

The most numerous sources of weak gravitational waves are binary star systems. 
Moreover, roughly half of all stars are in binary or multiple systems [ see, for example, 
the compilation of Allen (1962)]. According ,to Kepler's laws, two stars of masses 
m1 and m2 that circle each other have angular frequency w and separation a c�upled 
to each other by the formula 



Box 36 . 2  ANALYSIS O F  BURSTS O F  RADIATIO N FRO M  IM PULSE EVENTS* 

Typical moment relevant for radiation 
Its Fourier transform 
Name for this quantity 
Time decomposition of total radiative energy loss flE 
Decomposition of flE according to circular 
frequency 
Integrand nearly constant with respect to 
w from w = 0 up to a critical value of w, 
beyond which radiation falls off very fast 
- d  flE/dw for w < wcrlt 

Zero frequency moment that enters this formula 
Rewrite of - d flE/dw 
Total energy of pulse 

* Box adapted from pp 1 1 3 and 1 14 of Wheeler ( 1962) 

Electromagnetism 

(2'1T)-112J dx exp [iwt] dt 
dx(w) 

wcrit ~ I /flt 

~(e flv)2/c3 

~This/flt 

As sample applications of this analysis, Wheeler (1962) cites the following: 

Parameter 

Mass Velocity 
Energy 
Fraction assumed 

relevant to radia-
tive moment Time integral of 
this moment 
= «K.E. »xx «K.E. »xxfc2 

dE ~ � rK.E.»xx r 
dw c c2 

Lit 
Llw ~ l/flt 
Ll£radiated Assumed distance to detector 
flE/4'1Tr2 

One atomic-nucleus fission 
of 1 80 Me V 

4 X 10-22 g 1 .2 X 1 09 cm/s 2.9 X 10-4 erg 

2.9 X 10-4 erg 
3.2 X 10-2s g 

2.3 X 10-61 � rad/s 
10-21 s 

1021 rad/s 10-46 erg 
103 cm 10-53 erg/cm2 

Fission bomb yield Meteorite striking 
1 7  kilotons at  earth at  escape 
1 0 %  efficiency velocity 

J04 g J09 g 
4 X 1 08 cm/s I I  X 105 cm/s 
7 X 1020 erg 6 X 1020 erg 

0 . 1  

7 X 1019 erg 6 X 1 020 erg 
0.08 g 0.67 g 

1 .4 X 10-20� rad/s I .O x 10-1s� rad/s 
10-s s 10-3 s 

108 rad/s 103 rad/s 10-12 erg 10-15 erg 
103 cm 109 cm 10-19 erg/cm2 10-34 erg/cm2 

The reader might find it informative to extend this table to the bursts of waves 
emitted by (1) debris falling into a black hole, (2) collisions between two black holes, 
and (3) a supernova explosion in which a star of two solar masses collapses to nuclear 
densities, ejecting half its mass in the process. 

Gravitation 

fxx(t) 
(2'1T)-112f fxx exp [iwt] dt 

went ~ I/flt 

LI( «Kinetic Energy» )xx 

~G(fl(«K.E.»)xxl2 /c5 

~This/Lit 

Explosion of star 
when 1 0-4 of 
mass is released 

2 X J033 g 4 X 108 cm/s 1 .8 X 1050 erg 
0 . 1  

1 .8 X 1049 erg 
2 X 102s g 

9 X J038� rad/s 
J04 s 

10-4 rad/s J035 erg 
J023 cm 10-12 erg/cm2 



( 1 )  power output 

(2)  effects of rad iation 
reaction 
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In this motion the kinetic energy is 

. . 1 . 1 m m  
(kinetic energy) = - 2(potential energy) = 2 �. 

The power that they radiate as gravitational waves can be estimated roughly as the 
square of the circulating power, L ~ w X (kinetic energy); thus, 

µ2M3 
Low ~ 4a5 Lo, 

where µ = m1m2/ M is the familiar reduced mass, and M = m1 + m2 is the total 
mass of this binary system. 

An exact calculation based on equation (36.1) gives a result larger than this by 
a factor ~30: for a binary system of semimajor axis a and eccentricity e, the power 
output averaged over an orbital period is 

32 µ2M3 
Low = 5 � f(e)Lo, 

where /(e) is the dimensionless "correction function," 

/(e) = [ 1 + ;! e 2 + �� e4] [1 _ e zi-112 _ 

[See exercise 36.6 at end of §36.8; also Peters and Mathews (1963).) 

(36.16a) 

(36.16b) 

As the binary system loses energy by gravitational radiation, the stars spiral in 
toward each other (decrease of energy; tightening of gravitational binding). For 
circular orbits the energy, E = -½m1m2/a = -½µ,M/a, decreases as 

dE/dt = 1 /2(µM/a2)(da/dt) 
32 µ2M3 

= - Low = - 5 � · 

Consequently, the evolution of the orbital radius is given by the formula 

where a0 = atoday and 
1 

(
-E

) 
5 a 4 

'To 
= 

4 Low today 
- 256 µ�2 . 

(36.17a) 

(36.17b) 

Thus, unless nongravitational forces intervene, the two stars will spiral together in 
a time r0 (spiral time). For an elliptical orbit, the eccentricity also evolves. Radiation 
is emitted primarily at periastron. Therefore the braking forces of radiation reaction 
act there with greatest force. This effect deprives the stars of some of the kinetic 
energy of the excursions in their separation ("radial kinetic energy"). In consequence, 
the orbit becomes more nearly circular. [See Peters and Mathews (1963) for detailed 
calculations.] 
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The calculated power output, flux at Earth, and damping times are shown in Box 
36.3 for several known binary stars and several interesting hypothetical cases. Notice 
that in the most favorable known cases the period is a few hours; the damping time 
is the age of the universe (could the absence of better cases be due to radiation 
reaction's having destroyed them?); the output of power in the form of gravitational 
waves is ~ 1030 to 1032 ergs/sec (approaching the light output of the sun, 3.9 x 1033 

ergs/sec); and the calculated flux at the Earth is ~ 10-10 to 10-12 ergs/sec (too small 
to detect in 1973, but perhaps not too small several decades hence; see Chap
ter 37). 

The hypothetical cases in Box 36.3 illustrate the general relations for astrophysical 
systems that were derived in §36.4-namely, that only as the system approaches 
its gravitational radius can Low approach L0 , and only then can damping remove 
nearly the whole energy in a single period. 

§36.7. FORMULAS FOR RADIATION FROM NEARLY 
NEWTONIAN SLOW-MOTION SOURCES 

Tum now from illustrative astrophysical sources to rigorous formulas valid for a 
wide variety of sources. One such formula has already been written down, 

(36.1) 

but it has not yet been derived, nor has its realm of validity been discussed. 
This formula for the power output is actually valid for any "nearly Newtonian, 

slow-motion source"-more particularly, for any source in which 

(size of source)/(reduced wavelength of waves) � I ,  (36.18a) 

!Newtonian potential ! � (size of source)/(reduced wavelength), (36.18b) 

l typical stresses! (size of source) 
-----� ------- (36.18c) (mass density) (reduced wavelength) · 

It is not valid, except perhaps approximately, for fast-motion or strong-field sources. 
Moreover, there is no formalism available today which can handle effectively and 
in general the fast-motion case or the strong-field case. 

The rest of this chapter is devoted to a detailed analysis of gravitational waves 
from nearly Newtonian, slow-motion sources. But the analysis (Track 2; §§36.9-
36.11) will be preceded by a Track-I summary in this section and the next. 

For any source of size R and mean internal velocity v, the characteristic reduced 
wavelength (,t = A/2'TT) of the radiation emitted is ,t ~ (amplitude of mo
tions)/v � R/v. Consequently the demand (36.18a) that R/ ,t be � 1 [i.e., that the 
source be confined to a small region deep inside the near (nonradiation) zone] 
enforces the slow-motion constraint 

V � 1 .  

(3)  particular binaries 
observed by astronomers 

The "nearly N ewtonian, 
slow-motion approximation" 
for analyzing sources of 
gravitational waves 
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Box 36.3 GRAVITATIO NAL RADIATIO N FRO M  SEVERAL BINARY STAR SYSTEMSa 

Distance 
m1 m2 from earth Law Flux at earth 

Type of system Name Period Mo Mo (pc) Spiral timeb (ergs/sec) (erg/sec cm 2) 

Solar System (Sun + Solar Earth 1s in 
Jupiter) System 1 1 .86 yr. 1 .0 9 .56 X 10-4 near zone 2.5 X 1023 yr 5 .2 X 10 10 

Typical resolved 11 Cas 480 yr. 0 .94 0 .5 8  5 .9 9 .5 X JO24 5 .6 X 1010 1 .4 X 1 0-29 

binanes from � Boo 149 .95 yr. 0 .85 0 .75 6.7 3 .8 X 1023 3 .6 X 1012 6 .7 X 1 0-28 
compilat10n of Sirius 49.94 yr. 2.28 0.98 2.6 7 .2 X 1021 1 . 1 X JO15 1 .3 X 1 0-24 
Van de Kamp ( 1958) Fu 46 1 3 . 12 yr. 0 .3 1  0 .25 6.5 3 .2 X 1021 3 .6 X 1014 7 . 1  X 1 0-26 

Typical eclipsing /3 Lyr 12 .925 day 1 9 .48 9 .74 330 7 .0 X 101 1  0 .057 X 1 030 0 .0004 X 10-11 

binaries from UWCMa 4 .395 day 40.0 3 1 .0 1470 8 .2 X 109 49. X 1030 0.0 1 9  X 10-11 

compilation of /3 Per 2 .867 day 4.70 0 .94 30 3 .2 X 1011  0 .0 14  X 1 030 0 .0 1 3  X 10-11 
Gaposhkin ( 1 958)  WUMa 0 .33 day 0 .76 0.57 1 10 6 .2 X 109 0.47 X 1030 0 .032 X 10-11 

Favorable cases from UV Leo 0.6 day 1 .36 1 .25 68 1 .0 X 1010 0 .63 X 1030 0.0 12 X 10-11 
comptlat10n of V Pup 1 .45 day 16 .6 9 . 8  390 2.3 X 1 09 65 .  X 1030 0.36 X 1 0-11 
Bragmsky ( 1965) i Boo 0.268 day 1 .3 5  0.68 12 2.0 X 109 3 .2 X 1030 1 8 .  X 10-11  

YY Eri 0 .32 1 day 0.76 0.50 42 6.6 X 109 0.42 X [ 030 0.20 X 1 0-11 
SW Lac 0 .32 1 day 0 .97 0.83 75 3 .5 X 109 1 .5 X J O30 0.2 1  X 10-11 

WZ Sge 81 min 0 .6 0 .03 100 1 . 1  X 109 yr 0.5 X lQ30 0 .04 X 10-11  

Hypothetical 104 km 12 .2 sec 1 .0 1 .0 1000 3 .2 yr 3 .25 X 1 041 2 .7 X 1 0-3 

bmanes (neutron 103 km 0 .39 sec 1 .0 1 .0 1000 2 .8  hr 3 .25 X 1046 2 .7 X 1 02 

stars or black holes) 102 km 12 .2 msec 1 .0 1 .0 1000 1 .0 sec 3 .25 X 1051 2.7 X 101 
10 km 0 .39 msec 1 .0 1 .0 1 000 0 . 1 0  msec 3 .25 X [056 2 .7 X 1 012 

•Based on tables by Bragmsky ( 1 965) and by Ruffim and Wheeler ( 1 97 1 b) bThe sptral time, To, as given by equation (36 . 17b) 1s the time for the two stars to spiral mto each other 1f no nongrav1tat1onal forces mtervene 
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These related conditions, v � 1 and R � ;t, are satisfied by all presently conceived 
laboratory generators of gravitational waves. No one has seen how to bring a 
macroscopic mass up to a speed v ~ 1. These conditions are also satisfied by every 
gravitationally bound, nearly Newtonian system. Thus, for such a system of mass 
M, the condition for gravitational binding, ½Mv2 � M2 IR guarantees that 
V � (Ml R)l/2 � I .  

The conditions MIR� Rl;t and I Tjk l lT00 � Rl..t are satisfied by all nearly 
Newtonian sources of conceivable interest. Typical sources (e.g. binary stars) have 

(virial theorem). In those rare cases where (MIR or I Tjk l lT00) 2: Rl;t (e.g. , a mar
ginally stable, slowly vibrating star), the motion is so very slow that the radiation 
will be too weak to be interesting. 

For any nearly Newtonian slow-motion system, there is a spacetime region deep 
inside the near zone (r � ;t), but outside the boundary of the source (r > R), in 
which vacuum Newtonian gravitation theory is nearly valid. An observer in this 
Newtonian region can measure the Newtonian potential ifJ and can expand it in 
powers of llr : 

. . .  ) , where nj = xjlr. 

He can then give names to the coefficients in this expansion: 

M "total mass-energy" = "active gravitational mass"; 

d; _ "dipole moment" [if he chooses the origin of coordinates 
carefully, he can make d; = 0]; 

l:;k "reduced quadrupole moment" {because the system is nearly 
Newtonian, l:jk is given 
by expression (36.3)]. 

(36.19a) 

(36.19b) 

As this Newtonian potential reaches out into the radiation zone, the static portions 
of it ( -Mir - d;nj lr2) maintain their Newtonian form, unchanged. But the dynamic 
part ( -½J;kn jn k lr3) ceases to be describable in Newtonian terms. As retardation 
effects become noticeable (at increasing r values), it gradually changes over into 
outgoing gravitational waves, which must be described in the full general theory 
of relativity, or in linearized theory, or in the "shortwave" approximation of §35.13. 

If one chooses to use linearized theory in the radiation zone, and if one imposes 
the transverse-traceless gauge there (h'{J = 0, h'J! = 0, hT,{,k = 0), then the gravita
tional waves take the form [derived later as equation (36.47)] 

Definitions of mass, dipole 
moment, and reduced 
quadrupole moment for a 
slow-motion source 

Properties of gravitational 
waves in terms of reduced 
quadrupole moment: 

2 .. 
[ 1 · 

] hf[ =  -; l:'f[(t - r) + corrections of order � l:'f[(t - r) . (36.20) ( 1 )  the wave field hf,{ 



(2) effective stress-energy 
tensor 

(3)  total power radiated 

(4) density of angular 
momentum 

(5)  total angular momentum 
radiated 
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Here ff,[ is the second time-derivative of the transverse-traceless part of the quad
rupole moment (transverse to the radial direction; see §35.4); thus, 

(projection operator), 

(unit radial vector). 

(36.21) 

The effective stress-energy tensor for these outgoing �aves (§35.7) has the same form 
as for a swarm of zero-mass particles traveling radially outward with the speed of 
light; at large distances its components of lowest nonvanishing order are 

r<ow> = _ r<ow) = r<ow) = _1 _ (h'!'T h'!'T > = _1 _ < i TT/" rr> 00 Or rr 32w Jk ,O Jk ,O 8wr2 Jk Jk 

= 8;,2 ( f�kf�k - 2nifi�k nk + ; ( nl�k nk)2 ) , (36.22) 

where ( ) denotes an average over several wavelengths. (Recall that one cannot 
localize the energy more closely than a wavelength!) The total power crossing a 
sphere of radius r at time t is 

(36.23) 

(See exercise 36.9.) This is the formula with which this chapter began: equation 
(36.1 ). 

The wave fronts are not precisely spherical. For example, for a binary star system 
the wave fronts in the equatorial plane must be spirals. This means that there is 
a tiny nonradial component of the momentum flux, which decreases in strength as 
l/r3 • Associated with this nonradial momentum is an angular momentum density 
(angular momentum relative to the system's center, r = 0), which drops off as 1/r2 

[Peters (1964), as corrected by DeWitt (1971), p. 286]: 

(36.24) 

The integral of this quantity over a sphere is the total angular momentum being 
transported outward per unit time, 

(36.25) 

(See exercise 36.9.) 
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§36.8. RADIATION REACTION IN SLOW-MOTION SOURCES* 

The conservation laws discussed in Box 19.1  and derived in §20.5 guarantee that 
the source must lose energy and angular momentum at the same rate as the gravita
tional waves carry them off. The agent that produces these losses is a tiny component 
of the spacetime curvature inside the source, which reverses sign if one changes from 
a (realistic) outgoing-wave boundary condition at infinity to the opposite (unrealistic) 
ingoing-wave condition. These "radiation-reaction " pieces of the curvature can be 
described in Newtonian language when the source obeys the nearly Newtonian, 
slow-motion conditions (36.18). 

The dynamical part of the Newtonian potential, in its "standard form " 

<P = - � fjk(t)njndr3 + O(1/r4); equation (36.18), 

has no retardation in it. (Newtonian theory demands action at a distance ! )  Conse
quently, there is no way whatsoever for the standard potential to decide, at large 
radii, whether to join onto outgoing waves or onto ingoing waves. Being undecided, 
it takes the middle track of joining onto standing waves (half outgoing, plus half 
ingoing). But this is not what one wants. It turns out (see §36.11) that the join can 
be made to purely outgoing waves if and only if <P is augmented by a tiny "radia
tion-reaction " potential 

Outgoing-wave boundary 
condition gives rise to a 
Newtonian-type 
radiation-reaction potential 

<P _ <P + <P(react) 
- standard Newtonian theory , (36.26a) Form and magnitude of the 

radiation-reaction potential 

(36.26b) 

If, instead, one sets <P = <P standard - <Pfreact>, the potential will join onto purely ingoing 
waves. 

In order of magnitude, the radiation-reaction potential is 

<P(react) ~ _1_ (MR2)r2 ~ MR',!, (..!_)5
. 

,t5 r3 ,t (36.27) 

Consequently, near the source it is tiny compared to the standard Newtonian 
potential [a factor (RI ,t)5 ~ v5 smaller ! ]. However, at the inner boundary of the 
radiation zone (r ~ ,t), it is of the same order of magnitude as the dynamic, quadru
pole part of the standard potential. 

The radiation-reaction part of the Newtonian potential plays the same role as 
a producer of accelerations that any other part of the Newtonian potential does. 
Any particle in the Newtonian region experiences a gravitational acceleration given 
by 

a - m _ m m(react) 
j - -Y!',j - - Y!'standard,j - Y!',j (36.28) 

* The ideas and formalism described in this section were devised by Burke ( 1970), Thorne ( 1969b), 
and Chandrasekhar and Esposito ( 1 970). Among the forerunners of these ideas were the papers of Peters 
( 1964), and Peres and Rosen ( 1 964). 

Effects of the potential· 

( 1 )  radiation-reaction 
accelerations 



(2) loss of energy and 
angular momentum 

Radiation-reaction potential 
for electromagnetic waves 
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Inside the source, this acceleration leads to energy and angular momentum losses 
given by 

(36.29a) 

and 

(36.29b) 

(Here p is the density, V; is the velocity, and a; as above is the acceleration of the 
matter in the source.) Standard Newtonian theory conserves the energy and angular 
momentum. Therefore only the reaction part of the potential can produce losses: 

dE/dt - -f p<P<�eact>v . d3x - ,J 1 ' 

(36.30) 

A straightforward calculation (exercise 36.5) using expression (36.26b) for the reac
tion potential yields, for the time-averaged losses, 

I ... .. . 
dE/dt = -

5 U
;kljk> •  

2 .. ... 
d.J/dt = - 5 ejk1Uka la1) · 

(36.31) 

Notice that these results agree with the energy and angular momentum carried 
off by the radiation as given by equations (36.1) and (36.25). The agreement is an 
absolute imperative. The laws of conservation of total energy and angular momen
tum demand it. 

A slow-motion electromagnetic system emitting electric dipole radiation has a 
radiation-reaction potential 

A4react) = O, A (0reactl = -<P(react) = l J.xj 
3 J ' 

(36.32) 

which is completely analogous to <,P(reacO of gravitation theory [see, e.g., Burke (1971 )]. 
However, attention does not usually focus on this potential and the reaction forces 
it produces. Instead, it focuses on the reaction force in a special case: that of an 
isolated charge being accelerated by nonelectromagnetic forces. For such a charge, 
the reaction force is 

p(React) = 1_ e2 x. 
3 

(36.33) 

No such formula is relevant to gravitation theory, because there is no such thing 
as a gravitationally isolated, radiating particle (i.e., one accelerated by forces that 
have no coupling to gravity). 
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Exercise 36.5. ENERGY AN D ANGULAR M O MENTU M LOSSES DUE TO 
RADIATIO N REACTIO N 
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Derive equations (36 .3 1 )  for the rate at  which gravitational radiation damping saps energy 
and angular momentum from a slow-motion source. Base the derivation on equations (36.26b) 
and (36.30) . 

Exercise 36 . 6 .  GRAVITATIO NAL WAVES FRO M  BINARY STAR SYSTEMS 

Apply the full formalism of §§36.7 and 36.8 to  a binary star system with circular orbits. 
Calculate the angular distribution of the gravitational waves ;  the total power radiated ; the 
total angular momentum radiated ; the radiation-reaction forces ;  and the loss of energy and 
angular momentum due to radiation reaction. Compare the answers with the results quoted 
in §36.6. [For further details of the solution, see Peters and Mathews ( 1963) .] 

§36.9. FOUNDATIONS FOR DERIVATION OF 
RADIATION FORMULAS 

Turn now from the formulas for radiation from a nearly Newtonian system in slow 
motion to a derivation of these formulas. Initially (this section) work in the full 
general theory of relativity without any approximations-not even that of slow 
motion. Impose only the constraint that the source be isolated, and that spacetime 
become asymptotically flat far away from it. 

Use a coordinate system that becomes asymptotically Lorentz as rapidly as space
time curvature permits, when one moves radially outward from the source toward 
infinity. Everywhere in this coordinate system, even inside the source, which may 
be relativistic, define 

EXERCISES 

The rest of this chapter is 
Track 2 .  Chapter 20 
(conservation laws) is needed 
as preparation for it. It wi l l  be 
helpful in Chapter 39  
(post-Newtonian formalism), 
but is not needed as 
preparation for any other 
chapters. 

Derivation of formula for the 
gravitational-wave field 

(36.34) produced by a slow-motion 
source 

The hµ, are clearly not the components of a tensor. Neither is 1/µv the true metric 
tensor. Nevertheless, one is free to raise and lower indices on hµ, with 1/µv and to 
define 

(36.35) ( 1 )  definition of h µv 

Moreover, one can always specialize the coordinates so that the four conditions 

(36.36) 

are exactly satisfied everywhere, including the interior of the source. 
With these definitions and conventions, �. becomes the gravitational field of 

linearized theory far from the source, and also inside the source if gravity is weak 
there. But if the interior gravity is strong ( lhµ, I not� 1), hµ, in the interior has no 
connection whatsoever to linearized theory. 



(2)  fie!� equations in terms 
of hµv 

(3)  philosophy of control led 
ignorance 

(4) integral formulation of 
field equations 

(5)  spec ia l ization to s low 
motion 

996 3 6 .  G EN E RAT I O N  OF G RAVITAT IONAL WAVES 

The exact Einstein field equations can be written in terms of Ji,µv as [cf. §20.3; 
in particular, combine equations (20.14), (20.18), and (20.3); and impose the coordi
nate condition (36.36)] 

(36.37) 

where Tµ• are the components of stress-energy tensor, and tµ• are quantities 
( components of the "stress-energy pseudotensor for the gravitational field") that are 
of quadratic order and higher in h w. Recall the "philosophy of controlled ignorance" 
expounded in §19.3. One is so ignorant that nowhere does one ever write down an 
explicit expression for tµ v in terms of h,0'13 ; and this ignorance is so controlled that 
one will never need such an expression in the calculations to follow! More specifi
cally, the strength of the outgoing wave is proportional to the integral of a compli
cated expression over the interior of a system where "gravitational stresses" may 
be comparable to material stresses, l t;k l ~ I Tjk l .  No matter. All that will count for 
the radiation is the quadrupole part of the field. Moreover, that quadrupole moment 
is empirically definable by purely Newtonian measurements in the Newtonian region 
(1) well inside the wave zone, but (2) well outside the surface of the source. One 
does not have to know the inner workings of a star to define its mass (influence 
on Kepler orbits outside) nor does one have to know those inner workings to define 
its quadrupole moment as sensed externally . 

Einstein's equations (36.37), augmented by an outgoing-wave boundary condition, 
are equivalent to the integral equations 

where 

- [ Tµ v + tµv]  
hµ•(t, xj ) = 4 f 

' 
ret d3x', 

all space Ix - X I 

[ 
]1/2 

Ix - x' I � (x; - xf)2 , 

J 

d3x' dx1' dx2' dx3' ,  

(36.38) 

and the subscript "ret" means the quantity is to be evaluated at the retarded 
spacetime point 

(t' = t - Ix - x' I , xf) .  

These are integral equations because the unknowns, Ji,µ v ,  appear both outside and 
inside the integral (inside they are contained in tµ•) .  Notice that in passing from 
the wave equations (36.37) to the integral equations (36.38), one has cavalierly 
behaved as though h µv were fields in flat spacetime. This is certainly not true; but 
the mathematical manipulations are valid nevertheless !-and the integral equations 
(36.38) are valid for any field point (t, x;), even inside the source. 

§36.10. EVALUATION OF THE RADIATION FIELD IN 
THE SLOW-MOTION APPROXIMATION 

Thus far the analysis has been exact. Now it is necessary to introduce the slow-motion 
assumption of §36.7 : R � A.  
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"Gravitational source" 
[Region of size L, where 
tµ ' gives significant 
contribution to 
integral (36 . 3 8 )] 
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z 

Material source 
[Region of size 

--?'s.::-------,-1 -----� y 
R, where T µ v f. 0]  

X 

Figure 36 . 3. 

zone 
(r � ,t)  

Radiation 
zone (r ► A")  

-r�J 
/ 

/ 
/ 

A slow-motion source radiating gravitational waves. The origin of spatial coordinates is located inside 
the source The size of the source, R, is very small compared to a reduced wavelength, R � A". Significant 
contributions to the retarded mtegral (36 .38)  for hµ' come only from a region of size L ~ R � ,t 
surrounding the source, because outside the source-but in the near zone (R � r � -t)-the "stress-energy 
pseudotensor" tµ' dies out as l /r4 (see exercise 36.7) .  

In the radiation zone, tµ' ceases to die out as l/r4 , and begins to die out as l /r2 ; it is trying to describe 
(but cannot, really, without appropriate averaging) the stress-energy carried by the gravitational waves. 
If the source has been emitting waves long enough, contributions from the radiation zone to the retarded 
integral (36 .38) may be nonnegligible : 

[W] ~ _..!_ =- f [ tµ '] d3x' ~ J ....!....  r'2 dSJ' dr ' ret t 
r

' 2  ret , ,2  

[for r > ,ti--J 
[ may have significant contri- l t 

butions from large r' J 
Such contributions are ignored in the text, m calculations of the radiated waves, because they have nothing 
whatsoever to do with the emission process itself. Rather, they are part of the propagation process treated 
in the last chapter. They include the background curvature produced by the stress-energy of the waves, 
scattering of waves off the background curvature, wave-wave scattering, etc . ,  and they are totally negligible 
in the neighborhood of the source itself (r ,:S 1 ,000 -t, for example) because a slow-motion source radiates 
so very weakly. 

Place the origin of spatial coordinates inside the source, as shown in Figure 36.3. For slow-motion systems, the only significant contributions to the retarded integrals (36.38) come from deep inside the near zone (from a region of size L ~ R � ..t; see Figure 36.3). Confine attention to "field points" (points of observation) x; far outside this "source region," 



(6)  calculation of f,ik in 
radiation zone 

(7 )  specialization to nearly 
Newtonian sources 
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lx l r ► L � lx' I , (36 .39a) and expand the retarded integral (36 .38) in powers of x' /r-in just the same manner as was done in § 19 .1 . (Such an expansion is justified by and requires the slow-motion assumption, J/ R ~ A/ L � I .) The result is hµv(t, x) = 7 J [Pv (x', t - r) + tµv(x', t - r)] d3x' 
+ 0 c�: I xf [PV(x', t - r) + tµv(x', t - r)] d3x'} . (36 .40) 

Of the ten components of h µv ,  only the six spatial ones, fiik , are of interest, since only they are needed in projecting out the transverse-traceless radiation field hf,'[. The spatial components are expressed by equations (36 .40) in terms of integrals over the "stress distribution" Tik + tik _ It will be convenient, in making comparisons with Newtonian theory, to reexpress fiik in terms of integrals over the "energy distribution" T00 + t00 . One can make the conversion with the help of the exact equations of motion Tµv ;v = 0, which have the special form (36 .41) in the coordinate system being used [see equations (36 .36) and (36 .37); also the discussion in §20.3). Applying these relations twice in succession, one obtains the identity (Too + tOO) = - (TOl + tOl) = - (TlO + tlD) , 00 ,10 ,Ol 
= + ( Tim + 1lm),m1 · From this and the elementary chain rule for differentiation, it follows that 

whence (36.42a) where (36 .42b) 
Now introduce the nearly Newtonian assumption. It guarantees that gravitation contributes only a small fraction of the total energy: t 00 ~ (</>, j)2 ~ Af2 / R4 ~ (Ml R)TOO � TOO; hence (36 .42b') The quantity Iik thus represents the second moment of the mass distribution. 
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By combining equations (36.42) and (36.40), and by noting that inside the source 
l t;k l ~ IIP,/1> , k l ~ T00 11P I , one obtains 

fijk(t, x) = � d2
f;k(t - r) + o [2- ( l �

k
l + IIP l ) !!__ M] r dtz r Too ;t 

= � d2I;k(t - r) ( i  O [
I Tik l M]!..} 

r dt2 + 
T00 + 

R R 
. 

[negligible by assumptions (36.18)i-J 

(36.43) 

Actually, what one wants are hf{, not fi;k _ They can be obtained by first lowering 
indices, using 1/ tm = 8tw and then projecting out the TT part using the projection 
operator for radially traveling waves: 

(36.44) 

(see Box 35.1). (Because h;k and h;k differ only in the trace, they have the same 
TT parts). The result is 

where 

hTT( ) - � d2Jf[(t - r) 
jk t, X - d 2 ' r t 

If[ = P;i ltm pmk -½ P;k(Pim lm1)

(36.45a) 

(36.45b) 

This is not the best form in which to write the answer, because an external observer 
cannot measure directly the second moment of the mass distribution, I;k · Fortunately, 
one can replace I;k by the reduced quadrupole moment, 

and write 

f. = J. - _!_ 8 . I = J (T00 + t00) (x ixk - _!_ 8 r2 ) d3x Jk - Jk 3 Jk 3 jk , 

FT(t ) -
� d2ff[(t - r) 

Jk ' x - r dt2 

(36.46) 

(36.47) 

This is allowed because the TT parts of I;k and f;k are identical (exercise 36.8). 
The reduced quadrupole moment f;k has a well-defined, elementary physical 

significance for an observer confined to the exterior of the source. In the near zone 
(r � A'), but outside the source so that vacuum Newtonian theory is very nearly valid, 
the Newtonian potential is 

qj = _ _!_ h = _ _!_ hoo = _ _!_ (fioo + _!_ li} = _ _!_ (hoo + "fiH) 
2 °0 2 2 2 4 

= - J all space 

[Too + tOO + TH + tii ] _________ re_t d3x' 
Ix - x' I 

[see equation (36.38)]. Any nearly Newtonian, slow-motion source satisfies 

(8) conversion, by projection, 
to hf[ 

(9)  reexpression of h T,{ in 
terms of reduced 
quadrupole moment 
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[recall: t°' /3 ~ (<1>)2 ~ T00 i<I> I ]. Hence, one can write 

m.
( t) - -J 

[Too(x', t)] 
d3 ' 

'¥ 
x, - I I X . x - x' 

Expanding Ix - x' 1 -1 in powers of l /r, one obtains 

m. _ (M dixi 3fikxixk 

) � less large enough that (

r � it, but r neverthe-

) 
'¥ 

- - - + -- + �-- + • • • 1or r r3 2r5 vacuum Newtonian 
theory is valid 

where 

M = (total mass-energy of source) = J T00 d3x, 

di (dipole moment of source) = J T
00xi dx3, 

(36.48) 

(36.49a) 

(36.49b) 

fik (reduced quadrupole moment of source) = expression (36.46). 

Thus, the quantities fjk , whose second time-derivatives determine the radiation field 
by equation (36. 47), are precisely the components of the star 's reduced quadrupole 
moment, as measured by an observer who explores its Newtonian potential <I> deep inside 
the near zone (r � it) ("empirical quadrupole moment."). 

The final answer (36.47) for the radiation field in terms of ff[ was quoted in the 
summary of results given in §36.7. Also quoted there were expressions for the 
effective stress-energy tensor of the radiation and for the energy and angular mo
mentum radiated [equations (36.22) to (36.25)]. Those expressions can be derived 
using the formalism of the shortwave approximation. (See exercise 36.9.) 

Exercise 36.7. MAGNITUDE OF W 
Consider a slow-motion source of gravitational waves. Show that far from the source, but 
in the near zone (R � r � A") the components of the "stress-energy pseudotensor" tµ •  die 
out as 1/r4, but in the radiation zone (r ► A") they die out only as 1/r2 . 

Exercise 36.8. PROOF THAT THE TRANVERSE TRACELESS PARTS OF 
i

ik AND l
ik ARE IDENTICAL 

Prove by direct computation that the TT parts of I
ik (36.42b) and i

ik (36.46) are identical, 
no matter where the observer is who does the TT projection (i .e., no matter what the unit 
vector n in the pro1ection operator may be). 

Exercise 36.9. ENERGY AND ANGULAR MOMENTUM RADIATED 
(a) For the gravitational waves in asymptotically flat spacetime described by equation (36.47), 
calculate the smeared-out stress-energy tensor T�G,,w> of equation (35.23) . [Answer: equation 
(36.22).] 
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(b) Perform the integrals of equations (36 .23) and (36.25) to obtain the total power and 
angular momentum radiated . (Hint : Derive and use the followmg averages over a sphere 

Here n = x/ lx l is the unit radial vector .] 

§36.11. DERIVATION OF THE RADIATION-REACTION 
POTENTIAL 

Turn, finally, to a derivation of the radiation-reaction results quoted in §36.8. The Derivat ion of form u la  fo r the 
analysis starts with the solution (36.43) for the spatial part of the radiation field rad iat ion- reacti on potent ia l 

in the original (i.e., not TT) gauge : 

- .k 2 .. 
h 1 (t, x) = - Iik(t - r). r (36.50) 

Although this solution was originally derived by discarding all terms that die out 
faster than 1/r, it is in fact an exact solution to the vacuum field equations 'fiik ,a a = 0 
of linearized theory. This means that it is valid in the intermediate and near zones 
(r � A", but r > R) as well as in the radiation zone. 

Were one to replace the outgoing-wave condition by an ingoing-wave condition 
at infinity, the exact solution (36.50) for 'fiik would get replaced by 

- 2 .. 
h ik(t, x) = - Iik(t + r). 

r 

Thus, in order to delineate the effects of the outgoing-wave boundary condition, 
one can write the exact solution in the form 

t: = + l , (36.51) 

and then focus attention on the effects of the sign of L 

In the near zone (r � ,t), but outside the nearly Newtonian source, this solution 
for hik ' as expanded in 1;owers of r, becomes 

h- = 2 _j!£.. - t:J\3) + -1!:__ - £ _Jk_ + 
_ 

[ 
J\2> J\4>r J\5>r2 

1k r Jk 2! 3 ! 
. .  · l (36.52a) 

where 

( 1 )  form u la  for h;k anywhere 
outs ide sou rce, with 
either outgo i ng  or 
i n go i ng  waves 

(2 )  h;k spec i a l i zed to near 
zone 



(3)  h00 and h0i in near zone 
calculated by gauge 
conditions 

(4) plucking out the 
radiation-reaction 
potentials from ha/J 

1 00 2  3 6  G EN ERAT I O N  OF  G RAVITAT IONAL  WAVES The corresponding forms of h0i and h00 can be generated from this by the gauge conditions h/3 ,/J = O ; i.e., by h;o ,o = h;k ,k and h00 , 0 = h0u- The results are : 
h .  = 2 - _J_k_ + _J_k_ - t: -J_k_ + 1k - t: �J_k __ - [ J(llxk J\3>x k 2J(4)xk 3J\5lxkr 4J\6lx kr2 ] 01 r3 2 !r 3 !  4 !  5! 

+ (static terms not associated with radiation); 
h - 2 ------ I ------ 1<2> t: J<3> - [ (3xi

x
k - r� 8 ik) (x 1xk - r2 8ik) 2 oo - r5 jk - 2 !r3 jk - 3T H 3(xix
k + r2 8ik) <4> 4(2xix

k + r2 8ik) <5> ] + ------ J .k - t: ------- J .k + . . .  4 !r 1 5! 1 

(36 .52b) 
(36.52c) + (static and time-linear terms not associated with radiation). 

The leading term in these expressions rises as l /r3 when one approaches the source: 
It is precisely the leading term in the dynamic, quadrupole part of the Newtonian potential, <I> = -½h00 = -¼h00 . All other terms without e:: 's in front of them are corrections to the Newtonian potential. They produce effects like the perihelion shift of Mercury that in no way deplete the energy and angular momentum of the system. The terms with e::'s are associated with radiation reaction. Pluck the leading ones out and call them "reaction potentials" : 

h-(react) _ _ 2J\3k) _ l_ J\5k)r2 jk - J 3 J , 

fi<react) _ _ 'J:... J(�) _ _  1_ (2xix
k + r2 8ik)J\5k) · 00 - 3 JJ 15 J 

The corresponding metric perturbations ha/J = ha/J -½hria/J are 
h (react) _ - 2J(3) + 'J:... J(3) 8 . + 0(J(5lr2) jk - 1k 3 11 1k Jk , 
h (react) _ _ 'J:... J\4lx k + 0(J\6)r3) Oj - 3 1k Jk , 
h (react) = _ _± J(3) _ _ l_ (xix

k + 3r2 8 .  )J\5) 00 3 11 15 1k 1k · 

(36 .53) 

(36 .54) 
These reaction potentials in the near zone are understood most clearly by a change of gauge that brings them into Newtonian form. Set 
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with 

t _ l 1<2> + _!_ J\4>x;x k _ _!_ J<4>rz So = 
3 11 6 Jk 6 11 • 

Then in the new gauge 

h(react) _ O (J(5)r2) jk - jk , h(react) _ O (J(6)r3) Oj - jk , 

h(react) _ _ l f(5
k
)xjx k 

00 - 5 J 

1 003 

(36.55) 

(36.56) 

This gauge is ideally suited to a Newtonian interpretation, since in it the geodesic 
equation for slowly moving particles has the form 

with 

d2 ;/d 2 = _ .m(i:eact> (terms not sensitive to ) X t '¥ J + . d' . ' · outgoing-wave con 1t1on 

<P(react) = _ _!_ Hreact) _ _!_ f(5)xjx k 

2 00 - 5 ik 

(36.57) 

(36.58) 

Thus, the leading radiation-reaction effects (with fractional errors ~ [A/rj2) can 
be described in the near zone of a nearly Newtonian source by appending the term 
M}�xix k to the Newtonian potential. The resulting formalism and a qualitative 
version of the above derivation were presented in §36.8. 

(5)  conversion of 
radiation-reaction 
potentials to N ewtonian 
gauge 



CHAPTER 3 7 
D ETECTI O N  O F  

G RAVITATI O NAL WAVES 

Linearized description of 
gravitational waves 
propagating past Earth 

I often say that when you can measure what you are speaking about, and 
express it in numbers, you know something about it; but when you cannot 

measure it, when you cannot express it in numbers, your knowledge is of a 
meagre and unsatisfactory kind: it may be the beginning of knowledge, but you 

have scarcely, in your thoughts, advanced to the stage of science, 
whatever the matter may be. 

WILLIAM THOMSO N .  LORD KELVI N [(1889), p 73) 

§37.1. COORDINATE SYSTEMS AND IMPINGING WAVES 

The detector is even easier to analyze than the generator or the transmission when 
one deals with gravitational waves within the framework of general relativity. Man's 
potential detectors all lie in the solar system, where gravity is so weak an<l spacetime 
so nearly flat that a plane gravitational wave coming in remains for all practical 
purposes a plane gravitational wave. (Angle of deflection of wave front passing limb 
of sun is only l '.' 75 .) Moreover, the nearest source of significant waves is so far away 
that, for all practical purposes, one can consider the waves as plane-fronted when 
they reach the Earth. Consequently, as they propagate in the z-direction past a 
detector, they can be described to high accuracy by the following transverse-traceless 
linearized expressions 

Metric perturbation: h;; = -h'{;{; = A+Ct - z), h� = h'{J = Ax(t - z) , (37. la) 

. 1 .. 
Riemann tensor : Rxoxo = -Ryoyo = -

2 A+(t - z), 

1 .. 
Rxoyo = Ryoxo = -

2 Ax(t - z). 
(37.lb) 
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Figure 3 7 . 1 .  
The proper reference frame of a vibrating-bar detector. The bar hangs by a wire 
from a cross beam, which is supported by vertical posts (not shown) that are 
embedded in the Earth. Consequently, the bar experiences a 4-acceleration given, 
at the moment when this diagram is drawn, by a = g(o/oz), where g is the "local 
acceleration of gravity" (g ~ 980 cm/sec2) .  Later, the spatial axes will have rotated 
relative to the bar ("Foucoult-pendulum effect" produced by Earth's rotation), so 
the components of a but not its magnitude will have changed. 

The proper reference frame relies on an imaginary clock and three imaginary 
gyroscopes located at the bar's center of mass (and shown above in a cut-away 
view). Coordinate time is equal to proper time as measured by the clock, and the 
directions of the spatial axes iJ/ox1 are attached to the gyroscopes. The forces that 
prevent the gyroscopes from falling in the Earth's field must be applied at the 
centers of mass of the individual gyroscopes (no torque ! ) .  

Stress-energy ·. r<GW) r<uw) TIGW) -
1 (A

. 
2 + A

. 
2 > 

00 = zz = - Oz - 167T + x time avg. · 

(See exercise 37 . l .) 

1 005 

(37 . l c) 

To analyze most easily the response of the detector to these impinging waves, 
use not the TT coordinate system {x"'} (which is specially "tuned" to the waves), 
but rather use coordinates { x"'} specially "tuned" to the experimenter and his 
detector. The detector might be a vibrating bar, or the vibrating Earth, or a loop 
of tubing filled with fluid (see Figures 37 . l  and 37 .2). But whatever it is, it will 
have a center of mass. Attach the spatial origin, xi= 0, to this center of mass; and 
attach orthonormal spatial axes, a/ax.i, to (possibly imaginary) gyroscopes located 
at this spatial origin (Figure 37 . l  ). If the detector is accelerating (i.e., not falling 
freely), make the gyroscopes accelerate with it by applying the necessary forces at 
their centers of mass (no torque !). Use, as time coordinate, the proper time x 0 = 'T 

measured by a clock at the spatial origin. Finally, extend these locally defined 
coordinates x"' throughout all spacetime in the "straightest" manner possible. (See 

Proper reference frame of a 
detector 
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Equations of motion for a 
mechanical detector 
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Track 2's § 1 3.6 for full details .) The metric in this "proper reference frame of the 
detector" will have the following form 

(37 .2) 

[ equation (13 .7 1) with w 1 = O]. Here a; are the spatial components of the detector's 
4-acceleration. (Since a must be orthogonal to the detector's 4-velocity, a0 vanishes.) 
Notice that, except for the acceleration term in g00 ("gravitational redshift term"; 
see §38 .5 and exercise 6 .6), this reference frame is locally Lorentz. 

Exercise 37.1 .  GENERAL PLANE WAVE IN TT GAUGE 
Show that the most general linearized plane wave can be described in the transverse-traceless 
gauge of linearized theory by expressions (37 . l  ). [Hint: Express the plane wave as a superpo
sition (Fourier integral) of monochromatic plane waves, and describe each monochromatic 
plane wave by expressions (35 . 16) .  Use equations (35 . 10) and (35 .23) to calculate Raf3ys and T��w>.] 
Exercise 37.2. TEST-PARTICLE M OTIO N  IN PRO PER REFEREN CE FRAME 
Show that a slowly moving test particle, falling freely through the proper reference frame 
of equation (37.2), obeys the equation of motion (geodesic equation) 

Thus, one can interpret - a, as the "local acceleration of gravity" (see caption of Fig
ure 37. 1 ) .  

§ 3 7 . 2 .  ACCELERATIO NS IN MECHANICAL DETECTORS 

The proper reference frame of equation (37.2) is the closest thing that exists to the 
reference frame a Newtonian physicist would use in analyzing the detector. In fact, 
it is so nearly Newtonian that (according to the analysis of Box 37 . 1) the equations 
of motion for a mechanical detector, when written in this proper reference frame, take 
their standard Newtonian form and can be viewed and dealt with in a fully Newtonian 
manner, with one exception: the gravitational waves produce a driving force of non
Newtonian origin, given by the familiar expression for geodesic deviation 

( 
force per unit m�ss (i.e. , acceleration) 

) ( dzxJ
) of a particle at xi relative to detector's = ---

• �2 
center of mass at xi= 0 due to waves 

- - (R.-, -) xk - ioi<o due to waves · 

(37 .3) 

To use this equation, and to calculate detector cross sections later, one must know 
the components of the curvature tensor R°' fiy8 , and of the waves' stress-energy tensor, 
T<[:,W>, in the detector's proper reference frame. One cannot calculate R °' 

M,8 directly 
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Box 37.1 DERIVATIO N OF EQUATIO NS OF M OTIO N  FOR 
A MECHANICAL DETECTOR 

1 00 7  

Consider a "mass element" in a mechanical detector ( e.g., a cube of aluminum one 
millimeter on each edge if the detector is the bar of Figure 37 .1; or an element 
of fluid with volume 1 mm3 if the detector is the tube filled with fluid shown in 
part h of Figure 37.2). This mass element gets pushed and pulled by adjacent matter 
and electromagnetic fields, as the medium of the detector vibrates or flows or does 
whatever it is supposed to do. Let 

f = ( 4-force per unit mass exerted on mass-element 
) - by adjacent matter and by electromagnetic fields · ( I )  

This 4-force per unit mass gives the mass element a 4-acceleration Vuu = f; or, 
in terms of components in the detector's proper reference frame, f' = Du1 / dr. 
Assume that the mass element has a very small velocity ( v � l )  in the detector's 
proper reference frame (i.e., relative to the detector's center of mass). Then, ignoring 
terms of O(v 2), O(Jx1 J 2), and O(Jxi J v), one has [see equation (37.2)] 

dt/dr = u0 = 1 - a1xl _ l - a · x, (2) 

and 

Exercise 37.3 calculates I'1
00 to precision of O(Jx' J ). Inserting its result and rearrang

ing terms, one finds that 

(4) 

("equation of motion for mass element"). 
Examine this equation, first from the viewpoint of an Einsteinian physicist, and 

then from the viewpoint of a Newtonian physicist. 
The Einsteinian physicist recognizes d2xi / dt2 as the "coordinate acceleration" of 

the mass element-but he keeps in mind that, to precision of O(Jxl J2), coordinate 
lengths and proper lengths are the same [see equation (37.2)]. The coordinate 
acceleration d2xl / dt2 has three causes: (1) the externally applied force, 

(1 + 2a · x)fi = (d2xi/dt2)externalforce (5a) 
= (1 + 2a .  x)(d2xi / dr2)external force 

(the origin of the a ·  x correction is simply the conversion between coordinate time 
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Box 37 .1 (continued) 

and proper time); (2) the "inertial force" due to the acceleration of the reference 
frame, 

(5b) 

(see exercise 37.4 for explanation of the a ·  x correction); and (3) a "Riemann 
curvature force, " which will include Riemann curvature due to local, Newtonian 
gravitational fields (fields of Earth, sun, moon, etc.), plus Riemann curvature due 
to the impinging gravitational waves, 

-(R1oHJ)wavesx k -(R1oko)Newton fieldsxk = (d2x1 I dt2)curvature (5c) 

(linear superposition because all gravitational fields in the solar system are so weak). 
This "Riemann curvature force" is not, of course, "felt" by the mass element; it 
does not produce any 4-acceleration. Rather, like the inertial force, it originates in 
the choice of reference frame: The spatial coordinates xl measure proper distance 
and direction away from the detector's center of mass; and Riemann curvature tries 
to change this proper distance and direction ("relative acceleration;" "geodesic 
deviation"). 

A Newtonian physicist views the equation of motion (4) in a rather different 
manner. Having been told that the spatial coordinates xf measure proper distance 
and direction away from the detector's center of mass, he thinks of them as the 
standard Euclidean spatial coordinates of Newtonian theory. He then rewrites 
equation (4) in the form 

where 

d2x1/dt2 = P1 - (R"•  · ) x k 
0,cO waves , 

pf (
Ne:,vtonian force l?er unit mass

) actmg on mass element 

= (1 + 2a · x)/i - a1(I + a ·  x) -(R'oko)Newton fieldsx k. 

(6) 

(7) 

The Newtonian physicist is free to express pf in a form more familiar than this. 
He can ignore the subtleties of the a · x "redshift effects" because (1) they are small 

(8) 

and (2) they are steady in time, and therefore-by contrast with the equally small 
wave-induced forces-they cannot excite resonant motions of the detector. Also, he 
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can separate the "inertial acceleration," -a', into a contribution from the local 
acceleration of gravity at the detector's center of mass, -(otl>/oxl ),J= o, plus a 
contribution - a'absolute due to acceleration of the detector relative to the "absolute 
space " of Newtonian theory. Finally, he can rewrite the Riemann curvature due 
to Newtonian gravity in the familiar form R'oH, = o 2'1>/ox1 oxf< . The net result is 

F' = [ total Ne�tonian force per unit] 
mass actmg on mass element 

+ f' [Newtonian force per unit mass exerted by ] 
adjacent matter and by electromagnetic fields 

- a' absolute [inertial force per unit mass due to acceleration ] 
of detector relative to Newtonian absolute space 

- (°'1>. ) OX1 at mass element 
[ = -(otl> /ox1 )3, ;= 0 - (o2'1> /ox'f oxk )xk ] (9) = Newtonian gravitational acceleration 

Conclusion: The equation of motion for a mass element of a mechanical detector, 
when written in the detector's proper reference frame, has the standard Newtonian 
form (6), with standard Newtonian driving forces (9), plus a driving force due to 
the gravitational waves given by 

from the metric coefficients gafi of expression (37 .2); to do so one would need the 
unknown corrections of O( lx1 12) .  However, one can easily obtain Ra Mt and Th1w> 
from the corresponding components in the TT coordinate frame [equations (37 .l)] 
by applying the transformation matrix l l ox"/ox.u l l .  To make the transformation 
trivial, orient the TT coordinate frame so that, to a precision of O(lhµv l )  � l, it 
coincides with the detector's proper reference frame near the detector's center of 
mass at the moment of interest, t = t = 0. Then the transformation matrix will be 

ox"/ox.U = 8� + O(hµv ) + O(a, x l) + O( l a l t) .  (37 .4) 

[
corrections due to 

r 
fredshift 7 \ 

�
corrections due to relative 

] ripples in spacetime LcorrectionsJ velocity of frames resulting 
caused by waves from detector's acceleration 

The acceleration the detector experiences is typically 

la l = one "Earth gravity" = 980 cm/sec2 ~ 1/(light-year). 

(10) 
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Description of waves in frame Therefore to enormous precision I / ox"' /oxll l l  = l lt � I I, and components of tensors are 
of detector the same in the two reference frames: 

Explicit form of accelerations 
due to waves 

This analysis is valid only for 
"small" detectors (L � A") 

EXERCISES 

I .. 
R . . . .  - -R . . . .  - - - A a:0a:0 - yOy0 - 2 +> 

I .. 
R.,,oyo - Ryoa:o - - 2 Ax, 

T(qw> = y<g_w> = T<ow> _ I (.A2 + ..42 ) 00 zz - Oz - 16w + X time avg. 

[see equation (37.1 )]. 

(37.5) 

Combining equations (37.3 ) and (37.5), one obtains for the wave-induced 
accelerations relative to the center of mass of the detector 

(
d2f) 
dt2 

due to waves 

I .. .. 
-R .. . .  y~ - R .. . .  x, = -( -A y~ + A x )  y0y0 y0a:0 2 + X ' 

---=- = 0. ( d2i) 
dt 2 

due to waves 

(37.6) 

These expressions, like the equation of geodesic deviation, are valid only over regions 
small compared to one wavelength. Second derivatives of the metric (i.e., the compo
nents of the Riemann tensor) give a poor measure of geodesic deviation and of 
wave-induced forces over regions of size L 2 A". Thus, to analyze large detectors 
(L 2 A"), one must abandon the "local mathematics " of the curvature tensor and 
replace it by "global mathematics " -e.g., an analysis in the TT coordinate frame 
using the metric components hµp •  For an example, see exercise 37.6. 

All detectors of high sensitivity that have been designed up until now (1973) are 
small compared to a wavelength, and therefore can be analyzed using the techniques 
of Newtonian physics and the driving forces of equations (37.6). 

It is useful to develop physical intuition for the driving forces, -R ¼Jr.0x k, produced 
by waves of various polarizations. Figure 35.2 is one aid to such intuition; Box 37.2 
is another. [The reader may find it interesting to examine, compare, and reconcile 
them!]  

Exercise 3 7 . 3 .  CO N N E CTI O N  CO E FF I C I E NTS I N  
P R O P E R  R E F E R E N C E  FRAM E 

(a) Calculate 1: "/Jy for the metric (37.2), ignoring corrections of O( lxi l). [Answer: Equations 
( 1 3.69) with w l. = 0.] 

(b) Calculate Rioicb using the standard formula (8 .44), and leaving spatial derivatives of 
the connection coefficients unevaluated because of the unknown corrections of O (lx1 1 )  in 
I' "/Jy· [Answer: R 1o1cb = r Jbb, 1c - aiak.J • • 

(c) Use the answer to part (b) to evaluate the O( lx i l) corrections to I' ibb · [Answer: 

(37 .7) 
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Box 3 7 . 2  LINES OF FORCE FOR GRAVITATIONAL-WAVE ACCELERATION S 

A. Basic Idea 

Consider a plane wave propagating in the i direc
tion. Discuss it entirely in the proper reference 
frame of a detector. The relative accelerations due 
to the wave are entirely transverse. Relative to the 
center of mass of the detector ( origin of spatial 
coordinates) they are 

2 - ~2 
-

1 .. - .. -d x/ dt - 2 (A+x + Axy), 

2 - ~2 
-

1 .. - .. -d y/dt - 2 ( -A+Y + Axx), 

d2i/dt2 = 0. 

(I) 

Notice that these accelerations are divergence-free. 
Consequently they can be represented by "lines 
of force," analogous to those of a vacuum electric 
field. At a value of i - i where Ax = 0 ( so polari
zation is entirely e+), the lines of force are the 
hyperbolas shown here [sketch (a)]. The direction 
of the acceleration at any point is the direction of 
the arrow there; the magnitude of the acceleration 
is the density of force lines. Since acceleration is 
proportional to distance from center of mass, the 
force lines get twice as close together when one 
moves twice as far away from the origin in a given 
direction. When A+ is positive, the arrows on the 
force lines are as show)}. in (a); when it is negative, 
they are reversed. As IA+ I increases, the force lines 
move in __ toward the origin so their density goes 
up; as IA+ I decreases, they move out toward in
finity so their density goes down. 

For polarization ex the force lines are rotated 
by 45 ° from the above diagram. For intermediate 
polarization (values of i - i where A+ and Ax are 
both nonzero), the diagram is rotated by an inter
mediate angle [sketch (b)] 

1 - -
<Po = 

2 arc tan (Ax/ A+)- (2) 

y 

(a) Force lines for Ax = 0, A+ > 0 

y 

(b) 
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Box 37 . 2  (continued) 

B. Th ree-Dimensional  Diagram 

At each value of i - i, the wave-produced accel
erations have a specific polarization [orientation 
angle <f>o of sketch (b)] and a specific amplitude 
(density of lines of force). Draw the lines of force 
in a three-dimensional (x, j, i) diagram for fixed 
i. Then as time passes the over-all diagram will 
remain unchanged in form, but will propagate 
with the speed of light in the i direction. 

Sketch (c) shows such a diagram for righthand 
circularly polarized waves of unchanging ampli
tude. Note: The authors are not aware of diagrams 
such as these [(a), (b), (c) above] and their use in 
analyzing detector response prior to William H. 
Press (1970). 

i 

Exercise 37.4. WHY THE a ·  x? 

37 DETECTION OF GRAVITATIONAL WAVES 

Explain the origin of the a ·  x correction in equation (5b) of Box 37. l .  [Hint: Take the 
viewpoint of an observer at rest at the spatial origin who watches two freely falling particles 
respond to the inertial force. At time i = 0, put one particle at the origin and the other 
at xi. As time passes, the separation of the particles in their common Lorentz frame remains 
fixed; so there develops a Lorentz contraction from the viewpoint of the observer at x 1 = O.] 

Eight types of mechanica l  
detectors 

Exercise 37.5. ORIENTATIO N O F  POLARIZATIO N DIAGRAM 
Derive equation (2) of Box 37.2 . 

§37.3. TYPES OF MECHANICAL DETECTORS 

Figure 37 .2 shows eight different types of mechanical detectors for gravitational 
waves .  (By "mechanical detector" is meant a detector that relies on the relative 



0--------------0 
Laser beam Moon Earth 

(a) Oscillations in Earth-moon 
separation ( see exercise 3 7. 7 )  

( c) Oscillations i n  Earth's 
crust [see Dyson ( 1969)]  

(e) Normal-mode vibrations 
of an elastic square, 
or hoop, or tuning fork 
[see Douglass ( 1971  )] 

(g) Angular accelerations 
of driven oscillators 
[Sakharov ( 1 969)] 

Figure 3 7 . 2 .  
Various types o f  gravitational-wave detectors 

y 

_ )- x 
z 

(b) Normal-mode vibrations 
of earth and moon [see 
Weber ( 1968 )] 

y 

z)-x r1�------ m 
�-------� 

(d) Normal-mode vibrations 
of an elastic bar [ see 
Weber ( 1 969) and 
references cited therein] 

( f) Angular accelerations of 
rotating bars ["Heterodyne 
detector" ; see Bragmsky, 
Zel'dovich, and Rudenko ( 1969)] 

-
(h) Pumping of fluid in a rotating loop of 

pipe [Press ( 1970)] The pipe rotates 
with the same angular velocity as the 
waves ; so the position of the pipe in 
the righthand polarized lines of force 
remains forever fixed 



( 1 )  freely falling bodies 
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motions of matter. Nonmechanical detectors are described in §37.9, near end of this 
chapter.) These eight detectors, and others, can be analyzed easily using the force-line 
diagrams of Box 37.2. A qualitative discussion of each of the eight detectors is given 
helow. (A full quantitative analysis for each one would entail experimental techni
calities for which general relativity is irrelevant, and which are beyond the scope 
of this book. However, some quantitative details are spelled out in §§37.5-37 .8.) 

1 . The Relative Motions of Two Freely Fal l i ng Bod ies 

As a gravitational wave passes two freely falling bodies, their proper separation 
oscillates (Figure 37.3). This produces corresponding oscillations in the redshift and 
round-trip travel times for electromagnetic signals propagating back and forth 
between the two bodies. Either effect, oscillating redshift or oscillating travel time, 
could be used in principle to detect the passage of the waves. Examples of such 
detectors are the Earth-Moon separation, as monitored by laser ranging [Fig. 
37.2(a)]; Earth-spacecraft separations as monitored by radio ranging; and the 
separation between two test masses in an Earth-orbiting laboratory, as monitored 
by redshift measurements or by laser interferometry. Several features of such 
detectors are explored in exercises 37 .6 and 37 .7. As shown in exercise 37 .7, such 
detectors have so low a sensitivity that they are of little experimental interest. 

Figure 37 .3 .  
Time of  round-trip travel between two geodesics responds t o  oscillations in  the 
curvature of spacetime (diagram is schematic only, symbolic of a laser pulse sent 
from the Earth to a corner reflector on the Moon and back at a time when a very 
powerful, long-wavelength gravitational wave passes by; the wave would have to 
be powerful because a direct measure of distance to better than 10 cm is difficult, 
and such precision produces a much less sensitive indicator of waves than the 
vibrations in length po-14 cm or less] of a Weber bar; see exercise 37 7) The 
geodesics are curved toward each other in regions where the relevant component 
of the Riemann curvature tensor, call it R,,6,,6, has one sign, and curved away from 
each other in regions where it has the opposite sign. The diagram allows one to 
see at a glance the answer to an often expressed puzzlement: Is not any change 
in round-trip travel time mere trumpery flummery? The metric perturbation, Bhµ, ,  
of the wave changes the scale of distances slightly but also correspondingly changes 
the scale of time. Therefore does not every possibility of any really meaningful 
and measurable effect cancel out? Answer: ( I )  The widened separation between 
the geodesics is not a local effect but a cumulative one. It does not arise from the 
local value of l',hµ, directly or even from the local value of the curvature. It arises 
from an accumulation of the bending process over an entire half-period of the 
gravitational wave. (2) The change m separation of the geodesics is a true change 
in proper distance, and shows up in a true change in proper time (see "ticks" on 
the world tine of one of the particles). See exercise 37.6. Note When one investi
gates the separation between the geodesics, not over a single period, as here, but 
over a large number of periods, he finds a cumulative, systematic, net slow bending 
of the rapidly wiggling geodesics toward each other This small, attractive acceler
ation is evidence in gravitation physics of the effective mass-energy carried by the 
gravitational waves (see Chapter 35). 
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2 .  Normal-Mode Vi brations of the Earth a n d  M oon 
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A gravitational wave sweeping over the Earth will excite its quadrupole modes of (2) Earth and M oon 
vibration, since the driving forces in the wave have quadrupole spatial distributions 
[see Fig. 37.2(b)]. The fundamental quadrupole mode of the Earth has a period of 
54 minutes, while that of the moon has a period of 15 minutes. Thus, the Earth 
and Moon should selectively pick out the 54-minute and 15-minute components of 
any passing wave train. Section 37 .7 will analyze quantitatively the interaction 
between the wave and solid-body vibrations. By comparing that analysis with 
seismometer studies of the Earth's vibrations, Weber (1967) put the first observational 
limit ever on the cosmic flux of gravitational waves: 

I d flux < 3 X 107 erg cm-2 sec-1 Hz-1 at v = 3.1 X 10-4 Hz. (37.8) v d frequency 

3 .  Osci l lations i n  t h e  Earth 's Crust 

If the neutron star in a pulsar is slightly deformed from axial symmetry, its rotation (3) Earth's crust 
will produce gravitational waves. The period of the waves is half the period of the 
pulsar (rotation of star through 180 ° produces one period of waves )-i.e., it should 
range from 0.017 sec for NP0532 (Crab Pulsar) to 1.87 sec. for NP0527. Such a 
wave train cannot excite the 54-minute quadrupole vibration or any of the other 
normal, low-frequency modes of vibration of the Earth. The kind of vibrations it 
can excite allow themselves in principle to be described in the language of normal 
modes. However, they are clearly and more conveniently envisaged as vibrations 
of localized regions of the Earth; or, more particularly, vibrations of the Earth's 
crust. 

Dyson (1969) has analyzed the response of an elastic solid, such as the Earth, 
to an incident, off-resonance gravitational wave. He shows that the response depends 
on irregularities in the elastic modulus for shear waves, and that it is strongest at 
a free surface [Figure 37.2( c)]. For the fraction of gravitational-wave energy crossing 
a flat surface that is converted into energy of elastic motion of the solid, he finds 
the expression 

(fraction) = (8'1TGp/w 2)(s/c)3 X sin20 1cos 0 1 -1[1 + cos20 + (s/v) sin20]. (37.9) 

Here s and v are the velocities of shear waves and compressive waves, respectively, 
and 0 is the angle between the direction of propagation of the waves and the normal 
to the surface. Considering a flux of 2 X 10-5 erg/cm2 sec (an optimistic but con
ceivable value for waves from a pulsar) incident horizontally (0 = 'lT/2; "divergent " 
factor lcos 0 1- 1 cancels out in calculation! ), and taking s to be 4.5 X 105 cm/sec and 
w to be 6 rad/sec, he calculates that the I -Hz horizontal displacement produced 
in the surface has an amplitude of to ~ 2 X 10-17 cm, too small by a factor of the 
order of 105 to be detected against background seismic noise. He points to the 
possibilities of improvements, especially via resonance ( elastic waves reflected back 
and forth between two surfaces; Antarctic ice sheet). 



(4) elastic bar 

(5)  elastic bodies of other 
shapes 

(6) rotating bars 
("heterodyne detector") 
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4. Norma l-Mode Vibrations of an Elastic Bar 

As of 1 972, the most often-discussed type of detector is  the aluminum bar invented 
by Joseph Weber (1 960, 1961)  [see Figures 37 . 1  and 37.2(d)] . Weber's bars are 
cylindrical in shape, with length 1 53 cm, diameter 66 cm, and weight 1 .4 X 106 g. 
Each bar is suspended by a wire in vacuum and is mechanically decoupled from 
its surroundings. Around its middle are attached piezoelectric strain transducers, 
which couple into electronic circuits that an: sensitive to the bar's fundamental 
end-to-end mode of oscillation (frequency -,,, = 1 ,660 Hz). When a gravitational wave 
hits the bar broadside, as shown in Figure 37 .2( d), the relative accelerations carried 
by the wave will excite the fundamental mode of the bar. As of 1 972, Weber observes 
sudden, simultaneous excitations in two such bars, one at the University of Maryland, 
near Washington, D.C. ; the other at Argonne National Laboratory, near Chicago 
[see Weber (1969, 1970a,b)]. No one has yet come forward with a workable explana
tion for Weber's coincidences other than gravitational waves from outer space. 
However, the history of physics is rich with instances where supposedly new effects 
had to be attributed in the end to long familiar phenomena. Therefore it would 
seem difficult to rate the observed events as "battle-tested." To achieve that con
fidence rating would seem to require confirmation with different equipment, or under 
different circumstances, or both; experiments to provide that confirmation are now 
(1972) underway. If one makes this tentative assessment, one can be excused for 
expressing at the same time the greatest admiration for the experimental ingenuity, 
energy, and magnificent persistence that Joseph Weber has shown in his more than 
decade-long search for the most elusive radiation on the books of physics. 

Mechanical detectors of the above four types represent systems on which meas
urements have been made ; so practical difficulties and realizable noise levels can be 
estimated properly. In the continuing search for improved methods, more elaborate 
detectors are being studied, and in 1972 one can list a number of interesting pro
posals, as below. For these it is hard to know how much development would be 
required in order to achieve the desired performance. 

5. Normal-Mode Vibrations of Elastic Bod ies of Other Shapes 

The "bar" of a Weber detector need not be cylindrical in shape. For a discussion 
of a detector with the shape of a hollow square, a hoop, or a tuning fork, see Douglass 
(1 97 1); such a detector might allow its fundamental frequency to be adjusted for 
the most favorable response, with given mass, or given maximum dimension, or both. 
Sections 37 .4 and 37 .7 and exercises 37 .9 to 37 . 12 analyze in detail the operation of 
a "vibrating-bar" detector of arbitrary shape. See also Douglass and Tyson (197 1 ). 

6. Angular  Accelerations of Rotating  Bars 

All the potential detectors described thus far respond in the most obvious of manners 
to the tidal accelerations of a gravitational wave : relative distances oscillate in and 



§ 3 7 . 3 TYPES O F  M ECHAN I CAL D ETECTO RS 1 0 1 7 out. But the tida l accelerations contain, in addition to a length-changing component, also a tangential, rotation-producing component. In picture (a) of Box 37.2, the l ength-changing component dominates near the x and j axes, whereas the rotationproducing component dominates half-way between the axes. Vladimir B. Braginsky was the first to propose a detector that responds to the rotation-producing accelerations [see Braginsky, Zel'dovich, and Rudenko (1969) ; Braginsky and Nazarenko (1971)]. It consists of two meta l rods, oriented perpendicu l ar to each other, and rotating free l y  with angu l ar ve locity w0 in their common p lane [see Fig. 37.2(f)] .  (The rotation is re l ative to the gyroscopes of the proper reference frame of the detector; equiva l ent l y, it is re l ative to the Lorentz frame local to the detector.) Let monochromatic gravitational waves of angu l ar frequency w = 2w0 ( change of phase per unit of time equals twice the angu l ar ve locity at which the pattern of l ines of force turns) impinge broadside on the rotating rods. The righthand circu l ar l y po l arized component of the waves wi l l then rotate with the rods; so their orientation in its lines-of-force diagram will remain forever fixed. With the orientation of Fig. 37.2(f), rod A will undergo angu l ar acce l eration, whi l e  rod B wil l dece l erate. The experimenter can search for the constant re l ative angular acceleration of the two rods ( constant so long as the ang l e  between them does not depart significantly from 90° ). Better yet, the experimenter can (all too easily) adjust the rotation rate w0 so it does not quite match the waves' frequency w. Then for ½w0/lw - 2w0 I rotations, rod A wi l l acce l erate and B wi l l dece l erate; then wi l l  fo l l ow ½wollw - 2w0 1 rotations in which A decelerates and B acce l erates, and so on (frequency beating). The experimenter can search for osci l l ations in the re l ative orientation of the rods. One need not worry about the lefthand po l arized waves marring the experiment. Since they do not rotate with the rods, their angu l ar accelerations average out over one cyc l e. Such a device is called a "heterodyne detector" by Braginsky. He envisages that such detectors might be p l aced in free-fall orbits about the Earth late in the 1970's. Heterodyne detectors would work most efficiently for long monochromatic wave trains such as those from pulsars; but even for short bursts of waves they may be more sensitive than vibrating bars [see Braginsky and Nazarenko (1971)]. 
7 .  Angular  Accel erations of D riven Osci l lators Andrei D. Sakharov (1969) has proposed a different type of detector for the angular acce l erations of a gravitational wave. Instead of two rotating bars, it consists of two identical, driven oscillators, initial l y  para l l el and nonrotating, but oscillating out of phase with each other. Each osci l lator experiences angular accelerations in one direction at one phase of a passing wave, and in the opposite direction at the next phase, but the torques do not cance l out. When the oscillator is maximally distended, it experiences a greater torque (acceleration ex l ength; torque ex length2) than when it is maximally contracted. Consequently, if the driven oscillations have the same angular frequency as a passing, monochromatic wave, and if the phases are as shown in Figure 37.2(g), then oscillator A wi l l  receive an angular acceleration in the righthand direction, while B receives an angu l ar acceleration in the lefthand direction. 

(7)  rotation of driven 
osci l lators 



(8) fluid in pipe 
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8 .  Pumping of F lu id  i n  a Rotat ing Loop of P ipe A third type of detector that responds to angular accelerations has been described by William Press (1 970). This detector would presumably be far less sensitive than others, and therefore not worth constructing; but it is intriguing in its novel design; and it illustrates features of gravitational waves ignored by other detectors. Press's detector consists of a loop of rotating pipe, containing a superfluid. The shape of the pipe and its constant rotation rate are chosen so that the gravitational waves will pump the fluid around inside the pipe. One conceivable pipe design (a bad one to build in practice, but an easy one to analyze) is shown in Fig. 37.2(h). Note that use is made of the variation in tidal acceleration along the direction of propagation of the wave as well as perpendicular to that direction. To analyze the response of the fluid to a righthand circularly polarized wave, one can mentally place the rotating pipe in the three-dimensional line-of-force diagram of Box 37.2( c). 
Exercise 37. 6. RELATIVE M OTIO N  OF FREELY FALLING BO DIES AS A 

DETECTOR O F  GRAVITATIO NAL WAVES 
[see Figures 37 .2 (a) and 37 .3.] 

Consider two test bodies initially at rest with respect to each other in flat, empty spacetime. 
(The case where other, gravitating bodies are nearby can be treated without too much more 
difficulty ; but this exercise concerns only the simplest example ! )  A plane, nearly monochro
matic gravitational wave, with angular frequency w and polarization e+, impinges on the 
bodies, coming from the - z  direction. As shown in exercise 35.5, the bodies remain forever 
at rest in those TT coordinates that constituted the bodies' global inertial frame before the 
wave arrived . Calculate, for arbitrary separations (Llx, Lly, Llz) of the test bodies, the redshift 
and the round-trip travel time of photons going back and forth between them. Compare 
the answer, for large Llx, Lly, Llz, with the answer one would have obtained by using (without 
justification ! )  the equation of geodesic deviation. Physically, why does the correct answer 
oscillate with increasing separation? Discuss the feasibility and the potential sensitivity of 
such a detector using current technology. 

Exercise 37. 7. EARTH-M O O N  SEPARATIO N AS A 
GRAVITATIO NAL-WAVE DETECTOR 

In the early 1970's one can monitor the Earth-moon separation using laser ranging to a 
precision of 10 cm, with successive observations separated by at least one round-trip travel 
time. Suppose that no oscillations in round-trip travel time are observed except those ( of 
rather long periods) to be expected from the Earth-moon-sun-planets gravitational interac
tion. What limits can one then place on the energy flux of gravitational waves that pass 
the Earth? The mathematical formula for the answer should yield numerically 

Flux S 1018 erg/cm2 sec for 0.3 cycle/sec S v S 1 cycle/day, 

corresponding to a limit on the mass density in gravitational waves of 

Density S 10-13 g/cm3 . 

Why is this an uninteresting limit? 

(37 . lOa) 

(37. lOb) 
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The remainder of this chapter ( except for §37 .9) gives a detailed analysis of vibrating, 
mechanical detectors (Earth; Weber bar; "bars" with complex shapes; and so on). 

The details of the analysis and its applications depend in a crucial way on the 
values of two dimensionless numbers : ( l)  the ratio TGwl-r0, where 

_ ( characteristic time scale for changes in ) ,,.Gw = gravitational-wave amplitude and spectrum ' 

(
e-folding time for detector vibrations (in

) T0 normal mode of interest) to die out as ; 
a result of internal damping 

and (2) the ratio Evibrationl kT, where 

(
mean value of detector's vibration energy (in

) £Vibration normal mode of interest) while waves are , 
passing and driving detector 

kT (Boltzman's) X (detector's ) 
constant temperature 

(
Mean energy in normal mode

' = of interest when g_r�vit�tional . 
waves are not exc1tmg 1t 

(37 . l l a) 

(37 . l l b) 

(37 . 12a) 

(37 . 12b) 

When TGw ► ,,.0, the detector views the radiation as having a "steady flux, " and it 
responds with steady-state vibrations; when TGw � ,,.0 (short burst of waves), the 
waves deal a "hammer blow" to the detector. When Evibration ► kT, the driving force 
of the waves dominates over the detector's random, internal, Brownian-noise forces 
("wave-dominated detector"); when Evibration � kT, the driving force of the waves 
must compete with the detector's random, internal, Brownian-noise forces ("noisy 
detector"). 

Sections 37.5 to 37.7 deal with wave-dominated detectors (Evibration ► kT). The 
key results of those sections are summarized in Box 37.3, which appears here as 
a quick preview (though it may not be fully understandable in advance). Section 
37 .8 treats noisy detectors. 

Warning: Throughout the rest of this chapter prime attention focuses on the 
concept of cross section. This is fine for a first introduction to the theory of detectors. 
But cross section is not the entire story, especially when one wishes to study the 
detailed wave-form of the radiation . And sometimes ( e.g. ,  for the detector of Figure 
37 .2a), it is none of the story. A first-rate experimenter designing a new detector 
will not deal primarily in cross sections any more than a radio engineer will in 
designing a new radio telescope .  Attention will also focus heavily on the bandwidth 

(continued on page 1 022) 

r 
The rest of this chapter is 

Track 2.  No earlier track-2 

material is needed as 
preparation for it, nor is it 

needed for any later cha pter. 

Definitions "steady flux," 
"hammer-blow waves, " 
"wave-dominated detector, "  
"noisy detector" 

Design of detectors requires 
much more than the concept 
of cross section 
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Box 37 . 3  WAYS TO USE CROSS SECTION FOR WAVE-DOMINATED DETECTORS 

A. To Calcu late Rate at which 
Detector Extracts Energy from 
a Steady Flux of Radiation 

(rGW ► To) 
I. Frequency distribution of radiation arbitrary 

(
steady rate at which detector extracts) energy from gravitational waves 

= f (F,];) . . . .  
: 

0

a(:) .
. 0

d� • • • • • • • • • • • • • • • • • • •  � .._____., � . . . . 
erg/cm2 sec Hz cm2 Hz 

2 .  Frequency spread of radiation small 
compared to line width of detector: 

--- v --..... ► 

3 Frequency spread of.radiation large 
compared to line ;Vidth of detector. 

(
steady rate a.t• which detector extracts) energy fr�mi gravitational waves 

,,. ..... = ( F,., Jvdete('tor) 

erg/cm2 sec Hz 

J a(v) dv 
'-.,--I 
"resonance 
integral", cm2 Hz 

a(v )( detector) 

(F°'J (source) ----� 

. . . . . 

�..._ 

. . 
." 

( 
Steady rate at which 

) : detector extr
0

i1Cts energy 
_: from gravitati?nal waves 

= a(vsource) J (f) dv = aF 

(!:) (source) 

a(v )( detector) 

--- v ----.►� 
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B.  To Calculate Total Energy Deposited 
in Detector by any Passing Wave tra in  

I .  If frequency distribution of radiation is arbitrary .  

(
total energy

) J 
/,. ..... , 

dv deposited = � .  :
. 

:1(� 

1 02 1  

Total 
• • � '-v--' 

erg/cm2 Hz c�2 · · ,Hz :F (erg/cm2) = f !t;; dv 

2. If frequency spread of radiation is small 
compared to line width of detector 
("monochromatic waves") 

. . . · • .  
. · . · 

o(v)(detector) • • • 1total c;ne�gy
) _ 

• • • • \ �ep'osited -

--- v ---.. ► 

3 .  If frequency spread of radiation is large 
compared to line widtp •of detector 
(as it must be for h,ammer-blow 
radiation, where. • · 

Llvsource 2:: !f4'.,,.7Gw ► l /4'1T'To = Liv detector> ·  

( total t;nergy deposited) = 

erg/cm2 Hz 

J a(v )  dv 
'------v--' 

cm2 Hz, 
"resonance 

integral" 

Wave 
amplitude 

t ...
.. ....... 

I g- \  
\ ... �' 

(source) 

• • •�("source) 
'------v--' 

cm2 erg/cm2 

-....... ..._ Decq,, 
..._ �J Of ..._ -- detecto -- - r --

-- Time -----. 

----



Idealized detector · oscillator 
driven by a steady flux of 
monochromatic waves : 

( 1 )  derivation of equation of 
motion 
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x 

Figure 37.4. 

z 

Incoming 
waves 

An idealized detector (vibrator) responding to 
linearly polarized gravitational waves. 

directions 

of the antenna, and on other, more detailed characteristics of its response, on coupling of the antenna to the displacement sensor, on response characteristics of the sensor, on antenna noise, on sensor noise, and so on. For an overview of these issues, and for discussions of detectors for which the concept of cross section is useless, see, e.g. , Press and Thorne (1972). 
§ 3 7  . 5 .  I D EALIZED WAVE-D O M I NATED D ETECTO R,  

EXC ITE D BY STEADY FLUX OF 
M O N O C H R O MATIC WAVES Begin with the case of a wave-dominated detector (.£vibration ► kT) being driven by a steady flux of radiation ('raw ► -r 0) .  Deal at first, not with a solid bar of arbitrary shape, but rather with the idealized detector of Figure 37.4 : an oscillator made of two masses M on the ends of a spring of equilibrium length 2L. Let the detector have a natural frequency of vibration w0 and a damping time -r0 ► l /w0 , so that its equation of motion (in the detector's proper reference frame) is 

� + �/-r0 + Wij� = driving acceleration. (37.13) Let gravitational waves of polarization e+ and angular frequency w impinge on the detector from the - i direction; and let the polar angles of the detector relative to the wave-determined x, j, i-axes be 0 and <f>.  The incoming waves are described by equations (37.1) with the amplitude 
Ax = 0, (37.14) (Here and throughout one must take the real part of all complex expressions.) 



§37 .5 IDEA LIZED DETECTOR, DRIVEN BY STRONG, STEADY FLUX 1 0 2 3  Assume that the detector is much smaller than a wavelength, so that one can set z ;:::; i = 0 throughout it. Then the tidal accelerations produced by the wave 
( d2x )  

dt2 
due to wave 

(d2_p) 
7Ji2 due to wave have as their component along the oscillator 

Consequently, the equation of motion for the oscillator is (37.15) 
The driving force varies as cos 2cp because of the "spin-2" nature of gravitational waves: a rotation through 180° in the transverse plane leaves the waves unchanged; a rotation through 90 ° reverses the phase. The sin2B term results from the transverse nature of the waves [one factor of sin B to account for projection onto the detector's direction] , plus their tidal-force nature [ another factor of sin B to account for (relative force) a: (distance in transverse plane)] . The straightforward steady-state solution of the equation of motion (37.15) is 

(2) osci l lator ampl itude as ; w 2d' +L sin28 cos 2cp . , 
� = ---,,------,,----- e-iwt _ 

w 2 - w/ + iw/r0 
(37 .16) function of frequency and 

When the incoming waves are near resonance with the detector, lw + w0 J � l /r0 , the oscillator is excited to large amplitude. Otherwise the excitation is small. Focus attention henceforth on near-resonance excitations; then equation (37.16) can be simplified (note: w0 is positive, but w may be negative or positive): _.!_ w0d' +L sin2B cos 2cp 
� = 4 e-iwt _ 

[ w [  - w0 + ; sgn(w)i/r0 

(37.16') 
One measure of the detector's usefulness is its cross section for absorbing gravitational-wave energy. The steady-state vibrational energy in a detector with the above amplitude and with 2 masses M is 

(37.17) 

orientation 



(3)  cross sections for 
polarized radiation 

(4) cross sections for 
unpolarized radiation 

1 0 24 37 DETECTION OF GRAVITATIONAL WAVES This energy is being dissipated internally at a rate EVIbration/-r0 . If one ignores reradiation of energy as gravitational waves (a negligible process!), one can equate the dissipation rate to the rate at which the detector absorbs energy from the incoming waves-which in turn equals the "cross section" a times the incoming flux: 
Consequently, near resonance (lw + w0 1 � w0), the cross section for interception of gravitational-wave energy is 21r ML2( wa2 j,r 0) sin40 cos22<t> a = -----------(lw l - w0)2 + ( l /2r0)2 ' for polarized radiation. (37.18) 
This expression applies to monochromatic radiation. However, experience with many other kinds of waves has taught that one often has to deal with a broad continuum of frequencies, with the "bandwidth" of the incident radiation far greater than the width of the detector resonance (see Box 37.3). Under these conditions, the relevant quantity is not the cross section itself, but the "resonance integral" of the cross section, 

f a dv =  J a(dw/21r) = 21rML2w0
2 sin40 cos22<t>, 

resonance for polarized radiation. (37.19) 
Before examining the magnitude of this cross section, scrutinize its directionality (the "antenna-beam pattern"). The factor of sin40 cos22<t> refers to linearly polarized, e+ radiation (see Figure 37.4). For the orthogonal mode of polarization, ex , cos22</> is to be replaced by sin22<t> ; and for unpolarized (incoherent mixture) radiation or circularly polarized radiation, the cross section is the average of these two expressions; thus 1rML2(w0

2/r0) sin40 a = ( lw l - w0)2 + ( l /2r0)2 for unpolarized radiation. (37.20) 
Notice that this unpolarized cross section is peaked, with half-width 33 ° ,  about the equatorial plane of the detector. Averaged over all possible directions of incoming waves, the cross section is 

1 f'IT . 8 (a) all directions = 2 a sm 0 d0 = I5 a max 
0 (81r/15)ML2(w 2/r ) . . = I I 2 ; 2 ° )2 for unpolarized radiation. ( w - wo) + ( / ro 

(37.21) 
One can rewrite the above cross sections in several suggestive forms. For example, on resonance, the cross section (37.21) reads _ 41r 2 4M 2 (a)all directions - -- --- (woro)(2L) 15 21r/w0 
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Recall that w0T0 defines the "Q " of a detector, 1/Q (fraction of energy dissipated 
per radian of oscillation). Note that 27T / w0 is the wavelength A0 of resonant radiation. 
Finally, denote by rg = 4M the gravitational radius of the detector. In terms of these 
three familiar quantities, find for the cross section the formula 

(a) all chrecbons (cross section for absorbing waves on resonance) 
(2L)2 ("geometric" cross section of detector) 

for unpolarized radiation (37 .22) 
on resonance. 

This relation holds in order of magnitude for any resonant detector. It shows starkly 
that gravitational-wave astronomy must be a difficult enterprise. How large could 
you make the factor r/A0 , given a reasonable budget? Weber's 1970 detectors have 
2Leffective � I meter, rg � (0.74 X 10-28 cm/g) X (106 g) � 10-22 cm, v0 = w0/27T = 
1,660 Hz, Ao � 200 km, r/A0 � ½ X 10-29, 'To � 20 sec, Q � 2 X 105 ; so that 

aweber � 3 X 10-20 cm2 on resonance. (37.23) 

What flux of gravitational-wave energy would have to be incident to excite a cold 
detector ( ~0 ° K) into roughly steady-state vibrations with a vibration energy of 
(Boltzmann's constant) X (room temperature) ~ 4 X 10- 14 erg? The vibrator, if 
cooled enough to be wave-dominated, dissipates its energy at the rate Evibration/'T0 

~ 2 X 10- 15 erg/sec. The incident flux has to make up this loss, at the rate 

Tbiw>a ~ 2 X 10- 15 erg/sec, (37.24a) 

implying an incident flux of the order of 2 X 10- 15 /3 X 10-20 ~ 105 erg/cm2 sec. 
Moreover, this flux has to be concentrated in the narrow range of resonance 

v � v0 + I /47T'T0 = (1660 + 0.004) Hz. (37.24b) 

By anybody's standards, this is a very high flux of gravitational radiation for such 
a small bandwidth (~107 erg/cm2 sec Hz, as compared to the flux of blackbody 
gravitational radiation, 87Tv2kT/c2 = 3 X 10-27 erg/cm2 sec Hz, that would corre
spond to Planck equilibrium at the same temperature; the large factor of difference 
is a direct reflection of the difference in rate of damping of the oscillator by friction 
and by gravitational radiation). 

Equation (37.22) makes it seem that an optimal detector must have a large Q. 
This is not necessarily so. Recall that the bandwidth, .::lw � w0/ Q , over which the 
cross section is large, decreases with increasing Q. When an incoming steady flux 
of waves of bandwidth .::lw ► w0/Q = 1/T0 and of specific flux 

F,(erg/cm2 sec Hz) 

drives the detector, it deposits energy at the rate 

Magnitude of cross sections 
for any resonant detector 

Flux required to excite a 
Weber-type detector 

A large Q is not necessarily 
optimal 



Response of idealized 
detector to an arbitrary, 
non-monochromatic flux 

( 1 )  derivation 
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(rate of deposit) - dE _ f F d _ F( ) J  d - - a P - v v0 a P . 
of energy dt resonance 

v 

4 
resonance 

for radiation with ] bandwidth Llv ► 1 /r 0 

Consequently, the relevant measure of detector effectiveness will be the integral of 
the cross section over the resonance, fa dv (37.19). (See next section.) This frequency
integrated cross section is independent of the detector's Q , so one must use more 
sophisticated reasoning (e.g., signal-to-noise theory) in deciding whether a large Q 
is desirable. (See §37 .8). 

§37.6.  IDEALIZED, WAVE-DOMINATED DETECTOR, 
EXCITED BY ARBITRARY FLUX OF RADIATION 

Let plane-polarized waves of polarization e+ but arbitrary spectrum [equation (37.1) 
with Ax = OJ impinge on the idealized detector of Figure 37.4. Then the equation 
of motion for the detector is the same as for monochromatic waves [equation (37 .15)], 
but with -w 2(l +e-iwt replaced by A+ : 

(37.26) 

[By now one is fully accustomed to the fact that all analyses of detectors (when the 
detector is much smaller than the wavelength of the waves) are performed in the 
proper reference frame, with coordinates i, x, y, i. Henceforth, for ease of eyesight, 
abandon the "hats" on these ' 'proper coordinates, " and denote them as merely t, x, 
y, z.] 

Fourier-analyze the waves and the detector displacement, 

+ "' 
A+(t) = (2'7T)-1/2 J A+(w)e-iwt, 

- oo  

+ "' 

W) = (2'7T)-1/2 J [(w)e-iwt; 
- oo  

and conclude from equation (37 .26) that 

1 -
-w 2 A+L sin20 cos 2</> 

f = -2 ____ _ w 2 - w0
2 + iw/T0 

(37.27a) 

(37.27b) 

This Fourier amplitude is negligible unless lw + w0 1 � w0 ; consequently, without loss 
of accuracy, one can rewrite it as 
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I -
_ 4 w0A+L sin28 cos 2cp 
t = -----

l w l - w0 + � sgn(w)ij,r0 

[Compare with the steady-state amplitude (37.16').] 

1 02 7  

(37.28) 

Ask how much total energy is deposited in the detector by the gravitational waves. 
Do not seek an answer by examining the amplitude of the vibrations, Ht), directly; 
since that amplitude is governed by both internal damping and the driving force 

of the waves, it does not reflect directly the energy deposited. To get the total energy 
deposited, integrate over time the force acting on each mass multiplied by its velocity: 

(
total energy

) - J
+"" 2 (2_ MA 

.. 
L . 28 2 � i: d d . d - 2 + sm cos cp c; t. 

eposite ., -"" f �---�----' t 
[2 masses}---" [fi + h ] 4velocity of each mass] 

orce on eac mass 

Use Parseval's theorem (one of the most powerful tools of mathematical physics ! )  
to replace the time integral by a frequency integral 

( total energy) J
+ "" . - -

d . d = l\ (ML sm2B cos 2cp)( -w 2A/)( -iwt) dw. 
eposite - oo  

Then use equation (37.28) t o  rewrite this entirely in terms of the wave amplitude 

(total �nergy
) = J

+"" 
[ 2'TT(w0

2/'r0)ML2 sin4B cos22cp
] [

w2 1A+ l 2 ] dw. (3729 deposited _00 (lw l - w0)2 + (l/2-r0)2 16'TT 
) 

The first term in this expression is precisely the cross section for monochromatic 
waves, derived in the last section (37.18). The second term has an equally simple 

interpretation: the total energy that the gravitational waves carry past a unit surface 

area of detector is 

'!T(ergs/cm2) = J r<Gw> dt = J-1-A 2 dt 00 16'TT 
+ 

- J w
2 IA+ l2 - J w

2 IA+ l2 
- 16'TT 

dw - 8 dv 
(37.30) 

(Parseval's theorem again ! ). Consequently, the energy per unit frequency interval, 
per unit area carried by the waves is 

(37.31) 

[ for -oo < v < + oo;  double this for O < v < + oo, a convention we use for the 

rest of this chapter]. This is 2'TT times the second term in (37 .29). 
Combining equations (37.18), (37.29), and (37.31), then, one finds 

(total energy) = J ( )a- d . a v � (v) v. deposited v (37.32) 

(2)  answer-

(energ� ) = f a'!f" dv 
deposited 



H ow one can measure 
energy deposited 
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This is the total energy deposited, regardless of the spectrum of the waves, and regardless 
of whether they come in a steady flux for a long time, or in a short burst, or in 
any other form. It is perfectly general-so long as the detector is wave-dominated 
(Evibration ► kT) while the waves are driving it. 

How can an experimenter measure the total energy deposited? He cannot measure 

it directly, in general, but he can measure a quantity equal to it: the total energy 
that goes into internal damping, i.e., into "friction." Energy is removed by "friction" 
at a rate F,viuration/-rO , when the vihrati on energy is much greater than kT (during 
period of wave-dominance). Therefore, the experimenter can measure 

( total �nergy) = 1-J Evibrat10n dt, in general. (37.33) 
deposited -r0 

4integrate over the period that EVIbration ► kT] 

In the special case of "hammer-blow waves" (raw = duration of waves � -r0) , the 

vibration energy is driven "instantaneously" from ~kT to a peak value, E�'l;'r�tion 
► kT, and then decays exponentially back to ~kT; thus 

(total energy) = 1-J
"' 

Epeak . e-t/ To dt = Epeak . 
deposited 'TO O 

VIbration VIbration 

for hammer-blow waves. 

(37.34) 

When the waves are steady for a long period of time (-raw ► -r0) , with specific 
flux 

(ergs/cm2 sec Hz), 

then the energy will be deposited at a constant rate 

(dE/dt) = (total energy deposited)haw; 

and equation (37.32) can be rewritten 

(rate of deposit) = J a(v)F dv, 
of energy " for steady waves (-raw ►  -r0) .  (37.35) 

Equations (37.32) and (37.35) are the key equations for application of the concept 

of cross section to realistic situations. They are applicable not only to polarized 
radiation, but also to unpolarized radiation and to radiation corning in from all 
directions, if one merely makes sure to use the appropriate cross section [equation 

(37.20) or (37.21) instead of(37.18)]. For examples of their application, see Box 37.3. 

§37.7 . GENERAL WAVE-DOMINATED DETECTOR, 
EXCITED BY ARBITRARY FLUX OF RADIATION 

The cross sections of the idealized spring-plus-mass detector can be put into a form 
more elegant than equations (37 .18) to (37.21)-a form that makes contact with many 
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branches of physics, and i s  valid for any vibrating resonant detector whatsoever. 
Introduce the "Einstein A-coefficients," which describe the rate at which a unit 

amount of detector energy is lost to internal damping and to reradiation of gravita
tional waves : 

= ( rate at which energy is dissipated internally ) = 
� 

Arnss - energy in oscillations of detector -r0 ' 

= ( rate at which energy is reradiated ) Aaw - energy in oscillations 
· 

(37 .36a) 

(37 .36b) 

For the idealized detector of Figure 37 .4 ,  the standard formula (36 . 1 )  for the emission 
of gravitational waves yields 

(see exercise 37.8) .  Consequently 

A - 16  MLz 4 GW - 15 W . 

(37 .37) 

(37 .38) 

One can use these relations to rewrite the detector cross sections in terms of Adiss ' 
Aaw, and the reduced wavelength 

,,t 1 /w (37 .39) 

of the radiation. For example, the cross section (37 .2 1 )-now with w 2 0-is 

for unpolarized 
radiation 

(37 .40) 

(recall the assumption l w - w0 1 � w0 in all cross-section formulas) and the corre
sponding integral over the resonance is 

f (a)all directions dv = ½'7TtlAaw for polarized radiation. (37 .4 1 )  

These expressions for the cross section are comprehensive in their application. They 
apply to any vibrating, resonant, gravitational-wave detector whatsoever, as one sees 
from the "detailed balance" calculation of exercise 37 .9 ,  and from the dynamic 
calculations of exercise 37 . 10 .  They also apply, with obvious changes in statistical 
factors and notation, to compound-nucleus reactions in nuclear physics ("Breit-Wig
ner formula" ; see Blatt and Weisskopf, pp. 392-94, 408- 10 ,  555-59), to the absorption 
of photons by atoms and molecules, to reception of electromagnetic waves by a 
television antenna, etc. Equation (37 .4 1 )  says in effect, "Calculate the rate at which 
the oscillator is damped by emission of gravitational radiation; multiply that rate 
by the geometric factor familiar in all work with antennas, -½'7Tti, and immediately 
obtain the resonance integral of the cross section. The result is expressed in geometric 

Cross sections reexpressed in 
terms of " Einstein 
A-coefficients" 

G enerality of the A-coefficient 
formalism 



Scatter i ng  of rad iat i on  by 
detecto r 
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units ( cm) . To get the resonance integral in conventional units, multiply by the 
conversion factor c = 3 X 10 10 cm Hz. 

The 'dynamic analysis' of the idealized masses-on-spring detector, as developed 
in the last section, is readily extended to a vibrating detector of arbitrary shape 
(Earth; Weber's bar; an automobile fender; and so on) . The extension is carried 
out in exercise 37 . 1 0  and its main results are summarized in Box 37 .4 . 

Part of the energy that goes into a detector is reradiated as scattered gravitational 
radiation. For any detector of laboratory dimensions with laboratory damping 
coefficients, this fraction is fantastically small. However, in principle one can envisage 
a larger system and conditions where the reradiation is not at all negligible . In such 
an instance one is dealing with scattering. No attempt is made here to analyze such 
scattering processes. For a simple order-of-magnitude treatment, one can use the same 
type of Breit-Wigner scattering formula that one employs to calculate the scattering 
of neutrons at a nuclear resonance or photons at an optical resonance. A still more 
detailed account will analyze the correlation between the polarization of the scattered 
radiation and the polarization of the incident radiation. The kind of formalism useful 
here for gravitational radiation with its tensor character will be very much like that 
now used to treat polarization of radiation with a spin- I character . Here notice 
especially the "Madison Convention" [Barschall and Haeberli ( 197 1 )] developed by 
the collaborative efforts of many workers after experience during many years with 
a variety of conflicting notations. Considering the way in which the best notation 
that is available today for spin- I radiation was evolved, one can only feel that it 
is too early to canonize any one notation for describing the scattering parameters 
for an object that is scattering gravitational radiation. 

Exercise 37.8. POWER RERADIATED 
The idealized gravitational wave detector of Figure 37.4 vibrates with angular frequency 
w. Show that the power it radiates as gravitational waves is given by equation (37.37). 

Exercise 37.9. CROSS SECTIONS CALCULATED 
BY DETAILED BALANCE 

Use the principle of detailed balance to derive the cross sections (37.41) for a vibrating, 
resonant detector of any size, shape, or mass ( e.g., for the vibrating Earth, or Weber's vibrating 
cylinder, or the idealized detector of Figure 37.4). [Hints: Let the detector be in thermal 
equilibrium with a bath of blackbody gravitational waves. Then it must be losing energy 
by reradiation as rapidly as it is absorbing it from the waves. (Internal damping can be ignored 
because, in true thermal equilibrium, energy loss by internal damping will match energy 
gain from random internal Brownian forces.) In detail, the balance of energy in and out 
reads [with I, = "specific intensity," equation (22.48)] 

[4?TlvCv = Po)Jblackbody X J (a)alld1rections dv 

= AGw X (Energy in normal mode of detector). 

Solve for J ( a) dv, using the familiar form of the Planck spectrum and the fact that gravita
tional waves have two independent states of polarization.] Note: Because detailed balance 
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Box 37.4 VIBRATING, RESONANT DETECTOR OF ARBITRARY SHAPE 

A. Phys ica l  Characteristics of Detector 

1 03 1  

1 .  Detector is a solid object (Earth, Weber bar, automobile fender, . . .  ) with 
density distribution p (x) and total mass M = f p d3x. 

2. Detector has normal modes of vibration. The nth normal mode is character
ized by : 

wn = angular frequency; 

_ ( e-folding time for vibration energy ) ► l /  . -rn - to decay as result of internal damping � wn , ( 1 )  

un (x) = eigenfunction (defined here to  be  dimensionless and real). 

The eigenfunctions un are orthonormalized, so that 

(2) 

3. During a normal-mode vibration with £vibration ► kT, a mass element origi
nally at x receives the displacement 

ox= � = un (x)qj3ne-iw.t - th., 

4constant amplitude] 

the density at fixed x changes by 

and the moment of inertia tensor oscillates 

Here I<n)jk is the "moment of inertia factor for the nth normal mode": 

J, - I ( 1) j k d3 (n)jk = - pun , lx X X 

[dimensions : mass X length, multiply by qBn (length) to get I;k ]. 

(3a) 

(3b) 

(3c) 

(4) 

The corresponding "reduced quadrupole factor for the nth normal mode" is 

(5) 
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Box 37 .4 (con tinued) 

B. Cross Sect ions for Detector (exercise 37 .10) 

1 .  For polarized radiation with propagation direction n and polarization ten
sor e :  

hik = A(t - n · x)eik ' 
(6) 

(7a) 

(7b) 

2. For unpolarized radiation (random mixture of polarizations) with propaga
tion direction n, cross sections are 

(8a) 

(8b) 

Here f'/:£k is the transverse-traceless part of f<nlik (transverse and traceless 
relative to the propagation direction n) : 

(9) 

(See Box 35 . 1 )  
3 .  Cross sections for  unpolarized radiation, averaged over all directions, are 

where the Einstein A coefficients are 

AdJss = 1 /rn , 

A 
I (f(n)jk )2 

4 
GW = 

5 M 
wn . 

( 10a) 

( 10b) 

( 1 1 )  

( 12) 
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C. Spectrum Rad iated by an Aperiod ic Source (exercise 37 .11) 

It is instructive to compare these formulas with expressions for the radiation 
emitted by an aperiodic source. 
1. Fourier-analyze the reduced quadrupole factor of the source 

+ oo  
fik(t) = (2-n-)-112 J fik(w)e-iwt dw. 

- 00  

2. Then the total energy per unit frequency (v 2 0) radiated over all time, into 
a unit solid angle about the direction n, and with polarization tensor e, is 

dE 
dv dil 

[compare with equations (7)]. Summed over polarizations, this is 

dE - 1 "' If TT l 2 6 
dv dil - 2 L-;: ik w 

J ,  

[compare with equations (8)]. Here v 2 0. 

(13a) 

(13b) 

3. The total energy radiated per unit frequency, integrated over all directions, 
still with v 2 0, is 

[compare with equations (10)-( 12)]. 

can be applied to any kind of resonant system in interaction with any kind of thermal bath 
of radiation or particles, equations (37 .40) and (37 .41 ), with appropriate changes of statistical 
factors, have wide generality. 
Exercise 37.10. NORMAL-MODE ANALYSIS OF VIBRATING, 

RESONANT DETECTORS 
Derive all the results for vibrating, resonant detectors quoted in Box 37 .4 .  Pattern the 
derivation after the treatment of the idealized detector in §37 .6 .  [Guidelines · (a) Let the 
detector be driven by the polarized waves of equation (6) ,  Box 37 .4 ;  and let it be wave-dom
inated (£vibration }> kT) .  Show that the displacements ox = t(x, t )  of its mass elements are 
described by 

(37 .42a) 
n 

(14) 
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where the time-dependent amplitude for the nth mode satisfies the driven-oscillator equation 

and where the curvature-induced driving term is 

(See Box 37 .4 for notation.) 

Rn (t ) = -R;okb J (p/M)unixk d3x 

1 .. = 4 A(f<n>ikeik)/M. 

(b) Fourier-analyze the amplitudes of the detector and waves, 

+ "' 

A(t) = (2'1T)-112 .[,, 
A(w)e-iwt dw, 

(37.42b) 

(37.42c) 

(37.42d) 

(37.42e) 

and solve the equation of motion (37.42b,c) to obtain, in the neighborhood of resonance, 

(c) Calculate the total energy deposited in the detector by integrating 

Thereby obtain 

(e

d

nerg� 
d

) = J (Force per unit volume) · (Velocity) d3x dt .  epos1te 

(energy deposited in) = ..!_ (l . e . ) J AB dt . 
nth normal mode 4 <n)Jk Jk n 

( d) Apply Parseval's theorem and combine with expression (37.42f ) to obtain 

(energy deposited in) = J a (v):r (v) dv, 
nth normal mode n v 

where an is given by equation (7 a) of Box 37.4, and (for -oo < w < + oo )  

(37.42f ) 

(37.43) 

(37.44) 

(e) Show that §",(v) is the total energy per unit area per unit frequency earned by the 

waves past the detector .  
(f ) Obtain all the remaining cross sections quoted in Box 37 .4 by appropriate mampula

tions of this cross section.  Use the mathematical tools for projecting out and integrating 
"transverse-traceless parts ," which were developed in Box 35.1 and exercise 36.9. 

Exercise 37.11. SPECTRUM OF ENERGY RADIATED BY A SOURCE 
Derive the resul ts quoted in the last section of Box 37 .4. 
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Exercise 37.12.  PATTERNS OF EMISSION AND ABSORPTION 

1 03 5  

The elementary dumbbell oscillator of Figure 37.4, initially unexcited, has a cross section 
for absorption of unpolarized gravitational radiation proportional to sin48, and when excited 
radiates with an intensity also proportional to sin40 (Chapter 36). The patterns of emission 
and absorption are identical. Any other dumbbell oscillator gives the same pattern, apart 
from a possible difference of orientation. Consider a nonrotating oscillator of general shape 
undergoing free vibrations in a single nondegenerate (and therefore nonrotatory) mode, or 
excited from outside by unpolarized radiation. 

( a) Show that its pattern of emission is identical with its pattern of absorption. [ Hint: Make 
the comparisons suggested in the last few parts of Box 37.4.] 

(b) Show that this emission pattern ( absorption pattern), apart from three Euler angles 
that describe the orientation of this pattern in space, and apart from a fourth parameter 
that determines total intensity, is uniquely fixed by a single ("fifth") parameter. 

( c) Construct diagrams for the pattern of intensity for the two extreme values of this 
parameter and for a natural choice of parameter intermediate between these two extremes . 

( d) Define the parameter in question in terms of a certain dimensionless combination of 
the principal moments of the reduced quadrupole tensor. 

Exercise 37.13. MULTIMODE DETECTOR 
Consider a cylindrical bar of length very long compared to its diameter. Designate the 
fundamental mode of end-to-end vibration of the bar as "n = l ," and call the mode with 
n - 1 nodes in its eigenfunction the "nth mode." Show that the cross section for the inter
ception of unpolarized gravitational waves at the nth resonance, integrated over that reso
nance, and averaged over direction, is given by the formula [Ruffini and Wheeler (197 lb)] 

resonance ,  
random 

32 v 2 M a(v)dv = -15 22 for n odd (zero for even n), 
7T C n (37.45) 

where v is the speed of sound in the bar expressed in the same units as the speed of light, 
c; and M is the mass of the bar (geometric units; multiply the righthand side by the factor 
G/c = 2.22 X 10-13 cm2 Hz/g when employing conventional units). Show that this expression 
gives fa dv = 1.0 x 10-21  cm2 Hz for the lowest mode of Weber's bar . Multimode detectors 
are (1973) under construction by William Fairbank and William Hamilton, and by David 
Douglass and John A. Tyson. 

Exercise 37.14 .  CROSS SECTION OF IDEALIZED MODEL OF EARTH FOR 
ABSORPTION OF GRAVITATIONAL RADIATION 

The observed period of quadrupole vibration of the earth is 54 minutes [see, e.g., Bolt (1964) 
or Press (1965) for survey and bibliography] . To analyze that mode of vibration, with all 
due allowance for elasticity and the variation of density in the earth, is a maJor enterprise . 
Therefore, for a first estimate of the cross section of the earth for the absorption of quadrupole 
radiation, treat it as a globe of fluid of uniform density held in the shape of a sphere by 
gravitational forces alone (zero rigidity). Let the surface be displaced from r = a to 

r = a + aaPicos 8 ) ,  (37.46a) 

where 8 is polar angle measured from the North Pole and a is the fractional elongation 
of the principal axis. The motion of lowest energy compatible with this change of shape 
is described by the velocity field 

1 �• = -
2

ax, e = az (37.46b) 

(zero divergence, zero curl). 
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(a) Show that the sum of the kinetic energy and the gravitational potential energy is 

E = -(3/5)(M2/a)( l  - a 2/5) + (3/20)Ma 2a 2 . 

(b) Show that the angular frequency of the free quadrupole vibration is 

w = (16w /15) 112p 112 . 

( c) Show that the reduced quadrupole moments are 

(37.46c) 

(37.46d) 

(37.46e) 

( d) Show that the rate of emission of vibrational energy, averaged over a period, is 

(37.46f) 

( e) Show that the exponential rate of decay of energy by reason of gravitational wave 
dampmg, or "gravitational radiation line broadening," is 

Aaw = (4/25)Ma2w 4. (37.46g) 

(f) Show that the resonance integral of the absorption cross section for radiation incident 
from random directions with random polarization is 

J (a(v)) dv = (w/2)A"2Aaw = (2w/25)Ma2/,t2 . (37.46h) 
resonance 

(g) Evaluate this resonance integral . Note: This model of a globe of fluid of uniform 
density would imply for the earth, with average density 5.517 g /cm3, a quadrupole vibration 
period of 94 min, as compared to the observed 54 min; and a moment of inertia (2/5)Ma 2 

as compared to the observed 0.33Ma2 • Ruffini and Wheeler (1971 b) have estimated correction 
factors for both effects and give for the final resonance integral ~5 cm2 Hz. 

§37.8. NOISY DETECTORS 

When the bandwidth of the incoming waves is large compared to the resonance 
width of the detector, the waves deposit a total energy in the detector given by 

(total energy deposited) = J a'!fv dv = '!f/11 = 110) J a dv.  

(ergsµ" (erg cm-2Hz-1µ' [cm2Hzt1 

At least, this is so if the detector is wave-dominated (i.e., if Evibration ► kT while 
waves act; i.e., if initial amplitude of oscillation, produced by Brownian forces, is 
too small to interfere constructively or destructively with the amplitude due to waves). 

Unfortunately, all experiments today (1973) are faced with noisy detectors. Nobody 
has yet found waves so strong, or constructed a detector so sensitive, that the detector 
is wave-dominated. Consequently, a key experimental task today is to pick a small 
signal out of large noise. Many techniques for doing this have been developed and 
used in a variety of fields of physics, as well as in astronomy, psychology and 
engineering (see, e.g., Davenport and Root (1958), Blackman and Tukey (1959), and 
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-- T n --------

F igure 37.5. 
Detection of hammer-blow gravitational waves with a noisy detector. Detection of 
even a weak pulse is possible if the time of the pulse is short enough. The amplitude 
q)n of the detector's vibrations changes by an amount ~qj�ms (Llt/r n)112 during a 
time interval Lit, due to thermal fluctuations (random-walk, Brownian-noise forces) . 
Depicted in the inset is a change in amplitude produced by a burst of waves of 
duration raw arriving out of phase with the detector's thermal motions (energy 
extracted by waves ! ) .  The waves are detectable because 

Ll lq)n l due to waves ;l> qi�ms (rawlrn)11 2 , 

even though Ll lqJn l /4'; qi�ms _ 
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references given there]. The key point is always to find some feature of the signal 
that is statistically more prominent than the same feature of the noise, plus a 
correlation to show that it arises from the expected signal source and not from 
elsewhere ("protection from systematic error"). Thus to detect steady gravitational 
waves from a pulsar, one might seek to define very precisely two numbers (N2) 
and ((N + S)2 ) = (N2 ) + ( S 2 ) , where N and S are the noise and signal amplitudes 
respectively. A long series of observations (with the pulsar out of the antenna beam) 
gives one value of (N2). Another equally long series of observations, interspersed 
with the first series, will be expected in zeroth approximation to give the same value 
of (N2 ) .  In the next approximation one recognizes and calculates the influence of 
normal statistical fluctuations. In an illustrative example, theory, confirmed by 
statistical tests of other parameters drawn from the same data, guarantees that the 
fluctuations are less than 10-5(N2) with 95 per cent confidence (only 5 per cent 
chance of exceeding I0-5(N2 ) ;  this limit is set by time and money, not by absolute 
limitations of physics). Let the second series of observations be carried out only at 
times when the pulsar is in the antenna beam. Let it give 

{ (N2 ) + ( S 2) } 2d series = (1 + 7.3 X 10-5
) { (N2 ) } 1st series· 

Then in first approximation one can say that ( S 2) lies with 95 per cent confidence 
in the limits (7.3 + 1.0) X 10-5(N2 ) .  

Many conceivable sources of gravitational radiation produce bursts rather than 
a steady signal strength (Figure 37.5 ). Thus one is led to ask in what features 
"hammer-blow radiation" (Taw <{ T0) differs from noise. The "Brownian motion" 
noise in the detector may be thought of as arising from large numbers of small 

Rate-of-change of detector 
amplitude as a tool for 
extracting burst signals from 
thermal noise 
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(molecular) energy exchanges with a heat bath. The calculations below estimate the 
typical rate of change of amplitude that a series of such molecular "knocks" can 
produce in a detector, and compare it with the rapid amplitude change produced 
by a "hammer-blow" pulse of radiation. The calculations show that sudden thermally 
induced changes, even of very small amplitude, are rare. Thus sudden changes are 
a suitable feature for the observations to focus on. The actual detection of pulses 
requires a more extended analysis, however, which goes beyond the estimates made 
below. Such an analysis would calculate the probabilities that rare events (sudden 
changes in amplitude) occur by chance (i.e., due to thermal fluctuations) in specified 
periods of time, the still smaller probabilities that they occur in coincidence between 
two or more detectors, and the correlations with postulated sources. 

Consider a realistic detector of the type described in Box 37.4. But examine it 
at a time when it is not radiation-dominated. Then its motions are being driven 
by internal Brownian forces (thermal fluctuations), and perhaps also by an occasional 
burst of gravitational waves. Focus attention on a particular normal mode (mode 
"n"),  and describe that mode's contribution to the vibration of the detector by the 
vector field 

(37.47) 

Since un is dimensionless with mean value unity (f pu/ d3x = M), the complex 
number !'Bn(t) is the mass-weighted average of the amplitudes of motion of the 
detector's mass elements. This amplitude changes slowly with time (rate � wn) as 
a result of driving by Brownian forces; but averaged over time it has a magnitude 
corresponding to a vibration energy of kT: 

(37.48) 

i .e . , 

(37.49) 

Example: for Weber's detector (M ~ 103 kg, w0 ~ 104/sec), the fundamental mode 
at room temperature has 

rms _ (
2 X 1.38 X 10- 16 X 300 erg

)
1/ 2 _ _ 14 !'B o - 106 108 _2 - 3 X 10 cm. g X sec 

(37.50) 

One's hope for detecting weak hammer-blow radiation lies not in an examination 
of the detector's vibration amplitude ( or energy), but in an examination of its rate 
of change (Figure 37 .5). The time-scale for large Brownian fluctuations in amplitude 
( ILl!'Bn l ~ q,:-,ms), when the detector is noisy, is the same as the time scale ,,-n for internal 
forces to damp the detector, when it is driven to Evibration � kT. Thus, the amplitude 
!'En does a "random walk" under the influence of Brownian forces, with the mean time 
for "large walks" ( ILl!'Bn l ~ q,:-,ms) being Lit :::::: ,,.n - The change in !'En over shorter times 
Lit is smaller by the "1/ yN factor," which always enters into random-walk processes : 



§3 7 8 NOISY DETECTORS 

\IN = ( number of vibration cycles in time 'Tn }
112 

= (�}
112 _ N number of vibration cycles in time Llt Llt ' 

( ILlqE�thermal) I );:::: qz,ims (�)
112 = ( 2k� )

112 
(�)

l/2 �uring . 
'Tn Mwn 'Tn lime Llt 
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(37.51) 

(37.52)* 

Now suppose that "hammer-blow" radiation (burst of duration Llt = 'Taw � 'Tn) Effect of a burst of waves on 
strikes the detector, producing a change LlqE�Gw) in the detector's amplitude. This a noisy, resonant detector 

change in amplitude, because it comes so quickly, (1) superposes linearly on any 
change in amplitude produced in the same time interval by the action of Brownian-
motion forces; and (2) is therefore independent in value of the presence or absence 
of Brownian-motion forces, i.e., independent of all thermal agitation. Therefore 
Llqj,�Gw> (a quantity with both magnitude and phase ! )  is identical to what it would 
have been if the detector were at zero temperature: 

i.e., 

energy that would 
be deposited if 
detector were at 
zero temperature 

For hammer-blow radiation, bandwidth of 
radiation is always ► bandwidth of detector; 
see Box 37.4 

(37.53) 

This wave-induced change in amplitude will be distinguishable from thermal changes 
only if it is significantly bigger than the thermal changes (37.52) expected during 
the same length of time 'T aw: 

I Llqj,�GW) I ► ( I Llqj,�hermal) I ) during time 'T aw 

I 
criteria for 

equivalently: F/wn/2w) ► ( 
kT 

) (
'T
;: } detectability f an dv 

(37.54) 

Of course, if one is equipped only to measure the magnitude of the detector's 
amplitude or energy, and not its phase, these criteria for detectability are not quite 
sufficient. The wave-induced change in squared amplitude (proportional to change 
in energy) will depend on the relative phases of the initial amplitude and amplitude 
change 

* For a fuller derivation and discussion of this formula, see, e .g , Braginsky ( 1 970). Two key points 
covered there are : ( I )  a statistical version of the formula, which describes the probability that in time 
Lit the amplitude will change by a given amount, from a given initial value ;  and (2) quantum-mechanical 
corrections, which come into play in the limit as Tn -+ oo ,  but which are unimportant for detectors 
of the early 1970's 

Criteria for detectability of 
burst 
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.J iqj,n 1 2 = lq,�nitial) + .Jq,B�GW) l 2 _ lq,�nitial) l 2 
:::::; 21q,�nitial) I IL1qj,�GW) I if in phase 
:::::; 0 if phase difference is +'IT /2 

if phase difference is 'IT. 

(37.55) 

Thus, only a burst that arrives in phase with the initial motion of the detector or 
with reversed phase will be measurable. But for such a burst, the criteria (37.54) 
are sufficient. 

Equations (37.54) make it clear that there are three ways to improve the sensitivity 
of vibratory detectors to hammer-blow radiation: (1 ) increase the detector 's integrated 
cross-section (which can be done only by increasing the rate Aaw at which it reradiates 
gravitational waves; see equations (]Ob) and (J ib) of Box 37.4]; (2) cool the detector; 
(3 ) increase the detector 's damping time. 

Box 37 .5 applies the above detectability criteria to some detectors that seem 
feasible in the 1970's, and to some bursts of waves predicted by theory. The conclu
sions of that comparison give one hope! 

To be complete, the above discussion should have analyzed not only noise in the 
detector, but also the noise in the sensor which one uses to measure the amplitude 
of the detector's displacements. However, the theory of displacement sensors is 
beyond the scope of this book. For a brief discussion and for references, see Press 
and Thorne (1972). 

§3 7.9. NON-MECHANICAL DETECTORS 

When gravitational waves flow through matter, they excite it into motion. Such 
excitations are the basis for all detectors described thus far. But gravitational waves 
interact not only with matter; they also interact with electromagnetic fields; and 
those interactions can also be exploited in detectors. One of the most promising 
detectors that may be built in the future, one designed by Braginsky and Menskii 
(1971), relies on a resonant interaction between gravitational waves and electro
magnetic waves. It is described in Box 37 .6. 

§37.10 . LOOKING TOWARD THE FUTURE 

The future of As this book is being written, it is not at all clear whether the experimental results 
gravitational-wave astronomy of Joseph Weber constitute a genuine detection of gravitational waves. (See §37.4, 

part 4.) But whether they do or not, gravitational-wave astronomy has begun, and 
seems to have a bright future. The technology of 1973 appears sufficient for the 
construction of detectors that will register waves from a star that collapses to form 
a black hole anywhere in our galaxy (Box 37.5); and detectors of the late 1970's 
and early 1980's may well register waves from pulsars and from supernovae in other 
galaxies. The technical difficulties to be surmounted in constructing such detectors 
are enormous. But physicists are ingenious; and with the impetus provided by Joseph 
Weber's pioneering work, and with the support of a broad lay public sincerely 
interested in pioneering in science, all obstacles will surely be overcome. 
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Box 3 7 . 5  D ETECTABI L ITY O F  HAM M E R- B LOW WAVES 
FROM ASTROPHYSICAL SOURCES : TWO EXAMPLES 
(The fol lowin g  ca lcu lations are accurate on ly  to 
within an order of magnitude or so) 
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A. Waves from a Star of Ten Solar  Masses Col laps ing to Form 
a B lack Hole; 1972 Detector with 1975 (?) Sensor 

1 . Predicted characteristics of radiation: 

(intensity at Earth) = f'f ~ 
Mo 

" 4'77( distance )2v 
~(2 X 105 ergs/cm2 Hz) [(distance to center of galaxy)/(distance)]2 , 

(frequency of waves) = v ~ 103 Hz, 

(bandwidth of waves) = .::lv ~ 103 Hz, 

(duration of burst) = -rGw ~ 10-3 sec to 10- 1 sec. 

2. Detector properties :  A Weber bar, vibrating in its fundamental mode, with 

M = 106 g, J a dv = 10-21 cm2 Hz (exercise 37. 13), 

v0 = w0/2'1T = 1 ,660 Hz, T = 3 K (liquid Helium temperature), 

-r O = 20 seconds, 

rms - (2 X 1 .37 X 10-16 X 3 erg )
l/2 

- -15 qB o -
1 06 108 _2 - 3 X 10 cm, g X sec 

i .::lqB�hermal) I = (3 X 10-15 cm)(l Q-3/20)1/2 = 2 X 10-17 cm, 
during .::lt = 10-3 sec, 

i .1qB�hermal) I = 2 X 10-16 cm, during .1t = 0. 1 sec. 

3. Effect of waves [equation (37.53)] :  

i JqB(Gw>I = (2 X 2 X 105 X 10-21 ergs )
112 ( cente� o f  Galaxy) 

0 106 x 108 sec-2 distance 

distance to 
) = 2 X 10_15 cm 

I cente� of Galaxy 
. 

\ distance 

4. Conclusion : Gravitational waves from a massive star collapsing to form a 
black hole anywhere in our galaxy are readily detectable, if one can construct 
a "sensor" to measure changes in vibration amplitudes of magnitude 
� 10-15 cm on time scales < 0. l seconds. This does appear to be feasible 
with 1972 technology; see Press and Thorne (1972). 



Box 37 .5 (continued) 

B .  Waves from a Supernova Explosion i n  the V i rgo Cl uster of 
Ga laxies; a Detector that might  be constructable by late 1970 's 
or early 1980's  

1 . Predicted characteristics of  radiation: 

. . 0.03M0 (mtens1ty at Earth) = Fv ~ 
4 (1 l )2 'TT megaparsecs v 

~ 4 X 10-J ergs/ cm� Hz, 

(frequency of waves) = v ~ 103 Hz, 

(bandwidth of waves) ~ v ~ 103 Hz, 

(duration of burst) = raw ~ 0.3 sec, or raw ~ 2 X 10-3 sec. * 

2. Detector: A Weber-type bar made not of metal, but of a 1 ,000-kg monocrys
tal of quartz, cooled to a temperature of 3 x 10-3 K. (For such a monocrys
tal, it is thought that the damping time would increase in inverse proportion 
to temperature, r0 a: 1 / T.) Estimated properties of such a detector : 

M ~ 106 g, J a dv = 10-21 cm2 Hz (same as for Weber bar), 

110 = w0/2'TT ~ 1 ,500 Hz, 

r0 ~ 106 sec, 

T= 3 X 10-3 K, 

!;Brms = (2 X 1 .37 X 10-16 X 3 X 10-3 erg )112 = 1 X 10-16 cm, 0 106 g x 108 sec-2 

I Ll!;B�hermal) I = (1 X 10-16 cm) ( 0.3 or 2 ; 10-3 
r/2 = or 

' 
{ 

6 X 10-20 cm 

10 5 X 10-21 cm. 

3. Effect of waves (equation (37 .53)] : 

I Ll/.Z) <Gw) I = (2 X 4 X 10-3 X 10-21 ergs )112 
= 3 10-19 �v o 106 X 108 sec2 X cm. 

4. Conclusion : Gravitational waves are detectable from a supernova in the 
Virgo cluster, if one can construct a sensor to measure changes in vibration 
amplitudes of magnitude � 10-19 cm on time scales of � 0 . 1  seconds ; and 
if one can construct a detector with the above characteristics . 

* For the duration of waves from a supernova explosion, two time scales appear to be relevant· ( I )  the 
time required for the final stages of the collapse of the white-dwarf core to a neutron star or a neutron-star 
pancake, T ~ (dimensions of neutron star)/(speed of sound in nuclear matter) ~ 2 X 1 0-3 sec ("pulse 
of gravitational radiation") ,  and (2) the time required for a vibrating neutron star to lose Its energy 
of vibration by gravitational radiation ("damped train of waves") ,  T ~ 0 3 sec 
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Box 37.6 A NONMECHANICAL DETECTOR OF GRAVITATIONAL WAVES 
[Braginsky and  Menskii (1971)] 

The I dea i n  Br ief 
(see diagram at right) 

A toroidal waveguide contains a monochromatic 
train of electromagnetic waves, traveling around 
and around it. Gravitational waves propagate per
pendicular to the plane of the torus. If the circuit 
time for the EM waves is twice the period of the 
gravitational waves, then one circularly polarized 
component of the gravitational waves will stay 
always in phase with the traveling EM waves. 
Result : a resonance develops. In one region of the 
EM wave train, gravitational tidal forces always 
"push" the waves forward (blue shift! ) in another 
region the tidal forces "push" backward (red 
shift! ). An EM frequency difference builds up 
linearly with time ; a phase difference builds up 
quadratically. 

Outl i n e  of Quant itative An alysis 

I .  Let waveguide fall freely in an Earth orbit. 
Orient axes of waveguide's proper reference 
frame ( local Lorentz frame) so (I)  wave
guide lies in i, f-plane, and (2) gravitational 
waves propagate in i direction. 

2. Let gravitational waves have amplitudes 

A+ - iAx = ae-iw<t - z> (I)  

[Recall : i;::; t ,  i ;::;  z; i.e. , proper frame and TT 
coordinates almost agree.] Then in plane of 
waveguide (z = 0), 

R·�·� = R . . . .  = __!__ w 2{l sin (wt) xvyv yOxO 2 

(2) 

3. Consider two neighboring parts of the 
EM wave, one at cp = a + ½wt; the other at 
cp = a + oa + ½wt. Treat them as photons. 
Each moves along a null geodesic, except for 

w = (angular frequency of gravitational waves) = (rate 
of change of phase of waves with time) = (two times 
angular velocity with which pattern of " lines of force" 
rotates) 

r = (radius of torus) ,  is adjusted so the speed of propa
gation of EM waves in waveguide is v = ½wr 

• wt =  'Tl/2 
A (redshift) 

B (blueshift) 

[EM waves propagate counterclockwise; gravitational 
line-of-force diagram rotates counterclockwise ;  they 
stay in phase. ]  
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Box 37 . 6 (continued) 

the deflective guidance of the wave guide. Thus, 
their wave vectors k satisfy 

V k = (deflective "acceleration") . 
k f · ct ' o wavegm e (3) 

and the difference ok = Vnk between the wave 
vectors of the two parts of the wave ( difference 
measured via parallel transport) satisfies the 
equation 

Vk�k = VkVn k = [Vk , Vn Jk + Vn Vk k (4) 
= Riemann ( . . .  ' k, k, n) + vn Vkk 

[deflective acceleration of wave guidel-1' 

The waveguide influences the direction of 
propagation of the waves, but not their fre
quency. Thus only Riemann enters into the 0 
component of the above equation: 

(5) 

4. Let k0 = we be the angular frequency of the 
electromagnetic wave•. The direction of the 
space component k of the propagation 4-vector 
is along the purely spatial vector n ;  so 

k0 - w - e> k = (uwe/roa)n, n ° = 0. (6) 
Use these relations to rewrite equation (5) as 

(d owe/ dt)movmgwith photons 
= (uwe/roa)R0

'ioin'in1. (7) 
5. Combine the expression for n in the spacetime 

diagram with equations (2) and (7), and with 
the world line </> = a + ½wt for the photons, to 
obtain 

( d OW el dt)moving with photons 
1 = - 2 uwew 2{lr (cos 2a) oa. (8) 

6. Integrate over time and over a to obtain 

we = weo [ l - ! {lu (sin 2a)(wr)(wt)] . (9) 

3 7 .  DETECTION OF GRAVITAT IONAL WAVES 

Spacetime 
diagram 

j 

; 
r 

n = (vector connecting) photons 

= r 8a ( - sin ,j, ez + cos ,j, ey) 



PART IX  

EXP E R I M E NTAL TESTS 

O F  G E N E RAL R E LATIV ITY 

Wherein the reader is tempted by a harem of charming 
gravitation theories (and some not so charming) , is saved from 

his foolish passions by an army of experiments, cleaves unto his 
faithful spouse, Geometrodynamics, vows to lead an honest life 

hereafter, and becomes a True Believer 





CHAPTER 38 
TESTI N G  TH E FO U N DATI O N S  

O F  R E LATIVITY 

Provando e riprovando 
( Verify the one and disprove the other) 

§38.1. TESTING IS EASIER IN THE SOLAR SYSTEM 
THAN IN REMOTE SPACE 

For the first half-century of its life, general relativity was a theorist's paradise, but 
an experimentalist's hell. No theory was thought more beautiful, and none was more 
difficult to test. 

The situation has changed. In the last few years general relativity has become 
one of the most exciting and fruitful branches of experimental physics. A half-century 
late, the march of technology has finally caught up with Einstein's genius-not only 
on the astronomical front, but also in laboratory experiments. 

On the astronomical front, observers search for phenomena in which relativity 
is important, and study them: cosmology, pulsars, quasars, gravitational waves, black 
holes. Unfortunately, in pulsars and quasars, and in the sources of cosmological 
radiation and gravity waves, gravitational effects are tightly interwoven with the local 
hydrodynamics and local plasma physics. There is little hope of separating the several 
effects sufficiently sharply to get clean tests of the nature of gravity. Instead, astro
physicists must put the laws of gravity into their calculations along with all the other 
laws of physics and the observational data; and they must then seek, as output, 
information about the doings of matter and fields "way out there." 

Thus, for clean tests of general relativity one turns to the laboratory-but to a 
laboratory that is much larger today than formerly: a laboratory that includes the 
entire solar system. 

GALILEO 

Clean tests of general 
relativity are currently 
confined to solar system 



Capabilit ies of technology in 
1 9 70 's  
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In the solar system all relativistic effects are tiny. Nonetheless, some of them are 
measurable with a precision, in the 1 970's, of one part in 1 ,000 of their whole 
magnitude or better (see Box 38.1 ). 

§ 3 8 . 2 .  TH E O R ET I CAL FRAM EWO R KS FO R ANALYZ I N G  TESTS 
OF G E N E RAL R E LATIVITY 

There are now possible many experiments for testing general relativity. But most 
of them are expensive; very expensive. They involve atomic clocks flown on space-

Box 38 .1  TECHN O LOGY O F  THE 1970's C O N FRO NTED WITH RELATIVISTIC PHEN O MENA 

Quantity to 
be measured 

Angular separation of two sources on the sky 

Distance between two bodies in solar system 

Difference in lapse of proper time between two world lines in solar 
system 

Magnitude of 
relativistic effects 

Solar deflection of starlight ( l )  if light ray grazes edge of Sun, l ".75 (2) if light ray comes in perpendicular to Earth-sun line, 
0".004 

( a) Perihelion shift per Earth year ( I )  for Mercury, 1 20 km (2) for Mars, 1 5  km (b) Relativistic time delay for radio waves from Earth, past limb of sun, to Venus 
(one way), 

I X 10-4 sec = 30 km 

(c) Periodic relativistic effects in 
Earth-moon separation ( l )  in general relativity, 

100 cm 
(2) in Jordan-Brans-Dicke theory, 

100 cm; (840 cm)/(2 + w) 
(a) Clock on Earth vs. clock in 

synchronous Earth orbit, 
.Jt/t ~ 6 X 10-10 

(b) Clock on Earth vs. cl<Jck in orbit about sun, 
.Jt/t ~ 10-s 

Precision of a one-day 
measurement in the early 1 9  70 's 

(a) With optical telescope, ~ I "  
(b) Angular separation o f  two quasars with radio telescope ( differential measurement from day to day, not 

absolute measurement) 
in 1970, ~0". l 
in mid 1 970's, ~0".00 1 

(a) Separation of another planet (Mercury, 
Venus, Mars) from Earth, by bouncing radar signals off it, 

~0.3 km 
(b) Separation of a radio transponder ( on 

another planet or in a space craft) from Earth, by measuring round-trip radio travel time, 
~3 X 10-s sec = 10 m = 0.01  km 

(c) Earth-moon separation by laser ranging, ~ 10 cm 

Stability of a hydrogen maser clock, 
.Jt/t ~ 10-13 for t up to one year 
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craft; radar signals bounced off planets; radio beacons and transponders landed on 
planets or orbited about them; etc. Because of the expense, it is crucial to have as 
good a theoretical framework as possible for comparing the relative values of various 
experiments-and for proposing new ones, which might have been overlooked. 

Such a framework must lie outside general relativity. It must scrutinize the foun
dations of Einstein's theory. It must compare Einstein's theory with other viable 
theories of gravity to see which experiments can distinguish between them. It must 
be a "theory of theories." 

At present, in 1 973, there are two different frameworks in broad use. One, devised 
largely by Dicke (1964b ), * assumes almost nothing about the nature of gravity. It is 
used to design and discuss experiments for testing, at a very fundamental level, the 
nature of spacetime and gravity. Within it, one asks such questions as: Do all bodies 
respond to gravity with the same acceleration? Is space locally isotropic in its intrinsic 
properties? What are the theoretical implications of local isotropy? What types of 
fields, if any, are associated with gravity: scalar fields, vector fields, tensor fields, 
affine fields? Although some of the experiments that tackle these questions will be 
discussed below, this book will not attempt a detailed exposition of the Dicke 
framework. 

The second framework in broad use is the "parametrized post-Newtonian (PPN) 
formalism." It has been developed to higher and higher levels of sophistication by 
Eddington (1922), Robertson (1962), Schiff (1962, 1 967), Nordtvedt (1968b, 1 969), 
Will ( 1971c), and Will and Nordtvedt ( 1972). 

The PPN formalism is an approximation to general relativity, and also to a variety 
of other contemporary theories of gravity, called "metric theories." It is a good 
approximation whenever, as in the solar system, the sources of the field gravitate 
weakly ( 1'1> 1/c2 � 1 )  and move slowly (v2/c2 � 1 ). The PPN formalism contains a 
set of ten parameters whose values differ from one theory to another. Solar-system 
experiments (measurements of perihelion shift, light deflection, etc.) can be regarded 
as attempts to measure some of these PPN parameters, and thereby to determine 
which metric theory of gravity is correct-general relativity, Brans-Dicke ( 1961 )
Jordan (1959) theory, one of Bergmann's (1968) scalar-tensor theories, one of 
Nordstr.0m's theories, Whitehead's (1922) theory, or something else. [For reviews of 
Nordstr.0m and Whitehead, see Whitrow and Morduch (1965), Will (1971b), and Ni 
(1 972). For a significant nonmetric theory, see Cartan (1920) and Trautman (1 972).] 

Chapter 39 will discuss the concept of a metric theory of gravity and will construct 
the PPN formalism; and then Chapter 40 will use the PPN formalism to analyze 
the systematics of the solar system, and to discuss a variety of past and future 
experiments that distinguish between various metric theories of gravity. But first, 
as a prelude to those topics, this chapter will examine experiments that test the 
foundations of general relativity-foundations on which most other metric theories 
also rest. For a more detailed discussion of most of these experiments, see Dicke 
(1964b). 

* See Thorne and Will ( 1 971 ) ,  or Will ( 1972), for expositions of both frameworks and a comparison 
of them 

Theoretical  frameworks for 
analyz ing  gravitation 
experiments 

( 1 )  D icke framework 

(2) P P N  framework 
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§ 3 8 . 3 .  TESTS O F  TH E P R I N CI P LE O F  TH E U N IQU E N ESS 
O F  FREE  FALL:  EOTVOS-D I CKE EXP E R I M ENT 

One fundamental building block common to Einstein's theory of gravity and to 
almost all other modem theories is the principle of "uniqueness of free fall":* "The 
world line of a freely falling test body is independent of its composition or structure. ,, 
By "test body" is meant an electrically neutral body, small enough that (1) its 
self-gravitational energy, as calculated using standard Newtonian theory, can be 
neglected compared to its rest mass (Ml R � 1 ), and (2) the coupling of its multipole 
moments to inhomogeneities of the gravitational field can be neglected.t 

The uniqueness of free fall permits one to regard spacetime as filled with a set 
of curves, the test-body trajectories, which are unique aside from parametrization. 
Through each event, along each timelike or null direction in spacetime, there passes 
one and only one test-body trajectory. Describe these trajectories mathematically: 
that is a central imperative of any theory of gravity. 

When translated into Newtonian language, the uniqueness of free fall states that 
any two test bodies must fall with the same acceleration in a given external gravita
tional field. Experimental tests of this principle search for differences in acceleration 
from one body to another. The most precise experiments to date are of a type devised 
by Baron Lorand von Eotvos (Box 38.2), redesigned and pushed to much higher 
precision by the Princeton group of Robert H. Dicke (Box 38.3), and extended with 
modifications by the Moscow group of Vladimir B. Braginsky. (See Figure 1.6 and 
Box 1.2 for experimental details.) 

These Eotvos-Dicke experiments are "null experiments. " They balance the accel
eration of one body against the acceleration of another, and look for tiny departures 
from equilibrium. The reason is simple. Null experiments typically have much higher 
precision than experiments measuring the value of a nonzero quantity. 

Eotvos, Pekar, and Fekete (1922) checked to an accuracy of 5 parts in 109 that 
the Earth imparts the same acceleration to wood, platinum, copper, asbestos, water, 
magnalium (90% Al, 10% Mg), copper sulphate, and tallow. Renner (1935) checked, 
to 7 parts in 1010, the Earth's acceleration of platinum, copper, bizmuth, brass, glass, 
ammonium fluoride, and an alloy of 30% Mg, 70% Cu. Dicke, and later Braginsky, 
chose to use the sun's gravitational acceleration rather than the Earth's, since the 
alternation in the direction of the sun's pull every 12 hours lends itself to amplifica
tion by resonance. (See Figure 1.6.) Roll, Krotkov, and Dicke (1964) reported an 

* R. H. Dicke calls this principle "The weak equivalence principle." We prefer to avoid confusion 
with the equivalence principle (Chapter 16) .  

t in general relativity, one often uses an alternative definition of test body, which places no constraint 
on the self-gravitational energy (abandon condition ( 1 )  while retaining (2)). Such a definition is preferable, 
in pnnciple, because the theory of matter has not been developed sufficiently to decide whether (and 
no objective test has ever been proposed to decide whether), gravitational energy at the subnuclear scale 
is a small fraction, a large fraction, or the entirety of the rest mass. But for present purposes a definition 
constraining test bodies to have Ml R <{ I is preferable for two reasons. First, most theories of gravity 
that currently "compete" with Einstein's (a) agree with the principle of uniqueness of free fall when 
the macroscopic, Newtonian, self-gravitational energy is neglected (MIR <{ I ) ,  but (b) violate that 
principle when macroscopic, Newtonian self-gravitational energy is taken into account. See §40.9 for 
details. Second, the test bodies used in the Eotvos-Dicke experiment have MIR so small that their 
macroscopic, Newtonian, self-gravitational energies are, in fact, negligible (Ml R ~ Egravl M ~ 10-21) .  
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agreement of 1 part in 101 1  between the sun's acceleration of aluminum and gold, 
while Braginsky and Panov ( 197 1 )  reported agreement to 1 part in 1012 for aluminum 
and platinum. 

From this agreement, one can infer the response of neutrons, protons, electrons, 
virtual electron-positron pairs, ·nuclear binding energy, and electrostatic energy to 
the sun's gravity. Gold is 60% neutrons, while aluminum is only 50% neutrons. 
Therefore even from the 1964 results one could conclude that neutrons and protons 
must have the same acceleration to within [0.6 - 0.5 = 0 . 1 ]-1 parts in 10 11  = 1 part 
in 1010 . Similarly, electrons must accelerate the same as nucleons to 2 parts in 10 7 ; 

virtual pairs (being more abundant in gold than in aluminum) must accelerate the 
same to 1 part in 104 ; nuclear binding energy, to 1 part in 107 ; and electrostatic 
energy to 3 parts in 109 . 

This accuracy of testing gives one confidence in the principle of the uniqueness 
of free fall. (continued on page 1054) 

Box 38.2 BARON LORAND VON EOTVOS 
Buda pest, Ju ly 27, 1 848- Budapest, Apri l  8 ,  1 9 1 9  

Theoretical implications of 
Ei:itvi:is-Dicke experiment 

Eotvos (pronounced ut'viish) studied at Heidelberg with Kirchhoff, Helmholtz, and 
Bunsen and at Konigsberg with Neumann and Richelot. His 1 870 Heidelberg Ph.D. 
thesis dealt with an issue of relativity: can the motion of a light source relative to 
an "ether" be detected by comparing the light intensities in the direction of the 
motion and in the opposite direction? 

Studies of his at the same time resulted in the Eotvos law of capillarity, (surface 
tension) :::::: 2 . 12 (Tcrit - T)/(specific volume)21 3 . Eotvos, made professor of physics 
at Budapest in 1 872, concentrated on gravity from 1 886 onward. He developed and 
extended the original Michell-Cavendish torsion balance, which measured not only 
<l>,xx and <l>,xy (where <I> is the gravitational potential) but also <l>,xz and <l>,yz, all to 
a precision destined to be unexcelled for decades. He showed that the so-called "ratio 
between gravitational mass and inertial mass" cannot vary from material to material 
by more than 5 parts in 109 . He investigated the paleomagnetism of bricks and other 
ceramic objects, and studied the shape of the earth. He served (June 1 894-January 
1 895) as minister of public instruction and religious affairs ( a cabinet position held 
in earlier years by his father) . He founded a school which trained high-school 
teachers, to whose leavening influence one can give some of the credit for such 
outstanding scientists as von Karman, von Neuman, Teller, and Wigner. He served 
one year as rector of the University of Budapest. 

"I can never forget the moment when my train rushed into the railroad station of 
Heidelberg along the banks of the Neckar . . .  I cannot forget my happiness that 

now I could breathe the same air as those men of science whose fame attracted 
me there. " 

[EOTVOS I N  1 88 7 ,  AS QUOTED I N  FEJ E R  AND  M I KOLA ( 1 9 1 8) ,  P 259 ] 
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Box 3 8 . 2  (continued) 

Photograph by A. Szekely 1913 

"Insofar as it is permitted on the basis of a few experiments, we can therefore 
declare that µ,, that is, the weakening of the Earth's attraction through the 

intervening compensator quadrants, is less than one part in 5 X 1 010 . . . .  the 
absorption (of gravity) by the entire earth along a diameter is less than about one 

part in 800. 
"We have carried out a series of observations which surpassed all previous ones in 

precision, but in no case could we discover any detectable deviation from the law 
of proportionality of gravitation and inertia. " 

[EOTVOS, PEKAR, AN D FEKETE (1922) ] 

"Science shall never find that formula by which its necessary character could be 
proved. A ctually science itself might cease if we were to find the clue to the 

secret. " 
[EOTVOS, PRESIDENTIAL AD DRESS TO THE H U N GARIAN ACADEMY OF SCIEN CES, 1890, 

AS QU OTED IN FEJ ER AND M I KOLA (1918), P 280 ] 

"We should consider it as one of the most  astonishing errors of the present age 
that so many people listen to the words of pseudoprophets who, in place of the 

dogmas of religion, offer scientific dogmas with medieval impatience but without 
historical justification. " 

[EOTVOS, 18 7 7, AS QUOTED IN FEJ ER AN D MIKOLA (1918), P 280 ] 
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Box 3 8 . 3  R O B E RT H E N RY D I CKE M ay 6,  1 9 1 6, St.  Lou is, M issouri 
Cyrus Fogg Brackett Professor of Physics at Princeton U n iversity 

During 1941-1 946, Dicke was a leader in replacing 
the outmoded concept of lumped circuit elements 
by a new microwave analysis based on symmetry 
considerations, conservation laws, reciprocity rela
tions, and the scattering matrix-concepts that led, 
among others, to the lock-in amplifier and the 
microwave radiometer. Searching for a means to 
reduce the Doppler width of spectral lines for 
precision measurements, Dicke discovered recoil
less radiation in atomic systems held in a box or 
in a buffer gas. This development led to (1 )  the 
discovery of the basic idea of the gas-cell atomic 
clock and (2) a much more precise measurement 
of the gyromagnetic ratio of electrons in the 1 s and 
2s levels of hydrogen and of the hyperfine struc
ture of atomic hydrogen. 

A fundamental paper by Dicke in 1 954 set forth 
the theory of coherent radiation processes and of 
the superradiant state, and laid the foundation for 
the future development of the laser and the maser, 
to which he also contributed. His patent no. 
2,851,652 (filed May 21,  1956) was the first disclo
sure of a device for the generation of infrared 
radiation by a coherent process, and supplied the 
first suggestion for combining the use of an etalon 
resonator with an amplifying gas. 

Beginning in the 1 960's, Dicke brought his talent 
for precision measurement to the service of experi
mental cosmology, and with his collaborators: (1 )  

checked the equivalence principle with the up
to-then unprecedented accuracy of 1 part in 1011 ; 

(2) determined the solar oblateness; and (3) sug
gested that the primordial cosmic-fireball radia
tion, a tool for seeing deeper into the past history 
of the universe than has ever before been possible, 
should be observable, and therefore should be 
hunted down and found. 

"For want of a better term, a gas which is radiating strongly because of coherence 
will be called 'superradiant. ' . . .  As the system radiates it passes to states of 

lower m with r unchanged- to the 'superradiant '  region m ~ O "  
( 1 9 54) 

"Possibilities are examined for the excitation of optical 
'superradiant '  s tates of gas ,,  

( 1 9 5 7) 
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Experimental evidence for 
existence of a metric 
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"A 'gravitational oblateness ' of [the sun of] 5 X 1 0-5 would require the 
abandonment of Einstein 's purely geometrical theory of gravitation . . . .  Such a 

flattening [of the sun] could be understood as the effect of a rather rapidly rotating 
interior. . . . The answer appears to be that in the past, and to this day, the solar 

corona with its magnetic field has acted as a brake on the surface of the sun , ,  
( 1 964a) 

"New measurements of the solar oblateness have given a value for the fractional 
difference of equatorial and polar radii of (5. 0 ± 0. 7) X 1 0 -5 " 

[D ICKE  AND  GOLDENBERG  ( 1 9 6 7)) 

"[ The universe must] have aged sufficiently for there to exist elements other than 
hydrogen. It is well-known that carbon is required to make physicists " 

( 1 9 6 1 )  

"The question o f  the constancy o f  such dimensionless numbers is to be settled 
not by definition but by measurements " 

[BRANS AND  D I CKE  ( 1 96 1 )) 

"The geophysical data lead to an upper limit of 3 parts in 1 013 per year on the 
rate of change of the fine-structure constant " 

[D ICKE  AND  PEEBLES ( 1 9 62)) 

§38.4 . TESTS FOR THE EXISTENCE OF A M ETRIC GOVERNING 
LENGTH AND TIM E M EASUREM ENTS, AND 
PARTICLE KINE MATICS 

Special relativity, general relativity, and all other metric theories of gravity assume 
the existence of a metric field and predict that this field determines the rates of ticking 
of atomic clocks and the lengths of laboratory rods by the familiar relation - d-r2 = 
ds 2 = ga/J dx a dx/J . 

The experimental evidence for a metric comes largely from elementary particle 
physics . It is of two types : first, experiments that measure time intervals directly, 
e .g . ,  measurements of the time dilation of the decay times of unstable particles ; *  
second, experiments that reveal the fundamental role played by the Lorentz group 
in particle kinematics and elsewhere in particle physics.t To cast out the metric tensor 
entirely would leave one with no theoretical framework adequate for interpreting 
such experiments. 

* For a 2 per cent te5t of tim e  dilation with muons of ( I  - v2)-112 ~ 12 m a  storage ring, see Farley, 
Bailey, Brown, Giesch, Jostlein, van der Meer, Picasso, and Tannenbaum ( 1966). For earlier time-dilation 
experiments see Frisch and Smith ( 1 963);  Durbm, Loar, and Havens ( 1 952) , and Rossi and Hall ( 1 94 1 ) .  

t See p 1 8  of Lichtenberg ( 1 965) for a discussion of Lorentz invariance, spin and statistics, the TCP 
theorem, and relevant experiments. 
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Notice what particle-physics experiments do and do not tell one about the metric 
tensor, g. First, they do not guarantee that there exist global Lorentz frames, i.e., 
coordinate systems extending throughout all of spacetime, in which ga/3 = Y/af3 · 
However, they do suggest that at each event f!J there exist orthonormal frames with 
eaW) · e p(f!/) = Y/ at3 , which are related to each other by Lorentz transformations. 
These orthonormal frames provide one with a definition of the inner product between 
any two vectors at a given event-and, thereby, they define the metric field. 

Second, particle experiments do not guarantee that freely falling particles move 
along geodesics of the metric field, i.e., along straight lines in local Lorentz frames. 
(Here, in §§38.4 and 38.5, the phrase "local Lorentz frame " means a "normal " co
ordinate system at an event ?l, in which ga13 W) = Y/af3 and ga13 ,y(?l) = 0. The term 
"inertial frame " is avoided because no assertions are made, yet, about test-body 
motion.) In particular, one does not know from elementary-particle experiments 
whether the local Lorentz frames in the laboratory are freely falling (so they fly 
up from the center of the earth and then fall back with Newtonian acceleration 
g = 980 cm/sec2), whether they are forever at rest relative to the laboratory walls, 
or whether they undergo some other type of motion. All one is led to believe is 
that a metric determines the nature of the spacetime intervals (d'r2 = -gµ, dxµ dx") 
measured by atomic clocks, that the various local Lorentz frames in the laboratory 
therefore move with uniform velocity relative to each other (they are connected by 
Lorentz transformations), and that electric and magnetic fields and the energies and 
momenta of particles undergo Lorentz transformations in the passage from one local 
Lorentz frame to another. 

Third, elementary particle experiments do suggest that the times measured by 
atomic clocks depend only on velocity, not on acceleration. The measured squared 
interval is ds2 = ga/3 dx°' dx/3, independently of acceleration (until the acceleration 
becomes so great it disturbs the structure of the clock; see § 16.4 and Box 16.3). 
Equivalently, but more physically, the time interval measured by a clock moving 
with velocity vi relative to a local Lorentz frame is 

(38.1) 

independently of the clock's acceleration d2xi / dt2 • If this were not so, then particles 
moving in circular orbits in strong magnetic fields would exhibit different decay rates 
than freely moving particles-which they do not [Farley et al. (1966)]. *  

§38.5. TESTS OF GEODESIC MOTION: 
GRAVITATIONAL REDSHIFT EXPERIM ENTS 

The uniqueness of free fall, as tested by the Dicke-Eotvos experiments, implies that 
spacetime is filled with a family of preferred curves, the test-body trajectories. There 

* The experiment of Farley et al. is a 2 percent check of acceleration-independence of the muon decay 
rate for energies E/m = (I - v2)-112 ~ 12 and for accelerations, as measured in the muon rest frame, 
of a =  5 X 1020 cm/sec2 = 0.6 cm-1 . 

Particle experiments do not 
guarantee existence of global 
Lorentz frames, or geodesic 
motion for test particles 

Particle experiments do 
suggest proper time is 
independent of acceleration 
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test-body trajectories and 
geodesics of metric 

Pound-Rebka-Snider redshift 
experiment as a test of 
geodesic motion 
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is also another family of preferred curves, the geodesics of the metric g. It is tempting 
to identify these geodesics with the test-body trajectories. Einstein's geometric theory 
of gravity makes this identification ("equivalence principle "). One might conceive 
of theories that reject this identification. What is the experimental evidence on this 
point? 

In order to see what kinds of experiments are relevant, it is helpful to elucidate 
the physical significance of the geodesics. 

A geodesic of g is most readily identified locally by the fact that it is a straight 
line in the local Lorentz frames. Put differently, a body's motion is unaccelerated 
as measured in a local Lorentz frame if and only if the body moves along a geodesic 
of g. Hence, to determine whether test-body trajectories are geodesics, one must 
compare experimentally the motion of the spatial origin of a local Lorentz frame 
(as defined by atomic-clock readings) with the motion of a test body (material 
particle). 

It is easy to study experimentally the motions of test bodies; relative to an earth
bound laboratory, they accelerate downward with g = 980 cm/sec2 ; and this accel
eration can be measured at a given location on the Earth to a precision of 1 part 
in. 106 . 

Unfortunately, it is much more difficult to measure the motion of a local Lorentz 
frame, once again as defined by atomic-clock readings. The only direct experimental 
handle one has on this today, with sufficient precision to be interesting, is gravita
tional redshift experiments. (See §§7.2-7.5 and §25.4 for theoretical discussions of 
the gravitational redshift in the framework of general relativity.) 

The redshift experiment of highest precision is that of Pound and Rebka (1960), 
as improved by Pound and Snider (1965); see Figure 38.1. It used the Mossbauer 
effect to measure the redshift of 14.4 keV gamma rays from Fe57 . The emitter and 
absorber of the gamma rays were placed at rest at the bottom and top of a tower 
at Harvard University, separated by a height h = 74 feet = 22.5 meters. The meas
ured redshift agreed, to 1 percent precision, with the general relativistic prediction 
of 

LI;.\/;.\ = gh = 2.5 X 10-15 _ (38.2) 

This result tells one that the local Lorentz frames are not at rest relative to the 
Earth's surface; rather, they are accelerating downward with the same acceleration, 
g, as acts on a free particle (to within 1 percent precision). To arrive at this conclusion, 
one analyzes the experiment in the laboratory reference frame, where everything 
(the experimental apparatus, the Earth, the Earth's gravitational field) is static. 
Relative to the laboratory a local Lorentz frame, momentarily at rest, accelerates 
downward (horizontal accelerations being ruled out by symmetry) with some un
known acceleration a. Equivalently, the laboratory accelerates upward (in + z  direc
tion) with acceleration a relative to the local Lorentz frame. Consequently, the 
spacetime metric in the laboratory frame has the standard form 

ds2 = -(1 + 2az) dt2 + dx2 + dy2 + dz2 + O(lx; l 2) dx a dx f3, (38.3) 
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The experiment of Pound and Rebka ( 1 959) and Pound and Snider ( 1 965) on the gravitational redshift 
of photons rising 22.5 meters against gravity through a helium-filled tube in a shaft in the Jefferson 
Physical Laboratory of Harvard University The source of Co57 had an initial strength greater than a 
curie. The 14 4 keV gamma rays had to pass in through an absorber enriched in Fe57 to reach the 
large-window proportional counters Both source and absorber were placed in temperature-regulated 
ovens. The velocity of the source consisted of two parts one steady (vM) ,  to put the center of the emission 
line on the part of the transmission curve that is nearly straight, and the other alternating between + vJ and - vJ, to sweep the transmission curve in this straight reg10n; similarly when the steady velocity was 
- vM . The departure from symmetry between the two cases + vM and - vM allows one to determine the 
offset v0 ( effect of gravitational redshift) from the zero-gravity case of stationary emitter and stationary 
absorber The final result for the redshift was (0 9990 ± 0.0076) times the value 4 905 x 10-15 of 2gh/ c2 

predicted from the prmciple of equivalence (difference between "up" experiment and "down" experi
ment) Diagrams adapted from Pound and Snider ( 1 965) .  

Source velocity ( UM - V J) 



Other redshift experiments 
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which Track-2 readers have met in §§6 .6 and 13 .6 ;  and Track- I readers have met 
and used in Box 1 6 .2 .  Moreover, in the laboratory frame the metric is static, gravity 
is static, and the experimental apparatus is static. Therefore the crest of each electro
magnetic wave that climbs upward must follow a world line t(z) identical in form 
to the world lines of the crests before and after it; thus, 

wave crest # 0 :  t = to(z), 
wave crest # I :  t = t0(z) + Lit, 

wave crest #n :  t = to(z) + n Lit. 

[Here, as in Schild's argument (§7 .3) that redshift implies spacetime curvature, no 
assumption is made about the form of the wave-crest world lines t0(z) ;  see Figure 
7 .  I . ] Hence, expressed in coordinate time, the interval between reception of successive 
wave crests is the same as the interval between emission. Both are Lit. But the atomic 
clocks of the experiment (Fe57 nuclei) are assumed to measure proper time Ll-r 
( - ga/J Llx a Llx /J)11 2, not coordinate time. Thus 

i .e . ,  

LIA = ah 
A 

>-received 
Aemitted 

Ll-r received 
Ll-r emitted 

( I + azreceived) Lit 
(I + azemitted) Lit 

= I + a(zreceived - ZemitteJ; 

theoretical prediction based on assumptions 
(i) that atomic clocks measure Ll-r = ( - gapLlx a Llx /J )11 2 ;  

(ii) that electromagnetic radiation has the form of a 
wave train; 

(iii) that local Lorentz frames accelerate downward 
with acceleration a relative to the laboratory. 

(38 .4) 

Direct comparison with the experimental result (38 .2) reveals that local Lorentz 
frames in an Earthbound laboratory accelerate downward with the same acceleration 
g as acts on a test particle (to within 1 per cent precision). 

[The above discussion is basically a reworked version of Schild's proof (§7 .2) that 
the redshift experiment implies spacetime is curved. After all, how could spacetime 
possibly be flat if Lorentz frames in Washington, Moscow, and Peking all accelerate 
toward the Earth's center with g = 980 cm/sec2?] 

Of all redshift experiments, the Pound-Rebka-Snider experiment is the easiest to 
interpret theoretically, because it was performed in a uniform gravitational field. 
Complementary to it is the experiment by Brault (1 962), which measured the redshift 
of the sodium D1 line emitted on the surface of the sun and received at Earth (Figure 
38 .2) .  To a precision of 5 per cent, he found a redshift of GM0/ R0c 2 , where M0 and 
R0 are the mass and radius of the sun. This is just the redshift to be expected if 
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The measurement b y  Brault ( 1962) o f  the redshift o f  the D 1 line o f  sodium gives 1 .05 ± 0.05 o f  the 
gravitational redshift predicted by general relativity. This strong line, in contrast to the weak lines used 
by earlier investigators ( I )  is emitted high in the sun's atmosphere, above the regions strongly disturbed 
by the pressure and convective shifts, and yet lower than the chromosphere, and (2) comes closer to 
standing up cleanly above the background than any other line in the visible spectrum. Brault built a 
new photoelectric spectrometer (upper diagram), with its slit vibrated mechanically back and forth across 
a narrow region of the spectrum, to define the position of the line peak ( I )  electronically, (2) independently 
of subjective judgment, and (3) with a precision greater by a factor of the order of ten than that afforded 
by conventional visual methods. The slit is considered set on a !me when its mean position is such that 
the photomultiplier current contains no signal at the frequency of the modulation. The redshift measured 
in this way is corrected for orbital motion and for rotation of the sun and the Earth to give the points 
in circles and triangles in the lower diagram. Extrapolation to zero vibration of the slit gives the cited 
number for the redshift. Figure adapted from thesis of Brault ( 1 962) . 
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( 1 )  geodesic motion 

(2)  physical laws are locally 
Lorentz-invariant 

(3 )  laws do not vary from 
event to event 
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the local Lorentz frames, at each point along the photon trajectory, fall in step with 
freely falling test bodies. * 

In summary, redshift experiments reveal that, to a precision of several percent, 
the local Lorentz frames at the Earth's surface and near the sun are unaccelerated 
relative to freely falling test bodies. Equivalently, test bodies move along straight 
lines in the local Lorentz frames. Equivalently, the test-body trajectories are geodesics 
of the metric g. 

§38.6. TESTS OF THE EQUIVALENCE PRINCIPLE 

Of all the principles at work in gravitation, none is more central than the equivalence 
principle. As enunciated in § 16.2, it states : "In any and every local Lorentz frame, 
anywhere and anytime in the universe, all the (nongrauitational) laws of physics must 
take on their familiar special-relativistic forms. " 

That test bodies move along straight lines in local Lorentz frames (geodesic 
motion) is one aspect of the equivalence principle. Other aspects are the universality 
of Maxwell's equations 

(38.5) 

in all local Lorentz frames; the universality of the law of local energy-momentum 
conservation 

Ta/3 - O · 
, /3 - ' (38.6) 

and the universality of the values of the dimensionless constants that enter into the 
local laws of physics : 

e2 a = - = e - nc 

1 = (electromagnetic fine-) ; 
1 37.0360 . . .  structure constant 

mneulron = 1 .00 138 . . .  , 
mproton 

melectron 
mproton 1 836.12 . . .  ' 

(38.7) 
etc. 

(Attention here is confined to dimensionless constants, since only they are independ
ent of one's arbitrary choice of units of measure.) 

If one focuses attention on a given event and asks about invariance of the form 
of the physical laws [equations (38.5), (38.6), etc.] from one Lorentz frame to another, 
one is then in the province of special relativity. Here a multitude of experiments 
verify the equivalence principle (see §38.4). 

If one asks about variations in the form of the laws from one event to another, 
one opens up a Pandora's box of possibilities that one hardly dares to contemplate. 
However, no experimental evidence has ever given the slightest warrant to consider 
any such "departure from democracy" in the action of the laws of physics. Moreover, 
astronomical observations provide strong evidence that the laws of physics are the 

* For a review of other, less-precise redshift experiments, see Bertotti, Brill, and Krotkov ( 1 962). 



§38 . 6 .  TESTS OF THE EQUIVALENCE PRINCIPLE 1 0 6 1  same in distant stellar systems as in the solar system, and the same in distant galaxies as in our own Galaxy. (See, in Box 29.5, Edwin Hubble's expressions of joy upon discovering this.) Constancy of the dimensionless "constants" from event to event can be tested to high precision, if one assumes constancy of the physical laws. Dirac (1937, 1938), Teller (1948), Jordan (1955, 1959), Gamow (1967), and others have proposed that the fine-structure "constant" ae might be a slowly varying scalar field, perhaps governed by a cosmological equation. However, rather stringent limits on such variations follow from data on the fine-structure splitting of the spectral lines of quasars and radio galaxies. For the quasar 3C 191 with redshift z = 1.95, Bahcall, Sargent, and Schmidt (1967) find ae(3C 191)/ae(Earth) = 0.97 + 0.5. With a cosmological interpretation of the quasar redshift, this corresponds to a limit ( l /ae)(dae/dt) � 1/10 11  years. An even tighter limit has been obtained from radiogalaxy data, where there is no question about the interpretation of the redshift. Bahcall and Schmidt (1967) measured fine-structure splitting in five radio galaxies with z :::::::  0.20 , corresponding to an emission of light 2 X 109 years ago. They obtained a/z = 0.20)/a/Earth) = 1.001 + 0.002,  which yields the limit l ( l /ae)(dae/ dt)I � 1/1012 years. Dyson (1972) points out that comparison of the rate of beta decay of Re187 in times past (via osmium-rhenium abundance ratios in old ores) with the rate of beta-decay today provides a means to check on any possible variation of ae with time more sensitive than redshift data and more sensitive than any changes in rates of alpha decay and fission between early times and now. He summarizes the available data on Re187 and arrives at the limit l ( l /ae)(dae/dt)I � 5/1015 years. 
For further evidence of the constancy of the fundamental constants see Minkowski and Wilson (1956), Dicke (1959a,b), Dicke and Peebles (1962b). Spatial variations of ae , mneutronl mproton• and other "constants" in the solar system can be sought by means of Eotvos-type experiments. The reasoning [by Dicke (1969)] leading from such experiments to limits on any spatial variation of the constants is indirect. It recalls the reasoning used in standard treatises on polar molecules to deduce the acceleration of a polarizable molecule pulled on by an inhomogeneous electric field. It proceeds as follows. Suppose one of the dimensionless "constants," "a," depends on position. This will lead to a position-dependence of the total mass-energy of a laboratory test body. For example, if ae depends on position, then the coulomb energy of an atomic nucleus will also (Ecoul a: e4 a: a/; 8M/ Ecoul = 2 8ae/ ae). One can calculate the change in a test body's mass-energy when it is moved from xµ to xµ + 8xµ by assuming no change at all in the body's structure during its displacement : (38.8) 
After the displacement, a weakening of internal forces ( due, e.g., to a decrease of a) 

(4) fundamental constants do 
not vary from event to 
event 

Eotvos-type experiments as 
tests for spatial variation of 
fundamental constants 
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may cause a change in structure, but that change will be accompanied by a con
version of internal potential energy into internal kinetic energy, which conserves M. 

Now consider the following thought experiment [an elaboration of the argument 
by which Einstein first derived the gravitational redshift (§7 .2)] : Take n particles, 
each with mass-energy µ. Make the particles with a structure such that a negligible 
fraction of µ is associated with the "constant" of interest, a : 

( 1 /µ)(oµ/oa) = 0 .  (38 .9) 

Place these particles at a height h in a (locally) uniform Newtonian field. Combine 
them together there, releasing binding energy Es (h) , to form a composite body of 
mass 

M= nµ - Es (h) (38 . 10) 

which depends in a significant manner on the "constant" a, 

( I /  M)(oM/oa) -::/ 0 .  (38 . 1 1 )  

Lower this body, and the released binding energy tied up in a little bag, a distance 
oh. The total force acting is (in Newtonian language) 

F = Ma + Es (h)g. (38 . 12) 

Here g is acceleration experienced by the type of mass-energy that is independent 
of a when it is in free fall. In contrast, "free" fall of the assembled body M is not 
really free fall, because of the supplementary "polarization force" pulling on this 
object. Hence the assembled body in "free" fall experiences an acceleration, a, a 
little different from g. However, the mass that is accelerated is precisely M, and 
therefore the force required to produce this acceleration is given by the product Ma. 
The energy gained in lowering the body and the bag is 

E( down) = F oh = Ma oh + Es (h)g oh. 

Put this energy in the bag. 
At h - oh use some of the energy from the bag to pull the body apart into its 

component particles . The energy required is 

oM da t'h Es (h - oh) = nµ - M(h - oh) = nµ - M(h) + 
oa dh v 

so an energy 

= E (h) + oM � oh· 
B oa oh ' 

Ebag = Es (h) + E(down) - Es (h - oh) 

[ oM da ] = Ma + Es(h)g - � dh oh (38 . 1 3) 

is left in the bag. Use this energy to raise the n particles and the bag back up to 
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height h .  Assume total energy conservation, s o  that there will b e  no extra energy and 
no deficit when the n particles and bag have returned to the original state back 
at height h. This means that Ebag must be precisely the right amount of energy to 
do the raising : 

Ebag = nµ,g oh = [M + Ee(h)]g oh. 

Combining expressions (38 . 1 3) and (38 . 14) for Ebag, discover that 

I oM da a - g= - - - . 
M oa dh 

(38 . 14) 

(38 . 1 5) 

Thus, under the assumption of total energy conservation (no perpetual-motion 
machines !) ,  a spatial dependence of a physical "constant" a will lead to the anomaly 
(38 . 1 5) in the acceleration of a body whose mass depends on a . 

Coulomb energy, which is proportional to ae 
2 , amounts in a gold nucleus to 0 .4 

per cent of the mass, and to 0 . 1  per cent in an aluminum nucleus. Hence, a spatial 
variation in ae should lead to a fractional difference in the gravitational accelerations 
of these two nuclei equal to 

i .e . ,  

I I da I - _e < I X 10-9 g ::::: I X 10-9 cm/sec2 = I X 10-30/cm 
ae dh ~ (38 . 16) 

at the Earth due to the sun. 

Here use is made of the limit (I X 10-11) from Dicke's experiment (§38 .3), and the 
acceleration g = 0 .6 cm/sec2 due to the sun at Earth. 

Notice that this says the gradient of In ae is less than I x 10-9 the gradient of 
the Newtonian potential ! 

§3 8 . 7 .  TESTS FO R TH E EX I STENCE O F  U N KN OWN 
LO N G-RAN G E  F I ELDS 

Whether or  not one accepts the assumption that test bodies move on geodesics of 
the metric, it remains conceivable that previously unknown long-range fields (fields 
with "1/r" fall-off at large distances) are somehow associated with gravity. 

If "new" long-range fields (not metric, not electromagnetic) do exist, waiting to 
be discovered, then there are two ways by which they could influence matter. First, 
they could couple directly to matter, producing, for example, slight deviations from 
geodesic motion ( deviations smaller than the limits of §38 .5) ,  or slight dependences 
of masses of particles on position ( dependences smaller than the limits of §38 .6). 
Second (and harder to detect), they could couple indirectly to matter by being mere 

Possible existence of new 
long-range fields associated 
with gravity 

Direct vs . indirect coupling 
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participants in field equations that determine the geometry of spacetime . This section 
will describe tests for direct-coupling effects. Theories with fields that couple indi
rectly will be described in Box 39 . 1 ,  and tests for such fields will be discussed in 
Chapter 40 . 

Dicke (1964b), using his framework for analyzing tests of gravitation theories 
(§38 .2), has shown that several null experiments place stringent limits on unknown, 
direct-coupling, long-range fields . 

One of these experiments is the "Hughes-Drever Experiment" [Hughes, Robinson, 
and Beltran-Lopez ( 1 960) ; Drever ( 196 1 )] .  It can be thought of as a search for a 
symmetric second-rank tensor field ha/3 that produces slight deviations of test-body 
trajectories from geodesics of the metric gaf3· Unless one's experiments happen to 
be made in a region of spacetime where ha/3 is a constant multiple of ga/3 ("mere 
rescaling of all lengths and times by a constant factor"), this tensor field must produce 
anisotropies in the properties of spacetime-which, in turn, will cause anisotropies 
in the inertial mass of a nucleon, and in turn will cause in an atomic nucleus relative 
shifts of degenerate energy levels with different magnetic quantum numbers . The 
Hughes-Drever experiment places stringent limits on such shifts, and thereby on 
a possible tensor field haf3 · To quote Dicke ( 1 964, p. 1 86), "If two [tensor] fields are 
present with the one strongly anisotropic in a coordinate system chosen to make 
the other isotropic, the strength of [ direct] coupling to one must be only of the order 
of 10-22 that of the other. . . .  [Moreover] , on the moving Earth with ever-changing 
velocity, anisotropy would be expected at some season." From the experiments of 
Hughes and Drever, then, one concludes that there is not the slightest evidence for 
the presence of a second tensor field. For further details see Dicke and Peebles 
( 1962a) . 

Another series of experiments, called "ether-drift experiments, " places stringent 
limits on any unknown, long-range vector field that couples directly to mass-energy. 
One can imagine such a field of cosmological origin. Being cosmological, the 4-vector 
would most naturally be expected to point in the same direction as the 4-vector 
u of the "cosmological fluid" (identical with the time direction e0 of a frame in 
which the cosmic microwave radiation is isotropic) . The 4-vector of the new field 
would then have spatial components in any other frame. In principle an observer 
could use them to discern his direction of motion and speed relative to the mean 
rest frame of the universe. The ether-drift experiments search for effects of such 
a field. 

For example, the experiment of Turner and Hill ( 1964) searches for a dependence 
of clock rates on such a vector field, by examining the transverse Doppler shift as 
a function of direction for an emitter on the rim of a centrifuge and a receiver at 
its center (Figure 38 .3) . If there is any effect, it would most naturally be expected 
to have the form 

(rate of clock moving relative) 
to universe with speed /3 _ 1 2 

(rate �f clock �t rest) 
- + y/3 ' 

relative to universe 

y a small constant . (38 . 1 7) 
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The experiment of Turner and Hill ( 1964) looks for a dependence of proper 
clock rate (the clock being a Co57 source placed near the rim of the centrifuge) 
on velocity relative to the distant matter of the universe; or, in operational terms, 
relative to a "new local field" described by a 4-vector. The 14.4 keV gamma 
rays from the Co57 already experience a second-order Doppler shift of 1 .3 parts 
in 1 013 • One searches for an additional shift y/32 where /3 = u + v(e. cos wt + 
e, sin wt) is the velocity relative to the frame in which the scalar field is purely 
timelike. The transmission of the gamma rays through the Fe57 absorber will 
drop linearly with any such additional shift, and will be noted as a drop in 
the counting rate of the Nal crystal. The source was 10 cm from the axis of 
rotation and the centrifuge turned at 1 5 ,000 rpm. The value of y deduced from 
the experiment was (! ± 4) x 10-5 _ 

1 0 6 5  

A clock at the center of the centrifuge has /3 = u = ue., , whereas one on the rim 
has /3 = u + v(e., cos wt + ev sin wt). Thus, the shift between rim and disk should 
vary with position 

.:t;.\J\ = - .:lv/v = -2yuu cos wt +  usual transverse shift. 

The data of Turner and Hill, using the Mossbauer effect, show that 

[y [  < 4 X 10-5 _ (38. 1 8) 

Hence, a cosmological vector field, if present, has only a weak direct coupling to 
matter. 

For further discussion of these experiments and references on others like them, 
see Dicke (1964b). 



CHAPTER 39  
OTH E R  TH EO R I ES O F  G RAVITY 

AN D TH E POST-N EWTO N IAN 

AP P R OXI MATI O N  

Role of alternative gravitation 
theories as foils for 
experimental tests 

Criter ia for viability of a 
theory 

( 1 )  self-consistency 

§ 3 9 . 1 .  OTH E R  T H EO R I ES 

Among all bodies of physical law none has ever been found that is simpler or more 
beautiful than Einstein's geometric theory of gravity (Chapters 16 and 17); nor has 
any theory of gravity ever been discovered that is more compelling. 

As experiment after experiment has been performed, and one theory of gravity 
after another has fallen by the wayside a victim of the observations, Einstein's theory 
has stood firm. No purported inconsistency between experiment and Einstein's laws 
of gravity has ever surmounted the test of time. 

Query: Why then bother to examine alternative theories of gravity? Reply: To 
have "foils" against which to test Einstein's theory. 

To say that Einstein's geometrodynamics is "battle-tested" is to say it has won 
every time it has been tried against a theory that makes a different prediction. How 
then does one select new antagonists for decisive new trials by combat? 

Not all theories of gravity are created equal. Very few, among the multitude in 
the literature, are sufficiently viable to be worth comparison with general relativity 
or with future experiments. The "worthy" theories are those which satisfy three 
criteria for viability: self-consistency, completeness, and agreement with past experi
ment. 

Self-consistency is best illustrated by describing several theories that fail this test. 
The classic example of an internally inconsistent theory is the spin-two field theory 
of gravity [Fierz and Pauli (1939); Box 7.1 here], which is equivalent to linearized 
general relativity (Chapter 18). The field equations of the spin-two theory imply 
that all gravitating bodies move along straight lines in global Lorentz reference 
frames, whereas the equations of motion of the theory insist that gravity deflects 



§39 2 METRIC THEORIES OF GRAVITY 1 067 bodies away from straight-line motion. (When one tries to remedy this inconsistency, one finds oneself being "bootstrapped" up to general relativity; see route 5 of Box 17.2.) Another self-inconsistent theory is that of Kustaanheimo (1966). It predicts zero gravitational redshift when the wave version of light (Maxwell theory) is used, and nonzero redshift when the particle version (photon) is used. 
Completeness: To be complete a theory of gravity must be capable of analyzing (2)  completeness from "first principles" the outcome of every experiment of interest. It must therefore mesh with and incorporate a consistent set of laws for electromagnt:Lism, quantum mechanics, and all other physics. No theory is complete if it postulates that atomic clocks measure the "interval" dT = ( - ga/3 dx

"' dx/3)112 constructed from a particular metric. Atomic clocks are complex systems whose behavior must be calculated from the fundamental laws of quantum theory and electromagnetism. No theory is com-plete if it postulates that planets move on geodesics. Planets are complex systems whose motion must be calculated from fundamental laws for the response of stressed matter to gravity. For further discussion see §§16.4, 20.6 , and 40.9. 
Agreement with past experiment: The necessity that a theory agree, to within several (3)  agreement with past standard deviations, with the "four standard tests" (gravitational redshift, perihelion experiment shift, electromagnetic-wave deflection, and radar time-delay) is obvious. Equally obvious but often forgotten is the need to agree with the expansion of the universe (historically the ace among all aces of general relativity) and with observations at the more everyday, Newtonian level. Example: Birkhoff's (1943) theory predicts the same redshift, perihelion shift, deflection, and time-delay as general relativity. But it requires that the pressure inside gravitating bodies equal the total density of mass-energy, p = p; and, as a consequence, it demands that sound waves travel with the speed of light. Of course, this prediction disagrees violently with experiment. Therefore, Birkhoff's theory is not viable. Another example: Whitehead's (1922) theory of gravity was long considered a viable alternative to Einstein's theory, because it makes exactly the same prediction as Einstein for the "four standard tests." Not until the work of Will (1971 b) was it realized that Whitehead's theory predicts a time-dependence for the ebb and flow of ocean tides that is completely contradicted by everyday experience (see §40.8). 

§39 . 2 .  M ETR I C  TH EO R I ES O F  G RAVITY Two lines of argument narrow attention to a restricted class of gravitation theories, called metric theories. The first line of argument constitutes the theme of the preceding chapter. It examined experiment after experiment, and reached two conclusions: (1) spacetime 
possesses a metric; and (2) that metric satisfies the equivalence principle (the standard special relativistic laws of physics are valid in each local Lorentz frame). Theories 
of gravity that incorporate these two principles are called metric theories. * In brief, Chapter 38 says, "For any adequate description of gravity, look to a metric theory." 

* For a slightly narrower definition of metric theories, see Thorne and Will ( 197 1) .  

Why attention focuses on 
metric theories of gravity 



How metric theories d i ffer 

Weak-field, slow-motion 
expansion of a metric theory 

1 0 6 8  3 9 .  OTHER THEORIES OF GRAVITY A N D  POST-NEWTONIAN APPROXIMATION 

Exception: Cartan's (1922b, 1923) theory ["general relativity plus torsion "; see 
Trautman (1972)] is nonmetric, but agrees with experiment and is experimentally 
indistinguishable from general relativity with the technology of the 1970's. 

The second line of argument pointing to metric theories begins with the issue of 
completeness (preceding section). To be complete, a theory must incorporate a 
self-consistent version of all the nongravitational laws of physics. No one has found 
a way to incorporate the rest of physics with ease except to introduce a metric, and 
then invoke the principle of equivalence. Other approaches lead to dismaying 
complexity, and usually to failure of the theory on one of the three counts of 
self-consistency, completeness, and agreement with past experiment. All the theories 
known to be viable in 1973 are metric, except Cartan's. [See Ni (1972b); Will (1972).] 

In only one significant way do metric theories of gravity differ from each other : 
their laws for the generation of the metric. In general relativity theory, the metric 
is generated directly by the stress-energy of matter and of nongravitational fields. 
In Dicke-Brans-Jordan theory (Box 39.1, p. 1070), matter and nongravitational fields 
generate a scalar field </> ;  then </> acts together with the matter and other fields to 
generate the metric. Expressed in the language of §38.7, </> is a "new long-range 
field " that couples indirectly to matter. As another example, a theory devised by 
Ni (1970, 1972) (Box 39.1) possesses a flat-space metric IJ and a universal time 
coordinate t ("prior geometry "; see §I 7 .6); I} acts together with matter and nongrav
itational fields to generate a scalar field <f>; and then I], t, and </> combine to create 
the physical metric g that enters into the equivalence principle. 

All three of the above theories-Einstein, Dicke-Brans-Jordan, Ni-were viable 
in the summer of 1971, when this section was written. But in autumn 1971 Ni's 
theory, and many other theories that had been regarded as viable, were proved by 
Nordtvedt and Will (1972) to disagree with experiment. This is an example of the 
rapidity of current progress in experimental tests of gravitation theory! 

Henceforth, in this chapter and the next, attention will be confined to metric 
theories of gravity and their comparison with experiment. 

§39.3. POST-NEWTONIAN LIMIT AND PPN FORM ALISM 

The solar system, where experiments to distinguish between metric theories are 
performed, has weak gravity, 

l<P I = !Newtonian potential! ,S 10-6 ; (39.la) 

moreover, the matter that generates solar-system gravity moves slowly 

v2 = (velocity relative to solar-system center of mass)2 ,S 10-7 (39.lb) 

and has small stress and internal energies 

I T;k l /p0 = (stress divided by baryon "mass " density) ,S 10-6, 

JI
= (p _ P )I = ( int_ernal energy density p_er ) < 10_6_ 

0 Po umt baryon "mass " density ~ 

(39.lc) 

(39.ld) 
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[Here the baryon "mass" density p
0

, despite its name, and despite the fact it is 
sometimes even more misleadingly called "density of rest mass-energy," is actually 
a measure of the number density of baryons n, and nothing more. It is defined as 
the product of n with some standard figure for the mass per baryon, µ,0, in some 
well-defined standard state; thus, 

Po nµ,o.] (39. le) 

Consequently, the analysis of solar-system experiments using any metric theory of 
gravity can be simplified, without significant loss of accuracy, by a simultaneous 
expansion in the small parameters 14> 1, v 2 , I T;k l /p

0
, and II. Such a "weak-field, 

slow-motion expansion " gives: (1) flat, empty spacetime in "zero order "; (2) the 
Newtonian treatment of the solar system in "first order "; and (3) post-Newtonian 
corrections to the Newtonian treatment in "second order ". 

The formalism of Newtonian theory plus post-Newtonian corrections is called the 
''post-Newtonian approximation." Each metric theory has its own post-Newtonian 
approximation. Despite the great differences between metric theories themselves, 
their post-Newtonian approximations are very similar. They are so similar, in fact, 
that one can construct a single post-Newtonian theory of gravity, devoid of any 
reference to indirectly coupling fields (</> in Dicke-Brans-Jordan; I], t, and cp in Ni; 
see Box 39.1), that contains the post-Newtonian approximation of every conceivable 
metric theory as a special case. This all-inclusive post-Newtonian theory is called 
the "Parametrized Post-Newtonian (PPN) Formalism." It contains a set of parameters 
(called "PPN parameters") that can be specified arbitrarily. One set of values for 
these parameters makes the PPN formalism identical to the post-Newtonian limit 
of general relativity; another set of values makes it the post-Newtonian limit of 
Dicke-Brans-Jordan theory, etc. 

Subsequent sections of this chapter present a version of the PPN formalism devised 
by Clifford M. Will and Kenneth Nordtvedt, Jr. (1972). [See also Will (1972).] This 
version, containing ten PPN parameters, encompasses as special cases nearly every 
metric theory of gravity known to the authors. The few exceptions [Whitehead (1922) 
and theories reviewed by Will (1973)] all disagree with experiment. One can include 
them in the PPN formalism by adding additional terms and parameters. 

The ten parameters are described heuristically in Box 39.2, for the convenience 
of readers who would skip the full details of the formalism (§§39.4-39.12). 

How accurate is the PPN formalism? Or, stated more precisely, how accurately 
does the post-Newtonian approximation agree with the metric theory from which 
it comes? In the solar system, where 14> 1,  v 2 , I T;k l /p

0
, and II are all � 10-6, the 

post-Newtonian approximation makes fractional errors of � 10-6 in quantities of 
post-Newtonian order, and fractional errors of � 10-12 in quantities of Newtonian 
order. For example, it misrepresents the deflection of light by � 10-6 X (post-New
tonian deflection) ~ 10-6 seconds of arc. And it ignores relativistic deformations of 
the Earth's orbit of magnitude < 10- 12 X (one astronomical unit) ~ 10 centimeters. 
Clearly, there is no need in the 1970's to use higher-order corrections to the post
Newtonian approximation; and hence no need to construct a "parametrized post
post-Newtonian framework. " However, in the words of Shapiro (1971b):  "If one 
projects from the achievements in the last decade, it is not unreasonable to predict 

(continued on page 1072) 
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Box 39.1 THE THEORIES O F  DICKE-BRAN S-J ORDAN AN D O F  NI 

A. D icke-Brans-Jordan 

References : Brans and Dicke (1961); Jordan (1959). [Notes: This is the special 
case 'I/ = -1 of Jordan's theory. An alternative mathematical representation 
of the theory is given by Dicke (1962).] 

Fields associated with gravity : 
cp, a long-range scalar field; 
g, the metric of spacetime (from which are constructed the covariant derivative 

V and the curvature tensors, in the usual manner). 
Equations by which these fields are determined: 

The trace of the stress-energy tensor generates cp via the curved-spacetime wave 
equation 

8w 
□cp = <p'°' = --- T. 

;a 3 + 2w ' 

where w is the dimensionless "Dicke coupling constant." 
The stress-energy tensor and cp together generate the metric (i.e., the spacetime 

curvature) via the field equations 

where Ga/3 is the Einstein tensor. 
Variational principle for these equations: 

where R is the scalar curvature and L is the matter Lagrangian. 
Equivalence principle is satisfied :  

The special-relativistic laws of  physics are valid, without change, in  the local 
Lorentz frames of the metric g. 

Consequence: the scalar field does not exert any direct influence on matter; 
its only role is that of participant in the field equations that determine the 
geometry of spacetime. It is an "indirectly coupling field" in the sense of §38.7. 

This theory is self-consistent, complete, and for w > 5 in "reasonable" accord (two 
standard deviations or better) with all pre-1973 experiments. 

B .  N i  

References : Ni (1970, 1972) 
Fields associated with gravity: 

17, a flat "background metric" ("prior geometry" in sense of § 17 .6). There exist, 
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by assumption, coordinate systems ("background Lorentz frames ")  in which 
everywhere at once 7100 = - I ,  1/oi = 0, and 1/ik = oik • 

t, a scalar field called the "universal time coordinate " ("prior geometry " in sense 
of § 1 7  .6), which is so "tuned " to the background metric that 

t t ri"'/3 = - I ,a ,/3  , 

where "i" denotes covariant derivative with respect to I]. 

This means there exists a background Lorentz frame (the "rest frame of the 
universe ")  in which x 0 = t. 

</>, a scalar field called the "scalar gravitational field ". 
g, the metric of spacetime (from which are constructed the covariant derivative 

V and the curvature tensors, in the usual manner). 
Equations by which these fields are determined: 

The stress-energy of spacetime generates the scalar gravitational field </> via the 
wave equation 

□<J> </>'"' ,a = -27TT"'/3 ag,,13/a</> 
= 47TT"'!3 [ri,,13e-2<1> + (e2<i> + e-2<i>)t,,,t,13]. 

</>, I], and t together determine the metric of spacetime through the algebraic 
relation 

g = e-2<1>,, + (e-2<1> - e2<i>) dt ® dt. 

Note: In the "rest frame of the universe" that is presupposed in this theory, 
this metric reduces to 

ds 2 = g,,13 dx"' dx /3 = -e2<i> dt2 + e-2<i>(dx 2 + dy
2 + dz 2) . 

Variational principle for the field equation for <J> :  

O f  ( -2</>•"'<f>,a + 167TL)(-g)112 d4x = 0, 

where L is the matter Lagrangian. 
Equivalence principle is satisfied: 

The special-relativistic laws of physics are valid, without change, in the local 
Lorentz frames of the spacetime metric g. 

Consequence: </>, I], and t do not exert any direct influence on matter; they are 
"indirectly coupling fields " in the sense of §38.7. 

This theory is self-consistent and complete. If the solar system were at rest in the 
"rest frame of the universe ", the theory would agree with all experiments to 
date-except, possibly, the expansion of the universe. But the motion of the 
solar system through the universe leads to serious disagreement with experiment 
(Will and Nordtvedt 1 972; §40.8). 
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Box 39 . 2  HEURISTIC DES CRIPTIO N O F  THE TEN PPN PARAM ETERS 

Para
meter 

y 

What it measures, relative to general relat1v1tyA 

How much space curvature (g;k) i, pruJw.:e::J by unit rest mass? 

Value m 
General 
Relat1v1ty 

Value m 
Dicke-Brans
Jordan Theoryb 

l + w 
2 + w 

Value m 
Ni 's 
Theoryb 

/J How much nonlinearity is there in the superposition law for 
gravity (g00)? 

How much gravity (g00) is produced by unit kinetic energy 
(½Po

v2)? 

How much gravity (g00) is produced by unit gravitational potential 
energy (p0 U)? 

3 + 2w 
4 + 2w 

I + 2w 
4 + 2w 

/33 How much gravity (g00) is produced by unit internal energy (pJI)? 

1/ 

Lil 

How much gravity (g00) is produced by unit pressure (p)? 

How much more gravity (g00) is  produced by radial kinetic energy 
[½po< v • r)2]-i.e . ,  kinetic energy of motion toward obser
ver-than by transverse kinetic energy? 

How much more gravity (g00) is produced by radial stress [r • t · r ]  
than by  transverse stress? 

How much dragging of inertial frames (g0;) is produced by unit 
momentum (p

0
u)? 

0 

0 

l + w 
2 + w 

0 

0 

10 + 7w 
14  + 7w 

0 

0 

I 
7 

Ll2 How much easier is it for momentum (p0 u) to drag inertial frames 
radially (toward the observer) than in a transverse direction? 

•These heuristic descriptions are based on equations (39 23) 
b For expositions of these theories see Box 39 I For derivation of their PPN values and of PPN values for other theories, see Ni ( 1 972) 

that in the 1980's techniques will be available to detect second-order effects of general 
relativity. At that point the ratio of theoretical to experimental relativists may take 
a sharp turn downwards. " 

Actually, there are a few exceptions to the claim that the post-Newtonian approxi
mation suffices for the 1970's. These exceptions occur where the external universe 
impinges on and influences the solar system. For example, gravitational waves 
propagating into the solar system from distant sources (Chapters 35-37) are ignored 
by every post-Newtonian approximation and by the PPN framework. They must 
be treated using a full metric theory or a weak-field, "fast-motion" approximation 
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to such a theory. Similarly, time-dependence of the "gravitational constant " (§40.8), 
induced in some theories by expansion of the universe, is beyond the scope of the 
PPN formalism, as is the expansion itself. 

The PPN formalism is used not only in interpreting experimental tests of gravita
tion theories, but also as a powerful tool in theoretical astrophysics. By specializing 
all the PPN parameters to unity, except r = 1/ = 0, one obtains the post-Newtonian 
approximation to Einstein's theory of gravity. This post-Newtonian approximation 
can then be used (and has been used extensively) to calculate general relativistic 
corrections to such phenomena as the structure and stability of stars.* 

Historical and Notational  Notes 

The earliest parametrizations of the post-Newtonian approximation were performed, 
and used in interpreting solar system experiments, by Eddington (1922), Robertson 
(1962), and Schiff (1962, 1967). However, they dealt solely with the vacuum gravita
tional field outside an isolated, spherical body (the sun). Nordtvedt (1968b, 1969) 
devised the first full PPN formalism, capable of treating all aspects of the solar 
system; he treated the sun, planets, and moon as made from "gases " of point-particles 
(atoms) that interact gravitationally and electromagnetically. Will (1971c) later used 
techniques devised by Chandrasekhar (1965a) to modify Nordtvedt's formalism, so 
that it employs a stressed, continuous-matter description of celestial bodies. The 
version of the formalism presented here, devised by Will and Nordtvedt (1972), 
generalizes all previous versions to acquire "post-Galilean invariance " [see Chandra
sekhar and Contopolous (1967)]. The most detailed and up-to-date review article 
on the PPN formalism is Will (1972). 

In the literature of post-Newtonian physics and the PPN formalism, the Newtonian 
potential is described traditionally not by <P, but by 

_ _ f po(x') d3x ' u =  -<P = + I I x - x' 
(39.2) 

To avoid confusion, this chapter and the next will use U, although the rest of the 
book uses <P. 

Turn now to a detailed, Track-2 exposition of the PPN formalism. 

§39.4. PPN COORDINATE SYSTEM 

The PPN formalism covers the solar system ( or whatever system is being analyzed) 
with coordinates (t, x;) (t, x;) that are as nearly globally Lorentz as possible : 

(39.3) 

* See, e.g , a long series of papers by Chandrasekhar and his associates in the Astrophysical Journal, 
beginning with Chandrasekhar ( 1965a,b,c). 

App l icat ions of P P N  
forma l ism t o  astrophysics 

H istory and notat ion of P P N  
forma l ism 

EXPOS ITI O N  OF P P N  
FO R MALI S M  
Coord inate system 



The rest of this cha pter is 
Track 2 .  No earl ier  Track-2 
material is needed as 
preparation for it, but the 
fol lowing will be helpfu l :  
( 1 )  Chapter 7 ( incompatib i l ity 

of gravity and special 
relativity) 

(2) § 1 7  .6 (no prior geometry) ; 
(3) § § 3 6 . 9-36 . 1 1 (generation 

of gravitational  waves) ; and 
(4) Chapter 38 (tests of 

foundations) . 
This cha pter is not needed as 
preparation for any later 
cha pter, but it will be helpful  
i n  Chapter 40 (solar-system 
tests) 

Description of matter 
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(In this sense the PPN formalism is like linearized theory; see Chapter 1 8 .) The 
velocity of the coordinate system (i.e . ,  4-velocity of its spatial origin) is so chosen 
that the solar system is approximately at rest in these coordinates. (Whether the 
center of mass of the solar system is precisely at rest, or is moving with some low 
velocity v � (M0/ R0) 112 ~ 10-3 ~ 300 km/sec, is a matter for the user of the 
formalism to decide. For more on the options, see §§39 .9 and 39 . 12.) 

The PPN coordinates provide one with a natural "3 + I" split of spacetime into 
space plus time. That split is conveniently treated using the notation of three-dimen
sional, flat-space vector analysis-even though spacetime and the three-dimensional 
hypersurfaces x 0 = constant are both curved. The resultant three-dimensional for
malism will look more like Newtonian theory than like general relativity-as, indeed, 
one wishes it to ; after all, one's goal is to study small relativistic corrections to 
Newtonian theory! 

§39 .5. DESCRIPTION OF THE MATTER 
IN THE SOLAR SYSTEM 

Relative to  the PPN coordinates, the matter of  the solar system (idealized as  a 
stressed medium) has a coordinate-velocity field 

(39 .4) 

Choose an event '!P, and in its neighborhood transform to an orthonormal frame 
that moves with the matter there. Orient the spatial axes e1 of this comoving frame 
so that they coincide as accurately as possible with the PPN coordinate axes. (This 
requirement will be made more precise in §39 . 10 .) In the orthonormal comoving 
frame, define the following quantities, which describe the state of the matter : 

(density of total mass-energy) p ; 

(baryon "mass" density) p
0 

= (number density } X (standard rest mass per baryon, µ0, } ·  
- of baryons, n for matter in some standard state ' 

(specific internal energy density) II (p - p0) /  p0 ; 

(components of stress tensor) = tu Bf · T ·  e1 ; 

(pressure) p ; (t;.;. + t1111 + tzz) 

(average of stress over all directions) . 

(39 .5 a) 

(39 .5b) 

(39 .5c) 

(39 .5 d) 

(39 .S e) 

Anisotropies (i.e . ,  shears) in the stress are important only in planets such as the 
Earth; and even there they are dominated by the isotropic pressure : 

tn = p 8ij + p X [ corrections � I ] .  (39 .6) 
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For many purposes, especially inside the sun, one can ignore the anisotropies, thereby 
approximating the solar-system matter as a perfect fluid.* 

The isotropic part of the radiation field gives a significant contribution to the 
pressure, p, and the density of internal energy, p

0
JI, inside the sun. However, the 

anisotropic radiation flux is ignored in the stress-energy tensor. This approximation 
is allowable because in the sun the outward energy flux carried by radiation is less 
than 10-15 of the internal energy density p

0
JI; in planets it is even less. 

§39 .6 .  NATURE OF THE POST-NEWTONIAN EXPANSION 

For any gravitationally bound configuration such as the solar system, the Newtonian 
approximation imposes limits on the sizes of various dimensionless physical quanti
ties (see exercise 39.1) : 

t: 2 maximum value of Newtonian potential U 
� values anywhere of U, v2 , pl p0

, I ti] I /  p0
, II. 

(39.7) Relative magnitudes of 
expansion parameters 

(The Newtonian potential at the center of the sun is t: 2 ~ 10-5 _ The values of pl p
0

, 

ti/ p0
, and II there are also ~ 10-5, and they are much smaller elsewhere. The orbital 

velocities of the planets are all less than 100 km/sec = 3 X 10-4, so u 2 < 10-1
.
) 

Moreover, changes with time of all quantities at fixed xi are due primarily to the 
motion of the matter. As a result, time derivatives are small by O(t:) compared to 
space derivatives, 

I 
oA/ at j 
oA/ oxi 

~ J vi l  � t: for any quantity A, (39.8) 

although not in the radiation zone, where outgoing gravitational waves flow (dis
tance � one light year from Sun). Consequently, the radiation zone must be excluded 
from the analysis when one makes a post-Newtonian expansion. To treat it requires 
different te1,;hniques, e.g., those of Chapter 36. 

Conditions 39.7 and 39.8 suggest that one expand the metric coefficients in powers Rules of the expansion 
of the small parameter t:, treating U, v 2 , p/p0

, ti/p0
, and II as though they were 

all of O(t: 2) (often they are smaller ! ), and treating time derivatives as O(t:) smaller 
than space derivatives. 

In this "post-Newtonian" expansion, terms odd in t: (i.e., terms such as 

f po(x ', t)v/x ', t) 3 , M 
3 ---�-- d x ~ -v ~ t: 

Ix - x' I R 
(39.9) 

whose total number of v's and (o/ ot)'s is odd) change sign under time reversal, 

* In the solar system, post-Newtonian corrections due to anisotropic stresses are so much smaller than 
other post-Newtonian corrections that there is no hope of measuring them in the 1 970's For this reason, 
elsewhere in the literature (but not in this book) the PPN formalism treats all stresses at the post-New
tonian level as isotropic pressures, thereby setting to zero the PPN parameter T/ of §§39 .8-39 . 1 1 .  
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whereas terms even in £ do not. Time reversal (x0 = - x 0) also changes the sign 
of g0; (g0; = - g0;), but leaves 

g00 and 
gik 

unchanged. Therefore, 
g0; must contain 

only terms odd in t; whereas 
g00 and 

gik must contain only even terms. (Actually, 
this ceases to be the case when radiation damping enters the picture. In the real 
world one always insists on outgoing-wave boundary conditions . But time reversal 
converts outgoing waves to ingoing waves ; so an extra sign change is required to 
convert back to out. Therefore, radiation damping terms in the near-zone metric 
are even in f for 

g0;, but odd for g00 and 
g

;
k · However, radiation damping does 

not come into play until order t 5 beyond Newtonian theory-see Chapter 36-so 
it will be ignored here.) 

The form of the expansion is already known through Newtonian order (see § 17.4, 
with tJ> replaced by - U) :  Newtonian gravity is only obtained when one demands 
that 

g00 = - 1 + 2 U  + [terms � t 4] , 
g0; = [terms � t 3] ,  
gii = oi; + [terms � t 2]. 

(39 . 10) 

The stated limits on the higher-order corrections are dictated by demanding that 
the space components of the geodesic equation agree with the Newtonian equation 
of motion : 

d2x; ~ d2x; _ - Fi dx a dx/3 ~ 
- F i dx a dx/3 

dt2 ~ dr 2 -
af3 d,,- d,,- ~ af3 dt dt 

= - I' i
oo - 2I' i

ok uk - I'\1uk u1 
= U,; + terms of order { tg0k ,i ; t 2

gk1,; } -

(39 . 1 1 )  

One would get the wrong Newtonian limit if g0k 
were O(t) or greater, and if 

gk1 - ok1 
were 0( 1 )  or greater. 

The above pattern continues on to all orders in the expansion. Thus in the geodesic 
equation, and also in the law of local conservation of energy-momentum ya/3 ;/3 = 0, 
g00 always goes hand-in-hand with tg0k and t 2

g
;k (see exercise 39 .2). Therefore, the 

post-Newtonian expansion has the form summarized in Box 39.3. 

Exercise 39.1.  ORDERS OF MAGNITUDE IN GRAVITATIONALLY 
BOUND SYSTEMS 

Use Newtonian theory to derive conditions (39 .7) for any gravitationally bound system. [Hint : 
Such concepts as orbital velocities, the speeds of sound and shear waves, the virial theorem, 
and hydrostatic equilibrium are relevant.] 

Exercise 39.2. PATTERN OF TERMS IN POST-NEWTONIAN EXPANSION 
Verify the statements in the paragraph following equation (39.11). In particular, suppose 
that one wishes to evaluate the coordinate acceleration, d2x/dt 2 , to accuracy t 2N U,i for some 
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integer N. Show that this undertaking requires a knowledge of g00 to accuracy £ 2N+ z, of 
g0k to £ ZN+ 1, and of g ik to £ ZN. Also suppose that one knows T00 to accuracy p0£ 2N, T0i to 
p0£ 2N+ l, and Tik to p0£ 2N+ Z [see, e.g ., equations (39.13) for N = 0 and (39.42) for N = 2) . 
Show that to calculate T0"' ,a with accuracy £ 2N+ lPo,i and Ti"' ;a with accuracy £ 2N + 2Po,i • 
one must know g00 to £ 2N+ 2, g0k to £ 2N+ i, and gik to c 2N. This dictates the pattern of Box 
39.3. 

§39.7. NEWTONIAN APPROXIM ATION 

At Newtonian order the metric has the form (39 . 10) ;  and the 4-velocity and stress- N ewtonian approximation 
energy tensor have components, relative to the PPN coordinate system, 

u0 = + I +  0(£ 2), 

roo = Po + 0(po£ 2) ,  

ui = V; + 0(£ 3) ;  

TOi = Po Vj + 0(po€ 3), 

(39 . 12) 

(39 . 1 3) 

(see exercise 39 .3). Two sets of equations govern the structure and evolution of the 
solar system. ( 1 )  The Einstein field equations. As was shown in § 1 8 .4, and also in 
§ 1 7 .4, in the Newtonian limit Einstein's equations reduce to Laplace's equation 

which has the "action-at-a-distance" solution 

U( t) = J po(x', t) d3 ' x, 
Ix - x' I 

x . 

(39 . 14a) 

(39 . 1 4b) 

Box 39.3  POST-NEWTONIAN EXPANSION OF THE METRIC COEFFICIENTS 

Level of approximation 
(and papers expanding general 
relativity to this level) 

flat, empty spacetime 

Newtonian approximation 

post-Newtonian approximation 
((Fock ( 1959); Chandrasekhar ( 1965a)) 

post-post-Newtonian approximation 
[Chandrasekhar and Nutku ( 1969)) 

radiation damping 
[Chandrasekhar and Esposito ( 1970)) 

goo 

- I 

2 U  

+ terms ~ c4 

+ terms ~ c 6 

+ terms ~ c 7 

Order or value of terms 

go; gik 

0 0;k 

0 0 

+ terms ~ c 3 + terms ~ c 2 

+ terms ~ c 5 + terms ~ c4 

+ terms ~ c 6 + terms ~ c 5 
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(2) The law of local energy-momentum conservation, ya/3 ; /3 = 0. The time compo
nent of this law reduces to the conservation of rest mass 

op0
/ot + o (p0

vi)/oxi = 0 + fractional errors of O(t: 2) ;  (39 . 1 5 a) 

and the space components reduce to Newton's second law of motion, "F = ma": 

p0 dv/dt = po(o U/oxi) - ot;r.foxk + fractional errors of O(t: 2), (39. 1 5b) 

d/dt (time derivative following the matter) o/ ot + vk o / oxk (39. 16) 

( see exercise 3 9 .3). 
Equations (39 . 14  )-(39 . 1 6), together with equations of state describing the planetary 

and solar matter, are the foundations for all Newtonian calculations of the structure 
and motion of the sun and planets. Notice that the internal energy density p

0
II 

nowhere enters into these equations. It is of no importance to Newtonian hydrody
namics. It matters for the sun's thermal-energy balance ; but that is irrelevant here. 

Exercise 39.3. NEWTONIAN APPROXIMATION 
(a) Derive equations (39 . 1 3) for the components of the stress-energy tensor in the PPN 
coordinate frame. [Hint : In the rest frame of the matter ("comoving orthonormal frame") 
Taa = p = p0 + 0(£ 2) , Ta; = 0, 1}k = t1k ; see equations (39 .5) .  Lorentz-transform these 
components by a pure boost with ordinary velocity - vi to obtain Ta/J •l (b) Show that, in the PPN coordinate frame, T0",« = 0 reduces to equation (39 . 1 5 a) ,  and 
Ti" ,a = 0, when combined with (39 . 1 5 a) ,  reduces to equation (39 . 15b) . ]  
Exercise 39.4. A USEFUL FORMULA 
Derive from equations (39 . 1 5 )  the following useful formula, valid for any function /(x, t) :  

d J . 3 
- J df(x, t )  3 

dt p/x, t )j(x, t) d x - p0 (x, t ) -d-1- d x 

+ fractional errors of 0(£ 2) . 

(39 . 17) 

Here both integrals are extended over all of space ; and dj/dt is the derivative following 
the matter (39 . 16) .  
Exercise 39.5. STRESS TENSOR FOR NEWTONIAN GRAVITATIONAL FIELD 
Define a "stress tensor for the Newtonian gravitational field U" as follows: 

(39 . 1 8) 

Show that the equations of motion for the matter (39 . 1 5b) can be rewritten in the forms 
du .  a 2 Po Tr = - ox k (tik + t1k) + fractional errors of 0(£ ) ,  

( p0 ui) , 1  + (t;k + t;k + p0 uiuk) ,k = 0 + fractional errors of 0 (£ 2) . 

(39 . 1 9) 
(39 . 19 ') 
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Exercise 39.6. NEWTONIAN VIRIAL THEOREMS 
(a) From equation (39.19') show that 

where Iik is the second moment of the system's mass distribution, 

This is called the "time-dependent tensor virial theorem ." 

1 079 

(b) From this infer that, if ( )iong time denotes an average over a long period of time, 
then 

(39 .20b) 

This is called the "tensor uirial theorem." 
(c) By contraction of indices and use of equations (39.18), (39.14a), and (39.Se), derive 

the (ordinary) virial theorems: 

½ d2J/dt2 = J p0 v 2 d3x - J ½ p0 U d3x + 3 J p d3x + fractional errors of 0(£ 2) ,  (39.21a) 

where I is the trace of the second moment of the mass distribution 

I =  J .. = J p r2 d3x· 
1J O ' 

and 

3 f p d3x) . = o (Jp0£4 d3x). (39.21b) 
long time 

2 X (kinetic) + (gravitational) + 3 X (�ressure
) energy energy mtegral 

Exercise 39.7. PULSATION FREQUENCY FOR NEWTONIAN STAR 
Use the ordinary, time-dependent virial theorem (39.21a) to derive the following equation 
for the fundamental angular frequency of pulsation of a nonrotating, Newtonian star: 

w 2 = (3f _ 4) 
! star's self-gravitational energy! . 

1 (trace of second moment of star's mass distribution) ' 

f = (
press�re-w_ei�hted average

)
= JI'1p d3x 

1 of adiabatic mdex - Jp d3x · 

(39.22a) 

(39.22b) 

In the derivation assume that the pulsations are "homologous" -i .e ., that a fluid element 
with equilibrium position x i (relative to center of mass x i = 0) gets displaced to xi + �i(x, t ), 
where 

�i = (small constant)xie-iwt. 

Assume nothing else . Notes: (1) The result (39.22) was derived differently in Box 26 .2 
and used in §24.4. (2) The assumption of homologous pulsation is fully justified if 
II'1 - 4/31 = constant � l ;  see Box 26.2. (3) The result (39 .22) is readily generalized to slowly 
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rotating Newtonian stars; see, e.g., Chandrasekhar and Lebovitz (1968) . It can also be 
generalized to nonrotating post-Newtonian stars using general relativity (Box 26.2), or using 
the PPN formalism for any metric theory [Ni (1973)] . And it can be generalized to slowly 
rotating, post-Newtonian stars [see, e.g., Chandrasekhar and Lebovitz (1968)] . 

§39.8. PPN METRIC COEFFICIENTS 

The post-Newtonian corrections ka/3 to the metric coefficients ga/3 are calculated, 
in any metric theory of gravity, by lengthy manipulations of the field equations. 
(See, e.g. ,  exercise 39. 14 near the end of this chapter for general relativity.) But 
without ever picking some one theory, and without ever writing down any set of 
field equations, one can infer the forms of the post-Newtonian corrections kaf3 · Their 
forms are fixed by the following constraints : ( I )  They must be of post-Newtonian 
order (k00 ~ t: 4 , k0; ~ t:3 , kii ~ t: 2) . (2) They must be dimensionless. (3) k00 must 
be a scalar under rotations, k0; must be components of a 3-vector, and kik must 
be components of a 3-tensor. (4) The corrections must die out at least as fast as 
l /r far from the solar system, so that the coordinates become globally Lorentz and 
spacetime becomes flat at r = oo. (5) For simplicity, one can assume that the metric 
components are generated only by Pa , Pall, t:rf, p, products of these with the velocity 
V;, and time-derivatives of such quantities ; *  but not by their spatial gradients. [This 
assumption of simplicity is satisfied by all metric theories examined up to 1973, 
except Whitehead ( 1922) and theories reviewed by Will ( 1 973)-which disagree with 
experiment.] Note the further justification for this assumption in exercise 39.8.  

Begin with the corrections to the spatial components, kii ~ t: 2 • There are only two 
functionals of Pa , p, II, t;b V; ,  that die out at least as fast as 1 /r, are dimensionless, 
are O(t: 2), and are second-rank, symmetric 3-tensors ; they are 

U . . ( t) = J po(x ', t)(xi - x/)(x; - x/) 
d3 , 

iJ X, 3 X . 
l x - x' I 

(39.23a) 

Thus, kii must be kii = 2y 8ii U + 2I' Uii > for some constant "PPN parameters" y and 
I'. By an infinitesimal coordinate transformation [xi NEw = xi OLD + I' ox/ilxi , with 
x(x, t) = -fpo(x', t) lx - x' I d3x'] one can set I' = 0, thereby obtaining 

(39.23b) 

* One allows for time derivatives because retarded integrals contain such terms when expanded to 
post-Newtonian order; thus, 

J_Po_(x_'_, t_-_lx_-_x_'_I ) d3x ' = J [-Po_(x_'_, t_) _ _ a_Po_(x_'_, t_) + . . .  ] d3x' 
Ix - x' I Ix - x' I o t 

However, it turns out that, with a suitable choice of coordinates ("gauge"),  all time-odd retarded terms 
(e .g , f(op0/0 1) d3x] vanish, except at "the post512-Newtonian order" and at higher orders of approxima
tion; there they lead to radiation dampmg (see Box 39 .3) .  For example, J(ap0/a t)  d3x = (d/dt)f p0 d3x 
vanishes by virtue of the conservat10n of baryon number. 
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Next consider k0i ~ £ 3 . Trial and error yield only two vector functionals that die 
out as 1 /r or faster, are dimensionless, and are 0(£ 3) . They are 

V(x t) = J po(x ', t)v/x', t) J3x' 
J ' I x  - x' I ' 

W( ) _ J po(x ', t)[(x - x') · v(x', t)](xi - x/) d3x ' . x, t -J Ix - x' l 3 

(39 .23c) 

(39 .23d) 

Thus, k0i must be a linear combination of these, involving unknown constants (PPN 
parameters) ..11 and ..12 : 

(39 .23e) 

Finally consider k00 ~ £ 4 . Trial and error yields a variety of terms, which can all 
be combined together with the Newtonian part of g00 to give 

where 

g00 = - 1 + 2 U + k00 = - 1 + 2 U - 2/3 U2 + 4'11 - {cl - r,6]), (39 .23f) 

'¥( t) = J po(x ', t)-.f;(x ', t) d3x' x, 
I x - x' I ' 

If = /31V2 + f32 U + � /33II + � /34p/po , 

d(x t) = J po(x', t)[(x - x') · v(x ', t)]2 
d3x' ' Ix - x' l 3 ' 

[ 1,k (x', t) - ; oikt11(x', t) ] (xi - x/)(xk - x/) 
6J)(x, t) = J I x  - x' l 3 

d3x '. 

(39 .23g)*  

(39 .23h) 

(39 .23i) 

Also, /3, /31 , /32 , /33 , /34 , !;, 1/ are unknown constants (PPN parameters) . Elsewhere 
in the literature the term - r,6]) in g00 is ignored (see footnote on p. 1075) .  

Yet another term is  possible : one could have set 

g00 = [value in equation (39 .23f)] 

- xff po(x ', t)po(x", t)[(x - x') . (x ' - x")]d3x ' d3x " (39 .24) 
I x - x 'I Ix '  - x"l 3 ' 

where X is another PPN parameter. [It can be shown, using the Newtonian equations 
(39 . 14)-(39 . 16), that this expression dies out as 1 /r far from the solar system.] If 

* WARNING: Throughout the literature the notation tf> is used where we use '¥ for the functional 
(39.23g), and q, is  used for our if;. We are forced to violate the standard notation to avoid confusion 
with the Newtonian potential tf> = - U. However, we urge that nobody else violate the standard notation ! 
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such a L term had been included, then one could have removed it by making the 
infinitesimal coordinate transformation 

0 _ 0 _ 2_ L J po(x', t)[(x - x') · v(x ', t)] 3 , X new - X old 2 I X - x' I d X 

(see exercise 39.9). Thus, there is no necessity to include the L term. 

(39.25) 

Rigidity of coordinate system The absence of the L term from g00 means that the time coordinate has been 
fixed rigidly up through post-Newtonian order : 

x 0 has uncertainties only of O(Rof- 5) ~ 10-14 seconds. (39.26a) 

The space coordinates are also fixed rigidly through post-Newtonian order : 

x; has uncertainties only of O(Rof- 4) ~ 0.1 cm, 

because any transformation of the form 

x; 
new = x; 

old + position-dependent terms of 0(£ 2 R0) 

would destroy the form (39.23b) of the space part of the metric. 

(39.26b) 

Summary of P P N  metric and In summary, for almost every metric theory of gravity yet invented, accurate 
parameters through post-Newtonian order the metric coefficients have the form (39.23). One 

theory is distinguished from another by the values of its ten "post-Newtonian 
parameters" /3, /31 , /32, [33 , /34 , y, !;, 'IJ, .::11 and .::12 . These are determined by comparing 
the field equations of the given theory with the form (39.23) of the post-Newtonian 
metric. The parameter values for general relativity and for several other theories 
are given in Box 39 .2, along with a heuristic description of each parameter. 

EXE R C I S E S  Exercise 39.8. ABSENCE OF "METRIC-GENERATES-METRIC" TERMS IN 
POST-NEWTONIAN LIMIT 

In writing down the post-Newtonian metric corrections, one might be tempted to include 
terms that are generated by the Newtonian potential acting alone, without any direct aid 
from the matter. After all, general relativity and other metric theories are nonlinear; so the 
two-step process (matter) -+ U -+  (post-Newtonian metric corrections) seems quite 
natural. Show that such terms are not needed, because the equations (39 . 14)-(39.16) of the 
Newtonian approximation enable one to reexpress them in terms of direct integrals over 
the matter distribution. In particular, show that 

J a2 U(x', t )/ ox/ at d3 , _ 2 [ u( ) W (  )] X - 'TT r i X, t - i X, t 
Ix - x' I  

where i:,; and � are defined by equations (39 .23c,d) ; also show that 

J [ o U(x', t)/ ox/][ o U(x', t )/ ox/] d3x' 
I x - x'I 

(39.27) 

= -2'7T [ U(x, t)]2 + 4'7T f po (x', t) U(x', t) d3x'. (39.28) 
I x - x'I 
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Note that the terms on the righthand sides of (39.27) and (39.28) are already included in 
the expressions (39.23e,f) for g0i and g00. 

Exercise 39.9. REMOVAL OF S TERM FROM g00 

Show that the coordinate transformation (39.25) removes the S term from the metric 
coefficient g00 of equation (39.24), as claimed in the text . 

Exercise 39.10. VERIFICATION OF FORMS OF POST-NEWTONIAN 
CORRECTIONS 

Verify the claims in the text immediately preceding equations (39.23a,b,c,f). 

§39.9. VELOCITY OF PPN COORDINATES RELATIVE TO 
"UNIVERSAL REST FRAME" 

Thus far it has been assumed tacitly that the center of mass of the solar system 
is at rest in the PPN coordinate system. Is this really a permissible assumption? Put 
differently, can one always so adjust the PPN coordinate system that its origin moves 
with any desired velocity (e.g., that of the solar system); or is the PPN coordinate 
system rigidly and irrevocably attached to some "universal rest frame"? 

In general relativity, the geometry of curved spacetime picks out no preferred 
coordinate frames ( except in cases with special symmetry). Therefore, one expects 
the velocity of the PPN coordinate frame to be freely specifiable. Put differently, 
one expects the entire PPN formalism, for general relativity, to be invariant under 
Lorentz transformations of the PPN coordinates [combined, perhaps, with "in
finitesimal coordinate transformations" to maintain the gauge conditions that the 
"L " and " Uik

,, terms of(39.24) and (39.23a) be absent]. By contrast, in Ni's theory 
of gravity (Box 39 .1) the geometry of spacetime always picks out a preferred coordi
nate frame: the "rest frame of the universe." One would not be surprised, in this 
case, to find the PPN coordinate frame rigidly attached to the universal rest frame. 

The above intuition is correct, according to calculations by Will (1971d) and by 
Will and Nordtvedt (1972). When dealing with general relativity and other theories 
with little or no "prior geometry," one can freely specify the velocity of the PPN 
coordinate system (at some initial instant of time). But for theories like Ni's, with 
a preferred "universal rest frame" ("preferred-frame theories"), only in the preferred 
frame can the post-Newtonian metric assume the form derived in the last section 
[equations (39.23)]. This restriction on the PPN metric does not mean that one is 
confined, in preferred-frame theories, to perform all calculations in the universal 
rest frame. Rather, it means that for such theories the PPN metric requires generali
zation to take account of coordinate-frame motion relative to the universal rest frame. 

The required generalization can be achieved by subjecting the PPN metric (39.23) 
to (1) a Lorentz boost from the preferred frame { xgLD } to a new PPN frame { x�rnw},  
which moves with velocity w, plus (2) a change of gauge designed to keep the metric 
coefficients as simple as possible. The boost-plus-gauge-change is [Will and Nordt
vedt (1972)] 

P referred-frame  theor ies of 
g ravity 

Genera l i zat i on  of P P N  metr ic 
to movin g  frames 
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XoLD = XNEW + ; (xNEW . w)w + ( 1 + ; w 2 ) wtNEW (39 .29a) 

+ O(t:: 5/NEW + <:: 4xNEw), 

/OLD = tNEW ( 1 + ; w2 + ¾ w4 ) + ( 1 + ; w2 )xNEW . w 

+ (
2
1 

.::12 + 5 - 1 ) wi +  + 0(<:: 6tNEW + € 5XNEw), (39 .29b) 
OXNEW 

1..____[gauge change] 

X(1NEw, xNEw) - J po(tNEw, xf-rnw) lxNEW - xf,rnwl d3xf-rnw · (39 .29c) 

[Note: One insists, in the spirit of the post-Newtonian approximation, that the velocity 
w of the new PPN frame relative to the universal rest frame be no larger than the 
characteristic internal velocities of the system: 

lw l ::;  t:: . J (39 .30) 

This change of coordinates produces corresponding changes in the velocity of the 
matter 

-
dxoLD - ( • 1 2) 

VOLD - -
d
-- - VNEW 1 - W VNEW - - W 
(OLD 2 

+ w ( l - i w · vNEw) + O(t:: 5) .  (39 .3 1 )  

A long but straightforward calculation (exercise 39. 1 1 ) yields the following compo
nents for the metric in the new PPN coordinates. [Note : The subscripts NEW are 
here and hereafter dropped from the notation.] 

(39 .32a) 

g00 = - 1 + 2 U - 2/3 U2 + 4'11 - ftl - r,6JJ 
+ (a2 + a3 - a 1)w 2 U + (2a3 - a1)wi � - a2wiwk Uik + O(t:: 6) . (39 .32c) 

Here a 1 , a 2, and a3 are certain combinations of PPN parameters 

a l = 7 .::11 + .::12 - 4y - 4, 

a 2 = .::12 + r - 1 ,  

a 3 = 4/31 - 2y - 2 - r 

(39 .33a) 

(39 .33b) 

(39 .33c) 

The "gravitational potentials" U, �, i:t;, '¥, Cl, and 6JJ appearing here are to be 
calculated in the new, "moving" PPN coordinate system by the same prescriptions 
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as one used in the universal rest frame. Thus, their functional forms are the same 
as previously, but their values at any given event are different (see exercise 39.11): 

U(x t) = J po(x', t) d?.x ' · ' I x - x' I ' 

V(x t) = J po(x', t)v/x ', t) d3x ' · 1 ' I x  - x' I  ' 

W( ) = J po(x ', t)[(x - x') • v(x ', t)J(x; - x/) d3x ' . ' x, t 
I ' 1 3 

, 
x - x 

'lr(x, t) = J po(x ', t)i[;(x ', t) d3x ', 
Ix - x'I 

if; = f31v2 + /32 U + ; /33Il + � /34p/po; 

J p (x ', t)[(x - x') • v(x ', t)]2 
tl(x t) = 0 d3x ' · ' Ix - x' l 3 ' 

[ t1t.;(x ', t) - � 8;k t11(x', t)] (x; - x/)(xk - xk') 
61)(x t) = J---------------d3x ' ' I x  - x' l 3 · 

(39.34a) 

(39.34b) 

(39 .34c) 

(39.34d) 

(39.34e) 

(39.34f) 

The quantity U;k is the gravitational potential defined in equation (39.23a): 

U. ( ) _ J po(x ', t)(x; - x;)(xk - X1c) d3 , 
Jk x, t - I ' 1 3 

X • 
x - x 

(39.34g) 

Notice that the velocity w of the PPN coordinate system relative to the universal 
rest frame appears explicitly in the PPN metric only if one or more of the coefficients 
a 1, a 2, a3 , is nonzero. Thus, theories with a1 = a 2 = a3 = 0 (e.g., general relativity) 
possess no preferred universal rest frame in the post-Newtonian limit; all their PPN 
frames are "created equal." By contrast, theories with at least one of a1 , a 2 , a 3 , 

nonzero (e.g., Ni's theory) do possess a preferred frame. 
The generalized form (39 .32) of the PPN metric, by virtue of the process used 

to construct it, is invariant under a Lorentz boost plus a gauge adjustment ["Post- Post-Ga l i l ean i nvar iance 
Galilean transformation"; see Chandrasekhar and Contopolous (1967)]: 

XoLD = XNEW + ; (xNEW . /3)/3 + ( 1 + ; /3 2 } f1tNEW 

+ O(£ 5tNEW + € 4XNEw), 

/OLD = ( 1 + ; /3 2 + � /34 ) (NEW + ( 1 + ; /3 2 ) XNEW • /3 

+ (;  Ll2 + f1 - 1 } 13  · VNEwX + O(£ 6tNEw + £ 5xNEw)

Of course, it is also invariant under spatial rotations. 

(39 .35) 
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Exercise 39 . 1 1 .  TRANS FO R MATI O N  TO M OVI N G  FRAM E 
Show that the change of coordinates (39 .29) changes the PPN metric coefficients from the 
form (39.23) to the form (39.32). [Hints :  (1) Keep firmly in mind the fact that the potentials 
U, v;, �, {l, and 6j} are not scalar fields. Each coordinate system possesses its own potentials. 
For example, by using equations (39.29) in the integral for U0LD, one finds 

U ( ) J. Po (XoLD, foLD) d3 , 
OLD XoLD ' 1oLD = I _ , I XoLD 

XoLD XoLD 
(39 .36) 

= [ UNEW - wj( v; NEW - � NEW) + ½ wj WkX,jk ] + 0 (€ 6) .  
XNEW, t NEW 

(2) The law of baryon conservation (39.44) may be useful .] 

§39 .10 . PPN STRESS-ENERGY TENSOR 

The motion of the solar system is governed by the equations ra/3 ; /3 = 0. Before 
studying them, one must calculate the post-Newtonian corrections to the stress-energy 
tensor in the PPN coordinate frame. This requires a transformation from the comov
ing, orthonormal frame wa , where 

r00 = p/I  + II), r0J = o, TJfc - t-, - j,c , (39.37) 

to the coordinate frame. One can effect this transformation in two stages : stage 2 
is a transformation 

(39 .38a) 

(39.38b) 

between the coordinate frame and an orthonormal frame attached to it ; stage I is 
a pure Lorentz transformation (boost) between the two orthonormal frames w;;_ and 
wa. The 4-velocity of this boost is minus the 4-velocity of the matter, which has 
components 

in coord. frame; (39 .39) 

uT = v7u0, u0 = I + _!_ v2 + O(£ 4),
l 2 in w;;_ frame. 

v7 = vi [ I  + (1 + y) U] 
(39.40) 

Combining the boost, which has ordinary velocity /37 = - vy, with the transformation 
(39.38), and then inverting, one obtains the result (exercise 39. 12) 
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{w /3 = orthonormal comoving basis, 
dx a = PPN coordinate basis ; 

1 Aoo = 1 + 2 v
z + U + O(t:: 4), 

A01 = vi [ 1 + ; v 2 + (2 + y) U  ] - � L11 17; - � L12 � 

+ (az - ; a1 ) wj U - azwk ukj + O(t:: 5) , 

Ai0 = vi [ l + ; u 2 + u] + O(t:: 5) ,  

1 08 7  

(39.4 1 )  

This transformation, when applied to  the stress-energy tensor (39.37) yields, in the 
PPN coordinate frame, 

yoo = po(l + II + v2 + 2 U) + O(p0t:: 4), 

T0i = po(l + II + v2 + 2 U)vj + t1,;,,Vm + O(p0t:: 5) ,  

yik = t;r.:(l - 2y U) + po(l + II +  u 2 + 2 U)vivk 
1 + 2 (v/b,.vm + vkt1,;,,Vm) + O(p0t:: 6) .  

Exercise 39.12. THE TRANSFORMATION BETWEEN COMOVING FRAME 
AND PPN FRAME 

(39.42a) 

(39.42b) 

(39.42c) 

Carry out the details of the derivation of the transformation matrix (39 .41); and in the process 
calculate the correction of 0(€ 4) to A0

6 . 

§39 .11. PPN EQUATIONS OF MOTION 

The post-Newtonian corrections to the Newtonian equations of motion (39. 15 )  and 
(39. 16) are derived from the law of conservation of baryon number (p0

u a) ; a = 0, 
and from the law of conservation of local energy-momentum, ya/3 ; /3 = 0. The 
simplest of the equations of motion is the conservation of baryon number. Its exact 
expression is (p0u a) . a = (l / �)( �p0u a) a = 0. Define a new quantity 

' ' 

p* p0 ( 1 + ; v2 + 3y U) (39.43) 

= PoU O � + O(pot:: 4) 

Transfo rmation  from rest 
frame of matter to PPN  
coord i nate frame 

Stress-energy tensor i n  
coord i nate frame 

EXERCISE 
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[see (39 .39) for u0, and (39 .32) for the metric] . Then rest-mass conservation takes 
on the same form as at the Newtonian order (39 . 1 5 a) ,  except now it is more accurate : 

(39 .44) 

The next simplest equation of motion is T0'\,. = 0. Straightforward evaluation, 
using the metric of equations (39 .32) and the stress-energy tensor of equations (39 .42), 
yields 

( po(l + II +  v2 + 2 U)l , t + ( po(l  + II + v2 + 2 U)vi + t.imvm J ,i 

+ (3y - 2)po U, t + (3y - 3)povk u,k = O(Po ,l 5) . (39 .45) 

By subtracting equation (39 .44) from this, and using the Newtonian equations of 
motion (39 . 1 5) and (39 . 16) to simplify several terms where the Newtonian approxi
mation is adequate, one obtains 

p0 dII I dt + ljt,;Vj,k = 0 + errors of O(Po ,l- 5) . (39 .46) 

Notice that this is nothing but the first law of thermodynamics (local energy conser
vation) with energy fl.ow through the matter being neglected. (Neglecting energy 
flow was justified in §39.5 .) This first law of thermodynamics is actually a post-New
tonian equation in the context of hydrodynamics, rather than a Newtonian equation, 
because II does not affect the hydrodynamic motion at Newtonian order (see §39 .7). 

The last of the equations of motion, Tia ;a = 0, reduces to the post-Newtonian 
Euler equation 

du - ( 1 ) t,- tu 1 p * -;t - p * U,i + (t11,;( l  + 3y U)],k - t.ik,k 2 v2 + II - y  
+ p* i [ (2y + 2) Uvj - ; (7 Lil + Ll2) V; - ; <X 1 Uwj] - vjp* u, t + vktki, t 

+ ; Ll2 p*( V; - �). i  + ; p* ((7 Ll1 + Ll2)vk + (a:1 - 2a3)wk J Vk ,j 

- p* [ 2'¥ - ; 5{! - ; 176]) - ; <X 2WiWk Uik + <X 2w/ v; - Jr'.;)] _ 
,J 

(39 .47) 

- p* u,j [ yv2 - ; <X 1W · V + ;  (a 2 + <X 3 - <X 1)w 2 - (2/3 - 2) U + 3yp/p*]  

Partial derivatives are denoted by commas; d/ dt i s  the time-derivative following the 
matter [ equation (39 . 16)] .  

Equations (39 .44), (39 .46), and (39 .47) are a complete set of equations of motion 
at the post-Newtonian order. 
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Exercise 39.13. EQUATIO NS O F  M OTIO N EXE R C I S ES 

Carry out the details of the derivation of the equations of motion (39.44) , (39.46). and (39 .47) . 
As part of the derivation, calculate the following values of the Christoffel symbols in the 
PPN coordinate frame: 

+ cxzwi Ui(i,k> + 0( Uf3) .  

- u,i + [ ( .8 + y) U 2 - 2'¥ + ½ ta' + ½ 116l) + ½ (cx1 - CXz - CX3)w 2 U 

1 1 ] 7 1 + 2 (cx1 - 2cx3)wJ i  + 2 cxzwiwk Uik . - z Ll1 �,t - 2 Ll2 �,t 
,J 

+ (cx2 - ½  cx1) w; U,t - cxzwi Uii,t + 0( U,;£4) ,  

I' iok = y U,t 8ik - (f ..::11 + ½ ..::12) Vii,kl - ½ cx1wu U,kl + 0( U,;£3 ) ,  

I' \1 = -y( U,i 8k1 - 2 U,(k 81)j) + 0( U,;£2 ). 

(39 .48) 

Here square brackets on tensor indices denote antisymmetrization, and round brackets denote 
symmetrization .  As part of the derivation, it may be useful to prove and use the relations 

x(t , x) = -J p.(t, x') lx - x'I d3x', (39.49a) 

Wrk,)1 = Vik,j) ·  

Here x is the function originally defined in equation (39.29c) . 

(39.49b) 

(39.49c) 

(39.50) 

Exercise 39.14. PO ST-NEWTO NIAN AP PROXIMATIO N TO GENERAL RELATIVITY 

Perform a post-Newtonian expansion of Einstein's field equations, thereby obtaining the 
values cited in Box 39 .2 for the PPN parameters of general relativity . The calculations might 
best follow the approach of Chandrasekhar (1965a) : Set go:/3 = "1o:f3 + ho:/3 ' and assume 

Choose the space and time coordinates so that the four "gauge conditions" 

h -k k - .!.. h . = 0( € 
4 / R0) l J ' 2 ,J 

l 
with h = ho:t311 °'/3 = -h00 + h11 

hok,k - 2 hkk,o = 0(€ 5 I Ro) 

are satisfied . 

(39.51) 

(39.52) 

(a) Show that the spatial gauge conditions are the post-Newtonian approximations to those 
(35.1 a) used in the study of weak gravitational waves, but that the temporal gauge condition 
is not . 
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(b) Use these gauge conditions and the post-Newtonian limit in equations (8.24) and (8.47) 
to obtain for the Ricci tensor, accurate to linearized order, 

(39.53b) 

(c) Combine these with the Newtonian form (39.13) of the stress-energy tensor, and with 
equation (39.27), to obtain the following metric coefficients, accurate to linearized order: 

h00 = 2 U + k00 + 0(€ 6) ,  h0i = - f  Vj - ½ w; + 0(€ 5) ,  

Lrunknown post-Newtonian correction] 

hjk = 2 U 8jk + 0(€ 4). 

(39.54) 

Here U, Vj, and w; are to be regarded as defined by equations (39.34a,b,c) . By comparing 
these metric coefficients with equations (39.32), discover that 

y = I , Ll 2 = I (39.55) 

for general relativity. 
( d) With this knowledge of the metric in linearized order, one can carry out the analysis 

of §39.10 (using y = Ll1 = Ll2 = I throughout), to obtain the post-Newtonian corrections to 
the stress-energy tensor [equation (39.42) with y = I] .  

( e)  Calculate, similarly, the post-Newtonian corrections to the Ricci tensor component R00, 

using ga/J = 11«/l + ha/J , using ha/J as given in equations (39.54), and using the gauge conditions 
(39.52) . The answer should be 

R00 = ( - u - ½ k00 - u2 ) + 4 UU,mm + 0(€ 6/R0
2

) .  
,mm 

(39.56) 

(f) Evaluate the Einstein equation R00 = 8'1T(T00 - ½g00
T), accurate to post-Newtonian 

order, and solve it to obtain the post-Newtonian metric correction 

k00 = -2 U2 
+ 4'1', (39.57) 

where 'Y is given by equation (39.43d) with /31 = /32 = /33 = /34 = 1. By comparing with 
equations (39.32c) and (39.34d), discover that 

(39 .58) 

for general relativity . 
(g) Knowing the full post-Newtonian metric, and the full post-Newtonian stress-energy 

tensor, one can carry out the calculations of §39.11 (using y = /3 = /31 = /32 = /33 = /34 = 
Ll1 = Ll2 = 1, t = 1) = 0) to obtain the post-Newtonian equations of motion for the matter 
[equations (39.44), (39.46), and (39 .47)] . 
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§39.12. RELATION OF PPN COORDINATES TO 
SURROUNDING UNIVERSE 
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One crucial issue remains to be clarified: What is the orientation of the PPN coon.li
nate system relative to the surrounding universe? More particularly: Does the PPN 
coordinate system rotate relative to the "fixed stars on the sky; " or is it "rigidly 
attached" to them, in some sense? In order to answer this question, imagine using 
the PPN formalism to analyze the solar system. Make no assumptions about the 
solar system's velocity through the PPN coordinate frame. Then, as one moves 
outward from the Sun, past the Earth's orbit, past Pluto's orbit, and on out toward 
interstellar space, one sees the PPN coordinate frame become more and more 
Lorentz in its global properties [g",a = 1/a,a + O(M0/r)]. Thus, far from the solar 
system the PPN coordinates become a "Lorentz frame moving through the galaxy." 
This means, of course, that the spatial axes of the PPN coordinate frame behave 
as though they were attached to gyroscopes far outside the solar system. Equivalently : 
The PPN coordinate system Fermi-Walker-transports its spatial axes through the 
spacetime geometry of the galaxy and universe. 

§39.13. SUM M ARY OF PPN FORMALISM 

The PPN formalism, as constructed in this chapter, is summarized in Box 39.4. Much 
of the recent literature uses a different set of PPN parameters than are used in this 
book; for a translation from one parameter set to the other, see Box 39.5 . 

Exercise 39.15. MANY-BO DY SYSTEM IN POST-NEWTO NIAN LIMIT 
O F  GENERAL RELATIVITY 

Consider, in the post-Newtonian limit of general relativity, a system made up of many 
gravitationally interacting bodies with separations large compared to their sizes (example: 
the solar system) . Idealize each body to be spherically symmetric, to be free of internal 
motions, and to have isotropic internal stresses, t;fc = 8ikP · Let the world line of the center 
of body A, in some chosen PPN coordinate frame, be xA (t ) ;  and let the (coordinate) velocity 
of the center of body A be 

(39 .59a) 

The total mass-energy of body A as measured in its neighborhood (rest mass-energy plus 
internal energy plus self-gravitational energy) is given by 

(39.59b) 

where Uself is the body's own Newtonian potential (no contributions from other bodies), 
and o/A is the interior of the body. 

(continued on page 1094) 

Solar system 's P P N  
coordinate frame is attached 
to a local Lorentz frame of 
Galaxy 

EXERCISE 
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Box 39 .4 S U M MARY O F  THE PPN FORMALI S M  

I. Variables 

p/x, t ) :  baryon "mass" density (§39.3), as measured in rest frame 
II(x, t ) :  specific internal energy (dimensionless ; §39.3), as measured in rest frame 
t;1;;( x, t ) :  components of stress referred to orthonormal axes of rest frame 
v;(x, t ) :  coordinate velocity of matter (i.e. , rest frame) relative to PPN coordinates 
U(x, t), '¥ (x, t), tl(x, t), 61)(x, t), V;(x, t), W;(x, t), U;k (x, t ) :  gravitational potentials 
Y, /3, /31 , /32 , /33 , /34, L11 , L12 , !;, 'I/ :  parameters whose values distinguish one theory 

from another (see Box 39.2) 
w: velocity of PPN coordinate frame relative to "universal rest frame" [relevant 

only for theories with nonzero a 1 , a 2, or a 3 ; see eq. (39.33)]. 

II. Equations governing evolution of these variables 

p0
: conservation of rest mass, equation (39.44) 

II : first law of thermodynamics, equation (39.46) 
life : determined in terms of p0 , II, and other material variables (chemical composi

tion, strains, etc.) by equations of state-- and the usual theory of a stressed 
medium-which is not discussed here 

v;: equations of motion ("F = ma"), equations (39.47) 
U, '¥, tl, 61), V;, W;, Uik : source equations (39.34) 

III. Quantities to be calculated from these variables 

g00(x, t), g0; (x, t), gik (x, t ) :  these components of metric in PPN coordinate frame 
are expressed in terms of gravitational potentials by equations (39.32) 

u0(x, t), ui(x, t) : these components of matter 4-velocity in PPN coordinate frame 
are given by equations (39.39) 

r00(x, t), T0i(x, t), Tik (x, t): these components of stress-energy tensor in PPN 
coordinate frame are given by equations (39.42) 

IV. Relation between rest frame, PPN coordinates, and the universe 

1. Orthonormal basis wa of rest frame, where t;" are defined, is related to PPN 
coordinate basis dx a by equations (39.4 1 )  

2 .  Far from the sun, the PPN coordinates become asymptotically Lorentz; i.e. , 
they form an inertial frame moving through the spacetime geometry of the 
galaxy and the universe. 

3. Gives no account of expansion of universe or of cosmic gravitational waves 
impinging on solar system. 
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Box 39.5 P P N  PARAMETERS USED IN LITERATURE: A TRANSLATOR'S GUIDE 

The original "point-particle version" of the PPN formalism [Nordtvedt ( 1968b)], and 
the original "perfect-fluid version" (Will ( 197 l c)] used different sets of PPN param
eters. This book has adopted Will's set, and has added the parameter r, character
izing effects of anisotropic stresses. More recently, Will and Nordtvedt have jointly 
adopted a revised set of parameters, described below. 

A.  Trans lat ion Table 

Wi/1-Nordtvedt Revised parameters in Revised parameters in 
revised parametersa notatJOn of this bookh notatJOn of Nordtvedt ( 1 9 68b} ° 

y y y 

/3 /3 /3 

lY1 7 L11 + L12 - 4y - 4 8 L1 - 4y - 4 

l\'.2  L12 + 1 - l  a "' - I 

0'.3 4/31 - 2y - 2 - 1 4a " - a '" - 2y - I 

11 i a "' - X 

12 2/J + 2{32 - 3y - I 2/3 - a ' - I 

53 /33 - I absent 

54 /34 - y absent 

a Revised parameters are used by Will and Nordtvedt ( 1 972), Nordtvedt and Will ( 1 972), Will ( 1 972), and Ni ( 1973) 
h Notation of this book is used by Will ( 197l a,b,c,d), Ni ( 1 972), and Thorne, Ni, and Will ( 1 97 1 )  
c Nordtvedt's original "point-particle" parameters were used b y  Nordtvedt ( 1968b, 1970, 197 l a,b). 

B. Sign i ficance of Revised Parameters 

a1 , a 2 , a 3 measure the extent of and nature of "preferred-frame effects" ;  see §39.9. 
Any theory of gravity with at least one a nonzero is called a preferredjrame theory. 

{ 1 , { 2 , f 3 , f 4 , a 3 measure the extent of and nature of breakdowns in global conser
vation laws. A theory of gravity possesses, at the post-Newtonian level, all IO global 
conservation laws (4 for energy-momentum, 6 for angular momentum; see Chapters 
19 and 20) if and only if {1 = {2 = {3 = {4 = a3 = 0. See Will ( 197 1 d), Will and 
Nordtvedt (1 972), Will (1 972), for proofs and discussion. Any theory with r 1 = {2 
= { 3 = {4 = a3 = 0 is called a conservative theory. 

In general relativity and the Dicke-Brans-Jordan theory, all a 's and r 's  vanish. 
Thus, general relativity and Dicke-Brans-Jordan are conservative theories with no 
preferred-frame effects . 
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(a) Show that, when written in the chosen PPN coordinate frame, this expression for 
MA becomes 

(39.59c) 

Use equations (39.43), (39.44), and (39.46) to show that MA is conserved as the bodies move 
about, dMA/dt = 0. 

(b) Pick an event (t, x) outside all the bodies, and at time t denote 

(39.59d) 

Show that the general-relativistic, post-Newtonian metric (39.32) at the chosen event has 
the form 

(39.60a) 

(39.60b) 

(39 .60c) 

[Hint: From the Newtonian virial theorem (39.21a), applied to body A by itself in its own 
rest frame, conclude that 

(39 .61) 

where the integral is performed in the PPN frame.] 
(c) Perform an infinitesimal coordinate transformation, 

(39.62) 

to bring the metric (39.60) into the standard form originally devised by Einstein, Infeld, and 
Hoffman (1938), and by Eddington and Clark (1938): 

(39.63a) 

(39.63b) 

(39.63c) 
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where x (equation (39.49a)] is given by 

1 0 9 5  

( d) The equations of motion for the bodies can be obtained in either of two ways: by 
performing a volume integral of the Euler equation (39.48) over the interior of each body ; 
or by invoking the general arguments of §20.6. The latter way is the easier. Use it to conclude 
that any chosen body K moves along a geodesic of the metric obtained by omitting the terms 
A = K from the sums in (39.63). Show that the geodesic equation for body K reduces to 

d
2

�K = dvx = L rAK 
M

� [1 - 4 L MB - L Mc ( i -
rAx · rgA ) dt dt A -/ K rAK B -/ K rBK C -/ A rcA 2rcA 

+ v 2 + 2v 2 - 4v • v - - � 3 ( V • r )2 ] 
K A A K 2 rAK 

(39.64) 

Equations (39.63) and (39.64) are called the Einstein-Infeld-Hoffman ("EIH") equations for 
the geometry and evolution of a many-body system. They are used widely in analyses of 
planetary orbits in the solar system. For example, the Caltech Jet Propulsion Laboratory uses 
them, in modified form, to calculate ephemerides for high-precision tracking of planets and 
spacecraft. The above method of deriving the EIH equations and metric was devised by 
Pock (1959). For a similar calculation in the Dicke-Brans-Jordan theory, see Estabrook 
(1969) ; and for a derivation of the analogous many-body equations in the full PPN formalism, 
see Will (1972). 



CHAPTER 40 
SO LAR-SYSTEM EXP E R I M ENTS 

This chapter analyzes 
experiments using P P N  
formalism 

Complexity of solar system's 
spacetime geometry 

§40 . 1 .  MANY EXPER I M ENTS O P E N  TO D ISTI N G U I S H  
G EN E RAL R E LATIVITY F R O M  PROPOSED 
M ETR I C  TH EO R I ES O F  G RAVITY 

No audience will show up for a fight if in everyone's eyes the challenger has zero 
chance to win. No battle-hungry promoter desperately trying to finance the fight 
can afford to put into the ring against the champion any but the best contender 
that he can find. Against Einstein's metric theory of gravity, the judgment of the 
day ( as §39 .2 showed) leaves one no option except to put up another theory of gravity 
that is also metric ( or metric plus torsion). 

To put on a contest, then, is to design and perform an experiment that distinguishes 
general relativity from some not completely implausible metric theory of gravity. 
This chapter describes such experiments-some already performed; some to be 
performed in the future-and analyses their significance using the PPN formalism 
of Chapter 39. 

In most of the experiments to be described, one investigates the motion of the 
moon, planets, spacecraft, light rays, or gyroscopes through the spacetime geometry 
of the solar system. That spacetirne geometry is very complicated. It includes the 
spherical fields of the sun and all the planets, nonspherical fields due to their 
quadrupolar and higher-order deformations, and fields due to their momentum and 
angular momentum. Moreover, the spacetime geometry results-or at least in the 
post-Newtonian formalism it is viewed as resulting-from a nonlinear superposition 
of all these fields.* 

* Of course, from the point of view of Einstein's full general relativity theory, all that legalistically 
counts is the one and only curved-spacetime geometry of the real physical world. All these "individual 
fields" are mere bookkeepers' discourse, and they are best abandoned (they cease to be useful) when 
one passes from the post-Newtonian limit to the full Einstein theory. 
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Fortunately for this discussion, several of the most important experiments are free 
of almost all these complications. The effects they measure are associated entirely 
with the spherical part of the sun's gravitational field. A description of these experi
ments will come first (§§40.2-40.5), and then attention will tum to experiments that 
are more complex in principle. 

To discuss central-field experiments, one needs an expression for the external 
gravitational field of an idealized, isolated, static, spherical sun. In general relativity, 
such a gravitational field is described by the Schwarzschil<l line element, 

ds2 = - 1 - --0 dt2 + ---- + r2(d02 + sm2<t> d<f>2). ( 2M ) dr2 

r l - 2M0/r 

But this line element is not what one wants, for two reasons: (1) it is "too accurate"; 
(2) it is written in the "wrong" coordinate system. 

Why too accurate? Because it is simple only when unperturbed and unmodified; 
whereas some modified theories show up new effects that are so complex they are 
tractable only in the post-Newtonian approximation. Why wrong coordinate system? 
Because physicists, astronomers, and other celestial mechanics have adopted the 
fairly standard convention of using "isotropic coordinates" rather than "Schwarzs
child coordinates" when analyzing the solar system. Example: post-Newtonian 
expansions, including the PPN formalism of Chapter 39, almost always use isotropic 
coordinates. Another example: the relativistic ephemeris for the solar system, pre
pared by the Caltech Jet Propulsion Laboratory [Ohandley et al. (1969); Anderson 
(1973)] and used extensively throughout the world, employs isotropic coordinates. 

Modify the Schwarzschilct° line element, then. First transform to isotropic coordi
nates (Exercise 31.7); then expand the metric coefficients in powers of M0/r, to 
post-Newtonian accuracy. Thereby obtain 

ds2 = - [ 1 - 2 �o + 2 (�or] dt2 + [ 1 + 2 �0 ] [dr2 + r2(d02 + sin20 d<f>2)] 

2 (40.1) 
= - [ 1 - 2 �o + 2 ( �o} ] dt2 + [ 1 + 2 �0 ] [dx2 + dy2 + dz2] .  

Here r,  0, <t> are related to x, y, z in the usual manner: 

r = (x2 + y2 + z2)ll2, 0 = tan-l[z/(x2 + y2)ll2], <f> = tan-1(y/x); (40.2) 

and r is the new, "isotropic" radial coordinate, not to be confused with the 
Schwarzschild r. (The reader who has not studied §39.6 will discover in the next 
section why one keeps terms of order M0

2/r2 in g00 but not in g;k ·) Note: this post
Newtonian expression for the metric is a special case of the result derived in 
exercise 19.3 . 

If one calculates the gravitational field of the same source (the sun) in the same 
post-Newtonian approximation in other metric theories of gravity, one obtains a 
very similar result : 

I dealization of geometry to 
that of isolated , static, 
spherical sun 

( 1 )  in Schwarzschild 
coordinates 

(2) in isotropic coordinates 



(3)  i n  PPN formal ism 

(4) i nclud ing preferred-frame 
effects 
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(see exercise 40. 1). Here y and /3 are two of the ten PPN parameters described in 
Box 39.2. Recall from that box that y measures "the amount of space curvature 
produced by unit rest mass," while /3 measures "the amount of nonlinearity in the 
superposition law for g00." These heuristic descriptions find their mathematical 
counterparts in the above form for the idealized metric surrounding a spherically 
symmetric center of attraction. 

By measuring the parameter y to high precision, one can distinguish between 
general relativity (y = I) and the Dicke-Brans-Jordan theory [y = (I + w)/(2 + w), 
where w is the "Dicke coupling constant"] ; see Box 39.2. But general relativity and 
Dicke-Brans-Jordan predict the same value for /3 (/3 = I). This identity does not 
mean that /3 is unworthy of measurement. A value /3 i= I is predicted by other 
theories [see Ni (1972)] ;  so measurements of /3 are useful in distinguishing such 
theories from general relativity. 

Actually, the above form (40.3) for the sun's metric is not fully general. In any 
theory with a preferred "universal rest frame" (e.g., Ni's theory; Box 39. l), there 
are additional terms in the metric due to motion of the sun relative to that preferred 
frame (exercise 40. l): 

(40.3') 

In these "preferred-frame terms" 10 I;; = f pr2 d3x is the trace of the second 
moment of the sun's mass distribution; 

al = 7 L11 + L12 - 4-y - 4, 

a 2 = L12 + !; - I ,  

a 3 = 4/31 - 2-y - 2 - S 

are combinations of PPN parameters; and w is the sun's velocity ( velocity of 
coordinate system) relative to the preferred frame. (Theories such as general relativity 
and Dicke-Brans-Jordan, which possess no preferred frame, have a1 = a2 = a3 = 0, 
and therefore have no preferred-frame terms in the metric.) For ease of exposition, 
all equations and calculations in this chapter will ignore the preferred-frame terms ; 
but the consequences of those terms will be discussed and references analyzing them 
will be cited. 
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Exercise 40. 1 .  P P N  M ETR I C  FOR  I D EALIZED S U N  [Track 2] 

1 099  

Show that for an isolated, static, spherical sun at rest at the origin of the PPN coordinate 
system, the PPN metric (39 .32) reduces to expressions (40.3), ( 40.3') .  As part of the reduction, 
show that the sun's total mass-energy is given by 

(40.4) 

[ Warning: One must not look at this formula and immediately think : "The contribution of 
rest mass is f p047Tr2 dr, the contribution of gravitational energy is f2f32p0 U47Tr2 dr, etc." 
Rather, in making any such interpretation one must remember that (1) spacetime is curved, 
so 47Tr2 dr is not proper volume as measured by physical meter sticks ; also (2) virial theorems 
( exercise 39 .6) and other integral theorems can be used to change the form of the integrand. 
For further discussion see exercises 40.9 and 40.10 below.] 

§40.2 . THE USE OF LIGHT RAYS AND RADIO WAVES 
TO TEST GRAVITY 

In the Newtonian limit, planetary and spacecraft orbits are strongly influenced by 
gravity; but light propagation and radio-wave propagation (at "infinite " velocity) 
are not influenced at all. For this reason, experimental studies of orbits are beset 
by the problem of separating the relativistic effects from much larger standard 
Newtonian effects. By contrast, experimental studies of light and radio-wave propa
gation do not contend with any such overpowering Newtonian background. Not 
surprisingly, they are to date (1973) the clearest and most definitive of the solar
system experiments. 

Mathematically, the parameter that distinguishes a light ray from a planet is its 
high speed. In the geodesic equation, the magnitude of the velocity determines which 
metric coefficients can influence the motion. Consider, for example, a weak, static 
field ga/3 = '11af3 + ha/3 • and a particle at (x,y, z) = (r, 0, 0) moving with velocity 
(v,,,, v

y
, vz) = (0, v, 0); see Figure 40.1. Here the effect of gravity on the trajectory 

of the particle can be characterized by the quantity 

(curvature of trajectory in 3-dimensional,) = (radius of curvature)
-1 

nearly Euclidean, space of trajectory 
d2x dr d ( dr dx ) I d ( u

x
) I dua: = 

dy
2 = 

dy dr dy dr 
= u Y dr uY = 

(u Y)2 dr 
(I - v2) dxa dx /3 I dxa dx /3 

= - ---- r x -- -- - - - r x 
v2 a/3 dr dr v2 a/3 dt dt 

= -I'a:
oo

V-2 - 2I'a:
oy

V-1 - rx
yy 

= ; h00,a:v-2 + (h
ou,a: - h

oa:,y
)v-1 + (½hvv,a: - ha:v ,v ) . 

EXERCISES 

Light rays and radio waves 
give "clean" tests of 
relativity 



L ight rays are governed 
solely by N ewtonian potential 
and PPN parameter y 
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y Here the trajectory as described 
in isotropic coordinates has 

(radius of curvature)-1 

= hoo.r + (hq, ¢ /  r2 ). r 
2u2 2 

= _ M0(..!_ + y) 
r2 u2  
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�------+--------l► X 

Sun 
Figu re 40. 1. 
The bending of the trajectory of a test body at 
its point of closest approach to the sun, as a 
function of its 3-velocity. (See text for computa
tion and discussion.) 

Reexpressed in spherical coordinates, in the terminology of the idealized solar line 
element (40.3), this formula says 

(�urvature of trajectory) = _!_ h v-2 + l_ (h jr2) m 3-space 2 OO,r 2 ¢¢ ,r 

;::::; -(Mo/r2)(v-2 + y) 
(40.5) 

for a particle at its point of closest approach to the sun. (Compare with exercise 
25.21.) Note that here y is a PPN parameter; it is not (I  - v2)-11 2 . 

Notice what happens as one boosts the velocity of the particle. For slow velocities 
[v2 ~ (post-Newtonian expansion parameter £ 2) ;::::;  M0/ R0], the Newtonian part of 
h00 dominates completely; and the tiny post-Newtonian corrections come equally 
from the t:: 4 part of h00 , the £ 3 part of h0;, and the £ 2 part of h;k · [This was the 
justification for expanding h00 to O(t:: 4) , hu; to 0(£ 3) ,  and h;k to O(t:: 2) in the post
Newtonian limit; see §39.6.] But as v increases, the ordering of the terms changes. 
In the high-v regime (v ~ I ► £ 2),  the bending of the trajectory has become almost 
imperceptible because of the high forward momentum of the particle and the short 
time it receives transverse momentum from the sun. What bending is left is due 
to the £ 2 (Newtonian) part of h00 , and the t:: 2 (post-Newtonian) part of h;k · Nothing 
else can have a significant influence. Notice, moreover, that-even when one allows 
for "preferred-frame" effects-these dominant terms, 

depend only on the Newtonian potential U -<P and the PPN parameter y. 
This is a special case of a more general result : Aside from fractional corrections 

of £ 2 � 10-6, relativistic effects on light and radio-wave propagation are governed 
entirely by the Newtonian potential U and the PPN parameter y. These relativistic 
effects include the gravitational redshift ( discussed in the last chapter ; independent 
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of y ), the gravitational deflection of light and radio waves ( discussed below; depend
ent on y), and the "relativistic time-delay" (discussed below; dependent on y). 

§40 . 3 .  " LI G HT" D E F LECT I O N  

Consider a light or radio ray coming into a telescope on Earth from a distant star Light deflection · 
or quasar. Do not assume, as in the usual discussion (exercises 1 8 .6 and 25 .24), that 
the ray passes near the sun. The deflection by the sun's gravitational field will 
probably be measurable, in the middle or late 1 970's, even when the ray passes far 
from the sun! [The calculation that follows is due to Ward (1 970), but Shapiro (1967) 
first derived the answer.] 

Orient the PPN spherical coordinates of equation (40 .3) so that the ray lies in ( 1 )  derivation 
the "plane" 0 = 'TT /2 . By symmetry, if it starts out in this plane far from the Earth, 
it must lie in this plane always. Let the incoming ray enter the solar system along 
the line cf> = O ; and let the Earth be located at r = rE, cf> = cf>E when the ray reaches 
it. (See Figure 40 .2.) One wishes to calculate the angle a between the incoming light 
ray and the center of the sun, as measured in the orthonormal frame (e,., e¢) of 
an observer on Earth. If the sun had zero mass (flat, Euclidean space), a would 
be 'TT - cf>E (see Figure 40.2). However, the sun produces a deflection:  a = 'TT - cf>E + oa . The deflection angle oa is the true objective of the calculation. 

In the calculation, ignore the Earth's orbital and rotational motions. They lead 
to aberration, for which correction can be made by the usual formula of special 
relativity (Lorentz transformation in the neighborhood of the telescope.) Also ignore 
deflection of the light ray due to the Earth's gravitational field ( deflection angle ~ 
2ME/ RE ~ 0".0003), which might be detectable in the late 1 970's. 

Figure 40. 2 .  
Coordinates used rn the text for calculating the deflec
tion of light. Notice that in this diagram q, increases 
in the clockwise direction. 
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As the first step in calculating the deflection angle, determine the trajectory of 
the ray in the r, </>-plane. This can be calculated either using the geodesic equation, 
or using the eikonal method of geometric optics (Hamilton-Jacobi method; §22.5 
and Box 25.4). The result of such a calculation (exercise 40.2) is an equation con
necting r with </>; thus, 

b . (1 + y)M0 --; = Slll </> + 
b 

(1 - COS </>). (40.6) 

Notice that b has a simple geometric interpretation: far from the sun, the ray 
trajectory is </> = b/r + O (M0b/r2) . Consequently, b is the impact parameter in the 
usual sense of classical scattering theory (see Figure 40.2). The ray makes its closest 
approach to the sun (assuming it is not intercepted by the Earth first) at the PPN 
coordinate radius 

. = b [ l -
(1 + y)M0 ] ~ b  rmm b ~ . 

Thus, b can also be thought of as the radius of the ray's "perihelion. "  

(40.7) 

Notice that the ray returns to r = oo ,  not at an angle </> = w, but rather at 

</>(r = oo )  = w + 2(1 + y)M0/b. (40.8a) 

Thus, the total deflection angle is 

(angle of total deflection) = 2(1 + y)M0/b 

= _!_ (1 + y)l ".75 for a ray that (40.Sb) 
2 just grazes the sun. 

But this is not the quantity of primary interest. Rather, one seeks the position 
of the star as seen by an astronomer on Earth. The angle a = w - <l>E + oa between 
the sun and the star as measured by the astronomer is given by (see Figure 40.2) 

tan(w - </>E + Oa) = -tan <pE + oa/COS2</>E 

= � = [ ( l  + yM0/r)r d<t>/dA
] = [r d</> ] 

ur (1 + yM0/r) dr/dA. E dr E 

= - [ (b/r) d</>
] ' d(b/r) E 

(40.9) 

where u /3 = dx /3 jd>,. are the components of a tangent to the ray at the Earth. By 
inserting into this equation expression (40.6) for the trajectory of the ray, one obtains 

oa sin <l>E + [(l + y)M0/b](l - cos </>E) tan </> ---- = ----'cc._--------=---------"'-E cos2</>E cos </>E + [(l + y)M0/ b] sin <l>E (40.10) 
= tan <l>E - [(l + y)M0/ b](l - cos </>E)/cos2</>E· 
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Thus, the deflection angle measured at the Earth is 

� (1 + y)Mo (l ) (1 + y)M0 (
1 + cos a

)
1/2 

ua = ---- + cos a = ------'-
b rE 1 - cos a 

1 1 0 3 

(40.11) 

It ranges from zero when the ray comes in opposite to the sun's direction (a = w), 
through the value 

(1 + y)M0/rE = ; (1 + y)0".0041 (40.12) 

when the ray comes in perpendicular to the Earth-Sun line (a = w/2), to the "classi
cal value " of ½(I + y) X 1".75 when the ray comes in grazing the sun's limb. 

All experiments to date (1972) have examined the case of grazing passage. The 
experimental results are stated and discussed in Box 40.1. They show that the PPN 
parameter y has its general relativistic value of 1 to within an uncertainty of about 
20 percent. 

By the middle or late 1970's, measurements of the deflection of radio waves from 
quasars should determine y to much better than 1 percent. Also, by that time radio 
astronomers may be making progress toward setting up high-precision coordinates 
on the sky using very long baseline interferometry. If so, they will have to use 
equation (40.11) to compensate for the "warping " of the coordinates caused by the 
sun's deflection of radio waves in all regions of the sky, not just near the solar limb. 

Exercise 40 . 2 .  TRAJECTORY O F  LIGHT RAY IN S U N ' S  GRAVITATIO NAL FIELD 

Derive equation (40.6) for the path of a light ray in isotropic coordinates (40.3) in the sun's 
"equatorial plane." Use one or more of three alternative approaches: (1) direct integration 
of the geodesic equation (the hardest approach ! ) ;  (2) computation based on the three integrals 
of the motion 

k · k  = 0, k · (o/ot) = k0, 

k = d/ d")-.. = tangent vector to geodesic 

(see §§25.2 and 25.3) ; (3) computation based on the Hamilton-Jacobi method (Box 25.4), 
which for photons (zero rest mass) reduces to the "eikonal method" of geometric optics 
(see §22.5). 

§40.4. TIME-DELAY IN RADAR PROPAGATION 

Another effect of spacetime curvature on electromagnetic waves is a relativistic delay 
in the round-trip travel time for radar signals. It was first pointed out by Shapiro 
(1964); see also Muhleman and Reichley (1964, 1965). 

( continued on page 1 106) 

(2 )  formula for deflection 
angle 

Experimental measurements 
of deflection 

EXERCISE 

Radar t ime delay 



Box 40.1 DEFLECTIO N OF LIGHT AND RADIO WAVES BY S U N :  EXPERIMENTAL RES ULTS 

Ecl i pse M easu rements 

Until 1968 every experiment measured the deflection of star
light during total eclipse of the sun. The measurements were 
beset by difficulties such as poor weather, optical distortions 
due to temperature changes, and the strange propensity of 
eclipses to attain maximum time of totality in jungles, in the 
middles of oceans, in deserts, and in arctic tundras. Lists of 
all the results and references are given by Bertotti, Brill and 
Krotkov (1 962), and by Kluber (1 960) . Dicke ( 1964b) sum
marizes the results as follows : 

"The analyses [of the experimental data] scatter from a 
deflection at the limb of the sun of 1 .43 seconds of arc to 
2 .7 seconds [compared to a general relativistic value of 1 .75 
seconds] . The scatter would not be too bad if one could be
lieve that the technique was free of systematic errors. It ap
pears that one must consider this observation uncertain to 
at least 10 percent, and perhaps as much as 20 percent." This 
result corresponds to an uncertainty in y of 20 to 40 percent. 

M easu rements on the Deflect ion of Rad io  Waves 

Each October 8 the sun, as seen from the Earth, passes in 
front of the quasar 3C279.  By monitoring the angular separa
tion between 3C279 and a nearby quasar 3C273 ,  radio as
tronomers can measure the deflection by the sun of the 3C279 
radio waves. The monitoring uses radio interferometers. [See 
references cited in table for discussion of the technique.] 
Technology of the early 1970's should permit measurements 
to a precision 0 .00 1 seconds of arc or better, if the two ends 
of the interferometer are separated by several thousand kilo
meters ("transcontinental" or "transworld" baseline) . But as 
of 197 1 the only successful experiments were less ambitious : 
they used baselines of less than 10  kilometers . A summary 
of these pre- 197 1 ,  short-baseline results is shown in the table . 
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Observed light deflect10ns (mean of two instruments) of the 15 best measured stars within 2 ° .5 of the sun's center m the total solar eclipse of September 2 1 ,  1922 at Walla!, Western Australia, as determmed by Campbell and Trumpler ( 1 928). The arrows represent in size and direction the observed light deflect10ns relative to the reference stars (5 ° to 10 ° from the sun's center) . (See Box 1 .6 for Einstem's descnpt10n of the deflection m terms of the curvature of geometry near the sun) . 
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Experimenters 
Da tes of and 
obseNation Observatory reference 

Sept. 30-Oct. 15 Owens Valley Seielstadt, 
1969 (Caltech) Sramek, 

Weiler ( 1970) 
Oct. 2-Oct. 10 Goldstone Muhleman, 

1969 (Caltech-IPL) Ekers, 
Fomalont ( 1 970) 

Oct. 2-Oct. 12 National Radio Sramek ( 1 97 1 )  
1 970 Astronomy 

Observatory (USA) 
Sept. 30-Oct. 1 5  Mullard R adio Hill ( 1 97 1 )  

1 970 Astronomy 
Observatory 
(Cambridge Univ.) 

Number of 
telescopes 

The 90-foot (background) and 1 30-foot (foreground) radio interferometer 
system at Caltech's Owens Valley Radio Observatory. These were used by 
Seielstadt, Sramek, and Weiler ( 1970) m their pioneering measurement of 
the deflection of quasar radio waves by the sun. During the experiment the 
two antennas were separated by 1 .07 kilometers. (Photo by Alan Moffet.) 

Wave 

Experimental resultsa 

( ObseNed ) 
t deflection 

- ( 1 + y) = Formal 
standard 

and separations lengths 
2 ( Einstein ) 

prediction error 

2 ,  3 . 1  cm 1 .0 1  ±0. 12  
1 .07 km 

2 ,  12 .5 cm 1 .04 ±0.05 
2 1 .56 km 

3 ,  1 1 . 1  cm, 0 .90 ±0.05 
0 .80 km, 1 .90 km, 3.7 cm 

2 .70 km 

3 ,  1 1 . 1  cm, 1 .07 ±0 . 17  
0 .66 km,  1 .4 1  km 6 .0 cm 

One-
sigma 
error 

±0. 12  

+ 0 . 1 5  
- 0 . 1 0  

±0.05 

±0. 1 7  

•Here (observed deftect10n)/(Emstem predict10n) is the number ½(I + y )  obtamed by fitting the observat10nal data to the PPN predictlon (40 I I ) [For these expenments the ray passes near 
the solar limb; so (40 . 1 1 )  reduces to 8a = ½( I + y)(M0/b) .] The "formal standard error" is obtamed from the data by standard statlstical techniques. However, it is not usually a good measure 
of the certamty of the result, because 11 fails to take account of systematic errors. The quoted "one-sigma error" is the experimenters' best estimate of the combmed statlstical and systema tic 
uncertamties. The expenmenters estlmate a probability of 68 percent that the true result is withm " Ju" of their measured value; a probability of 95 percent that it is withm "2u" ;  etc 
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( 1 )  foundations for 
calculation; Fermat's 
principle 

(2) details of calculation 
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y 

Actual beam path 

1 Beam path used in computation (y = b = const ) 

Transmitter _ _ _ _ _  --t--- Reflector 
.-:::-:-= -- ---- - - --- ------�� 
i----- ar -------,--------'!

'--
----- aR -----------

b 

--------------+---'L----------------� x 

Sun 
Figure 40. 3 .  
Diagram, in the PPN coordinate system, for 
the calculation of the relativistic time delay. 

Let a radar transmitter on Earth send a radio wave out to a reflector elsewhere 
in the solar system, and let the reflector return the wave to Earth. Calculate the 
round-trip travel time, as measured by a clock on Earth. For simplicity of calculation, 
idealize both Earth and reflector as nonrotating and as at rest in the static, spherical 
gravitational field of the Sun. At the end of the calculation, the effects of rotation 
and motion will be discussed separately. Also ignore time dilation of the transmitter's 
clock due to the Earth's gravitational field; it is easily corrected for, and it is so 
small that it will not come into play in these radar experiments before the middle 
or late 1970's. The gravitational effects of the other planets on the radio waves are 
too small to be discernible in the foreseeable future, unless the beam grazes the 
limb of one of them. However, the effects of dispersion in the solar wind and corona 
are discernible and must be corrected for. These corrections will not be discussed 
here, since they are free of any general-relativistic influence. 

The calculation of the round-trip travel time can be simplified by using a general
relativistic version of Fermat's principle : In any static field (g0; = 0, ga/3 ,0 = 0) 
consider all null curves between two points in space, xi = ai and xi = bi . Each such 
null curve, xi(t), requires a particular coordinate time interval At to get from ai to 
bi. The curves of extremal At are the null geodesics of spacetime. The proof of this 
theorem is outlined in exercise 40.3. 

Because of Fermat's principle, the lapse of coordinate time between transmission 
of the radar beam and reflection at the reflector, !TR, is the same for a straight path 
in the PPN coordinates as for the slightly curved path which the beam actually 
follows. (The two differ by a fractional amount AtTR/tTR ~ (angle of deflec
tion)2 � 1 0-12, which is far from discernable.) Hence, in the computation one can 
ignore the gravitational bending of the beam. 

Adopt Cartesian PPN coordinates with the sun at the origin; the transmitter, sun, 
and reflector in the z = 0 "plane"; and the transmitter-reflector line along the x 
direction (see Figure 40.3). The transmitter is at (x,y) = ( -ar, b) in the PPN coordi
nates, and the reflector is at (x,y) = (aR, b). Recall that for a null ray ds2 = 0 = 



§ 40 4 TI M E-DELAY I N  RADAR P R O PAGAT I O N  1 1 0 7 g00 dt2 - g.,., dx2. It follows that the lapse of coordinate time between transmission and reflection is _ f aR ( g.,., 
)

1/2 _ f aR [ (I + y)Mo ] tTR - -- dx - I + -===- dx. -ar - goo -ar yx2 + b2 Integration yields (I )M I [ (aR + ya� + b2) (aT + v4 + b2) ] tTR = aR + 0r + + Y 0 n bz · (40. 13)  
The lapse of coordinate time in round-trip travel has twice this magnitude . The lapse of proper time measured by an Earth-based clock is 

(40. 14) 
This is the lapse of time on an Earth-based clock, aside from corrections for the orbital and rotational motion of the Earth, for the orbital motion of the reflector, for dispersion of radiation traversing the solar wind and corona, and for time dilation in the Earth's gravitational field. 

(3)  form ula for delay 

Any reader is reasonable who objects to the form (40. 14) in which the time-delay (4) comparison with has been written. The quantities aR, ar, and b are coordinate positions in the PPN experiment 

coordinate system, rather than numbers the astronomer can measure directly. They differ from coordinate positions in other, equally good coordinate systems by amounts of the order of M0 ~ 1 .5 km. The objection is not mathematical in its origin. The quantities aR, ar, and b are perfectly well-defined [with post-post-Newtonian uncertainties of order b(M0/b)2 � 1 0-6 km], because the PPN coordinate system is perfectly well-defined. But they are not quantities which the experimenter can measure directly, with precision anywhere near that required to test the relativistic terms in the time-delay formula (40. 14). In practice, fortunately, the experimenter does not need to measure aR, ar, or b with high precision. Instead, he checks the time-delay formula by measuring the 
changes in Ll'T as the Earth and reflector move in their orbits about the Sun; i.e . ,  he measures Ll'T as a function of Earth-based time 'T. Notice that when the beam is passing near the sun (b � aR, b � aT; but db/d'T ► daR/d'T and db/d'T ► dar/d'T because the Earth's and reflector's orbits are nearly circular), the change of b in the In term of (40. 14) dominates all other relativistic corrections to the Newtonian delay; consequently (using db/d'T ~ IO km/sec for typical experiments) dLl'T _ (Constant Newtonian) ::::: _ 4( l + y) M0 db (40. I S) d'T part b d'T ~ 4(1 + y) ( l .5 km ) ( IO km ) ~ 3 0  µsec _ 1 06 km sec day 



(o) experimental result for y 

EXE R C I S E  
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Such differential shifts in round-trip travel time-which rise as the Earth-reflector 
line moves toward the Sun and falls as it moves away-are readily observable. 

In practice, in order to obtain precisions better than about 20 percent in the 
determination of the parameter y hy time-delay measurements, one must carefully 
collect and analyze data for a large fraction of a year-from a time when the beam 
is far from the sun (b ~ aT ~ 1 08 km), to the time of superior conjunction (b ~ R0 ~ 1 06 km), and on around to a time of distant beam again. Such a long "arc" of 
data is needed to determine the reflector's orbit with high precision, and to take 
full advantage of the slow, logarithmic falloff of .:::lT with b (40. 14). When the beam 
is far from the sun (b � R0),  the simplifying assumptions behind equation (40.15) 
are not valid; and the relativistic time-delay gets intertwined with the orbital motions 
of the Earth and the reflector. The analysis then remains straightforward, but its 
details are so complex that one resorts to numerical integrations on a computer to 
carry it out. Because the orbital motions enter, the time-delay data then contain 
information about other metric parameters (/3 is the dominant one) in addition to y. 

The experimental results as of 1 97 1  are described in Box 40.2. They yield a value 
for the PPN parameter y that is more accurate than the value from light and 
radio-wave deflection experiments: 

y = 1 .02 + 0.08. (40. 16) 

Future experiments using spacecraft may improve the precision of y to +0.001 or 
better. 

Exercise 40. 3. FERMAT'S PRIN CIPLE 

Prove Fermat's principle for a static gravitational field. [Hint: The proof might proceed as 
follows. Write down the geodesic equation in four-dimensional spacetime using an affine 
parameter A. Convert from the parameter "),. to coordinate time t, and use ds2 = 0 to obtain 

d2xk dx k dx 1 g dxk dx 1 d2t/d"),.2 dx k 
g -- + r ---- - r _g __ __ + --- g -- - o ik dt2 ik! dt dt iOO g00 dt dt (dt/d"),.)2 ik dt - · 

Combine with the time part of the geodesic equation 

and use the expression for the Christoffel symbols in terms of the metric to obtain 

Yjk = - gjk . 
goo 

Then notice that this is a geodesic equat10n with affine parameter t in a three-dimensional 
manifold with metric yik ' The familiar extremum principle for this geodesic is 

b i bi 
8 f .  (Y;k dx i dx k) 112 = 8 f .  dt = 0, 

a '  a 1 

which is precisely Fermat's principle ! ]  
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Box 40 .2  RADAR TI M E  D E LAY IN  T H E  S O LAR SYSTEM :  

EXP E R I M E NTAL R ES U LTS 

Two types of experiments have been performed to 
measure the relativistic effects [proportional to 
½(I + y); equation (40.14)] in the round-trip radar 
travel time in the solar system. In one type ("pas-

1 1 09 

- sive" experiment) the reflector is the surface of the 
planet Venus or the planet Mercury. In the other 
type ("active" experiment) the "reflector" is elec
tronic equipment on board a spacecraft that re
ceives the signal and transmits it back to Earth 
("transponder "). Passive experiments suffer from 
noise due to topography of the reflecting planet 
( earlier radar return from mountain tops than 
from valley floors), and they suffer from weakness 
of the returned signal. Active experiments suffer 
from buffeting of the spacecraft by solar wind, 
buffeting by fluctuations in solar radiation pres
sure, and buffeting by leakage from gas jets ("out
gassing"). Experiments of the future will solve 
these problems by placing a transponder on the 
surface of a planet or on a "drag-free " (buffeting
free) spacecraft. But experiments of the present 
and future must both contend with fluctuating 
time delays due to dispersion in the fluctuating 
solar wind and corona. Fortunately, these are 
smaller than the relativistic effects, except when 

The Mariner VI spacecraft (mock-up), which was the reflector in a 1970 measurement of ½( I + y) by radar time delay [photo courtesy the Caltech Jet Propulsion Laboratory]. 

Dates of Radar 
observation telescopes Reflector 

November 1966 Haystack (MIT) Venus and to Mercury August 1967 1967 Haystack (MIT), Venus and through and Mercury 1970 Arecibo (Cornell) October 1 969 Deep Space Manner VI to Network and VII January 197 1  (NASA) spacecraft 

the beam passes within 2 or 3 solar radii of the 
sun. 

The results of experiments performed before 
1972 are listed in the table. 

Expenmental resulta 

1 - ( 1 + y) = 
2 

(Observed) 
Experimenters delay Formal One-
and Wave (Emstein ) standard sigma 
reference length prediction error error 

Shapiro ( 1968) 3 .8 cm 0.9 ±0.2 
Shapiro, Ash, et al. 3 .8 cm, 1 .015  ±0.02 ±0.05 ( 197 1 )  and 70 cm. Anderson, et al. 14 cm. 1 .00 ±0.014 ±0.04 ( 197 1 )  

•Here (observed delay)/(Einstein prediction) i s  the value o f  �I + y )  obtained by  fitting the observational data, Lh(T), t o  a more sophisticated version of the PPN prediction (40 14) This more sophisticated version includes the gravitational influences of all the planets on the orbits of reflector and Earth. also the effect of the moon on the Earth's orbit and the effect of the Earth's rotation on the travel time,  also, to as good an extent as possible, the delay due to dispersion in the solar corona and wind. "Formal standard error" and "one-sigma error" are defined in the table in Box 40. 1 .  



Perihelion shift for geodesic 
orbits around spherical sun, 
ignoring preferred-frame 
effects 

1 1 1 0 40 SOLAR-SYSTEM EXPERIMENTS 

§40.5. PERIHELION SHIFT AND PERIODIC PERTURBATIONS 
IN GEODESIC ORBITS 

The light-deflection and time-delay experiments both measured y. To measure other 
PPN parameters, one must examine the effects of gravity on slowly moving bodies; 
this was the message of §40.2. 

Begin with the simplest of cases: the geodesic orbit of a test body in the sun's 
spherical gravitational field , ignoring all gravitational effects of the planets, of solar 
oblateness, and of motion relative to any preferred frame. The PPN metric then 
has the form (40.3): 

ds2 = - [ 1 - 2 M0 + 2/3 
Mo

2

] dt2 
r r2 

+ [ 1 + 2y �0 ]  [dr2 + r2(d02 + sin20 dq>2)]. 
(40.3) 

Orient the coordinates so the test body moves in the equatorial "plane " 0 = 1r/2 ; 
and calculate the shape r(cp) of its nearly Keplerian, nearly elliptical geodesic orbit. 
The result, accurate to order M0/r beyond Newtonian theory, is 

(1 - e2)a r =  ' 1 + e cos [(l - 8cp0/21r)cp] 

where a and e are constants of integration, and 8cp0 is defined by 

8 
(2 - /3 + 2y) 61rM0 cp - ----- ----o -

3 a(l - e2) 
61rMo . l l . .  

a(l _ e2) 
m genera re at1v1ty. 

(For derivation, see exercise 40.4.) 

(40.17) 

(40.18) 

Notice that, if 8cp0 were zero-as it is in the Newtonian limit-then the orbit (40.18) 
would be an ellipse with semimajor axis a and eccentricity e (see Box 25.4). The 
constant 8cp0 merely makes the ellipse precess: for r to go through a complete circuit, 
from perihelion to aphelion to perihelion again, (1 - 8cp0/21r)cp must change by 21r; 
so cp must change by 21r + 8cp0• Thus, the perihelion shifis forward by an angle 8cp0 
with each circuit around the ellipse. 

Relative to what does the perihelion shift? ( 1 )  Relative to the PPN coordinate 
system; (2) relative to inertial frames at the outskirts of the solar system (since the 
PPN coordinates are tied to those frames; see §39.12); (3) relative to a frame 
determined by the "fixed stars in the sky " (since the inertial frames at the outskirts 
of the solar system, inertial frames elsewhere in our galaxy, and inertial frames in 
our cluster of galaxies should not rotate significantly relative to each other); (4) 
relative to the perihelia of ( other) planets, which themselves are shifting at calculable 
rates that decrease as one moves outward in the solar system from Mercury to Venus 
to Earth to . . . .  
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The perihelion shift is not the only relativistic effect contained in the orbital motion 
for a test body. There are other effects, but they are all periodic rather than cumula
tive with time; so, with the limited technology of the pre-space-age era, it was 
impossible to detect them. But the technology of the 1970's is bringing them within 
reach. Moreover, many space-age experiments are necessarily of short duration 
( �  one orbit)-particularly those involving spacecraft and transponders landed on 
planets. For these, the periodic perturbations in an orbit are of almost as much 
experimental value as the cumulative perihelion shift. The periodic effects are not 
obvious in the PPN orbital equation (40.17); it looks like the simplest of precessing 
ellipses. But the quantities the observer measures directly are not a, e, and 8cp0• 

Instead, he measures the time evolution of round-trip radar travel times, Lh('T), and 
of angular positions on the sky [0o('T), cf>o('T)]. To compute these quantities is perfectly 
straightforward in principle, but in practice is a very complex task. The calculations 
predict relativistic effects periodic with the frequency of the orbit and all its har
monics. The amplitudes of these effects, for the lower harmonics, must obviously 
be of the order of M0 ~ 1 km ~ IO µ,sec ~ 0".01 arc on the sky. (The distance 
M0 = 1.48 km is the characteristic length for all relativistic effects in the sun's 
spherical field! )  

The most favorable orbits for experimental tests of the perihelion shift and of 
periodic effects are those that go nearest the sun and have the highest eccentricity 
[see equation (40.18)]-the orbits of Mercury, Venus, Earth, Mars, and the asteroid 
Icarus. But how does one know that these orbits are geodesics? After all, planets 
are not "test bodies " ;  they themselves produce nonnegligible curvature in spacetime. 
It turns out (see §40.9 for full discussion) that there should exist tiny deviations from 
geodesic motion, but they are too small to compete with the perihelion shift or with 
the periodic effects discussed above, at least for these five bodies. 

Extensive astronomical observations of planetary orbits, dating back to the mid
nineteenth century and aided by radar since 1966, have yielded accurate values for 
planetary perihelion shifts ( accurate to +0.4 seconds of arc per century for Mercury). 
From the data, which are summarized and discussed in Box 40.3, one obtains the 
value 

1 { +o.oi 
3 (2 - /3 + 2y) = 1.00 -0.10 (40.19a) 

for the ratio of observed relativistic shift to general relativistic prediction. Combining 
this result with the radar-delay value for y (40.16), one obtains a value 

Period ic perturbations in 
geodesic orbits 

Comparison of theory with 
planetary orbits 

/3 = 1.0 { ��:� (40.19b) Experimental result for (J 

for the PPN parameter /3. (Recall: /3 measures the "amount of nonlinearity in the 
superposition law for g00 .") 

The periodic effects in the planetary orbits have not yet (1973) been studied 
experimentally. 

The above discussion and Box 40.3 have ignored the motion of the solar system 
relative to the preferred frame (if one exists); i.e., they have ignored the terms (40.3') 
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Box 40 . 3  PERIHELIO N SHIFTS; EXPERIMENTAL RES ULTS 

Relativistic corrections to Newtonian theory are not the only cause of shift in the perihe l ion of a p l anetary orbit. Any departure of the Newtonian gravitational fie l d  from its idealized, spherica l ,  inverse-square-law form a l so produces a shift. Such nonsphericities and resu l ting shifts are brought about by (1) the gravitationa l pu l ls of other p l anets, and (2) deformation of the sun ("so l ar ob l ateness" ; "quadrupole moment"). In addition, when the primary data are optica l positions of p l anets on the sky (right ascension and dec l ination as functions of time), there is an apparent perihelion shift caused by the precession of the Earth's axis ("general precession" ; observer not on a "stab l e  p l atform"; see exercise 16.4). The perihe l ion shifts due to a genera l precession and to the gravitationa l  pu l l s  of other planets can be ca l culated with high precision. But in 1973 there is no fu l ly reliable way to determine the solar quadrupo l e  moment. It is conventiona l to quantify the sun's quadrupo l e  moment by a dimension l ess parameter J2 , which appears in the following expression for the Newtonian potential, U = M0 [ l - J. R0
2 ( 3 cos20 - l )] . r 2 r2 2 If the sun were rotating near breakup ve l ocity, J2 would be near 1. Very carefu l measurements of the optical shape of the sun [Dicke and Goldenberg (1967)] show a flattening, which suggests J2 may be near 3 x 10-5 • The total perihe l ion shift produced by relativity p lus solar quadrupo l e  moment is (see exercise 40.5) 

The Haystack radar antenna, which Irwin Shapiro and his group have used to collect extensive data on the systematics of the inner part of the solar system. Those data are rapidly becoming the most important source of information about perihelion shifts. (Picture courtesy of Lincoln Laboratories, MIT.) 

Note that re l ativistic and quadrupo l e  shifts have different dependences on the semimajor axis a and ecentricity e of the orbit. This difference in dependence a l lows one to obtain va lues for both the quadrupole moment parameter J2, and the PPN parameter ½(2 - /3 + 2y) by combining measurements of ocp for more than one p lanet. The experimenta l results, as of 1972, are as fo l lows. 
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I. Data for Mercury from optical studies [Clemence ( 1 943 , 1 947) ]* 
(general relativity with no solar ohlateness predicts 43.m"/century) 

Quantity 

(a) Total observed shift per century 
(b) Contribution to shift caused by observer not being in an inertial frame far from 

the sun ("general pn:ce,,iun" a, evaluale<l in 1 947) 
(c) Shift per century produced by Newtonian gravitation of other planets 
( d) Residual shift per century to be attributed to general relativity plus 

solar oblateness 
(e) Residual shift if one uses the 1 973 value for the "general precession" 
(f) Corresponding value of AP (see above) 

II. 1 970 Results of Shapiro ( 1 970, 1 97 1 a,b), Shapiro et al. ( 1972) 

(a) Values of AP obtained by reanalyzing all the world's collection of optical data, 
and combining it with radar data 

(b) Value of J2 obtained by comparing the observed shifts for Mercury and Mars 

III. Theoretical implications of Shapiro's results 

(a) Value of (2 - /J + 2y)/3 

(b) Value of f3 obtained by combining with y from time delay experiments 
(equation (40 . 16)] 

1 1 1 3 

Value 

5599".74 ± 0".4 1 

5025 '' .645 :::!: 0".50 
5 3 1  ".54 ± 0".68 

42".56 ± 0".94 
4 1 ".4 ± 0".90 
AP = 0 .96 ± 0.02 

{ 
(Ap)Mercury = 1 .00 ± 0 .0 1 
(Ap)Mars = 1 .07 ± 0 . 1 0  

12 � 3 X 1 0-5 

1 .00 { �g-�6 
1 .0 { �g:1 

* Clemence ( 1947) notes, "The observations cannot be made in a Newtonian frame of reference. They are referred to the moving equinox, that is, they are affected by the precession of the equinoxes, and the determination of the precessional motion is one of the most difficult problems of observational astronomy, if not the most difficult In the light of all these hazards, it is not surprising that a difference of opinion could exist regarding the closeness of agreement between the observed and theoretical motions." 

in the sun's metric. When one takes account of these terms, one finds an additional 
contribution to the perihelion shift, given for small eccentricities e � 1 by 

w (M 
)

112 w 
ocf>0 = - a1- _Q_ w ·  Q - a 2-[(w · P)2 - (w · Q)2] 

2e a 4 

w
(

lilol
) (

w0a
2

} · Q + a - -- --- w 3 e Mo Mo 

(40.20) 

[see Nordtvedt and Will (1972)]. Here M0, il0, and w0 are the sun's mass, self-gravi
tational energy, and rotational angular velocity; w is the sun's velocity relative to 
the preferred frame; a and e are the semimajor axis and eccentricity of the orbit ; 
P is the unit vector pointing from the sun to the perihelion; and Q is a unit vector 
orthogonal to P and lying in the orbital plane. Comparison with observations for 

Perihel ion sh ift due to 
preferred-frame forces 



Exper imenta l  resu l t  for a3 

The futu re of orbita l 
exper iments 
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Mercury-and combination with limits on o:1 and o: 2 discussed below [equations 
(40.46b) and (40.48)]-yields the limit 

I a w • Q I _< 2 X 1 0-5 _ 3 200 km/sec 
(40.21 a) 

Since the velocity of the sun around the Galaxy is ~200 km/sec, and the peculiar 
motion of the Galaxy relative to other nearby galaxies is ~200 km/sec, a value 
w ~ 200 km/sec is reasonable. Moreover, there is no reason to believe that w and 
Q are orthogonal, so one is fairly safe in concluding 

(40.21b) 

This is a stringent limit on theories that possess universal rest frames. For example, 
with great certainty it rules out a theory devised by Coleman ( 197 1 ), which has 
/3 = y = I ,  but a3 = -4; see Ni (1972). 

Looking toward the future, one cannot expect data on orbits of spacecraft to give 
decisive tests of general relativity, despite the high precision ( ~ 1 0  meters in I 972) 
with which spacecraft can be tracked. Spacecraft are buffeted by the solar wind. 
They respond to fluctuations in this wind and in the pressure of solar radiation, 
and respond also to "outgassing" from leaky jets. Unless one can develop excellent 
"drag-free" or "conscience-guided" spacecraft, one must therefore continue to rely 
on planets as the source of data on geodesics. However, planetary data themselves 
can be greatly improved in the future by placing radar transponders on the surfaces 
of planets or in orbit about them, by improvements in radar technology, and by 
the continued accumulation of more and more observations. 

Exercise 40.4.  D E R I VATI O N  O F  P E R I H E LI O N  S H I FT I N  PPN  FORMALI S M  
[See exercise 25. 16 for  a derivation in general relativity, accurate when gravity is strong (2M/r 
as large as ½) but the orbital eccentricity is small. The present exercise applies to any "metric 
theory" and to any eccentricity, but it assumes gravity is weak (2M/r � I) and ignores motion 
relative to any universal rest frame.] Derive equation (40.17) for the shape of any bound 
orbit of a test particle moving in the equatorial plane of the PPN gravitational field (40.3) .  
Keep only "first-order" corrections beyond Newtonian theory (first order in powers of M0/r). 
[Sketch of solution using Hamilton-Jacobi theory (Box 25.4) : ( I )  Hamilton-Jacobi equation, 
referred to a test body of unit mass, is 

- I = g"'/3 S,"'s,/3 
= _ [ I + 2 �0 + (4 - 2/3) ( �o )

2 ](�;r + [ 1 - 2y �o ][ (�;r + 
:2 C!)

2
J .  

(2) Solution to Hamilton-Jacobi equation is 

S = -Et + Lt, ±  J' { - ( I  - £2) + 
2�0 [ l  - (l + y)( l - £2)] 

I 2 [ 2M 2 ]}112 - 7z' 1 -
l,

� (2 - /3 + 2y) dr, 
(40.22) 
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where post-post-Newtonian corrections have been discarded. In discarding post-post-New
tonian corrections, recall that Eis the conserved energy per unit rest mass and I is the angular 
momentum per unit rest mass (see Box 25 .4) . Consequently one has the order-of-magnitude 
relations 

1 - £2 ~ (velocity of test body)2 ~ M0/r 

and 

(M0/L)2 ~ (M0/rv)2 ~ M0/r. 

(3) The shape of the orbit is determined by the "condition of constructive interference," 
as;aI = O :  

f { 1 - £2 2M -
</> = ± - --- + � [ l  - ( 1  + y)( l - E2)] 

L2 L2r 
1 

[ 
2M i 

] }
-11 2  

-
� 

1 - I: (2 - (J + 2y) d( I/r) . 

(4) This integral is readily evaluated in terms of trigonometric functions.  For a bound orbit 
(E < 1 ) , the integral is 

where 

- ( l 8<f>0 ) _1 [
( 1 - e 2)a I

] </> - + -- cos -'------ - -
2w er e 

a - Mo_ [ I - ( 1  + y)( l - £2)], 
1 - £2 

I - e 2 = (;
0
f ( 1  - .E2) [ 1 + 2( 1 + y)( l - .E2) - 2 ( �o )\2 - (J + 2y) ] , 

8</>0 -t (2 - (J + 2y)6w(M0/L)2 . 

(40.23) 

(5) Straightforward manipulations bring this result into the form of equations (40 . 17) and 
(40 . 18) .] 

Exercise 40. 5 .  P E R I H E L I O N  S H I FT FO R O B LATE S U N  

(a) The Newtonian potential for an oblate sun has the form 

_ M0 ( 1 _ R0
2 3 cos28 - 1 

) u - J2 2 2 , r r (40.24) 

where J2 is the "quadrupole-moment parameter." One knows that J2 :S 3 X 10-5_ Show that 
if an oblate sun is at rest at the origin of the PPN coordinate system, the metric of the 
surrounding spacetime [equations (39.32)] can be put into the form 

ds2 = - [ I - 2 �o - 2J2 ( M�:o
2

) ( 
3 cos

J 
- l 

) + 2(3 ( �o rJ dt2 

+ [ I + 2y �o ] [dr2 + r2(d82 + sin28 d<f>2)] (40.25) 

+ corrections of post-post-Newtonian magnitude. 
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(b) Let a test particle move in a bound orbit in the equatorial plane. Use Hamilton-Jacobi 
theory to show that its orbit is a precessing ellipse [equation (40.17)] with a precession per 
orbit given by 

(40 .26) 

For the significance of this result, see Box 40.3 . 

§40.6. THREE-BODY EFFECTS IN THE LUNAR ORBIT 

The relativistic effects discussed thus far all involve the spherical part of the sun's 
external gravitational field, and thus they can probe only the PPN parameters /3 
and y plus the "preferred-frame" parameters av a2 , and a3 . Attempts to measure 
other PPN parameters can focus on three-body interactions (discussed here), the 
dragging of inertial frames by a rotating body (§40.7), anomalies in the locally 
measured gravitational constant (§40.8), and deviations of planetary and lunar orbits 
from geodesics (§40.9). 

There is no better place to study three-body interactions than the Earth-moon 
orbit. The pulls of the Earth, the moon, and the sun all contribute. Perturbations 
in the motion of Earth and moon about their common center of gravity can be 
measured with high precision using laser ranging ( earth-moon separation measured 
to ~ 10 cm in early 1970's) and using a radio beacon on the moon's surface (angular 
position on sky potentially measurable to better than 0".001 of arc). 

Over and above any Newtonian three-body interactions, the Earth and the sun, 
acting together in a nonlinear manner, should produce relativistic perturbations in 
the lunar orbit that are barely within the range of this technology. These effects 
depend on the familiar parameters y (measuring space curvature) and /3 [measuring 
amount of nonlinear superposition, (UEarth + Usun)2, in g00] .  In addition, they 
depend on /32, which regulates the extent to which the sun's potential, Usun• acting 
inside the Earth, affects the strength of the Earth's gravitational pull, causing it to 
vary as the Earth moves nearer and farther from the sun. These effects are expected 
to depend also on L Ll1 , and Ll2 , which regulate the extent to which the Earth's orbital 
momentum and anisotropies in kinetic energy ( caused by the sun) gravitate. 

Bromberg (1958), Baierlein (1967), and Krogh and Baierlein (1968) have calculated 
the three dominant three-body effects in the Earth-moon orbit using general relativity 
and the Dicke-Brans-Jordan theory. These effects are noncumulative and have 
amplitudes of ~100 cm, ~20 cm, and ~10 cm. The 100-cm effect [which was 
originally discovered by de Sitter (1916)] is known to depend only on y. The precise 
dependence of the other effects on the PPN parameters is not known. 

The prospects for measuring these effects in the 1970's are dim; they are masked 
by peculiarities in the orbit of the moon that have nothing to do with relativity. 
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The experiments discussed thus far study the motion of electromagnetic waves, 
spacecraft, planets, and asteroids through the solar system. An entirely different type G yroscope precession . 
of experiment measures changes in the orientation of a gyroscope moving in the 
gravitational field of the Earth. This experiment is particularly important because 
it can measure directly the "dragging of inertial frames" by the angular momentum 
of the Earth. 

It is useful, before specializing to a rotating Earth, to derive a general expression 
for the precession of a gyroscope in the post-Newtonian limit. (Track- I readers, and 
others who have not studied Chapters 6 and 39 , may have difficulty following the 
derivation. No matter. It is the answer that counts ! )  

Let sa be the spin of the gyroscope (i.e. , its angular momentum vector), and let ( 1 )  general analysis 
u a be its 4-velocity. The spin is always orthogonal to the 4-velocity, saua = 0 (see 
Box 5 .6). Assume that any nongrauitational forces acting on the gyroscope are applied 
at its center of mass, so that there is no torque in its proper reference frame. Then 
the gyroscope will "Fermi-Walker transport" its spin along its world line (see §6.5 ) :  

a Vuu = 4-acceleration. (40.27) 

The objective of the calculation is to write down and analyze this transport equation 
in the post-Newtonian limit. 

The gyroscope moves relative to the PPN coordinate grid with a velocity V; 
dx;/dt dx/dt. Assume that V; � t: , where € is the post-Newtonian expansion 
parameter (£ 2 ;::::; M0/ R0) .  As the gyroscope moves, it carries with itself an orthonor
mal frame e;,, which is related to the PPN coordinate frame by a pure Lorentz boost, 
plus a renormalization of the lengths of the basis vectors [transformation (39.4 1 )]. 
The spin is a purely spatial vector (S0 = 0) in this comoving frame; its length 
(S;S;)11 2 remains fixed (conservation of angular momentum) ; and its direction is 
regulated by the Fermi-Walker transport law. 

The basis vectors e;, of the comoving frame are not Fermi-Walker transported, 
by contrast with the spin. Rather, they are tied by a pure boost (no rotation!)  to 
the PPN coordinate grid, which in turn is tied to an inertial frame far from the 
solar system, which in turn one expects to be fixed relative to the "distant stars." 
Thus, by calculating the precession of the spin relative to the comoving frame, 

(40.28) 

one is in effect evaluating the spin's angular velocity of precession, Sl;, relative to 
a frame fixed on the sky by the distant stars . 

Calculate dS;/ d,,- :  

dS, 
-1 = V (S · e ,) = (V S) · e •  + S · (V e,) = S · V e ,. d,,-

u 1 u 1 u 1 u 1 (40.29) 

Here use is made of the fact that Vu S is in the u direction (equation (40.27)] and 
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is thus orthogonal to e;- The quantity S · Vu e; is readily evaluated in the PPN 
coordinate frame. In the evaluation, one uses as metnc coefficients [equations (39 .32)] 
the expressions 

fioo = -1 + 2U + 0(€ 4) ,  
_ _  2. L1 V _ l_ L1 w; + ("preferred-

) + O(E' 5) . gOi - 1 i 2 2 i ' 
2 frame terms" 

(40.30) 

one takes as the components of e1 and S [obtained via the transformation (39.41)] 
the expressions 

1 
el = (1 - y U) 8ik + 2 vkvi + 0(€ 4), 

so = v . S, + 0(€ 3S. ) J J J , 

1 Sk = (I - y U)Stc + l vkvi SJ + 0(E" 4Si) ;  

and one uses the relation 

dv./dr = a . +  U . + 0(E" 2 U .) J J ,J ,J 

(40.31) 

(40.32) 

where ai (assumed :S U) are the components of the 4-acceleration. One finds (see 
exercise 40.6) for the precession of the spin the result 

Rewritten in three-dimensional vector form this result becomes 

dS/dr = 0 X S, 

0 - ; v X a - ; V X g + ( y + 1) v X V U, 

(40.33a) 

(40.33b) 

(40.33c) 

In this final answer it does not matter whether the 3-vectors entering into O are 
evaluated in the coordinate frame or in the comoving orthonormal frame, since e; 
and o/oxi differ only by corrections of order € 2 • 

Equations (40.33) describe in complete generality at the post-Newtonian level of 
approximation the precession of the gyroscope spin S relative to the comoving ortho
normal frame that is rotationally tied to the distant stars. 

For an electron with spin S in orbit around a proton, only the first term, -½v X a, 
is present (no gravity). This term leads to the Thomas precession, which plays an 
important role in the fine structure of atomic spectra [see, e.g., Ruark and Urey 
(1930)]. For other ways of deriving the Thomas precession, see exercise 6.9 and §41.4. 

The Thomas precession comes into play for a gyroscope on the surface of the 
Earth (a = Newtonian acceleration of gravity), but not for a gyroscope in a freely 
moving satellite. 
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If one ignores the rotation of the Earth and preferred-frame effects, and puts the 
PPN coordinate frame at rest relative to the center of the Earth, then g0i vanishes 
and n is given by 

n = v x [ - � a + ( y + ½)vu] 
= yv X V U  for gyroscope on Earth's surface 

= ( y + � ) v X V U  for gyroscope in orbit. 

(40 .34) 

The general-relativistic term ( y + -½)v x V U  is caused by the motion of the gyroscope 
through the Earth's curved, static spacetirne geometry. Notice that it depends solely 
on the same parameter y as is tested by electromagnetic-wave experiments . In order 
of magnitude, for a gyroscope in a near-Earth, polar orbit, 

3 (M )1;2 (M ) il ::::: 
2 R

: 
Ri ::::: 8 seconds of arc per year. (40.35) 

The general-relativistic precession !v X V U  was derived by W. de Sitter (1 9 1 6) for 
the "Earth-moon gyroscope" orbiting the sun. Eleven years later L. H. Thomas ( 1927) 
derived the special relativistic precession - -½v x a for application to atomic physics. 

The Earth's rotation produces off-diagonal terms, g0i , in the PPN metric ( exer
cise 40 .7) : 

_ _ (
7 ,. 

1 ,. ) J  X r g - go -e • - - - .;ii + - .;i 2  --1 1 4 4 r3 • (40 .36) 

Here J is the Earth's angular momentum. These off-diagonal terms contribute an 
amount 

(40 .37) 

to the precession of the gyroscope. Notice that this contribution, unlike the others, 
is independent of the linear velocity of the gyroscope. One can think of it in the 
following way. 

The gyroscope is rotationally at rest relative to the inertial frames in its neighbor
hood. It and the local inertial frames rotate relative to the distant galaxies with the 
angular velocity n because the Earth's rotation "drags" the local inertial frames 
along with it. Notice that near the north and south poles the local inertial frames 
rotate in the same direction as the Earth does (!2 parallel to J), but near the equator 
they rotate in the opposite direction (!2 antiparallel to J; compare n with the 
magnetic field of the Earth !) .  Although this might seem paradoxical at first, an 
analogy devised by Schiff makes it seem more reasonable. * Consider a rotating, solid 
sphere immersed in a viscous fluid. As it rotates, the sphere will drag the fluid along 
with it. At various points in the fluid, set down little rods, and watch how the fluid 

* This analogy can be made mathematically rigorous ; see footnote on p 255 of Thorne ( 1 97 1 ) ;  see 
also, §2 1 . 12 on Mach's prmciple 

(4) specialization : precess ions 
due to acceleration and 
Earth ' s  Newtonian 
potential 

(5) special ization : precession 
due to Earth 's rotation 
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rotates them as it flows past. Near the poles the fluid will clearly rotate the rods 
in the same direction as the star rotates .  But near the equator, because the fluid 
is dragged more rapidly at small radii than at large, the end of a rod closest to 
the sphere is dragged by the fluid more rapidly than the far end of the rod. Conse
quently, the rod rotates in the direction opposite to the rotation of the sphere. 

In order of magnitude, the precessional angular velocity caused by the Earth's 
rotation is 

{l ~ JE/ Ri ~ 0 . 1  seconds of arc per year. (40 .37') 

Both this precession, and the larger one [equation (40 .35)] due to motion through 
the Earth's static field, may be detectable in the 1970's .  Equipment aimed at detecting 
them via a satellite experiment is now (1973) under construction at Stanford Univer
sity; see Everitt, Fairbank, and Hamilton ( 1970) ; also O'Connell ( 1972) . * 

The gyroscope precession produced by motion of the Earth relative to the preferred 
frame (if any) is too small to be of much interest. 

* The dragging of inertial frames by a rotating body plays important roles elsewhere in gravitation 
physics, e g., m the definition of angular momentum for a gravitating body (§19 .2), and in black-hole 
physics (Chapter 33). The effect was first discussed and calculated by Thirring and Lense ( 1 9 1 8) .  More 
recent calculations by Brill and Cohen ( 1966) of idealized situations where the effect may be large give 
insight into the mechanism of the effect. See also the discussion of Mach's principle in §2 1 . 12 .  

Exercise 40.6. PRECESSIONAL ANGULAR VELOCITY 
Derive equations (40.33) for the precession of a gyroscope in the post-Newtonian limit. Base 
the derivation on equations (40.29)-(40.32) . 

Exercise 40.7. OFF-DIAGONAL TERMS IN METRIC ABOUT THE EARTH 
Idealize the Earth as an isolated, rigidly rotating sphere with angular momentum J. Use 
equations (39.34b,c) and (39.27) to show that (in three-dimens10nal vector notation) 

outside the Earth, in the Earth's PPN rest frame. From this , infer equation (40.36) . 

Exercise 40.8. SPIN-CURVATURE COUPLING 

(40.38) 

Consider a spinning body (e .g . , the Earth or a gyroscope or an electron) moving through 
curved spacetime. Tidal gravitational forces produced by the curvature of spacetime act on 
the elementary pieces of the spinning body. These forces should depend not only on the 
positions of the pieces relative to the center of the object , but also on their relative velocities. 
Moreover, the spin of the body, 

S - J (pr X v) d(volume) in comoving orthonormal frame, 

is a measure of the relative positions and velocities of its pieces. Therefore one expects the 
spin to couple to the tidal gravitational forces-i.e., to the curvature of spacetime-producing 
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deviations from geodesic motion . Careful solution of the PPN equations of Chapter 39 for 
general relativity reveals [Papapetrou (1951), Pirani (1956)] that such coupling occurs and 
causes a deviation of the worldline from the course that it would otherwise take; thus, 

(40.39) 

Evaluate, in order of magnitude, the effects of the supplementary term on planetary orbits 
in the solar system. 
[Answer: They are much too small to be detected . However, there are two other material 
places to look for the effect: (1) when a rapidly spinning neutron star, or a black hole endowed 
with substantial angular momentum enters the powerful tidal field of another neutron star 
or black hole; and (2) when an individual electron, or the totality of electrons in the "Dirac 
sea of negative energy states," enter a still more powerful tidal field (late phase of gravita
tional collapse) . Such a tidal field, or curvature, pulls oppositely on electrons with the two 
opposite directions of spin [Pirani (1956); DeWitt (1962), p. 338; Schwinger (1963a,b)] just 
as an electric field pulls oppositely on electrons with the two opposite signs of charge 
["vacuum polarization"; see especially Heisenberg and Euler (1936)] .  In principle, the tidal 
field pulling on the spin of an electron need not be due to "background" spacetime curvature; 
it might be due to a nearby massive spinning object, such as a "live" black hole ( chapter 
33) [ "gravitational spin-spin coupling"; O'Connell (1972)] .  

§40.8. IS THE GRAVITATIONAL CONSTANT CONSTANT? 

The title and subject of this section are likely to arouse confusion. Throughout this 
book one has used geometrized units, in which G = c = 1 .  Therefore, one has locked 
oneself into a viewpoint that forbids asking whether the gravitational constant 
changes from event to event. 

False ! One can perfectly well ask the question in the context of G = c = 1 ,  if 
one makes clear what is meant by the question. 

In §§ 1 .5 and 1 .6 ,  c was defined to be a certain conversion factor between centi
meters and seconds ; and G/c 2 was defined to be a certain conversion factor between 
grams and centimeters . These definitions by fiat do not guarantee, however, that 
a Cavendish experiment* to measure the attraction between two bodies will yield 

Force = - Gm1m2/r2 = - m1m2/r2 . 

If general relativity correctly describes classical gravity, and if the values of the 
conversion factors G and c have been chosen precisely right, then any Cavendish 
experiment, anywhere in the universe, will yield "Force = - m1m2/r2" .  But if the 

* See any standard textbook for a description of Cavendish experiments. By his original version of 
the experiment, with two separated spheres suspended by fine wires, Henry Cavendish ( 1 798)  inferred 
the mass and hence the density of the Earth. He reported "By a mean of the experiments made with 
the wire first used, the density of the Earth comes out 5 .48 times greater than that of water; and by 
a mean of those made with the latter wire it comes out the same; and . . .  the extreme results do not 
differ from the mean more than 0 38 ,  or 1/ 14  of the whole." The most precise method of measuring 
G today [Rose et al. ( 1 969) ]  gives G0 = (6.674 ± .004) X 10-s cm3/g sec2 (one standard deviation) . 
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Dicke-Brans-Jordan theory, or almost any other metric theory gives the correct 
description of gravity, the force in the Cavendish experiment will depend on where 
and when the experiment is performed, as well as on mi, m2 , and r. To discuss 
Cavendish experiments as tests of gravitation theory, then, one must introduce a 
new proportionality factor 

Ge Geavendish ("Cavendish gravitational constant"), (40 .40) 

which enters into the Newtonian force law 

(40 .4 1 )  

This Cavendish constant will be  unity in general relativity, but in most other metric 
theories it will vary from event to event in spacetime, 

In some theories, such as Dicke-Brans-Jordan, the Cavendish constant is deter
mined by the distribution of matter in the universe. As a result, the expansion of 
the universe changes its value : 

1 dGe ( 0 . 1  to 1 } - 1 
Ge cit ~ - age of universe 

~ 
1010 or 1011 years 

[see, e .g. Brans and Dicke ( 196 1 )] .  A variety of observations place limits on such 
time variations. Big time changes in Ge during the last 4.6 billion years would have 
produced marked effects on the Earth, the sun, and the entire solar system. The 
expected geophysical effects have been summarized and compared with observations 
by Dicke and Peebles ( 1 965) .  It is hard to draw firm conclusions because of the 
complexity of the geophysics involved, but a fairly certain limit is 

( 1 /Ge)(dGe/dt) � 1 / 1010 years (geophysical) . (40 .42a) 

Eventually, high-precision measurements of the orbital motions of planets will yield 
a better limit. For the present, planetary observations show 

(l /Ge)(dGe/dt) � 4/ 1010 years (planetary orbits) (40 .42b) 

[Shapiro, Smith, et al. ( 1 97 1 )] .  These limits are tight enough to begin to be interesting, 
but not yet tight enough to disprove any otherwise viable theories of gravity. 

If Ge is determined by the distribution of matter in the universe, then it should 
depend on where in the universe one is, as well as when. In particular, as one moves 
from point to point in the solar system, closer to the Sun and then farther away, 
one should see Ge change. Indeed this is the case in most metric theories of gravity, 
though not in general relativity. Analyses of Cavendish experiments using the PPN 
formalism reveal spatial variation in Ge given by 

LIGe = -2Ge(/3 + y - /32 - l)U 

[Nordtvedt ( 1970, 1 97 1 a) ;  Will ( 1 97 l b)] .  

(40 .43) 

The amplitude of these variations along the Earth's elliptical orbit is LI Ge/ Ge ~ 
10- 10 , if /3 + y - /32 - 1 ~ 1 .  This is far too small to measure directly in the 
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1970's. Despite great ingenuity and effort, the most accurate experiments measuring 
the value of Ge have precisions in 1972 no better than 1 part in 104 [see Beams 
(197 1 )] .  Experiments to search for yearly variations in Ge on Earth without measuring 
the actual value ("null-type experiments") can surely be performed with better 
precision than 1 in 104-but not with precisions approaching 1 in 10 10 . On the other 
hand, indirect consequences of a spatial variation of Ge in the solar system are almost 
certainly measurable (see §40 .9 below). 

In Ni's theory of gravity (Box 39 . 1 ), and other two-tensor or vector-tensor theories 
like it, where the prior geometry picks out a preferred "universal rest frame," the 
Cavendish constant Ge can depend on velocity relative to the preferred frame. For 
Cavendish experiments with two equal masses separated by distances large compared 
to their sizes, Ge varies as 

(40 .44) 

[Will ( 197 1 b )]. Here v is the velocity of the Cavendish apparatus relative to the 
preferred frame, and n is the unit vector between the two masses. For experiments 
where one body is a massive sphere (e.g. , the Earth), and the other is a small object 
on the sphere's surface, Ge varies as 

1 ..:1Ge/Ge = 
2 

[(a3 - a 1) + ail - I/ MR 2)]v2 

- ½ a2(1  - 31/ MR 2)(v • n)2 

(40 .44') 

[Nordtvedt and Will (1 972)) .  Here M and R are the mass and radius of the sphere, 
and 

I = J (pr2)4wr 2 dr 

is the trace of the second moment of its mass distribution. Consequences of these 
effects for planetary orbits have not yet been spelled out, but consequences for 
Earthbound experiments have. 

Dependence of Ge on 
veloc ity 

Think of a Cavendish experiment in which one mass is the Earth, and the other Anomalies in Earth tides due 
is a gravimeter on the Earth's surface. The gravimeter gives a reading for the "local to anisotropies in Ge · 
acceleration of gravity," 

(40 .45) 

As the Earth turns, so the unit vector n between its center and the gravimeter rotates, 
Ge and hence g will fluctuate with a period of 12 sidereal hours and an amplitude 

Here Om is the minimum, as the Earth rotates, of the angle between v (constant 
vector) and n (rotating vector) . (Note : we have used the value J/ MR2 � 0 .5 for the 
Earth.) These fluctuations will produce tides in the Earth of the same type as are 
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produced by the moon and sun. As of 1972, gravimeter measurements near the 
Earth's equator show no sign of any anomalous 12-sidereal-hour effects down to 
an amplitude of ~ 10-9 [Will ( 197 l b)] .  Consequently, 

la 2 1 11 2v cos om = IL12 + { - 1 1 11 2v cos om :S 6 X 10-5 ~ 20 km/sec. (40 .46a) 

Using a rough estimate of v ~ 200 km/sec for the Earth's velocity relative to the 
universal rest frame, and Om :S 60 ° for the angle between v and the Earth's equatorial 
plane, one obtains the rough limit 

(40 .46b) 

[This limit does not affect the three theories in Box 39 . 1 ;  of them, only Ni's theory 
has prior geometry and a universal rest frame; and it predicts isotropic effects in 
LIG0/ G0 (equation (40 .44)], but no anisotropic effects . However, other theories with 
universal rest frames-e.g. Papapetrou's ( 1954a,b,c) theory-are ruled out by this 
limit ; see Ni ( 1972), Nordtvedt and Will (1 972). ]  

Whitehead's theory of gravity (which is a two-tensor theory with a rather different 
type of prior geometry from Ni's) predicts that the galaxy should produce velocity
independent anisotropies in G0 . These, in turn, would produce Earth tides with 
periods of 12 sidereal hours and amplitudes of 

LI I ~ 2 X 10_7 ~ 100 X (experimen�al limit on} g g such amphtudes 

[Will (197 1 b )] . The absence of such tides proves Whitehead's theory to be incor
rect-a feat of disproof beyond the power of all redshift, light-deflection, time-delay, 
and perihelion-shift measurements . (For all these "standard experiments," the 
predictions of Whitehead and Einstein are identical ! ) 

Equation (40 .44') predicts a periodic annual variation of the Cavendish constant 
on Earth, as the Earth moves around the sun : 

_ (velocity of Earth} (velocity of sun relative} = V - I . + .. d f - VE +  w, 
re atlve to sun to pre1erre rame 

(LlGc/Gc)averaged over = � ( ½ a2 + 0'.3 - al) (w2 + vi + 2w • VE). 
Surface of Earth t 

[varies sinusoidally with period of one year]--l 

(40 .47) 

This annual variation, assuming all PPN parameters are of order unity, is 1 ,000 times 
larger than the one produced by the Earth's motion in and out through the sun's 
gravitational potential (equation (40 .43)] .  In response to this changing Cavendish 
constant, the Earth's self-gravitational pull should change, and the Earth should 
"breathe" inward (greater pull) and outward (relaxed pull) . The resulting annual 
variations in the Earth's moment of inertia should produce annual changes in its 
rotation rate w (changes in "length of day" as measured by atomic clocks) : 

ow/w ~ 0 . 1  (¾a 2 + 0'.3 - 0'.1) W '  VE 
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[Nordtvedt and Will ( 1972)] .  Comparison with the measured annual variations of 
rotation rate (all of which geophysicists attribute to seasonal changes in the Earth's 
atmosphere) yields the following limit 

I i  0'.2 + 0'.3 - al l  = < 0 .2 .  (40 .48) 

[See Nordtvedt and Will ( 1972)] .  This limit rules out several preferred-frame theories 
of gravity, including that of Ni (Boxes 39 . 1  and 39 .2) .  

The experimental results (40 .2 1) ,  (40 .46), and (40 .48), when combined, place the 
following very rough limits on any theory that possesses a Universal rest frame : 

la1 1 = 17 Ll1 + Ll2 - 4y - 4 1 :S 0 .2, 

la2 I = IL12 + !: - I I :S 0.03, 

l a 3 I = 14,81 - 2y - 2 - !; I :S 2 X 10-5 _ 

(40 .49) 

These limits completely disprove all theories with preferred frames that have been 
examined to date except one devised by Will and Nordtvedt [see Ni ( 1972);  
Nordtvedt and Will ( 1 972)] . 

In some theories of gravity, the result of a Cavendish experiment depends on the 
chemical composition and internal structure of the test bodies (exercises 40 .9 and 
40 . 10). Kruezer (1968) has performed the most accurate search for such effects to 
date . He finds that G0 is the same for fluorine and bromine to a precision of 

I 
G0(bromine) i G0(fluorine) 

I :S 5 X 10_5 _  (40 .50) 

Exercise 40.9. CAVENDISH CONSTANT FOR IDEALIZED SUN 
Idealize the sun as a static sphere of perfect fluid at rest at the origin of the PPN coordinates. 
Then its external gravitational field has the form (40.3), with M0 given by (40 .4) . Conse
quently, a test body of mass m, located far away at radius r, is accelerated by a gravitational 
force 

Force = -mM0/r 2. (40.51a) 

(a) Calculate the mass of the sun, M, in the sense of the amount of energy required to 
construct it by adding one spherical shell of matter on top of another, working from the 
inside outward . [Answer: 

M = J
R
o p0(1 + II +  3y U)4'1Tr2 dr 

- _!_
J

R0 
p0 U4'1Tr2 dr 

0 2 0 '---"-------' 

rest mass + internal energy gravitational potential energy 

= �
R
o Po [ 1 + II + (3y - ½) u] 4'1Tr2 dr.) (40.51b) 

(b) Use the virial theorem [equation (39.2 lb)] to rewrite equation (40.4) in the form 

(40.51c) 

Experimenta l  va l ue  of 
ia2 + a3 - a1 

Dependence of G0 on  
chemica l  com pos i t ion 

EXERCISES 
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(c) Combine the above equations with the definition 

Force = - GemM/r 2 

of the Cavendish constant for r far outside the sun, to ohtain 

(mass of sun as defined by its effect in ) bending world line of a faraway test particle 
Ge = 

(
mass-energy as defined by applying law of

) conservation of energy to the steps in the 
construction of the sun 

(40.51d) 

(40.52) 

= 1 + J (p0/M0)[(/33 - l)IJ + ½ (4/32 + /34 - 6y + l) U]47Tr 2 dr. 

Unless /33 = 1 ,  and 4/32 + /34 - 6y + 1 = 0 (as they are, of course, in Einstein's theory), 
Ge will depend on the sun's internal structure ! Specialize equation (40.52) to "conservative 
theories of gravity (Box 39.5), and explain why the result is what one would expect from 
equation (40.43). 

Exercise 40.10. CAVEN D I SH CON STANT FOR ANY BODY 

Extend the analysis of exercise 40.9 to a source that is  arbitrarily stressed and has arbitrarv 
shape and internal velocities (subject to the constraints v2 � 1 , I t1k I /p0 � 1 ,  U � 1 ,  II � 1, 
of the post-Newtonian approximation). Assume that the body is at rest relative to the 
universal rest frame. Show that Ge depends on the internal structure of the source unless 

4/32 + /34 - 6y = -1, /; = 0, 

Of course, these PPN constraints are all satisfied by Einstein's theory. 

§40 . 9. DO PLANETS AND THE SUN MOVE 
ON GEODESICS? 

T/ = 0. ( 40.53) 

Crucial to solar-system experiments is the question of whether the sun and the planets 
move on geodesics of spacetime. This question is complicated by the contributions 
to the spacetime curvature made by the moving body itself. 

To elucidate the question-and to obtain an answer in the framework of general 
relativity-consider an "Einstein elevator" type of argument. The astronomical object 
under consideration has an outer boundary, and each point on this boundary 
describes a world line. These world lines define a world tube. Some distance outside 
of this world tube construct a "buffer zone" as in §20 .6 .  Tailor its inner and outer 
dimensions, according to the mass and moments of the object and the curvature 
of the enveloping space ("strength of the tide-producing force of the external gravi
tational field"), in such a way that the departure € (cf. §20 .6) of the metric from 
flatness in this buffer zone takes on values equal at most to twice the extremal 
achievable value €

extrem (a minimum with respect to variations in r, a maximum 
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with respect to variations in direction; in other words, a minimax). Then, apart from 
errors of order <:extrem' the object can be regarded as moving in an asymptotically 
flat space. The law of conservation of total 4-momentum applies. It assures one that 
the object moves in a (locally) straight line with uniform velocity. Consider, next, 
a "background geometry" that agrees just outside the buffer zone with the actual 
geometry to accuracy <:extrem or better, but that inside is a source-free solution of 
Einstein's field equation. Then, to an accuracy governed by the magnitude of <:extrem' 
the locally straight line along which the astronomical object moves will be a geodesic 
of this background geometry. 

Insofar as one can give any well-defined meaning to the departure of the actual 
motion from this geodesic (a task complicated by the fact that the background 
geometry does not actually exist ! ), one can calculate this departure by making use 
of the PPN formalism or some other approximation scheme [see, e.g., Taub (1965)]. 
This deviation springs ordinarily in substantial measure, and sometimes almost 
wholly, from a coupling between the Riemann curvature tensor of the external field 
and the multipole moments of the astronomical object (angular momentum associ
ated with rotation; quadrupole and higher moments associated with deformation; 
see, e.g., exercises 40.8 and 16.4). This coupling is important for the Earth-moon 
system, but one need not use relativity to calculate it; Newtonian theory does the 
job to far greater accuracy than needed-or would, if one understood the interiors 
of the Earth and the moon well enough! For the planets and sun, the effect is 
negligible. (Exercise: use Newtonian theory to prove so !) . 

Thus, in general relativity as applied to the solar system, one can approximate 
the orbit of the sun, the Earth-moon mass center, and each other planet, as a geodesic 
of that "background spacetime geometry" which would exist if its own curvature 
effects were absent. This is the approach used to analyze the perihelion shift for 
planets in §40.5 in the context of general relativity, and to derive in exercise 39.15 
the post-Newtonian "many-body equations of motion." 

In most other metric theories of gravity, including the Dicke-Brans-Jordan theory, 
there are substantial departures from geodesic motion. The "Einstein elevator" 
argument fails in these theories because spacetime is endowed not only with a metric, 
but also with a long-range field that couples indirectly (cf. §§38.7 and 39.2) to 
massive, gravitating bodies. 

This phenomenon is best understood in terms of Dicke's argument about the 
influence of spatial variations of the fundamental constants on experiments of the 
Eotvos-Dicke type (see §38.6). In a theory where the Cavendish gravitational constant 
G0 depends on position (as it does not and cannot in general relativity), a body 
with significant self-gravitational energy Egrav must fall, in a perfectly uniform 
external Newtonian gravitational field, with an anomalous acceleration: 

(
acceleration of

) _ (
acceleration of

) = _!_ (
oEgrav ) vGc massive body test body M o G0 

= Egrav VG 
MG C 

C 

(40.54) 

Deviations from geodesic 
motion : 

( 1 )  due to curvature coupling 

(2) due to spatial 
dependence of 
gravitational constant 
( Nordtvedt effect) 



No rdtvedt effect i n  
Earth-moon orb i t  
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[see equation (38.15)]. In Dicke-Brans-Jordan theory, G0 is essentially the reciprocal 
of the scalar field; and it contains a small part that is proportional to the Newtonian 
potential, U [equation (40.43) with the appropriate values of the parameters from 
Box 39.2]. As a result, the sun falls with an acceleration smaller hy one part in 106 

than the acceleration of a test body; Jupiter falls with an acceleration one part in 
109 smaller; and the Earth, one part in 1010 smaller. Translated into relativistic 
language: the scalar field, by influencing the gravitational self-energy of a massive 
body, produces deviations from geodesic motion. 

One can use the full PPN formalism of Chapter 29 to calculate the motion of 
massive bodies in any metric theory of gravity. Nordtvedt (1968b) and Will (1971 a) 
have done this. They find that a massive body at rest in a uniform external field 
experiences a (Newtonian-type) PPN coordinate acceleration given by 

where Eik is a quantity depending on the body's structure: 

" { 3 4 Q Egrav } Q gjk Eik = uik I - (7 Ll1 - y - /J ) -
;;;

- -(2/3 + 2p2 - 3y + Ll2 - 2)
-;;;

, 

g . = - 2_ f PoP�(xj - x;)(xk - xi) d3 d3 ' Jk 2 Ix - x'l 3 
x x ' 

(40.55) 

Here m is the body's total mass-energy, ilik is the "Chandrasekhar potential-energy 
tensor, " and Egrav is the body's self-gravitational energy. [Note: Dicke's method of 
calculating the anomalous acceleration (40.54) breaks down in theories that are not 
"conservative " (Box 39 .5).] 

In general relativity, the combinations of PPN coefficients appearing in Eik vanish; 
so Eik = 8ik ' and the body falls with the usual acceleration-i.e., it moves along 
a geodesic. But in most other theories of gravity Eik -::j:. 8ik ; the body does not move 
on a geodesic; and its acceleration may even be in a different direction than the 
gradient of the Newtonian potential ! 

This predicted departure from geodesic motion is called the "Nordtvedt effect. ,, 
The possibility of such an effect was first noticed in passing by Dicke (1964c), but 
was discovered independently and explored in great detail by Nordtvedt (1968a,b). 
The Nordtvedt effect in a theory other than general relativity produces a number 
of phenomena in the solar system that are potentially observable. [See Nordtvedt 
(1971b) for an enumeration and references.] The effect most suitable for a test is 
a "polarization " of the Earth-moon orbit due to the fact that the moon should fall 
toward the sun with a greater acceleration than does the Earth. This "polarization " 
results in an eccentricity in the orbit that points always toward the Sun and has 
the amplitude 
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(40 .56) 

= 67 meters in Ni's theory (Boxes 39.1 and 39.2) 
= -2 S .4 meters + w  in Dicke-Brans-Jordan theory (Boxes 39. I and 39 .2) 
= 0 in Einstein's theory. 

Box 40 .4 CATALOG O F  EXPER I M ENTS 

Type of experiment Description of expenment 

I. Tests of foundations of I .  Tests o f  uniqueness o f  free fall (Eotvos-Dicke-Braginsky 
general relativity experiments 

2 .  Tests for existence of metric (time dilation of particle de-
cays ; role of Lorentz group in particle kinematics ; etc.) 

3 .  Searches fo r  new, direct-coupling, long-range fields (Hughes-
Drever experiment, ether-drift experiments) 

4. Gravitational redshift experiments 

5 .  Constancy, i n  space and time, o f  the nongravitational phys-
ical constants 

II. Post-Newtonian I .  Deflection o f  light and radio waves b y  Sun 
("solar-system") 2 .  Relativistic delay in  round-trip travel time for radar beams 
experiments passing near Sun 

3 .  Perihelion shifts and periodic perturbations i n  planetary 
orbits 

4 .  Three-body effects in the Lunar orbit 
5 .  Precession o f  gyroscopes ("geodetic precession" and preces-

sion due to dragging of mertial frames by Earth's rotation) 
6 .  Spatial variation uf th<:: Cavendi�h gravitaliunal rnmtant in 

the so Jar system 
7 .  Dependence of the Cavendish gravitational constant on the 

chemical composition of the gravitating body 
8 .  Earth tides with sidereal periods 
9 .  Annual variations in  Earth rotation rate 

10 .  Periodicities in Earth-Moon separation due to breakdown of 
geodesic motion 

III. Cosmological I .  Change o f  Cavendish gravitational constant with time in 
observations solar system 

2 .  Large-scale features of universe (expansion, isotropy, homo-
geneity; existence and properties of cosmic microwave 
radiation; . .  ) 

3 .  Agreement o f  various measures o f  age o f  universe (age from 
expansion; ages of oldest stars ; age of solar system) 

IV. Gravitational-Wave Existence of waves; propagation speed; polarization 
experiments properties; . . .  

Where discussed 

§38 .3 ; Figure 1 .6 ;  
Box I . I  

§38 .4 

§38 .7 ; Figure 38 .3 
§38 .5 ; Figures 3 8 . 1  

and 3 8 . 2 ;  §§7 .2 ,  
7 .3 ,  and 7 .4 

§38 .6 

§40 .3 ; Box 40. 1 

§40.4 ; Box 40 2 

§40.5 ; Box 40.3 
§40.6 

§40.7 

§§40. 8 and 40.9 

§40.8 
§40. 8  
§40.8 

§40.9 

§40.8  

Chapters 27-30 ; 
especially Chapter 29 

§29.7 

Chapters 35-37 ; 
especially Chapter 37 
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Figu re 40 .4 .  (facing page) 

1 1 3 1  

Measuring the separation between earth and moon by determining the time-delay (about 2 .5 sec) between 
the emission of light from a laser on the earth and the return of this light to the earth. A key element 
in the program is a corner reflector, the first of which was landed on the moon July 20, 1969, by the 
Apollo 1 1  flight crew. In November 197 1 ,  there were three such reflectors on the moon : two American, 
and one French-built and Soviet-landed. A pulsed ruby laser projects a beam out of the 107-inch reflecting 
telescope of the McDonald Observatory of the University of Texas, on Mount Locke, 1 19 miles east 
of El Paso. This beam makes a spot of light on the moon's surface about 3 .2 km in diameter. Laser 
light is bounced straight back to the earth by the "laser ranging retroreflectors" (LR3) .  Each consists 
of an aluminum panel of 46 cm by 46 cm with 100 fused silica comer cubes each 3 . 8  cm in diameter. 
The first reflector ever set up appears m the first inset, near the lunar landing module. It is tilted with 
respect to the landscape of the moon. The photograph was made shortly before astronauts Neil A. 
Armstrong and Edwin E. Aldrin, Jr. , took off for the earth. The second inset is a photograph made 
by D. G. Currie of the field of view in the guiding eyepiece of the McDonald 107-inch telescope in 
an interval when the laser was not firing at the Apollo 1 1  site. One guides the telescope to Tranquility 
Base (small circle) by ahgning fiducial marks on more visible moonscape features. In November 1 97 1 ,  
the LR3 experiment and continuing time-of-flight measurements were the responsibility of the National 
Aeronautics and Space Administration and a Lunar Retroreflecting Ranging Team of representatives 
from several centers of research. One of the members of this team, Carroll Alley, of the University of 
Maryland, is hereby thanked for his kindness in providing the photographs used in this montage. Thanks 
to this NASA work, the distance between the laser source on the earth and the reflectors on the moon 
is known with an accuracy now better than half a meter. The astronauts left behind on the moon not 
only LR3 and a seismometer and other equipment, but also a plaque: "We came in peace for all 
mankind " 

By the mid 1970's, lunar laser-ranging data will probably be able to determine the amplitudes of this polarization to a precision of one meter or better [see Bender 
et al. (1971); also Figure 40.4] . 
§40 .10 . SUM M ARY OF EXPERIMENTAL TESTS 

OF GENERAL RELATIVITY No longer is general relativity "a theorist's Paradise, but an experimentalist's Hell." It is now a Paradise for all-as one can see quickly by perusing the catalog of experiments given in Box 40.4 on page 1129. Moreover, general relativity has emerged from each of its tests unscathed-a remarkable 1973 tribute to the 1915 genius of Albert Einstein. 





PART X 

FRO NTI ERS  

Wherein the reader- who, during a life of continued variety for 
forty chapters (besides the Preface) , was eight chapters a 

mathematician, four times enticed (once by an old friend) ,  four 
chapters a cosmologist, and four chapters a transported 

astrophysicist in the land of black holes, and who at last 
inherited a wealth of experiments, lived honest, and became a 

True Believer-now ventures forth in search of new 
frontiers to conquer. 





CHAPTE R 4 1  
S P I N O RS 

§41.1 .  REFLECTIONS, ROTATIONS, AND 
THE COM BINATION OF ROTATIONS 

Spinors and their applications in relativity grew out of the analysis of "rotations," , 
first in space, then in spacetime. Take a cube (Figure 41.1). Rotate it about one 
axis through 90 ° . Then pick another axis at right angles to the first. About it rotate 
the cube again through 90 ° .  In this way the cube is carried from the orientation 
marked "Initial" to that marked "Final." How can one make this net transformation 
in a single step, with a single rotation? In other words, what is the law for the 
combination of rotations? 

This chapter is entirely 
Track 2. No  earl ier  Track-2 
material is needed as 
preparation for it, nor is it 
needed as preparation for any 
later chapter. 

Were rotations described by vectors, then one could apply the law of combination 
of vectors. The resultant of two vectors of the same magnitude (90 ° ) separated by 
a right angle, is a single vector that (1) lies in the same plane and (2) has the 
magnitude 2112 x 90 ° = 127.28 ° .  Both predictions are wrong. To turn the cube from 
initial to final orientation in a single turn, ( I )  take an axis running from the center 
through the vertex A and (2) rotate through 120 ° .  

The problem of combining 

What computational algorithm can ever reproduce a law of combination of 
rotations apparently so strange? On the evening of October 16, 1843, William Rowan 
Hamilton was walking with his wife along the Royal Canal in Dublin when the 
answer leaped to his mind, the fruit of years of reflection. With his knife he then 
and there carved on a stone on Brougham Bridge the formulas* 

i2 = j 2 = k2 = ijk = - l ,  

* In the same city on June 2 1 ,  1 972 President Eamon d e  Valera told one o f  the authors that, while 
in jail one evening in 1 9 16 ,  scheduled to be shot the next morning, he wrote down the formula of which 
he was so fond, i2 = j2 = k2 = ijk = - I .  

rotat ions  



Rotat ion operato rs . 
( 1 )  defi ned 

(2) as too ls  i n  comb i n i n g  
rotat ions 

Initial Final 
Figu re 41. 1. 
Rotation about the vertical aias through 90 ° , followed by rotation about the horizontal aXIs through 
90 ° , gives a net change in orientation that can be achieved by a single rotation through 120 ° about 
an axis emergent from the center through the comer A .  

which in today's notation, 
ax = I I� �, , = ii, 

take the form a/ = a/ = a/ = 1, 
az = I I � _ �I I = ik, (41 .1) 

(41.2) 
To any rotation is associated a quantity (Hamilton's "quaternion; " today's "spin matrix" or "spinor transformation" or "rotation operator") 

R = cos (0/2) - i sin (0/2)(ax cos a + ay cos /3 + az cos y), (41.3) where 0 is the angle of rotation and a, /3, y are the angles between the axis of rotation and the coordinate axes. A rotation described by R1 followed by a rotation described by R2 gives a net change in orientation described by the single rotation (41.4) This is Hamilton's formula for the combination of two rotations (steps toward it by Euler in 1776; obtained by Gauss in 1819 but never published by him). In the example in Figure 41.1, R1(rotation by 0 = 90° about z-axis) = (1 - iaz)/2112, R2(rotation by 0 = 90 ° about x-axis) = (1 - iax)/2112, and the product of the two is R2R1 = (1 - iax + iay - iaz)/2 
= cos 60° - i sin 60° (ax/3112 - a/3112 + az/3112). 
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A 
M 

C 

Figu re 41. 2 .  
Reflection i n  the plane MP Q  carries A to B .  
Reflection i n  the plane NP Q  carries B to C .  The 
combination of the two reflections in the two 
planes separated by the angle O /2 produces the 
same end result (transformation from A to C) as 
rotation through the angle O about the line PQ. 
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According to Hamilton's rule (4 1 .3), this result implies a net rotation through 1 20° about a line that makes equal angles with the x-axis, the y-axis, and the z-axis, in conformity with what one already saw in Figure 4 1 . 1  ( axis of rotation running from center of cube through the corner A). What one has just done in the special example one can do in the general case: obtain the parameters 83 , a 3, {33, y3 of the net rotation (four unknowns!) by identifying the four coefficients of the four Hamilton units 1 ,  - iav - iay, - iaz on both sides of the equation R3 = R2R1 . In this way one arrives at the four prequaternion formulas of Olinde Rodrigues (1840) for the combination of the two rotations. Why do half-angles put in an appearance? And what is behind the law of combination of rotations? The answer to both questions is the same: a rotation through the angle 8 about a given axis may be visualized as the consequence of successive reflections in two planes that meet along that axis at the angle 8 /2 (Figure 4 1 .2). Two rotations therefore imply four reflections. However, it can be arranged that reflections no. 2 and no. 3 take place in the same plane, the plane that includes the two axes of rotation. Then reflection no. 3 exactly undoes reflection no. 2 .  By now there remain only reflections no. 1 and no. 4 ,  which together constitute one rotation: the net rotation that was desired (Figures 4 1 .3 and 4 1 .4). The rotation R = cos (8/2) - i sin (8/2)(a.,, cos a + av cos /3 + az cos y) is undone by the inverse rotation R-1 = cos (8/2) + i sin (8/2)(a.,, cos a +  a11 cos /3 + az cos y). Thus the product of the two rotation operators 
(4 1 .3) 

(4 1 .3') 
(4 1 .5) is an operator, the unit operator, that leaves unchanged everything that it acts on. The reciprocal R-1 of the combination R = R2R1 of two rotations is (4 1 .5') (reverse order of factors!), as one verifies by substitution into (4 1 .5). 

Geometric reason that half 
angles appear in rotation 
operators 

Algebraic properties of 
rotation operators 
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G ' G 
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Figu re 4 1 . 3 .  

4 1. SPINORS 

Composition of two rotations seen in terms of reflections. The first rotation (for mstance, 90 ° about 
OZ in the example of Figure 4 1 . 1 .) is represented in terms of reflection I followed by reflection 2 (the 
planes of the two reflections being separated by 90 ° /2 = 45 ° in the example) . The second reflection 
appears as the resultant of reflections 3 and 4. But the reflections 2 and 3 take place in the common 
plane ZOX. Therefore one reflection undoes the other. Thus the sequence of four operations 1234 
collapses to the two reflections I and 4. Their place in tum is taken by a single rotation about the axis 
OA . 

The conjugate transpose, M*, of a matrix M is obtained by taking the conjugate 
complex of every element in the matrix and then interchanging rows and columns. 
By direct inspection of matrix expressions (41.1) one sees that a/ = a,,, a/ = ay, 
a/ = az . Such matrices are said to be Hermitian. The conjugate transpose of the 
product M = PQ of two matrices is the product M* = Q*P* of the individual 
conjugate transposed matrices taken in the reverse order. For the rotation matrix 
written down above, note that R* = R-1 . Such a matrix is said to be unitary. The 
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Figure 41 .4 .  
Law of  composition of rotations epitomized by 
a spherical tnangle in which each of the three 
important angles represents half an angle of ro-
tation. 

determinant of a unitary matrix may be seen to have absolute value unity from the following line of argument: 1 = det (unit matrix) = det (RR-1) 

= det (RR*)= det R det R* 
= l det R l2. (4 1 .6) In actuality the determinant of the rotation spin matrix is necessarily unity ("unimodular matrix") as shown in the following exercises 

Exercise 41 .1. ELEMENTARY FEATURES OF THE ROTATION MATRIX 
Write equation (41.3) in the form 

R(O) = cos (0/2) - i sin (0/2)(u · n), 

and establish the following properties: 

(a) (u · n)2 = 1 _ unit matrix; 

(b) tr (o- • n) = 0 (tr means "trace," i .e ., sum of diagonal elements); 

(c) [R, (u · n)] = R(u · n) - (u · n)R = O; 

(d) 

�commutator] 
dR i 
d0 = -2 (11 · n)R. (41.7) 

[Note that if one thinks of 0 as increasing with angular velocity w, so dB I dt = w = constant, 
then this last equation reads 

where "' = wn.] 

dR i - = - -(o- • uJ)R dt 2 
(41 .7') 

EXERCISES 



Infinitesimal rotations 

Representation of a 3-vector 
as a spin matrix 
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Exercise 41.2. ROTATION MATRIX HAS UNIT DETERMINANT 
Recall from exercise 5 .5 that for any matrix M one has 

d[ln (<let M)] = tr (M-1 dM) 

and use this to show that <let R in ( 4 1 .7) is constant, and therefore equal to ( <let R )  8 = 0 = 1 .  

§41.2. INFINITESIMAL ROTATIONS 

A given rotation can be obtained by performing in turn two rotations of half the 
magnitude, or four rotations of a fourth the magnitude, or eight of an eighth the 
magnitude, and so on. Thus one arrives in the limit at the concept of an infinitesimal 
rotation described by the spin matrix 

or 

Here the quantities 

R = I - (i dB/2)(u • n). 

dByz = -dBzy = n"' dB = cos a dB, 

dBzx = -dB,,z = nY dB = cos {3 dB, 

dB.,Y = -dByx = nz dB = cos y dB, 

(41.8) 

(41.9) 

are the components of the infinitesimal rotation in the three indicated planes. An 
infinitesimal rotation in the (x, y)-plane through the angle dB,,y transforms the vector 
x = (x, y, z) into a new vector with changed components x ' and y' but with un
changed component z '  = z. More generally, the infinitesimal rotation (41.8) con
sidered in this same "active" sense* produces the transformation 

with 
x -. x', 

x ' = x - (dB,,y)y -(dB,,z)z, 

y ' = -(dBy,,)x + y -(dByz)z, 

z '  = -(dBz,,)x - (dBzy)y + z. 

(41.10) 

Spinor calculus provides an alternative (and shorthand! )  means to calculate the 
foregoing effect of a rotation on a vector. Associate with the vector x the spin matrix 

(41.11) 

* An "active" transformation changes one vector into another, while leaving unchanged the underlying 
reference frame (if there is one). By contrast, a "passive" transformation leaves all vectors unchanged, 
but alters the reference frame All transformations in previous chapters of this book were passive. 



§4 1  2 INFINITESIM AL ROTATIONS 1 1 4 1  and with the vector x '  a corresponding spin matrix or quaternion X'. Then the effect of the rotation is summarized in the formula 
X --- X' = RXR*. 

Rotation of a 3-vector (41.12) described i n  spin-matrix 
language Test this formula for the general infinitesimal rotation (41.10). It reads 

(x' · er) =  [1 - (i d0/2)(er · n)](x · er)[l + (i d0/2)(er • n)] or, to the first order in the quantity d0, 

(x ' · er) =  (x · er)+ (i d0/2)[(x • er)(er · n) - (er ·  n)(x · er)]. (41.13) The product of spin matrices A = (a · er) and B = (b · er) built from two distinct vectors a and b is AB = (a · er)(b · er) = a"b"a/ + a"bYaxay + . . .  , or, according to (41.2), AB = (a · b) + i(a X b) · er. (41.14) Employ this formula to evaluate the right-hand side of (41.13). In the square brackets, the terms in (x • n) have opposite signs and cancel. In contrast, the terms in (n X x) have the same sign. They combine to cancel the factor 2 in (d0 /2). End up with 
(x'  · er) = (x · er) + d0(n X x) · er or 

x' = [1 + (d0)n X ]  x (41.15) in agreement with (41.10), as was to be shown. A finite rotation about a given axis can be considered as the composition of infinitesimal rotations about that axis. To see this composition in simplest form, rewrite the spin matrix (41.8) associated with the general infinitesimal rotation as 
R(d0) = e-(i d B/2)('1 ·n) (41.16) (exponential function defined by its power-series expansion). Note that (er ·  n) commutes (a) with unity and (b) with itself, and in addition (c) has a unit square. Therefore the calculation of the exponential function proceeds no differently here, for spin matrices, than for everyday algebra. The composition of the spin matrices for infinitesimal rotations about an unchanging axis proceeds by adding exponents, to give 
R(0) = e-i(B/2)('1 ·n>, (41.17) 

which can also be obtained immediately from equation (41.7). This expression can be put in another form by developing the power series; thus, 

Composition of finite rotation 
from infinitesimal rotations 
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R(0) = � (1/p !)(- i0u · n/2)P 
p = O 

= � (1 /p !)(- i0/2)P + (u • n) � (1 /p !)(- i0/2)P (4 1 . 1 8) 

even p oddp 

= cos (0/2) - i sin (0/2)(u · n) in agreement with the expression (4 1 .3) originally given for a spinor transformation. The effect of one infinitesimal rotation after another after another . . .  on a vector is given by 
X' = R(d0) . . .  R(d0)XR*(d0) . . .  R*(d0), with the consequence that even for a finite rotation R = R(0) one is correct in employing the formula 

X' = RXR*. 

Exercise 41 . 3. MORE PRO PERTIES O F  THE ROTATI O N  MATR IX 

Show that for X = x · u one has the commutation relation 

[(u · n), X] = 2i(n X x) · u. 

(4 1 . 1 9) 

Use this to obtain, from equation (41.19) in the form X = RX0R* [where X0 is constant, 
while R(O) is given by equation (41.17)], the formula 

d 
dB (x · u) = (n X x) · u. 

Why is this equivalent to the standard definition 

for the angular velocity? Reverse the argument to show that equation (41 .7') correctly defines 
the rotation R(t) resulting from a time-dependent angular velocity "'(t ), even though the 
simple solution R = exp [ - ½it(u · "')] of this equation can no longer be written when "' is 
not constant . 

§41.3. LORENTZ TRANSFORM ATION VIA SPINOR ALGEBRA Generate a rotation by two reflections in space? Then why not generate a Lorentz transformation by two reflections in spacetime? If for this purpose one has to turn from a real half-angle between the two planes of reflection to a complex half-angle, that development will come as no surprise; nor will it be a surprise that one can 



§ 4 1. 3  LORENTZ TRANSFORM ATION VIA SPINOR ALGEBRA 1 1 43 

still represent the effect of the Lorentz transformation by a matrix multiplication 
of the form 

X -+ X' = LXL* .  (41.20) 

Here the "Lorentz spin transformation matrix" L is a generalization of the rotation 
matrix, R. Also the "coordinate-generating spin matrix" X is now generalized from 
(41.11) to 

or 

X = r + (x • u) 

X= \\
t + � x - iy

l \ · 
X + zy t - Z 

It is demanded that this matrix be Hermitian 

X= X*. 

(41.21) 

(41.22) 

(41.23) 

Then and only then are the coordinates (t, x, y, z) real. The conjugate transpose of 
the transformed spin matrix must also be Hermitian-and is: 

(X')*= (LXL *)* 
= (L*)*(X)*(L)* = LXL* = X'. (41.24) 

Therefore the new coordinates (t ', x ', y ', z')  are guaranteed to be real, as desired. 
This reality requirement is a rationale for the form of the spin-matrix transformation 
(41.20), with L appearing on one side of X and L* on the other. 

A Lorentz transformation is defined by the circumstance that it leaves the interval 
invariant: 

t 'z _ x 'z _ y'z _ z 'Z = t 2 _ xZ _ yz _ zZ . (41.25) 

Note that the determinant of the matrix X as written out above has the value 

det X = t 2 - x 2 - y2 - z 2 . (41.26) 

Consequently the requirement for the preservation of the interval may be put in 
the form 

det X' = det X 

or 

(det L)(det X) (det L *) = det X. 

This requirement is fulfilled by demanding 
det L = I 

(41.27) 

(41.28) 

(41.29) 

[it is not a useful generalization to multiply every element of L here by a common 
phase factor ei 8 , and therefore multiply det L by e2i8 , because the net effect of this 
phase factor is nil in the formula X' = LXL*] .  
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The spin matrix associated with a rotation, whether finite or infinitesimal, already 
satisfied the condition det L = 1 [proved in exercise (41.2)]. This condition, being 
algebraic, will continue to hold when the real angles d0yz, d0zv d0.,y, are replaced 
by complex angles, d0yz + i dav d0zx + i da y, d0xy + i drxz . The spin-transformation 
matrix acquires in this way a total of six parameters, as needed to describe the general 
infinitesimal Lorentz transformation. Thus the spin matrix for the general infinitesi
mal Lorentz transformation can be put in the form 

L = 1 -(i/2)(ax d0yz + ay d0zx + az d0.,y) 
+ (1/2)(ax da., + ay day + az daz) 

= 1 - (i d0/2)(u • n) + (u · da/2). 
(41.30) 

The effect of this transformation upon the coordinates is to be read out from the 
formula 

X -+ X' = LXL* 

or 
t ' + (u · x') = [1 - (i d0/2)(u • n) + (u · da/2)] 

X [t + (u · x)][l + (i d0/2)(u · n) + (u · da/2)] (41.31) 

Employ equation (41.14) for (u · A )(u · B) to reduce the right side to the form 

t + (u · x) + (u · da)t + d0(n X x) ·  u + (x · da). 

Now compare coefficients of 1, uv uY and uz, respectively, on both sides of the 
equation, and find 

t ' = t + (x · da) 
(41.32) 

x' = x + t da + d0(n X x), 

in agreement with the conventional expression for an infinitesimal Lorentz transfor
mation or "boost" of velocity da, in active form, as was to be shown. 

The composition of such infinitesimal Lorentz transformations gives a finite 
Lorentz transformation. The result, however, can be calculated easily only when all 
infinitesimal transformations commute. Thus assume that d0 and da are in a fixed 
ratio, so 

_ d0 d _ da vJ - n - an a - -- dT - dT 

are constants, with T a  parameter. Then integration with respect to T (composition 
of infinitesimal transformations) gives a finite transformation L = exp [ -½fru • 
(vJ + ia)] . For T = 1, so 0n = vJT, a =  aT, this reads 

L = exp [(a - i0n) · u/2]. (41.33) 

In the special case of a pure boost (no rotation; 0 = 0), the exponential function 
is evaluated along the lines indicated in (41.18), with the result 

L = cosh (a/2) + (na • u) sinh (a/2). (41.34) 
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Here na = a/a is a unit vector in the direction of the boost. The corresponding 
Lorentz transformation itself is evaluated from the formula 

or 
X' = LXL* 

t ' + (x' · u) = [cosh a/2 + (na · u) sinh a/2][t + (x · u)] 
X [cosh a/2 + (na · u) sinh a/2]. 

Simplify with the help of the relations 

cosh2(a/2) + sinh2(a/2) = cosh a, 

2 sinh (a/2) cosh (a/2) = sinh a, 

and 

and on both sides of the equation compare coefficients of 1 and u, to find 

t' = (cosh a)t + (sinh a)(na • x), 

(41.35) 

x' = [(sinh a)nat + (cosh a)(na • x)nal ("in-line part of transformation") (41.36) + [x -(x • na)nal ("perpendicular part of x unchanged"). 

In this way one verifies that the quantity a is the usual "velocity parameter," 
connected with the velocity itself by the relations 

(1 - /3 2)-112 = cosh a, 
/3(1 - /3 2)-112 = sinh a, 

/3 = tanh a .  

(41.37) 

That velocity parameters add for successive boosts in the same direction shows 
nowhere more clearly than in the representation (41.33) of the spin-transformation 
matrix: 

L(a2)L(a1) = exp [az<na • u)/2] exp [a/na • u)/2] = exp [(a2 + a1)(na • a)/2] 
= L(a2 + a1). (41.38) 

Tum from this special case, and ask how to get the resultant of two arbitrary Lorentz 
transformations, each of which is a mixture of a rotation and a boost. No simpler 
method offers itself to answer this question than to use formula (41.33) together 
with the equation 

L(resultant) = L2L1 . (41.39) 

§41 .4 .  THOM AS PRECESSION VIA SPINOR ALGEBRA 

A spinning object, free of all torque, but undergoing acceleration, changes its 
direction as this direction is recorded in an inertial frame of reference. This is the 
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Thomas precession [see exercise 6.9 and first term in equation (40.33b)]. This preces
sion accounts for a factor two in the effective energy of coupling of spin and orbital 
angular momentum of an atomic electron. In a nucleus it contributes a little to the 
coupling of the spin and orbit of a nucleon. The evaluation of the Thomas precession 
affords an illustration of spin-matrix methods in action. 

The precession in question can be discussed quite without reference either to 
angular momentum or to mass in motion. It is enough to consider a sequence of 
inertial frames of reference S(t) with these two features. ( I )  To whatever point the 
motion has taken the mass at time t, at that point is located the origin of the frame 
S(t). (2) The inertial frame S(t + dt) at the next succeeding moment has undergone 
no rotation with respect to the inertial frame S(t), as rotation is conceived by an 
observer in that inertial frame. However, it has undergone a rotation ("Thomas 
precession") as rotation is conceived and defined in the laboratory frame of reference. 

How is it possible for "no rotation" to appear as "rotation"? The answer is this: 
one pure boost, followed by another pure boost in another direction, does not have 
as net result a third pure boost; instead, the net result is a boost plus a rotation. 
This idea is not new in kind. Figure 41.1 illustrated how a rotation about the z-axis 
followed by a rotation about the x-axis had as resultant a rotation about an axis 
with not only an x-component and a z-component but also a y-component. What 
is true of rotations is true of boosts : they defy the law for the addition of vectors. 

Let the frame S0 coincide with the laboratory frame, and let the origin of this 
laboratory frame be where the moving frame is at time t. Let S(t) be a Lorentz 
frame moving with this point at time t. Let one pure boost raise its velocity relative 
to the laboratory from /3 to /3 + d/3. The resulting final configuration cannot be 
reached from S0 by a pure boost. Instead, first turn S0 relative to the laboratory 
frame ("rotation R associated with the Thomas precession") and then send it by 
a simple boost to the final configuration. Only one choice of this rotation will be 
right to produce match-up. Thus, distinguishing the spin matrices for pure boosts 
and pure rotations ·by the letters B and R, one has the relation 

B(/3 + d/J)R(w dt) = "B(d/J)"B(/3) (41.40) 

out of which to find the angular velocity w of the Thomas precession. The quotation 
marks in "B(d/3)" carry a double warning: ( I )  the velocity of transformation that 
boosts S(t) to S(t + dt) is not (/3 + d/3) - f3 = d/3 (law of vector addition-or 
subtraction-not applicable to velocity), and (2) "B(d/3)" does not appear as a pure 
boost in the laboratory frame. It appears as a pure boost only in the comoving frame. 

Take care of the second difficulty first. It is only a difficulty because the formalism 
for combination of transformations, R3 = R2Ri, as developed in §41.1 presupposes 
all operations R1 , R2 , • • • , to be defined and carried out in the laboratory reference 
frame. In contrast, the quantity "B(d/3)" is understood to imply a pure boost as 
defined and carried out in the comoving frame. Such an operation can be fitted 
into the formalism as follows. (1) Undo any velocity that the object already has. 
In other words apply the operator B-1(/3). Then the object is at rest in the laboratory 
frame. Then apply the necessary small pure boost, B (acomoving dr), where acomoving 
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is the acceleration as it will be sensed by the object and dr is the lapse of proper 
time as it will be sensed by the object. At the commencement of this brief acceleration 
the object is at rest relative to the laboratory. What is a pure boost to it is a pure 
boost relative to the laboratory. It is also a pure boost in the spin-matrix formalism. 
Then transform back from laboratory to moving frame. Thus have the relation 

"B(d/3)" = B({3)B(acomoving dr)B-1(/3). 

The equation for the determination of the Thomas precession now reads 

B(/3 + d/J)R(w dt) = B(/J)B(acomoving dr) 

or, with all unknowns put on the left, 

R(w dt)B-1(acomoving dr) = B-1(/3 + d/J)B(/3). 

(41.41) 

(41.42) 

(41.43) 

The first task, to replace the erroneous value of the velocity change (d/3)  by a correct 
value (acomoving dr), is now made part of the problem along with the evaluation of 
the Thomas precession itself. 

Principles settled, the calculation proceeds by inserting the appropriate expressions 
for all four factors in (41.43), and evaluating both sides of the equation to the first 
order of small quantities, as follows: 

1 - (i dtw + dra) · u/2 = [cosh (a '/2) -(n"', · u) sinh (a '/2)] 
X [cosh (a/2) + (n"' · u) sinh (a/2)]. (41.44) 

Here a and n"' are the velocity parameter and unit vector that go with the velocity 
/3 ; a ' = a + da, and n"', = n"' + dna, go with /3 + d/3. Develop the righthand side 
of (41.44) by the methods of calculus, writing a ' = a + da and n"', = n"' + dna, and 
applying the rule for the differentiation of a product. Equate coefficients of - u/2 
and -iu /2 on both sides of the equation. Thus find 

and 

w dt = [2 sinh2(a/2)] dna X na. 

(41.45) 

(41.46) Angular velocity of Thomas 
precession 

The one expression gives the change of velocity as seen in a comoving inertial frame. 
The other gives the precession as seen in the laboratory frame. For low velocities 
the expression for the Thomas precession reduces to 

w = a X /3/2. (41.47) 

Here a is the acceleration. Only the component perpendicular to the velocity /3 is 
relevant for the precession. 

For an elementary account of the importance of the Thomas precession in atomic 
physics, see, for example, Ruark and Urey (1930). 
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Figu re 41.5. 
"Orientation-entanglement relation" between a cube and the 
walls of a room. A 360 ' rotation of the cube entangles the 
threads. A 720 ' rotation might be thought to entangle them 
still more-but instead makes it possible completely to disen
tangle them. 

Paint each face of a cube a different color. Then connect each corner of the cube 
to the corresponding corner of the room with an elastic thread (Figure 41.5). Now 
rotate the cube through 2?T = 360 ° . The threads become tangled. Nothing one can 
do will untangle them. It is impossible for every thread to proceed on its way in 
a straight line. Now rotate the cube about the same axis by a further 2?T. The threads 
become still more tangled. However, a little work now completely straightens out 
the tangle (Figure 41.6). Every thread runs as it did in the beginning in a straight 
line from its corner of the cube to the corresponding corner of the room. More 
generally, rotations by 0, +4'1T, +8?T, . . .  , leave the cube in its standard "orienta
tion-entanglement relation " with its surroundings, whereas rotations by +2?T, +6?T, 
+ lO?T, . . .  , restore to the cube only its orientation, not its orientation-entanglement 
relation with its surroundings. Evidently there is something about the geometry of 
orientation that is not fully taken into account in the usual concept of orientation; 
hence the concept of "orientation-entanglement relation " or (briefer term! )  "version " 
(Latin versor, turn). Whether there is also a detectable difference in the physics 
(contact potential between a metallic object and its metallic surroundings, for exam
ple) for two inequivalent versions of an object is not known [Aharonov and Susskind 
(1967)]. 

In keeping with the distinction between the two inequivalent versions of an object, 
the spin matrix associated with a rotation, 

R = cos (0 /2) - i(n · u) sin (0 /2), (41.48) 

reverses sign on a rotation through an odd multiple of 2?T. This sign change never 
shows up in the law of transformation of a vector, as summarized in the formula 

X --+  X' = RXR* (41.49) 

(two factors R; sign change in each ! ). The sign change does show up when one turns 
from a vector to a 2-component quantity that transforms according to the law 

(41.50) 
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An object is connected to its surroundings by elastic threads as in Figure 4 1 .5 .  (Eight are shown here; 
any number could be used.) Rotating the object through 720 ° and then following the procedure outlined 
(Edward McDonald) in frames 2-8 (with the object remaining fixed), one finds that the connecting threads 
are left disentangled, as in frame 9 (lower nght) . 

Such a quantity is known as a spinor. A spinor reverses sign on a 360 ° rotation. 
It therefore provides a reasonable means to keep track of the difference between 
the two inequivalent versions of the cube. More generally, with each orientation
entanglement relation between the cube and its surroundings one can associate a 
different value of the spinor f Moreover, there is nothing that limits the usefulness 
of the spinor concept to rotations. Also, for the general combination of boost and 
rotation, one can write Lorentz transformation of a 

( 41.51 )  spinor 
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When the boost and rotation are both infinitesimal, the explicit form of this trans
formation is simple : 

e = [ I  -(i d0!2)(n · u) + (d/J/2) · u]t 

or, according to (41.l ), 

I + ½ ( -i0xy + /3z) 

½ ( -iBYZ + ezx + f3x + i/3y) 

; ( -i0yz - ezx + f3x - i/3y) 

I + ; (i0xy - /3z) (::) 
(41.52) 

For any combination of a boost in the z-direction of any magnitude and a finite 
rotation about the z-axis, one has 

(41.53) 

To keep track of the two components of the spinor, it is convenient and customary 
to introduce a label (capital Roman letter near beginning of alphabet) that takes 
on the values I and 2; thus ( 41.51) becomes 

(41.54) 

The spinor has acquired a significance of its own through one's having pulled 
out half of the transformation formula 

X' = LXL*. (41.55) 

To be able to recover this formula, one requires the other half as well. It contains 
the conjugate complex of the Lorentz transformation. Therefore introduce another 
spinor 'Y/ that transforms according to the law 

(41.56) 

[ U = 1,2; V = i ,2 ;  dots and capital letters near the end of the alphabet are used 
to distinguish components that transform according to the conjugate complex (no 
transpose ! )  of the Lorentz spin matrix]. 

§41.6. CORRESPONDENCE BETWEEN VECTORS 
AND SPINORS 

To go back from spinors to vectors, note that the spin matrix X in (41.55) has the 
form 

II 
(t + z) (x _ iy) 

I I  I I  
X 1 1  x12

1 1  X = t + (x • u) = = . 
(x + iy) (t - z) x21 X22 ' 

(41.57) 



§4 1 7 SPINOR ALGEBRA 1 1  5 1  where the labels receive dots or no dots according as they are coupled in (41 .55) to L * or to L. That equation of transformation becomes (4 1 .58) (transpose obtained automatically by ordering of indices; thus ft\,, not L * C\,). The coefficients in this transformation are identical with the coefficients in the law for the transformation of a "second-rank spinor with one index undotted and the other dotted: "  (41 .59) In this sense one can say that "a 4-vector transforms like a second-rank spinor." To be completely explicit about this connection between a 4-vector and a second-rank spinor, note from (41 .57) the relations 
Xli = X O + x 3 , 

X12 = X l - ix 2, 

X2 1  = x l + ix 2, 

xzz = X O _ x 3 . In a more compact form, one has 
XA U  = [t + (x .  u)]AU = xµa/0 

(41.60) 

(41.61) where a0 is the unit matrix. This equation tells immediately how to go from the components of a 4-vector, or " I -index tensor," to the components of the corresponding "1,1-spinor" (one undotted and one dotted index). With each real 4-vector x"' is associated a 1, 1-spinor that is Hermitian in the sense that (41.62) An example of a Hermitian 1,1-spinor is provided by (41.61). The concept of Hermiticity can be stated in other words, _and more generally. Associated with any N,N-spinors and H ermiticity N,N-spinor <J> with components <J>A1 · · ·AN u, . . . uN is the conjugate complex spinor ifJ with (41.63) An N,N-spinor is said to be Hermitian when it is equal to its conjugate complex. 
§41.7. SPINOR ALGEBRA Equation (41 .53) showed the component f1 of a spinor rising exponentially with a boost in proportion to the factor e 112f3•, and the other component, f2 falling exponentially. If from two spinors t and L there is to be any quantity constructed Spinor algebra : which is unaffected in value by the boost, it must be formed out of such products 



( 1 )  EAB, EAB defined 

(2) raising and lowering 
spinor indices 

(3)  scalar products of spinors 

(4) the mapping between 
vectors and 1 ,  1 -spinors 

( 5) aµ, defined and related 
to a,, 

1 1 5 2 4 1  SPINORS 

as er 2 and l 2{ 1 . One can restate this product prescnpt10n in other language. 
Introduce the alternating symbols eAB and eAB such that e 12 = e12 = I and 

(4 1 .64) 

the only other nonvanishing components being e 21 = e21 = -1. Define the lower
label spinor lA in terms of the upper-label spinor e by the equation 

(41 .65) 

with the inverse 

(41 .66) 

Then the scalar product of one spinor by another is defined to be 

(41 .67) 

The value of this scalar product is unaffected by any boost or rotation or combination 
thereof: 

fAf 'A = fBeBA{ tA 

= (LB
nlD)eBA(LA

cfc) 
= (det L)lDen0f 0 

= lcf 0. (41 .68) 

The proof uses the fact that the expression LB
neBA LA

0 (1)  vanishes when D = C, 
and (2) reduces to the determinant of L (unity ! )  or its negative when D = 1 ,  C = 2, 
or D = 2, C = I . Note that the scalar product erA is the negative of the scalar 
product lA{ A. The value of the scalar product of a spinor with itself is automatically 
zero ("built-in null character of a spinor"). 

The components of a vector with upper index have been expressed in terms of 
the components of a 1 , 1 -spinor with upper indices 

(41 .69) 

and a similar correlation holds between vector and 1 , 1 -spinor with lower indices; 
thus, 

(41 .70) 

Here the "associated basic spin matrices" have the components 

aµ . _ "' µ"a BVe e . AU - 'I V BA vu, (41 .7 1 )  
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µ
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aµ 
21 

- I I � 
a

:1 2
1 1  = 

- I I �  
+ I I � 

a 22 

- I I �  

� I I for µ = o, 

� I I for µ = I , 

-
� / / for µ = 2, 

_� I I for µ = 3. 
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(41.72) 

The same type of multiplication law holds for these matrices, (a")2 = (a Y)2 = 

(az)2 = 1, a"a Y = -a Ya"  = iaz, etc., as for the matrices av ay, az of (41.2). Be
tween the "basic spin matrices," aµ, and the "associated basic spin matrices," aµ, 
the following orthogonality and normalization relations obtain: 

and 
a Aira v . - -2 5 " 

µ A U - µ-

(41.73) 

(41.74) 

One can use these relations to "go back from a quantity expressed as a 1,1-spinor 
('spinor equivalent of a vector') to the same quantity expressed directly as a vector 
(first-rank tensor)." Thus, multiply through (41.61) on both sides by -½a "A ir, sum 
over the spinor indices, and employ (41.74) to find the contravariant components 
of the vector, 

1 x " - - -a " · XAU - 2 AU 

Similarly from (41.70) and (41.73) one finds the covariant components, 

1 
X - a AUX . " - - 2 " AU· 

(41.75) 

(41.76) 

An N-index tensor T lets itself be expressed in spinor language ("spinor equivalent 
of the tensor") by a generalization of (41.61) or (41.70); thus, for a mixed tensor 
of third order, one has 

T .BVCW _ 0a ;.IT BV0 CWT /3Y 
AU - A u~ /3 y a 

and the converse relation 

T /3Y - _ _ a AU0 {3 ;.IT y . T .B vcw ( l )3 · · · 
a - 2 a B r  aw A U  · 

Box 41.1 gives the spinor representation of several simple tensors. 

(41.77) 

(41.78) 

(6)  the mapping between 
rank-N tensors and 
N, N-spinors 
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Box 41 .1 S P I N OR REPRESENTATI O N  O F  CERTAI N S I M PLE TEN SORS I N  
THE CO NTEXT O F  A LO CAL LORENTZ FRAME 

Quantity 

General 4-vector 

Real 4-vector (example : 
4-momentum) 

Null 4-vector 

Future-pointing real null 4-vector 
(such as 4-momentum of a 
photon) 

Past-pointing real null 4-vector 

Real bivector or 2-form (such as 
Maxwell field) 

Real 2-form dual to foregoing real 
2-form 

Real fourth-order tensor with sym
metries of Wey! conformal curva
ture tensor; that is, with symme
tries of Riemann curvature tensor 
and with additional requirement 
of vanishing Ricci tensor ("empty 
space , "  "vacuum Riemann 
tensor") 

Tensor language 

xa (four complex numbers) 

xa = xa (four real numbers) 

fia/Jl (subscript implying Fa/J = 
- F/Ja ; six distinct real 
components) 

Ca/J yo = C(Ca/)HyoD (antisymmetric in 
first two indices ; antisymmetric in 
last two indices;  symmetric against 
interchange of first pair with sec
ond pair) ca[/JY•l = 0 (20 algebrai
cally distinct components, as for 
the Riemann tensor, reduced to 10 
by the further vacuum condition: )  
ca

/Jao = 0 

Spinar language 

XA ci (4 complex numbers) 

xA ci  = (xuA) (2 real components, 
I distinct complex component) 

det XAu = 0 [see (4 1 .57)] ; hence 
there exist two spinors e and '1/ u 

such that XA u  = �A
'IJ

u. 

There eXIsts a spinor e (two com
plex numbers, unique up to a 
common multiplicative phase fac
tor ei•) such that xA ci = e([>ci 

There exists a symmetric spinor </>AB 
(three distinct complex compo
nents q,11 , q,12, q,22) sucl.!_ that 
FA UBV = </>ABEUV + EAB(</>)uv 

*FA ciBv = - i</>Asfuv + iEAB(¢) uv 
( duality for 2-form corresponds to 
multiplication of spinor </>AB 
by - i) 

There eXIsts a completely symmetric 
spinor iJ,ABOD with five distinct 
complex components, 

"11111 

o/1112 

o/1122 

o/1222 

o/2222 
such that CA uBvownx = 

"'ABODEuvfwx + EABEOD�UVWX 

In some treatises on spinor analysis, the factor ( - ½)N in equations like (41.78) 
is eliminated by the following double prescription: (I) insert into the matrices a

µ 

and a µ a factor l / Y2  not included above; and (2) use for the standard metric not 
diag T/

µ v = ( -1, 1, 1, 1) as above, but (I , - 1, -1, - 1). This prescription was not 
adopted here (1) because the introduction of l / Y2  in the matrices a,,, a

y , az would 
put them out of line with the Pauli matrices as used for many years throughout 



§4 1  7 SPIN OR ALGEBRA 

Quantity 

Fully developed Riemann curvature 
tensor (space where matter is 
present) 

Each physical quantity is described 
by a geometric obj ect. Every local 
physical quantity is described by a 
mathematical quantity that trans
forms under a proper local Lor
entz transformation as an "irre
ducible representation of the 
group L t+ of proper Lorentz 
transformations ." 

Tensor language 

Ra{Jy8 = R[a{J] y8 = Ra{J [y8] = 
R<CafJJ [yaD 
Ra[{J yaJ = 0 (20 algebraically dis
tinct components) 

Each local physical quantity is de
scribed by a tensor with its own 
rank and specific symmetry 
properties .  
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Spinar language 

There exists a completely symmetric 
spinor 'PABOD ("Wey!" or "confor
mal" part of curvature, or part of 
nonlocal origin) and a scalar A 
(measure of trace of part of curva
ture of local origin) and a spinor 
</J ABUV = </J(AB)(UVl = (i/j)ABUV 
(measure of trace-free part of cur
vature of local origin; last of the 
three irreducible parts of the cur
vature tensor) such that 
RA UBVOWDX = 'PABODEuvfwx 

+ EABEon (huvw:i 
+ 2A(E

AoEBDE u0wx 
+ EABEon't:i"' vwl 
+ EAB<Ponuv' ,Li 
+ Eon<P ABwx" uv· 

In order to provide the required fi
nite irreducible representation of 
L t+ to represent a local physical 
quantity, the associated spinor 
must be completely symmetric in 
all of its undotted indices, and 
also completely symmetric in all 
its dotted indices [Gel'fand ( 1 963)] .  

atomic and nuclear physics, and (2) because a positive definite metric within a spacelike hypersurface has the advantage of naturalness for the analysis of the initial-value problem of geometrodynamics and for the definition of what one means by a 3-geometry. The price of the factor ( -½)N is paid here for these advantages. Conventions that avoid this price are preferable for extensive spinor computations; see, e.g., Pirani (1965) or Penrose (1968a). 



Linear independence of 
sp1nors 

Basis spinors and spinor 
mates 
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§41.8. SPIN SPACE AND ITS BASIS SPINORS The "space" of elementary spinors is two-dimensional. Therefore it is spanned by any two linearly independent spinors AA and I-' A . Moreover, it is easy to diagnose a pair of spinors for possible linear dependence, that is, for existence of a relation of the form µ,A = const AA . In this event, the scalar product of µ,A with AA , like the scalar product of AA with AA (41 .67) automatically vanishes. Therefore a nonvanishing scalar product 
(4 1 .79) is a necessary and sufficient condition for the linear independence of two spinors. The general 4-vector lets itself be represented as a linear combination of four basis vectors. Similarly the general spinor lets itself be represented as a linear combination of two basis spinors: (41 .80) Here it is understood that the term "basis spinor" implies that �A and r,

A satisfy the normalization condition (41 .81) From this condition one derives simple expressions for the expansion coefficients in (41 .80): A = - r,A wA ( = wBr,B), /J, = �AWA (= - WB�B). (41 .82) Inserting these expansion coefficients back into (41 .80) will reproduce any arbitrarily chosen spinor wA. In other words, the following equation has to be an identity in the components of wB : (41 .83) From this circumstance, it follows that the components of the two basic spinors are linked by the equations (41.84) Given two basis spinors e and r,A, one can get two equally good basis spinors by writing 
�

A 
new = �

A
, 

1/ A 
new = 1/A + a�

A
, (41 .85) with a any real or complex constant, as one checks at once by substitution into ( 41 .81) or (41.84). The most general "spinor mate" to a given spinor e, satisfying the normalization condition (41.8 1), has this form (41.85). 



§ 4 1  9 S P I N O R  VI EWE D  AS FLAG POLE PLUS FLAG 

F igure 4 1 . 7 .  
Spinor represented b y  ( 1 )  "flagpole" [Penrose terminology; track o f  pulse o f  light; 
null vector 09] plus (2) "flag" [arrow (9 --+) flashed onto surface of moon by 
laser pulse from earth or, in expanded view in the inset above, a flag itself, substi
tuted for the arrow] plus (3) the orientation-entanglement relation between the flag 
and its surroundings [symbolized by strings drawn from corners of flag to surround
ings] . When the spinor itself is multiplied by a factor peiu, the components of the 
null vector (flagpole) are multiplied by the factor p2 and the flag is rotated through 
the angle 2a about the flagpole. 

§4 1 . 9 .  S P I N O R  V I EWED AS FLAG POLE PLUS F LAG PLUS 
O R I ENTATIO N-ENTAN G LEMENT R E LAT I O N  

1 1 5 7 

How can one visualize a spinor? Aim the laser, pull the trigger, and send a megajoule Geometric representation of a 
pulse from the here and now (event 0)  to the there and then (event 9: center of spinor 

the crater Aristarchus, 400,000 km from 0 in space, and 400,000 km from 0 in 
light-travel time). The laser has heen designed to produce, not a mere spot of light, 
but an illuminated arrow. Following Roger Penrose, speak of the null vector 199 
as a "flagpole," and of the illuminated arrow as a "flag. " A spinor (Figure 4 1 .7) 
consists of this combination of (1) null flagpole plus (2) flag plus (3) the orientation-
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entanglement relation between the flag and its surroundings. "Rotate the flag" by 
repeatedly firing the laser, with a bit of rotation of the laser about its axis between 
one firing and the next. When the flag has turned through 360 ° and has come back 
to its original direction, the spinor has reversed sign. A rotation of the flag about 
the flagpole through any even multiple of 2'7T restores the spinor to its original value. 

One goes from a spinor t a mathematical object with two complex components 
F and �2, to the geometric object of "flagpole plus flag plus orientation-entanglement 

( 1 )  nul l vector (flagpole) ,  plus relation" in two steps: first the pole, then the flag. Thus, go from the spinor �A to 
the real null 4-vector of the "pole" by way of the formula 

(2) bivector (flag) and its 
orientation-entanglement 
relation 

or 

I I 
(t + z) (x - iy)

I I  
= I I et F!z 

1 1 · (x + iy) (t - z) � 2� 1 � 2� 2 

(41.86) 

(41.87) 

The matrix on the right has its first row identical up to a factor F/�2 with its second 
row. Therefore the determinant of the matrix on the right vanishes. So also for the 
left. Therefore the 4-vector 0'!P = (t, x, y, z) is a null vector. One "stretches" this 
vector by a factor p 2 when one multiplies the spinor e by the nonzero complex 
number A = peia (p, a real); however, the vector is unchanged in direction. The 
4-vector is also unaffected by the choice of the angle a. In other words, this null 
4-vector is uniquely fixed by the spinor; but the spinor is not fixed with all uniqueness 
by the 4-vector. To a given 4-vector corresponds a whole family of spinors. They 
differ from one another by a multiplicative phase factor of the form e ia ("flag 
factor"). 

Looking further to see the influence of the flag factor showing up, turn from a 
real vector (four components) generated out of the spinor e to a real bivector (six 
components) generated out of the same spinor: 

pv -+ FAB UV = e�B€ UV + €ABa)ual, 
. . 

µ, -+ A U; v -+  B V.  
(41 .88) 

That this quantity has no more than six distinct components (Fµ" = -F"µ) follows 
from interchanging A with B and U with V, and noting the resultant change in sign 
on the righthand side of (41.88). To unfold the meaning of this bivector, look in 
(41.88) for every appearance of the alternating factor eAB . Wherever such a factor 
appears, insert the expression (41.84) for this factor in terms of the starting spinor 
e and insert the additional spinor r,

A that is needed, along with e, to supply a 
basis for all spinors. In this way, find 

Fµv -+  FABUV = �A�Bau
r;-

v _ r;-
u1 v) + (er,

B _ r,
A�B) [U[V 

= �A[U(�B'ij"V + r,
B[Y) _ (�A'ij"U + r,

A[U)�B[V' (41.89) 
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Thus the 2,2-spinor built from e represents a bivector constructed out of the two 
4-vectors x and y. Of these, the first is the "real null vector of the flagpole," already 
seen to be determined uniquely by the spinor e. The second vector, 

(41.90) 

is also determined by e, but not uniquely, because the "spinor mate," 1/A, to �A 

is not unique. Go from one choice of mate, 1/A, to a new choice of mate (equation 
41.85), 

(41.91) 

Then the real 4-vector yµ goes to the new real 4-vector 

(41.92) 

Were the 4-vector y unique, there would project out from the flagpole, not a flag 
but an arrow. The range of values open for the real constant a + a makes one arrow 
into many arrows, all coplanar; hence the flag of Penrose. Otherwise stated, the 
choice of a spinor e fixes no individual arrow, but does fix the totality of the 
collection of arrows, and thus uniquely specifies the flag. 

The 4-vector y (and with it Ynew) is orthogonal to the null 4-vector x, 

and spacelike, 

("unit length of flag"). 

(41.93) 

(41.94) 

Multiplication of the spinor �A by the "flag factor" eiu rotates the flag about the Rotation of flag about 
flagpole by the angle 2a, because the spinor mate, 1/A, of e is multiplied by the flagpole 

factor e-iu [see the normalization condition (41.81)]. These changes alter the vector 
y to a rotated vector Yrot• with 

Y:ot _____. Y1.:{ = e 2iu�A11u + e-2iu
11

A1 ir 

_____. y"' cos 2a + z"' sin 2a. (41.95) 

Here the 4-vector z shares with the vector y these properties : 1t 1s (1) real, 
(2) spacelike, (3) of unit magnitude, (4) orthogonal to the null 4-vector x of the 
flagpole, and (5) uniquely specified by the original spinor e up to the additive real 



Equations relating sp1nor, 
flagpole, and flag 

1 1 60 4 1  S P I NORS multiple (a + a) of x. In addition, z and y are orthogonal. Thus y and z provide basis vectors in the two-dimensional space in which-to overpictorialize-the "tip of the flag" undergoes its rotation. Recapitulate by returning to the laser pulse. Two numbers, such as the familiar polar angles 0 (angle with the z-axis) and </> (azimuth around z-axis from x-axis) tell the direction of its flight. A third number, r, gives the distance to the moon and also the travel time for light to reach the moon. A fourth number, an angle 
if;, tells the azimuth of the illuminated arrow shot onto the surface of the moon, this azimuth to be measured from the e8 direction (where if; = 0), around the flagpole in a righthanded sense. Then the spinor associated with the flagpole plus flag (rotated arrow) is 

(p) (cos (0/2)e-i<t>IZ + if!Z ) _ (2r)112 
� 2 - sin (0/2)e i<t>IZ + ifl 2 (4 1 .96) 

according to the conventions adopted here [see (4 1 .87)]. The mate 11A to this spinor, unique up to an additive multiple of e, is 
(17 1 ) ( - sin (0/2)e-i<t>IZ - if/Z) = (lr)-112 '// 2 cos (0/2)e i<t>l2 - if!2 . 

The 4-vector of the flagpole determined by e is found from (4 1 .87): 
(::) 

(
r si_n ; c�s </>) . x 2 r sm 0 sm </> 

x 3 r cos 0 

(4 1 .97) 

(4 1 .98) 
To determine the flag itself, one requires, in addition to x"', the unit spacelike 4-vector 
y"', normal to x"', and unique up to an additive real multiple of x"'. This vector is evaluated by use of (4 1 .90) and has the form 

(;:) = (cos 0 c�s </> cos: + sin </> s�n if;) . y2 cos 0 sm </> cos if; - cos </> sm if; y3 - sin 0 cos if; (4 1 .99) 
From these expressions for xµ and yµ, one calculates the components of the bivector ("flag") Fµv = xµyv - yµxv by simple arithmetic. 
§41.10 . APPEARANCE OF THE NIGHT SKY: 

AN APPLICATION OF SPINORS Attention has gone here to extracting all four pieces of information contained in a spinor: separation in time (equal to separation in space), direction in space, and 



§4 1 1 0  APPEARANCE  OF  N I G HT S KY ANALYZED BY S P I N O R S  

Figu re 41. 8 .  
Representation o f  a direction i n  space ( one o f  the stars o f  the Big Dipper, regarded 
as a point on the celestial sphere) as a point in the complex t plane (t = ratio 
�2/gt of spinor components) by stereographic projection from the South Pole. 

1 1 6 1  

rotation about that direction. Turn now to an application where not all that informa
tion is needed. Look at the night sky and ask (I )  how to describe its appearance 
and (2) how to change that appearance. As one way to describe its appearance, give 
the direction of each star. Abandon any concern about the distance of the star, and 
any concern about any rotation if; about the flagpole. In other words, the complex 
factor 

common to � 1 and �2 drops from attention. All that is left as significant is the ratio 
f of these spinor components: 

f = �2 IP = tan (0 /2)ei<I>. (41.100) 

To give the one complex number f ("stereographic coordinate;" Figure 41.8) for 
each star in the sky is to catalog the pattern of the stars. 

Let the observer change his stance. The celestial sphere appears to rotate. Or let 
him rocket past his present location in the direction of the North Star with some 
substantial fraction of the velocity of light. To him all that portion of the celestial 
sphere is opened out, as if by a magnifying glass. To compensate, the remaining 
stars are packed into a smaller angular compass. Any such rotation or boost or 
combination of rotation and boost being described in spinor language by a transfor
mation of the form 

(41.101) 

Spinors used to analyze 
" Lorentz transformations" of 
appearance of night sky 



1 1 6 2 4 1. SPINORS implies a transformation of the complex stereographic coordinate of any given star of the form (41.102) 
In the special case of a boost in the z-direction with velocity parameter a (velocity {3 = tanh a), the off-diagonal components L\ and L2

1 vanish. The magnification of the overhead sky then expresses itself in the simple formula f new = e"f or </>new = </>, tan (0new/2) = e" tan (0 /2). (41.103) Contrary to this prediction and false expectation, no magnification at all is achieved of the regions around the North Star by moving with high velocity in that direction. On the contrary, any photon coming in from a star a little off that direction, with a little transverse momentum, keeps that transverse momentum in the new frame; but its longitudinal momentum against the observer is augmented by his motion. Thus the ratio of the momenta is decreased, and the observed angle relative to the North Star is also decreased. The consequence is not magnification, but diminution ("looking through the wrong end of a telescope"). The correct formula is not (41.103) but tan (0new/2) = e-" tan (0 /2) (41.104) (reversal of the sign of a). The reason for this correction is not far to seek. The spinor analysis so far had dealt with an outgoing light pulse, and a 4-vector with positive time component. That feature was built into the formula adopted to tie the spinor to the 4-vector, (41.105) In contrast the 4-vector that reaches back to the origin of an incoming photon has a time component that is negative (or, alternatively, sign-reversed space components)! For any null 4-vector with negative time component, one employs instead of (41.105) the formula (41.106) It is enough to mention here this point of principle without going through the details that give the altered sign for a in (41.104). From now on, to preserve the previous arithmetic, change the problem. Deal, not with incoming photons, but with outgoing photons. Replace the receiving telescope by the projector of a planetarium. It proj ects out into space a separate beam of light for each star of the Big Dipper and also one for the North Star itself. Let an observer move in the positive z-direction with velocity parameter a. In his frame of reference the beams actually will be widened out in full accord with (41.103). "The magnification process changes the size of the Big Dipper but not its shape." 
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This statement is at the same time true and false. It is true of the Dipper and of 
any other constellation to the extent that the angular dimensions of that constellation 
can be idealized to be small compared to the entire compass of the sky. It is false 
in the sense that any well-rounded projected constellation, however small it may 
appear to an observer at rest with respect to the earth, can always be so "opened 
out" by the observer putting on any sufficiently high velocity, the observer still being 
near the earth, that the constellation encompasses a major fraction of the sky. 

That the "Lorentz-transformation-induced magnification" of a small object does 
not change its shape can be seen in three ways. ( 1 )  Stereographic projection (Figure 
41 .8) and "fractional linear transformation" (41 . 102) are both known to leave all 
angles unchanged ["conformal invariance;" see for example Penrose (1 959)] and 
known even to turn every old circle into a new circle. (2) Consider a given star, 
M, in the constellation and immediate neighbors, L and N, just below it and just 
above it in the count of the members of that constellation. Consider the flagpole 
pointed at M and the flag pointed first from M to L, then from M to N. The flag 
has turned,,about the flagpole through an angle if;. The two corresponding spinors 
therefore differ by a phase factor e i fl 2 • They differ in no other way. After an arbitrary 
Lorentz transformation they still differ by the phase factor ei f1 2, and in no other 
way. The angle between the arcs ML and MN on the celestial sphere therefore 
remains at its original value f after the Lorentz transformation (again conformal 
invariance of patterns on the celestial sphere! ). (3) An even more elementary calcu
lation shows that infinitesimal arc lengths on the unit celestial sphere in the direction 
of increasing B and arc lengths in the direction of increasing <p are magnified in 
the same proportion, thus leaving unchanged the angle between arc and arc ( confor
mal invariance). Thus, consider a photon shot out from the planetarium projector 
to a point on the celestial sphere ("planetarium version of a Big-Dipper star") with 
inclination B to the z-axis, as seen by an observer at rest relative to the earth. From 
the standard laws of transformation of angles in a Lorentz transformation ("aberra
tion" ; Box 2.4), one has for the sine of the transformed angle 

. (1 - /3 2)1/2 . sm B new = l /3 B sm B - cos 
(41 . 107) 

and (by differentiating the expression for the cosine of the transformed angle) 

(1 _ [32)1/2 
dBnew = 1 /3 B 

dB. - cos 
(41 . 108) 

From these expressions it follows at once that the inclination, relative to a meridian 
line, on the transformed celestial sphere is identical to the direction, relative to the 
same meridian line, on the original celestial sphere: 

( 
new 

) 
sin B new dcpnew tan 

inclination = dBnew 
= 

(again conformal invariance ! ). 

( 
original 

} = tan inclination 

sin B d(/> 
dB 

(41 .109) 

Lorentz transformations leave 
angles on sky unchanged 
("conformal invariance")  



Spinor formalism in curved 
spacetime 

Spinors needed when 
analyzing fermions in 
gravitational fields 

Equivalence of spinor and 
tensor formalisms 
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So much for the elementary spinor and what it has to do with a null vector, with 
a "flagpole" pointed to the celestial sphere, and with rotation of a "flag" about such 
a flagpole. 

§41 .11 .  SPINORS AS A POWERFUL TOOL IN 
GRAVITATION THEORY 

Just as vectors, tensors, and differential forms are easily generalized from flat space
time to curved, so are spinors. 

Each event <!I in curved spacetime possesses a tangent space. In that tangent space 
reside and operate all the vectors, tensors, and forms located at <!I. The geometry 
of the tangent s_pace is Lorentzian ("local Lorentz geometry at <!!"), since the scalar 
product of any two vectors u and v at <!I, expressed in an orthonormal frame at 
<!I, is 

u · v = g(u, v) = Y/,,f3 uav /3 . 

Thus, there is no mathematical difference between the tangent space at <!I on the 
one hand, and flat spacetime on the other. Whatever mathematical can be done 
in the one can also be done in the other. In particular, the entire formalism of spinors, 
developed originally in fiat spacetime, can be carried over without change to the tangent 
space at the arbitrary event <!I in curved spacetime. 

Let it be done. Now spinors reside at every event in curved spacetime; and at 
each event one can translate back and forth between spinor language and tensor 
language, using the equations (valid in orthonormal frames) of §§41.6 and 41.7. 

Spinors in curved spacetime are an indispensible mathematical tool, when one 
wishes to study the influence of gravity on quantized particles of half-integral spin 
(neutrinos, electrons, protons, . . .  ). Consider, for example, Hartle's (1971) proof that 
a black hole cannot exert any long-range, weak-interaction forces on external matter 
(i.e., that a black hole has no "weak-interaction hair"). His proof could not function 
without a spinor description of neutrino fields in curved spacetime. Similarly for 
Wheeler's (1971 b) analysis of the quasi bound states of an electron in the gravitational 
field of a small black hole (gravitational radius ~ 10-13 cm): it requires solving the 
Dirac equation for a spin-½ particle in the curved spacetime geometry of Schwarzs
child. For a detailed discussion of the Dirac equation in curved spacetime see, e.g., 
Brill and Wheeler (1957). 

To use the mathematics of spinors, one need not be dealing with quantum theory 
or with particles of half-integral spin. The spinor formalism is perfectly applicable 
in situations where only integral-spin entities (scalars, vectors, tensors) are in view, 
and where in fact, the spinor formalism is fully equivalent to the tensor formalism 
that pervades earlier chapters of this book. Equations (41.77) and (41.78) provide 
the translation from one formalism to the other, once an orthonormal frame has 
been chosen at each event in spacetime. 

Certain types of problems in gravitation theory are far more tractable in the 
language of spinors than in the language of tensors. Examples are as follows. 
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(1) Geometric Optics 
(the  theory of "nu l l  congruences of geodesics")  

1 1 6 5 

Here spinors make almost trivial the lengthy tensor algebra needed in derivations 
of the "focusing theorem" [equation (22.37)] ; and they yield an elegant, simple 
formalism for discussing and calculating how, with increasing affine parameter, a 
bundle of rays alters its size ("expansion"), its shape ("shear"), and its orientation 
("rotation"). See, e.g., Sachs (1964), Pirani (1965), or Penrose (1968a) for a review 
and the original references. 

(2) Rad iat ion Theory in Cu rved Spacet ime 
(both gravitat ional  and electromagnetic) 

Spinors provide the most powerful of all formalisms for decomposing radiation fields 
into spherical harmonics and for manipulating their decomposed components. See, 
for example, Price's (1972a,b) analysis of how a perturbed Schwarzschild black hole 
radiates away all its radiatable perturbations, be they electromagnetic perturbations, 
gravitational perturbations, or perturbations in a fictitious field of spin 17; see, 
similarly, the analysis by Fackerell and Ipser (1972) and by Ipser (1971) of electro
magnetic perturbations of a Kerr black hole, and the analysis by Teukolsky (1972) 
of gravitational perturbations of a Kerr hole. Spinors also yield an elegant and 
powerful analysis of the "1/r" expansion of a radiation field flowing out from a 
source into asymptotically flat space. Among its results is a ''peeling theorem, " which 
describes the algebraic properties of the coefficients in a 1/r expansion of the 
Riemann tensor. See, e.g., Sachs (1964) or Pirani (1965) for reviews and original 
references. 

(3) Algebraic Propert ies of Cu rvatu re Tensors 

The spinor formalism is a more powerful method than any other for deriving the 
"Petrov-Pirani algebraic classification of the conformal curvature tensor," and for 
proving theorems about algebraic properties of curvature tensors. See, e.g., Sachs 
(1964) or Pirani (1965) or Penrose (1968a) for reviews and references. 

Of course, the spinor formalism, like any formalism, has its limitations. For 
example, many of the elementary problems of gravitation theory, and a large fraction 
of the most difficult ones, would be more difficult in the language of spinors than 
in the language of tensors ! But for certain classes of problems, especially those where 
null vectors play a central role, spinors are a most valuable tool. 

Cartan gave spinors to the world's physics and mathematics. His text (American 
edition, 1966) is an important reference to the subject. 

Applications of spinor 
formalism in class ical 
gravrtatron theory 



CHAPTER 42 
REGGE CALCULUS 

r 
This cha pter is entirely Track 2 .  
As preparation for it, Chapter 
21 (variational principle and 
i n it ia l-value formal ism) is 
needed .  I t  is not needed as 
preparation for any later 
cha pter, though it will be 
helpful in Chapter 43 
(dynamics of geometry) . 

� � 
The need for Regge calculus 
as a computational tool 

Approximation of smooth 
geometries by skeleton 
structures 

§42 . 1 . WHY TH E R EG G E  CALCU LUS ?  Gravitation theory is entering an era when situations of greater and greater complexity must be analyzed. Before about 1965 the problems of central interest could mostly be handled by idealizations of special symmetry or special simplicity or both. The Schwarzschild geometry and its generalizations, the Friedmann cosmology and its generalizations, the joining together of the Schwarzschild geometry and the Friedmann geometry to describe the collapse of a bounded collection of matter, the vibrations of relativistic stars, weak gravitational waves propagating in an otherwise flat space: all these problems and others were solved by elementary means. But today one is pressed to understand situations devoid of symmetry and not amenable to perturbation theory: How do two black holes alter in shape, and how much gravitational radiation do they emit when they collide and coalesce? What are the structures and properties of the singularities at the endpoint of gravitational collapse, predicted by the theorems of Penrose, Hawking, and Geroch? Can a Universe that begins completely chaotic smooth itself out quickly by processes such as inhomogeneous mixmaster oscillations? To solve such problems, one needs new kinds of mathematical tools-and in response to this need, new tools are being developed. The "global methods" of Chapter 34 provide one set of tools. The Regge Calculus provides another [Regge (1961); see also pp. 467-500 of Wheeler (1964a)]. 
§42 . 2 .  R E G G E  CALCU LUS I N  B R I E F  Consider the geodesic dome that covers a great auditorium, made of a multitude of flat triangles joined edge to edge and vertex to vertex. Similarly envisage spacetime, in the Regge calculus, as made of flat-space "simplexes" (four-dimensional 



§ 42 . 3  S I M P LEXES A N D  D EF IC IT  A N G LES 1 1 6 7  item in this progression: two dimensions, triangle; three dimensions, tetrahedron; four dimensions, simplex) joined face to face, edge to edge, and vertex to vertex. To specify the lengths of the edges is to give the engineer all he needs in order to know the shape of the roof, and the scientist all he needs in order to know the geometry of the spacetime under consideration. A smooth auditorium roof can be approximated arbitrarily closely by a geodesic dome constructed of sufficiently small triangles. A smooth spacetime manifold can be approximated arbitrarily closely by a lockeu-Logelher assembly of sufficiently small simplexes. Thus the Regge calculus, reaching beyond ordinary algebraic expressions for the metric, provides a way to analyze physical situations deprived, as so many situations are, of spherical symmetry, and systems even altogether lacking in symmetry. If the designer can give the roof any shape he pleases, he has more freedom than the analyst who is charting out the geometry of spacetime. Given the geometry of spacetime up to some spacelike slice that, for want of a better name, one may call "now," one has no freedom at all in the geometry from that instant on. Einstein's geometrodynamic law is fully deterministic. Translated into the language of the Regge calculus, it provides a means to calculate the edge lengths of new simplexes from the dimensions of the simplexes that have gone before. Though the geometry is deterministically specified, how it will be approximated is not. The original spacelike hypersurface ("now") is approximated as a collection of tetrahedrons joined together face to face; but how many tetrahedrons there will be and where their vertices will be placed is the option of the analyst. He can endow the skeleton more densely with bones in a region of high curvature than in a region of low curvature to get the most "accuracy profit" from a specified number of points. Some of this freedom of choice for the lengths of the bones remains as one applies the geometrodynamic law in the form given by Regge (196 1) to calculate the future from the past. This freedom would be disastrous to any computer program that one tried to write, unless the programmer removed all indefiniteness by adding supplementary conditions of his own choice, either tailored to give good "accuracy profit," or otherwise fixed. Having determined the lengths of all the bones in the portion of skeletonized spacetime of interest, one can examine any chosen local cluster of bones in and by themselves. In this way one can find out all there is to be learned about the geometry in that region. Of course, the accuracy of one's findings will depend on the fineness with which the skeletonization has been carried out. But in principle that is no limit to the fineness, or therefore to the accuracy, so long as one is working in the context of classical physics. Thus one ends up with a catalog of all the bones, showing the lengths of each. Then one can examine the geometry of whatever spacelike surface one pleases, and look into many other questions besides. For this purpose one has only to pick out the relevant bones and see how they fit together. 
§42.3. SIMPLEXES AND DEFICIT ANGLES Figure 42.1 recalls how a smoothly curved surface can be approximated by flat triangles. All the curvature is concentrated at the vertices. No curvature resides at 

Role of Einstein field 
equation in fixing the 
skeleton structure 



Deficit angle as a 
skeletonized measure of 
curvature. 

( 1 )  in two d imensions 

(2) in n (or four) d imensions 
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Figu re 42 .1 .  
A 2-geometry with continuously varying curvature can be approximated arbitrarily closely by a polyhedron 
built of triangles, provided only that the number of triangles is made sufficiently great and the size of 
each sufficiently small. The geometry in each triangle is Euclidean The curvature of the surface shows 
up in the amount of deficit angle at each vertex (portion ABCD of polyhedron laid out above on a 
flat surface) 

the edge between one triangle and the next, despite one's first impression. A vector 
carried by parallel transport from A through B and C to D, and then carried back 
by another route through C and B to A returns to its starting point unchanged in 
direction, as one sees most easily by laying out this complex of triangles on a flat 
surface. Only if the route is allowed to encircle the vertex common to A, B, C, and 
D does the vector experience a net rotation. The magnitude of the rotation is equal 
to the indicated deficit angle, 8, at the vertex. The sum of the deficit angles over 
all the vertices has the same value, 4'7T, as does the half-integral of the continuously 
distributed scalar curvature (<2>R = 2/a2 for a sphere of radius a) taken over the 
entirety of the original smooth figure, 

2'. 8i = _!_ f <2>R d(surface) = 4'7T. 
skeleton 2 actual smooth 

geometry geometry 

(42.1) 

Generalizing from the example of a 2-geometry, Regge calculus approximates a 
smoothly curved n-dimensional Riemannian manifold as a collection of n-dimen
sional blocks, each free of any curvature at all,joined by (n - 2)-dimensional regions 
in which all the curvature is concentrated (Box 42.1). For the four-dimensional 
spacetime of general relativity, the "hinge" at which the curvature is concentrated 
has the shape of a triangle, as indicated schematically in the bottom row of Figure 
42.2. In the example illustrated there, ten tetrahedrons have that triangle in common. 
Between one of these tetrahedrons and the next fits a four-dimensional simplex. 
Every feature of this simplex is determined by the lengths of its ten edges. One 
of the features is the angle a between one of the indicated tetrahedrons or "faces" 
of the simplex and the next. Thus a represents the angle subtended by this simplex 
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Box 42. 1 TH E H I N G E S  WH E R E  TH E CU RVAT U R E  I S  C O N C ENTRATE D I N  T H E  

"AN G LE O F  RATTLE" BETWE E N  B U I LD I N G  BLO CKS I N  A S K E LETO N MAN I FO LD 

D,mensiona/Jty of manifold 

Elementary flat-space 
building block: 

Edge lengths to define it: 

Hinge where cycle of such 
blocks meet with a deficit 
angle or "angle of rattle" 8 :  

Dimensionality o f  hinge · 

"Content" of such a hinge : 

Contribution from all hinges 
within a given small region 
to curvature of manifold : 

Continuum limit of this quantity 
expressed as an integral over 
the same small region : 

2 

triangle 

3 

vertex 

0 

L 
that 

8i 

reg10n 

3 

tetrahedron 

4 

edge 

length I 

L t 8 . 
that 1 i 

region 

at the hinge. Summing the angles a for all the simplexes that meet on the given hinge '!P!2?il, and subtracting from 277', one gets the deficit angle associated with that hinge. And by then summing the deficit angles in a given small n-volume with appropriate weighting (Box 42.1 ), one obtains a number equal to the volume integral of the scalar curvature of the original smooth n-geometry. See Box 42.2 .  
§42 .4 .  SKELETON FORM OF FIELD EQUATIONS Rather than translate Einstein's field equations directly into the language of the skeleton calculus, Regge turns to a standard variational principle from which Einstein's law lets itself be derived. It says (see §§21.2 and 43.3) adjust the 4-geometry throughout an extended region of spacetime, subject to certain specified conditions on the boundary, so that the dimensionless integral (action in units of n !), 

I= (c3 /16?TfzG) J R( -g)112 d4x, (42 .2) 
is an extremum. This statement applies when space is free of matter and electromag-

4 

simplex 

5 

triangle 

2 
area A 

L A - 8 
that i i 

reg10n 

Einstein-H ilbert variational 
principle reduced to skeleton 
form 



Figure 42 . 2 .  
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Cycle of building blocks associated with a single hinge. Top row, two dimensions:  left, schematic 
association of vertices 5, f'i, 62£, 'V, 6lif with "hinge" at the vertex '3'; right, same, but with elementary 
triangles indicated in fulL Middle row, three dimensions : left, schematic ; right, perspective representation 
of the six tetrahedrons that meet on the "hinge" '!i' !2. Bottom row, four dimensions; shown only 
schematically. The five vertices 6?!2�6'6j) belong to one simplex, a four-dimensional region throughout 
the interior of which space is flat. The five vertices 6?f2�6j}§ belong to the next simplex; and so on around 
the cycle of simplexes. The two simplexes just named interface at the tetrahedron 6?f2�6j}, inside which 
the geometry is also flat. Between that tetrahedron and the next, 6?!2�§, there is a certain hyperdihedral 
angle " subtended at the "hinge" 6?!2� . The value of this angle is completely fixed by the ten edge 
lengths of the intervening simplex '3' f2�6j}§ . This dihedral angle, plus the corresponding dihedral angles 
subtended at the hinge 6?!2� by the other simplexes of the cycle, do not in general add up to 2'!T The 
deficit, the "angle of rattle" or deficit angle ll, gives the amount of curvature concentrated at the hinge 
6?!2� .  There is no actual rattle or looseness of fit, unless one tries to imbed the cycle into an over-all 
flat four-dimensional space (analog of "stamping on" the collection of triangles, and seeing them open 
out by the amount of the deficit angle, as indicated in inset in Figure 42 . l  ). 

netic fields, a simplification that will be made in the subsequent discussion to keep 
it from becoming too extended. When in addition all lengths are expressed in units 
of the Planck length 

L * = (nG I c3)112 = 1.6 X 1 0-33 cm, (42.3) 

and the curvature integral is approximated by its expression in terms of deficit angles, 
Regge shows that the statement 81 = 0 (condition for an extremum!)  becomes 

H 

( l /87T) 8 � Ah 8h = 0 .  hinges h = l  
(42.4) 



§42 4 S KELETON FORM OF FIELD EQU ATIONS 

Box 42 . 2  FLOW D IAGRAMS FOR REGGE CALCULUS 

1 1  7 1  

A skeleton 4-geometry is completely determined by all its edge lengths . From the 
edge lengths one gets the integrated curvature by pursuing, for each hinge in the 
4-geometry, the following flow diagram: 

cycle of blocks 
swinging on this hinge 

one of these blocks I 

the two tetrahedral "faces" that set this block off from 
the blocks before and after it in the cycle of blocks 

angle a between these two faces fixed by 
the block's n(n - l)/2 edge lengths 

deficit angle at the given hinge is 

8 = 27T - "1 a 
L..,; blocks swing1ng 

on that hinge 

contribution to integrated curvature 
(Box 42. l)  is 8 times area of hinge 

One finds it natural to apply this analysis in either of two ways. First, one can probe 
a given 4-geometry (given set of edge lengths !) in the sense 

edge lengths 

curvature 
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Box 42.2 (con tinued) 

Second-and this is the rationale of Regge calculus-one can use the skeleton calculus to deduce a previously unknown 4-geometry from Einstein's geometrodynamic law, proceeding in the direction 
initial conditions 

translated into 
information about 

some of the edge lengths 

Einstein's equations 
expressed as con

ditions on the 
curvature ( deficit 

angle of each hinge) 

fix remainder of the 
edge lengths (apart 

from natural options 
in fineness of zoning) 

In the changes contemplated in this variational principle, certain edge lengths are thought of as being fixed. They have to do with the conditions specified at the boundaries of the region of spacetime under study. It is not necessary here to enter into the precise formulation of these boundary conditions, fortunately, since some questions of principle still remain to be clarified about the precise formulation of boundary conditions in general relativity (see §21.12). Rather, what is important is the effect of changes in the lengths of the edges of the blocks in the interior of the region being analyzed, as they augment or decrease the deficit angles at the various hinges. In his basic paper on the subject, Regge (1961) notes that the typical deficit angle oh depends in a complicated trigonometric way on the values of numerous edge lengths 1P " However, he proves (Appendix of his paper) that "quite remarkably, we can carry out the variation as if the oh were constants," thus reducing the variational principle to the form 
H (I /87T) L oh oAh = o. 

hinges 
h = 1 

(42 .5) 
Here the change in area of the h-th triangle-shaped hinge, according to elementary trigonometry, is 

1 oAh = 2 L 1P olp cotan eph " 
p 

(42.6) 
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In this equation 0 ph is the angle opposite to the p-th edge in the triangle. Conse
quently, Einstein's equations in empty space reduce in skeleton geometry to the form 

� 8h cotan 0 ph = 0, 
hinges that 

(p = 1 ,  2, . . . ) , (42.7) Einstein field equation 
reduced to skeleton form 

have the 
given edge 

p in common 

one equation for each edge length in the interior of the region of spacetime being 
analyzed. 

§42 .5. THE CHOICE OF LATTICE STRUCTURE 

Two questions arise in the actual application of Regge calculus, and it is not clear 
that either has yet received the resolution which is most convenient for practical 
applications of this skeleton analysis: What kind of lattice to use? How best to 
capitalize on the freedom that exists in the choice of edge lengths? The first question 
is discussed in this section, the second in the next section. 

It might seem most natural to use a lattice made of small, nearly rectangular 
blocks, the departure of each from rectangularity being conditioned by the amount 
and directionality of the local curvature. However, such building blocks are "floppy." 
One could give them rigidity by specifying certain angles as well as the edge lengths. 
But then one would lose the cleanness of Regge's prescription: give edge lengths, 
and give only edge lengths, and give each edge length freely and independently, 
in order to define a geometry. In addition one would have to rederive the Regge 
equations, including new equations for the determination of the new angles. There
fore one discards the quasirectangle in favor of the simplex with its 5 · 4/2 = 10 edge 
lengths. This decided, one also concludes that even in flat spacetime the simplexes 
cannot all have identical edge lengths. Two-dimensional flat space can be filled with 
identical equilateral triangles, but already at three dimensions it ceases to be possible 
to fill out the manifold with identical equilateral tetrahedrons. One knows that a 
given carbon atom in diamond is joined to its nearest neighbors with tetrahedral 
bonds, but a little reflection shows that the cell assignable to the given atom is far 
from having the shape of an equilateral tetrahedron. 

Synthesis would appear to be a natural way to put together the building blocks: 
first make one-dimensional structures; assemble these into two-dimensional struc
tures; these, into three-dimensional ones; and these, into the final four-dimensional 
structure. The one-dimensional structure is made of points, 1, 2, 3, . . .  , alternating 
with line segments, 12, 23, 34, . . . .  To start building a two-dimensional structure, 
pick up a second one-dimensional structure. It might seem natural to label its points 
1', 2', 3', . . .  , etc. However, that labeling would imply a cross-connection between 
1 and 1', between 2 and 2', etc., after the fashion of a ladder. Then the elementary 
cells would be quasirectangles. They would have the "floppiness" that is to be 
excluded. Therefore relabel the points of the second one-dimensional structure as 
l½', 2½', 3½', etc. The implication is that one cross-connects 2½' with points 2 and 3 
of the original one-dimensional structure, etc. One ends up with something like the 

The choice of lattice structure :  
( 1 )  avoiding floppiness 

(2) necessity for unequal 
edge lengths 

(3)  construction of two
dimensional structures 



(4) 3-D structures built from 
2-D structures by 
"method of blocks" 

(5) 3-D structures from 2-D 
by "method of spheres" 

1 1 74 42 R EG G E  CALCU LUS girder structure of a bridge, fully rigid in the context of two dimensions, as desired. The same construction, extended, fills out the plane with triangles. One now has a simple, standard two-dimensional structure. One might mistakenly conclude that one is ready to go ahead to build up a three-dimensional structure: the mistake lies in the tacit assumption that the flat-space topology is necessarily correct. Let it be the problem, for example, to determine the development in time of a 3-geometry that has the topology of a 3-sphere. This 3-sphere is perhaps strongly deformed from ideality by long-wavelength gravitational waves. A right arrangement of the points is the immediate desideratum. Therefore put aside for the present any consideration of the deformation of the geometry by the waves (alteration of edge lengths from ideality). Ask how to divide a perfect 3-sphere into two-dimensional sheets. Here each sheet is understood to be separated from the next by a certain distance. At this point two alternative approaches suggest themselves that one can call for brevity "blocks" and "spheres." (1) Blocks. Note that a 3-sphere lets itself be decomposed into 5 identical, tetrahedron-like solid blocks (5 vertices; 5 ways to leave out any one of these vertices!) Fix on one of these "tetrahedrons." Select one vertex as summit and the face through the other three vertices as base. Give that base the two-dimensional lattice structure already described. Introduce a multitude of additional sheets piled above it as evenly spaced layers reaching to the summit. Each layer has fewer points than the layer before. The decomposition of the 3-geometry inside one "tetrahedron" is thereby accomplished. However, an unresolved question remains; not merely how to join on this layered structure in a regular way to the corresponding structure in the adjacent "tetrahedrons"; but even whether such a regular joinup is at all possible. The same question can be asked about the other two ways to break up the 3-sphere into identical "tetrahedrons" [Coxeter (1948), esp. pp. 292-293 : 16 tetrahedrons defined by a total of8 vertices or 600 tetrahedrons defined by a total of 120 vertices] . One can eliminate the question of joinup of structure in a simple way, but at the price of putting a ceiling on the accuracy attainable: take the stated number of vertices (5 or 8 or 120) as the total number of points that will be employed in the skeletonization of the 3-geometry (no further subdivision required or admitted). Considering the boundedness of the memory capacity of any computer, it is hardly ridiculous to contemplate a limitation to 120 tracer points in exploratory calculations! (2) Spheres. An alternative approach to the "atomization" of the 3-sphere begins by introducing on the 3-sphere a North Pole and a South Pole and the hyperspherical angle x (x- = 0 at the first pole, x = 1r at the second, x = 1r/2 at the equator; see Box 27 .2). Let each two-dimensional layer lie on a surface of constant x (x equal to some integer times some interval Llx). The structure of this 2-sphere is already to be regarded as skeletonized into elementary triangles ("fully complete Buckminster Fuller geodesic dome"). Therefore the number of "faces" or triangles F, the number of edge lengths E, and the number of vertices V must be connected by the relation of Euler: 
F _ E + V = (a topology-dependent ) = {2 for 2-sphere, (42 _8) number or "Euler character" 0 for 2-torus. It follows from this relation that it is impossible for each vertex to sit at the center 



§42 5 THE C H OICE OF LATTICE STRUCTURE 1 1 7 5 of a hexagon (each vertex the point of convergence of 6 triangles). This being the case, one is not astonished that a close inspection of the pattern of a geodesic dome shows several vertices where only 5 triangles meet. It is enough to have 12 such 5-triangle vertices among what are otherwise all 6 -triangle vertices in order to meet the requirements of the Euler relation: 
n 5-triangle vertices 

V - n 6-triangle vertices 
F = ( V  - n)(6/3) + n(5/3) triangles 
E = ( V  - n)(6/2) + n(5/2) edges 
V = ( V  - n)(6/6) + n vertices 2 = F - E + V = n/6 Euler characteristic 
n = 12 

(42.9) 

Among all figures with triangular faces, the icosahedron is the one with the smallest number of faces that meets this condition (5-triangle vertices exclusively!) If each 2-surface has the pattern of vertices of a geodesic dome, how is one dome to be joined to the next to make a rigid skeleton 3-geometry? Were the domes imbedded in a flat 3-geometry, rigidity would be no issue. Each dome would already be rigid in and by itself. However, the 3-geometry is not given to be flat. Only by a completely deterministic skeletonization of the space between the two 2-spheres will they be given rigidity in the context of curved space geometry. (I) Not by running a single connector from each vertex in one surface to the corresponding vertex in the next ("floppy structure" !) (2) Not by displacing one surface so each of its vertices comes above, or nearly above, the center of a triangle in the surface "below." First, the numbers of vertices and triangles ordinarily will not agree. Second, even when they do, it will not give the structure the necessary rigidity to connect the vertex of the surface above to the three vertices of the triangle below. The space between will contain some tetrahedrons, but it will not be throughout decomposed into tetrahedrons. (3) A natural and workable approach to the skeletonization of the 3-geometry is to run a connector from each vertex in the one surface to the corresponding vertex in the next, but to flesh out this connection with additional structure that will give rigidity to the 3-geometry: intervening vertices and connectors as illustrated in Box 42.3. In working up from the skeletonization of a 3-geometry to the skeletonization of a 4-geometry, it is natural to proceed similarly. (I) Use identical patterns of points in the two 3-geometries. (2) Tie corresponding points together by single connectors. (3) Halfway, or approximately half way between the two 3-geometries insert a whole additional pattern of vertices. Each of these supplementary vertices is "dual" to and lies nearly "below" the center of a tetrahedron in the 3-geometry immediately above. (4) Connect each supplementary vertex to the vertices of the tetrahedron immediately above, to the vertices of the tetrahedron immediately below, and to those other supplementary vertices that are its immediate neighbors. (5) In this way get the edge lengths needed to divide the 4-geometry into simplexes, each of rigidly defined dimensions. 

(6)  4-D structures built from 
3-D structures 
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Box 42.3 SYNTHESIS OF HIGHER-D IMENSIONAL SKELETON GEOMETRI ES OUT OF 
LOWER-D IMENSIONAL SKELETON GEOMETRIES 

� 

� 

(2) 

(3) 
{; '  6j) '  

(1) One-dimensional structure as alternation of 
points and line segments. (2) Two-dimensional 
structure (a) "floppy" (unacceptable) and (b) rigid
ified ( angles of triangles fully determined by edge 
lengths). When this structure is extended, as at 
right, the "normal" vertex has six triangles hinging 
on it. However, at least twelve 5-triangle vertices 
of the type indicated at Cl are to be interpolated 
if the 2-geometry is to be able to close up into 
a 2-sphere. (3) Skeleton 3-geometry obtained by 
filling in between the skeleton 2-geometry . . .  
CltJ3 . . .  1!F!Je . . .  t,;6J) . . . and the similar structure 
. . .  Cl'tJ3' . . .  '!J 't!J 'e '  . . .  t,;'6J)' . . . as follows. (a) In-
sert direct connectors such as t!Jt!J' between 
corresponding points in the two 2-geometries. (b) 
Insert an intermediate layer of "supplementary 
vertices" such as SV'Pt'V'2lf.'X . . . .  Each of these 
supplementary vertices lies roughly halfway be
tween the center of the triangle "above" it and the 
center of the corresponding triangle "below" it. ( c) 

e 

Connect each such "supplementary vertex" with 
its immediate neighbors above, below, and in the 
same plane. (d) Give all edge lengths. (e) Then 
the skeleton 3-geometry between the two 2-ge
ometries is rigidly specified. It is made up of five 
types of tetrahedrons, as follows. (1) "Right
through blocks," such as t!Jt!J'SV (six of these 
hinge on t!Jt!J' when t!J is a normal vertex; five, 
when it is a 5-fold vertex, such as indicated by Cl 
at the upper right). (2) "Lower-facing blocks," such 
as CltJ3t!JV. (3) "Lower-packing blocks," such as 
Clt!JSV. (4, 5) Corresponding "upper-facing blocks" 
and "upper-packing blocks" (not shown). The 
number of blocks of each kind is appropriately 
listed here for the two extreme cases of a 2-geom
etry that consists (a) of a normal hexagonal lattice 
extending indefinitely in a plane and (b) of a lat
tice consisting of the minimum number of 5-fold 
vertices ("type Cl vertices") that will permit close
up into a 2-sphere. 
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2-geometry of upper 
(or lower) face 

Its topology 
Vertices on upper face Nature of these vertices Edge lengths on upper fact Triangles on upper face 
Number of "supplementary vertices" 
Outer facing blocks Outer packing blocks Right through blocks 
Inner packing blocks Inner facing blocks 

Hexagonal pattern 
of triangles 

Infinite 2-plane 
V 6-fold 

3 V  
2 V  
2 V  

2 V  
3 V  
6 V  
3 V  
2 V  

§42.6. THE CHOICE O F  EDGE LENGTHS 

Icosahedron 
made of triangles 

2-sphere 
12  5-fold 

iV = 30 20 
20 
20 30 60 
30 20 

1 1 7 7 

So much for the lattice structure of the 4-geometry; now for the other issue, the freedom that exists in the choice of edge lengths. Why not make the simplest choice and let all edges be light rays? Because the 4-geometry would not then be fully determined. The geometry ga/xµ) differs from the geometry A(xµ) ga/xµ), even though the same points that are connected by light rays in the one geometry are also connected by light rays in the other geometry. If none of the edges is null, it is nevertheless natural to take some of the edge lengths to be spacelike and some to be timelike. In consequence the area A of the triangle in some cases will be real, in other cases imaginary. In 3-space the parallelogram ( double triangle) spanned by two vectors B and C is described by a vector 
perpendicular to the two vectors. One obtains the magnitude of A from the formula 4A2 = B2C2 - (B · C)2 . In 4-space, let B and C be two edges of the triangle. Then, as in three dimensions, 
2A is dual to the bivector built from B and C. In other words, if B goes in the t direction and C in the z direction, then A is a bivector lying in the (x, y) plane. Consequently its magnitude A is to be thought of as a real quantity. Therefore the appropriate formula for the area A is (Tullio Regge) 4A2 = (B · C)2 - B 2C2 . (42 . 10) The quantity A is real when the deficit angle 8 is real. Thus the geometrically important product A8 is also real. 

The choice of edge lengths · 

( 1 )  choose some timel1ke, 
others space i l ke 



(2) choose timelike lengths 
comparable to spacelike 
lengths 

(3)  why some lengths must 
be chosen arbitrarily 

Deficit angles in terms of 
edge lengths 

Past applications of Regge 
calculus 

1 1 7 8 42 .  R EG G E  CALC U L U S  

When the hinge lies in the (x, y) plane, on the other hand, the quantity A is purely 
imaginary. In that instance a test vector taken around the cycle of simplexes that 
swing on this hinge has undergone change only in its z and t components; that is, 
it has experienced a Lorentz boost; that is, the deficit angle o is also purely imaginary. 
So again the product Ao is a purely real quantity. 

Turn now from character of edge lengths to magnitude of edge lengths. It is 
desirable that the elementary building blocks sample the curvatures of space in 
different directions on a roughly equal basis. In other words, it is desirable not to 
have long needle-shaped building blocks nor pancake-shaped tetrahedrons and 
simplexes. This natural requirement means that the step forward in time should be 
comparable to the steps "sidewise" in space. The very fact that one should have 
to state such a requirement brings out one circumstance that should have been 
obvious before: the "hinge equations" 

� oh cotan Bph = 0 (p = 1, 2, . . .  ), (42.7) 
hinges h that 
have edge p  
in common 

though they are as numerous as the edges, cannot be regarded as adequate to 
determine all edge lengths. There are necessarily relations between these equations 
that keep them from being independent. The equations cannot determine all the 
details of the necessarily largely arbitrary skeletonization process. They cannot do 
so any more than the field equations of general relativity can determine the coordi
nate system. With a given pattern of vertices (four-dimensional generalization of 
drawings in Box 42.3), one still has (a) the option how close together one will take 
successive layers of the structure and (b) how one will distribute a given number 
of points in space on a given layer to achieve the maximum payoff in accuracy 
(greater density of points in regions of greater curvature). To prepare a practical 
computer program founded on Regge calculus, one has to supply the machine not 
only with the hinge equations and initial conditions, but also with definite algorithms 
to remove all the arbitrariness that resides in options (a) and (b) . 

Formulas from solid geometry and four-dimensional geometry, out of which to 
determine the necessary hyperdihedral angles a and the deficit angles o in terms 
of edge lengths and nothing but edge lengths, are summarized by Wheeler (1964a, 
pp. 469, 470, and 490) and by C. Y. Wong (1971). Regge (1961) also gives a formula 
for the Riemann curvature tensor itself in terms of deficit angles and number of 
edges running in a given direction [see also Wheeler (1964a, p. 471)) . 

§42. 7. PAST APPLICATIONS OF REGGE CALCULUS 

Wong (1971) has applied Regge calculus to a problem where no time development 
shows itself, where the geometry can therefore be treated as static, and where in 
addition it is spherically symmetric. He determined the Schwarzschild and Reissner
Nordstrnm geometries by the method of skeletonization. Consider successive spheres 



§42 8 THE FUTURE OF REGGE CALCULUS 1 1 7 9 surrounding the center of attraction. Wong approximates each as an icosahedron. The condition <31R = 1677 ( energy density) on the 3-space (§21.5) gives a recursion relation that determines the dimension of each icosahedron in terms of the two preceding icosahedra. Errors in the skeleton representation of the exact geometry range from roughly 10 percent to less than 1 percent, depending on the method of analysis, the quantity under analysis, and the fineness of the subdivision. Skeletonization of geometry is to be distinguished from mere rewriting of partial differential equations as difference equations. One has by now three illustrations Partial skeletonization that one can capitalize on skeletonization without fragmenting spacetime all the way to the level of individual simplexes. The first illustration is the first part of Wong's work, where the time dimension never explicitly makes an appearance, so that the building blocks are three-dimensional only. The second is an alternative treatment, also given by Wong, that goes beyond the symmetry in t to take account of the symmetry in 0 and cf,. It divides space into spherical shells, in each of which the geometry is "pseudo-flat" in much the same sense that the geometry of a paper cone is flat. The third is the numerical solution for the gravitational collapse of a spherical star by May and White (1966), in which there is symmetry in 0 and cf,, but not in 
r or t. This zoning takes place exclusively in the r, t-plane. Each zone is a spherical shell. The difference as compared to Regge calculus (flat geometry within each building block) is the adjustable "conicity" given to each shell. The examples show that the decision about skeletonizing the geometry in a calculation is ordinarily not "whether" but "how much." 
§42 . 8 .  TH E FUTU R E  O F  R E G G E  CALCU LUS In summary, Regge's skeleton calculus puts within the reach of computation prob- Hopes for the future lems that in practical terms are beyond the power of normal analytical methods. It affords any desired level of accuracy by sufficiently fine subdivision of the space-time region under consideration. By way of its numbered building blocks, it also offers a practical way to display the results of such calculations. Finally, one can hope that Regge's truly geometric way of formulating general relativity will someday make the content of the Einstein field equations (Cartan's "moment of rotation" ;  see Chapter 15) stand out sharp and clear, and unveil the geometric significance of the so-called "geometrodynamic field momentum" (analysis of the boundary-value problem associated with the variational problem of general relativity in Regge calculus; see §21.12). 



CHAPTER 43 
S U P E R S PACE :  AR E NA FO R 

TH E DYNAM I CS O F  G EO M ETRY 

This cha pter i s  entirely Track 2 .  
Cha pter 2 1  ( in it ial-value 
formal ism) is needed as 
preparation for it .  In read ing it, 
one will be hel ped by Chapter 
42 (Regge calculus) . I t  is not 
needed as preparation for any 
later chapter, but it wi l l  be 
he lpful in Chapter 44 (vision of 
the future) . 

Superspace is the arena for 
geometrodynamics 

Traveler, there are no paths. 
Paths are made by walking. 

§43.1. SPACE, SUPERSPACE, AND SPACETIME 
DISTINGUISHED 

ANTO N I O  MACHADO ( 1 940) 

Superspace [Wheeler (1964a), pp. 459 ff] is the arena of geometrodynamics. The 
dynamics of Einstein's curved space geometry runs its course in superspace as the 
dynamics of a particle unfolds in spacetime. This chapter gives one simple version 
of superspace, and a little impression of alternative versions of superspace that also 
have their uses. It describes the classical dynamics of geometry in superspace in terms 
of the Hamilton-Jacobi principle of Boxes 25.3 and 25.4. No version of mechanics 
makes any shorter the leap from classical dynamics to quantum. Thus it provides 
a principle ("Einstein-Hamilton-Jacobi or EHJ equation") for the propagation of 
wave crests in superspace, and for finding where those wave crests give one the 
classical equivalent of constructive interference ("envelope formation"). In this way 
one finds the track of development of 3-geometry with time expressed as a sharp, 
thin "leaf of history" that slices through supers pace. The quantum principle replaces 
this deterministic account with a fuzzed-out leaf of history of finite thickness. In 
consequence, quantum fluctuations take place in the geometry of space that dominate 
the scene at distances of the order of the Planck length, L * = (hG I c3) 112 = 1.6 X 
10-33 cm, and less. The present survey simplifies by considering only the dynamics 
of curved empty space. When sources are present and are to be taken into account, 
supplementary terms are to be added, some of the literature on which is listed. 

In all the difficult investigations that led in the course of half a century to some 
understanding of the dynamics of geometry, both classical and quantum, the most 



§43 1 SPACE, S UPERSPACE, AND SPACETIME DISTINGUIS H ED 1 1 8 1  

Box 43. 1  GEO METRO DYNAM I CS C O M PARED WITH PARTI CLE DYNAM I CS 

Concept  Particle dynamics Geometrodynamics 

Dynamic entity Particle Space 
Descriptors of momentary <3>� ("3-geometry") configuralion x, t ("event") 
Classical history X = x(t) <4>� ("4-geometry") 
History is a stockpile of Yes. Every point on world Yes. Every spacelike 

configurations? line gives a momentary slice through <4>� gives configuration of particle a momentary configura-tion of space 
Dynamic arena Spacetime (totality of all Superspace (totality of all points x, t) <3l�•s) 

difficult point was also the simplest: The dynamic object is not spacetime. It is space. The geometric configuration of space changes with time. But it is space, three-dimensional space, that does the changing (see Box 43.1). Space will be treated here as "closed" or, in mathematical language, "compact," either because physics adds to Einstein's second-order differential equations the requirement of closure as a necessary and appropriate boundary condition [Einstein (1934, p. 52 ; 1950); Wheeler (1959; 1964c). Honl (1962); see also §21.12] or because that requirement simplifies the mathematical analysis, or for both reasons together. One can approximate a smooth, closed 3-geometry by a skeleton 3-geometry built out of tetrahedrons, as indicated schematically in Figure 43.1 (see Chapter 42 on the Regge calculus). Specify the 98 edge-lengths in this example to fix all the features of the geometry; and fix these 98 edge-lengths by giving the location of a single point in a space of 98 dimensions. This 98-dimensional manifold, this "truncated superspace," goes over into superspace [Wheeler (1964a), pp. 453, 459, 463, 495] in the idealization in which the tracer points increase in density of coverage without limit. Accounts of superspace with more mathematical detail are given by DeWitt (1967a,b), Wheeler (1970), and Fischer (1970). Let the representative point move from one location to a nearby location, either in truncated superspace or in full superspace. Then all edge-lengths alter, and the 3-geometry of Figure 43.1 moves as if alive. No better illustration can one easily supply of what it means to speak of the "dynamics of space." The term "3-geometry" makes sense as well in quantum geometrodynamics as in classical theory. So does superspace. But spacetime does not. Give a 3-geometry, and give its time rate of change. That is enough, under typical circumstances (see Chapter 21) to fix the whole time-evolution of the geometry; enough in other words, to determine the entire four-dimensional spacetime geometry, provided one is 

3-geometry is the dynamic 
object 

Finite-dimensional "truncated 
superspace" 



The concept of spacetime is 
incompati ble with the 
quantum principle 
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/-

Superspace 

Figu re 43. 1 .  
Superspace in the simplicial approximation Upper left, space (depicted as two-dimensional but actually 
three-dimensional) Upper right, simplical approximation to space The approximation can be made 
arbitrarily good by going to the limit of an arbitrarily fine decomposition. The curvature at a typical 
location is measured by a deficit angle. This angle is completely determined by the edge lengths (L1 , 
L2, • • •  L8 m the hgure) ot the simplexes that meet at that locat10n. When there are 98 edge lengths 
altogether in the simplicial representation of the geometry, then this geometry is completely specified 
by a single point in a 98-dimensional space (lower diagram; "superspace"). 

considering the prob l em in the context of c l assica l physics. In the rea l wor l d of quantum physics, however, one cannot give both a dynamic variab l e  and its time-rate of change. The princip l e  of comp l ementarity forbids. Given the precise 3-geometry at one instant, one cannot a l so know at that instant the time-rate of change of the 3-geometry. In other words, given the geometrodynamic fie l d  coordinate, one cannot know the geometrodynamic fie l d  momentum. If one assigns the intrinsic 3-geometry, one cannot a l so specify the extrinsic curvature. The uncertainty princip l e  thus deprives one of any way whatsoever to predict, or even to give meaning to, "the deterministic classica l history of space evo l ving 
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in time." No prediction of spacetime, therefore no meaning for spacetime, is the verdict 
of the quantum principle. That object which is central to all of classical general 
relativity, the four-dimensional spacetime geometry, simply does not exist, except 
in a classical approximation . 

These considerations reveal that the concepts of spacetime and time are not 
primary but secondary ideas in the structure of physical theory. These concepts are 
valid in the classical approximation. However, they have neither meaning nor 
application under circumstances where quantum geometrodynamic effects become 
important. Then one has to forego that view of nature in which every event, past, 
present, or future, occupies its preordained position in a grand catalog called 
"spacetime," with the Einstein interval from each event to its neighbor eternally 
established. There is no spacetime, there is no time, there is no before, there is no 
after. The question of what happens "next" is without meaning. 

That spacetime is not the right way does not mean there is no right way to describe 
the dynamics of geometry consistent with the quantum principle. Superspace is the 
key to one right way to describe the dynamics (see Figure 43.2). 

Spacetime 

Figu re 43. 2 .  
Space, spacetime, and superspace. Upper left: Five sample configurations, A ,  B ,  C, D ,  E ,  attained by 
space in the course of its expansion and recontraction Below: Superspace and these five sample 
configurations, each represented by a point in superspace. Upper right :  Spacetime. A spacelike cut, like 
A,  through spacetime gives a momentary configuration of space. There is no compulsion to limit attention 
to a one-parameter family of slices, A, B,  C, D, E through spacetime. The phrase "many-fingered time" 
is a slogan telling one not to so limit one's slices, and B' is an example of this freedom in action. The 
3-geometries B' and A, B, C, D, E, like all 3-geometries obtained by all spacelike slices whatsoever through 
the given classical spacetime, lie on a single bent leaf of history, indicated in the diagram, and cutting 
its thin slice through superspace. A different spacetime, in other words, a different solution of Einstein's 
field equation, means a different leaf of history (not indicated) slicing through superspace. 



Spacetime is a classical leaf 
of history slicing through 
superspace 
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§43.2. THE DYNAMICS OF GEOMETRY DESCRIBED 
IN THE LANGUAGE OF THE SUPERSPACE 
OF THE <3>�•s 

Given a spacetime, one can construct the corresponding leaf of history slicing through 
superspace. Conversely, given the leaf of history, one can reconstruct the spacetime. 

Consider the child's toy commonly known as "Chinese boxes." One opens the 
outermost box only to reveal another box; when the second box is opened, there 
is another box, and so on, until eventually there are dozens of boxes scattered over 
the floor. Or conversely the boxes can be put back together, nested one inside the 
other, to reconstitute the original package. The packaging of (3>Hs into a <4>� is much 
more sophisticated. Nature provides no monotonic ordering of the (3>Hs. Two of the 
dynamically allowed <3>Hs, taken at random, will often cross each other one or more 
times. When one shakes the <4>� apart, one therefore gets enormously more <3>Hs 
"spread out over the floor" than might have been imagined. Conversely, when one 
puts back together all of the <3>Hs lying on the leaf of history, one gets a structure 
with a rigidity that might not otherwise have been foreseen. This rigidity arises from 
the infinitely rich interleaving and intercrossing of clear-cut, well-defined <3>Hs one 
with another. 

In summary: ( 1 )  Classical geometrodynamics in principle constitutes a device, an 
algorithm, a rule for calculating and constructing a leaf of history that slices through 
superspace. (2) The <3>Hs that lie on this leaf of history are YES 3-geometries; the 
vastly more numerous <3>Hs that do not are NO 3-geometries. (3) The YES <3>Hs 
are the building blocks of the (4>� that is classical spacetime. (4) The interweaving 
and interconnections of these building blocks give the <4>� its existence, its dimen
sionality, and its structure. (5) In this structure every <3>� has a rigidly fixed location 
of its own. (6) In this sense one can say that the "many-fingered time" of each 
3-geometry is specified by the very interlocking construction itself. Baierlein, Sharp 
and Wheeler (1962) say a little more on this concept of "3-geometry as carrier of 
information about time." 

How different from the textbook concept of spacetime! There the geometry of 
spacetime is conceived as constructed out of elementary objects, or points, known 
as "events." Here, by contrast, the primary concept is 3-geometry, in abstracto, and 
out of it is derived the idea of event. Thus, ( 1 )  the event lies at the intersection 
of such and such <3>Hs; and (2) it has a timelike relation to (earlier or later than, 
or synchronous with) some other <3>�, which in turn (3) derives from the intercrossings 
of all the other <3>Hs. 

When one turns from classical theory to quantum theory, one gives up the concept 
of spacetime, except in the semiclassical approximation. Therefore, one gives up any 
immediate possibility whatsoever of defining the concept, normally regarded as so 
elemental, of an "event." The theory itself, however, here as always [Bohr and 
Rosenfeld ( 1 933)), defines in and by itself, in its own natural way, the procedures
in-principle for measuring all those quantities that are in principle measurable. 

Quantum theory upsets the sharp distinction between YES 3-geometries and NO 



§43. 3. THE EINSTEIN-H AMILTON-J ACOBI EQU ATION 1 1 8 5 3-geometries. It assigns to each 3-geometry not a YES or a NO, but a probability amplitude, (43.1) This probability amplitude is highest near the classically forecast leaf of history and falls off steeply outside a zone of finite thickness extending a little way on either side of the leaf. Were one to take, instead of a physically relevant probability amplitude function, a typical solution of the relevant wave equation, one would have to expect to see not one trace of anything like classical geometrodynamics. The typical probability amplitude function is spread all over superspace. No surprise! Already in classical theory one has to reckon with a Hamilton-Jacobi function, (43.2) spread out over superspace. Moreover, this "dynamic phase function" of classical geometrodynamics gives at once the phase of if;, according to the formula 
ip(<3>-%:J) = ( slowl� varying . } e<illilS((3>J.:J>, amplitude funct10n indication enough that if; and S are both unlocalized. 

(43.3) 
Dynamics first clearly becomes recognizable when sufficiently many such spreadout probability amplitude functions are superposed to build up a localized wave packet, as in the elementary examples of Boxes 25.3 and 25.4; thus, (43.4) Constructive interference occurs where the phases of the several individual waves agree: (43.5) This is the condition lhal distinguishes YES 3-geometries from NO 3-geometries. It is the tool for constructing a leaf of history in superspace. It is the key to the dynamics of geometry. Moreover, it is an equation that says not one word about the quantum principle. It is not surprising that the equation of constructive interference in (43.5) makes the leap from classical theory to quantum theory the shortest. 

§43.3 .  THE EINSTEIN-HAMILTON-JACOBI EQUATION Should one write down a differential equation for the Hamilton-Jacobi function S(<3l-%:J), solve it, and then analyze the properties of the solution? The exact opposite is simpler: look at the properties of the solution, and from that inspection find out what equation the dynamic phase or action S must satisfy. 

Probability amplitude for a 
3-geometry 

Wave packet recovers 
classical geometrodynamics 



1 1 8 6 43 S UPERSPACE ARENA FOR THE DYNA MICS OF GEOMETRY Hilberts' principle of least action reads 
/Hilbert = (1/1677) J <4>R( - g)112 d4x = extremum. (43 .6) After one separates off complete derivatives in the integrand, what is left [see equations (21.13) and (21 .95)] becomes (1/1677)/ADM = /true = (1/1677) I ( 17 ij ogi;f u t  + Ng112R (43.7) 

In (43.7), but not in (43.6), g stands for the determinant of the three-dimensional metric tensor, gi;, and R for the scalar curvature invariant of the 3-geometry; the suffix <3> is omitted for simplicity. The integral is extended from (1) a spacelike hypersurface on which a 3-geometry is given with metric gi/(x, y, z) to (2) a spacelike hypersurface on which a 3-geometry is given with metric gi/'(x, y, z). Whatever is adjustable in the chunk of spacetime between is now to be considered as having been adjusted to extremize the integral. Therefore the value of the integral I ADM becomes a functional of the metrics on the two hypersurfaces and nothing more. Next, holding fixed the metric g'ix, y, z) on the earlier hypersurface, change slightly or even more than slightly the metric on the later hypersurface. Solve the new variation problem and get a new value of /ADM · Proceeding further in this way, for each new gi/' one gets a new value of /ADM · Call the functional /ADM of the metric defined in this way "Hamilton's principal function," or the "action" or the "dynamic path length,* "  S(gi; (x, y, z)) of the "history of geometry" that connects the two given 3-geometries. The double prime suffix is dropped from gi;" here and hereafter to simplify the notation. One knows from other branches of mechanics that the quantity defined in this way, S(gii), when it exists, even though it is a special solution, nevertheless is always a solution of the Hamilton-Jacobi equation. Jacobi could look for more general solutions, but Hamilton already had one! For (43 .7) to be an extremal with respect to variations of the lapse N and the shift components N;, it was necessary (see Chapter 21) that the coefficients of these four quantities should vanish; thus, 
and 

g-112 [� (Tr n)2 - Tr n 2] + g112R = O (43.8) 
(43.9) In the expression for the extremal value of the action, only one term, the first, is left: 

g . .  S(g(x, y, z)) = /ADM, extremal = I ., { 77 ij agi/at} d4x.  
Yi; 

* Actually S =. SADM = 16,rStrue = 16,r (true dynamic path length). 

(43.10) 
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The effect of a slight change, ligi;, in the 3-metric at the upper limit is therefore 
easy to read off: 

oS = f '7T ii(x, y, z) og;/x, y, z) d3x. (43 . 1 1) 

The language of "functional derivative" [see, for example, Bogoliubov and Shirkov 
(1959)] allows one to speak in terms of a derivative rather than an integral : 

8S . .  -- = 'IT'' · 
ogii 

(43 . 12) 

The "field momenta" acquire a simple meaning : they give the rate of change of 
the action with respect to the continuous infinitude of "field coordinates," g;;(x, y, z). 
(Here the x, y, z, as well as the i and j, serve as mere labels.) 

Although the phase function S appears to depend on all six metric coefficients 
gii individually, it depends in actuality only on that combination of the gii which 
is locked to the 3-geometry. To verify this point, express a particular 3-geometry 
<3>� throughout one local coordinate patch in terms of one set of coordinates xP 

by one set of metric coefficients gpq
· Reexpress the same 3-geometry in terms of 

coordinates xP shifted by the small amount �P, 

(43 . 1 3) 

To keep the 3-geometry the same, that is, to keep unchanged the distance ds from 
one coordinate-independent point to another, the metric coefficients have to change : 

(43 . 1 4) 

Let the phase function S ( or in quantum mechanics, let the probability amplitude 
if;) be considered to be expressed as a functional of the metric coefficients g11(x), 
g1z(x), . . .  , g3a(x). Changes ligpq

(x) in these coefficients alter the H-J phase function 
and the probability amplitude by the amounts 

(43 . 1 5) 

according to the standard definition of functional derivative. Therefore the coordi
nate change produces an ostensible change in the dynamic path length or phase 
S given by 

oS = I (oS/ogpq
)(�

p lq 
+ �

q lp) d3x 

= -2 I (oS/ogp
q)lip 

d3x. 
(43 . 1 6) 

This change must vanish if S is to depend on the 3-geometry alone, and not on 

Geometrodynam ic 
momentum as rate of change 
of dynam ic path length with 
respect to 3-geometry of 
term inal hypersurface 

Action depends on 
3-geometry, not on metr ic 
coefficients individually 



Law of propagation of wave 
crests in superspace 

1 1 8 8 43 S U PE R S PACE AR ENA FO R TH E DYNAM I CS O F  G EO M ETRY the coordinates in terms of which that 3-geometry is expressed; and must vanish, moreover, for arbitrary choice of the �p - From this condition, one concludes 
(_§.§_) - 0 

ogpq lq 
- . 

(43.17) 
Likewise, one finds three equations on the wave function if; itself, as distinguished from its phase S/1i ;  thus, 

(_!±_) - 0 
ogpq lq 

- . 
(43 .18) 

But (43.17), by virtue of (43.12), is identical with (43 .9). In this sense (43 .9) merely verifies what one already knew had to be true: the classical Hamilton-Jacobi function S (like the probability amplitude function t/; of quantum theory) depends on 3-geometry, not on individual metric coefficients, and not on choice of coordinates. All the dynamic content of geometrodynamics is summarized in the sole remaining equation (43.8), which takes the form 
-1/2 [ 1 ] oS oS 1/2 R - 0 g 2 gpq grs - gprgqs 8g 8g 

+ g - · 
pq rs 

(43 .19) 
This is the Einstein-Hamilton-Jacobi equation, first given explicitly in the literature by Peres (1962) on the foundation of earlier work by himself and others on the Hamiltonian formulation of geometrodynamics. This equation tells how fronts of constant S ("wave crests") propagate in superspace. That the one EHJ equation (43 .19) contains as much information as all ten components of Einstein's field equation has been demonstrated by Gerlach (1969). The central point in the analysis is the principle of constructive interference, and the main requirement for a proper treatment of this point is the concept of a completely parametrized solution of the EHJ equation. The problem of a particle moving in two-dimensional space, as treated by the Hamilton-Jacobi method in Boxes 25.3 and 25.4, required for complete analysis a solution containing two distinct and independently adjustable parameters, the energy per unit mass, E, and angular momentum per unit mass, I; thus 

S(r, 0, t; E, L) = - Et + I0 

+ f
r [E2 - ( l  - 2M/r)(l + L2/r2)]112 dr + o(E, L). (43 .20) 

(1 - 2M/r) Here the additive phase 8(E, L) is required if one is to be able to arrange for the particle to arrive at a given r-value at a specified t value and at a specified value of 0. One thinks of superposing four probability amplitudes, as in (43.4), with dynamic phases, S, given by (43.20) and the parameters taking on, respectively, the following four sets of values: (E, L); (E + LJE, L); (E, I + LJL); and (E + LJE, I + '11). The principle of constructive interference leads to the conditions 
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oS/oE = o, 
oS/oI = o. 

1 1 8 9 

(43.21) 

The points in the spacetime (r, 0, t) that satisfy these conditions are the YES points; 
they lie on the world line. The ones that don't are the NO points. 

The desired solution of the EHJ equation (43.19) contains not two parameters 
(plus an additive phase, o, depending on these two parameters), but an infinity of 
parameters, and even a continuous infinity of parameters. Thus the parameters are 
not to be designated as a1, a2, . . .  ; /31, /32, . . .  (parameters labeled by a discrete index), 
but as 

a(u, u, w) 

and 
f3(u, u, w) 

(two parameters "labeled" by three continuous indices u, u, w). Accidentally omit 
one of this infinitude of parameters? How could one ever hope to know that what 
purported to be a complete solution of the EHJ equation was not in actuality 
complete? Happily Gerlach provides a procedure to test the parameters for com
pleteness. 

Granted completeness, Gerlach goes on to show that the "leaf of history in 
superspace" or collection of 3-geometries that satisfy the conditions of constructive 
interference, 

oS(<3>�; a(u, u, w), {3(u, u, w)) = 0, 
00'. 

oS(<3>�;  a(u, u, w), {3 (u, u, w)) = 0 
0/3 

(43.22) 

is identical with the leaf of history, or equivalent 4-geometry, given by the ten 
components of Einstein's geometrodynamic law. 

From the Hamilton-Jacobi equation for a problem in elementary mechanics, it 
is a short step to the corresponding Schroedinger equation; similarly in geometro
dynamics. No one has done more than Bryce DeWitt to explore the meaning and 
consequences of this "Einstein-Schroedinger equation" [DeWitt (1967a,b)]. One of 
the most interesting consequences is the existence of a conserved current in super
space, analogous to the conserved current 

. r1 
( * oif; oif;*

) = - if; - - if;-
}µ 2im oxµ oxµ 

that one encounters in the Klein-Gordon wave equation for a particle of spin zero. 
It is an unhappy feature of this Einstein-Schroedinger wave equation that it 

contains second derivatives; so one has to specify both the probability amplitude, 
and the normal derivative of the probability amplitude, on the appropriate "super-

Condition of constructive 
interference gives classical 
" leaf of history" or 
spacetime 



1 1 90 43 S U PERSPACE·  AR ENA FO R TH E DYNAM I CS O F  G E O M ETRY hypersurface" in superspace, in order to be able to predict the evolution of this state function elsewhere in superspace. One suggested way out of this situation-it is at least an inconvenience, possibly a real difficulty-has been proposed by Leutwyler (1968): impose a natural boundary condition that reduces the number of independent solutions from the number characteristic of a second-order equation to the number characteristic of a first-order equation. Another way out is to formulate the dynamics quite differently, in the way proposed by Kuchar (see Chapter 21), in which the resulting equation is of first order in the variable analogous to time. The exploration of quantum geometrodynamics is simplified when one treats most of the degrees of freedom of the geometry as frozen out, by imposition of a high degree of symmetry. Then one is left with one, two, or three degrees of freedom (see Chapter 30, on mixmaster cosmology), or even infinitely many, and is led to manageable problems of quantum mechanics [Misner (1972a, 1973)]. 
§43 .4 .  FLUCTUAT I O N S  I N  G E O M ETRY Of all the remarkable developments of physics since World War II, none is more impressive than the prediction and verification of the effects of the vacuum fluctuations in the electromagnetic field on the motion of the electron in the hydrogen atom (Figure 43.3). That development made it impossible to overlook the effects of such fluctuations throughout all physics and, not least, in the geometry of spacetime itself. 

• 

Figu re 43 . 3 .  
Symbolic representation o f  motion o f  electron i n  hydrogen atom as affected b y  fluctuations 
in electric field in vacuum ("vacuum" or "ground state" or "zero-point" fluctuations) . The 
electric field associated with the fluctuation, E,(t) = JE.(w)e-iwt dw, adds to the static 
electric field provided by the nucleus itself. The additional field brings about in the most 
elementary approximation the displacement Llx = J(e/mw2)E,(w)e-iwt dw . The average 
vanishes but the root mean square ( (Llx)2) does not. In consequence the electron feels 
an effective atomic potential altered from the expected value V(x, y, z) by the amount 

I LI V(x, y, z) = 2 ((Llx)2) v'2 V(x, y, z) 

The average of this perturbation over the unperturbed motion accounts for the major part 
of the observed Lamb-Retherford shift LIE = (LI V(x, y, z)) in the energy level Con
versely, the observation of the expected shift makes the reality of the vacuum fluctuations 
inescapably evident. 
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From the zero-point fluctuations of a single oscillator to the fluctuations of the 
electromagnetic field to geometrodynamic fluctuations is a natural order of progres
sion. 

A harmonic oscillator in its ground state has a probability amplitude of 

( )1/4 tf;(x) = :; e-<mw/2h)x2 (43.23) 

to be displaced by the distance x from its natural classical position of equilibrium. 
In this sense, it may be said to "resonate" or "fluctuate" between locations in space 
ranging over a region of extent 

Llx ~ (n/mw)112. (43.24) 

The electromagnetic field can be treated as an infinite collection of independent 
"field oscillators," with amplitudes �1, �

2, . . . .  When the Maxwell field is in its state 
of lowest energy, the probability amplitude-for the first oscillator to have amplitude 
�1 , and simultaneously the second oscillator to have amplitude �2, the third �3, and 
so on-is the product of functions of the form ( 43 .23), one for each oscillator. When 
the scale of amplitudes for each oscillator is suitably normalized, the resulting infinite 
product takes the form 

tf-,(�1 , �2, . . . ) = Nexp [ -(�/ + �z2 + • • • )] .  (43.25) 

This expression gives the probability amplitude if; for a configuration B(x.,y, z) of 
the magnetic field that is described by the Fourier coefficients �1, �

2, . . . .  One can 
forgo any mention of these Fourier coefficients if one desires, however, and rewrite 
(43.25) directly in terms of the magnetic field configuration itself [Wheeler (1962)]: 

(43.26) 

One no longer speaks of "the" magnetic field, but instead of the probability of this, 
that, or the other configuration of the magnetic field, even under circumstances, as 
here, where the electromagnetic field is in its ground state. [See Kuchar (I  970) for 
a similar expression for the "ground state" functional of the linearized gravitational 
field.] 

It is reasonable enough under these circumstances that the configuration of greatest 
probability is B(x, y, z) = 0. Consider for comparison a configuration where the 
magnetic field is again everywhere zero except in a region of dimension L. There 
let the field, subject as always to the condition div B = 0, be of the order of magni
tude LIB. The probability amplitude for this configuration will be reduced relative 
to the nil configuration by a factor exp ( -/). Here the quantity I in the exponent 
is of the order (LIB)2 L4 /nc. Configurations for which I is large compared to 1 occur 
with negligible probability. Configurations for which I is small compared tu 1 occur 
with practically the same probability as the nil configuration. In this sense, one can 

F luctuat ions fo r osc i l lator and  
fo r  el ectromagnet ic fi e ld 



Fluctuations in geometry 
dominate at the Planck scale 
of distances 

1 1 9 2 43 S UPERSPACE ARENA FOR THE DYNA MICS OF GEOMETRY say that the fluctuations in the magnetic field in a region of extension L are of the order of magnitude 
(rzc)l/2 

LJB ~ -
L2

. (43.27) 
In other words, the field "resonates" between one configuration and another with the range of configurations of significance given by (43.27). Moreover, the smaller is the region of space under consideration, the larger are the field magnitudes that occur with appreciable probability. Still another familiar way of speaking about electromagnetic field fluctuations gives additional insight relevant to geometrodynamics. One considers a measuring device responsive in comparable measure to the magnetic field at all points in a region of dimension L. One asks for the effect on this device of electromagnetic disturbances of various wavelengths. A disturbance of wavelength short compared to L will cause forces to act one way in some parts of the detector, and will give rise to nearly compensating forces in other parts of it. In contrast, a disturbance of a long wavelength A produces forces everywhere in the same direction, but of a magnitude too low to have much effect. Thus the field, estimated from the equation 

or 
or 

(energy of electromagnetic ) ( f ) . energy o one quantum wave of wavelength A m a ~ f 1 h , . o wave engt 1\ domam of volume A3 

(rzc)l/2 
B ~ -

-,._2 (43.28) 
is very small if A is large compared to the domain size L. The biggest effect is caused by a disturbance of wavelength A comparable to L itself. This line of reasoning leads directly from (43.28) to the standard fluctuation formula (43.27). Similar considerations apply in geometrodynarnics. Quantum fluctuations in the geometry are superposed on and coexist with the large-scale, slowly varying curvature predicted by classical deterministic general relativity. Thus, in a region of dimension 
L, where in a local Lorentz frame the normal values of the metric coefficients will be - 1, 1, 1, 1, there will occur fluctuations in these coefficients of the order 

L* Llg ~ 
L ' fluctuations in the first derivatives of the gik 's of the order 

Llg L* LJI' ~ - ~ -
L L2 ' 

(43.29) 
(43.30) 
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and fluctuations in the curvature of space of the order 

Llg L* 
LlR ~ - ~ - . 

L2 L3 

Here 

L* = ( :� )112 = 1.6 x 10-33 cm 

is the so-called Planck length [Planck (1899)]. 

1 1 9 3 

(43.31) 

(43.32) 

It is appropriate to look at orders of magnitude. The curvature of space within 
and near the earth, according to classical Einstein theory, is of the order 

R ~ (;z ) p ~ (0.7 X 10-28 cm/g)(5 g/cm3) 
~ 4 X 10-28 cm-2 . (43.33) 

This quantity has a very direct physical significance. It measures the "tide-producing 
component of the gravitational field" as sensed, for example, in a freely falling 
elevator or in a spaceship in free orbit around the earth. By comparison, the quantum 
fluctuations in the curvature of space are only 

LlR ~ 10-33 cm-2, (43.34) 

even in a domain of observation as small as 1 cm in extent. Thus the quantum 
fluctuations in the geometry of space are completely negligible under everyday 
circumstances. 

Even in atomic and nuclear physics the fluctuations in the metric, 

and 

10-33 
Llg ~ cm ~ 10-25 10-8 cm 

10-33 L1 ~ cm ~ 10-20 g 10-13 cm 
(43.35) 

are so small that it is completely in order to idealize the physics as taking place 
in a flat Lorentzian spacetime manifold. 

The quantum fluctuations in the geometry are nevertheless inescapable, if one 
is to believe the quantum principle and Einstein's theory. They coexist with the 
geometrodynamic development predicted by classical general relativity. The fluctua
tions widen the narrow swathe cut through superspace by the classical history of 
the geometry. In other words, the geometry is not deterministic, even though it looks 
so at the everyday scale of observation. Instead, at a submicroscopic scale it "reson
ates" between one configuration and another and another. This terminology means 
no more and no less than the following : (1) Each configuration <3>-2::, has its own 
probability amplitude If' = ¥'(<3>-2:i). (2) These probability amplitudes have comparable 
magnitudes for a whole range of 3-geometries included within the limits (43.29) on 
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either side of the classical swathe through superspace. (3) This range of 3-geometries 
is far too variegated on the submicroscopic sale to fit into any one 4-geometry, or 
any one classical geometrodynamic history. (4) Only when one overlooks these 
small-scale fluctuations ( ~ 10-33 cm) and examines the larger-scale features of the 
3-geometries do they appear to fit into a single space-time manifold, such as comports 
with the classical field equations. 

These small-scale fluctuations tell one that something like gravitational collapse 
is taking place everywhere in space and all the time; that gravitational collapse is 
in effect perpetually being done and undone; that in addition to the gravitational 
collapse of the universe, and of a star, one has also to deal with a third and, because 
it is constantly being undone, most significant level of gravitational collapse at the 
Planck scale of distances. 

Exercise 43.1. THE ACTION PRINCIPLE FOR A FREE PARTICLE 
IN NONRELATIVISTIC MECHANICS 

Taking as action principle I =  JL dt = extremum, with specified x', t' and x", t" at the two 
limits , and with L = ½m(dx/dt)2, find ( I )  the extremizing history x = x(t) and (2) the dynam
ical path length or action S(x", t"; x', t') = /extremum in its dependence on the end points . 
Also (3) write down the Hamilton-Jacobi equat10n for this problem, and (4) verify that S(x, t; 
x', t') satisfies this equation. Finally, imagining the Hamilton-Jacobi equation not to be 
known, (5) derive it from the already known properties of the function S itself. 
Exercise 43.2. THE ACTION FOR THE HARMONIC OSCILLATOR 
The kinetic energy is ½m(dx/dt)2 and the potential energy is ½mw2x2 . Carry through the 
analysis of parts ( 1 ) , (2) ,  (3), (4) of the preceding exercise. Partial answer: 

mw (x2 + x' 2) cos w(t - t') - 2xx' S = - --------- . 2 sin w(t - t') 
Verify that o S/ox gives momentum and - oS/ot gives energy. 
Exercise 43.3. QUANTUM PROPAGATOR FOR HARMONIC OSCILLATOR 
Show that the probability amplitude for a simple harmonic oscillator to transit from x', t' 
to x", t" is 
(x", t"; x', t') 

_ ( mw )
11 2 imw[(x" 2 + x' 2) cos w(t" - t') - 2x"x'] - 27Tin sin w(t" - t') X exp 2n sin w(t" - t') ' 

and that it reduces for the case of a free particle to 

( m )
11 2 im(x" - x')2 (x", t"; x', t') = 

27Tin(t" - t') exp 
2n(t" - t') 

Note that one can derive all the harmonic-oscillator wave functions from the solution by 
use of the formula 

(x", t"; x', t') = :S un(x")u/(x') exp iEn(t' - t")/n . 
n 
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Exercise 43.4. QUANTU M PRO PAGATOR FOR FREE 
ELECTRO MAGNETIC F I ELD 

In flat spacetime, one is given on the spacelike hypersurface t = t ' the divergence-free 
magnet(c field B '(x , y, z) and on the spacelike hypersurface t = t" the divergence-free 
magnetic field B "(x, y, z). By Fourier analysis (reducing this problem to the preceding 
problem) or otherwise, find the probability amplitude to transit from B' at t' to B "  at t". 

Exercise 43.5. HAM I LTO N-JACOBI FOR M ULATI O N  
O F  MAXWELL ELECTRO DYNAM I CS 

Regard the four components Aµ of the electromagnetic 4-potential as the primary quantities; 
split them into a space part A; and a scalar potential cf>. ( I) Derive from the action principle 
(in flat space time) 

I =  ( l /8'1T) f (E 2 
- B 2) d4x, 

by splitting off an appropriate divergence, an expression qualitatively similar in character 
to (43.7). (2) Show that the appropriate quantity to be fixed on the initial and final spacelike 
hypersurface is not really A; itself, but the magnetic field, defined by B = curl A .  (3) Derive 
the Hamilton-Jacobi equation for the dynamic phase or action S(B, S) in its dependence 
on the choice of hypersurface S, and the choice of magnetic field B on this hypersurface, 

The quantity on the left is Tomonaga's "bubble time" derivative [Tomonaga (1946); see also 
Box 21.1]. 



CHAPTER 44 
BEYOND THE END OF TIME 

This chapter is entirely Track 
2. No previous Track-2 material 
is needed as preparation for it, 

but Chapter 43 will be helpfu l .  

"Heaven wheels above you 
Displaying to you her e ternal glories 

And s till your eyes are on the ground " 

DANTE 

The world "s tands before us as a great, e ternal riddle " 

E INSTEI N (1949a) 

§44.1 .  GRAVITATIONAL COLLAPSE AS THE GREATEST 
CRISIS IN PHYSICS OF ALL TIME The universe starts with a big bang, expands to a maximum dimension, then recontracts and collapses: no more awe-inspiring prediction was ever made. It is preposterous. Einstein himself could not helieve his own prediction. It took Hubble's observations to force him and the scientific community to abandon the concept of a universe that endures from everlasting to everlasting. Later work of Tolman (1934a), Avez (1960), Geroch (1967), and Hawking and Penrose (1969) generalizes the conclusion. A model universe that is closed, that obeys Einstein's geometrodynamic law, and that contains a nowhere negative density of mass-energy, inevitably develops a singularity. No one sees any escape from the density of mass-energy rising without limit. A computing machine calculating ahead step by step the dynamical evolution of the geometry comes to the point where it can not go on. Smoke, figuratively speaking, starts to pour out of the computer. Yet physics surely continues to go on if for no other reason than this: Physics is by definition that which does go on its eternal way despite all the shadowy changes in the surface appearance of reality. 

The Marchon lecture given by J. A. W. at the University of Newcastle-upon-Tyne, May 1 8 ,  1 97 1 , 
and the Nuffield lecture given at Cambridge University July 1 9, 197 1 ,  were based on the material 
presented in this chapter. 



§ 44 1 GRAVITATIONAL COLLAPSE THE GREATEST CRISIS IN PHYSICS 1 1 9 7 Some day a door will surely open and expose the glittering central mechanism of the world in its beauty and simplicity. Toward the arrival of that day, no development holds out more hope than the paradox of gravitational collapse. Why paradox? Because Einstein's equation says "this is the end" and physics says "there is no end." Why hope? Because among all paradigms for probing a puzzle, physics proffers none with more promise than a paradox. 
The paradox of collapse . 
physics stops, but physics 
must go on 

No previous period of physics brought a greater paradox than 1911 (Box 44 .1). The 1 9 1  1 crisis of electric 
collapse Rutherford had just been forced to conclude that matter is made up of localized positive and negative charges. Matter as so constituted should undergo electric collapse in ~ 10-17 sec, according to theory. Observation equally clearly proclaimed that matter is stable. No one took the paradox more seriously than Bohr. No one worked around and around the central mystery with more energy wherever work was possible. No one brought to bear a more judicious combination of daring and conservativeness, nor a deeper feel for the harmony of physics. The direct opposite 

Box 44.1  COLLAPSE O F  U N I VERSE PREDI CTED BY CLASS I CAL THEORY, C O M PARED 
AN D CO NTRASTED WITH CLASS I CALLY PRED I CTED COLLAPSE O F  ATO M 

System 

Dynamic entity 

Nature of classi
cally predicted 
collapse 

One rejected "way 
out" 

Another proposal 
for a "cheap way 
out" that has to 
be rejected 

How this proposal 
violates principle 
of causallty 

A major new consider
ation introduced 
by recognizing 
quantum principle 
as overarching or
ganizing principle 
of physics 

A tom ( 1 9 1 1 ) 

System of electrons 

Electron headed toward point-center of 
attraction is driven in a finite time 
to infinite energy 

Give up Coulomb law of force 

"Accelerated charge need not radiate" 

Coulomb field of point-charge cannot re
adjust itself with infinite speed out 
to indefinitely great distances to 
sudden changes in velocity of charge 

Uncertamty principle ; binding too close 
to center of attraction makes zero-point 
kinetic energy outbalance potential 
energy, consequent existence of a 
lowest quantum state; can't radiate 
because no lower state available to 
drop to 

Umverse ( 1 9 70 's) 

Geometry of space 

Not only matter but space itself arrives 
in a finite proper time at a condition 
of infinite compaction 

Give up Einstein's field equation 

"Matter cannot be compressed beyond a 
certain density by any pressure, how
ever high 

Speed of sound cannot exceed speed of 
light; pressure cannot exceed density 
of mass-energy 

Uncertainty principle, propagation of 
representative wave packet in super
space does not lead deterministically 
to a singular configuration for the 
geometry of space; expect rather a 
probability distribution of outcomes, 
each outcome describing a universe 
with a different size, a different set of 
particle masses, a different number of 
particles, and a different length of 
time required for its expansion and 
recon traction. 
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of harmony, cacophony, is the impression that comes from sampling the literature 
of the 'teens on the structure of the atom. (l ) Change the Coulomb law of force 
between electric charges? (2) Give up the principle that an accelerated charge must 
radiate? There was little inhibition against this and still wilder abandonings of the 
well-established. In contrast, Bohr held fast to these two principles. At the same 
time he insisted on the importance of a third principle, firmly established by Planck 
in quite another domain of physics, the quantum principle. With that key he opened 
the door to the world of the atom. 

Great as was the crisis of 1911, today gravitational collapse confronts physics with 
its greatest crisis ever. At issue is the fate, not of matter alone, but of the universe 
itself. The dynamics of collapse, or rather of its reverse, expansion, is evidenced not 
by theory alone, but also by observation; and not by one observation, but by 
observations many in number and carried out by astronomers of unsurpassed ability 
and integrity. Collapse, moreover, is not unique to the large-scale dynamics of the 
universe. A white dwarf star or a neutron star of more than critical mass is predicted 
to undergo gravitational collapse to a black hole (Chapters 32 and 33). Sufficiently 
many stars falling sufficiently close together at the center of the nucleus of a galaxy 
are expected to collapse to a black hole many powers of ten more massive than 
the sun. An active search is under way for evidence for a black hole in this Galaxy 
(Box 33.3). The process that makes a black hole is predicted to provide an experi
mental model for the gravitational collapse of the universe itself, with one difference. 
For collapse to a black hole, the observer has his choice whether (1) to observe from 
a safe distance, in which case his observations will reveal nothing of what goes on 
inside the horizon; or (2) to follow the falling matter on in, in which case he sees 
the final stages of the collapse, not only of the matter itself, but of the geometry 
surrounding the matter, to indefinitely high compaction, but only at the cost of his 
own early demise. For the gravitational collapse of a closed model universe, no such 
choice is available to the observer. His fate is sealed. So too is the fate of matter 
and elementary particles, driven up to indefinitely high densities. The stakes in the 
crisis of collapse are hard to match: the dynamics of the largest object, space, and 
the smallest object, an elementary particle-and how both began. 

§44.2 . ASSESSMENT OF THE THEORY THAT 
PREDICTS COLLAPSE 

No one reflecting on the paradox of collapse ("collapse ends physics" ; "collapse 
cannot end physics") can fail to ask, "What are the limits of validity of Einstein's 
geometric theory of gravity?" A similar question posed itself in the crisis of 1911. 
The Coulomb law for the force acting between two charges had been tested at 
distances of meters and millimeters, but what warrant was there to believe that it 
holds down to the 1 0-8 cm of atomic dimensions? Of course, in the end it proves 
to hold not only at the level of the atom, and at the 10-13 cm level of the nucleus, 
but even down to 5 X 10-15 cm [Barber, Gittelman, O'Neill, and Richter, and Bailey 
et al. (1968), as reviewed by Farley (1969) and Brodsky and Drell (1970)], a striking 
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example of what Wigner (1960) calls the "unreasonable effectiveness of mathematics 
in the natural sciences." 

No theory more resembles Maxwell's electrodynamics in its simplicity, beauty, 
and scope than Einstein's geometrodynamics. Few principles in physics are more 
firmly established than those on which it rests: the local validity of special relativity 
(Chapters 2-7), the equivalence principle (Chapter 16), the conservation of momen
tum and energy (Chapters 5, 15 and 16), and the prevalence of second-order field 
equations throughout physics (Chapter 17). Those principles and the demand for 
no "extraneous fields" ( e.g., Dicke's scalar field) and "no prior geometry" (§ 17 .6) 
lead to the conclusion that the geometry of spacetime must be Riemannian and 
the geometrodynamic law must be Einstein's. 

To say that the geometry is Riemannian is to say that the interval between any 
two nearby events C and D, anywhere in spacetime, stated in terms of the interval 
AB between two nearby fiducial events, at quite another point in spacetime, has 
a value CD I AB independent of the route of intercomparison (Chapter 13 and Box 
16.4). There are a thousand routes. By this hydraheaded prediction, Einstein's theory 
thus exposes itself to destruction in a thousand ways (Box 16.4). 

Geometrodynamics lends itself to being disproven in other ways as well. The 
geometry has no option about the control it exerts on the dynamics of particles and 
fields (Chapter 20). The theory makes predictions about the equilibrium configura
tions and pulsations of compact stars (Chapters 23-26). It gives formulas (Chapters 
27-29) for the deceleration of the expansion of the universe, for the density of 
mass-energy, and for the magnifying power of the curvature of space, the tests of 
which are not far off. It predicts gravitational collapse, and the existence of black 
holes, and a wealth of physics associated with these objects (Chapters 31-34). It 
predicts gravitational waves (Chapters 35-37). In the appropriate approximation, 
it encompasses all the well-tested predictions of the Newtonian theory of gravity 
for the dynamics of the solar system, and predicts testable post-Newtonian corrections 
besides, including several already verified effects (Chapters 38-40). 

No inconsistency of principle has ever been found in Einstein's geometric theory 
of gravity. No purported observational evidence against the theory has ever stood 
the test of time. No other acceptable account of physics of comparable simplicity 
and scope has ever been put forward. 

Continue this assessment of general relativity a little further before returning to 
the central issue, the limits of validity of the theory and their bearing on the issue 
of gravitational collapse. What has Einstein's geometrodynarnics contributed to the 
understanding of physics? 

First, it has dethroned spacetime from a post of preordained perfection high above 
the battles of matter and energy, and marked it as a new dynamic entity participating 
actively in this combat. 

Second, by tying energy and momentum to the curvature of spacetime, Einstein's 
theory has recognized the law of conservation of momentum and energy as an 
automatic consequence of the geometric identity that the boundary of a boundary 
is zero (Chapters 15 and 17). 

Third, it has recognized gravitation as a manifestation of the curvature of the 

Battle-tested theory of 
gravitation 

New view of nature flowing 
from Einstein 's  
geometrodynamics 



Electric charge as lines of 
force trapped in the topology 
of space 
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geometry of spacetime rather than as something foreign and "physical" imbedded 
in spacetime. 

Fourth, general relativity has reinforced the view that "physics is local"; that the 
analysi s of physics becomes simple when it connects quantities at a given event with 
quantities at immediately adjacent events. 

Fifth, obedient to the quantum principle, it recognizes that spacetime and time 
itself are ideas valid only at the classical level of approximation; that the proper 
arena for the Einstein dynamics of geometry is not spacetime, but superspace; and 
that this dynamics is described in accordance with the quantum principle by the 
propagation of a probability amplitude through superspace (Chapt�r 43). In conse
quence, the geometry of space is subject to quantum fluctuations in metric coefficients 
of the order 

(Planck length, L* = (nG/c 3)11 2 = 1 .6 x 10-33 cm) 
og ~ 

(linear extension of region under study) 
· 

Sixth, standard Einstein geometrodynamics is partial as little to Euclidean topology 
as to Euclidean geometry. A multiply connected topology provides a natural de
scription for electric charge as electric lines of force trapped in the topology of a 
multiply connected space (Figure 44.1 ). Any other description of electricity postulates 
a breakdown in Maxwell's field equations for the vacuum at a site where charge 

F igure 44. 1 .  
Electric charge viewed as electnc lines of force trapped in the topology of a multiply connected space 
[for the history of this concept see reference 36 of Wheeler ( 1968a) ] .  The wormhole or handle is envisaged 
as connecting two very different regions in the same space. One of the wormhole mouths, viewed by 
an observer with poor resolving power, appears to be the seat of an electric charge. Out of this region 
of 3-space he finds Imes of force emerging over the whole 4'17 solid angle. He may construct a boundary 
around this charge, determine the flux through this boundary, incorrectly apply the theorem of Gauss 
and "prove" that there is a charge "inside the boundary." It isn't a boundary. Someone caught within 
it-to speak figuratively-can go into that mouth of the wormhole, through the throat, out the other 
mouth, and return by way of the surrounding space to look at his "prison" from the outside. Lines 
of force nowhere end. Maxwell's equations nowhere fail. Nowhere can one place a finger and say, 
"Here there is some charge." This classical type of electric charge has no direct relation whatsoever 
to quantized electric charge. There is a freedom of choice about the flux through the wormhole, and 
a specificity about the connection between one charge and another, which is quite foreign to the charges 
of elementary particle physics. For ease of visualization the number of space dimensions in the above 
diagram has been reduced from three to two. The third dimension, measured off the surface, has no 
physical meaning-it only provides an extra dimension in which to imbed the surface for more convenient 
diagrammatic representation [For more detail see Misner and Wheeler ( 1 957) ,  reprinted in Wheeler 
( 1 962) ). 



§44. 2 .  ASSESS MENT OF THE THEORY THAT PREDICTS COLLAPSE 1 20 1  

is located, or postulates the existence of some foreign and "physical" electric jelly 
imbedded in space, or both. No one has ever found a way to describe electricity 
free of these unhappy features except to say that the quantum fluctuations in the 
geometry of space are so great at small distances that even the topology fluctuates, 
makes "wormholes," and traps lines of force. These fluctuations have to be viewed, 
not as tied to particles, and endowed with the scale of distances associated with 
particle physics ( ~ 10-13 cm) but as pervading all space ("foam-like structure of 
geometry") and characterized by the Planck distance ( ~ 10-33 cm). Thus a third type 
of gravitational collapse forces itself on one's attention, a collapse continually being 
done and being undone everywhere in space : surely a guide to the outcome of 
collapse at the level of a star and at the level of the universe (Box 44.2). 

Box 44.2 THREE LEVELS O F  GRAVITATI O NAL COLLAPSE 

1. Universe 
2. Black hole 
3. Fluctuations at the Planck scale of distances 

Recontraction and collapse of the universe is a kind of mirror image of the "big 
bang," on which one already has so much evidence. 

Collapse of matter to form a black hole is most natural at two distinct levels : 
(a) collapse of the dense white-dwarf core of an individual star (when that core 
exceeds the critical mass, ~ 1M0 or 2M0 , at which a neutron star is no longer a 
possible stable end-point for collapse) and (b) coalescence one by one of the stars 
in a galactic nucleus to make a black hole of mass up to 106 M0 or even 109 M0 . 

In either case, no feature of principle about matter 
falling into the black hole is more interesting than the 
option that the observer has (symbolized by the branch
ing arrow in the inset). He can go along with the infall
ing matter, in which case he sees the final stages of 
collapse, but only at the cost of his own demise. Or he 
can stay safely outside, in which case even after in
definitely long time he sees only the first part of the 
collapse, with the infalling matter creeping up more and 
more slowly to the horizon. 

In the final stages of the collapse of a closed model universe, all black holes present 
are caught up and driven together, amalgamating one by one. No one has any way 
to look at the event from safely outside; one is inevitably caught up in it oneself. 

Collapse at the Planck scale of distances is taking place everywhere and all the 
time in quantum fluctuations in the geometry and, one believes, the topology of 
space. In this sense, collapse is continually being done and undone, modeling the 
undoing of the collapse of the universe itself, summarized in the term, "the reproc
essing of the universe" (see text). 



Is matter built out of 
geometry? 

The richness of the physics 
of the vacuum 
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§44.3. VACUUM FLUCTUATIONS: THEIR PREVALENCE 
AND FINAL DOMINANCE If Einstein's theory thus throws light on the rest of physics, the rest of physics also throws light on geometrodynamics. No point is more central than this, that empty space is not empty. It is the seat of the most violent physics. The electromagnetic field fluctuates (Chapter 43). Virtual pairs of positive and negative electrons, in effect, are continually being created and annihilated, and likewise pairs of mu mesons, pairs of baryons, and pairs of other particles. All these fluctuations coexist with the quantum fluctuations in the geometry and topology of space. Are they additional to those geometrodynamic zero-point disturbances, or are they, in some sense not now well-understood, mere manifestations of them? Put the question in other words. Recall Clifford, inspired by Riemann, speaking to the Cambridge Philosophical Society on February 21, 1870, "On the Space Theory of Matter" [Clifford (1879), pp. 244 and 322;  and (1882), p. 21], and saying, "I hold in fact (1) That small portions of space are in fact of a nature analogous to little hills on a surface which is on the average flat; namely, that the ordinary laws of geometry are not valid in them. (2) That this property of being curved or distorted is continually being passed on from one portion of space to another after the manner of a wave. (3) That this variation of the curvature of space is what really happens in that phenomenon which we call the motion of matter, whether ponderable or etherial. (4) That in the physical world nothing else takes place but this variation, subject (possibly) to the law of continuity." Ask if there is a sense in which one can speak of a particle as constructed out of geometry. Or rephrase the question in updated language: "Is a particle a geometrodynamic exciton?" What else is there out of which to build a particle except geometry itself? And what else is there to give discreteness to such an object except the quantum principle? The Clifford-Einstein space theory of matter has not been forgotten in recent years. "In conclusion," one of the authors wrote a decade ago [Wheeler (1962)], "the vision of Riemann, Clifford, and Einstein, of a purely geometric basis for physics, today has come to a higher state of development, and offers richer prospects-and presents deeper problems-than ever before. The quantum of action adds to this geometrodynamics new features, of which the most striking is the presence of fluctuations of the wormhole type throughout all space. If there is any correspondence at all between this virtual foam-like structure and the physical vacuum as it has come to be known through quantum electrodynamics, then there seems to be no escape from identifying these wormholes with 'undressed electrons.' Completely different from these 'undressed electrons,' according to all available evidence, are the electrons and other particles of experimental physics. For these particles the geometrodynamic picture suggests the model of collective disturbances in a virtual foam-like vacuum, analogous to different kinds of phonons or excitons in a solid. "The enormous factor from nuclear densities ~ 1014 g/ cm3 to the density of field fluctuation energy in the vacuum, ~ 1094 g/cm3 , argues that elementary particles represent a percentage-wise almost completely negligible change in the locally violent conditions that characterize the vacuum. ['A particle (1 014 g/cm3) means as little 



§44 4 PREG EO M ETRY AS TH E MAG I C  B U I LD I N G  MATER IAL 1 203 to the physics of the vacuum (1094 g/cm3) as a cloud (I 0-6 g/cm3) means to the physics of the sky (I 0-3 g/cm3) . '] In other words, elementary particles do not form a really basic starting point for the description of nature. Instead, they represent a first-order correction to vacuum physics. That vacuum, that zero-order state of affairs, with its enormous densities of virtual photons and virtual positive-negative pairs and virtual wormholes, has to be described properly before one has a fundamental starting point for a proper perturbation-theoretic analysis." "These conclusions about the energy density of the vacuum, its complicated topological character, and the richness of the physics which goes on in the vacuum, stand in no evident contradiction with what quantum electrodynamics has to say about the vacuum. Instead the conclusions from the 'small distance' analysis (I 0-33 cm)-sketchy as it is-and from 'larger distance' analysis (I 0-11 cm) would seem to [be able] to reinforce each other in a most natural way. "The most evident shortcoming of the geometrodynamic model as it stands is this, that it fails to supply any completely natural place for spin ½ in general and for the 
neutrino in particular." Attempts to find a natural place for spin ½ in Einstein's standard geometrodynamics (Box 44.3) founder because there is no natural way for a change in connectivity to take place within the context of classical differential geometry. A uranium nucleus undergoing fission starts with one topology and nevertheless ends up with another topology. It makes this transition in a perfectly continuous way, classical differential geometry notwithstanding. There are reputed to be two kinds of lawyers. One tells the client what not to do. The other listens to what the client has to do and tells him how to do it. From the first lawyer, classical differential geometry, the client goes away disappointed, still searching for a natural way to describe quantum fluctuations in the connectivity of space. Only in this way can he hope to describe electric charge as lines of electric force trapped in the topology of space. Only in this way does he expect to be able to understand and analyze the final stages of gravitational collapse. Pondering his problems, he comes to the office of a second lawyer, with the name "Pregeometry" on the door. Full of hope, he knocks and enters. What is pregeomc:try to be: and say? Born of a combination of hope and need, of philosophy and physics and mathematics and logic, pregeometry will tell a story unfinished at this writing, but full of incidents of evolution so far as it goes. 
§44.4 . NOT GEOMETRY, BUT PREGEOMETRY, AS THE 

MAGIC BUILDING M ATERIAL An early survey (Box 44.4) asked whether geometry can be constructed with the help of the quantum principle out of more basic elements, that do not themselves have any specific dimensionality. The focus of attention in this 1964 discussion was "dimensionality without dimensionality." However, the prime pressures to ponder pregeometry were and remain 
(continued on page 1206) 
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Box 44. 3  THE D I FF ICULTIES WITH ATTEM PTS TO F I N D  A NATURAL PLACE 
FOR S P I N  ½ I N  E I NSTEI N 'S STAN DARD GEO METRO DYNAM I CS 

"It is impossible" [Wheeler (1962)] "to accept any description of elementary particles that does not have a place for spin ½- What, then, has any purely geometric description to offer in explanation of spin ½ in general? More particularly and more importantly, what place is there in quantum geometrodynamics for the neutrino-the only entity of half-integral spin that is a pure field in its own right, in the sense that it has zero rest mass and moves with the speed of light? No clear or satisfactory answer is known to this question today. Unless and until an answer is forthcoming, pure geo
metrodynamics must be judged deficient as a basis 
for elementary particle physics." A later publication [Wheeler (1968a)] takes up this issue again, noting that, "A new world opens out for analysis in quantum geometrodynamics. The central new concept is space resonating between one foamlike structure and another. For this multiple-connectedness of space at submicroscopic distances no single feature of nature speaks more powerfully than electric charge. Yet at least as impressive as charge is the prevalence of spin ½ throughout the world of elementary particles." Repeating the statement that "It is impossible to accept any description of elementary particles that does not have a place for spin ½," the article adds to the discussion a new note: "Happily, the concept of spin manifold has come to light, not least through the work of John Milnor [see Lichnerowicz (196 l a,b,c) and (1964); Milnor (1962), (1963), and (1965a,b); Hsiang and Anderson (1965); Anderson, Brown, and Peterson (1966a,b); and Penrose (1968a)] . This concept suggests a new and interesting interpretation of a spinor field within the context of the resonating microtopology of quantum geometrodynamics, as the nonclassical 
two-valuedness [Pauli's standard term for spin; see, for example, Pauli (1947)] that attaches to the prob
ability amplitude for otherwise identical ]-geome
tries endowed with alternative 'spin structures."' More specifically: "One does not classify the closed orientable 3-manifold of physics completely 

when one gives its topology, its differential structures, and its metric. One must tell which spin structure it has." [On a 3-geometry with the topology of a 3 -sphere, one can lay down a continuous field of triads ( a triad consisting of three orthonormal vectors). Any other continuous field of triads can be deformed into the first field by a continuous sequence of small readjustments. One says that the 3-sphere admits only one "spin structure," a potentially misleading standard word for what could just as well have been called a "triad structure." In contrast, a 3-sphere with n handles or wormholes admits 2n "spin structures" ( continuous fields of triads) inequivalent to one another under any continuous sequence of small readjustments whatsoever, and distinguished from one another in any convenient way by n "descriptors" wi , w2, • • . •  , wk , . . . .  wn - ] It is natural in quantum geometrodynamics to expect "separate probability amplitudes for a 3-geometry with descriptor wk = + 1 and for an otherwise identical 3-geometry with descriptor wk = - 1. Does this circumstance imply that quantum geometrodynamics supplies all the machinery one needs to describe fields of spin ½ in general and the neutrino field in particular? . . . That is the only way that has ever turned up within the framework of Einstein's general relativity and Planck's quantum principle. Is this the right path? It is difficult to name any question more decisive than this in one's assessment of 'everything as geometry.' " Why not spell out these concepts, reduce them to practice, and compare them with what one knows about the behavior of fields of spin ½? There is a central difficulty in this enterprise. It assumes and demands on physical grounds that the topology of the 3-geometry shall be free to change from one connectivity to another. In contrast, classical differential geometry says, in effect, "Once one topology, always that topology." Try a question like this, "When a new handle develops and the number of descriptors rises by one, what boundary condition in superspace connects the probability 



amplitude if; for 3-geometries of the original topology with the probability amplitudes if-i+ and if;_ for the two spin structures of the new topology?" Classical differential geometry not only gives one no help in answering this question; it even forbids one to ask it. In other words, one cannot even get the enterprise "on the road" for want of a natural 

mathematical way to describe the required change in topology. The idea is therefore abandoned here and now that 3-geometry is "the magic building material of the universe." In contrast, pregeometry (see text), far from being endowed with any frozen topology, is to be viewed as not even possessing any dimensionality. 

Box 44.4 "A BUCKET O F  DUST"-AN EARLY ATTEM PT TO FORM ULATE 
THE CO N CEPT O F  PREGEO METRY [Wheeler (1964a)] "What line of thought could ever be imagined as 

leading to four dimensions-or any dimensionality at all-out of more primitive considerations? In the case of atoms one derives the yellow color of the sodium D-lines by analyzing the quantum dynamics of a system, no part of which is ever endowed with anything remotely resembling the attribute of color. Likewise any derivation of the four-dimensionality of spacetime can hardly start with the idea of dimensionality." "Recall the notion of a Borel set. Loosely speaking, a Borel set is a collection of points ("bucket of dust") which have not yet been assembled into a manifold of any particular dimensionality . . . .  Recalling the universal sway of the quantum principle, one can imagine probability amplitudes for the points in a Borel set to be assembled into points with this, that, and the other dimensionality . . . .  More conditions have to be imposed on a given number of points-as to which has which for a nearest neighbor-when the points are put together in a five-dimensional array than when these same points are arranged in a two-dimensional pattern. Thus one can think of each dimensionality as having a much higher statistical weight than the next higher dimensionality. On the other hand, for manifolds with one, two, and three dimensions, the geometry is too rudimentary-one can suppose-to give anything interesting. Thus Einstein's field equations, applied to a manifold of dimensionality so low, demand flat space; only when the dimensionality is as high as four do really interesting possibilities arise. Can four, 

therefore, be considered to be the unique dimensionality which is at the same time high enough to give any real physics and yet low enough to have great statistical weight? "It is too much to imagine that one has yet made enough mistakes in this domain of thought to explore such ideas with any degree of good judgment." Consider a handle on the geometry. Let it thin halfway along its length to a point. In other words, let the handle dissolve into two bent prongs that touch at a point. Let these prongs separate and shorten. In this process two points part company that were once immediate neighbors. "However sudden the change is in classical theory, in quantum theory there is a probability amplitude function which falls off in the classically forbidden domain. In other words, there is some residual connection between points which are ostensibly very far away (travel from one 'tip' down one prong, then through the larger space to which these prongs are attached, and then up the other prong to the other tip). But there is nothing distinctive in principle about the two points that have happened to come into discussion. Thus it would seem that there must be a connection . . .  between 
every point and every other point. Under these conditions the concept of nearest neighbor would appear no longer to make sense. Thus the tool disappears with the help of which one might otherwise try to speak [un]ambiguously about dimensionality." 
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two features of nature, spin ½ and charge, that speak out powerfully from every part 
of elementary particle physics. 

A fresh perspective on pregeometry comes from a fre�h assessment of general 
relativity. "Geometrodynamics is neither as important or as simple as it looks. Do 
not make it the point of departure in searching for underlying simplicity. Look 
deeper, at elementary particle physics." This is the tenor of interesting new consider
ations put forward by Sakharov [the Sakharov] (1967) and summarized under the 
heading, "Gravitation as the metric elasticity of space," in Box 17 .2. In brief, as 
elasticity is to atomic physics, so-in Sakharov's view-gravitation is to elementary 
particle physics. The energy of an elastic deformation is nothing but energy put into 
the bonds between atom and atom by the deformation. The energy that it takes 
to curve space is nothing but perturbation in the vacuum energy of fields plus 
particles brought about by that curvature, according to Sakharov. The energy 
required for the deformation is governed in the one case by two elastic constants 
and in the other case by one elastic constant (the Newtonian constant of gravity) 
but in both cases, he reasons, the constants arise by combination of a multitude 
of complicated individual effects, not by a brave clean stroke on an empty slate. 

One gives all the more favorable reception to Sakhorov's view of gravity because 
one knows today, as one did not in 1915, how opulent in physics the vacuum is. 
In Einstein's day one had come in a single decade from the ideal God-given Lorentz 
perfection of flat spacetime to curved spacetime. It took courage to assign even one 
physical constant to that world of geometry that had always stood so far above 
physics. The vacuum looked for long as innocent of structure as a sheet of glass 
emerging from a rolling mill. With the discovery of the positive electron [Anderson 
(1933)], one came to recognize a little of the life that heat can unfreeze in "empty" 
space. Each new particle and radiation that was discovered brought a new accretion 
to the recognized richness of the vacuum. Macadam looks smooth, but a bulldozer 
has only to cut a single furrow through the roadway to disclose all the complications 
beneath the surface. 

Think of a particle as built out of the geometry of space; think of a particle as 
a "geometrodynamic exciton"? No model-it would seem to follow from Sakharov's 
assessment-could be less in harmony with nature, except to think of an atom as 
built out of elasticity ! Elasticity did not explain atoms. Atoms explained elasticity. 
If, likewise, particles fix the constant in Einstein's geometrodynamic law (Sakharov), 
must it not be unreasonable to think of the geometrodynamic law as explaining 
particles? 

Carry the comparison between geometry and elasticity one stage deeper (Fig. 44.2). 
In a mixed solid there are hundreds of distinct bonds, all of which contribute to 
the elastic constants; some of them arise from Van der Waal's forces, some from 
ionic coupling, some from homopolar linkage; they have the greatest variety of 
strengths; but all have their origin in something so fantastically simple as a system 
of positively and negatively charged masses moving in accordance with the laws 
of quantum mechanics. In no way was it required or right to meet each complication 
of the chemistry and physics of a myriad of bonds with a corresponding complication 
of principle. By going to a level of analysis deeper than bond strengths, one had 
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Elasticity and geometrodynamics, as viewed at three levels of analysis. A hundred years 
of the study of elasticity did not reveal the eXIstence of molecules, and a hundred years 
of the study of molecular chemistry did not reveal Schrodinger's equation. Revelation 
moved upward in the diagram, not downward 
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emerged into a world of light, where nothing but simplicity and unity was to be seen. Compare with geometry. The vacuum is animated with the zero-point activity of distinct fields and scores of distinct particles, all of which, according to Sakharov, contribute to the Newtonian G, the "elastic constant of the metric." Some interact via weak forces, some by way of electromagnetic forces, and some through strong forces. These interactions have the greatest variety of strengths. But must not all these particles and interactions have their origin in something fantastically simple? And must not this something, this "pregeometry," be as far removed from geometry as the quantum mechanics of electrons is far removed from elasticity? If one once thought of general relativity as a guide to the discovery of pregeometry, nothing might seem more dismaying than this comparison with an older realm of physics. No one would dream of studying the laws of elasticity to uncover the principles of quantum mechanics. Neither would anyone investigate the work-hardening of a metal to learn about atomic physics. The order of understanding ran not Work-hardening (1 cm) -+ dislocations ( l 0-4 cm) -+ atoms ( l 0-8 cm), but the direct opposite, Atoms ( l 0-8 cm) -+ dislocations ( l Q-4 cm) -+ work-hardening (1 cm) 
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1 208 44 B EYO N D  TH E E N D  O F  TI M E  One had to know about atoms to conceive of dislocations, and had to know about dislocations to understand work-hardening. Is it not likewise hopeless to go from the "elasticity of geometry" to an understanding of particle physics, and from particle physics to the uncovering of pregeometry? Must not the order of progress again be the direct opposite? And is not the source of any dismay the apparent loss of guidance that one experiences in giving up geometrodynamics-and not only geometrodynamics, but geometry itself-as a crutch to lean on as one hobbles forward? Yet there is so much chance that this view of nature is right that one must take it seriously and explore its consequences. Never more than today does one have the incentive to explore pregeometry. 
§44.5. PREGEOMETRY AS THE CALCULUS OF PROPOSITIONS Paper in white the floor of the room, and rule it off in one-foot squares. Down on one's hands and knees, write in the first square a set of equations conceived as able to govern the physics of the universe. Think more overnight. Next day put a better set of equations into square two. Invite one's most respected colleagues to contribute to other squares. At the end of these labors, one has worked oneself out into the door way. Stand up, look back on all those equations, some perhaps more hopeful than others, raise one's finger commandingly, and give the order "Fly! "  Not one of those equations will put on wings, take off, or fly. Yet the universe "flies." Some principle uniquely right and uniquely simple must, when one knows it, be also so compelling that it is clear the universe is built, and must be built, in such and such a way, and that it could not possibly be otherwise. But how can one discover that principle? If it was hopeless to learn atomic physics by studying work-hardening and dislocations, it may be equally hopeless to learn the basic operating principle of the universe, call it pre geometry or call it what one will, by any amount of work in general relativity and particle physics. Thomas Mann (1937), in his essay on Freud, utters what Niels Bohr would surely have called a great truth ("A great truth is a truth whose opposite is also a great truth") when he says, "Science never makes an advance until philosophy authorizes and encourages it to do so." If the equivalence principle (Chapter 16) and Mach's principle (§21.9) were the philosophical godfathers of general relativity, it is also true that what those principles do mean, and ought to mean, only becomes clear by study and restudy of Einstein's theory itself. Therefore it would seem reasonable to expect the primary guidance in the search for pregeometry to come from a principle both philosophical and powerful, but one also perhaps not destined to be wholly clear in its contents or its implications until some later day. Among all the principles that one can name out of the world of science, it is difficult to think of one more compelling than simplicity; and among all the simplicities of dynamics and life and movement, none is starker [Werner (1969)] than the binary 
choice yes-no or true-false. It in no way proves that this choice for a starting principle is correct, but it at least gives one some comfort in the choice, that Pauli's "nonclassical two-valuedness" or "spin" so dominates the world of particle physics. 
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I t  is one thing to have a start, a tentative construction of pregeometry; but how 
does one go on? How not to go on is illustrated by Figure 44.3. The "sewing machine" 
builds objects of one or another definite dimensionality, or of mixed dimensionalities, 
according to the instructions that it receives on the input tape in yes-no binary code. 
Some of the difficulties of building up structure on the binary element according 
to this model, or any one of a dozen other models, stand out at once. ( I )  Why 
N = 10,000 building units? Why not a different N? And if one feeds in one such 
arbitrary number at the start, why nol fix more features "by hand?" No natural 
stopping point is evident, nor any principle that would fix such a stopping point. 
Such arbitrariness contradicts the principle of simplicity and rules out the model. 
(2) Quantum mechanics is added from outside, not generated from inside (from the 
model itself ). On this point too the principle of simplicity speaks against the model. 
(3) The passage from pregeometry to geometry is made in a too-literal-minded way, 
with no appreciation of the need for particles and fields to appear along the way. 
The model, in the words used by Bohr on another occasion, is "crazy, but not crazy 
enough to be right." 

Noting these difficulties, and fruitlessly trying model after model of pregeometry 
to see if it might be free of them, one suddenly realizes that a machinery for the 
combination of yes-no or true-false elements does not have to be invented. It already 
exists. What else can pregeometry be, one asks oneself, than the calculus of proposi
tions? (Box 44.5.) 

§44.6. THE BLACK BOX:  THE REPROCESSING 
OF THE UNIVERSE 

No amount of searching has ever disclosed a "cheap way" out of gravitational 
collapse, any more than earlier it revealed a cheap way out of the collapse of the 
atom. Physicists in that earlier crisis found themselves in the end confronted with 
a revolutionary pistol, "Understand nothing-or accept the quantum principle." 
Today's crisis can hardly force a lesser revolution. One sees no alternative except 
to say that geometry fails and pregeometry has to take its place to ferry physics 
through the final stages of gravitational collapse and on into what happens next. 
No guide is evident on this uncharted way except the principle of simplicity, applied 
to drastic lengths. 

Whether the whole universe is squeezed down to the Planck dimension, or more 
or less, before reexpansion can begin and dynamics can return to normal, may be 

A first try at a pregeometry 
built on the principle of 
binary choice 

A more reasonable picture · 
pregeometry is the calculus 
of propositions 

irrelevant for some of the questions one wants to consider. Physics has long used The role of the black box in 
the "black box" to symbolize situations where one wishes to concentrate on what physics 

goes in and what goes out, disregarding what takes place in between. 
At the beginning of the crisis of electric collapse one conceived of the electron 

as headed on a deterministic path toward a point-center of attraction, and unhappily 
destined to arrive at a condition of infinite kinetic energy in a finite time. After the 
advent of quantum mechanics, one learned to summarize the interaction between 

(continued on page 1213) 
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Figure 44. 3. 
"Ten thousand rings" , or an example of a way to think of the connection between pregeometry and 
geometry, wrong because it is too literal-minded, and for other reasons spelled out in the text. The vizier 
[story by Wheeler, as alluded to by Kilmister ( 197 1 ) * )  speaks : "Take N = 10,000 brass nngs. Take an 
automatic fastening device that will cut open a ring, loop it through another ring, and resolder the joint. 
Pour the brass rings into the hopper that feeds this machine. Take a strip of instruction paper that is 
long enough to contain N(N - 1 )/2 binary digits. Look at the instruction in the (ik)-th location on this 
instruction tape (;,k  = 1 ,  2, . . .  , N; j < k).  When the binary digit at that location is 0, it is a signal to 
leave the j-th ring disconnected from the k-th ring. When it is ! ,  it is an instruction to connect that 
particular pair of rings. Thread the tape into the machine and press the start button. The clatter begins. 
Out comes a chain of rings 10,000 links long. It falls on the table and the machine stops. Pour in another 
10 ,000 rings, feed in a new instruction tape, and push the button again This time it is not a one-dimen
sional structure that emerges, but a two-dimensional one : a Crusader's coat of mail, complete with neck 
opening and sleeves. Take still another tape from the library of tapes and repeat Onto the table thuds 
a smaller version of the suit of mail, this time filled out internally with a solid network of rings, a 
three-dimensional structure. Now forego the library and make one's own instruction tape, a random 
string of O's and l 's .  Guided by it, the fastener produces a "Christmas tree ornament," a collection of 
segments of one-dimensional chain, two-dimensional surfaces, and three-, four- , five-, and higher-di
mensional entities, some joined together, some free-floating. Now turn from a structure deterministically 
fixed by a tape to a probability amplitude, a complex number, 

(ni; = 0, 1 ) ,  ( I )  

defined over the entire range of  possibilities for  structures built o f  10,000 rings Let these probability 
amplitudes not be assigned randomly. Instead, couple together amplitudes, for structures that differ from 
each other by the breaking of a single nng, by linear formulas that treat all rings on the same footing. 
The separate f's, no longer entirely independent, will still give non-zero probability amplitudes for 
"Christmas tree ornaments."  Of greater immediate interest than these "unruly" parts of the structures 
are the following questions about the smoother parts : ( 1 ) In what kinds of structures is the bulk of 
the probability concentrated? (2) What is the dominant dimensionality of these structures in an appropri
ate correspondence principle limit? (3) In this semiclassical limit, what is the form taken by the dynamic 
law of evolution of the geometry?" No principle more clearly rules out this model for pregeometry than 
the principle of simplicity (see text) . 

* Wheeler's story about the vizier and what the vizier had to say about super;pace was told at the May 1 8 ,  1 970, 
Gwatt Seminar on the Bearings of Topology upon General Relativity Kilmister's ( 1 97 1 )  published article alludes to 
the unpublished story, but does not actually contain it 
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Box 44.5 " PREGEO METRY AS THE CALCULUS O F  PRO POSITIO N S "  

1 2 1 1  

A sample proposition taken out of a standard text on logic selected almost at random 
reads [Kneebone (1963), p. 40] 

[X -+ ((X -+ X) -+ Y)] & (X -+  Z) eq (.X V Y V  Z) &  
(.X V Y V Z )  & (X V Y V Z )  & (X V Y V Z). 

The symbols have the following meaning: 

A, 

A V B, 

A & B, 

A -+ B, 

A+--+ B, 

Not A ;  

A or B or both ("A vel B"); 

A and B ; 

A implies B ("if A, then B"); 

B is equivalent to A ("B if and only if A"). 

Propositional formula � is said to be equivalent ("eq") to propositional formula 
jG if and only if � -+--+ j/il  is a tautology. The letters A, B, etc., serve as connectors 
to "wire together" one proposition with another. Proceeding in this way, one can 
construct propositions of indefinitely great length. 

A switching circuit [see, for example, Shannon (1938) or Hohn (1966)] is isomor
phic to a proposition. 

Compare a short proposition or an elementary switching circuit to a molecular 
collision. No idea seemed more preposterous than that of Daniel Bernoulli (1733), 
that heat is a manifestation of molecular collisions. Moreover, a three-body encounter 
is difficult to treat, a four-body collision is more difficult, and a five- or more molecule 
system is essentially intractable. Nevertheless, mechanics acquires new elements of 
simplicity in the limit in which the number of molecules is very great and in which 
one can use the concept of density in phase space. Out of statistical mechanics in 
this limit come such concepts as temperature and entropy. When the temperature 
is well-defined, the energy of the system is not a well-defined idea; and when the 
energy is well-defined, the temperature is not. This complementarity is built ines
capably into the principles of the subject. Thrust the finger into the flame of a match 
and experience a sensation like nothing else on heaven or earth; yet what happens 
is all a consequence of molecular collisions, early critics notwithstanding. 

Any individual proposition is difficult for the mind to apprehend when it is long; 
and still more difficult to grasp is the content of a cluster of propositions. Neverthe
less, make a statistical analysis of the calculus of propositions in the limit where 
the number of propositions is great and most of them are long. Ask if parameters 
force themselves on one's attention in this analysis ( l )  analogous in some small 
measure to the temperature and entropy of statistical mechanics but (2) so much 
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Box 44 .5 (con tinued) more numerous, and everyday dynamic in character, that they reproduce the continuum of everyday physics. Nothing could seem so preposterous at first glance as the thought that nature is built on a foundation as ethereal as the calculus of propositions. Yet, beyond the push to look in this direction provided by the principle of simplicity, there are two pulls. First, bare-bones quantum mechanics lends itself in a marvelously natural way to formulation in the language of the calculus of propositions, as witnesses not least the book of Jauch (1968). If the quantum principle were not in this way already automatically contained in one's proposed model for pregeometry, and if in contrast it had to be introduced from outside, by that very token one would conclude t�at the model violated the principle of simplicity, and would have to rej ect it. Second, the pursuit of reality seems always to take one away from reality. Who would have imagined describing something so much a part of the here and now as gravitation in terms of curvature of the geometry of spacetime? And when later this geometry came to be recognized as dynamic, who would have dreamed that geometrodynamics unfolds in an arena so ethereal as superspace? Little astonishment there should be, therefore, if the description of nature carries one in the end to logic, the ethereal eyrie at the center of mathematics. If, as one believes, all mathematics reduces to the mathematics of logic, and all physics reduces to mathematics, what alternative is there but for all physics to reduce to the mathematics of logic? Logic is the only branch of mathematics that can "think about itself." "An issue of logic having nothing to do with physics" was the assessment by many of a controversy of old about the axiom, "parallel lines never meet." Does it follow from the other axioms of Euclidean geometry or is it independent? "Independent," Bolyai and Lobachevsky proved. With this and the work of Gauss as a start, Riemann went on to create Riemannian geometry. Study nature, not Euclid, to find out about geometry, he advised; and Einstein went on to take that advice and to make geometry a part of physics. "An issue of logic having nothing to do with physics" is one's natural first assessment of the startling limitations on logic discovered by Godel (1931), Cohen (1966), and others [for a review, see, for example, Kac and Ulam (1968)) . The exact opposite must be one's assessment if the real pregeometry of the real physical world indeed turns out to be identical with the calculus of propositions. "Physics as manifestation of logic" or "pregeometry as the calculus of propositions" is as yet [Wheeler (1971a)] not an idea, but an idea for an idea. It is put forward here only to make it a little clearer what it means to suggest that the order of progress may not be physics -+ pregeometry but pregeometry -+ physics. 



§44 6 THE REPROCESSING OF THE UNIVERSE 

Figu re 44.4. 
The "black-box model" applied (1)  to the scattering of an electron by a center of attraction 
and (2) to the collapse of the universe itself. The deterministic electron world line of classical 
theory is replaced in quantum theory by a probability amplitude, the wave crests of which 
are illustrated schematically in the diagram. The catastrophe of classical theory is replaced 
in quantum theory by a probability distribution of outputs. The same diagram illustrates 
the "black-box account" of gravitational collapse mentioned in the text. The arena of the 
diagram is no longer spacetime, but superspace. The incident arrow marks no longer a 
classical world line of an electron through spacetime, but a classical "leaf of history of 
geometry" slicing through superspace (Chapter 43) The wave crests symbolize no longer 
the electron wave function propagating through spacetime, but the geometrodynamic wave 
function propagating through superspace. The cross-hatched region is no longer the region 
where the one-body potential goes to infinity, but the region of gravitational collapse where 
the curvature of space goes to infinity. The outgoing waves describe no longer alternative 
drrections for the new course of the scattered electron, but the beginnings of alternative 
new histories for the universe itself after collapse and "reprocessing" end the present cycle 

1 2 1 3  

center of attraction and electron in a "black box : " fire in a wave-train of electrons 
traveling in one direction, and get electrons corning out in this, that, and the other 
direction with this, that, and the other well-determined probability amplitude (Figure 
44.4). Moreover, to predict these probability amplitudes quantitatively and correctly, 
it was enough to translate the Hamiltonian of classical theory into the language of 
wave mechanics and solve the resulting wave equation, the key to the "black box. " 

A similar "black box " view of gravitational collapse leads one to expect a "proba
bility distribution of outcomes. " Here, however, one outcome is distinguished from 
another, one must anticipate, not by a single parameter, such as the angle of scatter
ing of the electron, but by many. They govern, one foresees, such quantities as the 
size of the system at its maximum of expansion, the time from the start of this new 
cycle to the moment it ends in collapse, the number of particles present, and a 
thousand other features. The "probabilities " of these outcomes will be governed by 
a dynamic law, analogous to (1) the Schrodinger wave equation for the electron, 
or, to cite another black box problem, (2) the Maxwell equations that couple together, 
at a wave-guide junction, electromagnetic waves running in otherwise separate wave 
guides. However, it is hardly reasonable to expect the necessary dynamic law to 
spring forth as soon as one translates the Hamilton-Jacobi equation of general 
relativity (Chapter 43) into a Schrodinger equation, simply because geometrody
namics, in both its classical and its quantum version, is built on standard differential 
geometry. That standard geometry leaves no room for any of those quantum fluc
tuations in connectivity that seem inescapable at small distances and therefore also 
inescapable in the final stages of gravitational collapse. Not geometry, but pregeom
etry, must fill the black box of gravitational collapse. 

Probabil ity distri bution of the 
outcomes of collapse 
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" Reprocessing" the un iverse Little as one knows the internal machinery of the black box, one sees no  escape 

All conservation laws 
transcended in the collapse 
of the universe 

from this picture of what goes on: the universe transforms, or transmutes, or transits, or is reprocessed probabilistically from one cycle of history to another in the era of collapse . However straightforwardly and inescapably this picture of the reprocessing of the universe would seem to follow from the leading features of general relativity and the quantum principle, the two overarching principles of twentieth-century physics, it is nevertheless fantastic to contemplate. How can the dynamics of a system so incredibly gigantic be switched, and switched at the whim of probability, from one cycle that has lasted 1011  years to one that will last only 106 years? At first, only the circumstance that the system gets squeezed down in the course of this dynamics to incredibly small distances reconciles one to a transformation otherwise so unbelievable. Then one looks at the upended strata of a mountain slope, or a bird not seen before, and marvels that the whole universe is incredible: 
mutation of a species, metamorphosis of a rock, chemical transformation, spontaneous transformation of a nucleus, radioactive decay of a particle, reprocessing of the universe itself. 

If it cast a new light on geology to know that rocks can be raised and lowered thousands of meters and hundreds of degrees, what does it mean for physics to think of the universe as being from time to time "squeezed through a knothole," drastically "reprocessed," and started out on a fresh dynamic cycle? Three considerations above all press themselves on one's attention, prefigured in these compressed phrases: destruction of all constants of motion in collapse; particles, and the physical "constants" themselves, as the "frozen-in part of the meteorology of collapse; " "the biological selection of physical constants." The gravitational collapse of a star, or a collection of stars, to a black hole extinguishes all details of the system (see Chapters 32 and 33) except mass and charge and angular momentum. Whether made of matter or antimatter or radiation, whether endowed with much entropy or little entropy, whether in smooth motion or chaotic turbulence, the collapsing system ends up as seen from outside, according to all indications, in the same standard state. The laws of conservation of baryon number and lepton number are transcended [Chapter 33 ;  also Wheeler (197 l b)) . No known means whatsoever will distinguish between black holes of the most different provenance if only they have the same mass, charge, and angular momentum. But for a closed universe, even these constants vanish from the scene. Total charge is automatically zero because lines of force have nowhere to end except upon charge. Total mass and total angular momentum have absolutely no definable meaning whatsoever for a closed universe. This conclusion follows not least because there 
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is no asymptotically flat space outside where one can put a test particle into Keplerian 
orbit to determine period and precession. 

Of all principles of physics, the laws of conservation of charge, lepton number, 
baryon number, mass, and angular momentum are among the most firmly estab
lished. Yet with gravitational collapse the content of these conservation laws also 
collapses. The established is disestablished. No determinant of motion does one see 
left that could continue unchanged in value from cycle to cycle of the universe. 
Moreover, if particles are dynamic in construction, and if the spectrum of particle 
masses is therefore dynamic in origin, no option would seem left except to conclude 
that the mass spectrum is itself reprocessed at the time when "the universe is 
squeezed through a knot hole." A molecule in this piece of paper is a "fossil" from 
photochemical synthesis in a tree a few years ago. A nucleus of the oxygen in this 
air is a fossil from thermonuclear combustion at a much higher temperature in a 
star a few 109 years ago. What else can a particle be but a fossil from the most 
violent event of all, gravitational collapse? 

That one geological stratum has one many-miles long slope, with marvelous 
linearity of structure, and another stratum has another slope, is either an everyday 
triteness, taken as for granted by every passerby, or a miracle, until one understands 
the mechanism. That an electron here has the same mass as an electron there is 
also a triviality or a miracle. It is a triviality in quantum electrodynamics because 
it is assumed rather than derived. However, it is a miracle on any view that regards 
the universe as being from time to time "reprocessed." How can electrons at different 
times and places in the present cycle of the universe have the same mass if the 
spectrum of particle masses differs between one cycle of the universe and another? 

Inspect the interior of a particle of one type, and magnify it up enormously, and 
in that interior see one view of the whole universe [compare the concept of monad 
of Leibniz (1714), "The monads have no window through which anything can enter 
or depart"]; and do likewise for another particle of the same type. Are particles 
of the same pattern identical in any one cycle of the universe because they give 
identically patterned views of the same universe? No acceptable explanation for the 
miraculous identity of particles of the same type has ever been put forward. That 
identity must be regarded, not as a triviality, but as a central mystery of physics. 

Not the spectrum of particle masses alone, but the physical "constants" themselves, 
would seem most reasonably regarded as reprocessed from one cycle to another. 
Reprocessed relative to what? Relative, for example, to the Planck system of units, 

L * = ('hG I c3)1;2 = 1.6 X 10-33 cm, 
T* = ('hG/c 5)112 = 5.4 X 10-44 sec, 

M* = ('hc/G)112 = 2.2 x 10-5 g, 

the only system of units, Planck (1899) pointed out, free, like black-body radiation 
itself, of all complications of solid-state physics, molecular binding, atomic constitu
tion, and elementary particle structure, and drawing for its background only on the 
simplest and most universal principles of physics, the laws of gravitation and black
body radiation. Relative to the Planck units, every constant in every other part of 
physics is expressed as a pure number. 

Three h1erarch1es of fossils 
molecules, nuclei, particles 

Reason for identity in mass 
of particles of the same 
species? 

Reprocessing of physical 
constants 



Values of physical constants 
as related to the possib il it ies 
for life 

1 2 1 6  44 B EYO N D  TH E E N D  O F  TI M E  No pure numbers in physics are more impressive than "lic/e 2 = 137.0360 and the so-called "big numbers" [Eddington (1931, 1936 ,  1946); Dirac (1937, 1938); Jordan (1955, 1959); Dicke (1959b, 1961, 1964b); Hayakawa (1965a,b); Carter (1968b)] : 
~ 1080 particles in the universe,* 

1 40 102s cm ~ 0 ~ ----10-12 cm (radi�s of universe_ at)* maximum expansion ("siz�" of an elementary) particle e 2 ( electric forces) ~ l Q40 ~ -- ~ ---------
GmM (gravitational forces) ' 

2; 2 ~ 1 020 ~ e me 

("/i G/c 3)112 

("siz�" of an elementary) particle (Planck length) (�umber of photons) ~ l 010 ~ m umverse (�um�er of baryons) m umverse Some understanding of the relationships between these numbers has been won [Carter (1968b )]. Never has any explanation appeared for their enormous magnitude, nor will there ever, if the view is correct that reprocessing the universe reprocesses also the physical constants. These constants on that view are not part of the laws of physics. They are part of the initial-value data. Such numbers are freshly given for each fresh cycle of expansion of the universe. To look for a physical explanation for the "big numbers" would thus seem to be looking for the right answer to the wrong question. In the week between one storm and the next, most features of the weather are ever-changing, but some special patterns of the wind last the week. If the term "frozen features of the meteorology" is appropriate for them, much more so would it seem appropriate for the big numbers, the physical constants and the spectrum of particle masses in the cycle between one reprocessing of the universe and another. A per cent or so change one way in one of the "constants," "lic/e2 , will cause all stars to be red stars; and a comparable change the other way will make all stars be blue stars, according to Carter (1968b). In neither case will any star like the sun be possible. He raises the question whether life could have developed if the determinants of the physical constants had differed substantially from those that characterize this cycle of the universe. Dicke (1961) has pointed out that the right order of ideas may not be, here is the universe, so what must man be; but here is man, so what must the universe 
* Values based on the "typical cosmological model" of Box 27.4; subj ect to much uncertainty, in the 

present state of astrophysical distance determinations, not least because the latitude in these numbers 
is even enough to be compatible with an open universe .  



§44 6 THE REPRO CESSING OF THE UNIVERSE 1 2 1 7  be? In other words: (1) What good is a universe without awareness of that universe? But: (2) Awareness demands life. (3) Life demands the presence of elements heavier than hydrogen. (4) The production of heavy elements demands thermonuclear combustion. (5) Thermonuclear combustion normally requires several l Oq years of cooking time in a star. (6) Several 109 years of time will not and cannot be available in a closed universe, according to general relativity, unless the radius-at-maximumexpansion of that universe is several 109 light years or more. So why on this view is the universe as big as it is? Because only so can man be here! In brief, the considerations of Carter and Dicke would seem to raise the idea of the "biological selection of physical constants." However, to "select" is impossible unless there are options to select between. Exactly such options would seem for the first time to be held out by the only over-all picture of the gravitational collapse of the universe that one sees how to put forward today, the pregeometry black-box 
model of the reprocessing of the universe. Proceeding with all caution into uncharted territory, one must nevertheless be aware that the conclusions one is reaching and the questions one is asking at a given stage of the analysis may be only stepping stones on the way to still more penetrating questions and an even more remarkable picture. To speak of "reprocessing and selection" may only be a halfway point on the road toward thinking of the universe as Leibniz did, as a world of relationships, not a world of machinery. Far from being brought into its present condition by "reprocessing" from earlier cycles, may the universe in some strange sense be "brought into being" by the participation of those who participate? On this view the concept of "cycles" would even seem to be altogether wrong. Instead the vital act is the act of participation. "Participator" is the incontrovertible new concept given by quantum mechanics; it strikes down the term "observer" of classical theory, the man who stands safely behind the thick glass wall and watches what goes on without taking part. It can't be done, quantum mechanics says. Even with the lowly electron one must participate before one can give any meaning whatsoever to its position or its momentum. Is this firmly established result the tiny tip of a giant iceberg? Does the universe also derive its meaning from "participation"? Are we destined to return to the great concept of Leibniz, of "preestablished harmony" ("Leibniz logic loop"), before we can make the next great advance? Rich prospects stand open for investigation in gravitation physics, from neutron stars to cosmology and from post-Newtonian celestial mechanics to gravitational waves. Einstein's geometrodynamics exposes itself to destruction on a dozen fronts and by a thousand predictions. No predictions subject to early test are more entrancing than those on the formation and properties of a black hole, "laboratory model" for some of what is predicted for the universe itself. No field is more pregnant with the future than gravitational collapse. No more revolutionary views of man and the universe has one ever been driven to consider seriously than those that come out of pondering the paradox of collapse, the greatest crisis of physics of all time. 

A ll  of  these endea vors are based on the belief that  exis tence should have a 
comple tely harmonious s tructure. Today we have less ground than ever before for 

allowing ourselves to be forced away from this wonderful belief. 

E I N STE I N ( 1 934) 

Black hole as "laboratory" 
model for collapse of 
universe 
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We will first understand 
How simple the universe is 
When we realize 
How strange it is. 

A N O N .  

To some one who could grasp the 
universe from a unified standpoint, 
the entire creation would appear 
as a unique truth and necessity. 

J .  D'ALE M B ERT 

Yo ho, it's hot . . .  the sun is not 
A place where we could live 
But here on earth there'd be no life 
Without the light it gives 

H .  ZAR ET 

Probable-Possible, my black hen, 
She lays eggs in the Re/ativ€ When. 
She doesn 't lay eggs in the Positive Now 
Because she 's unable to postulate How. 

F. WI N S O R  
From A Space Chtld's Mother Goose 

© 1 956,  1 957 ,  1 9 58 by Frederick Winsor and Marian Parry, 

by permission of Simon and Schuster 
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What is now proved was once only imagin 'd. 

WI LLIAM B LAKE 

(Su r  l 'a ir  de "J 'a i  rendez-vous avec vous," 
chanson de G eorges B rasseus } 

Le  Rayonnement dipo/aire 
On sait qu'i/ n 'est pas pour nous 
C'est pour Maxwell, oui mais Maxwell on s 'en tout 
Tout est r'latif apres tout 

Un argument qu'on revere 
Celui de Synge pour dire le tout 
Nous promet le quadrupolaire 
Tout est r'latif apres tout 

Les sources quasi stellaires 
Disparaissent comme dans un trou 
Dans le Schwarzschild, oui mais Schwarzschild on s 'en tout 
Tout est r'/atif a pres tout 

Aux solutions singulieres 
On prefere et de beaucoup 
Une metrique partout reguliere 
Tout est r'latif a pres tout 

Les physiciens nucleaires 
Comme ifs nous aiment pas beaucoup 
Y gardent tout /'fric, oui mais le fric on s'en tout 
Tout est r'/atif apres tout 

Les experiences de Weber 
Le  gyroscope, 9a co0tent des sous 
Celles de pensees sont mains cheres 
Tout est r'/atif apres tout 

M. A. TO N N ELAT 
Reprinted with the kmd permission of M A Tonnelat 
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"Omnibus ex nihil ducendis sufficit unum! " 

(One suffices to create Everything of nothing!) 
When Arthur Evans began this excavation 

neither he nor anyone knew that he 

would uncover an unknown world. 
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(Sur  ! 'a i r  de Au pres de ma blonde) 

Dans Jes jardins d'Asnieres 

La science a refleuri 

Tous Jes sa vants du monde 

Apportent /eurs ecrits 

Refra i n :  

A upres de nos ondes 

Qu'i/ fait bon, fait bon, fait bon 

A upres de nos ondes 

Qu'i/ fait bon rever 

Tous Jes sa vants du monde 

Apportent /eurs ecrits 

L oi gravitationnelle 

Sans tenseur d'energie 

Loi gravitationnel/e 

Sans tenseur d'energie 

De ra vissants mode/es 

Pour la cosmologie 

De ra vissants mode/es 

Pour la cosmologie 

Pour moi ne m 'en taut guere 

Car j'en ai un joli 

Pour moi ne m 'en taut guere 

Car j'en ai un jo/i 

II est dans ma cervelle 

Voici mon manuscrit 

L e  champ laisse des plumes 

Aux bosses de /'espace-temps 

En prendrons que/ques unes 

Pour decrire le mouvement 

C. CATTAN EO, J G E H EN IAU 
M .  MAV R I D ES, a nd M .  A. TO N N ELAT 
Reprinted with the kmd perm1ss1on of the authors 

PAT (Mrs. Hypatia Vourloumis 
at Knossos ( 1 971 ) )  

And a s  imagination bodies forth 

The form of things unknown, the poet's pen 

Turns them to shapes, and gives to airy nothing 

A local habitation and a name. 

S HAKESPEAR E 

Appreciat ion and farewel l  to our  patient reader. 
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869ff, 957 
Bar operation 

in linearized theory, 436ff 
in shortwave formalism, 967 

Baryons 
number density of, 5 5 8  
mass density of, 1069, 1 074 
conservation law for. See under 

Conservation laws 
Base metric, in time-symmetric initial-value 

problem, 535 
Basis forms 

3- and 4-forms for volume integrals, I 50 
2-forms and dual labeling thereof, 15 I 

Basis I -forms 
dual to basis vectors, 60f, 202f, 232, 234 
as coordinate gradients, 60ff 
transformation Jaws for, 68, 203 
connection coefficients for, 209, 2 1 5 ,  258f 

Basis vectors, 50 
in extenso, 20 1 -207 
as differential operators, 229f 
dual to basis 1 -torms, 6Ufl , 232 
transformation laws for, 68 ,  20 1 ,  203, 

230f 
commutation coefficients for, 204 
connection coefficients for, 209, 258f 
coordinate vs .  general basis, 20 1 -203 
coordinate basis, 230f 
See also Proper reference frame, tetrad 

Bell bongs, 55f, 60, 99, 202, 23 1 
Bertotti-Robinson electromagnetic universe, 

845 
Betti numbers, characterize connectivity, 

22 1  
Bianchi identities 

stated, 22 l f, 224, 325f 
proved, 287 
model for, in geodesic identity, 3 1 8  
expressed m terms of curvature 2-form, 

362 
111 terms of boundary of a boundary, 

Chap. 1 5  

a s  automatically fulfilled conservation 
law, 405 

required because geometrodynamic law 
must not predict coordinates, 409 

applied to equations of motion, 473 
from coordinate-neutrality of Hilbert

Palatini variational principle, 503 
Big Dipper, shape unaffected by velocity of 

observer, 1 1 60- 1 1 64 
Binary star 

black holes as members of, 886f 
generation of gravitational waves by, 

986, 988ff, 995 
Binding energy of orbits around black 

holes, 885 ,  9 1 1  
Birkhoff's theorem 

for Schwarzschild geometry, 843f 
for Reissner-Nordstrom geometry, 844ff 

Bivector 
defined, 83 
in surface of Whitaker's calumoid, 125 

Black body See under Radiation 
Black hole, 884-887 

in extenso, Chap. 33 
brief summary of properties, 620 
history of knowledge of, 620, 623 
why deserve their name, 872-875 
Kerr-Newman geometry as unique 

external field, 863, 875-877, esp 876 
"hair on," 43, 863, 876 
baryon number transcended by, 876 
lepton number transcended by, 640, 876 
astrophysical aspects of, 883-887 
mechanisms of formation, 883-884 
gravitational waves from collapse that 

forms, 1 04 1  
dynamical processes, 884ff 

can never bifurcate, 933 
collision and coalescence of, 886 ,  924, 

939 
gravitational waves from hole-hole 

collisions, 886, 939, 982 
interactions with matter, 885f 

Cygnus X- 1 as an examplar of, ix  
gravitational waves from matter falling 

into, 885 ,  904, 982f, 986 
change of parameters of hole due to 

infall of particles, 904-9 IO, 9 1 3  
extraction o f  energy from, 906, 908 

experimental tests of general relativity 
using, 1 047 

See also Black-hole dynamics, laws of; 
Collapse, gravitational; 
Kerr-Newman geometry; 
Schwarzsch1ld geometry 

Black-hole dynamics, laws of, 887f See also 
Second law of black-hole dynamics 

Boost, 67ff 
Boundary 

of a boundary, route to Bianchi 
identities, Chap. 1 5  

o f  a boundary i s  zero , 364-370 
automatically conserve',, Cartan', 

moment of rotation, 377-378 

GRAVITATION 

of the boundary of a 4-simplex, 380-3 8 1  
Boundary operator, 96 
Boyer-Lindquist coordinates, 877-880 
Brackets, round and square, define 

symmetry, 1 26 
Bragg reflection, related to I -forms, 232 
Brans-Dicke theory of gravity. See 

Gravitation, theories of: 
Dicke-Brans-Jordan theory 

Brill-Hartle averaging process, 970 
Brownian forces, 1038 
Bubble-time derivative, 497 
Buffer zone, in analysis of departures from 

geodesic motwn, 476-480 
Buoyant force, 606 

C 

Calumoid, Whitaker's, related to flux 
integrals, 1 25 

Canonical structure, metric and symplect1c 
structure, 1 26 

Canonical variables, in Hamiltonian 
mechanics, 1 25 

Cartan structure equations, 359 
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for Newton-Cartan spacetime, 29 1 f, 
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electric charge, 369f 
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Conservation laws (continued) 
transition to curved spacettme, 3 86f, 390 to be interpreted as automatic, via "wiring up" to geometry, 364, 

367f, 3 7 1 ,  404-407 in terms of generalized exterior derivative, 362f 
various mathematical representations for, 379 total mass-energy and 4-momentum of a 

gravitating source, 455 ,  468-47 1 for test-particle motion 
related to Killing vector field, 65 1 
related to Hamilton's principle, 654 in Schwarzschild geometry, 655-658 
in any spherical, static geometry, 68  I 
in Kerr metric and electromagnetic field, 898f 

Constants, fundamental listed, endpapers 
limits on deviations from constancy, 

106 1 - 1063 
Constraint, as signaling reduced number of 

degrees of freedom, 528f Constraints, first and second class, in Dirac's formulation of geometrodynamics, 486 ConstructJve interference as shortest leap from quantum to 
classical, 1 1 85 in particle mechanics and in geometrodynamics, compared, l 1 86f behind Hamilton-Jacobi formulation of 
mechanics and geometrodynamics, 423f Continuity, equation of, 1 52lf, 565 

"Continuous creation," 745, 750, 770 Contraction of tensor, 82 Contravariant components, 76, 20 1 -207, 3 1 2 Controlled ignorance, philosophy of, 452f, 
996 Convection, in supermassive stars, 600 

Coordinate patch, concept introduced, 
10- 1 2  

Coordinate systems nature of, deducible from metric, 595f 
of accelerated observers, 1 72- 176 asymptotically Minkowskiian, 463 Boyer-Lindquist, 877-880 
comoving, for collapsing star, 857 co moving, for universe, 7 I 5lf curvilinear, in linearized theory, 44 1 Eddington-Finklestein, 828-83 1 ,  849 
Euclidean, 22f Fermi normal, 332 Galilean, 289, 29 1 -298, 4 1 4  Gaussian normal, 5 1 6, 5 1 8 , 7 1 5 lf  
isotropic, fo r  Schwarzschild geometry, 

840 isotropic, for static, spherical system, 595 Kerr, 879f 
Kerr-Schild, 903 Kruskal-Szekeres, 827, 83 1 -836 

local Lorentz, 207 Lorentz, 22f 
Minkowsk1, same as Lorentz 
Novikov, 826f 
of  post-Newtonian formalism, I 073f, 1082- 1087, 1089, 1 09 1 ,  1097 Regge-Wheeler, same as Tortoise Riemann normal, 285lf, 329-332 Schwarzschild, for Schwarzschild geometry, 607 Schwarzschild , for sta tic, spherical 

systems, 597 Schwarzschild, for pulsating star, 689 for any spherical system, 6 1 6f Tortoise, for Schwarzschild geometry, 
663, 665-666 Coordinates, 5 - 1 0  canonical, in context of differential forms and symplectic structure, 1 25 f  

must no t  be predicted by geometrodynamic law, 409 
rotation and translation of, in 

Newton-Cartan theory, 294f preferred, in Newton, Minkowskii, and 
Einstein spacetime, 296 

Coordinate singularities. See Singularities, coordinate Coplanarity, test for, 28 I Coriolis forces, 1 65 ,  175 ,  294, 327, 332 
Correspondence, between I -forms and vectors, 3 IO .  See also Vectors , Forms, differential Correspondence principles, 4 I 2f 
Cosmic censorship, 937 Cosmic gravitational-wave background, 7 1 2, 736f, 764f Cosmic microwave radiation, 7 1 2f, 764lf 

prediction of by Gamow et al., 760 
isotropy of, 703 existence of, refutes steady-state 

cosmological model, 770 
incompatible with "turnaround universe," 

75 1 Cosmic neutrino background, 7 1 2, 736f, 
764f Cosmic rays, 757 evolution of mean density o f, 798 observations refute Klein-Alfven 

cosmological models, 770 Cosmological constant, 4 1 0lf 
Einstein's invention and retraction of, 4 l 0f, 707, 758  influence on evolution of universe, 747, 

77 1 ,  774 Cosmological models anisotropic, Chap. 30 Brans-Dicke, 770 closure of universe related to Mach's principle, 543 ,  549 as boundary condition, 1 1 8 1  
d e  Sitter, 745 , 758  Einstein static universe, 746f, 750 ,  758f  
flat, closed, static 3-torus model, 284 
Friedmann 
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discovery of, by Friedmann and Lemaitre, 75 1 ,  758 
assumption of homogeneity and 

isotropy, 703, 7 1 3  
assumption o f  perfect-fluid 

stress-energy tensor, 7 1 1  f assumed equation of state, 7 1 3 ,  726 implications of  homogeneity and 
isotropy, 7 1 4f, 720lf isotropy implies homogeneity, 7 1 5 ,  723 coordinate system constructed, 71 Slf expansion factor introduced, 7 1 8  arbitrariness i n  expansion factor, 720lf expansion factor renormalized, 72 1 f possible 3-geometries for homogeneous hypersurfaces, 720-725 curvature parameter K = k/a2, 72 1 line element, various forms for, 72 I If, 73 1 , 759 embedding diagrams, 723, 725 topology not unique, 725 

first law of thermodynamics for, 726ff 
assumption that matter and radiation exchange negligible energy, 726lf, 

765 
assumption that pressure of  ma,tter can 

always be neglected, 726, 728 
density and pressure expressed in terms of expansion factor, 727 Einstein tensor for, 728 
orthonormal frames attached to matter, 728 initial-value equation (for a, ,2) ,  744 
dynamic equation (for a,u ) ,  729 
dynamic equation derivable from initial-value equation plus first law of  thermodynamics, 729 time parameters : t, a, lJ, 730-732 observer's parameters vs relativity 

parameters, 77 1 If implications of parameter values for future of universe, 747 ,  77 1 ,  773f 
dynamics of early stage independent of 

k (unaffected by closure) , 742f 
critical density for closure of universe if A =  0, 782 
small perturbat10ns of, 800f 
See also Hubble constant, Density parameter, Deceleration parameter Friedmann, closed (k = + I, A = 0) 
in extenso, 733-742 track- I overview, 704-7 1 1  
Einstein's arguments favoring closure, 704 critical density for closure, 7 1 0, 782 
geometry of 3-sphere hypersurfaces, 704, 72 1 ,  723f radius of, defined, 704 
radius of maximum expansion, 705 embedding diagram, 723f volume of, 724 topology not unique, 725 
first law of thermodynamics applied to, 

705, 726lf 
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initial-value equation for, 537, 705f, 
729, 733 

effective potential for evolution of, 706 
inevitability of recollapse, 707 
solutions of field equations for, 734f 
radiation-dominated era, 733-737, 740ff 
matter-dominated era, 733ff, 738-742 
coordinate diagram for, 74 1 
concrete numbers for a typical model, 

738 
propagation of signals around universe, 

74 1 ,  750 
causal isolation of various regions from 

each o ther, 740ff 
mocked up by Schwarzschild-lattice 

universe, 739f 
compared with Newtonian 

cosmological models, 707f 
Friedmann, flat and open (k = 0, 

k = - I ;  A =  0) 
geometry of homogeneous 

hypersurfaces, 72 1 ,  724f 
embedding diagram, 724f 
topology not unique, 725 
Solutions of field equations for, 742 
radiation-dominated era, 742f 
matter-dominated era, 743f 

Friedmann, plus cosmological constant 
(k = 0, ± I ,  A # 0) 

initial-value equation (for a,/), 744 
effective potential for evolution of, 744, 

746, 748f 
dynamical evolution of, 744-747 
special cases of, 745ff, 750f 

hesitation universe, 750 
hierarchic (island) universe, 748f, 770 
inhomogeneous, Chap. 30 
inhomogeneous Gowdy models, 804 
inhomogeneous but spherical models, 

804 
Kasner model, 80 1 ,  805ff 
Klein-Alfven model, 748, 770 
mixmaster, 805-8 1 4  
Newtonian, 707f, 759 
primordial chaos in big-bang models, 

769, 802ff 
in extenso, Chap 30 
primordial black holes produced by, 

884 
See also Isotropy and homogeneity of 

universe, possible explanations of 
Schwarzschild lattice universe, 739f 
steady-state universe, 745 , 750, 770 
turnaround universe, 750f 
See also Cosmology: history of universe 

according to "standard big-bang 
model" 

Cosmology :  
expansion of universe 

prediction of by Friedmann, de Sitter, 
and Wey!, 758 ,  776 

discovery of by Hubble, 759, 792-794 
removed motive for cosmological term, 

4 1 0-4 1 1 

was greatest prediction of Einstein's 
theory, 4 1 1  

what expands and what does not, 7 1 9, 
739 

"Where is the new space added?" 7 1 9, 
739 

will Universe recontract? 747, 77 1 ,  774 
See also Hubble expansion rate 

history of man's ideas and knowledge of 
the universe, 752-762 

history of the universe according to th e 
"standard big-bang model" 

in extenso, Chap. 28 
initial singularity, 769f 
what "preceded" initial singulanty? 

769 
possible roles of primordial chaos, 769, 

803f, 8 1 6. See also Cosmological 
models : primordial chaos 

complete thermal equilibrium at 
t <1; I second, 736, 763f 

decoupling of gravitational waves and 
neutrinos, 736, 764 

recombination of pairs, 736f, 764 
thermal interaction of matter and 

radiation during expansion, 765f 
transition from matter dominance to 

radiation dominance, 74 l f, 765f 
condensation of stars, galaxies, and 

clusters of galaxies, 766, 769, 800 
past history not much affected by k 

(by geometry of hypersurfaces) ,  
742f, 763 

expansion forever vs. recontraction, 
747, 77 1 ,  774 

observational probes of standard model, 
780-798 

summary of, 797f 
distance-redshift relation, derivation of, 

780f 
distance-redshift relation, observational 

data, 78 I, 785-788, 792ff See also 
Hubble expansion rate 

magnitude-redshift relation, denvatlons 
of, 782-785 ,  794 

magnitude-redshift relation, 
observational data, 788-79 1 

angle-effective distance vs. redshift 
("lens effect of universe"), 795f 

source counts (number-flux relation), 
798 

mean mass density of universe, 7 !Off, 
796f 

comparison of temperature, redshift, 
and emission times for cosmic 
background radiations, 737 

abundances of elements, 765 
comparison of ages deduced by vanous 

methods, 797f 
evolution of quasar population, 767f, 

770 
experimental tests of general relativity 

using cosmological observations, 
1047 

1 2 5 9  

observed properties o f  universe 
homogeneity on large scales, 703, 8 1 5  
isotropy o n  large scale, 703, 80 1 ,  8 1 5 
rotation, observational limits on, 939 
cosmological expansion, 772, 775f, 

785-788, 793f 
age deduced from expansion rate, 709f, 

797 
ages of oldest stars, 709, 797f 
ages of rocks and meteorites, 759, 76 I ,  

798 
deceleration parameter, 785, 788-79 1  
density parameter, 796f 
mean density of luminous matter, 7 !Of, 

76 1  
mean density of cosmic rays, 7 1 2, 757, 

798 
mean density of intergalactic matter, 

7 12, 76 l f, 797 
mean density in electromagnetic 

radiation, 7 1 2  
energy and pressure i n  kinetic motions 

of galaxies and stars, 71 l 
abundances of elements, 765 
entropy per baryon, 766 
quasar population, evolution of, 767f, 

770 
"fine-scale" structure, 703 
See also Cosmic microwave radiat10n, 

Hubble expansion rate 
speculations about initial and final states 

of universe, 707, 1209, 1 2 1 3- 12 1 7  
Coulomb field, "pancaking" of, for fast 

charged particle, 124 
Coulomb force, from electromagnetic 

4-potential, 1 22 
Coupling of fields to matter, direct vs. 

indirect, 1063f 
Covariance, general. See General 

covariance 
Covariant components of a tensor, 76, 

20 1 -207, 3 12 
Covariant derivative 

tundamental equations summarized, 
223-224 

defined by parallel transport, 208, 249 
pictonalized, 209, 2 1 2  
algebra of, 250-26 l 
chain rule for, 2 14, 250, 252, 257f, 260f 
symmetry of ("no torsion") ,  250, 252, 

353f 
additivity of, 252 
commutes with contraction, 2 1 4  
compatibility with metric, 2 1 5f, 3 1 3ff, 

353f 
noncommutation of two covariant 

derivatives, 389ff 
as a machine with slots, 253ff 
is not a tensor, 253, 255f 
connection coefficients as its components, 

2 1 0, 256, 26 l f  
rotation I -forms constructed from, 349ff, 

359f 
semicolon notation for, introduced, 2 10 



Covariant derivative (continued) 
component calculations of, 2 1 5  
o f  tensor densities, 50 1 f  
i n  a hypersurface, 5 1 0 

1 2 60 

regarded a s  a gravitational field, 3 87  
See also Connection coefficients ; Parallel 

transport; Rotation coefficients 
Crab nebula, ii, 6 1 9f, 760 
Cross section 

collisional, 69 
Lorentz transformation of, 70 

Crystallography, related to I -forms, 232 
Current 4-vector See Charge 

density-current 
Curvature, constant, 3-geometries of, 

720-725 
Curvature, formalism of 

fundamental equations, summarized, 
223-224 

Bel-Robinson ( tidal) tensor, 38 I f  
conformal (Wey!) tensor 

introduced, 325 ,  327 
principal null congruences of, 902 
Petr::iv-Pirani algebraic classification of, 

I 1 65 
spinor representation of, l 1 54f 
in Nordstro m-Einstein-Fokker theory 

of gravity, 429, 43 1 
vanishes in 3 dimensions, 550 

Einstein tensor 
introduced, 222, 325f 
track- I equations summarized, 224 
as trace of double dual of Riemann, 

325f, 376 
formula for mixed components in 

terms of Riemann components, 
343f 

in terms of intrinsic and extrinsic 
curvature, 5 1 5  

interpreted a s  moment o f  rotation, 
373-377 

contracted Bianchi identity 
("conservation of Einstein"), 325, 
377tl 

conservation of, from boundary of a 
boundary, 377ff 

uniqueness of, 405, 407f 
curvature 2-form, 348-363 

picture of, for 2-sphere, 337 
picture of, for pith helmet, 338 

curvature operator J1 
introduced, 27 1 
regarded as b1vector-valued 2-form, 

376-380 
as twice-applied exterior derivative, 35 1 
as machine-with-slots, 35 l f  
i n  context o f  Newton-Cartan theory, 

299 
extrinsic curvature of a hypersurface, 

5 1 1 -5 1 6  
contrasted with intrinsic curvature, 336, 

42 1 
operator for, 5 1 1  
tensor for, 5 1 2 

from Lie derivative of metric, 520 
Gauss-Codazzi relations, 5 1 4ff 

Gaussian curvature of a 2-surface, 30, 44, 
336f 

intrinsic curvature of a hypersurface, 509f 
invariants of Riemann, 49 1 
Jacobi curvature tensor, 286f 
Jacobi curvature operator, 286 

in context of Newton-Cartan theory, 
299, 30 1  

principal radii of c urvature for a 
2-surface, 44, 335f 

Riemann tensor 
component formulas for, summarized, 

224, 266 
component formula for in 

non-coordinate basis, 277 
Riemann, matrix display of 

components of, 360f 
elementary introduction to, 3 1 ,  34-37 ,  

39 
in extenso track- I treatment (metric 

present), 2 I 8-224 
in extenso, in absence of metric, 

270-288  
in  extenso, properties induced by 

introduction of metric, 324-327 
defined by parallel transport around 

closed curve, 277-282 
proof of tensor character, 276 
defined by geodesic deviation, 29-37, 

2 1 8f, 270-277, 287 
relation to curvature operator, 274ff 
relation to noncommuting covariant 

derivatives, 389ff 
relation to curvature 2-form, 352 
as machine with slots, 27 1 ,  274f 
symmetries of, 35 ,  220ff, 286, 324f 
number of independent components, 

326 
invariants of, 49 1 
in 2 and 3 dimensions : deducible from 

Ricci tensor, 334, 343, 550 
Bianchi identities, 22 l f, 224, 325f. See 

also Bianchi identities 
only tensor from, and linear in, second 

derivatives of metric, 408 
wave equation for, 382 
dynamic components of, 5 1 7f 
spinor representation of, I I 54f 
in Newton-Cartan spacetime, 290, 302 
in linearized theory, 438 

Riemann tensor, double dual of, 325f, 
343, 37 1 ,  376 

Ricci tensor, 222, 325f 
in Newton-Cartan theory, 290, 300 

scalar curvature 
mtroduced, 222, 325 
in terms of area deficit, 5 I 6 
for a 3-surface, 422f 
Gauss-Bonnet integral of, 309, 3 8 1  
i n  Hilbert action principle, 4 I 8 ,  4 9  I 

Wey] tensor. See Conformal tensor 
York's curvature, 54 1 ,  550 

G RAVI TATI O N  

Curvature, methods o f  calculating 
in extenso, Chap. 14 
analytical, on a computer, 342 
straightforward method, from connection 

and its derivative, 340f 
mixed component, of Einstein expressed 

explicitly in terms of Riemann 

components, 343f 
geodesic Lagrangian method, 344-348 
via 2-forms, theory, 348-354 
via 2-forms, method, 354-362 
ways to display results, 334, 360f 

"Curvature coupling" in equivalence 
principle, 389-392 

Curvature of spacetime 
modeled by surface of apple, 4f 
implied by gravitational red shift, 1 87ff 
generation of, by mass-energy, 37-44, 

Chap. 1 7  
measured by  geodesic deviation, 29-37, 

1 95f, 270-275 
procedure-in-principle to measure, 72 
measured by gravity gradiometer, 

400-403 
coupling to physics in equivalence 

principle, 389-392 
coupling to moments of a macroscopic 

object, 39 l f, 476-480, I 120f 
can be great locally even if average is 

near zero, 220 
See also Geodesic deviation, Tidal forces, 

Spacetime geometry 
"Curvature parameter" of Friedmann 

cosmologies, 72 1 
Curvature tensors for specific manifolds 

gravitational wave, exact, plane, 346f, 444 
gravitational wave, linearized, 948 
linearized theory, any metric, 438 
Friedmann cosmology, 345, 348, 355ff, 

537, 728 
Newton-Cartan spacetime, 290 
Newtonian sphere of uniform density, 

39f 
Newtonian spherical vacuum field, 37 
Schwarzschild metric, 82 1 ff 
spherical, dynamic line element, 36 I f  
spherical, static line element in 

Schwarzschild coordinates, 360f 
3-hyperboloid, 343, 72 1 
3-sphere, 343, 72 1 
3-surface of "constant curvature," 72 1  
2-hyperboloid, 334 
2-sphere, 30, 34 1 
2-surface of revolution, 339f 
world tube of a collapsing star's surface, 

853 
Curvature . See also Bianchi identities ; 

Gauss-Weingarten equations; 
Gauss-Codazzi equations 

Curve, in context of differential topology, 
226 

Curves, congruence of, 240 
Cutoff, related to Planck length, 428 
Cycloidal motion 
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D 

for radial geodesics in Schwarzschild 
geometry, 664 

for test particle in field of a Newtonian 
point mass, 708 

for radius of closed Friedmann 
cosmology, 708 

for surface of a pressure-free collapsing 
star, 852 

"d, " three usages of this differential 
symbol, 95-96 

d'Alembertian operator See Wave 
operators 

Day, length of, 23-26, l 1 24f 
de Rham operator. See Wave operators 
de Broglie wave, 53, 55-59 
de Sitter universe, 745 , 758  
Deceleration parameter of universe 

defined, 772 
relationship to other cosmological 

parameters, 77 1 -773 
determinant of whether universe will 

recontract, 774 
magnitude-redshift relation for 

measuring, 782-785 ,  794 
observational data on, 785 ,  788-79 1 

Deficit angles, 309, I 1 67ff 
Deflection of light, gravitational, 

pictorial explanation of, 32 
early Einstein words on, 43 1 
calculated in linearized theory, 1 84f, 446 
calculated in Schwarzschild coordinates, 

679 
calculated in PPN formalism, I I 0 ! ff  
post-post-Newtonian corrections to, 1 069 
magnitude of, compared with current 

technology, 1 048, 1 1 0 1  
experimental results on, l 1 04f 
in flat-space theories of gravity, 1 79, I 84f 

Deflection of particles by a central field, 
67 1 ,  l 099f 

Degenerate electron gas. See White-dwarf 
matter 

Degenerate neutron gas. See Neutron-star 
matter 

Degrees of freedom, counting of, for 
geometrodynamics and 
electrodynamics, 529-533 

Delta, Kronecker, 22 
Delta function, Dirac, 1 2 1  
Democracy o f  histories, 4 1 8-4 1 9  
Density o f  universe. See under Cosmology. 

observed properties of the universe 
"Density parameter" of universe, 772, 796f 
Derivative, covariant See Covariant 

derivative 
Derivative, directional. See Directional 

derivative 
Derivative, following fluid, 1 53 ,  1 078 
Detailed balance, principle of, 1028ff, 1033 ,  

l 035f 
Determmant 

derivative of, 1 60- 1 6  I 
and Jacobian, 1 60- 1 6 1  

Deviation, geodesic. See Geodesic deviation 
DeWitt equation, I 1 89 See also 

Einstein-Schrodinger equation 
Dicke-Brans-Jordan theory of gravity. See 

under Gravitation, theories of 
Dicke-Eotvos experiment. See Eotvos-Dicke 

experiment 
Dicke's framework for analyzing 

experiments, 1 049, 1 064 
Differentiable manifold. See Manifold, 

differentiable 
Differentiable structure, 242 
Differential conservation law, equivalence 

to integral conservation law, 1 46 
Differential forms. See Forms, differential 
Differential geometry 

overview of, I 94- I 98 
track- I treatment of, Chap. 8 
track-2 treatment of, Chaps. 9- 1 1 , 1 3 - 1 5  
texts on ,  I 96 
three levels of- p ictorial, abstract, 

components, 1 98-200 
Carta n's contributions to, I 98 
applications of, listed, 198  
See also Differential topology, Affine 

geometry, Riemannian geometry, 
and specific concepts, such as 
Metric, Connection, Forms 

"Differential ," of differential calculus, 
rigorous version of, 62 

interpreted as a I -form, 63 
interpreted as p-form, 1 60- 1 6 1  

Differential topology, 197f, Chap. 9 ,  esp. 
240-243 . See also specific concepts, e g ,  
Manifold, Lie derivative 

Dimens10nality, 1 0, 1 2  
Dirac brackets, 486 ,  520 
Dirac delta function, 1 2 1  
Dirac equation, i n  Schwarzschild geometry, 

I 1 65 
Directional derivative 

of a function along a vector, 59-60 
operator for, 6 I 
as a tangent vector, 227-230 

Disks, rapidly rotating, in general relativity, 
621  

Dispersion relations obtained from 
Hamiltonians, 486f, 494, 498 

Distance, proper See Interval, Lorentz 
Distance-redshift relation See under 

Cosmology. observational probes of 
standard model 

Distances, as raw material of metric, 306-309 
Distant action. See Action at a distance 
Distant stars, inertial influence of. See 

Mach's principle 
Distribution. See Dirac delta function 
Distribution function, 583f, 590 
Divergence of a vector or tensor, 82, 2 I 3 ,  

222 ,  26 1 
Divergences, m theory of particles and 

fields, 426-428 

1 2 6 1  

Double star. See Binary star 
Dragging of inertial frames 

in PPN formalism, 1 1 1 7- 1 1 20 
by Earth's rotation, l l l 9f 
by a slowly rotating star, 699 
in Kerr-Newman geometry, 879ff, 893-896 
prospects to measure, 1 1 20 
See also Mach's principle 

Dual bases, 60f, 1 1 9, 202, 232 
Duality operation on forms, vectors, and 

tensors 
on forms, 88 ,  97f, 1 08 ,  I 19 ,  1 5 1  
o n  simple forms, expressed i n  terms of 

perpendicularity, 98 
application to electromagnetism, 88 ,  97f, 

1 14 
double dual of Riemann, 37 1 ,  376 
not to be confused with duality of bases, 

I 1 9  
special star operation that does not act 

on forms, 376-380 
Duality rotation of electromagnetic field, 

108, 482f 
Dynamical path length 

in elementary mechanics, 486-487 
as proportional to phase of wave 

function, 486 
in superspace formulation of 

geometrodynamics, 4 1 9, 1 1 86 
See also Variational principle 

E 

Earth 
atmosphere and gravity, 388  
crust, as detector of gravitational waves, 

1 0 1 3 ,  1 0 1 5  
general precession (precession o f  rotation 

axis), 39 1 ,  392, I I 12, 1 1 1 3 
gravitational multipole moments, 40 1 
mass, radius, density. See endpapers 
motion relative to cosmic microwave 

radiation, 7 1 3  
particles osc1llatmg m hole bored 

through, 39 
rotation of, drags inertial frames, I I I 9f 

See also Day 
satellite orbits used to deduce mass, 63 8 
shape as described by collection of 

distances, 306-309 
subsurface mass variations, 40 I 
tides, as experimental test of general 

relativity, I 1 23f  
vibrations of, as  detector for gravitational 

waves, 1 0 1 3 ,  1 0 1 5, l 035f 
Eccentricity of an elliptical orbit, 647 
Eclipses, 24-26, I I 04 
Eddington-Finklestein coordinates, 828-83 1 ,  

849 
Eddington-Finklestein diagrams, 829, 830, 

849, 864, 873 
Effective potentials 

for test particles in Schwarzschild 
geometry, 639, 656, 659-662 



1 2 6 2  

Effective potentials (continued) 
for charged test particles in equatorial 

plane of Kerr-Newman hole, 9 1 1 
for waves in Schwarzschild geometry, 

868, 870 
for scalar waves in Kerr geometry, 9 1 5  
for radius of Friedmann universe, 706, 

744, 746, 748f 
for oscillations of mixmaster universe, 

809ff 
Einstein. See under Curvature, formalism of 
EIH equations of motion, 1 09 1 ,  1 094- 1 095 
Eikonal method, I 1 02 
Einstein A coefficients, I 029 
Einstein's elevator, 298. See also 

Equivalence principle 
Einstein field equation, 43 1-434 

elementary introduction to, 4 l ff  
integral equation equivalent to, 995-996 
variational principles for. See under 

Variational principles 
derivations of 

in extenso. Chap 1 7, esp. 406, 4 1 6-482 
from automatic conservation of source, 

379f, 4 1 7  
from Hilbert's action principle, 4 1 8  
from physics on a spacelike slice, 

4 1 9-423 
from spin-2 field theory, 424f, 437 
from superspace analysis, 423f 
from "metnc elasticity of space," 426ff 

modified by cosmological term, 4 1 0-4 1 2  
correspondence with N ewtonian theory, 

4 1 2-4 1 6  
and collapse, 1 1 98- 1 1 99 
See also Geometrodynamics 

Einstein-Infeld-Hoffman equations of 
motion, I 09 I ,  1 094- 1 095 

Einstein-Rosen bridge, 837ff 
Einstein-Schrodinger equation, l ! 89f 
Einstein static universe, 746, 747, 750, 758f 
Einstein summation convention, 9 
Einstein tensor. See under Curvature, 

formahsm of 
Einstein's theory of gravity. See General 

relativity 
Elasticity, 426-428 
Electrodynamics 

in flat spacetime, in extenso, Chap. 3 
in curved spacetime, in extenso, 385-39 1 ,  

568-570 
in language of forms, in extenso, Chap. 4 
in language of spinors, 1 1 54, 1 1 65 
in terms of boundary of a boundary, 

365-370 
in geometric optics limit. See Geometric 

opucs 
canonical formulation of, as a guide to 

geometrodynamics, 496f, 522ff 
analog of Palatini variational method in, 

495-498 
three-plus-one view versus geometric 

view, 78-79 
deduced from vector potential, 122 

deduced from electrostatics plus 
covariance, 8 1  

lines of force never end, as core principle 
of, 420 

analogies and comparisons with 
geometrodynamics, 35, 348, 364, 
367-370 

See also Initial-value problem, Integrating 
forward in time 

Electromagnetic field 
descriptions of and equations governing 

electric and magnetic fields, 73f 
Lorentz transformation of, 78f 
dual of electromagnetic field tensor, 

Maxwell 
introduced, 88 ,  105 
egg-crate picture of, 1 07 ,  1 09 
divergence vanishes, 88  
exterior derivative gives charge density 

and current, l 1 3 f  
vector potential, 88f, I 20, 569 

wave equation for, 89, 1 20, 388-39 1 ,  
569 

electromagnetic field tensor ( or 2-form) ,  
Faraday 

as machinery to produce force from 
4-velocity, 73,  10 I ,  104 

components of, 73-74 
expressed in terms of exterior products, 

99 
egg-crate pictures of, 99f, 1 04, 1 06, 107, 

I l l  
"canonical representation" of, 1 22 
special cases of pure electric, pure 

magnetic, and null, 1 22 
generic case reduced to simplest form, 

1 22, 483 
Maxwell's equations for, in component 

notation, 80f, 568 
divergence gives charge density and 

current, 8 1 ,  8 8  
exterior derivative vanishes, l 12f, 1 1 7 

invariants, 1 10, 480-483 
field momentum, 496f, 522ff 
stress-energy tensor, l 40f 

divergence vanishes, 89 
complexion, 1 08 ,  482 
calumoid, 125  
Lorentz force, 7 1 ff, I O I ,  1 04, 568 
Maxwell's equations, 80f, 568 See also 

Maxwell's equations 
Lorentz transformations, 78f, !08ff, 482f 

Electromagnetic field produced by specific 
sources 

oscillating dipole, l l l - 1 1 2  
point charge, 107- 1 1 1 , 1 2 l f  

Electron 
quasibound in field of small black hole, 

I 1 64 
spinning. Thomas precession of, 1 7 5- 1 76 

Electron capture, in white-dwarf matter, 
6 1 9  

Elementary-particle experiments a s  tests of 
relativity theory, I 054f, I 060 See also 

GRAVITATION 

under Conservation laws, energy
momentum 

Elements, abundances of, 765 
Elevator, 43 1 .  See also Uniqueness of free 

fall, Tide-producing acceleration 
Embedding diagrams 

general discussion, 6 1 3  
fo r  a static, spherical star, 6 13-6 1 5 ,  6 1 7  
fo r  Schwarzschild geometry, 837, 839, 528 
for a spherical, collapsing star, 855-856 
for Friedmann cosmological models, 723, 

725 
Energy-at-infinity 

in Schwarzschild geometry, 656ff 
in Kerr-Newman geometry, 898f, 9 1 0  

Energy i n  mechanics, a s  time rate of 
change of action, 486-487 

Energy of a particle, expressed as - p · u, 

65 
Energy-momentum 

4-vector, 5 1 ,  53f, 68 
density of 

revealed by stress-energy tensor, 1 3 1  
3-form for, I 5 I 

of gravitational field 
nonlocalizable in generic case, 466ff 
precisely localizable only for spherical 

systems, 603-604, 858f  
localizable only to  within a wavelength 

for gravitational waves, 955f, 
964-966, 969f 

total, of a gravitating source 
in terms of asymptotic gravitational 

field, Chap 1 9  
expressed as a flux integral, 46 1 -464 
expressed as a volume integral, 

464-466 
conservation of. See under Conservation 

laws 
Entropy. See under Second law of 

thermodynamics 
Eotvos-Dicke experiments, 1 4- 1 7, 1 050- 1 055 

early Einstein words on, 43 1 
implications for constancy of 

fundamental constants, 1 06 1 - 1 063 
for massive (self-gravitating) bodies, 

1 1 27- 1 1 3 1  
Ephemeris fo r  solar system (J.P.L ) ,  1 095,  

1 097 
Ephemeris second, 28 
Equation of structure, Cartan's, 378 
Equations of motion , 

derived from Einstein field equation, 
42-43 , 47 1 -480 

for bodies separated by distances large 
compared to their sizes 

"EIH" (post-Newtonian) for spherical 
bodies, 1 09 1 ,  1094- 1 095 

deviations from geodesic motion, 
1 120- 1 1 2 1 .  1 1 28 

Equations of state 
for nuclear and white-dwarf matter, 

624-626 
for "cosmological fluid," 7 1 3 , 726 
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Equinoxes, precession of, 3 9 I f, 1 1 12f 
Equivalence principle 

enunciated, 386f, 1 060 
Einstein's 1 9 1 1 formulation of, 1 7  
bridge from special relativity to  general 

relativity, 1 64, Chap. 1 6, 207 
out of spin-2 field theory, 425 
in Newton-Cartan theory, 297 
basis for affine parameter, 2 1 1 ,  250 
factor-ordering problems in, 388-39 1 
role in metric theories, l 067f 
tests of, 1 87- 1 90, 1 054- 1 063 
weak equivalence principle .  See 

Uniqueness of free fall 
Ergosphere, 880 
Ether, I 05 I, l 064f 
Euclidean geometry, 1 9-22 

contrasted with Lorentz geometry, 5 1  
Euler angles, 243 
Euler relation, on vertices, edges, faces, 

1 1 75 
Euler equation of hydrodynamics 

in flat spacetime, 1 52f 
in curved spacetime, 564 
in PPN formalism, 1088 
applied to a pulsating star, 693-694 
applied to a collapsing star, 858 

Eulerian perturbations, 690-69 1 
Events, 6, 9f 

identifiability as key, 225 
as classical, not valid quantum concept, 

1 1 84 
Expansion of universe. See under 

Cosmology 
"Expansion," of a bundle of null rays, 5 82, 

1 1 65 
"Expansion," of a congruence of world 

lines, 565f 
Experimental tests of general relativity 

in extenso, Chaps. 38 ,  39, 40 
Beall test of uniqueness of free fall, 1 7  
black holes, I 047 
catalogued, 1 129 
(;on:,tancy uf fundamental constants, 

106 1 - 1 063 
cosmological observations used for, 707, 

1047 , 1 06 1 ,  1 067 
deflection of electromagnetic waves by 

sun, 1 048, 1 069, esp. 1 1 0 1 - 1 1 05 
"de Sitter effects" in Earth-moon orbit, 

1 1 16 ,  1 1 1 9 
Earth's failure to collapse, 398f 
Earth's rotation rate, periodicities in,  

1 1 24- 1 125 
Earth tides due to galaxy and to motion 

relative to preferred frame, 
1 123- 1 1 24 

Eotvos-Dicke experiment. See 
Eotvos-Dicke experiments 

ether-drift experiments, 1 064- 1065 
expansion of universe, 707 
geophysical observations, I 06 I, 1 1 23- 1 125 
gyroscope precession, 1 1 17- 1 120 
gravitational (Cavendish) constant, 

variations of. See under Cavendish 
gravitational constant 

gravitational waves, 1 047, 1 072 
Hughes-Drever experiment, 1 064 
isotropy of space, 1 064 
Kreuzer experiment, 1 125 
laser ranging to moon, 1 048, 1 1 30- 1 1 3 1  
lunar orbit, 1 048, 1 1 1 6 ,  1 1 19 ,  1 1 27, 

1 1 28- 1 1 3 1  
Newtonian experiments, 1 067 
Nordtvedt effect, 1 1 28- 1 1 3 1  
null experiments, 1 050, 1 064 
perihelion shift, esp 1 1 1 0- 1 1 1 6 
planetary orbits, deviations from geodesic 

motion, 1 1 1 1 , 1 1 26- 1 1 3 1  
planetary orbits, periodic effects in, 1 069, 

1 1 1 1  
Pound-Rebka-Snider experiment, 

1 056- 1058 
preferred-frame effects, l098, 1 1 1 3- 1 1 14 
pulsars used for, 1 047 
quasars used for, 1 047, 1 048, 1 06 1 ,  ! I O I ,  

1 103 , 1 104- 1 1 05 
radar time delay, 1 048, I 1 03 ,  esp. 

I 1 06- 1 1 09 
redshift, gravitational. See Redshift, 

gravitational 
redshift, due to "ether drift," I 064-1 065 
singularities in spacetime, existence of, 939 
Turner-Hill experiment, 1 064- 1065 
See also Parametrized post-Newtonian 

formalism, Dicke's framework for 
analyzing experiments, Experimental 
tests of special relativity 

Experimental tests of special relativity, 
1 054- 1055 

Exterior calculus 
introduction to and detailed summary of, 

9 1 -98 
application to electromagnetism, Chap. 4 
largely unaffected by presence or absence 

of metric, 233 
extended to vector- and tensor-valued 

forms, 348-363 
See also specific concepts, e.g., Forms, 

differential; Exterior derivative ; 
Stokes theorem 

Exterior derivative 
introduced, for scalar fields, 93 f 
as operation to augment the order of a 

form, 1 14- 1 20 
applied twice in succession, automatically 

gives zero, I I 6, I I 8 
results of, 1 1 9 
extended to vector- and tensor-valued 

forms, 348-363, Chap. 1 5  
Exterior product. See Wedge product 
External field of a gravitating source. See 

Asymptotically flat spacetime geometry 
Extrema, number of, 3 1 8  
Extreme Kerr-Newman geometry, as 

limiting case of Kerr-Newman, 878 
Extremization, of integral for proper time, 

3 1 6-324 

1 2 6 3  

Extrinsic curvature. See under Curvature, 
formalism of 

Extrinsic time, of Kuchar and York, 487, 
490 

F 

Factor-ordering problems, 388-39 I 
Faraday. See under Electromagnetic field 
Faraday stresses, 1 40f, 48 I 
Fast-motion approximation, 1 072- 1 073 
Fermat's principle in a static gravitational 

field, I 1 06,  1 108 
Fermi energy, in neutron stars and white 

dwarfs, 599-600 
Fermi gas, ideal, 565, 599 
Fermi normal coordinates, 332 
Fermi-Walker transport, 1 65 ,  1 70f, 1 1 1 7 
Feynman's sum over histories, 320, 4 1 9, 499f 
Field equations. See Einstein field 

equations 
Fields, long range (i. e . , zero rest mass) 

spin of, deduced from transformation 
laws for polarization of waves, 954 

radiation fields must have I 2':: S, 866, 977 
role in slightly nonspherical collapse of a 

star, 866 
direct coupling vs. indirect coupling, 

1 063- 1 064 
direct coupling, experimental searches 

for, 1 063- 1065 
indirect coupling, 1068, 1 069 

Final state of stellar evolution, 624 See 
also White dwarfs, Neutron stars, 
Black holes 

Fine-structure constant, electromagnetic, 
constancy of, 399, 1 06 I 

First law of thermodynamics 
general formulation for a simple fluid, 

559-560 
for a fluid in adiabatic flow, 563 
in PPN formalism, 1 088 
role in laws of hydrodynamics, 564 
application to pulsating stars, 692 
application to collapsing stars, 858 
application to closed Friedmann universe, 

705, 726ff 
Fixed-point theorem, 978 
Flatness 

test for, 30 
equivalent to zero Riemann curvature, 

283-284 
does not imply Euclidean topology, 284 
local, accompanied by global curvature, 

1 90- 1 9 1  
o f  space slices i n  Newton-Cartan 

spacetime, 29 1-295 
Flatness, asymptotic. See Asymptotically 

flat spacetime 
Flat spacetime. See Special relativity; 

Lorentz geometry 
"Foamlike" character of space, 4 1 9, 480, 

1 1 90- 1 1 94, 1 202 
Fluctuations, See Quantum fluctuations 
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Fluid See Hydrodynamics 
Flux of particles See Number-flux vector 
Flux of energy, defined, 782 Focusing of null rays, 5 82f, 932, 1 1 65 

See also Lens effect 4-Force, Lorentz, 73 Forms, differential list of all definitions and formulas, 9 1 -98 .  
Note. this  l i s t  is not indexed here, since it itself is organized like an 
index' machinery for working with, illustrated in 
context of electromagnetism, Chap. 4 

as intersecting stacks of surfaces, 99- 1 20 ordered progress10n of ( I -form, 
2-form, . . .  ) ,  1 1 4- 1 20 

closed forms distinguished from general 
forms, 1 14- 1 1 9 operations on See Duality, Exterior derivative, Integration I -forms motivated, 53, 5 5 f  defined, 56f  illustrated, 55-58 "corresponding" tangent vector, 58f, 

62, 3 1 0  pictorial addition of, 5 7  basis See Basis I -forms algebra of, for general basis, 202-203 in metric-free context, 226, 23 1 -233 
closed, 1 23 curl-free, I 23 rotation-free, 1 23- 1 24 
with rotat10n, 1 23 

2-forms as machines to construct "number of 
tubes" from oriented surface, 
1 05- 107 

simple, 103 general, expressible as sum of two simple 2-forms, 1 03 ,  122f basis 2-forms, in direct and dual labeling, 1 5 1  used i n  description and calculation of 
curvature, 337-340, 348-363 vector-valued and tensor-valued forms, 348-363 and chapter I 5 Four-momentum. See under Energy-momentum Four-vector. See Vector Four-velocity. See Velocity 4-vector Friedmann cosmologies. See under 

Cosmological models Frobenius theorem, on rotation-free I -forms, 124 Frozen star. See Black hole "Future of."  See Causal relationships 
G 

Galaxies 
classification of, 786f, 789, 793, 795 origin of, 766, 769f 

evolution of, 79 1 distribution of, homogeneity vs hierarchy, 703 fraction of sky covered by, 799 nuclei of 
explosions in, 634 
black holes in, 887 relativistic star clusters in, 634, 687 

Galaxy, The (Milky Way) , 756-76 1 
metric correction at, 459 
oscillations of star through disc, analyzed, 

3 1 8-3 1 9  Galilean coordinates, 289, 29 1 -298, 4 1 4  
Gamma-ray observations, a s  tests o f  cosmological models, 770 Gauge transformations and invariance in electromagnetism, 89  

in linearized gravitation theory (flat-space 
spin-2 theory) , 1 80, l 82f, 440f, 463 in perturbations of curved spacetime, 
967ff 

See also Lorentz gauge Gauss-Bonnet theorem, for 2-sphere topology, 309 Gauss-Codazzi relations, 5 I 4ff Gauss-Weingarten equations, for 4-transport 
in terms of extrinsic curvature, 5 12 

Gaussian flux integrals 
for energy-momentum and angular 

momentum, 460-464 
for charge, 46 1 Gaussian normal coordinate system, 5 52, 7 1 7  

Gauss's theorem, 148- 1 5 1 as special case of generalized Stokes theorem, 97 applied to conservation of energy-momentum, 146, 1 52  General covariance, principle of, 80, 43  l f  General relativity epitomized briefly, 1 30 (line I ) ,  1 64, 1 90f, 266, 289 foundations developed in detail, Chaps. 16, 1 7  
See also Einstein field equation, Equivalence principle, Experimental 

tests of general relativity, Geometrodynam1cs Generating function, for transformation from one canonical representation of a 
2-form to another, 1 22- 1 23 

Geodesics track- I introduction to, 2 1 1 
track-2 treatment, in absence of metric, 244-247 affine parametrization of, 244-246 as straight-on parallel transport, 245 as straight lines of local Lorentz geometry, 3 1 2-3 1 5 ,  3 2 1 -324 as curves of extremal proper length, 3 1 4-32 1 ,  324 
"dynamic" variational principle for, 322f one-parameter family of, 265-267 

GRAVITATION 

can't change from timelike to null or spacelike en route, 32 1 simple examples 
great circle on sphere, 21 l f  
straight line o n  plane, i n  polar coordinates, 2 1 3  o f  specific manifolds. See under the 

manifold of interest 
as world lines of freely falling particles, 

4, 1 96 
as tools for building ideal rods and clocks, 396-399 Geodesic deviation 
elementary introduction to, 29-37 double role .  defines curvature, predicts motion, 72 equation of, presented in track- I language, 2 I 8ff equation of, denved, 265-275 
in spacetlme of Newton-Cartan, 272f, 293 in gravitational-wave detector, 444-445, 950-955 ,  IO 1 1  f Geodesic equation 2 1 1 ,  262ff Geodesic motion 
experimental tests of, 1 055- 1060 
departures from See under Equations 

of motion 
Geodesic separat10n vector, 265-270 Geometric objects, 48 

absolute vs. dynamic, and "no prior geometry," 43 1 
spinor representation of, I 1 54f 
See also specific objects, e.g ,  Vectors, 

Forms, Connection Geometric units introduced, 27lf, 36 
factors of conversion to and from, 36, 638, end papers Geometric optics 
as limiting case of physical optics, 4 1 2  
in extenso, fo r  electromagnetic waves, 570-583 basic references on, 570n. 
conditions for validity of, 5 7 1  two-length-scale expansion underlying, 5 7 1 -572 basic concepts of, 5 7 1 -5 82 

summarized, 578-580 affine parameter of ray, 575 
angular frequency, 575 
bundle of rays, 5 8 1 -5 82 
electric field, 579 magnetic field, 579 
phase, 5 7 1 ,  572, 574-575 
photons, 5 80, 58 I 
polarization vector, 573, 574-575,  577, 578 ,  5 8 1  scalar amplitude, 573 rays, 573, 574-575 stress-energy tensor, 579 wave vector, 573,  574-575 laws of 
described qualitatively, 5 7 1  summanzed i n  detail, 578-580 
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photon interpretation of, 580 
derived from wave equation and 

Lorentz gauge condition for vector 
potential, 573, 576-577 

post-geometric optics corrections, 572f, 
803f 

in spinor language, I I 65 
examples of applications of, 570 
geometry of a bundle of rays, 5 8 1 -582 
focusing equation, 582f 
breakdown of, related to pair creation, 

803-804 
Geometrodynamics (dynamics of geometry) 

ideas of, in brief, 4f 
built-in plan · initial data plus time 

evolution, 408f, 484f 
some history of, 486-488 
analogies with electrodynamics, 364, 

367-370 
causal propagation of effects in, 554 
Arnowitt, Deser, Misner formulation of 

in brief, 486-490 
action principle in, 5 2 1  
geometrodynamic field momenta for, 

5 2 1  
3-geometry fixed a t  surfaces m, 522 
split of variables made by, 525-526 
electrodynamic analog, 522-524 

Dirac formulation of, 520 
subject to standard quantum 

indeterminism, 1 1 82 
illustrated in action, for Schwarzschild 

geometry, 528 
See also Einstein field equation, General 

relativity, Initial value, Integrating 
forward in time 

Geometry. See specific types: Spacetime, 
Euclidean, Lorentz, Differential, Affine, 
Riemannian, Prior. See also Curvature 

Geon, 886 
Global techniques of analyzing spacetime 

structure 
in extenso, Chap. 34 
basic references on, 9 1 6-9 I 7 
examples of, 926-93 1 
attempt to combine with local methods, 

806 
See also Infinity, regions of, in 

asymptotically flat spacetime ;  Causal 
structure of spacetime; Singularities 
in spacetime 

Globular clusters, 757 
black holes in, 887 

"Glory," in particle scattering, 670 
Gowdy metrics, 804 
Gradient 

of a scalar, in flat spacetime, 59f 
of a tensor, in flat space time, 81 f 
in a curved manifold, 208-2 12 ,  259-26 1 
See also Exterior derivative 

Gradiometer, gravity, 400-403 
Gravitation, 1 3 ,  1 63- 1 64 

local description in terms of 
tide-producing acceleration, 29-37 

Gravitation-matter "coupling loop," in brief, 
5, 37 

Gravitation, theories of 
catalogs of, 429 
criteria for viability of, 1 066- 1 067 
Bergmann's scalar-tensor theories, 1 049 
Birkhoff's, 1 067 
Cartan's (general relativity plus torsion), 

1049, 1 068 
Cartan-Newton. See Newton-Cartan 

theory of gravity 
Coleman's, 1 1 14 
completeness of, 1 067, 1 068 
conservative, I 093 
Dicke-Brans-Jordan, 1 048f, 1068f, esp. 

1070, 1 093, 1 098 , 1 1 22, 1 1 27, 1 129 
cosmological models m, 770 

general relativity, foundations of, Chaps. 
1 6, 1 7  

Kustaanheimo's, I 067 
linearized. See Linearized theory of 

gravity 
metric. See Metric theories of gravity 
metric, not encompassed by the 

JO-parameter PPN formalism, 1 069 
Newtonian See Newton-Cartan theory of 

gravity 
Ni's, 1 068f, esp. 1 070f, 1 083,  1 098, I 1 23 ,  

I 1 29 
Nordstrom's, 429ff, 1 049 
Papapetrou's, I 1 24 
post-Newtonian. See Post-Newtonian 

approximation; Post-Newtonian 
formalism, parametrized 

preferred-frame, 1 083,  1 093, 1 098, 
1 123- 1 1 25 

prior-geometric, 429-43 I, 1 068 ,  1070- 1 07 1  
self-consistency of, 1 066- 1 067 
spin-0 field, in flat spacetime, l 78f 
spin- I field, in flat spacetime, 1 79 
spin-2 field, in flat spacetime See 

Linearized theory of gravity 
Whitehead's, 430, 1 049, 1 067, 1 069, I 1 24 

Gravitational collapse. See Collapse, 
gravitational 

Gravitational constant 
value of, 29, endpapers 
measurement of, 1 1 2 1 ,  1 1 23 
as measure of "metric elasticity of 

space," 426-428 
See also Cavendish gravitational constant 

"Gravitational field" in general relativity 
theory 

as term with many meanings and none, 
399f 

spacetime geometry as, 399-400 
metric as, 399f 
covariant derivative and connection 

coefficients as, 387, 399-400 
Riemann curvature as, 399-403 
contribution of, to standard stress-energy 

tensor, specifically excluded, 1 3 1  
Gravitational lens effect, 589, 887 
Gravitational mass, 43 1 
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Gravitational potential See under 
Newton-Cartan theory, Post-Newtonian 
formalism 

Gravitational radiation reaction. See 
Gravitational waves , radiation reaction 

Gravitat10nal radius, 820-826. See also 
Horizon, Black hole, Schwarzschild 
geometry, Kerr-Newman geometry 

Gravitational-wave detectors 
conceivable types of 

Earth-moon separation, 1 0 13 ,  1 0 14, 
1 0 1 8  

normal-mode vibrations o f  Earth and 
moon, 1 0 1 3 ,  1 0 1 5  

oscillations o f  Earth's crust, 1 0 1 3 ,  1 0 1 5  
normal-mode vibrations of a n  elastic 

bar, 1 0 1 3 ,  1 0 16 ,  1 025,  1035, 1 038  
normal-mode vibrations of general 

elastic bodies, 1 0 13 ,  1 0 1 6, 1 025 , 
1 028- 1035 ,  1 04 1 - 1 042 

angular accelerations of rotating bars 
("heterodyne detector") ,  1 0 1 3 ,  
1 0 1 6- 1 0 1 7  

angular accelerations o f  driven 
oscillators, 1 0 13 ,  1 0 1 7  

pumping o f  fluid in a rotating pipe, 
1 0 1 3 ,  1 0 1 8  

idealized vibrator ( 2  masses o n  a 
spring), 1 022- 1 028 

beads on stick, 444f 
nonmechanical detectors, 1 040 
electromagnetic waves in a toroidal 

wave guide, 1043- 1044 
methods of analyzing (for mechanical 

detectors small compared to 
wavelength) 

proper reference frame of detector, 
1 005- 1 006, 1 0 1 0, 1 0 1 2  

dynamic analysis .  Newtonian equation 
of motion plus wave driving 
forces, 1 006- 1 009 

driving forces of waves, 1 006, 1 009, 
1 0 1 0  

line-of-force diagram, I O I  1 - 1 0 1 2  
method of detailed balance, 1 028,  

I 029- 1030, 1 033 
for noisy detector, 1 0 1 9, 1 036- 1040 

detailed analysis of 
two freely falling bodies, IO I 8 
idealized vibrator (two masses on a 

spring), 1 022- 1 028 
any resonant vibrator, analyzed by 

detailed balance, 1 030, 1033 
any resonant vibrator, analyzed by 

dynamic method, I 03 1 - 1 034 
noisy resonant vibrator ( extraction of 

signal from noise), 1 036- 1040 
Earth vibrating in quadrupole mode, 

1 035- 1036 
electromagnetic waves in a toroidal 

wave guide, 1 043- 1 044 
cross sections 

limits on usefulness of concept of cross 
section, 1 0 1 9, 1 022 
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Gravitational-wave detectors (con tinued) 
summary of ways to use, for 

wave-dominated detectors, 
! 020- 102 1  

used to calculate total energy deposited 
in detector, !027, ! 028 

use of, for noisy detectors, 1 03 8- !039 
related to emission patterns, 1 032- !033, 

1 035 
for idealized vibrator, 1 024, 1 025 
for any resonant, mechanical detector, 

! 025, 1 029, 1 032 
for a Weber bar, 1 025 
for a Weber bar in multimode 

operation, I 035 
for Earth in fundamental quadrupole 

mode, 1 036  
thermally noisy detectors 

extraction of small signal from noise, 
1 036- 1040 

sensitivity of, to hammer-blow waves, 
1 039 

ways to improve sensitivity, 1 040 
sensors for monitoring displacements, 

1 04 1 ,  1 042 
prospects for the future, I 040/f 

Gravitational waves 
exact solutions 

cylindrical wave, 950 
plane waves with one state of 

polarization, 957-963. See also 
Plane gravitational waves 

plane waves with two polarization 
states, 964 

experimental tests of general relativity 
using, 1 047, 1 072 

generation by slow-mot10n, weak-field 
sources 

nonexistence of  monopole and dipole 
waves, 974-978 

waves are predominantly quadrupolar, 
975-978 

assumptions underlying formulas, 989, 
99 1  

formula for metric perturbat10n, 99 1 
formulas for emitted flux of energy 

and angular momentum, 992 
formulas for total output of energy and 

angular momentum, 975,  992 
formulas for radiation reaction m 

source, 993-994 
formulas for spectrum in various 

polarization states, 1 033,  1 035 
formulas specialized to impulse events, 

987 
order-of-magnitude formulas for, 

978-979, 980-98 I 
derivation of formulas, 995- 1003 
role of "gravitational stresses" in 

generation, 996-998 
generation by strong-field sources, 

techniques for calculating 
particle falling mto black hole, by 

perturbations of Schwarzschild 
metric, 982, 983 

vibrations of a relativistic star, by 
perturbations of equilibrium stellar 
structure, 984-985 

rotation of a deformed relativistic star, 
by perturbations of spherical 
stellar structure, 986 

initial-value solutions for, 536 
intensity and spectrum of waves that 

bathe Earth, estimate of, 986 
linearized theory of 

in extenso, 944-955 
Lorentz gauge condition, 944-945 
propagation equation, 945 
gauge transformations that maintain 

Lorentz gauge, 945 
plane-wave solutions, 945-946, 949, 

1 004- 1 005 
transverse-traceless gauge 946-950 
methods to calculate transverse-traceless 

part, 948-949 
Riemann tensor, 948 
geodesic deviation, 950-955 ,  ! 0 1 1 - 1 0 1 2  
relative accelerations are purely 

transverse, 95 I 
polanzation, 952-955 
Fourier analysis of, 1 026, 1 027 
specific flux of, 1 027 

monopole and dipole waves absolutely 
forbidden, 977, 978 

nonlinear interaction of waves with 
themselves 

nonexistence of precisely periodic 
waves, 956 

self-gravitational attraction, 957, 968 
wave-wave scattering, 968 

propagation through curved spacetime 
analogy with water waves on ocean, 

993-994 
refraction of wave fronts ( deflection of 

rays) by background curvature, 
956, 968, 972 

gravitational redshift of frequency, 
956-957, 968 

backscatter off curvature, 957, 864-865, 
869-87 1 

tails due to interaction with 
background curvature, 957, 
864-865, 869-87 1  

shock fronts, 554 
shortwave formalism for, 964-973. See 

also Gravitational waves ·  
shortwave formalism 

propagation equation, 967-968 
stress-energy tensor, 969-970. See also 

Gravitational waves .  stress-energy 
tensor for 

geometric optics formalism, 97 1-972 
propagation of polarization tensor, 968, 

97 1 
spinor formalism for, 1 1 65 
See also Gravitational wave, : nonlinear 

G RAVI TATI O N  

interaction o f  waves with 
themselves 

radiation reaction 
order-of-magnitude formulas for, 979, 

98 1 
formalism for calculating, in weak

field, slow-motion sources, 993/f, 
l O0 ! ff  

linked to outgoing-wave condition, 993, 
1 00 1 - 1002 

forbids existence of exactly periodic 
waves, 956 

damping of neutron-star vibrations by, 
620, 628, 984f 

evolution of binary-star orbits due to , 
988 

shortwave formalism 
"steady" coordinates, 964 
expansion parameters of, 964 
assumptions underlying, 964 
expansion of Ricci tensor, 964-965 
coarse-grain viewpoint vs. fine-grain 

viewpoint, 965 
propagation equation, 967-968 
gauge freedom, 967-969 
Lorentz gauge, 968 
transverse-traceless gauge, 969 
stress-energy tensor, 969-970. See also 

Gravitational waves : stress-energy 
tensor 

Brill-Hartle averaging process, 970 
geometric optics specialization, 97 1-972 
variational principle used to derive, 

972-973 
sources of 

astrophysical sources, 
order-of-magnitude formulas for, 
980-98 1  

big-bang origin of universe, 7 12 ,  
736-737, 764-765 

gravitational collapse of a star, 628, 
629, 1 04 1  

supernova explosions, 982, l 040, 1 042 
explosion of a star, 987 
collapses and explosions in Virgo 

cluster of galaxies, l 042 
vibrations of neutron star, 982-986 
rotation of a deformed neutron star 

(young pulsar), 628f, 983, 986, ! 040 
binary stars, 986, 988-990, 995 
fall of matter into a black hole, 885 ,  

982 ,  983, 986 
collision and coalescence of black 

holes, 886,  939, 982 
vibrations of a black hole, 886 
rotating steel beam, 979-980 
fission of an atomic nucleus, 987 
atomic bomb, 987 
meteorite striking earth, 987 

stress-energy tensor for 
elementary summary of, 955-956 
expressed in terms of metric 

perturbations, 969 
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expression for in traceless Lorentz 
gauge, 970 

gauge invariance of, 972 
expressed as an average of stress-energy 

pseudotensor, 972 
divergence vanishes, 970 
as source for background curvature of 

spacetime, 966, 973 
for geometric-optics waves, 972 
for waves in nearly flat spacetime, 

955-956 
for exact plane wave, 963 

Gravitons, 972 
Gravity gradiometer, 400-403 
Group See Rotation group; Lorentz group 
Group of motions, 652-653 .  See also 

Killing vector fields 
Gyroscopes 

employed in definition of Fermi-Walker 
transport, 1 65 

employed in constructing proper 
reference frame, 327, 330f 

precession of, as experimental test of 
general relativity, I 1 1 7- 1 1 20 

See also Dragging of inertial frames 
Gyromagnetic ratio, of Kerr-Newman black 

hole, 883, 892 

H 

HII regions in galaxies, 7 IO, 76 1 ,  786f 
Hair on a billiard ball ,  978 
Hair on a hole. See Kerr-Newman 

geometry, uniqueness of 
"Hammer-blow waves" defined, l 0 1 9  
Hamilton-Jacobi theory, 486ff, 641 -649 

relation to quantum theory, 641 -643 
for harmonic oscillator, 1 1 94 
for free particle, 1 1 94 
for test-particle motion 

in Newtonian M/r potential, 644-649 
in Schwarzschild gravitational field, 649 
in Kerr-Newman gravitational and 

electromagnetic fields, 900-901 
deflection of light by sun,  in PPN 

formalism, I I02f 
perihelion shift in PPN formalism, 

1 ]  1 4f 
for electrodynamics, 1 1 95 
for geometrodynamics in superspace, 

423f, 1 1 80- 1 1 90 
Hamiltonian 

contrasted with super-Hamiltonian, for 
charged particle in field,  488-489 

electromagnetic, 497 
for test-particle in Newtonian 1/r 

potential, 644 
See also Super-Hamiltonian 

Hamiltonian, ADM, applied to m1xmaster 
cosmology, 809 

Hamiltonian dynamics, 
in the language of forms, 1 25- 1 26 
symplectic structure of, 1 26 

Hamilton's principle for geodesic motion, 
654 

Harrison-Wheeler equation of state, 625 
Harrison-Wakano-Wheeler stellar models, 

625ff, 696 
Hat product. See Wedge product 
Heat flow in general relativity 

references on, 559  
heat-flux 4-vector, 567 
law of thermal conductivity, 567 
in a stationary gravitational field, 568 

Hilbert's variational principle. See 
Variational principle, Hilbert's 

Histories, 
space of, 3 1 8-3 1 9  
democracy of, 320 
sum over, 320, 4 I 9, 499f 

"History of geometry," defined, 4 I 8-4 I 9 
Holonomic basis, 204, 2 1 0, 239 
Homologous pulsations of a star, 697, 1 079 
Honeycomb structure See Forms 
Horizons, in black-hole physics 

definition of, 923-924 
global structure of (theorem), 924-925 
global structure analyzed, 926-93 1 
caustics of, 925 
generators of, 903-904, 925, 929-93 I, 932 
created by gravitational collapse, 862, 

863, 867, 924 
for Kerr-Newman geometry, 879ff 

angular velocity of, 9 1 4  
area of, 889,  9 I 4 
generators of, 903f 

Horizons, in cosmology, 8 l 5f 
in Friedmann cosmologies, 740ff, 8 1 5  

Hubble expansion rate, 709f 
history of knowledge of, 709-7 1 0, 

75 8-76 1 
expressed in terms of expansion factor 

a (t), 732 
distance-redshift relation used m 

measuring, 780-78 1 
relationship to other cosmological 

parameters, 77 1-773 
See also under Cosmological models, 

Cosmology 
Hughes-Drever experiment, 1 064 
Hydrodynamics 

Newtonian, in absence of gravity, 1 52ff 
Newtonian, in presence of gravity, 387f, 

l 077- I080 
post-Newtonian. See under PPN 

formalism 
general relativistic 

basic references, 562n, 568 
for a simple fluid with no heat flow or 

viscosity, 562-563 
for a fluid with viscosity and heat flow, 

567-568 
volume changes related to divergence 

of flow lines, 565 
gradient of 4-velocity resolved into 

4-acceleration, expansion, rotation, 
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and shear, 566 
Euler equation, 564 
equilibrium in a stationary 

gravitational field, 566, 568 
interaction of charged matter with an 

electromagnetic field, 570 
See also Thermodynamics, laws of 

Hydrostatic equilibrium 
in any stationary gravitational field, 566 
in static, spherical star, 60 1 -602, 605 
Oppenheimer-Volkoff equation of, 605 
buoyant force, 606 

Hyperbolic motion of an accelerated 
observer, 166ff, 173f 

Hypersurface, spacelike .  See Spacelike slice 

Imaginary time coordinate not used, 5 1  
Ideal gas, 139f 
Impact parameter 

for hyperbolic, Newtonian orbit, 647 
for hyperbolic orbit in Schwarzschild 

field, 670 
for photon in Schwarzschild field, 672 
for photon in PPN formalism, I IO  I f  

Identity, a s  automatically fulfilled 
conservation law, 405 

Index, contravariant and covariant, 76 
Index manipulations 

in global Lorentz frames, 85 
in curved, Riemannian manifolds, 

20 1-204, 223f 
in affine manifolds, 225f 
in linearized theory, 436 

Induction, from electromagnetic 4-potential, 
1 22 

Inertia, 460 
Inertial forces, 1 65 ,  332 

in Newton-Cartan theory, 294 
Inertial frames, dragging of. See Dragging 

of inertial frames. 
Inertial guidance, 247 
lnerual mass, I 59f, 43 I, l 05 I 
Inertial reference frame, local (= local 

Lorentz frame if orthonormal 
coordinates are used), I 8f 

defined by uniform velocity of free test 
particles, 23 

used in analysis of tide-producing 
acceleration, 29-37 

mathematical representation of. See 
Riemann normal coordinates 

See also Lorentz frame, local 
Infinitesimal Lorentz transformation. See 

Lorentz transformation, infinitesimal 
Infinity, regions of, in asymptotically flat 

spacetime 
J+, 1-, !0, if+ , 1- defined, 9 17-9 1 8  
conformal transformations of, 9 1 9-92 1 ,  

936 
conformally transformed coordinate 

diagrams, 9 1 9-92 1 
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Initial-value data 
as uniquely determining future, Hilbert 

on, 434 
mystery of what fixes them, 555  
formulation of, on characteristic 

hypersurface, 554 
Initial-value data for geometrodynam1cs 

in extenso, Chap. 2 1  
reg uired fo r  dynamics, 484-485 
compatible on spacelike slice, 489-490 
on characteristic surface, 490 
thin-sandwich conjecture, 534 
count of, 529-533 
time and dynamic data mixed in 

3-geometry, 533 
improperly posed data, 534-535 
separation of time and dynamic data, 533 
York's formulation of 

sketched, 490 
on hypersurface of zero or constant 

extrinsic time, 539-540 
gives conformal 3-geometry, 540-54 1  
gives York's curvature, 54 1  
gives conjugate York momenta, 542 

Initial-value equations for 
geometrodynamics, 5 1 5-5 16 ,  5 1 9, 525, 
5 3 1 -535 

Initial-value problem for geometrodynamics 
York's formulation of 

wave equation for conformal factor, 
542 

existence and uniqueness of solutions, 
543 

thin-sandwich formulation of 
as option in specifying data, 529 
electrodynamic analog, 529 
as guide in counting degrees of 

freedom, 529-533 
as guide to geometrodynamics, 529-53 1 

time-symmetric case, 490 
formulated, 535 
role of base metric in, 535 
gravitational wave amplitude in, 536 
wave equation for conformal 
correction factor, 535 

time-antisymmetric case, 490 
formulated, 536 
wave equation for conformal 

correction factor, 536 
mass of wave is positive, 536 

other symmetric cases 
Friedmann universe, 537, 705f, 727f, 

744 
mixmaster universe, 537, 806-8 1 1  
waves with cylindrical symmetry, 537 
waves with spherical symmetry, 537 
pulsating star, 69 1 -694 
as route to cosmology, 537 

See also Geometrodynamics, Integrating 
forward in time 

Initial-value theory for electrodynamics, 
523f, 526, 529ff. See also 
Electrodynamics, Integrating forward 
in time 

Injection energy, 5 6 1 ,  562 
Integral conservation law, 1 46 
Integrating forward in time 

geometrodynamic equation 
statement of initial data in, 526-527 
options m choice of lapse and shift, 

527-528 
compared to electrodynamics, 527-528 

Maxwell's equations 
statement of initial data in, 527 
options in choice of poten tial , 527 
as guide to geometrodynamics, 527 

See also Electrodynamics, 
Geometrodynamics, Initial value 

Integration 
of differential forms, 94-97, 1 50f 
of tensors, in track- I language, 147ff 
See also Stokes' theorem, Gauss's 

theorem, Volume 
Interference, constructive and destructive, 

4 1 9, 423f, I 1 85- 1 1 87 
Interferometry, used to measure deflection 

of radio waves by sun, 1 104- 1 105 
Intergalactic matter, mean density of, 7 1 2, 

76 lf  
Interval, Lorentz, 1 9-23 
Intrinsic curvature. See under Curvature, 

formalism of 
Intrinsic time of Sharp, Baierlein, and 

Wheeler, 487, 490 
Invariants 

of electromagnetic field, I 10 ,  480-483 
of Riemann tensor, 49 1 

Irreducible mass of a black hole, 889f, 9 1 3  
Isolated system, 454 
Isometry, 652-653. See also Killing vector 

fields 
Isostasy, 402 
Isothermal star clusters, 685ff 
Isotropic coordinates 

for a star, 595 
for Schwarzschild geometry, 840 
in post-Newtonian approximation, 1 097 

bu tropy and homogeneity of universe 
in extenso, Chap. 30 
man could not exist in an anisotropic 

universe, 939 
adiabatic cooling of anisotropy, 802 
viscous dissipation of anisotropy, 769, 

802-803 
pair creation by anisotropy energy, 769, 

803-804 
See also Cosmological models ; Cosmology 

Isotropy implies homogeneity, 7 1 5 ,  723 

J 

Jacobi idenlity, for commutators, 240 
Jacobian, 93, 148 ,  1 60f 
Jacob's ladder See Schild's ladder 
Jeans instability, 757 
Junction conditions, 490 

from electrodynamics as guide, 55 1 

GRAVITATION 

relevant components of Einstein field 
equation, 552 

surface stress-energy tensor, 552-553 
intrinsic geometry continuous, 553 
extrinsic curvature may jump, 554 
across null surface, 554 
and motion of surface layer, 555  
applied to  collapsing shell of dust, 

555-556 
applied to surface of a collapsing star, 

852-853 
Jupiter, motion of satellites, 637 

K 

K'ai-feng observatory, i i  
Kasner cosmological model, 80 1 ,  805ff 
Keplerian orbits in Newtonian field of a 

point mass, 647-649 
analyzed using Hamilton-Jacobi theory, 

644-649 
effective potential for, 66 1 

"Kepler density" from satellite period, 44 
Kepler's laws, 

discovery by Kepler, 755 
" l -2-3" law, 39, 450,  457 

Kernel, of wave operator, 1 2 1  
Kerr coordinates, 879f 
Kerr diagram, 8 8 1  
Kerr geometry, a s  limiting case of 

Kerr-Newman, 878 
Kerr-Newman geometry and 

electromagnetic field 
history of, 877n 
parameters of (M, Q, S, or a) ,  878 
limiting cases (Schwarzschild, 

Reissner-Nordstrom, Kerr, extreme 
Kerr-Newman), 878 

uniqueness as external field of a black 
hole 

heuristic explanation of uniqueness, 
875,  877 

theorems implying uniqueness, 876, 
938,  939 

implications for realistic gravitational 
collapse, 863 

Boyer-Lindquist coordinates 
metric, 877, 878 
electromagnetic field tensor, 877, 878 
vector potential, 898 
pathology of, at horizon, 880 

Kerr coordinates 
electromagnetic field tensor, 879 
metric, 879 
transformation between Kerr and Boyer-

Lindquist coordinates, 879f 
Kerr-Schild coordinates, 903 
stationary observers, 893-894 
locally nonrotating observers, 895-896 
Kerr diagram for, 8 8 1  
maximal analytic extension of, 882 
Killing vectors, 879, 892ff 
Killing tensor, 893 
principal null  congruences, 90 1 -904 
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light cones, 8 9 1 ,  896-897 
electromagnetic-field structure, 877ff, 883 ,  

892 
magnetic dipole moment, 883, 892 
multipole moments of, 883, 892 
honzon, 87\ltr 

null generators of, 903-904 
area of, 889,  9 1 4  
angular velocity of, 9 1 4  

rotational properties 
intrinsic angular momentum vector, 

8 9 1  
gyromagnetic ratio, 883, 892 
static limit, 879ff, 894 
ergosphere, 880 
dragging of inertial frames, 879ff, 

893-896 
dynamic properties 

role as endpoint of gravitational 
collapse, 882-883 

stability against small perturbations, 
884-885 

change of M, Q, S when particles fall 
into horizon, 904-9 10 ,  9 1 3  

reversible and irreversible 
transformations of, 889-890 

rotational energy of, 890 
electromagnetic energy of, 890 
irreducible mass, 889-890, 9 1 3  

test-particle motion in, 
super-Hamiltonian for, 897 
energy-at-infinity, 898-899, 9 IO 
axial component of angular 

momentum, 898-899 
rest-mass of particle, 899 
Carter's fourth constant of the motion, 

2 or .'JC, 899 
equations of motion in separated form, 

899-900, 90 1 
Hamilton-Jacobi derivation of 

equations of motion, 900-90 1 
orbits in equatorial plane, 9 1 1 -9 1 2  
effective potential for equatorial 

motion, 9 1 1  
binding energy of last stable circular 

orbit, 885 ,  9 1 1 
wave propagation in, 9 1 4-9 1 5  

Kerr-Schild coordinates, 903 
Killing vector fields, 650-653 

associated conservation laws for 
test-particle motion, 65 1 

commutator of is Killing vector, 654 
eigenvalue problem for finding, 654 
for flat spacetime, 654 
for spherically symmetric manifolds, 658 
for Kerr-Newman geometry, 879, 892ff 

Killing's equation, 650 
Killing tensor field, 893n 
Kinetic theory in curved spacetime 

in extenso, 5 83-590 
basic laws 

Liou ville's theorem for noninteracting 
particles in curved spacetime, 584, 
5 86-5 87, 590 

collisionless Boltzmann equation 
(kinetic equation), 5 87, 590 

specialized to photons, 587-589 
basic concepts 

mass hyperboloid, 585  
momentum space, 583ff, 590 
phase space, 5 84f, 590 
volume in phase space, 5 84-587, 590 
distribution function (number density 

in phase space) defined, 583f, 590 
applications, 583 

elementary expression for pressure, 
1 39- 1 40 

stress-energy tensor as integral over 
momentum space, 589f 

photons, 5 87ff 
relativistic star clusters, 679-687 
computation of optical appearance of a 

collapsing star, 850 
Klein-Alfven cosmology, 748, 770 
Kronecker delta, 22 
Kruskal diagrams, 528, 834f, 839, 848, 855 
Kruskal-Szekeres coordinates for 

L 

Schwarzschild geometry, 828-832 
metric in, 827 
relationship to Schwarzschild coordinates, 

833-835 

Lagrangian perturbations, 690-69 1 
Lamb-Retherford shift, principal 

mechanism, 1 1 90 
Landau-Lifshitz pseudotensor. See 

Pseudotensor 
Laplace operator, vs. d' Alembertian, 1 77 
Lapse function 

as Lagrange multiplier, 487 
metric interval as fixed by, 507 
covariant and contravariant forms of, 

507-508 
award of arbitrariness in, reversed, 532 
variational principle for, 538  

Laser ranging to  moon, 1 048, I 1 30f 
Lattice See Clocks; Rods 
Laws of physics in curved spacetime, 

3 84-393. See also specific laws, e g., 
Kinetic theory, Hydrodynamics, 
Conservation laws 

Leap second, 28 
Least action, principle of 

applied in elementary Hamiltonian 
mechanics, 1 25- 126 

related to extremal time, 3 1 5-324 
Lens effect, 5 89, 795f, 887 
Levi-Civita tensor 

in flat spacetlme, 87f 
orientation of, 87f 
in general basis, 202, 207 
in spherical coordinates, 206 

Lie derivative 
of a vector, 240 
of a tensor, 5 1 7  

1 2 6 9  

independent o f  any affine connection, 
5 1 7 

Lie groups, 1 98 
Lie transport law, 240 
Light, bending of. See Deflecllon of light. 
Light cone 

characterization of advanced and 
retarded potentials, 1 22 

Newton-Cartan vs. Einstein difference, 
297 

Sff a!rn C:ausal rel at ionships 
Line element. See Metric 
Lines of force 

relation to honeycomb structure, 1 02 
never end, as core of Maxwell's 

equations, 420 
diagram for gravitational waves, IOI I f  

Linearized theory o f  gravity (same as 
Spin-2 theory in flat spacetime) 

equivalence of the two theories spelled 
out, 435 

presentation from spin-2 viewpoint, 
179- 1 86 

presentation as linearized limit of 
general relativity, Chap. 1 8 , 448-45 1 ,  
46 1 -464, 944-955 

sketched, 435 
bar operation, 436-438 
field equations, 437-438 ,  46 l f  
formula fo r  metric, 438 
gauge transformations, 438-44 1 
gauge invariance of Riemann 

curvature, 438 
Lorentz gauge, 43 8, 44 1 
global Lorentz transformations, 439 
curvilinear coordinates, 44 1 
effect of gravity on matter and 

photons, 442-444 
self-inconsistency of, 1 80, 1 86, 443f 

complete repair of, leads to general 
relativity, 1 86, 424f 

partial repair for slow-motion systems 
leads to Newtonian and 
pu,t-Newtonian formalisms, 
l 073- 1078,  I 089f 

applications 
external field of static spherical body, 

438 
external field of any source, 448-45 1 ,  

46 1 -464 
bending of light, redshift, perihelion 

advance, l 83ff, 446 
gravitational waves, 1 85 f, 442, 444f, 

944-955 See also under 
Gravitational waves 

Liouville's theorem, 5 84, 5 86f, 590 
Local physics is simple physics, 4, 1 9, 

29f 
Local inertial frame. See Inertial frame, 

local 
Local Lorentz frame See Lorentz frame, 

local 
Locally nonrotating observers, 895-896 
Lorentz contract10n, 48 
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Lorentz force law 
compared equation of geodesic 

deviation, 35 
formulated, in flat spacetime, 73 
energy change associated with, 73 
double role : defines fields and predicts 

motions, 7 1 -74 
in language of forms, IO  1 - 104 
in language of energy-momentum 

conservation, 1 5 5  
i n  curved spacetime, 20 1 ,  568 
for a continuous medium, 570 
derived from Einstein's field equations, 

473-475 
in three languages, 474 

Lorentz frame, local 
closest to global Lorentz frame, 207 
mathematical representations of, 2 1 7f, 

285ff, 3 14f 
straight Imes are geodesics of curved 

spacetime, 3 12-324 
evidences for acceleration relative to, 327 
used to analyze redshift experiments, 

1 056- 1 060 
See also Inertial frame, local 

Lorentz gauge. See Gauge transformations 
and invariance 

Lorentz geometry, global, 1 9-23 
contrasted with Euclidean geometry, 5 1  
spacetime possesses, if and only if 

Riemann vanishes, 284 
Lorentz group, 242 
Lorentz invariance, experimental tests of, 

l 054f 
Lorentz transformations, 66-69 

key pomts, 67f 
matrix description of, 66 
way to remember index positions, 66 
velocity parameter in, 67 
boost, 67, 69 
rotation in a coordinate plane, 67 
infinitesimal 

antisymmetric matrix for, 1 7 1  
generator of, 329 
special case : boost along coordinate 

ax.JS, 80 
in spin-matrix language, 1 142- 1 1 45 

velocity parameter, 1 1 45 
post-Newtonian limit of, 1086 
used to annul Poynting flux, 122 
See also Rotations 

Lowering indices. See Index manipulations 
Lunar orbit, experimental tests of general 

relativity using, 1 048, 1 1 1 6, 1 1 1 9 ,  
1 1 27- 1 1 3 1  

M 

Machine with slots. See under Covariant 
derivallve, Metric, Tensor 

Mach's principle, 490, 543-545 
acceleration relative to distant stars, 543 
and York's formulation of initial-value 

problem, 546 

gives inertia here in terms of mass there, 
546 

and Foucault pendulum, 547 
and dragging of inertial frames, 547. 

See also Dragging of inertial frames 
dragging analogous to magnetic effect, 

548 
inertial influence of distant stars, 548 
sum-for-inertia in, 549 
"flat" space as part of closed space in, 

549 
Magnetic flux, from integration of 

Faraday, 99- 1 0 1  
Magnetic poles, absence of, 80 
Magne.tostatlcs, plus covariance, gives 

magnetodynamics, 80, 106 
"Magnitude, absolute," defined, 786 
"Magnitude, apparent," defined, 782 
Magnitude-redshift relation See under 

Cosmology, observational probes of 
standard model 

Manifold, differentiable, IO, 1 3, 24 1 ff 
Many-fingered time, and arbitrariness in 

slice through spacetime, 7 13f, 1 1 84 
Mass 

acl!ve vs. passive. See Cavendish 
gravitational constant 

center of, 1 6 1  
experimental, finite, a s  difference 

between two infinities, 474-475 
inertial, density of, 1 5 9f 
inertial vs. gravitational, 43 1 ,  1 05 I See 

also Uniqueness of free fall 
"Mass-energy inside radius r," 602ff, 858f 
Mass-energy, density of. See Stress-energy 

tensor 
Mass-energy, total, of an isolated, 

gravitating system (= "active 
gravitational mass") 

defined by rate metric approaches 
flatness 

in extenso, Chap. 1 9  
i n  lineanzed theory, 448-450 
m general, 453, 455 

no meaning of, for closed universe, 
457-459 

as geometric object residing in 
asymptotically flat spacetime, 453 

measured via Kepler's 1 -2-3 law, 450, 
457, 636ff 

contribution of gravitational field to, 467 
not localizable in generic case, 466ff 
precisely localizable only for spherical 

systems, 603f, 803f 
localizable to within a wavelength for 

gravitational waves, 955f, 964ff, 
969f 

conservation law for, 455, 468-47 1 
See also under Energy-momentum 

Mass hyperboloid, 585  
Matter in universe, luminous, mean density 

of, 7 1 0f, 7 6 1  
Matrix, inverse, explicit expression for, 1 6 1 .  

See also Jacobian, Determinant 
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Maxima, number of, 3 1 8  
Maximal analytic extension o f  a geometry, 

882 
Maxwell, dual 2-form representation of 

electromagnetic field, introduced, 1 05 .  
See under Electromagnetic field 

Maxwell energy density, 140- 1 4 1  
Maxwell's equations 

component version in flat spacetime, 80f 
geometnc version, 8 8-89 
in language of forms, 1 12- 1 14 
solution for particle in an arbitrary state 

of motion, 1 2 1 - 1 22 
in curved spacetime, 39 1 ,  568 
for vector potential, 569 
deduced from "lines of force end only 

on charge," 79-8 1 
derived from physics on a spacelike slice, 

4 1 9-420 
derived from stress-energy and Einstein 

field equation, 47 1-473 
and conservation of energy-momentum, 

483 
nowhere failing, 1 200 
See also Electrodynamics, Lorentz force 

law 
Mean eccentric anomaly, 648 
Measurability of geometry and fields in 

classical theory, 1 3  
Measurement, possibilities defined by 

theory, 1 1 84 
Measuring rods. See Rods 
Mercury, perihelion precession of See 

Perihelion shift 
Meshing of local Lorentz frames, 190- 1 9 1  
Metric 

distilled from distances, 306-309 
descriptions 

summarized, 77, 305, 3 IOf 
as machine with slots, 22, 5 1 -53 ,  77, 

305, 3 I Of 
in component language, 77, 3 IOf 
in terms of basis I -forms, 77, 3 1 0  
as hne element, 77, 305, 3 I O  
introduced and defined, 22 

components of 
in arbitrary basis, 20 I, 3 IOf 
in Euclidean coordinates, 22 
in Lorentz coordinates, 22, 53 

determinant of components 
defined, 202 
differentiated, gives contraction of 

connection coefficients, 222 
variation of, 503 

computation of connection coefficients 
from, 2 1 0, 2 1 6  

compatibility with covariant derivative, 
3 1 3ff, 353f 

structure, and symplectic structure, 1 26 
enters electromagnetism only in concept 

of duality, 105, 1 1 4 
role in spacetime of general relativity 

measured by light signals and free 
particles, 324 
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as "gravitational field," 399-400 
test for local Lorentz character, 

3 1 1 -3 1 2  
components not all predicted by 

geometrodynamic law, 409 
role in Newton-Cartan spacetime, 300, 

302 
coefficients in specific manifolds and 

frames. See specific manifolds, e.g., 
Sphere, 3-dimensional , 
Schwarzschild geometry, or 
coordinate systems, e g ,  Kerr-Schild 
coordinates 

Metric elasticity of space, 426-428 
Metric theories of gravity, 1067ff 

experiments to test whether the correct 
theory is metric, Chap. 38, 1 067 

PPN formalism as approximation to, 
1 069 

Microwave radiation. See Cosmic 
microwave radiation. 

Minima, number of, 3 I 8 
Minkowski geometry. See Lorentz geometry 
Missing matter, " mystery of," 7 1 0. See also 

under Cosmology 
Mixmaster universe, 805-8 I 4. 
Mixmaster oscillations damp chaos, 769 
Mobius strip, 96 
Moment of inertia tensor defined, 977 
Moment of rotation 

as meaning of Einstein curvature, 
373-377 

conservation of, 378ff, 473 
"Moment of time" means "spacelike 

hypersurface," 7 1 3-7 14, 1 1 84 
Momentum, in mechanics, as space rate of 

change of action, 486-487 
Momentum field, electromagnetic, 497f, 524 
Momentum space, 583ff, 590 
Momentum vector. See Energy-momentum 

4-vector 
Moon 

effect on tides, 44 
shadow on Earth, 24-26 
laser ranging to, 1 048, l 1 30f 
orbit of, tests of general relativity using, 

1 048, 1 1 1 6, 1 1 1 9 ,  1 1 27- 1 1 3 1  
separation from Earth as 

gravitational-wave detector, l 0 1 3f, 
1 0 1 8  

Morse theory, 3 1 8  
Mossbauer effect, 63, I 056, 1057 
Motion. See Equations of motion 
Moving frame. See Tetrad 
Multicomponent fluid, 558  
Multipole expansion of Newtonian 

potential, 99 1 
Multipole moments of Kerr-Newman black 

hole, 883 ,  892 

N 

Near zone for radiation theory, 997, 
999- 1 000 

Neutral stability, 697 
"Neutral relationship to ."  See Causal 

relationships 
Neutrinos 

emitted in stellar collapse, 599 
transport energy in collapsing star, 628 
redshift when emitted by a collapsing 

star, 850 
from big-bang, 7 1 2, 736-737, 164-765 
damp anisotropy of expansion, 803 
formalism for analyzing in curved 

spacetime, I 1 64 
Neutron-star matter, 599 

idealized as simple fluid, 5 58  
equations of state for ,  624-626 

Neutron stars, 6 1 9f, 622 
models for, 625-627 
mass limits, 627 
rotation of, 628 

as source of gravitational waves, 983, 
986, 1 040 

pulsation of, 628 
as source of gravitational waves, 

982-986 
stability of 626-627, 696 
creation by stellar collapse, 627-629 

N ewman-Penrose constants, 870f 
Newton-Cartan theory of gravity 

contrasted with Einstein's theory, 3ff, 1 97, 
245, 297f, 302f 

incompatibility with special relativity, 
1 77, 304 

standard Newtonian formulation of 
in brief, 1 77 ,  30 1  
a s  approximation to  general relativity, 

4 1 2-4 1 6  
a s  approximation to metric theories of 

gravity, J 077f, 1 097 
useful formulas and computational 

techniques, 1078f 
vinal theorems, 1 079 
stress tensor for Newtonian 

gravitational field, 1078f 
Cartan's curved-spacetime formulation of 

in extenso, Chap. 1 2  
i n  brief, i n  language of Galilean 

coordinates, 289f 
in brief, in coordinate-free language, 

300f 
transition between languages, 298f 

transition between Newton formulation 
and Cartan formulation, 289f, 299 

Noise, extraction of signals from, 1 036ff. See 
also Grav1tal1onal-wave detector, 

Nonlocalizability of gravitational energy. 
See under Mass-energy, total ;  
Energy,momentum, Pseudotensor 

Nonorientable surface, 96 
Nordstrom's theories of gravity. See under 

Gravitation, theories of 
Nordtvedt effect, 1 1 28- 1 1 3 1  
Norm o f  a p-form, 97 
N ormal, unit normal m terms of lapse and 

shift, 508 

1 2 7 1  

Normal coordinate system, 1 055 
Nothing, as foundation of everything 

Leibniz on, 12 I 9 
geometrodynamics as early model for, 

1 202- 1203 
calculus of propositions as a later model 

for, 1 209, 1 2 1 1 - 1 2 1 2  
Novikov coordinates, 826f 
Nuclear burning in stars 

drives pulsational instability, 632 
HCNO cycle, 632 
catalyzed to endpoint, 624-626 
formulation of thermodynamics in 

presence of, 558  
Number-flux vector 

introduced, 1 3 8- 139  
for photons in geometnc optics limit, 

580 
Number-flux relation, in cosmology, 798 
Number space, 24 1 
Nuclear matter. See Neutron-star matter 
N ucleosynthesis in big bang, 760, 762 
Null experiments, 1 050, 1 064 

0 

Observational cosmology, Chap. 29 See 
under Cosmology 

One-form See under Forms, differential 
Optics See Geometric optics 
Olber's paradox, 756 
Oppenheimer-Volkoff equation of 

hydrostatic equilibrium, 605 
Oppenheimer-Snyder model for collapsing 

star, 85 1-856 
Orbit, See Keplerian orbits. Planetary orbits. 

See also geometry in which the 
orbits occur, e.g., Schwarzschild 
geometry 

Orientation 

p 

of space, embodied in duality operation, 
97 

of form, 
I -form, illustrated, 55 
2-form, illustrated, 1 00, 1 04, 1 07, 1 09, 

1 1 6 
3-form, 1 1 7 

of volumes, 1 33, 1 35f, 1 47- 150  
relative, of domain and  its boundary, 96 

Pair production 
by photon, 70 
at high temperatures, 5 5 8  
by  tidal gravitational forces, 750, 769, 

803f, 8 1 6  
damps aniso tropies o f  geometry, 769, 

Rmf 
Pairs 

free-fall of, experimental test, 1 05 1 
in early stages of standard cosmological 

model, 736f, 764 



Parallax, 757 
Parallel transport 

in brief, 208f 
in extenso, 245-263 
equation of, summarized, 224 
illustrated, 209, 2 1 2  

1 2 7 2  

See also Fermi-Walker transport 
Parallelepiped, trivector and I -form 

representation of, 133 ,  1 35- 136  
Parametrization, of geodesic, 244-246 
Parametrized post-Newtonian formalism 

history of, 1 049, 1 073 
described qualitatively, 1 049, l 068f, l 072f 
summary of technical details, 1 092 
notation, l073f, l092f 
accuracy and realm of validity, 1 069, 

l072f, 1 075 
metric theories encompassed by and not 

encompassed by, 1 069 
parameters 

described qualitatively, 1 069, 1 072 
defined precisely, l080f 
translated from one convention to 

another, 1 093 
values for several theories, 1072 

parameters, experimental limits on 
y, 1 103, 1 1 05 ,  l l08f 
/3, 1 1 1 1 , 1 1 1 3 
0:3 = 4/3, - 2y - 2 - t 1 1 14 
"'z - Ll2 + t - I ,  1 1 24 
°'3 = 4/3, - 2y - 2 - t 1 1 25 

foundations of 
coordinates of, 1 073f, 1 082- 1087,  1 089, 

1 09 1 ,  1097 
expansion parameters and their 

magnitudes in the solar system, 
1068 ,  1075 

radiation zone excluded from, 1075 
time derivatives small compared to 

space derivatives, 1075 
shear stresses typically negligible, 1 074f 
expansion procedure, 1 075ff 
metric coefficients, pattern of, l076f, 

1 080, I 1 00 
description of matter 

thermodynamic functions in, 1 074f 
velocity of matter, 1 073f, 1086 
transformation between coordinate 

frame and rest frame of matter, 
1 087 

stress-energy tensor, l086f 
matter generates gravity 

gravitational potentials (functions 
appeanng in metric) ,  1080f, 1085 

nonlinear superposition of gravitational 
fields, 1096 

identities relating potentials to each 
other, 1082, 1 089 

metric coefficients, precise form of, 
1 084f 

Christoffel symbols, 1089 
equations of motion for matter, l087ff 

baryon (rest mass) conservation, 1088 
energy conservation law, 1088 

Euler equation, 1088 
post-Galilean transformations, and 

invariance, 1085 
velocity of coordinate frame relative to 

universal preferred frame, l083f, 
1098,  1 1 1 4 

applications of 
total mass-energy of a body calculated, 

1 09 1 ,  1094, 1 099, l l 25f 
gravitational field of isolated, spherical 

sun, l097ff 
gravitational field of sun with 

quadrupole moment, 1 1 1 5 
gravitational field of rotating Earth, 

1 1 1 9 
why high-speed particle motion probes 

only the parameter y, 1 099ff 
propagation of light and radio waves, 

1099- 1 1 09 
deflection of electromagnetic waves by 

sun, I I O I  ff 
radar time-delay in sun's gravitational 

field, 1 1 03, 1 106- l 1 09 
many-body ("EIH") equations of 

motion, 1 09 l, l 094f 
equation of motion for a spinning 

body, l l 20f 
penhelion shift, 1 1 1 0- l  l 1 6  
three-body effects in lunar orbit, l l 1 6  
precession of a gyroscope, l l 17- 1 1 20 
Cavendish gravitational constant 

derived, l 1 25f  
Partial differential equations, 

applications of differential geometry to, 
198 

rationale of analyzing, 485 
Particle-physics experiments as tests of 

special relativity, l 054f, I 060. See also 
under Conservation laws 

Particles. See Pairs; Conservation laws 
Passive vs active transformations, 1 1 40 
"Past of." See Causal relationships 
Path integral. See Feynman's sum over 

histories 
Pauli principle, as test of Riemannian 

geometry, 398-399 
"Peeling theorem," in radiation theory, 

1 1 65 
Perfect cosmological principle, 745 
Perfect fluid 

defined, 1 32, 1 40 
stress-energy tensor for, 1 32, 140 
See also Hydrodynamics 

Perihelion shift, 39 l f 
for nearly circular orbits in exact 

Schwarzschild geometry, 670 
in post-Newtonian limit of general 

relativity, I l l0- 1 1 1 6 
in PPN formalism, l I I 0- 1 1 1 6 
in linearized (spin-2) theory, 1 83f, 446 
in spin-0 and spin- I theories of gravity, 

179 
observational data on, I l l 2f 
Einstein on, 433 

G RAVITAT I O N  

Permutation tensor (same as alternating 
tensor), 1 26, 1 28f, 207, 343 

Perturbation theory for spacet1me geometry 
general formalism 

connection coefficients in terms of 
metric perturbation, 966-967 

curvature tensors in terms of metric 
perturbations, 966-967 

action principle for metric 
perturbations, in vacuum, 972f 

gauge transformations, 967ff 
stress-energy of metric perturbations in 

shortwave limit, 969 
applications 

shortwave approximation for 
gravitational waves, 964-973 

pulsation of relativistic stars, 688-699 
slow rotation of a star, 699 
to Friedmann cosmology, 800f 
to collapsing star, 844ff 
stability analyses of Schwarzschild and 

Kerr holes, 884f 
Petrov-Pirani classification of spacetimes, 

902 
Phase, of de Broglie wave, 53-55 
Phase, in geometric optics, 57 l f, 574f 
Phase space, 1 26, 584f, 5 90 
Photons 

splitting, forbidden for plane wave, 70 
world lines of, 388  
kinetic-theory description of, 5 87-589 
in geometric optics, 580 

Physical optics, correspondence with 
geometric optics, 4 I 2 

Piercing of surfaces, of a form. 55f, 60, 99, 
202, 23 1 

Piezoelectric strain transducer, 40 I 
Pit in the potential, 636-637 
Planck length 

defined, I O  
relevance t o  fluctuations i n  geometry, IO, 

1 1 80, l l 92ff 
Plane electromagnetic waves in curved 

spacetime, 96 1 -962 
Plane gravitational waves, exact 

form of metric, 957 
field equations and solution for a pulse 

of waves, 958-959 
linearized limit of, 95 8 
Riemann curvature of, 959 
global structure of spacetime, 95 8-960 
effect on test particles, 960-96 l 
comparison with exact electromagnetic 

plane wave, 96 1 -963 
stress-energy of, 963 
in language of shortwave approximation, 

962-963 
Plane gravitational waves in linearized 

theory, 945f, 949, l004ff 
Planetary orbits 

periodic relat1v1st1c effects m, 1 009, I O I  I 
deviations from geodesic motion, l l l l ,  

1 1 26 1 1 3 1  
See also Keplerian orbits, Perihelion shift 
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Plateau, problem of, 877 
Poincare transformation, 68 
Positive sense. See Orientation 
Poisson bracket, 654 

generalized, 486 
Poisson's equation for New tunian 

gravitational potential, 290, 299, 30 1 
Polarization of a gravitational wave 

tensors defined 953f, 97 1 
plane (linear) , 952f 
circular, 953f 
elliptical, 955 
compared with that of an electromagnetic 

wave, 952-954 
rotational transformation of states, 954 
parallel transport of, in geometric-optics 

limit, 97 1 
line-of-force diagram, J O I  1 - 1 0 1 2  

Polarization o f  a neutrino, 954 
Polarization of radiation fields with 

arbitrary spin, 954-955 
Polarization vector for electromagnetic 

waves, 573ff, 577f, 5 8 1  
Post-Galilean transformations, 1 085 
Post-Newtonian approXImation to general 

relativity, 1 069 
obtained from PPN formalism ,  1 073 
derived by post-Newtonian expansion of 

field equations, J089f 
stellar structure and stability analyzed 

using, 1 073 
many-body ("EIH") equations of motion, 

1 09 1 ,  1 094f 
See also Parametrized post-Newtonian 

formalism 
Post-Newtonian expansion procedure, 

J 075ff. See also Parametrized 
post-Newtonian formalism. 

Post-post-Newtonian approximation, 1 069, 
1 077 

Post512-Newtonian approximation and its 
relationship to radiation damping, 1 077 

Potentials, effective. See Effective potentials 
Pound-Rebka-Snider experiment, J056ff 
Poynting flux, 122 ,  1 40f, 48 1 ,  550 
Precession 

of perihelion. See Perihelion 
of spin axis. See under Spinning body 

Precession component, of Einstein field, 547 
Preferred-frame theories of gravity, 1083,  

1 093, 1098,  I 1 23ff 
Preferred-frame effects, experiments to 

search for, 1098 ,  1 1  I 3f 
Pregeometry, 1 203- 1 2 1 2  passim 

as calculus of propositions, 1 208- 1209, 
1 2 1 1 - 1 2 1 2  

Pressure, i n  stress-energy tensor fo r  a 
perfect fluid, 1 32  

Price's theorem, 863 ,  866 
Primordial fireball. See Cosmic microwave 

radiation 
Principal null congruences of Wey! tensor 

defined, 902 
for Kerr-Newman geometry, 90 1 -904 

Prior geometry, 429ff, 1 068 ,  J070f 
Probability amplitude 

for a history, 4 1 9  
phase of, given b y  action, 486, 49 1 

Projection operator for transverse-traceless 
part of a tensor, 948 

Projection tensors, 565f 
Propagator, mentioned, 1 20 
Proper distance. See Interval, Lorentz 
Proper reference frame of an accelerated 

( or unaccelerated) observer 
constructed, 327-332 
metric, 33 I f  
connection coefficients, 330f 
inertial and Coriolis forces, 332 
applied to definition of thermodynamic 

potentials, 557f 
applied to analysis of gravitational-wave 

detector, 1 005- 1 0 10 ,  1 0 1 2  
Proper time See Interval, Lorentz 
Pseudotensors of stress-energy for 

gravitational field, 465f 
do not  localize gravitational energy, 466f 
order of magnitude of, 996, 999f 
used in analyzing generation of 

gravitational waves, 996-999 
for waves, averaging gives stress-energy 

tensor, 972 
Pulsars 

Q 

discovery of, 620, 762 
theory of, 628, 630 
timing data as a probe of neutron-star 

structure, 628, 630 
experimental tests of general relativity 

using, 1 047 
in idealized experiment on "prior 

geometry," 430 
See also Neutron stars 

Q of an oscillator, 1 025 
Quadrupole-moment parameter for sun, J2, 

1 1 12f, 1 1 1 5 
Quadrupole moment, 977 

coupling to curvature produces 
departures from geodesic motion, 

476-480 
precession of spin axis, 39 If 

reduced, 977 
as integral over mass distribution, 975, 

977 
as trace-free part of second moment of 

mass distribution, 977 
as coefficient in 1 /r expansion of 

Newtonian potential, 991 
and generation of gravitational waves, 

975, 99 1 -994 
Quantum fluctuations 

in electromagnetic field, 427, I I 90f 
in geometry of spacetime, 4 1 9, 480, 

1 1 90- 1 1 94, 1 202 
and zero-point energy of particles and 

1 2 7 3  

fields, as responsible for gravity, 
426ff 

Quantum geometrodynamics 
commutation of observables in, on 

spacehke hypersurface, 554 
ideas of Penrose and Hawking on, 936,  

938,  940 
See also Pair production, Quantum 

fluctuations 
Quantum theory 

angular momentum commutators, 236 
general operators, 236 
correspondence principle, 4 1 3  
particle self-energies, 474f 

Quantum propagator, 1 1 94 
Quasars, 76 I f  

distances to, controversy over, 767 
evolution of population, 767f, 770 
models for energy source, 634-635 ,  687 
use in experimental tests of general 

relativity, J047f, 106 I, I JO I, I J 03ff 
Quaternions. See Spin matrices 

R 

Radiation, description of spectrum, 588  
specific intensity I, defined, 587 ,  589 
specific flux F, defined, 1 025 
flux F defined, 782 
conservation of I ,/v3 (Liouville's 

theorem), 587-5 88  
redshift of temperature of black-body 

radiation, 5 88  
Radiation, electromagnetic 

pictorial explanation of 1 /r behavior, 
I ! Of 

and causality, I J O  
of oscillating dipole, 1 1 1 - 1 12 

Radiation, gravitat10nal. See Gravitational 
waves 

Radiation reaction, 474, 993f 
Radiation zone, 997 
Radar time delay in Sun's gravitational 

field, 1 048, 1 103, esp. I 1 06- 1 1 09 
Radio sources, cosmic, 759-762 

isotropy on sky, 703 
See also Quasars 

Radius of closed Friedmann universe, 704f 
Raising indices. See Index manipulations 
Rays, in geometric optics, 573ff, 5 8 l f  
Redshift, cosmological 

independent of wavelength, 775 
"tired light" does not explain, 775 
derivations 

from standing waves, 776 
from wave-crest emission, propagation, 

and reception, 777f 
using symmetry-induced constant of 

geodesic motion, 777, 780 
used to characterize distances and times 

in universe, 779 
contrasted with Doppler shift, 794 
of particle energies and de Broglie waves, 

780 
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Redshift (continued) 
of cosmic microwave radiation, 764-765, 

779 
in anisotropic cosmology, 80 I 
See also under Cosmology 

Redshift 
Doppler, 63f, 794 
due to "ether drift," 1064f 
of radiation from a collapsing star, 847, 

849f, 872 
Redshift. gravitational. for gravitational 

wave;, 956f, 968 
~ 

Redshift, gravitational, for photons 
compared with 1 970 clock technology, 

1048 
experimental results, 1058 ,  1060 
Pound-Rebka-Snider experiment, 

1 056- 1058 
in solar spectum, 1 05 8- 1060 
equivalence principle tested by, 1 89f, 

1056 
geodesic motion tested by,  1055- 1060 
implies spacetime is curved, 1 87- 1 89 
derivation 

from energy conservation, 187 
from geodesic equation in generic 

static metric, 657, 659 
in linearized theory, 446f 

Redshift, gravitational, for temperature, 
568 ,  685 

Redshift parameter, z,  defined, 1 87 
Regge-Wheeler radial coordinate, See 

Tortoise coordinate 
Reference system. See Coordinate system, 

Inertial frame, Lorentz frame, Proper 
reference frame 

Regge calculus, 
surveyed, Chap 42 
suitable for low-symmetry 

geometrodynamics, I 1 66 
geometry determined by lengths, I 1 67 
simph:xes and deficit angles, I 167- 1 1 69 
skeleton geometry, I 1 69 
hinges, I I 69 
continuum limit of, 1 1 69 
blocks associated with one hinge, 1 1 70 
variational principle for 

geometrodynamics, 1 1 70 
flow diagram for, 1 1 7 1 - 1 1 72 
initial-value data in, I 172 
Einstein's geometrodynamic law, 

expressed in, 1 1 73 
choice of lattice structure, 1 1 73- 1 1 77 
supplementary vertices in, I 176 
facing, packing, and right-through blocks, 

1 1 76 
count of faces, 1 1 77 
choice of edge lengths, 1 1 77- 1 178  
applications and future of, 1 1 78- 1 1 79 

Reissner-Nordstmm geometry 
derivation of metric, 840-84 1 
Kruskal-like coordinates for, 841 
coord inates with infinity conformal ly 

transformed, 920 

global structure of, 920-92 1 
throat for Q = M identical to 

Bertotti-Robinson universe, 845 
uniqueness of (Birkhoff-type theorem) ,  

844ff 
as limiting t;a,e of Ke1 1 -New111an, 878 

Reversible and irreversible transformations 
in black-hole physics, 889f 

Relative acceleration See Geodesic 
deviation 

Relativity .  See Special relativity; General 
relativity 

Renormalization of zero-point energy of 
particles and fields, 426ff 

"Reprocessing" of universe, 1 209, 
1 2 1 3 - 1 2 1 7  

Retarded fields and radiation reaction, 474 
Retarded potential, 1 2 1  
Ricci curvature . See under Curvature, 

formalism of 
Ricci rotation coefficients See Connection 

coefficients 
Ricci rotation I -forms. See Rotation 

I -forms. 
Riemann. See under Curvature, 

formalism of 
Riemann normal coordinates, 285ff, 

480-486 
Riemanman geometry 

characterized, 242, 304f 
track- I treatment of, Chap. 8 
track-2 treatment of, Chap. 1 3  
Riemann's founding of, 220 
of apple, is locally Euclidean, 1 9-2 1 
of spacetime, is locally Lorentzian, 1 9-23 
See also specific concepts, such as Metric, 

Connection 
Robertson-Walker line element, 722, 759 
Rods, 30 1 ,  393, 396-399 
Roll-Krotkov-Dicke experiment. See 

Eotvos-Dicke experiments 
Rotation 

as stabilizer of stars, 633f 
rigid-body, 1 23f 
of universe, limits on, 939 

"Rotation" 
of a field of I -forms, 123f 
of a field of 4-velocities, 566 
of rays, in spinor language, I I 65 

Rotation group, SO(3), manifold of 
generators, 242-243 , 264 
structure constants, 243 , 332 
geodesics and connection, 264, 332 
Riemann curvature, 288 
metric, 332 
isometric to 3-sphere, 725 
used in constructing mixmaster 

cosmological model, 807 
Rotation matrices. See Spin matrices 
Rotation I -forms w µ, ,  350-354, 360 

matrix notation for, 359 
See also Covariant derivative, Connection 

coefficients 
Rotation operators See Spin matrices 

G RAVI TAT ION  

Rotations 
in coordinate plane, 67 
composition of, 1 1 35- 1 138  
Rodrigues formula, 1 1 37 
represented as two reflections, I 137ff 
hd!f-angles arise from reflections, I I 37  
infinitesimal, l 70f, l 1 40ff 

Rutherford scattering, 647, 669 
relativistic corrections to, 669f 

s 

Saddle points, number of, 3 1 8  
Sakharov view o f  gravitation, 426-428 
Scalar field 

stress-energy tensor, 483 
equation of motion, from Einstein's field 

equation, 483 
propagation in Schwarzschild geometry, 

863, 868ff 
Scalar product of vectors, 22, 52f, 62 
Scalar-tensor theories of gravity. See under 

Gravitation, theones of 
Schild's argument for curvature, I 87- 1 89 
Schild's ladder, 

descnbed, 249 
applications, 25 1 -253, 258, 263, 268, 278 

Schwarzschild coordinates 
for any static, spherical system, 597 
for Schwarzschild geometry, 607 
pathology at gravitational radius, 1 1 ,  

823-826 
for a pulsating star, 689 

Schwarzschild geometry, 822 
in extenso, Chaps. 25 , 3 1  
as limiting case of Kerr-Newman, 878 
Birkhoff's theorem for, 843-844 
denvation from 

full field equations, 607 
initial-value equation, 538 

coordinate systems and reference frames 
Schwarzschild coordinates, 607, 

823-826 
isotropic coordinates, 840 
Novikov coordinates, 826-827 
ingoing Eddington-Finklestein 

coordinates, 3 12 ,  828f, 849 
outgoing Eddington-Finklestein 

coordinates, 829ff 
Kruskal-Szekeres coordinates, 827, 

83 1 -836 See also 
Kruskal-Szekeres coordinates 

tortoise coordinate, 663, 665f 
coordinates with infinity conformally 

transformed, 9 l 9f 
orthonormal frames, 82 1  

Riemann curvature, 82 l ff  
structure and evolution 

Einstein-Rosen bridge (wormhole), 
837ff, 842f 

topology, 838ff 
not static inside gravitational radius, 

838 
evolution, 838ff, 842 
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embedding diagrams, 528, 837, 839 
diagram of causal structure, 920 
singularities. See Singularities of 

Schwarzschild geometry 
singularities at r = 0. See under 

Singularities. 
explored by radially infalling observer, 

820-823 
destruction of all particles that fall inside 

gravitational radius, 836, 839, 860-862 
test-particle motion m 

in extenso, Chap. 25 
analyzed using Hamilton-Jacobi theory, 

649 
analyzed using symmetry-induced 

constants of the motion, 656-672 
orbit lies in a "plane," 645f, 655 
conserved quantities for, 656 
angular momentum, 656lf 
energy-at-infinity, 656lf 
effective potential for radial part of 

motion, 639, 656, 659-662 
qualitative description of orbits, 662 
radial orbits, details of, 663-668, 

820-823, 824-826, 835 
nonradial orbits, details of, 668 
circular orbits, stability of, 662 
binding energy of last stable circular 

orbit, 885 ,  9 I I 
periastron shift for nearly circular 

orbits ,  670 
scattering cross section, 669f 
deflection angle, 67 1 

photon motion in 
shape of orbit, 673, 677 
effective potential for radial part of 

motion, 673f, 676 
qualitative description of, 674f 
impact parameter, 672 
critical impact parameter for capture, 

673 
escape versus capture as a function of 

propagation direction, 675 
scattering cross sect10n, 676-679 
capture cross section, 679 

wave propagation in 
effective potentials for, 868, 870 
scalar field, analyzed in detail, 863, 

868lf 
electromagnetic field, Newman-Penrose 

constants, 870f 
fields of zero rest mass, integer spin, 

866 
Dirac equation in, 1 164 
perturbations of 

high-frequency, analyzed by geometric 
optics, 640 

wave equations for, related to 
Hamilton-Jacobi equation, 640 

stability against small, 884 
applications 

as external field of a static star, 607 
as exterior of a collapsing , tar, 846-850 
matched to Friedmann geometry to 

produce model for collapsing star, 
85 l lf  

many Schwarzschild solutions joined in 
lattice to form closed universe, 
739f 

Schwarzschild lattice universe, 739f 
Schwarzschild radius. See Gravitational 

radius 
Schwarzschild surface. See Gravitational 

radius 
Schwarzschild's uniform-density stellar 

model, 609-6 1 2  
Second, changing definitions of, 23-29 
Second law of black-hole dynamics, 93 I If 

formulated with assumptions ignored, 
889, 89 1 

reversible and irreversible 
transformations, 889f, 907-9 10 ,  9 1 3  

used to place limits o n  gravitational 
waves from hole-hole collisions, 886 

Second law of thermodynamics, 563, 567f 
Second moment of mass distribution, 

defined, 977 
Selector parameter 

defined, 265-266 
used in analysis of geodesic deviation, 

Chap. 1 1  
"Self-energy," infinite, 474 
"Self-force," 474 
Semicolon notation for covariant derivative, 

2 1 0  
Semimajor axis o f  a n  elliptic orbit, 647 
"Sense." See Orientation 
Separation vector, 29lf, 2 I 8f, 265-270 
"Shear" 

of a congruence of world lines, 566 
of a bundle of null rays, 582 
in spinor language, 1 1 65 

Shear stress 
idealized away for perfect fluid, I 40 
produced by viscosity, 567 
in PPN formalism, 1 074, 1075n 

Shell crossing, 859 
Shift function 

as Lagrange multiplier, 487 
metric interval as fixed by, 507 
covariant and contravariant forms of, 

507f 
award of arbitrariness in, reversed, 532 
two variational principles for, 538 

Shock waves 
hydrodynamic, 559 ,  564, 628 
in spacetime curvature, 554 

Signature, of metric, 3 1 1 
Simple fluid, defined, 5 5 8  
Simplex, 307, 3 80f, I 1 67lf 
Simultaneity 

in Newton, Minkowskii, and Einstein 
spacetime, 296 

as term for spacelike slice See Spacelike 
slice 

Singularities, coordinate, 1 0- 1 2  
illustrated b y  Schwarzschild coordinates, 

1 1 , 823lf 
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Singularities in geometry of spacetime 
definitions of, 934 
theorems on creation of, 934lf, 936, 938, 

762 
structures of. 935 .  940. 804lf 
cosmic censorship vs. naked smgularities, 

937 
in Schwarzschild geometry, 

and evolution of the geometry, 838f 
remote possibility that infalling objects 

might de;twy, 840 
and spherical gravitational collapse of 

a star, 846, 860ff 
Mixmaster, 805-8 I 3 

is generic, 806, 940 
changing standards of time near, 8 1 3f  
initial, of the  universe, 769f 

what "preceded" it? 769f 
prospects for understanding, 707 

should one worry about singularities? 
Misner's viewpoint, 8 1 3f 
Thorne's neutrality 
Wheeler's viewpoint, I l 96lf 

unphysical, due to overidealization 
surface layers, 5 52-556 
shell crossings, 859 

Signals, extraction of from noise, 1036- 1 038  
Size 

related to angular momentum, 1 62 
of accelerated frame, 168f 

Skeleton geometry, 309,  I 169 
Skeleton history, 499 
Slicing of spacetime, 506. See also 

Spacelike slice 
"Slot" in machine concept of tensor. See 

Tensor 
Solar system, 752-756 

ephemeris for (J .P.L.) ,  1095 ,  1 097 
relativistic effects in, magnitude of, 1 048, 

1068 
Nordtvedt effect in, 1 128 
See also Earth, Moon,  Planetary orbits, 

Sun, Experimental tests of general 
relativity 

Space 
Newtonian absolute, 1 9, 40, 29 l f  
foamlike structure and quantum 

fluctuations, 1 204 
not spacetime, as the dynamic object, 1 1 8 1  
See also Manifold, Differential geometry, 

Differential topology, Affine 
geometry, Riemannian geometry 

Space theory of matter, 1 202- 1 205 
Source counts in cosmology, 798 
Spacecraft, used to test general relativity, 

I 108f, 1 1 14 
"Spacelike relationship to." See Causal 

relationships 
Spacelike slice 

as "moment of time" i n  spacetim e, 7 1 3[ 
as the dynamic object in superspace, 

423f, 1 1 8 1  
geometrodynam1cs and electrodynamics 

derived from physics on, 4 1 9-423 



1 2 7 6  

Spacelike slice (continued) 
See also Embedding diagrams, Initial 

value, Three-geometries 
Spacetime geometry 

Newtonian. See Newton-Cartan theory of 
gravity. 

Minkowskiian (Lorentz) See Lorentz 
geometry 

Einsteinian 
modeled by apple, 4 
Riemannian character tested by 

stability of Earth, 398f 
curvature of, implied by gravitational 

red shift, 1 87lf 
stratification denied by locally Lorentz 

character of physics, 304f 
viewed as a "gravitational field," 399f 
as dynamic participant in physics, 337 
response to matter, as heart of general 

relativity, 404 
as classical approximation, 1 1 8 1  f 
as classical leaf slicing through 

su perspace, I I 84 
See also General Relativity, 

Geometrodynamics, Curvature of 
spacetime 

Newtonian, Minkowskiian, and 
Einsteinian, compared and 
contrasted, 296, 437 

Special relativity 
briefly outlined, 47-48 
spelled out, Chaps. 2-6 
does not take in gravitation, Chap. 7 
local validity as central feature of curved 

spacetime, 304f 
See also specific concepts, e.g ,  

Electromagnetic field, Lorentz 
transformations 

Specific intensity, defined, 587, 589 
Specific flux,  defined, 1025 
Sphere, 2-dimensional (S2) 

two coordinate patches to cover, 1 2  
topology of, 24 l f  
metric on, 340 
Riemann tensor of, 34 1 

Sphere, 3-dimensional (S3) 
volume of, 724 
hyperspherical coordinates and metric 

for, 723f 
Riemann curvature tensor, 72 1 
embedding diagram, 723 
compared with spheres of lower 

dimensionality, 704 
isometric to manifold of rotation group, 

725 
Spherical symmetry, Killing vectors for, 658 
Spherical systems, static 

Schwarzschild coordinates for, 594-597 
isotropic coordinates for, 595 
orthonormal frames for, 598 
rigorous derivation of line element, 6 16f 
curvature tensors for, 360f 

Spherical systems, dynamic 
Schwarzschild coordinates for, 6 1 6f, 689 

curvature tensors for, 36 1  f 
Birkholf's theorem for, 883f 

Spin,  as nonclassical two-valuedness, 1 204 
Spin matrices 

in law of combination of rotations, I 136 
as  quaternions or rotation operators, 1 1 36 
Hermitian conjugate of, 1 1 3 8  
algebraic properties, 1 1 37- 1 1 42 
and 3-vectors, l 140f 
and 4-vectors, I I 42f 
associated spin matrices, I I 52f 
multiplication law for, I 1 53 

Spinning body 
equation of motion for, l 1 20f 
transport law for spin 

Fermi-Walker, in absence of curvature 
coupling, 1 65 ,  I 76f, I I 1 7  

modified by  curvature coupling, 39 l f  
spin precessions 

"general," 39 l f  
Thomas, l75f, 1 1 1 8 , I 145lf 
frame-dragging, 1 1 1 9f 
due to space curvature ("geodetic"), 

I I 1 9f 
Spindown of black holes, 886 
Spinors 

general account, Chap. 4 1  
and orientation-entanglement relation, 

1 148lf 
defined by their law of transformation, 

l 148lf 
conjugate complex, 1 1 50 
with dotted indices, 1 1 50 
correspondence with vectors, l I 50ff 
of higher rank, 1 1 5 1  
algebra of, 1 1 5 1 - 1 1 5 5  
spinor equivalent of  tensors, I I 53f 
spin space and basis spinors, 1 1 56 
flagpole plus flag plus 

orientation-entanglement relation, 
1 1 57- 1 160 

in curved spacetime, I I 64 
analyze appearance of night sky, 

1 160- 1 1 64 
as tool in gravitation theory, I 1 64f 

Standard candle, 789 
Standard hot big-bang cosmological model. 

See under Cosmology 
Star clusters, relativistic, 62 1 ,  635 

creation by evolution of a galactic 
nucleus, 634 

analysis of structure, 679-683 
equations of structure summarized, 683f 
relativistic instability in, 62 1 ,  686f 
collapse of, 884 
possible roles in quasars and galactic 

nuclei, 634, 687 
specific models 

with purely circular orbits, 683 
self-similar, 683 
isotropic, 683f 
isothermal, spherical, 685ff 

Star operations. See Duality 
Starquake, 628 

GRAVITATI O N  

Stars, evolution into final state, 62 1 ,  624, 
627-629 

Stars, Newtonian 
equations of structure, 60 1 -602, 605 ff 
gravitational energy, 606-607 
uniform-density model, 609 
pulsation theory 

dynamical analysis, 697f 
virial- theorem analysis, l 079f 
volume-averaged analysis, 630f 

Stars, relativistic, nonrotating 
structure 

in extenso, Chaps. 23, 24 
equations of structure summarized, 

608-609, 689 
must be spherical, 5 93 
Schwarzschild coordinate system, 597 
isotropic coordinate system, 595 
curvature tensors for, 360f 
Newtonian limit of gravitational 

potentials, 595 
parameters describing matter, 597-600 
proper reference frame of fluid, 598 
equations of structure derived, 600-606 
Newtonian limit of equations of 

structure, 60 1 -602, 605ff 
mass-energy inside radius r, 602ff 
must have 2m/r < I, 605 , 6 1 2f, 6 1 5  
total number of baryons, 606 
external gravitational field. See 

Schwarzschild geometry. 
monotonicity of r, 6 1 2-6 13 ,  6 1 5  
embedding diagrams for, 6 1 3-6 1 5 ,  6 1 7  

specific models 
how to construct, 608f 
Schwarzschild's uniform-density model, 

609-6 12  
Fermi-gas model with Pc = oo,  6 1 5 ff  
numerical models fo r  white dwarfs and 

neutron stars, 625lf, 696 
radial pulsation of 

dynamic analysis, 68 8-699 
boundary conditions for, 694 
eigenvalue problem for normal modes, 

695f 
N ewtonian limit, 697f 
post-Newtonian limit, 698f, 1 080 

stability of 
critical adiabatic index for radial 

pulsations, 697ff 
pulsational instability in massive stars, 

632 
relativistic instability, 605, 697lf 
See also under White-dwarf stars, 

Neutron stars, Supermassive stars 
collapse of See Collapse, Gravitational 
nonradial pulsation of, 984f 

Stars, relativistic, rotating 
slowly rotating, spherical stars, 699 
rapidly rotating disks, 621  
stabilizing effects of rotation, 633f 

Stars. See also Binary stars, Cepheid 
variable stars, Neutron stars, 
Supermassive stars, White dwarfs 
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Static limit, 879ff, 894 
Stationary gravitational field 

hydrostatic equilibrium in, 566 
thermal equilibrium in, 568 

Steady coordinates, 964 
"Steady flux of waves," defined, ! 0 1 9  
Steady-state cosmology, 745, 750, 770 
Stokes theorem, generalized, 96f, 1 27 

content in pictures, 1 1 7 
Gauss's theorem as special case, 97, I 50f 
applications, 96f, 125, 378 

Stress. See Stress-energy tensor 
Stress-energy pseudotensor. See 

Pseudotensor 
Stress-energy tensor 

summarized, 1 3 1 - 1 32 
in extenso, Chap. 5 
as machine to reveal energy density, 

momentum density, and stress, 1 3 1  f 
physical interpretation of components, 

l 37f 
symmetry of, 1 4 1- 142 
vanishing divergence, 1 52 
as functional derivative of Lagrangian, 

485, 503ff 
specific form for 

nearly Newtonian fluid, 1 52, 1 54 
perfect fluid, 1 32, 1 40 
viscous fluid with heat flowing through 

it, 567 
stressed medium with no heat flow, 

1 086f 
swarm of particles (kinetic theory) , 

1 38f, 589f, 680, 682 
spherical star cluster, 680, 682 
photons in geometric optics limit, 579f 
geometric-optics waves, 579 
electromagnetic field, 1 39- 140, 480ff 
scalar field, 504f 
gravitational field in spin-2 theory, 425 
gravitational field in general relativity. 

Does not exist; see Pseudotensor 
Structure 

Cartan's equation of, 378 
constants, of rotation group, 243 
deformation of, 530 
differentiable, 242 
symplectic, of H amiltonian mechanics, 

125- 126 
See also Global techniques, Horizons 

Sum-for-inertia. See Mach's principle 
Sum over histories . See Feynman's sum 

over histories 
Summation convention, Einstein's, 9 
Sun 

mass deduced from planetary orbits, 638 ,  
endpapers 

quadrupole moment, I 1 1 2f, l l  1 5 f, 1 053f 
gravitational field m PPN formalism, 

I 097ff 
velocity relative to Galaxy, local group, 

and universe, 1 1 1 4 
effect on tides, 44 
observed redshift of light from, I058ff 

radiation flux negligible compared to 
pressure, 1 075 

See also under Experimental tests of 
general relativity 

Super-Hamiltonian 
contrasted with Hamiltonian, 488f 
for test-particle motion 

in electromagnetic field, 488f 
in gravitational field, 654 
in combined electromagnetic and 

gravitational fields, 897f 
for mixmaster cosmology, 809-8 13  

Supermassive stars, 620f, 634 
convection in, 600 
entropy constant in, 600 
adiabatic index in, 633 
pulsational instability in, 632-633 
relativistic instability in, 605 , 620, 633f 
rotation as a stabilizer, 633-634 
possible roles in quasars and galactic 

nuclei, 634 
See also Neutron stars, White dwarfs 

Supernova, 6 1 9, 622 
Crab nebula created by, ii, 6 l 9f 
theoretical scenario for, 628 
as source of gravitational waves, 982, 987, 

1 040, ! 042 
Su perspace, 1 1 80- 1 1 83 

as starting point for Einstein's 
geometrodynamic law, 423 

quantum fluctuations, I 1 80 
spread-out wave versus wave packet, 

1 1 85 
conserved probability current in, 1 1 89 
truncated, skeleton version, I 1 8 1  
mixmaster version ("minisuperspace") ,  

806 
of 2-geometries, 22 1 

Surface integral. See Integration 
Surface of last influence, 873f 
Symmetry of tensor, indicated by round or 

square bracket, 1 26 
Symmetry operations as tensors, 1 26, 

1 28- 1 29 
Symmetries, more subtle than symmetry 

and antisymmetry, 86 
Symmetries of spacetime. See Killing vector 

fields 
Symmetrization, of tensor, 83 
Synchronous coordinate system,  7 1 7  See 

also Gaussian normal coordinate 
system 

Systeme International (SJ) second, 28 

T 

Tails of waves in curved spacetime, 957, 
864f, 869ff 

Tangent space, 205, 227-23 1 
at neighboring points, linked, 246f, 252 

Tangent vector See Vector, tangent 
Taub-NUT ,pac.:e, 940 
TCP, experimental tests of, ! 054 

1 2 7 7  

Teichmiiller space, 22 1 
Temperature. See Thermodynamics 
Temperature, redshift of, 568 ,  588 ,  685 
Tensors 

summaries of formalism for manipulating 
in global Lorentz frame, 85 
in manifold without metric, 233f 
in curved manifold with metric, 203f, 

223f 
machine-with-slots definition, 22, 74ff, 

1 3 1 ,  l 33f, 233f, 3 1 0f 
ambiguity of slots removed by component 

notation, 84 
rank, defined, 75f, 234 
components of 

in Lorentz frame, 75f 
in general frame, 20 1-204, 3 1 2  

operations on, introduced i n  global 
Lorentz frame 

indices, raising and lowering, 75-76 
addition, 76 
multiplication by scalar, 76 
tensor product, 76 
basis tensors, 76 
gradient, 8 1 -82, 84 
contraction, 82, 84 
divergence, 82 
transpose, 83 
symmetrization, antisymmetrization. 

83 ,  85f, 126 
wedge product, 83 
duality, 85 ,  87, 88 
integration, 1 47ff 

algebraic operations extended to  general 
frames, 20 1 -207, 233f 

covariant derivative introduced, 208ff, 
257-26 1 

Lie derivative introduced, 5 1 7  
spinor representation of, 1 1 53- 1 1 55  

Tensors, first rank. See Vectors, Forms, 
I -forms 

Tensors, second-rank symmetric, 
decomposition of, 947 

Tensors, completely antisymmetric. See 
Forms, differential 

Tensor density, 50 I f  
"Test body," defined, I050n 
Tests of general relativity See Experimental 

tests of general relativity 
Test particle, freely falling, defines geodesic, 

1 96 
Test particles 

three needed to explore Lorentz force, 72 
more needed to explore Riemann 

curvature, 72 
Tetrad 

carried by a uniformly accelerated 
observer, 1 69- 1 70 

in Fermi-Walker transport, 1 70- 1 7 1  
carried b y  accelerated observer, 328-332 

Tetrahedron, 307, 309 
Theories of gravitation. See Gravitation, 

theories of 
Thermal conductivity. See Heat conduction 



Thermal equilibrium in a stationary 
gravitational field, 568 

Thermodynamics 
in extenso, 557-562 
basic references, 557n. 568 
basic concepts defined simple fluid, 558  

multicomponent fluid, 5 58  
baryon number density, 558  density of total mass-energy, 558  
chemical potential, 5 58 ,  56 1 ,  562 entropy per baryon, 5 58  entropy 4-vector, 567 
temperature, 508 heat-flux 4-vector, 567 pressure, 5 5 8  

1 2 7 8  

primary thermodynamic potential, 5 6 1  
physical free energy, 5 6 1  chemical free energy, 56 1  equations of state, 560 adiabatic index, 692 viscosity coefficients, 567 

Jaws and equations of law of heat conduction, 559 Maxwell relations, 5 6 1 ,  564 
See also Conservation laws, baryons; 

First law of thermodynamics ; Second Jaw of thermodynamics ; Equation of state 
extension of formalism when nuclear burning occurs, 5 5 8  some applications and processes inJeCtion energy, 5 6 l f  shock waves, 559 

pair production at  high temperatures, 5 5 8  chemical potential for an  ideal Fermi 
gas, 565 

See also Hydrodynamics Thin-sandwich conjecture, 534 Thomas precession, 175- 1 76, 1 1 1 8 ,  l 1 46f Three-geometry 
of initial and final spacelike 

hypersurfaces, 488 
as carrier of information about t ime, 488 ,  

533 fixed at surface in ADM formulation, 522 
conformal 

in York's formulation of initial-value 
problem, 540-54 1  

pure spin-2 representation via York curvature, 54 1 
YES vs NO vs quantum probability for, I 1 84f 
See also Initial value, Spacelike slice Three-plus-one split of spacetime, 486, 505 sandwiches and rigidificat1on, 506 via 3-metnc plus lapse and shift, 506-507 4-metric vs. 3-metric in, 508 choice of slicing doesn't matter, 526 Tidal forces, 823, 860ff. See also Curvature of spacetime, Geodesic deviation Tides, produced by sun and moon, 38 ,  44, 

39 l f  

Time standards of, 23-29 defined so motion looks simple, 23-29 end of, in gravitational collapse, Chap. 44 many-fingered, 495 , 498, 527 
proper. See Interval 
imaginary coordinate for, not used, 5 1  
Newtonian universal, 40, 299 
See also Bubble-time derivative, Clocks, Day Tune dilation, experimental tests of, 1 054f Tired light, 775 Tolman universe, 733 Topology, point-set, 24 1 ,  926n Topology of spacetime various possibilities for Schwarzschild geometry, 837-840 various possibilities for Friedmann cosmological models, 725 Einstein vs. flat space views of, 437 
See also Differential topology Torque of sun and moon on Earth, 3 9 1 -392 

Torsion not present in affine connection if equivalence principle is valid, 250 vanishes in Riemannian geometry, 378 possible incorporation into general relativity, 1049, 1 068 Tortoise coordinate, 663,  665-666 Torus, three-dimensional, 284, 725 Transformations 
active vs. passive, 1 140 of tensors, 20 1 -204 of connection coefficients, 262 
of spinors, l l 49f 

Transpose of tensor, 83 Transverse-traceless gauge 
in linearized theory, 946-950 
in a curved background, 969 Trapped surface, 934, 936 Trivector, defined, 83 Tubes of force, 102, I 14  Twin "paradox," 1 67 Two-length-scale expansion, 57 l f  Twistors, 937 Two-form. See under Forms, differential 

u 
Unified theory of electricity and gravitation, 

Riemann's unsuccessful search for, 32, 22 1 
Uniqueness of free fall ("weightlessness," 

"weak equivalence principle"), 1 3- 1 9, 1 97 ,  1 050- 1054 
formulation of this book, 1050 
Einstein's 1 908 formulation, 5 contained in Einstein's 1 9 1 1 equivalence 

principle, 1 7  experimental tests o f  1 3- 17 .  1 05 1 - 1 054. 
See also Eotvos-Dicke experiment Universal Time (UT0, UT! ,  UT2), 28 Universe See Cosmological models, 

Cosmology 

GRAVITATION 

V 

Variational principles for spin-0, spin- I ,  
and spin-2 theories o f  gravity i n  flat spacetime, 1 78- 1 8  I Variational principles for test particle motion 

extremal proper time, 3 1 4-324 "dynamic" principle, 322f Variational principles for geometrodynamics 
Hilbert's, 434 

in extenso, Chap. 2 1  
i n  brief, 4 I 8 ,  485 what fixed at limits, 485 
scalar curvature as integrand in, 49 1 ,  

5 1 9 grounded in quantum character of physics, 499f 
in space-plus-time split, 5 I 9f put into ADM form, 520 
Sakharov renormalization of, 426 

Hilbert's. by Palatini's method 
sketched, 49 I analogy with mechanics, 49 1 -495 analogy with electrodynamics, 495-498 connection as independently variable 

in, 492 
Arnowitt, Deser, Misner in simplest form, 52 1  exploited, 526 specialized to mixrnaster cosmology, 

808f thin-sandwich, for lapse and shift, 538  
in shortwave approximation, 927f in Regge calculus, I I 70 
in superspace formulation, 1 1 86 

Vector, tangent introduced, 8- 1 3  definitions of as arrow, 49 as parametrized straight line, 49 as derivative of pomt, 49, 205, 226-229 as directional derivative operator, 205, 227-230 manipulations summarized. See under Tensor formalism of, in global Lorentz frames, timelike, null, and spacelike, 53 defining directional derivative, 59f 
correspondence to I -form, 58ff 
from I -form by raising index, 62 test for linear dependence, 83 transition to curved spacetime, 20 1 -207, 230f 

commutator, 204 formula for determining components of, 
232 transformation laws for, 230ff comparison by parallel transport, 245-263 correspondence of, with spinors, l l 50ff covariant components from spinor analysis, I I 53 Vector, p-vector, 9 1  Vectors, three-dimen,iunal (,patial), introduced, 64 
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Vector potential for electromagnetic field, 
in curved spacetime, 569f 

Velocity 4-vector 
defined, 49 
components, 50 
unit length, 54 
related to energy-momentum 4-vector, 

53f 
Velocity parameter, in Lorentz 

transformation, 67 
Vierbein. See Tetrad 
Virial theorems in Newtonian theory of 

gravity, 1 078 
evaluated for spherical stars, 607 

Viscosity and viscous stresses 
formalism for, 567 
damping of primordial chaos by, 769, 

802/f 
Vlasoff equation, 680. See also Collisionless 

Boltzman equation 
Volume, Hero-Tartaglia formula for, 307 
Volume I -form, 1 33- 137  

4-volume, 1 47 
volume integrals, 1 47- 1 5 1  

Volume i n  phase space, 5 84-5 87, 5 90 

w 
"Wave-dominated detector," defined, 1 0 1 9  
Wave vector, 573/f 
Wave function See Probability amplitude 

Wave operators 
d'Alembertian, 89, 1 20, 1 77 ,  1 83 
de Rham, for vector fields, 569 
Lichnerowicz-de Rham, for tensor fields, 

382 
conformally invariant, 542 

Wave number I -form, 55-58 
related to energy-momentum 4-vector, 57 

Weak equivalence principle. See 
Uniqueness of free fall . 

Wedge product 
of tensors and of forms, 83, 9 l f  
rules fo r  addition and multiplication, 92 
other names for, 83, 99 
of permutation tensors, 1 28f 

Weight, of a tensor density, 50 1  
Weightlessness. See Uniqueness of free fall 
White-dwarf matter 

thermal pressures negligible, 599-600 
electron capture in, 6 1 9  
equation o f  state for, 624/f 

White-dwarf stars, 6 1 9  
models for, 625-626 
Chandrasekhar mass limit, 6 1 9  
stability of, 605, 6 1 9, 626f, 696 

Whitehead's theory of gravity. See under 
Gravitation, theories of 

"Wire up" source to field, 367/f, 405 
World line, 4, 1 3 .  See also Geodesic 
World sheet, swept out by one face of 

3-volume, 133 

1 2 7 9  

World tube, analysis of balance of 
4-momentum in, 473 

Wormholes in space 

X 

and Betti numbers, 22 1 
of Schwar7schild geometry, 837/f, 842 
of Reissner-Nordstmm geometry, 92 1 
probably do not eXJst in real universe at 

classical level, 842f 
at quantum level, 1200f, 1 203 
electric charge as lines of force trapped 

in, 1 200 

X-ray diffraction, related to I -forms, 232 
X-ray sources, 76 1 -762 
X-rays from gas around black holes, ix, 885 

y 

York momenta measure deformation, 
recoordinatization, and scaling, 542 

York's curvature, 54 1  
Young symmetry diagrams 86 

z 
Zero-point energy, 426/f 



SOM E  USEFUL . N U M BERS I N. CO NVENTI O NAL AN D G EO M ETR IZED U N ITS* 

Fundamental Constants 

Gravitation constant 
Speed of l ight 

useful com binations 

Planck's reduced constan t  
Planck d istance, L • 
Planck time, T*  
Planck mass, M* 
Planck density, M* I c� 

Quantum of charge 
Reciprocal fine-structu re 

constant, I /a 
Electron rest mass 

Proton rest mass 

Bohr radius 
Reduced Compton wavelength 
Classical electron radius  
Atomic energy un i t  

G = (6 .673 ± 0.003 ) x 10 - �  cm:1/g sec2 = I 
c = (2 .997 924 562 ± 0.000 000 0 1 1 )  x 10 1 0 cm/sec = I 

G/c2 = 0.7425 X 1 0-zx cm/g = 1 .476 64 km/ M0 = I 
c 5/G = 3 .629 x 1 05!1 erg/sec = 2 .030 x 1 0''M

0
c2/sec = I ( em ission factor) 

G/c = 2 .226 X 10- 1 x cm 2 Hz/g = I ( receptor factor) 
c 2 /G 1 1 2  = 3 .479 X 1 024 gauss cm = 3 .479 X 1024 statvol t  = I 

h = ( 1 .054 592 ± 0 .000 008 ) X 10 - 2 7  g cm 2/sec = 2 .6 1 2  x 10-66 cm2 

( h G/c 3 ) 1 1 2  = 1 .6 1 6  X 1 0-3� cm 
(hG/c •'>) 1 1 2 = 5 .39 1 X 1 0-44 sec 
( hc/G ) 1 1 2  = 2 . 1 77 X 1 0 - 5 g 

c ''/h G 2 = 5 . 1 57 X 1 0!n g/cm:1 
e = (4.803 25 ± 0.000 02 ) x 10- 1 0 ( g cm: 1/sec2 ) 1 1 2  = 1 .3 8 1  X 10-34 cm 

hc/e2 = 1 37 .0360 ± 0.0002 
m, = ( 9 . 1 09 56 ± 0.000 05 ) X 1 0-zx g = 8 . 1 873 X 1 0- 7 erg = 0.5 1 1  004 M eV 

= 5 .930 1 X 1 09 K = 6 .764 X 10-,,5 cm 
MP = ( 1 .672 6 1 4  ± 0.000 0 1 2 )  x 1 0-24 g = 1 .503 27 x 10- :i erg = 0 .938 259 GeV 

= 1 .088 83 X 10 1 3  K = 1 .24 1 9  X 1 0-02 cm 
a0 = h 2/m,e2 = 0.529 1 77 X 1 0-x cm 

..t, = ft/m,c = 3 .86 1 59 x 10- 1 1  cm 
r0 = e2/m,c2 = 2.8 1 7  94 X 10- 1 3 cm 

e 2/a0 = m,e 4/ft2 = 4.359 83 X 10- 1 1  erg = 27 .2 1 1 6 eV = 3 . 1 57 86 X 1 0•'> K = 3 .602 X 10-su cm 

Conversion Factors (see also "fundamental constants, " above) 

Distance 
Time 
Mass, energy, tem perature 

I pc = 3 .0856 x 1 0 1 x cm :  I I t-yr = 0.94605 x 1 0 1x cm : I A .U .  = 1 .495 985 x 1 0 1 :1 cm 
I yr = 3 . 1 55 692 6 x 1 0 7 sec: I day = 86 400. sec: I sidereal day = 86 1 64.09 I sec 

I eV = 1 . 1 60 48 X 1 04 K = 1 .602 1 92 X 10- 1 2 ergs = 1 .782 68 X 10-33 g = 1 .324 X 10-6 1  cm 





S I G N  CONVENTIONS 

This book follows the "Landau-Lifshitz Spacelike Convention" (LLSC). Arrows 
below mark signs that are " + " in it. The facing table shows signs that other authors 
use . 

____-/ g sign 
(col. 2)  

+g = - (wo)2 + (w 1)2 + (w2)2 + (w3)2 

r- + 'W (u, v) = Vu V., - V., Vu - Tiu.vi r- + Rµvu/3 = 00 I'µ,f3 - o/3 I'µ,a + I' µrraI' 0,f3 - I'µrrf3 rrr,a 
Riemann sign 
(col. 3 ) 

quotient of Einstein 
and Riemann signs 

Einstein sign 
(col. 4) 

Einstein = 

Too = T(e0, e0) > o 

all authors agree ---------� 
on this "positive 
energy density" sign 

The above sign choice for Riemann is convenient for coordinate-free methods, as 
in the curvature operator M(u, v) above, in the curvature 2-forms (equation 14 . 19), 
and for matrix computations (exercise 14 .9) .  The definitions of Ricci and Einstein 
with the signs adopted above are those that make their eigenvalues (and R _ R µµ) 
positive for standard spheres with positive definite metrics. 



TABLE OF S I G N  CONVENTI ONS 

�� e\� Space time 

·f 
� Reference , 01' � four-dimensional ..,,� -�" 

') �� i� indices 

Landau. Lifshitz ( 1 962 ) "space l ike convention" + + + lat in 
La ndau, Lifshitz ( 1 97 1 )  "t imelike convention" + + latin 
Misner, Thorne. Wheeler ( 1973: this text) + + + greek 

Adler, Bazin ,  Schiffer ( I 965 ) greek 
Anderson ( 1967 ) b greek 
Bergmann ( 1 942 ) a greek 
Cartan ( 1 946 ) 
Davis ( 1970 ) + latin 

Eddington ( 1 922 ) + greek 
Ehlers ( 1 97 1 )  + + + lat in 
Einstein ( 1950) + greek 
Eisenhart ( I 926 ) + 
Fock ( 1 959)  a greek 

Fokker ( 1 965 )  + lat in 
Hawking and El l i s  ( 1 973 ) + + + latin 
H icks ( 1965 ) + + 
lnfeld. Plcbanski ( 1 960 ) + greek 
Lichnerowicz ( 1 955 ) + + greek 

McVittie ( 1956 ) + greek 
Misner ( 1 969a ) + + + greek 
Mflller ( 1 952 ) + lat in 
Paul i  ( 1958 )  + lat in 
Penrose ( 1968)  latin 

Pirani  ( 1 965 ) latin 
Robertson,  Noonan ( 1 968)  + + lat in 
Sachs ( 1 964) --+- + + lat in 
Schi ld ( 1967)  + lat in 
Schouten ( 1954) + 

Schroedinger ( 1 950) + latin 
Synge ( 1 960b )  + + lat in 
Thorne ( 1 967 ) + + greek 
Tolman ( 1 934a) + greek 
Trautman ( 1 965 ) latin 

Weber ( 1 96 1 )  + + + greek 
Weinberg ( 1 972 ) + greek 
Weyl ( 1 922 )  + + latin 
W heeler ( 1 964a) + + + greek 

" U nusual index positioning on Riemann components gives a d ifferent sign for R
µ
.afl • 

hNote : his " < 0 is the negative of the gravi tat ional constan t .  
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