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Initial Conditions

OPEN A FEW CALCULUS
BOOKS, AND YOU'LL SEE
SOMETHING STRANGE:
THEY ALL LOOK ALIKE!

Qlél—l... ALL THOSE A

FORMULAS... CALCULUS
15 BASED ON SOME
BEAUTIFUL IDEAS,
BUT THE PAYOFF 15
IN THE FORMULAS!
THIS BOOK WILL BE
FULL OF ’EM, TOO...
SORRY!

\_

/

50 HERE AND NOW I OFFER AN IRONCLAD
GUARANTEE: THIS ¢ALCULUS BOOK WILL BE

DIFFERENT!!

THE SAME PAGEFULS OF
FORMULAS, THE sAME
SET OF TOPICS, MOST-
LY, AND EVEN THE SAME
FONT! THEY ALL WEIGH
A TON, TOO...

ON THE OTHER HAND, T WANT TO USE MY
PEN TO EXPLAIN THE BRILLIANT AND ELEGANT
THINKING BEHIND ALL THOSE EQUATIONS...

FOR ONE THING, IT
DOESN'T WEIGH VERY
MUCH... PLUS, JUsT

LOOK AT THE FONT!

P




Chapter -1
Speed, Velocity, Change

BASIC IDEA #1

CALCULUé 15 THE MATHEMATICS OF CHANGE, AND CHANGE 15
MYSTERIOVUS. SOME THINGS GROW IMPERCEPTIBLY... OTHERS ZOOM...
HAIR GROWS SLOWLY AND 15 SUDDENLY CUT... TEMPERATURES RISE
AND FALL... SMOKE CURLS THROUGH THE AIR... PLANETS WHEEL
THROUGH SPACE... AND TIME, TIME NEVER STOPS...




THINK HARD ABOUT CHANGE, AND YOU MAY REACH SOME PRETTY STRANGE CONCLUSIONS. IN
ANCIENT GREECE, FOR EXAMPLE, ZENO OF ELEA THOUGHT ABOUT CHANGE AND CONVINCED
HIMSELF THAT MOTION 15 IMPO%SIBLE. HE REASONED LIKE 50:

AL MOTION 15 A CHANGE OF
( ) POSITION OVER TIME.
~ \X

AT ANY INSTANT, NO
CHANGE OF POSITION
TAKES PLACE.

THEREFORE, THERE

BUT TIME 15 A
CAN BE NO MOTION SUCCESSION OF
AT ANY INSTANT. INSTANTS.

THEREFORE,
MOTION NEVER
TAKES PLACE!

{4 3
DU

——
P alalanin T 2

DID 1 GET
OVER HERE?

. —




EVEN TIME
MOVES... IT'S
50 WEIRD...

1SAAC NEWTON AND
GOTTFRIED LEIBNIZ
LOOKED AT THE PROBLEM
THIS WAY: EVEN THOUGH
A MOVING CANNONBALL
GOE5 NOWHERE IN AN
INSTANT, STILL IT HAS
SOMETHING THAT
INDICATES MOTION.

IN THE LATE 16005, ROVGHLY 2,000 YEARS AFTER ZENO,
TWO OTHER 6UYS HAD A DIFFERENT IDEA.

ACTUALLY, I HAD THE YOU TOOK THE WORDS
IDEA AND YOU $TOLE IT! RIGHT OUT OF MY MOUTI-I

WHAT IT HAS 15 VELOCITY, A NUMBER. YOU MIGHT SAY THAT EVERY OBJELT CARRIES AROUND
AN INVISIBLE METER THAT READS OUT THE OBJECT'S SPEED AND DIRECTION AT ALL TIMES.

oH, NOW r'm
BEGINNING TO SEE...

IN OTHER WORDS, WE CAN IMAGINE
THAT EVERYTHING HAS A SORT OF
SPEEDOMETER, JUST LIKE THE ONE
IN A CAR (EXCEPT THAT THIS $PEED-
OMETER INDICATES DIRECTION TOO).




A PRETTY SHARP IDEA FOR NEWTON AND
LEIBNIZ TO HAVE HAD, CONSIDERING THAT
SPEEDOMETERS WOULDN'T BE INVENTED

FOR ANOTHER 200 YEARS YET...

WHAT’S A
SPEEDOMETER?

HOW DID OUR TWO
GENIUSES GET THE
IDEA? TO ANSWER
THIS, LET’S EXPLORE
A CAR’S SPEEDOMETER
READING.

ACTUALLY, WE WANT A VELOCIMETER, NOT A SPEEDOMETER. A VELOCIMETER LOOKS JUST
LIKE A SPEEDOMETER, EXCEPT THAT IT ATTACHES A MINUS SI6N TO THE SPEED WHEN THE
CAR 15 BACKING UP. VELOCITY 15 THE NEGATIVE OF THE SPEED WHEN YOU 60 IN REVERSE.

FORSOOTH!




TO APPRECIATE THE DIFFERENCE BETWEEN SPEED AND VELOCITY, IMAGINE A CAR MOVING FORWARD
FOR ONE HOUR AT A STEADY RATE OF 50 KM/HR, THEN TURNING AROUND AND COMING BACK (IN
A “NEGATIVE DIRECTION”) FOR ANOTHER HOUR AT THE SAME SPEED.

20 20 40 50
THE SPEED 15 ALWAYS 50 KM/HR, AND THE CAR THE AVERAGE SPEED 15 THE TOTAL
TRAVELS A TOTAL DISTANCE OF 100 KM: 50 KM DISTANCE DIVIDED BY THE TIME.

GOING OUT AND 50 KM COMING BACK. THE DISTANCE
15 THE SPEED TIMES THE ELAPSED TIME: TOTAL DISTANCE

SPEED,, =
ELAPSED TIME
TOTAL DISTANCE = SPEED - ELAPSED TIME
100 KM

= (50 KM/HR)-(2 HR) * T - 20w

= 100 KM
BUT IN TERMS OF VELOCITY, THE ¢AR IT5 AVERAGE VELOCITY 15 THE CHANGE OF
MOVES AT 50 KM/HR THE FIRST HOUR, AND POSITION DIVIDED BY THE ELAPSED TIME.

AT =50 KM/HR THE SECOND HOUR. THE
TOTAL CHANGE OF POSITION |5 ZERO—

CHANGE OF POSITION
THE CAR ENDS WHERE IT STARTED! Uy =

ELAPSED TIME QUITE A
DIFFERENCE!

5AY, WHERE'D YOU COPIED YOU. IN THIS CASE,
LEARN TO DRIVE?
O KM
Vy = —— = KM/HR
M2 uR O xum




IN SYMBOLS: IF t, AND t, ARE ANY TWO NOW WE NEED A BETTER DRIVER—5OMEONE
TIMES, AND AN OBJECT 15 AT POSITION WITH A STEADIER FOOT—5%0 LET'S PUT MY
S, AT TIME t, AND AT POSITION s, AT FRIEND DELTA WYE BEHIND THE WHEEL...
TIME t,, THEN THE OBJECT'S AVERAGE
VELOCITY OVER THE TIME INTERVAL
BETWEEN t, AND t, 15

S2 - 5
Wy = T—F

t, -t
OR

S;-51 = U (E-t)

=
WHAT DOES IT MEAN WHEN DELTA'S VELOCIMETER READS 100 KM/HR? FOR ONE THING, IT MUST
MEAN THAT IF SHE WERE TO HOLD HER VELOCITY PERFECTLY STEADY, THEN SHE WOULD 60
100 KM IN ONE HOUR, RIGHT? (PELTA HAS MOUNTED A (LOCK ON THE ROOF FOR CLARITY.)

I ARRIVE HERE "
AT ONE O'CLOCK!

IF T START HERE
AT NOON...

AND WE'D 60 200 KM IN t,- ¢, P
2 HOURS, 50 KM IN HALF AN ] (HOURS) (KILOMETERS)
HOUR, 100t KILOMETERS IN

t HOURS... A FORMULA THAT ER... LOGICAL, 10 1000
SHOULD WORK EVEN FOR I 6UESS... 9 900
SHORT TIME INTERVALS. —— 5 500

AT A PERFECTLY STEADY 1 100

100 KM/H:?, DELTA 60ES 05 50

1 KM IN % HOUR (36 SEC- 04 10
OND5), 0.1 KM IN 0.001 HOUR 0.01 f

(3.6 SECONDS), AND 0.001 KM, 0.001 o1

ONE METER, IN 0.00001 HR, 0.0001 0.01

OR 0.036 SECONDS. 0.0000001 0.00001




THAT'S |F THE VELOCITY REMAINS PERFECTLY STEADY... BUT IN THE REAL WORLD, VELOCITY
CHANGES AS A CAR 5LOWS DOWN AND SPEEDS UP. WHAT DOES THE READING MEAN THEN?
(NOW SHE’S ADDED A VELOCIMETER UP TOP AS WELL.)

VELOCITY = O - VELOCITY » VELOCITY

. HIGH T ) . LOWER

SLOWING
POWN

THE ANSWER 15 A LITTLE SUBTLE: YOU'VE SURELY NOTICED THAT OVER A VERY SHORT TIME
PERIOD, A sPEEPOMETER DOESN'T CHANGE MUCH. EVEN IF YOU FLOOR IT, v 15 NEARLY
CONSTANT OVER A TIME SPAN OF, SAY, 1/500 SEC. A PHOTO TAKEN WITH A SHORT EXPOSURE
WOULD SHOW A VELOCIMETER IMAGE WITH VIRTUALLY NO BLUR.

WHAT’S A
PHOTO?

THIS WAS NEWTON’S AND LEIBNIZ'S

Basic Idea:

CALCULATE THE RATIO (s,-5))/(t,-t;)
OVER A VERY SHORT TIME INTERVAL. FOR
ALL INTENTS AND PURPOSES, THIS RATIO 15
THE VELOCITY AT TIME &, (AND ALSO AT t,,
THEY'RE 0 CLOSED).




TO PUT IT ANOTHER WAY, A BODY’S INSTANTANEOUS VELOCITY 15 CLOSELY APPROXI-
MATED By (s,-51)/(t,-t;) WHEN £,-¢£, 15 SMALL. (YOU MIGHT WONDER HOW
NEWTON AND LEIBNIZ THOUGHT THEY MIGHT ACTUALLY MEASURE A CHANGE OF POSITION
OVER A TIME INTERVAL OF, 5AY, 0.00001 $EC., BUT NEVER MIND THAT!)

ARRHEFFF!
IT’S THE
PRINCIPLE

OF THE

THING...

BUT NEWTON AND LEIBNIZ WANTED MORE THAN AN APPROXIMATION: THEY WANTED THE
VELOCITY’S EXACT VALUE... AND WHAT’S MORE, THEY SHOWED HOW TO GET IT! FORGET
MEASUREMENT: THEY USED MATH, A NEW KIND OF MATH THEY INVENTED ESPECIALLY FOR
THE PURPOSE.

CEND
AND WE'LL CALL ey
IT FLUXIONS! & .,

WE ¢ALL IT CALCULVS.




IF A BODY’S POSITION DEPENDS ON TIME ACCORDING TO SOME FORMULA, THEN CALCULUS
POPS OUT A NEW, EXACT FORMULA FOR THE VELOCITY AT ANY TIME.

THIS SEEMED 50 MAGICAL THAT MORE THAN A FEW PEOPLE FOUND IT SUSPICIOUS... WEIRD...
BASED ON STRANGE, UNFOUNDED ASSUMPTIONS... SOMEHOW... WRONG...

YOU'RE ALMOST
DIVIDING BY ZERO!

(LEIBNIZ'S APPROACH SEEMED ESPECIALLY FISHY: HE WAS HAPPY TO
DIVIDE ONE THING BY ANOTHER NOT ONLY WHEN THE QUANTITIES
WERE SMALL, BUT ALSO WHEN THEY WERE “INFINITELY SMALL” BUT

NOT ZERO, WHATEVER THAT MEANT.)
- ZN . .
4 \ o s - . i, -
. V7R PERN . TR
PR




FISHY FOUNPATIONS OR NOT, CALCULUS WORKED, AND IT WORKED BEAUTIFULLY. IT WAS
AMAZINGLY EFFECTIVE. IT PRODUCED RESULTS!

MANY,
MANY, MANY
RESULTS...

50 PEOPLE PUT CALLULUS TO WORK... NOT ONLY N ASTRONOMY,
FINDING VELOCITIES, BUT ALSO THE RATE OF CHANGE COMMUNICATIONS,
OF ALL KINDS OF FLUCTUATING QUANTITIES. CALLULUS ELECTRICITY, BIOLOGY,

1 USEV EVERYWHERE! ~ (| CHEMISTRY, MECHANICS,

] STATISTICS, COMPUTER

SCIENCE, PSYCHOLOGY,
ECONOMICS...

POPULATION
DYNAMICS...

EVENTUALLY, THEY EVEN FIXED THE FOUNDATIONS, MORE OR LES5... UNFORTUNATELY, WE
LACK THE SPACE TO EXPLAIN FULLY HOW THIS WAS PONE, OR TO DESCRIBE THE TROUBLE-
SOME 155UES RAISED BY CALCULUS... LET'S JUST SAY THAT SOME OF ZENO'S SUBTLETIES
REMAIN A CHALLENGE TO THIS DAY...

HEY, MAN,
YOU WORRY
TOO MUCH!

YEAH, C’MON!
WHATEVER




Chapter 0
Meet the Functions

IN WHICH WE LEARN SOMETHING ABOUT RELATIONSHIPS

Wc BEGIN WITH ONE OF THE MO5T BEAUTIFUL AND
FRUITFUL IDEAS OF MODERN MATHEMATICS: THE
FUNCTION. EVERYTHING IN THIS BOOK WILL BE
ABOUT FUNCTIONS. 40... WHAT’S A FUNCTION?

UM... I

WHOOF! T THOUGHT
6UESS T AM?

YOU SAID FRUITFUL
AND BEAUTIFUL!

"



A FUNCTION 15 A SORT OF INPUT-OUTPUT DEVICE Or NUMBER-PROCES50R. A FUNCTION
(CALL IT £) EATS AND SPEWS NUMBERS IN A SPECIFIC WAY. FOR EACH NUMBER EATEN (CALL IT x),
f OUTPUTS A SINGLE, UNIQUE NUMBER, f(x), PRONOUNCED “EFF OF ECK5.” f I5 LIKE A RULE
THAT TRANSFORMS X INTO £(x). IN 60ES x, OUT CLOMES f(x).

PON'T WORRY... IT’%
CLEAN, ABSTRACT,
NUMERICAL OUTPUT...

IF YOU DPON'T LIKE YOUR OUTPUT FLOATING AROUND IN THE AIR LIKE SWAMP 6AS, THEN
THINK OF NUMBERS AS LYING ALONG A LINE. IN THAT CASE, YOU CAN IMAGINE A FUNCTION f
EATING NUMBERS FROM ONE LINE AND MERELY POINTING TO THE CORRESPONDING OUTPUT

VALUES ON THE OTHER LINE.

MARGINALLY
LESS 6RO%S...

12



FOR EXAMPLE, A CAR'S POSITION s 15 A FUNCTION OF TIME t. YOU ¢AN THINK OF s A%
READING TIME (OR EATING IT AS INPUT!) FROM A TIMELINE AND POINTING TO THE CAR’S
POSITION s(t) ON THE TRACK.

ATMOSPHERIC PRESSURE AS A SPHERICAL BALLOON INFLATES, ITS VOLUME
DEPENDS ON ALTITUDE: 15 A FUNCTION OF THE RADIUS. EACH RADIVS r
AT EACH ALTITUDE A, DETERMINES A UNIQUE VOLUME V(r).

THERE 15 A DEFINITE
PRESSURE P(A). THE
FUNCTION P EATS ALTI-
TUDE AND OUTPUTS
PRESSURE.

THE WORLD 15 FULL
OF FUNCTIONS!

PON'T TALK
WITH YOUR
MOUTH FULL.

ON A STRAIGHT MOUNTAIN TRAIL, ALTITUDE 15 A
FUNCTION OF POSITION ALONG THE TRAIL. EACH
POSITION x HAS A UNIQUE ALTITUDE A(x).

AC) l

12



IN THE EXAMPLE OF THE SPHERICAL BALLOON, THE VOLUME FUNCTION V WAS CALCULATED
FROM THE RADIUS r BY MEANS OF A FORMULA:

4mr?
V) = —= CUBE THIS AND
MULTIPLY THE CAN T USE A
RESULT BY (4n/3)! | CALCULATOR?

TO FIND THE VOLUME AS$SOCIATED
WITH A PARTICULAR RADIUS, SAY
r = 10, WE INPUT, OR PLUG IN,
THAT NUMBER IN PLACE OF r:

4m(10y° _ 4000 _
3 3
4,188.79...

vQ0)

"

r

(THE SI6N “ =" MEANS “I%
APPROXIMATELY EQUAL TO.”)

IMPORTANT: THE LETTERS WE AS5I6N TO THE FUNCTION AND VARIABLE DON'T MATTER!
HERE ARE THREE FORMULAS THAT ALL DEFINE THE SAME FUNCTION BECAUSE THEY PRODUCE
THE SAME OUTPUT FOR ANY GIVEN INPUT. THEY ALL DESCRIBE THE SAME RULE.

3

vir = 4T
3

47rt?

f(t) = —
3

4’

w) = —
9 3

WHAT'S IN |\ /ON'T MIND TF T CALL

NOTHING! 50 YOU R
YOU “MELONHEAD™?... | £/ -

14




HERE 15 A SLIGHTLY MORE COMPLICATED

EXAMPLE. SUPPOSE h 15 GIVEN BY THIS x h(x)
FORMULA:

hoo = Va2 -1
WE COMPUTE A FEW VALUES...

Ay = Vi2o1 =0

h2) = V22-1 = V3

hVs)=vV5-1 =12

ETC...

AND COMPILE A LITTLE TABLE. IT’S
FULL OF GAPS, BUT YOU (AN FILL IN
MANY MISSING VALUES... EXCEPT...

WHEN X 15 BETWEEN -1 AND 1, THE EXPRESSION INSIDE THE SQUARE ROOT SI6N 15
NEGATIVE: x%-1 < O. IN THAT ¢ASE, h(x) 15 UNDEFINED, BECAUSE NEGATIVE NUMBERS
HAVE NO (REAL) SQUARE ROOT. EVERY INPUT ACCEPTED BY h MUST HAVE A VALUE EITHER
21 0OR < -1. NOTHING ELSE 15 ALLOWED!

AK! IT’S A
DEAD ZONE!

GIVEN ANY FUNCTION, ITS
DOMAIN 15 THE SET OF
ALL NUMBERS WHERE THE
FUNCTION 15 DEFINED. A

FUNCTION f WILL ACCEPT
INPUTS ONLY FROM WITHIN
ITS DOMAIN.

ANYTHING
ELSE 15
INDIGESTIBLE!

15



WE USUALLY DESCRIBE A FUNCTION’S DOMAIN IN TERMS OF INTERVALS OF NUMBERS.
GIVEN ANY TWO NUMBERS a AND b, WITH a<b, WE USE THIS NOTATION:

(a, b), THE OPEN INTERVAL BETWEEN [a, b], THE CLOSED INTERVAL BETWEEN
a AND b, MEANS ALL THE NUMBERS a AND b, MEANS ALL THE NUMBERS LYING
LYING BETWEEN a AND b EXCLUDING BETWEEN a AND b INCLUDING THE
THE ENDPOINTS a AND b. ENDPOINTS.
a b a b
— R ———— —— ) —————
(a,b) 15 ALL x WITH a<x<b [a,b] 15 ALL x WITH a<x<b

AN “INFINITE INTERVAL” REFERS TO ALL THE NUMBERS GREATER THAN SOME NUMBER c. WE
WRITE THIS AS [c, ©0) IF c 15 INCLUDED AND (c, ©0), IF NOT. SIMILARLY, ON THE LEFT ARE
(-00, d ] AND (-00, d). THE INFINITY 516N 0O DOES NOT REPRESENT ANY NUMBER; IT'S
SIMPLY A CONVENIENCE TO BE USED IN SITUATIONS LIKE THIS. IT 15 NEVER INCLUDED IN ANY
INTERVAL, BECAUSE 15 ISN'T A NUMBER!

d c
III-—) T T ﬁ-lll
(-00,d) 15 ALL X WITH x < d [c,00) 15 ALL X WITH ¢ < x

IN TERMS OF INTERVALS, THEN, THE POMAIN OF THE POMAIN OF g(x) = -:2 15 ALL x # 0.

h(x) = Vx%-1 15 EVERYTHING OUTSIDE (PIVIDING BY O 15 FORBIDDEN.)
THE INTERVAL (-1, 1).

THE DOMAIN OF P(x) = x*+ 3 15 ALL
REAL NUMBERS WITHOUT RESTRICTION.

16



NOW RETURN TO OUR IMAGE OF A FUNCTION PICKING UP INPUTS FROM ONE NUMBER LINE AND
POINTING TO OUTPUTS ON ANOTHER NUMBER LINE.

fla)

IF WE LIKE, WE ¢AN LET THE FUNCTION’S CARTOON BODY FADE AWAY AND CONCENTRATE ON
THE ACT OF POINTING.

IN THIS VIEW, A £(d) IT'S THE
FUNCTION 15 $IMPLY : - T
A COLLECTION OF oV
ARROWS POINTING 1 Ba())
FROM ONE NUMBER
LINE TO ANOTHER. .
A SINGLE ARROW

EMERGES FROM b " N
EACH x IN THE fle
DOMAIN OF f AND

POINTS TO THE ¢

VALUE f(x). d
X

f(a)

17




NOW LET’S PLAY WITH

WM... WHAT IF I
THOZE ARROWS. TURN ONE OF THESE

LINES SIDEWAYS?

WHEN THE FIRST LINE, OR AXIS, 15 TURNED SIDEWAYS, WE CAN VIEW A FUNCTION A5 A GRAPH.
THE INPUTS x ARE ON THE HORIZONTAL AXIS, THE OUTPUTS y ARE ON THE VERTICAL AXIS,
AND ABOVE (OR BELOW) ANY POINT a ON THE x-AXIS WE PLOT A POINT (a, f(a)), WITH
Y-COORDINATE EQUAL TO THE VALUE OF THE FUNCTION f AT a.

NOTE THAT THE

THE GRAPH ARROWS ARE
y = f00 STILL LURKING IN
THIS PICTURE!

-------4 8

(a, f(a))

THE CURVE CONSISTS OF ALL POINTS (x,y) WITH y = f(x), A PHRASE WE ABBREVIATE
BY AYING “THE GRAPH y = £(x).”

18



HERE ARE SOME SIMPLE EXAMPLES.

fx) = x g(x) = 2x
3 |— 3
4
2 2 3 //' 3
! —t 2 2 .
0 || © ="
0 j—l 0 . ;
_1 —-— ‘1 1 1
-2 f——l o2 P
D | — -3 -3 \ -3
4 A | 4 -4 \ L -4
ARROWS GRAPH ARROWS GRAPH
h() = x*
THAT ARROW
) 4
4 / f 4 THING CAN
3 3 3 GET AWFULLY
2 2 MESSY...
1 1 r2
o o .y
-1 -1
-2 -2 : ¢ ¢
3 | 3 -2 A 1
ARROWS GRAPH

F(x) = THE LARGEST INTEGER (WHOLE NUMBER) < X,
SOMETIMES WRITTEN [x]. (50 [5] = 5, [6.7] = &,

[-1.6] = -2, [-03] = -1, ETC.

-1

ARROWS

vy

THIS LAST WAS AN EXAMPLE OF A
FUNCTION THAT HAS NO FORMULA
IN THE USUAL SENSE.

r60 PURE! 50

ABSTRACT! 5O
NUMERICAL!

I HATE TO TELL A
YOU THIS, GONICK,
BUT IT COMES UP

IN PHYSICS.

GRAPH

19




Add, Multiply, Divide

FUNCTIONS CAN BE COMBINED IN VARIOUS WAYS, JUST AS NUMBERS CAN. IF f AND g HAVE
OVERLAPPING DOMAINS, WE CAN ADD, MULTIPLY, AND DIVIDE THE FUNCTIONS WHEREVER THEY

ARE BOTH DEFINED. THIS PROPUCES NEW FUNCTIONS f + g, £g, AND f/g (A5 LONG AS WE'RE
CAREFUL NEVER TO DIVIDE BY ZERO).

WANT TO

(f +9)(x) = f(x) + g(x) COMBINE

(f9)(x) = f(x)g(x)
(f/9)(x) = f(x)/g(x) EXCEPT WHERE g(x) = O.

THE GRAPH OF f + g CAN BE BUILT THE DIFFERENCE BETWEEN TWO FUNCTIONS
FROM THE GRAPHS OF f AND g BY (AN BE VISUALIZED AS THE DIRECTED DISTANCE
ADPING THE y-COORDINATES AT EACH BETWEEN THEIR GRAPHS.

POINT x IN THEIR COMMON DOMAIN.

y = f(x) »

fF(x)-gx) <O
f(x)-gx) >0

%,

y=9g(x)

IN GENERAL, THE GRAPHS OF
PRODUCTS fg AND QUOTIENTS f/g
ARE NOT 50 EASILY SEEN IN TERMS
OF f AND g. USUALLY THEY MUST
BE CALCULATED POINT BY POINT.

SOMETIMES IT’S NOT
TOO BAD, THOUGH...

y =xsinx
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 The Elementary Functions

NOW THAT WE'VE COVERED SOME BASIC IDEAS ABOUT FUNCTIONS, LET’S REVIEW A FEW
COMMON EXAMPLES, FUNCTIONS TO WHICKH WE WILL REFER THROUGHOUT THE REMAINDER
OF THIS BOOK.

\.

S YOU LOOKED
R 50... DIFFERENT
- Y IN PRE-CALL!
-

THESE FUNCTIONS ARE
CALLED ELEMENTARY
FUNCTIONS, BECAUSE,
LIKE CHEMICAL ELEMENTS,
THEY (AN BE COMBINED
IN AN INEXHAUSTIBLE
VARIETY OF WAYS...
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Absolute Value HOW DO

YOU LIKE
CALCULVS 15 ABOUT APPRONXI- DEALING IN

MATIONS, AND THE ABSOLUTE ABSOLUTES?
VALUE FUNCTION MEASURES
HOW CLOSELY ONE NUMBER
APPROXIMATES ANOTHER.

THE ABSOLUTE VALUE OF x,
WRITTEN |x|, 15 DEFINED BY T

x WFx20

-x IFXx<O0

[x|

]

[x|

W

THIS FUNCTION NEVER

ASSUMES NEGATIVE VALUES,
AND |a| = |-al FOR ANY
NUMBER a. -

3 3
s—A
1 -1
0 - -0
-1 - -1
-2 H-2
-3 L3

YOU (AN THINK OF |al AS THE (POSITIVE, ABSOLUTE) DISTANCE OF a FROM O ON THE
NUMBER LINE, AND |a - b| = |b - a| A5 THE DISTANCE BETWEEN a AND b.

lal

2\
v

la - bl

v

N

IF ¢ 15 ANY NUMBER, AND r > O, THEN ALL THE
NUMBERS x WITH |x - ¢| < r FORM AN INTERVAL
CENTERED AT ¢ WITH “RADIVS” (HALF-LENGTH) r.

N
v
N
v

3]
\
-
L B
X @

|x -¢c|l € r

22
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IT'S NOT HARD TO SEE THAT FOR
ANY TWO NUMBERS a AND b,

la + bl < lal + |b]

FROM WHICH, BY SUBSTITUTING
b=c-a, WE GET

lc -al = lel - |al

FOR ANY TWO NUMBERS a AND c.




Constants

IF € 15 ANY FIXED NUMBER, THEN THERE 15 A VERY SIMPLE-MINDED FUNCTION f DEFINED BY
f(x) = € FOR ALL Xx. NOT MUCH OF A FUNCTION, YOU MIGHT SAY, BUT IT 15 A FUNCTION!
ITS GRAPH 15 THE HORIZONTAL LINE y = (. ALL ARROWS POINT TO THE SAME NUMBER.

THIS FUNCTION
DESCRIBES GOING
y=¢ NOWHERE!

fx)=¢C

Power Functions

THESE ARE THE FUNCTIONS WITH FORMULA x, x2, x?, ..., x'7, ... x"... WHERE n I A
POSITIVE INTEGER. WHEN n 15 EVEN, THESE FUNCTIONS ALL HAVE BOWL-SHAPED GRAPHS,
BECAUSE (-x)" = x". POSITIVE AND NEGATIVE INPUTS “LAND” IN THE SAME PLACE. IF n 15
ODD, THEN (-x)" = -(x"), AND THE 6RAPHS BEND DOWNWARD ON THE LEFT.

(N
0-.(:)0\&

7z
(0]
-1 // - -1
_.2 E .
f(x)=x*
2 L
THE HIGHER THE POWER, ] L
THE FASTER THEY GROW! 0 T— ‘1)
v -1
-2
= o3
gx)=x g




Polynomials

WE ADD CONSTANTS AND MULTIPLES OF POWER FUNCTIONS TO MAKE POLYNOMIALS,
WHICH HAVE FORMULAS LIKE 2x% + x + 41 OR x'” - x'* - 9x. THE CONSTANT FACTORS
ARE CALLED THE POLYNOMIAL'S COEFFICIENTS, AND THE LARGEST POWER OF x
WITH A NON-ZERO COEFFICIENT 15 CALLED THE POLYNOMIAL'S DEGREE.

]

Px)
@x)

7x'° + 395x* + x> + 11 UAS DEGREE 10.

-X +9 HAS DEGREE 1

]

ALGEBRA TEACHES US THAT A POLYNOMIAL P +
OF DEGREE n WAS NO MORE THAN n ROOTS, /7 \ /\

MEANING NUMBERS X, X5, ... X,,, WHERE ? j
P(x;) = 0. \/

THIS MEANS THAT THE GRAPH OF AN
nTH DEGREE POLYNOMIAL CROSSES
THE x-AXIS NO MORE THAN n TIMES.
IN FACT, WE WILL SEE THAT THE
GRAPH HAS AT MOST n - 1 “TURN-
INGS™ WHERE IT CHANGES FROM
RISING TO FALLING OR VICE VERSA.

WE'LL AL5O SEE THAT THE GRAPH OF ANY @
1

WELL, AWAY FROM
EVERYTHING ELSE,
POLYNOMIAL ZOOMS OFF TO INFINITY (EITHER ANYWAY.
POSITIVE OR NEGATIVE) A5 x GOES OFF TO

THE LEFT AND RIGHT WITHOUT BOUNDS.

-
~
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Negative Powers

THESE ARE THE FUNCTIONS
FoO = -, n=1273.
X

THEY ARE AL50 WRITTEN

fx) = x™"

NEGATIVE POWER FUNCTIONS ARE
DEFINED FOR ALL x # O, AND,

LIKE THE POSITIVE POWERS, THEIR ==
GRAPHS DIFFER DEPENDING ON
WHETHER n 15 OPD OR EVEN.

Fractional Powers

IF n 15 A POSITIVE INTEGER, X7 MEANS THE nTH ROOT OF x, Vx .
THE FRACTIONAL NOTATION 15 USED TO MAKE THIS FORMULA WORK:

1.n 1
(x") = x"" = x

oo

!
sidhos
i
:

n EVEN: DOMAIN OF X7 15 ALL X = O n OVD: DOMAIN OF X7 15 ALL REAL NUMBERS.

THERE CAN BE NEGATIVE FRACTIONAL POWERS, TOO.

YOU'RE JUST AS
600D AS ANY
OTHER NUMBER...
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Rational Functions

@ NO,
THESE ARE FUNCTIONS GIVEN RATIONAL.
BY RATIO% OF POLYNOMIALS

P
R(x) = 000

THEY ARE DEFINED WHEREVER
@(x) + O. FOR EXAMPLE,

3x%+ 9x + 1
2L R 7Y
x°+16

X
x2-1

R(x)

W

W

T , X # 1

WE HAVE THREE THINGS TO SAY ABOUT RATIONAL FUNCTIONS. FIRST 15 THAT YOU (AN SKIP
THIS SECTION AND HEAD FOR PAGE 29 IF YOU WANT TO...

SECOND, WE CAN ASSUME THAT P HAS LOWER DEGREE THAN @. IF IT DOESN'T, YOU ¢AN DO
LONG DIVISION OF POLYNOMIALS* TO MAKE P/Q LOOK LIKE

R(x)

P,(x) + HA! THOSE PAGE- ny
~le9) SKIPPERS ARE GOING ( @ \
TO MI%5 THE FIRST d y
WHERE P, 15 A POLYNOMIAL, ook, CaANK! e
AND R, THE REMAINDER, I5 A 9. i

POLYNOMIAL WITH DEGREE
LOWER THAN THAT OF Q.

¥IF YOU'VE NEVER PONE LONG DIVISION OF POLYNOMIALS, IT'S JUST LIKE LONG DIVISION OF NUMBERS,
ONLY EASIER. LOOK IT UP SOMEWHERE; YOU'LL LIKE IT!
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THIRD, ANY RATIONAL FUNCTION (AN BE
WRITTEN AS A SUM OF SIMPLER “PARTIAL
FRACTIONS” OF THESE TWO KINDS:

a o bx+c
(x+p)" Prguer)”

WHERE a, b, ¢, p, q, AND r ARE CON-
STANTS, AND n AND m ARE POSITIVE
INTEGERS. IN OTHER WORDS, THE
DENOMINATORS ARE POWERS OF FIRST-
OR SECOND-DEGREE POLYNOMIALS.

THIS BECOMES USEFUL
LATER, WHEN WE DO
INTEGRATION.

FINDING THESE CONSTANTS CAN BE MESSY
IN PRACTICE—FOR STARTERS, YOU HAVE TO
FACTOR &(x)—BUT HERE ARE TWO
EXAMPLES TO SHOW HOW IT WORKS.

. NOW LETS PUT
Example: sverose | NOW Lere v

X MOTION...

(x-1?

F(x) =

FIRST WRITE IT AS

()5

THE FIRST FACTOR CAN BE REDUCED BY LONG
DIVISION:

1
(x’-‘-1) - x-1 +1

PLUGGING THAT IN AND EXPANDING GIVES

! 1y 1 1
(E ”)('ﬁ) S x-n? %1

JUST AS PROMISED—NOTHING BUT CONSTANTS
IN THE NUMERATORS OF FRACTIONS WITH
DENOMINATORS OF THE FORM (x+p)".

(‘on. YEAHM )
/2
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THE FIRST STEP 15 ALWAYS TO FACTOR THE
DENOMINATOR. RECALL FROM ALGEBRA:

el = (x+ DE-x+1).

NOW, ASSUME THERE 15 AN ANSWER.

ALWAYS A
600D IDEA
IN ALGEBRA!

IT WOULD LOOK LIKE THIS:

-2x*+7x-3% Ax+B . c

X+ x-x+1) x+1

=

WE WISH TO SOLVE FOR A, B, AND C.
COMBINING THE FRACTIONS ON THE RIGHT
PRODUCES THIS NUMERATOR:

A+O)x* + (A+B-CO)x + (B+O)

THIS BEING THE SAME AS THE NUMERATOR OF
THE ORIGINAL FRACTION, WE MUST HAVE

A+C = -2
A+B-C =7
B+C = -%

28

THESE ARE THREE EQUATIONS IN
THREE UNKNOWNS. WE PO SOME
ALGEBRA AND FIND...

A=12,B=1,AND C = -4, 50:

YOU (AN CHECK THE ANSWER BY
ADDING TOGETHER THESE FRACTIONS,
WHICH SHOULD COMBINE TO 6GIVE THE
ORIGINAL FUNCTION.

AND NOW FOR SOMETHING YOU WON'T
WANT TO MIS5... THIS NEXT FUNCTION
WILL REALLY GROW ON YOU...




Exponential Functions _. (“worrrameem

EXPONENTIAL FUNCTIONS ARE WE'RE HAVING RABBIT
GIVEN BY FORMULAS LIKE THIS: STEW TONIGHT...

f(x) = a*

HERE THE “BASE™ a IS5 FIXED,
AND THE EXPONENT X VARIES.
BY CONVENTION, WE ASSUME
a > 1. THESE FUNCTIONS
DESCRIBE CERTAIN KINDS OF
GROWTH (POPULATION
INCREASE, FOR EXAMPLE).

g

i

AMONG ALL PO%SIBLE BASES a, MATHEMATICIANS SINGLE OUT ONE AS ESPECIALLY “NATURAL.”
THIS NUMBER, KNOWN AS @, HAS A DECIMAL EXPANSION THAT BEGINS LIKE THIS:

2.7182818284590452353%6028747135266249775724709%6999595749669676277240766%
03%5354759457138217852516642742746629192200%05992181741259662904%572900%%4
29526059563073%81322328627943490763%233%82988075%1952510190116728341879307021
5408914992488416750924476146066808226480016847741185%7423454424371075%9077
7449920695517027618%86062613%128458320007520449328265602976067371132200709%
28709127443747047230696977209%101416928%68190255151086574637721112522897844
2505695%6967707854499699679468644549059879%163688922009879312772617821542
4999229576%5148220826989519%6680%318252886929849646510582092922982948879
2320%625094431172012%81970684161403%97019827679220682282376464804295%11802%
2878250981945581520175671736132206981125099618188159%041690%515988885192458
0727%8667%858942287922849989208680582574927961048419844426346% 2449684875
60232%624827041978623209002160990225204369941849146214092%4
3152096183690888707016768%96424378140592714563549061301  MORE OR
157477041718986106872969655212671546889570250%2540212340 LESS...
2100562788023519%20%222474501585290473041995777709%50%65U4TA 77250886
87696640%555707162268447162560798826517871341951246652010%059212%667719432
52786752985589448969709640975459185695638023%637016211204 (Do 77427228
2648961242251644507818244235294863%6372141740228892441247 (C by 96357437
0263755294448%37998016125492278509257782562092622648%2 7 62779333
865664816277251640191059004916449982892150566047258027 7863186415519
565%2442586982946959%0801915298721172556247546%9644791 01459040905
86298496791287406870504895858671747985466775757%205681 28845920541
32405%92200011378620094556068816674001698420558040%3 % x
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WE CAN SEE WHY e 15 NATURAL BY THINKING IF YOU START WITH $1, AT THE END OF THE
ABOUT COMPOUND INTEREST. IMAGINE A YEAR YOUR ACCOUNT WOULD HAVE DOUBLED
GENEROUS BANK (!) 15 PAYING ANNUAL INTEREST TO $2. PRETTY 600V!

OF 100% ON YOUR SAVINGS ACCOUNT.
$1 + 100%-(%$1) = $2

BUT NOT 600D ENOUGH, YOU COMPLAIN: YOU NOW YOU PO A LITTLE ARITHMETIC: YOU
WANT YOUR INTEREST COMPOUNDED MORE NOTICE THAT

OFTEN. YOU ASK THE BANK TO APD ON 50% 1 1 1 182
EVERY 51X MONTHS (100% PER YEAR TIMES HALF A+ +z0+20=0+3
A YEAR), FOR THIS YEAR-END DOLLAR TOTAL:
1 1 1 AND THE NEXT TIME INTEREST 15 ADDED, YOUR
M+ 3z)+30+3) =225 POLLAR TOTAL WILL BE (1 + 3)% NEXT TIME

A+ P nexT Time (0 + .

SIMILARLY, IF YOU COMPOUND PAYMENTS TOTAL AFTER
AT 100% THREE TIMES A PER YEAR 1 YEAR THE TOTAL
YEAR, YOUR TOTAL AFTER ONE APPEARS TO BE
YEAR (THREE PAYMENTS) 15 : AsDy - 2 APPROACHING @
)3 - DOLLARS.
$0+3) 2 A+ = $2.25
IF COMPOUNDED n TIMES E a+3) = $2.37
PER YEAR, YOUR YEAR-END 144 .
TOTAL WOULD BE 4 (e $2.44
5 A+ = $2.49
15N
50+ D
100
AND YOU DECIDE TO FIND OUT 100 (M) ™ = $2.705..
JUST HOW MUCH MONEY THIS 1000 A+255)"%% = $2.718...
WOULD BE! USING YOUR
CALCULATOR, YOU FIND:
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IF n 15 VERY, VERY LARGE, YOU (AN THINK OF YOUR MONEY AS BEING COMPOUNDED
CONTINUOUSLY, ALL THE TIME. IN THAT CASE, YOUR TOTAL BALANCE AT THE END
OF ONE YEAR WOULD BE EXACTLY e DOLLARS.

ONE, TWO, TWO SEVENTY,
TWO SEVENTY-ONE, TWO

SEVENTY-ONE AND EIGHT

TENTHS...

THE NUMBER e 15 NATURAL BECAUSE CONTINUOUS COMPOUNPING 15 NATURAL: IT POESN'T
PEPEND ON ANY PARTICULAR UNIT OF TIME.

WHAT’S 50
SPECIAL ABOUT
A YEAR?

THIS ALSO SHOWS THAT e IS THE MOST YOU (AN PO%5IBLY MAKE IN A YEAR FROM
ONE DPOLLAR AT 100% INTEREST!

HEY! THERE'S ONLY
$2.7182818284590452

uere! I'VE BEEN
SHORTCHANGED!!
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WE CAN USE THE FORMULA (1 +1)" TO CALCULATE e.
ALGEBRA TELLS US WE CAN EXPAND THAT BINOMIAL A%

1 nn-Nn-2) 1 n(n-1)(n-2)(n-3) 1 1
— e —_— -+ e e b —
2 n® 123 n® 1-2-3-4 n* n"

WHEN n 15 VERY LARGE, THE FRACTIONS
(n-1)/n, (n-2)/n, ETC. ARE VERY NEARLY
EQUAL TO 1, 50 THE EARLY TERMS ARE
VERY NEARLY

T+l 3+ 3+ 5 +5+ .

WHERE, IF m 15 ANY INTEGER, m! MEANS
THE PRODUCT 1-2-3- ... -m.

NOW IF WE IMAGINE n GROWING “TO ©0,” WE CAN CONCLUDE THAT e 15 GIVEN BY A SUM
WITH AN INFINITE NUMBER OF TERMS:

= 1,1 ,.,1 .1 1

AND S0, IN FACT, IT 15,

5I6H... WHAT A HOW COME YOV BECAUSE OF THIS NUMBER’S
BEAUTIFUL, BEAUTIFUL NEVER SAY ) SPECIAL, NATURAL STATUS, FROM
FORMULA. THAT TO ME NOW ON WE WILL REFER TO THE

FUNCTION exp, DEFINED BY
exp(x) = e*

A5 THE EXPONENTIAL FUNCTION.
&* 15 THE UM YOU WOULD HAVE
AFTER X YEARS IF ONE DOLLAR
WERE COMPOUNDED CONTINUOUSLY
AT 100% PER YEAR.
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1000 -

900 -

800 -~

700 -

600 -

500

400 -

200

EXPONENTIAL FUNCTIONS GROW RAPIDLY WITH X.
f(x) = 2% FOR EXAMPLE, DOUBLES EVERY TIME
X INCREASES BY 1:

§

Fx+) = 2% = 272 = 229 = 2f(%)

e* GROWS EVEN FASTER, AS YOU CAN EASILY
CALCULATE. A POWER FUNCTION LIKE g(x) = xZ,
BY COMPARISON, FALLS FAR BEMIND.

x e* x* Qy
(0] 1.0 (0]
1 2.7183%... 1
2 7.289... 4
2 20.085... 9
4 54.60... 16
5 148.41... 25
6 403.43... 26
7 1096.63... 49
g 2980.94... 64

IF @ 15 THE NUMBER WITH e“=2

(a =~ 0.693%, A5 YOU (AN CHECK ON
YOUR CALCULATOR), THEN e™ DOUBLES
WHENEVER x INCREASES BY a:

e(x+a) = e*e? = zex

AND IN PARTICULAR,

ena = (ea)n =




IF r 15 ANY POSITIVE NUMBER, THEN
THE FUNCTION h(x) = e™ 15 AN
EXPONENTIAL FUNCTION, BECAUSE

erx = (er)x

THE EXPONENTIAL WITH BASE e”
(NOTE THAT " > D.IT

INCREASES FASTER THAN exp(x)
IFr >1AND SLOWER IF r < 1.

EITHER WAY,
IT GROWS!

SMALLER r

ALWAYS DYING,
NEVER DEAD.

PUTTING @™ IN THE DENOMINATOR CREATES
A FUNCTION

1 -
)C(X)=y‘=erx

THAT DIES OUT AS x GROWS LARGE, I.E.,
IT 15 ALWAYS POSITIVE, BUT IT HEADS
INEXORABLY TOWARD ZERO. THE LARGER r
15, THE FASTER THE FUNCTION DIES OUT.

e™"™ DESCRIBES
SUCH PHENOMENA
AS RADIOACTIVE
DECAY, WHERE THE
DECREASE IN
RAPDIATION 15
PROPORTIONAL TO
THE AMOUNT OF
RADIOACTIVE
MATERIAL PRESENT,
RATHER LIKE
COMPOUND
INTEREST IN
REVERSE.

IT'S AS IF THE BANK TOOK
AWAY HALF YOUR MONEY
EVERY SIX MONTHS...




Circular Functions

OUR FINAL ELEMENTARY FUNCTIONS ARE
THE CIRCULAR, OR TRI6 FUNCTIONS:
THE SINE, COSINE, TANGENT, AND
SECANT. THESE DESCRIBE PROCESSES
THAT 60 BACK AND FORTH, UP AND
POWN, IN AND OUT, LIKE TIPES AND
YO-Y05.

THESE FUNCTIONS ARISE EITHER IN CIRCLES OR RIGHT TRIANGLES. HERE 15 A CIRCLE OF RADIVS 1,
CENTERED AT THE ORIGIN. BEGINNING ON THE x-AXI$ AT (1, 0), A POINT P = (xp, yp) ORBITS
COUNTERCLOCKWISE ALONG THE RIM. YOU CAN SEE A RIGHT TRIANGLE WITH HYPOTENEUSE OP.

P =(xP) yP)

Yp

-

THE ANGLE © (6REEK LETTER “THETA”) BETWEEN OP AND THE X-AXIS 15 MEASURED IN “NATURAL
UNITS, NAMELY THE LENGTH OF THE ARC TRAVELED BY P. THESE UNITS ARE CALLED
RADIANS. SINCE THE CIRCLE'S CIRCUMFERENCE 15 21, P TRAVELS 2 RADIANS IN ONE
COMPLETE CIRCUIT. SMALLER ANGLES ARE PROPORTIONAL, AND MOVING CLOCKWISE GIVES
NEGATIVE ANGLES. WHEN P DESCRIBES MORE THAN ONE CIRCUIT, THE ANGLE O 15 > 2.

| why THe W TO HONOR soME pEAD
GREEK LETTER? WHITE 6UYS. 60T A
PROBLEM WITH THAT?

0

6+2m —6/




THE SINE AND COSINE OF © ARE THE y AND X COORDINATES, RESPECTIVELY, OF THE POINT
P = (xp, yp). THE TANGENT OF © I5 THE RATIO YP/x,, WHEN xp#0.
cos 6 = xp
sin @ = yp
sin @
cos 6

Yp
\e
(YOU MAY HAVE ;
LEARNED FROM THE *p
ANCIENT GREEKS
THAT sin@ = y/r,
BUT HERE r = 1.)

P

"

tan 6 =

THE SINE AND COSINE OSCILLATE BETWEEN -1 AND 1, REPEATING THEMSELVES EVERY 2m RADIANS.
THE TANGENT REPEATS AFTER EVERY  RADIANS. THE TANGENT ZOOMS OFF TO INFINITY AT THE OPD
HALVES OF 1, WHERE THE COSINE 15 ZERO.

-1m/2 /2

Yy = cos X
WE WILL ALSO PYTHAGORAS GIVES U5 THIS
OCCASIONALLY HIGHLY USEFUL EQUATION
MENTION TI-IEe
SECANT OF O, in? 20 =
WHICH 15 THE sin"6 + cos"6 = 1
RECIPROCAL OF
THE COSINE, WHICH ALSO AMOUNTS TO
DEFINED WHEN 2 2
cos 6 # 0. sec”@ = tan“O + 1
sec O = 1 BECAUSE
cos 6
2 sin*@ + cos’@
sec“ @ = —_—
cos“6




ONE WAY TO VISUALIZE THE SINE AND COSINE 15 IMAGINE TWO OBSERVERS VIEWING THE CIRCLE
TO IMAGINE THE POINT P 15 A WEIGHT BEING EDGE-ON. ONE LOOKS ALONG THE x-AXIS, AND
SPUN AROUND AT THE END OF A 1-METER ROPE.  THE OTHER LOOKS POWN THE y-AXIS.

X-6UY SEES THE WEIGHT START AT EYE LEVEL, y-GIRL, LOOKING DOWN, SEES EXACTLY THE
THEN BOB UP AND DOWN, UP AND DOWN, UP SAME BACK-AND-FORTH MOTION, EXCEPT THAT
AND DOWN. HE $EES THE Y-VALUES, OR SINE. THE WEIGHT START AT THE TOP OF ITS CYCLE.

SHE SEES THE COSINE.

THIS CLEARLY SHOWS WHY THE SINE AND AND, AS 1T HOPE YOU'VE ALREADY LEARNED
COSINE HAVE IDENTICAL GRAPHS, EXCEPT SOMEWHERE, THERE ARE COUNTLESS OTHER
THAT ONE 15 DISPLACED SIDEWAYS BY 7. TRIGONOMETRIC IDENTITIES:

cos 6 = sin(6@ + g) sin(A+B) = sinAcos B + sinBcos A
ALSO, SINCE cos(-8) = cos 6, cos (A+B) = cosAcos B - sinAsin B

cos 6 = sin(g— e) sin0 = ';COZS_ZG
AND

2g - 1+ cos 26
sin @ = cos (7 - ) cosC = —F ETC!
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ANOTHER BASIC IDEA:

Composing Functions

SOMETIMES ONE FUNCTION 15 “PLUGGED INTO”
ANOTHER FUNCTION. FOR EXAMPLE, ON P. 15,

hx) = Vx?-1

15 THE RESULT OF PLUGGING THE VALUE OF
f(x) = x* -1 INTO THE SQUARE ROOT

FUNCTION g(u) = vu. FIRST WE EVALUATE
x% - 1 AND THEN TAKE THE SQUARE ROOT.

f 15 INSIDE THE
RADICAL SIGN.

RADICAL
SI6GN OF A
DIFFERENT

f 15 ¢CALLED THE INSIDE FUNCTION, AND KIND
g 15 THE OUTSIDE FUNCTION.
Example 1: Example 2: Example 3:
F(x) = tan?x + tan x + 1 6(x) = o Hx) = tan(x*+ x + 1)

INSIDE FUNCTION: INSIDE FUNCTION:
FIRST FIND tan x, THEN PLUG

ITINTO g(y) = y% +y + 1. ux) = x* g(x) = x*+ x +1
THE INSIDE FUNCTION 15

f(x) = tan x AND THE OUT- OUTSIPE FUNCTION: OUTSIDE FUNCTION:
SIDE FUNCTION 15 g. WE WRITE 2(t) = et £(0) = tan 6
FG) = g(fG) 600 = V) He) = F@GO)

WHAT’S HAPPENING HERE 15 THAT ONE FUNCTION'S
OUTPUT BECOMES ANOTHER FUNCTION’S INPUT. THE

FUNCTION g “EATS” THE OUTPUT OF THE FUNCTION f. %

RELAX... THESE
AREN'T BODILY
FUNCTIONS...



IN EFFECT, THE ARROW OF f 15 FOLLOWED BY THE ARROW OF g:

9(f(x))

11€9)

h:x— f(x) — g(f(x))

WE ¢ALL THE FUNCTION h THE COMPOSITION
OF g AND f, SOMETIMES WRITTEN gof. NOTE
THAT THE INSIDE FUNCTION 14 EVALUATED
FIRST. IT5 ARROW 15 ON THE LEFT. ALsO
NOTE THAT THE ORDER MATTERS. IN GEN-
ERAL, gof # fog. IN EXAMPLES 1 AND 3 ON
THE PREVIOUS PAGE, FOR INSTANCE,

F@lx) = tan (x*+ x + 1)
# tan’x + tan x +1 = g(f(x))

YOU CAN EVEN HAVE A CHAIN COMPOSED OF MANY FUNCTIONS. WHY NOT!?

cwss )

cos (Y x*+1

COMPOSITION LEADS STRAIGHT TO
Fractional Powers

BY COMPOSING £(x) = X7 WITH g(y) = y™,
WE ¢AN DEFINE FRACTIONAL POWERS OF x:

BIE]

m

h(x) = x

-
=

(x'l*)

FIRST TAKE THE nTH ROOT AND THEN THE
mTH POWER, OR VICE VERSA. (HERE THE
ORDER OF COMPOSITION DOESN'T MATTER.)
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Inverting POING NOTHING?*
Functions )

SOMETIMES WHEN WE COMPOSE
TWO FUNCTIONS, A STRANGE
THING HAPPENS: NOTHING!

NEXT BIG IDEA:
[WI-IAT’é WRONG WITHJ

Example:
FOX) = x5 AD g(y) = y? THEN  h(x) = g(fG)) = (%) = x

PLUG x INTO gof, AND OUT COMES x AGAIN. h CUBES THE CUBE ROOT, 50 IN THE END
THIS COMPOSITION DOESN'T PO ANYTHING! g “UNDOES” THE EFFECT OF f.

ALL THAT WORK...
AND FOR WHAT?

IN WORDS, g(x) 15 “THE NUMBER WHOSE CUBE 15 x.” WE OFTEN WANT TO KNOW THIS
KIND OF INFORMATION... SUCH THINGS AS:

THE NUMBER WHOSE SQUARE 15 4 OR, IN $YMBOLS, x* = 4

1 WHAT NUMBER X, 3 _ 1
THE NUMBER WHOSE SINE 15 V2 0. OR ¢ 50LVES sin 6 =1V2
THE NUMBER WHOSE EXPONENTIAL 15 2 THE EQUATIONS: e’ =12

*WITH A TIP OF THE HAT TO THE CHINESE PHILOSOPHER ZHUANGZI!
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BUT THERE'S A COMPLICATION... IT UNFORTUNATELY MAKES NO SENSE TO ASK FOR “THE”
NUMBER WHOSE SQUARE 15 4, BECAUSE THERE ARE TWO OF THEM, Z AND -2.

YOU'RE NOT
VERY WELL-
DEFINED,

THE SINE 15 EVEN WORSE. THE ANGLE
/4 SOLVES THE EQUATION:

sin @ = -'-2\/7

BUT 90 DO A LOT OF OTHER ANGLES:
2m/4, -57/4, 9/4, \m/4, ETC.

3m/4

/_

\ 91/7/4
—

sin(Z£2mn) = 3VZ,n = 0,1,2,3%, ..

sin(%" £2mn) = 3V2,n=01,2,3%, ..

IN OTHER WORDS, THESE FUNCTIONS HAVE MANY ARROWS LANDING ON THE GIVEN NUMBER. A
VALUE OF THE FUNCTION GENERALLY COMES FROM MANY DIFFERENT VALUES OF x.

| 4 1 1 (uow ANNOYING 15 TI-IAT?j
37/4 1
" o ; ’iﬁ
2 . .
/4
10 .0
o) o)
2 -5m/4 -
fF= x? 9(8) = sin6
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I NEVER
REPEAT
MYSELF!

BUT NOT ALL FUNCTIONS
ARE LIKE THAT: A
FUNCTION 15 CALLED
ONE-TO-ONE IF NO
TWO OF ITS ARROWS
LAND IN THE SAME
PLACE. IN $YMBOLS, IF
a # b, THEN f(a) # F(b).
EACH VALUE OF f IS5 THE
HEAD OF ONLY ONE
ARROW.

a !'___——-—": f(a)

y f(b)

IF 15 ANY ONE-TO-ONE FUNCTION, WE CAN MAKE A NEW FUNCTION, ', “F-INVERSE,”
THAT UNAMBIGUOUSLY UNDOES THE ACTION OF f BY REVERSING 1T5 ARROWS. THE DOMAIN
OF THE INVERSE FUNCTION ' 15 ALL THE VALUES ASSUMED BY f, AND FOR ANY NUMBER

£(x) IN ITS DOMAIN, ' 15 DEFINED BY

FUF(R) = x

YOU'RE A
BACKWARD
SORT OF
FUNCTION,

AREN'T YOU?

i fla)

b f(b)

BECAUSE £~' REVERSES THE ARROWS OF f, f OBVIOUSLY REVERSES THE ARROWS OF f'

TOO—IT'S MUTUAL! 90 IT FOLLOWS THAT
FF YN =y

THE TWO FUNCTIONS ARE INVERSES OF
EACH OTHER! ORDER DOESN'T MATTER.

EITHER WAY,
WE (AN
ACCOMPLISH
NOTHING!
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WHAT FUNCTIONS ARE ONE-TO-ONE? FOR OUR
PURPOSES, IT WILL BE FUNCTIONS THAT ARE

increasing or decreasing.

WE DEFINE A FUNCTION TO BE INCREASING, OR STRICTLY
INCREASING, IF THE VALUES f(Xx) RISE AS X DOES. THAT 15,
GIVEN ANY TWO POINTS a AND b IN THE DOMAIN OF f,

IF a < b, THEN f(a) < f(b).

f 15 STRICTLY DECREASING IF a < b IMPLIES THAT
f(a) > f(b).* BECAUSE OF THE INEQUALITY, EVERY
INCREASING FUNCTION 15 ONE-TO-ONE, AND 50 15 THE VOLUME OF A SPHERE

EVERY DECREASING FUNCTION. 15 AN INCREASING
FUNCTION OF RADIVS

AN INCREASING FUNCTION HAS A GRAPH THAT G6OES UPHILL AS THE VARIABLE MOVES TO THE
RIGHT. A DECREASING FUNCTION 60ES DOWNHILL.

DECREASING

INCREASING

IN TERMS OF ARROWS, AN INCREASING FUNCTION'S ARROWS NEVER CRO%5, BECAUSE THE VALUES
f(x) KEEP G6OING UP THE LINE. ALL A DECREASING FUNCTION'S ARROWS CROSS EACH OTHER!

- : =

INCREASING DECREASING

A

*NOTE THAT A FUNCTION f 15 INCREASING IF AND ONLY IF —f 15 DECREASING.
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SINCE AN INCREASING (OR DECREASING) FUNCTION 15 ONE-TO-ONE, IT HAS AN INVERSE!

THE INVERSE ARROWS
POINT FROM y TO x!

Little Example:

F(X) = x? 15 INCREASING.
ITS INVERSE 15

-1 _‘3
fFT(x) = x

IN GENERAL, g(x) = x" 15
INCREASING FOR ANY ODD
INTEGER n, AND THE
INVERSE 15

-1 1
g (x) = xn

Big, Important Example: Natural Logarithm,
Inverse of the Exponential

THE EXPONENTIAL FUNCTION Exp(x) = &* 15 INCREASING.

PROOF: IF a < b, THEN
b ]

% = e® ® 51 geeavse b-a >0, %0 4
e® > ef |

ITS INVERSE FUNCTION 15 ¢ALLED THE NATURAL
LOGARITHM, WRITTEN In (“ELL-EN”).

THE DOMAIN OF In 15 (O, oo) OR ALL POSITIVE

NUMBERS BECAUSE &* ASSUMES ALL VALUES
GREATER THAN ZERO,* AND

e =y AN InE® = x

| Sy -

lny

*50RRY, BUT YOU'RE ASKED TO TAKE THIS ON FAITH IN THIS BOOK.
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EXPONENTS, YOU SHOULD RECALL,
BEHAVE THIS WAY:

@MEY) = e**Y (MY = ™

THESE IMPLY THE FAMOUS LOG
FORMULAS THAT USED TO BE 50
IMPORTANT FOR MANAGING BIG
CALCULATIONS BACK IN THE DAY
BEFORE MECHANICAL AND ELEC-
TRONIC COMPUTERS, WHEN
EVERYTHING WAS DONE BY HAND.

In(xy) = Inx + Ilny

InxP = plnx

AND IN PARTICULAR, WHEN p = -1,

-1

Inx' = -lnx

"

LOOK UP “LOGARITHM”
ONLINE TO FIND OUT WHAT
I'M TALKING ABOUT...

BY HAND?
WHA-?

\

THE LOGARITHM ENABLES US TO EXPRESS OTHER
EXPONENTIALS IN TERMS OF “THE” EXPONENTIAL
WITH BASE e. TAKE 2%, FOR EXAMPLE. USING A
CALCULATOR, YOU CAN FIND AN APPROXIMATE
VALUE FOR In 2:

In 2 = 0.69%..* FROM WHICH:

e(ln 2)x - e0.693,..x

Zx = (ell’l 2)7( =

REPLACE 2 BY ANY NUMBER a > 1 AND THE
EXPONENTIAL A(x) = a” ¢AN BE EXPRESSED
SIMILARLY:

a* = e ™, Wwiere r = In a.

conetvsion: EVERY
EXPONENTIAL FUNCTION

CAN BE EXPRESSED AS e™
FOR SOME NUMBER r.

*IT MAKES SENSE THAT In 2 15 BETWEEN O AND 1, BECAUSE 2 15 BETWEEN 1 (= ¢°) AND e (= e').
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Graphing Inverses

WE'VE SEEN HOW INVERSES
LOOK IN TERMS OF ARROWS:
£~ SIMPLY TURNS ALL THE f
ARROWS AROUND. HOW DOES
THIS LOOK ON A GRAPH?

JUST FLIP
SOME OF
THESE
AROUND...
AND... UM...

ON THE GRAPH y = £(x), FOLLOW AN ARROW FROM A POINT X TO f(x) = y. THE INVERSE
FUNCTION ' REVERSES THAT ARROW, %0 f'(y) = x.

THAT 15, IF WE USE THE
VERTICAL y-AXIS$ FOR THE
INPEPENDENT VARIABLE,
THE GRAPH X = £'(y)
15 IDENTICAL TO THE
GRAPH y = f(x)!

y = FGO fam -

UNFORTUNATELY, WE
CUSTOMARILY PUT THE
INDEPENDENT VARIABLE
ON THE HORIZONTAL
AXI5, NOT THE VERTICAL
AXI5. WE WANT THE
GRAPH y = £ (x), NOT
x=fy.

x ——— - —

WHAT HAPPENS IF WE
EXCHANGE x AND y?

NOTHING
TOO
CHAOTIC,
I HOPE...




IF A POINT (a, b) 15 ON THE 6RAPH y = £(x), THEN (b, @) 15 ON THE GRAPH y = £~ (x).
THE POINT (a, b) 15 THE REFLECTION OF THE POINT (b, @) ACRO%S THE LINE y = X, 50 THE
GRAPH y = £7'(x) 15 THE MIRROR IMAGE OF THE GRAPH y = f(x) REFLECTED ACRO%5 THE

[

LINE y = x.

y=Ff(x)

WELL, THAT'S NOT DEPENDS ON
50 BAD THEN, 15 IT? | WHO'S LOOKING
IN THE MIRROR...

\

HERE ARE TWO EXAMPLES: ABOVE, THE
GRAPH y = Xx? AND ITS INVERSE THE
CUBE ROOT, AND ON THE RIGHT THE
SUPER-IMPORTANT NATURAL LOGARITHM
AND TS INVERSE THE EXPONENTIAL.




(AN WE INVERT A FUNCTION THAT 15 NOT ONE-TO-ONE, THAT 60E% UP AND DOWN? IF MANY
ARROWS LAND AT A POINT y, WHICH ONE DO WE REVERSE? THE ANSWER 15: PICK WHICHEVER
ONE YOU LIKE AND IGNORE THE REST!

- Za fé;xa I KNOW WHICH
m SR ONE I LIKE...

ONE SYSTEMATIC WAY TO DO THIS 15 TO FLIP
ONLY ARROWS ORIGINATING ON AN INTERVAL =

WHERE THE FUNCTION 15 ONE-TO-ONE. 3
FOR EXAMPLE, f(x) = x” I5 INCREASING (AND b y
50 ONE-TO-ONE) ON THE INTERVAL [0, o). PO
REVERSING ONLY THE ARROWS THAT START Ny g
THERE MAKES AN INVERSE B\
I L
Flo0 = Vx R
\4 o

THAT ALWAYS 6IVES THE NON-NEGATIVE
SQUARE ROOT. THEN FOR ALL x>0,

FET)) = x

§ i e s e e o o
Lot o o

FUF()) = x  (NO NEGATIVE x ALLOWED!)

THIS WORKS FOR ANY
FUNCTION f: RESTRICT
1T DOMAIN TO AN
INTERVAL WHERE f 15
INCREASING (OR
DECREASING), AND ON
THIS INTERVAL, f HAS
AN INVERSE.

SORRY.
WITHOUT
A BUNNY,
I PON'T




Second Big, Important Example:
Inverse Circular Functions

THE SINE AND COSINE WOBBLE UP AND DOWN, UP AND DOWN... BUT ON SOME $HORT
INTERVALS, THEY ARE INCREASING! LET'S CONCENTRATE ON THE SINE, BECAUSE THE COSINE
WORKS EXACTLY THE SAME WAY. YOU CAN SEE THAT THE SINE INCREASES ON THE INTERVAL

[-7, 2] WHERE T VALUES RISE FROM -1 TO 1.

=sin x

RESTRICTED TO THAT INTERVAL, THE SINE HAS y = arcsin x
AN INVERSE FUNCTION, ¢ALLED THE ARCSINE, -

WITH DOMAIN [-1, 17]. THE ARCSINE ALWAYS
TAKES ON VALUES BETWEEN -1/2 AND 7/2.

SUCH A
LITTLE
DOMAIN...

y=sinXe==*

WHY 15 IT CALLED THE ARCSINE? BECAUSE IT'S THE ARC LENGTH CORRESPONDING TO A
GIVEN SINE.

IFsin© =y THEN @ = arcsiny

6 15 AN ANGLE WHOSE SINE 15 y. THIS ANGLE,
BEING MEASURED IN RADIANS, 15 THE LENGTH OF
THE CORRESPONDING ARC ON THE UNIT CIRCLE
(5EE P. 35). OTHER ANGLES HAVE THE SAME SINE,
BUT € 15 THE ONLY ANGLE BETWEEN -m/2 AND
m/2 WITH sin@ = y.

y=sin6
O=arcsiny
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THIS CHAPTER’S FINAL FUNCTION WILL BE THE INVERSE OF THE TANGENT FUNCTION,
f(x) = tan x. THE INVERSE 15 KNOWN A5 THE ARCTANGENT FOR THE SAME
REASON THE INVERSE SINE 15 CALLED ARCSINE, AND 15 SYMBOLIZED AS arctan x.

' z=y/x =tan 6
; 6 = arctan z

FIRST WE HAVE TO CHOOSE A PART OF THE
TANGENT’S DOMAIN WHERE THE FUNCTION
15 INCREASING. HERE THE OPEN INTERVAL

(-F» F) SERVES THE PURPOSE.

e N

THE TANGENT'S VALUES RANGE OVER ALL REAL NUMBERS, I.E., THE “INTERVAL” (-o00, 00),
50 THE ARCTANGENT’S DOMAIN 15 (oo, 00). THE FUNCTION 15 DEFINED EVERYWHERE, BUT ITS
VALUE ALWAYS LIES BETWEEN -m/2 AND /2.

Yy

y = arctan x

(NJE]

'
NIE]




THIS COMPLETES OUR TOUR OF THE ELEMENTARY FUNCTIONS! WE'VE SEEN POWER FUNCTIONS
(POSITIVE, NEGATIVE, AND FRACTIONAL), THE EXPONENTIAL AND ITS INVERSE THE NATURAL
LOGARITHM, AND THE CIRCULAR FUNCTIONS AND THEIR INVERSES. NOT 0 MANY, REALLY...

55T! STOP THAT,
?> yoU TWO...

A NICE,
MANAGEABLE
MENAGERIE!

BUT OF COURSE, WHEN YOU ADD, MULTIPLY, DIVIDE, AND COMPOSE THESE BASIC INGREPDIENTS,
YOU CAN MAKE MONSTERS LIKE THIS:

1 _1
F(x) = ec052 [A + x®)2(5x - sin(In(cos x))) %]

CALCULYS,
NATURALLY!

AND WHAT ARE WE
SUPPOSED TO PO
WITH THEM?
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Problems

DESCRIBE THE DOMAIN OF EACH HERE 15 THE GRAPH OF A FUNCTION y = f(x), A POINT ¢
OF THE FOLLOWING FUNCTIONS: ON THE Xx-AXIS, AND A POINT d ON THE y-AXIS.
1. Q) = 3
: 1 - 2¢ 10. PRAW THE GRAPHS
OF THESE FUNCTIONS:
2. fby = _V2Zb-1 d | a. gix) = flx - ¢)
(b -4+ b. h(x) = f(x) + d
3. M0 = - ’le \ € uGx) = 2F(x)
. d mx) = f(2x)
(4
X2 e v(x) = -f(x)
4. vix) = V1 - (= \/
Vi-(3) £.TOO = F(-%)
5. 9(0) = 208
e?- I 11. HERE ARE SOME COMPOSITE FUNCTIONS. IDENTIFY THEIR
9 INSIDE AND OUTSIDE COMPONENTS AND WRITE EACH GIVEN
2xnct FUNCTION IN THE FORM u(v(x)) (OR u(v(w(x))) IF
b. Ax) = (1 - &% NECESSARY).

7. Tw) = (4 - eZu)-i/z a h(x) = 2°°%

8. fOx) = In (1 + %% b. hx) = Vinax® -1
9. L(x) = Inln %) c. h(x) = 4e* + & + 6&* - 99

12. SHOW THAT FOR ANY NUMBER ¢, A POLYNOMIAL P(x) = by + byx + byx? + ... + b,x" (AN

ALSO BE WRITTEN P(x) = a, + ay(x - ¢) + a,(x - ©)* + ... + a,(x - )" WHERE a, = P(c).
SHOW THAT a, # O IF b, # O.

13. LET’S DEFINE A FUNCTION f ON 14. SHOW THAT
THE OPEN INTERVAL (-1, 1) LIKE THIS:

arctan x = arccos

1
x+1? FOR-1<x <0 Vi+ x2

f(x) =
fx) = x*-1 FORO < x < 1 ) X
= arcsin ————
V1 + x2
a. 15 f AN INCREASING FUNCTION
ON ITS WHOLE DOMAIN? (HINT: DRAW A TRIANGLE.)
b. 15 f ONE-TO-ONE? 15. IF YOU HAVE A, DOLLARS TODAY, AND IT COM-
POUNDS 50 THAT YOU HAVE A(t) = A e™ DOLLARS
R VEnar T APH OF £ AND AFTER t YEARS, HOW LONG DOES IT TAKE TO DOUBLE

YOUR MONEY? (r 15 ASSUMED FIXED.)
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Tue LAsT cHAPTER WAS
ABOUT FUNCTIONS “SITTING
STILL,” 50 TO SPEAK.
GIVEN A POINT X, WE
FOLLOWED IT5 ARROW TO
THE LOCATION OF f(x).

Chapter 1
Limits

A BIG IDEA ABOUT SMALL THINGS

® f(a)

NOW CALCULUS INTRODUCES A NEW IDEA: NOT JUST THE VALUE OF A FUNCTION AT A
POINT a, BUT WHAT f(x) LOOK% LIKE VERY, VERY CLOSE TO a. IN FACT, WE MAY BE
INTERESTED IN THESE VALUES AT NEARBY POINTS X EVEN WHEN f ISN'T DEFINED AT

THE POINT a!!

a + 0.000001 ¢

a - 0.000001 @

BUT WHY?
JUST SAYIN'...
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WHY? THE REASON IT PLEASES ME,

GOES BACK TO . YOU AGAIN TO
NEWTON’S AND 2 e~ SEE, FRAULEIN!
LEIBNIZ'S IDEA

ABOUT VELOCITY.

(%EE PP. 7-8.)

THEIR IDEA, REMEMBER, WAS THIS: IF s(t) 19 POSITION AT TIME t, AND a 15 A MOMENT
IN TIME, THEN WHEN t 15 NEAR a, THE VELOCITY AT TIME a 15 VERY CLOSE TO THE
“DIFFERENCE QUOTIENT” P(8).

pety = 5B - s@ [0/0 6IVES ME THEJ
- a WORST INDIGESTION...

D 15 A FUNCTION OF t THAT 15
NOT DEFINED AT t = a, BUT |9
DEFINED WHEN t 15 NEAR a. AS a
t 6ETS CLOSER TO a, WE EXPECT W
DP(t) TO APPROACH THE INSTAN-
TANEOUS VELOCITY AT a. WE'LL
WANT TO WRITE

v@) = lim (4]

AND SAY THAT v(a) 15 THE LIMIT OF D(t) AS t 60OES TO a.

THE KICK LASTED MERE
MILLISECONDS, BUT IT
CERTAINLY HAD VELOCITY.
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FOR EXAMPLE, IT SO HAPPENS THAT ON A RAMP SET AT AN ANGLE OF SLIGHTLY MORE
THAN 11.77 PEGREES, A FRICTIONLESS VEHICLE STARTING FROM REST AT s = O WILL ROLL
DOWN ACCORPING TO THE FORMULA

s(t) = t* METERS

(IF YOU'RE CONCERNED ABOUT UNITS,
s(t) = (1 M/sECD)-(t 5EC)? = t* M.
1 M/5EC% 15 THE ACCELERATION.)

THEN NEAR A POINT IN TIME a, t t-3 t2-9 P
t? - a?
D) = 2.9 -0.1 -0.59 5.9
4 299 | -oo01 -0.0599 5.99
kﬁ;’:gg";ﬁ:f :A;;in:;f‘o" 2999 | -0.001 | -0005999 | 5999
D(t) WHEN t 15 (CLOSE TO a
3.001 0.001 0.006001 | 6.001
3.01 0.01 0.0601 6.01
3.1 0.1 0.41 6.1

6.01

3.01 B

BY THE WAY,
WHO’S PRIVING?

2.99
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MAYBE YOU STILL PON'T QUITE I ACCEPT THE CHALLENGE. FIRST, T REWRITE THE EXPRESSION
BELIEVE IT. YOU CHALLENGE ME TO BY LETTING h = t -3 OR t = 3 + h. THEN

MAKE D(t) EVEN CLOSER TO 6,

WITHIN 0.000001, 5AY. THAT 15, o) (%2 + h)? - 32 bh + h?

YOU REQUIRE G+ h -3 h

6+h wHEN h#O

IP@) - 6| < 0.000001

)

AND I OBSERVE THAT AS LONG AS h 15 NON- BUT YOU'RE A PERSISTENT 50-AND-%0... YOU
ZERO AND |h| < 0.000001, THEN IT CHALLENGE ME AGAIN: NOW YOU WANT D(¢)
FOLLOWS THAT, SINCE P(t) = 6 + h, WITHIN 0.0000000001 OF 6.
IP@) - 6] = |hl < 0.000001 I'VE 60T A
MILLION OF ’EM!
Ty
\
1 SATISFY YOUR DEMAND AGAIN: AS YOU DECIDE YOU WANT IT EVEN CLOSER,

BUT YOU DPON'T WANT TO STAND AROUND

LONG 48 h I5 NON-2CRO ANP FEEDING ME SMALL NUMBERS ALL DAY...

|h] < 0.0000000001

I'M PRETTY SURE

THEN, A5 ABOVE, 1 HAVE BETTER A
THINGS TO DO... I,

[(P®E) - 6] = |h|] < 0.000000001 -

OR, IF YOU LIKE,

5.9999999999 < P(t) < 6.0000000001
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50 YOU GIVE ME A GENERAL CHALLENGE: “IF 1 OFFER YOU ANY SMALL NUMBER—CALL
IT £, THE GREEK LETTER EPSILON*—(AN YOU MAKE P(t) WITHIN £ OF 6 BY MAKING h

SMALL? CAN YOU FORCE |D(E) - 6] < £7”
(B
b+& _,ﬁ( 0 [ YEAH...
W “54° ~d CAN you?

SIMPLE! I KNOW THAT P(t) = 6 + h WHEN h # O, 50 I ANSWER THE CHALLENGE BY SAYING,
“LET |h| < &

F 1t-3l=Ihl <&,
/ THEN [D(®) - 6] =
/ 16+ h) - 6l =
'/ hl < &.
p

AND T'VE MET YOUR CHALLENGE.

NOW YOU'RE SATISFIED! T'VE
SHOWN THAT D(t) (AN BE MADE
WITHIN A HAIR OF 6, NO MATTER
HOW SLENDER THE HAIR!!

UM... CAN WE
NOT TALK
ABOUT HAIR?

¥IT'S TRADITIONAL. SORRY!
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BY NOW, YOU MAY BE CONVINCED THAT A FUNCTION REALLY CAN APPROACH A LIMIT AS X—a,
EVEN IF THE FUNCTION ISN'T DEFINED AT THE POINT a ITSELF. GRAPHICALLY, IT LOOKS LIKE

THIS: L‘l‘,} f(x) = L MEANS THAT THE GRAPH y = f(x) HEADS FOR THE POINT (a, L).

y = f(x)

(a, L)

IT MAY WOBBLE ALONG THE WAY, BUT IT
REALLY DOES HOME IN ON (a, L), IN THE
SENSE THAT IT 6ETS WITHIN ANY TINY
CIRCLE AROUND (a, L) AND STAYS THERE.

LIMITS ARE ESPECIALLY EASY WHEN f 15 ONE OF OUR ELEMENTARY FUNCTIONS, POWER
FUNCTIONS, CIRCULAR FUNCTIONS, EXPONENTIALS, AND THEIR INVERSES. WHEN ONE OF THESE
FUNCTIONS 15 DEFINED AT A POINT @, THE GRAPH GOES WHERE IT OUGHT TO 60, NAMELY

3 TO FIND THE LIMIT AT a, JUsT
PLUG a INTO THE FUNCTION!
AL\

i‘.'.';' f(x) = f(a)

FOR INSTANCE,

}cim2 50x = 100

. 1 - 1 \ \‘”‘ //
m =3 N -
limcos © = 0

6-m/2
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ALMOST EVERYTHING ELSE YOU
NEED TO KNOW ABOUT LIMITS
15 SUMMED UP IN THESE

& <& &
Basic Limit Facts: surrosc c 15 o constant, anp £ ano g ARE TWO

FUNCTIONS DEFINED AROUND a*, WITH
lim f(x) = L AND limg(x) = M
x—a X—a
THEN
1a. ror ANy a, lim € = ¢
b. lim cFfx0) = Clim £
X—a X—a

C. lim (FG) + £) = lim £ + €
2. lim (FGO) + gG0)) = L + M
3. lim (F(x)g(x)) = LM

4. IF L # O, THEN lim _1_ = 1_
x=a £(x) L

IN SHORT, YOU (AN TAKE THE LIMIT OF 5UMS, PRODUCTS, AND QUOTIENTS TERM BY TERM

(WATCHING OUT FOR ZERO DPENOMINATORS), AND CONSTANTS “PASS THROUGH™ THE LIMIT
SYMBOL.

THIS MAKES
LIFE 90 MUCH
EASIER!!

Example: ror any a = o,

X . a s
) e*sin x e®sina
lim (3x*+ ——Z2) = 3a%> + ———
X—a x a

*WE'LL USE “PEFINED AROUND d” A5 SHORTHAND FOR “DEFINED ON AN OPEN INTERVAL CONTAINING
a, EXCEPT POS5IBLY AT a ITSELF.”
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ACTUALLY, THERE ARE A TO BEGIN WITH—THE PRECISE DEFINITION OF A LIMIT! TO
FEW MORE THINGS TO UNDERSTAND THIS, LET'S REVIEW WHAT HAPPENED ON PAGES
KNOW ABOUT LIMITS... 56 AND 57 WITH THE FUNCTION P(t) NEAR t = 3.

(CAN YOU MAKE IT WITHIN 0.0001?)

WITHIN
0.0000000017

( WITHIN... ;7

IN GENERAL TERMS, IT WENT THIS WAY: YOU CHALLENGED ME TO CONFINE D(t) WITHIN A
TINY INTERVAL I AROUND L BY MAKING t CLOSE TO a. THE “RADIUS” (HALF-LENGTH) OF THAT
INTERVAL WE CALLED &£, EPSILON. YOU PEMANDED THAT I MAKE L - £ < P(t) < L + &.

GIVEN THAT CHALLENGE, T RESPONDED BY FINDING AN AT THAT POINT, YOU CONCEDED
INTERVAL J AROUND a, WITHIN WHICH THIS WAS TRUE: THAT THE LIMIT REALLY WAS L.

IFti15INT, THEN D) 15 IN L.

SIGH... YES... 1
ADMIT DEFEAT...




WE (AN EXPRESS THIS WITH FORMULAS, TOO. LET'S USE f FOR THE FUNCTION AND x FOR
THE VARIABLE INSTEAD OF P AND t, AND I'LL ILLUSTRATE IT WITH A G6RAPH, 50 YOU CAN SEE
THIS PROCESS IN TWO PIFFERENT WAYS. THE MEANING 15 IDENTICAL—ONLY THE LANGUAGE 15

DIFFERENT.

OH, GREAT...
YOU'RE 60ING
TO MAKE ME
ADMIT DEFEAT
TWICE?

%0: GIVEN ANY £ > O, YOU CHALLENGED ME
TO MAKE [f(x) - L| < &, I.LE., TO GET THE
GRAPH WITHIN THIS STRIP AROUND L:

IF T (AN RESPOND TO AN £
CHALLENGE WITH A & THAT
MAKES THAT LAST “IF... THEN”
TRUE, THEN YOU AGREE THAT

lim f(x) = L.
xX—a

WELL, IT'S
FOR, UM...
THEM...

I RESPONDED WITH A POSITIVE NUMBER &
(THAT’S THE RADIUS OF THE INTERVAL J)
WITH THIS PROPERTY:

O
a

ABSOLUTELY!
I DECIDED TO
TAKE IT AS A
VICTORY!



HERE, THEN, ARE TWO WAY%
TO EXPRESS THE FORMAL

Definition of the limit: suerosc £ 15 A FUNCTION DEFINED AROUND
POINT a (THOUGH NOT NECESSARILY AT a ITSELF). THEN TO SAY f HAS THE LIMIT L AS x
APPROACHES a MEANS:

ALGEBRAIC VERSION: INTERVAL VERSION:

FOR EVERY € > O, THERE EXISTS A FOR EVERY OPEN INTERVAL I AROUND L,

NUMBER & > O, SUCH THAT IF THERE 15 AN OPEN INTERVAL J AROUND

|x - al < & THEN |f(x) - L| < &. a, SUCH THAT IF x 15 IN T, THEN f(x) 15
IN I,

ON THE INTERVAL J,
F(x) 15 “TRAPPED” OR
“CAGED™ IN 1.

ALTHOUGH 1 PREFER THE INTERVAL PICTURE, )
THE ALGEBRAIC VERSION |5 THE ONE YOU SEE C~\r4
IN ALL THE TEXTBOOKS, THE ONE RECITED IN -

A MANTRA-LIKE DRONE BY GENERATIONS OF
CALCULUS STUDENTS, UNTIL IT EITHER $INKS
IN, OR ELSE, YOU KNOW, IT DOESN'T.

it “FOR EVERY
EPSILOHHMMMAL...”
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TO SEE HOW THE DEFINITION
WORKS, LET'S PROVE SOME
OF THE BASIC LIMIT FACTS
ON PAGE 59.

Limit Fact 1b. lim £(x) =

L, THEN lim £ £(x) =

DELTA... FOR EVERY EPSILON,
THERE EXISTS A DELTA...

FOR EVERY EPSILON, THERE
EXISTS A DELTA... FOR EVERY
EPSILON, THERE EXISTS A
&% FOR EVERY...

CL WHEN C 15 A CONSTANT.

PROOF: GIVEN £ > O (THAT'S HOW
THESE PROOFS ALWAYS START), WE
HOPE TO FIND A NUMBER & > O
SUCH THAT IF |x - al < &, THEN
[CF(x) - CL| < E. WE NOTICE THAT

ICFG) - CLl = ICIIFG0) - L]
%0 IF
IFo0 - L] < 22—

14

WE SHOULD GET WHAT WE WANT. BUT
CAN WE TRAP £(x) IN THAT £/IC|
INTERVAL? ANSWER: OF COURSE WE
CAN! BY DEFINITION OF THE LIMIT, WE
(AN TRAP £(x) IN ANY SMALL INTERVAL
BY USING SOME & OR OTHER... THIS 15
THE KEY TO THE WHOLE CONCEPT!

S0 TAKE & SUCH THAT

IF Ix - al < &, THEN IfGx) - L] < Ii

cl
IN THAT CASE, IF |x - al < &, THEN

ICFGO) - €L = ICIIFGO - LI
<1clE =«
IC|

50 Cf(x) 15 CAGED WITHIN £ OF CL, AND
THE PROOF 15 COMPLETE.
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SOME FURTHER LIMIT FACTS DEPEND ON THE FOLLOWING PRELIM-
INARY THEOREM, OR LEMMA, AS MATHEMATICIANS WOULD CALL IT.

Lemma 1: suerose lim £G) = lim g(x) = L.

IF I 15 ANY OPEN INTERVAL AROUND L, THEN THERE 15 A SINGLE
OPEN INTERVAL J AROUND a ON WHICH BOTH f(x) AND g(x) ARE
TRAPPED IN 1.

é!
PROOFS |

SQUEEZE
THEOREMS
FROM IT...

PROOF: BY DEFINITION, THERE 15 AN OPEN INTERVAL J;
AROUND @ WHERE F(X) 15 CONFINED TO I, AND ANOTHER
(PO%5IBLY DIFFERENT) OPEN INTERVAL Jg AROUND a WHERE
g(x) 15 CONFINED TO 1.

WHAT PO YOU PO
WITH A LEMMA?

EW: I
I I 9599 -
70 a Y 2 L THEN THE INTERSECTION OF J; AND Jg, THAT
l | :__;_44‘—’ 15, ALL POINTS COMMON TO THE TWO INTERVALS,
9 g| U 15 ALSO AN OPEN INTERVAL J AROUND a. IF X I5
L~ IN J, THEN BOTH £(x) AND g(x) ARE IN I, AND

THE PROOF 15 COMPLETE.

Lemma 2: suepose lim £(x) = lim gGx) = O. THEN
lim f(x)g(x) = lim £(x) + lim g(x) = O
PROOF: cIveN & >0, By LEMMA 1 THERE

15 AN INTERVAL T AROUND a SUCH THAT IF
x 15 IN J, THEN

J
£ £
If(x)l<€ AND |g(x)| < 7
IFx15IN T, THEN, a
IF(x) + 9GO < 1£GO| +19G0)| < % ¥ % .y
2
IF(x)g0| = [FOAI-1gx)| < % < &

AND THE PROOF 15 COMPLETE. (WE ASSUMED !
& < 1 HERE, BUT THAT’S O.K.)
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WE LEAVE LIMIT THE PROOF OF FACTS 1a AND 1c AS AN EASY EXERCISE FOR YOU,
READER... ASSUMING THEM TO BE TRUE, WE NOW PROVE FACTS 2 AND 3.

Limit Fact 2. 7 tim 70 = L AW lim g0 = M, THEN
Llll;l FOO+gx)) =L + M

PROOF: APPLY LEMMA 2 TO THE FUNCTIONS f - L

AND g - M. THESE BOTH HAVE LIMIT O AS x—a, BY
FACT 1c. 50

o

|l

Lt_(t} ((F) - L) + (g(x) - M)) BY LEMMA 2

]

Lt_r‘r‘} ((FG) + g(x)) - (L + M)).

|l

[lim ((FGO + 9G] - (L + M) BY FACT 1c, 50

L‘I’} ((f(x) + g(x)) = L + M. DONE!

(Q. E. vobvw-v;c:)

Limit Fact 3. lim £(x) = L AND lim gCx) = M, THEN

lim (FG)g(x)) = LM

PROOF: AGAIN APPLY LEMMA 2 TO THE FUNCTIONS f - L AND g - M,
WHICH BOTH HAVE LIMIT O AS x—a.

o

]

}}1‘;‘ [(F() - L) (g(x) -M)] (BY LEMMA 2)

!

lim [f(x)g(x) - Lg(x) - Mf(x) + LM] (JUST ALGEBRA)

= lim fG)g(x) - lim Lg(x) - lim Mf(x) + LM (BY FACTS 2 AND 1a)

"

lim fGOg(x) - LM - LM + LM (BY FACT 1b)

= lim f(x)g(x) - LM, %0 THE PROOF OF LIMIT
x—a FACT 4 15 LEFT TO

. THE PROBLEM SETS...
lim f(x)g(x) = LM. DONE AGAIN!
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More Limit Facts aeout posimive (AND NEGATIVE) FUNCTIONS AND THEIR

LIMITS, PLUS SOMETHING ELSE TO CHEW ON...

5a. r lim £x) = L > O, THEN £(x) > O
ON SOME INTERVAL T AROUND a.

PROOF: LET I BE ANY OPEN INTERVAL THAT
CONTAINS L BUT EXCLUDES O. BY THE DEFINITION
OF A LIMIT, THERE 15 AN INTERVAL J AROUND a
ON WHICH f(x) 15 ALWAYS IN 1. SINCE 1
CONSISTS ENTIRELY OF POSITIVE NUMBERS, THE
PROOF 15 COMPLETE.

Bb. IF L < O, THEN THERE 15 AN INTERVAL
AROUND @ ON WHICH £(x) < O. THIS
FOLLOWS BY APPLYING 5a TO -f.

B5C. IF f(x) > 0 FOr ALL x ON 5OME
INTERVAL AROUND a, THEN lim £(x) 2 O
(IF THE LIMIT EXISTS).

PROOF: IF THE LIMIT WERE NEGATIVE,
THEN BY 5b, WE COULD FIND AN INTERVAL
AROUND a WHERE f(x) WAS NEGATIVE,
CONTRARY TO THE HYPOTHESIS.

Bd. same a5 5c, with > REPLACED
THROUGHOUT BY <.

/1
T- =
- 0

TRANSLATION OF 5a: A FUNCTION
WITH A POSITIVE LIMIT AT a MUST
BE POSITIVE NEAR a.

NOTE: WE CAN NOT CONCLUDE THAT A
POSITIVE FUNCTION HAS A POSITIVE LIMIT,
ONLY A NON-NEGATIVE LIMIT. FOR EXAMPLE,

F(x) = x*/x (x = 0)

15 ALWAYS POSITIVE, BUT

}}_t_‘g f(x)=0.
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AND FINALLY, THIS TASTY RESULT:

Sandwich Theorem: ir g(x) < £(x) < h(x) FORr ALL x IN SOME INTERVAL
AROUND a, ANP lim g(x) = lim h(x) = L, THEN lim £(x) = L AL5O.

A% THE BREAD
60E%, 50 60E5
THE PASTRAMI!

PROOF: GIVEN ANY CHALLENGE
INTERVAL I AROUND L, OUR
HELPFUL LEMMA 1 5AYS THERE 15
AN INTERVAL J AROUND a WHERE
BOTH g(x) AND h(x) ARE
CONFINED TO L

FOR EVERY x IN J, THEN, £(x)
MUST ALSO BE IN I, BECAUSE f(x)
LIES BETWEEN g(x) AND h(x).
THIS MEANS }‘ig; fx) = L.

DPOES THAT WORK
WITH VE6 TOO?

h(x)
x —1
a L
7 ()
g(x)

ON A GRAPH, YOU SEE HOW f 15
SANDWICHED BETWEEN g AND h,
AND %0 15 SQUEEZED TOWARD
THE POINT (a, L).
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WHOO! ALL THAT
THEORY! CAN WE

TAKE A BREAK NOwW?

YES... LET'S TAKE
A SHORT, UM,
INTERVAL...

THE SANDWICH THEOREM 6GIVES U5 OUR FIRST SURPRISING RESULT INVOLVING ACTUAL, USEFUL
FUNCTIONS. LET’S COMPARE AN ANGLE WITH ITS SINE.

AN ANGLE © (IN RADIANS!)
15 THE LENGTH OF THE
ARC IT SWEEPS OUT IN A
UNIT CIRCLE, WHILE sin ©
15 THE VERTICAL LEG OF
THE TRIANGLE OAP. AS ©
SHRINKS, THE ARC 15 LESS
CURVED, 50 THE DISCREP-
ANCY BETWEEN SINE AND
ANGLE SHOULD BE LESS.
WHAT HAPPENS WHEN
6—07?

IT'S 0 HARD TO
SEE... EVERYTHING
15 50 SMALL...

\
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IN FACT, THEY BECOME INDISTINGUISHABLE. WE NOW SHOW THIS EXCELLENT RESULT:

lim 508 _ 4

6—0 9 -

PROOF: 5UPPOSE THE ANGLE CUTS THE CIRCLE AT POINT Q.
EXTEND THE LINE OQ TO THE POINT @’ DIRECTLY ABOVE P,

WHERE THE CIRCLE HITS THE X AXIS. THEN OP = cos 6,
QP = sin 6, AND OP’ = 1.

BECAUSE THE TRIANGLES OPQ AND OPQ’
ARE SIMILAR, IT FOLLOWS THAT

e uvy

OoP’ oP cos 6 fo) cos 6

NOW THE AREA OF THE SECTOR OP'@ 15 SIMPLY ©/2 (IN RADIANS, REMEMBER!), 50 THE
AREAS OF THE SMALL TRIANGLE OPQ, THE SECTOR, AND THE LARGE TRIANGLE OPQ° FORM

THIS SANDWICH OF INEQUALITIES:

sin @
cos 6

1 . 1 1
z5inBcos6 < 76 < 3

DIVIDING BY 3sin © (WHICH
15 NOT ZERO!) 6IVES

e 1
<

cos6 < —
sin@ cos @

TURNING EVERYTHING ON ITS HEAD
REVERSES THE INEQUALITIES:

sin @ 1
<

cosB@ <
(2] cos 6

AS ©— 0, THE POINT P 5LIDES TOWARD P’, 50 cos & (AND HENCE 1/cos ©) BOTH HAVE

LIMIT EQUAL TO 1. THEREFORE, BY THE SANDWICH THEOREM, 50 DOES (sin©)/6, AND
WE'RE DONE!
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Limits at Infinity, Infinite Limits

SOMETIMES IN CALCULUS WE'RE INTERESTED IN VERY LARGE THINGS AS WELL AS VERY SMALL
ONES. WE MAY, FOR EXAMPLE, WANT TO STUDY HOW A FUNCTION BEHAVES IN THE LONG
RUN, AS “x— 00.” HERE’S ONE THAT APPROACHES A LIMIT OF 3 AS X GROWS LARGE.

3x?
xt+ 2

SOMETIMES A FUNCTION “BLOWS UP TO ©o”
AT A POINT a, MEANING THE VALUES OF f(x)
6ROW WITHOUT BOUND AS x—a. HERE'S ONE
THAT BLOWS UP NEAR x = 2:

1

f(x) = ——
(x - 2)?

WE SAY THE LIMIT 15 INFINITE, AND WE WRITE

lim f(x) = oco

x—2

TO INFINITY TSK...

AND BEYOND, THAT’S JUST

EH, GONIcK? FOR CARTOON
CHARACTERS...

IT%
CERTAINLY
6OING
SOME-
WHERE...
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THE PRECISE MEANING WE COULD JUST AS WELL 4pY

OF Lin; f(x) = o0 I5 THAT FOR EVERY INTERVAL I
THIS: GIVEN ANY LARGE AROUND oo, THERE 15 AN
NUMBER N, THERE 15 INTERVAL T AROUND a SUCH
AN INTERVAL T AROUND THAT £(x) 15 IN T WHENEVER
a SUCH THAT f(x) > N x15INJ.

WHENEVER x 15 IN J.

Z_H

REMEMBER, 60ING “TO
INFINITY” REALLY MEANS
GOING AWAY FROM

EVERY OTHER NUMBER!

[60UNV$ FAMILIAR...J

IN A SIMILAR WAY, A FUNCTION'S “LONG-TERM” BEHAVIOR (AN SOMETIMES BE DESCRIBED AS A
LIMIT A5 x— 00. FOR EXAMPLE, THE FUNCTION g(x) = 1/x 15 DECREASING, AND IN FACT, IT
GETS ARBITRARILY CLOSE TO ZERO A5 X 6ROWS WITHOUT BOUND. WE WRITE:

.1
lim % =0

FOR EVERY INTERVAL I AROUND L
MAYBE BY NOW YOU KNOW THE (1.E., FOR EVERY £>0),
MANTRA TO DEFINE ,l‘ijgo f(x) = L:

'THERE 15 AN INTERVAL J AROUND oo
. (I.E., EVERYTHING GREATER THAN SOME
NUMBER N) SUCH THAT

-+ IFx15INT (x >N), THEN f(x)
15INI (|fG)-L| < &)

WHEN x> N, f(x) 15 WITHIN £ OF THE LIMIT.
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Polynomials at Infinity

WE CLOSE THIS CHAPTER BY SHOWING HOW POLYNOMIALS GROW AT INFINITY. IN EFFECT, A
POLYNOMIAL OF DEGREE n GROWS AS 1TS LEADING TERM a,x" A5 x— oco. ALL THE
LOWER-ORDER TERMS BECOME RELATIVELY NEGLIGIBLE.

YOU'RE
BENEATH
NOTICE...

Polynomial growth theorem: surrosc Px) anp @x) ARE POLYNOMIALS
OF DEGREE n AND m, RESPECTIVELY:

P(xX) = a,x" + a1 x" + .. + ap
Qx) = b, x™+ b, X"+ .. + by (a,, b, *0)
THEN IN MATHSPEAK, WE 4AY THE
1 P(x) a, POLYNOMIAL OF HIGHER
< IF n=m, THEN lim 260 b, PEGREE DOMINATES THE
n POLYNOMIAL OF LOWER
DEGREE.
P(x
2.F n < m, THEN lim —— ™ .o

~% Q(x) AN

2. IF n >m, AND a, AND b, HAVE THE SAME
516N (I.E., BOTH + OR BOTH -), THEN

i PCo oo AND -00 WHEN a, ANV by,
o Q) HAVE OPPOSITE 5I6NS.

Examples:
lim 3P+ x+50 3 (NUMERATOR AND DENOM-
T DT ooneT T2 ke s
i 450x% + 8x% + 50 (VEGREE OF NUMERATOR
Aeh 5 =0 15 LESS THAN DEGREE OF
X+ x + 1 DENOMINATOR.)
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PROOF OF 1: As5UME n = m. BECAUSE A POLYNOMIAL HAS A FINITE NUMBER OF ROOTS,
Q(x) # O WHEN X 15 LARGE ENOUGH, 50 THE FUNCTION P/Q 15 DEFINED ON AN INTERVAL
AROUND oo. THEN FOR LARGE X WE CAN WRITE

a An- do
Px) _ PGo/x" T Tt oA
Q) Qu/x" b
b+ = + ..+ -Er?
X X

NOW WE CAN TAKE THE LIMIT TERM BY TERM AS x— oo,
AND SINCE EVERYTHING GOES TO ZERO EXCEPT a, AND b,
THE RESULT FOLLOWS.

[2¢%) nom G X" ¥ e ¥ BoXTT"
@) b x™+...+ b,

WE JUST SHOWED THAT THE
SECOND FACTOR HAS THE
FINITE LIMIT a,/b,, AS

X — 00. 5INCE ’l‘ijg X" = O,

THE PRODUCT HAS LIMIT O.
PART 3 15 PROVED IN MUCH
THE SAME WAY.

THE CASE Q(x) = 1 IMPLIES THAT ANY POLYNOMIAL P (I.E., THE NUMERATOR) HAS
AN INFINITE LIMIT AT INFINITY. POLYNOMIALS CAN'T OSCILLATE (WOBBLE) FOREVER,
BUT MUST ZOOM OFF EVENTUALLY.

’ltt_'rglo P(x) = oo IF THE LEADING COEFFICIENT 15 POSITIVE.

’l‘t_.rtr,l" P(x) = -oo IF THE LEADING COEFFICIENT 15 NEGATIVE.
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& L 3
No Limit
FINALLY, I HAVE TO LET
YOU IN ON A LITTLE

SECRET... SOMETIMES,
THERE 15 NO LIMIT...

FOR EXAMPLE, NEITHER THE SINE NOR THE COSINE HAS A LIMIT AS x— 00. BOTH FUNCTIONS
OSCILLATE BETWEEN -1 AND 1 FOREVER AS x GETS LARGE. GIVEN ANY SMALL CHALLENGE
INTERVAL AROUND ANY NUMBER, THE VALUES sin x AND cos x REPEATEDLY ESCAPE THAT

INTERVAL...

AND S0 NEITHER FUNCTION (AN APPROACH A LIMIT AS x— oo.

IT 15 ALSO PO%SIBLE FOR A FUNCTION TO
HAVE NO LIMIT AT A FINITE POINT a. THE
MONSTER

g(x) = sin (%), x£0

WIGGLES UP AND DOWN EVER MORE WILDLY
A5 x— 0. g HAS NO LIMIT AT x = 0.

||

/o
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POINTS OUTSIDE I

BUT THESE “BAD DOGS” ARE RARE, AT
LEAST IN THIS BOOK. CALCULUS 15 ALL
BASED ON TAKING THINGS TO THE LIMIT,
50 WE'LL BE LOOKING AT FUNCTIONS
WHERE THE LIMIT EXISTS... YOU (AN
EXPECT NOTHING BUT 600V DOGS FROM
NOW ON.

'LL OUTPUT ON
THEIR INPUT!



AND FINDING LIMITS 15 EASY, OFTEN ENOUGH. lim & = &

AS WE SAID ON PAGE 58, FINDING lim £(x) x—3

OFTEN INVOLVES NOTHING MORE THAN

PLUGGING @ INTO f: im + =1
X—9 x 9

lim sin©@ = sin 4
6—4

AND 50 ON...

. sinx
lim

x—0 X
. PO
lim -
¥ Q)

BOTH OF THESE FUNCTIONS, NOT COINCIDENTALLY, ARE QUOTIENTS... THE PENOMINATOR GOES
TO ZERO OR INFINITY... NO WONDER THEY'RE CHALLENGING! YOU CAN'T SIMPLY PLUG IN!!

0/0 WILL
DO THAT
TO YOV...

IN THE NEXT
CHAPTER, WE
LOOK AT
NOTHING BUT
LIMITS OF
QUOTIENTS...
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Problems

FIND THE LIMITS:

1. lim 2x
x—2

2. lim2 (3x + €), C A CONSTANT
X—

X+ x +1
3, lim ————
o 4 ¢ 17

3 2

. x>+ x4+ 1

4. lim —_—
xo-o Qx4+ 8

lim 2
5. Jim, 2int

7 lim X2 x-2
" X1 x -1

HINT: SUBSTITUTE y = 1/(x - 1) AND FIND THE LIMIT AS
y— 0o. ALTERNATIVELY, LET h = x - 1 AND FIND THE
LIMIT A5 h—O.

8. lim sin 2x

x—0
HINT: USE A TRIG IDENTITY FOR sin 2x.

. sinx
9. lim )
x—0 P%

. .1
10. }‘% x sin (x)

HINT: USE THE SANDWICH THEOREM.

11. ON P. 19, WE DEFINED THE FUNCTION f(x) = [x] TO BE THE WHOLE NUMBER PART OF x,
THAT 15, THE LARGEST INTEGER <x. HERE 15 THE GRAPH OF THE FUNCTION g(x) = x - [x].
DOES ii"‘z (x - [x]) EXIST? HOW ABOUT ’l‘in}l (x - [x]) FOR ANY INTEGER n?

v f///zi///
| /
¢ ¢ ';1 z ¢ ¢ ¢

IF WE APPROACH n FROM THE LEFT, g(x)—1. IF WE APPROACH n FROM THE RIGHT, g(x)—O.
THIS SU66ESTS THE IDEA OF HAVING RIGHT-HAND AND LEFT-HAND LIMITS. PO YOU THINK THIS
15 A GOOD IDEA? MATHEMATICIANS DO... AND THEY WRITE THEM LIKE THIS:

lim g(x) THE LIMIT FROM THE LEFT.

xX—a~

lim+g(x) THE LIMIT FROM THE RIGHT.

xX—a

12. 5UPPOSE f 15 ANY FUNCTION,
WITH }gg f(x) = LAND L # O.
USING THE DEFINITION OF THE
LIMIT, PROVE THAT THERE 15 AN
OPEN INTERVAL J AROUND a
SUCH THAT IF X 15 IN J, THEN
[fFx)| > IL/2].

OPTIONAL PROBLEM: «
WORK OUT THE ;
DETAILED DEFINITIONS!

13. SHOW THAT THIS IMPLIES THAT IF X I5 IN J, THEN

| 1 < 21f(x) - L|
fFx) L L?
SHOW HOW THIS IMPLIES THAT

. 1 1

lim — = —

x=a f(x) L



Chapter 2
The Derivative

PICKING UP SPEED

Now we coMe TO THE HEART OF CALCULUS: A FUNCTION'S RATE OF CHANGE. AS AN
EXAMPLE, TAKE THE FUNCTION s(£) = t% WHICH DESCRIBES A CAR ROLLING DOWN A RAMP.

WE (AN SEE THE FUNCTION s IN AT LEAST TWO WAYS:

1. s EATS INPUTS t FROM A 2. THE GRAPH y = s(t), IN THIS

TIMELINE AND POINTS TO CASE y = tz, A PARABOLA.
THE CAR'S POSITION s(t)
ON THE TRACK.
(t, s(®)
z T
t
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HERE ARE THREE WAY$
TO THINK OF THE CAR’S
VELOCITY IN TERMS OF
THE FUNCTION s.

V4

Aa

1. IN THE TIMELINE PICTURE, IT
15 SIMPLY THE VELOCITY OF THE
FUNCTION'S ARROWHEAD As IT
MOVES ALONG THE S AXIS! THE
ARROWHEAD COINCIDES WITH THE
(AR, 50 THEY HAVE THE SAME
VELOCITY.

N

FUNCTION’S
“TAIL” MOVES
ALONG s-AXIS
WITH VELOAITY
v(@) AT t = a.

Q. AT TIME t = a, THE VELOUITY v(a) 15

v@ = lim s(t) - s(a)
t—a t-a

A5 WE AW ON PAGE 54. THE AVERAGE
VELOCITY ON THE INTERVAL (a, t) AP-
PROACHES THE INSTANTANEOUS veLociTY
AS THE TIME INTERVAL 6ETS SHORTER AND
SHORTER. AS BEFORE, WE SET h = t - a
AND REWRITE THE DIFFERENCE QUOTIENT:

s(a + h) - s(a)
h

THEN THE LIMIT TAKES THE FORM

s(a + h) - s(a)
h

a) = li
v(a) jim

IN THE CASE AT HAND, WHEN s(t) = t%, wE
CAN ACTUALLY EVALUATE THIS EXPRESSION:

(a + h?*- a?
h

a’+ 2ah + h* - a?
h—o h

v(a) = lim
h—0

[l

lim (2a + h)
h—o0

= 2a

THIS 15 THE CARS
VELOCITY AT TIME
t = a
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3. ON THE GRAPH y = s(B),

THE VELOAITY v(a) AT TIME a 15

LHE SLOPE OF THE GRAPH AT y = s(t)
= a.

SLOPES, T KNOW, THEN T ME THAT...
BUT CURVES? I HEN TELL ME THA

PON'T BELIEVE IT! J #
& .

LINES HAVE TRY WALKING UP om;,]

s(a) P = (a,5(a)
7 i t
a
THIS 15 TRUE BECAUSE WE
DEFINE THE SLOPE OF A
CURVE AS THE LIMIT OF s(a+h) ¢

SLOPES OF LINES. THE RATIO

s(a+h) - s(a)
h

15 THE S5LOPE OF THE LINE,
OR CHORD, JOINING TWO
POINTS ON THE CURVE:

P = (a, s(a)) AND 2
Q= C(a+h, sta+h)).

s(a+h) -s(a)

A5 h— 0, @ SLIDES TOWARD P, AND THE $LOPES OF THE CHORDS PQ, PQ’, PQ”, ETC.,
APPROACH A LIMITING VALUE, WHICH WE INTERPRET AS THE SLOPE OF THE CURVE AT THE
POINT P. IF s(t) = t2, WE JUST FOUND THAT THIS SLOPE 15 v(a) = 2a.

v(a)= SLOPE OF
TANGENT LINE TO y=s(t)
AT t=a.
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DO YOU REALIZE WHAT WE'VE JUST
DERIVED? OUR RESULT 15 THAT THE
5LOPE OF THE GRAPH y = t% AT
THE POINT (a, a®) 15

2a

NO MATTER WHAT VALUE OF a.

1

i

i

1

§

i

i

i

i

i

i

§ |~ 5LoPE=2
i '

: :

% =A% 7 % —t
-2 8 1

SLOPE =2a

SIMILAR REASONING FINDS THE SLOPE OF THE GRAPH OF ANY POWER FUNCTION y = t"
(n BEING A POSITIVE INTEGER) AT A POINT P = (a, a"). A CHORD BETWEEN P AND A

NEARBY POINT @ = (a + h, (a + h)™) HAS 5LOPE

(a+h)"-a"
h

DOES THIS HAVE A LIMIT A5 h—O?
BY ALGEBRA, WE (AN EXPAND:

(@+h)" = a"+na"'h + C,h% + CR? ¢

WHERE THE COEFFICIENTS C; ARE CONSTANTS

INVOLVING POWERS OF a. SUBTRACTING a" AND

DIVIDING BY h, WE GET

(a+ A" - a"
h

ALL TERMS AFTER THE FIRST HAVE LIMIT O
A5 h— 0, 50

lim (a+h)"—a" = nan—

h—o h

= na"' + C,h + CR®

+ ..

+ h"

+ A"

NOTE: THE VERY LAST
STEP USED LIMIT FACT 2:
THE LIMIT OF A SUM 15
THE SUM OF THE LIMITS!
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AS WE'VE JUST SEEN, THIS SLOPE CAN BE INTERPRETED AS A VELOCITY. FOR EXAMPLE, IF A
ROCKET (AN BLAST AHEAD 50 FAST THAT s(t) = t°, THEN AT ANY TIME a, THE ROCKET HAS
VELOUITY v(a) = 5a*.

a s(a)=a’ v(a) = 5a*

-2 -32 5(-2)" = (5)-(16) = 80
-1 -1 5-= 5
0] 0 50 = 0
1 A 1y 2 &
2 32 5@ 16
3 243 5.(3)* = (5)-(81) = 405

7

OR, IF g(¥) = t*, THEN v(a) = 44’

FOR ANY a:
a g(a) v(a) = 4a’
-10 | 10,000 | 4(-10)* = -4,000
-2 16 4(-2)% = -32 NOW, WAIT A
1 1 A1 . MINUTE... 6IVEN
- D= - ANY TIME a... (-
0 0 @)= 0 B 5
s a -
! ! 4= 4 YOU PLUG a INTO THAT
2 16 427 = 32 FORMULA THERE... AND ][~

n-
10 | 10,000 | 410 = 4,000 6ET na" ...
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JUST AS WELL HAVE SAID “FOR ANY TIME t.” VELOCITY, AFTER ALL,
15 OBVIOUSLY A FUNCTION OF TIME: AT ANY TIME, THE ¢AR (OR
ROCKET) HAS A VELOCITY! IN FACT, WE HAVE NOW PROVED THAT IF
THE CAR’S POSITION AT TIME t 15 t", THEN ITS VELOCITY AT
THAT TIME, v(®), 15 nt" ',

SO WHY ISN'T v A READER, IT 15! WE KEPT SAYING “FOR ANY TIME a,” BUT WE COULD
FUNCTION OF ¢7

’'m A
FUNCTION

WE HAVE DERIVED A NEW FUNCTION FROM s: THIS DERIVED FUNCTION, OR DERIVATIVE,
GIVES THE SLOPE OF THE GRAPH y = s(t) AT EACH POINT t, A SLOPE EQUAL TO THE
VELOCITY AT TIME t.

v(t) = SLOPE OF
GRAPH AT t
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THIS DERIVED FUNCTION 15 50 ASTOUNDINGLY AND WIDELY USEFUL, IN CONTEXTS FAR BEYOND
CARS ROLLING DOWN RAMPS, THAT IT DESERVES ITS OWN NAME, DEFINITION, AND NOTATION:

The Derivative
Defined:

IF £ 15 ANY FUNCTION, AND X [5 ANY
POINT IN ITS DOMAIN, THE DERIVATIVE
OF f, WRITTEN " AND READ “EFF-
PRIME,” 15 THE FUNCTION DEFINED BY

Flx + h) - F(x)
h

F(x) = ll’t_r'r‘l)

FOR EACH x WHERE THIS LIMIT EXISTS.

THIS 15 “ONLY” THE
CENTRAL CONCEPT OF
CALCULVS !

N s

t

FINDING THE DERIVATIVE ' 15 ¢ALLED DIFFERENTIATING THE FUNCTION f. £f'(x) 15 THE

SLOPE OF THE GRAPH y = f(x) AT THE POINT (x, f(x)). FROM NOW ON, WE DISPENSE

WITH THE LETTER v FOR VELOCITY, AND WRITE s'(£) INSTEAD. IN THIS NEW TERMINOLOGY,
THE RESULTS OF THE PREVIOUS PAGES ARE KNOWN AS THE POWER RULE:

IF £&x) = x", THEN £() = nx" -1

KIND OF
A SIMPLE
FORMULA...
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THAT’S WHAT
MAKES IT 50

cooL!!

YOU (AN EASILY CHECK THAT IT
AGREES WITH WHAT WE FOUND
WHEN n = 2. WHAT DOES IT SAY
WHEN n = 12 WHEN n = O7



KNOWING THE DERIVATIVE OF f(x) = X", WE ALSO IMMEDIATELY
KNOW THE DERIVATIVE OF ANY POLYNOMIAL, THANKS TO

o~

Derivative Fact 1: Sums and
Constants are Easy!

LIMIT FACTS 1b AND 2

THESE FOLLOW FROM
ON PAGE 59.

IF YOU SAY $O...

1Q. IF C 15 A CONSTANT AND £ 15 A FUNCTION WITH
DERIVATIVE £/, THEN (CF) = CFf'. TAKING THE
DERIVATIVE “PAS5ES THROUGH” A CONSTANT.
1D. i £ AND g ARE TWO FUNCTIONS, THEN
(F+a) = f+aq

THE DERIVATIVE OF A 5UM 15 THE SUM
OF THE DERIVATIVES.

WOULD YOU
LIKE TO $EE
THE PROOF?

(AN T 5TOP

F+a)x) =

lim fF(x+h) + g(x+h) - (F(x) + g(x))
h—0 h

=

lim f(x+h) - f(x) + lim g(x+h) - g(x)

h—o h h—0

FxX) + 9 ()

THIS MEANS WE CAN DIFFERENTIATE
(TAKE THE DERIVATIVE OF) A POLY-
NOMIAL ONE TERM AT A TIME.

aix) = X + 2%+ 2x2 g0 = 9x° + 8xT + 4x
FOO = 2x + 6x2 + 5 F(x) = 12x° + 12x
ETC.
y=2¢
NOTE THAT THE Q AHAéA)?LO_PEO
DERIVATIVE OF ANY ] LWAYS =

CONSTANT 15 ZERO! A\
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Real-Life Example:

T spac NEWTON 15 BOUNCING ON A VERY
SPRINGY TRAMPOLINE WITH A MEMBRANE
1 METER OFF THE GROUND. IF IT FLINGS
ISAAC UPWARD AT AN INITIAL VELOCITY OF
100 METERS PER SECOND, THEN HIS
HEIGHT s ABOVE THE GROUND (VERTICAL
POSITION, WITH UPWARD BEING THE
POSITIVE DIRECTION), MEASURED IN
METERS, 15 GIVEN BY

s(t) = 1 + 100t - 49t

HOW FAST 15 HE MOVING AFTER
10 SECONDS? IN WHAT DIRECTION?

Solution: tuc verivative oF s
GIVES THE VELOCITY AT ANY TIME.
DIFFERENTIATE  TERM BY TERM:

s'(t) = 100 - (4.9)(2t)

"

100 - 9.8t M/5EC

]

THAT 15 THE GENERAL FORMULA FOR
NEWTON’S VELOCITY AT TIME t. PLUG
IN t =10 SECONDS FOR THE ANSWER:

s’(10) = 100 - (9.8)(10)

= 2 METERS PER SECOND.

THE POSITIVE VELOCITY MEANS NEWTON
15 STILL GOING UP AT THAT TIME!

WHOA! AFTER
10 SECONDS?
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THAT 15 CALCULUS-
STRENGTH ELASTIC..
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LET’S PAUSE HERE A MOMENT TO CONTEMPLATE THE DERIVATIVE... ALL THOSE PAGES
ABOUT LIMITS WERE JUST A LEAD-IN TO THIS ONE KEY IDEA, THE SIMPLE ACT OF
CROWNING AN f WITH A LITTLE TICK MARK, OR PRIME.

IT WAS THE FIRST BRILLIANT INSIGHT OF NEWTON AND LEIBNIZ TO SEE THAT THIS DERIVATIVE
FUNCTION COULD HAVE A SIMPLE AND EXACT FORMULA, WHICH, WITH A $TROKE, UNLOCKS THE
SECRETS OF MOTION AND CHANGE. TAKE THAT, ZENO!

THE ILLUSION
OF MOTION 15
OVERWHELMING!
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AND ALTHOUGH NEWTON HAPPENED TO BE THINKING ABOUT VELOCITY WHEN HE DREAMED UP
HIS “FLUXIONS,” THE DERIVATIVE’S IMPORTANCE EXTENDS FAR BEYOND VELOCITY.

REGARDLESS OF WHAT f AND x
STAND FOR, THE FRACTION
fx +h) - fOO
h

CHANGE
IN £(x)

15 THE CHANGE IN THE VALUE OF
f RELATIVE TO A SMALL CHANGE
IN THE VARIABLE X. IN THE LIMIT,
THEN, £ 15 THE INSTANTANEOUS
RATE OF CHANGE OF f wiTH
RESPECT TO x.

CHANGE IN X

X x+h

CHANGE IN £(X)
CHANGE IN X

Fx) =




For Example:

SUPPOSE SOME FLUID 15 FLOWING INTO OR OUT

OF A STORAGE TANK. IF V(t) 15 THE VOLUME

IN LITERS PRESENT AT TIME t MINUTES, THEN
Vt+h) - V()

h

15 THE (INSTANTANEOUS) RATE OF FLOW,
MEASURED IN LITERS PER MINUTE.

V(t) = lim
h—0

NOTE: THIS 15 NOT
VELOCITY, BECAUSE
IT POESN'T REFER
TO POSITION!

IF C(£) 15 THE COST OF LIVING AT TIME t,
THEN

Ct+h) -C)
h

15 THE RATE AT WHICH THE COST 15
CHANGING AT TIME t.

C't) = lim
h—0

THIS 15 THE
RATE OF
INFLATION!

kBt
C

MANY REAL-WORLD FUNCTIONS DEPEND ON
VARIABLES OTHER THAN TIME. FOR INSTANCE,
AIR THINS OUT AT HIGHER ALTITUDE. IF P(x)
15 THE PRESSURE AT ALTITUDE X, THEN

Px+h) - P(x)

P'(x) = lim
h—0

15 THE RATE OF
CHANGE AT
ALTITUPE X OF
PRESSURE PER
UNIT OF
ALTITUPE
(PASCALS PER
METER, SAY),
THE 50-CALLED
PRESSURE
GRADIENT.

A STRAIGHT ROAD 6OES INTO THE MOUNTAINS.
IF A(x) 15 THE ALTITUDE AT POSITION X, THEN

Alx + h) - A(x)
h

A(x) = lim
h—0

15 THE ACTUAL SLOPE OR GRADE OF THE
ROAD AT POINT X. (THERE ARE NO UNITS,
SINCE WE HAVE DIVIDED METERS BY METERS.
GRADE 15 USVALLY GIVEN IN PERCENTAGE
TERMS.)
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NOW WE'RE READY TO START DIFFERENTIATING
THE ELEMENTARY FUNCTIONS, BUT FIRST...

A Note on Notation (Leibniz-Style)

WRITING £ FOR THE DERIVATIVE OF f
MAKES TWO THINGS CLEAR:

a) THE DERIVATIVE 15 A FUNCTION WHY 50

, MANY HEY, THE DERIVATIVE 15 A
b) f 15 PERIVED FROM THE FUNCTION f DIFFERENT ROCK STAR! IT (AN HAVE
5YMBOLS?

AS MANY AS IT LIKES!

BUT YOU'LL OFTEN SEE THE DERIVATIVE
WRITTEN IN AN ENTIRELY DIFFERENT

WAY, LIKE THIS:
dy or df
—_— —_— & FuncT
dx dx CGormERN

THIS WIDELY USED NOTATION EMPHASIZES
OTHER ASPECTS OF THE PERIVATIVE:

€) ITS ORIGIN AS A QUOTIENT

d) THE VARIABLE x WITH RESPECT TO
WHICH THE PERIVATIVE 15 TAKEN

LEIBNIZ INVENTED THE dy/dx 5CRIBBLE BASED ON THIS DIAGRAM. Ax, PRONOUNCED “DELTA-
EKS,” MEANS THE CHANGE IN X, OR WHAT WE'VE BEEN CALLING h. Af OR Ay I15 THE
RESULTING CHANGE IN THE VALUE OF THE FUNCTION, LLE., Ay = f(x + Ax) - f(x). THE
SYMBOL A (6REEK CAPITAL DELTA) SIMPLY MEANS “THE CHANGE IN...”

THE $LOPE OF THE
CHORD 15 THEN

Ay
Ax

DELTA! WHY,
THAT'S MY

WHAT AN
ASTOUNDING
COINCIDENCE.

: Ay




IN THIS NOTATION, WE WOULP WRITE: WHAT A WEIRD, UN-

YOU HAVE AN

NECESSARY IDEA! INFINITESIMAL
dy T Ay OR WHERE'D YOU GET IT? IMAGINATION. ..
—_— = m —

dx =0 Ax
df AN
— = lim —
dx Ax=0 Ax

LEIBNIZ BELIEVED THAT dx AND dy
WERE SOME KIND OF “INFINITELY
SMALL” VERSIONS OF Ax AND Ay
AND THAT THE DERIVATIVE WAS THE
QUOTIENT OF THESE “INFINITESIMALS.”

ALTHOUGH THIS IDEA WAS EVENTUALLY ABANDONED BY MOST MATHEMATICIANS, ITS
ACTUALLY PRETTY HELPFUL TO THINK OF THE DERIVATIVE, FOR ALL PRACTICAL PURPOSES,
AS A LITTLE BIT OF y DIVIDED BY A LITTLE BIT OF X...

DOGGONE CURVE
LOOKS PRETTY MUCH
LIKE A STRAIGHT LINE

FROM UP (LOSE

ANYWAY...

ARE YOU A
THE LEIBNIZ WAY 15 OFTEN MORE CON- MATHEMATICIAN OR

VENIENT—BEGINNING NOW, A5 WE WRITE A STENOGRAPHER?

domy 4 4
dx(x )N dx(szn X), AND dx(e)

JEALOUS, ARE
wezzzeill

TO REFER TO THE DERIVATIVES OF THE
INDIVIDUAL FUNCTIONS. IT'S GREAT NOTATION!

%0... ARE WE READY TO FIND d—dx-(sin x0?
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de

THE PERIVATIVE OF THE SINE 15 THE COSINE.

Derivative of the Sine: |

4 (5in6) = cosO

PROOF: BY DEFINITION OF THE DERIVATIVE, THE
SINE’S DERIVATIVE 15

. sin(@ +h) - sine  IF THE
M lim LIMiT
h EXISTS.

EXPANDING sin(© +h) BY A TRIG IDENTITY, THE
NUMERATOR BECOMES:

(sin ©cos h + sin hcos 8) - sin@

50 THE DIFFERENCE QUOTIENT IN (1) 15

cos h -1

2
(2) cos h

9%’1 + sin 6

IN THE LAST CHAPTER, WE SHOWED THAT

50 THE LIMIT OF (2) A5 h—O WILL BE

cos h -1

(3) cos 6 + (sin 6) lim
h—o0 h
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AH, “TRICKE-

NOMETRY!”

NOW WE SHOW THAT THE
LAST FACTOR 15 ZERO.

i cos h -1
] h
BECAVSE
cos h -1 _ (cosh-1)(cosh+1)
h - h cos h +1
cos*h -1 -sin*h

h((cos k) + 1) h(cos h +1)
-sin h sin h
= ( h )( cos h +1)

cos h HAS LIMIT 1 A5 h—O0, 50 THE
PRODUCT HAS LIMIT

12y = 0 1 h—o.
2
PUTTING THAT INTO (3) GIVES THE RESULT.

sin(@ + h) - sin@
h—o0 h

—
Py

= cos @



WHAT THIS SAYS: TO FIND THE SLOPE OF THE SINE CURVE AT A POINT X, LOOK AT THE
VALUE OF THE COSINE THERE.

NOTE: WHERE A FUNCTION
$LOPE < 0, SLOPE > O, COSINE > O 15 INCREASING, ITS GRAPH

closlNE <0 | HAS sLOPE 20!
m
1 I 1
\ H N
! I i v 3 Lond, s 3 ‘ -':

|I H H H 1 i H H

SLOPE = O, COSINE = O

WHERE THE 5INE 15 INCREASING AND ITS CURVE 15 RISING (BETWEEN -T/2Z AND T/Z, 5AY),
IT HAS POSITIVE SLOPE AND THE COSINE 15 POSITIVE. WHERE THE SINE 15 DECREASING AND
ITS CURVE 15 FALLING, THE SLOPE 15 NEGATIVE AND S0 ARE THE VALUES OF cos x.

Derivative of the Cosine:
i(cos @) = -siné
de

THE DERIVATIVE OF THE COSINE 15 THE NEGATIVE OF
THE SINE.

RATHER THAN SUFFER MORE TRIG TORTURE, LET’S SIMPLY NOTICE THAT THE COSINE CURVE 15
IDENTICAL TO THE SINE’S, BUT SHIFTED TO THE LEFT BY /2. THEREFORE, THE COSINE’S
DERIVATIVE MUST BE THE COSINE ITSELF, SHIFTED OVER ANOTHER /2 TO THE LEFT!

THAT, IN TURN, 15 THE y =cos(x +7) y = sin x
SINE SHIFTED LEFTWARD = -sin x
BY A FULL 7 UNITS, OR /

sin(x + ). THIS |15 THE
SAME A5 -sin x, A5 THE
GRAPH MAKES CLEAR (OR
YOU (AN WORK OUT WITH
TRIG IDENTITIES OR ON
THE UNIT CIRCLE).
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Derivative of the
Exponential:

THE SINE AND COSINE ARE EACH OTHER’S
DERIVATIVES (UP TO A MINUS SI6N, ANYWAY).
THE EXPONENTIAL'S DERIVATIVE 15—ITSELF!

d ., x
—e* =e
dx

THIS FOLLOWS FROM THE EQUATION &**' = e*e

AND THE DEFINITION OF THE DERIVATIVE:

h X x _h X
d x . e*-e e*e" - e
—_— = l( = ll
dxe ns h by h
h h
. e -1 . e -1
= lim &* = e hm(
h—0 h o\ R

RECALL FROM THE COMPOUND INTEREST

DISCUSSION ON PAGE 30 THAT e = (1 + h)
WHEN h 15 SMALL. (THINK OF h A5 1/n IN
THE ORIGINAL EXAMPLE.) RAISING BOTH SIDES
TO THE hTH POWER 6IVES e = 1+ h, %0

1/h

e -1  Ud+h) -1 o
h h

THAT 15, THE LIMIT OF THIS RATIO 15 1
A5 h— O, AND 50 THE DERIVATIVE 15
&) = e~

THE RATE OF INCREASE OF THE EXPO-
NENTIAL FUNCTION Exp(x) = e™ 15 EQUAL
TO THE VALUE OF THE FUNCTION AT THAT
POINT!!

X

SLOPE AT x=3
= e® = 200

SLOPE AT x=32
3
= ez = 45

SLOPE AT x=0
=e% =1
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THIS MAY SEEM COMPLETELY BIZARRO, A BIT OF MATHEMATICAL MAGIC, OR ELSE
THE OPPOSITE—WHO KNOWS? MAYBE THERE ARE PLENTY OF FUNCTIONS THAT
HAVE THEMSELVES AS DERIVATIVE...

HAVEN'T T $EEN YOU
WELL... NO, THERE AREN'T. | SOMEWHERE BEFORE? ,

THE EXPONENTIAL &* AND ~ m
IT5 CONSTANT MULTIPLES

Ae™ ARE THE ONLY
FUNCTIONS WITH THIS
PROPERTY. (YOU'LL PROVE
THIS YOURSELF AS AN
EXERCISE ON P. 160.)

¢

SECOND, IT’S NOT REALLY THAT WEIRD, WHEN YOU THINK ABOUT COMPOUND INTEREST. THE
INTEREST ADDED PER YEAR 15 A FIXED PERCENTAGE OF THE AMOUNT OF MONEY IN THE
ACCOUNT.

IN OTHER WORDS, THE

' YOU SEE? WHEN THE INTEREST RATE 15
RATE OF CHANGE IN 100% PER YEAR, THE CONSTANT 15 1,
VALUE, IN DOLLARS PER PROVIDED t 15 MEASURED IN YEARS. ( i_:ET llB-kNL mc;"vj;s e
YEAR, 15 PROPORTIONAL \ k $0.00000000127...
TO THE VALUE ITSELF. IF

THE INTEREST 15 COM-
POUNDED CONTINUOUSLY,
WE SHOULD EXPECT THAT
THE INSTANTANEOUS
RATE OF CHANGE OF
THE VALVE V 15
PROPORTIONAL TO V:
V() = CV(t) FOR
SOME CONSTANT C.
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Derivatives of Products and Quotients

TAKING DERIVATIVES OF 5UMS AND CONSTANT MULTIPLES 15 STILL EASY: JUST 60 TERM BY
TERM. (5EE PAGE 84.) FOR EXAMPLE,

9 5x? + sin X) = 10x + cos x
dx

c%(e" +cosx-2sinx) = e* - sinx - 2cos x

BUT—

15 WHAT

THE DERIVATIVE OF A PRODUCT fg 15
MOST EMPHATICALLY NOT THE PRODUCT
OF THE DERIVATIVES. THE PRODUCT
RULE 15:

HOW AWFULLY
INCONVENIENT!

)

(fa)' = fa + fq9" or

df

(fq) _+gdx

d.

TO SEE WHY THIS 15 TRUE, LET’S IMAGINE F(x) AND g(x) AS THE 5IDES OF A RECTANGLE
WITH AREA F(x)g(x). THEN A SMALL CHANGE h IN X PRODUCES CHANGES Af AND Ag IN
f AND g, THAT 15, f(x + h) = f(x) + AFf AND g(x + h) = g(x) + Ag:

Dg

g(x)

F(x) Af
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THEN THE NEW AREA BECOMES  f(x+h)g(x+h) =
(FG) + A (X)) + Ag) = @

F(x)9(x) /{ HORIZONTAL STRIP |
+ f(x)Ag

+ gOONF —

VERTICAL STRIP

+ AfAG  —————1 (ORNER RECTANGLE

SUBTRACTING f(x)g(x) FROM BOTH SIDES
AND DIVIDING BY h 6IVES

A AfFA
ﬁfi). = f(x).A_g + g(x)_f + ﬁ
h h h h

THE LAST TERM HAS LIMIT O BECAVSE IT
APPROACHES O-(g'(x)) A5 h— 0, 50 THE
LIMIT OF THE UM 15

h%h_ = f(x)T + g(x)T

l

\

F(X)g'(x) + g(x) f'(x)

]

LEIBNIZ WOULD SAY THAT f

d(fg) = fdg + gdf

IN THE LIMIT, THE
“DIFFERENTIAL” OF fg—
THE TINY BIT ADDED TO
fg—CONSISTS OF THE
TWO $SIDE STRIPS OF
SIZE fdg AND g df,
WHILE THE CORNER
PIECE OF $IzE dfdg

15 NEGLIGIBLE.
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IN OTHER WORDS, TO
DIFFERENTIATE THE PRODUCT
OF TWO FUNCTIONS, MULTIPLY
THE FIRST FUNCTION BY THE
DERIVATIVE OF THE SECOND,
MULTIPLY THE SECOND
FUNCTION BY THE DERIVATIVE
OF THE FIRST, AND ADD THE
TWO NUMBERS TOGETHER.

WHICH PO
YOU PREFER,
WORPS OR
FORMULAS?

/7 ( erosEED!
BIRDSEED!

Examples:
i 2, %y _ i 2 X zi x
1. dx(x e®) = (dx(x Ne* + x dx(e )
= 2xe* + x%e*
CRANK!
d - o CRANK!
2. 76 (sin 6 cos 6) = (de(szne))cose + sznede (cos 6)
= cos%6 - sin%6
3. :—t(sinzt) - a‘it«sin £)-(sin £))

= sintcost +costsint

= 2sintcos t

TO DIFFERENTIATE THE PRODUCT OF MORE THAN
TWO FUNCTIONS, FOLLOW THE SAME SORT OF RULE:

(fgh)" = foh + fo'h + fgh’

FOR INSTANCE,

d . , , ,
a(xsm xcos x) = 1:sin xcos x + xcos xcos X + xsin x(-sin x)

= sin xcos x + x(cos’x - sin*x)
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Derivative Fact 3: Quotients are Weird.

3A. IF f 15 DIFFERENTIABLE AT x AND ;
£(x)#0, THEN 1/f 15 ALSO DIFFERENTIABLE y = £60
AT X, AND

-F(x)

2
(F(x))
WHERE DID THAT MINUS SI6N COME FROM? i
WELL... f 15 INCREASING WHEREVER 1/f 15 i
DECREASING, AND VICE VERSA, 50 THEIR

DERIVATIVES MUST HAVE OPPOSITE SI6NS AT /)
ANY POINT.

(fl)'(x) =

IT'S SIMPLY ALGEBRA:

1 1 _ fx) - fx +h)

Fx+h)  foO G+ ) FOO

ALGEBRA!
ALGEBRA!

=

OR

F(x) F(x + h)

DIVIDING BOTH 4IDES BY h AND TAKING THE LIMIT A5 h— O 6IVES THE RESULT.*

3b. Quotient Rule: r 7

AND g ARE BOTH DIFFERENTIABLE AT A
POINT x, AND g(x) # O, THEN /g I5
DIFFERENTIABLE AT x, AND
Ff(x)g (x) - F(x)g'(x)
2
g(x)

( g)'(x) =

THIS FOLLOWS BY TAKING THE
DERIVATIVE OF THE PRODUCT f-(1/g)
AND APPLYING 3a.

¥NOTE THAT WE HAVEN'T DIVIDED BY ZERO ANYWHERE HERE: f(x+h) # O WHEN h 15 SMALL
ENOUGH, BECAUSE F(x)+0O, AND f(x+h) GETS ARBITRARILY CLOSE TO f(x).
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Example: Negative Powers

WHEN f(x) = 1/xX" = x™", THEN THE
FORMULA SAYS

d , -n d 1
—(x = —(—) =
dx( ) dx \x"
d
‘E(Xn) __nxn—1 -n
2N - x2 - X+
- _nx—n—i

fFx)  Fx) OR fF(x) £
1)1 x| a2
x x?
x?| -2x?
1 1.2
x2 x x? | -3x7*
1| _3 x| -4x®
x? x*
x? | -6x7*
1 _4
x4 x5 X_é —6?(—7
1 5
x° - 7 ETC

NEGATIVE POWERS FOLLOW THE SAME
POWER RULE AS POSITIVE POWERS: TO
DIFFERENTIATE, MAKE THE EXPONENT A

COEFFICIENT AND REDUCE THE POWER BY 1:

d -1
—(xP) = pxP
dx P
WHETHER p 15 A POSITIVE OR NEGATIVE
INTEGER. WE'LL SEE IN THE NEXT CHAPTER

THAT THIS RULE WORKS FOR FRACTIONAL
POWERS A5 WELL.

Example: Tangent
Function

d _ 2
detane = sec“@

PROOF: WE APPLY THE QUOTIENT
FORMULA TO

sin 6
cos 6

tan 6 =

HERE f = sin@, g = cos 6, 50

f9 - fa’ -
gz

cos 6¢cos © - sinO@(-sinO)

-
=

cos?e
cos?@ + sin*@ 1
cos*6 )
= sec’6

MY HEAD 15 BURSTING
WITH DERIVATIVES!!

. YEAH, ISN'T

IT GREAT??




SOMEONE ONCE SAID THAT THE PURPOSE OF SCIENCE 15 TO SAVE US FROM UNNECESSARY
THINKING, AND THAT'S WHAT CALCULUS DOES. HAVING ONCE PENETRATED THE MYSTERIES OF
LIMITS AND CHANGE, CALCULUS POPS OUT A BUNCH OF SIMPLE FORMULAS DESCRIBING THE
RATES OF CHANGE OF COMMON FUNCTIONS. HALF THE SUBJECT 15 USING THESE FORMULAS!

WHAT’S THE
OTHER HALF?

A HEALTHY
BREAKFAST!

di(x“) = nax"! n=0, &1, £2, ... i(C) = O IF € 15 CONSTANT

X dx

i(e") = & (CF) = CF, C A CONSTANT

9 sinx = cos x F+a)=Ff+g

dx

icos X = -sin x (fg) = fg + fq

& fy _ fa - fg'

%tan x = sec’x (cos x#0) (E) = 9? WHEREVER 9(x) # O

A 600D LIST, BUT STILL MISSING A FEW... WE CAN'T YET DIFFERENTIATE A COMPOSITE
FUNCTION, NOT EVEN ONE AS SIMPLE AS h(x) = e**... NOR INVERSE FUNCTIONS SUCH
AS THE LOGARITHM, ARCSINE, AND ARCTANGENT... THOSE COME IN THE NEXT CHAPTER...

AND THEN
ON TO THE
PROMISED LAND
OF PRACTICAL
APPLICATIONS!

AND ABOUT TIME, TOO...
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BUT FIRST, WHY NOT DO 50ME
Problems?

FIND THE DERIVATIVES OF THE GIVEN
FUNCTIONS:

7. u(x)

1. FGO = x> + 6x + 1
2. f(x) = x* + 5x + 1,000,000
3.Px) = 2+ N7
4. g(x) =7 8. v(t)
5. h(x) = cos x - ;—
Vx

13. A PROJECTILE HURLED STRAIGHT UPWARD
FROM GROUND LEVEL AT AN INITIAL VELOCITY
OF v, M/SEC HAS AN ALTITUDE AT TIME t OF

AE) = -4.9t + v t

a. IF A BALL 15 THROWN
VERTICALLY AT AN INITIAL
VELOUITY OF 20 M/5EC, :
WHAT 15 ITS VELOCITY g
AFTER 2 SECONDS?
AFTER 5 SECONDS?

b. THE FASTEST AN

UNAIDED HUMAN CAN

THROW A BALL UPWARD

15 AROUND 45 M/SEC.

ESTIMATE HOW HIGH THE

BALL WILL 60, AND HOW .
LONG IT TAKES TO
RETURN TO EARTH.
(HINT: VELOCITY 15
POSITIVE BEFORE THE
TOP AND NEGATIVE
AFTERWARD.)

6. R(x)

9. F(x)

= X ! 10. B(6) = tan’e@
x -1
- cos X 1. 0G0 = 529x
e* X -xt-x-1
= P
sect 12. Fp) = cos;op + p:
- Ut P
xe*
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14. A TRAIL LEADING INTO A MOUNTAIN RANGE
HAS ALTITUDE

A(x) = x + 0.3sin x METERS,

WHERE X |15 THE HORIZONTAL DISPLACEMENT
FROM THE TRAILHEAD.

a. WHAT 15 THE S5LOPE OF THE TRAIL AT
X = 1 METERS? AT x = 25m METERS?

b. pOES THE TRAIL EVER 60 DOWNHILL?
DRAW A PICTURE OF THE TRAIL.

USE THE DEFINITION OF THE DERIVATIVE TO
SHOW THE FOLLOWING:

15. IF £ 15 INCREASING ON AN INTERVAL
(a, b), AND x 15 ANY POINT IN THE
INTERVAL, THEN £ (x) = O.

16. A FUNCTION f 15 ¢ALLED EVEN IF

f(-x) = f(x) FOR ANY x. THE COSINE 15 AN
EXAMPLE. £15 ODD IF f(-x) = -f(x). THE
SINE 15 AN EXAMPLE.

SHOW THAT AN EVEN FUNCTION HAS AN ODD
DERIVATIVE, AND VICE VERSA.



Chapter 3
Chain, Chain, Chain

COMPOSITE FUNCTIONS, ELEPHANTS, MICE, AND FLEAS

Now we’re ON A ROLL...
OR MAYBE IT'S A CRAWL...
A FORMULA CRAWL... 50
LET'S KEEP CRAWLING,
SHALL WE? THIS CHAPTER
BEGINS BY FINDING THE
DERIVATIVES OF ALL THE
REMAINING ELEMENTARY
FUNCTIONS, AND NICE,
SIMPLE FORMULAS THEY
ARE...

FORMULA...
FORMULA...

THE KEY TO DERIVING THESE FORMULAS (AND MUCH ELSE BESIDES) 15 SOMETHING CALLED
THE CHAIN RULE. WE'LL START BY SAYING WHAT IT 15, THEN WE'LL USE IT, AND FINALLY
WE'LL EXPLAIN WHY IT’S TRUE.
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THE CHAIN RULE 15 A PROCEDURE FOR
DIFFERENTIATING COMPOSITE FUNCTIONS,
FUNCTIONS MADE BY PLUGGING ONE
FUNCTION INTO ANOTHER. [SEE PP.
38-39.] FOR EXAMPLE,

hx) = **

HERE THE INSIDE FUNCTION 15 u(x) = 2x,
WHILE THE OUTSIDE FUNCTION 15 v(u) = e

The Chain Rule:

TO DIFFERENTIATE A COMPOSITION h(x) = v(u(x)), FOLLOW

THESE STEPS:

1. DIFFERENTIATE THE INSIDE FUNCTION.
THAT 15, FIND ().

Q. TREATING THE ENTIRE INSIDE FUNCTION
u A5 A VARIABLE, DIFFERENTIATE THE
OUTSIDE FUNCTION WITH RESPECT TO u:
1.E., FIND v'(W).

3. MULTIPLY THE RESULTS OF 1 AND 2.
B, rinaLLy, REPLACE u BY u(x) IN V(W)

IN $YMBOLS,

h'(x) = u'(x):-v'ulx))

THIS 15
THE KEY TO
EVERYTHING!

I PON'T NEED A
KEY, T NEED, UM,
FORMULA...

600D. THIS 15
THE KEY TO THE
FRIDGE, TOO...

£ BN

v
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THIS PROBABLY LOOKS WORSE THAN IT
REALLY 15. IN ESSENCE, THE CHAIN RULE
SIMPLY SAYS TO MULTIPLY THE DERIVATIVE
OF THE INSIDE FUNCTION BY THE
DERIVATIVE OF THE OUTSIDE FUNCTION.



Example: as seove, suprose h(x) = ¢**. WE 60 5TEP BY STEP:

1. Ux) =2
REMEMBER: ALWAYS TREAT
2. v = e THE ENTIRE INSIDE FUNCTION
AS A VARIABLE IN sTEP 2!l

3. THE PRODUCT 15 2"

4. WE REPLACE u BY u(x) = 2x
TO GET THE FINAL RESULT:

Hx) = 2e**

Example: cco = sint®. he
INSIDE FUNCTION 15 u(x) = x% THE
OUTSIDE FUNCTION 15 v(u) = sinu.

1. u(x) = 2x

2. YW =cos u

3. THE PRODUCT 15 2xcos u

4. WRITING u(x) = x* FOR u 6IVES
THE DERIVATIVE:

One More Example!
&'(x) = 2xcos (x?) FGO = (253 + 3)°.

INSIDE FUNCTION: u(x) = 2x* + 8.
OUTSIDE FUNCTION: v(u) = u®

WHAT’S M TIRED OF N s
WRONG? BEING TREATED f 00 = u(xg'Ww)
LIKE A VARIABLE...
() = (6x*)(Bu")

y

bx?)(8(2x% + 3)7)

= 48x%(2x% + 3)7

W

HERE THE CHAIN RULE LETS US
DIFFERENTIATE A MONSTER 24TH-
PEGREE POLYNOMIAL WITHOUT
HAVING TO EXPAND IT FIRST.
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Derivatives of Inverse Functlons

THE CHAIN RULE ¢AN ALSO HELP U6 FIND
THE DERIVATIVE OF AN INVERSE £~ WHEN
WE KNOW THE DERIVATIVE OF f.

£
L

Example: surrose ux) = Vx 0rR X%, THE INVERSE OF v(w) = u?.
THEN THE COMPOSITION F(X) = D(U(X)) = X, 0 OBVIOUSLY,

fFx) =1
ERMM... WHAT HAP-
BUT THE CHAIN RULE GIVES ANOTHER PENS HERE IF ONE Aj'uge’;""l\scs%en%“':?'
FORMULA FOR f'(x): FACTOR 15 O7

ISN'T, OKAY?

F(x) = UGV )

O BN

KNOWN UNKNOWN KNOWN

EQUATING THESE, WE GET:

_4d 2y _ 5,4 4
1 = I (xl)d W) = Zudx(xZ)
= ZX% :—X(X%)
NOW DIVIDE BY 2x7% TO SOLVE
FOR THE DERIVATIVE: w
d , 1 , w
Tx xz) = %

) m




YOU (AN RUN THROUGH THE SAME SET OF
STEPS FOR u(x) = x'/" AND v(u) = u" :
THEN f(x) = v(u(x)) = x, AND %0

1 = WGV lx)) PROVIDED v'(u(x) + O

, -1
= W) -nx"m"" 50

1-n

, 1-n
ue) = 5 " = Axw

Si=-

xn !

-
=

Si=-

f 1
c-id;(x") = Ax@D

IFx =+ O

WHAT WE JUST DID FOR X7 AND u”, WE (AN
PO FOR ANY PAIR OF INVERSE FUNCTIONS f

AND £ TO FIND (F7)’, THE DERIVATIVE OF
THE INVERSE, IN TERMS OF £%

x = fF(F'00))

A cep
ax (F(F (%))

EYCO-FE@) %0

1

"

"

1

(F’)'(x) z T w
FF (x))

FFF' ) = 0

HERE’S HOW IT LOOKS ON A GRAPH. BECAUSE THE INVERSE SWITCHES X AND y, THE SLOPE
Ay/Ax OF THE GRAPH OF f BECOMES Ax/Ay ON THE GRAPH OF £\, YOU HAVE TO CHASE
AROUND THE GRAPH A BIT TO FIND THE RIGHT POINT AT WHICH TO EVALUATE (£7)" ... BUT

DON'T WORRY! SOON WE’LL SEE A DIFFERENT DIAGRAM THAT MAKES THINGS MUCH CLEARER.

5LOPE = m =f'(b)

5LOPE = (F )(a) =

WHERE b = f (@)

y = f(x)
y = £/

FOR NOW, LET’S JUST USE THE FORMULA BLINDLY, PLUGGING IN INVERSE FUNCTIONS TO FIND
THEIR DERIVATIVES. THE SIMPLICITY OF THE RESULTS MAY SURPRISE YOU...
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WE APPLY THE INVERSE DERIVATIVE FORMULA TO THREE FUNCTIONS: THE LOGARITHM, THE
ARCSINE, AND THE ARCTANGENT.

1. TAKE FW) = ¢ AND F'(X) = In x. THEN (W) = &*, AND

g-lrcx— LI ! S R ama ;
dx elnx X "

2

2. fw) = sin u, F'(0) = arcsinx. () = cos u

—d—(arcsin x) = —1 HOW PO WE EVALUATE THE COSINE

dx cos (arcsin x) OF arcsin X7 BY REMEMBERING
THAT sin®u + cos®u = 1.

cosu=V1-sinu %o

cos(arcsin x) = V 1 - sin(arcsin x)

d .
= (arcsin x) =

NOTE THAT IT WAS 0.K. TO TAKE THE POSITIVE SQUARE ROOT HERE: VALUES OF THE ARCSINE LIE
BETWEEN -7/2Z AND /2, AND ON THIS INTERVAL THE COSINE 15 POSITIVE.

3. Fw) = tan u, £1(x) = arctan x. £ ) = sec? x

1
sec?(arctan x)

MIND-
BOGGLING,
AREN'T THEY?

d (arctan x) =
dx

THE TRIG IDENTITY sec’x = 1 + tan®x GIVES

sec? (arctan x) = 1 + tan*(arctan x) = 1 + x* I

d
—arctan x =
dx
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IT’S VERY STRANGE... TRI6 FUNCTIONS AND
EXPONENTIALS TAKE THEIR DERIVATIVES
FROM AMONG THEMSELVES... BUT THEIR
INVERSES HAVE DERIVATIVES MADE OF
ORDINARY POLYNOMIALS AND SQUARE
ROOTS. HOW DIV THAT HAPPEN?

THE LOGARITHM’S DERIVATIVE 15 PERHAPS MOST SURPRISING: X' LOOKS LIKE THE DERIVATIVE
OF A POWER FUNCTION. BUT THE POWER RULE %C(x“) = nx" "' ¢AN PROPUCE DERIVATIVES

ONLY WITH EXPONENTS OTHER THAN -1, SINCE d—d;(x") = 0.

iInx:

i arcsin x
dx

d
e arctan x

THE NATURAL LOG PERFECTLY .

FILLS THAT ONE HOLE IN THE f(x) F(x)
POWER LIST:

x? 2x

X 1

x%=1 o

In x x!

x! -x2

x? -2x7?

ETC.
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Examples of Derivatives Found by the Chain Rule:

1. h(x) = x, m AND n INTEGERS. B, roo - V12
= (x %)

INSIDE FUNCTION: u(x)=x% , W) =Lxn!
OUTSIDE FUNCTION: v(W)=u", v’w)=mu™"

:'IE

INSIDE: u(x) = 1—x2, ulx) = -2x
1
2z

OUTSIDE: v(W) = u?, VW) = fu

FO) = -2x-(u?) = -2x($)A - x2)2
H(X) = WGV (X)) = (LxF ) mu"") x
= GarHmH™) Y e
- gx<1ﬁﬂ+’"—§—‘>
5.0 = hxt+ 0
= MR-

n INSIDE: u(x) = x*+ x, uw(x) = 2x + 1
, OUTSIDE: v(u) = lnu, vW) =1/u

YESS!! THE
POWER RULE

6'(x)
AGAIN!

(2x + DA/W

2x + 1
x*+ x

W

6. Pty = 2+t +2H”

3 - 2
20 f(x) = arctan(3x) INSIDE: u(x) = 2+t + 2¢°, u(x) 1+ 6t

OUTSIDE: v(u) = 5/6’ v’w) = Z ‘1/6
INSIDE: u(x) = 3x, u'(x) =

, 5 -1/6
OUTSIDE: v(u) = arctan u, V') = 1: ) P = a *“Z)(Z“ )
u
_ 5 2 3.-1/6
FOO = wov o)) = —3 _ = z(1 +6t°)(2 +t + 2F)
1+u
= 3 =
1+ (3x)? 1+ 9% 7. veo = (F))" FOR ANY DIFFERENTIABLE

FUNCTION f, ANY RATIONAL n

3 _ INSIDE: £(x), DERIVATIVE = f(x)
+ 900 = fax), a A CONSTANT oUTSIDE: vW) = u", VW) = nu""!
INSIDE: u(x) = ax, OUTSIDE f, 50

) = ax f Voo = Feomu ")

nF o) FG)" !

"

g’(x) = af(ax)

W
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WE HAVE NOW FOUND DERIVATIVES OF ALL THE ELEMENTARY FUNCTIONS... FROM THESE WE CAN
BUILD THE DERIVATIVE OF ANY FUNCTION MADE BY PILING UP THE ELEMENTARIES BY COMBI-
NATIONS OF ADDITION, MULTIPLICATION, DIVISION, AND COMPOSITION. WE'RE EMPOWERED!

EMPOWERED,
BABY!

AND YES, WE DO KNOW HOW TO DIFFERENTIATE CHAINS LONGER THAN TWO FUNCTIONS:
JUST MULTIPLY ALL THE DERIVATIVES!

4 . dvdudydx
dtv(u(y(x(t)))) " dy PIECE OF

READY FOR
ANYTHING!!

OR, IF YOU PREFER THE OTHER NOTATION:

IF £(£) = v(u(yx(¢)))), THEN

Three-function example:

isirz (e"z) = er"zcos(e"z)
dx

(INNER: u(x) = x%, MIDDLE: v(u) = &,
OUTER: g(v) = sin v)
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ARE YOU READY
FOR THIS?

x+h

-

f(x+h)

f(x)

REMEMBER, WE STILL
HAVEN'T SHOWN WHY
THE CHAIN RULE 1%
TRUE! TO SEE THIS,
LET’S LOOK AT THE
DERIVATIVE IN THE
PARALLEL-AXES PICTURE
OF A FUNCTION f.

UH... WHERE'D
THE DERIVATIVE
60, ANYWAY?

WHAT 15 Af/h IN THIS
PICTURE? ON THE LEFT
ARE THE POINTS X AND
X + h, AND ON THE
RIGHT ARE THE “TAR-
GET” OR “IMAGE”
POINTS f(x) AND

f(x + h).

HERE, THEN, THE DIFFERENCE QUOTIENT Af/h 15 A SCALING FACTOR THAT MULTIPLIES THE

AMOUNT h TO GET Af.

Af—(

fyn

THIS FACTOR MAY
ENLARGE, SHRINK,
AND/OR INVERT THE
SPACE BETWEEN THE
POINTS x AND X + h.

10




WHAT HAPPENS AS h—O7? IT ISN'T EASY TO SEE... EVERYTHING 15 0 SMALL... 50 LET’S
TALK ABOUT SMALLNESS...

SMALLNESS 15
RELATIVE... sOME-
THING 15 SMALL ONLY
IN COMPARISON WITH
SOMETHING ELSE. NEXT
TO AN ELEPHANT, A
MOUSE 15 sMALL, BUT
THAT SAME MOUSE
INSPIRES AWE IN A
FLEA... THE MOUSE,
MEANWHILE, SEES THE
FLEA AS SMALL, WHILE
TO THE ELEPHANT A
FLEA 15 COMPLETELY
BENEATH NOTICE.

m



IT’S THE SAME WITH NUMBERS... WE WANT TO THINK OF ORDINARY NUMBERS, LIKE a AND
f(a), A5 ELEPHANTS, PART OF THE MACRO-WORLD. (I KNOW, THEY (AN BE ZERO SOMETIMES,
BUT NOT USUVALLY!)

THE INCREMENT h 15 ASSUMED TO BE SMALL A MATHEMATICAL FLEA 15 SOMETHING SMALL

COMPARED TO AN ELEPHANTINE NUMBER LIKE, EVEN COMPARED TO h. FOR INSTANCE, h% 15 A

SAY, 1. IN 6ENERAL, WE'LL CALL SOMETHING FLEA: IF h = k=, THEN h’= =% OF —L-
1000 1000 1000

A MOUSE IF IT SHRINKS WITH h, THAT 15, IF AS SMALL COMPARED TO h A% h 15 TO 1. WE'LL
CALL SOMETHING A FLEA IF

,{gtg (MOVSE) = O

50 h?, h?, AND h*'? ARE ALL FLEAS. FROM THE DEFINITIONS, IT FOLLOWS
EVENTUALLY, AS h— O, THEY ALL LOOK IMMEDIATELY THAT
SMALL COMPARED TO h.

F"TEA 15 A MOUSE

h-(MOUSE) 15 A FLEA




NOW LET’S WRITE THE DEFINITION
OF THE DERIVATIVE IN THESE
ZOOLOGICAL TERMS:

. Af "’

I!‘—T) T = f(x)

. AV _
Lgrcl, (T-—f(x)) =0

% - f(x) = MOUSE

MULTIPLYING BOTH $IDES BY h 6IVES

Af = hf'(x) + h-MOUSE TWO MICE

IDENTICAL
BUT FOR A
LOwWLY
FLEA...

50

AFf = hf'(x) + FLEA

T CALL THIS LAST EQUATION THE FUNDAMENTAL EQUATION OF CALCULUS. (course,
NOBODY ELSE DOES, 5O DPON'T EXPECT TO SEE IT ON THE TEST...) I LIKE IT BECAUSE EVERYTHING
IN IT 15 smALL: IT GIVES U5 A “MOUSE-SCALE" VIEW OF FUNCTIONS ON VERY SHORT
INTERVALS. IN FACT, T LIKE IT 0 WELL, I'M GOING TO WRITE IT AGAIN, REALLY LARGE:

¢

& f = hf’(x) + FLEA

N\
e X

A LARGE
EQUATION ABOUT
SMALL THINGS!

ON A GRAPH, IT MEANS THIS:
AS h 6ETS SMALL, THE
DISCREPANCY BETWEEN THE
CURVE y = f(x) AND ITS
TANGENT LINE BECOMES
NEGLIGIBLE, A MERE FLEA—
SMALL COMPARED TO h. IF WE
ZOOM IN CLOSE ENOUGH, IN
OTHER WORDS, THE CURVE
BECOMES VIRTUALLY
INDISTINGUISHABLE FROM
A STRAIGHT LINE.
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IN THE PARALLEL-AXES VIEW, IT MEANS THIS: IN THE LIMIT, A5 h— O, WE (AN REPLACE THE
SCALING FACTOR AFf/h BY £ (x). THAT 15, THE FUNCTION £ SCALES A SMALL CHANGE IN
x BY A FACTOR OF f'(x), ASIDE FROM A DISCREPANCY THAT BECOMES NEGLIGIBLE.

(AN BE
I6GNORED 'Aﬁ

—0!

h{ | AF = FGoOh + FLEA

THIS IMMEDIATELY SHOWS WHY AN INVERSE FUNCTION'S DERIVATIVE 15 WHAT IT 15: THE
INVERSE ' REVERSES THE ARROWS OF f. WHATEVER SCALING 15 DONE BY f 15
UNSCALED By 7.

f SCALES A SMALL CHANGE IN t BY A REVERSING THE ARROWS THEN
FACTOR OF f'(£) (ASSUME f'(£) + O) “UNSCALES” BY A FACTOR OF 1/F(%).
h A f
FE) X
1
AF = £()h AFHY = — k&
F)

BUT THE DERIVATIVE 15 THE SCALING FACTOR! 50 THE DERIVATIVE (F')'(x) HAS TO BE
1/f(£), AND, SINCE t = f'(x), WE GET THE FORMULA OF PAGE 105:

1

FY00 = ——
fF ()

14




FOR THE CHAIN RULE, THE PICTURE 15 SIMILAR. NOW WE HAVE TWO FUNCTIONS u AND v.
THE INSIDE FUNCTION u 15 ON THE LEFT, SINCE IT COMES FIRST, AND WE WANT TO SEE
THE DERIVATIVE OF THE FUNCTION f DEFINED BY f(x) = v(u(x)).

Av

T v(u))

HERE THE QUANTITY h 15 SCALED TWICE: FIRST BY A FACTOR u’(x) AND THEN BY A FACTOR OF
V" EVALUATED AT u(x). THE NET EFFECT OF BOTH FUNCTIONS, THEN, 15 TO SCALE h BY THE
PRODUCT u'(x) v'(u(x)), 50 THIS MUST BE THE DERIVATIVE OF f AT THE POINT x. (IMAGINE
FIRST POVBLING, THEN TRIPLING; THE EFFECT WOULD BE TO MULTIPLY BY SIX.)

@

u SCALES
BY u’

o\‘

——

V SCALES
BY v’

15

Au = u'(x)h
Av = V'(u))Au

= VW) u'x)h

WHICH %AYS THAT THE SCALING FACTOR,
AND THEREFORE THE DERIVATIVE, OF
THE COMPOSITION 15 u'(x)v (u(x)).

AND THAT 15 THE CHAIN RULE!

F(x) = u'(x)v'ulx))

Q.E.D,
SORT OF!




Problems

1. SUPPOSE F(x) = x* AND g(u) = cos u. WHAT 15 £(g(u))? WHAT 15 g(f(x))? GRAPH BOTH
COMPOSITE FUNCTIONS. WHAT ARE THEIR DERIVATIVES?

2. 5UPPOSE u(x) = -x* AND v(u) = e“. SAME QUESTIONS AS PROBLEM 1.

3. DIFFERENTIATE:

a f&) = V1+t+t? d.P(r) = (r*+ 7 9. E(x) = "¢
xX-a
b. g(x) = (cos x - sinx)?* e. Q) = (rt+ 7)° h Fx) = eU2)
¢. h(@) = tan?e© f. f(y) = cos (Vy) i.v@ = (sin@?+ 2)"?
4‘ IF f: 15 VlFFERENTlABLG, SHOW THAT 7a. IF f(X) = 2 + sin X, WHAT 15 THE INVERSE
FUNCTION £7'? DRAW ITS GRAPH ON A SUITABLE
diln (F(xX)) = F)/Fx) DPOMAIN, AND FIND (F’)'(X).
X

HINT: WRITE y = 2 + sin x AND SOLVE FOR x.
THIS FORMULA, TOGETHER WITH THE FACT
THAT In(ab) = Ilna + In b, (AN SIMPLIFY b. 5AME THING FOR f(x) = Vx% + 1.
DIFFERENTIATION WHEN THE FUNCTION
INVOLVES PRODUCTS AND QUOTIENTS.

FOR EXAMPLE, SUPPOSE 8. A POTATO AT ROOM TEMPERATURE (25° () 15
PUT INTO A 275° OVEN. THE POTATO’S TEMPERA-
y = x%cos x 50 TURE T, IN DEGREES CEL5IUS, AFTER t MINUTES 15
Iny = 2in x + In(cos x) T@) = 25 + 250 (1 - e 94%)
DIFFERENTIATING WITH RESPECT TO X GIVES a. DRAW A GRAPH OF THIS FUNCTION. HOW FAST 15
) . THE POTATO HEATING UP, IN DEGREES PER MINUTE,
y_=2 sinx AFTER 10 MINUTES? 20 MINUTES? 40 MINUTES?
y X  cos x 100 MINUTES?
BUT y = x%cos x (IT"6 WHERE WE STARTED!). b. HOW MANY MINUTES DOES IT TAKE THE POTATO
MULTIPLY THROUGH BY THIS TO FIND y': TO REACH 274°7
., 2  sinx. 9. WHICH OF THESE FUNCTIONS 15 A FLEA? A
Vom Tk R MOUSE? NEITHER?
= 2xcos x - x*sin x a. h*’* g. AFAG WHEN £ AND g

ARE DIFFERENTIABLE.

5. USE THIS LOGARITHMIC DIFFERENTIATION | b- h'*
TECHNIQUE ON THESE FUNCTIONS:

1-h?
a. £ = x°e*A + x07? " h
b. gx) = x'* d. sin h
e. hcos h
é. SHOW THAT IF Fy(h) AND F,(h) ARE BOTH
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Chapter 4
Using Derivatives, Part 1: Related Rates

IN WHICH WE ACTUALLY TALK ABOUT THE REAL WORLD
OF COURSE
I THINK.

THE CHAIN RULE

15 MORE THAN A [AND ABOUT TlME,]
FORMULA FOR PON'T YOU THINK?
TAKING DERIVATIVES: \ v
IT ALSO HELPS US
SOLVE PROBLEMS.

Example 1:

AN AIRPLANE TRAVELING AT A CONSTANT ALTITUDE OF % KM IS5 BEING TRACKED BY A
GROUND-BASED RADAR STATION. AT A CERTAIN TIME t,, THE RADAR CREW MEASURES THE
PLANE TO BE 5 KM DISTANT, AND THIS DISTANCE 15 FALLING AT A RATE OF %220 KM/HR.
HOW FAST 15 THE PLANE FLYING AT TIME t,7

WHAT 15 s'(t,)? Qe -

}
i
'
'
:
- ¢
D,(to) = -%20 KM/HR 3 4 /// : 2 KM
:
§
H
i
1
l
i

n7



AT ANY TIME t, THE RADAR 5ITS AT ONE CORNER OF A RIGHT TRIANGLE OPQ WITH

HYPOTENEUSE D (E). IF s(£) 15 THE PLANE'S HORIZONTAL DISPLACEMENT AT TIME t,
WE ARE ASKING: WHAT 15 s’(t), THE DERIVATIVE OF s?

YOU MIGHT WONDER HIGEUP!
HOW CAN WE FIND %"
5'(£) WHEN WE &8 =7
HAVE NO IDEA -

WHAT THE FUNCTION PP -

s LOOKS LIKE. THE .-

PILOT COULD BE D) -

ACCELERATING AND -

DECELERATING LIKE -
A DRUNKEN AVIATOR! -

2 kM

WHAT WE DO KNOW 15 THIS:
D?-s% =32 awaso

Pity) =5 sk,)=4 D) =-320

EVEN WITHOUT KNOWING THE FUNCTIONS s(t) AND D(t), THE FIRST EQUATION IMPLIES A
RELATIONSHIP BETWEEN THEIR DERIVATIVES. BY THE CHAIN RULE, WE CAN DIFFERENTIATE THE

SQUARE OF A FUNCTION: -ad;(f)z = 2ff. (5EE EXAMPLE 7, P. 108.) 50 WE DIFFERENTIATE:

20D’ - 255" = O

FROM A GROUND-
%0 BASED OBSERVATION,
DD’ WE GET THE PLANE’S

s’ = - WHENEVER s(£)#0 AIRSPEED!

AT TIME t,, THEN,

Sty = %(-no) = -400 km/hr

THE DERIVATIVES s” AND P° ARE RELATED RATES.

ng



& & £ 3 * <>
Implicit Differentiation
IN THE PREVIOUS EXAMPLE, THE EQUATION D? - s = 9 IMPLIED A RELATIONSHIP BETWEEN
THE DERIVATIVES OF P AND s. THE PROCESS OF FINDING THIS RELATIONSHIP 15 CALLED IMPLICIT
DIFFERENTIATION. WE DIFFERENTIATE WITHOUT EVER WRITING AN EXPLICIT FORMULA FOR
EITHER FUNCTION.

SOMETIMES IT’S
BETTER NOT TO
BE TOO EXPLIIT..

Example 2: tuc ceuation

1-x?

<«
"

xt+y?t=1

DESCRIBES A CIRCLE OF RADIUS 1 CENTERED AT
THE ORIGIN O. THE EQUATION IMPLIES THAT y

15 ONE OF TWO DIFFERENT FUNCTIONS OF x:
y=V1-x2 AP y=-V1-x?

THE UPPER AND LOWER SEMICIRCLES.

WE COULD FIND y'(x) BY DIFFERENTIATING THOSE SQUARE ROOTS, BUT THAT'S MESSY—S$0
INSTEAD, WE |IMPLICITLY DIFFERENTIATE THE ORIGINAL EQUATION WITH RESPECT TO X:

x*+yt=1

N
2x + 2yy" = O AND %0 SLOPE = =
y
y = -2 WHENEVER y # O y
y /

X -
OR ———— x # i

1-x2 1-x2

"

DEPENDING ON WHICH SEMICIRCLE YOU
CHOOSE. COMPARE THIS WITH THE
EXAMPLE 4 ON PAGE 108.
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More Related-Rate Examples

3. A PETROLEUM STORAGE TANK ON THE SHORELINE LEAKS OIL INTO THE WATER AT A STEADY RATE
OF 2 BARRELS PER MINUTE. A CLEANUP CREW, INTENDING TO CONTAIN THE SPILL WITH A STRING OF
FLOATS, ASKS HOW FAST THE SEMICIRCULAR OIL 5LICK’S CIRCUMFERENCE 15 6ROWING.

F O\

GIVEN: V'(t) = 2, THE RATE OF
CHANGE OF VOLUME

ASKED: C'(£), THE RATE OF
CHANGE OF CIRCUMFERENCE

LET'S ASSUME THAT THE OIL SLICK HAS UNIFORM THICKNESS, 50 THE RELATED RATES COME
THAT ITS AREA 15 PROPORTIONAL TO ITS VOLUME. IF 1 BARREL FROM THE SPILL’S SEMI-
(BRL) OF OIL COVERS 300 SQUARE METERS, THEN AT TIME t, CIRCULAR SHAPE:

A(t) = (300 M¥/BRL)- (2 BRL/MIN)-(£ MIN) = 600t M*
A(t)

C=mr, A= 1mr?, 50
600 M%/MIN

"

DIFFERENTIATING WITH RESPECT TO t,

A = —— 20 @®) = C®CW® 50
2 m
cw) = TA - £ i
() C(t) 0.K., NOW
DOES ANYBODY
WHEN THE SPILL 15 1000 METERS HAVE A CORK?

AROUND (C = 1000), FOR INSTANCE,
THE CIRCUMFERENCE 15 GROWING AT
A RATE OF

6001
1000

= (0.6)(3.1416) =~ 1,88 mcTers PER MINUT
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40 DELTA 15 POURING WATER INTO A CONICAL cUP
B (M TALL AND 6 (M ACRO55 AT THE TOP. IF THE

VOLUME IN THE CUP AT TIME £ 15 V(£), HOW FAST
15 THE WATER LEVEL RISING, IN TERMS OF V'(£)7

BY SIMILAR
TRIANGLES

FOR INSTANCE, IF WATER POURS AT A

CONSTANT RATE OF 10 ¢m*/se¢, THEN
WHEN h = 4 (M,

o @0a0) 640
om(16) ~ 452.4

= 1.41 mysec.

BY THE WAY, WHEN YOU FIRST START
TO POUR AND h = O, DO YOU SEE
THAT R" 15 INFINITE?!!

THE WATER VOLUME 15 GIVEN BY
212 _ 132
M V=gmrth = 31T(9i“|) h
= 12 c3)2p?
=3 ( g) h
NOW DIFFERENTIATE WITH RESPECT TO ¢:
V' = hm(2y’h?
8
WHICH 6IVES

64V’

2) h =
9h?

WE GLIMPSED THE INFINITE
IN A CUP OF WATER... WHO'D
HAVE THOUGHT...?

121



5. Hcre's AN ANGULAR EXAMPLE: AN AIRPLANE—AGAIN—IS FLYING AT AN ALTITUDE OF 3 KM, WITH
VELOCUITY s'(£). THE OBSERVER 15 MAKING A VIDEO RECORDING OF THE PLANE AND WOULD LIKE TO
KNOW HOW FAST TO CHANGE THE ANGLE AT WHICH HER CAMERA 15 POINTING WHEN THE ANGLE 15

60 DEGREES (/% RADIANS).

WHAT 15 ©°(t)
3 KM WHEN 6 = /37

S 15 THE HORIZONTAL DISPLACEMENT OF THE
PLANE FROM THE OBSERVER. THE RELATION
BETWEEN S AND O 15

s
tanf = 3

DIFFERENTIATE WITH RESPECT TO TIME:

’

6’sec’6 =

(W) \NIV\

DIVIDING BY sec’© (WHICH 15 NEVER ZERO!),

M 6 = —;-s'cosze

IF THE PLANE’S VELOCITY 15 =720 KM/HR
= -12Z KM/MIN.*, AND ©=1/% RADIANS, THEN

cos @ =31, s'=-12, AND

6" = ()(-12)(P

-1 RADIAN PER MINUTE

(1)(1/60) = 0.01667 RADIANS/SEC.

)

"

THE ANGLE 15 DECREASING AT A RATE OF
0.01667 RADIANS PER SECOND, ROVGHLY
1 DEGREE PER SECOND.

*THE VELOCITY 15 NEGATIVE WHEN THE PLANE 15
FLYING TOWARD THE OBSERVER.

FOR THE “B-ROLL” |
LET'S GET SOME
REACTION SHOTS

OF YOU 5(RATCH- )
ING YOUR CHIN AND
NODDING WISELY...

J




THE KEY TO THESE RELATED-RATE WORD PROBLEMS (AS TO ALL WORD PROBLEMS) 15 TO EX-
PRESS EVERYTHING YOU KNOW FROM THE SETUP. IF A RELATIONSHIP BETWEEN TWO FUNCTIONS
APPEARS, DIFFERENTIATE IT IMPLICITLY TO FIND ONE DERIVATIVE IN TERMS OF THE OTHER.

D 15 THE FOURTH LETTER OF THE LATIN
ALPHABET. s 15 THE NINETEENTH. 6 AND T ARE
GREEK LETTERS, BUT I'M NOT SURE WHERE IN THE
GREEK ALPHABET THEY COME, AND I'M TOO LAZY TO
LOOK IT UP. THE PYTHAGOREAN THEOREM 15 NAMED AFTER
PYTHAGORAS, AN ANCIENT GREEK WHO LIVED IN SICILY. HE
BELIEVED THAT ONLY WHOLE NUMBERS AND RATIOS OF
WHOLE NUMBERS WERE REAL, 50 HE WAS SHOCKED TO
DISCOVER THAT VZ 15 IRRATIONAL. THE “PYTHAGOREAN”
THEOREM HAS BEEN PROVED IN HUNDREDS OF DIFFERENT
WAYS BY MATHEMATICIANS FROM MANY CULTURES. PRESI-
DENT TAMES GARFIELD, AN AMATEUR MATHEMATICIAN,
FOUND A PROOF THAT WAS QUITE SIMILAR TO THE
TRADITIONAL CHINESE PROOF. AIRPLANES WERE
INVENTED BY THE WRIGHT BROTHERS IN 1903...

I DIDN'T MEAN
ABSOLUTELY
EVERYTHING

YOU KNOW!

TSK! WHY
DIDN'T YOU
SAY 507

HERE ARE MORE EXAMPLES OF

IMPLICIT DIFFERENTIATION WITHOUT 6. sinf=1ng
ANY WORD PROBLEMS ATTACHED: ,
IN THEM, WE FIND ' IN TERMS OF Feos f = &
£, g, AND g’, WHERE ALL THESE 9

FUNCTIONS ARE ASSUMED TO ‘sec
DEPEND ON A VARIABLE x. F=2 WHEN cos f #0, g # O

ONE MORE THING T KNOW: s
IT'5 WAY EASIER CRANKING 7. 2+ 4% = x
OUT FORMULAS THAN DOING
ABSTRACT THOUGHT!

DIFFERENTIATE WITH RESPECT TO x:

"SPECIALLY WHEN
I'M THE ONE DOING 3ff2 + 29°g = 1
| THE CRANKING...

f=1-209 uensseo

352
8. tan’f + tan f +1 = ¢
£(2 tan f)(sec’f) + f'sec*f = 297
F(sec*£)( + 2tanf) = 29'g

F o= 29°g cos?f

= N ta -1
1+ 2tanf WHEN tanf # -3
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Problems

1. A HEMISPHERICAL BOWL OF RADIUS R
HAS VOLUME 2mR?/3. IF IT CONTAINS
WATER TO A DEPTH h, THE VOLUME OF
WATER 15

V = mRh? - 1h?

(TAKE THIS ON FAITH FOR THE TIME BEING. IT
WILL BE AN EXERCISE IN A LATER CHAPTER.)

IF WATER 15 POURED INTO THE BOWL AT A
RATE OF V'(£), THEN WHAT 15 h'(t) IN TERMS
OF V' AND h? (REMEMBER, R 15 CONSTANT!)

2. IMAGINE AN INSECT CRAWLING ON AN
ELLIPTICAL WIRE. THE ELLIPSE’S EQUATION 15

XZ

2

2
¥
a 2

+ =1

o

AT EACH INSTANT OF TIME t, THE INSECT HAS AN
X-COORDINATE x(£) AND A y-COORDINATE y(t).
REGARDLESS OF WHAT THE FUNCTIONS x(t) AND
y(t) MAY BE, IT MUST BE TRUE THAT

Qe
a* b?

1

FIND AN EQUATION THAT RELATES X" AND Y'.
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SNAKE, EATING
IT5 OWN TAIL, FORMS
A PERFECT CIRCLE. IF THE
J [ SNAKE'S LENGTH FALLS AT A
\\ | RATE OF £’ CENTIMETERS PER
“\ HOUR, HOW FAST DOES THE
>) | ENCLOSED AREA SHRINK?
i\ THAT 15, WHAT 15 A

\_ N TERMS OF

4. A LADDER 15 METERS LONG 15
PROPPED AGAINST A HIGH WALL.
THE BOTTOM OF THE LADDER
SLIDES AWAY FROM THE WALL

AT A RATE OF 1 METER PER
SECOND. HOW FAST 15 THE
TOP OF THE LADPER
SLIDING POWN THE WALL
WHEN IT 15 12 METERS
OFF THE GROUND?

15

yw) =7

X

5. A SNAIL CREEPS ALONG THE SIDE OF A
SQUARE 25 CENTIMETERS ON EACH SIDE. IF
THE SNAIL MOVES FROM A TO B AT A STEADY
PACE OF 1 CM/5EC, HOW FAST 15 1T
APPROACHING POINT € WHEN THE SNAIL HAS
GONE 10 CM? HOW FAST IS IT MOVING AWAY
FROM POINT D AT THE SAME MOMENT?

D 25 ¢

25




Chapter 5
Using Derivatives, Part 2: Optimization

WHEN FUNCTIONS HIT BOTTOM (OR TOP)

IN THE REAL WORLD,
PEOPLE OFTEN LOOK FOR
WAYS TO OPTIMIZE
THINGS... WHICH MEANS
FINDING THE BEST wAY
TO DO SOMETHING... WE
WANT TOP QUALITY—AND
TOP QUANTITY!

I WANT TO LEARN THE
MAXIMUM AMOUNT OF

CALCULUS WITH miNimum || T CAN HELP
HEADACHE! WITH THAT!
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FOR EXAMPLE, A SHIPPING COMPANY WANTS TO MINIMIZE ITS FUEL CO5TS BY SEEKING AN
OPTIMAL ROUTE THAT BURNS THE SMALLEST AMOUNT OF GASOLINE. AN OIL COMPANY WANTS

THE OPPOSITE!

AN ECOLOGIST WORKING WITH A FISHING
FLEET WANTS TO CALCULATE THE MAXIMUM
FISH CATCH CONSISTENT WITH A
SUSTAINABLE POPULATION.

IN ALL OF THESE EXAMPLES, THE OPTIMAL
SOLUTION 15 ONE THAT MAXIMIZES OR
MINIMIZES SOME FUNCTION.

IN THIS
CHAPTER, WE
CHASE AFTER
MAXIMUM
VALUES!

A MANUFACTURER WANTS TO MAXIMIZE
PROFITS.

~N

revenue .=, y."
- *

GET ME A CALCULVS
STUDENT! J
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A LOCAL MAXIMUM OF A FUNCTION 15 A POINT a WHERE THE GRAPH CRESTS. AT A LOCAL
MAXIMUM a OF A FUNCTION f, f(a) = f(x) FOR ALL X IN SOME INTERVAL AROUND a. A LOCAL
MINIMUM c 15 THE BOTTOM OF A TROUGH, WHERE f(x) = f(c) FOR NEARBY POINTS x.
“LOCAL” MEANS THAT THE VALUE f(a) 15 COMPARED ONLY TO NEARBY POINTS. THERE MAY BE
ANOTHER LOCAL MAXIMUM b WHERE f IS5 LARGER, I.E., F(b) > f(a). WE REFER TO EITHER A
LOCAL MAXIMUM OR LOCAL MINIMUM AS A LOCAL EXTREME POINT Or LOCAL OPTIMUM.

HERE a AND b ARE BOTH LOCAL
MAXIMA, AND £(b) > f(a). c 15
y=F() A LOCAL MINIMUM.

/ | i |
a c b

Extreme Fact 1: F a5 A Lo
EXTREME POINT OF A DIFFERENTIABLE
FUNCTION f, THEN

f(a) = 0

fla)=0

PROOF: SUPPOSE a 15 A LOCAL
MAXIMUM. THEN FOR SMALL h,

M} < O WHEN h>0
h l |
a

M > 0 WHEN h<O

50 THE LIMIT A5 h— O MUST BE BOTH

NON-NEGATIVE AND NON-POSITIVE,

HENCE ZERO. IF a 15 A LOCAL MINIMUM, ¢ /
THEN a 15 A LOCAL MAXIMUM OF -f, !

50 AGAIN THE DERIVATIVE 15 ZERO.

THE SLOPE OF THE GRAPH AT a 15
FLOPPING OVER FROM POSITIVE TO
NEGATIVE, OR VICE VERSA, AND $0
HITS ZERO AT THE EXTREME POINT.

fl)=0
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OUR (AR AND DRIVER CAN HELP US SEE WHY THE PERIVATIVE 15 ZERO AT AN EXTREME POINT.

IF DELTA DRIVES FORWARD FOR A WHILE AND
THEN REVERSES DIRECTION AT TIME t = a,
THEN THE TURNAROUND POINT P = s(a) 15
A LOCAL MAXIMUM, AN EXTREME POINT: SHE
GOES THAT FAR AND NO FARTHER.

P = s(a)

UNTIL TIME a, HER VELOCITY WAS POSITIVE;
AFTER TIME a, IT WAS NEGATIVE.

AT THE PRECISE MOMENT t = a WHEN THE
(AR REACHES THE EXTREME POINT, ITS VEL-
OCITY CHANGES FROM POSITIVE TO NEGATIVE
AND 50 MUST BE ZERO. s'(a) =

P =s(a)

THE SAME WOULD BE TRUE IF DELTA BEGAN
BY BACKING UP AND THEN REVERSED COURSE
TO FORWARD MOTION. THEN THE TURNAROUND
POINT WOULD BE A MINIMUM POSITION,
WHERE HER VELOCITY MUST ALSO BE ZERO.

P=s(a)

NOTE: VELOCITY CAN ALSO BE ZERO AT
TIMES THAT ARE NOT EXTREME POINTS. THE
CAR COULD ROLL TO A S$TOP AND THEN KEEP
MOVING FORWARD, AS AT A STOP SI6N. AT A
TIME LIKE THAT, ¢ALL IT b, s'(b) 15 O, BUT
s(b) 15 NOT AN EXTREME POSITION!
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TO FIND
OO EXTREMES
OF A

FUNCTION f, WE LOOK
FOR INPUTS a FOR
WHICH f(a) =

BUT ONCE
FINV
THEM, WE MUST
CHECK WHETHER
a 15 REALLY AN
EXTREME POINT

OF THE FUNC-

TION, OR MERELY
A “6TOP SIGN.” -

NO, JUsT
TIRED OF
BEING MADE



Example 1: ucre’s NEWTON ON THE TRAMPOLINE AGAIN. THE MEMBRANE 15 1 METER

OFF THE GROUND, AND IT STILL FLINGS HIM UPWARD AT A VELOCITY OF 100 M/5EC.
NEWTON’S ALTITUDE IN METERS, THEN, 15

= _4042 2N LET'S
h(t) = -4.9t"+100¢ +1, @ A{MFFEREWATE!J
NOW THE QUESTION 15: HOW 20 :
HIGH DOES ISAAC RISE? WHAT
15 WIS MAXIMUM ALTITUDE?

WE BEGIN BY TAKING THE DERIVATIVE OF h:

h'(t) =-9.8t + 100 m/sec

NEXT WE A5K: WHEN DOES
h’(¢) = O? SET IT EQUAL TO
ZERO, AND SOLVE FOR t:

h't) = 0
-9.8t+100 = ©

100
t = 58 ° 10.20 sec.

t = 10.2 SECONDS 15 THE TIME WHEN
NEWTON REACHES MAXIMUM HEIGHT. TO
FIND THE HEIGHT ATTAINED AT THAT IN-
STANT, WE HAVE TO PLUG 10.2 INTO h(t):

]

h(10.2) = (-4.9)(10.2)% + (100)(10.2) +1

1,125 merers 8 3
G

W
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TO A%5URE OURSELVES THAT WE HAVE TRULY FOUND A MAXIMUM, LET’S RUN THROUGH
THE BOUNCE IN SUPER 5LO-MO:

6OING DOWN,
HE PICKS UP SPEED—
IN A NEGATIVE
DIRECTION. HIS
VELOCITY 15 STILL
AS NEWTON PROPPING.
RISES, WE NEWTON’S VELO-
SLOWS DOWN; CITY 15 ALWAYS
IN OTHER DECREASING.
WORDS, HIS
VELOCITY
DROPS...

ONLY AT THE VERY TOP, AT t = 10.20 $ECONDS, 15 KIS VELOCITY PRECISELY ZERO. AT
THAT ONE INSTANT, HE'S 6OING NEITHER UP NOR POWN, BUT KIS VELOCITY 15 FALLING
THERE TOO, CHANGING FROM POSITIVE TO NEGATIVE.

YOU (AN SEE FROM THE PARABOLIC GRAPH THAT

t = 10.2 REALLY 15 A MAXIMUM. 100 §
1,125 - POSITION VELOUITY
y = -4.9t% +100t + 1 y = h'(t) = -9.8t + 100
204
10.2
VELOCITY 15
ALWAYS
DECREASING.
| I _ -
10.2 20.4 100
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THESE ARE THE STEPS WE JUST FOLLOWED TO FIND AN EXTREME
VALUE OF A FUNCTION f:

1. TAKE THE DERIVATIVE

Q. FIND A POINT t, WHERE £ (t,) = O. WE DID
THIS BY SETTING £'(t) = O AND SOLVING FOR t.
ANY SUCH POINT, WHERE f'(t,) = O, 15 CALLED
A CRITICAL POINT.

3. PLUG t, BACK INTO £ TO FIND THE VALUE £(t,).

4., CHECK THAT THIS CRITICAL POINT REALLY 15 A
LOCAL MAXIMUM OR MINIMUM.

WE FOLLOW THE SAME PROCEDURE FOR ALL OPTIMIZATION PROBLEMS. OF COURSE, IN OTHER
SITUATIONS, THERE MAY BE MORE THAN ONE CRITICAL POINT; WE 60T LUCKY WITH THE
TRAMPOLINE...

WELL, YOU DON'T HAVE
TO BOUNCE AGAIN...

HERE 15 ONE MORE EXAMPLE...
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IN BUSINESS, PROFIT DEPENDS ON THE NUMBER OF UNITS SOLD.

Example 2: tuc sQueez-u OLIVE RANCH SELLS IT5 PREMIUM OLIVE OIL FOR $100
A BOTTLE. SELLING A QUANTITY OF q BOTTLES PRODUCES A REVENUE R(q) OF 100q. BUT
THERE ARE CO5T%, €, WHICH ALSO DEPEND ON g ACCORDING TO THE FORMULA

€(g) = 800,000 + 447,

(CO5T% INCLUDE STARTUP CO5TS OF $800,000 FOR LAND, PRESSES, BOTTLING EQUIPMENT, OLIVE
TREES, PLUS ONGOING EXPENSES FOR WAGES, SHIPPING, WAREHOUSE FEES, BOTTLES, FERTILIZER,
MAINTENANCE, WASTE DISPOSAL...)

HAVE YOU EVER THOUGHT OF SELLING YOUR
OLIVE PITS TO GENERATE GREEN ENERGY?

BUT THEY'RE
BLACK OLIVES...

THE PROFIT P 15 THE DIFFERENCE BETWEEN
REVENUE AND COST. PROFIT 15 A FUNCTION
OF q. IT DEPENDS ON HOW MUCH 15 SOLD.

P(g) = R(q) - C(g)

NOW IT'S EASY
A1, 2, 3!

HOW MANY BOTTLES MUST SQUEEZ-U SELL
TO MAXIMIZE PROFIT, AND HOW MUCH
PROFIT (AN BE MADE?
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10 WE TAKE THE DERIVATIVE OF P WITH
RESPECT TO q—THE RATE OF CHANGE OF
PROFIT PER UNIT SOLD.

P(q) = 100g - 800,000 - 44+
P(q@) = 100 - 5q%

Q. 5e7 P(q) = O AND SOLVE FOR q.

100-5g7 =0
q% = 20
q = (20)* = 160,000 BOTTLES

3. FIND THE PROFIT MADE BY SELLING
160,000 BOTTLES.

P160,000) =
= (100)(160,000) - 800,000 - (160,000)%
=16,000,000 - 800,000 - 3,200,000

= $1Z MILLION

B, cucek TuaT P(g) REACHES A MAXIMUM
AT q = 160,000. IF q 15 A LITTLE LESS,
5AY 150,000 UNITS, THEN

P(150,000) =
(100)(150,000) - 800,000 - (150,000

"

15,000,000 - 3,751,985

"

11 MILLION AND CHANGE.

THIS 15 LESS THAN 12 MILLION. YOU
(AN TRY q = 170,000 AND OTHER
NEARBY VALUES FOR YOURSELF.
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BY THE WAY,
I1SN'T $100 A
LOT TO CHARGE
FOR A BOTTLE
OF OLIVE OIL?




A Better Test

ONE OF OUR FOUR OPTIMIZATION STEPS 15 A LITTLE SQUIRRELY: THE LAST ONE. HAVING FOUND
A CRITICAL POINT—A POINT WHERE THE DERIVATIVE 14 ZERO—IT’S CUMBERSOME TO COMPUTE
THE FUNCTION AT “NEARBY” POINTS... IT'S TIME-CONSUMING... INELEGANT!

IT’% 60 HARD TO
LOOK ELEGANT
TURNING A CRANK...

IN FACT, POING 50 GUARANTEES NOTHING AT ALL. WHAT IF WE CHECKED AT POINTS THAT
AREN'T “NEARBY” ENOUGH? HERE'S A GRAPH WITH A LOCAL MINIMUM AT a... BUT IF WE
HAPPENED TO PICK THE POINT b FOR COMPARISON, WE WOULD FIND f(b) < f(a) AND
MIGHT CONCLUDE THAT f(a) WAS A MAXIMUM, NOT A MINIMUM.

I HATE THOSE
WIGGLY CURVES

WE NEED A BETTER TEST!
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THIS BEING A CALCULUS BOOK, WE WANT SOMETHING THAT UsES THE DERIVATIVE. WE MIGHT

ASK, FOR EXAMPLE, HOW 15 THE DERIVATIVE CHANGING?
PATIENCE...

HEY, WE COULD ASK
WHEN 15 THE DERIV-
ATIVE BLUE, TOO,
BUT WHAT WOULD
THAT TELL Us?

AROUND A MAXIMUM, THE DERIVATIVE f'(x)

GOES FROM POSITIVE TO NEGATIVE... WHILE

AT A MINIMUM, * 15 GOES FROM NEGATIVE )
TO POSITIVE. IN PARTICULAR, AT A

MAXIMUM, £ 15 DECREASING; AT A

MINIMUM, £ 15 INCREASING.

NOW WE’RE TALKING ABOUT HOW £’ 15 CHANGING—INCREASING OR DECREASING —AND CHANGES
ARE DESCRIBED BY DERIVATIVES... 50 THESE CHANGES IN £ WILL BE DESCRIBED BY THE
DERIVATIVE OF THE DERIVATIVE (£)" OR sIMPLY £, THE SECOND DERIVATIVE OF f.

715 ALSO WRITTEN
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THE ELEMENTARY FUNCTIONS (AN BE DIFFERENTIATED AGAIN AND
AGAIN AS MANY TIMES AS YOU LIKE, TO GIVE FIRST, SECOND, THIRD,
... NTH DERIVATIVES:

£ x’ sin x
THERE’S NO F () 5x* cos x
END TO ’EM!
£ 20x* -sin x
£ 60x* -cos x
FP ) 120x sin x
£2x) 120 cos x
£© (x) o -sinx
£P () (0] -cos X

BUT WHAT DO THEY MEAN?

( )
WELL, OBVIOUSLY

I'M THE RATE OF
CHANGE OF THE
RATE OF CHANGE
OF THE RATE OF
CHANGE OF...

WHEN IT COMES TO MOTION, THE SECOND DERIVATIVE OF POSITION, AT LEAST, 15 FAMILIAR:
IT5 ACCELERATION, THE RATE OF CHANGE OF VELOCITY.

-~

AND THE THING
ABOUT ACCELERATION
15-you FEEL IT...

s(t) = POSITION AT TIME t
s'(£) = v(t) = VELOCITY AT TIME t
s“(t) = V' (t) = a(t) = ACCELERATION AT TIME t

"

"



WHEN A (AR SPEEDS UP, L.E., VELOCITY WHEN IT 5LOWS DOWN (VELOCITY FALLS),
INCREASES, YOU FEEL PUSHED BACK INTO YOU'RE THROWN FORWARD.
YOUR SEAT.*

ISAAC NEWTON (HIM AGAIN!) ANNOUNCED IT AS A NATURAL LAW, HIS SECOND: FORCE 15
DIRECTLY PROPORTIONAL TO MASS AND ACCELERATION.

F =ma

DON'T YOU KNOW!

THE FACT THAT ACCELERATION
ACCOMPANIES FORCE MEANS
THAT WE ¢AN BUILD METERS
TO MEASURE ACCELERATION:
ACCELEROMETERS. THEN
WE PUT THEM IN SMART-
PHONES, TABLETS, AND
DIGITAL CAMERAS, 50 THEY
RESPOND TO SHAKING AND
ROTATION.

A GAME BASED
ON THEFT?

*ACTUALLY, YOU FEEL THE SEAT PUSHING FORWARD AGAINST YOU. FOR MORE, $EE THE CARTOON GUIDE TO PHYSICS!
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GRAPHICALLY, f” DESCRIBES THE CONCAVITY OF f: WHEN THE SLOPE f'(x) 15 INCREASING,
f7(x) 2 O. THIS PART OF THE GRAPH 15 CONCAVE UPWARD. WHEN £ 15 DECREASING, £~ < O,

AND THE GRAPH 15 CONCAVE DOWNWARD. A POINT ¢ WHERE THE GRAPH CHANGES CONCAVITY
15 ¢ALLED AN INFLECTION POINT, AND THERE £7(c) = O.

F(x) 2 O, " INCREASING,
f CONCAVE UPWARD

INFLECTION POINT,
__— WHERE F'(x)=0

i
£(x) < O, f* DECREASING,
; f CONCAVE DOWNWARD

7
THIS LEADS DIRECTLY TO THE

Second Derivative Test:

IF a 15 A POINT INTERIOR TO SOME
INTERVAL WHERE f 15 DIFFERENTIABLE,
AND f(a) = O, THEN:

IF £7(a) < O, a 15 A LOCAL MAXIMUM OF f
IF f7(a) > O, a 15 A LOCAL MINIMUM OF f
BECAUSE A MAXIMUM 5ITS ATOP A

CONCAVE UPWARD HUMP, AND A MINIMUM
LIES AT THE BOTTOM OF A TROUGH.

LIKE MY HEAD
ON A MONDAY
MORNING?
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Example 3: rarmcr FREDI WANTS TO PUT A RECTANGULAR SHEEP PEN AGAINST THE
SIDE OF HER BARN. SHE HAS 80 METERS OF BOARDS WITH WHICH TO BUILD THE OTHER THREE
5IDES. WHAT 15 THE MAXIMUM AREA SHE CAN ENCLOSE?

NI 7//////////! ( “my 3

|| A =x@0-20 || &

80 - 2x

WE WISH TO FIND THE LENGTH X THAT MAXIMIZES A(x).

1. viFFcRENTIATE AGR): B, (ucck THE 516N OF THE SECOND DERIVATIVE:

A
A(x)

"

- - 2 ”
x(80 - 2x) = 80x - 2x A =-4<0
80 - 4x

"

A7 15 ALWAYS NEGATIVE: BY THE SECOND DERIVATIVE

TEST, x = 20 15 A MAXIMUM . AND NOW STEP 3!
Q. 5c7 Ax) = O AND SOLVE FOR X.

80 -4x = O 30 AT THE MAXIMUM, THE
x = 20 FENCE ENCLOSES:

A(20) = 1600 - 800
NOW $KIP STRAIGHT TO STEP 4, TO TEST 800 u’
WHETHER THIS 15 ACTUALLY A MAXIMUM: = M




Example 4:

THE BRUTISH PETROLEUM CORP. WANTS TO LAY PIPE FROM ONE OF ITS TANKS TO A STATION
ACROSS THE RIVER. THE RIVER 15 2 KM ACROS5, AND THE DESTINATION 15 9 KM DOWNSTREAM.
UNFORTUNATELY, IT CO5TS MORE TO LAY PIPE ACROS5 WATER THAN ON LAND: $4 PER METER
ON LAND, V5. $8 PER METER OVER WATER. WHAT 15 THE CHEAPEST ROUTE FOR THE PIPE?

WE (AN ASSUME THAT THE PIPE CONSISTS OF EQUATION (1) SUGGESTS USING IMPLICIT
TWO STRAIGHT SEGMENTS, BECAUSE ANYTHING DIFFERENTIATION. (THIS AVOIDS DEALING
CURVED WOULD BE EVEN LONGER. AS LABELED WITH MESSY SQUARE ROOTS.) DIFFEREN-

IN THE DRAWING, X AND y ARE RELATED BY: TIATING (1) AND (2) WITH RESPECT TO x:
M) y?*-x* =4 (3) 2yy'-2x = 0 %0 y'=%
THE COST, IN THOUSANDS OF DOLLARS, 15 4 ¢ =-4+8y
(2) €)= 49 - X) + By TO OPTIMIZE THE COST £, SET €’ = O.
=36 - 4x + By 8y -4=0 % y-=1
WE ARE TRYING TO OPTIMIZE THE COST € BUT FROM (3), y' = x/y, 50 WE GET

WITH RESPECT TO X, THAT 15, FIND THE
LENGTH X THAT MINIMIZES COST. FIRST, x 1 _
THEREFORE, WE HAVE TO FIND C'(x). & 5 =7 Ry=2x

W

PLUGGING THIS INTO (1) GIVES
3x% = 4,50 £ (x) = O WHEN

E
V3
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NOW APPLY THE SECOND-DERIVATIVE TEST BY FINDING THE SI6N OF C”. FROM (4),
(6) CII = eyll

3), USING T
WHILE FROM (3), USING THE SAY... IF 3x* = 4 AT THE

QUOTIENT RULE, CRITICAL POINT, COULDN'T
. y-xy x BE A NEGATIVE rROOT?

7 x=-2/¢i? =

SUBSTITUTING y” = x/y (AGAIN FROM (%)),

'd
NO. WHEN £’ = 0,
x = y/2, AND y 15
ALWAYS POSITIVE.

y = 2= = = 50 FrOM (6)

2
32 > O BECAVSE y >0.

C” yg

W

THE SECOND DERIVATIVE C” 15 ALWAYS
POSITIVE, 50 OUR SOLUTION REALLY
15 A MINIMUM.

AND WHAT 15 THE MINIMUM CO5T? WE MAY AS WELL EXPRESS £ ENTIRELY IN TERMS OF X,
BY SUBSTITUTING y = Vx%+ 4 IN (2):

C(x) =3%6-4x + BV x% + 4

AT THE CRITICAL POINT x = 2/V3, THEN,

C(L)=36—4(L)+6 4,4 7
'E) 'E) 3 § 5% -
<
= 49.86... § 52 -
£ 5-
50 THE TOTAL ¢O5T WILL BE $49,860. v
N 50
x | C(x), THOUSANDS 49 - ~
OF DOLLARS 1 2 3 4
X, KILOMETERS
o) 52
' 49.90 NOTE: THE FACT THAT
N3 49.86 C’(x) > O FOR ALL X
2 50.62 5AY5 THAT THE GRAPH OF
: C 15 ALWAYS CONCAVE
3 52.84 UP. IT HAS NO INFLECTION
POINTS.
9 73.76
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Major Caution:

THE SECOND DERIVATIVE TEST 15 A WONDERFUL THING WHEN IT WORKS, BUT IT DOESN'T
ALWAYS WORK! WHAT HAPPENS AT A CRITICAL POINT a WHERE f“(a) = O? IN THAT CASE, THE
SECOND DERIVATIVE TEST FAILS; IT PROVIDES NO INFORMATION ABOUT WHETHER THE POINT
a 15 EXTREME OR NOT. TWO EXAMPLES SHOW WHAT CAN HAPPEN.

Example 5: 2

THE POWER FUNCTION

f(x) = x* 15 AN .
INCREASING FUNCTION

WITHOUT ANY LOCAL

MAXIMUM OR MINIMUM 5 ]
POINTS. ITS FIRST AND y=x
SECOND DERIVATIVES

ARE

F(x) = 3x* AND F7(x) = bx, 7
50 WHEN x = O,

f(O) = f(0) =0

THIS 15 AN EXAMPLE OF A “5TOP
SIGN” AS ON P. 128: THE DERIV-
ATIVE 15 POSITIVE WHEN x < O,
HITS ZERO MOMENTARILY...

AND THEN BECOMES POSITIVE AGAIN
WHEN x > O.

Example 62 ON THE OTHER HAND, g(x) = x* DOES SOMETHING DIFFERENT
AT x = O. THE FIRST TWO DERIVATIVES ARE g'(x) = 4x> AND g”(x) = 12x% AGAIN
9’(0) = g”(0) = O, BUT HERE THE POINT X = O 15 CLEARLY A MINIMUM.

g'C0) = 4x°

9”0x) = 12x* 97(0) = 0

g’(0) = 0

SOMETIMES YOU JUST HAVE TO
LOOK AT THE FUNCTION ITSELF.
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THE SECOND DERIVATIVE 15 600D FOR MORE THAN JUST TESTING FOR MAXIMA: IT TELLS YOU
SOMETHING ABOUT THE SHAPE OF A FUNCTION'S GRAPH.

IN A GROWING ECONOMY, FOR
INSTANCE, A NEGATIVE SECOND
DERIVATIVE (OF TOTAL
PROPUCTION, $AY) WOULD
MEAN THAT THE BOOM 15
LEVELING OFF AND COULD BE
ABOUT TO TOP OUT...

LIKEWISE, A POSITIVE f” DURING A SLUMP NOT NECES%ARILY, THOUGH!
MIGHT BE A 516N THAT THE WORST 15 OVER,
AND THAT THINGS WILL SOON TURN AROUNPD.

AND ONE OTHER THING: THE
DERIVATIVE TESTS HELP LOCATE
LOCAL EXTREME POINTS, BUT
SOMETIMES WE WANT TO KNOW
THE “6LOBAL” OR OVERALL
MAXIMUM OR MINIMUM OF A
FUNCTION. IF f |15 DEFINED ON
A CLOSED INTERVAL [a, b],
THE MOST EXTREME VALUE OF f
MAY OCCUR AT ONE OF THE
ENDPOINTS. YOU HAVE TO
COMPARE THE VALUES f(a) AND
f(b) WITH THE VALUE OF f AT
THE LOCAL HIGHS OR LOWS.

et i R LR ey e

s e e e

:_‘......l_......'J. '...._.-

'

HERE THE GLOBAL MAXIMUM 15 AT THE INTERIOR
POINT ¢, AND THE 6LOBAL MINIMUM OCCURS AT
THE ENDPOINT b.
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Problems

1. FIND ALL LOCAL EXTREME POINTS OF THESE FUNCTIONS. IDENTIFY WHICH ARE MAXIMA AND WHICH

ARE MINIMA, AND DRAW GRAPHS.

a fx) = x*+x-1 e. F(©)
b.g(x) = x* - 3x + 8 f. A(x)
c.ht) = 2t>-3t2-326t -1 g. QG0

d. 5(x) = sin?x

"

"

=

cos O + sin 6 2. WHAT 15 THE

r} TENTH DERIVATIVE OF
V4 - x f(x) = sin x?
xln x WHAT 15 THE 110TH?

h. st) = etcost

3. SHOW THAT OF ALL RECTANGLES WITH PERIMETER P, THE ONE ENCLOSING THE LARGEST AREA 15

A SQUARE OF $IDE P/4.

4. A CATAPULT FLINGS A COW INTO THE AIR AT
AN ANGLE 6@ WITH THE 6ROUND WITH AN INITIAL

VELOCITY . THIS VELOCITY HAS A HORIZONTAL
COMPONENT v,c0s 6 AND A VERTICAL
COMPONENT v,,sin 6.

v,5in 6
° e

Yycos @
THE COW’'S HEIGHT ABOVE THE GROUND AT
TIME t 15 GIVEN BY
h(t) = -4.9t% + (v,sinO)t

a. FIND THE TIME T WHEN THE COW REACHES
MAXIMUM HEIGHT. (THIS WILL DEPEND ON 6.)

THE HORIZONTAL PISTANCE TRAVELED DURING
THAT TIME WILL BE D(6) = (vyc0s 6)T, AND
THE TOTAL DISTANCE TRAVELED WHEN THE COW
HITS THE EARTH WILL BE TWICE THAT, OR

P©) = (2vyc0s0)T

b. FIND THE ANGLE © THAT MAXIMIZES D.
(VON'T FORGET THAT T 15 A FUNCTION OF 61)
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5. THE PAVE-ALL COMPANY WANTS TO BUILD
A ROAD FROM A POINT ON A CIRCULAR POND
TO THE POINT DIAMETRICALLY OPPOSITE, 2
KM AWAY. IT CO5T% $5 PER METER TO BUILD
OVER WATER AND $4 PER METER ON DRY
LAND. DESCRIBE THE FINAL ROUTE.

HINT: THE DISTANCE D FROM THE TURNING
POINT P TO THE DESTINATION SATISFIES

P? = (cos O + 1)? + sin’@

6. TWO CONSTRUCTION WORKERS ARE CARRY-
ING A PIECE OF WALLBOARD DOWN A HALL
WITH A RIGHT-ANGLE TURN. THE HALL 15

2 METERS WIDE IN ONE DIRECTION AND

4 METERS WIDE IN
THE OTHER. FIND
THE LENGTH OF THE
LONGEST PIECE OF
WALLBOARD THAT
(AN MAKE THE TURN.
(HINT: FIND THE
SHORTEST PIECE
THAT JUST FITS.
ANYTHING SHORTER
WILL WORK.)




Chapter 6
Acting Locally

IN WHICH WE FOLLOW A LINE

NOW LET’S SHIFT OUR PERSPECTIVE SLIGHTLY. INSTEAD OF WATCHING THE DERIVATIVE ROAM
AROUND TS DOMAIN, LET’'S CONFINE OUR ATTENTION TO A SINGLE POINT. YOU MAY BE
SURPRISED AT HOW MUCH WE’LL FIND THERE...

ON PAGE 112 WE DESCRIBED SMALL CHANGES AND I WANT TO WIN BAR
OF A FUNCTION f AROUND A POINT a BY DO THIS WHY? BETS?
SOMETHING T ¢ALLED THE FUNDAMENTAL

EQUATION OF ¢ALCULUS:
fa+h) - fa) = hf(a) + FLEA

THIS EQUATION %AYS THAT THE DISCREPANCY
BETWEEN f(a + h) - f(a), OR Af, ON THE
ONE HAND, AND hf'(a) ON THE OTHER 15
SMALL COMPARED WITH h. THIS MAKES IT EASY
TO CALCULATE APPROXIMATE VALUES OF f.
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IN MATH, SOMETIMES A LITTLE CHANGE
OF NOTATION (AN MASSIVELY SHIFT
YOUR ENTIRE PERSPECTIVE...

THAT’S WHAT T'VE |
ALWAYS SAID!

LET'S WRITE X =a+h, %0 h = x - a.
THEN THE FUNDAMENTAL EQUATION BECOMES

f(x) - f(a) = f(a)(x - a) + FLEA
OR

f(x) = f@a) + f(a)(x - a) + FLEA

THAT 15 ONE WAY, THEN, OF DESCRIBING THE
ORIGINAL FUNCTION f NEAR a. NOW SUBTRACT
THE FLEA TO GET A SIMPLER FUNCTION.

P = (a, f(a))

T.(x) = f@a) + f(@)(x - a)

ITS GRAPH 15 A STRAIGHT LINE-THE
ONE AND ONLY STRAIGHT LINE, IN FACT,
PASSING THROUGH a AND HAVING
SLOPE f'(a).

y = fa + f(a)(x - a)
SLOPE = f'(a)
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THIS LINE, THE TANGENT LINE TO THE GRAPH y = f(x) AT a, TOUCHES THE CURVE

AT THE POINT P = (a, f(a)) AND HAS SLOP

E EQUAL TO THE PERIVATIVE OF f THERE.

IT 15 A STRAIGHT-LINE FUNCTION WITH THE SAME VALUE AND DERIVATIVE AS f AT a.

AND T, DIFFERS FROM f BY A
FLEA—WHICH MEANS, YOU RECALL,
THAT NOT ONLY POES

lim (T,(0) - £x)) = 0

BUT ALSO

lim

(T,(x) - f(x)) = O

X—a (x - a)

/f(x)

A

\

- f(a) = T,(a)

THAT 15, NEAR THE POINT a,
THE DIFFERENCE BETWEEN
T.(x) AND f(x) 15 SMALL

EVEN COMPARED TO x - a.

WE (AN EXPRESS THIS BY SAYING THE CLOSER WE ZOOM IN ON THE POINT P, THE

MORE THE 6RAPH y = f(x) LOOKS LIKE

A STRAIGHT LINE.

THINK OF THE POINT X AS LYING AT THE
EDGE OF THE GRAY RECTANGLE, AND a IN
THE CENTER. NOW ZOOM IN CLOSER...

THE G6RAY RECTANGLE’S SIDE 15 2(x - a), AND
THE DISTANCE BETWEEN CURVE AND LINE MUST
SHRINK TO INSIGNIFICANCE BY COMPARISON.

y = fa) + Fla)(x - a)

y = £(x)
Yy = fla + fla)x - a)
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ANOTHER WAY OF SAYING THE TEN BUCKS SAYS
SAME THING: FOR x NEAR a, THAT THE SQUARE

; ROOT OF 70 15
THE NUMBER f(a) + f(a)(x - a) @375 10 WITHIN
15 A 600D APPROXIMATION ONE PART IN A

FOR £(x). THIS GIVES U5 A WAY THOUSAND !!

TO (ALCULATE APPROXIMATE
VALUES FOR FUNCTIONS.

Examples: Ler £ =Vx awa =1,
WE (AN APPROXIMATE SQUARE ROOTS OF NUM-

BERS NEAR 1, BECAUSE WE KNOW f(a) AND f(a).

£C1) = V1 =1, OF COURSE, AND

FOO = 0 ()= 3

2Vx

IF X 15 NEAR 1, THEN,

FOO = FD + FMDx-1D =1+ 3x-1
FOR INSTANCE:
Viz =1+ ®a3-0 =115

THE ACTUAL VALUE 15 1.1402... 50 THE
APPROXIMATION 15 ACCURATE TO WITHIN
BETTER THAN ONE PART IN A HUNDRED.

SIMILARLY, WE CAN APPROXIMATE THE NATURAL
LOGARITHM ln x FOR x NEAR e:

f(x) = lnx, fle) =

1,
1
e

’ - 1 ’, -
f(X)-;, fle) = —, %0
n3 =1+ 222

e
0.282
= 1+
2.718
< 10104000

THE ACTUAL VALUE 15
1.0986... 50 THE AP-
PROXIMATION 15 600V
TO ROUGHLY FIVE PARTS
IN 1000—NOT BAD!
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A DIFFERENTIABLE FUNCTION’S GRAPH “FLATTENS OUT” WHEN YOU ZOOM IN... 50 ANY FUNC-
TION WHOSE GRAPH DOES NOT FLATTEN NEAR A POINT a MUST NOT HAVE A DERIVATIVE AT a!

CAREFUL,
THERE...

THE ABSOLUTE VALUE FUNCTION g(x) = |x| 15 AN EXAMPLE. AT a=0, g HAS NO DERIVATIVE:
ITS GRAPH TURNS A SHARP CORNER, AND NO AMOUNT OF MAGNIFICATION WILL MAKE IT LOOK

LIKE ANYTHING OTHER THAN A SHARP CORNER. THE DIFFERENCE QUOTIENTS CAN'T APPROACH
A LIMIT AT O.

. Al { -1 WHEN h<O
lim — =
h 1 WHEN h>0

NO WELL-DEFINED

/ SLOPE AT THIS POINT
j | |

!
i i i {

LIKEWISE, ANY FUNCTION WHOSE GRAPH
HAS CORNERS OR CUSPS CAN HAVE NO [

DERIVATIVE AT THOSE POINTS.

WE’LL MOSTLY
AVOID THESE!

NOW BACK TO STRAIGHT LINES...
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HERE'S SOMETHING ABOUT LINES YOU MAY NEVER HAVE NOTICED: SUPPOSE TWO NON-VERTICAL
STRAIGHT LINES, y = L1(x) AND y = L,(x) CRO%5 ON THE x-AXI$ AT A POINT a. IF THE TWO
SLOPES ARE m AND p, THEN THE LINES HAVE THESE EQUATIONS:

y = Lix) = mx-a)
y =L, = plx-a) SLOPE m
ASSUME p # O. THEN WHEN x # a, B U LG

SLOPE p s\ e one-

Ly(x) _ m(x - a) _m :

L0 p(x -a) P x
ALTHOUGH THE FUNCTIONS L, AND L, Loo  m .
APPROACH O, THEIR RATIO 15 ALWAYS ! -
THE RATIO OF THE $LOPES. Lo p

AS FOR LINES,
W, | 50 FOR SMOOTH
CURVES—IN THE

LIMIT!

L'Hopital's Rule:

IF f(a) = g(a) =0, THEN

lim LAS2 = @ PROVIDED g'(a)+0O
x=a g(x) g9'(a)

IN THE LIMIT, THE RATIO OF THE
VALUES 15 GIVEN BY THE RATIO OF
THE DERIVATIVES —BECAUSE NEAR a,
BOTH CURVES BECOME INDISTINGUISH-
ABLE FROM STRAIGHT LINES WITH .
5LOPE £'(@) AND g'(a), RESPECTIVELY. 5LOPE = f'(a)

g(x) g'(@ 5LOPE=g'(a)

150




e* -1
1]

Example: ro lm

n2x

FIRST NOTE THAT
BOTH NUMERATOR
AND DENOMINATOR
ARE O WHEN x=0.

LIKE TOTALLY
IMPORTANT!

50 WE CAN APPLY L'HOPITAL:

d e*

_ = e* 0 _
o N=e" e =1

j—x(sin 2x) = 2cos x 2cos(0) = 2

AND THE LIMIT 15

eo 1

-
=

2co0s(0) 2

WHAT HAPPENS IF f(a), g(a), f(a), AND g'(a) ARE ALL ZERO? THEN WE 60 TO THE
SECOND DERIVATIVE, AND IF f7(a) = g”(a) = O, THEN WE 60 TO THE THIRD, ETC.! THIS

MORE GENERAL FORM OF L'MOPITAL'S RULE 5AYS:

IF £(@) = g(@ = 0, A lim T2 gxis7s, THEN

x—a g (x)
. F( F )
lim 2% = im 222
x—a g(x) x—a g(x)

2x
" . @7-1-3X  RCMEMBER: TO APPLY L'HOPITAL'S RULE, WE MUST
Example. FIND Lim, 1-cos x  CHECK THAT NUMERATOR AND DENOMINATOR ARE BOTH

ZERO AT THE LIMIT POINT! CALL THE NUMERATOR f AND
THE DENOMINATOR g. WE SEE THAT £(0) = g(0) = O.

UNFORTUNATELY THEIR DERIVATIVES ARE NO PROBLEM! WE LOOK AT THE SECOND
ALSO BOTH ZERO AT x=0. DERIVATIVES:
Fo) =3e™-3  £(0)=0 F00 = 9¢™  £7(0) = 9
9’(x) = sinx 9(0)=0 g"(x) = cosx g”(0) =1
AND CONCLUPE
. TERRIBLY, .
oy » 2
£ | Texmisiy m £ 173% £
SAD... 0 1 -cosx =0 g'(x)
L@ 9 g
97(0) 1
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CAVZE 11 2

50 SICK!

NAMED AFTER A L’HBPITAL'S RULE ALSO WORKS FOR LIMITS
FRENCH HOSPITAL?

AT INFINITY, INCLUDING INFINITE LIMITS:

IF Lg{r}o fx) = L‘Jl‘o g(x) = oo, OR
,lcggo fx) = ,lﬂc’,‘o g(x) = O, THEN

. f(x) . F(x)
lim — = lim —=

X~ g(x) x= g'(x)

IF THE LATTER LIMIT EXISTS.

WHERE YOU
GOING?

MY HEAD HURTS. TM
CHECKING IN TO THE
HOSPITAL AT INFINITY...

Example at infinity:

FIND
[
lim 2>~ ,p>0
X2 In x

BOTH NUMERATOR AND DENOMINATOR 60 TO
INFINITY AS x— 00. TO APPLY L'HOPITAL WE
TAKE THE DERIVATIVE OF EACH FUNCTION:

A pyo pip!t 4 =1
dx(x)-px dx(ln x)—x %0
P xP!
limx—=limp = lim pxP = 0O _.cf
X—00 Iﬂ X X—00 1 X—00
x

THIS SAYS THAT In x 6OES TO INFINITY SLOWER THAN ANY POSITIVE POWER FUNCTION. x?
BECOMES INFINITELY GREATER THAN In x AS x— co. THE LOGARITHM 15 A VERY $LOW GROWER!

NOTE THAT YOU PON'T $EE IT IN THIS
GRAPH, WHERE X 15 SMALL... BUT FOR
LARGER x, In x REALLY STRUGGLES TO

<

"

X
wl=

6ET OFF THE GROUND!
1
X In x PE y=ln x
2° = 220,026 10 2802
e ~ 3,249,017 15 1483 ) ‘

e = 485,000,000 20 785.2

N,
N e\

152



IT’S TAKING
FOREVER TO
GET THERE...

qs ‘%
1
s

YES... BUT
LOOK HOW FAR
WE'VE COME!

THE LAST SIX CHAPTERS HAVE EXPLORED THE FIRST BIG6 TOPIC OF CALCULVS, THE DERIVATIVE.
BEFORE GOING ON TO TOPIC 2, THE INTEGRAL, LET’S REVIEW WHAT USES WE'VE FOUND FOR
NEWTON AND LEIBNIZ'S GREAT INVENTION, A FUNCTION’S INSTANTANEOUS RATE OF CHANGE.

Related Rates

VSING ONE FUNCTION’S DERIVATIVE TO
FIND THE CHANGE IN ANOTHER, RELATED
FUNCTION.

- 4.3
V-—31Tr'
V' = 4mrer’

Optimization

FINDING A FUNCTION’S HIGHS AND LOWS,
POINTS OF INTEREST IN MANY REAL-WORLD
PROBLEMS.

Approximation

VSING THE TANGENT LINE AT A POINT TO
CALCULATE EASILY, WITHIN A “FLEA,” A
FUNCTION'S ACTUAL VALUE AT

NEARBY POINTS.

15%

Comparison of Functions
USING LHOPITAL'S RULE TO COMPARE
FUNCTIONS “AT INFINITY,” OR NEAR POINTS
WHERE BOTH FUNCTIONS ARE ZERO.




Problems
1. sTIMATE V5 BY USING THE APPROXIMATION

Fx) = f(4) + F D (x -4

2. ESTIMATE V67 . (HINT: USE A NEARBY
PERFECT SQUARE.) COMPARE YOUR ESTIMATE
WITH THE VALUE OBTAINED FROM A CALCULATOR.

2. ESTIMATE sin 3.

4. ESTIMATE arctan (1.1). (REMEMBER
THAT arctan 1 = w/4.)

USE LHOPITAL'S RULE, IF APPROPRIATE, TO EVALUATE THESE LIMITS. (REMEMBER TO CHECK
THE LIMITS OF NUMERATOR AND DENOMINATOR FIRST! THERE MAY BE SOME HERE WHERE
L’HOPITAL DOES NOT APPLY...)

. 2 . 2
5. lim sin(x®) 9, }‘% bsin x 6x2+ X
*=0 cos x - 1 2cosx +x" -2
. X 1
6. lim - 10. lim x*  HINT: TAKE THE LOGARITHM.
*=0 sin 2x x-~00
-8x% _ . Ilnx
7 lim £— ! n. L‘m, <
*~0 cos2x - 1 -
8. lim x -1 12. lim Smx
e P 1 x=7 cos x - 1

13a. GIVEN A POLYNOMIAL P(x) = a, + ayx + a;x* + ... + a,x", SHOW THAT
P(0) = a;, P"(0) = 2a,, AND P™(0) = m!a, FOR ALL m < n.

12b. IF f 15 ANY FUNCTION DIFFERENTIABLE AT a, SHOW THAT THE POLYNOMIAL

. (m) (n)
f ('o)x2 g O om L ©

P,(x) = f(O) + F(O)x +
m! n!

xﬂ

HAS P(0) = £(O) AND P™(0) = f™(0) FOR m = 1, 2, ..., n. THE POLYNOMIAL P,
15 ¢CALLED THE nTH TAYLOR POLYNOMIAL OF f AT x = O.

12¢. WRITE AN BTH-DEGREE POLYNOMIAL HAVING THE SAME VALUE AND FIRST
EIGHT DERIVATIVES AS cos x AT x = 0.
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Chapter 7
The Mean Value Theorem

SOME FINAL, FRENZIED, FEORETICAL FOUGHTS

(WHICH YOU MAY SKIP IF ALL YOU CARE ABOUT 15 HOW TO USE
CALCULVS, AND HAVE NO APPRECIATION OF ITS DEEP, BEAUTIFUL,
AND ELEGANT FOUNDATIONS—SEE IF T CARE!)

—_—

IF YOU'RE AN O.C.D. BURIED IN OUR DISCUSSION OF MAXIMA AND MINIMA WAS A HIDDEN

Qémkm‘;% ';4";5 ASSUMPTION: WE ASSUMED THAT MAXIMA AND MINIMA MUST EXIST.
BC A TAD ANTSY BUT DO THEY HAVE TO? WHY CAN'T A FUNCTION $IMPLY APPROACH
RIGHT NOW... A HIGH POINT WITHOUT EVER GETTING THERE, OR ELSE ZOOM OFF TO
v INFINITY IN THE MIDDLE OF AN INTERVAL?

HIDPEN
ASSUMPTIONS
WORRY ME 40!

IN FACT, SOME FUNCTIONS CAN ACT
THAT WAY. HERE’S ONE:

1
|x - 2|

f(x) WHEN x = 2

W

"

f(2) =1

THAT’S A PERFECTLY FINE
FUNCTION, JUST BADLY BEHAVED! ;
IT GOES TO INFINITY AS x— 2 g °
BUT JUMPS DOWN TO A FINITE i

VALUE AT x = 2. f HAS NO
MAXIMUM ON ANY INTERVAL
CONTAINING x = 2.
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THE PROBLEM WITH THAT FUNCTION (5 THE ISOLATED POINT (2, 1) ON ITS GRAPH... THE
FUNCTION DOESN'T APPROACH THAT POINT, IT JUsST JUMPS THERE, 90 TO SPEAK... 50 LET’S
LOOK AT FUNCTIONS WITHOUT ANY JUMPS... FUNCTIONS WHOSE GRAPH ¢AN BE DRAWN WITHOUT
LIFTING PENCIL FROM PAPER. SUCH “UNJUMPY” FUNCTIONS ARE CALLED CONTINUOUS.

JUMPY

IN MATH-SPEAK, WE SAY f 15
CONTINUOUS AT A POINT a IF

IN OTHER
WORDS, f
“6ETS WHERE
IT'S GOING.”

f(a) = }gg F(x)

f 15 5AID TO BE CONTINUOUS
ON AN INTERVAL [c, d] IF

THE FUNCTION 15 CONTINUOUS
AT EVERY POINT IN [c, d].

ALL DIFFERENTIABLE FUNCTIONS ARE CONTINUOUS, BUT NOT VICE VERSA. IF f 15
DIFFERENTIABLE AT a, THEN WE KNOW £(x) - f(a) = f(@)(x - a) + FLEA, 50
lim (£(x) - f(@)) = O OR lim £(x) = f(a). ON THE OTHER HAND, A CONTINUOUS
FUNCTION MAY HAVE SHARP CORNERS WHERE IT 15 NOT DIFFERENTIABLE.

CONTINUOVS DOES NOT
IMPLY DIFFERENTIABLE.

N\ /
\/

BUT

/N
\_/ DIFFERENTIABLE

IMPLIES CONTINVOUS
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CONTINUOUS FUNCTIONS DO WHAT WE WANT:

Extreme Value Theorem:
A CONTINUOUS FUNCTION f

DEFINED ON A CLOSED INTERVAL

[c, d] ATTAINS A MAXIMUM

VALUE M ON THE INTERVAL: I.E.,

THERE 15 A POINT a IN [c, d]

WHERE f(a) = M AND fF(x) < M

FOR ALL OTHER x IN [c, d]. ‘

c a d c a=d

(NOTE THAT THIS ALSO IMPLIES THE
EXISTENCE OF A MINIMUM, BECAUSE
—F MUST HAVE A MAXIMUMD COULD BE IN THE INTERIOR OR AT ONE OF THE END5!

WE MUST OMIT THE PROOF, WHICH RELIES ON DEEP AND SUBTLE PROPERTIES OF THE REAL

NUMBERS.
'\ &l N HOW CAN $OME-

THING 50 ONE-
DIMENSIONAL BE
50 DEEP?

THE EXTREME VALUE THEOREM HAS
THIS CONSEQUENCE FOR CALCULVS:

Rolle’s Theorem: i 7 is continvous on A cLosep INTERVAL [c, d] AND

DIFFERENTIABLE ON (c, d), AND f(c) = f(d) = O, THEN THERE 15 AT LEAST ONE POINT a
IN THE OPEN INTERVAL (¢, d) WHERE f'(a) = O.

PROOF: IF f 15 THE CONSTANT FUNCTION
f = O, THEN THE RESULT 15 TRIVIAL: ANY
POINT BETWEEN ¢ AND d WILL DO.

IF £ 15 NOT CONSTANT, THEN IT HAS NON-

ZERO VALUES. THEREFORE, IT ATTAINS EITHER ‘ i d
A MAXIMUM M >0 OR A MINIMUM m < O AT c a
SOME POINT a, BY THE EXTREME VALUE

THEOREM. a 15 NOT ONE OF THE ENDPOINTS
BECAUSE £(c) = f(d) = O, 50 f'(a) = O.
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ROLLE, IN TURN, IMPLIES THIS SURPRISING, IMPORTANT, SKEWED VERSION:

Mean Value Theorem: i 7 s conTinuous oN A cLOSED INTERVAL

[c, d] AND DIFFERENTIABLE ON THE OPEN INTERVAL (c, d), THEN THERE 15 AN
INTERIOR POINT a IN (c, d) WHERE

f(d) - f(c)

Fl@ = —— =2
e /
THAT 15, THERE MUST BE AT LEAST

ONE INTERIOR POINT WHERE THE
TANGENT LINE PARALLELS THE
CHORD JOINING THE GRAPH'S
ENDPOINTS.

o
Qe
Q

NOTE THAT ALL THREE OF PROOF OF MEAN VALUE THEOREM: GIVEN f AS
THESE THEOREMS MERELY DESCRIBED, DEFINE A NEW FUNCTION g BY

ALLEGE EXISTENCE. THEY SUBTRACTING THE CHORD FROM f:
PROVE THAT THERE ARE /

POINTS WITH THE REQUIRED £(d) - £(0)
PROPERTIES—WITHOUT gx) = f(x) - —————(x-¢) - f(c)
OFFERING ANY WAY OF d-c

FINDING THOSE POINTS!
THE PROOF5 ARE NOT
“CONSTRUCTIVE.”

LIKE SOME
MATHEMATICIANS

é a \-/y=g(x)

g SATISFIES THE HYPOTHESIS OF ROLLE’S THEOREM:
g(c) = g(d) = O. THEREFORE, THERE 15 AN
INTERIOR POINT a WHERE g'(a) = O. BUT

f(d) - f(c)
d-c

SINCE g'(@) =0, IT FOLLOWS THAT

g(x) = f(x) -

f(d) - f(e)
d-c

fla) =
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THE MEAN VALUE THEOREM HAS POWERFUL CONSEQUENCES:

ASSUME THE FUNCTION f 15 CONTINUOUS ON
A CLOSED INTERVAL [c, d] AND DIFFEREN-
TIABLE ON THE OPEN INTERVAL (c, d).

PO YOU EVER $EE
FUNCTIONS THAT
AREN'T LIKE THAT?

1. A POSITIVE DERIVATIVE IMPLIES A
STRICTLY INCREASING FUNCTION:
SUPPOSE F'(x) > O (STRICTLY!) FOR
EVERY x IN AN INTERVAL (c,d). THEN f
15 STRICTLY INCREASING ON THE INTERVAL.

PROOF: TAKE ANY TWO POINTS a < b
IN THE INTERVAL. BY THE MEAN VALUE
THEOREM, THERE 15 A POINT X, BETWEEN
a AND b SUCH THAT

f(b) - f(a)

/( =
f(xp) T

WE ASSUMED THAT f'(xp) > O, 50
f(b) - f(a) > O, I.E., f 15 STRICTLY
INCREASING.

IF A

FUNCTION
ALWAYS
TRENDS
UPWARD,

HOW (AN IT

EVER GET

SMALLER?
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Q2. ONLY CONSTANT FUNCTIONS HAVE
A CONSTANT ZERO DERIVATIVE: IF
f(x) = O FOR EVERY X IN AN INTERVAL
(c, d), THEN f 15 CONSTANT ON THE
INTERVAL.

PROOF: TAKE ANY TWO POINTS a < b IN
THE INTERVAL. THE MEAN VALUE THEOREM
SAYS THAT THERE 15 A POINT X, SUCH THAT

b) -
Flxy) = fb) - f(a)
b-a
BUT £'(x,) 15 ASSUMED TO BE ZERO,
50 f(a) = f(b) AND THE FUNCTION 15
CONSTANT.

FROM WHICH
FOLLOWS THE
MAJOR TAKE-
AWAY OF THIS
CHAPTER:

3. COROLLARY: IF £ AND g ARE ANY
TWO FUNCTIONS WITH f* = g°, THEN

f AND g DIFFER BY A CONSTANT. THIS

FOLLOWS FROM THE PREVIOUS RESULT,
APPLIED TO THE FUNCTION f - g.

AND NOW,
ON TO THE
INTEGRAL!



Problems

FOR EACH FUNCTION f, FIND THE SLOPE m = (f(b) - f(a))/(b - a) OF THE SECANT LINE
JOINING THE ENDPOINTS OF THE GRAPH ON THE GIVEN INTERVAL. THEN FIND ALL POINTS ¢
ON THE INTERVAL WHERE f(c) = m. USE A CALCULATOR WHEN NECESSARY.

1L.f(x) = x>+ 2x+3% ON [0, 2] 4. f(x) = cos x ON [0, 3m]

2. f(x) = e* ON [-1, 3] 5 f(x) = 2x* - x* oON [-50, 50]
_ 4+ x 6. f(x) = tan x ON [-a, a],

=g N Lo, 2] FOR ANY a WITH a < O < /2

NOTE THAT ROLLE’S THEOREM IMPLIES THAT IF THE DERIVATIVE £(x) OF A CONTINUOUS,
DIFFERENTIABLE FUNCTION f 15 NEVER ZERO ON AN INTERVAL, THEN THERE ¢(ANNOT BE
TWO POINTS a AND b IN THE INTERVAL WHERE f(a) = f(b).

7. 5HOW THAT THE EQUATION y = 3x - sin x + 7 HAS
AT MOST ONE ROOT. POES IT HAVE ANY ROOTS? WHY OR
WHY NOT??

Ba. SHOW THAT A POLYNOMIAL P(x) = x* + bx + ¢
OF DEGREE TWO HAS AT MOST TWO ROOTS.

8b. SHOW THAT A POLYNOMIAL OF DEGREE % HAS AT
MOST THREE ROOTS.

B8c. SHOW THAT A POLYNOMIAL OF DEGREE n HAS AT
MOST n ROOT%.

9. A RACECAR DRIVER 15 AT MILE 20. IF HER SPEED NEVER EXCEEDS 150 MI/HR, WHAT 15
THE MAXIMUM MILEPOST SHE CAN REACH IN THE NEXT TWO HOURS?

10. A FUNCTION f, CONTINUOUS ON AN INTERVAL [a, b AND DIFFERENTIABLE ON (a, b),
HAS F(a) = 2. IF f(x) < 7 FOR EVERY x IN (a, b), WHAT 15 THE LARGEST VALUE f(x)
CAN PO%5(BLY ATTAIN ON THE INTERVAL? (HINT: COMPARE WITH PROBLEM 9.)

11 LET £(x) = (x - 2)7%. SHOW THAT THERE I5 NO VALUE OF ¢ IN THE INTERVAL (1, 3)
SUCH THAT £(32) - £F(1) = £(c)(3 - 1). WHY DOES THIS NOT VIOLATE THE MEAN VALUE
THEOREM?

12. SUPPOSE f AND g SATISFY THE 13. SHOW THAT ANY FUNCTION WHOSE DERIVATIVE 15
HYPOTHESES OF THE MEAN VALUE ITSELF MUST HAVE THE FORM f(x) = Ce* FOR
THEOREM ON THE INTERVAL [a, b]’ SOME CONSTANT C. (HINT: SUPPOSE f'(x) = f(x),
AND THAT £(a) = g(a). SHOW THAT IF PIFFERENTIATE THE FUNCTION

F() > g'(x) FOR EVERY X IN (a, b), g0 = £

)
ex

AND APPLY COROLLARY 2.)

THEN £(b) > g(b).
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Chapter 8

Introducing Integration

PUTTING TWO AND TWO AND TWO AND TWO TOGETHER

CALCULUﬁ. A5 WE'VE SEEN, SLICES QUANTITIES INTO SMALL SLIVERS, MINUTE MOUSY THINGS WITH

NAMES LIKE h, Ax, Ay, At, AND AF. IF P 15 A PIE, THEN AP 15 A THIN 5LICE OF PIE.

MAN! EDGEWISE,
YOU (AN HARDLY
SEE IT...

UP TO NOW, WE HAVE LOOKED AT WHAT HAPPENS WHEN WE DIVIDE ONE OF THESE THINGS
BY ANOTHER TO MAKE RATIOS LIKE Af/h... BUT NOW WE WANT TO DO SOMETHING ELSE
WITH OUR NUMBER-CRUMBS: ADD THEM TOGETHER.

WELL, HOW MAN
PIECES PO YOU
WANT?

ADDITION 15 EASIER
THAN MULTIPLICATION...
THAT’S WHY WE LEARN
IT FIRST IN SCHOOL...
AND IN FACT, MATHEMA-
TICIANS USED SUMMING-
UP PROCESSES FOR
THOUSANDS OF YEARS
BEFORE NEWTON AND
LEIBNIZ INVENTED THE
DERIVATIVE.

W

HAVE YOV
CONSIDERED
CUTTING IT
CROSS5WISE?




THERE 15 STANDARD NOTATION FOR
SUMMING MANY ITEMS. IT USES A
CAPITAL Sl6MA, THE GREEK LETTER 5,
STANDING FOR “SUM.”

IF WE HAVE A SEQUENCE OF n NUMBERS

a,, a,, dz, .. 4;, ... 4,

a; (‘AE-EYE™) 15 CALLED THE iTH
TERM OF THE SEQUENCE, AND THE
5UM OF ALL TERMS 15 WRITTEN

n

>

i=1

READ “THE SUM, AS i 6OES FROM 1 TO
n, OF a;.” THE LETTER i 15 CALLED THE
INDEX OF THE SEQUENCE.

THE SUM OF THE CONSECUTIVE TERMS
FROM a, TO a,, INCLUSIVE, 15

E a; = A, + Apyy + ... + 4,

PON'T
WORRY... IT'S
NEVER BITTEN
ANYONE...

QN q

FOR EXAMPLE, CONSIDER THE FIVE-TERM
SEQUENCE {2, 4, 8,16,32}. HERE a; = 2
AND n = 5.

i a;
1 2
2 4
3 8
4 16
5 | %2
IN THIS CASE,
5

+4+8+16+32 =62

2
"
()

+ 8 +16 = 28

2
"
KN

& O.K.... T THINK IT’S
UNDER CONTROL...




IF WE WERE TO DIVIDE A PIE P INTO n
(POS5IBLY UNEQUAL) SLICES, CALLED AP,
AP,, AP; ..., AP,, THEN THE WHOLE PIE
WOULD BE THE SUM:

P = i AP;
i=1

THEN, AS WE LIKE TO PO IN CALCULDS,
WE SHRINK THE SIZE OF THESE SLICES
(TO AN INFINITESIMAL dP, AS LEIBNIZ
LIKED TO SAY). AT THAT POINT WE'LL
WRITE THE THING WITH A DIFFERENT
SORT OF “4,” A STRETCHED ONE
CALLED AN INTEGRAL S\6N.

P

dP

"

BECAVSE IT'S
TO A S5UM...

O.K.... THAT’S OUR NOTATION... IT'S ALL
JUST ADDING FROM HERE ON OUT...

THAT SYMBOL'S
S50RTA SSIMILAR | A\OTHER ONE
OF MINE, BY
THE WAY.
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A good
question:

NOW YOU MIGHT WONDER, IF ADDING 15
SIMPLER THAN DIVIDING, AND THE ANCIENTS
DID INTEGRALS LONG BEFORE NEWTON DID
DERIVATIVES, WHY DIDN'T WE START THE
BOOK WITH THIS SECTION?

SURELY YOU DON'T THINK
1 010 IT THIS way ouT

OF SOME SORT OF PER-
VERSE DESIRE TO MES%

WITH YOUR MIND?

NEVER
OCCURRED
TO ME
UNTIL
JUST NOW.

THE SURPRISING
ANSWER: ALTHOUGH
SUMS MAY BE EASIER
TO IMAGINE, THEY (AN
BEST BE CALCULATED
BY UsING DERIVATIVES!!
A5 NEWTON AND LEIBNIZ
DISCOVERED, THERE 15 A
SURPRISING RELATION-
SHIP BETWEEN 5UMS
AND DERIVATIVES!

A5 WE ARE
ABOUT TO
SEE...




SUPPOSE DELTA 15 DRIVING HER CAR ALONG A ALL SHE CAN SEE ARE THE VELOCIMETER AND
STRAIGHT COURSE AGAIN, EXCEPT THAT NOW THE TIME. CAN SHE FIGURE OUT WHERE SHE 15
HER WINDOWS ARE BLACKED OUT. AFTER, AY, 10 UNITS OF TIME?

IF T SURVIVE
THAT LONG....

BY CHECKING t AND v (£) OFTEN, SHE NOTES THAT OVER A SHORT TIME INTERVAL [t , t;]
DELTA GETS A SERIES OF READINGS HER VELOCITY HOLDS NEARLY CONSTANT AT v(t; ), 50 THE
v(tp), v(ty)), v(ty), .. v(t), ETC., CHANGE OF POSITION DURING THAT INTERVAL 15 AP-

AT TIMES tp, ty, Egy oo &y oy By, PROXIMATELY THE VELOUITY v (t;_;) TIMES ELAPSED TIME:

WHERE t, = O AND t, = 10.

$(t,-) - 5(ti-1) = v(t,-_ﬂ(t,- - ti—1)

WHAT A WEIRD = v(t;_ )AL,
EXPERIMENT!

WHERE Ati = ti - ti-1 . THE
CHANGE OF POSITION OVER THE
ITH INTERVAL 15 VERY NEARLY
v(ti_,)At,-.

ADDING ALL THESE UP GIVES—APPROXIMATELY—THE TOTAL CHANGE OF POSITION BETWEEN
to = O AND 10:




ON A GRAPH, EACH TERM 15 THE AREA OF A SLENDER RECTANGLE OF MEIGHT v (t; ;) AND BASE
At,.* THE TOTAL CHANGE OF POSITION 15 THE SUM OF THESE AREAS.

3 THE FIRST RECTANGLE HAS
| = u(t) AREA v (ty)At,, AND THE
Y [ iTH RECTANGLE HAS AREA

vt DAL,

IF THE VELOCIMETER 15 READ MORE
OFTEN, 50 THAT THE WIDEST At; 6ETS
SMALLER, THE SUM GIVES A BETTER
APPROXIMATION OF THE ACTUAL CHANGE
OF POSITION, AND THE RECTANGLES
SQUEEZE IN TOWARD THE GRAPH.

NEXT TIME TAKE
A READING EVERY
MILLISECOND!

YOU DPON'T
ASK MUCH,
PO YOU?

A5 At— O, THE APPROXIMATION BECOMES
MORE PERFECT, AND THE RECTANGLES
BEGIN TO LOOK LIKE THE AREA UNDER
THE CURVE y = v(t) BETWEEN t = O
AND t = 10.

s(10) - s(0) 15
THE AREA UNDER
THE GRAPH OF v!

*ASSUMING, FOR THE TIME BEING, THAT THE VELOCITY 15 NON-NEGATIVE
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FOR EXAMPLE, 5UPPOSE THE VELOCITY 15 GIVEN BY THE SIMPLE EQUATION v () = t METERS
PER SECOND. THEN THE CHANGE OF POSITION AFTER 10 SECONDS, s(10) - s(0), SHOULD BE
THE AREA UNDER THE CURVE y = t OUT TO t=10, WHICH |15 THE AREA OF THIS TRIANGLE:

A5 A MATTER
OF FACT, WE
COULD 5UBSTI-
TUTE ANY TIME
T FOR 10:

10

SINCE T 15 ARBITRARY, THIS
SAY5 THAT s, A5 THE FUNCTION
OF TIME, HAS THE FORMULA

THE AREA
TURNED INTO
A FUNCTION?!

s(T) = s(0) + 3T

WHERE s(0) 15 THE STARTING

POSITION.
s(0)
NOW LET'S DIFFERENTIATE s(&). A oF " oaE
z HAPPENED HERE?

, d 1,2

st) = —(5t°) = ¢t

dt 2 u(t)
= v(t) <

A% IT SHOULD BE, THE DERIVATIVE
OF THE POSITION FUNCTION s 15
THE VELOCITY v. (WHAT’S SUR-
PRISING 15 THAT THE POSITION
FUNCTION CAME FROM THE AREA
UNDER THE VELOCITY CURVE!)




BY FINDING POSITION
FROM VELOCITY, WE ARE
DIFFERENTIATING IN
REVERSE. GIVEN A
FUNCTION v, WE SOUGHT
A FUNCTION s WHOSE
DERIVATIVE 15 v.

UP TO THIS POINT,
WE'VE ALWAYS GONE
FROM A FUNCTION f TO
ITS DERIVATIVE f. NOW
WE WANT TO 60 THE
OTHER WAY, FROM f
TO SOME FUNCTION F,
WHERE F’ = f.

DIFFERENTIATION

NOILVILN3434414ILNY

HERE... EVERY-
BODY GETS ONE
MORE...

THIS FUNCTION f 15 ¢ALLED AN ANTIDERIVATIVE OF f. FOR EXAMPLE, POSITION s 15 AN
ANTIDERIVATIVE OF VELOCITY .

FUNNY TO THINK
YOU WERE THERE
ALL ALONG...

IF OUR VELOCITY EXAMPLE 15 ANY GUIDE (AND
IT 15!), THIS REVERSAL INVOLVES A PROCESS
OF SUMMING UP... AND THAT, IN TURN,
UNLOCKS THE PROBLEM OF FINDING AREAS.
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Problems

SUPPOSE A CAR'S VELOCITY AT TIME t 15 v(t) = 3t” METERS PER SECOND. MAKE AN ESTIMATE
OF THE DISTANCE TRAVELED BETWEEN t = O AND t = 4 SECONDS BY ADDING UP RECTANGLES:
BEGIN BY DIVIDING THE INTERVAL [O, 4] INTO FOUR EQUAL SEGMENTS. LET ¢; = i FOR i = O,
1, 2, 3, 4. EACH SEGMENT HAS LENGTH At; = 1.

1. GET A LOW ESTIMATE BY ADDING THE
RECTANGLES UNDER THE CURVE. FIND:

3 3
Eou = D FEIAL = D 317
i=0 i=0

2. GET A HIGH ESTIMATE BY ADDING THE
RECTANGLES ABOVE THE CURVE. FIND:

4 4 _
Eméu = Z f(tl)At, = z 31'2 [

i=1 i=1

3. WHAT DO YOU GET WHEN YOU 4. TRY ONE MORE ESTIMATE: TAKE t; TO BE THE
SPLIT THE DIFFERENCE? FIND: MIDPOINT OF THE SEGMENT [i, i + 17, THAT 15,
t; = (2i + 1)/2. FIND
1
-Z_(El—llél-l + ELOW) ‘ 3

EMIV =

\
-
py

-+
[N
>

<+

/

DO YOU SEE THAT
THIS 15 THE AREA
OF THE LIGHT GRAY
TRAPEZOIDS?

"
™M
——
»
N4+
—
—
~

5. CAN YOU THINK OF A FUNCTION s(£) WITH s'(£) = 2t27 WHAT 15 s(4) - s(0)? 15 IT (LOSE TO
ANY OF YOUR ESTIMATES? WHICH ESTIMATE 15 CLOSEST TO s(4) - s(O)?

6. VO THE SAME THING AS IN PROBLEMS 1-5 WITH THE FUNCTION v(t) = 1/t
BETWEEN THE POINTS £ = 1 AND t = e, USE RECTANGLES WITH THEIR BOTTOM
CORNERS AT THE POINTS 1, 2, ..., 7, . (50 YOU'LL HAVE %X RECTANGLES OF
BASE At; = 1 AND ONE THINNER RECTANGLE OF BASE At; = e -7 =039)

7. MAKE AN ESTIMATE OF THE AREA UNDER BOTH GRAPHS
BY USING TWICE A5 MANY RECTANGLES HALF AS WIDE.
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Chapter 9
Antiderivatives

PLUS A CONSTANT!

UnForTUNATELY, THE PROCESS
OF FINDING ANTIDERIVATIVES 15

SLIGHTLY MESSIER THAN THE
POSSIBLY THE BIGGEST

REVER:E PROCESS OF DIFFEREN- UNDERSTATEMENT OF

TIATION. : THE LAST 400 YEARS...

——

THAT’S AN ANTIDERIVATIVE OF g, NOT THE
ANTIDERIVATIVE, BECAUSE THERE ARE PLENTY

FOR EXAMPLE, IF f(x) = x2,

THEN F(x) = 3x* 15 AN )
ANTIDERIVATIVE: OF OTHERS. ALL THESE HAVE DERIVATIVE x™:
Fx0) = +4x*) = % oo = X 43 BECAUSE THE
n+1 DERIVATIVE OF
IN GENERAL, g(x) = X" net A CORETINT 12
HAS AN ANTIDERIVATIVE Ho) = 2— &
n+1
6x) = 1 Xn” xn+1
n+1 P(x) = +
n+1

WHERE € 15 ANY CONSTANT.
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IF F 15 AN ANTIDERIVATIVE OF A
FUNCTION f, THEN %0 15 F + C, FOR
ANY CONSTANT €. (F +€) = F' = f. y = FoO +C
SLIDING THE GRAPH y = F(x) \
STRAIGHT UP AND DOWN DOESN'T

AFFECT THE SLOPE AT ANY POINT x.

y = F()

CONVERSELY, IF F = f, THEN ANY ANTIDERIVATIVE OF f DIFFERS FROM F BY A CONSTANT.
PROOF: IF & 15 ANY OTHER ANTIDERIVATIVE, THEN (F - 6)'(x) = f(x) - f(x) = O FOR ALL x.
BUT BY CONSEQUENCE (%) OF THE MEAN VALUE THEOREM (P. 158), THE ONLY FUNCTIONS
WITH ZERO DERIVATIVE ARE CONSTANTS, 50 F - & = € FOR SOME CONSTANT C.

THAT WAS
ONVEA a‘)?“ ) ALL POS5IBLE

, FUNCTIONS WITH
THEOREM! ZERO DERIVATIVE

-

HERE 15 HOW TO WRITE THE FORMULA THAT 5AY$ “THE ANTIDERIVATIVE OF f 15 F + C”:

jf = F+C OR ff(x)dx= Fx)+ ¢

THE TALL SYMBOL 15 CALLED AN INTEGRAL SI6N... THE FUNCTION f 15 CALLED THE INTEGRAND.
THE SYMBOL dx 15 THERE ONLY TO IDENTIFY THE VARIABLE, AS IT IS IN df/dx, AND 15 NOT A
SEPARATE FACTOR IN THE EQUATION. AND AS USUAL, THE NAME OF THE VARIABLE DOESN'T
MATTER: ALL THESE EXPRESSIONS MEAN THE SAME THING, NAMELY THE ANTIDERIVATIVE OF f:

f £Cx) dx, f F(E) dt, AND j £(y) dy
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IT 15 DETERMINED
ONLY UP TO THE

ALL THESE ARE
“THE” INDEFINITE
INTEGRAL OF
f(x)
ADDITIVE CONSTANT

. FOR INSTANCE, \
_ 1.2
I xdx = ZX°+ c

THE ANTIDERIVATIVE
15 SOMETIMES CALLED
THE INDEFINITE
INTEGRAL OF f,
INDEFINITE BECAUSE

HAVING FOUND MANY DERIVATIVES ALREADY, WE ALREADY KNOW THESE FORMULAS:

fdx=x+6 fcosxdx:sinx+£

(THERE'S AN UNWRITTEN NUMBER 1
AFTER THE INTEGRAL $IGN.)

dxz = arctan x + C
Ix”dx:-'—x””+£ 1+ x
p+1
J‘L = arcsin X + €
fe"dx:e"+£ V1-x? )

) Jldx=ln|x|+6
sinxdx = -cos x + C x

NOTE: THE ABSOLUTE VALUE SI6N IN THE LAST
EQUATION 15 JUSTIFIED, BECAUSE IF x<O, THEN

KIND OF GIVES
NEW MEANING
TO THE WORD

i
d -1 1 ]
—In(-x) = — = =
dx (-x) x \\ % /
IF x>0, THEN di(ln X) = = ALéO V
TOGETHER THESE IMPLY iln Ix| = 1 , X0
dx X

17



ANDI Inx dx 15... UM... AHHH... AHEM! DOES THIS LOOK FAMILIAR?

NO... I THINK I'D
REMEMBER IF
WE'D SEEN THIS
BEFORE...

UNFORTUNATELY, TO INTEGRATE A FUNCTION, WE HAVE TO RECOGNIZE IT AS THE DERIVATIVE
OF SOMETHING ELSE WE'VE ALREADY SEEN. AND 50 FAR, NOTHING HAS TURNED UP WITH In x
A% ITS DERIVATIVE.

MUST BE HERE
SOMEWHERE...
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UNLIKE DIFFERENTIATION, WHICH WE DO BY APPLYING SIMPLE RULES, INTEGRATION REQUIRES
SOME EXPERIENCE. THE MORE DERIVATIVES YOU'VE SEEN, THE BETTER ABLE YOU'LL BE TO

FIND ANTIDERIVATIVES...

A CALCULVS STUDENT
WHO DIDN'T PO THE
PROBLEM 5ETS.

IF THE FUNCTION UNDER THE INTEGRAL
516N (KNOWN AS THE INTEGRAND) 15
“6OMETHING LIKE” A KNOWN DERIVATIVE,
WE ¢AN OFTEN FIND ITS ANTIDERIVATIVE
SIMPLY BY GUESSING AND THEN MAKING
SOME LITTLE ADJUSTMENT.

Example 1: f ¢ dx

WE KNOW THAT £(x) = e®* 15 SOMETHING
LIKE THE DERIVATIVE OF 6(x) = e?*. IN
FACT, 6'(x) = 2e*, WHICH 15 OFF BY A
FACTOR OF TWO. NOW WE TRY

F(x) = $e** AND FIND

F) = 3(@)e* = & = £(0)

F 15 AN ANTIDERIVATIVE, AND WE
CONCLUPE THAT
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WE FOLLOWED THESE STEPS:

1. SEE IF THE INTEGRAND f LOOKS
LIKE A CONSTANT MULTIPLE OF A
KNOWN DERIVATIVE.

2. 6UE55 A LIKELY ANTIDERIVATIVE 6.
3. DIFFERENTIATE 6.

4. IF & 15 A CONSTANT MULTIPLE OF
f, MULTIPLY & BY AN APPROPRIATE
FACTOR TO MAKE A BETTER 6UESS, F.
5. CHECK THAT F' = f.

6. REPEAT IF NECESSARY.

THIS PROCEPURE HAS A NAME: THE
Guess-and-Check
Method.

IT SOUNDS
BETTER IN THE
ORIGINAL LATIN.




2dx

Example 2: f !

4+x
1. NOTE THAT THE INTEGRAND f
LOOKS SOMETHING LIKE

1
1+ x?

WHICH 15 THE DERIVATIVE OF THE
ARCTANGENT. LET’S WRITE IT A%

1
FOO = § ————
4 (1+(%)2)

2. 50 WE 6UESS 6(x) = arctan %

2. DIFFERENTIATING 6IVES

1
6'(x) = %—— =
xX\2
(1+ (E) )
TOO HIGH BY A FACTOR OF 2.

2f(x)

4. TAKE F(x) = %arctan (%)

5. THE LAST STEP, CHECKING THAT
F'(x) = f(x), 15 LEFT TO YOU, LUCKY
READER! AND WE CONCLUDE THAT

J' 1
4 + x*

THE ONLY STEP
REQUIRING THOUGHT
WAS #1... THE REST

WAS CRANKING...

dx =

%arctan (%) +C

SOMETIMES THE CHAIN RULE HELPS U%
IDENTIFY A FUNCTION AS A DERIVATIVE.
THE CHAIN RULE 5AYS:

i(u(v(x))) = v0OuU(w(x))
dx

IF AN INTEGRAND LOOKS LIKE THE RIGHT-
HAND SIDE—I.E., IT CONTAINS AN INSIDE
FUNCTION WHOSE DERIVATIVE APPEARS AS
A FACTOR—THIS IDENTIFIES THE INTEGRAND
A5 A DERIVATIVE, AND WE CAN “UNCHAIN”
THE FUNCTION TO GET THE ANTIDERIVATIVE
F(x) = u(w(x)).

(PLUé A CONéTANT!)

Example 3: [ 2xe”ax

1. IN THE INTEGRAND, THE FACTOR 2x 15
THE DERIVATIVE OF THE EXPONENTIAL'S
INSIDE FUNCTION x2, 50 WE MIGHT TRY:

2. Fx) = exz.
3. TEsT:
Fx) = 2xe™ = £(x)

WE'RE IN LUCK: WE 6OT IT RIGHT THE
FIRST TIME! 50 WE (AN WRITE:

Jer"zdx =

2
Al XA



Example 4: f X g

Vie 2 AGAIN, WE'RE LOOKING FOR
AN INSIDE FUNCTION AND ITS
DERIVATIVE A5 A FACTOR!

1. THE x IN THE NUMERATOR 15, WITHIN
A CONSTANT FACTOR, THE DERIVATIVE OF
THE INSIDE FUNCTION 1 + x2.

Nl

2. WE 6UESS 6(x) = (1 + x*)2.

1 -1
3.600 = 2040 + 378 = x( + 272
THE INTEGRAND.

1l

W

NO CORRECTION 15 NECES%ARY, 50
WE SKIP $TEPS 4 AND 5, AND CAN

IMMEDIATELY WRITE:
J‘%dx =Vi+ex?+C
1+x

Example 5a: f 5in"6 cos d6

1. REMEMBER, IF f 15 ANY FUNCTION, THEN " HAS DERIVATIVE AND IT
nf"FL IN THE INTEGRAND, WE SEE A POWER OF THE $INE TIMES GETS EVEN

IT$ DERIVATIVE, THE COSINE. IS THIS aqé-(sin“ 1e)? MESSIER...

2.TRY 6(0) = sin"*'@

3. TEsT. 6°(8) = (n + 1)sin" B cos 6.
THIS 15 OFF BY A FACTOR OF n + 1.

sin"*'e@
4. Fe) = BTN

RIGHT DERIVATIVE (5. YOU CHECK!), AND

oo n+1
fsin"ecos de = $ln_9_ + C

» THEN, HAS THE

175



MORE OF THESE INTEGRATION TRICKS, ER, TECHNIQUES, WILL APPEAR

IN MORE DETAIL IN A LATER CHAPTER... BUT FIRST—

]
3
12.J %xze(" *Ddx

13. J sin x e“** dx

x? - 4x

14. dx

Problems
FIND THE ANTIDERIVATIVES. DON'T FORGET THE ADDED CONSTANT!
[
1. | 6dx 7. | —— dx
o 4 - x?

2,4 [
2. ) ¥ dx G.J -sin 2x dx
3. | x-2)7dx [

J x 9.J 2 sin x cos x dx

4.J. A -x)"%dx

sin2x = 2sin x cos X.
CONCLUDE THAT

‘5.J (a - )" dx

4 2x FOR 5OME CONSTANT C.

dx

o 9+X2

11. WHAT 15 € IN PROBLEM 107

10. RECALL FROM TRIG THAT

cos 2x = -2sin’x + C

J VP - 6x?

1. | !

x + 1 dx
16.

1
o X2—1

dx

(HINT: DECOMPOSE THE INTE-
GRAND INTO PARTIAL FRACTIONS,
A5 SHOWN ON PP. 27-28.)

17. SHOW THAT IF F 15 AN ANTIDERIVATIVE OF f, AND & 15 AN ANTIDERIVATIVE OF g,
AND £ AND D ARE ANY TWO CONSTANTS, THEN CF + D6 15 AN ANTIDERIVATIVE OF

Cf + Dg. (HINT: DIFFERENTIATE CF + P6.)
FIND THE ANTIDERIVATIVES:
13.]273 +15x% - Ix - 7 dx

19. j sin*6cos O + cos’Osin6 d6

x -X
zo.fi—;L dx
3t 2t
"
t? - 2 41 £ - % 41

22. j 2 4 72 a7 dt

176

ZZ.I Ix| dx

(WINT: CONSIDER POSITIVE AND NEGATIVE
VALUES OF X SEPARATELY.) DRAW THE
GRAPH OF THE ANTIDERIVATIVE.

24.IF F'(x) = f(x), WHAT 15

If(x—a)dx?

25. IF 15 A DIFFERENTIABLE FUNCTION,
WHAT 15

j il(i) dx ?
F0O



Chapter 10
The Definite Integral

AREAS, OVER AND UNDER

WHAT DO WE MEAN BY THE AREA INSIDE A FIGURE? IF THE REGION 15 RECTANGULAR OR
TRIANGULAR, OR A BUNCH OF RECTANGLES AND TRIANGLES PASTED TOGETHER, WE HAVE A
PRETTY 600D IDEA: JUST ADD THE AREA OF THE TRIANGLES OR RECTANGLES.

NOW IF ONLY T cOULD
REMEMBER HOW TO
FIND THE AREA OF A
TRIANGLE...

EH-EH-EH! NO
STRAIGHTENING
ALLOWED!

IF YOU'VE GOTTEN THIS FAR, YOU
PROBABLY SUSPECT THAT THE ANSWER
MAY HAVE SOMETHING TO DO WITH A
LIMITING PROCESS...
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FOR SIMPLICITY'S SAKE, WE CONSIDER A SPECIAL TYPE OF REGION, BOUNDED ON THREE $IDES
BY STRAIGHT LINES: LEFT AND RIGHT BY THE VERTICAL LINES X = a, x = b, BELOW BY THE
Xx-AXI5, AND ABOVE BY THE GRAPH OF SOME FUNCTION y = f(x), WHICH WE ASSUME, FOR
THE TIME BEING, TO BE NON-NEGATIVE. THIS REGION HAS ONLY ONE CURVY SIDE.

AND, NO, IT 15 NOT
IMPORTANT THAT IT

LOOKS LIKE AN
ELEPHANT WEARING
A BLANKET. X

WE PROCEEV MORE OR LESS AS WE DID ON PAGE 163%: SUBDIVIDE THE INTERVAL [a, b] INTO
n SUBINTERVALS BY A SPRINKLING OF POINTS Xy, Xy, X5, ... X, ... X, WHERE Xp = @ AND
Xp, = b. FOR EACH T 2 1, PICK ANY POINT X;* IN THE iTH INTERVAL [x;_;, X; ], AND RAISE A
RECTANGLE ON THAT INTERVAL OF HEIGHT f(x;*), ITS BASE BEING Ax; = x; - x;_;. FINALLY,
SUM THE AREAS OF THE RECTANGLES TO GET AN APPROXIMATE VALUE FOR THE DESIRED AREA.

n

f(x,*) Ax;

=

y=f(x)

YOU WANT I
SHOULD GET RID OF
THE WASTE AREA?

Xp=a Xy X, X3 X4 x5 x,=b
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THIS EXPRESSION 15 ¢ALLED A RIEMANN SUM, AFTER BERNHARD RIEMANN, A 19TH-CENTURY
MATHEMATICIAN 50 ORIGINAL AND BRILLIANT THAT HE WON PRAISE EVEN FROM THE GREAT
GAUSS, WHO PRAISED NO ONE.

UM... IF GAUSS
PRAISES NO ONE, |

AND GAUSS PRAISES
ME... THEN... I'M
NO ONE?

BEST STICK TO CALCULVS, BERNIE,
AND LEAVE LOGIC ALONE...

THE PLAN, THEN, 15 TO LET THE SUBDIVISION GET FINER AND FINER, MEANING THAT THE
LARGEST Ax; — O, AND SEE IF THE SUM OF THE RECTANGULAR AREAS APPROACHES A LIMIT.

a b a b |

THE ANSWER (WHY WAIT?) 15 YES, PROVIDED THE FUNCTION f 15 CONTINUOUS ON THE
INTERVAL [a, b1 (5EE P. 156). IN THAT CASE, THE LIMITING VALUE 15 ¢ALLED THE DEFINITE
INTEGRAL, INTERPRETED AS THE AREA UNDER THE CURVE AND WRITTEN LIKE THIS:

%
|
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WARNING! THEORY ALERT!
THESE TWO PAGES SKETCH
THE PROOF THAT RIEMANN
SUMS CONVERGE ON A
UNIQUE NUMBER, THE
DEFINITE INTEGRAL, WHEN
f 15 CONTINUOUS. PURELY
PRACTICAL-MINDED READERS
CAN 5KIP AHEAD TO PAGE
182 AND STILL LEAD
HEALTHY, PRODUCTIVE
LIVES...

IF YOU PROMISE ME
PLL STILL GET INTO
MEDICAL SCHOOL...

SKETCH OF PROOF: ASSUME f 15 CONTINUOUS ON [a, b]. LET {a = xy, Xy, ... x, = b} BE
A SUBDIVISION OF THE INTERVAL. ON EACH SUBINTERVAL [x;_,, x;], BY THE EXTREME VALUE
THEOREM, f ATTAINS A MAXIMUM M; AND A MINIMUM m;.

CONTINVOVS
FUNCTIONS

ARE OUR

FRIENDS!

i X i

NOW WE MAKE SPECIAL RIEMANN S5UM$ THAT COME AT THE GRAPH FROM ABOVE AND BELOW.

THE LOWER SUM OF THIS
SUBDIVISION 15 DEFINED BY

THE UPPER SUM 15 DEFINED BY

5 = i M; Ax;
=1

CLEARLY, % > s... AND IT’6 NOT TOO
HARD TO SHOW THAT EVERY UPPER
5UM 15 GREATER THAN EVERY
LOWER SUM, REGARDLESS OF WHAT
SUBDIVISION THEY’RE BASED ON...

S ADDS UP THE GRAY
RECTANGLES; £ ADDS
THE TALLER ONES
(GRAY PLUS WHITE).
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NEXT WE INVOKE THIS FACT, GIVEN WITHOUT PROOF: GIVEN ANY £>O0, IT 15 POSSIBLE TO
5UBDIVIDE [a, b] 50 THAT |f(c) - f(d)] < £ WHENEVER ¢ AND d ARE IN THE SAME
SUBINTERVAL. FOR THAT SUBDIVISION, THEN, M, - m; < & FOR EVERY i.

THIS DEPENDS
ON THOSE PEEP
PROPERTIES OF
NUMBERS, OFTEN
MENTIONED BUT
NEVER DESCRIBED...

THIS IMPLIES THAT THE UPPER AND LOWER SUM$ SQUEEZE TOGETHER AS THE SUBDIVISIONS GET
FINER. FOR, GIVEN ANY SMALL £ >0, WE CAN MAKE A SUBDIVISION 0 FINE THAT

FOR EVERY 1.

M,—ml <

IN THAT CASE,

BECAUSE THE UPPER SUMS AND LOWER SUMS SQUEEZE ARBITRARILY CLOSE TO EACH OTHER,
THERE MUST BE EXACTLY ONE NUMBER SANDWICHED BETWEEN THEM. (ANOTHER CONSE-
QUENCE OF DEEP, SUBTLE, ETC.). THE DEFINITE INTEGRAL OF f FROM a TO b 15 DEFINED

TO BE THIS NUMBER!
BIGGER THAN b
ANY LOWER SUM!
SMALLER THAN
ANY UPPER SUM! f(x) dx
I'M UNIQUE! A

NOW BACK TO STUFF YOU
REALLY NEED TO KNOW.

JUST ONE
NUMBER FITS
IN HERE...
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WHAT HAPPENS WHERE A FUNCTION g 15 NEGATIVE? WHEN-
EVER THE VALUE g(x,*) < O, 0 15 THE TERM g(x,;*)Ax,
IN THE RIEMANN SUM. (BECAUSE AX; 15 POSITIVE.)

FOR THE SAKE OF ILLUS-
TRATION, WE BEGAN THIS
CHAPTER WITH A NON-
NEGATIVE FUNCTION...
BUT ACTUALLY RIEMANN
SUMS CONVERGE TO A
DEFINITE INTEGRAL FOR
ANY CONTINUOUS
FUNCTION ON A ¢LOSED
INTERVAL.

IN OTHER WORDS, AREAS BELOW THE x-AXIS ARE TAKEN A5 NEGATIVE. IN THE DEFINITE
INTEGRAL, AREAS BELOW THE AXIS OFFSET AREAS ABOVE THE AXIS. JUST AS THE DERIVATIVE
15 “SI6NED SPEED,” 50 THE INTEGRAL 15 “SIGNED AREA.”

Example: cven Housk WE DON'T YET KNOW HOW TO CALCULATE DEFINITE INTEGRALS,
WE CAN SEE DIRECTLY THAT

2
f sin@ dé = 0
(o]

BECAUSE THE REGION BETWEEN
T AND 27, WHICH LIES UNDER
THE x-AXIS, 15 A PERFECT
MIRROR IMAGE OF THE POSITIVE
REGION BETWEEN O AND T,
THESE TWO AREAS CANCEL EACH
OTHER OUT.
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WE CAN ALSO INTEGRATE SOME FUNCTIONS
THAT ARE NOT CONTINUOUS.

Example: ruc winosuicLo wipers on
MOST CARS HAVE AN INTERMITTENT WIPE
FEATURE: ELECTRIC CHARGE BUILDS UP IN A
CAPACITOR IN THE CONTROL MECHANIS...

+.
o
+

b

4y
* A

HEG g

WHEN THE CHARGE REACHES A CERTAIN THRESH-
OLD, IT LEAPS THE 6AP, COMPLETES A CIRCUIT,
AND THE WIPER BLADES MAKE A SWEEP.

. T2

~t

A AN
SN
/— o
AN \9,_“

THE GRAPH OF THE CHARGE IN THE CAPACITOR,
AS A FUNCTION OF TIME, LOOKS LIKE THIS. IT
HAS JUMPS.

o

EVEN 50, WE CAN INTEGRATE IT: JUST ADD
UP THE AREAS WHERE THE FUNCTION 15

CONTINVOUVS.
b
I qt) dt =

a

SUM OF AREAS OF TRIANGLES
i OR PARTS OF TRIANGLES.

THIS ILLUSTRATES AN IMPORTANT
FORMULA. IF c 15 A POINT
BETWEEN a AND b, THEN

THIS 15 OBVIOUS, AND WE OMIT
THE PROOF. TOTAL (5I6NED) AREA
15 THE UM OF THE TWO PARTS.

183



$0... ARE WE
60ING TO GET
SOME DEFINITE
ANSWERS FOR

THESE DEFINITE
INTEGRALS?

LET’S START BY DOING ONE THE HARD
WAY—BY TAKING THE LIMIT OF RIEMANN
SUMS.

1
Example: suow tusr I xdx =
(o]

YOU MEAN, PROVE
THE AREA OF THIS
TRIANGLE 15 1/27

=

SUBDIVIDE THE INTERVAL [0, 1] INTO n EQUAL
PARTS BY USING THE POINTS {O, 1/n, 2/n, ..., 1}.
THEN EACH SUBINTERVAL HAS WIDTH Ax = 1/n,
AND f(x;) = i/n. THEN THE UPPER SUM 15

S ] Ry WIDTH =
/ 1 1/n

S LR

o 1

X
n

NOW YOU MAY REMEMBER (OR IF NOT, LOOK IT
UP!) THE FORMULA FOR THE SUM OF THE FIRST
n POSITIVE INTEGERS:

n

Zi _onn+1) _ n*+n
2 2

i=1

THE RIEMANN SUM, THEN, 15
n

1 ; n®+n 1

I‘l2 2,12 2

=1

1
+_
2n

A5 n— oo AND THE SUBDIVISION GETS EVER
FINER, THIS APPROACHES 1/2. THAT 15,
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O.K.... IT WAS ONLY A TRIANGLE... BUT WE WENT THROUGH ALL THAT TROUBLE TO MAKE A
POINT: NEWTON AND LEIBNIZ SAVED EVERYONE A LOT OF WORK BY INVENTING CALCULUS.
THEIR BI& INSIGHT INTO INTEGRALS 15 5O IMPORTANT, IN FACT, THAT IT'S ¢ALLED THE
FUNDAMENTAL THEOREM OF CALCULUS. WE COVER IT NEXT...

AND BY THE WAY... IN CASE YOU WERE WONPDERING WHY THERE WAS NO ADDED CONSTANT IN
THAT LAST ANSWER, YOU MUST ALWAYS REMEMBER THAT DEFINITE INTEGRALS ARE DEFINITE:
A DEFINITE INTEGRAL 15 A SIGNED AREA, A NUMBER. THE INDEFINITE INTEGRAL, OR
ANTIDERIVATIVE, HAS THE ADDED CONSTANT.

THEN WHY IN THE THE ANSWER 15
WORLD DO THEY USE | COMING RIGHT UP...
x dx = %xz + C THE SAME SYMBOL? q

Nl

1
fxdx=
(7]




Problems

1. DEFINE A FUNCTION g BY EVALUATE THE INTEGRAL

gx) = 1 IF2n < x< 2n +1 2350
gx) = -1 F2n+1<x<2n+ 2 f 900 dx
FOR ALL INTEGERS n = O, 1, £2, ... DRAW -4.086

THE GRAPH OF g.

2. 6IVEN THE FUNCTION g(t) = t% AND ANY NUMBER T, BUILD A RIEMANN UM BETWEEN O AND T
IN THE FOLLOWING WAY. SUBDIVIDE THE INTERVAL [0, T] INTO n EQUAL INTERVALS BY MEANS OF
THE POINTS {O, T/n, 2T/n, ... iT/n, ..., nT/n = T3}. NOTE THAT THE LENGTH OF EACH INTERVAL
15 T/n. LETTING t; = iT/n, WE GET THIS RIEMANN SUM 5,:

n

- 20 (F(D) .

=1 i

SIMPLIFY THIS EXPRESSION. THEN USE THIS
FORMULA (DISCOVERED BY THE ANCIENT GREEKS)...

n
z PRI 1)6(2n + 1 3T/m? -
=1

... TO DERIVE A FORMULA FOR %, IN TERMS OF \
n AND T. SHOW THAT, AS n— oo, (2T/n)*-
H

173
Gl Lt (T/m* L

WHAT DO YOU MAKE OF THE FACT THAT THIS - I !
15 NEGATIVE WHEN T < 07 T/n 2T/n 3T/n T

3. USING THE FORMULA FOR THE SUM OF 4. ON P. 155, WE SHOWED A FUNCTION THAT
CUBES, 15 NOT CONTINUOUS AT x = 2.
n 2 1
.3 nin +1 f(x) = IFx = 2
i’ = (—T’) |x - 2|
7=t f(2) =1

SHOW, A% ABOVE, THAT

EXPLAIN WHY THERE I5 NO UPPER SUM FOR f
J-T ON ANY INTERVAL CONTAINING x = 2.

t*dt = ;T4
o
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Chapter 11
Fundamentally...

IN WHICH EVERYTHING COMES TOGETHER

IN cuapTer 8, WE FOUND THAT YOURE SURE YOU \[cuoueu ADO. NO ]
MORE ADO.
POSITION, THE ANTIDERIVATIVE OF AT WANT 501 ‘

VELOCITY, APPEARED AS THE AREA
UNDER THE GRAPH OF VELOCITY. THIS
RESULT, IT TURNS OUT, WAS NO
COINCIDENCE. THE INTEGRALS OF ALL
600D FUNCTIONS ARE FOUND FROM
THEIR ANTIDERIVATIVES! WITHOUT
FURTHER ADO, THEN, HERE 15 THE...

Fundamental Theorem of Calculus v.1: i £ 15 A continvous
FUNCTION ON THE INTERVAL [a, b1, AND F 15 ANY ANTIDERIVATIVE OF f ON [a, b], THEN

b s

f(x)dx = F(b) - F(a) 7=

\

1

THIS ASTONISHING THEOREM
UNITES DERIVATIVES AND
INTEGRALS. IT SAYS: TO
EVALUATE A DEFINITE
INTEGRAL, FIRST FIND AN
ANTIDERIVATIVE OF THE
INTEGRAND, THEN EVALUATE
THAT ANTIDERIVATIVE AT THE
TWO ENDPOINTS, AND
FINALLY TAKE THE DIFFER-
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1
Example: rio f x dx
(¢]

FIRST FIND AN ANTIDERIVATIVE OF

f(x) = x. WE KNOW THAT F(x) = Jx

15 ONE. THE THEOREM THEN 5AY%:

1
fxdx
(4

FM - FO)

1}

1}

OMER (D k
1

2

AS WE SAW, WITH MUCH DIFFICULTY,
THREE PAGES AGO.

|}

STILL, IT 19 JusT
THE AREA OF A
TRIANGLE...

THERES
MORE!

.
0 1
5

Example: f Pdx
-1

WE KNOW THAT F(x) = zx* 15 AN
ANTIDERIVATIVE, 50 THE INTEGRAL 15

F5) - F(-1 = 35 - 2(-D*

- 156

625 -1
4

"

THIS DIFFERENCE 15 OFTEN WRITTEN §x*

2

5

-1

b
Example: f x" dx
(o]
xn+1
6(x) = 1 15 AN ANTIDERIVATIVE, %0
b xn+1 b bﬂ+1
f x"dx = =
0 n+1|, n+1

/2

Example: f sin@d6 = -cos®

o

/2

o

)

—cos(g) - (-cos 0)

0+1=1

1}

1 1

Example: f 1 LI

2
0 + U

arctan u

arctan 1 - arctan O

W

1_r_0=LT

4 4

(HERE WE MADE U THE VARIABLE OF INTEGRATION
JUST TO REMIND YOU THAT ANY LETTER WILL DO!)

|}

YOU'RE RIGHT! IT’S
cooL! I'm TOTALLY
SPEECHLESS...

AND YET
I (AN HEAR

188



THERE ARE SEVERAL WAYS TO GRASP THE FUNDAMENTAL RELATIONSHIP BETWEEN DERIVATIVES
AND INTEGRALS. ONE 15 TO SEE PIRECTLY WHY THE “DERIVATIVE OF THE AREA™ 15 THE
ORIGINAL FUNCTION ITSELF. TO PO THIS, WE HAVE TO MAKE THE INTEGRAL INTO A FUNCTION.

U
O.K., YOV
HOLD YOUR

L END STILL,

AND I'LL
SLIDE MINE
AROUNPD...

—

50... GIVEN A FUNCTION f,
WE FIX ONE ENDPOINT OF
INTEGRATION AND LET THE
OTHER ENDPOINT VARY.
THEN THE AREA VARIES,
TOO: THE AREA BECOMES
A FUNCTION OF THE
SECOND ENDPOINT.

IF X 15 THE VARIABLE ENDPOINT
AND A(x) 15 THE AREA, WE CAN
WRITE THIS AREA* AS

X
Ax) = j f()dt
a

THEN WHAT WE ARE SAYING 15:

Alx) = f(x)

*BY AREA, WE ALWAYS MEAN SIGNED AREA. WE ALSO NEED TO ALLOW THE POSSIBILITY THAT

THE VARIABLE ENDPOINT FALLS TO THE LEFT OF a, IN WHICH CASE WE AGREE THAT

x a
f f(t) dt MEANS "J‘ f(t) dt
a x
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HERE 15
THE FORMAL
STATEMENT:

Fundamental
Theorem of
Calculus, v.2

IF £ 15 CONTINUOUS, a 15 IN ITS DOMAIN, AND A |5 DEFINED BY

X
Ax) = J‘ f(t)dt

a

THEN A 15 DIFFERENTIABLE, AND A'(X) = f(X).

PROOF: IF A HAS A DERIVATIVE, IT MUST BE
THIS LIMIT, IF THE LIMIT EXISTS:

Alx + h) - A(x)
h

A(x) = lim
h—0
BY DEFINITION OF A,

Alx + h) - Alx) =

x+h x x+h
J‘ ft) dt - J- ft)dt = I f(t) dt
a

a x

a x x+h

THAT STRIP HAS HEIGHT = f(x), WIDTH = h,
AND HENCE AREA = hf(x), 50

AREA hf(x)
h h

= f(x)

190

WE (AN MAKE THAT ARGUMENT PRECISE: A
DEFINITE INTEGRAL 15 SANDWICHED BETWEEN
ITS UPPER AND LOWER SUMS:

x+h

mh S_f f(t)dt < Mh

X

WHERE m AND M ARE

THE UPPER AND LOWER M--
BOUNDS, RESPECTIVELY, m--
OF f ON [x, x + h].

THEN

Alx + h) - A(X)
ms —————
h

<M

A5 h—0,
m AND M SQUEEZE
TOGETHER!

AN

x x+h

BECAUSE £ 15 CONTINUOUS, m AnD M
BOTH APPROACH f(x) AS h— O, 50 BY
THE SANDWICH THEOREM,

lim Alx + h) - A(x) = £

h—o0 h




LET’S RUN THROUGH
THAT AGAIN, TO GET A
BETTER FEEL FOR IT!

f(x)

-
OR, AS LEIBNIZ WOULD
HAVE PUT IT: dA I15 THE
INFINITESIMALLY THIN
STRIP OF WIDTH dx AND
HEIGHT (), WHICH HAS

AREA f(x)dx.

dA = f(x)dx, 0

dA

'a-; = f(x)

169

_J

AA 15 THE AREA OF THAT THIN
STRIP AT THE EDGE OF THE
DEFINITE INTEGRAL. THE STRIP'S
WIDTH 15 h, ITS HEIGHT 15
APPROXIMATELY f(x), 50 IT%
AREA 15 APPROXIMATELY hf(x).*
THEREFORE

DA hfG0

h h = f(x)

THAT LITTLE WEDGE ON TOP
15 NO MORE THAN (M - m)h...
IN OTHER WORDS, IT’S A FLEA!

AA = hf(x) + FLEA

50 A'(x) = f(x).

I TOLP YOU
MY NOTATION
15 BETTER!

EITHER WAY, THE POINT 15 THIS: THE

RATE OF CHANGE OF THE AREA AT
A POINT 15 GIVEN BY THE HEIGHT

OF THE GRAPH THERE.

*f(x + h) 15 APPROXIMATELY (x) BECAUSE f 15 ASSUMED TO BE CONTINUOUS: IT CAN'T JUMP

AROUND WILDLY NEAR x.
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NOW WE ¢AN PROVE VERSION 1
OF THE FUNDAMENTAL THEOREM.
IT FOLLOWS DIRECTLY FROM THE
FACT THAT ANY ANTIDERIVATIVE
MUST DIFFER FROM A(x) BY A
CONSTANT.

Proof of Fundamental
Theorem, v. 1:

WE WISH TO SHOW THAT IF & 15 ANY ANTI-
DERIVATIVE OF A CONTINUOUS FUNCTION £, THEN

b
j fit) dt = 60b) - 6(a)

a

PROOF: BY THE FUNDAMENTAL THEOREM, V.2,
ONE ANTIDERIVATIVE A OF f 15

x
1€ =j f(t) dt
a

NOTE THAT A(a) = O, 0 FOR THIS ONE
ANTIDERIVATIVE, ANYWAY,

b
J- fit) dt = AWb) - Ala)

a

BUT & MUST DIFFER FROM A BY A CONSTANT:
6(x) = Ax) + C
50
b
I f(t) dt = Ab) - A(a)
a

= Ab) + € - (Ala) + )
= 6(b) - 6(a)

QUEVEW-EE-
POOOVLY-6006LY-
BOOBLY-BOBBLY-
BOOP-DEE-DEE!!




X
Example: suow thar I % dt = Inx IF x>0,

1
BY THE FUNDAMENTAL THEOREM, VERSION 1,

X
I %dt = F(x) - F(D),
1

WHERE F 15 ANY ANTIDERIVATIVE OF 1/t.
F(t) = In t 15 AN ANTIDERIVATIVE, 50

X
14t =
-[;dt—lﬂt

BECAVSE In 1 = O.

X

=lnx-Inl1=Ilnx
1

. 3 L

-~
E NOTE THAT WHEN

x < 1, THE INTEGRAL
15 NEGATIVE, 4INCE
WE INTEGRATE FROM
RIGHT TO LEFT (AND
THE INTEGRAND 15
POSITIVE).

GRAY AREA =
lnx
1 > X
s AND HOW ABOUT
Example’ THIS? ALTHOUGH THE
X INTEGRAND GOES TO
f 1 du arcsin x & OO AT THE ENDPOINT,
o = 9 THE AREA DOESN'T!
o V1- u? 2473 arcsin 1 = mw/2!
y = a-u”
BECAUSE arcsin O = O. 4
A
HERE AGAIN, WE MAY HAVE TO

INTEGRATE FROM RIGHT TO
LEFT, AND THE ARCSINE 15
NEGATIVE WHEN -1 < x < O.
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Problems

EVALUATE THESE INTEGRALS:

20
1.f b dx
-3

-5
Z.J Zx*dx
1

-4
3. ] (x - 2)° dx
v 3
J2/3
4'J A - x)"%dx
1/2

Ja+i

5.J (a - 20" dx

a

WHEN 15 THE INTEGRAL IN #5
NOT DEFINED?

o2 1

6.JVE v:r:—;?

o IT/2

7. J sin 2x dx
/4

dx

B‘J dx

9. | £ ¢ 72 - 4t dt
4

2
3
10.] %xze(" D dx
-

1Mn/é

1. sin*0cos 6 + cos*Osin© dO
5m/6

12. sHOW THAT IF [F(x)| < M
ON AN INTERVAL [a, b] FOR
SOME NUMBER M, THEN

M --n

b
If F(x) dx| < M(b - a)
a

CONCLUDE THAT IF THERE ARE
TWO FUNCTIONS £ AND g SUCH
THAT [f(x) - g(x)| < € ON
THE WHOLE INTERVAL, THEN

b
II £ - g dx| < £b - @)
a

IN OTHER WORDS, IF TWO FUNCTIONS ARE CLOSE ON AN
INTERVAL, THEIR INTEGRALS ARE CLOSE, TOO.

13. FROM ALGEBRA, RECALL THAT

1-t"=0-D0+t+t* ..+t
OR
1-¢"
1-¢

=1+t +tP .+t

CONCLUDE THAT 1 + ¢ + t% + ... + t"~ 1 16 CLOSE TO
1/(1 - £) WHEN ¢ 15 SMALL.

14. NOW SUBSTITUTE t = -x* TO GET

1
1+ x

~ = 1o 2t - a8 - o+ (1P

INTEGRATE FROM O TO 1:

1 1
j ! —dx = j 1-x% + - ¢ (D' dx
01+x 0

EVALUATE BOTH $IDES TO
FIND A FORMULA NAMED
AFTER LEIBNIZ (EVEN
THOUGH IT WAS DIS-
COVERED IN INDIA  ~ ¢
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Chapter 12
Shape-Shifting Integrals

MORE WAYS TO FIND ANTIDERIVATIVES

To INTEGRATE A FUNCTION,
“ALL” WE HAVE TO DO 15 Y

FIND ITS ANTIDERIVATIVE. ] ?,
BUT THAT MAY NOT BE 50

EASY... THE FUNCTION MAY

NOT LOOK FAMILIAR... WE @
MAY NOT RECOGNIZE IT AS
ANYTHING’S DERIVATIVE...
IT MAY $EEM HOPELESS...
50 MATHEMATICIANS HAVE
PEVELOPED TOOLS FOR
TINKERING WITH INTEGRALS
THAT MAKE THEM EASIER
TO “CRACK...”

EXCELLENT!
I LOVE A
600V TOOL!
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Substitution
of Variables

FROM NOW ON, WE'RE 60OING
TO EMBRACE LEIBNIZ NOTATION
AND USE dx, dt, du, dV, dF,
ETC., AS THEY WERE LITTLE
QUANTITIES. PON'T WORRY
ABOUT IT! IT MAKES LIFE 50
MUCH EASIER, AND IT REALLY
C(AN'T GET YOU INTO TROUBLE...

OH, T PON'T KNOW...
NEWTON SLANDERED
ME ALL OVER TOWN...

#4134
PLAGIARIST!

BEGIN WITH THIS BASIC EQUATION,
WHEN u 15 A FUNCTION OF x:

WHICH REALLY MEANS

fdu:fu’(x)dx=u+£

WHICH WE PO KNOW TO BE TRUE,
BY THE FUNDAMENTAL THEOREM!

NOW PUT ANOTHER FUNCTION v IN THE CHAIN,
WHERE v 15 A FUNCTION OF u. THEN AS BEFORE

dv = v'(uW)du

PLUG IN du = u’(x) dx TO GET

dv = V') u'(x) dx

WHICH 15 ANOTHER WAY OF WRITING
THE CHAIN RULE. IT 5AYS THAT

v+ C=

f v(Wwdu = f V') u'(x) dx

THERE 15 s0ME
NOTATION HERE
I DON'T QUITE
REMEMBER FROM
ALGEBRA 2...

WHY DOES THIS HELP?
BECAUSE IT ALLOWS U5
TO SIMPLIFY OrR TRANS-
FORM THE INTEGRAL ON
THE RIGHT INTO THE
ONE ON THE LEFT!! BY
SUBSTITUTING du FOR
u’(x) dx, WE GET A
MUCH SIMPLER-LOOKING
INTEGRAL!!!
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YOU MAY RECOGNIZE THIS
AS A SYSTEMATIC WAY TO
“GUESS AND CHECK” AS
ON P. 173.

Example 1: ruwo [ 2ecos 2 ae

SET u = t%, THEN du = 2t dt, AND
THE INTEGRAL BECOMES

I 2tcos (£)* dt = f cosu du

sinu+ C

sin(®)? + ¢

W

W

HERE 15 THE PROCEPURE, STEP BY STEP:

1. LOOK FOR AN INSIDE FUNCTION U Q. WRITE du = W'(E) dt (OR u'(x) dx,
WHOSE DERIVATIVE u’ ALSO APPEARS A% OR WHATEVER THE VARIABLE 15).
A FACTOR IN THE INTEGRAND.

30 EXPRESS EVERYTHING IN TERMS OF u. 4. TRY THE INTEGRATION WITH RESPECT
TO u. IF SUCCESSFUL, REPLACE u BY u(t)
IN THE ANSWER.
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Example 2. rw f V"4 9 dx

HERE u = x*+9 LOOKS LIKE A 600D
INSIDE FUNCTION, BECAUSE ITS DERIV-

ATIVE 15 4x%, AND WE SEE x? AS A
FACTOR IN THE INTEGRAND.

du = 4x’dx, 0 x’dx = }du

50

fx3V3x4+9 dx = %fumdu-—

OS¢ = % x*+ ¢ ¢ >

Example 3. rnp f uV2u - 3 du

SOMETIMES A SUBSTITUTION LOOKS UNPROM-
I15ING BUT WORKS ANYWAY. THIS INTEGRAND
DPOESN'T QUITE FIT OUR TEMPLATE, BECAUSE
THE FACTOR u 19 NOT THE DERIVATIVE OF THE
INSIDE FUNCTION. BUT LET’S TRY ANYWAY...

v=2u-3% u=3w+3%), du=3idv

NOW WE MUST EXPRESS EVERYTHING IN
TERMS OF v:

j uV2u -3 du = J. 1w+ 3)vm('§) dv =
1 3/2 172 1,2,.5/2 2., .32
;I V¢ 30 Tdy = z(g)v + 3(3)1) + C

5/2
BT sV e ¢

10

THIS SAME SUBSTITUTION WORKS GENERALLY WITH THE INTEGRAND u”(au + b)™ FOR ANY
POSITIVE INTEGER n AND ANY POWER m, AND ANY a, b, AND THEREFORE WITH P(u) (au + b)™
FOR ANY POLYNOMIAL P.
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Substitution and Definite Integrals

WHEN USING SUBSTITUTION IN A DEFINITE INTEGRAL, THE ENDPOINTS OF INTEGRATION MUST BE
ADJUSTED TO REFLECT THE SUBSTITUTION. IF F 15 AN ANTIDERIVATIVE OF f, THEN

b
f FWGNU'(x) dx =

a

THE ENDPOINTS a
AND b ARE REPLACED
BY u(a) AND u(b)
WHEN INTEGRATING
WITH RESPECT TO u.

u(b)
Fu®b)) - F(u(a)) =J f(u) du

u(a)

IT'S LIKE
TRIMMING

/4

Example 4. riv f z““ X dx

0
RECALL THAT

d 1
— (tan x) =
dx costx
LET u(x) = tan x. THEN du = dxz
cos“x

THE ENDPOINTS OF INTEGRATION WITH
RESPECT TO u WILL BE

tan (%) =1 AND tan O = O

AND THE INTEGRAL BECOMES

1

L 1
2 1.3
u“du = zu z -

(o]
. eX
Example 5. riv f =
-ln2
TRY u(x) = e THEN du = e*dx

THE NEW ENDPOINTS WILL BE
e"?=1 aw e =1

AND THE INTEGRAL BECOMES

1
du

1-u
172

arcsin 1 - arcsin (%) =

T
12

”-’
6

-

BY THE WAY, DON'T YOU
FIND IT ASTOUNDING

THE WAY Pl POPS UP IN
AN INTEGRAL INVOLVING
ONLY EXPONENTIALS?

NOT ESPECIALLY.
PASS ME A WRENCH,
WOULPD YOU?




MAKING A VARIABLE SUBSTITUTION WORKS A SORT OF SHAPE-SHIFTING OPERATION ON
INTEGRALS. IT’'S AMAZING, REALLY... A HORRIBLE-LOOKING INTEGRAL MAY TURN INTO
SOMETHING COMPLETELY DIFFERENT AND EVEN SIMPLE AND FAMILIAR!

o 2 g
tan“x
u? du

—— dx  BECOMES (u = tan x, du = dx/(cos*x)
J cosx J

sz dx  BECOMES J c;_y (y=1+x% dy = 2xdx)

J 1+x

x2V 1+ x dx BECOMES J‘tm-ta’% t72dt (t=14+x, dt = dx)

1+ 2

* t
€ _ 4t  sccomes j dv (v = et, dv = etdt)

THIS 15, IN FACT, THE MAIN IDEA BEHIND SUCCESSFUL INTEGRATION: GIVEN AN UNFAMILIAR
INTEGRAL, TINKER WITH IT UNTIL IT LOOKS LIKE ONE YOU RECOGNIZE.

HM... T WONDER
WHAT ELSE 15 IN
THAT TOOL BOX...
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Integration by Parts

15 BASED ON THE PRODUCT RULE
FOR DIFFERENTIATION:

-
=

ww) = uw + vu” OR

duv) = udv + vdu

INTEGRATING 6IVES

uv=fudv+fvdu

WHICH SOME INTEGRAL
MECHANIC SAW WAS
MORE PRODUCTIVE IF
REARRANGED LIKE 50:

Example 5. FINDI3x21nx dx

SUBSTITUTION DOESN'T HELP HERE...
BUT WE DO SEE A CANDIDATE FOR dv:

3x2dx = d(x?)
ACCORDINGLY, TRY
v(x) = %%, dv = 3x%dx

-
=

ulx) = lnx, du

f?lenx dx
X Inx —f

1
;dx

uv —jvdu

3,1
(x )(;) dx

%0

-
=

"

X lnx -

"

x% dx

]

Llnx - 3x° + €

ONE
INTEGRAL...

IN TERMS OF
ANOTHER!

WE CAN CHECK THE ANSWER BY
DIFFERENTIATING:

4 Pl x -

dx

-
=

1.2
—S'X)

"

2 X’
3x%nx + =— - x*
Y

3x%inx + x* - x*
3x%ln x

THIS 15 THE ORIGINAL
INTEGRAND.

I CAN'T WAIT
TO TRY THIS
ONE OUT...




Example 6. FINDI In x dx

YOU MAY WONDER WHERE v 15, BUT IN FACT, THIS 15 VERY
MUCH LIKE THE PREVIOUS EXAMPLE. JUST SET dv = dx!

BUT I'M HAVING
1 %0 MUCH FUN
u=lIlnx, du=—-, v=x DOING THIS...
x I $TRONGLY
AND RECOMMEND THAT
YOU CHECK ALL
1 ANSWERS BY
Inx dx = xlnx - | x(3) dx = | DIFFCRENTIATING!

xlnx—fdx: xlnx -x + C

Example 7. FINVJ xcos x dx

HERE WE HAVE A CHOICE OF dv: EITHER
cos xdx = d(sinx) OR xdx = d($x®).

YOU SHOULD CONVINCE YOURSELF THAT THE
LATTER OPTION ONLY MAKES THINGS WORSE...
50 INSTEAD WE 60 WITH THE FIRST ONE:

u=x du=dx, dv = d(sinx), v = sin x, AND THEN

fxcosxdx: xsinx-fsinxdx: xsinx + cosx + €

Example 8. o f x*sin x dx
PROCEED AS IN EXAMPLE 7:

u=x% du-= 2x dx,
dv = sinxdx, v = -cos x

fxzsin x dx = -x*cos x - I 2x (-cos x) dx =
% 2‘
{ (X}

-x%cos x + 2xsinx + 2¢cosx + €

-x%cos x + ijcosxdx =

Tl—“‘5 15 THE P S
INTEGRAL FROM |
EXAMPLE 7...
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EXAMPLES 7 AND 8 SHOW HOW TO
HANDLE THESE INTEGRALS (n BEING
A POSITIVE INTEGER):

fx“sinxdx OR fx“cosx dx

WE “BOOTSTRAP” OUR WAY UP:
INTEGRATION BY PARTS PRODUCES A
SIMILAR INTEGRAL, BUT WITH THE
FACTOR x" ™' IN PLACE OF x"... WE
AGAIN INTEGRATE BY PARTS... AND 50
ON, UNTIL THE INTEGRAND 15 sin x
OR cos x ALONE.

wow! IT
REALLY

Example 9. riw f sinx dx

OUR ONLY HOPE 15 TO TRY
u=sinx, du= cos xdx,

dv = sin xdx, v = -cos x

IN WHICH CASE

Isinzx dx = -sinx cos x +jcoszx dx

THE SECOND INTEGRAL, WITH cos®x,
LOOKS JUST AS BAD AS THE FIRST ONE...
BUT cos?x = 1 - sin®x... 0 WE TRY
PLUGGING THIS INTO THE RIGHT-HAND
INTEGRAL AND REARRANGING:

Zfsinzx dx = -sinx cos x +fdx

= -sinxcosX + x + C

%0

fsinzx dx = J(-sinxcosx + x) + €

20%

= -1(cos® x - sin® 1
= -z(cos®x -sin"x) + 3

= 19 - inZ 1
= -z0 -25in" %) + 3

= sin’x - 3 + 3 = sin®x

Nl

THE SAME TRIG IDENTITY ALLOWS
U$ TO BOOTSTRAP OUR WAY TO
ALL INTEGRALS OF THE FORM

j sin"x cos"x dx.




Problems

READY, SET... INTEGRATE!

x
. d
1f1+x2x

Z.J x(1 + xH) 2 dx

3.J sint e"* ¢ dt

4.J tan u du

HINT: EXPRESS THE TANGENT IN TERMS OF
SINE AND COSINE.

5.I x23x - N V?% dx

6.IV1-x2dx

HINT: SUBSTITUTE x = cos €, USE A TRIG6
IDENTITY, AND REFER TO EXAMPLE 9.

PON'T FORGET TO CONVERT THE ANSWER
BACK INTO AN EXPRESSION INVOLVING X.

o1

7.J P+ x + NDW2x + 5 ) dx
0

8. | e*sin x dx
o

9. J tet dt

5
10. I (In x)* dx
1

11.I (In x)? dx

X
12. f arctanv dv

]

HERE 15 A GRAPH OF THE NATURAL LOGARITHM,
y = In t. REMEMBER, THIS 15 ALSO THE GRAPH
t = eY, BECAUSE THE LOG AND THE EXPO-
NENTIAL ARE INVERSE FUNCTIONS. THIS IMPLIES
THAT THE SHADED REGION HAS AREA

SEE THAT? THE AREA UNDER THE LOGARITHM
GRAPH 15 THE AREA OF A RECTANGLE MINUS
THE SHADED AREA... OR:

a Ina
flntdt:alna—f e dy
o

1
=alna-a+1

THIS AGREES WITH WHAT WE FOUND BY
INTEGRATION BY PARTS.

X
13. APPLY THE SAME IDEA TO j arctanv dv
y (o]

arctan x -

YOUR ANSWER MAY LOOK DIFFERENT FROM WHAT
YOU FOUND IN PROBLEM 12. IF 50, REFER TO THIS
TRIANGLE TO WRESTLE IT

INTO SHAPE...
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Chapter 13
Using Integrals

THIS STUFF REALLY 15 600D FOR SOMETHING, YOU KNOW?

TnrecraLs are
EVERYWHERE... YOU
ONLY NEED EYES TO
SEE THEM.

IN THIS CHAPTER, WE'LL
FIND INTEGRALS AT
WORK (AND AT PLAY?)
IN GEOMETRY, PHYSICS,
ECONOMICS, STATISTICS,
BUSINESS... JUST ABOUT
ANYWHERE THAT THINGS
PILE UP.

DID T MENTION THAT
INTEGRALS UNLOCK

THE SECRETS OF THE
UNIVERSE?
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Areas and Volumes

WE (AN FIND THE AREA BETWEEN TWO 6RAPHS BY INTEGRATING THE DIFFERENCE
BETWEEN THE TWO FUNCTIONS.

WOW! NOW WE
(AN FIND THE
51ZE OF YOUR
BALD $POT!!

Example: rine i area

BETWEEN THE PARABOLAS

=F(x)
y=Ff) = x2+1 AND v
y = qx) = -2x* + 4.

SOLUTION: FIRST FIND THE POINTS

WHERE THE CURVES CROSS, I.E., THE

VALUES OF X WHEN

xt+1 = -2x*+ 4. ! y=9C)

THIS IMPLIES

3x%= 3 OR x = %!

NOW INTEGRATE g - f FROM -1 TO 1:

1 1
f 9(x) - f(x) dx =f -3x% + 3 dx
-1 -1

AT LEAST WE
KNOW HOW Bl6
ITS FACE 15!

1
= (—x3+3x)\ = “1+32-0-3)
= 4




IN THE REAL WORLD, WE MIGHT SEE
SOMETHING LIKE THIS: HERE 15 A
VELOCITY FUNCTION v = v(t) THAT
DESCRIBES A CAR ACCELERATING FROM
A STOP, BEGINNING AT THE ZERO-
POINT OF THE ROAD. THE AREA UNDER
THE CURVE BETWEEN O AND T,

T
I v(t) dt
(]

I5 THE CARS POSITION AT TIME T.

IF AN AUDI (A) AND A BMW (B) BOTH PULL AWAY FROM THE SAME $TOP $I6N
SIMULTANEOUSLY, THE GRAPHS OF THEIR VELOCITIES MIGHT LOOK LIKE THIS:*

SPEED PICKS
UP AND THEN
LEVELS OFF!

THEN THE ($I6NED) AREA
BETWEEN THE GRAPHS v, AND

vg 15 HOW FAR THE AUDI 15
AHEAD OF THE BMW. THAT’S

;
f VA(E) - vg(t) dt
[

(WHICH WOULD BE NEGATIVE IF
THE BMW WERE AHEAD).

y
‘ y = v(t)
i
0 T
y
y = UA(t)
y = Ug(t)
— ¢
(0]
y
y = 'UA(t)

7'.

*THIS ASSUMES THAT THE BMW ACTUALLY CAME TO A COMPLETE STOP. I HAVE NEVER WITNESSED THIS

HAPPENING MYSELF, BUT T REMAIN HOPEFUL THAT IT MAY HAPPEN SOMEDAY.
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IN A SIMPLE CASE, THE AUDI'S VELOCITY MIGHT BE

"

V4 (£) = 3t M/SEC FOR THE FIRST 10 SECONDS

20 M/SEC AFTER t = 10 SEC.

"

AND SUPPOSE THE BMW’S VELOCITY 15:

vg(t) = 5t M/5EC FOR THE FIRST 4 SECONDS

20 M/SEC AFTER t = 4

"

[

IN THE EARLY GOING, THE BMW OUTPACES THE
AUDI...

20

i
i
L
1
1
H
1
EH
1
i
1
1
1
i
1
1
i
1
1
¥
1
1
>

N

20 4--------

0 [ SR ——

4T

ey

BUT AS T 6ETS LARGE, THE AUDI PULLS AHEAD.
THE DARK AREA ON TOP WILL EVENTUALLY
EXCEED THE LIGHTER GRAY AREA.

30 femmm e

20 d-oeee

-k [ Sanp——
3
-

THE QUESTION 15: WHEN?

HM. T THOUGHT THE
QUESTION WAS, WHY
DO I DRIVE A RUSTED-
OUT sUzLKI?
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WHEN T 2> 10 SECONDS, THE CARS’
POSITIONS ARE

10
sx(T) =f 3t dt + 320(T -10)
o

4
sg(T) = j 5t dt + 20(T - 4)
o

THE INTEGRAL
FOR THE “TRI-
ANGULAR” PART
WHEN SPEED 15
PICKING UP...

THE REST FOR
THE “RECTANG-
ULAR” PART!

EVALUATING THE INTEGRALS GIVES:

10

si(T) = 2¢%|  + 30(T -10)
(0]
= 150 + 30T - 300
= 30T - 150
4
s¢(T) = 2¢*| + 20(T-4)
o
= 20T - 40

THE AUDI PASSES THE BMW WHEN
THEIR POSITIONS ARE EQUAL:

sA(T) = s(T)

30T - 150 = 20T - 40
10T = 110

T = 11 scconps




An Area Using Polar Coordinates

POLAR COORDINATES, WRITTEN (r, ©), ARE AN ALTERNATIVE TO ORDINARY “RECTANGULAR”
COORDINATES X AND y. ANY POINT P IN THE PLANE 15 UNIQUELY SPECIFIED BY ITS DISTANCE r
FROM THE ORIGIN AND THE ANGLE © BETWEEN THE HORIZONTAL AXIS AND THE LINE $EGMENT OP.

(r,0 THE RELATIONSHIP BETWEEN

THE COORPINATES 15

} rt= x*+y? tanG:% (0<6<2m)

WE CAN USE THE VARIABLE r TO DERIVE THE AREA OF A CIRCLE BY INTEGRATION.

-3
+
g
3

GIVEN A CIRCLE OF RADIVS R, SUBDIVIDE THE
RADIUS INTO MANY SHORT INTERVALS OF
LENGTH Ar. THESE DIVIDE THE CIRCLE INTO
MANY NARROW RINGS OF THICKNESS Ar.

IF r; 15 THE RADIUS OF A RING, THEN THE
RING HAS AREA = 2mr;Ar. (IMAGINE THE
RING A% A THIN RIBBON THAT YOU COULD
STRAIGHTEN OUT INTO A LONG, NARROW
RECTANGLE, WITH LENGTH ABOUT 2mr AND
HEIGHT Ar.)

N Ar

AREA OF RING = 2mr; Ar

~Y HEY! DON'T EAT
THE EXAMPLE!

THE WHOLE CIRCLE THEN HAS AN
APPROXIMATE AREA OF D 21, Ar,
AND AS Ar—O, THIS BECOMES

k R
f 2nr dr = ﬂrz' = 7R?
0 ]
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HEARING THAT A CIRCLE’S
AREA 15 mr? EVER SINCE
GRADE SCHOOL. BUT WE
HAD TO WAIT FOR
(ALCULUS TO PROVE IT!
ROUND THINGS ARE THAT
MUCH MORE DIFFICULT
THAN SQUARE THINGS.

MOST OF U$ HAVE BEEN 1 ¢CAN'T WAIT TO
TAKE CALCULVS...

HERE’S ANOTHER ROUND THING WE CAN CALCULATE NOW:

Volume of a SPhere: a spuere  WELL, THE WAY OF THE INTEGRAL 15 TO
15 ROUND EVERY WHICH WAY! HOW DO WE CUT IT INTO 5LICES. LET’S TRY THAT...
DEAL WITH THAT?

EACH SLICE HAS A CURVED EDGE (HARD TO NOW ADD THE VOLUMES OF ALL THE DISKS,
(ALCULATE THE VOLUME!), 50 WE APPROXI- LET THEIR THICKNESS 60 TO ZERO...

MATE EACH SLICE BY A PLAIN DISK WITH A

STRAIGHT SIDE.

UM... WHAT’S
THE VOLUME
OF A DISK?
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SAY THE SPHERE HAS RADIVS R
AND TS CENTER AT THE ORIGIN.
ALONG THE x-AXIS, SUBPRIVIDE
THE INTERVAL [-R, R] BY
POINTS {Xp, X1y » Xjpeee » X}
INTO MANY SHORT INTERVALS
OF LENGTH Ax. THEN A (RO%5-
SECTION THROUGH THE POINT X;

HAS RADIUS VRZ - x2, BY THE
PYTHAGOREAN THEOREM.

A DISK’S VOLUME 15 THE PRODUCT OF ITS
HEIGHT TIMES THE AREA OF ITS BASE. HERE
THE BASE HAS AREA

T(VRZ - x2)? = m(R? - x)
ITS HEIGHT 15 Ax, 50 THE VOLUME 15

BASE -HEIGHT = (TR%*- mx;2)Ax

ADDING TOGETHER THE VOLUMES OF
ALL pIsks 6IvES

n
Z (mR* - mx;*) Ax
i=1

LETTING Ax— O PROPUCES AN INTEGRAL!

SOMETHING

ELSE YOV O.K., T ADMIT
-R “KNEW” IT... IT’% JUsT
SOMETHING 1

!
ALREADY! HEARD FROM

TEACHERS IN
SCHOOL!

TR x

]

-R -R

"

2R - 2nR? = %ﬂka

n



WHAT WORKS FOR
THE SPHERE ALSO
WORKS FOR MANY
OTHER VOLUMES THAT
(AN BE APPROXIMATED
BY A STACK OF DISKS,
ESPECIALLY SOLIDS
OF REVOLUTION
MADE BY SPINNING A
CURVE AROUND AN
AXIS.

CONE@: A cONE 15 MADE BY ROTATING THE LINE y = ax AROUND THE y-AXIS. IF THE
HEIGHT OF THE CONE 15 H, THEN THE RADIUS OF THE BASE 15 H/a. WE MAKE SLICES
PERPENDICULAR TO THE y-AXIS AND INTEGRATE WITH RESPECT TO y. AT A POINT y;, THE
(RO%5-SECTION HAS RADIUS y;/a.

THEN THE CIRCLE'S AREA 15 T (y,/a)?
AND A THIN CYLINDER OF HEIGHT dy
HAS VOLUME

a2

m dy

INTEGRATING THE SLICES GIVES THE CONE’S
VOLUME:

ANOTHER FORMULA W, 5
I THOUGHT T KNEW... ot

THE CONE’S BASE HAS RADIUS H/a, 50
ITS AREA 15 S (H/a)®. THE VOLUME 15
THEREFORE ONE-THIRD THE AREA OF THE
BASE TIMES THE HEIGHT.
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Paraboloid: tuis soLiv 15 cencraTED BY ROTATING THE PARABOLA y = ax?

AROUND THE y-AXIS. WHAT 15 ITS VOLUME UP TO A HEIGHT H?

LET’S WHIZ THROUGH THIS ONE: A (RO%5-

SECTION THROUGH y HAS RADIVS V (y/a)
AND AN AREA OF (my/a). 50 A THIN SLICE

OF DEPTH Ay HAS VOLUME (Ty Ay /a),
AND THE VOLUME OF THE PARABOLOID 15

H
2 |H
- v, -1y Yy
V= I 2 dy = 3 a |, Ay
(o]
_ 1 TH?
2 a
CAN YOU SHOW THAT THIS 15 HALF THE e
AREA OF THE BASE TIMES THE HEIGHT? ‘ /

WHAT 15 THE RADIUS OF THE BASE?

i

Vy/a

SOMETIMES IT 15 MORE CONVENIENT TO FIND THESE ROTATIONALLY SYMMETRICAL VOLUMES
BY INTEGRATING THE VOLUMES OF THIN CYLINDRICAL SHELLS INSTEAD OF DISKS. FOR
INSTANCE, IN THE PREVIOUS EXAMPLE, WE COULD HAVE—BUT WAIT... WHAT’S THIS—?

- -
P .




ALL RIGHT, LET'S DO A DIFFERENT EXAMPLE... HOW DEEP DUNNO... T CAN'T
15 IT? READ THE DIPSTICK...

Example

AN EXPLOSION AT A GLUE FACTORY BURIES THE SURROUNDING COUNTRYSIDE IN A LAYER OF
VISCOUS YELLOW GLOP IN A SYMMETRICAL, CIRCULAR MOUND. MEASUREMENTS REVEAL THAT
THE DEPTH OF THE GLUE PIMINISHES WITH DISTANCE FROM THE CENTER. IN FACT, P(r), THE
DEPTH IN METERS AT A DISTANCE OF r KILOMETERS, TURNS OUT TO FOLLOW A FORMULA:

D) = 2¢ %" merers

WHAT 15 THE TOTAL VOLUME OF
G6LUE, IN CUBIC METERS, WITHIN
A RADIVS OF 5 KILOMETERS?

THE GLUE FORMS A VOLUME OF REVOLUTION, BUT INSTEAD OF INTEGRATING OVER y, FROM
TOP TO BOTTOM, LET’S INTEGRATE OUTWARD, WITH RESPECT TO r.




BETWEEN TWO NEARBY DISTANCES r AND r + dr, THE DEPTH OF GLUE 15 NEARLY CONSTANT,

NAMELY 2¢7%" METERS. THUS THE NARROW RING OF GLUE BETWEEN THESE TWO PISTANCES
HAS APPROXIMATE VOLUME

dV = 2mr-(2e” %" 2) -10% dr cuBic METERS.*
dr

(A5 ON P. 209, THINK
OF THE RING AS A THIN,
FLAT NOODLE THAT (AN
BE UNCURLED TO FORM
A RECTANGULAR BLOCK.)

2e7%"" I

THE VOLUME OUT TO 5 KM 15 THIS INTEGRAL: ALL RIGHT,

5 “EXCALIBUR,”
V(5) = 10° f 4mre* dr ONWARD!
]

"

"

5
2
(417)106] re " dr
0

WE FIND THIS BY A STRAIGHTFORWARD SUBSTITUTION

u=-3r% du=-brdr
u@) = 0, u(g) = -75

THEN
5 2 -75
4n1o‘f re? dr = 4n1o*‘f -(1/6)e" du
(o] (0]
-75
= -(2/3)10% e
(0]

W

2/9)10¢m % - %)

APPROXIMATELY 2.1 MILLION
CUBIC METERS OF 6LUE.

"

*10® 15 A CONVERSION FACTOR, NECESSARY BECAUSE WE MEASURED BOTH r AND Ar IN KILOMETERS, AND THE DEPTH IN
METERS. 1 KM = 10% M.
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Improper Integrals

WE JUST CALCULATED HOW MUCH GLUE LANDED WITHIN A RADIUS OF 5 KM OF GROUND
ZERO... BUT WHAT IF WE WANTED TO KNOW THE TOTAL VOLUME OF GLUE OUT THERE?

WE'D LIKE TO WRITE THAT AS AN INTEGRAL WITH AN INFINITE LIMIT:

o0 -
2 .
10‘] 41'rre'3r dr , A 6UY (AN
0o ‘ Py, DPREAM,

CAN'T HE?
(WE IMAGINE THAT THIS PARTICULAR
GLUE FACTORY 4ITS ON AN
INFINITE, FLAT PLANE, NOT THE
CURVED SURFACE OF THE EARTH.)

AN INTEGRAL INVOLVING INFINITY 15 ¢ALLED AN IMPROPER INTEGRAL, AN UNFORTUNATE
NAME, SINCE IT’S JUST AS GOOD AS ANY OTHER INTEGRAL, REALLY.
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AFTER THE GLUE BLAST, THE VOLUME OF
G6LUE (IN CUBIC METERS) WITHIN A RADIVS
OF R KM WAS

R
2
10‘J‘ 4mre 2" dr
)

2 R
—(2/3)m10% 7"
(]

VR)

]

2
(2/2)m10¢ (1 - %)

"

A5 R— 0o, THE SECOND TERM G6OES TO ZERO, 50

lim V(R) = (2/3)m10°¢

A FINITE AMOUNT OF
STUFF SPREAD OVER
AN INFINITE REGION!

—-— ST

o
=22 NG
>

. iy

WE SAY AN IMPROPER INTEGRAL CONVERGES
WHEN THIS LIMIT 15 FINITE:

X
lim f F(£) dt

a

IN THAT ¢AsE WE DEFINE THE IMPROPER
INTEGRAL TO BE THIS LIMIT:

If(t) dat = ’l‘irgoff(t) dt

217

AS WE JUST %AW, THE INTEGRAL
FROM THE GLUE FACTORY EXAMPLE
CONVERGES.

oo

2
10‘f 4mre® dr =
)

(% m)10% cUBIC METERS.

AT LEAST SOME GOOD CAME
OF THIS HORRIBLE TRAGEDY:
BETTER UNDERSTANDING...

LET’S HOPE
IT STICKS...




oo

Examples: if BY DEFINITION, THIS INTEGRAL 15 THE LIMIT:
t

HOW CAN SOMETHING
WITH AN INFINITE BASE
HAVE FINITE AREA?

x x
lim d—t = lim(-—% ).—.

X-00 tz X—00

1 1

im (-~ +1) =1
X—=00 x

THE TOP DROPS
DOWN PRETTY

FAST...
N

(e o]

E _ limUnx-In1) = limdnx = 0o
1 t X—00 X—00

THIS INTEGRAL DOES NOT CONVERGE. THE TOTAL AREA BELOW
THE TAIL OF THE GRAPH 15 INFINITE. SOME PEOPLE SAY A
GRAPH LIKE THIS HAS A FAT TAIL.

IT 15 60 MUCH
MORE SPACIOUS
IN HERE!
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IN THE LAST TWO
EXAMPLES, INFINITY
WAS A LIMIT OF INTE-
GRATION. IMPROPER
INTEGRALS ALSO
INCLUPE THOSE ON A
FINITE INTERVAL ON
WHICH THE INTEGRAND
“BLOWS UP” TO
INFINITY.

INTEGRALS LIKE THIS ONE, FOR EXAMPLE:

1
dt
2
|t

THE INTEGRAND ISN'T DEFINED AT ONE
ENDPOINT OF INTEGRATION—BUT THIS LIMIT
MIGHT EXIST:

i [
b Z
X
LET’S FIND OUT:

1 1
limf -d—z = lim(-¢+]) =
X—0 t x—-0

X (0]
. 1y _
}‘gn (-1+2) = 00

THIS INTEGRAL DOES NOT CONVERGE.
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BUT

I
o Vt

THIS INTEGRAL DOES CONVERGE; THE
AREA BETWEEN THE LINES y = O AND
y =115 FINITE, EVEN THOUGH THE
FUNCTION BLOWS UP!

1
=2\/TL‘—| =2
(0]

DO YOU SEE THAT
THIS 15 LIKE THE

FIRST EXAMPLE ON
THE PREVIOUS PAGE,
TURNED SIDEWAYS?




Density

AS WE ALL KNOW, A FEATHER-FILLED PILLOW, ON THE OTHER HAND, A CUBIC METER OF
EVEN A BI6 ONE, DOESN'T WEIGH MUCH. LEAD HAS A MASS OF 11,340 KILOGRAMS,
MORE THAN TEN TONS (/).

LEAD AND FEATHERS HAVE DIFFERENT DENSITIES. A 6IVEN VOLUME OF LEAD HAS A LARGER
MASS THAN A GIVEN VOLUME OF FEATHERS (OR WATER, OR COPPER, BUT NOT 6OLPD! 6OLD 15
EVEN DENSER THAN LEAD).

AREN'T YOU
GRATEFUL IT
ISN'T 60LD?

B.C. (BEFORE CALCULUS), WE WOULD DEFINE THE DENSITY OF AN OBJECT AS ITS MASS
DIVIDED BY ITS VOLUME.
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BUT NOW WE’RE MORE

SOPHISTICATED THAN THAT! LIKE A

NOW WE CAN IMAGINE LEAD-
MATERIALS WITH VARIABLE COATED
FEATHER?

DENSITY: STUFF WHERE
THE MATERIAL 15 MORE OR
LESS DENSE, DEPENDING
ON WHERE YOU $AMPLE
IT...

THE ATMOSPHERE, FOR EXAMPLE... AIR THINS OUT A% ALTITUDE INCREASES... THE DENSITY
AT SEA LEVEL 15 FAR GREATER THAN AT 5,000 METERS ABOVE...

AND THIS MEANS
WHAT, EXACTLY?
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HERE 15 A SQUARE

\\\-“\{\

COLUMN OF AIR, ONE
METER ON A SIDE.

L

CALL M(x) THE TOTAL
MASS OF AIR FROM THE
GROUND UP TO x. THEN A
SLICE OF DEPTH dx HAS
MASS dM AND VOLUME
M-M-dx = dx m.

dx

IF THE SLICE 15 THIN,
THE AIR IN IT HAS UNI-
FORM DENSITY, AND

_ M
Px) = Tx
50
M= | D(x)dx

THE TOTAL MASS 15 THE
INTEGRAL OF THE
DENSITY. THIS AMOUNTS
TO ADDING UP THE
MASSES OF ALL THESE
“PlzzA BOXES” OF AIR.

7\

MEASUREMENTS OF AIR SAMPLES SHOW
THAT ATMOSPHERIC DENSITY P(x) AT
HEIGHT x METERS 15

D(x) = 1.28e9-000124x 0

50 THE TOTAL MASS OF A 1-METER

SQUARE COLUMN OF AIR 10,000 METERS
TALL 15

10,000
"‘ 1.289—0'000124" dx =
o

M=

10,000

1.28) (—

_ -0.000124x
0.000124 ¢

(o]

]

-2980 + 10,220

7,340 «iLocrams OF AR

|l

WHERE’S THE
PizzA?
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Other Dense Things

THE SAME APPROACH WORKS WITH
POPULATION DENSITY. IT VARIES
FROM PLACE TO PLACE.

&
/

9

o V&

sUPPOSE EASY STREET RUNS FROM ONE SIDE OF TOWN TO THE OTHER. WE ¢AN COUNT
THE NUMBER OF RESIDENTS IN EACH BLOCK TO GET A POPULATION DENSITY IN TERMS OF
PEOPLE PER BLOCK. BECAUSE OF THE HIGH-RISES IN THE CENTER AND THE CROWDED
SLUMS AT THE OUTSKIRTS, THIS DENSITY VARIES. (FOR SIMPLICITY, LET'S ASSUME THERE
ARE NO (RO%5 STREETS WHERE THE DENSITY WOULD BE ZERO.)

WE COULD MEASURE THE DENSITY ALONG A SHORT SLICE HEY, IT'S My OLD

OF EASY STREET... AND A SHORTER ONE... AND
SHORTER... UNTIL WE'RE THINKING OF POPULATION :ﬁf,:g gb'gg,’,"_,‘\”"
DENSITY AS VARYING CONTINUOUSLY ALONG .

THE STREET.




THE POPULATION DENSITY FUNCTION

OPERATES IN THE SAME WAY A% %’3(% ;fhﬁé
MASS DENSITY. IF P(x) 15 THE
NUMBER OF PEOPLE LIVING GONE TOO FAR

BCTWEEN -00 AND X (I.E., THIS TIME...
ANYWHERE WEST OF x), THEN A
SLICE AT POINT X OF WIDTH dx
CONTAINS dP PEOPLE, AND

Px) = @
d

x
%0

P =fl7(x) dx

IF a AND b ARE TWO STREET ADDRESSES, TI-IENI P(x) dx = P(b) - P(a) 15 THE NUMBER
OF PEOPLE LIVING BETWEEN POINTS a AND b.

IN PARTICULAR, INTEGRATING FROM (BEYOND) ONE END OF THE STREET TO THE OTHER,

oo

_ THE TOTAL POPULATION .
PG dx = " asy sTRECT, P

- 00
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IF n PEOPLE LIVE ON A PART et
OF EASY STREET, THEN n/N .

15 THE FRACTION THEY MAKE
UP OF THE TOTAL POPULATION
N. THIS MEANS THAT THE
FUNCTION p(x) = P(x)/N
HAS THESE PROPERTIES:

LATION WITH APDRESSES
BETWEEN a AND b.

{ FRACTION OF THE POPU-

THAT LATTER NUMBER 15 ALSO INTERPRETED AS THE PROBABILITY THAT A RANDOMLY
CHOSEN PERSON LIVES BETWEEN a AND b.

HI THERE!
WHAT’S YOUR
ADDRESS?

A PROBABILITY DENSITY (Or PROBABILITY DISTRIBUTION) 15 ANY NON-NEGATIVE
FUNCTION p WITH

” ez ALt [PROBABLY Nor,..]
p(x) dx = 1 WILL YOU EXPLAIN ”
oo THIS MORE?

EVERY “RANDOM VARIABLE"—
MEANING A RANDOM SYSTEM
WITH NUMERICAL OUTCOMES,
SUCH AS BLINDLY CHOOSING A
RESIDENT OF EASY STREET AND
ASKING FOR AN ADDRESS—HAS
A PROBABILITY DENSITY p. THE
ENTIRE FIELD OF STATISTICS 15
BASED ON PROBABILITY
DENSITIES.

225



More Uses for Integrals (cuickic version:
IN PHYSICS5, WHEN A CONSTANT

o 4, e work vone (WG = FORCE = DISTANC(E

15 THE PRODUCT

0 d
BUT WHAT IF THE FORCE
VARIES WITH POSITION?

BE RIGHT BACK. I'M—
ER—FORCED TO TAKE
A SHORT BREAK...

(] d

b
YOU GUESSED IT: IF F(x) 15 THE FORCE EXERTED AT POINT X, THENI F(x) dx 15 THE
WORK DONE BETWEEN a AND b. a

OVER A SHORT

INTERVAL dx, THE %ET‘T'E.;‘;’QY:.JS;,YW DUNNO... BUT
FORCE 15 NEARLY IN PHYSICS ALWAYS 0’ TTF'O'5B‘2NAF ;fo'?z‘f
CONSTANT, THE BLOCKS OR BALLS? oL oc
WORK ON THAT

INTERVAL 15

F(x)dx, ETC.,

ETC., ETC....
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SPEAKING OF FORCE, WATER EXERTS ONE. AT ANY DEPTH, THE WEIGHT OF WATER ABOVE
PUSHES IN ALL DIRECTIONS... THE DEEPER YOU 60, THE HARDER IT PUSHES BECAUSE OF THE
INCREASED WEIGHT ABOVE.

WATER PRESSURE 15 THE FORCE
PER UNIT AREA, MEASURED IN
UNITS CALLED KILOPASCALS (kPa).
(ONE KILOPASCAL 15 1000 NEWTONS
PER SQUARE METER.) AT DEPTH x,
THE PRESSURE 15 GIVEN BY

P(x) = 9.8 x kPa

SUPPOSE A DAM HOLDS BACK A MASS OF WATER. AT ANY DEPTH X, THE PRESSURE 15 CONSTANT
ALONG A THIN HORIZONTAL STRIP OF THICKNESS dx. THE FORCE ON THE SLICE 15 THE PRES-
SURE TIMES THE AREA OF THE 5LICE. THAT AREA 15 W(x) dx, WHERE W(x) 15 THE LENGTH OF
CURVE OF THE DAM AT THAT DEPTH. IF F(x) 15 THE TOTAL FORCE FROM O TO x, THEN

dF = 9.8xW(x) dx

al I/ /”/
R

IF A DAM HOLD5 BACK WATER TO A o

DEPTH OF D METERS, THEN THE TOTAL AL AND THEY'RE

FORCE ON THE DAM 15 3 e USUALLY PRETTY
3 W | coov AT 1T, TOO!

p
f 9.8 xW(x) dx KILONEWTONS
0

INTEGRATION ENABLES ENGINEERS TO
AS5ESS STRES5ES ON DAMS, BRIDGES,
AND OTHER S$TRUCTURES.
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Problems

1. IN A PROBLEM ON PAGE 124, WE GAVE A FORMULA FOR THE
VOLUME OF WATER IN A HEMISPHERICAL BOWL. DERIVE THAT
FORMULA. IF THE WATER 15 P UNITS DEEP, BEGIN BY FINDING
THE VOLUME OF THE BOWL ABOVE THE WATER, OR

R-P
f T(R? - y?) dy
(o]

SUBTRACT THIS FROM 2mR?, THE VOLUME OF THE
HEMISPHERE, TO FIND THE VOLUME OF THE WATER.

y
1
2. FIND f In x dx 3. (ALCULATE THE VOLUME
o OF THE PARABOLOID ON -H
. P. 213 BY USING CONCENTRIC
HINT: TO FIND lim xin x, CYLINDERS INSTEAD OF DISKS. :
LET y = 1/x AND USE :
LHBPITAL'S RULE TO FIND ) ;
y = ax — :
lim In 1/y) — ---5~~ ?
y—00 y ;«fw i
i i
P , :
e r H/a

4. ROTATE THE CURVE y = 1/x AROUND THE x-AXI5 TO MAKE A SORT OF
“INFINITE TRUMPET.” WHAT 15 IT$ VOLUME TO THE RIGHT OF x = 17

300

5. AN IDIOT ENGINEER DESIGNS A

T PERFECTLY FLAT, VERTICAL, TRAPEZOIDAL
DAM (CURVED 15 MUCH STRONGER!) 3200
METERS ACROSS AT THE TOP, 200 METERS
AT THE BOTTOM, AND 200 METERS HIGH.
IF IT HOLDS BACK A BODY OF WATER 175
METERS DEEP, WHAT 15 THE TOTAL FORCE
OF THE WATER ON THE DAM?

200
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Chapter 14
What'’s Next?

Reaver, THIS BOOK 15
ONLY THE BEGINNING...
THERE’S 50 MUCH MORE
YOU ¢AN DO WITH
CALCULUS. IT'S A POWER-
FUL TOOL, USED IN ALL
THE SOCIAL, BIOLOGICAL,
AND PHYSICAL SCIENCES,
ENGINEERING, ECONOMICS,
AND STATISTICS, AND IT5
IDEAS HAVE BEEN EX-
TENDED BY MANY GEN-
ERATIONS OF MATHE-
MATICIANS SINCE NEWTON
AND LEIBNIZ.

Caution: Road
Work Ahead

AT e HERE ARE A FEW MORE ADVANCED TOPICS
YOU MAY EXPECT TO ENCOUNTER ALONG
THE WAY:

229



Differential Equations

BESIDES PISCOVERING CALCULUS,
NEWTON ALSO LAID POWN A
FAMOUS PHYSICAL LAW RELATING
FORCE AND VELOCITY:

-
F T (mv)

ANY EQUATION THAT CONTAINS
DERIVATIVES, A5 THIS ONE DOES,
15 ¢ALLED A DIFFERENTIAL
EQUATION.

ANOTHER DIFFERENTIAL EQUATION 15 HOOKE’S LAW, OR THE SPRING EQUATION. IF A MASS
m 15 DISPLACED X UNITS FROM THE SPRING’S NEUTRAL POSITION AND RELEASED, THEN AT
ANY TIME ITS ACCELERATION 15 PROPORTIONAL TO ITS DISPLACEMENT:

x(t) = %x(t) OR, 6IVEN NEWTON'S FIRST LAW, F = kx

(k 15 A CONSTANT DEPENDING ON THE STIFFNESS OF THE SPRING.)

NEUTRAL
POSITION

THE UNIVERSE 15 DESCRIBED BY DIFFERENTIAL
EQUATIONS, AND SOLVING THEM
15 JOB #1 IN SCIENCE.

ek g“" Ay

% _ T.dv-
Y k‘QC“‘ A‘ “Txy)
Avn= V- -0 To)g L(N(3%)
0.K., T THINK L i “’% IIng -~
I'VE OPTIMIZED S <
MY CLASS ‘ f '
SCHEDULE... = ——




Many Variables

THIS DESCRIBES FUNCTIONS THAT VARY OVER
REGIONS OF SPACE, INSTEAD OF JUST ALONG
THE x-AXIS. SINCE THE SPACE WE LIVE IN
HAS AT LEAST THREE DIMENSIONS, THIS 15
OBVIOUSLY AN IMPORTANT SUBJECT!

WELL, AT LEAST
THEY Live N
Z DIMENSIONS...

7 OH, YEAH... J
THEM-n /

Sequences and Series Path & Surface Integrals
HOW DOES YOUR POCKET CALCULATOR DO THESE ARE WAYS TO INTEGRATE ALONG
SINES AND COSINES? WOULD IT SURPRISE CURVES AND ACRO%S SURFACES, RATHER
YOU TO KNOW THAT THAN BORING OLD STRAIGHT LINES.
2 5 7
sinx =~ x - 2% + X ad

6 120  So4o '

OW? IT
WOULPN'T?
WELL, NEVER
MIND THEN...

Complex Variables

WHEN WE DO CALCULUS WITH THE MISLEADINGLY NAMED “IMAGINARY” NUMBER i = V-1,
MIND-BENDING THINGS HAPPEN!

NOT ONLY ARE COMPLEX
VARIABLES THE “RIGHT”
WAY TO DESCRIBE
ELECTRICITY, QUANTUM
MECHANICS, AND OTHER
BRANCHES OF PHY$ICS,
BUT THEY REVEAL DEEP
MATHEMATICAL RELATION-
SHIPS, SUCH AS THE
ASTONISHING EQUATION :
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PO%5IBLY THE MOST IMPRESSIVE THING ABOUT ADVANCED (ALCULUS, THOUGH, 15 THAT
ALL OF IT STILL DEPENDS ON TWO BASIC IDEAS, THE DERIVATIVE AND THE INTEGRAL,
INVENTED BY TWO 6UYS MORE THAN 300 YEARS AGO. HERE'S TO 'EM, SAY T!

PLAGIARIST!
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INDEX

HMMAM... POES

d
Tx COME

BEFORE
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ABSOLUTE VALUE, 22, 149
ACCELERATION, 1%6-%7, 207
IN HOOKE'S LAW, 230
ACCELEROMETERS, 137
ADDITION, 20, 161-63, 167
DERIVATIVES AND, 84, 163
AIRPLANE EXAMPLES, 117-18, 122
ALTITUDE, 13, 87, 221
ANGLE, COMPARING WITH ITS SINE,
68-69
ANTIDERIVATIVES (INDEFINITE
INTEGRALS), 167, 169-76, 185, 187
FUNDAMENTAL THEOREM OF
CALCULUS AND, 185, 187-94
PROBLEMS TO SOLVE, 176
ARCSINE, 49, 99, 106
ARCTANGENT, 50, 99, 106
AREA, 165-66, 177-78, 187, 189, 206-8
OF A (UIRCLE, 209-10
POLAR COORPDINATES AND, 209-10
ATMOSPHERE, 13, 221-22
AXIS, 18

BALLOON, VOLUME OF, 1%, 14

CAR EXAMPLES, 5-7, 55, 77-78, 82, 128,
137, 164-67, 207-8
CHAIN RULE, 101-16, 117, 118, 174, 196
IN DERIVATIVES OF INVERSE
FUNCTIONS, 104-7
DIFFERENTIATING CHAINS LONGER
THAN TWO FUNCTIONS, 109
EXAMPLES OF DERIVATIVES FOUND
BY, 108
PROBLEMS TO SOLVE, 116
STEPS IN, 102
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CHANGE, 1-10, 126, 153, 191
DERIVATIVE FUNCTION AND, 77-78,
86, 9%
CIRCLE, AREA OF, 209-10
CIRCULAR (TRIGONOMETRIC) FUNCTIONS,
35-37
DERIVATIVES OF, 106-7
INVERSE, 49-51
LIMITS AND, 58
COEFFICIENTS, 24
COMPLEX VARIABLES, 231
COMPOS%ING FUNCTIONS, %8-39
COMPOUNPD INTEREST, 20-%22, 34, 92-9%
CONE, VOLUME OF, 212
CONSTANTS, 23%, 84, 159, 169-71, 185
CONTINUOUS FUNCTIONS, 156-57, 159, 180,
182, 1832
COORPDINATES
POLAR, 209-10
RECTANGULAR, 209
COSINE, 35-37, 49, 231
DERIVATIVES AND, 90-91, 92
LIMITS AND, 74
COST OF LIVING, 87

DECREASING FUNCTIONS, 4%-45
DEFINITE INTEGRALS, 177-86
FUNPAMENTAL THEOREM OF CALCULUS
AND, 185, 187-94
PROBLEMS TO SOLVE, 186
SUBSTITUTION AND, 199-200
DEGREES, OF POLYNOMIALS, 24, 72
DELTA, 6%
DENSITY, 220-21
OF ATMOSPHERE, 221-22
OF POPULATION, 22%-25
PROBABILITY, 225



DERIVATIVES, 77-100, 153, 161, 163 OPTIMIZATION AND, 125-44, 15%

IN AIRPLANE EXAMPLES, 117-18, 122 IN OLIVE OIL EXAMPLE, 132-33
IN ALTITUDE EXAMPLE, 87 IN PIPE-LAYING EXAMPLE, 140-41
ANTIDERIVATIVES (INDEFINITE INTEGRALS), PROBLEMS TO SOLVE, 144
167, 169-76, 185, 187 IN SHEEP PEN EXAMPLE, 139
FUNDAMENTAL THEOREM OF IN TRAMPOLINE EXAMPLE, 129-31
CALCULVS AND, 185, 187-94 OF POWER FUNCTIONS, 107
PROBLEMS TO SOLVE, 176 POWER RULE AND, 83, 107
APPROXIMATION AND, 148, 153 PROBLEMS TO SOLVE, 100, 116, 124,
IN CAR EXAMPLE, 77-78, 82 144, 154, 176
CHAIN RULE AND, 101-16, 117, 118, 174, 196 OF PRODUCTS, 94-94
IN CHAINS LONGER THAN TWO QUOTIENTS AND, 97-98
FUNCTIONS, 109 RELATED RATES AND, 117-24, 153
EXAMPLES OF, 108 PROBLEMS TO SOLVE, 124
PROBLEMS TO SOLVE, 116 IN ROAD GRADE EXAMPLE, 87
STEPS IN, 102 IN ROCKET EXAMPLE, 81-82
CHANGES IN, 135 SCALING FACTOR AND, 110, 114-15
CONSTANTS AND, 84, 159 IN SECOND-DERIVATIVE TEST, 135, 138,
OF COSINE, 91 141-43
IN COST OF LIVING EXAMPLE, 87 OF $INE, 90-91
DEFINITION OF, 8% 5UMS AND, 84, 163
PERIVATIVES OF, 125-26 TANGENT FUNCTION AND, 98
DIFFERENTIAL EQUATIONS AND, 2320 IN TRAMPOLINE EXAMPLE, 85
OF EXPONENTIALS, 92, 107 OF TRIG FUNCTIONS, 106-7
FACTS ABOUT, 84, 94, 97 VELOCITY AND, 77-79, 81-82, 85, 87
IN FLOW EXAMPLE, 87 IN WATER VOLUME EXAMPLE, 121
FUNDAMENTAL THEOREM OF CALCULUS DIFFERENTIAL EQUATIONS, 230
AND, 185, 187-94 DIFFERENTIATION, 83, 136, 156, 166
IMPLICIT DIFFERENTIATION AND, 119, 123, IMPLICIT, 119, 123, 140
140 IN REVERSE, 167, 169
OF INVERSE FUNCTIONS, 104-7, 114 SEC ALSO DERIVATIVES
L'HOPITAL'S RULE AND, 150-52, 153 DISTANCE, AND WORK, 226
LINES AND, 145-54 DIVIDING
MEAN VALUE THEOREM AND, 159, 170 OF FUNCTIONS, 20
NEGATIVE POWERS AND, 98 BY ZERO, 20
NOTATION OF, 88-89 DOMAINS, 15-16
IN OIL SLICK EXAMPLE, 120 RESTRICTION OF, 48
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ECONOMIC PRODUCTION, 143%
EPSILON, 57, 60, 6%
EXPONENTIAL FUNCTIONS, 29-%4, 44-45,
47
IN COMPOUND INTEREST EXAMPLE,
30-%2, %4, 92-9%
DERIVATIVES OF, 92, 107
LIMITS AND, 58
IN RADIOACTIVE DECAY EXAMPLE, 24
EXTREME POINTS, LOCAL, 127, 143
EXTREME VALUE THEOREM, 157

FLOW, RATE OF, 87
FLUXIONS, 8, 86
FORCE, 137, 226-27, 230
FORMULAS, 14
FRACTIONAL POWERS, 25, %9
FUNCTIONS, 11-52
ABSOLUTE VALUE, 22, 149
ADDING, 20
IN ALTITUPE EXAMPLE, 13
APPROXIMATE VALUES FOR, 148, 15%
ASSIGNING LETTERS TO, 14
IN BALLOON VOLUME EXAMPLE, 13,
14
CHAINS OF, 39
CIRCULAR (TRIGONOMETRIC), 35-%7,
58
DERIVATIVES OF, 106-7
INVERSE, 49-51
LIMITS AND, 58
COMPARISON OF, 150-52, 153
COMPOSITE, 99, 102
COMPOSITION OF, 28-%9
CONSTANT, 23, 159
CONTINVOVS, 156-57, 159, 180, 182,
18%
DECREASING, 43%-45

DEFINITION OF, 11-12
DERIVED. $EE DERIVATIVES
DIFFERENTIATION OF, 83, 136, 156, 166
IMPLIAIT, 119, 123, 140
IN REVERSE, 167, 169
SEE ALSO DERIVATIVES
DIVIDING, 20
DOMAINS OF, 15-16
RESTRICTION OF, 48
ELEMENTARY, 21-51, 109, 126
LIMITS AND, 58
EXPONENTIAL, 29-34, 44-45, 47, 58
IN COMPOUND INTEREST EXAMPLE,
30-32, %4, 92-9%
DERIVATIVES OF, 92, 107
LIMITS AND, 58
IN RADIOACTIVE DECAY EXAMPLE, %4
EXTREME VALUE THEOREM AND, 157
FRACTIONAL POWER, 25, 39
GRAPHING OF, 18-19
INVERSES AND, 46-48
INCREASING, 43%-45, 159
INSIDE, 38
INTEGRATION OF. $EE INTEGRATION
INVERSE, 40-42, 44, 58, 99
CIRCULAR, 49-51
DERIVATIVES OF, 104-7, 114
LIMITS AND, 58
MAXIMIZING AND MINIMIZING, 126-27,
131, 124-25, 142, 143, 155, 157
MEAN VALUE THEOREM AND, 155-60,
170
MULTIPLYING, 20
NEGATIVE POWER, 25
DERIVATIVES AND, 98
NUMBER LINE AND, 12, 17
ONE-TO-ONE, 42, 4%, 44, 48
OUTSIDE, %8



POLYNOMIALS, 24
DERIVATIVES AND, 107
RATIOS OF, 26-28
POWER, 23, 142
DERIVATIVES OF, 98, 107
FRACTIONAL, 25, %9
LIMITS AND, 58
NEGATIVE, 25
POLYNOMIALS AND, 24
SLOPE OF GRAPH OF, 80
PROBLEMS TO SOLVE, 52, 160
RATIONAL, 26-28
ROLLE'S THEOREM AND, 157-58
ON SHORT INTERVALS, 113
FUNDAMENTAL EQUATION OF CALCULUS,
113, 145-46
FUNDAMENTAL THEOREM OF CALCULUS,
185, 187-94, 196
PROBLEMS TO SOLVE, 194
VERSION 1, 187-89
PROOF OF, 192-93%
VERSION 2, 190-91

GARFIELD, TAMES, 123
GAUSS, CARL FRIEDRICH, 179
GLUE FACTORY EXAMPLE, 213-17
GRADE, OF A ROAD, 87
GRAPHS, 18-19
OF INVERSES, 46-48
TWO, FINDING AREA BETWEEN, 206-8
GUESS-AND-CHECK METHOD, 173, 197

HOOKE'S LAW, 230

IMPLICIT DIFFERENTIATION, 119, 123, 140

IMPROPER INTEGRALS, 216-19

INCREASING FUNCTIONS, 43%-45

INPEFINITE INTEGRALS (ANTIDERIVATIVES),
167, 169-76, 185, 187
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FUNDAMENTAL THEOREM OF CALULLS
AND, 185, 187-94
PROBLEMS TO SOLVE, 176
INDEX, OF A SEQUENCE, 162
INFINITY, 24, 121, 152, 155, 218-19
INTERVALS AND, 16
LIMITS AND, 70-71, 216
POLYNOMIALS AND, 72-75
INFLATION, 87
INFLECTION POINT, 138
INTEGRALS, 195-204, 205-28
AREAS AND, 206-8
POLAR COORPVINATES AND, 209-10
DEFINITE, 177-86
PROBLEMS TO SOLVE, 186
SUBSTITUTION AND, 199-200
AND DENSITY, 220-21
OF ATMOSPHERE, 221-22
OF POPULATION, 223-25
PROBABILITY, 225
FUNDAMENTAL THEOREM OF CALCULUS
AND, 185, 187-94
IN GLUE FACTORY EXAMPLE, 213-17
IMPROPER, 216-19
INPEFINITE (ANTIDERIVATIVES), 167,
169-76, 185, 187
PROBLEMS TO SOLVE, 176
PATH AND SURFACE, 231
AND VOLUME
OF A (ONE, 212
OF A PARABOLOID, 21%
OF A SPHERE, 210-12
WATER PRESSURE AND, 227
WORK AND, 226
SEE ALSO INTEGRATION
INTEGRAL SIGN, 163, 170, 173
INTEGRAND, 170, 173, 174, 219
INTEGRATION, 161-68, 172-73



BY PARTS, 201-3
PROBLEMS TO SOLVE, 168, 204, 228
SUBSTITUTION OF VARIABLES IN, 196-
98
DEFINITE INTEGRALS AND, 199-200
IN WINDSHIELD WIPER EXAMPLE, 1832
SEE ALSO INTEGRALS
INTERVALS, 16
VERY SHORT, 113
INVERSE FUNCTIONS, 40-42, 44, 99
CIRCULAR, 49-51
DERIVATIVES OF, 104-7, 114
GRAPHING OF, 46-48
LIMITS AND, 58

LEIBNIZ, GOTTFRIED, 3-4, 7-10, 54, 86,
95, 153, 161, 163, 185, 191, 232
NOTATION AND, 88-89, 196
LEMMAS (PRELIMINARY THEOREMS), 64,
65, 67
LIMITS, 5%-76
ABSENCE OF, 74
ALGEBRAIC VERSION OF, 62
COSINE AND, 74
DEFINITION OF, 60, 62-63%, 66
FACTS ABOUT, 59, 66
PROVING, 63-67
INFINITY AND, 70-71, 216
INTERVAL VERSION OF, 62
POSITIVE AND NEGATIVE, 66
PRELIMINARY THEOREMS (LEMMAS)
AND, 64, 65, 67
PROBLEMS TO SOLVE, 76
SANDWICH THEOREM AND, 67, 68, 69
SINE AND, 74
LINES, 145-54
LOCAL EXTREME POINTS (LOCAL
OPTIMUMS), 127, 143
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LOCAL MAXIMA AND MINIMA, 127, 131,
124-35, 142

LOGARITHMS, 44-45, 47, 99, 106, 107

L'HOPITAL'S RULE, 150-52, 153

MANY VARIABLES, 231
MASS, 137
DENSITY AND, 220, 222
IN HOOKE'S LAW, 230
MAXIMA AND MINIMA, 126-27, 155, 157
GLOBAL, 143
LOCAL, 127, 131, 124-35, 142
MEAN VALUE THEOREM, 155-60, 170
MOTION, 2-3
DERIVATIVE FUNCTION AND, 86
MULTIPLICATION, 20, 161

NEGATIVE NUMBERS, 15

NEGATIVE POWERS, 25

NEWTON, I5AAC, 3-4, 7-10, 54, 85, 86,
129-%1, 137, 153%, 161, 163, 185, 196,
220, 232

NUMBER LINES, 12, 17

OIL SLICK EXAMPLE, 120
OLIVE OIL EXAMPLE, 132-33
OPTIMIZATION, 125-44, 153
IN OLIVE OIL EXAMPLE, 132-33
IN PIPE-LAYING EXAMPLE, 140-41
PROBLEMS TO SOLVE, 144
IN SHEEP PEN EXAMPLE, 129
OPTIMUMS (EXTREME POINTS), LOCAL,
127, 143

PARABOLAS, 206, 213
PARABOLOID, 213

PATH INTEGRALS, 231

PI, 199

PIPE-LAYING EXAMPLE, 140-41



POLAR COORPINATES, 209-10
POLYNOMIALS, 24
COEFFICIENTS OF, 24
DERIVATIVES AND, 107
DEGREES OF, 24, 72
GROWTH THEOREM AND, 72
AT INFINITY, 72-75
RATIO% OF, 26-28
POPULATION DENSITY, 223-25
POSITION, 5-6, 9, 13, 87, 136, 187
FINDING FROM VELOCITY, 164-67
POWER FUNCTIONS, 23, 142
DERIVATIVES OF, 98, 107
FRACTIONAL, 25, %9
LIMITS AND, 58
NEGATIVE, 25
DERIVATIVES AND, 98
POLYNOMIALS AND, 24
S5LOPE OF GRAPH OF, 80
POWER RULE, 83, 107

PRELIMINARY THEOREMS (LEMMAS), 64, 65,

67
PRES5URE GRADIENT, 87
PROBABILITY DENSITY (PROBABILITY
DISTRIBUTION), 225
PRODUCTS, DERIVATIVES OF, 94-96
PYTHAGORAS, %6, 123
PYTHAGOREAN THEOREM, 123

QUOTIENTS, DERIVATIVE AND, 97-98

RADIANS, 35, 36, 68, 69
RADIOACTIVE DECAY, %4
RANDOM VARIABLES, 225
RATIONAL FUNCTIONS, 26-28
RECTANGULAR COORPDINATES, 209
RELATED RATES, 117-24, 15%
PROBLEMS TO SOLVE, 124
RIEMANN, BERNHARD, 179
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RIEMANN 5UMS, 179-82, 184
ROAD, GRAVE OF, 87
ROCKET VELOCITY, 81-82
ROLLE'S THEOREM, 157-58

SANDWICH THEOREM, 67, 68, 69

SCALING FACTOR, 110, 114-15

SECANT, 35, 26

SECOND-DERIVATIVE TEST, 135, 138, 141-

43

SEQUENCES AND SERIES, 162, 231

SHEEP PEN EXAMPLE, 129

SIGMA, 162

SINE, 35-37, 49, 231
ARCSINE, 49, 99, 106
COMPARING ANGLE WITH, 68-69
DERIVATIVES AND, 90-91, 92
LIMITS AND, 74

SMALLNESS, 111-13

SPEED, 1-10

SPEEPOMETERS, %-4, 7

SPHERE, VOLUME OF, 13, 14, 210-12

SPRING EQUATION, 23%0

SQUARE ROOTS, 15, 107

STATISTICS, 225

SUBSTITUTION OF VARIABLES, 196-98
DEFINITE INTEGRALS AND, 199-200

SUMMING, 20, 161-63, 167
DERIVATIVES AND, 84, 16%

SURFACE INTEGRALS, 231

TANGENT, 35, 26, 147, 153
ARCTANGENT, 50, 99, 106
DERIVATIVES AND, 98

TAYLOR POLYNOMIAL, 154

TERMS, 162

TIME, 1, 3, 5-7, 54, 87

TRAMPOLINE EXAMPLES, 85, 129-31



TRIGONOMETRIC (CIRCULAR) FUNCTIONS,
35-37
DERIVATIVES OF, 106-7
INVERSE, 49-51
LIMITS AND, 58.

VARIABLES, 14
COMPLEX, 231
MANY, 231
RANDOM, 225
SUBSTITUTION OF, 196-98
DEFINITE INTEGRALS AND, 199-200
VELOCIMETERS, 4, 6, 7, 164-65
VELOCITY, 1-10, 54, 128, 120, 187, 207-8
ACCELERATION AND, 136-37
DERIVATIVES AND, 77-79, 81-82, 85, 87
FINDING POSITION FROM, 164-67
FORCE AND, 230
VOLUME, 121
OF A CONE, 212
DENSITY AND, 220
OF A PARABOLOID, 213
OF A SPHERE, 13, 14, 210-12

WATER
PRESSURE OF, 227
VOLUME OF, 121
WINDSHIELD WIPERS, 183
WORK, 226

ZENO, 2-3, 10, 86
ZERO, DIVIDING BY, 20
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DON'T STOP!
KEEP GOING...
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A COMPLETE—AND
COMPLETELY ENJOYABLE—NEW
ILLUSTRATED GUIDE TO CALCULUS
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the history of the world in cartoon form. Now, Gonick, a
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