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The three aluminum pyramids together create a cube, demonstrating one of Buenaventura

Cavalieri’s arguments that appears in Chapter 4. (Photographs by Anthony Aquilina.)
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Preface
I was a born juggler, and after seven years of teaching college math students how

to juggle, I was disenchanted. I had begun to feel like a painting teacher who

taught color wheels but never let his students paint pictures, let alone engaged

them in discussions of why art is meaningful or why artists differ in their styles.

My students weren’t complaining, really. Some of them were also born jugglers.

The rest simply shouldered the burden, as if accustomed to the idea that math is

no more than a kit full of tools.

So I scrambled my calculus class to place the discovery of calculus at the end. I

intended to teach calculus as the culmination of an intellectual pursuit that lasted

two thousand years. I could not find a suitable textbook, so I taught for three years

using my own notes and homework problems. Then, on sabbatical, I wrote this

book.

At first, I expected the book to be a synthesis of my notes and problems, but my

research led me down new paths to many pleasant surprises. I had not realized the

extent to which scholars in countries like Egypt, Persia, and India had absorbed

and nourished Greek geometry when the western world went dark. Nor had I

fully grasped how carefully ancient thinkers treated puzzles that lurk in the infi-

nite. I gradually learned that because of these puzzles, calculus was not discovered

in a way that would allow me to place its discovery at the “end” of anything.

Those we credit with the discovery explained the infinite in poetic terms. Even

statements within the proofs themselves sound like metaphors: this tiny number

is both zero and not-zero at the same time; this solid cube is composed of infinitely

many flat slices. When pressed, mathematicians defended themselves with analo-

gies. Isaac Newton used the example of a book to suggest how a three-dimensional

volume could be composed of two-dimensional parts. Of course, a page is not

strictly two-dimensional; it merely symbolizes such a thing. But we forgive him,

not only because his calculations work but also because the rest of his arguments

are insightful and rigorous.

Such flights of intellectual fancy do students a huge favor: the most mind-

contorting technicalities are replaced by intuitive, appealing, simple arguments

that are a pleasure to study. The figures alone speak eloquently about the subject.

All that is required beyond algebra and basic geometry is a willingness to untether

one’s creativity when thinking about the infinite. And what student would be un-

willing to do that in return for the chance to learn calculus as a pursuit rather than

as a toolkit?

ix
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x Preface

This subject is a treasure of the human intellect, pearls strung by mathemati-

cians across both cultures and centuries. I hope this book holds a mirror up to this

beauty.

Notes for professors
If you are a professor who assigns this book, I encourage you to ask your students

to read a selection before class. I wrote with this model in mind. Intent and care-

ful reading of professionally-written mathematics instructs students in their own

writing. I ask my students to write in a journal as they read, so they can jot down

questions, create their own examples, work out steps the author skipped, and re-

create the figures as the author narrates. My students who take this seriously en-

joy a noticeable upswing in the quality of their own writing. Further, I found that

classes became far more dynamic, because the content of each class meeting was

driven by the questions the students brought.

Each chapter concludes with a section entitled Furthermore. These sections in-

troduce notable historical figures as well as a few results that are used in later

chapters. The ‘exercises’ are designed to be read even if they are not assigned as

homework. They are not meant to be difficult, but rather to be good checks on

whether the reader has paid careful attention to the text.

I steered away from routine practice problems, such as lists of derivatives that

require the product rule. I also elected not to weave much about the thinkers them-

selves into the narrative, for this information is widely available.

My thanks
Gerald Alexanderson gracefully served as managing editor from the beginning.

Victor Katz’s comments prompted a wholesale improvement of my discussion

of the origins of the coordinate system in chapter 3. Christoph Nahr translated

French and Padmini Rajagopal translated Malayalam for me. Ryan Walp gave me

the aluminum cube (pictured in the frontispiece) as a gift, and Anthony Aquilina

photographed it. Along with Ryan, my students Kelly, April, Shaun, Dave, and

Eric read one of my drafts with me in an independent study class. Sam Fee gave

me his photograph of the desert scene that appears on the front cover. I love this

scene for the sand, which reminds us of the infinite, the desert, which is character-

istic of the countries where calculus finds its origins, and the patterns created by

the wind, which look not only like curves but also like notation. Michelle LaBarre

did for this preface (and my life) what the wind did to the sand.
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up on his offer to kickstart my career.

This book would not exist without Jake.



i

i

“C&IO” — 2012/2/14 — 12:16 — page xii — #12
i

i

i

i

i

i



i

i

“C&IO” — 2012/2/14 — 12:16 — page xiii — #13
i

i

i

i

i

i

Contents

Preface ix

1 The Ancients 1

1.1 Zeno holds a mirror to the infinite . . . . . . . . . . . . . . . . . . . 2

1.2 The ‘infinitely small’ . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.3 Archimedes exhausts a parabolic segment . . . . . . . . . . . . . . . 5

1.4 Patterns . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.5 The evolution of notation . . . . . . . . . . . . . . . . . . . . . . . . 10

1.6 Furthermore . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2 East of Greece 15

2.1 Ibn al-Haytham sums the fourth powers . . . . . . . . . . . . . . . . 15

2.2 Ibn al-Haytham’s parabolic volume . . . . . . . . . . . . . . . . . . 17

2.3 Jyesthadeva expands 1=.1 C x/ . . . . . . . . . . . . . . . . . . . . 20

2.4 Jyesthadeva expresses � as a series . . . . . . . . . . . . . . . . . . . 23

2.5 Furthermore . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

3 Curves 29

3.1 Oresme invents a precursor to a coordinate system . . . . . . . . . . 29

3.2 Fermat studies the maximums of curves . . . . . . . . . . . . . . . . 32

3.3 Fermat extends his method to tangent lines . . . . . . . . . . . . . . 33

3.4 Descartes proposes a geometric method . . . . . . . . . . . . . . . . 35

3.5 Furthermore . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

4 Indivisibles 43

4.1 Cavalieri’s quadrature of the parabola . . . . . . . . . . . . . . . . . 43

4.2 Roberval’s quadrature of the cycloid . . . . . . . . . . . . . . . . . . 47

4.3 Worry over indivisibles . . . . . . . . . . . . . . . . . . . . . . . . . . 50

4.4 Furthermore . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

5 Quadrature 57

5.1 Gregory studies hyperbolas . . . . . . . . . . . . . . . . . . . . . . . 57

5.2 De Sarasa invokes logarithms . . . . . . . . . . . . . . . . . . . . . . 59
5.3 Brouncker finds a quadrature of a hyperbola . . . . . . . . . . . . . 61

5.4 Mercator and Wallis finish the task . . . . . . . . . . . . . . . . . . . 63

5.5 Furthermore . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

xiii



i

i

“C&IO” — 2012/2/14 — 12:16 — page xiv — #14
i

i

i

i

i

i

xiv Contents

6 The Fundamental Theorem of Calculus 77

6.1 Newton links quadrature to rate of change . . . . . . . . . . . . . . 77

6.2 Newton reverses the link . . . . . . . . . . . . . . . . . . . . . . . . . 79

6.3 Leibniz discovers the transmutation theorem . . . . . . . . . . . . . 81

6.4 Leibniz attains Jyesthadeva’s series for � . . . . . . . . . . . . . . . 83

6.5 Furthermore . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

7 Notation 95

7.1 Leibniz describes differentials . . . . . . . . . . . . . . . . . . . . . . 95

7.2 The fundamental theorem with new notation . . . . . . . . . . . . . 98

7.3 Leibniz integrates the cycloid . . . . . . . . . . . . . . . . . . . . . . 100

7.4 Furthermore . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

8 Chords 109

8.1 Preliminary results known to the Greeks . . . . . . . . . . . . . . . . 109

8.2 Jyesthadeva finds series for sine and cosine . . . . . . . . . . . . . . 110

8.3 Newton derives a series for arcsine . . . . . . . . . . . . . . . . . . . 116

8.4 Furthermore . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

9 Zero over zero 123

9.1 D’Alembert and the convergence of series . . . . . . . . . . . . . . . 123

9.2 Lagrange defines the ‘derived function’ . . . . . . . . . . . . . . . . 126

9.3 Taylor approximates functions . . . . . . . . . . . . . . . . . . . . . 128

9.4 Bolzano and Cauchy define convergence . . . . . . . . . . . . . . . 130

9.5 Furthermore . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133

10 Rigor 137

10.1 Cauchy defines continuity . . . . . . . . . . . . . . . . . . . . . . . . 137

10.2 Bolzano invents a peculiar function . . . . . . . . . . . . . . . . . . . 140

10.3 Weierstrass investigates the convergence of functions . . . . . . . . 145

10.4 Dirichlet’s nowhere-continuous function . . . . . . . . . . . . . . . 147

10.5 A few final words about the infinite . . . . . . . . . . . . . . . . . . 149

10.6 Furthermore . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150

References 153

Index 161

About the Author 165



i

i

“C&IO” — 2012/2/14 — 12:16 — page 1 — #15
i

i

i

i

i

i

1
The Ancients

A genie (as the story is told) lights a candle at a minute before midnight. After half

of the minute has passed, the genie extinguishes the flame. Fifteen seconds later,

she relights the candle, and again, halfway to midnight, she puts the flame out.

This continues as midnight approaches, the time always divided in two, the flame

soon leaping up and vanishing faster than we can see.

Now the genie asks you, “At midnight, will the flame be lit or out?”

Leaving aside the issue of when this question is asked, you are still left with some

bewildering possibilities. The candle is neither lit nor out? The candle is both lit

and out? We never get to midnight?

But of course we get to midnight; there has yet to be a midnight that we have

failed to get to. There is a midnight right now that is approaching. Or are we ap-

proaching it? Which is staying still? Which is the arrow and which is the target?

One thing we have learned during the story of physics (in 1632) is that nothing

sits still; you may see a passenger on a boat and a bird perched on the mast over

her head as ‘moving’, but from their joint point of view, you are the one who is

moving. Later in the story (in 1905), we learned that one observer may experience

time as running more slowly than does another observer.

Questions like these, that explore the nature of reality, are ancient, and the pur-

suit of the answers has led thinkers down paths that we have named: physics (Can

the genie’s candle exist? Is time infinitely divisible?), philosophy (If our shared ex-

perience of time does not reflect its true nature, then what does that say about

hope? knowledge? ethics?), and mathematics (Is it possible to make sense of all

this?). This book approaches calculus as the culmination of a journey that began

when people asked questions like these.

1
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2 1 The Ancients

1.1 Zeno holds a mirror to the infinite
The question-asker Zeno lived (according to our linear experience of time) 2500

years ‘ago’ in Greece. One of his thought experiments questioned motion itself.

We may phrase it like so: suppose an arrow, aimed at a target, is fired. Its tip must

travel halfway to the target, then halfway again, and so on, reminiscent of the

genie’s candle, only with distance in place of time. This halving process continues

indefinitely; thus, the arrow does not reach the target.

You are reading these words thanks to light bouncing off a surface and travel-

ing to your eye. Why does the light not fall prey to Zeno’s paradox? Can every

distance, no matter how small, be divided in two?

Distance is tangible; we see it, we move through it. It feels infinitely divisible,

just as time feels as though it is flowing into the future. It is tempting to discard

reality and recast the paradox in terms of abstract objects that are always divisible:

numbers. In this language, Zeno’s tale becomes an infinite sum

1

2
C 1

4
C 1

8
C 1

16
C � � �

that equals 1 if the arrow reaches the target and never quite gets to 1 if the paradox

holds.

There are several ways to argue that this sum never exceeds 1. But what if it

never reaches 1? The sum, as we go along, is always growing; so, if the sum never

reaches 1, it seems clear that it reaches something smaller than 1. This is a little like

moving the target a bit closer to the archer and then asking Zeno what he thinks

now. But we can show that no matter what target we choose smaller than 1, the

infinite sum eventually slips past it into the gap between the target and 1.

For what if we stop the sum at some point and calculate the total thus far? After

two terms, the total is 1=2 C 1=4 D 3=4. (This number is called a partial sum of the

infinite sum.) The next partial sum is 7=8. In general, the partial sum after we add

the first n terms is

1 � 1

2n
: (1.1)

The fraction 1=2n represents how far from 1 the partial sum is when we stop

adding at the nth term. So, no matter where we set the target, we can always

choose n large enough (thus making 1=2n small enough) to slip by.

When we say that the partial sums become “arbitrarily close” to 1, this is what

we mean: there is no number smaller than 1 to which the partial sums approach.

No, the partial sums approach 1. What conclusion can we draw other than

1 D 1

2
C 1

4
C 1

8
C 1

16
C � � � (1.2)

in the face of this argument?

If you believe that (1.2) uncomfortably stretches the notion of ‘equals’, then you

keep good company. Nevertheless, it is true, especially in the story of calculus, that

mathematics often advances thanks to people who are willing to take uncomfort-

able risks. Consider, for example, this approach to proving that (1.2) is true. If we



i

i

“C&IO” — 2012/2/14 — 12:16 — page 3 — #17
i

i

i

i

i

i

1.1 Zeno holds a mirror to the infinite 3

assume that the infinite sum in (1.2) adds to some number that we call S , then we

have

S D 1

2
C 1

4
C 1

8
C 1

16
C � � � (1.3)

and can multiply both sides by 1=2, yielding

1

2
S D

1

4
C

1

8
C

1

16
C � � � :

Subtracting the new equation from (1.3), we have

S � 1

2
S D 1

2
: (1.4)

The vexatious infinite, as depicted by the three dots in (1.3), vanishes thanks to our

ingenuity. Leaving aside the issue of how one might multiply an infinite number

of terms by anything, we can conclude that S D 1. Figure 1.1 offers visual support

for this conclusion. Might we leave aside this issue permanently, and treat infinite

sums just as we do normal sums? That is an option, but if someone finds a trou-

blesome example, we should pay attention. Infinite sums are often troublesome.

Figure 1.1. This figure speaks without words about the mathematics underlying Zeno’s para-

dox of the arrow.

For instance, in the infinite sum

1

2
C 1

3
C 1

4
C 1

5
C � � � (1.5)

each term is smaller than the last, so we might guess that this sum, too, adds to

something. But it does not. Name any large number you want, and the partial

sums will eventually pass it by. There is no cap on how large this sum grows, but

over a thousand years passed after Zeno’s life before someone could persuasively

argue why.

By simply alternating the signs in (1.5), however, we get the infinite sum

1

2
� 1

3
C 1

4
� 1

5
C � � �

that approaches a finite number (approximately 0:693). Two thousand years after

Zeno, someone identified this number. Puzzles that take centuries to solve warn

us of deep mystery.
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4 1 The Ancients

Because we usually think of adding when we say ‘sum’, we can use a more

general term than ’infinite sum’ that allows subtraction: series. The series

S D 1 � 1 C 1 � 1 C 1 � 1 C � � �

sparked much debate. What might it equal? By grouping pairs of terms like so,

S D .1 � 1/ C .1 � 1/ C .1 � 1/ C � � �
D 0 C 0 C 0 C � � � ;

we conclude that S equals 0. Skipping the initial 1 and then grouping pairs like so,

S D 1 � .1 � 1/ � .1 � 1/ � � � �
D 1 � 0 � 0 � � � � ;

we discover that the sum is 1. Grouping, applied in slightly different ways, leads

to two different answers; now this is troublesome.

It gets better; the grouping

S D 1 � .1 � 1 C 1 � 1 C 1 � � � � /

reveals the original series to contain itself, so

S D 1 � S;

leading to the answer S D 1=2. We again find a new answer simply by using

parentheses (one of which is somehow flung infinitely far to the right). There are,

in fact, even more ways to sum the series, a signal that the infinite contains mys-

teries that do not succumb to ordinary arithmetic.

None of this deterred mathematicians from tinkering; in fact, such mysteries

probably provoked them. There is no harm in exploring, and these explorations

put humankind on a path that led to the discovery of a new branch of mathematics.

1.2 The `infinitely small'
Archimedes (Greece, born c. 287 BCE) investigated the infinite fearlessly. An in-

ventor and astronomer, Archimedes seems to have taken his greatest joy in pure

mathematics. Many Greek mathematicians found the study of geometry among

the purest of pursuits; after all, where on Earth can we find a square or an equilat-

eral triangle or a circle? These shapes are unattainable generalizations of what we

see in the world, made completely theoretical by the very purity that makes them

elegant. No one can draw a circle; one can only draw things that look like circles.

But we can imagine circles.

A geometer, pondering a shape, immediately asks about its area. Imagine slicing

a circle like a pizza (or the ancient Greek equivalent thereof) and standing the slices

together with their tips up as in Figure 1.2. Because the circumference of the circle
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1.3 Archimedes exhausts a parabolic segment 5

Figure 1.2. We rearrange the pieces of a circle to reveal the connection between its area,

circumference, and radius.

has now been laid out in (virtually) a straight line along the bottom, the total area

of these (pseudo) triangles sums to

1

2
.radius/.circumference/ :

But this is the area of the original circle as well, so we suspect that the area A of a

circle is related to the circumference C and radius r by

A D 1

2
rC : (1.6)

This depends on how willing we are to believe that the thin slices are acting like

triangles. Are you persuaded that the thinner the slices get, the more they behave

like triangles? What if someone pointed out that as each slice gets thinner, its area

becomes arbitrarily close to zero — in other words, the slice vanishes — so that if

you want the slices to be triangles, they will first have to disappear?

This dispute notwithstanding, our argument leads to the correct conclusion: for-

mula (1.6) tells the truth about circles. This blend of the infinitely many (the slices

becoming more numerous) and the infinitely small (each slice on its way to van-

ishing) is at the heart of the story of calculus.

1.3 Archimedes exhausts a parabolic segment
Archimedes investigated the areas of circles (see exercise 1.1) and many other

shapes, as well as the volumes of solids like cones and spheres. One of his efforts
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6 1 The Ancients

in particular carries us back to infinite sums. A parabola is, among other things, the

path traveled by a ball thrown into the air, and Archimedes calculated the area

within the segment created when a line cuts a parabola at points A and B , as in

Figure 1.3.

Figure 1.3. Archimedes exhausted the parabolic segment with successively smaller triangles.

Archimedes located1 point C on the arc AB so that the line tangent to the para-

bola at C is parallel to AB ; this creates triangle ABC . Letting 4 denote the area of

this triangle, we proceed as he did, and create triangles ADC and CEB so that the

tangents at D and E are parallel to AC and CB respectively. Archimedes showed

that the areas inside these two new triangles totaled exactly one-fourth of the area

of the first triangle ABC .

Now the area within the segment is pretty well exhausted by the three triangles;

in fact, this method is called just that: exhaustion. How might he cope with the four

small unfilled areas between the triangles and the parabola, however? Archimedes

continued filling the unfilled areas with triangles, doubling the number each time,

and proving that each new set of triangles totals one-fourth the area of the previous

set. This process, continued indefinitely, produces the equation

area within segment D 4 C 1

4
4 C 1

4

�

1

4
4
�

C 1

4

�

1

4

�

1

4
4
��

C � � � :

The equals sign is justified in the same way we discussed earlier: the partial sums

grow arbitrarily close to the area within the segment as the host of triangles grad-

ually exhaust that area. Factoring 4 from the right side yields

area within segment D 4 C 4
�

1

4
C 1

42
C 1

43
C � � �

�

;

1Although the arguments that underlie the geometry in this paragraph are missing, the reader

should rest assured that such omissions are rare in this text.
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which contains a sum much like (1.3). The first few partial sums are

1

4
C 1

42
D 4 C 1

42
D 5

16
D 0:3125;

1

4
C 1

42
C 1

43
D 42 C 4 C 1

43
D 21

64
� 0:3281;

1

4
C 1

42
C 1

43
C 1

44
D 43 C 42 C 4 C 1

44
D 85

256
� 0:3320:

Further calculations suggest that the infinite sum equals 1=3, prompting us to ex-

press the partial sums like so:

5

16
D 1

3
� 1

3 � 42
;

21

64
D 1

3
� 1

3 � 43
;

85

256
D 1

3
� 1

3 � 44
: (1.7)

What we are deducting from 1=3 in (1.7) is vanishing the further we go, so

area within segment D 4 C 4
�

1

3

�

D 4

3
4 : (1.8)

Because 4, the area of ABC , is simple to calculate, Archimedes had, in his own

words, “shown that every segment bounded by a straight line and [a parabola]

is four-thirds of the triangle which has the same base and equal height with the

segment.”

Despite his clever handling of ever-shrinking quantities, Archimedes carefully

stated that he did not believe in numbers so small that they behaved like zero.

(Specifically, he claimed that every positive number, no matter how tiny, may be

added to itself enough times to create arbitrarily large sums.) As one of history’s

most accomplished mathematicians, Archimedes could tell when he was playing

with fire, as we did when we generated (1.4). Centuries passed before anyone truly

understood what he was being careful about.

1.4 Patterns
What do you see when you look at the drawing on the left in Figure 1.4? What if

someone told you that this picture proved something lovely about odd integers?

Pictures like this appear in documents that survive from several ancient cultures —

Greece, India, China, Japan — despite the fact that such knowledge is unlikely to

have been shared between these peoples. This leaves little doubt that mathematics

belongs in the same discussion as music, poetry, and art when it comes to what

pursuits are innate in humans. In fact, Figure 1.4 seems to speak as to how math-

ematics and art can befriend one another. As another example, the truth of the

identity
1

3
D 1

4
C 1

42
C 1

43
C 1

44
C � � �
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8 1 The Ancients

Figure 1.4. Each figure reveals a truth about a sum.

is revealed by the drawing on the right in Figure 1.4. The white boxes occupy areas

equal to the terms on the right-hand side of the identity, but together they occupy

one-third of the entire square. The drawing provides a more appealing argument,

for some, than does our arithmetic approach in (1.7).

The image of a mathematical pattern often unlocks a secret. Consider the fol-

lowing pattern, known to all of the cultures mentioned above; starting at 1, add

the positive integers consecutively, stopping at each partial sum:

1 C 2 D 3;

1 C 2 C 3 D 6;

1 C 2 C 3 C 4 D 10;

1 C 2 C 3 C 4 C 5 D 15;

and so on. Is there any pattern to the partial sums 3; 6; 10; 15; : : : that we can use to

predict something as difficult, say, as the sum of the first 1000 integers?

The partial sums are called triangular numbers thanks to the depiction in Figure

1.5. The nth triangular number Tn equals the sum of the first n natural numbers.

We have the beginnings of an image that will help us find the 1000th triangular

number without actually adding the first 1000 integers. Observe that any of the

figures used to represent a triangular number can be copied and flipped, as in

Figure 1.5. In each case, the nth triangular number has been copied to create an n

by n C 1 rectangle. The number of squares in such a rectangle is simply n.n C 1/.

Because Tn accounts for half the area of the rectangle, we are led to believe that

Tn D 1

2
n.n C 1/ : (1.9)

For example, T4 is 10, and

1 C 2 C 3 C 4 D 1

2
.4/.5/ D 10:
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Figure 1.5. Each row of shaded squares represents an integer, and the triangular stacks rep-

resent their sums.

Using (1.9) is much simpler than adding the first thousand integers to find that

T1000 D 500500.

This clever shortcut will appear obvious to many who have followed this ar-

gument, but, for the skeptics, we can argue the same point using language. The

figures themselves suggest the path we will take. Look inside Figure 1.5 again.

Hidden within the figure for T4 D 10 is the figure for the previous case T3 D 6, as

indicated by the arrow. What if we knew that 1 C 2 C 3 equaled half of 3 times the

next integer 4; could we use this knowledge to show that 1 C 2 C 3 C 4 equals half

of 4 times the next integer 5?

Well, we do know that 1 C 2 C 3 D 1
2
.3/.4/, because it is clearly true; just do the

arithmetic. In fact, we can verify cases like this to our heart’s content. But because

there are rather too many cases to check in the long run, we will have to stop

somewhere. Suppose we stop checking by hand after the first n integers, so that

we know
1 C 2 C 3 C � � � C n D 1

2
n.n C 1/ : (1.10)

If we can argue, in general, that adding the next integer nC1 preserves the pattern,

will this convince you? Consider:

1 C 2 C 3 C � � � C n C .n C 1/ D 1

2
n.n C 1/ C .n C 1/

D .n C 1/.
1

2
n C 1/

D 1

2
.n C 1/.n C 2/ :

The first equality is justified by what we know from (1.10). The rest is factoring.

Are you convinced that the sum of the first nC1 integers is half of the integer nC1

times the next integer n C 2? If so, then you are agreeing to believe in a method

called proof by mathematical induction. This form of proof allows us to accept the

evidence shown in the figures we have seen. Although ancient cultures used in-

duction proofs implicitly, only in the 1600s would mathematicians formalize such

arguments.
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1.5 The evolution of notation
Underlying the patterns we have studied thus far are series, arguably the most

important tool in the calculus kit. As we follow the story of calculus, we will see

scholars grow adept at tackling ever more complicated problems, and the series

they use will keep pace in complexity.

Thus, we pause to introduce summation notation, despite the fact that it was not

invented until many centuries after Archimedes. (In fact, we have already trans-

gressed in exactly this way by our use of signs like ‘C’ and ‘�’. A Greek who

wished to convey (1.10) would do so in words, and would not think of the num-

bers as quantities but as lengths of line segments or areas of regions.)

The capital Greek letter ‘sigma’ indicates a sum, as in
n
X

kD1

k D 1

2
n.n C 1/ ;

which translates (1.10) into summation notation. The variable k is a placeholder

that appears in the formula of the sum and increases from the number below † to

the number above † by ones. We may write infinite series like (1.3) as

S D
1
X

kD1

1

2k
;

and express our observations in (1.7) as
n
X

kD1

1

4k
D 1

3
� 1

3 � 4n
:

The symbol 1 denotes ‘infinity,’ indicating that the series never terminates. Again

we rely on a symbol 1 that entered general use centuries after Archimedes. We

will use commonly known symbols for the sake of clarity, and summation notation

thanks to its tie to series, but we will save the notation of calculus proper until the

historical clock reads what it should.

1.6 Furthermore
1.1 Archimedes estimates � . Formula (1.6) is one of the tools needed to prove the

well-known formula
A D �r2 (1.11)

for the area A of a circle in terms of its radius r and the constant � .

Quite a few ancient cultures knew that � was a number slightly larger than 3.

Archimedes pursued this number by sandwiching it between two other num-

bers that he calculated using geometry. Taking a circle of radius 1 (and therefore

of area � ), he inscribed a regular hexagon within it (regular means that all of

the angles are equal, and all of the sides are equal, as in Figure 1.6). Whatever

the area of this hexagon, he could see that it equaled a number smaller than � .

(a) Find the area of the hexagon. (It is possible to do so using the Pythagorean

Theorem, if you add a few lines to Figure 1.6.)
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Figure 1.6. Archimedes began his approximation of � by inscribing a regular hexagon inside

a unit circle.

(b) Archimedes also swapped the shapes, inscribing the circle of radius 1 in a

larger regular hexagon. Find the area of this new hexagon. (This result is

therefore larger than � .)

(c) To improve his estimates of � , Archimedes repeated both exercises using

regular 12-sided polygons, which exhaust (and surround) the circle more

completely. Find the area of such a 12-sided polygon that is inscribed in a

circle of radius 1.

# of red sides showing

# of sticks tossed 0 1 2 3 4 5 6 7

3 1 3 3 1 - - - -

4

5

6

7

Table 1. Each cell of the table contains the number of ways of tossing a certain number of

sticks and getting a certain number of red sides.

1.2 Binomial coefficients. The boardgames Senet (Egypt) and The Royal Game

of Ur (Mesopotamia) predate Zeno and Archimedes by well over a thousand

years. In some versions of these games, the players tossed sticks rather than

dice; each stick was two-sided, like a small popsicle stick, one side painted

red, the other painted white. The number of red sides showing indicated the

number of pieces the player could move.

For example, say that a player tosses three sticks. With the sticks labeled A, B ,

and C for convenience, we observe that there are three ways that the sticks will
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12 1 The Ancients

allow a player to move two pieces: the red sides can show on sticks AB , sticks

AC , or sticks BC . Following this reasoning, we can fill in the first row of

Table 1.

(a) Fill in the rest of the table.

(b) As you do so, look for any patterns you see, and express your observation

in words.

(c) Argue on behalf of your observation in 1.2(b). One way to do this is to

consider the fate of one of the sticks: is it white, or is it red? This breaks

your counting problem into two cases.

Historical note. The patterned numbers that appear in Table 1 were known,

at least in part, to such scholars as Omar Khayyám (Persia, born 1048) and

Chu Shih-Chieh (China, born c. 1260), to name just two. Blaise Pascal,

who we will encounter again (exercise 6.1), revealed many truths hidden

in these numbers, which are commonly named after him. These particular

numbers have been of interest to scholars for many centuries; we return to

them in exercise 3.4.

1.3 The sum of the first n cubes. A triangular number Tn is the sum of the first

n integers and is calculated using formula (1.9). In this exercise, we explore

the surprising connection between triangular numbers, cubed numbers, and

squares.

(a) In particular, we seek a formula for the sum of the first n cubed numbers

n
X

kD1

k3 D 13 C 23 C 33 C � � � C n3 :

Calculate the sum for n D 1; 2; 3; : : : until you see a pattern in the sums that

uses triangular numbers.

(b) Use a proof by induction to establish the truth of your pattern.

(c) In Figure 1.4, each image is designed to reveal a truth about numbers. Cre-

ate an image that illustrates the connection that you have discovered about

the sum of the first n cubes and the corresponding triangular number Tn.

One such approach considers a cubed number as the product of that num-

ber times its square (or m3 D m � m2 in symbols), and the result is a two-

dimensional image.

1.4 The sum of the first n squares. Here we investigate another formula known to

early cultures, including the Greeks. Write out the details of each step of this

approach.
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(a) We seek a formula for

n
X

kD1

k2 D 12 C 22 C 32 C � � � C n2 :

Calculate the sum for n D 1; 2; 3; 4. Because the formula we seek is a bit

more complicated than most we have encountered in this chapter, it is not

likely that these examples alone will suggest a pattern to you.

(b) Show that

k3 � .k � 1/3 D 3k2 � 3k C 1 : (1.12)

(c) Substitute 1; 2; 3; : : : ; n for k in (1.12) and add all n of these equations to-

gether. (Why substitute for k, you may wonder? We are using k simply as

a place holder; it is n that we care about, as we are seeking to add the first

n squared numbers.)

(d) If we algebraically manipulate the result from part (c), we can arrive at the

formula

n
X

kD1

k2 D 1

6
n.n C 1/.2n C 1/

D n3

3
C n2

2
C n

6
:

Show this work.
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East of Greece

My secret was not to listen
when my friend told me
that the stars answered all our questions.
He died beside the telescope
on a night he’d scribbled
“Saturn, Venus, Mars, aligned.”

– Ibn Khatir Tells How He Survived the Black Death,
Thom Satterlee (2006)

The rise of Rome at the expense of Greece marked a steep decline in the pursuit

of pure mathematics in the western world. Although Roman culture borrowed

freely from Greek religion, philosophy, and art, Roman mathematics largely con-

fined itself to what was necessary for commerce and engineering. However, the

economies and militaries of both Greece and Rome extended east as far as India,

prompting trade not only of goods but of knowledge. Islamic versions of univer-

sities attracted thinkers and collected knowledge for the sake of science, acting as

transfer points where thinkers carried mathematical ideas between cultures.

The scholar Abu Ali al-Hasan ibn al-Hasan ibn al-Haytham (born 965) acted

as such a conduit of knowledge. Born in what is now Iraq, ibn al-Haytham trav-

eled to Egypt to work on a river-control project, interacting with scholars familiar

with Greek mathematics. Ibn al-Haytham studied light, particularly its role in eye-

sight, and produced beautiful results concerning surfaces, reflection, angles, and

numbers. In this chapter, we will study one of his arguments that resembles later

European methods to the point where it is tempting to believe that his ideas fil-

tered north from Egypt during the intervening 700 years.

2.1 Ibn al-Haytham sums the fourth powers
Ibn al-Haytham’s result relies on an extension of exercises 1.3 and 1.4, where we

found formulas for the sums of squares and cubes:

15
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16 2 East of Greece

n
X

kD1

k2 D 12 C 22 C 32 C � � � C n2 D n3

3
C n2

2
C n

6
; (2.1)

n
X

kD1

k3 D 13 C 23 C 33 C � � � C n3 D n4

4
C n3

2
C n2

4
: (2.2)

Ibn al-Haytham persisted, proving that

n
X

kD1

k4 D 14 C 24 C 34 C � � � C n4 D n5

5
C n4

2
C n3

3
� n

30
: (2.3)

We supplement his inductive, purely verbal argument with the pleasing geo-

metric interpretation shown in Figure 2.1. The heights of the rectangles climbing

up the left-hand side are all 1 unit, but the widths of those growing across the bot-

tom are the cubes of successive integers (and thus, for convenience, the scale of the

widths is only suggestive). The area of each rectangle appears within it; note the

fourth powers appearing as areas.

Figure 2.1. Ibn al-Haytham equated the entire area of the figure with the sum of its rectan-

gular parts.

Consider the total area of the figure in two ways: as a simple height-times-width,

and as the sum of all the areas of the rectangular pieces. Thus,

.4 C 1/.13 C 23 C 33 C 43/ D 14 C 24 C 34 C 44

C 13

C 13 C 23

C 13 C 23 C 33

C 13 C 23 C 33 C 43: (2.4)

Within this equality, on the right-hand side, appears the sum of fourth powers that

ibn al-Haytham desired. On the left, we express the height of the large rectangle

as 4 C 1 rather than 5 so that later we can more easily substitute a variable like n

for each 4 (where appropriate).
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Using (2.2) to rewrite the right-hand side of (2.4) yields

14 C 24 C 34 C 44 14 C 24 C 34 C 44

C 13 C 14

4
C 13

2
C 12

4

C 13 C 23 D C 24

4
C 23

2
C 22

4

C 13 C 23 C 33 C 34

4
C 33

2
C 32

4

C 13 C 23 C 33 C 43 C 44

4
C 43

2
C 42

4
:

On the right, summing the columns (excluding the top line) gives us

14 C 24 C 34 C 44 C 1

4

�

14 C 24 C 34 C 44
�

C
1

2

�

13 C 23 C 33 C 43
�

C
1

4

�

12 C 22 C 32 C 42
�

;

so we may replace the right-hand side of (2.4) with this result. Simplifying, we

obtain

5

4

�

14 C 24 C 34 C 44
�

D
�

4 C 1

2

�

�

13 C 23 C 33 C 43
�

� 1

4

�

12 C 22 C 32 C 42
�

:

Imagine that the rectangle in Figure 2.1 has nC1 rather than 4C1 layers; we would

have no trouble extending the figure in this way. Just so, we may replace 4 with n

where appropriate:

5

4
.14 C 24 C � � � C n4/

D
�

n C 1

2

�

�

13 C 23 C � � � C n3
�

� 1

4

�

12 C 22 C � � � C n2
�

:

One final use of (2.1) and (2.2) results in

n
X

kD1

k4 D 4

5

"

�

n C 1

2

� n
X

kD1

k3 � 1

4

n
X

kD1

k2

#

D 4

5

�

n C 1

2

��

n4

4
C n3

2
C n2

4

�

� 1

5

�

n3

3
C n2

2
C n

6

�

;

which simplifies to (2.3) as promised.

2.2 Ibn al-Haytham's parabolic volume
The sum of fourth powers played a pivotal role in ibn al-Haytham’s calculation of

the volume created by revolving a two-dimensional shape around one of its sides.
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18 2 East of Greece

Figure 2.2. The shaded region revolves around CD to create the volume that ibn al-Haytham

investigated.

The shape he revolved is shaded in Figure 2.2. Within square ABCD (with sides

1) we draw curve AC so that for each distance a that we move vertically from A

we then move distance a2 horizontally.1 Region ACD is revolved around side CD

to create a volume much like a solid upside-down bowl.

Ibn al-Haytham sliced the area within region ACD into thin rectangular strips

and asked what volume each strip would create when revolved around CD to

create a thin cylinder. Totaling the volumes of these stacked cylinders, he estimated

the volume within the upside-down bowl. Thinner slices give better estimates.

Let’s say that there are n slices as in Figure 2.3, so that the height h of each slice is

1=n. In the figure, only the kth slice from the bottom is drawn. We intend to revolve

this slice around CD to create a cylinder. The volume of the cylinder requires the

width. Remember how each point on curve AC is created: we move up from A

toward B , then move the square of that distance to the right. So the gap between

AB and the left-hand edge of slice k equals .kh/2 . The width of slice k is therefore

1 � .kh/2 . Thus, the cylinder created by revolving slice k around CD has volume

h�
�

1 � .kh/2
�2

:

Because this cylinder does not perfectly fill its layer in the volume we seek, it only

approximates the volume of its layer. No matter; later we will use thinner cylinders

(by increasing n) to shrink the error.

On the left is the total volume of the n cylinders, and on the right we have ex-

panded each square:

h�
�

1 � .1h/2
�2

h�
�

1 � 2.1h/2 C .1h/4
�

C h�
�

1 � .2h/2
�2 C h�

�

1 � 2.2h/2 C .2h/4
�

C h�
�

1 � .3h/2
�2 D C h�

�

1 � 2.3h/2 C .3h/4
�

:::
:::

C h�
�

1 � .nh/2
�2 C h�

�

1 � 2.nh/2 C .nh/4
�

:

1In modern notation, the equation of curve AC is x D y2 if A is .0; 0/ and C is .1; 1/.



i

i

“C&IO” — 2012/2/14 — 12:16 — page 19 — #33
i

i

i

i

i

i

2.2 Ibn al-Haytham's parabolic volume 19

Figure 2.3. The kth slice has length 1 � .kh/2 and is revolved around CD to create a thin

cylinder.

Collecting like terms down the right-hand side gives

h�
h

n � 2h2
�

12 C 22 C � � � C n2
�

C h4
�

14 C 24 C � � � C n4
�

i

D �

"

1 � 2

n3

n
X

kD1

k2 C 1

n5

n
X

kD1

k4

#

:

Now (2.1) and (2.3) deliver the desired result:

�

�

1 � 2

n3

�

n3

3
C n2

2
C n

6

�

C 1

n5

�

n5

5
C n4

2
C n3

3
� n

30

��

D �

�

1 �
�

2

3
C 1

n
C 1

3n2

�

C
�

1

5
C 1

2n
C 1

3n2
� 1

30n4

��

: (2.5)

Conveniently, the variable n appears only in the denominators of these fractions.

It is safe now to let the slices become arbitrarily thin as n becomes arbitrarily large,

and simultaneously each fraction with n in its denominator goes to zero. We con-

clude that the volume of the upside-down bowl is .8=15/� .

Ibn al-Haytham did not reach this conclusion quite as we did; he sandwiched

the volume between two amounts that converged on .8=15/� like two hands com-

ing together to clap. These two amounts related to the volume of the cylinder cre-

ated by revolving the entire region ABCD in Figure 2.3 around CD. In our case,

that volume is exactly � , and ibn al-Haytham actually proved that any parabolic

bowl formed by the revolved curve x D cy2, where c is a positive constant, will

occupy 8=15 of the volume of the cylinder that encloses it.

This approach to finding a volume by cutting it into ever-thinner slices pre-

dates the official discovery of calculus in the 1600s by centuries. In fact, were

ibn al-Haytham the direct ancestor of those discoverers, he would be their great-

grandfather twenty times over. Currently, we have little evidence that ibn al-
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20 2 East of Greece

Haytham’s methods found their way north into Europe; but the transmission of

ideas like his to the east is far more plausible.

2.3 Jyesthadeva expands 1=.1 C x/

India marked the most eastern conquest of the Greeks under Alexander the Great

(the century before Archimedes lived) and trade between India and the Islamic

nations to the west was brisk for centuries. For these and other (mainly political)

reasons, the mathematics of these cultures had opportunity to blend. Early on,

Indian mathematicians became aware of Greek investigations in geometry and

astronomy. In turn, their discoveries found their way west as scholars traveled

and translated.

Greece gave India the gift of geometry, and India gave the same gift back multi-

plied in value. A book written by Jyesthadeva (born c. 1500), for example, contains

a sum that introduces yet another wonderful interaction between geometry and

the infinite. Like ibn al-Haytham’s before him, Jyesthadeva’s argument pre-dates

those of Europeans by over 100 years.2

Jyesthadeva’s proof relied on a preliminary result that is itself an elegant blend

of geometry and the infinite. He began with the identity

1

1 C x
D 1 � x

�

1

1 C x

�

;

which can be checked by simplifying the right-hand side. Jyesthadeva pointed out

that the expression inside the parentheses matches the expression on the left-hand

side, so he replaced the former with the right-hand side repeatedly:

1

1 C x
D 1 � x

�

1

1 C x

�

D 1 � x

�

1 � x

�

1

1 C x

��

D 1 � x C x2

�

1

1 C x

�

D 1 � x C x2

�

1 � x

�

1

1 C x

��

D 1 � x C x2 � x3

�

1

1 C x

�

D � � �
D 1 � x C x2 � x3 C x4 � x5 C � � � : (2.6)

Jyesthadeva thereby turned a simple fraction into an infinite series. We should be

cautious; a cavalier treatment of the infinite can lead to absurd results. For exam-

2It is possible that some or all of his argument was discovered previously by fellow Indian Kerala

Gargya Nilakantha (born c. 1450), but here we simply attribute all arguments to Jyesthadeva.
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2.3 Jyesthadeva expands 1=.1 C x/ 21

ple, substituting x D 1 in (2.6) leads to the peculiar

1

2
D 1 � 1 C 1 � 1 C 1 � 1 C � � � ;

which we encountered in Chapter 1. Or substituting x D �1 in (2.6) suggests the

fantastical yet reasonable-looking

1

0
D 1 :

Letting x D 0 in (2.6) results in the entirely boring but reassuring 1 D 1. Choosing

x D 1=2 gives
2

3
D 1 � 1

2
C 1

4
� 1

8
C 1

16
� 1

32
C � � � ;

which may or may not be true. So for what values of x does Jyesthadeva’s result

(2.6) lead us to truth, or to mystery, or to nonsense?

A bit more experimentation with various values of x in (2.6) will convince you

that if x is between 0 and 1, we have hope. For now, we assume that x is such a

number, and (although Jyesthadeva did not) turn to geometry for further insight.

In Figure 2.4, square ABCD has sides of length 1. Locate point E on BC so that

BE D x. Let X be the point where segments BD and AE intersect.

Figure 2.4. The importance of point X relies on a equaling
1

1 C x
.

To identify the location of this special point, draw PQ through X parallel to AD

and let a D DQ D QX D AP . The similarity of triangles APX and ABE gives

AP

PX
D AB

BE
H) a

1 � a
D 1

x
H) a D 1

1 C x
:

So point X is the central focus of this figure, for its location generates the left-hand

side of (2.6), the equation we are studying.
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22 2 East of Greece

Figure 2.5. As we spiral in toward X from the starting point A, focus only on the horizontal

displacement.

Using Figure 2.5 as a guide, imagine point X as the goal of a trip where we start

at A, move to B , and then on to E , making another right-angled turn to reach point

F on BD. We are getting closer to X ; if we keep making right-angled turns each

time we encounter segments AE and BD, we will get ever closer and closer.

Our next turn, at F , brings us to G. How far is it from F to G? Triangles ABE and

EF G are similar, so the ratio of GF to FE must equal x, and F G must therefore

have length x2. Because BD is the diagonal of the square, the distance from G to

H is also x2.

Focus only on the horizontal distance we have traveled from the starting point

A, and ignore the vertical. We moved distance 1 to the right as we traveled from A

and B , then back to the left distance x as we traveled from E to F , and then back

to the right distance x2 as we traveled from G to H . Our horizontal displacement

from A is

1 � x C x2

when we are at H . Now the arguments earlier in this paragraph continue to supply

us with terms as we spiral ever closer to X , justifying our belief that

1

1 C x
D 1 � x C x2 � x3 C x4 � x5 C � � � (2.7)

when x is between 0 and 1. Thus is Jyesthadeva’s algebra in (2.6) supported by

geometry.

A series like (2.7), where the ratio of each term to the previous term is fixed (in

this case, it is �x), is called a geometric series. On page 132 we will see a modern

treatment of such a series.



i

i

“C&IO” — 2012/2/14 — 12:16 — page 23 — #37
i

i

i

i

i

i

2.4 Jyesthadeva expresses � as a series 23

2.4 Jyesthadeva expresses � as a series
Jyesthadeva’s inventive expansion of 1=.1 C x/ is the cornerstone of a more mar-

velous series, generated by the study of a circle’s circumference. The quarter-circle

in Figure 2.6 has radius 1, so its bisected arc AX has length equal to one-eighth of

2� , or �=4. By approximating arc AX with tiny line segments, Jyesthadeva discov-

ered a series that equals �=4.

Figure 2.6. Jyesthadeva approximated the arc AX with many tiny straight pieces like FN .

He divided AB into n equal heights, each of height h. Focus on the kth such

division, counting up from A. Drawing straight lines from D to each end of that

division, we locate points E; F on arc AX and G; H on AB as shown. Pause to

see where Jyesthadeva was heading: as we choose each division along AB from

the bottom to the top, the arc AX is divided into n pieces. Although not of equal

length, these pieces compose the arc AX that Jyesthadeva wished to measure.

The small arcs EF were not useful to Jyesthadeva because they are exactly what

compose arc AX , and he already knew the length of that arc is �=4. So Jyesthadeva

introduced two tiny segments, HM and FN , each perpendicular to DG. Figure

2.7 shows these details. Segment HM serves merely as a tool, but segment FN

is almost indistinguishable from arc EF , especially as n grows larger. Getting our

hands on FN , then, in terms of k and h, is the goal.

Jyesthadeva noted two pairs of similar triangles: triangles DFN and DHM

(because FN and HM are perpendicular to DG) and triangles GHM and GDA

(which share an angle at G and which each contain a right angle). Remembering

that the quarter-circle centered at D has radius 1, we discover the relationships

FN

DF
D HM

DH
H) FN D HM

DH
(2.8)
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24 2 East of Greece

Figure 2.7. Segment FN approximates arc EF .

and
HM

HG
D AD

DG
H) HM D HG

DG
: (2.9)

Substituting (2.9) into (2.8) gives

FN D
HG

DG � DH
:

Lengths DG and DH differ by very little, and this difference approaches zero as

we divide AB into more equal heights. So Jyesthadeva approximated FN with

FN � HG

.DG/2
D HG

1 C .AG/2
;

using the Pythagorean Theorem for the last step. Finally, because AG is composed

of k copies of HG D h, we have

FN � h

1 C .kh/2
: (2.10)

This approximates EF as desired.

The length of arc AX in Figure 2.6 is �=4, and Jyesthadeva has now approxi-

mated that length as the sum of n tiny segments FN ; further, his estimate

�

4
�

n
X

kD1

h

1 C .kh/2
(2.11)

improves as n grows larger. Now his expansion (2.7) plays its part. Because kh is

the length of AG in Figure 2.6, and AB D 1, then 0 < kh < 1 and so 0 < .kh/2 < 1.

We need not worry about proceeding with the help of (2.7):
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�

4
�

n
X

kD1

h
1

1 C .kh/2

D
n
X

kD1

h
�

1 � .kh/2 C .kh/4 � .kh/6 C .kh/8 � � � �
�

D h
�

1 � 12h2 C 14h4 � 16h6 C 18h8 � � � �

C 1 � 22h2 C 24h4 � 26h6 C 28h8 � � � �

C 1 � 32h2 C 34h4 � 36h6 C 38h8 � � � �

� � �

C 1 � n2h2 C n4h4 � n6h6 C n8h8 � � � �
�

:

Adding down the columns yields

h
h

n � h2

n
X

kD1

k2 C h4

n
X

kD1

k4 � h6

n
X

kD1

k6 C h8

n
X

kD1

k8 � � � �
i

D hn � h3

n
X

kD1

k2 C h5

n
X

kD1

k4 � h7

n
X

kD1

k6 C h9

n
X

kD1

k8 � � � �

D 1 � 1

n3

n
X

kD1

k2 C 1

n5

n
X

kD1

k4 � 1

n7

n
X

kD1

k6 C 1

n9

n
X

kD1

k8 � � � � : (2.12)

Aware of results (2.1) and (2.3), and how they extend to sixth powers and eighth

powers and so on (see exercise 2.4), Jyesthadeva replaced the sums in (2.12):

1 � 1

n3

�

n3

3
C n2

2
C n

6

�

C 1

n5

�

n5

5
C n4

2
C n3

3
� n

30

�

� 1

n7

�

n7

7
C n6

2
C n5

2
C n3

6
� n

42

�

C � � �

� 1

n9

�

n9

9
C n8

2
C 2n8

3
� 7n5

15
C 2n3

9
� n

30

�

C � � � :

He simplified much as we did in (2.5), then let each fraction with an n in its de-

nominator go to zero. What emerged is one of the world’s most elegant formulas:

�

4
D 1 � 1

3
C 1

5
� 1

7
C 1

9
� � � � : (2.13)

Who would suspect this link between the constant � and a series involving the

odd numbers?

It is one thing to read and understand the argument that produces (2.13) and an-

other to conceive it. This impractical but lovely series was rediscovered by others
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26 2 East of Greece

who followed their own paths, and none of these people claimed to have pur-

sued this goal for any reason other than the attainment of beauty. The charm of

mathematics runs parallel to art, poetry, music, and literature; we can marvel at an

analogy, a sculpture, a symphony, or a tale, and then mimic them if we desire. As

is often the case with mathematics, the results are judged by their beauty.

2.5 Furthermore
2.1 Brahmagupta seeks patterns in arithmetic. One of the most ancient mathe-

matics texts was authored by Brahmagupta (India, born 598), an astronomer

whose interest in numbers stretched beyond what was merely practical. His

serious treatment of zero illustrates this point; his bold claim that zero divided

by zero equals zero foreshadowed a debate that we shall return to in chapter 9.

Brahmagupta devoted much attention to arithmetic sequences, which will play

an important role in chapter 5. A sequence of numbers is arithmetic if the com-

mon difference between consecutive terms is constant. For example, the arith-

metic sequence 5; 8; 11; 14; 17; 20 has common difference 3. Its initial term is 5

and its period (that is, the number of terms in the sequence) is 6.

(a) Find the 100th term of the arithmetic sequence that begins

5; 8; 11; 14; : : : :

(b) Find the nth term in the arithmetic sequence that begins

a; a C d; a C 2d; a C 3d; : : : :

You may find it helpful to create your own numerical examples like the

one in part (a), only simpler. These examples will not only nudge you in

the correct direction as you seek the desired formula, but will also provide

test cases for your conjectures.

(c) Brahmagupta claimed that anyone who knows the initial term a, common

difference d , and period p of an arithmetic sequence could determine its

sum S . What formula for S does the trick?

(d) Brahmagupta changed the ‘givens’ to pique the minds of his readers. Try

this one: “On an expedition to seize his enemy’s elephants, a king marched

two yójanas the first day. Say, intelligent calculator, with what increasing

rate of daily march did he proceed, since he reached his foe’s city, a distance

of eighty yójanas, in a week?”

(e) What if we know the sum S and period p of an arithmetic sequence, but

lack the initial term a and common difference d ; can we always find values

for a and d that satisfy the givens? What is your answer?
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2.2 Porphyry, Pappus, and Bhaskara count. The Syrian scholar Porphyry (born

c. 234), in his commentary on the works of Aristotle (Greece, born 384 BCE),

did not resist a detour into mathematics when the opportunity arose. Porphyry

wished to explain the differences between five ‘qualities’ that categorize all real

things (such as horses, the number 10, Aristotle himself, and so on). This am-

bitious undertaking prompted Porphyry to contrast each of the five qualities

with each of the others.

(a) Rather than simply begin, Porphyry paused to argue that there are ten such

comparisons. Choose any of the five qualities; we may compare it to each

of the other four. Now when we consider pairing a second quality to the

others, we do not want to reconsider the first quality, which has already

been compared to the second; rather, we pair the second to the remaining

three. In this manner, Porphyry claimed, we see that the total number of

pairings is 4 C 3 C 2 C 1 D 10. (This is the fourth triangular number.)

Use induction to argue that the number of ways to pair n objects is the

triangular number Tn�1.

(b) The Greek mathematician Pappus (born c. 290) set his mind to many prob-

lems of geometry, one of which led him to consider the same problem as

Porphyry. Pappus counted the crossing points of lines that are drawn so

that no two are parallel and no three intersect at the same point. Explain

the connection between this problem and that of Porphyry.

(c) Centuries later, Bhaskara (India, born 1114) included results on counting

in his summary of current mathematical knowledge. The problem of Por-

phyry and Pappus generalizes naturally beyond pairs, and Bhaskara

pursued this with his own colorful illustrations. His peers who mixed

medicines, for example, classified the ingredients into six ‘tastes’ (sweet,

sour, salty, bitter, astringent, and pungent). More than two tastes could be

combined into one mixture.

Bhaskara provided an easily imitated pattern to use in solving counting

problems of this sort. To count the ways that we may mix n of the six tastes,

multiply together n of the following fractions, starting on the left:

6

1
;

5

2
;
4

3
;
3

4
;

2

5
;

1

6
:

For example, there are .6=1/ � .5=2/ � .4=3/ D 20 ways to choose 3 of the 6

tastes for the mixture. Why does Bhaskara’s method work? You will have

to explain how the denominators eliminate repetition.
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28 2 East of Greece

2.3 The series for 1=.1 � x/. Taking Figure 2.8 as a starting point, add what lines

and labels that are required to explain why

1

1 � x
D 1 C x C x2 C x3 C x4 C � � �

in the same way that we justified (2.7). You might start by finding the length

of CF .

Figure 2.8. ABCD is a square with sides 1, and both AEF and DCF are straight lines.

2.4 Extending ibn al-Haytham’s sums of powers. Formulas (2.1) and (2.3) let ibn

al-Haytham replace the first two sums in (2.12). To attack the ensuing sums, we

can repeat the process suggested by Figure 2.1 for a few cases, and then draw

a universal conclusion from our results.

(a) Follow ibn al-Haytham’s path in section 2.1 to find the formula that sums

the fifth powers:
n
X

kD1

k5 D n6

6
C n5

2
C 5n4

12
� n2

12
:

(b) Inspect your work for a reason to believe that for any positive integer p > 5,

n
X

kD1

kp D npC1

p C 1
C (terms of lower degree) :
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Say you bounce a ball
Have you ever noticed that
Between the business of its going up
and the business of its fall
it hesitates?

It just waits
There’s a fraction of a second there
when it’s luxuriating in the air
Before its fate rushes it on.

— from “Circe and the Hanged Man”, Ellen McLaughlin (2010)

Even if you sequester yourself in nature, away from the influences of humankind,

the world moves in curious, patterned ways. Why does one falling leaf drift in a

spiral while another twirls about its axis? What explains the eddy patterns in a

creek? What forces act on a bird’s wing? Why do the stars travel a circle during

the night? Thinkers from many cultures looked beneath the surface of questions

like these; underlying all of the answers was mathematics.

3.1 Oresme invents a precursor to a coordinate system
Most thinkers who discover something about how the universe works want to

share their discoveries, and some created notation intended to streamline this com-

munication. Chapter 7, for example, is in part devoted to explaining the symbols

that we use today in calculus. Equally important in our story is the development of

visual tools that, paired with sophisticated notation, not only facilitated the shar-

ing of results but also sparked ideas that almost certainly would have otherwise

remained out of reach. One such groundbreaking tool in mathematics is the coor-

dinate system — a graphical way of picturing how two or more variables relate —

with origins that reach back to medieval Europe.

29
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If you rest one end of a metal poker (a long rod used to manipulate hot objects)

in a fire and wait a bit, the temperature of the poker changes so that it is great

at one end and less at the other — and we all know which end is which. Nicole

Oresme (France, born c. 1323) suggested that the best way to depict this is to draw

a horizontal line segment to represent the poker and, perpendicular to each point

on the line, a vertical segment that illustrates how hot the poker is at that point.

Figure 3.1 shows what he means for two pokers, one that has an end in the fire and

another that is not near a fire. Oresme forthrightly stated that there could be “no

more fitting way” to express such a physical concept in the form of a diagram.

Figure 3.1. Do you agree that it is easy to determine which end of which poker is in a fire?

Today, we are used to assigning a scale to the vertical heights, but Oresme’s

focus was on the ratio of the heights; if, at one point, the height is double that of

another, then the first point of the poker is twice as hot. It did not matter to Oresme

what the two temperatures actually were. Further, Oresme elected to omit the ver-

tical lines themselves and keep only the uppermost point of each, because, after

all, there are infinitely many points along the poker. He let “the line of summit”

refer to this collection of points. Figure 3.2 shows Figure 3.1 as Oresme drew it

(along with a third poker).

Figure 3.2. What does the third diagram imply about the location of the fire and the poker?

Oresme celebrated not only the clarity but also the versatility of these diagrams.

If the object in question is two-dimensional, like a metal plate, then the vertical

segments create a surface rather than a line. Further, the horizontal segment need

not portray something physical; it can represent, for example, a period of time.
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When we partner this last idea — that the horizontal segment can be a visual

metaphor for the passing of time — with the choice to let the vertical lines repre-

sent the velocity of an object during that period of time, then we have come close

to the heart of the host of questions that calculus answers. Pairing time with ve-

locity, rather than points along a poker with hotness, we see in the first diagram of

Figure 3.2 an object moving at a constant velocity, in the second an object undergo-

ing an increase in velocity, and in the third an object that speeds up to a maximum

velocity and then slows down to its original velocity.

Acceleration is the word associated with a change in velocity, made tangible by

the force we feel when sitting in a plane that is taking off or on a horse that is

skidding to a stop. In a plane or on a horse that is traveling at a constant veloc-

ity (the first diagram), we do not feel this force, indicating a lack of acceleration.

By contrast, the second diagram represents an object with a constantly increasing

velocity, and so what is called a uniform acceleration.

Figure 3.3. Subdividing the uniform acceleration diagram reveals a link to the odd integers.

Oresme took special note of the case of uniform acceleration starting at rest,

which gives rise to the diagram in Figure 3.3. At time A, the object begins to move,

and its velocity increases uniformly. Oresme observed that if we subdivide AB

into n equal parts, then the small shaded triangle at A is repeated throughout the

rest of the diagram, as shown. Altogether, the entire triangle consists of

1 C 3 C 5 C � � � C .2n � 1/

such small triangles. Oresme knew (as we do from Figure 1.4) that this sum in n2.

Moreover, because distance is the product of velocity and time, Oresme connected

this sum to the distance traveled by the object. So in the case of uniform accelera-

tion, there appears to be a link between distance and the square of how much time

has passed.

Three centuries later, Galileo Galilei (Italy, born 1564) stated this connection

plainly:

The spaces described by a body falling from rest with a uniform accelera-

tion motion are to each other as the squares of the time intervals employed

in traversing those distances.
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Galileo experimentally verified this mathematical observation about the world,

and today we express this fact with the formula d D kt2.

When acceleration is not uniform, the analysis is more complex, and a full ex-

ploration only took place in the decades after Galileo’s death in the mid-1600s. The

rest of this chapter concerns two thinkers who not only engaged this problem of

curved lines of summit but also refined Oresme’s approach of using diagrams to

depict the relationship of two variables.

3.2 Fermat studies the maximums of curves
An amateur mathematician with the mind of a professional, Pierre Fermat (France,

born 1601) solved some of the toughest problems of his day and even proposed his

own to the community. He was attracted to the same sorts of puzzles that occupied

Oresme, including the questions of what there is to learn about curves and what

tools best assist in this task.

Fermat inherited a tool that Oresme did not possess: the sophisticated, symbolic

approach of François Viète (France, born 1540). Before Viète, most mathematical

exposition relied on verbal descriptions of the subject, and part of Viète’s pro-

gram aimed to encode such explanations in clear, precise notation. For centuries,

mathematicians held that a curve resulted from the intersection of two geometric

objects; a parabola, for instance, is created when a plane intersects a cone just so.

Fermat, augmenting what he had gained from Viète, asserted that a curve also re-

sults whenever two unknown quantities enjoy some relationship as expressed by

an equation. Thus, a parabola is born at the mere mention of y D x2.

Figure 3.4. There are two solutions if the lengths of the cut segments multiply to a number

smaller than the maximum.

Fermat turned this innovation on classic problems of geometry like this one:

cut a line segment AB of length a (Figure 3.4, top diagram) into two parts, one

of length x and the other of length a � x, so as to maximize the product x.a � x/

of their lengths. The solution — cut the segment in half — was well-known, but

Fermat developed a novel algebraic method for solving it. Suppose we do not wish

to maximize the product, but instead want cut the segment at a point so that the

product of the two lengths equals a number N that is less than the maximum. Then

there should be two different cuts that solve the problem. Say that P provides one
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such solution and that Q provides the other, as in Figure 3.4. With AP D x, let

AQ D x C e, so that e is the distance between P and Q. Both products equal N , so

they are themselves equal, hence

x.a � x/ D .x C e/.a � .x C e//

ax � x2 D ax C ae � x2 � 2xe � e2

0 D ae � 2xe � e2:

Dividing by e yields

0 D a � 2x � e: (3.1)

Now let’s return to the original problem of maximizing the product, where there

is a unique solution, as if P and Q become one. In such a case, the difference e is

zero, and assigning e D 0 in (3.1) gives the well-known solution x D a=2.

This concise method applies to problems entirely divorced from any geometric

inspiration. Say we want to maximize ax �x3 now. Mimicking what we did above,

we replace x with x C e and set the results equal:

ax � x3 D a.x C e/ � .x C e/3

D ax C ae � x3 � 3x2e � 3xe2 � e3: (3.2)

Collecting like terms and dividing by e yields

0 D a � 3x2 � 3xe � e2;

whereupon we let e D 0 to find that a D 3x2.

Primary among the concerns that this otherwise elegant method raises is that of

the status of the variable e. Moments after dividing by e we let e D 0. Is e alive, or

is e a ghost? If it is both, then serious doubt is cast on the logical step that marks

its transition from alive to dead.

Aware of this, Fermat took care to justify his method. To take some of the pres-

sure off of the concept of equals in the initial step of (3.2), Fermat coined the term

adequals to use in its place. His use of ‘adequals’ in an equation signaled that one

of the non-zero variables in that equation would later be allowed to equal zero.

Further, he argued that when e is nonzero we are in the case of multiple solu-

tions and when e D 0 we are simply shifting to the case where there is a unique

solution. How persuasive his defenses are to us today is a bit beside the point,

because we use a different method now for maximizing (and minimizing) curves,

but our modern method bears enough similarity to Fermat’s to make him a critical

character in the story of calculus.

3.3 Fermat extends his method to tangent lines
Even more salient to our story is Fermat’s treatment of tangent lines. It is straight-

forward to define tangent line if one has access to modern concepts of function and
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limit, but we are still several chapters from that vantage point. For our purposes —

that is, to show how Fermat investigated tangent lines using his method of finding

maximums and minimums — we can use a definition from ancient Greece: a tan-

gent line to a curve intersects the curve at exactly one point.

Figure 3.5. Fermat reproduced the well-known result that a tangent line to a parabola inter-

sects the axis so that b D 2x.

When Fermat first published his method for tangent lines, he explained how it

works using a parabola, but he did not yet realize that such a curve can be ex-

pressed simply as x D y2 or y D x2 on coordinate axes. Instead, he used the

classical Greek definition of a parabola as that curve BAC , as in Figure 3.5, such

that
.BD/2

AD
D .EF /2

AF
: (3.3)

The vertex A of the parabola lies on the axis HD, oriented horizontally as Fermat

drew it. Line BGH is tangent to the curve, so the only point of intersection is B . To

construct this tangent line, we must locate H in its proper spot; that is, we must

determine the distance from H to A. It was commonly known that A is equidistant

from H and D, but Fermat demonstrated this in a new way.

Because G lies outside the parabola on the tangent line, we have EF < GF , so

(3.3) can reflect this:

.BD/2

AD
D .EF /2

AF
<

.GF /2

AF
; or

.BD/2

.GF /2
<

AD

AF
: (3.4)

Now triangles BDH and GFH are similar, so

BD

GF
D

DH

FH
; or

.BD/2

.GF /2
D

.DH/2

.FH/2
;

which, combined with (3.4), implies that

.DH/2

.FH/2
<

AD

AF
; or

.DH/2

AD
<

.FH/2

AF
: (3.5)
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If we were to slide F until it were superimposed on D, the left-hand side of this

last inequality would remain constant while the right-hand side would decrease

and approach that constant, so Fermat had in a sense identified the problem of

determining a tangent line with that of finding a minimum value. For this reason,

perhaps, he set the two sides of (3.5) adequal to each other; as a reminder, this

means that he intends to treat some distance that is currently nonzero as if it is

zero. In this case, that distance is FD, which horizontally separates GF from BD.

If we assign DH D b, AD D x, and FD D e, then (3.5) becomes

b2

x
<

.b � e/2

x � e
; or

b2

x
� .b � e/2

x � e

when we let � denote that the ratios are adequal. So

b2.x � e/ � x.b � e/2 D x.b2 � 2be C e2/

b2x � b2e � b2x � 2bxe C xe2

b2e � 2bxe � xe2:

Here Fermat divides by e and then lets e D 0 to find that b2 D 2bx or b D 2x,

confirming the well-known property of tangent lines to parabolas.

We discussed Fermat’s treatment of e earlier, as well as his defense. To be fair,

Fermat later developed tools akin to our modern coordinate system and notation,

whereupon he addressed this concern of division by zero. But we have studied

his original method here not only for the window it opens on the tricky issues

that calculus must navigate, but also because we can better discuss an alternative

method of finding tangent lines due to someone who might properly be called

Fermat’s ‘rival’ in mathematics.

3.4 Descartes proposes a geometric method
Fermat’s approach is not the only algebraic way of studying tangent lines. René

Descartes (France, born 1596) discovered another method, and challenged Fermat

to what amounted to mathematical duels using his method as his weapon.

Rather than aim at tangent lines, Descartes showed how to construct normal

lines, which are perpendicular to tangent lines at the point of tangency. If one line

can be found, the other follows easily. Parabola BAC with tangent line BH ap-

pears in Figure 3.6 along with normal line BP . While Fermat’s method calculates

distance AH , Descartes’s finds AP .

Descartes argued that any circle with center P will either intersect the upper

half of the parabola two times, once, or not at all. If once, then that point must be

B . Let r be the length of the radius PB of this circle, and let AD D x, AP D h, and

BD D a. Now

a2 D r2 � .h � x/2
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Figure 3.6. The circle touches the curve at one point, so its radius is perpendicular to the

tangent line of the curve.

by the Pythagorean Theorem. Using the fact that BAC is a parabola, we know

a2 D x, so

x D r2 � .h � x/2; (3.6)

and if the relationship between a and x were different, we would have substituted

appropriately.

Now (3.6) may be written

x2 C .1 � 2h/x C .h2 � r2/ D 0 (3.7)

as a quadratic equation. Such an equation has two solutions that we can find by

factoring the left-hand side. Descartes pointed out that if the circle cut the parabola

in two points, then the equation would have two roots; but because the circle only

touches the parabola once, the factorization of the left-hand side of (3.7) must be

.x � c/2 for some value c. So

x2 C .1 � 2h/x C .h2 � r2/ D .x � c/2; or

x2 C .1 � 2h/x C .h2 � r2/ D x2 C .�2c/x C c2 : (3.8)

This equation is organized according to decreasing powers of x. The fast way to

reach our goal is to equate coefficients; that is, the only way for one side of (3.8) to

equal the other is if

1 � 2h D �2c and h2 � r2 D c2 : (3.9)

Descartes stated that when an equation like (3.7) has two equal roots, then in the

factoring .x � c/2 the number c equals the unknown quantity x. (For example, the

single solution to .x � 3/2 D 0 is x D 3.) Thus, we may rewrite (3.9) as

1 � 2h D �2x and h2 � r2 D x2 : (3.10)
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The first of these equalities reveals the relationship h D x C 1=2 that we were seek-

ing (and the second equality supports this result when we use the Pythagorean

theorem on triangle BDP ).

Like Fermat, Descartes could replicate well-known results with an algebraic

method that could be applied to curves that did not specifically arise from the

study of a geometry problem. But like Fermat, Descartes did not sidestep every

logical pitfall. To arrive at (3.9), he expanded .x � c/2 and equated its coefficients

to the expression on the left of (3.8). Then to arrive at (3.10), he let x D c. But in

this case, the expansion of .x �c/2 equals zero, whereupon it becomes problematic

to equate coefficients.

And then a practical trouble of the method of Descartes lies in the morass of

calculations we must navigate; for example, to find (3.6) for a curve such that a3 D
x, we land in the unenviable position of having to expand

x2 D
�

r2 � .h � x/2
�3

(3.11)

and then factor .x � c/2 from the resulting sixth-degree polynomial to find the

relationship between h and x.

Johannes Hudde (Holland, born 1628) found a clever way to reduce the diffi-

culty of handling equations like (3.11), which helped to make the method of Des-

cartes more accessible. Still, while neither method avoids risky play with the infi-

nite, Fermat’s method showed a robustness in meeting new challenges that may

explain why modern techniques of studying curves mimic his approach.

3.5 Furthermore
3.1 The infiniteness of the harmonic series. Mathematicians approach problems

the way rock climbers do cliffs: the more difficult the pitch, the more exhila-

rating the ascent. After a climb has been solved, others look for new routes, or

try equipment that no one else has used, simply for the joy of pioneering. The

harmonic series — so named for its connection to music — illustrates this well.

(a) It seems reasonable that the sum of a series will not change if we group the

terms and first add within the groups. We have little reason to doubt, for

example, that
�

1

2
C 1

4

�

C
�

1

8
C 1

16

�

C
�

1

32
C 1

64

�

C � � � D 3

4
C 3

16
C 3

64
C � � �

has a sum other than 1 because of the grouping.

Oresme grouped the terms of the harmonic series

1 C 1

2
C 1

3
C 1

4
C 1

5
C 1

6
C 1

7
C � � � (3.12)

in a way that showed that the series is greater than

1 C 1

2
C 1

2
C 1

2
C � � � :
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Find a grouping that leads to this same conclusion. (And thus, as Oresme

put it, the series “becomes infinite.” Today, we say that the series diverges.)

(b) Pietro Mengoli (Italy, born 1626) suggested the grouping

1 C
�

1

2
C 1

3
C 1

4

�

C
�

1

5
C 1

6
C 1

7

�

C � � � ;

arguing that the sum of each group exceeds three times the middle term.

Why could he claim this, and how does his claim lead to a proof that the

harmonic series becomes infinite?

(Note: yet another proof is offered in exercise 8.1(c).)

3.2 Oresme compares two series. Oresme’s proof in exercise 3.1 that the harmonic

series cannot be summed is justly famous, but he devoted substantially more

of his writing to observations on the infinite. Here we look at his reflections on

pairs of series that grow at different rates.

Oresme claimed that if we subtract a part of a quantity from itself and repeat-

edly subtract the same proportion of what remains from the remainders them-

selves, then the entirety of the quantity will be exactly consumed. Using mod-

ern notation, let Q denote the quantity, and suppose that we remove 1=n part

of Q, leaving

Q � 1

n
Q; or Q

�

1 � 1

n

�

:

Removing another 1=n part of this remainder leaves

Q

�

1 �
1

n

�

�
1

n
Q

�

1 �
1

n

�

; or Q

�

1 �
1

n

�2

:

Oresme claimed that this process will ultimately deplete Q exactly, or

Q D 1

n
Q C 1

n
Q

�

1 � 1

n

�

C 1

n
Q

�

1 � 1

n

�2

C � � �

D 1

n
Q

"

1 C
�

1 � 1

n

�

C
�

1 � 1

n

�2

C � � �
#

in symbols. What we see in the last set of brackets looks like the series from

exercise 2.3, with x D .1 � 1=n/ < 1. If we can trust that series, then how would

it help us establish the truth of Oresme’s claim?

Historical note. Although Oresme proved that the series in exercise 2.3 is trust-

worthy, he also addressed this common-sense objection: Suppose we let n D 2

on one hand and n D 5 on the other1. In the first case, we repeatedly reduce

what is left of our quantity by half, whereas in the second case we more slowly

1Oresme used n D 2 and n D 1000, but Figure 3.7 would be difficult to interpret.
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reduce what is left by only a fifth part. Pause this process so that each reduc-

tion has occurred the same number of steps; what remains of the first quantity

is clearly less than what remains in the second, as Figure 3.7 attempts to make

clear. So if the second process is always lagging behind the first, then how

could both processes exactly consume the same original quantity? This sounds

paradoxical.

Figure 3.7. This is a geometric representation of a quantity being reduced at two different

rates.

Oresme countered this argument by challenging the idea that we may only

compare the two remainders after the same number of steps. Granted, if we

pause at each step and compare what remains of the quantity that is being

halved to what remains when n D 5, then the first remainder will always be

smaller. However, if we freeze this small remainder and continue removing the

fifth part of the other, this other remainder will eventually become less than

the first. Although the rates differ, then, the quantity cannot escape its fate; it is

consumed either way. Oresme’s mature approach to series compares favorably

with our modern treatment, which appears much later, in section 9.4.

3.3 Descartes corrects Fermat’s method. In taking issue with Fermat’s methods

described in this chapter, Descartes wrote a letter (to a third party) in which he

hoped to repair the methods. In the letter, Descartes chose as his example the

curve ABD (in Figure 3.8) that today we would denote x D y3, although, like

Fermat, he defined the curve as those points satisfying

.BC/3

AC
D .DF /3

AF
: (3.13)
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Figure 3.8. Today we would describe curve ABD using x D y3 .

(a) Using the labels from the figure, we can conclude by the similarity of trian-

gles ECB and EFD that
b

d
D a

a C e
;

and from (3.13) that
b3

d 3
D c

c C e
:

Combine these observations and provide the algebra required to show that

a3 D 3a2c C 3ace C ce2: (3.14)

(b) Line HBD is not tangent to the curve, but if we allow DF to slide left until

it is superimposed on BC (which, it is worth noting, would slide H closer

to A), then the new line HB would be tangent. Explain how this process

transforms (3.14) into a D 3c, and then express the significance of this con-

clusion in your own words.

3.4 Binomial expansion. Fermat’s approach to finding the slopes of tangent lines

and maximum points requires the expansion of expressions like .x C e/3 in

(3.2). Such expressions having two terms x and e within the parentheses are

called binomials. The importance of their expansions will only grow as we pro-

ceed with the story of calculus. In this exercise, we set the scene for a thinker

whose insight into binomial expansions is detailed in exercise 6.5.

Take a look at the patterns that arise in an expansion where the exponent is an

integer. The expansion of .x C e/5 makes the point. By hand, we expand

.x C e/5 D x5 C 5x4e C 10x3e2 C 10x2e3 C 5xe4 C e5

and observe the pattern 1; 5; 10; 10; 5; 1 of the coefficients, a signpost to a possi-

ble shortcut. To discover the shortcut, we observe that from each factor in

.x C e/5 D .x C e/.x C e/.x C e/.x C e/.x C e/
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we must choose one term — either x or e — and then find the product of these

five choices. To generate x5 in the expansion, for example, we would choose x

from all five factors. Because this is the only way to get the term x5, its coeffi-

cient is simply 1.

The term x4e requires the choice of x from 4 of the factors and e from the

remaining 1 factor. There are 5 factors from which we may choose e, so x4e

appears 5 times in the expansion. Similarly, we get x3e2 whenever we choose

x from 3 of the factors and e from the other 2 factors. Counting by hand gives

10 ways for this to happen, but counting in this way is tedious.

As with most endeavors, tedium in mathematics points to shortcuts; patterns

lead the way there. For starters, why is the number of copies of x3e2 the same

as the number of copies of x2e3 in the expansion? It is because x and e differ

only in name. If we choose x from the middle three factors, for example, and

therefore e from the first and last to generate x3e2, we could just as well have

chosen e from the middle three factors to create x2e3. Each choice of x from

three factors corresponds exactly to one choice of e from the same three factors.

Fair enough; now, why are there 10 such ways to choose three of the five fac-

tors? Reframing the question may bring it into sharper focus. Instead of factors,

imagine 5 poker chips. How many ways can we choose 3 of them? If we label

the chips A; B; C; D; E, then we have 5 choices for the first chip, 4 choices for

the second, and 3 choices for our third. Say we choose D; E; A in that order.

The number of such choices, then, totals 5 � 4 � 3 D 60. The choice DEA is one

of these.

But so also are the other five versions of DEA, namely ADE, AED, DAE, EAD,

and EDA. We want to count all 6 of these results as just one, because the chips

only differ in their labels. We can take care of such repeats by dividing 60 by 6.

Thus, we may choose 3 of 5 identical objects in 10 ways.

What formula does the argument suggest? Starting with n identical objects,

we temporarily label them. To choose k of the objects, we first choose from

the original n, then the remaining n � 1, then the remaining n � 2, and so on,

until we have chosen k times. But for each such choice, there are several others

that will repeat that choice once we remove the labels. Specifically, we need to

divide by the number of ways that we can rearrange those k labeled objects,

which is

k � .k � 1/ � .k � 2/ � � � � � 1 :

Mathematicians denote this product with the symbol kŠ or the language ‘k fac-

torial’.

One last tricky bit before we can generate the formula: when we choose k of n

labeled objects, there are n � k objects remaining, so our kth and final choice

came from n�kC1 objects. Hence, the number of ways to choose k of n identical
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objects is
n.n � 1/.n � 2/ � � � .n � k C 1/

k.k � 1/.k � 2/ � � � 1
: (3.15)

Multiplying both numerator and denominator by .n � k/Š yields the modified

and better-known version
 

n

k

!

D nŠ

kŠ.n � k/Š
(3.16)

where the left-hand side is read ‘n choose k’ and the right-hand side is a sim-

plified version of (3.15). So, for example, we might write

 

6

3

!

D 6Š

3Š 3Š
D 6 � 5 � 4 � 3 � 2 � 1

3 � 2 � 1 � 3 � 2 � 1
D 20

to find the number of ways of choosing 3 of 6 identical objects.

(a) List these 20 possibilities, using the illustration of poker chips labeled A, B ,

C , D, E , F .

(b) Expand .x Ce/6 using the techniques just discussed, rather than expanding

by hand.

(c) Using summation notation and the notation of (3.16), write a sum that

equals .x C e/n for a positive integer n. This equality is called the binomial

theorem.
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Every mathematical subject advances thanks to imaginative conjectures. One of

the earliest examples of such risk-taking in calculus is due to Democritus (Greece,

born c. 460 BCE), who lived about 200 years before Archimedes. He is credited with

a claim such as the following:

If two solids are cut by a plane parallel to their bases and at equal distances

to their bases, and the sections cut by the plane are equal, and if this is true

for all such planes, then the two solids have equal volumes.

Although this claim does not directly state that solids are composed of infinitely

many two-dimensional slices, it certainly toys with the idea. One might ask, for

example, what becomes of the topmost slice of a pyramid, at its tip. Do we jump

from two dimensions to only one? Is the jump sudden, or gradual? In fact, Dem-

ocritus himself skeptically inquired if two infinitely thin slices of a solid could be

neighbors. Yet despite puzzles like this, mathematicians used the statement above

to compare the volumes of cylinders, cones, prisms, pyramids.

Inspired leaps leading to truth — it is no wonder that some have claimed that

revealing truths in mathematics takes as much creativity as in the arts and letters.

In this chapter, we see how European mathematicians engaged in this pursuit.

4.1 Cavalieri's quadrature of the parabola
The simplest area to calculate is that of a square, and because the prefix quad-

suggests squares, we use the phrase ‘a quadrature of’ to mean ‘an area equal to’.

We use this term even when the area is not square, as when Archimedes found a

quadrature of a parabolic segment.

In 1639, Bonaventura Cavalieri (Italy, born 1598) published a method for find-

ing the area bounded by a parabola; his argument echoes the statement attributed

to Democritus above. Cavalieri’s quadrature of the parabola, in fact, began with

a square as in Figure 4.1. Segment EF bisects square ABCD and meets diagonal

43
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Figure 4.1. Segment HK remains parallel to AB as it slides through the square ABCD.

BD at M . Dotted segment HK remains parallel to AB as it slides from AB down

to DC . It meets EF at I and BD at J .

Upon HJ , Cavalieri imagined building a square. In Figure 4.2, we see ABCD

lying ‘flat’ with shaded square HJPQ built upon HJ . As HK slides from AB to

CD, the square on HJ decreases in area until, ultimately, it vanishes to a point

at D. The volume created by this sliding square resembles a four-sided pyramid

lying on its side, with square base ABRS and tip D. For convenience, we let 4
denote this pyramid.

Figure 4.2. Imagine the square HJPQ, built on HJ , sweeping through pyramid 4.
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Cavalieri argued that the volume of 4 equals the area DAL under the parabola

in Figure 4.3. Here is why: segment HN is the square of DH , and DH D HJ in

Figure 4.2, where the ‘square of HJ ’ is shaded; in other words, the length of HN

in Figure 4.3 is the area of square HJPQ in Figure 4.2. Thus, Cavalieri claimed

that the area created as HN sweeps from AL to D is the volume created as HJPQ

sweeps from ABRS to D.

Figure 4.3. The area of region DAL equals the volume of pyramid 4 in Figure 4.2.

A reader blessed with good spatial relations can see that pyramid 4 in Figure

4.2 occupies one-third of the cube that would form if ABRS swept parallel to itself

until it stood on CD. (The frontispiece shows that three copies of 4 assemble into

that cube.) Not wishing to rely on such visual or physical observations, however,

Cavalieri expressed his argument using words and algebra. When he wrote “all

squares on HJ ”, for example, he means the volume created by all possible squares

built on HJ as it sweeps from AB to D; that is, he meant the volume of 4.

We can more easily follow his argument if we replace phrases like “all squares

on HJ ” with notation. Using summation notation, we let

D
X

A

.HJ /2

denote “all squares on HJ ”, where A and D indicate the range through which the

squares on HJ sweep. Our goal, stated with this notation, is to show that

D
X

A

.HJ /2 D 1

3

D
X

A

.AB/2 : (4.1)

Cavalieri began with an observation about Figure 4.2:

.AB/2 D .HJ C JK/2 D .HJ /2 C 2.HJ � JK/ C .JK/2 : (4.2)
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46 4 Indivisibles

Cavalieri focused on the product HJ � JK, observing that

IJ D HJ � HI

H) IJ D HJ � IK; and

IJ D IK � JK:

Adding the second and third equations yields

2.IJ / D HJ � JK

H) 4.IJ /2 D .HJ � JK/2 D .HJ /2 � 2.HJ � JK/ C .JK/2

H) 2.HJ � JK/ D .HJ /2 C .JK/2 � 4.IJ /2 : (4.3)

Using (4.3) in (4.2) gives

.AB/2 D 2.HJ /2 C 2.JK/2 � 4.IJ /2 : (4.4)

Now because (4.4) is true for any particular segment HK, Cavalieri claimed that

the collection of all squares will obey the same pattern; thus,

D
X

A

.AB/2 D 2

D
X

A

.HJ /2 C 2

C
X

B

.JK/2 � 4

F
X

E

.IJ /2 : (4.5)

Visualizing in three dimensions (as we did in Figure 4.2) supports Cavalieri’s

observation that
D
X

A

.HJ /2 D
C
X

B

.JK/2 ; (4.6)

as the two volumes denoted by these sums are mirror images. Similarly,

F
X

E

.IJ /2 D 2

M
X

E

.IJ /2 : (4.7)

Finally, Cavalieri imaginatively suggested that we picture the squares on IJ sweep-

ing from E to M during the same time as it takes the squares on HJ to sweep from

A to D. Because EM is half of AD, the squares on HJ will have to move twice as

fast — so there are twice as many — compared to the squares on IJ . Further, each

segment IJ corresponds to a segment HJ that is twice as long, so the square on

HJ will have four times the area of the square on IJ . The upshot of these thoughts

is that
D
X

A

.HJ /2 D 8

M
X

E

.IJ /2 : (4.8)

Combining (4.8) with (4.7) yields

4

F
X

E

.IJ /2 D
D
X

A

.HJ /2 ;



i

i

“C&IO” — 2012/2/14 — 12:16 — page 47 — #61
i

i

i

i

i

i

4.2 Roberval's quadrature of the cycloid 47

which, along with (4.6), allows us to substitute into (4.5):

D
X

A

.AB/2 D 2

D
X

A

.HJ /2 C 2

D
X

A

.HJ /2 �
D
X

A

.HJ /2

D 3

D
X

A

.HJ /2 :

Dividing by 3 produces equation (4.1) and its implications for the area under the

parabola.

Cavalieri used the word indivisibles to describe objects like the “squares on HJ”

that cannot be sliced any thinner. His idea that solids were composed of indivisi-

bles correctly solved the problem we just studied and many more besides; yet in

its wake, puzzling questions remain. As one example, look at the paragraph pre-

ceding (4.8). Cavalieri claimed that there are twice as many squares on HJ from

A to D as there are squares on IJ from E to M , yet he then compared the areas of

one square from each group. Does this leave out half of the squares on HJ ? Does

it help that both groups of squares are infinite?

Cavalieri cared about the answers to these questions, but lack of answers did

not stop him from advancing similar arguments. In fact, he went on to compute

the areas under curves of degree higher than two, ultimately asserting that

area under the curve y D xk

between the vertex and x D a
D akC1

k C 1
: (4.9)

Despite the puzzling nature of his arguments, his results were correct; better yet,

they were crucial building blocks in the story of calculus.

4.2 Roberval's quadrature of the cycloid
An admirer of Cavalieri’s methods, Gilles Personne de Roberval (France, born

1602) found brilliant uses for them. One of Roberval’s quadratures illustrates this

particularly well.

If the circle with diameter AB in Figure 4.4 were to roll to the right while sitting

on AG, the point A would track along the dashed curve, peaking at point C , and

returning to the ‘ground’ at point G. The curve ACG is called a cycloid because it

is generated by a rolling circle; the point A acts like a tack stuck in a bicycle tire.

The cycloid caught the fancy of mathematicians in the late 1600s in part because

it provided the surprising solution to questions like these two: Along what curve

would a clock’s pendulum swing so that the clock would keep perfect time no

matter how far the pendulum traveled in one swing? What curve allows a ball

placed on it to descend from one point to another in the fastest time? In each case,

an inverted version of the cycloid shown in Figure 4.4 answers the question.

Galileo, teacher of Cavalieri, attempted a quadrature of the cycloid by building

one of metal and weighing it against the metal circle that generated it. This experi-

ment suggested to Galileo that the cycloid’s quadrature was about three times that

of the generating circle. Roberval proved that it was exactly three times.
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48 4 Indivisibles

Figure 4.4. The cycloid ACG tracks the movement of point A on the circle as it rolls from A

to G.

Roberval’s argument is easier to follow if we focus on the latter half of the circle’s

journey as it is depicted in Figure 4.4. In Figure 4.5 (a), focus on point C as it moves

to C 0, tracing part of a cycloid. (Points P and D move to P 0 and D0, respectively,

each one tracing a part of its own cycloid, too.)

When the circle begins to roll, imagine that the original circle remains behind,

motionless, like a ghost of the rolling circle — see Figure 4.5 (b). Let L be the point

on CP that mirrors the height of C 0, so LC 0 is always parallel to P G. Points N and

M lie on LC 0 so that N remains on the ghost circle and M stays directly above the

rolling circle’s point of contact with the ground. Roberval noted that LN D MC 0

at all times; as LN sweeps through the semicircle CNP , segment MC 0 sweeps

through part of the region under the cycloid CC 0G. Thus, the area of the semicircle

CNP equals the area through which MC 0 sweeps.

Thus, the path that M takes cuts the desired area under the cylcoid into two

unequal parts, one of which we have identified with half of the area of the rolling

circle. We can find the area of the other part if we come to understand the details

of how M moves.

Suppose that the circle rolls at a constant speed; then N travels on the ghost

circle from C to P at a constant speed. Because M stays directly above the rolling

circle’s point of contact with P G, its horizontal speed is constant. However, its

vertical speed mirrors that of N , which moves downward fastest when it is directly

to the right of the center of the ghost circle. Although the vertical speeds of N and

M are changing, the speeds possess symmetry, leading Roberval to conclude that

the path of M cuts rectangle CP GH in half in the manner shown in Figure 4.5 (c).

The area of CP GH is its height (the diameter of the circle) times its width (half

of the circumference of the circle). Thus, if we let r denote the radius of the circle,

we find that
area swept by LM D 1

2
.area of CP GH/

D 1

2
.2r/

1

2
.2�r/

D �r2

D area of the rolling circle:
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Figure 4.5. These three figures help establish the truth of Roberval’s claim about the cycloid.
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50 4 Indivisibles

Combining this observation with the earlier result that MC 0 sweeps through an

area equal to half the area of the rolling circle, Roberval concluded that the area

of CC 0GP was one and a half times the area of the rolling circle. So Galileo came

close when he weighed metal cycloids: the area under a complete cycloid is exactly

three times the area of the circle that generates it.

4.3 Worry over indivisibles

Roberval’s argument is appealing and its conclusion is true, both hallmarks of

excellent mathematics. At its heart, though, lies an assumption like that attributed

to Democritus at the start of this chapter: Roberval claims that LN and MC 0 are

equal at all heights as they sweep through semicircle PNC and region CMGC

respectively, so these two regions have the same area. On the face of it, this claim

seems true. In fact, it is true. Why not believe it?

Cavalieri, who did as much as anyone to reveal truths based on this assumption,

was challenged on this point by mathematicians like Paul Guldin (Switzerland,

born 1577). Consider the triangle in Figure 4.6, for example. Altitude BD divides

Figure 4.6. This figure challenges the idea that areas are composed of indivisible lines.

triangle ABC into two regions. Imagine that E moves from A to D with EF paral-

lel to BD. At all times, let F G be parallel to AC with G on side BC , and H on AC

so that GH is parallel to EF . No matter where E sits on AD, the corresponding

point H sits on DC , and EF D HG. By the assumption used by Roberval in his

quadrature, regions ABD and BDC ought to be equal. Clearly they are not.

This challenge troubled Cavalieri, who suggested that there are more indivisibles

in one region than the other. But how can one infinitude exceed another? Why does

Roberval’s argument lead to truth while this one does not? Puzzles upon puzzles,

exactly what mathematicians love.
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4.4 Furthermore
4.1 Kepler determines the volume of an ‘apple’. A few decades before Cavalieri

produced the work described in this chapter, the astronomer Johannes Kepler

(Germany, born 1571) used indivisibles to calculate the volumes of a wide vari-

ety of solids. One such volume was that of a circle that is revolved around one

of the points on its perimeter, as in Figure 4.7. Imagine the circle with center Q

sweeping through space while hinged at point P on its perimeter; then Q will

pass through Q0 and a typical chord AB that is parallel to the tangent at P will

pass through A0B 0. The resulting solid looks like a doughnut (or horn toroid, to

use the mathematical term) with its hole closed.

Figure 4.7. Revolving a circle around one of its perimeter points P creates a solid (shown in

cross-section here).

Kepler reasoned that, as it revolves, each segment like AB creates a cylinder

with height AB and radius equal to the perpendicular to AB through P (this is

` in the figure). He imagined unrolling the cylinder to create a rectangle, which

he situated on AB perpendicular to the original circle.

As we consider the infinitude of segments like AB that lie between points P

and R, the resulting cylinders appear to occupy the whole of the toroid. Kepler

claimed that unrolling all of the rectangles creates a new solid with a volume

that is easy to calculate.

(a) Imagine that AB sweeps through the circle from P to R at a constant rate.

Why do the heights of the unrolled cylinders increase also at a constant

rate?

(b) Kepler therefore claimed that the solid created by the unrolled cylinders

comprises a cylinder, sliced diagonally in half, having circle Q as its base.

What is the height of this cylinder?

(c) Thus, what is the volume of half of this cylinder? (Because this volume

equals the volume of the toroid, Kepler has reached his goal.)
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52 4 Indivisibles

Historical note. Revolving circle Q around one of its chords, such as AB in Fig-

ure 4.7, we arrive at a solid that resembles an apple. Kepler investigated this

and many other related shapes. His use of indivisibles was less rigorous than

Cavalieri’s, but his work inspired Cavalieri and others thanks in part to his

creative and prolific output.

4.2 Torricelli discovers a marvelous shape. The prolific Evangelista Torricelli (Italy,

born 1608) was acquainted with Galileo and Cavalieri. Like those thinkers, he

used indivisibles to discover beautiful results. He particularly celebrated his

discovery of a shape that seems to contain infinite volume, but does not.

In his elegant proof, he perceives a three-dimensional region as a composite of

infinitely many two-dimensional surfaces. The region, resembling a trumpet

with an infinitely long neck, lies within a curve that is revolved around the

vertical axis. The curve is a hyperbola, shown as LDJ in Figure 4.8; the vertical

height of each point of a hyperbola is the reciprocal of the horizontal distance

from A; so, for example, we have LI D 1=AI .

Choose any point C to the right of A along the horizontal and let D be the cor-

responding point on the hyperbola. Imagine revolving the region BACDL (de-

spite its infinite height) around the vertical axis AB ; then DC will pass through

EF and L will pass through N to create the trumpet-shaped solid that Torri-

celli wishes to study. At first glance, it is clear that this solid (which we will call

T ) has infinite volume. Torricelli enthusiastically proved this wrong.

First, we must view the volume of T through Torricelli’s eyes, as an infinite

collection of cylindrical surfaces. Each segment like LI creates the curved sur-

face of a cylinder as it revolves around the vertical axis. The (shaded) rectangle

OILN is a side-view of this particular cylinder. As we sweep from DC to BA,

each segment like LI creates such a curved surface. These indivisibles occupy

the full volume of T . (As the cylinders constrict ever closer to AB , matters be-

come strange. We overlook this for now.)

Torricelli concocts a new surface that has the same area as each indivisible

cylindrical surface such as the one created by LI . The surface area of the shaded

cylinder, viewed as an uncurled rectangle, equals its height LI times its length,

which is the circumference 2�.AI/ of the cylinder’s base. Because LI D 1=AI ,

the surface area of the shaded cylinder is simply 2� . This is the area of a circle

with diameter 2
p

2, so we construct rectangle AHGC so that AH D 2
p

2.

View AHGC as a side view of a cylinder revolved vertically around its central

axis, labeled ` in the figure. Extend LI through I to M , and see IM as slicing

the new cylinder. The resulting circle has area 2� .

(a) In your own words, explain how the figure appears to justify Torricelli’s

claim that he had discovered an infinitely long shape that contained a finite

volume.
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Figure 4.8. Torricelli’s ‘trumpet’ results from revolving region BACDL around the vertical

axis.

(b) What happens as we consider segments like LI that approach the verti-

cal axis AB? Does this consideration impact Torricelli’s argument, in your

opinion?

Historical note. Aware that indivisibles imply perplexing beliefs about the

infinite, Torricelli also presented a proof in a style considered more rigorous

by many mathematicians of the day; more on this in exercise 6.4. Where

arguments using indivisibles lack rigor, however, they often offer brevity

and clarity.

4.3 Mei and Valerio investigate the volume of a sphere. The manipulation of a

sphere by Mei Wending (China, born 1633) attests to his mastery of the tech-

nique of indivisibles. Think of the volume of a sphere as the collection of in-

finitely many indivisible circles like the one shaded in Figure 4.9. Its center is
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M and any point P on its circumference is distance r from the center O of

the sphere. Letting OM D h, we can write the area of the shaded circle as

�.MP /2 D �.r2 � h2/ D �r2 � �h2.

Figure 4.9. Mei transformed a solid sphere first into a ‘deficient’ cylinder, and then into a

pyramid.

A circle with radius r having a concentric hole with radius h has this same area.

Using these ‘rings’, Mei refashioned the sphere into a new form, the ‘deficient’

cylinder, shown in the figure, which is missing the two cones with tips that

meet at C .

(a) Explain why the cylinder has height 2r .

(b) Another clever transformation carries the deficient cylinder to a pyramid

with rectangular base measuring 2�r by 2r and with height r . It is not the

shaded ring in the deficient cylinder, however, that shares its area with the

shaded rectangle in the pyramid, but rather a different shape within the

deficient cylinder. What is it?

Historical note. Mei used these transformations to establish that the vol-

ume of a sphere is two-thirds that of the smallest cylinder that encloses

the sphere. This result was already well-known, but in this case, it was his

method that is notable.

(c) In a similar vein, Luca Valerio (Italy, born 1552) invented a single figure

that he used to reveal the same truth as did Mei. In Figure 4.10, we see a

side-view of a hemisphere AFB with center C and diameter AB , a cone
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Figure 4.10. Valerio produced a figure we may interpret much like Mei’s Figure 4.9.

with tip at C and base DE, and a cylinder sharing that base with the cone

and its other base with the hemisphere. Let GH represent any plane cutting

these shapes; it cuts the side-views of the hemisphere at points I and J and

the cone at points K and L. Point M lies at the intersection of GH and the

central axis CF of the cylinder.

By introducing the (dotted) segment CJ and using the Pythagorean Theo-

rem, Valerio established that

ML2 D CB2 � MJ 2 : (4.10)

Explain the details of this work.

(d) Dividing by CB2, Valerio expressed (4.10) as

ML2

FE2
D 1 � MJ 2

CB2
: (4.11)

Interpret each fraction in (4.11) as the ratios of the areas of the circles having

the relevant segments as radii. Then consider the implications of these ra-

tios as GH sweeps from DE to AB . Assuming Mei’s conclusion in the ‘His-

torical note’ in exercise 4.3(b), what relationship does (4.11) suggest about

the volumes of cones and cylinders?

Historical note. Valerio did not in fact pursue quite the line of reasoning

suggested here, but rather considered thin cylinders using the circles as

bases.In this, he joins ibn al-Haytham among those thinkers who presaged

our modern view of these matters.

(e) Galileo (via Salviati, a character in his book Dialogue Concerning the Two

Chief World Systems) highlighted a paradox hidden in Figure 4.10. Using

Valerio’s equation (4.10), Salviati argues that the circular ribbon created by
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revolving GI around F C through HJ has area equal to the circular base

of the cone with radius ML. Appealing to indivisibles, Salviati concludes

that the volume of the cone with cross-section CKL equals the volume of

the pointed shape that has cross-section GIA and HJB .

But if this is true, Salviati says, then when GH slides all the way to AB ,

we encounter something strange. In your own words, what paradox do we

encounter?

Historical note. Over ten centuries before the births of these thinkers, Chi-

nese mathematicians Liu Hui (born c. 230) and Zu Geng (born c. 450) cir-

cumscribed a sphere with two orthogonal cylinders and performed trans-

formations on the resulting shapes that were similar to those undertaken

by Mei Wending. Zu Geng justified the process with the words, “Since vol-

umes are made up of piled-up blocks, [it follows that] if the corresponding

areas are equal then their volumes cannot be unequal.”
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Quadrature

Three hundred fifty cities in the world
Just thirty teeth inside of our heads
These are the limits to our experience
It’s scary, but it’s all right
And everything is finite.

— from the album Feelings, David Byrne (1997)

Amid a flurry of discovery in the 1600s, European mathematicians began to recog-

nize the underlying unity of their results. Quite often, a successful quadrature shed

light on the mysteries inherent in series, or a clever use of geometry prompted ad-

vances in the theory of numbers. Each new connection fanned the intellectual fire.

We see this effect in this chapter as we trace efforts to find the quadrature of the

hyperbola.

5.1 Gregory studies hyperbolas
One way to define a hyperbola is as the collection of points whose horizontal and

vertical components are inversely proportional, as in the modern1 notation xy D 1

or y D 1=x. Figure 5.1 depicts one of the two branches of a hyperbola. A successful

quadrature of this curve would answer any question like, ‘What is the area labeled

A in the figure?’

Gregory of Saint-Vincent (Belgium, born 1584) took the first step, finding an

arithmetic sequence linked to a geometric sequence in Figure 5.1. A sequence of num-

bers is arithmetic if each member equals the previous member plus some common

constant (described in more detail in exercise 2.1). In contrast, a sequence is geo-

metric if each member equals the previous member times some common constant,

as in the sequences

2; 6; 18; 54; : : : and 1; 1=3; 1=9; 1=27; : : : :

1At this point, we will begin to use the notation for curves and the coordinate system of modern

day, simply to ease reading, despite being decades away (in the story) from their full maturation.

57
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Figure 5.1. Because 1; 2; 4 is a geometric sequence, areas A and B are equal.

Gregory discovered that if we draw vertical lines along the horizontal at dis-

tances that are in a geometric sequence, then the areas under the hyperbola within

those vertical lines are all equal. For example, because 1; 2; 4 is a geometric se-

quence, Gregory found that areas A and B are equal in Figure 5.1.

Figure 5.2. Gregory of Saint-Vincent approximated the area under the hyperbola with trape-

zoids.

The constant multiplied by each member of a geometric sequence to get the next

is called the ratio, so we will let r stand for this ratio and begin our sequence at 1 to

get 1; r; r2; r3; : : : as seen along the horizontal in Figure 5.2. (The case in the figure

represents r > 1.) Gregory argued that trapezoids BCFE and CDHF are equal

in area; he then subdivided each trapezoid and argued the same for the four new

trapezoids, and so on. He assumed that as the trapezoids become more numerous,

the areas of error (where each trapezoid extends up past the hyperbola) would

vanish.
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Figure 5.3. The point J subdivides the horizontal into a new geometric sequence.

That trapezoids BCFE and CDHF have equal area follows from

area of BCFE D 1

2
.BE C CF /.EF / D 1

2

�

1 C 1

r

�

.r � 1/;

area of CDHF D 1

2
.CF C DH/.FH/ D 1

2

�

1

r
C 1

r2

�

.r2 � r/:

Now we turn to the subdivision of BCFE. Locate the midpoint A of BC and let

G be the point where OA intersects the hyperbola, as in Figure 5.3. Then A has

coordinates ..1=2/.1 C r/; .1=2/.1 C 1=r// while G is simply assigned the coordi-

nates .g; 1=g/, where g D GJ . By the similarity of triangles OGJ and OAK we

may write
g

.1=2/.1 C r/
D

1=g

.1=2/ .1 C 1=r/
H)

1

g
D

g

r
;

or g D
p

r . The sequence 1; g; r is therefore geometric with common ratio
p

r ,

so trapezoids BGJE and GCFJ will have equal area just as the original pair

did. Nothing prevents us from extending this argument to trapezoid CDHF , and

then to other initial pairs of trapezoids. Gregory assumed that further subdividing

would ultimately exhaust the desired region under the hyperbola with no error.

5.2 De Sarasa invokes logarithms
Gregory, a member of the Jesuit order, studied with an admirer of Galileo. Alphonse

Antonio de Sarasa (Spain, born 1618) became Gregory’s student after joining the

Jesuits at age fourteen. Later, the two were colleagues on a college faculty, dur-

ing which time de Sarasa linked Gregory’s result on hyperbolas to recent work by

other European mathematicians.

These others (primarily John Napier in Scotland and Henry Briggs in England)

had discovered a way to transform multiplication problems into addition prob-

lems (and division into subtraction). All they required was a matching between a
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Figure 5.4. The areas described by Gregory of Saint-Vincent are logarithms of the sequence

along the horizontal.

geometric sequence and an arithmetic sequence, like the one in Table 1. To multi-

ply 4 and 8, for example, we find their corresponding entries 2 and 3 (in the second

column), then add 2 and 3, and finally look at the match for the sum (back in the

first column). The answer, therefore, is 32.

geometric

sequence

arithmetic

sequence

1 0

2 1

4 2

8 3

16 4

32 5

64 6

Table 1. A logarithmic table.

Each number in the arithmetic sequence is called the logarithm of its match in the

geometric sequence. Using the common abbreviation, we have log 4 D 2, log 8 D 3,

and so on. If you are familiar with logarithms, you automatically ask what the

base is in this example; but the thinkers who invented logarithms did not ask this

question. It was enough just to have a matching between two sequences like these.

Further, you might wonder how this matching would help us multiply, say, 3

and 5. It would not; we would require a more complete geometric sequence. The

inventors generated these, to varying degrees of precision; Briggs, for example,

provided a table of logarithms accurate to over ten decimal places. (His approach

is outlined in exercise 5.4, where the term base is defined.)
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The important feature of logarithms for de Sarasa was the matching of the se-

quences, one arithmetic and one geometric, and Gregory’s work provided just

that. As we have seen, Gregory showed that if we mark off a geometric sequence

1; r; r2; r3; : : : along one axis of a hyperbola, then the subdivided areas are all equal.

In Figure 5.4, these areas are all denoted A.

marks along

horizontal

total area from x D 1

to this mark

1 0

r A

r2 2A

r3 3A

r4 4A
:::

:::

Table 2. The logarithmic matching found in Figure 5.4.

As Table 2 shows, we therefore have a geometric sequence matched with an

arithmetic sequence. Thus we may say that the logarithm of each horizontal value

is related to the corresponding area under the hyperbola. Because r may be any

ratio we desire, we conclude that for any a � 1,

log a D the area under the hyperbola y D 1=x

between x D 1 and x D a.

In a bit, we shall shift our perspective slightly by moving the hyperbola one unit

to the left so that it crosses the vertical axis one unit above the origin; in modern

notation, the equation of this hyperbola is y D 1=.1 C x/. Then

log .1 C a/ D the area under the hyperbola y D 1=x

between x D 1 and x D 1 C a

D the area under the hyperbola y D 1=.1 C x/

between x D 0 and x D a.

(5.1)

5.3 Brouncker finds a quadrature of a hyperbola
Gregory’s work opened the door for de Sarasa to connect hyperbolas and loga-

rithms, but neither thinker produced an actual quadrature of the hyperbola. A

quadrature was found in about 1655 by William Brouncker (Ireland, born 1620)

thanks to a clever covering of the desired area by rectangles. He focused on the

region between x D 1 and x D 2 under the hyperbola; in Figure 5.5, this is the

region between AE and BC .

Cutting rectangle ABCD (having area 1=2) from the region leaves us with the

unknown area of region DCE. Brouncker took the point G halfway between A and
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62 5 Quadrature

Figure 5.5. Brouncker exhausted the desired area with stacked rectangles.

B and located the corresponding point F .3=2; 2=3/ on the curve. Rectangle DKFJ

has area 1=2 � .2=3�1=2/ D 1=12. Points H .5=4; 4=5/ and I .7=4; 4=7/ are found by

halving segments AG and GB , and the two rectangles with opposite corners JH

and KI have respective areas 1=4 � .4=5 � 2=3/ D 1=30 and 1=4 � .4=7 � 1=2/ D 1=56.

Thus far, Brouncker has begun to exhaust the desired area with four rectangles

having combined area
1

2
C 1

12
C 1

30
C 1

56
:

Noting a pattern in the denominators, Brouncker conjectured that ultimately the

desired area is
1

1 � 2
C 1

3 � 4
C 1

5 � 6
C 1

7 � 8
C � � � : (5.2)

None of the rectangles extend outside the desired area, so Brouncker might have

felt confident that he had successfully quantified the area under the hyperbola; but

because his answer was an infinite sum, he treated it with care. We will not look

at this part of his argument, but will simply observe that his efforts in this regard

were pioneering.

Before we move on, note that (5.2) can be written

1

1 � 2
C 1

3 � 4
C 1

5 � 6
C � � � D

�

1 � 1

2

�

C
�

1

3
� 1

4

�

C
�

1

5
� 1

6

�

C � � �

D 1 � 1

2
C 1

3
� 1

4
C 1

5
� 1

6
C � � � : (5.3)

This series, apart from the alternating signs, mimics (1.5), the series Mengoli proved

did not have a finite sum (see exercise 3.1). Alternating the signs is evidently

enough for the sum in (5.3) to exist, for it equals the area Brouncker set out to

find.
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Figure 5.6. Wallis used indivisibles to find his quadrature of the family of curves y D xk .

5.4 Mercator and Wallis finish the task
A combined effort by Nicholas Mercator (France, born c. 1620) and John Wal-

lis (England, born 1616) further unlocked the quadrature of the hyperbola. As a

consequence of their discovery, they provided a sum for (5.3). The argument as

presented here mimics that in a letter written by Wallis that simplified Mercator’s

original proof; it relies on a result by Wallis that we turn to first.

As Fermat also had done, Wallis calculated the area beneath curves of the form

y D xk where the integer k may exceed 2. Each such curve has the characteristic

shape shown in Figure 5.6. Appealing to the notion of indivisibles, Wallis sliced

region OAB into vertical line segments as shown in the figure. If h is the common

distance between the n slices, and OA D a, then a D nh.

As we increase the number of slices (let n grow larger), the slices crowd more

closely together (h becomes smaller). Ultimately, the one-dimensional slices will

‘fill’ region OAB . Wallis expressed the area of region OAB versus the area of rect-

angle OABD as a ratio:

area OAB

area OABD
D

h
�

.0h/k C .1h/k C .2h/k C � � � C .nh/k
�

h
�

.nh/k C .nh/k C .nh/k C � � � C .nh/k
�

D 0k C 1k C 2k C � � � C nk

nk C nk C nk C � � � C nk
: (5.4)

Experimenting with (5.4) for values of k up to 10, Wallis discovered what he

believed were unambiguous patterns. For example, when k D 1 we have

n D 1 :
0 C 1

1 C 1
D

1

2
, n D 2 :

0 C 1 C 2

2 C 2 C 2
D

1

2
, etc.
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Trying k D 2 we see

n D 1 :
02 C 12

12 C 12
D 1

2
D 1

3
C 1

6 � 1
,

n D 2 :
02 C 12 C 22

22 C 22 C 22
D 5

12
D 1

3
C 1

6 � 2
,

n D 3 :
02 C 12 C 22 C 32

32 C 32 C 32 C 32
D 14

36
D 1

3
C 1

6 � 3
, etc.

From observations like these, Wallis concluded that

02 C 12 C 22 C � � � C n2

n2 C n2 C n2 C � � � C n2
D 1

3
C 1

6n
: (5.5)

As n increases, the term 1=6n vanishes. Thus, the ratio in (5.4) for the parabola

y D x2 is 1=3. Because the area of OABD is a3, the area of region OAB is .1=3/a3.

(This matches Cavalieri’s conclusion in section 4.1.)

Wallis went on, showing that when k D 3,

03 C 13 C 23 C � � � C n3

n3 C n3 C n3 C � � � C n3
D 1

4
C 1

4n
; (5.6)

and again the last fraction vanishes “when n becomes infinite,” as Wallis put it.

Collecting these results, Wallis ultimately concluded that for any integer k � 1,

0k C 1k C 2k C � � � C nk

nk C nk C nk C � � � C nk
D 1

k C 1
when n becomes infinite. (5.7)

From this and the fact that the area of OABD is akC1, Wallis had discovered that

area under y D xk

between x D 0 and x D a
D akC1

k C 1
: (5.8)

This result suffices for Mercator’s quadrature of the hyperbola, although Wallis

was by no means finished. He then relaxed the stipulation that k be an integer,

and exercise 5.1 tells this story.

Mercator exploited Wallis’s result (5.8) by shifting the hyperbola y D 1=x one

unit to the left, as in Figure 5.7. He divided the horizontal OA into n equal parts

of length h so that a D nh. Constructing rectangles on these subdivisions exhausts

most of the region OABC under the hyperbola so that when n becomes infinite,

area of region OABC D h

 

n
X

kD1

1

1 C kh

!

: (5.9)

Each of the fractions in (5.9) expands by means of (2.7), and adding the expansions

column by column gives us

area of region OABC D hn � h
�

h C 2h C 3h C � � � C nh
�

C h
�

h2 C .2h/2 C .3h/2 C � � � C .nh/2
�

� h
�

h3 C .2h/3 C .3h/3 C � � � C .nh/3
�

C � � � :
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Figure 5.7. A hyperbola shifted one unit to the left opens the door for Wallis’s method.

Comparing this expression to (5.4), we see that all terms but the first are the areas

under curves y D xk as explored by Wallis in his pursuit of (5.8). Further, de

Sarasa’s observation (5.1) tells us that the area of region OABC is a logarithm. The

last piece of the puzzle locks into place, not only revealing that

log .1 C a/ D a � a2

2
C a3

3
� a4

4
C � � � (5.10)

but also giving the solution2 to the alternating signed series (5.3):

log 2 D 1 � 1

2
C 1

3
� 1

4
C � � � : (5.11)

This is a fittingly dramatic conclusion to an argument that establishes connec-

tions among lines of thought that spanned the previous twenty centuries. Other

thinkers, inspired by these discoveries, were poised to reveal further connections,

new results that would dethrone those in this chapter entirely.

5.5 Furthermore
5.1 Wallis assigns a meaning to fractional exponents. Most mathematical nota-

tion undergoes a lengthy evolution in which scholars both simplify and clarify

it until they like it. Exponents emerged from just such a process. John Wallis

was one of the first to denote and interpret exponents in the way we do today.

Wallis established his formula (5.8), which gives the area under y D xk from

x D 0 to x D a, by experimenting with integer values of k. He now possessed a

2Exercise 6.6(a) explains why the base of this logarithm is the constant e.
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key that unlocked a well-known door; boldly, he tried the same key on a door

few others had attempted to enter.

(a) Table 3 summarizes and simplifies (5.7), where the first column lists the ex-

ponent k alone while the second column gives the corresponding fraction.

Wallis did not hesitate to allow such results to provoke his mathematical

imagination, so we follow suit. Note the empty boxes in the table; if we fill

k D exponent
1

k C 1

0 1/(0 + 1)

1 1/(1 + 1)

2 1/(2 + 1)

3 1/(3 + 1)

4 1/(4 + 1)
:::

:::

Table 3. The first few values of k for Wallis’s result (5.7).

in the exponent box with 1=2, then what seems likely to belong in the other

box?

(b) Figure 5.8 shows the curve y D x2 up to the point .1; 1/. Why do we know

that the area of region OBC equals 2=3?

(c) Why do these observations suggest that we interpret an expression like

m1=2 as
p

m?

(d) Can these same thoughts lead us to interpret m1=3 as 3
p

m?

5.2 Wallis verifies his ratio. Wallis validated his conclusion (5.5) by appealing to

(2.1).

(a) Do as he did, and then verify (5.6) in a similar way.

(b) Try the case that ‘follows’ (5.6), that is, for the curve y D x4.

(c) Wallis played with these ratios further, proving statements like

02 C 22 C 42 C � � � C .2n/2

.2n/2 C .2n/2 C .2n/2 C � � � C .2n/2
D 1

3

when n becomes infinite. What simple algebra supports his conclusion?

How far can you generalize this sort of observation?
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Figure 5.8. The area of region OBC helps to suggest a meaning for the exponent 1=2.

5.3 Wallis proposes a meaning for negative exponents. The scholar William

Oughtred (England, born 1574) proposed something like negative exponents

in his work on logarithms, but Wallis was the first to study the matter. Table 3

inspired him. Each row represents a particular case of (5.7), and Wallis consid-

ered what happens when we ‘divide’ one row by another.

For example, we could divide each term in

03 C 13 C 23 C � � � C n3; where k D 3

by each respective term in

02 C 12 C 22 C � � � C n2; where k D 2

to get

01 C 11 C 21 C � � � C n1; where k D 1:

Dividing in this way corresponds to subtracting the values of k.

(a) With this in mind, what do you think that Wallis concluded in the case

where k D �1?

(b) Figure 5.9 connects the idea that x�1 D 1=x to the geometry that underlies

Figure 5.7. Wallis concluded that the area under the curve y D x�1 between

x D 0 and x D 1 is infinite. The harmonic series (3.12) plays the key role.

Reproduce his argument.

Historical note. The row of Table 3 that corresponds to the curve y D x�1

would read �1 and 1=.�1 C 1/, or �1 and 1=0. Wallis took from this that
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Figure 5.9. Interpreting x�1 as 1=x led Wallis to consider the area beneath a hyperbola be-

tween x D 0 and x D 1.

1=0 equals 1, a symbol he invented to mean ‘infinity’. He then argued that

a row reading �2 and 1=.�2 C 1/ corresponds to the curve y D x�2, which

encloses even more area than does y D x�1 between x D 0 and x D 1.

From this he speculated that

1

�1
> 1 :

5.4 Briggs calculates the (common) logarithm of 2. One field of human endeavor

often prompts advances in another. In the late 1500s, for example, better ships

allowed for riskier travel, and captains who ventured across the Atlantic or

around the extremities of the continents cared deeply about precise navigation.

To pinpoint the locations of their ships at sea, navigators relied on trigonome-

try. Their calculations required the multiplication and division of coordinates

having many decimal places.

As we discussed in section 5.2, logarithms offer a way to turn multiplication

problems into additions (and divisions into subtractions). A logarithmic ta-

ble like that in Table 1, however, cannot provide much precision. John Napier

(Scotland, born 1550) spent a good deal of his life calculating tables of log-

arithms intended to provide accuracy to seven decimal places. (As decimal

places were not a commonly accepted notation during Napier’s life, his work

on logarithms helped to convince scholars to adopt it.)
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Just before his death, Napier hosted English mathematician Henry Briggs (born

1561), whose interest in Napier’s work led him to create a table of logarithms

of his own. This question outlines his approach.

(a) Consider Table 4, a variation on Table 1 where the arithmetic sequence has

been replaced by one that begins with 3 rather than 0. We wish to translate

x log x

1 3

2 4

4 5

8 6

16 7

32 8

64 9

Table 4. A slightly altered version of Table 1.

the multiplication of two numbers a and b in the x column into the addition

of two numbers in the log x column as we did before, using

log ab D log a C log b : (5.12)

For example, if a D 4 and b D 8, then we observe that

log 4 C log 8 D 5 C 6 D 11 ;

and we use Table 4 to find the value of x such that log x D 11. Unfortu-

nately, the table (if extended) gives x D 256, which is not the product of 4

and 8.

The trouble stems from our use of an arithmetic sequence that begins with

3 and thus requires a correction; our patched-up version of (5.12) is

log ab D log a C log b � log 1 ;

which now works. Briggs elected to assign log 1 D 0 in part to make the

simpler version (5.12) valid. He also set log 10 D 1, a choice that gives a

special status to the number 10 in these calculations; we say that 10 is the

base for the logarithms of Briggs. Ordinarily, we write the base as a sub-

script, as in log10 10 D 1, but by omitting the base, we imply that we are

using the common logarithm with base 10.

Briggs added to his short list of logarithms in Table 5 by calculating the

square root of 10. Why does (5.12) justify his conclusion that

log.101=2/ D 1=2 ‹
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x log x

10 1

101=2 � 3:16228 1=2

1 0

Table 5. The first three steps in Briggs’s approach.

(b) The square root of the square root of 10 is

.101=2/1=2 D 101=4 � 1:77828;

a number Briggs calculated to six times as many decimal places using a

method of his own devising. (Incidentally, he erred in the nineteenth dec-

imal place, thanks surely to the difficulty of finding such precise square

roots entirely ‘by hand’ on paper.) Continuing this process, Briggs created

a list much like the one in Table 6. Each entry in the log x column is half of

x log x

10 1

101=2 � 3:16228 1=2 D 0:5

101=22 � 1:77828 1=22 D 0:25

101=23 � 1:33352 1=23 D 0:125

101=24 � 1:15478 1=24 D 0:0625

101=25 � 1:07461 1=25 D 0:03125

101=26 � 1:03663 1=26 � 0:01563

101=27 � 1:01815 1=27 � 0:00781

101=28 � 1:00904 1=28 � 0:00391

101=29 � 1:00451 1=29 � 0:00195

101=210 � 1:00225 1=210 � 0:00098

101=211 � 1:00112 1=211 � 0:00049

1 0

Table 6. The table of logarithms grows more complete.

the entry above it, of course, while the entries in the x column do not be-

have this way. However, if we subtract 1 from the entries in the x column,

the ratio of each to the one before comes quite close to 1=2 at the bottom;

for example,

101=211 � 1

101=210 � 1
�

0:00112

0:00225
� 0:49778 �

log 101=211

log 101=210
: (5.13)

In short, the decimal parts of entries in the x column become roughly pro-

portional to the corresponding logarithms in the other column.

Figure 5.10 shows the situation geometrically. On the vertical (at points

A; B; C ) are the decimal parts of the three entries near the bottom of the ‘x’
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Figure 5.10. Because OA is roughly half of OB and OB roughly half of OC , segments DE

and EF nearly create a straight line.

column in Table 6. On the horizontal (at points G; H; I ) are the correspond-

ing logarithms. The length of OG is exactly half that of OH , while the length

of OA is roughly half of OB . Similarly, we see that OH=OI � OB=OC . Thus,

Briggs reasoned that the decimal part of any number N that falls between

1:00112 and 1:00225 would roughly correspond to a point R on the segment

DE. The algebraic version of this reasoning imitates (5.13) like so:

101=211 � 1

N � 1
� log 101=211

log N
H) log N � .N � 1/.0:00049/

0:00112
: (5.14)

We may choose

N D 1:0241=24 D
�

210

1000

�1=24

� 1:00148

and capture log 2 via these calculations:

log N D log

�

210

1000

�1=24

D 1

24

�

log.210 � 10�3/
�

D 1

16

�

10 log 2 C .�3/ log 10
�

:

Solving for log 2, we have

log 2 D 16 log N C 3

10
: (5.15)
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Combining (5.14) and (5.15), we arrive at the approximation

log 2 � 0:301028;

which equals the actual logarithm of 2 to the fifth decimal place.

Approximate the logarithm of 3 using this approach. Your first task is to

find a suitable N that is slightly larger than 1. There are several candidates,

so take your pick.

Historical note. Briggs was not satisfied with the “rough proportion” in (5.13),

and continued taking square roots until he had calculated the fifty-fourth

successive square root of 10 to over thirty decimal places. Only then did he

calculate the logarithm of 2 as described here.

5.5 Briggs pioneers work on interpolation. Henry Briggs, introduced in exercise

5.4, created a technique that helped him generate the table of logarithms de-

scribed in that same exercise. (It is not necessary to have worked through that

exercise to benefit from this question.)

(a) Painstaking work allowed Briggs to calculate log 2 and log 3 (as outlined in

exercise 5.4), and one use of (5.12) gave him

log 4 D log.2 � 2/ D log 2 C log 2 � 0:6020599913

as well. Between these three logarithms lie others that Briggs approximated

by interpolation. The prefix inter- means ‘between’, and the ending -polate

uses the same root as polish, as in ‘to shine or improve’. To ‘interpolate’

between two known values, therefore, is to produce an approximation that

becomes better the longer we work at it.

Figure 5.11 both motivates and illustrates the method of interpolation. We

see that the points A; B; C , which correspond to the values log 2; log 3; log 4,

respectively, do not lie in a straight line. If we pay attention to this, then

we might improve our approximation should we attempt to interpolate a

value for, say, log 2:5. Rather than naively guess that log 2:5 corresponds to

a point on AB , we can involve point C by imagining a curve (the dotted

curve in the figure) that passes through all three points A; B; C . It seems

reasonable to assign log 2:5 to a point on this curve, because the curve de-

pends on three known logarithms rather than just two.

To interpolate log 2:5, Briggs created Table 7 to organize his calculations.

He found the ‘first differences’ of the known logarithms; these appear in

Figure 5.11 as the slopes of AB and BC . He called the difference of these

differences the ‘second difference’, noting that the more this number devi-

ates from zero, the more central is its role in the interpolation.
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Figure 5.11. This figure motivates Briggs’s method of interpolation.

first second

differences difference

log 4 � 0:6020599913

log 3 � 0:4771212547

log 2 � 0:3010299957

i
i

0:1249387366

0:1760912591
i �0:0511625225

Table 7. A little bookkeeping for interpolating log 2:5.

In Figure 5.11, point C 0 lies on the intersection of the vertical line x D 4 and

the extension of AB . With this in mind, the ‘differences’ in Table 7 appear

in the figure as

a D log 2 ;

b D the first difference log 3 � log 2 ;

b C c D the first difference log 4 � log 3 ;

c D the second difference :

Note that c is negative thanks to the bend of the dotted curve.

Let k be the positive number so that log.2Ck/ is our target. (In our example,

we wish to find log 2:5, so k D 0:5.) The values k D 0; 1; 2 place us at the

three logarithms we know:

k D 0 W log 2 D a ;

k D 1 W log 3 D a C b ;

k D 2 W log 4 D a C 2b C c : (5.16)
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Perhaps there is a pattern here to exploit so that we may interpolate log 2:5

between log 2 and log 3.

It appears safe to start guessing with

log.2 C k/ D a C kb C qc ;

where q is yet to be determined. From (5.16), we know that when k D 0

and k D 1, then q D 0, and when k D 2, then q D 1. Without stating his

reasons, Briggs claimed that

q D 1

2
k.k � 1/ :

Indeed, this solution works. It is possible that Briggs calculated this answer

by finding the parabola that passes through the points .0; 0/, .1; 0/, and

.2; 1/. What steps accomplish this?

(b) Thus, the interpolation formula is

log.2 C k/ � a C kb C 1

2
k.k � 1/c ; (5.17)

where we find a; b; c using differences like those in Table 7. Use (5.17) to

approximate log 2:5. Try another value, such as log 2:1, as well.

(c) If we wished to (more roughly) approximate log 2:5 by locating the corre-

sponding point on AB in Figure 5.11, how would we modify (5.17)?

5.6 James Gregory extends interpolation. In his method of interpolation, as given

by (5.17), Briggs used three points of data, at equally-spaced intervals, to make

predictions for other values within those intervals. Whenever the second dif-

ference was not small, however, Briggs extended his method to use more points

of data.

James Gregory (Scotland, born 1638) explored this approach as well, using

more than three points of data to make what he assumed were even better

predictions. This exercise explores one step in this process: specifically, if we

have four points of data, then how should we alter (5.17) to make use of this?

Figure 5.12 revisits Figure 5.11 in a more general setting. The three known data

points are labeled A; B; C , with vertical heights a; aCb; aC2bCc corresponding

to values x; x C h; x C 2h along the horizontal. Briggs’s formula (5.17) handles

this situation; the interpolated height of any value x C kh (where k is a number

between 0 and 2, to keep the value in the appropriate interval) is

a C kb C 1

2
k.k � 1/c : (5.18)

By introducing a fourth data point D that corresponds to the value x C 3h, we

hope to improve on the prediction given by (5.18). In exercise 5.5, we saw that
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Figure 5.12. This generalized version of Figure 5.11 indicates how James Gregory extended

the method of interpolation.

each data point corresponded to one term in (5.17), so we suspect that a fourth

point will allow us to add a fourth term to the end of (5.18).

(a) Table 8 does for Figure 5.12 as Briggs did in Table 7. Fill in the empty boxes;

the rest of the entries in the table reside in Figure 5.12. Explain your reason-

ing.

first second third

differences differences difference

a C 2b C c

a C b

a

i
i
i

b C c

b

i
i c

i

Table 8. We must fill in the four empty boxes.

(b) Recreate Figure 5.12 and extend the dashed lines that pass through A and

B , and extend BC , until all of these lines intersect the vertical line at D,

breaking this vertical line into five segments. If we say that the length of

the topmost segment is c C d , then what are the lengths of the other four

segments in terms of a; b; c? Use your results from 5.6(a) to help.
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76 5 Quadrature

(c) With these thoughts in mind, determine what term ought to be added to

the end of (5.18).

(d) Simply by pattern-finding, guess the fifth term, which would be useful if

we knew a fifth data point. If you introduce any new variables, explain

them.
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6
The Fundamental Theorem of Calculus

Evidence mounted in the late 1600s that efforts to understand quadrature and at-

tempts to quantify instantaneous velocity could be unified in a single theory. This

link was confirmed by Isaac Newton of England and Gottfried Leibniz of Ger-

many. For this achievement, we honor them as the discoverers of calculus.

6.1 Newton links quadrature to rate of change
We may view an object’s velocity as the rate of change of its distance. Not all curves

describe distance, but many curves allow for tangent lines. Thus, we speak of the

rate of change of a curve from this point forward, unless the situation specifically

describes motion.

We finally meet Isaac Newton (England, born 1642), a thinker whose broad

interests could have allowed any of several earlier introductions. He approxi-

mated � , identified undiscovered series, pioneered work in interpolation, and de-

termined the mathematics that underlies gravity. In exercise (6.5) we will see how

he overcame the difficulty of expanding expressions like .a C e/1=2 using infinite

sums. For that discovery alone, Newton would have earned a place in this story.

His insights about quadrature and rate of change, however, promote him to cen-

tral character, as reflected in the title given to his discovery: the fundamental theorem

of calculus.

Here is one side of this story: in Figure 6.1, curve ABC increases as we move left

to right. Corresponding to motion along this curve is motion along the horizontal

from A to D to E and so on. Relate each point on the horizontal to the point on

the curve above it, as depicted by segments DB and EF . As the segments sweep

to the right, the area they enclose grows larger. Region ADB is the area enclosed

by DB , and if distance DE is very small, then we may think of region DEFB as a

small increase in that area.

77
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78 6 The Fundamental Theorem of Calculus

Figure 6.1. Newton thought of the quadrature of ABC as if it were a changing quantity.

Newton’s insight here was to treat the area beneath curve ABC as a changing

quantity. Think of ABC as representing the velocity of an object; as previously

mentioned (in section 3.1), the quadrature of such a curve gives the distance trav-

eled by the object. Region DEFB therefore represents a tiny change in distance

over a tiny change DE in time. If ABC changes rapidly at time D, then the area

beneath it also changes rapidly. So we might suspect, as Newton did, that a curve

is linked to the rate of change of the area beneath it.

Newton argued for this link by asserting that given any such curve ABC , and

any tiny change DE along the horizontal, then we can find rectangle DEGH hav-

ing area equal to that of DEFB , as in Figure 6.1. Thus the tiny change in the area

of region ADB equals the area of DEGH , which equals DH � DE. Because DE is a

tiny change along the horizontal, we have

DH D change in area ADB

change in horizontal DE
: (6.1)

In the context where ABC represents the velocity of an object, we can translate

(6.1) to

DH D change in distance during time DE

change in time DE
: (6.2)

Now hold point D fixed and slide point E closer and closer to it. As DE becomes

“infinitely small”, as Newton put it, so does DH become equal to DB . These ob-

servations allow us to translate (6.2) to

DB D the rate of change in the area of ABD at the point D :

But DB is the height of curve ABC at D along the horizontal; thus, Newton has

uncovered a link between a curve, its quadrature, and the rate of change of the

quadrature:
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6.2 Newton reverses the link 79

The height of a curve at a point along the horizontal equals

the rate of change of the quadrature of the curve at that point.
(6.3)

This statement alone does not show the back-and-forth nature of quadrature

and rate of change. Newton provided another argument that shows we may swap

the concepts of quadrature and rate of change and arrive at a similar truth.

Figure 6.2. At any point, the height of y equals the slope of the tangent line at that point on

z. (Note that y is reflected across the horizontal axis from its usual position, for the sake of

clarity.)

6.2 Newton reverses the link
In this version, Newton used the curves y D 3x2 and z D x3, shown by others

(e.g., Wallis in (5.8) with k D 2) to have a particular relationship: at any point,

the height of y equals the slope of the tangent line at that point on z. Newton

displayed the curves as shown in Figure 6.2, with z oriented as modern readers

are accustomed, and y reflected down across the horizontal, which seems strange

to modern eyes.

Focusing upon a point A on the horizontal, we locate points B and C on the

respective curves. Newton desired to show that the quadrature of y as denoted by

the shaded region OAC equals the height AB of the curve z. Success would allow

him to conclude that

The height of a curve at a point along the horizontal equals the

quadrature of the rate of change of the curve up to that point.
(6.4)
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80 6 The Fundamental Theorem of Calculus

Figure 6.3. Newton’s goal was to show that the shaded region OAC has area equal to the

length AB .

Compare this statement to (6.3); together, they uncover the mirror-like relationship

between quadrature and rate of change.

Newton reached his goal with the help of a few more points and lines, a familiar

argument, and the usual assumptions about the infinite. In Figure 6.3, point D is

placed so that AD is infinitely small. Points E and F lie on the curves above and

below D, and G sits on DE so that BG and DE are perpendicular. Point P is

introduced on the horizontal so that OP has length 1, and upon OP we construct

a rectangle OPJH with PJ parallel to OH and JHE parallel to both KIB and

POA.

The rest of the argument is an analysis of this figure. The slope of the tangent

line to z at point B is equal to not only EG=BG, thanks to AD being infinitely

small, but also AC , thanks to y giving the slope of z at any point. Thus,

AC D EG=BG H) EG D AC � BG

H) HI D AC � AD

H) area of rectangle KIHJ � area of region ADF C :

Newton treated this approximation as an equality because AD is infinitely small.

The equality of these matching areas holds for any point between O and A, so

area of rectangle POIK D area of region OAC :

Because OP has length 1, the area of POIK is the height AB of the curve z. Thus,

the height of the curve z at the particular point A equals the quadrature (up to
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6.3 Leibniz discovers the transmutation theorem 81

Figure 6.4. Leibniz subdivided region ADC into 4ADC and “infinitely many” triangles like

ABG.

that point) of the curve y that represents the rate of change of z. This is exactly the

statement in (6.4) that Newton wished to prove.

6.3 Leibniz discovers the transmutation theorem
This ‘inverse’ relationship between quadrature and rate of change was confirmed

independently by Gottfried Leibniz (Germany, born 1646). As Newton did, Leib-

niz found a geometric figure that involved “infinitely small” quantities. Exercise

7.3 explores his work on the fundamental theorem; here, we see how Leibniz used

a similar argument to transform certain difficult quadrature problems into simpler

ones.

Curve ABC in Figure 6.4 bounds region ABCD and Leibniz wished to find its

quadrature. He cut the region into two pieces with segment AC , so

area of region ABCD D area of 4ACD C area of region ACB : (6.5)

Finding the area of a triangle is simple, so Leibniz immediately focused on the area

of region ACB , exhausting the area with infinitely thin triangles as follows. Point

B on the curve is related to point E on the horizontal, and point F (matched with

point G on the curve) is an infinitely small distance from E . We create (shaded)

triangle ABG (which is both infinitely small and not quite a triangle). Each point

on curve ABC between A and C is associated with such a triangle, so we can think
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82 6 The Fundamental Theorem of Calculus

of the area of region ABCD as the sum of the area of triangle ACD and infinitely

many triangles like ABG.

Figure 6.5. Leibniz showed that the area of 4ABG equals half the area of rectangle EFML.

Leibniz discovered a way to use the rate of change of curve ABC , as given by

the slope of the tangent line to the curve, to find the area of these infinitely small

triangles. Because EF is infinitely small, segment BG acts like a tangent line to

ABC at point B . Extend BG as in Figure 6.5 so that it crosses the vertical above

A at H . Let AJ be perpendicular to this line, and note that AJ is the height of

triangle ABG (with base BG). Thus,

area of 4ABG D 1

2
AJ � BG : (6.6)

Locating K so that BK is perpendicular to F G, we create the infinitely small

4BKG. Because AH is parallel to EB , we know ∠JHA D ∠HBE. Now angles

EBK and AJH are both right angles, so ∠KBG D ∠JAH . Thus, triangles BKG

and AJH are similar, so

BK

BG
D

AJ

AH
H) AJ � BG D BK � AH : (6.7)

Leibniz used the term characteristic triangle to describe an infinitely small triangle

like BKG. The word characteristic describes a feature of some object that is dis-

tinctive; in the case of a curve, its steepness at each point helps to distinguish it

from other curves. The hypotenuse of a characteristic triangle depicts the curve’s

steepness.
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6.4 Leibniz attains Jyesthadeva's series for � 83

To continue with the argument: draw HLM parallel to AEF . Combining (6.6)

with (6.7) gives

area of 4ABG D 1

2
BK � AH D 1

2
area of EFML : (6.8)

Leibniz has transformed a triangular area to half of a rectangular area with the

help of a tangent line; the link between quadrature and rate of change begins to

suggest itself.

Now imagine point E (and its companion F ) in motion as E travels from A to

D. For each place E occupies, there is a corresponding point L (which is defined

by H , which is defined by tangent line BG). Plotting all such points L results in

the dotted curve ALN in Figure 6.5. The corresponding (infinitely thin) rectan-

gles EFML will sweep through the region ALND; the error just above EFML

is insignificant thanks to its infinite thinness. Now as E moves from A to D, the

corresponding point B moves from A to C , so triangles ABG sweep through the

region ALCB . Thus, by (6.8), we know that

area of region ACB D 1

2
area of region ALND : (6.9)

Finally, equations (6.5) and (6.9) together yield

area of region ABCD D area of 4ACD C 1

2
area of region ALND : (6.10)

Leibniz called this equation his “transmutation” theorem. At first glance, his trans-

mutation of the area of region ABCD has not accomplished much: although the

area of triangle ACD is easy to find, the area of region ALND may be no simpler

to calculate than the area of the original region ABCD. Luckily, it often is simpler,

and the next section offers an example.

6.4 Leibniz attains Jyesthadeva's series for �

Leibniz found many geometric problems that succumbed to his transmutation the-

orem (6.10). One such problem ties together much of what we have been studying,

and relates to the quadrature of a quarter-circle. Leibniz used his theorem to find

a new proof of Jyesthadeva’s formula (2.13):

�

4
D 1 � 1

3
C 1

5
� 1

7
C 1

9
� � � � :

Figure 6.6 shows a quarter-circle ABCD of radius 1 with a typical point E at

distance x from A along the horizontal. Line BH is tangent to the circle at point

B . All points are labeled to correspond to their counterparts in Figure 6.5. Curve

ALN plays the same role, too, only here N coincides with C . For convenience, let

EB D y and EL D z.
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84 6 The Fundamental Theorem of Calculus

Figure 6.6. Leibniz found a quadrature of the quarter-circle using his transmutation theorem.

The transmutation theorem (6.10) gives us

area of quarter-circle ABCD D area of 4ADC C 1

2
area of region ALND: (6.11)

Finding the area of region ALND is not simple, and the solution by Leibniz was

ingenious. First, observe that

the slope of BH D BL

HL
D y � z

x
H) z D y � x � .the slope of BH/: (6.12)

We establish a relationship between x and z with the help of (6.12) if we note that

y D
p

2x � x2 (draw BD and apply the Pythagorean Theorem to triangle BDE)

and thus the slope of BH is .1 � x/=
p

2x � x2 (because BD is perpendicular to

BH ). Hence,

z D
p

2x � x2 � x.1 � x/p
2x � x2

H) x D 2z2

1 C z2
:

With this relationship established, we can make headway with (6.11) as follows:

area of quarter-circle ABCD D area of 4ADC C
1

2
area of region ALND

D 1

2
C 1

2
.1 � area of region ALNP /

D 1 � 1

2
.area of region ALNP /: (6.13)
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Leibniz considered the area of region ALNP as the sum of all of the line segments

like HL contained therein. Now HL has length

x D 2z2

1 C z2

D 2z2 1

1 C z2

D 2z2.1 � z2 C z4 � z6 C z8 � � � � /

D 2.z2 � z4 C z6 � z8 C z10 � � � � /

where the next-to-last equality is justified by (2.7). So to calculate the area of region

ALNP , Leibniz summed

2.z2 � z4 C z6 � z8 C z10 � � � � /

as z increases from 0 to 1. Each term in the series contributes to the total in turn;

starting with z2, we sum from z D 0 to z D 1 as Wallis demonstrated in (5.8),

reproduced (with amendments) here:

area under parabola y D zk

between z D 0 and z D 1
D 1kC1

k C 1
:

Thus, the term z2 adds 1=3 to the total, while the term z4 subtracts 1=5, and so on.

This allowed Leibniz to reach his grand conclusion:

area of quarter-circle ABCD D 1 � 1

2
.area of region ALNP /

D 1 � 1

2

 

2

�

1

3
� 1

5
C 1

7
� 1

9
C � � �

�

!

D 1 � 1

3
C 1

5
� 1

7
C 1

9
� � � � :

As the area of the quarter-circle ABCD is �=4, we see that Leibniz has rediscovered

Jyesthadeva’s wonderful formula (2.13). Newton wrote of this discovery that it

“sufficiently revealed the genius of its author, even if he had written nothing else.”

Leibniz was by no means finished. While making his discoveries, he invented

notation that turned complicated geometric arguments like those in this chapter

into more straightforward manipulation of symbols. These efforts are an impor-

tant part of our story as we continue.

6.5 Furthermore
6.1 Pascal inspires Leibniz with his ‘sum of sines.’ Leibniz credited Blaise Pascal

(France, born 1623) with setting him on a path that led to the fundamental

theorem. Within one of Pascal’s investigations of circles (the one detailed in this

exercise) was a geometric approach that Leibniz generalized to other curves.
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86 6 The Fundamental Theorem of Calculus

(a) Pascal discovered a link between tangent lines and area that we will follow

using the quarter-circle OAB in Figure 6.7. Draw any radius OD and a short

segment LR that is tangent to the arc and has D as its midpoint. Segments

LX; DC; RY are all perpendicular to OB , and K sits on LX so that LKR

is a right angle. Pascal claimed that because a line tangent to a circle is

perpendicular to the radius at the point of tangency, then 4OCD is similar

to 4LKR. Why is he correct?

(b) Pascal meant for us to view LR as equivalent to the arc of the circle that it

shadows, as though the entire arc AB were composed of segments like LR.

He granted that his claim is true only when the number of such segments

“is infinite”, but was careful to state that this is a shorthand way of saying

something more mathematical: that the difference between the length of

AB and the sum of the lengths like LR can be made as small as possible by

increasing the number of segments like LR.

Using the similar triangles mentioned in 6.1(a), explain why we may con-

clude that

DC � LR D XY � OD : (6.14)

Figure 6.7. Pascal’s triangle LKR prompted Leibniz to consider the ‘characteristic triangle’

mentioned in section 6.3.
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Historical note. Equation (6.14) reflects the core idea of the fundamental the-

orem: the left-hand side, which involves a tangent to a curve, equals the

right-hand side, an area that depends on the curve, specifically the radius

of the circle. Pascal did not, however, make note of this link between tan-

gency and quadrature.

(c) Pascal translated (6.14) much like this: Choose any point on the arc; its

vertical height, multiplied by the length of its tangent segment, equals the

length of the corresponding horizontal segment multiplied by the radius.

Now Pascal summed both sides of (6.14), as if he were considering all of

the vertical segments DC as they sweep from E to F in Figure 6.7. What

reasoning supports his claim that this sum, for the right-hand side of (6.14),

equals the area of rectangle EFHG?

(Note: The sum of the left-hand side of (6.14) is not so simple, for the height

of DC changes as it sweeps through the portion of the quarter-circle above

EF . We will return to this issue in exercise 8.4, when we have better nota-

tion.)

6.2 Barrow anticipates the fundamental theorem. Newton’s mentor, Isaac Barrow

(England, born 1630) drew a link between tangent lines and quadrature that

foreshadowed Newton’s fundamental theorem. A look at Barrow’s argument

should help solidify our study of that far-reaching result.

In the style of Figure 6.2, we place a curve y below the horizontal in Figure 6.8

and declare that it is ‘increasing’; we use the mirror image of where we would

normally depict y so that we can put a related curve z in that spot. At any point

A, the height of AC is determined by the area of the region OABP . Comparing

this to Newton’s Figure 6.2, we note that Barrow created z to equal the area

determined by y whereas Newton proved that z and y shared this relationship.

So, despite the similarity of their drawings, Newton and Barrow had different

aims.

(a) Barrow placed the point T on the horizontal so that the slope of T C equals

the length of AB . So,

AC

TA
D AB H) AC D AB � TA :

The importance of T becomes clearer as we proceed; for now, note that the

area of region OABP equals the area of the rectangle with sides AB and

AT .

Barrow intended to prove that T C is tangent to z in the sense that C is the

only point where T C and z intersect. His clever argument focused on each

point J between T and C , showing that J always lies between point I on z

and point K on AC (ensuring that T C does not intersect z to the left of C ).



i

i

“C&IO” — 2012/2/14 — 12:16 — page 88 — #102
i

i

i

i

i

i

88 6 The Fundamental Theorem of Calculus

Figure 6.8. In 4TAC lies the crux of the fundamental theorem.

Segment IK is parallel to the horizontal and IN is parallel to the vertical.

With this in mind, why is it true that the height of KC equals the area of

region MABN ?

(b) Because y is increasing, we know that the area of region MABN is less

than the area of the rectangle with sides MA and AB . Why may we go on

to conclude that JK < IK?

(c) This concludes Barrow’s argument in the case where J is between T and

C . What if J lies on the extension of T C through C ? Draw a new figure,

and write down the argument for this case.

6.3 Maclaurin proves a special case of the mean value theorem. This exercise

primarily supports exercise 6.4 below, but also highlights a result called the

mean value theorem that became more pertinent as scholars made calculus more

rigorous. Colin Maclaurin (Scotland, born 1698) proved that

nan�1 <
bn � an

b � a
< nbn�1 (6.15)

when a < b and n is an integer bigger than 1. The middle term of this inequality

equals the slope of the secant line through the points on the curve y D xn where

x D a and x D b.
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(a) Sketch the curve and secant line yourself. What line could you add to your

sketch that would have slope nan�1? How about nbn�1? Does (6.15) make

sense in light of your answers?

Figure 6.9. We may geometrically factor b2 � a2 by summing the areas of regions 1 and 2.

(b) No matter what n we choose, we may factor b�a from bn�an. For example,

when n D 2 we have b2�a2 D .b�a/.bCa/. Figure 6.9 provides a geometric

basis for this conclusion; because b2 � a2 equals the sum of the areas of

regions 1 and 2,

b2 � a2 D b.b � a/ C a.b � a/ D .b � a/.b C a/ :

Draw a pair of cubes with sides a and b, oriented in a way similar to the

squares in Figure 6.9, to help you argue that

b3 � a3 D .b � a/.b2 C ab C a2/ :

(c) Based on these results for n D 2 and n D 3, conjecture how b � a factors

from b4 � a4. Check your idea algebraically.

(d) How do these observations lead you to the truth of (6.15)?

6.4 Maclaurin tackles the fundamental theorem algebraically. The arguments ad-

vanced by Newton and Leibniz for the fundamental theorem rely on geome-

try and “infinitely small” lengths like DE in Figure 6.1 and EF in Figure 6.4.

Maclaurin sidestepped the “infinitely small” in his treatment of a portion of the

fundamental theorem for a particular kind of curve. His approach provided

hope that the tools of calculus might be freed of any reliance on metaphor.

Suppose a curve y has the property that the area under it up to any positive

number x is equal to xn. Maclaurin, aware of Wallis’s result (5.8) and Newton’s

result (6.3), knew that this curve would likely be expressed as y D nxn�1, but he

wanted to prove this was so without resorting to phrases like “infinitely small”.
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90 6 The Fundamental Theorem of Calculus

(a) Figure 6.10 shows a sketch of y with a typical value x chosen along the

horizontal. The value h equals some small positive quantity. Because the

Figure 6.10. This figure justifies Maclaurin’s claims about the areas mentioned in (6.16).

area under y up to any value x equals xn, we know that (for example) the

shaded area equals .x � h/n. With this in mind, explain why

xn � .x � h/n < yh < .x C h/n � xn : (6.16)

(b) Maclaurin substitutes x � h for a and x for b in his result (6.15), concluding

that

n.x � h/n�1h < xn � .x � h/n :

Determine what we must substitute into (6.15) to show that

.x C h/n � xn < n.x C h/n�1h :

(c) These results together demonstrate that

n.x � h/n�1 < y < n.x C h/n�1 : (6.17)

Letting h vanish, we could satisify ourselves that y D nxn�1 as expected.

Maclaurin took a different route, one which did not appeal to vanishing

quantities. Wishing to prove that y D nxn�1, Maclaurin supposed instead

that y D nxn�1 C r for some positive value r . He argued that this assump-

tion leads to a contradiction of (6.17), which we know is true. Doing the

same for the case where r is negative, Maclaurin claimed that r must equal

zero.
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Such a proof is called a proof by contradiction, or (in Latin) a reductio ad ab-

surdum. In fact, because Maclaurin considered and eliminated two cases (r

positive and r negative), his proof is a ‘double’ reductio ad absurdum. This

form of argument was known to the Greeks of Chapter 1, who used it to

avoid some of the appeals to the infinitely small that we used there.

We consider the case where, in y D nxn�1 Cr , the value of r is positive. The

second inequality in (6.17) becomes

nxn�1 C r < n.x C h/n�1 : (6.18)

Maclaurin showed that for any r we choose, we may find a value for h that

contradicts (6.18). Consider that

nxn�1 C r � n.x C h/n�1 () xn�1 C r

n
� .x C h/n�1

()
�

xn�1 C r

n

�
1

n�1 � x C h

()
�

xn�1 C
r

n

�
1

n�1 � x � h :

Show that there is a positive h satisfying the final inequality no matter what

(positive) value r has.

(d) How must we modify the sequence of inequalities at the end of 6.4(c) if r is

negative?

6.5 Newton discovers the generalized binomial theorem. In a letter intended to

reach Leibniz, Newton outlined his discovery of the result that allowed him

to expand such expressions as .a C e/1=2. His description provides valuable

insight into what makes mathematicians tick: the desire to explain patterns.

(a) John Wallis discovered a beautiful expression for � via an ingenious explo-

ration of the area of the circle. Hearing of this, Newton wished to broaden

the results. Specifically, Newton noted that

x2 C y2 D 1 H) y D .1 � x2/1=2 ;

describes a semicircle, so we may profit by studying the entire family of

curves of the form .1 � x2/m. The first several curves in the family appear

in Figure 6.11.

When m is an integer, the area beneath these curves between the vertical

axis and any x < 1 was already known, thanks to results like that in exercise

6.4. Table 1 below summarizes a few cases. Continue the table to its next

row where m D 4, so that you find an expression for the shaded area in

Figure 6.11.

(b) Guess the area for m D 5 simply by noticing patterns in Table 1. Explain

your thinking in words. Then expand .1 � x2/5 and so on, to check your
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92 6 The Fundamental Theorem of Calculus

m .1 � x2/m, expanded area under .1 � x2/m

0 1 x

1 1 � x2 x � 1

3
x3

2 1 � 2x2 C x4 x � 2

3
x3 C 1

5
x5

3 1 � 3x2 C 3x4 � x6 x � 3

3
x3 C 3

5
x5 � 1

7
x7

Table 1. Areas under the curves in Figure 6.11.

Figure 6.11. Each curve belongs to the family .1 � x2/m and is labeled with its m value.

work. The goal here is not that your guess is correct, but that it is reasonable;

do not worry if your check fails to match your guess. Rather, use such an

experience to modify your guess.

(c) Newton observed that the coefficient of x3 in each area (in Table 1) is m �
.1=3/x3. Puzzling over how he might arrive at the coefficient of x5 led New-

ton to guess that he should multiply m by .m�1/=2 and multiply that result

by .1=5/x5. Check that this is true for m D 2; 3; 4; 5.

(d) What should we multiply by m � .m � 1/=2 in order to determine the value

that we should multiply by .1=7/x7? Check your guess.

(e) If the pattern is now clear to you, then use it to discover the area under the

circular curve .1 � x2/1=2, which was Newton’s original interest.

(f) Newton checked his answer to 6.5(e) by squaring it (as best he could, given

that the series is infinite) to see if the result was 1 � x2. Try this yourself.
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6.6 Euler finds a series involving the exponential constant. Equation (5.1) equates

log.1Ca/ with the area under y D 1=x between x D 1 and x D 1Ca. In exercise

5.4, however, we witnessed Henry Briggs choosing the number 10 as the ‘base’

for his logarithms, via setting log 1 D 0 and log 10 D 1. He chose 10 for its

convenience; perhaps the base of the logarithm in (5.1) is a different number.

(a) If log 10 D 1, then (5.1) indicates that the area under y D 1=x between x D 1

and x D 10 will equal 1. With the help of a figure, argue that this result is

impossible.

(b) As we saw in exercise 5.4, Briggs was free to set log 10 D 1, so this is not the

trouble. Rather, the base of the logarithm in (5.1) is other than 10. Use the

approach you took in 6.6(a) to approximate the number that must replace

10 in log 10 D 1.

(c) The base of a logarithm is traditionally written as a subscript, as in log10 10 D
1. Thanks to the link between logarithms and exponents, we may translate

this equality to another: 101 D 10. In general, the equalities

logb N D L and bL D N (6.19)

are interchangeable.

Leonhard Euler (Switzerland, born 1707) lived about a century after Briggs,

and was primarily responsible for discovering the base of the logarithm in

(5.1). The answer is a remarkable number that ranks among the elites of

mathematical constants. We follow Euler’s lead in this question to see how

he captured it.

Let w be an “infinitely small” number that will replace a in (5.1). Thus, the

area under y D 1=x between x D 1 and x D 1 C w is log.1 C w/. Because

w is an infinitesimal, this area is essentially that of a rectangle with height

1 and width w. Thus, Euler sets

log.1 C w/ D w :

Our aim is to pin down the base of this logarithm, an unknown we denote

by e for now. Using (6.19), we have

loge.1 C w/ D w H) ew D 1 C w : (6.20)

Euler expressed the infinitely small value w as the ratio x=n where x is a

constant and n is infinitely large. From (6.20), we have

.ew/n D .1 C w/n H) ex D
�

1 C
x

n

�n

: (6.21)

Euler expanded .1 C x=n/n using Newton’s generalized binomial theorem

(as described in exercise 6.5). Produce this expansion yourself until you are

satisfied that you can quickly write down subsequent terms.
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94 6 The Fundamental Theorem of Calculus

(d) Finally, Euler claimed that all of the coefficients in the expansion of

.1 C x=n/n equal 1 because n is infinitely large. Why may he claim this?

(e) The upshots of these audacious arguments are that

ex D 1 C x C x2

2Š
C x3

3Š
C x4

4Š
C � � � (6.22)

and, letting x D 1, that

e D 1 C 1 C 1

2Š
C 1

3Š
C 1

4Š
C � � � : (6.23)

Another expression for e comes from (6.21):

e D
�

1 C 1

n

�n

where n is infinitely large: (6.24)

The irrational constant e � 2:71828 is sometimes called the exponential con-

stant. The logarithm with e as its base is called the natural logarithm, and is

written ‘ln’.

Euler’s discovery of the series (6.22) and the expressions (6.23) and (6.24)

perfectly exemplifies his bold approach. At what points during his argu-

ment should we be aware that Euler is taking mathematical risks?
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Flipping back through the pages of this book, you can see how important geomet-

ric figures were in the development of calculus. The figures become more sophis-

ticated as the truths they reveal become deeper; Figure 6.5 of Leibniz, for example,

goes to the heart of the connections within calculus, but falls just shy of being

an impenetrable maze of lines. Leibniz, as much as anyone in his day, desired to

push calculus past the point where its truths are a consequence of diagrams. The

notation he invented allowed this, and we use many of his symbols today.

7.1 Leibniz describes differentials
The notation of Leibniz underwent a maturing process similar to that of calculus

generally. This brief treatment does not attempt to tell the whole story, focusing

instead on the final payoff of his efforts.

Leibniz interpreted a curve, like the one in Figure 7.1, as the ratio (at each point)

of the curve’s vertical motion to its horizontal motion. Mark off equally-spaced

divisions on the horizontal, associating each mark (such as A) with the point (B) on

the curve directly above it; then mark the corresponding point (C ) on the vertical

axis. Where the curve has a small vertical rate of change, the points on the vertical

axis crowd together.

Leibniz viewed the distances between the marks in Figure 7.1 as differences (for

example, we may see AD as OD � OA) and he chose the notation d to represent

such distances. Following d he placed a variable, as in dx. If x represents horizon-

tal distance in Figure 7.1 and y represents vertical distance, then AD D dx and

CF D dy. The slope of the hypotenuse BE is therefore dy=dx. Leibniz considered

these differences “infinitely small” but not zero, making dx incomparably smaller

than x; nevertheless, he called dy=dx a ratio of two quantities that are not zero. He

struggled to reconcile these concepts for his entire life, occasionally resorting to an

appeal along the lines of, “This may seem bewildering, but it works.”

95
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Figure 7.1. A curve, through the eyes of Leibniz, was interpreted as pairs of “infinitely small”

differences.

Leibniz coined the word differential for infinitely small amounts like dx and dy.

This term highlights the notion that dx is a difference; as Figure 7.2 demonstrates

for the parabola y D x2, we see that dx D .x C dx/ � x. In the vertical direction,

dy D .x C dx/2 � x2

D x2 C 2x � dx C .dx/2 � x2

D 2x � dx C .dx/2 : (7.1)

When two differentials are multiplied, as in .dx/2, Leibniz claimed that their prod-

uct was incomparably smaller than either differential. Thus, he discarded the term

.dx/2 to conclude that dy=dx D 2x. Because dy=dx represents the slope of the tan-

gent line of y D x2 at point A, this result reestablished that of Fermat (in section

3.3) and Cavalieri (in section 4.1).

As further evidence that his claims about differentials were sound, Leibniz pro-

duced the differential of a product. If u and v represent two curves, then d.uv/ is

the differential of their product; we may expand this differential as we did in (7.1)

to find that

d.uv/ D .u C du/.v C dv/ � uv

D uv C u � dv C v � du C du � dv � uv

D u � dv C v � du : (7.2)

In the last step, we discarded the product du � dv as incomparably smaller than

either du or dv. As a check, we can test d.x3/ D 3x2 � dx with u D x and v D x2:

d.x � x2/ D x � d.x2/ C x2 � d.x/

D x � .2x � dx/ C x2 � dx

D 3x2 � dx : (7.3)
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7.1 Leibniz describes differentials 97

Figure 7.2. Differentials in the context of the parabola y D x2.

Equation (7.2) is the product rule for differentials, and it begins to show the power

of this notation as a tool for generating results that are difficult to picture. As it

happens, it is possible to depict (7.2) if we imagine u and v as sides of a rectangle,

as in Figure 7.3. Then the area of the rectangle is uv, and d.uv/ is an infinitely small

increase in that area. This increase is shaded in the figure, and equals the sum of

the areas of its three pieces: u � dv C v � du C du � dv. The figure, however, does not

justify the dismissal of the tiny piece of area du �dv in the corner; after all, does not

that tiny piece contribute to the increase in total area? Nevertheless, the accuracy

of results like (7.3) lends plausibility to the idea that we may discard du � dv.

Figure 7.3. This is an attempt at picturing the product rule for differentials.
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98 7 Notation

7.2 The fundamental theorem with new notation
As Figure 7.1 makes clear, distance x is composed of many small segments like

AD D dx, so Leibniz created the symbol
R

to represent the sum of infinitely many

lengths. Thus,
Z

dx D x

translates to, “The sum of all of the infinitely small segments of length dx is equal

to x.” Similarly,
R

dy D y. This notation allowed Leibniz to concisely express areas

as well as lengths; he would write
Z

x2 dx

to refer to the area beneath y D x2. In Figure 7.2, we see the familiar filling of

that area with rectangles, each of which has width dx and height x2. Because dx is

infinitely small, so is each area x2 dx; thus,
R

x2 dx is the sum of infinitely many

infinitely small amounts.

Figure 7.4. We may express the fundamental theorem using Leibniz’s notation as shown

here.

The quadrature of curve y in Figure 7.4 is identified with the area beneath it, and

Leibniz expresses the area as
R

y dx. If we write d
R

y dx, then, we mean a small

change in the area, as indicated by the thin strip in the figure. Comparing this to

Newton’s Figure 6.1, we may translate statement (6.3) into the new notation:

y D d

Z

y dx : (7.4)

As we recall from (6.4), the rules of quadrature and rate of change swap, which

translates to

y D
Z

dy : (7.5)
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7.2 The fundamental theorem with new notation 99

The inverse nature of quadrature and rate of change appears symbolically when

we set the right-hand sides of (7.4) and (7.5) equal to get

d

Z

y dx D
Z

dy : (7.6)

There is the fundamental theorem of calculus in a nutshell.

The verb integrate entered the mathematical vocabulary around this time, taking

the place of find the quadrature of as designation for calculating areas. The symbol
R

became known as an integral sign.

Leibniz used his new notation to describe a rule that we call integration by parts.

Begin with the product rule for differentials (7.2) and apply infinite summation to

both sides:
Z

d.xy/ D
Z

.x dy C y dx/ : (7.7)

Figure 7.5. We can calculate the area of rectangle OABC as the sum of the two regions on

either side of the curve.

The left-hand side is xy by (7.5). Figure 7.5 helps us simplify the right-hand

expression. The two shaded rectangles are of area x dy and y dx, so x dy C y dx is

the sum of their areas. Adding all such areas together by writing
R

.x dy C y dx/,

we get the area of the entire rectangle OABC . The rectangle is divided by curve

OB into two pieces with area
R

x dy and
R

y dx. Thus, we may substitute
R

x dy C
R

y dx for the right-hand side of (7.7) and rearrange terms to discover

Z

y dx D xy �
Z

x dy : (7.8)

Leibniz used this integration by parts formula not only to solve a wide variety of

new problems, but also to provide new proofs of previously discovered results. In
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the next section, we will see how Leibniz calculated the area under a cycloid using

his formula.

7.3 Leibniz integrates the cycloid
Figure 7.6 re-creates the situation in Figure 4.4, which was used by Roberval to

discover his quadrature of the cycloid. In Figure 7.6, we trace the path AA0G of

point A from its high point on the circle until it touches the ‘ground’ at G, thus

creating half of a cycloid. Using his notation and his result (7.8), Leibniz confirmed

Roberval’s conclusion that the area of region AA0GB is 3=2 that of the generating

circle with center O .

Figure 7.6. The purpose here is simply to argue that arc AK has the same length as KA0.

Desiring the area of the region AA0GB under the cycloid, Leibniz observed that

the arc AEB cuts this region into two areas, that of the semicircle AEB and that of

the region AA0GBK. Because the semicircle occupies half of the generating circle,

Leibniz intended to prove that the area of region AA0GBK equals the area of the

generating circle.

Construct any line ` parallel to BG that intersects AB at M , the generating circle

at Y and K, and the cycloid at A0. As the circle rolls to its right, point A travels the

path of the cycloid through A0, touching ground at G. As the point travels, line `

descends, taking M straight from A to B and K around the semicircle from A to

B . Segment KA0 sweeps through the region of interest AA0GBK.

Leibniz first argued that AK D KA0, a result that transfers the difficulty of work-

ing outside the circle to working directly on the circle. To this end, draw line m

through K parallel to AB , intersecting the circle at E . Imagine the circle rolling to

its right; point E will contact BG at some point E 0. This will bring diameter YE to

position Y 0E 0. At the same time, radius OA will shift to O 0A0.

The horizontal movement of point Y during this motion is YM C AY 0, so this

is also the horizontal distance traveled by A to A0. By symmetry, we know YM D
MK and that the lengths of arcs BE and AK are equal, so the horizontal distance



i

i

“C&IO” — 2012/2/14 — 12:16 — page 101 — #115
i

i

i

i

i

i

7.3 Leibniz integrates the cycloid 101

traveled by A is MK C KA0 D YM C KA0. Thus, AY 0 D KA0 and so

the length of arc AK D the length of KA0 ; (7.9)

as desired.

Figure 7.7. Leibniz used characteristic triangle KNP to involve differentials.

With the link between AK and KA0 established, we focus on K as it travels from

A to B around the generating circle. Figure 7.7 represents the same situation as in

Figure 7.6 but with different emphases. For convenience, let MA0 D x, AM D y,

OK D OA D r , and let the length of arc AK be s. Note that lengths x; y; s are

increasing as the circle rolls. With these labels, we introduce the characteristic tri-

angle KNP . Side KN represents the instantaneous vertical change in the position

of K as it travels from A to B around the semicircle, so KN equals the differential

of AM D y. Thus, we may write KN D dy (see the detail in Figure 7.7). In like

manner, side KP represents the instantaneous change in the length of arc AK D s,

so KP D ds. Finally, side NP represents the instantanous horizontal change in the

position of K. Now (7.9) plays its part: because MK D MA0 � KA0 D x � s, we

write NP D dx � ds.

Ultimately, we wish to find the area
R

x dy under the cycloid. Equation (7.8)

rearranges to read
Z

x dy D xy �
Z

y dx (7.10)

so that the desired area appears on the left-hand side. Leibniz took xy as the area

of the rectangle that encloses the region AA0GB , so xy D .�r/.2r/ D 2�r2. He

found that

MK D
p

2ry � y2

via the Pythagorean Theorem in triangle KMO .

As for
R

y dx, Leibniz calculated dx by noting that the similarity of 4KNP and

4KMO gives both
ds

dy
D r

MK
D r
p

2ry � y2
(7.11)
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and
dx � ds

dy
D r � y
p

2ry � y2
H) dx D 2r � y

p

2ry � y2
dy : (7.12)

From (7.10) we conclude that
Z

x dy D xy �
Z

y dx

D 2�r2 �
Z

y
2r � y

p

2ry � y2
dy

D 2�r2 �
Z

p

2ry � y2 dy : (7.13)

This example illuminates the power of the new notation. Without it, expressing

(7.13) requires an overwhelming accumulation of words. With it, we can harness

algebra, which allows for substitutions, as in the second equality of (7.13).

The notation is also designed to facilitate a geometric interpretation. In the last

expression of (7.13), we can regard the integral
Z

p

2ry � y2 dy

as the sum of the areas of the rectangles having length MK D
p

2ry � y2 and

height dy. These rectangles occupy the semicircle ABK, which has area .1=2/�r2.

Thus, we may continue from (7.13) to conclude that
Z

x dy D 2�r2 � 1

2
�r2

D 3

2
�r2 ;

confirming Roberval’s result.

We might pause and ask how the notation informs us that the rectangles with

length MK and height dy occupy the entirety of semicircle ABK; in fact, the nota-

tion does not inform us, but leaves it up to the context. Later mathematicians, who

tweaked integral notation to make it even more readable, had no quarrel with the

direction Leibniz took the notation of calculus, adopting it eagerly.

7.4 Furthermore
7.1 Leibniz sums the reciprocals of the triangular numbers. Near the beginning

of his interest in mathematics, Leibniz moved to Paris and visited Christiaan

Huygens (Holland, born 1629) to see if he might guide Leibniz in his studies.

Leibniz showed Huygens his discoveries about sums and differences, results

that later proved conceptually fruitful when Leibniz learned about the mathe-

matics of Fermat and Cavalieri.

Huygens challenged Leibniz to find the sum

1 C 1

3
C 1

6
C 1

10
C 1

15
C � � �
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of the reciprocals of the triangular numbers (which were introduced in section

1.4). The implications of the solution Leibniz found trump the solution itself.

(a) Leibniz created a ‘harmonic triangle’ by writing the terms of the harmonic

series in a row and then writing the difference between neighboring terms

in the row below. Each succeeding row obeys the same rule. Table 1 shows

1
1

2

1

3

1

4

1

5

1

6
� � �

1

2

1

6
� � �

1

3
� � �

Table 1. The first three rows of the ‘harmonic triangle’.

the first few rows, with some terms omitted. Fill in the empty boxes in the

table.

(b) Because each term in the second row is the difference of the two neighbors

above it, what is the (infinite) sum of the terms in the second row?

(c) How does this result answer the question that Huygens posed to Leibniz?

(d) Similarly, what does this line of reasoning suggest when we apply it to the

third row of the table?

Historical note. Table 1 shares some important features with the one we in-

vestigated in exercise 1.2. We use addition to generate rows in one table,

and subtraction in the other. We see integers in one table, and reciprocals

in the other. Leibniz credited this exercise for the genesis of the idea that

differentials (differences) and integration (sums) enjoyed the reciprocal re-

lationship expressed by the fundamental theorem.

7.2 Leibniz shows how to ‘rectify’ a curve. When we rectify a problem, we

straighten it out, and the same applies to curves. If we wish to know the length

of curve OBE in Figure 7.1, for example, we can lay a string over it and then

pull the string taut and measure it. Leibniz used his new notation to mathemat-

ically accomplish this task, which modern scholars call ‘finding an arc length.’

(a) The shaded characteristic triangle in Figure 7.1 has hypotenuse BE, which

we label ds. This differential approximates the tiny bit of curve between B

and E . Label the side of the characteristic triangle that is equal to AD as dx

and the side that is equal to CF as dy. Use the Pythagorean Theorem and a
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bit of algebra to show that

ds D

s

1 C
�

dy

dx

�2

dx :

(b) Leibniz calculated the length of curve AE by summing the differentials ds,

concluding that the expression

Z

ds D
Z

s

1 C
�

dy

dx

�2

dx

rectifies curve AE. Thus, he changed a curve length problem into one of

quadrature. Try this approach on the curve y D x from x D 0 to x D 1, and

check your answer without calculus.

7.3 Leibniz illustrates the fundamental theorem of calculus.

Chapter 6 would have been an appropriate setting for Figure 7.8, which is sim-

ilar to the figure that Leibniz used to illustrate the fundamental theorem of

calculus. Placing the figure in this chapter, however, allows us to analyze it

using his advantageous notation.

Figure 7.8. Leibniz used a figure like this one to establish the inverse relationship between

quadrature and rates of change.

Suppose curve AHJ passes through the origin as shown. Let F and G be the

points along the horizontal axis that correspond to H and J . We will construct

curve ACD as a companion to curve AHJ so that the following is always true:

if we draw a tangent line to curve ACD through C that intersects the vertical

axis at T , and create triangle TBC with BC parallel to the horizontal axis AF ,

then we require that

BT D AF � FH: (7.14)
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If we draw curve ACD according to this stipulation, then (Leibniz claims) we

can show that F C equals the area of the region AHFA.

Following Leibniz’s lead, we let AF D x, F C D y, FH D z, and TB D t . In-

finitely small extensions of T C to K and BC to E create characteristic triangle

CEK similar to triangle CBT . Because CE and EK are small changes in x and

y respectively, we can label these sides dx and dy as shown. So t=x D dy=dx by

similar triangles, and t D xz by (7.14). These two observations together yield

z D dy

dx
; (7.15)

so curve AHJ describes the rate of change of curve ACD.

From (7.15) we get z dx D dy and, using the ideas and notation of section 7.2,

we have
Z

z dx D
Z

dy D y:

Now y is the vertical part of curve ACD at F and Leibniz interprets
R

z dx

as the sum of all of the infinitely thin rectangles with height z and width dx

between points A and F . In other words, Leibniz equates
R

z dx with the area

of region AHFA.

(a) With this in mind, explain the visual relationship between curves ACD and

AHJ . In particular, explain why the point where ACD is “steepest” corre-

sponds to the maximum point on AHJ .

(b) Which of Newton’s observations (6.3) or (6.4) has Leibniz established by

showing that y D
R

z dx?

Historical note: A curve that has its vertical part equal to the area beneath an-

other curve is called a quadratrix. In Figure 7.8, then, curve ACD is the quadra-

trix of curve AHJ .

7.4 Euler explains the product and quotient rules. Euler followed Leibniz in claim-

ing that a differential represented an infinitely small increment in a variable, so

that x Cdx and x are equal. Further, any product of differentials, such as dx �dy

or .dx/3, diminished the infinite smallness yet again, as though such products

were ‘infinitely infinitely small’.

These claims underlie Euler’s explanation of how we may find the differential

of the product of two expressions. Take y D x2.1 � x/1=2 as an example; we

may not algebraically combine the factors x2 and .1 � x/1=2, so we take Euler’s

approach and label the factors u D x2 and v D .1 � x/1=2. Now we rephrase

our problem: if y D u � v, then what is dy?
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Euler argued that

y D u � v H) y C dy D .u C du/.v C dv/

H) dy D uv C u � dv C v � du C du � dv � uv

H) dy D u � dv C v � du ;

a result known as the product rule for differentials, which we met before as (7.2).

For our specific example above, we have the tools to calculate du D 2x �dx, but

we cannot cope with dv just yet. In exercise 7.6, we address this.

The rest of this question sketches Euler’s development of a quotient rule for

differentials that answers the question: if y D u=v, then what is dy?

Expressing y D u=v as y D uv�1 allows us to use the product rule to find that

dy D u � d.v�1/ C v�1 � du : (7.16)

Euler approached the differential d.v�1/ in the same way he began deriving

the product rule. Let q D 1=v, so

q C dq D 1

v C dv
D 1

v

�

1

1 C dv=v

�

:

His clever factoring results in an expression involving the sum of a geometric

series; see (2.7). Swap in the appropriate geometric series, and simplify as Euler

would until you reach the result

dy D v � du � u � dv

v2
:

7.5 Euler calculates the differentials of ln x and ex. When e is the base of a loga-

rithm, we write ln x (as described in exercise 6.6). Euler derived the differential

of y D ln x using the same assumptions as those described in exercise 7.4.

Thanks to the links we have drawn between y D ln x and the hyperbola y D
1=x, we suspect that

d.ln x/ D 1

x
dx :

Here we see Euler’s explanation of this result.

(a) He began with

y D ln x H) y C dy D ln.x C dx/

H) dy D ln

�

.x/

�

1 C dx

x

��

� ln x :

His unusual factoring shows its value when we apply (5.12) and (5.10) in

turn. Eliminating products of differentials completes the task. Write down

the details of this process.
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(b) Use the same approach to find dy when y D ex, and discover the intriguing

differential

d.ex/ D ex dx :

7.6 The chain rule. We required the differential d..1 � x/1=2/ in exercise 7.4, but

lacked a simple rule for calculating it. We remedy that now. Suppose we let

y D .1 � x/1=2 and u D 1 � x, so that y D u1=2. Using Euler’s approach as in

exercise 7.4, we have

y C dy D .u C du/1=2 H) dy D .u C du/1=2 � u1=2 :

Expand .u C du/1=2 using the generalized binomial theorem, so

dy D
�

u1=2 C 1

2
u�1=2du � 1

8
u�3=2.du/2 C � � �

�

� u1=2 :

We drop all terms that include a product of differentials to see that

dy D 1

2
u�1=2 du :

Because du D d.1 � x/ D �dx, we conclude that

dy D 1

2
.1 � x/�1=2.�dx/ D �1

2
.1 � x/�1=2dx :

(a) In search of a more general rule, we can step back through the argument

with a variable like m in place of the exponent, so that our goal is to find dy

when y D .1 � x/m. Try this.

(b) Now try with u in place of 1 � x, to see if the argument remains valid no

matter what expression we substitute for u in y D um.

(c) The rule we seek is commonly called the chain rule for its use in situations

where a variable is expressed in terms of another, which is itself expressed

in terms of a third. (The ‘links’ from one variable to the next create a ‘chain’.)

For example, if y D u1=2 and u D 1 � x, we can return to the expression

y D .1 � x/1=2 studied earlier in this question.

Similarly, we can chain together y D ln u and u D 2x to get y D ln.2x/, or

y D u�1 and u D 1 C 2x to get y D .1 C 2x/�1, or y D eu and u D �x2

to get y D e�x2

. For each of these three expressions, explain how we may

reach the conclusions

y D ln.2x/ H) dy D 1

x
dx;

y D .1 C 2x/�1 H) dy D �2.1 C 2x/�2 dx;

y D e�x2 H) dy D �2xe�x2

dx:
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“Where is that?” is a question as ancient as astronomy, often accompanied by,

“Where is it going?” and, these days, “Is that thing going to hit us?” Because Greek

thinkers of old believed that the earth was stationary and that celestial objects

traveled in circular paths, the study of angles related to circles received careful

attention. The word for this study, trigonometry, refers to the measure of triangles,

which yield a multitude of curious and beautiful truths.

Greek astronomers were privy to many such truths, but it was Indian scholars

in the years between 400 and 700 who began to link the measure of angles to se-

ries. The mathematicians we studied in Chapter 2 were then able to complete this

project, stopping just shy of results that might have led us to call them the discov-

erers of calculus. Because their arguments are somewhat sophisticated, they have

been delayed to this point, where we can make use of the notation of Leibniz, and

where readers should be thoroughly warmed up to the task.

8.1 Preliminary results known to the Greeks
Triangles, circles, and angles appear in Figure 8.1, a simple picture of Earth at the

center of a circular orbit. Some celestial object moves from A along the arc to B .

Because 4EGD is similar to 4EFB , the ratios of each side to each of the others is

constant, no matter the lengths of the sides. Thus, for each angle like ∠DEG we

may calculate these ratios once and for all. Greek astronomers were able to do this

with the help of ingenious formulas that link these ratios to one another.

Our names for these ratios have a curious origin. Because arc APB and segment

AFB in Figure 8.1 look like a bow with its string, Indian scholars used the word

ardha-jyā, meaning half-bowstring, to refer to FB . The abbreviated term jyā became

jiba as these studies filtered from India to Islamic universities. Vowels are often

omitted in Arabic; a Latin translator misread jiba as jaib, Arabic for bay, so wrote

sinus in his translation. Thus do we use the words sine to refer to FB and cosine for

EF .

109
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Figure 8.1. Similar triangles have proportional sides, and these constant proportions give

rise to trigonometric relationships.

One more result from the Greeks before we focus on India. A central angle, like

∠PEB in Figure 8.1, has its vertex at the center of a circle. The Greeks equated

central angles with the length of the arc that the angle subtends on a unit circle.

In particular, if EB D 1, then the measure of ∠PEB equals the length of arc PB .

We say now that angles measured in this way are in radians rather than degrees.

Because the entire circumference of a unit circle is 2� , the central angle of the circle

as a whole is 2� radians.

A circle’s circumference ought to be proportional in length to the entire central

angle in the same ratio as any particular arc length is to the angle corresponding

to that arc. In symbolic form, the previous sentence states that

2� � EB

2�
D PB

∠PEB
H) PB D ∠PEB � EB

for the particular arc PB . More generally, if r is the radius of a circle and the central

angle ˛ intercepts an arc of length s, then

s D ˛ � r :

We will find these few facts about angles, triangles, and circles useful as we fast-

forward a few centuries to India.

8.2 Jyesthadeva finds series for sine and cosine
As was mentioned in Chapter 2, we do not know which arguments authored by

Jyesthadeva in the early 1500s belong to him and which belong to others, like

Nilakantha. Bear this in mind as we attribute all results here to Jyesthadeva, for

the sake of simplicity. These involve arguments so familiar to us by now that the
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notation developed by Leibniz fits naturally, and we will use it. However, the fol-

lowing proof is unique among those encountered thus far because what emerges

is not one truth, but two. It is easy to imagine that this proof evolved via a good

deal of refining on the part of Indian scholars.

Figure 8.2. We seek expressions for the lengths OA and AB in 4OAB , where OB D 1.

The dual punchlines are a pair of series, one equal to the sine and the other

equal to the cosine of any angle. In the unit circle shown in Figure 8.2, the sine of

∠POB D ˛ is the length of AB . Jyesthadeva treated ˛ as the sum of n tiny angles

d˛. This treatment creates n triangles with central angles d˛; 2 � d˛; 3 � d˛; : : : that

culminate in 4OAB with central angle ˛.

Let OA D x and AB D y so that we may label the characteristic triangle DEB

with the differentials d˛, dx, and dy. Because x D cos ˛ and y D sin ˛, these two

variables are our ultimate focus.

Figure 8.2 shows 4OR1Q1, 4OR2Q2, and 4OR3Q3 created by angles d˛, 2 �
d˛, and 3 � d˛ respectively. Subsequent triangles are not shown until we reach

4ORn�1Qn�1 and, finally, 4OAB . Although it is true that

y D R1Q1 C S1Q2 C S2Q3 C � � � C Sn�1B ;

we can improve this awkward expression. Because d˛ is a differential, each of

the lengths in the expression is also a differential. Of what distance is S2Q3 (for



i

i

“C&IO” — 2012/2/14 — 12:16 — page 112 — #126
i

i

i

i

i

i

112 8 Chords

example) a differential? The length of S2Q3 is a small vertical change in the length

of R2Q2 D sin.2 � d˛/, so we may write

S2Q3 D d
�

sin.2 � d˛/
�

:

This example suggests the general conclusion that

y D
n�1
X

kD0

d
�

sin.k � d˛/
�

: (8.1)

Now we generate an expression for x in a similar way. We see in Figure 8.2 that

x D OP � PR1 � R1R2 � R2R3 � � � � � Rn�1A

D 1 � PR1 � Q1S1 � Q2S2 � � � � � Qn�1Sn�1:

Observe that

PR1 D d
�

cos.0 � d˛/
�

;

Q1S1 D d
�

cos.1 � d˛/
�

;

Q2S2 D d
�

cos.2 � d˛/
�

;

:::

Qn�1Sn�1 D d
�

cos..n � 1/ � d˛/
�

;

and that each of these differentials represents a move from right to left; therefore,

each differential is negative. Thus, we have

x D 1 C
n�1
X

kD0

d
�

cos.k � d˛/
�

: (8.2)

Jyesthadeva linked (8.1) and (8.2) by relating the differentials of sines to cosines

and vice versa. For clarity, we use Figure 8.3 rather than the busy Figure 8.2. Radius

OB meets differential BD at a right angle, so 4DEB is similar to 4OAB . Thus,

DE

BD
D OA

OB
H) d.sin ˛/

d˛
D cos ˛

1

H) d.sin ˛/ D cos ˛ � d˛ : (8.3)

To take a specific case from Figure 8.2, we translate (8.3) to see that

S2Q3 D OR2 � d.2 � d˛/ :

We may also deduce the analogue of (8.3) for cosine:

BE

BD
D AB

OB
H) d.cos ˛/ D � sin ˛ � d˛ : (8.4)
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Figure 8.3. Differentials ED and EB link to the sine and cosine of ˛.

Now in Jyesthadeva’s toolkit, these formulas unlock series for x D cos ˛ and

y D sin ˛ via a clever (and infinite) give and take. Substituting k � d˛ for ˛ in (8.4),

we may alter (8.2) to remove the differential of cosine:

x D 1 C
n�1
X

kD0

d.cos.k � d˛//

D 1 C
n�1
X

kD0

�

� sin.k � d˛/ � d.k � d˛/
�

: (8.5)

Jyesthadeva simplified (8.5) thanks to the following two observations about k and

d˛. First, the differential d.k � d˛/ equals the difference between angles .k C 1/ � d˛

and k � d˛, and this difference is always d˛. Second, the quantity d˛ is infinitely

small, and for small angles like k � d˛ we may use the approximation

sin.k � d˛/ � k � d˛ : (8.6)

Figure 8.3 justifies this claim; observe that for small ˛, the length of AB D sin ˛

comes close to the length of the arc BP D ˛.
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Using this pair of conclusions, we simplify (8.5) to

x � 1 C
n�1
X

kD0

�

�.k � d˛/ � d˛
�

D 1 � .d˛/2

n�1
X

kD0

k : (8.7)

The sum in (8.7) may, with the help of (1.10), be rewritten

n�1
X

kD0

k D 1 C 2 C 3 C � � � C .n � 1/

D 1

2
.n � 1/n

D n2

2
� n

2

D n2

2

�

1 � 1

n

�

; (8.8)

so that we can see that the sum approaches n2=2 as n grows infinitely large. Bearing

in mind that n � d˛ D ˛, we conclude that

cos ˛ � 1 � .d˛/2 �
n2

2

D 1 � ˛2

2
: (8.9)

We may rightly view (8.9) as a place to catch our breath. Figure 8.4 shows the

two curves in (8.9), indicating that the approximation is most accurate when ˛ is

near zero; this makes sense in the context of (8.6) where the approximation entered

the argument. Any uneasiness we felt with (8.6) suggests itself in Figure 8.3: the

further ˛ is from zero, the worse (8.6) does as an approximation. To improve it,

Jyesthadeva detoured through an approximation for sin ˛ that not only makes use

of (8.9) but even sharpens it.

We now do for y D sin ˛ what we earlier did for x D cos ˛ by using (8.3) in (8.1)

to see that

y D
n�1
X

kD0

.cos.k � d˛/ � d.k � d˛// : (8.10)

We re-use our observation that d.k � d˛/ D d˛ and apply (8.9) to discover that

y �
n�1
X

kD0

��

1 � .k � d˛/2

2

�

� d˛

�

D n � d˛ � .d˛/3

2

n�1
X

kD0

k2 : (8.11)



i

i

“C&IO” — 2012/2/14 — 12:16 — page 115 — #129
i

i

i

i

i

i

8.2 Jyesthadeva finds series for sine and cosine 115

Figure 8.4. This sketch of cos ˛ and 1 � ˛2=2 shows the close approximation when ˛ is near

zero.

Algebra similar to (8.8) shows that the sum of squares in (8.11) approaches n3=3 as

n grows infinitely large, so

sin ˛ � ˛ � ˛3

2 � 3
: (8.12)

We may catch our breath again, and then go back to (8.5) armed with (8.12) to

show that

cos ˛ � 1 � ˛2

2
C ˛4

2 � 3 � 4

in a line of reasoning that involves the sum of cubes. Jyesthadeva dodged back and

forth between the approximations for sin ˛ and cos ˛ until he was satisfied that

sin ˛ D ˛ � ˛3

3Š
C ˛5

5Š
� ˛7

7Š
C � � � (8.13)

and

cos ˛ D 1 � ˛2

2Š
C ˛4

4Š
� ˛6

6Š
C � � � : (8.14)

These wonderful expansions are just one of the many reasons why Newton put so

much stake in series. He derived them himself from scratch, over a hundred years

later; his path took a twist that Indian mathematicians did not anticipate.
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8.3 Newton derives a series for arcsine
Whereas Jyesthadeva discovered a series for y D sin ˛, Newton found a series

for ˛ itself. We use the term arcsine, abbreviated arcsin, when we wish to say that

an angle like ˛ is the angle having y as its sine, as in ˛ D arcsin.y/. Newton’s

discovery of a series for arcsin.y/ amounted to a mirror image of Jyesthadeva’s

series. In fact, we may use Jyesthadeva’s Figure 8.3 to explain Newton’s argument.

What Newton had available that Indian mathematicians did not was his gen-

eralized binomial theorem, abbreviated GBT, discussed in exercise 6.5. Before we

examine the heart of Newton’s argument, we note where his theorem applies in

Figure 8.3. Region OPQ is a quarter of a unit circle, described as all points that

satisfy x2 C y2 D 1 or x D
p

1 � y2 D .1 � y2/1=2. The GBT lets us expand as

follows:

.1 � y2/1=2 D 1 C 1=2

1
.�y2/

C .1=2/.�1=2/

1 � 2
.�y2/2

C
.1=2/.�1=2/.�3=2/

1 � 2 � 3
.�y2/3

C .1=2/.�1=2/.�3=2/.�5=2/

1 � 2 � 3 � 4
.�y2/4 C � � �

D 1 � 1

2
y2 � 1

8
y4 � 1

16
y6 � 5

128
y8 � � � � : (8.15)

Although this is not exactly how Newton used the GBT in his argument, this ex-

pansion serves as a reminder as to how it works. You might try graphing the first

few terms on the right-hand side of (8.15) to see how well they approximate a

quarter circle.

Looking back at Figure 8.3, we observe that the similar pair 4BDE and 4OBF

gives us

BD

DE
D OB

BF
H) d˛

dy
D 1

x

H) d˛ D dy

x
D .1 � y2/�1=2dy :

If we expand .1 � y2/�1=2 using the GBT, we find that

d˛ D
�

1 C
1

2
y2 C

3

8
y4 C

5

16
y6 C

35

128
y8 C

63

256
y10 C � � �

�

dy :

This relationship between d˛ and dy could hardly be guessed from Figure 8.3. We

may sum the differentials
R

d˛ D ˛ D arcsin y and use our observations in section

7.2 to find
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arcsin y D
Z �

1 C 1

2
y2 C 3

8
y4 C 5

16
y6 C 35

128
y8 C 63

256
y10 C � � �

�

dy

D
Z

dy C
Z

1

2
y2 dy C

Z

3

8
y4 dy C

Z

5

16
y6 dy C � � �

D y C 1

6
y3 C 3

40
y5 C 5

112
y7 C 35

1152
y9 C 63

2816
y11 C � � � :

The fractions in this sum lack the appeal of, say, those in (8.13) and (8.14), Jyes-

thadeva’s series for sine and cosine. Nothing about the sequence of numerators

1; 3; 5; 35; : : : or denominators 6; 40; 112; 1152; : : : immediately suggests an elegant

pattern. A pattern is there, however, hidden in the relationships between the nu-

merators and denominators.

When faced with a sequence where a pattern might hide, mathematicians often

try factoring. In the factored sequence of fractions

1

2 � 3
;

3

23 � 5
;

5

24 � 7
;

5 � 7

27 � 9
;

7 � 9

28 � 11
; (8.16)

we see the importance of odd integers and a curious increase in the number of

2’s in the denominator. The exponents 1; 3; 4; 7; 8; : : : might trigger a thought in a

pattern-seeker: these are the numbers of 2’s in the corresponding sequence

2 D 2;

2 � 4 D 23;

2 � 4 � 6 D 24 � 3;

2 � 4 � 6 � 8 D 27 � 3;

2 � 4 � 6 � 8 � 10 D 28 � 3 � 5;

: : :

This sequence smacks of factorials, as do the odd integers in (8.16). From here it is

a matter of experimentation to ultimately discover that

arcsin y D y C 12

3Š
y3 C 12 � 32

5Š
y5 C 12 � 32 � 52

7Š
y7 C � � �

D y C 1

2
� y3

3
C 1 � 3

2 � 4
� y5

5
C 1 � 3 � 5

2 � 4 � 6
� y7

7
C � � � :

Now it is no trouble to generate more terms in the series.

In order to trust the pattern, of course, we must first prove it to be correct; then,

to trust the result, we must find the values of y that cause the series to speak a

truth. But once these (non-trivial) matters are addressed, we might be tempted to

say that Newton’s discovery has unlocked the mystery of arcsine. Mathematicians

would disagree, asking: Why do odd and even integers play such important roles,

when arcsine concerns angles and circles? Might another way to describe arcsine

make more sense? Until questions like these are answered, mathematicians press

on.

Sometimes, curiosity is driven by criticism. The successes we have witnessed in

this book were borne on the shoulders of some questionable assumptions about
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the infinite. Subsequent to the publication of the calculus by Newton and Leib-

niz, other thinkers rightly criticized their assumptions. The next chapter tells their

story.

8.4 Furthermore
8.1 The reciprocals of the squares. Sometimes a problem sounds quite simple, but

takes a surprisingly long time to solve. Such a problem was to find the sum

1

1 � 1
C 1

2 � 2
C 1

3 � 3
C 1

4 � 4
C � � � (8.17)

of the ‘reciprocals of the squares.’ Stated in the mid-1600s, this was not evalu-

ated for eighty years, despite the efforts of many. Johann Bernoulli (Switzer-

land, born 1667) compared it to the sum

1 C 1

1 � 2
C 1

2 � 3
C 1

3 � 4
C � � � (8.18)

with the purpose of proving that (8.17) converges.

(a) Prove that (8.18) converges to 2 by expressing each fraction as the difference

of a pair of fractions. If you choose wisely, each pair of fractions of (8.18)

will simplify with the help of its neighbors.

(b) Why does the fact that (8.18) converges have any bearing on whether (8.17)

does as well?

(c) While we are studying (8.18), we pause to see Bernoulli’s proof that the

harmonic series (3.12) diverges. Dropping the initial 1 from the harmonic

series, Bernoulli wrote the remaining terms first as

1

2
C 2

6
C 3

12
C 4

20
C 5

30
C 6

42
C � � �

and then as

1

2
C 1

6
C 1

12
C 1

20
C 1

30
C 1

42
C � � �

1

6
C

1

12
C

1

20
C

1

30
C

1

42
C � � �

1

12
C 1

20
C 1

30
C 1

42
C � � �

1

20
C 1

30
C 1

42
C � � �

:::

He summed each row, starting at the top, using each sum to help determine

the next. How does this process lead to the desired result?
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8.2 Euler sums the reciprocals of the squares. Euler first approximated (8.17) and

then discovered the exact solution. This question steps through the latter argu-

ment.

(a) First, a detour through the finite: the equation

.x � a/.x � b/ D 0

has the two solutions x D a and x D b. Expanding and dividing by ab

transforms this equation to

1

ab
x2 �

�

1

a
C 1

b

�

x C 1 D 0 ;

where we observe that the constant term is 1, and the coefficient of x is the

sum of the reciprocals of the solutions, with the sign changed. Check that

the same is true if we start with

.x � a/.x � b/.x � c/ D 0 :

(b) Euler guessed that this result might hold in situations where the equation

has an infinite number of solutions. He began with sin ˛ D 0, which has

solutions at all multiples of � . Euler replaced sin ˛ with its series in (8.13);

dividing by ˛ and substituting u for ˛2 gives

1 � u

3Š
C u2

5Š
� u3

7Š
C � � � D 0 ;

which is (an infinite) polynomial with 1 as its constant. How do the results

from 8.2(a) apply to allow Euler to conclude that (8.17) sums to �2=6?

(c) The identity

�2

8
D

1
X

kD1

1

.2k � 1/2

closely resembles the one that we pursued in 8.2(b), and can be proven

using (8.14). An alternate proof relies simply on a bit of term sorting. Con-

vince yourself by one of these methods (or by one of your own) that the

identity for �2=8 is correct.

8.3 Euler’s differential of sin ˛. Euler’s treatment of the differential of sin ˛ fea-

tured his characteristic mix of brevity, clarity, and audacity. His aim was to

prove (8.3), as Jyesthadeva did; unlike Jyesthadeva, however, Euler did not ap-

peal directly to geometry.

Euler began by substituting d˛ for ˛ in both (8.13) and (8.14):

sin.d˛/ D d˛ � .d˛/3

3Š
C .d˛/5

5Š
� .d˛/7

7Š
C � � � ;

cos.d˛/ D 1 � .d˛/2

2Š
C .d˛/4

4Š
� .d˛/6

6Š
C � � � :
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(Historical note. These series were known to Euler not via the work of Jyestha-

deva, but thanks to the efforts of Newton. In section 8.3, we studied Newton’s

discovery of a series for arcsin ˛. Newton unraveled this result to subsequently

discover the series (8.13) for sin ˛.)

As did Leibniz, Euler treated any power (greater than 1) of a differential like d˛

as incomparably smaller than d˛ itself. Thus, sin.d˛/ D d˛ and cos.d˛/ D 1.

In the same manner, Euler treated the quantities like ˛ and ˛ C d˛ as equal, so

y D sin ˛ H) y C dy D sin.˛ C d˛/ :

Using the trigonometric identity

sin.A C B/ D sin A cos B C cos A sin B ;

Euler concluded that

y C dy D sin ˛ cos.d˛/ C cos ˛ sin.d˛/

D sin ˛ C cos ˛ � d˛ :

Subtracting y D sin ˛ from both sides, Euler arrived at his goal:

d.sin ˛/ D cos ˛ � d˛ :

This conclusion matches that of Jyesthadeva in section 8.2. Argue as Euler

would to find the differential of cos ˛.

8.4 Pascal’s ‘sum of sines’ in the notation of Leibniz. In exercise 6.1, we outlined

an argument by Pascal that had at its core the link between tangency and quad-

rature that is the hallmark of the fundamental theorem. Now that we have new

notation, and some familiarity with trigonometry, we may translate Pascal’s re-

sult.

Figure 8.5 re-creates some of Figure 6.7, shifting emphasis to the angles that

correspond to the vertical segments. Here, we let ˛ D ∠DOB , ˇ D ∠VOB , and

� D ∠UOB . Assume the quarter-circle has radius 1 for now. With these labels,

explain why
Z

sin ˛ d˛ D cos ˇ � cos �

correctly restates Pascal’s conclusion in exercise 6.1. (In the infinite sum, the

angle ˛ ranges from ˇ to � .)

Historical note. Later mathematicians simplified the notation further by placing

the lower and upper bounds for ˛ on the summation symbol itself, like so:

�
Z

ˇ

sin ˛ d˛ D cos ˇ � cos � :
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Figure 8.5. This version of Figure 6.7 emphasizes the angles.

8.5 Leibniz (re)discovers a series for arctan z. Using Figure 6.6, we observed how

Leibniz rediscovered a series equal to �=4. The same figure can lead us to a

series for the arctangent of an angle.

(a) Let ∠ADB D 2� (the 2 is for convenience only). Explain these four facts:

� that ∠ABE D � ,

� that the area of sector ADB is � ,

� that z D x=y,

� and that y D z.2 � x/.

(b) Because tan � D x=y, we have

arctan z D area of sector ADB :

Leibniz argued that

area of sector ADB D area of 4ADB C 1

2
.area of region AEL/

by his transmutation theorem (6.10). Explain how we may therefore con-

clude that

arctan z D 1

2
y C 1

2
xz � 1

2
.area of region AHL/ :
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(c) After applying y D z.2 � x/, Leibniz concluded that

arctan z D z � z3

3
C z5

5
� z7

7
C � � �

using virtually the same arguments detailed in section 6.4. In your own

words, explain the geometry underlying his argument.

Historical note. The series for the arctangent of an angle was previously

known to Gregory, about two years prior to Leibniz, and to Nilakantha,

about 150 years prior to Gregory. The argument of Leibniz presented here

has the benefit of reminding us of his transmutation theorem.
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Zero over zero

This chapter highlights the story of how scholars engaged in a conversation with

the aim to remove from calculus all ambiguity, especially with regard to the in-

finitely large and infinitely small. Despite the common goal, there was at first no

agreement on the solution, and the conversation meandered as most great de-

bates do. Some ideas, dropped for dozens of years, made surprising returns in

pamphlets, private letters, books, and book reviews. Ultimately, the voices in the

debate unified on a course of action that banished ambiguity while opening mar-

velous new possibilities.

9.1 D'Alembert and the convergence of series
Jean le Rond d’Alembert (France, born 1717) played a key role in the eventual

success of the drive toward rigor. To understand one of his contributions, recall

Jyesthadeva’s identity

1

1 C x
D 1 � x C x2 � x3 C x4 � � � � ; (9.1)

which we studied with the aid of Figure 2.5. When 0 < x < 1; we are in the

situation illustrated by the figure, so we can rest assured that if we substitute such

a value for x on the right-hand side of (9.1), then the series will equal the left-

hand side. This is what d’Alembert meant when he stated that the series in (9.1)

converges to 1=.1 C x/ when 0 < x < 1.

The sum in (9.1) clearly fails to converge to 1=.1 C x/ when x � 1, but the sum

might converge for values of x less than zero. For example, we arrive at the true

statement

2 D 1 C 1

2
C 1

4
C 1

8
C � � �

123
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124 9 Zero over zero

by substituting x D �1=2 in (9.1). For x D �2=3, the statement

3 D 1 C 2

3
C 4

9
C 8

27
C � � �

is plausible, but not immediately obvious.

Like always, it is best to stay cautious when making claims of truth about the

infinite. In this case, we are aided by the fact that the right-hand side of (9.1) is a

geometric series. Let Pn denote the partial sum obtained by interrupting the series

at the xn term, so

Pn D 1 � x C x2 � x3 C x4 � � � � ˙ xn ;

where the last sign depends on n being odd or even. Multiplying (and then divid-

ing) through by .1 C x/ gives

Pn D 1 ˙ xnC1

1 C x
:

When �1 < x < 1; alternatively stated jxj < 1, the term xnC1 approaches zero as

n approaches infinity, so the partial sums converge to 1=.1 C x/. When jxj � 1, on

the other hand, the partial sums diverge.

The series d’Alembert tackled posed bigger challenges, as they are not geomet-

ric. He investigated the convergence of identities like

.1 C x/1=2 D 1 C 1

2
x � 1

8
x2 C 1

16
x3 � 5

128
x4 C 7

256
x5 � � � � (9.2)

that are generated by Newton’s generalized binomial theorem. Recall that (3.16)

counts the number of ways we may choose k out of n distinct objects, but also re-

member that we can use the more general (3.15) to calculate such oddities

as

 

1=2

4

!

D .1=2/.�1=2/.�3=2/.�5=2/

4Š

D � 5

128

to find the coefficient of x4 in (9.2).
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D’Alembert considered the ratio of consecutive terms of (9.2), comparing the

typical term containing xnC1 to the term containing xn that precedes it:

ˇ

ˇ

ˇ

ˇ

ˇ

 

1=2

n C 1

!

xnC1

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

 

1=2

n

!

xn

ˇ

ˇ

ˇ

ˇ

ˇ

D
ˇ

ˇ

ˇ

ˇ

.1=2/.�1=2/ � � � .1=2 � .n � 1//.1=2 � n/

.1=2/.�1=2/ � � � .1=2 � .n � 1//
� nŠ

.n C 1/Š
� x

ˇ

ˇ

ˇ

ˇ

D
ˇ

ˇ

ˇ

ˇ

1=2 � n

n C 1

ˇ

ˇ

ˇ

ˇ

� jxj

D
ˇ

ˇ

ˇ

ˇ

1=.2n/ � 1

1 C 1=n

ˇ

ˇ

ˇ

ˇ

� jxj : (9.3)

Interested in what ultimately happens to the ratio, d’Alembert observed that when

n becomes arbitrarily large, the final expression in (9.3) simply equals jxj. He con-

cluded that when jxj � 1, the ratio of each term in the series to the one before it

is, ultimately, not diminishing, so there is no possibility that the right-hand side of

(9.2) is finite. On the other hand, when jxj < 1, there is hope. Graphing .1 C x/1=2

along with a few partial sums of the series persuasively illustrates this conclusion.

Arguing more generally, d’Alembert showed that we must have jxj < 1 to have

the chance of convergence for any expansion of the type .1 C x/m. The identity

.1 C x/m D
m
X

nD0

 

m

n

!

xn

from exercise 3.4(c) lets us compare consecutive terms as we did in (9.3):

ˇ

ˇ

ˇ

ˇ

ˇ

 

m

n C 1

!

xnC1

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

 

m

n

!

xn

ˇ

ˇ

ˇ

ˇ

ˇ

D
ˇ

ˇ

ˇ

ˇ

.m/.m � 1/.m � 2/ � � � .m � n/

.m/.m � 1/.m � 2/ � � � .m � .n � 1//
� nŠ

.n C 1/Š
� x

ˇ

ˇ

ˇ

ˇ

D
ˇ

ˇ

ˇ

ˇ

m � n

n C 1

ˇ

ˇ

ˇ

ˇ

� jxj

D
ˇ

ˇ

ˇ

ˇ

m=n � 1

1 C 1=n

ˇ

ˇ

ˇ

ˇ

� jxj :

Letting n become arbitrarily large, as before, reveals that only if jxj < 1 is there

hope that a series of the type .1 C x/m can converge.
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9.2 Lagrange defines the `derived function'
The fairly narrow interval jxj < 1 suggests that an identity like (9.2) is not often

useful. Might a different series approximate .1 C x/1=2 for other values of x?

The discovery of such a series helped put series in the limelight; some schol-

ars, in fact, believed that series could replace the “infinitely small” and “infinitely

large” conundrums that were resisting all attempts to confirm them as logically

possible. One such thinker, Joseph Louis Lagrange (France/Italy, born 1736) be-

lieved that all expressions involving one variable could be represented as power

series — that is, infinite polynomials like the right-hand side of (9.2). In a way, he

was correct, and we will return to this part of the tale in the next section.

For now, we return to the question posed in the first paragraph of this sec-

tion, but phrase it with some new notation. When Lagrange became interested in

these matters, he joined an ongoing conversation about functions that had begun

in earnest in the writings of Leibniz. A function, for Leibniz, described a geometric

object that inherits its features from another. The circle of Descartes in Figure 3.6,

for example, inherits its position and radius based on the point we choose on the

curve, so Leibniz would say that the circle is a function of the curve.

Later, in Leibniz’s correspondence with Johann Bernoulli, the two applied this

principle to variables: if one variable inherits its value thanks to some expression

that involves another variable, then the former is a function of the latter. Focus

shifted from the study of similar triangles to the study of curves, as evidenced by

the nature of the figures in the latter chapters of this book.

Figure 9.1. The functions g1 and g2 approximate f at the point P by matching successive

derivatives.

When Lagrange wrote f .x/ D .1 C x/1=2, then, he meant that the function f

takes on a value for each x that is given by the expression .1 C x/1=2; for example,

f .3/ D .1 C 3/1=2 D 2. Sometimes we cannot evaluate a function at all x values,

as with f when x < �1. This may not strike a modern reader as a great leap, but
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functions proved a fertile symbolic invention, and the care with which mathemati-

cians pinned down the meaning of function opened up many other conversations

that helped remove illogical notions from calculus.

We may use this notation to discover (9.2) using a new approach. Suppose we

wish to approximate f .x/ D .1 C x/1=2 near the point P.0; 1/ shown in Figure 9.1,

and we wish our approximating function to be

g.x/ D c0 C c1x C c2x2 C c3x3 C � � � ;

where the coefficients c0; c1; c2; c3; : : : are unknown. (Thanks of course to (9.2), we

do know these coefficients, but we will start from scratch.) We can build g term

by term by considering its partial sums. Using subscripts to identify the stopping

points in these partial sums, we can write

g1.x/ D c0 C c1x

and ask what c0 and c1 ought to equal so that g1 best approximates f at P . Re-

quiring g1 to pass through P seems quite wise, so we solve

g1.0/ D f .0/ H) c0 D 1, so g1.x/ D 1 C c1x :

The coefficient c1 controls the slope of the line that g1 describes. If we choose c1 so

that this line is tangent to f at P , we arguably get the line that best approximates

f at that point. Not only is this merely a claim, but also it is vague, as we might

disagree on what “best” means.

Still, it is a reasonable claim, so we pursue it. In doing work similar to this,

Lagrange argued that c1 can be calculated with a function that is derived from f

and is denoted f 0 to indicate this. From this verb, we get the term derivative. This

derivative f 0 is equivalent to Leibniz’s ratio dy=dx where y D .1 C x/1=2, because

this ratio also gives the slope of tangent lines. Thus, we know that

f .x/ D .1 C x/1=2 H) f 0.x/ D 1

2
.1 C x/�1=2 ;

using the chain rule (see exercise 7.6).

Because g0

1.x/ D c1 and we want g0

1.0/ D f 0.0/, we conclude that c1 D 1=2. So

g1.x/ D 1 C .1=2/x stands as our best approximation to f at P thus far. Compare

the partial sum g1 with (9.2).

The next partial sum g2.x/ D c0Cc1xCc2x2 has an extra term, so we hope it will

improve upon our first approximation. Repeating the argument we just studied

for creating g1 results in the same conclusions c0 D 1 and c1 D 1=2, so g2.x/ D
1 C .1=2/x C c2x2. The functions g2 and f not only agree at P but also share the

same rate of change at that point, as given by their derivatives.

Observe how Figure 9.1 shows that the rate of change of g1 is constant at P ,

while the rate of change of f is not constant, but is decreasing. Perhaps we can

use the extra coefficient c2 in g2 to adjust to this fact.

The rate of change of f is given by its derivative f 0, so to learn about the rate of

change of f 0 we calculate its derivative

f 00 D �1

4
.1 C x/�3=2:
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Setting the ‘second’ derivatives of f and g2 equal at P gives

g00

2.0/ D f 00.0/ H) 2c2 D �1

4
H) c2 D �1

8
:

Again we compare our results favorably to (9.2). Figure 9.1 illustrates how g2 tends

to more closely approximate f near P than did g1. Following this approach to find

the partial sums g3; g4; : : :, we rediscover (9.2).

9.3 Taylor approximates functions
Now that we are warmed up, we step back a bit in time to study an important

result found by Brook Taylor (England, born 1685). Having jumped past Taylor to

arm ourselves with function notation, we have streamlined our task.

We will examine our specific question from the opening paragraph of section 9.2

before looking at Taylor’s general result. How might we approximate f .x/ D .1 C
x/1=2 with a power series at a point other than P ? We choose the point Q.3; 2/ for

Figure 9.2. To approximate a function with a power series at a point where x 6D 0, we

translate the function first.

convenience, shown in Figure 9.2. We could make use of our approach in section

9.2 if we slide f horizontally until Q lies on the vertical axis at Q0. The function

f .x C 3/ accomplishes this translation of f . We may approximate the translated

function at Q0 as

f .x C 3/ D c0 C c1x C c2x2 C c3x3 C � � � ;

and then slide our approximation and function back to its original position. The

re-translated approximation

f .x/ D f ..x � 3/ C 3/

D c0 C c1.x � 3/ C c2.x � 3/2 C c3.x � 3/3 C � � � (9.4)
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will then be aimed at point Q. Letting g denote the series in (9.4), we find that

f .3/ D g.3/ H) c0 D 2 ;

f 0.3/ D g0.3/ H) c1 D 1=4 ;

f 00.3/ D g00.3/ H) c2 D �1=64 ;

and so on, leading to the approximation

g.x/ D 2 C 1

4
.x � 3/ � 1

64
.x � 3/2 C 1

512
.x � 3/3 � � � � : (9.5)

If we expand each power of .x � 3/ and collect like terms, we have the desired

power series. To avoid this (infinite) labor, mathematicians agreed to call a series

like (9.5) a power series about x D 3.

Taylor’s general argument was more along the lines of Newton than Lagrange;

in fact, Newton was not alone in having knowledge of power series before Taylor

published his result. However, the same sort of reasoning we have used in this

section produces the conclusion that these mathematicians reached: if we wish to

approximate a function f with a power series about a by finding the unknown

coefficients in

f .x/ D c0 C c1.x � a/ C c2.x � a/2 C c3.x � a/3 C c4.x � a/4 C � � � ;

we may evaluate the derivatives of each side of this equality at x D a and equate

them. The first few steps are

f 0.x/ D c1 C 2c2.x � a/ C 3c3.x � a/2 C 4c4.x � a/3 C � � � ; so

f 0.a/ D c1 ;

f 00.x/ D 2c2 C .3 � 2/c3.x � a/ C .4 � 3/c4.x � a/2 C � � � ; so

f 00.a/ D 2c2 ;

f 000.x/ D .3 � 2/c3 C .4 � 3 � 2/c4.x � a/ C � � � ; so

f 000.a/ D .3 � 2/c3 :

Writing f .n/ for the nth derivative of f to keep the notation tidy, we conclude that

f .n/.a/ D nŠ � cn

in the general case. So if f has infinitely many derivatives at the point where

x D a, we conclude with Taylor that the power series generated by f at x D a is

f .x/ D
1
X

kD0

f .k/.a/

kŠ
.x � a/k : (9.6)

One benefit of power series is the ease with which we can differentiate and in-

tegrate them. In Chapter 5, for example, we studied the link between logarithms

and the quadrature of the hyperbola 1=.1 C x/. Then, in Chapter 7, we connected
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quadrature and integration. These matters come together clearly thanks to the se-

ries

log.1 C x/ D x � x2

2
C x3

3
� x4

4
C � � � (9.7)

and
1

1 C x
D 1 � x C x2 � x3 C x4 � � � � ; (9.8)

which give us strong reason to believe that
Z

1

1 C x
dx D log.1 C x/ :

The trickiest issues with power series involve convergence. As we have seen,

some series give a terrific approximation but only within a narrow interval; out-

side the interval jxj < 1, for example, the series on the right-hand side of (9.8)

utterly fails to approximate 1=.1 C x/. If we integrate (9.8), then, to get (9.7), does

the new series converge on the same interval? And if we want to use (9.7) (not sim-

ply admire it) to get a good approximation of log.1 C x/, then what is the shortest

partial sum of the series that will get us close enough?

Almost any door that opens in mathematics leads to others, some locked more

tightly than the first. This door resisted mathematical lockpicking for decades:

what is convergence?

9.4 Bolzano and Cauchy define convergence
Many thinkers, including d’Alembert and Lagrange, tried their hand at defining

convergence, often in reaction to failed attempts on the part of their predecessors.

One overarching theme of the debate centered on criticisms leveled against calcu-

lus as presented by its initial explorers, Newton and Leibniz. Both men struggled

to rid their arguments of the ambiguity and illogic introduced by the infinitely

large, infinitely small, and (worse yet) ratios of such quantities. The ratio of differ-

entials dy=dx was particularly puzzling because of its usefulness in answering all

manner of real-world problems; the trouble, in a nutshell, is that to be useful, the

ratio had to shift into a mysterious world where it equaled zero divided by zero.

In one attempt to defuse this issue, Leibniz argued that the ratio dy=dx gives

the slope of a tangent line to the curve y, and because this slope is often a non-

mysterious number, then clearly dy=dx must not equal 0=0. Newton defended

his calculus in similar ways. Tangent lines illustrate the issue well; as in Figure

fg-DescartesTangentLine, some mathematicians considered tangent lines to be the

ultimate fate of a sequence of secant lines through points that are approaching each

other ever more closely. The words “ultimate” and “approaching” and “closely”

seemed key.

These concepts are also at the forefront when we consider the convergence of

series like (8.13), reproduced here:

sin ˛ D ˛ � ˛3

3Š
C ˛5

5Š
� ˛7

7Š
C � � � : (9.9)
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9.4 Bolzano and Cauchy define convergence 131

If we claim that the series in (9.9) converges to sin ˛ for a particular angle, say,

˛ D �=2, then what do we mean? It is impossible to substitute �=2 for ˛ infinitely

many times, so we must rely on partial sums of the series. To this end, we let gk

be the partial sum that has k non-zero terms, and evaluate the first few:

g1.˛/ D ˛ H) g1.�=2/ � 1:57079632;

g2.˛/ D ˛ � ˛3

3Š
H) g2.�=2/ � 0:92483222;

g3.˛/ D ˛ � ˛3

3Š
C ˛5

5Š
H) g3.�=2/ � 1:00452485;

g4.˛/ D ˛ � ˛3

3Š
C ˛5

5Š
� ˛7

7Š
H) g4.�=2/ � 0:99984310;

g5.˛/ D ˛ � ˛3

3Š
C ˛5

5Š
� ˛7

7Š
C ˛9

9Š
H) g5.�=2/ � 1:00000354:

Thus far, the partial sums appear to give better and better approximations of

sin.�=2/ D 1; that is, the sequence

g1.�=2/; g2.�=2/; g3.�=2/; g4.�=2/; g5.�=2/; : : : (9.10)

seems to converge to 1.

The first scholar to provide a clear definition of convergence was Bernard Bol-

zano (Bohemia, born 1781), who was a toddler when d’Alembert died in his sixties.

Why a solid definition of convergence took so many years to craft is due in part to

the potential pitfalls; for example, how do we know that the partial sums beyond

those we have checked continue to approach 1? What if, in some unexplored part

of the sequence (9.10), the partial sums unexpectedly deviate from 1, perhaps to

go on deviating, or perhaps ultimately to approach 1 after all?

Bolzano deftly navigated these troubles with his criterion for convergence:

For a sequence like (9.10) to converge, there

must come a place in the sequence beyond

which every pair of values in the sequence

differ by as little as we choose.

(9.11)

The phrase “as little as we choose” acts like a noose, tightening on the infinitely

long tail end of the sequence.

The noose is a positive number, usually denoted with the Greek letter � (read

‘epsilon’) in reference to the word ‘error’. All Bolzano required is that � > 0, so we

may draw the noose as tightly as we like. Whenever we stop at a particular partial

sum to evaluate it at ˛ D �=2, its value may err from 1. But if there is always a

point in the sequence beyond which all of the values are within � of each other,

then the sequence converges. Further, if there is always a point in the sequence

beyond which all of the values are within � of some constant, then the sequence

converges to that constant.

This last statement is due to Augustin Cauchy (France, born 1789), whose care-

ful definitions and proofs are the models for how calculus is often taught today.
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His treatment of calculus pushed the subject from geometry to algebra. Consider

this algebraic expression of Cauchy’s definition of the convergence of a sequence:

A sequence u1; u2; u3; : : : converges to L if

and only if for every � > 0 there is some m

such that

juk � Lj < � for all k � m :

(9.12)

For thinkers well-versed in geometry, this statement may seem forebodingly ab-

stract; but at least we can check it. This definition mathematically captures the

essence of words like “ultimately” and “approaches” while avoiding any reliance

on drawings.

Borrowing a term already in use, Cauchy called L the limit of the sequence; for

example, we suspect that the sequence (9.10) is converging to the limit L D 1. To

confirm our suspicion, we would need to show that no matter how tiny we choose

� > 0, we can identify the ‘tail end’ of the sequence in which every term is within

� of the limit 1. Although this task may not always be simple, it is a clearly-stated

mathematical objective that is in harmony with our intuitions about convergence.

We may also define when a series like (9.9) converges using the precise language

of algebra:

Let Pj denote the j th partial sum of the series
P

1

kD1 ak . Then the series converges if and

only if for every � > 0 there is some i such

that

jPn � Pmj < � for all n; m � i :

(9.13)

Reminiscent of Bolzano’s (9.11), this definition states that the convergence of a

series depends on its partial sums becoming arbitrarily close.

For example, thanks to the figure in exercise 2.3, we suspect that when jxj < 1

we have 1

1 � x
D 1 C x C x2 C x3 C � � � C xn C � � � :

Our hunch is confirmed by (9.13); letting n > m,

jPn � Pmj D jxmC1 C xmC2 C xmC3 C � � � C xnj
D jxmC1.1 C x C x2 C � � � C xn�.mC1//j

D
ˇ

ˇ

ˇ

ˇ

xmC1 � 1 � xn�m

1 � x

ˇ

ˇ

ˇ

ˇ

, as on page 124

D 1

1 � x
jxmC1 � xnC1j

� 1

1 � x
jxn � xnC1j

D jxnj;

and by choosing n large enough we can force jxnj < � for any � > 0.
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Although Cauchy did not express (9.13) in quite its technical way, this check on

the convergence of series is often called “the Cauchy convergence criterion” (see

exercise 9.5). Note that it merely stipulates when a series does converge, but not to

what limit. Finding the limit itself is a further puzzle.

By such means, Bolzano and Cauchy began what amounted to a houseclean-

ing of calculus, brushing away the clutter down to the hardwood floor and then

starting over. They reused plenty of the existing notation and arguments, but they

and their peers sharpened concepts, tightened logic, and published books. As is so

often the case, these efforts spurred others to explore whatever weaknesses might

linger. Mathematical exploration often takes the form of surprising examples; we

will take a look at a few of these in our final chapter.

9.5 Furthermore
9.1 D’Alembert illuminates the question of convergence. To motivate his results

on the convergence of (9.2), d’Alembert experimented with an x value just a

bit larger than 1; he chose x D 200=199, but we will start with the more modest

value x D 4=3. Because this value is larger than 1, we know that (9.2) is not

valid. Nevertheless, because 4=3 is not much larger than 1, the first few partial

sums (9.2) approximate .1 C 4=3/1=2 fairly well.

(a) D’Alembert let n become arbitrarily large in (9.3) to investigate what values

of x would cause the series in (9.2) to diverge. Flipping this approach on its

head, we have chosen x D 4=3 and now ask for what values of n will the

final expression in (9.3) exceed 1. What is your answer?

(b) Recall that n is the exponent of a typical term in the series in (9.2). Using

x D 4=3 and your value of n from part 9.1(a), calculate the first nC 2 partial

sums of the series. What do you notice about the partial sums?

(c) Answer part 9.1(a) for d’Alembert’s value x D 200=199. His point in choos-

ing a number just a tiny bit larger than 1 was to illustrate the danger of

believing what you see (in mathematics) without proving your belief. The

partial sums in (9.2) grow quite close to .1 C 200=199/1=2 for quite some

time before eventually failing to converge. Which phrase – “quite close to”

or “quite some time” – does your solution help quantify?

9.2 Approximating functions. Continue to approximate .1Cx/1=2 as in section 9.2

by finding g3 and g4.

9.3 Taylor’s method justifies Jyesthadeva’s conclusion. Use (9.6) to rediscover

(9.8), which Jyesthadeva found by other means in chapter 2.

9.4 A Taylor polynomial for sin ˛. In chapter 8 we saw how Jyesthadeva discov-

ered an infinite polynomial (8.13) that is equivalent to the function for the sine

of an angle. Using (9.6), draw the same conclusion.
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9.5 The Cauchy convergence criterion. In his book Cours d’analyse, Cauchy de-

fined the convergence of series as (9.13) does. He let

sn D u1 C u2 C u3 C � � � C un�1

denote the partial sum of an infinite series, then highlighted “the successive

differences between the first sum sn and each of the following sums” as deter-

mined by the equations

snC1 � sn D un;

snC2 � sn D un C unC1; (9.14)

snC3 � sn D un C unC1 C unC2;

and so on. Cauchy stated that the infinite series converges so long as the sums

on the right-hand side of (9.14) “eventually constantly assume numerical val-

ues less than any assignable limit.” The more symbolic (9.13) removes any am-

biguity lurking in these words.

(a) A geometric series. We immediately used (9.13) on page 132 to discuss the

convergence of the geometric series

1

1 � x
D 1 C x C x2 C x3 C � � � C xn C � � � ;

where jxj < 1. Cauchy’s treatment uses (9.14); he pointed out that the finite

sums starting with xn may be algebraically rewritten

xn C xnC1 D xn 1 � x2

1 � x
;

xn C xnC1 C xnC2 D xn 1 � x3

1 � x
;

and so on. He claimed that each of these sums is therefore contained be-

tween

xn and
xn

1 � x
:

Why may he claim this, and how does this observation connect to his defi-

nition of convergence to prove that the series converges?

(b) The series for e. As another application of his definition, Cauchy examined

the series

1 C 1

1Š
C 1

2Š
C 1

3Š
C � � � C 1

nŠ
C � � � ;

previously seen in (6.23). As in part (a), Cauchy rewrote the finite sums

1

nŠ
C 1

.n C 1/Š
;

1

nŠ
C 1

.n C 1/Š
C 1

.n C 2/Š
;
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(and so on) in such a way that convinced him that any of these sums “de-

creases indefinitely as n increases.” He uses what we now call the Compari-

son Test, which is to say that he finds a convergent series that term-by-term

is greater than any sum in the list above. As a hint, notice that

1

.n C 1/Š
<

1

nŠ
� 1

n
;

and try to recapture his argument yourself.
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10
Rigor

Despite its deductive nature, mathematics yields its truths much like any other

intellectual pursuit: someone asks a question or poses a challenge, others react or

propose solutions, and gradually the edges of the debate are framed and a vocabu-

lary is built. One might attempt to distinguish mathematics from other disciplines

by arguing that, ultimately, we know that its results express truth in a way no other

subject can boast; however, philosophical arguments of the early 1900s call even

this claim into question.1

While the story of calculus features plenty of intrigue and debate, readers should

rest assured that controversy is often a hallmark of mathematical discovery. As

with every pursuit of the mind, mathematics advances when its explorers resist

attempts to settle matters. Think of cubism challenging the dominance of linear

perspective in Western art, jazz releasing music from traditional notions about

rhythm and harmony, or free verse perturbing the boundaries of poetic meter. Ev-

ery intellectual pursuit needs people who respect the rules yet stretch them.

Calculus shifted in its focus from geometry and puzzling claims about the infi-

nite to functions, limits, and picture-free algebra. During the transition, each pro-

posed definition or rule weathered a barrage of exceptions. The goal of the debate

was certainty.

10.1 Cauchy defines continuity
For thousands of years, from Archimedes to Newton, anyone discovering a curve

likely did so via geometry or observations of nature. The Greeks, for example,

considered a parabola to be the intersection of a plane with a cone, as if they felt

a pull to study only those curves that result when simpler objects interact. The

1Rebecca Goldstein’s Incompleteness: The proof and paradox of Kurt Gödel (New York: W. W. Norton,

2005) relates Gödel’s striking demonstration that proof and truth are not synonymous even in mathe-
matics.

137
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138 10 Rigor

cycloid studied by Galileo and Roberval is a by-product of a rolling circle. An

acquaintance of Leibniz challenged him to discover the curve traveled by a watch

as it is dragged by its chain across a table in a particular way. For years in the

1700s, scholars investigated the curves attained by an elastic that is stretched taut

and then allowed to relax.

Euler exhorted his contemporaries to free themselves from the urge to base

mathematics on the physical or geometric. The tool he championed was the func-

tion. A function acts like a set of rules for turning some numbers into others, a

machine with parts that we can manipulate to accomplish anything we can imag-

ine.

To drive this point home, we can invent a function and study it. Let g.x/ equal

x when x is in the list 1; 1=2; 1=4; 1=8; : : : and equal zero otherwise. A modern way

to define this function is

g.x/ D
�

x when x D 1=2m for m D 0; 1; 2; : : : ;

0 otherwise.

Figure 10.1 is a good attempt at drawing it. Although we cannot depict the behav-

ior of g near the origin, our imaginations can take over.

Figure 10.1. It is not possible to draw the points of g that lie near the origin.

At its non-zero points, the function ‘jumps’ from the horizontal axis. The open

circles along the horizontal emphasize this. Our intuition suggests that a function

is ‘continuous’ when it avoids jumps, and not continuous when it jumps. Many

pieces of the function, like those between the open circles, appear continuous; does

this hold as we imagine the function’s behavior near the origin in Figure 10.1? The

term ‘continuous’ begs for definition, lest we lose ourselves in fruitless specula-

tion.

If we wish the word ‘continuous’ to prohibit jumps in a function, its definition

must somehow control the vertical change of the function at a sort of microscopic

level. That is, at any point on a ‘continuous’ function, the nearby points ought to

be as ‘close’ as possible. When inspecting a particular point, we would be wise
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10.1 Cauchy defines continuity 139

Figure 10.2. For f to be continuous where x D a, the vertical distance between A and B

must vanish as the horizontal distance vanishes.

to heed the lesson of Bolzano and Cauchy at the end of section 9.4: do not look

directly at the point, but look at how nearby points behave.

Here is Cauchy’s version. To check if the function f in Figure 10.2 is continuous

at the point where x D a (corresponding to the point A), assign an increment ˛ to

a and locate the corresponding point B . As ˛ vanishes, watch the behavior of B to

see if its vertical difference from A also vanishes. If this difference f .a C ˛/ � f .a/

does not vanish, then f has a jump at A and is thus not continuous at x D a. The

same should be true if we let ˛ be negative.

Rather than use “vanish”, Cauchy used the phrase “decreases indefinitely”; both

refer to the limit concept we looked at in section 9.4. As then, we want an algebraic

way to draw a noose around the variable a and its corresponding value f .a/. To

put “the difference f .a C ˛/ � f .a/ vanishes as ˛ vanishes” in algebraic terms, we

may write

lim
˛!0

�

f .a C ˛/ � f .a/
�

D 0 : (10.1)

Cauchy condensed these observations into a definition of the continuity of a func-

tion: Given a function f , choose any values a and ˛. The function f .x/ is continu-

ous between a � ˛ and a C ˛ if (10.1) is true. Using his definition to investigate g

depicted in Figure 10.1, we conclude that g is not continuous at any of the values

in the list 1; 1=2; 1=4; 1=8; : : :, but that g is continuous at all other non-zero values,

as our intuition about g would lead us to believe.

What about where x D 0? To the left of the origin, all is calm, while to the right,

matters are infinitely more interesting. If we look along any horizontal distance

˛ to the right of the origin, we find infinitely many values of x where g is not

continuous. Tracing along g from left to right, it seems as if the origin is where the

myriad discontinuities begin.

Tracing toward the origin from the right, however, we see that the heights of

the jumps are decreasing indefinitely. Every sequence x1; x2; x3; : : : of x values that
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approaches zero gives a sequence g.x1/; g.x2/; g.x3/; : : : that also approaches zero,

even if the latter sequence contains infinitely many of the jump points. Odd as it

may seem, we conclude that g is continuous at x D 0.

One trick to seeing beauty in mathematics is to nurture this sense of “odd as it

may seem” while at the same time understanding the subject well enough to know

that oddities arise despite our attempts to set the subject on a simple, straightfor-

ward footing. With this in mind, we turn to a marvelous creation of Bolzano that

challenges intuition at every turn.

10.2 Bolzano invents a peculiar function
When mathematicians first became curious about the rate of change of curves, they

associated the rate of change with tangent lines. Specifically, they found the rate

of change of f in Figure 10.2 at point A by considering the behavior of the secant

line through A and B as ˛ vanishes. As we have seen (in sections 3.3 and 9.4, for

example), this approach leads to mistreating ˛ as being both zero and not zero, or

to puzzling ratios that equal 0=0.

Cauchy sidestepped these issues by defining the derivative of a function as a

limit. Note that this idea does not radically challenge our intuition about deriva-

tives; the innovation here lies in the role of limits as a foundation for other con-

cepts. So when Cauchy defined the derivative of a continuous function f as

lim
˛!0

f .a C ˛/ � f .a/

˛
; (10.2)

at the point where x D a, he requires us only to find the limiting value of the slope

of the secant line. As Cauchy put it,

But though these two terms [the numerator and denominator in (10.2)] will

approach the limit zero indefinitely and simultaneously, the ratio itself can

converge towards another limit, be it positive or negative.

Newton and Leibniz advanced similar arguments, but they lacked an algebraic

definition of limit.

A function may be continuous on an interval without being differentiable at

every point in the interval. In Figure 10.3, we see an example of this at the point

.0; 0/ for the function h.x/ D jxj. Checking (10.1), we find that h is continuous on

every interval containing x D 0. When we check (10.2), however, the answer is not

as clear. If ˛ > 0, we are considering the slopes of secant lines to the right of the

origin; all of these slopes are 1, so we conclude that the limit is 1. If ˛ < 0, our

investigation shifts to the left of the origin, where the corresponding limit is �1.

These two limits do not match, so we say that the function is not differentiable at

x D 0.

Replicating the ‘sharp’ point in Figure 10.3, we can create a function that is non-

differentiable at an infinite number of points; Figure 10.4 shows one possibility.

Merely imagining and drawing a function, however, does not guarantee its exis-

tence. We should define it mathematically; after all, the function extends outside
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10.2 Bolzano invents a peculiar function 141

Figure 10.3. The function h is continuous at .0; 0/ but has no derivative there.

Figure 10.4. This function has infinitely many non-differentiable points.

the figure. We can define g with the help of the ceiling function dxe, which equals

the smallest integer that is larger than x: for x � 0, let

g.x/ D
�

dxe � x when dxe is even,

x � dx � 1e when dxe is odd.

This function has infinitely many non-differentiable points while maintaining con-

tinuity everywhere.

In between the points where g is not differentiable are intervals where it is. Even

if we completely unleash our imaginations, it is difficult to see how this could

fail to be. How could two non-differentiable points crowd so closely together that

there is no differentiable point between them, while the function is continuous at

both points?

In an astonishing flight of fancy, Bolzano accomplished just this not only for

two points, but for all points on his function. That is, he invented a function that is

continuous everywhere, but so ‘sharp’ at every point that it is impossible to draw
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Figure 10.5. The shape of B2 depends on that of B1, and this contingency continues for

functions B3; B4; : : : .

a tangent line to the curve anywhere. In fact, it is impossible to draw his function

at all; we can only draw the stepping stones that lead us there, and then rely on

our imaginations to carry us further.

A few paragraphs ago, we paused to define the function g (shown in Figure

10.4), hinting that a definition is more rigorous and clear than a mere drawing.

But Bolzano’s function cannot be drawn; it can only exist by virtue of its definition.

How appealing it is that a formal definition, not a drawing, is what freed Bolzano’s

imagination to construct his fantastical function.

As you might suspect, we cannot define this function in a single step. Bolzano

created a variation of the function in Figure 10.4 by adding more ‘sharp’ points at

each step of an infinite process, aiming for a function B that is itself a limit. We

restrict ourselves here to defining B on x values between 0 and 1, although it is

possible to extend his idea to any set of x values.

Begin with the simple function B1.x/ D x, depicted with a dotted line in Fig-

ure 10.5. The next function B2 appears as a solid line and is constructed from B1

according to the following recipe: Let A.a; b/ and C.c; d/ be the endpoints of any

line segment that is part of the function Bk . (So A is .0; 0/ and C is .1; 1/ for B1.)

Between x D a and x D c we will select three values at which the next function

BkC1 will be non-differentiable. The three points corresponding to these values are

P D
�

a C .3=8/.c � a/; b C .5=8/.d � b/
�

;

Q D
�

a C .1=2/.c � a/; b C .1=2/.d � b/
�

;

R D
�

a C .7=8/.c � a/; d C .1=8/.d � b/
�

:
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(For B2, these points are P.3=8; 5=8/, Q.1=2; 1=2/, and R.7=8; 9=8/.) The segments

AP; PQ; QR; RC together become a part of the function BkC1. This process is re-

peated for all segments of Bk , and then the process begins anew with BkC1.

Figure 10.6. The sixteen pieces of B3 (solid line) are created from the four pieces of B2

(dashed).

Figure 10.6 shows the result when this process is used to modify the segments

of B2 to create B3. Each step increases the number of “rises and falls,” as Bolzano

put it. His process aims to create a function B that is the limit of the functions

B1; B2; B3; : : : in the same way that the limit of the partial sums of the series in

(8.13) or (9.8) can be the functions sin ˛ or 1=.1 C x/. The function B has a remark-

able property: no matter how closely we inspect it, we see only the sharp turning

points that signal the rises and falls; yet we never see a single example of a rise or

fall. It is as if the turning points have crowded out all of the segments connect-

ing them. Nevertheless, at the same time, the function B is continuous; the turning

points are somehow infinitely close to one another as B zigzags its way from .0; 0/

to .1; 1/.

The verb “zigzags” fails to do justice, as it makes us think that B can be drawn.

But despite our inability to draw it, we can define B and argue about it, which

was Bolzano’s purpose in imagining it. He designed his function as a stress test on

intuitive definitions of ‘continuous.’ A function such as B could break a person’s

faith in these intuitions.
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Bolzano first proved that B exists; after all, his process merely defines the step-

ping stones that lead to it. He then shows that the function is continuous at every

point. Finally, he explains why we cannot — no matter how closely we look —

find even a single tiny piece of B that is rising or falling. We will look at these

three arguments in turn.

Choose any x between 0 and 1 and consider the sequence

B1.x/; B2.x/; B3.x/; : : :

as depicted by the points J1; J2; J3; : : : in Figure 10.6. Bolzano claimed that every

such sequence approaches a limit; that is, appealing to (9.11), Bolzano argued that

there comes a place in the sequence beyond which all values are indefinitely close

to each other. In other words, the points J1; J2; J3; : : : eventually crowd arbitrarily

close to the point that Bolzano defines to be on the function B .

Because this approach only considers vertical distances, let us define the height

of any piece of Bk to be the vertical difference of its endpoints. For example, two

of the four pieces of B2 have height 5=8 and the other two have height 1=8. This

caps the vertical distance between any point on B1 and the corresponding point

on B2 at 5=8. In fact, we can see in Figure 10.6 that if we slide the vertical line at x

through the entire figure, then the maximum vertical distance between the points

J1 and J2 is quite a bit less than 5=8. However, all Bolzano needs is a cap that does

the job, so it does not matter that 5=8 is generous.

Similarly, when we construct the sixteen pieces of B3 from the four pieces of B2,

the largest height of any piece of B3 is (much) less than .5=8/2. This caps the max-

imum vertical distance between points like J2 and J3 in Figure 10.6. In general,

this cap will equal .5=8/n as we construct BnC1 from Bn.

So if we think about the general point Jn on the function Bn, and extend our

thinking r steps further where we would reach the point JnCr on BnCr , we can

conclude that the vertical difference between Jn and JnCr is capped by the sum of

the caps at each of the r intermediate steps; this sum is

�

5

8

�n

C
�

5

8

�nC1

C
�

5

8

�nC2

C � � � C
�

5

8

�nCr�1

: (10.3)

Now (10.3) is certainly smaller than the infinite sum

�

5

8

�n

C
�

5

8

�nC1

C
�

5

8

�nC2

C � � � C
�

5

8

�nCr�1

C
�

5

8

�nCr

C � � � ;

which simplifies to
8

3

�

5

8

�n

(10.4)

with the help of (9.1), where x D �5=8. Because (10.4) decreases indefinitely with

the indefinite increase of n, we can follow Bolzano in claiming that the points

J1; J2; J3; : : : approach a point J that has a particular value, no matter what value

of x we start with. Bolzano’s function B , being composed of all such points J ,

therefore exists.
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Bolzano dispatched with the argument that B is continuous by pointing out that

B is the limit of the functions B1; B2; B3; : : : as just described, and these functions

are all obviously continuous themselves. Put a mental bookmark here; we will

return.

Last, Bolzano examined the turning points of B by considering the horizontal

features of his sequence of functions. In contrast with our definition of the height

of a piece of Bk , we will say that the horizontal distance between the endpoints

of a piece of Bk is its width. Of the four pieces of B2, two have width 3=8 and two

have width 1=8. The maximum width of any of the sixteen pieces of B3 is .3=8/2,

and so on. Because .3=8/n vanishes with the indefinite increase of n, we know that

the maximum width of any piece will decrease indefinitely. That is, for any � > 0,

we can find an n large enough so that .3=8/n < �.

Thus, if we look at any x between 0 and 1 and consider values between x � �

and x C �, some function in the sequence B1; B2; B3; : : : will exhibit turning points

at some of these values (as will all subsequent functions in the sequence). This

guarantees the marvelous property of B that, in a sense, it consists only of turning

points.

What else can one do but take a deep breath and wonder at how mathematics

seems to offer up its most profound and bizarre truths precisely when its practi-

tioners are trying to pare it down to its most elemental, intuitive building blocks?

10.3 Weierstrass investigates the convergence of functions
Bolzano’s function B can boast all of the characteristics he claimed of it, but his

argument in support of continuity was too hasty. Recall that he believed that B is

continuous simply because it was the limit of functions B1; B2; B3; : : : that are all

continuous. This completely plausible belief is in error.

We can demonstrate this by finding a sequence of continuous functions that

does not have a continuous limit. The sequence

cos ˛; .cos ˛/2; .cos ˛/3; .cos ˛/4; : : : (10.5)

does the trick; each of these functions is continuous, yet the limit of the sequence is

not. Consider the functions only on the interval between A.��=2; 0/ to B.�=2; 0/ as

in Figure 10.7; at all values except ˛ D 0, the function cos ˛ takes on non-negative

values less than 1. Raising such values to ever increasing powers forces them to

zero. At ˛ D 0, however, all functions in (10.5) equal 1. Thus, the limiting function

of (10.5) equals 0 everywhere between ��=2 and �=2 except at ˛ D 0, where its

value is 1. The rising exponents in (10.5) bend the curves with such force that,

ultimately, they snap.

This example compels a retreat to the “mental bookmark” in Bolzano’s proof.

Perhaps B is, after all, not continuous. This would cost B all of its charm, which

rests on its mix of continuity and non-differentiability. Happily, someone later

showed that B is continuous; it is not a casualty of over-bending as is the limit

of (10.5).
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Figure 10.7. The labels on each curve are k in .cos ˛/k .

His own intuition prevented Bolzano from believing that he had found a con-

tinuous function that had not a single differentiable point. Indeed, he spent years

attempting to prove that any continuous function could only fail to be differen-

tiable at a set of points that are isolated from one another. He eventually realized

that his function B provided a counterexample to his own search. Later, others

showed that B lacks even a single differentiable point.

Karl Weierstrass (Germany, born 1815) refined Bolzano’s ideas about the con-

vergence of functions, realizing that there are two kinds; the first, to which Bolzano

appealed, is called pointwise convergence. Bolzano created B point by point as the

limit of sequences of points like J1; J2; J3; : : : in Figure 10.6. But thanks to exam-

ple (10.5), we know that functions that pointwise converge do not necessarily pass

along the property of continuity to their limit.

Weierstrass distinguished the kind of convergence that does transfer continuity

as a stronger sort of convergence, and he named it uniform convergence. Imagine

Bolzano’s limiting function B covered by a strip, like a string covered by a strip of

cloth; however thin we make this strip, we can find a large enough number m so

that all of the stepping stone functions

Bm; BmC1; BmC2; : : :

lie entirely in that strip. The discovery of such an m is not simple, primarily be-

cause B is so unusual; it can be done, however, and was (many years after Bolzano

died).

The algebraic way of describing concepts like continuity and convergence be-

longs primarily to Weierstrass; the statement (9.12), for example, represents his
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approach well. His definition of uniform convergence adopts a similar style:

A sequence of functions B1; B2; B3; : : : con-

verges uniformly to a function B at a value x

if for every � > 0, there is a number m so that

jBk.x/ � B.x/j < � for all k � m :

(10.6)

The quantity � acts as the width of the strip covering B , and then m marks the

boundary beyond which all functions in the sequence are similarly covered. The

variable x assumes its values based on the functions in the sequence.

Having distinguished between the two sorts of convergence, Weierstrass in-

vented a function of his own that possesses the peculiar properties of Bolzano’s

function B . In a way, the function Weierstrass created puts Bolzano’s to shame:

Bolzano created B by introducing more ‘sharp’ points at each step, but the func-

tions in the sequence that Weierstrass used have no sharp points ever. Yet, incred-

ibly, the limiting function of this sequence has only non-differentiable points. The

closer we look at the boundary between sequences and limits, the more astonish-

ing it seems.

10.4 Dirichlet's nowhere-continuous function
Functions with counterintuitive properties, like those invented by Bolzano and

Weierstrass, led some thinkers of the day to lament their discovery. The label

‘pathological’ — a word that does not mean ‘illogical’ but, rather, diseased — was

applied, and it stuck. Unfortunately for the critics, the definitions on which these

functions relied for their pathologies were anything but counterintuitive. To this

day, we use definitions like (9.12) and (10.6) with full knowledge that they ad-

mit to the existence of pathological functions, not because we must use them, but

because they are just sort of obvious.

Critics also must contend with the way pathological examples helped to drive

the subject toward clarity, not anarchy. Cauchy helped bring clarity to the study of

integration by freeing it from its bond to differentiation, a bond made powerful by

(7.6), the fundamental theorem of calculus. Later, Peter Lejeune Dirichlet (France,

born 1805) proposed the function

f .x/ D
�

0 when x is a rational number,

1 when x is an irrational number
(10.7)

that (productively) put stress on Cauchy’s idea of integration. We will see how in

a moment.

As he did for differentiation, so too did Cauchy express integration in terms of

limits. Consider a function f .x/ that is continuous at all values between a and b.

Subdivide the horizontal between a D x0 and b D xn into n parts by choosing
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Figure 10.8. Cauchy’s non-geometric view of integration can nevertheless be depicted.

values x1; x2; : : : ; xn�1, and form the sum

S D
n
X

kD1

.xk � xk�1/f .xk�1/ : (10.8)

See Figure 10.8, where n D 8. Geometrically, we see that S is the sum of the shaded

rectangles in the figure. Cauchy, however, made no reference to geometry. Rather

than suggest that we make the rectangles more numerous while decreasing their

widths, he refers to increasing the number n indefinitely while decreasing the dif-

ferences .xk � xk�1/ in (10.8). He calls the limiting value of S the definite integral of

f from x0 to xn and denotes it
Z b

a

f .x/ dx :

We may slightly modify this definition of definite integral to cope with functions

that are not continuous, so long as there are a finite number of jump discontinu-

ities.

The definite integral of Dirichlet’s function (10.7) is not amenable to Cauchy’s

method because it fails to be continuous at any of its points. Every rational number

r has irrationals indefinitely close to it; that is, for any � > 0, there are irrationals

between r � � and r C �. The same goes for the rationals crowding the irrationals.

Thus, if we use (10.1) to test f for continuity at any point, we will discover that

the limit does not exist.

Bernhard Riemann (Germany, born 1826) proposed a slightly different defini-

tion of integration that could tolerate functions that have an infinite number of

discontinuous points in a finite interval. He immediately volunteered a function

that was discontinuous infinitely many times within every finite interval, then in-

tegrated it; this intuition-shattering function encloses an area despite its pervasive

discontinuity. Nevertheless, Riemann’s approach to integration could not give an

answer for Dirichlet’s function, which was somehow discontinuous too often. This
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seems to imply that Dirichlet’s ‘infinite’ exceeds Riemann’s; but what sense could

that make?

10.5 A few final words about the infinite
The story of calculus is rooted in questions about number, geometry, and the infi-

nite. In the 1600s, these threads were woven together, and this conjunction sparked

an explosion of results. Criticisms of the underlying logic forced mathematicians

to reflect on the foundations of the subject, but attempts to put calculus on a firm

footing seemed to provoke controversy as often as they produced solutions. The

deeper that mathematicians dug, the more mystery they encountered.

One path we could follow from here starts where section 10.4 ended; the ques-

tion lurking in the background was this: what is a real number? It may seem ab-

surd to have regressed to this point, but on the contrary, we should celebrate. Any

intellectual pursuit worth its salt eventually scrapes its way down to its central vo-

cabulary. In mathematics, we can dig deeper than in most pursuits, and the deeper

we go, the more fertile the soil.

Georg Cantor (Germany, born 1845) tilled this soil as fruitfully as anyone. His

investigations into the nature of the real numbers not only addressed one of the

most commonly overlooked assumptions of the past fifty years (namely, the ‘com-

pleteness’ of the real numbers) but also led to his discoveries about the meaning

of ‘infinite.’ In short, he provided an intuitively pleasing and ironclad proof that

there are, in fact, more irrational numbers than there are rational numbers. The ra-

tionals can be counted — that is, they can be arranged in a list — in a way that the

irrationals cannot.

With this idea in the air, Henri Lebesgue (France, born 1875) provided yet an-

other technique for integrating that succeeded where Cauchy’s and Riemann’s

had not: his technique could integrate Dirichlet’s function (10.7). Even better, every

function integrable using Riemann’s approach is integrable by Lebesgue’s.

It seems fitting that the concept of the ‘infinite’ accompanied us through the

story of calculus, as a useful but troubling companion, only to be revealed at the

end as infinitely nuanced itself. Scholars do not always respond well to such reve-

lations; Cantor suffered a great deal when his contemporaries unjustly rejected his

discoveries. Truth eventually won out over prejudice, and Cantor was vindicated.

A few years after Cantor died, David Hilbert (Germany, born 1862) declared, “No

one shall expel us from the paradise that Cantor has created for us.” Hilbert meant

not only to thank Cantor for his pioneering work on the infinite, but also to cele-

brate all of the compelling work that followed from Cantor’s results.

One such lovely result is due to Abraham Robinson, born in 1918. Robinson

lived in so many places that it is difficult to decide upon a country that ought

to claim him. He made the ‘infinitely small’ rigorous, not by appealing to limits,

but by inventing a number system that appends infinitesimals to the real numbers.

These new numbers, which act like the differentials of Leibniz, can be defined

precisely and used to recreate all of the results that this book has referenced.
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Thus did Robinson loop this story back upon itself, bringing a logical basis to the

intuitions shared by thinkers from so many countries and so many centuries. As

with every worthwhile intellectual pursuit, calculus is not a tale with a conclusion,

but a story that points the way to others.

10.6 Furthermore
10.1 Riemann rearranges series. We expended quite a bit of effort in chapter 5 be-

fore reaching the sum (5.11) of the alternating harmonic series. It is tempting

to believe that a series has been purged of mystery once it has been summed.

Riemann reopened the case.

Merely by rearranging its terms, Riemann summed the alternating harmonic

series to a value other than ln 2. Take this rearrangement, for example: shift

each fraction having an odd denominator to immediately precede the fraction

having twice that denominator. The resulting series

1 � 1

2
� 1

4
C 1

3
� 1

6
� 1

8
C 1

5
� 1

10
� 1

12
C � � �

contains all of the same terms as the alternating harmonic series. However, try

grouping some of the neighboring pairs like so:
�

1 � 1

2

�

� 1

4
C
�

1

3
� 1

6

�

� 1

8
C
�

1

5
� 1

10

�

� 1

12
C � � � :

Simplify, and explain why the sum cannot be ln 2.

Historical note. Riemann discovered a simple way to categorize those series that

can be rearranged to give different sums, and those that cannot. His argument

would make an excellent point of departure from here.

10.2 Exploring Bolzano’s function. The fractions 3=8; 5=8 and so on in Bolzano’s

function B (described in section 10.2) may not be particularly important.

Change them in any way you see fit, and then draw a sketch of B1; B2; B3 like

in Figure 10.6.

10.3 Cauchy and the continuity of the sine function. Mathematicians excel at trans-

lating difficult problems into tractable ones. The transmutation theorem (6.10)

epitomizes this strategy; Leibniz calculated the area of a quarter-circle with it

as we saw in section 6.4.

When we approximate a function with a series, as in

1

1 C x
D 1 � x C x2 � x3 C x4 � � � �

from section 2.3, we are translating the function, in a way. This translation car-

ries a burden, however: sometimes the series does not converge to the function

at every value of x that the function accepts. Some series, like

sin x D x � x3

3Š
C x5

5Š
� x7

7Š
C � � � ; (10.9)
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do not lose anything in translation; the series converges to the function at all

values of x.

On a similar note, it is plausible that when the terms of a series are continuous,

and the series converges to a function, then the function will also be continu-

ous. (Echoes of (10.5), however, warn us to step carefully.)

(a) We may use Cauchy’s definition of continuity

lim
h!0

Œf .x C h/ � f .x/� D 0 (10.10)

to check that the terms of the series in (10.9) are continuous. For example,

the first term x is a continuous function because

lim
h!0

Œ.x C h/ � x� D lim
h!0

h D 0 :

Perform the same check for the next term x3=3Š.

(b) What convinces you that every term in the series in (10.9) is continuous?

(c) Cauchy, among others, proved that when continuous functions are added

or subtracted, the result is continuous as well. (We will accept this as fact.)

Thus, defining sn to mean that partial sum of the series having n terms,

we see that sn is continuous for all values of n. Cauchy treated the leftover

terms as a remainder; if we let s denote the series and rn denote the terms

of s that remain when we pause at sn, then s D sn C rn.

If we choose a value of x and find that at some point the remainders rn

stay as small as we wish as n grows without limit, then the partial sums

converge at that value of x. The remainders vanish, so to speak.

Cauchy showed that the remainders of the series in (10.9) vanish for all

values of x. Thus (10.9) is true ‘everywhere’; we need not worry about its

convergence.

So we have a series composed of continuous terms and continuous partial

sums that converge to sin x at all values of x. With little doubt, the function

sin x is continuous itself.

Cauchy showed this using the identity

sin.A C B/ � sin.A/ D 2 sin.B=2/ cos.A C B=2/ :

Reproduce his argument.

(d) Cauchy then proved that whenever a series of continuous functions con-

verges to a function, then that function is itself continuous. His argument

centered on the idea behind his definition (10.10) of continuity: if we com-

pare two arbitrarily close values of x and find that their function values

differ by an arbitrarily small amount, then the function is continuous.
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A few years after Cauchy published his proof, Niels Henrik Abel (Norway,

born 1802) published the exception

sin x � 1

2
sin.2x/ C 1

3
sin.3x/ � 1

4
sin.4x/ C � � � ; (10.11)

which meets Cauchy’s criteria (each term is a continuous function, and

the series converges) but fails to converge to a continuous function. When

summed, the terms in (10.11) ultimately ‘tear’ at x D � , among other

places.

Show that the term
1

2
sin.2x/

is continuous at all values of x. Can you conclude that all terms in (10.11)

are continuous?

Historical note. Cauchy and others pondered exceptions like (10.11) to see

which of their assumptions were incorrect. The trouble lay hidden in the

difference between a function’s continuity near a particular point versus its

continuity in a sort of universal sense.

David Bressoud recounts the development of the definition of continuity in

A Radical Approach to Real Analysis, 78ff. Reading such a book requires some

knowledge of calculus at which the last two chapters of this book have only

hinted. Pick up any analysis book; almost every one is a sequel to this.
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normal lines, 35–37
de Sarasa, Alphonse Antonio

quadrature of hyperbola, 59–61
differential, 96

ln.x/, 106
ex , 107
sine, 120

Dirichlet, Peter Lejeune
pathological function, 147

Euler, Leonhard, 93
chain rule, 107
differential of ln.x/, 106
differential of ex , 107
differential of sine, 119
functions, 138
product rule, 105–106
quotient rule, 105–106
reciprocals of squares, 119
series for ex , 93–94

exhaustion, 6
exponents

fractional, 65
negative, 67

factorial, 41
Fermat, Pierre, 32

maximums, 32–33
tangent lines, 33–35

functions, 126–127, 138

161



i

i

“C&IO” — 2012/2/14 — 12:16 — page 162 — #176
i

i

i

i

i

i

162 Index

fundamental theorem, 77–81, 99, 104–105

Galilei, Galileo, 31
Galileo Galilei

cycloid, 47
geometric sequence, 57, 60–61
geometric series, 22, 134
Gregory of Saint-Vincent

quadrature of hyperbola, 57–59
Gregory, James, 74, 122

interpolation, 74–76
Guldin, Paul

critique of indivisibles, 50

Hilbert, David, 149
Hudde, Johannes, 37
Huygens, Christiaan, 102

Ibn al-Haytham, 15
parabolic volume, 17
sum of fourth powers, 15
sums of nth powers, 28

indivisibles, 47, 51–53, 63
induction, proof by, 9
infinitesimals, 149
integral, definite, 148
integration, 99, 147–148
integration by parts, 99
interpolation, 72–76

Jyesthadeva, 20
expansion of 1=.1 C x/, 20
series for �=4, 23
series for sine, cosine, 111

Kepler, Johannes
volume of a toroid, 51

Lagrange, Joseph Louis, 126
derivative, 127
functions, 126

Lebesgue, Henri, 149
Leibniz, Gottfried, 81

arc length, 103
functions, 126
fundamental theorem, 104–105
integral of cycloid, 100–102
integration by parts, 99
reciprocals of triangular numbers, 103
series for �=4, 83–85
series for arctangent, 121–122
transmutation theorem, 81–83

limit, 132
of continuous functions, 145

Liu Hui, 56
logarithms, 60–61, 68–72

natural, 94

Maclaurin, Colin, 88
fundamental theorem, 89–91
mean value theorem, 88–89

mean value theorem, 88
Mei Wending

volume of a sphere, 53
Mengoli, Pietro, 38
Mercator, Nicholas

quadrature of hyperbola, 63–65

Napier, John, 59
Newton, Isaac, 77

binomial theorem, 91–92
fundamental theorem, 77–81
series for arcsine, 116–117

Nilakantha, Kerala Gargya, 20, 122
normal line, 35

Oresme, Nicole, 30, 37, 38
coordinate system, 30–31
harmonic series, 37
uniform acceleration, 31

Pappus, 27
partial sums, 2, 7–8, 124, 127–128, 131–133,

151
Pascal, Blaise

sum of sines, 85–87, 120
Porphyry, 27
power series, 129
product rule, 97
proof

by contradiction, 91
by induction, 9

quadratrix, 105
quadrature, 43

of a parabolic segment, 5

of curves y D xk , 63–64
of the cycloid, 47
of the hyperbola, 61–65
of the parabola, 43

rate of change, 77
rectifying curves, 103
Riemann, Bernhard

pathological function, 148
rearranging series, 150

Roberval, Gilles, 47
quadrature of the cycloid, 47–50



i

i

“C&IO” — 2012/2/14 — 12:16 — page 163 — #177
i

i

i

i

i

i

Index 163

Robinson, Abraham, 149

series, 4, 38–39
1=.1 C x/, 20, 22, 130
1=.1 � x/, 28
log.1 C x/, 130
�=4, 25, 83, 85
�2=6, 119
e, 134
ex , 94
arcsine, 117
arctangent, 122
convergence, 132
cosine, 115
geometric, 22, 134
harmonic, 37, 103, 118
harmonic, alternating, 62, 65, 150
reciprocals of squares, 118
sine, 115, 130

sum of powers
p (pth powers), 28
2 (squares), 12
3 (cubes), 12
4 (fourth powers), 15
5 (fifth powers), 28

summation notation, 10

tangent line, 33
Taylor, Brook, 128
Torricelli, Evangelista

volume of ‘Gabriel’s Horn’, 52
transmutation theorem, 83
triangular numbers, 8, 103

Valerio, Luca
volume of a sphere, 54
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