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Preface to the second edition

Since the first edition was published there have been changes in the content
of the pure mathematics syllabuses of the various examining boards. The most
important was the recent agreement by an inter-board committee to draft
a national ‘common core’ in mathematics. While the final form has not yet
(1982) been approved formally by all boards, it is intended that it should
eventually be featured in the syllabuses of all GCE boards who will however
be free to add extra topics as they wish. This common core will give a basis
for comparison between the various syllabuses but it is not intended that
the boards will set common questions. At the same time, the Joint Matricula-
tion Board will have (from 1984) rationalised their mathematical syllabuses
into: Pure Mathematics I and II, Mechanics I and II, Applied Mathematics
I and II and Statistics. Candidates can offer selected combinations of two
of the papers as a single mathematical subject. The Associated Examining
Board already have, effectively, a pure mathematics paper I which is common
to their subjects Mathematics: 636 (Pure and Applied), 646 (Pure with
Statistics), 632 (Pure) and 647 (Pure with Computations).

This edition covers the contents of the common core and virtually all of
the extra pure mathematics included by each of the various boards in their
syllabuses which are equivalent to that of the JMB’s Pure Mathematics I.

Two new chapters have been added: Numerical Methods and Vectors. The
remainder and factor theorems, graphical solution of y = acos 6 + bsin 6 and
angles between lines and planes have been introduced in the appropriate
places, the work on polar co-ordinates has been extended and the introduction
to the calculus has been rewritten. To allow space for these the sections on
co-ordinate geometry have been revised and condensed and one or two minor
topics, such as linear equations in one unknown, have been deleted.

In addition, the general lay-out has been improved and many of the original
questions from the examination papers of the Joint Matriculation Board and
London University have been replaced with recent ones. Also questions set
by the Oxford, Associated Examining and Cambridge Boards have now been
included. A large number of worked examples remains a feature of the book
and there are plenty of exercises for the student to develop and test his or
her skills. A candidate studying on his or her own is recommended to obtain
a copy of the appropriate syllabus and copies of immediate past examination
papers to check that all topics are covered.

Finally, we are grateful to the Joint Matriculation Board (JMB), the London
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University Entrance and Schools Examinations Council (LU), the Associated
Examining Board (AEB), the Oxford Delegacy of Local Examinations (O)
and the Cambridge Local Examinations Syndicate (C) for granting us per-
mission to use questions from their more recent examinations. The abbrevi-
ations shown have been used to indicate the source of such questions.

BDB
HM



Preface to the first edition

This is a textbook of pure mathematics written to meet the needs of the
student studying for the General Certificate of Education at Advanced Level.
The book assumes a knowledge of mathematics up to Ordinary Level and
covers all the pure mathematics necessary for the Advanced Level examina-
tion in mathematics (A26), of the Northern Universities Joint Matriculation
Board, together with the great majority of the work required for the Advanced
Level examinations of the Southern Universities Joint Board, the Welsh Joint
Committee and London University.

The teaching method adopted is for the most part that suggested by the
various reports of the Mathematical Association. The emphasis throughout
has been on technique, although we have tried to indicate where a particular
result needs more rigorous justification than is given in this book. In this
way, we hope that all students can progress quickly in the understanding
and application of these techniques without the hindrance of having to justify
everything they do. This latter step comes at a later stage in their mathematical
development.

For convenience, the book has been prepared in the order algebra
(Chapters 1-5), trigonometry (Chapters 6-8), calculus (Chapters 9-16), and
co-ordinate geometry (Chapters 17-20), but this is not to imply that the
chapters should be read in this order. For the student at school, this will
be decided by the teacher; for the student working alone, we would recom-
mend an advance on a broad front through Chapters 1, 3, 6, 9, 10, 12 (the
first two sections), 13, 17, 18. This lays the foundations for all the main topics
and this broad advance can then be maintained. We would suggest that each
of Chapters 7, 11, 14, 15, 16 and 20 be read in at least two stages. Not only
will this make for easier digestion of the many ideas and techniques discussed
in these chapters, but will also provide for constant revision and extension
of this material.

The book includes over 350 worked examples and about 1800 examples
for the student to solve. The worked examples indicate the main applications
of the ideas and techniques discussed. The exercises set at the ends of the
sections within the chapters are for the most part fairly straightforward.
All our readers should attempt these exercises. The exercises at the ends of
the chapters are a ‘mixed bag’. Some are of a routine type, others are more
testing; many are from past papers set by the various examining boards.
Finally, there are some (indicated with an asterisk) which are of a more difficult
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nature. The student should not be too dismayed if he is unable to solve all
of these.

For convenience, the results and formulae obtained have been labelled,
the first number of the label identifying the chapter in which the result is
derived. Thus formula 10.7 is the seventh result obtained in Chapter 10.
It is not suggested that all these formulae be memorised.

We should like to express our thanks to the Joint Matriculation Board
(JMB), the Southern Universities Joint Board (SUJB), the Welsh Joint Com-
mittee (WJC) and London University (LU) for granting us permission to use
questions from their examinations in this book. The abbreviations above have
been used to indicate the source of such questions.

Finally, we should like to thank our publishers for the care and trouble
they have taken over the general presentation of the text.

BDB
HM



1
Operations with real numbers

1.1 The real numbers

Algebra is concerned with operations with numbers and we shall begin with
a brief review of these operations and the numbers involved.

The first set of numbers usually encountered is the set of positive integers
including zero: 0, 1, 2, 3,.... These by themselves are insufficient for the
solution of many actual problems and need to be supplemented by fractions
which can all be expressed in the form a/b, where a and b are positive integers
(b non-zero). This set of numbers includes the positive integers which arise
when b = 1.

The solution of a particular problem might require the solution of the
equation x + a = b. If a is greater than b, in order to interpret the result
x = b — a, we need to extend our number system to include negative numbers.
The integers are then the set

..—3,-2,-1,0,1,23,4,...

and the rational numbers (fractions), which include the integers, are of the
form a/b, where a and b are integers (b non-zero).

There are still quantities which cannot be expressed in terms of the rational
numbers. For example, the length of a diagonal of a square of side 1 unit
is /2 units, and /2 cannot be expressed in the form a/b, where a and b

are integers. Tables of square roots show /2 & 1-414 = 1§53 but this is only

an approximation to the value of /2, as the squaring of 1414 will soon show.
This property is not unique to 1/2; \/3, {/5, J1:6, J11-61, etc. all have the
same property. These numbers are examples of algebraic numbers. They are
all of them solutions of algebraic equations which involve only rational
numbers. /3 is a solution of x? = 3, Y16 is a solution of x* = 16, J11-61
is a solution of x*> = 1161, etc.

There are still other numbers which do not fall into any of the categories
mentioned so far. Such numbers, of which =n(=x3-142), log,,2(=0-301),
sin 74°(x0-9613) are but three examples, are called transcendental numbers.
Our system of real numbers with which we shall be mainly concerned, will
consist of the rational, algebraic and transcendental (irrational) numbers.

It is often convenient to represent these numbers by points on a line
(Figure 1.1), letting O be an origin on the line x'x. Conventionally, we let
points to the right of O represent positive numbers and points to the left of

1



2 Operations with real numbers

0 represent negative numbers. Points on the line distant 1 unit, 2 units, ...
to the right of O will represent the numbers 1, 2, 3,.... Points on the line
distant 1 unit, 2 units ... to the left of 0 will represent the numbers —1, —2,
—3,.... The rational numbers will be represented by intermediate points.

! } { { i { { {
X i T i 1 T i i X

-3 -2 -1 0 1 2 3
Figure 1.1

The set of integers (positive, negative and zero) is often referred to collec-
tively by the symbol Z, while the set of all real numbers is referred to by
the symbol R.

The fundamental operations of algebra are addition and multiplication.
Subtraction can be regarded as the addition of the corresponding negative
number, and division as multiplication by the reciprocal. We are all familiar
with these operations, although it is perhaps worth reminding ourselves of
the fundamental laws governing these operations.

If a, b, c are any three real numbers:

I a+ b = b+ a, the commutative law of addition
Il (a+ b)+c = a+ (b+ c), the associative law of addition
IIT ab = ba, the commutative law of multiplication
IV (ab)c = a(bc), the associative law of multiplication
V a(b + ¢) = ab + ac, the distributive law of multiplication and addition.

1.2 Equations

Readers will already be familiar with the solution of simple equations and
quadratic equations involving one unknown, as well as with pairs of simple
simultaneous equations.

For the equation ax + b = 0, where a and b are real numbers

b
X = —'; (11)

For the equation ax? + bx+c¢ =0
—b + \/(b* — 4ac)
x= v/ - (1.2)

In more complicated situations, one has to use one’s native wit. The
following examples illustrate some useful techniques.

3 _
x2+2x

Example 1 Solve the equation x* + 2x —4 + 0.

With z = x2 + 2x

z—4+§=0

z
z2—4z+3=0
z=3)(:z-1)=0

z=1 or 3
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With z =3
x2+2x=3
x2+2x—3=90
(x+3)(x—1)=0
x=-3 or x=1
With z =1

x2+2x—1=0
24— 4 x () x(=1)]
2
_—2+8 —2%2)2
2 2
=-11,2
Therefore, the solutions are 1, —3, —1 +\/2, e \/2.
Example 2 Solve the equation
V@ —x)— /(6 + x) = /(14 + 2x).
Squaring both sides, we have
4—x+6+x—2/[(4—x)(6+x)] =14 +2x
—-2J[@—x)(6+x)]=4+2x
—J[@—x)(6+x)]=2+x
Again squaring both sides, we now have
(4—x)(6+x)=4+4x + x?
24—-2x—x*=4+4x+ x?
2x24+6x—20=0
2x+5)(x—2)=0

x=2 or x=-5

It is easy to see that it is only the value x = —5 which satisfies
the original equation. x = 2 is a solution of the equation /(4 — x) + /(6 + x)
=.,/(14+2x). If we square both sides of this equation, we obtain
JI[(@—x)(6 + x)] = 2 + x, which in turn leads to 2x*+ 6x — 20 = 0. The
original equation gave —\/ [(4 — x)(6 + x)] = 2+ x but when we square,
the distinction between the two cases is lost. Thus we must always verify the
correctness of our solutions after we have carried out such operations. As
a trivial example, consider the equation 2x = 2 which has solution x = 1.
If we square both sides, we obtain the equation 4x? = 4, ie. x2 = 1 which
has solutions x =1 or x = —1!

We shall assume that readers are familiar with the procedure for the
solution of a pair of linear simultaneous equations in two unknowns. The
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solution of two equations in two unknowns when one or both of the equations
contain quadratic terms is a more interesting problem. We first consider two
cases where a systematic method of solution exists.

Example 3 Solve the equations x +y =3, x2+xy +2y>+ x+2y = 12,
in which one equation is linear and the other quadratic.

We use the linear equation to express one unknown in terms of the other.
Thus we have

x=3-y

We now substitute this expression for x into the second equation to obtain
a quadratic equation for y. Thus

G-y +CB-yy+2’+CB-y+2y=12
9—6y+)> +3y—y*+2y*+3—y+2y=12
2y —-2y=0
yy-1)=0
y=0 or y=1
When y =0, x = 3; when y = 1, x = 2 (since x = 3 — y). Thus the solutions
arex=2,y=1x=3,y=0.
We could, of course, have used y = 3 — x and obtained an equation for
x on substituting this into the second equation.

Example 4 Solve the equations x* — y? = 3, 2x2 + xy — 2y? = 4, in which
the terms involving the unknowns are all quadratic in both equations.

The solution can generally be obtained by writing y = mx and proceeding
as follows.

The equations can be written

x(1—m?) =3
x22+m—2m?) =4
By division

1-m> 3
24+m—2m* 4
4 —4m? = 6 + 3m — 6m?

2m? —3m—2=0

2m+1)(m—-2)=0
m=2 or m=—}

With m = —4, we have 3x? = 3. Therefore

x2=4 ie. x=+2

The corresponding values for y are F 1 (since y = mx). With m = 2, we have
x?(—3) = 3; therefore, x> = —1, and this equation has no solution in the
domain of real numbers. Thus, thesolutionsarex =2,y = —l;x= -2,y = 1.

It is not usually possible to give general procedures for the solution of
simultaneousequations which do not fall within the categories just mentioned.
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Rather, each problem must be considered on its merits and the solver must
use his or her own ingenuity.

1 1
Example 5 Solve the equations x +; =land y+—=4.
X

The equations can be rewritten in the form

xy+1l=y
xy+1=4x
Therefore, y = 4x, which on substitution gives
4x2 + 1 =4x
4x? —4x+1=0
2x-1)2=0

Therefore, x = 1 and, since y = 4x, y = 2. The solution is thus x =4, y = 2.

Exercises 1a

.OX+ x—2 2x+3

1 Solve the equation 3 4 - 6
2 Solve the equation x2 — 5x — 11 = 0.
3 Solve the equation x+l _Sx—|

9 2x+3 Tx+3

6

4 Solve the equation /x _ﬁ =1
5 Solve the equation y* + Sy — % _

q y y y2 ¥ 5y =V

6 Solve the equation x* — 25x2 + 144 = 0.

7 Find the values of x which satisfy the equation 2,/(x + 5) — J@x+8)=2.
8 Solve the equation \/(x + 1) + /(5x + 1) = 2,/(x + 6).

9 Solve the equation x* — 2x3 — 6x* —2x + 1 = 0.

1
[Hint: let v=x+ —:|
X

10 Solve the equation y* —2y3 —2y2 +2y +1=0.

[Hint: letz=y —1 :|
y

Solve the simultaneous equations 11-20:

11 x+2y=3,x2—xy+5y24+2y=17
122x+y=1,x>+xy+3x—y=4
13 2x—3y=1,x>+xy—4y? =2

14 x? +2xy = 3,3x% —y2 =26

15 x2 +y2 =13, x2 —3xy +2y? = 35
16 x> —xy+7y*=27,x2—y* =15
5

1
17 x2 2=5 Ss+—>=-
+y x2+y2 2
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1 1 4
18 x24+y?=10, —+-=-
x y 3
3 11
19 x> —y? =24, =—
oy x+y+x—y 12
x y 17 5 )
20 —+==—, x*—dxy+y*=1
y x 4

1.3 Elimination

In Section 1.2, we considered methods for the solution of two equations in
two unknown quantities. If we have more equations than unknowns, two
equations in one unknown, or three equations in two unknowns, then in order
to obtain a consistent solution to the equations the coefficients must satisfy
some relationship. This relationship is known as the eliminant of the system.
It is obtained by forming from the given equations an equation which does
not involve the unknowns. This process is known as the elimination of the
unknowns. It is a technique which is of great value in co-ordinate geometry.

Example 1 Eliminate t from the equations x = at?, y = 2at.
From the second equation, we can solve for t in terms of y, i.e. t = y/2a.
Substitution into the first equation gives

weaf2Y 220
2a 44>

Therefore, y* = 4ax, which is the required result.

Example 2 . Eliminate ¢ from the equations

t2
v M 1+1¢?
We have y/x = t. Substitution in the first equation gives
oYX VX
1+ y%/x? (x2 4 y?)/x?
=%
x?+y?

x(x? + y*) = xy
Example 3 Eliminate / and m from the equations Ix + my = a, mx — ly = b,
124+m?=1.

The straightforward procedure would be to solve the first two equations
for I and m in terms of a, b, x and y. Substitution of these expressions into
the last equation would then provide the eliminant. However, in some cases
it is possible to use more subtle methods. In the present example, if we square
the first two equations and add the results, we obtain

12x2 + m*x? + m?y* + 12y? = a® + b2
(x2 4+ y?)(I* + m?) = a® + b?
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and since 12+ m? =1
x? + y* =a’ + b?

which is the required eliminant.

Exercises 1b

.. ) 1
1 Eliminate t from the equations x =1+¢t,y =1+ T

- . 1
2 Eliminate ¢ from the equations x = 3 +t3, y =2+ T

.. . 1 1
3 Eliminate ¢t from the equatlonsx=?—t,y=t—2—1.
2at b(1 —t2) x2 y?
4Ifx=1+t2,y= YL ,showthatF+b—2=1.

5 Eliminate 0 from the equations x —acosf =0, y — bsin8 = 0.

6 If x =1+1t2% y=2t, show that y? = 4(x — 1).
7Ifx=1—t%and y =1+ 5t —t?, show that (x — y)® = 25(1 — x).

8 Eliminate x and y from the equations x — y = a, x2 + y> = b%, xy = 1.
9 Eliminate x and y from the equations x —y =a, x+y = b, xy =c.

10 If x + 2y* = a, x — 2y* = b, xy = 2, show that (a + b)(a? — b?) = 64.

1.4 Inequalities

In this section, we shall consider the rules governing the relationships between
numbers which are not equal. For any two real numbers a and b, we say
that a is greater than b (a > b) if a — b is positive. We say that a is less than b
(a<b) if a—b is negative. In terms of the representations of numbers on
a line (Figure 1.1), a> b if a is to the right of b; a < b if a is to the left of b.
Thus we have by definition

a>b if a—b>0 and a<b if a—b<0 (1.3)

For example, 5> — 3 since 5 — (—3) = 8 is positive, ie. >0. Also —3 < —1
since —3 —(—1) = —2 is negative, i.e. <O.

RuLe I We first show that if a > b, then
a+x>b+x (1.4)

where x is any real number.
Ifa>b,a—b=c>0

a+x—(b+x)=a+x—b—x=a-b=c
a+x—b+x)=c>0
a+x>b+x by definition
In the same way, ifa<b

a+x<b+x (1.5)
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Thus, as with equations, we may add the same number to both sides of an
inequality and still preserve the inequality. For example,

5> -2

and after adding 6 to both sides
11>4

Also 6<9

and after adding — 3 (i.e. subtracting 3) on both sides
3<6

We cannot, however, treat inequalities in the same way as equations if we
multiply both sides of the inequality by the same number. Rather, we have

RuLell Ifa>b ax>bx if xis positive

ax < bx if x is negative (1.6a)
Ifa<b ax<bx if x is positive
ax > bx if x is negative (1.6b)

We shall prove this for the case a > b.
If, a — b = ¢, where c is positive, then

ax —bx =cx
which is positive if x is positive, but negative if x is negative. Therefore,
ax—bx>0 if x>0
ax—bx<0 if x<0

which is the required result.

Thus if we multiply both sides of an inequality by a negative number, the
inequality sign must be reversed.

For example, 7 > 3, which becomes 21 > 9 after multiplication by 3 but
— 14 < — 6 after multiplication by —2.

RuLe IIl If a> b and ¢ > d, then
a+c>b+d (1.7)

For example, 7> 3and —4> —7,and 3 > —4.
Note: it does not follow that a — ¢ > b — d. For example, 11 > 10 and 9 > 2
but 11 -9<10-—2.

RULEIV Ifa>b and b > ¢, then

a>c (1.8)

For example, 8 > 7 and 7> 2, and 8 > 2.

Note:if a > b and b < ¢, we can say nothing about the relative magnitudes
of a and c. For example, 9 > 2 and 2 < 8 and of course 9 > 8, but we could
equally well have had 9 > 2 and 2 < 11 with, of course, 9 < 11.

RuLe V Ifa>band c>dandaq,b, c, d are all positive, then

ac>bd and 252 (19)
d c
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For example, 9 > 2 and 6 > 3 and of course 9 x 6 >2 x 3, i.e. 54 > 6.
RuLe VI 1f a> b and a and b are both positive, it follows that

1 1 1 1
2 2 3 3 <, <.
a*>b% a’>b> . a<b .

Indeed

a>b" if n>0

a"<b" if n<0 (1.10)
For example, 3>2 and 3> >23,ie. 27>8,but 372<272 je. § <1

Example 1 For what values of x are both the inequalities 9 + 2x > 0 and
7 — 3x > 0 true?

If94+2x>02x> -9, ie. x> —3.

If7—3x>0, —3x> -7, ie x <4 (Note the reversal of the sign.)

From Figure 1.2 we see at once that both inequalities are true for
—-3<x<i

x> —3 x<3
SN —
5
-3 0 3
Figure 1.2
2x+1 1

Example 2 Find the range of values of x for which

>
+2 2

We multiply both sides of the inequality by (x + 2)? which is positive.
Thus we can be sure that the inequality sign is preserved correctly. Thus we
have

x4+ 1)(x +2) > i(x +2)?
22x + 1)(x + 2) > (x + 2)?

(x+2)@x+2)—(x+22>0

(x+2)(3x)>0
This will be true if x >0and x+2>0, or if x <0 and x + 2 <0, i.e. if both

factors are positive or both factors are negative.

The first two inequalities are true if x > 0 and the latter two inequalities
are true if x < —2. This can be clearly seen if the following table showing

the signs of the factors is drawn up. The individual factors change sign at
0and —2.

x< =2 -2<x<0 x>0
3x —ve —ve +ve
x+2 —ve +ve +ve

3x(x +2) +ve —ve +ve
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Thus the original inequality is true if x>0 or x < —2.
Example 3 Determine the range of values of x for which
x2+x-2 S 1
x2+4 2
We notice that x2 + 4, being the sum of two squares, is always positive.
Thus we can multiply both sides of the inequality by x2 + 4 and still preserve
the sign. Thus
x24+x—2>3x*+4)
2x24+2x—4>x*+4
x2+2x—8>0
(x+4)(x—2>0

We draw up our table showing the signs of the individual factors. The
individual factors change sign at —4 and 2.

x< —4 —4<x<?2 x>2
x+4 —ve +ve +ve
x—2 —ve —ve +ve
(x +4)(x —-2) +ve —ve +ve

Thus the inequality is true if x < —4 or x > 2.

43 x4l

x—2 x-3

Here, we must multiply by the positive factor (x — 2)*(x — 3)? to obtain
(x + 3)(x — 2)(x — 3) > (x + 1)(x — 3)(x — 2)?

Example 4 Solve the inequality

which yields
x=3)x—=2)(x+3)x—3)—(x+1D)(x—2)]>0
(x=3)x—-2[x*-9—-(x*—x—-2)]>0
x=3)x=2)x—7>0

Again, we draw up our table showing the signs of the individual factors,
which change sign at 2, 3 and 7.

x<2 2<x<3 3<x<1 x>17
x—2 —ve + ve +ve +ve
x—3 —ve —ve +ve +ve
x—=17 —ve —ve —ve +ve
(x=2(x=3)x-7 —ve + ve —ve +ve

Thus the original inequality is true if 2<x <3 or x > 7.
We shall in later chapters have cause to use the notion of the modulus
of a number x:

T he modulus of x is the positive number having the same magnitude as Xx.
It is written |x|. Thus [3| =3, |—6|=6,|-2|=2,|—1| = 1.
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In general if x is positive |x| = x, but if x is negative |x| = —x.
With this notation the range of values of x specified by the inequality
—1 < x < 1 can be specified more concisely by |x| < 1.

Example 5 Find x if [x + 1] = 5.
We have x +1 =5 or x+ 1 = —5. Therefore

x=4 or x=—6

Example 6 Find x if 2x + 1| > 7.
2x+1/>7 means 2x+1>7 or 2x+1< -7
Thus, we have 2x > 6 or 2x < —8. Therefore
x>3 or x<—4

Example 7 For what values of x is |x — 1|>2|x + 3|?
Since |x + 3| is positive, we can write the inequality as

x—1 ie x—1>2
Ix + 3| Tolx+3
This is true if
x—1 x—1
>2 — <=2
x+3 or x+3

In the first case, multiplication by the positive quantity (x + 3)? gives
(x = D(x + 3)> 2(x + 3)? :
x+3)(x—1—2x—6)>0
(x+3)(—x—7>0

Multiplying by —1 gives
(x+7(x+3)<0

If we draw up a table as in Examples 2, 3 and 4, we find that —7 < x < —3.
In the second case, multiplication by the same positive quantity (x + 3)?
gives
x—=Dx+3) < —2x+3)?
x+3)(x—1+2x+6)<0
(x+3)(3x+5)<0
which is satisfied if —3 <x< —3.

We can combine these two regions and observe that the original inequality
is satisfied if —7 < x < — 3 but excluding the value x = —3.

The inequality of the means

. . a+b .\ .
The arithmetic mean 5 of two positive numbers a and b is greater than

or equal to their geometric mean ,/ab. For we have, if a and b are positive,



12 Operations with real numbers
(Va—b?*=0
a+b—2/ab>0

a;bz\/ab (1.11)

which proves the result.

Example 8 1fa, b, c, d are any real numbers, prove that (i) a* + b* > 2a%b?
and (ii) a* + b* + c* + d* > 4abcd.
(i) By (1.11), we have

a* + b*

> Ja*b* = a?b?
a* + b* > 2a%b?
(ii) By the previous result, we have
a* + b* + c* + d* > 2a%b? + 2c24?

But 2a%b? and 2c%d? are two positive numbers and so by (1.11)

2ab? + 2cd?

2
2a2b? + 2c2d* > 4abcd
a*+ b* +c* +d* >4abcd by (1.8)

Note: the result will certainly be true if some of a, b, ¢, d are negative,
so that abcd is negative, since the left-hand side is certainly positive.

> /(4a2b*c*d?)

Example 9 Show that if a, b, ¢ are real numbers, a* + b* + ¢ — bc — ca — ab
cannot be negative.
We have

a? +b?>= 2ab
b* + % = 2bc
c2+a?>2ac by(l.11)
On adding these results, we obtain by (1.7)
2(a? + b% + c?) = 2(ab + bc + ca)
a*+b*+c*>ab+bc+ca
which is the required result.

Exercises 1c

1 Solve the inequalities 3x + 11> 0 and 8 — 7x > 0.
2 Find the values of x which satisfy 2x? — 7x + 9 < x? — 2x + 3.

3 For what values of x is < —1?

4 For what values of x is

2
Z9
<3’
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x—1 x-=2

5 Solve the inequality —— > .
x— x—3
2x2 4+ 5x+7

6 Solve the i lity ——— " — > 2,

olve the inequality TS
2x2—3x—5 1

7 Solve the inequality
8 Find x if [x + 3| = 2.

x24+2x+6 <§'

9 Find x if

I =1
x+1|
10 Find x if |x + 3| > 5.

11 Find x if |x — 1] > 3|x — 2.
1
12 If a and b are positive numbers, show that (i) a +5 =2 and

.. 1 1
(ii) (a + b)<5 + E) >4,
13 If a, b and c are three positive numbers, show that (a + b)(b + ¢)(c + a) =
8abc.
14 Show that x* + y3 > x2y + xy? if (x + y) > 0.
15 Verify that a®+b?+ ¢ — 3abc = (a + b+ c)(a® + b* + ¢* — ab — bc — ca).
Hence show that, if a, b, ¢ are all positive, then a® + b> + ¢* > 3abc.

1.5 The remainder and factor theorems

We assume that readers are familiar with the division process in algebra as
applied to simple polynomial expressions. It is analogous to the division
process in arithmetic and is illustrated by the following example.

Example 1 Find the quotient and remainder when 2x* — x3 +4x2 + 1 is
divided by x? + 3x + 1.

+2x2—7x+23

x24+3x+1)2x* —x3+4x2 +0x + 1
2x* + 6x3 + 2x2
— 7x3 + 2x% 4+ Ox
—7x3 —21x2 —7x
23x2 4+ Tx + 1
23x% + 69x + 23

—62x —22
Thus the quotient is 2x? — 7x + 23 and the remainder is —62x — 22.

The result above can be put in the form
2x* —x3 +4x2 + 1 =(x? + 3x + 1)2x2 — 7x + 23) — 62x — 22

The symbol = means that the two expressions on each side of it are identical
even though they are expressed in different forms. They will be equal to each
other for every value of x.
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Theidea can be extended. If the polynomial P(x) = a,x" + a,_,x" "' +... +
a;x + ap is divided by the polynomial D(x) =d x™+d,_,x" '+...+
d,x + doy, where m < n, the quotient will be another polynomial Q(x) (of degree
n — m) and a remainder R(x) which will also be a polynomial. From the nature
of the process, the degree of R(x) will be less than m, the degree of the divisor.

We will further have

P(x) = D(x)Q(x) + R(x) (1.12)

In the case where D(x) is a first-degree polynomial of the form (x — a), R(x)
will simply be a constant c, say:

P(x)=(x —a)Q(x) + ¢ (1.13)

We can find ¢ without working through the division process. If we
substitute x = a into both sides of (1.13), we obtain

P =c

the other term on the right-hand side being zero when x = a, whatever the
form of Q(x).
P(a) is the value of P(x) when x = a and is given by

aa"+a, "'+ +a0+a,

This result is often known as the remainder theorem, which states that when
the polynomial P(x) is divided by x — a the remainder is P(x).

Example 2 Find the remainder when x* + x? + x — 2 is divided by x + 3.
Now x + 3 = x — (—3), so the remainder is

R=(=3+(=3+(-3)-2
=—2749-3-2
= —23

Alternatively,
x*+x24+x-2=(x+30Q(x)+R

where Q(x) is some quadratic polynomial which we need not calculate. If
we substitute x = — 3 on both sides, the result follows. We could, of course,
carry out the division.

Example 3 The remainder when 2x3 + ax? + bx + 1 is divided by x — 1is 7.
When it is divided by x — 2, the remainder is 39. Find a and b. Also find
the remainder when the expression is divided by (x — 1)(x — 2).

If we denote 2x3 + ax? + bx + 1 by P(x), we have by the remainder theorem

Pl)= 7= 24+ a+ b+1
PR2)=39=16+4a+2b+1
Thus we have

a+ b= 4
d4a+2b =22
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Whence
2a+2b= 8
4a +2b =22
2a =14
Therefore

a=7 and b= -3

Thus P(x) =2x3 + 7x? —3x + 1.

When P(x) is divided by (x — 1)(x — 2), the remainder will be a polynomial
of degree one (the divisor is a quadratic), which we can denote by mx + n.
Thus

P(x) = (x — 1)(x —2)Q(x) + mx + n
When x =1 P(l)= m+n= 7
When x =2 P2)=2m+n=139

On solving these equations, we have m = 32 and n = —25. The remainder
is thus 32x — 25.

Example 4 Find the remainder when x® — x> — x + 1 is divided by x — 1.
Hence factorise this polynomial.

P(x)=x3—x2—x+1
P(1)=1-1-1+1=0

Thus, the remainder is zero and we deduce that x — 1 is a factor of the poly-
nomial. The division process gives

X3—x2—x+1=x-Dx2-1)
so that
X3—x2—x+1=>x—-Dx—-1x+1)

Example 4 illustrates the factor theorem, which is immediately clear from
(1.13). If P(x) =0, then x — a is a factor of P(x).

Exercises 1d

1 Find the remainder when 3x> + 6x — 1 is divided by x — 3.

2 Find a if x> + ax? — x — 8 is divisible by x — 1.

3 For what value of m is x* + 3x2 — x + m divisible by x + 8?

4 Show that the remainder when the polynomial P(x) is divided by

ax—bis P<é>
a

5 Find m and n if the remainders when 8x3 + mx? — 6x + n is divided by
x — 1 and 2x — 3 are 2 and 8 respectively.

6 Factorise x> — x? + 4x — 4.

7 Factorise x> — 6x2 + 11x — 6.

8 Factorise 12x3 — 31x2 + 2x + 24.

9 Find a and b if x* + ax® — 2x? + bx — 8 is divisible by x? — 4.
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10 Find the remainder when 2x* + x> — x2 + x + 4 is divided by x> — 1.
Verify the result by doing the division.

1.6 Partial fractions

Readers will already be familiar with the technique of forming the sum or
difference of two or more algebraic fractions. For example,

1 2 +x+1_x+1+2(x—1) x+1
x—1 x+1 x*+1 x*—1 x2+1
Ix—1 x+1

x2—1 x*+1

_ 2+ 1DBx— D+ (x+1)(x2=1)

a x*—1

_4xP4+2x—2

T x*—1

For the purposes of expanding such a complicated algebraic fraction in

powers of x, or for integrating such a fraction with respect to the variable
X, it is often necessary to carry out the reverse procedure, i.e. to resolve such
a fraction into the sum of two or more partial fractions. The denominators

of these partial fractions are the factors of the denominator of the original
fraction. The technique is governed by five simple rules:

RuLel If the degree of the numerator is greater than or equal to the degree
of the denominator, it is possible to carry out a division to obtain a
quotient together with a fraction whose numerator is of lower degree than its
denominator. This latter fraction is then resolved into partial fractions.

RULE II To each linear factor of the form x — a in the denominator, there

. . A .
corresponds a partial fraction of the form ——, where A is constant.
x—a

3, .2

. . . x4+ x*+4x

Example 1 Resolve into partial fractions Trx_2
x —

The numerator is of degree 3, the denominator is of degree 2, so we divide

x
RS e E
x3 4+ x%—2x
6x
Therefore
x3 4+ x? + 4x 6x 6x
Aix—2 Taix—2 *taroeo)

We set

6x _ A + B
x+2)(x—=1) " x—1 x+2
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To determine A and B, we multiply throughout by (x + 2)(x — 1) to obtain
6x=A(x+2)+ B(x—1)

By putting x = 1, we obtain 6(1) = A(l + 2), ie. 4 = 2. By putting x = -2,
we obtain 6(—2) = B(—2 — 1), i.e. B = 4. After substitution, we get

x3+x2+4x_ N 2 N 4
xrx—2 “Tx—=1Tx+2

An alternative procedure for determining A and B is as follows.

We can make A(x + 2) + B(x — 1) = (A + B)x + 24 — B identically equal
to 6x by choosing A and B so that the coefficient of x, namely (4 + B), is
equal to 6, and the term independent of x, namely (24 — B), is equal to zero.
Thus, we would have 4 + B = 6,24 — B = 0, whence A = 2, B = 4 as before.
We shall find that both these techniques for determining the unknown
quantities are valuable.

Example 2 Resolve into partial fractions
3x2—4x+5
(x+ D(x—3)2x—1)

The degree of the numerator is less than the degree of the denominator.
Thus we set

3x2—4x+5 - A + B + C
x+Dx—3)2x—1) x+1 x—-3 2x—1
Multiplication by (x + 1)(x — 3)(2x — 1) gives
3Ix2—4x+5=A(x —3)2x — 1)+ B(x + 1)2x — 1) + C(x + 1)(x — 3)
With x = — 1
(=1 —4(—1)+5= A(—4)-3) therefore A = 1
With x =3

3(32—4(3) + 5 = B(4)(5)  therefore B = 1
With x =4
332 —4d)+5=C3)(~3) therefore C = —1
Therefore

3x2—4x+5 1 + 1 1
(x+Dx-3)2x—1) x+1 x—3 2x—1

If we use the second technique (not so convenient in this case) to determine
A, B, and C, we obtain the equations
24+2B+C=3
—7TA+B-2C= -4
3J4—-B-3C=5
which have solutions A =1,B=1,C= —1.
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RuLe III To each quadratic factor in the denominator of the form
ax? + bx + ¢ which does not have linear factors, there corresponds a partial

. Ax+ B
fraction of the form ———————, where 4 and B are constants.
ax*+bx+c

3x2 4+ 8x+ 13

Example 3 Resolve into partial fractions .
pre P (x—1(x2+2x+9)

We set

3x2 +8x+ 13 _ A4 N Bx+C
(x—Dx2+2x+5) x—1 x*2+2x+5

therefore

3x2 +8x+ 13 = A(x* + 2x + 5) + (x — 1)(Bx + C)
=xA+B)+x2A—-—B+C)+54—-C

With x = 1, we obtain 24 = 84, therefore 4 = 3. If we make the coefficients
of x? equal, A+ B =3, so B=0. If we make the terms independent of
x equal, 5S4 — C =13, and so C = 2.

It is easy to see that with these values for A, B, C, the coefficients of x
are also equal. Therefore

3x2+8x+ 13 3 N 2
(x—Dx*+2x+5 x—1 x*+2x+5
2x2 +2x+ 10

Example 4 Resolve into partial fractions ————.
P P x+ )x2+9)
We set
2x2+2x+10 A Bx+C

= +
(x+Dx*+9) x+1 x*+9

therefore
2x2+2x + 10 = A(x*+9)+ (x + 1)(Bx + C)

With x = —1, 104 = 10, therefore A = 1. If we make the coefficients of x>
equal, A + B =2, so B = 1. If we make the terms independent of x equal,
10 =94 + C, and so C = 1. Therefore

2x2+2x+10_ 1 +x+1
(x+Dx2+9) x+1 x*+9

RuULE IV To each repeated linear factor in the denominator of the form
(x — a)?, there correspond partial fractions of the form

A + B
x—a (x—a)?

For repeated linear factors of the form (x — a)?, there are partial fractions

of the form 4 + B + etc
x—a (x—a? (x—a)?®
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RULE V To each repeated quadratic factor in the denominator of the form
(ax? + bx + c)?, there correspond partial fractions of the form

Ax + B + Cx+D
ax?+bx+c  (ax?+ bx +c)?

x3—x2—3x+5
(x—1(x*-1) °

The denominator (x — 1)(x2 — 1) = x> — x2 — x + 1 is of the same degree
as the numerator. We divide

Example 5 Resolve into partial fractions

1

x3—x2—x+1)x*—x2—3x+5
x3—-x?— x+1

—2x+4
therefore
x3—x2—3x+5___ +_4—_21_
(x = 1) = 1) (x—D(x*=1)
. k2.2
(x—1D*x+1)
We set
4 —2x A B C
G+ x+1 x—1 x=1)
therefore

4 -_2x=Ax —12?+Bx—1)(x+ 1)+ C(x+1)
With x =1, 2C = 2, therefore C=1. With x = —1, 44 =6, so A =3
3

If we make the coefficients of x? equal, A+B =0, and so B= —3.
Therefore
x}—x?—3x+5 + 3 3_+ 1
(x—D2x+1) = " 2x+1) 2x—-1) (x—1)0?
7—2x

Example 6 Resolve into partial fractions CrDa_2

We set

7-2x A N B  C
x+Dx—2? x+1 x—-2 (x—2)?

therefore
T-2x=A(x—22+B(x+ 1)(x—2)+C(x+1)

With x = 2, 3C = 3, therefore C = 1. Withx = —1,94 =9,5s0 A = 1. If we
make the coefficients of x? equal, 4 + B =0, and so B = — 1. Therefore
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7-2x 1 1 N 1
x+1)x—-22% x+1 x—-2 (x—2)?

Exercises 1le

Resolve 1-10 into partial fractions and verify the results.

6x — 10 2x3—x2—4
x2—2x-3 x2—1
4x + 11 13 — 5x2
(x*+4x—5) (x* = 1)(x+3)
_x2+4x—7 6 x2+2
(x+ D(x*+4) (x?+2x +3)2x + 1)
7 2x* — 2x3 4+ 4x? — 2x  Ix+2
x—DZ+1) 2x —3)(x + 1)?
£+2x2+2 10 x?
(x + 1)3(x2+1) (x+1)3

1.7 Indices

The product of a number with itself, a x a, is called the second power of a
and is written a2. The product a x a x a, written a>, is called the third power
of a. The product a x a x a x ... to m factors, written a™, is called the mth
power of a. The number which expresses the power is called the index or
the exponent. Thus, the index of a? is 2, the index of a® is 3, the index of
a™is m.

When the algebraic processes of multiplication and division are carried
out with different powers of the same number, the indices combine according
to certain fundamental laws. In the proofs of these laws which follow, we
assume m and n are positive integers with m > n.

RULE I a"xa"=a"*" (1.14)

Fora™ xa"=(axaxax ...tomfactors) x (a x a x ... to nfactors), which
is clearly a x a x a x a x ... to (m + n) factors = a™*" by definition.

RuLE II at+a"=a""" (1.15)
For

ﬂ_axaxax ... xax ... xa(m factors)

a" axaxax ... xa(n factors)

=axaxax ...to(m—n)factors
m-n

=a

RuLE III @y = a™ (1.16)
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For

(@")'=amxa™ xa™ x ... to n factors
=(axaxax ... tomfactors)
x(axaxax ...tomfactors)... n times
=axaxaxax ...tomnfactors

— amn

The rules (1.14), (1.15), (1.16) have been proved for m and n positive integers.
Indeed, we have no meaning for a™ unless m is a positive integer, the definition
of a™ as the product of m factors each equal to a being meaningless unless
m is a positive integer. We shall generalise our concept of power to include
indices which are fractional and negative. This generalisation is carried out
in such a way that the rules (1.14), (1.15), (1.16) remain valid. We do not want
one set of rules for positive integer indices and another set of rules for
fractional indices. The rules stated in Section 1.1 are true whether a, b, c are
integers, rationals, etc; indeed, when they are any real numbers. In the same
way, we require the rules (1.14), (1.15), (1.16) to be universally true.

1/n

The meaning of a'", where n is a positive integer Since (1.14) is to remain

valid,
a'™.a'’".a'" to n factors = @'/"*ntlint. = g
(al/n)n =a
Therefore
a'" = 2a (1.17)

The meaning of a™", where m and n are positive integers Since (1.14) is to
remain valid,

a™".a™" ... to n factors = gm"*rmint.. = gm
(am/n)n = am
Therefore
amn — ('/a"' (1.18)

An alternative and equally valid interpretation is
am™" = (/a)" (1.19)

The meaning of a® Since we require (1.14) to remain valid for all m and n,
we have with m =0

Therefore

a® =1 for all values of a except a =0 (1.20)

The meaning of a™" Since we require (1.14) to remain valid for all m and n,
we have with m = —n
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aa "=a""=4q"=1
Therefore
1
a"=— (1.21)
a

With these definitions it is easy to see that the rules (1.14), (1.15), (1.16)
remain valid for all values of m and n.

Example 1 Evaluate (i) (81)%4, (ii) (16)~5/4.
(i) (81)* =(¥81)* =3>=27
Note: it is more convenient to use (1.19) than (1.18):

(81)%* = Y813 = ¢/531441

which we are unlikely to recognise as 27.
(ii) 1675* = 1/16°"* = 1/(Y16)* = 1/2° = 1/32

Example 2 Show from the definition that (5!/4)!/2 = §1/4-1/2 = 51/8,

SU4= %5 where (¥5)*=S5
(51412 = Y5t = J(J5) = ¥/S where (J5)° =5

(51/4)1/2 = 51/8

Example 3 Show that (a™)" = a™ for all m and n.

We show this by allowing m to be any value and considering in turn the
cases where n is (i) a positive integer, (ii) a positive fraction, and (iii) any
negative value.

(i) If n is a positive integer

(@™)" = a™.a™ to n factors
= am+m+m+... = amn
(i) If n is a positive fraction, say p/q, where p, q are positive integers, then
@ = @y"
Now by (i)
[(arn)plq]q = (aM)p/q~q = (arn)p = g™P
therefore
(arn)p/q = \q/amn = q"Pl1 = g™
(iii) If n is negative, we replace it by —k, where k is positive. Therefore
(am)n — (am)—k
and
1 1
(am)k am™ -

(@)~ =

as required.
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Exercises 1f
1 Evaluate (i) 273, (ii) (36) =32, (iii) (8)"/3, (iv) 16~ 1/4,

-2.3_-4 9 B 3 b -4
2 Express with positive indices (i) };Z oy G E//aa3: 3

[Hint: multiply by %E%S]

3 Show that \/x — /a = \/x " \/a
Deduce that VX +a .
Jx—4/a x—a
4 Simplify (42" —2"*2)/2"*1 - 2").
§ Show that (xy)" = x"y". Treat separately the cases n is (i) a positive integer,
(ii) a positive fraction, (iii) a negative quantity.

1.8 Logarithms

The logarithm of a positive number N to the base a is defined as the power
of a which is equal to N. Thus, if

a=N (1.22)
then x is the logarithm of N to the base a, written
x =log, N (1.23)
(1.22) and (1.23) are by definition equivalent, so we have
asN = N (1.24)
Since a! = a and a° = 1, it follows that
log,a=1 (1.25)
log,1 =0 (1.26)

for all a(#0).

Example 1 Evaluate (i) log3 9, (ii) logg 3, (iii) log, 64.
(i) Since 32 =9, log;9 =2
(ii) Since 9'/% =3, logy3 =14
(iii) Since 4° = 64log,,64 =3

The laws for the manipulation of logarithms are derived directly from the
laws of indices:

RULE I log, (bc) = log, b + log, ¢ (1.27)
For, if log,b = x and log,c = y,
b=a* and c=4a’
bc = a*.a’> =a**? by (1.14)
log,(bc) = x+ y =log,b + log,c

RuLE 11 log, (2) = log,b —log,c (1.28)
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For, with the notation above,

b2 _ g by (1.15
¢ - a’ - y( . )
therefore
b
log, 7= x—y=Ilog,b—log,c
RuLk II1 log,(b?) = plog, b (1.29)

For, with the notation above,
b? = (a*)P = aP*
log,b? = px = plog,b
We have just seen in Example 1 that the logarithm of a number may
be calculated to any base. Tables of logarithms to the base 10 (common
logarithms) are in existence and are very useful for arithmetical calculations.

It is not difficult to use these tables to calculate the logarithm of any number
to any specified base. We need the following transformation rule:

log, N = log,b.log, N (1.30)
For if y=1log, N, N =V’
log, N =log,(b”) = ylog, b
log, N =log,b.log, N
If we put N = a in (1.30), we obtain
log,a = log,b.log,a =1

log,b = 1.31
O8a log,a (1.31)
Another useful form for (1.30) is then
log, N = 28N (1.32)
log,a

Example 2 Use the table of common logarithms to evaluate (i) log,9,
(ii) log 16.

; log;09 09542 — o

log,e2 0301 0-9542 19796

log,016  1:2041 0301 14786

: * 3 = = 2524 05010
(i) log, log;o3 04771

1-2041 0-0806

04771 1-6786

04020

by calculator or by tables as shown.
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2
Example 3 Show that log,(a®> — x?) =2 + log,,(l - %)

2
log, (a® — x?) = log, I:az<1 - %)]

2
=log,a? + Ioga<l —E—>

a
2
=2+log¢,<1—x—2>

Example 4 Show that log,b.log,c.log.a = 1.

Q

log,b.log,c =log,c by (1.30)
therefore, multiplying by log.a

log, b.log,c.log.a = log,c.log.a
=log,a=1

Exercises 1g
1 Evaluate (i) log, 27, (11) log, 327, (m) log, 16, (iv) log,,, 32, (V) log, x3,
(vi) log,s y, (vii) log, ,xx (viii) log1 xX
2b b
2 Show that log,(a + b)> =2+ ]og,,(l +—+ )

s
3 Evaluate (i) logg 12, (ii) log, 24.
4 If log,b = log,c = log.a, show thata=b =c.
S If u, v, s, t are all positive, show that

) o) o3 ) )

the logarithms all being to the same base.

1.9 Equations in which the unknown is an index

Some of the techniques used to solve this type of equation are illustrated
by the following examples.

Example I Solve the equation 3** = 9%*%,

3x2 gx+4 — (32)x+4 = 32(x+4)

Taking logarithms to the base 3, we obtain

x2=2(x+4)
x2-2x—8=0
(x—8)(x+2) =

x=4 or x=-2

Example 2 Solve the equation 23**! = §**1,
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Taking logarithms on both sides, we obtain
(3x + 1)log;02 = (x + 1)log,0 5
(3log102 —log,o5)x =log;o5 — 108,02
(log,08 —log,o 5)x = log,o 5 — log,o2
_ log,o5 —log, o2 — log03
log,o8 —log;o5 logyo%

number log
03979 _ 03979 1-5998
X =02081 - 1?3 02041 13098
02900

Example 3 Solve for x: 9* —4 x 3* +3 =0.

(3 —4x3*+3=0
3 —4x3*+3=0
(3)?—-4x3*+3=0
B3*—1)3*-3)=0
3*=1 or 3*=3
x=0 or x=1

Example 4 Solve for x: log, 9 + log,23 = 2-5.

We first try to express all the logarithms to the same base.

Now by (1.30) log,.3 = log,. x.log, 3 and log,.x =} since (x
Therefore

2)1/2

log,23 = 4log, 3 = log, 3* = log, /3
Thus, the equation becomes
log, 9 + log, /3 =25

log,9/3 =25
9,/3 = x?3
Whence, by inspection, we see that x = 3.

Otherwise
log,09/3 = 2:5log, x
log,0,9+/3 log,, 3%
log;ox = gl;s\/ = glz?s =log,o3
x=13

Example 5 Solve the equations 2**» = 8, 32*77 = 27.

= X.

From the first equation, we have, after taking logarithms to the base 2,

x+y=3
From the second equation, after taking logarithms to the base 3,

2x —y=13
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Thus our equations are equivalent to
x+y=3 2x —y=13
(These equations would have resulted, after some simplification, whatever

base had been chosen for the logarithms.)
Adding the last two equations gives 3x = 6, therefore

x=2 and y=1

Exercises 1h

1 Find x if 3* = 7-83.
2 Find x if log, 2:69 = 2.
3 Solve for x: (i) 327! = 5% (ii) 7***2 = 9>~ L.
4 Solve the equation 2% = 18,
5 Find x if 9°° = 3572,
6 Solve the equation 52> — 5'**+ 6 = 0.
7 Solve the equation 4%* = 261,
8 Find x if log, 8 —log,. 16 = 1.
9 Find x if log, 3 + logy x = 2-5.
10 Solve the simultaneous equations 2**? = 6, 3* 77 =4,

Exercises 1

1 Solve the simultaneous equations x + 2y = 7, x2 + 2y? = 17.

[WIC]
2 Express (2x2 + 8x + 7)/(x? + 4x + 5) in the form
g___ b
(x+c)+d

and state the values of a, b, ¢ and d.

3 Solve the equation 2*.3' "* = 6.

4 Show that (a + /b)* = a* + b + 2a,/b. Hence evaluate the square root
of 9 +4,/5 in the form ¢ + \/d.

5 Given the simultaneous equations x2 — 6xy + 11y? = 3a2, x> — 2xy —
3y? = 5a?, derive an equation in x and y only, and hence solve the
equations for x and y in terms of a. [JMB, part]

6 Express in partial fractions (8x + 15)/(x* + 4)x — 3).

1-—
7HX=—"_and y=a(1 +:), show that (Y + a)? = 4aX.

1+
8 Solve completely the equation (x2 + x)? = 5x% + 5x — 6. [LU, part]
18y —10y*
G-y1-y*
x(x —2)
+6

9 Express in partial fractions

> 2.

10 Find the range of values of x for which

-1
11 For what values of x is Lx )
2x+3
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1
12 By putting y = x += , solve the equation 2x* — 9x3 + 14x2 —9x + 2 = 0.

13 Solve the equation \/(Zx -N-Jx-1)=1
14 If p? = gr, show that log,p + log,p = 2 logqp log, p.
15 Solve the equation log; x +log, 3 =

-2 x-3
1 lve the i lity ——>——.
6 Solve emequaltyx_3 W
17 Verify that (I + m? 4+ n®)(x? + y2 + z2) — (Ix + my + nz)® = (ly — mx)2
+ (mz — ny)2 + (nx — Iz)%. Deduce that (Ix +my + nz)?> < (12 + m? + n?)
x (x* + y* + 22).
18 If a, b and c are positive and unequal show that

(@+b+c) <3@*+b%>+c?
19 If a, b, ¢ are positive and unequal show that
11
(a+b+c)( +b+ >>9
20 Solve the equation 2773 = 3 x 972,
1
21 By making the substitution y = x +;, solve the equation x*+ 8x3 +
17x2+8x+1=0. [WIC, part]
2424
22 Solve for x: log,, X : )= L

23 Solve for x: 2* x 3**1 = §2x+1,
ur v? 1 1 1
24 If " + 7= 12 and " +; =3 find the values of uv and hence solve the
equations.
25 Solve the equatlon J@x+3)—J(x-2)=2.
a(l +t?) 2bt x2 y?
26 If x = 2 ,y=1_t2,show that?—?= 1.
27 If a and b are two real numbers such that a + b = 1, prove that 4ab <1
Hence or otherwise show that a? + b2 > 3. [IMB, part]
-3
28 Find y if | < 2.
y+1

29 Use the result of question 17 to show that (a3 + b3 + ¢%)? < (a® + b*> + ¢?)
x (a* + b* + ¢*).

30 Solve the equation log;o(x% +9) — 2 log,;ox = 1.

31 Solve the equations x + 2y = 3, 3x? +4y? + 12x = 7.

32 Solve the equations 32**> = 12, 2*7Y = 4,

(x—2)(x—3) >0
*x—4
34 Solve the equation 22¥2* + 3 x 2*— 1 = 0.

b
35 If a® + b? = 23ab show that loga + logb = 2 log <‘%—>.

33 For what values of x is

36 Solve the inequality ;y;% > 1.
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1 1
37 Ifx=\3/p+%,y=\/p+—p, show that y? — 2 = x(x2 — 3).

38 By putting a =loga, f=1logb, y =logc in the identity a(f—7)+
B(y — @) + y(a@ — B) = 0, show that

b loga ¢ log b a log ¢
&))"

where the logarithms are taken to any base.
39 Show that (x — 2) is a factor of 6x* — 7x> — 27x% + 28x + 12 and hence

solve the equation 6x* — 7x® —27x2 + 28x + 12 = 0. [AEB]

40 When f(x) = x> + ax? + bx + ¢ is divided by x — 3, the remainder is 30.

If x2 — 4 is a factor of f(x), find the values of a, b and c. [AEB]

41 For what values of x is |x — 2| > 5|x — 3|? [LU]

42 Find the set of values of x for which < ! . [LU]
x—2 x+2

43 Given that y =log, x> and z = log, a, show that yz = 3. Hence find the
numerical values of y and z when log,(3log, x) — log, (log,a) =log,(27).

[AEB]
44 Given that log,(x — 5y + 4) = 0 and log,(x + 1)— 1 = 2log, y, find the
values of x and y. [AEB]

45 When the expression x> + ax? + bx + ¢ is divided by x2 —4, the re-
mainder is 18 — x; and when it is divided by x + 3, the remainder is
21. Find the remainder when the expression is divided by x + 1.

[AEB]
46 Solve the simultaneous equations
x Yy
Z+2 -1
37
3 2 17
x Ty 12 €]

47 If 2log,x + 2log,y = 5 show that log, x is either 1 or 2. Hence find
all pairs of values of x and y which satisfy simultaneously the equation
above and the equation xy = 27. [JMB]

48 The variables x and y are connected by the relation y = ax", where a
and n are constants; y = 3 when x =4 and y = 2 when x = 9. Find the

exact values of n and a. [C]
49 Find all the solutions of the system of equations
Sy+1=2xy
Ix+y—T7T=xy (O]

2x — 1)(x +4) S

50 Find the set of values of x for which 5
x —

0. [LU]
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Finite sequences and series

2.1 Sequences and series

Sequences

A sequence, or progression, is a set of numbers in some definite order, the
successive terms (or numbers) of the sequence being formed according to some

rule.

For the sequence of positive integers 1, 2, 3,4, ..., the rth term is the integer
r; for the sequence 1, 4, 9, 16, ..., the rth term is the number r2,

It is usual to denote the rth term of a general sequence by u,, and the
sequence by u,, u,, Uy ... u,.... The rule defining a sequence is often given
in the form of some formula for u, in terms of r although this is not neces-
sarily so. (See Example 2.) Thus, for our first sequence u, = r; for our second

sequence u, = r2.
Example 1 Find u, in terms of r for the sequences

@ 3,5709,...

(i) 1,44 16 75 -

(i) 1, 4, 3, 16, 5, 36, 7, 64, ...
vy =1,1, =1, 1, =1, 1, ...
(v) 1, =23, —4,5 —6,...

(i) By inspection, we see that the terms can be written

2x 141, 2x24+1, 2x3+1, 2x4+1,...

u, =2r+1
(i) By inspection, we see that the terms can be written
1 1 1 1
1_2a 2_2a '3—2—a F, LX)
1
u, = =

r

(iii) If » is odd, u, =r, if r is even u, = r2. Since 2r is

always even

and 2r + 1 always odd, u,,,,; = 2r + 1, u,, = 4r? adequately describe the

sequence.

(iv) The odd terms are —1, the even terms + 1. Therefore, u,,,, = —1,

30
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u,, = + 1. However, the sequence may be described quite adequately by one
formula in this case: u, = (—1)".
(v) By using the result (iv), we have

u = (=1y(=n) = (=1y*"r

Example 2 Find the first five terms of the sequence defined as follows: the
first two terms are 1 and 3 respectively; each later term is formed by multiply-
ing its predecessor by 3 and subtracting the next previous term, i.e.

u, = 3ur—l —U._

u3 = 3“2 - ul = 8
u4=3u3_u2 =24—3 =21
us=3u, —u3;=3x21—-8=63—-8=55
The first five terms are thus 1, 3, 8, 21, 55. (Note: this rule adequately defines

a sequence although it would not be easy to find a formula for u, in terms
of r)

Series

A series is obtained by forming the sum of the terms of a sequence. A finite
series is obtained if a finite number of terms of the sequence are summed.
The sum of the first n terms of the sequence u,, u,, ... is generally denoted
by S,:

S,,=u1+u2+u3+...+u,, (2.1)

S, is the sum of the first n terms of the series u; + u, + u3 + ..., or, as it
is sometimes put, S, is the sum to n terms of the series u; + u, + u3 + ....
The rth term of the series is u,, the corresponding term of the sequence from
which the series is derived by summation.

S,=u;+u;+us+...+u,

is often denoted by
Yu=u+u+...+u, 22)
r=1

X is the Greek capital letter sigma and the symbol above means evaluate

u, for all values of r from 1 to n and sum the results. The specific form of
u, may be inserted. Thus, with u, (the general term of the series) = r

M-

u,=r;r=1+2+3+ .. +n

1

r

In the same way

Y uy =ttty + ... +u, (n>m) (2.3)

Example 3 The sum of the first n terms of a series is given by the formula
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S, = n* + 3n for all values of n. Find an expression for the rth term of the
series.

If u, denotes the rth term

u=85,-85,_, (2.4)
=[uy+u,+..tu o +u]—[uy+u,+...+u_y]
=r+3r—[r—1)*+30r—1)]
=r4+3r—[r*+r-2]

Therefore

u,i72r +2

4 7
Example 4 Evaluate (i) Y r? (i) ) 2"
r=1 r=3
4
() Yr*=12422+32+42=1444+9+16=130
r=1

;
(i Y 2r=22+2*+2°+2°+2
r=3
=8+16+32+ 64+ 128 =248

Exercises 2a

1 Evaluate the first five terms of the sequences whose rth terms (u,) are
(i) 3r — 1, (i) (=31, (iii) 2" + r%.

2 Find a formula for u, for the sequences

@ 1, 8,27, 64,125 ...
(i) 1, —4,9, —16, 25 ...
(iii) 3, 2, 8,32,128 ...

3 A sequence is defined by the rule u; =1, u, =2 and u,=u,_, + u,_,
for r > 3. Find the first seven terms of this sequence. [This is the Fibonacci
sequence; as r increases, the ratio u,.,/u, approaches the value 7, the
golden ratio of Pythagoras.]

4 Ifu,=—1,u,=—5and u, =a+ br, find a, b and u,.

5 Evaluate u, for the sequences

(i 0,7, 26, 63, 124 ...
(i) 2,4,6,8,10...
(i) 2, 11, 32,71, 134 ...
(iv) 3,9, 27, 81, 243 ...
(v) 2, —4,8, —16,32 ...
(vi) S, 5, 35, 65, 275 ...
(vii) 6, —36, 216, —1296 ....
6 Find the first six terms of the sequence deﬁ;}ed by u; =0, u, =2 and

u, = u,_ —u,_, for r > 2. Hence evaluate ) u,.
r=1
7 u, =0,u, =3,uy; =12, and u, = a + br + cr®. Find a, b, ¢ and
5 7
0 Yu G Fu

r=1 =
8 Evaruate (i) Sg for the series 1 + 3+ 6 +9+ 12+ ..., (ii) S for the series
3+49+27+81+ ....
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9 The sum of the first n terms of a series is given by S, = n* — 2n for all
values of n. Find u,.

10 10
10 If u, = log,or, show that ) u, = ) log,,r = log,, 3628 800.
r=1 r=1

2.2 The arithmetic sequence and series

If the consecutive terms of a sequence differ by a constant number, their
terms are said to form an arithmetic sequence or an arithmetic progression.
Thus, for example, the numbers 1, 3, 5, 7, ... are in arithmetic progression,
the difference between consecutive terms being 2.

An arithmetic sequence is completely defined by its first term (convention-
ally denoted for the general arithmetic sequence by a) and the common
difference (the difference between consecutive terms) denoted by d. The general
arithmetic sequence is then

a,a+d,a+2d,a+3d,...,a+(r—1)d,... (2.5)

and the rth term of the sequence is
u,=a+(r—1)d (2.6)
If the numbers u,, u,, u,, u,, ..., u,_,, u, are in arithmetic progression,

Uy, Uj, ..., u,_, are said to form (r — 2) arithmetic means