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Pref ace to the second edition 

Since the first edition was published there have been changes in the content 
of the pure mathematics syllabuses of the various examining boards. The most 
important was the recent agreement by an inter-board committee to draft 
a national 'common core' in mathematics. While the final form has not yet 
(1982) been approved formally by all boards, it is intended that it should 
eventually be featured in the syllabuses of all GCE boards who will however 
be free to add extra topics as they wish. This common core will give a basis 
for comparison between the various syllabuses but it is not intended that 
the boards will set common questions. At the same time, the Joint Matricula­
tion Board will have (from 1984) rationalised their mathematical syllabuses 
into: Pure Mathematics I and II, Mechanics I and II, Applied Mathematics 
I and II and Statistics. Candidates can offer selected combinations of two 
of the papers as a single mathematical subject. The Associated Examining 
Board already have, effectively, a pure mathematics paper I which is common 
to their subjects Mathematics: 636 (Pure and Applied), 646 (Pure with 
Statistics), 632 (Pure) and 647 (Pure with Computations). 

This edition covers the contents of the common core and virtually all of 
the extra pure mathematics included by each of the various boards in their 
syllabuses which are equivalent to that of the JMB's Pure Mathematics I. 

Two new chapters have been added: Numerical Methods and Vectors. The 
remainder and factor theorems, graphical solution of y = a cos 0 + b sin 0 and 
angles between lines and planes have been introduced in the appropriate 
places, the work on polar co-ordinates has been extended and the introduction 
to the calculus has been rewritten. To allow space for these the sections on 
co-ordinate geometry have been revised and condensed and one or two minor 
topics, such as linear equations in one unknown, have been deleted. 

In addition, the general lay-out has been improved and many of the original 
questions from the examination papers of the Joint Matriculation Board and 
London University have been replaced with recent ones. Also questions set 
by the Oxford, Associated Examining and Cambridge Boards have now been 
included. A large number of worked examples remains a feature of the book 
and there are plenty of exercises for the student to develop and test his or 
her skills. A candidate studying on his or her own is recommended to obtain 
a copy of the appropriate syllabus and copies of immediate past examination 
papers to check that all topics are covered. 

Finally, we are grateful to the Joint Matriculation Board (JMB), the London 
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University Entrance and Schools Examinations Council (LU), the Associated 
Examining Board (AEB), the Oxford Delegacy of Local Examinations (0) 
and the Cambridge Local Examinations Syndicate (C) for granting us per­
mission to use questions from their more recent examinations. The abbrevi­
ations shown have been used to indicate the source of such questions. BOB HM 
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This is a textbook of pure mathematics written to meet the needs of the 
student studying for the General Certificate of Education at Advanced Level. 
The book assumes a knowledge of mathematics up to Ordinary Level and 
covers all the pure mathematics necessary for the Advanced Level examina­
tion in mathematics (A26), of the Northern Universities Joint Matriculation 
Board, together with the great majority of the work required for the Advanced 
Level examinations of the Southern Universities Joint Board, the Welsh Joint 
Committee and London University. 

The teaching method adopted is for the most part that suggested by the 
various reports of the Mathematical Association. The emphasis throughout 
has been on technique, although we have tried to indicate where a particular 
result needs more rigorous justification than is given in this book. In this 
way, we hope that all students can progress quickly in the understanding 
and application of these techniques without the hindrance of having to justify 
everything they do. This latter step comes at a later stage in their mathematical 
development. 

For convenience, the book has been prepared in the order algebra 
(Chapters 1-5), trigonometry (Chapters 6-8), calculus (Chapters 9-16), and 
co-ordinate geometry (Chapters 17-20), but this is not to imply that the 
chapters should be read in this order. For the student at school, this will 
be decided by the teacher; for the student working alone, we would recom­
mend an advance on a broad front through Chapters 1, 3, 6, 9, 10, 12 (the 
first two sections), 13, 17, 18. This lays the foundations for all the main topics 
and this broad advance can then be maintained. We would suggest that each 
of Chapters 7, 11, 14, 15, 16 and 20 be read in at least two stages. Not only 
will this make for easier digestion of the many ideas and techniques discussed 
in these chapters, but will also provide for constant revision and extension 
of this material. 

The book includes over 350 worked examples and about 1800 examples 
for the student to solve. The worked examples indicate the main applications 
of the ideas and techniques discussed. The exercises set at the ends of the 
sections within the chapters are for the most part fairly straightforward. 
All our readers should attempt these exercises. The exercises at the ends of 
the chapters are a 'mixed bag'. Some are of a routine type, others are more 
testing; many are from past papers set by the various examining boards. 
Finally, there are some (indicated with an asterisk) which are of a more difficult 
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nature. The student should not be too dismayed if he is unable to solve all 
of these. 

For convenience, the results and formulae obtained have been labelled, 
the first number of the label identifying the chapter in which the result is 
derived. Thus formula 10.7 is the seventh result obtained in Chapter 10. 
It is not suggested that all these formulae be memorised. 

We should like to express our thanks to the Joint Matriculation Board 
(JMB), the Southern Universities Joint Board (SUJB), the Welsh Joint Com­
mittee (WJC) and London University (LU) for granting us permission to use 
questions from their examinations in this book. The abbreviations above have 
been used to indicate the source of such questions. 

Finally, we should like to thank our publishers for the care and trouble 
they have taken over the general presentation of the text. 

BOB 
HM 



1 
Operations with real numbers 

1.1 The real numbers 
Algebra is concerned with operations with numbers and we shall begin with 
a brief review of these operations and the numbers involved. 

The first set of numbers usually encountered is the set of positive integers 
including zero: 0, 1, 2, 3, .... These by themselves are insufficient for the 
solution of many actual problems and need to be supplemented by fractions 
which can all be expressed in the form a/b, where a and b are positive integers (b non-zero). This set of numbers includes the positive integers which arise 
when b = 1. 

The solution of a particular problem might require the solution of the 
equation x + a = b. If a is greater than b, in order to interpret the result 
x = b -a, we need to extend our number system to include negative numbers. 
The integers are then the set 

... -3, - 2, -1, 0, 1, 2, 3, 4, ... 
and the rational numbers (fractions), which include the integers, are of the 
form a/b, where a and b are integers (b non-zero). 

There are still quantities which cannot be expressed in terms of the rational 
numbers. For example, the length of a diagonal of a square of side 1 unit 
is J2 units, and J2 cannot be expressed in the form a/b, where a and b 
are integers. Tables of square roots show J2 � 1 ·414 =�but this is only 
an approximation to the value of J2, as the squaring of 1 ·414 will soon show. 
This property is not unique to J2; J3, JS, J1·6, J11·61, etc. all have the 
same property. These numbers are examples of algebraic numbers. They are 
all of them solutions of algebraic equations which involve only rational 
numbers. J3 is a solution of x2 = 3, J1·6 is a solution of x3 = 1·6, J11·61 
is a solution of x5 = 11·61, etc. 

There are still other numbers which do not fall into any of the categories 
mentioned so far. Such numbers, of which n(�3·142), log10 2(�0·301), 
sin 74° (�0·9613) are but three examples, are called transcendental numbers. 
Our system of real numbers with which we shall be mainly concerned, will 
consist of the rational, algebraic and transcendental (irrational) numbers. 

It is often convenient to represent these numbers by points on a line (Figure I.I), letting O be an origin on the line x'x. Conventionally, we let 
points to the right of O represent positive numbers and points to the left of 
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0 represent negative numbers. Points on the line distant 1 unit, 2 units, . . .  
to the right of 0 will represent the numbers 1, 2, 3, . . . .  Points on the line 
distant 1 unit, 2 units . . .  to the left of 0 will represent the numbers -1, -2, 
-3, . . . .  The rational numbers will be represented by intermediate points. 

x' ---+----+-------+-----+--1-----+----+-- X 

-3 -2 -1 0 2 3 
Figure I.I 

The set of integers (positive, negative and zero) is often referred to collec­
tively by the symbol "ll, while the set of all real numbers is referred to by 
the symbol IR. 

The fundamental operations of algebra are addition and multiplication. 
Subtraction can be regarded as the addition of the corresponding negative 
number, and division as multiplication by the reciprocal. We are all familiar 
with these operations, although it is perhaps worth reminding ourselves of 
the fundamental laws governing these operations. 

If a, b, c are any three real numbers: 
I a+ b = b + a, the commutative law of addition 

II (a+ b) + c = a+ (b + c), the associative law of addition 
III ab = ba, the commutative law of multiplication 
IV (ab)c = a(bc), the associative law of multiplication 
V a(b + c) = ab + ac, the distributive law of multiplication and addition. 

1.2 Equations 
Readers will already be familiar with the solution of simple equations and 
quadratic t:quations involving one unknown, as well as with pairs of simple 
simultaneous equations. 

For the equation ax + b = 0, where a and b are real numbers b 
X = -­

a 
For the equation ax2 +bx+ c = 0 -b ± ✓(b2 - 4ac) 

X= 2a 

(1.1) 

(1.2) 

In more complicated situations, one has to use one's native wit. The 
following examples illustrate some useful techniques. 

Example 1 Solve the equation x2 + 2x -4 + 2 
3 

2 = 0. 
X + X 

With z = x2 + 2x 
3 

z-4+-=0 z 
z2 -4z + 3 = 0 

(z -3)(z - 1) = 0 
z = 1 or 3 



With z = 3 

With z = 1 

x2 + 2x = 3 
x2 + 2x - 3 =-0 

(x + 3)(x - 1) = 0 
x = - 3  or x = 1 

x2 + 2x - 1 = 0 
-2 ± J[4- 4 X (1) X (-1)] 

X = --�- - - - ---2 
- 2 ± J8 -2±2J2 

2 2 
= -1 ±J2 

Therefore, the solutions are 1, - 3, - 1 + J2, - 1  -J2. Example 2 Solve the equation 
J(4 - x) - J(6 + x) = J(l4 + 2x). 

Squaring both sides, we have 
4 - x + 6 + x - 2J[(4 - x)(6 + x)] = 14 + 2x 

- 2J[(4 - x)(6 + x)] = 4 + 2x 

- J[(4 - x)(6+x)] = 2+x 

Again squaring both sides, we now have 
(4 - x)(6 + x) = 4 + 4x + x2 

24 - 2x - x2 = 4 + 4x + x2 

2x2 + 6x -20 = 0 
2(x + 5)(x - 2) = 0 

x = 2 or x = - 5  

Equations 3 

It is easy to see that it is only the value x = - 5 which satisfies 
the original equation. x = 2 is a solution of the equation J(4 - x) + J(6 + x) 
= J(14 + 2x). If we square both sides of this equation, we obtain 
J[(4 - x)(6 + x)] = 2 + x, which in turn leads to 2x2 + 6x - 20 = 0. The 
original equation gave - J[(4 - x)(6 + x)] = 2 + x but when we square, 
the distinction between the two cases is lost. Thus we must always verify the 
correctness of our solutions after we have carried out such operations. As 
a trivial example, consider the equation 2x = 2 which has solution x = 1. 
If we square both sides, we obtain the equation 4x2 = 4, i.e. x2 = 1 which 
has solutions x = 1 or x = - 1! 

We shall assume that readers are familiar with the procedure for the 
solution of a pair of linear simultaneous equations in two unknowns. The 
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solution of two equations in two unknowns when one or both of the equations 
contain quadratic terms is a more interesting problem. We first consider two 
cases where a systematic method of solution exists. 
Example 3 Solve the equations x + y = 3, x2 + xy + 2y2 + x + 2y = 12, 
in which one equation is linear and the other quadratic. 

We use the linear equation to express one unknown in terms of the other. 
Thus we have 

x = 3 - y  

We now substitute this expression for x into the second equation to obtain 
a quadratic equation for y. Thus 

(3 - y)2 + (3 - y)y + 2y2 + (3 - y) + 2y = 12 
9 - 6y + y2 + 3y - y2 + 2y2 + 3 - y + 2y = 12 

2y2 - 2y = 0 
y(y - 1) = 0 y = 0 or y = 1 

When y = 0, x = 3; when y = 1, x = 2 (since x = 3 - y). Thus the solutions 
are x = 2, y = 1; x = 3, y = 0. 

We could, of course, have used y = 3 - x and obtained an equation for x on substituting this into the second equation. 
Example 4 Solve the equations x2 - y2 = 3, 2x2 + xy - 2y2 = 4, in which 
the terms involving the unknowns are all quadratic in both equations. 

The solution can generally be obtained by writing y = mx and proceeding 
as follows. 

The equations can be written 

By division 

x2(1 - m2) = 3 
x2(2 + m - 2m2) = 4 

1 - m2 3 ----� = 2+m - 2m2 4 
4 -4m2 = 6 + 3m - 6m2 

2m2 - 3m - 2  = 0 
(2m + l)(m - 2) = 0 

m = 2 or m = -½ 
With m = -½, we have ¾x2 = 3. Therefore x2 = 4 i.e. x = ± 2 

The corresponding values for y are + 1 (since y = mx). With m = 2, we have 
x2( - 3) = 3; therefore, x2 = -1, and this equation has no solution in the 
domain of real numbers. Thus, the solutions are x = 2, y = -1; x = - 2, y = 1. 

It is not usually possible to give general procedures for the solution of 
simultaneous equations which do not fall within the categories just mentioned. 
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Rather, each problem must be considered on its merits and the solver must 
use his or her own ingenuity. 

Example 5 Solve the equations x + ! = 1 and y + _!__ = 4. 
y X 

The equations can be rewritten in the form 
xy + 1 = y 
xy + 1 = 4x 

Therefore, y = 4x, which on substitution gives 
4x2 + 1 = 4x 

4x2 -4x + 1 = 0 
(2x -1)2 = 0 

Therefore, x = ½ and, since y = 4x, y = 2. The solution is thus x = ½, y = 2. 

Exercises la 
x+l x-2 2x+3 

1 Solve the equation -3
- --4- = -6

-. 

2 Solve the equation x2 - 5x -11 = 0. 
• X + 1 5x -1 

3 Solve the equation 2x + 3 
= 

?x + 3 . 

4 Solve the equation .Jx -J
x 

= 1. 

5 Solve the equation y2 + 5y - 2 
36 

5 = 0. 
y + y 

6 Solve the equation x4 - 25x2 + 144 = 0. 
7 Find the values of x which satisfy the equation 2.j(x + 5) -.j(2x + 8) = 2. 
8 Solve the equation .j(x + 1) + .j(5x + 1) = 2.J(x + 6). 
9 Solve the equation x4 - 2x3 - 6x2 

- 2x + 1 = 0. 

[ Hint: Jet V = X + �] 
10 Solve the equation y4 - 2y3 - 2y2 + 2y + 1 = 0. 

[ Hint: let z = y -t ] 

Solve the simultaneous equations 11-20: 
11 x + 2y = 3, x2 - xy + 5y2 + 2y = 7 12 2x + y = 1, x2 + xy + 3x -y = 4 
13 2x -3y = 1, x2 + xy -4y2 = 2 
14 x2 + 2xy = 3, 3x2 

- y2 = 26 15 x2 + y2 = 13, x2 - 3xy + 2y2 = 35 
16 x2 - xy + 7y2 = 27, x2 - y2 = 15 

2 2 1 1 5 17 X + y = 5, 2 + 2 = -4 X y 
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18 x2 + y2 = 10, 

19 x2 - y2 = 24, 

1 1 4 -+-=­
x y 3 

1 3 1 1  
- -+- -=­x+y x - y  12  

X y 17 2 2 20 -+-=-, X -4xy+y = 1 y X 4 

1.3 Elimination 
In Section 1.2, we considered methods for the solution of two equations in 
two unknown quantities. If we have more equations than unknowns, two 
equations in one unknown, or three equations in two unknowns, then in order 
to obtain a consistent solution to the equations the coefficients must satisfy 
some relationship. This relationship is known as the eliminant of the system. 
It is obtained by forming from the given equations an equation which does 
not involve the unknowns. This process is known as the elimination of the 
unknowns. It is a technique which is of great value in co-ordinate geometry. 
Example 1 Eliminate t from the equations x = at 2, y = 2at. 

From the second equation, we can solve for t in terms of y, i.e. t = y/2a. 
Substitution into the first equation gives 

Therefore, y2 = 4ax, which is the required result. 
Example 2 . Eliminate t from the equations 

t t 2 x = 1 + t 2 and y = 1 + t 2· 
We have y/x = t. Substitution in the first equation gives 

y/x y/x 
X = - -�� = ����� 1 + y2/x2 (x2 + y2)/x2 

xy x = �-� x2 + y2 

x(x2 + y2) = xy 
Example 3 Eliminate I and m from the equations Ix+ my = a, mx - ly = b, 
12 + m2 = 1 .  

The straightforward procedure would be to solve the first two equations 
for I and m in terms of a, b, x and y. Substitution of these expressions into 
the last equation would then provide the eliminant. However, in some cases 
it is possible to use more subtle methods. In the present example, if we square 
the first two equations and add the results, we obtain 

12x2 + m2x2 + m2y2 + 12y2 = a2 + b2 

(x2 + y2)([2 + m2) = a2 + b2 
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and since 12 + m2 = 1 
x2 + y2 = a2 + b2 

which is the required eliminant. 

Exercises 1 b 

1 Eliminate t from the equations x = 1 + t, y = l + ! . 
t 

2 Eliminate t from the equations x = 3 + t 3, y = 2 + ! . 
t 

3 El. . f h . 1 1 1mmate t rom t e equations x = - - t, y = 2 - l. 
t t 

2at b(l - t 2) x2 y2 
4 If x = -1 --2 , y = 

1 2 , show that 2 + 2 = 1 .  +t +t a b 
5 Eliminate 0 from the equations x -a cos 0 = 0, y -b sin 0 = 0. 
6 If x = 1 + t 2, y = 2t, show that y2 = 4(x -1). 
7 If x = 1 -t 2 and y = l + St - t 2, show that (x -y)2 = 25(1 - x). 
8 Eliminate x and y from the equations x - y = a, x2 + y2 = b2, xy = l. 
9 Eliminate x and y from the equations x -y = a, x + y = b, xy = c. 

10 If x + 2y2 = a, x -2y2 = b, xy = 2, show that (a+ b)(a2 -b2) = 64. 

1.4 Inequalities 
In this section, we shall consider the rules governing the relationships between 
numbers which are not equal. For any two real numbers a and b, we say 
that a is greater than b (a > b) if a -b is positive. We say that a is less than b 
(a < b) if a -b is negative. In terms of the representations of numbers on 
a line (Figure 1.1), a >  b if a is to the right of b; a <  b if a is to the left of b. 
Thus we have by definition 

a > b if a -b > 0 and a < b if a -b < 0 ( 1.3) 

For example, 5 > -3 since 5 -( -3) = 8 is positive, i.e. > 0. Also -3 < -1 
since -3 -( -1) = -2 is negative, i.e. < 0. 
RULE I We first show that if a >  b, then 

a+x > b+x 

where x is any real number. 
If a > b, a -b = c > 0 

a+x - �+zj =a+x-b - x = a - b = c  
a+ x -(b + x) = c > 0 

a + x > b + x by definition 

In the same way, if a < b 
a+x < b+x 

( 1 .4) 

(1.5) 
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Thus, as with equations, we may add the same number to both sides of an 
inequality and still preserve the inequality. For example, 

5 >  -2 
and after adding 6 to both sides 

11 > 4 
Also 6 < 9  
and after adding - 3 (i.e. subtracting 3) on both sides 

3 < 6  
We cannot, however, treat inequalities in the same way as equations if we 

multiply both sides of the inequality by the same number. Rather, we have 
RULE II If a > b ax > bx if x is positive ax < bx if x is negative (1.6a) 

If a < b ax < bx if x is positive ax > bx if x is negative (1.6b) 

We shall prove this for the case a >  b. 
If, a - b = c, where c is positive, then 

ax - bx = ex 
which is positive if x is positive, but negative if x is negative. Therefore, 

ax - bx > 0 if x > 0 ax - bx < 0 if x < 0 
which is the required result. Thus if we multiply both sides of an inequality by a negative number, the inequality sign must be reversed. 

For example, 7 > 3, which becomes 21 > 9 after multiplication by 3 but 
- 14 < - 6  after multiplication by -2. 
RULE III If a > b and c > d, then 

a + c > b + d  ( 1 .7) 
For example, 7 > 3 and - 4  > - 7, and 3 > - 4. 

Note: it does not follow that a - c > b - d. For example, 11 > 10 and 9 > 2 
but 11  - 9 < 10 - 2. 
RULE IV If a > b and b > c, then 

a > c  
For example, 8 > 7 and 7 > 2, and 8 > 2. 

( 1 .8) 

Note: if a >  b and b < c, we can say nothing about the relative magnitudes 
of a and c. For example, 9 > 2 and 2 < 8 and of course 9 > 8, but we could 
equally well have had 9 > 2 and 2 < 11 with, of course, 9 < 11. 
RuLE V If a > b and c > d and a, b, c, d are all positive, then 

a b ac > bd and d > -;; ( 1 .9) 
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For example, 9 > 2 and 6 > 3 and of course 9 x 6 > 2 x 3, i.e. 54 > 6. 
RuLE VI If a > b and a and b are both positive, it follows that 

Indeed 

2 2 3 3 1 1 1 1 
a > b ' a > b ' . . .  a < b' a2 < b2 . . .  

an > bn if n > 0 
an < bn if n < 0 

For example, 3 > 2 and 33 > 23, i.e. 27 > 8, but r 2 < 2- 2, i.e. ½ < ¼. 
(1.10) 

Example 1 For what values of x are both the inequalities 9 + 2x > 0 and 
7 - 3x > 0 true? 

If 9 + 2x > 0, 2x > - 9, i.e. x > -!. 
If 7 - 3x > 0, -3x > - 7, i.e. x < l (Note the reversal of the sign.) 
From Figure 1.2 we see at once that both inequalities are true for 

- ! < x < l  

x >  -! -
9 --z 

X < j -
0 

Figure 1.2 

Example 2 Find the range of values of x for which 2x + 1 > ! . 
X +2 2 

We multiply both sides of the inequality by (x + 2)2 which is positive. 
Thus we can be sure that the inequality sign is preserved correctly. Thus we 
have 

(2x + l)(x + 2) > ½(x + 2)2 

2(2x + l)(x + 2) > (x + 2)2 

(x + 2)(4x + 2) - (x + 2)2 > 0 (x + 2)(3x) > 0 
This will be true if x > 0 and x + 2 > 0, or if x < 0 and x + 2 < 0, i.e. if both 
factors are positive or both factors are negative. 

The first two inequalities are true if x > 0 and the latter two inequalities 
are true if x < -2. This can be clearly seen if the following table showing 
the signs of the factors is drawn up. The individual factors change sign at 
0 and - 2. 

X <  -2  -2 < x < O  x > O  
3x - ve -ve + ve 
x + 2  - ve + ve + ve 
3x(x + 2) + ve -ve + ve 
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Thus the original inequality is true if x > 0 or x < -2. 

Example 3 Determine the range of values of x for which 
X2 + X - 2 1 
- - -- > -x2 + 4 2 

We notice that x2 + 4, being the sum of two squares, is always positive. 
Thus we can multiply both sides of the inequality by x2 + 4 and still preserve 
the sign. Thus 

x2 + x -2 > ½(x2 + 4) 
2x2 + 2x - 4 > x2 + 4 
x2 + 2x -8 > 0 

(x + 4)(x - 2) > 0 

We draw up our table showing the signs of the individual factors. The 
individual factors change sign at -4 and 2. 

x <  -4  -4 < x < 2  x > 2  
x + 4  - ve + ve + ve 
x - 2  - ve - ve + ve 
(x + 4)(x - 2) + ve - ve + ve 

Thus the inequality is true if x < -4 or x > 2. 
. . x + 3  x+l 

Example 4 Solve the mequahty - - > �-. x - 2  x-3 
Here, we must multiply by the positive factor (x -2)2(x - 3)2 to obtain 

which yields 
(x + 3)(x - 2)(x - 3)2 > (x + l)(x -3)(x -2)2 

(x - 3)(x - 2)[(x + 3)(x -3) -(x + l)(x -2)] > 0 
(x - 3)(x - 2)[x2 - 9 -(x2 - x - 2)] > 0 

(x -3)(x - 2)(x -7) > 0 

Again, we draw up our table showing the signs of the individual factors, 
which change sign at 2, 3 and 7. 

x < 2  2 < x < 3  3 < x < 7  x > 7  
x - 2  - ve + ve + ve + ve 
x - 3  - ve - ve + ve + ve 
x - 7  - ve - ve - ve + ve 
(x - 2)(x - 3)(x - 7) -ve + ve - ve + ve 

Thus the original inequality is true if 2 < x < 3 or x > 7. 
We shall in later chapters have cause to use the notion of the modulus 

of a number x: 
The modulus of' x is the positiue number hai•ing the same magnitude as x. 

It is written lxl. Thus 13 1 = 3, 1-61 = 6, 1 - 21 = 2, 1-1 1 = 1 .  
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In general if x is positive lx l  = x, but if x is negative lx l  = - x. 
With this notation the range of values of x specified by the inequality 

- 1 < x < 1 can be specified more concisely by lxl < 1. 

Example 5 Find x if Ix + 1 1  = 5. 
We have x + 1 = 5 or x + 1 = -5. Therefore x = 4 or x = -6 

Example 6 Find x if 12x + 1 1  > 7. J2x + 11 > 7 means 2x + 1 > 7 or 2x + 1 < - 7 
Thus, we have 2x > 6 or 2x < -8. Therefore x > 3 or x < -4  

Example 7 For what values of x is I x  - 1 I>  2Jx + 3 1 ?  
Since J x  + 3 1  is positive, we can write the inequality as 

This is true if 

Jx - 1 1 2 - - >  Jx + 3 1  i.e. - - > 2  lx - 1 1 x + 3  
x-1 x - 1  - - > 2  or - - < - 2  x + 3  x + 3  

In the first case, multiplication by the positive quantity (x + 3)2 gives 
(x - l )(x + 3) > 2(x + 3)2 

(x + 3)(x - 1 -2x - 6) > 0 (x + 3)( -X - 7) > 0 
Multiplying by - 1 gives (x + 7)(x + 3) < 0 
If we draw up a table as in Examples 2, 3 and 4, we find that - 7 < x < - 3. 

In the second case, multiplication by the same positive quantity (x + 3)2 

gives (x - l )(x + 3) < - 2(x + 3)2 

(x + 3)(x - 1 + 2x + 6) < 0 
(x + 3)(3x + 5) < 0 

which is satisfied if -3 < x < -i. 
We can combine these two regions and observe that the original inequality 

is satisfied if - 7 < x < - i but excluding the value x = - 3. 

The inequality of the means 

The arithmetic mean a ; 
b of two positive numbers a and b is greater than 

or equal to their geometric mean Jab. For we have, if a and b are positive, 
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(✓a -✓b)2 
� 0 

a + b -2✓ab � O  

which proves the result. 

a + b  ✓ b - - >- a 
2 7 

( 1 . 1 1) 

Example 8 If a, b, e, d are any real numbers, prove that (i) a4 + b4 � 2a2b2 

and (ii) a4 + b4 + e4 + d4 � 4abed. 
(i) By ( 1 . 1 1), we have 

a4 + b4 --- � ✓a4b4 = a2b2 
2 

a4 + b4 � 2a2b2 

(ii) By the previous result, we have 
a4 + b4 + e4 + d4 � 2a2b2 + 2e2d2 

But 2a2b2 and 2e2d2 are two positive numbers and so by (1.11) 
2a2b2 + 2e2d2 

� ✓(4a2b2e2d2) 2 
2a2b2 + 2e2d2 � 4abed 

a4 + b4 + e4 + d4 � 4abed by ( 1 .8) 

Note: the result will certainly be true if some of a, b, e, d are negative, 
so that abed is negative, since the left-hand side is certainly positive. 

Example 9 Show that if a, b, e are real numbers, a2 + b2 + e2 
- be -ea - ab 

cannot be negative. 
We have 

a2 + b2 � 2ab 
b2 + e2 

� 2be 
e2 + a2 � 2ae by ( 1.11) 

On adding these results, we obtain by (1.7) 
2(a2 + b2 + e2) � 2(ab + be +  ea) 

a2 + b2 + e2 
� ab + be + ea 

which is the required result. 

Exercises le 
1 Solve the inequalities 3x + 11 > 0 and 8 -7x > 0. 
2 Find the values of x which satisfy 2x2 - 7x + 9 < x2 - 2x + 3. 

3 For what values of x is _____!__
3 < -1? 

x -

. 2x -1 2 4 For what values of x 1s 
x + 3 < 3 ? 
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x - 1  x -2 
5 Solve the inequality - -2 > - -3 

. 
x - x -

h . 1. 2x2 + 5x + 7 2 6 Solve t e mequa 1ty 
3x + 5 � . 

2x2 - 3x - 5 1 
7 Solve the inequality 2 2 6 < -2 . 

8 Find x if Ix + 31 = 2. 

9 Find x if 
Ix : 1 I 

= 1. 

10 Find x if Ix + 31 > 5. 

X + x+ 

1 1  Find x if Ix - 11 > 31x - 21. 
1 

12 If a and b are positive numbers, show that (i) a + - � 2 and a 
(ii) (a+ b)G + i) � 4. 

13 If a, b and e are three positive numbers, show that (a+ b) (b + e)(e +a) � 
Sabe. 

14 Show that x3 + y3 > x2y + xy2 if (x + y) > 0. 
15 Verify that a3 + b3 + e3 - 3abe = (a+ b + e)(a2 + b2 + e2 - ab - be - ea). 

Hence show that, if a, b, e are all positive, then a3 + b3 + e3 > 3abe. 

1.5 The remainder and factor theorems 
We assume that readers are familiar with the division process in algebra as 
applied to simple polynomial expressions. It is analogous to the division 
process in arithmetic and is illustrated by the following example. 
Example 1 Find the quotient and remainder when 2x4 - x3 + 4x2 + 1 is 
divided by x2 + 3x + 1. 

+ 2x2 - 7x + 23 
x2 + 3x + 1 )2x4 

- x3 + 4x2 + Ox + 1 
2x4 + 6x3 + 2x2 

- 7x3 +2x2 +Ox 
- 7x3 - 2lx2 - 7x 

23x2 + 7x + 1 
23x2 + 69x + 23 

- 62x - 22 
Thus the quotient is 2x2 - 7x + 23 and the remainder is - 62x - 22. 

The result above can be put in the form 
2x4 - x3 + 4x2 + 1 = (x2 + 3x + 1)(2x2 - 7x + 23) - 62x - 22 

The symbol = means that the two expressions on each side of it are identical 
even though they are expressed in different forms. They will be equal to each 
other for every value of x. 
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The idea can be extended. If the polynomial P(x) = anx" + a0 _ 1x" - 1 + . . .  + 
a1X + ao is divided by the polynomial D(x) = dmxm + dm - 1 Xm - l + . . .  + d 1 x + d0 , where m < n, the quotient will be another polynomial Q(x) (of degree 
n - m) and a remainder R(x) which will also be a polynomial. From the nature 
of the process, the degree of R(x) will be less than m, the degree of the divisor. 

We will further have 
P(x) = D(x)Q(x) + R(x) ( 1 .1 2) 

In the case where D(x) is a first-degree polynomial of the form (x - a), R(x) 
will simply be a constant c, say: 

P(x) = (x - a)Q(x) + c (1.13) 

We can find c without working through the division process. If we 
substitute x = a into both sides of ( 1 . 1 3), we obtain 

P(a) = c 

the other term on the right-hand side being zero when x = a, whatever the 
form of Q(x). 

P(a) is the value of P(x) when x = a and is given by 

This result is often known as the remainder theorem, which states that when 
the polynomial P(x) is divided by x - a the remainder is P(a). 

Example 2 Find the remainder when x3 + x2 + x -2 is divided by x + 3. 
Now x + 3 = x - ( - 3), so the remainder is 

Alternatively, 

R = ( -3)3 + ( -3)2 + ( -3) - 2 
= - 27+9-3-2 
= -23 

x3 + x2 + x - 2 = (x + 3)Q(x) + R 

where Q(x) is some quadratic polynomial which we need not calculate. If 
we substitute x = - 3 on both sides, the result follows. We could, of course, 
carry out the division. 

Example 3 The remainder when 2x3 + ax2 + bx + l is divided by x - l is 7. 
When it is divided by x -2, the remainder is 39. Find a and b. Also find 
the remainder when the expression is divided by (x -l )(x - 2). 

If we denote 2x3 + ax2 +bx+ l by P(x), we have by the remainder theorem 

Thus we have 

P( l )  = 7 = 2 + a+ b + l 
P(2) = 39 = 16  + 4a + 2b + l 

a+ b = 4 
4a+2b = 22 



Whence 

Therefore 
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2a + 2b = 8 
4a + 2b = 22 
2a = 14 

a =  7 and b = -3 
Thus P(x) = 2x3 + 7x2 - 3x + 1. 

When P(x) is divided by (x - l)(x - 2), the remainder will be a polynomial 
of degree one (the divisor is a quadratic), which we can denote by mx + n. 
Thus 

When x = 1 
When x = 2 

P(x) = (x -l)(x -2)Q(x) + mx + n 
P( l) = m + n = 7 
P(2) = 2m + n = 39 

On solving these equations, we have m = 32 and n = -25. The remainder 
is thus 32x -25. 

Example 4 Find the remainder when x3 - x2 - x + 1 is divided by x -1. 
Hence factorise this polynomial. 

P(x) = x3 - x2 - x + 1 
P( l) = 1 -1 -1 + 1 = 0 

Thus, the remainder is zero and we deduce that x -1 is a factor of the poly­
nomial. The division process gives 

x3 - x2 - x + 1 = (x -l)(x2 - 1) 
so that 

x3 - x2 - x + 1 = (x -l)(x - l)(x + 1) 
Example 4 illustrates the factor theorem, which is immediately clear from 

(1.13). If P(�) = 0, then x -� is a factor of P(x). 

Exercises ld 
1 Find the remainder when 3x3 + 6x -1 is divided by x -3. 
2 Find a if x3 + ax2 

- x -8 is divisible by x -1. 
3 For what value of m is x3 + 3x2 - x + m divisible by x + 8? 
4 Show that the remainder when the polynomial P(x) is divided by 

ax -b is P(�). 
5 Find m and n if the remainders when 8x3 + mx2 - 6x + n is divided by x -1 and 2x -3 are 2 and 8 respectively. 
6 Factorise x3 - x2 + 4x - 4. 
7 Factorise x3 - 6x2 + 1 lx -6. 
8 Factorise 12x3 - 3lx2 + 2x + 24. 
9 Find a and b if x4 + ax3 - 2x2 + bx -8 is divisible by x2 - 4. 
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10 Find the remainder when 2x4 + x3 - x2 + x + 4 is divided by x2 - 1 .  Verify the result by  doing the division. 
1.6 Partial fractions Readers will already be familiar with the technique of forming the sum or difference of two or more algebraic fractions. For example, 1 2 X + 1 X + 1 + 2(x - 1) X + 1 

x - 1 + x + 1 + x2 + 1 = x2 - 1 + x2 + 1 3x - 1 X + 1 = - - + - -x2 - 1 x2 + 1 (x2 + 1)(3x - 1) + (x + l)(x2 - 1) x4 - l 4x3 + 2x - 2 = -----x4 - l  For the purposes of expanding such a complicated algebraic fraction in powers of x, or for integrating such a fraction with respect to the variable 
x, it is often necessary to carry out the reverse procedure, i.e. to resolve such a fraction into the sum of two or more partial fractions. The denominators of these partial fractions are the factors of the denominator of the original fraction. The technique is governed by five simple rules: RuLE I If the degree of the numerator is greater than or equal to the degree of the denominator, it is possible to carry out a division to obtain a quotient together with a fraction whose numerator is of lower degree than its denominator. This latter fraction is then resolved into partial fractions. RULE II To each linear factor of the form x - a in the denominator, there 
corresponds a partial fraction of the form �. where A is constant. 

x -a 

. . . x3 + x2 + 4x 
Example 1 Resolve mto partial fractions 2 2 . X + x -The numerator is of degree 3, the denominator is of degree 2, so we divide 

Therefore 

We set 

X x2 + x - 2 )x3 + x2 + 4x x3 + x2 - 2x 
6x 

x3 + x2 + 4x 6x 6x - �--- = x + � -- - = x + ---- -x2 + x - 2 x2 + x - 2 (x + 2)(x - 1) 
6x A B 

- ---- = -- + - ­(x + 2)(x - 1) x - 1 x + 2 
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To determine A and B, we multiply throughout by (x + 2)(x - 1) to obtain 
6x = A(x + 2) + B(x - 1) 

By putting x = 1, we obtain 6(1) = A(l + 2), i.e. A =  2. By putting x = - 2, 
we obtain- 6( - 2) = B( - 2 - 1 ), i.e. B = 4. After substitution, we get 

x3 + x2 + 4x 2 4 �- -- = x + -- + --
x2 + X - 2 X - 1 X + 2 

An alternative procedure for determining A and B is as follows. 
We can make A(x + 2) + B(x - 1) = (A +  B)x + 2A - B identically equal 

to 6x by choosing A and B so that the coefficient of x, namely (A + B), is 
equal to 6, and the term independent of x, namely (2A - B), is equal to zero. 
Thus, we would have A + B = 6, 2A - B = 0, whence A = 2, B = 4 as before. 
We shall find that both these techniques for determining the unknown 
quantities are valuable. Example 2 Resolve into partial fractions 

3x2 - 4x + 5 
(x + l)(x - 3)(2x - 1) 

The degree of the numerator is less than the degree of the denominator. 
Thus we set 3x2 

- 4x + 5 A B C ------- = -- + -- + -­(x + l)(x - 3)(2x - 1) x + 1 x - 3 2x - 1 
Multiplication by (x + l)(x - 3)(2x - 1) gives 

3x2 - 4x + 5 = A(x - 3)(2x - 1) + B(x + 1)(2x - 1) + C(x + l)(x - 3) 

With x = - 1  
3( - 1)2 - 4( - 1) + 5 = A( - 4)( - 3) 

With x = 3 
therefore A = 1 

With X = ½ 

Therefore 

3(3)2 - 4(3) + 5 = B(4)(5) therefore B = 1 

3(½)2 - 4(½) + 5 = C(t)( -�) therefore C = - 1 

3x2 - 4x + 5 1 1 1 - - - ---- = -- + -- - --(x + l)(x - 3)(2x - 1) x + 1 x - 3 2x - 1 

If we use the second technique (not so convenient in this case) to determine 
A, B, and C, we obtain the equations 2A + 2B +  C = 3 

- 7 A + B - 2C = - 4 3A - B - 3C = 5 
which have solutions A = 1, B = 1, C = - 1. 
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RULE III To each quadratic factor in the denominator of the form ax2 + bx +  c which does not have linear factors, there corresponds a partial Ax+B 
fraction of the form 2 b , where A and B are constants. ax + x + c 

I . . 1 f . 3x2 + 8x + 13 Example 3 Reso ve mto partrn rachons (x _ l)(x2 + 2x 
We set 

therefore 

3x2 + 8x + 13 A Bx + C 
- - -�- - - =- - + �- --(x -l)(x2 + 2x + 5) - x -l x2 + 2x + 5 

3x2 + 8x + 13 = A(x2 + 2x + 5) + (x - l)(Bx + C) 
= x2(A + B) + x(2A - B + C) + SA -C 

With x = l, we obtain 24 = 8A, therefore A = 3. If we make the coefficients 
of x2 equal, A+ B = 3, so B = 0. If we make the terms independent of x equal, SA -C = 13, and so C = 2. 

It is easy to see that with these values for A, B, C, the coefficients of x 
are also equal. Therefore 

Example 4 
We set 

therefore 

3x2 + 8x + 13 3 2 
- - -� -- - = - - + � -- -(x -l)(x2 + 2x + 5) x -l x2 + 2x + 5 

I . . 1 f . 2x2 + 2x + 10 
Reso ve mto parha rachons � · . 

(x + l )(x + 9) 

2x2 + 2x + 10 A Bx + C 
- - - -- = - - + - - -(x + l)(x2 + 9) - x + l x2 + 9 

2x2 + 2x + 10 = A(x2 + 9) + (x + l )(Bx + C) 

With x = -1, lOA = 10, therefore A = 1. If we make the coefficients of x2 

equal, A+ B = 2, so B = 1 .  If we make the terms independent of x equal, 
10 = 9A + C, and so C = 1 . Therefore 

2x2 + 2x + 10 1 x + 1 
- - -�- =- - + - -(x + 1 )(x2 + 9) x + 1 x2 + 9 

RULE IV To each repeated linear factor in the denominator of the form 
(x - a)2 , there correspond partial fractions of the form A B 

- - + -- �  x - a (x -a)2 

For repeated linear factors of the form (x - a)3 , there are partial fractions 
A B C of the form - - + )2 + ( )3 etc. x - a (x -a x - a 
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RuLE V To each repeated quadratic factor in the denominator of the form 
(ax2 + bx +  c)2

, there correspond partial fractions of the form 

Ax + B  Cx + D  - - --- + -- ---ax2 + bx +  c (ax2 + H + c)2 

I I . . 1 f . x3 - x2 - 3x + 5 Examp e 5 Reso ve mto parha rachons (x _ l)(x2 
_ l) • 

The denominator (x - l)(x2 - 1) = x3 
- x2 - x + 1 is of the same degree 

as the numerator. We divide 

x3 
- x2 

- x + 1 )x3 - x2 - 3x + 5 
x3 - x2 - x + 1 

- 2x+4 
therefore 

We set 

therefore 

x3 - x2 - 3x + 5 4 - 2x 
---- -- = 1+ -- ---(x - l)(x2 

- 1) (x - l)(x2 
- 1) 

4 - 2x = 1+---- ­
(x - 1)2(x + 1) 

4 - 2x A B C ----- = - -+- -+--­
(x - 1)2(x + 1) -x + 1 x - 1 (x - 1)2 

4 - 2x = A(x - 1)2 + B(x - l)(x + 1) + C(x + 1) 

With x = 1, 2C = 2, therefore C = 1. With x = - 1, 4A = 6, so A = ¾. 
If we make the coefficients of x2 equal, A + B = 0, and so B = -¾­
Therefore 

x3 
- x2 - 3x + 5 3 3 1 

- - - - -- = 1+--- - ---+---(x - 1)2(x + 1) 2(x + 1) 2(x - 1) (x - 1)2 

E [ 6 R I . ' I f . 7 - 2x xamp e eso ve mto parha rachons ) 2 • 

We set 

therefore 

(x + 1 (x - 2) 

7 - 2x A B C - - - -- = --+- - + -- ­
(x + l)(x - 2)2 - x + 1 x - 2 (x - 2)2 

7 - 2x = A(x - 2)2 + B(x + l)(x - 2) + C(x + 1) 

With x = 2, 3C = 3, therefore C = 1. With x = - 1, 9A = 9, so A = 1. If we 
make the coefficients of x2 equal, A + B = 0, and so B = - 1. Therefore 



20 Operations with real numbers 

7 - 2x 1 1 1 ----� = -- - - - + - -� (x + l)(x - 2)2 x + 1 x - 2 (x - 2)2 

Exercises le 
Resolve 1-10 into partial fractions and verify the results. 

1 6x - 10 x3 - x2 - 4 
x2 - 2x - 3 2 

x2 - 1 

3 4x + 11 
(x2 + 4x - 5) 

5 x2 + 4x - 7 
(x + l)(x2 + 4) 
2x4 - 2x3 + 4x2 - 2x 

7 ------=---­(x - l)(x2 + 1) 
2x3 + 2x2 + 2 9 --- - --

(x + 1)2(x2 + 1) 

1.7 Indices 

4 13 - 5x2 

(x2 - l)(x + 3) x2 + 2 
6 ��- - - - - -

(x2 + 2x + 3)(2x + 1) 

8 7x + 2  
(2x - 3)(x + 1)2 

x2 
10 

(x + 1)3 

The product of a number with itself, a x a, is called the second power of a 
and is written a2 • The product a x a x a, written a3, is called the third power 
of a. The product a x a x a x . . .  to m factors, written am, is called the mth 
power of a. The number which expresses the power is called the index or 
the exponent. Thus, the index of a2 is 2, the index of a3 is 3, the index of 
am is m. 

When the algebraic processes of multiplication and division are carried 
out with different powers of the same number, the indices combine according 
to certain fundamental laws. In the proofs of these laws which follow, we 
assume m and n are positive integers with m > n. 

RULE I ( 1 . 14) 

For am x a" = (a x a x a x . . .  to m  factors) x (a x a x . . .  to n factors), which 
is clearly a x a x a x a x . . .  to (m + n) factors = am + n  by definition. 

RULE II 
For 

RULE III 

am a x a x a x . . .  x a x . . .  x a(m factors) 
a" a x a x a x . . .  x a(n factors) 

= a x a x a x . . .  to (m - n) factors 

( 1 . 1 5) 

( 1 . 16) 



For 
(amr = am X am X am X . • •  to n factors 

= (a x a x a x . . .  to m factors) 
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x (a x a x a x . . .  to m factors) . . .  n times 
= a x a x a x a x . . .  to mn factors 

The rules (1.14), (1.15), (1.16) have been proved for m and n positive integers. 
Indeed, we have no meaning for am unless m is a positive integer, the definition 
of am as the product of m factors each equal to a being meaningless unless 
m is a positive integer. We shall generalise our concept of power to include 
indices which are fractional and negative. This generalisation is carried out 
in such a way that the rules (1.14), (1.15), (1.16) remain valid. We do not want 
one set of rules for positive integer indices and another set of rules for 
fractional indices. The rules stated in Section 1.1 are true whether a, b, c are 
integers, rationals, etc; indeed, when they are any real numbers. In the same 
way, we require the rules (1.14), (1.15), (1.16) to be universally true. 

The meaning of a 11n, where n is a positive integer Since (1.14) is to remain 
valid, 

al ln . al /n . al /n to n  factors = a l /n + l/n + l /n + . . .  = a 

(al /nr = a 
Therefore 

a 11" = ::Ja (1.17) 
The meaning of am1• , where m and n are positive integers Since (1.14) is to 
remain valid, 

am/n . am/n . . .  to n factors = am/n + m/n + . . . = am 

Therefore 

(1.18) 

An alternative and equally valid interpretation is 
am/n = (::Jar (1.19) 

The meaning of a0 Since we require (1.14) to remain valid for all m and n, 
we have with m = 0 

a0 . a" = a•+ o = a" 
a0 = an/a" = 1 

Therefore 
a0 = 1 for all values of a except a = 0 (1.20) 

The meaning of a -• Since we require (1.14) to remain valid for all m and n, 
we have with m = -n 
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Therefore 

- n 1 a = -
a" ( 1.21) 

With these definitions it is easy to see that the rules (1.14), (1.15), (1.16) 
remain valid for all values of m and n. 

Example 1 Evaluate (i) (81)314, (ii) (16) - 514_ 
(i) (81)314 = (�81)3 = 33 = 27 

Note: it is more convenient to use (1.19) than (1.18): 

(81)314 = �813 = ,V'531 441 

which we are unlikely to recognise as 27. 
(ii) 16 - 514 = 1/16514 = 1/(�16)5 = 1/25 = 1/32 

Example 2 Show from the definition that (5114)112 = 5114 · 1 12 = 5 118 . 

5114 = �5 where (�5)4 = 5 
(5 114)112 = �5114 = �(�5) = �5 where (�5)8 = 5 

(5 1/4)1/2 = 51/8 

Example 3 Show that (am)" = am" for all m and n. 
We show this by allowing m to be any value and considering in turn the 

cases where n is (i) a positive integer, (ii) a positive fraction, and (\ii) any 
negative value. 

(i) If n is a positive integer 
(am)" = am . am to n factors 

= am + m+m + . . . = am" 

(ii) If n is a positive fraction, say p/q, where p, q are positive integers, then 
(am)" = (am)P/q 

Now by (i) 

therefore 

(iii) If n is negative, we replace it by -k, where k is positive. Therefore 
(am)" = (am) - k 

and 

as required. 
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Exercises 1f 

1 Evaluate (i) 27513, (ii) (36) - 312, (iii) (8)713, (iv) 16- 114. 

x - 2y3z _: 4 9 {jabc - 4 

2 Express with positive indices (i) 6 
x 3 _ 3 4 , (ii) 41 3b _ 3 . x y z y a  c 

x-a 
3 Show that ✓ x -✓ a = 

✓ ✓ 
. x+ a 

1 ✓x +✓a 
[ Hint: multiply by ) : : ) : ] 

Deduce that
✓ ✓ 

= x - a x-a 
4 Simplify (4·2" + 1 - 2" + 2)/(2" + 1 - 2"). 
5 Show that (xy)" = x"y". Treat separately the cases n is (i) a positive integer, 

(ii) a positive fraction, (iii) a negative quantity. 

1.8 Logarithms 
The logarithm of a positive number N to the base a is defined as the power 
of a which is equal to N. Thus, if 

then x is the logarithm of N to the base a, written 
X = loga N 

(1.22) and (1.23) are by definition equivalent, so we have 
alog. N = N 

Since a1 = a and a0 = 1 ,  it follows that 
loga a = 1 
loga 1 = 0 

for all a (  #0). 
Example 1 Evaluate (i) log3 9, (ii) log9 3, (iii) log4 64. 

(i) Since 32 = 9, log3 9 = 2 
(ii) Since 9112 = 3, log9 3 = ½ 
(iii) Since 4 3 = 64 log4, 64 = 3 

(1.22) 

( 1 .23) 

( 1 .24) 

(1.25) 
(1.26) 

The laws for the manipulation of logarithms are derived directly from the 
laws of indices: 

RULE I 
For, if loga b = X and loga c = y, 

RULE II 

b = ax and c = aY 

be =  ax . ay = ax +y by (1.14) 
loga (bc) = X + y = loga b + loga c 

loga G) = loga b -loga c 

(1.27) 

(1.28) 
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For, with the notation above, 

therefore 

RuLE III 

b ax 
- = - = ax -Y by ( 1 .15) C aY 

log0G) = x -y = log0 b - lo� c 

lo�(bP) = p lo� b 
For, with the notation above, 

bP = (ax)p = apx 

loga bP = px = p loga b 

( 1 .29) 

We have just seen in Example 1 that the logarithm of a number may 
be calculated to any base. Tables of logarithms to the base 1 0 (common 
logarithms) are in existence and are very useful for arithmetical calculations. 
It is not difficult to use these tables to calculate the logarithm of any number 
to any specified base. We need the following transformation rule: 

loga N = loga b.logb N (1 .30) 

For if y = logb N, N = bY 

log0 N = log0 (b') = y log0 b 
log0 N = log0 b .  logb N 

If we put N = a in ( 1.30), we obtain 
loga a = loga b.logb a = 1 

1 
log0 b = -1 

-
ogb a 

Another useful form for ( 1.30) is then 

1 logb N oga N =-1 -­ogb a 

( 1 .31 )  

( 1 .32) 

Example 2 Use the table of common logarithms to evaluate (i) log2 9, 
(ii) log3 1 6. 

. log1 0  9 0·9542 
(1) log2 9 = log10 2 = 0·30 1 

= 3· 1 7 

( . .  ) 1 1 6 = log 1 0 1 6  = 
1 ·2041 = 2_524 11 og3 log 1 0  3 0·4771 

by calculator or by tables as shown. 

number 
0·9542 
0·301 

1 ·2041 
(}4771 

log 
T-9796 
T-4786 
0·5010 

0·0806 
1·6786 
0·4020 
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Example 3 Show that log., (a2 - x2) = 2 + log0 ( 1 - ::} 

log0 (a2 - x2) = log0 [ a2( 1 - ::) ] 

= log0 a2 + log., ( 1 - ::) 

= 2 + log0 ( 1 - ::) 

Example 4 Show that log0 b . logb c . log,, a = 1. 
log0 b . logb c = log., c by ( 1.30) 

therefore, multiplying by loge a 

Exercises lg 

log0 b.  logb c . log,, a = log., c . log,, a 
= log., a = 1 

1 Evaluate (i) log3 27, (ii) log113 27, (iii) log2 16, (iv) log112 32, (v) logx x3, 
(vi) logy3 y, (vii) log11x x

6 , (viii) log11x x". 

( 2b b2 ) 
2 Show that log0 (a + b)2 = 2 + loga 1 + a +  a2 • 

3 Evaluate (i) log6 12, (ii) log3 24. 
4 If log0 b = logb c = log,, a, show that a = b = c. 
5 If u, v, s, t are all positive, show that 

the logarithms all being to the same base. 

1.9 Equations in which the unknown is an index 
Some of the techniques used to solve this type of equation are illustrated 
by the following examples. 
Example 1 Solve the equation 3x2 = 9x +4_ 

3x2 = 9x +4 = (32t+4  = 32(x +4) 

Taking logarithms to the base 3, we obtain 
x2 = 2(x + 4) 

x2 - 2x - 8  = 0 
(x - 4)(x + 2) = 0 

x = 4 or x = - 2  
Example 2 Solve the equation 23x+ 1 = 5x +  1. 
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Taking logarithms on both sides, we obtain 
(3x + 1) log10 2 = (x + 1) log10 5 

(3 log10 2 -log10 5)x = log10 5 -log10 2 
(log10 8 -log10 5)x = log10 5 -log10 2 

log10 5 -log10 2 log10 t 
X = = ---8 

log10 8 - log10 5 log10 -s 

= 0·3979 = 1·95 X 0·2041 

Example 3 Solve for x: 9x -4 x 3x + 3 = 0. 
(32Y -4 X 3x + 3 = 0 

3zx -4 X 3x + 3 = 0 
(3x)2 -4 X 3x + 3 = 0 

(3x - 1 )(3x -3) = 0 
3x = 1 or 3x = 3 
x = 0 or x = 1 

Example 4 Solve for x: logx 9 + logx2 3 = 2·5. 

number 

0·3979 
0·204 1 

We first try to express all the logarithms to the same base. 

log 

1·5998 
T-3098 
0·2900 

Now by (1.30) logx2 3 = logx2 x .  logx 3 and logx2 x = ½ since (x2)112 = x. 
Therefore 

logx2 3 = ½ logx 3 = logx 3t = logx ✓3 

Thus, the equation becomes 
logx 9 + logx ✓3 = 2·5 

logx 9✓3 = 2·5 
9✓3 = x2 · 5 

Whence, by inspection, we see that x = 3. 
Otherwise 

log 10 9✓3 = 2·5 log10 x 
I _ log10 9✓3 _ log10 32 ·5 

_ 1 3 oglO  X - 2·5 - 2·5 - oglO 

x = 3  
Example 5 Solve the equations 2x + Y = 8, 32x - Y = 27. 

From the first equation, we have, after taking logarithms to the base 2, 
x + y = 3  

From the second equation, after taking logarithms to the base 3, 
2x -y = 3  
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Thus our equations are equivalent to 
x+y = 3  2x - y = 3  

(These equations would have resulted, after some simplification, whatever 
base had been chosen for the logarithms.) 

Adding the last two equations gives 3x = 6, therefore 
x = 2 and y = 1 

Exercises lh 
1 Find X if 3x = 7·83. 
2 Find x if logx 2·69 = 2. 
3 Solve for x: (i) 32x - l = 5x; (ii) 74x + 2  = 93x - 1 . 

4 Solve the e�uation 2x' = ¼Sx. 
5 Find x if 9x = 3 sx - l_ 
6 Solve the equation 52x - 5 1 + x  + 6 = 0. 
7 Solve the equation 42x = 26x - 1 . 

8 Find x if logx 8 - logx, 16 = 1. 
9 Find x if logx 3 + log3 x = 2·5. 

10 Solve the simultaneous equations 2x +y = 6, 3x -y = 4. 

Exercises 1 
1 Solve the simultaneous equations x + 2y = 7, x2 + 2y2 = 17. 

2 Express (2x2 + 8x + 7)/(x2 + 4x + 5) in the form b a - - -�-(x + c)2 + d 
and state the values of a, b, c and d. 

3 Solve the equation 2x _ 3 i - x = 6. 

[WJC] 

4 Show that (a + -Jb)2 = a2 + b + 2a-Jb. Hence evaluate the square root 
of 9 + 4-J5 in the form c + -Jd. 

5 Given the simultaneous equations x2 - 6xy + 1 ly2 = 3a2, x2 - 2xy -
3y2 = 5a2, derive an equation in x and y only, and hence solve the 
equations for x and y in terms of a. [JMB, part] 

6 Express in partial fractions (8x + 15)/(x2 + 4)(x - 3). 
a a(l - t) 7 If X = 2 and Y = -- - , show that ( Y  + a)2 = 4aX. (1 + t) 1 + t 

8 Solve completely the equation (x2 + x)2 = 5x2 + 5x - 6. [LU, part] 
. . l f . 18y - 10y2 

9 Express m partia ract10ns (3 _ y)(l _ y)2 • 

10 Find the range of values of x for which x(x -
6
2) > 2. x+ 

. x(x -1)  11 For what values of x 1s 3 > O? 2x+ 
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12 By putting y = x +!__, solve the equation 2x4 - 9x3 + 14x2 - 9x + 2 = 0. 
X 

13 Solve the equation J(2x -1) -J(x -1) = 1. 
14 If p2 = qr, show that logq p + log, p = 2 logq p log, p. 
15 Solve the equation log3 x + logx 3 = �-

x -2 x -3 
16 Solve the inequality - -

3 > - - . 
x - x+4 

17 Verify that (12 + m2 + n2)(x2 + y2 + z2) - (Ix + my +  nz)2 = (ly -mx)2 

+ (mz -ny)2 + (nx - lz)2• Deduce that (Ix + my +  nz)2 ::,;; (12 + m2 + n2) 

x (x2 + y2 + z2). 
18 If a, b and c are positive and unequal show that 

(a + b + c)2 < 3(a2 + b2 + c2) 

19 If a, b, c are positive and unequal show that 

(a + b + c{� + 
i 
+ 

D 
> 9 

20 Solve the equation 27x - 3 = 3 x 9x - 2. 

21 By making the substitution y = x + !__, solve the equation x4 + 8x3 + 
X 

17x2 + 8x + 1 = 0. [WJC, part] 

22 Solve for x: log 1 0 (
x2 + 2� l = 1. 

23 Solve for x: 2x X 3x + l : 
5l + 1. 

u2 v2 1 1 1 24 If -+ - = 12 and -+ - = -
3 

find the values of uv and hence solve the 
V U U V 

equations. 
25 Solve the equation J(2x + 3) -J(x -2) = 2. 

a(l + t 2) 2bt x2 y2 
26 If x = 2 , y = - -2 , show that 2 -b2 = 1. 

1 - t 1 - t a 
27 If a and b are two real numbers such that a +  b = 1, prove that 4ab ,:,;; I .  

Hence or otherwise show that a2 + b2 � ½. [JMB, part] 

y+l 
28 Find y if 

l
y -3

1 

< 2. 

29 Use the result of question 17  to show that (a3 + b3 + c3)2 ::,;; (a2 + b2 + c2) 

x (a4 + b4 + c4). 

30 Solve the equation log 1 0 (x2 + 9) -2 log 1 0 x = 1. 
31 Solve the equations x + 2y = 3, 3x2 + 4y2 + 12x = 7. 
32 Solve the equations 32x +y = 12, 2x - y = 4. 

. (x -2)(x -3) 
33 For what values of x 1s x _ 4 � O? 

34 Solve the equation 22 + 2x + 3 X 2x -1 = 0. 

35 If a2 + b2 = 23ab show that log a +  log b = 2 log (
a ; b). 

36 Solve the inequality ;
y 
� \ > 1. 
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1 1 37 If x = Jp+ Jp ' y = .jp+ 
.jp ' show that y2 - 2 = x(x2 - 3). 

38 By putting a = log a, /J = log b, y = log c in the identity a(/J - y) + 
/J(y - a)+ y(a - /J) = 0, show that 

where the logarithms are taken to any base. 
39 Show that (x - 2) is a factor of 6x4 

- 7x3 - 27x2 + 28x + 12 and hence 
solve the equation 6x4 - 7x3 - 27x2 + 28x + 12 = 0. [AEB] 

40 When f(x) = x3 + ax2 + bx + c is divided by x - 3, the remainder is 30. 
If x2 - 4 is a factor of f(x), find the values of a, b and c. [AEB] 41 For what values of x is Ix -21 > Six -31? [LU] 

42 Find the set of values of x for which _!_2 < _!__2 . [LU] x - x+ 
43 Given that y = log,, x3 and z = logx a, show that yz = 3. Hence find the 

numerical values of y and z when log,, (3 loga x) - loga (logx a) = log,, (27). 
[AEB] 

44 Given that log2 (x - Sy+ 4) = 0 and log2 (x + 1) - 1 = 2 log2 y, find the 
values of x and y. [AEB] 

45 When the expression x3 + ax2 + bx + c is divided by x2 - 4, the re­
mainder is 18 - x; and when it is divided by x + 3, the remainder is 
21. Find the remainder when the expression is divided by x + 1. 

[AEB] 
46 Solve the simultaneous equations 

�+� = 1  3 4 
3 2 7 
X y 12 [C] 

47 If 2 logY x + 2 logx y = S show that logr x is either ½ or 2. Hence find 
all pairs of values of x and y which satisfy simultaneously the equation 
above and the equation xy = 27. [JMB] 

48 The variables x and y are connected by the relation y = ax", where a 
and n are constants; y = 3 when x = 4 and y = 2 when x = 9. Find the 
exact values of n and a. [C] 

49 Find all the solutions of the system of equations Sy+ 1 = 2xy 
3x + y - 1 = xy [O] 

50 Find the set of values of x for which (2x - l)(x + 4) > 0. [LU] x - S  



2 
Finite sequences and series 

2.1 Sequences and series 
Sequences 

A sequence, or progression, is a set of numbers in some definite order, the 
successive terms ( or numbers) of the sequence being formed according to some 
rule. 

For the sequence of positive integers 1, 2, 3, 4, ... , the rth term is the integer 
r; for the sequence 1, 4, 9, 16, ... , the rth term is the number r2• 

It is usual to denote the rth term of a general sequence by u,, and the 
sequence by u1, u2, u

3 
• • •  u, . . . .  The rule defining a sequence is often given 

in the form of some formula for u, in terms of r although this is not neces­
sarily so. (See Example 2.) Thus, for our first sequence u, = r; for our second 
sequence u, = r2 • 
Example I Find u, in terms of r for the sequences 

(i) 3, 5, 7, 9, ... 
(ii) 1, ¼, !, -Ii,, -A-, . . .  

(iii) 1, 4, 3, 16, 5, 36, 7, 64, .. . 
(iv) -1, 1, -1, 1, -1, 1, .. . 
(v) 1, -2, 3, -4, 5, -6, . .  . 

(i) By inspection, we see that the terms can be written 

2 X 1 + 1, 2 X 2 + 1, 2 X 3 + 1, 2 X 4 + 1, .. . 
u, = 2r+l 

(ii) By inspection, we see that the terms can be written 
1 1 

12 ' 22 ' 32 ' 42 ' ... 

u, = 2 r 
(iii) If r is odd, u, = r, if r is even u, = r2 • Since 2r is always even 

and 2r + 1 always odd, u2, + 1 = 2r + 1, u2, = 4r2 adequately describe the 
sequence. 

(iv) The odd terms are - 1, the even terms + 1. Therefore, u2, + 1 = -1, 

30 
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u2, = + 1. However, the sequence may be described quite adequately by one 
formula in this case: u, = ( - 1)'. 

(v) By using the result (iv), we have 
u, = ( - 1)'( - r) = ( - l)'+ lr 

Example 2 Find the first five terms of the sequence defined as follows: the 
first two terms are 1 and 3 respectively; each later term is formed by multiply­
ing its predecessor by 3 and subtracting the next previous term, i.e. 

u, = 3u,_ 1 - u,_ 2 
U1 = 1 
U2 = 3 
U3 = 3U2 - U 1 = 8 
U4 = 3U3 - U2 = 24 -3 = 21 
U5 = 3U4 - U3 = 3 X 21 - 8 = 63 - 8 = 55 

The first five terms are thus 1, 3, 8, 21, 55. (Note: this rule adequately defines 
a sequence although it would not be easy to find a formula for u, in terms 
of r.) 

Series 
A series is obtained by forming the sum of the terms of a sequence. A finite 
series is obtained if a finite number of terms of the sequence are summed. 
The sum of the first n terms of the sequence u1, u2, • • •  is generally denoted 
by Sn : 

(2.1) 
Sn is the sum of the first n terms of the series u1 + u2 + u3 + . . .  , or, as it 
is sometimes put, Sn is the sum to n terms of the series u1 + u2 + u3 + . . . . 
The rth term of the series is u,, the corresponding term of the sequence from 
which the series is derived by summation. 

Sn = U1 + U2 + U3 + · · · + Un 
is often denoted by 

L U, = U1 + U2 + . . . + Un r = l 
(2.2) 

1: is the Greek capital letter sigma and the symbol above means evaluate u, for all values of r from 1 to n and sum the results. The specific form of u, may be inserted. Thus, with u, (the general term of the series) = r 

In the same way 

n n L u, = L r = 1 + 2 + 3 + . . .  + n 
r = l r = l 

L u, = Um + Um + 1 + . . .  + Un (n > m) 
r ;::; m  

(2.3) 

Example 3 The sum of the first n terms of a series is given by the formula 
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S" = n2 + 3n for all values of n. Find an expression for the rth term of the 
series. 

If u, denotes the rth term 

u, = s, -s,_ 1 
(2.4) 

= [u 1 + u2 + . . .  + u,_ 1 + u,] - [u 1 + u2 + . . .  + u,_ 1 ] 

= r2 + 3r - [(r -1)2 + 3(r -l)] 

Therefore 
= r2 + 3r - [r2 + r -2] 

u, = 2r + 2 
4 7 Example 4 Evaluate (i) L r2, (ii) L 2'. 

4 
r = l r = 3 

(i) I r2 = 12 + 22 + 32 + 42 = 1 + 4 + 9 + 16 = 30 
r = l 

7 
(ii) I 2' = 23 + 24 + 25 + 26 + 21 

r = 3 
= 8 + 16 + 32 + 64 + 128 = 248 

Exercises 2a 
1 Evaluate the first five terms of the sequences whose rth terms (u,) are 

(i) 3r-1, (ii) ( -½)' - 1 , (iii) 2' + r2 . 

2 Find a formula for u, for the sequences 
(i) 1, 8, 27, 64, 125 ... 

(ii) 1, -4, 9, -16, 25 ... 
(iii) ½, 2, 8, 32, 128 . . .  

3 A sequence is defined by the rule u1 = 1, u2 = 2 and u, = u,_ 1 + u,_ 2 
for r � 3. Find the first seven terms of this sequence. [This is the Fibonacci 
sequence; as r increases, the ratio u,+ i fu, approaches the value ., the golden ratio of Pythagoras.] 

4 If u 1 = -1, u2 = -5 and u, = a+ br, find a, b and u5 • 

5 Evaluate u, for the sequences 
(i) 0, 7, 26, 63, 124 . .. 

(ii) 2, 4, 6, 8, 10 . .. 
(iii) 2, 11, 32, 71, 134 . .  . 
(iv) 3, 9, 27, 81, 243 .. . 
(v) 2, -4, 8, -16, 32 ... 

(vi) 5, 5, 35, 65, 275 .. . 
(vii) 6, -36, 216, -1296 .... 

6 Find the first six terms of the sequence defined by u 1 = 0, u2 = 2 and 
t,-u, = u,_ 1 - u,_ 2 for r > 2. Hence evaluate L u,. 

r = l 
7 u1 = 0, u2 = 3, u3 = 12, and u, = a+ br + cr2• Find a, b, c and 

5 7 
(i) I u, (ii) I u,. 

r = 1 r = 4 
8 Evamate (i) S8 for the series 1 + 3 + 6 + 9 + 12 + . . .  , (ii) S5 for the series 

3 + 9 + 27 + 81 + . . . .  
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9 The sum of the first n terms of a series is given by Sn = n3 - 2n for all 
· values of n. Find u,. 

1 0  1 0  
10 If u, = log 1 0  r, show that L u, = L log 1 0  r = log 1 0  3 628 800. 

r : l  r : l  

2.2 The arithmetic sequence and series 
If the consecutive terms of a sequence differ by a constant number, their 
terms are said to form an arithmetic sequence or an arithmetic progression. 
Thus, for example, the numbers 1, 3, 5, 7, . . .  are in arithmetic progression, 
the difference between consecutive terms being 2. 

An arithmetic sequence is completely defined by its first term (convention­
ally denoted for the general arithmetic sequence by a) and the common 
difference (the difference between consecutive terms) denoted by d. The general 
arithmetic sequence is then a, a + d, a + 2d, a + 3d, . . . , a + (r -1 )d, . . .  

and the rth term of the sequence is 
u, = a+ (r - l)d 

(2.5) 

(2.6) 

If the numbers u1, u2 , u3 , u4, . . .  , u,_ 1 , u, are in arithmetic progression, u2 , u3 , . . .  , u,_ 1 are said to form (r - 2) arithmetic means between u 1 and u,. This is simply an extension of the usual notion of an arithmetic mean (or 
average). The three quantities a -d, a, a+ d are in arithmetic progression 
and a is the arithmetic mean of the other two. 

The sum of the terms of an arithmetic sequence form an arithmetic series. 
For the general sequence (2.5), the sum of the first n terms is Sn = a+ (a+ d) +(a+ 2d) + . . .  +a+ (n - l)d (2.7) 

For this particular series, we can obtain a closed formula in terms of n for Sn Sn = a+ (a+ d) +(a+ 2d) + . . .  +[a+ (n - 2)d] +[a+ (n - l )d] 
and Sn = [a + (n - l)d] +[a+ (n - 2)d] + . . .  +(a+ d) + a 
On addition, since corresponding pairs add to 2a + (n - l )d, 

therefore 

2Sn = [2a + (n - l )d] + [2a + (n - l )d] + . . .  n times 
= n [2a + (n - l)d] 

n Sn = 2 [2a + (n - l)d] (2.8) 

This result can be written in another useful form. Since a is the first term, l = a+ (n - l)d is the last term of the arithmetic series above and a+ l = 2a + (n - l)d 
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we have 

(2.9) 

Example 1 Find three numbers in arithmetic progression whose sum is 21 
and whose product is 3 15. 

Let the numbers be a -d, a, a +  d. Then a -d + a +  a +  d = 21 ,  therefore 
3a = 21, so that a = 7. 

a(a -d)(a + d) = a(a2 - d2) = 3 15  
a2 - d 2 = 45 (since a = 7) 

d2 = 4  so that d = ± 2 
and the required numbers are 5, 7, 9. 
Example 2 Find six arithmetic means between -3 and 1 8. 

We require eight terms in arithmetic progression, -3 being the first and 
18 the eighth. If their common difference is d, then 

18  = -3 + 7d so that d = 3 
The arithmetic means are 0, 3, 6, 9, 12, 15. 
Example 3 Evaluate the nth term and the sum of the first n terms of the 
arithmetic series: 3 + 7 + 1 1  + 15 + . . . .  Evaluate .u1 1  and S20 • 

The first term is 3 and the common difference 4. By (2.6), we have 
Un = 3 + (n -1)4 = 4n -1 

For Sn we have, by (2.8), 
n n Snl = i2(3) + (n -1)4] = 

2
(4n + 2) = 2n2 + n 

therefore 
U 1 1  = 4(1 1 )  -1 = 43 
S20 = ¥[2(3) + 19 (4)] = 820. 

Example 4 The first two terms of an arithmetic series are -2 and 3. How 
many terms are needed for the sum to equal 306? 

The first two terms a, a + d are - 2 and 3 ,  so that a = - 2 and d = · 5 .  
The sum of the first n terms is thus 

therefore, if Sn = 306, 

n Sn = i -4 + 5(n -1)] 

n = -[5n -9] 2 

5n2 - 9n = 612 
5n2 - 9n -612 = 0 

(5n + 51)(n - 12) = 0 
n = 12 or 5 1 -, 
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Thus, 12 terms are required. 
n 

Example 5 Obtain a formula for L r in terms of n. (The sum of the first 
r ; l  

n positive integers.) 
n 

�> = 1 + 2 + 3 +  ... + n  
r ; l  

is the sum of the first n terms of an arithmetic series, whose first term is 1 
and common difference 1. Therefore 

n n J/ = ·i2(1) + (n -1)  1] 

I, 
r = 

n(n + 1) 
r ;  1 2 (2. 10) 

This result can be used to obtain the sum of any arithmetic series. For the 
series of Example 3 

s. = 3 + 7 + 1 1  + 15  ... to n terms 
n 

= I (4r -1) 
r ;  1 

n n 
= 4 I r - I l  

r ; l  r ; l  

4n(n + 1) - -- -n 
2 

(u, = 4r - 1) 

C t 1 = 1 + 1 + 1 + ... n times = n) 

= 2n2 + 2n -n = 2n2 + n 

as before. 

Exercises 2b 
1 Find three numbers in arithmetic progression whose sum is 3 and whose 

product is -15. 
2 The sum of three numbers in arithmetic progression is 18 and the sum 

of their squares is 206. Find the numbers. 
3 Find 12 arithmetic means between -5 and 60. 
4 Find the sum of the first 16 terms of the series 3½ + 4¾ + 6 + 7¼ + ... . 
5 The first term of an arithmetic series is 7, the last is 70 and the sum is 

385. Find the number of terms in the series and the common difference. 
6 Find the sum of the first n terms of the series -1 + ( - 3) + ( -5) + 

( -7)+ . . . .  
8 • • 

7 Evaluate (i) L (3r + 2), (ii) L (5r - 7), (iii) L (2 -3r). 
r ;:;;; 1  r = l r = l  

8 The third term of an arithmetic progression is 18, the seventh term is 30. 
Find the sum of the first 33 terms. 

9 Sum the first 2n terms of the series 
(i) 5 + 1 1  + 17  + 23 . . .  
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(ii) a + 3b + 2a + 6b + 3a + 9b + 
(iii) 3a - 2b + 4a - 4b + 5a - 6b + . . .  

10 Evaluate (i) the sum of the positive integers less than 100; (ii) the sum of 
the positive integers less than 100 which are multiples of 3; (iii) the sum 
of the positive integers less than 100 which are not multiples of 7. 

2.3 The finite geometric sequence and series 
If the consecutive terms of a sequence are all in the same ratio, the terms 
are said to form a geometric sequence or a geometric progression. Thus, for 
example, the numbers 1, 2, 4, 8, 16 . . .  are in geometric progression, the ratio 
of any pair of consecutive terms being 2. 

A geometric sequence is completely defined by its first term (conventionally 
denoted for the general geometric progression by a) and the common ratio 
(the ratio of consecutive terms) denoted by r. The general geometric sequence 
is then 

a, ar, ar2, ar3, . . .  , ar"- 1 , 

The nth term of the sequence is 
(2.11) 

(2.12) 
If the numbers u1 , u2 , u3 , • • •  , un - i , un are in geometric progression, u2 , 

u3 , • • •  , un - i are said to form (n - 2) geometric means between u1 and un . 
This is simply an extension of the usual meaning for the geometric mean, 
G, of two numbers c, d, namely, G = Jed. The three quantities a/r, a, ar are 
in geometric progression and a is the geometric mean of the other two. 

The sum of the terms of a geometric sequence form a geometric series. 
For the general sequence (2.11), the sum of the first n terms is 

(2.13) 
As with the arithmetic series, we can obtain a closed formula for Sn in 

terms of n: 

therefore 
rS" = ar + ar2 + . . .  + ar"- 1 + ar" 

On subtraction, all terms cancel except the first and last; therefore 
S"(l -r) = a - ar" 

S = a( l  -r") = a(r" - 1 )  
n 1 - r r - 1  

(2.14) 

Example I Find three numbers in geometrical progression whose sum is 
28 and whose product is 512. 

Let the numbers be a/r, a, ar, then 
a -.a .ar = a3 = 512 a =  8 
r 



Therefore 
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8 
-+ 8 + 8r = 28 
r 

8r2 + 8r + 8 = 28r 
2r2 - 5r + 2 = 0 

(2r - l)(r - 2) = 0 
r = ½ or r = 2 

The required numbers are, therefore, !, 8, 8 x 2, i.e. 4, 8, 16. 
Example 2 Find four geometric means between 2 and 486. 

We require six numbers in geometric progression such that the first is 2 
and the sixth 486. Let r be the common ratio. Then by (2.12) 

2r5 = 486 
r5 = 243 

r = ..j'243 = 3 
Therefore, the required geometric means are 2 x 3, 2 x 32

, 2 x 33
, 2 x 34, 

i.e. 6, 18, 54, 162. 
Example 3 Find the sum of the first n terms of the series 1 - ½ + ¼ - ½ + A- - -b + . . . . 

The series is a geometric series first term 1 and common ratio-½. Therefore, 
by (2.14), 

1 [1 - ( - ½)"] 
Sn = 

l - (-½) 
Sn = j [l -( -½)n] = i -i( -½)n 

Example 4 The first and last terms of a geometric series are 2 and 2048 
respectively. The sum of the series is 2730. Find the number of terms and 
the common ratio. 

Let the number of terms be n and the common ratio r. Then by (2.12) 
2rn - l = 2048 

and by (2.14) 
2(rn - 1)  

1 = 2730 
r -

Therefore, rn - i = 1024 and (rn - 1)/(r - 1) = 1365, and these are the simul­
taneous equations we must solve for r and n. Substituting from the first into 
the second, we obtain 

10:� � 
l = 1365 

1024r - 1 = 1365r - 1365 
1364 = 341r 

r = 4  
4n - l = 1024 
n - 1 = 5  i.e. n = 6 

The number of terms is 6 and the common ratio 4. 
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Exercises 2c 
1 Find three numbers in geometric progression whose sum is 13 and whose 

product is - 64. 
2 The product of three numbers in geometric progression is 1, their sum 

is -i. Find the numbers. 
3 Find three geometric means between 5 and 80. 
4 The third term of a geometric sequence is -1, the seventh term is 

- 81. Find the ninth term. 
5 The second term of a geometric sequence is 24, the fifth term is 81. 

Find the seventh term. 
6 Find the sum of the first eight terms of the series ½ + ½ + i + . . . .  
7 Evaluate 1 + .J3 + 3 + 3.J3 + . . .  + 81.J3. 
8 The first term of a geometric series is 3, the last term 768. If the sum of 

the terms is 1533 find the common ratio and the number of terms. 
9 The pth, qth and rth terms of an arithmetic sequence are in geometric 

. Sh h h . . q - r p -q progress10n. ow t at t e common rat10 ts - - or - - . 
p - q  q - r 

10 The sum of the first n terms of a geometric series is 127 and the sum of 
their reciprocals is W . The first term is 1. Find n and the common ratio. 

2.4 The infinite geometric series 
Consider the geometric series (with common ratio ½) 1 + ½ + ¼ + ½ + . . .  

Sn = \- (½r = 2[1 - (½rJ = 2 -(½t- 1 

- 7  

Thus the sum of the first four terms is l l, the sum of the first eight terms 
is lfil. From these results we see that, as we add more and more terms, 
the sum of the series gets nearer and nearer to 2. Indeed, the difference between 
the Sn and 2 is just (½t - 1 , and as n increases so this number decreases and 
approaches zero. We see that Sn tends to 2 as n tends to infinity, since we 
can make Sn as near to 2 as we please by choosing n large enough. The limit 
of Sn as n tends to infinity is 2, which we write Jim Sn = 2, or Sn --+ 2 as n --+  oo. 

n-oo 

We say that the series above is convergent to sum 2, or 'the sum to infinity' 
of the series is 2. 

For the general geometric series a+ ar + ar2 + . . .  
S = a(l - ,n) = _a _ _ _ a_,n " 1 - r  1 - r  1 -r 

Now if -1 < r < 1, rn decreases as n increases. We say that the limiting value 
of rn is zero. Thus, as n increases, Sn approaches the limiting value (denoted 

by S) _a __ We say that the series converges to the sum -1 
a , the sum 1 - r  - r  

to infinity of the series. 
Thus, if -1  < r < 1, the sum to infinity of the geometric series a+ ar + ar2 + . . . is 
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1. a 
Im S = S = -­

n - oo  n 1 - r  
(2.15) 

(The condition - 1 < r < 1 is often written in the form lrl < 1. lrl, the modulus 
of r, is the positive number having the same magnitude as r. Thus 1½1 = ½, 
I - ¼I = ¼, I - 31 = 3, etc. See Section 1 .4.) 

The result (2.15) is only valid if lrl < 1. For the series 1 + 2 + 4 + 8 + . . .  
for which r = 2, Sn increases indefinitely as n increases, and so Sn has no finite 
limit. 

Example I To what sum does the following series converge: 1 - ½ + ½ ­
"t, + . . .  ? 

This is a geometric series with common ratio - ½. I - ½I = ½ is less than 1. 
Therefore, by (2.15) the series converges to sum 

1 1 S =
l ( i )

= 4 = ¾ 
- - "3" "3" 

Example 2 Express O· 777 recurring as a fraction. 
0· 777 recurring = -?u + rk + rok-+ Tllimu + . . .  

that is, it is the limit of the sum of the geometric series whose first term is 
-?u and whose common ratio is Jo ( <  1). Therefore, by (2.15) 

O· 777 recurring = � = ; 
l - 10 

Example 3 For what values of x does the series 
X X X x+--+- -�+--�+ 1 + x (1 + x)2 (1 + x)3 

converge? And to what sum does it then converge? 
1 The series is a geometric series with common ratio --. The series will l+x 

thus converge if 

1_
1 

1
< 1 l+x 

which we write as 
Ix+ 11 > 1 

Thus 
X + 1 > 1 i.e. X > 0 

or 
X + 1 < - 1 i.e. X < - 2 

Thus, the series converges if x > 0 or x < - 2. The limit of the sum of the 
series is then 
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X X 

1 X 1 - - -
l+x l+x 

= l+x 
We also observe that the series will converge if x = 0, for then each and 

every term is zero. The sum will of course also be zero. 

Exercises 2d 
1 Find the sum to which the following series converge: 

(i) 1 -x + x2 
- x3 + .. . (-1  < x < 1) 

(
. ") 1 + 1 + 1 + 1 + ll ; n m nn · · · (iii) % + i,(¾)2 + ¼(¾)4 + . . .  

2 Show that the series 

1 + 
x2

2
: 4 + C2

2
: 4 Y + (x/: 4 Y + · · · 

is always convergent and find the limit of its sum. 
3 Express 0·232323 recurring as a fraction. 
4 Show that if 0 is an acute angle between 0 and n/2, the limit of the sum 

of the series cos 0 + cos 0 sin2 0 + cos 0 sin4 0 + . . .  is sec 0. 
5 Determine the range, or ranges of values of x for which 13x -51 > 7. 

If x has a value which satisfies this condition show that the infinite series 

1+ - - + - - + - - + ( 
7 

) ( 
7 

)
2 ( 7 )3 

3x -5 3x -5 3x -5 · · · 

3x - 5 
has sum 

3 2 x-1 

Exercises 2 
1 The sum of the squares of three positive numbers in arithmetic progression 

is 155. The sum of the numbers is 21. Find the numbers. 
2 The sum of the first n terms of a geometric series is 364. The sum of their 

reciprocals is ffl. If the first term is 1, find n and the common ratio. 
3 The sum of the geometric progression a, ar, ar2, ar" - 1 is S. The product 

of these n terms is P. Find R, the sum of the reciprocals of these n terms, 

and show that (¾)
" = P2 • [AEB] 

4 If a and r are both positive, prove that the series log a + log ar + log ar2 

+ . . . + log ar" - 1 is an arithmetic series and find the sum of the terms. 
5 The first term ot an arithmetic senes is 3p + 5, where p is a positive 

integer. The last term is 17p + 17 and the common difference is 2. Find, 
in terms of p (i) the number of terms, (ii) the sum of the series. Show that 
the sum of the series is divisible by 14, only when p is odd. 

[AEB] 
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6 Find the sum of each of the following: 
(i) All the odd numbers with three digits of which the first digit is not 

zero. 
(ii) All the odd numbers less than 1000. 
(iii) All the numbers less than 100 which end in 5 or 7. 

7 If m is a positive integer prove that 
( 1  + X + x2 + . . .  + x2m)( l - X + x2 

- x3 + . . .  + x2m) 
= ( 1 + x2 + x4 + . .  . + x4m) 

8 Write down the nth term of the arithmetic series with first term a and 
common difference d. 

In each of a set of n separate arithmetic series, the first term is 1 .  The 
common difference of the first series is 1, of the second 2, of the third 22, 
and so on. Find, in its simplest form, a formula for the sum of the nth 
terms of the n series. [JMB, part] 9 The third, sixth and seventh terms of a geometric progression (whose 
common ratio is neither 0 nor 1) are in arithmetic progression. Prove 
that the sum of the first three is equal to the fourth term. 

10 The first term of an arithmetic series is 3, the common difference is 4 and 
the sum of all the terms is 820. Find the number of terms and the last 
term. [JMB] 

11 The sum to infinity of a geometric series is S. The sum to infinity of the 
squares of the terms is 2S. The sum to infinity of the cubes is -MS. Find S and the first three terms of the original series. [LU] 

12 Find how many terms of the series 1 + i + ;2 + 
5\ + . . .  must be taken 

so that the sum will differ from the sum to infinity by less than 10- 6• 

13 A ball when dropped from any given height loses 20 per cent of its previous 
height at each rebound. If it is dropped from a height of 40 m, find how 
often it will rise to a height of over 8 m. How far does the ball travel 
before coming to rest? 

14 Find the sum of all the positive integers less than 1000 that are not 
multiples of 3. 

15 The three real, distinct and non-zero numbers a, b, c are such that a, b, c 
are in arithmetic progression, and a, c, b are in geometric progression. Find 
the numerical value of the common ratio of the geometric progression. 
Hence find an expression, in terms of a, for the sum to infinity of the 
geometric series whose first terms are a, c, b. [JMB] 

16 (i) In an arithmetical progression the sum of the squares of five con­
secutive terms equals 20 times the square of the middle term and the 
product of the five terms equals 80. Find the middle term. 

(ii) A nail, 4 cm long, is driven into wood by blows of a hammer. The 
first blow drives it in 2½ cm and each successive blow drives it in 
two fifths of the previous distance (except the last for which the distance 
is less). Find how many blows must be used. 

If the blows are reduced, the ratio of successive distances being 
maintained, find the least initial distance through which the first blow 
must drive the nail in order that the nail may ultimately be driven 
home. [LU] 
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17 The nth term of a series is (an + 5rn) where a and r are constant with 
r # 0 or 1. Find the sum of the first n terms. The nth term of the series 
1 8  + 36 + 64 + . . .  is of the form stated above. Find a and r and the sum 
of the first 1 0  terms. 

18 The first term of a geometric series is 1 8  and the sum to infinity is 20. Find 
the common ratio and the sum of the first six terms. Fmd also in its simplest 
form the ratio of the nth term to the sum of all the subsequent terms 
of the infinite series. [JMB] 

19 If Sn denotes the sum of the first n terms of a geometric progression whose 
first term is a and whose common ratio is r, show that 

(i) Sn(S3n - S2n) = (S2n - Sn)2 

(") m - n Sm +p - Sm 
II r = -�--

Sn +p-Sn 

20 For what values of x do both the series 

1 - x + x2 - x3 + x4 + . . . · X ( X )2 l+
l+x

+ l+x 
+ ... 

converge? 
If for any value of x in this range, the limits of the sum of the two 

series are S 1 and S2, show that S 1S2 = 1 . 
21 Write down the sum of the natural numbers from m to n(n > m) inclusive. 

The natural numbers are arranged in groups thus: 1 + (2 + 3) + (4 + 5 + 6) 
+ (7 + 8 + 9 + 10) + . . .  , so that the rth group contains r numbers. Find 
(i) the first number in the rth group, (ii) the sum of the numbers in the 
rth group. Show that the sum of the numbers in the (2r - l )th group is 
r4 

- (r - 1 )4. [WJC] 
c2 c3 c4 

22 Show that the series c + - -+ 
)2 + 

( )3 + ... converges for all 
l+c ( l+c l+c 

values of c greater than -½. 
If c 1 and c2 are two possible values of c for which the series converges 

and S 1 and S2 are the corresponding sums, show that if c 1 > c2 , S 1 > S2 . 

23 Find for what values of x the series 
. 1 1 - x ( 1  - x)2 ( 1  - x)3 

(i) 1 + x -(1 + x)2 + 
(1 + x)3 - (1 + x)4 + .. · 

.. 1 1 + x  (1 +x)2 ( 1  +x)3 
(n) 1 + 3x + 

(1 + 3x)2 + 
(1  + 3x)3 + 

(1  + 3x)4 + .. · 

converge, and prove that the sum to infinity of the first series is ½. [LU] 
24 If Tn = an - i , a #  1, and Sn = T1 + T2 + . .. + Tn, find, in terms of a and n, 

in their simplest form, 
(i) T1 + T2 + T3 + . . .  + Tn 

(ii) T1 T2 T3 • . • T,. 
(iii) S 1 + S2 + S3 + . . .  + Sn [AEB] 

25 If p, q, r, s, are successive terms of an arithmetic sequence show that 



Exercises 43 

1 1 1 1 l . . . h . -, -, -, - are a so successive terms m an ant mehc sequence. 
qrs rsp spq pqr 

26 The pth, qth and rth terms of a sequence are P, Q and R respectively. 
Show that 
(i) if the sequence is arithmetic, 

P(q - r) + Q(r - p) + R(p -q) = 0 
(ii) if the sequence is geometric, 

(q -r) log P + (r -p) log Q + (p - q) log R = 0 
27 The sum of the first p, q, r terms of an arithmetic series are P, Q, l< 

respectively. Show that 
Pqr(q - r) + Qpr(r - p) + Rpq(p - q) = 0. 

28 An arithmetic series and a geometric series have r as the common 
difference and the common ratio respectively. The first term of the 
arithmetic series is 1 and the first term of the geometric series is 2. If the 
fourth term of the arithmetic series is equal to the sum of the third and 
fourth terms of the geometric series, find three possible values of r. 
When lrl < 1 find, in the form p + qJ2, (i) the sum to infinity of the 
geometric series, (ii) the sum of the first ten terms of the arithmetic 
series. [AEB] 

29 The sum of three real distinct quantities in geometric progression is p, 
and the sum of their squares is q. Show that the middle one is equal 

p2 -q to 2p' and that p2/q must be in one or other of the ranges: 
2 2 

} < E.._ <  1, 1 < E.._ <  3. [WJC] 
q q 

30 The first term of a geometric series is 2 and the second term is x. State 
the set of values of x for which the series is convergent. Show that when 
convergent the series converges to a sum greater than 1. If x = ½, find 
the smallest positive integer n such that the sum of the first n terms differs 
from the sum to infinity by less than 2- 10• [LU] 

31 The sum of the first n terms of a series is 2n2 + n. Find the nth term of 
the series and show that the series is an arithmetic progression. State the 
values of the first term and the common difference. Find the least value 
of n for which the sum of the first n terms of the series is greater than 1000. [CJ 

32 A geometric series with first term 3 converges to the sum of 2. Find the 
fifth term in the series. [LU] 

33 (i) The sum to infinity of a geometric progression is 3. When the terms 
of this geometric progression are squared a new geometric progression 
is obtained whose sum to infinity is 1 ·8. Find the first term and the 
common ratio of each series. 

(ii) Express the recurring decimal 0·32 1 in the form p/q, where p and q 
are integers with no common factor. [AEB] 

34 Show th::tt when the 2n terms of the series 
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are bracketed in pairs, an arithmetic progression is formed. Hence find 
the sum of the given series. [CJ 

35 The sunt of the first twenty terms of an arithmetic progression is 45, and the 
sum of the first forty terms is 290. Find the first term and the common 
difference. Find the number of terms in the progression which are less 
than 100. rJMBJ 



3 

The binomial theorem 

3.1 The binomial theorem for a positive integral index 
In this section, we shall obtain a formula for the expansion, in terms of 
powers of x, of (1 + x)", where n is a positive integer. 

First, we observe that by ordinary multiplication 
(1 + x) = 1 + x 

(1 + x)2 = (1 + x)(l + x) = 1 + 2x + x2 

(1 + x)3 = (1 + 2x + x2)(1 + x) = 1 + 3x + 3x2 + x3 

(1 + x)4 = (1 + x)3(1 + x) = 1 + 4x + 6x2 + 4x3 + x4 

(1 + x)5 = (1 + x)4(1 + x) = 1 + 5x + 10x2 + 10x3 + 5x4 + x5 

and so on. 
From these few results, we notice that in each case the first and last 

coefficients are unity. Further, we notice that each of the other coefficients 
in (1 + x)" + 1 is the sum of the corresponding coefficient and the preceding 
one in the expansion of (1 + x)". Thus we can lay out the coefficients for 
successive powers in the form of a triangle (Pascal's triangle) using these two 
rules. The last two rows which are obtained in this way are, as is readily 
verified, the coefficients in the expansion of (1 + x)6 and (1 + x)7 respectively. 

1 1 
1 2 1 
1 3 3 1 
1 4 6 4 l 
1 5 10 10 5 1 
1 6 15 20 15 6 1 
1 7 21 35 35 21 7 1 etc. 

In order to be able to write down the expansion 01 (1 + x)" in powers of x, 
we need a formula for the coefficient of x' in the expansion of (I + x)". We 
shall denote this by the symbol (�) so that 

(1 + x)" = 1 + G)x + (;)x2 + . . .  + (;)x' + . . .  + (n
: 

1)x"- 1 + x" (3.1) 

45 
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Our problem is then to find a formula for (:) in terms of n and r. 
It can be seen that the coefficients in the row corresponding to (1 + x)" 

follow the pattern 

Thus 

n(n - 1) n(n - l)(n -2) 
l, n, 1 .2 ' 1 .  2. 3 ' · · · 

(
6
) = 

6(6 - 1)(6 -2) 
= 5.4 = 20 

3 1 .2 . 3  

(
4
) = 

4(4 -1) 
= � = 6 

2 1 .2 1 .2 
and so on. We shall show that 

(
n
) = n(n -l)(n -2) ... (n -r + 1 )  

r r(r - 1 )(r -2) . . .  3 .  2 .  1 (3.2) 

is the appropriate result for the general case. There are r factors in both 
numerator and denominator. In the numerator the factors begin at n and 
decrease by one each time to n - r + 1 ;  in the denominator they begin at 
r and decrease by one each time to 1. Equations (3.1 ) and (3.2) constitute 
the binomial theorem when n is a positive integer. 

Before proving this result, we shall verify its correctness for some of the 
cases already considered. 
Example I Use (3.2) to evaluate the coefficients of (i) x, x2, x3, x4, x5 in 
( 1  + x)5 and (ii) x, x2, x3, x4, x5, x6 in ( 1  + x)6 • 

(i) (
5

) = � = 5 (
5
) = � = 10 1 1 2 2 . 1  

(
5
) = 5.4 .3  

= 10 (
5
) = 5 . 4 . 3 .2 = 5 3 3.2.1 4 4.3.2.1 

which are the results we had before. 

(
5
) 

5 . 4 . 3 . 2 . 1 . . Note 5 = 5 _ 4 _ 3 _ 2 _ 1 = 1 ,  so that the result 1s true for the last coefficient 

as well. 

(ii) ( �) = � = 6 (
6
) = � = 15 2 2 . 1  (

6
) = 

6 .5 .4 
= 20 3 3.2.1 

= -- = 15 (
6
) 

6.5.4.3 
4 4 . 3 .2 . 1 (

6
) = 

6 .5 .4.3.2 = 6 
5 5.4 .3.2.1 

which are the results we had before. Also 

Indeed, we see that 

(
6
) = 

6.5 . 4 .3 . 2.1 = l 
6 6.5.4 .3.2.1 

= - - - - -- = 1 1or a n (
n
) 

n(n - 1) ... 3.2.1 '" II 
n n(n - 1) ... 3.2.1 
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Thus (3.1) and (3.2) would give 

(1 + x)5 = 1 + 5x + 10x2 + 10x3 + 5x4 + x5 

and 

(1 + x)6 = 1 + 6x + 15x2 + 20x3 + 15x4 + 6x5 + x6 

which we know to be correct. It is readily verified that (3.1) and (3.2) also 
give the correct expansion for (1 + x)2

, (1 + x)3, (1 + x)4• 

We also observe that our formula for (:) satisfies the result that a coefficient 
in ( 1 + x)" + 1 is the sum of the corresponding coefficient and the preceding 
one in the expansion of (1 + x)". In symbols, this is 

(3.3) 

and with (:) as given by (3.2) 

(") + ( n 
) = 

n(n -l)(n -2) . . .  (n - r + 1) + n(n -1) . . .  (n - r + 2) 
r . r -1 r(r -1) ... 3 .  2 .  1 (r -1 )(r -2) . . .  2 .  1 

n(n - l)(n -2) . . .  (n - r + 1) + r(n)(n -1) . . .  (n -r + 2) = -- -- - - - - - - - - - - - ----
r(r -1) . . .  3 . 2 . 1  

n(n - l)(n -2) . . .  (n -r + 2)(n - r + 1 + r) 
r(r -1) . . .  3 . 2 . 1  

(n + l)(n)(n -1) . . .  (n -r + 2) 
r(r -l)(r -2) . . .  3 . 2 . 1  

(n + l)(n + 1 -l)(n + 1 - 2) . . .  (n + 1 -r + 1) 
r(r -1) . . .  3 .  2 .  1 

which proves the result. 

The expansion of (a + x)" 
Assuming for the moment the validity of (3.1) and (3.2), we notice that 
(a+ x)" can be expanded in terms of powers of x and a with the same 
coefficients. 

(a+ x)" = [ a( 1 + �) J = a•( 1 + � )
" 

= a•[1 + (;)� + G):: + . . .  G):: + . . .  + :: J 

file:///r-/J
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therefore 

(a + xt = an + (;)xan - 1 + (;)x2an - 2 + . . . + G)x'an -r  + . . .  + xn (3.4) 

Example 2 Expand (2 + x)5 in powers of x. 
Using the coefficients as given by Example 1 ,  

(2 + x)5 = 25 + 5 .24x + 10.23x2 + 10 .22x3 + 5.2x4 + x5 

= 32 + 80x + 80x2 + 40x3 + 10x4 + x5 

The evaluation of (;) 

therefore 

(
n

) = n(n - 1) ... (n -r + 1)  
r r(r - 1)  . . . 3.  2 .  1 

n(n - 1) ... (n - r +  1 )  (n - r)(n - r - 1) ... 3 .2. 1 
r(r - 1) ... 3.2.1 (n - r)(n - r - 1 ) ... 3 .2 .1 

(
n

) 
n! 

r 
= 

r! (n - r)! (3.5) 

where n! (factorial n) is used to denote the product of the integers from 
n down to 1 .  Thus 2! = 2 .1 = 2, 3! = 3 .2 .1 = 6, 4! = 4 .3 .2 .1 = 24, etc. 
From (3.5) we see that 

( 
n 

) 
n! n! 

n -r 
= 

(n -r)! [n -(n - r)]! = 
r!(n -r)! 

therefore 

(3.6) 

a result which merely expresses the symmetry of the coefficients which was 
apparent for the numerical cases considered earlier. 

We use this symmetry to define 

Then 

(�) = (:) = 1 

( 1  + xt = (�) + G)x + (;)x2 + . . .  + G)x' + . . .  + (:)xn 

= ,t G)x' 

using the notation of the previous chapter. 

(3.7) 

(3.8) 
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Example 3 Evaluate (i) (2l), (ii) (i�), (iii) m. 
(i) By (3.2) 

(
20

) = 20 . 19 = 190 
2 2 . 1  

(ii) We first use (3.6) 

(
20

) = (
20

) = 
20 . 19 . 18 = 60 . 19 = 1140 17 3 3 .2 .1  

(Had we used (3.2) for  (i�), we should have 17  factors in the numerator 
and denominator.) 

(iii) (
8
) = (

8
) = 

� 
= 56 5 3 3 . 2 . 1  

Example 4 Expand (1 - 2x)4 in powers of x. 
We write (1 -2x) as [1 + ( -2x)] 

(1 -2x)4 = [1 + ( -2x)]4 

= 1 + G}-2x) + (�} -2x)2 + (:} -2x)3 + ( -2x)4 

= 1 + G} -2x) + G} -2x)2 + (;} -2x)3 + ( - 2x)4 

= 1 - 8x + 24x2 - 32x., + 16x4 

Example 5 Expand (x + 3y)6• 

(�) = (!) = 6 (�) = (!) = �:: = 15 

By (3.4) 

(
6
) = 

6 . 5 . 4  
= 20 3 3 . 2 . 1  

(x + 3y)6 = x6 + 6x5(3y) + 15x4(3y)2 + 20x3(3y)3 

+ 15x2(3y)4 + 6x(3y)5 + (3y)6 

= x6 + 18x5y + 135x4y2 + 540x3y3 + 1215x2y4 

+ 1458xy5 + 729y6 

Exercises 3a 
Assume the validity of (3.1) and (3.2). 

1 Obtain the expansions in powers of x of (i) (1 + x)2, (ii) (1 + x)3, 
(iii) (1 + x)4. 

2 Use the rules described at the beginning of this section to obtain the 
coefficients in the expansions of (1 + x)8 and (1 + x)9, i.e. obtain the next 
two rows of Pascal's triangle. 

3 Use (3.1) and (3.2) to verify the results obtained in question 2. 

4 Evaluate (i) C!} (ii) ( 191), (iii) (1:). (iv) G} 
5 Expand (i) (1 + 3x)4, (ii) (1 -x)5, (iii) (1 -2x)7 . 
6 Expand (i) (3 + x)4, (ii) (2 -x)6. 
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7 Expand (i) (2x + 3y)3 , (ii) (2x -5y)4 . 
8 Obtain the fourth term in the expansion, in ascending powers of x, of (2 + 3x)1 1

• 
9 Calculate a if the coefficient of x3 in (a + 2x)5 is 320. 

10 Calculate the coefficient of x3y4 in (2x - 3y)7 . 

3.2 Proof of the binomial theorem when n is a positive integer 
The results of the previous section suggest that the results (3. 1) and (3.2) are 
true for all positive integer values of n. We shall now prove this by a method 
of proof known as mathematical induction. 

We assume that for a particular value of n, say n = N, the results (3.1) 
and (3.2) are correct. (This is not so unreasonable since we have seen that 
this is so when n = 2, n = 3, n = 4, n = 5, and n = 6 among others.) 

Thus we assume 

(1 + xt = 1 + (�)x + (�)x2 + . . .  + (�)x' + . . .  + (N � 1)xN - l  + xN 

Then 

( 1  + xt + 1 = ( 1  + x)( l + xt 

Therefore 

(1 + xt + 1 = 1 + ((�) + 1)x + ( (�) + (�))x2 

+ . . . + ( ( �) + (, � l) )x' + . . . + XN + 1 

by ordinary multiplication. 
Now 

and by (3.3) we have 

Thus our initial assumption inevitably leads to 

(N + 1) (N + 1) (N + 1) (1 + xt + i = 1 + 1 x + 2 x2 + . . .  + r x' 

(N + 1) + . . . + N XN + XN + 1 
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Thus, we have proved that if the results (3.1) and (3.2) are true for a given 
value n = N, then they are true for the next value of n, i.e. n = N + 1. But 
we have seen that the result is true for n = 2, therefore it is true for n = 3, 
therefore it is true for n = 4, and so on for all other positive integer values 
of n. Thus we have shown that (3.1) and (3.2) are true for all positive integer 
values of n. We have also proved (3.4) and (3.8) for such values of n. 

Example 1 Expand (1 + x + x2)3 in powers of x. 

(1 + x + x2
)

3 = [1 + (x + x2
)]

3 

= 1 + 3(x + x2) + 3(x + x2
)
2 + (x + x2)

3 

= 1 + 3x + 3x2 + 3(x2 + 2x3 + x4) 

+ (x3 + 3x4 + 3x5 + x6
) 

= 1 + 3x + 6x2 + 7x3 + 6x4 + 3x5 + x6 

Example 2 Find the coefficient of x8 in ( x2 + ;)1° 

( 2y)10 
The (r + 1 )th term in the expansion of x2 + -; is 

Thus, for the term in x8, 

20 - 3r = 8 i.e. r = 4 

Therefore, the required coefficient is (11)24y4 

= 10 · 9 · 8 · 7 16 4 = 210 6 4 = 3360 4 

4 . 3 . 2 . 1  y . l  y y 

Example 3 Find the values of a if the coefficient of x2 in the expansion of 
(1 + ax)4(2 - x)3 is 6. 

(1 + ax)4 = 1 + 4(ax) + 6(ax)2 + 4(ax)3 + (ax)4 

(2 - x)3 = [2 + ( - x)]3 = 23 + 3 . 22( - x) + 3 . 2( - x)2 + ( - x)3 

= 8 - 12x + 6x2 - x3 

Therefore, the coefficient of x2 in the expansion of (1 + ax)4(2 - x)3 is the 
coefficient of x2 in 

(1 + 4ax + 6a2x2 + 4a3x3 + a4x4) x (8 - 12x + 6x2 - x3) 

This coefficient is 6 - 48a + 48a2• If this is equal to 6, 
48a2 - 48a + 6 = 6 

8a2 - Sa = 0 
Sa(a - 1) = 0 

a =  0 or a =  1 
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Example 4 Expand (x + 5y)5 • Hence evaluate (1 ·05)5 correct to three decimal 
places 

G) = (!) = 5 (5) = (5) = � = 10 2 3 2 . 1  
Therefore 

(x + 5y)5 = x5 + 5x4(5y) + 10x3(5y)2 + 10x2(5y)3 + 5x(5y)4 + (5y)5 

= x5 + 25x4y + 250x3y2 + 125Ox2y3 + 3125xy4 + 3125y5 

With x = 1, y = 0·01, we obtain 
(1·05)5 = 1 + 25(0·01) + 250(0·0001) + 1250(0·000 001) + 3125(0·000 000 01) + 3125(0·000 000 0001) 

� 1 + 0·25 + 0·025 + 0·001 25 
where we have omitted the last two terms since they do not affect the first 
five decimal figures. Therefore 

(1·05)5 
� 1·276 25 

or to three decimal places 
(1 ·05)5 = 1 ·276 

Exercises 3b 

1 Expand in powers of x, ( 1 + 2x + 2x2)3• 
2 Expand in powers of x, (1 - x + 2x2)4. 
3 Find the coefficient of x3 in the expansion of (1 + x + 2x2)6• 

4 Expand (1 + 2x + x2)3 . (You might be able to obtain this result in an 
easier way.) 

5 Find the coefficient of x6 in the expansion (:2 - x ) 18 . 

(x4 y2

)
10 

6 Find the term independent of y in the expansion of y3 + 
2x 

7 Find the term independent of x in the expansion of (2x - :2 )
6. 

8 Find the coefficient of x2 2  in the expansion of (1 - 3x)(l + x3)10. 
9 Find a if the coefficient of x in the expansion of 

(1 + ax)8( 1  + 3x)4 - (1 + x)3(1 + 2x)4 

is zero. What is the coefficient of x2? 
10 Expand lX + 2y)7 . Hence evamate (1 ·02)7 to four significant figures. 

3.3 The binomial theorem when n is not a positive integer 
It can be shown (although the proof is beyond the scope of this book) that 
if - 1 < x < 1 and n has any value 
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n(n - 1) 2 n(n - l)(n - 2) 3 (l + x)" = l + nx +  1 . 2 x + 
1 . 2 _ 3  x + . . .  (3.9) 

The expansion (3.9) is known as the binomial theorem. If n is, in fact, a positive 
integer, the coefficients after the coefficient of x" are all zero since they each 
contain the factor (n - n). Thus, for this case, we see that the expansion 
terminates with x". We obtain, of course, the same result as was given by 
(3.1) and (3.2) and for this particular case the requirement that -1 < x < 1 
is not necessary. 

If n has a value other than a positive integer, the expansion will not 
terminate and the requirement - 1 < x < 1 is absolutely essential. This latter 
requirement is often written, following the notation of the first chapter, 
lxl < 1. Although the expansion does not terminate in this case, it can still 
be used with great effect to approximate (as accurately as we like) the value 
of (1 + x)" when x has a value such that lxl < 1. 

Example 1 Obtain the first five terms in the expansion (1 + x)112 . Hence 
evaluate J 1 ·03 to five significant figures. 

For this case, n = ½ and so by (3.9) 

(1 + )1/2 = 1 + (1) + ½(½ - 1) 2 + ½(½ - 1)(½ - 2) 3 
X 

-z
X 1 . 2 X 1 . 2 _ 3  X 

½(½ - 1)(½ - 2)(½ - 3) 4 + 1 . 2 . 3 . 4  X + . . .  

= 1 + ½x - ¼x2 + --lox3 
- rtgx4 + . . .  

With x = 0·03, which is certainly between - 1  and + 1, 

(l ·03)112 = J 1 ·03 = 1 + ½(0·03) - ¼{0·0009) + "fo(O·OOO 027) + . . .  
and since we only require the result to four decimal places, we need in fact 
only consider the first three terms. Therefore 

(1·03)112 = 1 + 0·015 - 0·000 1125 + 0·000 0017 + . . .  
� 1·014 8892 

J1·03 = 1·0149 correct to 5 significant figures 

Example 2 Expand (i) (2 + x)- 1 , (ii) -1 
-1 - . 
- x 

. 1 1 1 ( x
)

- 1 
(1) (2 + x)- • � 2 + x � 

2(1 + :f) 
� 2 1 + 2 

= ! [1 ( - le_ ( - 1)( - 2)
(�)

2 

2 + '2 + 1 . 2  2 

( - 1)( - 2)( - 3)
(�)

3 
] + 1 . 2 . 3  2 + . . .  provided Iii < 1 
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Therefore 
1 x x2 x3 x4 

(2 + x)- 1 = 2 - 4 + 8 - 16 + 32 +. . .  provided lxl < 2 

1 (ii) -- = [1 +( - x)] - 1 
1 -x 

Therefore 

= 1 +( - 1)( - x)+ ( - l)( - 2)( - x)2 

1 . 2  
( - 1)( - 2)( - 3) 3 + 1 .2 . 3  ( - x) + · · ·  

1 
-1 - = 1 + x + x2 + x3 + x4 + . . .  

- x 
provided lxl < 1 

(cf. (2.15) with a =  1) 

If we ignore the requirement lxl < 1 and put x = 2 in the left-hand side, we 
obtain - 1. On the right-hand side, we obtain 1 + 2 + 4 + 8 + . . .  , which is 
quite meaningless and is certainly not - 1. The point to realise is that the 
expansion is only valid of - 1 < x < 1. 

Example 3 Show that if x is so small that x3 and higher powers of x can 
(1 + 2x)3/2 - 4(1 + x)112 

be neglected, then 1 2 = - 3 + x + 5x2• 
+ x  

(1 + 2x)312 = 1 + (-�)2x + @(½X2x)2 
as far as terms in x2 

1 . 2  
(1)(-1) (1 + x)112 = 1 + ½x + ___!___

2
-Z x2 as far as terms in x2 

1 .  
(1 + x2) - 1 = 1 - x2 as far as terms in x2 

Therefore 
(1 + 2x)312 - 4(1 + x)112 -
----��- - = (1 - x2)[1 + 3x + Jx2 - 4(1 + ½x - }x2)] 1 + x2 

Simplifying and retaining only terms which involve x2 and lower powers of x, we have 
(1 + 2x)312 - 4(1 + x)112 

1 2 = (1 - x2)( - 3 + x + 2x2) = -3 + x + 5x2 
+ x  

Example 4 Expand (l _ 
}

x
�t + x2) 

in ascending powers of x as far as the 
term in x3• 

We first resolve ( 
} ; 

x 
2) 

into partial fractions: 1 - x l + x 
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3 - x  2 l + x  ------,- = -- + --
( 1  -2x)(l + x2) 1 - 2x 1 + x2 

= 2(1 - 2x)- 1 + (1 + x)(l + x2) -
1 

= 2(1 + 2x + 4x2 + 8x3 + . . .  ) 
+ (1 + x)(l - x2 + x4 

- x6 + x8 + . . .  ) 
= (2 + 4x + 8x2 + 16x3 + . . .  ) 

+ 1 + x - x2 - x3 + . . .  
= 3 + 5x + 7x2 + 15x3 + . . .  

This expression is valid only if both - 2x and x2 lie between - 1 and + 1: 
- 1 < - 2x < l  if - ½ < x < ½  

- 1 < x2 < 1 if - 1 < X < 1 
Therefore, for the expansion to be valid, x must lie between -½ and ½, 
i.e. lxl < ½. 

Exercises 3c 
1 Obtain the first four terms of the expansion of ( 1  + 3x)113 in ascending 

powers of x. Hence evaluate J1·03 to five significant figures. 
2 Evaluate (0·95)1 .3. Use logarithms to check your result. 

3 Show that (i) 1 
2 = 1 + 2x + 3x2 + 4x3 + . . . and (ii) (l 

1 
)3 = 

(1 -x) - X 
3 .4x2 4 .5x3 

1 + 3x + -2- + -2- + . . . . 

4 Obtain the expansions in ascending powers of x of 

(i) -
1
-

1 + x  
(ii) (1 : x)2 (iii) (1 : x)3 . 

5 Use the results above to expand in ascending powers of x 

(i) 1 :  3x (iii) 
(3 

: x)3 . 

6 Show that ✓(9 + x2) � 3 + !x2 - -dox4• For what values of x is the 
expansion valid? 

7 Show that 
1 1 b b2 b3 

-- � - - -X + -X2 - 4X3 + . . . . a +  bx a a2 a3 a 
For what values of x is the expansion valid? 

8 Show that, if x is so small that x3 and higher powers of x may be neglected, 
(1 + x)3/2 - ( 1  + i x)3 Z ~ 3 2 --

✓
�

(
-
1 

---
X

-) -- ~ - -gX 

9 Obtain the expansion of 1 
3
3
- 4x

2 2 in ascending powers of x as far - x +  X 
as the term in x4• 
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10 Show that if x is so small that x3 and higher powers of x can be neglected 

JG�:) = 1 + x + ½x2• By putting x = 4, show that J3 � ffi. 

3.4 Mathematical induction 
In Section 3.1, we proved the binomial theorem for n a positive integer using 
the method of mathematical induction. This method is very useful where 
particular cases suggest that some result is true quite generally. The following 
examples are further illustrations of the method. 
Example I Show that if n is a positive integer, 

n(n + 1) 1+2+3+4+ . . .  + n =  2 (cf. (2.10)) 

We observe that the result is true for the particular cases n = 1, n = 2, namely 

l = _l(_l +_1) 
2 1 + 2 = 3 = 2(2 + 1) 

2 
We assume the result is true for a particular value, say n = N. Thus 

N(N + 1 )  1+2+3+ . . .  +N = 2 
Then for the next value of n, n = N + 1 

N(N + 1 )  1 + 2 + 3 + . . .  + N + (N + 1) = 2 + (N + 1) 

= (N + 1)(� + 1) 
= ½(N + l)(N + 2) 
= ½(N + l)[(N + 1) + 1] 

Thus, if the result is true for any particular value of n, it is also true for 
the next value of n. But we have seen that it is true for n = 1, therefore it 
is true for n = 2, therefore it is true for n = 3 and so on for all positive integer 
values of n. 
Example 2 Show that for all positive integer values of n, 52" + 3n - 1 is an 
integer multiple of 9. 

We first observe that for n = 1 
52 + 3 .1  - 1 = 27 

which is a multiple of 9. We assume the result to be true for n = N, that is 
52N + 3N - 1 = 9M 

where M is some integer. Then for n = N + 1, we obtain 
52<N + l )  + 3(N + 1) - 1 = 25 . 52N + 3N + 2 

= 25(9M - 3N + 1) + 3N + 2 
(since 52N = 9M - 3N + 1) 
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= 9 . 25M - 75N + 25 + 3N + 2 
= 9 . 25M - 72N + 27 
= 9(25M - SN + 3) 

This proves that 52<N + 1> + 3(N + 1) - 1 is a multiple of 9 if 52N + 3N - 1 is 
a multiple of 9. 

The required result is true when n = 1, therefore it is true when n = 2 and 
so on for all positive integer values of n. 
Exercises 3d 
Use the method of mathematical induction to prove that if n is a positive 
integer: 
1 2" > n. 
2 12 + 22 + 32 + . . .  + n2 = ¼n(n + 1)(2n + 1). 
3 1 + 3 + 5 + . . .  + (2n - 1) = n2 • 
4 n(n + l)(n + 2) is an integer multiple of 6. 
5 72" + 1 + 1 is an integer multiple of 8. 

Exercises 3 
1 Expand (1 - x + 2x2)5 in ascending powers of x as far as the term in x4

• 

2 Use the binomial theorem to evaluate J99 to five significant figures. 
3 Expand (l - x)- 1 - 2(1 - 2x)- 112 + (1 - 3x)- 1 13 in ascending powers of x, up to and including the term in x3• 

4 If N = x3 + t and t/x3 is so small that its fourth and higher powers may 
be neglected, show that t t 2 5t 3 

fa = x + 3x2 - 9x5 + 8lx8 

Hence evaluate �/64·032 correct to six decimal places. [AEB] 1 x2 x3 

5 Show that J(l _ x) - J(l + x) = 2 + 4 if x4 and higher powers of x 

may be neglected. 
6 If x is small show that (1 - x2)- 1 13 � 1 + ½x2 + ix4• 

7 - 23x + 48x2 . . 1 f . d fi d h ffi . 7 Express (2 + x)(l _ 3x)2 m partta racttons an n t e coe c1ent of 

x" when the expression is expanded in ascending powers of x when 
-½ < x < }. [LU, part] 

8 Expand � as a series in ascending powers of x up to and including 
the term m x2• If terms in x", n � 3, can be neglected, find the quadratic 

. . }Bx- x S h approximation to - -2- .  tate t e range of values of x for which this 
1 - X 

approximation is valid. [AEB] 
9 If x4 and higher powers of x can be neglected show that 

JC : ::x2) = 1 - x + ½x3 
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10 In the expansion in powers of x of the function (1 + x)(a - bx)1 2  the 
coefficient of x8 is zero. Find in its simplest form the value of a/_b. 

11 Show that 
(

n

: 
2
) = C � 2) + 2(r � 1) + (;) where n > r > 2. 

12 Use the method of induction to show that 
n n2(n + 1)2 

I r3 = -- --
• ; l 4 

13 If x is small show that 
1 

J(l + 6x) - J(l - 6x) 
1 

::::; 4 + 6x 
J(l + 3x) - J(l - 3x) 

14 Use the method of induction to show that 
1 1 1 1 n - + - + - +  . . .  + --- = - -1 .2  2 .3  3 . 4  n(n + l) n + l  

15 Expand (1 + 4x2)112 in ascending powers of x up to the term in x6• Hence 
evaluate Jl·04. 

16 Evaluate the term independent of x in the binomial expansion of 

17 Show that if x is so small that x4 and higher powers can be neglected 
1 + 2x + 3x2 

then )( 2) can be expressed m the form A + Bx + Cx2 + Dx3 
(1 - X 1 + X 

and find A, B, C, D. 
18 Write down the first few terms in the expansion in ascending powers of x of (1 + 4x)112, and simplify the coefficients. Hence by putting x = -rb-o, 

calculate J6 correct to four decimal places. [JMB, part] 
3x 3x2 1 19 If x is small show that (1 + x)312 ::::; 1 + 2 + 8 - 16x3 . Evaluate Jl 1. 

20 Find p and q if the coefficients of x and x3 in the expansion of 
(1 + px + qx2 + 4x3)(1 + x)6 are both zero. 

21 If lx l < 1, prove that the sum to infinity of the series 

2 n • 1 + 3x 1 + 5x + 9x + . . .  + (4n + l)x 1s (l _ x)2 

[JMB, part] 
22 Show that 34n + 2 + 2 .  43" + 1 is exactly divisible by 17 if n is a positive integer. 
23 Use the binomial theorem to show that the expansion of 

1 1 1 . 3  2 1 . 3 . 5  3 
(1 - x)1 12 is 1 + 2x + 2 . 4  x + 2 . 4 . 6x + . . .  ( lx l < 1) 



Also show that 

4 4 . 12 4 . 12 . 20 
l + 10 + 10 . 20 + 10. 20 . 30 

+ . . . 

( 1 1 . 3  1 . 3 . 5  
) = 2 l + 10 + 10. 20 + 10. 20 . 30 + . . .  
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[JMB, part] 
24 If ( 

1 + 
�2 is expanded in ascending powers of x, where - 1  < x < 1, show 1 - x  

that the coefficient of x"- 1 is 2n - 1 and that the sum of the terms after 
(2n + l)x" 2x" + 1 

the nth term is 1 _ x 
+ ( l  _ x)2 • [LU, part] 

25 Show that n4 + 4n2 + 11 is a multiple of 16 for all odd positive integers n. 
26 Obtain the first four terms in the expansion in ascending powers of x of 

(1 + 4x)1 14 

(1 -x)3 

27 When terms in x", n � 4, are omitted 
3ax 2 4 + ..)(4 + ax) - .j(l - ax) = - x2 + bx3 

[LU] 

Find the values of a and b. [AEB] 

28 Express in partial fractions 2 
3x; 5 . State the values of lxl for which 

X - X - 3 
this expression can be expanded as a series of ascending powers of x and 
obtain the first three terms of this expansion. [LU] 

29 Show that the first three terms in the expansion in ascending powers of x of (1 + 8x)114 are the same as the first three terms in the expansion of 
1 + 5x U h d. . . 
1 + 3x

. se t e correspon mg approxtmatton 

(1 + 8x)t/4 � 1 + 5x 
1 + 3x 

to obtain an approximation to (1·16)114 as a rational fraction in its lowest 
terms. [JMB] 

30 If x is so small that terms in x", n � 3, can be neglected and 
3 + ax = (1 -x)l/3 3 + bx 

find the values of a and b. Hence, without the use of tables, find an 
approximation in the form p/q, where p and q are integers, for J0·96. [AEB] 



4 
Complex numbers 

4.1 Introduction 
In Section 1.1, we discussed the necessity for the introduction of other types 
of real number apart from the natural integers which are used for counting. 
The solution of an equation such as 5x = 4 requires the introduction of 
rational numbers; the solution of an equation such as 3x + 4 = 0 requires 
the introduction of negative numbers. Then we can say that without exception 
every linear equation has one and only one solution. 

Some quadratic equations, such as x2 = 2, require the introduction of the 
irrational numbers into our number system before we can give a meaning 
to their solution. There are other equations, such as x2 + 16 = 0, which do 
not have a solution within the system of real numbers. To solve the last 
equation, we require a number whose square is -16 and such a number does 
not exist within the system of real numbers. Thus, we have a breakdown of 
the general rule that quadratic equations have two solutions. (If the two 
solutions are equal, we say that the equation has a repeated root, i.e. two 
equal roots.) 

This situation is not peculiar to the last-mentioned equation. Indeed, the 
equations x2 + 1 = 0, x2 + 2x + 5 = 0, whose solutions we might formally 
write as 

X = ± ✓ - 1  

that is 

X = ± ✓ - 1  

x = -2 ± ✓4 -4(5)(1) by (1.2) 2 

- 2 ± ✓-16 
X = --�--

2 
have no solutions within the realm of real numbers. In each case, we require 
the existence of a number whose square is negative before we can give a 
meaning to the solutions. 

This situation calls for yet another extension of our number system. We 
can achieve this extension by the introduction of a new number, generally 
denoted by i, whose square is - 1. The number i has the property 

i 2 = -1  (4.1) 
This new number i having the property (4.1) need give no cause for concern. 

60 
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It is new in the sense that up to now it has been outside our experience, 
but so at one stage were fractions, and negative numbers. 

The solution of the equation x2 + 1 = 0 is then 
X = ± ✓ -1 i.e. X = ± i 

The solution of the equation x2 + 16 = 0 is then 
X = ± J - 16 = ± J16( - 1) = ±✓16J- 1  = ± 4i 

The solution of the equation x2 + 2x + 5 = 0 is then 

X = -2 ± ✓ -16 = -2 ± 4i = _ l + 2i 
2 2 -

A number of the form a + ib, where a and b are real numbers, is called 
a complex number. Our real numbers can be regarded as complex numbers 
for which b is zero. Thus, we need only consider complex numbers since our 
real numbers will be contained within the system of complex numbers. This 
will require us to consider carefully the rules for the addition and multiplica­
tion of complex numbers, so that these rules, when applied to real numbers 
of the form (a + iO), give us the correct results within the real number system. 
This we shall do in the next section. For the present, we observe that higher 
powers of i can be reduced to ± 1 or ± i. 

Thus, since i2 = - 1  

and so on. 

Exercises 4a 

i 3 = i2 . i = - i  i4 = i 3 . i  = - i . i  = -( - 1) = 1 
i 5 = i4 . i  = i 

1 Express the solution of the following equations in the form a + bi: 
(i) 3x - 7 = 0 (ii) x2 - 9 = 0 

(iii) x2 + 30 = 0 (iv) x2 + 3x + 10 = 0 
(v) x2 + 49 = 0 (vi) x2 + 2x + 8 = 0 

(vii) x2 + 4x + 40 = 0 (viii) x2 - x + 1 = 0 
2 Show that (i) i 7 = - i, (ii) i 13  = i, (iii) 1 + i - 3i2 + i7 = 4. 
3 Show that i9 + 2i 1 1  + i 1 3  = O. 
4 Show that the cubic equation x3 - 1 = 0 has three solutions: 

X = 1 1 i✓3 1 iJ3 
X = -2 + 2 X = -2 - 2 

[Hint: x3 - 1 = (x - l)(x2 + x + l).] 
5 Show that the quartic equation x4 - 1 = 0 has four solutions: 

X = 1 X = - 1  X = i X = - i  

[Hint: x4 - 1 = (x2 - l)(x2 + 1).] 
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4.2 The rules for the manipulation of complex numbers 
In this section, we shall consider the rules governing the addition, subtraction, 
multiplication and division of complex numbers. These rules are defined so 
that they become the rules of algebra for real numbers when applied to 
complex numbers of the form a+ iO. First, we define what is meant by the 
equality of two complex numbers a + ib and c + id, where a, b, c, d are real 
numbers. 

We say 
a+ ib = c + id if and only if a = c and b = d (4.2) 

This definition is very reasonable and is consistent with treating i as an 
ordinary algebraic quantity. For if a+ ib = c + id, we would expect a - c = 
i(d -b) which yields, on squaring both sides, (a - c)2 = i 2 (d -b)2 

(a -c)2 = -(d -b)2 

Now a - c and d - b are both real numbers and so their squares are positive 
or zero. If both squares are positive, the above states that a positive number 
is equal to a negative number, which can be rejected as absurd. If one is 
positive and the other zero, then either a positive number is equal to zero 
or zero is equal to a negative number. Both these situations are absurd and 
can be rejected. Indeed, the only possible and sensible situation is that both 
the squares are zero, i.e. (a - c)2 = 0 and (d -b)2 = 0, which results in a = c 
and b = d. Thus we see that the equality of two complex numbers implies 
two relations of equality among real numbers. 

Most of the mathematical literature speaks of a as being the real part and b as being the imaginary part of the complex number a+ ib. We write this 
as 

a =  Re(a + ib) b = Im(a + ib) (4.3) 

The terminology, which perhaps indicates the hesitation with which com­
plex numbers were first used, can be quite convenient provided we do not 
interpret it too literally. There is nothing imaginary about i, although it is 
perhaps a little unfamiliar to most readers at this stage. Put into words, (4.2) 
states that two complex numbers are equal if their real parts and their 
imaginary parts are equal. 

The addition of two complex numbers is defined by 
a+ ib + c + id = a+ c + i (b + d) (4.4) 

This rule, if applied to the numbers a+ iO and c + iO (i.e. to the real numbers 
a and c), yields a+ c + iO (i.e. the real number a+ c) and so is a natural 
extension of the rule for adding real numbers. Similarly for subtraction: 

a+ ib - (c + id) = a - c + i(b - d) (4.5) 

These two rules may be stated thus: to add (or subtract) two complex 
numbers add (or subtract) their real and their imaginary parts, respectively. 
Example 1 Express in the form a + ib (i) 6 + 3i + 7 - i, (ii) 7 + 2i + 3 - 4i -
(5 + i). 
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(i) 6 + 3i + 7 - i = 13 + 2i 
(ii) 7 + 2i + 3 - 4i - (5 + i) = 10 - 2i - (5 + i) = 5 - 3i 

The multiplication of two complex numbers is defined by the rule 

(a + ib)(c + id) = ac - bd + i (bc + ad) (4.6) 
This rule, if applied to the numbers a + iO and c + iO (i.e. the real numbers 
a and c), yields ac - 0 + iO = ac + iO (i.e. the real number ac) and so is a 
natural extension of the rule for multiplying real numbers. The rule is con­
sistent with treating i like any other algebraic quantity and this in practice is 
how we normally multiply complex numbers. On this basis 

(a + ib)(c + id) = ac + i2bd + ibc + iad 
= ac - bd + i(bc + ad) (since i2 = - 1) 

which is the result (4.6). 

Example 2 Express in the form a + ib (i) (2 + 3i)2 , (ii) (2 + i)(2 - i) + 
(3 + 2i)(3 - 2i). 

(i) (2 + 3i)2 = (2 + 3i)(2 + 3i) = 2 . 2 - 3 . 3  + i(2 . 3  + 2 . 3) = - 5  + 12i 
(ii) (2 + i)(2 - i) + (3 + 2i)(3 - 2i) = 4 - 1 ( - 1) + i [ (2. 1 + 2 ( - 1)] + 9 - 2 ( - 2) + i [3 . 2 + 3 ( - 2)] = 4 + 1 + iO + 9 + 4 + iO 

= 18 + iO 

Before defining division for complex numbers, it is useful to introduce the 
notion of a complex conjugate. Two complex numbers which differ only in 
the sign of their imaginary part are called complex conjugates. The complex 
conjugate of a + ib is thus a - ib; a - ib is the complex conjugate of a + ib. 
Two numbers which are complex conjugates have the property that their 
sum and product are both real numbers. For 

a+ ib + a - ib = 2a + iO 
(a+ ib)(a - ib) = a2 - b( - b) + i [ab + a (- b)] 

= a2 + b2 + iO 

(4.7) 

(4.8) 

The iO may, of course, be omitted from (4.7) and (4.8). It has been written 
in to emphasise that the real numbers are just a subset (with imaginary part 
zero) of the complex numbers. 

The division of two complex numbers is defined by 
a+ ib 
C + id = ac+bd +/c - ad 

c2 + d2 c2 + d2 

This rule, if applied to the numbers a+ iO and c + iO, gives 
ac + O . O + O a .0 - - + 1-- = - + 1  c2 + 0 c2 + 0 c 

(4.9) 

so that (4.9), complicated as it may appear, is just a natural extension of the 
rule for division for real numbers. 

As with (4.6), the rule is consistent with treating i as an ordinary algebraic 
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quantity. The following working, which in practice is the way in which we 
normally carry out division, illustrates this. a +  ib (a + ib)(c - id) = -----

c + id (c + id)(c - id) 
on multiplying top and bottom by the conjugate of the denominator. There­
fore, using (4.8), a + ib (a + ib)(c - id) 

c + id c2 + d2 

ac + bd + i (bc - ad) 
c2 + d2 ac + bd .(be - ad) = -- - + 1- - -

c2 + d2 c2 + d2 

which is the result (4.9). 

Example 3 Evaluate in the form a +  ib: (i) 21 + �. (ii) 35 
- 4

2�. 
- I  + I 

(i) 1 + i = (1 + i)(2 + i) = 2 - 1 + i(2 + 1) = ! + i� 
2 - i (2 - i) (2 + i) 4 + 1 5 5 

(ii) 3 - 4i = (3 - 4i)(5 - 2i) = 15 - 8 + i( - 20 - 6) = }_ _ .26 5 + 2i (5 + 2i)(5 - 2i) 25 + 4 29 1
29 

3 - i Example 4 Evaluate X and Y if X + i Y  = --. 1 + i 
We could find X and Yby (4.9). However, by way of illustration, we proceed 

as follows: 
3 -i X + iY = l + i 

3 - i = (1 + i)(X + iY) = X - Y + i(X + Y) 

Therefore, by (4.2) 

3 = X - Y 
- 1  = X + Y 

We solve these two equations for X and Y. On addition, we obtain 2 = 2X, 
i.e. X = 1, and on subtraction Y = - 2. Therefore 

3 - i -- = l - 2i 1 + i 
It is readily verified that (4.9) gives the same result. Rules (4.2), (4.4), (4.5), 
(4.6) and (4.9) define the algebraic operations for complex numbers. Readers 
should verify that under these rules complex numbers obey the rules I to V 
described in Section 1.1. 
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Exercises 4b 
1 Express in the form a +  ib: (i) i3 (1 + i) + i 5 (3 - i) + i7 (2 + i), (ii) 2i(l - 3i) + 3(4 - i). 
2 Evaluate in the form a +  ib: (i) (3 + i)(4 - 2i), (ii) (6 + 2i) (1 - 3i). 
3 Find the solutions of the equation x"' + 6x + 18 = 0 in the form a +  ib. 

Verify their correctness by substitution into the equation. 
4 Evaluate (i) (1 + i)2, (ii) (1 + i)3

, (iii) (1 + i)4. 

5 Use (3.1) and (3.2) with x = i to calculate (1 + i)2, (1 + i)3, (1 + i)4• Verify 
that the results are in agreement with your answers to question 4. (This 
suggests that the bjnomial theorem remains valid when complex numbers 
are involved.) 

. h � .b (") 2 - 5i ( . . ) 1 - 5i 
6 Express m t e orm a + 1 : 1 7 + 3i , 11 3 + 2i . 
7 Show that (i) (cos 0 + i sin 0)2 = cos 20 + i sin 20 

(ii) ( cos 0 + i sin 0)- 1 = cos 0 - i sin 0. 
8 Find real numbers x and y such that (x + iy)2 = 40 + 42i. Hence evaluate 

J(40 + 42i). Calculate also J(35 - 12i). 
9 Evaluate in the form a + ib: 

(i) (x - i)5 

. 1 + 2i (iv) i3 (1 - 3i) 

(" ") 3 - 4i 
11 (2 + i)2 

( ) (2 + i)3 V (3 - i)2 

(iii) G � :y 
1 - 2i (vi) (4 - 3i)2 

a +  ib 10 If --.-
d 

= X + i Y show, followmg the method of Example 4, that X c + 1  
and Y satisfy the equations cX - d Y = a, dX + c Y = b. Solve these 
equations and show that the results are co-nsistent with (4.9). 

4.3 The geometrical representation of complex numbers 
It was shown in Section 1.1 that the real numbers could be represented by 
the points of a line. For convenience, we recall this representation. Figure 
4.1 shows a line, on which we choose a point O as origin. Positive numbers 
are represented by points to the right of 0, or displacements to the right of 
0, and negative numbers by points or displacements to the left of 0. 

0 
X1 --t----t----t----t----t----t----t---- X 

- 3  - 2  - 1  2 3 
Figure 4.1 

The real numbers, integers, rationals, irrationals and transcendental 
numbers completely fill the line, from which it is clear that we shall not be 
able to represent the complex numbers by further points of the line. A complex 
number of the form x + iy is specified by the two real numbers x and y. The 
natural way in which to represent a complex number is thus by a point in 
the plane whose cartesian co-ordinates are the numbers x and y. The complex 
number x + iy is thus represented by the point P (x, y) or by the vector or 
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displacement OP (Figure 4.2). Our real numbers which are, of course, just 
particular complex numbers (with imaginary part zero) are confined to the 
line x'Ox, but complex numbers can be anywhere in the complex plane. This 
representation, which is not necessarily the only possible representation of 
complex numbers, was originally due to J. R. Argand and for this reason 
the complex plane of Figure 4.2 is often called the Argand diagram. 

y 

Figure 4.2 

The length of OP, where OP is the vector representing the complex number 
x + iy, is known as the modulus of the complex number. By Pythagoras' 
theorem, we see that OP = ✓(x2 + y2

). The modulus of a complex number 
is represented by the symbol Ix + iyl. Thus 

Ix + iyl = ✓(x2 + y2) (4.10) 
It is conventional to represent a complex number by the single bold letter 

z, i.e. z = x + iy and so also lzl = Ix +  iyl = ✓(x2 + y2). 

Example I Represent the complex numbers (i) 2 + i, (ii) i, (iii) - i, (iv) - 3 - 2i 
by points in the complex plane (Argand diagram). 

In Figure 4.3, the numbers (i), (ii), (iii) and (iv) are represented by the points 
A, B, C, D respectively or by the vectors OA, OB, OC, OD. 

y 

B (0,1) A ( 2,1) 

-�---0-+---�-- x 

C ( 0,-1 )  

D (-3 , -2 )  

Figure 4.3 

Example 2 If z = 1 + i, mark the points (i) 1 + z, (ii) -1 -
1

- in the complex 
+ z 

plane. 
(i) 1 + z = 1 + 1 + i = 2 + i 
.. 1 1 2 -i 2 .1 (u) 1 + z = 2 + i = 22 + 1 = 5 - 15 
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Q ( 2 , 1 )  

--�Q+--...-----'--- X 

Figure 4.4 

Thus the numbers (i) and (ii) are represented by the points Q and R in Figure 
4.4 or by the vectors OQ, OR. 

Exercises 4c 
1 Mark the points in the complex plane corresponding to the complex 

numbers (i) 2 + 3i, (ii) 4 - i, (iii) - 3 - 6i, (iv) -1 + i. 
2 Find the modulus of each of the complex numbers in question 1. 
3 z = 2 - 3i. Mark the points (i) z, (ii) iz, (iii) i2z in the complex plane. 
4 Show that lzl = lizl, where z is any complex number. 
5 z is the complex number x + 7i. If lzl = 25, find x. 

4.4 The geometry of complex numbers 
The representation of complex numbers described in Section 4.3 enables us 
to give a geometrical interpretation of the rules for the addition and multi­
plication of complex numbers. 

Consider the two complex numbers 2 + 3i and 3 + i. These may be repre­
sented by the vectors OP and OQ (Figure 4.5). 

y 
R ( 5,4) 

Figure 4.5 

Their sum is the complex number 5 + 4i, which may be represented by 
the vector OR, and we see from Figure 4.6 that OR is the vector sum of 
and OQ. (That is, starting from O draw OP, from P draw a line parallel to 
OQ and of magnitude OQ. We then arrive at the point R; OR is the diagonal 
of the parallelogram with adjacent sides OP, OQ.) 

If we consider the complex number 4 + 6i, multiplication by 2, ½, - 1 and 
i produces the complex numbers 8 + 12i, 2 + 3i, - 4  - 6i and - 6 + 4i, respec­
tively. These numbers and the original number are represented by the vectors 
OA, OB, OC, OD and OP, respectively (Figure 4.7). 
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y R ( 5,4 )  

Figure 4.6 
Thus we see that multiplication by a positive number (2 or ½ in our case) 

dilates or shrinks a vector: OA = 2OP; OB = ½OP. This is in agreement 
with our results for real numbers, which were all represented along the one 
direction x'Ox. Multiplication merely increases or decreases a number. Multi­
plication by -1 rotates a vector through 180° but does not change its length: 
OC = -OP. This again corresponds with results for real numbers. Multi­
plication of 4 by - 1  produces the number -4, which lies to the left of 0 
and is obtained by rotating the vector of length 4 units drawn in the direction 
of the positive x-axis through 180°. Multiplication by ( -1 )2, i.e. by 1 ,  will 
rotate a vector through 180° + 1 80° = 360° and so will leave it unchanged. 

Of particular interest is the interpretation of multiplication by i. From 
Figure 4.7, we see that the vector OD is perpendicular to the vector OP but 
has the same length as this vector. Thus multiplication by i rotates a vector 
through 90° in an anticlockwise direction. Of course, multiplication by i2 

will rotate a vector through 90° + 90° = 1 80°. But this is equivalent to multi­
plication by -1 .  This is consistent with (4.1), namely, i2 = - 1 .  

y 

D (-6,4) 

C (-4 ,-6 ) 

A( S,12) 

P ( 4 , 6 )  

8 ( 2, 3) 

Figure 4.7 
The results of this section have been obtained by reference to particular 

examples. However, the results are perfectly general. The addition of complex 
numbers is equivalent to vector addition. Multiplication by a positive number 
merely increases (or decreases) the length of a vector representing a number; 
multiplication by -1 and i rotate the vector representing a number through 
180° and 90° respectively. 

Example 1 If z = x + iy, the conjugate complex number x -iy is convention­
ally represented by z. What is the geometrical representation of z?  
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P (x1 y) 

P '( x,-y) 
Figure 4.8 

With reference to Figure 4.8 we see that i is represented by the reflection 
of the point representing z in the real axis. 
Example 2 Where must the complex number represented by z lie if lzl = 1? 
Find the cartesian equation of all points satisfying this condition. 

If lzl = 1, the length of the vector representing z is unity. Thus, the point 
lies on a circle whose centre is the origin and radius is 1 (see Figure 4.9). 

y 

Figure 4.9 

If z = x + iy, lzl2 = x2 + y2 = 1 and this is the equation required. 
Example 3 What is the geometrical significance of I z - (2 + 3i) I ?  

If z i s  the complex number x + iy, then 
z - (2 + 3i) = (x - 2) + i(y - 3) 

Therefore 
lz - (2 + 3i)I = .J[(x - 2)2 + (y - 3)2] 

and so represents the distance between the points in the complex plane repre­
senting z and 2 + 3i (see Figure 4.10; cf. Section 17.5). 

y 
Z= X+iy 

Figure 4.10 
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Example 4 Find the cartesian equation of the locus of the points in the 
complex plane such that lz - ii = lz + i i. What is the geometrical interpre­
tation of this locus? 

If Z = X + iy, 
Z - i = X + i(y - 1) Z + i = X + i(y + 1) 

Therefore, if lz -il2 = lz + i l2, 

x2 + (y - 1 )2 = x2 + (y + 1)2 x2 + y2 - 2y + 1 = x2 + y2 + 2y + 1 
4y = 0 

which is the x-axis. The locus is the locus of points equidistant from the 
points i (O, 1) and -i(O, - 1), i.e. the perpendicular bisector of the line joining 
these points, which is the x-axis (see Figure 4.1 /). 

y 

(0,1 ) 

0 X 

(0 ,-1 ) -i 

Figure 4.11 

It is important to realise that, as far as complex numbers are concerned, 
the notion that 'one complex number is greater than a second complex 
number' is meaningless. This applies to the notion that a complex number 
may be greater than or less than zero. There is no classification of complex 
numbers into positive and negative, this latter notion applying only to the 
real numbers which either lie to the right or left of 0. However, the complex 
number i, for example, is neither to the right nor to the left of 0, indeed it 
is directly above 0. This perhaps serves to remove some of the mystery that 
surrounds complex numbers. The idea that the square of a number is always 
positive is derived from the usual rule of signs as they apply to the real 
numbers. But the notion of sign has no place as far as complex numbers are 
concerned, so it is not surprising that the squares of such numbers should 
be negative. 

In Example 1 of this section, we introduced the notion of the complex 
conjugate of a complex number, z = x + iy. Its conjugate is z = x - iy, so that 

Re(z) = Re(z) 

and 
lm(z) = - lm(z) 
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We say that z and i are a conjugate pair. Such pairs are of common occurrence. 
They will arise as the solutions of a quadratic equation which has real 
coefficients but not real roots. For example, as we have seen in Section 4.1, 
the equation x2 + 16 = 0 has two roots, z1 = 4i and z2 = -4i, from which 
we see that z1 = i2 and z2 = i1. The equation x2 + 2x + 5 = 0 has also two 
roots, z1 = -1 + 2i and z2 = -1 -2i, and again we see that z1 = z2 and 
Z2 = Z1 -

This result can be taken a stage further and applied to the roots of cubic, 
quartic or higher-degree equations. Thus, we have the important result that 
if z = a + ib is a root of the equation P(x) = cnxn + cn - 1Xn - l + . . .  +c1x+co = 0  

where the c's are real, then i = a - ib is also a root, i.e. complex roots occur in conjugate pairs. 
We first note that 

is wholly real. 

(x -z)(x -i) = (x -a - ib)(x -a +  ib) 
= x2 - 2ax + a2 + b2 

Thus, in line with (1.12), if we divide P(x) by the quadratic (x - i)(x -i), 
we shall obtain a quotient Q(x) and a remainder of first degree, lx + m. We 
shall show that this remainder is zero. 

P(x) = (x - z)(x -i)Q(x) + lx + m 
therefore P(z) = P(a + ib) = 0 

so that 

l(a + ib) + m = 0 la + m + ibl = 0 

On equating the real parts and the imaginary parts of this expression to zero, 
we obtain la + m = 0 and bi = 0 

Now, since b # 0 (we are dealing with a genuine complex root) I = 0 and 
so m = 0. Therefore 

P(x) = (x -a -ib)(x -a +  ib)Q(x) 

Thus, P(a -ib) = 0, which proves the result. 

Example 5 Solve the equation x4 + 2x3 + 7x2 + 8x + 12 = 0 given that 2i 
is one root. 

The equation has real coefficients. Thus, if 2i is a root so is -2i. Therefore, (x - 2i)(x -( -2i)), i.e. x2 + 4, is a factor of x4 + 2x3 + 7x2 + 8x + 12. By 
division we obtain 

x4 + 2x3 + 7x2 + 8x + 12 = (x2 + 4)(x2 + 2x + 3) 
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Thus, the other roots are the roots of x2 + 2x + 3 = 0. These are 
- 2 ± J - 8 x = --�-

2 

Therefore, the solutions are 2i, - 2i, - 1 + ifi, - 1 - ifi. 
In this case, the other two roots are also complex and form a pair of complex 

conjugates. 

Exercises 4d 
1 If z = 3 - 4i, evaluate (i) i, (ii) z + 3, (iii) z - 3i. Interpret the results 

geometrically in the complex plane. 
2 If z = 2 - i, evaluate (i) 2z, (ii) - 3z, (iii) 4iz. Interpret the results 

geometrically in the complex plane. 3 Evaluate (i) 3(4 + Si), (ii) 2i(4 + Si). Interpret the results on the Argand 
diagram. 

4 Evaluate (3 + 2i)(4 + Si) and interpret the result on the Argand diagram. 
(Connect this with the results of question 3.) 

5 If z = x + iy, show that l z l2 = zi. 
6 If z = 3 - 2i, evaluate .!._ and interpret the result geometrically. z 

7 Show that J ! I = ! . z l z l 
8 If z = z, find the locus of the point represented by z. 
9 If lz - 21 = lz + 21, find the locus of the point represented by z. 

10 If lz - 3i l = 21z - 31, find the locus of the point represented by z. 
1 1  If z = x + iy, show that (i) Re(z + z) = 2Re(z), (ii) Im(z - z) = 2Im(z). 
12 If z = u + iv, show that zz = lzl2 = u2 + v2• 13 If z = -i, find the locus of the point represented by z. 14 If zi = 16, find the locus of the point represented by z. 15 Given that one root of the equation x4 + x3 + 3x2 + x + 2 = 0 is i, find 

the other roots. 

4.5 The cube roots of unity 
We have already seen (question 4 of Exercises 4a) that the cubic equation 
x3 = 1, i.e. x3 - 1 = 0, has three roots: 

x3 - 1 = (x - l)(x2 + x + 1) 

Therefore, if x3 - 1 = 0, 

X = 1 

x - 1 = 0 or x2 + x + 1 = 0 
- 1  ± J(l - 4) 1 .J3 or x = --�-- = - -+1-2 2 - 2 

The three roots of the equation are thus 1, -� + iJ,} and - � - i�3. 
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By direct multiplication, we see that the square of the second (third) root 
equals the third (second) root. 

and 

( -� + i�3r = ( -� + i�3)( -� + i�3) 
= i - � + { �3 ( -D + �3 (-DJ 

1 . ..)3 
= -2 - 12 

( -� _ i�3r = ( -� _ i�3)( -� _ i�3) 
= i - � + {(-f3)(-D + (-�3)(-DJ 

1 . ..)3 
= --+1-

2 2 

Thus we may denote the three cube roots of unity by 1, w, w2, where 

Then, 

1 . ..)3 1 . ..)3 w =  --+1- or -- -1-
2 2 2 2 

lwl = J[GY + (�3)2] = 1 

and if we represent the three roots by points in the complex plane, we see 
that they are equally spaced round a circle whose centre is the origin and 
whose radius is unity (Figure 4.12). We also observe that the sum of the three 
cube roots 

y 

w 

- +--- ---+-----+�► x 

Figure 4.12 
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Therefore 

2 ( 
1 .✓3) ( 1 .✓3) 1 + w + w = 1 + -2 + '2 + -2 - '2 = 0 

1 + w + w2 = 0 (4. 1 1) 
Example I If w is one of the complex cube roots of unity, show that 
(1 + w2)4 = w. By (4. 1 1 ) 

1 + w2 = - w  
therefore 

(1 + w2)4 = ( - w)4 = w4 = w3 • w 
(1 + w2)4 = w since w3 = 1 

Example 2 If w is one of the complex cube roots of unity, show that 
(a+ wb + w2e)(a + w2b + we) = a2 + b2 + e2 - ab -be -ea. 

(a+ wb + w2e)(a + w2b + we) = a2 + w3b2 + w3e2 + ab(w + w2) + be(w2 + w4) + ea(w2 + w) = a2 + b2 + e2 + ab( -1) 
+be(w2 + w) + ea( -1) 

= a2 + b2 + e2 - ab -be -ea 

Exercises 4e 

If w is one of the complex cube roots of unity show that: 
1 (1 + w -w2)3 

- (1 -w + w2)3 = 0 
2 (1 -w + w2)(1 + w -w2) = 4 
3 (1 + w)6 = 1 
4 a3 + b3 = (a+ b)(a + wb)(a + w2b) 
5 6xy = (x + y)2 + (wx + w2y)2 + (wy + w2x)2 

Exercises 4 
1 Express in the form a + ib: 

(i) 3 -i 
(ii) 4 + 3i 

(iii) ( 
1 + i_ )2 

2 + i  2 -i l -1 
2 If (x + iy)2 = a+ ib show that x2 - y2 = a, 2xy = b. Hence evaluate 

J(8 + 6i). 
3 Find the solutions of the equation x2 + 7x + 20 = 0 in the form a+ ib. 

Find the sum and product of the roots. 
4 If z3 = 1, find the possible values for 1 + z + z2 • 

5 If z = cos 0 + i sin 0, find the modulus of z + 1 if O < 0 < n/2. 
z -1 

6 If z = x + iy, find the real and imaginary parts of (i) z3 and (ii) �­
z 
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7 Show how to represent geometrically the sum of two complex numbers 
z1 and z2 • What is the meaning of lz1 + z2 1? 

8 Use the result of question 7 to show that lz1 + z2 1 � lz1 1 + lz2 J . 

9 Find the locus of a point z which moves so that I: � � I = 3. 

10 If w is one of the complex cube roots of unity evaluate 
(i) (1 - w)(l - w2) 

(ii) (a + b)(wa + w2b)(w2a + bw). 
11  Solve the equation x2 + 4x + 20 = 0 giving the roots in the form p ± iq, 

where p and q are real. [JMB, part] 12 If a +  ip = ✓ [ (A + iB)(C + iD)] show that a2 - p2 
= AC - BD, 2ap = AD + BC and 2a2 = AC - BD + ✓ [(A2 + B 2) (C2 + D2

) ] .  
13 Express in the form X + i Y: 

(i) (2 - i)3 (") 
2 - 3i 

11 --1 + 3i (" ') 2 - i 
111 --3 + i 

14 Find two real numbers x and y so that 

(. ) 
(4 - i)2 

lV J - I 

x(3 + 4i) - y( 1 + 2i) + 5 = 0 

15 If (x + iy)3 = a +  ib show that a2 + b2 = (x2 + y2)3
• 

16 If w is one of the complex cube roots of unity show that 
(i) ( 1  + w2) 1 2  = 1 

(ii) (1 - w)(l - w2)(1 - w4)(1 - w5)(1 - w7)(1 - w8) = 27. 
17 Show that the square roots of unity are equally spaced round the unit 

circle. Show that this is the case for the cube and fourth roots of un1iy. 
Where do you suppose the fifth or the sixth roots ofunity lie in the complex 
plane? Verify by actual multiplication that the complex sixth root in the 
first quadrant is indeed a sixth root of unity. What is this complex sixth 
root? 

. . d h l d . . f 2 + Ji 
18 (1) Fm t e rea an 1magmary parts o 3 + 4i . 

(ii) If the complex number 4 + 7i is represented by the point P on the 
Argand diagram, write down the complex numbers which are 
represented by (a) the reflection of P in the x-axis; (b) the reflection 
of P in the line y = x; (c) the reflection of P in the line y = - x. 

[JMB, part] 
19 (a) Show that 1 + i is a fifth root of - 4 -4i. 

(b) Show that if a, b, e, d and (a + ib)/(e + id) are real, then ad = be. Hence 
h h 'f . d z2 + 2z . l h . d s ow t at 1 z = x + zy an 2 4 1s rea , t e pomt represente 

z + 
by z lies on the real axis or on a certain circle. [JMB] 

20 Show that (a + b + e)(a + wb + w2e)(a + w2b + we) = a3 + b3 + e3 - 3abe 
where w is a complex cube root of unity. 

21 Solve the equation (; � � ) 
2 = i. 
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22 P represents the complex number z; Q represents z + iz. Show that OPQ 
is a right-angled triangle where O is the origin. 

23 The points A, B, C, D on the Argand diagram correspond to the complex 
numbers a, b, c, d respectively. Prove that 
(i) if a - b + c - d = 0, then ABCD is a parallelogram 
(ii) if also a+ ib -c - id = 0, then ABCD is a square. [JMB, part] 

24 P represents the complex number z; Q represents the complex number 

z + !. Show that if P moves on the circle lzl = 2, Q moves on the ellipse 
z 

x2 y2 1 
25 + 9 = 4· 

25 ABCD is a square in the complex plane. If A represents 3 + 2i and D 
represents 4 + 3i, what complex numbers are represented by B and C? 

26 Write down, or obtain, the non-real cube roots of unity, w1 and w2, in 
the form a + ib, where a and b are real. A regular hexagon is drawn in 
an Argand diagram such that two adjacent vertices represent w1 and w2, 

respectively, and the centre of the circumscribing circle of the hexagon 
is the point (1, 0). Determine, in the form a+ ib, the complex numbers 
represented by the other four vertices of the hexagon and find the 
product of these four complex numbers. [JMB] 

27 In an Argand diagram, the point P represents the complex number z, 
where z = x + iy. Given that z + 2 = ,1.i(z + 8), where A. is a real parameter, 
find the cartesian equation of the locus of P as A. varies. If also z = µ(4 + 3i), 
whereµ is real, prove that there is only one possible position for P. [JMB] 

28 (i) Given that z1 = 3 + 4i and z2 = - 1  + 2i, represent z1 , z2 , (z1 + z2), 
and (z2 - z1) in the Argand diagram. Express (z1 + z2)/(z2 - z1) in the 
form a + ib, where a, b are real. Find the magnitude of the angle 
between the vectors representing (z1 + z2) and (z2 - z1)

. 

(ii) One root of the equation z3 - 6z2 + 13z + k = 0, where k is real, is 
2 + i. Find the other roots and the value of k. [LU] 

29 Find real values of a and b such that (a+ ib)2 = i. Hence, or otherwise, 
solve the equation z2 + 2z + 1 - i = 0, giving your solutions in the form 
z = p + iq. [OJ 

30 (i) Given that 3 + 4i = (x + iy)2, find x and y. Find also the square roots 
of i in the form a + ib, where a and b are real. 

(ii) Show that 1 + i is a root of the equation z3 - 4z2 + 6z - 4 = 0, and 
find the other roots of this equation. [LU] 



5 
The quadratic function and the 
quadratic equation 

5.1 The general quadratic equation 
We have already used the formula (1.2) in order to solve a quadratic equation. 
The result (1.2) can be obtained as follows. 

For the general quadratic equation ax2 + bx + c = 0, where a, b, c are any 
real numbers with a at least non-zero, we have after division by a and a slight 
rearrangement of the terms 

b -c x2+-x = -a a 

The addition of the quantity b2 /4a2 to both sides makes the left hand side 
a perfect square, namely [x + (b/2a)]2• Thus 

Therefore 

(x + !!_)2 

= � _ � = b
2 - 4ac 

2a 4a2 a 4a2 

x + !!_ = +J(
b2 - 4ac

) = ±✓(b2 - 4ac) 
2a - 4a2 2a 

- b  ± ✓(b2 - 4ac) 
X = ---'-----

2a (5. 1 )  

Expression (5.1) enables us not only to solve quadratic equations but also 
to investigate the dependence of the roots on the relative values of a, b and c. 
In particular, the types of root which arise depend on the quantity b2 - 4ac 
whose square root occurs in (5.1). This quantity is called the discriminant 
of the equation and is often denoted by the symbol D: 

D = b2 - 4ac (5.2) 

If b2 - 4ac > 0, its square root will be a real number and we shall obtain 
two real distinct roots of the equation. 

If b2 - 4ac = 0, so is its square root, and both roots of the equation will 
be real and equal to - b/2a. 

77 
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If b2 - 4ac < 0, its square root is that of a negative number. Such a square 
root cannot be a real number. Indeed, we have seen that it is a complex 
number. In this case, we say that the equation has no real roots or the equation 
has complex roots. 

Example I Find the values of a for which the equation (3a + l)x2 + (a+ 2)x + 1 = 0 has equal roots. 
The discriminant 

D = (a+ 2)2 - 4(3a + 1). 1 = a2 + 4a + 4 - 12a - 4 
= a2 - 8a 

For equal roots, D = O; therefore 

a2 - 8a = 0 a(a - 8) = 0 a =  0 or a =  8 

Example 2 Show that the roots of the equation (x - a)(x - b) = k2 are 
always real if a, b and k are real. 

We first write the equation in the form 

x2 
- (a + b)x + ab - k2 = 0 

The equation has real roots provided its discriminant is not a negative 
number. 

The discriminant D = (a+ b)2 - 4(ab -k2). We require to show that D � 0. 
Now 

D = (a+ b)2 - 4(ab - k2) 

= a2 + 2ab + b2 - 4ab + 4k2 

= a2 - 2ab + b2 + 4k2 

= (a - b)2 + 4k2 

We have been able to express D as the sum of the squares of two real numbers. 
This proves D � 0, which is the condition for real roots. (Note: a standard 
technique for proving a number to be non-negative is to express it as the 
sum of the squares of two or more real numbers.) 

Example 3 Find the values of J for which the roots of the equation x2 - (3J + l)x + A 2 
- 1 = 5J are real. 

The equation can be written in the form x2 - (3J + l)x + J2 
- 5J - 1 = 0 

The discriminant 

D = (3l + 1)2 - 4(1)(J2 - 5J - 1) 
= 9A.2 + 6A. + 1 - 4l2 + 20A. + 4 
= 5A.2 + 26A. + 5 
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For real roots, D � 0, that is 

52 2 + 262 + 5 � 0 

therefore 

(52 + 1)(2 + 5) � 0 

This inequality is satisfied if both factors have the same sign. If this sign is 
positive, 2 � -½; if this sign is negative, 2 � -5. Thus the equation has real 
roots if 2 � -5 or 2 � -½. (See also Section 1.4.) 

Exercises Sa 
1 Find a if the equation (5a + l)x2 - Sax + 3a = 0 has equal roots. 
2 If the equation (7p + l)x2 + (5p - l)x + p = 1 has equal roots, find p. 
3 For what values of k does the equation x2 -(4 + k)x + 9 = 0 have real 

roots? 
4 Find the greatest value of 2 for which the equation (2 - l)x2 - 2x + 

(2 - 1) = 0 has real roots. 
5 Show that the equation x2 - 2px + p2 

- q2 = 0 has real roots provided p and q are both real. 
6 Show that the equation x2 

- 2ax + 3a2 + b2 = 0 cannot have real roots 
if a and b are real. 

7 Show that the roots of the equation x2 + 2x = (2a + 2b + 1 ) (2a + 2b _:-1) 
are integers if a and b are integers. 

8 The equation x2 + 2px + p2 + q2 = r2 has real roots. Show that r2 � q2. 
9 Find the values of a if the equation (a + 3)x2 -(1 la + l)x + a = 2(a -5) 

has equal roots. 
10 Show that the roots of the equation x2 - 2x = (b -c)2 - 1 are rational 

if b and c are rational numbers. 

5.2 The quadratic function 
In this section, we shall examine the values of the quadratic function y = ax2 + bx +  c as x takes on different real values. 

First, we notice that for large positive or large negative values of x, the 
dominant part of the right-hand side is ax2 • Since x2 is always positive, we 
see that y will have the same sign as a for large positive or large negative 
values of x. 

y = ax2 + bx + c may be written as 

( 2 bx c) Y = ll X + � + � 
= a(xz + bx 

+ le + � -!e) a 4a2 a 4a2 

= a[ (x + .!!...
)

2 - �bz - 4ac] 2a 4a2 
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that is 

Therefore 

y = a[(x + !:_)
2 

-!!_] 2a 4a2 

= a[ ( X + :ar - (  ✓(b2

2� 
4ac)

Y] 

= a[x + !:_ _ ✓(b2 
- 4ac)] [x + !:_ + 

✓(b2 - 4ac)
] 2a 2a 2a 2a 

y = ax2 + bx + c = a(x - ix)(x - P) 
where - b  + ✓(b2 - 4ac) - b - ✓(b2 -4ac) ix = -------'------ and P = ------'-----

2a 2a 

are the roots of the equation ax2 + bx + c = 0. 

a >O 

i- 4ac> O  

a >O 
i-40C = 0 

a > O  
b2-4ac< O  

y y 

a < O  
i-4ac>O 

(a) Two real roots (b) Two real  roots 

y y 

a < O  
i -4ac = O  

X 

(c) Real eq ual roots 

(d) Real equal roots 

y 
a < O  
b2 -4ac<O 

X 

(e) No rea l roots (f ) No real roots 

Figure 5.1 

(5.3) 

(5.4) 

X 

X 
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Thus we see that y = a(x - et)(x - P) is zero for the two values x = et and 
x = p, as we would expect. 

We may suppose without any loss of generality that one root, say et, is 
not less than p, i.e. et ;;i, p, and we also note that for any value of x the sign 
of y is the same as the sign of a(x - et)(x - p). 

Then (x - et)(x - P) is positive when x > et since both factors are then 
positive, and (x - et)(x - P) is also positive for x < p since both factors are 
then negative. For p < x < et, however, (x - et)(x - P) is negative since one 
factor is then negative and the other positive. To sum up, we have the 
important result: 
THEOREM The sign of y = ax2 + bx + c is the same as the sign of a except for 
those values of x which lie between the roots of the equation ax2 + bx + c = 0. 

This result combined with the procedure for determining the nature of 
the roots enables us to make a sketch of the graph of the function 
y = ax2 + bx + c. There are six cases to consider (see Figure 5.1). 

Example I Show that 3x2 + 6x + 20 is always positive. 
3x2 + 6x + 20 = 3(x2 + 2x + lj) = 3(x2 + 2x + 1 + ¥) 

= 3[(x + 1)2 + ¥J 
which, being three times the sum of two positive quantities, is always positive. 

Example 2 Show that if a > 0, y = ax2 + bx + c has a minimum value when 
x = - b/2a, and determine that minimum value. 

We have seen that 
[( b )2 4ac - b2] 

y = a x + 
2a 

+ 4a2 

= a(
4a�� 

b2) + a(x + :a)2 
Now a( x + :

ay is never negative if a is positive, and has a minimum value 
of zero when x = -b/2a. Thus y has a minimum value of 

(4ac - b2

) 4ac - b2 

h b a 2 = w en x = --
4a 4a 2a 

1 If · 1 h h x2 + x + 1 · · h 1 3 Examp e 3 x is rea , s ow t at y = 1 1s e1t er ;?l: or :s;; - • 
We have 

x +  

X 2 + X + 1 
y = 

x +  1 
This we rewrite as a quadratic in x so that 

x2 + x + 1 = xy + y 
x2 + x(l - y) + 1 - y = 0 
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Since x is always real, the discriminant (see (5.2)) of this equation is greater 
than or equal to zero: 

(1 - y)2 - 4(1 - y) � 0 
(1 - y)( - 3 - y) � 0 

(y - l)(y + 3) � 0 

Now, the roots of the equation (y - l)(y + 3) = 0 are y = 1 and y = - 3, and 
the coefficient of y2 for the function (y - l)(y + 3) is 1. Therefore (see theorem 
page 81), 

(y - l)(y + 3) � 0 (the same sign as 1) 

for y � 1 or y � - 3. Therefore, y � 1 or � - 3 whatever the value of x. 

Exercises Sb 
1 Show that x2 + 4x + 13 > 0 for all values of x. 
2 Show that 16x2 - 24x + 10 > 0 for all values of x. 
3 Prove that 6x - 4 - 9x2 can never be greater than - 3. 
4 Show that if a < 0, y = ax2 + bx + c has a maximum value when 

x = -b/2a. What is this maximum value of y? 
5 Find the maximum value of 5 + 6x - x2• 

6 Find the minimum value of 12x2 + 24x + 13. 

7 Show that if x is real, �
2 - 12 can have no real values between 3 and 4. 
x-7 

8 f · 1 h h (x - 2)2 + 16 k 1 1 h' h I x Is rea s ow t at 2(x + 2) can ta e on any rea va ue w IC 
does not lie between - 4(✓2 + 1) and 4(✓2 - 1). x2 + px + p 

9 If p and q are both real and q > 4, show that 2 cannot be 
X + qx + q 

p-4 between p/q and -- when x is real. 
q - 4 

10 Find the possible values of k if x
2 + 3x; 4 may be capable of taking 

5x -
on all values when x is real. 

5.3 The relation between the roots of a quadratic equation 
and the coefficients 

We have seen that the roots of the quadratic equation ax2 + bx + c = 0 are 
the two numbers 

-b + v'(b2 - 4ac) and 
2a 

-b - v'(b2 -4ac) 
2a 
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If we denote these roots by a and p in some order, we see that 

a +  p = - � + ✓(b2 - 4ac) _ � _ ✓(b2 
- 4ac) = - � 

� � � � a 
and 

ap = [ - � + ✓(b2 - 4ac)
] [ - � _ ✓(b2 - 4ac)

] 2a 2a 2a 2a 

= ( - �
)

2 

- (b2 - 4ac
) = 4ac = � 

2a 4a2 4a2 a 
Thus we have the following important results. 

If a and p are the roots of the quadratic equation ax2 + bx + c = 0, the 
sum of the roots equals - b/a: 

b .  a +  p = - ­
a 

and the product of the roots equals c/a: 
C ap = ­
a 

(5.5) 

(5.6) 

This same result would have been obtained by using (5.4). For then we 
have 

ax2 + bx + c = a(x - a)(x - P) 
ax2 + bx +  c = ax2 - a(a + P)x + aaP, 

These two expressions are identical and, on equating the coefficient of x and 
the term independent of x, we obtain 

b = - a( a + P) and c = aap 
b C a + P = - - ap = - as before 
a a 

(We notice that in the identity the coefficients of x2 are both equal to a.) 
Example 1 If a and p are the roots of the equation ax2 + bx + c = 0, obtain 
in terms of a, b and c the values of (i) a2 + p2, (ii) i + �. (iii) a3 + p3

• 

We express (i), (ii) and (iii) in terms of a +  p and ap. 
For (i) 

Therefore 

a2 + p2 = a2 + 2aP + P2 - 2aP 
= ( a + P)2 - 2ap 

= (-!)
2
-� 
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For (ii) 

For (iii) 

-
a 

+ _/3 __ a2 + {32 
__ b

2 - 2ac /-c 
/3 a a/3 a2 a 

by the previous result 

a f3 b2 - 2ac - + - =-- -
/3 a ac 

a3 + /33 = (a + /3)(a2 -a/3 + /32) 

= -
�

(
b2 - 2ac _ :.) by (i) 

a a2 a 

a3 + /33 = _ b(b2 
- 3ac) = 3abc -b3 

a a2 a3 

Example 2 If one root of the equation px2 + qx + r = 0 is three times the 
other root, show that 3q2 = l 6pr. 

Suppose the roots are a and 3a. Then from (5.5) and (5.6) 

a + 3a = 4a = -� and a. 3a = 3a2 = :. p p 

We eliminate a from these two equations. From the first equation, 
a =  -(q/4p). Therefore 

3( �p
q

r 
= � 

3q2 r 
16p2 = p 

3q2 = 16pr 
Example 3 The roots of the equation x2 + px + q = 0 are y and b. Form 
the quadratic equation whose roots are y + {J and 1/y + 1/<J. 

Let the required equation be x2 + Px + Q = 0. By (5.5) 

By (5.6) 

� = - (r + {J + ! + !) = - (r + {J + Y + b) 
1 y () y{J 

= -( -p - !!.) = p + !!. = !!.(l + q) 
q q q 

g_ = (y + {J)(! + !) = (y + <J)(y + ()
) 1 y () y{J 

= (y + {J)2 ( -p)2 p2 

')'<J q q 
Therefore, the required equation is 

x2 + (p/q)( l + q)x + p2/q = 0 



Exercises 85 

that is 
qx2 + p(l + q)x + p2 = 0 

Exercises 5c 
1 If ix and /3 are the roots of the equation 3x2 

- 7x - 1 = 0 find the values 
Of (i) (IX - /3)2

, (ii) IX
2 + /32, (iii) IX

4 + /34
• 

2 If ix and /3 are the roots of the equation 5x2 - 3x - 1 = 0, form the 
equations with integral coefficients which have the roots (i) l/ix2 and 1//32. 
(ii) ix2 //3 and /32 /ix. 

3 Find the condition that the roots of the equation px2 + qx + r = 0 should be (i) equal in magnitude and opposite in sign, (ii) reciprocals. 
4 One root of the equation px2 + qx + r = 0 is twice the other root. Show 

that 2q2 
- 9rp = 0. 

5 y and J are the roots of the equation px2 + qx + r = 0. Find in terms 
of p, q and r (i) y - b, (ii) y2 - b2 , (iii) y3 - J3 

[ = (y - b)(y2 + yb + J2
)], 

(iv) y4 - J4. 
6 One root of the equation x2 - px + q = 0 is the square of the other. 

Show that p3 - q(3p + 1 )  - q2 = 0 provided q =I- 1 .  
7 If ix and /3 are the roots of  the equation ax2 + bx + c = 0, form the 

equation whose roots are ix//32 and /3/ix2
• 

8 If one root of the equation px2 + qx + r = 0 is four times the other show 
that 4q2 - 25pr = 0. 

9 Find the relationship which must exist between a, b and c if the roots 
of equation ax2 +bx+ c = 0 are in the ratio p/q. 

10 Form the quadratic equation for which the sum of the roots is 5 and 
the sum of the squares of the roots is 53. 

Exercises 5 
1 Find in their simplest rational forms the quadratic equations whose roots 

are (i) 3 ± ✓5, (ii) - 2  ± 3✓2, (iii) a ±  2b. 
2 Prove that if a, b and c are real the roots of the equation (a2 + b2)x2 + 

2(a2 + b2 + c2)x + (b2 + c2) = 0 are also real. 
3 Sh h 'f . I (x - l)(x - 5) 1 · be d . ow t at 1 x 1s rea , (x _ 2)(x _ 4) cannot 1e tween 1 an 4. Can 1t 

attain these two values and if so for what values of x? 
4 If the roots of the equation px2 

- 6qx - (9p - lOq) = 0 are 2ix - 3 and 
2/3 - 3, find the equation whose roots are ix and /3. [LU, part] 

5 For what values of k has the equation (x + l)(x + 2) = k(3x + 7) equal 
roots? 

6 Show that the roots of the equation (a - b + l)x2 + 2x + (b - a +  1) = 0 
are both real if a and b are real. 

7 If ix and /3 are the roots of the equation 2p2x2 + 2pqx + q2 
- 3p2 = 0, 

show that ix2 + /32 is independent of p and q. 
8 If the roots of the quadratic equation x2 - 3px + p2 = 0 are ix and /3, where 

ix > /3, find the values of ix2 + {32 and ix - /3 when p is positive. Find, in 
terms of p, a quadratic equation whose roots are ix3 / /3 and - {33 /ix. 

[AEB] 
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9 Prove that, for real values of x, the function 2 
x 

; 
2 

6 cannot be greater 
X + x +  

than ½, nor less than -¼. Find for what values of x, if any, it attains 
these values. [SUJB] 

10 Show that the roots of the equation 2bx2 + 2(a + b)x + 3a = 2b are real 
when a and b are real. If one root is double the other show that a = 2b or 4a = l lb. 

11 For what values of k does the equation 10x2 + 4x + 1 = 2kx(2 - x) have 
real roots? 

12 Show that the value of the expression (x + 2{ cannot lie between x +  
0 and 4 if x is real. 

13 Find the ranges of values of k for which the equation x2 + (k - 3)x + k = 0 has (i) real distinct roots, (ii) roots of the same sign. [JMB, part] 

14 Find the condition that the equation _a_ + __!!_b = 5 shall have roots x - a  x -
equal in magnitude but opposite in sign. 

15 If a and b are real, prove that the roots of the equation (3a - b)x2 + (b - a)x - 2a = 0 are real. 
16 IX and /J are the roots of the equation x2 + px + q = 0. Form the equation 

whose roots are IX + /3 and IX - /J. 
17 Show that for all real values of IX and /3 the value of the function x2 - 1X/3 

2 /3 cannot lie between IX and /J. [JMB, part] x - lX -
18 If y = x2 : �: ). and x is real, find the greatest value of ). for which y 

can take all real values. [AEBJ 
19 Show that if the roots of the equation 3x2 + 6x -1 + m(x - 1)2 = 0 are 

real, then m is not greater than !. Find m if one root is the negative 
of the other. 

20 Find the condition that the quadratic equations /1x2 + m1x + n1 = 0 and 
l2x2 + m2x + n2 = 0 have a common root. 

21 Find the values of k for each of which the quadratic equations x2 + kx - 6k = 0 and x2 - 2x - k = 0 have a common root. [JMB, part] 
22 If the quadratic equations x2 + ax + b = 0 and x2 + bx + a = 0 (a =/: b) 

have a common root, show that the solutions of 2x2 + (a +  b)x = (a + b)2 

are x = 1 and x = -½. [LU, part] 
23 If IX and 1X' are the roots of the equation (x - /J)(x - /J') = y, show that 

/3 and /J' are the roots of the equation (x - IX)(x - 1X1
) + y = 0. 

24 If the roots of the equation x2 + bx + c = 0 are IX and /J and the roots 
of the equation x2 + ).bx + ).2c = 0 are y and <5, prove that: 
(i) (IXY + [J<5)(1Xb + [Jy) = 2). 2c(b2 - 2c); (ii) the equation whose roots are 
1XY + {3<5 and 1Xb + /Jy is x2 - ).b2x + 2).2c(b2 - 2c) = 0. [JMB, part] 

2 . d h 1· . b h. h k 1 · . d h kx2 - 6x + 4 5 Fm t e 1m1ts etween w 1c must 1e m or er t at 4 2 6 k X - x +  
may be capable of all values when x is real. 

26 (a) If IX and /3 are the roots of the equation ax2 + bx +  c = 0, form, 



Exercises 87 

without solving this equation, an equation whose roots are r:x2/{3 and 
132 /r:x. 

(b) Find the set of possible values of p if 
x2 + p can take all real values 
x- 1 

2 
when x is real. Find the set of possible values of x + p when p = 3. 

x-1 
[AEB] 

27 The roots of the equation 9x2 + 6x + 1 = 4kx, where k is a real constant, 
are denoted by r:x and {3. (a) Show that the equation whose roots are 1/r:x 
and 1//3 is x2 + 6x + 9 = 4kx. (b) Find the set of values of k for which 
r:x and {3 are real. (c) Find also the set of values of k for which r:x and {3 
are real and positive. [LU] 

28 The roots of the equation x2 + px + q = 0 are r:x and {3. (i) Given that the 
roots differ by 2, /3 and that the sum of the reciprocals of the roots is 
4, find the possible values of p and q. (ii) Find an equation whose roots 
are r:x + � and {3 + �. expressing the coefficients in terms of p and q. 

/3 (I. 

[C] 
29 Given thatf(x) = x2 + (k + 2)x + 2k, show that the roots of the equation f(x) = 0 are real for all real values of k. (a) Find the roots of f(x - k) = 0. 

(b) Find the value of k for which the equationf(x - k) - 2x = 0 has roots 
x = 0 and x = 7. For this value of k, find the minimum value of f(x - k) - 2x. (c) Given that 2c = 2 - k, show that the roots of the 
equation f(x - k) + c2 = 0 are equal, and find the value of these equal 
roots when k = 1. [LU] 

30 Given that the roots of the equation x2 - x - 1 = 0 are r:x and {3, find, 
in its simplest form, the quadratic equation with numerical coefficients 

l + r:x  1 + /3  whose roots are 2 _ r:x and 2 _ /3 . [JMB] 



6 
Properties of the trigonometric functions 

6.1 The measurement of angle 
When a line OP rotates from a position OX to some other position OP, 
the angle POX is said to be positive if the sense of rotation is anticlockwise, 
and negative if the sense of rotation is clockwise. Thus, in Figure 6.la, 
L POX = 115° and in Figure 6.lb, L POX = - 49°. 

p o�-�---x 

X p 

(a)  (b) 
Figure 6.1 

Angles are generally measured in degrees (360° = one revolution) or 
radians, this latter unit being defined as follows. Let AB be an arc of a circle, 
centre 0, equal in length to the radius r of the circle (Figure 6.2a). Then 
L AOB is one radian. If CD (Figure 6.2b) is an arc of length s, then L COD 
is defined to be 

(a) 

88 

0 = � radians r 

Figure 6.2 

(6.1) 

(b) 
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It follows from (6.1) that one complete revolution is equivalent to 2nr/r = 2n radians. Thus, we have the relationship between the two units: 2n radians = 360° 

n radians = 180° (6.2) 

1 radian = (1!0)° 

= 57·2958° = 57° 17' 45" (6.3) 

1° = 1;0 radians (6.4) 

Example 1 Express the following angles in radians: (i) 37°, (ii) - 143° 10'. 
(i) By (6.4) 

(ii) 
Therefore 

37 X 7t 37° = 18() radian = 0.6458 radian 

- 143° 10' = - 143¼° = - 143·166° 

143·166 X 7t • 
- 143° 10' = - 180 radians = - 2·499 radians 

Example 2 Express the following angles in degrees and minutes correct to 
the nearest minute: (i) 2·1 radians, (ii) n/12 radian. 

(i) By (6.3) 

(ii) 

. 2·1 X 180 2·1 radians = -- - degrees = 120·316° 
7t 

= 120° 19' (correct to the nearest minute) 
n d' ( n 180

)
0 

150 -ra tan = - x - = 12 12 1t 

Although an understanding of the relationship between the units concerned 
is desirable, in practice the conversions of the examples above are best carried 
out with the aid of tables or a calculator. 

Exercises 6a 
1 Express the following angles in degrees and minutes correct to the nearest 

minute: (i) 3·2 radians, (ii) - 1  ·58 radians, (iii) n/5 radian. 
2 Express in radians (i) 235°, (ii) 14° 4', (iii) - 128° 10'. 
3 Which is the larger of the following pairs? (i) 129° or 2·16 radians, 

(ii) 19° or -¼ radian. 
4 Verify the correctness of the following useful equivalents: 

(i) i radians = 90° (ii) i radian = 45° (iii) j" radians = 60° 

(iv) i radian = 30° (v) 23
n radians = 120° 
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5 For which of the following angles will the positions of OP coincide? 
L POX = (i) - 120°, (ii) 135°, (iii) 600°, (iv) 240°, (v) - 225°, (vi) 30°. 

6.2 The trigonometric ratios for an acute angle 
For an acute angle 0, the trigonometric ratios are defined as follows 
(see Figure 6.3): 

. 0 
y SID = -
r 

r cosec 0 = -
y 

X cos 0 = - tan 0 = r 
r X 

r sec 0 = - X cot 0 = -
X 

_ _ , ,-
°' 

+ 
,., r -- --- -

: 
- - - y 

y 

- - I 

� {,  0 -.::- - - - - - - - - x - - - - - -► N  
Figure 6.3 

(6.5) 

(6.6) 

Thus, we have immediately the following relationships between the six 
ratios: 

Also 

and 

1 cosec 0 = ----;--
0 sm 

1 sec 0 = --
0 cos 

1 cot 0 = --
0 tan 

tan 0 = r = !/� = sin 0 

x r r cos 0  

cot 0 = � = �1! = c�s 0  

y r r sm 0 

Furthermore, x2 + y2 = r2
, therefore 

x2 y2 
-+- = 1 ,2 ,2 

that is 

cos2 0 + sin2 0 = 1 
This may be written in either of the forms 

sin2 0 = 1 - cos2 0 or cos2 0 = 1 - sin2 0 

In addition, we have 

therefore 

y2 x2 + y2 ,2 
1 + tan2 0 = 1 + 2 = 2 = x2 X X 

1 + tan2 0 = sec2 0 

(6.7) 

(6.8) 

(6.9) 

(6. 10) 

(6.11) 
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Also 

therefore 

x2 y2 + x2 r2 
1 + cot2 0 = 1 + - = -�- = -2 y2 y2 y 

1 + cot2 0 = cosec2 0 (6.12) 
The relationships (6.5) to (6.12), which are true generally for any acute angle, 

enable us to calculate all the trigonometric ratios if one is known, and are 
of value in rewriting trigonometric expressions in alternative and simpler 
forms. 
Example 1 If sin 0 = 1/.J3 and 0° � 0 � 90°, find the values of the other 
trigonometric ratios of the angle 0. 

From (6.10) 

By (6.8) 

and by (6.7) 

cos2 0 = 1 - sin2 0 = 1 - -¼ = i 
cos 0 = .Jj 

sec 0 = .J! 

sin 0 1 tan ° = cos 0 = .J2 

cosec 0 = .J3 cot 0 = .J2 
Example 2 Show that sin2 0 + (1 + cos 0)2 = 2(1 + cos 0). 

The left-hand side (LHS) = sin2 0 + (1 + cos 0)2 

= sin2 0 + 1 + 2 cos 0 + cos2 0 
= 2 + 2 cos 0 

(since cos2 0 + sin2 0 = 1) 
= 2(1 + cos 0) 
= right-hand side (RHS), as required. 

Sh h ( 1 + sin x
) ( 1 + sec x 

) Example 3 ow t at -- -- - - --- = tan x 1 + cos x 1 + cosec x 

LBS = ( 1 + sin x
) [ 

1 + � l = 1 + sin x 
[ 

c
�;�: 

1 l 
1 + COS X l + ___ 1 _ 1 + COS X _SI_n_�_+_l 

sm x sm x 

1 + sin x 1 + cos x sin x sin x --- = -- = tan x 1 + cos x cos x 1 + sin x COS X 
Trigonometric identities may often be proved by reducing one expression 

(usually the more complicated) to the second. In other cases we may proceed 
by showing that 
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(i) LHS - RHS = 0, or 

( .. ) LHS = l 11 RHS . 

sin <jJ 1 + cos </J Example 4 Show that 1 ,1,. = - cos "' sin <jJ • 

LHS = sin <jJ sin <jJ = sin2 </J = sin
2 </J = 1 RHS 1 - cos </J 1 + cos </J 1 - cos2 <jJ sin2 <jJ 

therefore 
LHS = RHS 

sin <jJ 1 + cos </J 
1 - cos </J sin <jJ 

Exercises 6b 
1 If cos 0 = H and 0° :,;; 0 :,;;  90°, evaluate sin 0, tan 0, cot 0, sec 0, cosec 0. 
2 If tan 0 = ¾ and 0° :,;; 0 :,;;  90°, evaluate sin 0 and cos 0. 

3 If x = a cos 0, simplify (i) a2 
- x2, (ii) ( 1 - ::) 

512 

4 If x = a tan 0, simplify (i) 2 
1 

2 , (ii) J( 1 + x:). a + x  a 
5 If c = cos 0, express in terms of c (i) 3 sin2 0 - 2 cos 0, (ii) tan2 0 + 2 cos 0, 

(iii) cosec 0 + sin 0. 
6 If 6 cos2 0 + 2 sin2 0 = 5, show that tan2 0 = ½. 

c - a  7 If a cos2 0 + b sin2 0 = c, show that tan2 0 = -
b

-. 
- c  

8 If cot2 0 + 3 cosec2 0 = 7, show that tan 0 = ± 1. 
Show that 
9 tan 0 + cot 0 = sec 0 cosec 0 

10 4 - 3 cos2 0 = 3 sin2 0 + 1 
11  

1 + cos 0 sec 0 - 1 _ ------- - 1 1 - cos 0 sec 0 + 1 
12 (1 + sin 0)2 + cos2 0 = 2(1 + sin 0) 
13 (sin 0 + cos 0)2 + (sin 0 - cos 0)2 = 2 
14 (cosec x - cot x)(cosec x + cot x) = 1 
15 cos4 A - sin4 A = cos2 A - sin2 A 

1 - sin 0 
16 1 . 0 = (sec 0 - tan 0)2 

+sm 
1 l+tan A - sec A l+sec A - tan A 
7 -- - - -- = ------sec A + tan A - 1 sec A + tan A + 1 

18 cos 0 1 + sin 0 2 0 --.-+--- = sec 1 + sm 0 cos 0 
19 If x' = x cos 0 +  y sin 0 and y' = x sin 0 - y cos 0, show that x'2 + y'2 = 

x2 + y2 . 
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20 If x = r sin 0 cos </), y = r sin 0 sin <P, z = r cos 0, show that x2 + y2 + z2 = 
r2 . 

6.3 The trigonometric ratios for any angle 
The definitions of the trigonometric ratios given in the previous section can 
only apply to acute angles, since they involve the ratio of the sides of a 
right-angled triangle containing the given angle. In this section, we shall 
define the trigonometric ratios in such a way as to be applicable to angles of 
any size. These new definitions, if applied to acute angles, will, of course, 
yield the same results as before. 

We shall measure angles from a fixed line X'OX on the plane. Y'OY is a 
line in the plane perpendicular to X'OX (Figure 6.4). This pair of lines divides 
the plane into four quadrants, XOY, YOX', X'OY', Y'OX (the first, second, 
third and fourth quadrants respectively). Let OP be any line in the plane 
through O and let L POX = 0. This is defined in accordance with the sign 
convention of Section 6.1. 

x' X 

v' 

Figure 6.4 

Let x and y be the cartesian co-ordinates of P, referred to the axes X'OX, 
Y'OY, also defined with the usual sign conventions. Let OP = r be measured 
as positive for all positions of P. Then the trigonometric ratios for L POX 
are defined as 

and 

. 0 y Sln = -r 

1 cosec 0 = 7 sm 

X 
cos 0 = - tan 0 = [ (6.13) r X 

1 1 sec 0 = --0 
cot 0 = --0 cos tan (6.14) 

If these definitions are applied to an acute angle, i.e. one which lies in the 
first quadrant, the results are identical with those given in Section 6.2 (see 
Figure 6.5). 

For other angles, however, we must take account of the signs of x and y. 
If P is in the first quadrant, then x, y and r are all positive, so that the sine, 



94 Properties of the trigonometric functions 

y 

y'  

Figure 6.5 

r 

p .. 

cosine and tangent are all positive. If P is in the second quadrant, y is positive 
and x is negative, so that the sine is positive but the cosine and tangent are 
negative. If P is in the third quadrant, x and y are negative, so that the sine 
and cosine are negative but the tangent is positive. If P is in the fourth 
quadrant, x is positive and y is negative, so that the sine and tangent are 
negative but the cosine is positive. These results may be memorised with the 
aid of the following diagram which shows which of three ratios (sine, cosine 
and tangent) are positive in each quadrant. 

sin I all 
tan cos 

With the definitions (6.13) and (6.14) it is clear that the identities (6.9) to 
(6.12) will remain valid for angles in any of the four quadrants since the 
relation x2 + y2 = r2 is true whatever the signs of x and y. 

y 

x' X 

Figure 6.6 

The definitions (6.13) and (6.14) enable us to define the trigonometric ratios 
for any angles. Tables of the trigonometric functions only exist for angles in 
the range 0° to 90°. These tables are, however, quite sufficient, for the trigono­
metric ratios of any angle may be expressed in terms of the trigonometric 
ratios of an acute angle. The following general relationships proved below are 
of value in such transformations. 

First, we observe that if L POX = 0 and L P'OX' = - 0, then P and P' 
are the mirror images of each other in the line X'OX (Figure 6.6). Thus, 
OP = OP' = r, say. 

Also, the abscissae of P and P' are the same, but their ordinates though 
equal in magnitude are opposite in sign, thus by (6.13) 
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sin ( - 0) = - ! = - sin 0 r 

cos ( - 0) = X 

r cos 0 

y tan ( - 0) =  - - =  - tan 0 
X 

(6.15) 

If P and P' are the ends of a diameter of a circle radius r, and L POX = 0, 
then L P'OX = 180° + 0. But we can see (Figure 6.7) that in this case the 
abscissae and ordinates of P and P' are equal in magnitude but opposite in 
sign. 

Thus by (6.13) 

sin ( 180° + 0) = - y = - sin 0 r 
- x  

cos (l80° + 0) = - = - cos 0 r 
-y y tan (180° + 0) = - = - = tan 0 
- X  X 

If we replace 0 by -0 in (6.16), we obtain, after using (6.15), 

X' 

x' 

y 

y' 

Figure 6.7 

y 

Y '  

Figure 6.8 

X 

X 

(6.16) 
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sin (180° -0) = - sin ( -0) = sin 0 
} cos ( 180° -0) = - cos ( -0) = - cos 0 

tan ( 180° - 0) = tan ( -0) = - tan 0 
(6.17) 

If L POX = 0 and L P'OX = 90° + 0, then P and P' lie on the ends of 
perpendicular radii of a circle centre O and radius r (Figure 6.8). 

Thus, if P is the point (x,y), P' is the point with co-ordinates ( -y,x). Thus 

sin (90° + 0) = X - = cos 0 r 
- y cos (90° + 0) = - = - sin 0 r 
- y tan(90° + 0) = - = -cot 0 
X 

If we replace 0 by -0 in (6.18), we obtain after using (6.15) 
sin(90° -0) = cos ( -0) = cos 0 

} cos (90° -0) = -sin ( - 0) = sin 0 
tan (90° -0) = - cot ( - 0) = cot 0 

(6.18) 

(6.19) 

If L POX = 0 and L P'OX = 360° + 0, then P and P' coincide and if P 
is the point (x,y) P' is also the point (x,y) (Figure 6.9). Thus 

x' 

V 

v'  
Figure 6.9 

sin (360° + 0) = sin 0 
} cos (360° + 0) = cos 0 

tan (360° + 0) = tan 0 
If we replace 0 by -0 in (6.20), we obtain 

X 

sin (360° -0) = sin ( - 0) = -sin 0 
} cos (360° -0) = cos ( -0) = cos 0 

tan(360° -0) = tan( -0) = -tan 0 

(6.20) 

(6.21) 

Example 1 Evaluate (i) sin 150°, (ii) cos 210°, (iii) tan 300°, (iv) cos 420°. 
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(i) sin 150° = sin ( 180° - 150°) 
= sin 30° = 0·5 

(ii) cos 210° = cos (l80° + 30°) 
= -cos 30° = - 0.866 

(iii) tan 300° = - tan (360° - 300°) 
= - tan 60° = - 1·732 

(iv) cos 420° = cos (360° + 60°) 
= cos 60° = 0·5 

From 
tables 

Example 2 Express in terms of the trigonometric ratios of positive acute 
angles (i) cos - 170°, (ii) tan 210°, (iii) cos - 300°, (iv) sin - 500°. 

(i) cos - 170° = cos 170° = - cos (l80° - 170°) = - cos 10° 

(ii) tan 210° = tan (180° + 30°) = tan 30° 

(iii) cos - 300° = cos 300° = cos (360° - 300°) = cos 60° 

(iv) sin - 500° = - sin 500° = - sin (360° + 140°) 
= -sin 140° = - sin (l80° - 140°) = - sin 40° 

Exercises 6c 
1 Evaluate (i) sin 160°, (ii) cos - 400°, (iii) tan 520°, (iv) sin - 200°. 
2 Express in terms of the trigonometric ratios of positive acute angles 

(i) cos 190°, (ii) tan - 410°, (iii) cos 300°, (iv) sin - 740°. 
3 Show that sin (270° - 0) = - cos 0, cos (270° - 0) = - sin 0, tan (270° - 0) 

= cot 0. 
4 Show that sin (270° - 0) + sin (270° + 0) = - 2 cos 0. 
5 Show that cos 210° cos 150° - sin 210° sin 150° = 1. 
6 Evaluate (i) sin (3n/2), (ii) cos ( - 9n/4), (iii) tan ( 11 n/3), (iv) sin ( - 8n/3). 
7 Evaluate (i) sin 180°, (ii) sin 270°, (iii) sin 360°, (iv) cos 180°, (v) cos 270°, 

(vi) cos 360°. 
8 If sin 0 = 1/J3 and 0 is obtuse find cos 0 and tan 0. 9 tan 0 = ¾ and 0 is in the third quadrant; calculate sin 0 and cos 0. 

10 If A, B and C are angles of a triangle, show that (i) sin (90° + A) = 
- cos (B + C), (ii) sin½(A + B) = cos½C. 

6.4 The graphs of the trigonometric functions 
For angles in the range 0° to 90°, the trigonometric ratios have been tabulated. 
Thus, the graphs of these ratios may be plotted very accurately for acute 
angles. The results of the previous section then enable us to plot the graphs 
for other values of the angle. 

Less accurately, we may obtain the graph of the function y = sin x as 
follows. Consider a circle of unit radius with centre 0. Let X'OX and Y'OY 
be two perpendicular axes. Then, if L POX = x and P is on the circumference 
of the circle, sin x is equal to the projection of OP on the axis Y'OY. In 
Figure 6.10, several positions of OP corresponding to different angles are 
shown together with the projection of OP on Y'OY. These enable us to 
obtain the graph shown. 

From Figure 6.10, the maximum value of sin:x is seen to be 1 and the 
minimum value - 1. The graph crosses the x-axis at x = 0°, ± 180°, ± 360°, 
etc. 
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y 

Figure 6.10 

Y =  sin x 

The graph for the function y = cos x can be obtained from Figure 6.10 by 
means of the relation 

cos x = sin (90° + x) from (6.18) 
Thus the ordinate of the sine curve at x + 90° is the ordinate of the cosine 

curve at x. The cosine curve is thus the sine curve moved 90° along to the 
left. This is shown in Figure 6.1 1, from which we see that cos x has a maximum 
and a minimum value of + 1 and - 1, respectively. The curve crosses the 
x-axis at x = ± 90°, ± 270°, ± 450°, etc. 

y Y=COS X 

Figure 6.1 1  

For the function y = tan x,  let C be the centre of  a circle of  unit radius at 
unit distance from a vertical line Y'OY. Let CP be a radius of this circle. 
Produce CP (or PC) to meet Y'OY at Q. Then OQ (with appropriate sign) 
represents the tangent of angle PCO. In Figure 6. 12, various positions of P 
and Q are shown and the graph of y = tan x is obtained from this. 

From the graph, we see that y = tan x is unbounded at x = ± 90°, ± 270°, 
etc. and crosses the x-axis at x = 0°, ± 180°, ± 360°, etc. 

The graphs above, or more accurately the tables of the trigonometric 
functions, enable us to evaluate the trigonometric ratio of any angle. The 
ratios for the particular angles 30°, 60° and 45° can, however, be obtained 
exactly from considerations of an equilateral triangle and an isosceles right­
angled triangle. Thus in Figure 6. 13, OPN is an isosceles right-angled triangle 
in which ON = PN = 1 unit. Then, L OPN = 45° and, by Pythagoras' 
theorem, OP = J2 units. Thus 

• 0 ON 1 
0 

PN 1 sm 45 = 
OP = J2 cos 45 =

OP
= J2 

0 
ON 

tan 45 = - = 1 PN (6.22) 



y 

y' 
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y 

Figure 6.12 

In Figure 6.14, OPQ is an equilateral triangle of side 1 unit, ON being 
an altitude. Thus, PN = NQ = ½ unit and L OPN = 60°. L PON = 30°. 
Now ON2 = OP2 = 1 - ¼ = ¾. Therefore 

and so 

ON = J3 
2 

. 300 PN 600 1 sm = 0 p 
= cos = 2 

cos 30° = ON = sin 60° = J3 OP 2 
tan 30° = PN = cot 60° = _l_ 

ON J3 
tan 60° = cot 30° = J3 

(6.23) 

The results (6.22) and (6.23) are often useful and are worth the trouble of 
memorising. 

�: p 1 N 

Figure 6.13 

P � Q  N 
Figure 6.14 
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Exercises 6d 
1 Plot the graphs of (i) y = sec 0, (ii) y = cosec 0, (iii) y = cot 0 for all values 

of 0 in range - 720° to + 720°. 
2 Plot the graph of (i) y = sin 2x, (ii) y = cos (x + 45°), (iii) y = tan (2x + 30°). 
3 Plot the graph of (i) y = 3 cos x + 4 sin x and on the same scale 

(ii) y = 5 sin (x + 36° 52'). What do you notice? 
4 Plot the graph of (i) y = cos x - sin x and on the same scale 

(ii) v = ( 1/,/2) cos (x + 45°). What do you notice? 
5 Without usmg tables write down the vaiues of (i) sin 120°, (ii) tan -135°, 

(iii) tan 315°, (iv) cos - 240°, (v) sin (3n/4), (vi) tan ( - 2n/3), (vii) tan ( - 5n/4), 
(viii) cos (5n/4). 

6.5 The addition formulae 
In this section, we shall obtain formulae for the trigonometric ratios of the 
sum and difference of two angles in terms of the trigonometric ratios of those 
angles. 

We shall prove these results to be valid for any pair of angles A and B. 
We first obtain an expression for cos (A - B) in terms of cos A, cos B, sin A 
and sin B. Suppose P and Q are two points on the circumference of a circle 
centre O and radius r and such that L POX = A, L QOX = B. Then, from 
the definitions of the sine and cosine (6. 13), P is the point (r cos A, r sin A) 
and Q is the point (r cos B, r sin B). 

y 

y '  

(a) 

Figure 6.15 

y '  

( b) 

Figures 6.15a and b show two possible configurations. In Figure 6.15a, 
L POQ = A -B; in Figure 6.15b, L POQ = 360° - (A - B). In both cases 
(and all other cases, as readers should easily verify), cos POQ = cos (A - B) 
by virtue of (6.20) and (6.21 ). 

Thus, on applying the cosme rule (8.3) to the triangle OPQ, 

PQ2 = OP2 + OQ2 - 2OP. OQ cos POQ 
= r2 + r2 - 2r2 cos (A-B) = 2r2 - 2r2 cos(A - B) 

The triangle PQN obtained by drawing parallels to the axes through P 
and Q has L PNQ = 90°, PN = r sin A - r sin B, QN = r cos A - r cos B. 
Therefore, by Pythagoras, 
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PQ2 = PN2 + QN2 

= r2 sin2 A -2r2 sin A sin B + r2 sin2 B + r2 cos2 A 
-2r2 cos A cos B +  r2 cos2 B 

= r2 (sin2 A +  cos2 A)+ r2 (sin2 B + cos2 B) 
-2r2 (cos A cos B + sin A sin B) 

= 2r2 - 2r2 (cos A cos B + sin A sin B) 
On equating these two expressions for PQ2

, we obtain 
cos (A - B) = cos A cos B + sin A sin B (6.24) 

If in (6.24) we replace B by -B (i.e. -B by + B), we obtain 
cos (A + B) = cos (A) cos ( -B) + sin A sin ( -B) 

which by (6.15) gives 
cos (A + B) = cos A cos B -sin A sin B 

In (6.24) replace A by (90° -A), then 
cos (90° -A -B) = cos [90° - (A +  B)] 

= cos (90° -A) cos B + sin (90° -A) sin B 
Therefore, by (6.19) we have 

sin (A + B) = sin A cos B + cos A sin B 
In (6.26) replace B by -B, then 

sin (A - B) = sin A cos ( -B) + cos A sin ( -B) 
and so by (6.15) 

sin (A -B) = sin A cos B -cos A sin B 

(6.25) 

(6.26) 

(6.27) 
From these results, we obtain by division the corresponding formulae for 

tan (A + B) and tan (A -B) 
( ) 

sin (A + B) sin A cos B + cos A sin B tan A +  B = ---- = ----- - - - ­
cos (A + B) cos A cos B -sin A sin B 

On dividing numerator and denominator by cos A cos B, we obtain 
tan A +  tan B tan (A + B) = l A B (6.28) - tan tan 

In the same way 

( ) sin A cos B -cos A sin B tan A -tan B 
tan A -B = --------- = - - - --cos A cos B + sin A sin B 1 + tan A tan B (6.29) 

Example 1 Given sin 45° = cos 45° = 1/✓2, sin 30° = 1/2, cos 30° = ✓3/2, 
calculate sin 15°. 

By (6.27) 
sin 15° = sin ( 45° -30°) = sin 45° cos 30° -cos 45° sin 30° 

1 ✓3 1 1 ✓3 - 1  
= ✓2 ·2 -✓2 ·2 = 2✓2 
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1 + tan A 
Example 2 Show that tan (45° + A) = 1 A • - tan 

By (6.28) 

(450 
) 

tan 45° + tan A 1 + tan A tan + A = ------ = -- -1 - tan 45° tan A 1 - tan A 

since tan 45° = 1. 
Example 3 Show that sin (x + y) sin (x - y) = sin2 x - sin2 y. 

LHS = (sin x cos y+ cos x sin y)(sin x cos y - cos x sin y) 
= sin2 x cos2 y - cos2 x sin2 y = sin2 x(l - sin2 y) - (1 -sin2 x) sin2 y = sin2 x - sin2 y = RHS 

Exercises 6e 
1 If sin A = ¼ and cos B = --h, evaluate without using tables (i) sin (A + B), 

(ii) cos (A - B), (iii) tan (A + B), if A and B are acute. Is (A + B) an acute 
angle? 

2 If tan (x + y) = 4 and tan x = ½, evaluate tan y. 
3 Evaluate without tables (i) cos 75°, (ii) sin 75°. 
4 Using (6.25) show that (i) cos (90° +A) = - sin A, (ii) sin (90° +A) = cos A. 
5 Show that (i) sin (180° - A) = sin A, (ii) cos (180° - A) = - cos A. 
6 Simplify (i) sin 40° cos 30° - cos 40° sin 30° 

(ii) cos 50° cos 60° - sin 50° sin 60°. 
7 Simplify (i) cos 40° cos 30° + sin 40° sin 30° 

(ii) sin 150° cos 160° + cos 150° sin 160°. 
8 s· J'f (') tan 30° + tan 40° 

(") tan 60° - tan 30° 
imp 1 Y 1 1 - tan 30° tan 40° ' 11 1 + tan 60° tan 30° · 

9 Show that sin x + sin (x + in) + sin (x + in) = 0. 
Show that 

sin (A + B) 10 tan A + tan B = - - --cos A cos B 

11 ( ) cot x cot y - 1 cot x+y = ----­cot x + cot y 
12 (cos 0 + cos </>)2 + (sin 0 + sin <J>)2 = 2 + 2 cos (0 - </>) 
13 ( 1 ) cos x + sin x tan x + 4n = 

COS X - sm x 
14 cos (A + B) cos (A - B) = cos2 A - sin2 B 
15 tan (¼n + x) tan (¼n - x) = 1 

sin 0 + µ cos 0 16 If tan 2 = µ, show that 0 . 0 = tan (0 + 2). cos - µ sm 
17 Given sin (x - a) = cos (x - a), show that 

tan x -1 tan a = - -- = tan (x - ¼n) tan x + 1 
18 Express in terms of the sines and cosines of A, B and C (i) sin (A + B + C), 

(ii) cos (A + B + C). 
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19 Show that 

( C) tan A + tan B + tan C - tan A tan B tan C tan A + B + = ------- - -------1 -- tan A tan B - tan B tan C - tan C tan A 
20 If A, B and C are the angles of a triangle show that 

(i) cos A + cos (B - C) == 2 sin B sin C 
(ii) cos½C + sin½(A - B) = 2 sin½A cos½B. 

6.6 Multiple and submultiple angle formulae 
If we put B = A in (6.26) and (6.25), we obtain 

and 

sin 2A == sin A cos A + cos A sin A 
sin 2A == 2 sin A cos A 

cos 2A == cos2 A - sin2 A 

(6.30) 

(6.31) 

Since cos2 A = 1 - sin2 A and sin2 A = 1 - cos2 A, this result can be put in 
either of the forms 

or 

Also 

cos 2A = 2 cos2 A - 1 

cos 2A = 1 - 2 sin2 A 
2 tan A + tan A tan A = - -- - --1 - tan A tan A 

2 tan A tan 2A = 1 2 A - tan 

(6.32) 

(6.33) 

(6.34) 

We can use these important results to obtain expressions for sin 3A, cos 3A, 
tan 3A, etc. 

sin 3A = sin (2A + A) = sin 2A cos A + cos 2A sin A 

Therefore 

= 2 sin A cos2 A + (cos2 A - sin2 A) sin A 
= 2 sin A cos2 A + sin A cos2 A - sin3 A 
= 3 sin A cos2 A - sin3 A 
= 3 sin A(l  - sin2 A) - sin3 A 

sin 3A = 3 sin A - 4 sin3 A 
cos 3A = cos (2A + A) = cos 2A cos A - sin 2A sin A 

= (2 cos2 A - l) cos A - 2 sin2 A cos A 
= 2 cos3 A -cos A - 2 cos A(l  - cos2 A) 

(6.35) 
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Therefore 

Therefore 

cos 3A = 4 cos3 A - 3 cos A 

3A (2A A) tan 2A +
.
tan A tan = tan + = - -- ---1 - tan 2A tan A 

2 tan A 
1 2 + tan A - tan A = --------

= 

1 2 tan A - tan A----1 - tan2 A 
2 tan A + tan A - tan3 A 

1 - tan2 A - 2 tan2 A 

3A 
3 tan A - tan3 A tan = ------

1 - 3 tan2 A 

If we replace A by ½x in (6.30), (6.31), (6.32), (6.33) and (6.34), we have 

sin x = 2 sin½x cos½x 
cos x = cos2 ½x - sin2 ½x 

= 2 cos2 ½x - 1  
= 1 - 2 sin2 ½x 

2 tan½x tan x = 1 2 1 - tan zX 

(6.36) 

(6.37) 

(6.38) 
(6.39) 
(6.40) 
(6.41) 

(6.42) 

These results enable us to express sin x, cos x and tan x in terms of 
tan ½x. For with tan ½x = t, we have immediately from (6.42) 

2t tan x = -1--2 - t  

sin x = 2 sin½x cos½x 
_ 2 sin½x cos½x 
- cos2 ½x + sin2 ½x (since cos2 ½x + sin2 ½x = 1) 

On dividing the numerator and denominator by cos2 ½x, we have 
. 1 

2sm zX 
cos½x sin x = ----
sin2 1 x 1 + --z-cos2 ½x 

therefore 

. 2t sm x = -1--2 + t  

(6.43) 

(6.44) 
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Also 

therefore 

cos2 ½x -sin2 ½x 
COS X = cos2 ½x + sm2 ½x 

1 -t 2 
COS X =-

1- -2 + t  
Example I If tan 0 = ¥- and 0 is acute, calculate tan ½0. 

We have from (6.43) with t = tan ½0 
24 2t 
7

=
1 -t 2 

24 -24t 2 = 14t 24t 2 + 14t -24 = 0 
12t 2 + 7t -12 = 0 (4t -3)(3t + 4) = 0 t = ¾ or t = -! 

(6.45) 

But since 0 is acute, so is ½0, so that tan ½0 is positive. Therefore, we have 
tan ½0 = ¾. 

sin 20 Example 2 Show that 20 
= tan 0. 

1 + cos 

LHS = 
2 sin 0 cos 0 

= 
2 sin 0 cos 0 

= 
sin 0 

= tan 0. 1 + 2 cos2 0 - 1 2 cos2 0 cos 0 
Example 3 Prove that cos4 A -sin4 A = cos 2A. 

LHS = cos4 A -sin4 A = (cos2 A -sin2 A)(cos2 A+ sin2 A) 
= cos2 A -sin2 A 

(since cos2 A+ sin2 A = 1) 
Therefore 

cos4 A -sin4 A = cos 2A = RHS 

Exercises 6f 
1 If tan 0 = 1, calculate the possible values of tan ½0. 
2 Show that tan 22½0 = ✓2 -1, without using tables. 
3 If cos A = t find without tables sin 2A, cos½A and tan ½A. 
4 Given cos 30° = ✓3/2, show that sin 15° = ½✓ (2 -✓3). 
5 From the values of cos 30° and sin 30° deduce those of cos 60° and sin 60°. 

Show that 
sin 2A 

6 1 2A = cot A 
-cos 
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7 tan 20 -tan 0 = tan 0 sec 20 

8 
1 + COS X + COS 2x _ . . 2 - cot x 

sm x + sm x 
sin 160 9 - - = 16 cos 0 cos 20 cos 40 cos 80 sin 0 

10 (cos 0 -sin 0)2 = 1 -sin 20 
1 + tan2 A 1 

11  2 • 2 ( 1 + tan A) 1 + sm A 
12 sin2 2</J + 2 cos2 </J cos 2</J = 2 cos2 </J 

2 1 1 1 -sin 0 13 tan fan - 20) = . 0 1 +sm 
14 If tan2 x = 1 + 2 tan2 y, show that cos 2x + sin2 y = 0. 
15 Express in terms of t = tan ½0 (i) 1 + sin 0, (ii) 1 + sin 0 + cos 0, 

(iii) sec 0 -tan 0. 

6. 7 The factor formulae 
The sums and differences of sines and cosines may be expressed as products 
of sines and cosines and vice versa. 

From (6.26) and (6.27), we have 
sin (A + B) = sin A cos B + cos A sin B 
sin (A-B) = sin A cos B-cos A sin B 

so that on addition 
2 sin A cos B = sin (A + B) + sin (A -B) 

and on subtraction 
2 cos A sin B = sin (A + B) -sin (A -B) 

Similarly from (6.24) and (6.25) 

so that 

cos (A -B) = cos A cos B + sin A sin B 
cos (A + B) = cos A cos B -sin A sin B 

2 cos A cos B = cos (A + B) + cos (A -B) 
2 sin A sin B = cos (A -B) -cos (A + B) 

(6.46) 

(6.47) 

(6.48) 
(6.49) 

These formulae enable us to express a product of sines and cosines as a 
sum or a difference. 

If we put A+ B = C and A -B = D, so that A = ½(C + D) and 
B = ½(C -D), we obtain 

sin C+sin D = 2 sin½(C+D) cos ½(C - D) 

} sin C -sin D = 2 cos ½(C + D) sin½(C -D) (6.50) 
cos C + cos D = 2 cos ½(C + D) cos ½(C - D) 
cos C-cos D = -2 sin½(C+D) sin½(C - D) 
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These formulae enable us to express a sum or a difference of two sines or 
cosines as a product. Note the minus sign in the last result. 
Example 1 Show that sin 2A cos 4A + sin 3A cos 9A = ½(sin 12A - sin 2A). By (6.46) 

Similarly 

sin 2A cos 4A = ½ sin (2A + 4A) + ½ sin (2A - 4A) 
= ½ sin 6A + ½ sin ( - 2A) 
= ½ sin 6A - ½ sin 2A 

sin 3A cos 9A = ½ sin (3A + 9A) + ½ sin (3A - 9A) 
= ½ sin 12A - ½ sin 6A 

On addition, we have 
sin 2A cos 4A + sin 3A cos 9A = ½(sin 12A - sin 2A) 

as required. 
Example 2 Show that sin 7x + sin x - 2 sin 2x cos 3x = 4 cos2 3x sin x. 

LHS = sin 7x + sin x  - 2 sin 2x cos 3x 
= 2 sin½(7x + x) cos½(7x - x) - 2 sin 2x cos 3x 
= 2 sin 4x cos 3x - 2 sin 2x cos 3x 
= 2 cos 3x(sin 4x - sin 2x) 
= 2 cos 3x . 2 cos½(4x + 2x) sin½(4x - 2x) 
= 4 cos2 3x sin x 

Example 3 If sin 0 + sin </> = a and cos 0 + cos </> = b, show that 
cos2 ½(0 - </>) = ¼(a2 + b2) 

We have 
2 sin½(0 + </>) cos½(0 - </>) = a 2 cos ½(0 + </>) cos½(0 - </>) = b 

On squaring and adding, we obtain 
4 cos2 ½(0 - </>)[sin2 ½(0 + </>) + cos2 ½(0 + </>)] = a2 + b2 

therefore 
a2 + b2 

cos2 ½(0 - </>) =  4 

Exercises 6g 
Show that 
1 sin 50° + sin 40° = ✓2 cos 5° 

2 cos 70° + cos 20° = ✓2 cos 25° 

3 sin 70° + sin 50° = ..J3 cos 10° 

4 cos 75° - cos 15° = -1/ ✓2 
5 cos SA + cos 3A = 2 cos A cos 4A 
6 sin 6x - sin 2x = 2 cos 4x sin 2x 
7 cos A - cos 13A = 2 sin 7 A sin 6A 
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8 2 sin 30 cos 0 = sin 40 + sin 20 
9 2 sin 70 sin 0 = cos 60 - cos 80 

10 2 cos 50 cos 0 = cos 60 + cos 40 
1 1  cos 70 + cos 30 = 50 . 0 . 30 cot sm 7 + sm 
12 sin 0 + sin 50 = tan 30 cos 0 + cos 50 
13 

cos 70° - cos 50° 
= -J3 

sin 70° - sin 50° 

4 sin 0 + sin <I> 1 (0 A..) 1 - ---- =  tanz + 'I'  cos 0 + cos </> 

ls sin 0 - sin <I> 1 (0 A..) ---- - = tan z - 'I' cos 0 + cos </> 
16 

cos 70° + cos 20° 
= 1 sin 70° + sin 20° 

sin {3 + sin 3/3 + sin 5{3 3/3 17 -------- = tan 
cos {3 + cos 3{3 + cos 5{3 

18 cos 2o: + cos 5o: + cos 80: _ 5 . . . 8 - cot o: 
sm 2o: + sm 5o: + sm o: 

2 sin A 
19 tan½(A - B) + tan½(A + B) = A B cos + cos 
20 cos2 (o: + {3) + cos2 (o: - /3) = 1 + cos 2o: cos 2/3 
21 4 cos A cos (A + jn) cos (A + in) = cos 3A 
22 sin A cos 3A - sin 3A cos 5A = ½(sin 4A - sin SA) 
23 sin 4A sin 5A + sin 2A sin 1 lA = sin 7 A sin 6A 
24 cos x + 2 cos 2x + cos 3x = 4 cos2 ½x cos 2x 
25 sin o: + sin (o: + 3x) + sin (o: + 5x) + sin (o: + 8x) 

= 4 sin (o: + 4x)COS iX COS tX 

6.8 The function a cos 0 + b sin 0 
Expressions of the form a cos 0 + b sin 0 arise in many practical problems. 
We shall show that this expression may be written in a form involving either 
the sine or the cosine of some other angle. We saw this in two particular 
cases (Exercises 6d, questions 3 and 4). 

If we set a cos 0 + b sin 0 = R sin (0 + o:), then R and o: can be found by the 
following reasoning. We require a cos 0 + b sin 0 to be identical with 

R sin 0 cos o: + R cos 0 sin o: [ = R sin (0 + o:) by (6.26)] 
This will be so if R cos o: = b and R sin o: = a. If we square and add these 
equations, we obtain 

R2 (cos2 o: + sin2 o:) = a2 + b2 

R = ±J(a2 + b2) 

On division, we obtain 
R sin o: a = R cos o: b 
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that is 

Therefore 

where 

a tan ix =  -b 

a cos 0 + b sin 0 = ± J(a2 + b2) sin (0 + ix) 
a tan ix =  b 

(6.51) 

If we chose R to be positive, then IX is determined by the signs of sin ix and 
cos ix (which are those of a and b respectively) and tan ix = a/b. 

. a sm IX = J(a2 + b2) 
Alternatively, if we set 

cos IX = J(a2 + b2) 

a cos 0 + b sin 0 = R cos ( 0 - P) = R cos 0 cos P + R sin 0 sin p 
then R cos P = a and R sin p = b. Therefore, on squaring and adding, we have 
(for positive R) 

and on dividing, we have 

Therefore 

b tan p = -a 

a cos 0 + b sin 0 = J(a2 + b2) cos (0 - P) 
where 

b tan p = -a 
Example 1 Express in the form R sin (0 + ix), 2 cos 0 + 3 sin 0. 

By (6.51) 
2 cos 0 + 3 sin 0 = J(22 + 32) sin (0 + ix) 

(6.52) 

where tan ix =  i, sin ix = 2/J13 and cos ix = 3/J13, so that ix is acute (see 
Figure 6.16). 

3 

Figure 6.16 

2 
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From tables, (X = 33° 41 ', therefore 
2 cos 0 + 3 sin 0 = .J13 sin (0 + 33° 41') Example 2 Express in the form R cos (0 -(X), cos 0 -2 sin 0. 

By (6.52) 
cos 0 -2 sin 0 = .j(l  2 + 22) cos (0 -(X) 

where tan (X = -2/1 = - 2, sin (X = - 2/ .J 5, cos (X = 1/ .J 5, so that (X lies in 
the fourth quadrant (Figure 6.17). From tables, (X = -63° 26', therefore 

cos 0 -2 sin 0 = .J5 cos [0 -( -63° 26')]  
= .J 5 cos (0 + 63° 26') 

0 

2 

Figure 6.17  

Example 3 Express in the form R sin (0 -(X), cos 0 -sin 0. 
We notice that by (6.27) R sin (0 - (X) = R sin 0 cos (X -R cos 0 sin (X 

If this is to be identical with cos 0 -sin 0, we need to choose R and (X so that R cos (X = -1 and -R sin (X = 1 
On squaring and adding, we obtain 

R2 (cos2 (X + sin2 (X) = ( -1)2 + (1)2 = 2 
therefore 

R = .J2 (Note: we take the positive root) 
On dividing, we have tan (X = 1, but since sin (X = cos (X = - 1/.J2, (X is in the third quadrant. From tables, (X = 225° (see Figure 6.18). Therefore 

cos 0 -sin 0 = .J2 sin (0 -225°) 

Example 4 Sketch the graph of the function y = a cos 0 + b sin 0 and state 
the maximum and minimum values of y. 

We have seen (6.51 )  that 
y = a cos 0 + b sin 0 = .j(a2 + b2) sin (0 + (X) 

where tan (X = a/b. 
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Figure 6.18 

The graph of y = sin (0 + IX) is obtained from the graph of y = sin 0 by dis­
placing the latter graph a distance IX to the left. Multiplication by J (a2 + b2) 
produces the graph of y shown in Figure 6.19. 

y 

I 
I 
I 
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Figure 6.19 

The maximum and minimum values of sin (0 + 1X) are 1 and -1 respectively. 
Hence, the maximum and minimum values of y are J(a2 + b2) and 
-J(a2 + b2) respectively. When 0 = - IX, y is zero and one value of 0 which 
produces the maximum value of y is ½n -IX. One value of 0 which produces 
the minimum value of y is Jn - IX. 

Exercises 6h 
1 Express cos 0 + sin 0 in the form (i) A sin (0 + 1X), (ii) B cos (0 -p). 
2 Express 3 cos 0 -4 sin 0 in the form R cos (0 + 1X). 
3 Express 2 sin 0 -3 cos 0 in the form R sin (0 -1X). 
4 Express 3 cos 20 + 4 sin 20 in the form R sin (20 + 1X). Hence state the maxi­

mum value of 3 cos 20 + 4 sin 20. 
5 By expressing sin 0 + 3 cos 0 in the form R sin (0 + a) calculate the maxi­

mum value of this expression. Find an acute angle 0 for which this maximum 
is attained. 
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6.9 The inverse trigonometric functions 
If sin y = x, we say that y is the number of radians in the angle whose sine 
is x. This we write as 

y = arcsin x 
y is called the inverse sine of x. The statements 

sin y = x and y = arcsin x (6.53) 
are equivalent. Figure 6.20 shows the graph of the function y = arcsin x. It 
is easily derived from the graph x = sin y. From the graph we see that to 
any value of x there correspond many possible values for y. This ambiguity 
can be avoided (see Section 9.1) by confining our attention to the value which 

I ', ... 
I 
I 
I 
I 

y 

I 
' I 

' �  � 
Figure 6.20 

lies in the range - n/2 to n/2. This value is called the principal value of the 
inverse sine. 

In the same way, if x = cosy then y = arccos x is the inverse cosine of x: 
y is the number of radians in the angle whose cosine is x. The principal value 
of the inverse cosine is the value of y in the range O to n. The graph of arccose x 
is shown in Figure 6.21. 

y 
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Figure 6.21 

In the same way, y = arctan x is called the inverse tangent of x and means 
that x = tan y. The principal value of y is the value in the range - n/2 to n/2. The graph of arctan x is shown in Figure 6.22. 
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y 

- - - ---- 2 y = orcton x 

- 'f!. 2 - - - - - - - - -

Figure 6.22 

The notation sin - 1 x, cos - 1 x and tan - 1 x is also used for the inverse 
functions, but we discourage its use because of possible confusion with the 
reciprocals of the trigonometric functions, namely, (sin x) - 1 , (cos x) - 1 and 
(tan x) - 1

. To be certain of avoiding confusion the reciprocal functions should 
always be written 

sin x 
1 

COS X 

1 
tan x 

It follows as a direct consequence of the definitions above that 
sin (arcsin x) = cos (arccos x) = tan (arctan x) = x 

and 
arcsin ( sin y) = arccos ( cos y) = arctan ( tan y) = y 

provided y lies in the appropriate principal value range. 

(6.54) 

(6.55) 

Although they are not used so much as the inverse functions already 
defined, it is possible to define the inverse functions arcsec x, arccosec x, 
arccot x. The principal value arcsec x is taken to lie in the range -n/2 to n/2, while the principal values arcsec x and arccot x are taken to lie in the 
range O to n. 
Example I Show that arctan x = arcsin( .J ( l: x2 ) ) 

With arctan x = tX, x = tan tX. Now by (6.55) tX = arcsin (sin tX), so we express 
sin tX in terms of x. Since 

therefore 

so that 

1 1 + x2 

cosec2 tX = 1 + cot2 tX = 1 + 2 = - - 2-x X 

x2 
sin2 tX = -1--2 + x  

. X sm tX = .,j(l  + x2) 
The sign of the square root is positive in accordance with our conventions 
for the principal value. If x is positive, tX will lie between O and n/2 so that 
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sin ix is positive. If x is negative, ix will lie between - n/2 and O and so sin a 
will also be negative. Therefore 

a =  arctan x = arcsin (
.j(l: x2)) Example 2 Show that arcsin ( -x) = - arcsin x. 

We consider the cases x positive, x negative and x zero separately. If x is 
positive and ix = arcsin x, then ix lies in the range O to n/2 and sin ix = x. 
Therefore 

-x = - sin ix = sin (-ix) 
arcsin ( - x) = - ix = - arcsin x 

If x is negative, put x = -y so that y is positive. Then arcsin ( - y) 
= - arcsin y by the above. Rearranging this we have 

arcsin y = - arcsin ( - y) 
that is 

arcsin ( - x) = - arcsin x 
If x is zero, arcsinO = 0 = arcsin ( - 0). Thus, we have proved the result 

for all values of x. 
Example 3 Show that arctan x + arctan y = arctan ( t �;). 

Let arctan x = a, arctan y = {J, so that tan ix = x, tan fJ = y. Then 
arctan x + arctan y = a +  fJ = arctan [tan (ix+ /J)] by (6.55) 

Therefore 

Exercises 6i 

( 
tan ix + tan fJ 

) = arctan 1 fJ by (6.28) - tan ix tan 

( x+y
) arctan x + arctan y = arctan ---1 - x y 

(6.56) 

1 Write down the value of (i) arccos (l/y2), (ii) arctan 1, (iii) arctan .J3. 
2 Evaluate (i) arctan ( - 1), (ii) arcsin ( --z), (iii) arccos (.j3/2). 2x 
3 Show that 2 arctan x = arctan-1

--2 • - x  
4 Show that arcsin½ = arccos (.j3/2). 
5 Show that arccos ( - x) = n - arccos (x). (Consider the three cases x posi­

tive, x negative, x zero and proceed as in Example 2.) 
6 Show that if arccos x, arccos y and arccos x + arccos y are all in the range 

0 to ½n then 
arccos x + arccos y = arccos {xy - .j[(l - x2)(1 - y2) ] } 

7 Find x if arctan x + arctan (1 - x) = arctan t 
8 Show that 2 arcsin x = arcsin [2x✓(l - x2) ]  if arcsin x < ¼n. 
9 Show that 2 arcsin l3 = arctan m. 

10 Show that arctan ¼ + arctan i = arctan ½. 

file:////-xyJ
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6.10 Small angles From the definition of the radian, we see that if s is the length of an arc of a circle radius r which subtends an angle 0 at the centre then 
s = r0 (measured in radians) (6.57) (Compare with equation (6.1).) 

Figure 6.23 

Also, if A is the area of the sector defined by the arc s and the bounding radii (see Figure 6.23) then 
A 0 area of circle 2n 

(6.58) 
We shall use these results to obtain useful approximations to sin 0, cos 0 and tan 0 when 0 is small. In Figure 6.24 PR is a chord of a circle radius r subtending an acute angle 

0 at the centre O of this circle. PT is the tangent at P. 

Figure 6.24 

It is clear that area /':,. POR < area sector POR < area /':,. POT. Thus since OP = OR = r and PT = r tan 0 ½r2 sin 0 < ½r20 < ½r2 tan 0 sin 0 < 0 < tan 0 

Th 1 
0 1 l 

sin 0 0 h. h . . l us < -;---0 < --
0 or > -0- > cos , w 1c 1s eqmva ent. sm cos Now let 0 - 0, then cos 0·- 1, so that we have 

sin 0 - - - 1 as 0 - 0  0 

(6.59) 
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sin 0 Thus -0- � 1 for small values of 0, that 1s 

sin 0 � 0 if 0 is small (6.60) 

In practice, this approximation is valid to about four decimal places for 
values of 0 less than 6° , although to use the approximation we emphasise 
that the units for 0 must be radians. 

Since cos 0 = 1 - 2 sin2 ½0 and since sin ½0 � ½0 for small values of 0, 
we have 

cos 0 � 1 - ½02 if 0 is small (6.61) 
This approximation is more accurate than the coarser approximation 

cos 0 � 1 if 0 is small (6.62) 
From (6.60) and (6.62) we obtain by division 

tan 0 � 0 if 0 is small 

Example 1 Find an approximate value of 0 if sin 0 = 0·48. 

(6.63) 

Since sin 0 is nearly 0·5, 0 must be approximately ¼n radians. We can 
improve on this first approximation by letting 0 = ¼n - ex, where ex is small. 
Then 

0·48 = sin (¼n - ex) = sin ¼n cos ex - cos ¼n sin ex 
Thus since 

cos¼n = ..}3/2 
we have 

• l 1 Stn 07t = -z COS ex �  1 

therefore 

1 ..)3 0·48 � - - -ex 2 2 

ex � ( J 3 ) x 0·02 = 0·0231 radian 

ex �  1° 19' so that 0 � 28° 41' 

sin ex � ex 

Example 2 The diameter of a circular flat disc is 1 m. At what distance will 
it subtend an angle of 15 minutes? 

Let AB be a diameter of the circular flat disc; C its centre (Figure 6.25). Then 

But 

therefore 

AB = 1 m = 20C tan AOC 

tan AOC � L AOC = L;o radians 

720 OC � - m  = 229·2 m 
11: 



Figure 6.25 
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1 Use tables to evaluate sin 0 for 0 = l 0, 2°, 3°, 4°, 5°, 10°. Convert 0 to 
radians and compare the values. 

2 Calculate tan 0 for the values of 0 in question 1. Compare the values of 
sin 0, 0 and tan 0 (see (6.59)). 

3 Find an approximate value for 0 if sin 0 = 0·51. 
4 A hill 15 km away has an angle of elevation of 30'. Find its approximate 

height in metres. 
5 Find the angle subtended by a building 50 m high at a distance of 8·8 km. 

Exercises 6 
In the following questions (and also in subsequent chapter-end exercises), 
both types of notation occur for the inverse trigonometric functions, namely, 
arcsin x etc. and sin - 1 x etc. This has been done to familiarise readers with 
the form of notation preferred by some examining boards. 

1 Show that tan2 0 - sin2 0 = sin2 0 tan2 0. 
2 Evaluate (i) cos 386°, (ii) sin - 429°, (iii) tan - 819°, (iv) sin 881°. 
3 If 90° < x < 180° and sin x = 0·8 evaluate (i) cos x, (ii) tan x, (iii) sin 2x, 

(iv) cos 2x. 
4 If sin 0 = s and 0 is acute express all the other trigonometric ratios of 0 

in terms of s. 
5 Show that sin4 0 + cos4 0 = l - 2 sin2 0 cos2 0. 
6 Show that (sec2 0 + tan 0)(cosec2 0 - cot 0) = 1 + tan2 0 + cot2 0. 
7 Prove without tables that arcsin ¾ - arccos M = 2 arctan ½. 
8 Show that sin A + 2 sin 5A + sin 9A = 4 cos2 2A sin 5A. 
9 If A, B, C are the angles of a triangle, show that 

(i) sin A +  sin B + sin C = 4 cos½A cos½B cos½C 
(ii) sin 2A + sin 2B + sin 2C = 4 sin A sin B sin C. 

10 If tan 0 = l/p and tan c/> = 1/q and pq = 2, show that tan (0 + c/>) = p + q. 
11 Show that 

. 2 2 (1 + tan A)2 - 2 tan2 A (a) SID A + cos A = l + tan2 A 

(b) cos (2P - 2Q) + cos 3Q _ 
sin (2P - 3Q) + sin 3Q - cot P. 

1 + sin x + cos x 
12 Show that 1 . = cot½x. + sm x - cos x 
13 Show that sin 0 + sin (0 + x) + sin (0 + 2x) + sin (0 + 3x) 

[LU, part] 

= 4 cos (x/2) cos x sin (0 + 3x/2). 
14 Given that sin 21X + sin 2/3 = p, cos 21X + cos 2/3 = q, prove that p/q = 

4p sin (IX+ /3) tan (IX + /3). Prove also that 2 2 2 /3 
and deduce an 

p + q + q COS IX COS 
expression for tan IX tan f3 in terms of p and q. [JMB, part] 
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15 Express the function 4 cos x - 6 sin x in the form R cos (x + a), where R is 
positive and 0 < a <  360°. Hence find the co-ordinates of the point on 
the graph of y = 4 cos x - 6 sin x for 0° � x � 360°, where y has its 
minimum value. Sketch the graph. State the values of x where the curve 
crosses the x-axis. [AEB] 

16 Given that sin (150° - 0) = p sin 0, show that cot 0 = 2p - J3. By 
choosing a suitable value of 0 find cot 75° and using 0 = 135°, find sin 15°, 
giving both your answers in surd form. [JMB] 1 - x 

17 If sin 0 = -1 - show that tan (¼n - ½0) = J x. + x  
h 1 + sin x - cos x 1 + sin x + cos x 2 

18 Show t at . + . = -.-1 + sm x + cos x 1 + sm x - cos x sm x 
19 If 0 is not a multiple of n/2, and if x, y, z are given as sums of the 

following infinite series x = 1 + cos2 0 + cos4 0 + . .  . 
y = 1 + sin2 0 + sin4 0 + . .  . z = 1+cos2 0 sin2 0 + cos4 0 sin4 0 + . . .  

prove that (i) x + y = xy, (ii) x + y + z = xyz. 
20 Given that tan 30 = 2 evaluate without using tables 

sin 0 + sin 30 + sin 50 
cos 0 + cos 30 + cos 50 

. . A. + 1 
21 If sm (a+ /3) = A sm (a - /3) show that tan a = A. _ 1 tan /3. 

22 If sin a + sin /3 = p and cos a + cos /3 = q show that 

(i) sin (a+ /3) = /
pq 

2 (ii) cos (a+ /3) = ± (q: - p
:) p + q  p + q  

[JMB, part] 

[JMB, part] 

23 If a, /3, y are all greater than n/2 and less than 2n and sin a = l, 
tan f3 = J3, cos y = 1/J2, find the value of tan (a + /3 + y) in surd form. 

[WJC] 
24 (i) Express tan 3A and cosec 4A + cot 4A in terms of tan A. 

(ii) If cos 0 + cos 30 = k cos </> and sin 0 + sin 30 = k sin </>, show that cos 0 
= ± ½k and find the values of tan </> and cos 2</> in terms of k. 

25 Show that 

(i) sin x sin y = 2 tan ½x tan ½Y 
cos x + cos y 1 - tan2 ½x tan2 ½Y 

.. ) cos x cos y (1 - tan2 ½x)(l - tan2 ½Y) (u - - -- = ----�-��-
cos x + cos y 2(1 - tan2 ½x tan2 ½Y) 

[LU] 

26 If 0 is an acute angle such that cos 0 = 1 - x, where x is so small that x2 

is negligible compared with unity, prove that cos 20 = 1 - 4x and cos 30 
= 1 - 9x approximately. [LU, part] 

27 Show that tan (B - C)+tan (C- A) + tan (A - B) = tan (B - C) tan (C - A) 
tan (A - B). 

28 Evaluate arcsin (l/✓5) + arcsin (l/Jl0). 
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29 (i) Prove that a sin n0 - 2(a - 1) sin(n - 1)0 cos 0 + (a - 2) sin (n - 2)0 = 
2 sin 0 cos (n - 1)0. 

(ii) Prove that, if O < x < 1/J2, 2 sin - i x  = -sin - i 2x✓{l - x2). (Note 
sin - 1 x means 'the principal value of the inverse sine of x', and '✓(l - x2)' means the positive square root.) State the corresponding 
formula if 1/✓2 < x < 1. 

Express 2 cos - 1 x as an inverse cosine, considering all values of x 
between O and 1. [SUJB] 

30 If tan 2</> - sin 2</> = x and tan 2</> + sin 2</> = y, show that (i) x/y = tan2 <J>, 
(ii) (x2 - y2)2 = 16xy. [LU] 

31 Prove that 4 arctan ½ - arctan -zh- = n/4. 
32 Find x if arctan 2x + arctan 3x = n/4. 
33 Express the functions 6 cos2 0 + 8 sin 0 cos 0 in terms of cos 20 and sin 20. 

Deduce an expression for the function in the form A + 5 cos (20 - ix), where 
A and ix are constants. Hence write down the greatest and least values 
of the function and find, correct to the nearest minute, one value of 0 
corresponding to each. [JMB] 

34 If sin 0 + sin </> = p and cos 0 + cos </> = q prove that 
. 0 ,I,. 

8pq 
(1) tan + tan 'I' = ( 2 2) 4 2 p + q  - p 

(" ") 20 2..i.. 
(q2 - p2)(p2 + q2 - 2) 

11 cos + cos 'I' = 2 2 p + q  

35 If sin x = ix sin 0, where ix � 1, show that x � 0 + (ix - 1) tan 0. 
36 Show that sin 3A = 3 sin A - 4  sin3 A. Deduce that sin3 A +  sin3 (120° + A) 

+ sin3 (240° + A) = -¾ sin 3A. [JMB, part] 
37 If sin 0 + sin w = a, cos 0 + cos w = b, and cos 0 cos w = c, show that 

(a2 + b2)(a2 + b2 - 4c) = 4a2. 
38 Express the function f(0) = sin 0(2 sin 0 + cos 0) in terms of sin 20 and 

cos 20. Hence show that f(0) can be written in the form 1 - R cos (20 + ix), 
where R is positive and ix is acute. State the values of R and tan ix. Deduce 
the maximum value of f(0) and the smallest positive value of 0 for which 
this maximum value occurs. [JMB] 

sin 2x + sin 2y . 39 If tan (x + y) = a and tan (x - y) = b, express . 2 . 2 m terms sm x - sm y 
of a and b. Show that tan 2y = t: :b and by using this result, or other­
wise, obtain an expression for tan (x + 3y) in terms of a and b. [AEB] 

40 Prove that sin (ix + P) sin (ix - P) = sin2 ix - sin2 p. By using this result or 
otherwise, prove that 
sin (ix + P + y) sin (P + y - ix) sin (y + ix - P) sin (ix + p - y) 

= (a+ b + c)(b + c - a)(c + a - b)(a + b - c) - 4a2b2c2 

where a = sin ix, b = sin p, c = sin y. [JMB] 



7 
Trigonometric equations 

7.1 The general expression for angles with a given 
trigonometric ratio 

In this chapter we shall consider equations in which the trigonometric ratios 
of the unknown quantity occur. We shall show that the solution of such 
equations can be reduced to the solution of one or more equations of the 
type sin x = a, cos x = a, or tan x = a, where a is known and x is to be found. 
We first consider these particular equations. 

As an example, consider the equation tan x = 1. One solution is x = 45°, 
but this is not the only solution. From (6.16) 

tan ( 0 + 180°) = tan 0 
so that 

tan (45° + 180°) = tan 45° = 1 

Thus, x = 225° is also a solution. Again, tan (225° + 180°) = tan 225° = 
tan 45° = 1, so that x = 405° is also a solution. It is clear that we can proceed 
indefinitely in this way and obtain as solutions x = 45°, x = 45° + 180°, 
x = 45° + 2 + 180°, x = 45° + 3 x 180°, etc. From (6.15 and 6.17) 

tan ( 0 - 180°) = - tan ( 180° - 0) = tan 0 
so that 

tan (45° - 180°) = 1 tan (45° - 2 x 180°) = 1 
Therefore, x = 45° - 180°, x = 45° - 2 x 180°, x = 45° - 3 x 180°, etc., are 
also solutions. All the solutions above may be expressed in the one form 

X = 45° + n180° 

where n is an integer, either positive, negative or zero. By giving n different 
values, we obtain the different solutions of the equation. 

For the equation tan x = a suppose that 0 is any angle that tan 0 = a. (In 
practice, 0 is found with the aid of tables of tangents.) Then any angle x = 0 
+ n180°, where n is an integer, will satisfy tan x = tan 0 = a. 

Thus all solutions of the equation tan x = a are of the form 
X = 0 + n180° (7.1) 

where n is an integer, positive, negative or zero. 
120 
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y 

Figure 7.1 

Reference to the graph y = tan x in Figure 7.1 may help to clarify this. 
The horizontal line y = IX is drawn on the same scale and intersects the 
tangent curve at points A, A', B', A", B", etc. 

If the abscissa of A is 0, that of A' is 0 + 180°, of A", 0 + 2 x 180°, etc. 
and that of B', 0 - 180°, of B", 0 - 2 x 180°, etc. If the angles are expressed 
in radians, (7.1) assumes the form 

x = 0 + mr: (7.2) 
where n is an integer, positive, negative or zero. 

For the equation cos x = IX, we first observe that if IX is numerically greater 
than one, no solution will exist. If IX is numerically less than one, we proceed 
as follows. Figure 7.2 shows the graph of y = cos x and y = IX drawn on the 
same scale. The abscissae of the points of intersection will give the solutions 
of the equation cos x = IX. 

If 0 is an angle (the smallest) for which cos 0 = IX, the abscissa of A is 0. 
The abscissae of A', A", A"', etc. are 360° - 0, 360° + 0, 2 x 360° - 0, 2 x 360° 

+ 0, etc. The abscissae of B', B", B"', etc. are - 0, - 360° + 0, - 360° - 0, etc. 
These are all particular cases of the formula n360° ± 0, where n is an integer. 
Thus, the general solution of the equation cos x = IX ( = cos 0) is 

X = n360° ± 0 (7.3) 
or x = 2mr ± 0 (if angles are measured in radians), where n is an integer, 
positive, negative or zero. 

y 

Figure 7.2 
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y 
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Figure 7.3 

We treat the equation sin x = rx. in the same way. Figure 7.3 shows the 
graph y = sin x and y = rx.( - 1  < rx. < 1). From the graph we see that if sin 0 
= rx. (0 is the abscissa of A), the other solutions are given by the abscissae 
of A', B', A", B", etc., i.e. 180° - 0, - 180° - 0, 360° + 0, - 360° + 0, 540° - 0, 
- 540° - 0, etc. These are particular cases of the formula nl80° + ( - 1t0, 
where n is an integer. 

Thus, if sin 0 = rx., the general solution of the equation sin x = rx. is 
X = n 180° + ( - 1 )"0 (7.4) 

or x = nn + ( - 1)"0 (if angles are measured in radians), where n is an integer, 
positive, negative or zero. 

Example I Find the solutions of the equation sin x = 0·515 which lie in the 
range 0° to 360° . State the general solution. 

From tables, sin 31° = 0.515, hence x = 31° is a solution. Thus by (7.4), 
the general solution is x = nl80° + ( - 1)"31 °. With n = 0 or 1, we obtain the 
solutions in the range 0° to 360°, that is x = 31° or x = 180° - 31° = 149°. 

Example 2 Solve the equation tan x = -✓3, giving the general solution 
and the solutions which lie in the range 0° to 360°. 

From tables, or by (6.23), tan 60° = ✓3. Thus by (6.17) 
tan (180 - 0) = - tan 0 so that tan 120° = -✓3 

Therefore, one solution is 0 = 120°. By (7.1) the general solution is 
X = 120° + n180° 

With n = 0 or 1, we obtain solutions in the range 0° to 360°: x = 120° or 
X = 300°. 

Example 3 Find in radians the general solution of the equation 
cos 20 = cos (0 - n/4) 

From (7.3) the general solution is such that 
20 = 2nn ± (0 - n/4) 

where n is an integer. Thus, with the positive sign, we have 
20 = 2nn + 0 - n/4 
0 = 2nn -n/4 

With the negative sign, we have 
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20 = 2mr - 0 + rr./4 

0 _ 2nrr. .!:_ - 3 + 
12 

Therefore 

where n is an integer. 

1t 0 = 2nrr. - -
4 

2nrr. rr. or -3- + 12 

Example 4 Solve the equation sin 20 = cos 30, giving the general solution 
and solutions in the range 0° to 360°. 

Since cos 30 = sin (90° -30) the equation is 
sin 20 = sin (90° -30) 

so that by (7.4) 
20 = nl80° + ( -1)"(90° -30) (where n is an integer) 

Therefore 
0 [2 + 3( -1)"] = nl80° + ( -1)"90° 

n180° + ( -1)"90° 

0 = 2 + 3( - l)" 
(where n is an integer) 

Solutions in the range 0° to 360° are obtained by giving n particular values: 
With n = 0 0 = � = 18° 

With n = 2 0 = � = 90° 

With n = 4 0 = � = 162° 

With n = 6 0 = !1p. = 234° 

With n = 8 0 = � = 306° 

Other positive values of n (including all the odd values) lead to solutions 
outside the range 0° to 360°. 

With n = -1 

0 = 
-1800 -900 

= 2700 
- 1 

but other negative values of n lead to solutions outside the range 0° to 360°. 
The required solutions are thus 18°, 90°, 162°, 234°, 270°, 306°. 

Exercises 7a 
Find the general solutions of the following equations. (Find all solutions in 
the range 0° to 360°. *) 
1 sin x = 0·831 
3 tan x = 2·1155 
5 sin x = -0·4775 
7 sin 3x = 0.500 
9 cos ½x = .)3/2 

2 cos x = 0·7125 
4 COS X = - 0·5577 
6 tan x = -0·300 
8 tan 6x = - 1.23 

10 cos (2x - 30°) = 0·564 
* It is suggested that, at first reading, only solutions in the range 0° to 360' be considered. 



124 Trigonometric equations 

1 1  sin (x + 18° 3') = 0·813 12 sin 4x = sin 2x 
14 cos 3x = - cos x 
16 tan 2x = cot 3x 
18 tan 20 cot40 = 0  

13 tan 60 = tan 0 
15 cos 2x = sin 3x 
17 sin 20 cos 30 = 0 
19 (i) cos 0 = -½, (ii) tan 0 = ✓3 
20 From the result of question 19 find the general value of 0 and the values in 

the range 0° to 360° which satisfy simultaneously tan 0 = ✓3, cos 0 = -½. 

7.2 Trigonometric equations involving different ratios of 
the same angle 

Trigonometric equations which involve more than one ratio of the same angle 
are generally solved by obtaining an equation which involves just one trigono­
metric ratio. This generally calls for the use of some of the identities (6.5) to 
(6.12). The aforementioned equation is then solved for the particular ratio 
involved. This will result in one or more equations of the type considered 
in the previous sections. The following examples will illustrate some of the 
techniques commonly used. Example I Find the general solution and all solutions in the range 0° to 
360° of the equation 2 cos x - 3 sin x = 0. 

We have 2 cos x - 3 sin x = 0, therefore 
sin x 2 
cos x 3 

provided cos x -:/; 0, which is so for our solutions but we must check this 
point. Therefore 

tan x = i = tan 33° 41' (from tables) 
X = 33° 41' + n180° 

Therefore, the solutions in the range 0° to 360° are, with n = 0 and 1, 33° 41' 
and 213° 41'. Example 2 Find x in the range 0° to 360° if 2 cos2 x = 2 - sin x. 

Since cos2 x = 1 - sin2 x, we have 
2 - sin x = 2 - 2 sin2 x (which involves only sin x) 

therefore 

which means that 

2 sin 2 x - sin x = 0 
sin x(2 sin x - 1) = O* 

sin x = 0 or 2 sin x - 1  = 0 i.e. sin x = ½ 
X = 0, 180° , 360°, . . .  ; n180° 

or 
X = 30°, 150°, . . .  ; n180° + ( - 1)"30° 

The required solutions are thus 0°, 30°, 150°, 180°, 360°. 
• Note that we do not divide by sin x since we should then lose the solutions which result 

from sin x = 0. 
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Example 3 Find 0 in the range 0° to 360° if 2 sin 20 + 3 cosec 20 = 7. 

We have 2 sin 20 + . 320 = 7, which involves only sin 20. Therefore sm 

that is 

2 sin 2 20 - 7 sin 20 + 3 = 0 
(2 sin 20 - l)(sin 20 - 3) = 0 

2 sin 20 - 1 = 0 or sin 20 - 3 = 0 

sin 20 = ½ or sin 20 = 3 

The second alternative gives no real values for 0. If sin 20 = ½, 20 = 30°, 
180° - 30° , 360° + 30°, 540° - 30° , 720° + 30°. Since we require values of 0 
in the range 0° to 360° , we must find all values for 20 in the range 0° to 
720°. From the above, we see that the required values for 0 are 15° , 75°, 
195°, 255°. 

Example 4 S�lve for 0, 3 sec2 0 = 2 tan 0 + 4. 
We have 3 sec2 0 - 2 tan 0 - 4 = 0, therefore 

3(1 + tan2 0) - 2 tan 0 - 4 = 0 (which involves only tan 0) 
3 tan2 0 - 2 tan 0 - 1  = 0 

(tan 0 - 1)(3 tan 0 + 1) = 0 
tan 0 = 1 or tan 0 = -½ 

because tan 0 = 1 = tan 45°, then 

0 = 45° + n180° 

From tables, tan 0 = -½ = tan ( - l 8° 26'), therefore 
0 = nl80° - 18° 26' 

Example 5 Solve for x in the range 0° to 360° 

3 cos2 x - 3 sin x cos x + 2 sin2 x = 1 

After division by cos2 x, we have 
3 - 3 tan x + 2 tan 2 x = sec2 x 

(We must check that our solutions do not give cos x = 0.) 

that is 

3 - 3 tan x + 2 tan2 x = 1 + tan2 x (which involves only tan x) 
tan 2 x - 3 tan x + 2 = 0 

(tan x - l)(tan x - 2) = 0 
tan x = 1 or tan x = 2 

x = 45° + nl80° or x = 63° 26' + nl80° 

The required solutions are thus 45°, 225° , 63° 26', 243° 26'. 
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Exercises 7b 
Find the general solution, together with all the solutions in the range 0° to 
360°, of the equations* 
1 2 tan2 x - 3 tan x + 1 = 0 
2 7 tan2 x - 3 sec2 x = 9 
3 8 sin 2 0 - 6 cos 0 = 3 
4 9 cos 0 = 4 sin 0 
5 4 cos x = 3 tan x + 3 sec x 
6 3 sin2 0 = cos2 0 
7 4 cos 2 0 + 5 sin 2 0 = 5 
8 tan x cosec x = 5 
9 cot2 x + 2 cosec2 x = 6 

10 9 sin2 x + l0 sin x cos x - 2 cos2 x = 1 
11 7 sec2 0 = 6 tan 0 + 8 
12 2 tan 20 + 3 sec 20 = 4 cos 20 
13 sin 20(1 + 2 cos 20) = 0 
14 6 sin 0 = tan 0 
15 3 sin 30 - cosec 30 + 2 = 0 

7.3 Trigonometric equations involving multiple angles 
If the equation for x involves trigonometric ratios of 2x, 3x, etc., we still 
seek an equation involving a single trigonometric ratio of a single angle be 
this x, 2x, 3x, etc. This will generally require us to use the identities of Sections 
6.6 and 6.7. Example 1 Find x if tan 2x + 3 tan x = 0. 

From (6.34) we have 

Therefore 

2 tan x 
- - -2- + 3 tan x = 0 (which involves only tan x) 1 - tan x 

2 tan x + 3 tan x - 3 tan 3 x = 0 
3 tan 3 x - 5 tan x = 0 

tan x(3 tan2 x - 5) = 0 
tan x = 0 or 3 tan 2 x - 5 = 0 

which give 
tan x = 0 or tan x = Ji or tan x = -Ji 

Thus x = 0°, 180°, - 180°, etc. In general. x = n180° if tan x = 0. 
When tan x = Ji =  1·291 = tan 526-14', then 

X = n180° + 52° 14' 
When tan x = -Ji = - 1·291 = tan( - 52° 14'), then 

X = n180° - 52° 14' 
The general solution is thus nl80° or n180° ± 52° 14'. 

* It is suggested that, at first reading, only solutions in the range 0° to 360° be considered. 
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Example 2 Find all values of 0 in the range from 0° to 360° for which 
cos 20 - cos 0 - 2 = 0. 

We have 2 cos2 0 - 1 - cos 0 - 2 = 0, which involves only cos 0. Therefore 

2 cos2 0 - cos 0 - 3 = 0 
(2 cos 0 - 3)(cos 0 + 1) = 0 

2 cos 0 - 3 = 0 or cos 0 + 1 = 0 
cos 0 = } or cos 0 = -1 

cos 0 = - 1  gives 0 = 180°; cos 0 = }  gives no real solution for 0. 

Example 3 Find 0 if sin 0 + sin 50 = sin 30. 
We have by (6.50) 

sin 50 + sin 0 = 2 sin ½(0 + 50) cos ½(50 - 0) 
= 2 sin 30 cos 20 

Therefore, the equation becomes 
2 sin 30 cos 20 = sin 30 

sin 30(2 cos 20 - 1) = 0 
sin 30 = 0 or cos 20 = ½ 

If sin 30 = 0°, 30 = 0, 180°, 360°, 540°, etc. (in general nl80°). If cos 20 = ½, 
20 = ± 60°, 360° ± 60°, 720° ± 60° (in general n360° ± 60°). Thus, the general 
solution of the equation is 0 = n60° or 0 = nl80° 

± 30°, where n is an integer. 

Example 4 Find all values of x in the range 0° to 360° for which sin 3x sin x 
= 2 cos 2x + 1. 

By (6.49) 
sin 3x sin x = ½[ cos (3x - x) - cos (3x + x)] 

Therefore, the equation becomes 
cos 2x - cos 4x = 4 cos 2x + 2 

cos 4x + 3 cos 2x + 2 = 0 

But cos 4x = 2 cos2 2x - 1, therefore 
2 cos2 2x + 3 cos 2x + 1 = 0 (which involves only cos 2x) 

(2 cos 2x + l)(cos 2x + 1) = 0 
2 cos 2x = - 1 or cos 2x = - 1 

If cos 2x = -½ = cos 120°, 2x = n360° ± 120°, therefore 
X = n180° ± 60° 

If cos 2x = - 1 = cos 180°, 2x = n360° ± 180°, therefore 
X = n180° ± 90° 

Thus. the solutions in the range 0° to 360° are 90°. 270°. 60°. 120°. 240°. 300°. 



128 Trigonometric equations 

Exercise 7c 
Find the general solution, together with all solutions in the range 0° to 360°, 
of the equations* 
1 cos 2x + sin 2 x = 1 
2 2 cos2 0 - 3 sin 20 - 2 = 0 
3 2 cos 20 + 2 sin 0 cos 0 = 1 
4 tan 20 - 1 = 6 cot 20 
5 cos 0 + cos 50 = cos 20 
6 sin x + sin 3x = sin 2x + sin 4x 
7 COSjX Cos ½x = 1 + COS X 
8 2 cos 3x cos x = cos 2x + sin 2x + 1 
9 sin 30 = cos 20 - 1 + sin 0 

10 tan 20 tan 40 = 1 

7.4 The equation a cos 0 + b sin 0 = c 
Equations of the type a cos 0 ± b sin 0 = c, where a, b, c are constants, may 
be solved by first expressing a cos 0 ± b sin 0 in the form R cos (0 + ix) (see 
(6.52)) or R sin (0 ± P) (see (6.51)). If we always write the equation with a 
positive, we need only use the first form. Alternatively, by expressing cos 0 
and sin 0 in terms of t = tan ½0 (see (6.44) and (6.45) ), we can obtain an 
equation for tan ½0 from which 0 may be found. 

Example 1 Solve the equation 3 cos 0 - 4 sin 0 = - 2·5. 
We have 

3 cos 0 - 4 sin 0 = ✓(32 + 42)(¾ cos 0 - i sin 0) 
= 5(¾ cos 0 - i sin 0) 
= 5(cos 0 cos ix - sin 0 sin ix) 

(where tan ix =  t cf. (6.52)) 
= 5 cos (0 + ix) 

Now, ix =  arctan! = 53° 8', therefore 
5 cos (0 + 53° 8') = - 2·5 

cos (0 + 53° 8') = -½ ( = cos 120°) 
0 + 53° 8' = n360° ± 120° 

0 = n360° + 66° 52' or 0 = n360° - 173° 8' 
If we tackle this problem by the second method, we have with t = tan ½0 

3(1 - t 2) - �  = - 2·5 l + t 2 l + t 2 

3 - 3t 2 - St = - 2·5 - 2·5t 2 

6 - 6t 2 - 16t = - 5 - 5t 2 

t 2 + 16t - 11 = 0 
* It is suggested that, at first reading, only solutions in the range 0° to 360° be considered. 
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- 16 ± ✓(256 + 44) - 16 ± ✓300 - 16 ± 17·321 t= 2 = 2 = 2 
t = tan ½0 = 0·6605 or - 16-6605 

that is 
½0 = n180° + 33° 26' or ½0 = nl80° - 86° 34' 

Thus 0 = n360° + 66° 52' or 0 = n360° - 173° 8', as before. 
An alternative method is to proceed as follows. We have 

4 sin 0 = 3 cos 0 + 2·5 
On squaring both sides 

Therefore 

that is 

16 sin 2 0 = 9 cos 2 0 + 15 cos 0 + 6· 25 
64 sin2 0 = 36 cos2 0 + 60 cos 0 + 25 

64(1 -cos2 0) = 36 cos2 0 + 60 cos 0 + 25 
100 cos2 0 + 60cos 0 - 39 = 0 

- 60 ± ✓(3600 + 15 600) 
cos 0 = 200 

- 60 ± ✓19 200 = ------
200 

- 6  ± 13-856 
20 

cos 0 = O· 3928 or cos 0 = - 0·9928 
0 = n360° ± 66° 52' or 0 = n360° ± 173° 8' 

In fact, as is readily verified, only the solutions 
0 = n360° + 66° 52' and 0 = n360° - 173° 8' 

satisfy the equation 3 cos 0 - 4 sin 0 = - 2·5. The two other results are 
solutions of the equation 3 cos 0 + 4 sin 0 = - 2·5, equivalent to -4  sin 0 
= 3 cos 0 + 2·5 which on squaring gives 16 sin2 0 = 9 cos2 0 + 15 cos 0 + 6-25 
as before. 

Thus, if we adopt this method for solving this type of equation, we must 
check our solutions (cf. Section 1.2). 

Exercises 7d 
Find the general solution, together with all solutions in the range 0° to 360°, 
of the equations 

1 2 cos 0 + sin 0 = 1 
2 3 cos x + 4 sin x = 5 
3 24 cos x - 7 sin x = 12·5 
4 2 cos ½0 + 3 sin ½0 = 2 
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5 5 cos 2x -sin 2x = 2 
6 cosec 0 = 3 + 4 cot 0 
7 sin 3x - cos 3x = 1 
8 5 cos 20 -✓ 2 sin 20 = 3 
9 sin 30 -4 cos 30 = 4 

10 cos 0 + sin 0 + 1 = 0 [Write cos 0 and sin 0 in terms of t = tan ½0 and 
notice how part of the solution is lost if this method of solution is 
used.] 

Exercises 7 
1 Find all solutions in the range 0° to 360° of the equations 

(i) sin 20 = 0·8799 
(ii) cos 40 = 0·5659 

(iii) tan 0 = -1 ·7699 
(iv) sin 3x = sin 2x 
(v) cos 3x = sin x. 

2 Find all angles in the range 0° to 360° which satisfy (i) tan 0 + sec 0 = 2, 
(ii) cos 0 -cos 20 = ½. 

3 Find x if 3 sin 2x = 7 -8 cos2 x. 
4 Find 0 in the range 0° to 360° if 3(cos 20 -1) = 4 sin 0 cos2 0. 
5 Find the values of x between 0° and 180° for which (i) sin 3x = sin x, 

(ii) 2 cos2 x -sin2 x = 1, (iii) sin 2x + cos x = 0. 
6 Find the general value of 0 if 3 tan2 0 -7 sec 0 + 5 = 0. 
7 If 3 cos 0 -4 sin 0 -2 = 0, find all values for 0 which lie in the range 0° 

to 360°. 
8 Find the general solution and all solutions in the range 0° to 360° of the 

equations (i) sin 0 + cos 0 = sin 20 + cos 20, (ii) 3(sec 0 -tan 0) = 1. 
9 Solve completely the equation cos 30 = 2 cos 20. [First use (6.36) to express 

cos 30 in terms of cos 0.] [WJC, part] 
10 Solve the following equations, giving all solutions within the range 

0° < X < 360°: 
(i) 2 sin2 x = 2 + cos 2x 
(ii) 3 sin2 x = 1 + sin 2x 

(iii) sin(x + 30°) + sin(x + 60°) = cos (x + 45°) + cos(x + 75°). [LU] 
1 1  Find the general value of x if 3 tan2 x -5 sec x + 1 = 0. 
12 Solve the following equations for 0° � x � 180°: (i) 6 sin2 x -cos x = 5, 

(ii) tan 2x + 4 cot x = 0. [AEB] 
13 (i) Express tan 2x and tan 3x in terms of tan x, and solve the equation 

tan x + tan 2x + tan 3x = 0. 
(ii) Solve the equation cos x + cos 2x = sin 3x. (In each equation give all 

solutions between 0° and 180° inclusive.) [SUJB] 
14 State and prove a formula for sin A -sin B in terms of the angles ½(A + B) 

and ½(A -B). [You may, if you wish, quote formulae for sin(x ± y).] 
Prove that sin 7 x cos 2x - sin 5x cos 4x = sin 2x cos 3x and obtain a 

similar simplification of the expression sin 7x sin 2x -sin 5x sin 4x. Give 
all the solutions between 0° and 180° of the equation 

sin 7 x cos 2x = sin 2x cos 3x [SUJB] 
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15 Find the values of 0 in the range 0° to 360° which satisfy the equation 
tan 0 - 3 cot 0 = 2 tan 30. 

16 Solve the equation cos x + cos 5x = cos 3x. 
17 Solve the equations (i) 3 sin x - 4 cos x = 2, (ii) 24 sin x + 7 cos x = 5. 
18 Find the general solution of the equation tan 2x = 2 sin x. [JMB, part] 

sin 50 
19 Prove that 4 cos 0 cos 30 + 1 = - - . Hence find all the values of 0 m the sin 0 

range 0° to 180° inclusive for which cos 0 cos 30 = -½- [JMB, part] 
20 Solve the simultaneous equations cos A + cos B = ik and cos A cos B 

= - }k2 to find cos A and cos B in terms of k. Find the range of values 
of k for which A and B exist. [AEB] 

21 Find all values of 0 in the range 0° < 0 < 360° for which tan2 0 = 5 + sec 0. 
22 Solve the following equations, giving the general solutions: 

(i) cos 2x + 3 cos x = - 2  
(ii) cos 3x = sin x 

(iii) sin (2x + 30°) cos (2x - 20°) = ½- [SUJB] 
23 Find the range - 180° < x < 180° the solutions of the equation 

cos 5x = cos x. [JMB, part] 
24 Given that 5 cos 0 + 12 sin 0 = R cos(0 - ix), where R and ix are indepen­

dent of 0 and R is positive, obtain the values of R and ix. Hence find 
the values of 0 between - 180° and 180° which satisfy the equation 
5 cos 0 + 12 sin 0 = 3·25, giving the answers to the nearest minute. 

[JMB, part] 
25 Find the complete solution of 16 tan x + 6 cot x + 17 secx = 0. 
26 Solve the equation 5 cos 0 - 12 sin 0 + 10 = 0. 
27 Solve for x, arctan x + arctan (x - 1) = arctan 3 [use (6.56)] .  
28 Find all angles between 0° and 360° for which 

3 sin 30 + 2 cos 20 - sin 0 = 2 
29 Find the values of 0 in the range 0° to 360° for which 

sin 50 + 2 cos 20 + sin 0 = 0 
30 Find x if tan - 1 (2x + 1) - tan - 1 (2x - 1) = tan - 1 }. 

31 Find to the nearest minute the values of 0 between 0° and 360° that 
satisfy the equation 4 cos 20 + sin 0 = 4 sin2 0 + 3. [JMB, part] 

32 Solve the equation 5 sin (x + 60°) - 3 cos (x + 30°) = 4, giving all solutions 
between 0° and 360°. [LU, part] 

33 If sin ( ix + 0) sin (/J + </J) = sin ( ix + </J) sin (/J + 0), prove that either ix and p 
or 0 and </J differ by a multiple of n. [LU, part] 

34 By putting t = tan 0, find the general solution of the equation 
(1 - tan 0)(1 + sin 20) = 1 + tan 0 

35 The acute angle 0 satisfies the equation sin (20 + ix) = ✓3 cos (0 - ix). If 
ix is zero, show that 0 = n/3. If ix is so small that its square may be neglected 
and 0 = n/3 + A, prove that A is approximately 4ix. [JMB, part] 

36 (a) Find two values of 0 between 0° and '180° satisfying the equation 
6 sin2 0 = 5 + cos 0. 

(b) Find a value of x between 0 and n satisfying the equation 
sin (x + n/3) = cos (x - n/3) [JMB] 
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37 Show that the equation a cos 0 + b sin 0 = c will have in general two solu­
tions in the range 0° to 360° if a2 + b2 > c2• ix and f3 are two roots of the 
equation 8 cos 0 - sin 0 = 4 and both lie in the range 0° to 360°. Form 
the quadratic equations whose roots are sin ix and sin {3. 38 If ix and f3 are two unequal values of 0 which satisfy the equation a cos 0 
+ b sin 0 = c, show that 
(i) sin½(ix + f3) sec ½(f3 - ix) = b/c 

(" ') 1 1 /3 C - a 
n tan -zlX tan -z = --. 

c+a 
39 Show that the equation 

p cos2 x + 2q cos x sin x + r sin2 x = s (r ¥- s) 
has a real solution only provided q2 ;;;i, (s - p)(s - r) and that in this case 
there are in general two solutions which are in the range 0° � x � 180°. 

If 0 and </J are these solutions, show that tan (0 + </J) = 2q/(p - r). 
40 If t = tan ½0, write down expressions for sin 0 and cos 0 in terms of t. 

Use these to show that the equation 
a cos 2 0 + b sin 2 0 + 2g cos 0 + 2f sin 0 + c = 0 

can be written as a quartic equation in t. Write down an expression for 
tan ½(0 1 + 02 + 03 + 04) in terms of tan½01 , tan½02, tan½03 and tan½04• 

Deduce that the sum of the values of 0 which satisfy the equation above 
is an even multiple of n. 

41 Express cos x + 2 sin x in the form R cos (x - ix), where R is positive. Hence 
or otherwise solve the equation cos x + 2 sin x = 1 ·52 for O � x � 360°. 

[AEB] 
42 Find the range of values of a for which the equation 

cos (x + 90°) + cos x = a 

has real solutions. For the case when a = 0, find all the solutions in the 
interval 0° � x � 360°. Sketch the graph of y = cos (x + 90°) + cos x for 
0° � X � 360°. [JMB] 43 Express the function cos 0 + 2 sin 0 in the form R sin (0 + ix), where R is 
positive and 0° < ix <  360°. Hence, or otherwise, find the values of 0 
between 0° and 360° which satisfy the equation 3 cos 0 + 6 sin 0 = 1. 

[AEB] 
44 (i) Given that 3 cos x + 2 sec x + 5 = 0, find all the possible values of 

cos x and tan2 x. 
(ii) By putting tan (0/2) = t, or otherwise, find the general solution of the 

equation sin 0 + 7 cos 0 = 5, giving your answers to the nearest tenth 
of a degree. [LU] 

45 Prove that cos 30 = 4 cos3 0 - 3 cos 0. Solve the equation cos 30 + 2 cos 0 
= 0, giving all solutions between O and 2n. [OJ 

46 Prove the formulae 
. 

0 
2t SIO = 1 + t 2 

1 - t 2 

cos 0 = -1--2 +t 
where t = tan ½tJ. Hence, or otherwise, find in degrees and minutes all 
the angles between 0° and 360° for which 16 sin x -3 cos x + 11 = 0. [CJ 
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47 Write down expressions for tan 0 and sec 0 in terms of t, where t = tan ½0, 
and show that 

sec 0 + tan 0 = tan (45° + ½0) 

Find a solution in the interval 0° < 0 < 90° of the equation sec 0 + tan 0 
= cot 20. [JMB] 

48 Find the solutions in the range 0° � 0 � 180° of each of the following 
equations: (i) sin 20 = cos 0, (ii) 2 cos 20 = 1 + 4 cos 0. [JMB] 

49 Given that cos4 x + sin4 x = ¾, show, without the use of tables, that 
cos 4x = -½, Hence, or otherwise, find all the values of x between 0 and n 
for which cos4 x + sin4 x = ¾, [CJ 

50 Show that sin 3A = 3 sin A - 4 sin3 A (formulae for sin 2A and cos 2A may 
be quoted). Solve the equation 8 sin3 0 - 6 sin 0 = 1 for 0 < 0 < 360°. 

[AEB] 



8 
The solution of triangles 

8.1 The sine formula 
The usual notation for a triangle is used. A, B, C denote the angles; a, b, c, 
the sides opposite these angles. R is the radius of the circle through the 
points A, B, C, the circumscribed circle, and 2s ( = a+ b + c) the perimeter 
of the triangle. 

(al (b) 
Figure 8.1 

Let R be the radius and O the centre of the circumcircle of 6 ABC. Draw 
the diameter BOD and join CD. 

In 6 BDC 
6 DCB = 90° (angle in a semicircle) 
L BDC = A or 180° -A (see Figure 8.la and b) 

since ABDC is a cyclic quadrilateral. Thus 
BC 
BD = sm A or sin (180° -A) 

BC = BD sin A 
a = 2R sin A (BD is a diameter) 

Therefore 

1 34 

_a_ = 2R 
sin A 
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Similarly 

Hence 

b 
---;---B 

= 2R 
sm 

C 

---;---C = 2R 
sm 

a b c -- = -- = -- = 2R 
sin A sin B sin C 

a result generally known as the sine formula. 

8.2 The cosine formula 

(8. 1) 

In 6 ABC draw a perpendicular AL from A to meet BC, or BC produced 
at L. Consider these two cases separately: 

,,,c 
/ 

;/ �c B L....  ____ _._L._.__. 

(a) 

Figure 8.2a 
BC = BL+LC 
thence 

Figure 8.2b 
BC = BL - LC 
thence 

BC = c cos B + b cos C 
that is 

BC = c cos B - b cos (l80° - C) 
that is a = c cos B + b cos C a = c cos B + b cos C 

This result is common to both cases. 
By drawing the perpendiculars from B and C to the opposite sides; two 

similar results can be obtained. Collecting these together we have a = b cos C + c cos B 
} b = c cos A + a cos C c = a cos B + bcos A (8.2) 

By multiplying these equations by - a, b, c, respectively and adding them 
we obtain b2 + c2 - a2 = 2bc cos A 
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which gives 

a2 = b2 + c2 - 2bc cos A 
Similarly 

b2 = c2 + a2 
- 2ca cos B 

and 
c2 = a2 + b2 - 2ab cos C 

These results are known as the cosine formula. 

(8.3) 

Note that any one of the formulae (8.2) or (8.3) generates the others by a 
cyclic permutation of 

Example I The point P divides the side AB of a triangle ABC internally 
in the ratio m : n. If L ACP = IX, L BCP = p and L BPC = 0, prove that 
m cot IX - n cot P = (m + n) cot 0. 

C 

A p B 

Figure 8.3 

Referring to Figure 8.3 and using the sine formula for the triangles ACP, 
BCP, we have 

From (i) and (ii) 

Also 

AP CP AP sin IX 
hence = 

sin IX sin A CP sin A 
BP CP hence CP sin B 

-- =- - - =--
sin P sin B BP sin p 

m AP AP CP sin IX sin B 
- - - - -·- = -- ·--

PB CP PB sin A sin P 

0 = A + IX and 0 = 180° - B - p 

(i) 

(ii) 

(iii) 

(iv) 
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Eliminating A and B from (iii) by means of (iv), we have 
m sin ix sin ( 1 80° -f3 - 0) 
n sin (0 -ix) sin f3 

sin ix sin (/3 + 0) 
sin(0 -ix) sin /3 
sin ix(sin p cos 0 + cos p sin 0) 
sin P(sin 0 cos ix - cos 0 sin ix) 

Dividing above and below by sin ix sin f3 sin 0, we obtain 
m cot 0 + cot f3 

therefore 
n cot ix -cot 0 

m cot ix - m cot 0 = n cot 0 + n cot p 
m cot ix -n cot P = (m + n) cot 0 (8.4) 

Example 2 Given a triangle whose sides are in the ratio 4 :  5 :  6, prove, 
without use of tables, that one angle is twice another angle. 

Since the sides are in the ratio 4 :  5 :  6, their lengths are 4k, 5k, 6k (a, b, c 
say) where k is a constant. 

Formulae (8.3) can be rewritten b2 + c2 - a2 cos A = lbc 
with similar results for cos B and cos C. Hence 25k2 + 36k2 - 16k2 cos A = 6Ok2 36k2 + 16k2 - 25k2 cos B = 48k2 

16k2 + 25k2 - 36k2 
cos C = 4Ok2 

Consider the smallest angle A: 

Hence 

cos 2A = 2 cos2 A - 1 
= 2(¾)2 - 1 
= ½ = cos C 

2A = 2nn ± C 

3 = -
4 
9 
16 
1 
8 

but since A and C are angles of a triangle, 2A = C is the only solution. 

Example 3 A vertical tower stands on a river bank. From a point on the 
other bank directly opposite and at a height h above the water level, the 
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angle of elevation of the top of the tower is a and the angle of depression 
of the reflection of the top of the tower is /3. (Assume the water is smooth 
and the reflection of any object in the water surface will appear to be as far 
below the surface as the object is above it.) Prove that the height of the top 
of the tower above the water is h sin (a+ /3) cosec (/3 - a) and the width of 
the river is 2h cos a cos /3 cosec (/3 - a). 

Refer to Figure 8.4. AB is the tower, 0 the observer, OP, OQ the horizontal 
and vertical through 0. Let x be the height of the tower, and y the width 
of the river. 

In f'... APO 

In f'... A'PO 

A 

• 
I 

)( 

A'B = AB = X OP = BQ = y 

AP = PO tan a 
x - h = y tan a 

A'P = PO tan /3 x + h = y tan /3 

I p ...,___  ________ ____;;:..._, I I 

Figure 8.4 

Water surface 

Subtracting (i) from (ii) to eliminate x, we obtain 2h = y(tan /3 - tan a) 

whence 

= y ( 
sin /3 _ sin a 

) cos /3 cos a 
= y (

sin /3 cos a - sin a cos /3
) cos a cos /3 

= y(
sin(/3 - a)

) cos a cos /3 

y = 2h cos a cos /3 cosec (/3 - a) 

(i) 

(ii) 
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To obtain the height of the tower x, multiply (i) by tan p, (ii) by tan IX and 
subtract. Therefore 

x tan p - h tan p - x tan IX - h tan IX = 0 
x(tan p - tan 1X) = h(tan IX +  tan P) 

x(sin P _ sin lX
) = h(sin�+ sin P

) 
COS P COS IX COS IX COS P 

x (sin P cos IX - sin IX cos /3) = h (sin IX cos p + cos IX sin P) 
COS IX COS P COS IX COS p 

x sin (P - IX) = h sin (IX + P) 

whence x = h sin(IX + P) cosec (P - IX). 

Exercises Sa 
1 The point P divides the base AB of a triangle ABC in the ratio m :  n. If 

LBPC = 0, prove that n cot A - m cot B = (m + n) cot 0. 
2 Without using tables prove that tliere is a triangle whose angles are 

arccosH, arccos J, arccos ( - }). 
3 The median AD of a triangle ABC makes angles /3, y respectively with 

AB, AC and LADB = 0. Show that 2 cot 0 = cot y - cot p. If AD = 15 m, 
p = 35°, y = 30° find B, C, a as accurately as the tables permit. 

4 If in any triangle ABC 
cos A cos B + sin A sin B sin C = 1 

prove that A =  B = 45°. 

[WJC] 

5 In a triangle ABC the angle C is 60°. Show that c2 = a2 
- ab + b2• If 

a, b are the roots of the equation 4x2 - lOx + 3 = 0 find the value of c 
and show that the length of the perpendicular from C to AB is (3J3)/16 . 

. - l}MBJ 
6 In the triangle ABC the perpendiculars AL, CN from A, C to the opposite 

sides intersect at H. R is the circumradius and O is the circumcentre of 
the triangle ABC. 
(i) Prove that NA = b cos A, and L NHA = B, and hence that 

AH = 2R cos A. 
(ii) Prove that L OAH = C - B and hence by using the result in part (i) 

and applying the cosine rule to !:, OAH, prove that OH2 

= R2 (1 - 8 cos A cos B cos C). 
7 Starting from the sine formula for a triangle ABC or otherwise, prove the 

, l b - c sin t(B - C) 1ormu a - - = 1 a cos 1A 
A, B and C are three towns. C is due south of A, and the bearing of B 

from A is 30° west of south. B is 50 miles from C, and 10 miles nearer to A 
than C. Calculate the bearing of B from C. [SUJB] 

8 In the tetrahedron ABCD the three angles at A are each 60° and AB, 

file:///cosj
file:///cosa
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AC, AD are oflengths 2, 3, 4 cm respectively. Find the angles of the triangle 
BCD. 

a2 - b2 sin (A - B) 9 Prove that, in any triangle ABC, 2 = . ( )' c sm A + B  
10 Where possible solve the following triangles: 

(i) C = 4· 13, b = 5·62, L C  = 61° 23' 
(ii) C = 5·62, b = 5·62, L C = 67° 54' 
(iii) a =  651, c = 792, L C  = 73° 22'. 

8.3 The area of a triangle 
In triangle ABC, let AD be the perpendicular from A to BC. Let A denote 
the area of the triangle. Referring to Figure 8.5, we have, since AD = c sin B, 

B 

A 

D 
Figure 8.5 

C 

A =  ½BC .AD = ½ac sin B 
From (8.1) 

. b sm B = 2R 
and hence, on substituting in (8.5), we have 

A =  abc 4R 

(8.5) 

(8.6) 

The area of the triangle can be found in terms of the sides alone. From (8.5) 
2ac sin B = 4A 

and from the cosine formulae (8.3) 
2ac cos B = c2 + a2 - b2 

On squaring and adding, noting that cos2 B + sin2 B = 1, we have 
4a2c2 = 16.::\2 + (c2 + a2 - b2)2 

or 
16.::\2 

= 4a2c2 - (c2 + a2 - b2)2 

= (2ac - c2 
- a2 + b2)(2ac + c2 + a2 - b2) 

= [b2 - (a - c)2] [(a + c)2 - b2
] 

= ( -a + b + c)(b + a - c)(a + b + c)(a - b + c) 
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Now if we let a + b + c = 2s 
161'.\2 = (2s - 2a)(2s - 2c)(2s)(2s - 2b) 

L\2 = s(s - a)(s - b)(s - c) 
L\ = ✓[s(s - a)(s - b)(s - c)] 

This is known as Hero's formula. 
(8.7) 

Example I Given that the sides of a triangle are of length a =  3·57 m, 
b = 2·61 m, c = 4·72 m, find its area and the radius of its circumcircle. 

therefore 

2s = a +  b + c = 3·57 + 2·61 + 4·72 
= 10·90 

s = 5·45 
Hence using formula (8.7) 

L\ = ✓[5·45(5·45 - 3·57)(5·45 - 2·61)(5.45 - 4.72)] 
= ✓(5·45 X 1·88 X 2·84 X 0·73) 
= 4·609 m2 

From (8.6) 

L\ = abc 4R 
R = abc 

41'.\ 
3·57 X 2·61 X 4·72 =- -----

4 X 4·609 
R = 2·385 m 

number log 
5·45 0-7364 
1·88 0-2742 
2·84 0-4533 
0·73 T-8633 

1·3272 
4·609 0·6636 

number log 
3·57 0·5527 
2·61 0-4166 
4·72 0·6739 

1 ·6432 
18·436 1·2656 
2-385 0-3776 

The calculations above could easily be carried out using a pocket 
calculator. 

Exercises Sb 
1 ABC is a triangle with sides of lengths a, b, c opposite A, B, C, respectively. 

P is on the opposite side of BC to A and the triangle BCP is equilateral. 
Show that AP2 = a2 + c2 

- ac cos B + J3ac sin B. Deduce that AP2 

= ½(a2 + b2 + c2) + 2✓31'.\, where L\ is the area of ABC. 
2 The median CC' of a triangle ABC meets the side AB in the point C'. 

If 0 is the angle AC'C, prove that 
2c cos 0 c sin 0 1 = -- = 
a2 - b2 2L\ CC' [JMB] 

3 If L\ is the area and R the radius of the circumcircle of the triangle ABC, 
prove that cos A +  cos(B - C) = 2L\jaR. 
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4 If E is the middle point of the side CA of the triangle ABC and if A 
is the area of the triangle, prove that 

BC2 - BA2 

cot AEB = 
4A (LU) 

5 If p1 , p2, p3 are the lengths of the altitudes ofa triangle and R the radius of its 
circumcircle, prove that (i) 8A3 = p1 p2 p3abc and (ii) A =  .j(½Rp1 p2p3). 

8.4 Miscellaneous applications 
We shall end the chapter with some typical examples. 

Example I Show that, in any triangle ABC, 

b - c  tan½(B - C) = -
b

- cot½A + c  
Use this formula, rather than the cosine formula (8.3), to solve the triangle 
in which b = 15·32, c = 28·6 and A = 39° 52'. 

From the sine formula· (8.1 ), we have b = 2R sin B, c = 2R sin C. Hence, 
after cancelling 2R, 

Hence 

b - c sin B - sin C b + c sin B + sin C 
2 cos½(B + C) sin ½(B - C) = 2 sin ½(B + C) cos ½(B - C) by (6.50) 

= cot ½(B + C) tan ½(B - C) 

b - c  tan½(B - C) = -b - tan½(B + C) + c  
But since ½(B + C) = 90° - ½A, this can be rewritten 

b - c  tan½(B - C) = -
b

- cot½A + c  
Since b = 15·32, c = 28·6, it is better to write the formula as 

c - b tan½(C - B) = --
b 

cot½A c +  

(8.8) 
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Hence 

1 28·6 -15·32 0 , tan -z(C -B) = 28_6 + 15_32 
cot 19 56 

= 13-28 19° 56' 43·92 
cot 

= 0·8337 
so that 

½(C -B) = 39° 49' 
Also 

½(C + B) = 90° -½A 
= 90° -19° 56' 
= 70° 4' 

(i) 

(ii) 

From (i) and (ii), C = 109° 53', B = 30° 15'. Now 
b sin A 15· 32 sin 39° 52' a =  - - = - ---- -
sin B sin 30° 15' 

= 19·50 

number 
13·28 
cot 19° 56' 

43·92 
0-8337 

1 5·32 
sin 39° 52' 

sin 30° 1 5' 
19·50 

and the required solution is B = 30° 15', C = 109° 53', a = 19·50. 

log 
1 · 1232 
0-4405 
1 ·5637 
1 ·6427 
1·9210 
1 · 1 853 
1·8069 
0·9922 
l-7022 
1 ·2900 

Example 2 A, B are two points on the same level. The distance AB is c. 
The angles of elevation of the top T of a vertical tower from A and B are a and {3 respectively. IfT', the foot of the tower, is on the same level as A and B then 
L T' AB = y and L T'BA = <>. Find an expression for the height of the tower 
in terms of c, y, <> and either a or {3. Also prove that sin {> tan a = sin y tan {3. 

Figure 8.6 

From the triangle ABT' (Figure 8.6) 
AT' BT' AB = -- = ---
sin {> sin y sin A T'B 

Since the angle A T'B is 180° -y -<>, then 
AT' BT' C = =--- -
sin {> sin y sin (y + <>) (i) 
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From the right-angled triangle A T'T 

TT' = AT' tan oc 
Hence from (i) 

TT' = c sin <> tan oc sin(y + <>) 
Similarly, from the right-angled triangle BT'T 

TT' = BT' tan P 
Hence from (i) 

TT' = c sin y tan P sin (y + <>) 
Equating (ii) and (iii) and simplifying 

sin <> tan oc = sin y tan P 

(ii) 

(iii) 

Example 3 A point Q is in a direction 0° N of E from a point 0. P is a point between O and Q such that OP = x. R is due north of Q and QR subtends angles oc and p at O and P respectively. Prove that 
QR = x sin oc sin P sin (P - oc) cos 0 Refer to Figure 8.7. In L. ORP 

but 
hence 

OP RP --- = sin O RP sin oc 
L ORP = P - oc  

PR = x sin oc sin (P - oc) 

Figure 8.7 

(i) 
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In L:. PRQ 

Now 

hence 

From (i) and (ii) 

QR PR sin /3 sin PQR 
L PQR = 180° - L OQS = 180° - (90° - 0) = 90° + 0 

QR = _P_R_s_in_/3_ sin (90° + 0) 
QR = x sin ix sin /3 sin (/3 - ix) cos 0 

(ii) 

Example 4 ABCD is the square base of a pyramid. The top vertex of the pyramid is the point P, vertically above the point E, where AC meets BD. If AB = EP = 2a, find: (i) the angle between the edge AP and the base of the pyramid; (ii) the angle between the planes ABP and ABCD; (iii) the angle between the planes ABP, BCP. 
p 

A L B 

Figure 8.8 

(i) The required angle is L PAE and from 6 APE AE = .j2a ( = ½AC) and PE = 2a therefore tan PAE = 2a/.j2a = .J2 L PAE = 54° 44' 

C 

A ./20 
Figure 8.9 

p 

2a 

E 
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(ii) If L is the mid-point of AB, the required angle is L PLE, since PL in 
ABP and EL in ABCD are both perpendicular to AB, the line of intersection 
of the two planes. Therefore, 

tan PLE = 2 P L PLE = 63° 26' 

2a 

L a E 
Figure 8.10 

(iii) BP is the line of intersection of the two planes. If AM is the altitude 
from A to PB then CM and AM will both be perpendicular to PB and will lie 
in the planes BCP and ABP respectively. The angle required is L AMC. 

AM = MC = ✓¥a (from area of 6 APB: AM .J6a = J5a.2a) 
AC = 2✓2a 

sin AME = ✓lo 
Therefore 

Exercises 8 

LAME = 50° 46' 
L AMC = 101° 32' 

M 

� 
A ./2.a E ./20 C 

Figure 8.1 1  

I The sides a,  c of a triangle ABC are of length 3 cm and 7 cm respectively, 
and the angle C is 76°. Find the angles A and B and the side b. 

2 Prove that for a triangle of area ,:\ 
ab = 2L\ cosec C a2 + b2 = c2 + 4L\ cot C 

(You may assume the cosine formula for a triangle.) Find the remaining 
sides of a triangle in which one side is 5 m, the opposite angle is 45°, 
and the area is 15 m2 • [LU] 

3 If in any triangle ABC, sin 0 = 2
b
Jbc cos½A, prove that (b + c) cos 0 = a. +c 

For the case b = 123, c = 41·2, A =  40° 50', find the value of sin 0 and 
hence the value of a. 

4 Two triangles ABC, PBC stand on the same side of the base BC of length 
10 cm. If the angles ABC, PBC, ACB, PCB, are respectively 60°, 45° , 
30°, 60°, calculate the distance AP. 

5 In a triangle ABC, b = 203 mm, c = 158 mm, B = 94° 12'. Calculate the 
values of a, A, C and find the area of the triangle. 
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6 If p is the altitude from A to BC of a triangle ABC, prove that 

(b + c)2 
= a2 + 2ap cot½A 

(b - c)2 = a2 - 2ap tan ½A 

Hence, or otherwise, given a = 80, p = 50, A =  37°, calculate b, c. 
[WJC] 

7 The length of the sides ofa cyclic quadrilateral ABCD are given by AB = 3, 
BC = 4, CD = 5, DA = 6, Calculate the angles B and D and the length 
of the diagonal AC. [JMB, part] 

8 A column is h m high. A man is standing at a horizontal distance a m 
from the base of the column, his eye level being at b m. He notices that 
a statue on top of the column subtends an angle 0 at his eye. Find the 
height of the statue. 

9 An observer O standing on top of a hill finds that the angles of depression 
to two points A and B on the same horizontal level are ex and fJ respectively. If he is 300 m vertically above AB and the angle AOB is y, find the 
distance AB in terms of ex, {J, y. 

10 In any triangle ABC assuming that � = . 
b

B 
= . 

c
c

' prove that sm A sm sm 
a + : - c = tan ½A tan }B. Calculate the value of c for the triangle in a + + c 
which a + b = 185 mm, A = 72° 14', B = 45° 42'. 

1 1  In a triangle ABC the angle A is 60°, and the side a is the arithmetic 
mean of the sides b and c. Prove that the triangle is equilateral. 

12 Prove that in any triangle ABC 
(i) a = b cos C + c cos B 

(ii) sin½(A - B) = a - b cos½C 
C 

(iii) sin2 B + sin2 C = 1 + cos (B - C)cos A. [JMB] 
13 In a triangle ABC, the lengths of the sides BC, CA, AB, are in the ratio 

8 :  5 :  9. A point P is taken on BC such that BP : PC = 1 : 3. Prove that angle 
ACP = 2 x angle APC. 

14 In the triangle ABC, the sides AB, AC are equal and contain an angle 20. 
The circumscribed circle of the triangle has radius R . Show that the sum 
of the lengths of the perpendiculars from A, B, C to the opposite sides of the 
triangle is 

2R ( 1 + 4 sin 0 - sin 2 0 - 4 sin 3 0) [JMB, part] 
15 The side BC of the triangle ABC is divided internally at a point A1 such 

that BA1 = s - b, where s = }(a + b + c). Show that A1 C = s - c. 
Points B1 and C1 are taken-on CA and AB such that CB1 = s - c and 

AC1 = s - a respectively. Show that LB1A1C1 = ½(B + C) and prove 
that if A 1 is the area of the triangle A 1 B 1 C 1 

A 1 = 2(s - b)(s - c) sin½B sin ½C cos½A 
Deduce that if A is the area of the triangle ABC 

s2A 1
3 = A4 sin A sin B sin C sin ½A sin ½B sin½C [JMB] 
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16 If the area of the triangle ABC is A and 2s = a + b + c, prove that 
s2 

A = -�-------cot½A + cot½B + cot½C 

[ Hint: assume tan½A = J[(s 
�(

:)�; 
c)]] 

17  The medians AD, BE, CF of the triangle ABC meet at G. Prove that 
cot AGF + cot BGD + cot CGE = cot A +  cot B + cot C 

18 A sloping plane bed of rock emerges at ground level in a horizontal 
line AB. At a point C on the same level as AB and such that BC = 1200 m 
and the angle ABC is 60° a vertical shaft CD of depth 300 m is sunk 
reaching the rock at D. Calculate the inclination of the plane of the rock 
to the horizontal. Another vertical shaft is sunk at M, the mid-point of 
BC, and reaches the rock at N. Given that AB is 1000 m calculate the 
inclination of AN to the horizontal. (Give answers to the nearest degree.) 

[JMB] 
19 A plane is inclined at angle IX to the horizontal and a line PQ on the 

plane makes an acute angle P with PR which is a line of greatest slope on 
the plane. Show that the inclination of PQ to the horizontal is given by 
sin 0 = sin IX cos p. Show that the angle <p between the vertical plane 
through PQ and the vertical plane through PR is given by cos <p cos 0 
= cos IX cos p. [AEB] 

20 D and E are points dividing the side BC of triangle ABC internally and 
externally in the ratio p : q. If L ADC = 0 and L AEC = <p prove that 
(p + q) cot 0 = q cot B - p cot C, and write down the corresponding result 
for cot <p. Hence prove that L DAE = 90° only if p :  q = c :  b. [SUJB] 

21 If A, B, C are the angles of a triangle and the products 
cos 2A cos 2B cos 2C and sin 2A sin 2B sin 2C 

have given values p, q respectively, prove that 
p - q cot 2A = cos2 2A 

and deduce that tan 2A, tan 2B, tan 2C are the roots of the equation 
(pt - q)(t2 + 1) = t 

Show that if p = ½ and q = 0, then the angles of the triangle are in 
the ratios 1 :  3 :  4. [LU] 

22 In the triangle ABC, AC = 5, BC = 7 and angle CAB is 60°. Prove that 
AB = 8. If D is a point on the circumcircle of the triangle on the side of 
BC away from A, and the angle CBD is 30°, show that sin ABO = ½¾ 
and find AD. [JMBJ 

23 Without using tables show that there is a triangle ABC whose angles 
are such that tan ½A = ¾, tan ½B = -&, tan ½C = ½. 

24 Establish the sine rule for a triangle. A vertical tower AB stands on top 
of a hill which may be assumed to be a plane inclined at 8° to the 
horizontal. BCD is the line of greatest slope of the hill through B, the 
foot of the tower. The angles of elevation above the horizontal of A from 
C and D are 29° and 20° respectively and the length CD is 125 m. Find 
the height of the tower. [LU] 
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25 R is the radius of the circumcircle of a triangle ABC of area A. Show that A = ½bc sin A and that R = abc/4A. D is the mid-point of BC and P and Q are the feet of the perpendiculars from D to AC and AB respectively. Find the area of the triangle DPQ in terms of a, A and R. Show that the area of the triangle APQ is A --(3b2 + c2 - a2)(3c2 + b2 - a2) [LU] 16b2c2 
26 A point P is due south of a wireless mast and the angle of elevation of the top of the mast from P is ex. A second point Q is due east of P and the angle of elevation of the top of the mast from Q is {3. The horizontal distance between P and Q is c and the vertical height of P above Q is h. If x is the height of the top of the mast above P, prove that 

x2 (cot2 f3 - cot2 ex) + 2hx cot2 f3 + h2 cot2 f3 - c2 = 0 
Calculate the height to the nearest metre when ex = 16°, f3 = 16°, h = 35 m, 
c = 340 m. [JMB] 27 The base of a pyramid of vertex V is a square ABCD of side 2a. Each of the slant edges is of length aJ3. Find (i) the angle between a slant face and the base (ii) the perpendicular distance of D from the edge VA (iii) the angle between two adjacent slant faces. [JMB] 28 If ex + f3 + y = 90° prove that 1 - sin 2 ex - sin 2 /3 - sin 2 y - 2 sin ex sin f3 sin y = 0 
A convex quadrilateral ABCD is inscribed in a circle of which DA is a diameter. If a =  AB, b = BC, c = CA, d = DA, prove that d3 -

(a2 + b2 + c2)d - 2abc = 0. [JMB] 29 Points P, Q and R are taken on the sides of a triangle ABC (P on BC, Q on CA, R on AB) and lines are drawn through these points at right angles to the sides on which they lie. Prove that they will be concurrent if 
BP2 - PC2 + CQ2 - QA 2 + AR 2 - RB2 = 0 

Hence or otherwise, prove that the altitudes of any triangle are concurrent. If the altitudes of the triangle ABC are AD, BE, and CF and if A', B', and C' are the mid-points of BC, CA and AB respectively, prove that A'D . BC + B'E .CA + C'F . AB = 0, where the products are counted plus or minus according to the directions indicated by the order of the letters. [SUJB] 30 From a mountain peak P, 2000 m above sea level, observations are taken of two further peaks, A and B. The horizontal distance of A from P is 3 km, its angle of elevation from P is 10°, and its bearing from P is N 20°E. The horizontal distance of B from P is 1 km, its angle of depression from P is 1 5°, and its bearing from P is N 80° E. Find (i) the horizontal distance of A from B (ii) the heights of A and B above sea level (iii) the angle of elevation of A from B. 31 A tent covers a rectangular piece of ground oflength l and breadth b. Each of the long sides of the tent is a trapezium inclined at ex to the ground 
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and each of its ends is an . isosceles triangle inclined at /3 to the ground. 
Prove that 
(i) the height of the tent is ½b tan (X 

(ii) the length of the top edge is l - b tan !X cot /3 
Find the total area of the tent. [JMB] 

32 The lengths of the sides AB, BC, CD, DA, of a quadrilateral ABCD are 
a, b, c, d respectively. The lengths of the diagonals AC, BD are x, y 
respectively. The sides AB, DC produced meet at an angle 0. Prove 
that b2 + d2 = x2 + y2 - 2ac cos 0. 

Further if P, Q, R, S, are the mid-points of the sides in the above order 
and if p = PR, q = QS, prove that p2 

- q2 = bd cos <J, - ac cos 0, where <J, 
is the angle of intersection of the sides BC, AD produced. 

33 From a point on the side of a football field at a distance 2h from the 
corner flag the angle between the directions to the goal posts at the same 
end as the flag is !X. Denoting the angle between the directions to the 
nearest post and the flag by 0, show that 

d d tan2 0 + 2h tan 0 + 1 - 2h cot !X = 0 

where d is the distance between the posts. If, when the distance 2h is 
changed to h, the angle !X changes to 2!X, determine d in terms of h and 
tan !X. [JMB] 

34 A long square peg with cross-section of side a and with flat ends 
perpendicular to its axis is placed in a round cylindrical hole of diamete'r 
d(> a,J2) and uniform depth h. The peg rests with its axis making an 
angle 0 with the axis of the hole. The edge CD of the end face ABCD of 
the peg rests on the bottom of the hole, and the corners A and B are in 
contact with the wall of the hole. Also the long edges through C and D 
rest against the upper rim of the hole. 

Show that the depth of the hole is given by the equation 
h tan 0 = ,J(d2 - a2) - a cos 0 [JMB] 

35 Two vertical cliff faces are at right angles and intersect in the line AOB, 
with B above A. A thin plane stratum of rock passes through O and 
intersects the cliff face in lines OL and OM respectively, each of which 
makes an acute angle 0 with OB. Prove that 
(i) the angle between the two lines of intersection is cos- 1 (cos2 0) 

(ii) the angle of inclination of the stratum to the horizontal is 
tan - 1 (,J2 cot 0). [JMB] 

36 P is a point so that PA is 6 m and PA is perpendicular to the horizontal 
plane of a triangle ABC. When BC is 5 m and the angles of elevation of 
P from B and C are tan - 1 1 and tan - 1 � respectively, find the angle 
between the planes PBC and ABC. [AEB] 

37 One face of a cube is ABCD, and the opposite face is A'B'C'D', the lettering 
being such that AA', BB', CC', DD' are edges of the cube. Find (in the form 
sin - 1 x, cos - 1 x or tan - 1 x) the angle between (i) the diagonal AC' and the 
face ABCD, (ii) the diagonal AC' and the plane BDD'B'. [O] 

38 In the triangle ABC, the sides AB and AC are of lengths 2k and 3k 
respectively. The point P on the side AB at a distance x from A is joined 
to the point Q on the side AC at a distance y from A. If x and y vary 
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in such a way that the area of the triangle APQ is always equal to half 
the area of the triangle ABC, show that y = 3k2 /x. State the range of 
possible values of x. Find, in terms of k, the minimum value of x + y. 

[JMB] 
39 The points A, B, C lie on a circle centre 0. Given that AB = 1 1  m, 

BC = 13 m, CA = 20 m, find the angles AOB, BOC, COA to the nearest 
tenth of a degree and the radius of the circle to the nearest tenth of a 
metre. [LU] 

40 Points A, B and C are equally spaced on the circumference of a horizontal 
circle of radius 2 cm. Points P, Q and R are at heights 6 cm, 4 cm and 
2 cm vertically above A, B and C respectively. Calculate the areas of the 
triangles ABC and PQR. Deduce that the angle between the plane PQR 
and the plane ABC is cos- 1 ✓4- The line PQ produced meets the plane 
ABC at the point S and the line PR produced meets the plane ABC at 
the point T. Calculate the length of ST. [AEB] 
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The fundamental ideas of the differential calculus 

9.1 Functions 
The calculus has at its foundations the notion that the value of one quantity 
depends on the value of another quantity. For example, the area A square 
units of a circle is related to the length r units of its radius by the formula 
A = nr2• A temperature, F, measured in degrees Fahrenheit is related to the 
same temperature when measured in degrees Celsius, C, by the relationship 
F = 32 + JC. The volume, v, of a given mass of gas is related to the pressure, 
p, of the gas and under certain conditions the relationship may take the form 
v = 60/p. Readers will probably be able to think of other examples to add 
to the three given. 

These examples lead us to the idea of a function. When the value of one 
quantity, say y, depends on the value of another quantity, say x, and to 
every possible value of x there corresponds one and only one value of y we 
say that y is a function of x. In the above examples, A is a function of r, F 
is a function of C, v is a function of p. 

In the above examples, the quantities have been linked by a mathematical 
formula. This will often be the case but it is not essential. At a particular 
location, the wind speed may be measured using an anemometer, and on a 
given day the wind speed will vary with the time of day. It will almost 
certainly be impossible to find a mathematical formula connecting the two 
quantities, but since at any particular time there will be just one value for the 
wind speed, we can still say that wind speed is a function of time. 

Unless we are dealing with a particular example, we shall generally use 
the symbols y and x to denote the two related quantities. The statement 'y 
is a function of x' is expressed mathematically by writing 

y = f(x) (9.1) 

The 'f' is used to indicate dependence on the bracketed quantity (x). Other 
letters can be used to distinguish between different functions, some commonly 
used symbols being F(x), <f,(x), g (x). 

As the value of x varies, the value of y varies in a way determined by the 
particular function. The value of y depends on the value of x. For this reason, 
y is called the dependent variable; x is called the independent variable. The 
value of y when x has the value 2, say, is denoted by f(2), and in general 
when x has the value a the value of y or f (x) is denoted by f (a). If f (x) is 
152 
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expressible as some formula involving x, these values can be calculated by 
substitution into this formula. 
Example 1 If f(x) = x2 - 3x, evaluate f(2), f(3), f( - 5), f(a), f(0). 

f(2) = 22 
- 3 X 2 = - 2 f(3) = 32 - 3 X 3 = 0* 

f( - 5) = ( -5)2 - 3 x ( - 5) = 40 f(a) = a2 - 3a 
f(0) = 0 - 0 = 0* 

* Note that the values of f(x) are not necessarily all different; the important 
point is that any one value of x gives only one value of f(x). 

The possible values for x constitute the domain of the function. The cor­
responding values for y constitute the co-domain of the function. 

If the variables involved relate to physical quantities, the domain and co­
domain will often be determined by physical considerations. For example A = nr2, the domain is the set of positive real numbers: r can be any positive 
real number and A is also a positive real number. For F = 32 + !C, since 
the lowest possible temperature (the so-called absolute zero) is - 273 °C, the 
domain consists of the values of C which are not less than - 273. We can 
write F = g( C) say, where g( C) = 32 + !C. Since g( - 273) = - 459·4, the 
co-domain consists of values of F which are not less than - 459·4. 

If we think of the function y = x2 without attaching any physical signi­
ficance to the relationship, but merely regarding it as a rule by which we 
can obtain a value y corresponding to any value x, then the domain consists 
of all the real numbers. However, the co-domain is restricted to positive real 
numbers. For the function y = ____!__3 , we see that x can take any value except 

x -
the value 3. There is no way of finding the value of y corresponding to a 
value of x = 3. A function f(x) is said to be defined for a certain value a, of 
x, if a definite value of f(a) corresponds to this value of x. 

Example 2 For what values of x are the following functions defined? What 
are their domains and co-domains? (i) f(x) = 2x - 5, (ii) f(x) = -1- .  

x - 2  
(i) y = f(x) = 2x - 5 is defined for every value of x since to any value of 

x we obtain one value for y. The domain is all the real numbers. The co-domain 
is all the real numbers. 

(ii) y = _!___2 is defined for all values of x except x = 2 since, if we try to 
x -

evaluate y when x = 2, we obtain � which is meaningless since division by 
zero is not a valid operation. The domain is the real numbers except x = 2, 
the co-domain is the real numbers except y = 0 since no value of x makes 
y zero. 

The function v = 60 can be thought of as expressing the volume of a 
p 

certain mass of gas as a function of the pressure of the gas. From this we 
can easily obtain the inverse relationship p = 60 and we see that, in this 

V 
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case, this relationship expresses p as a function of v. Similarly from 
F = 32 + �C 

we obtain the inverse relationship 
C = �F - 32) 

which expresses C as a function of F. 
However, for the function y = x2, the inverse relationship gives x =  ±Jy 

and corresponding to a given value of y (this must be positive) there does not 
correspond a unique value for x. 

Thus we have to think of the inverse relationship in terms of the two 
functions 

X = +Jy 
X =  -Jy 

(y � 0) 
(y � 0) 

Of course, for the first example we considered 
A =  nr2 

r = J� 
since r must be positive on physical considerations. 

Example 3 For the following functions find the inverse relationship. Is this 
relationship a function? (i) y = 2x + 5, (ii) y = 

x 
� 

2 , (iii) T = J�-
(i) If y = 2x + 5, then x = ½(y - 5) and this defines a function. Its domain 

consists of all real values for y and its co-domain consists of all the real 
numbers. 

(ii) If y = _!__2, then x = 2 + ! .  This defines x as a function of y. The x - y 
domain consists of all the real numbers except y = O; the co-domain of all 
the real numbers except x = 2. 

(iii) If T = J(l/2), then l = 2T2 and this defines l as a function of T. The 
domain consists of the positive real numbers for T, the co-domain of the 
positive real numbers for l. 

If the functional relationship between y and x is expressed by a formula 
giving y in terms of x, we say that y is an explicit function of x. The functions 
just considered, y = 2x + 5, y = 1/(x - 2), T = J(l/2) are all explicit functions. 
It may be that the relationship between the quantities y and x is expressed 
by means of an equation; for example, 3y + 4x - 5 = 0 or x3 + y3 = 27. In 
this situation, if for each possible value of x there is a unique value of y, we 
say that y is an implicit function of x. It is, in fact, possible to express y as an 
explicit function in both these cases. Thus, for the first example, y = ½(5 - 4x); 
and for the second example, y = J(27 - x3). This will not always be possible. 
If y5 + xy + x3 = 3 is the equation which defines y as an implicit function 
of x, then to express y explicitly in terms of x we need to solve the quintic 
equation y5 + xy + x3 - 3 = 0, and this is not possible for a general value of x. 
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Example 4 Express y as an explicit function of x if (i) xy = 3, 
(ii) 2x - 3y + 2 = 0, (iii) x2 + y2 = 4. 

(i) xy = 3 therefore y = 3/x 
(ii) 2x - 3 y + 2 = 0 therefore y = ½{2x + 2) 

(iii) x2 + y2 = 4 therefore y2 = 4 - x2 

y = ±✓(4 -x2) 
and this relationship does not give a unique value for y. This is yet another 
case where we have to think in terms of two functions. 

In the first, 
y = u(x) = ✓(4 - x2) 

The domain consists of values of x in the range - 2 � x � 2; the co-domain 
consists of values of y in the range 0 � y � 2. 

In the second, 
y = v(x) = -✓(4 - x2) 

The domain consists of values of x in the range - 2 � x � 2; the co-domain 
consists of values of y in the range - 2 � y � 0. 

Exercises 9a 
1 A rectangular enclosure is made using 100 m offencing. The fencing is used 

on three sides only, the fourth side consisting of a stone wall. If the length 
of wall used for the enclosure is x m, find the area of the enclosure A m2 as 
a function of x. 

2 A cylindrical can, open at one end, is constructed so that its combined 
length and girth is 20 cm. If the height of the can is h cm, express the 
volume of the can as a function of h. If the radius of the can is r cm, express 
the surface area of the can as a function of r. 

3 In triangle ABC, AB = AC =  10 cm. If L ABC = x0
, express the height 

of the altitude from A to BC as a function of x. 
4 A piece of wire oflength 20 cm is bent into the shape of an isosceles triangle. 

If the length of one of the equal sides of the triangle is x cm, express the 
height of the triangle h cm as a function of x. What is the domain for this 
function? What is the co-domain? 

5 If the piece of wire in question 4 is bent into the form of a sector of a circle 
of radius r cm and the bounding radii, find the angle 0 of this sector, 
measured in radians, as a function of r. 

6 f(x) = x3 - 3x. Evaluate f(l), f(2), f( - 1). What is the domain? What is 
the co-domain? 

7 </J(x) = x2 - 5x + 6. Evaluate </J(0), </J(l). For what values of x is </J(x) = 0? 
1 8 G(y) = �4 . Evaluate G(0). What is (i) the domain, (ii) the co-domain? 

y + 
9 F(0) = cos 0 - sin 0. Evaluate F(0), F(n/2). For what values of0 is F(0) = 0? 

If the domain is the values of 0 for which - 2n ,:,;; 0 � 2n, find the co­
domain. 

10 For what values of x is the function </J(x) = 2x/(x - l)(x - 2) defined? 
11 For what values of x is the function (x - 3)(x � 7) negative? For what 

values of x is the function ✓[(x - 3)(x - 7)] defined? 
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1 12 Find x as a function of y if (i) y = 2x _ 1
, (ii) y = ?x + 3, 

(iii) y = sin (x + ¼n), (iv) y = x3
• 13 Define y as an explicit function of x (if possible) when (i) xy + 4y = x3, 

(ii) x + y + y2 = x2, (iii) x5 + y5 + xy = 3. 14 The relationship between y and x is defined implicitly by (i) xy + y = 2, 
(ii) xy2 + y4 + 1 = 0. Evaluate y when x = 1 and when x = 2 (if possible) 
in each case. 15 The relationship between y and x is defined implicitly by x2 + y2 = 25. 
Find y when (i) x = 3, (ii) x = 4. 

9.2 Graphical representation of a function 
It is very helpful to represent the variation of a function by drawing its graph. 
The graph of the function y = x2, with which readers are probably familiar, 
is shown in Figure 9. 1. 

y 

Figure 9.1 

The graph of the function y = x2 is a smooth continuous curve over the 
range of values of x for which the function is defined (in this case for all 
values of x). We say that the function y = x2 is a continuous function of x. Figure 9.2 shows the graph of the function y = 1/x. There is a break in 
the curve when x = 0. Indeed, the function is not defined when x = 0. The 
graph is discontinuous at this point, and we apply this same description, 
discontinuous, to the function at this point. The function is, of course, 
continuous for any range of values of x which does not include zero. 

The word 'smooth' was applied to the curve in Figure 9.1. However, 

y 

-----1---------'►x 

\ 
Figure 9.2 
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y 

Figure 9.3 

continuity does not necessarily imply a smooth curve. Consider the following 
function of x defined as 'y is the positive number having the same magnitude 
as x' (i.e. y = lxl, the modulus of x; see Section 1.4). This function may be 
expressed in the form y = x if x � 0, y = - x if x � 0. Its graph is shown 
in Figure 9.3. The graph is not smooth near the point on it where x = 0, 
but it is continuous. 

For the function y = x2 we have seen that there are two possible inverse 
functions. In the first, x = J y. In the second, x = -J y. The graphs of both 
these functions are shown in Figure 9.4. The first is shown with a solid line, 
the second with a broken line. It is interesting to compare the complete 
Figure 9.4 with Figure 9. 1. 

x = .Ii 

Ot--------- Y 
' 

',,, ...... ........ ........ _ _ _ x = - ,(Ji 

Figure 9.4 

For the implicit relationship x2 + y2 = 4, we have seen that there are two 
possible explicit functions: 

y = u(x) = J(4 - x2) 

y = v(x) = - J(4 - x2) 

The graphs of these are shown in Figure 9.5. One, u(x), gives the upper half 
of the circle centre O and radius 2; the other, v(x), the lower half of the same 
circle. 

9.3 The rate of change of a function 
If y is a function of x, as x changes y will in general change. We relate the 
change in y to the corresponding change in x by defining the average rate 
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Figure 9.5 

of change of the function to be the change in the function divided by the 
corresponding change in x. If x1 and x2 are two values of x, and the 
corresponding values of y are y1 and y2, then the average rate of change 
of the function as x changes from x1 to x2 is 

(9.2) 

Example I Find an expression for the average rate of change of the functions 
(i) y = 2x + 5, (ii) y = x2 in the interval x1 to x2 • 

(i) By (9.2), the average rate of change for y = 2x + 5 is 
(2x2 + 5) - (2x1 + 5) = 2(x2 - X 1) = 2 

Xz - ·X1  Xz - X1 

We notice that this is the same for each interval x1 to x2 • 
(ii) By (9.2) the average rate of change for y = x2 is 

x/ - X1 z (x2 - X 1)(X2 + X1 ) - - -- = -- ----- = X1 +X2 
Xz - X 1 Xz - X 1 

which is different for different intervals. 
If we represent the function graphically, the average rate of change of the 

function in the interval x1 to x2 may be interpreted geometrically as being 
the gradient of the chord joining the points on the graph with abscissae 
x1 and x2• For the function y = 2x + 5, the graph is a straight line 

QN Q'N' 
(Figure 9.6a) and the gradient of any chord is always 2. PN = P'N' = 2. 
But for the graph of y = x2 (Figure 9.6b), the gradient of the chord PQ is 
different from the gradient of P'Q', etc. 

A practical application of this idea arises in connection with space-time 
graphs. Suppose a body moves so that the distance s travelled after time t 
is s = f(t ). Then the average rate of change of s as t changes from t 1 to t2 , 
(s2 - s1 )/(t2 - t 1), is just the average speed of the body in the interval t 1 to 
t 2 and is the gradient of the appropriate chord on the space-time graph. 

Expression(9.2) expresses algebraically the gradient of the chord joining the 
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Q' y:2 x  + S  y 

( bl Figure 9.6 
points with abscissae x1 and x2 on the graph of y = f(x). Can the gradient 
of the tangent to the curve be given a similar algebraic interpretation? 
Geometrically, we feel no difficulty in drawing the tangent to a curve at a 
particular point, but in order to interpret this process algebraically we need 
to consider it in some detail. 

Suppose we consider the deiinite problem of findinf the gradient of the 
tangent at the point with abscissa 1 on the curve y = x . The gradient of the 
chord joining the points on this curve with abscissae 1 and x2 is, from the result 
of Example l(ii), equal to 1 + x2• Consider the chords PQ, PQ1, PQ2, PQ3, 
where P has abscissa 1 and Q, Q1, Q2 and Q3 have abscissae l ·5, l · l, l ·01, 
l ·000 01. These chords (produced) are approaching nearer and nearer to being 
the tangent to the curve at P (Figure 9.7 shows the curve in the region of 
P). Indeed, we can imagine that, as we try to draw the tangent at P, we rotate 
our ruler through the positions of these chords before finally drawing the 
tangent at P. 

Figure 9.7 
Geometrically, as Q approaches P, so PQ approaches the position of the 

tangent at P. Algebraically, the gradient of the chord is 1 + x2 (x2 the abscissa 
of Q) and as x2 gets nearer and nearer to the value 1, this expression will 
approach nearer and nearer to the gradient of the tangent at P. The gradients 
of the chords PQ, PQ1, PQ2, PQ3 are 2·5, 2·1, 2·01 and 2·000 01. These are 
approaching the value 2, which we say is the gradient of the tangent at P. 

Quite generally, the gradient of the chord joining the points R and S with 
abscissae x1 and x2 on the curve y = x2, is x1 + x2• If we allow the abscissa 
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of S to approach the abscissa of R, the chord RS approaches nearer and nearer 
to being the tangent at R. Algebraically, the expression x 1 + x2 takes values 
closer and closer to the value 2x 1 as x2 takes values closer and closer to 
the value x 1, and so the gradient of the tangent to the curve y = x2 at the 
point with abscissa x1 is 2x1. 

The same procedure enables us to find the gradient of the tangent at the 
point with abscissa x1 on the graph of the function y = f(x). The gradient 

of the chord joining the two points with abscissae x1 and x2 is Yi -Yi . X2 - X 1 

This expression will depend on x 1 and x2 and on the particular function f(x) 
being considered. As x2 takes values which approach x1, so the chord 
approaches the tangent at the point with abscissa x 1. The gradient of this 
tangent is then the value approached by (y2 - y1)/(x2 - x 1) as x2 takes values 
nearer and nearer to x 1 . 

An immediate application of the gradient of the tangent occurs in connec­
tion with space-time graphs. Just as the gradient of a chord on such a graph 
represents the average speed in a certain time interval, so the gradient of 
the tangent represents the speed at a particular instant. Example 2 Find the gradient of the chord joining the points with abscissae 
2 and x2 on the curves (i) y = 1/x and (ii) y = 3/x2. What is the gradient 
of the tangents at the points with abscissa 2 on these two curves? 

(i) By (9.2), the gradient of the chord of y = 1/x is 
1 1 

X2 2 2 - X2 - 1  
= -- - - = x2 - 2 2xi(x2 - 2) 2x2 

- 1  1 
As x2 approaches the value 2, -l/2x2 approaches the value l2 = -4 , 
which is the gradient of the tangent as required. 

(ii) By (9.2), the chord of y = 3/x2 has gradient 3 3 
3(4 -x/) 

4X2
2 (X2 -2) 

3(2 -X2)(2 + X2) 
4x/(x2 -2) 

-3(2+x2) 
4x/ 

-3(2 + X2) -3 X 4 3 
As x2 approaches the value 2, 4x/ approaches the value 

4 x (2)2 = 
4 , 

which is the gradient of the tangent as required. Example 3 The distance s m of a particle (which moves along a fixed line 

X'OX) from the point 0, after time t sec, is given by s = t + -1
-. t + 1 

Find its speed after 1 sec. 
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The average speed of the particle in the time interval 1 to t sec is given 
by 

t + t ; 1 -(1+1 ! 1 ) t - 1 t+I - � 
- - - --- --� = -- +- -- -t-1 t - 1  t - 1 

2-t-l 
= l+ -- - - -

2(t + l )(t - 1)  

- 1 -
1 / - 2 (t + l) 

m sec 

As t approaches 1, this approaches the value 

1 1 3 1 - - -- = 1 -4 = 4 m/sec 
2( 1 + 1) 

The speed of the particle after 1 sec is thus ¾ m/sec. 

Exercises 9b 

1 Plot the graph of the function A = f(x) obtained in question 1 of Exercise 
9a. From your graph determine the value of x which maximises A. What 
is the maximum value of A? 

2 Plot the graphs of the functions y = 2x2 - 4x -3 and y = x - 5 on the 
same scale. Hence solve the equation 2x2 - 5x + 2 = 0. Verify the correct­
ness of your solutions. 

3 Plot on the same scale the graphs of the functions y = tan x and y = 1/x. 
Hence find an acute angle x so that x tan x = 1 (x measured in radians). 

4 Find the gradient of the chord joining the points with abscissae 3 and 
x2 on the curve y = x2 + 5x. What is the gradient of the tangent to the 
curve at the point with abscissa 3? 

5 A particle moves so that the distance s m travelled after t sec is given 
by s = t 2 + 5t. Find the average speed of the particle during the 4th 
second and its speed after 3 sec. 

6 Find the gradient of the chord joining the points with abscissae 1 and 
x2 on the curve y = (x + 1)2 . Find the gradient of the tangent to the curve 
at the point with abscissa 1 .  

7 Find the gradient of the tangent at the point with abscissa 1 on the curve 
y = 3(x + 1)2 

- 2(x + 1). 
8 Verify by multiplication that x/ -x/ = (x2 - x 1 )(x/ + x 1x2 + x/). 

Hence show that the gradient of the chord joining the two points with 
abscissae x 1 and x2 on the curve y = x3 is x2

2 + x 1x2 + x/. What is the 
gradient of the chord joining the two points with abscissae x 1 = 1 and 
x2 = (i) 2, (ii) 1 · l ,  (iii) l ·01, (iv) l ·000 01? What is the gradient of the tangent 
to the curve at the point with abscissa (i) 1 ,  (ii) x? 

9 Show that the gradient of the chord joining the points with abscissae x 1 
and x2 on the curve y = 1/x is - l/x 1x2 • Deduce the gradient of the 
tangent at the point with abscissa (i) 1, (ii) x. 



162 The fundamental ideas of the differential calculus 

10 A particle is dropped from the top of a tall tower. The distance s cm 
fallen after t sec is- given by s � 500t 2• Find its approximate speed after 
1 sec and after it has fallen 20 m. 

9.4 Limits and limit notation 
We have just seen that the gradient of the tangent at the point with abscissa 
x 1 on the curve y = f(x) is the value approached by (y2 - y1 )/(x2 - x1 ) as x2 
takes values closer and closer to x 1 . A notation has been developed which 
enables us to avoid rather cumbersome expressions like 'x2 takes values closer 

and closer to x/. This we write as x2 -+ x 1• The value approached by Yz -Yi 
. Xz -X1 

as x2 tends to x1 is called the limiting value or the limit of this expression. 
This we abbreviate to 

lim Y2 - Y1 
x2-x1 Xz -X1 

or I . f(x2) - f(x1) Im - -- --
x2-x 1 Xz -X 1 

which is read as the limit of (or the value approached by) Yz -Yi , that is 
Xz -X 1 

f(x2) -f(x1) d d h' . h d' f ----, as x2 gets nearer an nearer to x 1 an t 1s 1s t e gra 1ent o 
Xz -X 1 

the tangent at the point with abscissa x 1 . 
It is convenient to use the values x and x + /Jx for the abscissae of the 

end points of a chord instead of x 1 and x2• The symbol /Jx (delta x) represents 
the change or the increment in x and /Jx -+ 0 is equivalent to x2 -+ x 1 . (Note: 
/Jx is one symbol. It is not x multiplied by some quantity /J.) In the same 
way, we use y and y + /Jy instead of y1 and y2, where /Jy represents the change 
or increment in y. The gradient of the chord joining the points with co­
ordinates (x, y), (x + /Jx, y + /Jy), i.e. the average rate of change of the function, 
is then 

y + /Jy -y f(x + /Jx) -f(x) /Jy 
x + /Jx -x /Jx /Jx 

and the gradient of the tangent at the point with abscissa x is 

I. f(x + /Jx) -f(x) 1 . /Jy 
1m - - -- - - = 1m -

6x- o  /Jx 6x- o  /Jx 

(9.4) 

(9.5) 

The limiting value of /Jy//Jx is called the differential coefficient of y with 
respect to x and is denoted by the one symbol dy/dx. The process of finding 
this limiting value is called differentiation. The form of (9.5) will depend on 
the function f(x) and for this reason the differential coefficient of y with respect 
to x is sometimes called the derived function or the derivative of f(x) and 
may be written 

d 
dx [f(x)] or f'(x) 
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Thus we have the following equivalent expressions 
dy 

= � [f(x)] = f '(x) = lim 
f (x + <5x) - f (x) 

dx dx dx-o <5x 

= lim <5y 
dx-0 Jx 

(9.6) 

f '(x) represents the rate of change of the function f(x) at the value x or 
the gradient of the tangent to the curve y = f(x) at the point with abscissa x. 
The gradient of the tangent at the point with abscissa a is f '(a) and is best 
obtained by substituting x = a in f '(x). It can, of course, be calculated by 
evaluating 

1. f(a + <5x) -f(a) 1m ------
dx -o Jx 

Example 1 Find the derivative of the function y = 3x2 and the gradient of 
the tangent to the curve y = 3x2 at the point with abscissa 3. 

Therefore 

f '(x) = lim 3(x + <5x)2 -3x2 

dx-0 Jx 

= lim 
6x<5x + 3(<5x)2 

dx- o  <5x 
= lim (6x + 3<5x) 

dx-+ O  

f '(x) = 6x 
Thus the gradient of the tangent at the point with abscissa 3 is just 

f '(3) = 6 X 3 = 18 

This could have been calculated by evaluating 

1. 
3(3 + <5x)2 -3.32 

1m ----- --
dx-o <5x 

However, exactly the same algebra would be used to evaluate this limit as 
in the general case and it is clear that once we have f '(x) = 6x, the rate of 
change of the function or the gradient of the tangent for any value of x is 
easily obtained without considering the limiting process again. 

It can happen that the derivative of a function, although it is defined to 
the right or to the left of a particular point, is not defined at the point itself. 
The function y = f(x) = lxl ,  whose graph was shown in Figure 9.3, is an 
example of this. For values of x < 0, f '(x) = -1; for values of x > 0, f '(x) = 1 ;  
and for x = 0, f '(x) does not exist. 

The difficulty is fairly obvious geometrically. To the left of the value x = 0, 
the graph has gradient -1,  and to the right its gradient is + 1, but at the 
point where x = 0 the situation is ambiguous. In the case of the definition 
in terms of limits 
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lim f (Jx) -f (0) . 
Jx 

exists and equals -1 
dx- 0  

from the left 

This limit is often written 

The limit from the right 

. f (Jx) -f (0) 
hm - -- - = - 1  

dx-0 - ()X 

1. f (Jx) -f (0) l till ---- = + 
dx -o + t5x 

It is not possible, however, to discuss 

1
. f (Jx) -f (0) 
tm - - --

dx- o  ()X 

since, as Jx approaches zero, we obtain one of the numbers -1 or + 1 
according as Jx is just less than or just greater than zero. The derivative 
f '(x) is in this case discontinuous at the point with abscissa x = 0, although 
as we have already mentioned f (x) itself is continuous at this point. The graph 
of f '(x) is shown in Figure 9.8. There is no value of f '(x) when x = 0, not a 
possible two. 

y 

-----,0,+-------� X 

------�-, 

Figure 9.8 

9.5 The calculation of the derivative for some common functions 
The process of calculating the derivative or differential coefficient is called 
differentiation. More specifically, the process of calculating the derivative 
directly from (9.6) is called differentiation from first principles. The need for 
this phrase may puzzle readers. For the time being, we remark that in the 
next chapter we shall develop techniques which enable us to differentiate a 
function without having to deal directly with the expression (9.6). We shall, 
however, need certain standard results, three of which we shall derive now. 

The derivative of axn, where a is a constant and n is a positive integer 
If y = axn 

y + t5y = a(x + t5xt 
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which by the binomial theorem 

= { X" + nx"- 10X + n(n
; 

l) 
X" - 2(0x)2 + . . .  + (Ox)"] 

therefore, by subtraction, 

therefore 

an(n - 1) oy = anxn - l ox+ 2 x"- 2(ox)2 + . . .  + a(ox)" 

oy an(n - 1) 
ox = anxn - 1 + 2 x" - 2 ox+ . . .  +a(ox)n - 1 

Proceeding to the limit 

1 . oy i 1m - = anx" -
<1x -o OX 

since all the other terms on the right contain positive powers of ox which 
approach zero as ox approaches zero. Thus for y = f(x) = ax", where a is 
a constant and n a positive integer, 

dy - = f'(x) = anx"- 1 
dx (9.7) 

We have only proved this result for n a positive integer; the proof for other 
values of n is deferred to the next chapter. 

The derivative of sin x (x in radians) 
If y = sin x 

y+oy = sin (x+ox) 
oy = sin(x + ox) - sin x 

= 2 cos (x + ½ox) sin ½ox by (6.50) 
oy 2 cos (x+½ox) sin½ox 
ox ox 

sin½ox 
= cos(x + ½ox) -1-�­zux 

Proceeding to the limit 
� . � �n�x -
d = hm � = lim cos (x + ½ox) -1-� -x <lx-0 uX dx- 0  zuX 

. sin½ox = lim cos (x + ½ox) hm -1-�-
dx- o  dx-o zuX 

We have assumed the result that the limit of a product is the product of 
the two limits. (The proof of this apparently obvious result is beyond the 
scope of this course.) 
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Now 

and 

therefore 

Jim cos(x + ½Jx) = cos x 
dx- 0  

. 1 � 

1. sm "!ux 
1m -1-� - = 1 

dx- 0  zuX 

:� = COS X X 1 

by (6.60) 

Thus, if y = sin x 
dy 
dx = cos x 

The derivative of cos x (x in radians) 
If y = COS X 

Jy = cos(x + Jx) - cos x 
= -2 sin (x + ½Jx) sin ½Jx by (6.50) 

Therefore 
dy 1. Jy 1. . ( 1 � 

) 
sin ½Jx 

-
d 

= 1m � = 1m - sm x + "Iux -
1
-�-

x dx -0 uX dx- 0  "IuX 

dy 
- = - sm x  
dx 

Example I Differentiate from first_ princ_iples y = x2 + 3x. 

y + Jy = (x + Jx)2 + 3(x + Jx) 

Therefore 

Jy = (x + Jx)2 + 3(x + Jx) -x2 - 3x 
= 2x Jx + (Jx)2 + 3Jx 

Jy 
Jx 

= 2x + 3 + Jx 

dy 
dx 

Jim �y = 2x + 3 
dx-o UX 

(9.8) 

(9.9) 

We note that the differential coefficient of the sum of the two functions 
x2 and 3x is just the sum of their separate differential coefficients, a result 
which we shall prove to be true quite generally, in the next chapter. 
Example 2 Differentiate from first principles sin 3x. 

If y = sin 3x 

Jy = sin 3(x + Jx) -sin 3x 
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Therefore 

oy 2 (3 30 ) 
sin¾ox 

OX 
= COS X + -z X 

� 

sin¾ox = 3 cos (3x + ¾ox) � 
-zuX 

(Note: we adjust the final part of the expression, (sin ¾ox)/(¾ox), to be of 
the form sin 0/0 which tends to 1 as 0 --+  0.) 

Exercises 9c 

dy . sin¾ox 
-
d 

= hm 3 cos (3x +¾ox) � 
X dx➔O -zuX 

= 3 cos 3x x 1 = 3 cos 3x 

'd . 1· 
(x + ox)3 -x3 

h h h d . . f h 1 By cons1 ermg 1m 
O 

, s ow t at t e envabve o t e 
dx➔O X 

function y = f(x) = x3 is f'(x) = 3x2• Evaluate f'(2) and check your result 
by calculating the approximate limit. 

2 The function y = f(x) is defined as follows: y = - x2 for x < 0, y = 2x for 
x � 0. Sketch the graph of y = f(x). Is f(x) continuous at x = 0? 

Evaluate lim 
f(x + o

;
) -f(x) for x < 0 and for x > 0. 

dx➔O X 

E I I
. f(ox) -f(0) d 1. 

f(ox) - f(0) 
va uate 1m � an 1m � . 

dx➔O uX dx➔O uX 

Sketch the graph of f'(x). Is f'(x) continuous at x = 0? 
3 The function y = f(x) is defined as follows: y = -x2 for x < 0, y = x3 for 

x � 0. Sketch the graph of y = f(x). Is f(x) continuous at x = 0? 
. f(x + Ox) - f (x) 

Evaluate hm O 
for x < 0 and for x > 0. 

dx➔O X 

E I I . f (ox) - f(0) d 1 . f (ox) - f(0) va uate 1m � an 1m --- - .  
dx➔ O - uX dx ➔O + OX 

Sketch the graph of f'(x). Is f'(x) continuous at x = 0? 
4 Differentiate from first principles (i) 7x2, (ii) x4 - 2x2, (iii) sin 2x, 

(iv) cos 3x, (v) sin x -x2• 

5 Sh h h d . . f l . -2 
d h d . . f l . -3 ow t at t e envahve o 2 1s -3 an t e envabve o 3 1s � . 

X X X X 

[The two derivatives obtained here show that the result y = xn, 
dy = nxn - 1 , dx 

which we have proved for n a positive integer, is also true for n = -2 and 
n = -3.] 
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Exercises 9 1 An isosceles triangle is circumscribed about a circle of radius r. Express 
the area A of this triangle as a function of 0 one of the equal angles of 
this triangle. 

2 A right circular cone of semi-vertical angle 0 is circumscribed about a 
sphere of radius r. Show that the volume V of the cone is given by 

V = ½nr3 (1 + cosec 0)3 tan2 0 
3 f(x) = x arctan x. Evaluate f(0), f (l ), f( - 1). 4 </J(x) = log1 0  x. Evaluate </J(lO), </J(lOO). For what value of x is </J(x) = -3? 
5 Express y explicitly as a function of x if (i) xy + 4x + y = 3, (ii) x2 + 2xy + y2 = 0. 6 Express y explicitly as a function of x if x"y + 3xy - 6x = 0 and evaluate 

y when x = 1. 
1 y = f (x) is a quadratic function of x. If f(0) = - 2, f(l )  = -2 and f(2) = 0 

calculate f(x) explicitly and evaluate f(3). 8 Find the gradient of the chord joining the points with abscissae x1 and 
x2 on the curve y = x3 + 3x. Deduce an expression for the gradient of 
the chord joining the points with abscissae 1 and x and the gradient of 
the tangent at the point with abscissa 1. 9 The distance s m travelled by a particle after t sec is s = t 2 - t. Find the 
average speed of the particle in the time interval from 3 to 3-/o sec. Find 
the speed of the particle after 3 sec. 10 For what value of x is the tangent to the curve y = 2x2 - 8x + 3 parallel 
to the x-axis? 1 1  Calculate the gradient of the curve y = x(x - l )(x - 2) at each of the points 
where it crosses the axis of x. 

12 The distance s m travelled by a particle after t sec is given by s = ut + ½at 2• Show that the speed of the particle after time t is v = u + at. 
What is the initial speed of the particle? What is the acceleration of the 
particle? 13 Find the value of the constant a such that the tangent at the origin to 
the curve y = ax(l - x) makes an angle of 60° with the x-axis. 

14 Differentiate from first principles (i) x2 + x + 1, (ii) l/x4• 

15 Differentiate from first principles (i) sin ax, (ii) cos ax, where a is a 
constant. 

16 Differentiate from first principles (i) tan x, (ii) sin2 x. [Hint: express sin2 x 
in terms of cos 2x.] 

17 Show that the gradient of the chord joining the points with abscissae x and x + <5x on the curve y = ,J x can be expressed in the form 

,J(x + £5�) + ,Jx . Deduce that the derivative of this function is 
2)x

. 

. 1 dy - 1  
18  Show from first principles that tf y = ,J x then dx = 2x312 • [These last two 

dy i d � . . examples show that the result y = x", dx = nx"- , prove 1or n a positive 

integer, is also true for n = ½ and n = - ½.] 
19 If f(x) = loga x, where a is a constant, show that f(x 1x2) = f (x 1) + f (x2). 
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20 If f (x) = ax, where a is a constant, show that f (nx) = [f (x)]", where n is a 
positive integer. 

21 The height h and the base radius r of a right circular cone vary in 
such a way that the volume remains constant. Find the rate of change 
of h with respect to r at the instant when h and r are equal. [LU] 

22 If f (x) = lOX, show that f (x 1 + x2) = f (x i ) f (x2). 
23 The function f(x) = x2 + px + 1, where p is a constant, is zero when x = IX 

and x = /3; and the function g(x) = x2 - 9x + q, where q is a constant, 
is zero when x = IX + 2/3 and x = /3 + 21X. Find p and q, and show that 
f (3) = g(3). [JMB] 

24 If y = h(0) = 7 cos 0 + 24 sin 0 and O ::::;  0 ::;;;  2n, show that -25 ::::; y ::;;;  25. 
25 A chord PQ of a circle of radius r subtends an angle 0 at 0, the centre 

of the circle, and another chord RS, which is parallel to PQ and lies 
between PQ and 0, subtends an angle 0 + ½n at 0. Show that the area 
A of that part of the circle which lies between the two chords can be 
expressed as a function of 0 as A =  r2[-l;n - ½ cos (0 + -l;n)]. 



10 
Some techniques of differentiation 

10.1 Introduction 
In the previous chapter, we have shown how to calculate the derivative of 
a function by evaluating by/bx and then calculating the limiting value of this 
quantity, as bx approaches zero. This method was quite satisfactory for the 
simple functions considered. It could, however, be extremely laborious if we 
happened to be dealing with a rather complicated function. Fortunately, 
it is possible to prove several general theorems, which, together with a 
knowledge of the derivatives of a comparatively few basic functions, enable 
us to differentiate most functions without having to use the method of differen­
tiation from first principles. 

10.2 Differentiation of a constant 
If y = c, a constant, whatever the value of x, then y + by= c, and so by is 
identically zero. Hence, by/bx is identically zero, and so dy/dx, its limiting 
value, is also zero. Therefore, 

if y = C dy/dx = 0 ( 10. 1) 
The differential coefficient of a constant is zero. 
Geometrically, the graph of the function y = c is a straight line parallel 

to the x-axis and so has zero gradient. 

10.3 Differentiation of the sum or difference of functions 
If y = u + v, where u and v are both functions of x, then if x is increased 
to x + bx, u and v will change to u + bu and v + bv respectively. Hence y will 
change to y+ by, where 

therefore 

170 

y + by = u + bu + v + bv by = bu + bv 
by bu bv - = - + ­bx bx bx 
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Thus for the limiting values as bx ➔ 0 
dy du dv 
dx = dx + dx 

(We have assumed that the limit of a sum is the sum of the limits.) 
The above process could be carried out for the difference of two functions, 

y = u - v and the result 

obtained. Thus, if y = u ± v, 
dy du dv 
dx dx dx 

dy du dv - = -+­dx dx - dx (10.2) 

The differential coefficient of the sum or difference of two functions is the 
sum or difference of their differential coefficients. 

It is straightforward to extend this result to deal with sums and differences 
of three or more functions. 

If u, v, w, . . .  , s, t are all functions of x and 
y =u ± v ± w ±  ... ± s ± t  

by = bu ± bv ± bw ± . . .  ± bs ± & 
therefore 

and so 

(10.3) 

Example 1 Find the differential coefficient of x6 - 7x3 - 6x + 4. 
The differential coefficient of axn is naxn - i _  Thus ( 10.3) gives 

d i  6 3 d 6 d 3 d d 
dx (x - 7x - 6x + 4) = 

dx (x ) - dx (7x ) - dx (6x) + dx (4) 

= 6x5 
- 2lx2 - 6 

Example 2 Find the derivative of cos x - sin x. 
Expression (10.2) and the basic results for the derivatives of cos x and sin x 

give for the derivative - sin x - cos x. 
10.4 Differentiation of a product 
If y = uv, where u and v are both functions of x, then if x is given the 
increment bx, u, v and y will receive the increments bu, bv and by where 

by = (u + bu) (v + bv) - uv 
by = ubv + vbu + bubv 
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therefore by bv bu -=u - + (v + bv) ­bx bx bx 
by bv bu 

Now, as bx approaches zero, bv approaches zero, and bx , bx and bx tend 

. . l d y dv d du . l H to their lim1tmg va ues -, - an -
d respective y. ence dx dx x 

dy dv du - = u- + v­
dx dx dx (10.4) 

The differential coefficient of the product of two functions is equal to the first multiplied by the differential coefficient of the second plus the second multiplied by the differential coefficient of the first. 
In the particular case when one of the functions, say u, is a constant, we 

have u = c, :: = 0 and y = cv, where c is a constant and v a function of x. 
Therefore dy dv - = c -

dx dx (10.5) 

The differential coefficient of a constant multiple of a function is that same constant multiple of the differential coefficient of the function. 
Expression (10.5) can be combined with (10.3) to give the result: if a, b, 

. . .  , c are constants and u, v, . . .  , w functions of x* and y = au + bv + . . . + cw, 
then dy du dv dw 

dx = a dx + b dx + . . . + c dx (10.6) 

The differential coefficient of the sum of constant multiples of a finite number of functions is the sum of the same constant multiples of the differential co­efficients of these functions. 
The result (10.4) can be extended to deal with the product of three or more 

functions. If y = uvw, we may consider y as the product of the two functions (uv) and w. Thus, by (10.4), dy dw d - = uv- + w- (uv) dx dx dx 
dw ( dv du) = UV - +  W U - + V -dx dx dx 
dw dv du = uv- + uw- + vw-dx dx dx 

In general, if y = uvw . . . s 
dy ds dw dv du 
dx = uvw . . .  dx + . . . + uv . . . s dx + uw . . .  s dx + vw . . .  s dx ( 10. 7) 

* It is conventional to denote constants by the letters at the beginning of the alphabet and 
variables by letters near the end of the alphabet. 
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The differential coefficient of the product of any number of functions is obtained 
by differentiating each function in turn, multiplying by the remaining functions 
and summing the results. 
Example 1 Find the differential coefficient of (i) 6 sin x, (ii) 8 cos x + 3 sin x. 

(i) d
� (6 sin x) = 6 :

x 
(sin x) = 6 cos x by (10.5) 

(ii) �(8 cos x + 3 sin x) = 8 d
d (cos x) + 3 d

d 
(sin x) 

dx x x 

= -8 sin x+3 cos x by (l0.6) 

Example 2 Find :� if (i) y = x6 cos x, (ii) y = sin2 x. 

(i) y = x6 cos x, therefore by (10.4) 
dy d d 
dx 

= x6 

dx 
(cos x) + cos x 

dx (x
6) 

= -x6 sin x + 6x5 cos x 
= x5 (6 cos x -x sin x) 

(ii) y = sin2 x = sin x sin x, therefore by ( 10.4) 
dy . d ( . ) . d ( 

. ) 
dx 

= sm x dx 
sm x + sm x 

dx sm x 

= 2 sin x cos x 

Example 3 Find :� if y = 6x2 sin x cos x. 

By (10.7) 
dy = 6x2 sin x � (cos x) + 6x2 cos x 

d
d (sin x) + sin x cos x 

d
d (6x2) 

dx dx x x 
= - 6x2 sin2 x + 6x2 cos2 x + 12x sin x cos x 
= 6x2 (cos2 x -sin2 x) + 12x sin x cos x 
= 6x2 cos 2x + 6x sin 2x 
= 6x(sin 2x + x cos 2x) 

Exercises 10a 
Differentiate with respect to x 

1 7x5 - 3x4 + x2 

3 6 cos x - 8(x2+x) 
5 sin x(l  -cos x) 
7 (x2 + x + 1)(2x2 + 3x + 1) 
9 x cos x + 3(x + l)(x - 1) 

11 (x2 + 1)2 

13 (x2 - 1)3 

15 3x(x2 + l) sin x cos x 

2 8x3 - sin x + 6 
4 (x3 + l)(x4 + 1 )  
6 x(3x+4 cos x) 
8 8x2 (1 + sin x)(l + cos x) 

10 4x2 sin x -3x2 cos x 
12 (x2 + 1)2 (2x + 1) 
14 3x sin x cos x 
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10.5 Differentiation of a quotient 
If y = u/v, where u and v are both functions of x, an increment bx in x will 
result in increments bu, bv and by in u, v, and y respectively. Therefore 

by= u + bu - � v +bv v 
v (u + bu) - u (v + bv) = v(v + bv) 
vbu - ubv v(v + bv) 
bu bv v- - u-by bx bx = ----bx v (v + bv) 

bu du bv dv As bx ➔ 0, so bv ➔ 0 and bx ➔ dx , bx ➔ dx , therefore 

dy dx 
du dv v - - u -dx dx = ----v2 (10.8) 

The differential coefficient of the quotient of two functions is equal to the denominator multiplied by the differential coefficient of the numerator minus the numerator multiplied by the differential coefficient of the denominator all divided by the square of the denominator. 
In the case where u = 1, i.e. y = 1 /v is the reciprocal of the function v, du/dx = 0 and so we have dv d ( 1) --- - = dx dx v -­v2 (10.9) 

The differential coefficient of the reciprocal of a function is minus the differen­tial coefficient of that function divided by the square of the function. 
Example 1 Find the derivative of 
. x . .  sin x (" ' 1 

(1) y = --1 
(n) y = 2 m) y = --Y-4 X + X + COS X X + 

(i) y = 
X :  1 

d d dy (x + l)
ch

(x) - x
ch

(x + 1) 

dx (x + 1)2 

x + l - x  ---- = ---
- (x + 1)2 (x + 1)2 

by (10.8) 
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( . .  ) sin x 11 y = ---=---­x2 + cos x 

dy (x2 + cos x)¾ (sin x) - sin x¾ (x2 + cos x) 

dx 

= 

(x2 + cos x)2 

(x2 + cos x) cos x - sin x (2x - sin x) 
(x2 + cos x)2 

x2 cos x + cos2 x - 2x sin x + sin2 x 
(x2 + cos x)2 

by (10.8) 

1 + x (x cos x - 2 sin x) = 
(x2 + cos x)2 (since sin2 x + cos2 x = 1) 

(" " ") 1 
m y = x2 + 4 

dy - 2x 
dx = (x2 + 4)2 by (10.9) 

Sxample 2 F1"nd dd
u
0 i

·r (") 0 cos 0 (" ") 0 cos 0 1 u = 0 + 3 11 u = ( 0 + 1) sin 0 

(i) u = 0 cos 0 
0+3 

d d 
du (0 + 3)

d0
(0 cos 0) - 0 cos 0

d0
(0 + 3) 

= d0 (0+3)2 

(0 + 3)(cos 0 - 0 sin 0) - 0 cos 0(1) = ------�- ----
(0 + 3)2 

3 cos 0 - (0 + 3)0 sin 0 = ----�---
(0 + 3)2 

( . .  ) 0 cos 0 11 u = 
(0 + l) sin 0 

by (10.8) 

du (0 + l)sin 0 1e (0 cos 0) - 0 cos 0 1e [(0 + l)sin 0] 

d0 (0 + 1)2 sin2 0 

= 

= 

(0 + l) sin 0(cos 0 - 0 sin 0) - 0 cos 0[(0 + l)cos 0 + sin 0] 
(0 + 1)2 sin2 0 

(0+ l)sin 0 cos 0 - 0(0+ l) sin2 0 - 0(0+ l)cos2 0 - 0 sin 0 cos 0 
(0 + 1)2 sin2 0 

sin 0 cos 0 - 0(0 + 1) 
(0 + 1)2 sin2 0 
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2 

Example 3 Find the gradient of the tangent to the curve y = ---:-- at the 
X + 1 

point with abscissa 1. 

We first find the general expression for 
dy 

= f ' (x) with y = f(x) = � dx x + 1 
dy = f '(x) = (x

2 + 1)2x -x2 .2x 
= 

2x 
dx (x2 + 1)2 (x2 + 1)2 

therefore f '  ( 1) = 12 = � 
The gradient of the tangent is ½­

Exercises tob 
Differentiate with respect to x 

x2 X 
1 -- 2 -- -

x + 1 x + sin x 

3 x + sin x 4 _1 _ 
1 + COS X sin x 

5 
1 

6 
3 1 + COS X (X + 1 )2 

7 x sin x 8 x3 + 3x 
cos x + sin x (x + l)(x + 2) 

9 
x2 sin x 10 x 

(x + l)(x2 - 1) (x + l)(x + 2)(x + 3) 

11  
sin2 x 

12 
x(x + 1) 

cos x(cos x + sin x) (x + 2)(x + 3) 

13 Find the gradient of the tangent to the curve w = ---:-- at the point with z + 1 
abscissa 3. 

14 Find the gradient of the tangent to the curve v = 9
sin O . 0 at the point cos + sm 

where 0 = n/3. 

15 Find the gradient of the tangent to the curve y = � at the point with x + l 
abscissa 2. At what points on the curve is the tangent to the curve parallel 
to the line y = 3x + 7? 

10.6 Differentiation of the trigonometric functions 
The results of the preceding section enable us to obtain the derivatives of 
the remaining four basic trigonometric functions: tan x, cot x, sec x and cosec x. 

We already have the results that if y = sin x, :� = cos x, and if y = cos x, 

dy = -sin x. Thus, for y = tan x = sin x/cos x 
dx 
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Therefore 

dy 
dx 

cos x cos x -sin x( -sin x) 
cos2 x 

cos2 x + sin2 x 1 
cos2 x cos2 x 

d 
dx 

(tan x) = sec2 x 

by (10.8) 

y = cot x = cos x/sin x is treated in just the same way: 

Therefore 

dy 
dx 

-sin2 x -cos2 x 
sin2 x 

- 1  
sin2 x 

d 
dx 

(cot x) = -cosec2 x 

by (10.8) 

(10.10) 

(10.11) 

The derivatives of sec x and cosec x are obtained by treating them as the 
reciprocals of cos x and sin x respectively and using (10.9). Thus 

Therefore 

- (sec x) = - - -
d d 

( 
1 

) dx dx cos x 
( -sin x) 
cos2 x 1 sin x 

COS X COS X 

d 
dx (sec x) = sec x tan x 

We leave it to readers to show that 
d 

dx 
(cosec x) = -cosec x cot x 

(10.12) 

(10.13) 

(Note: the basic trigonometric functions which begin with 'co' have a negative 
sign in their derivatives.) 

10.7 Second and higher derivatives 
If y = f (x) is a function of x, then in general the derivative dy/dx = f ' (x) will 
be some other function of x. The derivative expresses the rate of change of 
f (x) with respect to x, as a function of x. We might well enquire what is the 
rate of change of this derivative with respect to x, i.e. calculate the differential 
coefficient of dy/dx or f '  (x). 

An immediate application of this situation arises if we are dealing with a 
space-time graph, s = f(t ). Then ds/dt represents the speed of the body at any 
time t, and the rate of change of ds/dt, the acceleration of the body. 

The derivative of dy/dx is called the second differential coefficient of y 
with respect to x and is written d2y/dx2 • In general, d2y/dx2 will be a function 

file:///COSXy
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of x and so may be differentiated to form the third differential coefficient of 
y with respect to x, or the third derivative of y, which is denoted by d3y/dx3, 

and so on. The nth differential coefficient of y with respect to x is denoted 
by dn

y/dxn. If the notation f(x) is used, the first, second, third, . . .  , nth deriva­
tives are denoted by f' (x), f" (x), f"' (x), . . .  , f<n> (x). 

In general, the process of calculating the nth derivative of a function is a 
tedious business and can only be achieved by calculating the successive 
derivatives in turn. It is generally worth while to consider briefly whether it 
is possible to simplify the function dy/dx before calculating d2y/dx2 and in 
turn to try to simplify this before calculating d3y/dx3, etc. 

. d2y d4y Example 1 If y = sm x, show that dxi = - Y, dx4 = Y· 

y = sin x 
dy 
dx = cos x 

d2y - = - sm x  = - y as required 
dx2 

d3y 
dx3 = - cos x 

d4y ( . ) . 
dx4 = - - sm x = sm x = y as required 

Example 2 Find the second derivative of y = f(0) = 1 
sin 9 

0 +cos 

Therefore 

dy = f' (0) = (1 +cos 0)cos 0 - sin 0( - sin 0) 
d0 (1 + cos 0)2 

cos2 0 + cos 0 + sin2 0 = - -------
(1 + cos 0) 

1 + cos 0 1 
(1 +cos 0)2 1 + cos 0 

d2y _ f"(0) _ ( - sin 0) _ sin 0 ( (l0 9)) d02 - - -(1 + cos 0)2 - (1 + cos 0)2 see · 

d2y Example 3 If y = tan 0, show that d02 = 2y(l + y2). 

y = tan 0 
dy 
d0 

= sec2 0 = sec 0 .  sec 0 
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By (10.4) 
d2y 
d02 = sec 0 . sec 0 tan 0 + sec 0 . sec 0 tan 0 

Therefore 

Exercises 10c 

= 2 tan 0 sec2 0 
= 2 tan 0(1 + tan2 0) 

d2y 2 
d02 = 2y(l + y ) 

Differentiate with respect to x 
1 sec x + tan x 2 sec x tan x 3 cos x cot x 
4 sec2 x + tan x 5 sec2 x + tan2 x 
6 (cos x + sin x)(sec x + tan x) 

sec x 8 sec x 9 1 - tan x 
7 sin x + cos x 1 + sec x 1 + tan x 

10 A particle moves so that the distance s m travelled after t sec is given by 
s = f(t ). Find expressions for the speed and acceleration of the particle 
after time t sec, and the speed and acceleration after 1 sec if (i) s = 4t 2 - 3t 
and (ii) s = cos 2nt + sin 2nt. 

d2y cos x 11 Find -d 2 if (i) y = cos2 x, (ii) y = 1 . . x - sm x  
dy d2y 12 If y = en, where n is a positive integer, show that (i) 0 
dO = ny, (ii) 02 

d02 

= n(n - l)y. 

13 If y = un, where n is a positive integer, show that :� = n! .  

d2y 14 If y = sec 0, show that 
d02 = y(2y2 - l). 

15 If y = sin x, show that 
(.) dy . ( n) 
1 dx = sm x + 2 

( . .  ) d2y . ( 2
n

) n dx2 = sm x + 2 
( . . .  ) d3y . ( 3

n
) m dx3 = sm x + 2 

dny What is the value of 
dxn ? 

10.8 Differentiation of a function of a function 
The function y = (2x + 1 )3 is a function of 2x + 1, which in turn is a function 
of x. More specifically, y is the cube of the function 2x + 1. We say that y 
is a function of a function in this case. As a second example, consider the 
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function y = sin x2; y is the sine of the function x2, and so is another example 
of a function of a function. 

Functions of this type frequently occur in mathematics and in this section 
we shall develop rules for evaluating their derivatives. In general, a function 
of a function is expressible as follows: y is a function of some quantity which 
in turn is a function of x. In symbols 

y = F(v) where v = f(x) 
y = (2x + 1)3 y = v3 where v = 2x + 1 
y = sin x2 y = sin v 
y = cos2 x, i.e. (cos x)2 

where v = x2 

y = v2 where v = cos x 

The general rule for differentiating a function of a function can be obtained 
as follows. 

If y = F(v), where v = f(x), then if x is given the increment bx, v will be 
given the increment bv (since v = f(x)), which in turn generates the increment 
� . ( . F(  )) I . . . by . h r by bv uy m y smce y = v . t 1s convenient to wnte � m t e 1orm - x -, 

ux bv bx 
which is possible provided bv -t,. 0. Then 

dy . by . by bv - = hm - = hm - x -
dx dx - o  bx dx -o bv bx 

l. 
by 1. 

bv = 1m - x 1m -
dx -o bv dx -o bx 

(We have again used the result that the limit of a product is the product of 
the limits.) 

Now as bx -+ 0, bv -+ 0, so the first term of the above is equivalent to 
l. by . dy Th r 1m �• 1.e. -d . ereiore 

dv-o UV V 

dy dy dv - = -·-dx dv dx (10.14) 

We shall apply this rule to the three examples given above. Thus, for 
y = (2x + l)� = v3, where v = 2x + 1, 

therefore 

dy = 3v2 
dv 

dv = 2 dx 

dy 
dx = 3v2 x 2 = 6 (2x + 1 )2 

We can verify this particular result by writing 
y = (2x + 1)(2x + 1)(2x + 1) 

and using (10.7). In this way, we obtain 
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ddy = (2x + 1)2 
d
d (2x + 1) + (2x + 1 )2 

d
d (2x + 1) + (2x + 1)2 _! (2x + 1) x x x dx 

= 3(2x + 1)2 x 2 = 6(2x + 1)2 as before 
For y = sin x2 = sin v, where v = x2 

therefore 

dy dv = cos v 

dy 
dx 

= 2x cos x2 

dv = 2x 
dx 

For y = cos2 x = v2, where v = cos x 

therefore 

dy = 2v dv dv - = -sm x dx 

dy 
2 . - = - sm x cos x 

dx 

Example I Find ddy 
when (i) y = (3x2 - 4)4, (ii) y = (

x -1
)

2
• x x+l 

(i) y = (3x2 
- 4)4 = v4, where v = 3x2 - 4 

therefore 

dy = 4v3 dv dv 
= 6x 

dx 

dy 
dx 

= 4(3x2 - 4)3 x 6x = 24x(3x2 - 4)3 

(ii) y = - - = v2, where v = - -
(X - 1)2 X - 1 x + 1 x+l 

dy = 2v dv 

therefore 

dv 
dx 

dy 
dx 

d d (x + 1)- (x -1) -(x - 1 )-(x + 1) dx dx = -- - - - - --- - --
(x + 1)2 

(x + 1) -(x -1) 
(x + 1)2 

(x + 1)2 

2(x - 1) 2 4 (x -1) - -- X --� = --� 
(x+l) (x+1)2 (x+1)3 

by ( 10.8) 
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Example 2 Find (i) 
d
d
x 

[ sin ( 4x2 + 3x) ], (ii) :0 (sec2 40). 
(i) Let v = 4x2 + 3x. Then 

d . d . d . dv 
dx [

sm (4x2 + 3x)] = dx 
(sm v) = dv (sm v) x 

dx 
= cos v(8x + 3) 

= (8x + 3) cos (4x2 + 3x) 
(ii) With y = sec2 40, y = v2 , where v = sec 40. Then 

dy dy dv 2 
dv d0 = dv x d0 = v d0 

v is still a function of a function: v = sec u, where u = 40. Therefore dv dv du - = -· - = sec u tan u x 4 d0 du d0 
dy dB = 2 sec 40 x sec 40 tan 40 x 4 

= 8 sec2 40 tan 40 
We have here an example of a function of a function of a function. y is a 

function of v, which in turn is a function of u, which is a function of 0. The 
extension of ( 10. 14) which enables us to deal with this situation is 

dy dy dv du 
- = - X - X - ( 10. 15) d0 dv du d0 

Readers will find, as they gain experience, that they do not need to introduce 
the auxiliary variables v or u specifically. However, at first it is probably wise 
(even at the cost of a little time) to use them. 

Exercises 1 Od 
Differentiate with respect to x 

1 (x - 1 )5 

4 (x2 + 2x + 1 )4 

7 x sin 4x 
10 sin x3 

13 sin2 (x2 + 1 ) 

16 ( 1 + sin2 x)(l -sin2 x) 

19 ( 1 -cos4 x)(l + cos4 x) 
22 sec3 (tan2 3x) 

2 (2x - 1 )5 

5 sec 3x 
8 x2 cos 3x 

1 1  sec (3x2 + 1 ) 
14 (x + 1 ) (2x - 1 )4 

17 ( 
cos_x 

)
3 

1 + sm x 

20 ( 
sin 2x 

)
2 

1 + cos 2x 

3 (2x2 - 3x)5 

6 tan 5x 
9 sin3 x 

12 tan3 (3x -4) 
15 sin3 x tan 2x 

(
1 _ x2 )2 

18 -1 --2 + x 
sin2 x 

21 2 . 2 +sm x 

23 Find du/d0 if u = (i) sinn 0, (ii) cosm 0, (iii) sinn 0 cosm 0, where m and n 
are positive integers. 

24 If y = sin m0 show that d2y/d02 + m2y = 0. 
25 y = (sec 0 + tan 0t, where n is a positive integer. Show that dy/d0 = ny sec 0. 
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10.9 The derivative of xn, where n is negative or a fraction 
In the previous chapter, we saw that if n is a positive integer then the 
derivative of x" is nx• - 1 . We shall show this result to be true for all values 
of n. 

(i) If n is a negative integer, let n = - m so that m is a positive integer. 
Then if y = x", we have 

therefore, by (10.9), 

Thus 

- m 1 
y = x  = ­

xm 

dy mxm - 1 
- m - 1 - =  -- -- =  -mx dx x2m 

= nx•- 1 since -m = n 

d - (x") = nx" - 1 if n is any integer 
dx 

(ii) If n is a fraction, let n = p/q, where p and q are integers (not necessarily 
positive). Then 

y = xp/q = (x l lq)P 

With x 11q = u, y = uP, where x = uq, so that 
dy dx - = puP - 1 and - = quq - 1 by (i) 
du du 

These two results enable us to obtain dy/dx, for, by the rule for dif­
ferentiating a function of a function, 

dy dy dx - = -·-
du dx du 

puP - i = d y x quq - i 

dx 

Thus, for all values of n, 

dy = !!.up - q = !!.(x l/qy -q 
dx q q 
dy _ P  p/q - 1 - - -x dx q 

= nx•- 1 since n = p/q 

d - (x") = nx•- 1 
dx 

Example I Find (i) d
d
x 

(Jx), (ii) d
d
x (

:4). 

(10.16) 
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(i) 

(ii) 
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d d 1 1 
- (✓x) = _ (x112) = -x - 112 = _ 
� � 2 2✓x 

� (_!_) = � (x- 4) = -4x - s = -4 
dx x4 dx x5 

Example 2 Find :: when (i) y = ( x2 - :2 y, (ii) y = JC : x } 

(i) y = v2, where v = x2 -
2
2 = x2 -2x - 2 

X dy dv 4 - = 2v and -
d = 2x -(2)( -2) x - 3 = 2x + 3 dv x x 

therefore dy = 2(x2 -�) (2x +�) = 4(x2 -�) (x +�) dx x2 x3 x2 x3 

= 4(x3 
- :s) 

(ii) y = ✓v = v 1 12 , where v = 
1 : x dy 

= !v - 1 12 = _
1_ and 

dv dv 2 2✓v dx 
therefore 

(x+l)l -x.1 (x + 1)2 

dy l
J(

l+x
) 

1 1 
dx 

= 
2 -x- (1 + x)2 = 

2✓x(l + x)312 

Exercises toe 
Find dy/dx when y = 

1 x3/2 2 �x 3 (�x)7 

4 (x3 -
:3r 

1 
5 (2x2 -3)3 

6 ✓(2x2 - x) 

(x + 1)2 

7 (x2 + 1)3/2 8 1/✓(x2 + 1) 9 (1 + x)✓(l -x2) 
10 ✓x(l + x)3 11 sec ✓x 

13 ✓(1 + sin x) 14 J(: � �) 

12 ✓sec x 

15 JC +  COS X) 

1 -cos x 

10.10 Differentiation of inverse functions 
We have already encountered in Chapter 6 the inverse trigonometric functions y = arcsin x, y = arccos x, y = arctan x, etc. (which mean x = sin y, x = cos y, 
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x = tan y, respectively). These functions do not fall into any of the categories 
(product, quotient) so far considered in this chapter and we shall develop a 
new technique in order to calculate their derivatives. 

This we shall do for the general inverse function and then apply the tech­
nique to the inverse trigonometric functions. It is important to realise that 
the notion of an inverse function is not confined to the trigonometric functions. 
In general, if y = f (x), then the value of x will depend on the value of y and 
so x is a function of y; x = g(y), the inverse function to f (x). 

Care needs to be exercised in some cases. If y = x2, then as we have seen 
(Section 9.1), there are two inverse functions, x = ✓y and x = -✓y, and 
we must be careful to deal with them separately (see Exercises lOf, question 3). If y = sin x, then x = arcsin y, and we must deal with the principal value so 
that a unique value of x corresponds to each value of y. 

In general, if y = f (x), x = g(y) and we shall show how to find the derivative 
dx/dy of g(y) in terms of the derivative dy/dx of f (x). 

We may regard y = f (x), where x = g(y), as being a function of a function. 
Thus, on differentiating with respect to y, we obtain 

therefore 

d(y) 
= 

� 
[f (x) ] - dx by (10.14) 

dy dx dy 

1 = dy _ dx 
dx dy 

dy = 1 /
dx or dx = 1/

dy 
dx dy dy dx 

y 

Figure JO.I 

( 10.17) 

Geometrically, if we draw the graph of y = f (x), then at the same time we 
draw the graph of x = g(y) (Figure JO.I). If PT is the tangent at any point P on this curve and PT makes an angle i/1 
with the positive direction of the x-axis and an angle </> with the positive 
direction of the y-axis, then 

dy 
dx = tan i/f 

dx 
dy = tan </> 
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. 1 
But smce </J = ½n -i/1, tan </J = cot ijJ = --.,, , therefore tan 'I' 

dx ldy dy = 1 
dx 

as before 

(Note: this result is only true for the first derivative.) 
We shall now apply the general result (10.17) to the inverse trigonometric 

functions. 
If y = arctan x, x = tan y 

dx dy = sec2 y 
= 1 + tan2 y 

= 1 + x2 

therefore 
dy _ 1 /

dx _ 1 
dx - dy - 1 + x2 

If y = arcsin x, 

therefore 

x = sin y 
dx dy = cos y 

= ✓(1 -sin2 y) 
= ✓( 1  -x2) 

If y = arccos x, 

therefore 

x = cos y 
dx . I 2 I 2 - = -Sill y = -V ( 1 -COS y) = -V ( 1  -X ) dy 
dy -1 
dx ✓( 1  -x2) 

(10.18) 

( 10.19) 

(10.20) 

Note: the results ( 10.19), (10.20) are in accordance with our convention regard­
ing the square root sign and the principal values of the inverse trigonometric 
functions. Reference to Figures 6.20 and 6.21 shows that the gradient of 
y = arcsin x is everywhere positive and the gradient of arccos x is everywhere 
negative. 
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Example 1 Find d� (arcsec x). 

If y = arcsec x, then 
x = secy 

dx 
d Y 

= sec y tan y 

= sec y✓(sec2 y - 1) 
= x✓(x2 - 1) 

therefore 
d(arcsec x) dy 1 

dx 
= dx x✓(x2 - 1) 

Example 2 Find du/d0 if (i) u = arcsin 30, (ii) u = arctan (303). 
(i) u = arcsin 30 = arcsin v, where v = 30 

du du dv 
d0 dv d0 

3 
- ✓(1 - 902) 

(ii) u = arctan (303) = arctan v, where v = 303 

du = du . dv = _1_ x 902 
d0 dv d0 1 + v2 

902 
= ---1 + 906 

Example 3 Find d
d
x [ arcsin G : :: ) ]. 

(l - x2 ) 1 - x2 
Let y = arcsin - -2 = arcsin u, where u = -1--2 . l + x  + x  

dy dy du 1 
dx 

= du · dx = ✓(1 - u2) 
(1 + x2)( - 2x) - (1 - x2)(2x) 

(1 + x2)2 

1 -4x = --------- x ---✓[1 - (1 - x2)2 /(1 + x2)2] (1 + x2)2 

- 4x J[ (1 + x2)2 ] = (1 + x2)2 x (1 + x2)2 - (1 - x2)2 

- 4x (1 + x2) -2 
= - -� x -- - = - - �  

(1 + x2)2 2x (1 + x2) 
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Exercises 10f 
d - 1  

1 Show that - (arccot x) = -1 - -2 • 
dx + x  
d - 1  2 Show that dx (arccosec x) = xJ(x2 _ l) . 

3 Use the technique employed in this section to show that if y = Jx 
(• 2) h dy 1 1 . r:; 1.e. x = y t en -d = -2 = r:; . Show also that tf y = - ...; x (again 

X Y 2y X ' 
dy 1 - 1  

[ . dy 1 
] x = y2) then dx = 2y = 

2Jx. Note: m both cases dx = 2y . 

4 Show that if y = J x, then :� = 3}213 by the method of this section. 
Find dy/dx if y = 
5 arcsin x2 

8 arcsec x2 

11 arcsin - -(1 - x) 
1 + x 

6 arccos 6x 
9 arctan x2 

12 arctan ( � � : )- Can you explain this result? 

13 Show that if a is a constant 

(i) d
d
x [ arctan ( �)] = a2 : x2 

(ii) :x [ arcsin(�)]  = J(a/- x2)° 

7 arctan (x + 1) 
10 x arcsin x 

14 Show that d
d
0 (2 arctan 0) = d

d
0 [ arctan ( 1 :

0

0 2)]. Why are the two 
results equal? 

15 If y = J(l - 0 2) arcsin 0, show that (1 - 02) :� = 1 - 0 2 - 0y. 
10.11 Differentiation of implicit functions 
The rules which we have established in this chapter have been applied thus 
far only to explicit functions. In this section, we shall develop the techniques 
necessary for the differentiation of implicit functions. 

Suppose, for example, that y is defined as an implicit function of x by the 
equation 

x2 + y2 = 4 

We differentiate each term of the equation above with respect to x and so 
obtain 

d d d - (y2) + - (x2) = - (4) dx dx dx 

file:///l-xj
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d 
dx (y

2) + 2x = 0 

Now y2 is a function of y which is itself a function of x. Thus by (10.14) 

therefore 

so that 

d 2 d 2 dy dy - (y ) = - (y ) • - = 2y ­dx dy dx dx 

dy 
2y dx + 2x = 0 

dy X 

dx y 

In this particular example, it is possible to express y explicitly in terms 
of x; y = ✓(4 - x2), i.e. y = u112, where u = 4 - x2• Therefore 

dy dy du 1 1 - = - • - = -- • ( - 2x) dx du dx 2 ✓u 
- X  X = -
✓ 

= -- as before 
u y 

However, we could also express y as a function of x as y = - ✓(4 -x2), 
i.e. y = - u112, where u = 4 - x2 • Therefore 

dy dy du 1 1 - = --- = - ---( - 2x) dx du dx 2✓u 

X X X = = = 
✓u -y y 

Note, in both cases, the correctness of the result dy/dx = - x/y, obtained 
by the first technique (see Figure 9.5). 

Generally, however, when it is not possible to express y explicitly in terms 
of u, we shall have to use the first method. 

Example I Find dy/dx if x2 + y2 + sin y = 3. 
We have, on differentiating the equation with respect to x, 

2x + d: (y2) + d: (sin y) = 0 

d 2 dy d . dy 2x + - (y ) - + - (sm y) - = 0 dy dx dy dx 
dy dy 

2x + 2y -d + cos y - = 0 
x dx 
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therefore 
dy 2x dx 2y + cos y 

Example 2 Find dy/dx and d2y/dx2 if x + y + sin y = 3. 
On differentiating the equation above with respect to x, we obtain 

therefore 

1 + :: + d: (sin y) = 0 

dy dy 1 + dx + cos y dx = 0 

dy 1 + dx (1 +cos y) = 0 

dy -1 dx 1 + cos y 
To find d2y/dx2, we differentiate this expression with respect to x. 

d2y d 
(

dy
) 

d 
( - 1  

) 
d 

( - 1  
) 

dy dx2 = dx dx = dx 1 +cos y = dy 1 +cos y dx 
d2y -1[( - 1)( - sin y)] - 1  sin y 

- - ----- X ---dx2 (1 + cos y)2 1 +cos y (1 + cos y)3 

Alternatively, we may find d2y/dx2 by differentiating with respect to x, the dy dy equation 1 + dx + dx cos y = 0 which we obtained earlier. In this way, 
we obtain 

therefore 

d2y d (dy 
) 0 + dx2 + dx dx cos y = 0 

d2y dy d d 
(dy

) dx2 + dx · dx (cosy)+ cos y dx dx = O 

d2y dy d dy d2y -+ - · - (cos y) · -+cos y - = 0 dx2 dx dy dx dx2 

d2y . (dy
)

2 d2y dx2 - sm y dx + cos y dx2 = 0 

by (10.4) 

. (dy
)

2 sm y -
d x sm y 

_1 _+_c�o-s�y- = (1 + cos y)3 as before 

(since dy = - -
--1-) dx 1 + cos y 
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Example 3 Find dy/dx and d2y/dx2 at the point (1, 1) on the curve 
x3 + y3 = 2. 

On differentiating the equation with respect to x, we have 
d 

3x2 + - (y3) = 0 
dx 

d dy 
3x2 +- (y3) · - = 0 

dy dx 
dy 3x2 + 3y2 - = 0 
dx 

dy . dy 
Thus, when x = 1, y = 1, - 1s such that 3 + 3 -d = 0. Therefore dx x 

!� = -1 at the point (1, 1) 

If we differentiate (i) with respect to x, we obtain 

6x + 
d: (3y2 !�) = O 

d2y dy d 
6x + 3y2 

dx2 + 
dx

. 
dx 

(3y2) = 0 by (10.4) 

2 d
2y dy dy 6x + 3y 

dx2 + 
dx

. 6y 
dx = 0 

(i) 

Now when x = 1, y = 1, dy/dx = - 1  and so the value of d2y/dx2 at this 
point is such that 

therefore 
d2y - = -4 at the point (1, 1) 
dx2 

Thus we see that nothing new in the way of differentiation is involved in 
applying these techniques. Care must be taken, however, to apply the function 
of a function rule when differentiating a quantity which involves y or its 
derivatives, with respect to x. 
Exercises 10g 
Find dy/dx when 
1 xy = 1 
2 x2y2 - X - y = 0 
3 Jx+Jy = l  
4 X + y + COS X + COS y = 2 
5 xy+sin y =  1 
6 x + y + sin x y = 2 
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7 Find dy/dx at the point (1, 1) if x2 + y2 + xy = 3. 
8 Find dy/dx and d2y/dx2 if 3xy + x2 + y2 = 5. 
9 Find dy/dx and d2y/dx2 at the origin on the curve x2 + y2 + x + 3y = 0. 

10 Find dy/dx and d2y/dx2 at the point (1, 1) on the curve 3x2 + 2y2 + xy + X -7 = 0. 

10.12 Differentiation from parametric equations 
It is often convenient to define y as a function of x by expressing both 
y and x in terms of a third variable t, known as a parameter. (See Sections 
20.5, 20.9, 20.12 and 20.15.) 

Thus, in general, y = f(t ), x = cf>(t ) defines y as a function of x. This follows 
since y is a function of t which in turn is a function of x. By eliminating t 
from the two relationships above, we can obtain y as a function of x. 
(See Section 1.3.) 

Thus, if y = t 2, x = 1/t, we have, since t = 1/x, y = 1/x2 • Sometimes it will 
be difficult or even impossible to carry out this elimination although it is 
always true that y is a function of x since the value of y will depend on x. 
In such cases, the differential coefficient of y with respect to x can be obtained 
by regarding y as being a function of a function; y is a function of t and 
t is a function of x. Thus 

therefore 

dy dy dt - = - • -
dx dt dx 

dy 
= 

dy ; dx 
dx dt dt (10.21) 

Example 1 Find dy/dx when (i) y = t 2, x = 1/t, (ii) y = sin 0, x = cos 0. 
(i) 

(ii) 

dy = --3!__ = - 2t 3 by (10.21) 
dx -l/t 2 

dy cos 0 - = - -. -0 = - cot 0 by (10.21) 
dx -sm 

Example 2 Find dy/dx and d2y/dx2 in terms of t when y = 2t, x = t 2• 

dy _ dy I dx _ 3_ _ � 
dx - dt dt - 2t - t 

d2y d 
(

dy
) 

d 
(

dy
) 

dt 
dx2 = dx dx 

= dt dx 
. 
dx 

d2y d 
(

dy
) /

dx 
dx2 = dt dx dt 

(This result is true generally.) 

(10.22) 
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d2y - �  (!) / 2t _ _=._!_ / 2t - - -
1
-dx2 - dt t - t 2 - 2t 3 

Example 3 Find dy/dx and d2y/dx2 at the point with abscissa 1 on the 
curve y = 1/t, x = 2t. 

The point with abscissa 1 corresponds to t = ½. Now 

:� = - /
2 

/ 2 = - 2! 2 

dy When t = ½, dx 
= - 1/½ = - 2  

d2y _ !� (--1-) _ _ 1_ 
dx2 - 2dt 2t 2 - 2t 3 

i d2
y 1 When t = -z, dx2 = 

2(½) 
= 4 

Exercises 1 Oh 
Find dy/dx in terms of the parameter when 

( 
dt 1

) note dx 
= 2 

1 y=t 2, x=t 3 2 y = 2 sin 0, x = 3 cos 0 
3 y = cos 4t, x = sin 2t 4 y = t 2 cos t, x = t sin t t 2 t t 3 t 5 y =

l+t ' X =
l+t 6 y =

l+t 3 ' X =
l+t 3 

Find dy/dx and d2y/dx2 in terms of t when 
2t 1 - t 2 1 7 y =

l+t 2 , x =
l+t 2 8 y = t , x =

t2 

9 If x = t 3 + t and y = 2t 2, find dy/dx in terms of t and show that when dy/dx = 1, x = 2 or x = �-
10 The position of a projectile referred to horizontal and vertical axes is given 

by x = St, y = 4Ot - 16t 2 after time t sec. Find at what times the projectile 
is moving (i) horizontally, (ii) at an angle of 45° to the horizontal. 

10.13 List of standard forms 
The rules of differentiation and the differential coefficients of the important 
basic functions are listed below. They should be memorised. In the following, 
u, v, . . .  , w are functions of x; a, b, . . .  , c are constants. 

d du dv dw 
d) au + bv + . . . + cw) = a dx 

+ b dx 
+ . . . + c dx 

d dv du 
dx 

(uv) = u dx 
+ v dx 

d dw dv du -(uvw) = uv - +  uw - +  vw ­dx dx dx dx 
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du dv 
_cl_(�) = vch - u ch 
dx v v2 
dx 

= 1 /
dy dy dx 

d
: (sin x) = cos x 
d 

dx (cos x) = - sm x 
d 

dx (tan x) = sec2 x 
d . 1 

dx (arcsm x) = 
J(l _ x2) 

dy = dy l dx 
dx dt dt 

Exercises 10 

dy dy du - = - · -
dx du dx 
d 

-(x") = nx" - 1 
dx 

d 
dx 

(sec x) = sec x tan x 
d 

dx 
(cosec x) = - cosec x cot x 

d 
dx 

(cot x) = - cosec2 x 

d 1 -
d 

( arctan x) = -1 - - 2 X + x 
d - 1  

dx 
(arccos x) = 

J(l _ x2) 

1 Find (i) d: (¾x4 - ½x2 + 2), (ii) :t (!t 312 - ½t 1 12 + ½t - 112). 

2 Find (i) d
d
x [(x3 + x)(3x2 + x)], (ii) dd0 [sec 0 (1 + cot 0)]. 

. d . d 
( 

x 
) ( .. ) 

d 
(

x3 - x
) 3 Fm (i) dx x2 - 1 ' 11 dx x2 + 1 · 

4 Find the derivatives of (i) JJ , (ii) ! + Jx. 
1 +  X - X 

5 Find d0/dt when (i) 0 = sin t sin 3t, (ii) 0 = t 2 sin - 1 t. [LU, part] 
. . . h (") 

x + 3 (" ") (x - l)(x - 2) 
6 Differentiate wit respect to x I x2 _ 16

, 11 (x + l)(x + 2) · 

7 Find dy/dt when (i) y = cos t cos St, (ii) y = t arctan t. 
8 Find the derivatives of (i) sin4 x, (ii) sec3 x. 
9 Find du/d0 if (i) u = sec3 60, (ii) u = cot5 02• 

10 Find (i) d/d0 (0 sec 0 tan 0), (ii) d/dx (x sin x cos 2x). 
11 Find dy/dx when (i) y = sin 1/x, (ii) y = { [sin ( l/x)]/x}. 

12 Find (i) _cl_(�), (ii) 
d
d (arcsin t 3). d0 1 + 0 t 

13 Differentiate with respect to 0 (i) arcsin J(l -02), (ii) arctan [ J( l 
1
_ 0J. 
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14 Find dy/dx when (i) y = arcsin (tan x), (ii) y = arctan (sin x). 

15 Find (i) :
t 

[ arccos ( 1 - t 2) ], (ii) :
t [ arccot (i : t) J 

16 Differentiate with respect to x (i) cos 1/x2, (ii) arccos (1 - x:). l+x 
17 If y = tan x, show that d2y/dx2 = 2y + 2y3• 18 If y = cot2 0, show that d2y/d02 = 2(1 + y)(l + 3y). 19 If y = tan x + ½ tan3 x, prove that dy/dx = (1 + tan2 x)2. 

20 Find dy/dx when (i) y = arctan (4 �:2), (ii) y = arcsin (2x - 5). 
21 Find dy/dx when (i) y = xn tan nx, (ii) y = arctan (sin ½x). 
22 If y is a function of x find the derivative with respect to x of (i) xy2, 

(ii) x/y, (iii) y/x, (iv) sin2 y. 
23 Find dy/dx when (i) x3 + y3 - 3xy + 1 = 0, (ii) x3 - 2x2y2 + y4 = 0. 
24 Find dy/dx when (i) y2 + x2 = 6x + 4y + 1, (ii) y3 + x3 = 3(x + y). 
25 (i) If sin y = tan x, find dy/dx in terms of x. (ii) If x3 + y3 = 3axy, find 

dy/dx in terms of x and y, and prove that dy/dx cannot be equal to - 1  
for finite values of x and y, unless x = y. [SUJB] 

26 Find the slope of the tangent to the curve yx3 - 3x2y2 + x3 - 2x = 0 at 
the point where x = 2, y = 1. 

27 Find dy/dx and d2y/dx2 at the origin on the curve x3y + y3x = xy + y. 
28 Find dy/dx and d2y/dx2 at the point (1, 1) on the curve 2xy -2x3 

- y3 + 
x2

y
2 = 0. 

29 If x6 + y6 = xy express d2y/dx2 in terms of x and y. [WJC, part] 
30 Find dy/dx if y = b sin 0 and x = a cos 0. 
31 Find dy/dx and d2y/dx2 for the curve x = a sec 0, y = b tan 0. 
32 Find dy/dx and d2y/dx2 for the curve x = a cos3 0, y = a sin3 0. 
33 Find an expression for dy/dx for the cycloid given by x = a(t + sin t ), 

y = a( 1 - cos t ). 34 A curve is given by the parametric equations 
x = a( t sin t + cos t - 1) y = a ( sin t - t cos t )  

Find dy/dx and d2y/dx2 in terms of t. [JMB, part] 
35 The equations of a curve in parametric form are 

x = 4 cos 0 + 3 sin 0 + 2 y = 3 cos 0 - 4 sin 0 - 1 
Find dy/dx at the point where 0 = n/2. [LU] 

36 If y = (w2 - lt, show that (w2 - 1) dy/dw - 2nwy = 0. 
37 If y = sin (m arcsin x), show that (1 - x2) d2y/dx2 -x dy/dx + m2y = 0. 
38 If y = _.J(4 + 3 sin x), prove that 

d2y (dy
)

2 
2y dx2 + 2 dx + y2 = 4 

cos 0 
39 If y = 02, find dy/d0 and d2y/d02, and prove that 

2 d2y dy 2 0 d02 + 40 d0 + (0 + 2)y = 0 

[SUJB, part] 



196 Some techniques of differentiation 

40 If z = [v + ✓o + v2)] P, show that 

2 d2z dz 2 ( 1 + v ) dv2 + v dv 
- p z = 0 

41 The equation of a curve is x2 + 4xy + y2 = 25. Find the values of dy/dx 
and d2y/dx2 at the point where the curve meets the positive x-axis. 

[AEB] 
42 Given that y = (sin x - cos x)/(sin x + cos x), show that dy/dx = 1 + y2• 

Prove that d2y/dx2 is zero only when y = 0. [JMB] 
43 If y = sin2 (x2 + 1), find and simplify dy/dx. [AEB] 
44 If y = 1 - cos 2t and x = Ji"+t2, show that 

dy 2j(l + t 2) sin 2t dx = 
t 

[AEB] 

45 If x = cot 0 and y = sin2 0, find dy/dx in terms of 0 and show that 
d2y/dx2 = 2 sin3 0 sin 30. [JMB] 



1 1  

Some applications of differentiation 

11.1 The derivative as a rate measurer 
In this chapter, we shall apply our knowledge of the derivative of a function 
to a variety of problems. There are several interpretations of the derivative, 
but most of the following applications are based on two of these, namely, 
as measuring the rate of change of the function with respect to the variable, 
or as measuring the gradient of the tangent to the graph of the function at 
a particular point. We begin by using the first interpretation. 

Example 1 At what rate is the area of a circle changing with respect to its 
radius when the radius is 1 cm? 

If r cm denotes the radius and A cm2 the area of the circle, 

Therefore, when r = 1 cm, 

A =  nr2 

dA - = 2nr dr 

!: = 2n cm2/cm (Note the units) 

Example 2 The radius of a circle is increasing at the rate of 0· 1 cm/sec. At 
what rate is the area increasing at the instant when r = 5 cm? 

As before, A = nr2 and is given as a function of r, which itself is a function 
of the time t (since r changes with time). Therefore 

Thus, when r = 5 cm, 

dA dA dr 
dt dr dt 

= 2nr x 0·1 

dA - = 2n x 5 x 0·1 cm2/sec dt 
= n cm2/sec 

Therefore, the rate of change of area when r = 5 cm is n cm2/sec. 
197 
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Example 3 Water is poured into a vessel, in the shape of a right circular 
cone of vertical angle 90°, with the axis vertical, at the rate of 8 cm3 /sec. 
At what rate is the water surface rising when the depth of the water is 
4 cm? 

Let the depth of the water after t sec be x cm, and the volume of water 
in the vessel at this time V cm 3. Let the radius of the water surface at this 
time be y cm (Figure 1 1. 1). 

I 
I 

I 
'-< -y Cm-► 

: x cm 
450 I 

Figure JI . I  

The volume of water in the vessel is V cm3= }ny2x, but since the semi­
vertical angle is 45°, x = y. Therefore 

V = }nx3 

The rate of increase of V with respect to t is 8 cm 3 /sec, that is 
d V  
dt = 8 cm3/sec 

But 
d V  d V  dx 2 dx - = -· - = nx -
dt dx dt dt 

Therefore, the value of dx/dt when x = 4 cm is given by 
dx 

16n dt = 8 

Exercises lla 

dx 1 
dt = 

2n cm/sec = 0· 159 cm/sec 

1 The length I m of a particular rod at temperature t °C is given by 
I =  2 + 0·000 0274t + 0·000 000 0446t 2• Find the rate at which I is 
increasing with respect to t when t = 100 °C. 

2 A spherical balloon is inflated by pumping air into it at the rate of 
80 cm3/min. Find the rate at which the radius is increasing when the 
radius is 4 cm. 

3 The radius of a sphere is increasing at the rate of 0· 1 cm/sec. When 
r = 5 cm find the rates at which the surface area and the volume are 
increasing. 

4 A gas expands according to the law pv = constant, where p is the pressure 
and v the volume of the gas. Initially, v = 1000 m3 and p = 40 N/m2. 

If the pressure is decreased at the rate of 5 N m  - 2 min - 1 , find the rate at 
which the gas is expanding when its volume is 2000 m3• 
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5 The distances u and v of an object and its image from a lens of focal 
length fare related by the formula 1/v + 1/u = 1/ f An object 5 cm from 
a lens whose focal length is 2·5 cm is moved towards the lens at a speed 
of 10 cm/sec. Find the speed with which the image begins to recede from 
the lens. 

6 Gas is escaping from a spherical balloon at the rate of 30 m3 /min. How 
fast is the radius decreasing when the radius is 3 m? 

7 At what rate is the surface area of the balloon decreasing in question 6? 
8 Water is running out of a conical funnel at the rate of 1 cm3/sec. The 

radius of the base of the funnel is 5 cm and its height is 10 cm. Find 
the rate at which the water level is falling when it is 4 cm from the top. 

9 A kite, 25 m above the ground, is being carried horizontally by the wind 
at a speed of 3 m/sec. At what rate is the inclination of the string to the 
horizontal changing when 50 m of string are out? 

10 The radius of a sphere is r cm after t sec. Find the radius when the rate 
of increase of r and the rate of increase of the surface area are numerically 
equal. 

11.2 Some applications to kinematics 
If a body, moving in a straight line, has travelled a distance s after time t, 
then the rate of change of s with respect to time will be the speed, v, of the 
body 

ds 
V = -

dt 
(11.1) 

In the same way, the rate of change of the speed with respect to time will 
be the acceleration, a, of the body 

dv d 
(

ds
) 

d2s 
a - - - - - - -

- dt - dt dt - dt 2 

An alternative expression for a may be obtained as follows: 

(11.2) 

We may regard v as a function of s, which is a function of t. Thus, by 
the function of a function rule for differentiation, 

dv dv ds 
a = - = - · -

dt ds dt 

dv 
a = v ­

ds (1 1 .3) 

It is conventional in dynamics to denote differential coefficients with respect 
to time by dots placed above the dependent variable. Thus ds/dt is denoted 
by s, d2s/dt 2 by s. With this notation, 

v = s  . .. dv 
a = v = s = v -

ds 
Example I A body moves in a straight line so that the distance moved s m 
after time t sec is given by s = t 3 - 2t 2 + t. Find an expression for the speed 
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of the body at time t, and find the times at which the body is at rest. What 
is the acceleration of the body at these times? s = t 3 - 2t 2 + t 
therefore 

V = S = 3t 2 - 4t + 1 
When v = 0, t satisfies the equation 3t 2 - 4t + 1 = 0 (3t - l)(t - 1) = 0 
therefore 

t = ½ or t = 1 
The body is at rest after times ½ sec and 1 sec. 

The acceleration of the body after time t sec is given by a = v = 6t - 4. 
Therefore 

when t = ½ 
when t = 1 

a = 2 - 4 = - 2 m/sec2 

a = 6 - 4 = 2 m/sec2 

Example 2 The speed of a body varies inversely as the distance it has moved. 
Show that its acceleration is proportional to the cube of its speed. 

With the usual notation 

Therefore 

k v = - where k is some constant s 
a = v dv = v ( - k) = _ vk 

ds s2 s2 

vk k a =  - (k/v)2 since s =
-;; 

a_ '= - v3/k 
which proves the result. 

So far we have dealt with a body moving along a straight line. The same 
mathematics can be applied to a body rotating about a fixed axis. If 0 i� 
the angle through which the body has turned after time t, the angular speed, w, of the body is given by d0 w = -dt 
The angular acceleration, 0, is given by 

O = dw = d20 = w dw dt dt 2 d0 

(11.4) 

(11.5) 
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Exercises 1 1  b 
1 A body moves a distance s m in t sec along a straight line, where 

s = 3t 3• Find the speed and acceleration of the body after 2 sec and after 
t sec. 

2 The speed v m/sec at time t sec of a body moving along a straight line 
is proportional to t 3• Find the speed of the body after 2 sec if its 
acceleration is then 12 m/sec2• 3 The distance s cm moved by a body after t sec is given by s = t 3 - 3t. 
Find its speed after t sec. After what time(s) is the body at rest? 

4 Find the acceleration a of the body in question 3 at any time t sec. When 
is the acceleration zero? 

5 A body moves in a straight line so that the distance s m travelled after 
time t sec is given by s = t 3 -4t 2 + 4t. Find the two positions of the 
body when it is momentarily at rest. What is the acceleration of the body 
at these times? 

6 A particle moves along a straight line so that its distance s cm from a 
fixed point after time t sec is given by s = sin nt, where n is a constant. 
Show that its acceleration is proportional to s and directed towards the 
fixed point. 

7 Show that the speed of the particle of question 6 is given by n.J(l -s2). 
8 The distance s, moved along a straight line by a particle, after time t is 

given by s = ¼t 4. Show that its speed v and acceleration a satisfy the 
relation, a3 = 27v2• 

9 If the speed of a body is proportional to the cube of the distance it has 
travelled, show that its acceleration is proportional to the fifth power of 
the distance travelled. 

10 A body is rotating about a fixed axis so that the angle 0, through which 
it has rotated after time t sec is given by 0 = bt + at 2• If w denotes the 
angular speed of the body and n the angular acceleration of the body show 
that 

w2 - b2 = 2Q0 

11.3 Approximations 
The derivative of a function is defined as 

It follows that if we write l>y/l>x = dy/dx + IX, then the quantity IX approaches 
zero as bx approaches zero, so that if l>x is small so also is IX. Thus, we may 
write 

dy 
l>y = dx . l>x + 1X<>x 

The second term on the right, being the product of two small quantities, 
will be negligible in comparison with the first term. Thus 
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dy 
by � dx bx (11.6) 

Figure 1 1.2 shows the graph of the function y = f(x). P is the point (x, y), 
Q the point (x + bx, y + by). Thus, the change in the function by as x changes 
to x + bx is given by the length of QN. 

____ o ___________ x 

Figure 11.2 

If PT is the tangent to the curve at P, then provided bx is small QN � TN 
so that by � TN and since 

TN = PN tan TPN = bxf'(x) 
dy 

by � f'(x) bx = dx bx as before 

Example 1 Given cos 45° = l/J2 = 0·7071, calculate the value of cos 45° l'. 
Consider the function y = f(x) = cos x. Then 

f'(x) = -sin x (provided x is measured in radians) 
Thus, if x = n/4, 

and so 

Therefore 

� 1' l n d' ux = = 60 x 180 ra ian 

by = -(sin ¼n) x 6
1
0 x 1;0 by (11.6) 

n = - - -� = - 0·0002 
10 800J2 

cos 45° 1' � y + by 
= 0·7071 - 0·0002 

cos 45° 1' = 0·7069 approximately 
Example 2 The strength of the magnetic field due to a current 1 amp in 
a wire in the form of a circle of radius r cm, at a point x cm from the centre 
of the circle and on the axis of the circle, is given by 

nlr2 

H = 5(r2 + x2)312 gauss 
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If J = 10 and r = 4, find the approximate change in H when x changes from 
3 cm to 2·9 cm. 

therefore 

nlr2 

H =- �- �� 5(r2 + x2)3/2 

dH 3nlr2x 
dx 5(r2 + x2)512 

3nlr2x 
{JH � 5(r2 + x2)s12 x /Jx by (11.6) 

When x = 3, /Jx = - 0·1, r = 4 and J = 10. Therefore 

{JH � _ 3n X 10 X 16 X 3 
X _ 

_!__ 
5 X 25512 10 

1440n 
5 X 31 250 = 0·02B9 

Thus, the magnetic field increases by approximately 0·029 gauss. 
Example 3 The value of g, the acceleration due to gravity, is determined 
by means of a simple pendulum of length l cm. The period T sec of the 
pendulum is measured and g is calculated from the formula T = 2n✓(l/g). 
The experimenter feels that he is able to measure l accurately but realises 
that his measurement of T is subject to an error of 1 per cent. What is the 
percentage error in the calculated value of g? 

From the above formula for T 4n2 l 
g = y 

However, since T is subject to the error /J T  = T x Tfm, the experimenter will 
calculate the value g + /Jg, where /Jg is the error in g given by 

dg 
{Jg � d T{J T 

4n2 l T /Jg � -2 X y X 
lOO 2 4n2 l 2 = -- X - - = - - g 100 T2 100 

The percentage error in g is thus approximately 2% and is opposite in sign 
to the error in T. 
Exercises 11 c 
1 tan 45° = 1, cos 45° = sin 45° = 1/✓2. Evaluate tan45° 1' to four decimal 

places. 
2 Using the values sin 45° = cos 45° = 0·7071, determine the values of 

sin 45° 1' and cos 45° l '. Use these two values to determine sin 45° 2' and 
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cos 45° 2' and then calculate sin 45° 3' and cos 45° 3'. [In this way, we could 
construct a complete table for sin 0 and cos 0 at 1' intervals for 0. In fact 
the same calculation is carried out each time with slightly different 
numbers. This is just the type of calculation which an electronic computer 
can handle very rapidly and efficiently.] 

3 The radius of a circle increases from 2 cm to 2·03 cm. Find the approxi­
mate increase in its area. Find the actual increase. 

4 The volume of water in a hemispherical bowl of radius 12 cm is given 
by V = ½n(36x2 - x3), where x cm is the greatest depth of the water. 
Find the approximate volume of water necessary to raise the depth from 
2 cm to 2· 1 cm. If the water is poured in at the constant rate of 3 cm 3 /sec, 
at what rate is the level rising when the depth is 3 cm? 

5 Find the approximate percentage change in the volume of a cube of side 
x cm caused by increasing the sides by 1 per cent. 

6 The radius of a spherical balloon is decreased from 10 cm to 9,9 cm. Find 
the approximate change in its volume. 

7 Find the approximate change in the surface area of the balloon of 
question 6. 

8 The volume of a gas expanding adiabatically is related to its pressure p by the law pvY = constant (where y is a constant). If bp and bv denote 
corresponding small changes in p and v respectively, show that bp bv 
- = - y-. 
p V 

9 The area of a triangle is calculated from the formula � = ½ab sin C with 
the usual notation. The sides a and b are measured accurately as 10 cm 
and 12 cm, but C is subject to an error of anything up to ±½0 about 
the measured value of 40°. Find approximately the maximum error in �-

10 y = x2• If x is decreased by 0·2 per cent, find the approximate percentage 
decrease in y. Hence find an approximate value for (99·8)2• 

11.4 The tangent and normal to a curve 
f'(x) measures the gradient of the tangent to the curve y = f(x) at the point 
with abscissa x. The gradient of the tangent at the point with abscissa x 1 
is then f'(x1). Thus the equation of the tangent to the curve at the point 
(x 1 , y1) on the curve is by (18.6) 

Y - Y 1 = f'(x 1)(x - x 1) (11.7) 
The normal to the curve at the point (x 1 , y i) on the curve is the line through 

this point perpendicular to the tangent to the curve. The gradient of the 
normal is thus - 1/f'(x1) and the equation of the normal is, by (18.6), 

-1 y -y 1 =

f'(x i)
(X - X1) (11.8) 

Example 1 Find the equation of the tangent and normal to the curve 
y = 3x2 - 5x at the point ( 1 ,  -2) 

y = f(x) = 3x2 - 5x 
f'(x) = 6x - 5 
f'(l) = 6 .  1 -5 = 1 
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Therefore, the tangent at (1, - 2) has the equation 
y - ( - 2) = l(x - 1) 

y + 2 = x - 1  
y = x - 3  

The normal at (1, - 2) has the equation 
y - ( - 2) = - l(x - 1) 

y = - x -1 

Example 2 Find the equation of the tangent to the circle x2 + y2 = 2a2 at 
the point (a, a). 

therefore 
x2 + y2 = 2a2 

d d 
dx (x

2) + 
dx (y

2) = 0 

dy 
2x + 2y 

dx 
= 0 

dy X 
dx y 

Thus at the point (a, a), 
dy 

= -1 
dx 

Therefore, the tangent to the circle at (a, a) has the equation 
y - a  = - (x - a) 

y = - x  + 2a 
Example 3 Find the equation of the tangent to the curve y = 2x2 -x + 3 
which is parallel to the line y = 3x - 2. 

y = f(x) = 2x2 - x + 3 
therefore 

dy 
dx 

= f (x) = 4x -1 

The line y = 3x - 2 has the gradient 3 
f'(x) = 3 when 4x -1 = 3 1.e. x = 1 

Thus the point of contact of the required tangent is (1, 4). Therefore the 
equation of this tangent is 

y - 4 = 3(x - 1) 
y = 3x + 1 

Example 4 Find the equation of the tangent to the curve 27y2 = 4x3 at the 
point (3p2, 2p3). 
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We see that x = 3p2, y = 2p3 are parametric equations for the curve 
27y2 = 4x3 since 

27(2p3)2 = 108p6 and 4(3p2)3 = 108p6 

The tangent at the point with parameter p has gradient 
dy 

= 
dy

l
dx 

dx dp dp 
= 6p2/6p = p 

Thus the tangent has the equation 

Exercises l ld 

y -2p3 = p(x - 3p2) 

y = px -p3 

1 Find the equation of the tangent and normal to the curve y = 3x2 - 6x + 1 
at the point (2, 1). 

2 Find the equation of the tangent and normal to the curve y = x3 
- 3x2 + 2 

at the point (1 ,  0). 
3 Find the equations of the tangents to the curve y = x(x -l)(x -2) at the 

points where it crosses the x-axis. 
4 Find the equation of the tangent to the hyperbola x2 

- y2 = 16 at the 
point (5, 3). 

5 Find the equation of the tangent and normal to the curve x2 + xy + y2 = 3 
at the point ( 1 ,  1). 

6 Find the equations of the tangent and normal to the curve y2 = 4ax at 
the point (a, 2a). 

7 Find the equations of the tangents to the curve y = x3 - 6x2 + 9x + 4 
which are parallel to the x-axis. 8 Find the equations of the tangents to the curve y = x3 - 5x2 + 8x + 1 
which are parallel to the line y = 5x -7. 

9 Find the equation of the tangent to the curve y = 
x -1 

which is x+l 
perpendicular to the tangent at the point (1, - 1 ) to the curve y = x2 -

4x + 2. 
10 Find the equations of the tangents to the curve y = _x_ which are x+l 

parallel to the line y = x. 11 For the curve with parametric equations x = a cos 0, y = a sin 0, show 
that dy/dx = -cot 0. Hence find the equation of the tangent to the curve 
at the point where 0 = n/4. 

12 If x = at 2, y = 2at, find the equation of the tangent to this curve at the 
point where t = 1 [cf. question 6]. 

13 Show that the points of intersection of the line y = mx + c and the curve 
y2 = 4x are given by the solutions of the equation m2x2 + 2(mc - 2) x + c2 = 0. Hence show that if y = mx + c is a tangent to the curve then 
c = 1/m. [See also Section 20.4.] 

14 Show that the x-axis is a tangent to the curve y = x sin x. 



The maximum and minimum values of a function 207 

15 Show that x = et, y = c/t are parametric equations for the curve xy = c2• 

Deduce that the normal to the curve at the point with parameter t has 
the equation ty - t 3x = c(l - t 4). 

11.5 The maximum and minimum values of a function 
Figure 1 1.3 shows the graph of a function y = f(x). The point A is called a 
local maximum of this function. The value of the function at A exceeds its 
values in a certain neighbourhood of A. Similarly, C is a local maximum 
and B a local minimum. As can be seen, B is not the absolute minimum value 
of the function, the value at D for example being less than the value at B. 
This is the reason for the term 'local' minimum, although in much of the 
literature this word is omitted although generally implied. 

y C 

Figure 11.3 

y = f (11.) 

D 

The positions ofthe points A, B, C may be determined by using the property 
that the derivative is zero (the tangent is parallel to the x-axis) at local maxima 
or minima. 

To distinguish between local maxima and local minima, we shall examine 
the derivative in the neighbourhood of A and B respectively. Near A, the 
derivative is positive to the left of A, zero at A and negative to the right 
of A, i.e. it changes sign from positive to negative as x increases. Near B, 
the derivative is negative to the left of B, zero at B, and positive to the right 
of B, i.e. it changes sign from negative to positive as x increases. Figure 1 1.4 
shows the graph y = f(x) together with the sign (or zeros) of its derivative 
marked on it. 

In those regions in which f'(x) is positive, we say that f(x) is an increasing 
function of x; in those regions in which f'(x) is negative, we say that f(x) is 

y 

+ 

Figure 11.4 

C 

-_ Y = f {x) 
D 
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a decreasing function of x; and at points where f'(x) is zero, we say that f(x) is 
stationary. In the case of local maxima and minima (see Section 1 1 .6 for other 
cases) the stationary points are sometimes called turning points. We can state 
the following rules for determining the stationary points which are also (local) 
maxima and minima, i.e. turning points, and for distinguishing between them. 
RULE I At a turning point, f'(x) = 0. 
RuLE II At a local maximum, f'(x) changes from positive to negative as x increases. 
RULE III At a local minimum, f' (x) changes from negative to positive as x 
increases. 

In practice we evaluate (or at least examine the sign of) f'(x) for values 
of x just less than and just greater than its value at the turning point. 
Example I Find the nature of the turning points of the function y = x3 -
2x2 + X + 4. dy z - = 3x -4x + 1 

dx 
At the turning points dy/dx = 0, that is 

3x2 - 4x + 1 = 0 
(3x -l)(x - 1 )  = 0 x = -¼  or x = 1 

Consider the value x = -¼- When x = ¼ (a convenient value just less than -¼) 

dy 3 i 4 i 1 3 - =  X n, - x 4 + = n, dx 

When x = ½ (a convenient value just greater than -¼) 

dy = 3 x ¼ - 4 x ½ + 1 = - ¼  
dx 

Thus, since dy/dx changes sign from positive to negative, when x = -¼, 
y is a maximum, the value of y being 

-t7-i+-¼+4 = W 
For the value x = 1 . When x = 0·9 

dy 
- = 3 x 0·81 -4 x 0·9 + 1 = -0· 1 7  is negative 
dx 

When x = 1 · 1  

dy 
- = 3 x 1 ·2 1  -4 x 1 · 1  + 1 = 0·23 is positive 
dx 

Thus when x = 1, y is a minimum, the value of y being 1 -2 + 1 + 4 = 4. 
A second procedure for distinguishing between maximum and minimum 

values may be obtained as follows. In the region of a maximum, f'(x) changes 
sign from positive to negative as x increases. Thus f'(x) is a decreasing function 
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of x in the region so that f "(x) is negative. Near a local minimum, f '(x) is 
an increasing function so that f "(x) is positive. 

Hence at stationary points giving maximum values, f'(x) < 0; and at 
stationary points giving minimum values, f'(x) > 0. 

If at a stationary point f "(x) = 0, no conclusions can be drawn using the 
above argument and we have to resort to our original criterion for distin­
guishing between maximum and minimum values. 

For the example just considered. 

When x = ½ 

When x = l 

d2
y f "(x) = - = 6x - 4 dx2 

d2
y - = 2 -4 = - 2 is negative 

dx2 

d2y = 6 - 4  = 2 
dx2 is positive 

Thus x = ½ gives a maximum and x = l gives a minimum for y. 
Example 2 Find the maximum and minimum values of y = x3 - 6x2 + 9x. 

dy i - = 3x - 12x + 9 
dx 

= 3(x2 - 4x + 3) = 3(x - l )(x - 3) 
Therefore, dy/dx = 0 when x = l or x = 3 and these could give turning values. 

d2
y - =  6x-12 

dx2 
When x = l 

d2
y 

dx2 = - 6 < 0 giving a maximum value of 4 for y 

When x = 3 
d2

y - = 1 8  -12 = 6 > 0 giving a minimum value of O or y 
dx2 

Example 3 Rectangles are inscribed in a circle of radius r. Find the 
dimensions of the rectangle which has maximum area . 

: 2 x  

Figure 11.5 
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Figure 1 1.5 shows the circle with one such rectangle ABCD inscribed in 
it. 0 is the centre of the circle. 

Let BC = 2x. Let E and F be the mid-points of BC and AB. Then since 
FB2 = 0B2 - BE2 = r2 

- x2, FB = J(r2 -x2). Therefore AB = 2J(r2 -x2) 
and the area of ABCD is 

A =  4xJ(r2 
- x2) 

For the maximum value of A, dA/dx = 0, therefore 

so that 

r2 - 2x2 = 0 

J 2 2 4x2 
4 (r - x ) -

J(r2 - x2) = 0 

4(r2 - x2) - 4x2 
-��-----=--- = 0  

J(r2 - x2) 
4(r2 - 2x2) - - - - = 0 
J(r2 - x2) 

r i.e. x = J2 (only the positive value is valid) 

When x < r/J2, dA/dx is positive since then r2/2 > x2• When x > r/J2, 
dA/dx is negative. Thus A is a maximum when x = r/J2. [This method for 
distinguishing between maximum and minimum values is more convenient 
in this example than calculating d2 A/dx2.J 

Thus A has a maximum when the rectangle has dimensions J2r by J2r; 
i.e. it is a square. 

Example 4 The point X is 21 km south of the point Y. At noon a boy starts 
from X and jogs due east at 9 km/h. At the same time a second boy starts 
from Y and jogs south at 12 km/h. Find their least distance apart. 

+ 
I 
I 
I 

21  I B I 
I 

y + ' 
1 2 1  ' 

I 
'f 

t_____.'--______ _ 

Figure 11.6 

At time t hours after noon, the first boy is at A, 9t km east of X, and the 
second boy is at B, 12t km south of Y (Figure 1 1.6). 

If d is their distance apart, 

d2 = BX2 + AX2 

= (21 - 12t )2 + (9t )2 

= 225t 2 - 504t + 441 
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Since d is positive, d is a minimum when d2 is a minimum, i.e. when 
d 
- (d2) = 450t -504 = 0 dt 

t = � = �  

!2

2 (d2
) = 450 which is always positive 

Therefore, t = � gives a minimum for d2 of 

_ 504 X 56 
225 X 

562 _ 
44 

_ 1008 X 56 56 X 504 
44 1 50 + 502 -

l 100 + 100 

= 441 -
56 X 504 

= 158·76 
100 

Thus the minimum value of d ;::::  12·6 km 

A further note on maxima and minima 
Although in most cases f '(x) will be zero at a maximum or minimum value, the 
essential property of such points is that f '(x) should change sigri. Figure 1 1.7  
shows the graph of the function y = 1 -x213; the sign of dy/dx is marked 
on the graph. This function has a maximum at x = 0 but dy/dx = jx - 113, 
although it changes sign as x passes through 0, is not defined for x = 0! This 
is also true for the function y = lxl, whose graph is shown in Figure 9.3. 

y 
(0, 1 )  

+ 

0 X 

Figure 11 .7 

Exercises 1 le 
1 If y = (x -l)(x + 2)2, find the maximum and minimum values of y. 
2 Find the maximum and minimum values of y = x(x - 1 )2• 

3 Find the maximum and minimum values of y = ---J5.-1 . X + 
4 Find the maximum and minimum values of sin t + ½ cos 2t. 
5 Show that the maximum value of a cos 0 + b sin 0 is ✓(a2 + b2).  Can you 

show this without using the calculus? What is the minimum value? 
6 Find the dimensions of the largest right circular cylinder which can be 

cut from a sphere of radius r. 
7 An isosceles triangle of vertical angle 20 is inscribed in a circle of radius r. 

Find an expression for the area of the triangle as a function of 0, and 
show that this is a maximum when the triangle is equilateral. 
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8 A right circular cone is constructed to have a total surface area A. Show 
that its volume V = -¼rJ(A2 - 2nAr2), where r is the radius of its base. 
Hence show that the largest such cone has semi-vertical angle 
arctan (l/2J2). 

9 The force exerted on a small magnet placed at a distance x from the centre 
of a plane circular coil of radius a, and along the axis of the coil is 
proportional to x/(x2 + a2)512 when an electric current flows in the coil. 
Show that the force is a maximum when x = ½a. 

10 A man is situated at A, a km from a road XY (Figure 1 1.8). He wishes 
to reach the point Y where XY = b km. His speed on the road is u km/h, 
and his speed across country is v km/h (u > v). If he wishes to reach Y 
as quickly as possible, find the position of the point P where he joins 
the road. 

A 

· l� 
X p y 
-+ - - - - - - - - - - �  

Figure 11.8 

11.6 Points of inflexion 
Consider the function y = x3(x - 4) = x4 

- 4x3• 

dy - = 4x3 - 12x2 = 4x2(x -3) 
dx 
dy 

= 0 dx when x = 0 or x = 3 

Near x = 3, dy/dx changes sign from negative to positive as x increases 
through the value 3. Thus x = 3 gives a minimum value of - 27 for y. 
Near x = 0, dy/dx is negative for x just below zero, is zero when x is zero, 
and is negative again for x just greater than zero. Thus, although dy/dx is 
zero, since dy/dx does not change sign as x passes through this value, this 
point gives neither a maximum nor a minimum value for y. 

Figure 1 1.9 shows the graph of the function y = x3(x - 4). The sign of dy/dx 
is indicated on the graph. 

At B the function has a minimum value and at the origin there is a point 
called a point of inflexion. At such a point, the graph of the function changes 
from being concave up to concave down or vice versa. (In our particular 
case, it is the former.) As the value of x increases through zero, the derivative 
changes from negative to zero, and then to negative again, i.e. at O the 
derivative has a maximum. This is true quite generally; at a point of inflexion 
the derivative has a maximum value or a minimum value. This latter condition 
enables us to give a criterion for finding points of inflexion, for at points 
at which dy/dx is a maximum or a minimum 
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B 

Figure 11.9 

d2y 
dx2 = 0 and changes sign 

This is the case in our present example where 
d2y -2 = 12x2 -24x = 12x(x -2) dx 

which vanishes and changes sign at the origin from positive to negative. 
Although it is so in the example chosen, it is not necessary that dy/dx be 

zero at a point of inflexion (see Figure 1 1. 10). In Figure 11.JOa, the curve 
y y 

(a )  ( b) 

Figure 11.10 

has a point of inflexion at A; dy/dx is a maximum. In Figure 11.JOb, the 
curve has a point of inflexion at B; dy/dx is a minimum. In both cases, d2y/dx2 = 0 and changes sign but dy/dx # 0. 

To sum up the results of this and the previous section: 

If 

If 

If 

dy = 0 dx 
dy = 0 dx 

d2y 
dx2 = 0 

and 

and 

d2y O h . . 1 dx2 < , t ere 1s a maximum va ue. 

d2y O h . . . 1 dx2 > , t ere 1s a m1mmum va ue. 

and changes sign, there is a point of inflexion. 

(11.9) 

Example I Find the maximum and minimum values and the points of 
inflexion of y = x3 

- 6x2 + 9x + 1. 
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dy 
dx 

= 3x2 - 12x + 9 = 3(x -l)(x - 3) 

therefore, dy/dx is zero when x = 1 or when x = 3 
d2y -2 = 6x - 12 dx 

When x = 1 

When x = 3 
d2y 
dx2 = 6 > 0 

d2y/dx2 = 6x - 12 is zero when x = 2 and changes sign. Thus 
when x = 1 y has a maximum value of 5 
when x = 3 y :1as a minimum value of 1 

and there is just one point of inflexion at the point (2, 3). 

Exercises 11 f 
1 Find the position of the point of inflexion of the curve y = 2x3 

- 5x2 -
4x + 1. 

2 Find the positions of the points of inflexion of the curve y = 3f4 -
4x3 + 2. 

3 Find the positions of the turning values and the point of inflexion of 
the curve y = x3 

- 2x2 + x + 3. 
4 Show that for the curve y = x3, d2y/dx2 = 0 and changes sign at the 

origin. Plot the graph. 
5 Show that for the curve y = x4, d2y/dx2 = 0 but does not change sign at 

the origin. Plot the graph. 

11.7 Curve sketching 
On many occasions it is useful to make a rough sketch of a curve without 
plotting a large number of its points. Outlined below is a systematic procedure 
which should enable the shape of the curve to be obtained. It is not always 
necessary to consider every point detailed below. 

(i) Determine if the curve is symmetrical about either of the co-ordinate 
axes. If its equation involves only even powers of x, it will be symmetrical 
about the y-axis; if only even powers of y are involved, it will be 
symmetrical about the x-axis. 

(ii) Examine the behaviour of the function for large positive and large 
negative values of x, i.e. examine y as x -+ ± oo. 

(iii) Seek values of x for which y is not defined. Some common examples 
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will be values of x which make the denominator of a rational function 
zero or which make y2 negative. 

(iv) Find the value of y when x = 0, and if convenient the value(s) of x 
when y = 0. This will give the points where the curve crosses the 
axes. 

(v) Calculate dy/dx and examme its sign. Where dy/dx is positive, the graph 
will slope up from left to right; where dy/dx is negative, the graph will 
slope down from left to right. 

(vi) Find the turning points and points of inflexion. 
Example I Sketch the curve y = x4 - 24x2 + 64x + 10. 

(i) There is no symmetry about either axis. 
(ii) When x -+  ± oo, y -+  oo, the dominant term being x4• 

(iii) y is defined for all x. 
(iv) y = 10 when x = 0. y = 0 when x satisfies x4 - 24x2 + 64x + 10 = 0 

and this equation is not easily solved. 
(v) dy/dx = 4x3 

- 48x + 64 = 4(x3 - 12x + 16) 
= 4(x - 2)2 (x + 4) 

Therefore, dy/dx is positive for x > - 4  and negative for x < -4  since (x - 2)2 

is always positive. 
(vi) dy/dx is zero when x = 2 or x = -4 

d2y 
dx2 = 12x2 - 48 = 12(x - 2)(x + 2) 

When x = -4, d2y/dx2 = 144 > 0 so x = - 4  gives a minimum value of 
- 374 for y. 

When x = 2, d2y/dx2 is zero and changes sign. Thus x = 2 gives a point 
of inflexion with the tangent parallel to the x-axis. x = - 2 gives a second 
point of inflexion. The curve is sketched in Figure I 1. 1 1. 

Figure ll .ll  

Example 2 Sketch the curve y2 = x. 
(i) The curve is symmetrical about the x-axis. 
(ii) When x -+  oo, y -+  oo; when x -+  - oo, y is not defined. 
(iii) y is defined only if x is not negative. 
(iv) y = 0 when x = 0. The curve passes through the origin. 
(v) With y2 = x, 2y dy/dx = 1, i.e. dy/dx = 1/2y. Thus when y is positive 

(negative), dy/dx is positive (negative). 
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(vi) dy/dx is never zero so there are no turning values, but at the origin dy/dx -+ oo as y -+  0, i.e. the curve is vertical. It is shown in Figure 1 1. 12. 

Figure l l.12 

2x + 1 
Example 3 Sketch the curve y = - -- .  

x - 1  
(i) There is no symmetry about either axis. 

(ii) When x -+  ± oo, y -+  2. For large (positive or negative) values of x the 
graph approaches the line y = 2. (A horizontal asymptote.) 

(iii) y is defined for all x except x = 1 .  When x is just less than one, y is 
large and negative; for x just greater than one, y is large and positive. x = 1 
is a vertical asymptote. 

(iv) When x = 0, y = -1 and when y = 0, x = - ½, 

(v) dy (2x - 1) -2x - 1 = dx (x - 1 )2 
3 

(x - 1)2 

Therefore, dy/dx is always negative, and since it is never zero there are no 
turning values. The curve is shown in Figure 1 1. 13. 

y 

:� 

Figure II .  13 

x2 
Example 4 Sketch the curve y = -2--1 . 

X -
(i) The curve is symmetrical about the y-axis. 

(ii) When x -+  ± oo, y -+  1. Indeed, y = 1 + -2-
1- , so for large x the curve 

X - 1  
approaches the horizontal asymptote y = 1 from above the asymptote 
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whether x is positive or negative. The last point is also clear from the 
symmetry. 

2 
(iii) y = ( l;( 

is defined for all x except x = 1 or x = -1 when 
X - X + 1 ) 

the denominator is zero. When x is just less than - 1, y is large and positive. 
When x is just greater than -1, y is large and negative. When x is just less 
than 1, y is large and negative, and when x is just greater than 1, y is large 
and positive. The lines x = -1 and x = 1 are vertical asymptotes. 

(iv) When x = 0, y = 0. 
dy - 2x 

(v) dx 
= 

(x2 _ 1 )2 . This is zero when x = 0 and changes sign from 

positive to negative as x increases through the value zero. Hence there is a 
maximum value when x = 0. The curve is sketched in Figure 1 1. 14. 

Exercises llg 
Sketch the curves 

y 

(0, 1 )  

- - - --t- - -5,,Qk::--- t----- -- X 

X : -1 X :  1 

Figure 11.14 

1 (i) y = x2, (ii) y = 2x2, (iii) y = - 2x2, (iv) y = x2 + 1, (v) y = x2 
- 3, 

(vi) y = 6x2 + 1, (vii) y = -3x2 + 1, (viii) y = -2x2 
- 4, (ix) y = ax2 + b. 

2 (i) y = (x - 1)2, (ii) y = 2(x -1)2, (iii) y = -2(x -1)2, (iv) y = (x - 1)2 + 1, 
(v) y = (x -2)2

, (vi) y = (x + 1)2, (vii) y = 6(x + 1)2
, (viii) y = -2(x -2)2, 

(ix) y = 2(x -2)2 + 3, (x) y = 3(x -2)2 + 8, (xi) y = -(x - 5)2 + 4, (xii) 
y = a(x -b)2 + c. 

3 (i) y = x3, (ii) y = x4, (iii) y = x5, (iv) y = x6
• 

4 (i) y = 2x3, (ii) y = - 3x3, (iii) y = x3 + 2, (iv) y = x3 
- 6, (v) y = x3 + b, 

(vi) y = ax3 + b, (vii) y = 3x4 
- 4, (viii) y = 3(x -1 )3 + 4, (ix) y = 6(x -2)4 + 3, 

(x) y = (x -1)3 - 7. 
5 (i) y = x(x -1), (ii) y2 = x(x -1), (iii) y = x2 (x - 1), (iv) y2 = x2 (x -1), 

(v) y = x(x -l)(x -2), (vi) y2 = x(x - l)(x -2), (vii) y = x(x - 2)2 , 
(viii) y2 = x(x -2)2. 

6 (i) y = x2 - 6x -7, (ii) y = 3 - 7x + 4x2• 
7 (i) y = x3 

- 6x + 4, (ii) y = x5 
- 5x4 + 5x3 - 2. 

8 y2 = x3 (pay particular attention to the form of the curve near the origin). 
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9 . 1 
(1) y = - -. x-

(iv) y = 2x x__ 1 

( .. ) 
2x + 1 

VII y = 3x -1 

( ) 2x2 + 4x + 7 
X y = x2 + 2x + 5 

(. ") 1 
II y =

2x-1 

(v) y = X + 1 
x-1 

( • . .  ) 
X - 4 

VIII y =- -x + 5 

( . . •  ) 
X 

Ill y = - ­x - 1 
x -2 

(vi) y = --3 x + 

(. ) 
x2 - 12x + 27 

IX y = x2 -4x + 5 

10 Sketch the curve y = x". Consider four cases: (i) n is a positive even integer, 
(ii) n is a positive odd integer, (iii) n is a negative even integer and (iv) n is 
a negative odd integer. 

Exercises 11 
1 Water is poured into a hemispherical bowl of radius 6 cm at a rate of 

5 cm3/sec. At what rate is the water rising in the bowl when the depth 
of water is 2 cm? (The volume of a cap, of a sphere of radius R, whose 
height is h is 11:h2 (R -h/3).) 

2 The distances u and v of a point and its image from a lens of focal length 
fare connected by the relation 1/u + 1/v = 1/f Iff = 10 cm and the object 
is moved towards the lens at 2 cm/sec find the speed of its image when 
this is 25 cm from the lens. 

3 The efficiency of an engine is given by E = 100(1 -r - 114) where r is the 
compression ratio. Find the rate at which E is changing with respect to r 
when r = 7. 

4 A pipe delivers V m3 of water in t sec, where V = 12t -t2/10. At what 
rate is the water delivered after 10  sec? 

5 Sand falling from a chute forms a conical pile whose height is always 
¾ times the radius of the base. How fast is the radius of the base increasing 
when it is 3 m if the sand falls at the rate of 24 m3 /min? 

6 A body moves along a line according to the law s = t 3 - 9t 2 + 24t. Find 
the positions of the body when its speed is zero and when its acceleration 
is zero. 

7 A particle moves along a straight line Ox in the time interval 0 � t � n; 
after t sec its distance from O is x m, where x = t + sin 2t. Calculate the 
values of t between 0 and n when the direction of motion changes, and 
show that the particle always remains on the same side of 0. Find also 
the times at which the acceleration is zero. Sketch the graph of x for 
0 � t � n, and state the largest value of x in this interval. [JMB] 

8 A vehicle moves from rest on level ground in such a way that its speed 
is v m/sec; when it has covered a distance x m, x is given by the relation 

x = 6
�� v . Sketch a graph showing v as a function of x, and show that the 

1 . f h h. 1 . (60 -v)2 

I 2 acce eration o t e ve 1c e 1s 2(120 _ v) m sec . [JMB] 

9 The period of oscillation of a pendulum is calculated from the formula 
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T = 2n.j(l/g), where I is the length of the pendulum and g the acceleration 
due to gravity. Find the percentage error in the calculated value of T 
if g is taken to be 1000 cm/sec2 instead of 980 cm/sec2

• 

10 The side of a triangle is calculated by means of the formula a2 = b2 + c2 

- 2bc cos A. If an error of 1 ° is made in the measurement of A, find the 
approximate error in the calculated value of a when b = 1 0  cm, c = 1 5  cm 
and A =  60°. 

11 The pressure p units and the volume v units of an expanding gas are 
related by the law pv1 ·4 = k, where k is a constant. If the volume increases 
by 0·3 per cent, estimate the percentage change in the pressure. [JMB, part] 

12 Prove that the gradient of the curve y = x3 + 6x2 + 1 5x + 36 is positive 
for all values of x. Show that the curve has a point of inflexion when 
x = - 2, and state the gradient of the curve at this point. Write down the 
equation of the tangent to the curve at the point where x = 0, and find 
the co-ordinates of the point where this tangent meets the curve again. [JMB] 

13 Find the abscissae of the points on the curve y = x3 - 3x2 - 2x + 1 at 
which the tangent is equally inclined to the co-ordinate axes. 

14 Find the equation of the tangent to the curve y2 = ¼x2 (x + 1 )  at the point 
(2, 2). Show that this tangent intersects the curve again at a point R and 
that it is the normal to the curve at R. 

15 The curves (i) x2 
- y2 = 1 5, and (ii) xy = 4 intersect at a point in the first 

quadrant. Find the equations of the tangents to both curves at the point, 
and show that they are at right angles to one another. [WJC] 

16 If y is such that dy/dx = x3 (x - 1 )2 (x2 + 1 ), find the values of x for which 
y has stationary values and state the nature of the stationary values. 

[WJC, part] 
17 The curve whose equation is y = ax3 + bx2 + ex + d has a point of in­

flexion at ( - 1 ,  4), has a turning point when x = 2 and passes through 
the point (3, - 7). Find the values of a, b, c, d and the position of the other 
turning point. 

18 Show that (
): �;;213 has a maximum value of 0·945 approximately, and 

find its minimum value. [WJC] 
19 (i) Find the maximum and minimum values of the function tan 2x cot2 x, 

and the values of x, in the range O � x � n, at which they occur. 
(ii) Find the maximum and minimum values of y, and the corresponding 

values of x if 9y2 + 6xy + 4x2 - 24y - Sx + 4 = 0. [WJC] 
20 A right circular cone is inscribed in a sphere. Prove that the volume of 

the cone cannot exceed -!-, of the volume of the sphere. 
21 Show that the function f(x) = x111 (1 - x1 - 1 11) 1 12, where y( > 1 )  is a con-

stant, has a maximum when x = C : 1 )111 - 1
. 

22 Find the maximum and minimum values and the points of inflexion of 

the function -;..-, and show that the points of inflexion lie on the line 
X + 1 

4y = X. 



220 Some applications of differentiation 

23 Find the stationary values of the function f (x) = 1 -
9

2 + 
1� and deter­

x X 
mine their nature. Sketch the curve y = f (x). [LU] 24 A tree trunk is in the form of a frustrum of a right circular cone, the 
radii of the end faces being a and b respectively (a > b) and the distance 
between these faces being I. A log in the form of a right circular cylinder 
is cut out of the trunk, the axis of the cylinder being perpendicular to 
the end faces of the frustrum. Show that, if b < 2a/3, the volume of the 
log is a maximum when its length is al/3 (a -b). If b > 2a/3, what is the 
length of the log when its volume is as great as possible. [LU] 

25 A right circular cone of semi-vertical angle 0 is circumscribed about 
a sphere of radius R. Show that the volume of the cone is given by V = ½nR 3 (1 + cosec 0)3 tan2 0 and find the value of 0 when V is a 
minimum. 

26 If y = 2 sin x + tan x, prove that d2y/dx2 = 2 sin x(sec3 x - 1 ). Show that 
for O < x < n/2 the gradient of the function is greater than 3, and that 
for n/2 < x < n the function has a turning point and is zero for a value 
of x other than n. Sketch these two branches of the graph of the function. 

[SUJB] 
27 Find the maximum and minimum values of the function x/(x2 + 3x + 1). 

Sketch the graph of the function. [SUJB] 
28 Find the abscissa of the point of inflexion on the curve y = ax3 + bx2 

+ ex + d where a, b, c and d are constants. 

29 Sk h h h f (.) 
4x + 1 

(" ") 
x + 3 

(" " ") 
x2 

- 12x + 27 etc t e grap s o I y = -
2 3 , 11 y = - - 1 , 111 Y = 2 4 , 

X - X - X - X + 15  

(. ) 
2x2 + 4x + 7 

IV y = �- - -- . 
x2 + 2x + 5 

30 Find the equation of the tangent to the curve y = 1/x at the point (1, 1 )  
and the equation of the tangent to the curve y = cos x at the point (n/2, 0). 
Deduce that 1/x > cos x for 0 ::;;;  x ::;;; n / 2. [JMB, part] 31 Sketch with the same pair of axes the graphs of the functions y = (x -2)2, 
y = (x -2)2 + 4, y = (x -2)2 - 4. Indicate on each graph the co-ordinates 
of the turning point and of the points where the graph crosses the axes. [JMB] 32 A straight line of variable slope passes through the fixed point (a, b) in 
the positive quadrant. Its intercepts on the co-ordinate axes are p and q (p, q 
both positive). Show that the maximum value of p + q is (✓a+ ✓b)2. 33 Show that there is just one tangent to the curve y = x3 - x + 2 which 
passes through the origin. Find its equation and point of contact with 
the curve. 

34 A right circular cone is inscribed in a sphere of radius a. If its volume 
is a maximum, show that its altitude is 4a/3. In the cone of maximum 
volume a right circular cylinder is inscribed. Show that the maximum 
volume of this cylinder is 32/243 of the volume of the sphere. 

f . k . . b 
tan 0 h 0 . d 35 The efficiency o a Jae 1s given y E = 0 ) 

w ere 1s acute an 
tan ( + A A is constant. Show the maximum value of E is (1 -sin A)/(1 + sin A) 

and find the value of 0 for which this occurs. 
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36 The area of the sheet metal used in the manufacture of a closed cylindrical 
can is 400 cm2 • Find to the nearest cm3, the largest possible volume of 
the can. [ AEB] 37 A rectangle ABCD is inscribed in an equilateral triangle PQR of side 2a, 
the points A and B lying on QR, C lying on RP and D on PQ. Find 
the length of AB for which the area of the rectangle is a maximum. 

[LU] 
38 The equation of a curve is y = cot x - 8 cos x (0 < x < n). Find the 

co-ordinates of the points on the curve where dy/dx = 0. Sketch the 
curve. [CJ 39 Find the co-ordinates of the points of intersection of the curves whose 
equations are y = (x - l)(x - 2), y = 3(x - l) . State or obtain (i) the co-x 
ordinates of the turning point of the first curve; (ii) the equations of the 
asymptotes of the second curve. Sketch the two curves on the same 
diagram. [JMB] 

40 Sketch the curve y = x/(1 + x2), finding its turning points, showing that 
the origin is a point of inflexion and indicating the behaviour of y when 
x is large. [LU] 

41 Find the turning points on the curve y = cos x + 2 cos½x for O � x � 2n. 
Hence sketch the curve over this range. [AEBl 

42 Find the equations of the tangents to the curve 27y2 = 4x3 at the points 
P (3p2, 2p3) and Q(3q2, 2q3). Show that these tangents intersect at the point 
R(ri,P), where ri = p2 + pq + q2, p = pq(p + q). The points P and Q move 
along the curve in such a way that the tangents at P and Q are always 
perpendicular. Prove that R moves on the parabola y2 = x - 1 .  

[JMB] 
43 A right pyramid having a square base is inscribed in a sphere of radius 

R, all five vertices of the pyramid lying on the sphere. The height of the 
pyramid is x; show that the four vertices forming the base of the pyramid lie 
on a circle ofradius r, where r2 

;,, 2Rx - x2• Hence, or otherwise, show that 
the volume, V, of the pyramid is given by the formula V = -¾x2 (2R - x). 
If R is fixed but x may vary, find the greatest possible value of V. 

[CJ 
44 The fixed points A, 0, B and C are on a straight line such that AO = 0B 

= BC = 1 unit. The points A and B are also joined by a semicircle of radius 
1 unit, and P is a variable point on this semicircle such that the angle 
POC is 0. Calculate the value of 0 for which the area of the region R, 
bounded by the arc AP of the semicircle and the straight lines PC and 
AC is a maximum. Show that the perimeter of R is of length L = 3 + n 
- 0 + (5 - 4 cos 0) 1 12• Prove that L has just one stationary point and that 
this occurs at the same value of 0 for which the area of Ris a maximum. 
Find the greatest value and the least value of L in the interval O � 0 � n. 

[JMB] 
45 If y is defined in terms of x by the equation x3 + y3 

- 3xy = 0, show that 
the graph of y has a turning point at (2113

, 2213). Determine whether this 
gives a maximum or minimum value of y. [OJ 



12 
The logarithmic and exponential functions 

12.1 The logarithmic function y = log0 x Figure 12.1 shows the graph of y = log 1 0  x. y is only defined for positive values 
of x. As x approaches zero, y becomes large and negative, changing very 
rapidly with respect to x. Thus when x = 0·01, y = -2; when x = 0·000 001, 
y = - 6, etc. As x takes on large positive values, y increases but only very 
slowly with respect to x. Thus when x = 100, y = 2; when x = 1000, y = 3; 
when x = 10 000, y = 4, etc. When x = 1, y = 0. The general characteristics 
described above and the sketch of Figure 12.1 are true for the function 
y = loga x, where a is any constant. 

Figure 12.1 

We shall now evaluate precisely the derivative of the logarithmic function 
as opposed to the rather vague statements above. None of the methods of 
Chapter 10 is applicable to the function y = loga x and we have to resort 
to the method of differentiation from first principles. 

If y = loga x, y + by =  loga (x + bx), therefore 

222 

by = loga (x + bx) -loga x 
= loga( 

x : bx ) = loga( 1 + bxx ) 
by = _!__ loga (l + bx) bx bx x 
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by =  !_.� Joga(l + 
bx

) bx x bx x 
1 

( 
bx

)
x/dx = -log" 1 +-x X 

dy by 1 
( 

bx
)

x/dx 
- = Jim - = -Jim log" 1 + -
dx dx ➔ O bx X dx➔ O X 

(A) 

To evaluate Jim log"(l + bx/xt16x, we replace x/bx by n. Then bx ➔ 0 is 
dx➔ O 

equivalent to n approaching infinity (n ➔ oo) and the required limit may be 
written• 

A full investigation of Jim ( 1 + !)" is beyond the scope of this course. 
n- oo n 

For the present, we shall content ourselves with the evaluation or( 1 +�)" for 

n = 10, 100, 1000, 10 000. With the aid of six-figure logarithms or a calculator, 
we have 

( 1  + lo-)1 0  = 2·5936 
(1 + rin)lOO = 2•7046 

(1 + Tifoo)lOOO = 2·7164 
(1 + TU1mo)1 0 00 0  = 2·7182 

A brief study of these results should convince readers that as n increases 
( 1 +�)

" is going to approach a limiting value between 2·5 and 3·0. A fuller 

study of the problem reveals that Jim (1 + !)" = 2·718 28 to five decimal 
n - oo  n 

places. This number holds a very important place in all higher mathematics 
and is denoted by the symbol e. Although the above argument is at best 
tentative, the conclusion is correct and we have 

e = Jim (1 + !)" � 2·718 28 
n - oo  n 

Thus, if we return to (A), we see that 
d 1 

- (log" x) = -log" e 
dx x 

(12.1) 

(12.2) 

* We have taken lim(log . . . ) = log (lim . . .  ). To prove this 'apparently obvious' result is 
beyond the scope of this course. 
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For a given value of a, loga e is, of course, just a constant. If a =  e so that 
log. a =  1 ,  we have the result 

d 1 - (log. x) = -
dx x (12.3) 

y = log. x is called the natural logarithm of x. (The notation In x is also used 
to denote the logarithm of x to base e and is becoming increasingly popufar. 
We shall, however, use log. x in all our workings, but In does occur in some 
of the chapter-end exercises derived from the examining boards.) 

We may, of course, calculate the logarithm of x to any base-for example, 
logarithms to the base 10 are very convenient for calculations-but natural 
logarithms are very important in the theoretical aspects of mathematics. So 
it is important to remember that the derivative of the logarithmic function is 
1/x only when the base is e, otherwise it is (1/x) loga e. 

Example I Find dy/dx if (i) y = log. 1/x, (ii) y = log. sec x. 
(i) y = log. 1/x = log. u, where u = 1/x dy = 

dy . du = !( - _!__) = x (-=.!_) =-=.!_ 
dx du dx u x2 x2 x 

[ :x (10g. �) = - d: (log. x) because log. � = -log. x] 

(ii) y = log. sec x = log. u, where u = sec x dy dy du 1 
- = -·- = -.sec x tan x dx du dx u dy 
- = tan x dx 

Example 2 Find dy/dx if y = log 10 x2. 

By (1.30) 

therefore 

y = log 1 0  x2 = log 10 e x log. x2 = 0·4343 log. x2 

= 0·8686 log. x 

dy 0·8686 
dx x 

Example 3 Find dy/dx if y = log. f(x). 

therefore 

y = log. f(x) = log. u where u = f (x) dy = dy _ du = ! f ' (x) 
dx du dx u 
d f ' (x) 

dx [log. f(x)] = f(x) 
(12.4) 
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Exercises 12a 
Find dy/dx when 

l y = log. 2x 2 y = log. l/x2 

4 y = log.(ax + b) 5 y = log.✓(x -1) 
7 y = log.(sec x+tan x) 8 y = log. sin2 x 

3 y = log. sin x 
6 y = log. tan x 
9 y = x log. x -x 

log. x 1 -x 
10 y = -

x -
l l y = loge l + x 

12 y = cos x log. sin x 

13 Find dy/dx if x + y + log. xy = 2. 
14 If y = (loge x)/x, show that dy/dx is zero when x = e. 
15 If y = x log. x, find d2y/dx2• 

12.2 The exponential function 
The exponential function is the inverse of the logarithmic function. Thus if 
y = eX, x = log. y. Figure 12.2 shows a sketch of the function y = e. The 
function y = ax possesses the same general characteristics. Figure 12.2 may be 
obtained directly from Figure 12.1. 

Figure 12.2 

The derivative of the function y = ex is obtained using ( 10. 1 7). Thus if 
y = ex 

then 

therefore 

that is 

x = log. y 

dx 1 
dy 

= 
y 

by ( 12.3) 

dy - = y  
dx 

( 12.5) 
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For the function y = ax it is convenient to write the constant a in the form a = e10g•a. Then 

To differentiate y with respect to x, we need the rule for differentiating a 
function of a function 

that is 

y = e" where v = x log0 a 

dy dy dv 
dx 

= 
dv "dx 

= log. a .ex log.a 

dy 
X 

dx 
= log. a.a 

Example 1 Find dy/dx when (i) y = ec0• x, (ii) y = (sin 2x) e2x. 
(i) y = ecosx = eu, where u = cos x 

dy dy du ( . ) cosx . - = -·- = eu. -s1n x = - e  s1n x 
dx du dx 

(ii) y = (sin 2x) e2x 

Therefore, by (10.4) 
dy . d d . - = sm 2x -(e2x) + e2x -(sm 2x) dx dx dx 

d d 
dx 

(e2x) = dx 
(eu) where u = 2x 

d du = - (eu) ·- = eu X 2 = 2e2x 
du dx 

d
� (sin 2x) = d� (sin u) where u = 2x 

Therefore 

d ( . du = -d sm u)·- = cos u x 2 = 2 cos 2x u dx 

:� = 2e2x sin 2x + 2e2x cos 2x = 2e2x(sin 2x + cos 2x) 

Example 2 If y = e3x, show that d2y/dx2 -5dy/dx + 6y = 0. 
With y =  e3x 

dy 
= 

� 
(eu) · 

du where u = 3x dx du dx 
= 3e3x 

d2y 
= 3� (e3x) = 9e3x 

dx2 dx 

(12.6) 
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Therefore 
d2y dy --5 -+ 6y = 9e3x - 5 X 3e3x + 6e3x = 0 dx2 dx 

Example 3 Find dy/dx if y = ef <x>. 

Exercises 12b 
Find dy/dx when 

1 y = e3x 

4 y = e -x 1 Y = 3x2 

ex 
10 y = X - x e +e 

y = er<x> = eu where u = f (x) dy = dy . du = eu. f '(x) dx du dx 
d - [ef (xl] = f '(x) ef(x) ( 12.7) dx 

2 - x2 y = e  
5 y = eax + b  

8 y = ex cos x 

11  y = e 1og0 x 

3 y = e•in x 

6 Y = 2x 

9 y = xe- x2 

12 y = e- x2 sin x2 

13 If y = aepx + be -px show that d2y/dx2 = p2y. 
14 If y = e2x show that d2y/dx2 - 3 dy/dx + 2y = 0. 
15 Find m if y = emx is such that d2y/dx2 - 3 dy/dx - 4y = 0. 

12.3 Logarithmic differentiation 
Logarithmic differentiation is the name given to a particular technique which 
can be very useful in helping us to obtain the derivatives of certain functions. 
The technique is illustrated by the following examples. 
Example I Find dy/dx if y = ex3

• 

With y = ex3, we first take logarithms on each side to give 
log0 y = log. (ex3

) = x3 

On differentiating this with respect to x, we have 

Therefore 

d d 3 i 
dx (log. y) = dx (x ) = 3x 

d dy - (log0 y) ·- = 3x2 dy dx 

1 dy* - - = 3x2 y dx 
• The result d/dx(log, y) = ( 1/y)dy/dx should be memorised once tl is thoroughly under­

stood how to obtain it. 
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so that 
dy i i ' - = y X 3x = 3x ex 
dx 

This same result can be obtained by (12.7). Consider, however, the next 
example. 

Example 2 Find dy/dx if y = xx, where (12.7) cannot be used directly. 
We have log. y = log. xx = x log. x by (1.29), therefore 

d d 
dx 

(log. y) = dx 
(x log. x) 

1 dy d d - -
d = x -

d (log. x)+log. x -
d (x) by (l0.4) 

y X X X 

} :: = x (½) + log0 x (1)  = 1 + log. x 

dy 
dx 

= y(l + log. x) = xx (l + log. x) 

In order to apply (12.7), we would first have to write x in the form x = e108•x. 
Then (ex log,xy = ex log, x. Expression (12.7) then yields the result above. 

These examples indicate one class of function for which the technique of 
logarithmic differentiation is appropriate, namely, those functions which 
contain a power that involves the variable, although if powers of e are involved 
(12.7) is more direct. The properties of logarithms sometimes make the 
method of value in dealing with algebraic functions. 

Example 3 Find dy/dx if y = C � �) 1 13 
The complications involved in differentiating this function arise from the 

cube root and the quotient. The technique of logarithmic differentiation 
removes them, as follows: 

Therefore 

y = c� �r
13 

(X - 1 )l/3 1 X - 1 log. y = log. - -1 = -3 Iog - - by (1.29) 
x + x+l 

1 log. y = 3[1og. (x - 1) -log. (x + 1)] by (1.28) 

l dy l ( l 1 
) 

2 
y dx 

= 3 x - 1 - x + 1 = 3(x - l)(x + 1) 
dy 2 (X - 1

)
1 13 

dx 
= 3(x2 - 1) x + 1 

Readers should verify this result by other methods. 
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Exercises 12c 
Find dy/dx if 
1 y = etanx 

4 y = (sin xY 
2 y = ex4 

5 y = (log. xY 
3 y = x•in x 

6 y = xx - 1 
(

X + 1)1/3 

9 y =  --... x - 1  
(x2 _ 1)1/4 10 y = -2--1 X + 

12.4 Polynomial approximations for a function and Maclaurin's 
series 

Consider the function f(x) = -1- . Provided x #- 1, 1 - x  
1 X - - = 1 + --1 - x  1 - x  

as is readily verified by simple algebra. Multiplication of this identity by x 
gives 

X X2 - -=x + - -1 - x  1 - x  
so that, on substitution, we obtain 

that is 

1 x2 
- - = l + x + - -1 - x  1 - x  

1 x2 
-- = 1 + x with error 1 - x  1 - x  

Multiplication by x shows that 

so that 

that is 

X x3 - -=x+x2+- -1 - x  1 - x  

1 x3 

-- = 1 + X + x2 + --
1 - x 1 - x  

1 x3 

-- = 1 + x + x2 with error 
1 - x  1 - x  

In this way, we may obtain the successive polynomial approximations 1, 
1 + x, 1 + x + x2, 1 + x + x2 + x3 , etc. to the function -1- with respective 1 - x  

x x2 x3 x4 

errors -1 -, -1 -, -1 -, -1 - , etc. - x  - x  - x  - x  
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For lxl < 1, the errors involved by using the approximations will be small. 
Thus if x = 0· 1, the error involved in using the approximation 1 + x + x2 + x3 

for the function 1/(1 -x) is (0·1)4/0·9, which is a percentage error of 100 (0·1)4, 
i.e. 0·01 per cent. This is not so if x > 1 and the approximations are no longer 
so useful. 

The first polynomial above (1) is equal to f(x) when x = 0. The second 
polynomial (1 + x) and its first derivative are equal to f(x) and its first 
derivative respectively when x = 0. The third polynomial and its first and 
second derivatives are equal to f(x) and its first and second derivatives 
respectively when x = 0, etc. 

This suggests that, in general, we may be able to find a polynomial approxi­
mation to any function f(x) by setting 

f(x) � a0 + a1x + a2x2 + . . .  + anxn (12.8) 
and choosing the a's so that the function and its first n derivatives when x = 0 
equal the polynomial and its first n derivatives respectively when x = 0. 

The first n derivatives of the right-hand side of (12.8) are 
a l + 2a2X + 3a3X2 + . . .  + nanXn - l 

2!a2 + 3!a3x + 4 . 3a4x2 + . . .  + n(n -l)anxn - 2 

3!a3 + 4!a4x + . . .  + n(n - l)(n -2) anxn - 3 

When x = 0, these derivatives have the values 
a 1 , 2!ai , 3!a3 , 4!a4, • • •  , n!an respectively 

On equating these to f ' (0), f " (0), f "' (0), . . .  , f <nl(0), we have 

, f "  (0) f "' (0) f (r) (0) f (n) (0) 
a 1 = f (0), a2 = -2, , a3 = -3,-, . . .  , a, = - ,-, . . .  , an = --, -

. . r. n. 

a0 is determined by making the polynomial of (12.8) when x = 0 equal to 
f(0), i.e. a0 = f(0). 

Thus we obtain 
f "  (0) xnf (n) (0) f (x) � f(0) + xf '(0) + x2
21 

+ . . .  + n! ( 12.9) 

We can now see immediately that for this procedure to be possible f (x) 
and its first n derivatives must exist and be continuous at x = 0. The method 
will fail, for example, for the function f(x) = log. x, since neither this function 
nor its derivatives are defined at x = 0. 

In order to obtain a satisfactory approximation, the difference between 
f(x) and the polynomial ( 12.9) must decrease with increasing n. For the 
function 1/( 1  -x), we saw that this was the case provided lxl < 1 .  In general, 
it is not easy to evaluate the difference between f(x) and the polynomial (12.9). 
Further consideration of this difficult problem is beyond the scope of this 
course and we shall only record the following very important results: 
there exist many functions f(x) which together with all their derivatives are 
defined and continuous at x = 0, and for which (for some values of x) the 
infinite series 
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, x2f "(0) x3f "' (0) x'f <'l(0) f(0) + xf (0) + -
2
-, - + 3! + . . . + r! + . . .  

is convergent. 
For such functions f(x), the limit of the sum of this series is f (x), provided x lies within the interval for which the series is convergent, and we may write 

, x2f " (0) x3f "'(0) x'f <'l(0) f (x) = f (0) + xf (0) + -
2
-, -+ 3! + ... + r! + ... (12.10) 

The series on the right of (12.10) is known as the Maclaurin series for f(x). 

Example 1 Show that the Maclaurin series for -
1

- is 
1 -x 

With 

By (12.10) 

therefore 

1 2 3 - - = l+x+x + x  + ... 1 -x 

1 
f (x) = - - = (1 - x) - 1 

1-x 
f ' (x) = ( l  -x)- 2 

f " (x) = 1.2(1 -x) - 3 

f "' (x) = 1.2 . 3(1 -x) - 4 

therefore f (0) = 1 

therefore f '  (0) = 1 ! 
therefore f "  (0) = 2! 
therefore f "' (0) = 3! 

f (rl(x) = 1.2.3 ... r (l -x)- (r+ l ) therefore f (r)(O) = r! 

1 2 2! 3 3! , r! 
l _ 

X 
= 1 + X .  l + X • 2! + X • 3! +

 .. . + X rl + . .. 

1 
-1 - = 1 + x + x2 + ... + x' + .. . 

- x 

This is an infinite geometric series and is convergent for -1 < x < 1 (see 
Section 2.4). 

Example 2 Assuming the series below is convergent, show that 

With 

. x3 xs x1 
sm x = x -3! + S! - ?! + . . .  

f (x) = sin x 
f '(x) = COS X 

f "(x) = -sin x 
f "'(x) = -cos x 
f ""(x) = sin x 

f (O) = 0 
f '(0) = 1 
f "(0) = 0 
f "'(0) = -1 
f ""(0) = 0 etc. 
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We can now see that the values of the successive derivatives when x = 0 
are going to repeat the sequence 0, 1, 0, -1, 0, 1, 0, -1, etc. Thus by (12.10) 

. 1 
2 

0 
3

( - 1) i0) s( l) 
sm x = 0+x.

l!
+x 2! + x  31 + x  4!+x 51+ . . .  

x3 xs x1 x9 
sin x = x - 3! + 

5! - ?! + 9! + ... 

It can be shown that this result is true for all x (in radians). 

Exercises 12d 
1 Show that 1 x x2 x3 

- - = 1 -- - = 1 -x+ -- = 1 -x+x2 -- ­
l+x l+x l+x l+x 

x4 
= 1 - x + x2 - x3 + --, 1 + X 

2 Show that the Maclaurin series for -1-
1- is 
+ x  1 

2 3 -1 - = 1 -x+x -x + ... +( -l)'x'+ 
+ x  

For what values of x will this result be valid? 
x3 x3 xs x3 xs x 7 

3 Evaluate x, x -3!' x - 3! + 
5! , x - 3! + 

5! 
-

7! 
for x = n/6. Compare 

the values with sin n/6 = 0·5. [Compare with Example 2.] 
4 Assuming the convergence of the series below, show that 

x2 x4 x6 
COS X = 1 -2! 

+ 4! - 6! + . . .  
5 Using the previous question and question 3, compare these polynomial 

approximations for sin x and cos x with those obtained in (6.60) and (6.61). 
6 Starting with the inequality sin x < x [see (6.59)], show by integration• 

2 

from 0 to x that cos x > 1 - �! , and then by integration from 0 to x that 

x3 
sin x > x -3!' and then by integration from 0 to x that cos x < 1 -

x2 x4 

2! + 4! , etc. Compare with the previous examples. 

7 Show that if n is a positive integer, (12.9) gives the polynomials 1, 1 + nx, 
n(n - 1 ) 

2 
n(n - 1) 

2 n -
l " 1 + nx + , x , ... , 1 + nx + 2, x + .. . + nx + x as suc-2. . 

cessive approximations to (1 + x)". The last approximation is, of course, 
exact. What is the Maclaurin series for (1 + x)" when (i) n is a positive 
integer, (ii) n is not a positive integer? 

• See next chapter. 
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8 For f(x) = tan x show that fi(x) = sec2 x, fii(x) = 2 sec2 x tan x, fiii(x) = 4 sec2 x tan2 x + 2 sec4 x, fiv(x) = 8 tan x (sec2 x tan2 x + 2 sec4 x), P(x) = 8 sec2 x (sec2 x tan2 x + 2 sec4 x) + 8 tan x d/dx (sec2 x tan 2 x + 2 sec4 x). Hence show that ( 12.9) gives as successive approximations to the function tan x: X, X + ½x3 , X + ½x3 + is-x5

. 9 Evaluate the polynomials of question 8 for x = n/6. Compare the values obtained with tan n/6. 10 Show that, for the polynomial f(x) = a +  bx + cx2 + dx3 + ex4, ( 12.9) gives as successive approximations (n = 1 , 2, 3, 4), a +  bx, a +  bx + cx2, 
a +  bx + cx2 + dx3, a + bx + cx2 + dx3 + ex4• What is the 'Maclaurin series for f(x)? 

12.5 The series for e.x and loge (1 + x) In this section, we shall use ( 12. 10) to obtain the Maclaurin series for the functions e and loge (1 + x). (We have already mentioned that the method of ( 12.9) will fail for the function loge x but, as we shall see, it is satisfactory for loge ( 1 + x).) If f(x) = ex, then f'(x) = f"(x) = f'"(x) = . . .  = f(r>(x) = . . . = ex 
therefore 

f'(O) = f"(O) = f"'(O) = . . .  = f<'>(O) = . . . = 1 By ( 12. 10) 
X 1 1 2 1 3 1 , 1 e = + x . + x  . 2, + x  . -3, + . . .  + x  . , + . . .  

. . r. 
x2 x3 x4 x' ex = 1 + x + -2, + -3, + -4, + . . .  + ! + . . .  

. . . r. (1 2. 1 1) 
It may be shown (although the methods required are beyond the scope of this book) that this series is valid for all values of x. If we replace x by ( - x), we obtain 

that is 
- x  ( - x)2 ( - x)3 ( - x)4 e = 1 + ( -x) + � + -3-1 - + � + . . .  

- x x2 x3 x4 x5 ( - l)'x' e = l - X + -21 - -31 + -41 - -51 + . . .  + I + . . .  
. . . . r. For the function loge ( 1 + x), we have f(x) = loge ( 1  + x) f'(x) = ( 1  + x)- 1 

f" (x) = - 1 ( 1 + x)- 2 
f"'(x) = (- 1) ( - 2)( 1 + x)- 3 
f""(x) = ( - 1) (-2) (-3)(1 + x)-4 

f(O) = loge 1 = 0 f'(O) = 1 f"(O) = - 1  f'"(O) = 2! f""(O) = - 3! 

( 12. 1 2) 
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f Cnl(x) = ( - 1)( - 2) ... [ -(n - 1)]( 1  + x)- n 
= ( - l)n- 1(n - 1)!(1 + x) - n 

Thus the Maclaurin series for log. (1 + x) is 

2 ( - 1 ) 3 2! 
4

(-3!) 
log. (1  + x) = 0 + x . 1  + x " 2! + x . 3! + x 4! + . . .  

that is 

It may be shown that this series is convergent only if - 1 < x ::::; 1. Thus, 
more precisely, we have 

X2 X3 X4 ( - l)r + lXr 
log. ( 1  + x) = x -

2 + 
3 

-4 + . . .  + 
r + . . .  

for - 1  < X ,:::;  1 
If we replace x by ( - x) in ( 12.13), we obtain 

( - x)2 (-x)3 ( - x)4 

log. (1 - x) = - x - -
2

-+-
3

---
4

- for - 1 :::,; X < 1 

x' 
) + -;:- + . . . 

for - 1 :::,; X < 1 
Example I Calculate e to three decimal places. 

From (12.1 1 )  

With x = 1 
1 1 1 1 1 

e = 1 + 1 + 2! + 3! + 4! + 5! + 6! + · · · 
= 1 + 1 + 0·5 + 0·1667 + 0·041 7  + 0·0083 + 0·0014 + 0·0002 + . . . 
= 2·7 18  

( 12. 13) 

( 12.14) 

This result is accurate to three decimal places since the remaining terms of 
the series do not affect these places. (Compare this value with the value 
obtained in Section 12.1.) For values of x < 1 (or > 1 ), it will require fewer 
(or more) terms of the series ( 12.1 1) to obtain the same accuracy for ex. 
Example 2 Find the Maclaurin series for e3x. 

From (12.1 1 )  
xi x 3  x4 

ex - 1 + x + - + - + - +  - 2! 3! 4! . . .  
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Therefore, with X = 3x, 

3x -1 (3x)2 (3x)3 
e - + 3x + 2! + 

3! + . . . 
9x2 27x3 8lx4 

= 1 + 3x + 2! + 3! + 4! + . . .  3'x' + -, + . . .  r. 
Example 3 Evaluate loge (l· l) to four decimal places. 

x2 x3 x4 xs 
log (1 + x) = x -- + - - - + - - for - 1  < x � 1 e 2 3 4 5 · · · "' 

Therefore, with x = to, which is within the range of convergence, 
O·O 1 0·001 0·0001 0·000 01 

loge (l·l )  = 0·1 - -
2
- + -

3---
4

- +  
5 

- . . .  

= 0· 1 - 0·005 + 0·000 33 -0·000 025 + 0·000 002 - ... 
= (0· 100 335) -(0·005 025) + . . .  
= 0·0953 to four decimal places 

Example 4 Show that for small values of x 
7x2 7x3 

(1 + 2x)e- x + loge (l + 2x) � 1 + 3x - 2 + 2 
By ( 12.12) and (12.13) 

The calculation of logarithms 

x2 x3 
= 1 - x + - - - + 2x -2x2 + x3 

2 6 

7 2 7 3 3 = 1 + 3x - -x + -x as far as terms in x 
2 2 

The series (12.13) and ( 12. 14) for loge (l + x) and log. (1 - x) are convergent 
for -1 < x � 1 and - 1 � x < 1 respectively. They will therefore only allow 
us to calculate the natural logarithms of numbers from just above zero to 
two. 

Some simple manipulations of these series enable us to extend this range. 
Provided -1 < x < 1 
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Therefore 

With X = ½ 

therefore 

(
1 + x

) loge -- = loge ( 1  + x) -loge (1 -x) 
1 - x 

loge 3 � 2(0·5 + 0·041 667 + 0·006 25 + 0·001 1161 
+ 0·000 2 1 7 02) 

� 2(0·549 29) 
� 1 ·0986 Example 5 Show that if n is positive 

[
n -1 l

(
n -1

)
3 l

(
n -1

)
5 ] 

loge n = 2 
n + 1 

+ 3 n + 1 + 5 n + 1 + · · · 

From (12. 1 5) 

( 
1 + X

) 
( 1 3 1 5 1 7 

) log. 
1 _ x = 2 x + 3x + 5x + 1x + . . .  

( 12. 1 5) 

W. h l + x n -l h" h . I h 1 "f . . . Th '" 1t -1 
- = n, x = --1 , w 1c 1s ess t an I n 1s positive. ere1ore 
- x  n +  

[
n - 1  l

(
n - 1

)
3 l

(
n -1

)
5 ] 

log. n = 2 n + 1 
+ 3 n + 1 + 5 n + 1 

+ · · · (12. 16) 

This series is quite useful for calculating logarithms. However, for large 
n -1 values of n, - - is near to one and a large number of terms of the n + l 

series (12. 16) will be needed to obtain a satisfactory approximation to log. n. 
With n = 2, we have 

(
1 1 1 1 1 

) log. 2 = 2 3 + 3 • 33 + 5 • "js + . . .  

This series is clearly a better way of calculating log. 2 than the series ( 12. 1 3) 
with x = 1, namely, 

loge 2 = 1 -½ + j -¼ + ½ -i + • • • 
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Exercises 12e 
1 Use the series (12.11 )  to evaluate Je and 1/e correct to four places of 

decimals. Check your results from tables or by calculator. 
2 Use the series (12.13) to evaluate log. (1·2) and log. 0·9 correct to four 

places of decimals. Check your results using tables or calculator. 
3 Use ( 12.11) to write down the first few terms of the Maclaurin series for 

(i) e2x, (ii) e - 3x, (iii) ex2
• 

4 Use ( 12.13) to write down the first few terms of the Maclaurin series for 
(i) log. (1 + 2x), (ii) log. (1 -3x), (iii) log. (1 + x2). For what values of x 
are these series valid? 

5 Show that log. (3 + 4x) = log. 3 + !x - &x2 + if x3 - . . . and state the 
limits between which x must lie for the expansion to be valid. 

6 Show that 

1
( 

1
) 

1 1 1 1 
2 e - e  = 1 + 3! + 5! + 7! + ... + (2r -1)! 

+ ... 

and write down similar series for �( e + i). 
7 If x is so small that x4 and higher powers of x can be neglected, show 

that ex+ log. ( 1  -x) = 1 -¾x3 approximately. 
8 Show that 

2 2 tan4 x tan6 x tan8 x log. sec x = tan x --
2
-+-

3
- --

4
-+ ... 

For what values of x is the expansion valid? 
9 If x > 1 show that 

log. (: � ! ) = 2(� + 3!3 + s!s + .. .) 

By putting x = 3, evaluate log. 2. 
10 Show that if x is so small that x4 and higher powers of x may be 

neglected log. (1 -2x -3x2) = -2x - 5x2 - ¥x3 • 

[Hint: log. ( 1  -2x - 3x2) = log. (1 -3x)(l + x) 
] = log. ( 1  -3x) + log. (1 +x) 

Exercises 12 
1 Differentiate the following functions with respect to x (i) (3x2 - 1) log. x, 

(ii) ex log. 2x, (iii) e - 2x cos 4x. 
2 Differentiate with respect to t (i) log. ( 1  + e21), (ii) log. (tan½t ), 

(iii) log. (cot t + cosec t ). 
3 If y = x" log. x, show that x dy/dx = x" + ny. 
4 If y log. y = x, find dy/dx in terms of x and y. [JMB, part] 
5 If y = e3x cos 4x, find dy/dx and express it in the form Re3x cos (4x + ix), 

where R is a positive constant; state the cosine and sine of the constant 
angle ix. Hence write down d2y/dx2 in a similar form. [JMB, part] 
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6 F d (") 
d 

( 
e' ) . . d 

( 
loge 0 

) 10 1 
dt l -e2' ' 

(u) 
d0 0 + loge 0 · 

7 Find (i) 
d
d
x 

(e sin x), (ii) 
d
d
x 

[sin (loge x)]. 

. d2y dy 8 If y = sm (loge x), show that x2 -
d 2 + x - + y = 0. 

9 Show that 
x dx 

(i) d
d
x {

loge [x + ✓(x2 + 1)] } = ✓() + l) 

(ii) d
d
x {

loge [x + ✓(x2 - l )J} = ✓()- l )  
10 Differentiate with respect to x (i) log.✓(x + 1), (ii) loge [✓(x + 1) + ✓(x - l )]. 
1 1  Show that if y = xe-x, d2y/dx2 + 2 dy/dx + y = 0. 
12 Show that if y = e - 2x sin 5x, d2y/dx2 + 4 dy/dx + 29y = 0. 
13 If y = 2e -4x -e3x, show that d2y/dx2 + 2dy/dx - Sy = ke3x, where k is a 

constant, and state the value of k. [JMB, part] 
14 If y = loge (l + cos x), show that d3y/dx3 + d2y/dx2 .dy/dx = 0. 
15 If y = e•rc<an x, show that (1 + x2) d2y/dx2 -(l - 2x) dy/dx = 0. 
16 If y = e - 2x cos 4x, show that d2y/dx2 + 4 dy/dx + 20y = 0. 
17 If y = tan - i (ex), show that d2y/dx2 = 2(dy/dx)2 cot 2y. 
18 If x = t 2 , y = log. t, find dy/dx and d2y/dx2 in terms of t. 
19 If x = e1, y = log. t, find dy/dx and d2y/dx2 in terms of t. 
20 Find the stationary value of (log. x)/x. 
21 Show that y = xe-x has one maximum value which occurs when x = 1. 
22 Find the positions of the points of inflexion of the curve y = e -x212 • 
23 Find the equation of the tangent to the curve y = e2x at the point (0, 1). 
24 Find the position of the point of inflexion on the curve y = xe- x. Sketch 

the graph. 
25 The speed of signalling in a submarine cable is given by Kx2 log. (1/x), 

where K is a constant and x is the ratio of the radius of the core to the 
thickness of the insulating material. Show that the speed of signalling is 
a maximum when x = 1/Je. 

26 Show that if v = lOOp(l + log. r) - lOOqr, where p and q are constants, 
then v is a maximum when r = p/q. 

27 Find the position of the point of inflexion on the curve y = log. x + (2/x). 
Sketch the graph. 

28 For what values of x is the derivative of xe- x2 zero? 
29 Differentiate with respect to x (i) (loge x)10g• X, (ii) xx + e1

•
0 x. 

30 If y = xx[l + x/(a + 2)], find dy/dx. 
31 Find the gradient of the tangent from the origin to the curve y = log. x. 

Hence, by considering a sketch of the curve, find the range of values of 
the constant K for which the equation log. x = Kx has two unequal roots. 
Draw a graph of y = log. x from x = 1 to x = 1 ·9 and use it to find to two 
decimal places the smaller root of 4 log. x = x. [JMB] 
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32 Show that 1 < e < ec for O < x < c. By integrating* this inequality from 
0 to x show that x < e - 1 < ecx and then by the same method that 

and that 

etc. to 

x2 x2 
- < e-x - 1  < ec-
2! 2! 

x3 x2 x3 
- < ex---x-1 < ec-
3! 2! 3! 

x" + 1 x" x" - 1 x2 x" + 1 

- - - < ex _ _ _ _ __ . . . ---x - 1  < ec _ _ _ 
(n+l)! n! (n - 1)! 2 (n+l )! 

x2 x2 
Deduce t�at _the di�erence between e and 1 + x + 

21 + + 1 tends 
to zero with mcreasmg n. · n. 33 Show that ex2 loge ( 1  + x2) ::::::  x2 + ½x4 + {x6 for x < 1.  Find the approxi-

mate value of to • l ex2 loge ( 1  + x2) dx*. 

34 Assuming the convergence of the series below show that 
(i) sec x = 1 + ½x2 + ±4x4 + ... 

(ii) loge cos x = -½x2 - --b_x4 - �x6 + . . .  
(iii) loge ( 1 + ex) = loge 2 + ½x + kx2 - rtzx4 + 35 Write down the expansions in powers of x, as far as the term in x3, of 
(i) e - 2x, (ii) ( 1  -4x) 1 12. Use your series to find to five decimal places the 
difference in the values of these two functions when x = 0·01.  [SUJB] 36 Show that if -½ < x � ½, then 
loge ( l  + x - 2x2) = x - tx2 + lx3 -¥x4 + . . . [LU, part] 

37 Obtain the expansion of loge ( l  + x + x2) (if x < 1) in powers of x. State 
the coefficients of x3" - 1 , x3", x3" + 1 . 

[Hint: 1 + x + x2 = 
1 -x3 

.] 1 -x 38 (a) Expand loge cos 0 in a series of ascending powers of sin2 0, giving 
the terms up to sin6 0, and the general term. For what values of 0, in 
the interval O � 0 � n, is the expansion valid? 

(b) Given that y = (2 + x)2e - x, find the expansion of y in ascending 
powers of x as far as the term in x3. Find also the expansion of loge y 
in ascending powers of x as far as the term in x3, and state the 
coefficient of x". [JMB] 39 (a) Expand the function e - 2x;( l - x)2 in a series of ascending powers 
of x up to and including the term in x3. 

b 1 + cos 0 2 10 . d h fi h . ( ) Prove that - -- = cot -z . Wnte own t e rst t ree terms m 
1 - cos 0 

the expansion of loge ( 1  + x) in ascending powers of x. Express 
loge cot2 ½0 as a series of powers of cos 0, giving the first three terms 
and the nth term. [JMB] 

* See next chapter. 
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40 Use ( 12.15) to show that 

loge c � 1 ) = {2n � l + �(2n � 1 Y  + �(2n � 1Y + . . .  ] 

provided n > 1. Hence evaluate in succession loge 2, loge 3, loge 4, loge 5, 
loge 6. (Some of these may be checked using the first two values.) 

41 State the first five terms of the expansions of loge (1 + x) and loge (1 -x). 
Deduce that, when n > 1, 

loge (: �  �) = 2u + 3:3 + 5:5 + . . ·] 

Hence evaluate loge 1 ·25 correct to four places of decimals. [AEB] 
42 Find the coefficient of x3 in the expansion, in ascending powers of x, of 

the function f (x) = ( 1  -x)2 e2x. Find also the coefficients of xn in this 
expansion of f (x) and deduce that the only values of n for which the 
coefficient of xn is zero are 1 and 4. [JMB] ex -e - x dy 

43 Given that y = _ , show that -
d 

= 1 -y2 • [C] ex + e X X 
44 Show that e - x sin x has turning values when x = (r + ¼)n, where r is an 

integer. Determine which are maxima and which are minima. [OJ 

45 A curve has the equation y = 
b 

a 
- ex 

(a =I 0, b > 0, c > 0). Show that 
-e 

it  has one point of inflexion, and that the value of y at the point of 
inflexion is half the limiting value of y as x -+ oo. [OJ 

46 Given that y = e - 2x (3 sin 3x -2 cos 3x), find dy/dx in its simplest form. 
[CJ 

[
(1  + x) e - 2x

]
l /2 X2 

47 Simplify loge 1 _ x 
and show that its derivative is 

1 _ x2 . 

Hence, or otherwise, evaluate dy/dx at x = 0 for the function 

Y = [
(l + x) e - 2x 

]
1/2 

1 -x [JMB] 

48 Given that y = ( 1  + x)2 e - 2x, find dy/dx. Find also the co-ordinates of the 
turning points of the graph of y. [LU] 

9 d I 2) d I 
1 + 3x + 2x2 . . f d' 4 Ex pan oge ( 1 + 3x + 2x an oge 3 2 2 m senes o ascen mg 1 - X + X 

powers of x up to, and including, the term in x3• Use the series for 

I 1 + 3x + 2x2 
h h I . . I 6 [A ] oge 3 2 2 to s ow t at oge 5 1s approximate y 1 · . EB 1 - X + X 

50 Find the minimum value of x loge x, where x is positive. Given that x loge x tends to 0 as x tends to 0, sketch the curve y = x loge x. 



13 
The basic ideas of integration 

13.1 Introduction 
In the preceding chapters, we have been considering the problem of finding 
the differential coefficient or rate of change of a given function. The integral 
calculus to which we now turn our attention is concerned with the inverse 
problem, namely, given the rate of change of a function, to find the function. 
In symbols, we require to find f(x) where 

df (x) 
= g(x) 

dx 

and g(x) is given. It is more usual to write 

f (x) = f g(x)dx 

and we define integration as follows. 

(13.1) 

(13.2) 

The integral of a function g(x) with respect to x is the function whose 
differential coefficient with respect to x is g(x) and it is written J g(x)dx. 

The reason for this notation will be explained later (see Section 13.6); mean­
while (13.2) is to be regarded as an alternative way of writing (13.1). 

. f f d(x3 ) If we are requtred to find 3x2 dx, then 3x2 dx = x3 because � = 3x2 • 

Similarly 

f sin x dx = -cos x 

fdx 
� = log. x 

13.2 Arbitrary constant 

because 

because 

d( -cos x) . - --- = sm x 
dx 

d 1 - (log. x) = -
dx x .  

We recall that the differential coefficient of a constant is zero; hence there 
is not a perfectly definite value for the integral. In the previous three cases, 
we have the more general results 

241 
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f 3x2d x = x
3 + C because 

f sin xdx = -cos x + C because 

f
dx 

� = loge x + C because 

d 
- (x

3 + C) = 3x
2 

dx 

d ) . - ( -cos x + C = sm x 
dx 

d 1 
-d (loge x + C) = -

X X 

An arbitrary constant can always be added to the result and hence 

f g(x)dx = f (x) + C 
This is known as the indefinite integral of g(x). 

13.3 Standard forms 
To find f (x) given g(x) means that we have to retrace the steps we made in the 
process of differentiation and then add an arbitrary constant. Unfortunately, 
there is no general method for doing this, but a few of the more common 
integrals can be stated from our knowledge of differential coefficients. These 
results are known as standard forms. 

f sin x dx = -cos x + C 
f cos x dx = sin x + C 
f ex dx = ex + C 

f x• + l  
x" dx = -- + C 

n + 1 provided n ¥- -1 

fdx 
� = loge x+C 

f dx 1 x 

} 
2 2 = - arctan -+ C a + x a a 

dx . x f 
.j(a2 _ x

2) 
= arcsm � + C a is a constant 

The 'dx' which appears in all these integrals indicates that the integration 
is with respect to x. Thus, while we have J cos x dx = sin x + C, J cos x dy 
cannot be evaluated unless more information is available to enable us to 
change the integral with respect to y into one with respect to x. 

It cannot be emphasised too much that the 'x' in the above list stands 
for any variable quantity and could just as well be written as y, z, u, v, etc. 
Thus 



f eY dy = eY + C 
I du i i 

u2 + 9 =3 arctan3u + C 
f �z = log0 z + C 
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Example 1 Integrate the following functions with respect to x: (i) x8, (ii) Jx, 
(iii) l/x6, (iv) 1/Jx3 , (v) 1/J(9 - x2), (vi) 1/(25 + x2), (vii) sin2 ½x. 

(i) J x8 dx = ½x9 + C 
(ii) J Jx dx = f x 113 dx = xt + C = ¾x4l3 + C 
(iii) f :6 dx = f x - 6 dx = �; + C = -5�5 

+ C 
(iv) J J�3 dx = f x- 312 dx = 

x
��

2 + C = J� + C 
I 1 d . 1 (v) 

J(9 _ x2) 
x = arcsm 3x + C 

(vi) J 25 ! x2 dx = ½ arctan ½x + C 
(vii) For J sin2 ½x dx we notice that this integral is not included in our list 

of standard forms. However, and this is not an uncommon device, it is possible 
to rewrite sin2 ½x by means of a trigonometric identity in a form which is 
immediately integrable. Thus since 

therefore 

COS X = 1 - 2 sin2 ½x 
sin2 ½x = ½(1 - cos x) 

f sin2 ½x dx = f (½ - ½ cos x)dx 

= ½x - ½ sin x + C 
Example 2 Find y in terms of x if d2y/dx2 = 6x - 4 and further y = 0 when x = 0 and dy/dx = 3 when x = 0. 

Since d2y/dx2 = 6x - 4, therefore 

dy I dx 
= (6x - 4)dx = 3x2 - 4x + C 

Since dy/dx = 3 when x = 0, then 3 = C and 
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dy = 3x2 -4x + 3 dx 

y = f 3x2 - 4x + 3)dx = x3 - 2x2 + 3x + D 
But since y = 0 when x = 0, D = 0, so that y = x3 - 2x2 + 3x. 

Exercises 13a 
Integrate the following functions with respect to x: 

1 xS/3 x1 1  x - 2;3 3/ x2 x- 1 4/xs x2 1 ' ' , v  ' , v  , 
1 1 1 1 1 1 1 2 3, 2' -

✓ 
' -,-rr, 3 /  4 '  5/2 X X X X X .,; X ...; x 

1 1 1 1 1 3 J(16 - x2) ' J(l - x2) ' J(¼ - x2) ' J(½ - x2) ' J(36 - x2) 

4 1 1 1 1 x2 + 4 ' x2 + 1 ' x2 + 9 ' x2 + ½' x2 + � 
5 sec2 x, cosec2 x, cos2 ½x (see Example 1 (vii) above), tan2 x [Hint: use 

sec2 x = 1 + tan2 x], cot2 x 

6 5 + x - 2x2 1 + 3x - 5x5 

x5 ' Jx 
7 ax3 + bx + c 2x" + 3xP 1 + 3x + 5x2 

x 7 ' x5 
' x" 

8 (1 - x3)2, (1 + 5x)2, (ax � b)2 

X 

6 7 6 . 9 --- , -- . ,  8 cos x - sm x cosec x sec x 
10 Find y in terms of x if dy/dx = 3x2 - 6x + 2 and y = 7 when x = 0. 11  Find v in terms of t given that dv/dt = 5 - 2kt, where k is a constant. 

If v = 0 when t = 0 and v = 1 when t = 1 find the value of k. 
12 Given d2x/dt 2 = 3 sin t and that when t = 0, dx/dt = - 3  and x = 0, find 

d2x x in terms of t. Hence show that dt 2 + x = 0. 
13 The slope of a curve at any point (x, y) is equal to sin x and the curve 

passes through the point (0, 2). Find its equation. 
14 What curve passing through the origin has its slope given by the equation dy/dx = (x2 - x)2? 
15 A particle starts from rest at the origin and moves along the x-axis. The 

acceleration of the particle after time t is given by 
d2x/dt 2 = 12t 2 - 60t + 32 

Find an expression for x at time t. Hence find the times at which the 
particle again passes through the origin. 
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13.4 Five important rules 
All these rules follow from the definition of integration as the reverse of 
differentiation. The first two rules will just be stated. 

RULE I The integral of a sum of a finite number of functions is the sum 
of their separate integrals. ('Sum' includes the addition of negative quantities, 
i.e. 'difference.') 

Example I f (x2 + sin x + Jx)dx = I x2 dx + Jsin x dx + I Jx dx 

= ½x3 - cos x + lx312 + C 

Example 2 f (ex -cos x)dx = I ex dx -I cos x dx 

= ex -sin x + C 

RULE II A constant factor may be brought outside the integral sign. 

Example 3 I 6x4 dx = 6 I x4 dx = �x5 + C 
Example 4 I� du = 5 I duu 

= 5 log. u + C 
Example 5 f (6 cos x -4x2) dx = 6 I cos x dx -4 I x2 dx 

= 6 sin x -ix3 + C 

The third and fourth rules extend the applications of our standard forms. 
Consider J cos (x + 3)dx. From our standard forms, the result is possibly 

sin (x + 3). On differentiating sin (x + 3) with respect to x, we do, in fact, obtain 
cos (x + 3). Therefore, J cos (x + 3) dx = sin (x + 3) + C. Similarly 

Jex - 2 dx = e
x

-
2 + C 

I� = log. (x + a) + C (a is a constant) x+a I dx 1 1 
(x _ 2)2 + 9 = "3" tan "J(x -2) + C 

hence the rule: 
RULE III The addition of a constant to the variable makes no difference 
to the form of the result. 

Now consider J cos 5x dx. From our standard forms, the result sin 5x is 
suggested but on differentiating this latter function we obtain 5 cos 5x. Since 
this only differs by a constant factor 5 and not a variable factor from the 
required sin 5x, we find that ½ sin 5x when differentiated gives the required 
result. Therefore 
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f cos 5x dx = ½ sin 5x + C 
Similarly I e - 2x dx = -½e- 2x + C 

f cos }x dx = (sin½x)/½ = 3 sin½x + C 
I dx I dx 1 . 2 ✓(9 -4x2) 

= ✓[9 -(2x)2] 
= 1" arcsm 3X + C 

hence the rule: 
RULE IV Multiplying the variable by a constant makes no difference to the 
form of the result but we have to divide by the constant. 

Rules III and IV may be applied together. 

Example 6 
Example 7 
Example 8 

Example 9 

I e3x -4 dx = ½e3x -4 + C 
I dx -- = -log. (2 -x) + C 2 - x  

f ✓(5x + 3)dx = f 5x + 3)112 dx 

1(5x + 3)312 
= 5 (3/2) + C 

J
(4 �;x)s = f4 -3x)- s dx = (4 -

!:
) -4

( �3)+c 

1 C = 12(4 -3x)4 + 

Example JO f dx We express the denominator as a sum of 
x2 + 4x + 13 · 

squares. 

I dx I dx 1 1 
2 = ( 2)2 32 = 3 arctan3(x + 2) + C 

X + 4x + 13 X + + 

Example 11 f ✓ ( l2:� 9x2)
. We render the expression under the root sign 

as the difference of two squares. 

I dx I dx 1 . 1 ✓(12x - 9x2) =
 ✓[22 -(3x -2)2] 

= 3 arcsm 1"(3x -2) + C 
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Another useful rule is obtained by considering the derivative of log. [f(x) ] :  

i_ I f )] _ _  l_ i_ _ f'(x) 
dx [ og. (x - f(x) dx f(x) - f(x) 

hence 

J�
(�: dx = log. [f(x)] + C 

RULE V The integral of a fraction whose numerator is the derivative of its 
denominator is the logarithm of the denominator. 

Example 12 I :x3 - 1 
2 dx = log. (x4 

- x + 2) + C 
X - x + 

Example 13 I)� 1 
dx = log. (x3 + 1) + C 

In some cases, a constant factor has to be inserted to make the numerator 
exactly equal to the derivative of the denominator. 

I x + 1 d l
J 

2x + 2 d Example 14 
x2 + 2x + 5 x = 2 x2 + 2x + 5 x 

1 = 2 Iog. (x2 + 2x + 5) + C 

I 
e3x l

J 
3e3x 1 

Example 15 e3x _ l d
x = 3 e3x _ 1 dx = 3 log. (e3x - 1) + C 

The separation into f' (x)/f(x) may not always be obvious. 

Example 16 

Example 17  

Example 18 

Exercises 13b 
Evaluate 

I dx I x 
I = -1 - dx = log. (log. x) + C x og. x og. x 

I Isin x dx 
J

- sin x tan x dx = - -- = - ---dx = - log. cos x + C cos x cos x 
1 

I dx = IT+? dx = log. (arctan x) + C (1 + x2) arctan x arctan x 

1 (i) f2x + 3)10 dx (ii) f 5 - x)1 1  dx (iii) J J(7t + 5)dt 

(iv) f 3u - 5)512 du 
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2 

3 

(i) J (3x !\)1 s 

. f dy 
(1v) J( l  _ 3y) 

(i) J sin (3x + 3) dx 

(ii) J .j(2�x 

(ii) J cos (5u -l )du 

( . . .  ) I dx 
111 ( 1  -x)3;2 

(iii) J sin ( 1  -y)dy 

(iv) J sin2 x dx (v) J cos2 x dx [Hint: Express sin2 x and cos2 x 
in terms of cos 2x.] 

4 (i) J e2 -x dx 

5 (i) J 2x
d
: 1 

6 

7 

8 

9 

10 

. f 5x 
d (1v) x2 + 1 x 

(x) f cos x + s'.n x dx cos x -sm x 

. I dx (l) x2 - 2x + 5 

. 
I 

d0 
(l) .j(l -1602) 

(i) J x2 dx 
x3 + 1 

(i) J 1 :�u2 
. f 2 tan x sec2 x 

d (l) 1 + tan2 x x 

Note on log. x 
Consider 

(ii) J e5<1 + 21 dt 

(ii) J� 
1-2x 

(v) J 2x + 1 
dx x2 + X - 1 

( . . . ) I du V111 I 2 u oge u 

(

"

) I dt 
11 

16t 2 + 1 
(ii) f ..)(15 _: _ 4x2) 

(ii) f 2 - 3t) 112 dt 

(ii) J u du 
1 + 4u2 

. . f sin 2u 
d (11) 

. 2 U 
1-sm u 

I 
dx 1 -- = - loge (ax-b) + C 

ax - b  a 

(iii) J e1 - 6" du 
(iii) J cot x dx 

(vi) J 2 �-:- , dt 

(ix) J dx 
x loge 3x 

(iii) J dx 
X2 + X + ¾  

(iii) J .j(S + �: - u2) 

(" ') I ex dx 
111 - -

1 + ex 
(iii) J .j(l : 4u2) 
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Alternatively, 

f dx f dx 1 - - = - - - = - log. (b - ax)+ C ax - b  b - ax a 
Either of these forms may be valid and the correct result is ! log. I ax - b I a 
where lax - bi is the positive numerical value of ax - b (the modulus of ax - b). While the modulus sign will not always be used, it must be re­
membered especially for definite integration (see Section 13.6). 

13.5 Applications to geometry and mechanics 
The problem of finding a function when its differential coefficient is given 
has many applications in geometry and mechanics. Generally, the arbitrary 
constant which arises can be evaluated by referring to the initial conditions 
or to some specific value the function must possess. 

Example I A curve passes through the point (1, 6) and is such that its slope 
at any point equals twice the abscissa of that point; find its equation. 

Here we have dy/dx = 2x. Therefore, on integrating, we have y = x2 + C. 
But the point (1, 6) lies on the curve, hence 

6 = 12+c 
5 = C 

Therefore, the required equation is y = x2 + 5. 

Example 2 A particle starts from rest with an acceleration (10 - 2t ) m/sec2 

at any time t. When and where will it come to rest again? 
Since acceleration is the rate of change of speed, v, with respect to time 

Hence 

dv 
- = 10 - 2t dt 

v = f (10 - 2t ) dt 
V = lOt - t 2 + C 

But the particle starts from rest, so that v = 0 when t = 0; hence C = 0 and 
V = lOt - t 2 

V = t ( lO - t ) 
The body is at rest when v = 0, that is when t ( lO -t) = 0 or when t = 0 or 
10 sec. If s is the distance tra veiled in t sec 

ds 
- = V = 10t - t 2 dt 

file:///0t-t2
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therefore 

s = f 10t - t 2)dt = 5t 2 - -¼t 3 + D 
where D is an arbitrary constant. Ifs is the distance measured from the starting 
point, s = 0 when t = 0; hence D = 0. Thus 

s = 5t 2 - -¼t 3 

and when t = 10 

S = 5 X 102 
- j X 103 

that is, s = 166j m is the distance travelled before the particle comes to rest 
again. 

Exercises 13c 
1 Find the equation of the curve whose gradient is 1 - 2x2 and which passes 

through the point x = 0, y = 1. [LU] 
2 At a point on a curve the product of the slope of the curve and the square 

of the abscissa of the point is 2. If the curve passes through the point x = 1, 
y = - 1, find its equation. [LU] 

3 A particle starts with an initial speed of 20 m/sec. Its acceleration at any 
time t is 18 - 2t m/sec2• Find the speed at the end of 6 sec and the distance 
travelled in that time. 

4 A particle starts with an initial speed u. It moves in a straight line with 
an acceleration which varies as the square of the time the particle has been 
in motion. Find the speed at any time t, and the distance travelled. 

5 A particle is projected upwards with a velocity of 3000 cm/sec. In addition 
to being subject to gravity* it is acted on by a retardation of 500 t where 
t is the time from the commencement of the motion. What is the greatest 
height the particle will reach? 

13.6 Integration as a summation 
We shall now show that an alternative way of regarding integration is as 
the limiting value of a summation. This method of approach is of great value 
in applying integration to physical problems. Incidentally, it also explains 
the use of the symbol f which is an elongated 'S' for 'sum'. 

Consider Figure 13.1 where K and B are the points (a, 0) and (b, 0) 
respectively. 

DC is an arc of the curve y = f(x); P is a  variable point on the curve with 
co-ordinates (x, y); Q is a neighbouring point on the curve whose co-ordinates 
are (x + bx, y + <5y). We denote the area DPLK by A. Since D and K are 
fixed, A depends on the position of P(x, y) and is therefore a function of x, 
A(x). The area PQML can be denoted by JA, the increase in A due to an 

* The acceleration due to gravity can be taken as 1000 cm/sec2 in the downwards direction. 
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--=0+-_ __._ ___ ____..___...._ _____ � X 
K ( x =  a) L M 

Figure 13.1 

B ( x  = b )  

increase eh in x. Referring to the diagram, we have 
area rectangle PRML < c5A < area rectangle SQML 

(If the slope of the curve is negative, both inequality signs are reversed.) 
Therefore PL. LM < c5A < QM . LM 

ybx < JA < (y + c5y)c5x (13.3) 
Now let KB be subdivided into n equal parts each of length c5x (such as 

LM}. Then by drawing ordinates at all the points of subdivision, n strips like 
SQML are obtained. Summing over all such strips, we have 

x = b x = b L ybx < area DKBC < L (y + c5y)c5x (13.4) 
x=a x=a  

Now consider the difference between the two extreme quantities in the 
inequality (13.4) 

x = b x = b x = b L (y + c5y)c5x - L ybx = L c5yc5x 
x=a x=a  x=a  

x = b 
= bx x L by 

x = a 

Since c5x is the same for all points of subdivision (see Figure 13.1), 

Now since 

x = b 
bx x L by = c5x . CE 

x = a 

bx = 
BK = b -a 
n n 

(13.5) 

c5x may be made arbitrarily small l·y increasing n sufficiently. Hence the 
difference between ��:!(y + c5y)c5x and ��:!yc5x can be made arbitrarily 
small. Since the area DKBC lies between these two, it follows that 

x = b 
area DKBC = Jim L ybx (13.6) 

dx ➔ O x = a 



252 The basic ideas of integration 

Returning to the inequality (13.3), since we are dealing with small but finite 
quantities, we may divide throughout by {Jx and hence 

Now as {Jx ➔ 0, {JA ➔ 0, and {Jy ➔ 0, so we have 

therefore 

l. {JA 
Im - = y 

dx-o <JX 

dA 
- = y  dx 

hence A = f y dx from our definition of integration as the reverse of dif­
ferentiation. 

We note that, as yet, there is no definite value for the area because f ydx 
involves an arbitrary constant. This is because A, as we remarked earlier, 
is a function of x. Thus f y dx gives the area measured from an arbitrary origin 
to the point x. Referring to Figure 13.1, 

area DKBC = area up to CB (x = b) -area up to DK(x = a) 
= A (b) - A (a) 

Thus, to find the area between the curve y = f(x) and the x-axis, we first 
find the indefinite integral f y dx or f f(x) dx. We then substitute x = b and 
x = a respectively in the indefinite integral and subtract the two results. The 
notation adopted for this definite integral is g:!f(x) dx or the shorter f !f(x) dx or f !y dx. Thus 

area DKBC = r y dx 

Finally, we note from (13.6) and (13.7) that 

area DKBC = lim xf b y{Jx = f \ dx 
.Jx ➔ O x = a a 

( 1 3.7) 

(13.8) 

Example 1 Find the area between the curve y = x3, the x-axis and the 
ordinates x = 2 and x = 6. 

Area = t6 x3 dx 

= [:
4

]: 
64 24 - - -
4 4 

= 320 square units 
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f 2J3 dx Evaluate -
2-

-

2 X + 4 

f 2✓
3 

� - [! arctan�J
2✓3 

2 x2 + 4 - 2 2 2 

= � arctan (21
3

) - � arctan G) 

= l n  l n  n 
2 ·3 - 2·4 24 

Example 3 Find the area between the curve y = x(6 - x) and the line y = 5. 

C (l,O) 0 ( 5,0) 

Figure 13.2 

y : x ( 6-x ) 

Figure 13.2 shows the curve and the line. The area required is the 
shaded region. The abscissae of A and B are given by the solutions of the 
equation 

x(6 - x) = 5 x2 - 6x + 5 = 0 (x - l)(x - 5) = 0 x = 1 or x = 5 

Required area = {
5 

x(6 - x)dx -area ABCD 

= [3x2 - �

3I - 4 x 5 

= ( 75 _ 1�
5
) - ( 3 -D- 20 

124 32 
= 72 - -- 20 = - square umts 

3 3 
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Exercises 13d 
Evaluate the following definite integrals: 

1 (i) J: x2 dx (ii) f: x3 dx 

2 (i) J: y2 dy (ii) fz\3 dy 

3 (i) I
4 

.Jx dx (ii) J: Jx dx 

4 (i) f 3 

� o x2 + 9 

5 (i) J
- 2 d: 

- 3 X 

6 (i) J: 
1 

.J(x + 5)dx 

i

n
/
3 

7 (i) cos 3x dx 
n

/
6 

8 (i) Jz3 
e3"" dx 

9 (i) f 3dx 
1 X 

10 (i) f 3 � dx 
- 3 X + 5 

(ii) f 1 -$-
- 1 Y + 1 

(ii) J
- 2 d; 

- 3  y 

(ii) L - l 
.J(x + 5)dx 

(ii) f O 

sin (5x + ½n)dx 
- n

/2 

(ii) f O 

e1 - 5"" dx 
- 1 

(ii) f s dx 
3 X 

( . .  ) f z dx 
u o ..)(4 - x2) 

(iii) f �
1 
x5 dx 

(iii) r/5 dy 

(iii) Is 
x213 dx 

( . . .  ) f 3 du 
lll �3 0 u + 
(· · ·) J

- 2 dw 
lll -3 

- 3 w 

(iii) J: e - 2-" dx 

( . . .  ) f s dx 
lll -

1 X 

1 1  Find the area between the curve y = x3 + 9x, the x-axis, and the ordinates 
at x = 0 and x = 3. 

12 Find the area between the curve y = x4 + x2, the x-axis and the ordinates 
at x = 0 and x = 1. 

13 Find the area between the curve y = sin x and the x-axis between x = 0 
and x = n. 

14 Find the area between the curve y = -1 
1 

2 , the x-axis and the ordinates 
+ x  

at x = -1 and x = + 1. 
15 Find the area between the curve y = 3 + 7x - x2 and the line y = 9. 

Exercises 13 
1 Evaluate (i) f (2x - 1)3 dx, (ii) f (2x - 1)1 6  dx. 
2 Evaluate (i) f (2x2 - 1)3 dx, (ii) f (2x4 - 1)3 dx. 
3 Find the indefinite integrals with respect to x of (i) .Jx(x - 1)2 , (ii) (x - a) 

x (b - x), where a, b are constants. 



4 Evaluate 

(i) p 
6 + :2

- x4) dx 

( . . .  ) I 
5 + x + 3x2 

d lll �X X 

5 Evaluate 
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(ii) J1 + 2J: 2x2 
dx 

(i) [" (sin 2x + cos½x)dx 
J ,,,2 

(ii) (sec2 x + cosec2 x)dx 
J,!t/3 

1t/6 

6 Find the equation of the curve whose slope at any point is 2x - 3x2 and 
which passes through the point (1, 1). 

7 The gradient of a curve at the point with abscissa x is given by dy/dx 
= a + bx. If the curve passes through the origin and has slope 1 at this 
point, find the value of a. If the curve also passes through the point (1,3), 
find its equation. 

8 From any point P on a curve, PA is drawn perpendicular to the y-axis. 
The tangent at P meets the y-axis at B. If PA.AB = k2 find the equation 
of the curve. 

9 If d
d2

� = 4 +-; and d
dy = 0 when x = ½, find y as a function of x, given 

X X X 
y = ! when x = 1. 

10 Find the area between the curve y = cos x, the y-axis, the x-axis and the 
ordinate at x = n/4. 

11  * The gradient of a curve at the point (x, y) is ( x - �) and the curve passes 

through the point (1, 2). Find the equation of the curve. Show that the 
area enclosed by the curve, the x-axis and the ordinates x = 1, x = 2 is 
1.}- - 2 log. 2. [LU] 

12 Find the area between the curve y = (sin x + cos x)2, the x-axis and the 
ordinates at x = 0 and x = n/2. 

13 Find the area between the curve y = 1 + 9x - x2 and the line y = 9. 
14 Find the area between the curve y = 5x - 2x2 and the line y = x. 
15 A body moves under a constant acceleration f If its initial velocity is 

u and it starts from some origin at time t = 0, show that its velocity and 
displacement s from the origin are given by v = u + ft, s = ut + ½ft 2• By 
writing its acceleration as � :s (v

2) show that v2 = u2 + 2fs. 

16 Show that the expression for acceleration dv/dt can be rewritten �:s (v2). 

Hence, if the acceleration of a particle is equal to 16s and v = 4 m/sec 
when s = 1 m, find the velocity of the particle in terms of s. 

17 The equation of a curve is of the form y = ax2 + bx + c. It meets the x-axis 
where x = - 1  and x = 3; also y = 12 when x = 1. Find the equation of 
the curve and the area between it and the x-axis. [LU] 

*Note that J log. x dx = x log. x - x. 
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18 A particle is subject to retardation equal to 32 + 16t at any time t. Initially 
its velocity is 40 m/sec. Find how long it takes to come to rest and how 
far it is then from its starting point. 

19 Verify the following results: 

J 1 dx (i) o ✓(3 - 2x) = ✓3 - 1 JJ( l
/
3) dx n (ii) 

0 ✓ (2 - 3x2) 
= 4✓3 

20 Show that sin 3x = 3 sin x - 4 sin3 x and hence evaluate J ;f2 sin3 x dx. In 
a similar manner evaluate Jc\12 2 cos3 X dx. 

21 Given that 

show that 

Hence evaluate 

f( ) _ 1 + X x - (1 - x)(l + x2) 

1 1 2x f(x) = -- + -·--1 - x 2 1 + x2 

f 3
/
4 

0 
f(x)dx 

1 
22 Express ----- in partial fractions and hence, or otherwise, (2 - x)(l + x) 

J
1 dx evaluate 

O (2 _ x)(l + x) . [OJ 

23 Sk h h x2 - 7x + 10 . d" . I I . 1 etc t e curve y = 6 , m 1catmg c ear y any verbca x -
asymptotes and turning values. Determine the finite area bounded by the 
x-axis and that part of the curve between the points where it crosses the 
x-axis. [OJ 

24 Find the x co-ordinates of the stationary points of the curve whose 
equation is y = x(x - 3)4, and determine whether these points are maxima, 
minima or points of inflexion. Sketch the curve. Find the area of the region 
bounded by the curve and that part of the x-axis lying between x = 0 and 
x = 3. [JMBJ 

25 Show that cos 5x cos 3x = ½(cos 8x + cos 2x). Hence show that 
J5" cos 5x cos 3x dx = 0. 



14 
Some methods of integration 

14.1 Introduction 
In the previous chapter, we introduced the basic ideas of integration. The 
examples used involved only simple integrals, which were obtained from the 
inverses of differential coefficients (Section 13.3) or the simple extensions made 
possible by the five rules (Section 13.4) The object of this chapter is to examine 
several ways in which more involved integrals can be resolved into simpler 
forms which can then be recognised as standard integrals. While several 
important methods of integration will be examined, it must be realised that 
not all available methods are covered here. 

Ability to integrate readily only comes with experience and the student 
is well advised to work through as many exercises as possible. 

14.2 Integration of rational algebraic fractions 
We now consider the integration of rational algebraic functions, by which 
we mean fractions whose numerator and denominator each contain only 
positive integral powers of x with constant coefficients. In all cases, if the 
numerator is of the same or higher degree than the denominator, we first 
divide out. Thus we shall have one or more terms (in x, x

2, etc. or a constant) 
which can be immediately integrated and a fraction whose numerator is of 
a lesser degree than the denominator. It is with such fractions that we shall 
now be concerned. 

Denominator of the first degree 
In this case, after any necessary division, the integral can be immediately 
evaluated. 

Example J f2x3

2: :\
- x dx = f ( x2 + x + 1 + 

2x 
� 3 )

dx 

x2 
x

2 3 = 3 + 
2 

+ x + 2 log. (2x - 3) + C 

Example 2 f7 
+/_-}

x
2 

dx = f ( 2x + 3 + 2 � 
x 

)dx 

= x2 + 3x - log. (2 - x) + C 
257 
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Exercises 14a 
Evaluate 

1 fx2 dx 
x- 1 

4 L � 3t d
t 

f 1 /2 20 - 302 
1 0 

d0 
0 1 -

10 J�
b 

dx a +  X 

2 fx3 dx 
x - 1  

f t 2 
5 1 -3t dt 

8 L : 4t 
dt 

3 J :�xl 
6 J2 -x 

dx 
1 -x 

9 -- - dx f 1 2x - 8x2 

0 1 + 4x 

Denominator of the second degree which does not resolve into rational factors 
We shall discuss two cases here: (i) the numerator is a constant, (ii) the 
numerator is a linear expression in x. 

Case 1 Consider 

f k 
d ax2 + bx + c x 

This can always be put in the form kf dx 

� (x + a)2 ± p2 

We shall restrict ourselves to the case of + p2• In this case kf dx k 1 (x + a) 
� (x + a)2 + p2 

= 
� - p arctan-

p
- + C 

by our standard form for arctan x and its extension (rule III, Section 13.4). Example 1 

I 2x2 + 1 1  J ( 3 ) x2 + 4 dx = 2 + x2 + 4 dx = 2x + } arctan ½x + C 
Example 2 

1
4 

x2 _ ;x + 10 dx = 51
4 

(x _ �;
2 + 9 

= �[arctan (
x

; 
1
) I 

= i(arctan 1) -i(arctan 0) = -tzn Example 3 
I 7 dx _ 2f dx _ 2f dx 2x2 + 2x + 5 -2 x2 + x + i - 2 (x + ½)2 + £ 

7 1 (x + ½) 7 1 = 2 · (3/2) arctan (3/2) 
= "! arctan j{2x + 1) + C 



Exercises 14b 
Evaluate 

1 f 5 dx x2 + 2x + 2 

3 t
4
-x2�_

-d4-:-+-8 

5 f dx 9x2 - 6x + 37 

I 1 x2 + 2x 7 2 dx 
- 1 X +2x+2 

9 fx2 + x  + 2 dx 
X2 + X + 1 
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2 f x2 - 6: + 13 dx 

4 f5x2 + 6 dx 
x2 + 1 

6 f 3 5 dx 
_ 2 2x2 - 2x + 13 

f x4 
8 x2 + 9 dx 

10 f I 
16�3 + 6x + 8 dx 

1 /4 8x - 4x + 5 

Case 2 If the numerator is a linear expression in x, we put it equal to k x (the derivative of the denominator) + l, where k, l can be determined by 
inspection. The integral now splits into two parts, in the first of which the 
numerator is the derivative of the denominator, and hence this integral is 
the logarithm of the denominator; the second is of the type considered above. 

Example 1 
f x + 3 dx = f

½(2x) + 3 dx x2 + 25 x2 + 25 

= ½ log. (x2 + 25) + ¾ arctan ½x + C 
Example 2 

f 3x - 2  d J
¾(4x+2) - 1 d x - - ---- X 2x2 + 2x + 5 - 2x2 + 2x + 5 

3
f 

(4x + 2)dx 7f 
dx = 4 2x2 + 2x + 5 - 2 2x2 + 2x + 5 

_ 
3 2 7f 

dx 
- -4 log. (2x + 2x + 5) - 4- 1 2 9 (x + z) + " 
= ¾ log. (2x2 + 2x + 5) -l arctan-¼{2x + 1) + C 
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Exercises 14c 
Integrate the following functions with respect to x: 

l X + 7 2 3x - 5 
x2 + 16  x2 + 36 

4 3x + 5 5 1 - 3x 
x2 - 6x + 10 x2 - Bx + 25 

7 x3 

8 5x + 1 
x2 - 6x + 10 3x2 

- 12x + 13 
2x3 + 4x2 

10 -=-----2x2 + 2x + 5 

3 
2x + 3 

x2 + 2x + 10 
6 X 

x2 - x  + 1 
x2 

9 �--­x2 + 2x + 5 

Denominator which resolves into rational factors of the first and second degree 
If the denominator factorises, we use the technique of partial fractions to 
express the integrand in a form suitable for integration. The three possible 
types of fraction are 

px + q  1 1 
ax+b ax2 +bx+ c (ax + b)2 

We have just considered the first two types and the third type integrates to 
- 1  

a(ax + b) 

f 
7x - 4  Example 1 2x2 _ 3x _ 2 dx 

We note that 2x2 - 3x - 2 = (x - 2)(2x + 1). Put 
7x - 4  A B 

---- - = -- + --2x2 - 3x - 2 - x - 2 2x + 1 
On multiplying throughout by the common denominator, we obtain 

7x - 4 = A(2x + 1) + B(x - 2) 
With x = 2 10 = 5A + 0  

2 = A  
With x = - ½ 

- 7½ = 0 - 2½B 
3 = B  

Rewriting the integrand in partial fractions, we have 

I 7x - 4  I 2 I 3 
2x2 - 3x - 2 dx = x - 2 dx + 2x + 1 dx 

= 2 log. (x - 2) + ! log. (2x + 1) + C 
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I 
6 22 - 5x3 - 5x4 Example 2 - - - -- dx 

3 (x -l)(x + 2) 
We must first divide out because the numerator is of higher degree than 

the denominator. This division can be carried out using the technique of 
partial fractions. By inspection, we see that the highest power of x obtained 
by division is x2 and we allow for this and all lower powers of x, including 
the constant in the partial fractions. Thus we set 

therefore 

22 - 5x3 - 5x4 

2 D E - ---- = Ax + Bx + C + - - + --(x - l)(x + 2) x - 1 x + 2 

22 - 5x3 - 5x4 = (Ax2 + Bx +  C)(x - l)(x + 2) + D(x + 2) + E(x - 1) 
With x = 1 

12 = o +  3D + o  therefore D = 4 
With x = - 2  

- 18 = 0+0 - 3£ therefore E = 6 
The other constants are found by equating the coefficients of various powers 

of x. 
For coefficient of x4 

- 5 = A  
For the constant term 

22 = - 2C + 2D - E 
= - 2C+8 - 6  

C =  - 10 
Then with x = - 1  

Hence 

22 = (A - B + C)( - 2)(1) + D(l) + E( - 2) 
22 = ( - B - 15)( - 2) + 4 - 12 
30 = 2B + 30 
B = O  

f 
6 (22 - 5x3 - 5x4) - ----- dx 

3 (x - l)(x + 2) 

= L6 

( - 5x2 - 10) dx + L6 

(x � 1) dx + L6 

(x ! 2) 
dx 

= [ -ix3 - lOx + 4 log. (x - 1) + 6 log. (x + 2)]f 
= ( - 420 + 4 log. 5 + 6 log. 8) - ( - 75 + 4 log. 2 + 6 log. 5) 

(Since log. 8 = log. 23 = 3 log. 2) 
= ( - 345 - 2 log. 5 + 14 log. 2) 
= - 338·5 approximately 
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f 2x2 - lOx d Example 3 

(x + 3)(x _ l)2 x 

Set 2� - lfu A B C (x + 3)(x - 1)2 = -(x_+_3_) + -(x---1-) + -(x---1-)2 
(Note the partial fractions for the repeated linear factor (x - 1)2 .) 
Therefore 

2x2 - lOx = A(x - 1)2 + B(x + 3)(x - 1) + C(x + 3) 
With x = 1 - 8  = 0 + 0 + 4C C =  - 2  

With x = - 3  48 = 16A + 0 + 0 A =  3 
Equating the coefficients of x2 gives 2 = A + B, therefore B = - 1  and so 
f 2x2 - lOx d (x + 3)(x - 1)2 x 

Example 4 

Set 

therefore 

= lx ! 3) dx -f/� 1 )  - f(:!�)2 

= 3 log0 (x + 3) - log. (x - 1 ) - 2  fx - 1)- 2 dx 
2 = 3 log. (x + 3) - log. (x - 1) + --1 + C 

x -

f (3x + 1) dx __ f (3x + 1) dx x3 + 2x2 + x + 2 (x2 + l)(x + 2) 
3x + 1 Ax+ B C �-- -- = - -- + --(x2 + l)(x + 2) - x2 + 1 x + 2 

3x + 1 = (Ax + B)(x + 2) + C(x2 + 1) 
With x = -2 

-5 = O +  5C therefore C = - 1 
Equating coefficients of x2 gives O = A + C, therefore A = 1 .  
Equating constant terms gives 1 = 2B + C, therefore B = 1 .  
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Substituting these values of A, B and C gives 

I 3x + 1 d I (x + 1) d f 1 d 
(x2 + l)(x + 2) 

x = (x2 + 1) 
x - (x + 2) 

x 
l

J 
2x dx f dx f dx 

= 2 (x2 + 1) 
+ 

(x2 + 1) - (x + 2) 

= ½ log. (x2 + 1) + arctan x -log. (x + 2) + C 
Exercises 14d 
Integrate the following functions with respect to x: 

l x + l 2 
1 x2 + 5x + 6 6x2 

- 5x + 1 

3 
x +  5 x - x2 

2x3 + 7x2 + 2 
5 2x2 + x  
7 4x2 -3x + 5 

(x + 2)(x -1)2 

9 6x3 + 10x2 - 13x -6 
3x3 + x2 

1 1  1 
(x2 + 4)(x2 + 8) 

13 (x -2)2 

x3 + 1 

15 
10 

(x - l)(x2 + 9) 

17 
1 x2 

- (p + q)x + pq 

19 X 
(x -a)(x -b)(x -c) 

14.3 Change of variable 

4x2 -2x -7 4 2x2 - 3x - 2  

6 x + 62 
(3x -1 )2(2x + 3) 

8 6x2 + 5x - 2 
(2x + 1)2(x - l) 

10 
4x 

(x2 + 4)(x2 + 8) 

12 8x2 + 3x -3 
(2x2 -1)(2x + 3) 

1 
14 x4 + 5x2 + 4 

16 5 
(x + l)(x2 + 4) 

x4 
18 29 

X -

20 X 
(x2 + a2)(x2 + b2) 

Another widely used device in integration is to change the independent 
variable, say x, to another one, u, where the relation between x and u is known. 
Suppose 

I =  f2x cos x2 dx 
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Let u = x2, so that du/dx = 2x. Then 

I = f :: cos u dx 

and since integration is the inverse of differentiation 
di du 
- = - COS U dx dx 

di dx 
- · - = COS U dx du 

di 
du = cos u by (10.14) 

I = f cos u du 
which is recognisable as a standard form, therefore I = sin u + C = sin x2 + C (substituting for u) 

In general, we have 

For with 

Therefore 

f f(u) :: dx = f f(u)du 

1 = I f(u) :: dx 

di = f(u) du 
dx dx 

di . dx = f(u) dx du 
di = f(u) du 

I = f f(u) du 

(14.1) 

The difficulty of the method lies in finding the relation u = <p(x) which 
simplifies the integral. It must be remembered that: 
(i) One part of the integrand supplies the du/dx which has to be introduced. 
(ii) The rest of the integrand must be easily expressible in terms of u. 
Example 1 Evaluate I = J ,J(x3 - 5)3x2 dx. 

Let u = x3 - 5, therefore du/dx = 3x2, which we note is part of the 
integrand. In fact, it is because we foresaw this that we chose the substitution. 
Therefore 



l =  JJu !: dx 
= I u 1 12 du 
= iU3/2 -!"- C 
= i(X3 - 5)3/2 + C 
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Occasionally, k du/dx (k a constant) may be included in the integrand instead 
of just du/dx. 
Example 2 Evaluate J = f e-x3x2 dx. 

Let u = - x3, therefore du/dx = - 3x2 and so, after substitution, 

( x3 dx Example 3 I = j(3x4 _ 5)6 

I =  f e"( -i !:) dx 

= _!fe" du dx 3 dx 

= -if e" du 
= - ½e" + C 
= - ½e-x3 + C 

Let u = 3x4 - 5, therefore du/dx = 12x3 and so, after substitution, 

I = f__!__ __!__ du dx u6 12 dx 
1 

J - 6  = 12 u du 
1 u- 5 

= 12 · - 5 + c  

- 1  1 = -·- + C 60 u5 

- 1  = 60(3x4 - 5)5 + C 
It is the more usual practice to make the substitution u = </J(x), differentiate it 

toobtaindu/dx = </J'(x)and thenreplace dx by du/</J'(x)(dx = du/!: = :: du). 

Example 4 I = f x - 1) ;/(x2 - 2x + 3) dx 
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Let u = x2 - 2x + 3, therefore du/dx = 2x - 2 and so 

I =  fx - l ) Ju 2
/: 2 

I 31 du 
= (x - 1) � u 2(x - 1) 

= �fulf3 du 
= ½ - ¾u4i3 + C 
= ¾(x2 -2x + 3)413 + C 

It will be noted that, of the five rules given earlier, III, IV and V are 
special cases of integration by substitution. 

Example 5 I ex - 2 dx 
Let u = (x - 2), therefore du/dx = 1 and so 

I ex- 2 dx = I e" du = e" + C = ex - 2 + C 

Example 6 I sin 5x dx 
Let u = 5x, therefore du/dx = 5 and so 

J sin 5x dx = I sin u �u = i I sin u du 
= - ½ cos u + C 

Example 7 f dx 
3 (4 - 3x) 

= - ½ cos 5x + C 

Let u = 4 - 3x, therefore du/dx = - 3 and so 

Jc4 !�x)3 = J:3 ( - D du = -if u- 3 du 
1 u - 2 1 1 = -3 • - 2 + C = 6u2 + C = 6(4 - 3x)2 + C 

Example 8 f "
14 

cot x dx 
J,,/6 

Consider the indefinite integral I = J cot x dx: 

I =  Ic�s x  dx sm x 
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Let u = sin x, therefore du/dx = cos x and substitution gives 

I = f cos X � 

u cos x 

Hence 

= f:
u 

= loge u + C 
= loge (sin x) + C 

J1'/4 [ ]"/4 cot x dx = loge (sin x) 
1<

/
6 1<

/
6 

= loge (sin¼n) - log. (sini-n) 1 1 = log. ✓2 - log. 2 
= log. (J2/D 
= loge J2 

An alternative approach when dealing with definite integrals is to change the limits of integration for the variable x into corresponding limits for the variable u. Thus for the above example, with u = sin x, when 

and when 

Therefore 

1t 
x =-

6 

1t 
x =-

4 

. 1t 1 
U = Stn - = -6 2 

J"/4 cot xdx = I i1J2 du = [1og. u]11J2 
1<

/
6 1 /2 U l /2 

= log. J2 as before 
Two devices may sometimes be necessary. 

J 3 2x dx Example 9 -4--2 (x - 1) 

Let u = x2, therefore du/dx = 2x. 
When x = 2, u = 4; when x = 3, u = 9. Therefore 

J 3 2x dx I 9 1 du I 9 du 
2 x4 - 1 = 4 u2 

- 1 2x 2x = 4 u2 - 1 
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Now we use partial fractions. 

Exercises 14e 

1 I 9 

[ 
1 1 

J = 2 4 (u - 1) -(u + 1) du 

= G log. (u - 1) - � log. (u +  l)J: 

1 = 2[(log. 8 - log. 10) - (log. 3 - log. 5)] 

1 = 2(log. 8 - log. 10 - log. 3 + log. 5) 

1 8 x 5  
l 4 = z log. 3 x 10 = z log."! 

Integrate the following functions with respect to x: 
X 

3 ✓(9 - x2) 
1 

4 -(log. x)3 

X 
5 cos x 

(1 - sin x) 6 
sin x cos x 

(cos2 x + 2 sin2 x) 
9 log. x x4 

7 - -­(xs + 6)7 8 x✓(x + 1) 
X 

el/x 
12 -

x2 
10 l 

x log0 x 1 1  tan5 x sec2 x 
2 

13 X 

(1 + x3)(2 + x3
) 

15 
arcsm x 

✓(1 - x2
) 

Evaluate the following definite integrals: 

f "/4 
f 

"/4 sec2 0 
16 

0 
tan3 x sec2 x, dx 17 - - -- d0 

0 (1 + tan 0) 

18 J 2 (log. x)" dx (n > 1) 
l X I 2 ye', 20 
1 (e'2 _ l)  dy 

22 {
2 

(1 �
x

e2x) dx 

J l t dt 
24 -4 - -_ i (t - 4) 

f 1 e2u 
19 o (3e2u + 2) du 

21 I 2 x dx 
1 (x4 - 2x2 + 10) I 11✓2 arcsin 0 23 2 dO 
1 /2 ✓(1 - 0 ) I e2 1 25 - sin (log. x) dx 
e• X 
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14.4 Trigonometric substitutions 
If the integrand involves 
(i) ,J(a2 - x2), we try x = a sin 0 because then 

,J(a2 - x2) = ,J(a2 
- a2 sin 0) = ,J(a2 cos2 0) = a cos 0 

(ii) ,J(a2 + x2), we try x = a tan 0 because then 
,J(a2 + x2) = ,J(a2 + a2 tan2 0) = ,J(a2 sec2 0) = a sec 0 

(iii) ,J(x2 - a2), we try x = a sec 0 because then 
,J(x2 - a2) = ,J(a2 sec2 0 - a2) = ,J(a2 tan2 0) = a tan 0 

I 2J3 dx 
Example 1 

2 x2 ,J(4 + x2) 

Let x = 2 tan 0, then 
dx 
d0 = 2 sec2 0 

When x = 2, tan 0 = 1, therefore 0 = n/4. 
When x = 2,J3, tan 0 = ,J3, therefore 0 = n/3. 
Hence 

- -- - - --- - - d0 I 2✓3 dx f 
"13 2 sec2 0 

2 x2,J(4 + x2) 
- x/4 4 tan2 0 2 sec 0 

Example 2 J: ,J(a2 - x2) dx 

Let x = a sin 0, therefore 

1 J,"13 sec 0 = - -2- d0 4 x/4 tan 0 

1 J,"13 cos 0 = - -2- d0 
4 x/4 sin 0 

1 J,"/
3 

= 4 cosec 0 cot 0 d0 
x/4 

1 [ ]"/3 = 4 - cosec 0 
x/4 

= i ( - J3 + ✓2) 

::::: 0·065 

dx 
d0 = a cos 0 
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When x = 0, sin 0 = 0, therefore 0 = 0. 
When x = a, sin 0 = 1, therefore 0 = n/2. 

Hence 
ra ("12 

J o ✓(a2 
- x2) dx = J o a cos 0 . a cos 0 d0 

1"/2 = a2 
J o cos2 0 d0 

a2 
1
,.12 

= 2 J o (1 + cos 20)d0 

= - 0+--a2 

[ 
sin 20]"12 

2 2 0 

a2 (n ) =
2 2 + 0  - (0) 
na2 

4 
Some times other trigonometric substitutions can be used. 

Example 3 J: J(4 � x) dx 

Let x = 4 sin2 0, then 

:; = 8 sin 0 cos 0 

When x = 2, sin2 0 = ½, therefore 0 = n/4. 
When x = 0, sin2 0 = 0, therefore 0 = 0. 
Hence 

I: )(4� x) dx = J:
14 J(4�

s
:::�

0
) s sin 0 cos 0 d0 

f "14 2 sin 0 = -2 0
. 8 sin 0 cos 0 d0 

o cos 

= 8 fo"14 
sin2 0 d0 

= 4 f :14 
(1 - cos 20) d0 

= 4 0 - - -[ 
sin 20

]
"14 

2 0 

= 4(¼n - ½) 
= n -2 

Integration by substitution is a fairly straightforward technique. The 
question of what is the correct substitution for any particular integral is not 
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quite so straightforward. We have mentioned, at the beginning of this section, 
three substitutions which often prove helpful. Some other useful substitutions 
were mentioned in the preceding section. We mention two others which are 
generally very satisfactory. If the integrand involves er<x>, put u = f(x). If the 
integrand involves J(a + x), put u = .J(a + x). 

Exercises 14f 
Integrate with respect to x 
1 x.J(x2 - a) 

X 
4 J ( l  - x2) 

6 x.J(x + 1 )  

2 xJ(x2 + 4) 

5 JG �:) [Hint: put x = cos 20] 

Evaluate the following definite integrals: 

8 J: x.J(l - x2) dx 9 J: xJ(4 + x2) dx 

i
11J2 x2 dx 10 J 2 o ( 1  - X ) 

14.5 Integration of trigonometric functions 

I sin ax dx = - � cos ax + C 

f cos ax dx = � sin ax + C 

Jsec2 ax dx = � tan ax + C 

I cosec2 ax dx = - � cot ax + C (a is a constant) 

Certain trigonometric functions may be integrated after we have used the 
identities of Chapter 6 to express the integrand in terms of the standard 
forms given above. Of some importance are the two results 

J sin2 x dx = I ½(1 - cos 2x)dx = ½(x - ½ sin 2x) + C 

= ½ x - ¼ sin 2x + C 

I cos2 x dx = I ½(1 + cos 2x)dx = ½(x + sin 2x) + C 

= ½x +¼ sin 2x + C 

If the integrand is a product of a sine and/or a cosine of a multiple angle, 
it may be expressed as a sum by means of the identities (see (6.46) to (6.49)). 
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sin mx cos nx = ½[sin (m + n)x + sin (m - n)x] 
cos mx cos nx = ½[cos(m + n)x + cos (m - n)x] 
sin mx sin nx = ½[cos (m - n)x - cos (m + n)x] 

Example 1 I sin 3x cos x dx = I ½(sin 4x + sin 2x) dx 

- cos 4x cos 2x = - - - - --+C 8 4 

Example 2 I sin 5x sin 2x dx = I½( cos 3x -cos 7 x) dx 

= sin 3x _ sin 7x + C 
6 14 

The integral J sinm x cos" x dx can be evaluated quite easily if m or n is an 
odd integer. If m is odd, the substitution u = cos x is used; if n is odd, the 
substitution u = sin x is used. 

Example 3 I sin3 x cos2 x dx 
Put u = cos x, therefore du/dx = - sin x and so 

Jsin3 x cos2 x dx = - Jsin x sin2 x.  u2 �u 

sm x 

= - I sin2 x . u2 du 

= - I (1 - u2) u2 du (sin2 x = 1 - cos2 x) 

= - }u3 + ¼u5 + C 
= - ½ cos3 x + ¼ cos5 x + C 1"12 cos3 dx Example 4 . 6 dx 

"14 sm x 
Put u = sin x, therefore du/dx = cos x. 

When x = ½n, u = sin½n = 1. 
When x = ¼n, u = sin¼n = 1/✓2. 
Therefore 

j"i2 c�s: x 
dx = f 1 cos: x -� 

J 7t/4 sm X 11✓2 U COS X 

f 1 1 - u2 
= - -6 - du (Note: cos2 x = 1 - sin2 x = 1 - u2) 

1 1✓2 U 

= f 1 (u - 6  - u -4) du 
11✓2 
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[ - 1  1 1 1 ] ' = s·us + 3 - u3 
11J2 

= [ - ½  + ½J - [ -½(J2)s + ½(J2)3] 
= -f5 +-{5✓2 

Example 5 J J(cos x) sin3 x dx 

Put u = cos x, therefore du/dx = - sin x and so 

f �(cos x) sin x3 dx = J�u sin3 x( - s
!\ ) 

= - f ul f3 ( 1  - u2) du 
(Note: sin2 x = 1 - cos2 x = 1 - u2) 

= - ful /3 - u7f3)du 

Exercises 14g 

= - ¾u4/3 + lo-u1013 + C 
= - ¾(cos x)413 + lo-(cos x)1013 + C 

Integrate with respect to x 
l sin 7x cos 2x 2 sin 3x cos 8x 3 cos 5x cos 6x 

6 cos6 x sins x 4 sin 7x sin 5x 5 cos3 x sin4 x 
7 J(sin x) cos x 8 sins x 

cos2 x 

Evaluate the following definite integrals: 

f 2

" 
9 

0 
sin 5x cos 3x dx f "12 coss x 

10 -.-7 - dx ,,13 sm x 

14.6 Integration by parts 
This is a method for integrating a product of two functions. From 

d du dv -(uv) = v - +  u ­dx dx dx 
on integrating both sides with respect to x, we have 

whence 

f du f dv uv = v dx 
dx + u dx dx 

u - dx = uv - v - dx f dv f du 
dx dx (14.2) 
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The product to be integrated is u x dv/dx and to obtain a slightly different 
version of the above result we consider u and dv/dx as being the 'first' and 
'second' parts of the product, noting that, if dv/dx is '2nd function', 
v = J '2nd function.' The formula is then 

J 1st x 2nd = 1st x J 2nd -f derivative of 1st x J 2nd) (14.3) 

Note that 
(i) one function, '2nd', must be integrable; 

(ii) the other function, ' 1 st', is never integrated. 
Thus if this method is used to integrate the product of two functions, we 
first look for a function which can be integrated immediately. If there is only 
one, this is taken to be the '2nd' function; if both functions are integrable, 
we generally choose as the '1st' function the one which simplifies most on 
differentiation. 

Example 1 f xe3x dx 

Both x and e3x are easily integrable, but as x becomes simpler on dif­
ferentiation, we use them in the given order. 

f xe3x dx = x f e3x dx -J [ d
� (x) J e3x dx] dx 

xe3x 

I 
e3x 

= --- 1 x - dx 
3 3 

= ½xe3x -!e3x + C 
Example 2 f x2 sin x dx 

By the same reasoning as before, we treat this product in the order given. 

f x2 sin x dx = x2 f sin x dx -J [ d
� (x2) f sin x dx] dx 

= -x2 cos x + f 2x cos x dx 

We now apply the rule to the second integral, taking care to keep the trigono­
metric function as the '2nd' function, therefore 

f x2 sin x dx = -x2 cos x + 2x f cos x dx -J[:x (2x) f cos x dx ] dx 

= - x2 cos x + 2x sin x - 2 f sin x dx 

= -x2 cos x + 2x sin x + 2 cos x + C 
Example 3 f x3 log. x dx 

Of the two functions involved, we see that x3 is the only one which is 
immediately integrable, therefore 

file:////-T
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f x3 log. x dx = flog. x . x3 dx 

= log. x f x3 dx - f [d: (log. x) f x3 dx ] dx 

x4 

J
l x4 

= log. x .4 - �-4 dx 

= ¼x4 log. x - -lox4 + C 

Example 4 f x arctan x dx = f arctan x . x dx 

= arctan x f x dx - f [ :
x 

(arctan x) f x dx] dx 

i 2 f 1 x2 
= zX arctan x - --2 -2 dx 

l+x 

1 2 f[ 1 i ] = zX arctan x - - - -- dx 
2 1 -x2 

= ½x2 arctan x - ½x + ½ arctan x + C 

Example 5 flog. x dx = flog. x x 1 dx 

flog. x x 1 dx = log. x f 1 dx - f [ ddx 
(log. x) x f 1 dx] dx 

= x log. x - f�x dx 

= x log. x - x + C 

Example 6 f arcsin x dx = f arcsin x x 1 dx 

f arcsin x x l dx = arcsin x f l dx - J[d� (arcsin x) x J l dx ] dx 

= x arcsin x - f .J(l � x2) 
dx 

For the latter integral let u = 1 - x2, therefore du/dx = - 2x and 

J arcsin x dx = x arcsin x - f Ju ( - �:) 

. l
J 

du = x arcsm x + 2 .Ju 
= x arcsin x + .Ju + C 
= x arcsin x + .J(l - x2) + C 
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Exercises 14h 
Find the following integrals 

1 Jxe-x dx 

4 I x3ex 

1 f x arcsin x dx 

10 J 0 sin m0 d0 

13 J 
x + sin x 

dx 
1 + cos x 

r/

2 

2 
0 

x cos 2x dx 

5 f x3 sin x dx 

8 J x5 loge 3x dx 

11  

14  

r

/4 
0 

x sec2 x dx 

I x cos x dx 
sin2 x 

14.7 Further integration by parts 

3 J 02 cos 20 d0 

6 f 
2 

t 
4 

loge t dt 

9 1✓3 arctan 0 d0 

12 J (loge x)2 dx 

15 J sec3 x dx 

The following examples indicate some useful ways of proceeding. 

Example I f ex sin x dx = e f sin x -J[ex J sin x dx ] dx 

= -ex cos x + I e cos x dx 

Therefore 

I ex sin X dx = -ex cos X + e I cos X dx 

-f [ ex f cos x dx ] dx 

= -e cos x + ex sin x -I ex sin x dx 

We note that on the RHS we have the original integral, therefore 

2 f ex sin x dx = ex(sin x -cos x) 

I ex sin x dx = ½ex(sin x -cos x) + C 

Example 2 I .j(9 -x2) dx 

We have previously used a trigonometric substitution for this type of 
integral (see Section 1 4. 1 4, Example 2). 
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f J(9 -x2) dx = f J(9 -x2) x l dx 

= J(9 - x2) f 1 dx -f [ ddx 
J(9 - x2) f 1 dx] dx 

= xJ(9-x2) -J
- x2 dx J(9 - x2) 

f9 - x2 - 9 
= xJ(9 - x2) - J(9 _ x2) 

dx 

2 f 9 -x2 f dx = xJ(9 - x  ) - J(9 -x2) dx+9 
J(9-x2) 

Therefore 

f J(9 - x2) dx = xJ(9 - x2) -f J(9 - x2) dx + 9 arcsin ½x 

2 f J(9 - x2) dx = xJ(9 - x2) + 9 arcsin ½x 

f xJ(9 - x2) 9 . x J(9 -x2) dx =  2 +2
arcsm

3
+c 

Exercises 14i 
Integrate the following functions with respect to x: 
1 ex COS X 2 e - lx sin 3x 3 e5x COS iX 
4 J( 16  + x2) 5 cosec3 x 

Exercises 14 
1 Show that 

(i) f cos x sin2 x dx = ½ sin3 x + C 
(ii) f tan5 x sec2 x dx = ¼ tan6 x + C 

(iii) f 2x(x2 + 1)3 dx = ¼(x2 + 1 )4 + C 
2 Find the following indefinite integrals: 

(i) f(2x + 1)512 dx (ii) f� 1 -3x 

(iv) ft an3 x sec x dx (v) f J(3 _ �: _ x2) 

( . .  ) f cos x dx 
Vll 3 . +sm x 

( 
. . .  

) f 6e2x 
d Vlll - -2- X l+e x 

(x) f cos 5x sin 2x dx . 
I 

sm x 
(x1) -

✓ 
dx 

COS X 

(iii) f sec4 0 d0 

( . f dx v1) x2 + 6x 

C 
) f dx 

ix 
J( l -x2) sin - 1 x 

(xii) f sin3 x cos3 x dx 
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3 Find the following integrals: 

(i) f x + 1 dx 
x2 - 3x + 2 

(iii) fcx + l)�;x2 + 4) 

I (3x + 2) dx (v) x(x - l)(x2 + 4) 
.. I (5 - 3x + 4x2) dx (vn) (1 - x)(2 - x - x2) 

( .. ) f(x - l)(x + 2) d 11 
x(x + 1) 

x 

f2 dx 
(iv) 

- 2 x2 - 16 

I x dx (vi) 
(x + l)(x2 + 9) 

4 At any point P(x, y) on a curve the product of x2 and the slope of the 
curve is 2. If the curve passes through the point (1, 4), find its equation. 

5 Show that 

f2 
x log. (x2 + l) dx = i log0 5 - log0 2 - ¾  

6 Evaluate 

(i) I:12 1 /:os x 
(iii) L1 x2 arctan x dx 

7 Evaluate 
( 2 x dx 

(i) J o (x + 2)(x2 + 8) 

(iii) L"'2 
sin 5 x dx 

8 (a) Evaluate 

(ii) J:14 x sec2 x dx 

(. ) 
f 1 arctan x d IV l 2 X 

o + x 

f 3 3x2 - 1 
(ii) 

2 x(x2 - 1) dx 

(iv) L" x2 sin x dx 

1"'4 
(i) 

J O 
sin 5x cos 3x dx (ii) L1 xe - 3x dx 

(b) Show that 
1"'4 
Jo (tan3 x + tan x) dx = ½ 

Hence evaluate f :14 tan3 x dx 

9 (a) Use the substitution y = sin x to evaluate 

fa cos x dx 
2 2 where ix = sm - 1 (½) 

o COS X - 1 

[WJC, part] 

[JMB] 



f 1 sin - 1 x 
(b) Evaluate J o ✓( l  + x) dx 

10 (i) Evaluate 

f 4(x2 _ l)2 (a) - -- dx 
2 X 

("'4 (b) J O 
sin 3x sin 2x dx 

(ii) Find f 
x/: 1 dx 

1 1  Evaluate, to three significant figures, the integrals 
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[JMB] 

[LU] 

l2 x(:: 1) 
( 1 dx 
Jo x2 + x + 1 {

2 x2 log x dx 
[SUJB] 

12 Find 

(i) f x✓(6 - x) dx ( . .  ) fx2 + x + 1 d 11 2 4 X 
X + (iii) f sin2 x(2 - cos x) dx 

[WJC, part] 

13 Show that 1 + sin 20 = (sin 0 + cos 0)2• Hence evaluate 

f" ✓( l  + sin 20)d0 
ff/2 

14 Prove that cos mx cos nx = ½[cos (m + n)x + cos (m - n) x] . Hence show 
that J:" cos mx cos nx dx = O m =I= n 
Find the value of the integral when m = n. 

15 Use the substitution x = a cos2 0 + b sin2 0 to evaluate 

Also evaluate 
f dx 

(x - a)(x - b) 

f 2✓(x _
d
;(b - x) (a < 

b) 

16 Use the substitution u = t - 1/t to show that 

ft 2 + 1 dt - f� t4 + 1 - u2 + 2 
and use the substitution v = t + 1/t to show that 

ft 2 - 1  d f dv 
t 4 + 1 t = v2 - 2 

Hence evaluate f� in terms of u and v. 
t + 1 
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17 Evaluate f
log. x dx, considering separately the three cases n = 0, n = 1, . x" 

and n -:/- 0 or 1. 
18 Prove by two different methods that 

f ✓(x2 - a2
) dx = ½x✓(x2 - a2

) - ½a2 log {x + ✓(x2 
- a2)} 

19 Evaluate 
. f 1 arctan x .. f" . (1) 1 2 dx (11) sm x cos" x dx 

0 + X 0 

20 Show that f
1
2x3e-x2 dx = 1 - � 

J o e 

21 Show that 

f eax 

e0x cos bx dx = 
a2 + b2 (b sin bx+ a cos bx) 

f"/2 Hence evaluate 
J O 

e2x cos 3x dx 

22 Prove that J:12 x2 cos x dx = ¼n2 
- 2 

23 Use the substitution x = cos 20 to prove that 

-- dx = 1t J 1 J(l - x
) 

_ 1 1 + X 

24 Evaluate f JC � x) dx 

25 Evaluate 
. f 3x + 4  (1) ✓(5 - 2x) dx ( .. ) f x2 + 5 d 11 (x - l)(x - 2) x 

26 Evaluate 

f "12 f "12 I 
3J312 dx (i) cos4 x sin x dx (ii) (✓cos x) sin2 x dx (iii) 2✓(9 2) O O 3/2 X - X 

d 1 27 Prove that -d {log (tan½x)} = -.-x sm x 
Hence show that 

. dx = 2 log(sec½x) Jl - COS X 

sm x 
Verify this result by using the formulae 1 - cos x = 2 sin 2 ½ x and 

sin x = 2 sin ½x cos½x. 
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28 Evaluate f J(l - x2) dx 

29 Integrate x3 /(x2 + 1)3 with respect to x, by the substitutions (a) x = tan 0, 
(b) x2 + 1 = u. Verify that the two results agree. 

30 Prove that 

f :12 x2 sin x cos x dx = -/on2 - ¼ 

31 (a) Evaluate L"'4 

(sin x + cos x)2 dx 

(b) Findf x 
dx 

- x e + e 
32 (i) Use the substitution t = tan ½x to show that 

(ii) Obtain f x sec2 x dx 

33 Evaluate 

(a) J:12 sin 20 sin 0 d0 

(b) f 
1 
xex dx 

f,,12 dx - - - - -- = ln 2  
0 1 + sin x + cos x 

[AEB] 

[LU] 

(c) J: xJ(l - x)dx, by putting x = 1 - t 2 or otherwise. [LU] 

34 (a) Find constants a and b such that, for all values of x, 

2 sin x + 3 cos x = a(3 sin x + 2 cos x) + b( - 2 sin x + 3 cos x) 
Using this result, find 

I 2 sin x + 3 cos x d 3 sin x + 2 cos x 
x 

(b) By using the substitution x = u - 1, or otherwise, evaluate 

f 3 2x + 1 d 
0 J(x + 1) X 

35 Show that 

[C] 

J: (x + 1):2x + l) dx = log. a 

where a is a rational number to be determined. [JMB] 
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36 Evaluate 
r l /2 x dx (i) J o J(l - x2) 

37 Find the constants A, B, C in the identity 

3x2 - ax A Bx + Ca 
---�-� = -- - + - - -(x - 2a)(x2 + a2) - (x - 2a) x2 + a2 

where a is a constant. Hence prove that 

fa 3x2 - ax 
2 )( 2 2) dx = ¼n -! log. 2 

0 (x - a x + a 
38 Find 

(i) f ex - 1)2 dx (ii) f cos 0 J(l + sin 0)dx 

39 By substituting x = sin 0, or otherwise, evaluate 
r 11J2 x2 

J o (1 - x2)3/2 dx 

leaving your answer in terms of n. 
40 Prove that 

r f(x)dx = r f(a + b - t ) dt 

Hence prove that, if O < p < ½n, 

i
n -P 0 d0 --:--

0 
= n ln cot½P p sm 

[O] 

[JMB] 

[AEB] 

[JMB] 

[O] 



15 
Some applications of the integral calculus 

15.1 Further examples on area 
Example 1 Find the area under the curve y = sin (3x + n/3) between 
x = - n/18 and x = n/9. 

y 

Figure 15.1 

f1t

/

9 
Area = y dx (see Figure 15. 1 )  

- 1t/ l 8  

f1t

/

9 
= sin (3x + n/3) dx 

- 1t/ l 8  

[ ],r/9 = -½ cos(3x + n/3) 
- 1t/ l 8  

= - ½ cos jn + ½ cos ¼n 

_ 1 + ✓3 - 6 
Example 2 Find the area contained between the two parabolas 4y = x2 

and 4x = y2• 

283 
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From Figure 15.2 the area required is OABC. We first find the point of 

intersection of the two curves, i.e. B. At B, 4y = x2 and 4x = y2 and we solye 
these two simultaneous equations. From the first equation, y = x2 /4; substi­
tuting in the second equation, we have 

x
4 

4x = 16 
x4 - 64x = 0 

x(x3 - 64) = 0 
x = 0 or x3 = 64 giving x = 4 

B(4,4 ) 

Figure 15.2 

The points of intersection of the two curves are thus the origin (0, 0) and 
B (4, 4). If BD is the ordinate at B, 

area OABC = area OABD - area OCBD 

= 
f

4 ✓4x dx - I 
4

x
2 

dx 
0 0 4 

(Note: the positive square root is taken because we are dealing with the top 
half of the curve 4x = y2 .) 

Therefore 

area OABC = 2 x1 12 dx - - x2 dx 
f

4 

l f

4 

0 4 0 

= 2rnx312 J: - i[ �3]: 
= 2[

1
3
6 - o] - i[

6
3
4 - o] 

= 16/3 
When the area between the y-axis and a curve is required, ,the integral is, 

by symmetry, 

Iy

=

d x dy 
y = c 

(15.1) 



Figure 15.3 
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Example 3 Find the area between the curve y = x3, the axis of y and the 
lines y = 1, y = 8 (Figure 15.3). 

Area = Is 
x dy 

= Is 
yl l3 dy 

= [¾y4/3]�  

= ¾[84/3] - ¾[14/3] 

= ¾ X 16 - ¾  

= 11¼ 

We note that, in representing the area under a curve between the ordinates 
x = a and x = b by Ja y dx, we have assumed that b > a and that the ordinates 
are positive throughout the range of integration. If this is not so, it is clear 
from Figure 15.4 that the integral J! y dx gives the numerical value of the 
area but with a positive or negative sign, according as the area is to the right 
or left of the curve, which is supposed described in the direction from P to Q. 

If the curve cuts the axis in the range, the integral gives the difference 
(positive or negative) between the area to the right and that to the left. 

!
y y b ox > o  l 

A
P 

Q 
� 

• X ---,Or+--�[£7-+--
""-

-----'-�• X 

Q Q 

Figure 15.4 

Example 4 Find the area included between the curve y = x3 - 4x2 + 3x 
and the x-axis. 
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y 

Figure 15.5 

From the sketch of the curve (Figure 15.5), we see that we have to find the 
areas of the two parts A and B respectively. 

The curve cuts the x-axis where y = 0, therefore 
x3 - 4x2 + 3x = 0 x(x2 - 4x + 3) = 0 x(x - l)(x - 3) = 0 

x = 0 1 or 3 
The areas A and B are found as follows: 

area A =  J: y dx 
= { (x3 - 4x2 + 3x) dx 

= [¼x4 - 1x3 + Jx2]A 
= [¼ - 1 + J] - 0 = tz 

area B = f3 y dx = f3 
(x3 - 4x2 + 3x)dx 

= [¼x4 - 1x3 + Jx2]l  
= [¥ - 36 + ¥] - [¼ - i + i] 
= - 2¼ - iz 
= - 2} 

Therefore, the total area = tz + 2} = 3-b. Example 5 Find the area of the curve x2 + 3xy + 3y2 = 1. 
The area is the limit of the sum of the areas of strips like PQ of width {Jx (see Figure 15.6). Now if P has ordinate y1 and Q ordinate y2 , noting 

that neither upward nor downward movement of Ox alters the length PQ, 
we have 

area = Jim L PQ {Jx 
6x- o  

= Jim �)y1 - y2) {Jx 
6x-o 

= f Yi - y2) dx with the appropriate limits 



y 

Figure 15.6 
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The two values of y are found, in general, by solving the equation as a 
quadratic in y, namely, 3y2 + 3xy + x2 - 1 = 0: 

y =  - 3x ± J[9x2 - 12(x2 - 1)] 
6 

- 3x ± J(12 - 3x2) 
6 

The two values of y are 

Hence 

- 3x + J(12 - 3x2) 
6 and - 3x - J(12 - 3x2) 

6 

2J(l2 - 3x2) J[3(4 - x2)] 
Yi - Y2 = = 

6 3 
Now the limits of x are the values for which Yi - y2 = 0, that is 

therefore 
4 - x2 = 0 X = ± 2  

f 2 J[3(4 - x2)] d area = 3 x 
- 2 

= 
J3

f �2 
J(4 - x2)dx 

To evaluate this integral, let x = 2 sin 0, then 
1 f"/2 area = J3 2 cos 0 . 2 cos 0 d0 

- 1</2 

2 f"/2 = J3 2 cos2 0 d0 
- 1</2 
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Exercises 15a 

2 f"/2 = ✓3 (1 + cos 20) d0 
- ,r/2 

= - 0 + - -2 
[ 

sin 20
]

"12 
✓3 2 - ,r/2 

1 Find the area between the curve y = tan x, the x-axis and the ordinates 
x = 0 and x = n/4. 

2 Find the area between the curve y = x2 + 1/x, the x-axis and the ordinates 
x = 1 and x = 3. 

3 Find the area between the curve y = -x2 + 5x and the line y = 6. 
4 A (2, 8) is a point on the curve y = x3, 0 is the origin. Lines AB, AC aFe 

drawn from A perpendicular to Ox and Oy and meet these lines at B and 
C respectively. Find the areas OCA and OBA and verify that their sum 
is the same as the area of the rectangle OBAC. 

5 Find the area contained between the parabola 9y = x2 and the line 
3y = X +6. 

6 Find the area enclosed between the curve 9y = x2, the y-axis, the line 
y = 4 and the line x = - 1 .  

7 Find the area enclosed between the parabolas y2 = x and x2 = y. 
8 Find the area of the two segments bounded by the x-axis and each of the 

curves (i) y = x3 - x, (ii) y = x3 + 2x2 - 3x. 
9 Find the area of each of the curves (i) 2x2 + 6xy + 6y2 = 1, (ii) 5x2 - 12xy 

+ 12y2 = 2, (iii) 3x2 + 10xy + 10y2 = 2. 
10 Find the area of the loop of the curve y2 = x2 (x -1)2• 

15.2 Mean values 
Suppose that the function cp(x) is continuous and finite in the range x = a 
to x = b. Divide the range b -a into n equal parts each of length bx. 
Hence 

n bx = (b -a) (15.2) 

Let cp(x 1 ), cp(x2 ), . . .  , cp(x.) be the values of the function at some convenient 
point in each interval, say the middle (sometimes the beginning is taken), then 

Jim ! [cp(x 1 ) +  cp(x2 ) + . . .  + c/>(x.)] 
n - oo  n 

(15.3) 

is known as the mean value of the function cp(x) over the range a to b 
with respect to x. It is a natural extension of the usual average. Since from 
(15.2) 
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1 Jx 
n b - a 

the mean value of cf,(x), over the range a to b with respect to x, 

= !�°! b � }
</>(xi ) + . . .  + </>(xn)J 

= -b 1 
Jim I </>(x) Jx ((b - a) is a constant) 

- a dx- 0  a 

= b � a r cf,(x) dx by (13.8) (15.4) 

Geometrically, f; </>(x) dx is the area BCNK under the curve (see Figure 
15.7) and (b -a) is the distance KN. If LMNK is a rectangle whose area is 
equal to the area under the curve, then the mean value is represented by the 
height MN of this rectangle. If it is possible to express cf,(x) as a function of another variable, say u, 
the mean value with respect to u will, in general, differ from the mean value 
with respect to x, and it is important to notice which mean value is required. 

-0=-1-__,K..__ ___ .,.,N ___ x 

Figure 15.7 Example 1 When a particle falls freely from rest, its speed at any time t 
sec from the commencement of its motion is given by v = 980t or v2 = ·1960s, 
where s is the distance fallen. If its speed on impact is 2450 cm/sec, find 
its mean speed (i) with respect to time, (ii) with respect to distance. 

(i) Since v = 980t on impact, 2450 = 980T, where T is the time taken to 
fall. Therefore, the time of falling is 2½ sec. Thus 

1 J 2· 5 
mean speed = 2_ 5 0 

v dt 

1 J 2· 5 
= 2_5 0 

980t dt 

= _
1 

[490t 2J 2· 5 
2·5 ° 

= 1225 cm/sec 
(ii) Since v2 = 1960s (given) on impact, 24502 = 1960s, where s is the 

distance fallen. Therefore s = 3062·5 cm. Thus 
1 J 3062·5 

mean speed = 3062_5 0 
v ds 
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1 1
3062 · 5 

= 
3062·5 J0 

ji"96os ds 

=-- 14Ji"o s112 ds 
1 

J,
3062 · 5 

3062·5 0 

= _1_ X 14Ji"o[�s3/2]
3062 · 5 

3062·5 3 0 
1 2 = 

3062_5 X 14Ji"o X 3(169478•3 -0) 

= 1633·3 cm/sec 
Another mean value which is used, particularly in electrical engineering, is 

the root mean square or RMS value of a function over a given interval: 

RMS = J {b � ar [c/>(x)]2 dx} (15.5) 

and is the square root of the mean value of the square of the function. 
Example 2 An alternating current is given by i = l sin (5t + n/3). Find the 
RMS value for i taken over the interval O to 2n/5 sec. 

5 1
2n/S 

( 
7t) (RMS value)2 = 

2
7t Jo 1 2 sin2 5t  + 3 dt 

51 2 ( 2"/S 1 [ ( 21t)] = �J
O 2 

1 -cos lOt + 
3 

dt 

= - t -- sin lOt + -
512 

[ 
1 

( 
21t

) ]
21t/S 

4n 10 3 0 

= �: [
2

5
n - /0 

sin ( 4n + 
2

3
n

) ] 

-
51 2

[0 -_!_ sin (o + 2n
) ] 4n 10 3 

1 2 51 2 . 2n 512 . 2n 
= - -- sm- -O+- sm-

2 4On 3 4On 3 
= 1 2/2 

Hence RMS value is l/J2. 

In practical problems, the values of the function c/>(x) can often be found 
only at isolated points. If the intervals between these points are all equal, 
then an approximate mean value is found from 
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If the intervals are not all equal, the values may be plotted on a graph. 
Then a smooth curve is drawn through the points and a set of values of </>(x) 
at equal intervals, read off from the graph. These latter values may then be 
used to find an approximate mean value. 

Exercises 15b 
1 A quantity of steam follows the law pv0 · 7 5  = 10 000, p being measured in 

N/m2• Find the mean pressure as v increases from 1 m3 to 16  m3• 

2 Find the mean value and the RMS value in each of the following cases: 
(i) sin 0 in the range 0 to n. 

(ii) sin 0 in the range 0 to 2n. 
(iii) sin 0 + cos 0 in the range 0 to 2n. 
(iv) / sin ( lOt + n/4), the values of t being taken over one period t = 0 to 

t = 2n/10. 
3 A body is dropped from a height of 1960 cm. Show that the mean value of 

its speed until just before it hits the ground is (a) 980 cm/sec with respect to · 
time and (b) 1306·66 cm/sec with respect to distance. 

4 Show that the mean value of the ordinates of a semicircle of radius a 
drawn through equidistant points on the diameter is ¼na. 

5 The following table gives the values of a current, i amps, in a circuit at 
various times, t sec. Find the mean value of the current. 

0 
0 

6 8 1 1  17 20 23 28 33 37 
5 10 640 800 975 1000 975 840 580 275 

15.3 Volume of a solid of revolution 

40 
0 

Consider the volume swept out when the area enclosed by the curve y = <f>(x), 
the x-axis, and the ordinates x = a, x = b is rotated through 2n radians about Ox (see Figure 15.8). 

Let KB and NC be the ordinates at the points x = a and x = b respectively. 
Divide KN into n parts each of width t:5x. Let L, M be two consecutive points 

C 
y 

I 
I 
I 
I 
I 

--0-+----....,_;.--+-1-4-.i...;....__-4-__._N _ __,_x 

Figure 15.8 

I 
I 
I 
I 
I 
I 
I 

' : / ',  : / ' , I  
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of subdivision, LP, MQ the respective ordinates. Complete the rectangles PGML, FQML. 
Then all such rectangles as PGML will sweep out thin circular discs of 

area ny2 and thickness bx, i.e. of volume ny2 bx. The sum of all such discs 
will be less than the volume required. Similarly, all such rectangles as FQML 
will sweep out thin circular discs of volume n(y + by)2 bx and the sum of all 
such discs will be greater than the volume required (note the curve has been 
taken as increasing from x = a to x = b). Thus 

b b 
L ny2 bx � required volume of revolution � L n(y + by)2 h 
a a 

Now in the limit as bx -+ 0, by -+ 0, and we have 
b 

required volume of revolution = lim L ny2 bx 
dx ➔ O  a 

(15.6) 

Example 1 Find the volume cut from a sphere of radius a by two parallel 
planes distances h1 , h2 from the centre (h2 > hi) and both measured in the 
same direction. 

A sphere is swept out by the rotation through 2n radians of a semicircle 
about its bounding diameter. Take the centre of the circle as origin and the 
bounding diameter as the x-axis. Then by (15.6) 

required volume = ny2 dx 
ih2 

ht 

Figure 15.9 

The equation of the semicircle is x2 + y2 = a2 , therefore 
ih2 

required volume = n (a2 - x2) dx 
h t 
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= 1t [a2(h2 - h1) - }(h/ - h 1
3) ] 

= }n(h2 - h i) [3a2 
- (h/ 4 h 1 h2 + h/)]  

Note that ifwe put h2 = a and h1 = a - k, we obtain the volume ofa spherical 
cap of height k, that is 

volume = -¼n [a - (a - k)] {3a2 - [a2 + a(a - k) + (a - k)2] }  
= }nk(3a2 - a2 - a2 + ak - a2 + 2ak - k2) 

= }nk(3ak - k2) 
= nk2 (a -}k) (15.7) 

When any portion of the area contained between a curve and the y-axis 
is rotated about the y-axis, the volume swept out will, by symmetry, be J;:: nx2 dy but in other cases we may not be able to quote these formulae 
but have to return to first principles. Consider Example 2. 

Example 2 Find the volume swept out by revolving the area between the 
curve y = e2x, the x-axis and the ordinates x = 1, x = 2, through 2n radians 
about Oy. 

' .... 
1 ,  
I '- , • �  ..... 

I I ..... -
1 1  I - - - -

, , I 
I I I 

I I 
I 

1 1  

y 

..... - -- - x - - - ........ 
6x 

Figure 15.10 

Referring to Figure 15.10, divide the volume into the shells by cylinders 
whose axes are the y-axis and whose radii are at equal intervals bx from x = 1 to x = 2. The volume of a typical shell contained between two cylinders 
of radii x and x + bx can be obtained ifwe consider the shell cut and flattened 
into a plate which will be approximately of length y, width, 2nx and thickness bx. That is, whose volume is 2nxy bx. Therefore 

x = 2 
required volume = Jim }: 2nxy bx 

dx-0 x = 1 

= {
2 2nxy dx (see (13.8)) 
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But y = e2x, thus 

required volume = 2n f 2 xe2x dx 

Exercises 15c 

-- 2n[
xe2x 

-
e2x

]
2 

2 4 1 
(by integration by parts) 

= 2n(e4 - ¼e4) - 2n(½e2 -¼e2) 
= 2n(¾e4 - ¼e2) 
::::::; 245·7 

l Find the volume swept out when the area between the parabola y = x2 + 1, 
the x-axis and the ordinates at x = 2 and x = 3 is rotated through 2n 
radians about the x-axis. 

2 Show that the volume of a sphere of radius a is jTCa3. 
3 Find the volume generated by rotating the area bounded by the axes and 

the curve y = cos x between x = 0 and x = n/2, through 2n radians about 
the x-axis. 

4 The portion of the curve y = x2 + 2 between the points (0, 2) and (1, 3) is 
rotated through 2n radians about the y-axis to form the surface of a bowl. 
Find the volume of the bowl. 

5 Find the volume swept out when the area between the parabola y2 = 4ax, 
the x-axis and the ordinate x = h rotates through 2n radians about the 
x-axis. 

6 Find the volume of a cylinder of height h, radius of base a. 
7 The ellipse x2/a2 + y2/b2 = l(a > b) is rotated through n radians about its 

major axis. Find the volume swept out. What would the volume be if the 
ellipse were rotated about the minor axis? 

8 Show that in the solid generated by the revolution of the rectangular 
hyperbola x2 - y2 = a2 about the x-axis, the volume of a segment of 
height a measured from the vertex is jna3. 

9 Find the volume generated by rotating a loop of the curve y2 = x2 (x - 1)2 

about the x-axis. 
10 Find the volume swept out when the area between the curve y = e3x, the 

x-axis, the y-axis, and the ordinate x = 3 is rotated through 2n radians 
about Oy. 

15.4 Centres of gravity 
Consider a number of particles of masses, m1 , m2 , • • •  situated at points whose 
co-ordinates are (x1, y1), (x2 , y2) • • • •  Then the point G (x, ji) whose co-ordinates 
are given by the equations 

(1 5.8) 
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is defined as the centre of gravity or centre of mass of the system. 
We have assumed that the masses all lie in a plane. If they are not coplanar, 

then each point will have a third co-ordinate z1 , z2, . . .  and G will also have 
a third co-ordinate defined by i = I: mz/I:m. 

r
y
x;,G 
. .  tY . -----=t--�-----�;,. X 0 . . ·. . . 

Figure 15.1 1  

In the case of a solid body (Figure 15.1 1), we consider i t  split up into a 
large number of very small elements each of mass t5m and then the centre of 
gravity is defined as the point G whose co-ordinates (x, y, i) are given by 

Jim I x t5m 
x = 6m- o  

Jim I Jm by(13.8) 
6m- o  (15.9) 

The summations and integrals are taken throughout the whole body. 
Example 1 A circular arc of radius a, subtends an angle 2a at its centre. 
Find the centre of gravity of the arc. 

Take the centre of the circle as the origin and the x-axis along the medial 
line. Let p be the mass of the arc per unit length, then the length of a small 
element of the arc is at50 and its mass is pat50 (Figure 15.12). Therefore 

_ r::" xpa d0 
X = ��- - -f ==:/a d0 

J:
"
a cos 0 pa d0 

J:" pa d0 

a[sin 0]�" = ----
[0]"

-a 
a sin a 

0( 

(y = 0 by symmetry) 

Note that for a semicircle a = n/2 and x = 2a/n. 
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y / 
/ 

Figure 15.12 

Our small elements of mass '5m have been taken as small arcs of length 
at50 and mass apt50. Their moment about the y-axis (xt5m) has been expressed 
in the form a cos 0 pat50, which is a suitable expression for integration with 
respect to 0. 

In general, when we are dealing with a lamina or a solid, the small 
elemental masses '5m, and their moments xt5m or ybm about the axes, are 
expressed in the form f(0) '50, where 0 is some convenient variable for which 
the integrations can be carried out. We shall find it convenient to make use 
of the symmetry of the body (if it exists) in choosing the variable 0 and the 
elemental masses. It is important to notice that the 'x' in (15.9) is now the 
distance of the centre of gravity of the elemental mass from the y-axis. 
Similarly, the 'y' is the distance of the centre of gravity of the elemental mass 
from the x-axis. 
Example 2 A sector of a circle of radius a subtends an angle 2oc at the centre 
of the circle. Find its centre of gravity. 

We take the centre of the circle as origin and the x-axis along the medial 
line (Figure 15.13). By symmetry, y = 0. 

Figure 15.13 

We divide the sector by a large number of concentric arcs into sections 
such as PQRS. Let OP = r, OQ = r + t5r. Then 

area PQRS :::::: 2roct5r 
mass PQRS :::::: 2rocpt5r 

where p is the surface density of the sector. 
Now by the result of Example 1, the centre of gravity of PQRS is at 

a distance (r sinoc)/oc from O along Ox. Its moment about Oy is thus 
2rocpt5r(r sin oc)/oc. Therefore 
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r1Xp-- r i
a

2 
r sin IX d 

- o IX x = -�---- (since p is assumed to be constant) 
J: 2r1Xp dr 

l
a 

,2 dr sin 1X J o = -
IX

- �
i
-
:
-
,
-
dr

-

sin IX ¼a3 
-

1X
- ½a2 

2 sin IX = -a--
3 IX 

For a semicircle, IX = n/2 and so 

_ 4a 
x = -

3n ( 1 5. 10) 
Example 3 Find the centre of gravity of a uniform solid hemisphere. 

Take the centre of the hemisphere as origin and its axis of symmetry as 
Ox. Let p be its density. 

Divide the hemisphere into elemental discs of width <5x by planes parallel 
to its plane end (Figure 15. 14). The mass of a disc is approximately ny2p <5x 
and the distance from the origin to the centre of gravity of a disc is 
approximately x. Since by symmetry y = 0 = i, we have 

y 

Figure 15.14 
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The equation of the bounding circle is x2 + y2 = a2. Thus 

_ np J: x (a2 - x2) dx 
X = - --'----= -- - --

Exercises 15d 

np J: (a2 - x2) dx 

[ 
a2x2 

- x4J 

- [•:x -ir' 
¼a4 

}a3 

= ¾a 

1 Find the centre of gravity of the following (in all cases the mass per unit 
area is assumed to be constant): 
(a) the area enclosed by the parabola y2 = 4x and by the line x = 1. 
(b) The area between the curve y = sin x and the x-axis from x = 0 to x = n. 
(c) The area formed by one loop of the curve y2 = x (x - 1)2• 

2 If the loops of the curves in question l(a), (b) and (c) are each rotated through 
2n radians about Ox, find the centres of gravity of the solids so formed. 

3 Find the centres of gravity of the following: (a) a plane isosceles triangle, 
(b) a quadrant of a circle, (c) a solid cone, (d) a frustrum of a cone height h, 
radii of its ends a and b (a > b). 

4 By dividing the sector of a circle of angle 2ix into elemental sectors of angle b0, find the position of its mean centre. (Use the result of question 3(a).) 
Compare your result with that of Example 2, Section 15.4. 

5 Find the position of the centre of gravity of the area contained between the 
positive co-ordinate axes and the astroid x213 + y213 = a213. 

15.5 Area enclosed by a curve in polar form 
Section 17.1 introduces polar co-ordinates and in Section 17.8 the polar 
equation of a curve is discussed. Figure 15.15 shows the curve r = f(0). We shall find the area enclosed by 
the curve and the two lines OA and 0B joining the origin to two points A 
and B on the curve. 

Let AOx = 0A and BOx = 08 • We divide the arc AB into n parts. Let P(r, L 0) and Q(r + br, L 0 + b0) be two neighbouring points on the arc. L POx = 0, L QOP = b0. 
Area of sector POQ � area of l:i POQ = ½r(r + br) sin b0 � ½r2b0 
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B 

Figure 15.15 

Therefore 

Q 
p 

X 

area of sector AOB = lim L ½r2b0 
6

9
➔ 0  

i
9

e 
= ½r2 d0 

BA 

where 0 A and 08 are the polar angles of A and B. 

(15.11) 

Example 1 A has cartesian co-ordinates (2, 0). The line AB has the polar 
equation r cos 0 = 2 and L AOB = n/3. Use (15.11) to find the area of the 
triangle AOB and verify that the result is correct. 

The point with cartesian co-ordinates (x, y) has polar co-ordinates (r, L 0), 
where r cos 0 = x and r sin 0 = y (see ( l7. l) and(l7.2)). Thus the line r cos 0 = 2 
is equivalent to x = 2 and lies parallel to the y-axis at a distance of two units 
from it. The situation is shown in Figure 15.16. 

y B 

Figure 15.16 

AB has equation r cos 0 = 2, i.e. r = 2 sec 0. Therefore 

area AOB = L"'3 

½r2 d0 = f:13 2 sec20 d0 

= [2 tan 0Jo'3 = 2 tan ½n = 2..)3 

This is clearly correct since OA = 2, AB = OA tan½n = 2..)3 and area 
AOB = ½OA.AB. 
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Example 2 Find the area enclosed by the cardioid r = a(l + cos 0). 
From Figure 15.1 7  (see also Figure 1 7.17  for further details), the required 

area is, by symmetry, 

A =  2 f)r2 d0 

= a2 J: (1 + cos 0)2 d0 

= a2 J: (1 + 2 cos 0 + cos2 0) d0 

= a2 J: ( 1 + 2 cos 0 + 1 + 
�

os 20
) d0 ( cos 20 = 2 cos2 0 - 1) 

= a2 [0 + 2 sin 0 + ½0 + ¼ sin 20]� = ¾na2 

Figure 15. 1 7  

Exercises 15e 
1 Verify using polar co-ordinates that the area of the circle r = 3 is 9n. 
2 Verify using polar co-ordinates that the area of the circle r = a cos 0 is 

na2/4. 
3 Find the area bounded by the spiral r = a0 and the lines 0 = 0 and 0 = n/4. 
4 Find the area bounded by the curve r = a(l + cos 0) and the lines 0 = 0 

and 0 = n/2. 
5 Find the area bounded by the spiral r = e8 and the lines 0 = 0, 0 = 3n/2. 

Exercises 15 
1 Show that the curve y2 = x4(4 - x) possesses a loop and find the area of 

the loop. [WJC] 
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2 Find the area of one loop of the curve 4y2 = x2 (4 - x2). Also find the 
position of the mean centre of this area. 

3 Sketch the curves y2 = 2x, x3 = 4y giving the co-ordinates of the points 
of intersection. Find the area they enclose and the volume this area sweeps 
out when revolved through 2n radians about Ox. 

4 The area enclosed by the parabola y2 = 4ax, the x-axis, and the ordinate 
x = h is rotated through 2n radians about the x-axis. Show that the volume 
swept out is 2nah2• 

5 PAQ is an arc of the curve y = sin x from x = 2n to x = 3n, A being the 
mid-point of the arc. Show that, if P and Q are the points on the curve 
where x = 2n and x = 3n respectively, the area between the arc and the 
x-axis is divided by the line PA approximately in the ratio 0· 12 : 1 .  

6 Determine the mean value of the function x(4 - x) between x = 0 and 
X = 4. 

7 Find the RMS value of I =  sin(wt + n/3), the value of t  being taken over 
one period from t = 0 to t = 2n/w. 

8 Sketch the curve y2 = (x - 1)2 (x + 1). If the curve is rotated about the 
x-axis through an angle n/2, find the volume enclosed by the surface 
swept out by the loop of the curve. 

9 Find the area of the portion of the plane enclosed by the curve y = 1 + sin x, 
the axis of y, and the axis of x from O to Jn. Find also the volume 
of the solid obtained by rotating this area about the axis of x. 

[SUJB] 

10 Sketch the graph of y = -2 
x for x � 0. Find the area enclosed by the 
+ x  

curve, the lines x = 0, x = 1 and the line y = 1 .  Also find the volume 
generated when this area revolves through 2n radians about the line y = 1 . 

1 1  Find the mean centre of the area between the curve y = (x - 1)(4 - x) 
and the axis of x. 

12 Find the area enclosed by the two parabolas ay = 2x2, y2 = 4ax. Also 
find the position of the mean centre of this area. 

13 Find (i) the area bounded by the axes and the part of the curve y = cos 2x 
between x = 0 and x = n/4; (ii) the volume described when that area is 
rotated through four right angles about the x-axis; (iii) the centre of 
gravity of that area. [SUJB] 

14 Prove that the area common to the two parabolas y2 = 4ax and x2 = 4ay 
is 16a2/3. Find the centroid of the common area. Show that if the area 
is rotated, through four right angles about the x-axis, the volume generated 
is 96na3 /5. [JMB] 

15 Sketch the curve whose equation is a2y2 = 4x2 (a2 - x2). Prove that the 
area contained by one loop of the curve is 4a2 /3. Find the volume 
swept out when one loop is rotated through two right angles about the 
x-axis. [JMB] 

16 The curves y = 7 - x2 and xy = 6 intersect at the points A and B in the first 
quadrant. Find the co-ordinates of A and B. Find the area contained 
between the two curves. This area is rotated through four right angles 
about the y-axis. Prove that the volume swept out is 3n/2. [JMB] 

17 ABC is a triangular lamina in which AB = AC and the perpendicular 
distance of A from BC is h. The density of a thin strip of the lamina which 
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is parallel to BC and at a distance x from A is kx, where k is a constant. 
Prove that the centre of gravity of the lamina is at a distance ¾h from A. 

18 Prove that the area bounded by the two parabolas 3y = 2x2, y2 = 12x 
is 6 square units. Find the co-ordinates of the centroid of this area. 

19 The co-ordinates of a variable point P are given by the equations 
x = 4 - t 2, y = 1 + 3t, where t is a parameter. Find the value of t for 
which the tangent to the locus of P is parallel to the y-axis. Find also 
the x co-ordinate of the centroid of the area bounded by the curve and 
the y-axis. 

20 A curve whose equation has the form y = x(x - 2)(ax + b) touches the 
x-axis at the point where x = 2 and the line y = 2x at the origin. Find 
the values of a and b, sketch the curve and prove that the area enclosed 
by an arc of the curve and a segment of the line y = 2x is ¥. [LU] 

21 Sketch the graph of y = x2 sin 2x (x being measured in radians) from x = 0 
to x = n, and prove that the ratio of the two areas bounded by the curve 

d h . f . n2 -4 [SUJBJ an t e axis o x 1s 
Sn2 _ 4 . 

22 In a triangle ABC the angle C = 2n/3. Express c2 in terms of a and b. 
The triangle is rotated about A in its own plane, through an angle 0( < n). 
Find, in terms of a, b and 0, the area swept out by (i) AC, (ii) BC. 

[JMB] 
23 Draw a rough sketch of the curve defined by the equations x = 2(0 -sin 0), 

y = 2(1 -cos 0) as 0 increases from O to 2n. Evaluate for this curve the 
integrals 

(2" dx (i) J o y 
d0 d0 

24 Sketch the curve given by the parametric equations x = 2 - t 2, y  = t 3• The 
area enclosed by this curve and the axis of y is rotated about the axis 
through four right angles. Find the volume of the solid so described. 

[SUJB] 
25 The points A(c, a), B(0, b) and C( - c, a), where (b > a >  0), lie on a curve 

of the type y = Px2 + Qx + R. Determine the constants P, � and R and 
hence show that the equation of the curve is c2y + (b -a)x = bc2 • AM 
and CN are ordinates. Find the volume of the solid formed by revolving 
the area bounded by the curve, the x-axis and these ordinates through 
four right angles about the x-axis. [LU] 

26 G. h 6x - 10 . . 1 f . . 1ven t at y = 
(x _ 3)2(x + l) ' express y m partla ract10ns. Determine 

the mean value of y with respect to x in the range x = 4 to x = 6. Find 
the expansion of y in ascending powers of x up to and including the term 
in x2• [AEBJ 27 Find the co-ordinates of the centroid of the finite region R bounded by 
the curve y = eX, the co-ordinates axes and the line x = 1. This region R 
is rotated about the x-axis to form a solid of revolution. Find the co­
ordinates of the centroid of this solid. (Leave answers in terms of e.) 

[LU] 
28 Given that y = J(4 -x) find, for values of x in the interval 0 � x � 4, 
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(i) the mean value of y with respect to x, (ii) the mean value of xy with 
respect to x. [JMB] 

29 Using the same axes, sketch the curves which are given by y = ex and 
y = 3 -4x - x2

• If t is the positive root of the equation ex = 3 - 4x - x2
, 

prove that the area of the finite region in the first quadrant enclosed by 
the curves and the y-axis is given by j(21t - 3t 2 

- t 3 - 6). [AEB] 
30 The area enclosed by the ellipse defined by the parametric equations x = a cos 0, y = b sin 0 is rotated about the y-axis through an angle of n. 

Show that the volume swept out is represented by 

Evaluate the integral. [JMB] 



16 
Differential equations 

16.1 Introduction 
We have seen in Section 13.1 that an equation of the type 

dv = 6 dt (16.1) 

can be solved by integration (integration is the inverse of differentiation) to 
give as its solution v = 6t + C (16.2) 

This is also known as the general solution of the equation (16.1) because 
it contains the arbitrary constant of integration. 

Such equations which involve differential coefficients are known as dif­
ferential equations and they occur very often when practical problems are 
expressed in mathematical symbols. The equation (16.1) arose from the 
question: if the acceleration of a particle is constant and equal to 6 cm/sec2

, 

what is its speed? We now see the practical importance of the constant of 
integration: two objects may have the same acceleration but different speeds, 
depending on the initial conditions. For example, if we know that initially (t = 0) the speed is 11 cm/sec, then substituting in (16.2) 

11 = 6.0+C 
and we obtain C = 11 
therefore 

V = 6t + 11 (16.3) 
This is known as a particular solution of the differential equation (16.1). 
As another example of how differential equations arise, consider one of 

the laws of chemical reaction. Example 1 In a certain chemical reaction, the amount x of one substance 
at any time t is related to the speed of the reaction, dx/dt, by the equation 

dx 
dt = k(a - x)(b -x) (a, b, k constants) 

Find a relation between x, a, b, k and t. 
304 
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To solve the equation, we rewrite it in the form 

therefore 

dt 1 
dx k(a -x)(b -x) 

l J  dx 
t = k (a -x)(b -x) 

kt = (b � a) f [
(a � x) 

-(b � x)] dx 

1 = -
b

-[ -log. (a -x) + log. (b - x)] + C 
( -a) 

= (b � a) log. (! =:) + C 

Although we now have a relation between t and x, the three original 
unknown constants and the arbitrary constant of integration are also in­
volved, and more information is needed before the result is of practical value. 
Example 2 A beaker containing water at 100 °C is placed in a room which 
has a constant temperature of 20 °C. The rate of cooling at any moment is 
proportional to the difference between the temperature of the room and the 
liquid. If after 5 min the temperature of the water is 60 °C, what will it be 
after 10 min? 

The law stated here is the physical reality known as Newton's law of cooling. 
Let the temperature of the water at any time t min be 0 °C. Then the rate 

of change of temperature is d0/dt (see Section 11.1), thus the rate of cooling 
is -d0/dt. Hence 

therefore 

d0 
-- oc 0 -20 

dt 

d0 -dt = k(0 -20) 

which is the mathematical expression of Newton's law. 
By considering the reciprocal of both sides, we have 

dt 1 = --- -
d0 k(0 -20) l J  d0 -t = 

k (0 -20) 
-kt = log. (0 -20) + C 

-C -kt = log. (0 -20) 
e-C-kt = 0 -20 

e -ce -kt = 0 -20 
Ae-kt = 0 -20 

20+Ae - k1 = 0  
where A =  e-c  

(16.4) 
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Now initially t = 0 and 0 = 100, therefore 
20+ A= 100 A =  80 

which gives 
0 = 20 + 8Qe - kr 

Also when t = 5, 0 = 60, therefore 
60 = 20 + 8Qe - Sk 

e - Sk = 0·5 

(16.5) 

(16.6) 
It is possible to find k exactly from this equation but it is not necessary in 
this example for when t = 10, we have, by substitution in (16.5), 

0 = 20 + 80e - 1 Ok 

= 20 + 80(e- Sk)2 

which from (16.6) gives 
0 = 20 + 80(0·5):.! 

0 = 40 °C after 10 min 

Applications to mechanics 
Problems in mechanics often involve acceleration, which may be expressed 
in any of the following three forms: 

(i) 
dv dt 

( . .  ) 
d2s 

n dt 2 

( ... ) 
dv 

m v ds 

(
. ds

) smce v = dt 
(since 

dv = ds . dv = v dv) dt dt ds ds 
Example 3 A particle moves in a straight line with constant acceleration a. If at any time t sec its speed is v cm/sec and the distance travelled is s cm 
find expressions for (i) v in terms of a and t, (ii) s in terms of a and t, (iii) v 
in terms of a and s. Assume that when t = 0, s = 0 and v = u. 

(i) In this case, since v and t are to be linked, we use dv/dt = a. Therefore 

But when t = 0, v = u, therefore 

(ii) From the preceding result 
ds 

v = at +  C 

u = 0 + C  
V = U + at 

- = u + at dt 
hence 

s = ut + ½at 2 + A 
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Now when t = 0, s = 0, hence A =  0 and so 
s = ut + ½at 2 

(iii) In this case, since v, s and a are to be linked, we use 
dv V - = a  ds 

that is 
d(½v2) -- = a  ds 

hence 
½v2 = as +  B 

But when s = 0, v = u, therefore 
½u2 = 0 + B 

and so 
½v2 = as +  ½u2 

v2 = u2 + 2as 

A differential equation sometimes expresses a physical relation better than 
its general solution. To illustrate this point, and also to show that, given a 
general solution, the differential equation can be formed by differentiation and 
elimination of the arbitrary constants, consider the following example. 

Example 4 Given that a particle moves so that its distance, s, from a fixed 
point at time t is given by s = A sin (3t + e), where A, e are constants, find 
the original differential equation governing the motion of the particle. 

Since there are two constants, we shall find that the original differential 
equation involves second-order differential coefficients. 

From (16.7) and (16.8) 

s = A sin (3t + e) 
ds 
- = 3A cos (3t + e) 
dt 

d2s 
dt 2 = - 9A sin (3t + e) 

d2s - = - 9s dt 2 

that is, the acceleration is - 9s. 

(16.7) 

(16.8) 

Thus the acceleration is proportional to the distance s from the point and 
(since it is negative) directed towards that point. This kind of motion is 
known as simple harmonic motion. 

In subsequent sections of this chapter, a systematic approach will be made 
to the solution of differential equations generally. It is, however, always worth 
while considering if some of the usual mathematical processes will help. 
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Example 5 Solve the differential equation 

(dy
)

2 - (!_ - x) dy - 1 = 0 dx x dx 
and interpret the result geometrically. 

In this case, the equation will factorise giving 

Hence either 

Therefore 

dy 

(dy + x)(dy - .!.) = 0 dx dx x 

dy 1 - = - x dx or = dx x 

y = -½x2 + A or y = log. x + B 
(16.9) 

Note that although the two constants are both arbitrary, they may have 
different values. 

To interpret the result geometrically, we note that as A is given different 
values (say 0, ± 1, ± 2, . . .  ), y = -½x2 + A gives rise to a family of parabolas 
all with their vertices on the y-axis and with their axes coincident with the 
y-axis (see Figure 16.1). 

Similarly, as the value of B varies, y = log. x + B gives a family of 
logarithmic curves (see Figure 16.1). 

y 

y= l oge x + B  

Figure 16.l 

In this example, it is interesting to note that from (16.9) the slopes of the 
two families of curves are - x  and 1/x, and that the product of these slopes 
is - 1, so that the curves cut at right angles. 

Two such families of curves in which every member of one family cuts every 
member of the other family at right angles are said to be orthogonal 
trajectories. 

Exercises 16a 
1 Solve the following differential equations: 



(.) dy 
1 dx = sm x 

. . . ) 
dx 3 (lll dt = X 

(ii) !: - t 2 + 2 = 0 

. d2y 
(1v) dt 2 = 5 
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2 Form the differential equations whose complete solutions are 
(i) y = Ax (ii) y = Ae2x B 

(iii) y = Ax2 + - (iv) y = Ae3x + Be- 2x 
X 

3 Prove that for any straight line through the origin, dy/dx = y/x and 
interpret this result geometrically. 

4 The rate of decay of a radioactive substance at any time is proportional 
to the amount remaining at that time, the constant of proportionality 
being k. If initially the amount of substance is 10 g find an expression for 
the amount remaining after t sec. 

5 A particle moves in a straight line so that its acceleration is always 
towards a fixed point and varies inversely as the square of its distance x 
from that point. Show that its speed v is given by ½v2 = µ/x + C (µ and C 
being constants). 

This law is true for the case of the earth attracting a meteorite. If x is 
measured in km and v in km/sec, then µ = 0·4 x 106• Neglecting the effect 
of the earth's atmosphere and assuming its radius is 6400 km, find with 
what speed a meteorite would reach the earth after moving from a very 
great distance under its attraction. 

6 A particle falls from rest in air. If the resistance of the air is assumed to 
vary as its speed, v, then it can be shown that its acceleration a is given 
by a = 980 - kv (where k is a constant). Show that v = 980(1 - e-k1)/k 
and hence find the limiting value to which v tends as t increases (known as 
the terminal velocity). 

7 Find the two general solutions of (dy/dx)2 + (x + y) dy/dx + xy = 0 and 
illustrate the results geometrically. 

8 The current i flowing in a circuit at any time t is given by 
di L dt + Ri = E (L, R, E constant) 

where L is the self inductance of the circuit, R its resistance and E the 
external electromotive force. Find i in terms of E, R, L and t, and given 
that initially the current is zero, find the value of the current as t becomes 
very large. 

9 Find V if d[r2 (dV/dr)]/dr = 0 and V = V1 at r = a, V = 0 at r = b. 
(V is the potential at a distance r from the common centre of two spherical 
conductors radii a, b at potentials V1 and 0 respectively.) 

10 The ordinate and normal through a point P on a curve meet the x-axis 
in N and G respectively, and NG = kNP2, where k is a constant. Find the 
equation of the curve if it passes through the point (1, 1) with gradient 2. 
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16.2 First-order differential equations with variables 
separable 

The order of a differential equation is the order of the highest differential 
coefficient contained in the equation. In this section, we shall consider only 
first-order differential equations, i.e. equations which contain only a first­
order differential coefficient dy/dx, dy/dt, etc. and no higher derivatives. 
Functions of x and y or x and t will also figure in the equations. First-order 
equations with variables separable are equations which may be put into the 
form 

dy 
dx = f(x)g(y) (16.10) 

i.e. dy/dx is equal to an expression which can be resolved into two factors, one 
containing x only, the other y only. Expression (16.10) can be rewritten 

_1_ dy = f(x) g(y) dx 

Integration with respect to x gives 

f g:y) dy = f f(x) dx (see Section 14.3) 

We have separated the variables whence the name of this type of equation. 

Example I Find the general solution of the differential equation x2y(dy/dx) 
= X + 1. 

Therefore 

dy x2y - = X + 1 dx dy 1 1 y - = -+­dx x x2 

fy dy dx = f(�+_.!._) dx dx x x2 

f y dy = f x- 1 + x- 2)dx 

1 1 
2y2 = log. x - � + C 

It will be noted that, although there are two separate integrations, only one 
arbitrary constant is necessary, because the sum or difference of two arbitrary 
constants is another arbitrary constant. 
Example 2 During a fermentation process, the rate of decomposition of a 
substance at any time t varies directly as the amount of substance y and also 
as the amount of active ferment x. If the constant of proportionality is 0·5, 
the value of x at any time t is 4/(1 + t )2, and initially y = 10, find y as a 
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function of t. Also deduce the amount of substance remaining as t becomes 
very large. 

The rate of change of the substance is dy/dt, therefore the rate of decomposi­
tion is - (dy/dt ). Hence 

dy 
-- oc xy 

dt 

But the constant of proportionality is given as 0·5, thus 

dy - = - 0·5xy 
dt 

However 

therefore 

x = - - � 
(1 + t )2 

dy 4 
dt = -0· 5 X ( 1 + t )2 y 

1 dy 2 
y dt (1 + t )2 

f� 
dy 

'dt = - 2 f 
dt 

y dt (1 + t )2 

f
dy = _

2
_ +  C 

y l + t  
2 

log. y = -
1 

- + C + t  
y = ec+ 210 + rJ 

= ece2/(l + rJ 
which may be written as 

y = Ae2/( 1 + rJ 

where A = ec is a convenient form for the arbitrary constant. 
Now initially t = 0 and y = 10, therefore 

Thus 

10 = Ae2 

lO e - 2 = A 

y = 1o e- 2e21o +o 
= 10 e2/( 1 + r) - 2 = to e - 21/( 1 + r) 

As t ➔ oo, -2t/( 1 + t ) ➔ -2 and so y ➔ 10 e- 2 = 1·36. 
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If we now reconsider the examples in Section 16. 1 ,  it will be seen that they 
could nearly all be treated by this method. 

Exercises 16b 
1 Solve the differential equations 

(i) dy = _t_ (ii) d
d
x
y = xy(y - 2) dx 1 + x2 

(iii) (1 + x)2 :: + y2 = 1 (iv) dy = ex+ Y 
dx 

2 A particle moves in a straight line in a resisting medium so that its accelera­
tion a is given by a =  10(v3 + 9v). If the particle passes through the origin 
with a speed u, find an expression for its distance s from the origin in 
terms of u and v. 

. d 
( d0

) O 3 Solve the equation dr r dr = . 

4 Show that the general solution of the equation (1 + y2) + (1 + x2)(dy/dx) = O can be written in the form y = (k - x)/(1 + kx), where k is the arbitrary 
constant. Hence find the particular solution for which y = i when x = 1. 

5 The normal and the ordinate at any point P on a curve meet the x-axis 
at G and N respectively. The difference between the length of GN and 
the x co-ordinate of P is one unit. Find the general equation of the 
curve. 

6 Show that the equation y = 2x(dy/dx) represents a family of parabolas 
with a common axis and a common tangent at the vertex. 

7 Find a function whose rate of change is proportional to the square of its 
value and whose value is 1 when x = 0 and 3 when x = 1 .  

8 In a suspension bridge with a uniform horizontal load, the form of the 
cables is determined by the equation 2y = x(dy/dx), where the lowest point 
is taken as the origin of co-ordinates and the tangent at this point as the 
x-axis. Show that the form of the cables is a parabola with its axis vertical. 

9 Find the curve such that the normals all pass through the origin. 
10 In a reservoir which is discharging over a weir, it is known that 

:� 
= 81

2
��2 , where H m is the height of the surface above the sill of 

the weir at any time t min. If initially H = 1 m find an expression for H. 

16.3 The differential equation d2x/dt 2 = kx 
The equation d2x/dt 2 = kx is a very simple example of a second-order 
differential equation but it is of intrinsic importance in kinematics. It arises 
when the acceleration of a particle is proportional to its distance from a 
fixed point, that is 
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acceleration oc distance 
d2x 
dt 2 oc X 

d2x 
dt 2 = kx (16.11) 

If the acceleration is directed away from the point, k is positive and can be 
written as n2 • Hence 

(16.12) 

If the acceleration is directed towards the point, k is negative and can be 
written as -n2 • Hence 

(16.13) 

The method of solution is to multiply both sides by 2(dx/dt). Thus (16.11) 
becomes 

2 
dx. d 2 x 

= 2kx dx dt dt 2 dt 
which can be written 

Hence 

Therefore 

(
dx

)
2 

= f 2kx dx dt dt dt 
(!;)2 = f 2kx dx (see Section 14.3) 

(
dx

)
2 

dt = kx2 + c 

dx 
dt = ±✓(kx2 + C) 

This is a separable differential equation and by Section 16.2 

t = ± f ✓(k�\ C) 

General solutions 

(16.14) 

If k is positive and equal to n2 (see (16.12) ), the integral (16.14) becomes 
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t = +
I 

dx 
- ✓(n2x2 + C) 

the solution of which is beyond the scope of this volume. However, if we 
return to (16.12), the solution of the differential equation can be obtained 
as follows: 

Subtract n(dx/dt ) from both sides of the equation to give 
d2x dx dx 2 - - n - = - n - + n  x 
dt 2 dt dt 

i (dx - nx
) 

= - n(
dx - nx

) dt dt dt 

If we now set z = dx/dt -nx, we have 
dz 
- = - nz 
dt 

This is a separable differential equation (see Section 16.2) and we have 

I�z = f - n dt 
therefore 

log0 z = - nt + A 
from which z = Ce -"'. Resubstituting for z 

dx 
- - nx = ce -"1 

dt 

Reconsider the original equation 
d2x 
- = n2x 
dt 2 

and this time add n(dx/dt ) to both sides of the equation; then 
d2x dx dx 2 
dt 2 + n dt = n dt + n x 

d
(

dx 
) (

dx 
) - - + nx = n  - + nx dt dt dt 

If we now set z = dx/dt + nx, we have 

dz 
- = nz dt 

(16.15) 
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This is again a separable differential equation and we have 

therefore 
log. z = nt + B 

from which z = De"1• Resubstituting for z 

dx - + nx = De"' 
dt 

(16.16) 

We now subtract (16.15) from (16.16) to eliminate dx/dt and we have 2nx = De"1 - Ce-"1 

therefore 

D C 
X = -ent - -e -nt 

2n 2n 

X = Ae"' + Be- nt (16.17) 

where A = D/2n, B = - C/2n are convenient forms for the arbitrary constants. 
If k is negative and equal to -n2 (see (16.14)), then the solution is 

f 
dx t = ± J(C - n2x2) 

l
J 

dx 
t = 

± n  J(� - x2) 

If we let p2 = C/n2, the solution to this is 

or 

that is 

1 . X 
t = + -arcsm - + K -n p 

• X nt - nK = + arcsm -- p 

nt + e = ± arcsin � (putting e = - nK) 
p 

Hence x = ± IPI sin (nt + e). 
The ambiguous sign can be absorbed by changing the sign of p, since p 

is arbitrary, or by replacing e by e + n, since e is arbitrary; hence the solution 
is x = p sin (nt + e) (16.18) 
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This may be rewritten x = p sin nt cos e + p cos nt sin e 
that is x = A sin nt + B cos nt ( 16. 19) 

where A =  p cos e, B = p sin e (see also Sections 6.8 and 16. 1 ,  Example 4). 
Note that x is a periodic function, period 2n/n. 
The solutions ( 16. 17), ( 16. 1 8), ( 16. 19) should be remembered. 

Example 1 Solve the equation d2x/dt 2 = 4x, given that when t = 0, x = 5 
and dx/dt = 2. 

From (16 . 17) the solution of d2x/dt 2 = 4x is 
Hence 

x = Ae- 21 + Be2r 

dx - = - 2Ae- 21 + 2Be21 dt 

(i) 

(ii) 

We are given that when t = 0, x = 5 and dx/dt = 2. Substituting in (i) and 
(ii), we have 

5 = A + B  
2 = - 2A + 2B 

Hence 
A = 2  B = 3  

and 
x = 2e- 2r + 3e2r 

Example 2 The speed of a particle is given by v = ✓( 16  - 9x2). Find an 
expression for its acceleration in terms of x. Given that x = 0 when t = 0, 
find an expression for x. 

therefore 

V = ✓( 16 - 9x2) 

dv - 9x 
dx = ✓( 16  - 9x2) 

I . dv acce eration = v dx 
- 9x = ✓( 16 - 9x2) ✓( 16 - 9x2) 

= - 9x 

d2x - = - 9x dt 2 
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From ( 16. 1 9) 
x = A sin 3t + B cos 3t 

Initially t = 0, x = 0, therefore 
x = A sin 3t 

Now v = dx/dt = 3A cos 3t and from the given expression when x = 0(t = 0), 
v = 4. Therefore 

4 = 3A 

A = ! 
giving 

x = ! sin 3t 
Example 3 The acceleration of a particle is proportional to its distance from 
a fixed point O and is directed towards that point. 

�-- - - -- - - - - 16c m  - -- - - - -- - ->-
A >------- X 

Figure 16.2 

The particle starts from rest at a point A distance 1 6  cm from 0. If after 
3 sec the particle reaches 0, find when it was at a distance of 8 cm from 0. 

Measure the distance x from O in the direction OA. Because the accelera­
tion is directed towards 0, we have 

d2x - - oc x  
dt 2 

d2x - =  -n2x 
dt 2 

From ( 16. 1 8) the general solution of this is 
x = p sin (nt + e) 

Thus the speed v ( = dx/dt ) is given by 
v = pn cos (nt + e) 

(i) 

(ii) 
From the initial conditions, when t = 0, x = 1 6  and v = 0. Substituting in 
(i) and (ii), we have 

From (iii) and (iv) 

thus 

1 6  = p sin e 
0 = pn cos e 

p = 1 6  and e = ½n 

x = 1 6 sin (nt + ½n) 

(iii) 
(iv) 
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Now when t = 3, x = 0, hence 
0 = 16 sin(3n + ½n) 

that is 
3n + ½n = 0, ± n, ± 2n, . . .  

The only acceptable solution is 
3n + ½n = n 

thus n = n/6, giving as the complete solution 
x = 16 sin (!nt + ½n) (v) 

To find when the particle was at a distance of 8 cm from 0, substitute 
x = 8 in (v), then 

8 = 16 sin (!nt + ½n) 
sin (!nt + ½n) = ½ 

Therefore 
¼nt + ½n = nn + ( -)"!n (see 7.4) 

The value n = 1 gives the smallest value for t for which x = 8, thus 
¼nt + ½n = n - ¼n 

that is 
t = 2 sec 

Example 4 A particle of mass m is suspended from a light elastic string. 
Its acceleration is given by g - (Ax/ma), where g, A and a are constants and 
x is the distance of the particle from a fixed point A. Find an expression 
for x at any time t. 

This can be written 

A I . AX cce erahon = g - -
ma 

d2x Ax - = g - ­dt 2 ma 

d2x _ A 
( 

mag
) - - - - x ---

dt 2 ma A 
(i) 

Now let z = x - (mag/ A). Then d2z/dt 2 = d2x/dt 2 and equation (i) becomes 
d2z A - = - - Z  
dt 2 ma 

This is the same as ( 16.13) with 
A i - = n ma 
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Thus its solution is 

z = p sin [ J(m�} + e] 
that is 

Exercises 16c 

1 Find the solution of the equation d2x/dt 2 = 25x given that when t = 0, x = 12 and dx/dt = 10. 
2 Find the solution of the equation d2x/dt 2 + 4x = 0 given that when t = 0, x = 4 and dx/dt = 6. 3 A particle starts from rest and moves towards a fixed point O under the 

influence of a force which is directed towards 0, and which varies as the 
distance of the particle from 0. Initially, the particle was 10 cm from 0 
and i-ts acceleration was 10 cm/sec2 towards 0. Find (i) its speed when 
8 cm from 0, (ii) its speed at 0, (iii) its distance from O after n/3 sec. 

4 A particle moves so that its equation of motion is d2x/dt 2 = - 16x. 
Initially v = - 16 cm/sec and x = 3 cm. Find (i) its speed when x = 5 cm, 
(ii) its speed when x = 4 cm, (iii) the value of x when its speed is 20 cm/sec. 

5 Solve the equation d2x/dt 2 = 36x - 72 given that when t = 0, x = 7 and 
dx/dt = 32. 

Exercises 16 
1 Obtain the general solution of the following differential equations: 

(a) tan x dy = cot y dx 
dy (c) y - x 
dx = xy 

dy (b) 
dx + y = x2y 

2 Obtain the differential equation for which y = Ax + A3 is the general 
solu'tion. 3 Solv.e the equation 

(dy
)

2 dy - - (x + y) - + xy = 0 dx dx 

and interpret the results geometrically. 
4 Find the general expression for y given that it satisfies the equation 

y(l + x2) :� - 2x(l - y2) = 0 
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5 Solve the differential equation 

(1 + x2)y :� = 9 + y2 

given that y = 0 when x = 0. 
6 Show that the solutions of the differential equation 

(dy
)

2 
2 2 dy 

xy dx - (x - y ) dx - xy = 0 

[AEB] 

are the two families of curves xy = A and x2 
- y2 = B. Show that these 

two sets of curves are orthogonal trajectories. 
7 Given that y = (arcsin x)2, prove that (1 - x2)(dy/dx)2 = 4y. Deduce that 

(1 - x2)(d2y/dx2) - x (dy/dx) = 2. 
8 If y = A tan (x/2), where A is a constant, prove that 

(1 + cos x)(d2y/dx2) = y 
9 Write down the general solution of the differential equation dy/dt = - ky, 

where k is a constant. A radioactive substance disintegrates at a rate 
proportional to its mass. If the mass remaining at time t is m, show that 
m = m0e-k1, where m0 is the initial mass and k is a constant. 

One third of the original mass of the substance disintegrates in 70 days. 
Calculate, correct to the nearest day, the time required for the substance 
to be reduced to have half its original mass. If the original mass was 100 g, 
calculate correct to the nearest g the mass remaining after 210 days. 

[JMB] 
10 Find the curves such that the portion of the tangent included between 

the co-ordinate axes is bisected at the point of contact. 
I I  Prove that if y = e-k1 (A sinpt + B cospt ), where k, p, A and B are 

constants, then 
d2y dy 
dt i + 2k dt + (p2 + k2)y = 0 . 

12 Find y in terms of x if 

:� = (1 + y)2 sin2 X COS X 

and y = 2 when x = 0. [AEB] 

13 G. h dy y + 9x h b . . b . . 1ven t at - = --, use t e su stltutlon y = zx to o tam an equation dx y+x 
expressing dz/dx in terms of z and x. Solve this equation and deduce that 
(3x + y)(3x - y)2 = C, where C is an arbitrary constant. [JMB] 

14 A rectangular tank has vertical sides of depth h and a horizontal base 
of unit area. An inlet supplying water at a constant rate fills the tank 
in time T when running alone. An outlet, through which water flows at 
a rate proportional to the square root of the depth of water in,the tank, 
empties the tank in time 4T when running alone. Show that, if x is the 
depth of water at time t when both outlet and inlet are running, then 
dx/dt = p - qJx, where p = h/T and q = Jh/2T. Deduce that if both 
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inlet and outlet are running, the initially empty tank will be filled in 
time 4 T(2 logc 2 -1 ). [JMB] 

15 A particle is moving in a straight line and its distance at time t from a 
fixed point O in the line is x. Its speed is given by 

dx 
50 dt 

= (40 -x)(x -20) 

and x = 25 when t = 0. Find an expression for x in terms of t. Find the 
greatest speed in the interval 20 < x < 40 and the value of t when the 
greatest speed is attained. [JMB] 

16 Show that the substitution y = vx (where v is function of x) reduces the 
equation 

dy dy x + y - = x - -y 
dx dx 

to a separable equation for v and hence show that its solution is 

loge (x2 + y2} = 2 arctan r + C 

17 Use the substitution y = vx, where v is a function of x, to reduce the 
differential equation 

dy 1 2 2 X - -y = 4X -y dx 

to a differential equation involving v and x. Hence find y as a function 
of x given that y = 0 when x = 1. 

18 By using the substitution y = xz, or otherwise, solve the differential 
equation 

[JMB] 

19 If d2s/dx2 + s = 1 and when s = 2, ds/dx = 0, prove that (ds/dx}2 = 2s -s2. If s = 0 when x = 0, prove also that s = 1 -cos x. 
2_0 Show that, by means of the substitution y = t -x2, the equation 

becomes 

d2y 
dx2 + x2 + y + 2 = 0 

d2t 
dx2 + t = 0 

Solve this latter equation and hence obtain the general solution of the 
original equation. 

21 The rate of cooling of a body is given by the equation 
d T dt = - k(T- 10) 
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where T is the temperature in degrees Celsius, k is a constant, and t is 
the time in minutes. 

When t = 0, T = 90 and when t = 5, T = 60. Show that T = 41¼ when 
t = 10. rJMB] 

22 The motion of a particle P, whose co-ordinates are (x, y) referred to a 
pair of fixed axes through a point 0, satisfies the equations 

d2y - i - - - w y dt 2 

The initial conditions are x = a, y = 0, dx/dt = 0 and dy/dt = bw when 
t = 0. Prove that the path of the particle is the ellipse 

(The general solutions of d2x/dt 2 = - w2x, d2y/dx2 = - w2y may be 
quoted.) [JMB] 

23 A particle of mass m is projected with speed V vertically upwards from 
a point on horizontal ground. Its subsequent motion is subject to gravity 
and to a resistance kmv2, where v is the speed and k is a constant. If its 
acceleration is equal to -g - kv2 show that the greatest height attained is 

1 ( 
v2 ) 2k log. 1 + kg 

24 Solve the differential equation dy/dx = cos x (sec y - tan y) given that 
y = 0 when x = ½n. [AEB] 

25 (a) In the differential equation 
dy (x + y) dx = x2 + xy + x + 1 

change the dependent variable from y to z, where z = x + y. Deduce 
the general solution of the given equation. 

(b) The normal at the point P(x, y) on a curve meets the x-axis at 

Q and N is the foot of the ordinate of P. If NQ = �
(l + �2)

, find the 1 +x ) 
equation of the curve, given that it passes through the point (3, L). 

[JMB] 
26 A particle is projected vertically upwards with a speed gjk, where g, k 

are constants. If the subsequent motion is subject to gravity and to a 
resistance to motion per unit mass of k times the speed, then the 
acceleration is given by 

d2x - = - g - kv dt 2 

Find expressions for the speed v and the height x reached after time t. 
Also show that the greatest height H the particle can reach is given by k2 H = g(l - log. 2). 
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27 A particle moving along a straight line OX is at a distance x from 0 
at time t and its speed is given by 

dx St2 - = (1 - t 2)x2 
dt 

If x = 4 when t = 1 prove that x = 8t/(1 + t 2). Find (i) the speed when 
t = O; (ii) the maximum distance from O; (iii) the maximum speed towards 0 
for positive values of t. [JMB] 

28 The equation of motion of a particle is 

2c(l + sin 0)(:�)
2 

= g[2(cos a - cos 0) - (cos 2a - cos 20)] 

If a and 0 are small, show that this equation reduces approximately to 

2c( :�y = g(a2 - 02) 

If initially t = 0 and 0 = a, deduce that 

29 The displacement of a particle at time t is x, measured from a fixed point 
and dx/dt = a(c2 - x2), where a and c are positive constants and x = 0 
when t = 0. Prove that 

(e2act - 1) 
X = C ---,,---( e2act + 1) 

If x = 3 when t = 1 and x = 14 when t = 2, prove that c = 5 and find 
the value of a. [JMB] 

30 A mass is moving horizontally against a resistance which is proportional 
to its speed. If at any time t its speed is v and x is the distance moved, 
its equation of motion is known to be 

P( V2 - v2) = 1 v2v2 dv 
dx 

P, V being constant. Find an expression for x in terms of v and from this 
expression show that the distance covered by the mass while its speed 
increases from ½ V to ¾ V is � �; ( 6 loge ; - 5). 

31 Given that 
• 2 dy 2 . 2 ( 1 + sm x) dx = e - Y sm x 

and y = 1 when x = 0, find the value of y when x = n/2. 
32 Find the solution of the differential equation 

dy x(l - y2) 

dx y(l + x2) 

for which y = ½ when x = 1. [OJ 
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33 (a) Given that dy/dx = 9y2 
- 4 and that y = 1 when x = 2, find an 

equation expressing x in terms of y. 
(b) In a certain country the price p of a particular commodity increases 

with the time t at a rate equal to kp, where k is a positive constant. 
Write down a differential equation expressing this information. 
Show that if p = 1 when t = 0 and p = ix when t = 1, then at time t, 
p = ix'. [C] 

34 Solve the differential equation 
dy (x + 2) dx + (x + l)y = 0 

(where x > - 2), given that y = 2 when x = 0. Show that the maximum 
value of y is e, and sketch the graph of y against x for x > - 2. Draw on 
your graph the tangent to the curve at its point of inflexion. Find the 
equation of this tangent. [LU] 35 By solving the differential equation 

dy (1 - ex) tan y dx = ex 

find an expression for y in terms of x and a constant. [JMB] 



17 
Introduction to co-ordinate geometry 

17.1 Co-ordinates 
Cartesian co-ordinates 
When drawing graphs it is necessary to have two fixed reference lines. These 
are known as the axes, Ox and Oy, and are normally at right angles to each 
other. The axes enable us to locate any point P in a plane by means of its 
perpendicular distances from Oy and Ox. 

Referring to Figure 1 7.1, the lines PL and PM, perpendicular to the axes, 
define the position of P. The lengths PM, PL are known as the cartesian 
co-ordinates of P. The length PM (x) is known as the abscissa and the length 
PL (y) is known as the ordinate. The pair are written in order as (x, y). We 
note that if P is the point (x, y) then it is also true that OL = x, and OM = y. 

y 
M l-,------P 

--0.,...+J,-----......... L --x 

Figure 17.J 

The usual sign convention is used. For points to the right of Oy the 
abscissa is positive, and for points to the left of Oy the abscissa is negative. 
For points above Ox the ordinate is positive, and for points below Ox the 
ordinate is negative. Thus the points A(4, 3), B( - 2, 5), C( - 4, - 3), D(l, - 3) 
are as shown in Figure 1 7.2. 
Polar co-ordinates 
The position of a point P in a plane can be described by other methods. 
Consider a fixed line Ox, 0, the origin, being a fixed point on it. Referring 
to Figure 1 7.3, we see that the position of P is known if the angle POx and 
the distance OP are given. The angle POx (0 in Figure 1 7.3) is called the 
vectorial angle and is considered positive when measured in an anticlockwise 
direction. The distance OP (r in Figure 1 7.3) is called the radius vector and 
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' 
B (-2, 5) ,____ 5 

- 5 0 

C(-4,-3 )  D(+l,-3) 
-5 

Figure 17.2 

A (4,3) 

5 X 

is considered positive when measured from O along the line bounding the 
vectorial angle and negative in the opposite direction. Then (r, 0) are known 
as the polar co-ordinates of P. In Figure 1 7.3, if OP is produced backwards 
to P' so that OP = OP', then P' is the point (r, 0 + n). Note that its polar 
co-ordinates could be given as ( - r, 0), (r, 0 + 3n) or in many other forms. 
To avoid confusion, it is usual to take r as positive and the angle 0 between 
- n  and + n, thus P' is the point [r, - (n - 0)]. 

, - - -� 
P ...- - - -(n-B) 

Figure 17.3 

Jo X 

Example 1 Show on a diagram the position of the points A(4, n/6), 
B(3, - 5n/4), C( -5, n/9), D( - 2, 2n/3) and where necessary give alternative 
polar co-ordinates for each point with r positive and 0 between - n and n. 

Figure 17.4 shows the points A, B, C, D. From the figure it can be seen 
that, if r is to be positive and 0 is to lie between - n and n, A(4, n/6) is unalt­
ered but B(3, -5n/4) becomes (3, 3n/4), C( -5, n/9) becomes (5, -8n/9), 
D( - 2, 2n/3) becomes (2, - n/3). 

The transformation from polar co-ordinates to cartesian co-ordinates or 
vice versa 
Consider Figure 17.5, where the point P has cartesian co-ordinates (x, y) and 
polar co-ordinates (r, 0). Then 

x = ON =  OP cos 0 = r cos 0 
y = PN = OP sin 0 = r sin 0 

(17.1) 
(17.2) 

Example 2 Find the cartesian co-ordinates of the points P(3, n/6) and 
Q(5, 3n/4). 

P is the point [3 cos (n/6), 3 sin (n/6)], i.e. (2·598, 1·5). 
Q is the point [5 cos (3n/4), 5 sin (3n/4)], i.e. ( -3·536, - 3·536). 
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(a) 
C (-5, i l  

Figure 17.4 

y 

0 1'---"--'-----....... N...._..._ x 
- - - - - - - - - - - - - - �  

Figure 17.5 

\ 
\ 

(b) 

2 TT 

D ( - 2  .1..zZ. )  ' 3 

From (17.1) and (17.2), we have by squaring and adding (or direct from 
Figure 17.5) 

r2 = x2 + y2 ( 17.3) 
and by division 

tan 0 = l'.. (17.4) 

Example 3 Find the polar co-ordinates of the points A( - 4, 4), B( - 3, - 3). 
For A, 

r2 = ( -4)2 + (4)2 and 0 = arctan( �
4

) 

and for B, 

r2 = ( - 3)2 + ( - 3)2 and 0 = arctan( = ! ) 
It is best to draw a figure to find which value of 0 is required and from 

A (-4 , 4) 

B (-3,3) 

4 

- .llr 
4 

Figure 17.6 
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Figure 17.6 it can be seen that: A is the point (4J2, 3n/4) and B is 
(3J2, -3n/4). 

Exercises 17a 1 Indicate on a diagram the positions of the points whose cartesian 
co-ordinates are: A(3, 4), B( -5, 2), C(0, 6), 0(6, 0), E( -1, -2), F(6, -5), 
G( -3, 0), H(0, -3). 

2 Indicate on a diagram the positions of the points whose polar co­
ordinates are A(3, n/4), B(4, 2n/3), C(5, -n/4), 0(3, n), E(5, -n/2), 
F(4, -511:/6), G(2, 0). 

3 By means of a diagram, rewrite the polar co-ordinates of the points 
A(-2, 3n/4), B(5, 1 7n/9), C(3, 4n), D( -2, -5n/4), E( -6, l0n/9), 
F( -4, -5n/4), G( -6, -1311:/6) with the radii vectors all positive and the 
vectorial angles between -n and n. 

4 What are the cartesian co-ordinates of the points whose polar co-ordinates 
are (3, n/2), (4, -n/3), (5, n), (2, -511:/6), (3, -n/2). 

5 Find the polar co-ordinates of the points whose cartesian co-ordinates 
are (2, 2), ( -3, -4), (0, 5), ( -12, 5), (3, 0), (6, -3). 

6 Find which of the following points coincide: A(3, 3), B( -6, n/3), 
C(3J2, 5n/4), 0(3, - 3), E( -3, - 5· 196), F(3J2, -7n/4), G(3J2, -5n/4), 
H( -3, -3), J( -3J2, 3n/4). 

7 The six points A, B, C, D, E, F are equally spaced on the circumference 
of a circle radius 2, centre the origin. If A is the point (J2, J2) write 
down the polar co-ordinates of the six points. 

8 On which line does the point P lie if its cartesian co-ordinates are (A, B) 
and its polar co-ordinates are (A, B)? 

9 A point P is such that its x and y co-ordinates are equal both in 
magnitude and sign. Plot on a diagram several possible positions of P 
and deduce on which line P must lie. If P is such that its x and y co­
ordinates are equal in magnitude but opposite in sign on which line must 
P lie? 

10 ABCD is a square, AC is a diagonal. If the co-ordinates of A, C are 
( -5, 8), (7, -4) find the co-ordinates of B and D. 

17.2 The distance between two given points in terms of their 
cartesian co-ordinates 

Let P(x 1 , y1 ) and Q(x2, y2) be the two given points. Draw PA, QB parallel 
to Oy, and QL parallel to Ox. The angle PLQ (see Figure 17.7) is a right 
angle. Then 

QL = BA = OA - OB = x 1 - x2 

PL = PA -AL = PA -QB = Y i -Y2 

and since PLQ is a right angle 

PQ = J(PL 2 + LQ2) 

PQ = J[(x1 -X2)2 + (Y1 -Y2)2] (17.5) 
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y 

P (x1 y1 )  

-0-+--�B--- ---�A�►x 
Figure 17.7  

In the above case, we have assumed that all the co-ordinates are positive 
but, if due regard is paid to the usual sign convention, the formula is true 
in all cases. 
Example 1 Show that the points A(5, -6), B( -3, 0), C( -1, 2) form an 
isosceles triangle. 

Substituting in the formula ( 1 7.5), we have 
BC = ✓{ [( - 3)-( - 1)]2 + [0-2]2} = ✓8 = 2✓2 
AB = ✓{ [5 -( -3)]2 + [( -6) -0]2

} = ✓100 = 10 
AC = ✓{ [5 -( -1 )]2 + [(-6) - 2]2 } = ✓ 100 = 10 

Since AB = AC, the triangle ABC is isosceles. 

Exercises 17b 
1 Show that the points A(6, 2), G(3, 6), C( -1, 3) and 0(2, - 1) are vertices 

of a square. 
2 If P is the point (3, 4) and the reflections of P in Ox and Oy are A and B 

respectively, find the distance AB. 
3 Show that the points A(¾, }), B(¥, %), C(�, -¾), D( -i, ¾) are the 

vertices of a parallelogram. 
4 Find the lengths of the sides of the triangle ABC where A, B, C are the 

points (0, 4), (4, 10) and (7, 8) respectively. Hence show that (a) ABC is 
right angled. [Hint: use Pythagoras.] (b) AB = 2BC. 

5 The points A(x, 1) and B( -6, -5) are equidistant from the point 
C(3, -2). Find two possible values for x. 

6 Find the distances between the following pairs of points: 
(i) (a, b), ( -a, -b), (ii) (2a, 2b), (0, 0), (iii) (3a, 3b), (a, b), (iv) (a + b, a -b), 
(b -a, a +  b). 

7 Show that the points A(5, 4), B(8, 1), C(6, 3) lie on a straight line. 
[Hint: show that AC + CB = AB.] 

8 The points P(x, y), A(4, 3) and B( - 1, -3) are such that PA = PB. By 
equating the expressions for PA2 and PB2, show that lOx + 12y -15 = 0. 

9 Show, from first principles, that the distance between the two points whose 
polar co-ordinates are (r1 , 01 ) and (r2 , 02) is given by the expression ✓[r/ + r/ -2r1r2 cos (01 - 02)] . 

10 Find the co-ordinates of the point P which is equidistant from the three 
points A(l, - 1 ), B(9, 7), C(l, 7). 
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17.3 The co-ordinates of the points which divide the 
line joining two given points internally and externally in a 
given ratio 

Internal division In Figure 17.8, R divides PQ internally in the ratio k : l. 

External division In Figure 17.9, R divides PQ externally in the ratio k : l. 

In both cases let P, Q and R be the points (x1, y1), (x2, x2) and (X, Y) 
respectively. Then 

AC : CB = PM :MN = PR: RQ = k : l  

hence 

Internal division 

AC k 
CB l 

lAC - kCB = 0 
External division 

AC = X -x1 CB = x2 - X  
hence 

AC = X - X i CB = X - X2 

hence l(X - x1) - k(x2 - X )  = 0 
whence 

l(X - X1) - k(X - X2) = 0 
whence 

similarly 

y 

( 17.6) 

similarly 

( 17. 7) 

y 

Figure 17.8 

Q(x2r2> -� �( X,Y ) 
- - I 

..,::;..-----+---- - -�M 
N I 

I 
I 
I 

....,..,_A _____ ....,B,__ _ __.,C....._x 

Figure 17.9 

( 1 7.8) 

( 1 7.9) 
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It is useful to remember that the formulae for external division are obtain­
able from those for internal division by changing the sign of either l or k. 

Example 1 The points A and B divide the line joining P(3, 2) and Q(7, 9) 
internally and externally in the ratio 5 :  4. Find the co-ordinates of A and B. 

A is the internal divisor, therefore using (17.6) and (17.7) 

4 X 3 + 5 X 7 47 X = ---- = -
4 +  5 9 

y = 4 X 2 + 5 X 9 = 53 
4 +  5 9 

A is the point (�. ¥) 

B is the external divisor, therefore using (17.8) and (17.9) 

4 X 3 - 5 X 7 23 X =  4 - 5  
= 

y = 4 X 2 - 5 X 9 = 37 4 - 5  B is the point (23, 37) 

Example 2 A, B, C are respectively the three points ( - 5, 2), (3, 4), (7, 5). 
Find (i) the ratio in which B divides AC and (ii) the ratio in which C divides 
AB. 

(i) Let k : l  be the required ratio. Then using (17.6) and (17.7) and noting 
that (x1, y1) and (x2, y2) are the points ( - 5, 2) and (7, 5) respectively, we 
have 

7 k + ( - 5)1 _ 3 d 5k + 21 = 4 
k + l - an 

k + l 
From the first of these two equations 

hence 

7 k - 51 = 3k + 31 4k = 81 

k = -

As a check, substitute k = 2, l = 1 in the second equation 

LHS = 5 x 2 + 2 x 1 = 12 = 4 2 + 1  3 

(ii) Again let k : l  be the required ratio and again use (17.6) and (17.7) but 
this time (x 1 , y1 ) and (x2 , y2) are the points ( - 5, 2) and (3, 4) respectively, 
hence 

3k + ( - 5)1 = 7 k+l 4k + 21 = 5 k+l 
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From the first of these two equations 
3k - 51 = 7k + 71 -4k = 12/ k 3 

/ 1 
As a check, substitute k = - 3, I = 1 in the second equation 

LHS = 4( - 3) + 2 x 1 = - 10 = 5 - 3+1 - 2  
Note that in part (ii) the formulae for the internal divisors were used but 

gave a negative value for the ratio, indicating that C is an external divisor 
of AB. 

Exercises 17c 
1 A and B are the points (3, 5) and ( - 5, - 7) respectively. Find the co­

ordinates of the points which divide AB internally and externally in the 
ratio 3 :  1. 

2 Find the co-ordinates of the mid-point of the line joining the points 
A(5, 6), B(l 1, 2). 

3 P and Q are the points dividing the line joining A( - 3, - 4), B(5, 12) 
internally and externally in the ratio 5 :  3. Find the co-ordinates of 
P and Q. 

4 A, B, C are the points (5, - 3), ( - 4, 9), (14, - 15) respectively. Given that 
ABC is a straight line, find the ratios in which (a) B divides AC, (b) A 
divides BC and (c) C divides AB. 

5 The line joining the points A(3, 4) and B(7, 6) meets the line joining 
C(l, 3) and D(l 1, 8) at the point P. Given P is the mid-point of AB, find 
its co-ordinates and hence find the ratio CP: PD. 

6 The three points A(5, 6), B( - 3, 2), C( - 8, - 5) form a triangle. Find the 
co-ordinates of the A', the mid-point of BC. If G is a point on AA' such 
that AG :GA' = 2 :  1, find the co-ordinates of G. 

7 The line joining A(a, b) and B(p, q) is divided into six equal parts by the 
points P 1, P 2, P 3, P 4, P 5. Find the co-ordinates of P 2 and P 5• 

8 The two points A(4, 3) and B(8, - 6) together with the origin O form 
a triangle OAB. Find the co-ordinates of the point P in which the external 
bisector of AOB meets AB. [Hint: find the lengths OA and OB; then the 
external bisector of an angle of a triangle divides the opposite side 
externally in the ratio of the sides containing the angle.] Deduce that the 
internal bisector of the angle AOB is the x-axis. 

9 If A(x 1, y1), B(x2, y2), C(x3, y3) are the vertices of the triangle ABC write 
down the co-ordinates of A' the mid-point of BC. Hence find the co­
ordinates (i, y) of G the point which divides AA' internally in the ratio 
2: 1 (G is known as the centroid). 

10 Find in what ratio the point (4b - 2a, 9c -a) divides the line joining the 
points (a + b, 3c + 5a) and (5b - 3a, 1 lc - 3a). 
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17.4 The area of a triangle in terms of the co-ordinates 
of its vertices 

Let the triangle be ABC, where A, B and C are the points (x1 , y i ), (x2 , Yi), 
(x3, y3) respectively 

Figure 1 7.10 

Draw AP, BQ, CR, perpendicular to Ox (see Figure 17.10). Then 
area 6 ABC = area of trapezium APRC -area of trapezium APQB 

-area of trapezium BQRC = ¥AP + CR) . PR - ¥AP + BQ) . PQ - ¥BQ + CR) . QR 
= ¥Y1 + y3)(X3 - X 1) -¥Y1 + Y2)(x2 -X1) 

-¥Y2 + y3)(X3 -X2) 
which when simplified gives 

area 6 ABC = ¥x1 y2 - x2y 1 + x2y3 - x3y2 + x3y1 -x 1y3) (17.10) 
The numerical value for the area is independent of the order in which the 

vertices are taken. However, if the order is such that, on going round the 
triangle, the area is always on the left-hand side the area will be positive. 

Condition for three points to be collinear 
If the three points A(x1, y1), B(x2, y2) and C(x3, y3) are collinear, then the 
area of the triangle ABC is zero. Hence from (17.10), the condition for the 
three points to be collinear is 

(17.11) Example I Given the four points A(3, 4), B(9, 7), C(7, 6) and 0(5, -3), show 
that A, B and C are collinear and find the area of the triangle ABO. 

Consider the area of ABC by substituting the co-ordinates of A, B, C in 
(17.10): 

area 6 ABC = ¥3 x 7 -4 x 9 + 9 x 6 -7 x 7 + 7 x 4 -6 x 3) 
= ¥21 -36 + 54 -49 + 28 -18) = 0 

Hence A, B C are collinear. 
The area of 6 ABO, using the co-ordinates of A, B, D in (17.10), is given by 
area 6 ABO = ½[3 x 7 -4 x 9 + 9 x ( - 3) -7 x 5 + 5 x 4 -( -3) x 3] 

= ¥21 -36 -27 -35 + 20 + 9) 
= 24 square units (ignoring the negative sign) 
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Exercises 17d 
I Find the area of the triangle ABC where A, B and C are the points 

(5, 6), (3, 2), (8, - 1). 
2 Show that the points A(l, 5), B( - 3, 9) and C( - 2, 8) are collinear. 
3 Find the areas of the triangles whose vertices are 

(i) (3, 4), (5, 6), ( - 2, 0) 
(ii) (0, 0), (1, - 2), (3, - 1) 

(iii) (2, - 7), (7, 3), (9, 7) 
(iv) (4, 7), (0, 2), ( -3, 0) 

4 A, B, C are the points (0, 4), (4, 10), (7, 8) respectively. Using Pythagoras' 
theorem, prove that angle ABC is a right angle. Find the area of the 
triangle ABC by means of the formula (17.10) and verify your result by 
using the formula for the area ½AB . BC. 

5 Show that the four points A( - 7, 5), B(l, 1), C(5, - 1), D(13, - 5) all lie 
on a straight line. 

6 If the points A(5, 6), P(x, y) and B(2, 3) are collinear, show that 
x -y+ 1 = 0. 

7 The points A(3, 4), B(5, 3), C( - 1, - 1) and D( - 3, 0) form a quadrilateral. 
Show that the mid-point P of AC lies on the line BD. Show also that 
the area of the triangle PAB is equal to the area of the triangle PCD. 

8 Find the area of the quadrilateral ABCD, where A, B, C and D are the 
points (1, 1), (5, 4), (4, - 1) and ( - 3, - 12) respectively. 

9 The four points A(0, 0), B(5, 1), C(- 4, 4) and D(- 1, - 5) form a 
quadrilateral. Find the areas of the triangles ABC and ACD and henc.e 
find the area of the quadrilateral by adding the two results. Draw a figure 
and explain why the sum of the areas of triangles ABD and CBD do not 
equal the area of the quadrilateral. 

10 Show that the condition Yi - Yz = Yz - Y3 is equivalent to the condition 
X 1 - X2 Xz - X3 

(17.11) for the three points (x1 , y i ), (x2, y2), (x3 , y3) to be collinear. 

17.5 Loci 
If a curve can be defined by a geometrical property common to all points 
on it, then there will be an algebraic relation which is satisfied by the co­
ordinates of all points on the curve. Such an algebraic relation is called the 
equation of the curve. Conversely, all points whose co-ordinates satisfy a given 
algebraic relation are on a curve known as the locus of the given equation. 

Example 1 A given circle has its centre C at the point (3, 4) and its radius 
is 5 units. Find its equation. 

In order to find the equation of the circle, we have to find the algebraic 
relation satisfied by all points on the curve. 

Let P(x, y) be any point on the curve, then PC is a radius of the circle. 
Hence 

PC = 5  



thus 
.j[(x - 3)2 + (y - 4)2] = 5 

or 
(x - 3)2 + (y - 4)2 = 25 

which is the required equation. 
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Example 2 A point C moves so that its distances from two fixed points 
A(5, 3) and B(7, 4) are always equal. Find the equation of the locus of C. 

Let C be the point (x, y), then CA = CB, therefore 
CA2 = CB2 

that is 
(x - 5)2 + (y - 3)2 = (x - 7)2 + (y - 4)2 (see (17.5)) 

x2 
- 10x + 25 + y2 - 6y + 9 = x2 - 14x + 49 + y2 - Sy + 16 

thus 4x + 2y = 31, which is the required equation. 
Example 3 A circle of radius 6 units passes through 0, the origin of co­
ordinates, and has the y-axis as a diameter. Find its polar equation. 

y 

A 

1 2  

P ( r, 0 )  

0 
Figure 17.11 

Since the polar equation is required, let any point P on the circle have 
polar co-ordinates (r, 0) (see Figure 17.11). Since OA is a diameter, angle 
OPA is a right angle, hence 

OP/OA = cos POA OP = OA cos POA 
= 12 cos (90° - 0) 

r = 12 sin 0 
which is the required equation. 

The equation of the curve need not be a direct relation between the co-
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y 

0 

Figure 17.12 

D 

ordinates (r, 0) or (x, y) of any point on the curve. The co-ordinates can be 
obtained in terms of a third variable known as a parameter. 
Example 4 A circle has its centre C at the point ( 10, 8) and its radius is 
7 units. Find its equation. 

Referring to Figure 17.12, CLD is parallel to Ox. P(x, y) is any point on 
the circle and PCD = 0. As 0 varies, P describes the circle. 

Hence 

y = PB = PL + LB = PL + CA 
= PC sin 0 + 8 
= 7 sin 0 + 8 x = 0B = OA + AB = OA + CL 
= 10 + PC cos 0 
= 10 + 7 cos 0 

x = 7 cos 0 + 10 y = 7 sin 0 + 8 (i) 

are the parametric equations of the circle and for any value of 0, the equations 
(i) give the x and y co-ordinates of a point on the circle. 

The x, y equation can be obtained by eliminating the parameter 0. 
From (i) x - 10 = 7 cos 0 y-8 = 7 sin 0 
Squaring and adding gives 

(x -10)2 + (y -8)2 = 49 (cos2 0 + sin2 0 = 1) 
which is of the same form as the circle in Example 1. 

Exercises 17e 
1 Find the equation of the circle centre (3, -4) radius 7. 
2 A point P moves so that PA = 2PB, where A, B are the fixed points 

( -2, 1), (5, 6) respectively. Find the locus of P. 
3 A(3, 2) and B(6, 4) are two fixed points and the point C moves so that 

the angle ACB is always a right angle. Using Pythagoras' theorem find 
the locus of C. 
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4 A circle of radius 4 units passes through O the origin and has the y-axis 
as a diameter. Find its polar equation. 

5 Find the equation of the circle on AB as diameter, where A and B are 
the points ( - 3, - 4) and (7, 20). 

6 Find the equations of the curves whose parametric equations are 
(i) x = et, y = c/t, (ii) x = a cos 0, y = b sin 0. 

7 A point P moves so that its perpendicular distance from the y-axis is always 
equal to its distance from the point (2, 3). Find the equation of the 
locus of P. 

8 A point P moves so that its distance from the axis of x is half its distance 
from the origin. Find the locus of P. 

9 A point P moves along a line parallel to the axis of x at a distance 
6 units from it. Find the polar equation of the locus of P. 

10 A(O, 2) and B(O, - 2) are two fixed points. The point P moves so that 
PA + PB = 8. Find the equation of the locus of P. [Hint: use the result 
(17.5) but before simplifying, rewrite the given condition in the form 
PA = 8 - PB.] 

17.6 The points of intersection of two loci 
In order to find the points of intersection of two loci, we note that, where 
they intersect, there is a point common to both curves. The co-ordinates of 
this point will satisfy the equations of both curves simultaneously. Thus if 
the equations are solved simultaneously, the solutions will be the co-ordinates 
of the common points. 

Example 1 Find the point of intersection of the two loci 3x - y -5 = 0 and 
12x + y - 25 = 0. 

3x - y - 5 = 0 
12x + y-25 = 0 

Adding these equations eliminates y and gives 

15x - 30 = 0 

Thus x = 2, and by substituting in the first equation y = 1. The required 
point is (2, 1 ). 

Example 2 Find the points of intersection of the circle 

(x - 3)2 + (y - 4)2 = 25 

(see Section 17.5, Example 1) and the locus y + x - 12 = 0. 
The equation of the circle simplifies to 

x2 + y2 - 6x - Sy = 0 

and from the second equation 

y = 12 -X 

(i) 

(ii) 
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Substituting (ii) in (i) 
x2 + (12 -x)2 - 6x - 8(12 - x) = 0 

2x2 - 22x + 48 = 0 
2(x -3)(x - 8) = 0 x = 3 or 8 

and substituting in (ii) the two points are (3, 9) and (8, 4). 
Example 3 Find the points of intersection of the two circles r = 12 cos 0 and 
r = 6. 

A (6,"1f ) 

Figure 17.13 

Since r = 12 cos 0 and r = 6, at the points of intersection 6 = 12 cos 0, 
thus cos 0 = ½. Therefore 

0 = n/3 or - n/3 
Hence the required points are A(6, n/3) and B(6, - n/3) (see Figure 17.13). 

Exercises 17f 
1 Find the points of intersection of the two loci 3x + 2y - 1 = 0, 

2x - 3y + 21 = 0. 
2 Find the points of intersection of the circle (x - 5)2 + (y - 6)2 = 49 and 

the locus y + x - 18 = 0. 
3 Find the points of intersection of the two circles x2 + (y + 1)2 = 2 and 

(x + 1)2 + (y + 2)2 = 4. 
4 Find the points of intersection of the circle r = 10 and the locus 

r cos 0 = 5✓3. 
5 Show that the three loci x + y + 1 = 0, 3x + 2y + 6 = 0, 2x + 5y - 7 = 0 

have a common point. 
6 Find the point or points common to the two loci whose equations are 

x2 + y2 + 6x + Sy = 0 and 4x + 3y - 1 = 0. 
7 Show that the two circles (x - 3)2 + (y - 4)2 = 25 and (x - 1 )2 + (y - i)2 

= 56¼ touch each other. 
8 Find the points common to the two loci whose equations are r = 6 cos 0, 

r = 6✓3 sin 0. 
9 Find the points common to the two loci whose equations are y2 - 6y -

4x + 1 = 0, 2y - X - 11 = 0. 
10 Find the point of intersection of the loci x - y = 3, x + 3y = 7. Show that 

the locus whose equation is x2 
- xy - 3x = 0 passes through this point. 
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17.7 Change of origin 
Let Ox, Oy be the original axes, O' the new origin and (h, k) the co­ordinates of O' referred to the original axes. 

y 

r 
p 

01 (h, k) N x' 

0 K M X 

Figure 17.14 

Through O' draw O'x' and O'y' parallel to and in the same sense as 
Ox and Oy respectively (see Figure 17.14). Suppose P is any point whose co-ordinates referred to the original axes are (x, y). We require to find its co-ordinates, say (X, Y), referred to the new axes. Draw PM parallel to Oy, cutting Ox in M and O'x' in N. Then 

and 

x = OM = OK + KM (see Figure 17.14) = OK + O'N = h + X  
y =  MP = MN + NP = KO' + NP = k +  y 

The old co-ordinates are given in terms of the new co-ordinates by the two equations. 
x = h + X  y = k +  y ( 17. 12) 

If we use the equations ( 17.f2) to substitute for x and y in a given equation, the equation of the curve referred to the new axes will be obtained. 
Example 1 Find the equation of the straight line 3x + 2y + 1 = 0 referred to axes through the point ( 1 ,  - 2). In this case, h = 1 ,  k = -2. Therefore from ( 17. 12) 

x = l + X  y = - 2  + y 
Substituting in the given equation, we have 

3x + 2y + 1 = 0 
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which becomes 
3(1 + X) + 2(-2 + Y) + 1 = 0 

3X +2 Y =  0 
which is a straight line through the new origin. 

Exercises 17g 
Change the origin of co-ordinates in each of the following cases: 

Original equation 
1 3x - 2y + 4 = 0 
2 5x + y -7 = 0 

New origin 
(3, 2) 

3 2y - 5x - 3 = 0 
4 X + 5y-2 = 0 
5 2x - 3y = 0 
6 y2 

= 4a(x - 1) 
(x - 1)2 (y - 3)2 - 1 7 4 + 16 -

8 (x - 3)2 + (y - 3)2 = 25 
(x + 1)2 (y - 2)2 

- 1 9 4 - 16 -

10 x2 + y2 - 8x + 6y = 0 

( - 2, -5) 
(1, - 1) 
( - 3, 1) 
(5, 2) 
(1, 0) 

(1, 3) 

(3, 3) 

( - 1, 2) 

(4, - 3) 

17 .8 Loci:polar co-ordinates 
We have seen in Section 17.l that we can describe the position of a point 
P by its cartesian co-ordinates (x, y) or its polar co-ordinates (r, 0). The two 
sets are related: 

x = r cos 0 r = ✓(x2 + y2) y = r sin 0 
tan 0 = y/x. 

The cartesian equation of a curve expresses the relationship between the 
cartesian co-ordinates of the points which lie on the curve. Its polar equation 
expresses the relationship which must exist between the polar co-ordinates 
of the points on the curve. 

If the equation of a locus is known in cartesian co-ordinates, it may be 
found in polar form and vice versa. 
Example 1 Find the polar equation of the line y = mx. 

y = mx is a line through the origin with gradient m (see Section 18.2). If y = mx, then y/x = m, that is tan 0 = m. Therefore 
0 = arctan m = a constant 

The line with polar equation 0 = a is a line through the origin with gradient 
tan a. 
Example 2 Find the cartesian equation of the line r = p sec (0 - a) and give 
a geometrical interpretation of p and a. 
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r = p sec (0 - (X) 
therefore 

p = r cos (0 - (X) 
= r cos 0 cos (X + r sin 0 sin (X 

Therefore, in cartesian form, the line has the equation 
x cos (X + y sin (X = p 

Thus p is the length of the perpendicular from the origin to the line, and 
(X is the angle that this perpendicular makes with the x-axis. See Figure 18.5 
and equation ( 1 8.8). 
Example 3 Find the polar equation of the circle x2 + y2 = a2 • 

x2 + y2 = a2 is the equation of a circle with centre the origin and radius 
a (see Section 19.1). 

Its polar equation is r2 = a2 , i.e. r = a represents a circle of radius a and 
centre the origin. 
Example 4 Find the polar equation of the circle centre (a, 0) and radius a. 

Its cartesian equation is (x - a)2 + y2 = a2 (see Section 19.1), that is 
x2 + y2 - 2ax = 0 

Its polar equation is 
r2 cos2 0 + r2 sin2 0 - 2ar cos 0 = 0 

r2 - 2ar cos 0 = 0 
r = 2a cos 0 

y 

Figure 17.15 

We could obtain this from first principles. In Figure 17. 15, OA is a diameter 
of the circle and P(r, 0) is any point on it. 
Thus, since L OPA = 90°, OP/OA = cos 0. Therefore 

r 
2a = cos 0 

r = 2a cos 0 as before 
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Example 5 Sketch the curve r = a0 (a > 0). 
As 0 increases, r increases. The curve winds round and round the origin. 

It is called an Archimedean spiral. It is sketched in Figure 17. 16. 

Figure 17.16 

Example 6 Sketch the curve r = a(l + cos 0). 
Since cos ( -0) = cos 0, the curve is symmetrical about the line 0 = 0. r is 

defined for all values of 0. It cannot exceed 2a. We can easily obtain the 
following table of values 

0 
cos 0 
r 

0 
1 
2a 

n/6 
0·87 
1 ·87a 

n/3 
0·5 
I -Sa 

n/2 
0 
a 

2n/3 
-0·5 
0·5a 

51t/6 
-0·87 
0·13a 

7t 
- 1  
0 

The curve is sketched in Figure 17.17. It is called a cardioid. 

Figure 1 7.17 

Exercises 17h 
Find the polar equations of the following curves: 

1 x2 + y2 = 9 2 x2 + (y -3)2 = 9 
4 xy = c2 5 (x2 -y2)2 = c2 (x2 + y2) 

3 x2 + xy = 1 



Find the cartesian equations of the following curves: 
6 0 = n/4 1 tan 0 = J3 
9 r sin 0 = 5 10 r(l + cos 0) = 3 

Sketch the curves 
12 r = 2 13 0 = n/6 
15 r = 2 + cos 0 16 r sin 0 = r cos 0 
Find the points of intersection of the following curves: 
18 r cos 0 = l, 0 = n/4 19 r = 4, 0 = n/3 
20 r = 2a ( 1 + cos 0), 2r cos 0 + a = 0 

Exercises 17 
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8 r = 3  
11 r2 cos 20 = a2 

14 r = 4 sec 0 
17 r = ea6(0 > 0) 

1 Find the cartesian co-ordinates of the points whose polar co-ordinates 
are (6, - n/2), (J2, 3n/4), (2, n/6), (8, n/2), (J2, - 3n/4), (5, n). 

2 Find the polar co-ordinates of the points whose cartesian co-ordinates 
are (5, - 5), ( - J3, - 1), ( - 3, 3), (1, J3), (0, 2), (3, 0). Draw a diagram of 
the points. 

3 Given the cartesian co-ordinates of A, B, C, D are (4, 4), ( - 4, - 4), ( - 5, 5), 
(3, - 1) and the polar co-ordinates of E, F, G, H, J are (2, n/6), 
( - 4J2, 5n/4), (4J2, - 5n/4), ( - 5J2, - n/4), (4J2, lln/4), find which 
points coincide. 

4 Find the lengths of the sides of the quadrilateral whose vertices are the 
points A(5, 3), B(6, 7), C(8, 1), D(5, - 3). Also find its area. 

5 Show that the four points A(6, 7), B(7, 10), C(0, - 3), D (-1, - 6) form a 
parallelogram. 

6 Show that the three points A(7, 4), B(lO, 2), C(6, - 4) form a right-angled 
triangle. Find the co-ordinates of a point D such that ABCD is a rectangle. 

7 Rewrite the following polar co-ordinates with the radii vectors all positive 
and the vectorial angles between - n  and n: A( - 5, n), B( - 3, -3n/2), 
C(- 5, t1t), D(3, 6n), E ( - 5, 3n), F (-1,¾n), G(3, £n). 

8 Find the points P and Q which divide the line joining A(3, 2) and B(l0, 16) 
internally and externally in the ratio 3 :  4. 

9 Show that the four points A(3, 4), B(9, 13), C(ll, 16) and D(15, 22) all lie 
on a line. Find the ratios in which B and D divide the line joining A and C. 

10 Find the equation of the locus of a point which moves so that its distance 
from the x-axis is twice its distance from the point (2, - 3). 

11 The points A(3, 4), B(2a, 5), C(6, a) form a triangle whose area is 19½ 
square units. Find the two possible values of a. 

12 Find the co-ordinates of the point which is equidistant from the three 
points A(3, 4), B(13, 6), C(3, 4). 

13 The polar co-ordinates of the vertices of a triangle are given by the 
following table. 

0 n/6 
12 

-n/3 
16 

2n/3 
9 

Find the lengths of the sides of the triangle and its area. 
14 Show that the following points A(5, 6), B( - 1, ¥), C( - 5, - 2) are collinear 

and find the ratios (i) AB: BC, (ii) AC: CB, (iii) BA: AC. 
15 Find the co-ordinates of the centroid and of the circumcentre of the 
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triangle ABC, where A, B, C are the points ( - 2, -3), (8, 11) and ( -4, 9) 
respectively. 

16 Find the area of the quadrilateral whose vertices are the points A(5, 4), 
B(8, 5), C(6, -2), D(-3, - 1) respectively. 

17 Find the equation of the locus of a point which moves so that the sum of the 
squares of its distances from the points (3, 0) and ( - 3, 0) is equal to 72 units. 

18 Find the distance from the origin to the point on the x-axis which is 
equidistant from the points P( - 2, 2) and Q(4, 4). [LU] 

19 The straight lines 3x + by +  1 = 0 and ax + 6y + 1 = 0 intersect at the 
point (5, 4). Find the values of a and b. If the first line meets the x-axis at 
A and the second meets the y-axis at B, find the length AB. 

20 0 is the origin of co-ordinates and B is the point (0, 6). Find the polar 
equation of the circle on OB as diameter. 

21 The line 3y = ax + 9 touches the curve y2 = 4x. Find the value of a. 
22 Show that the co-ordinates of the point common to the curve y2 = 4ax 

and the line ty - x = at 2 are (at 2, 2at). 
23 s and s' are two circles of radii 1 and 3 respectively and centres A (0, 0) 

and B( -1, 3) respectively. If s and s' meet at the points P and Q, show 
that L APB = AQB = 90°. 

24 A point moves so that its distance from the axis of x is equal to its distance 
from the point (1, 1). Find the equation of its locus. 

25 Given that P is the point (4, 7), write down the co-ordinates of the points 
which are (i) the reflection of P in the x-axis, (ii) the reflection of P in 
the line y = x, (iii) the reflection of P in the line y = -x. 

26 Find the equation of the loci whose parametric equations are (i) x = 4t 2
, 

y = 1 6t; (ii) X = 4 + t, y = 6 - 1/t. 
27 Show that the point P with co-ordinates [(1 -k)x 1 + kx2 , (1 - k)y1 + ky2] 

lies on the line joining A(x 1 , y2 ) and B(x2 , y2) and that AP = kAB. 
28 The points A, B, C have the co-ordinates (2, 3), ( -11, 8) and ( - 4, -5) 

respectively. The point D is such that ABCD is a parallelogram having 
AC as diagonal. Find the co-ordinates of the mid-point of AC and deduce 
the co-ordinates of D. 

29 A variable line meets the axes at A, B. 0 is the origin. If AB moves so 
that the area of L:::,. AOB is constant, find the locus of the mid-point of AB. 

30 A point P moves along the straight line which passes through the point 
A (5, 0) and makes an angle of 45° with the x-axis. Find the equation of the 
locus of P. [Hint: use the sine rule on the triangle OAP.] 



18 
The straight line 

18.1 The eguation of a straight line parallel to one of the 
co-ordmate axes 

In Figure 18.1, let P(x, y) be any point on the line. Since the ordinate PN 
is equal to OA for all positions of P then 

y = b (18.1) 
is true for all points on the line and is the required equation. 

y 
P (x, y) 

B 

-�O+-.._"' ___ __._N ______ x 

Figure 18.1 

Similarly, x = a is the equation of a line parallel to Oy and distance a 
from it. In particular, the axes Ox and Oy have the equations y = 0 and 
x = 0 respectively. 

18.2 The equation of any straight line in terms of its slope and 
its intercept on the y-axis 

Consider Figure 18.2. ABP is the straight line, 0B = c, and angle BAO = 0. 
P(x, y) is any point on the line, PN is its ordinate and BM is parallel to Ox. 
Then 

L PBM = LBAO = 0 
thus 

PM = BM tan 0 
y - c = x tan 0 

y = x tan 0 + c 
345 
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Figure 18.2 

tan 0 is the slope of the line and is generally denoted by m. Hence the required 
equation is 

y = mx + c  (18.2) 

Example 1 Write down the equation of the line which makes an angle of 
45° with Ox and cuts Oy at a distance of 3 units above the origin. 

From (18.2) the required equation is 
y = x tan 45° + 3 

that is 
y = x + 3 (see Figure 18.3) 

y 

3 

2 

-----------"'-s:---'-----r-+---'.._-l-- -- t-,Q----------➔X 

-1 

Figure 18.3 

Example 2 Write down the equation of the line which makes an angle of 
1 50° with Ox and an intercept of - 3  units on Oy. 

In this case c = -3 and m = tan 150° = - 1/J3. Hence the required 
equation is 

1 
y = -J3x - 3 (see Figure 18.3) 

Example 3 Sketch the line whose equation is y = - x - 2. 
Comparing y = -x - 2  with y = mx + c, we have tan 0 = m = - 1  and 

c = - 2; hence 0 = 135° and c = - 2. 
Thus the line makes an angle of 135° with the positive direction of Ox 

and cuts Oy at a distance of 2 units below the origin (see Figure 18.3). 
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It will be noticed that all the equations of a straight line have so far been 
of the first degree in x and y. We shall now prove that any equation of the 
first degree in x and y represents a straight line. 

18.3 Any equation of the first degree in x and y represents a 
straight line 

The most general form of an equation of the first degree is 
Ax + By +  C = 0 (18.3) 

In order to prove that this equation represents a straight line, it is sufficient 
to show that the area of the triangle formed by joining any three points on 
the locus is zero. 

Let (x1, yi ), (x2 , y2), (x3 , y3) be any three points on the locus. Since the 
points are on the locus of the equation (18.3), their co-ordinates must satisfy 
the equation; thus 

Ax1 + BYi + C = 0 
Ax2 + By2 + C = 0 
Ax3 + By3 + C = 0 

Subtracting the first of these equations from the second and third in turn, 
we obtain 

A (x2 - x i ) + B(y2 - yi ) = 0 
A (X3 -x1) + B(y3 - y1) = 0 

By considering the value of the ratio A/B obtained from each of these 
equations, we have 

thus 

whence 
X1 Y2 - X2Y1 + X2Y3 - X3 Y2 + X3Y1  - X1 Y3 = 0 

which (see (17.11)) proves that the area of the triangle formed by the three 
points is zero. Hence the locus is a straight line. 

The equation Ax + By + C = 0 appears to involve three separate constants, 
but we can divide throughout the equation by any of A, B or C (which is 
not zero). Dividing by B we have 

that is 

A C 
-x + y + - = 0  
B B 

A C y =  --x -­
B B 
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from which it is clear that only the values of the two ratios A :  B :  C are required. 
Comparing this with 

y = mx + c (see (18.2) ) 
we have 

A C 
m = - -B 

C =  - -
B (18.4) 

Example I Find the slopes of the lines 3x + 12y -3 = 0, 5x - 2y -4 = 0 
and the lengths of their intercepts on Oy. 

Rewriting the two equations, we have 
12y = - 3x + 3 and 2y = 5x -4 

thus 
y = -¼x + ¼ and y = iX -2 

On comparing these equations with y = mx + c, we see that their slopes are 
tan 0 1 = -¼ 
tan 02 = i 

and their intercepts on Oy are 

C1 = ¼ 
Exercises 18a 

(01 = 165° 58') 
(02 = 68° 12') 

1 Write down the equations of the following lines: 
(i) the line making an angle of 20° with Ox and an intercept of + 5 units 

on Oy 
(ii) the line making an angle of 150° with Oy and an intercept of -4 

units on Oy 
(iii) the line through the origin making an angle of 50° with Ox 
(iv) the line through the origin making an angle of 20° with Oy. 

2 Find the equations of 
(i) the line through the origin parallel to the line y = 5x + 2 

(ii) the line through the origin parallel to the line 3x + 2y + 4 = 0 
(iii) the line which makes an intercept of + 4 units on Ox and whose slope 

is ¾ 
(iv) the line parallel to Ox and passing through the point of intersection 

of 2y -3x + 4 = 0 and the y-axis. 
3 Find the slopes, and the lengths of the intercepts the following lines 

make on Oy: (i) 3y -4x + 6 = 0, (ii) 2y + 2x -3 = 0, (iii) 5x -3y = 0, 
(iv) y - 6 = 0. 

4 Plot the two points A(O, 5) and B (3, 9) on a diagram. Hence show that 
the slope of the line AB is j. Write down the equation of AB. What is the 
slope of the line if A and B are the points (x1, y1) and (x2, y2) respectively? 

5 Plot the two points A(O, 3) and B(  -2, 7) on a diagram. Hence show that 
the slope of the line AB is -2. Write down the equation of AB. If A and 
B are the points (x1, y1) and (x2, y2), what is the slope of AB? Does this 
agree with the result in question 4? 
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18.4 Useful forms of the equation of a straight line 
The equation of the straight line making intercepts a and h on Ox and Oy 
respectively 

y 

Figure 18.4 

P(x, y) is any point on the line, PN is the ordinate (see Figure 18.4). Now 

L:, MPO + L:, LPO = L:, LOM 
Hence ½ay + ½bx = ½ab 
Divide throughout by ½ab, then 

�+� = 1  
a b (18.5) 

This is called the intercept form of the equation of the straight line. Example 1 Write down the equations of the lines making intercepts a and b on Ox and Oy respectively, and rewrite the equations in the form y = mx + c, 
where (i) a = 2, b = 3; (ii) a = - 1, b = 4; (iii) a = 5, b = -2; (iv) a = - 3, b = -4. 

(i) x/2 + y/3 = 1, thus 3x + 2y = 6, that is y = -ix + 3 
(ii) x/- 1  + y/4 = 1 ,  thus 4x - y = - 4, that is 

y = 4x + 4 
(iii) x/5 + y/ - 2  = 1, thus - 2x + Sy = -10, that is 

y = ix - 2  
(iv) x/ - 3  + y/ -4 = 1 ,  thus - 4x-3y = 12, that is y =  - j'x - 4  

The equation of a straight line with given slope m and passing through a given 
point P(x i , y 1 ) 

The equation of a line with slope m is by (18.2) y = mx + c. In this case, c is 
unknown, but since P(x1 , y1) lies on the line, y1 = mx1 + c and so, by 
subtraction, 

y -y1 = m(x - x1) 

which is the required equation. 
(18.6) 
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Example 2 Write down the equation of the line with slope --¾ and p�ssing 
through the point ( - 3, 4), and simplify the equation. 

By (18.6) the equation is (y - 4) = --¾(x + 3), that is 
3y -12 = -2x - 6 

3y + 2x -6 = 0 
The equation of a line passing through two given points (x. ,  yi ) and (x2 , y2) 

The equation of a line passing through a given point (x i , Yi ) is by (18.6) 
y-Yi = m (x - x i)- In this case, m is unknown. However, (x2, y2) also lies on 
the line. Hence on substituting in the equation, we have Yi - Yi = m(x2 - X i ), 
whence by division 

(18.7) 

which is the required equation. Example 3 What is the simplified form of the equation of the lines through 
the following pairs of points (i) (3, 4), (6, 8); (ii) (5, 3), (7, - 2)? 

(i) On substituting in (18.7), we have 
y -4 x -3 - - = --
8 - 4  6 - 3  
y -4 

4 = x -3 

3y - 12 = 4x - 12 
3y = 4x 

(ii) On substituting in (18.7), we have 
y -3 

- 2 - 3 
y - 3  
- 5 

= 

= 

x-5 
7 - 5 
x-5 

2y - 6 = - 5x + 25 
2y + 5x - 31 = 0 

The equation of a line such that the length of the perpendicular from the origin 
to the line is p, and the angle that perpendicular makes with Ox is a 
Referring to Figure 18.5, PO is the perpendicular from the origin to the line. 
Since L OPM = 90° 

Also 

OM OP = sec oc 

OM = OP sec oc = p sec oc 
L LOP = 90° - oc 

(i) 
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so that 

Figure 18.5 

OL 
OP

= sec (90° -ix) 

OL = OP sec (90° -ix) = p sec (90 -ix) (ii) 

But OM, OL are the intercepts the line makes on the axes Ox and Oy. Hence 
by ( 1 8.5) its equation is 

_x_ + 
y 

=1 
p sec ix p sec (90° -ix) 

X COS IX + y cos (90° - ix) = p 
X COS IX + y sin ix = p (18.8) 

This is called the perpendicular form of the equation of a straight line. 

Example 4 If in Figure 18.5 OP = 5 units and L POL = 20°, find the 
equation of the line LM. In ( 1 8.8) 

and 

ix =  L POM = 90° - L POL 
= 90° - 20° 

= 70° 

p = OP = 5 units 
Hence LM is the line x cos 70° + y sin 70° = 5. Example 5 If in Figure 18.5 the equation of PLM is 3x + 4y -12 = 0, put 
this equation into both (i) the intercept and (ii) the perpendicular form. 

(i) 3x + 4y -12 = 0 
If we divide by 12, 

X y 
4 + 3 = 1 as required 

(ii) If instead we divide by J(32 + 42) = 5 then 
¾x + h = ½  

which is the perpendicular form because ¾, � are the cosine and sine of 
the same angle since the sum of their squares is unity. 
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Exercises 18b 
1 Find the equations of the following lines: 

(i) passing through the points (5, 3), ( - 2, 1) 
(ii) passing through the points (6, - 2), (3, 7) 

(iii) making an angle of 135° with Ox and passing through the point ( -2, 5) 
(iv) parallel to 2y + 3x - 4 = 0 and passing through the point (5, -2) 
(v) passing through the points ( -5, 0), (0, - 2) 

(vi) such that the length of the perpendicular to the line from the origin 
is 6 units and the perpendicular makes an angle of 45° with Ox. 

2 Write down the equation of the line making intercepts of -5, + 3 on the 
x- and y-axes respectively. Put the equation into the perpendicular form. 

3 Find the slope of the line through the points (5, 3), (7, - 2). Also find 
(i) the perpendicular form, (ii) the intercept form, of its equation. 

4 0 is the origin and a line OA of length 2a makes an angle rx with the x-axis. 
Find the equation of the perpendicular bisector of OA. 

5 A line makes an obtuse angle 0 with the positive direction of Ox. If rx is 
the angle the perpendicular to the line from the origin makes with the 
positive direction of Ox, find the relation between rx and 0. Does the same 
relation hold when 0 is acute? 

18.5 The co-ordinates of the point of intersection of two straight lines 
Let the equations of the lines be 

As we have noted in Section 17.6, to obtain the point of intersection we solve 
these equations simultaneously. Eliminating x and then y, we obtain 

X -y - - -- = - - --
b1 C2 - b2 C 1  

The values of x ,  y for the point of intersection are 
b1C2  - b2 C 1  x = - -- - ­a 1 b2 - a2b1 

(18.9) 

(18.10) 

We note that if a 1 b2 - a2b 1 = 0, there is no solution. But this may be written 
a 1 b2 = a2b 1 

that is 

and thus the slopes (see (18.4) ) of the two lines are equal. That is, the lines 
are parallel and have no point of intersection. 

If in addition either b1c2 - b2c 1 = 0 or a 1c2 - a2c1 = 0, then 
a1 b1 c 1 ( = k say) (18.11) 

C2 
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and from this we see that all three of the quantities in (18.9) are zero and 
x and y are indeterminate. The geometrical explanation is that, since from 
(18.11) a 1 = ka2 , b1 = kb2 , c1 = kc 2, one equation is a multiple of the other 
and the lines coincide. 
Example 1 Find a general solution for the point of intersection of the 
lines ax + 5y + b = 0, 2x + y + 3 = 0 and discuss the three cases (i) a =I- 10; 
(ii) a = 10, b =I- 15; (iii) a = 10, b = 15. 

From (18.9) the solution is given by 

Case (i): since a =I- 10, 

X - y 

15 -b 3a -2b a -10 

15 -b 
X = --

a - 10 
-3a + 2b y = a - 10 

a - 10 =1- 0  
and hence a real point of intersection exists. 

Case (ii): since a = 10, b =I- 15, 
a - 10 = 0 but 15 -b =I- 0 

hence the lines are separate but parallel. 
Case (iii): if a = 10, b = 15, then the equations are 

lOx + 5y + 15 =0 
2x+y+3 = 0  

and the first equation is a multiple of the second and the lines are not distinct. 

18.6 The positive and negative sides of a line 
Consider any straight line and let its equation be ax +by+ c = 0. Let P(x1 , yi ) 
be any point and let the line through P parallel to the y-axis cut the line 
in the point Q whose co-ordinates are (x1, y2). Then it is clear from Figure 
18.6 that, so long as P remains on the same side of the straight line, PQ 
is always drawn in the same direction. If P is a point on the other side of 
the line, then PQ is drawn in the opposite direction. That is, PQ is positive 

Figure 18.6 
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for all points on one side of the line and negative for all points on the other 
side. 

Now PQ = Y1 - Y2 
and since the point Q(x1 , y2) lies on the line 

ax1 + by2 + c = 0 
ax1 +c 

Y2 = - b 
From (i) and (ii) 

PQ = Yi - (  _ ax1/ c) 
ax 1 +by1 +c 

b 

(i) 

(ii) 

(iii) 

Since the sign of PQ changes as P crosses the line, it follows from (iii) that 
the sign of ax 1 + by1 + c (b is fixed) must alter as P crosses the line. Thus 
the line divides the co-ordinate plane into two parts such that ax + by + c 
is greater than or less than zero. If c > 0, the origin is on the positive side 
of the line. If c < 0, the origin is on the negative side of the line. 
Example 1 The co-ordinates (x, y) of a point P satisfy all three of the in­
equalities 

2x + 3y - 6 > 0  
x - y+6 > 0  

y + 5x - 20 < 0  
Draw a diagram to show the area within which P must lie. 

Figure 18.7 shows the required area. 

y 

20 
1 8 

--+.:--:!:----,'!�,---:!,---1-=--::�1--,-�8±---:1:-'=0----:3► X 

<'-,..,_,] �--
6.,0 

Figure 18.7 
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Exercises 18c 
1 Show that the three lines 3x -2y + 1 = 0, x + 2y + 3 = 0, 7x - 2y + 5 = 0 

pass through the same point. 
2 Find the points of intersection of the following pairs of lines: 

(a) 2x + 3y-13 = 0, 3x-y-3 = 0  
(b) 2x + y -2 = 0, 4x + Sy+ 5 = 0 
(c) x/a + y/b = 1, x/b + y/a = 1 
(d) y = 4x, y = 3x + 2. 

3 Show that the following three lines do not form a triangle: (i) 18x - 12y + 9 
= 0, (ii) 12x + 8y -6 = 0, (iii) 8y = 12x + 6. 

4 What must be the value of k in order that the lines (i) 2x + y -3 = 0, 
(ii) kx + 3y + 1 = 0, (iii) x + y + 7 = 0 may meet in a point. Discuss the 
cases when k = 3 and k = 6. 

5 Find the equation of the line joining the origin to the point of intersection 
of the lines x + 2y + 5 = 0, 3x -2y -13 = 0. 

6 A point P has co-ordinates (x, y). Draw separate sketches showing the 
area in which P must lie in the following cases: (i) 3x + 2y -1 > 0, 
(ii) 2x -y -4 < 0, (iii) x + y + 5 > 0, (iv) 2x -y + 7 < 0. 

7 A point P(x, y) is such that its co-ordinates satisfy all the inequalities 
x + y -6 � 0, y -2x + 6 � 0, 4x + y � 0, y -2x -6 � 0. Show in a 
sketch the area within which P must lie. 

8 If in question 7 all the inequality signs are reversed, in which area must 
P(x, y) lie? 

9 Show that for one particular value of k all the lines kx -3y -3 = 0, 
-x+2y - k = 0, 9x - 4y-1 1 = 0, 13x-ky - 19 = 0  pass through 
one point and state the co-ordinates of the point. 

10 A point P(x, y) lies within the triangle formed by the three lines 
Sx + 7y -35 = 0, 4x -1 ly -28 = 0, 14x + 3y + 68 = 0. Write down 
with the aid of a sketch the three inequalities its co-ordinates must satisfy. 

18.7 The angle between two straight lines If the equations of the lines are given in the perpendicular form (see (18.8) ) 

x cos a + y sin a -p 1 = 0 x cos p + y sin P - p2 = 0 

then, referring to Figure 18.8, the required angle is either a -p or n  -(a -p). 
Because a and P are the angles the perpendiculars from the origin to the 
two lines make with Ox, then the angle between the perpendiculars is a -p. 
Also the angle between any two lines is equal or supplementary to the angle 
between two lines perpendicular to them. Hence the required angle is 

(a -P) or n -(a - P) (18.12) 

If the equations of the lines are given in the form y = m 1 x + c i , y = m2x + c2 

and 0 1 , 02 are the angles the lines make with Ox, then 

(i) 
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Figure 18.8 

Figure 18.9 
Referring to Figure 18.9, it can be seen that the required angle is 01 - 02 • 

Now 

(0 0 ) 
tan 0 1 - tan 0 2 tan - = - -- - - -1 2 1 + tan 0 1 tan 0 2 

Thus the required angle is 

m1 -m2 = --- from (i) 1 + m 1m2 

arctan (1
m1 - mi ) + m1 m2 

( 18. 1 3) 

If the equations of the lines are given in the form a 1x + b1 y + c1 = 0, 
a2x + b2y + c2 = 0, then from ( 18.4) m1 = -ai /b1 , m2 = -a2/b2 • Hence the 
reg uired angle is 

that is 

( 18. 14) 
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Referring to ( 18.13) it should be noted that if 
m1 m2 = -l 

that is 
1 

m1 = -­m2 

( 18. 15) 

then the angle between the lines is n/2, and the lines are perpendicular. 
Similarly from ( 18. 14), the lines are perpendicular if 

( 1 8. 16) Example I Find the angle between the lines y = ½x + i. y = ½x + l 
The slopes of the lines are m1 = ½ and m2 = ½. Hence from ( 1 8. 13), the 

required angle is 

arctan ( 1 
½ � ½ 

1 
) = arctan ( -4) + � X -,; 

The negative sign indicates that the obtuse angle between the lines is being 
found; hence the required acute angle is arctan (4) = 8° 8'. Example 2 Find the equation of the line which is perpendicular to the line 
2x + 3y -1 = 0 and passes through the point (4, 3). 

From (18.4) the slope of the given line is 
m1 = - -¾  

Hence the slope of a perpendicular line is 

= t  

Since the required line passes through the point (4, 3), its equation is (see 
( 1 8.6) ) 

(y -3) = t(X -4) 
that is 

2y - 3x + 6 = 0 Example 3 OA and 0B are the equal sides of an isosceles triangle lying 
in the first quadrant. OA and 0B make angles 0 1 and 02 respectively with 
Ox. Show that the gradient of the bisector of the acute angle AOB is 
cosec 0 -cot 0, where 0 = 0 1 + 02 • 

Referring to Figure 18.10, let L AOP = rx. = L POB. Hence 
L P0x = 01+rx. or 02 -rx. 

2 L P0x = 0 1 + 02 
= 0 (given) 

Therefore 
L POx = ½0 
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Now 

Exercises 18d 

8 

0 
Figure 18.10 

gradient of PO = tan L POx 
= tan½0 

sin½0 
cos½0 

2 sin2 ½0 
2 sin ½0 cos ½0 
1 - cos 0 

sin 0 
= cosec 0 - cot 0 

1 Find the acute angles between the following pairs of lines: 
(a) y = 3x + 4, y = 2x - 1 
(b) 3x + 4y + 7 = 0, 4x - 5y + 2 = 0 
(c) x cos (a -n/4) + y sin (a -n/4) = 3, x cos (a + n/4) + y sin (a + n/4) = 7 
(d) 5x -6y + 7 = 0, 6x + 5y -3 = 0. 

2 Find the equation of the line perpendicular to the line 3x + 2y + 4 = 0 and 
passing through the point (5, 6). 

3 Find the equation of the line passing through the points (1, 4) and ( - 2, 7) 
and show that it is perpendicular to the line x -y + 3 = 0. 

4 Given the two lines x + y + 7 = 0 and ✓3x -y + 5 = 0, put their 
equations into the perpendicular form and hence find the acute angle 
between them. Verify your result by using (18.14). 

5 Find the equations of the sides of the triangle ABC where A, B, C are 
the points (5, 7), (3, 3), (7, 1) respectively. Hence show that the triangle ABC 
has angles of 90°, 45° and 45°. Verify this result by finding the lengths of 
the sides of the triangle. 

18.8 The perpendicular distance of a point from a straight line 
Let P(x 1 , y1 ) be the point and the equation of the line be 

x cos a + y sin a = p 
Referring to Figure 18.1 1, any line parallel to the given line is 

x cos a + y sin a = p' 

(18.17) 
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and this passes through the given point P(x 1 , y1) if 
x 1 cos IX+ y1 sin IX =  p' 

Now the required distance is 
PC = AB 

= OB - OA 
= p' -p 
= X1 COS IX + Yi sin IX - p (from (18.8) ) 

Hence the required result is 

X 1 cos IX + y 1 sin IX - p 

(18.18) 

(18.19) 

If the equation of the line is given as ax + by +  c = 0, it may be rewritten 
a b c - - - -x + ---�y +---� = 0 ,J(a2 + b2) ,J(a2 + b2) ,J(a2 + b2) 

which is in the perpendicular form because 
a b 

,J(a2 + b2) 
and ,J(a2 + b2) 

are the sine and cosine of an angle since the sum of their squares is unity. 
Hence from (18.19) the length of the perpendicular is 

ax 1 + by1 + c 
,J(a2 + b2) 

( 1 8.20) 

If the denominator ,J(a2 + b2) is always taken as positive, then the length 
of the perpendicular from any point on the positive side of the line will be 
positive and from any point on the negative side of the line it will be negative 
(see Section 18.6). 

Example I Find the length of the perpendicular from the point P(2, - 4) 
to the line 3x + 2y - 5 = 0 and state which side of the line P is on. 

From (18.20) the length of the perpendicular is 

y 

Figure 18./l 
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3 X (2) + 2 X ( -4) -5 
J(32 + 22) = 7 -✓ 1 3  

Thus the length of the perpendicular is 7 / J 1 3  and it is on the negative side 
of the line. Substituting the co-ordinates (0, 0) of the origin in the equation 
of the line 3x + 2y -5, we obtain -5. Thus the origin is also on the negative 
side of the line. Hence P is on the same side of the line as the origin. 

Exercises 18e 
1 Find the lengths of the perpendiculars from the point P to the line L in 

the following cases: 
(a) P(3, 4), L = 3x + 4y + 6 = 0 
(b) P( -2, -1), L = 3x + 4y + 6 = 0 
(c) P(5, 6), L = 3x -6 = 0 
(d) P(  -3, -2), L = 5x - 12y + 1 = 0. 

2 Find the lengths of the perpendiculars from P(3, 4) to the two lines 
7x + 24y - 1 = 0 and 3x + 4y -36 = 0 and state on which sides of the lines 
the point P is situated. 

3 Show that the point P(l , 1) is equidistant from the three lines 5x + 12y +9 
= 0, 3x + 4y - 1 7  = 0, 3x -4y -9 = 0. Is P the incentre of the triangle 
formed by the three lines? 

4 The point P(a, 2) is equidistant from two lines 4x -3y + 7 = 0 and 
7x + 24y -30 = 0; find the value of a. 

5 Find the incentre of the triangle formed by the three lines 12x -5y + 9 = 0, 3x + 4y -27 = 0, 5x + 12y -45 = 0. 

18.9 The equation of a straight line through the point of 
intersection of two given straight lines 

Let the equations of the straight lines be 
a1x + b1 y + c1 = 0 a2x + b2y + c2 = 0 

Consider the equation 
(a 1x + b1 y + c 1) + 2(a2x + b2y + c2) = 0 

where 2 is any constant. 

( 18.21 )  

( 18.22) 

This is the equation of a straight line since it is of the first degree in x and y. Further, it is satisfied by the co-ordinates of the common point of 
the two given lines, since these co-ordinates satisfy simultaneously the 
equations ( 18.21 )  and hence must satisfy the equation ( 1 8.22). Thus it is the 
required line. 

This is an example of a more general device used in co-ordinate geometry; 
namely if S 1 = 0 and S 2 = 0 are the equations of any two loci, then 
S 1 + 2S 2 = 0 is the equation of a locus through the common points of S 1 = 0 
and S2 = 0. 

In the case of the straight line ( 1 8.22), a second condition is required to 
find 2. 
Example 1 Find the equation of the line drawn through the point of inter-
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section of the lines 3x + iy -3 = 0, 5x -y + 8 = 0 which also passes through 
the point (2, 2). 

Any line through the point of intersection is given by (3x + 2y -3) + 
2(5x -y + 8) = 0. 

If this passes through the point (2, 2), its co-ordinates satisfy the equation 
and hence 

(6 + 4 -3) + 2(10 -2 + 8) = 0 
7 + 162 = 0 

2 = --ro 
Hence the required equation is 

that is 

.(3x + 2y -3) --ro(5x -y + 8) = 0 
16(3x + 2y -3) - 7(5x -y + 8) = 0 

1 3x + 39y - 104 = 0 

X + 3y - 8  = 0 
Example 2 Find the equation of the line drawn through the point of inter­
section of 3x -y - 13 = 0 and x -4y + 3 = 0 and which is perpendicular 
to 5y + 2x = 0. 

Any line through the point of intersection is given by (3x -y -13) + 2(x -4y + 3) = 0, that is (3 + 2)x -(1 + 42)y -13 + 32 = 0. Its slope is t: 4�. Hence it is perpendicular to 5y + 2x = 0 whose slope is -¾ if 

whence 

3 + 2 2 
- - x -- = -1 (see (18.15)) 
1 +42 5 

6 + 22 = 5 + 202 
2 = is-

Therefore the required equation is 

that is 

(3x -y -13) + -fg(x -4y + 3) = 0 

55x -22y -231 = 0 

5x -2y -21 = 0 
In the particular cases when 2 has either of the values 

+ J(a1 2 + b1
2) 

-J(a/ + b2
2) 

equation (18.22) may be written J(a1 2 + b1
2) (a 1x + b 1 Y + c i) = ± J(a/ + b/) (a2x + b2y + c2) 
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that is 

a 1 x+b 1 y+c 1 a2x+b2 y+c2 - � -- -- = + -�� - �-✓(a/ + b/) - ✓(a/ + b/) ( 1 8.23) 

which shows that the perpendiculars from the point (x, y) to either of the 
lines a 1x + b 1 y + c1 = 0 or a2x + b2 y + c2 = 0 are equal in magnitude. Hence 
( 1 8.23) gives the equations of the bisectors of the angles between the lines. 

To distinguish between the two bisectors, write the equations of the lines 
with their constants hoth positive and take both the denominators positive. 
Then taking the positive sign in ( 1 8.23) gives the bisector of the angle in which 
the origin lies. 

Example 3 Write down the equations of the bisectors between the lines 3x -y - 2 = 0 and 2x -2y + 7 = 0. 
Rewriting the first equation -3x + y + 2 = 0, the equations of the bisectors 

are given by 

- 3x+y+2 2x - 2y+7 
✓ 10  

= ± ✓8 

Thus 2✓2 ( -3x + y + 2) = + ✓ 10 (2x -2y + 7) is the equation of the bi­
sector of that angle in which the origin lies; that is 

(2✓5 + 6)x -2( 1 + ✓5)y + 7✓5 -4 = 0 

and the other bisector is 

Exercises 18f 
1 A line passes through the point of intersection of the lines 3x + 2y - 1 = 0 

and 5x + 6y + 1 = 0. Find its equation in the following cases: (a) if it also 
passes through the origin, (b) if it is perpendicular to 4x -y = 0, (c) if it 
is parallel to 2x + 3y - 1 = 0. 

2 Find the equations of the bisectors of the angles between the lines 2x + 4y - 3 = 0 and 2x -y + 7 = 0 and verify that the bisectors are at 
right angles to one another. 

3 Show that one of each pair of bisectors of the angles between the lines 3x -4y -4 = 0, 12x -Sy+ 6 = 0, 7x + 24y -56 = 0 taken in pairs, pass 
through the point ( 1 ,  1 ). 

4 Two lines through the origin have a combined equation 2y2 - xy -
6x2 = 0. Factorise this in order to find the separate equations of the two 
lines and hence show that the combined equation of the internal bisectors 
of the angles between the two lines is x2 - 16xy - y2 = 0. 

5 Find the equation of the two lines through the point of intersection of the 
lines 3x + 2y - 1 = 0 and 2x -y + 7 = 0 which are also (a) perpendicular 
to 3x + 2y - 1 = 0, (b) perpendicular to 2x -y + 7 = 0. 
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Exercises 18 
1 P, Q, R are the three points with co-ordinates ( 1 ,  0), (2, -4), ( -5, -2) 

respectively. Find 
(a) the equations of PQ, QR, PR 
(b) the equation of the line through P perpendicular to QR 
(c) the equation of the line through Q perpendicular to PR 
(d) the point of intersection of the lines (b) and (c) 
(e) the area of the triangle PQR. 2 Find the equation of the perpendicular bisector of AB where A, B are 
the points (3, 2), (5, 1) respectively. 3 Sketch on the same diagram the lines whose equations are 
(a) y = 3x 
(b) y = -3x 
(c) 2x + 3y -12 = 0 
(d) 3x -5y + 75 = 0 
(e) X - 7 = 0 
(f) y + 8 = 0. 

4 Find the equation of the lines through the point (6, 5) which are (a) per­
pendicular to 3x -4y = 0, (b) parallel to 3x -4y = 0. 

5 Find the equation of the line joining the points (3, 6), (5, 7) and show 
that it is perpendicular to the line joining the points ( -3, 4), ( -2, 2). 6 Rewrite the equation of the line 5x -4y -20 = 0 in (a) intercept form, 
(b) perpendicular form. 

7 The co-ordinates of the three points L, M, N are (a, a), ( -a, -a) and 
(0, -a) respectively. A point X is taken on MN such that the ratio of 
MX to XN is t :  1 and a point Y is taken on LX such that the ratio of 
LY to YX is also t: 1. Prove that the co-ordinates ofX and Y are respectively 

[ 
a 

] [ 
a a( l - t )

] -
l+t ' -a and 

( l+t )2 , l+t 
[JMB, part] 

8 Show that the three equations x + 2y -k = 0, x + ky - 2 = 0 and kx + 4y -4 = 0 are consistent when k = -4 or 2. Give a geometrical 
interpretation in either case. Discuss the case when k = - 2. 

9 A straight line parallel to the line 2x + y = 0 intersects the x-axis at A 
and the y-axis at B. The perpendicular bisector of AB cuts the y-axis at C. 
Prove that the gradient of the line AC is -¾. Find also the tangent of 
the acute angle between the line AC and the bisector of the angle AOB, 
where O is the origin. [JMB] 

10 The lines L i , L2, L3 have the equations x + y + 1 = 0, y + 2x + 2 = 0, 
3y -9x + 11  = 0 and meet the y-axis at the points A, B, C respectively. 
If D is the point ( -2, -3), prove that DA, DB and DC are perpendicular 
to L i , Li, L3 respectively. 

11 Find the co-ordinates of the foot of the perpendicular from the point 
(x i , y i ) to the line ax + by + c = 0 and deduce that the co-ordinates of the 
image of the point in the line are 

[ Xi -a2 � 
b2 (axi + byi + c), 

2b 
] 

Yi -a2 + b2 (ax i + byi +c) 

[JMB, part] 
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12 The vertices B, C of a triangle ABC lie on the lines 3y = 4x, y = 0 
respectively, and the side BC passes through the point (}, }). If ABOC 
is a rhombus where O is the origin of co-ordinates, find the equation of 
the line BC and prove that the co-ordinates of A are (!, !). [LU] 

13 A point P lies in the plane of the triangle ABC and G is the centroid 
of this triangle. Prove that 

PA2 + PB2 + PC2 = 3PG2 + j(BC2 + CA2 + AB2) 

What is the least value of PA2 + PB2 + PC2 as P varies in the plane? 
14 Given the four points (a/m,, am,), r = 1, 2, 3, 4, find the condition that 

the line joining any two of the four points is perpendicular to the line 
joining the other two. 

15 A, B, C are the points ( -4, -2), (3, 1), ( -2, 6). D is a point on the 
opposite side of AB to C which moves so that the area of the triangle 
ADB is always 50 square units. Find the equation of the locus of D. If 
CD meets AB at the point Q verify that the ratio CQ: QD is constant 
for all positions of D. 

16 A, B, C, D are the points (x 1 , y 1), (x2, y2), (x3, y3), (x4, y4). Show that ABCD 
is a parallelogram provided that x 1 + x3 = x2 + x4 and Y1 + y3 = y2 + Y4· 
Show also that the parallelogram is a rectangle if 

X 1 X3 + Y 1 Y3 = X2X4 + Y2Y4 

17 Without drawing a figure, determine whether the point (4, 3) is inside 
or outside the triangle formed by the lines y = x + 6, 3y + 4x -24 = 0, y +  8 = 0. 

18 The altitudes AD, BE, CF of a triangle ABC are x + y = 0, x -4y = 0 
and 2x -y = 0 respectively. If the co-ordinates of A are (k, -k), find the 
co-ordinates of B and C. Find also the locus of the centroid of the triangle 
ABC as k varies. 

19 Find the equations of the lines through the point (2, 3) which make angles 
of 45° with the line x -2y = 1. [LU] 

20 Obtain the equation of the straight line through the point P(h, k) per­
pendicular to the line ax + by + c = 0. PA, PB are the perpendiculars from 
P to the lines y = x, y = ½x. Find the co-ordinates of M, the middle point 
of AB, and show that if P moves on the line 5x + 4y + 10 = 0 then M 
will move on the line x -7y = 5. [WJC] 

21 Show that the area of the parallelogram formed by the lines 3x + 4y = 7p, 3x + 4y = 7q, 4x + 3y = 7r, 4x + 3y = 7s is 7(p - q)(r - s). 
22 The length of the perpendicular to a line from the origin is 5 units. The 

line passes through the point (3, 5). Find its equation. 
23 Show that any point on the line 4x + 7y - 26 = 0 is equidistant from the 

two lines 3x + 4y -12 = 0 and 5x + 12y -52 = 0. 
24 Find the values of k for which the lines 2x + ky + 4 = 0, 4x -y -2k = 0, 3x + y -1 = 0 are concurrent. [JMB, part] 
25 Show that the line y(m + 1) = x(m - 1) + 4 always passes through a fixed 

point and find the co-ordinates of that point. 
26 OA and OB are the equal sides of an isosceles triangle lying in the first 

quadrant. The slopes of OA and OB are -1-, and 1 and the length of the 
perpendicular from O to AB is ✓13. Find the equation of AB. (Use the 
result of Example 3 in Section 18.7.) 
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27 The points P, Q are such that the line x cos a. +  y sin a. = p is the perpendic­
ular bisector of PQ. If the co-ordinates of P are (x, y) find the co-ordinates 
of Q. If the line is fixed find the locus of Q as P moves along the y-axis. 

28 The vertices 0, A, B of a square OABC are the points (0, 0), (1, 0) 
and ( 1 ,  1 )  respectively. P is a variable point on the side BC. OP produced 
meets AB produced at Q and a line through B parallel to CQ meets OP 
at R. Prove that R lies on the diagonal AC when CP = (JS -1)/2. Find 
the equation of the locus of R as P varies and give a rough sketch of 
the locus. [LU] 

29 (a) Find the gradients of the bisectors of the angle between the lines 
y -7x = 0, X + y = 0. 

(b) If A, B, C and D are the points on the x-axis with abscissae 2, 4, 6 
and 8 respectively, find the co-ordinates of the two points P and Q 
in the first quadrant which are such that 

tan APB = tan CPD = tan AQB = tan CQD = ½ [JMB] 
30 Find the condition that the lines 

a 1x+b 1y+c 1 = 0  a2x + b2 y + c2 = 0 a3x + b3 y + c3 = 0 
are concurrent. 
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The circle 

19.1 The equation of a circle 
Let C(a, b) be the centre and r the radius of the circle. Let P(x, y) be any 
point on the circumference of the circle, then (see Figure 19.J) CP = r 

cpl = r2 

Now referring to ( 17.5), which gives an expression for the distance between 
two points, we have 

(x - a)2 + (y - b)2 = r2 ( 19.1 )  
which is the required equation. 

If we let a = b = 0, the centre of the circle will be the origin and the 
equation reduces to 

x2 + y2 = r2 

Equation ( 19. 1 )  may be written 
x2 + y2 -2ax - 2by + a2 + b2 = r2 

The equation of a circle is thus of the form 
x2 + y2 + 2gx + 2fy + c = 0 

where g, f, c are constants. Conversely, ( 19.3) can be rewritten 
x2 + 2gx + g2 + y2 + 2fy + 12 = g2 + f2 -c 

y 

Figure 19.1 
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(19.2) 

( 19.3) 
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(x + g)2 + (y + /)2 = g2 + f2 _ C 
Comparing this with (19.1 ), we see that ( 19.3) represents 

a circle centre ( - g, -/), radius J(g2 +/2 -c) ( 19.4) 
In general, the equation of a circle is such that 

(i) the coefficients of x2 and y2 are equal; 
(ii) there is no term in xy. Example I Find the equation of the circle centre ( -3, 4), radius 7. 

The equation is 
(x + 3)2 + (y -4)2 = 72 

x2 + y2 + 6x -8y -24 = 0 

Example 2 Find the centre and radius of the circle 4x2 + 4y2 - 12x + 5 = 0. 
In order to put the given equation into the standard form (19.1), it is first 

necessary to divide throughout by 4, thus x2 + y2 - 3x + ¾ = 0 
that is x2 - 3x + ( - ¾}2 + y2 = ( - !)2 -¾ 
whence 

(x -!)2 + y2 = 1 
Thus the circle has centre (t, 0), radius 1 .  

Example 3 Find the equation of the circle centre ( + 4, -7) which touches 
the line 3x + 4y - 9 = 0. 

Since the line is a tangent, then the radius of the circle is equal to the 
perpendicular distance from the centre to the line. Thus 

. 3(4) + 4( -7) -9 
radms = 

J(32 + 42) 
- 25 

5 
= -5 

Thus the equation of the circle is 
(x -4)2 + (y + 7)2 = 25 

that is x2 + y2 -8x + 14y + 40 = 0 Example 4 Find the equation of the circle with AB as diameter. A, B are 
the points (x1, y1), (x2, Y2)-

Let P(x, y) be any other point on the circumference of the circle (see Figure 19.2). 
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y 

--+-------------i►X 

Figure 19.2 

The slopes of AP and BP are respectively 
y -Yi d y -Y2 - - an --
x-x1 x-x2 

Since AB is a diameter, L APB = 90°; thus AP and PB are perpendicular; 
hence by ( 1 8.15) the product of their slopes is -1. Thus 

or 

(�)(y - Yi) = -1 
X - X 1 X - X2 

(x -x i )(x -x2) + (y -Y1)(y -Yi) =  0 (19.5) 
which is the condition satisfied by the co-ordinates of any point on the circle 
and is therefore the required equation. 

Exercises 19a 
1 Write down the equations of the following circles: (i) centre (3, 7) radius 5, 

(ii) centre ( -3, -7) radius 6, (iii) centre (5, 0) radius 5, (iv) centre (0, -3) 
radius 4. 

2 Find the centre and radius of the following circles: 
(i) x2 + y2 + 2x + 6y + 6 = 0 

(ii) 9x2 + 9y2 + 27x + 12y + 19  = 0 
(iii) x2 + y2 

- 5x = 0 
(iv) 4x2 + 4y2 - 28y + 33 = 0 
(v) x2 + y2 - 2ax + 2by + 2b2 = 0 (a, b constant) 

(iv) x2 + y2 + 2ax -2ay = 0 (a constant). 
3 Find the equation of the circle centre (7, -6) which touches the line 3x - 4y + 5 = 0. 
4 Find the equation to the circle which has the points (3, 2) (0, -1) as ends 

of a diameter. 
5 Find the equation of the circle centre (3, -2) touching the line x + y -3 

= 0. 
6 Show that the circle x2 + y2 - 2x -2y + 1 = 0 touches both Ox and Oy. 
7 Show that the circle x2 + y2 - 2ax -2ay + a2 = 0 (a is a positive constant) 

lies wholly in the first quadrant and touches both Ox and Oy. 
8 Use the result of question 7 to find the equation of the circle lying in 

the first quadrant which touches both axes and also the line 5x + 12y -
52 = 0. 
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9 Find the equation to the diameter of the circle x2 + y2 - 8x + 6y + 21 = 0 
which when produced passes through the point (2, 5). 

10 Find the equation of the circle which passes through the point (1, 1) has 
a radius of ½✓ 10, and whose centre lies on the line y = 3x -7. 

19.2 The equation of a circle through three non-collinear points 
Let the equation of the circle be x2 + y2 + 2gx + 2fy + c = 0 and the three 
points be (x 1 , y i ), (x2, y2), (x3, YJ). Since the circle passes through all three 
points, the co-ordinates of each point must satisfy the equation of the circle. 
Hence 

x/ + y/ + 2gx 1 + 2fy1 + c = 0 
x/ + y/ + 2gx2 + 2fy2 + c = 0 
x/ + y/ + 2gx3 + 2fy3 + c = 0 

are three simultaneous equations which can be solved for g, f and c. 
Example 1 Find the equation of the circle through the points (6, 1), (3, 2), (2, 3). 

Let the equation of the circle be x2 + y2 + 2gx + 2fy + c = 0. Then since 
(6, 1) lies on the circle 

36 + 1 + 12g + 2/ + C = 0 
Similarly 

9 + 4 + 6g + 4f+ c = 0 
and 

4 + 9 + 4g + 6f + C = 0 
Solving these simultaneous equations, we have 

f = -6 g = -6 C = 47 
Hence the required equation is 

x2 + y2 
- 12x -12y + 47 = 0 

Exercises 19b 
Find the equation of the circles passing through the following points and 
state the length of the respective radii: 
1 (0, 0), (3, 1) and (5, 5) 
2 (5, 0), (6, 0) and (8, 1) 
3 (3, 2), (1, 1) and (1, 0) 
4 (2, 1 ), ( -2, 5) and ( -3, 2) 
5 Find the equation and radius of the circumcircle of the triangle formed 

by the three lines 2y -9x + 26 = 0, 9y + 2x + 32 = 0, 1 ly  - 7x -27 = 0. 
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19.3 The equation of the tangent at the point (xi , y1) 
on the circle x2 + y2 + 2gx + 2/y + c = 0 

Differentiating the equation with respect to x, we have 

therefore 

dy dy 
2x + 2 y 

dx + 2g + 2f dx 
= 0 

dy (x + g) 
- ---

dx (y + f) 

Hence the gradient of the tangent at the point (x1 , y1 ) is 
(x 1 + g) 
(Y 1 + f) 

Thus by ( 18.6) the equation of the tangent is 
(x 1 + g) (y -Y 1) = - (Yi + f) (x -X 1) 

YY1 + yf-y/ -Yd = -xx 1 + X 1
2 - gx + gx 1 

xx 1 + YY1 + gx + fy = X 1
2 + Y 1

2 + gx1 + fY1 

Now add gx1 + fy 1 + c to both sides to obtain 
xx 1 + YY 1 + g(x + x i ) + f(y + y 1) + c = x/ + y/ + 2gx 1 + 2fy 1 + c 

= 0  

because (x 1 , y 1) lies on the circle. Hence the required equation is 
XX 1 + YY 1 + g(x + x i ) + f(y + y1 ) + c = 0 (19.6)* 

Example I Find the equation of the tangent at the point ( -t, 1) on the 
circle 4x2 + 4y2 

- 12x + 24y -55 = 0. 
When using (19.6) to find the equation of the tangent, it is not necessary 

to reduce the coefficient of x2 and y2 to unity, as it was when the centre 
and radius had to be found (see Section 19.1, Example 2). 

Hence the equation of the tangent is 
4x( -t) + 4y . 1 -6(x -t) + 12(y + 1) -55 = 0 

that is 
8y -6x -17 = 0 

Example 2 Find the equation of the tangent at the point ( 1 ,  0) on the circle 
x2 + y2 

- 5x -y + 4 = 0. 
The equation of the tangent is 

X .  1 + y . 0 -i(x + 1) -½(y + 0) + 4 = 0 

* Note that this equation can be obtained from the general equation of a circle by replacing 
x2 by xx 1 , y2 by yy1 , 2x by (x + x i ), and 2y by (y + y i ). 
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that is 
3x + y - 3  = 0 

Exercises 19c 
Find the equations of the tangents to the following circles at the given points: 
1 x2 + y2 

- lOy = 0; (3, 9) 
2 2x2 + 2y2 + x - l ly -1 = 0; ( -2, 5) 
3 x2 + y2 + 3x -3y - 38 = 0; ( -7, -2) 
4 9x2 + 9y2 - 12x + 42y -236 = O; ( -2, }) 
5 Verify that the point (8, 6) is common to both the circles x2 + y2 - l lx -

7y + 30 = 0 and x2 + y2 
- x + 3y -110 = 0. Find the equations of the 

tangents to each of the circles at the point (8, 6) and hence deduce that 
the circles touch each other. 

19.4 The length of the tangent from a point P(X, Y) 
outside the circle x2 + y2 + 2gx + 2/y + c = 0 

Referring to Figure 19.3, C is the centre of the circle and T the point of contact 
of the tangent. PT is perpendicular to the radius TC. 

y 

--+-------------x 
0 

Figure 19.3 

Hence 
PT2 = PC2 - CT2 (i) 

From ( 19.4) C is the point ( - g, -/) and P is the point (X, Y), therefore 
PC2 = (X + g)2 + ( Y  + !)2 (ii) 

Also from (19.4) 
TC = radius = J(g2 + f2 -c) 

Hence substituting (iii) and (ii) in (i) 
PT2 = (X + g)2 + ( Y + /2) -(g2 + f2 -c) 

= X 2+ Y2+2gX+2fY+c 

(iii) 

(19.7) 
Thus the square of the length of the tangent is obtained by substituting the 
co-ordinates of the point in the left-hand side of the equation of the circle. 
Note that if PT2 has a negative value, it indicates that P is inside the circle. 
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Example I Find the length of the tangent from the point (5, 6) to the circle 
x2 + y2 + 2x + 4y -21 = 0. 

From (19.7) 

hence PT = ✓74. 

PT2 = 52 + 62 + 2 X 5 + 4 X 6 -21 
= 74 

19.5 The points of intersection of the straight line y = mx + c 
and the circle x2 + y2 = r2 

The co-ordinates of the points of intersection will satisfy the equations of 
the line and the circle simultaneously: 

x2 + y2 = r2 

y = mx + c  

Substituting in (i) from (ii), we have 
x2 + (mx + c)2 = r2 

or 
(1 + m2)x2 + 2mcx + c2 - r2 = 0 

(i) 
(ii) 

(19.8) 

This equation has real, coincident or complex roots according to whether 
the discriminant of this quadratic, namely 

(2mc)2 - 4(1 + m2)(c2 - r2) = 4[r2(1 + m2) - c2] 

is positive, zero or negative, i.e. according as c2 is less than, equal to, or greater 
than r2(1 + m2). 

Example I Find for what values of c the line y = 2x + c meets the circle x2 + y2 = 9 in two real, coincident and imaginary points. Illustrate with a 
diagram. 

Substituting y = 2x + c in the equation of the circle x2 + y2 = 9, we obtain x2 + (2x + c)2 = 9 
5x2 + 4cx + c2 - 9 = 0 

The discriminant of this quadratic is 16c2 - 20(c2 - 9) = 180 -4c2 . Hence 
if 180 - 4c2 > 0 i.e. c2 < 45 we have real roots 
if 180 -4c2 = 0 1.e. c2 = 45 we have coincident roots 
if 180 -4c2 < 0 i.e. c2 > 45 we have complex roots 

These three cases are illustrated in Figure 19.4. 
The geometrical interpretation of these results is quite generally: if 

c2 < r2(1 + m2 ), the line cuts the circle in two distinct points; if c2 = 
r2(1 + m2), the line is a tangent to the circle; if c2 > r2(1 + m2), the line and 
circle do not meet. 
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y 

Figure 19.4 

Referring back to ( 19.8), the condition for y = mx + c to be a tangent to 
the circle x2 + y2 = r2 is c2 = r2( 1  + m2). That is 

c = ± r✓( l  + m2) 

Thus the two lines 
y = mx ± r✓( l + m2

) ( 19.9) 
are always tangents to the circle x2 + y2 = r2 • 

Example 2 Find the equations of the tangents to the circle x2 + y2 = 25 
which pass through the point ( 15, -5). 

The radius of the given circle is 5 units. Hence from ( 19.9), y = 
mx ± 5✓( 1  + m2) are always tangents to the circle. These lines pass through 
the point ( 15, -5) if these co-ordinates satisfy the equation: 

-5 = 15m ± 5✓( 1  + m2) 

( - 5 - 15m) = ± 5✓( 1  + m2) 

On removing the common factor 5 and squaring, we have 
( 1  + 3m)2 = 1 + m2 

8m2 + 6m = 0 
which has two roots m = - ¾ or 0. Hence the two tangents are 

y = -¾x + 5✓( 1  + lo) 
and 

y = 0 -5✓( 1  +0) 
that is 4y + 3x = 25 and y = - 5. 

Exercises 19d 
1 Find the lengths of the tangents from the point (5, -2) to (i) the circle 

x2 + y2 + 2x -3 y = 0 and (ii) the circle x2 + y2 
- x -5 y + 9 = 0. 

2 Find if the points A(2, -1 ), B( -2, -1 ), C(3, -2) are inside, outside, or 
on the circle x2 + y2 - 2x + y -5 = 0. 
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3 The length of the tangent from the point (3, 2) to the circle x2 + y2 - 2x -
3y + k = 0 is 9 units. Find the value of k. 

4 Find the points of intersection of the line x + y -3 = 0 and the circle x2 + y2 + X - 5 y + 4 = 0. 
5 Find the equations of the tangents to the circle x2 + y2 = 289 which are 

parallel to the line 8x - 15y = 0. 
6 Write down the equation of the tangent to the circle x2 + y2 

- 3x + 5y = 0 
at the point (0, 0). 

7 Show that the line 3x - 4y - 10 = 0 is a common tangent of the two circles 
x2 + y2 = 4 and x2 + y2 - 22x - 24y + 240 = 0. 

8 Given the three circles 
x2 + y2 - 16x + 60 = 0 
x2 + y2 - 12x + 20 = 0 x2 + y2 - 16x - 12y + 84 = 0 

find (i) the co-ordinates of a point such that the lengths of the tangents from 
it to each of the three circles are equal, (ii) the length of each tangent. 

[LU] 
9 (i) Find the radius and co-ordinates of the centre of the circle x2 + y2 -

2x -6y + 6 = 0. (ii) If the line x = 2y meets the circle x2 + y2 - 8x + 6y -
15 = 0 at the points P, Q, find the co-ordinates of P and Q and the 
equation to the circle passing through P, Q and the point ( 1 ,  1 ). [LU] 

10 A circle touches the y-axis at (0, 3) and passes through (9, 0). Find its 
equation. Find also the equation of the other tangent from the origin. 

[WJC] 

Exercises 19 
1 A circle, the co-ordinates of whose centre are both positive, touches both 

axes of co-ordinates. If it also touches the line 3x + 4y -60 = 0 find its 
equation and the co-ordinates of its point of contact with this line. 

2 Show that the distance between the centres of the following circles is equal 
to the sum of their radii: x2 + y2 - 2x - 4y - 20 = 0, x2 + y2 - 26x -
22y + 190 = 0. 

3 Prove that the line 3x + 4y = 13 is a tangent to the circle x2 + y2 - 2x -
3 = 0 and find the equations of the two tangents perpendicular to this 
one. [LU] 

4 Find the radii and the co-ordinates of the centres of the two circles 
which touch the x-axis and which pass through the points (3, - 2) and 
(2, -1 ). 

5 Determine the two values of c for which the line 3x + 4y + c = 0 is a 
tangent to the circle x2 + y2 - 6x -2y - 15 = 0. 

6 Show that for all values of 0 the line x cos 0 + y sin 0 = a is a tangent 
to the circle x2 + y2 = a2 and find the point of contact in terms of 0. 

7 State the equation of the straight line which has gradient m and which 
passes through the point P(0, 1 8). Show that this line is a tangent to the 
circle, centre C(4, 6) and radius 10, provided that m satisfies the equation 
21m2 - 24m - 1 1  = 0. Find the product of the gradients of the tangents 
from P to this circle. [AEBJ 



Exercises 375 

8 A, B are the points of contact of the tangents from the point P(l, 1) to 
the circle x2 + y2 - 4x -6y + 12 = 0. Find the centre and radius of the 
circle and the length PA. Hence if the chord AB subtends an angle 20 
at the centre of the circle find the values of tan 0. 

9 Find the centres and radii of the circles x2 + y2 + 8x + lOy -4 = 0 and 
x2 + y2 - 2x -4 = 0. Find also the distance between their centres and 
hence (i) show that the circles intersect at right angles, (ii) find the length 
of their common chord. [AEB] 

10 Show that the pair of tangents from the point (23, 7) to the circle 
x2 + y2 = 289 are mutually perpendicular. 

11 Show that the line x -5 = 0 always cuts the circle x2 + y2 - (6 + A)x -6y + (5A - 11) = 0 in the same two points, whatever the value of A.. Find 
the co-ordinates of these points. 

12 Find the equation of the circle that passes through the points (0, 1), (0, 4), 
(2, 5). Show that the axis of x is a tangent to this circle and determine 
the equation of the other tangent which passes through the origin. 

[JMB] 
13 Mark the three points A(O, 2), B(O, -2), C( -4, 2) in a sketch and write 

down the co-ordinates of the centre, the length of the radius and the 
equation of the circle through the three points. Show that the line x + y + 6 = 0 is a tangent to the circle. Also obtain the equation of a 
second circle that passes through the two points A, B and touches the 
line x + y + 6 = 0. [JMB] 

14 A circle touches both the x-axis and the line 4x - 3y + 4 = 0. Its centre 
is in the first quadrant and lies on the line x -y -1 = 0. Prove that its 
equation is x2 + y2 - 6x -4y + 9 = 0. [JMB, part] 

15 If P(x 1, y1) is a point outside the circle x2 + y2 + 2gx + 2fy + c = 0 show 
that the length of the tangent PT from P to the circle is given by 

PT2 = x 1
2 + y 1 

2 + 2gx1 + 2fy1 + c 

Two circles have centres A( l, 3) and B(6, 8) and intersect at C(2, 6) and 
D. Find the equation of each of the circles and that of the line CD. The 
tangents to the circles from a point P are of equal length. Verify that P lies on CD. [JMB] 

16 Find the equation of the circle which has as the ends of a diameter 
the points where the line x -y = 1 meets the locus x2 + 2y2 - 4x -4y + 
4 = 0. [Hint: show that the equation (19.5) can be written x2 + y2 -

x(x 1 + x2) - y(y1 + y2) + x 1x2 + y 1y2 = 0 and remember that the sum of 
the roots of a quadratic equation equal ' - b/a' and the product 'c/a'.] 

17 The circles whose equations are x2 + y2 - x + 6y + 7 = 0 and x2 + y2 + 
2x + 2y -2 = 0 intersect at the points A and B. Find (i) the equation of 
the line AB, (ii) the co-ordinates of A and B. Show that the two given 
circles intersect at right angles and obtain the equation of the circle which 
passes through A and B and which also passes through the centres of 
the two circles. [ AEB] 

18 Prove that the circles x2 + y2 - 20x - 14y + 113 = 0 and 4x2 + 4y2 + 
16x -16y -49 = 0 lie entirely outside each other and find the length of 
the shortest distance from a point on one circle to a point on the other. 

19 Prove that the circles x2 + y2 - lOx -By - 59 = 0 and x2 + y2 - 16x -
16y + 119 = 0 lie one entirely inside the other and find the length of the 
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shortest distance from a point on one circle to a point on the other. 
20 Prove that the circle which has as a diameter the common chord of 

the two circles x2 + y2 - 14x - 6y + 33 = 0, x2 + y2 + 2x -6y - 15 = 0 
touches the axes of co-ordinates. 

21 The line joining the points (x1, y1) and (x2, Yi) is a diameter of a circle. 
Show that the equation of the circle is 

(x - x 1 )(x - x2) + (y - y i)(y - Y2) = 0 

The points A, B and C have co-ordinates (0, - 14), ( - 5, 1) and (7, - 5) 
respectively. The perpendicular from A to BC meets BC at L. Find 
(i) the equation of the circle through A, L and C, (ii) the ratio 
L, ALC : L, ALB. Find also, without using tables, the tangent of the angle 
between the line BC and the tangent at L to the circle through A, L and C. 

[AEB] 
22 The two circles x2 + y2 + 2Jx + 3 = 0 and x2 + y2 + 2Jy -3 = 0 have 

centres C1 and C2 respectively. If P is one of their points of intersection 
show that C 1C/ = C 1 P2 + C2P2 for all values of A. 

23 The equations of the sides of a triangle are x + y - 4 = 0, x - y - 4 = 0, 2x + y - 5 = 0. Prove that for all numerical values of p and q the 
equation p(x + y - 4X2x + y - 5) + q(x - y - 4X2x + y - 5) = (x -y -4) 
x (x + y - 4) represents a curve passing through the vertices of this 
triangle. 

Find the values of p and q which make this curve a circle and so 
determine the centre and radius of the circumcircle of the triangle. [JMB] 

24 A circle with centre at the point P(h, k) touches the y-axis, and passes 
through the point S(2, 0). Show that P lies on the curve y2 = 4x - 4, and 
sketch this curve. Show that the straight line joining P(h, k) to the point 
Q(2 + h, 0) cuts the curve y2 = 4x - 4 at right angles at P. [LU] 

25 Find the equation of the circle circumscribing the triangle whose sides are x = 0, y = 0, Ix + my = 1. If I and m can vary so that 12 + m2 = 4l 2m2 

find the locus of the centre of the circle. [Hint: if Ix + my = 1 meets the 
axes at P, Q then PQ is a diameter of the required circle.] 

26 Prove that the circles x2 + y2 + 2x - Sy + S = 0 and x2 + y2 + 10x -2y + 22 = 0 touch one another. Find (i) the point of contact, (ii) the 
equation to the common tangent at this point and (iii) the area of the 
triangle enclosed by this common tangent, the line of centres and the y-axis. 

[LU] 
27 Find the co-ordinates of the centre and the radius of the circle x2 + y2 

-4x - 2y + 4 = 0. Find the equations of the tangents to this circle from 
the origin. Show that the line 5x + 12y = 35 is a tangent to the circle 
and find the co-ordinates of the centre of the circle which is the reflection 
of the given circle in this line. [JMB] 

28 Two circles, C1 and C2, have equations x2 + y2 
- 4x - Sy - 5 = 0 and x2 + y2 - 6x - 10y + 9 = 0, respectively. Find the x co-ordinates of the 

points P and Q at which the line y = 0 cuts C1 , and show that this line 
touches C2• Find the tangent of the acute angle made by the line y = 0 
with the tangents to C1 at P and Q. Show that, for all values of the 
constant J, the circle C� whose equation is 
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A.(x2 + y2 
- 4x - 8y -5) + x2 + y2 

- 6x - lOy + 9 = 0 
passes through the points of intersection of C1 and C2 . Find the two 
possible values of A. for which the line y = 0 is a tangent to C3• [JMB] 

29 Find the condition that the two circles x2 + y2 + 291x + 2f1 y + c1 = 0, 
x2 + y2 + 292x + 2f2y + c2 = 0 may touch, and prove that, if they touch, 
the point of contact lies on each of the lines 

2(91  - 92)X + 2(/1 -f2)Y + C1 - C2 = 0 
(/1 -/2)X - (91 - 92)Y + /192 -/291 = 0 

30 Find the equation of the circle with centre at the point (2, 3) and radius 5. 
Find the equation of the tangent at the point (5, 7) and verify that it is 
parallel to the diameter through the point ( - 2, 6). Write down the 
co-ordinates of the point of contact of the other tangent parallel to this 
diameter. [JMB] 



20 
The parabola, ellipse and hyperbola 

20.1 Introduction 
The locus of a point P(x, y) which moves so that the ratio of its distance 
from a fixed point S (the focus) to its distance from a fixed straight line ZQ 
(the directrix) is a constant (e, called the eccentricity), has different forms 
according to the value of e. The locus is known as a parabola when e = 1, 
an ellipse when e < 1 and a hyperbola when e > 1. We shall see in the sections 
that follow that each of these is given by a second-degree equation in x and y. 

20.2 The parabola (e = 1) 
Let SZ be the line through the focus perpendicular to the directrix ZQ 
(see Figure 20. 1). 

Figure 20.J 

By definition, the locus passes through the point midway between S and Z. 
The form of the equation of the locus depends on the choice of axes. The 
simplest form of the equation is obtained by taking the origin O as the point 
midway between S and Z and axes perpendicular and parallel to ZQ. 

Let SO =OZ = a referred to these axes. The focus S is the point (a, 0) 
and the directrix ZQ is the line x = -a. If P(x, y) is any point on the locus, 
PS = PM; therefore 
378 



which gives 

The parabola (e = 1 )  379 

j[(x - a)2 + y2] = x + a 
(x - a)2 + y2 = (x + a)2 

y2 = 4ax (20.1) 
This is the simplest form of the equation of a parabola and is obtained because 
of our choice of axes. 

To trace the parabola (assuming a >  0), we first observe that y is not defined 
if x is negative, so that the curve lies wholly to the right of the origin. Since 
we can rewrite the equation y = ± 2J ax, the curve is symmetrical about 
Ox, which is often referred to as the axis of the parabola. If x is zero, y2 = 0, 
showing that the y-axis meets the curve in two coincident points at (0, 0), 
known as the vertex. Hence the y-axis is the tangent at the vertex. The general 
shape is shown in Figure 20.1. 

The double ordinate LSL' through the focus is known as the latus rectum. 
Since the abscissa of the point L is x = a, we find, by substitution in (20.1), 
that the ordinate LS has length 2a. Hence 

10 

N 

5 

LSL' = 2LS = 4a (20.2) 

X=3 

M 

Figure 20.2 

Example I Find the equation of the parabola with focus (5, 4) and directrix 
X = 3. 

Refer to Figure 20.2. Let P(X, Y) be any point on the parabola, then P 
is equidistant from the focus and the directrix. Hence SP = PM = PN - MN J[(X - 5)2 + ( Y - 4)2] = X -3 

(X - 5)2 + ( Y -4)2 = (X - 3)2 

X 2 - lOX + 25 + Y2 - 8 Y + 16 = X 2 - 6X + 9 Y2 - 8 Y - 4X + 32 = 0 
The required equation is thus 

y2 - 8y-4x + 32 = 0 
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This may be rewritten 
(y -4)2 = 4(x -4) 

Referring to Figure 20.2, the vertex V is the point (4, 4). If the origin of 
co-ordinates is moved to this point, the equation becomes y2 = 4x, which 
is the same as (20. 1 )  with a = 1 .  
Example 2 Find the equation of the parabola with focus ( -3 ,  2) and directrix 
x -y + 1 = 0. 

5 

Figure 20.3 

Let P(X, Y) be any point on the parabola (see Figure 20.3). Then P is 
equidistant from the focus and the directrix. Hence SP = PM 

X - Y+l .J[(X + 3)2 + ( Y -2)2] = .J2 (see ( 1 7.5) and ( 18.20)) 

2(X 2 + 6X + 9 + Y2 - 4 Y + 4) = X 2 -2X Y + Y2 + 2X -2 Y  + 1 
that is 

X 2 + 2X Y + Y2 + lOX -6 Y  + 25 = 0 
Hence the required equation is 

x2 + 2xy + y2 + lOx -6y + 25 = 0 
To reduce this equation to its simplest form (see (20. 1 ) ), we should need 

to change the origin and rotate the axes. The latter is beyond the scope of 
this book. 
Example 3 A telephone wire hangs from two points P, Q 60 m apart. 
P, Q are on the same level. The mid-point of the telephone wire is 3 m below 
the level of PQ. Assuming that it hangs in the form of a parabola*, find its 
equation. 

• The true shape of the hanging wire is a catenary but its approximation to a parabola is 
often of practical use. 
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y 

p 

Figure 20.4 

With axes as shown in Figure 20.4, the required equation is of the form 
x2 = 4ay. 

The point Q has co-ordinates (30, 3) and lies on the curve, so that 
302 = 4 X a X 3 

therefore 
75 = a 

The required equation is thus x2 = 300y. 
20.3 The equations of the tangent and normal at the point 

(xi , y1) on the parabola y2 = 4ax 
Differentiating the equation of the parabola with respect to x, we have 

dy 
2y dx 

= 4a 

Hence the gradient of the tangent at the point (x 1 , y 1 ) is 2a/ y I and the equation 
of the tangent is 

2a 
(y - y i ) = -(X - X 1 ) 

Y1 
or 

YY1 - y 1 2 = 2ax -2ax 1 
However, since (x 1 , y i ) lies on the curve, y i 2 = 4ax 1 . Hence 

yy 1 - 4ax1 = 2ax -2ax1 

and the required equation is 

YY1 = 2a(x + x i ) (20.3) 
It should be noted that the equation of the tangent can be obtained from 

the original equation of the parabola by replacing y2 by yy1 and 4ax by 
2a(x + x1). This is a similar rule to the one used for a tangent to a circle 
(see Section 19.3). 

The normal to a curve at a point is the line passing through the point 
and perpendicular to the tangent at the point. Hence, since the slope of the 
tangent is 2a/y1 (see (20.3)), the slope of the normal is -yi/2a. Hence the 
equation of the normal is 
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(20.4) 

Example I Find the equations of the tangents to the parabola y2 = 48x at 
the points (3, 12), (48, -48). Show that these tangents are at right angles 
and find their point of intersection. 

Here 4a = 48, therefore a = 12. For the tangent at the point (3, 12), x 1 = 3, 
y1 = 12. Hence substituting in (20.3), we have 

y X 12 = 24(x + 3) 
y = 2x + 6 

Similarly for the tangent at the point (48, -48) y( - 48) = 24(x + 48) 
y = -½x - 24 

(i) 

(ii) 
From (i) and (ii), the slopes of the tangents are 2 and - ½  and the product 
of these is -1. Hence by ( 1 8.15), the tangents are at right angles. 

From (i) and (ii), at the point of intersection 

2x + 6 = y = -½x - 24 
4x+12 = -x-48 x = -12 and y = - 18 

Note that, since a =  12, x = -12 is the equation of the directrix and this 
point lies on the directrix. 

Exercises 20a 
1 Sketch the following parabolas showing foci and directrices: (i) y2 = 8x, 

(ii) y2 = -24x, (iii) x2 = -y, (iv) x2 = 12y, (v) 3y2 + 8x = 0. 
2 The parabola y2 = 4ax passes through the point (2, -4). Find the co­

ordinates of the focus. 
3 A rod rests on two horizontal supports 12 m apart and the maximum 

sag is 0. l m. If the supports are at the same level and the rod is in the shape 
of a parabola find its equation in its simplest form. 

4 Find the equations of the tangent and normal (i) to the parabola y2 = 4x 
at the point ( 1, 2), (ii) to the parabola x2 = -l2y at the point ( - 6, -3). 

5 The normal to the parabola y2 = l2x at the point (3, 6) is produced to 
meet the curve again at the point Q. Find the co-ordinates of Q. 

6 Find the equations of the parabolas with the following foci and directrices: 
(i) focus (2, l ), directrix x = - 3; (ii) focus (0, 0), directrix x + y = 4; (iii) focus 
( -2, - 3), directrix 3x + 4y - 3 = 0. 

7 The normal at a point P(2, 4) on the parabola y2 = 8x meets the axis 
of x at G. N is the foot of the perpendicular from P to the axis. Prove that 
NG = 4 units. 8 PSQ is a chord of the parabola y2 = 24x. S is the focus and P is the point 
(¾, 6). Find the co-ordinates of the point Q, and show that the tangents at 
P and Q are at right angles. 

9 A circle with centre (3, 0) and radius 6 units meets the parabola y2 = l 2x 

file://-/x-2A
file://-/x-24
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at the points P, Q. Prove that the tangents to the parabola at P and Q meet 
on the circle. 

10 The tangent to the parabola x2 = 8y at the point P(l2, 18)meets the tangent 
at the vertex at the point V. If S is the focus, prove that SV and VP are 
perpendicular. 

20.4 The points of intersection of the line y = mx + c and the 
parabola y2 = 4ax 

In order to find the points of intersection, we solve the two equations 
sim ul taneo usl y. 

From y = mx + c and y2 = 4ax, we have 
(mx + c)2 = 4ax 

or 
m2x2 + 2(mc -2a)x + c2 = 0 

The discriminant of this quadratic equation is 
[2(mc -2a)] 2 - 4m2c2 

or 
8a2 - 8amc = 8a(a -me) 

(20.5) 

Thus the quadratic equation (20.5) has real, equal or complex roots according 
as 8a2 - 8amc is greater than, equal to or less than zero. 

Thus if c < a/m, the line meets the parabola in real points; if c > a/m, the 
line does not meet the parabola; if c = a/m, the line touches the parabola. 
Thus 

a y = mx+­
m 

touches the parabola y2 = 4ax for all values of m. 

(20.6) 

Example 1 Find the equation of the tangent to the parabola y2 = -12x 
which is parallel to the line y + x = 5. 

Since the tangent is parallel to the line y + x = 5, it has the same slope 
as this line. Hence m = -1. And since y2 = -12x is the equation of the para­
bola, 4a = -12, therefore a = -3. Substituting for a and m in (20.6), the 
required equation is 

that is 

- 3  
y = ( -l)x+­-1 

y+x = 3 
Example 2 Show that the point of intersection of two perpendicular tangents 
to a parabola always lies on the directrix. 

Let the equation of the parabola be y2 = 4ax. Then the line y = mx + a/m 
is always a tangent. If in place of m we write -1/m, then the line 
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y = - x/m -am is also a tangent and is perpendicular to y = mx + a/m. By 
subtraction, the abscissa of the point of intersection of these two tangents 
is given by 

( mx + ;) - ( -�x -am) = 0 

(m + �)x + a(� + m) = o  
that is by x + a = 0 and this is the equation of the directrix. Example 3 Find the equations of the tangents from the point (2, 4) to the 
parabola y2 = 6x. 

The equation of the parabola is y2 = 6x, hence 4a = 6, i.e. a =  l Hence 
any tangent to the parabola is of the form y = mx + 3/2m. This tangent passes 
through the point (2, 4) if 4 = 2m + 3/2m, that is 4m2 - Sm +  3 = 0 

(2m -1) (2m -3) = 0 m = ½ or ! 
Therefore, the tangents from the point (2, 4) are 

3 

Exercises 20b 

y = ½x + f i.e. 2y = x + 6 
"1 
3 y = !x + � i.e. 2y = 3x + 2 
"1 

1 The tangent to a parabola at any point P meets the directrix at R. If S 
is the focus, prove that L RSP is a right angle. 

2 The tangent to a parabola at any point P meets the axis of the parabola 
at T. PN is drawn perpendicular to the axis to meet it at N and V is the 
vertex. Prove that TV = VN. 

3 P is any point on a parabola whose focus is S. PM is drawn parallel to 
the axis of the parabola. Prove that the tangent at P bisects L SPM. 

4 Show that the equations of the tangents from the point (4, 6) to the parabola y2 = 5x are 4y = 5x + 4 and 4y = x + 20. 
5 A point source of light is placed at the focus of a parabolic mirror. Show 

that all the rays will be reflected parallel to the axis of the parabola. 

20.5 Parametric equations of the parabola 
For all values of t, the equation y2 = 4ax is always satisfied by x = at 2 y = 2at (20.7) 

These are known as the parametric equations of the parabola. (at 2, 2at) 
can be used as a general point on the parabola y2 = 4ax; t has any value. 
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50 y 

Figure 20.5 

Substituting the co-ordinates of the general point (at 2, 2at ) in (20.3), we 
have 

y.2at = 2a(x + at 2) 
ty = x+at 2 

which is the equation of the tangent at (at 2, 2at). Also 
- 2at 

y-2at = - -(x - at 2) 2a 
that is 

y + tx = 2at + at 3 

is the equation of the normal at (at 2, 2at). 

(20.8) 

(20.9) 

Example 1 Sketch the parabola whose parametric equations are x = 5t 2, 
y =  lOt. 

This example can be done immediately by eliminating t and obtaining the 
cartesian equation of the curve, y2 = 20x. However, to illustrate the method 
of sketching from parametric equations we proceed as follows. 

We let t have the values - 5, - 4, . . .  , + 5 and find the corresponding values 
of x and y from the given equations. Thus we can construct the following 
table. 

X 
y 

- 5 -4  - 3  -2 - 1 
125 80 45 20 5 

- 50 -40 - 30 -20 - 10 

0 
0 
0 

1 
5 

10 

2 
20 
20 

3 
45 
30 

4 5 
80 125 
40 50 

The last two lines of the table enable us to plot the points and hence sketch 
the curve (Figure 20.5). 
Example 2 The tangent to the parabola y2 = 4ax at the point P meets the 
directrix at Q. M is the mid-point of PQ. Find the co-ordinates of M in terms 
of the parameter of the point P and the locus of M as P moves on the parabola. 

Referring to Figure 20.6, let P be the point (ap2 , 2ap). Then by (20.8) the 
equation of the tangent at P is 

y = -+ap p 



386 The parabola, ellipse and hyperbola 

Therefore, Q has co-ordinates 

and so M has co-ordinates 

[;(p2 - 1), ;(3p - i)] 
If M is the point (X, Y), we have 

X = ;(p2-1) and Y = ;(3p -i) 

We obtain the locus of M by eliminating p from these equations. 

Thus we have 

therefore 

Figure 20.6 

p2 = (2X + a)/a 

(6X + 2a) 
.j(2X + a).J

a 

The locus of M thus has the equation 
2y.j(2x + a) =  (6x + 2a).ja 

that is 
y2 (2x + a) = a(3x + a)2 

Example 3 PSP' is a focal chord of a parabola, S the focus. If P is the point 
(at2, 2at), find the point P' and hence show that the tangents at P and P' 
are at right angles. 

Since P is the point (at2, 2at ), the cartesian equation of the curve is y2 = 4ax. 
Hence S is the point (a, 0). 



Parametric equations of the parabola 387 

Figure 20. 7 

Let P' be the point (at '2, 2at '). Since PSP' is a straight line (see Figure 
20.7), the slopes of PS and SP' are the same. Therefore 

Simplifying, we have 

Since t # t '  

2at -2at ' 
at 2 - a  a - at '2 

2a2t - 2a2t t '2 = -2a2t 't2 + 2a2t '  

t - t ' = tt '2 - t 't 2 

(t - t ') = tt ' (t '  - t )  

- l = tt '  
-1 

t ' = -
t 

Therefore, P' is the point (a/t 2, - 2a/t ). 
From (20.8) the slope of the tangent at P(at 2, 2at ) is 1/t. Hence the slope 

of the tangent at P' is 1/( -1/t ), i.e. - t, and the product of these two slopes 
is - 1. Hence the tangents at P, P' are at right angles. 

Exercises 20c 
1 Sketch the following parabolas: (i) x = t 2, y = 2t, (ii) x = lOt, y = 5t 2 - 3, 

(iii) X = 3t 2 + 4, y = - 6t, (iv) X = - 8t -2, y = 4t 2 + 1. 
2 Find the length of the latus rectum of the parabola 4x = t 2, 2y = t. 
3 Find the equations of the tangent and normal at any point on the parabola 

X = 6t, y = 3t 2• 
4 Show that the point of intersection P of the tangents at the points A(at/, 

2at i ), B(at/, 2at2) on the parabola y2 = 4ax has co-ordinates X = at1 t2 , 

Y = a(t 1 + t2). If t 1 - t2 = 3, find the locus of P as A and B vary. 
5 The normal at any point P on the parabola y2 = 12x meets the axis of 

the parabola at G. Show that the co-ordinates of M, the mid-point of PG, 
are (3 + 3t 2, 3t ). Hence show that the locus of M as P moves round the 
parabola is y2 = 3x - 9. 
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Exercises 20d 
1 A point moves in such a way that its distance from the point S(5, 12) 

is always equal to its perpendicular distance from the line y = 13. Show 
that the equation of its locus takes the form y = ax -bx2 and find the 
constants a, b. 

Show that the curve passes through the origin 0; find the equation of the 
tangent at that point; and show that the tangent bisects the angle between 
OS and the positive direction of the y-axis. [WJC] 

2 Obtain the equation of the normal to the parabola y2 = 4ax at the point 
(at 2, 2at). The normal at a point P makes an angle of 60° with the x-axis 
and meets the parabola again at the point Q. Show that PQ = 32a/3. 

3 Prove that the line ax +by+ c + A.(a'x + b'y + c') = 0 is a tangent to 
the parabola y2 = 4x if A.2 (a'c' - b'2) + A.(ac' + a'c -2bb') + ac -b2 = 0. 
Hence, or otherwise, find the equations of the two tangents to the parabola 
y2 = 4x which pass through the intersection of the lines x -y + 1 = 0, 
2x + 3y - 5 = 0. 

4 The points P, Q on the parabola y2 = 4ax have co-ordinates (ap2, 2ap), 
(aq2, 2aq) respectively. Show that if PQ passes through the focus (a, 0) 
of the parabola, then pq = - 1. Express the co-ordinates of the mid-point 
M of the chord PQ as functions of pq and p + q, and find the equation of 
the locus of the mid-points M of all focal chords. Show that the locus 
is another parabola and state the co-ordinates of its vertex and focus. Give 
on one diagram a rough sketch of this locus and of the given parabola. 

[JMB] 
5 Prove that the equation of the chord joining the points (at/, 2ati ), 

(at/, 2at2) on the parabola y2 = 4ax is y(t1 + t2 ) - 2x = 2at 1 t2.A variable 
chord of this parabola always passes through the point (4a, 0). Snow that 
the locus of the middle point of the chord is the parabola y2 = 2a(x -4a). 

6 The tangent and normal at P(at 2 , 2at), a point on the parabola y2 = 4ax, 
meet the x-axis at T and G respectively. Prove that P, T and G are 
equidistant from the point (a, 0). Hence prove that the tangent at P to the 
parabola is inclined to the tangent at P to the circle through P, T and G at 
an angle tan - i t. [LU] 

7 The chord joining two variable points A, B on a parabola always passes 
through a fixed point on the axis. Show that the locus of the point -of 
intersection of the normals at A and B is another parabola. 

8 The parabolas y2 = 4x and ( v + 4),,)2 = -4(x -4A. 2 - 2) meet at the 
points A and B. Show that the ime AB passes through the focus of the 
first parabola for all values of A.. 9 The line y = k (x -2) meets the parabola y2 = - 8x in the two points P 
and Q. Find the co-ordinates of the mid-point M of PQ in terms of k. 
Hence show that as k varies M lies on the parabola y2 = 4(2 -x). 

10 Prove that, in a parabola, the portion of any tangent between the point 
of contact and the axis of the curve is bisected by the tangent at the vertex. 
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20.6 The ellipse (e < 1) 
We recall that S is the focus and ZQ the directrix. If P(x, y) is any point 
on the curve and PM is perpendicular to ZQ, then 

SP = ePM 

Take Z'SZ perpendicular to the directrix ZQ (see Figure 20.8). Let the points 
A, A' divide SZ internally and externally in the ratio e :  1. Thus A, A' are 
points on the ellipse. 

Q o' 

B 

Figure 20.8 

The form of the equation, like the parabola, depends on the choice of axes. 
The simplest form is obtained by taking the origin O as the mid-point of 
AA' and axes perpendicular and parallel to AA'. 

Let AA' = 2a, then OA = OA' = a. Since A, A' are points on the locus, 
by definition, SA = eAZ, SA' = eA'Z. Hence 

SA' -SA = e(A'Z -AZ) = eAA' 

that is 

(OS + OA') -(OA -OS) = 2ae 
2OS = 2ae (OA = OA') 
OS = ae 

Thus the focus S is the point ( -ae, 0). Also 

SA' + SA = e(A'Z + AZ) 

that is 

AA' = e[ (OA' +OZ)+ (OZ -OA)] 
2a = 2eOZ (OA' = OA) 

OZ = a/e 

(20.10) 

(20. 11) 
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Thus the directrix ZQ is the line x = -a/e. Now PS = ePM, hence 

(x + ae)2 + y2 = e2 ( X + �r 

that is 

and writing 

x2 + 2aex + a2e2 + y2 = e2x2 + 2aex + a2 

x2 (1 -e2
) + y2 = a2 (1 - e2

) 

the equation becomes 
x2 y2 
a2 + b2 = 1 

(20.12) 

(20.13) 

To trace the ellipse we note that, since only even powers of both x and 
y occur in the equation, the curve is symmetrical about both axes. 

or 

Also, since the equation can be rewritten 

x2 = a2 ( 1 -�:) then -b � y � b 

then - a � x � a 

The symmetry of the curve enables us to deduce the existence of a second 
focus S'(ae, 0) and a second directrix Z'Q'(x = a/e). 

To summarise, the curve 

is an ellipse of eccentricity e < 1 given by the equation b2 = a2 (1 -e2). The 
foci are the points ( ± ae, 0), the directrices the lines x = ± a/e. AA' = 2a is 
the major axis, BB' = 2b is the minor axis, and O is the centre of the ellipse. 
The chord LS'L' through S' perpendicular to the major axis is known as 
the latus rectum. 

Example I Find (i) the eccentricity, (ii) the co-ordinates of the foci, (iii) the 
equations of the directrices of the ellipse x2/25 + y2/16 = 1 . 

(i) Comparing the given equation with (20.13), we have a = 5, b = 4. Substi­
tuting in (20.12), we obtain 

16 = 25(1 -e2) 25e2 = 9 e = ¾ 
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(ii) The co-ordinates of the foci are ( ± ae, 0), that is ( ± 3, 0). 
(iii) The equations of the directrices are x = ± a/e, that is x = ±¥. 

Example 2 Show that the length of the latus rectum of the ellipse 
x2/a2 + y2/b2 = 1 is 2b2/a. 

Referring to Figure 20.8, the latus rectum is the line through the focus S' (ae, 
0) perpendicular to the major axis AA'. Hence its equation is x = ae. The 
ordinate of the point L(LS') is therefore obtained by solving the two equations 

Thus 

x2 y2 
x = ae a2 + 

b2 = 1 

a2e2 y2 

7 + 
b2 = 1 

y2 = b2 (1 -e2) 

Now LS' = y = b..)(1 -e2) and from (20.12) ../(1 -e2) = b/a, therefore 
LS' = b2/a and so the latus rectum 2LS' = 2b2/a. 

Exercises 20e 
Find (i) the eccentricities, (ii) the co-ordinates of the foci, (iii) the equations 
of the directrices, (iv) the areas* and (v) sketch the ellipses: 

x2 y2 x2 y2 
l 100 

+ 
64 = l 2 

64 
+ 

100 = l 

x2 y2 
4 - + - = 1  

6 4 

5 2 2 + 2 = 2 6 (x -1)2 + (y + 2)2 
= 1 X y 25 16 

7 Find the length of the latus rectum of the ellipse x2/169 + y2/144 = 1. 
Hence find the co-ordinates of the four points in which the latera recta 
meet the ellipse. Verify that these co-ordinates satisfy the equation of the 
ellipse. 

8 Find the equation of the ellipse which has the co-ordinate axes as its 
principal axes and passes through the points ( -1, 3), (2, -1). Find also 
its eccentricity. 

9 An ellipse has eccentricity e = ¼, Its foci are the points (0, ± 4). Find 
the lengths of its semi-major and semi-minor axes and hence write down 
its equation. 

10 An ellipse of eccentricity i has the points (3, 2), (7, 2) as foci. Find the 
lengths of the major and minor axes, the equations of the directrices, the 
co-ordinates of its centre, and the equation of the curve. 

i• 4bi• • Area of ellipse = 4 ydx = - ✓ (a2 
- x2) dx = nab. Verify this result. 

o a o 
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20. 7 The equations of the tangent and normal at the point ( x 1 , y 1 ) 
on the ellipse x2 / a2 + y2 / b2 = 1 

Differentiating the equation of the ellipse with respect to x 
2x 2y dy 
� + b2 dx = O 

Hence the gradient of the tangent at the point (x 1 , y1) is - b2xi fa2y1 , and 
the equation of the tangent is 

that is 

- b2x 1 y - y 1 = -2--(x -x i ) a Y1 
YY1 y/ - XX 1 x/ 
- - - = - - + -b2 b2 a2 a2 

or, since (x1, y i ) lies on the ellipse, 

YY1 + XX 1 = 1 b2 a2 (20.14) 

We again note that the equation of the tangent is obtained from the equation 
of the curve by replacing x2 by xx 1 and y2 by yy 1 • 

Since the normal is perpendicular to the tangent and passes through (x 1 , y 1 ), 
its equation is 

or 

a2y 1 (y - y i ) = -b2 (X - X 1) 
X1 

(20. 15) 

Example I Find the equation of the tangent and normal to the ellipse 
3x2 + 14y2 = 138 at the point ( - 2, 3). 

The equation of the tangent is by (20.14) 
3x(-2) + 14y(3) = 138 

that is 
7y - x  = 23 

To find the equation of the normal, instead of finding 'a' and 'b' and using 
(20.15) we can proceed as follows. 

The slope of the tangent is + +, hence the slope of the normal is - 7. Since 
the normal also passes through the point ( -2, 3), its equation is 

(y -3) = - 7(x + 2) 
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y + 7x + 1 1  = 0 

20.8 The points of intersection of the line y = mx + c and the 
ellipse x2/a2 + y2/b2 = 1 

In order to find the points of intersection, we solve the two equations 
simultaneously. Substituting y = mx + c in x1/a1 + y1/b1 = 1 ,  we have 

x1 (mx + c)1 al + b1 = 1 

or 
(20. 16) 

The discriminant of this quadratic is 
(2cma1)1 -4 [a1 (c1 -b1) (a1m1 + b1) ]  or 4a1b1 (b1 + a1m1 -c1) 

Thus the quadratic (20. 16) has real, equal or complex roots according as c1 

is less than, equal to, or greater than b1 + a1m1. 
If c1 = a1m1 + b1, the line is a tangent to the ellipse; thus the lines 

always touch the ellipse. 
y = mx ± ✓(a1m1 + b1) (20.17) 

Example 1 Find the equations of the tangents to the ellipse x1 + 2y1 = 19 
which are parallel to the line x + 6y = 5. 

Since the tangents are parallel to the line they have the same slope as 
the line, that is m = - ¾; hence by (20.17) the required equations are 

y = -¼x ± ✓(a1-f6 + b1) 

Rewriting the given equation of the ellipse in the form x1/19 + y1/1/- = 1 ,  
we have a1 = 19, b1 = 1/-. Hence the equations of the tangents are 

y = ¼x ± ✓( 19 .f6 + 1/-) 
= -¼x ± ¥ 

that is 
6y+x = ± 19 

Example 2 The pair of tangents from the point P to the ellipse x1/a1 + y1/b1 = 1 are always at right angles. Show that the locus of P is the circle x1 + y1 = a1 + b1 . 
The line y = mx ± ✓(a1m1 + b1) is always a tangent to the given ellipse. 

This line passes through a point P(X, Y) if 
Y = mX ± ✓(a1m1 + b1) 

Since X, Y, a, b are given, this is a quadratic equation in m giving the slopes 
of the two tangents from P to the ellipse. This quadratic equation can be 
written in the form 

( Y - mX)1 = a1m1 + b1 
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that is 

m2 (X 2 -a2) - 2mX Y + ( Y2 -b2) = 0 
The two tangents are at right angles if their slopes are m and -1/m, that 
is if the product of their slopes is - 1 . Thus for perpendicular tangents, the 
product of the roots of this equation must be -1. So the required condition is y2 - b2 

��� = - 1  x 2 - a2 

that is 
X 2 + y2 = a2 + b2 

which is the condition for the point P(X, Y) to lie on the circle x2 + y2 

= a2 + b2 , which is known as the director circle of the ellipse. 

Exercises 20f 
Find the equations of the tangents and normals to the following ellipses at 
the points stated: 

1 3x2 + 2y2 = 30, (2, 3) 
2 4x2 + 5y2 = 24, ( 1 ,  2) 
3 a2x2 + b2y2 = 2a2b2 , ( - b, a) 

Write down the equations of the tangents to the following ellipses, with the 
given gradients: 
4 x2/3 + y2/2 = 1, gradient 2 
5 x2 + 2y2 = 8, gradient 2 
6 4x2 + 5y2 = 20, gradient 3 
7 Show that the pair of tangents from the point (3, 4) to the ellipse 

x2/ 16  + y2/9 = 1 are at right angles. 
8 The normals to the ellipse x2 + 4y2 = 100 at the points A(6, 4) and B(8, 3) 

meet at N. If P is the mid-point of AB and O is the origin, show that OP 
is perpendicular to ON. 

9 Show that the slopes of the tangents from the point (h, k) to the ellipse 
x2 /a2 + y2 /b2 = 1 are given by the quadratic equation 

m2 (h2 - a2) -2mhk + (k2 - b2
) = 0 [see Example 2] 

By considering the condition for these roots to be complex, show that (h, k) lies inside the ellipse if h2 /a2 + k2 /b2 - 1 is less than zero. 
10 Find the locus of a point P which moves so that the sum of its distances 

from two fixed points A and B 8 units apart is always 1 4  units. Take 
AB and its perpendicular bisector as the axes of x and y respectively. 

20.9 Parametric equations of an ellipse 
For all values of 0, the equation x2 /a2 + y2 /b2 = 1 is always satisfied by 

x = a cos 0 y = b sin 0 (20. 1 8) 
These are parametric equations of the ellipse. (a cos 0, b sin 0) can be used 
as a general point on the ellipse x2 /a2 + y2 /b2 = 1 . 0 is often referred to as 
the eccentric angle. 
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Example 1 Find the equations of the tangent and normal at any point on 
the ellipse x2 /a2 + y2 /b2 = 1. 

Any point on the ellipse is (a cos 0, b sin 0). Hence by (20.14) the equation 
of the tangent is 

that is 

xa cos 0 yb sin 0 a2 + b2 = 1 
x cos 0 y sin 0 - - + -- = 1 a b 

The slope of the tangent is ( - b/a) cot 0, hence the slope of the normal is (a/b) tan 0 and the equation of the normal is (y -b sin 0) = (a/b) tan 0(x - a cos 0) by cos 0 - b2 sin O cos 0 = ax sin 0 - a2 sin 0 cos 0 
that is by cos 0 - ax sin 0 = (b2 - a2) sin 0 cos 0 Example 2 If S and S' are the foci of an ellipse and P any point on its circum­
ference, show that SP + PS' = 2a, where 2a is the length of the major axis. 

Let the equation of the ellipse be x2/a2 + y2/b2 = 1. 
Any point P on it has co-ordinates (a cos 0, b sin 0) and the foci are S( -ae, 0), S'(ae, 0). Hence 

Hence 

Similarly, 

whence 

SP2 = (a cos 0 + ae)2 + b2 sin2 0 
= a2 cos2 0 + 2a2e cos 0 + a2e2 + a2 (1 -e2) sin2 0 
= a2 (cos2 0 + sin2 0) + 2a2e cos 0 + a2e2 (1 -sin2 0) 
= a2 + 2a2e cos 0 + a2e2 cos2 0 
= a2 ( 1 + e cos 0)2 

SP = a(l + e cos 0) 
S'P = a(l -e cos 0) 

SP + S'P = 2a 

Figure 20.9 

(20.19) 

(20.20) 

(20.21) 
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Example 3 If PG is the normal at P, show that PG bisects the angle SPS', 
where S, S' are the foci (see Figure 20.9). 

Let P be the point (a cos 0, b sin 0). By equation (20.15), the equation of PG is 

that is 

y - b sin 0 x - a cos 0 
b sin 0/b2 a cos 0/a2 

cos 0 . sin 0 -
a-(y - b sm 0) = -

b
-(x - a cos 0) 

This meets the x-axis where y = 0, so that 

Therefore 

b cos 0 sin 0 sin 0 - a = -
b-(x - a cos 0) 

b2 cos 0 - -- = X - a COS 0 
a 

b2 -a2 
- -- cos 0 = x  

ae2 cos 0 = x (since b2 = a2 (1 - e)) 
Referring to Figure 20.9, 

Hence 

SG = ae2 cos 0 + ae 
S'G = ae -ae2 cos 0 

SG 1 + e cos 0 SP 
S'G = l _ e cos 0 = S'P (from (20.19), (20.20)) 

Therefore, PG is the internal bisector of the angle SPS'. 

Exercises 20g 
1 Find the equation of the tangent at any point (a cos 0, b sin 0) on an ellipse 

x2/a2 + y2/b2 = 1. Hence show that the equation of the normal can be 
written in the form 

� _ __!?L = a2 - b2 
cos 0 sin 0 

2 Show that the equation of the line joining two points whose eccentric angles 
are 0 and <p is given by (x/a)cos½(0 + </J) + (y/b)sin½(0 + </J) = cos½(0 - </J). 
Deduce the equation of the tangent at the point 0. 

3 PG, PN and PT are respectively the normal, the ordinate and the tangent 
at P any point on an ellipse. Also, if G, N, T are the points where they 
cut the major axis prove that (i) ON. OT = OA 2 and (ii) OG = e20N 
(0 is the origin). 

4 Q( -a sin 0, b cos 0)and Q'(a sin 0, -b cos 0) are any two points on an ellipse 
x2/a2 + y2/b2 = 1. Show that QQ' passes through the origin. 
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5 Show that the tangents to the ellipse x2/a2 + y2/b2 = 1 at points whose 
eccentric angles differ by 90° meet on the ellipse x2/a2 + y2/b2 = 2. 

Exercises 20h 1 Find the equation of the tangent to the ellipse 4x2 + 9y2 = 72 at the point 
(3, 2). Also find the equations of the tangent perpendicular to this one. 

2 The tangent at the point 0 to the curve x = a cos 0, y = b sin 0 meets the 
x-axis at A and the y-axis at B. If O is the origin, find the minimum area 

of triangle AOB. 
3 In the preceding question, find the locus of the mid-point of AB. 4 Plot the points on the curve given by the equations x = cos t, y = cos 2t 

for the values 0°, 30°, 60°, . . .  , 180° of t and sketch the curve. Prove that the 
distance of any point of the curve from the point (0, - i) is the same 
as its distance from the line y = -�- [LU] 5 Show that, for every value of cp, the point P(a cos cp, b sin cp) lies on the 
ellipse x2/a2 + y2/b2 = 1. Obtain the equation of the tangent at P in the 
form (x/a) cos cp + (y/b) sin cp = 1. If the tangent at P meets the axes in TT' 
and the diameter through P meets the ellipse again at P', show that 

tan TP'T' = 20T. OT'/(a2 + b2 +OP2) (0 being the origin) 
[WJC] 6 (a) Find the equations of the tangents of gradient ½ to the ellipse x2 + 6y2 = 15. 

(b) If the normal at a variable point P on the ellipse x2/a2 + y2/b2 = 1 
meets the x-axis in Q, show that the locus of the mid-point of PQ is an 
ellipse concentric with the given ellipse. Find the eccentricity of this 
ellipse if that of the given ellipse is ¼. [JMB] 7 Show that the equation of the tangent to the ellipse x2/a2 + y2/b2 = 1 

at the point P(a cos 0, b sin 0) is (x/a) cos 0 + (y/b) sin 0 = 1. If R, R' are the 
feet of the perpendiculars from the foci S, S' on to the tangent at P, prove 
that SR . S'R' = b2• Show also that 

RR' a 
SS' = ✓(a2 + b2 cot2 0) [JMB] 

8 The tangent and normal at the point P(a cos 0, b sin 0) on the ellipse 
x2/a2 + y2/b2 = 1 meet the axis of x at (x1, 0) and (x2 , 0) respectively. If 0 
is small show that x 1 = a+ ½a02 approximately. Find a similar approxi­
mation for x2 • [JMB, part] 9 A perpendicular is drawn, from the point (0, - b) on the ellipse x2/a2 

+ y2 /b2 = 1, to the tangent at any point P(a cos 0, b sin 0) on the same 
ellipse. Write down an expression for the length of this perpendicular, 
and prove that the length has a stationary value when P is at either end 
of the minor axis, but has no other stationary value unless 2b2 < a2 • 

[LU] 
10 Find the equation of the normal to the ellipse x2/a2 + y2/b2 = 1 at the 

point P whose eccentric angle is 0. The tangent and normal at P cuts 
the y-axis at T and G respectively. Prove that the circle on TG as diameter 
passes through the foci. Find the centre and radius of this circle. 

[SUJB] 
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20.10 The hyperbola (e > 1) 
We obtain the simplest equation of the hyperbola in a similar manner to 
that used in Section 20.6 to obtain the equation of the ellipse. Referring to Figure 20. 10, S is the focus, ZQ the directrix, P (x, y) any point on the curve 
and PM is perpendicular to ZQ. 

L'. 

Figure 20.10 
SZS' is perpendicular to the directrix ZQ. A and A' are the points dividing 

SZ internally and externally in the ratio e :  1. Thus A, A' are points on the 
hyperbola. 0 is the mid-point of AA' and the axes are as shown in Figure 
20.10. Let AA' = 2a. 

Following the method used for the ellipse, OS = ae, OZ = a/e; thus S is 
the point ( - ae, 0) and ZQ is the line x = - a/e. 

thus 

PS = ePM (x + ae)2 + y2 = e2 (x + a/e)2 

x2 + 2aex + a2e2 + y2 = e2x2 + 2aex + a2 

a2 (e2 - 1) = x2 (e2 - 1) - y2 

x2 y2 
- - ----=-----=-- - = 1 a2 a2 (e2 - 1) 

and writing b2 = a2 (e2 - 1) the equation becomes 

x2 y2 
- - - = 1  a2 b2 (20.22) 

To trace the hyperbola, we note that only even powers of x and y occur 
in the equation. Hence the curve is symmetrical about both axes. Also by 
this symmetry, there is a second focus S' (ae, 0) and a second directrix x = a/e. 

Further, since the equation can be rewritten y2/b2 = x2/a2 - 1 and the 
left-hand side is always positive, x2/a2 

- 1 must be positive, hence there is 
no part of the curve for values of x between + a and - a. On the other hand, 
since x2/a2 = 1 + y2/b2, y can have all values. 

To summarise, the curve 
x2 y2 
- - - = 1  a2 b2 
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is a hyperbola of eccentricity e( > 1) given by the equation b2 = a2 (e2 - 1) (20.23) 
The foci are the points ( ± ae, 0), the directrices the lines x = ± a/e; AA' = 2a 
is the transverse axis and O is the centre. The chord LS'L' through S' per­
pendicular to the major axis is the latus rectum. 
Example 1 Find (i) the eccentricity, (ii) the co-ordinates of the foci, (iii) the 
equations of the directrices of the hyperbola x2/9 - y2/16 = 1. 

(i) Comparing the equation with (20.22), we have a2 = 9, b2 = 16. ISubsti­
tuting in (20.23), 

16 = 9(e2 - 1) 
25 = 9e2 

% = e 
(ii) The co-ordinates of the foci are ( ± ae, 0), that is ( ± 5 x %, 0) or 

( ± ¥, 0). 
(iii) The equations of the directrices are x = ± a/e, that is x = ± 3. 

Exercises 20i 
Find (i) the eccentricities, (ii) the co-ordinates of the foci, (iii) the equation 
of the directrices and (iv) sketch the hyperbolae: 
1 x2/4 - y2/23 = 1 2 y2/9 - x2/7 = 1 3 x2/4 - 4y2/33 = 1 
4 56x2 

- 25y2 = 1400 5 y2/2 - x2 = 1 6 x2 - y2 = 25 
7 Find the length of the latus rectum of the hyperbola x2 /9 - y2 /7 = 1. 

Hence find the co-ordinates of the four points in which the latera recta 
meet the hyperbola. Verify that these co-ordinates satisfy the equation 
of the hyperbola. 

8 The foci of a hyperbola are the points ( ± 7, 0). Find the equation of the 
curve if e = l- If the eccentricity is unaltered but the foci are the points 
(0, ± 7), what is the equation? 

9 The centre of a hyperbola is at the origin and its transverse axis lies along 
the x-axis. Find the equation of the hyperbola if it passes through the 
points (6, ¥) and ( - 5, 0). 

10 Referring to Figure 20. 10, show that PS = ex + a and that PS' = ex - a. 
Hence prove that the difference of the focal distances is constant and equal 
to the length of the transverse axis. [Hint: PS = ePM and PS' = ePM'.] 
(See also Example 2 in Section 20.9 and Example 3 in Section 20.12.) 

20.11 Properties of the hyperbola x2/a2 - y2/b2 = 1 
Many of the results for the hyperbola can be obtained from the corresponding 
results for the ellipse by writing - b2 in place of b2 • 

(i) The equation of the tangent at the point (x 1 , y 1 ) is 

(20.24) 



400 The parabola, ellipse and hyperbola 

(ii) The equation of the normal at the point (x 1 , y i ) is 
y - Y1 X - X1 

y if - b2 x ifa2 (20.25) 

(iii) The line y = mx + c meets the hyperbola in real, or coincident points 
or not at all, according as c2 is greater than, equal to or less than 
a2m2 -b2. 
(iv) The lines 

y = mx ± J (a2m2 -b2) always touch the hyperbola (20.26) 

20.12 Parametric equations of the hyperbola x2/a2 - y2/b2 = 1 
The most usual forms of the parametric equations are x = a sec 0 y = b tan 0 
(See also Exercises 2Oj, question 5.) 

(20.27) 

Example I Find the equations of the tangent and normal at any point on 
the hyperbola x2/a2 - y2jb2 = 1. 

Any point on the hyperbola is (a sec 0, b tan 0). Hence by (20.24), the 
equation of the tangent is 

that is 

xa sec 0 yb tan 0 
a2 - b2 = 1 

� sec 0 -� tan 0 = 1 
a b 

The slope of this tangent is 
b sec 0 b 
a tan 0 or 

a sin 0 
Hence the equation of the normal is 

- a sin 0 (y - b tan 0) = b 
(x -a sec 0) 

which reduces to 
ax sin 0 + by = (a2 + b2) tan 0 

(20.28) 

(20.29) 
Example 2 P is any point on a hyperbola centre C. The normal at P meets 
the major axis at G and the ordinate at P meets the major axis at N. Prove 
that CG = e2CN. 

Let P be the point (a sec 0, b tan 0), as shown in Figure 20.11. CN is the 
abscissa of P and therefore 

CN = a sec 0 

From (20.29) the equation of PG is 
ax sin 0 + by = (a2 + b2) tan 0 

(i) 
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Figure 20.1 1  

G lies on the x-axis (y = 0) and therefore its abscissa is given by 
ax sin 0 = (a2 + b2) tan 0 

From (i) and (ii) 

Therefore 

a2 + b2 tan 0 CG = - - -a sin 0 a2 + b2 
- -- sec 0 (ii) a 

CG a2 + b2 
= a2 CN a2 + a2 (e2 -1) (see (20.23)) = a2 

= e2 

Example 3 If P is any point on a hyperbola whose foci are S and S', prove 
that S'P -SP is constant. 

Let P be the point (a sec 0, b tan 0) on the hyperbola x2 /a2 -y2 /b2 = 1. 
The foci S' and S are the points ( -ae, 0) and (ae, 0) respectively. Thus 

SP2 = (a sec 0 -ae)2 + b2 tan2 0 
= a2 sec2 0 -2a2e sec 0 + a2e2 + a2 (e2 - 1) (sec2 0 -1) 
= a2 sec2 0 -2a2e sec 0 + a2e2 + a2e2 sec2 0 -a2 sec2 0 -a2e2 + a2 

= a2 - 2a2e sec 0 + a2e2 sec2 0 
= a2 (e sec 0 -1)2 

Therefore 
SP = a(e sec 0-1) 

(Since e > 1 and sec 0 > 1 ,  this cannot be 1 -e sec 0.) Similarly 
S'P = a(e sec 0 + 1 )  

Therefore 
S'P - SP = 2a 
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Exercises 20j 
1 Find the equations of the tangent and normal to the hyperbola. 

9x2 - 4y2 = 36 at the point (4, 3✓3). 
2 Show that the equation of the chord joining the points (a sec 0, b tan 0) 

and (a sec cp, b tan cp) on the hyperbola x2/a2 -y2/b2 = 1 is 

� cos ½(0 - </J)-i sin ½(0 + </J) = cos ½(0 + </J) 

Deduce the equation of the tangent at the point (a sec 0, b tan 0). 
3 Show that the two tangents to the hyperbola x2/4 -y2 = 1 which are 

parallel to the line y = 2x -3 are a distance 2✓3 apart. 
4 Find the condition for the line lx + my = n to touch the hyperbola 

x2 /a2 -y2 /b2 = 1. By writing + b2 in place of -b2, deduce the condition 
for the same line to meet the ellipse x2/a2 + y2/b2 = 1. 

5 Show that the point 

always lies on the hyperbola x2/a2 - y2/b2 = 1 for all values of t. Derive 
the equation of the tangent at this point. 

6 P is any point on a hyperbola whose foci are S, S'. The tangent and 
normal at P meet the axis of the hyperbola at T and N respectively. Prove 
that PT, PN are the internal and external bisectors of the angle SPS'. 

7 The pair of tangents from the point P to the hyperbola x2 /a2 -y2 /b2 = 1 
are always at right angles. Show that the locus of P is the circle x2 + y2 

= a2 - b2 (the director circle). [Hint: refer to Section 20.8, Example 2.] 
8 Show that the eccentricities e1 and e2 of the hyperbolas x2/a2 -y2/b2 = 1 

and - x2/a2 + y2/b2 = 1 satisfy the relation 1/ef + 1/e� = 1. 
9 The tangent and ordinate at the point P on the hyperbola x2 /a2 -y2 /b2 = 1 

meet the x-axis at T and N respectively. If C is the centre of the hyperbola, 
show that CT.CN = a2 • 

10 Find the equations and the points of contact of the tangents to the 
hyperbola 2x2 - 3y2 = 5 which are parallel to 8x = 9y. 

20.13 Asymptotes of the hyperbola x2/a2 - y2/b2 = 1  
The definition of an asymptote is that it is a straight line which meets a curve 
in two points at infinity, but which is not altogether at infinity. 

The abscissae of the points of intersection of the line y = mx + c and the 
hyperbola x2/a2 -y2/b2 = 1 are given by the equation 

x2 (mx + c)2 

a2 - b2 = 1 

or, rearranged as a quadratic in 1/x, 
1 1 

a2 (c2 + b2)- + 2a2mc- + (a2m2 -b2) = 0 
X2 X 

(20.30) 

This equation has two zero roots if both 2a2mc = 0 and a2m2 -b2 = 0. 
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That is, if m = ± b/a and c = 0, the line y = mx + c meets the hyperbola in 
two points such that 1/x = 0. If 1/x = 0, x is infinite, and thus 

b b 
y = +-x and y = - -x 

a a 
(20.31) 

both meet the curve in two points at infinity and are thus the asymptotes. 
The lines both pass through the origin and are equally inclined to the 

x-axis at angles ± arctan b/a. Their combined equation is 

that is 
Xl 

y
l 

- - - = 0 a2 b2 

The lines are shown in Figure 20.12 as LOL' and KOK'. 

Figure 20.12 

(20.32) 

Example I Show that any straight line parallel to an asymptote will meet 
the curve in one point at infinity and one finite point. 

Any line parallel to an asymptote has the equation 
b y = ±-x + k (k # 0) a 

that is, its slope m = ± b/a. 
Hence from equation (20.30) the abscissae of the points of intersection of 

the line with the hyperbola are given by 
1 

( 
b) 1 

a2 (k2 + b2)
2 

+ 2a2 ± - k-+ 0 = 0 
X a X 

The roots of this equation are 
1 1 _ 2bk 
� = 0 and � = + a (k2 + b2) 

that is, one value of x is infinite and, since k # 0, the other is finite. 
Example 2 P is any point on the hyperbola x2/a2 -y2/b2 = 1 and the 
tangent at P meets the asymptotes in A and B. Show that P is the mid-point 
of AB. 

Let P be the point (a sec 0, b tan 0). The tangent at P is (see 20.28) 
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_:_ sec 0 - r  tan 0  = 1 a b 
The combined equation of the asymptotes is 

x2 y2 
- - - = 0  
a2 b2 

From (i) 

Substituting (ii) 

y = _b_(.:. sec 0 - 1) tan 0  a 

x2 (X )2 

a2 - cot2 0 � sec 0 - 1 = 0 

x2 2x 
2(1 - cosec2 0) +- cot2 0 sec 0 - cot2 0 = 0 a a 

that is 

x2 2x - 2 cot2 0 + - cot2 0 sec 0 - cot2 0 = 0 
a a 

x2 2x 
2 - - sec 0+ 1 = 0  a a 

(i) 

(ii) 

which is a quadratic in x whose roots x 1 , x2 are the abscissae of the points 
A and B. Now 

that is 

Xi + x2 = 2 sec 0/� 
a a 

= 2a sec 0 

½(x1 + x2) = a sec 0 
which is the abscissa of the point P. 

Similarly, if x is eliminated from (i) and (ii), half the sum of the ordinates 
of A and B is equal to the ordinate of the point P. Hence P is the mid-point 
of AB. 

20.14 The rectangular hyperbola 
If the asymptotes of a hyperbola are at right angles, it is known as a rectangular 
hyperbola. The asymptotes will each be inclined at 45° to the x-axis. Hence 
from equations (20.31) 

b - = +1 
a -

and the equation of the hyperbola can be written 
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x2 y2 - = 1 
a2 a2 

x2 
- y2 = a2 (20.33) 

Example I Show that the eccentricity of any rectangular hyperbola is ✓2. Any rectangular hyperbola has the equation 

Hence from (20.23) 
whence 

x2 y2 - - - = 1  
a2 a2 

e =  ✓2 

20.15 Parametric equations of xy = c2 

The equation xy = e2 is always satisfied if 
X = et 

e 
y = ­t (20.34) 

where t is a parameter. These are the parametric equations. (et, e/t ) is any point on the curve as t varies. 
20.16 The ta�ent and normal at the point (et, c/t) on the curve 

xy = C 

If xy = e2, then 
and so 

e2 

y = ­x 

dy e2 

= 
dx 

-
x2 

Therefore, the gradient of the tangent at (et, e/t ) is - e2 /e2t 2 = - 1/t 2• Hence the equation of the tangent is 
(y - �) = - /

2 (x - et) 

or 
t 2y + X = 2et The equation of the normal is 

(y - �) = t 2 (x -et )  

(20.35) 
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or ty - t 3x = c - ct4 (20.36) Example 1 Show that the equation of the tangent at the point (x1, y1) to 
the curve xy = c2 can be written x1 y + XY i  = 2c2• Verify that this agrees 
with equation (20.35). xy = c2 

dy c2 
= 

dx 
-

x2 

Hence at the point (x i , yi), the slope of the tangent is - c2/x i 2 and its 
equation is 

c2 (y - yi) = - -2 (x - xi) 
X 1 

Since the point lies on the curve, c2 = x 1y1• Hence 

y - y1 = _ Y1
(x - xi) 

X1 

X1Y + Y1X = 2X 1Y1 

that is 

or 

X1 Y + Y 1X = 2c2 

To verify that this agrees with equation (20.35), let x 1 = et and y1 = c/t, then 
C cty +-x = 2c2 
t 
1 ty +-x = 2c 
t 

t 2y + x = 2ct as in (20.35) Example 2 Find the co-ordinates of the vertices and the foci of the curve xy = 18, given that the equation of the rectangular hyperbola x2 - y2 = a2 
referred to its asymptotes as axes is 2xy = a2 • 

Comparing the given equation with xy = ½a2, it follows that a = 6. 
Referring to Figure 20.13, we have OA = OA' = 6. Also since the hyperbola 
is rectangular e = J2. Hence OS = OS' = ae = 6J2. Because SAOA'S' is 

y 

Figure 20.13 
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inclined at 45° to the axes, it follows that A, A' are the points ( ± 3J2, ± 3J2) 
and S, S' are the points ( ± 6, ± 6). 
Exercises 20k 
1 Find the equations of the asymptotes and the co-ordinates of the vertices 

of the hyperbolae (i) x2 /9 - y2 /4 = 1 and (ii) - x2 /9 + y2 /4 = 1 and sketch 
the two curves on the same diagram. 

2 For what values of m does the line y = mx meet the hyperbola x2/a2 

- y2 /b2 = 1 in real and finite points? 
3 Find the cartesian form of the equations of the following loci and sketch 

the curves: 
(i) X = 4t, y = � 

(iii) X = 1 + 3t, y = � t 
(. ') 

1 
11 X = t, y = -t 

(iv) X = 2 t  - 1, y = - �  + 1 t 
4 Find the equations of the tangents and normal at the point (4, 1) on the 

curve xy = 4. 
5 Show that the equation of the line joining the points P(t, 1/t ) and Q(u, 1/u) 

on the rectangular hyperbola xy = 1 is x + tuy = t + u. Deduce the 
equation of the tangent at P. 

6 Find the equations of the tangents to the rectangular hyperbolae x2 - y2 

= 3, xy = 2 at their points of intersection. Hence show that the curves 
cut at right angles. 

7 Show that the normal to the hyperbola xy = c2 at the point (cp, e/p) cuts 
the hyperbola again at the point ( - e/p3, - ep3). 

8 Show that the tangents to the rectangular hyperbola x = et, y = e/t at 
the points with parameters t 1 and t2 meet at the point P(x, y), where t 1 t2 2e x = 2e-- , y = -- . If t 1 = 1/t2 find the locus of P. t 1 + t2 t1 + t2 

9 Find the equation of the tangents to the hyperbola x2 - y2 = 7 which 
are parallel to 3 y = 4x and find their points of contact. Find the area of the 
triangle which one of these tangents makes with the asymptotes. 

10 Prove that the straight line Ix + my = n touches the rectangular hyperbola xy = e2
, if n2 = 4lme2• Find the co-ordinates of the point of contact. 

Exercises 201 
1 Find the locus of the mid-point of a straight line which moves so that it 

always cuts off a constant area k2 from the corner of a square. 
2 Show that the equation of the chord joining the points P(ep, e/p), Q(eq, 

c/q) on the curve xy = e2 is pqy + x = e(p + q). Hence or otherwise find the 
equation of the tangent at P. Find the co-ordinates of the point of 
intersection T of the tangents at P, Q. If p and q vary so that the chord 
PQ passes through the point (a, 0), find the equation of the locus of T. 

[JMB] 
3 Prove that the equation of the normal to the rectangular hyperbola xy = e2 

at the point (et, e/t) is xt 3 - yt = e(t 4 - 1). Four normals to the curve from 
a point meet the curve at P, Q, R, S. Prove that the pairs of lines PQ, RS; 
PR, QS; PS, QR are such that the lines in each pair are perpendicular to 
each other. [SUJB] 
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4 Show that if the line y = mx + e touches the hyperbola x2 
- 3y2 = 1, then 

3m2 = 3e2 + 1. Obtain an equation for the gradients of the two tangents to 
the hyperbola from the point P(x0 , y0). Show that if these tangents are 
perpendicular then P lies on the circle x2 + y2 = l [JMB] 

5 Find the equation of the normal at the point (et, et - 1) on the rectangular 
hyperbola xy = e2 • The normal at the point P on xy = e2 meets the 
hyperbola x2 

- y2 = a2 at Q and R. Prove that P is the mid-point of QR. 
Interpret this result geometrically when P is a point of intersection of the 
two curves. [JMB] 

Exercises 20 
1 Find the equation of the normal to the parabola y2 = 4ax at the point 

(at 2, 2at ). P, Q are two points on the parabola such that the chord PQ 
subtends a right angle at the vertex of the parabola. Find the locus of the 
point of intersection of the normals at P and Q. 

2 A circle with centre at the point (a, 0) and radius greater than a meets the 
parabola x = at 2, y = 2at at the points P, Q. Prove that the tangents to 
the parabola at P and Q meet on the circle. [LU] 

3 Show that the equation of the normal to the parabola y2 = 4ax at the 
point P(at 2, 2at )  is y + tx = 2at + at 3. If this normal meets the x-axis at Q, 
show that the mid-point M of PQ has the co-ordinates (a+ at 2, at). If 
P is a variable point on the parabola, find the cartesian equation of the 
locus of M. [AEB] 

4 Show that the equation to the tangent to the hyperbola x2/a2 - y2/b2 = 1 
h . P( 0 b 0) . x sec 0 y tan 0 1 F" d 1 h at t e pomt a sec , tan 1s -a- - -

b
- = . m a so t e 

equation of the normal. The ordinate at P meets an asymptote at Q. 
The tangent at P meets the same asymptote at R. The normal at P meets 
the x-axis at G. Prove that the angle RQG is a right angle. [JMB] 

5 Show that the equation to the normal at the point P(a cos 0, b sin 0) on 
the ellipse x2 /a2 + y2 /b2 = 1 is ax/cos 0 - by/sin 0 = a2 

- b2• If the normal 
at P cuts the major and minor axes of the ellipse at G and H, show that 
as P moves on the ellipse the mid-point ofGH describes another ellipse of 
the same eccentricity. [JMB] 

6 The tangent to the parabola y2 = 4ax at the point P(at 2, 2at ) meets the 
x-axis at T. The straight line through P parallel to the axis of the parabola 
meets the directrix at Q. If S is the focus of the parabola, show that PQTS 
is a rhombus. If M is the mid-point of PT and N is the mid-point of PM, 
find the equation of the locus of (i) M, (ii) N. [AEB] 

7 Prove that the equation of the normal to the rectangular hyperbola 
xy = e2 at the point P(et, e/t ) is ty - t 3x = e(l - t 4). The normal at P and 
the normal at the point Q(e/t, et ), where t > 1, intersect at the point N. 
Show that OPNQ is a rhombus, where O is the origin. Hence, or otherwise, 
find the co-ordinates of N. If the tangents to the hyperbola at P and Q 
intersect at T, prove that the product of the lengths of OT and ON is 
independent of t. [JMB] 

8 The tangents at the points P and Q on the parabola y2 = 4ax meet on the 
line x = a. Prove that the locus of the mid-point of PQ is y2 = 2a(x + a). 

[OJ 



Exercises 409 

9 Prove that the chord joining the points P(ap2, 2ap) and Q (aq2, 2ap) 
on the parabola y2 = 4ax has the equation (p + q)y = 2x + 2apq. A 
variable chord PQ of the parabola is such that the lines OP and OQ are 
perpendicular, where O is the origin. (i) Prove that the chord PQ cuts the 
axis of x at a fixed point, and give the x co-ordinate of this point. 
(ii) Find the equation of the locus of the mid-point of PQ. [C] 10 The point P(a sec t, b tan t )  on the hyperbola x2 /a2 - y2 /b2 = 1 is joined 
to the vertices A(a, 0), B( - a, 0). The lines AP, BP meet the asymptote 
ay = bx at Q, R respectively. Prove that the x co-ordinate of Q is 

a cos½t 
1 . 1 and that the length of QR is independent of the value of t. cos 1;t - sm 2t [JMB] 11 Show that a circle meets the parabola y2 = 4ax in not more than four 

points. If three of these points coincide at P(at 2 , 2at )  and the fourth is Q, 
prove that PQ and the tangent to the parabola at P make equal angles 
with the axis of the parabola. Show also that the centre of the circle lies 
on the curve 4(x - 2a)3 = 27ay2 • [LU] 

12 Show that the equation of the tangent at the point with parameter t to 
the curve x = t 2, y = 2t is ty = x + t 2

• Find the co-ordinates of the point T 
where the tangent at P(9, 6) meets the tangent at Q(l, - 2). Find also 
the mid-points M and N of PT and QT respectively. Show that the line 
MN touches the curve and find the value of the parameter t at the point 
of contact. [LU] 13 Obtain the equation of the normal to the parabola y2 = 4ax at the point 
P(at 2, 2at ). The focal chord through P meets the parabola again at Q, 
and the normals at P and Q meet at R. Prove that R is the point 

[a(t 2 + 1 +t - 2), a (t -t - 1)],  

and find the equation of its locus as t varies. [SUJB] 
14 The normal at a point P(ct, c/t ) of the rectangular hyperbola xy = c2 

meets the hyperbola again at Q. Prove that the parameter of Q is - 1/t 3 • 
If the normal at P meets the axes Ox and Oy at R and S, prove that the 
mid-point of RS is also the mid-point of PQ [OJ 

15 Prove that every point on the parabola y2 = 4ax can be expressed in the 
form (aµ2 , 2aµ). A variable chord of the parabola has fixed length k. 
Prove that the locus of the mid-point of the chord has equation 

(4ax -y2)(y2 + 4a2) = k2a2 [SUJB] 16 Show that the equation of the normal to the parabola y2 = 4ax at the 
point P(ap2, 2ap) is y + px = 2ap + ap3• Find the co-ordinates of R, the 
point of intersection of the normal at P and the normal at Q(aq2 , 2aq). 
Given that the chord PQ passes through S (a, 0), show that pq = - 1  
and find the equation of the locus of R. [AEB] 

17 The points P(ap2, 2ap) and Q (aq2, 2aq) move on the parabola y2 = 4ax, 
and p + q = 2. Show that the chord PQ makes a constant angle with 
the x-axis, and that the locus of the mid-point M of PQ is part of a line 
which is parallel to the x-axis. If also the point R(ar2 , 2ar) moves so that 
p - r = 2, find in its simplest form the (x, y) equation of the locus of the 
mid-point N of PR. [JMB] 18 Show that the equation of the chord joining the points P(ap2 , 2ap), 
Q (aq2, 2aq) of the parabola y2 = 4ax is y(p + q) - 2x -2apq = 0. The 
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variable chord PQ of the parabola y2 = 4ax passes through the fixed point (h, k). If the tangents to the parabola at P and Q meet at T, show that 
T lies on a fixed straight line. [JMB] 

19 Show that the equation of the common tangent other than the y-axis, of 
the curves y2 = 4ax and xy = 2a2 is 2y + x + 4a = 0. This common 
tangent touches the curves at P and Q respectively. R is the point of 
intersection of the curves. Find the acute angle between PR and QR. 

[LU] 
20 Prove that the line y = mx + c touches the ellipse x2/a2 + y2/b2 = 1, if 

c2 = a2m2 + b2• Find in terms of m, a, b, the distance between the two 
tangents of slope m. If this distance is equal to the distance between the 
pair of tangents perpendicular to the first pair, show that it becomes 
.j[2(a2 + b2f]. An ellipse in which the semi-axes a, b are in the ratio 
3 :  2 touches the four sides of a square. Find the length of a side of the 
square in terms of a. 

21 Find the equation of the normal to the parabola y2 = 4ax at the point 
(at 2, 2at ) and the co-ordinates of the point at which this normal cuts 
the x-axis. Show that the equation of the circle which touches this parabola 
at points (at 2 , 2at )  and (at 2 , -2at )  is 

(x -2a -at 2)2 + y2 = 4a2 (1 + t 2) 

Find the values of t for which this circle passes through the point (9a, 0). 
[LU] 

22 Show that the tangent at P(cp, c/p) to the rectangular hyperbola xy = c2 

has the equation p2y + x = 2cp. The perpendicular from the origin to 
this tangent meets it at N, and meets the hyperbola again at Q and R. 
Prove that (i) the angle QPR is a right angle, (ii) as p varies, the point 
N lies on the curve whose equation is (x2 + y2)2 = 4c2xy. [CJ 

23 If the parabola y2 = 4ax(a > 0) cuts the hyperbola xy = c2 at right angles, 
show that c4 = 32a4, and find the co-ordinate of the point of intersection 
in terms of a. [OJ 

24 Prove that the equation of the tangent at the point (x 1 , yi ) on the ellipse 
x2 /a2 + y2 /b2 = 1 is xx if a2 + yy 1/b2 = 1. The tangent at the point (2 cos 0, 
.J3 sin 0) on the ellipse x2/4 + y2/3 = 1 passes through the point P(2, 1). 
Show that .j3 sin 0 + sin 0 = .J3. Without using tables, calculator or slide 
rule, find all the solutions of this equation which are in the range 
0° � 0 � 360°. Hence obtain the co-ordinates of the points of contact, Q 
and R, of the tangents to the ellipse from P. Verify that the line through 
the origin and the point P passes through the mid-point of QR. [JMB] 

25 A straight line has gradient m and passes through the point P(3, 4). Find 
the equation of this line in terms of m. Show that the line touches the 
parabola y2 = 4x if 3m2 - 4m + 1 = 0. If the tangents from P to the para­
bola touch the parabola at the points S and T, find the lengths of PS 
and PT. Show, without using tables or calculator, that tan SPT = -½ 
and determine the area of triangle PST. [AEB] 
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Numerical methods 

21.1 Graphical solution of equations 
For any equation f(x) = 0 we have an associated function y = f(x). The roots 
of the equation are those values of x which make y equal to zero. Thus the 
graph of the function y = f(x) meets the x-axis at points whose x co-ordinates 
are the roots of the equation f(x) = 0. 
Example 1 Find the approximate values of the roots of 2x3 - 2lx2 + 60x -
35 = 0. 

Consider the function y = 2x3 - 21x2 + 60x - 35 
dy 

dx 
= 6x2 - 42x + 60 

= 6(x - 2)(x - 5) 
d2

y - = 12x - 42 dx2 

Thus there is a local maximum at the point (2, 17) and a local minimum 
at the point (5, - 10). The values at the maximum and minimum are opposite 

y 

40 

30 

20 

10  / 
2 3 

Figure 21.1 
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in sign and the graph must cross the x-axis at least once between x = 2 and x = 5. The graph of the function plotted for values of x = 0(1)7 (from x = 0 
to x = 7 in steps of 1) is shown in Figure 21.1. 

The graph cuts the x-axis at tnree points and the three roots of the equation 
2x3 

- 21x2 + 60x - 35 = 0 are approximately 0·8, 3·8 and 5·9. Any of these 
values can be improved by drawing the relevant part of the graph on a much 
larger scale. Thus to improve on the value 0·8, we draw the graph of the 
function for values of x = 0·75(0·1)0·85. 

Expressing the equation f (x) = 0 in the form g(x) = h(x) can be useful if 
the graphs of y = g(x) and y = h(x) are more easily drawn than that of f (x). 
If f (x) = h(x) - g(x), then f (x) = 0 when h(x) = g(x). The graphs of y = h(x) 
and y = g(x) will intersect at a point with co-ordinates (x 1 , y i ) such that 

g(x1) = Y i = h(x i ) 
therefore 

h(x i ) - g(x i ) = 0 
f (x i ) = 0 

that is, f (x1) = 0 and x1 is a root of f (x) = 0. Example 2 Find approximations to the positive roots of the equation 
x3 

- 3x + 1 = 0 by considering the graphs of y = x3 + 1 and y = 3x over 
the range of values of x = 0(1)3. 

When x3 + 1 = 3x, x3 
- 3x + 1 = 0. Figure 21.2 shows the graphs of the 

functions y = x3 + 1 and y = 3x. They intersect where x = 0·4 approximately 
and where x = 1 ·5 approximately. 

y 
30 

20 

' °�'� , 
0 1 2 3 

Figure 21.2 

Better approximations can be obtained by drawing the graphs on a larger 
scale near these roots. 

If the values of x, between which a single root is known to lie, are reason­
ably close together, it is possible to approximate to the root by linear inter­polation without drawing a graph. 

Let P[a, f(a)], and Q[b, f(b)] be points on the graph of y = f(x) such that 
f(a) > 0 and f(b) < 0. Then OR (Figure 21.3) gives a better approximation 
to the root. 
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A ( a, 0) Q >---+--- -- � -- -- X 

Figure 21.3 

If PS is parallel to Oy and QS is parallel to Ox, then by similar triangles 

Therefore 

AR PA l f (a) I = - - - --
AB PS l f (a) I + l f (b) I 

I f (a) I xR = OR =  a + AR = a + l f (a) I + l f (b) I · (b -a) (21.1) 

and this can be calculated without drawing the graph. 
Example 3 Consider f (x) = x3 - 3x + 1 = 0 (see Example 2). 

Then by (21.1) 
f (0) = 1 > 0 f (l )  = -1 < 0 

1 
x = 0+- - = 0·5 R 1 + 1 

We can improve on this by a further application of (21.1): 
f (0·3) = 0·127 
f (0·5) = -0·375 

Thus a better approximation is 
0·127 0·3 + 

0·127 + 0·375 · (0·2) � 0·35 

Exercises 21a 
1 Show that the function f(x) = x4 + 6x -10 has a minimum value when 

x = -j l ·5. Sketch the graph of the function and find an approximate 
root of the equation x4 + 6x -10 = 0. Improve your approximation by 
drawing another graph on a larger scale. 

2 Given that x = 5·9 is an approximate root of the equation 2x3 - 2lx2 + 
60x -35 = 0, find a better approximation. 

3 For the equation f(x) = 2x3 - 21x2 + 60x -35 = 0 show that f(3) = 10 
and f(4) = -3. Hence show that 3·77 is an approximate root. By consider­
ing f(3·7) and f(3·8) show that x = 3·762 is a better approximation. 

4 On the same diagram draw graphs of the functions y = ½{ex+ e -x) and 
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y = sec x for values of x = 4·5(0·1)5·0. Hence find an approximate value 
of a root of the equation (ex+ e-x) cos x -2 = 0. 

5 On the same diagram draw graphs of the functions y = e and y = cosec x. 
Hence find the approximate value of the smallest positive root of ex sin x 
- 1  = 0. 

6 Kepler's equation for finding the eccentric anomaly E given the mean 
anomaly M and the eccentricity e of a planetary orbit is E - e sin E = M. 
Given e = 0·8 and M = 0·5 find an approximate value for E. 

7 For the equation x3 - 3x + 1 = 0 show that, if f (x) = x3 - 3x + 1, then 
f( - 2) = - 1, f( - 1) = 3. Hence find an approximate value for the negative 
root of the equation. 

8 The equation x3 - 5x + 3 = 0 has a root between O and 1. Verify that 
this is correct and find its approximate value. 

9 The equation in question 8 may be written x = ½(x3 + 3). Calculate the 
sequence of values x1 , x2 , x3 , . . .  given by x 1 = ½(x0 3 + 3), x2 = ½(x/ + 3), 
x3 = ½(x2 3 + 3), etc. starting with x0 = 0. What do you notice? 

10 On the same diagram draw the graphs of y = x and y = cos x. Show that 
there is a root between O and 1 of the equation x -cos x = 0. Write 
this equation in the form x = cos x and starting with x0 = 0·5, calculate 
x1 = cos x0, x2 = cos x1 , x3 = cos x2 , etc. What do you notice? 

21.2 Newton's method 
If we have an approximation to the root of an equation f(x) = 0 (which may 
have been obtained by the methods described in the previous section), then 
Newton's method (also known as the Newton-Raphson method) can be used 
to obtain a better approximation. Figure 21.4 shows the graph of y = f(x). The x co-ordinate of K is the 
root we require. Suppose x0 , the x co-ordinate of P, is an approximation to 
the root. Let PT be the tangent at P on the curve and T the point where 
the tangent meets the x-axis. Then, in general, OT will be a better approxi­
mation to the root. 

OT = OA-TA 

�� = tan if, =  f'(x0) 

Figure 21.4 
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Therefore 
PA f (x0) TA = 

f '(x0) 
= f ' (x0) 

f(x0) X1 = Xo -f ' (xo) 
We can similarly improve upon x 1 : 

and in general 

f (x i ) 
X2 = X 1 -f ' (x i ) 

f (x,) X,+ 1 = X, -
f ' (x,) 

(21.2) 

The re-calculations are continued until two successive approximations agree 
to the required accuracy. 

Example 1 Find to four decimal places the root of the equation x3 - 3x 
+ 1 = 0 that lies between 0 and 1. 

f (x) = x3 - 3x + 1 

f ' (x) = 3x2 - 3 = 3(x2 - 1) 

Take x0 = 0·4. The calculations that follow are done on a calculator. 
f(0·4) = -0·136 

f '(0·4) = -2·52 
(-0·136) 

X1 = 0·4 -
( -2.52) 

= 0·3460 

f(0·3460) = 0·003 422 
f '  (0· 3460) = -2·641 

0·003 422 
X2 = 0·3460 + 

2_461 
= 0·3473 

f(0·3473) = -0·000 009 615 
f ' (0·3473) = -2·638 

X = 0·3473 -0·000 009 615 
= 0·3473 3 2·638 

Thus the required root is 0·3473. 
The calculations can be tedious even when carried out with a calculator. 

The method is ideally suited to computation by a computer. A BASIC 
program written for a 'Pet' computer follows. The program is general in the 
sense that F = f(x) is evaluated by subroutine 1000 and D = f '(x) (D for 
derivative) is evaluated by subroutine 2000 for any value of x. These sub­
routines can be rewritten for different forms of f (x). The accuracy of the 
solution can be set by giving E a value sufficiently small. 



416 Numerical methods 

R EADY. 

1 0  PR INT " PROG RAM TO SO LVE F (X) =0" 
20 PR I NT " F (X) EVALUATED AT 1 000" 
30 PR I NT " F' (X) EVALUATED AT 2000" 
40 PR INT "ACCU RACY R EQU I R ED" : IN PUT E 
50 PR INT " I N ITIAL VALU E": I N PUT Z 
60 X=Z 
70 GOSUB 1 000 
80 GOSUB 2000 
90 Z=X - F/ D  
1 00 P R I NT X, Z 
1 1 0  I F  ABS(Z-X) > E  GOTO 60 
1 20 PR INT " FI NAL SO LUTIO N = ";Z 
1 30 E N D  
1 000 F=X•X•X-3•X + 1  
1 01 0  R ETU R N  
2000 D =3• (X•X- 1 ) 
201 0 R ETU R N  
R EADY. 

The output for E = 0·000 01 and initial Z = 0·4 is shown below. 

PROG RAM TO SO LVE F(X) =0 
F(X) EVALUATED AT 1 000 
F' (X)  EVALUATED AT 2000 
·4 ·346031 746 
·346031 746 ·347295726 
·347295726 ·347296355 
F I NAL SOLUTION = -347296355 

Newton's method will fail if the first approximation to the root is such 
that the value of f (x0)/f' (x0) is not small enough (see Figure 21.5). The usual 
remedy is to improve the initial approximation to the root when the iterations 
will generally converge. 

y 

Figure 21.5 
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Exercises 21b 
Use Newton's method to find to four decimal places the roots of the following 
equations. Use the initial value given. 
1 x4 + 6x -10 = 0; x0 = 1 ·25 
2 2x3 - 2lx2 + 60x -35 = 0; x0 = 0·78 
3 ex sin x -1 = O; x0 = 0·59 
4 x -cos x = O; x0 = 0·8 
5 e-x/2" sin x -0·5 = 0; Xo = 0·58 

21.3 Numerical integration: the trapezoidal rule 
In Section 13.6 we showed that Jt f (x) dx is equal to the area A enclosed by 
the graph of y = f (x), the x-axis and the ordinates at x = a and x = b. Thus 
an approximate value for Jt f (x) dx can be obtained by finding an approxima-
tion to the value of A. One method is to use the trapezoidal rule. 

y 

' 

i : : ,Y, 1Y2 ,Y3 
I I I 

o. 
C 

I 

I 
' 

I I 
I I 
I I 

:� \ ;;, + ,  
I I 
I I 
: I 

I 

y = f ( x  

: t!_ : p  : : i7  I 

Q-+-- -----"u__...L.L-�- -- -- - - - ------::�---!--'---- X 
A P2 P3 P,, B 

(x = o) ( x= b )  

Figure 21.6 

In Figure 21.6, the interval AB is divided into n equal parts, each of width h, by the points P2 , P3 , . . .  , Pn. The corresponding ordinates are P2Q2 , P3 Q3 , 

... , PnQn. If we approximate the arcs DQ2 , Q2Q3 , . . .  , QnC by straight lines, 
each of the areas AP2 Q2D, P2 P3 Q3 Q2 , . . .  is a trapezium and we can 
approximate the area ABCD as 

r f (x) dx � ½h(AD + P2Q2) + ½h (P2Q2 + P3Q3) + . .. + ½h(PnQn + BC) 

� ½h(Y1 + 2y2 + 2Y3 + • · • + 2yn + Yn + l ) 
therefore 

r f (x) dx � ½h(first + last ordinate)+ h(sum of all other ordinates) (21.3) 

It is not necessary to draw the graph of y = f (x). The calculations can be set 
out as follows. 
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Example I Find by the trapezoidal rule an approximate value forJ 
1 

� . 
0 1 +x 

Use ordinates spaced at equal intervals of width h = 0.1. 

0 O· I 0·2 0·3 0·4 0·5 0·6 0·7 0·8 0·9 l ·O 

I +  x2 0·990 1 0·96 15  0·9174 0·8621 0·8000 0·7353 0·67 1 1  0·6098 0·5525 0·5000 

Therefore 

J 
1 dx 0·1  

- -2 � -2 (1 + 0·5) + 0· 1 (0·9901 + 0·9615 + 
o 1 + X 

= 0·075 + 0· 1 X 7·0998 
� 0·7850. 

By analytical methods 

J 
1 

� = [arctan x]b = n/4 = 0·7854 o 1 + X 

Exercises 21c 

. . .  + 0·5525) 

Find the approximate value of the following definite integrals. Use the 
trapezoidal rule and ordinates spaced at equal intervals of width h as 
indicated. 
1 f�12 cos x dx, h = n/12  
2 fJ log. (l +x) dx, h = 1 
3 f 5 e- x212 dx, h = 0·2 
4 f 014 tan x dx, h = n/24 
5 f012 cos2 ½x dx, h = n/12 

21.4 Numerical integration: Simpson's rule 
Simpson's rule is a better method of approximating to the value of a definite 
integral than the trapezoidal rule. In fact, it is exact when f(x) is a quadratic 
or a cubic function. 

y 
y = f ( x )  

___ ___,_ _ -+- - � -- -- ---+- x 
-h O h 

Figure 21.7 



Numerical integration: Simpson·s rule 4 I 9 

We first consider s � h f(x) dx and obtain an approximation for this in terms 
of the ordinates at the end points of the interval and the ordinate at the 
mid-point of the interval. We denote these by y 1 , Y3 and Y2 respectively (see 
Figure 21. 7). 

We can express the function f (x) in the interval ( - h, h) by its Maclaurin 
series (see Section 12.4): 

x2 x3 x4 
f (x) = f (0) + xf ' (0) + 2f "(0) + 6f '" (0) + 2/"'(0) + . . . 

Therefore 

f / (x) dx = r Jf (O) + xf ' (0) + �\" (O) + :\'" (O) + ;:f '"' (O) + . . . J dx 

Now 

[ 
x2 x3 x4 xs lh 

= xf (0) + 2f ' (0) + 6f " (0) + 2/"' (0) + 12i
"" (0) + · · · - h  

h3 hs 
= 2hf (0) + 3f" (0) + 

60
f "" (0) + . . . 

= ; [  6f (0) + h2f " (O)] + :�f '"' (O) + . . .  (A) 

y 1 = f ( - h) = f (0)-hf' (0) + �\ "(0) - � f '" (0) + �:f "'' (O) - . . .  

Y2 = f (0) h2 h3 h4 
Y3 = f (h) = f (0) + hf' (0) + 2f ' (0) + 6f "' (0) + 2/'"(0) + . . .  

therefore 

and so 

h4 
y 1 + 4ri + Y3 = 6f (0) + h2f " (0) + ti

"'' (0) + . . .  

h h h5 

iY1 + 4y2 + y3] = 3 [6f (0) + h2f " (0)] + 3/
"'' (0) + . . . (B) 

From (A) and (B), ignoring terms in h 5 and above, 

f h f (x) dx � �(y 1 + 4y2 + y3) - h 3 
Also from (A) and (B), the error in the approximation is of the order 

hs hs  hs -f "" (0) --f "'' (0) = -f "" (0) 36 60 90 
Note that for a cubic function ax3 + bx2 + ex + d, f " (0) and higher deriva­

tives are zero. Therefore, Simpson's rule is exact for cubic and quadratic 
functions. 
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y 

y2J, + 1  

0 �--a��_.__.__-'---'-------L-�b-- ----;► x  
Figure 21.8 

For f!f(x) dx, we divide the area into an even number of strips 2n and 
apply Simpson's rule to each pair of strips in turn (see Figure 21.8). Then 

r f(x) dx � jh(Y1 + 4y2 + Y3 + Y3 + 4y4 + Ys + . . .  + Y2n - 1 + 4Y2n 

+ Y2n + d 
� jh[y1 + Y2n+ 1 + 4(Y2 + Y4 + Y6 + · · ·  + Y2n) + 2(y3 + Ys + 

· · ·  +Y2n - dJ 
Therefore 

r f(x) dx � jh(first + last ordinate+ 4 x sum of even ordinates 

+ 2 x sum of remaining odd ordinates) (21.4) 

Example I Find the approximate value of I 
1 
� using ten strips and J o 1 + X 

Simpson's rule. 
The range is 0 to 1 so that each strip is of width 0· l. Thus h = 0· l .  The 

work may be set out as follows. 
X First and last Even Odd 

ordinates ordinates ordinates 
O·O 
0·1 0·9901 
0·2 0·961 5  
0·3 0·9174 
0·4 0·8621 
0·5 0·8000 
0·6 0·7353 
0·7 0·671 1  
0·8 0·6098 
0·9 0·5525 
1 ·0 0·5 
Totals 1 ·5 3·93 1 1  3·1687 

4 2 

1 5·7244 6·3374 

Therefore 

1
1 dx 0·1 -- � -(1·5 + 15·7244 + 6·3374) 

0 1 + x2 3 
= 0·7854 
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The result analytically is 0·7854, and by the trapezoidal rule (refer to Example 
1 in Section 21.3) 0·7850. 

Example 2 A river is 20 m wide. The depth of the river is found, in metres, 
at nine equidistant points on a line AB joining two points A, B on opposite 
banks of the river (AB is perpendicular to the direction of the flow) with the 
following results. 

Distance from A in 
in metres 
Depth in metres 

O·O 
0·6 

2·5 
0·8 

5·0 
2·4 

7·5 10·0 12·5 1 5·0 1 7·5 20·0 
3·6 2·5 1 ·6 1 ·2 0·8 0·4 

At AB the water is flowing at 1 ·5 m/sec. Find the approximate number of 
cubic metres of water flowing down the river per second. 

First and last Even Odd 
ordinates ordinates ordinates 
0·6 

0·8 
2·4 

3·6 
2·5 

1 ·6 
1 ·2 

0·8 
0·4 

Totals 1 ·0 6·8 6- 1 
4 2 

27·2 12·2 

2·5 
Cross-sectional area �3(1·0 + 27·2 + 12·2) 

� 33·67 m2 

Volume of flow � 33·67 x 1·5 
� 50·5 m3/sec 

A listing of a BASIC program to implement Simpson's rule follows. The 
program can be used interactively, the operator specifying the limits of 
integration and the number of strips (which must be even). The program 
listed considers f(x) = 1/(1 + x2) but subroutine 1000 can be rewritten to deal 
with any function. 

R EADY. 

1 0  P R I NT "S I M PSON'S R U LE FOR I NTEG RATION" 
20 P R I NT "LOWER L IM IT": I N PUT A 
30 PR INT "U PPER L IM IT" : I N PUT B 
40 PR INT "NO.  O F  STR I PS": I N PUT N : M = I NT(N/2)  
50 IF  M < > N/2 TH EN PR INT "NO.  O F  STR I PS M UST BE 

EVEN" :GOTO 40 
60 H = ( B -A)/N 
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70 X=A:GOSUB 1 000:S= F 
80 FOR 1 = 2  TO N STEP 2 
90 X=A+ ( l - 1  ) • H :GOSUB 1 000: S = S +4• F 
1 00 X=A+ l • H :GOSUB 1 000:S= S + 2 • F  
1 1 0  N EXT I 
1 20 S = S - F 
1 30 S = S• H /3 
1 40 P R I NT " I NT=";S 
1 50 E N D  
1 000F= 1 / ( 1  + X•X) 
1 01 0  R ETU R N  
R EADY. 

Exercises 21d 

In/2 

1 Evaluate 
O 

sin x dx by Simpson's rule. Use six strips (h = n:/12). Compare 

your result with the exact value. 
2 Given log. 2 = 0·6931, find an approximate value for log. 3 by evaluating 

J
3 dx by Simpson's rule. Use ten strips (h = 0·1). Compare your results 

2 X 

with the value given by tables. 
3 Find an approximation to the length L of an arc of an ellipse, where 

In/2 

L =  
0 

✓ (1 - 0·9 sin2 0)d0 

Use four strips (h = n:/8). 
4 A particle moves along a fixed straight line AB. Its distance s metres from 

A at any time t seconds is given by 
ds 
- = t✓(64 - t 3) dt 

Use Simpson's rule with eight strips to find approximately the distance 
travelled from t = 0 to t = 2. 

5 The vertical depth of water a short distance behind a straight dam was 
measured at nine equidistant points on a line AB, with the following results. 

Distance from A in 
metres 
Depth in metres 

0 
0 

35 
53 

70 105 140 1 75 210 245 280 
87 99 105 100 68 36 0 

AB is 280 m long and parallel to the dam face, which slopes uniformly 
into the water at an angle of 15° to the downward vertical. Calculate to the 
nearest 100 m2 the wetted area of the dam's face. 

21.5 Determination of laws 
If two variables are related and we have measured pairs of values for the 
two variables, we can investigate the relationship between them by plotting 
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the points on graph paper. A line graph is easily recognised by eye. In some 
cases where the connection is more complicated, we can sometimes find 
simple functions of the variables that are linearly related. 
Example 1 The following table shows corresponding values of two variables F and C. Plot the values on a graph and hence estimate the relationship 
between the variables. 

F 
C 

is 

50 
10 

68 
20 

86 
30 

104 
40 

122 
50 

140 
60 

The plot of F against C is shown in Figure 21.9. 

F 

1 50 ♦-
♦---­

♦----

1 00 --
♦--

50 ♦
----

♦----.... 

♦----

10 20 30 Figure 21.9 
40 50 60 C 

The graph is a straight line. Its intercept on the F-axis is 32 and its gradient 

140 - 50 9 - -- = -
60 - 10 5 

Thus from (18.2), F and C are related by F = 32 + !C 
They are, in fact, the values of the same temperatures measured on the 
Fahrenheit and Celsius scales respectively. 
Example 2 The variables x and y are related by y = ax", where a and n are 
constants. Determine a linear relationship t>etween variables related to y and 
x and use the data given to estimate a and n. 

y 
X 

3 
1 

4·2 5·2 
2 3 

6 
4 

6·7 7-3 
5 6 

y = ax• 
therefore 

log. y = log. a + log. x• (see (1.27)) 
= log. a + n log. x (see (1.29))  

Thus the relationship between log. y and log. x is  linear. I f  we plot log. y 
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against log. x, the resulting straight line should intercept the log. y axis at 
log. a and have gradient n. 

We have 

log, y 
log, x 

1 ·099 
0 

1 ·44 
0·693 

1 ·649 
1 ·099 

1 ·79 1 
1 ·386 

1 ·902 
1 ·609 

These data are plotted in Figure 21.10. 

Figure 21.10 

1 ·988 
1 ·791 

Thus log. a = 1 ·099, whence a = 3. The gradient n is estimated to be 
1·988 -1·099 

� 0·5 
1·791 -0 

Thus the relationship is of the form y = 3.Jx. 

Exercises 2le 
1 It is known that the relation between the variables x and y is of the form 

y = abx. Show that log. y and x are linearly related. 
2 The variables p and v are connected by the relation p(v + a) = c, where c 

and a are constants. What simple function of p is linearly related to v? 
3 The variables x and y are connected by the relation y = a +  bx2• By plotting 

y against x_
2 estimate a and b given the data below. 

y 
X 

5·3 
1 

n 
3 

1 2·5 
5 

19·7 
7 

29·3 
9 

4 In an adiabatic expansion pvY = c where p is the pressure and v is the 
volume of the gas. Show graphically that the following values obey this 
law and estimate the values of the constants y and c. 
p 
V 

79·8 
1 

30·3 
2 

1 7·8 
3 

1 1 -5 
4 

6·5 
6 

3·2 
10 

5 The braking distance, b, of a vehicle travelling at speed v is given by 
d = avb. Verify this and estimate the values of the constants a and b using 
the data below. 

d metres 
v km/h 

4 1 5  
10  20 

34 60 94 
30 40 50 
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Exercises 21 
1 The height of the cap of a sphere of radius 5 cm is x cm. The volume of the 

cap is one-quarter the volume of the sphere. Show that x3 -15x2 + 125 = 0. 
Find the value of x correct to three decimal places. 

2 If in question 1 the volume of the cap is one-eighth of the volume of the 
sphere and the radius of the sphere is 4 cm, find an equation for x and 
find x correct to three decimal places. 

3 Using Simpson's rule and eight strips, find the value of J: e-x212 dx to 

four significant figures. [ e - x212 is a function used in error theory and 
statistics.] 

4 Sketch the curve y = (x + l)(x -3)2. Hence sketch the curve y2 = (x + 1 )  
x (x - 3)2. Use Simpson's rule with five ordinates to obtain an approxi­
mate value of the area in the first quadrant enclosed between the curve 
y2 = (x + l)(x -3)2, the x-axis, the y-axis and the line x = 2. Find also 
an approximation to the mean value of y in the range O � x � 2. 

[AEB] 
5 Use Simpson's rule with five ordinates to find the mean value of ✓(cos x) 

with respect to x over the range O � x � n/2. Work as accurately as your 
tables allow. [AEB] 

6 Verify that Simpson's rule gives the exact value of 

f _+1
1 
(x3 + px2 + r) dx 

7 Show that one solution of the equation 24x3 - 149x2 
- 201x  + 476 = O is 

between 1 and 2. Estimate its value by linear interpolation. Improve your 
estimate by finding two closer values between which the root lies and then 
use linear interpolation again. 

8 The following pairs of values of x and y satisfy approximately a relation of 
the form y = ax", where a and n are integers. By plotting the graph of 
lg y against lg x, find the values of the integers a and n. (lg N denotes 
log10 N.) 

X y 0·7 0·9 1 · 1  1 ·3 
1 ·37 2·92 5·32 8·80 

1·5 
13-50 

Estimate the value of the integral JA: � y dx (a) by Simpson's rule, 
using five ordinates and clearly indicating your method, (b) by using the 
relation y = ax" with the values found for a and n. [LU] 

9 Use Simpson's rule with three ordinates (i.e. two strips of equal width) to 
evaluateJ0°_\h(x3 + 1) dx, where a and n are constants. By evaluating 
the integral directly, verify that the value obtained by Simpson's rule is 
exact. [JMB] 

10 Sketch the curve y = ( 1  + x2) 1 12 for values of x between O and 1 .  Find 
the approximation to the integral Jb (l + x2) 1 12 dx given by the trapezium 
rule, using two trapezia, one with base from O to ½, the other with base 
from ½ to 1. By referring to your sketch determine whether your estimate 
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is too large or too small, giving reasons. Evaluate the integral by 
Simpson's rule, using the same three ordinates. [O] 11 Use Simpson's rule to evaluate approximately Jo"(l  -cos x) dx, by using 
seven ordinates (i.e. six strips of equal width). Evaluate the above integral 
also by direct integration. [JMB] 

12 Tabulate the values of the expression J(l + x2) at unit intervals from 
x = 1 to x = 6 inclusive, giving your answers to two decimal places. Use 
these values to find an estimate by the trapezoidal rule of the mean value 
of the expression in the range 1 � x � 6. (All working must be shown.) 

[JMB] 
13 The following values of x and y are believed to obey a law of the form y -3 = 20bx +a, where a and b are constants. Show graphically that they do 

obey this law and hence find approximate values of a and b. 

X 

y 

0 2 
8233 744 

5 
23 

7 
5 [AEB] 

14 A smooth curve passes through the points given by the table below. 

X 

y 

20 
1 ·560 

25 
1 ·478 

30 
1·425 

35 
1 ·384 

40 
1 ·355 

45 
1 ·332 

50 
1 ·3 14 

Using Simpson's rule with seven ordinates, find the area enclosed by 
the curve, the x-axis and the lines x = 20 and x = 50. It is believed that x 
and y are related by a law of the form y = a+ b/x, where a and b are 
constants. Show graphically that this may be so and determine probable 
values of a and b. [AEB] 15 Evaluate Jt4 x In ( 1  + x) dx using Simpson's rule with five ordinates and 
correcting your answer to two significant figures. Show clearly how your 
answer has been obtained. [LU] 

16 Find the positive root of the equation x = sin 2x to two places of decimals, 
showing that your solution has this degree of accuracy. [OJ 

17 Show that the equation x3 - x -2 = 0 has a root between 1 and 2. Using 
Newton's approximation with starting point 1 ·5 (and showing all relevant 
working) determine, by means of two iterations, an approximation to this 
root, giving your answer to two decimal places. [JMB] 

18 The table below gives the values of y obtained experimentally for the 
given values of x. Show graphically that, allowing for small errors of 
observation, y and x are related by the equation y = k(l  + xt. Find 
approximate values of k and n. 

X 

y 

2 
20·8 

5 
58·8 

9 1 1  15  
126-5 166-3 256·0 [AEB] 

19 Use Simpson's rule with five ordinates to evaluate approximately 
J� 12 ( 1  -x2) 1 12 dx. By using a suitable substitution, show that 

( 1  - x2
)

1 12 dx = - + -i
l /2 7t J3 

0 1 2  8 
[AEB] 

20 Two ladders of lengths 4 m and 6 m are placed in an alleyway whose 
walls are vertical and whose roadway is horizontal. Each ladder rests with 
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its edges in a vertical plane, its foot against one of the walls and its top 
resting on the other wall. They are found to cross at a height of 1 ·6 m above 
the roadway. Show that the height x metres of the top of the shorter ladder 
above the road satisfies the equation 5x4 - 16x3 + 100x2 - 320x + 256 = 0. 
Hence find this height in metres correct to two decimal places. 

21 On the same diagram draw the curves y = - x cot x and x2 + y2 = 9(y � 0). 
Show that they have a point of intersection near to x = 2·3. Hence using 
Newton's formula, find a root of the equation x cot x + J(9 - x2) = 0. 

22 Given that f(x) = tan x - x show that f(4·4) < 0 and f(4·6) > 0. Use linear 
interpolation to find an approximation to the root of the equation 
tan x - x = 0. Using Newton's formula, show that to four significant 
figures the root is 4·493. 

23 Use Simpson's rule to evaluate [
3 
� and compare your result with J o X + 9 

the exact value. 
24 Sketch the graphs of 

y = e-x (1) 
and 

y = In (1 + x) - 1 (x > - 1) (2) 
and find the co-ordinates of the point of intersection of (2) with the x-axis. 
Use the Newton-Raphson process to find (to one decimal place) the x co­
ordinate of the intersection of the curves (1) and (2). 

25 Experiments are made upon two related quantities, x and y, and cor­
responding values are observed. It is known that the relation between x 
and y is of the form y = ax". Explain how the values of a and n may be 
obtained by plotting log y against log x. 

Water is discharged over a weir and it is found that for different heights, h, of the free surface of the water above the bottom of the weir, the 
discharge, Q, is given by the following table 
h 
Q 

4 
650 

' 6  8 10 12 · 
1740 3640 6360 9790 

Show that these observations are consistent with a relation between 
Q and h of the form Q = ah" and give estimates, correct to one decimal 
place, for the values of a and n. [LU] 



22 
Vectors 

22.1 Vectors and scalars 
A scalar quantity has magnitude only and is not related to any definite 
direction in space. For example, time, volume, speed, mass and electric charge 
are scalar quantities. Scalars are completely specified by numbers which 
measure their magnitude in terms of some chosen unit, thus 3·3 min, 27 m3, 
9 km/h. 

Other quantities exist which have both magnitude and direction, e.g. 
velocity, force, magnetic field intensity. Thus 9 km/h horizontally in a direction 
north-west is speed in a given direction and is a vector. An example which 
does not have physical associations is the directed segment of a straight 

-+ 
line PQ. The length PQ is the magnitude of the vector. The direction is 
parallel to the line and in the sense from P to Q. We can represent all 
quantities which have both magnitude and direction by directed line segments. 

A vector is a quantity which has both magnitude and direction and which 
can be compounded meaningfully* by the triangle or parallelogram rule 
described in Section 22.3. 

-+ 
In addition to representing a vector by PQ, we shall also use bold faced 

italic type, such as A, a, to indicate a vector. The modulus of a vector a is 
the positive number which is a measure of the length of the directed segment 
and will be denoted by lal or a. 

It is important to remember that if lal = lbl it does not follow that the 
vectors are equal; they may have different directions. 

Two special cases arise. If the modulus of a vector is zero (Q coincides 
with P), we refer to the zero vector O the direction of which is indeterminate. 
If the modulus of the vector is unity, it is referred to as a unit vector and 
will be denoted by a, b, . . .  , the circumflex indicating a unit vector. 

It is important to realise that, in general (see Section 22.7), a vector is not -+ ➔ -+ -+ 
fixed in space. In Figure 22. 1, AB, CD, EF and PQ are all equal in length 
and parallel to one another and are four of the many possible representations 
of the same vector or, alternatively, they represent four equal vectors. 

* Before a physical quantity 1s treated as a vector it should be proved theoretically, or 
shown experimentally, that it can be meaningfully compounded by the triangle rule. (Some 
directed quantities such as finite rotations do not give meaningful results when compounded 
in this way.) However, in this book we shall deal only with directed physical quantities 
which are vectors and their vector nature will be assumed without proof. 

428 



The angle between two vectors 429 

B 

C 
A 

E 
Figure 22.1 

22.2 The angle between two vectors 

D 

➔ -+ 
Let the two vectors a and b be represented by OP and OQ (Figure 22.2). 

�

p 

0 Q Q 
Figure 22.2 

p 

8 

0 

The angle between the two vectors is 0, 0 � 0 � TC, the angle between OP 
and OQ, where both vectors are drawn with the arrows pointing away from 
the point of intersection. When 0 is equal to TC/2, the vectors are said to be 
perpendicular and when 0 is equal to O or TC, they are said to be parallel. 

Exercises 22a 
1 Which of the following are vectors and which are scalars? 

(a) energy (b) speed (c) electric potential 
(d) weight (e) deceleration (f ) velocity 
(g) volume (h) temperature (j) force 

2 Draw, on the same diagram, directed line segments to represent the follow­
ing horizontal vector quantities: 
(a) A force F1 of 10 N in a direction 45° E of N. 
(b) A force F2 of 8 N in a direction 120° W of N. 
(c) A displacement d of 10 m in a direction 150° E of N. 
(d) A force F3 of 10 N in a direction 135° W of N. 
(e) A velocity v1 of 10 m/s in a direction 45° E of N. 
(f ) An acceleration / of 8 m/s2 in a direction due west. 
(g) A velocity v2 of 10 m/s in a direction 135° E of N. 
Are any of the forces equal and opposite? Can the same directed line 
segment represent two or more of these vectors? 

3 In the previous question state the angle between the vectors: (a) F1 and d; 
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(b) f and F2 ; (c) F2 and 112• (d) Are any two of the vectors perpendicular 
to each other? (e) Are any two of the vectors parallel to each other? 

4 Represent diagrammatically a horizontal acceleration f of 8 m/s2 in a 
direction 20 degrees east of north. On the same diagram represent the 
following horizontal accelerations: (a) 24 m/s2 in the direction off; (b) 2 m/s2 

in the direction of/; (c) 16 m/s2 in a direction at right angles to f (two 
cases). 

5 A man walks 10 km north and then 7½ km east. Represent these two 
displacements graphically on the same diagram and find the resulting 
displacement: (a) graphically, (b) analytically. [Note: this is an example 
of the triangular rule of vector addition.] 

22.3 Addition and subtraction of vectors 
Vectors have both magnitude and direction and it is difficult to say from 
first-hand reasoning how they should be combined. However, consider the 
special case of displacements. 

A 5 
-- - - - - - - - - - - - - - - - - - - - - ...... ► 

Figure 22.3 

C 
JI 

If from A, a man walks 5 km due ea� this displacement can be represented 
completely by the directed segment AB of length 5 units (see Figure 22.3). 
If he now walks a further distance of 3 km NE, this further displacement 

-+ 
can be represented by BC of length 3 units. It would seem reasonable to say 
that the final result of his journey is the same as if he had walked a distance 

-+ 
represented by the length of AC in the direction from A to C. AC is called 

-+ -+ 
the resultant of AB and BC. It is found in practice that vector quantities 

D C 

--

5 
B �------------- -- - - -- - �  

Figure 22.4 
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such as force, acceleration, velocity, etc., can be compounded in the same 
way, representing them by directed segments. The resultants thus obtained 
being meaningful, this is known as the triangle rule. 

Complete the parallelogram ABCD (see Figure 22.4). Because the opposite 
-+ 

sides are equal and parallel, it follows that AD also represents the second 
-+ -+ -+ 

displacement of 3 km NE. Thus AC is also the resultant of AB and AD. This 
is known as the parallelogram rule. -+ -+ -+ 

In the case of three vectors represented by PQ, QR, RS (see Figure 22.5), 
-+ -+ -+ 

combining PQ and QR gives PR, and a further application of the triangle 
-+ -+ -+ 

rule to PRS gives the combination of PR and RS as PS. This can be extended 
to any number of directed segments and so we have the polygon rule, that 

-+ -+ -+  ➔ 
if a number of vectors are represented by PQ, QR, RS, . . .  , YZ, taken in order, 

-+ 
then their resultant is the vector represented by PZ. 

s 
/ 

/ 
/ ,,, R 

/ 
/ 

/ ------
/ -- --

Q 
Figure 22.5 

Example 1 A yacht is sailing with a velocity of 5 km/h due north. It is also 
being carried by a current of 2 km/h in a direction south-west. A man walks 
with a velocity of 3 km/h directly across the deck from starboard to port. 
l-�nd the man's velocity relative to the shore. 

The man is being carried by both the yacht and the current and he is also 
walking across the deck, thus the resultant of the three velocities is required 
(see Figure 22.6). An accurate scale drawing of the vector diagram gives 
R = 5·69, 0 = 50·9°. 

Note that this example is a special case in which the three vectors can all 
be represented in the one plane. The more general case is dealt with later 
using components (see Section 22.5). 

Exercises 22b 
1 Find the magnitudes of two forces such that if they act at right-angles their 

resultants is J 13 N, but if they act at an angle of 60° to each other, their 
resultant is J19 N. 

2 Two vectors P and Q are at right-angles to each other. The magnitude of P 
· is 5 units and the magnitude of their resultant is 13 units. Find the magni­
tude of Q. 

3 Find the vertical force and a force inclined at 30° to the horizontal which 
together have a resultant of 6.J3 N horizontally. 
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5 km / h  

3 km/h 

( a ) Space diagram 

Figure 22.6 

3 D ..-----�--� 

' ' 
'

� R 
� 

( b ) Vector diagram 

' ' ' ' ' ' ' ' ' ' 

B 

A 

5 

4 Three forces of magnitudes 140, 100 and 160 N act on a particle. If the 
particle is in equilibrium, find the angle between the 100 and 140 N forces. 

5 Four horizontal forces have magnitudes and directions as follows: 3.J2 
units, N 45° W; 8 units, N 150° E; 10 units, N 120° W; 5.J2 units, N 135° E. 
By drawing an accurate scale diagram, find the magnitude and direction 
of their resultant. 

To indicate the method of compounding two or more vectors by the 
triangle or parallelogram rule, we shall use the + sign from algebra and 
define the addition of two vectors as follows: 

--+ 
If a is represented by the directed segment PQ and b by the directed 

--+ --+ 
segment QR, then a+ b is defined as the vector which is represented by PR 
(see Figure 22.7). 

p a Q 

S a R 

£icJ 
P a Q Figure 22.7 

Complete the parallelogram PQRS. Then the opposite sides being equal 
and parallel, we have* 

--+ --+ --+ --+ PQ = SR and PS = QR 
• The equals sign is being used to indicate that PQ is both equal and parallel to SR. The 

arrows indicate the sense in which PQ, SR, . . .  are described. It follows that PQ and SR can 
be regarded as representations of the same vector. 
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-+ -+ -+ -+ -+ 
and since both PS + SR and PQ + QR are equal to PR, it follows that 

b+a = a+b (22.1) 
That is, vectors satisfy the commutative law of addition. 

T 

R 

p a 
Figure 22.8 

-+ 
Now consider the addition of another vector, c, represented by RT in Figure 22.8. From the law of addition 

-+ -+ PR = (a + b) and QT = (b + c) 

Applying the law of addition again 
-+ -+ -+ -+ -+ 

(a + b) + c = PR+ RT = PT = PQ +QT = a+ (b + c) (22.2) 
The argument can be extended to any number of vectors. Thus vectors satisfy 
the associative law of addition and we can write a + b + c + . . .  without 
brackets being needed to indicate the order of summation. 

-+ 
If the vector b is represented by QR, we define - b  to be the vector 

-+ 
represented by RQ, hence, 

b + ( -b) = 0 
We now interpret a - b as the sum of the vectors a and -b, that is 

a - b = a+ ( -b) 
Referring to Figure 22.9, 

-+ -+ -+ -+ -+ 
SQ = SP + PQ = RQ + PQ 

= - b+a 
= a - b  

-+ 

(22.3) 

(22.4) 

Note that the opposite diagonal of the parallelogram PR represents a + b. 

S R 

p a Q 
Figure 22.9 
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Example 2 Show that la + bi � lal + lbl. In what circumstances does the 
equality hold? 

Referring to Figure 22.9, lal is the number of units in the length of PQ, lbl 
is the number of units in the length of QR, la+ bi is the number of units in 
the length of PR. 

Since PQ R is a triangle, PR � PQ + QR 
or 

la + bi � lal + lbl 
This equality holds when PR = PQ + QR, that is, when P, Q, R (in that 
order) are collinear, i.e. a and b are parallel and in the same sense. 

--+ --+ --+ Example 3 The three co-terminal edges AP, AD, AB of a cuboid 
ABCDPQRS represent respectively the three vectors a, b, c. (Note that 
although the edges are equal in length they are in different directions and 
therefore represent different vectors.) Find in terms of a, b and c the vectors 

--+ --+ --+ --+ 
represented by AQ, AR, RP and PC (see Figure 22.10). 

B 

C 

b :  
A -----,--✓.D 

I 
I 
I 
I 

C 

(I /�L- - - - - - - - - - -- R 

//
/ 

p s Figure 22.10 
--+ --+ --+ --+ 

Since AP, DS, CR and BQ are all equal, in the same sense and parallel, --+ --+ --+ --+ 
they all represent the vector a. Similarly, AD, BC, PS and QR all represent the 

-+ -+ -+ -+ 
vector b and AB, DC, SR and PQ all represent the vector c. Now 

--+ 

--+ --+ --+ 
AQ = AP+PQ 

Therefore, AQ represents the vector a + c. 

--+ 

--+ --+ --+ --+ 
AR = AP + PS + SR 

Therefore, AR represents the vector a + b + c. 

--+ 

--+ --+ --+ 
RP = RS + SP 

--+ --+ 
= -SR -PS 

Therefore, RP represents the vector -c -b. 

--+ 

--+ --+ --+ --+ 
PC = PS + SD + DC 

--+ --+ --+ 
= PS -DS+DC 

Therefore PC represents the vector b -a + c. 
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Exercises 22c 
1 Sketch directed line segments to represent vectors a, 3 units north, h, 2 units 

north-east and c, 4 units west. Now sketch directed line segments to 
represent the following vectors: (a) c, (b) - c, (c) a +  h, (d) a +  c, (e) a -c, 
(f) h + h, (g) a + h -c, (h) a + h + c, (j) a -h + c, (k) a - h - c. 

2 For the three vectors a, h, c defined in question 1 ,  find the values of the 
following quantities: (a) lhl, (b) la+ cl, (c) I -cl, (d) la+ hi, (e) le+ hi, (f) le -al. 

3 Show that la -hi � l lal - lhl l. In what circumstances does the equality hold? 
4 If a and h are two vectors such that lal = lhl = la+ hi, find the angle 

between a and h. 
-+ -+ -+ 

5 A pyramid has apex P and base ABCD. The four edges PA, PB, PC and 
-+ 
PD represent respectively the vectors a, h, c and d. Find in terms of some 

-+ -+ -+ 
or all of a, h, c, d the vectors represented by (a) BC, (b) BA, (c) BD, 

-+ 
(d) AC. 

-+ 
6 In Example 3, find in terms of a, h and c the vectors represented by (a) PD, 

-+ -+ -+ 
(b) SQ, (c) DQ, (d) CS. 

22.4 Multiplication of a vector by a scalar 
From the law of addition of vectors it follows that a +  a is a vector in the 
same direction as a and whose magnitude is twice the magnitude of a. We 
can denote it by 2a. By continued addition, a +  a +  a +  ... to n terms is a 
vector in the direction of a whose magnitude is equal to n times the magnitude 
of a. It can be denoted by na. We generalise this for any n, fractional or 
negative, as follows: 

The product of a scalar .A. and a vector a (written .A.a) is a vector, in the 
direction of a if .A. is positive and in the opposite direction to a if .A. is negative, 
of magnitude I.A.I . lal. Example 1 F is a force of 3 units in a direction N 50° E. What is meant by 
-4F? 

-4F is a force of magnitude 1 -41 .131 = 12  units. The direction of -4F is 
opposite to the direction of F, that is, N 130° W. Therefore, -4F is a force 
of 12 units in a direction N 130° W. 

It follows from the definition that ifµ is also a scalar, µ(A.a) = (µl)a = A(µa) 
and the associative law of multiplication holds. Also from the definition, 
(A + µ)a = la + µa. 

It is also true* that .A.(a + h) = A.a + Ah. 
Division of a vector by a scalar m is defined as multiplication by 1/m. 

Note: 
(i) If a is a unit vector in the direction of a, a = a/lal. 

(ii) If b is parallel to a, 

b a 
lbl lal 

• See Mulholland and Phillips, Applied mathematics for advanced level, Butterworths. 
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A 

C 

B 

Figure 22.11  

Example 2 In the triangle ABC the mid-points of the sides AB, AC are E 
and F respectively. Prove that EF is parallel to and equal to half the length 
of BC. 

-+ -+ 
Let AB and AC represent the vectors b and c (see Figure 22.1 J ). 

-+ 

➔ -+ -+ 
BC = BA+AC 

➔ -+ 
= - AB+AC 

Therefore, BC represents the vector c -b (i) 
-+ -+ 

Since E and F are mid-points of AB and AC, AE and AF represent the 
vectors ½b and ½c. 

-+ ➔ -+ 
EF = EA + AF 

-+ -+ 
= - AE+AF 

-+ 
Therefore, EF represents the vector -½b + ½c. That is 

½(c - b) (ii) 
Now ½(c - b) is a vector parallel and equal to half the magnitude of (c - b). 

-+ -+ 
Therefore, EF is parallel to, and equal to half the length of BC. 
Example 3 P is the apex of a rectangular pyramid whose base is ABCD. 

-+ ➔ -+ 
The edges PA, PB,PC represent respectively the vectors a, b, c. Find in terms 

-+ -+ -+ 
of a, b and c the vectors represented by (i) AD, (ii) CD, (iii) PD. 

ABCD is a rectangle. Therefore (see Figure 22.12), AD is equal and parallel 
to BC 

A 

, 
, 

p 

a / C 
/ b .,,__ 

- ✓
✓✓

/
/

/
/

/ D -- -- ---

✓
/

/ C 

B 

Figure 22.12 
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➔ ➔ 

➔ ➔ ➔ 
BC = BP+PC 

➔ ➔ 
= -PB+PC 

Therefore, BC and hence AD represents c -b. 
➔ ➔ 

Similarly CD is equal and parallel to BA and 

➔ ➔ 

➔ ➔ ➔ 
BA = BP+PA 

➔ ➔ 
= -PB+PA 

Therefore, BA and hence CD represents a -b 
➔ ➔ ➔ 
PD = PC+CD 

Therefore, from (ii), PD represents c + a -b. 

Exercises 22d 

(i) 

(ii) 

1 ABCD is a plane quadrilateral. The mid-points of its sides are P, Q, R 
and S. Prove that PQRS is a plane parallelogram. Is the result also true 
if ABCD is a skew quadrilateral? 

2 In the triangle ABC, D is the mid-point of the side BC. Prove that 
➔ ➔ ➔ 

AB +AC = 2AD. 
3 In the parallelogram PQRS, A is the mid-point of PR and B is the mid-point 

➔ ➔ 
of QS. Let PQ = a and PS = b and from the result of question 2 deduce 

➔ ➔ 
that PB = ½(a+ b). Find PA in terms of a and b and deduce that the 
diagonals of a parallelogram bisect each other. 

➔ ➔ ➔ 4 In the tetrahedron ABCD, AB, AC and AD represent vectors a, b and c 
respectively. The points P, Q, R and S are the mid-points of the sides 
AB, BC, CD and DA respectively. 

➔ 
(i) Show that PR represents the vector ½( -a + b + c). 

➔ 
(ii) Find, in terms of a, b, c, the vector represented by SQ. 

➔ 
(iii) Deduce the vector represented by TU where T and U are the mid-points 

of AC and BD respectively. 
5 Simplify the following expressions: 

(i) 3(3a -2b + c) + 2(a + 3b -c) 
(ii) 5(a -3b + 6c) -3(2a -2b + 10c) 

(iii) ½(2a + 6b -c) + 2(a + 3b + 2c) 
6 ABCD is a plane quadrilateral in which P, Q are the mid-points of AB, 

➔ ➔ ➔ 
DC respectively. Show that AD + BC = 2PQ. Is the result true if ABCD 
is a skew quadrilateral? 

22.5 Resolution of a vector 
We first define collinear and coplanar vectors. 

Two or more vectors are said to be coplanar if they are all parallel to the 
same plane. 

Two or more vectors are said to be collinear if they are all parallel to the 
same line. 
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Given a vector r and any three non-coplanar vectors, a, b and c, then r 
can be exyressed as the sum of three vectors parallel to a, b and c. 

Let a, b, c, be unit vectors parallel to a, b, c, respectively. With any point 
0 as origin construct a parallelepiped whose co-terminal edges OA, OB, OC 
are parallel to a, b, c respectively, and whose diagonal OR represents r (see 
Figure 22. 1 3). 

I 

A 

I 
I 

C 
I 

lr c 
I r 

I 

Figure 22.13 
D 

--+ ,,,,.. --+  ,,,._ 
Then there exist real numbers rx, ry, rz such that* OA = rxa, OB = ryb, 

---+ ---+ ' 
OC = rzc. (r" is positive or negative according as OA is in the same or opposite 
direction to a, similarly for r Y and r z·) 

-+ -+ ---+ ---+ 
r = OR = OA +AD+ DR 

Opposite edges of a parallelepiped are equal and parallel. Thus 
-+ ---+ ---+ -+ 
AD = OB and DR = OC 

-+ ---+ ---+ 
r = OA+OB +OC 

= �+� + �  �� 
r"a, rJ,, rzc are known as the component vectors and r", ry, rz as the 
components of r in the three given directions. Only one such parallelepiped 
can be constructed and the resolution is unique. Thus equal vectors have 
equal components. Conversely, if all three components of two vectors are 
equal, the vectors are equal. 

COROLLARY In two dimensions two non-parallel vectors a and b define a 
plane and any vector r parallel to that plane can be expressed as the sum 
of two vectors parallel to a and b, that is 

r = ka + lb 
where k and l are scalars. 

The most important case arises when the three directions defined by a, b, 
c are mutually perpendicular and form a rectangular frame of reference. The 
lines are labelled to form a right-handed set of axes, that is, rotation from Ox 
to Oy takes a right-handed corkscrew along Oz; similarly, a rotation from 
Oy to Oz takes a right-handed corkscrew along Ox; similarly for Oy (see 
Figure 22.14). 

* The symbol = is now being used to mean represents. 
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/ 
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/ 
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y 

D 
Figure 22. 14 

In this case, the unit vectors a, b and c are known as i, j, and k (without 
circumflexes) and 

r = r xi + r yj + r zk 
r x• r Y and r z are now referred to as the rectangular components, or simply, 
components if there is no fear of a misunderstanding. 

Now 
OR 2 = 0B2 + BD2 + DR 2 (see Figure 22. 14) 

= 0B2 + BD2 + DR2 

= 0B2 + OA 2 + OC2 

r2 = r2 + r2 + r2 
X y Z (22.6) 

From which we see that the modulus of a vector r with rectangular 
components rx , ry, rz is 

lrl = J(r; + r; + r;) 
(Note the positive square root.) 

It follows from the associative and distributive laws that 
RULE I a +  b = (ax + hx)i + (ay + by)i + (a, + b2)k 
RULE II ma = max i+ mayj + maz k (m scalar) 
Example I If a =  3i + 4j- 12k, b = i + 12k, c = i -j + k. Find !al, !bi, lei, 
la+bl and la+b+cl-

From the equation lrl = J(r; + r; + r;), we obtain 
!al = J[32+42+( - 12)2J = 13 
!bi = J(12+02+ 122) = J 145 
lei = J[12+(-1)2+12J = J3 

la+ bi = 14i + 4jl = J(42 + 42 + 02) = 4J2 
la+ b + cl = 15i + 3j + kl = J(52 + 32 + 12) = .J35 

Vectors and the vector algebra we are developing are eminently suitable 
for work in three-dimensions (and can be generalised to n-dimensions). In 
the case of two-dimensional applications, the rz component is suppressed. 
Thus 

lrl = .J(r; + r;) 
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In general, r = ai + bj + ck can be written as a column vector thus 

, - rn 
Example 2 Given ,, - [ =f l , ,, - rn , ,, - [ J] , find (i) l•, I ,  

(ii) l2r1 + r3 1 , (iii) lr1 -r2 - 3rJ I. (iv) Write in conventional form (using i, j, k) 
the unit vector parallel to the vector r2 - r3 . 

(i) 

= 5i -6j -2k 

lr1 I = .J[52 + ( -6)2 + ( -2)2J 
= .J65 

(ii) 2,, H, - 2 [ =f l + U] 
= 2(5i -6j -2k) + (2i + 2j -4k) 

= 12i - lOj -8k 

12r1 + r3 1 = .J[l22 + ( -10)2 + ( - 8)2] 

= .J308 

(iii) ,, - ,, - 3,, - [ =fl _ rn - 3  UJ 

(iv) 

= (5i -6j -2k) - (7i + 3j + k) -3(2i + 2j - 4k) 

= - Si -15j + 9k 

lr1 -r2 -3r3 1 = .J[( - 8)2 + ( -15)2 + 92] 
= .J370 

,, -,, - rn U J 
= (7i + 3j + k) -(2i + 2j -4k) 
= 5i + j + 5k 

lr2 -r3 1 = ✓(52 + 12 + 52) 

= J51 
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Unit vector in the direction of (r2 - r3) is 
(r2 - r3) 5 . 1 . 5 
lri - r3 1 

= 
J51 i + J5t 1 + 

J51 k 

=(Si+ j + 5k)/J51 
After practice it will be found that the transformation from column vectors 
to i, j, k form can be omitted. 
Example 3 Given that a = 2i + 3j - k, b = i + 2k, c = i + 2j, (i) show that 
there are no real values of the constants 2 and µ such that c = la + µb (this 
proves that a, b, c are non-coplanar). (ii) Express d = -4j + 8k in terms of 
a, b and c. 

(i) Let c = la + µb, that is 
(i + 2j + Ok) = 2(2i + 3j - k) + µ(i + Oj + 2k) 

= (22 + µ)i + 32j + ( - 2  + 2µ)k 
Since we have assumed the vectors are equal, the components are equal. 
Therefore 

1 = 22 + µ 
2 = 32 0 = -A.+ 2µ 

From (i) and (ii), 2 = 3/2, µ = - 2. Substituting these values in (iii), 
-A. + 2µ = - 5½ # 0 

Therefore, no values of 2, µ exist for which c = la + µb. 
(ii) Let d = la + µb + vc, that is 

(Oi - 4j + 8k) = 2(2i + 3j - k) + µ(i + Oj + 2k) + v(i + 2j + Ok) 
= (22 + µ + v)i + (32 + 2v)j + ( -A + 2µ)k 

Equating the components 

Hence 

and 

Exercises 22e 

2A+µ+v =O 
32 + 2v = - 4  

-A.+ 2µ = 8 

2 = - 2  µ =3 V = 1 

d =  -2a + 3b + c  

(i) 
(ii) 

(iii) 

I Given that a - u] , 6 - m , c - H] , find (;) a + 6  - Jc, 

(ii) la + b + cl, (iii) a - 2b + c, (iv) 12a + b + 2cl. 
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2 Given that a - m , b - [ _! ] , c - [ = n , find (i) a + b+ 3c, 

(ii) le - al, (iii) 2a + b + c, (iv) unit vector in the direction of 2a + b + c. 
3 Show that the vectors a = i + j - k, b = 2i + k, c = 3j + 2k are non­

coplanar (see Example 3) and express d = -i + 15j + 3k in terms of a, b, c. 

4 Show that the vectors a - [ J] , b - [ J] , and c - rn] are non-

coplanar (see Example 3) and express the vector d - [ 
-

� ] in terms of 

a, b, c. 

5 Show that the vectors a - [ -n , b - [ -n , c - [ =1] are 

coplanar and hence express c in terms of a and b. 

22.6 Scalar (or dot) product 
The justification for compounding two or more vectors by the triangle or 
parallelogram rule (see Section 22.3) was that this gave useful and practical 
results. The + and -signs from algebra were used to indicate such combina­
tions. When considering how to 'multiply' two vectors, the criterion of the 
useful and practical is again applied. There are two 'vector products' which 
are mathematical models of practical results, the scalar (dot)  product and the 
vector (cross) product. They are so named because the result of the first 
combination is a scalar and of the second a vector. In this book, we shall 
only consider the scalar product. 

The scalar product of two vectors a and b is the scalar quantity ab cos 0, 
where a and b are the moduli of a and b and 0 is the angle between them. 
The product is written as a.b and is sometimes referred to as the dot product. 

a.b = ab cos 0 (22.7) 
Note that the result is a scalar quantity. 

One use of this definition is seen when we consider the work done by a 
force F whose point of application moves a distance r in a direction making 
an angle 0 with the line of action of F. 

Work done = (magnitude of force in the direction of motion) 
x (distance moved) 

= F cos 0 x r 
= Fr cos 0 

Using a vector notation because both force and displacement are vectors, 
F.r = Fr cos 0 = work done 
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From the definition, 
b. a = ba cos 0 = ab cos 0 = a . b (22.8) 

that is, scalar multiplication is commutative. 
We note two special cases: 

(i) If a .b  = 0, there are not just two possibilities, a =  0 or b = 0 but three 
because if 0 = 90°, cos 0 = 0 and again a. b = 0 even though both a and 
b are not zero. Thus if a .b  = 0 either a =  0 or b = 0 or 0 = 90° (the 
vectors are perpendicular). Conversely, if the vectors are perpendicular, 
0 = 90°, cos 0 = 0 and a .b  = 0. 

(ii) If the vectors are collinear (see Section 22.5), cos 0 = ± 1 and a .  b = ± ab 
according as they are in the same or opposite sense. 

In the case of the unit vectors i,j, k, since they are mutually perpendicular, 
i.j = 0 = j.i 

j.k = 0 = k .j 
k .i = 0 = i.k  (22.9) 

and 
i.i =j.j = k .k  = 1 

For any vector a, the product a .a = lal2, which is often written a2 or 
simply a2 • 

Another interpretation of the scalar product is 
a .b = ab cos 0 = a x (b cos 0) or b x (a cos 0) 

= a x (projected length of b on a) 
= a x (component of b in the direction of a) 

In the special case when either a or b is a unit vector, say a, then lal = 1 and 
a . b = projected length of b on a 

Also, the component of a sum of vectors in any direction is equal to the 
sum of the components of the individual vectors in that direction. Hence 

a . (b + c) = a x (component of b + c in direction of a) 
= a x (component of b) + a x (component qf c) 

Therefore 
a . (b + c) = a .b  + a .c  

Also, it is evident from the definitions of a.b and ,1.a that 
,1.(a .b) = (,1.a). b  = a . (,1.b) 

Thus scalar multiplication is distributive with respect to addition and 
commutative with respect to multiplication by a scalar, so that brackets can 
be removed and inserted as in ordinary algebra. 

Let 
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Then 
a.b = (axi + ayj + azk).(bxi + byj + bzk) 

= axbJi + axbyi.j + axb,i.k + aybxj.i + aybyj.j + ayb,j.k 
+azbxk.i + azbyk.j + azbzk.k 

Therefore, using the set of equations (22.9) 
a.b = axhx + ayby + azbz (22. 10) 

Example I A force F = -2i + 3j + k units has its point of application moved 
from A to B, where AB = 3i + j - 4k. Find the work done. 

By the definition of a scalar product 
work done = F. AB 

= ( - 2i + 3j + k). (3i + j -4k) 
= ( - 2 x 3)+(3 x l)+(l x -4) by (22.10) 
= - 7  units 

The negative sign indicates that the work is done on the force. 

Example 2 Find the resolved part of the vector a = 6i - 3j + 9k in the 
direction of b = 2i + 2j - k. 

Now 

Thus 

lbl = J(22 + 22 + 1 2) 
= 3  

b = !!___ = (2i + 2j - k)/3 
lbl 

The resolved part of a in the direction of b is 
a .b  = (6i - 3j + 9k).(2i + 2j - k)/3 

= -1 

Example 3 Show that the vectocs a~ rn , b ~ [ = n and c ~ [ - l i] 
are mutually perpendicular. 

We note that a #- 0, b #- 0, c #- 0 

a.h rn .  [ =i] 
= 2 X 5 + 3 X ( - 2) + 1 X ( - 4) 
= 0  

Therefore, cos 0 = 0, i.e. 0 = 90°, and a and b are perpendicular. 



Similarly 

a 
, - rn . [ - in 
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= 2 X 10 + 3 X (- 13) + 1 X 19 

= 0 

Therefore, a and c are perpendicular. 

b , - [ =fl . [ - l!] 
= 5 X 10 + (-2)(-13) + (-4)19 

= 0 

Therefore, b and c are perpendicular. 

Exercises 22f 
-+ -+ 

1 Given that AB = i -2j + 3k; AC = 3i -4k, find (i) the l�ngth of the 
� � -,, -,, 

projection of AB on AC and (ii) the projection of AC on AB. 

2 To,ee points A, B, C are such that A9 - [ -n , BC - [ =i] . Find 

the angle ABC. 

3 The vectocs a - H] ' b - rn ' , - [ : ] are mutuWly pe,­

pendicular. (i) Find the values of p and q. (ii) Write down, in terms of i, 
j, k, unit vectors in the directions of a, b and c. 

4 a and b are two non-zero vectors. 
(i) If lal = lbl, show that (a + b) and (a -b) are perpendicular. 

(ii) If a and b are perpendicular, show that la -bi = la "t' bi. 
5 If a.b = a .c  and a #  0, what can be said about the relation between 

b and c? 

6 Find the cesolved part of the focce [ ! ] N in the dicection of the vecto, 

Ul 
7 Given tnat (a -h).(b -c) = 0 and (b -h) .(c -a) = 0, deduce that 

(c -h) . (a -b) = 0. 
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8 Show that the vecto,s a - [ fl and b - [ J] a,e mutually pe,­

pendkula,. A thi,d vecto, e - [ Ii] is pe.-pendicula, to both a and b, 

find the values of p and q. 

9 If a - [ j] , b - u] , e - [ -n , evaluate the following: (i) a . b, 

(ii) 2a.(b + 3c), (iii) (5a -37b + 15c) .c. 
10 Given that a =  2i + 3k, b = 5i -j + k, c = i + j, evaluate (i) (a.b)c, 

(ii) (a.c)(b.c), (iii) (a -c).(b -c), (iv) (a.c)b. 

22. 7 Position vectors 
Generally, a vector has both size and direction but is not fixed in space. 
However, if its point of application is given then it is known as a bound 
vector. A force is a bound vector because its point of application must be 
known. A particular case of a bound vector arises when a point O is taken -+ 
as origin and the displacement vector OP is used to locate a point P. In 

-+ 
this case, the vector OP is known as the position vector of P with respect to 
0. We shall use a, b, . . .  for the position vectors of the points A, B, .... 
Example I The point R divides the straight line joining the points A and 
B in the ratio m :  n. If A and B have position vectors a and b with respect 
to an origin 0, find the position vector of R with respect to 0. 

A R B 

0 �  Figure 22.15 
-+ -+ 

Referring to Figure 22.15, since ARB is a straight line, AR and RB are 
collinear. Also 

or 

Therefore 

or 

nAR = mRB 
-+ -+ 

nAR = mRB 
n(r -a) = m(b -r) 



Whence 
na+mh r = - -- (m + n =I- 0) 

m + n  
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(22.11) 

The result is true whether the ratio m/n is positive or negative. In the case 
of m/n negative, the point R is outside the segment AB. 

Note that if R is the mid-point of AB, m = n and r = (a+ h)/2. 
Example 2 Show that the medians AD, BE, CF of a triangle ABC have a 
common point of intersection, which divides each median in the ratio 2 :  1. 

Let the position vectors of A, B, C be a, h and c, respectively. Since 
D, E, F are mid-points of the sides BC, CA, AB, respectively, their position 
vectors are D, ½(h + c), E, ½(c + a), F, ½(a + h) (see Figure 22.16). 

A 

B C 

0 
Figure 22.16 

Let G be the point which divides AD in the ratio 2 :  1. Then, by the result 
of Example 1, the position vector of G is given by 

1 x a +  2 x ½(h + c) 
g = 

1 + 2  
= (a+ h + c)/3 

and the symmetry of this result shows that G lies on BE and CF and divides 
them in the ratio 2 : 1. 

If, in addition to the origin 0, three mutually perpendicular unit vectors i, 
j, k specify a right-handed set of axes Ox, Oy, Oz (see Section 22.5 and Figure 

z 

P ( x,y, z )  
k / t 

/ 
I / 
I 

/ I 
/ Z I  - - - - - - --- y 

/ 

i / 
I /x 
I / t JI---- - - -- - - - - - - - --

y 
X 

Figure 22.17  
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22.17), then the position of a point P can be specified by its perpendicular 
distances x, y, z from the three planes specified by (j, k), (k, i) and (i, j) 
(see Figure 22. 17). -+ 

fhe position of P(x, y, z) is specified by the position vector OP = p = 
xi+ yj+ zk. 

Note: care must be taken not to confus J the co-ordinates (x, y, z) of a point 

P with the position vecto, Qp written in the fonn of a column vecto, [ ; ]  

even though the values of x, y and z are the same. 
Example 3 Referred to O as origin, A and B are the points (2, - 2, 1) and 
(6, ·-3, 2) respectively. Find the lengths of OA and OB and the area of the 
triangle AOB (leave the answer in surd form). 

-+ 
a = OA = 2i-2j+k 

-+ 
b = OB = 6i - 3j + 2k 

OA = lal = ✓[22 + ( -2)2 + 12
] = 3 

OB = lbl = ✓[62 + ( -3)2 + 22
] = 7 

Let 0 be the angle between OA and OB. Then 

Exercises 22g 

OA x OB x cos 0 = a.b 
3 X 7 X COS 0 = 2 X 6 + ( - 2)( - 3) + 1 X 2 

21 cos 0 = 20 
cos 0 = 20/21 
sin 0 = J(l - cos2 0) 

= J1 - (20/21)2 

= fo;21 
Area t, AOB = ½OA. OB.sin 0 

= i X 3 X 7 X J4l/21 
= fo/2 

1 C is a point on the line AB such that AC/AB = t (a constant). The position 
vectors of A, B and C are respectively a, b and c. Show that c = (1 - t ) a  + tb. 

2 R is a point on the line AB such that AR : RB = 3 :  q. The position vectors 
of A and B with respect to an origin O are respectively a = i -j + k, and 
b = 2i + j + 3k. Find the position vector of R in terms of q [refer to 
Example 1]. If the lines OA and OR are perpendicular, find the value of q. 

3 In a triangle ABC the altitudes through the vertices A and B meet in H. 
The position vectors of A, B, C with respect to H are a, b, c. Show that 
a .  b = b. c = c . a and deduce that the other altitude through C also passes 
through H. 



The vector equation of a straight line 449 

4 The posWon vectors •• b, c of th,ee points A, B, C are a - [ J] , 
b - [ 

_ 
! ] , c - [ i ] . Find the vectors AD and AC and deduce that 

AB and AC are at right angles. 
5 The origin of co-ordinates is 0. A and B are the points (2, 1, 2) and (2, 9, - 6). 

Find the lengths of OA and 0B and the area of triangle AOB leaving 
your answer in surd form [see Example 3]. 

22.8 The vector equation of a straight line 
A straight line can be uniquely specified in a number of ways, for example, 
by (a) its direction and the position of a point on it, and (b) the position of 
two points on it. 

The equation of the straight line is obtained by expressing the position 
vector r of a general point P on the locus in terms of the given conditions. 
To find the vector equation of a straight line through a given point A (a) 
and parallel to a given direction b, proceed as follows. 

Figure 22.18 
➔ 

Let P(r) be any point on the line, then AP is parallel to b (see Figure 22.18) and is therefore equal to tb, where t varies according to the position 
of P. Now 

therefore 

➔ ➔ ➔ 
r =  OP = OA+AP 

r = a+ tb 
which is the required equation. 

(22.12) 

For the particular case of a straight line through the origin, a =  0 and we 
have 

r = tb (22.13) 
(Note: t is not equal to AP unless b is a unit vector.) 
Example I To find the vector equation of a straight line through two given 
points, A(a) and B(b). 

0 

Figure 22.19 
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We note that AB = b -a (see Figure 22. 19), so that we have a straight 
line through A (a) parallel to b -a. Its equation is therefore 

r = a+ t(b - a) 
or 

r = (1 - t ) a + tb 

Example 2 The lines L1 and L2 have vector equations 
r1 = (3i + 2j + 3k) + t (i + 2k) 

and 
r2 = ( lOi -j + 2k) + s(3i -j + k) 

(22.14) 

where t and s are parameters. Show that L1 and L2 intersect and find the 
position vector of their point of intersection. 

As the parameter t varies, r1 gives the position vectors of points on L 1 • 

Similarly, as s varies, r2 gives the position vectors of points on L2• If the 
lines L1 and L2 intersect then for some values of t and s, r1 and r2 are identical. 
Thus 

r1 = r2 
(3i + 2j + 3k) + t (i + 2k) = ( lOi -j + 2k) + s(3i -j + k) 
(3 + t) i + 2j + (3 + 2t)k = (10 + 3s)i + (-1 -s)j + (2 + s)k 

For this to be true all the components of the vectors must be equal. 
Therefore, for the same values of s and t 

3 + t = 10 + 3s 
2 = -1 -s 

3 + 2t = 2 + s 

(i) 
(ii) 

(iii) 

From (i) and (ii), s = -3, t = -2 and substituting these values in (iii) we 
have 

3 + 2( -2) = -1 = 2 + ( - 3) 

and the lines must meet. To find the position vector of the point of intersection 
we substitute t = -2 in r1 , 

r1 =(3i + 2j + 3k) -2(i + 2k) 
= i + 2j -k 

Check Substitute s = - 3 in r2 

Exercises 22h 
1 Show that the lines 

r2 = ( lOi -j + 2k) - 3(3i -j + k) 
= i + 2j -k as before 

r = (2i + 2j -4k) + t (i + 3j -3k) 
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and 
r = (i + j + k) + s(i + 2j - 4k) 

intersect and find the position vector of their point of intersection. 
2 If the lines r = (i + 2j + k) + t(i - 2j + k) and r = 2i + s(i + pj + 2k) inter­

sect, find p and the position vector of their point of intersection. 
3 The lines L 1 and L2 are given by the equations 

, - m + t [ =n and • - m + s [ -i] 
(i) Show that the lines do not intersect. 

(ii) Calculate the acute angle between the directions L1, L2 • 

(iii) Verify that the vecto, a - [ ! ] is pe,pendicular both to L, and to L,. 

4 A is the point (3, 2, 1) and B is the point (5, 4, 0). Find a vector equation 
for the line AB. Write down the co-ordinates of any point P on the line 

-+ -+ 
AB in terms of the parameter. Using the scalar product of OP and AB 

-+ -+ 
find the value of t when OP is perpendicular to AB and hence the co-
ordinates of the foot of the perpendicular from O to the line AB. 

5 Find the point of intersection of the line through the points (4, - 2, 5) and 
( - 2, 1, - 1) and the line through the points ( - 1, -3, -3) and (8, 3, 15). 
Calculate the acute angle between the two lines. 

22.9 The vector equation of a plane 
A plane is completely specified when the length and direction of the 
perpendicular from the origin to the plane (the normal) are known. 

-+ 
Let O be the origin, ON, the perpendicular from O to the plane, have length 

a and ii be a unit vector in the direction ON (see Figure 22.20). 

Figure 22.20 

Then if r is the position vector of any point P on the plane, the resolved 
-+ -+ 

part of OP in the direction ON is always equal to a, that is 
r . ii = a (22.15) 

which is the equation of the plane. 
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Note that ii = n/lnl and therefore 
r. n/lnl = a 

r . n  = aln l  
r . n  = b (22.16) 

is another form of the equation where b/ln l is the perpendicular distance from 
the origin to the plane. 
Example I O is the origin. A plane passes through the point A (3, 2, -6) 
and is perpendicular to OA. What is the equation of the plane in vector form? 

-+ 
OA = 3i + 2j - 6k 

and because it is perpendicular (i.e. normal to the plane) we denote this by n: 

n = 3i + 2j - 6k 

or 

n = ✓[32 + 22 + ( - 6)2] = 7 
ii =  (3i + 2j -6k)/7 

From (i) and (ii) the required equation is 
r .(3i + 2j - 6k)/7 = 7 

r .  (3i + 2j - 6k) = 49 

(i) 
(ii) 

Example 2 0 is the origin of co-ordinates. A plane P passes through the 
points A(5, 4, 0), B(2, 4, 3), C(6, 0, - 3). Find the equation of the plane P. 

-+ 
AB = (2 - 5)i + (4 - 4)j + (3 - 0)k 

= -3i + 3k 
-+ 

BC = (6 - 2)i + (0 - 4)j + ( -3 - 3)k 
= 4i -4j -6k 

Let 
n = ON = i + )..j + µk 

If ON is perpendicular to both AB and BC, i.e. perpendicular to the plane, 
then 

and 

-+ -+ 
ON . AB = (i + )J + µk) . ( -3i + 3k) = 0 

-+ -+ 

- 3  + 3µ = 0 

ON . BC = (i + )..j + µk) . (4i - 4j -6k) = 0 
4 -4A. - 6µ = 0 

(i) 

(ii) 
From (i) and (ii), )._ = -½, µ = 1. Therefore, n = i - ½j + k is perpendicular 

to the plane. 

ln l  = J[1 2 + ( -½)2 + 1 2] = t 
ii = j(i - ½j + k) = (2i -j + 2k)/3. 
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Now OA = 5i + 4j and the projection of this in the direction of ON is 
(5i + 4j) . (2i -j + 2k)/3 = 2 

which is the perpendicular distance from O to the plane. Therefore, the 
required equation r .  ii =  a becomes 

r .  (2i -j + 2k)/3 = 2 
or 

r . (2i -j +  2k) = 6 

Example 3 Given that P is the plane r .  G] - 33, A is the point with 

co-ordinates (5, -1, 2) and O is the origin of co-ordinates, find 
(i) The perpendicular distance from O to the plane. 

(ii) Write down the equation of the line L which passes through A and is 
perpendicular to the plane. 

(iii) Find the co-ordinates of the point B where the line L meets the plane P. 
(iv) Find the position vector OC = c, where C is the reflection of A in the 

plane P. 
(i) The equation of the plane is 

, .  m - 33 

so the normal to the plane is n - [ i ] 
ln l  = )(22 + 62 + 92) = 11 

Dividing both sides of (i) by 11 

r • /1 [ i ] - 33/11 - 3 

r .ii = 3  
The perpendicular distance from O to the plane is 3. 

(i) 

(ii) The line L is perpendicular to the plane P and is therefore in the direction 

of its normal, vector [ : ]  . It also passes through the point A( 5, -I ,  2). 

Hence t)A - [ -n . The equation of L is 
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(iii) The point B lies on both the plane P and the line L and hence its 
position vector b satisfies both equations, therefore 

b m - 33 (ii) 

and 

b - HJ +t [ i ] (iii) 

Taking the dot prnduct of both sides of (iii) with the vecto, [ : ]  , 

b . m [ -n . m + t m . m 
Frnm (iih b . U] - 33 and evaluating the dot prnducts we have 

33 = (10 -6 + 18) + t (22 + 62 + 92) 

33 = 22+121t 
1/11 = t 

Therefore, the required position vector is 

Figure 22.21 
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(iv) Refer to Figure 22.21. In the triangle OAC, B is the mid-point of AC. 
Therefore 

Exercises 22i 

a + c  = 2b 

c = 2b - a 

1 Find the acute angle between the normals to the planes P, ,  r .  [ J] = 

36 and P ,, r .  [ = n = 27. [This is also the angle between the planes. J 

2 Explain why the two planes P, ,  r .  [ j] = 6, and P,, r .  [ j] = 15, 

are parallel. Find the perpendicular distance between them. 
3 0 is the origin. A plane passes through the point A(2, - 6, 9) and is 

perpendicular to OA. Find its equation. 
4 0 is the origin. A plane passes through the points A(l, -9, - 6), B(l ,  3, 6) 

and C(7, 0, 6). Find the equation of the plane. Show that the point A with 

po�tion vector a = [ -i] lies on the plane. 

5 Prove that the two planes L. ,  r .  [ J] = 55, and L,, r .  [ 
I
n = 44, are 

perpendicular and find their perpendicular distances from the origin. 

6 Two planes P, ,  r .  [ -n = 1 2, and P,, r .  [ -n = 8/3, intersect in 

the line L. Show that both the points A(4, 2, 2) and B(7, 4, 2) lie on L 
and hence find the equation of L. 

7 Find the point of intersecHon A(a) of the line L, r = [ n +t [ -n , 
and the plane P, r .  U] = 7 [see Example 3]. 

8 Prove that the line L, r = (2i + j) + t(3i + j + 5k) lies wholly in the plane 
r .  (i + 2j - k) = 4. 

9 What is the condition that the line L, r = a + t b, is parallel to the plane 
P, r .  n = k? If the line L lies wholly in the plane show that k = a .  n. 



456 Vectors 

10 Prnve that the line L, , - [ n + t [ -n , is parallel to both the 

planes P, ,  , .  U] - 5, and P,, , .  [ j] - 5. Also show that L is the 

line of intersection of the planes P1 and P2 . 

Exercises 22 
1 Show that la + b + cl � lal + lbl + lc l , where a, b, c are any three vectors. 
2 If a and b are two vectors such that lal = lbl = la - bi find the angle 

between a and b. 
➔ ➔ 

3 ABCDEF is a regular hexagon. If AB. BC represents vectors a, b 
➔ '-+ ➔ 

respectively, find the vectors represented by DE, FE and OF. 
4 Simplify the following-expressions: 

(i) 2(a + 2b + c) - 3(5a - 6c) + 4(a - b - 4c) 
(ii) ½{6a + 8b) - (a + b + c) + 3(a - b + c). 

5 ABC is a triangle and the perpendiculars from A and B to the opposite 
sides meet at H. The position vectors of the points A, B, C, H with respect 
to an origin O are a, b, c, h respectively. Prove that 

(h -a) .(c -b) = 0 
(h -b) . (a -c) = 0 

and deduce from these that 
(h - c) . (b - a) = 0 

What is the geometrical significance of this result? 

6 Ciiven the vectocs • - [ : l b - [ -n and e - u l find a 

vector p which is perpendicular to both a and b. Hence show that c is 
not coplanar with a and b. 

7 The position vectocs of the four points A, B, C, D are 0A - [ =:] , 
OD - m ' oc - m ' 6b - u] respectively. Calculate the 

➔ ➔ ➔ ➔ 
lengths of the projections of each of OA, OB, OC in the direction OD. 
What two conclusions can be deduced from the results? 

➔ ➔ ➔ 
8 PABC is a tetrahedron and the displacements PA, PB, PC represent the 

vectors a, b, c respectively. Given that two pairs of opposite edges are 
perpendicular prove that the third pair of opposite edges are also 
perpendicular. 
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9 The equation ofa plane P is , . [ n - -20. Write down a vector equation 

for the line L which passes through the point (5, - 1, 4) and is at right­
angles to the plane P. Using vector methods find the position vector a 
of the point A where the line L meets the plane P. 

10 Given the plane P, , . [ j] - 51, and the point A whose position 

vector is a - [ - : ] , find the position vecto, c of C, the reflection of 

A in the plane P. [See Example 3 (iv).] 

1 1  The equation of a line L is , - U] +t [ = U . Show that the points 

B(4, 3, 0) and C( - 1, 13, - 10) lie on the line and that the length of BC 
is 15 units. 

12 Given the points A(0, - 1, 4), B(8, 7, 0) find a vector equation of AB in 
terms of a parameter t. 0 is the origin of co-ordinates. Find the co­
ordinates of a point N on AB such that ON is perpendicular to AB. 
Deduce the co-ordinates of the reflection of O in AB. 

13 A plane passes through the point with position vector a and is per­
pendicular to the direction of n. If r is the position vector of a general 
point on the plane, write down the equation of the plane. 

14 0 is the origin, the position vector of a point A is a and ii is the unit 
vector along a line OL. The point B is the reflection of A in the line OL 
and C is the point where AB meets OL. Find the position vector of C 
with respect to 0. By completing the parallelogram OALB, or otherwise, 
show that the position vector b of B is given by b = 2(a . ii)ii - a. 

15 Given that the vector a =  (1, u, v) is parallel to the two planes P1, 

' · U] - 3, P ,, ' • U] - 2, find the values of u and v. Verify that the 

point D with position vector d - [ - : ] lies on both planes and hence 

write down an equation for L, their line of intersection. Show that a third 

plane P ,, , . [ fl - 4, also passes through L. 

16 The equations of two skew• lines are L" ' - [ n +t u] , 
• That is, no plane contains both lines. 
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L,, r - [ =!] + ' u l The vector p -m i, perpendicular to both 

lines. Find the values of a and b. Find also the vector a represented by 
the line joining the point (3, 2, 1) on L1 and ( - 5, - 4, 0) on L2 • Calculate 
the projection of a in the direction p. (This is the length of the 
common perpendicular to L1 and L2 .) 

17 Show that the three lines joining the mid-points of opposite edges of a 
tetrahedron ABCD meet at a point. 
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15 x = ± 3, y = + 2; x = ± 3/JlO, y = + 11/JlO 
16 x = ± 4, y =  + l; x =  ± ll/J7, y = ±4/J7 
17 X = ± 1, y = ± 2; X = ± 2, y = ± 1 
18 X = 3, y = 1; X = 1, y = 3; 

- 5 ± J55 - 15 
X = 4 , y =

2( - 5 ± J55) 
19 X = 5, y = 1; X = ¥-, Y = f 
20 X = ± 1, y = ± 4; X = ± 4, y = ± 1 

Exercises 1 b 

3 - 2, 1 6 ± 3, ± 4  
9 - 1, 2 ± J3 

1 (x - l)(y - 1) = 1 2 (x - 3)(y - 2)3 = 1 
x2 y2 5 a2 + b2 = 1 

8 a2 - b2 + 2 = 0 9 b2 - a2 = 4c 
Exercises le 

3 2 < x < 3  1 -=-¾-1- < x < �  
4 - 3 < x < �  
7 l < x < 2  

2 2 < x < 3  
5 2 < x < 3  
8 - 1, - 5  

6 - j  � X � - 1, X � i 
9 0, - 2  

10 x > 2 or x < - 8 
1 1  ¾ < x < 1, x t, 2  

459 
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Exercises ld 

1 98 2 8 
5 m = - 8, n = 8 7 (x - l)(x - 2)(x - 3) 
9 a =  3, b = - 12 

Exercises le 
2 4 1 -- + -­x - 3  x + l  

3 5 + 3 2(x - 1) 2(x + 5) 
5 3x + 1 2 X2 + 4 - X + 1 

1 X + 1 7 2x + -- + --x - 1 x2 + 1 
9 _2_ + 1 x + 1 (x + 1)2 - x2 + 1 

Exercises 1f 

3 3 12 
6 (x - l)(x2 + 4) 
8 (x - 2)(3x - 4)(4x + 3) 

10 2x + 5 
3 2 2 x - 1 + -- - -­x + l  x - 1 1 2 4 4 -- - -- - -­x - 1  x + l  x + 3  

6 _1_ _ 1 2x + 1 x2 + 2x + 3 1 1 2 8 - - - -- + - ­(x + 1)2 x + 1 2x - 3 
10 _1_ _ 2 + 1 x + 1 (x + 1)2 (x + 1)3 

1 243, rio, 128, ½ 3 y6 b1 31 12  
2 -- 4 4 2 x5z8 , asI12c19I12 

Exercises lg 
1 3, - 3, 4, - 5, 3, ½, - 6, - n  

Exercises lb 
1 1 ·87 
5 ½, 2 
9 ..)3, 9 

Exercises 1 

2 1 ·64 
6 0·43 1, 0·683 

10 X = 1 ·92, y = 0·66 

3 1 · 386, 2·89 
3 1 ·87, - 5· 1 1  7 ½ 4 1, 2 8 2 

l x = � y = � x = t y = J  2 a = Z b = � c = Z d = l 3 - 1·71 4 2 + ..)5 
5 x = ± 4a, y = ± a; x = :t Ja, y = ± ½a 
6 3 3x + 1 x - 3 - x2 + 4  
8 1 - 2  - l  ± ✓ 13  ' ' 2 

10 X > 6, -6 < X < -2 
12 ½, 1, 2 
15 27, J3 

-9 1 4 
9 -- - -- + - --3 - y 1 -y (1 -y)2 

1 1  X > 1, - j  < X < 0 13 1, 5 
16 -4 < X < ¥, X > 3 
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20 6 21 
- 3 ± J5 - 5 ± J21 

2 ' 2 
22 4, 6 23 - 0·358 
24 U = 6, V = 6; U = -J(l  ± J5), V = -J(l + J5) 
25 3, 11 28 y < - 5 or y > ½ 
31 X = - 1, y = 2; X = -½, y = t 
32 X = 1·42, y = - 0·58 

36 l < y < 4  

30 1 

33 2 � X � 3, X > 4 J4 - 2 
39 - 2, - ½, J, 2 
41 ¥ < X < ¥; X -:f. 3 
43 y = 9, z = ,¼ 

40 a =  3, b = - 4, c = - 12 
42 - 2  < X < 2 

45 13 
47 X = 3, y = 9; y = 9, X = 3 
49 X = 2, y = - 1; X = 3, y = 1 

Chapter 2 
Exercises 2a 

44 x = 7, y = 2 or x = - ½, y = ½ 
46 X = 9, y = - 8; X = y = -¥  
48 a =  6, n = -½ 
50 - 4  < X < i, X > 5 

1 (i) 2, 5, 8, 11, 14 (ii) l , - ,¼, ½, - -b, -Jr (iii) 3, 8, 17, 32, 57 
2 (i) r3 (ii) ( - 1)'+ 1r2 (iii) ½(4)' - 1 

3 1, 2, 3, 5, 8, 13, 21 
4 a =  3, b = - 4; - 17 
5 (i) r3 

- 1 (ii) 2r (iii) r3 + 2r - 1 (iv) 3' (v) - (  - 2)' (vi) 3' - ( - 2)' 
(vii) - ( - 6)' 

6 0, 2, 2, 0, - 2, - 2; 0 
1 a = 3, b = - 6, c = 3; 90, 258 
8 (i) 85 (ii) 363 
9 3r2 - 3r - 1 

Exercises 2b 
1 - 3, 1, 5 
2 - 1, 6, 13 
3 0, 5, 10, 15, 20, 25, 30, 35, 40, 45, 50, 55 
4 206 
5 10, 7 
6 - n2 

7 (i) 124 (ii) (5n2 - 9n)/2 (iii) (n - 3n2)/2 
8 1980 

9 (i) 4n(3n + 1) (ii) n(n + l�(a + 3b) (iii) ½(a - 2b)n2 + ½(5a - 2b)n 

10 (i) 4950 (ii) 1683 (iii) 4215 

Exercises 2c 
1 1, - 4, 16 
3 10, 20, 40 
5 1.p 

2 - ½, 1, - 3  
4 - 729 
6 J[l - (j)8] 
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7 121(1 + J3) 8 2, 9 
10 7, 2 

Exercises 2d 

1 (i) -1
- (ii) ¼ (iii) fr l + x  

Exercises 2 
1 5, 7, 9 
2 6, 3 

3 -- - -1 
(

1 -r") 
ar" - 1 1 - r  

4 n log ar<n - l J/2 

x2 + 4  2 �--­
x2 - 2x + 4 

5 x < - -¾  or x > 4 

5 (i) 7p + 7 (ii) (7p + 7)(10p + 11) 
6 (i) 24 7 500 (ii) 250 000 (iii) 1020 
8 a + (n - l)d; n + (n - 1)(2" - 1) 

10 20, 79 
11 S = 4; J, !, -/,r 
12 9 or more 
13 7, 360 m 
14 332, 667 
15 r = -½; -¾a 
16 (i) 2 (ii) 4, 2·4 cm 

17 
an(n

/ 
l) + 

5;_� 
l) ; a = 8, r = 2, S10 = 10 670 

18 -lo, 19·999 98, 9 
20 - ½ < x <  1 

21 ½(n - m + l)(n + m) (i) '
2 -

; 
+ 2 (ii) ½(r2 + l)(r) 

23 (i) x > 0 (ii) x > 0 or x < - ½ 
1 a" n (a a"+ 1) 

24 (i) ---=- (ii) a"<n - l)/2 (iii) -1 
- - (l- )2 1 - a  - a - a 

28 1, - 2  f 
✓2 ; (i) � + 4J2 (ii) - 35 + ¥J2 

30 - 2 < X < 2; 6 31 Tn = 4n - 1; 3, 4; 23 
32 ft 33 (i) 1 , -¾; 1 , ; (ii) -M 
34 - n  - 2n2 35 -t ½; 205 

Chapter 3 
Exercises 3a 
1 (i) 1 + 2x + x2 (ii) 1 + 3x + 3x2 + x3 (iii) 1 + 4x + 6x2 + 4x3 + x4 

2 (i) 1 + 8x + 28x2 + 56x3 + 70x4 + 56x5 + 28x6 + 8x7 + x8 

(ii) 1 + 9x + 36x2 + 84x3 + 126x4 + 126x5 + 84x6 + 36x 7 + 9x8 + x9 



4 (i) 1 53 (ii) 55 (iii) 1287 (iv) 36 
5 (i) 1 + 12x + 54x2 + 108x3 + 81x4 (ii) 1 - 5x + 10x2 - 10x3 + 5x4 - x5 

Answers 463 

(iii) 1 - 14x + 84x2 
- 280x3 + 560x4 - 672x5 + 448x6 - 128x7 

6 (i) 8 1  + 108x + 54x2 + 12x3 + x4 (ii) 64 - 192x + 240x2 
- 160x3 + 60x4 - 12x5 + x6 7 (i) 8x3 + 36x2y + 54xy2 + 27y3 (ii) 16x4 - 160x3y + 600x2y2 

- 1000xy3 + 625y4 

8 1 140 480x3 

9 ± 2  
10 22 680 
Exercises 3b 1 1 + 6x + 1 8x2 + 32x3 + 36x4 + 24x5 + 8x6 2 1 - 4x + 14x2 - 28x3 + 49x4 - 56x5 + 56x6 - 32x 7 + 16x8 3 80 4 1 + 6x + 1 5x2 + 20x3 + 1 5x4 + 6x5 + x6 = ( 1  + x)6 

5 3060 6 105x1 0  /32 7 2160 8 - 360 
9 - ½, - 8-& 

10 x7 + 14x6y + 84x5y2 + 280x4y3 + 560x3y4 + 672x2y5 + 448xy6 + 128y7
; 1 · 149 

Exercises 3c 
1 1 + x - x2 + -¾x3

; 1 ·0099 2 0·9355 
4 (i) 1 - x + x2 - x3 + x4 

- x5 + . .  . (ii) 1 - 2x + 3x2 - 4x3 + 5x4 + . .  . 

(1·1·1·) 1 3 
3.  4 2 4. 5 3 - x + 2x - 2x + . . .  

5 (i) 1 - 3x + 9x2 - 27x3 + . . .  1 x3 x6 (ii) 36 + 108 + 432 + . . .  

( ... ) 
1 X 2x2 

111 27 - 27 + 81 + . . .  

6 lxl < 3  

9 3 + 5x + 9x2 + 17x3 + 33x4 

Exercises 3 1 1 - 5x + 20x2 - 50x3 + 105x4 

2 9·9499 J jX3 4 4·000 667 
5 1 2 5

( 
1
)

" 7 - - - -- + --� -2 --2 + (2n + 1 )3" 2 + x 1 - 3x (1 - 3x)2 ' 
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-½ < x < ½ 

10 ¾ 15 1-0198 M H  
17 1 + 3x + 5x2 + 3x3 

19 3·317 
18 1 + 2x - 2x2 + 4x3

, 2·4495 
20 p = - 6, q = 11 

26 1 + 4x +1,}x2 + 15x3 27 a = ± t b = + ill 
1 2 5 19x 53x2 

28 x - 3 
+ x + 1' lxl < l ;  3 -9 + 27 

30 a = -2, b = - 1; f¾ 

Chapter 4 
Exercises 4a 
1 (i) t + Oi (ii) ± 3  + Oi 

(iii) 0 ± iJ30 
(v) 0 ± 7i 

(vii) - 2  ± 6i 

(iv) -i ± iJ_3 1/2 
(vi) - 1 ± i.J7 

(viii) ½ ± i.J3/2 

Exercises 4b 
1 (i) 3 (ii) 18 - i 
2 (i) 14 - 2i (ii) 12 - 16i 
3 - 3  ± 3i 
4 (i) 2i (ii) -2 + 2i (iii) - 4  

6 (i) 
- 1 - 4l i  

( .. - 7 - 17i 
58 u) 13 

8 ± (7 + 3i), ± (6 - i) 

9 (i) x5 - 10x3 + 5x - i(5x4 - 10x2 + 1) 

(iii) - 1  (iv) - (1 + i) (v) -� + i 
2 2 

Exercises 4c 
2 J 1 3, J17, J45, J2 
3 (i) 2 - 3i (ii) 3 + 2i (iii) - 2  + 3i 
5 ± 24 

( .. ) 
17 - 24i II 

25 
( .) 

11 + 2i 
Vl � 

Exercises 4d 
1 (i) 3 + 4i 
2 (i) 4 - 2i 

(ii) 6 - 4i 
(ii) - 6  + 3i 
(ii) - 10 + Si 

(iii) 3 - 7i 
(iii) 4 + Si 

3 (i) 12 + 15i 
4 2 + 23i 
6 (3 + 2i)/13 
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8 y = 0 

13 X = 0 

9 x = 0  10 x2 + y2 - Bx + 2y + 9 = 0 
14 x2 + y2 = 16  15 . 1 + .J7 - I - .,.- 1-, ,. _  2 

Exercises 4 
1 (i) 1 - i (ii) 1 + 2i 2 ± (3 + i) 
3 ( - 7 ± iJ3 1)/2; - 7, 20 
4 3 or 0 
5 cot ½0 

(iii) - 1  + Oi 

6 (i) x3 - 3xy2, 3x2y - y3 
x2 - y2 - 2xy (ii) (x2 + y2)2 , (x2 + y2)2 

7 Length of a diagonal of parallelogram sides represented by z1 and z2 9 2x2 + 2y2 - 5x + 2 = 0 
10 (i) 3 (ii) a3 + b3 1 1  - 2  ± 4i 
13 (i) 2 - 1 l i (ii) - 71 � 9i (. " ") 1 1 . 

111 - - -1 
2 2 

( . ) 53 - 9i IV --10 
14 X = - 5, y = - 10 
17 ½ + j✓3 

2 
18 (i) ( 18  + i)/25 

(ii) (a) 4 - 7i (b) 7 + 4i (c) - 7 - 4i 
19 Circle has equation x2 + y2 - 4x - 4 = 0 
21 - i(J2 + 1 ), i (J2 - 1) 25 B(4 + i) ;  C(5 + 2i) or B(2 + 3i) ;  C(3 + 4i) 

1 iJ3 . . 5 iJ3 . 26 - 2 ± -2-, 1 ± 1J3 ,  2 ± -2-, 28 
27 x2 + y2 + lOx + 16 = 0, ( -1;, -¥) 
28 (i) - 1, - i; 3n/4 (ii) 2, 2 - i; k = - 10 
29 a = ±J

2
, b = ± j2 , (J2 - 1) + J2 i, ( - 'J2 - 1) - J2 i 

. (1 + i) 30 (1) X = ± 2, y = ± 1 ; ± � (ii) 2, 1 - i 
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Chapter 5 
Exercises Sa 
1 0, 3 

4 2 

Exercises Sb 

4 
4ac - b2 

4a 

Exercises 5c 

l §J-, ¥, �  

5 14 

2 -½, 5 

9 1 ,-m 

6 1 10 -20 � k � 5 

3 k � 2 or k � -10 

2 (i) x2 - 19x + 25 = 0 (ii) 25x2 + 72x -5 = 0 
3 (i) q = 0 (ii) p = r 
5 (i) 

J(q2 -4rp) 

( 
. . .  

) 
J(q2 - 4pr) 

( 2 ) 111 3 q -pr p 

(ii) -q
J(q2 -4rp) 

p2 

(iv) -q 
J(q2 -4rp) 

(q2 -2pr) 
p4 

7 ac2x2 + b(b2 -3ac)x + a2c = 0 
9 ac(p + q)2 = b2pq 

10 x2 -5x - 14 = 0 

Exercises 5 
1 (i) x2 -6x + 4 = 0 (ii) x2 + 4x - 14 = 0 

(iii) x2 -2ax + a2 -4b2 = 0 
3 4 when x = + 3 4 px2 -3 (p + q)x + 1q = 0 
5 -1, -½ 
8 7p2, jsp; x2 - 2ljsp2x -p4 = 0 
9 0, -4 

1 1  k � -½, k � 3 
13 (i) k < 1 or k > 9 (ii) k > 0 14 a + b = 0 
16 x2 + x [p -J(p2 -4q)] -pJ(p2 -4q) = 0 
18 -¥ 1 9  3 
20 02n1 - l1 n2)2 = (m1 n2 -m2nd(l1 m2 -l2m 1 ) 
21 0, 3, 8 25 -10 � k � 2 
26 (a) a2cx2 + b(b2 -3ac)x + ac2 = 0 

(b) p � - 1; values are � -2 and � 6 
27 (b) k � 0 or � 3 (c) k � 3 
28 (i) p = -4, q = 1 ;  p = 3, q = -¾ 

(ii) qx2 + p(q + 2)x + (q2 + 4q + 4) = 0 
29 (a) 0, k-2 (b) k = 7, -� (c) -½ 30 x2 - 7x + 1 = 0 



Chapter 6 
Exercises 6a 
1 (i) 183° 21' (ii) - 90° 32' (iii) 36° 

2 (i) 4· 102 (ii) 0·2455 (iii) - 2·2369 
3 (i) 129° (ii) -¼ radian 
5 (i), (iii) and (iv) ; (ii) and (v) 

Exercises 6b 
1 tl, -&. ¥-, H, ¥ 
2 3/J13, 2/J13 3 (i) a2 sin2 0 (ii) sin5 0 
4 (i) (cos2 0)/a2 (ii) sec 0 

5 (i) 3 - 2c - 3c2 1 - c2 + 2c3 

(ii) - -----=--
c2 

Exercises 6c 
1 (i) 0·3420 (ii) 0·7660 (iii) - 0·3640 (iv) 0·3420 

Answers 467 

2 (i)- cos 10° (ii) - tan 50° (iii) cos 60° (iv) - sin 20° 

6 (i) - 1  (ii) 1/J2 (iii) - J3 (iv) - J3/2 
7 (i) 0 (ii) - 1 (iii) 0 (iv) - 1 (v) 0 (vi) 1 
8 -{¾, -✓½ 
9 - 3, - � 

Exercises 6d 
3 They coincide 4 They coincide 
5 (i) )3/2 (ii) 1 (iii) - 1 (iv) -½ 

(v) 1/J2 (vi) J3 (vii) - 1  (viii) - 1/J2 

Exercises 6e 
1 (i) M (ii) M (iii) - �. No 
2 ½ 
3 (i) (J3 - 1)/2J2 (ii) (J3 + 1)/2J2 
6 (i) sin 10° (ii) - cos 70° 

7 (i) cos 10° (ii) - sin 50° 8 (i) tan 70° (ii) tan 30° 

18 (i) sin A cos B cos C + cos A sin B cos C + cos A cos B sin C 
- sin A sin B sin C 

(ii) cos A cos B cos C - cos A sin B sin C - sin A cos B sin C 
- sin A sin B cos C 

Exercises 6f 
1 ½, - 2  3 H, 3/JlO, -¼ 
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15 (i) {l + t)2 

1 + t 2 

Exercises 6h 

(ii) 2( 1  + t)  
1 + t 2 ( .. . ) 

(1 - t )2 

lll 1 2 - t  

1 (i) ✓2 sin (0 + 45°) (ii) ✓2 cos (0 - 45°) 
2 5 cos (0 + 53° 8') 
3 ✓ 13 sin (0 - 56° 19') 
4 5 sin (20 + 36° 52') 
5 ✓ 10, 1 8° 26' 

Exercises 6i 
1 (i) n/4 (ii) n/4 (iii) n/3 
2 (i) - n/4 
7 ½ 

(ii) - n/6 (iii) n/6 

Exercises 6j 
3 30° 39' 

Exercises 6 

4 13 1  m 5 19·5' 

2 (i) 0·8988 (ii) -0·9336 (iii) 6-3138 (iv) 0· 3256 
3 (i) -% (ii) -1 (iii) - � (iv) - �  

s 
cot 0 = ✓ ( 1  - 82)

, 4 cos 0 = ✓( 1 - s2), tan 0 = ✓( 1 - s2) , s 
1 1 

sec 0 = ✓(l _ 82)
, cosec 0 = 

8 
P

2 + q2 -2q 14 - - - - 15 ( 123°4 1 ', - J52), 33°4 1 ', 2 13°4 1 '  p2 + q2 + 2q 
16 2 - J3, (J6 - J2)/4 
20 2 
23 1 - ✓3 

1 + ✓3 

24 (i) 3 tan A - tan3 A
' 

1 - tan2 A 
1 - 3 tan2 A 2 tan A 

28 ¼n 

( . .  ) k✓(4 - k2) k4 - 4k2 + 2 
11 

k2 - 2 ' 2 

29 n - arcsin 2x✓ (1 - x2
), arccos(2x2 - 1 )  for all x 

32 ! 
33 3 + 3 cos 20 + 4 sin20 = 3 + 5 cos(20 - 53° 8') 

Max 8 when 0 = 26°34', min - 2  wp.en 0 = 1 16° 34' 
38 R = J5/2, tan oc = ½; 1 + J5/2, 76° 43' 

a 2a -b + a2b 
39 b ' 1 + 2ab - a2 



Chapter 7 
Exercises 7a 
1 nl80° + ( -lt56° 12'; 56° 12', 123° 48' 
2 n360° ± 44° 34'; 44° 34', 315° 26' 
3 nl80° + 64° 42'; 64° 42' 244° 42' 4 n360° ± 123° 54'; 123° 54', 236° 6' 
5 n180° -( -1r 28° 31'; 208° 31', 331 ° 29' 
6 n180° -16° 42'; 163° 18', 343° 18' 
7 n60° + ( -1)" 10°; 10°, 50°, 130°, 170°, 250°, 290° 

8 n30° - 8° 29'; 21°31', 51°31', ... , 351° 31' 
9 n1800° ± 150°; 150° 

10 nl80°+15° ± 27°50'; 42°50', 222°50', 167° 10', 347° 10' 
11 nl80°+( -1)"54° 24' -18° 3'; 36° 21', 107° 33' 

Answers 469 

12 nl80° 
· 0° 30° 180° 90° 360° 150° 210° 270° 330° 

4 - 2( -1)" ' ' ' ' ' ' ' ' ' 
13 36n°; 0°, 36°, 72°, ... , 324°, 360° 

14 90n° + 45° or l80n° -90°; 90°, 270°, 45°, 135°, 225°, 315° 

nl80° + ( -1)"90° 15 
3 + 2( -1)" 

; 18°, 90°, 162°, 234°, 306° 

16 (2n + 1) 18°; 18°, 54°, 90°, ... , 342° 

17 90n° or (2n + 1)30°; 0°, 90°, 180°, 270°, 360°, 30°, 150°, 210°, 330° 18 90n° or (2n + 1)22½0
; 0°, 90°, 180°, 270°, 360°, 22½0

, 67½0
, • • •  , 

337½0 19 (i) n360° ± 120°; 120°, 240° (ii) n180° + 60°; 60°, 240° 

20 n360° -120°; 240° 

Exercises 7b 
1 nl80° + 45° or nl80° + 26° 34'; 45°, 225°, 26° 34', 206° 34' 2 nl80° ± 60°; 60°, 120°, 240°, 300° 

3 n360° ± 60°; 60°, 300° 4 nl80° + 66° 2'; 66° 2'; 246° 2' 5 n180° + ( -1)" 14° 29'; 14° 29', 165° 31' 
6 n180° ± 30°; 30°, 150°, 210°, 330° 

7 n180° ± ( -1)" 90°; 90°, 270° 

8 n360° ± 78° 28'; 78° 28', 281 ° 32' 
9 n180° ± 40° 54'; 40° 54', 139° 6', 220° 54', 319° 6' 10 n180° + 14° 2' or n180° + 123° 41'; 14° 2', 194° 2', 123° 41', 303° 41' 

11 n180° + 45° or n180° + 171 ° 52'; 45°, 225°, 171 ° 52', 351 ° 52' 
12 n90° + ( -1)" 9° or n90° -( -1)" 27°; 9°, 81 °, 189°, 261 °, 117°, 153°, 297°, 

333° 

13 n90° or nl80° ± 60°; 0°, 90°, 180°, 270°, 360°, 60°, 120°, 240°, 300° 

14 n180° or n360° ± 80° 24'; 0°, 180°, 360°, 80° 24', 279° 36' 15 n60° -( -1)" 30° or n60° + ( -1)" 6° 29'; 90°, 210°, 330°, 6° 29'; 53° 31', 
126° 29', 173° 31', 246° 29', 293° 31'. 
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Exercises 7c 
1 n360° or n360° ± 180°; 0°, 180°, 360° 

2 n180° or n180° + 108° 26'; 0°, 108° 26', 180°, 288° 26' 
3 nl80° + 45° or n l80° -18° 26'; 45°, 225°, 161 ° 34', 341 ° 34' 
4 n90° -31 ° 43' or n90° + 35° 47'; 58° 17', 148° 17', 238° 17', 328° 17', 

35° 47', 125° 47', 215° 47', 305° 47' 
5 n180° ± 45° or n120° ± 20°; 45°, 135°, 225°, 315°, 20°, 100°, 140°, 220°, 

260°, 340° 

6 (2n + 1) 90° or 
2 �

��� l)" ; 0°, 36°, 108°, 252°, 324°, 90°, 270°, 360° 

7 n360° ± 180°; 180° 

8 n90° or n90° -( - 1)" 15°; 0°, 90°, 180°, 270°, 360°, 105°, 165°, 285°, 345° 

9 n180°, nl80° + ( -1)" 90°, n180° -( -1)" 30°; 0°, 90°, 180°, 360°, 210°, 
330° 

10 n90° ± 15°; 15°, 75°, 105°, 165°, 195°, 255°, 285°, 345° 

Exercises 7d 
1 n360° + 26° 34' ± 63° 26'; 90°, 323° 8' 
2 n360° + 53° 8' ; 53° 8' 
3 n360° ± 60° -16° 16'; 43° 44', 283° 44' 
4 n720° ± 112° 38' + 112° 38'; 0°, 225° 16' 
5 n l80° ± 33° 27' -5° 40'; 27° 47', 207° 47', 140° 53', 320° 53' 
6 n360° + 36° 52' ± 78° 28'; 115° 20', 318° 24' 
7 n120° -15° ± 45°; 30°, 60°, 150°, 180°, 270°, 300° 

8 n l80° -7° 54' ± 27° 22'; 19° 28', 144° 44', 199° 28', 324° 44' 
9 n120° -4° 41' ± 55° 19'; 50° 38', 60°, 170° 38', 180°, 290° 38', 300° 

10 n360° ± 135° + 45°; 180°, 270° 

Exercises 7 
1 (i) 30° 49', 59° 11', 210° 49', 239° 11' 

(ii) 13° 53', 103° 53', 193° 53', 283° 53', 76° 7', 166° 7', 256° 7', 346° 7' 
(iii) 119° 28', 299° 28' 
(iv) 0°, 36°, 108°, 180°, 252°, 324°, 360° 

(v) 22½0
, 112½0

, 202½0
, 292½0

, 135°, 315° 

2 (i) 36° 52' (ii) 36°, 324°, 108°, 252° 

3 45°, 225°, 171 ° 52', 351 ° 52'; mr + 45°, mr + 171 ° 52' 
4 0°, 180°, 360°, 210°, 330° 

5 (i) 0°, 45°, 135°, 180° (ii) 35° 16', 144° 44' (iii) 90° 

6 n360° ± 60° 

7 13° 17' or 240° 27' 
8 (i) n360° or n120° + 30° ; 0°, 360°, 30°, 150°, 270° 

(ii) n360° + 71° 34' - 18° 26'; 53° 8' 
9 n360° ± 60° or n360° ± 141 ° 20' 

10 (i) 60°, 120°, 240°, 300° (ii) 53° 48', 233° 48', 159° 54', 339° 54' (iii) 172½0 

1 1  360n° ± 60° 

12 (i) 70° 32', 120° (ii) 54° 44', 125° 16' 
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13 (i) 0°, 180°, 60°, 120°, 35° 16', 144° 44' (ii) 60°, 180°, 45°, 90° 

14 -sin 3x sin 2x. 0°, 36°, 72°, 108°, 144°, 180°, 22½0
, 67½0

, 112½0
, 157½0 

15 60°, 120°, 240°, 300°, 45°, 135°, 225°, 315° 

16 (2n + 1) 30° or nl80° ± 30° 

17 (i) n360° -36° 52' ± 113° 35' (ii) n360° + 73° 44' ± 78° 28' 
18 n180° or n120° 

19 60°, 120°, 45°, 135° 

20 cos A =  k, cos B = -½k; cos A =  - ½k, cos B = k; -1 � k � l 
21 70° 32', 289° 28', 120°, 240° 

22 (i) n360° 
± 180°, n360° 

± 120° (ii) n90° + 22½0
, nl80° -45° 

(iii) n45° -2° 30' + ( -1)" 3° 23' 
23 -120°, -90°, -60°, 0°, 60°, 90°, 120° 

24 R = 13, a =  67° 23', 142° 54', -8° 8' 
25 nl80° -( -1)" 30° 

26 n360° -67° 23' ± 140° 17' 
27 j or -1 
28 0°, 180°, 360°, 270°, 41° 50', 138° 10' 
29 45°, 135°, 225°, 90°, 210°, 330°, 315° 

30 ± 2  
31 19° 28', 160° 32', 194° 29',345° 31' 
32 90°, 43° 10' 
34 n180°, n180° + 135° 

36 (a) 70° 32', 120° (b) 45° 

37 65s2 + 8s -48 
40 t 1 = tan½0 1 , t2 = tan ½0z. t3 = tan ½03, t4 = tan ½04 

t 1 + t2 + t3 + t4 -(t1 t2 t3 + t2 t3 t4 + t 1 t3 t4 + t1 t2 t4) 
1 -t 1 t2 -t 1 t3 -t 1 t4 -t2 t3 -t2 t4 -t3 t4 + t 1 t2 t3 t4 

41 J5 cos (x - 63° 26'); 110° 36', 16° 16' 
42 - J2 � a �  J2, 45°, 225° 

43 J5 sin (0+26° 34'); 144° 52', 342° 

44 (i) cos x = -i  or -1; tan2 x = ¾ or 0 
(ii) 360n + 53.1 °, 360n -36-9° 

45 n/2, 3n/2, n/3, 5n/3, 2n/3, 4n/3 
46 233° 8', 328° 7' 
47 18° 

48 (i) 30°
' 90°

' 150° (ii) 120° 

49 n/6, n/3, 2n/3, 5n/6 
50 70°, 190°, 310°, 110°, 230°, 350° 

Chapter 8 
Exercises Sa 
3 B = 63° 39', C = 51°21', a =  19·20 or 19·21 depending on the method 

of working 
5 c = 2  
7 W 26° 8' N or 296° 8' 
8 Correct to nearest minute B = 70° 54', C = 65° 13', D = 43° 54' 
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10 (i) No possible triangle 
(ii) A = 44° 12', B = 67° 54', a = 4·23 

(iii) A =  51 ° 58', B = 54° 40', b = 674·1 

Exercises 8 
1 A = 24° 34', B = 19° 26', b = 1·09 
2 a = 3J 5, b = 2J 10 
3 sin 0 = 0·8127, a =  95·7 
4 4·34 cm 
5 a =  116-4, A =  34° 53', C = 50° 55'. A =  9 172 mm2 

6 b = 1 17, c = 56 
7 AC = 5·94, B = 115° 23', D = 64° 37' 

8 H . h [a2 + (b -h)2] tan 0 e1g t = - - -- - - ­a+ (b -h) tan 0 
9 AB = 300J ( cosec2 a + cosec2 f3 -2 cosec a cosec f3 cos y) 

10 c = 9·8 cm 
18 16°, 10° 

22 AD = 13J3/3 
24 60·1 m a2A 
25 l6R2 
26 118 m 
27 (i) 45° (ii) JJ a (iii) arccos ( -½) 
30 (i) 2646 m (ii) A = 2529 m, B = 1732 m 

tan a 
31 ½b2-----:---/3 + ½b sec a(2l -b tan a cot /3) 

sm 

33 d = 
6h tan a 

3+tan2 a 
36 45° 35' 
37 (i) arcsin (l/J3) (ii) arctan (l/J2) 
38 k � x � 2k; 2J3k 
39 61 ° 73·7° 225·2°· 10·8 m 
40 3J3 cmi,' 3J7 c�2 ; 9 

Chapter 9 
Exercises 9a 
1 A = ½x( lOO -x) 

1 
2 V = 47t 

h(20 -h)2 , A =  nr2 + 2nr(20 -2nr) 

3 h = lOsin x 
4 h = J(20x -100), 5 � x � 10, 0 � h � 10 
5 0 = (20 -2r)/r 

(iii) 16° 46' 
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6 f(l )  = - 2, f(2) = 2, f( - 1) = 2. All the real numbers in each case 
7 cf,(0) = 6, cf,(1) = 2; x = 2 or 3 
8 G(0) = ¼. All the real numbers. 0 < G(y) < ¼ 
9 F(0) = 1, F{½1t) = - 1, 0 = n1t + ¼1t, - j2 � F(0) � j2 

10 All values except 1 and 2 
1 1  3 < x < 7; x � 3 and x � 7 
12 (i) x = ½ + ½Y (ii) x = 4(Y - 3) (iii) x = arcsin y - ¼1t 

(iv) X = Jy 
13 (i) y = x3i(4 + x) (ii) Two functions (a) y = - x, (b) y = x - l (iii) Not 

possible 
14 (i) 1, i (ii) y is not defined for x = l or 2 
15 There are two functions (a) y = J(25 - x2), (b) y = - J(25 - x2) 

(i) (a) 4, (b) - 4  (ii) (a) 3, (b) - 3  

Exercises 9b 
1 50 m, 1250 m2 

3 0·86 radian 
5 12 m/sec, 11 m/sec 
7 10 

2 x = ½ or x = 2 
4 3 + X2 + 5, 11 
6 3 + X2, 4 

8 7, 3·31, 3·0301, 3·000 030 0001; 3, 3x2 

9 (i) - 1  (ii) - ( l /x2
) 10 10 m/sec, 20 m/sec 

Exercises 9c 
1 12 
2 Yes, - 2x, 2; 0, 2, No 
3 Yes, - 2x, 3x2; 0, 0, Yes 
4 (i) 14x (ii) 4x3 - 4x (iii) 2 cos 2x (iv) - 3 sin 3x (v) cos x - 2x 

Exercises 9 
1 A =  r2( l  + sec 0) cot½0 
3 o, 1t/4, - 1t/4 
4 1, 2 ; 0·001 

5 (.) 3 - 4x (") 1 y =-- 11 y = -x l + x 
6 y = 6/(3 + x3); ¾ 
1 y = X2 - X - 2; 4 
8 x/ + x1x2 + x/ + 3, 
9 5-tu m/sec, 5 m/sec 

10 X = 2 
1 1  2, - 1, 2 
12 u m/sec, a m/sec2 

13 J3 
14 (i) 2x + 1 
15 (i) a cos ax 
16 (i) sec2 x 
21 - 2  

(ii) - 4/x5 

(ii) - a sin ax 
(ii) sin 2x 

23 p = - 3, q = 19 
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Chapter 10 
Exercises 10a 

1 35x4 - 12x3 + 2x 
3 - 6 sin x - 16x - 8 
5 cos x - cos2 x + sin2 x 
7 8x3 + 15x2 + 12x + 4 

2 24x2 - cos x 
4 7x6 + 4x3 + 3x2 

6 6x + 4 cos x - 4x sin x 

8 16x(l + cos x)(l + sin x) + 8x2(cos x - sin x)(cos x + sin x + 1) 
9 cos x - x sin x + 6x 

10 sin x (3x2 + 8x) + cos x(4x2 - 6x) 
11  4x(x2 + 1) 
13 6x(x2 - 1)2 

14 3 sin x cos x + 3x(cos2x - sin2 x) 

12 2(x2 + 1)(5x2 + 2x + 1) 

15 (9x2 + 3)sin x cos x + 3x(x2 + l)(cos2 x - sin2 x) 

Exercises 10b 

1 
x2 + 2x (x + 1)2 

3 2 + 2 cos x + x sin x 
(1 + cos x)2 

5 sin x 
(1 + cos x)2 

2 sin x - x cos x (x + sin x)2 

4 - cosec x cot x 

- 6  6 ----=­
(x + 1)3 

7 x + sin x (sin x + cos x) 8 x4 + 6x3 + 3x2 + 6 
(cos x + sin x)2 (x2 + 3x + 2)2 

cos x(x5 + x4 - x3 - x2) - sin x(x4 + x2 + 2x) 
9 -------------- --(x + 1)2 (x2 - 1)2 

- 2x3 - 6x2 + 6 10 - -�--�-� (x + 1)2 (x + 2)2 (x + 3)2 

12 4x2 + 12x + 6 
(x2 + 5x + 6)2 

14 2/(2 + ✓3) 
Exercises 10c 
1 sec x (sec x + tan x) 
3 - cos x - cot x cosec x 
5 4 sec2 x tan x 

2 sin x cos x + sin2 x 11 - �-- -­
cos2 x(cos x + sin x)2 

13 1·08 

15 ½, (0, 0); ( - 2, 6) 

2 sec x (sec2 x + tan2 x) 
4 sec2 x(l + 2 tan x) 

6 (sec x + tan x)(l - sin x + cos x + tan x) 

7 sec x(sin x tan x + 2 sin x - cos x) 
(sin x + cos x)2 

8 sec x tan x 
(1 + sec x)2 

10 (i) v = (8t - 3) m/sec, 5 m/sec 
a = 8 m/sec2 , 8 m/sec2 

9 - 2 sec2 x 
(1 + tan x)2 

(ii) v = 2n ( cos 2nt - sin 2nt ) m/sec, 2n m/sec 
a = - 4n2 (cos 2nt + sin 2nt ) m/sec2 , - 4n2 m/sec2 



11 (i) -2 cos 2x (ii) cos x/(1 -sin x)2 

15 sin(x + ½mr) 

Exercises 10d 
1 5(x -1)4 2 10(2x -1)4 

3 5(4x -3)(2x2 -3x)4 4 8(x + 1)7 

5 3 sec 3x tan 3x 6 5 sec2 5x 
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7 sin 4x + 4x cos 4x 8 2x cos 3x -3x2 sin 3x 
9 3 sin2 x cos x 10 3x2 cos x3 

11 6x sec(3x2 + 1) tan (3x2 + 1) 12 9 tan2 (3x -4) sec2 (3x - 4) 
13 4x sin(x2 + l) cos (x2 + 1) 14 ( lOx + 7)(2x -1)3 

15 3 sin2 x cos x tan 2x + 2 sin3 x sec2 2x 
16 -4 sin3 X COS X 

17 - 3 cos2 x 
(1 + sin x)3 

19 8 cos7 x sin x 

21 
4 sin xcos x 
(2 + sin2 x)2 

18 -8x(l -x2) 
(1 + x2)3 

20 4 sin2x 
(1 + cos 2x)2 

22 18 sec3 (tan2 3x) tan (tan2 3x) 
tan 3x sec2 3x 

23 (i) n sinn - 1 0 cos 0 (ii) -m cosm - 1 0 sin 0 
(iii) sinn - 1 0 cosm - 1 0 (n cos2 0 -m sin2 0) 

Exercises lOe 
1 ¾xl /2 

3 j(Jx)4 

- 12x 
5 (2x2 -3)4 

7 3x✓(x2 + 1) 

1 -x -2x2 
9 ✓(1 - x2) 

1 11 2✓xsec✓x tan✓x 

13 cos x 
2✓(1 + sin x) 

15 -1/(1 -cos x) 

Exercises lOf 
2x 

2 1/3Jx2 

4 6( x3 -:3) ( x2 + :4) 
4x -1 

6 -- - -
2✓(2x2 -x) 

8 - x  (x2 + l)3/2 
10 (1 + x)2(1 + 7x) 

2✓x 

12 ½ tan x✓(sec x) 

14 
l 

✓[(x + 1)3(x - l)] 

7 1 
1 + (x +  1)2 
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8 
2 

x.j(x4 - 1) 
9 �  

1 + x4 10 arcsin x + 
.j( l  � x2) 

-1 1 
[ (

1 + X) ] 11 (l + x)..)x 
12 1 + x2 arctan 

1 
_ 

x 
= arctanx + arctan 1 

14 Because 2 arctan x = arctan (i :\2) 

Exercises l1Jg 

1 
y 
X 

= -x2 

3 - ✓(�) 
-y 

5 -- ­x + cos y 

7 -1 

9 -½, -� 
Exercises 10h 
1 2/(3t )  

3 -4 sin2t 

5 2t + t 2 

7 !(t - !) - (1 + t 2)3 

2 t 
, 8t 3 

9 
4t 

3t 2 + 1 

Exercises 10 

2 
1 -2xy2 

2x2y -1 
sin x -1 

4 
1 -sm y 

6 ( 1 + y cos xy) 
(1 + x cos xy) 

8 
(2x + 3y) 10x2 + 10y2 + 3Oxy 
3x + 2y ' (3x + 2y)3 

10 -!, -ill 

2 -l cot 0 

4 
2t cos t - t 2 sin t 

sin t + t cos t 
3t 2 

6 1 -2t 3 

10 (i) ¾ sec (ii) 1 sec 

1 (i) 3x3 - X (ii) �(9t 2 - t -1) 4ty t 
2 (i) 15x4 + 4x3 + 9x2 + 2x (ii) sec 0(1 + tan 0 - cosec 0) 

3 (i) - (1 + x2) 
(ii) x

4 + 4x2 -1 
(1 -x2)2 (x2 + 1)2 

4 0 
1 C) 1 

1 2(1 + ..)x)2 .jx 11 (1 -..)x)2 .jx 

(1.1.) 
2t.j (1 - t 2) arcsin t + t 2 

5 (i) 3 sin t cos 3t + cos t sin 3t ..)(1 -t 2) 



6 (") _ (x2 + 6x + 16) 
1 (x2 - 16)2 

7 (i) -(5 cos t sin 5t + sin t cos 5t)  

8 (i) 4 sin3 x cos x 

C) 6(x2 - 2) 
11 (x2 + 3x + 2)2 

C) 
(1 + t 2) arctan t + t 

11 
1 + t 2 

(ii) 3 sec3 x tan x 
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9 (i) 18 sec3 60 tan 60 (ii) -100 cot4 02 cosec2 02 

10 (i) sec 0 (tan 0 + 20 tan2 0 + 0) 
(ii) sin x cos 2x + x cos x cos 2x - 2x sin x sin 2x 

1 1  (i) - � cos!_ (ii) - (cos !__ + x sin!__) / x3 

X X X X 

12 ( ") 
1 - 203 

" ") 3t 2 

I (1 + 03)2 (11 ,J(l  - t 6) 

13 (i) ✓o-� 02) 
(ii) 2(2 - 0)(\ - 0)112 

2 
14 (i) sec x 

,J(l  - tan2 x) 

15 (i) ,J(2 � t 2) 

16 (i) 
2

3 sin � 
X X 

20 (i) 
16 - s!�

x

+ 17x4 

21 (i) nx" - 1 (tan nx + x sec2 nx) 

22 (i) y2 + 2xy :: 

(iii) ( x :: - y) / x2 

2 

23 (i) 
y - X 

y2 -x 

24 (i) J - X 

y -2 
. sec2 x 

25 (1) ,J(l  2 ) 
26 j 
27 0, 0 
28 2, 2 

- tan x 

29 -(20xy + 432x5y5)/(6y5 - x)3 

b 
30 - - cot 0 a 

(" ") 
cos x 

11 . 2 1 + sm x 

(ii) 
1 + 2�: 2t 2 

(" ") 
2 

11 --1 + x2 

(. ") 
1 

11 ,J 2 (5x -x - 6) 
1 1 C) -z COS -zX 

11 l + sin2 ½x 

(ii) (y - X ::) / y2 

(. ) . 2 dy 1v sm y 
dx 

(ii) 
4xy2 - 3x2 

4y3 -4x2y 

( .. ) 
1 - x2 

ll - ­
y2 - 1  

2 
(ii) ay - X 

y2 - ax 
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b b 
31 - cosec 0, - 2 cot3 0 

a a 
32 - tan 0, (sec4 0 cosec 0)/3a 
33 tan½t 
34 tan t, (sec3 t )/ at 
35 ¾ 

39 
- (0 sin 0 + 2 cos 0) - (02 cos 0 - 40 sin 0 - 6 cos 0) 

03 
' 

04 

41 -½, iu 
43 2x sin [2(x2 + 1)] 
45 - 2 sin 3 0 cos 0 
Chapter 11 
Exercises 11a 

1 0·000 036 32 m/°C 
3 4,r cm2/sec, 10n cm3/sec 
5 lO cm/sec 
7 20 m2/min 

9 - 0·03 rad/sec 

Exercises 1 1b 

2 4·77 cm/min 
4 500m3/min 
6 0·265 m/min 1 8 9,r cm/sec 

1 
10 Sn cm 

1 36 m/sec, 36 m/sec2; 9t 2 m/sec, 18t m/sec2 

2 S m/sec 
3 3(t 2 - 1), after 1 sec 
4 a =  6t cm/sec2• When t = 0 
5 # m, O rn; - 4 m/sec2, 4 m/sec2 

Exercises 1 1c 
1 1 ·0006 
2 0·7073 0·7069· 0·7075 0·7067· 0·7077 0·7065 
3 0·377 dm2, 0·3779 cm2 ' ' 

1 4 4·4n cm3; 21,r cm/sec 

5 3% increase 
6 Decrease of 40,r cm 3 

7 Decrease of 8n cm3 

9 0·4 cm2 

10 0·4%, 9960 

Exercises 11d 
1 y - 6x + 1 1  = 0, 6y + X - 8 = 0 
2 y + 3x - 3 = 0, 3y - X + 1 = 0 



3 y = 2x, y + x - 1 = 0, y - 2x + 4 = 0 
4 3y - 5x + 16 = 0 
5 y + X - 2 = 0, y = X 
6 y - x - a = 0, y + x - 3a = 0 
1 y = 8, y = 4 
8 27y - 135x - 40 = 0, y - 5x + 8 = 0 
9 2y - X - 7 = 0, 2y - X + 1 = 0 

10 y = X, y - X - 4 = 0 
1 1  x +  y = aJ2 
12 y - x - a  = 0 
Exercises l le 

I Max of 0 when x = - 2; min of - 4  when x = 0 
2 Max of 1-, when x = -¼; min of 0 when x = 1 
3 Min of - ½  when x = - 1; max of ½ when x = 1 
4 Min of ½, max of ¾, min of f 
5 - .J(a2 + b2) 
6 Height 2r/.J3, radius r.Ji 
1 A = r2 sin 20(1 + cos 20) 

av 
10 XP = 

.J(u2 - v2) 

Exercises l lf 
I (i, - ¥}-) 
2 (0, 2), (i, �) 
3 Min (1, 3), max (-¼, H), point of inflexion (i, �) 
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Exercises 11 
1 

I 4n 
cm/sec 

3 2· 19 units/unit change in r 
32 

I 
. 

2 4·5 cm/sec away from lens 

4 10 m3/sec 

5 -5- m mm 
1 7t n 2n . n . n .J3 7 3' 3' O, 2' 7t, 3 + 2 

10 0·17 cm 
12 3, y = 15x + 36; ( - 6, - 54) 

14 y = !x - i  
15 (i) y = 4x - 15 (ii) y = - ¼x + 2  

6 20, 16; 18 units 

9 Decreased by 1 ·02% 

11 Decreased by 0·42% 
2.J3 13 1 ± .J2, 1 ± -3-

16 Min when x = 0, point of inflexion when x = 1 
17 a = ¼, b = ¾, c =  -6, d =  -Jj; ( - 4, ¥) 
18 - 0·29 
19 (i) Min (in, 3.J3), max (¾n, - 3.J3) (ii) Min (1, 0), max ( - 1, J) 
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22 Max (1, ½), min (-1, -½), points of inflexion (0, 0) 

( J3, �3), ( -J3, -13) 
23 Min (2, -½), min (-2, -½) 
24 I 
25 arcsin (j- )  
27 Max (1, ½), min ( -1, 1) 

b 
28 --

3a 
30 y = -x + 2, y = - x  + ½n 
31 Min (2, 0), (2, 0), (0, 4); min (2, 4), does not cross x-axis, (0, 8); 

min (2, -4); (0, 0), (4, 0) 
33 y = 2x, (1, 2) 
35 ¼n -½A 
36 614 cm3 37 a 
38 (¼n, -3)3), (¾n, 3}3) 
39 (1, 0), ( -1, 6f(3, 2); H, -¼); x = 0, y = 3 
40 (-1, -½), (1, ½) 41 (0, 3), (�n, -!), (2n, -1) 
43 64R3/81 44 ½n, 4 + n, 6 
45 Maximum 

Chapter 12 
Exercises 12a 

1 1/x 
3 cot x 
5 l/[2(x - 1)] 
7 sec x 
9 log. x 

1 1  -2/(1 -x2) 

13 -y(x + 1) 
x(y + 1) 

Exercises 12b 
1 3e3x 

3 cos x e•in x 

5 aeax +b 
7 2x log. 3 x 3x' 

9 e- x' (l  -2x2) 

1 1  ex (log. x + �) 
15 4 or -1 

2 -(2/x) 
4 a/(ax + b) 
6 1/(cos x sin x) 
8 2 cot x 

10 (1 - log. x)/x2 

12 cos x cot x -sin x log. sin x 

15 1/x 

2 -2xe- x2 

4 -e- x 
6 2x 1og. 2 
8 ex(cos x - sin x) 

2e2x 
10 

(1 + e2x)2 

12 2xe-x' (cos x2 -sin x2) 



Exercises 12c 
1 sec2 X etan X 

2 4x3ex• . (sin x ) 3 x••n • � + cos x log. x 
4 (sin xY(x cot x + log. sin x) 
5 (log. xY[log. (log. x) + -1 -1 -] og0 x 

(x - 1 ) 6 xx- 1 -x- + log0 x 
7 ex + xx( l  + log0 x) 
8 2xex2 + xx2 + 1 (1 + log. x2

) - 2  (X + l)l/J 
9 3(x2 - 1) X - 1 

10 -- --X (X2 - 1 )1/4 
x4 - 1 x2 + 1 

Exercises 12d 
2 - l < x < l 
3 0·5236, 0·4997, 0·5000, 0·5000 to 4 decimal figures 
5 sin x � x - ¼x3, cos x � 1 - ½x2 sin x � x - ¼x3 + -d-o-x5, cos x � 1 - ½x2 + -f4X4 

(') 1 n(n - 1) 2 n - 1 " 7 1 + nx + 2! x + . . .  + nx + x 
( . . ) 1 n(n - 1)  2 n(n - l)(n - 2) 3 11 + nx + 2! x + 3! x + . . .  

9 0·5236, 0·5714, 0·5767 to 4 decimal figures 
10 a + bx + cx2 + dx3 + ex4 

Exercises 12e 
1 1 Je � 1 ·6487, - � 0·3679 e 

2 log. 1 · 2 � 0· 1 823, log. 0·9 � -0· 1054 
3 (i) 1 + 2x + 2x2 + ix3 + . .  . (ii) 1 -3x + iX2 - iX3 + . .  . (iii) 1 + x2 + ½x4 + ¼x6 + . .  . 
4 (i) 2x - 2x2 + ix3 - 4x4 + . . .  ; - ½ < x � ½ 

(ii) - (3x + ix2 + 9x3 + .!ljx4 + . . .  ) ;  - ½ � x < ½ (iii) x2 
- ½x4 + ½x6 - ¼x8 + . . .  ; - 1  < x < 1 1 1 1 5 -¾ < X � ¾ 6 1 + 2! + 4! + 6! + . . .  

8 - ¼n � x  � ¼n 9 0·6931 
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Exercises 12 

1 (i) 3x - _!_ + 6x log. x 
X 

(ii) ex(� +  log. 2x) 
(iii) - 2e- 2x (cos 4x + 2 sin 4x) 2 (i) 2e21/(1 + e21) (ii) cosec t (iii) - cosec t 4 y/(x + y) 
dy 5 dx = 5e3x cos (4x + a); a =  arctant cos a = ¾, sin a = !  

d2y dx
2 = 25e3x cos (4x + 2a) 

. e1( l + e21) .. l - log0 0 6 (1) ( 1  - e21)2 (11) (0 + log. 0)2 
7 (i) ex sin x(x cos x + sin x) (ii) _!_cos (log0 x) 

X 10 (i) 1/[2(x + l)] (ii) l/[2J(x2 - 1)] 13 k = - 1  18 1/2t 2, - 1/2t 4 19 1/te1, -( 1  + t )/t 2e21 
20 Max of 1/e when x = e 22 (1 ,  1/Je), ( - 1, 1/Je) 23 y = 2x + l 
24 (2, 2/e2) 27 (4,½ + log. 4) 
28 ± 1/J2 

(l )log x 
29 (i) og. x • [ 1  + log. (log. x)] 

X (ii) xx( l  + log0 x) + sec2 x e1anx 
30 xx( l  + log0 x{1 + a : 2) + a:2 31 1/e, 0 < k < 1/e, 1 ·43 33 0·000 334 
35 (i) 1 - 2x + 2x2 - ix3 (ii) 1 - 2x - 2x2 - 4x3, 0·00040 
37 x + - - -x3 + - + - - - + - + . . .  + -- + x3n - - -

x2 2 x
4 xs x6 x1 x3n- 1  ( 1 1) 2 3 4 5 3 7 3n - 1 3n n 

X3n + l  + 3n + 1 + · · ·  
1 ( . 2 sin4 0 sin6 0 sin2n 0 ) . 38 (a) -2 sm 0 + -2- + -3 - +  . . .  + -n- + . . .  , 

( - lt + l 
(b) 4 - x2 + 1 x3 · 2 log 2 - 1 x2 + 1 x3 · ---"3" • • 4 TI • n2n - 1 

0 ::,;;  X < n/2 
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39 (a) 1 + x2 + lx3 

(b) x - ½x2 + }x3 - ¼x4 + . . .  ; 

( 1 3 1 5 l 2n - 1 0 ) 2 cos 0 + 3 cos 0 + 5 cos 0 + . .  . + 2n _ 1 cos + . . .  
40 0·6931, 1·0986, 1·3863, 1·6094, 1·7918 

2 2" 2" 2" - 2 
41 0·2231 

44 Max for even r, min for odd r 
47 0 
49 3x - tx2 + 3x3

, 6x + 6x3 

Chapter 13 
Exercises 13a 

42 - -· - - --- + ---
3' n! (n - 1) !  (n - 2) !  

46 13e - 2x cos 3x 
48 - 2x (l + x)e- 2x, (0, 1), ( - 1, 0) 
50 - 1/e 

Arbitrary constants in these exercises have been omitted. 
3 1 2  3 4 22 

8/3 X 3 + 1/3 3/ 5 I 4/ 9 X 1 8x , 12, x , 5v- x , og. x, 9v- x , 22 
1 1 ✓ 1 3 5 5/ 3 2 - 2x2 • -x• 2 x, log. x, - lOx1 0 • -

Jx ' 3V' x 

3 arcsin ¼x, arcsin x, arcsin 2x, arcsin 3x, arcsin ix 
4 ½ arctan ½x, arctan x, ½ arctan ½x, 3 arctan 3x, 5 arctan 5x 
5 tan x, - cot x, ½x + ½ sin x, tan x - x, - cot x - x 

5 1 1 Jx(22 + 22x - 10x 5) 6 - 4x4 
- 3x3 + 

x2 ' 1 1  
a b c 7 - - - - - -3x3 5x5 6x6 

2 3 
-- xn - 4 + -- xp - 4 (n, p "F 4) 
n -4 p - 4 1 3 

(n - l)x" - 1 {n -2)x"- 2 
5 -----=-3 (n '# 1, 2, 3) 

(n - 3)x" -
8 x - ½x4 + 4x7, x + 5x2 + ¥x3. 2ab 1og. x - b2/x + a2x 
9 -6 cos x, 7sin x, 8 sin x + 6 cos x 

10 y = x3 
- 3x2 + 2x + 7 

11 V = St - kt 2 + c, k = 4 
12 x = - 3 sin t 
13 y = 3 - cos x 

14 y = ½x5 - ½x4 + }x3 

15 x = t 4 - 10t 3 + 16t 2 ; 2 sec, 8 sec 
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Exercises 13b 

1 (") 
(2x + 3) 11  l 

22 

(iv) 2(3u -5) 712 

21 

(ii) (5 - x)l 2  
12 (iii) 2(7t + 5)312 

21 

. 1 
2 (i) - 42(3x + 1)14 (ii) ✓(2x + 1) . . . 2 

(m) (1 -x)1 12 

(iv) -½(1 -3y)213 

3 (i) -½ cos (3x + 3) (ii) ½ sin (5u -1) (iii) cos (l  -y) 
(iv) ½x -¼ sin 2x (v) ½x + ¼ sin 2x 

4 (i) -e2 -x (ii) ½e5<1 + 2 > (iii) -¼e 1 - 6u 

5 (i) ½ log0 (2x + 1) (ii) -½ log0 (1 -2x) (iii) log. (sin x) 
(iv) i log. (x2 + 1) (v) log. (x2 + x -1) (vi) log. (2 -e -t) 

(vii) ½ log. (ex2 + 3) (viii) ½ log. (log. u) [NB Another form of this is 
½ log. (log. u2) ]  

(ix) log. (log. 3x) (x) -log. (cos x -sin x) 

(
x-1

) 6 (i) ½ arctan -2 - (ii) ¼ arctan 4t (iii) arctan (x + ½) 

7 (.) 1 • 40 (" ") 1 . 
(

2x + 1
) c···) 

. 
(

u -1
) 1 4arcsm 11 -z arcsm -

4- m arcsm -
3

-

8 (i) } log. (x3 + 1) (ii) -�(2 -3t)312 (iii) log.(1 + ex) 
9 (i) ½ arctan 2u (ii) ½ log. (1 + 4u2 ) (iii) ½ arcsin 2u 

10 (i) log. (1 + tan2 x) (ii) -log. (1 -sin2 u) 

Exercises 13c 
l y = 1 + x -}x3 

2 
2 y = --+ 1 

3 v = 92 m/sec, 372 m 4 v = u + }kt 3 (k constant), s = ut + -/zkt 4 

5 3333½ cm 

Exercises 13d 
1 (i) ½ 
2 (i) ½ 
3 (i) 4 
4 (i) n/12 
5 (i) -f! 
6 (i) 12} 
7 (i) -½ 
8 (i) ½(e9 - e6) 

9 (i) log. 3 
10 (i) 0 
11 1¾1 square units 

(ii) 16-¼ 
(ii) 16-¼ 
(ii) ¾ 
(ii) n/2 
(ii) -f! 
(ii) -12} 
(ii) ½ 
(ii) -½(e -e6) 
(ii) log. i 
(ii) n/2 

(iii) 0 
(iii) 0 
(iii) 18¾ 
(iii) n/3)3 
(iii) -f! 

(iii) ½(1 -e - 2) 
(iii) log. 5 
(iii) n/2 

http://-log.il


12 A square units 
13 2 square units 
14 n/2 square units 
15 1¾1 square units 

Exercises 13 
1 (i) ½(2x -1)4 (ii) *(2x -1)17 

2 (i) ;x 7 
- ¥-x5 + 2x3 -x (ii) i\x 1 3  

- jX9 + Jx5 -x 
3 (i) �x 712 

- ¼x512 + }x312 (ii) -}x3 + ½(a + b)x2 - abx 
4 (i) -6/x + log. x -}x3 

. 
(ii) 2x 1 i2 + ix3i2 + ¼x5l2 

(iii) 1f x2f3 + JxS/3 + !xs/3 

5 (') 
3J3 -5 

(") _i.. 1 2 11 J3 
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6 y = x2 - x3 + 1 1 y = X + 2x2 

10 l/J2 
8 y=C - k2/x 

9 y = 2x2 + 1/2x -1 
12 ½n + 1 13 343/6 

1 1  y = ½x2 - log. x + ¾ 
14 2} 

16 V = 4s 17 y = 9 + 6x - 3x2, 32 
18 1 sec, 21} m 
20 i, i 21 log. 5 

1 1 22 
3(2 -x) + 3(1 + x) ' } log. 4 

23 Vertical asymptote x = 6; max at x = 4, min at x = 8; ¥ - 8 log. 2 
24 Max at x = ¾, min at x = 3; 243/10 

Chapter 14 
Exercises 14a 
Constants of integration in these exercises have been omitted. 
1 ½x2 + x + log.(x - l) 2 }x3 + ½x2 + x + log.(x - l) 
3 x + log. (x -1) 4 -½t -½ log. (1 - 3t) 
5 -i,t 2 -½t - "t7" 1og.(1 -3t) 6 x -log. (1 -x) 
7 i - log. 2 8 ¼t --ftlog. (1 + 4t )  

1 a 
9 -¼ log. 5 10 

bx -
b2 1og(a + bx) 

Exercises 14b 
1 5 arctan(x + 1) 
3 n/4 
5 fg arctani{3x - 1) 
7 2 -2 arctan 2 

2 
(

2x + l
) 9 x + J 3 

arctan 
� 

2 1 arctan ½(x - 3) 
4 5x + arctan x 
6 n/2 
8 }x3 - 9x + 27 arctan ½x 

10 N +  n/s 

http://-it-iloe.il
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Exercises 14c 
1 ½ log. (x2 + 16) + ¾ arctan ¼x 
2 ¾ log. (x2 + 36) - ¾ arctan ¼x 3 log. (x2 + 2x + 10) + ½ arctan ½(x + 1) 
4 ¾ log. (x2 - 6x + 10) + 14 arctan (x - 3) 
5 -¾ log. (x2 - 8x + 25) - ¥ arctan ½(x - 4) 1 2 1 (2x - 1) 6 2 log. (x - x + 1) + J3 arctan � 
7 ½x2 + 6x + 13 log. (x2 - 6x + 10) + 18  arctan (x - 3) 

5 1 1  
8 6 log. (3x2 - 12x + 13) + J3 

arctan [(J3)(x - 2)] 
9 x - log. (x2 + 2x + 5) - ¾ arctan½(x + 1)  

10 ½x2 + x - ¾ log. (2x2 + 2x + 5) - ½ arctan ½(2x + 1)  
Exercises 14d 

1 - log. (x + 2) + 2 log. (x + 3) 
2 log. (2x - 1) - log. (3x - 1)  
3 5 log. x - 6 log. ( 1 - x) 
4 2x + log. (x - 2) + log. (2x + 1)  
5 ½x2 + 3x + 2 log. x - i log. (2x + 1)  17  6 log. (2x + 3) - log. (3x - 1)  - 3 (3x _ l )  7 log. (x - 1) + 3 log. (x + 2) - 2/(x - 1) 
8 log. (x - 1) + ½ log. (2x + 1) - 1/(2x + 1) 
9 2x - J log. (3x + 1)  + 5 log. x + 6/x 

10 ½ log. (x2 + 4) - ½ log. (x2 + 8) 
1 X 1 X 1 1  8 arctan 2 - 8J2 arctan 2J2 

12 } log. (2x + 3) + ¼ log. (2x2 - 1) 1) 3 log-. (x + 1) - log. (x2 - x + 1) 
14 ½ arctan x - ¼ arctan ½x 15 log. (x - 1) - ½ log. (x2 + 9) - ½ arctan ½x 
16 log. (x + 1) - ½ log. (x2 + 4) + ½ arctan ½x 
17 (p � q) log. (: =:) 
18 xJ + 9x - 27 log (x + 3) 3 2 • x -3 a b 
19 

(a _ b)(a _ c) log. (x - a) + (b _ a)(b _ c) log. (x - b) 

C + 
(c - a)(c - b) log. (x - c) 



1 (
x2 + b2 ) 

20 2(a2 - b2) log. x2 + a2 
Exercises 14e 
1 - ½e-x2 

3 -✓(9 - x2) 

5 - log. ( 1  - sin x) 
7 - 1 

30(x5 + 6)6 

9 ½(log. x)2 
1 1  ¼ tan6 x 
13 � log. (� : ::) 
15 ½(arcsin x)2 
17 log. 2 

1 (3e2 + 2
) 19 610g. 5 

21 n/24 
23 5n2/288 
25 cos 4 - cos 2 
Exercises 14f 1 ½(x2 - a)312 
3 _.!._✓( 16  - x2) - arcsin¼x 

X 

5 -arccos x - ✓( l  - x2) 

2 - ½(a2 _ x2)3/2 
4 ¼(log. x)4 
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6 ½ log. (cos2 x + 2 sin2 x) 
8 ¾{x + 1)512 - -¾(x + 1)312 

10 log. (log. x) 
12 -e11x 

14 �(x3 - 2)1 5  
16 ¼ 
18 -1-(log 2)" + 1 

n + 1 • 

20 ½ log. (e + l)(e2 + 1) 
1 1 + e2 

22 2 log. ( 1  + e)2 
24 0 

2 ½(x2 + 4)312 

6 %(X + 1)512 - -¾(x + 1)312 
7 ?(x - 1)712 + �(x - 1)512 + -¾(x - 1)312 
8 i 9 ½(5✓5 - 8) 

10 kn - ¼  
Exercises 14g 1 - ls- cos 9x - -lo-cos 5x 3 -b sin 1 lx + ½ sin x 
5 ½ sin 5 x - 4 sin 7 x 
7 -¾(sin x)312 9 0 

2 - -b cos l lx + -/o-cos 5x 
4 ¼ sin 2x - "t4 sin 12x 6 -4 COS 7 X + i COS 9 X - "fr COS 1 1  X 8 1/cos x + 2 cos x - ½cos3 x 

10 + rh  
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Exercises 14h 
1 -(x + l)e -x 2 - ½ 3 ½02 sin20 + ½0 cos 20 - ¼ sin20 4 ex (x3 - 3x2 + 6x - 6) 5 - x3 cos x + 3x2 sin x + 6x cos x - 6 sin x 
6 ¥ log. 2 - # 
7 ½x2 arcsin x - ¼ arcsin x + ¼x.j(l - x2) 

8 -h6 log. 3x - .J.zx6 9 n( 1 1
) 

1
log 2 0 " 0  .J3 - 4 - 2 e 

lo - 0 cos m0 
+ 

sin m0 
m m2 11 ¼n - ½ log. 2 

12 x (log. x)2 - 2x log. x + 2x 13 (x + sin x) tan ½x + cos x or x tan½x 
14 - x cosec x + log. (cosec x - cot x) 15 ½ sec x tan x + ½ log. (sec x + tan x) 

Exercises 14i 
1 ½ex (sin x + cos x) 
2 - -be - 2x(3 cos 3x + 2 sin 3x) 3 nhe5x (2 sin½x + 2O cos ½x) 4 ½x.j(16 + x2) + 8 log. [x + .j(16 + x2) ] 5 -½ cosec x cot x - ½ log. (cosec x - cot x) 

Exercises 14 
2 

3 

(i) 4(2x + 1)712 

(iii) tan x + ½ tan3 x 
(ii) - ½ log. (1 - 3x) 
(iv) ½ sec3 x - sec x 
(vi) arctan (x + 3) 

(viii) 3 log. (1 + e2x) 
(x) --b cos 7x + ! cos 3x 

(xii) ¼ sin4 x - ! sin6 x + C1 

(v) arcsin ½ (x + 1) 
(vii) log. (3 + sin x) 
(ix) log. (arcsin x) 
(xi) - 2.Jcos x 

or -¼ cos4 x + ! cos6 x + C2 
(i) 3 log. (x - 2) - 2 log. (x - 1) 

(ii) X + 2 log. ( X 
: 

l 
) 

( . . .  ) 
1 1 2 l ) 1 l 2 3 1 

111 - 5 (x + l) + 25 og. (x + l -
25 og. (x + 4) -

5O arctan-zx 

(iv) -½ log. 9 
(v) log. (x - 1) - ½ log. x - ¼ log. (x2 + 4) - ½ arctan ½x 

(vi) - --lo log. (x + 1) + -to log. (x2 + 9) + /uarctan ½x 
(vii) 3 log. (2 + x) + log. (1 - x) - 2/(1 - x) 

4 y = 6 - 2/x 
6 (i) 1 (ii) ¼n - ½ log. 2 (iii) --/zn - ! + ! log. 2 (iv) -,bn2 

. 1 3 1 1 
7 (1) 12 log. 8 + 

3.J2 arctan .J2 (ii) log. 4 (iii) -A (iv) n2 - 4 



8 (a) (i) ¼ (ii) ½(1 -4e- 3) 
(b) ½(l - log. 2) 

9 (a) ¼ log0 5 (b) ✓2n -4 

10 (i) (a) 48 + log. 2 (b) 
3✓2 
10 

(ii) ½ [x2 -log. (x2 + 1)] 
11 0·287, 0·605, 1 ·07 
12 (i) ¾(6 -x)512 - 4(6 -x)3'2 

(ii) x +½ log. (x2 + 4) - ¾ arctan ½x 
(iii) x -sin x cos x -½ sin3 x 

13 0 
14 n 

15 
a � b log. G =:), arcsin JG =:) 

1 u 1 (v - ✓2) 16 2✓2 
arctan ✓2 

-
4✓2 

log. v + ✓2 
17 n = O; x log. x -x 

n = 1; ½(log. x)2 

n =I- 1 or O; ( l  � n) x}_ 1 [log. x -( l  � n)] 

19 (i) ;; (ii) n ! 1 [1 + ( -1)"] 

21 -h(3e" + 2) 
24 arcsin { ✓x --J [x(l  -x)] } 
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25 (i) ½(5 -2x)312 -¥(5 -2x)112 (ii) x + 9 log. (x -2) - 6 log. (x - 1) 

26 (") 
1 

( " ") 8 (
" " ") 

2 
l 5 ll 21 lll 9✓3 

28 ½ [arcsin x + x✓( l  - x2) ]  
x4 1 1 1 29 (a) 4(1 + x2)2 + C1 (b) -2(x2 + 1) 

+ 4 (x2 + 1) 
+ C2 

31 (a) ¼n + ½ (b) arctan(e.,,) 
32 (ii) x tan x + log. (cos x) 
33 (a) i (b) 2/e (c) rt 
34 (a) a = H, b = lJ; Hx+lJlog. (3 sin x+2 cos x) (b) ¥ 
35 oc =} 

36 (i) 
2 -J3 

(ii) e -2 
2 e 

37 A = 2 B = 1 C = 1 
38 (i) ½ix -2ex + x (ii) i(l + sin 0)312 

39 1 - ¼n 
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Chapter 15 
Exercises 15a 
1 ½ log. 2 
3 ¼ 

2 8-¾ + log. 3 
4 OCA = 12, OBA = 4 
6 3� 5 13½ 

7 ½ 8 (i) ¼. ¼ (ii) 1 1¼, iz 
9 (i) n/✓3 

10 ½ 
(ii) ✓6n/6 (iii) 2n/✓5 

Exercises 15b 
1 2666·66 N/cm2 

2 (i) 2/n, 1/✓2 (ii) 0, 1/✓2 
5 665 

Exercises 15c 
1 55-Hn 
4 n/2 
6 na2h 
9 n/30 

Exercises 15d 

(iii) 0, 1 

3 1
7C

2 4. 
5 2nah2 

(iv) 0, J/✓2 

7 na2b, nab2 

10 �n(8e9 + 1) 

1 (a) x = ¾, y = 0 (b) x = n/2, y = n/8 
2 (a) x = i, y = 0 (b) x = n/2, y = 0 

(c) x = t y = 0 
(c) x = i, y = 0 

3 (a) One third of the way up a median 
(b) With the straight edges as axes x = y = 4a/3n 
(c) One quarter of the way up the axis of symmetry 
(d) On the axis of symmetry distance 

�(3a2 + 2ab + b2) 
4 a2 + ab + b2 

from the smaller end 
5 x = y =  256a/315n 

Exercises 15e 
3 a2n3/384 

Exercises 15 
1 39Tk 
3 (0, OJ, (2, 2), i, 2�n 
7 1/..)2 
9 ¾n + 1, !n2 + 2n 

l l  x = 2½, y = t+A 

4 }na2 + a2 

2 i, (}n, 0) 
6 i 
8 !n 

10 log. £, -¾n 
12 -¾a2, (/ua, lua) 

5 ¼(e3" - 1) 



13 (i)½ (ii) }n2 (iii) (¼n -½, }n) 
14 ({a, 1/-a) 15 -Ana3 

16 (1, 6), (2, 3), area = (,ij -6 loge 2) 
18 x =  1·35, y = 2·70 19 t = 0, x =  1·6 
20 a = ½, b = - 1 22 c2 = a2 + b2 + ab 
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(i) ½b20 (ii) ½(a2 + ab)O 
23 (i) 12n (ii) 16 24 4n 
25 P = (a - b)/c2, Q = 0, R = b; 21Tc(3a2 + 4ab + 8b2)/15 

1 1 2 1 
(

4 15
) 

10 28 26 2 26 y = x - 3 
-1 + x + 

(x -3)2 ' 2 3 + loge ?  ' -9 + 27x -27x 

27 (-1- e + 1
) ( 

e2 + 1 o) 
e -1 ' 4 ' 2(e2 -1)' 

28 (i) 4 (ii) M 30 !na2b 

Chapter 16 
Exercises 16a 
1 (i) y = -cos x + C 

(iii) x = Ce3' 

2 (i) y = X :� 

( ... ) i d2y 
111 x dx2 = 2y 

4 X = lOe-kt 
5 11·2 km/sec 

(ii) X = ½t 3 
- 2t + C 

(iv) y = it 2 + At + B 

( .. ) dy 2 11 dx 
= y 

. d2y dy 
(1v) dx2 -

dx 
-6y = 0 

6 Terminal velocity = 980/k 
7 y =Ae-x, y =  -½x2 + B  

E E 
8 i =-(1 -e-Rr/L) i -+ - as t -+ oo  R ' R 
9 V = ab V1 (! _ !) (b -a) r b 

10 y =e - 2e2x 

Exercises 16b 

1 (i) y(C -arctan x) = 1 

(iii) loge (
l + y) + -

1 
2 = C 1 -y + x 

( " ") 
2 

11 y = 
1 + Aex' 
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2 s = -/o-(arctan ½v - arctan ½u) 
5-x 

4 y = 1 + 5x 

3 
7 y =

3 - 2x 
45e111 5  - 36 10 H = 

5e111 s  + 4 

Exercises 16c 
1 X = 5e- 51 + 7e51 

2 x = 3 sin 2t + 4 cos 2t 
3 (i) 6 cm/sec (ii) 10 cm/sec 
4 (i) v = 0 (ii) v = 12 cm/sec 
5 X = 5e61 + 2 

Exercises 16 
1 (a) sin x cos y = C 

(b) log. y = }x3 
- x + C 

(c) yex = Cx 
2 (!:Y + x(!:) = y 

3 y = ½x2 + A, y = Cex 

5 log. [(9 + y2)/9] = 2 arctan x 
10 xy = C 

13 x 
dz = 9 - z2 

dx 1 + z 

3 r = Ae-etk 

5 y2 = x2 + 2x + A 
9 x2 + y2 = C 

(iii) 5 cm 
(iii) X = 0 

4 ( 1  -y2)( 1 + x2
)2 = C 

9 y = ce -k1
, 120 days, 30 g 

12 y = (2 + sin3 x)/(1 - sin3 x) 

60 + 40e211s 
15 x = 3 2115 , v = 2, t = t log. 3 

+ e  

17 y = i (-::-:-: -:-!) 
20 y = A cos x + B sin x - x2 

24 log. (1 - sin y) = (1 - sin x) 
25 (a) log. (x + y + 1) = y - ½x2 + C (b) (1 + y2) ::C: !( 1  + x2) 

18 (y - x)2 

= C 
xy2 

26 kv = g(2e-k1 - 1), k2x = g(2 - 2e - k1 - kt) 
27 (i) V = 8 (ii) X = 4 (iii) V = 1 
29 a =  ½ log. 2 

30 x = 
7�2[ C - v + ½ Vlog. (� � :) ] 
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31 ½ log. {e2 + log. 4) 32 2(1 + x2){1 - y2) = 3 

33 (a) x = 2 + -b log. [
5
�: .:}

)
] 

34 y = (x + 2)e - x, x + y - 2 = 0 
35 y = arccos [A ( l  - ex)] 

Chapter 17 
Exercises 17a 

(b) dp = k dt P 

3 A(2, - n/4), B(5, - n/9), C(3, 0), 0(2, - n/4), E(6, n/9), F(4, - n/4), 
G(6, 5n/6) 

4 (0, 3), (2, - 2J3), ( - 5, 0), ( -J3, - 1), (0, - 3) 
5 (2J2, n/4), (5, - 126° 52'), (5, n/2), (13, 157° 23'), (3, 0), (3J5, - 26° 34') 6 A and F, B and E, C and H, D and J 
7 A(2, n/4), B(2, 7n/12), C(2, l ln/12), 0(2, - 3n/4), E(2, - Sn/12), F(2, - n/12) 
8 P must lie on the positive portion of the x-axis 9 (a) On the whole line through the origin making an angle n/4 with 

Ox 
(b) On the whole line through the origin making an angle 3n/4 with 
Ox 

10 B(7, 8), D( - 5, - 4) 

Exercises 17b 
1 AB = BC = CD = DA = 5; AC = BD = 5J2 
2 A(3, - 4), B( - 3, 4), AB = 10 
3 AB = CD =  3J13/5, AD = BC = J2, AC(J137/5) # BD(J197/5), 

hence ABCD is a parallelogram 
4 AB = 2J13, BC = J13, AC = J65, hence AC2 = AB2 + BC2, L ABC = 

90° and AB = 2BC 
5 X = 12 or - 6  6 All distances equal to 2J(a2 + b2) 7 AB = 3J2, AC = J2, CB = 2J2 

10 P(5, 3) 

Exercises 17c 
1 Internal ( - 3, -4), external ( - 9, - 13) 
2 (8, 4) 3 P(2, 6), Q(l 7, 36) 
4 (a) Externally in ratio 1 : 2 (b) internal bisector (c) externally in 

ratio 2 : 1 
5 CP: PD = 2 : 3, P(5, 5) 6 A'( - 5½, - 1½), G( - 2, 1 )  
7 p (2p + 4a 2q + 4b

) p (5p + a Sq + b
) 2 6 '  6 ' 5 6 ' 6 
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8 P(O, 12). The internal and external bisectors are at right angles and since 
P(O, 12) lies on Oy then the internal bisector is Ox 

9 A' (x2 + x3 Y2 + Y3 ) a(x1 + x2 + x3 Y1 + Y2 + Y3) 
2 ' 2 ' 3 ' 3 10 3 :  1 

Exercises 17d 
1 13 square units 
2 (i) 1 square unit (ii) 2½ square units (iii) 0 (iv) 3½ square units 4 AB2 + BC2 = 52 + 13 = 65 = AC2; L. ABC is 13 square units 
7 P(l, 1½). Area L. BPD is zero hence P lies on line BD. L. PAB = 

L. PCD = 3½ square units 
8 Area ABCD = 32 square units 
9 L. ABD = L. ACD = 12 square units. The quadrilateral is re-entrant 

Exercises 17e 
1 (x - 3)2 + (y + 4)2 = 49 2 3x2 + 3y2 - 44x - 46y + 239 = 0 3 x2 + y2 - 9x - 6y + 26 = 0 
4 r = 8 sin 0 
5 (x - 2)2 + (y - 8)2 = 169 
6 xy = c2

, x2/a2 + y2/b2 = 1 
1 y2 - 4x - 6y + 13 = 0 
8 3y2 - x2 = 0 
9 r sin 0 = 6 10 4x2 + 3y2 - 48 = 0 

Exercises 17( 
1 ( - 3, 5) 2 (5, 13), (12, 6) 3 (1 ,  - 2), ( - 1 , 0) 4 (10, rc/6), (10, - rc/6) 
5 Common point is ( - 4, 3) 6 Two coincident points ( 1 .  - 1) 
7 The common points are co-incident (7, 7) or the distance between centres 

equals the difference between the radii 
8 (3✓3, rc/6). Note that the origin does not satisfy both equations simul­

taneously 
9 (7, 9), ( - 1, 5) 10 (4, 1)  

Exercises 17g 
1 3x - 2y +9 = 0 
3 2y - 5x - 10 = 0 
5 2x - 3y + 4  = 0 

x2 Y2 
7 4 + 16 = 1 

2 5x + y - 22 = 0 4 x + Sy =  0 
6 y2 = 4ax 

8 x2 + y2 = 25 



x2 y2 
9 - - - = 1 4 16 

Exercises 17h 
1 r = 3 3 r2 cos 0 ( cos 0 + sin 0) = 1 
5 r2 cos2 20 = c2 

7 y = J3x 9 y = 5  
1 1  x2 - y2 = a2 

10 x2 + y2 = 25 

2 r = 6 sin 0 
4 r2 sin 20 = 2c2 

6 y = x(x � 0) 
8 x2 + y2 = 9 

10 y2 = 9 - 6x 
18 (J2, L n/4) 
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19 (4, L n/3), (4, L - 2n/3) 20 (a, L 2n/3), (a, L - 2n/3) 

Exercises 17 
1 (0, - 6), ( - 1, 1), (✓3, 1), (0, 8), ( - 1, - 1), ( - 5, 0) 
2 (5✓2, - n/4), (2, - 5n/6), (3✓2, 3n/4), (2, n/3), (2, n/2), (3, 0) 
3 A and F, C and H, G and J 
4 AB = ✓17, BC = ✓40, CD = 5, DA = 6, area 16 square units 
6 (3, -2) 
7 A(5, 0), B(3, - n/2), C(5, - n/2), D(3, 0), E(5, 0), F(l, 3n/4), G(3, n/4) 
8 (6, 8), ( -18, - 40) 
9 (3 : 1), (3 : - 1) 

10 4x2 + 3y2 -16x + 24y + 52 = 0 
l l  a =  - 2  or 7½ 
12 (8, 5) 
13 Sides 15, 20, 25, area 150 square units 
14 (i) 3 :  2 (ii) 5 :  - 2 (iii) 3 :  - 5 
15 Centroid (i, ¥), circumcentre (3, 4) 
16 36 square units 
17 x2 + y2 = 27 
18 2 units 
19 b =  - 4 and a =  - 5, AB = ¼✓5 
20 r = 6 sin 0 
21 a =  1 
24 x2 -2x -2y + 2 = 0 
25 (i) (7, -4) (ii) (7, 4) (iii) ( - 7, - 4) 
26 y2 = 64x, (x - 4)(6 - y) = 1 
28 Mid-point of AC ( - 1, - 1), D is point (9, -10) 
29 xy = constant 
30 r(cos 0 - sin 0) = 5, x - y = 5 

Chapter 18 
Exercises 18a 

1 (i) y = O· 36x + 5 
(iii) y = 1·19x 

2 (i) y = 5x 
(iii) y = ¾x - 3 

(ii) y = 1 ·73x - 4 
(iv) y = 2·75x 
(ii) 3x + 2y = 0 

(iv) y = - 2 
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3 (i) Slope t intercept -2 
(ii) Slope -1, intercept t 

(iii) Slope -¾, intercept 0 
(iv) Slope 0, intercept 6 

4 Slope is y2 - Yi 
X2 - X 1 

Exercises 18b 1 (i) 7y - 2x -1 1  = 0 (ii) y + 3x - 16 = 0 
(iii) y + x -3 = 0 (iv) 2y + 3x - 1 1  = 0 
(v) 2x + 5y + 10 = 0 (vi) y + x -6J2 = 0 
X y 5 3 15 l 

-5 + 3 = l, J34 y -J34 X = J34 
5 2 5 3 1  3 1  / 3 1  3 m = -2, J29 y + J29 x = J29' x/T +Y. T = 1 

4 x cos a + y sin a = a 
5 0 = a + 90° (0 < a � n/2) 

0 = 90° - a( - n  � a �  0) 

Exercises 18c 1 ( -1, -1) 
2 (a) (2, 3) 

( 
ab ab 

) (c) a + b' a + b  
3 (i) and (iii) are coincident 

(b) (2½, -3) 

(d) (2, 8) 

4 k = 5, k = 3, lines (ii) and (iii) are parallel; k = 6, lines (i) and (ii) are parallel 
5 7x + 4y = 0 
9 k = 5, the point (3, 4) 

10 5x + 7y - 35 < 0 
4x - 1 ly -28 < 0 
14x + 3y + 68 > 0 

Exercises 18d 1 (a) 8° 8' (b) 75° 32' (c) 90° (d) 90° 

2 2x -3y + 8 = 0 3 x + y - 5 = 0  
4 75° 

5 AB y -2x + 3 = 0, J20 
BC 2y + x -9 = 0, J20 
CA y + 3x -22 = 0, J 40 

Exercises 18e 1 (a) 6¼ (b) -1  (c) 3 (d) H 
2 � opposite side to the origin; -2½ same side as origin 
3 N?, it is one of the excentres 



4 a = 1  
5 (2, 4) 

Exercises 18f 
1 (a) y + x = 0 (b) x + 4y + 3 = 0 (c) 2x + 3y + 1 = 0 
2 2x - 6y + 1 7  = 0, 6x + 2y + 1 1  = 0 
4 2y + 3x = 0, y - 2x = 0 
5 (a) 14x - 21y + 95 = 0 (b) 7x + 14y - 33 = 0 

Exercises 18 
1 (a) PQ is y + 4x - 4 = 0 QR is 7y + 2x + 24 = 0 PR is 3y - x + 1 = 0 

(b) 2y - 7x + 7 = 0 (d) (H, - i)-) 2 2y = 4x - 13  
4 (a) 4x + 3y - 39 = 0 
5 2y - X - 9 = 0, y + 2X + 2 = 0 

(c) y + 3x - 2 = 0 (e) 1 3  square units 
(b) 3x - 4y + 2 = 0 

X y 5 4 20 6 
4 

+ - 5  = l , ✓41 X - ✓41 y = ✓41 
8 k = -4, three distinct lines through the point ( - 2, - 1) 

k = 2, three coincident lines 
k = - 2, two of the lines are parallel 9 7 

a b 
11 x 1 - 2 b2 (ax1 + by1 + c), y1 - 2 b2 (ax1 + by1 + c) 

a + a + 
12 2x + y = 2 
13 j(BC2 + CA 2 + AB2) 
14 m1m2m3m4 = - 1  
15 7y - 3x + 102 = 0 
17 Outside 
18 B( -32k, - �), c(�, k), locus x + 5y = 0 
19 3x - y = 3, X + 3y = 1 1  
20 x -h =y -k 

a b 
22 1 5x + 8y = 85 
24 k = 3 or k = - ¾ 
2� (2, 2) 
26 3x + 2y = 13  
27 x cos 2cx + y sin 2cx = 2p cos ex 
28 y = 2x -x2 

29 (a) - 3 and ½ (b) (5, 1), (5, 3) 
30 a 1 b2c3 - a 1b3c2 + a2b3c 1 - a2b 1c3 + a3b 1c2 - a3b2c 1 = 0 
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Chapter 19 
Exercises 19a 

1 (i) x2 + y2 
- 6x - 14y + 33 = 0 

(ii) x2 + y2 + 6x + 14y + 22 = 0 
(iii) x2 + y2 - lOx = 0 
(iv) x2 + y2 + 6y - 7 = 0 

2 (i) Centre ( - 1,  - 3), radius 2 
(ii) Centre ( -¾, - }), radius J21/6 
(iii) Centre (i, 0), radius t 
(iv) Centre (0, t), radius 2 
(v) Centre (a, - b), radius J (a2 - b2

) 
(vi) Centre ( - a, a), radius J2a 

3 x2 + y2 
- 14x + 12y - 15 = 0 

4 x2 + y2 
- 3x - y - 2 = 0 

5 x2 + y2 
- 6x + 4 y + 11 = 0 

8 x2 + y2 - 26x - 26 y + 169 = 0 
9 y+4x - 13 = 0 

10 x2 + y2 
- 5x - y + 4 = 0 

Exercises 19b 
1 x2 + y2 

- lOy = 0, r = 5 
2 x2 + y2 - 1 lx - 7y + 30 = 0, r = tJ2 
3 x2 + y2 - 5x - y + 4 = 0, r = ½J 10 
4 2x2 + 2y2 + x - lly - 1 = 0, r = ¼J130 
5 x2 + y2 + 3x - 3y - 38 = 0, r = ½Jl 70 

Exercises 19c 
1 3x + 4y - 45 = 0 2 7x - 9y + 59 = 0 
3 llx + 7y + 91 = 0 4 15y - 8x - 56 = 0 
5 x + y - 14 = 0 is the equation of the common tangent 

Exercises 19d 
1 (i) t = 3J 5 (ii) t = J 43 
2 A is inside, B outside, C is on the circle 
3 k = 80 
4 (1, 2), ( -1, 4) 
5 15 y - 8x = ± 289 
6 5y -3x = 0 
8 (i) (10, 2) (ii) 2 units 
9 (i) 2, (1, 3) (ii) (6, 3), ( - 2, - 1); x2 + y2 

- 23x + 36y -15 = 0 
10 x2 + y2 - lOx - 6 y + 9 = 0, 15 y + 8x = 0 

Exercises 19 
1 x2 + y2 - lOx - lOy + 25 = O; (8, 9) or 

x2 + y2 - 60x - 60y + 900 = O; (12, 6) 
3 4x - 3y + 6 = 0 ;  4x - 3y - 14 = 0 
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4 Centre (3, - 1) and radius 1; centre ( - 1, - 5) and radius 5 
5 c = 12 or - 38 
6 (a cos 0, a sin 0) 
7 y = mx + 18, -# 
8 (2, 3), 1, PA = 2, tan 0 = 2 
9 ( - 4, - 5), J45 ; (1, 0), JS; J50; 3J2 

11 (5, 8), (5, - 2) 
12 x2 + y2 - 4x - Sy+ 4 = 0, 9y + 40x = 0 
13 x2 + y2 + 4x - 4 = 0, centre ( - 2, 0), radius 2J2, x2 + y2 - 28x - 4 = 0 
15 x2 + y2 

- 2x - 6y = 0, x2 + y2 - 12x - 16y + 80 = 0, x + y - 8 = 0 
16 3x2 + 3y2 - 12x - 6y + 11 = 0 
17 3x - 4y - 9 = 0 ;  ( - 1, - 3), (# - �) ;  x2 + y2 + ½x + 4y + 2½ = 0 
18 2½ units 
19 2 units 
21 (i) x2 + y2 - 7x + 19y + 70 = 0  (ii) 1 : 5 ; ½  
23 p = ½, q = ¾, (2, 1), JS 
25 x2 + y2 = 1 
26 (i) ( -¥, ¥) (ii) 4x + 3y + 7 = 0 (iii) 12-t.l square units 
27 (2, 1), l; y = 0 and 3y - 4x = O; (2-lt 2-H) 
28 ( - 1, 0), (5, 0), ±t 0, -! 
29 (91 - 92)2 + (f1 -f2)2 = [J(91 2 + ft 2 - C1) ± J(9/ + f/ - C2)]2 

30 x2 + y2 - 4x - 6y - 12 = 0, 3x + 4y - 43 = 0, ( - 1, - 1) 

Chapter 20 
Exercises 20a 

1 (i) (2, 0), X = - 2 
(ii) ( - 6, 0), X = 6 

(iii) (0, - ¼), y = ¼ 
(iv) (0, 3), y = - 3  
(v) ( - j, 0), X = j 

2 (2, 0) 
3 Relative to axes horizontally and vertically through the lowest point of 

the rod; x2 = 360y 
4 (i) y = X + 1, y = - X + 3 

(ii) X = y - 3, y = - X - 9 
5 (27, - 18) 
6 (i) y2 = lOx + 2y + 4 

(ii) x2 - 2xy + y2 +Bx+ By -16 = 0 
(iii) 16x2 - 24xy + 9y2 + 118x + 174y + 316 = 0 

8 (24, - 24) 

Exercises 20c 
2 1 unit 
3 Tangent y - tx + 3t 2 = 0, normal ty + x = 6t + 3t 3 

4 y2 = 4ax + 9a2 
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Exercises 20d 
1 a = 5, b = ½, y = 5x 
3 A. = 0 or jg-, x - y + 1 = 0, - 25x + lOy - 4 = 0 4 y2 = 2a(x -a). Vertex (a, 0), focus (3a/2, 0) 

Exercises 20e 
1 e = ¾, ( ± 6, 0), x = ± ¥, area = 80n 
2 e = {, (0, ± 6), y = ±¥, area = 80n 3 e = t ( ± 2, 0), x = ±¥, area = 15n/4 
4 e = 1/-J.3, ( ±✓2, 0), x = ± 3✓2, area = 2✓6n 5 e = 1/✓2, (0, ± 1), y = ± 2, area = ✓2n 
6 e = ¾, foci ( + 4, - 2), ( - 2, - 2), area 20n. Directrices x = ¥ and x = -¥ 
1 W, ( ± 5, ± W) 8 8x2 + 3y2 = 35, e = ✓i 

2 2 

9 Semi-major axis 5, semi-minor axis 3; � + �5 
= 1 

- -
. 

- i -
i . . (x - 5)2 (y - 2)2 -10 a - 3, b - ✓5, x - -,:, x - 9-,:, (5, 2), 9 

+ 
5 - 1 

Exercises 20f 
1 X + y = 5, X -y + 1 = 0 
2 2x + 5y = 12, 5x - 2y = 1 3 by - ax = 2ab, ay + bx = a2 - b2 

4 y = 2x ± ✓14 
5 y = 2x ± 6  
6 y = 3x ± 7 

x2 y2 
10 49 + 

33 = l 

Exercises 20g 

1 � cos 0 + � sin 0 = 1 

Exercises 20h 
1 2x + 3y = 12, 2y - 3x = ± ✓¥ 
2 ab 

6 e = fr 8 x2 � ae2 -½ae202 

[ 
1 

( 
b a2 - b2 )] 10 Centre 0, 2 sin 0 - b 

sin 0 

1 ( b a2 - b2 ) radius 2 sin 0 
+ b 

sin 0 

file:///sin0


Exercises 20i 

1 e = }J3, ( ± 3.j3, 0), X = ±i.J3 
2 e = t (0, ± 4), y =  ±£ 3 e = ¾, ( ± t, 0), X = ±� 
4 e =t ( ±9, 0), x =  ±¥ 
s e = JI, (o, ± .J3), y = ± li3 
6 e = ,J2, ( ± 5.j2, 0), X = ± "!✓2 
7 ¥, ( ± 4, ±i) 

x2 y2 y2 x2 
8 

36 -13 = l, 
36 -13 = 1 

x2 y2 
9 - -- = 1 25 11 

Exercises 20j 1 .j_3x -y = .j3, X + J3y = 1 3 
4 a2l2 - b2m2 = n2, a2l2 + b2m2 = n2 

5 bx(t 2 + 1) -ay(t 2 -1) = 2abt 
10 8x - 9y = ± 5, ( ± 4, ± 3) 

Exercises 20k 
1 (i) y = ± }x; (0, ± 2) 

(ii) y = ±}x; ( ± 2, 0) 
2 -b/a < m < b/a 
3 (i) xy = 16 

(iii) (x - l)y = 9 
4 4y + X = 8, y -4x + 15 = 0 
5 X + t 2y = 2t 

(ii) xy = -1 
(iv) (x + l)(y -1) = -4 

6 2x -y = 3, 2y + x = 4 and 2x -y = -3, 2y + x = -4 
8 y =x 
9 4x -3y = ± 7, (4, 3) and ( -4, -3). 7 square units 

10 (� 2c21
) 21 ' n 

Exercises 20l 1 2xy = k2 (rectangular hyperbola) 
2 y = 2c2/a 
4 m2(x0

2 -1) -2xoy0m + Yo2 + ½ = 0 
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5 When P is a point of intersection of the two curves, the normal to 
xy = c2 is a tangent to x2 -y2 = a2. Hence the curves cut at right angles. 

Exercises 20 1 y2 = 16a(x + 2a) 

6 (i) x == 0 (ii) 2y2 = 9ax 

3 y2 = a(x -a) 

7 (
c(l + t 2) c(l + t 2)) 

t ' t 
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9 (i) 4a (ii) y2 = 2a(x - 4a) 12 T( - 3, 2), M(3, 4), N( - 1, 0), 1 
13 y2 = a(x - 3a) 
16 [2a + a(p2 + pq + q2), - apq(p + q)], y2 = a(x - 3a) 
17 y2 = 4a(x - a) -18 ky - 2ax = 2ah 

2✓(a2m2 + b2) a 
19 arctan 3 20 ✓( l  + m2

) 
, 3✓26 

21 y + tx = 2at + at 3 ; (2a + at 2 , 0); ± J3, ± J15 
23 (2a, 2j2a) 
24 O°, 60°, 360°; (2, 0), (1, �) 
25 y = mx + 4 - 3m; ✓8, ✓40, ; 4 

Chapter 21 
Exercises 21a 
1 1 ·25 2 5·96 4 4·73 
5 0·59 6 1·26 7 - 1·75 
8 0·66 9 0·6, 0·643, 0·653, 0·656, 0·657 to 3 decimal places 

10 0·5, 0·878, 0·639, 0·8027, 0·6947, 0·768, 0·719, 0·7523, 0·7300, 0·745, 0·735, 
0·742, 0·737, 0·740, 0·738, 0·739 

Exercises 21b 
1 1 ·2542 
4 0·7391 

Exercises 21c 
1 0·994 
4 0·348 

Exercises 21d 
1 1·000, 1 
4 15·59 

Exercises 21e 
2 1/p 
4 y = 1 ·4, C = 80 

Exercises 21 
1 3·264 

2 0·7809 
5 0·5804 

2 5·683 
5 1·283 

2 1 ·0986, 1 ·0986 
5 20 200m2 

3 y = 5 + 0·3x2 

5 d = 0·0375v2 

3 0·5885 

3 1-195 

3 1-106 

2 x3 - 12x2 + 32 = 0, 1·769 
3 1·196 4 7·40, 2·68 

6 2r + jp 5 0·75 
7 1·33 
9 2a3h + 2ah3 + 2h 

8 a = 4·0, n = 3; (a) 4·83 (b) 4·82 
10 1·163, too large; 1-147 
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11 3·1415, 7t. 12 3·67 
Agreement to 7 decimal places 

13 a = - 5, b = O· 3 
15 0·187 

14 42·02; a =  1·15, b = 8·2 
16 0·95 

17 1·52 
19 0·478 
21 2·2789 
23 0·2618, -b_n 
25 a = 20, n = 2·5 

Chapter 22 
Exercises 22a 

18 k = 4, n = 1·5 
20 2·34 
22 4·454 
24 1·718 28, 2·1 (2·08) 

1 Scalars: (a), (b), (c), (g), (h). Vectors: (d), (e), (f), (j). 
2 (a) and (d) are equal and opposite; (a) and (e) represent two or more vectors. 
3 (a) 105° (b) 30° (c) 105° 

(d) Fi and v2; Vi and v2 
F2 and d; F3 and v2 

(e) Fi and F3 ; F3 and vi 
5 12·5 km at an angle arctan (¾) E of N 

Exercises 22b 
1 3 N, 2 N  2 IQI = 12 
4 arccos ( -4--) = 98° 13' 5 14·2 units, N 169° 11' W 

Exercises 22c 
2 (a) 2 (b) 5 (c) 4 (d) 4·64 (e) 2·95 (f) 5 
3 a and b are parallel and in the same sense 
4 120° 

5 (a) c - b (b) a - b (c) d - b (d) c - a 
6 (a) b - a (b) c - b (c) a +  c - b (d) a - c 

Exercises 22d 
➔ 

1 Yes 3 PA = ½{a+b) 
4 (ii) ½{a + b - c) (iii) ½{a - b + c) 
5 (i) lla + c (ii) - a  - 9b (iii) 3a + 9b + 3½c 
6 Yes 

Exercises 22e 

1 (i) [ _��] (ii) J20 (iii) UJ (iv) ✓58 

3 6 N, 12 N 

2 (i) [ - [� ] (ii) 5J2 (iii) m Ovl J2 [ !] 
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3 d = 3a -2b + 4c 
4 d = ¾a - 4b - ½c 
5 c = 3a-2b 

Exercises 22f 

1 (i) -� (ii) -(9/ J 14) 2 arccos ( --¼) 
3 p = 7, q = 8; a = (2i -2j + k)/3; b = (i + 3j + 4k)/J26; 

c = ( 1  li + 7j -8k)/3J26 
5 Either b = c or a is perpendicular to b -c 
6 5 N S p = -27, q = -16 
9 (i) -1 (ii) -32 (iii) 0 

10 (i) 13i + 13j (ii) 8 (iii) 9 (iv) lOi -2j + 2k 

Exercises 22g 
2 r = [(q + 6)i + (3 -q)j + (q + 9)k]/(q + 3); q = -4 

4 AB - ul AC - m 
5 OA = 3, OB = 1 1 ; area = 4J17 

Exercises 22h 1 3i+5j -7k 
2 p = -2; 4(i -j+k) 
3 30° 

(3+2t, 2+2t, 1 -t )  or (5+2s, 4+2s, -s); t =  -1 or s =  -2; 
(1, 0, 2) 

5 (2, -1, 3), arccos (16/21) 

Exercises 22i 1 l),rCCOS (ff) 
2 Because their normals are in the same direction; 3 units 

3 ,. H J - 121 

4 ,  UJ - - 5 

5 5, 2J2 



6 ' - m + t  m or ' - m + s m 
7 • - nJ 9 b . n - O  

Exercises 22 
2 60° 

3 - a, b, - (a + b) 
4 (i) - 9a (ii) 5a + 2c 
S The altitudes of a triangle are concurrent 
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7 All three are -i. The four points A, B, C, D are coplanar and OD is 
normal to the plane. 

9 • - [ =n 10 = [ 1 � ] - 21 

12 , - [ -!] + t [ J] ; N(H -',') ;  (H -',") 

13 (r -a) . n = 0 
14 (a . ii)ii 

15 u - -i " - I ; L is , - [ -: ]  + t  [ -� ]  

1 6  a - I , b - - 3; a - [ �l ✓ I I  



Index 

Abscissa, 325 
Acceleration, 

constant, 136 
definition, 177 
forms for, 199 

a cos 0 + b sin 0, 108 
a cos 0 + b sin 0 = c, 1 28 
Addition formulae, 100 et seq. 
Addition of vectors, 430 
Algebraic numbers, I 
Angle, 

between lines, 355 
between planes, 455 
between vectors, 429 
measurement of, 82, 88 

Approximations, 
by binomial theorem, 53 
of sin 0, cos 0, tan 0 for small 0, 1 1 5, 1 16 
using derivatives, 201 
using Maclaurin's series, 229 

arccos x, 1 1 2  
arcsin x ,  1 12 
arctan x, 1 12 
Archimedean spiral, 342 
Area, 

between curves, 285 
of cardioid, 300 
in polar form, 298 
positive and negative, 286 
of triangle, 140 

in terms of co-ordinates, 333 
under curve, 252, 283 

Argand diagram, 66 
Arithmetic mean, 1 1 ,  33 
Arithmetic progression, 33 

sequence and series, 33 
Asymptotes, 216 

of a hyperbola, 402 
Axes, 354 

BASIC programs 
Newton's method, 416 
Simpson's rule, 421 

Binomial coefficients, 47 

Binomial theorem, 45 et seq. 
approximations, 53 
n, a positive integer, 45 
n, not a positive integer, 52 
proof of, 50 

Cardiod, 342 
area of, 300 

Cartesian co-ordinates, 325 
change of origin, 339 
distance between two points, 328 
interior, exterior division, 330 
loci, 334 
transformation to polars, 326 

Centre of gravity, 294 
of circular arc, 295 
of hemisphere, 298 
of sector, 297 

Circle, 
equation of, 366 
on given diameter, 367 
parametric equations, 336 
points of intersection with a line, 372 
polar equation, 335, 341 
tangent to, 370 

length of, 37 1 
through three non-collinear points, 369 

Co-domain, 1 53 
Collinear points, 333 
Collinear vectors, 437 
Complex conjugate, 63 
Complex numbers, 60 

equality of, 62 
geometrical representation, 65 
imaginary part, 62 
modulus, 66 
real part, 62 
rules for, 62 et seq. 

Conjugate pairs, 7 1 
Continuous function, 1 56 
cos (A ± B), 101 
cos 2A, cos 3A, 103 
cos C ± cos D, 106 
Cosine formula, 135 
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Cube roots of unity, 72 
Curve sketching, 214 et seq. 
Decreasing function, 207 
Definite integral, 252 

as area, 252 
as sum, 252 
change of limits, 267 

Degree, unit of angle, 88 
Derivative see differential coefficient 
Determination of laws, 422 
Differential coefficient, 162 

application to kinematics, 189 
in approximations, 201 
of a constant, 170 
of a difference, 17 1  
of a function of a function, 1 79 
of a product, 1 7 1  
of a quotient, 1 74 
as a rate measurer, 197 
of a sum, 17 1  
of  exponential functions, 225 
of implicit functions, I 89 
of inverse functions, 185 
of logarithmic functions, 222 
of parametric equations, 192 
of trigonometric functions, 1 76 
ofx", 183 
second and higher, 1 77 
standard forms, 194 

Differential equations, 304 
applications to mechanics, 306 
first-order, variables separable, 310 
formation of, 307 
general solution, 304, 3 13  
particular solution, 304 
second-order, d2 x/dt2 = kx, 3 13  

Director circle, 394 
Directrix, 

of ellipse, 389 
of hyperbola, 398 
of parabola, 378 

Discontinuous function, 1 56 
Discriminant of a quadratic, 77 
Distance between points, 328 
Domain, 1 53 
Dot product, 442 
e as a limit, 223 

as a series, 234 
e as a series, 233 
Eccentricity, 

of ellipse, 389 
of hyperbola, 398 
of parabola, 378 

Eliminant, 6 
Elimination, 6 
Ellipse, 389 

axes, 390 
eccentric angle, 390 
equation, 389, 390 
latus rectum, 391 

Ellipse (cont. ) 
normal to, 392 
parametric equations, 394 
points of intersection 

with a line, 393 
tangent to, 392 

Equation, 
of bisector between two lines, 362 
of circle, 366 
of curve, 334 
of line, 349 et seq. 

Equations, 
complex roots, 71 
quadratic, 12  
simple, 2 
simultaneous, 3 
solution of, et seq., 41 1 ,  4 15  
useful techniques, 2 e t  seq. 

Explicit function, 1 54 
Exponent, 20 
Exponential function, 

derivative, 225 
series, 233 

External division, 330 

Factor theorem, 13, 1 5  
Focus, 

of ellipse, 389 
of hyperbola, 398 
of parabola, 378 

Function, I 52 
continuous, 1 56 
discontinuous, 1 56 
explicit, 1 54 
graph of, 1 56 
implicit, 1 54 
inverse, [ 54 
Maclaurin's series for, 230 
maxima and minima, 207 
of a function, 1 79 
rate of change of, 1 57 et seq. 

Geometric mean, 1 1 , 36 
Geometric sequence and progression, 36 
Geometric series, 36 

limit, 38 
Gradient, 

of a chord, 1 59 
of a tangent, 160 

Graphical solution of equations, 41 1 

Hero's formula, 141 
Hyperbola, 398 

asymptotes, 402 
equation, 398 
latus rectum, 399 
normal to, 400 
rectangular, 404 et seq. 
tangent to, 399 

Implicit function, 1 89 
Increasing function, 207 



Indices, 20 et seq. 
Inequality, 7, 1 1  
Infinite geometric series, 38 
Integers, I 
Integrals, standard forms, 242, see also 

definite integral 
Integration, 241 et seq. 

applications, 249 
by change of variable, 263 
exponential function, 225 
five important rules, 245 
logarithmic function, 274 
by parts, 273 
rational functions, 275 
by substitution, 263 
as summation, 250 
trigonometric functions, 27 1 
trigonometric substitution, 269 

Internal division, 330 
Intersection, 

of line and circle, 372 
of lines, 352 

Intercept form for line, 349 
Inverse function, 1 54 

derivatives, 185 
Inverse trigonometric functions, 1 1 2  

derivatives, 1 86 
Irrational numbers, I 

Kinematics, 199 

Latus rectum, 
of ellipse, 390 
of hyperbola, 399 
of parabola, 379 

Length of tangent to circle, 371 
of perpendicular to a line, 358 

Limits, 162 
Linear interpolation, 142 
Loci, 

cartesian co-ordinates, 334 
points of intersection, 337 
polar co-ordinates, 335, 340 

Logarithmic differentiation, 227 
Logarithmic function, 222 
Logarithms 

calculation of, 235 
definition, 23 
rules for, 23, 24 

Maclaurin's series, 231 
for cos x, 232 
for e±X, 233 
for log. (I ± x) , 233 
for sin x, 231 

Magnitude of a vector, 428 
Major axis of ellipse, 396 
Mathematical induction, 56 
Maxima and minima, 207, 208 
Means, 

arithmetic, 34 

Means (cont. ) 
geometric, 36 
various, 288 

Minor axis of ellipse, 390 
Modulus, 10, 66 

of a vector, 428 
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Multiple angle formulae, 103 et seq. 

Negative side of line, 353 
Newton's law of cooling, 305 
Newton's method, 414 
Normal, 

to curve, 204 
to ellipse, 392 
to hyperbola, 400 
to parabola, 38 I 

Numbers, representation, 2, 65 
Numerical integration, 417 

Simpson's rule, 418 
trapezoidal rule, 417 

Numerical methods, 41 1 et seq. 
Ordinate, 325 
Orthogonal trajectories, 308 

Parabola, 
directrix, 378 
equation of, 378 
focus, 378 
latus rectum, 379 
normal to, 381 
parametric equations, 384 
points of intersection with line, 383 
tangent to, 38 I 

Parallelogram rule, 43 1 
Parametric equations, 

differentiation of, 192 
of circle, 336 
of ellipse, 394 
of hyperbola, 400 
of parabola, 384 

Partial fractions, 16 
use in approximations, 54 
use in integration, 260 et seq. 

Pascal's triangle, 45 
Perpendicular distance of point from a line, 358 
Perpendicular form of equation of a line, 351 
Plane, vector equation, 45 1 
Points of inflexion, 212 
Points of intersection, 

of line and circle, 372 
of line and ellipse, 393 
of line and parabola, 383 
of loci, 337 

Polar co-ordinates, 325 
area, 298 
distance between points, 329 
loci, 335 
transformation to cartesians, 326 

Polar equations, 340 
Polygon rule for vectors, 43 1 
Polynomial approximations, 229 
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Position vectors, 446 
Positive side of line, 353 
Progressions, 

arithmetic, 33 
geometric, 36 

Quadratic equations, 2 
discriminant of, 77 
relation between roots and coefficients, 82 
solution of, 77 
sum and product of roots, 83 
type of roots, 77 

Quadratic function, 79 
graph of, 80 
sign of, 8 1  

Quotient, 13  
derivative of, 1 74 

Radian, 88 
Radius vector, 325 
Rate of change of function, 1 57 
Rational numbers, I 
Real numbers, I 
Rectangular hyperbola, 404 
Remainder, 13 
Remainder theorem, 14 
Root mean square value, 290 

Scalar (dot) product, 442 
Scalars, 428 

multiplication by vector, 435 
Second derivative, 177 
Sequences, 30 
Series, 

arithmetic, 3 3 
exponential, 233 
general, 31 
geometric, 36 
infinite geometric, 36 
logarithmic, 234 
Maclaurin's, 23 1 

Simple harmonic motion, 307, 3 1 6  
Simpson's rule, 4 18  
sin (A ± B), 101  
sin 2A, sin 3A , 103 
sin C ± sin D, 106 
Sine formula, 1 34 
Skew lines, 457 
Small angles, 1 1 5 
Solid of revolution, 29 I 
Solution of equations, 2 et seq. 

graphical, 41 1 
by Newton's method, 415 

Solution of triangles, 1 34 
Speed, 1 77 
Stationary point, 208 
Straight line, 

general equations, 345 et seq. 
perpendicular distance from a point to a 

line, 358 
perpendicular form of equation, 351 

Straight line (cont. ) 
polar equation, 340 
positive and negative sides, 353 
two lines, 

angle between, 355 
condition to be perpendicular, 357 
point of intersection, 352 
third line through point of 

intersection, 360 
vector equation, 449 

Submultiple angle formulae, 104 et seq. 
Subtraction of vectors, 430 
Sum, 

arithmetic series, 33 
geometric series, 36 
of positive integers, 35 
to infinity, 38 

tan (A ± B), 101 
tan 2A, tan 3A, 103, 104 
Tangent, 

to circle, 370, 373 
to curve, 160, 204 
to ellipse, 392 
to hyperbola, 399 
to parabola, 381 

Transcendental numbers, I 
Transformations, 

cartesians to polars, 326 
polars to cartesians, 327 

Trapezoidal rule, 417 
Triangle, 

area of, 140 
cosine rule, 135 
sine rule, 1 34 
solution of, 1 36 et seq. 

Triangle rule for vectors, 43 1 
Trigonometic equations, 1 20 et seq. 
Trigonometric functions, 

addition formulae, 100 
approximate values, 1 1 5, 1 1 6  
differentiation of, 1 76 
factor formulae, 106 
graphs, 97 
integration of, 271 
inverse, 1 12 et seq. 
multiple and submultiple angle formulae, 

103 
relationships, 90, 91 
signs of, 94 

Turning point, 208 

Variables, 1 52 
Vectors, 

addition and subtraction, 430 
angle between two, 429 
bound, 446 
collinear, 437 
components of, 438 
column, 440 
coplanar, 437 



Vectors (cont.) 
equality of, 428, 438 
equation of a line, 449 

of a plane, 451 
modulus, 428 
multiplication by a scalar, 435 
position, 446 
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projection of one on another, 443 
resolution of, 437, 438 
resultant of, 430 
scalar (dot) product, 442 
unit, 428, 433 
vectorial angle, 325 

Volume of solid of revolution, 291 et seq. 
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