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A key ingredient in learning mathematics is problem solving. This is the strength, and no doubt 

the reason for the longevity of Professor Spiegel's advanced calculus. His collection of solved 

and unsolved problems remains a part of this second edition. 

Advanced calculus is not a single theory. However, the various sub-theories, including 

vector analysis, infinite series, and special functions, have in common a dependency on the 

fundamental notions of the calculus. An important objective of this second edition has been to 

modernize terminology and concepts, so that the interrelationships become clearer. For exam

ple, in keeping with present usage fuctions of a real variable are automatically single valued; 

differentials are defined as linear functions, and the universal character of vector notation and 

theory are given greater emphasis. Further explanations have been included and, on occasion, 

the appropriate terminology to support them. 

The order of chapters is modestly rearranged to provide what may be a more logical 

structure. 

A brief introduction is provided for most chapters. Occasionally, a historical note is 

included; however, for the most part the purpose of the introductions is to orient the reader 

to the content of the chapters. 
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1

Numbers

Mathematics has its own language with numbers as the alphabet. The language is given structure
with the aid of connective symbols, rules of operation, and a rigorous mode of thought (logic). These
concepts, which previously were explored in elementary mathematics courses such as geometry, algebra,
and calculus, are reviewed in the following paragraphs.

SETS

Fundamental in mathematics is the concept of a set, class, or collection of objects having specified
characteristics. For example, we speak of the set of all university professors, the set of all letters
A;B;C;D; . . . ;Z of the English alphabet, and so on. The individual objects of the set are called
members or elements. Any part of a set is called a subset of the given set, e.g., A, B, C is a subset of
A;B;C;D; . . . ;Z. The set consisting of no elements is called the empty set or null set.

REAL NUMBERS

The following types of numbers are already familiar to the student:

1. Natural numbers 1; 2; 3; 4; . . . ; also called positive integers, are used in counting members of a
set. The symbols varied with the times, e.g., the Romans used I, II, III, IV, . . . The sum aþ b
and product a � b or ab of any two natural numbers a and b is also a natural number. This is
often expressed by saying that the set of natural numbers is closed under the operations of
addition and multiplication, or satisfies the closure property with respect to these operations.

2. Negative integers and zero denoted by �1;�2;�3; . . . and 0, respectively, arose to permit solu-
tions of equations such as xþ b ¼ a, where a and b are any natural numbers. This leads to the
operation of subtraction, or inverse of addition, and we write x ¼ a� b.

The set of positive and negative integers and zero is called the set of integers.

3. Rational numbers or fractions such as 2
3, � 5

4, . . . arose to permit solutions of equations such as
bx ¼ a for all integers a and b, where b 6¼ 0. This leads to the operation of division, or inverse of
multiplication, and we write x ¼ a=b or a� b where a is the numerator and b the denominator.

The set of integers is a subset of the rational numbers, since integers correspond to rational
numbers where b ¼ 1.

4. Irrational numbers such as
ffiffiffi

2
p

and � are numbers which are not rational, i.e., they cannot be
expressed as a=b (called the quotient of a and b), where a and b are integers and b 6¼ 0.

The set of rational and irrational numbers is called the set of real numbers.
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DECIMAL REPRESENTATION OF REAL NUMBERS

Any real number can be expressed in decimal form, e.g., 17=10 ¼ 1:7, 9=100 ¼ 0:09,
1=6 ¼ 0:16666 . . . . In the case of a rational number the decimal exapnsion either terminates, or if it
does not terminate, one or a group of digits in the expansion will ultimately repeat, as for example, in
1
7 ¼ 0:142857 142857 142 . . . . In the case of an irrational number such as

ffiffiffi

2
p ¼ 1:41423 . . . or

� ¼ 3:14159 . . . no such repetition can occur. We can always consider a decimal expansion as unending,
e.g., 1.375 is the same as 1.37500000 . . . or 1.3749999 . . . . To indicate recurring decimals we some-
times place dots over the repeating cycle of digits, e.g., 1

7 ¼ 0:_11_44_22_88_55_77, 19
6 ¼ 3:1_66.

The decimal system uses the ten digits 0; 1; 2; . . . ; 9. (These symbols were the gift of the Hindus.
They were in use in India by 600 A.D. and then in ensuing centuries were transmitted to the western world
by Arab traders.) It is possible to design number systems with fewer or more digits, e.g. the binary
system uses only two digits 0 and 1 (see Problems 32 and 33).

GEOMETRIC REPRESENTATION OF REAL NUMBERS

The geometric representation of real numbers as points on a line called the real axis, as in the figure
below, is also well known to the student. For each real number there corresponds one and only one
point on the line and conversely, i.e., there is a one-to-one (see Fig. 1-1) correspondence between the set of
real numbers and the set of points on the line. Because of this we often use point and number
interchangeably.

(The interchangeability of point and number is by no means self-evident; in fact, axioms supporting
the relation of geometry and numbers are necessary. The Cantor–Dedekind Theorem is fundamental.)

The set of real numbers to the right of 0 is called the set of positive numbers; the set to the left of 0 is
the set of negative numbers, while 0 itself is neither positive nor negative.

(Both the horizontal position of the line and the placement of positive and negative numbers to the
right and left, respectively, are conventions.)

Between any two rational numbers (or irrational numbers) on the line there are infinitely many
rational (and irrational) numbers. This leads us to call the set of rational (or irrational) numbers an
everywhere dense set.

OPERATIONS WITH REAL NUMBERS

If a, b, c belong to the set R of real numbers, then:

1. aþ b and ab belong to R Closure law

2. aþ b ¼ bþ a Commutative law of addition

3. aþ ðbþ cÞ ¼ ðaþ bÞ þ c Associative law of addition

4. ab ¼ ba Commutative law of multiplication

5. aðbcÞ ¼ ðabÞc Associative law of multiplication

6. aðbþ cÞ ¼ abþ ac Distributive law

7. aþ 0 ¼ 0þ a ¼ a, 1 � a ¼ a � 1 ¼ a
0 is called the identity with respect to addition, 1 is called the identity with respect to multi-

plication.

2 NUMBERS [CHAP. 1
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8. For any a there is a number x in R such that xþ a ¼ 0.
x is called the inverse of a with respect to addition and is denoted by �a.

9. For any a 6¼ 0 there is a number x in R such that ax ¼ 1.
x is called the inverse of a with respect to multiplication and is denoted by a�1 or 1=a.

Convention: For convenience, operations called subtraction and division are defined by
a� b ¼ aþ ð�bÞ and a

b ¼ ab�1, respectively.
These enable us to operate according to the usual rules of algebra. In general any set, such as R,

whose members satisfy the above is called a field.

INEQUALITIES

If a� b is a nonnegative number, we say that a is greater than or equal to b or b is less than or equal to
a, and write, respectively, a A b or b % a. If there is no possibility that a ¼ b, we write a > b or b < a.
Geometrically, a > b if the point on the real axis corresponding to a lies to the right of the point
corresponding to b.

EXAMPLES. 3 < 5 or 5 > 3; �2 < �1 or �1 > �2; x @ 3 means that x is a real number which may be 3 or less

than 3.

If a, b; and c are any given real numbers, then:

1. Either a > b, a ¼ b or a < b Law of trichotomy

2. If a > b and b > c, then a > c Law of transitivity

3. If a > b, then aþ c > bþ c

4. If a > b and c > 0, then ac > bc

5. If a > b and c < 0, then ac < bc

ABSOLUTE VALUE OF REAL NUMBERS

The absolute value of a real number a, denoted by jaj, is defined as a if a > 0, �a if a < 0, and 0 if
a ¼ 0.

EXAMPLES. j � 5j ¼ 5, j þ 2j ¼ 2, j � 3
4 j ¼ 3

4, j �
ffiffiffi

2
p j ¼ ffiffiffi

2
p

, j0j ¼ 0.

1. jabj ¼ jajjbj or jabc . . .mj ¼ jajjbjjcj . . . jmj
2. jaþ bj @ jaj þ jbj or jaþ bþ cþ � � � þmj @ jaj þ jbj þ jcj þ � � � jmj
3. ja� bj A jaj � jbj
The distance between any two points (real numbers) a and b on the real axis is ja� bj ¼ jb� aj.

EXPONENTS AND ROOTS

The product a � a . . . a of a real number a by itself p times is denoted by ap, where p is called the
exponent and a is called the base. The following rules hold:

1. ap � aq ¼ apþq 3. ðapÞr ¼ apr

2.
ap

aq
¼ ap�q 4.

a

b

� � p

¼ ap

bp

CHAP. 1] NUMBERS 3



These and extensions to any real numbers are possible so long as division by zero is excluded. In

particular, by using 2, with p ¼ q and p ¼ 0, respectively, we are lead to the definitions a0 ¼ 1,

a�q ¼ 1=aq.
If ap ¼ N, where p is a positive integer, we call a a pth root of N written

ffiffiffiffi

Np
p

. There may be more

than one real pth root of N. For example, since 22 ¼ 4 and ð�2Þ2 ¼ 4, there are two real square roots of

4, namely 2 and �2. For square roots it is customary to define
ffiffiffiffi

N
p

as positive, thus
ffiffiffi

4
p ¼ 2 and then

� ffiffiffi

4
p ¼ �2.

If p and q are positive integers, we define ap=q ¼ ffiffiffiffiffi

apq
p

.

LOGARITHMS

If ap ¼ N, p is called the logarithm of N to the base a, written p ¼ loga N. If a and N are positive

and a 6¼ 1, there is only one real value for p. The following rules hold:

1. loga MN ¼ loga M þ loga N 2. loga
M

N
¼ loga M � loga N

3. loga M
r ¼ r loga M

In practice, two bases are used, base a ¼ 10, and the natural base a ¼ e ¼ 2:71828 . . . . The logarithmic

systems associated with these bases are called common and natural, respectively. The common loga-

rithm system is signified by logN, i.e., the subscript 10 is not used. For natural logarithms the usual

notation is lnN.

Common logarithms (base 10) traditionally have been used for computation. Their application

replaces multiplication with addition and powers with multiplication. In the age of calculators and

computers, this process is outmoded; however, common logarithms remain useful in theory and

application. For example, the Richter scale used to measure the intensity of earthquakes is a logarith-

mic scale. Natural logarithms were introduced to simplify formulas in calculus, and they remain

effective for this purpose.

AXIOMATIC FOUNDATIONS OF THE REAL NUMBER SYSTEM

The number system can be built up logically, starting from a basic set of axioms or ‘‘self-evident’’

truths, usually taken from experience, such as statements 1–9, Page 2.

If we assume as given the natural numbers and the operations of addition and multiplication

(although it is possible to start even further back with the concept of sets), we find that statements 1

through 6, Page 2, with R as the set of natural numbers, hold, while 7 through 9 do not hold.

Taking 7 and 8 as additional requirements, we introduce the numbers �1;�2;�3; . . . and 0. Then

by taking 9 we introduce the rational numbers.

Operations with these newly obtained numbers can be defined by adopting axioms 1 through 6,

where R is now the set of integers. These lead to proofs of statements such as ð�2Þð�3Þ ¼ 6, �ð�4Þ ¼ 4,

ð0Þð5Þ ¼ 0, and so on, which are usually taken for granted in elementary mathematics.

We can also introduce the concept of order or inequality for integers, and from these inequalities for

rational numbers. For example, if a, b, c, d are positive integers, we define a=b > c=d if and only if

ad > bc, with similar extensions to negative integers.

Once we have the set of rational numbers and the rules of inequality concerning them, we can order

them geometrically as points on the real axis, as already indicated. We can then show that there are

points on the line which do not represent rational numbers (such as
ffiffiffi

2
p

, �, etc.). These irrational

numbers can be defined in various ways, one of which uses the idea of Dedekind cuts (see Problem 1.34).

From this we can show that the usual rules of algebra apply to irrational numbers and that no further

real numbers are possible.

4 NUMBERS [CHAP. 1



POINT SETS, INTERVALS

A set of points (real numbers) located on the real axis is called a one-dimensional point set.
The set of points x such that a @ x @ b is called a closed interval and is denoted by ½a; b�. The set

a < x < b is called an open interval, denoted by ða; bÞ. The sets a < x @ b and a @ x < b, denoted by
ða; b� and ½a; bÞ, respectively, are called half open or half closed intervals.

The symbol x, which can represent any number or point of a set, is called a variable. The given
numbers a or b are called constants.

Letters were introduced to construct algebraic formulas around 1600. Not long thereafter, the
philosopher-mathematician Rene Descartes suggested that the letters at the end of the alphabet be used
to represent variables and those at the beginning to represent constants. This was such a good idea that
it remains the custom.

EXAMPLE. The set of all x such that jxj < 4, i.e., �4 < x < 4, is represented by ð�4; 4Þ, an open interval.

The set x > a can also be represented by a < x <1. Such a set is called an infinite or unbounded
interval. Similarly, �1 < x <1 represents all real numbers x.

COUNTABILITY

A set is called countable or denumerable if its elements can be placed in 1-1 correspondence with the
natural numbers.

EXAMPLE. The even natural numbers 2; 4; 6; 8; . . . is a countable set because of the 1-1 correspondence shown.

Given set

Natural numbers

2 4 6 8 . . .
l l l l
1 2 3 4 . . .

A set is infinite if it can be placed in 1-1 correspondence with a subset of itself. An infinite set which
is countable is called countable infinite.

The set of rational numbers is countable infinite, while the set of irrational numbers or all real
numbers is non-countably infinite (see Problems 1.17 through 1.20).

The number of elements in a set is called its cardinal number. A set which is countably infinite is
assigned the cardinal number Fo (the Hebrew letter aleph-null). The set of real numbers (or any sets
which can be placed into 1-1 correspondence with this set) is given the cardinal number C, called the
cardinality of the continuuum.

NEIGHBORHOODS

The set of all points x such that jx� aj < � where � > 0, is called a � neighborhood of the point a.
The set of all points x such that 0 < jx� aj < � in which x ¼ a is excluded, is called a deleted �
neighborhood of a or an open ball of radius � about a.

LIMIT POINTS

A limit point, point of accumulation, or cluster point of a set of numbers is a � number l such that
every deleted � neighborhood of l contains members of the set; that is, no matter how small the radius of
a ball about l there are points of the set within it. In other words for any � > 0, however small, we can
always find a member x of the set which is not equal to l but which is such that jx� lj < �. By
considering smaller and smaller values of � we see that there must be infinitely many such values of x.

A finite set cannot have a limit point. An infinite set may or may not have a limit point. Thus the
natural numbers have no limit point while the set of rational numbers has infinitely many limit points.

CHAP. 1] NUMBERS 5



A set containing all its limit points is called a closed set. The set of rational numbers is not a closed
set since, for example, the limit point

ffiffiffi

2
p

is not a member of the set (Problem 1.5). However, the set of
all real numbers x such that 0 @ x @ 1 is a closed set.

BOUNDS

If for all numbers x of a set there is a number M such that x @ M, the set is bounded above and M is
called an upper bound. Similarly if x A m, the set is bounded below and m is called a lower bound. If for
all x we have m @ x @ M, the set is called bounded.

If M is a number such that no member of the set is greater than M but there is at least one member
which exceeds M � � for every � > 0, then M is called the least upper bound (l.u.b.) of the set. Similarly
if no member of the set is smaller than �mm but at least one member is smaller than �mmþ � for every � > 0,
then �mm is called the greatest lower bound (g.l.b.) of the set.

BOLZANO–WEIERSTRASS THEOREM

The Bolzano–Weierstrass theorem states that every bounded infinite set has at least one limit point.
A proof of this is given in Problem 2.23, Chapter 2.

ALGEBRAIC AND TRANSCENDENTAL NUMBERS

A number x which is a solution to the polynomial equation

a0x
n þ a1x

n�1 þ a2x
n�2 þ � � � þ an�1xþ an ¼ 0 ð1Þ

where a0 6¼ 0, a1; a2; . . . ; an are integers and n is a positive integer, called the degree of the equation, is
called an algebraic number. A number which cannot be expressed as a solution of any polynomial
equation with integer coefficients is called a transcendental number.

EXAMPLES. 2
3 and

ffiffiffi

2
p

which are solutions of 3x� 2 ¼ 0 and x2 � 2 ¼ 0, respectively, are algebraic numbers.

The numbers � and e can be shown to be transcendental numbers. Mathematicians have yet to
determine whether some numbers such as e� or eþ � are algebraic or not.

The set of algebraic numbers is a countably infinite set (see Problem 1.23), but the set of transcen-
dental numbers is non-countably infinite.

THE COMPLEX NUMBER SYSTEM

Equations such as x2 þ 1 ¼ 0 have no solution within the real number system. Because these
equations were found to have a meaningful place in the mathematical structures being built, various
mathematicians of the late nineteenth and early twentieth centuries developed an extended system of
numbers in which there were solutions. The new system became known as the complex number system.
It includes the real number system as a subset.

We can consider a complex number as having the form aþ bi, where a and b are real numbers called
the real and imaginary parts, and i ¼ ffiffiffiffiffiffiffi�1

p
is called the imaginary unit. Two complex numbers aþ bi

and cþ di are equal if and only if a ¼ c and b ¼ d. We can consider real numbers as a subset of the set
of complex numbers with b ¼ 0. The complex number 0þ 0i corresponds to the real number 0.

The absolute value or modulus of aþ bi is defined as jaþ bij ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

a2 þ b2
p

. The complex conjugate of
aþ bi is defined as a� bi. The complex conjugate of the complex number z is often indicated by �zz or z�.

The set of complex numbers obeys rules 1 through 9 of Page 2, and thus constitutes a field. In
performing operations with complex numbers, we can operate as in the algebra of real numbers, replac-
ing i2 by �1 when it occurs. Inequalities for complex numbers are not defined.
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From the point of view of an axiomatic foundation of complex numbers, it is desirable to treat a
complex number as an ordered pair ða; bÞ of real numbers a and b subject to certain operational rules
which turn out to be equivalent to those above. For example, we define ða; bÞ þ ðc; dÞ ¼ ðaþ c; bþ dÞ,
ða; bÞðc; dÞ ¼ ðac� bd; ad þ bcÞ, mða; bÞ ¼ ðma;mbÞ, and so on. We then find that ða; bÞ ¼ að1; 0Þ þ
bð0; 1Þ and we associate this with aþ bi, where i is the symbol for ð0; 1Þ.

POLAR FORM OF COMPLEX NUMBERS

If real scales are chosen on two mutually perpendicular axes X 0OX and Y 0OY (the x and y axes) as
in Fig. 1-2 below, we can locate any point in the plane determined by these lines by the ordered pair of
numbers ðx; yÞ called rectangular coordinates of the point. Examples of the location of such points are
indicated by P, Q, R, S, and T in Fig. 1-2.

Since a complex number xþ iy can be considered as an ordered pair ðx; yÞ, we can represent such
numbers by points in an xy plane called the complex plane or Argand diagram. Referring to Fig. 1-3
above we see that x ¼ � cos�, y ¼ � sin� where � ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

x2 þ y2
p

¼ jxþ iyj and �, called the amplitude or
argument, is the angle which line OP makes with the positive x axis OX . It follows that

z ¼ xþ iy ¼ �ðcos�þ i sin�Þ ð2Þ

called the polar form of the complex number, where � and � are called polar coordintes. It is sometimes
convenient to write cis � instead of cos�þ i sin�.

If z1 ¼ x1 þ iyi ¼ �1ðcos �1 þ i sin�1Þ and z2 ¼ x2 þ iy2 ¼ �2ðcos�2 þ i sin�2Þ and by using the
addition formulas for sine and cosine, we can show that

z1z2 ¼ �1�2fcosð�1 þ �2Þ þ i sinð�1 þ �2Þg ð3Þ
z1
z2

¼ �1
�2

fcosð�1 � �2Þ þ i sinð�1 � �2Þg ð4Þ
zn ¼ f�ðcos �þ i sin�Þgn ¼ �nðcos n�þ i sin n�Þ ð5Þ

where n is any real number. Equation (5) is sometimes called De Moivre’s theorem. We can use this to
determine roots of complex numbers. For example, if n is a positive integer,

z1=n ¼ f�ðcos�þ i sin�Þg1=n ð6Þ

¼ �1=n cos
�þ 2k�

n

� �

þ i sin
�þ 2k�

n

� �� �

k ¼ 0; 1; 2; 3; . . . ; n� 1
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from which it follows that there are in general n different values of z1=n. Later (Chap. 11) we will show
that ei� ¼ cos�þ i sin� where e ¼ 2:71828 . . . . This is called Euler’s formula.

MATHEMATICAL INDUCTION

The principle of mathematical induction is an important property of the positive integers. It is
especially useful in proving statements involving all positive integers when it is known for example that
the statements are valid for n ¼ 1; 2; 3 but it is suspected or conjectured that they hold for all positive
integers. The method of proof consists of the following steps:

1. Prove the statement for n ¼ 1 (or some other positive integer).

2. Assume the statement true for n ¼ k; where k is any positive integer.

3. From the assumption in 2 prove that the statement must be true for n ¼ kþ 1. This is part of
the proof establishing the induction and may be difficult or impossible.

4. Since the statement is true for n ¼ 1 [from step 1] it must [from step 3] be true for n ¼ 1þ 1 ¼ 2
and from this for n ¼ 2þ 1 ¼ 3, and so on, and so must be true for all positive integers. (This
assumption, which provides the link for the truth of a statement for a finite number of cases to
the truth of that statement for the infinite set, is called ‘‘The Axiom of Mathematical Induc-
tion.’’)

Solved Problems

OPERATIONS WITH NUMBERS

1.1. If x ¼ 4, y ¼ 15, z ¼ �3, p ¼ 2
3, q ¼ � 1

6, and r ¼ 3
4, evaluate (a) xþ ðyþ zÞ, (b) ðxþ yÞ þ z,

(c) pðqrÞ, (d) ðpqÞr, (e) xðpþ qÞ
(a) xþ ðyþ zÞ ¼ 4þ ½15þ ð�3Þ� ¼ 4þ 12 ¼ 16

(b) ðxþ yÞ þ z ¼ ð4þ 15Þ þ ð�3Þ ¼ 19� 3 ¼ 16

The fact that (a) and (b) are equal illustrates the associative law of addition.

(c) pðqrÞ ¼ 2
3 fð� 1

6Þð34Þg ¼ ð23Þð� 3
24Þ ¼ ð23Þð� 1

8Þ ¼ � 2
24 ¼ � 1

12

(d) ðpqÞr ¼ fð23Þð� 1
6Þgð34Þ ¼ ð� 2

18Þð34Þ ¼ ð� 1
9Þð34Þ ¼ � 3

36 ¼ � 1
12

The fact that (c) and (d) are equal illustrates the associative law of multiplication.

(e) xðpþ qÞ ¼ 4ð23 � 1
6Þ ¼ 4ð46 � 1

6Þ ¼ 4ð36Þ ¼ 12
6 ¼ 2

Another method: xðpþ qÞ ¼ xpþ xq ¼ ð4Þð23Þ þ ð4Þð� 1
6Þ ¼ 8

3 � 4
6 ¼ 8

3 � 2
3 ¼ 6

3 ¼ 2 using the distributive

law.

1.2. Explain why we do not consider (a) 0
0 (b) 1

0 as numbers.

(a) If we define a=b as that number (if it exists) such that bx ¼ a, then 0=0 is that number x such that
0x ¼ 0. However, this is true for all numbers. Since there is no unique number which 0/0 can
represent, we consider it undefined.

(b) As in (a), if we define 1/0 as that number x (if it exists) such that 0x ¼ 1, we conclude that there is no
such number.

Because of these facts we must look upon division by zero as meaningless.
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1.3. Simplify
x2 � 5xþ 6

x2 � 2x� 3
.

x2 � 5xþ 6

x2 � 2x� 3
¼ ðx� 3Þðx� 2Þ

ðx� 3Þðxþ 1Þ ¼
x� 2

xþ 1
provided that the cancelled factor ðx� 3Þ is not zero, i.e., x 6¼ 3.

For x ¼ 3 the given fraction is undefined.

RATIONAL AND IRRATIONAL NUMBERS

1.4. Prove that the square of any odd integer is odd.

Any odd integer has the form 2mþ 1. Since ð2mþ 1Þ2 ¼ 4m2 þ 4mþ 1 is 1 more than the even integer

4m2 þ 4m ¼ 2ð2m2 þ 2mÞ, the result follows.

1.5. Prove that there is no rational number whose square is 2.

Let p=q be a rational number whose square is 2, where we assume that p=q is in lowest terms, i.e., p and q
have no common integer factors except �1 (we sometimes call such integers relatively prime).

Then ðp=qÞ2 ¼ 2, p2 ¼ 2q2 and p2 is even. From Problem 1.4, p is even since if p were odd, p2 would be

odd. Thus p ¼ 2m:
Substituting p ¼ 2m in p2 ¼ 2q2 yields q2 ¼ 2m2, so that q2 is even and q is even.
Thus p and q have the common factor 2, contradicting the original assumption that they had no

common factors other than �1. By virtue of this contradiction there can be no rational number whose
square is 2.

1.6. Show how to find rational numbers whose squares can be arbitrarily close to 2.

We restrict ourselves to positive rational numbers. Since ð1Þ2 ¼ 1 and ð2Þ2 ¼ 4, we are led to choose
rational numbers between 1 and 2, e.g., 1:1; 1:2; 1:3; . . . ; 1:9.

Since ð1:4Þ2 ¼ 1:96 and ð1:5Þ2 ¼ 2:25, we consider rational numbers between 1.4 and 1.5, e.g.,
1:41; 1:42; . . . ; 1:49:

Continuing in this manner we can obtain closer and closer rational approximations, e.g. ð1:414213562Þ2
is less than 2 while ð1:414213563Þ2 is greater than 2.

1.7. Given the equation a0x
n þ a1x

n�1 þ � � � þ an ¼ 0, where a0; a1; . . . ; an are integers and a0 and
an 6¼ 0. Show that if the equation is to have a rational root p=q, then p must divide an and q
must divide a0 exactly.

Since p=q is a root we have, on substituting in the given equation and multiplying by qn, the result

a0p
n þ a1p

n�1qþ a2p
n�2q2 þ � � � þ an�1pq

n�1 þ anq
n ¼ 0 ð1Þ

or dividing by p,

a0p
n�1 þ a1p

n�2qþ � � � þ an�1q
n�1 ¼ � anq

n

p
ð2Þ

Since the left side of (2) is an integer, the right side must also be an integer. Then since p and q are relatively
prime, p does not divide qn exactly and so must divide an.

In a similar manner, by transposing the first term of (1) and dividing by q, we can show that q must

divide a0.

1.8. Prove that
ffiffiffi

2
p þ ffiffiffi

3
p

cannot be a rational number.

If x ¼ ffiffiffi

2
p þ ffiffiffi

3
p

, then x2 ¼ 5þ 2
ffiffiffi

6
p

, x2 � 5 ¼ 2
ffiffiffi

6
p

and squaring, x4 � 10x2 þ 1 ¼ 0. The only possible
rational roots of this equation are �1 by Problem 1.7, and these do not satisfy the equation. It follows that
ffiffiffi

2
p þ ffiffiffi

3
p

, which satisfies the equation, cannot be a rational number.
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1.9. Prove that between any two rational numbers there is another rational number.

The set of rational numbers is closed under the operations of addition and division (non-zero

denominator). Therefore,
aþ b

2
is rational. The next step is to guarantee that this value is between a

and b. To this purpose, assume a < b. (The proof would proceed similarly under the assumption b < a.)

Then 2a < aþ b, thus a <
aþ b

2
and aþ b < 2b, therefore

aþ b

2
< b.

INEQUALITIES

1.10. For what values of x is xþ 3ð2� xÞ A 4� x?

xþ 3ð2� xÞ A 4� x when xþ 6� 3x A 4� x, 6� 2x A 4� x, 6� 4 A 2x� x, 2 A x, i.e. x @ 2.

1.11. For what values of x is x2 � 3x� 2 < 10� 2x?

The required inequality holds when

x2 � 3x� 2� 10þ 2x < 0; x2 � x� 12 < 0 or ðx� 4Þðxþ 3Þ < 0

This last inequality holds only in the following cases.

Case 1: x� 4 > 0 and xþ 3 < 0, i.e., x > 4 and x < �3. This is impossible, since x cannot be both greater

than 4 and less than �3.

Case 2: x� 4 < 0 and xþ 3 > 0, i.e. x < 4 and x > �3. This is possible when �3 < x < 4. Thus the
inequality holds for the set of all x such that �3 < x < 4.

1.12. If a A 0 and b A 0, prove that 1
2 ðaþ bÞ A ffiffiffiffiffi

ab
p

.

The statement is self-evident in the following cases (1) a ¼ b, and (2) either or both of a and b zero.
For both a and b positive and a 6¼ b, the proof is by contradiction.

Assume to the contrary of the supposition that 1
2 ðaþ bÞ < ffiffiffiffiffi

ab
p

then 1
4 ða2 þ 2abþ b2Þ < ab.

That is, a2 � 2abþ b2 ¼ ða� bÞ2 < 0. Since the left member of this equation is a square, it cannot be
less than zero, as is indicated. Having reached this contradiction, we may conclude that our assumption is
incorrect and that the original assertion is true.

1.13. If a1; a2; . . . ; an and b1; b2; . . . ; bn are any real numbers, prove Schwarz’s inequality

ða1b1 þ a2b2 þ � � � þ anbnÞ2 @ ða21 þ a22 þ � � � þ a2nÞðb21 þ b22 þ � � � þ b2nÞ
For all real numbers �, we have

ða1�þ b1Þ2 þ ða2�þ b2Þ2 þ � � � þ ðan�þ bnÞ2 A 0

Expanding and collecting terms yields

A2�2 þ 2C�þ B2 A 0 ð1Þ
where

A2 ¼ a21 þ a22 þ � � � þ a2n; B2 ¼ b21 þ b22 þ � � � þ b2n; C ¼ a1b1 þ a2b2 þ � � � þ anbn ð2Þ
The left member of (1) is a quadratic form in �. Since it never is negative, its discriminant,

4C2 � 4A2B2, cannot be positive. Thus

C2 � A2B2 � 0 or C2 � A2B2

This is the inequality that was to be proved.

1.14. Prove that
1

2
þ 1

4
þ 1

8
þ � � � þ 1

2n�1
< 1 for all positive integers n > 1.
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Sn ¼
1

2
þ 1

4
þ 1

8
þ � � � þ 1

2n�1
Let

1

2
Sn ¼

1

4
þ 1

8
þ � � � þ 1

2n�1
þ 1

2n
Then

1

2
Sn ¼

1

2
� 1

2n
: Thus Sn ¼ 1� 1

2n�1
< 1 for all n:Subtracting,

EXPONENTS, ROOTS, AND LOGARITHMS

1.15. Evaluate each of the following:

ðaÞ 34 � 38
314

¼ 34þ8

314
¼ 34þ8�14 ¼ 3�2 ¼ 1

32
¼ 1

9

ðbÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ð5 � 10�6Þð4 � 102Þ
8 � 105

s

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

5 � 4
8

� 10
�6 � 102
105

s

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2:5 � 10�9
p

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

25 � 10�10
p

¼ 5 � 10�5 or 0:00005

ðcÞ log2=3
27
8

� 	 ¼ x: Then 2
3

� 	x¼ 27
8 ¼ 3

2

� 	3¼ 2
3

� 	�3
or x ¼ �3

ðdÞ ðloga bÞðlogb aÞ ¼ u: Then loga b ¼ x; logb a ¼ y assuming a; b > 0 and a; b 6¼ 1:

Then ax ¼ b, by ¼ a and u ¼ xy.
Since ðaxÞy ¼ axy ¼ by ¼ a we have axy ¼ a1 or xy ¼ 1 the required value.

1.16. If M > 0, N > 0; and a > 0 but a 6¼ 1, prove that loga
M

N
¼ loga M � loga N.

Let loga M ¼ x, loga N ¼ y. Then ax ¼ M, ay ¼ N and so

M

N
¼ ax

ay
¼ ax�y or loga

M

N
¼ x� y ¼ loga M � loga N

COUNTABILITY

1.17. Prove that the set of all rational numbers between 0 and 1 inclusive is countable.

Write all fractions with denominator 2, then 3; . . . considering equivalent fractions such as 1
2 ;

2
4 ;

3
6 ; . . . no

more than once. Then the 1-1 correspondence with the natural numbers can be accomplished as follows:

Rational numbers

Natural numbers

0 1 1
2

1
3

2
3

1
4

3
4

1
5

2
5 . . .

l l l l l l l l l
1 2 3 4 5 6 7 8 9 . . .

Thus the set of all rational numbers between 0 and 1 inclusive is countable and has cardinal number Fo

(see Page 5).

1.18. If A and B are two countable sets, prove that the set consisting of all elements from A or B (or
both) is also countable.

Since A is countable, there is a 1-1 correspondence between elements of A and the natural numbers so

that we can denote these elements by a1; a2; a3; . . . .
Similarly, we can denote the elements of B by b1; b2; b3; . . . .

Case 1: Suppose elements of A are all distinct from elements of B. Then the set consisting of elements from
A or B is countable, since we can establish the following 1-1 correspondence.
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A or B

Natural numbers

a1 b1 a2 b2 a3 b3 . . .
l l l l l l
1 2 3 4 5 6 . . .

Case 2: If some elements of A and B are the same, we count them only once as in Problem 1.17. Then the set
of elements belonging to A or B (or both) is countable.

The set consisting of all elements which belong to A or B (or both) is often called the union of A and B,

denoted by A [ B or Aþ B.
The set consisting of all elements which are contained in both A and B is called the intersection of A and

B, denoted by A \ B or AB. If A and B are countable, so is A \ B.

The set consisting of all elements in A but not in B is written A� B. If we let �BB be the set of elements
which are not in B, we can also write A� B ¼ A �BB. If A and B are countable, so is A� B.

1.19. Prove that the set of all positive rational numbers is countable.

Consider all rational numbers x > 1. With each such rational number we can associate one and only

one rational number 1=x in ð0; 1Þ, i.e., there is a one-to-one correspondence between all rational numbers > 1
and all rational numbers in ð0; 1Þ. Since these last are countable by Problem 1.17, it follows that the set of all
rational numbers > 1 is also countable.

From Problem 1.18 it then follows that the set consisting of all positive rational numbers is countable,

since this is composed of the two countable sets of rationals between 0 and 1 and those greater than or equal
to 1.

From this we can show that the set of all rational numbers is countable (see Problem 1.59).

1.20. Prove that the set of all real numbers in ½0; 1� is non-countable.
Every real number in ½0; 1� has a decimal expansion :a1a2a3 . . . where a1; a2; . . . are any of the digits

0; 1; 2; . . . ; 9.
We assume that numbers whose decimal expansions terminate such as 0.7324 are written 0:73240000 . . .

and that this is the same as 0:73239999 . . . .
If all real numbers in ½0; 1� are countable we can place them in 1-1 correspondence with the natural

numbers as in the following list:

1
2
3
..
.

$
$
$

0:a11a12a13a14 . . .
0:a21a22a23a24 . . .
0:a31a32a33a34 . . .

..

.

We now form a number

0:b1b2b3b4 . . .

where b1 6¼ a11; b2 6¼ a22; b3 6¼ a33; b4 6¼ a44; . . . and where all b’s beyond some position are not all 9’s.
This number, which is in ½0; 1� is different from all numbers in the above list and is thus not in the list,

contradicting the assumption that all numbers in ½0; 1� were included.
Because of this contradiction it follows that the real numbers in ½0; 1� cannot be placed in 1-1 corre-

spondence with the natural numbers, i.e., the set of real numbers in ½0; 1� is non-countable.

LIMIT POINTS, BOUNDS, BOLZANO–WEIERSTRASS THEOREM

1.21. (a) Prove that the infinite sets of numbers 1; 12 ;
1
3 ;

1
4 ; . . . is bounded. (b) Determine the least

upper bound (l.u.b.) and greatest lower bound (g.l.b.) of the set. (c) Prove that 0 is a limit point
of the set. (d) Is the set a closed set? (e) How does this set illustrate the Bolzano–Weierstrass
theorem?

(a) Since all members of the set are less than 2 and greater than �1 (for example), the set is bounded; 2 is an
upper bound, �1 is a lower bound.

We can find smaller upper bounds (e.g., 3
2) and larger lower bounds (e.g., � 1

2).
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(b) Since no member of the set is greater than 1 and since there is at least one member of the set (namely 1)

which exceeds 1� � for every positive number �, we see that 1 is the l.u.b. of the set.
Since no member of the set is less than 0 and since there is at least one member of the set which is

less than 0þ � for every positive � (we can always choose for this purpose the number 1=n where n is a
positive integer greater than 1=�), we see that 0 is the g.l.b. of the set.

(c) Let x be any member of the set. Since we can always find a number x such that 0 < jxj < � for any
positive number � (e.g. we can always pick x to be the number 1=n where n is a positive integer greater
than 1=�), we see that 0 is a limit point of the set. To put this another way, we see that any deleted �
neighborhood of 0 always includes members of the set, no matter how small we take � > 0.

(d) The set is not a closed set since the limit point 0 does not belong to the given set.

(e) Since the set is bounded and infinite it must, by the Bolzano–Weierstrass theorem, have at least one

limit point. We have found this to be the case, so that the theorem is illustrated.

ALGEBRAIC AND TRANSCENDENTAL NUMBERS

1.22. Prove that
ffiffiffi

23
p þ ffiffiffi

3
p

is an algebraic number.

Let x ¼ ffiffiffi

23
p þ ffiffiffi

3
p

. Then x� ffiffiffi

3
p ¼ ffiffiffi

23
p

. Cubing both sides and simplifying, we find x3 þ 9x� 2 ¼
3
ffiffiffi

3
p ðx2 þ 1Þ. Then squaring both sides and simplifying we find x6 � 9x4 � 4x3 þ 27x2 þ 36x� 23 ¼ 0.

Since this is a polynomial equation with integral coefficients it follows that
ffiffiffi

23
p þ ffiffiffi

3
p

, which is a
solution, is an algebraic number.

1.23. Prove that the set of all algebraic numbers is a countable set.

Algebraic numbers are solutions to polynomial equations of the form a0x
n þ a1x

n�1 þ � � � þ an ¼ 0
where a0; a1; . . . ; an are integers.

Let P ¼ ja0j þ ja1j þ � � � þ janj þ n. For any given value of P there are only a finite number of possible
polynomial equations and thus only a finite number of possible algebraic numbers.

Write all algebraic numbers corresponding to P ¼ 1; 2; 3; 4; . . . avoiding repetitions. Thus, all algebraic
numbers can be placed into 1-1 correspondence with the natural numbers and so are countable.

COMPLEX NUMBERS

1.24. Perform the indicated operations.

(a) ð4� 2iÞ þ ð�6þ 5iÞ ¼ 4� 2i � 6þ 5i ¼ 4� 6þ ð�2þ 5Þi ¼ �2þ 3i

(b) ð�7þ 3iÞ � ð2� 4iÞ ¼ �7þ 3i � 2þ 4i ¼ �9þ 7i

(c) ð3� 2iÞð1þ 3iÞ ¼ 3ð1þ 3iÞ � 2ið1þ 3iÞ ¼ 3þ 9i � 2i � 6i2 ¼ 3þ 9i � 2i þ 6 ¼ 9þ 7i

ðdÞ �5þ 5i

4� 3i
¼ �5þ 5i

4� 3i
� 4þ 3i

4þ 3i
¼ ð�5þ 5iÞð4þ 3iÞ

16� 9i2
¼ �20� 15i þ 20i þ 15i2

16þ 9

¼ �35þ 5i

25
¼ 5ð�7þ iÞ

25
¼ �7

5
þ 1

5
i

ðeÞ i þ i2 þ i3 þ i4 þ i5

1þ i
¼ i � 1þ ði2ÞðiÞ þ ði2Þ2 þ ði2Þ2i

1þ i
¼ i � 1� i þ 1þ i

1þ i

¼ i

1þ i
� 1� i

1� i
¼ i � i2

1� i2
¼ i þ 1

2
¼ 1

2
þ 1

2
i

ð f Þ j3� 4ijj4þ 3ij ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ð3Þ2 þ ð�4Þ2
q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ð4Þ2 þ ð3Þ2
q

¼ ð5Þð5Þ ¼ 25
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ðgÞ 1

1þ 3i
� 1

1� 3i

























¼ 1� 3i

1� 9i2
� 1þ 3i

1� 9i2

























¼ �6i

10

























¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ð0Þ2 þ � 6

10

� �2
s

¼ 3

5

1.25. If z1 and z2 are two complex numbers, prove that jz1z2j ¼ jz1jjz2j.
Let z1 ¼ x1 þ iy

1
, z2 ¼ x2 þ iy2. Then

jz1z2j ¼ jðx1 þ iy1Þðx2 þ iy2Þj ¼ jx1x2 � y1y2 þ iðx1y2 þ x2y1Þj
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðx1x2 � y1y2Þ2 þ ðx1y2 þ x2y1Þ2
q

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

x21x
2
2 þ y21y

2
2 þ x21y

2
2 þ x22y

2
1

q

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðx21 þ y21Þðx22 þ y22Þ
q

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

x21 þ y2
q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

x22 þ y22

q

¼ jx1 þ iy1jjx2 þ iy2j ¼ jz1jjz2j:

1.26. Solve x3 � 2x� 4 ¼ 0.

The possible rational roots using Problem 1.7 are �1, �2, �4. By trial we find x ¼ 2 is a root. Then
the given equation can be written ðx� 2Þðx2 þ 2xþ 2Þ ¼ 0. The solutions to the quadratic equation

ax2 þ bxþ c ¼ 0 are x ¼ �b�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

b2 � 4ac
p

2a
. For a ¼ 1, b ¼ 2, c ¼ 2 this gives x ¼ �2� ffiffiffiffiffiffiffiffiffiffiffi

4� 8
p

2
¼

�2� ffiffiffiffiffiffiffi�4
p

2
¼ �2� 2i

2
¼ �1� i.

The set of solutions is 2, �1þ i, �1� i.

POLAR FORM OF COMPLEX NUMBERS

1.27. Express in polar form (a) 3þ 3i, (b) �1þ ffiffiffi

3
p

i, (c) �1, (d) �2� 2
ffiffiffi

3
p

i. See Fig. 1-4.

(a) Amplitude � ¼ 458 ¼ �=4 radians. Modulus � ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

32 þ 32
p

¼ 3
ffiffiffi

2
p

. Then 3þ 3i ¼ �ðcos�þ i sin�Þ ¼
3
ffiffiffi

2
p ðcos�=4þ i sin�=4Þ ¼ 3

ffiffiffi

2
p

cis�=4 ¼ 3
ffiffiffi

2
p

e�i=4

(b) Amplitude � ¼ 1208 ¼ 2�=3 radians. Modulus � ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ð�1Þ2 þ ð ffiffiffi

3
p Þ2

q

¼ ffiffiffi

4
p ¼ 2. Then �1þ 3

ffiffiffi

3
p

i ¼
2ðcos 2�=3þ i sin 2�=3Þ ¼ 2 cis 2�=3 ¼ 2e2�i=3

(c) Amplitude � ¼ 1808 ¼ � radians. Modulus � ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ð�1Þ2 þ ð0Þ2
q

¼ 1. Then �1 ¼ 1ðcos�þ i sin�Þ ¼
cis� ¼ e�i

(d) Amplitude � ¼ 2408 ¼ 4�=3 radians. Modulus � ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ð�2Þ2 þ ð�2
ffiffiffi

3
p Þ2

q

¼ 4. Then �2� 2
ffiffiffi

3
p ¼

4ðcos 4�=3þ i sin 4�=3Þ ¼ 4 cis 4�=3 ¼ 4e4�i=3
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1.28. Evaluate (a) ð�1þ ffiffiffi

3
p

iÞ10, (b) ð�1þ iÞ1=3.
(a) By Problem 1.27(b) and De Moivre’s theorem,

ð�1þ
ffiffiffi

3
p

iÞ10 ¼ ½2ðcos 2�=3þ i sin 2�=3Þ�10 ¼ 210ðcos 20�=3þ i sin 20�=3Þ
¼ 1024½cosð2�=3þ 6�Þ þ i sinð2�=3þ 6�Þ� ¼ 1024ðcos 2�=3þ i sin 2�=3Þ
¼ 1024 � 1

2 þ 1
2

ffiffiffi

3
p

i
� 	 ¼ �512þ 512

ffiffiffi

3
p

i

(b) �1þ i ¼ ffiffiffi

2
p ðcos 1358þ i sin 1358Þ ¼ ffiffiffi

2
p ½cosð1358þ k � 3608Þ þ i sinð1358þ k � 3608Þ�. Then

ð�1þ iÞ1=3 ¼ ð
ffiffiffi

2
p

Þ1=3 cos
1358þ k � 3608

3

� �

þ i sin
1358þ k � 3608

3

� �� �

The results for k ¼ 0; 1; 2 are

ffiffiffi

2
6
p

ðcos 458þ i sin 458Þ;
ffiffiffi

2
6
p

ðcos 1658þ i sin 1658Þ;
ffiffiffi

2
6
p

ðcos 2858þ i sin 2858Þ
The results for k ¼ 3; 4; 5; 6; 7; . . . give repetitions of these. These

complex roots are represented geometrically in the complex plane
by points P1;P2;P3 on the circle of Fig. 1-5.

MATHEMATICAL INDUCTION

1.29. Prove that 12 þ 22 þ 33 þ 42 þ � � � þ n2 ¼ 1
6 nðnþ 1Þð2nþ 1Þ.

The statement is true for n ¼ 1 since 12 ¼ 1
6 ð1Þð1þ 1Þð2 � 1þ 1Þ ¼ 1.

Assume the statement true for n ¼ k. Then

12 þ 22 þ 32 þ � � � þ k2 ¼ 1
6 kðkþ 1Þð2kþ 1Þ

Adding ðkþ 1Þ2 to both sides,

12 þ 22 þ 32 þ � � � þ k2 þ ðkþ 1Þ2 ¼ 1
6 kðkþ 1Þð2kþ 1Þ þ ðkþ 1Þ2 ¼ ðkþ 1Þ½16 kð2kþ 1Þ þ kþ 1�

¼ 1
6 ðkþ 1Þð2k2 þ 7kþ 6Þ ¼ 1

6 ðkþ 1Þðkþ 2Þð2kþ 3Þ
which shows that the statement is true for n ¼ kþ 1 if it is true for n ¼ k. But since it is true for n ¼ 1, it
follows that it is true for n ¼ 1þ 1 ¼ 2 and for n ¼ 2þ 1 ¼ 3; . . . ; i.e., it is true for all positive integers n.

1.30. Prove that xn � yn has x� y as a factor for all positive integers n.

The statement is true for n ¼ 1 since x1 � y1 ¼ x� y.

Assume the statement true for n ¼ k, i.e., assume that xk � yk has x� y as a factor. Consider

xkþ1 � ykþ1 ¼ xkþ1 � xkyþ xky� ykþ1

¼ xkðx� yÞ þ yðxk � ykÞ
The first term on the right has x� y as a factor, and the second term on the right also has x� y as a factor
because of the above assumption.

Thus xkþ1 � ykþ1 has x� y as a factor if xk � yk does.

Then since x1 � y1 has x� y as factor, it follows that x2 � y2 has x� y as a factor, x3 � y3 has x� y as a

factor, etc.
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1.31. Prove Bernoulli’s inequality ð1þ xÞn > 1þ nx for n ¼ 2; 3; . . . if x > �1, x 6¼ 0.

The statement is true for n ¼ 2 since ð1þ xÞ2 ¼ 1þ 2xþ x2 > 1þ 2x.
Assume the statement true for n ¼ k, i.e., ð1þ xÞk > 1þ kx.

Multiply both sides by 1þ x (which is positive since x > �1). Then we have

ð1þ xÞkþ1 > ð1þ xÞð1þ kxÞ ¼ 1þ ðkþ 1Þxþ kx2 > 1þ ðkþ 1Þx
Thus the statement is true for n ¼ kþ 1 if it is true for n ¼ k.

But since the statement is true for n ¼ 2, it must be true for n ¼ 2þ 1 ¼ 3; . . . and is thus true for all
integers greater than or equal to 2.

Note that the result is not true for n ¼ 1. However, the modified result ð1þ xÞn A 1þ nx is true for
n ¼ 1; 2; 3; . . . .

MISCELLANEOUS PROBLEMS

1.32. Prove that every positive integer P can be expressed uniquely in the form P ¼ a02
n þ a12

n�1þ
a22

n�2 þ � � � þ an where the a’s are 0’s or 1’s.

Dividing P by 2, we have P=2 ¼ a02
n�1 þ a12

n�2 þ � � � þ an�1 þ an=2.
Then an is the remainder, 0 or 1, obtained when P is divided by 2 and is unique.
Let P1 be the integer part of P=2. Then P1 ¼ a02

n�1 þ a12
n�2 þ � � � þ an�1.

Dividing P1 by 2 we see that an�1 is the remainder, 0 or 1, obtained when P1 is divided by 2 and is
unique.

By continuing in this manner, all the a’s can be determined as 0’s or 1’s and are unique.

1.33. Express the number 23 in the form of Problem 1.32.

The determination of the coefficients can be arranged as follows:

2Þ23
2Þ11 Remainder 1

2Þ5 Remainder 1

2Þ2 Remainder 1

2Þ1 Remainder 0

0 Remainder 1

The coefficients are 1 0 1 1 1. Check: 23 ¼ 1 � 24 þ 0 � 23 þ 1 � 22 þ 1 � 2þ 1.
The number 10111 is said to represent 23 in the scale of two or binary scale.

1.34. Dedekind defined a cut, section, or partition in the rational number system as a separation of all
rational numbers into two classes or sets called L (the left-hand class) and R (the right-hand class)
having the following properties:

I. The classes are non-empty (i.e. at least one number belongs to each class).

II. Every rational number is in one class or the other.

III. Every number in L is less than every number in R.

Prove each of the following statements:

(a) There cannot be a largest number in L and a smallest number in R.

(b) It is possible for L to have a largest number and for R to have no smallest number. What
type of number does the cut define in this case?

(c) It is possible for L to have no largest number and for R to have a smallest number. What
type of number does the cut define in this case?
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(d) It is possible for L to have no largest number and for R to have no smallest number. What
type of number does the cut define in this case?

(a) Let a be the largest rational number in L, and b the smallest rational number in R. Then either a ¼ b or
a < b.

We cannot have a ¼ b since by definition of the cut every number in L is less than every number

in R.
We cannot have a < b since by Problem 1.9, 12 ðaþ bÞ is a rational number which would be greater

than a (and so would have to be in R) but less than b (and so would have to be in L), and by definition a

rational number cannot belong to both L and R.

(b) As an indication of the possibility, let L contain the number 2
3 and all rational numbers less than 2

3, while

R contains all rational numbers greater than 2
3. In this case the cut defines the rational number 2

3. A
similar argument replacing 2

3 by any other rational number shows that in such case the cut defines a
rational number.

(c) As an indication of the possibility, let L contain all rational numbers less than 2
3, while R contains all

rational numbers greaters than 2
3. This cut also defines the rational number 2

3. A similar argument

shows that this cut always defines a rational number.

(d) As an indication of the possibility let L consist of all negative rational numbers and all positive rational
numbers whose squares are less than 2, while R consists of all positive numbers whose squares are
greater than 2. We can show that if a is any number of the L class, there is always a larger number of
the L class, while if b is any number of the R class, there is always a smaller number of the R class (see

Problem 1.106). A cut of this type defines an irrational number.
From (b), (c), (d) it follows that every cut in the rational number system, called a Dedekind cut,

defines either a rational or an irrational number. By use of Dedekind cuts we can define operations

(such as addition, multiplication, etc.) with irrational numbers.

Supplementary Problems

OPERATIONS WITH NUMBERS

1.35. Given x ¼ �3, y ¼ 2, z ¼ 5, a ¼ 3
2, and b ¼ � 1

4, evaluate:

ðaÞ ð2x� yÞð3yþ zÞð5x� 2zÞ; ðbÞ xy� 2z2

2ab� 1
; ðcÞ 3a2bþ ab2

2a22b2 þ 1
; ðdÞ ðaxþ byÞ2 þ ðay� bxÞ2

ðayþ bxÞ2 þ ðax� byÞ2 :

Ans. (a) 2200, (b) 32, (c) �51=41, (d) 1

1.36. Find the set of values of x for which the following equations are true. Justify all steps in each case.

ðaÞ 4fðx� 2Þ þ 3ð2x� 1Þg þ 2ð2xþ 1Þ ¼ 12ðxþ 2Þ � 2 ðcÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

x2 þ 8xþ 7
p

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2xþ 2
p ¼ xþ 1

ðbÞ 1

8� x
� 1

x� 2
¼ 1

4
ðdÞ 1� x

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

x2 � 2xþ 5
p ¼ 3

5

Ans. (a) 2, (b) 6;�4 (c) �1; 1 (d) � 1
2

1.37. Prove that
x

ðz� xÞðx� yÞ þ
y

ðx� yÞðy� zÞ þ
z

ðy� zÞðz� xÞ ¼ 0 giving restrictions if any.

RATIONAL AND IRRATIONAL NUMBERS

1.38. Find decimal expansions for (a) 3
7, (b)

ffiffiffi

5
p

.

Ans. (a) 0:_44_22_88_55_77_11, (b) 2.2360679 . . .
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1.39. Show that a fraction with denominator 17 and with numerator 1; 2; 3; . . . ; 16 has 16 digits in the repeating

portion of its decimal expansion. Is there any relation between the orders of the digits in these expansions?

1.40. Prove that (a)
ffiffiffi

3
p

, (b)
ffiffiffi

23
p

are irrational numbers.

1.41. Prove that (a)
ffiffiffi

53
p � ffiffiffi

34
p

, (b)
ffiffiffi

2
p þ ffiffiffi

3
p þ ffiffiffi

5
p

are irrational numbers.

1.42. Determine a positive rational number whose square differs from 7 by less than .000001.

1.43. Prove that every rational number can be expressed as a repeating decimal.

1.44. Find the values of x for which
(a) 2x3 � 5x2 � 9xþ 18 ¼ 0, (b) 3x3 þ 4x2 � 35xþ 8 ¼ 0, (c) x4 � 21x2 þ 4 ¼ 0.
Ans. (a) 3;�2; 3=2 (b) 8=3;�2� ffiffiffi

5
p

(c) 1
2 ð5�

ffiffiffiffiffi

17
p Þ; 12 ð�5� ffiffiffiffiffi

17
p Þ

1.45. If a, b, c, d are rational and m is not a perfect square, prove that aþ b
ffiffiffiffi

m
p ¼ cþ d

ffiffiffiffi

m
p

if and only if a ¼ c
and b ¼ d.

1.46. Prove that
1þ ffiffiffi

3
p þ ffiffiffi

5
p

1� ffiffiffi

3
p þ ffiffiffi

5
p ¼ 12

ffiffiffi

5
p � 2

ffiffiffiffiffi

15
p þ 14

ffiffiffi

3
p � 7

11
:

INEQUALITIES

1.47. Find the set of values of x for which each of the following inequalities holds:

ðaÞ 1

x
þ 3

2x
A 5; ðbÞ xðxþ 2Þ @ 24; ðcÞ jxþ 2j < jx� 5j; ðdÞ x

xþ 2
>

xþ 3

3xþ 1
:

Ans. (a) 0 < x @ 1
2, (b) �6 @ x @ 4, (c) x < 3=2, (d) x > 3;�1 < x < � 1

3, or x < �2

1.48. Prove (a) jxþ yj @ jxj þ jyj, (b) jxþ yþ zj @ jxj þ jyj þ jzj, (c) jx� yj A jxj � jyj.

1.49. Prove that for all real x; y; z, x2 þ y2 þ z2 A xyþ yzþ zx:

1.50. If a2 þ b2 ¼ 1 and c2 þ d2 ¼ 1, prove that acþ bd @ 1.

1.51. If x > 0, prove that xnþ1 þ 1

xnþ1
> xn þ 1

xn
where n is any positive integer.

1.52. Prove that for all real a 6¼ 0, jaþ 1=aj A 2:

1.53. Show that in Schwarz’s inequality (Problem 13) the equality holds if and only if ap ¼ kbp, p ¼ 1; 2; 3; . . . ; n
where k is any constant.

1.54. If a1; a2; a3 are positive, prove that 1
3 ða1 þ a2 þ a3Þ A ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

a1a2a33
p

.

EXPONENTS, ROOTS, AND LOGARITHMS

1.55. Evaluate (a) 4log2 8, (b) 3
4 log1=8ð 1

128Þ, (c)

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ð0:00004Þð25,000Þ
ð0:02Þ5ð0:125Þ

s

, (d) 3�2 log3 5, (e) ð� 1
8Þ4=3 � ð�27Þ�2=3

Ans. (a) 64, (b) 7/4, (c) 50,000, (d) 1/25, (e) �7=144

1.56. Prove (a) loga MN ¼ loga M þ loga N, (b) loga M
r ¼ r loga M indicating restrictions, if any.

1.57. Prove blogb a ¼ a giving restrictions, if any.
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COUNTABILITY

1.58. (a) Prove that there is a one to one correspondence between the points of the interval 0 @ x @ 1 and

�5 @ x @ � 3. (b) What is the cardinal number of the sets in (a)?
Ans. (b) C, the cardinal number of the continuum.

1.59. (a) Prove that the set of all rational numbers is countable. (b) What is the cardinal number of the set in (a)?
Ans. (b) Fo

1.60. Prove that the set of (a) all real numbers, (b) all irrational numbers is non-countable.

1.61. The intersection of two sets A and B, denoted by A \ B or AB, is the set consisting of all elements belonging
to both A and B. Prove that if A and B are countable, so is their intersection.

1.62. Prove that a countable set of countable sets is countable.

1.63. Prove that the cardinal number of the set of points inside a square is equal to the cardinal number of the sets

of points on (a) one side, (b) all four sides. (c) What is the cardinal number in this case? (d) Does a
corresponding result hold for a cube?
Ans. (c) C

LIMIT POINTS, BOUNDS, BOLZANO–WEIERSTRASS THEOREM

1.64. Given the set of numbers 1; 1:1; :9; 1:01; :99; 1:001; :999; . . . . (a) Is the set bounded? (b) Does the set have

a l.u.b. and g.l.b.? If so, determine them. (c) Does the set have any limit points? If so, determine them.
(d) Is the set a closed set?
Ans. (a) Yes (b) l:u:b: ¼ 1:1; g:l:b: ¼ :9 (c) 1 (d) Yes

1.65. Give the set �:9; :9;�:99; :99;�:999; :999 answer the questions of Problem 64.

Ans. (a) Yes (b) l:u:b: ¼ 1; g:l:b: ¼ �1 (c) 1;�1 (d) No

1.66. Give an example of a set which has (a) 3 limit points, (b) no limit points.

1.67. (a) Prove that every point of the interval 0 < x < 1 is a limit point.
(b) Are there are limit points which do not belong to the set in (a)? Justify your answer.

1.68. Let S be the set of all rational numbers in ð0; 1Þ having denominator 2n, n ¼ 1; 2; 3; . . . . (a) Does S have
any limit points? (b) Is S closed?

1.69. (a) Give an example of a set which has limit points but which is not bounded. (b) Does this contradict the
Bolzano–Weierstrass theorem? Explain.

ALGEBRAIC AND TRANSCENDENTAL NUMBERS

1.70. Prove that (a)

ffiffiffi

3
p � ffiffiffi

2
p

ffiffiffi

3
p þ ffiffiffi

2
p , (b)

ffiffiffi

2
p þ ffiffiffi

3
p þ ffiffiffi

5
p

are algebraic numbers.

1.71. Prove that the set of transcendental numbers in ð0; 1Þ is not countable.

1.72. Prove that every rational number is algebraic but every irrational number is not necessarily algebraic.

COMPLEX NUMBERS, POLAR FORM

1.73. Perform each of the indicated operations: (a) 2ð5� 3iÞ � 3ð�2þ iÞ þ 5ði � 3Þ, (b) ð3� 2iÞ3

ðcÞ 5

3� 4i
þ 10

4þ 3i
; ðdÞ 1� i

1þ i

� �10

; ðeÞ 2� 4i

5þ 7i

























2

; ð f Þ ð1þ iÞð2þ 3iÞð4� 2iÞ
ð1þ 2iÞ2ð1� iÞ :

Ans. (a) 1� 4i, (b) �9� 46i, (c) 11
5 � 2

5 i, (d) �1, (e) 10
37, ( f ) 16

5 � 2
5 i.



1.74. If z1 and z2 are complex numbers, prove (a)
z1
z2

























¼ jz1j
jz2j

, (b) jz21j ¼ jz1j2 giving any restrictions.

1.75. Prove (a) jz1 þ z2j @ jz1j þ jz2j, (b) jz1 þ z2 þ z3j @ jz1j þ jz2j þ jz3j, (c) jz1 � z2j A jz1j � jz2j.

1.76. Find all solutions of 2x4 � 3x3 � 7x2 � 8xþ 6 ¼ 0.
Ans. 3, 1

2, �1� i

1.77. Let z1 and z2 be represented by points P1 and P2 in the Argand diagram. Construct lines OP1 and OP2,

where O is the origin. Show that z1 þ z2 can be represented by the point P3, where OP3 is the diagonal of a
parallelogram having sides OP1 and OP2. This is called the parallelogram law of addition of complex
numbers. Because of this and other properties, complex numbers can be considered as vectors in two

dimensions.

1.78. Interpret geometrically the inequalities of Problem 1.75.

1.79. Express in polar form (a) 3
ffiffiffi

3
p þ 3i, (b) �2� 2i, (c) 1� ffiffiffi

3
p

i, (d) 5, (e) �5i.
Ans. (a) 6 cis�=6 ðbÞ 2

ffiffiffi

2
p

cis 5�=4 ðcÞ 2 cis 5�=3 ðdÞ 5 cis 0 ðeÞ 5 cis 3�=2

1.80. Evaluate (a) ½2ðcos 258þ i sin 258Þ�½5ðcos 1108þ i sin 1108Þ�, (b)
12 cis 168

ð3 cis 448Þð2 cis 628Þ :

Ans. (a) �5
ffiffiffi

2
p þ 5

ffiffiffi

2
p

i; ðbÞ � 2i

1.81. Determine all the indicated roots and represent them graphically:

(a) ð4 ffiffiffi

2
p þ 4

ffiffiffi

2
p

iÞ1=3; ðbÞ ð�1Þ1=5; ðcÞ ð ffiffiffi

3
p � iÞ1=3; ðdÞ i1=4.

Ans. (a) 2 cis 158; 2 cis 1358; 2 cis 2558
(b) cis 368; cis 1088; cis 1808 ¼ �1; cis 2528; cis 3248
(c)

ffiffiffi

23
p

cis 1108;
ffiffiffi

23
p

cis 2308;
ffiffiffi

23
p

cis 3508
(d) cis 22:58; cis 112:58; cis 202:58; cis 292:58

1.82. Prove that �1þ ffiffiffi

3
p

i is an algebraic number.

1.83. If z1 ¼ �1 cis�1 and z2 ¼ �2 cis�2, prove (a) z1z2 ¼ �1�2 cisð�1 þ �2Þ, (b) z1=z2 ¼ ð�1=�2Þ cisð�1 � �2Þ.
Interpret geometrically.

MATHEMATICAL INDUCTION

Prove each of the following.

1.84. 1þ 3þ 5þ � � � þ ð2n� 1Þ ¼ n2

1.85.
1

1 � 3þ
1

3 � 5þ
1

5 � 7þ � � � þ 1

ð2n� 1Þð2nþ 1Þ ¼
n

2nþ 1

1.86. aþ ðaþ dÞ þ ðaþ 2dÞ þ � � � þ ½aþ ðn� 1Þd� ¼ 1
2 n½2aþ ðn� 1Þd�

1.87.
1

1 � 2 � 3þ
1

2 � 3 � 4þ
1

3 � 4 � 5þ � � � þ 1

nðnþ 1Þðnþ 2Þ ¼
nðnþ 3Þ

4ðnþ 1Þðnþ 2Þ

1.88. aþ arþ ar2 þ � � � þ arn�1 ¼ aðrn � 1Þ
r� 1

; r 6¼ 1

1.89. 13 þ 23 þ 33 þ � � � þ n3 ¼ 1
4 n

2ðnþ 1Þ2

1.90. 1ð5Þ þ 2ð5Þ2 þ 3ð5Þ3 þ � � � þ nð5Þn�1 ¼ 5þ ð4n� 1Þ5nþ1

16

1.91. x2n�1 þ y2n�1 is divisible by xþ y for n ¼ 1; 2; 3; . . . .
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1.92. ðcos�þ i sin�Þn ¼ cos n�þ i sin n�. Can this be proved if n is a rational number?

1.93. 1
2 þ cos xþ cos 2xþ � � � þ cos nx ¼ sinðnþ 1

2Þx
2 sin 1

2 x
, x 6¼ 0;�2�;�4�; . . .

1.94. sin xþ sin 2xþ � � � þ sin nx ¼ cos 12 x� cosðnþ 1
2Þx

2 sin 1
2 x

; x 6¼ 0;�2�;�4�; . . .

1.95. ðaþ bÞn ¼ an þ nC1a
n�1bþ nC2a

n�2b2 þ � � � þ nCn�1ab
n�1 þ bn

where nCr ¼
nðn� 1Þðn� 2Þ . . . ðn� rþ 1Þ

r!
¼ n!

r!ðn� rÞ! ¼ nCn�r. Here p! ¼ pðp� 1Þ . . . 1 and 0! is defined as

1. This is called the binomial theorem. The coefficients nC0 ¼ 1, nC1 ¼ n, nC2 ¼
nðn� 1Þ

2!
; . . . ; nCn ¼ 1 are

called the binomial coefficients. nCr is also written
n

r

� �

.

MISCELLANEOUS PROBLEMS

1.96. Express each of the following integers (scale of 10) in the scale of notation indicated: (a) 87 (two), (b) 64
(three), (c) 1736 (nine). Check each answer.

Ans. (a) 1010111, (b) 2101, (c) 2338

1.97. If a number is 144 in the scale of 5, what is the number in the scale of (a) 2, (b) 8?

1.98. Prove that every rational number p=q between 0 and 1 can be expressed in the form
p

q
¼ a1

2
þ a2
22

þ � � � þ an
2n

þ � � �

where the a’s can be determined uniquely as 0’s or 1’s and where the process may or may not terminate. The

representation 0:a1a2 . . . an . . . is then called the binary form of the rational number. [Hint: Multiply both
sides successively by 2 and consider remainders.}

1.99. Express 2
3 in the scale of (a) 2, (b) 3, (c) 8, (d) 10.

Ans. (a) 0:1010101 . . . ; (b) 0.2 or 0:2000 . . . ; (c) 0:5252 . . . ; (d) 0:6666 . . .

1.100. A number in the scale of 2 is 11.01001. What is the number in the scale of 10.
Ans. 3.28125

1.101. In what scale of notation is 3þ 4 ¼ 12?
Ans. 5

1.102. In the scale of 12, two additional symbols t and e must be used to designate the ‘‘digits’’ 10 and 11,
respectively. Using these symbols, represent the integer 5110 (scale of 10) in the scale of 12.
Ans. 2e5t

1.103. Find a rational number whose decimal expansion is 1:636363 . . . .
Ans. 18/11

1.104. A number in the scale of 10 consists of six digits. If the last digit is removed and placed before the first digit,
the new number is one-third as large. Find the original number.
Ans. 428571

1.105. Show that the rational numbers form a field.

1.106. Using as axioms the relations 1–9 on Pages 2 and 3, prove that
(a) ð�3Þð0Þ ¼ 0, (b) ð�2Þðþ3Þ ¼ �6, (c) ð�2Þð�3Þ ¼ 6.
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1.107. (a) If x is a rational number whose square is less than 2, show that xþ ð2� x2Þ=10 is a larger such number.

(b) If x is a rational number whose square is greater than 2, find in terms of x a smaller rational number
whose square is greater than 2.

1.108. Illustrate how you would use Dedekind cuts to define
(a)

ffiffiffi

5
p þ ffiffiffi

3
p
; ðbÞ ffiffiffi

3
p � ffiffiffi

2
p
; ðcÞ ð ffiffiffi

3
p Þð ffiffiffi

2
p Þ; ðdÞ ffiffiffi

2
p
=
ffiffiffi

3
p

.
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Sequences

DEFINITION OF A SEQUENCE

A sequence is a set of numbers u1; u2; u3; . . . in a definite order of arrangement (i.e., a correspondence
with the natural numbers) and formed according to a definite rule. Each number in the sequence is
called a term; un is called the nth term. The sequence is called finite or infinite according as there are or
are not a finite number of terms. The sequence u1; u2; u3; . . . is also designated briefly by fung.
EXAMPLES. 1. The set of numbers 2; 7; 12; 17; . . . ; 32 is a finite sequence; the nth term is given by

un ¼ 2þ 5ðn� 1Þ ¼ 5n� 3, n ¼ 1; 2; . . . ; 7.

2. The set of numbers 1; 1=3; 1=5; 1=7; . . . is an infinite sequence with nth term un ¼ 1=ð2n� 1Þ,
n ¼ 1; 2; 3; . . . .

Unless otherwise specified, we shall consider infinite sequences only.

LIMIT OF A SEQUENCE

A number l is called the limit of an infinite sequence u1; u2; u3; . . . if for any positive number � we can
find a positive number N depending on � such that jun � lj < � for all integers n > N. In such case we
write lim

n!1 un ¼ l.

EXAMPLE . If un ¼ 3þ 1=n ¼ ð3nþ 1Þ=n, the sequence is 4; 7=2; 10=3; . . . and we can show that lim
n!1 un ¼ 3.

If the limit of a sequence exists, the sequence is called convergent; otherwise, it is called divergent. A
sequence can converge to only one limit, i.e., if a limit exists, it is unique. See Problem 2.8.

A more intuitive but unrigorous way of expressing this concept of limit is to say that a sequence
u1; u2; u3; . . . has a limit l if the successive terms get ‘‘closer and closer’’ to l. This is often used to
provide a ‘‘guess’’ as to the value of the limit, after which the definition is applied to see if the guess is
really correct.

THEOREMS ON LIMITS OF SEQUENCES

If lim
n!1 an ¼ A and lim

n!1 bn ¼ B, then

1. lim
n!1ðan þ bnÞ ¼ lim

n!1 an þ lim
n!1 bn ¼ Aþ B

2. lim
n!1ðan � bnÞ ¼ lim

n!1 an � lim
n!1 bn ¼ A� B

3. lim
n!1ðan � bnÞ ¼ ð lim

n!1 anÞð lim
n!1 bnÞ ¼ AB
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4. lim
n!1

an
bn

¼
lim
n!1 an

lim
n!1 bn

¼ A

B
if lim

n!1 bn ¼ B 6¼ 0

If B ¼ 0 and A 6¼ 0, lim
n!1

an
bn

does not exist.

If B ¼ 0 and A ¼ 0, lim
n!1

an
bn

may or may not exist.

5. lim
n!1 ap

n ¼ ð lim
n!1 anÞ p ¼ Ap, for p ¼ any real number if Ap exists.

6. lim
n!1 pan ¼ p

liman

n!1 ¼ pA, for p ¼ any real number if pA exists.

INFINITY

We write lim
n!1 an ¼ 1 if for each positive number M we can find a positive number N (depending on

M) such that an >M for all n > N. Similarly, we write lim
n!1 an ¼ �1 if for each positive number M we

can find a positive number N such that an < �M for all n > N. It should be emphasized that 1 and
�1 are not numbers and the sequences are not convergent. The terminology employed merely
indicates that the sequences diverge in a certain manner. That is, no matter how large a number in
absolute value that one chooses there is an n such that the absolute value of an is greater than that
quantity.

BOUNDED, MONOTONIC SEQUENCES

If un @ M for n ¼ 1; 2; 3; . . . ; where M is a constant (independent of n), we say that the sequence
fung is bounded above and M is called an upper bound. If un A m, the sequence is bounded below and m is
called a lower bound.

If m @ un @ M the sequence is called bounded. Often this is indicated by junj @ P. Every
convergent sequence is bounded, but the converse is not necessarily true.

If unþ1 A un the sequence is called monotonic increasing; if unþ1 > un it is called strictly increasing.
Similarly, if unþ1 @ un the sequence is called monotonic decreasing, while if unþ1 < un it is strictly

decreasing.

EXAMPLES. 1. The sequence 1; 1:1; 1:11; 1:111; . . . is bounded and monotonic increasing. It is also strictly
increasing.

2. The sequence 1;�1; 1;�1; 1; . . . is bounded but not monotonic increasing or decreasing.
3. The sequence �1;�1:5;�2;�2:5;�3; . . . is monotonic decreasing and not bounded. However, it

is bounded above.

The following theorem is fundamental and is related to the Bolzano–Weierstrass theorem (Chapter
1, Page 6) which is proved in Problem 2.23.

Theorem. Every bounded monotonic (increasing or decreasing) sequence has a limit.

LEAST UPPER BOUND AND GREATEST LOWER BOUND OF A SEQUENCE

A number M is called the least upper bound (l.u.b.) of the sequence fung if un @ M, n ¼ 1; 2; 3; . . .
while at least one term is greater than M � � for any � > 0.

A number �mm is called the greatest lower bound (g.l.b.) of the sequence fung if un A �mm, n ¼ 1; 2; 3; . . .
while at least one term is less than �mmþ � for any � > 0.

Compare with the definition of l.u.b. and g.l.b. for sets of numbers in general (see Page 6).
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LIMIT SUPERIOR, LIMIT INFERIOR

A number �ll is called the limit superior, greatest limit or upper limit (lim sup or lim) of the sequence

fung if infinitely many terms of the sequence are greater than �ll � � while only a finite number of terms are

greater than �ll þ �, where � is any positive number.

A number l is called the limit inferior, least limit or lower limit (lim inf or lim) of the sequence fung if
infintely many terms of the sequence are less than l þ � while only a finite number of terms are less than

l � �, where � is any positive number.

These correspond to least and greatest limiting points of general sets of numbers.

If infintely many terms of fung exceed any positive number M, we define lim sup fung ¼ 1. If

infinitely many terms are less than �M, where M is any positive number, we define lim inf fung ¼ �1.

If lim
n!1 un ¼ 1, we define lim sup fung ¼ lim inf fung ¼ 1.

If lim
n!1 un ¼ �1, we define lim sup fung ¼ lim inf fung ¼ �1.

Although every bounded sequence is not necessarily convergent, it always has a finite lim sup and

lim inf.

A sequence fung converges if and only if lim sup un ¼ lim inf un is finite.

NESTED INTERVALS

Consider a set of intervals ½an; bn�, n ¼ 1; 2; 3; . . . ; where each interval is contained in the preceding

one and lim
n!1ðan � bnÞ ¼ 0. Such intervals are called nested intervals.

We can prove that to every set of nested intervals there corresponds one and only one real number.

This can be used to establish the Bolzano–Weierstrass theorem of Chapter 1. (See Problems 2.22 and

2.23.)

CAUCHY’S CONVERGENCE CRITERION

Cauchy’s convergence criterion states that a sequence fung converges if and only if for each � > 0 we

can find a number N such that jup � uqj < � for all p; q > N. This criterion has the advantage that one

need not know the limit l in order to demonstrate convergence.

INFINITE SERIES

Let u1; u2; u3; . . . be a given sequence. Form a new sequence S1;S2;S3; . . . where

S1 ¼ u1;S2 ¼ u1 þ u2;S3 ¼ u1 þ u2 þ u3; . . . ;Sn ¼ u1 þ u2 þ u3 þ � � � þ un; . . .

where Sn, called the nth partial sum, is the sum of the first n terms of the sequence fung.
The sequence S1;S2;S3; . . . is symbolized by

u1 þ u2 þ u3 þ � � � ¼
X

1

n¼1

un

which is called an infinite series. If lim
n!1Sn ¼ S exists, the series is called convergent and S is its sum,

otherwise the series is called divergent.

Further discussion of infinite series and other topics related to sequences is given in Chapter 11.
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Solved Problems

SEQUENCES

2.1. Write the first five terms of each of the following sequences.

ðaÞ 2n� 1

3nþ 2

� �

ðbÞ 1� ð�1Þn
n3

� �

ðcÞ ð�1Þn�1

2 � 4 � 6 � � � 2n

( )

ðdÞ 1

2
þ 1

4
þ 1

8
þ � � � þ 1

2n

� �

ðeÞ ð�1Þn�1x2n�1

ð2n� 1Þ!

( )

ðaÞ 1

5
;
3

8
;
5

11
;
7

14
;
9

17

ðbÞ 2

13
; 0;

2

33
; 0;

2

53

ðcÞ 1

2
;
�1

2 � 4 ;
1

2 � 4 � 6 ;
�1

2 � 4 � 6 � 8 ;
1

2 � 4 � 6 � 8 � 10

ðdÞ 1

2
;
1

2
þ 1

4
;
1

2
þ 1

4
þ 1

8
;
1

2
þ 1

4
þ 1

8
þ 1

16
;
1

2
þ 1

4
þ 1

8
þ 1

16
þ 1

32

ðeÞ x

1!
;
�x3

3!
;
x5

5!
;
�x7

7!
;
x9

9!

Note that n! ¼ 1 � 2 � 3 � 4 � � � n. Thus 1! ¼ 1, 3! ¼ 1 � 2 � 3 ¼ 6, 5! ¼ 1 � 2 � 3 � 4 � 5 ¼ 120, etc. We define

0! ¼ 1.

2.2. Two students were asked to write an nth term for the sequence 1; 16; 81; 256; . . . and to write the
5th term of the sequence. One student gave the nth term as un ¼ n4. The other student, who did
not recognize this simple law of formation, wrote un ¼ 10n3 � 35n2 þ 50n� 24. Which student
gave the correct 5th term?

If un ¼ n4, then u1 ¼ 14 ¼ 1, u2 ¼ 24 ¼ 16, u3 ¼ 34 ¼ 81, u4 ¼ 44 ¼ 256, which agrees with the first four
terms of the sequence. Hence the first student gave the 5th term as u5 ¼ 54 ¼ 625:

If un ¼ 10n3 � 35n2 þ 50n� 24, then u1 ¼ 1; u2 ¼ 16; u3 ¼ 81; u4 ¼ 256, which also agrees with the first
four terms given. Hence, the second student gave the 5th term as u5 ¼ 601:

Both students were correct. Merely giving a finite number of terms of a sequence does not define a
unique nth term. In fact, an infinite number of nth terms is possible.
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LIMIT OF A SEQUENCE

2.3. A sequence has its nth term given by un ¼
3n� 1

4nþ 5
. (a) Write the 1st, 5th, 10th, 100th, 1000th,

10,000th and 100,000th terms of the sequence in decimal form. Make a guess as to the limit of
this sequence as n ! 1. (b) Using the definition of limit verify that the guess in (a) is actually
correct.

ðaÞ n ¼ 1 n ¼ 5 n ¼ 10 n ¼ 100 n ¼ 1000 n ¼ 10,000 n ¼ 100,000

:22222 . . . :56000 . . . :64444 . . . :73827 . . . :74881 . . . :74988 . . . :74998 . . .

A good guess is that the limit is :75000 . . . ¼ 3
4. Note that it is only for large enough values of n that

a possible limit may become apparent.

(b) We must show that for any given � > 0 (no matter how small) there is a number N (depending on �)
such that jun � 3

4 j < � for all n > N.

Now
3n� 1

4nþ 5
� 3

4

























¼ �19

4ð4nþ 5Þ
























< � when
19

4ð4nþ 5Þ < � or

4ð4nþ 5Þ
19

>
1

�
; 4nþ 5 >

19

4�
; n >

1

4

19

4�
� 5

� �

Choosing N ¼ 1
4 ð19=4�� 5Þ, we see that jun � 3

4 j < � for all n > N, so that lim
n!1 ¼ 3

4 and the proof is

complete.

Note that if � ¼ :001 (for example), N ¼ 1
4 ð19000=4� 5Þ ¼ 1186 1

4. This means that all terms of the
sequence beyond the 1186th term differ from 3

4 in absolute value by less than .001.

2.4. Prove that lim
n!1

c

np ¼ 0 where c 6¼ 0 and p > 0 are constants (independent of n).

We must show that for any � > 0 there is a number N such that jc=np � 0j < � for all n > N.

Now
c

np


















< � when

jcj
np < �, i.e., np >

jcj
�
or n >

jcj
�

� �1=p

. Choosing N ¼ jcj
�

� �1=p

(depending on �), we

see that jc=npj < � for all n > N, proving that lim
n!1ðc=npÞ ¼ 0.

2.5. Prove that lim
n!1

1þ 2 � 10n
5þ 3 � 10n ¼

2

3
.

We must show that for any � > 0 there is a number N such that
1þ 2 � 10n
5þ 3 � 10n �

2

3

























< � for all n > N.

Now
1þ 2 � 10n
5þ 3 � 10n �

2

3

























¼ �7

3ð5þ 3 � 10nÞ
























< � when
7

3ð5þ 3 � 10nÞ < �, i.e. when 3
7 ð5þ 3 � 10nÞ > 1=�,

3 � 10n > 7=3�� 5, 10n > 1
8 ð7=3�� 5Þ or n > log10f13 ð7=3�� 5Þg ¼ N, proving the existence of N and thus

establishing the required result.

Note that the above value of N is real only if 7=3�� 5 > 0, i.e., 0 < � < 7=15. If �A 7=15, we see that

1þ 2 � 10n
5þ 3 � 10n �

2

3

























< � for all n > 0.

2.6. Explain exactly what is meant by the statements (a) lim
n!1 32n�1 ¼ 1, (b) lim

n!1ð1� 2nÞ ¼ �1.

(a) If for each positive numberM we can find a positive number N (depending onM) such that an >M for
all n > N, then we write lim

n!1 an ¼ 1.

In this case, 32n�1 >M when ð2n� 1Þ log 3 > logM; i.e., n >
1

2

logM

log 3
þ 1

� �

¼ N.

(b) If for each positive number M we can find a positive number N (depending on M) such that an < �M
for all n > N, then we write lim

n!1 ¼ �1.

In this case, 1� 2n < �M when 2n� 1 >M or n > 1
2 ðM þ 1Þ ¼ N.
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It should be emphasized that the use of the notations 1 and �1 for limits does not in any way

imply convergence of the given sequences, since 1 and �1 are not numbers. Instead, these are
notations used to describe that the sequences diverge in specific ways.

2.7. Prove that lim
n!1xn ¼ 0 if jxj < 1.

Method 1:

We can restrict ourselves to x 6¼ 0, since if x ¼ 0, the result is clearly true. Given � > 0, we must show
that there exists N such that jxnj < � for n > N. Now jxnj ¼ jxjn < � when n log10 jxj < log10 �. Dividing by

log10 jxj, which is negative, yields n >
log10 �

log10 jxj
¼ N, proving the required result.

Method 2:

Let jxj ¼ 1=ð1þ pÞ, where p > 0. By Bernoulli’s inequality (Problem 1.31, Chapter 1), we have

jxnj ¼ jxjn ¼ 1=ð1þ pÞn < 1=ð1þ npÞ < � for all n > N. Thus lim
n!1xn ¼ 0.

THEOREMS ON LIMITS OF SEQUENCES

2.8. Prove that if lim
n!1 un exists, it must be unique.

We must show that if lim
n!1 un ¼ l1 and lim

n!1 un ¼ l2, then l1 ¼ l2.

By hypothesis, given any � > 0 we can find N such that

jun � l1j < 1
2 � when n > N; jun � l2j < 1

2 � when n > N

Then

jl1 � l2j ¼ jl1 � un þ un � l2j @ jl1 � unj þ jun � l2j < 1
2 �þ 1

2 � ¼ �

i.e., jl1 � l2j is less than any positive � (however small) and so must be zero. Thus, l1 ¼ l2.

2.9. If lim
n!1 an ¼ A and lim

n!1 bn ¼ B, prove that lim
n!1ðan þ bnÞ ¼ Aþ B.

We must show that for any � > 0, we can find N > 0 such that jðan þ bnÞ � ðAþ BÞj < � for all n > N.

From absolute value property 2, Page 3 we have

jðan þ bnÞ � ðAþ BÞj ¼ jðan � AÞ þ ðbn � BÞj @ jan � Aj þ jbn � Bj ð1Þ
By hypothesis, given � > 0 we can find N1 and N2 such that

jan � Aj < 1
2 � for all n > N1 ð2Þ

jbn � Bj < 1
2 � for all n > N2 ð3Þ

Then from (1), (2), and (3),

jðan þ bnÞ � ðAþ BÞj < 1
2 �þ 1

2 � ¼ � for all n > N

where N is chosen as the larger of N1 and N2. Thus, the required result follows.

2.10. Prove that a convergent sequence is bounded.

Given lim
n!1 an ¼ A, we must show that there exists a positive number P such that janj < P for all n. Now

janj ¼ jan � Aþ Aj @ jan � Aj þ jAj
But by hypothesis we can find N such that jan � Aj < � for all n > N, i.e.,

janj < �þ jAj for all n > N

It follows that janj < P for all n if we choose P as the largest one of the numbers a1; a2; . . . ; aN , �þ jAj.
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2.11. If lim
n!1 bn ¼ B 6¼ 0, prove there exists a number N such that jbnj > 1

2 jBj for all n > N.

Since B ¼ B� bn þ bn, we have: (1) jBj @ jB� bnj þ jbnj.
Now we can choose N so that jB� bnj ¼ jbn � Bj < 1

2 jBj for all n > N, since lim
n!1 bn ¼ B by hypothesis.

Hence, from (1), jBj < 1
2 jBj þ jbnj or jbnj > 1

2 jBj for all n > N.

2.12. If lim
n!1 an ¼ A and lim

n!1 bn ¼ B, prove that lim
n!1 anbn ¼ AB.

We have, using Problem 2.10,

janbn � ABj ¼ janðbn � BÞ þ Bðan � AÞj @ janjjbn � Bj þ jBjjan � Aj ð1Þ
@ Pjbn � Bj þ ðjBj þ 1Þjan � Aj

But since lim
n!1 an ¼ A and lim

n!1 bn ¼ B, given any � > 0 we can find N1 and N2 such that

jbn � Bj < �

2P
for all n > N1 jan � Aj < �

2ðjBj þ 1Þ for all n > N2

Hence, from (1), janbn � ABj < 1
2 �þ 1

2 � ¼ � for all n > N, where N is the larger of N1 and N2. Thus, the
result is proved.

2.13. If lim
n!1 an ¼ A and lim

n!1 bn ¼ B 6¼ 0, prove (a) lim
n!1

1

bn
¼ 1

B
, (b) lim

n!1
an
bn

¼ A

B
.

(a) We must show that for any given � > 0, we can find N such that

1

bn
� 1

B

























¼ jB� bnj
jBjjbnj

< � for all n > N ð1Þ

By hypothesis, given any � > 0, we can find N1, such that jbn � Bj < 1
2B

2� for all n > N1.

Also, since lim
n!1 bn ¼ B 6¼ 0, we can find N2 such that jbnj > 1

2 jBj for all n > N2 (see Problem 11).

Then if N is the larger of N1 and N2, we can write (1) as

1

bn
� 1

B

























¼ jbn � Bj
jBjjbnj

<
1
2B

2�

jBj � 12 jBj
¼ � for all n > N

and the proof is complete.

(b) From part (a) and Problem 2.12, we have

lim
n!1

an
bn

¼ lim
n!1 an �

1

bn

� �

¼ lim
n!1 an � lim

n!1
1

bn
¼ A � 1

B
¼ A

B

This can also be proved directly (see Problem 41).

2.14. Evaluate each of the following, using theorems on limits.

ðaÞ lim
n!1

3n2 � 5n

5n2 þ 2n� 6
¼ lim

n!1
3� 5=n

5þ 2=n� 6=n2
¼ 3þ 0

5þ 0þ 0
¼ 3

5

ðbÞ lim
n!1

nðnþ 2Þ
nþ 1

� n3

n2 þ 1

( )

¼ lim
n!1

n3 þ n2 þ 2n

ðnþ 1Þðn2 þ 1Þ

( )

¼ lim
n!1

1þ 1=nþ 2=n2

ð1þ 1=nÞð1þ 1=n2Þ

( )

¼ 1þ 0þ 0

ð1þ 0Þ � ð1þ 0Þ ¼ 1

ðcÞ lim
n!1ð ffiffiffiffiffiffiffiffiffiffiffi

nþ 1
p � ffiffiffi

n
p Þ ¼ lim

n!1ð ffiffiffiffiffiffiffiffiffiffiffi

nþ 1
p � ffiffiffi

n
p Þ

ffiffiffiffiffiffiffiffiffiffiffi

nþ 1
p þ ffiffiffi

n
p

ffiffiffiffiffiffiffiffiffiffiffi

nþ 1
p þ ffiffiffi

n
p ¼ lim

n!1
1

ffiffiffiffiffiffiffiffiffiffiffi

nþ 1
p þ ffiffiffi

n
p ¼ 0
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ðdÞ lim
n!1

3n2 þ 4n

2n� 1
¼ lim

n!1
3þ 4=n

2=n� 1=n2

Since the limits of the numerator and denominator are 3 and 0, respectively, the limit does not
exist.

Since
3n2 þ 4n

2n� 1
>

3n2

2n
¼ 3n

2
can be made larger than any positive number M by choosing n > N, we

can write, if desired, lim
n!1

3n2 þ 4n

2n� 1
¼ 1.

ðeÞ lim
n!1

2n� 3

2nþ 7

� �4

¼ lim
n!1

2� 3=n

3þ 7=n

� �4

¼ 2

3

� �4

¼ 16

81

ð f Þ lim
n!1

2n5 � 4n2

3n7 þ n3 � 10
¼ lim

n!1
2=n2 � 4=n5

3þ 1=n4 � 10=n7
¼ 0

3
¼ 0

ðgÞ lim
n!1

1þ 2 � 10n
5þ 3 � 10n ¼ lim

n!1
10�n þ 2

5 � 10�n þ 3
¼ 2

3
(Compare with Problem 2.5.)

BOUNDED MONOTONIC SEQUENCES

2.15. Prove that the sequence with nth un ¼
2n� 7

3nþ 2
(a) is monotonic increasing, (b) is bounded

above, (c) is bounded below, (d) is bounded, (e) has a limit.

(a) fung is monotonic increasing if unþ1 A un, n ¼ 1; 2; 3; . . . . Now

2ðnþ 1Þ � 7

3ðnþ 1Þ þ 2
A

2n� 7

3nþ 2
if and only if

2n� 5

2nþ 5
A

2n� 7

3nþ 2

or ð2n� 5Þð3nþ 2Þ A ð2n� 7Þð3nþ 5Þ, 6n2 � 11n� 10 A 6n2 � 11n� 35, i.e. �10A � 35, which is
true. Thus, by reversal of steps in the inequalities, we see that fung is monotonic increasing. Actually,

since �10 > �35, the sequence is strictly increasing.

(b) By writing some terms of the sequence, we may guess that an upper bound is 2 (for example). To prove

this we must show that un @ 2. If ð2n� 7Þ=ð3nþ 2Þ @ 2 then 2n� 7 @ 6nþ 4 or �4n < 11, which is
true. Reversal of steps proves that 2 is an upper bound.

(c) Since this particular sequence is monotonic increasing, the first term �1 is a lower bound, i.e.,
un A � 1, n ¼ 1; 2; 3; . . . . Any number less than �1 is also a lower bound.

(d) Since the sequence has an upper and lower bound, it is bounded. Thus, for example, we can write
junj @ 2 for all n.

(e) Since every bounded monotonic (increasing or decreasing) sequence has a limit, the given sequence has

a limit. In fact, lim
n!1

2n� 7

3nþ 2
¼ lim

n!1
2� 7=n

3þ 2=n
¼ 2

3
.

2.16. A sequence fung is defined by the recursion formula unþ1 ¼
ffiffiffiffiffiffiffi

3un
p

, u1 ¼ 1. (a) Prove that lim
n!1 un

exists. (b) Find the limit in (a).

(a) The terms of the sequence are u1 ¼ 1, u2 ¼
ffiffiffiffiffiffiffi

3u1
p ¼ 31=2, u3 ¼

ffiffiffiffiffiffiffi

3u2
p ¼ 31=2þ1=4; . . . .

The nth term is given by un ¼ 31=2þ1=4þ���þ1=2n�1

as can be proved by mathematical induction

(Chapter 1).

Clearly, unþ1 A un. Then the sequence is monotone increasing.

By Problem 1.14, Chapter 1, un @ 31 ¼ 3, i.e. un is bounded above. Hence, un is bounded (since a

lower bound is zero).

Thus, a limit exists, since the sequence is bounded and monotonic increasing.
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(b) Let x ¼ required limit. Since lim
n!1 unþ1 ¼ lim

n!1
ffiffiffiffiffiffiffi

3un
p

, we have x ¼ ffiffiffiffiffiffi

3x
p

and x ¼ 3. (The other

possibility, x ¼ 0, is excluded since un A 1:Þ
Another method: lim

n!1 31=2þ1=4þ���þ1=2n�1 ¼ lim
n!1 31�1=2n ¼ 3

limð1�1=2n Þ
n!1 ¼ 31 ¼ 3

2.17. Verify the validity of the entries in the following table.

Sequence Bounded

Monotonic

Increasing

Monotonic

Decreasing

Limit

Exists

2; 1:9; 1:8; 1:7; . . . ; 2� ðn� 1Þ=10 . . . No No Yes No

1;�1; 1;�1; . . . ; ð�1Þn�1; . . . Yes No No No

1
2 ;� 1

3 ;
1
4 ;� 1

5 ; . . . ; ð�1Þn�1=ðnþ 1Þ; . . . Yes No No Yes (0)

:6; :66; :666; . . . ; 23 ð1� 1=10nÞ; . . . Yes Yes No Yes (23)

�1;þ2;�3;þ4;�5; . . . ; ð�1Þnn; . . . No No No No

2.18. Prove that the sequence with the nth term un ¼ 1þ 1

n

� �n

is monotonic, increasing, and bounded,

and thus a limit exists. The limit is denoted by the symbol e.

Note: lim
n!1 1þ 1

n

� �n

¼ e, where e ffi 2:71828 . . . was introduced in the eighteenth century by

Leonhart Euler as the base for a system of logarithms in order to simplify certain differentiation
and integration formulas.

By the binomial theorem, if n is a positive integer (see Problem 1.95, Chapter 1),

ð1þ xÞn ¼ 1þ nxþ nðn� 1Þ
2!

x2 þ nðn� 1Þðn� 2Þ
3!

x3 þ � � � þ nðn� 1Þ � � � ðn� nþ 1Þ
n!

xn

Letting x ¼ 1=n,

un ¼ 1þ 1

n

� �n

¼ 1þ n
1

n
þ nðn� 1Þ

2!

1

n2
þ � � � þ nðn� 1Þ � � � ðn� nþ 1Þ

n!

1

nn

¼ 1þ 1þ 1

2!
1� 1

n

� �

þ 1

3!
1� 1

n

� �

1� 2

n

� �

þ � � � þ 1

n!
1� 1

n

� �

1� 2

n

� �

� � � 1� n� 1

n

� �

Since each term beyond the first two terms in the last expression is an increasing function of n, it follows that

the sequence un is a monotonic increasing sequence.
It is also clear that

1þ 1

n

� �n

< 1þ 1þ 1

2!
þ 1

3!
þ � � � þ 1

n!
< 1þ 1þ 1

2
þ 1

22
þ � � � þ 1

2n�1
< 3

by Problem 1.14, Chapter 1.
Thus, un is bounded and monotonic increasing, and so has a limit which we denote by e. The value of

e ¼ 2:71828 . . . .

2.19. Prove that lim
x!1 1þ 1

x

� �x

¼ e, where x ! 1 in any manner whatsoever (i.e., not necessarily along

the positive integers, as in Problem 2.18).

If n ¼ largest integer @ x, then n @ x @ nþ 1 and 1þ 1

nþ 1

� �n

@ 1þ 1

x

� �x

@ 1þ 1

n

� �nþ1

.

Since lim
n!1 1þ 1

nþ 1

� �n

¼ lim
n!1 1þ 1

nþ 1

� �nþ1
,

1þ 1

nþ 1

� �

¼ e



and lim
n!1 1þ 1

n

� �nþ1

¼ lim
n!1 1þ 1

n

� �n

1þ 1

n

� �

¼ e

it follows that lim
x!1 1þ 1

x

� �x

¼ e:

LEAST UPPER BOUND, GREATEST LOWER BOUND, LIMIT SUPERIOR, LIMIT INFERIOR

2.20. Find the (a) l.u.b., (b) g.l.b., (c) lim sup ðlimÞ, and (d) lim inf (limÞ for the sequence
2;�2; 1;�1; 1;�1; 1;�1; . . . .

(a) l:u:b: ¼ 2, since all terms are less than equal to 2, while at least one term (the 1st) is greater than 2� �
for any � > 0.

(b) g:l:b: ¼ �2, since all terms are greater than or equal to �2, while at least one term (the 2nd) is less than

�2þ � for any � > 0.

(c) lim sup or lim ¼ 1, since infinitely many terms of the sequence are greater than 1� � for any � > 0
(namely, all 1’s in the sequence), while only a finite number of terms are greater than 1þ � for any � > 0
(namely, the 1st term).

(d) lim inf or lim ¼ �1, since infinitely many terms of the sequence are less than �1þ � for any � > 0
(namely, all �1’s in the sequence), while only a finite number of terms are less than �1� � for any � > 0

(namely the 2nd term).

2.21. Find the (a) l.u.b., (b) g.l.b., (c) lim sup (lim), and (d) lim inf (lim) for the sequences in
Problem 2.17.

The results are shown in the following table.

Sequence l.u.b. g.l.b. lim sup or lim lim inf or lim

2; 1:9; 1:8; 1:7; . . . ; 2� ðn� 1Þ=10 . . . 2 none �1 �1
1;�1; 1;�1; . . . ; ð�1Þn�1; . . . 1 �1 1 �1

1
2 ;� 1

3 ;
1
4 � 1

5 ; . . . ; ð�1Þn�1=ðnþ 1Þ; . . . 1
2 � 1

3 0 0

:6; :66; :666; . . . ; 23 ð1� 1=10nÞ; . . . 2
3 6 2

3
2
3

�1;þ2;�3;þ4;�5; . . . ; ð�1Þnn; . . . none none þ1 �1

NESTED INTERVALS

2.22. Prove that to every set of nested intervals ½an; bn�, n ¼ 1; 2; 3; . . . ; there corresponds one and only
one real number.

By definition of nested intervals, anþ1 A an; bnþ1 @ bn; n ¼ 1; 2; 3; . . . and lim
n!1ðan � bnÞ ¼ 0.

Then a1 @ an @ bn @ b1, and the sequences fang and fbng are bounded and respectively monotonic
increasing and decreasing sequences and so converge to a and b.

To show that a ¼ b and thus prove the required result, we note that

b� a ¼ ðb� bnÞ þ ðbn � anÞ þ ðan � aÞ ð1Þ
jb� aj @ jb� bnj þ jbn � anj þ jan � aj ð2Þ

Now given any � > 0, we can find N such that for all n > N

jb� bnj < �=3; jbn � anj < �=3; jan � aj < �=3 ð3Þ
so that from (2), jb� aj < �. Since � is any positive number, we must have b� a ¼ 0 or a ¼ b.
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2.23. Prove the Bolzano–Weierstrass theorem (see Page 6).

Suppose the given bounded infinite set is contained in the finite interval ½a; b�. Divide this interval into

two equal intervals. Then at least one of these, denoted by ½a1; b1�, contains infinitely many points.
Dividing ½a1; b1� into two equal intervals, we obtain another interval, say, ½a2; b2�, containing infinitely
many points. Continuing this process, we obtain a set of intervals ½an; bn�, n ¼ 1; 2; 3; . . . ; each interval

contained in the preceding one and such that

b1 � a1 ¼ ðb� aÞ=2; b2 � a2 ¼ ðb1 � a1Þ=2 ¼ ðb� aÞ=22; . . . ; bn � an ¼ ðb� aÞ=2n

from which we see that lim
n!1ðbn � anÞ ¼ 0.

This set of nested intervals, by Problem 2.22, corresponds to a real number which represents a limit

point and so proves the theorem.

CAUCHY’S CONVERGENCE CRITERION

2.24. Prove Cauchy’s convergence criterion as stated on Page 25.

Necessity. Suppose the sequence fung converges to l. Then given any � > 0, we can find N such that

jup � lj < �=2 for all p > N and juq � lj < �=2 for all q > N

Then for both p > N and q > N, we have

jup � uqj ¼ jðup � lÞ þ ðl � uqÞj @ jup � lj þ jl � uqj < �=2þ �=2 ¼ �

Sufficiency. Suppose jup � uqj < � for all p; q > N and any � > 0. Then all the numbers uN ; uNþ1; . . .
lie in a finite interval, i.e., the set is bounded and infinite. Hence, by the Bolzano–Weierstrass theorem there
is at least one limit point, say a.

If a is the only limit point, we have the desired proof and lim
n!1 un ¼ a.

Suppose there are two distinct limit points, say a and b, and suppose b > a (see Fig. 2-1). By definition
of limit points, we have

jup � aj < ðb� aÞ=3 for infinnitely many values of p ð1Þ
juq � bj < ðb� aÞ=3 for infinitely many values of q ð2Þ

Then since b� a ¼ ðb� uqÞ þ ðuq � upÞ þ ðup � aÞ, we have

jb� aj ¼ b� a @ jb� uqj þ jup � uqj þ jup � aj ð3Þ
Using (1) and (2) in (3), we see that jup � uqj > ðb� aÞ=3 for infinitely many values of p and q, thus

contradicting the hypothesis that jup � uqj < � for p; q > N and any � > 0. Hence, there is only one limit
point and the theorem is proved.

INFINITE SERIES

2.25. Prove that the infinite series (sometimes called the geometric series)

aþ arþ ar2 þ � � � ¼
X

1

n¼1

arn�1

(a) converges to a=ð1� rÞ if jrj < 1, (b) diverges if jrj A 1.

Sn ¼ aþ arþ ar2 þ � � � þ arn�1Let

rSn ¼ arþ ar2 þ � � � þ arn�1 þ arnThen

ð1� rÞSn ¼ a � arnSubtract,
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Sn ¼
að1� rnÞ
1� r

or

ðaÞ If jrj < 1; lim
n!1Sn ¼ lim

n!1
að1� rnÞ
1� r

¼ a

1� r
by Problem 7:

(b) If jrj > 1, lim
n!1Sn does not exist (see Problem 44).

2.26. Prove that if a series converges, its nth term must necessarily approach zero.

Since Sn ¼ u1 þ u2 þ � � � þ un, Sn�1 ¼ u1 þ u2 þ � � � þ un�1 we have un ¼ Sn � Sn�1.

If the series converges to S, then

lim
n!1 un ¼ lim

n!1ðSn � Sn�1Þ ¼ lim
n!1Sn � lim

n!1Sn�1 ¼ S � S ¼ 0

2.27. Prove that the series 1� 1þ 1� 1þ 1� 1þ � � � ¼
X

1

n¼1

ð�1Þn�1 diverges.

Method 1:

lim
n!1ð�1Þn 6¼ 0, in fact it doesn’t exist. Then by Problem 2.26 the series cannot converge, i.e., it diverges.

Method 2:

The sequence of partial sums is 1; 1� 1; 1� 1þ 1; 1� 1þ 1� 1; . . . i.e., 1; 0; 1; 0; 1; 0; 1; . . . . Since this
sequence has no limit, the series diverges.

MISCELLANEOUS PROBLEMS

2.28. If lim
n!1 un ¼ l, prove that lim

n!1
u1 þ u2 þ � � � þ un

n
¼ l.

Let un ¼ vn þ l. We must show that lim
n!1

v1 þ v2 þ � � � þ vn
n

¼ 0 if lim
n!1 vn ¼ 0. Now

v1 þ v2 þ � � � þ vn
n

¼ v1 þ v2 þ � � � þ vP
n

þ vPþ1 þ vpþ2 þ � � � þ vn
n

so that

v1 þ v2 þ � � � þ vn
n

























@
jv1 þ v2 þ � � � þ vPj

n
þ jvPþ1j þ jvPþ2j þ � � � þ jvnj

n
ð1Þ

Since lim
n!1 vn ¼ 0, we can choose P so that jvnj < �=2 for n > P. Then

jvPþ1j þ jvPþ2j þ � � � þ jvnj
n

<
�=2þ �=2þ � � � þ �=2

n
¼ ðn� PÞ�=2

n
<
�

2
ð2Þ

After choosing P we can choose N so that for n > N > P,

jv1 þ v2 þ � � � þ vPj
n

<
�

2
ð3Þ

Then using (2) and (3), (1) becomes

v1 þ v2 þ � � � þ vn
n

























<
�

2
þ �

2
¼ � for n > N

thus proving the required result.

2.29. Prove that lim
n!1ð1þ nþ n2Þ1=n ¼ 1.

Let ð1þ nþ n2Þ1=n ¼ 1þ un where un A 0. Now by the binomial theorem,
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1þ nþ n2 ¼ ð1þ unÞn ¼ 1þ nun þ
nðn� 1Þ

2!
u2n þ

nðn� 1Þðn� 2Þ
3!

u3n þ � � � þ unn

Then 1þ nþ n2 > 1þ nðn� 1Þðn� 2Þ
3!

u3n or 0 < u3n <
6ðn2 þ nÞ

nðn� 1Þðn� 2Þ :

Hence, lim
n!1 u3n ¼ 0 and lim

n!1 un ¼ 0: Thus lim
n!1ð1þ nþ n2Þ1=n ¼ lim

n!1ð1þ unÞ ¼ 1:

2.30. Prove that lim
n!1

an

n!
¼ 0 for all constants a.

The result follows if we can prove that lim
n!1

jajn
n!

¼ 0 (see Problem 2.38). We can assume a 6¼ 0.

Let un ¼
jajn
n!

. Then
un
un�1

¼ jaj
n
. If n is large enough, say, n > 2jaj, and if we call N ¼ ½2jaj þ 1�, i.e., the

greatest integer @ 2jaj þ 1, then

uNþ1

uN
<

1

2
;
uNþ2

uNþ1

<
1

2
; . . . ;

un
un�1

<
1

2

Multiplying these inequalities yields
un
uN

< 1
2

� 	n�N
or un <

1
2

� 	n�N
uN :

Since lim
n!1

1

2

� �n�N

¼ 0 (using Problem 2.7), it follows that lim
n!1 un ¼ 0.

Supplementary Problems

SEQUENCES

2.31. Write the first four terms of each of the following sequences:

ðaÞ
ffiffiffi

n
p
nþ 1

� �

; ðbÞ ð�1Þnþ1

n!

( )

; ðcÞ ð2xÞn�1

ð2n� 1Þ5
( )

; ðdÞ ð�1Þnx2n�1

1 � 3 � 5 � � � ð2n� 1Þ

( )

; ðeÞ cos nx

x2 þ n2

� �

:

Ans: ðaÞ
ffiffiffi

1
p

2
;

ffiffiffi

2
p

3
;

ffiffiffi

3
p

4
;

ffiffiffi

4
p

5
ðcÞ 1

15
;
2x

35
;
4x2

55
;
8x3

75
ðeÞ cosx

x2 þ 12
;
cos 2x

x2 þ 22
;
cos 3x

x2 þ 32
;
cos 4x

x2 þ 42

ðbÞ 1

1!
;� 1

2!
;
1

3!
;� 1

4!
ðdÞ �x

1
;
x3

1 � 3 ;
�x5

1 � 3 � 5 ;
x7

1 � 3 � 5 � 7

2.32. Find a possible nth term for the sequences whose first 5 terms are indicated and find the 6th term:

ðaÞ �1

5
;
3

8
;
�5

11
;
7

14
;
�9

17
; . . . ðbÞ 1; 0; 1; 0; 1; . . . ðcÞ 2

3 ; 0;
3
4 ; 0;

4
5 ; . . .

Ans: ðaÞ ð�1Þnð2n� 1Þ
ð3nþ 2Þ ðbÞ 1� ð�1Þn

2
ðcÞ ðnþ 3Þ

ðnþ 5Þ �
1� ð�1Þn

2

2.33. The Fibonacci sequence is the sequence fung where unþ2 ¼ unþ1 þ un and u1 ¼ 1, u2 ¼ 1. (a) Find the first 6

terms of the sequence. (b) Show that the nth term is given by un ¼ ðan � bnÞ= ffiffiffi

5
p

, where a ¼ 1
2 ð1þ

ffiffiffi

5
p Þ,

b ¼ 1
2 ð1�

ffiffiffi

5
p Þ.

Ans. (a) 1; 1; 2; 3; 5; 8

LIMITS OF SEQUENCES

2.34. Using the definition of limit, prove that:
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ðaÞ lim
n!1

4� 2n

3nþ 2
¼ �2

3
; ðbÞ lim

n!1 2�1=
ffiffi

n
p

¼ 1; ðcÞ lim
n!1

n4 þ 1

n2
¼ 1; ðdÞ lim

n!1
sin n

n
¼ 0:

2.35. Find the least positive integer N such that jð3nþ 2Þ=ðn� 1Þ � 3j < � for all n > N if (a) � ¼ :01,
(b) � ¼ :001, (c) � ¼ :0001.
Ans. (a) 502, (b) 5002, (c) 50,002

2.36. Using the definition of limit, prove that lim
n!1ð2n� 1Þ=ð3nþ 4Þ cannot be 1

2.

2.37. Prove that lim
n!1ð�1Þnn does not exist.

2.38. Prove that if lim
n!1 junj ¼ 0 then lim

n!1 un ¼ 0. Is the converse true?

2.39. If lim
n!1 un ¼ l, prove that (a) lim

n!1 cun ¼ cl where c is any constant, (b) lim
n!1 u2n ¼ l2, (c) lim

n!1 up
n ¼ l p

where p is a positive integer, (d) lim
n!1

ffiffiffiffiffi

un
p ¼

ffiffi

l
p
; l A 0.

2.40. Give a direct proof that lim
n!1 an=bn ¼ A=B if lim

n!1 an ¼ A and lim
n!1 bn ¼ B 6¼ 0.

2.41. Prove that (a) lim
n!1 31=n ¼ 1, (b) lim

n!1
2
3

� 	1=n¼ 1, (c) lim
n!1

3
4

� 	n¼ 0.

2.42. If r > 1, prove that lim
n!1 rn ¼ 1, carefully explaining the significance of this statement.

2.43. If jrj > 1, prove that lim
n!1 rn does not exist.

2.44. Evaluate each of the following, using theorems on limits:

ðaÞ lim
n!1

4� 2n� 3n2

2n2 þ n
ðcÞ lim

n!1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

3n2 � 5nþ 4
p

2n� 7
ðeÞ lim

n!1ð
ffiffiffiffiffiffiffiffiffiffiffiffiffi

n2 þ n
p

� nÞ

ðbÞ lim
n!1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ð3� ffiffiffi

n
p Þð ffiffiffi

n
p þ 2Þ

8n� 4

3

r

ðdÞ lim
n!1

4 � 10n � 3 � 102n
3 � 10n�1 þ 2 � 102n�1

ð f Þ lim
n!1ð2

n þ 3nÞ1=n

Ans: ðaÞ � 3=2; ðbÞ � 1=2; ðcÞ
ffiffiffi

3
p
=2; ðdÞ � 15; ðeÞ 1=2; ð f Þ 3

BOUNDED MONOTONIC SEQUENCES

2.45. Prove that the sequence with nth term un ¼
ffiffiffi

n
p
=ðnþ 1Þ (a) is monotonic decreasing, (b) is bounded below,

(c) is bounded above, (d) has a limit.

2.46. If un ¼
1

1þ n
þ 1

2þ n
þ 1

3þ n
þ � � � þ 1

nþ n
, prove that lim

n!1 un exists and lies between 0 and 1.

2.47. If unþ1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi

un þ 1
p

, u1 ¼ 1, prove that lim
n!1 un ¼ 1

2 ð1þ
ffiffiffi

5
p Þ.

2.48. If unþ1 ¼ 1
2 ðun þ p=unÞ where p > 0 and u1 > 0, prove that lim

n!1 un ¼
ffiffiffi

p
p

. Show how this can be used to

determine
ffiffiffi

2
p

.

2.49. If un is monotonic increasing (or monotonic decreasing), prove that Sn=n, where Sn ¼ u1 þ u2 þ � � � þ un, is
also monotonic increasing (or monotonic decreasing).

LEAST UPPER BOUND, GREATEST LOWER BOUND, LIMIT SUPERIOR, LIMIT INFERIOR

2.50. Find the l.u.b., g.l.b., lim sup (lim), lim inf (lim) for each sequence:

(a) �1; 13 ;� 1
5 ;

1
7 ; . . . ; ð�1Þn=ð2n� 1Þ; . . . ðcÞ 1;�3; 5;�7; . . . ; ð�1Þn�1ð2n� 1Þ; . . .

(b) 2
3 ;� 3

4 ;
4
5 ;� 5

6 ; . . . ; ð�1Þnþ1ðnþ 1Þ=ðnþ 2Þ; . . . ðdÞ 1; 4; 1; 16; 1; 36; . . . ; n1þð�1Þn; . . .
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Ans. (a) 1
3 ;�1; 0; 0 ðbÞ 1;�1; 1;�1 ðcÞ none, none, þ1, �1 (d) none, 1;þ1; 1

2.51. Prove that a bounded sequence fung is convergent if and only if lim un ¼ lim un.

INFINITE SERIES

2.52. Find the sum of the series
X

1

n¼1

2
3

� 	n
. Ans. 2

2.53. Evaluate
X

1

n¼1

ð�1Þn�1=5n. Ans. 1
6

2.54. Prove that
1

1 � 2þ
1

2 � 3þ
1

3 � 4þ
1

4 � 5þ � � � ¼
X

1

n¼1

1

nðnþ 1Þ ¼ 1. Hint:
1

nðnþ 1Þ ¼
1

n
� 1

nþ 1

� �

2.55. Prove that multiplication of each term of an infinite series by a constant (not zero) does not affect the

convergence or divergence.

2.56. Prove that the series 1þ 1

2
þ 1

3
þ � � � þ 1

n
þ � � � diverges. Hint: Let Sn ¼ 1þ 1

2
þ 1

3
þ � � � þ 1

n

�

. Then prove

that jS2n � Snj > 1
2, giving a contradiction with Cauchy’s convergence criterion.

�

MISCELLANEOUS PROBLEMS

2.57. If an @ un @ bn for all n > N, and lim
n!1 an ¼ lim

n!1 bn ¼ l, prove that lim
n!1 un ¼ l.

2.58. If lim
n!1 an ¼ lim

n!1 bn ¼ 0, and � is independent of n, prove that lim
n!1ðan cos n� þ bn sin n�Þ ¼ 0. Is the result

true when � depends on n?

2.59. Let un ¼ 1
2 f1þ ð�1Þng, n ¼ 1; 2; 3; . . . . If Sn ¼ u1 þ u2 þ � � � þ un, prove that lim

n!1Sn=n ¼ 1
2.

2.60. Prove that (a) lim
n!1 n1=n ¼ 1, (b) lim

n!1ðaþ nÞ p=n ¼ 1 where a and p are constants.

2.61. If lim
n!1 junþ1=unj ¼ jaj < 1, prove that lim

n!1 un ¼ 0.

2.62. If jaj < 1, prove that lim
n!1 npan ¼ 0 where the constant p > 0.

2.63. Prove that lim
2nn!

nn
¼ 0.

2.64. Prove that lim
n!1 n sin 1=n ¼ 1. Hint: Let the central angle, �, of a circle be measured in radians. Geome-

trically illustrate that sin � � � � tan �, 0 � � � �.
Let � ¼ 1=n. Observe that since n is restricted to positive integers, the angle is restricted to the first

quadrant.

2.65. If fung is the Fibonacci sequence (Problem 2.33), prove that lim
n!1 unþ1=un ¼ 1

2 ð1þ
ffiffiffi

5
p Þ.

2.66. Prove that the sequence un ¼ ð1þ 1=nÞnþ1, n ¼ 1; 2; 3; . . . is a monotonic decreasing sequence whose limit

is e. [Hint: Show that un=un�1 @ 1:�

2.67. If an A bn for all n > N and lim
n!1 an ¼ A, lim

n!1 bn ¼ B, prove that A A B.

2.68. If junj @ jvnj and lim
n!1 vn ¼ 0, prove that lim

n!1 un ¼ 0.

2.69. Prove that lim
n!1

1

n
1þ 1

2
þ 1

3
þ � � � þ 1

n

� �

¼ 0.
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2.70. Prove that ½an; bn�, where an ¼ ð1þ 1=nÞn and bn ¼ ð1þ 1=nÞnþ1, is a set of nested intervals defining the

number e.

2.71. Prove that every bounded monotonic (increasing or decreasing) sequence has a limit.

2.72. Let fung be a sequence such that unþ2 ¼ aunþ1 þ bun where a and b are constants. This is called a second
order difference equation for un. (a) Assuming a solution of the form un ¼ rn where r is a constant, prove

that r must satisfy the equation r2 � ar� b ¼ 0. (b) Use (a) to show that a solution of the difference
equation (called a general solution) is un ¼ Arn1 þ Brn2, where A and B are arbitrary constants and r1 and
r2 are the two solutions of r2 � ar� b ¼ 0 assumed different. (c) In case r1 ¼ r2 in (b), show that a (general)

solution is un ¼ ðAþ BnÞrn1.

2.73. Solve the following difference equations subject to the given conditions: (a) unþ2 ¼ unþ1 þ un, u1 ¼ 1,
u2 ¼ 1 (compare Prob. 34); (b) unþ2 ¼ 2unþ1 þ 3un, u1 ¼ 3, u2 ¼ 5; (c) unþ2 ¼ 4unþ1 � 4un, u1 ¼ 2, u2 ¼ 8.
Ans. (a) Same as in Prob. 34, (b) un ¼ 2ð3Þn�1 þ ð�1Þn�1 ðcÞ un ¼ n � 2n
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39

Functions, Limits, and
Continuity

FUNCTIONS

A function is composed of a domain set, a range set, and a rule of correspondence that assigns
exactly one element of the range to each element of the domain.

This definition of a function places no restrictions on the nature of the elements of the two sets.

However, in our early exploration of the calculus, these elements will be real numbers. The rule of
correspondence can take various forms, but in advanced calculus it most often is an equation or a set of

equations.

If the elements of the domain and range are represented by x and y, respectively, and f symbolizes
the function, then the rule of correspondence takes the form y ¼ f ðxÞ.

The distinction between f and f ðxÞ should be kept in mind. f denotes the function as defined in the
first paragraph. y and f ðxÞ are different symbols for the range (or image) values corresponding to
domain values x. However a ‘‘common practice’’ that provides an expediency in presentation is to read

f ðxÞ as, ‘‘the image of x with respect to the function f ’’ and then use it when referring to the function.
(For example, it is simpler to write sin x than ‘‘the sine function, the image value of which is sin x.’’)

This deviation from precise notation will appear in the text because of its value in exhibiting the ideas.

The domain variable x is called the independent variable. The variable y representing the corre-
sponding set of values in the range, is the dependent variable.

Note: There is nothing exclusive about the use of x, y, and f to represent domain, range, and
function. Many other letters will be employed.

There are many ways to relate the elements of two sets. [Not all of them correspond a unique range

value to a given domain value.] For example, given the equation y2 ¼ x, there are two choices of y for
each positive value of x. As another example, the pairs ða; bÞ, ða; cÞ, ða; dÞ, and ða; eÞ can be formed and

again the correspondence to a domain value is not unique. Because of such possibilities, some texts,
especially older ones, distinguish between multiple-valued and single-valued functions. This viewpoint

is not consistent with our definition or modern presentations. In order that there be no ambiguity, the
calculus and its applications require a single image associated with each domain value. A multiple-
valued rule of correspondence gives rise to a collection of functions (i.e., single-valued). Thus, the rule

y2 ¼ x is replaced by the pair of rules y ¼ x1=2 and y ¼ �x1=2 and the functions they generate through the
establishment of domains. (See the following section on graphs for pictorial illustrations.)
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EXAMPLES. 1. If to each number in �1 @ x @ 1 we associate a number y given by x2, then the interval

�1 @ x @ 1 is the domain. The rule y ¼ x2 generates the range �1 @ y @ 1. The totality
is a function f .

The functional image of x is given by y ¼ f ðxÞ ¼ x2. For example, f ð� 1
3Þ ¼ ð� 1

3Þ2 ¼ 1
9 is the

image of � 1
3 with respect to the function f .

2. The sequences of Chapter 2 may be interpreted as functions. For infinite sequences consider the

domain as the set of positive integers. The rule is the definition of un, and the range is generated

by this rule. To illustrate, let un ¼ 1
n with n ¼ 1; 2; . . . . Then the range contains the elements

1; 12 ;
1
3 ;

1
4 ; . . . . If the function is denoted by f , then we may write f ðnÞ ¼ 1

n.

As you read this chapter, reviewing Chapter 2 will be very useful, and in particular com-

paring the corresponding sections.

3. With each time t after the year 1800 we can associate a value P for the population of the United

States. The correspondence between P and t defines a function, say F , and we can write

P ¼ FðtÞ.
4. For the present, both the domain and the range of a function have been restricted to sets of real

numbers. Eventually this limitation will be removed. To get the flavor for greater generality,

think of a map of the world on a globe with circles of latitude and longitude as coordinate

curves. Assume there is a rule that corresponds this domain to a range that is a region of a

plane endowed with a rectangular Cartesian coordinate system. (Thus, a flat map usable for

navigation and other purposes is created.) The points of the domain are expressed as pairs of

numbers ð�; �Þ and those of the range by pairs ðx; yÞ. These sets and a rule of correspondence

constitute a function whose independent and dependent variables are not single real numbers;

rather, they are pairs of real numbers.

GRAPH OF A FUNCTION

A function f establishes a set of ordered pairs ðx; yÞ of real numbers. The plot of these pairs
ðx; f ðxÞÞ in a coordinate system is the graph of f . The result can be thought of as a pictorial representa-
tion of the function.

For example, the graphs of the functions described by y ¼ x2, �1 @ x @ 1, and y2 ¼ x, 0 @ x @ 1,
y A 0 appear in Fig. 3-1.

BOUNDED FUNCTIONS

If there is a constant M such that f ðxÞ @ M for all x in an interval (or other set of numbers), we say

that f is bounded above in the interval (or the set) and call M an upper bound of the function.

If a constant m exists such that f ðxÞ A m for all x in an interval, we say that f ðxÞ is bounded below in

the interval and call m a lower bound.
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If m @ f ðxÞ @ M in an interval, we call f ðxÞ bounded. Frequencly, when we wish to indicate that a
function is bounded, we shall write j f ðxÞj < P.

EXAMPLES. 1. f ðxÞ ¼ 3þ x is bounded in �1 @ x @ 1. An upper bound is 4 (or any number greater than 4).
A lower bound is 2 (or any number less than 2).

2. f ðxÞ ¼ 1=x is not bounded in 0 < x < 4 since by choosing x sufficiently close to zero, f ðxÞ can be

made as large as we wish, so that there is no upper bound. However, a lower bound is given by
1
4 (or any number less than 1

4).

If f ðxÞ has an upper bound it has a least upper bound (l.u.b.); if it has a lower bound it has a greatest
lower bound (g.l.b.). (See Chapter 1 for these definitions.)

MONOTONIC FUNCTIONS

A function is called monotonic increasing in an interval if for any two points x1 and x2 in the interval
such that x1 < x2, f ðx1Þ @ f ðx2Þ. If f ðx1Þ < f ðx2Þ the function is called strictly increasing.

Similarly if f ðx1Þ A f ðx2Þ whenever x1 < x2, then f ðxÞ is monotonic decreasing; while if f ðx1Þ > f ðx2Þ,
it is strictly decreasing.

INVERSE FUNCTIONS. PRINCIPAL VALUES

Suppose y is the range variable of a function f with domain variable x. Furthermore, let the
correspondence between the domain and range values be one-to-one. Then a new function f �1, called
the inverse function of f , can be created by interchanging the domain and range of f . This information is
contained in the form x ¼ f �1ðyÞ.

As you work with the inverse function, it often is convenient to rename the domain variable as x and
use y to symbolize the images, then the notation is y ¼ f �1ðxÞ. In particular, this allows graphical
expression of the inverse function with its domain on the horizontal axis.

Note: f �1 does not mean f to the negative one power. When used with functions the notation f �1

always designates the inverse function to f .
If the domain and range elements of f are not in one-to-one correspondence (this would mean that

distinct domain elements have the same image), then a collection of one-to-one functions may be created.
Each of them is called a branch. It is often convenient to choose one of these branches, called the
principal branch, and denote it as the inverse function, f �1. The range values of f that compose the
principal branch, and hence the domain of f �1, are called the principal values. (As will be seen in the
section of elementary functions, it is common practice to specify these principal values for that class of
functions.)

EXAMPLE. Suppose f is generated by y ¼ sin x and the domain is �1 @ x @ 1. Then there are an infinite
number of domain values that have the same image. (A finite portion of the graph is illustrated below in Fig. 3-2(a.)
In Fig. 3-2(b) the graph is rotated about a line at 458 so that the x-axis rotates into the y-axis. Then the variables are

interchanged so that the x-axis is once again the horizontal one. We see that the image of an x value is not unique.
Therefore, a set of principal values must be chosen to establish an inverse function. A choice of a branch is

accomplished by restricting the domain of the starting function, sinx. For example, choose ��
2
@ x @

�

2
.

Then there is a one-to-one correspondence between the elements of this domain and the images in �1 @ x @ 1.

Thus, f �1 may be defined with this interval as its domain. This idea is illustrated in Fig. 3-2(c) and Fig. 3-2(d).
With the domain of f �1 represented on the horizontal axis and by the variable x, we write y ¼ sin�1 x, �1 @ x @ 1.

If x ¼ � 1
2, then the corresponding range value is y ¼ ��

6
.

Note: In algebra, b�1 means
1

b
and the fact that bb�1 produces the identity element 1 is simply a rule of algebra

generalized from arithmetic. Use of a similar exponential notation for inverse functions is justified in that corre-
sponding algebraic characteristics are displayed by f �1½ f ðxÞ� ¼ x and f ½ f �1ðxÞ� ¼ x.
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MAXIMA AND MINIMA

The seventeenth-century development of the calculus was strongly motivated by questions concern-
ing extreme values of functions. Of most importance to the calculus and its applications were the
notions of local extrema, called relative maximums and relative minimums.

If the graph of a function were compared to a path over hills and through valleys, the local extrema
would be the high and low points along the way. This intuitive view is given mathematical precision by
the following definition.

Definition: If there exists an open interval ða; bÞ containing c such that f ðxÞ < f ðcÞ for all x other than c
in the interval, then f ðcÞ is a relative maximum of f . If f ðxÞ > f ðcÞ for all x in ða; bÞ other than c, then
f ðcÞ is a relative minimum of f . (See Fig. 3-3.)

Functions may have any number of relative extrema. On the other hand, they may have none, as in
the case of the strictly increasing and decreasing functions previously defined.

Definition: If c is in the domain of f and for all x in the domain of the function f ðxÞ @ f ðcÞ, then f ðcÞ is
an absolute maximum of the function f . If for all x in the domain f ðxÞ A f ðcÞ then f ðcÞ is an absolute
minimum of f . (See Fig. 3-3.)

Note: If defined on closed intervals the strictly increasing and decreasing functions possess absolute
extrema.

42 FUNCTIONS, LIMITS, AND CONTINUITY [CHAP. 3

Fig. 3-2



Absolute extrema are not necessarily unique. For example, if the graph of a function is a horizontal

line, then every point is an absolute maximum and an absolute minimum.

Note: A point of inflection also is represented in Fig. 3-3. There is an overlap with relative extrema in

representation of such points through derivatives that will be addressed in the problem set of Chapter 4.

TYPES OF FUNCTIONS

It is worth realizing that there is a fundamental pool of functions at the foundation of calculus and
advanced calculus. These are called elementary functions. Either they are generated from a real variable
x by the fundamental operations of algebra, including powers and roots, or they have relatively simple
geometric interpretations. As the title ‘‘elementary functions’’ suggests, there is a more general category
of functions (which, in fact, are dependent on the elementary ones). Some of these will be explored later
in the book. The elementary functions are described below.

1. Polynomial functions have the form

f ðxÞ ¼ a0x
n þ a1x

n�1 þ � � � þ an�1xþ an ð1Þ
where a0; . . . ; an are constants and n is a positive integer called the degree of the polynomial if
a0 6¼ 0.

The fundamental theorem of algebra states that in the field of complex numbers every
polynomial equation has at least one root. As a consequence of this theorem, it can be proved
that every nth degree polynomial has n roots in the complex field. When complex numbers are
admitted, the polynomial theoretically may be expressed as the product of n linear factors; with
our restriction to real numbers, it is possible that 2k of the roots may be complex. In this case,
the k factors generating them will be quadratic. (The corresponding roots are in complex
conjugate pairs.) The polynomial x3 � 5x2 þ 11x� 15 ¼ ðx� 3Þðx2 � 2xþ 5Þ illustrates this
thought.

2. Algebraic functions are functions y ¼ f ðxÞ satisfying an equation of the form

p0ðxÞyn þ p1ðxÞyn�1 þ � � � þ pn�1ðxÞyþ pnðxÞ ¼ 0 ð2Þ
where p0ðxÞ; . . . ; pnðxÞ are polynomials in x.

If the function can be expressed as the quotient of two polynomials, i.e., PðxÞ=QðxÞ where
PðxÞ and QðxÞ are polynomials, it is called a rational algebraic function; otherwise it is an
irrational algebraic function.

3. Transcendental functions are functions which are not algebraic, i.e., they do not satisfy equations
of the form (2).
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Note the analogy with real numbers, polynomials corresponding to integers, rational functions to

rational numbers, and so on.

TRANSCENDENTAL FUNCTIONS

The following are sometimes called elementary transcendental functions.

1. Exponential function: f ðxÞ ¼ ax, a 6¼ 0; 1. For properties, see Page 3.

2. Logarithmic function: f ðxÞ ¼ loga x, a 6¼ 0; 1. This and the exponential function are inverse
functions. If a ¼ e ¼ 2:71828 . . . ; called the natural base of logarithms, we write
f ðxÞ ¼ loge x ¼ ln x, called the natural logarithm of x. For properties, see Page 4.

3. Trigonometric functions (Also called circular functions because of their geometric interpreta-
tion with respect to the unit circle):

sin x; cos x; tan x ¼ sin x

cos x
; csc x ¼ 1

sin x
; sec x ¼ 1

cos x
; cot x ¼ 1

tan x
¼ cos x

sin x

The variable x is generally expressed in radians (� radians ¼ 1808). For real values of x,
sin x and cos x lie between �1 and 1 inclusive.

The following are some properties of these functions:

sin2 xþ cos2 x ¼ 1 1þ tan2 x ¼ sec2 x 1þ cot2 x ¼ csc2 x

sinðx� yÞ ¼ sin x cos y� cos x sin y sinð�xÞ ¼ � sin x

cosðx� yÞ ¼ cos x cos y	 sin x sin y cosð�xÞ ¼ cos x

tanðx� yÞ ¼ tan x� tan y

1	 tan x tan y
tanð�xÞ ¼ � tan x

4. Inverse trigonometric functions. The following is a list of the inverse trigonometric functions
and their principal values:

ðaÞ y ¼ sin�1 x; ð��=2 @ y @ �=2Þ ðdÞ y ¼ csc�1 x ¼ sin�1 1=x; ð��=2 @ y @ �=2Þ
ðbÞ y ¼ cos�1 x; ð0 @ y @ �Þ ðeÞ y ¼ sec�1 x ¼ cos�1 1=x; ð0 @ y @ �Þ
ðcÞ y ¼ tan�1 x; ð��=2 < y < �=2Þ ð f Þ y ¼ cot�1 x ¼ �=2� tan�1 x; ð0 < y < �Þ

5. Hyperbolic functions are defined in terms of exponential functions as follows. These functions
may be interpreted geometrically, much as the trigonometric functions but with respect to the
unit hyperbola.

ðaÞ sinh x ¼ ex � e�x

2
ðdÞ csch x ¼ 1

sinh x
¼ 2

ex � e�x

ðbÞ cosh x ¼ ex þ e�x

2
ðeÞ sech x ¼ 1

cosh x
¼ 2

ex þ e�x

ðcÞ tanh x ¼ sinh x

cosh x
¼ ex � e�x

ex þ e�x ð f Þ coth x ¼ cosh x

sinh x
¼ ex þ e�x

ex � e�x

The following are some properties of these functions:

cosh2 x� sinh2 x ¼ 1 1� tanh2 x ¼ sech2 x coth2 x� 1 ¼ csch2 x

sinhðx� yÞ ¼ sinh x cosh y� cosh x sinh y sinhð�xÞ ¼ � sinh x

coshðx� yÞ ¼ cosh x cosh y� sinh x sinh y coshð�xÞ ¼ cosh x

tanhðx� yÞ ¼ tanh x� tanh y

1� tanh x tanh y
tanhð�xÞ ¼ � tanh x
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6. Inverse hyperbolic functions. If x ¼ sinh y then y ¼ sinh�1 x is the inverse hyperbolic sine of x.
The following list gives the principal values of the inverse hyperbolic functions in terms of
natural logarithms and the domains for which they are real.

ðaÞ sinh�1 x ¼ lnðxþ
ffiffiffiffiffiffiffiffiffiffiffiffiffi

x2 þ 1
p

Þ; all x ðdÞ csch�1 x ¼ ln
1

x
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffi

x2 þ 1
p

jxj

 !

; x 6¼ 0

ðbÞ cosh�1 x ¼ lnðxþ
ffiffiffiffiffiffiffiffiffiffiffiffiffi

x2 � 1
p

Þ; x A 1 ðeÞ sech�1x ¼ ln
1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffi

1� x2
p

x

 !

; 0 < x @ 1

ðcÞ tanh�1 x ¼ 1

2
ln

1þ x

1� x

� �

; jxj < 1 ð f Þ coth�1 x ¼ 1

2
ln

xþ 1

x� 1

� �

; jxj > 1

LIMITS OF FUNCTIONS

Let f ðxÞ be defined and single-valued for all values of x near x ¼ x0 with the possible exception of
x ¼ x0 itslef (i.e., in a deleted � neighborhood of x0). We say that the number l is the limit of f ðxÞ as x
approaches x0 and write lim

x!x0
f ðxÞ ¼ l if for any positive number � (however small) we can find some

positive number � (usually depending on �) such that j f ðxÞ � lj < � whenever 0 < jx� x0j < �. In such
case we also say that f ðxÞ approaches l as x approaches x0 and write f ðxÞ ! l as x ! x0.

In words, this means that we can make f ðxÞ arbitrarily close to l by choosing x sufficiently close to
x0.

EXAMPLE. Let f ðxÞ ¼ x2 if x 6¼ 2
0 if x ¼ 2













. Then as x gets closer to 2 (i.e., x approaches 2), f ðxÞ gets closer to 4. We

thus suspect that lim
x!2

f ðxÞ ¼ 4. To prove this we must see whether the above definition of limit (with l ¼ 4) is

satisfied. For this proof see Problem 3.10.

Note that lim
x!2

f ðxÞ 6¼ f ð2Þ, i.e., the limit of f ðxÞ as x ! 2 is not the same as the value of f ðxÞ at x ¼ 2 since

f ð2Þ ¼ 0 by definition. The limit would in fact be 4 even if f ðxÞ were not defined at x ¼ 2.

When the limit of a function exists it is unique, i.e., it is the only one (see Problem 3.17).

RIGHT- AND LEFT-HAND LIMITS

In the definition of limit no restriction was made as to how x should approach x0. It is sometimes
found convenient to restrict this approach. Considering x and x0 as points on the real axis where x0 is
fixed and x is moving, then x can approach x0 from the right or from the left. We indicate these
respective approaches by writing x ! x0þ and x ! x0�.

If lim
x!x0þ

f ðxÞ ¼ l1 and lim
x!x0�

f ðxÞ ¼ l2, we call l1 and l2, respectively, the right- and left-hand limits of

f at x0 and denote them by f ðx0þÞ or f ðx0 þ 0Þ and f ðx0�Þ or f ðx0 � 0Þ. The �; � definitions of limit of
f ðxÞ as x ! x0þ or x ! x0� are the same as those for x ! x0 except for the fact that values of x are
restricted to x > x0 or x < x0, respectively.

We have lim
x!x0

f ðxÞ ¼ l if and only if lim
x!x0þ

f ðxÞ ¼ lim
x!x0�

f ðxÞ ¼ l.

THEOREMS ON LIMITS

If lim
x!x0

f ðxÞ ¼ A and lim
x!x0

gðxÞ ¼ B, then

1: lim
x!x0

ð f ðxÞ þ gðxÞÞ ¼ lim
x!x0

f ðxÞ þ lim
x!x0

gðxÞ ¼ Aþ B
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2: lim
x!x0

ð f ðxÞ � gðxÞÞ ¼ lim
x!x0

f ðxÞ � lim
x!x0

gðxÞ ¼ A� B

3: lim
x!x0

ð f ðxÞgðxÞÞ ¼ lim
x!x0

f ðxÞ
� �

lim
x!x0

gðxÞ
� �

¼ AB

4: lim
x!x0

f ðxÞ
gðxÞ ¼

lim
x!x0

f ðxÞ
lim
x!x0

gðxÞ ¼
A

B
if B 6¼ 0

Similar results hold for right- and left-hand limits.

INFINITY

It sometimes happens that as x ! x0, f ðxÞ increases or decreases without bound. In such case it is
customary to write lim

x!x0
f ðxÞ ¼ þ1 or lim

x!x0
f ðxÞ ¼ �1, respectively. The symbols þ1 (also written

1) and �1 are read plus infinity (or infinity) and minus infinity, respectively, but it must be emphasized
that they are not numbers.

In precise language, we say that lim
x!x0

f ðxÞ ¼ 1 if for each positive number M we can find a positive

number � (depending onM in general) such that f ðxÞ >M whenever 0 < jx� x0j < �. Similarly, we say
that lim

x!x0
f ðxÞ ¼ �1 if for each positive number M we can find a positive number � such that

f ðxÞ < �M whenever 0 < jx� x0j < �. Analogous remarks apply in case x ! x0þ or x ! x0�.

Frequently we wish to examine the behavior of a function as x increases or decreases without bound.
In such cases it is customary to write x ! þ1 (or 1) or x ! �1, respectively.

We say that lim
x!þ1 f ðxÞ ¼ l, or f ðxÞ ! l as x ! þ1, if for any positive number � we can find a

positive number N (depending on � in general) such that j f ðxÞ � lj < � whenever x > N. A similar
definition can be formulated for lim

x!�1 f ðxÞ.

SPECIAL LIMITS

1. lim
x!0

sin x

x
¼ 1; lim

x!0

1� cos x

x
¼ 0

2. lim
x!1 1þ 1

x

� �x

¼ e, lim
x!0þ

ð1þ xÞ1=x ¼ e

3. lim
x!0

ex � 1

x
¼ 1, lim

x!1

x� 1

ln x
¼ 1

CONTINUITY

Let f be defined for all values of x near x ¼ x0 as well as at x ¼ x0 (i.e., in a � neighborhood of x0).
The function f is called continuous at x ¼ x0 if lim

x!x0
f ðxÞ ¼ f ðx0Þ. Note that this implies three conditions

which must be met in order that f ðxÞ be continuous at x ¼ x0.

1. lim
x!x0

f ðxÞ ¼ l must exist.

2. f ðx0Þ must exist, i.e., f ðxÞ is defined at x0.

3. l ¼ f ðx0Þ.
In summary, lim

x!x0
f ðxÞ is the value suggested for f at x ¼ x0 by the behavior of f in arbitrarily small

neighborhoods of x0. If in fact this limit is the actual value, f ðx0Þ, of the function at x0, then f is
continuous there.

Equivalently, if f is continuous at x0, we can write this in the suggestive form lim
x!x0

f ðxÞ ¼ f ð lim
x!x0

xÞ.
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EXAMPLES. 1. If f ðxÞ ¼ x2; x 6¼ 2
0; x ¼ 2

�

then from the example on Page 45 lim
x!2

f ðxÞ ¼ 4. But f ð2Þ ¼ 0. Hence

lim
x!2

f ðxÞ 6¼ f ð2Þ and the function is not continuous at x ¼ 2.

2. If f ðxÞ ¼ x2 for all x, then lim
x!2

f ðxÞ ¼ f ð2Þ ¼ 4 and f ðxÞ is continuous at x ¼ 2.

Points where f fails to be continuous are called discontinuities of f and f is said to be discontinuous at
these points.

In constructing a graph of a continuous function the pencil need never leave the paper, while for a
discontinuous function this is not true since there is generally a jump taking place. This is of course
merely a characteristic property and not a definition of continuity or discontinuity.

Alternative to the above definition of continuity, we can define f as continuous at x ¼ x0 if for any
� > 0 we can find � > 0 such that j f ðxÞ � f ðx0Þj < � whenever jx� x0j < �. Note that this is simply the
definition of limit with l ¼ f ðx0Þ and removal of the restriction that x 6¼ x0.

RIGHT- AND LEFT-HAND CONTINUITY

If f is defined only for x A x0, the above definition does not apply. In such case we call f continuous
(on the right) at x ¼ x0 if lim

x!x0þ
f ðxÞ ¼ f ðx0Þ, i.e., if f ðx0þÞ ¼ f ðx0Þ. Similarly, f is continuous (on the left)

at x ¼ x0 if lim
x!x0�

f ðxÞ ¼ f ðx0Þ, i.e., f ðx0�Þ ¼ f ðx0Þ. Definitions in terms of � and � can be given.

CONTINUITY IN AN INTERVAL

A function f is said to be continuous in an interval if it is continuous at all points of the interval. In
particular, if f is defined in the closed interval a @ x @ b or ½a; b�, then f is continuous in the interval if
and only if lim

x!x0
f ðxÞ ¼ f ðx0Þ for a < x0 < b, lim

x!aþ f ðxÞ ¼ f ðaÞ and lim
x!b�

f ðxÞ ¼ f ðbÞ.

THEOREMS ON CONTINUITY

Theorem 1. If f and g are continuous at x ¼ x0, so also are the functions whose image values satisfy the

relations f ðxÞ þ gðxÞ, f ðxÞ � gðxÞ, f ðxÞgðxÞ and f ðxÞ
gðxÞ, the last only if gðx0Þ 6¼ 0. Similar results hold for

continuity in an interval.

Theorem 2. Functions described as follows are continuous in every finite interval: (a) all polynomials;
(b) sin x and cos x; (c) ax; a > 0

Theorem 3. Let the function f be continuous at the domain value x ¼ x0. Also suppose that a function
g, represented by z ¼ gðyÞ, is continuous at y0, where y ¼ f ðxÞ (i.e., the range value of f corresponding to
x0 is a domain value of g). Then a new function, called a composite function, f ðgÞ, represented by
z ¼ g½ f ðxÞ�, may be created which is continuous at its domain point x ¼ x0. [One says that a continuous
function of a continuous function is continuous.]

Theorem 4. If f ðxÞ is continuous in a closed interval, it is bounded in the interval.

Theorem 5. If f ðxÞ is continuous at x ¼ x0 and f ðx0Þ > 0 [or f ðx0Þ < 0], there exists an interval about
x ¼ x0 in which f ðxÞ > 0 [or f ðxÞ < 0].

Theorem 6. If a function f ðxÞ is continuous in an interval and either strictly increasing or strictly
decreasing, the inverse function f �1ðxÞ is single-valued, continuous, and either strictly increasing or
strictly decreasing.
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Theorem 7. If f ðxÞ is continuous in ½a; b� and if f ðaÞ ¼ A and f ðbÞ ¼ B, then corresponding to any
number C between A and B there exists at least one number c in ½a; b� such that f ðcÞ ¼ C. This is
sometimes called the intermediate value theorem.

Theorem 8. If f ðxÞ is continuous in ½a; b� and if f ðaÞ and f ðbÞ have opposite signs, there is at least one
number c for which f ðcÞ ¼ 0 where a < c < b. This is related to Theorem 7.

Theorem 9. If f ðxÞ is continuous in a closed interval, then f ðxÞ has a maximum value M for at least one
value of x in the interval and a minimum value m for at least one value of x in the interval. Further-
more, f ðxÞ assumes all values between m and M for one or more values of x in the interval.

Theorem 10. If f ðxÞ is continuous in a closed interval and if M and m are respectively the least upper
bound (l.u.b.) and greatest lower bound (g.l.b.) of f ðxÞ, there exists at least one value of x in the interval
for which f ðxÞ ¼ M or f ðxÞ ¼ m. This is related to Theorem 9.

PIECEWISE CONTINUITY

A function is called piecewise continuous in an interval a @ x @ b if the interval can be subdivided
into a finite number of intervals in each of which the function is continuous and has finite right- and left-
hand limits. Such a function has only a finite number of discontinuities. An example of a function
which is piecewise continuous in a @ x @ b is shown graphically in Fig. 3-4 below. This function has
discontinuities at x1, x2, x3, and x4.

UNIFORM CONTINUITY

Let f be continuous in an interval. Then by definition at each point x0 of the interval and for any

� > 0, we can find � > 0 (which will in general depend on both � and the particular point x0) such that

j f ðxÞ � f ðx0Þj < � whenever jx� x0j < �. If we can find � for each � which holds for all points of the

interval (i.e., if � depends only on � and not on x0), we say that f is uniformly continuous in the interval.

Alternatively, f is uniformly continuous in an interval if for any � > 0 we can find � > 0 such that

j f ðx1Þ � f ðx2Þj < � whenever jx1 � x2j < � where x1 and x2 are any two points in the interval.

Theorem. If f is continuous in a closed interval, it is uniformly continuous in the interval.
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Solved Problems

FUNCTIONS

3.1. Let f ðxÞ ¼ ðx� 2Þð8� xÞ for 2 @ x @ 8. (a) Find f ð6Þ and f ð�1Þ. (b) What is the domain of
definition of f ðxÞ? (c) Find f ð1� 2tÞ and give the domain of definition. (d) Find f ½ f ð3Þ�,
f ½ f ð5Þ�. (e) Graph f ðxÞ.
(a) f ð6Þ ¼ ð6� 2Þð8� 6Þ ¼ 4 � 2 ¼ 8

f ð�1Þ is not defined since f ðxÞ is defined only for 2 @ x @ 8.

(b) The set of all x such that 2 @ x @ 8.

(c) f ð1� 2tÞ ¼ fð1� 2tÞ � 2gf8� ð1� 2tÞg ¼ �ð1þ 2tÞð7þ 2tÞ where t is such that 2 @ 1� 2t @ 8, i.e.,

�7=2 @ t @ � 1=2.

(d) f ð3Þ ¼ ð3� 2Þð8� 3Þ ¼ 5,

f ½ f ð3Þ� ¼ f ð5Þ ¼ ð5� 2Þð8� 5Þ ¼ 9.
f ð5Þ ¼ 9 so that f ½ f ð5Þ� ¼ f ð9Þ is not defined.

(e) The following table shows f ðxÞ for various values of x.

Plot points ð2; 0Þ; ð3; 5Þ; ð4; 8Þ; ð5; 9Þ; ð6; 8Þ; ð7; 5Þ; ð8; 0Þ;
ð2:5; 2:75Þ; ð7:5; 2:75Þ.
These points are only a few of the infinitely many points

on the required graph shown in the adjoining Fig. 3-5. This

set of points defines a curve which is part of a parabola.

3.2. Let gðxÞ ¼ ðx� 2Þð8� xÞ for 2 < x < 8. (a) Discuss the difference between the graph of gðxÞ and
that of f ðxÞ in Problem 3.1. (b) What is the l.u.b. and g.l.b. of gðxÞ? (c) Does gðxÞ attain its
l.u.b. and g.l.b. for any value of x in the domain of definition? (d) Answer parts (b) and (c) for
the function f ðxÞ of Problem 3.1.

(a) The graph of gðxÞ is the same as that in Problem 3.1 except that the two points ð2; 0Þ and ð8; 0Þ are
missing, since gðxÞ is not defined at x ¼ 2 and x ¼ 8.

(b) The l.u.b. of gðxÞ is 9. The g.l.b. of gðxÞ is 0.
(c) The l.u.b. of gðxÞ is attained for the value of x ¼ 5. The g.l.b. of gðxÞ is not attained, since there is no

value of x in the domain of definition such that gðxÞ ¼ 0.

(d) As in (b), the l.u.b. of f ðxÞ is 9 and the g.l.b. of f ðxÞ is 0. The l.u.b. of f ðxÞ is attained for the value
x ¼ 5 and the g.l.b. of f ðxÞ is attained at x ¼ 2 and x ¼ 8.

Note that a function, such as f ðxÞ, which is continuous in a closed interval attains its l.u.b. and g.l.b.
at some point of the interval. However, a function, such as gðxÞ, which is not continuous in a closed

interval need not attain its l.u.b. and g.l.b. See Problem 3.34.

3.3. Let f ðxÞ ¼ 1; if x is a rational number
0; if x is an irrational number

�

. (a) Find f ð23Þ, f ð�5Þ, f ð1:41423Þ, f ð ffiffiffi

2
p Þ,

(b) Construct a graph of f ðxÞ and explain why it is misleading by itself.

(a) f ð23Þ ¼ 1 since 2
3 is a rational number

f ð�5Þ ¼ 1 since �5 is a rational number
f ð1:41423Þ ¼ 1 since 1.41423 is a rational number
f ð ffiffiffi

2
p Þ ¼ 0 since

ffiffiffi

2
p

is an irrational number
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(b) The graph is shown in the adjoining Fig. 3-6. Because both the

sets of rational numbers and irrational numbers are dense, the
visual impression is that there are two images corresponding to
each domain value. In actuality, each domain value has only
one corresponding range value.

3.4. Referring to Problem 3.1: (a) Draw the graph with axes
interchanged, thus illustrating the two possible choices avail-
able for definition of f �1. (b) Solve for x in terms of y to
determine the equations describing the two branches, and then interchange the variables.

(a) The graph of y ¼ f ðxÞ is shown in Fig. 3-5 of Problem 3.1(a). By interchanging the axes (and the
variables), we obtain the graphical form of Fig. 3-7. This figure illustrates that there are two values of y
corresponding to each value of x, and hence two branches. Either may be employed to define f �1.

(b) We have y ¼ ðx� 2Þð8� xÞ or x2 � 10xþ 16þ y ¼ 0. The solu-

tion of this quadratic equation is

x ¼ 5�
ffiffiffiffiffiffiffiffiffiffiffiffi

9� y:
p

After interchanging variables

y ¼ 5�
ffiffiffiffiffiffiffiffiffiffiffi

9� x
p

:

In the graph, AP represents y ¼ 5þ ffiffiffiffiffiffiffiffiffiffiffi

9� x
p

, and BP designates

y ¼ 5� ffiffiffiffiffiffiffiffiffiffiffi

9� x
p

. Either branch may represent f �1.

Note: The point at which the two branches meet is called a
branch point.

3.5. (a) Prove that gðxÞ ¼ 5þ ffiffiffiffiffiffiffiffiffiffiffi

9� x
p

is strictly decreasing in 0 @ x @ 9. (b) Is it monotonic
decreasing in this interval? (c) Does gðxÞ have a single-valued inverse?

(a) gðxÞ is strictly decreasing if gðx1Þ > gðx2Þ whenever x1 < x2. If x1 < x2 then 9� x1 > 9� x2,
ffiffiffiffiffiffiffiffiffiffiffiffiffi

9� x1
p

>
ffiffiffiffiffiffiffiffiffiffiffiffiffi

9� x2
p

, 5þ ffiffiffiffiffiffiffiffiffiffiffiffiffi

9� x1
p

> 5þ ffiffiffiffiffiffiffiffiffiffiffiffiffi

9� x2
p

showing that gðxÞ is strictly decreasing.

(b) Yes, any strictly decreasing function is also monotonic decreasing, since if gðx1Þ > gðx2Þ it is also true
that gðx1Þ A gðx2Þ. However, if gðxÞ is monotonic decreasing, it is not necessarily strictly decreasing.

(c) If y ¼ 5þ ffiffiffiffiffiffiffiffiffiffiffi

9� x
p

, then y� 5 ¼ ffiffiffiffiffiffiffiffiffiffiffi

9� x
p

or squaring, x ¼ �16þ 10y� y2 ¼ ðy� 2Þð8� yÞ and x is a
single-valued function of y, i.e., the inverse function is single-valued.

In general, any strictly decreasing (or increasing) function has a single-valued inverse (see Theorem
6, Page 47).

The results of this problem can be interpreted graphically using the figure of Problem 3.4.

3.6. Construct graphs for the functions (a) f ðxÞ ¼ x sin 1=x; x > 0
0; x ¼ 0

�

, (b) f ðxÞ ¼ ½x� ¼ greatest
integer @ x.

(a) The required graph is shown in Fig. 3-8. Since jx sin 1=xj @ jxj, the graph is included between y ¼ x
and y ¼ �x. Note that f ðxÞ ¼ 0 when sin 1=x ¼ 0 or 1=x ¼;m�, m ¼ 1; 2; 3; 4; . . . ; i.e., where
x ¼ 1=�; 1=2�; 1=3�; . . . . The curve oscillates infinitely often between x ¼ 1=� and x ¼ 0.

(b) The required graph is shown in Fig. 3-9. If 1 @ x < 2, then ½x� ¼ 1. Thus ½1:8� ¼ 1, ½ ffiffiffi

2
p � ¼ 1,

½1:99999� ¼ 1. However, ½2� ¼ 2. Similarly for 2 @ x < 3, ½x� ¼ 2, etc. Thus there are jumps at
the integers. The function is sometimes called the staircase function or step function.

3.7. (a) Construct the graph of f ðxÞ ¼ tan x. (b) Construct the graph of some of the infinite number
of branches available for a definition of tan�1 x. (c) Show graphically why the relationship of x
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to y is multivalued. (d) Indicate possible principal values for tan�1 x. (e) Using your choice,
evaluate tan�1ð�1Þ.
(a) The graph of f ðxÞ ¼ tan x appears in Fig. 3-10 below.

(b) The required graph is obtained by interchanging the x and y axes in the graph of (a). The result, with
axes oriented as usual, appears in Fig. 3-11 above.

(c) In Fig. 3-11 of (b), any vertical line meets the graph in infinitely many points. Thus, the relation of y to
x is multivalued and infinitely many branches are available for the purpose of defining tan�1 x.

(d) To define tan�1 x as a single-valued function, it is clear from the graph that we can only do so by

restricting its value to any of the following: ��=2 < tan�1 x < �=2; �=2 < tan�1 x < 3�=2, etc. We
shall agree to take the first as defining the principal value.

Note that no matter which branch is used to define tan�1 x, the resulting function is strictly
increasing.

(e) tan�1ð�1Þ ¼ ��=4 is the only value lying between ��=2 and �=2, i.e., it is the principal value according
to our choice in ðdÞ.

3.8. Show that f ðxÞ ¼
ffiffiffi

x
p þ 1

xþ 1
, x 6¼ �1, describes an irrational algebraic function.

If y ¼
ffiffiffi

x
p þ 1

xþ 1
then ðxþ 1Þy� 1 ¼ ffiffiffi

x
p

or squaring, ðxþ 1Þ2y2 � 2ðxþ 1Þyþ 1� x ¼ 0, a polynomial

equation in y whose coefficients are polynomials in x. Thus f ðxÞ is an algebraic function. However, it is not
the quotient of two polynomials, so that it is an irrational algebraic function.

CHAP. 3] FUNCTIONS, LIMITS, AND CONTINUITY 51

_p/2_p p/2 p 3p/2 2p
x

y = f (x) = tan x

Fig. 3-10

_p

p

_p/2

p/2

3p/2

x

f 
_1(x) = tan

_1x

Fig. 3-11

f (x)

x

y =
 x

y = _
x

1/2p 1/p

Fig. 3-8

_3 _2 _1 1 2 3 4 5
x

f (x)

Fig. 3-9



3.9. If f ðxÞ ¼ cosh x ¼ 1
2 ðex þ e�xÞ, prove that we can choose as the principal value of the inverse

function, cosh�1 x ¼ lnðxþ
ffiffiffiffiffiffiffiffiffiffiffiffiffi

x2 � 1
p

Þ, x A 1.

If y ¼ 1
2 ðex þ e�xÞ, e2x � 2yex þ 1 ¼ 0. Then using the quadratic formula, ex ¼ 2y�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

4y2 � 4
p

2
¼

y�
ffiffiffiffiffiffiffiffiffiffiffiffiffi

y2 � 1
p

. Thus x ¼ lnðy�
ffiffiffiffiffiffiffiffiffiffiffiffiffi

y2 � 1
p

Þ.

Since y�
ffiffiffiffiffiffiffiffiffiffiffiffiffi

y2 � 1
p

¼ ðy�
ffiffiffiffiffiffiffiffiffiffiffiffiffi

y2 � 1
p

Þ yþ
ffiffiffiffiffiffiffiffiffiffiffiffiffi

y2 � 1
p

yþ
ffiffiffiffiffiffiffiffiffiffiffiffiffi

y2 � 1
p

 !

¼ 1

yþ
ffiffiffiffiffiffiffiffiffiffiffiffiffi

y2 � 1
p , we can also write

x ¼ � lnðyþ
ffiffiffiffiffiffiffiffiffiffiffiffiffi

y2 � 1

q

Þ or cosh�1 y ¼ � lnðyþ
ffiffiffiffiffiffiffiffiffiffiffiffiffi

y2 � 1

q

Þ

Choosing the þ sign as defining the principal value and replacing y by x, we have
cosh�1 x ¼ lnðxþ

ffiffiffiffiffiffiffiffiffiffiffiffiffi

x2 � 1
p

Þ. The choice x A 1 is made so that the inverse function is real.

LIMITS

3.10. If (a) f ðxÞ ¼ x2, (b) f ðxÞ ¼ x2; x 6¼ 2
0; x ¼ 2

�

, prove that lim
x!2

f ðxÞ ¼ 4.

(a) We must show that given any � > 0 we can find � > 0 (depending on � in general) such that jx2 � 4j < �
when 0 < jx� 2j < �.

Choose �@ 1 so that 0 < jx� 2j < 1 or 1 < x < 3, x 6¼ 2. Then jx2 � 4j ¼ jðx� 2Þðxþ 2Þj ¼
jx� 2jjxþ 2j < �jxþ 2j < 5�.

Take � as 1 or �=5, whichever is smaller. Then we have jx2 � 4j < � whenever 0 < jx� 2j < � and
the required result is proved.

It is of interest to consider some numerical values. If for example we wish to make jx2 � 4j < :05,
we can choose � ¼ �=5 ¼ :05=5 ¼ :01. To see that this is actually the case, note that if 0 < jx� 2j < :01
then 1:99 < x < 2:01 ðx 6¼ 2Þ and so 3:9601 < x2 < 4:0401, �:0399 < x2 � 4 < :0401 and certainly
jx2 � 4j < :05 ðx2 6¼ 4Þ. The fact that these inequalities also happen to hold at x ¼ 2 is merely coin-
cidental.

If we wish to make jx2 � 4j < 6, we can choose � ¼ 1 and this will be satisfied.

(b) There is no difference between the proof for this case and the proof in (a), since in both cases we exclude

x ¼ 2.

3.11. Prove that lim
x!1

2x4 � 6x3 þ x2 þ 3

x� 1
¼ �8.

We must show that for any � > 0 we can find � > 0 such that
2x4 � 6x3 þ x2 þ 3

x� 1
� ð�8Þ































< � when

0 < jx� 1j < �. Since x 6¼ 1, we can write
2x4 � 6x3 þ x2 þ 3

x� 1
¼ ð2x3 � 4x2 � 3x� 3Þðx� 1Þ

x� 1
¼ 2x3 � 4x2�

3x� 3 on cancelling the common factor x� 1 6¼ 0.

Then we must show that for any � > 0, we can find � > 0 such that j2x3 � 4x2 � 3xþ 5j < � when
0 < jx� 1j < �. Choosing �@ 1, we have 0 < x < 2, x 6¼ 1.

Now j2x3 � 4x2 � 3xþ 5j ¼ jx� 1jj2x2 � 2x� 5j < �j2x2 � 2x� 5j < �ðj2x2j þ j2xj þ 5Þ < ð8þ 4þ 5Þ
� ¼ 17�. Taking � as the smaller of 1 and �=17, the required result follows.

3.12. Let f ðxÞ ¼
jx� 3j
x� 3

; x 6¼ 3

0; x ¼ 3

8

<

:

, (a) Graph the function. (b) Find lim
x!3þ

f ðxÞ. (c) Find

lim
x!3�

f ðxÞ. (d) Find lim
x!3

f ðxÞ.

(a) For x > 3,
jx� 3j
x� 3

¼ x� 3

x� 3
¼ 1.

For x < 3,
jx� 3j
x� 3

¼ �ðx� 3Þ
x� 3

¼ �1.
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Then the graph, shown in the adjoining Fig. 3-12,
consists of the lines y ¼ 1, x > 3; y ¼ �1, x < 3 and
the point ð3; 0Þ.

(b) As x ! 3 from the right, f ðxÞ ! 1, i.e., lim
x!3þ

f ðxÞ ¼ 1,

as seems clear from the graph. To prove this we must

show that given any � > 0, we can find � > 0 such that

j f ðxÞ � 1j < � whenever 0 < x� 1 < �.

Now since x > 1, f ðxÞ ¼ 1 and so the proof con-
sists in the triviality that j1� 1j < � whenever
0 < x� 1 < �.

(c) As x ! 3 from the left, f ðxÞ ! �1, i.e.,

lim
x!3�

f ðxÞ ¼ �1. A proof can be formulated as in (b).

(d) Since lim
x!3þ

f ðxÞ 6¼ lim
x!3�

f ðxÞ, lim
x!3

f ðxÞ does not exist.

3.13. Prove that lim
x!0

x sin 1=x ¼ 0.

We must show that given any � > 0, we can find � > 0 such that jx sin 1=x� 0j < � when
0 < jx� 0j < �.

If 0 < jxj < �, then jx sin 1=xj ¼ jxjj sin 1=xj @ jxj < � since j sin 1=xj @ 1 for all x 6¼ 0.

Making the choice � ¼ �, we see that jx sin 1=xj < � when 0 < jxj < �, completing the proof.

3.14. Evaluate lim
x!0þ

2

1þ e�1=x
.

As x ! 0þ we suspect that 1=x increases indefinitely, e1=x increases indefinitely, e�1=x approaches 0,
1þ e�1=x approaches 1; thus the required limit is 2.

To prove this conjecture we must show that, given � > 0, we can find � > 0 such that

2

1þ e�1=x
� 2

























< � when 0 < x < �

2

1þ e�1=x
� 2

























¼ 2� 2� 2e�1=x

1þ e�1=x































¼ 2

e1=x þ 1
Now

Since the function on the right is smaller than 1 for all x > 0, any � > 0 will work when e 
 1. If

0 < � < 1, then
2

e1=x þ 1
< � when

e1=x þ 1

2
>

1

�
, e1=x >

2

�
� 1,

1

x
> ln

2

�
� 1

� �

; or 0 < x <
1

lnð2=�� 1Þ ¼ �.

3.15. Explain exactly what is meant by the statement lim
x!1

1

ðx� 1Þ4 ¼ 1 and prove the validity of this
statement.

The statement means that for each positive number M, we can find a positive number � (depending on

M in general) such that

1

ðx� 1Þ4 > 4 when 0 < jx� 1j < �

To prove this note that
1

ðx� 1Þ4 >M when 0 < ðx� 1Þ4 < 1

M
or 0 < jx� 1j < 1

ffiffiffiffiffi

M4
p .

Choosing � ¼ 1=
ffiffiffiffiffi

M4
p

, the required results follows.

3.16. Present a geometric proof that lim
�!0

sin �

�
¼ 1.

Construct a circle with center at O and radius OA ¼ OD ¼ 1, as in Fig. 3-13 below. Choose point B on
OA extended and point C on OD so that lines BD and AC are perpendicular to OD.

It is geometrically evident that

CHAP. 3] FUNCTIONS, LIMITS, AND CONTINUITY 53

f (x)

x
(3, 0)

1

1

Fig. 3-12



54 FUNCTIONS, LIMITS, AND CONTINUITY [CHAP. 3

Area of triangle OAC < Area of sector OAD < Area of triangle OBD

1
2 sin � cos � <

1
2 � <

1
2 tan �i.e.,

Dividing by 1
2 sin �,

cos � <
�

sin �
<

1

cos �

cos � <
sin �

�
<

1

cos �
or

As � ! 0, cos �! 1 and it follows that lim
�!0

sin �

�
¼ 1.

THEOREMS ON LIMITS

3.17. If lim
x!x0

f ðxÞ exists, prove that it must be unique.

We must show that if lim
x!x0

f ðxÞ ¼ l1 and lim
x!x0

f ðxÞ ¼ l2, then l1 ¼ l2.

By hypothesis, given any � > 0 we can find � > 0 such that

j f ðxÞ � l1j < �=2 when 0 < jx� x0j < �

j f ðxÞ � l2j < �=2 when 0 < jx� x0j < �

Then by the absolute value property 2 on Page 3,

jl1 � l2j ¼ jl1 � f ðxÞ þ f ðxÞ � l2j @ jl1 � f ðxÞj þ j f ðxÞ � l2j < �=2þ �=2 ¼ �

i.e., jl1 � l2j is less than any positive number � (however small) and so must be zero. Thus l1 ¼ l2.

3.18. If lim
x!x0

gðxÞ ¼ B 6¼ 0, prove that there exists � > 0 such that

jgðxÞj > 1
2 jBj for 0 < jx� x0j < �

Since lim
x!x0

gðxÞ ¼ B, we can find � > 0 such that jgðxÞ � Bj < 1
2 jBj for 0 < jx� x0j < �.

Writing B ¼ B� gðxÞ þ gðxÞ, we have

jBj @ jB� gðxÞj þ jgðxÞj < 1
2 jBj þ jgðxÞj

i.e., jBj < 1
2 jBj þ jgðxÞj, from which jgðxÞj > 1

2 jBj.

3.19. Given lim
x!x0

f ðxÞ ¼ A and lim
x!x0

gðxÞ ¼ B, prove (a) lim
x!x0

½ f ðxÞ þ gðxÞ� ¼ Aþ B, (b) lim
x!x0

f ðxÞgðxÞ ¼ AB, (c) lim
x!x0

1

gðxÞ ¼
1

B
if B 6¼ 0, (d) lim

x!x0

f ðxÞ
gðxÞ ¼

A

B
if B 6¼ 0.

(a) We must show that for any � > 0 we can find � > 0 such that

j½ f ðxÞ þ gðxÞ� � ðAþ BÞj < � when 0 < jx� x0j < �

Using absolute value property 2, Page 3, we have

j½ f ðxÞ þ gðxÞ� � ðAþ BÞj ¼ j½ f ðxÞ � A� þ ½gðxÞ � B�j @ j f ðxÞ � Aj þ jgðxÞ � Bj ð1Þ
By hypothesis, given � > 0 we can find �1 > 0 and �2 > 0 such that

j f ðxÞ � Aj < �=2 when 0 < jx� x0j < �1 ð2Þ
jgðxÞ � Bj < �=2 when 0 < jx� x0j < �2 ð3Þ

Then from (1), (2), and (3),

j½ f ðxÞ þ gðxÞ� � ðAþ BÞj < �=2þ �=2 ¼ � when 0 < jx� x0j < �

where � is chosen as the smaller of �1 and �2.

B

A

Ccos �

sin �

tan �

DO �
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(b) We have

j f ðxÞgðxÞ � ABj ¼ j f ðxÞ½gðxÞ � B� þ B½ f ðxÞ � A�j ð4Þ
@ j f ðxÞjjgðxÞ � Bj þ jBjj f ðxÞ � Aj
@ j f ðxÞjjgðxÞ � Bj þ ðjBj þ 1Þj f ðxÞ � Aj

Since lim
x!x0

f ðxÞ ¼ A, we can find �1 such j f ðxÞ � Aj < 1 for 0 < jx� x0j < �1, i.e.,

A� 1 < f ðxÞ < Aþ 1, so that f ðxÞ is bounded, i.e., j f ðxÞj < P where P is a positive constant.

Since lim
x!x0

gðxÞ ¼ B, given � > 0 we can find �2 > 0 such that jgðxÞ � Bj < �=2P for

0 < jx� x0j < �2.

Since lim
x!x0

f ðxÞ ¼ A, given � > 0 we can find �3 > 0 such that j f ðxÞ � Aj < �

2ðjBj þ 1Þ for

0 < jx� x0j < �2.

Using these in (4), we have

j f ðxÞgðxÞ � ABj < P � �
2P

þ ðjBj þ 1Þ � �

2ðjBj þ 1Þ ¼ �

for 0 < jx� x0j < � where � is the smaller of �1; �2; �3 and the proof is complete.

(c) We must show that for any � > 0 we can find � > 0 such that

1

gðxÞ �
1

B

























¼ jgðxÞ � Bj
jBjjgðxÞj < � when 0 < jx� x0j < � ð5Þ

By hypothesis, given � > 0 we can find �1 > 0 such that

jgðxÞ � Bj < 1
2B

2� when 0 < jx� x0j < �1

By Problem 3.18, since lim
x!x0

gðxÞ ¼ B 6¼ 0, we can find �2 > 0 such that

jgðxÞj > 1
2 jBj when 0 < jx� x0j < �2

Then if � is the smaller of �1 and �2, we can write

1

gðxÞ �
1

B

























¼ jgðxÞ � Bj
jBjjgðxÞj <

1
2B

2�

jBj � 12 jBj
¼ � whenever 0 < jx� x0j < �

and the required result is proved.

(d) From parts (b) and (c),

lim
x!x0

f ðxÞ
gðxÞ ¼ lim

x!x0
f ðxÞ � 1

gðxÞ ¼ lim
x!x0

f ðxÞ � lim
x!x0

1

gðxÞ ¼ A � 1
B
¼ A

B

This can also be proved directly (see Problem 3.69).

The above results can also be proved in the cases x ! x0þ, x ! x0�, x ! 1, x ! �1.

Note: In the proof of (a) we have used the results j f ðxÞ � Aj < �=2 and jgðxÞ � Bj < �=2, so that the final

result would come out to be j f ðxÞ þ gðxÞ � ðAþ BÞj < �. Of course the proof would be just as valid if we
had used 2� (or any other positive multiple of �) in place of �. A similar remark holds for the proofs of ðbÞ,
(c), and (d).

3.20. Evaluate each of the following, using theorems on limits.

ðaÞ lim
x!2

ðx2 � 6xþ 4Þ ¼ lim
x!2

x2 þ lim
x!2

ð�6xÞ þ lim
x!2

4

¼ ðlim
x!2

xÞðlim
x!2

xÞ þ ðlim
x!2

�6Þðlim
x!2

xÞ þ lim
x!2

4

¼ ð2Þð2Þ þ ð�6Þð2Þ þ 4 ¼ �4

In practice the intermediate steps are omitted.
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ðbÞ lim
x!�1

ðxþ 3Þð2x� 1Þ
x2 þ 3x� 2

¼
lim
x!�1

ðxþ 3Þ lim
x!�1

ð2x� 1Þ
lim
x!�1

ðx2 þ 3x� 2Þ ¼ 2 � ð�3Þ
�4

¼ 3

2

ðcÞ lim
x!1

2x4 � 3x2 þ 1

6x4 þ x3 � 3x
¼ lim

x!1

2� 3

x2
þ 1

x4

6þ 1

x
� 3

x3

¼
lim
x!1 2þ lim

x!1
�3

x2
þ lim

x!1
1

x4

lim
x!1 6þ lim

x!1
1

x
þ lim

x!1
�3

x3

¼ 2

6
¼ 1

3

by Problem 3.19.

ðdÞ lim
h!0

ffiffiffiffiffiffiffiffiffiffiffi

4þ h
p � 2

h
¼ lim

h!0

ffiffiffiffiffiffiffiffiffiffiffi

4þ h
p � 2

h
�
ffiffiffiffiffiffiffiffiffiffiffi

4þ h
p þ 2
ffiffiffiffiffiffiffiffiffiffiffi

4þ h
p þ 2

¼ lim
h!0

4þ h� 4

hð ffiffiffiffiffiffiffiffiffiffiffi

4þ h
p þ 2Þ ¼ lim

h!0

1
ffiffiffiffiffiffiffiffiffiffiffi

4þ h
p þ 2

¼ 1

2þ 2
¼ 1

4

ðeÞ lim
x!0þ

sinx
ffiffiffi

x
p ¼ lim

x!0þ
sinx

x
� ffiffiffi

x
p ¼ lim

x!0þ
sinx

x
� lim
x!0þ

ffiffiffi

x
p ¼ 1 � 0 ¼ 0:

Note that in (c), (d), and (e) if we use the theorems on limits indiscriminately we obtain the so

called indeterminate forms 1=1 and 0/0. To avoid such predicaments, note that in each case the form
of the limit is suitably modified. For other methods of evaluating limits, see Chapter 4.

CONTINUITY

(Assume that values at which continuity is to be demonstrated, are interior domain values unless
otherwise stated.)

3.21. Prove that f ðxÞ ¼ x2 is continuous at x ¼ 2.

Method 1: By Problem 3.10, lim
x!2

f ðxÞ ¼ f ð2Þ ¼ 4 and so f ðxÞ is continuous at x ¼ 2.

Method 2: We must show that given any � > 0, we can find � > 0 (depending on �) such that
j f ðxÞ � f ð2Þj ¼ jx2 � 4j < � when jx� 2j < �. The proof patterns that are given in Problem 3.10.

3.22. (a) Prove that f ðxÞ ¼ x sin 1=x; x 6¼ 0
5; x ¼ 0

�

is not continuous at x ¼ 0. (b) Can one redefine f ð0Þ
so that f ðxÞ is continuous at x ¼ 0?

(a) From Problem 3.13, lim
x!0

f ðxÞ ¼ 0. But this limit is not equal to f ð0Þ ¼ 5, so that f ðxÞ is discontinuous
at x ¼ 0.

(b) By redefining f ðxÞ so that f ð0Þ ¼ 0, the function becomes continuous. Because the function can be

made continuous at a point simply by redefining the function at the point, we call the point a removable
discontinuity.

3.23. Is the function f ðxÞ ¼ 2x4 � 6x3 þ x2 þ 3

x� 1
continuous at x ¼ 1?

f ð1Þ does not exist, so that f ðxÞ is not continuous at x ¼ 1. By redefining f ðxÞ so that f ð1Þ ¼ lim
x!1

f ðxÞ ¼ �8 (see Problem 3.11), it becomes continuous at x ¼ 1, i.e., x ¼ 1 is a removable discontinuity.

3.24. Prove that if f ðxÞ and gðxÞ are continuous at x ¼ x0, so also are (a) f ðxÞ þ gðxÞ, (b) f ðxÞgðxÞ,
(c)

f ðxÞ
gðxÞ if f ðx0Þ 6¼ 0.
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These results follow at once from the proofs given in Problem 3.19 by taking A ¼ f ðx0Þ and B ¼ gðx0Þ
and rewriting 0 < jx� x0j < � as jx� x0j < �, i.e., including x ¼ x0.

3.25. Prove that f ðxÞ ¼ x is continuous at any point x ¼ x0.

We must show that, given any � > 0, we can find � > 0 such that j f ðxÞ � f ðx0Þj ¼ jx� x0j < � when
jx� x0j < �. By choosing � ¼ �, the result follows at once.

3.26. Prove that f ðxÞ ¼ 2x3 þ x is continuous at any point x ¼ x0.

Since x is continuous at any point x ¼ x0 (Problem 3.25) so also is x � x ¼ x2, x2 � x ¼ x3, 2x3, and
finally 2x3 þ x, using the theorem (Problem 3.24) that sums and products of continuous functions are
continuous.

3.27. Prove that if f ðxÞ ¼ ffiffiffiffiffiffiffiffiffiffiffi

x� 5
p

for 5 @ x @ 9, then f ðxÞ is continuous in this interval.

If x0 is any point such that 5 < x0 < 9, then lim
x!x0

f ðxÞ ¼ lim
x!x0

ffiffiffiffiffiffiffiffiffiffiffi

x� 5
p

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi

x0 � 5
p

¼ f ðx0Þ. Also,

lim
x!5þ

ffiffiffiffiffiffiffiffiffiffiffi

x� 5
p

¼ 0 ¼ f ð5Þ and lim
x!9�

ffiffiffiffiffiffiffiffiffiffiffi

x� 5
p

¼ 2 ¼ f ð9Þ. Thus the result follows.

Here we have used the result that lim
x!x0

ffiffiffiffiffiffiffiffiffi

f ðxÞ
p

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

lim
x!x0

f ðxÞ
q

¼
ffiffiffiffiffiffiffiffiffiffiffi

f ðx0Þ
p

if f ðxÞ is continuous at x0. An �, �

proof, directly from the definition, can also be employed.

3.28. For what values of x in the domain of definition is each of the following functions continuous?

(a) f ðxÞ ¼ x

x2 � 1
Ans. all x except x ¼ �1 (where the denominator is zero)

(b) f ðxÞ ¼ 1þ cos x

3þ sin x
Ans. all x

(c) f ðxÞ ¼ 1
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

10þ 44
p Ans. All x > �10

(d) f ðxÞ ¼ 10�1=ðx�3Þ2 Ans. all x 6¼ 3 (see Problem 3.55)

(e) f ðxÞ ¼ 10�1=ðx�3Þ2 ; x 6¼ 3
0; x ¼ 3

�

Ans. all x, since lim
x!3

f ðxÞ ¼ f ð3Þ

( f ) f ðxÞ ¼ x� jxj
x

If x > 0, f ðxÞ ¼ x� x

x
¼ 0. If x < 0, f ðxÞ ¼ xþ x

x
¼ 2. At x ¼ 0, f ðxÞ is undefined. Then f ðxÞ is

continuous for all x except x ¼ 0.

ðgÞ f ðxÞ ¼
x� jxj

x
; x < 0

2; x ¼ 0

8

<

:

As in ð f Þ, f ðxÞ is continuous for x < 0. Then since

lim
x!0�

x� jxj
x

¼ lim
x!0�

xþ x

x
¼ lim

x!0�
2 ¼ 2 ¼ f ð0Þ

if follows that f ðxÞ is continuous (from the left) at x ¼ 0.
Thus, f ðxÞ is continuous for all x @ 0, i.e., everywhere in its domain of definition.

ðhÞ f ðxÞ ¼ x csc x ¼ x

sinx
: Ans: all x except 0;��;�2�;�3�; . . . :

(i) f ðxÞ ¼ x csc x, f ð0Þ ¼ 1. Since lim
x!0

x csc x ¼ lim
x!0

x

sin x
¼ 1 ¼ f ð0Þ, we see that f ðxÞ is continuous for all x

except ��;�2�;�3�; . . . [compare (h)].
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UNIFORM CONTINUITY

3.29. Prove that f ðxÞ ¼ x2 is uniformly continuous in 0 < x < 1.

Method 1: Using definition.
We must show that given any � > 0 we can find � > 0 such that jx2 � x20j < � when jx� x0j < �, where �

depends only on � and not on x0 where 0 < x0 < 1.
If x and x0 are any points in 0 < x < 1, then

jx2 � x20j ¼ jxþ x0jjx� x0j < j1þ 1jjx� x0j ¼ 2jx� x0j
Thus if jx� x0j < � it follows that jx2 � x20j < 2�. Choosing � ¼ �=2, we see that jx2 � x20j < � when
jx� x0j < �, where � depends only on � and not on x0. Hence, f ðxÞ ¼ x2 is uniformly continuous in

0 < x < 1.

The above can be used to prove that f ðxÞ ¼ x2 is uniformly continuous in 0 @ x @1.

Method 2: The function f ðxÞ ¼ x2 is continuous in the closed interval 0 @ x @ 1. Hence, by the theorem

on Page 48 is uniformly continuous in 0 @ x @ 1 and thus in 0 < x < 1.

3.30. Prove that f ðxÞ ¼ 1=x is not uniformly continuous in 0 < x < 1.

Method 1: Suppose f ðxÞ is uniformly continuous in the given interval. Then for any � > 0 we should be
able to find �, say, between 0 and 1, such that j f ðxÞ � f ðx0Þj < � when jx� x0j < � for all x and x0 in the

interval.

Let x ¼ � and x0 ¼
�

1þ � : Then jx� x0j ¼ �� �

1þ �
























¼ �

1þ � � < �:

However,
1

x
� 1

x0

























¼ 1

�
� 1þ �

�

























¼ �

�
> � (since 0 < � < 1Þ:

Thus, we have a contradiction and it follows that f ðxÞ ¼ 1=x cannot be uniformly continuous in

0 < x < 1.

Method 2: Let x0 and x0 þ � be any two points in ð0; 1Þ. Then

j f ðx0Þ � f ðx0 þ �Þj ¼
1

x0
� 1

x0 þ �
























¼ �

x0ðx0 þ �Þ
can be made larger than any positive number by choosing x0 sufficiently close to 0. Hence, the function
cannot be uniformly continuous.

MISCELLANEOUS PROBLEMS

3.31. If y ¼ f ðxÞ is continuous at x ¼ x0, and z ¼ gðyÞ is continuous at y ¼ y0 where y0 ¼ f ðx0Þ, prove
that z ¼ gf f ðxÞg is continuous at x ¼ x0.

Let hðxÞ ¼ gf f ðxÞg. Since by hypothesis f ðxÞ and gð yÞ are continuous at x0 and y0, respectively, we

have

lim
x!x0

f ðxÞ ¼ f ð lim
x!x0

xÞ ¼ f ðx0Þ
lim
y!y0

gðyÞ ¼ gð lim
y!y0

yÞ ¼ gðy0Þ ¼ gf f ðx0Þg

Then

lim
x!x0

hðxÞ ¼ lim
x!x0

gf f ðxÞg ¼ gf lim
x!x0

f ðxÞg ¼ gf f ðx0Þg ¼ hðx0Þ

which proves that hðxÞ ¼ gf f ðxÞg is continuous at x ¼ x0.

3.32. Prove Theorem 8, Page 48.
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Suppose that f ðaÞ < 0 and f ðbÞ > 0. Since f ðxÞ is continuous there must be an interval ða; aþ hÞ, h > 0,

for which f ðxÞ < 0. The set of points ða; aþ hÞ has an upper bound and so has a least upper bound which
we call c. Then f ðcÞ @ 0. Now we cannot have f ðcÞ < 0, because if f ðcÞ were negative we would be able to
find an interval about c (including values greater than c) for which f ðxÞ < 0; but since c is the least upper
bound, this is impossible, and so we must have f ðcÞ ¼ 0 as required.

If f ðaÞ > 0 and f ðbÞ < 0, a similar argument can be used.

3.33. (a) Given f ðxÞ ¼ 2x3 � 3x2 þ 7x� 10, evaluate f ð1Þ and f ð2Þ. (b) Prove that f ðxÞ ¼ 0 for some
real number x such that 1 < x < 2. (c) Show how to calculate the value of x in (b).

(a) f ð1Þ ¼ 2ð1Þ3 � 3ð1Þ2 þ 7ð1Þ � 10 ¼ �4, f ð2Þ ¼ 2ð2Þ3 � 3ð2Þ2 þ 7ð2Þ � 10 ¼ 8.

(b) If f ðxÞ is continuous in a @ x @ b and if f ðaÞ and f ðbÞ have opposite signs, then there is a value of x
between a and b such that f ðxÞ ¼ 0 (Problem 3.32).

To apply this theorem we need only realize that the given polynomial is continuous in 1 @ x @ 2,

since we have already shown in (a) that f ð1Þ < 0 and f ð2Þ > 0. Thus there exists a number c between 1
and 2 such that f ðcÞ ¼ 0.

(c) f ð1:5Þ ¼ 2ð1:5Þ3 � 3ð1:5Þ2 þ 7ð1:5Þ � 10 ¼ 0:5. Then applying the theorem of (b) again, we see that the
required root lies between 1 and 1.5 and is ‘‘most likely’’ closer to 1.5 than to 1, since f ð1:5Þ ¼ 0:5 has a
value closer to 0 than f ð1Þ ¼ �4 (this is not always a valid conclusion but is worth pursuing in practice).

Thus we consider x ¼ 1:4. Since f ð1:4Þ ¼ 2ð1:4Þ3 � 3ð1:4Þ2 þ 7ð1:4Þ � 10 ¼ �0:592, we conclude
that there is a root between 1.4 and 1.5 which is most likely closer to 1.5 than to 1.4.

Continuing in this manner, we find that the root is 1.46 to 2 decimal places.

3.34. Prove Theorem 10, Page 48.

Given any � > 0, we can find x such that M � f ðxÞ < � by definition of the l.u.b. M.

Then
1

M � f ðxÞ >
1

�
, so that

1

M � f ðxÞ is not bounded and hence cannot be continuous in view of

Theorem 4, Page 47. However, if we suppose that f ðxÞ 6¼ M, then since M � f ðxÞ is continuous, by

hypothesis, we must have
1

M � f ðxÞ also continuous. In view of this contradiction, we must have

f ðxÞ ¼ M for at least one value of x in the interval.

Similarly, we can show that there exists an x in the interval such that f ðxÞ ¼ m (Problem 3.93).

Supplementary Problems

FUNCTIONS

3.35. Give the largest domain of definition for which each of the following rules of correspondence support the
construction of a function.

(a)
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið3� xÞð2xþ 4Þp

, (b) ðx� 2Þ=ðx2 � 4Þ, (c)
ffiffiffiffiffiffiffiffiffiffiffiffi

sin 3x
p

, (d) log10ðx3 � 3x2 � 4xþ 12Þ.
Ans. (a) �2 @ x @ 3, (b) all x 6¼ �2, (c) 2m�=3 @ x @ ð2mþ 1Þ�=3, m ¼ 0;�1;�2; . . . ;
(d) x > 3, �2 < x < 2.

3.36. If f ðxÞ ¼ 3xþ 1

x� 2
, x 6¼ 2, find: (a)

5f ð�1Þ � 2f ð0Þ þ 3f ð5Þ
6

; (b) f f ð� 1
2Þg2; (c) f ð2x� 3Þ;

(d) f ðxÞ þ f ð4=xÞ, x 6¼ 0; (e)
f ðhÞ � f ð0Þ

h
, h 6¼ 0; ( f ) f ðf f ðxÞg.

Ans. (a) 61
18 (b) 1

25 (c)
6x� 8

2x� 5
, x 6¼ 0, 5

2, 2 (d) 5
2, x 6¼ 0; 2 (e)

7

2h� 4
, h 6¼ 0; 2

( f )
10xþ 1

xþ 5
, x 6¼ �5; 2
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3.37. If f ðxÞ ¼ 2x2, 0 < x @ 2, find (a) the l.u.b. and (b) the g.l.b. of f ðxÞ. Determine whether f ðxÞ attains its
l.u.b. and g.l.b.
Ans. (a) 8, (b) 0

3.38. Construct a graph for each of the following functions.

ðaÞ f ðxÞ ¼ jxj;�3 @ x @ 3 ð f Þ x� ½x�
x

where ½x� ¼ greatest integer @ x

ðbÞ f ðxÞ ¼ 2� jxj
x
;�2 @ x @ 2 ðgÞ f ðxÞ ¼ cosh x

ðcÞ f ðxÞ ¼
0; x < 0
1
2 ; x ¼ 0

1; x > 0

8

>

<

>

:

ðhÞ f ðxÞ ¼ sin x

x

ðdÞ f ðxÞ ¼ �x; �2 @ x @ 0

x; 0 @ x @ 2

�

ðiÞ f ðxÞ ¼ x

ðx� 1Þðx� 2Þðx� 3Þ

ðeÞ f ðxÞ ¼ x2 sin 1=x;x 6¼ 0 ð jÞ f ðxÞ ¼ sin2 x

x2

3.39. Construct graphs for (a) x2=a2 þ y2=b2 ¼ 1, (b) x2=a2 � y2=b2 ¼ 1, (c) y2 ¼ 2px, and (d) y ¼ 2ax� x2,
where a; b; p are given constants. In which cases when solved for y is there exactly one value of y assigned to
each value of x, thus making possible definitions of functions f , and enabling us to write y ¼ f ðxÞ? In which
cases must branches be defined?

3.40. (a) From the graph of y ¼ cos x construct the graph obtained by interchanging the variables, and from
which cos�1 x will result by choosing an appropriate branch. Indicate possible choices of a principal value

of cos�1 x. Using this choice, find cos�1ð1=2Þ � cos�1ð�1=2Þ. Does the value of this depend on the choice?
Explain.

3.41. Work parts (a) and (b) of Problem 40 for (a) y ¼ sec�1 x, (b) y ¼ cot�1 x.

3.42. Given the graph for y ¼ f ðxÞ, show how to obtain the graph for y ¼ f ðaxþ bÞ, where a and b are given
constants. Illustrate the procedure by obtaining the graphs of

(a) y ¼ cos 3x; ðbÞ y ¼ sinð5xþ �=3Þ; ðcÞ y ¼ tanð�=6� 2xÞ.

3.43. Construct graphs for (a) y ¼ e�jxj, (b) y ¼ ln jxj, (c) y ¼ e�jxj sinx.

3.44. Using the conventional principal values on Pages 44 and 45, evaluate:

(a) sin�1ð� ffiffiffi

3
p
=2Þ ( f ) sin�1 xþ cos�1 x;�1 @ x @ 1

(b) tan�1ð1Þ � tan�1ð�1Þ (g) sin�1ðcos 2xÞ; 0 @ x @ �=2

(c) cot�1ð1= ffiffiffi

3
p Þ � cot�1ð�1=

ffiffiffi

3
p Þ (h) sin�1ðcos 2xÞ; �=2 @ x @ 3�=2

(d) cosh�1
ffiffiffi

2
p

(i) tanh ðcsch�1 3xÞ; x 6¼ 0

(e) e� coth�1ð25=7Þ ( j) cosð2 tan�1 x2Þ
Ans. (a) ��=3 (c) ��=3 (e) 3

4 (g) �=2� 2x (i)
jxj

x
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

9x2 þ 1
p ð jÞ 1� x4

1þ x4

(b) �=2 (d) lnð1þ ffiffiffi

2
p Þ ( f ) �=2 (h) 2x� 3�=2

3.45. Evaluate (a) cosf� sinhðln 2Þg, (b) cosh�1fcothðln 3Þg.
Ans. (a) � ffiffiffi

2
p
=2; ðbÞ ln 2
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3.46. (a) Prove that tan�1 xþ cot�1 x ¼ �=2 if the conventional principal values on Page 44 are taken. (b) Is

tan�1 xþ tan�1ð1=xÞ ¼ �=2 also? Explain.

3.47. If f ðxÞ ¼ tan�1 x, prove that f ðxÞ þ f ðyÞ ¼ f
xþ y

1� xy

� �

, discussing the case xy ¼ 1.

3.48. Prove that tan�1 a� tan�1 b ¼ cot�1 b� cot�1 a.

3.49. Prove the identities:
(a) 1� tanh2 x ¼ sech2 x, (b) sin 3x ¼ 3 sin x� 4 sin3 x, (c) cos 3x ¼ 4 cos3 x� 3 cosx, (d) tanh 1

2 x ¼
ðsinh xÞ=ð1þ cosh xÞ, (e) ln jcscx� cotxj ¼ ln j tan 1

2xj.

3.50. Find the relative and absolute maxima and minima of: (a) f ðxÞ ¼ ðsinxÞ=x, f ð0Þ ¼ 1; (b) f ðxÞ ¼ ðsin2 xÞ=
x2, f ð0Þ ¼ 1. Discuss the cases when f ð0Þ is undefined or f ð0Þ is defined but 6¼ 1.

LIMITS

3.51. Evaluate the following limits, first by using the definition and then using theorems on limits.

ðaÞ lim
x!3

ðx2 � 3xþ 2Þ; ðbÞ lim
x!�1

1

2x� 5
; ðcÞ lim

x!2

x2 � 4

x� 2
; ðdÞ lim

x!4

ffiffiffi

x
p � 2

4� x
; ðeÞ lim

h!0

ð2þ hÞ4 � 16

h
;

ð f Þ lim
x!1

ffiffiffi

x
p
xþ 1

:

Ans. ðaÞ 2; ðbÞ � 1
7 ; ðcÞ 4; ðdÞ � 1

4 ; ðeÞ 32; ð f Þ 1
2

3.52. Let f ðxÞ ¼
3x� 1; x < 0
0; x ¼ 0
2xþ 5; x > 0

8

<

:

: ðaÞ Construct a graph of f ðxÞ.

Evaluate (b) lim
x!2

f ðxÞ; ðcÞ lim
x!�3

f ðxÞ; ðdÞ lim
x!0þ

f ðxÞ; ðeÞ lim
x!0�

f ðxÞ; ð f Þ lim
x!0

f ðxÞ, justifying your

answer in each case.

Ans. (b) 9, (c) �10, (d) 5, (e) �1, ( f ) does not exist

3.53. Evaluate (a) lim
h!0þ

f ðhÞ � f ð0þÞ
h

and (b) lim
h!0�

f ðhÞ � f ð0�Þ
h

, where f ðxÞ is the function of Prob. 3.52.

Ans. (a) 2, (b) 3

3.54. (a) If f ðxÞ ¼ x2 cos 1=x, evaluate lim
x!0

f ðxÞ, justifying your answer. (b) Does your answer to (a) still remain

the same if we consider f ðxÞ ¼ x2 cos 1=x, x 6¼ 0, f ð0Þ ¼ 2? Explain.

3.55. Prove that lim
x!3

10�1=ðx�3Þ2 ¼ 0 using the definition.

3.56. Let f ðxÞ ¼ 1þ 10�1=x

2� 10�1=x
, x 6¼ 0, f ð0Þ ¼ 1

2. Evaluate (a) lim
x!0þ

f ðxÞ, (b) lim
x!0�

f ðxÞ, (c) lim
x!0

f ðxÞ, justifying
answers in all cases.
Ans. (a) 1

2, (b) �1; ðcÞ does not exist.

3.57. Find (a) lim
x!0þ

jxj
x
; ðbÞ lim

x!0�
jxj
x
. Illustrate your answers graphically.

Ans. (a) 1, (b) �1

3.58. If f ðxÞ is the function defined in Problem 3.56, does lim
x!0

f ðjxjÞ exist? Explain.

3.59. Explain exactly what is meant when one writes:

ðaÞ lim
x!3

2� x

ðx� 3Þ2 ¼ �1; ðbÞ lim
x!0þ

ð1� e1=xÞ ¼ �1; ðcÞ lim
x!1

2xþ 5

3x� 2
¼ 2

3
:
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3.60. Prove that (a) lim
x!1 10�x ¼ 0; ðbÞ lim

x!�1
cosx

xþ � ¼ 0:

3.61. Explain why (a) lim
x!1 sin x does not exist, (b) lim

x!1 e�x sinx does not exist.

3.62. If f ðxÞ ¼ 3xþ jxj
7x� 5jxj, evaluate (a) lim

x!1 f ðxÞ; ðbÞ lim
x!�1 f ðxÞ; ðcÞ lim

x!0þ
f ðxÞ; ðdÞ lim

x!0�
f ðxÞ;

ðeÞ lim
x!0

f ðxÞ.
Ans. (a) 2, (b) 1/6, (c) 2, (d) 1/6, (e) does not exist.

3.63. If ½x� ¼ largest integer @ x, evaluate (a) lim
x!2þ

fx� ½x�g; ðbÞ lim
x!2�

fx� ½x�g.
Ans. (a) 0, (b) 1

3.64. If lim
x!x0

f ðxÞ ¼ A, prove that (a) lim
x!x0

f f ðxÞg2 ¼ A2, (b) lim
x!x0

ffiffiffiffiffiffiffiffiffi

f ðxÞ3
p

¼
ffiffiffiffi

A
3
p

.

What generalizations of these do you suspect are true? Can you prove them?

3.65. If lim
x!x0

f ðxÞ ¼ A and lim
x!x0

gðxÞ ¼ B, prove that

ðaÞ lim
x!x0

f f ðxÞ � gðxÞg ¼ A� B; ðbÞ lim
x!x0

faf ðxÞ þ bgðxÞg ¼ aAþ bB where a; b ¼ any constants.

3.66. If the limits of f ðxÞ, gðxÞ; and hðxÞ are A, B; and C respectively, prove that:

(a) lim
x!x0

f f ðxÞ þ gðxÞ þ hðxÞg ¼ Aþ Bþ C, (b) lim
x!x0

f ðxÞgðxÞhðxÞ ¼ ABC. Generalize these results.

3.67. Evaluate each of the following using the theorems on limits.

ðaÞ lim
x!1=2

2x2 � 1

ð3xþ 2Þð5x� 3Þ �
2� 3x

x2 � 5xþ 3

( )

Ans: ðaÞ � 8=21

ðbÞ lim
x!1

ð3x� 1Þð2xþ 3Þ
ð5x� 3Þð4xþ 5Þ ðbÞ 3=10

ðcÞ lim
x!�1

3x

x� 1
� 2x

xþ 1

� �

ðcÞ 1

ðdÞ lim
x!1

1

x� 1

1

xþ 3
� 2x

3xþ 5

� �

ðdÞ 1=32

3.68. Evaluate lim
h!0

ffiffiffiffiffiffiffiffiffiffiffi

8þ h3
p � 2

h
. (Hint: Let 8þ h ¼ x3Þ. Ans. 1/12

3.69. If lim
x!x0

f ðxÞ ¼ A and lim
x!x0

gðxÞ ¼ B 6¼ 0, prove directly that lim
x!x0

f ðxÞ
gðxÞ ¼

A

B
.

3.70. Given lim
x!0

sinx

x
¼ 1, evaluate:

ðaÞ lim
x!0

sin 3x

x
ðcÞ lim

x!0

1� cos x

x2
ðeÞ lim

x!0

6x� sin 2x

2xþ 3 sin 4x
ðgÞ lim

x!0

1� 2 cos xþ cos 2x

x2

ðbÞ lim
x!0

1� cos x

x
ðdÞ lim

x!3
ðx� 3Þ csc�x ð f Þ lim

x!0

cos ax� cos bx

x2
ðhÞ lim

x!1

3 sin�x� sin 3�x

x3

Ans. (a) 3, (b) 0, (c) 1/2, (d) �1=�, (e) 2/7, ( f ) 1
2 ðb2 � a2Þ, (g) �1, (h) 4�3

3.71. If lim
x!0

ex � 1

x
¼ 1, prove that:

ðaÞ lim
x!0

e�ax � e�bx

x
¼ b� a; ðbÞ lim

x!0

ax � bx

x
¼ ln

a

b
; a; b > 0; ðcÞ lim

x!0

tanh ax

x
¼ a:
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3.72. Prove that lim
x!x0

f ðxÞ ¼ l if and only if lim
x!x0þ

f ðxÞ ¼ lim
x!x0�

f ðxÞ ¼ l.

CONTINUITY

In the following problems assume the largest possible domain unless otherwise stated.

3.73. Prove that f ðxÞ ¼ x2 � 3xþ 2 is continuous at x ¼ 4.

3.74. Prove that f ðxÞ ¼ 1=x is continuous (a) at x ¼ 2, (b) in 1 @ x @ 3.

3.75. Investigate the continuity of each of the following functions at the indicated points:

ðaÞ f ðxÞ ¼ sinx

x
; x 6¼ 0; f ð0Þ ¼ 0; x ¼ 0 ðcÞ f ðxÞ ¼ x3 � 8

x2 � 4
; x 6¼ 2; f ð2Þ ¼ 3; x ¼ 2

ðbÞ f ðxÞ ¼ x� jxj; x ¼ 0 ðdÞ f ðxÞ ¼ sin�x; 0 < x < 1

lnx 1 < x < 2

�

; x ¼ 1:

Ans. (a) discontinuous, (b) continuous, (c) continuous, (d) discontinuous

3.76. If ½x� ¼ greatest integer @ x, investigate the continuity of f ðxÞ ¼ x� ½x� in the interval (a) 1 < x < 2,
(b) 1 @ x @ 2.

3.77. Prove that f ðxÞ ¼ x3 is continuous in every finite interval.

3.78. If f ðxÞ=gðxÞ and gðxÞ are continuous at x ¼ x0, prove that f ðxÞ must be continuous at x ¼ x0.

3.79. Prove that f ðxÞ ¼ ðtan�1 xÞ=x, f ð0Þ ¼ 1 is continuous at x ¼ 0.

3.80. Prove that a polynomial is continuous in every finite interval.

3.81. If f ðxÞ and gðxÞ are polynomials, prove that f ðxÞ=gðxÞ is continuous at each point x ¼ x0 for which gðx0Þ 6¼ 0.

3.82. Give the points of discontinuity of each of the following functions.

ðaÞ f ðxÞ ¼ x

ðx� 2Þðx� 4Þ ðcÞ f ðxÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðx� 3Þð6� xÞ
p

; 3 @ x @ 6

ðbÞ f ðxÞ ¼ x2 sin 1=x; x 6¼ 0; f ð0Þ ¼ 0 ðdÞ f ðxÞ ¼ 1

1þ 2 sinx
:

Ans. (a) x ¼ 2; 4, (b) none, (c) none, (d) x ¼ 7�=6� 2m�; 11�=6� 2m�;m ¼ 0; 1; 2; . . .

UNIFORM CONTINUITY

3.83. Prove that f ðxÞ ¼ x3 is uniformly continuous in (a) 0 < x < 2, (b) 0 @ x @ 2, (c) any finite interval.

3.84. Prove that f ðxÞ ¼ x2 is not uniformly continuous in 0 < x <1.

3.85. If a is a constant, prove that f ðxÞ ¼ 1=x2 is (a) continuous in a < x <1 if a A 0, (b) uniformly
continuous in a < x <1 if a > 0, (c) not uniformly continuous in 0 < x < 1.

3.86. If f ðxÞ and gðxÞ are uniformly continuous in the same interval, prove that (a) f ðxÞ � gðxÞ and (b) f ðxÞgðxÞ
are uniformly continuous in the interval. State and prove an analogous theorem for f ðxÞ=gðxÞ.

MISCELLANEOUS PROBLEMS

3.87. Give an ‘‘�; �’’ proof of the theorem of Problem 3.31.

3.88. (a) Prove that the equation tanx ¼ x has a real positive root in each of the intervals �=2 < x < 3�=2,
3�=2 < x < 5�=2, 5�=2 < x < 7�=2; . . . .
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(b) Illustrate the result in (a) graphically by constructing the graphs of y ¼ tanx and y ¼ x and locating

their points of intersection.
(c) Determine the value of the smallest positive root of tan x ¼ x.
Ans. ðcÞ 4.49 approximately

3.89. Prove that the only real solution of sinx ¼ x is x ¼ 0.

3.90. (a) Prove that cosx cosh xþ 1 ¼ 0 has infinitely many real roots.

(b) Prove that for large values of x the roots approximate those of cos x ¼ 0.

3.91. Prove that lim
x!0

x2 sinð1=xÞ
sinx

¼ 0.

3.92. Suppose f ðxÞ is continuous at x ¼ x0 and assume f ðx0Þ > 0. Prove that there exists an interval
ðx0 � h; x0 þ hÞ, where h > 0, in which f ðxÞ > 0. (See Theorem 5, page 47.) [Hint: Show that we can
make j f ðxÞ � f ðx0Þj < 1

2 f ðx0Þ. Then show that f ðxÞ A f ðx0Þ � j f ðxÞ � f ðx0Þj > 1
2 f ðx0Þ > 0.]

3.93. (a) Prove Theorem 10, Page 48, for the greatest lower bound m (see Problem 3.34). (b) Prove Theorem 9,

Page 48, and explain its relationship to Theorem 10.
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65

Derivatives

THE CONCEPT AND DEFINITION OF A DERIVATIVE

Concepts that shape the course of mathematics are few and far between. The derivative, the
fundamental element of the differential calculus, is such a concept. That branch of mathematics called
analysis, of which advanced calculus is a part, is the end result. There were two problems that led to the
discovery of the derivative. The older one of defining and representing the tangent line to a curve at one
of its points had concerned early Greek philosophers. The other problem of representing the instanta-
neous velocity of an object whose motion was not constant was much more a problem of the seventeenth
century. At the end of that century, these problems and their relationship were resolved. As is usually
the case, many mathematicians contributed, but it was Isaac Newton and Gottfried Wilhelm Leibniz
who independently put together organized bodies of thought upon which others could build.

The tangent problem provides a visual interpretation of the derivative and can be brought to mind
no matter what the complexity of a particular application. It leads to the definition of the derivative as
the limit of a difference quotient in the following way. (See Fig. 4-1.)

Let Poðx0Þ be a point on the graph of y ¼ f ðxÞ. Let PðxÞ be a nearby point on this same graph of the

function f . Then the line through these two points is called a secant line. Its slope, ms, is the difference

quotient

ms ¼
f ðxÞ � f ðx0Þ

x� x0
¼ �y

�x

Fig. 4-1
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where �x and �y are called the increments in x and y, respectively. Also this slope may be written

ms ¼
f ðx0 þ hÞ � f ðx0Þ

h

where h ¼ x� x0 ¼ �x. See Fig. 4-2.

We can imagine a sequence of lines formed as h ! 0. It is the limiting line of this sequence that is
the natural one to be the tangent line to the graph at P0.

To make this mode of reasoning precise, the limit (when it exists), is formed as follows:

f 0ðxÞ ¼ lim
h!0

f ðx0 þ hÞ � f ðx0Þ
h

As indicated, this limit is given the name f 0ðx0Þ. It is called the derivative of the function f at its
domain value x0. If this limit can be formed at each point of a subdomain of the domain of f , then f is
said to be differentiable on that subdomain and a new function f 0 has been constructed.

This limit concept was not understood until the middle of the nineteenth century. A simple example
illustrates the conceptual problem that faced mathematicians from 1700 until that time. Let the graph
of f be the parabola y ¼ x2, then a little algebraic manipulation yields

ms ¼
2x0hþ h2

h
¼ 2x0 þ h

Newton, Leibniz, and their contemporaries simply let h ¼ 0 and said that 2x0 was the slope of the
tangent line at P0. However, this raises the ghost of a 0

0 form in the middle term. True understanding of
the calculus is in the comprehension of how the introduction of something new (the derivative, i.e., the
limit of a difference quotient) resolves this dilemma.

Note 1: The creation of new functions from difference quotients is not limited to f 0. If, starting
with f 0, the limit of the difference quotient exists, then f 00 may be constructed and so on and so on.

Note 2: Since the continuity of a function is such a strong property, one might think that differ-
entiability followed. This is not necessarily true, as is illustrated in Fig. 4-3.

The following theorem puts the matter in proper perspective:

Theorem: If f is differentiable at a domain value, then it is continuous at that value.

As indicated above, the converse of this theorem is not true.
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RIGHT- AND LEFT-HAND DERIVATIVES

The status of the derivative at end points of the domain of f , and in other special circumstances, is
clarified by the following definitions.

The right-hand derivative of f ðxÞ at x ¼ x0 is defined as

f 0
þðx0Þ ¼ lim

h!0þ
f ðx0 þ hÞ � f ðx0Þ

h
ð3Þ

if this limit exists. Note that in this case hð¼ �xÞ is restricted only to positive values as it approaches
zero.

Similarly, the left-hand derivative of f ðxÞ at x ¼ x0 is defined as

f 0
�ðx0Þ ¼ lim

h!0�
f ðx0 þ hÞ � f ðx0Þ

h
ð4Þ

if this limit exists. In this case h is restricted to negative values as it approaches zero.
A function f has a derivative at x ¼ x0 if and only if f 0

þðx0Þ ¼ f 0
�ðx0Þ.

DIFFERENTIABILITY IN AN INTERVAL

If a function has a derivative at all points of an interval, it is said to be differentiable in the interval.
In particular if f is defined in the closed interval a @ x @ b, i.e. ½a; b�, then f is differentiable in the
interval if and only if f 0ðx0Þ exists for each x0 such that a < x0 < b and if f 0

þðaÞ and f 0
�ðbÞ both exist.

If a function has a continuous derivative, it is sometimes called continuously differentiable.

PIECEWISE DIFFERENTIABILITY

A function is called piecewise differentiable or piecewise smooth in an interval a @ x @ b if f 0ðxÞ is
piecewise continuous. An example of a piecewise continuous function is shown graphically on Page 48.

An equation for the tangent line to the curve y ¼ f ðxÞ at the point where x ¼ x0 is given by

y� f ðx0Þ ¼ f 0ðx0Þðx� x0Þ ð7Þ
The fact that a function can be continuous at a point and yet not be differentiable there is shown

graphically in Fig. 4-3. In this case there are two tangent lines at P represented by PM and PN. The
slopes of these tangent lines are f 0

�ðx0Þ and f 0
þðx0Þ respectively.

DIFFERENTIALS

Let �x ¼ dx be an increment given to x. Then

�y ¼ f ðxþ�xÞ � f ðxÞ ð8Þ
is called the increment in y ¼ f ðxÞ. If f ðxÞ is continuous and has a continuous first derivative in an
interval, then

�y ¼ f 0ðxÞ�xþ ��x ¼ f 0ðxÞdxþ dx ð9Þ
where �! 0 as �x ! 0. The expression

dy ¼ f 0ðxÞdx ð10Þ
is called the differential of y or f(x) or the principal part of �y. Note that �y 6¼ dy in general. However
if �x ¼ dx is small, then dy is a close approximation of �y (see Problem 11). The quantity dx, called the
differential of x, and dy need not be small.
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Because of the definitions (8) and (10), we often write

dy

dx
¼ f 0ðxÞ ¼ lim

�x!0

f ðxþ�xÞ � f ðxÞ
�x

¼ lim
�x!0

�y

�x
ð11Þ

It is emphasized that dx and dy are not the limits of �x and �y as �x ! 0, since these limits are zero
whereas dx and dy are not necessarily zero. Instead, given dx we determine dy from (10), i.e., dy is a
dependent variable determined from the independent variable dx for a given x.

Geometrically, dy is represented in Fig. 4-1, for the particular value x ¼ x0, by the line segment SR,
whereas �y is represented by QR.

The geometric interpretation of the derivative as the slope of the tangent line to a curve at one of its
points is fundamental to its application. Also of importance is its use as representative of instantaneous
velocity in the construction of physical models. In particular, this physical viewpoint may be used to
introduce the notion of differentials.

Newton’s Second and First Laws of Motion imply that the path of an object is determined by the
forces acting on it, and that if those forces suddenly disappear, the object takes on the tangential
direction of the path at the point of release. Thus, the nature of the path in a small neighborhood
of the point of release becomes of interest. With this thought in mind, consider the following idea.

Suppose the graph of a function f is represented by y ¼ f ðxÞ. Let x ¼ x0 be a domain value at
which f 0 exists (i.e., the function is differentiable at that value). Construct a new linear function

dy ¼ f 0ðx0Þ dx
with dx as the (independent) domain variable and dy the range variable generated by this rule. This
linear function has the graphical interpretation illustrated in Fig. 4-4.

That is, a coordinate system may be constructed with its origin at P0 and the dx and dy axes parallel

to the x and y axes, respectively. In this system our linear equation is the equation of the tangent line to

the graph at P0. It is representative of the path in a small neighborhood of the point; and if the path is

that of an object, the linear equation represents its new path when all forces are released.

dx and dy are called differentials of x and y, respectively. Because the above linear equation is valid

at every point in the domain of f at which the function has a derivative, the subscript may be dropped

and we can write

dy ¼ f 0ðxÞ dx

The following important observations should be made.
dy

dx
¼ f 0ðxÞ ¼ lim

�x!0

f ðxþ�xÞ � f ðxÞ
�x

¼
lim
�x!0

�y

�x
, thus

dy

dx
is not the same thing as

�y

�x
.
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On the other hand, dy and �y are related. In particular, lim
�x!0

�y

�x
¼ f 0ðxÞ means that for any " > 0

there exists � > 0 such that �" < �y

�x
� dy

dx
< " whenever j�xj < �. Now dx is an independent variable

and the axes of x and dx are parallel; therefore, dx may be chosen equal to �x. With this choice

�"�x < �y� dy < "�x

or

dy� "�x < �y < dyþ "�x

From this relation we see that dy is an approximation to �y in small neighborhoods of x. dy is called
the principal part of �y.

The representation of f 0 by
dy

dx
has an algebraic suggestiveness that is very appealing and will appear

in much of what follows. In fact, this notation was introduced by Leibniz (without the justification
provided by knowledge of the limit idea) and was the primary reason his approach to the calculus, rather
than Newton’s was followed.

THE DIFFERENTIATION OF COMPOSITE FUNCTIONS

Many functions are a composition of simpler ones. For example, if f and g have the rules of
correspondence u ¼ x3 and y ¼ sin u, respectively, then y ¼ sin x3 is the rule for a composite function
F ¼ gð f Þ. The domain of F is that subset of the domain of F whose corresponding range values are in
the domain of g. The rule of composite function differentiation is called the chain rule and is represented

by
dy

dx
¼ dy

du

du

dx
½F 0ðxÞ ¼ g 0ðuÞf 0ðxÞ�.

In the example

dy

dx
� dðsin x3Þ

dx
¼ cos x3ð3x2dxÞ

The importance of the chain rule cannot be too greatly stressed. Its proper application is essential
in the differentiation of functions, and it plays a fundamental role in changing the variable of integration,
as well as in changing variables in mathematical models involving differential equations.

IMPLICIT DIFFERENTIATION

The rule of correspondence for a function may not be explicit. For example, the rule y ¼ f ðxÞ is
implicit to the equation x2 þ 4xy5 þ 7xyþ 8 ¼ 0. Furthermore, there is no reason to believe that this
equation can be solved for y in terms of x. However, assuming a common domain (described by the
independent variable x) the left-hand member of the equation can be construed as a composition of
functions and differentiated accordingly. (The rules of differentiation are listed below for your review.)

In this example, differentiation with respect to x yields

2xþ 4 y5 þ 5xy4
dy

dx

� �

þ 7 yþ x
dy

dx

� �

¼ 0

Observe that this equation can be solved for
dy

dx
as a function of x and y (but not of x alone).
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RULES FOR DIFFERENTIATION

If f , g; and h are differentiable functions, the following differentiation rules are valid.

1:
d

dx
f f ðxÞ þ gðxÞg ¼ d

dx
f ðxÞ þ d

dx
gðxÞ ¼ f 0ðxÞ þ g 0ðxÞ (Addition Rule)

2:
d

dx
f f ðxÞ � gðxÞg ¼ d

dx
f ðxÞ � d

dx
gðxÞ ¼ f 0ðxÞ � g 0ðxÞ

3:
d

dx
fC f ðxÞg ¼ C

d

dx
f ðxÞ ¼ C f 0ðxÞ where C is any constant

4:
d

dx
f f ðxÞgðxÞg ¼ f ðxÞ d

dx
gðxÞ þ gðxÞ d

dx
f ðxÞ ¼ f ðxÞg 0ðxÞ þ gðxÞ f 0ðxÞ (Product Rule)

5:
d

dx

f ðxÞ
gðxÞ

� �

¼
gðxÞ d

dx
f ðxÞ � f ðxÞ d

dx
gðxÞ

½gðxÞ�2 ¼ gðxÞ f 0ðxÞ � f ðxÞg 0ðxÞ
½gðxÞ�2 if gðxÞ 6¼ 0 (Quotient Rule)

6: If y ¼ f ðuÞ where u ¼ gðxÞ; then

dy

dx
¼ dy

du
� du
dx

¼ f 0ðuÞ du
dx

¼ f 0fgðxÞgg 0ðxÞ ð12Þ

Similarly if y ¼ f ðuÞ where u ¼ gðvÞ and v ¼ hðxÞ, then

dy

dx
¼ dy

du
� du
dv

� dv
dx

ð13Þ

The results (12) and (13) are often called chain rules for differentiation of composite functions.

7: If y ¼ f ðxÞ; and x ¼ f �1ðyÞ; then dy=dx and dx=dy are related by

dy

dx
¼ 1

dx=dy
ð14Þ

8: If x ¼ f ðtÞ and y ¼ gðtÞ; then

dy

dx
¼ dy=dt

dx=dt
¼ g 0ðtÞ

f 0ðtÞ ð15Þ

Similar rules can be formulated for differentials. For example,

df f ðxÞ þ gðxÞg ¼ d f ðxÞ þ dgðxÞ ¼ f 0ðxÞdxþ g 0ðxÞdx ¼ f f 0ðxÞ þ g 0ðxÞgdx

df f ðxÞgðxÞg ¼ f ðxÞdgðxÞ þ gðxÞd f ðxÞ ¼ f f ðxÞg 0ðxÞ þ gðxÞ f 0ðxÞgdx
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DERIVATIVES OF ELEMENTARY FUNCTIONS

In the following we assume that u is a differentiable function of x; if u ¼ x, du=dx ¼ 1. The inverse
functions are defined according to the principal values given in Chapter 3.

1.
d

dx
ðCÞ ¼ 0 16.

d

dx
cot�1 u ¼ � 1

1þ u2
du

dx

2.
d

dx
un ¼ nun�1 du

dx
17.

d

dx
sec�1 u ¼ � 1

u
ffiffiffiffiffiffiffiffiffiffiffiffiffi

u2 � 1
p du

dx

þ if u > 1
� if u < �1

�

3.
d

dx
sin u ¼ cos u

du

dx
18.

d

dx
csc�1 u ¼ 	 1

u
ffiffiffiffiffiffiffiffiffiffiffiffiffi

u2 � 1
p du

dx

� if u > 1
þ if u < �1

�

4.
d

dx
cos u ¼ � sin u

du

dx
19.

d

dx
sinh u ¼ cosh u

du

dx

5.
d

dx
tan u ¼ sec2 u

du

dx
20.

d

dx
cosh u ¼ sinh u

du

dx

6.
d

dx
cot u ¼ �csc2 u

du

dx
21.

d

dx
tanh u ¼ sech2 u

du

dx

7.
d

dx
sec u ¼ sec u tan u

du

dx
22.

d

dx
coth u ¼ �csch2 u

du

dx

8.
d

dx
csc u ¼ �csc u cot u

du

dx
23.

d

dx
sech u ¼ �sech u tanh u

du

dx

9.
d

dx
loga u ¼ loga e

u

du

dx
a > 0; a 6¼ 1 24.

d

dx
csch u ¼ �csch u coth u

du

dx

10.
d

dx
loge u ¼ d

dx
ln u ¼ 1

u

du

dx
25.

d

dx
sinh�1 u ¼ 1

ffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ u2
p

du

dx

11.
d

dx
au ¼ au ln a

du

dx
26.

d

dx
cosh�1 u ¼ 1

ffiffiffiffiffiffiffiffiffiffiffiffiffi

u2 � 1
p du

dx

12.
d

dx
eu ¼ eu

du

dx
27.

d

dx
tanh�1 u ¼ 1

1� u2
du

dx
; juj < 1

13.
d

dx
sin�1 u ¼ 1

ffiffiffiffiffiffiffiffiffiffiffiffiffi

1� u2
p du

dx
28.

d

dx
coth�1 u ¼ 1

1� u2
du

dx
; juj > 1

14.
d

dx
cos�1 u ¼ � 1

ffiffiffiffiffiffiffiffiffiffiffiffiffi

1� u2
p du

dx
29.

d

dx
sech�1 u ¼ 1

u
ffiffiffiffiffiffiffiffiffiffiffiffiffi

1� u2
p du

dx

15.
d

dx
tan�1 u ¼ 1

1þ u2
du

dx
30.

d

dx
csch�1 u ¼ � 1

u
ffiffiffiffiffiffiffiffiffiffiffiffiffi

u2 þ 1
p

du

dx

HIGHER ORDER DERIVATIVES

If f ðxÞ is differentiable in an interval, its derivative is given by f 0ðxÞ, y 0 or dy=dx, where y ¼ f ðxÞ. If

f 0ðxÞ is also differentiable in the interval, its derivative is denoted by f 00ðxÞ, y 00 or
d

dx

dy

dx

� �

¼ d2y

dx2
.

Similarly, the nth derivative of f ðxÞ, if it exists, is denoted by f ðnÞðxÞ, yðnÞ or d
ny

dxn
, where n is called the

order of the derivative. Thus derivatives of the first, second, third, . . . orders are given by f 0ðxÞ, f 00ðxÞ,
f 000ðxÞ; . . . .

Computation of higher order derivatives follows by repeated application of the differentiation rules
given above.
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MEAN VALUE THEOREMS

These theorems are fundamental to the rigorous establishment of numerous theorems and formulas.

(See Fig. 4-5.)

1. Rolle’s theorem. If f ðxÞ is continuous in ½a; b� and differentiable in ða; bÞ and if f ðaÞ ¼ f ðbÞ ¼ 0,
then there exists a point � in ða; bÞ such that f 0ð�Þ ¼ 0.

Rolle’s theorem is employed in the proof of the mean value theorem. It then becomes a
special case of that theorem.

2. The mean value theorem. If f ðxÞ is continuous in ½a; b� and differentiable in ða; bÞ, then there
exists a point � in ða; bÞ such that

f ðbÞ � f ðaÞ
b� a

¼ f 0ð�Þ a < � < b ð16Þ

Rolle’s theorem is the special case of this where f ðaÞ ¼ f ðbÞ ¼ 0.
The result (16) can be written in various alternative forms; for example, if x and x0 are in

ða; bÞ, then
f ðxÞ ¼ f ðx0Þ þ f 0ð�Þðx� x0Þ � between x0 and x ð17Þ

We can also write (16) with b ¼ aþ h, in which case � ¼ aþ �h, where 0 < � < 1.
The mean value theorem is also called the law of the mean.

3. Cauchy’s generalized mean value theorem. If f ðxÞ and gðxÞ are continuous in ½a; b� and differ-
entiable in ða; bÞ, then there exists a point � in ða; bÞ such that

f ðbÞ � f ðaÞ
gðbÞ � gðaÞ ¼

f 0ð�Þ
g 0ð�Þ a < � < b ð18Þ

where we assume gðaÞ 6¼ gðbÞ and f 0ðxÞ, g 0ðxÞ are not simultaneously zero. Note that the special
case gðxÞ ¼ x yields (16).

L’HOSPITAL’S RULES

If lim
x!x0

f ðxÞ ¼ A and lim
x!x0

gðxÞ ¼ B, where A and B are either both zero or both infinite, lim
x!x0

f ðxÞ
gðxÞ is

often called an indeterminate of the form 0/0 or 1=1, respectively, although such terminology is
somewhat misleading since there is usually nothing indeterminate involved. The following theorems,
called L’Hospital’s rules, facilitate evaluation of such limits.

1. If f ðxÞ and gðxÞ are differentiable in the interval ða; bÞ except possibly at a point x0 in this
interval, and if g 0ðxÞ 6¼ 0 for x 6¼ x0, then
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lim
x!x0

f ðxÞ
gðxÞ ¼ lim

x!x0

f 0ðxÞ
g 0ðxÞ ð19Þ

whenever the limit on the right can be found. In case f 0ðxÞ and g 0ðxÞ satisfy the same conditions
as f ðxÞ and gðxÞ given above, the process can be repeated.

2. If lim
x!x0

f ðxÞ ¼ 1 and lim
x!x0

gðxÞ ¼ 1, the result (19) is also valid.

These can be extended to cases where x ! 1 or �1, and to cases where x0 ¼ a or x0 ¼ b in which
only one sided limits, such as x ! aþ or x ! b�, are involved.

Limits represented by the so-called indeterminate forms 0 � 1, 10, 00, 11; and 1�1 can be
evaluated on replacing them by equivalent limits for which the above rules are applicable (see Problem
4.29).

APPLICATIONS

1. Relative Extrema and Points of Inflection

See Chapter 3 where relative extrema and points of inflection were described and a diagram is
presented. In this chapter such points are characterized by the variation of the tangent line, and
then by the derivative, which represents the slope of that line.

Assume that f has a derivative at each point of an open interval and that P1 is a point of the graph of
f associated with this interval. Let a varying tangent line to the graph move from left to right through
P1. If the point is a relative minimum, then the tangent line rotates counterclockwise. The slope is
negative to the left of P1 and positive to the right. At P1 the slope is zero. At a relative maximum a
similar analysis can be made except that the rotation is clockwise and the slope varies from positive to
negative. Because f 00 designates the change of f 0, we can state the following theorem. (See Fig. 4-6.)

Theorem. Assume that x1 is a number in an open set of the domain of f at which f 0 is continuous and
f 00 is defined. If f 0ðx1Þ ¼ 0 and f 00ðx1Þ 6¼ 0, then f ðx1Þ is a relative extreme of f . Specifically:

(a) If f 00ðx1Þ > 0, then f ðx1Þ is a relative minimum,

(b) If f 00ðx1Þ < 0; then f ðx1Þ is a relative maximum.

(The domain value x1 is called a critical value.)

This theorem may be generalized in the following way. Assume existence and continuity of
derivatives as needed and suppose that f 0ðx1Þ ¼ f 00ðx1Þ ¼ � � � f ð2p�1Þðx1Þ ¼ 0 and f ð2pÞðx1Þ 6¼ 0 ( p a posi-
tive integer). Then:

(a) f has a relative minimum at x1 if f ð2pÞðx1Þ > 0,

(b) f has a relative maximum at x1 if f ð2pÞðx1Þ < 0.
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(Notice that the order of differentiation in each succeeding case is two greater. The nature of the
intermediate possibilities is suggested in the next paragraph.)

It is possible that the slope of the tangent line to the graph of f is positive to the left of P1, zero at the
point, and again positive to the right. Then P1 is called a point of inflection. In the simplest case this
point of inflection is characterized by f 0ðx1Þ ¼ 0, f 00ðx1Þ ¼ 0, and f 000ðx1Þ 6¼ 0.

2. Particle motion

The fundamental theories of modern physics are relativity, electromagnetism, and quantum
mechanics. Yet Newtonian physics must be studied because it is basic to many of the concepts in
these other theories, and because it is most easily applied to many of the circumstances found in every-
day life. The simplest aspect of Newtonian mechanics is called kinematics, or the geometry of motion.
In this model of reality, objects are idealized as points and their paths are represented by curves. In the
simplest (one-dimensional) case, the curve is a straight line, and it is the speeding up and slowing down
of the object that is of importance. The calculus applies to the study in the following way.

If x represents the distance of a particle from the origin and t signifies time, then x ¼ f ðtÞ designates
the position of a particle at time t. Instantaneous velocity (or speed in the one-dimensional case) is

represented by
dx

dt
¼ lim

�t!0

f ðtþ�tÞ
�t

(the limiting case of the formula
change in distance

change in time
for speed when

the motion is constant). Furthermore, the instantaneous change in velocity is called acceleration and

represented by
d2x

dt2
.

Path, velocity, and acceleration of a particle will be represented in three dimensions in Chapter 7 on
vectors.

3. Newton’s method

It is difficult or impossible to solve algebraic equations of higher degree than two. In fact, it has been
proved that there are no general formulas representing the roots of algebraic equations of degree five and
higher in terms of radicals. However, the graph y ¼ f ðxÞ of an algebraic equation f ðxÞ ¼ 0 crosses the x-
axis at each single-valued real root. Thus, by trial and error, consecutive integers can be found between
which a root lies. Newton’s method is a systematic way of using tangents to obtain a better approx-
imation of a specific real root. The procedure is as follows. (See Fig. 4-7.)

Suppose that f has as many derivatives as required. Let r be a real root of f ðxÞ ¼ 0, i.e., f ðrÞ ¼ 0.
Let x0 be a value of x near r. For example, the integer preceding or following r. Let f 0ðx0Þ be the slope
of the graph of y ¼ f ðxÞ at P0½x0; f ðx0Þ�. Let Q1ðx1; 0Þ be the x-axis intercept of the tangent line at P0

then

0� f ðx0Þ
x� x0

¼ f 0ðx0Þ
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where the two representations of the slope of the tangent line have been equated. The solution of this
relation for x1 is

x1 ¼ x0 �
f ðx0Þ
f 0ðx0Þ

Starting with the tangent line to the graph at P1½x1; f ðx1Þ� and repeating the process, we get

x2 ¼ x1 �
f ðx1Þ
f 0ðx1Þ

¼ x0 �
f ðx0Þ
f 0ðx0Þ

� f ðx1Þ
f 0ðx1Þ

and in general

xn ¼ x0 �
X

n

k¼0

f ðxkÞ
f 0ðxkÞ

Under appropriate circumstances, the approximation xn to the root r can be made as good as
desired.

Note: Success with Newton’s method depends on the shape of the function’s graph in the neighbor-
hood of the root. There are various cases which have not been explored here.

Solved Problems

DERIVATIVES

4.1. (a) Let f ðxÞ ¼ 3þ x

3� x
, x 6¼ 3. Evaluate f 0ð2Þ from the definition.

f 0ð2Þ ¼ lim
h!0

f ð2þ hÞ � f ð2Þ
h

¼ lim
h!0

1

h

5þ h

1� h
� 5

� �

¼ lim
h!0

1

h
� 6h

1� h
¼ lim

h!0

6

1� h
¼ 6

Note: By using rules of differentiation we find

f 0ðxÞ ¼
ð3� xÞ d

dx
ð3þ xÞ � ð3þ xÞ d

dx
ð3� xÞ

ð3� xÞ2 ¼ ð3� xÞð1Þ � ð3þ xÞð�1Þ
ð3� xÞ2 ¼ 6

ð3� xÞ2

at all points x where the derivative exists. Putting x ¼ 2, we find f 0ð2Þ ¼ 6. Although such rules are
often useful, one must be careful not to apply them indiscriminately (see Problem 4.5).

(b) Let f ðxÞ ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2x� 1
p

. Evaluate f 0ð5Þ from the definition.

f 0ð5Þ ¼ lim
h!0

f ð5þ hÞ � f ð5Þ
h

¼ lim
h!0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

9þ 2h
p � 3

h

¼ lim
h!0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

9þ 2h
p � 3

h
�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

9þ 2h
p þ 3
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

9þ 2h
p þ 3

¼ lim
h!0

9þ 2h� 9

hð ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

9þ 2h
p þ 3Þ ¼ lim

h!0

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

9þ 2h
p þ 3

¼ 1

3

By using rules of differentiation we find f 0ðxÞ ¼ d

dx
ð2x� 1Þ1=2 ¼ 1

2 ð2x� 1Þ�1=2 d

dx
ð2x� 1Þ ¼

ð2x� 1Þ�1=2. Then f 0ð5Þ ¼ 9�1=2 ¼ 1
3.

4.2. (a) Show directly from definition that the derivative of f ðxÞ ¼ x3 is 3x2.

(b) Show from definition that
d

dx

ffiffiffi

x
p Þ ¼ 1

2
ffiffiffi

x
p .
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ðaÞ f ðxþ hÞ � f ðxÞ
h

¼ 1

h
½ðxþ hÞ3 � x3�

¼ 1

h
½x3 þ 3x2hþ 3xh2 þ h3� � x3� ¼ 3x2 þ 3xhþ h2

Then

f 0ðxÞ ¼ lim
h!0

f ðxþ hÞ � f ðxÞ
h

¼ 3x2

ðbÞ lim
h!0

f ðxþ hÞ � f ðxÞ
h

¼ lim
h!0

ffiffiffiffiffiffiffiffiffiffiffi

xþ h
p � ffiffiffi

x
p

h

The result follows by multiplying numerator and denominator by
ffiffiffiffiffiffiffiffiffiffiffi

xþ h
p � ffiffiffi

x
p

and then letting h ! 0.

4.3. If f ðxÞ has a derivative at x ¼ x0, prove that f ðxÞ must be continuous at x ¼ x0.

f ðx0 þ hÞ � f ðx0Þ ¼
f ðx0 þ hÞ � f ðx0Þ

h
� h; h 6¼ 0

lim
h!0

f ðx0 þ hÞ � f ðx0Þ ¼ lim
h!0

f ðx0 þ hÞ � f ðx0Þ
h

� lim
h!0

h ¼ f 0ðx0Þ � 0 ¼ 0Then

since f 0ðx0Þ exists by hypothesis. Thus

lim
h!0

f ðx0 þ hÞ � f ðx0Þ ¼ 0 or lim
h!0

f ðx0 þ hÞ ¼ f ðx0Þ

showing that f ðxÞ is continuous at x ¼ x0.

4.4. Let f ðxÞ ¼ x sin 1=x; x 6¼ 0
0; x ¼ 0

�

.

(a) Is f ðxÞ continuous at x ¼ 0? (b) Does f ðxÞ have a derivative at x ¼ 0?

(a) By Problem 3.22(b) of Chapter 3, f ðxÞ is continuous at x ¼ 0.

ðbÞ f 0ð0Þ ¼ lim
h!0

f ð0þ hÞ � f ð0Þ
h

¼ lim
h!0

f ðhÞ � f ð0Þ
h

¼ lim
h!0

h sin 1=h� 0

h
¼ lim

h!0
sin

1

h

which does not exist.

This example shows that even though a function is continuous at a point, it need not have a
derivative at the point, i.e., the converse of the theorem in Problem 4.3 is not necessarily true.

It is possible to construct a function which is continuous at every point of an interval but has a
derivative nowhere.

4.5. Let f ðxÞ ¼ x2 sin 1=x; x 6¼ 0
0; x ¼ 0

�

.

(a) Is f ðxÞ differentiable at x ¼ 0? (b) Is f 0ðxÞ continuous at x ¼ 0?

ðaÞ f 0ð0Þ ¼ lim
h!0

f ðhÞ � f ð0Þ
h

¼ lim
h!0

h2 sin 1=h� 0

h
¼ lim

h!0
h sin

1

h
¼ 0

by Problem 3.13, Chapter 3. Then f ðxÞ has a derivative (is differentiable) at x ¼ 0 and its value is 0.

(b) From elementary calculus differentiation rules, if x 6¼ 0,

f 0ðxÞ ¼ d

dx
x2 sin

1

x

� �

¼ x2
d

dx
sin

1

x

� �

þ sin
1

x

� �

d

dx
ðx2Þ

¼ x2 cos
1

x

� �

� 1

x2

� �

þ sin
1

x

� �

ð2xÞ ¼ � cos
1

x
þ 2x sin

1

x
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Since lim
x!0

f 0ðxÞ ¼ lim
x!0

� cos
1

x
þ 2x sin

1

x

� �

does not exist (because lim
x!0

cos 1=x does not exist), f 0ðxÞ
cannot be continuous at x ¼ 0 in spite of the fact that f 0ð0Þ exists.

This shows that we cannot calculate f 0ð0Þ in this case by simply calculating f 0ðxÞ and putting x ¼ 0,
as is frequently supposed in elementary calculus. It is only when the derivative of a function is
continuous at a point that this procedure gives the right answer. This happens to be true for most

functions arising in elementary calculus.

4.6. Present an ‘‘�; �’’ definition of the derivative of f ðxÞ at x ¼ x0.

f ðxÞ has a derivative f 0ðx0Þ at x ¼ x0 if, given any � > 0, we can find � > 0 such that

f ðx0 þ hÞ � f ðx0Þ
h

� f 0ðx0Þ
























< � when 0 < jhj < �

RIGHT- AND LEFT-HAND DERIVATIVES

4.7. Let f ðxÞ ¼ jxj. (a) Calculate the right-hand derivatives of f ðxÞ at x ¼ 0. (b) Calculate the left-
hand derivative of f ðxÞ at x ¼ 0. (c) Does f ðxÞ have a derivative at x ¼ 0? (d) Illustrate the
conclusions in (a), (b), and (c) from a graph.

ðaÞ f 0
þð0Þ ¼ lim

h!0þ
f ðhÞ � f ð0Þ

h
¼ lim

h!0þ
jhj � 0

h
¼ lim

h!0þ
h

h
¼ 1

since jhj ¼ h for h > 0.

ðbÞ f 0
�ð0Þ ¼ lim

h!0�
f ðhÞ � f ð0Þ

h
¼ lim

h!0�
jhj � 0

h
¼ lim

h!0�
�h

h
¼ �1

since jhj ¼ �h for h < 0.

(c) No. The derivative at 0 does not exist if the right and
left hand derivatives are unequal.

(d) The required graph is shown in the adjoining Fig. 4-8.
Note that the slopes of the lines y ¼ x and y ¼ �x are 1 and �1 respectively, representing the right and

left hand derivatives at x ¼ 0. However, the derivative at x ¼ 0 does not exist.

4.8. Prove that f ðxÞ ¼ x2 is differentiable in 0 @ x @ 1.

Let x0 be any value such that 0 < x0 < 1. Then

f 0ðx0Þ ¼ lim
h!0

f ðx0 þ hÞ � f ðx0Þ
h

¼ lim
h!0

ðx0 þ hÞ2 � x20
h

¼ lim
h!0

ð2x0 þ hÞ ¼ 2x0

At the end point x ¼ 0,

f 0
þð0Þ ¼ lim

h!0þ
f ð0þ hÞ � f ð0Þ

h
¼ lim

h!0þ
h2 � 0

h
¼ lim

h!0þ
h ¼ 0

At the end point x ¼ 1,

f 0
�ð1Þ ¼ lim

h!0�
f ð1þ hÞ � f ð1Þ

h
¼ lim

h!0�
ð1þ hÞ2 � 1

h
¼ lim

h!0�
ð2þ hÞ ¼ 2

Then f ðxÞ is differentiable in 0 @ x @ 1. We may write f 0ðxÞ ¼ 2x for any x in this interval. It is
customary to write f 0

þð0Þ ¼ f 0ð0Þ and f 0
�ð1Þ ¼ f 0ð1Þ in this case.
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4.9. Find an equation for the tangent line to y ¼ x2 at the point where (a) x ¼ 1=3; ðbÞ x ¼ 1.

(a) From Problem 4.8, f 0ðx0Þ ¼ 2x0 so that f 0ð1=3Þ ¼ 2=3. Then the equation of the tangent line is

y� f ðx0Þ ¼ f 0ðx0Þðx� x0Þ or y� 1
9 ¼ 2

3 ðx� 1
3Þ; i:e:; y ¼ 2

3 x� 1
9

(b) As in part (a), y� f ð1Þ ¼ f 0ð1Þðx� 1Þ or y� 1 ¼ 2ðx� 1Þ, i.e., y ¼ 2x� 1.

DIFFERENTIALS

4.10. If y ¼ f ðxÞ ¼ x3 � 6x, find (a) �y; ðbÞ dy; ðcÞ �y� dy.

ðaÞ �y ¼ f ðxþ�xÞ � f ðxÞ ¼ fðxþ�xÞ3 � 6ðxþ�xÞg � fx3 � 6xg
¼ x3 þ 3x2�xþ 3xð�xÞ2 þ ð�xÞ3 � 6x� 6�x� x3 þ 6x

¼ ð3x2 � 6Þ�xþ 3xð�xÞ2 þ ð�xÞ3

(b) dy ¼ principal part of �y ¼ ð3x2 � 6Þ�x ¼ ð3x2 � 6Þdx, since by definition �x ¼ dx.

Note that f 0ðxÞ ¼ 3x2 � 6 and dy ¼ ð3x2 � 6Þdx, i.e., dy=dx ¼ 3x2 � 6. It must be emphasized that

dy and dx are not necessarily small.

(c) From (a) and (b), �y� dy ¼ 3xð�xÞ2 þ ð�xÞ3 ¼ ��x, where � ¼ 3x�xþ ð�xÞ2.
Note that �! 0 as �x ! 0, i.e.,

�y� dy

�x
! 0 as �x ! 0. Hence �y� dy is an infinitesimal of

higher order than �x (see Problem 4.83).

In case �x is small, dy and �y are approximately equal.

4.11. Evaluate
ffiffiffiffiffi

253
p

approximately by use of differentials.

If �x is small, �y ¼ f ðxþ�xÞ � f ðxÞ ¼ f 0ðxÞ�x approximately.

Let f ðxÞ ¼ ffiffiffi

x3
p

. Then
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

xþ�x3
p � ffiffiffi

x3
p � 1

3x
�2=3�x (where � denotes approximately equal to).

If x ¼ 27 and �x ¼ �2, we have
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

27� 2
3
p

�
ffiffiffiffiffi

27
3
p

� 1
3 ð27Þ�2=3ð�2Þ; i.e.,

ffiffiffiffiffi

253
p � 3 � �2=27

Then
ffiffiffiffiffi

253
p � 3� 2=27 or 2.926.

If is interesting to observe that ð2:926Þ3 ¼ 25:05, so that the approximation is fairly good.

DIFFERENTIATION RULES: DIFFERENTIATION OF ELEMENTARY FUNCTIONS

4.12. Prove the formula
d

dx
f f ðxÞgðxÞg ¼ f ðxÞ d

dx
gðxÞ þ gðxÞ d

dx
f ðxÞ, assuming f and g are differentiable.

By definition,

d

dx
f f ðxÞgðxÞg ¼ lim

�x!0

f ðxþ�xÞgðxþ�xÞ � f ðxÞgðxÞ
�x

¼ lim
�x!0

f ðxþ�xÞfgðxþ�xÞ � gðxÞg þ gðxÞf f ðxþ�xÞ � f ðxÞg
�x

¼ lim
�x!0

f ðxþ�xÞ gðxþ�xÞ � gðxÞ
�x

� �

þ lim
�x!0

gðxÞ f ðxþ�xÞ � f ðxÞ
�x

� �

¼ f ðxÞ d
dx

gðxÞ þ gðxÞ d
dx

f ðxÞ

Another method:

Let u ¼ f ðxÞ, v ¼ gðxÞ. Then �u ¼ f ðxþ�xÞ � f ðxÞ and �v ¼ gðxþ�xÞ � gðxÞ, i.e., f ðxþ�xÞ ¼
uþ�u, gðxþ�xÞ ¼ vþ�v. Thus
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d

dx
uv ¼ lim

�x!0

ðuþ�uÞðvþ�vÞ � uv

�x
¼ lim

�x!0

u�vþ v�uþ�u�v

�x

¼ lim
�x!0

u
�v

�x
þ v

�u

�x
þ �u

�x
�v

� �

¼ u
dv

dx
þ v

du

dx

where it is noted that �v ! 0 as �x ! 0, since v is supposed differentiable and thus continuous.

4.13. If y ¼ f ðuÞ where u ¼ gðxÞ, prove that
dy

dx
¼ dy

du
� du
dx

assuming that f and g are differentiable.

Let x be given an increment �x 6¼ 0. Then as a consequence u and y take on increments �u and �y

respectively, where

�y ¼ f ðuþ�uÞ � f ðuÞ; �u ¼ gðxþ�xÞ � gðxÞ ð1Þ
Note that as �x ! 0, �y ! 0 and �u ! 0.

If �u 6¼ 0, let us write � ¼ �y

�u
� dy

du
so that �! 0 as �u ! 0 and

�y ¼ dy

du
�uþ ��u ð2Þ

If �u ¼ 0 for values of �x, then (1) shows that �y ¼ 0 for these values of �x. For such cases, we

define � ¼ 0.
It follows that in both cases, �u 6¼ 0 or �u ¼ 0, (2) holds. Dividing (2) by �x 6¼ 0 and taking the limit

as �x ! 0, we have

dy

dx
¼ lim

�x!0

�y

�x
¼ lim

�x!0

dy

du

�u

�x
þ ��u

�x

� �

¼ dy

du
� lim
�x!0

�u

�x
þ lim

�x!0
� � lim

�x!0

�u

�x

¼ dy

du

du

dx
þ 0 � du

dx
¼ dy

du
� du
dx

ð3Þ

4.14. Given
d

dx
ðsin xÞ ¼ cos x and

d

dx
ðcos xÞ ¼ � sin x, derive the formulas

ðaÞ d

dx
ðtan xÞ ¼ sec2 x; ðbÞ d

dx
ðsin�1 xÞ ¼ 1

ffiffiffiffiffiffiffiffiffiffiffiffiffi

1� x2
p

ðaÞ d

dx
ðtanxÞ ¼ d

dx

sin x

cos x

� �

¼
cos x

d

dx
ðsin xÞ � sinx

d

dx
ðcos xÞ

cos2 x

¼ ðcos xÞðcos xÞ � ðsinxÞð� sin xÞ
cos2 x

¼ 1

cos2 x
¼2 x

(b) If y ¼ sin�1 x, then x ¼ sin y. Taking the derivative with respect to x,

1 ¼ cos y
dy

dx
or

dy

dx
¼ 1

cos y
¼ 1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� sin2 y

q ¼ 1
ffiffiffiffiffiffiffiffiffiffiffiffiffi

1� x2
p

We have supposed here that the principal value ��=2 @ sin�1 x @ �=2, is chosen so that cos y is

positive, thus accounting for our writing cos y ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� sin2 y

q

rather than cos y ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� sin2 y

q

.

4.15. Derive the formula
d

dx
ðloga uÞ ¼

loga e

u

du

dx
ða > 0; a 6¼ 1Þ, where u is a differentiable function of x.

Consider y ¼ f ðuÞ ¼ loga u. By definition,

dy

du
¼ lim

�u!0

f ðuþ�uÞ � f ðuÞ
�u

¼ lim
�u!0

logaðuþ�uÞ � loga u

�u

¼ lim
�u!0

1

�u
loga

uþ�u

u

� �

¼ lim
�u!0

1

u
loga 1þ�u

u

� �u=�u
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Since the logarithm is a continuous function, this can be written

1

u
loga lim

�u!0
1þ�u

u

� �u=�u
( )

¼ 1

u
loga e

by Problem 2.19, Chapter 2, with x ¼ u=�u.

Then by Problem 4.13,
d

dx
ðloga uÞ ¼

loga e

u

du

dx
.

4.16. Calculate dy=dx if (a) xy3 � 3x2 ¼ xyþ 5, (b) exy þ y ln x ¼ cos 2x.

(a) Differentiate with respect to x, considering y as a function of x. (We sometimes say that y is an implicit
function of x, since we cannot solve explicitly for y in terms of x.) Then

d

dx
ðxy3Þ � d

dx
ð3x2Þ ¼ d

dx
ðxyÞ þ d

dx
ð5Þ or ðxÞð3y2y 0Þ þ ðy3Þð1Þ � 6x ¼ ðxÞðy 0Þ þ ðyÞð1Þ þ 0

where y 0 ¼ dy=dx. Solving, y 0 ¼ ð6x� y3 þ yÞ=ð3xy2 � xÞ.

ðbÞ d

dx
ðexyÞ þ d

dx
ðy ln xÞ ¼ d

dx
ðcos 2xÞ; exyðxy 0 þ yÞ þ y

x
þ ðlnxÞy 0 ¼ �2 sin 2x:

y 0 ¼ � 2x sin 2xþ xyexy þ y

x2exy þ x lnx
Solving;

4.17. If y ¼ coshðx2 � 3xþ 1Þ, find (a) dy=dx; ðbÞ d2y=dx2.

(a) Let y ¼ cosh u, where u ¼ x2 � 3xþ 1. Then dy=du ¼ sinh u, du=dx ¼ 2x� 3, and

dy

dx
¼ dy

du
� du
dx

¼ ðsinh uÞð2x� 3Þ ¼ ð2x� 3Þ sinhðx2 � 3xþ 1Þ

ðbÞ d2y

dx2
¼ d

dx

dy

dx

� �

¼ d

dx
sinh u

du

dx

� �

¼ sinh u
d2u

dx2
þ cosh u

du

dx

� �2

¼ ðsinh uÞð2Þ þ ðcosh uÞð2x� 3Þ2 ¼ 2 sinhðx2 � 3xþ 1Þ þ ð2x� 3Þ2 coshðx2 � 3xþ 1Þ

4.18. If x2yþ y3 ¼ 2, find (a) y 0; ðbÞ y 00 at the point ð1; 1Þ.
(a) Differentiating with respect to x, x2y 0 þ 2xyþ 3y2y 0 ¼ 0 and

y 0 ¼ �2xy

x2 þ 3xy2
¼ � 1

2
at ð1; 1Þ

ðbÞ y 00 ¼ d

dx
ðy 0Þ ¼ d

dx

�2xy

x2 þ 3y2

� �

¼ � ðx2 þ 3y2Þð2xy 0 þ 2yÞ � ð2xyÞð2xþ 6yy 0Þ
ðx2 þ 3y2Þ2

Substituting x ¼ 1, y ¼ 1; and y 0 ¼ � 1
2, we find y 00 ¼ � 3

8.

MEAN VALUE THEOREMS

4.19. Prove Rolle’s theorem.

Case 1: f ðxÞ � 0 in ½a; b�. Then f 0ðxÞ ¼ 0 for all x in ða; bÞ.
Case 2: f ðxÞ 6� 0 in ½a; b�. Since f ðxÞ is continuous there are points at which f ðxÞ attains its maximum and

minimum values, denoted by M and m respectively (see Problem 3.34, Chapter 3).
Since f ðxÞ 6� 0, at least one of the values M;m is not zero. Suppose, for example, M 6¼ 0 and that

f ð�Þ ¼ M (see Fig. 4-9). For this case, f ð� þ hÞ @ f ð�Þ.
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If h > 0, then
f ð� þ hÞ � f ð�Þ

h
@ 0 and

lim
h!0þ

f ð� þ hÞ � f ð�Þ
h

@ 0 ð1Þ

If h < 0, then
f ð� þ hÞ � f ð�Þ

h
A 0 and

lim
h!0�

f ð� þ hÞ � f ð�Þ
h

A 0 ð2Þ

But by hypothesis f ðxÞ has a derivative at all points

in ða; bÞ. Then the right-hand derivative (1) must be
equal to the left-hand derivative (2). This can happen only if they are both equal to zero, in which case
f 0ð�Þ ¼ 0 as required.

A similar argument can be used in case M ¼ 0 and m 6¼ 0.

4.20. Prove the mean value theorem.

Define FðxÞ ¼ f ðxÞ � f ðaÞ � ðx� aÞ f ðbÞ � f ðaÞ
b� a

.

Then FðaÞ ¼ 0 and FðbÞ ¼ 0.

Also, if f ðxÞ satisfies the conditions on continuity and differentiability specified in Rolle’s theorem, then

FðxÞ satisfies them also.

Then applying Rolle’s theorem to the function FðxÞ, we obtain

F 0ð�Þ ¼ f 0ð�Þ � f ðbÞ � f ðaÞ
b� a

¼ 0; a < � < b or f 0ð�Þ ¼ f ðbÞ � f ðaÞ
b� a

; a < � < b

4.21. Verify the mean value theorem for f ðxÞ ¼ 2x2 � 7xþ 10, a ¼ 2, b ¼ 5.

f ð2Þ ¼ 4, f ð5Þ ¼ 25, f 0ð�Þ ¼ 4� � 7. Then the mean value theorem states that 4� � 7 ¼ ð25� 4Þ=ð5� 2Þ
or � ¼ 3:5. Since 2 < � < 5, the theorem is verified.

4.22. If f 0ðxÞ ¼ 0 at all points of the interval ða; bÞ, prove that f ðxÞ must be a constant in the interval.

Let x1 < x2 be any two different points in ða; bÞ. By the mean value theorem for x1 < � < x2,

f ðx2Þ � f ðx1Þ
x2 � x1

¼ f 0ð�Þ ¼ 0

Thus, f ðx1Þ ¼ f ðx2Þ ¼ constant. From this it follows that if two functions have the same derivative at all

points of ða; bÞ, the functions can only differ by a constant.

4.23. If f 0ðxÞ > 0 at all points of the interval ða; bÞ, prove that f ðxÞ is strictly increasing.

Let x1 < x2 be any two different points in ða; bÞ. By the mean value theorem for x1 < � < x2,

f ðx2Þ � f ðx1Þ
x2 � x1

¼ f 0ð�Þ > 0

Then f ðx2Þ > f ðx1Þ for x2 > x1, and so f ðxÞ is strictly increasing.

4.24. (a) Prove that
b� a

1þ b2
< tan�1 b� tan�1 a <

b� a

1þ a2
if a < b.

(b) Show that
�

4
þ 3

25
< tan�1 4

3
<
�

4
þ 1

6
.

(a) Let f ðxÞ ¼ tan�1 x. Since f 0ðxÞ ¼ 1=ð1þ x2Þ and f 0ð�Þ ¼ 1=ð1þ �2Þ, we have by the mean value
theorem
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tan�1 b� tan�1 a

b� a
¼ 1

1þ �2 a < � < b

Since � > a, 1=ð1þ �2Þ < 1=ð1þ a2Þ. Since � < b, 1=ð1þ �2Þ > 1=ð1þ b2Þ. Then

1

1þ b2
<

tan�1 b� tan�1 a

b� a
<

1

1þ a2

and the required result follows on multiplying by b� a.

(b) Let b ¼ 4=3 and a ¼ 1 in the result of part (a). Then since tan�1 1 ¼ �=4, we have

3

25
< tan�1 4

3
� tan�1 1 <

1

6
or

�

4
þ 3

25
< tan�1 4

3
<
�

4
þ 1

6

4.25. Prove Cauchy’s generalized mean value theorem.

Consider GðxÞ ¼ f ðxÞ � f ðaÞ � 	fgðxÞ � gðaÞg, where 	 is a constant. Then GðxÞ satisfies the conditions
of Rolle’s theorem, provided f ðxÞ and gðxÞ satisfy the continuity and differentiability conditions of Rolle’s

theorem and if GðaÞ ¼ GðbÞ ¼ 0. Both latter conditions are satisfied if the constant 	 ¼ f ðbÞ � f ðaÞ
gðbÞ � gðaÞ.

Applying Rolle’s theorem, G 0ð�Þ ¼ 0 for a < � < b, we have

f 0ð�Þ � 	g 0ð�Þ ¼ 0 or
f 0ð�Þ
g 0ð�Þ ¼

f ðbÞ � f ðaÞ
gðbÞ � gðaÞ ; a < � < b

as required.

L’HOSPITAL’S RULE

4.26. Prove L’Hospital’s rule for the case of the ‘‘indeterminate forms’’ (a) 0/0, (b) 1=1.

(a) We shall suppose that f ðxÞ and gðxÞ are differentiable in a < x < b and f ðx0Þ ¼ 0, gðx0Þ ¼ 0, where

a < x0 < b.
By Cauchy’s generalized mean value theorem (Problem 25),

f ðxÞ
gðxÞ ¼

f ðxÞ � f ðx0Þ
gðxÞ � gðx0Þ

¼ f 0ð�Þ
g 0ð�Þ x0 < � < x

Then

lim
x!x0þ

f ðxÞ
gðxÞ ¼ lim

x!x0þ
f 0ð�Þ
g 0ð�Þ ¼ lim

x!x0þ
f 0ðxÞ
g 0ðxÞ ¼ L

since as x ! x0þ, �! x0þ.

Modification of the above procedure can be used to establish the result if x ! x0�, x ! x0,
x ! 1, x ! �1.

(b) We suppose that f ðxÞ and gðxÞ are differentiable in a < x < b, and lim
x!x0þ

f ðxÞ ¼ 1, lim
x!x0þ

gðxÞ ¼ 1
where a < x0 < b.

Assume x1 is such that a < x0 < x < x1 < b. By Cauchy’s generalized mean value theorem,

f ðxÞ � f ðx1Þ
gðxÞ � gðx1Þ

¼ f 0ð�Þ
g 0ð�Þ x < � < x1

Hence

f ðxÞ � f ðx1Þ
gðxÞ � gðx1Þ

¼ f ðxÞ
gðxÞ �

1� f ðx1Þ=f ðxÞ
1� gðx1Þ=gðxÞ

¼ f 0ð�Þ
g 0ð�Þ
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from which we see that

f ðxÞ
gðxÞ ¼

f 0ð�Þ
g 0ð�Þ �

1� gðx1Þ=gðxÞ
1� f ðx1Þ=f ðxÞ

ð1Þ

Let us now suppose that lim
x!x0þ

f 0ðxÞ
g 0ðxÞ ¼ L and write (1) as

f ðxÞ
gðxÞ ¼

f 0ð�Þ
g 0ð�Þ � L

� �

1� gðx1Þ=gðxÞ
1� f ðx1Þ=f ðxÞ
� �

þ L
1� gðx1Þ=gðxÞ
1� f ðx1Þ=f ðxÞ
� �

ð2Þ

We can choose x1 so close to x0 that j f 0ð�Þ=g 0ð�Þ � Lj < �. Keeping x1 fixed, we see that

lim
x!x0þ

1� gðx1Þ=gðxÞ
1� f ðx1Þ=f ðxÞ
� �

¼ 1 since lim
x!x0þ

f ðxÞ ¼ 1 and lim
x!x0

gðxÞ ¼ 1

Then taking the limit as x ! x0þ on both sides of (2), we see that, as required,

lim
x!x0þ

f ðxÞ
gðxÞ ¼ L ¼ lim

x!x0þ
f 0ðxÞ
g 0ðxÞ

Appropriate modifications of the above procedure establish the result if x ! x0�, x ! x0,
x ! 1, x ! �1.

4.27. Evaluate (a) lim
x!0

e2x � 1

x
ðbÞ lim

x!1

1þ cos�x

x2 � 2xþ 1

All of these have the ‘‘indeterminate form’’ 0/0.

ðaÞ lim
x!0

e2x � 1

x
¼ lim

x!0

2e2x

1
¼ 2

ðbÞ lim
x!1

1þ cos�x

x2 � 2xþ 1
¼ lim

x!1

�� sin�x
2x� 2

¼ lim
x!1

��2 cos�x
2

¼ �2

2

Note: Here L’Hospital’s rule is applied twice, since the first application again yields the ‘‘indeter-

minate form’’ 0/0 and the conditions for L’Hospital’s rule are satisfied once more.

4.28. Evaluate (a) lim
x!1

3x2 � xþ 5

5x2 þ 6x� 3
ðbÞ lim

x!1 x2e�x

All of these have or can be arranged to have the ‘‘indeterminate form’’ 1=1.

ðaÞ lim
x!1

3x2 � xþ 5

5x2 þ 6x� 3
¼ lim

x!1
6x� 1

10xþ 6
¼ lim

x!1
6

10
¼ 3

5

ðbÞ lim
x!1x2e�x ¼ lim

x!1
x2

ex
¼ lim

x!1
2x

ex
¼ lim

x!1
2

ex
¼ 0

4.29. Evaluate lim
x!0þ

x2 ln x.

lim
x!0þ

x2 lnx ¼ lim
x!0þ

lnx

1=x2
¼ lim

x!0þ
1=x

�2=x3
¼ lim

x!0þ
�x2

2
¼ 0

The given limit has the ‘‘indeterminate form’’ 0 � 1. In the second step the form is altered so as to give
the indeterminate form 1=1 and L’Hospital’s rule is then applied.

4.30. Find lim
x!0

ðcos xÞ1=x2 .
Since lim

x!0
cos x ¼ 1 and lim

x!0
1=x2 ¼ 1, the limit takes the ‘‘indeterminate form’’ 11.
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Let FðxÞ ¼ ðcos xÞ1=x2 . Then lnFðxÞ ¼ ðln cos xÞ=x2 to which L’Hospital’s rule can be applied. We

have

lim
x!0

ln cos x

x2
¼ lim

x!0

ð� sin xÞ=ðcosxÞ
2x

¼ lim
x!0

� sinx

2x cosx
¼ lim

x!0

� cos x

�2x sinxþ 2 cos x
¼ � 1

2

Thus, lim
x!0

lnFðxÞ ¼ � 1
2. But since the logarithm is a continuous function, lim

x!0
lnFðxÞ ¼ lnðlim

x!0
FðxÞÞ. Then

lnðlim
x!0

FðxÞÞ ¼ � 1
2 or lim

x!0
FðxÞ ¼ lim

x!0
ðcos xÞ1=x2 ¼ e�1=2

4.31. If FðxÞ ¼ ðe3x � 5xÞ1=x, find (a) lim
x!0

FðxÞ and (b) lim
x!0

FðxÞ.
The respective indeterminate forms in (a) and (b) are 10 and 11.

Let GðxÞ ¼ lnFðxÞ ¼ lnðe3x � 5xÞ
x

. Then lim
x!1GðxÞ and lim

x!0
GðxÞ assume the indeterminate forms 1=1

and 0/0 respectively, and L’Hospital’s rule applies. We have

ðaÞ lim
x!1

lnðe3x � 5xÞ
x

¼ lim
x!1

3e3x � 5

e3x � 5x
¼ lim

x!0

9e3x

3e3x � 5
¼ lim

x!1
27e3x

9e3x
¼ 3

Then, as in Problem 4.30, lim
x!1ðe3x � 5xÞ1=x ¼ e3.

ðbÞ lim
x!0

lnðe3x � 5xÞ
x

¼ lim
x!0

3e3x � 5

e3x � 5x
¼ �2 and lim

x!0
ðe3x � 5xÞ1=x ¼ e�2

4.32. Suppose the equation of motion of a particle is x ¼ sinðc1tþ c2Þ, where c1 and c2 are constants.
(Simple harmonic motion.) (a) Show that the acceleration of the particle is proportional to its
distance from the origin. (b) If c1 ¼ 1, c2 ¼ �, and t 
 0, determine the velocity and acceleration
at the end points and at the midpoint of the motion.

ðaÞ dx

dt
¼ c1 cosðc1tþ c2Þ;

d2x

dt2
¼ �c21 sinðc1tþ c2Þ ¼ �c21x:

This relation demonstrates the proportionality of acceleration and distance.

(b) The motion starts at 0 and moves to �1. Then it oscillates between this value and 1. The absolute value

of the velocity is zero at the end points, and that of the acceleration is maximum there. The particle

coasts through the origin (zero acceleration), while the absolute value of the velocity is maximum there.

4.33. Use Newton’s method to determine
ffiffiffi

3
p

to three decimal points of accuracy.
ffiffiffi

3
p

is a solution of x2 � 3 ¼ 0, which lies between 1 and 2. Consider f ðxÞ ¼ x2 � 3 then f 0ðxÞ ¼ 2x.

The graph of f crosses the x-axis between 1 and 2. Let x0 ¼ 2. Then f ðx0Þ ¼ 1 and f 0ðx0Þ ¼ 1:75.

According to the Newton formula, x1 ¼ x0 �
f ðx0Þ
f 0ðx0Þ

¼ 2� :25 ¼ 1:75.

Then x2 ¼ x1 �
f ðx1Þ
f 0ðx1Þ

¼ 1:732. To verify the three decimal point accuracy, note that ð1:732Þ2 ¼ 2:9998

and ð1:7333Þ2 ¼ 3:0033.
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MISCELLANEOUS PROBLEMS

4.34. If x ¼ gðtÞ and y ¼ f ðtÞ are twice differentiable, find (a) dy=dx; ðbÞ d2y=dx2.

(a) Letting primes denote derivatives with respect to t, we have

dy

dx
¼ dy=dt

dx=dt
¼ f 0ðtÞ

g 0ðtÞ if g 0ðtÞ 6¼ 0

ðbÞ d2y

dx2
¼ d

dx

dy

dx

� �

¼ d

dx

f 0ðtÞ
g 0ðtÞ
� �

¼
d

dt

f 0ðtÞ
g 0ðtÞ

� �

dx=dt
¼

d

dt

f 0ðtÞ
g 0ðtÞ

� �

g 0ðtÞ
¼ 1

g 0ðtÞ
g 0ðtÞf 00ðtÞ � f 0ðtÞg 00ðtÞ

½g 0ðtÞ�2
� �

¼ g 0ðtÞf 00ðtÞ � f 0ðtÞg 00ðtÞ
½g 0ðtÞ�3 if g 0ðtÞ 6¼ 0

4.35. Let f ðxÞ ¼ e�1=x2 ; x 6¼ 0
0; x ¼ 0

�

. Prove that (a) f 0ð0Þ ¼ 0; ðbÞ f 00ð0Þ ¼ 0.

ðaÞ f 0
þð0Þ ¼ lim

h!0þ
f ðhÞ � f ð0Þ

h
¼ lim

h!0þ
e�1=h2 � 0

h
¼ lim

h!0þ
e�1=h2

h

If h ¼ 1=u, using L’Hospital’s rule this limit equals

lim
u!1 ue�u2 ¼ lim

u!1 u=eu
2 ¼ lim

u!1 1=2ueu
2 ¼ 0

Similarly, replacing h ! 0þ by h ! 0� and u ! 1 by u ! �1, we find f 0
�ð0Þ ¼ 0. Thus

f 0
þð0Þ ¼ f 0

�ð0Þ ¼ 0, and so f 0ð0Þ ¼ 0.

ðbÞ f 00
þ ð0Þ ¼ lim

h!0þ
f 0ðhÞ � f 0ð0Þ

h
¼ lim

h!0þ
e�1=h2 � 2h�3 � 0

h
¼ lim

h!0þ
2e�1=h2

h4
¼ lim

u!1
2u4

eu
2 ¼ 0

by successive applications of L’Hospital’s rule.

Similarly, f 00
� ð0Þ ¼ 0 and so f 00ð0Þ ¼ 0.

In general, f ðnÞð0Þ ¼ 0 for n ¼ 1; 2; 3; . . .

4.36. Find the length of the longest ladder which can be carried around the corner of a corridor, whose
dimensions are indicated in the figure below, if it is assumed that the ladder is carried parallel to
the floor.

The length of the longest ladder is the same as the shortest
straight line segment AB [Fig. 4-10], which touches both outer

walls and the corner formed by the inner walls.

As seen from Fig. 4-10, the length of the ladder AB is

L ¼ a sec � þ b csc �

L is a minimum when

dL=d� ¼ a sec � tan � � b csc � cot � ¼ 0

a sin3 � ¼ b cos3 � or tan � ¼
ffiffiffiffiffiffiffiffi

b=a3
p

i.e.;

sec � ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

a2=3 þ b2=3
p

a1=3
; csc � ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

a2=3 þ b2=3
p

b1=3
Then

L ¼ a sec � þ b csc � ¼ ða2=3 þ b2=3Þ3=2so that

Although it is geometrically evident that this gives the minimum length, we can prove this analytically
by showing that d2L=d�2 for � ¼ tan�1

ffiffiffiffiffiffiffiffi

b=a3
p

is positive (see Problem 4.78).
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Supplementary Problems

DERIVATIVES

4.37. Use the definition to compute the derivatives of each of the following functions at the indicated point:
(a) ð3x� 4Þ=ð2xþ 3Þ;x ¼ 1; ðbÞ x3 � 3x2 þ 2x� 5;x ¼ 2; ðcÞ ffiffiffi

x
p

; x ¼ 4; ðdÞ ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

6x� 43
p

; x ¼ 2:
Ans. (a) 17/25, (b) 2, (c) 1

4, (d) 1
2

4.38. Show from definition that (a)
d

dx
x4 ¼ 4x3; ðbÞ d

dx

3þ x

3� x
¼ 6

ð3� xÞ2 ; x 6¼ 3

4.39. Let f ðxÞ ¼ x3 sin 1=x; x 6¼ 0
0; x ¼ 0

�

. Prove that (a) f ðxÞ is continuous at x ¼ 0, (b) f ðxÞ has a derivative at

x ¼ 0, (c) f 0ðxÞ is continuous at x ¼ 0.

4.40. Let f ðxÞ ¼ xe�1=x2 ; x 6¼ 0
0; x ¼ 0

�

. Determine whether f ðxÞ (a) is continuous at x ¼ 0, (b) has a derivative at

x ¼ 0:

Ans. (a) Yes; (b) Yes, 0

4.41. Give an alternative proof of the theorem in Problem 4.3, Page 76, using ‘‘�; � definitions’’.

4.42. If f ðxÞ ¼ ex, show that f 0ðx0Þ ¼ ex0 depends on the result lim
h!0

ðeh � 1Þ=h ¼ 1.

4.43. Use the results lim
h!0

ðsin hÞ=h ¼ 1, lim
h!0

ð1� cos hÞ=h ¼ 0 to prove that if f ðxÞ ¼ sinx, f 0ðx0Þ ¼ cos x0.

RIGHT- AND LEFT-HAND DERIVATIVES

4.44. Let f ðxÞ ¼ xjxj. (a) Calculate the right-hand derivative of f ðxÞ at x ¼ 0. (b) Calculate the left-hand
derivative of f ðxÞ at x ¼ 0. (c) Does f ðxÞ have a derivative at x ¼ 0? (d) Illustrate the conclusions in ðaÞ,
(b), and (c) from a graph.
Ans. (a) 0; (b) 0; (c) Yes, 0

4.45. Discuss the (a) continuity and (b) differentiability of f ðxÞ ¼ xp sin 1=x, f ð0Þ ¼ 0, where p is any positive
number. What happens in case p is any real number?

4.46. Let f ðxÞ ¼ 2x� 3; 0 @ x @ 2
x2 � 3; 2 < x @ 4

�

. Discuss the (a) continuity and (b) differentiability of f ðxÞ in

0 @ x @ 4.

4.47. Prove that the derivative of f ðxÞ at x ¼ x0 exists if and only if f 0
þðx0Þ ¼ f 0

�ðx0Þ.

4.48. (a) Prove that f ðxÞ ¼ x3 � x2 þ 5x� 6 is differentiable in a @ x @ b, where a and b are any constants.
(b) Find equations for the tangent lines to the curve y ¼ x3 � x2 þ 5x� 6 at x ¼ 0 and x ¼ 1. Illustrate

by means of a graph. (c) Determine the point of intersection of the tangent lines in (b). (d) Find
f 0ðxÞ; f 00ðxÞ; f 000ðxÞ; f ðIVÞðxÞ; . . . .
Ans. (b) y ¼ 5x� 6; y ¼ 6x� 7; ðcÞ ð1;�1Þ; ðdÞ 3x2 � 2xþ 5; 6x� 2; 6; 0; 0; 0; . . .

4.49. If f ðxÞ ¼ x2jxj, discuss the existence of successive derivatives of f ðxÞ at x ¼ 0.

DIFFERENTIALS

4.50. If y ¼ f ðxÞ ¼ xþ 1=x, find (a) �y; ðbÞ dy; ðcÞ �y� dy; ðdÞ ð�y� dyÞ=�x; ðeÞ dy=dx.

Ans: ðaÞ �x� �x

xðxþ�xÞ ; ðbÞ 1� 1

x2

� �

�x; ðcÞ ð�xÞ2
x2ðxþ�xÞ ; ðdÞ �x

x2ðxþ�xÞ ; ðeÞ 1� 1

x2
:

Note: �x ¼ dx.
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4.51. If f ðxÞ ¼ x2 þ 3x, find (a) �y; ðbÞ dy; ðcÞ �y=�x; ðdÞ dy=dx; and (e) ð�y� dyÞ=�x, if x ¼ 1 and

�x ¼ :01.
Ans. (a) .0501, (b) .05, (c) 5.01, (d) 5, (e) .01

4.52. Using differentials, compute approximate values for each of the following: (a) sin 318; ðbÞ lnð1:12Þ,
(c)

ffiffiffiffiffi

365
p

.

Ans. (a) 0.515, (b) 0.12, (c) 2.0125

4.53. If y ¼ sinx, evaluate (a) �y; ðbÞ dy. (c) Prove that ð�y� dyÞ=�x ! 0 as �x ! 0.

DIFFERENTIATION RULES AND ELEMENTARY FUNCTIONS

4.54. Prove: (a)
d

dx
f f ðxÞ þ gðxÞg ¼ d

dx
f ðxÞ þ d

dx
gðxÞ; ðbÞ d

dx
f f ðxÞ � gðxÞg ¼ d

dx
f ðxÞ � d

dx
gðxÞ,

ðcÞ d

dx

f ðxÞ
gðxÞ

� �

¼ gðxÞ f 0ðxÞ � f ðxÞg 0ðxÞ
½gðxÞ�2 ; gðxÞ 6¼ 0:

4.55. Evaluate (a)
d

dx
fx3 lnðx2 � 2xþ 5Þg at x ¼ 1; ðbÞ d

dx
fsin2ð3xþ �=6Þg at x ¼ 0.

Ans. (a) 3 ln 4; ðbÞ 3
2

ffiffiffi

3
p

4.56. Derive the formulas: (a)
d

dx
au ¼ au ln a

du

dx
; a > 0; a 6¼ 1; ðbÞ d

dx
csc u ¼ �csc u cot u

du

dx
;

ðcÞ d

dx
tanh u ¼ sech2 u

du

dx
where u is a differentiable function of x:

4.57. Compute (a)
d

dx
tan�1 x; ðbÞ d

dx
csc�1 x; ðcÞ d

dx
sinh�1 x; ðdÞ d

dx
coth�1 x, paying attention to the

use of principal values.

4.58. If y ¼ xx, computer dy=dx. [Hint: Take logarithms before differentiating.]
Ans. xxð1þ ln xÞ

4.59. If y ¼ flnð3xþ 2Þgsin�1ð2xþ:5Þ, find dy=dx at x ¼ 0:

Ans:
�

4 ln 2
þ 2 ln ln 2

ffiffiffi

3
p

� �

ðln 2Þ�=6

4.60. If y ¼ f ðuÞ, where u ¼ gðvÞ and v ¼ hðxÞ, prove that dy
dx

¼ dy

du
� du
dv

� dv
dx

assuming f , g; and h are differentiable.

4.61. Calculate (a) dy=dx and (b) d2y=dx2 if xy� ln y ¼ 1.

Ans. (a) y2=ð1� xyÞ; ðbÞ ð3y3 � 2xy4Þ=ð1� xyÞ3 provided xy 6¼ 1

4.62. If y ¼ tanx, prove that y000 ¼ 2ð1þ y2Þð1þ 3y2Þ.

4.63. If x ¼ sec t and y ¼ tan t, evaluate (a) dy=dx; ðbÞ d2y=dx2; ðcÞ d3y=dx3, at t ¼ �=4.
Ans. (a)

ffiffiffi

2
p
; ðbÞ � 1; ðcÞ 3

ffiffiffi

2
p

4.64. Prove that
d2y

dx2
¼ � d2x

dy2



dx

dy

� �3

, stating precise conditions under which it holds.

4.65. Establish formulas (a) 7, (b) 18, and (c) 27, on Page 71.

MEAN VALUE THEOREMS

4.66. Let f ðxÞ ¼ 1� ðx� 1Þ2=3, 0 @ x @ 2. (a) Construct the graph of f ðxÞ. (b) Explain why Rolle’s theorem is
not applicable to this function, i.e., there is no value � for which f 0ð�Þ ¼ 0, 0 < � < 2.
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4.67. Verify Rolle’s theorem for f ðxÞ ¼ x2ð1� xÞ2, 0 @ x @ 1.

4.68. Prove that between any two real roots of ex sin x ¼ 1 there is at least one real root of ex cos x ¼ �1. [Hint:

Apply Rolle’s theorem to the function e�x � sin x:�
4.69. (a) If 0 < a < b, prove that ð1� a=bÞ < ln b=a < ðb=a� 1Þ

(b) Use the result of (a) to show that 1
6 < ln 1:2 < 1

5.

4.70. Prove that ð�=6þ ffiffiffi

3
p
=15Þ < sin�1 :6 < ð�=6þ 1=8Þ by using the mean value theorem.

4.71. Show that the function FðxÞ in Problem 4.20(a) represents the difference in ordinants of curve ACB and line

AB at any point x in ða; bÞ.
4.72. (a) If f 0ðxÞ@ 0 at all points of ða; bÞ, prove that f ðxÞ is monotonic decreasing in ða; bÞ.

(b) Under what conditions is f ðxÞ strictly decreasing in ða; bÞ?
4.73. (a) Prove that ðsin xÞ=x is strictly decreasing in ð0; �=2Þ. (b) Prove that 0 @ sinx @ 2x=� for

0 @ x @ �=2.

4.74. (a) Prove that
sin b� sin a

cos a� cos b
¼ cot �, where � is between a and b.

(b) By placing a ¼ 0 and b ¼ x in (a), show that � ¼ x=2. Does the result hold if x < 0?

L’HOSPITAL’S RULE

4.75. Evaluate each of the following limits.

(a) lim
x!0

x� sinx

x3
(e) lim

x!0þ
x3 ln x (i) lim

x!0
ð1=x� csc xÞ (m) lim

x!1 x ln
xþ 3

x� 3

� �

(b) lim
x!0

e2x � 2ex þ 1

cos 3x� 2 cos 2xþ cosx
( f ) lim

x!0
ð3x � 2xÞ=x ( j) lim

x!0
xsin x (n) lim

x!0

sinx

x

� �1=x2

(c) lim
x!1þ

ðx2 � 1Þ tan�x=2 (g) lim
x!1ð1� 3=xÞ2x ðkÞ lim

x!0
ð1=x2 � cot2 xÞ (o) lim

x!1ðxþ ex þ e2xÞ1=x

(d) lim
x!1x3e�2x (h) lim

x!1ð1þ 2xÞ1=3x (l) lim
x!0

tan�1 x� sin�1 x

xð1� cos xÞ (p) lim
x!0þ

ðsinxÞ1= lnx

Ans. (a) 1
6 ; ðbÞ � 1; ðcÞ � 4=�; ðdÞ 0; ðeÞ 0; ð f Þ ln 3=2; ðgÞ e�6; ðhÞ 1; ðiÞ 0; ð jÞ 1,

(k) 2
3 ; ðlÞ 1

3 ; ðmÞ 6; ðnÞ e�1=6; ðoÞ e2; ð pÞ e

MISCELLANEOUS PROBLEMS

4.76. Prove that

ffiffiffiffiffiffiffiffiffiffiffi

1� x

1þ x

r

<
lnð1þ xÞ
sin�1 x

< 1 if 0 < x < 1.

4.77. If �f ðxÞ ¼ f ðxþ�xÞ � f ðxÞ, (a) Prove that �f�f ðxÞg ¼ �2f ðxÞ ¼ f ðxþ 2�xÞ � 2f ðxþ�xÞ þ f ðxÞ,
(b) derive an expression for �nf ðxÞ where n is any positive integer, (c) show that lim

�x!0

�nf ðxÞ
ð�xÞn ¼ f ðnÞðxÞ

if this limit exists.

4.78. Complete the analytic proof mentioned at the end of Problem 4.36.

4.79. Find the relative maximum and minima of f ðxÞ ¼ x2, x > 0.

Ans. f ðxÞ has a relative minimum when x ¼ e�1.

4.80. A train moves according to the rule x ¼ 5t3 þ 30t, where t and x are measured in hours and miles,
respectively. (a) What is the acceleration after 1 minute? (b) What is the speed after 2 hours?

4.81. A stone thrown vertically upward has the law of motion x ¼ �16t2 þ 96t. (Assume that the stone is at

ground level at t ¼ 0, that t is measured in seconds, and that x is measured in feet.) (a) What is the height of
the stone at t ¼ 2 seconds? (b) To what height does the stone rise? (c) What is the initial velocity, and
what is the maximum speed attained?
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4.82. A particle travels with constant velocities v1 and v2 in mediums I and II,

respectively (see adjoining Fig. 4-11). Show that in order to go from point
P to point Q in the least time, it must follow path PAQ where A is such
that

ðsin �1Þ=ðsin �2Þ ¼ v1=v2

Note: This is Snell’s Law; a fundamental law of optics first discovered
experimentally and then derived mathematically.

4.83. A variable 	 is called an infinitesimal if it has zero as a limit. Given two
infinitesimals 	 and 
, we say that 	 is an infinitesimal of higher order (or the same order) if lim	=
 ¼ 0 (or

lim 	=
 ¼ l 6¼ 0). Prove that as x ! 0, (a) sin2 2x and ð1� cos 3xÞ are infinitesimals of the same order,
(b) ðx3 � sin3 xÞ is an infinitesimal of higher order than fx� lnð1þ xÞ � 1þ cos xg.

4.84. Why can we not use L’Hospital’s rule to prove that lim
x!0

x2 sin 1=x

sinx
¼ 0 (see Problem 3.91, Chap. 3)?

4.85. Can we use L’Hospital’s rule to evaluate the limit of the sequence un ¼ n3e�n2 , n ¼ 1; 2; 3; . . . ? Explain.

4.86 (1) Determine decimal approximations with at least three places of accuracy for each of the following
irrational numbers. (a)

ffiffiffi

2
p
; ðbÞ ffiffiffi

5
p
; ðcÞ 71=3

(2) The cubic equation x3 � 3x2 þ x� 4 ¼ 0 has a root between 3 and 4. Use Newton’s Method to
determine it to at least three places of accuracy.

4.87. Using successive applications of Newton’s method obtain the positive root of (a) x3 � 2x2 � 2x� 7 ¼ 0,
(b) 5 sin x ¼ 4x to 3 decimal places.
Ans. (a) 3.268, (b) 1.131

4.88. If D denotes the operator d=dx so that Dy � dy=dx while Dky � dky=dxk, prove Leibnitz’s formula

DnðuvÞ ¼ ðDnuÞvþ nC1ðDn�1uÞðDvÞ þ nC2ðDn�2uÞðD2vÞ þ � � � þ nCrðDn�ruÞðDrvÞ þ � � � þ uDnv

where nCr ¼ ðnrÞ are the binomial coefficients (see Problem 1.95, Chapter 1).

4.89. Prove that
dn

dxn
ðx2 sinxÞ ¼ fx2 � nðn� 1Þg sinðxþ n�=2Þ � 2nx cosðxþ n�=2Þ.

4.90. If f 0ðx0Þ ¼ f 00ðx0Þ ¼ � � � ¼ f ð2nÞðx0Þ ¼ 0 but f ð2nþ1Þðx0Þ 6¼ 0, discuss the behavior of f ðxÞ in the neighborhood
of x ¼ x0. The point x0 in such case is often called a point of inflection. This is a generalization of the
previously discussed case corresponding to n ¼ 1.

4.91. Let f ðxÞ be twice differentiable in ða; bÞ and suppose that f 0ðaÞ ¼ f 0ðbÞ ¼ 0. Prove that there exists at least

one point � in ða; bÞ such that j f 00ð�Þj A 4

ðb� aÞ2 f f ðbÞ � f ðaÞg. Give a physical interpretation involving

velocity and acceration of a particle.
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90

Integrals

INTRODUCTION OF THE DEFINITE INTEGRAL

The geometric problems that motivated the development of the integral calculus (determination of
lengths, areas, and volumes) arose in the ancient civilizations of Northern Africa. Where solutions were
found, they related to concrete problems such as the measurement of a quantity of grain. Greek
philosophers took a more abstract approach. In fact, Eudoxus (around 400 B.C.) and Archimedes
(250 B.C.) formulated ideas of integration as we know it today.

Integral calculus developed independently, and without an obvious connection to differential
calculus. The calculus became a ‘‘whole’’ in the last part of the seventeenth century when Isaac Barrow,
Isaac Newton, and Gottfried Wilhelm Leibniz (with help from others) discovered that the integral of a
function could be found by asking what was differentiated to obtain that function.

The following introduction of integration is the usual one. It displays the concept geometrically and
then defines the integral in the nineteenth-century language of limits. This form of definition establishes
the basis for a wide variety of applications.

Consider the area of the region bound by y ¼ f ðxÞ, the x-axis, and the joining vertical segments
(ordinates) x ¼ a and x ¼ b. (See Fig. 5-1.)

y

a ξ1 ξ2
ξn _ 1

ξ3 ξnx1 x2 xn _ 2 xn _ 1 b
x

x3

y = f (x)

Fig. 5-1
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Subdivide the interval a @ x @ b into n sub-intervals by means of the points x1; x2; . . . ; xn�1 chosen
arbitrarily. In each of the new intervals ða; x1Þ; ðx1; x2Þ; . . . ; ðxn�1; bÞ choose points �1; �2; . . . ; �n
arbitrarily. Form the sum

f ð�1Þðx1 � aÞ þ f ð�2Þðx2 � x1Þ þ f ð�3Þðx3 � x2Þ þ � � � þ f ð�nÞðb� xn�1Þ ð1Þ
By writing x0 ¼ a, xn ¼ b; and xk � xk�1 ¼ �xk, this can be written

X

n

k¼1

f ð�kÞðxk � xk�1Þ ¼
X

n

k¼1

f ð�kÞ�xk ð2Þ

Geometrically, this sum represents the total area of all rectangles in the above figure.
We now let the number of subdivisions n increase in such a way that each �xk ! 0. If as a result

the sum (1) or (2) approaches a limit which does not depend on the mode of subdivision, we denote this
limit by

ðb

a

f ðxÞ dx ¼ lim
n!1

X

n

k¼1

f ð�kÞ�xk ð3Þ

This is called the definite integral of f ðxÞ between a and b. In this symbol f ðxÞ dx is called the integrand,
and ½a; b� is called the range of integration. We call a and b the limits of integration, a being the lower
limit of integration and b the upper limit.

The limit (3) exists whenever f ðxÞ is continuous (or piecewise continuous) in a @ x @ b (see Problem
5.31). When this limit exists we say that f is Riemann integrable or simply integrable in ½a; b�.

The definition of the definite integral as the limit of a sum was established by Cauchy around 1825.
It was named for Riemann because he made extensive use of it in this 1850 exposition of integration.

Geometrically the value of this definite integral represents the area bounded by the curve y ¼ f ðxÞ,
the x-axis and the ordinates at x ¼ a and x ¼ b only if f ðxÞ A 0. If f ðxÞ is sometimes positive and
sometimes negative, the definite integral represents the algebraic sum of the areas above and below the x-
axis, treating areas above the x-axis as positive and areas below the x-axis as negative.

MEASURE ZERO

A set of points on the x-axis is said to have measure zero if the sum of the lengths of intervals
enclosing all the points can be made arbitrary small (less than any given positive number �). We can
show (see Problem 5.6) that any countable set of points on the real axis has measure zero. In particular,
the set of rational numbers which is countable (see Problems 1.17 and 1.59, Chapter 1), has measure
zero.

An important theorem in the theory of Riemann integration is the following:

Theorem. If f ðxÞ is bounded in ½a; b�, then a necessary and sufficient condition for the existence of
Ð b

a f ðxÞ dx is that the set of discontinuities of f ðxÞ have measure zero.

PROPERTIES OF DEFINITE INTEGRALS

If f ðxÞ and gðxÞ are integrable in ½a; b� then

1.

ðb

a

f f ðxÞ � gðxÞg dx ¼
ðb

a

f ðxÞ dx�
ðb

a

gðxÞ dx

2.

ðb

a

A f ðxÞ dx ¼ A

ðb

a

f ðxÞ dx where A is any constant
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3.

ðb

a

f ðxÞ dx ¼
ðc

a

f ðxÞ dxþ
ðb

c

f ðxÞ dx provided f ðxÞ is integrable in ½a; c� and ½c; b�.

4.

ðb

a

f ðxÞ dx ¼ �
ða

b

f ðxÞ dx

5.

ða

a

f ðxÞ dx ¼ 0

6. If in a @ x @ b, m @ f ðxÞ @ M where m and M are constants, then

mðb� aÞ @
ðb

a

f ðxÞ dx @ Mðb� aÞ

7. If in a @ x @ b, f ðxÞ @ gðxÞ then
ðb

a

f ðxÞ dx @
ðb

a

gðxÞ dx

8.

ðb

a

f ðxÞ dx






























@
ðb

a

j f ðxÞj dx if a < b

MEAN VALUE THEOREMS FOR INTEGRALS

As in differential calculus the mean value theorems listed below are existence theorems. The first
one generalizes the idea of finding an arithmetic mean (i.e., an average value of a given set of values) to a
continuous function over an interval. The second mean value theorem is an extension of the first one
that defines a weighted average of a continuous function.

By analogy, consider determining the arithmetic mean (i.e., average value) of temperatures at noon
for a given week. This question is resolved by recording the 7 temperatures, adding them, and dividing
by 7. To generalize from the notion of arithmetic mean and ask for the average temperature for the
week is much more complicated because the spectrum of temperatures is now continuous. However, it
is reasonable to believe that there exists a time at which the average temperature takes place. The
manner in which the integral can be employed to resolve the question is suggested by the following
example.

Let f be continuous on the closed interval a @ x @ b. Assume the function is represented by the
correspondence y ¼ f ðxÞ, with f ðxÞ > 0. Insert points of equal subdivision, a ¼ x0; x1; . . . ; xn ¼ b.
Then all �xk ¼ xk � xk�1 are equal and each can be designated by �x. Observe that b� a ¼ n�x.
Let �k be the midpoint of the interval �xk and f ð�kÞ the value of f there. Then the average of these
functional values is

f ð�1Þ þ � � � þ f ð�nÞ
n

¼ ½ f ð�1Þ þ � � � þ f ð�nÞ��x

b� a
¼ 1

b� a

X

n

k¼1

f ð��Þ���

This sum specifies the average value of the n functions at the midpoints of the intervals. However,
we may abstract the last member of the string of equalities (dropping the special conditions) and define

lim
n!1

1

b� a

X

n

k¼1

f ð��Þ��� ¼
1

b� a

ðb

a

f ðxÞ dx

as the average value of f on ½a; b�.
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Of course, the question of for what value x ¼ � the average is attained is not answered; and, in fact,

in general, only existence not the value can be demonstrated. To see that there is a point x ¼ � such that

f ð�Þ represents the average value of f on ½a; b�, recall that a continuous function on a closed interval has

maximum and minimum values, M and m, respectively. Thus (think of the integral as representing the

area under the curve). (See Fig. 5-2.)

mðb� aÞ @
ðb

a

f ðxÞ dx @ Mðb� aÞ

or

m @
1

b� a

ðb

a

f ðxÞ dx @ M

Since f is a continuous function on a closed interval, there exists a point x ¼ � in ða; bÞ intermediate
to m and M such that

f ð�Þ ¼ 1

b� a

ðb

a

f ðxÞ dx

While this example is not a rigorous proof of the first mean value theorem, it motivates it and
provides an interpretation. (See Chapter 3, Theorem 10.)

1. First mean value theorem. If f ðxÞ is continuous in ½a; b�, there is a point � in ða; bÞ such that

ðb

a

f ðxÞ dx ¼ ðb� aÞ f ð�Þ ð4Þ

2. Generalized first mean value theorem. If f ðxÞ and gðxÞ are continuous in ½a; b�, and gðxÞ does not
change sign in the interval, then there is a point � in ða; bÞ such that

ðb

a

f ðxÞgðxÞ dx ¼ f ð�Þ
ðb

a

gðxÞ dx ð5Þ

This reduces to (4) if gðxÞ ¼ 1.

CHAP. 5] INTEGRALS 93

y

ba x
b _ a

A

D

F E

M

m

B

C

y = f (x)

Fig. 5-2



CONNECTING INTEGRAL AND DIFFERENTIAL CALCULUS

In the late seventeenth century the key relationship between the derivative and the integral was
established. The connection which is embodied in the fundamental theorem of calculus was responsible
for the creation of a whole new branch of mathematics called analysis.

Definition: Any function F such that F 0ðxÞ ¼ f ðxÞ is called an antiderivative, primitive, or indefinite
integral of f .

The antiderivative of a function is not unique. This is clear from the observation that for any
constant c

ðFðxÞ þ cÞ 0 ¼ F 0ðxÞ ¼ f ðxÞ
The following theorem is an even stronger statement.

Theorem. Any two primitives (i.e., antiderivatives), F and G of f differ at most by a constant, i.e.,
FðxÞ � GðxÞ ¼ C.

(See the problem set for the proof of this theorem.)

EXAMPLE. If F 0ðxÞ ¼ x2, then FðxÞ ¼
ð

x2dx ¼ x3

3
þ c is an indefinite integral (antiderivative or primitive) of x2.

The indefinite integral (which is a function) may be expressed as a definite integral by writing
ð

f ðxÞ dx ¼
ðx

c

f ðtÞ dt

The functional character is expressed through the upper limit of the definite integral which appears
on the right-hand side of the equation.

This notation also emphasizes that the definite integral of a given function only depends on the limits
of integration, and thus any symbol may be used as the variable of integration. For this reason, that
variable is often called a dummy variable. The indefinite integral notation on the left depends on
continuity of f on a domain that is not described. One can visualize the definite integral on the
right by thinking of the dummy variable t as ranging over a subinterval ½c; x�. (There is nothing unique
about the letter t; any other convenient letter may represent the dummy variable.)

The previous terminology and explanation set the stage for the fundamental theorem. It is stated in
two parts. The first states that the antiderivative of f is a new function, the integrand of which is the
derivative of that function. Part two demonstrates how that primitive function (antiderivative) enables
us to evaluate definite integrals.

THE FUNDAMENTAL THEOREM OF THE CALCULUS

Part 1 Let f be integrable on a closed interval ½a; b�. Let c satisfy the condition a @ c @ b, and
define a new function

FðxÞ ¼
ðx

c

f ðtÞ dt if a @ x @ b

Then the derivative F 0ðxÞ exists at each point x in the open interval ða; bÞ, where f is continuous and
F 0ðxÞ ¼ f ðxÞ. (See Problem 5.10 for proof of this theorem.)

Part 2 As in Part 1, assume that f is integrable on the closed interval ½a; b� and continuous in the
open interval ða; bÞ. Let F be any antiderivative so that F 0ðxÞ ¼ f ðxÞ for each x in ða; bÞ. If a < c < b,
then for any x in ða; bÞ

ðx

c

f ðtÞ dt ¼ FðxÞ � FðcÞ

94 INTEGRALS [CHAP. 5



If the open interval on which f is continuous includes a and b, then we may write

ðb

a

f ðxÞ dx ¼ FðbÞ � FðaÞ: (See Problem 5.11)

This is the usual form in which the theorem is used.

EXAMPLE. To evaluate

ð2

1

x2 dx we observe that F 0ðxÞ ¼ x2, FðxÞ ¼ x3

3
þ c and

ð2

1

x2 dx ¼ 23

3 þ c
� �

�
13

3 þ c
� �

¼ 7
3. Since c subtracts out of this evaluation it is convenient to exclude it and simply write

23

3
� 13

3
.

GENERALIZATION OF THE LIMITS OF INTEGRATION

The upper and lower limits of integration may be variables. For example:

ðcos x

sin x

t dt ¼ t2

2

" #cos x

sin x

¼ ðcos2 x� sin2 xÞ=2

In general, if F 0ðxÞ ¼ f ðxÞ then
ðvðxÞ

uðxÞ
f ðtÞ dt ¼ F ½vðxÞ� ¼ F ½uðxÞ�

CHANGE OF VARIABLE OF INTEGRATION

If a determination of
Ð

f ðxÞ dx is not immediately obvious in terms of elementary functions, useful
results may be obtained by changing the variable from x to t according to the transformation x ¼ gðtÞ.
(This change of integrand that follows is suggested by the differential relation dx ¼ g 0ðtÞ dt.) The funda-
mental theorem enabling us to do this is summarized in the statement

ð

f ðxÞ dx ¼
ð

f fgðtÞgg 0ðtÞ dt ð6Þ

where after obtaining the indefinite integral on the right we replace t by its value in terms of x, i.e.,
t ¼ g�1ðxÞ. This result is analogous to the chain rule for differentiation (see Page 69).

The corresponding theorem for definite integrals is

ðb

a

f ðxÞ dx ¼
ð


	

f fgðtÞgg 0ðtÞ dt ð7Þ

where gð	Þ ¼ a and gð
Þ ¼ b, i.e., 	 ¼ g�1ðaÞ, 
 ¼ g�1ðbÞ. This result is certainly valid if f ðxÞ is con-
tinuous in ½a; b� and if gðtÞ is continuous and has a continuous derivative in 	@ t @ 
.

INTEGRALS OF ELEMENTARY FUNCTIONS

The following results can be demonstrated by differentiating both sides to produce an identity. In
each case an arbitrary constant c (which has been omitted here) should be added.
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1.

ð

un du ¼ unþ1

nþ 1
n 6¼ �1 18.

ð

coth u du ¼ ln j sinh uj

2.

ð

du

u
¼ ln juj 19.

ð

sech u du ¼ tan�1ðsinh uÞ

3.

ð

sin u du ¼ � cos u 20.

ð

csch u du ¼ � coth�1ðcosh uÞ

4.

ð

cos u du ¼ sin u 21.

ð

sech2 u du ¼ tanh u

5.

ð

tan u du ¼ ln j sec uj 22.

ð

csch2 u du ¼ � coth u

¼ � ln j cos uj

6.

ð

cot u du ¼ ln j sin uj 23.

ð

sech u tanh u du ¼ �sech u

7.

ð

sec u du ¼ ln j sec uþ tan uj 24.

ð

csch u coth u du ¼ �csch u

¼ ln j tanðu=2þ �=4Þj

8.

ð

csc u du ¼ ln jcsc u� cot uj 25.

ð

du
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

s2 � u2
p ¼ sin�1 u

a
or � cos�1 u

a¼ ln j tan u=2j

9.

ð

sec2 u du ¼ tan u 26.

ð

du
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

u2 � a2
p ¼ ln juþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

u2 � a2
p

j

10.

ð

csc2 u du ¼ � cot u 27.

ð

du

u2 þ a2
¼ 1

a
tan�1 u

a
or � 1

a
cot�1 u

a

11.

ð

sec u tan u du ¼ sec u 28.

ð

du

u2 � a2
¼ 1

2a
ln

u� a

uþ a

























12.

ð

csc u cot u du ¼ �csc u 29.

ð

du

u
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

a2 � u2
p ¼ 1

a
ln

u

aþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

a2 � u2
p

























13.

ð

au du ¼ au

ln a
a > 0; a 6¼ 1 30.

ð

du

u
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

u2 � a2
p ¼ 1

a
cos�1 a

u
or

1

a
sec�1 u

a

14.

ð

eu du ¼ eu 31.

ð

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

u2 � a2
p

du ¼ u

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

u2 � a2
p

� a2

2
ln juþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

u2 � a2
p

j

15.

ð

sinh u du ¼ cosh u 32.

ð

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

a2 � u2
p

du ¼ u

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

a2 � u2
p

þ a2

2
sin�1 u

a

16.

ð

cosh u du ¼ sinh u 33.

ð

eau sin bu du ¼ eauða sin bu� b cos buÞ
a2 þ b2

17.

ð

tanh u du ¼ ln cosh u 34.

ð

eau cos bu du ¼ eauða cos buþ b sin buÞ
a2 þ b2
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SPECIAL METHODS OF INTEGRATION

1. Integration by parts.

Let u and v be differentiable functions. According to the product rule for differentials

dðuvÞ ¼ u dvþ v du

Upon taking the antiderivative of both sides of the equation, we obtain

uv ¼
ð

u dvþ
ð

v du

This is the formula for integration by parts when written in the form
ð

u dv ¼ uv�
ð

v du or

ð

f ðxÞg 0ðxÞ dx ¼ f ðxÞgðxÞ �
ð

f 0ðxÞgðxÞ dx

where u ¼ f ðxÞ and v ¼ gðxÞ. The corresponding result for definite integrals over the interval
½a; b� is certainly valid if f ðxÞ and gðxÞ are continuous and have continuous derivatives in ½a; b�.
See Problems 5.17 to 5.19.

2. Partial fractions. Any rational function
PðxÞ
QðxÞ where PðxÞ and QðxÞ are polynomials, with the

degree of PðxÞ less than that of QðxÞ, can be written as the sum of rational functions having the

form
A

ðaxþ bÞr,
Axþ B

ðax2 þ bxþ cÞr where r ¼ 1; 2; 3; . . . which can always be integrated in terms of

elementary functions.

EXAMPLE 1.
3x� 2

ð4x� 3Þð2xþ 5Þ3 ¼
A

4x� 3
þ B

ð2xþ 5Þ3 þ
C

ð2xþ 5Þ2 þ
D

2xþ 5

EXAMPLE 2.
5x2 � xþ 2

ðx2 þ 2xþ 4Þ2ðx� 1Þ ¼
Axþ B

ðx2 þ 2xþ 4Þ2 þ
CxþD

x2 þ 2xþ 4
þ E

x� 1

The constants, A, B, C, etc., can be found by clearing of fractions and equating coefficients of like powers of x

on both sides of the equation or by using special methods (see Problem 5.20).

3. Rational functions of sin x and cos x can always be integrated in terms of elementary functions by
the substitution tan x=2 ¼ u (see Problem 5.21).

4. Special devices depending on the particular form of the integrand are often employed (see
Problems 5.22 and 5.23).

IMPROPER INTEGRALS

If the range of integration ½a; b� is not finite or if f ðxÞ is not defined or not bounded at one or more
points of ½a; b�, then the integral of f ðxÞ over this range is called an improper integral. By use of
appropriate limiting operations, we may define the integrals in such cases.

EXAMPLE 1.

ð1

0

dx

1þ x2
¼ lim

M!1

ðM

0

dx

1þ x2
¼ lim

M!1
tan�1 x













M

0

¼ lim
M!1

tan�1 M ¼ �=2

EXAMPLE 2.

ð1

0

dx
ffiffiffi

x
p ¼ lim

�!0þ

ð1

�

dx
ffiffiffi

x
p ¼ lim

�!0þ
2
ffiffiffi

x
p 











1

�

¼ lim
�!0þ

ð2� 2
ffiffiffi

�
p Þ ¼ 2

EXAMPLE 3.

ð1

0

dx

x
¼ lim

�!0þ

ð1

�

dx

x
¼ lim

�!0þ
lnx













1

�

¼ lim
�!0þ

ð� ln �Þ

Since this limit does not exist we say that the integral diverges (i.e., does not converge).
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For further examples, see Problems 5.29 and 5.74 through 5.76. For further discussion of improper

integrals, see Chapter 12.

NUMERICAL METHODS FOR EVALUATING DEFINITE INTEGRALS

Numerical methods for evaluating definite integrals are available in case the integrals cannot be

evaluated exactly. The following special numerical methods are based on subdividing the interval ½a; b�
into n equal parts of length �x ¼ ðb� aÞ=n. For simplicity we denote f ðaþ k�xÞ ¼ f ðxkÞ by yk, where

k ¼ 0; 1; 2; . . . ; n. The symbol � means ‘‘approximately equal.’’ In general, the approximation

improves as n increases.

1. Rectangular rule.
ðb

a

f ðxÞ dx � �xfy0 þ y1 þ y2 þ � � � þ yn�1g or �xf y1 þ y2 þ y3 þ � � � þ yng ð8Þ

The geometric interpretation is evident from the figure on Page 90. When left endpoint
function values y0; y1; . . . ; yn�1 are used, the rule is called ‘‘the left-hand rule.’’ Similarly, when
right endpoint evaluations are employed, it is called ‘‘the right-hand rule.’’

2. Trapezoidal rule.

ðb

a

f ðxÞ dx � �x

2
f y0 þ 2y1 þ 2y2 þ � � � þ 2yn�1 þ yng ð9Þ

This is obtained by taking the mean of the approximations in (8). Geometrically this
replaces the curve y ¼ f ðxÞ by a set of approximating line segments.

3. Simpson’s rule.

ðb

a

f ðxÞ dx � �x

3
f y0 þ 4y1 þ 2y2 þ 4y3 þ 2y4 þ 4y5 þ � � � þ 2yn�2 þ 4yn�1 þ yng ð10Þ

The above formula is obtained by approximating the graph of y ¼ gðxÞ by a set of parabolic
arcs of the form y ¼ ax2 þ bxþ c. The correlation of two observations lead to 10. First,

ðh

�h

½ax2 þ bxþ c� dx ¼ h

3
½2ah2 þ 6c�

The second observation is related to the fact that the vertical parabolas employed here are
determined by three nonlinear points. In particular, consider ð�h; y0Þ, ð0; y1Þ, ðh; y2Þ then
y0 ¼ að�hÞ2 þ bð�hÞ þ c, y1 ¼ c, y2 ¼ ah2 þ bhþ c. Consequently, y0 þ 4y1 þ y2 ¼ 2ah2 þ 6c.
Thus, this combination of ordinate values (corresponding to equally space domain values) yields
the area bound by the parabola, vertical segments, and the x-axis. Now these ordinates may be
interpreted as those of the function, f , whose integral is to be approximated. Then, as illu-
strated in Fig. 5-3:

X

n

k¼1

h

3
½yk�1 þ 4yk þ ykþ1� ¼

�x

3
½ y0 þ 4y1 þ 2y2 þ 4y3 þ 2y4 þ 4y5 þ � � � þ 2yn�2 þ 4yn�1 þ yn�

The Simpson rule is likely to give a better approximation than the others for smooth curves.

APPLICATIONS

The use of the integral as a limit of a sum enables us to solve many physical or geometrical problems

such as determination of areas, volumes, arc lengths, moments of intertia, centroids, etc.
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ARC LENGTH

As you walk a twisting mountain trail, it is possible to determine the distance covered by using a
pedometer. To create a geometric model of this event, it is necessary to describe the trail and a method
of measuring distance along it. The trail might be referred to as a path, but in more exacting geometric
terminology the word, curve is appropriate. That segment to be measured is an arc of the curve. The
arc is subject to the following restrictions:

1. It does not intersect itself (i.e., it is a simple arc).

2. There is a tangent line at each point.

3. The tangent line varies continuously over the arc.

These conditions are satisfied with a parametric representation x ¼ f ðtÞ; y ¼ gðtÞ; z ¼ hðtÞ; a @ t @ b,
where the functions f , g, and h have continuous derivatives that do not simultaneously vanish at any
point. This arc is in Euclidean three space and will be discussed in Chapter 10. In this introduction to
curves and their arc length, we let z ¼ 0, thereby restricting the discussion to the plane.

A careful examination of your walk would reveal movement on a sequence of straight segments,
each changed in direction from the previous one. This suggests that the length of the arc of a curve is
obtained as the limit of a sequence of lengths of polygonal approximations. (The polygonal approx-
imations are characterized by the number of divisions n ! 1 and no subdivision is bound from zero.
(See Fig. 5-4.)

Geometrically, the measurement of the kth segment of the arc, 0 @ t @ s, is accomplished by

employing the Pythagorean theorem, and thus, the measure is defined by
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lim
n!1

X

n

k¼1

fð�xkÞ2 þ ð�ykÞ2g1=2

or equivalently

lim
n!1

X

n

k¼1

1þ �yk
�xk

� �2
( )1=2

ð�xkÞ

where �xk ¼ xk � xk�1 and �yk ¼ yk � yk�1.
Thus, the length of the arc of a curve in rectangular Cartesian coordinates is

L ¼
ðb

a

f½ f 0ðtÞ2� þ ½g 0ðtÞ�2g1=2 dt ¼
ð

dx

dt

� �2

þ dy

dt

� �2
( )1=2

dt

(This form may be generalized to any number of dimensions.)
Upon changing the variable of integration from t to x we obtain the planar form

L ¼
ðf ðbÞ

f ðaÞ
1þ dy

dx

� �2
( )1=2

(This form is only appropriate in the plane.)
The generic differential formula ds2 ¼ dx2 þ dy2 is useful, in that various representations algebrai-

cally arise from it. For example,

ds

dt

expresses instantaneous speed.

AREA

Area was a motivating concept in introducing the integral. Since many applications of the integral
are geometrically interpretable in the context of area, an extended formula is listed and illustrated below.

Let f and g be continuous functions whose graphs intersect at the graphical points corresponding to
x ¼ a and x ¼ b, a < b. If gðxÞ A f ðxÞ on ½a; b�, then the area bounded by f ðxÞ and gðxÞ is

A ¼
ðb

a

fgðxÞ � f ðxÞg dx

If the functions intersect in ða; bÞ, then the integral yields an algebraic sum. For example, if
gðxÞ ¼ sin x and f ðxÞ ¼ 0 then:

ð2�

0

sin x dx ¼ cos x













2�

0

¼ 0

VOLUMES OF REVOLUTION

Disk Method

Assume that f is continuous on a closed interval a @ x @ b and that f ðxÞ A 0. Then the solid
realized through the revolution of a plane region R (bound by f ðxÞ, the x-axis, and x ¼ a and x ¼ b)
about the x-axis has the volume

V ¼ �

ðb

a

½ f ðxÞ�2 dx
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This method of generating a volume is called the disk method because the cross sections of revolution

are circular disks. (See Fig. 5-5(a).)

EXAMPLE. A solid cone is generated by revolving the graph of y ¼ kx, k > 0 and 0 @ x @ b, about the x-axis.

Its volume is

V ¼ �

ðb

0

k2x2 dx ¼ �
k3x3

3













b

0

¼ �
k3b3

3

Shell Method

Suppose f is a continuous function on ½a; b�, a A 0, satisfying the condition f ðxÞ A 0. Let R be a
plane region bound by f ðxÞ, x ¼ a, x ¼ b, and the x-axis. The volume obtained by orbiting R about the
y-axis is

V ¼
ðb

a

2�x f ðxÞ dx

This method of generating a volume is called the shell method because of the cylindrical nature of the
vertical lines of revolution. (See Fig. 5-5(b).)

EXAMPLE. If the region bounded by y ¼ kx, 0 @ x @ b and x ¼ b (with the same conditions as in the previous
example) is orbited about the y-axis the volume obtained is

V ¼ 2�

ðb

0

xðkxÞ dx ¼ 2�k
x3

3













b

0

¼ 2�k
b3

3

By comparing this example with that in the section on the disk method, it is clear that for the same
plane region the disk method and the shell method produce different solids and hence different volumes.

Moment of Inertia

Moment of inertia is an important physical concept that can be studied through its idealized geo-
metric form. This form is abstracted in the following way from the physical notions of kinetic energy,
K ¼ 1

2mv2, and angular velocity, v ¼ !r. (m represents mass and v signifies linear velocity). Upon
substituting for v

K ¼ 1
2m!

2r2 ¼ 1
2 ðmr2Þ!2

When this form is compared to the original representation of kinetic energy, it is reasonable to
identify mr2 as rotational mass. It is this quantity, l ¼ mr2 that we call the moment of inertia.

Then in a purely geometric sense, we denote a plane region R described through continuous func-
tions f and g on ½a; b�, where a > 0 and f ðxÞ and gðxÞ intersect at a and b only. For simplicity, assume
gðxÞ A f ðxÞ > 0. Then
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l ¼
ðb

a

x2½gðxÞ � f ðxÞ� dx

By idealizing the plane region, R, as a volume with uniform density one, the expression
½ f ðxÞ � gðxÞ� dx stands in for mass and r2 has the coordinate representation x2. (See Problem 5.25(b)
for more details.)

Solved Problems

DEFINITION OF A DEFINITE INTEGRAL

5.1. If f ðxÞ is continuous in ½a; b� prove that

lim
n!1

b� a

n

X

n

k¼1

f aþ kðb� aÞ
n

� �

¼
ðb

a

f ðxÞ dx

Since f ðxÞ is continuous, the limit exists independent of the mode of subdivision (see Problem 5.31).
Choose the subdivision of ½a; b� into n equal parts of equal length�x ¼ ðb� aÞ=n (see Fig. 5-1, Page 90). Let

�k ¼ aþ kðb� aÞ=n, k ¼ 1; 2; . . . ; n. Then

lim
n!1

X

n

k¼1

f ð�kÞ�xk ¼ lim
n!1

b� a

n

X

n

k¼1

f aþ kðb� aÞ
n

� �

¼
ðb

a

f ðxÞ dx

5.2. Express lim
n!1

1

n

X

n

k¼1

f
k

n

� �

as a definite integral.

Let a ¼ 0, b ¼ 1 in Problem 1. Then

lim
n!1

1

n

X

n

k¼1

f
k

n

� �

¼
ð1

0

f ðxÞ dx

5.3. (a) Express

ð1

0

x2 dx as a limit of a sum, and use the result to evaluate the given definite integral.

(b) Interpret the result geometrically.

(a) If f ðxÞ ¼ x2, then f ðk=nÞ ¼ ðk=nÞ2 ¼ k2=n2. Thus by Problem 5.2,

lim
n!1

1

n

X

n

k¼1

k2

n2
¼
ð1

0

x2 dx

This can be written, using Problem 1.29 of Chapter 1,

ð1

0

x2 dx ¼ lim
n!1

1

n

12

n2
þ 22

n2
þ � � � þ n2

n2

 !

¼ lim
n!1

12 þ 22 þ � � � þ n2

n3

¼ lim
n!1

nðnþ 1Þð2nþ 1Þ
6n3

¼ lim
n!1

ð1þ 1=nÞð2þ 1=nÞ
6

¼ 1

3

which is the required limit.

Note: By using the fundamental theorem of the calculus, we observe that
Ð 1

0 x2 dx ¼ ðx3=3Þj10 ¼ 13=3� 03=3 ¼ 1=3.

(b) The area bounded by the curve y ¼ x2, the x-axis and the line x ¼ 1 is equal to 1
3.
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5.4. Evaluate lim
n!1

1

nþ 1
þ 1

nþ 2
þ � � � þ 1

nþ n

� �

.

The required limit can be written

lim
n!1

1

n

1

1þ 1=n
þ 1

1þ 2=n
þ � � � þ 1

1þ n=n

� �

¼ lim
n!1

1

n

X

n

k¼1

1

1þ k=n

¼
ð1

0

dx

1þ x
¼ lnð1þ xÞj10 ¼ ln 2

using Problem 5.2 and the fundamental theorem of the calculus.

5.5. Prove that lim
n!1

1

n
sin

t

n
þ sin

2t

n
þ � � � þ sin

ðn� 1Þt
n

� �

¼ 1� cos t

t
.

Let a ¼ 0; b ¼ t; f ðxÞ ¼ sin x in Problem 1. Then

lim
n!1

t

n

X

n

k¼1

sin
kt

n
¼
ðt

0

sinx dx ¼ 1� cos t

and so

lim
n!1

1

n

X

n�1

k¼1

sin
kt

n
¼ 1� cos t

t

using the fact that lim
n!1

sin t

n
¼ 0.

MEASURE ZERO

5.6. Prove that a countable point set has measure zero.

Let the point set be denoted by x1;x2;x3; x4; . . . and suppose that intervals of lengths less than
�=2; �=4; �=8; �=16; . . . respectively enclose the points, where � is any positive number. Then the sum of
the lengths of the intervals is less than �=2þ �=4þ �=8þ � � � ¼ � (let a ¼ �=2 and r ¼ 1

2 in Problem 2.25(a) of

Chapter 2), showing that the set has measure zero.

PROPERTIES OF DEFINITE INTEGRALS

5.7. Prove that

ðb

a

f ðxÞ dx






























@
ðb

a

j f ðxÞj dx if a < b.

By absolute value property 2, Page 3,

X

n

k¼1

f ð�kÞ�xk































@
X

n

k¼1

j f ð�kÞ�xkj ¼
X

n

k¼1

j f ð�kÞj�xk

Taking the limit as n ! 1 and each �xk ! 0, we have the required result.

5.8. Prove that lim
n!1

ð2�

0

sin nx

x2 þ n2
dx ¼ 0.

ð2�

0

sin nx

x2 þ n2
dx

























@
ð2�

0

sin nx

x2 þ n2

























dx @
ð2�

0

dx

n2
¼ 2�

n2

Then lim
n!1

ð2�

0

sin nx

x2 þ n2
dx

























¼ 0, and so the required result follows.
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MEAN VALUE THEOREMS FOR INTEGRALS

5.9. Given the right triangle pictured in Fig. 5-6: (a) Find the
average value of h. (b) At what point does this average value
occur? (c) Determine the average value of

f ðxÞ ¼ sin�1 x; 0 @ x @ 1
2. (Use integration by parts.)

(d) Determine the average value of f ðxÞ ¼ cos2 x; 0 @ x @
�

2
.

(a) hðxÞ ¼ H

B
x. According to the mean value theorem for integrals,

the average value of the function h on the interval ½0;B� is

A ¼ 1

B

ðB

0

H

B
xdx ¼ H

2

(b) The point, �, at which the average value of h occurs may be obtained by equating f ð�Þ with that average

value, i.e.,
H

B
� ¼ H

2
. Thus, � ¼ B

2
.

FUNDAMENTAL THEOREM OF THE CALCULUS

5.10. If FðxÞ ¼
ðx

a

f ðtÞ dt where f ðxÞ is continuous in ½a; b�, prove that F 0ðxÞ ¼ f ðxÞ.

Fðxþ hÞ � FðxÞ
h

¼ 1

h

ðxþh

a

f ðtÞ dt�
ðx

a

f ðtÞ dt
� �

¼ 1

h

ðxþh

x

f ðtÞ dt

¼ f ð�Þ � between x and xþ h

by the first mean value theorem for integrals (Page 93).
Then if x is any point interior to ½a; b�,

F 0ðxÞ ¼ lim
h!0

Fðxþ hÞ � FðxÞ
h

¼ lim
h!0

f ð�Þ ¼ f ðxÞ

since f is continuous.
If x ¼ a or x ¼ b, we use right- or left-hand limits, respectively, and the result holds in these cases as

well.

5.11. Prove the fundamental theorem of the calculus, Part 2 (Pages 94 and 95).

By Problem 5.10, if FðxÞ is any function whose derivative is f ðxÞ, we can write

FðxÞ ¼
ðx

a

f ðtÞ dtþ c

where c is any constant (see last line of Problem 22, Chapter 4).

Since FðaÞ ¼ c, it follows that FðbÞ ¼
ðb

a

f ðtÞ dtþ FðaÞ or
ðb

a

f ðtÞ dt ¼ FðbÞ � FðaÞ.

5.12. If f ðxÞ is continuous in ½a; b�, prove that FðxÞ ¼
ðx

a

f ðtÞ dt is continuous in ½a; b�.

If x is any point interior to ½a; b�, then as in Problem 5.10,

lim
h!0

Fðxþ hÞ � FðxÞ ¼ lim
h!0

h f ð�Þ ¼ 0

and FðxÞ is continuous.
If x ¼ a and x ¼ b, we use right- and left-hand limits, respectively, to show that FðxÞ is continuous at

x ¼ a and x ¼ b.
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Another method:

By Problem 5.10 and Problem 4.3, Chapter 4, it follows that F 0ðxÞ exists and so FðxÞ must be con-
tinuous.

CHANGE OF VARIABLES AND SPECIAL METHODS OF INTEGRATION

5.13. Prove the result (7), Page 95, for changing the variable of integration.

Let FðxÞ ¼
ðx

a

f ðxÞ dx and GðtÞ ¼
ðt

	

f fgðtÞg g 0ðtÞ dt, where x ¼ gðtÞ.
Then dF ¼ f ðxÞ dx, dG ¼ f fgðtÞg g 0ðtÞ dt.
Since dx ¼ g 0ðtÞ dt, it follows that f ðxÞ dx ¼ f fgðtÞg g 0ðtÞ dt so that dFðxÞ ¼ dGðtÞ, from which

FðxÞ ¼ GðtÞ þ c.

Now when x ¼ a, t ¼ 	 or FðaÞ ¼ Gð	Þ þ c. But FðaÞ ¼ Gð	Þ ¼ 0, so that c ¼ 0. Hence FðxÞ ¼ GðtÞ.
Since x ¼ b when t ¼ 
, we have

ðb

a

f ðxÞ dx ¼
ð


	

f fgðtÞg g 0ðtÞ dt

as required.

5.14. Evaluate:

ðaÞ
ð

ðxþ 2Þ sinðx2 þ 4x� 6Þ dx ðcÞ
ð1

�1

dx
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðxþ 2Þð3� xÞp ðeÞ

ð1=
ffiffi

2
p

0

x sin�1 x2
ffiffiffiffiffiffiffiffiffiffiffiffiffi

1� x4
p dx

ðbÞ
ð

cotðln xÞ
x

dx ðdÞ
ð

2�x tanh 21�x dx ð f Þ
ð

x dx
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

x2 þ xþ 1
p

(a) Method 1: Let x2 þ 4x� 6 ¼ u. Then ð2xþ 4Þ dx ¼ du, ðxþ 2Þ dx ¼ 1
2 du and the integral becomes

1

2

ð

sin u du ¼ � 1

2
cos uþ c ¼ � 1

2
cosðx2 þ 4x� 6Þ þ c

Method 2:
ð

ðxþ 2Þ sinðx2 þ 4x� 6Þ dx ¼ 1

2

ð

sinðx2 þ 4x� 6Þdðx2 þ 4x� 6Þ ¼ � 1

2
cosðx2 þ 4x� 6Þ þ c

(b) Let ln x ¼ u. Then ðdxÞ=x ¼ du and the integral becomes
ð

cot u du ¼ ln j sin uj þ c ¼ ln j sinðlnxÞj þ c

ðcÞ Method 1:

ð

dx
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðxþ 2Þð3� xÞp ¼

ð

dx
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

6þ x� x2
p ¼

ð

dx
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

6� ðx2 � xÞ
p ¼

ð

dx
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

25=4� ðx� 1
2Þ2

q

Letting x� 1
2 ¼ u, this becomes

ð

du
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

25=4� u2
p ¼ sin�1 u

5=2
þ c ¼ sin�1 2x� 1

5

� �

þ c

Then

ð1

�1

dx
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðxþ 2Þð3� xÞp ¼ sin�1 2x� 1

5

� �












1

�1

¼ sin�1 1

5

� �

� sin�1 � 3

5

� �

¼ sin�1 :2þ sin�1 :6
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Method 2: Let x� 1
2 ¼ u as in Method 1. Now when x ¼ �1, u ¼ � 3

2; and when x ¼ 1, u ¼ 1
2. Thus

by Formula 25, Page 96.

ð1

�1

dx
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðxþ 2Þð3� xÞp ¼

ð1

�1

dx
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

25=4� ðx� 1
2Þ2

q ¼
ð1=2

�3=2

du
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

25=4� u2
p ¼ sin�1 u

5=2













1=2

�3=2

¼ sin1 :2þ sin�1 :6

(d) Let 21�x ¼ u. Then �21�xðln 2Þdx ¼ du and 2�xdx ¼ � du

2 ln 2
, so that the integral becomes

� 1

2 ln 2

ð

tanh u du ¼ � 1

2 ln 2
ln cosh 21�x þ c

(e) Let sin�1 x2 ¼ u. Then du ¼ 1
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� ðx2Þ2
q 2x dx ¼ 2x dx

ffiffiffiffiffiffiffiffiffiffiffiffiffi

1� x4
p and the integral becomes

1

2

ð

u du ¼ 1

4
u2 þ c ¼ 1

4
ðsin�1 x2Þ2 þ c

Thus

ð1=
ffiffi

2
p

0

x sin�1 x2
ffiffiffiffiffiffiffiffiffiffiffiffiffi

1� x4
p dx ¼ 1

4
ðsin�1 x2Þ2













1=
ffiffi

2
p

0

¼ 1

4
sin�1 1

2

� �2

¼ �2

144
:

ð f Þ
ð

x dx
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

x2 þ xþ 1
p ¼ 1

2

ð

2xþ 1� 1
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

x2 þ xþ 1
p dx ¼ 1

2

ð

2xþ 1
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

x2 þ xþ 1
p dx� 1

2

dx
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

x2 þ xþ 1
p

¼ 1

2

ð

ðx2 þ xþ 1Þ�1=2dðx2 þ xþ 1Þ � 1

2

ð

dx
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðxþ 1
2Þ2 þ 3

4

q

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

x2 þ xþ 1
p

� 1
2 ln jxþ 1

2 þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðxþ 1
2Þ2 þ 3

4

q

j þ c

5.15. Show that

ð2

1

dx

ðx2 � 2xþ 4Þ3=2 ¼
1

6
.

Write the integral as

ð2

1

dx

½ðx� 1Þ2 þ 3�3=2. Let x� 1 ¼ ffiffiffi

3
p

tan u, dx ¼ ffiffiffi

3
p

sec2 u du. When x ¼ 1,

u ¼ tan�1 0 ¼ 0; when x ¼ 2, u ¼ tan�1 1=
ffiffiffi

3
p ¼ �=6. Then the integral becomes

ð�=6

0

ffiffiffi

3
p

sec2 u du

½3þ 3 tan2 u�3=2 ¼
ð�=6

0

ffiffiffi

3
p

sec2 u du

½3 sec2 u�3=2 ¼ 1

3

ð�=6

0

cos u du ¼ 1

3
sin u













�=6

0

¼ 1

6

5.16. Determine

ðe2

e

dx

xðln xÞ3.

Let lnx ¼ y, ðdxÞ=x ¼ dy. When x ¼ e, y ¼ 1; when x ¼ e2, y ¼ 2. Then the integral becomes

ð2

1

dy

y3
¼ y�2

�2













2

1

¼ 3

8

5.17. Find

ð

xn ln x dx if (a) n 6¼ �1, (b) n ¼ �1.
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(a) Use integration by parts, letting u ¼ lnx, dv ¼ xn dx, so that du ¼ ðdxÞ=x, v ¼ xnþ1=ðnþ 1Þ. Then

ð

xn lnx dx ¼
ð

u dv ¼ uv�
ð

v du ¼ xnþ1

nþ 1
ln x�

ð

xnþ1

nþ 1
� dx
x

¼ xnþ1

nþ 1
lnx� xnþ1

ðnþ 1Þ2 þ c

ðbÞ
ð

x�1 lnx dx ¼
ð

ln x dðlnxÞ ¼ 1

2
ðlnxÞ2 þ c:

5.18. Find

ð

3
ffiffiffiffiffiffiffiffi

2xþ1
p

dx.

Let
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2xþ 1
p ¼ y, 2xþ 1 ¼ y2. Then dx ¼ y dy and the integral becomes

ð

3y � y dy.
Integrate by parts, letting u ¼ y, dv ¼ 3y dy; then du ¼ dy, v ¼ 3y=ðln 3Þ, and we have

ð

3y � y dy ¼
ð

u dv ¼ uv�
ð

v du ¼ y � 3y
ln 3

�
ð

3y

ln 3
dy ¼ y � 3y

ln 3
� 3y

ðln 3Þ2 þ c

5.19. Find

ð1

0

x lnðxþ 3Þ dx.

Let u ¼ lnðxþ 3Þ, dv ¼ x dx. Then du ¼ dx

xþ 3
, v ¼ x2

2
. Hence on integrating by parts,

ð

x lnðxþ 3Þ dx ¼ x2

2
lnðxþ 3Þ � 1

2

ð

x2 dx

xþ 3
¼ x2

2
lnðxþ 3Þ � 1

2

ð

x� 3þ 9

xþ 3

� �

dx

¼ x2

2
lnðxþ 3Þ � 1

2

x2

2
� 3xþ 9 lnðxþ 3Þ

( )

þ c

ð1

0

x lnðxþ 3Þ dx ¼ 5

4
� 4 ln 4þ 9

2
ln 3Then

5.20. Determine

ð

6� x

ðx� 3Þð2xþ 5Þ dx.

Use the method of partial fractions. Let
6� x

ðx� 3Þð2xþ 5Þ ¼
A

x� 3
þ B

2xþ 5
.

Method 1: To determine the constants A and B, multiply both sides by ðx� 3Þð2xþ 5Þ to obtain

6� x ¼ Að2xþ 5Þ þ Bðx� 3Þ or 6� x ¼ 5A� 3Bþ ð2Aþ BÞx ð1Þ
Since this is an identity, 5A� 3B ¼ 6, 2Aþ B ¼ �1 and A ¼ 3=11, B ¼ �17=11. Then

ð

6� x

ðx� 3Þð2xþ 5Þ dx ¼
ð

3=11

x� 3
dxþ

ð�17=11

2xþ 5
dx ¼ 3

11
ln jx� 3j � 17

22
ln j2xþ 5j þ c

Method 2: Substitute suitable values for x in the identity (1). For example, letting x ¼ 3 and x ¼ �5=2 in
(1), we find at once A ¼ 3=11, B ¼ �17=11.

5.21. Evaluate

ð

dx

5þ 3 cos x
by using the substitution tan x=2 ¼ u.

From Fig. 5-7 we see that

sinx=2 ¼ u
ffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ u2
p ; cos x=2 ¼ 1

ffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ u2
p
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Then cosx ¼ cos2 x=2� sin2 x=2 ¼ 1� u2

1þ u2
:

Also du ¼ 1

2
sec2 x=2 dx or dx ¼ 2 cos2 x=2 du ¼ 2 du

1þ u2
:

Thus the integral becomes

ð

du

u2 þ 4
¼ 1

2
tan�1 u=2þ c ¼ 1

2
tan�1 1

2
tanx=2

� �

þ c:

5.22. Evaluate

ð�

0

x sin x

1þ cos2 x
dx.

Let x ¼ �� y. Then

I ¼
ð�

0

x sin x

1þ cos2 x
dx ¼

ð�

0

ð�� yÞ sin y
1þ cos2 y

dy ¼ �

ð�

0

sin y

1þ cos2 y
dy�

ð�

0

y sin y

1þ cos2 y
dy

¼ ��
ð�

0

dðcos yÞ
1þ cos2 y

� I ¼ �� tan�1ðcos yÞj�0 � I ¼ �2=2� I

i.e.; I ¼ �2=2� I or I ¼ �2=4:

5.23. Prove that

ð�=2

0

ffiffiffiffiffiffiffiffiffiffi

sin x
p

ffiffiffiffiffiffiffiffiffiffi

sin x
p þ ffiffiffiffiffiffiffiffiffiffiffi

cos x
p dx ¼ �

4
.

Letting x ¼ �=2� y, we have

I ¼
ð�=2

0

ffiffiffiffiffiffiffiffiffiffi

sin x
p

ffiffiffiffiffiffiffiffiffiffi

sinx
p þ ffiffiffiffiffiffiffiffiffiffiffi

cos x
p dx ¼

ð�=2

0

ffiffiffiffiffiffiffiffiffiffi

cos y
p

ffiffiffiffiffiffiffiffiffiffi

cos y
p þ ffiffiffiffiffiffiffiffiffi

sin y
p dy ¼

ð�=2

0

ffiffiffiffiffiffiffiffiffiffiffi

cos x
p

ffiffiffiffiffiffiffiffiffiffiffi

cos x
p þ ffiffiffiffiffiffiffiffiffiffi

sinx
p dx

Then

I þ I ¼
ð�=2

0

ffiffiffiffiffiffiffiffiffiffi

sinx
p

ffiffiffiffiffiffiffiffiffiffi

sinx
p þ ffiffiffiffiffiffiffiffiffiffiffi

cos x
p dxþ

ð�=2

0

ffiffiffiffiffiffiffiffiffiffiffi

cos x
p

ffiffiffiffiffiffiffiffiffiffiffi

cosx
p þ ffiffiffiffiffiffiffiffiffiffi

sin x
p dx

¼
ð�=2

0

ffiffiffiffiffiffiffiffiffiffi

sinx
p þ ffiffiffiffiffiffiffiffiffiffiffi

cos x
p

ffiffiffiffiffiffiffiffiffiffi

sinx
p þ ffiffiffiffiffiffiffiffiffiffiffi

cos x
p dx ¼

ð�=2

0

dx ¼ �

2

from which 2I ¼ �=2 and I ¼ �=4.
The same method can be used to prove that for all real values of m,

ð�=2

0

sinm x

sinm xþ cosm x
dx ¼ �

4

(see Problem 5.89).

Note: This problem and Problem 5.22 show that some definite integrals can be evaluated without first
finding the corresponding indefinite integrals.

NUMERICAL METHODS FOR EVALUATING DEFINITE INTEGRALS

5.24. Evaluate

ð1

0

dx

1þ x2
approximately, using (a) the trapezoidal rule, (b) Simpson’s rule, where the

interval ½0; 1� is divided into n ¼ 4 equal parts.

Let f ðxÞ ¼ 1=ð1þ x2Þ. Using the notation on Page 98, we find �x ¼ ðb� aÞ=n ¼ ð1� 0Þ=4 ¼ 0:25.
Then keeping 4 decimal places, we have: y0 ¼ f ð0Þ ¼ 1:0000, y1 ¼ f ð0:25Þ ¼ 0:9412, y2 ¼ f ð0:50Þ ¼ 0:8000,
y3 ¼ f ð0:75Þ ¼ 0:6400, y4 ¼ f ð1Þ ¼ 0:50000.

(a) The trapezoidal rule gives
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�x

2
fy0 þ 2y1 þ 2y2 þ 2y3 þ y4g ¼

0:25

2
f1:0000þ 2ð0:9412Þ þ 2ð0:8000Þ þ 2ð0:6400Þ þ 0:500g

¼ 0:7828:

(b) Simpson’s rule gives

�x

3
fy0 þ 4y1 þ 2y2 þ 4y3 þ y4g ¼

0:25

3
f1:0000þ 4ð0:9412Þ þ 2ð0:8000Þ þ 4ð0:6400Þ þ 0:5000g

¼ 0:7854:

The true value is �=4 � 0:7854:

APPLICATIONS (AREA, ARC LENGTH, VOLUME, MOMENT OF INTERTIA)

5.25. Find the (a) area and (b) moment of inertia about the y-axis of the region in the xy plane
bounded by y ¼ 4� x2 and the x-axis.

(a) Subdivide the region into rectangles as in the figure on
Page 90. A typical rectangle is shown in the adjoining
Fig. 5-8. Then

Required area ¼ lim
n!1

X

n

k¼1

f ð�kÞ�xk

¼ lim
n!1

X

n

k¼1

ð4� �2kÞ�xk

¼
ð2

�2

ð4� x2Þ dx ¼ 32

3

(b) Assuming unit density, the moment of inertia about the y-
axis of the typical rectangle shown above is �2k f ð�kÞ�xk.

Then

Required moment of inertia ¼ lim
n!1

X

n

k¼1

�2k f ð�kÞ�xk ¼ lim
n!1

X

n

k¼1

�2kð4� �2kÞ�xk

¼
ð2

�2

x2ð4� x2Þ dx ¼ 128

15

5.26. Find the length of arc of the parabola y ¼ x2 from x ¼ 0 to x ¼ 1.

Required arc length ¼
ð1

0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ ðdy=dxÞ2
q

dx ¼
ð1

0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ ð2xÞ2
q

dx

¼
ð1

0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ 4x2
p

dx ¼ 1

2

ð2

0

ffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ u2
p

du

¼ 1
2 f12 u

ffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ u2
p

þ 1
2 lnðuþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ u2Þ
p

gj20 ¼ 1
2

ffiffiffi

5
p þ 1

4 lnð2þ
ffiffiffi

5
p Þ

5.27. (a) (Disk Method) Find the volume generated by revolving the region of Problem 5.25 about the
x-axis.

Required volume ¼ lim
n!1

X

n

k¼1

�y2k�xk ¼ �

ð2

�2

ð4� x2Þ2 dx ¼ 512�=15:

(b) (Disk Method) Find the volume of the frustrum of a paraboloid obtained by revolving f ðxÞ ¼ ffiffiffiffiffiffi

kx
p

,
0 < a @ x @ b about the x-axis.
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V ¼ �

ðb

a

kx dx ¼ �k

2
ðb2 � a2Þ:

(c) (Shell Method) Find the volume obtained by orbiting the region of part (b) about the y-axis.
Compare this volume with that obtained in part (b).

V ¼ 2�

ðb

0

xðkxÞ dx ¼ 2�kb3=3

The solids generated by the two regions are different, as are the volumes.

MISCELLANEOUS PROBLEMS

5.28 If f ðxÞ and gðxÞ are continuous in ½a; b�, prove Schwarz’s inequality for integrals:

ðb

a

f ðxÞ gðxÞ dx
� �2

@
ðb

a

f f ðxÞg2 dx
ðb

a

fgðxÞg2 dx

We have

ðb

a

f f ðxÞ þ �gðxÞg2 dx ¼
ðb

a

f f ðxÞg2 dxþ 2�

ðb

a

f ðxÞ gðxÞ dxþ �2
ðb

a

fgðxÞg2 dx A 0

for all real values of �. Hence by Problem 1.13 of Chapter 1, using (1) with

A2 ¼
ðb

a

gðxÞg2 dx; B2 ¼
ðb

a

f f ðxÞg2 dx; C ¼
ðb

a

f ðxÞ gðxÞ dx

we find C2 @ A2B2, which gives the required result.

5.29. Prove that lim
M!1

ðM

0

dx

x4 þ 4
¼ �

8
.

We have x4 þ 4 ¼ x4 þ 4x2 þ 4� 4x2 ¼ ðx2 þ 2Þ2 � ð2xÞ2 ¼ ðx2 þ 2þ 2xÞðx2 þ 2� 2xÞ:
According to the method of partial fractions, assume

1

x4 þ 4
¼ Axþ B

x2 þ 2xþ 2
þ CxþD

x2 � 2xþ 2

Then 1 ¼ ðAþ CÞx3 þ ðB� 2Aþ 2C þDÞx2 þ ð2A� 2Bþ 2C þ 2DÞxþ 2Bþ 2D

so that Aþ C ¼ 0, B� 2Aþ 2C þD ¼ 0, 2A� 2Bþ 2C þ 2D ¼ 0, 2Bþ 2D ¼ 1

Solving simultaneously, A ¼ 1
8, B ¼ 1

4, C ¼ � 1
8, D ¼ 1

4. Thus
ð

dx

x4 þ 4
¼ 1

8

ð

xþ 2

x2 þ 2xþ 2
dx� 1

8

ð

x� 2

x2 � 2xþ 2
dx

¼ 1

8

ð

xþ 1

ðxþ 1Þ2 þ 1
dxþ 1

8

ð

dx

ðxþ 1Þ2 þ 1
� 1

8

ð

x� 1

ðx� 1Þ2 þ 1
dxþ 1

8

ð

dx

ðx� 1Þ2 þ 1

¼ 1

16
lnðx2 þ 2xþ 2Þ þ 1

8
tan�1ðxþ 1Þ � 1

16
lnðx2 � 2xþ 2Þ þ 1

8
tan�1ðx� 1Þ þ C

Then

lim
M!1

ðM

0

dx

x4 þ 4
¼ lim

M!1
1

16
ln

M2 þ 2M þ 2

M2 � 2M þ 2

 !

þ 1

8
tan�1ðM þ 1Þ þ 1

8
tan�1ðM � 1Þ

( )

¼ �

8

We denote this limit by

ð1

0

dx

x4 þ 4
, called an improper integral of the first kind. Such integrals are considered

further in Chapter 12. See also Problem 5.74.
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5.30. Evaluate lim
x!0

Ð x

0 sin t3 dt

x4
.

The conditions of L’Hospital’s rule are satisfied, so that the required limit is

lim
x!0

d

dx

ðx

0

sin t3 dt

d

dx
ðx4Þ

¼ lim
x!0

sin x3

4x3
¼ lim

x!0

d

dx
ðsinx3Þ

d

dx
ð4x3Þ

¼ lim
x!0

3x2 cos x3

12x2
¼ 1

4

5.31. Prove that if f ðxÞ is continuous in ½a; b� then
ðb

a

f ðxÞ dx exists.

Let � ¼
X

n

k¼1

f ð�kÞ�xk, using the notation of Page 91. Since f ðxÞ is continuous we can find numbers Mk

and mk representing the l.u.b. and g.l.b. of f ðxÞ in the interval ½xk�1;xk�, i.e., such that mk @ f ðxÞ @ Mk.
We then have

mðb� aÞ @ s ¼
X

n

k¼1

mk�xk @ � @
X

n

k¼1

Mk�xk ¼ S @ Mðb� aÞ ð1Þ

where m andM are the g.l.b. and l.u.b. of f ðxÞ in ½a; b�. The sums s and S are sometimes called the lower and
upper sums, respectively.

Now choose a second mode of subdivision of ½a; b� and consider the corresponding lower and upper
sums denoted by s 0 and S 0 respectively. We have must

s 0 @ S and S 0 A s ð2Þ
To prove this we choose a third mode of subdivision obtained by using the division points of both the first
and second modes of subdivision and consider the corresponding lower and upper sums, denoted by t and T ,

respectively. By Problem 5.84, we have

s @ t @ T @ S 0 and s 0 @ t @ T @ S ð3Þ
which proves (2).

From (2) it is also clear that as the number of subdivisions is increased, the upper sums are monotonic

decreasing and the lower sums are monotonic increasing. Since according to (1) these sums are also
bounded, it follows that they have limiting values which we shall call �ss and S respectively. By Problem
5.85, �ss @ S. In order to prove that the integral exists, we must show that �ss ¼ S.

Since f ðxÞ is continuous in the closed interval ½a; b�, it is uniformly continuous. Then given any � > 0,

we can take each �xk so small that Mk �mk < �=ðb� aÞ. It follows that

S � s ¼
X

n

k¼1

ðMk �mkÞ�xk <
�

b� a

X

n

k¼1

�xk ¼ � ð4Þ

Now S � s ¼ ðS � SÞ þ ðS � �ssÞ þ ð�ss� sÞ and it follows that each term in parentheses is positive and so is less
than � by (4). In particular, since S � �ss is a definite number it must be zero, i.e., S ¼ �ss. Thus, the limits of

the upper and lower sums are equal and the proof is complete.

Supplementary Problems

DEFINITION OF A DEFINITE INTEGRAL

5.32. (a) Express

ð1

0

x3 dx as a limit of a sum. (b) Use the result of (a) to evaluate the given definite integral.

(c) Interpret the result geometrically.
Ans. (b) 1

4

5.33. Using the definition, evaluate (a)

ð2

0

ð3xþ 1Þ dx; ðbÞ
ð6

3

ðx2 � 4xÞ dx.
Ans. (a) 8, (b) 9
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5.34. Prove that lim
n!1

n

n2 þ 12
þ n

n2 þ 22
þ � � � þ n

n2 þ n2

� �

¼ �

4
.

5.35. Prove that lim
n!1

1 p þ 2 p þ 3 p þ � � � þ np

npþ1
¼ 1

pþ 1

� �

if p > �1.

5.36. Using the definition, prove that

ðb

a

ex dx ¼ eb � ea.

5.37. Work Problem 5.5 directly, using Problem 1.94 of Chapter 1.

5.38. Prove that lim
n!1

1
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

n2 þ 12
p þ 1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

n2 þ 22
p þ � � � þ 1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

n2 þ n2
p

( )

¼ lnð1þ
ffiffiffi

2
p

Þ.

5.39. Prove that lim
n!1

X

n

k¼1

n

n2 þ k2x2
¼ tan�1 x

x
if x 6¼ 0.

PROPERTIES OF DEFINITE INTEGRALS

5.40. Prove (a) Property 2, (b) Property 3 on Pages 91 and 92.

5.41. If f ðxÞ is integrable in ða; cÞ and ðc; bÞ, prove that

ðb

a

f ðxÞ dx ¼
ðc

a

f ðxÞ dxþ
ðb

c

f ðxÞ dx.

5.42. If f ðxÞ and gðxÞ are integrable in ½a; b� and f ðxÞ @ gðxÞ, prove that

ðb

a

f ðxÞ dx @
ðb

a

gðxÞ dx.

5.43. Prove that 1� cos x A x2=� for 0 @ x @ �=2.

5.44. Prove that

ð1

0

cos nx

xþ 1
dx

























@ ln 2 for all n.

5.45. Prove that

ð

ffiffi

3
p

1

e�x sinx

x2 þ 1
dx































@
�

12e
.

MEAN VALUE THEOREMS FOR INTEGRALS

5.46. Prove the result (5), Page 92. [Hint: If m @ f ðxÞ @ M, then mgðxÞ @ f ðxÞgðxÞ @ MgðxÞ. Now integrate

and divide by

ðb

a

gðxÞ dx. Then apply Theorem 9 in Chapter 3.

5.47. Prove that there exist values �1 and �2 in 0 @ x @ 1 such that

ð1

0

sin�x

x2 þ 1
dx ¼ 2

�ð�21 þ 1Þ ¼
�

4
sin��2

Hint: Apply the first mean value theorem.

5.48. (a) Prove that there is a value � in 0 @ x @ � such that

ð�

0

e�x cos x dx ¼ sin �. (b) Suppose a wedge in the

shape of a right triangle is idealized by the region bound by the x-axis, f ðxÞ ¼ x, and x ¼ L. Let the weight
distribution for the wedge be defined by WðxÞ ¼ x2 þ 1. Use the generalized mean value theorem to show

that the point at which the weighted value occurs is
3L

4

L2 þ 2

L2 þ 3
.
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CHANGE OF VARIABLES AND SPECIAL METHODS OF INTEGRATION

5.49. Evaluate: (a)

ð

x2esin x
3

cos x3 dx; ðbÞ
ð1

0

tan�1 t

1þ t2
dt; ðcÞ

ð3

1

dx
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

4x� x2
p ; ðdÞ

ð

csch2
ffiffiffi

u
p
ffiffiffi

u
p du,

(e)

ð2

�2

dx

16� x2
.

Ans. (a) 1
3 e

sin x3 þ c; ðbÞ �2=32; ðcÞ �=3; ðdÞ � 2 coth
ffiffiffi

u
p þ c; ðeÞ 1

4 ln 3.

5.50. Show that (a)

ð1

0

dx

ð3þ 2x� x2Þ3=2 ¼
ffiffiffi

3
p

12
; ðbÞ

ð

dx

x2
ffiffiffiffiffiffiffiffiffiffiffiffiffi

x2 � 1
p ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi

x2 � 1
p

x
þ c.

5.51. Prove that (a)

ð

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

u2 � a2
p

du ¼ 1
2 u

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

u2 � a2
p

� 1
2 a

2 ln juþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

u2 � a2
p

j

(b)

ð

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

a2 � u2
p

du ¼ 1
2 u

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

a2 � u2
p

þ 1
2 a

2 sin�1 u=aþ c; a > 0.

5.52. Find

ð

x dx
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

x2 þ 2xþ 5
p : Ans.

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

x2 þ 2xþ 5
p

� ln jxþ 1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

x2 þ 2xþ 5
p

j þ c.

5.53. Establish the validity of the method of integration by parts.

5.54. Evaluate (a)

ð�

0

x cos 3x dx; ðbÞ
ð

x3e�2x dx: Ans. (a) �2=9; ðbÞ � 1
3 e

�2xð4x3 þ 6x2 þ 6xþ 3Þ þ c

5.55. Show that (a)

ð1

0

x2 tan�1 x dx ¼ 1

12
�� 1

6
þ 1

6
ln 2

ðbÞ
ð2

�2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

x2 þ xþ 1
p

dx ¼ 5
ffiffiffi

7
p

4
þ 3

ffiffiffi

3
p

4
þ 3

8
ln

5þ 2
ffiffiffi

7
p

2
ffiffiffi

3
p � 3

� �

.

5.56. (a) If u ¼ f ðxÞ and v ¼ gðxÞ have continuous nth derivatives, prove that
ð

uvðnÞ dx ¼ uvðn�1Þ � u 0vðn�2Þ þ u 00vðn�3Þ � � � � � ð�1Þn
ð

uðnÞv dx

called generalized integration by parts. (b) What simplifications occur if uðnÞ ¼ 0? Discuss. (c) Use (a) to

evaluate

ð�

0

x4 sin x dx. Ans. (c) �4 � 12�2 þ 48

5.57. Show that

ð1

0

x dx

ðxþ 1Þ2ðx2 þ 1Þ ¼
�� 2

8
.

[Hint: Use partial fractions, i.e., assume
x

ðxþ 1Þ2ðx2 þ 1Þ ¼
A

ðxþ 1Þ2 þ
B

xþ 1
þ CxþD

x2 þ 1
and find A;B;C;D.]

5.58. Prove that

ð�

0

dx

	� cosx
¼ �

ffiffiffiffiffiffiffiffiffiffiffiffiffi

	2 � 1
p ; 	 > 1.

NUMERICAL METHODS FOR EVALUATING DEFINITE INTEGRALS

5.59. Evaluate

ð1

0

dx

1þ x
approximately, using (a) the trapezoidal rule, (b) Simpson’s rule, taking n ¼ 4.

Compare with the exact value, ln 2 ¼ 0:6931.

5.60. Using (a) the trapezoidal rule, (b) Simpson’s rule evaluate

ð�=2

0

sin2 x dx by obtaining the values of sin2 x

at x ¼ 08; 108; . . . ; 908 and compare with the exact value �=4.

5.61. Prove the (a) rectangular rule, (b) trapezoidal rule, i.e., (16) and (17) of Page 98.

5.62. Prove Simpson’s rule.
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5.63. Evaluate to 3 decimal places using numerical integration: (a)

ð2

1

dx

1þ x2
; ðbÞ

ð1

0

cosh x2 dx.

Ans. (a) 0.322, (b) 1.105.

APPLICATIONS

5.64. Find the (a) area and (b) moment of inertia about the y-axis of the region in the xy plane bounded by

y ¼ sin x, 0 @ x @ � and the x-axis, assuming unit density.
Ans. (a) 2, (b) �2 � 4

5.65. Find the moment of inertia about the x-axis of the region bounded by y ¼ x2 and y ¼ x, if the density is
proportional to the distance from the x-axis.

Ans. 1
8M, where M ¼ mass of the region.

5.66. (a) Show that the arc length of the catenary y ¼ cosh x from x ¼ 0 to x ¼ ln 2 is 3
4. (b) Show that the length

of arc of y ¼ x3=2, 2 @ x @ 5 is 343
27 � 2

ffiffiffi

2
p

113=2.

5.67. Show that the length of one arc of the cycloid x ¼ að� � sin �Þ, y ¼ að1� cos �Þ, ð0 @ � @ 2�Þ is 8a.

5.68. Prove that the area bounded by the ellipse x2=a2 þ y2=b2 ¼ 1 is �ab.

5.69. (a) (Disk Method) Find the volume of the region obtained by revolving the curve y ¼ sinx, 0 @ x @ �,
about the x-axis. Ans: ðaÞ �2=2
(b) (Disk Method) Show that the volume of the frustrum of a paraboloid obtained by revolving

f ðxÞ ¼ ffiffiffiffiffiffi

kx
p

, 0 < a @ x @ b, about the x-axis is �

ðb

a

kx dx ¼ �k

2
ðb2 � a2Þ. (c) Determine the volume

obtained by rotating the region bound by f ðxÞ ¼ 3, gðxÞ ¼ 5� x2 on � ffiffiffi

2
p

@ x @
ffiffiffi

2
p

. (d) (Shell Method)
A spherical bead of radius a has a circular cylindrical hole of radius b, b < a, through the center. Find the
volume of the remaining solid by the shell method. (e) (Shell Method) Find the volume of a solid whose

outer boundary is a torus (i.e., the solid is generated by orbiting a circle ðx� aÞ2 þ y2 ¼ b2 about the y-axis
(a > b).

5.70. Prove that the centroid of the region bounded by y ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

a2 � x2
p

, �a @ x @ a and the x-axis is located at
ð0; 4a=3�Þ.

5.71. (a) If � ¼ f ð�Þ is the equation of a curve in polar coordinates, show that the area bounded by this curve and

the lines � ¼ �1 and � ¼ �2 is
1

2

ð�2

�1

�2d�. (b) Find the area bounded by one loop of the lemniscate
�2 ¼ a2 cos 2�.
Ans. (b) a2

5.72. (a) Prove that the arc length of the curve in Problem 5.71(a) is

ð�2

�1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

�2 þ ðd�=d�Þ2
q

d�. (b) Find the length
of arc of the cardioid � ¼ að1� cos�Þ.
Ans. (b) 8a

MISCELLANEOUS PROBLEMS

5.73. Establish the mean value theorem for derivatives from the first mean value theorem for integrals. [Hint: Let
f ðxÞ ¼ F 0ðxÞ in (4), Page 93.]

5.74. Prove that (a) lim
�!0þ

ð4��

0

dx
ffiffiffiffiffiffiffiffiffiffiffi

4� x
p ¼ 4; ðbÞ lim

�!0þ

ð3

�

dx
ffiffiffi

x3
p ¼ 6; ðcÞ lim

�!0þ

ð1��

0

dx
ffiffiffiffiffiffiffiffiffiffiffiffiffi

1� x2
p ¼ �

2
and give a geo-

metric interpretation of the results.

[These limits, denoted usually by

ð4

0

dx
ffiffiffiffiffiffiffiffiffiffiffi

4� x
p ;

ð3

0

dx
ffiffiffi

x3
p and

ð1

0

dx
ffiffiffiffiffiffiffiffiffiffiffiffiffi

1� x2
p respectively, are called impro-

per integrals of the second kind (see Problem 5.29) since the integrands are not bounded in the range of
integration. For further discussion of improper integrals, see Chapter 12.]

5.75. Prove that (a) lim
M!1

ðM

0

x5e�x dx ¼ 4! ¼ 24; ðbÞ lim
�!0þ

ð2��

1

dx
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

xð2� xÞp ¼ �

2
.
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5.76. Evaluate (a)

ð1

0

dx

1þ x3
; ðbÞ

ð�=2

0

sin 2x

ðsinxÞ4=3 dx; ðcÞ
ð1

0

dx

xþ
ffiffiffiffiffiffiffiffiffiffiffiffiffi

x2 þ 1
p .

Ans. (a)
2�

3
ffiffiffi

3
p ðbÞ 3 ðcÞ does not exist

5.77. Evaluate lim
x!�=2

ex2=�� e�=4þ Ð �=2
x esin t dt

1þ cos 2x
. Ans. e=2�

5.78. Prove: (a)
d

dx

ðx3

x2
ðt2 þ tþ 1Þ dt ¼ 3x3 þ x5 � 2x3 þ 3x2 � 2x; ðb d

dx

ðx2

x

cos t2 dt ¼ 2x cosx4 � cos x2.

5.79. Prove that (a)

ð�

0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ sinx
p

dx ¼ 4; ðbÞ
ð�=2

0

dx

sinxþ cos x
¼

ffiffiffi

2
p

lnð
ffiffiffi

2
p

þ 1Þ.

5.80. Explain the fallacy: I ¼
ð1

�1

dx

1þ x2
¼ �

ð1

�1

dy

1þ y2
¼ �I , using the transformation x ¼ 1=y. Hence I ¼ 0.

But I ¼ tan�1ð1Þ � tan�1ð�1Þ ¼ �=4� ð��=4Þ ¼ �=2. Thus �=2 ¼ 0.

5.81. Prove that

ð1=2

0

cos�x
ffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ x2
p dx @

1

4
tan�1 1

2
.

5.82. Evaluate lim
n!1

ffiffiffiffiffiffiffiffiffiffiffi

nþ 1
p þ ffiffiffiffiffiffiffiffiffiffiffi

nþ 2
p þ � � � þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2n� 1
p

n3=2

( )

. Ans. 2
3 ð2

ffiffiffi

2
p � 1Þ

5.83. Prove that f ðxÞ ¼ 1 if x is irrational
0 if x is rational

�

is not Riemann integrable in ½0; 1�.

[Hint: In (2), Page 91, let �k, k ¼ 1; 2; 3; . . . ; n be first rational and then irrational points of subdivision and
examine the lower and upper sums of Problem 5.31.]

5.84. Prove the result (3) of Problem 5.31. [Hint: First consider the effect of only one additional point of

subdivision.]

5.85. In Problem 5.31, prove that �ss @ S. [Hint: Assume the contrary and obtain a contradiction.]

5.86. If f ðxÞ is sectionally continuous in ½a; b�, prove that

ðb

a

f ðxÞ dx exists. [Hint: Enclose each point of disconti-

nuity in an interval, noting that the sum of the lengths of such intervals can be made arbitrarily small. Then
consider the difference between the upper and lower sums.

5.87. If f ðxÞ ¼
2x 0 < x < 1
3 x ¼ 1
6x� 1 1 < x < 2

8

<

:

, find

ð2

0

f ðxÞ dx. Interpret the result graphically. Ans. 9

5.88. Evaluate

ð3

0

fx� ½x� þ 1
2g dx where ½x� denotes the greatest integer less than or equal to x. Interpret the result

graphically. Ans. 3

5.89. (a) Prove that

ð�=2

0

sinm x

sinm xþ cosm x
dx ¼ �

4
for all real values of m.

(b) Prove that

ð2�

0

dx

1þ tan4 x
¼ �.

5.90. Prove that

ð�=2

0

sin x

x
dx exists.

5.91. Show that

ð0:5

0

tan�1 x

x
dx ¼ 0:4872 approximately.

5.92. Show that

ð�

0

x dx

1þ cos2 x
¼ �2

2
ffiffiffi

2
p :
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Partial Derivatives

FUNCTIONS OF TWO OR MORE VARIABLES

The definition of a function was given in Chapter 3 (page 39). For us the distinction for functions of
two or more variables is that the domain is a set of n-tuples of numbers. The range remains one
dimensional and is referred to an interval of numbers. If n ¼ 2, the domain is pictured as a two-
dimensional region. The region is referred to a rectangular Cartesian coordinate system described
through number pairs ðx; yÞ, and the range variable is usually denoted by z. The domain variables are
independent while the range variable is dependent.

We use the notation f ðx; yÞ, Fðx; yÞ, etc., to denote the value of the function at ðx; yÞ and write
z ¼ f ðx; yÞ, z ¼ Fðx; yÞ, etc. We shall also sometimes use the notation z ¼ zðx; yÞ although it should be
understood that in this case z is used in two senses, namely as a function and as a variable.

EXAMPLE. If f ðx; yÞ ¼ x2 þ 2y3, then f ð3;�1Þ ¼ ð3Þ2 þ 2ð�1Þ3 ¼ 7:

The concept is easily extended. Thus w ¼ Fðx; y; zÞ denotes the value of a function at ðx; y; zÞ [a
point in three-dimensional space], etc.

EXAMPLE. If z ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� ðx2 þ y2Þ
p

, the domain for which z is real consists of the set of points ðx; yÞ such that

x2 þ y2 @ 1, i.e., the set of points inside and on a circle in the xy plane having center at ð0; 0Þ and radius 1.

THREE-DIMENSIONAL RECTANGULAR COORDINATE SYSTEMS

A three-dimensional rectangular coordinate system, as referred to in the previous paragraph,
obtained by constructing three mutually perpendicular axes (the x-, y-, and z-axes) intersecting in
point O (the origin). It forms a natural extension of the usual xy plane for representing functions of
two variables graphically. A point in three dimensions is represented by the triplet ðx; y; zÞ called
coordinates of the point. In this coordinate system z ¼ f ðx; yÞ [or Fðx; y; zÞ ¼ 0] represents a surface,
in general.

EXAMPLE. The set of points ðx; y; zÞ such that z ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� ðx2 þ y2Þ
p

comprises the surface of a hemisphere of radius
1 and center at ð0; 0; 0Þ.

For functions of more than two variables such geometric interpretation fails, although the termi-
nology is still employed. For example, ðx; y; z;wÞ is a point in four-dimensional space, and w ¼ f ðx; y; zÞ
[or Fðx; y; z;wÞ ¼ 0] represents a hypersurface in four dimensions; thus x2 þ y2 þ z2 þ w2 ¼ a2 represents
a hypersphere in four dimensions with radius a > 0 and center at ð0; 0; 0; 0Þ. w ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

a2 � ðx2 þ y2 þ z2Þ
p

,
x2 þ y2 þ z2 @ a2 describes a function generated from the hypersphere.
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NEIGHBORHOODS

The set of all points ðx; yÞ such that jx� x0j < �, j y� y0j < � where � > 0, is called a rectangular �
neighborhood of ðx0; y0Þ; the set 0 < jx� x0j < �, 0 < j y� y0j < � which excludes ðx0; y0Þ is called a

rectangular deleted � neighborhood of ðx0; y0Þ. Similar remarks can be made for other neighborhoods,

e.g., ðx� x0Þ2 þ ð y� y0Þ2 < �2 is a circular � neighborhood of ðx0; y0Þ. The term ‘‘open ball’’ is used to

designate this circular neighborhood. This terminology is appropriate for generalization to more

dimensions. Whether neighborhoods are viewed as circular or square is immaterial, since the descrip-

tions are interchangeable. Simply notice that given an open ball (circular neighborhood) of radius �
there is a centered square whose side is of length less than

ffiffiffi

2
p
� that is interior to the open ball, and

conversely for a square of side � there is an interior centered of radius of radius less than �=2. (See Fig.

6-1.)

A point ðx0; y0Þ is called a limit point, accumulation point, or cluster point of a point set S if every

deleted � neighborhood of ðx0; y0Þ contains points of S. As in the case of one-dimensional point sets,

every bounded infinite set has at least one limit point (the Bolzano–Weierstrass theorem, see Pages 6 and

12). A set containing all its limit points is called a closed set.

REGIONS

A point P belonging to a point set S is called an interior point of S if there exists a deleted �
neighborhood of P all of whose points belong to S. A point P not belonging to S is called an exterior
point of S if there exists a deleted � neighborhood of P all of whose points do not belong to S. A point P
is called a boundary point of S if every deleted � neighborhood of P contains points belonging to S and
also points not belonging to S.

If any two points of a set S can be joined by a path consisting of a finite number of broken line
segments all of whose points belong to S, then S is called a connected set. A region is a connected set
which consists of interior points or interior and boundary points. A closed region is a region containing
all its boundary points. An open region consists only of interior points. The complement of a set, S, in
the x�y plane is the set of all points in the plane not belonging to S. (See Fig. 6-2.)

Examples of some regions are shown graphically in Figs 6-3(a), (b), and (c) below. The rectangular
region of Fig. 6-1(a), including the boundary, represents the sets of points a @ x @ b, c @ y @ d which
is a natural extension of the closed interval a @ x @ b for one dimension. The set a < x < b, c < y < d
corresponds to the boundary being excluded.

In the regions of Figs 6-3(a) and 6-3(b), any simple closed curve (one which does not intersect itself
anywhere) lying inside the region can be shrunk to a point which also lies in the region. Such regions are
called simply-connected regions. In Fig. 6-3(c) however, a simple closed curve ABCD surrounding one of
the ‘‘holes’’ in the region cannot be shrunk to a point without leaving the region. Such regions are called
multiply-connected regions.
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LIMITS

Let f ðx; yÞ be defined in a deleted � neighborhood of ðx0; y0Þ [i.e.; f ðx; yÞ may be undefined at

ðx0; y0Þ]. We say that l is the limit of f ðx; yÞ as x approaches x0 and y approaches y0 [or ðx; yÞ
approaches ðx0; y0Þ] and write lim

x!x0
y!y0

f ðx; yÞ ¼ l [or lim
ðx;yÞ!ðx0;y0Þ

f ðx; yÞ ¼ l] if for any positive number � we

can find some positive number � [depending on � and ðx0; y0Þ, in general] such that j f ðx; yÞ � lj < �
whenever 0 < jx� x0j < � and 0 < j y� y0j < �.

If desired we can use the deleted circular neighborhood open ball 0 < ðx� x0Þ2 þ ð y� y0Þ2 < �2

instead of the deleted rectangular neighborhood.

EXAMPLE. Let f ðx; yÞ ¼ 3xy if ðx; yÞ 6¼ ð1; 2Þ
0 if ðx; yÞ ¼ ð1; 2Þ

�

. As x ! 1 and y ! 2 [or ðx; yÞ ! ð1; 2Þ], f ðx; yÞ gets closer to
3ð1Þð2Þ ¼ 6 and we suspect that lim

x!1
y!2

f ðx; yÞ ¼ 6. To prove this we must show that the above definition of limit with

l ¼ 6 is satisfied. Such a proof can be supplied by a method similar to that of Problem 6.4.

Note that lim
x!1
y!2

f ðx; yÞ 6¼ f ð1; 2Þ since f ð1; 2Þ ¼ 0. The limit would in fact be 6 even if f ðx; yÞ were not defined at

ð1; 2Þ. Thus the existence of the limit of f ðx; yÞ as ðx; yÞ ! ðx0; y0Þ is in no way dependent on the existence of a value

of f ðx; yÞ at ðx0; y0Þ.

Note that in order for lim
ðx;yÞ!ðx0;y0Þ

f ðx; yÞ to exist, it must have the same value regardless of the

approach of ðx; yÞ to ðx0; y0Þ. It follows that if two different approaches give different values, the

limit cannot exist (see Problem 6.7). This implies, as in the case of functions of one variable, that if a

limit exists it is unique.

The concept of one-sided limits for functions of one variable is easily extended to functions of more

than one variable.

EXAMPLE 1. lim
x!0þ
y!1

tan�1ð y=xÞ ¼ �=2, lim
x!0�
y!1

tan�1ð y=xÞ ¼ ��=2.

EXAMPLE 2. lim
x!0
y!1

tan�1ð y=xÞ does not exist, as is clear from the fact that the two different approaches of Example

1 give different results.

In general the theorems on limits, concepts of infinity, etc., for functions of one variable (see Page

21) apply as well, with appropriate modifications, to functions of two or more variables.
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ITERATED LIMITS

The iterated limits lim
x!x0

lim
y!y0

f ðx; yÞ
� �

and lim
y!y0

lim
x!x0

f ðx; yÞ
� �

, [also denoted by lim
x!x0

lim
y!y0

f ðx; yÞ and
lim
y!y0

lim
x!x0

f ðx; yÞ respectively] are not necessarily equal. Although they must be equal if lim
x!x0
y!y0

f ðx; yÞ is to
exist, their equality does not guarantee the existence of this last limit.

EXAMPLE. If f ðx; yÞ ¼ x� y

xþ y
, then lim

x!0
lim
y!0

x� y

xþ y

� �

¼ lim
x!0

ð1Þ ¼ 1 and lim
y!0

lim
x!0

x� y

xþ y

� �

¼ lim
y!0

ð�1Þ ¼ �1. Thus

the iterated limits are not equal and so lim
x!0
y!0

f ðx; yÞ cannot exist.

CONTINUITY

Let f ðx; yÞ be defined in a � neighborhood of ðx0; y0Þ [i.e.; f ðx; yÞmust be defined at ðx0; y0Þ as well as
near it]. We say that f ðx; yÞ is continuous at ðx0; y0Þ if for any positive number � we can find some
positive number � [depending on � and ðx0; y0Þ in general] such that j f ðx; yÞ � f ðx0; y0Þj < � whenever
jx� x0j < � and jy� y0j < �, or alternatively ðx� x0Þ2 þ ð y� y0Þ2 < �2.

Note that three conditions must be satisfied in order that f ðx; yÞ be continuous at ðx0; y0Þ.
1. lim

ðx;yÞ!ðx0;y0Þ
f ðx; yÞ ¼ l, i.e., the limit exists as ðx; yÞ ! ðx0; y0Þ

2. f ðx0; y0Þ must exist, i.e., f ðx; yÞ is defined at ðx0; y0Þ
3. l ¼ f ðx0; y0Þ
If desired we can write this in the suggestive form lim

x!x0
y!y0

f ðx; yÞ ¼ f ð lim
x!x0

x; lim
y!y0

yÞ.

EXAMPLE. If f ðx; yÞ ¼ 3xy ðx; yÞ 6¼ ð1; 2Þ
0 ðx; yÞ ¼ ð1; 2Þ

�

, then lim
ðx;yÞ!ð1;2Þ

f ðx; yÞ ¼ 6 6¼ f ð1; 2Þ. Hence, f ðx; yÞ is not contin-
uous at ð1; 2Þ. If we redefine the function so that f ðx; yÞ ¼ 6 for ðx; yÞ ¼ ð1; 2Þ, then the function is continuous at

ð1; 2Þ.
If a function is not continuous at a point ðx0; y0Þ, it is said to be discontinuous at ðx0; y0Þ which is then

called a point of discontinuity. If, as in the above example, it is possible to redefine the value of a
function at a point of discontinuity so that the new function is continuous, we say that the point is a
removable discontinuity of the old function. A function is said to be continuous in a region r of the xy
plane if it is continuous at every point of r.

Many of the theorems on continuity for functions of a single variable can, with suitable modifica-
tion, be extended to functions of two more variables.

UNIFORM CONTINUITY

In the definition of continuity of f ðx; yÞ at ðx0; y0Þ, � depends on � and also ðx0; y0Þ in general. If in a
region r we can find a � which depends only on � but not on any particular point ðx0; y0Þ in r [i.e., the
same � will work for all points in r], then f ðx; yÞ is said to be uniformly continuous in r. As in the case
of functions of one variable, it can be proved that a function which is continuous in a closed and
bounded region is uniformly continuous in the region.

PARTIAL DERIVATIVES

The ordinary derivative of a function of several variables with respect to one of the independent
variables, keeping all other independent variables constant, is called the partial derivative of the function
with respect to the variable. Partial derivatives of f ðx; yÞ with respect to x and y are denoted by
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@f

@x
or fx; fxðx; yÞ;

@f

x













y

" #

and
@f

@y
or fy; fyðx; yÞ;

@f

@y













x

� �

, respectively, the latter notations being used when

it is needed to emphasize which variables are held constant.

By definition,

@f

@x
¼ lim

�x!0

f ðxþ�x; yÞ � f ðx; yÞ
�x

;
@f

@y
¼ lim

�y!0

f ðx; yþ�yÞ � f ðx; yÞ
�y

ð1Þ

when these limits exist. The derivatives evaluated at the particular point ðx0; y0Þ are often indicated by
@f

@x













ðx0;y0Þ
¼ fxðx0; y0Þ and

@f

@y













ðx0;y0Þ
¼ fyðx0; y0Þ, respectively.

EXAMPLE. If f ðx; yÞ ¼ 2x3 þ 3xy2, then fx ¼ @f =@x ¼ 6x2 þ 3y2 and fy ¼ @f =@y ¼ 6xy. Also, fxð1; 2Þ ¼
6ð1Þ2 þ 3ð2Þ2 ¼ 18, fyð1; 2Þ ¼ 6ð1Þð2Þ ¼ 12.

If a function f has continuous partial derivatives @f =@x, @f =@y in a region, then f must be continuous
in the region. However, the existence of these partial derivatives alone is not enough to guarantee the
continuity of f (see Problem 6.9).

HIGHER ORDER PARTIAL DERIVATIVES

If f ðx; yÞ has partial derivatives at each point ðx; yÞ in a region, then @f =@x and @f =@y are themselves
functions of x and y, which may also have partial derivatives. These second derivatives are denoted by

@

@x

@f

@x

� �

¼ @2f

@x2
¼ fxx;

@

@y

@f

@y

� �

¼ @2f

@y2
¼ fyy;

@

@x

@f

@y

� �

¼ @2f

@x @y
¼ fyx;

@

@y

@f

@x

� �

¼ @2f

@y @x
¼ fxy ð2Þ

If fxy and fyx are continuous, then fxy ¼ fyx and the order of differentiation is immaterial; otherwise they
may not be equal (see Problems 6.13 and 6.41).

EXAMPLE. If f ðx; yÞ ¼ 2x3 þ 3xy2 (see preceding example), then fxx ¼ 12x, fyy ¼ 6x, fxy ¼ 6y ¼ fyx. In such case
fxxð1; 2Þ ¼ 12, fyyð1; 2Þ ¼ 6, fxyð1; 2Þ ¼ fyxð1; 2Þ ¼ 12.

In a similar manner, higher order derivatives are defined. For example
@3f

@x2@y
¼ fyxx is the derivative

of f taken once with respect to y and twice with respect to x.

DIFFERENTIALS

(The section of differentials in Chapter 4 should be read before beginning this one.)
Let �x ¼ dx and �y ¼ dy be increments given to x and y, respectively. Then

�z ¼ f ðxþ�x; yþ�yÞ � f ðx; yÞ ¼ �f ð3Þ
is called the increment in z ¼ f ðx; yÞ. If f ðx; yÞ has continuous first partial derivatives in a region, then

�z ¼ @f

@x
�xþ @f

@y
�yþ �1�xþ �2�y ¼ @z

@x
dxþ @z

@y
dyþ �1 dxþ �2 dy ¼ �f ð4Þ

where �1 and �2 approach zero as �x and �y approach zero (see Problem 6.14). The expression

dz ¼ @z

@x
dxþ @z

@y
dy or df ¼ @f

@x
dxþ @f

@y
dy ð5Þ

is called the total differential or simply differential of z or f , or the principal part of �z or �f . Note that
�z 6¼ dz in general. However, if �x ¼ dx and �y ¼ dy are ‘‘small,’’ then dz is a close approximation of
�z (see Problem 6.15). The quantities dx and dy, called differentials of x and y respectively, need not be
small.
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The form dz ¼ fxðx0; y0Þdxþ fyðx0; y0Þdy signifies a linear function with the independent variables dx

and dy and the dependent range variable dz. In the one variable case, the corresponding linear function

represents the tangent line to the underlying curve. In this case, the underlying entity is a surface and

the linear function generates the tangent plane at P0. In a small enough neighborhood, this tangent

plane is an approximation of the surface (i.e., the linear representation of the surface at P0). If y is held

constant, then one obtains the curve of intersection of the surface and the coordinate plane y ¼ y0. The

differential form reduces to dz ¼ fxðx0; y0Þdx (i.e., the one variable case). A similar statement follows

when x is held constant. See Fig. 6-4.

If f is such that�f (or �zÞ can be expressed in the form (4) where �1 and �2 approach zero as�x and

�y approach zero, we call f differentiable at ðx; yÞ. The mere existence of fx and fy does not in itself

guarantee differentiability; however, continuity of fx and fy does (although this condition happens to be

slightly stronger than necessary). In case fx and fy are continuous in a region r, we shall say that f is

continuously differentiable in r.

THEOREMS ON DIFFERENTIALS

In the following we shall assume that all functions have continuous first partial derivatives in a

region r, i.e., the functions are continuously differentiable in r.

1. If z ¼ f ðx1; x2; . . . ; xnÞ, then

df ¼ @f

@x1
dx1 þ

@f

@x2
dx2 þ � � � þ @f

@xn
dxn ð6Þ

regardless of whether the variables x1; x2; . . . ; xn are independent or dependent on other vari-
ables (see Problem 6.20). This is a generalization of the result (5). In (6) we often use z in place
of f .

2. If f ðx1; x2; . . . ; xnÞ ¼ c, a constant, then df ¼ 0. Note that in this case x1; x2; . . . ; xn cannot all
be independent variables.
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3. The expression Pðx; yÞdxþQðx; yÞdy or briefly PdxþQdy is the differential of f ðx; yÞ if and
only if

@P

@y
¼ @Q

@x
. In such case PdxþQdy is called an exact differential.

Note: Observe that
@P

@y
¼ @Q

@x
implies that

@2f

@y @x
¼ @2f

@x @y
.

4. The expression Pðx; y; zÞ dxþQðx; y; zÞ dyþ Rðx; y; zÞ dz or briefly PdxþQdyþ Rdz is the

differential of f ðx; y; zÞ if and only if
@P

@y
¼ @Q

@x
;
@Q

@z
¼ @R

@y
;
@R

@x
¼ @P

@z
. In such case

PdxþQdyþ Rdz is called an exact differential.

Proofs of Theorems 3 and 4 are best supplied by methods of later chapters (see Chapter 10,
Problems 10.13 and 10.30).

DIFFERENTIATION OF COMPOSITE FUNCTIONS

Let z ¼ f ðx; yÞ where x ¼ gðr; sÞ, y ¼ hðr; sÞ so that z is a function of r and s. Then

@z

@r
¼ @z

@x

@x

@r
þ @z

@y

@y

@r
;

@z

@s
¼ @z

@x

@x

@s
þ @z

@y

@y

@s
ð7Þ

In general, if u ¼ Fðx1; . . . ; xnÞ where x1 ¼ f1ðr1; . . . ; rpÞ; . . . ; xn ¼ fnðr1; . . . ; rpÞ, then
@u

@rk
¼ @u

@x1

@x1
@rk

þ @u

@x2

@x2
@rk

þ � � � þ @u

@xn

@xn
@rk

k ¼ 1; 2; . . . ; p ð8Þ

If in particular x1; x2; . . . ; xn depend on only one variable s, then

du

ds
¼ @u

@x1

dx1
ds

þ @u

@x2

dx2
ds

þ � � � þ @u

@xn

dxn
ds

ð9Þ

These results, often called chain rules, are useful in transforming derivatives from one set of variables
to another.

Higher derivatives are obtained by repeated application of the chain rules.

EULER’S THEOREM ON HOMOGENEOUS FUNCTIONS

A function represented by Fðx1; x2; . . . ; xnÞ is called homogeneous of degree p if, for all values of the
parameter � and some constant p, we have the identity

Fð�x1; �x2; . . . ; �xnÞ ¼ �pFðx1; x2; . . . ; xnÞ ð10Þ

EXAMPLE. Fðx; yÞ ¼ x4 þ 2xy3 � 5y4 is homogeneous of degree 4, since

Fð�x; �yÞ ¼ ð�xÞ4 þ 2ð�xÞð�yÞ3 � 5ð�yÞ4 ¼ �4ðx4 þ 2xy3 � 5y4Þ ¼ �4Fðx; yÞ

Euler’s theorem on homogeneous functions states that if Fðx1; x2; . . . ; xnÞ is homogeneous of degree
p then (see Problem 6.25)

x1
@F

@x1
þ x2

@F

@x2
þ � � � þ xn

@F

@xn
¼ pF ð11Þ
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IMPLICIT FUNCTIONS

In general, an equation such as Fðx; y; zÞ ¼ 0 defines one variable, say z, as a function of the other
two variables x and y. Then z is sometimes called an implicit function of x and y, as distinguished from a
so-called explicit function f, where z ¼ f ðx; yÞ, which is such that F ½x; y; f ðx; yÞ� � 0.

Differentiation of implicit functions requires considerable discipline in interpreting the independent
and dependent character of the variables and in distinguishing the intent of one’s notation. For
example, suppose that in the implicit equation F ½x; y; f ðx; zÞ� ¼ 0, the independent variables are x and

y and that z ¼ f ðx; yÞ. In order to find
@f

@x
and

@f

@y
, we initially write (observe that Fðx; t; zÞ is zero for all

domain pairs ðx; yÞ, in other words it is a constant):

0 ¼ dF ¼ Fx dxþ Fy dyþ Fz dz

and then compute the partial derivatives Fx;Fy;Fz as though y; y; z constituted an independent set of
variables. At this stage we invoke the dependence of z on x and y to obtain the differential form

dz ¼ @f

@x
dxþ @f

@y
dy. Upon substitution and some algebra (see Problem 6.30) the following results are

obtained:

@f

@x
¼ �Fx

Fz

;
@f

@y
¼ �Fy

Fz

EXAMPLE. If 0 ¼ Fðx; y; zÞ ¼ x2zþ yz2 þ 2xy2 � z3 and z ¼ f ðx; yÞ then Fx ¼ 2xzþ 2y2, Fy ¼ z2 þ 4xy.
Fz ¼ x2 þ 2yz� 3z2. Then

@f

@x
¼ � ð2xzþ 2y2Þ

x2 þ 2yz� 3z2
;

@f

@y
¼ � ðz2 þ 4xyÞ

x2 þ 2yz� 3x2

Observe that f need not be known to obtain these results. If that information is available then (at
least theoretically) the partial derivatives may be expressed through the independent variables x and y.

JACOBIANS

If Fðu; vÞ and Gðu; vÞ are differentiable in a region, the Jacobian determinant, or briefly the Jacobian,
of F and G with respect to u and v is the second order functional determinant defined by

@ðF;GÞ
@ðu; vÞ ¼

@F

@u

@F

@v
@G

@u

@G

@v

















































¼ Fu Fv

Gu Gv































ð7Þ

Similarly, the third order determinant

@ðF;G;HÞ
@ðu; v;wÞ ¼

Fu Fv Fw

Gu Gv Gw

Hu Hv Hw





































is called the Jacobian of F , G, and H with respect to u, v, and w. Extensions are easily made.

PARTIAL DERIVATIVES USING JACOBIANS

Jacobians often prove useful in obtaining partial derivatives of implicit functions. Thus, for
example, given the simultaneous equations

Fðx; y; u; vÞ ¼ 0; Gðx; y; u; vÞ ¼ 0
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we may, in general, consider u and v as functions of x and y. In this case, we have (see Problem 6.31)

@u

@x
¼ �

@ðF;GÞ
@ðx; vÞ
@ðF;GÞ
@ðu; vÞ

;
@u

@y
¼ �

@ðF;GÞ
@ðy; vÞ
@ðF;GÞ
@ðu; vÞ

;
@v

@x
¼ �

@ðF;GÞ
@ðu; xÞ
@ðF;GÞ
@ðu; vÞ

;
@v

@y
¼ �

@ðF;GÞ
@ðu; yÞ
@ðF;GÞ
@ðu; vÞ

The ideas are easily extended. Thus if we consider the simultaneous equations

Fðu; v;w; x; yÞ ¼ 0; Gðu; v;w; x; yÞ ¼ 0; Hðu; v;w; x; yÞ ¼ 0

we may, for example, consider u, v, and w as functions of x and y. In this case,

@u

@x
¼ �

@ðF;G;HÞ
@ðx; v;wÞ
@ðF;G;HÞ
@ðu; v;wÞ

;
@w

@y
¼ �

@ðF;G;HÞ
@ðu; v; yÞ
@ðF;G;HÞ
@ðu; v;wÞ

with similar results for the remaining partial derivatives (see Problem 6.33).

THEOREMS ON JACOBIANS

In the following we assume that all functions are continuously differentiable.

1. A necessary and sufficient condition that the equations Fðu; v; x; y; zÞ ¼ 0, Gðu; v; x; y; zÞ ¼ 0

can be solved for u and v (for example) is that
@ðF;GÞ
@ðu; vÞ is not identically zero in a region r.

Similar results are valid for m equations in n variables, where m < n.

2. If x and y are functions of u and v while u and v are functions of r and s, then (see Problem 6.43)

@ðx; yÞ
@ðr; sÞ ¼ @ðx; yÞ

@ðu; vÞ
@ðu; vÞ
@ðr; sÞ ð9Þ

This is an example of a chain rule for Jacobians. These ideas are capable of generalization (see
Problems 6.107 and 6.109, for example).

3. If u ¼ f ðx; yÞ and v ¼ gðx; yÞ, then a necessary and sufficient condition that a functional relation

of the form �ðu; vÞ ¼ 0 exists between u and v is that
@ðu; vÞ
@ðx; yÞ be identically zero. Similar results

hold for n functions of n variables.

Further discussion of Jacobians appears in Chapter 7 where vector interpretations are employed.

TRANSFORMATIONS

The set of equations

x ¼ Fðu; vÞ
y ¼ Gðu; vÞ

�

ð10Þ

defines, in general, a transformation or mapping which establishes a correspondence between points in the
uv and xy planes. If to each point in the uv plane there corresponds one and only one point in the xy
plane, and conversely, we speak of a one-to-one transformation or mapping. This will be so if F and G
are continuously differentiable with Jacobian not identically zero in a region. In such case (which we
shall assume unless otherwise stated) equations (10) are said to define a continuously differentiable
transformation or mapping.
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Under the transformation (10) a closed region r of the xy plane is, in general, mapped into a closed
region r 0 of the uv plane. Then if �Axy and �Auv denote respectively the areas of these regions, we can
show that

lim
�Axy

�Auv

¼ @ðx; yÞ
@ðu; vÞ
























ð11Þ

where lim denotes the limit as �Axy (or �Auv) approaches zero. The Jacobian on the right of (11) is
often called the Jacobian of the transformation (10).

If we solve (10) for u and v in terms of x and y, we obtain the transformation u ¼ f ðx; yÞ, v ¼ gðx; yÞ
often called the inverse transformation corresponding to (10). The Jacobians

@ðu; vÞ
@ðx; yÞ and

@ðx; yÞ
@ðu; vÞ of these

transformations are reciprocals of each other (see Problem 6.43). Hence, if one Jacobian is different
from zero in a region, so also is the other.

The above ideas can be extended to transformations in three or higher dimensions. We shall deal
further with these topics in Chapter 7, where use is made of the simplicity of vector notation and
interpretation.

CURVILINEAR COORDINATES

If ðx; yÞ are the rectangular coordinates of a point in the xy plane, we can think of ðu; vÞ as also
specifying coordinates of the same point, since by knowing ðu; vÞ we can determine ðx; yÞ from (10). The
coordinates ðu; vÞ are called curvilinear coordinates of the point.

EXAMPLE. The polar coordinates ð�; �Þ of a point correspond to the case u ¼ �, v ¼ �. In this case the
transformation equations (10) are x ¼ � cos�, y ¼ � sin�.

For curvilinear coordinates in higher dimensional spaces, see Chapter 7.

MEAN VALUE THEOREM

If f ðx; yÞ is continuous in a closed region and if the first partial derivatives exist in the open region
(i.e., excluding boundary points), then

f ðx0 þ h; y0 þ kÞ � f ðx0; y0Þ ¼ h fxðx0 þ �h; y0 þ �kÞ þ k fyðx0 þ �h; y0 þ �kÞ 0 < � < 1 ð12Þ
This is sometimes written in a form in which h ¼ �x ¼ x� x0 and k ¼ �y ¼ y� y0.

Solved Problems

FUNCTIONS AND GRAPHS

6.1. If f ðx; yÞ ¼ x3 � 2xyþ 3y2, find: (a) f ð�2; 3Þ; ðbÞ f
1

x
;
2

y

� �

; ðcÞ f ðx; yþ kÞ � f ðx; yÞ
k

;

k 6¼ 0.

ðaÞ f ð�2; 3Þ ¼ ð�2Þ3 � 2ð�2Þð3Þ þ 3ð3Þ2 ¼ �8þ 12þ 27 ¼ 31

ðbÞ f
1

x
;
2

y

� �

¼ 1

x

� �3

�2
1

x

� �

2

y

� �

þ 3
2

y

� �2

¼ 1

x3
� 4

xy
þ 12

y2
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ðcÞ f ðx; yþ kÞ � f ðx; yÞ
k

¼ 1

k
f½x3 � 2xðyþ kÞ þ 3ðyþ kÞ2� � ½x3 � 2xyþ 3y2�g

¼ 1

k
ðx3 � 2xy� 2kxþ 3y2 þ 6kyþ 3k2 � x2 þ 2xy� 3y2Þ

¼ 1

k
ð�2kxþ 6kyþ 3k2Þ ¼ �2xþ 6yþ 3k:

6.2. Give the domain of definition for which each of the following functions are defined and real, and
indicate this domain graphically.

(a) f ðx; yÞ ¼ lnfð16� x2 � y2Þðx2 þ y2 � 4Þg
The function is defined and real for all points ðx; yÞ such that

ð16� x2 � y2Þðx2 þ y2 � 4Þ > 0; i.e., 4 < x2 þ y2 < 16

which is the required domain of definition. This point set consists of all points interior to the circle of
radius 4 with center at the origin and exterior to the circle of radius 2 with center at the origin, as in the
figure. The corresponding region, shown shaded in Fig. 6-5 below, is an open region.

(b) f ðx; yÞ ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

6� ð2xþ 3yÞp

The function is defined and real for all points ðx; yÞ such that 2xþ 3y @ 6, which is the required
domain of definition.

The corresponding (unbounded) region of the xy plane is shown shaded in Fig. 6-6 above.

6.3. Sketch and name the surface in three-dimensional space represented by each of the following.
What are the traces on the coordinate planes?
(a) 2xþ 4yþ 3z ¼ 12.

Trace on xy plane ðz ¼ 0Þ is the straight line xþ 2y ¼ 6, z ¼ 0:
Trace on yz plane ðx ¼ 0Þ is the straight line 4yþ 3z ¼ 12, x ¼ 0.

Trace on xz plane ðy ¼ 0Þ is the straight line 2xþ 3z ¼ 12, y ¼ 0.

These are represented by AB, BC; and AC in Fig. 6-7.

The surface is a plane intersecting the x-, y-, and z-axes in the
points Að6; 0; 0Þ, Bð0; 3; 0Þ, Cð0; 0; 4Þ. The lengths OA ¼ 6, OB ¼ 3,
OC ¼ 4 are called the x, y, and z intercepts, respectively.

ðbÞ x2

a2
þ y2

b2
� z2

c2
¼ 1

Trace on xy plane ðz ¼ 0Þ is the ellipse
x2

a2
þ y2

b2
¼ 1, z ¼ 0.

Trace on yz plane ðx ¼ 0Þ is the hyperbola
y2

b2
� z2

c2
¼ 1, x ¼ 0.
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Trace on xz plane ðy ¼ 0Þ is the hyperbola
x2

a2
� z2

c2
¼ 1, y ¼ 0.

Trace on any plane z ¼ p parallel to the xy plane is the ellipse

x2

a2ð1þ p2=c2Þ þ
y2

b2ð1þ p2=c2Þ ¼ 1

As j pj increases from zero, the elliptic cross section increases in size.

The surface is a hyperboloid of one sheet (see Fig. 6-8).

LIMITS AND CONTINUITY

6.4. Prove that lim
x!1
y!2

ðx2 þ 2yÞ ¼ 5.

Method 1, using definition of limit.

We must show that given any � > 0, we can find � > 0 such that jx2 þ 2y� 5j < � when 0 < jx� 1j < �,
0 < j y� 2j < �.

If 0 < jx� 1j < � and 0 < j y� 2j < �, then 1� � < x < 1þ � and 2� � < y < 2þ �, excluding
x ¼ 1; y ¼ 2.

Thus, 1� 2�þ �2 < x2 < 1þ 2�þ �2 and 4� 2� < 2y < 4þ 2�. Adding,

5� 4�þ �2 < x2 þ 2y < 5þ 4�þ �2 or � 4�þ �2 < x2 þ 2y� 5 < 4�þ �2

Now if �@ 1, it certainly follows that �5� < x2 þ 2y� 5 < 5�, i.e., jx2 þ 2y� 5j < 5� whenever
0 < jx� 1j < �, 0 < j y� 2j < �. Then choosing 5� ¼ �, i.e., � ¼ �=5 (or � ¼ 1, whichever is smaller), it
follows that jx2 þ 2y� 5j < � when 0 < jx� 1j < �, 0 < j y� 2j < �, i.e., lim

x!1
y!2

ðx2 þ 2yÞ ¼ 5.

Method 2, using theorems on limits.

lim
x!1
y!2

ðx2 þ 2yÞ ¼ lim
x!1
y!2

x2 þ lim
x!1
y!2

2y ¼ 1þ 4 ¼ 5

6.5. Prove that f ðx; yÞ ¼ x2 þ 2y is continuous at ð1; 2Þ.
By Problem 6.4, lim

x!1
y!2

f ðx; yÞ ¼ 5. Also, f ð1; 2Þ ¼ 12 þ 2ð2Þ ¼ 5.

Then lim
x!1
y!2

f ðx; yÞ ¼ f ð1; 2Þ and the function is continuous at ð1; 2Þ.
Alternatively, we can show, in much the same manner as in the first method of Problem 6.4, that given

any � > 0 we can find � > 0 such that j f ðx; yÞ � f ð1; 2Þj < � when jx� 1j < �; j y� 2j < �.

6.6. Determine whether f ðx; yÞ ¼ x2 þ 2y; ðx; yÞ 6¼ ð1; 2Þ
0; ðx; yÞ ¼ ð1; 2Þ












.

(a) has a limit as x ! 1 and y ! 2, (b) is continuous at ð1; 2Þ.
(a) By Problem 6.4, it follows that lim

x!1
y!2

f ðx; yÞ ¼ 5, since the limit has nothing to do with the value at ð1; 2Þ.

(b) Since lim
x!1
y!2

f ðx; yÞ ¼ 5 and f ð1; 2Þ ¼ 0, it follows that lim
x!1
y!2

f ðx; yÞ 6¼ f ð1; 2Þ. Hence, the function is

discontinuous at ð1; 2Þ:

6.7. Investigate the continuity of f ðx; yÞ ¼
x2 � y2

x2 þ y2
ðx; yÞ 6¼ ð0; 0Þ

0 ðx; yÞ ¼ ð0; 0Þ

8

<

:

at ð0; 0Þ.

Let x ! 0 and y ! 0 in such a way that y ¼ mx (a line in the xy plane). Then along this line,

lim
x!0
y!0

x2 � y2

x2 þ y2
¼ lim

x!0

x2 �m2x2

x2 þm2x2
¼ lim

x!0

x2ð1�m2Þ
x2ð1þm2Þ ¼

1�m2

1þm2
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Since the limit of the function depends on the manner of approach to ð0; 0Þ (i.e., the slope m of the line),

the function cannot be continuous at ð0; 0Þ.

Another method:

Since lim
x!0

lim
y!0

x2 � y2

x2 þ y2

( )

¼ lim
x!0

x2

x2
¼ 1 and lim

y¼0
lim
x!0

x2 � y2

x2 þ y2

( )

¼ �1 are not equal, lim
x!0
y!0

f ðx; yÞ

cannot exist. Hence, f ðx; yÞ cannot be continuous at ð0; 0Þ.

PARTIAL DERIVATIVES

6.8. If f ðx; yÞ ¼ 2x2 � xyþ y2, find (a) @f =@x, and (b) @f =@y at ðx0; y0Þ directly from the definition.

ðaÞ @f

@x













ðx0 :y0Þ
¼ fxðx0; y0Þ ¼ lim

h!0

f ðx0 þ h; y0Þ � f ðx0; y0Þ
h

¼ lim
h!0

½2ðx0 þ hÞ2 � ðx0 þ hÞy0 þ y20� ¼ ½2x20 � x0y0 þ y20�
h

¼ lim
h!0

4hx0 þ 2h2 � hy0
h

¼ lim
h!0

ð4x0 þ 2h� y0Þ ¼ 4x0 � y0

ðbÞ @f

@y













ðx0;y0Þ
¼ fyðx0; y0Þ ¼ lim

k!0

f ðx0; y0 þ kÞ � f ðx0; y0Þ
k

¼ lim
k!0

½2x20 � x0ðy0 þ kÞ þ ð y0 þ kÞ2� � ½2x20 � x0y0 þ y20�
k

¼ lim
k!0

�kx0 þ 2ky0 þ k2

k
¼ lim

k!0
ð�x0 þ 2y0 þ kÞ ¼ �x0 þ 2y0

Since the limits exist for all points ðx0; y0Þ, we can write fxðx; yÞ ¼ fx ¼ 4x� y, fyðx; yÞ ¼ fy ¼
�xþ 2y which are themselves functions of x and y.

Note that formally fxðx0; y0Þ is obtained from f ðx; yÞ by differentiating with respect to x, keeping y
constant and then putting x ¼ x0; y ¼ y0. Similarly, fyðx0; y0Þ is obtained by differentiating f with
respect to y, keeping x constant. This procedure, while often lucrative in practice, need not always

yield correct results (see Problem 6.9). It will work if the partial derivatives are continuous.

6.9. Let f ðx; yÞ ¼ xy=ðx2 þ y2Þ ðx; yÞ 6¼ ð0; 0Þ
0 otherwise

:

�

Prove that (a) fxð0; 0Þ and fyð0; 0Þ both exist but

that (b) f ðx; yÞ is discontinuous at ð0; 0Þ.

ðaÞ fxð0; 0Þ ¼ lim
h!0

f ðh; 0Þ � f ð0; 0Þ
h

¼ lim
h!0

0

h
¼ 0

fyð0; 0Þ ¼ lim
k!0

f ð0; 0Þ � f ð0; 0Þ
k

¼ lim
k!0

0

k
¼ 0

(b) Let ðx; yÞ ! ð0; 0Þ along the line y ¼ mx in the xy plane. Then lim
x!0
y!0

f ðx; yÞ ¼ lim
x!0

mx2

x2 þm2x2
¼ m

1þm2

so that the limit depends on m and hence on the approach and therefore does not exist. Hence, f ðx; yÞ
is not continuous at ð0; 0Þ:

Note that unlike the situation for functions of one variable, the existence of the first partial
derivatives at a point does not imply continuity at the point.

Note also that if ðx; yÞ 6¼ ð0; 0Þ, fx ¼ y2 � x2y

ðx2 þ y2Þ2, fy ¼
x3 � xy2

ðx2 þ y2Þ2 and fxð0; 0Þ, fyð0; 0Þ cannot be

computed from them by merely letting x ¼ 0 and y ¼ 0. See remark at the end of Problem 4.5(b)
Chapter 4.

6.10. If �ðx; yÞ ¼ x3yþ exy
2

, find (a) �x; ðbÞ �y; ðcÞ �xx; ðdÞ �yy; ðeÞ �xy; ð f Þ �yx.
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ðaÞ �x ¼ @�

@x
¼ @

@x
ðx3yþ exy

2 Þ ¼ 3x2yþ exy
2 � y2 ¼ 3x2yþ y2exy

2

ðbÞ �y ¼
@�

@y
¼ @

@y
ðx3yþ exy

2 Þ ¼ x3 þ exy
2 � 2xy ¼ x3 þ 2xy exy

2

ðcÞ �xx ¼ @2�

@x2
¼ @

@x

@�

@x

� �

¼ @

@x
ð3x2yþ y2 exy

2 Þ ¼ 6xyþ y2ðexy2 � y2Þ ¼ 6xyþ y4 exy
2

ðdÞ �yy ¼
@2�

@y2
¼ @

@y
ðx3 þ 2xy exy

2 Þ ¼ 0þ 2xy � @
@y

ðexy2 Þ þ exy
2 @

@y
ð2xyÞ

¼ 2xy � exy2 � 2xyþ exy
2 � 2x ¼ 4x2y2exy

2 þ 2x exy
2

ðeÞ �xy ¼
@2�

@y @x
¼ @

@y

@�

@x

� �

¼ @

@y
ð3x2yþ y2 exy

2 Þ ¼ 3x2 þ y2 � exy2 � 2xyþ exy
2 � 2y

¼ 3x2 þ 2xy3 exy
2 þ 2y exy

2

ð f Þ �yx ¼ @2�

@x @y
¼ @

@x

@�

@y

� �

¼ @

@x
ðx3 þ 2xy exy

2 Þ ¼ 3x2 þ 2xy � exy2 � y2 þ exy
2 � 2y

¼ 3x2 þ 2xy3 exy
2 þ 2y exy

2

Note that �xy ¼ �yx in this case. This is because the second partial derivatives exist and are

continuous for all ðx; yÞ in a region r. When this is not true we may have �xy 6¼ �yx (see Problem 6.41,
for example).

6.11. Show that Uðx; y; zÞ ¼ ðx2 þ y2 þ z2Þ�1=2 satisfies Laplace’s partial differential equation
@2U

@x2
þ @

2U

@y2
þ @2U

@z2
¼ 0.

We assume here that ðx; y; zÞ 6¼ ð0; 0; 0Þ. Then

@U

@x
¼ � 1

2 ðx2 þ y2 þ z2Þ�3=2 � 2x ¼ �xðx2 þ y2 þ z2Þ�3=2

@2U

@x2
¼ @

@x
½�xðx2 þ y2 þ z2Þ�3=2� ¼ ð�xÞ½� 3

2 ðx2 þ y2 þ z2Þ�5=2 � 2x� þ ðx2 þ y2 þ z2Þ�3=2 � ð�1Þ

¼ 3x2

ðx2 þ y2 þ z2Þ5=2 �
ðx2 þ y2 þ z2Þ

ðx2 þ y2 þ z2Þ5=2 ¼
2x2 � y2 � z2

ðx2 þ y2 þ z2Þ5=2

@2U

@y2
¼ 2y2 � x2 � z2

ðx2 þ y2 þ z2Þ5=2 ;
@2U

@x2
¼ 2z2 � x2 � y2

ðx2 þ y2 þ z2Þ5=2 :Similarly

@2U

@x2
þ @

2U

@y2
þ @

2U

@z2
¼ 0:Adding,

6.12. If z ¼ x2 tan�1 y

x
, find

@2z

@x @y
at ð1; 1Þ.

@z

@y
¼ x2 � 1

1þ ð y=xÞ2
@

@y

y

x

� �

¼ x2 � x2

x2 þ y2
� 1
x
¼ x3

x2 þ y2
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@2z

@x @y
¼ @

@x

@z

@y

� �

¼ @

@x

x3

x2 þ y2

 !

¼ ðx2 þ y2Þð3x2Þ � ðx3Þð2xÞ
ðx2 þ y2Þ2 ¼ 2 � 3� 1 � 2

22
¼ 1 at ð1; 1Þ

The result can be written zxyð1; 1Þ ¼ 1:
Note: In this calculation we are using the fact that zxy is continuous at ð1; 1Þ (see remark at the end of

Problem 6.9).

6.13. If f ðx; yÞ is defined in a region r and if fxy and fyx exist and are continuous at a point of r, prove
that fxy ¼ fyx at this point.

Let ðx0; y0Þ be the point of r. Consider

G ¼ f ðx0 þ h; y0 þ kÞ � f ðx0; y0 þ kÞ � f ðx0 þ h; y0Þ þ f ðx0; y0Þ
Define (1) �ðx; yÞ ¼ f ðxþ h; yÞ � f ðx; yÞ (2)  ðx; yÞ ¼ f ðx; yþ kÞ � f ðx; yÞ

Then (3) G ¼ �ðx0; y0 þ kÞ � �ðx0; y0Þ (4) G ¼  ðx0 þ h; y0Þ �  ðx0; y0Þ
Applying the mean value theorem for functions of one variable (see Page 72) to (3) and (4), we have

(5) G ¼ k�yðx0; y0 þ �1kÞ ¼ kf fyðx0 þ h; y0 þ �1kÞ � fyðx0; y0 þ �1kÞg 0 < �1 < 1

(6) G ¼ h xðx0 þ �2h; y0Þ ¼ hf fxðx0 þ �2h; y0 þ kÞ � fxðx0 þ �2h; y0Þg 0 < �2 < 1

Applying the mean value theorem again to (5) and (6), we have

(7) G ¼ hk fyxðx0 þ �3h; y0 þ �1kÞ 0 < �1 < 1; 0 < �3 < 1

(8) G ¼ hk fxyðx0 þ �2h; y0 þ �4kÞ 0 < �2 < 1; 0 < �4 < 1

From (7) and (8) we have

ð9Þ fyxðx0 þ �3h; y0 þ �1kÞ ¼ fxyðx0 þ �2h; y0 þ �4kÞ
Letting h ! 0 and k ! 0 in (9) we have, since fxy and fyx are assumed continuous at ðx0; y0Þ,

fyxðx0; y0Þ ¼ fxyðx0; y0Þ
as required. For example where this fails to hold, see Problem 6.41.

DIFFERENTIALS

6.14. Let f ðx; yÞ have continuous first partial derivatives in a region r of the xy plane. Prove that

�f ¼ f ðxþ�x; yþ�yÞ � f ðx; yÞ ¼ fx�xþ fy�yþ �1�xþ �2�y

where �1 and �2 approach zero as �x and �y approach zero.

Applying the mean value theorem for functions of one variable (see Page 72), we have

ð1Þ �f ¼ f f ðxþ�x; yþ�yÞ � f ðx; yþ�yÞg þ f f ðx; yþ�yÞ � f ðx; yÞg
¼ �x fxðxþ �1�x; yþ�yÞ þ�y fyðx; yþ �2�yÞ 0 < �1 < 1; 0 < �2 < 1

Since, by hypothesis, fx and fy are continuous, it follows that

fxðxþ �1�x; yþ�yÞ ¼ fxðx; yÞ þ �1; fyðx; yþ �2�yÞ ¼ fyðx; yÞ þ �2
where �1 ! 0, �2 ! 0 as �x ! 0 and �y ! 0.

Thus, �f ¼ fx�xþ fy�yþ �1�xþ �2�y as required.
Defining �x ¼ dx;�y ¼ dy, we have �f ¼ fx dxþ fy dyþ �1 dxþ �2 dy:
We call df ¼ fx dxþ fy dy the differential of f (or z) or the principal part of �f (or �z).

6.15. If z ¼ f ðx; yÞ ¼ x2y� 3y, find (a) �z; ðbÞ dz: ðcÞ Determine �z and dz if x ¼ 4, y ¼ 3,
�x ¼ �0:01, �y ¼ 0:02. (d) How might you determine f ð5:12; 6:85Þ without direct computa-
tion?
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Solution:

ðaÞ �z ¼ f ðxþ�x; yþ�yÞ � f ðx; yÞ
¼ fðxþ�xÞ2ð yþ�yÞ � 3ð yþ�yÞg � fx2y� 3yg
¼ 2xy�xþ ðx2 � 3Þ�y
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

ðAÞ
þ ð�xÞ2yþ 2x�x�yþ ð�xÞ2 �y
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

ðBÞ

The sum (A) is the principal part of �z and is the differential of z, i.e., dz. Thus,

ðbÞ dz ¼ 2xy�xþ ðx2 � 3Þ�y ¼ 2xy dxþ ðx2 � 3Þ dy

Another method: dz ¼ @z

@x
dxþ @z

@y
dy ¼ 2xy dxþ ðx2 � 3Þ dy

ðcÞ �z ¼ f ðxþ�x; yþ�yÞ � f ðx; yÞ ¼ f ð4� 0:01; 3þ 0:02Þ � f ð4; 3Þ
¼ fð3:99Þ2ð3:02Þ � 3ð3:02Þg � fð4Þ2ð3Þ � 3ð3Þg ¼ 0:018702

dz ¼ 2xy dxþ ðx2 � 3Þ dy ¼ 2ð4Þð3Þð�0:01Þ þ ð43 � 3Þð0:02Þ ¼ 0:02

Note that in this case �z and dz are approximately equal, because �x ¼ dx and �y ¼ dy are

sufficiently small.

(d) We must find f ðxþ�x; yþ�yÞ when xþ�x ¼ 5:12 and y ¼ �y ¼ 6:85. We can accomplish this by
choosing x ¼ 5, �x ¼ 0:12, y ¼ 7, �y ¼ �0:15. Since �x and �y are small, we use the fact that

f ðxþ�x; yþ�yÞ ¼ f ðx; yÞ þ�z is approximately equal to f ðx; yÞ þ dz, i.e., zþ dz.

Now z ¼ f ðx; yÞ ¼ f ð5; 7Þ ¼ ð5Þ2ð7Þ � 3ð7Þ ¼ 154

dz ¼ 2xy dxþ ðx2 � 3Þ dy ¼ 2ð5Þð7Þð0:12Þ þ ð52 � 3Þð�0:15Þ ¼ 5:1:

Then the required value is 154þ 5:1 ¼ 159:1 approximately. The value obtained by direct com-
putation is 159.01864.

6.16. (a) Let U ¼ x2ey=x. Find dU. (b) Show that ð3x2y� 2y2Þ dxþ ðx3 � 4xyþ 6y2Þ dy can be
written as an exact differential of a function �ðx; yÞ and find this function.

(a) Method 1:

@U

@x
¼ x2ey=x � y

x2

� �

þ 2xey=x;
@U

@y
¼ x2ey=x

1

x

� �

dU ¼ @U

@x
dxþ @U

@y
dy ¼ ð2xey=x � yey=xÞ dxþ xey=x dyThen

Method 2:

dU ¼ x2 dðey=xÞ þ ey=x dðx2Þ ¼ x2ey=x dðy=xÞ þ 2xey=x dx

¼ x2ey=x
x dy� y dx

x2

� �

þ 2xey=x dx ¼ ð2xey=x � yey=xÞ dxþ xey=x dy

(b) Method 1:

Suppose that ð3x2y� 2y2Þ dxþ ðx3 � 4xyþ 6y2Þ dy ¼ d� ¼ @�

@x
dxþ @�

@y
dy:

Then (1)
@�

@x
¼ 3x2y� 2y2; (2)

@�

@y
¼ x3 � 4xyþ 6y2

From (1), integrating with respect to x keeping y constant, we have

� ¼ x3y ¼ 2xy2 þ FðyÞ
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where FðyÞ is the ‘‘constant’’ of integration. Substituting this into (2) yields

x3 � 4xyþ F 0ð yÞ ¼ x3 � 4xyþ 6y2 from which F 0ð yÞ ¼ 6y2; i.e., Fð yÞ ¼ 2y3 þ c

Hence, the required function is � ¼ x3y� 2xy2 þ 2y3 þ c, where c is an arbitrary constant.

Note that by Theorem 3, Page 122, the existence of such a function is guaranteed, since if
P ¼ 3x2y� 2y2 and Q ¼ x3 � 4xyþ 6y2, then @P=@y ¼ 3x2 � 4y ¼ @Q=@x identically. If @P=@y 6¼
@Q=@x this function would not exist and the given expression would not be an exact differential.

Method 2:

ð3x2y� 2y2Þ dxþ ðx3 � 4xyþ 6y2Þ dy ¼ ð3x2y dxþ x3 dyÞ � ð2y2 dxþ 4xy dyÞ þ 6y2 dy

¼ dðx3yÞ � dð2xy2Þ þ dð2y3Þ ¼ dðx3y� 2xy2 þ 2y3Þ
¼ dðx3y� 2xy2 þ 2y3 þ cÞ

Then the required function is x3y� 2xy2 þ 2y3 þ c.

This method, called the grouping method, is based on one’s ability to recognize exact differential

combinations and is less than Method 1. Naturally, before attempting to apply any method, one should
determine whether the given expression is an exact differential by using Theorem 3, Page 122. See
Theorem 4, Page 122.

DIFFERENTIATION OF COMPOSITE FUNCTIONS

6.17. Let z ¼ f ðx; yÞ and x ¼ �ðtÞ, y ¼  ðtÞ where f ; �;  are assumed differentiable. Prove

dz

dt
¼ @z

@x

dx

dt
þ @z

@y

@y

dt

Using the results of Problem 6.14, we have

dz

dt
¼ lim

�t!0

�z

�t
¼ lim

�t!0

@z

@x

�x

�t
þ @z

@y

�y

�t
þ �1

�x

�t
þ �2

�y

�t

� �

¼ @z

@x

dx

dt
þ @z

@y

dy

dt

since as �t ! 0 we have �x ! 0;�y ! 0; �1 ! 0; �2 ! 0;
�x

�t
! dx

dt
;
�y

�t
! dy

dt
:

6.18. If z ¼ exy
2

, x ¼ t cos t, y ¼ t sin t, computer dz=dt at t ¼ �=2.

dz

dt
¼ @z

@x

dx

dt
þ @z

@y

dy

dt
¼ ð y2exy2 Þð�t sin tþ cos tÞ þ ð2xyexy2 Þðt cos tþ sin tÞ:

At t ¼ �=2;x ¼ 0; y ¼ �=2: Then
dz

dt













t¼�=2
¼ ð�2=4Þð��=2Þ þ ð0Þð1Þ ¼ ��3=8:

Another method. Substitute x and y to obtain z ¼ et
3 sin2 t cos t and then differentiate.

6.19. If z ¼ f ðx; yÞ where x ¼ �ðu; vÞ and y ¼  ðu; vÞ, prove that

ðaÞ @z

@u
¼ @z

@x

@x

@u
þ @z

@y

@y

@u
; ðbÞ @z

@v
¼ @z

@x

@x

@v
þ @z

@y

@y

@v
:

(a) From Problem 6.14, assuming the differentiability of f ; �;  , we have

@z

@u
¼ lim

�u!0

�z

�u
¼ lim

�u!0

@z

@x

�x

�u
þ @z

@y

�y

�u
þ �1

�x

�u
þ �2

�y

�u

� �

¼ @z

@x

@x

@u
þ @z

@y

@y

@u

(b) The result is proved as in (a) by replacing �u by �v and letting �v ! 0.
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6.20. Prove that dz ¼ @z

@x
dxþ @z

@y
dy even if x and y are dependent variables.

Suppose x and y depend on three variables u; v;w, for example. Then

ð1Þ dx ¼ xu duþ xv dvþ xw dw ð2Þ dy ¼ yu duþ yv dvþ yw dw

zx dxþ zy dy ¼ ðzxxu þ zyyuÞ duþ ðzxxv þ zyyvÞ dvþ ðzxxw þ zyywÞ dwThus,

¼ zu duþ zv dvþ zw dw ¼ dz

using obvious generalizations of Problem 6.19.

6.21. If T ¼ x3 � xyþ y3, x ¼ � cos�, y ¼ � sin�, find (a) @T=@�, (b) @T=@�.

@T

@�
¼ @T

@x

@x

@�
þ @T
@y

@y

@�
¼ ð3x2 � yÞðcos�Þ þ ð3y2 � xÞðsin�Þ

@T

@�
¼ @T

@x

@x

@�
þ @T
@y

@y

@�
¼ ð3x2 � yÞð�� sin�Þ þ ð3y2 � xÞð� cos�Þ

This may also be worked by direct substitution of x and y in T .

6.22. If U ¼ z sin y=x where x ¼ 3r2 þ 2s, y ¼ 4r� 2s3, z ¼ 2r2 � 3s2, find (a) @U=@r; ðbÞ @U=@s.

ðaÞ @U

@r
¼ @U

@x

@x

@r
þ @U
@y

@y

@r
þ @U
@z

@z

@r

¼ z cos
y

x

� �

� y

x2

� �� �

ð6rÞ þ z cos
y

x

� � 1

x

� �� �

ð4Þ þ sin
y

x

� �

ð4rÞ

¼ � 6ryz

x2
cos

y

x
þ 4z

x
cos

y

x
þ 4r sin

y

x

ðbÞ @U

@s
¼ @U

@x

@x

@s
þ @U
@y

@y

@s
þ @U
@z

@z

@s

¼ z cos
y

x

� �

� y

x2

� �� �

ð2Þ þ z cos
y

x

� � 1

x

� �� �

ð�6s2Þ þ sin
y

x

� �

ð�6sÞ

¼ � 2yz

x2
cos

y

x
� 6s2z

x
cos

y

x
� 6s sin

y

x

6.23. If x ¼ � cos�, y ¼ � sin�, show that
@V

@x

� �2

þ @V

@y

� �2

¼ @V

@�

� �2

þ 1

�2
@V

@�

� �2

.

Using the subscript notation for partial derivatives, we have

V� ¼ Vxx� þ Vyy� ¼ Vx cos�þ Vy sin� ð1Þ
V� ¼ Vxx� þ Vyy� ¼ Vxð�� sin�Þ þ Vyð � cos�Þ ð2Þ

Dividing both sides of (2) by �, we have

1

�
V� ¼ �Vx sin�þ Vy cos� ð3Þ

Then from (1) and (3), we have

V2
� þ

1

�2
V2
� ¼ ðVx cos�þ Vy sin�Þ2 þ ð�Vx sin�þ Vy cos�Þ2 ¼ V2

x þ V2
y

6.24. Show that z ¼ f ðx2yÞ, where f is differentiable, satisfies xð@z=@xÞ ¼ 2yð@z=@yÞ.
Let x2y ¼ u. Then z ¼ f ðuÞ. Thus
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@z

@x
¼ @z

@u

@u

@x
¼ f 0ðuÞ � 2xy; @z

@y
¼ @z

@u

@u

@y
¼ f 0ðuÞ � x2

Then x
@z

@x
¼ f 0ðuÞ � 2x2y; 2y

@z

@y
¼ f 0ðuÞ � 2x2y and so x

@z

@x
¼ 2y

@z

@y
:

Another method:

We have dz ¼ f 0ðx2yÞ dðx2yÞ ¼ f 0ðx2yÞð2xy dxþ x2 dyÞ:

Also, dz ¼ @z

@x
dxþ @z

@y
dy:

Then
@z

@x
¼ 2xy f 0ðx2yÞ; @z

@y
¼ x3 f 0ðx2yÞ.

Elimination of f 0ðx2yÞ yields x
@z

@x
¼ 2y

@z

@y
.

6.25. If for all values of the parameter � and for some constant p, Fð�x; �yÞ ¼ �pFðx; yÞ identically,
where F is assumed differentiable, prove that xð@F=@xÞ þ yð@F=@yÞ ¼ pF .

Let �x ¼ u, �y ¼ v. Then

Fðu; vÞ ¼ �pFðx; yÞ ð1Þ
The derivative with respect to � of the left side of (1) is

@F

@�
¼ @F

@u

@u

@�
þ @F
@v

dv

@�
¼ @F

@u
xþ @F

@v
y

The derivative with respect to � of the right side of (1) is p�p�1F . Then

x
@F

@u
þ y

@F

@v
¼ p�p�1F ð2Þ

Letting � ¼ 1 in (2), so that u ¼ x; v ¼ y, we have xð@F=@xÞ þ yð@F=@yÞ ¼ pF .

6.26. If Fðx; yÞ ¼ x4y2 sin�1 y=x, show that xð@F=@xÞ þ yð@F=@yÞ ¼ 6F .

Since Fð�x; �yÞ ¼ ð�xÞ4ð�yÞ2 sin�1 �y=�x ¼ �6x4y2 sin�1 y=x ¼ �6Fðx; yÞ, the result follows from Pro-
blem 6.25 with p ¼ 6. It can of course also be shown by direct differentiation.

6.27. Prove that Y ¼ f ðxþ atÞ þ gðx� atÞ satisfies @2Y=@t2 ¼ a2ð@2Y=@x2Þ, where f and g are assumed
to be at least twice differentiable and a is any constant.

Let u ¼ xþ at; v ¼ x� at so that Y ¼ f ðuÞ þ gðvÞ. Then if f 0ðuÞ � df =du, g 0ðvÞ � dg=dv,

@Y

@t
¼ @Y

@u

@u

@t
þ @Y
@v

@v

@t
¼ a f 0ðuÞ � ag 0ðvÞ; @Y

@x
¼ @Y

@x

@u

@x
þ @Y
@v

@v

@x
¼ f 0ðuÞ þ g 0ðvÞ

By further differentiation, using the notation f 00ðuÞ � d2 f =du2, g 00ðvÞ � d2g=dv2, we have

ð1Þ @2Y

@t2
¼ @Yt

@t
¼ @Yt

@u

@u

@t
þ @Yt

@v

@v

@t
¼ @

@u
fa f 0ðuÞ � a g 0ðvÞgðaÞ þ @

@v
fa f 0ðuÞ � a g 0ðvÞg ð�aÞ

¼ a2 f 00ðuÞ þ a2 g 00ðvÞ

ð2Þ @2Y

@x2
¼ @Yx

@x
¼ @Yx

@u

@u

@x
þ @Yx

@v

@v

@x
¼ @

@u
f f 0ðuÞ þ g 0ðvÞg þ @

@v
f f 0ðuÞ þ g 0ÞðvÞg

¼ f 00ðuÞ þ g 00ðvÞ
Then from (1) and (2), @2Y=@t2 ¼ a2ð@2Y=@x2Þ.
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6.28. If x ¼ 2r� s and y ¼ rþ 2s, find
@2U

@y @x
in terms of derivatives with respect to r and s.

Solving x ¼ 2r� s, y ¼ rþ 2s for r and s: r ¼ ð2xþ yÞ=5, s ¼ ð2y� xÞ=5.
Then @r=@x ¼ 2=5, @s=@x ¼ �1=5, @r=@y ¼ 1=5, @s=@y ¼ 2=5. Hence we have

@U

@x
¼ @U

@r

@r

@x
þ @U
@s

@s

@x
¼ 2

5

@U

@r
� 1

5

@U

@s

@2U

@y @x
¼ @

@y

@U

@x

� �

¼ @

@r

2

5

@U

@r
� 1

5

@U

@s

� �

@r

@y
þ @

@s

2

5

@U

@r
� 1

5

@U

@s

� �

@s

@y

¼ 2

5

@2U

@r2
� 1

5

@2U

@r @s

 !

1

5

� �

þ 2

5

@2U

@s @r
� 1

5

@2U

@s2

 !

2

5

� �

¼ 1

25
2
@2U

@r2
þ 3

@2U

@r @s
� 2

@2U

@s2

 !

assuming U has continuous second partial derivatives.

IMPLICIT FUNCTIONS AND JACOBIANS

6.29. If U ¼ x3y, find dU=dt if (1) x5 þ y ¼ t; ð2) x2 þ y3 ¼ t2.

Equations (1) and (2) define x and y as (implicit) functions of t. Then differentiating with respect to t,
we have

ð3Þ 5x4ðdx=dtÞ þ dy=t ¼ 1 ð4Þ 2xðdx=dtÞ þ 3y2ðdy=dtÞ ¼ 2t

Solving (3) and (4) simultaneously for dx=dt and dy=dt,

dx

dt
¼

1 1
2t 3y2

























5x4 1
2x 3y2

























¼ 3y2 � 2t

15x4y2 � 2x
;

dy

dt
¼

5x4 1
2x 2t

























5x4 1
2x 3y2

























¼ 10x4t� 2x

15x4y2 � 2x

Then
dU

dt
¼ @U

@x

dx

dt
þ @U
@y

dy

dt
¼ ð3x2yÞ 3y2 � 2t

15x4y2 � 2x

 !

þ ðx3Þ 10x4t� 2x

15x4y2 � 2x

 !

:

6.30. If Fðx; y; zÞ ¼ 0 defines z as an implicit function of x and y in a region r of the xy plane, prove
that (a) @z=@x ¼ �Fx=Fz and (b) @z=@y ¼ �Fy=Fz, where Fz 6¼ 0.

Since z is a function of x and y, dz ¼ @z

@x
dxþ @z

@y
dy.

Then dF ¼ @F

@x
dxþ @F

@y
dyþ @F

@z
dz ¼ @F

@x
þ @F
@z

@z

@x

� �

dxþ @F

@y
þ @F
@z

@z

@y

� �

dy ¼ 0.

Since x and y are independent, we have

ð1Þ @F

@x
þ @F
@z

@z

@x
¼ 0 ð2Þ @F

@y
þ @F
@z

@z

@y
¼ 0

from which the required results are obtained. If desired, equations (1) and (2) can be written directly.

6.31. If Fðx; y; u; vÞ ¼ 0 and Gðx; y; u; vÞ ¼ 0, find (a) @u=@x; ðbÞ @u=@y; ðcÞ @v=@x; ðdÞ @v=@y.
The two equations in general define the dependent variables u and v as (implicit) functions of the

independent variables x and y. Using the subscript notation, we have
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ð1Þ dF ¼ Fx dxþ Fy dyþ Fu duþ Fv dv ¼ 0

ð2Þ dG ¼ Gx dxþ Gy dyþ Gu duþ Gv dv ¼ 0

Also, since u and v are functions of x and y,

ð3Þ du ¼ ux dxþ uy dy ð4Þ dv ¼ vx dxþ vy dy:

Substituting (3) and (4) in (1) and (2) yields

ð5Þ dF ¼ ðFx þ Fu ux þ Fv vxÞ dxþ ðFy þ Fu uy þ Fv vyÞ dy ¼ 0

ð6Þ dG ¼ ðGx þ Gu ux þ Gv vxÞ dxþ ðGy þ Gu uy þ Gv vyÞ dy ¼ 0

Since x and y are independent, the coefficients of dx and dy in (5) and (6) are zero. Hence we obtain

ð7Þ Fu ux þ Fv vx ¼ �Fx

Gu ux þ Gv vx ¼ �Gx
ð8Þ Fu uy þ Fv vy ¼ �Fy

Gu uy þ Gv vy ¼ �Gy

��

Solving (7) and (8) gives

ðaÞ ux ¼ @u

@x
¼

�Fx Fv

�Gx Gv

























Fu Fv

Gu Gv

























¼ �
@ðF;GÞ
@ðx; vÞ
@ðF;GÞ
@ðu; vÞ

ðbÞ vx ¼ @v

@x
¼

Fu �Fx

Gu �Gx

























Fu Fv

Gu Gv

























¼ �
@ðF;GÞ
@ðu;xÞ
@ðF;GÞ
@ðu; vÞ

ðcÞ uy ¼
@u

@y
¼

�Fy Fv

�Gy Gv































Fu Fv

Gu Gv

























¼ �
@ðF;GÞ
@ðy; vÞ
@ðF;GÞ
@ðu; vÞ

ðdÞ vy ¼
@v

@y
¼

Fu �Fy

Gu �Gy































Fu Fv

Gu Gv

























¼ �
@ðF;GÞ
@ðu; yÞ
@ðF;GÞ
@ðu; vÞ

The functional determinant
Fu Fv

Gu Gv

























, denoted by
@ðF;GÞ
@ðu; vÞ or J

F;G

u; v

� �

, is the Jacobian of F and G with

respect to u and v and is supposed 6¼ 0.

Note that it is possible to devise mnemonic rules for writing at once the required partial derivatives in
terms of Jacobians (see also Problem 6.33).

6.32. If u2 � v ¼ 3xþ y and u� 2v2 ¼ x� 2y, find (a) @u=@x; ðbÞ @v=@x; ðcÞ @u=@y; ðdÞ @v=@y.
Method 1: Differentiate the given equations with respect to x, considering u and v as functions of x and y.

Then

ð1Þ 2u
@u

@x
� @v

@x
¼ 3 ð2Þ @u

@x
� 4v

@v

@x
¼ 1

Solving,
@u

@x
¼ 1� 12v

1� 8uv
;

@v

@x
¼ 2u� 3

1� 8uv
:

Differentiating with respect to y, we have

ð3Þ 2u
@u

@y
� @v

@y
¼ 1 ð4Þ @u

@y
� 4v

@v

@y
¼ �2

Solving,
@u

@y
¼ �2� 4v

1� 8uv
;

@v

@y
¼ �4u� 1

1� 8uv
:

We have, of course, assumed that 1� 8uv 6¼ 0.

Method 2: The given equations are F ¼ u2 � v� 3x� y ¼ 0, G ¼ u� 2v2 � xþ 2y ¼ 0. Then by Problem
6.31,
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@u

@x
¼ �

@ðF;GÞ
@ðx; vÞ
@ðF;GÞ
@ðu; vÞ

¼ �
Fx Fv

Gx Gv

























Fu Fv

Gu Gv

























¼ �
�3 �1
�1 �4v

























2u �1
1 �4v

























¼ 1� 12v

1� 8uv

provided 1� 8uv 6¼ 0. Similarly, the other partial derivatives are obtained.

6.33. If Fðu; v;w; x; yÞ ¼ 0, Gðu; v;w; x; yÞ ¼ 0, Hðu; v;w; x; yÞ ¼ 0, find

ðaÞ @v

@y













x

; ðbÞ @x

@v













w

; ðcÞ @w

@u













y

:

From 3 equations in 5 variables, we can (theoretically at least) determine 3 variables in terms of the
remaining 2. Thus, 3 variables are dependent and 2 are independent. If we were asked to determine @v=@y,
we would know that v is a dependent variable and y is an independent variable, but would not know the

remaining independent variable. However, the particular notation
@v

@y













x

serves to indicate that we are to

obtain @v=@y keeping x constant, i.e., x is the other independent variable.

(a) Differentiating the given equations with respect to y, keeping x constant, gives

ð1Þ Fu uy þ Fv vy þ Fw wy þ Fy ¼ 0 ð2Þ Gu uy þ Gv vy þ Gw wy þ Gy ¼ 0

ð3Þ Hu uy þHv vy þHw wy þHy ¼ 0

Solving simultaneously for vy, we have

vy ¼
@v

@y













x

¼ �

Fu Fy Fw

Gu Gy Gw

Hu Hy Hw





































Fu Fv Fw

Gu Gv Gw

Hu Hv Hw





































¼ �
@ðF;G;HÞ
@ðu; y;wÞ
@ðF;G;HÞ
@ðu; v;wÞ

Equations (1), (2), and (3) can also be obtained by using differentials as in Problem 6.31.

The Jacobian method is very suggestive for writing results immediately, as seen in this problem and

Problem 6.31. Thus, observe that in calculating
@v

@y













x

the result is the negative of the quotient of two

Jacobians, the numerator containing the independent variable y, the denominator containing the
dependent variable v in the same relative positions. Using this scheme, we have

ðbÞ @x

@v













w

¼ �
@ðF;G;HÞ
@ðv; y; uÞ
@ðF;G;HÞ
@ðx; y; uÞ

ðcÞ @w

@u













y

¼ �
@ðF;G;HÞ
@ðu;x; vÞ
@ðF;G;HÞ
@ðw;x; vÞ

6.34. If z3 � xz� y ¼ 0, prove that
@2z

@x @y
¼ � 3z2 þ x

ð3z2 � xÞ3.

Differentiating with respect to x, keeping y constant and remembering that z is the dependent variable

depending on the independent variables x and y, we find

3z2
@z

@x
� x

@z

@x
� z ¼ 0 and ð1Þ @z

@x
¼ z

3z2 � x

Differentiating with respect to y, keeping x constant, we find

3z2
@z

@y
� x

@z

@y
� 1 ¼ 0 and ð2Þ @z

@y
¼ 1

3z2 � x

CHAP. 6] PARTIAL DERIVATIVES 137



Differentiating (2) with respect to x and using (1), we have

@2z

@x @y
¼ �1

ð3z2 � xÞ2 6z
@z

@x
� 1

� �

¼ 1� 6z½z=ð3z2 � xÞ�
ð3z2 � xÞ2 ¼ � 3z2 þ x

ð3z2 � xÞ3

The result can also be obtained by differentiating (1) with respect to y and using (2).

6.35. Let u ¼ f ðx; yÞ and v ¼ gðx; yÞ, where f and g are continuously differentiable in some region r.
Prove that a necessary and sufficient condition that there exists a functional relation between u

and v of the form �ðu; vÞ ¼ 0 is the vanishing of the Jacobian, i.e.,
@ðu; vÞ
@ðx; yÞ ¼ 0 identically.

Necessity. We have to prove that if the functional relation �ðu; vÞ ¼ 0 exists, then the Jacobian
@ðu; vÞ
@ðx; yÞ ¼ 0

identically. To do this, we note that

d� ¼ �u duþ �v dv ¼ �uðux dxþ uy dyÞ þ �vðvx dxþ vy dyÞ
¼ ð�u ux þ �v vxÞ dxþ ð�u uy þ �v vyÞ dy ¼ 0

ð1Þ �u ux þ �v vx ¼ 0 ð2Þ �u uy þ �v vy ¼ 0Then

Now �u and �v cannot be identically zero since if they were, there would be no functional relation,

contrary to hypothesis. Hence it follows from (1) and (2) that
ux vx
uy vy

























¼ @ðu; vÞ
@ðx; yÞ ¼ 0 identically.

Sufficiency. We have to prove that if the Jacobian
@ðu; vÞ
@ðx; yÞ ¼ 0 identically, then there exists a functional

relation between u and v, i.e., �ðu; vÞ ¼ 0.

Let us first suppose that both ux ¼ 0 and uy ¼ 0. In this case the Jacobian is identically zero and u is a

constant c1, so that the trival functional relation u ¼ c1 is obtained.
Let us now assume that we do not have both ux ¼ 0 and uy ¼ 0; for definiteness, assume ux 6¼ 0. We

may then, according to Theorem 1, Page 124, solve for x in the equation u ¼ f ðx; yÞ to obtain x ¼ Fðu; yÞ,
from which it follows that

ð1Þ u ¼ f fFðu; yÞ; yg ð2Þ v ¼ gfFðu; yÞ; yg
From these we have respectively,

ð3Þ du ¼ ux dxþ uy dy ¼ uxðFu duþ Fy dyÞ þ uy dy ¼ uxFu duþ ðuxFy þ uyÞ dy

ð4Þ dv ¼ vx dxþ vy dy ¼ vxðFu duþ Fy dyÞ þ vy dy ¼ vxFu duþ ðvxFy þ vyÞ dy
From (3), uxFu ¼ 1 and uxFy þ uy ¼ 0 or (5) Fy ¼ �uy=ux. Using this, (4) becomes

dv ¼ vxFu duþ fvxð�uy=uxÞ þ vyg dy ¼ vxFu duþ
uxvy � uyvx

ux

� �

dy:ð6Þ

But by hypothesis
@ðu; vÞ
@ðx; yÞ ¼

ux uy
vx vy

























¼ uxvy � uyvx ¼ 0 identically, so that (6) becomes dv ¼ vxFu du.

This means essentially that referring to (2), @v=@y ¼ 0 which means that v is not dependent on y but depends
only on u, i.e., v is a function of u, which is the same as saying that the functional relation �ðu; vÞ ¼ 0 exists.

6.36. (a) If u ¼ xþ y

1� xy
and v ¼ tan�1 xþ tan�1 y, find

@ðu; vÞ
@ðx; yÞ.

(b) Are u and v functionally related? If so, find the relationship.
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ðaÞ @ðu; vÞ
@ðx; yÞ ¼

ux uy

vx vy































¼

1þ y2

ð1� xyÞ2
1þ x2

ð1� xyÞ2

1

1þ x2
1

1þ y2





























































¼ 0 if xy 6¼ 1:

(b) By Problem 6.35, since the Jacobian is identically zero in a region, there must be a functional relation-
ship between u and v. This is seen to be tan v ¼ u, i.e., �ðu; vÞ ¼ u� tan v ¼ 0. We can show this
directly by solving for x (say) in one of the equations and then substituting in the other. Thus, for

example, from v ¼ tan�1 xþ tan�1 y we find tan�1 x ¼ v� tan�1 y and so

x ¼ tanðv� tan�1 yÞ ¼ tan v� tanðtan�1 yÞ
1þ tan v tanðtan�1 yÞ ¼

tan v� y

1þ y tan v

Then substituting this in u ¼ ðxþ yÞ=ð1� xyÞ and simplifying, we find u ¼ tan v.

6.37. (a) If x ¼ u� vþ w, y ¼ u2 � v2 � w2 and z ¼ u3 þ v, evaluate the Jacobian
@ðx; y; zÞ
@ðu; v;wÞ and

(b) explain the significance of the non-vanishing of this Jacobian.

ðaÞ @ðx; y; zÞ
@ðu; v;wÞ ¼

xu xv xw

yu yv yw

zu zv zw











































¼
1 �1 1

2u �2v �2w

3u2 1 0











































¼ 6wu2 þ 2uþ 6u2vþ 2w

(b) The given equations can be solved simultaneously for u; v;w in terms of x; y; z in a region r if the
Jacobian is not zero in r.

TRANSFORMATIONS, CURVILINEAR COORDINATES

6.38. A region r in the xy plane is bounded by xþ y ¼ 6, x� y ¼ 2; and y ¼ 0. (a) Determine the
region r 0 in the uv plane into which r is mapped under the transformation x ¼ uþ v, y ¼ u� v.

(b) Compute
@ðx; yÞ
@ðu; vÞ. (c) Compare the result of (b) with the ratio of the areas of r and r 0.

(a) The region r shown shaded in Fig. 6-9(a) below is a triangle bounded by the lines xþ y ¼ 6, x� y ¼ 2,
and y ¼ 0 which for distinguishing purposes are shown dotted, dashed, and heavy respectively.

Under the given transformation the line xþ y ¼ 6 is transformed into ðuþ vÞ þ ðu� vÞ ¼ 6, i.e.,

2u ¼ 6 or u ¼ 3, which is a line (shown dotted) in the uv plane of Fig. 6-9(b) above.
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Similarly, x� y ¼ 2 becomes ðuþ vÞ � ðu� vÞ ¼ 2 or v ¼ 1, which is a line (shown dashed) in the

uv plane. In like manner, y ¼ 0 becomes u� v ¼ 0 or u ¼ v, which is a line shown heavy in the uv
plane. Then the required region is bounded by u ¼ 3, v ¼ 1 and u ¼ v, and is shown shaded in Fig. 6-
9(b).

ðbÞ @ðx; yÞ
@ðu; vÞ ¼

@x

@u

@x

@v

@y

@u

@y

@v

















































¼
@

@u
ðuþ vÞ @

@v
ðuþ vÞ

@

@u
ðu� vÞ @

@v
ðu� vÞ

















































¼
1 1

1 �1































¼ 2

(c) The area of triangular region r is 4, whereas the area of triangular region r 0 is 2. Hence, the ratio is
4=2 ¼ 2, agreeing with the value of the Jacobian in (b). Since the Jacobian is constant in this case, the
areas of any regions r in the xy plane are twice the areas of corresponding mapped regions r 0 in the uv
plane.

6.39. A region r in the xy plane is bounded by x2 þ y2 ¼ a2, x2 þ y2 ¼ b2, x ¼ 0 and y ¼ 0, where
0 < a < b. (a) Determine the region r 0 into which r is mapped under the transformation
x ¼ � cos�, y ¼ � sin �, where � > 0, 0 @ � < 2�. (b) Discuss what happens when a ¼ 0.

(c) Compute
@ðx; yÞ
@ð�; �Þ. (d) Compute

@ð�; �Þ
@ðx; yÞ.

(a) The region r [shaded in Fig. 6-10(a) above] is bounded by x ¼ 0 (dotted), y ¼ 0 (dotted and dashed),

x2 þ y2 ¼ a2 (dashed), x2 þ y2 ¼ b2 (heavy).

Under the given transformation, x2 þ y2 ¼ a2 and x2 þ y2 ¼ b2 become �2 ¼ a2 and �2 ¼ b2 or

� ¼ a and � ¼ b respectively. Also, x ¼ 0, a @ y @ b becomes � ¼ �=2, a @ �@ b; y ¼ 0, a @ x @ b

becomes � ¼ 0, a @ �@ b.

The required region r 0 is shown shaded in Fig. 6-10(b) above.

Another method: Using the fact that � is the distance from the origin O of the xy plane and � is the

angle measured from the positive x-axis, it is clear that the required region is given by a @ �@ b,

0 @ �@ �=2 as indicated in Fig. 6-10(b).

(b) If a ¼ 0, the region r becomes one-fourth of a circular region of radius b (bounded by 3 sides) while r 0

remains a rectangle. The reason for this is that the point x ¼ 0, y ¼ 0 is mapped into � ¼ 0, � ¼ an

indeterminate and the transformation is not one to one at this point which is sometimes called a singular

point.
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ðcÞ @ðx; yÞ
@ð�; �Þ ¼

@

@�
ð� cos�Þ @

@�
ð� cos�Þ

@

@�
ð� sin�Þ @

@�
ð� sin�Þ























































¼
cos� �� sin�
sin� � cos�































¼ �ðcos2 �þ sin2 �Þ ¼ �

(d) From Problem 6.43(b) we have, letting u ¼ �, v ¼ �,

@ðx; yÞ
@ð�; �Þ

@ð�; �Þ
@ðx; yÞ ¼ 1 so that, using ðcÞ; @ð�; �Þ

@ðx; yÞ ¼
1

�

This can also be obtained by direct differentiation.

Note that from the Jacobians of these transformations it is clear why � ¼ 0 (i.e., x ¼ 0, y ¼ 0) is a

singular point.

MEAN VALUE THEOREMS

6.40. Prove the mean value theorem for functions of two variables.

Let f ðtÞ ¼ f ðx0 þ ht; y0 þ ktÞ. By the mean value theorem for functions of one variable,

Fð1Þ ¼ Fð0Þ ¼ F 0ð�Þ 0 < � < 1 ð1Þ
If x ¼ x0 þ ht, y ¼ y0 þ kt, then FðtÞ ¼ f ðx; yÞ, so that by Problem 6.17,

F 0ðtÞ ¼ fxðdx=dtÞ þ fyðdy=dtÞ ¼ hfx þ kfy and F 0ð�Þ ¼ h fxðx0 þ �h; y0 þ �kÞ þ k fyðx0 þ �h; y0 þ �kÞ
where 0 < � < 1. Thus, (1) becomes

f ðx0 þ h; y0 þ kÞ � f ðx0; y0Þ ¼ h fxðx0 þ �h; y0 þ �kÞ þ k fyðx0 þ �h; y0 þ �kÞ ð2Þ
where 0 < � < 1 as required.

Note that (2), which is analogous to (1) of Problem 6.14 where h ¼ �x, has the advantage of being
more symmetric (and also more useful), since only a single number � is involved.

MISCELLANEOUS PROBLEMS

6.41. Let f ðx; yÞ ¼ xy
x2 � y2

x2 þ y2

 !

ðx; yÞ 6¼ ð0; 0Þ
0 ðx; yÞ ¼ ð0; 0Þ

8

>

<

>

:

.

Compute (a) fxð0; 0Þ; ðbÞ fyð0; 0Þ; ðcÞ fxxð0; 0Þ; ðdÞ fyyð0; 0Þ; ðeÞ fxyð0; 0Þ; ð f Þ fyxð0; 0Þ:

ðaÞ fxð0; 0Þ ¼ lim
h!0

f ðh; 0Þ � f ð0; 0Þ
h

¼ lim
h!0

0

h
¼ 0

ðbÞ fyð0; 0Þ ¼ lim
h!0

f ð0; kÞ � f ð0; 0Þ
k

¼ lim
k!0

0

k
¼ 0

If ðx; yÞ 6¼ ð0; 0Þ,

fxðx; yÞ ¼
@

@x
xy

x2 � y2

x2 þ y2

 !( )

¼ xy
4xy2

ðx2 þ y2Þ2
 !

þ y
x2 � y2

x2 þ y2

 !

fyðx; yÞ ¼
@

@y
xy

x2 � y2

x2 þ y2

 !( )

¼ xy
�4xy2

ðx2 þ y2Þ2
 !

þ x
x2 � y2

x2 þ y2

 !
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Then

ðcÞ fxxð0; 0Þ ¼ lim
h!0

fxðh; 0Þ � fxð0; 0Þ
h

¼ lim
h!0

0

h
¼ 0

ðdÞ fyyð0; 0Þ ¼ lim
k!0

fyð0; kÞ � fyð0; 0Þ
k

¼ lim
k!0

0

k
¼ 0

ðeÞ fxyð0; 0Þ ¼ lim
k!0

fxð0; kÞ � fxð0; 0Þ
k

¼ lim
k!0

�k

k
¼ �1

ð f Þ fyxð0; 0Þ ¼ lim
h!0

fyðh; 0Þ � fyð0; 0Þ
h

¼ lim
h!0

h

h
¼ 1

Note that fxy 6¼ fyx at ð0; 0Þ. See Problem 6.13.

6.42. Show that under the transformation x ¼ � cos�, y ¼ � sin � the equation
@2V

@x2
þ @

2V

@y2
¼ 0 becomes

@2V

@�2
þ 1

�

@V

@�
þ 1

�2
@2V

@�2
¼ 0.

We have

ð1Þ @V

@x
¼ @V

@�

@�

@x
þ @V
@�

@�

@x
ð2Þ @V

@y
¼ @V

@�

@�

@y
þ @V
@�

@�

@y

Differentiate x ¼ � cos�, y ¼ � sin� with respect to x, remembering that � and � are functions of x

and y

1 ¼ �� sin� @�
@x

þ cos�
@�

@x
; 0 ¼ � cos�

@�

@x
þ sin�

@�

@x

Solving simultaneously,

@�

@x
¼ cos�;

@�

@x
¼ � sin�

�
ð3Þ

Similarly, differentiate with respect to y. Then

0 ¼ �� sin� @�
@y

þ cos�
@�

@y
; 1 ¼ � cos�

@�

@y
þ sin�

@�

@y

Solving simultaneously,

@�

@y
¼ sin�;

@�

@y
¼ cos�

�
ð4Þ

Then from (1) and (2),

ð5Þ @V

@x
¼ cos�

@V

@�
� sin�

�

@V

@�
ð6Þ @V

@y
¼ sin�

@V

@�
þ cos�

�

@V

@�

Hence

@2V

@x2
¼ @

@x

@V

@x

� �

¼ @

@�

@V

@x

� �

@�

@x
þ @

@�

@V

@x

� �

@�

@x

¼ @

@�
cos�

@V

@�
� sin�

�

@V

@�

� �

@�

@x
þ @

@�
cos�

@V

@�
� sin�

�

@V

@�

� �

@�

@x

¼ cos�
@2V

@�2
þ sin�

�2
@V

@�
� sin�

�

@2V

@� @�

 !

ðcos�Þ

þ � sin�
@V

@�
þ cos�

@2V

@� @�
� cos�

�

@V

@�
� sin�

�

@2V

@�2

 !

� sin�

�

� �
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which simplifies to

@2V

@x2
¼ cos2 �

@2V

@�2
þ 2 sin� cos�

�2
@V

@�
� 2 sin� cos�

�

@2V

@� @�
þ sin2 �

�

@V

@�
þ sin2 �

�2
@2V

@�2
ð7Þ

Similarly,

@2V

@y2
¼ sin2 �

@2V

@�2
� 2 sin� cos�

�2
@V

@�
þ 2 sin� cos�

�

@2V

@� @�
þ cos2 �

�

@V

@�
þ cos2 �

�2
@2V

@�2
ð8Þ

Adding ð7Þ and ð8Þ we find, as required,
@2V

@x2
þ @

2V

@y2
¼ @2V

@�2
þ 1

�

@V

@�
þ 1

�2
@2V

@�2
¼ 0:

6.43. (a) If x ¼ f ðu; vÞ and y ¼ gðu; vÞ, where u ¼ �ðr; sÞ and v ¼  ðr; sÞ, prove that
@ðx; yÞ
@ðr; sÞ ¼

@ðx; yÞ
@ðu; vÞ

@ðu; vÞ
@ðr; sÞ .

(b) Prove that
@ðx; yÞ
@ðu; vÞ

@ðu; vÞ
@ðx; yÞ ¼ 1 provided

@ðx; yÞ
@ðu; vÞ 6¼ 0, and interpret geometrically.

ðaÞ @ðx; yÞ
@ðr; sÞ ¼

xr xs

yr ys

























¼ xuur þ xvvr xuus þ xvvs

yuur þ yvvr yuus þ yvvs

























¼ xu xv

yu yv

























ur us

vr vs

























¼ @ðx; yÞ
@ðu; vÞ

@ðu; vÞ
@ðr; sÞ

using a theorem on multiplication of determinants (see Problem 6.108). We have assumed here, of

course, the existence of the partial derivatives involved.

ðbÞ Place r ¼ x; s ¼ y in the result of ðaÞ: Then
@ðx; yÞ
@ðu; vÞ

@ðu; vÞ
@ðx; yÞ ¼

@ðx; yÞ
@ðx; yÞ ¼ 1:

The equations x ¼ f ðu; vÞ, y ¼ gðu; vÞ defines a transformation between points ðx; yÞ in the xy plane
and points ðu; vÞ in the uv plane. The inverse transformation is given by u ¼ �ðx; yÞ, v ¼  ðx; yÞ. The
result obtained states that the Jacobians of these transformations are reciprocals of each other.

6.44. Show that Fðxy; z� 2xÞ ¼ 0 satisfies under suitable conditions the equation
xð@z=@xÞ � yð@z=@yÞ ¼ 2x. What are these conditions?

Let u ¼ xy, v ¼ z� 2x. Then Fðu; vÞ ¼ 0 and

dF ¼ Fu duþ Fv dv ¼ Fuðx dyþ y dxÞ þ Fvðdz� 2 dxÞ ¼ 0ð1Þ

Taking z as dependent variable and x and y as independent variables, we have dz ¼ zx dxþ zy dy. Then
substituting in (1), we find

ð yFu þ Fvzx � 2Þ dxþ ðxFu þ FvzyÞ dy ¼ 0

Hence, we have, since x and y are independent,

ð2Þ yFu þ Fvzx � 2 ¼ 0 ð3Þ xFu þ Fvzy ¼ 0

Solve for Fu in (3) and substitute in (2). Then we obtain the required result xzx � yzy ¼ 2x upon dividing by

Fv (supposed not equal to zero).

The result will certainly be valid if we assume that Fðu; vÞ is continuously differentiable and that Fv 6¼ 0.
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Supplementary Problems

FUNCTIONS AND GRAPHS

6.45. If f ðx; yÞ ¼ 2xþ y

1� xy
, find (a) f ð1;�3Þ; ðbÞ f ð2þ h; 3Þ � f ð2; 3Þ

h
; ðcÞ f ðxþ y;xyÞ.

Ans. ðaÞ � 1
4 ; ðbÞ 11

5ð3hþ 5Þ ; ðcÞ 2xþ 2yþ xy

1� x2y� xy2

6.46. If gðx; y; zÞ ¼ x2 � yzþ 3xy, find (a) gð1;�2; 2Þ; ðbÞ gðxþ 1; y� 1; z2Þ; ðcÞ gðxy; xz; xþ yÞ.
Ans. ðaÞ � 1; ðbÞ x2 � x� 2� yz2 þ z2 þ 3xyþ 3y; ðcÞ x2y2 � x2z� xyzþ 3x2yz

6.47. Give the domain of definition for which each of the following functional rules are defined and real, and
indicate this domain graphically.

ðaÞ f ðx; yÞ ¼ 1

x2 þ y2 � 1
; ðbÞ f ðx; yÞ ¼ lnðxþ yÞ; ðcÞ f ðx; yÞ ¼ sin�1 2x� y

xþ y

� �

:

Ans: ðaÞ x2 þ y2 6¼ 1; ðbÞ xþ y > 0; ðcÞ 2x� y

xþ y

























@ 1

6.48. (a) What is the domain of definition for which f ðx; y; zÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

xþ yþ z� 1

x2 þ y2 þ z2 � 1

s

is defined and real? (b) Indi-
cate this domain graphically.

Ans. (a) xþ yþ z @ 1;x2 þ y2 þ z2 < 1 and xþ yþ z A 1;x2 þ y2 þ z2 > 1

6.49. Sketch and name the surface in three-dimensional space represented by each of the following.
ðaÞ 3xþ 2z ¼ 12; ðdÞ x2 þ z2 ¼ y2; ðgÞ x2 þ y2 ¼ 2y;
ðbÞ 4z ¼ x2 þ y2; ðeÞ x2 þ y2 þ z2 ¼ 16; ðhÞ z ¼ xþ y;
ðcÞ z ¼ x2 � 4y2; ð f Þ x2 � 4y2 � 4z2 ¼ 36; ðiÞ y2 ¼ 4z;

ð jÞ x2 þ y2 þ z2 � 4xþ 6yþ 2z� 2 ¼ 0:
Ans. ðaÞ plane, (b) paraboloid of revolution, (c) hyperbolic paraboloid, (d) right circular cone,

(e) sphere, ( f ) hyperboloid of two sheets, (g) right circular cylinder, (h) plane, (i) parabolic cylinder,
( j) sphere, center at ð2;�3;�1Þ and radius 4.

6.50. Construct a graph of the region bounded by x2 þ y2 ¼ a2 and x2 þ z2 ¼ a2, where a is a constant.

6.51. Describe graphically the set of points ðx; y; zÞ such that:

(a) x2 þ y2 þ z2 ¼ 1;x2 þ y2 ¼ z2; ðbÞ x2 þ y2 < z < xþ y.

52. The level curves for a function z ¼ f ðx; yÞ are curves in the xy plane defined by f ðx; yÞ ¼ c, where c is any
constant. They provide a way of representing the function graphically. Similarly, the level surfaces of

w ¼ f ðx; y; zÞ are the surfaces in a rectangular ðxyz) coordinate system defined by f ðx; y; zÞ ¼ c, where c is
any constant. Describe and graph the level curves and surfaces for each of the following functions:
(a) f ðx; yÞ ¼ lnðx2 þ y2 � 1Þ; ðbÞ f ðx; yÞ ¼ 4xy; ðcÞ f ðx; yÞ ¼ tan�1 y=ðxþ 1Þ; ðdÞ f ðx; yÞ ¼ x2=3þ
y2=3; ðeÞ f ðx; y; zÞ ¼ x2 þ 4y2 þ 16z2; ð f Þ sinðxþ zÞ=ð1� yÞ:

LIMITS AND CONTINUITY

6.53. Prove that (a) lim
x!4
y!�1

ð3x� 2yÞ ¼ 14 and (b) lim
ðx;yÞ!ð2;1Þ

ðxy� 3xþ 4Þ ¼ 0 by using the definition.

6.54. If lim f ðx; yÞ ¼ A and lim gðx; yÞ ¼ B, where lim denotes limit as ðx; yÞ ! ðx0; y0Þ, prove that:
(a) lim f f ðx; yÞ þ gðx; yÞg ¼ Aþ B; ðbÞ lim f f ðx; yÞ gðx; yÞg ¼ AB.

6.55. Under what conditions is the limit of the quotient of two functions equal to the quotient of their limits?
Prove your answer.
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6.56. Evaluate each of the following limits where they exist.

(a) lim
x!1
y!2

3� xþ y

4þ x� 2y
ðcÞ lim

x!4
y!�

x2 sin
y

x
ðeÞ lim

x!0
y!1

e�1=x2ðy�1Þ2 ðgÞ lim
x!0þ
y!1�

xþ y� 1
ffiffiffi

x
p � ffiffiffiffiffiffiffiffiffiffiffi

1� y
p

ðbÞ lim
x!0
y!0

3x� 2y

2x� 3y
ðdÞ lim

x!0
y!0

x sinðx2 þ y2Þ
x2 þ y2

ð f Þ lim
x!0
y!0

2x� y

x2 þ y2
ðhÞ lim

x!2
y!1

sin�1ðxy� 2Þ
tan�1ð3xy� 6Þ

Ans. (a) 4, (b) does not exist, (c) 8
ffiffiffi

2
p
; ðdÞ 0; ðeÞ 0; ð f Þ does not exist, (g) 0, (h) 1/3

6.57. Formulate a definition of limit for functions of (a) 3, (b) n variables.

6.58. Does lim
4xþ y� 3z

2x� 5yþ 2z
as ðx; y; zÞ ! ð0; 0; 0Þ exist? Justify your answer.

6.59. Investigate the continuity of each of the following functions at the indicated points:

ðaÞ x2 þ y2; ðx0; y0Þ: ðbÞ x

3xþ 5y
; ð0; 0Þ: ðcÞ ðx2 þ y2Þ sin 1

x2 þ y2
if ðx; yÞ 6¼ ð0; 0Þ, 0 if ðx; yÞ ¼ ð0; 0Þ;

ð0; 0Þ:
Ans. (a) continuous, (b) discontinuous, (c) continuous

6.60. Using the definition, prove that f ðx; yÞ ¼ xyþ 6x is continuous at (a) ð1; 2Þ; ðbÞ ðx0; y0Þ.

6.61. Prove that the function of Problem 6.60 is uniformly continuous in the square region defined by 0 @ x @ 1,
0 @ y @ 1.

PARTIAL DERIVATIVES

6.62. If f ðx; yÞ ¼ x� y

xþ y
, find (a) @f =@x and (b) @f =@y at ð2;�1Þ from the definition and verify your answer by

differentiation rules. Ans. (a) �2; ðbÞ � 4

6.63. If f ðx; yÞ ¼ ðx2 � xyÞ=ðxþ yÞ for ðx; yÞ 6¼ ð0; 0Þ
0 for ðx; yÞ ¼ ð0; 0Þ

�

, find (a) fxð0; 0Þ; ðbÞ fyð0; 0Þ.

Ans. (a) 1, (b) 0

6.64. Investigate lim
ðx;yÞ!ð0;0Þ

fxðx; yÞ for the function in the preceding problem and explain why this limit (if it exists)

is or is not equal to fxð0; 0Þ:

6.65. If f ðx; yÞ ¼ ðx� yÞ sinð3xþ 2yÞ, compute (a) fx; ðbÞ fy; ðcÞ fxx; ðdÞ fyy; ð f Þ fyx at ð0; �=3Þ.
Ans. (a) 1

2 ð�þ ffiffiffi

3
p Þ; ðbÞ 1

6 ð2�� 3
ffiffiffi

3
p Þ; ðcÞ 3

2 ð�
ffiffiffi

3
p � 2Þ; ðdÞ 2

3 ði
ffiffiffi

3
p þ 3Þ; ðeÞ 1

2 ð2�
ffiffiffi

3
p þ 1Þ,

( f ) 1
2 ð2�

ffiffiffi

3
p þ 1Þ

6.66. (a) Prove by direct differentiation that z ¼ xy tanðy=xÞ satisfies the equation xð@z=@xÞ þ yð@z=@yÞ ¼ 2z if
ðx; yÞ 6¼ ð0; 0Þ. (b) Discuss part (a) for all other points ðx; yÞ assuming z ¼ 0 at ð0; 0Þ.

6.67. Verify that fxy ¼ fyx for the functions (a) ð2x� yÞ=ðxþ yÞ, (b) x tan xy; and (c) coshðyþ cosxÞ, indicating
possible exceptional points and investigate these points.

6.68. Show that z ¼ lnfðx� aÞ2 þ ðy� bÞ2g satisfies @2z=@x2 þ @2z=@y2 ¼ 0 except at ða; bÞ.

6.69. Show that z ¼ x cosðy=xÞ þ tanðy=xÞ satisfies x2zxx þ 2xyzxy þ y2zyy ¼ 0 except at points for which x ¼ 0.

6.70. Show that if w ¼ x� yþ z

xþ y� z

� �n

, then:
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ðaÞ x
@w

@x
þ y

@w

@y
þ z

@w

@z
¼ 0; ðbÞ x2

@2w

@x2
þ y2

@2w

@y2
þ z2

@2w

@z2
þ 2xy

@2w

@x @y
þ 2xz

@2w

@x @z
þ 2yz

@2w

@y @z
¼ 0:

Indicate possible exceptional points.

DIFFERENTIALS

6.71. If z ¼ x3 � xyþ 3y2, compute (a) �z and (b) dz where x ¼ 5, y ¼ 4, �x ¼ �0:2, �y ¼ 0:1. Explain why

�z and dz are approximately equal. (c) Find �z and dz if x ¼ 5, y ¼ 4, �x ¼ �2, �y ¼ 1.
Ans. (a) �11:658; ðbÞ � 12:3; ðcÞ �z ¼ �66; dz ¼ �123

6.72. Computer

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ð3:8Þ2 þ 2ð2:1Þ35

q

approximately, using differentials.

Ans. 2.01

6.73. Find dF and dG if (a) Fðx; yÞ ¼ x3y� 4xy2 þ 8y3; ðbÞ Gðx; y; zÞ ¼ 8xy2z3 � 3x2yz, (c) Fðx; yÞ ¼ xy2

lnðy=xÞ.
Ans. ðaÞ ð3x2y� 4y2Þ dxþ ðx3 � 8xyþ 24y2Þ dy

ðbÞ ð8y2z3 � 6xyzÞ dxþ ð16xyz3 � 3x2zÞ dyþ ð24xy2z2 � 3x2yÞ dz
ðcÞ f y2 lnðy=xÞ � y2g dxþ f2xy lnðy=xÞ þ xyg dy

6.74. Prove that (a) dðUVÞ ¼ U dV þ V dU; ðbÞ dðU=VÞ ¼ ðV dU �U dVÞ=V2; ðcÞ dðlnUÞ ¼ ðdUÞ=U,
(d) dðtan�1 VÞ ¼ ðdVÞ=ð1þ v2Þ where U and V are differentiable functions of two or more variables.

6.75. Determine whether each of the following are exact differentials of a function and if so, find the function.
ðaÞ ð2xy2 þ 3y cos 3xÞ dxþ ð2x2yþ sin 3xÞ dy
ðbÞ ð6xy� y2Þ dxþ ð2xey � x2Þ dy
ðcÞ ðz3 � 3yÞ dxþ ð12y2 � 3xÞ dyþ 3xz2 dz
Ans. ðaÞ x2y2 þ y sin 3xþ c; ðbÞ not exact, ðcÞ xz2 þ 4y3 � 3xyþ c

DIFFERENTIATION OF COMPOSITE FUNCTIONS

6.76. (a) If Uðx; y; zÞ ¼ 2x2 � yzþ xz2, x ¼ 2 sin t, y ¼ t2 � tþ 1, z ¼ 3e�t, find dU=dt at t ¼ 0. (b) if
Hðx; yÞ ¼ sinð3x� yÞ, x3 þ 2y ¼ 2t3, x� y2 ¼ t2 þ 3t, find dH=dt.

Ans: ðaÞ 24; ðbÞ 36t2yþ 12tþ 9x2 � 6t2 þ 6x2tþ 18

6x2yþ 2

 !

cosð3x� yÞ

6.77. If Fðx; yÞ ¼ ð2xþ yÞ=ðy� 2xÞ, x ¼ 2u� 3v, y ¼ uþ 2v, find (a) @F=@u; ðbÞ @F=@v; ðcÞ @2F=@u2,
(d) @2F=@v2; ðeÞ @2F=@u @v, where u ¼ 2, v ¼ 1.
Ans. (a) 7, (b) �14; ðcÞ 21; ðdÞ 112; ðeÞ � 49

6.78. If U ¼ x2Fðy=xÞ, show that under suitable restrictions on F , xð@U=@xÞ þ yð@U=@yÞ ¼ 2U.

6.79. If x ¼ u cos	� v sin	 and y ¼ u sin 	þ v cos	, where 	 is a constant, show that

ð@V=@xÞ2 þ ð@V=@yÞ2 ¼ ð@V=@uÞ2 þ ð@V=@vÞ2

6.80. Show that if x ¼ � cos�, y ¼ � sin�, the equations

@u

@x
¼ @v

@y
;
@u

@y
¼ � @v

@x
becomes

@u

@�
¼ 1

�

@v

@�
;
@v

@�
¼ � 1

�

@u

@�

6.81. Use Problem 6.80 to show that under the transformation x ¼ � cos�, y ¼ � sin�, the equation

@2u

@x2
þ @

2u

@y2
¼ 0 becomes

@2u

@�2
þ 1

�

@u

@�
þ 1

�2
@2u

@�2
¼ 0

IMPLICIT FUNCTIONS AND JACOBIANS

6.82. If Fðx; yÞ ¼ 0, prove that dy=dx ¼ �Fx=Fy.
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6.83. Find (a) dy=dx and (b) d2y=dx2 if x3 þ y3 � 3xy ¼ 0.

Ans. (a) ðy� x2Þ=ðy2 � xÞ; ðbÞ � 2xy=ðy2 � xÞ3

6.84. If xu2 þ v ¼ y3, 2yu� xv3 ¼ 4x, find (a)
@u

@x
; ðbÞ @v

@y
. Ans: ðaÞ v3 � 3xu2v2 þ 4

6x2uv2 þ 2y
; ðbÞ 2xu2 þ 3y3

3x2uv2 þ y

6.85. If u ¼ f ðx; yÞ, v ¼ gðx; yÞ are differentiable, prove that
@u

@x

@x

@u
þ @v

@x

@x

@v
¼ 1. Explain clearly which variables

are considered independent in each partial derivative.

6.86. If f ðx; y; r; sÞ ¼ 0, gðx; y; r; sÞ ¼ 0, prove that
@y

@r

@r

@x
þ @y
@s

@s

@x
¼ 0, explaining which variables are independent.

What notation could you use to indicate the independent variables considered?

6.87. If Fðx; yÞ ¼ 0, show that
d2y

dx2
¼ �FxxF

2
y � 2FxyFxFy þ FyyF

2
x

F3
y

6.88. Evaluate
@ðF ;GÞ
@ðu; vÞ if Fðu; vÞ ¼ 3u2 � uv, Gðu; vÞ ¼ 2uv2 þ v3. Ans. 24u2vþ 16uv2 � 3v3

6.89. If F ¼ xþ 3y2 � z3, G ¼ 2x2yz, and H ¼ 2z2 � xy, evaluate
@ðF;G;HÞ
@ðx; y; zÞ at ð1;�1; 0Þ. Ans. 10

6.90. If u ¼ sin�1 xþ sin�1 y and v ¼ x
ffiffiffiffiffiffiffiffiffiffiffiffiffi

1� y2
p

þ y
ffiffiffiffiffiffiffiffiffiffiffiffiffi

1� x2
p

, determine whether there is a functional relationship
between u and v, and if so find it.

6.91. If F ¼ xyþ yzþ zx, G ¼ x2 þ y2 þ z2, and H ¼ xþ yþ z, determine whether there is a functional relation-
ship connecting F , G, and H, and if so find it. Ans. H2 � G� 2F ¼ 0.

6.92. (a) If x ¼ f ðu; v;wÞ, y ¼ gðu; v;wÞ, and z ¼ hðu; v;wÞ, prove that
@ðx; y; zÞ
@ðu; v;wÞ

@ðu; v;wÞ
@ðx; y;wÞ ¼ 1 provided

@ðx; y; zÞ
@ðu; v;wÞ 6¼ 0. (b) Give an interpretation of the result of (a) in terms of transformations.

6.93. If f ðx; y; zÞ ¼ 0 and gðx; y; zÞ ¼ 0, show that

dx

@ð f ; gÞ
@ðy; zÞ

¼ dy

@ð f ; gÞ
@ðz;xÞ

¼ dz

@ð f ; gÞ
@ðx; yÞ

giving conditions under which the result is valid.

6.94. If xþ y2 ¼ u, yþ z2 ¼ v, zþ x2 ¼ w, find (a)
@x

@u
; ðbÞ @2x

@u2
; ðcÞ @2x

@u @v
assuming that the equations

define x; y; and z as twice differentiable functions of u, v; and w.

Ans: ðaÞ 1

1þ 8xyz
; ðbÞ 16x2y� 8yz� 32x2z2

ð1þ 8xyzÞ3 ; ðcÞ 16y2z� 8xz� 32x2y2

ð1þ 8xyzÞ3

6.95. State and prove a theorem similar to that in Problem 6.35, for the case where u ¼ f ðx; y; zÞ, v ¼ gðx; y; zÞ,
w ¼ hðx; y; zÞ.

TRANSFORMATIONS, CURVILINEAR COORDINATES

6.96. Given the transformation x ¼ 2uþ v, y ¼ u� 3v. (a) Sketch the region r 0 of the uv plane into which the

region r of the xy plane bounded by x ¼ 0, x ¼ 1, y ¼ 0, y ¼ 1 is mapped under the transformation.

(b) Compute
@ðx; yÞ
@ðu; vÞ. (c) Compare the result of (b) with the ratios of the areas of r and r 0.

Ans. (b) �7
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6.97. (a) Prove that under a linear transformation x ¼ a1uþ a2v, y ¼ b1uþ b2v (a1b2 � a2b1 6¼ 0Þ lines and circles

in the xy plane are mapped respectively into lines and circles in the uv plane. (b) Compute the Jacobian J of
the transformation and discuss the significance of J ¼ 0.

6.98. Given x ¼ cos u cosh v, y ¼ sin u sinh v. (a) Show that in general the coordinate curves u ¼ a and v ¼ b in

the uv plane are mapped into hyperbolas and ellipses, respectively, in the xy plane. (b) Compute
@ðx; yÞ
@ðu; vÞ
























.

(c) Compute
@ðu; vÞ
@ðx; yÞ
























.

Ans. (b) sin2 u cosh2 vþ cos2 u sinh2 v; ðcÞ ðsin2 u cosh2 vþ cos2 u sinh2 vÞ�1

6.99. Given the transformation x ¼ 2uþ 3v� w, y ¼ 2vþ w, z ¼ 2u� 2vþ w. (a) Sketch the region r 0 of the
uvw space into which the region r of the xyz space bounded by x ¼ 0;x ¼ 8; y ¼ 0; y ¼ 4; z ¼ 0; z ¼ 6 is

mapped. (b) Compute
@ðx; y; zÞ
@ðu; v;wÞ. (c) Compare the result of (b) with the ratios of the volumes ofr and r 0.

Ans. (b) 1

6.100. Given the spherical coordinate transformation x ¼ r sin � cos�, y ¼ r sin � sin�, z ¼ r cos �, where r A 0,

0 @ �@ �, 0 @ � < 2�. Describe the coordinate surfaces (a) r ¼ a; ðbÞ � ¼ b, and (c) � ¼ c,
where a; b; c are any constants. Ans. (a) spheres, (b) cones, (c) planes

6.101. (a) Verify that for the spherical coordinate transformation of Problem 6.100, J ¼ @ðx; y; zÞ
@ðr; �; �Þ ¼ r2 sin �.

(b) Discuss the case where J ¼ 0.

MISCELLANEOUS PROBLEMS

6.102. If FðP;V;TÞ ¼ 0, prove that (a)
@P

@T













V

@T

@V













P

¼ � @P

@V













T

; ðbÞ @P

@T













V

@T

@V













P

@V

@P













T

¼ �1.

These results are useful in thermodynamics, where P;V;T correspond to pressure, volume, and temperature
of a physical system.

6.103. Show that Fðx=y; z=yÞ ¼ 0 satisfies xð@z=@xÞ þ yð@z=@yÞ ¼ z.

6.104. Show that Fðxþ y� z; x2 þ y2Þ ¼ 0 satisfies xð@z=@yÞ � yð@z=@xÞ ¼ x� y.

6.105. If x ¼ f ðu; vÞ and y ¼ gðu; vÞ, prove that
@v

@x
¼ � 1

J

@y

@u
where J ¼ @ðx; yÞ

@ðu; vÞ.

6.106. If x ¼ f ðu; vÞ, y ¼ gðu; vÞ, z ¼ hðu; vÞ and Fðx; y; zÞ ¼ 0, prove that

@ðy; zÞ
@ðu; vÞ dxþ @ðz;xÞ

@ðu; vÞ dyþ
@ðx; yÞ
@ðu; vÞ dz ¼ 0

6.107. If x ¼ �ðu; v;wÞ, y ¼  ðu; v;wÞ and u ¼ f ðr; sÞ, v ¼ gðr; sÞ, w ¼ hðr; sÞ, prove that

@ðx; yÞ
@ðr; sÞ ¼ @ðx; yÞ

@ðu; vÞ
@ðu; vÞ
@ðr; sÞ þ

@ðx; yÞ
@ðv;wÞ

@ðv;wÞ
@ðr; sÞ þ

@ðx; yÞ
@ðw; uÞ

@ðw; uÞ
@ðr; sÞ

6.108. (a) Prove that
a b
c d

























� e f
g h

























¼ aeþ bg af þ bh
ceþ dg cf þ dh

























, thus establishing the rule for the product of two

second order determinants referred to in Problem 6.43. (b) Generalize the result of ðaÞ to determinants

of 3; 4 . . . .

6.109. If x; y; and z are functions of u; v; and w, while u; v; and w are functions of r; s; and t, prove that
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@ðx; y; zÞ
@ðr; s; tÞ ¼ @ðx; y; zÞ

@ðu; v;wÞ �
@ðu; v;wÞ
@ðr; s; tÞ

6.110. Given the equations Fjðx1; . . . ; xm; y1; . . . ; ynÞ ¼ 0 where j ¼ 1; 2; . . . ; n. Prove that under suitable condi-
tions on Fj ,

@yr
@xs

¼ � @ðF1;F2; . . . ;Fr; . . . ;FnÞ
@ð y1; y2; . . . ; xs; . . . ; ynÞ

,

@ðF1;F2; . . . ;FnÞ
@ð y1; y2; . . . ; ynÞ

6.111. (a) If Fðx; yÞ is homogeneous of degree 2, prove that x2
@2F

@x2
þ 2xy

@2F

@x @y
þ y2

@2F

@y2
¼ 2F :

(b) Illustrate by using the special case Fðx; yÞ ¼ x2 lnðy=xÞ:
Note that the result can be written in operator form, using Dx � @=@x and Dy � @=@y, as
ðxDx þ yDyÞ2F ¼ 2F . [Hint: Differentiate both sides of equation (1), Problem 6.25, twice with respect

to �.]

6.112. Generalize the result of Problem 6.11 as follows. If Fðx1;x2; . . . ; xnÞ is homogeneous of degree p, then for
any positive integer r, if Dxj � @=@xj ,

ðx1Dx1 þ x2Dx2 þ � � � þ xnDxn ÞrF ¼ pðp� 1Þ . . . ðp� rþ 1ÞF

6.113. (a) Let x and y be determined from u and v according to xþ iy ¼ ðuþ ivÞ3. Prove that under this
transformation the equation

@2�

@x2
þ @

2�

@y2
¼ 0 is transformed into

@2�

@u2
þ @

2�

@v2
¼ 0

(b) Is the result in ða) true if xþ iy ¼ Fðuþ ivÞ? Prove your statements.
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Vectors

VECTORS

The foundational ideas for vector analysis were formed indepen-

dently in the nineteenth century by William Rowen Hamilton and

Herman Grassmann. We are indebted to the physicist John Willard

Gibbs, who formulated the classical presentation of the Hamilton

viewpoint in his Yale lectures, and his student E. B. Wilson, who

considered the mathematical material presented in class worthy of

organizing as a book (published in 1901). Hamilton was searching for

a mathematical language appropriate to a comprehensive exposition

of the physical knowledge of the day. His geometric presentation

emphasizing magnitude and direction, and compact notation for the

entities of the calculus, was refined in the following years to the benefit of expressing Newtonian

mechanics, electromagnetic theory, and so on. Grassmann developed an algebraic and more philo-

sophic mathematical structure which was not appreciated until it was needed for Riemanian (non-

Euclidean) geometry and the special and general theories of relativity.

Our introduction to vectors is geometric. We conceive of a vector as a directed line segment PQ
�!

from one point P called the initial point to another point Q called the terminal point. We denote vectors

by boldfaced letters or letters with an arrow over them. Thus PQ
�!

is denoted by A or ~AA as in Fig. 7-1.

The magnitude or length of the vector is then denoted by jPQ�!j, PQ, jAj or j ~AAj.
Vectors are defined to satisfy the following geometric properties.

GEOMETRIC PROPERTIES

1. Two vectors A and B are equal if they have the same magnitude and direction regardless of their
initial points. Thus A ¼ B in Fig. 7-1 above.

In other words, a vector is geometrically represented by any one of a class of commonly
directed line segments of equal magnitude. Since any one of the class of line segments may be
chosen to represent it, the vector is said to be free. In certain circumstances (tangent vectors,
forces bound to a point), the initial point is fixed, then the vector is bound. Unless specifically
stated, the vectors in this discussion are free vectors.

2. A vector having direction opposite to that of vector A but with the same magnitude is denoted
by �A [see Fig. 7-2].

Q

P

A or A

B

Fig. 7-1
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3. The sum or resultant of vectors A and B of Fig. 7-3(a) below is
a vector C formed by placing the initial point of B on the
terminal point of A and joining the initial point of A to the
terminal point of B [see Fig. 7-3(b) below]. The sum C is
written C ¼ Aþ B. The definition here is equivalent to the
parallelogram law for vector addition as indicated in Fig.7-3(c)
below.

Extensions to sums of more than two vectors are
immediate. For example, Fig. 7-4 below shows how to obtain
the sum or resultant E of the vectors A, B, C, and D.

4. The difference of vectors A and B, represented by A� B, is that vector C which added to B gives
A. Equivalently, A� Bmay be defined as Aþ ð�BÞ. If A ¼ B, then A� B is defined as the null
or zero vector and is represented by the symbol 0. This has a magnitude of zero but its direction
is not defined.

The expression of vector equations and related concepts is facilitated by the use of real
numbers and functions. In this context, these are called scalars. This special designation arises
from application where the scalars represent object that do not have direction, such as mass,
length, and temperature.

5. Multiplication of a vector A by a scalar m produces a vector mA with magnitude jmj times the
magnitude of A and direction the same as or opposite to that of A according as m is positive or
negative. If m ¼ 0, mA ¼ 0, the null vector.

ALGEBRAIC PROPERTIES OF VECTORS

The following algebraic properties are consequences of the geometric definition of a vector. (See

Problems 7.1 and 7.2.)
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B
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A AB

B
C = A + B

C = A + B

(a) (b) (c)

Fig. 7-3

A
A

C

C
B

B

D D

E = A + B + C + D

Fig. 7-4



If A, B and C are vectors, and m and n are scalars, then

1. Aþ B ¼ Bþ A Commutative Law for Addition

2. Aþ ðBþ CÞ ¼ ðAþ BÞ þ C Associative Law for Addition

3. mðnAÞ ¼ ðmnÞA ¼ nðmAÞ Associative Law for Multiplication

4. ðmþ nÞA ¼ mAþ nA Distributive Law

5. mðAþ BÞ ¼ mAþmB Distributive Law

Note that in these laws only multiplication of a vector by one or more scalars is defined. On Pages
153 and 154 we define products of vectors.

LINEAR INDEPENDENCE AND LINEAR DEPENDENCE OF A SET OF VECTORS

A set of vectors, A1;A2; . . . ;Ap, is linearly independent means that a1A1 þ a2A2 þ � � � þ apAp þ � � � þ
apAp ¼ 0 if and only if a1 ¼ a2 ¼ � � � ¼ ap ¼ 0 (i.e., the algebraic sum is zero if and only if all the
coefficients are zero). The set of vectors is linearly dependent when it is not linearly independent.

UNIT VECTORS

Unit vectors are vectors having unit length. If A is any vector with length A > 0, then A=A is a unit
vector, denoted by a, having the same direction as A. Then A ¼ Aa.

RECTANGULAR (ORTHOGONAL) UNIT VECTORS

The rectangular unit vectors i, j, and k are unit vectors having the direction of the positive x, y, and z
axes of a rectangular coordinate system [see Fig. 7-5]. We use right-handed rectangular coordinate
systems unless otherwise specified. Such systems derive their name from the fact that a right-threaded
screw rotated through 908 from Ox to Oy will advance in the positive z direction. In general, three
vectors A, B, and C which have coincident initial points and are not coplanar are said to form a right-
handed system or dextral system if a right-threaded screw rotated through an angle less than 1808 from A

to B will advance in the direction C [see Fig. 7-6 below].
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COMPONENTS OF A VECTOR

Any vector A in 3 dimensions can be represented with
initial point at the origin O of a rectangular coordinate
system [see Fig. 7-7]. Let ðA1;A2;A3Þ be the rectangular
coordinates of the terminal point of vector A with initial
point at O. The vectors A1i;A2j; and A3k are called the
rectangular component vectors, or simply component vec-
tors, of A in the x, y; and z directions respectively. A1;A2;
and A3 are called the rectangular components, or simply
components, of A in the x, y; and z directions respectively.

The vectors of the set fi; j; kg are perpendicular to one
another, and they are unit vectors. The words orthogonal
and normal, respectively, are used to describe these charac-
teristics; hence, the set is what is called an orthonormal basis.
It is easily shown to be linearly independent. In an n-dimensional space, any set of n linearly indepen-
dent vectors is a basis. The further characteristic of a basis is that any vector of the space can be
expressed through it. It is the basis representation that provides the link between the geometric and
algebraic expressions of vectors and vector concepts.

The sum or resultant of A1i;A2j; and A3k is the vector A, so that we can write

A ¼ A1iþ A2jþ A3k ð1Þ
The magnitude of A is

A ¼ jAj ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

A2
1 þ A2

2 þ A2
3

q

ð2Þ

In particular, the position vector or radius vector r from O to the point ðx; y; zÞ is written
r ¼ xiþ yjþ zk ð3Þ

and has magnitude r ¼ jrj ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

x2 þ y2 þ z2
p

:

DOT OR SCALAR PRODUCT

The dot or scalar product of two vectors A and B, denoted by A � B (read A dot B) is defined as the
product of the magnitudes of A and B and the cosine of the angle between them. In symbols,

A � B ¼ AB cos �; 0 @ �@ � ð4Þ
Assuming that neither A nor B is the zero vector, an immediate consequence of the definition is that

A � B ¼ 0 if and only if A and B are perpendicular. Note that A � B is a scalar and not a vector.

The following laws are valid:

1. A � B ¼ B � A Commutative Law for Dot Products

2. A � ðBþ CÞ ¼ A � Bþ A � C Distributive Law

3. mðA � BÞ ¼ ðmAÞ � B ¼ A � ðmBÞ ¼ ðA � BÞm, where m is a scalar.

4. i � i ¼ j � j ¼ k � k ¼ 1; i � j ¼ j � k ¼ k � i ¼ 0

5. If A ¼ A1iþ A2jþ A3k and B ¼ B1iþ B2jþ B3k, then

A � B ¼ A1B1 þ A2B2
þ A3B3

The equivalence of this component form the dot product with the geometric definition 4 follows
from the law of cosines. (See Fig. 7-8.)
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In particular,

jCj2 ¼ jAj2 þ jBj2 � 2jAjjBj cos �
Since C ¼ B� A its components are B1 � A1;B2 � A2;B3 � A3 and

the square of its magnitude is

ðB2
1 þ B

2
2 þ B

2
3Þ þ ðA2

1 þ A
2
2 þ A

2
3Þ � 2ðA1B1Þ þ A2B2 þ A3B3Þ

or

jBj2 þ jAj2 � 2ðA1B1 þ A2B2 þ A3B3Þ
When this representation for jC2j is placed in the original equation and cancellations are made, we

obtain

A1B1 þ A2B2 þ A3B3 ¼ jAj jBj cos �:

CROSS OR VECTOR PRODUCT

The cross or vector product of A and B is a vector C ¼ A B (read A cross B). The magnitude of
A B is defined as the product of the magnitudes of A and B and the sine of the angle between them.
The direction of the vector C ¼ A B is perpendicular to the plane of A and B and such that A, B, and C

form a right-handed system. In symbols,

A B ¼ AB sin �u; 0 @ �@ � ð5Þ
where u is a unit vector indicating the direction of A B. If A ¼ B or if A is parallel to B, then sin � ¼ 0
and A B ¼ 0.

The following laws are valid:

1. A B ¼ �B A (Commutative Law for Cross Products Fails)

2. A ðBþ CÞ ¼ A Bþ A C Distributive Law

3. mðA BÞ ¼ ðmAÞ  B ¼ A ðmBÞ ¼ ðA BÞm, where m is a scalar.

Also the following consequences of the definition are important:

4. i i ¼ j j ¼ k k ¼ 0, i j ¼ k; j k ¼ i; k i ¼ j

5. If A ¼ A1iþ A2jþ A3k and B ¼ B1iþ B2jþ B3k, then

A B ¼
i j k

A1 A2 A3

B1 B2 B3





































The equivalence of this component representation
(5) and the geometric definition may be seen as follows.
Choose a coodinate system such that the direction of the
x-axis is that of A and the xy plane is the plane of the
vectors A and B. (See Fig. 7-9.)

A B ¼
i j k

A1 0 0

B1 B2 0











































¼ A1B2k ¼ jAjjBjsine �KThen

Since this choice of coordinate system places no
restrictions on the vectors A and B, the result is general
and thus establishes the equivalence.
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6. jA Bj ¼ the area of a parallelogram with sides A and B.

7. If A B ¼ 0 and neither A nor B is a null vector, then A and B are parallel.

TRIPLE PRODUCTS

Dot and cross multiplication of three vectors, A, B, and C may produce meaningful products of the
form ðA � BÞC;A � ðB CÞ; and A ðB CÞ. The following laws are valid:

1. ðA � BÞC 6¼ AðB � CÞ in general

2. A � ðB CÞ ¼ B � ðC AÞ ¼ C � ðA BÞ ¼ volume of a parallelepiped having A, B, and C as
edges, or the negative of this volume according as A, B, and C do or do not form a right-
handed system. If A ¼ A1iþ A2jþ A3k, B ¼ B1iþ B2jþ B3k and C ¼ C1iþ C2jþ C3k, then

A � ðB CÞ ¼
A1 A2 A3

B1 B2 B3

C1 C2 C3





































ð6Þ

3. A ðB CÞ 6¼ ðA BÞ  C (Associative Law for Cross Products Fails)

4. A ðB CÞ ¼ ðA � CÞB� ðA � BÞC
ðA BÞ  C ¼ ðA � CÞB� ðB � CÞA

The product A � ðB CÞ is called the scalar triple product or box product and may be denoted by
½ABC�. The product A ðB CÞ is called the vector triple product.

In A � ðB CÞ parentheses are sometimes omitted and we write A � B C. However, parentheses
must be used in A ðB CÞ (see Problem 7.29). Note that A � ðB CÞ ¼ ðA BÞ � C. This is often
expressed by stating that in a scalar triple product the dot and the cross can be interchanged without
affecting the result (see Problem 7.26).

AXIOMATIC APPROACH TO VECTOR ANALYSIS

From the above remarks it is seen that a vector r ¼ xiþ yjþ zk is determined when its 3 components
ðx; y; zÞ relative to some coordinate system are known. In adopting an axiomatic approach, it is thus
quite natural for us to make the following

Definition. A three-dimensional vector is an ordered triplet of real numbers with the following
properties. If A ¼ ðA1;A2;A3Þ and B ¼ ðB1;B2;B3Þ then

1. A ¼ B if and only if A1 ¼ B1;A2 ¼ B2;A3 ¼ B3

2. Aþ B ¼ ðA1 þ B1;A2 þ B2;A3 þ B3Þ
3. A� B ¼ ðA1 � B1;A2 � B2;A3 � B3Þ
4. 0 ¼ ð0; 0; 0Þ
5. mA ¼ mðA1;A2;A3Þ ¼ ðmA1;mA2;mA3Þ

In addition, two forms of multiplication are established.

6. A � B ¼ A1B1 þ A2B2 þ A3B3

7. Length or magnitude of A ¼ jAj ¼ ffiffiffiffiffiffiffiffiffiffiffi

A � Ap ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

A2
1 þ A2

2 þ A2
3

q

8. A B ¼ ðA2B3 � A3B2;A3B1 � A1B3;A1B2 � A2B1Þ
Unit vectors are defined to be ð1; 0; 0Þ; ð0; 1; 0Þ; ð0; 0; 1Þ and then designated by i; j; k, respectively,

thereby identifying the components axiomatically introduced with the geometric orthonormal basis
elements.

If one wishes, this axiomatic formulation (which provides a component representation for vectors)
can be used to reestablish the fundamental laws previously introduced geometrically; however, the
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primary reason for introducing this approach was to formalize a component representation of the
vectors. It is that concept that will be used in the remainder of this chapter.

Note 1: One of the advantages of component representation of vectors is the easy extension of the
ideas to all dimensions. In an n-dimensional space, the component representation is

AðA1;A2; . . . ;AnÞ
An exception is the cross-product which is specifi-

cally restricted to three-dimensional space. There are
generalizations of the cross-product to higher dimen-
sional spaces, but there is no direct extension.)

Note 2: The geometric interpretation of a vector
endows it with an absolute meaning at any point of
space. The component representation (as an ordered
triple of numbers) in Euclidean three space is not unique,
rather, it is attached to the coordinate system employed.
This follows because the components are geometrically
interpreted as the projections of the arrow representation
on the coordinate directions. Therefore, the projections
on the axes of a second coordinate system rotated (for
example) from the first one will be different. (See Fig.
7-10.) Therefore, for theories where groups of coordinate
systems play a role, a more adequate component defini-
tion of a vector is as a collection of ordered triples of
numbers, each one identified with a coordinate system
of the group, and any two related by a coordinate
transformation. This viewpoint is indispensable in New-
tonian mechanics, electromagnetic theory, special relativ-
ity, and so on.

VECTOR FUNCTIONS

If corresponding to each value of a scalar u we associate a vector A, then A is called a function of u
denoted by AðuÞ. In three dimensions we can write AðuÞ ¼ A1ðuÞiþ A2ðuÞjþ A3ðuÞk.

The function concept is easily extended. Thus, if to each point ðx; y; zÞ there corresponds a vector
A, then A is a function of ðx; y; zÞ, indicated by Aðx; y; zÞ ¼ A1ðx; y; zÞiþ A2ðx; y; zÞjþ A3ðx; y; zÞk.

We sometimes say that a vector function A defines a vector field since it associates a vector with each
point of a region. Similarly, �ðx; y; zÞ defines a scalar field since it associates a scalar with each point of a
region.

LIMITS, CONTINUITY, AND DERIVATIVES OF VECTOR FUNCTIONS

Limits, continuity, and derivatives of vector functions follow rules similar to those for scalar func-
tions already considered. The following statements show the analogy which exists.

1. The vector function represented by AðuÞ is said to be continuous at u0 if given any positive
number �, we can find some positive number � such that jAðuÞ � Aðu0Þj < � whenever
ju� u0j < �. This is equivalent to the statement lim

u!u0
AðuÞ ¼ Aðu0Þ.

2. The derivative of AðuÞ is defined as

dA

du
¼ lim

�u!0

Aðuþ�uÞ � AðuÞ
�u

provided this limit exists. In case AðuÞ ¼ A1ðuÞiþ A2ðuÞjþ A3ðuÞk; then
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dA

du
¼ dA1

du
iþ dA2

du
jþ dA3

du
k

Higher derivatives such as d2
A=du2, etc., can be similarly defined.

3. If Aðx; y; zÞ ¼ A1ðx; y; zÞiþ A2ðx; y; zÞjþ A3ðx; y; zÞk, then

dA ¼ @A

@x
dxþ @A

@y
dyþ @A

@z
dz

is the differential of A.

4. Derivatives of products obey rules similar to those for scalar functions. However, when cross
products are involved the order may be important. Some examples are

ðaÞ d

du
ð�AÞ ¼ �

dA

du
þ d�

du
A;

ðbÞ @

@y
ðA � BÞ ¼ A � @B

@y
þ @A
@y

� B;

ðcÞ @

@z
ðA BÞ ¼ A @B

@z
þ @A
@z

 B (Maintain the order of A and BÞ

GEOMETRIC INTERPRETATION OF A VECTOR DERIVATIVE

If r is the vector joining the origin O of a coordinate system and the point ðx; y; zÞ, then specification
of the vector function rðuÞ defines x, y; and z as functions of u (r is called a position vector). As u changes,
the terminal point of r describes a space curve (see Fig. 7-11) having parametric equations
x ¼ xðuÞ; y ¼ yðuÞ; z ¼ zðuÞ. If the parameter u is the arc length s measured from some fixed point
on the curve, then recall from the discussion of arc length that ds2 ¼ dr � dr. Thus

dr

ds
¼ T ð7Þ

is a unit vector in the direction of the tangent to the curve and is called the unit tangent vector. If u is the
time t, then

dr

dt
¼ v ð8Þ

is the velocity with which the terminal point of r describes the curve. We have

v ¼ dr

dt
¼ dr

ds

ds

dt
¼ ds

dt
T ¼ vT ð9Þ
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from which we see that the magnitude of v is v ¼ ds=dt. Similarly,

d2
r

dt2
¼ a ð10Þ

is the acceleration with which the terminal point of r describes the curve. These concepts have important
applications in mechanics and differential geometry.

A primary objective of vector calculus is to express concepts in an intuitive and compact form.
Success is nowhere more apparent than in applications involving the partial differentiation of scalar and
vector fields. [Illustrations of such fields include implicit surface representation, �fx; y; zðx; yÞ ¼ 0, the
electromagnetic potential function �ðx; y; zÞ, and the electromagnetic vector field Fðx; y; zÞ.] To give
mathematics the capability of addressing theories involving such functions, William Rowen Hamilton
and others of the nineteenth century introduced derivative concepts called gradient, divergence, and curl,
and then developed an analytic structure around them.

An intuitive understanding of these entities begins with examination of the differential of a scalar
field, i.e.,

d� ¼ @�

@x
dxþ @�

@y
dyþ @�

@z
dz

Now suppose the function � is constant on a surface S and that C;x ¼ f1ðtÞ; y ¼ f
2
ðtÞ; z ¼ f3ðtÞ is a

curve on S. At any point of this curve
dr

dt
¼ dx

dt
iþ dy

dt
jþ dz

dt
k lies in the tangent plane to the surface.

Since this statement is true for every surface curve through a given point, the differential dr spans the

tangent plane. Thus, the triple
@�

@x
,
@�

@y
,
@�

@z
represents a vector perpendicualr to S. With this special

geometric characteristic in mind we define

r� ¼ @�

@x
iþ @�

@y
jþ @�

@z
k

to be the gradient of the scalar field �.
Furthermore, we give the symbol r a special significance by naming it del.

EXAMPLE 1. If �ðx; y; zÞ ¼ 0 is an implicity defined surface, then, because the function always has the value zero

for points on it, the condition of constancy is satisfied and r� is normal to the surface at any of its points. This
allows us to form an equation for the tangent plane to the surface at any one of its points. See Problem 7.36.

EXAMPLE 2. For certain purposes, surfaces on which � is constant are called level surfaces. In meteorology,
surfaces of equal temperature or of equal atmospheric pressure fall into this category. From the previous devel-

opment, we see that r� is perpendicular to the level surface at any one of its points and hence has the direction of
maximum change at that point.

The introduction of the vector operator r and the interaction of it with the multiplicative properties
of dot and cross come to mind. Indeed, this line of thought does lead to new concepts called divergence
and curl. A summary follows.

GRADIENT, DIVERGENCE, AND CURL

Consider the vector operator r (del) defined by

r � i
@

@x
þ j

@

@y
þ k

@

@z
ð11Þ

Then if �ðx; y; zÞ and Aðx; y; zÞ have continuous first partial derivatives in a region (a condition which is
in many cases stronger than necessary), we can define the following.
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1. Gradient. The gradient of � is defined by

grad � ¼ r� ¼ i
@

@x
þ j

@

@y
þ k

@

@z

� �

� ¼ i
@�

@x
þ j

@�

@y
þ k

@�

@z
ð12Þ

¼ @�

@x
iþ @�

@y
jþ @�

@z
k

2. Divergence. The divergence of A is defined by

divA ¼ r � A ¼ i
@

@x
þ j

@

@y
þ k

@

@z

� �

� ðA1iþ A2jþ A3kÞ ð13Þ

¼ @A1

@x
þ @A2

@y
þ @A3

@z

3. Curl. The curl of A is defined by

curlA ¼ r  A ¼ i
@

@x
þ j

@

@y
þ k

@

@z

� �

 ðA1iþ A2jþ A3kÞ ð14Þ

¼
i j k

@

@x

@

@y

@

@z

A1 A2 A3

















































¼ i

@

@y

@

@z

A2 A3





































� j

@

@x

@

@z
A1 A2





































þ k

@

@x

@

@y

A1 A2





































¼ @A3

@y
� @A2

@z

� �

iþ @A1

@z
� @A3

@x

� �

jþ @A2

@x
� @A1

@y

� �

k

Note that in the expansion of the determinant, the operators @=@x; @=@y; @=@z must precede
A1;A2;A3. In other words, r is a vector operator, not a vector. When employing it the laws of
vector algebra either do not apply or at the very least must be validated. In particular, r  A is a new
vector obtained by the specified partial differentiation on A, while Ar is an operator waiting to act
upon a vector or a scalar.

FORMULAS INVOLVING r
If the partial derivatives of A, B, U, and V are assumed to exist, then

1. rðU þ VÞ ¼ rU þ rV or grad ðU þ VÞ ¼ grad uþ gradV

2. r � ðAþ BÞ ¼ r � Aþ r � B or div ðAþ BÞ þ divAþ divB

3. r  ðAþ BÞ ¼ r  Aþ r  B or curl ðAþ BÞ ¼ curlAþ curlB

4. r � ðUAÞ ¼ ðrUÞ � AþUðr � AÞ
5. r  ðUAÞ ¼ ðrUÞ  AþUðr  AÞ
6. r � ðA BÞ ¼ B � ðr  AÞ � A � ðr  BÞ
7. r  ðA BÞ ¼ ðB � rÞA� Bðr � AÞ � ðA � rÞBþ Aðr � BÞ
8. rðA � BÞ ¼ ðB � rÞAþ ðA � rÞBþ B ðr  AÞ þ A ðr  BÞ

9: r � ðrUÞ � r2U � @2U

@x2
þ @

2U

@y2
þ @

2U

@z2
is called the Laplacian of U

and r2 � @2

@x2
þ @2

@y2
þ @2

@z2
is called the Laplacian operator:

10. r  ðrUÞ ¼ 0. The curl of the gradient of U is zero.
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11. r � ðr  AÞ ¼ 0. The divergence of the curl of A is zero.

12. r  ðr  AÞ ¼ rðr � AÞ � r2
A

VECTOR INTERPRETATION OF JACOBIANS,

ORTHOGONAL CURVILINEAR COORDINATES

The transformation equations

x ¼ f ðu1; u2; u3Þ; y ¼ gðu1; u2; u3Þ; z ¼ hðu1; u2; u3Þ ð15Þ
[where we assume that f ; g; h are continuous, have continuous partial derivatives, and have a single-
valued inverse] establish a one-to-one correspondence between points in an xyz and u1u2u3 rectangular
coordinate system. In vector notation the transformation (17) can be written

r ¼ xiþ yjþ zk ¼ f ðu1; u2; u3Þiþ gðu1; u2; u3Þjþ hðu1; u2; u3Þk ð16Þ
A point P in Fig. 7-12 can then be defined not only by rectangular coordinates ðx; y; zÞ but by coordinates
ðu1; u2; u3Þ as well. We call ðu1; u2; u3Þ the curvilinear coordinates of the point.

If u2 and u3 are constant, then as u1 varies, r describes a curve which we call the u1 coordinate curve.
Similarly, we define the u2 and u3 coordinate curves through P.

From (16), we have

dr ¼ @r

@u1
du1 þ

@r

@u2
du2 þ

@r

@u3
du3 ð17Þ

The collection of vectors
@r

@x
;
@r

@y
;
@r

@z
is a basis for the vector structure associated with the curvilinear

system. If the curvilinear system is orthogonal, then so is this set; however, in general, the vectors are
not unit vectors. he differential form for arc length may be written

ds2 ¼ g11ðdu1Þ2 þ g22ðdu2Þ2 þ g33ðdu3
Þ2

where

g11 ¼
@r

@x
� @r
@x
; g22 ¼

@r

@y
� @r
@y
; g33 ¼

@r

@z
� @r
@z

The vector @r=@u1 is tangent to the u1 coordinate curve at P. If e1 is a unit vector at P in this
direction, we can write @r=@u1 ¼ h1e1 where h1 ¼ j@r=@u1j. Similarly we can write @r=@u2 ¼ h2e2 and
@r=@u3 ¼ h3e3, where h2 ¼ j@r=@u2j and h3 ¼ j@r=@u3j respectively. Then (17) can be written
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dr ¼ h1 du1e1 þ h2 du2e2 þ h3 du3e3 ð18Þ
The quantities h1; h2; h3 are sometimes caleld scale factors.

If e1; e2; e3 are mutually perpendicular at any point P, the curvilinear coordinates are called
orthogonal. Since the basis elements are unit vectors as well as orthogonal this is an orthonormal
basis. In such case the element of arc length ds is given by

ds2 ¼ dr � dr ¼ h21 du
2
1 þ h22 du

2
2 þ h23 du

2
3 ð19Þ

and corresponds to the square of the length of the diagonal in the above parallelepiped.
Also, in the case of othogonal coordinates, referred to the orthonormal basis e1; e2; e3, the volume of

the parallelepiped is given by

dV ¼ jgjkjdu1du2du3 ¼ jðh1 du1e1Þ � ðh2 du2e2Þ  ðh3 du3e3Þj ¼ h1h2h3 du1du2du3 ð20Þ
which can be written as

dV ¼ @r

@u1
� @r
@u2

 @r

@u3

























du1du2du3 ¼
@ðx; y; zÞ
@ðu1; u2; u3Þ
























du1du2du3 ð21Þ

where @ðx; y; zÞ=@ðu1; u2; u3Þ is the Jacobian of the transformation.
It is clear that when the Jacobian vanishes there is no parallelepiped and explains geometrically the

significance of the vanishing of a Jacobian as treated in Chapter 6.
Note: The further significance of the Jacobian vanishing is that the transformation degenerates at the

point.

GRADIENT DIVERGENCE, CURL, AND LAPLACIAN IN ORTHOGONAL

CURVILINEAR COORDINATES

If � is a scalar function and A ¼ A1e1 þ A2e2 þ A3e3 a vector function of orthogonal curvilinear
coordinates u1; u2; u3, we have the following results.

1: r� ¼ grad� ¼ 1

h1

@�

@u1
e1 þ

1

h2

@�

@u2
e2 þ

1

h3

@�

@u3
e3

2: r � A ¼ divA ¼ 1

h1h2h3

@

@u1
ðh2; h3A1Þ þ

@

@u2
ðh3h1A2Þ þ

@

@u3
ðh1h2A3Þ

� �

3: r  A ¼ curlA ¼ 1

h1h2h3

h1e1 h2e2 h3e3
@

@u1

@

@u2

@

@u3
h1A1 h2A2 h3A3

















































4: r2� ¼ Laplacian of � ¼ 1

h1h2h3

@

@u1

h2h3
h1

@�

@u1

� �

þ @

@u2

h3h1
h2

@�

@u2

� �

þ @

@u3

h1h2
h3

@�

@u3

� �� �

These reduce to the usual expressions in rectangular coordinates if we replace ðu1; u2; u3Þ by ðx; y; zÞ,
in which case e1; e2; and e3 are replaced by i, j, and k and h1 ¼ h2 ¼ h3 ¼ 1.

SPECIAL CURVILINEAR COORDINATES

1. Cylindrical Coordinates (�; �; z). See Fig. 7-13.
Transformation equations:

x ¼ � cos�; y ¼ � sin�; z ¼ z
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where �A 0; 0 @ � < 2�;�1 < z <1.
Scale factors: h1 ¼ 1; h2 ¼ �; h3 ¼ 1
Element of arc length: ds2 ¼ d�2 þ �2d�2 þ dz2

Jacobian :
@ðx; y; zÞ
@ð�; �; zÞ ¼ �

Element of volume: dV ¼ � d� d� dz
Laplacian:

r2U ¼ 1

�

@

@�
�
@U

@�

� �

þ 1

�2
@2U

@�2
þ @

2U

@z2
¼ @2U

@�2
þ 1

�

@U

@�
þ 1

�2
@2U

@�2
þ @

2U

@z2

Note that corresponding results can be obtained for polar coordinates in the plane by omit-
ting z dependence. In such case for example, ds2 ¼ d�2 þ �2d�2, while the element of volume is
replaced by the element of area, dA ¼ � d� d�.

2. Spherical Coordinates (r; �; �Þ. See Fig. 7-14.
Transformation equations:

x ¼ r sin � cos�; y ¼ r sin � sin�; z ¼ r cos �

where r A 0; 0 @ � @ �; 0 @ � < 2�.
Scale factors: h1 ¼ 1; h2 ¼ r; h3 ¼ r sin �
Element of arc length: ds2 ¼ dr2 þ r2 d�2 þ r2 sin2 � d�2

Jacobian :
@ðx; y; zÞ
@ðr; �; �Þ ¼ r2 sin �

Element of volume: dV ¼ r2 sin � dr d� d�
Laplacian:

r2U ¼ 1

r2
@

@r
r2
@U

@r

� �

þ 1

r2 sin �

@

@�
sin �

@U

@�

� �

þ 1

r2 sin2 �

@2U

@�2

Other types of coordinate systems are possible.
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Solved Problems

VECTOR ALGEBRA

7.1. Show that addition of vectors is commutative, i.e., Aþ B ¼ Bþ A. See Fig. 7-15 below.

OPþ PQ ¼ OQ or Aþ B ¼ C;

ORþ RQ ¼ OQ or Bþ A ¼ C:and

Then Aþ B ¼ Bþ A.

7.2. Show that the addition of vectors is associative, i.e., Aþ ðBþ CÞ ¼ ðAþ BÞ þ C. See Fig. 7-16
above.

OPþ PQ ¼ OQ ¼ ðAþ BÞ and PQþQR ¼ PR ¼ ðBþ CÞ

OPþ PR ¼ OR ¼ D; i:e:; Aþ ðBþ CÞ ¼ DSince

OQþQR ¼ OR ¼ D; i:e:; ðAþ BÞ þ C ¼ D

we have Aþ ðBþ CÞ ¼ ðAþ BÞ þ C.

Extensions of the results of Problems 7.1 and 7.2 show that the order of addition of any number of
vectors is immaterial.

7.3. An automobile travels 3 miles due north, then 5 miles
northeast as shown in Fig. 7-17. Represent these displace-
ments graphically and determine the resultant displacement
(a) graphically, (b) analytically.

Vector OP or A represents displacement of 3 mi due north.

Vector PQ or B represents displacement of 5 mi northeast.

Vector OQ or C represents the resultant displacement or sum
of vectors A and B, i.e., C ¼ Aþ B. This is the triangle law of
vector addition.

The resultant vectorOQ can also be obtained by constructing
the diagonal of the parallelogram OPQR having vectors OP ¼ A

and OR (equal to vector PQ or B) as sides. This is the parallelo-
gram law of vector addition.

(a) Graphical Determination of Resultant. Lay off the 1 mile unit
on vector OQ to find the magnitude 7.4 mi (approximately).
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Angle EOQ ¼ 61:58, using a protractor. Then vector OQ has magnitude 7.4 mi and direction 61.58
north of east.

(b) Analytical Determination of Resultant. From triangle OPQ, denoting the magnitudes of A;B;C by
A;B;C, we have by the law of cosines

C2 ¼ A2 þ B2 � 2AB cos ffOPQ ¼ 32 þ 52 � 2ð3Þð5Þ cos 1358 ¼ 34þ 15
ffiffiffi

2
p

¼ 55:21

and C ¼ 7:43 (approximately).

By the law of sines,
A

sin ffOQP
¼ C

sin ffOPQ
: Then

sin ffOQP ¼ A sin ffOPQ

C
¼ 3ð0:707Þ

7:43
¼ 0:2855 and ffOQP ¼ 16835 0

Thus vector OQ has magnitude 7.43 mi and direction ð458þ 16835 0Þ ¼ 61835 0 north of east.

7.4. Prove that if a and b are non-collinear, then xaþ yb ¼ 0 implies x ¼ y ¼ 0. Is the set fa; bg
linearly independent or linearly dependent?

Suppose x 6¼ 0. Then xaþ yb ¼ 0 implies xa ¼ �yb or a ¼ �ðy=xÞb, i.e., a and bmust be parallel to the
same line (collinear), contrary to hypothesis. Thus, x ¼ 0; then yb ¼ 0, from which y ¼ 0. The set is
linearly independent.

7.5. If x1aþ y1b ¼ x2aþ y2b, where a and b are non-collinear, then x1 ¼ x2 and y1 ¼ y2.

x1aþ y1b ¼ x2aþ y2b can be written

x1aþ y1b� ðx2aþ y2bÞ ¼ 0 or ðx1 � x2Þaþ ðy1 � y2Þb ¼ 0

Hence, by Problem 7.4, x1 � x2 ¼ 0; y1 � y2 ¼ 0; or x1 ¼ x2; y1 ¼ y2:
Extensions are possible (see Problem 7.49).

7.6. Prove that the diagonals of a parallelogram bisect each
other.

Let ABCD be the given parallelogram with diagonals intersect-
ing at P as shown in Fig. 7-18.

Since BDþ a ¼ b;BD ¼ b� a. Then BP ¼ xðb� aÞ.
Since AC ¼ aþ b, AP ¼ yðaþ bÞ.
But AB ¼ APþ PB ¼ AP� BP, i.e., a ¼ yðaþ bÞ � xðb� aÞ

¼ ðxþ yÞaþ ðy� xÞb.
Since a and b are non-collinear, we have by Problem 7.5,

xþ y ¼ 1 and y� x ¼ 0, i.e., x ¼ y ¼ 1
2 and P is the midpoint of

both diagonals.

7.7. Prove that the line joining the midpoints of two sides of a triangle is parallel to the third side and
has half its length.

From Fig. 7-19, ACþ CB ¼ AB or bþ a ¼ c.

Let DE ¼ d be the line joining the midpoints of sides AC and CB. Then

d ¼ DCþ CE ¼ 1
2 bþ 1

2 a ¼ 1
2 ðbþ aÞ ¼ 1

2 c

Thus, d is parallel to c and has half its length.

7.8. Prove that the magnitude A of the vector A ¼ A1iþ A2jþ A3k is A ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

A2
1 þ A2

2 þ A2
3

q

. See Fig.
7-20.
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By the Pythagorean theorem,

ðOPÞ2 ¼ ðOQÞ2 þ ðQPÞ2

where OP denotes the magnitude of vector OP, etc. Similarly, ðOQÞ2 ¼ ðORÞ2 þ ðRQÞ2.
Then ðOPÞ2 ¼ ðORÞ2 þ ðRQÞ2 þ ðQPÞ2 or A2 ¼ A2

1 þ A2
2 þ A2

3, i.e., A ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

A2
1 þ A2

2 þ A2
3

q

.

7.9. Determine the vector having initial point Pðx1; y1; z1Þ
and terminal point Qðx2; y2; z2Þ and find its magnitude.
See Fig. 7-21.

The position vector of P is r1 ¼ x1iþ y1jþ z1k.

The position vector of Q is r2 ¼ x2iþ y2jþ z2k.

r1 ¼ PQ ¼ r2 or

PQ ¼ r2 � r1 ¼ ðx2iþ y2jþ z2kÞ � ðx1iþ y1jþ z1kÞ
¼ ðx2 � x1Þiþ ðy2 � y1Þjþ ðz2 � z1Þk

Magnitude of PQ ¼ PQ

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðx2 � x1Þ2 þ ðy2 � y1Þ2 þ ðz2 � z1Þ2
q

:

Note that this is the distance between points P and Q.

THE DOT OR SCALAR PRODUCT

7.10. Prove that the projection of A on B is equal to A � b, where b is a
unit vector in the direction of B.

Through the initial and terminal points of A pass planes perpen-
dicular to B at G and H respectively, as in the adjacent Fig. 7-22: then

Projection of A on B ¼ GH ¼ EF ¼ A cos � ¼ A � b

7.11. Prove A � ðBþ CÞ ¼ A � Bþ A � C. See Fig. 7-23.

Let a be a unit vector in the direction of A; then

Projection of ðBþ CÞ on A ¼ projection of B on Aþ projection

of C on A

ðBþ CÞ � a ¼ B � aþ C � a
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Multiplying by A,

ðBþ CÞ � Aa ¼ B � Aaþ C � Aa
ðBþ CÞ � A ¼ B � Aþ C � Aand

Then by the commutative law for dot products,

A � ðBþ CÞ ¼ A � Bþ A � C
and the distributive law is valid.

7.12. Prove that ðAþ BÞ � ðCþDÞ ¼ A � Cþ A �Dþ B � Cþ B �D.

By Problem 7.11, ðAþ BÞ � ðCþDÞ ¼ A � ðCþDÞ þ B � ðCþDÞ ¼ A � Cþ A �Dþ B � Cþ B �D.
The ordinary laws of algebra are valid for dot products where the operations are defined.

7.13. Evaluate each of the following.
ðaÞ i � i ¼ jijjij cos 08 ¼ ð1Þð1Þð1Þ ¼ 1
ðbÞ i � k ¼ jijjkj cos 908 ¼ ð1Þð1Þð0Þ ¼ 0
ðcÞ k � j ¼ jkjjjj cos 908 ¼ ð1Þð1Þð0Þ ¼ 0
ðdÞ j � ð2i� 3jþ kÞ ¼ 2j � i� 3j � jþ j � k ¼ 0� 3þ 0 ¼ �3
ðeÞ ð2i� jÞ � ð3iþ kÞ ¼ 2i � ð3iþ kÞ � j � ð3iþ kÞ ¼ 6i � iþ 2i � k� 3j � i� j � k ¼ 6þ 0� 0� 0 ¼ 6

7.14. If A ¼ A1iþ A2jþ A3k and B ¼ B1iþ B2jþ B3k, prove that A � B ¼ A1B1 þ A2B2 þ A3B3.

A � B ¼ ðA1iþ A2jþ A3kÞ � ðB1iþ B2jþ B3kÞ
¼ A1i � ðB1iþ B2jþ B3kÞ þ A2j � ðB1iþ B2jþ B3kÞ þ A3k � ðB1iþ B2jþ B3kÞ
¼ A1B1i � iþ A1B2i � jþ A1B3i � kþ A2B1j � iþ A2B2j � jþ A2B3j � k
þ A3B1k � iþ A3B2k � jþ A3B3k � k

¼ A1B1 þ A2B2 þ A3B3

since i � j ¼ k � k ¼ 1 and all other dot products are zero.

7.15. If A ¼ A1iþ A2jþ A3k, show that A ¼ ffiffiffiffiffiffiffiffiffiffiffi

A � Ap ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

A2
1 þ A2

2 þ A2
3

q

.

A � A ¼ ðAÞðAÞ cos 08 ¼ A2. Then A ¼ ffiffiffiffiffiffiffiffiffiffiffi

A � Ap
.

Also, A � A ¼ ðA1iþ A2jþ A3kÞ � ðA1iþ A2jþ A3kÞ
¼ ðA1ÞðA1Þ þ ðA2ÞðA2Þ þ ðA3ÞðA3Þ ¼ A2

1 þ A2
2 þ A2

3

By Problem 7.14, taking B ¼ A.

Then A ¼ ffiffiffiffiffiffiffiffiffiffiffi

A � Ap ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

A2
1 þ A2

2 þ A2
3

q

is the magnitude of A. Sometimes A � A is written A
2.

THE CROSS OR VECTOR PRODUCT

7.16. Prove A B ¼ �B A.

A B ¼ C has magnitude AB sin � and direction such that A, B, and C form a right-handed system [Fig.
7-24(a)].

B A ¼ D has magnitude BA sin � and direction such that B, A, and D form a right-handed system
[Fig. 7-24(b)].

Then D has the same magnitude as C but is opposite in direction, i.e., C ¼ �D or A B ¼ �B A.
The commutative law for cross products is not valid.

7.17. Prove that A ðBþ CÞ ¼ A Bþ A C for the case where A is perpendicular to B and also
to C.

166 VECTORS [CHAP. 7



Since A is perpendicular to B, A B is a vector perpendicular to the plane of A and B and having magnitude

AB sin 908 ¼ AB or magnitude of AB. This is equivalent to multiplying vector B by A and rotating the

resultant vector through 908 to the position shown in Fig. 7-25.

Similarly, A C is the vector obtained by multiplying C by A and rotating the resultant vector through
908 to the position shown.

In like manner, A ðBþ CÞ is the vector obtained by multiplying Bþ C by A and rotating the resultant
vector through 908 to the position shown.

Since A ðBþ CÞ is the diagonal of the parallelogram with A B and A C as sides, we have
A ðBþ CÞ ¼ A Bþ A C.

7.18. Prove that A ðBþ CÞ ¼ A Bþ A C in the general case where A, B, and C are non-
coplanar. See Fig. 7-26.

Resolve B into two component vectors, one perpendicular to A and the other parallel to A, and denote

them by B? and Bk respectively. Then B ¼ B? þ Bk.
If � is the angle between A and B, then B? ¼ B sin �. Thus the magnitude of A B? is AB sin �, the

same as the magnitude of A B. Also, the direction of A B? is the same as the direction of A B.
Hence A B? ¼ A B.

Similarly, if C is resolved into two component vectors Ck and C?, parallel and perpendicular respec-
tively to A, then A C? ¼ A C.

Also, since Bþ C ¼ B? þ Bk þ C? þ Ck ¼ ðB? þ C?Þ þ ðBk þ CkÞ it follows that
A ðB? þ C?Þ ¼ A ðBþ CÞ

Now B? and C? are vectors perpendicular to A and so by Problem 7.17,

A ðB? þ C?Þ ¼ A B? þ A C?
A ðBþ CÞ ¼ A Bþ A CThen
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and the distributive law holds. Multiplying by �1, using Problem 7.16, this becomes ðBþ CÞ  A ¼
B Aþ C A. Note that the order of factors in cross products is important. The usual laws of algebra
apply only if proper order is maintained.

7.19. (a) If A ¼ A1iþ A2jþ A3k and B ¼ B1iþ B2jþ B3k, prove that A B ¼
i j k

A1 A2 A3

B1 B2 B3





































.

A B ¼ ðA1iþ A2jþ A3kÞ  ðB1iþ B2jþ B3kÞ
¼ A1i ðB1iþ B2jþ B3kÞ þ A2j ðB1iþ B2jþ B3kÞ þ A3k ðB1iþ B2jþ B3kÞ
¼ A1B1i iþ A1B2i jþ A1B3i kþ A2B1j iþ A2B2j jþ A2B3j k

þ A3B1k iþ A3B2k jþ A3B3k k

¼ ðA2B3 � A3B2Þiþ ðA3B1 � A1B3Þjþ ðA1B2 � A2B1Þk ¼
i j k

A1 A2 A3

B1 B2 B3











































(b) Use the determinant representation to prove the result of Problem 7.18.

7.20. If A ¼ 3i� jþ 2k and B ¼ 2iþ 3j� k, find A B.

A B ¼
i j k

3 �1 2

2 3 �1











































¼ i
�1 2

3 �1

























� j
3 2

2 �1

























þ k
3 �1

2 3

























¼ �5iþ 7jþ 11k

7.21. Prove that the area of a parallelogram with sides A and B is jA Bj. See Fig. 7-27.

Area of parallelogram ¼ hjBj
¼ jAj sin �jBj
¼ jA Bj

Note that the area of the triangle with sides A and

B ¼ 1
2 jA Bj.

7.22. Find the area of the triangle with vertices at
Pð2; 3; 5Þ;Qð4; 2;�1Þ;Rð3; 6; 4Þ.

PQ ¼ ð4� 2Þiþ ð2� 3Þjþ ð�1� 5Þk ¼ 2i� j� 6k

PR ¼ ð3� 2Þiþ ð6� 3Þjþ ð4� 5Þk ¼ iþ 3j� k

Area of triangle ¼ 1
2 jPQ PRj ¼ 1

2 jð2i� j6kÞ  ðiþ 3j� kÞj

¼ 1
2

i j k

2 �1 �6

1 3 �1





















































































¼ 1
2 j19i� 4jþ 7kj

¼ 1
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ð19Þ2 þ ð�4Þ2 þ ð7Þ2
q

¼ 1
2

ffiffiffiffiffiffiffiffi

426
p
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TRIPLE PRODUCTS

7.23. Show that A � ðB CÞ is in absolute value equal to the volume
of a parallelepiped with sides A, B, and C. See Fig. 7-28.

Let n be a unit normal to parallelogram I , having the direction of
B C, and let h be the height of the terminal point of A above the
parallelogram I .

Volume of a parallelepiped ¼ ðheight hÞðarea of parallelogram IÞ
¼ ðA � nÞðjB CjÞ
¼ A � fjB Cjng ¼ A � ðB CÞ

If A, B and C do not form a right-handed system, A � n < 0 and the volume =jA � ðB CÞj.

7.24. If A ¼ A1iþ A2jþ A3k, B ¼ B1iþ B2jþ B3k, C ¼ C1iþ C2jþ C3k show that

A � ðB CÞ ¼
A1 A2 A3

B1 B2 B3

C1 C2 C3





































A � ðB CÞ ¼ A �
i j k

B1 B2 B3

C1 C2 C3











































¼ ðA1iþ A2jþ A3kÞ � ½ðB2C3 � B3C2Þiþ ðB3C1 � B1C3Þjþ ðB1C2 � B2C1Þk�

¼ A1ðB2C3 � B3C2Þ þ A2ðB3C1 � B1C3Þ þ A3ðB1C2 � B2C1Þ ¼
A1 A2 A3

B1 B2 B3

C1 C2 C3











































:

7.25. Find the volume of a parallelepiped with sides A ¼ 3i� j;B ¼ jþ 2k;C ¼ iþ 5jþ 4k.

By Problems 7.23 and 7.24, volume of parallelepiped ¼ jA � ðB CÞj ¼ j
3 �1 0

0 1 2

1 5 4











































j

¼ j � 20j ¼ 20:

7.26. Prove that A � ðB CÞ ¼ ðA BÞ � C, i.e., the dot and cross can be interchanged.

By Problem 7.24: A � ðB CÞ ¼
A1 A2 A3

B1 B2 B3

C1 C2 C3











































; ðA BÞ � C ¼ C � ðA BÞ ¼
C1 C2 C3

A1 A2 A3

B1 B2 B3











































Since the two determinants are equal, the required result follows.

7.27. Let r1 ¼ x1iþ y1jþ z1k, r2 ¼ x2iþ y2jþ z2k and r3 ¼ x3iþ y3jþ z3k be the position vectors of
points P1ðx1; y1; z1Þ, P2ðx2; yx; z2Þ and P3ðx3; y3; z3Þ. Find an equation for the plane passing
through P1, P2; and P3. See Fig. 7-29.

We assume that P1, P2, and P3 do not lie in the same straight line; hence, they determine a plane.

Let r ¼ xiþ yjþ zk denote the position vectors of any point Pðx; y; zÞ in the plane. Consider vectors
P1P2 ¼ r2 � r1, P1P3 ¼ r3 � r1 and P1P ¼ r� r1 which all lie in the plane. Then

P1P � P1P2  P1P3 ¼ 0
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ðr� r1Þ � ðr2 � r1Þ  ðr3 � r1Þ ¼ 0or

In terms of rectangular coordinates this becomes

½ðx� x1Þiþ ðy� y1Þjþ ðz� z1Þk� � ½ðx2 � x1Þiþ ðy2 � y1Þjþ ðz2 � z1Þk�
 ½ðx3 � x1Þiþ ðy3 � y1Þjþ ðz3 � z1Þk� ¼ 0

or, using Problem 7.24,

x� x1 y� y1 z� z1

x2 � x1 y2 � y1 z2 � z1

x3 � x1 y3 � y1 z3 � z1











































¼ 0

7.28. Find an equation for the plane passing through the points P1ð3; 1;�2Þ, P2ð�1; 2; 4Þ, P3ð2;�1; 1Þ.
The positions vectors of P1;P2;P3 and any point Pðx; y; zÞ on the plane are respectively

r1 ¼ 3iþ j� 2k; r2 ¼ �iþ 2jþ 4k; r3 ¼ 2i� jþ k; r ¼ xiþ jjþ zk

Then PP1 ¼ r� r1, P2P1 ¼ r2 � r1, P3P1 ¼ r3 � r1, all lie in the required plane and so the required

equation is ðr� r1Þ � ðr2 � r1Þ  ðr3 � r1Þ ¼ 0, i.e.,

fðx� 3Þiþ ðy� 1Þjþ ðzþ 2Þkg � f�4iþ jþ 6kg  f�i� 2jþ 3kg ¼ 0

fðx� 3Þiþ ðy� 1Þjþ ðzþ 2Þkg � f15iþ 6jþ 9kg ¼ 0

15ðx� 3Þ þ 6ðy� 1Þ þ 9ðzþ 2Þ ¼ 0 or 5x� 2yþ 3z ¼ 11

Another method: By Problem 7.27, the required equation is

x� 3 y� 1 zþ 2
�1� 3 2� 1 4þ 2
2� 3 �1� 1 1þ 2





































¼ 0 or 5xþ 2yþ 3z ¼ 11
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7.29. If A ¼ iþ j, B ¼ 2i� 3jþ k, C ¼ 4j� 3k, find (a) ðA BÞ  C, (b) A ðB CÞ.

ðaÞ A B ¼
i j k

1 1 0

2 �3 1











































¼ i� j� 5k. Then ðA BÞ  C ¼
i j k

1 �1 �5

0 4 �3











































¼ 23iþ 3jþ 4k:

ðbÞ B C ¼
i j k

2 �3 1

0 4 �3











































¼ 5iþ 6jþ 8k. Then A ðB CÞ ¼
i j k

1 1 0

5 6 8











































¼ 8i� 8jþ k:

It can be proved that, in general, ðA BÞ  C 6¼ A ðB CÞ.

DERIVATIVES

7.30. If r ¼ ðt3 þ 2tÞi� 3e�2t
jþ 2 sin 5tk, find (a)

dr

dt
; ðbÞ dr

dt

























; ðcÞ d2
r

dt2
; ðdÞ d2

r

dt2































at t ¼ 0 and
give a possible physical significance.

ðaÞ dr

dt
¼ d

dt
ðt3 þ 2tÞiþ d

dt
ð�3e�2tÞjþ d

dt
ð2 sin 5tÞk ¼ ð3t2 þ 2Þiþ 6e�2t

jþ 10 cos 5tk

At t ¼ 0, dr=dt ¼ 2iþ 6jþ 10k

ðbÞ From ðaÞ; jdr=dtj ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ð2Þ2 þ ð6Þ2 þ ð10Þ2
q

¼
ffiffiffiffiffiffiffiffi

140
p

¼ 2
ffiffiffiffiffi

35
p

at t ¼ 0:

ðcÞ d2
r

dt2
¼ d

dt

dr

dt

� �

¼ d

dt
fð3t2 þ 2Þiþ 6e�2t

jþ 10 cos 5tkg ¼ 6ti� 12e�2t
j� 50 sin 5tk

At t ¼ 0, d2
r=dt2 ¼ �12j.

ðdÞ From ðcÞ; jd2
r=dt2j ¼ 12 at t ¼ 0:

If t represents time, these represent respectively the velocity, magnitude of the velocity, acceleration,
and magnitude of the acceleration at t ¼ 0 of a particle moving along the space curve x ¼ t3 þ 2t,

y ¼ �3e�2t, z ¼ 2 sin 5t.

7.31. Prove that
d

du
ðA � BÞ ¼ A � dB

du
þ dA

du
� B, where A and B are differentiable functions of u.

Method 1:
d

du
ðA � BÞ ¼ lim

�u!0

ðAþ�AÞ � ðBþ�BÞ � A � B
�u

¼ lim
�u!0

A ��Bþ�A � Bþ�A ��B

�u

¼ lim
�u!0

A ��B

�u
þ�A

�u
� Bþ�A

�u
��B

� �

¼ A � dB
du

þ dA

du
� B

Method 2: Let A ¼ A1iþ A2jþ A3k, Bþ B1iþ B2jþ B3k. Then

d

du
ðA � BÞ ¼ d

du
ðA1B1 þ A2B2 þ A3B3Þ

¼ A1

dB1

du
þ A2

dB2

du
þ A3

dB3

du

� �

þ dA1

du
B1 þ

dA2

du
B2 þ

dA3

du
B3

� �

¼ A � dB
du

þ dA

du
� B
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7.32. If �ðx; y; zÞ ¼ x2yz and A ¼ 3x2yiþ yz2j� xzk, find
@2

@y @z
ð�AÞ at the point ð1;�2;�1Þ.

�A ¼ ðx2yzÞð3x2yiþ yz2j� xzkÞ ¼ 3x4y2ziþ x2y2z3j� x3yz2k

@

@z
ð�AÞ ¼ @

@z
ð3x4y2ziþ x2y2z3j� x3yz2kÞ ¼ 3x4y2iþ 3x2y2z2j� 2x3yzk

@2

@y @z
ð�AÞ ¼ @

@y
ð3x4y2iþ 3x2y2z2j� 2x3yzkÞ ¼ 6x4yiþ 6x2yz2j� 2x3zk

If x ¼ 1, y ¼ �2, z ¼ �1, this becomes �12i� 12jþ 2k.

7.33. If A ¼ x2 sin yiþ z2 cos yj� xy2k, find dA.

Method 1:

@A

@x
¼ 2x sin yi� y2k;

@A

@y
¼ x2 cos yi� z2 sin yj� 2xyk;

@A

@z
¼ 2z cos yj

dA ¼ @A

@x
dxþ @A

@y
dyþ @A

@z
dz

¼ ð2x sin yi� y2kÞ dxþ ðx2 cos yi� z2 sin yj� 2xykÞ dyþ ð2z cos yjÞ dz
¼ ð2x sin y dxþ x2 cos y dyÞiþ ð2z cos y dz� z2 sin y dyÞj� ðy2 dxþ 2xy dyÞk

Method 2:

dA ¼ dðx2 sin yÞiþ dðz2 cos yÞj� dðxy2Þk
¼ ð2x sin y dxþ x2 cos y dyÞiþ ð2z cos y dz� z2 sin y dyÞj� ðy2 dxþ 2xy dyÞk

GRADIENT, DIVERGENCE, AND CURL

7.34. If � ¼ x2yz3 and A ¼ xzi� y2jþ 2x2yk, find (a) r�; ðbÞ r � A; ðcÞ r  A; ðdÞ div ð�AÞ,
(e) curl ð�AÞ.

ðaÞ r� ¼ i
@

@x
þ j

@

@y
þ k

@

@z

� �

� ¼ @�

@x
iþ @�

@y
jþ @�

@z
k ¼ @

@x
ðx2yz3Þiþ @

@y
ðx2yz3Þjþ @

@z
ðx2yz3Þk

¼ 2xyz3iþ x2z3jþ 3x2yz2k

ðbÞ r � A ¼ i
@

@x
þ j

@

@y
þ k

@

@z

� �

� ðxzi� y2jþ 2x2ykÞ

¼ @

@x
ðxzÞ þ @

@y
ð�y2Þ þ @

@z
ð2x2yÞ ¼ z� 2y

ðcÞ r  A ¼ i
@

@x
þ j

@

@y
þ k

@

@z

� �

 ðxzi� y2jþ 2x2ykÞ

¼
i j k

@=@x @=@y @=@z

xz �y2 2x2y











































¼ @

@y
ð2x2yÞ � @

@z
ð�y2Þ

� �

iþ @

@z
ðxzÞ � @

@x
ð2x2yÞ

� �

jþ @

@x
ð�y2Þ � @

@y
ðxzÞ

� �

k

¼ 2x2iþ ðx� 4xyÞj

172 VECTORS [CHAP. 7



ðdÞ div ð�AÞ ¼ r � ð�AÞ ¼ r � ðx3yz4i� x2y3z3jþ 2x4y2z3kÞ
¼ @

@x
ðx3yz4Þ þ @

@y
ð�x2y3z3Þ þ @

@z
ð2x4y2z3Þ

¼ 3x2yz4 � 3x2y2z3 þ 6x4y2z2

ðeÞ curl ð�AÞ ¼ r  ð�AÞ ¼ r  ðx3yz4i� x2y3z3jþ 2x4y2z3kÞ

¼
i j k

@=@x @=@y @=@z

x3yz4 �x2y3z3 2x4y2z3











































¼ ð4x4yz3 � 3x2y3z2Þiþ ð4x3yz3 � 8x3y2z3Þj� ð2xy3z3 þ x3z4Þk

7.35. Prove r � ð�AÞ ¼ ðr�Þ � Aþ �ðr � AÞ.
r � ð�AÞ ¼ r � ð�A1iþ �A2jþ �A3kÞ

¼ @

@x
ð�A1Þ þ

@

@y
ð�A2Þ þ

@

@z
ð�A3Þ

¼ @�

@x
A1 þ

@�

@y
A2 þ

@�

@z
A3 þ �

@A1

@x
þ @A2

@y
þ @A3

@z

� �

¼ @�

@x
iþ @�

@y
jþ @�

@z
k

� �

� ðA1iþ A2jþ A3kÞ

þ � @

@x
iþ @

@y
jþ @

@z
k

� �

� ðA1iþ A2jþ A3kÞ

¼ ðr�Þ � Aþ �ðr � AÞ

7.36. Express a formula for the tangent plane to the surface �ðx; y; zÞ ¼ 0 at one of its points
P0ðx0; y0; z0Þ.
Ans: ðr�Þ0 � ðr� r0Þ ¼ 0

7.37. Find a unit normal to the surface 2x2 þ 4yz� 5z2 ¼ �10 at the point Pð3;�1; 2Þ.
By Problem 7.36, a vector normal to the surface is

rð2x2 þ 4yz� 5z2Þ ¼ 4xiþ 4zjþ ð4y� 10zÞk ¼ 12iþ 8j� 24k at ð3;�1; 2Þ

Then a unit normal to the surface at P is
12iþ 8j� 24k

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ð12Þ2 þ ð8Þ2 þ ð�24Þ2
q ¼ 3iþ 2j� 6k

7
:

Another unit normal to the surface at P is � 3iþ 2j� 6k

7
:

7.38. If � ¼ 2x2y� xz3, find (a) r� and (b) r2�.

ðaÞ r� ¼ @�

@x
iþ @�

@y
jþ @�

@z
k ¼ ð4xy� z3Þiþ 2x2j� 3xz2k

ðbÞ r2� ¼ Laplacian of � ¼ r � r� ¼ @

@x
ð4xy� z3Þ þ @

@y
ð2x2Þ þ @

@z
ð�3xz2Þ ¼ 4y� 6xz
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Another method:

r2� ¼ @2�

@x2
þ @

2�

@y2
þ @

2�

@z2
¼ @2

@x2
ð2x2y� xz3Þ þ @2

@y2
ð2x2y� xz3Þ þ @2

@z2
ð2x2y� xz3Þ

¼ 4y� 6xz

7.39. Prove div curl A ¼ 0.

div curl A ¼ r � ðr  AÞ ¼ r �
i j k

@=@x @=@y @=@z

A1 A2 A3











































¼ r � @A3

@y
� @A2

@z

� �

iþ @A1

@z
� @A3

@x

� �

jþ @A2

@x
� @A1

@y

� �

k

� �

¼ @

@x

@A3

@y
� @A2

@z

� �

þ @

@y

@A1

@z
� @A3

@x

� �

þ @

@z

@A2

@x
� @A1

@y

� �

¼ @2A3

@x @y
� @2A2

@x @z
þ @2A1

@y @z
� @2A3

@y @x
þ @2A2

@z @x
� @2A1

@z @y

¼ 0

assuming that A has continuous second partial derivatives so that the order of differentiation is immaterial.

JACOBIANS AND CURVLINEAR COORDINATES

7.40. Find ds2 in (a) cylindrical and (b) spherical coordinates and determine the scale factors.

(a) Method 1:

x ¼ � cos�; y ¼ � sin�;¼ z

dx ¼ �� sin� d�þ cos� d�; dy ¼ � cos� d�þ sin� d�; dz ¼ dz

ds2 ¼ dx2 þ dy2 þ dz2 ¼ ð�� sin� d�þ cos� d�Þ2Then

þ ð� cos� d�þ sin� d�Þ2 þ ðdzÞ2
¼ ðd�Þ2 þ �2ðd�Þ2 þ ðdzÞ2 ¼ h21ðd�Þ2 þ h22ðd�Þ2 þ d2

3 ðdzÞ2

and h1 ¼ h� ¼ 1, h2 ¼ h� ¼ �, h3 ¼ hz ¼ 1 are the scale factors.

Method 2: The position vector is r ¼ � cos�iþ � sin�jþ zk. Then

dr ¼ @r

@�
d�þ @r

@�
d�þ @r

@z
dz

¼ ðcos�iþ sin�jÞ d�þ ð�� sin�iþ � cos�jÞ d�þ k dz

¼ ðcos� d�� � sin� d�Þiþ ðsin� d�þ � cos� d�Þjþ k dz

Thus ds2 ¼ dr � dr ¼ ðcos� d�� � sin� d�Þ2 þ ðsin� d�þ � cos� d�Þ2 þ ðdzÞ2
¼ ðd�Þ2 þ �2ðd�Þ2 þ ðdzÞ2

x ¼ r sin � cos�; y ¼ r sin � sin�; z ¼ r cos �ðbÞ

dx ¼ �r sin � sin� d�þ r cos � cos� d� þ sin � cos� drThen

dy ¼ r sin � cos� d�þ r cos � sin� d� þ sin � sin� dr

dz ¼ �r sin � d� þ cos � dr
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ðdsÞ2 ¼ ðdxÞ2 þ ðdyÞ2 þ ðdzÞ2 ¼ ðdrÞ2 þ r2ðd�Þ2 þ r2 sin2 � ðd�Þ2and

The scale factors are h1 ¼ hr ¼ 1; h2 ¼ h� ¼ r; h3 ¼ h� ¼ r sin �.

7.41. Find the volume element dV in (a) cylindrical and (b) spherical coordinates and sketch.

The volume element in orthogonal curvilinear coordinates u1; u2; u3 is

dV ¼ h1h2h3 du1du2du3 ¼
@ðx; y; zÞ
@ðu1; u2; u3Þ
























du1; du2du3

(a) In cylindrical coordinates, u1 ¼ �; u2 ¼ �; u3 ¼ z; h1 ¼ 1; h2 ¼ �; h3 ¼ 1 [see Problem 7.40(a)]. Then

dV ¼ ð1Þð�Þð1Þ d� d� dz ¼ � d� d� dz

This can also be observed directly from Fig. 7-30(a) below.

(b) In spherical coordinates, u1 ¼ r; u2 ¼ �; u3 ¼ �; h1 ¼ 1; h2 ¼ r; h3 ¼ r sin � [see Problem 7.40(b)]. Then

dV ¼ ð1ÞðrÞðr sin �Þ dr d� d� ¼ r2 sin � dr d� d�

This can also be observed directly from Fig. 7-30(b) above.

7.42. Express in cylindrical coordinates: (a) grad�; ðbÞ div A; ðcÞ r2�.

Let u1 ¼ �; u2 ¼ �; u3 ¼ z; h1 ¼ 1; h2 ¼ �; h3 ¼ 1 [see Problem 7.40(a)] in the results 1, 2, and 4 on Pages
174 and 175. Then

ðaÞ grad � ¼ r� ¼ 1

1

@�

@�
e1 þ

1

�

@�

@�
e2 þ

1

1

@�

@z
e3 ¼

@�

@�
e1 þ

1

�

@�

@�
e2 þ

@�

@z
e3

where e1; e2; e3 are the unit vectors in the directions of increasing �; �; z, respectively.

ðbÞ div A ¼ r � A ¼ 1

ð1Þð�Þð1Þ
@

@�
ð�Þð1ÞA1ð Þ þ @

@�
ðð1Þð1ÞA2Þ þ

@

@z
ðð1Þð�ÞA3Þ

� �

¼ 1

�

@

@�
ð�A1Þ þ

@A2

@�
þ @A3

@z

� �
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where A ¼ A1e1 þ A2e2 þ A3e3.

ðcÞ r2� ¼ 1

ð1Þð�Þð1Þ
@

@�

ð�Þð1Þ
ð1Þ

@�

@�

� �

þ @

@�

ð1Þð1Þ
ð�Þ

@�

@�

� �

þ @

@z

ð1Þð�Þ
ð1Þ

@�

@z

� �� �

¼ 1

�

@

@�
�
@�

@�

� �

þ 1

�2
@2�

@�2
þ @

2�

@z2

MISCELLANEOUS PROBLEMS

7.43. Prove that grad f ðrÞ ¼ f 0ðrÞ
r

r, where r ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

x2 þ y2 þ z2
p

and f 0ðrÞ ¼ df =dr is assumed to exist.

grad f ðrÞ ¼ r f ðrÞ ¼ @

@x
f ðrÞ iþ @

@y
f ðrÞ jþ @

@z
f ðrÞ k

¼ f 0ðrÞ @r
@x

iþ f 0ðrÞ @r
@y

jþ f 0ðrÞ @r
@z

k

¼ f 0ðrÞ x
r
iþ f 0ðrÞ y

r
jþ f 0ðrÞ z

r
k ¼ f 0ðrÞ

r
ðxiþ yjþ zkÞ ¼ f 0ðrÞ

r
r

Another method: In orthogonal curvilinear coordinates u1; u2; u3, we have

r� ¼ 1

h1

@�

@u1
e1 þ

1

h2

@�

@u2
e2 þ

1

h3

@�

@u3
e3 ð1Þ

If, in particular, we use spherical coordinates, we have u1 ¼ r; u2 ¼ �; u3 ¼ �. Then letting � ¼ f ðrÞ, a
function of r alone, the last two terms on the right of (1) are zero. Hence, we have, on observing that
e1 ¼ r=r and h1 ¼ 1, the result

r f ðrÞ ¼ 1

1

@f ðrÞ
@r

r

r
¼ f 0ðrÞ

r
r ð2Þ

7.44. (a) Find the Laplacian of � ¼ f ðrÞ. (b) Prove that � ¼ 1=r is a solution of Laplace’s equation
r2� ¼ 0.

(a) By Problem 7.43,

r� ¼ r f ðrÞ ¼ f 0ðrÞ
r

r

By Problem 7.35, assuming that f ðrÞ has continuous second partial derivatives, we have

Laplacian of � ¼ r2� ¼ r � ðr�Þ ¼ r � f 0ðrÞ
r

r

� �

¼ r f 0ðrÞ
r

� �

� rþ f 0ðrÞ
r

ðr � rÞ ¼ 1

r

d

dr

f 0ðrÞ
r

� �

r � rþ f 0ðrÞ
r

ð3Þ

¼ r f 00ðrÞ � f 0ðrÞ
r3

r2 þ 3 f 0ðrÞ
r

¼ f 00ðrÞ þ 2

r
f 0ðrÞ

Another method: In spherical coordinates, we have

r2U ¼ 1

r2
@

@r
r2
@U

@r

� �

þ 1

r2 sin �

@

@�
sin �

@U

@�

� �

þ 1

r2 sin2 �

@2U

@�2

If U ¼ f ðrÞ, the last two terms on the right are zero and we find

r2 f ðrÞ ¼ 1

r2
d

dr
ðr2 f 0ðrÞÞ ¼ f 00ðrÞ þ 2

r
f 0ðrÞ
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(b) From the result in part (a), we have

r2 1

r

� �

¼ d2

dr2
1

r

� �

þ 2

r

d

dr

1

r

� �

¼ 2

r3
� 2

r3
¼ 0

showing that 1=r is a solution of Laplace’s equation.

7.45. A particle moves along a space curve r ¼ rðtÞ, where t is the time measured from some initial time.
If v ¼ jdr=dtj ¼ ds=dt is the magnitude of the velocity of the particle (s is the arc length along the
space curve measured from the initial position), prove that the acceleration a of the particle is
given by

a ¼ dv

dt
Tþ v2

�
N

where T and N are unit tangent and normal vectors to the space curve and

� ¼ d2
r

ds2































�1

¼ d2x

ds2

 !2

þ d2y

ds2

 !2

þ d2z

ds2

 !2
8

<

:

9

=

;

�1=2

The velocity of the particle is given by v ¼ vT. Then the acceleration is given by

a ¼ dv

dt
¼ d

dt
ðvTÞ ¼ dv

dt
Tþ v

dT

dt
¼ dv

dt
Tþ v

dT

ds

ds

dt
¼ dv

dt
Tþ v2

dT

ds
ð1Þ

Since T has a unit magnitude, we have T � T ¼ 1. Then differentiating with respect to s,

T � dT
ds

þ dT

ds
� T ¼ 0; 2T � dT

ds
¼ 0 or T � dT

ds
¼ 0

from which it follows that dT=ds is perpendicular to T. Denoting by N the unit vector in the direction of
dT=ds, and called the principal normal to the space curve, we have

dT

ds
¼ �N ð2Þ

where � is the magnitude of dT=ds. Now since T ¼ dr=ds [see equation (7), Page 157], we have

dT=ds ¼ d2
r=ds2. Hence

� ¼ d2
r

ds2































¼ d2x

ds2

 !2

þ d2y

ds2

 !2

þ d2z

ds2

 !2
8

<

:

9

=

;

1=2

Defining � ¼ 1=�, (2) becomes dT=ds ¼ N=�. Thus from (1) we have, as required,

a ¼ dv

dt
Tþ v2

�
N

The components dv=dt and v2=� in the direction of T and N are called the tangential and normal
components of the acceleration, the latter being sometimes called the centripetal acceleration. The quantities
� and � are respectively the radius of curvature and curvature of the space curve.
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Supplementary Problems

VECTOR ALGEBRA

7.46. Given any two vectors A and B, illustrate geometrically the equality 4Aþ 3ðB� AÞ ¼ Aþ 3B.

7.47. A man travels 25 miles northeast, 15 miles due east, and 10 miles due south. By using an appropriate scale,

determine graphically (a) how far and (b) in what direction he is from his starting position. Is it possible
to determine the answer analytically? Ans. 33.6 miles, 13.28 north of east.

7.48. If A and B are any two non-zero vectors which do not have the same direction, prove that mAþ nB is a
vector lying in the plane determined by A and B.

7.49. If A, B, and C are non-coplanar vectors (vectors which do not all lie in the same plane) and
x1Aþ y1Bþ z1C ¼ x2Aþ y2Bþ z2C, prove that necessarily x1 ¼ x2; y1 ¼ y2; z1 ¼ z2.

7.50. Let ABCD be any quadrilateral and points P;Q;R; and S the midpoints of successive sides. Prove (a) that

PQRS is a parallelogram and (b) that the perimeter of PQRS is equal to the sum of the lengths of the
diagonals of ABCD.

7.51. Prove that the medians of a triangle intersect at a point which is a trisection point of each median.

7.52. Find a unit vector in the direction of the resultant of vectors A ¼ 2i� jþ k, B ¼ iþ jþ 2k, C ¼ 3i� 2jþ 4k.

Ans. ð6i� 2jþ 7kÞ= ffiffiffiffiffi

89
p

THE DOT OR SCALAR PRODUCT

7.53. Evaluate jðAþ BÞ � ðA� BÞj if A ¼ 2i� 3jþ 5k and B ¼ 3iþ j� 2k. Ans. 24

7.54. Verify the consistency of the law of cosines for a triangle. [Hint: Take the sides of A;B;C where C ¼ A� B.
Then use C � C ¼ ðA� BÞ � ðA� BÞ.]

7.55. Find a so that 2i� 3jþ 5k and 3iþ aj� 2k are perpendicular. Ans. a ¼ �4=3

7.56. If A ¼ 2iþ jþ k;B ¼ i� 2jþ 2k and C ¼ 3i� 4jþ 2k, find the projection of Aþ C in the direction of B.
Ans. 17/3

7.57. A triangle has vertices at Að2; 3; 1Þ;Bð�1; 1; 2Þ;Cð1;�2; 3Þ. Find (a) the length of the median drawn from
B to side AC and (b) the acute angle which this median makes with side BC.

Ans. (a) 1
2

ffiffiffiffiffi

26
p

; ðbÞ cos�1
ffiffiffiffiffi

91
p

=14

7.58. Prove that the diagonals of a rhombus are perpendicular to each other.

7.59. Prove that the vector ðABþ BAÞ=ðAþ BÞ represents the bisector of the angle between A and B.

THE CROSS OR VECTOR PRODUCT

7.60. If A ¼ 2i� jþ k and B ¼ iþ 2j� 3k, find jð2Aþ BÞ  ðA� 2BÞj: Ans. 5
ffiffiffi

3
p

7.61. Find a unit vector perpendicular to the plane of the vectors A ¼ 3i� 2jþ 4k and B ¼ iþ j� 2k.

Ans. �ð2jþ kÞ= ffiffiffi

5
p

7.62. If A B ¼ A C, does B ¼ C necessarily?

7.63. Find the area of the triangle with vertices ð2;�3; 1Þ; ð1;�1; 2Þ; ð�1; 2; 3Þ. Ans. 1
2

ffiffiffi

3
p
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7.64. Find the shortest distance from the point ð3; 2; 1Þ to the plane determine by ð1; 1; 0Þ; ð3;�1; 1Þ; ð�1; 0; 2Þ.
Ans. 2

TRIPLE PRODUCTS

7.65. If A ¼ 2iþ j� 3k;B ¼ i� 2jþ k;C ¼ �iþ j� 4, find (a) A � ðB CÞ, (b) C � ðA BÞ, (c) A ðB CÞ,
(d) ðA BÞ  C. Ans. (a) 20, (b) 20, (c) 8i� 19j� k; ðdÞ 25i� 15j� 10k

7.66. Prove that ðaÞ A � ðB CÞ ¼ B � ðC AÞ ¼ C � ðA BÞ
ðbÞ A ðB CÞ ¼ BðA � CÞ � CðA � BÞ.

7.67. Find an equation for the plane passing through ð2;�1;�2Þ; ð�1; 2;�3Þ; ð4; 1; 0Þ.
Ans. 2xþ y� 3z ¼ 9

7.68. Find the volume of the tetrahedron with vertices at ð2; 1; 1Þ; ð1;�1; 2Þ; ð0; 1;�1Þ; ð1;�2; 1Þ.
Ans. 4

3

7.69. Prove that ðA BÞ � ðCDÞ þ ðB CÞ � ðADÞ þ ðC AÞ � ðBDÞ ¼ 0:

DERIVATIVES

7.70. A particle moves along the space curve r ¼ e�t cos t iþ e�t sin t jþ e�t
k. Find the magnitude of the

(a) velocity and (b) acceleration at any time t. Ans. (a)
ffiffiffi

3
p

e�t; ðbÞ ffiffiffi

5
p

e�t

7.71. Prove that
d

du
ðA BÞ ¼ A dB

du
þ dA

du
 B where A and B are differentiable functions of u.

7.72. Find a unit vector tangent to the space curve x ¼ t; y ¼ t2; z ¼ t3 at the point where t ¼ 1.
Ans. ðiþ 2jþ 3kÞ= ffiffiffiffiffi

14
p

7.73. If r ¼ a cos!tþ b sin!t, where a and b are any constant non-collinear vectors and ! is a constant scalar,

prove that (a) r ¼ dr

dr
¼ !ða bÞ; ðbÞ; d2

r

dt2
þ !2

r ¼ 0.

7.74. If A ¼ x2i� yjþ xzk, B ¼ yiþ xj� xyzk and C ¼ i� yjþ x3zk, find (a)
@2

@x @y
ðA BÞ and

(b) d½A � ðB CÞ� at the point ð1;�1; 2Þ: Ans. (a) �4iþ 8j; ðbÞ 8 dx

7.75. If R ¼ x2yi� 2y2zjþ xy2z2k, find
@2B

@x2
 @2R

@y2































at the point ð2; 1;�2Þ. Ans. 16
ffiffiffi

5
p

GRADIENT, DIVERGENCE, AND CURL

7.76. If U;V;A;B have continuous partial derivatives prove that:
(a) rðU þ VÞ ¼ rU þ rV; ðbÞ r � ðAþ BÞ ¼ r � Aþ r � B; ðcÞ r  ðAþ BÞ ¼ r  Aþ r  B.

7.77. If � ¼ xyþ yzþ zx and A ¼ x2yiþ y2zjþ z2xk, find (a) A � r�; ðbÞ �r � A; and (c) ðr�Þ  A at the

point ð3;�1; 2Þ. Ans: ðaÞ 25; ðbÞ 2; ðcÞ 56i� 30jþ 47k

7.78. Show that r  ðr2rÞ ¼ 0 where r ¼ xiþ yjþ zk and r ¼ jrj.

7.79. Prove: (a) r  ðUAÞ ¼ ðrUÞ  AþUðr  AÞ; ðbÞ r � ðA BÞ ¼ B � ðr  AÞ � A � ðr  BÞ.

7.80. Prove that curl grad u ¼ 0, stating appropriate conditions on U.

7.81. Find a unit normal to the surface x2y� 2xzþ 2y2z4 ¼ 10 at the point ð2; 1;�1Þ.
Ans: � ð3iþ 4j� 6kÞ= ffiffiffiffiffi

61
p

7.82. If A ¼ 3xz2i� yzjþ ðxþ 2zÞk, find curl curl A. Ans: � 6xiþ ð6z� 1Þk

7.83. (a) Prove that r  ðr  AÞ ¼ �r2
Aþ rðr � AÞ. (b) Verify the result in (a) if A is given as in Problem 7.82.
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JACOBIANS AND CURVINLINEAR COORDINATES

7.84. Prove that
@ðx; y; zÞ
@ðu1; u2; u3Þ
























¼ @r

@u1
� @r
@u2

 @r

@u3

























.

7.85. Express (a) grad �; ðbÞ div A; ðcÞ r2� in spherical coordinates.

Ans: ðaÞ @�

@r
e1 þ

1

r

@�

@�
e2 þ

1

r sin �

@�

@�
e3

ðbÞ 1

r2
@

@r
ðr2A1Þ þ

1

r sin �

@

@�
ðsin �A2Þ þ

1

r sin �

@A3

@�
where A ¼ A1e1 þ A2e2 þ A3e3

ðcÞ 1

r2
@

@r
r2
@�

@r

� �

þ 1

r2 sin �

�

@�
sin �

@�

@�

� �

þ 1

r2 sin2 �

@2�

@�2

7.86. The transformation from rectangular to parabolic cylindrical coordinates is defined by the equations

x ¼ 1
2 ðu2 � v2Þ, y ¼ uv, z ¼ z. (a) Prove that the system is orthogonal. (b) Find ds2 and the scale

factors. (c) Find the Jacobian of the transformation and the volume element.
Ans. ðbÞ ds2 ¼ ðu2 þ v2Þ du2 þ ðu2 þ v2Þ dv2 þ dz2; h1 ¼ h2 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

u2 þ v2
p

; h3 ¼ 1

ðcÞ u2 þ v2; ðu2 þ v2Þ du dv dz

7.87. Write (a) r2� and (b) div A in parabolic cylindrical coordinates.

Ans: ðaÞ r2� ¼ 1

u2 þ v2
@2�

@u2
þ @

2�

@v2

 !

þ @
2�

@z2

ðbÞ div A ¼ 1

u2 þ v2
@

@u
ð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

u2 þ v2
p

A1Þ þ
@

@v
ð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

u2 þ v2
p

A2Þ
� �

þ @A3

@z

7.88. Prove that for orthogonal curvilinear coordinates,

r� ¼ e1

h1

@�

@u1
þ e2

h2

@�

@u2
þ e3

h3

@�

@u3

[Hint: Let r� ¼ a1e1 þ a2e2 þ a3e3 and use the fact that d� ¼ r� � dr must be the same in both rectangular

and the curvilinear coordinates.]

7.89. Give a vector interpretation to the theorem in Problem 6.35 of Chapter 6.

MISCELLANEOUS PROBLEMS

7.90. If A is a differentiable function of u and jAðuÞj ¼ 1, prove that dA=du is perpendicular to A.

7.91. Prove formulas 6, 7, and 8 on Page 159.

7.92. If � and � are polar coordinates and A;B; n are any constants, prove that U ¼ �nðA cos n�þ B sin n�Þ
satisfies Laplace’s equation.

7.93. If V ¼ 2 cos � þ 3 sin3 � cos�

r2
, find r2V . Ans.

6 sin � cos�ð4� 5 sin2 �Þ
r4

7.94. Find the most general function of (a) the cylindrical coordinate �, (b) the spherical coordinate r, (c) the

spherical coordinate � which satisfies Laplace’s equation.
Ans. (a) Aþ B ln �; ðbÞ Aþ B=r; ðcÞ Aþ B lnðcsc � � cot �Þ where A and B are any constants.

7.95. Let T and N denote respectively the unit tangent vector and unit principal normal vector to a space curve
r ¼ rðuÞ, where rðuÞ is assumed differentiable. Define a vector B ¼ TN called the unit binormal vector to
the space curve. Prove that
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dT

ds
¼ �N;

dB

ds
¼ �N; dN

ds
¼ B� �T

These are called the Frenet-Serret formulas and are of fundamental importance in differential geometry. In

these formulas � is called the curvature,  is called the torsion; and the reciprocals of these, � ¼ 1=� and
� ¼ 1=, are called the radius of curvature and radius of torsion, respectively.

7.96. (a) Prove that the radius of curvature at any point of the plane curve y ¼ f ðxÞ; z ¼ 0 where f ðxÞ is differ-
entiable, is given by

� ¼ ð1þ y02Þ3=2
y 00































(b) Find the radius of curvature at the point ð�=2; 1; 0Þ of the curve y ¼ sin x; z ¼ 0.
Ans. (b) 2

ffiffiffi

2
p

7.97. Prove that the acceleration of a particle along a space curve is given respectively in (a) cylindrical,
(b) spherical coordinates by

ð €��� � _��2Þe� þ ð� €��þ 2 _�� _��Þe� þ €zzez

ð€rr� r _��2 � r _��2 sin2 �Þer þ ðr €�� þ 2_rr _�� � r _��2 sin � cos �Þe� þ ð2_rr _�� sin � þ 2r _�� _�� cos � þ r €�� sin �Þe�
where dots denote time derivatives and e�; e�; ez; er; e�; e� are unit vectors in the directions of increasing
�; �; z; r; �; �, respectively.

7.98. Let E and H be two vectors assumed to have continuous partial derivatives (of second order at least) with
respect to position and time. Suppose further that E and H satisfy the equations

r � E ¼ 0; r �H ¼ 0; r  E ¼ � 1

c

@H

@t
; r H ¼ 1

c

@E

@t
ð1Þ

prove that E and H satisfy the equation

r2 ¼ 1

c2
@2 

@t2
ð2Þ

where  is a generic meaning, and in particular can represent any component of E or H.

[The vectors E and H are called electric and magnetic field vectors in electromagnetic theory. Equations (1)

are a special case of Maxwell’s equations. The result (2) led Maxwell to the conclusion that light was an
electromagnetic phenomena. The constant c is the velocity of light.]

7.99. Use the relations in Problem 7.98 to show that

@

@t
f12 ðE2 þH2Þg þ cr � ðEHÞ ¼ 0

7.100. Let A1;A2;A3 be the components of vector A in an xyz rectangular coordinate system with unit vectors
i1; i2; i3 (the usual i; j; k vectors), and A 0

1;A
0
2;A

0
3 the components of A in an x 0y 0z 0 rectangular coordinate

system which has the same origin as the xyz system but is rotated with respect to it and has the unit vectors

i
0
1; i

0
2; i

0
3. Prove that the following relations (often called invariance relations) must hold:

An ¼ l1nA
0
1 þ l2nA

0
2 þ l3nA

0
3 n ¼ 1; 2; 3

where i
0
m � in ¼ lmn.

7.101. If A is the vector of Problem 7.100, prove that the divergence of A, i.e., r � A, is an invariant (often called a
scalar invariant), i.e., prove that

@A 0
1

@x 0 þ
@A 0

2

@y 0 þ
@A 0

3

@z 0
¼ @A1

@x
þ @A2

@y
þ @A3

@z
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The results of this and the preceding problem express an obvious requirement that physical quantities must

not depend on coordinate systems in which they are observed. Such ideas when generalized lead to an
important subject called tensor analysis, which is basic to the theory of relativity.

7.102. Prove that (a) A � B; ðbÞ A B; ðcÞ r  A are invariant under the transformation of Problem 7.100.

7.103. If u1; u2; u3 are orthogonal curvilinear coordinates, prove that

ðaÞ @ðu1; u2; u3Þ
@ðx; y; zÞ ¼ ru1 � ru2  ru3 ðbÞ @r

@u1
� @r
@u2

 @r

@u3

� �

ðru1 � ru2  ru3Þ ¼ 1

and give the significance of these in terms of Jacobians.

7.104. Use the axiomatic approach to vectors to prove relation (8) on Page 155.

7.105. A set of n vectors A1;A2; � � � ;An is called linearly dependent if there exists a set of scalars c1; c2; . . . ; cn not all
zero such that c1A1 þ c2A2 þ � � � þ cnAn ¼ 0 identically; otherwise, the set is called linearly independent.
(a) Prove that the vectors A1 ¼ 2i� 3jþ 5k, A2 ¼ iþ j� 2k;A3 ¼ 3i� 7jþ 12k are linearly dependent.
(b) Prove that any four three-dimensional vectors are linearly dependent. (c) Prove that a necessary

and sufficient condition that the vectors A1 ¼ a1iþ b1jþ c1k, A2 ¼ a2iþ b2jþ c2k;A3 ¼ a3iþ b3jþ c3k be
linearly independent is that A1 � A2  A3 6¼ 0. Give a geometrical interpretation of this.

7.106. A complex number can be defined as an ordered pair ða; bÞ of real numbers a and b subject to certain rules of

operation for addition and multiplication. (a) What are these rules? (b) How can the rules in (a) be used
to define subtraction and division? (c) Explain why complex numbers can be considered as two-dimen-
sional vectors. (d) Describe similarities and differences between various operations involving complex
numbers and the vectors considered in this chapter.
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Applications of Partial
Derivatives

APPLICATIONS TO GEOMETRY

The theoretical study of curves and surfaces began
more than two thousand years ago when Greek phi-
losopher-mathematicians explored the properties of
conic sections, helixes, spirals, and surfaces of revolu-
tion generated from them. While applications were
not on their minds, many practical consequences
evolved. These included representation of the ellipti-
cal paths of planets about the sun, employment of the
focal properties of paraboloids, and use of the special
properties of helixes to construct the double helical
model of DNA.

The analytic tool for studying functions of more
than one variable is the partial derivative. Surfaces are
a geometric starting point, since they are represented
by functions of two independent variables. Vector
forms of many of these these concepts were introduced
in the previous chapter. In this one, corresponding
coordinate equations are exhibited.

1. Tangent Plane to a Surface. Let Fðx; y; zÞ ¼ 0 be the equation of a surface S such as shown in
Fig. 8-1. We shall assume that F , and all other functions in this chapter, is continuously differentiable
unless otherwise indicated. Suppose we wish to find the equation of a tangent plane to S at the point
Pðx0; y0; z0Þ. A vector normal to S at this point is N0 ¼ rF jP, the subscript P indicating that the
gradient is to be evaluated at the point Pðx0; y0; z0Þ.

If r0 and r are the vectors drawn respectively from O to Pðx0; y0; z0Þ and Qðx; y; zÞ on the plane, the
equation of the plane is

ðr� r0Þ �N0 ¼ ðr� r0Þ � rF jP ¼ 0 ð1Þ
since r� r0 is perpendicular to N0.

Fig. 8-1

Copyright 2002, 1963 by The McGraw-Hill Companies, Inc. Click Here for Terms of Use.



In rectangular form this is

@F

@x













P

ðx� x0Þ þ
@F

@y













P

ðy� y0Þ þ
@F

@z













P

ðz� z0Þ ¼ 0 ð2Þ

In case the equation of the surface is given in orthogonal curvilinear coordinates in the form
Fðu1; u2; u3Þ ¼ 0, the equation of the tangent plane can be obtained using the result on Page 162 for
the gradient in these coordinates. See Problem 8.4.

2. Normal Line to a Surface. Suppose we require equations for the normal line to the surface S at
Pðx0; y0; z0Þ i.e., the line perpendicular to the tangent plane of the surface at P. If we now let r be the
vector drawn from O in Fig. 8-1 to any point ðx; y; zÞ on the normal N0, we see that r� r0 is collinear
with N0 and so the required condition is

ðr� r0Þ N0 ¼ ðr� r0Þ  rF jP ¼ 0 ð3Þ
By expressing the cross product in the determinant form

i j k

x� x0 y� y0 z� z0
FxjP FyjP FzjP





































we find that

x� x0
@F

@x













P

¼ y� y0
@F

@y













P

¼ z� z0
@F

@z













P

ð4Þ

Setting each of these ratios equal to a parameter (such as t or u) and solving for x, y; and z yields the
parametric equations of the normal line.

The equations for the normal line can also be written when the equation of the surface is expressed
in orthogonal curvilinear coordinates. (See Problem 8.1(b).)

3. Tangent Line to a Curve. Let the parametric equations of curve C of Fig. 8-2 be
x ¼ f ðuÞ; y ¼ gðuÞ; z ¼ hðuÞ; where we shall suppose, unless otherwise indicated, that f , g; and h are
continuously differentiable. We wish to find equations for the tangent line to C at the point Pðx0; y0; z0Þ
where u ¼ u0.
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If R ¼ f ðuÞiþ gðuÞjþ hðuÞk, a vector tangent to C at the point P is given by T0 ¼
dR

du













P

. If r0 and r

denote the vectors drawn respectively from O to Pðx0; y0; z0Þ and Qðx; y; zÞ on the tangent line, then since
r� r0 is collinear with T0 we have

ðr� r0Þ  T0 ¼ ðr� r0Þ 
dR

du













P

¼ 0 ð5Þ

In rectangular form this becomes

x� x0
f 0ðu0Þ

¼ y� y0
g 0ðu0Þ

¼ z� z0
h 0ðu0Þ

ð6Þ

The parametric form is obtained by setting each ratio equal to u.

If the curve C is given as the intersection of two surfaces with equations Fðx; y; zÞ ¼ 0 and
Gðx; y; zÞ ¼ 0 observe that rF rG has the direction of the line of intersection of the tangent planes;
therefore, the corresponding equations of the tangent line are

x� x0
Fy Fz

Gy Gz

























P

¼ y� y0
Fz Fx

Gz Gx

























P

¼ z� z0
Fx Fy

Gx Gy

























P

ð7Þ

Note that the determinants in (7) are Jacobians. A similar result can be found when the surfaces are
given in terms of orthogonal curvilinear coordinates.

4. Normal Plane to a Curve. Suppose we wish to find an equation for the normal plane to curve C
at Pðx0; y0; z0Þ of Fig. 8-2 (i.e., the plane perpendicular to the tangent line to C at this point). Letting r be
the vector from O to any point ðx; y; zÞ on this plane, it follows that r� r0 is perpendicular to T0. Then
the required equation is

ðr� r0Þ � T0 ¼ ðr� r0Þ �
dR

du













P

¼ 0 ð8Þ

When the curve has parametric equations x ¼ f ðuÞ; y ¼ gðuÞ; z ¼ hðuÞ this becomes

f 0ðu0Þðx� x0Þ þ g 0ðu0Þð y� y0Þ þ h 0ðu0Þðz� z0Þ ¼ 0 ð9Þ
Furthermore, when the curve is the intersection of the implicitly defined surfaces

Fðx; y; zÞ ¼ 0 and Gðx; y; zÞ ¼ 0

then

Fy Fz

Gy Gz

























P

ðx� x0Þ þ Fz Fx

Gz Gx

























P

ð y� y0Þ þ Fx Fy

Gx Gy

























P

ðz� z0Þ ¼ 0 ð10Þ

5. Envelopes. Solutions of differential equations in two variables are geometrically represented by
one-parameter families of curves. Sometimes such a family characterizes a curve called an envelope.

For example, the family of all lines (see Problem 8.9) one unit from the origin may be represented by
x sin 	� y cos	� 1 ¼ 0, where 	 is a parameter. The envelope of this family is the circle x2 þ y2 ¼ 1.

If �ðx; y; zÞ ¼ 0 is a one-parameter family of curves in the xy plane, there may be a curve E which is
tangent at each point to some member of the family and such that each member of the family is tangent
to E. If E exists, its equation can be found by solving simultaneously the equations

�ðx; y; 	Þ ¼ 0; �	ðx; y; 	Þ ¼ 0 ð11Þ
and E is called the envelope of the family.

CHAP. 8] APPLICATIONS OF PARTIAL DERIVATIVES 185



The result can be extended to determine the envelope of a one-parameter family of surfaces
�ðx; y; z; 	Þ. This envelope can be found from

�ðx; y; z; 	Þ ¼ 0; �	ðx; y; z; 	Þ ¼ 0 ð12Þ
Extensions to two- (or more) parameter families can be made.

DIRECTIONAL DERIVATIVES

Suppose Fðx; y; zÞ is defined at a point ðx; y; zÞ on a given space curve C. Let
Fðxþ�x; yþ�y; zþ�zÞ be the value of the function at a neighboring point on C and let �s denote
the length of arc of the curve between those points. Then

lim
�s!0

�F

�s
¼ lim

�s!0

Fðxþ�x; yþ�y; zþ�zÞ � Fðx; y; zÞ
�s

ð13Þ

if it exists, is called the directional derivative of F at the point ðx; y; zÞ along the curve C and is given by

dF

ds
¼ @F

@x

dx

ds
þ @F
@y

dy

ds
þ @F
@z

dz

ds
ð14Þ

In vector form this can be written

dF

ds
¼ @F

@x
iþ @F

@y
jþ @F

@z
k

� �

� dx

ds
iþ dy

ds
jþ dz

ds
k

� �

¼ rF � dr
ds

¼ rF � T ð15Þ

from which it follows that the directional derivative is given by the component of rF in the direction of
the tangent to C.

In the previous chapter we observed the following fact:
The maximum value of the directional derivative is given by jrF j.
These maxima occur in directions normal to the surfaces Fðx; y; zÞ ¼ c (where c is any constant)

which are sometimes called equipotential surfaces or level surfaces.

DIFFERENTIATION UNDER THE INTEGRAL SIGN

Let �ð	Þ ¼
ðu2

u1

f ðx; 	Þ dx a @ 	@ b ð16Þ

where u1 and u2 may depend on the parameter 	. Then

d�

d	
¼
ðu2

u1

@ f

@	
dxþ f ðu2; 	Þ

du2
d	

� f ðu1; 	Þ
du1
d	

ð17Þ

for a @ 	@ b, if f ðx; 	Þ and @ f =@	 are continuous in both x and 	 in some region of the x	 plane
including u1 @ x @ u2, a @ 	@ b and if u1 and u2 are continuous and have continuous derivatives for
a @ 	@ b.

In case u1 and u2 are constants, the last two terms of (17) are zero.
The result (17), called Leibnitz’s rule, is often useful in evaluating definite integrals (see Problems

8.15, 8.29).

INTEGRATION UNDER THE INTEGRAL SIGN

If �ð	Þ is defined by (16) and f ðx; 	Þ is continuous in x and 	 in a region including
u1 @ x @ u2; a @ x @ b, then if u1 and u2 are constants,
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ðb

a

�ð	Þ d	 ¼
ðb

a

ðu2

u1

f ðx; 	Þ dx
� �

d	 ¼
ðu2

u1

ðb

a

f ðx; 	Þ d	
� �

dx ð18Þ

The result is known as interchange of the order of integration or integration under the integral sign. (See
Problem 8.18.)

MAXIMA AND MINIMA

In Chapter 4 we briefly examined relative extrema for functions of one variable. The general idea
was that for points of the graph of y ¼ gðxÞ that were locally highest or lowest, the condition g 0ðxÞ ¼ 0
was necessary. Such points P0ðx0Þ were called critical points. (See Fig. 8-3a,b.) The condition g 0ðxÞ ¼ 0
was useful in searching for relative maxima and minima but it was not decisive. (See Fig. 8-3(c).)

To determine the exact nature of the function at a critical point P0, g
00ðx0Þ had to be examined.

> 0 counterclockwise rotation (rel. min.)
g 00ðx0Þ < 0 implied a clockwise rotation (rel. max)

¼ 0 need for further investigation.

This section describes the necessary and sufficient conditions for relative extrema of functions of two
variables. Geometrically we think of surfaces, S, represented by z ¼ f ðx; yÞ. If at a point P0ðx0; y0Þ
then fxðx; y0Þ ¼ 0, means that the curve of intersection of S and the plane y ¼ y0 has a tangent parallel to
the x-axis. Similarly fyðx0; y0Þ ¼ 0 indicates that the curve of intersection of S and the cross section
x ¼ x0 has a tangent parallel the y-axis. (See Problem 8.20.)

Thus

fxðx; y0Þ ¼ 0; fyðx0; yÞ ¼ 0

are necessary conditions for a relative extrema of z ¼ f ðx; yÞ at P0; however, they are not sufficient
because there are directions associated with a rotation through 3608 that have not been examined. Of
course, no differentiation between relative maxima and relative minima has been made. (See Fig. 8-4.)

A very special form, fxy � fxfy invariant under plane rotation, and capable of characterizing the
roots of a quadratic equation, Ax2 þ 2Bxþ C ¼ 0, allows us to form sufficient conditions for
relative extrema. (See Problem 8.21.)
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A point ðx0; y0Þ is called a relative maximum point or relative minimum point of f ðx; yÞ respectively
according as f ðx0 þ h; y0 þ kÞ < f ðx0; y0Þ or f ðx0 þ h; y0 þ kÞ > f ðx0; y0Þ for all h and k such that
0 < jhj < �; 0 < jkj < � where � is a sufficiently small positive number.

A necessary condition that a differentiable function f ðx; yÞ have a relative maximum or minimum is

@ f

@x
¼ 0;

@ f

@y
¼ 0 ð19Þ

If ðx0; y0Þ is a point (called a critical point) satisfying equations (19) and if � is defined by

� ¼ @2f

@x2

 !

@2f

@y2

 !

� @2f

@x @y

 !2
8

<

:

9

=

;
















ðx0;y0Þ
ð20Þ

then

1. ðx0; y0Þ is a relative maximum point if � > 0 and
@2f

@x2













ðx0;y0Þ
< 0 or

@2f

@y2













ðx0;y0Þ
< 0

 !

2. ðx0; y0Þ is a relative minimum point if � > 0 and
@2f

@x2













ðx0;y0Þ
> 0 or

@2f

@y2













ðx0;y0Þ
> 0

 !

3. ðx0; y0Þ is neither a relative maximum or minimum point if � < 0. If � < 0, ðx0; y0Þ is some-
times called a saddle point.

4. No information is obtained if � ¼ 0 (in such case further investigation is necessary).

METHOD OF LAGRANGE MULTIPLIERS FOR MAXIMA AND MINIMA

A method for obtaining the relative maximum or minimum values of a function Fðx; y; zÞ subject to
a constraint condition �ðx; y; zÞ ¼ 0, consists of the formation of the auxiliary function

Gðx; y; zÞ � Fðx; y; zÞ þ ��ðx; y; zÞ ð21Þ
subject to the conditions

@G

@x
¼ 0;

@G

@y
¼ 0;

@G

@z
¼ 0 ð22Þ

which are necessary conditions for a relative maximum or minimum. The parameter �, which is
independent of x; y; z, is called a Lagrange multiplier.

The conditions (22) are equivalent to rG ¼ 0, and hence, 0 ¼ rF þ �r�
Geometrically, this means that rF and r� are parallel. This fact gives rise to the method of

Lagrange multipliers in the following way.
Let the maximum value of F on �ðx; y; zÞ ¼ 0 be A and suppose it occurs at P0ðx0; y0; z0Þ. (A

similar argument can be made for a minimum value of F .) Now consider a family of surfaces
Fðx; y; zÞ ¼ C.

The member Fðx; y; zÞ ¼ A passes through P0, while those surfaces Fðx; y; zÞ ¼ B with B < A do
not. (This choice of a surface, i.e., f ðx; y; zÞ ¼ A, geometrically imposes the condition �ðx; y; zÞ ¼ 0 on
F .) Since at P0 the condition 0 ¼ rF þ �r� tells us that the gradients of Fðx; y; zÞ ¼ A and �ðx; y; zÞ are
parallel, we know that the surfaces have a common tangent plane at a point that is maximum for F .
Thus, rG ¼ 0 is a necessary condition for a relative maximum of F at P0. Of course, the condition is
not sufficient. The critical point so determined may not be unique and it may not produce a relative
extremum.

The method can be generalized. If we wish to find the relative maximum or minimum values of a
function Fðx1; x2; x3; . . . ; xnÞ subject to the constraint conditions �ðx1; . . . ; xnÞ ¼ 0; �2ðx1; . . . ; xnÞ ¼
0; . . . ; �kðx1; . . . ; xnÞ ¼ 0, we form the auxiliary function
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Gðx1; x2; . . . ; xnÞ � F þ �1�1 þ �2�2 þ � � � þ �k�k ð23Þ
subject to the (necessary) conditions

@G

@x1
¼ 0;

@G

@x2
¼ 0; . . . ;

@G

@xn
� 0 ð24Þ

where �1; �2; . . . ; �k, which are independent of x1; x2; . . . ; xn, are the Lagrange multipliers.

APPLICATIONS TO ERRORS

The theory of differentials can be applied to obtain errors in a function of x; y; z, etc., when the
errors in x; y; z, etc., are known. See Problem 8.28.

Solved Problems

TANGENT PLANE AND NORMAL LINE TO A SURFACE

8.1. Find equations for the (a) tangent plane and (b) normal line to the surface x2yzþ 3y2 ¼
2xz2 � 8z at the point ð1; 2;�1Þ.
(a) The equation of the surface is F ¼ x2yzþ 3y2 � 2xz2 þ 8z ¼ 0. A normal to the surface at ð1; 2;�1Þ is

N0 ¼ rF jð1;2;�1Þ ¼ ð2xyz� 2z2Þiþ ðx2zþ 6yÞjþ ðx2y� 4xzþ 8Þkjð1;2;�1Þ
¼ �6iþ 11jþ 14k

Referring to Fig. 8-1, Page 183:

The vector from O to any point ðx; y; zÞ on the tangent plane is r ¼ xiþ yjþ zk.

The vector from O to the point ð1; 2;�1Þ on the tangent plane is r0 ¼ iþ 2j� k.
The vector r� r0 ¼ ðx� 1Þiþ ð y� 2Þjþ ðzþ 1Þk lies in the tangent plane and is thus perpen-
dicular to N0.

Then the required equation is

ðr� r0Þ �N0 ¼ 0 i:e:; fðx� 1Þiþ ð y� 2Þjþ ðzþ 1Þkg � f�6iþ 11jþ 14kg ¼ 0

�6ðx� 1Þ þ 11ð y� 2Þ þ 14ðzþ 1Þ ¼ 0 or 6x� 11y� 14zþ 2 ¼ 0

(b) Let r ¼ xiþ yjþ zk be the vector from O to any point ðx; y; zÞ of the normal N0. The vector from O to
the point ð1; 2;�1Þ on the normal is r0 ¼ iþ 2j� k. The vector r� r0 ¼ ðx� 1Þiþ ð y� 2Þjþ ðzþ 1Þk
is collinear with N0. Then

ðr� r0Þ N0 ¼ 0 i:e:;
i j k

x� 1 y� 2 zþ 1
�6 11 14





































¼ 0

which is equivalent to the equations

11ðx� 1Þ ¼ �6ð y� 2Þ; 14ð y� 2Þ ¼ 11ðzþ 1Þ; 14ðx� 1Þ ¼ �6ðzþ 1Þ
These can be written as

x� 1

�6
¼ y� 2

11
¼ zþ 1

14

often called the standard form for the equations of a line. By setting each of these ratios equal to the
parameter t, we have

x ¼ 1� 6t; y ¼ 2þ 11t; z ¼ 14t� 1

called the parametric equations for the line.
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8.2. In what point does the normal line of Problem 8.1(b) meet the plane xþ 3y� 2z ¼ 10?

Substituting the parametric equations of Problem 8.1(b), we have

1� 6tþ 3ð2þ 11tÞ � 2ð14t� 1Þ ¼ 10 or t ¼ �1

Then x ¼ 1� 6t ¼ 7; y ¼ 2þ 11t ¼ �9; z ¼ 14t� 1 ¼ �15 and the required point is ð7;�9;�15Þ.

8.3. Show that the surface x2 � 2yzþ y3 ¼ 4 is perpendicular to any member of the family of surfaces
x2 þ 1 ¼ ð2� 4aÞy2 þ az2 at the point of intersection ð1;�1; 2Þ:

Let the equations of the two surfaces be written in the form

F ¼ x2 � 2yzþ y3 � 4 ¼ 0 and G ¼ x2 þ 1� ð2� 4aÞy2 � az2 ¼ 0

Then

rF ¼ 2xiþ ð3y2 � 2zÞj� 2yk; rG ¼ 2xi� 2ð2� 4aÞyj� 2azk

Thus, the normals to the two surfaces at ð1;�1; 2Þ are given by

N1 ¼ 2i� jþ 2k; N2 ¼ 2iþ 2ð2� 4aÞj� 4ak

Since N1 �N2 ¼ ð2Þð2Þ � 2ð2� 4aÞ � ð2Þð4aÞ � 0, it follows that N1 and N2 are perpendicular for all a,
and so the required result follows.

8.4. The equation of a surface is given in spherical coordinates by Fðr; �; �Þ ¼ 0, where we suppose
that F is continuously differentiable. (a) Find an equation for the tangent plane to the surface at
the point ðr0; �0; �0Þ. (b) Find an equation for the tangent plane to the surface r ¼ 4 cos � at the
point ð2 ffiffiffi

2
p
; �=4; 3�=4Þ. (c) Find a set of equations for the normal line to the surface in (b) at the

indicated point.

(a) The gradient of � in orthogonal curvilinear coordinates is

r� ¼ 1

h1

@�

@u1
e1 þ

1

h2

@�

@u2
e2 þ

1

h3

@�

@u3
e3

e1 ¼
1

h1

@r

@u1
; e2 ¼

1

h2

@r

@u2
; e3 ¼

1

h3

@r

@u3
where

(see Pages 161, 175).

In spherical coordinates u1 ¼ r; u2 ¼ �; u3 ¼ �; h1 ¼ 1; h2 ¼ r; h3 ¼ r sin � and r ¼ xiþ yjþ
zk ¼ r sin � cos�iþ r sin � sin�jþ r cos �k.
Then

e1 ¼ sin � cos�iþ sin � sin�jþ cos �k
e2 ¼ cos � cos�iþ cos � sin�j� sin �k
e3 ¼ � sin�iþ cos�j

8

<

:

ð1Þ

and

rF ¼ @F

@r
e1 þ

1

r

@F

@�
e2 þ

1

r sin �

@F

@�
e3 ð2Þ

As on Page 183 the required equation is ðr� r0Þ � rF jP ¼ 0.
Now substituting (1) and (2), we have

rF jP ¼ @F

@r













P

sin �0 cos�0 þ
1

r0

@F

@�













P

cos �0 cos�0 �
sin�0
r0 sin �0

@F

@�













P

� �

i

þ @F

@r













P

sin �0 sin�0 þ
1

r0

@F

@�













P

cos �0 sin�0 þ
cos�0
r0 sin �0

@F

@�













P

� �

j

þ @F

@r













P

cos �0 �
1

r0

@F

@�













P

sin �0

� �

k
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Denoting the expressions in braces by A;B;C respectively so that rF jP ¼ Aiþ Bjþ Ck, we see

that the required equation is Aðx� x0Þ þ Bð y� y0Þ þ Cðz� z0Þ ¼ 0. This can be written in spherical
coordinates by using the transformation equations for x, y; and z in these coordinates.

(b) We have F ¼ r� 4 cos � ¼ 0. Then @F=@r ¼ 1, @F=@� ¼ 4 sin �, @F=@� ¼ 0.

Since r0 ¼ 2
ffiffiffi

2
p
; �0 ¼ �=4; �0 ¼ 3�=4, we have from part (a), rF jP ¼ Aiþ Bjþ Ck ¼ �iþ j.

From the transformation equations the given point has rectangular coordinates ð� ffiffiffi

2
p
;
ffiffiffi

2
p
; 2Þ, and

so r� r0 ¼ ðxþ ffiffiffi

2
p Þiþ ð y� ffiffiffi

2
p Þjþ ðz� 2Þk.

The required equation of the plane is thus �ðxþ ffiffiffi

2
p Þ þ ð y� ffiffiffi

2
p Þ ¼ 0 or y� x ¼ 2

ffiffiffi

2
p

. In sphe-
rical coordinates this becomes r sin � sin�� r sin � cos� ¼ 2

ffiffiffi

2
p

.

In rectangular coordinates the equation r ¼ 4 cos � becomes x2 þ y2 þ ðz� 2Þ2 ¼ 4 and the tangent
plane can be determined from this as in Problem 8.1. In other cases, however, it may not be so easy to

obtain the equation in rectangular form, and in such cases the method of part (a) is simpler to use.

(c) The equations of the normal line can be represented by

xþ ffiffiffi

2
p

�1
¼ y� ffiffiffi

2
p

1
¼ z� 2

0

the significance of the right-hand member being that the line lies in the plane z ¼ 2. Thus, the required
line is given by

xþ ffiffiffi

2
p

�1
¼ y� ffiffiffi

2
p

1
; z ¼ 0 or xþ y ¼ 0; z ¼ 0

TANGENT LINE AND NORMAL PLANE TO A CURVE

8.5. Find equations for the (a) tangent line and (b) normal plane to the curve x ¼ t� cos t,
y ¼ 3þ sin 2t, z ¼ 1þ cos 3t at the point where t ¼ 1

2�.

(a) The vector from origin O (see Fig. 8-2, Page 183) to any point of curve C is R ¼ ðt� cos tÞiþ
ð3þ sin 2tÞjþ ð1þ cos 3tÞk. Then a vector tangent to C at the point where t ¼ 1

2� is

T0 ¼
dR

dt













t¼1=2�

¼ ð1þ sin tÞiþ 2 cos 2t j� 3 sin 3t kjt¼1=2� ¼ 2i� 2jþ 3k

The vector from O to the point where t ¼ 1
2� is r0 ¼ 1

2�iþ 3jþ k.

The vector from O to any point ðx; y; zÞ on the tangent line is r ¼ xiþ yjþ zk.

Then r� r0 ¼ ðx� 1
2�Þiþ y� 3Þjþ ðz� 1Þk is collinear with T0, so that the required equation is

ðr� r0Þ  T0 ¼ 0; i:e:;
i j k

x� 1
2� y� 3 z� 1

2 �2 3





































¼ 0

and the required equations are
x� 1

2�

2
¼ y� 3

�2
¼ z� 1

3
or in parametric form x ¼ 2tþ 1

2�, y ¼ 3� 2t,

z ¼ 3tþ 1:

(b) Let r ¼ xiþ yjþ zk be the vector from O to any point ðx; y; zÞ of the normal plane. The vector from O

to the point where t ¼ 1
2� is r0 ¼ 1

2�iþ 3jþ k. The vector r� r0 ¼ ðx� 1
2�Þiþ ð y� 3Þjþ ðz� 1Þk lies

in the normal plane and hence is perpendicular to T0. Then the required equation is ðr� r0Þ � T0 ¼ 0 or
2ðx� 1

2�Þ � 2ð y� 3Þ þ 3ðz� 1Þ ¼ 0.

8.6. Find equations for the (a) tangent line and (b) normal plane to the curve 3x2yþ y2z ¼ �2,
2xz� x2y ¼ 3 at the point ð1;�1; 1Þ.
(a) The equations of the surfaces intersecting in the curve are

F ¼ 3x2yþ y2zþ 2 ¼ 0; G ¼ 2xz� x2y� 3 ¼ 0
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The normals to each surface at the point Pð1;�1; 1Þ are, respectively,
N1 ¼ rF jP ¼ 6xyiþ ð3x2 þ 2yzÞjþ y2k ¼ �6þ jþ k

N2 ¼ rGjP ¼ ð2z� 2xyÞi� x2jþ 2xk ¼ 4i� jþ 2k

Then a tangent vector to the curve at P is

T0 ¼ N1 N2 ¼ ð�6iþ jþ kÞ  ð4� jþ 2kÞ ¼ 3iþ 16jþ 2k

Thus, as in Problem 8.5(a), the tangent line is given by

ðr� r0Þ  T0 ¼ 0 or fðx� 1Þiþ ð yþ 1Þjþ ðz� 1Þkg  f3iþ 16jþ 2kg ¼ 0

x� 1

3
¼ yþ 1

16
¼ z� 1

2
or x ¼ 1þ 3t; y ¼ 16t� 1; z ¼ 2tþ 1i.e.,

(b) As in Problem 8.5(b) the normal plane is given by

ðr� r0Þ � T0 ¼ 0 or fðx� 1Þiþ ð yþ 1Þjþ ðz� 1Þkg � f3iþ 16jþ 2kg ¼ 0

3ðx� 1Þ þ 16ð yþ 1Þ þ 2ðz� 1Þ ¼ 0 or 3xþ 16yþ 2z ¼ �11i.e.,

The results in (a) and (b) can also be obtained by using equations (7) and (10), respectively, on Page
185.

8.7. Establish equation (10), Page 185.

Suppose the curve is defined by the intersection of two surfaces whose equations are Fðx; y; zÞ ¼ 0,

Gðx; y; zÞ ¼ 0, where we assume F and G continuously differentiable.
The normals to each surface at point P are given respectively by N1 ¼ rF jP and N2 ¼ rGjP. Then a

tangent vector to the curve at P is T0 ¼ N1 N2 ¼ rF jP  rGjP. Thus, the equation of the normal plane is
ðr� r0Þ � T0 ¼ 0. Now

T0 ¼ rF jP  rGjP ¼ fðFxiþ Fyjþ FzkÞ  ðGxiþ Gyjþ GzkÞgjP

¼
i j k

Fx Fy Fz

Gx Gy Gz











































P

¼ Fy Fz

Gy Gz































P

iþ Fx Fx

Gx Gx

























P

jþ Fx Fy

Gx Gy































P

k

and so the required equation is

ðr� r0Þ � rF jP ¼ 0 or
Fy Fz

Gy Gz

























P

ðx� x0Þ þ Fz Fx

Gz Gx

























P

ð y� y0Þ þ Fx Fy

Gx Gy

























P

ðz� z0Þ ¼ 0

ENVELOPES

8.8. Prove that the envelope of the family �ðx; y; 	Þ ¼ 0, if it exists, can be obtained by solving
simultaneously the equations � ¼ 0 and �	 ¼ 0.

Assume parametric equations of the envelope to be x ¼ f ð	Þ; y ¼ gð	Þ. Then �ð f ð	Þ; gð	Þ; 	Þ ¼ 0
identically, and so upon differentiating with respect to 	 [assuming that �, f and g have continuous deriva-

tives], we have

�x f
0ð	Þ þ �yg 0ð	Þ þ �	 ¼ 0 ð1Þ

The slope of any member of the family �ðx; y; 	Þ ¼ 0 at ðx; yÞ is given by �x dxþ �y dy ¼ 0 or
dy

dx
¼

� �x
�y
. The slope of the envelope at ðx; yÞ is dy

dx
¼ dy=d	

dx=d	
¼ g 0ð	Þ

f 0ð	Þ. Then at any point where the envelope and

a member of the family are tangent, we must have

��x
�y

¼ g 0ð	Þ
f 0ð	Þ or �x f

0ð	Þ þ �yg 0ð	Þ ¼ 0 ð2Þ

Comparing (2) with (1) we see that �	 ¼ 0 and the required result follows.



8.9. (a) Find the envelope of the family x sin 	þ y cos	 ¼ 1. (b) Illus-
trate the results geometrically.

(a) By Problem 8 the envelope, if it exists, is obtained by solving simulta-
neously the equations �ðx; y; 	Þ ¼ x sin	þ y cos	� 1 ¼ 0 and

�	ðx; y; 	Þ ¼ x cos	� y cos	 ¼ 0. From these equations we find
x ¼ sin 	; y ¼ cos	 or x2 þ y2 ¼ 1.

(b) The given family is a family of straight lines, some members of which

are indicated in Fig. 8-5. The envelope is the circle x2 þ y2 ¼ 1.

8.10. Find the envelope of the family of surfaces z ¼ 2	x� a2y.

By a generalization of Problem 8.8 the required envelope, if it exists, is obtained by solving simulta-

neously the equations

ð1Þ � ¼ 2	x� 	2y� z ¼ 0 and ð2Þ �	 ¼ 2x� 2	y ¼ 0

From (2) 	 ¼ x=y. Then substitution in (1) yields x2 ¼ yz, the required envelope.

8.11. Find the envelope of the two-parameter family of surfaces z ¼ 	xþ 
y� 	
.
The envelope of the family Fðx; y; z; 	; 
Þ ¼ 0, if it exists, is obtained by eliminating 	 and 
 between the

equations F ¼ 0;F	 ¼ 0;F
 ¼ 0 (see Problem, 8.43). Now

F ¼ z� 	x� 
yþ 	
 ¼ 0; F	 ¼ �xþ 
 ¼ 0; F
 ¼ �yþ 	 ¼ 0

Then 
 ¼ x, 	 ¼ y; and we have z ¼ xy.

DIRECTIONAL DERIVATIVES

8.12. Find the directional derivative of F ¼ x2yz3 along the curve x ¼ e�u, y ¼ 2 sin uþ 1, z ¼ u� cos u
at the point P where u ¼ 0.

The point P corresponding to u ¼ 0 is ð1; 1;�1Þ. Then

rF ¼ 2xyz3iþ x2z3jþ 3x2yz2k ¼ �2i� jþ 3k at P

A tangent vector to the curve is

dr

du
¼ d

du
fe�u

iþ ð2 sin uþ 1Þjþ ðu� cos uÞkg
¼ �e�u

iþ 2 cos ujþ ð1þ sin uÞk ¼ �iþ 2jþ k at P

and the unit tangent vector in this direction is T0 ¼
�iþ 2jþ k

ffiffiffi

6
p :

Then

Directional derivative ¼ rF � T0 ¼ ð�2i� jþ 3kÞ � �iþ 2jþ k
ffiffiffi

6
p

� �

¼ 3
ffiffiffi

6
p ¼ 1

2

ffiffiffi

6
p
:

Since this is positive, F is increasing in this direction.

8.13. Prove that the greatest rate of change of F , i.e., the maximum directional derivative, takes place in
the direction of, and has the magnitude of, the vector rF .
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dF

ds
¼ rF � dr

ds
is the projection of rF in the direction

dr

ds
. This projection is a maximum when rF and

dr=ds have the same direction. Then the maximum value of dF=ds takes place in the direction of rF , and
the magnitude is jrF j.

8.14. (a) Find the directional derivative of U ¼ 2x3y� 3y2z at Pð1; 2;�1Þ in a direction toward
Qð3;�1; 5Þ. (b) In what direction from P is the directional derivative a maximum?
(c) What is the magnitude of the maximum directional derivative?

ðaÞ rU ¼ 6x2yiþ ð2x3 � 6yzÞj� 3y2k ¼ 12iþ 14j� 12k at P:

The vector from P to Q ¼ ð3� 1Þiþ ð�1� 2Þjþ ½5� ð�1Þ�k ¼ 2i� 3jþ 6k.

The unit vector from P to Q ¼ T ¼ 2i� 3jþ 6k
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ð2Þ2 þ ð�3Þ2 þ ð6Þ2
q ¼ 2i� 3jþ 6k

7
:

Then

Directional derivative at P ¼ ð12iþ 14j� 12kÞ � 2i� 3jþ 6k

7

� �

¼ � 90

7

i.e., U is decreasing in this direction.

(b) From Problem 8.13, the directional derivative is a maximum in the direction 12iþ 14j� 12k.

(c) From Problem 8.13, the value of the maximum directional derivative is j12iþ 14j� 12kj ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

144þ 196þ 144
p ¼ 22:

DIFFERENTIATION UNDER THE INTEGRAL SIGN

8.15. Prove Leibnitz’s rule for differentiating under the integral sign.

Let �ð	Þ ¼
ðu2ð	Þ

u1ð	Þ
f ðx; 	Þ dx: Then

�� ¼ �ð	þ�	Þ � �ð	Þ ¼
ðu2ð	þ�	Þ

u1ð	þ�	Þ
f ðx; 	þ�	Þ dx�

ðu2ð	Þ

u1ð	Þ
f ðx; 	Þ dx

¼
ðu1ð	Þ

u1ð	þ�	Þ
f ðx; 	þ�	Þ dxþ

ðu2ð	Þ

u1ð	Þ
f ðx; 	þ�	Þ dxþ

ðu2ð	þ�	Þ

u2ð	Þ
f ðx; 	þ�	Þ dx

�
ðu2ð	Þ

u1ð	Þ
f ðx; 	Þ dx

¼
ðu2ð	Þ

u1ð	Þ
½ f ðx; 	þ�	Þ � f ðx; 	Þ� dxþ

ðu2ð	þ�	Þ

u2ð	Þ
f ðx; 	þ�	Þ dx�

ðu1ð	þ�	Þ

u1ð	Þ
f ðx; 	þ�	Þ dx

By the mean value theorems for integrals, we have

ðu2ð	Þ

u1ð	Þ
½ f ðx; 	þ�	Þ � f ðx; 	Þ� dx ¼ �	

ðu2ð	Þ

u1ð	Þ
f	ðx; �Þ dx ð1Þ

ðu1ð	þ�	Þ

u1ð	Þ
f ðx; 	þ�	Þ dx ¼ f ð�1; 	þ�	Þ½u1ð	þ�	Þ � u1ð	Þ� ð2Þ

ðu2ð	þ�	Þ

u2ð	Þ
f ðx; 	þ�	Þ dx ¼ f ð�2; 	þ�	Þ½u2ð	þ�	Þ � u2ð	Þ� ð3Þ

where � is between 	 and 	þ�	, �1 is between u1ð	Þ and u1ð	þ�	Þ and �2 is between u2ð	Þ and u2ð	þ�	Þ.
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Then

��

�	
¼
ðu2ð	Þ

u1ð	Þ
f	ðx; �Þ dxþ f ð�2; 	þ�	Þ�u2

�	
� f ð�1; 	þ�	Þ�u1

�	

Taking the limit as �	! 0, making use of the fact that the functions are assumed to have continuous
derivatives, we obtain

d�

d	
¼
ðu2ð	Þ

u1ð	Þ
f	ðx; 	Þ dxþ f ½u2ð	Þ; 	�

du2
d	

� f ½u1ð	Þ; 	�
du1
d	

8.16. If �ð	Þ ¼
ð	2

	

sin 	x

x
dx, find � 0ð	Þ where 	 6¼ 0.

By Leibnitz’s rule,

� 0ð	Þ ¼
ð	2

	

@

@	

sin 	x

x

� �

dxþ sinð	 � 	2Þ
	2

d

d	
ð	2Þ � sinð	 � 	Þ

	

d

d	
ð	Þ

¼
ð	2

	

cos	x dxþ 2 sin 	3

	
� sin	2

	

¼ sin 	x

	













	2

	

þ 2 sin 	3

	
� sin	2

	
¼ 3 sin	3 � 2 sin	2

	

8.17. If

ð�

0

dx

	� cos x
¼ �

ffiffiffiffiffiffiffiffiffiffiffiffiffi

	2 � 1
p ; 	 > 1 find

ð�

0

dx

ð2� cos xÞ2. (See Problem 5.58, Chapter 5.)

By Leibnitz’s rule, if �ð	Þ ¼
ð�

0

dx

	� cos x
¼ �ð	2 � 1Þ�1=2; then

� 0ð	Þ ¼ �
ð�

0

dx

ð	� cosxÞ2 ¼ � 1

2
�ð	2 � 1Þ�3=22	 ¼ ��	

ð	2 � 1Þ3=2

Thus

ð�

0

dx

ð	� cosxÞ2 ¼
�	

ð	2 � 1Þ3=2 from which

ð�

0

dx

ð2� cos xÞ2 ¼
2�

3
ffiffiffi

3
p :

INTEGRATION UNDER THE INTEGRAL SIGN

8.18. Prove the result (18), Page 187, for integration under the integral sign.

Consider ð1Þ  ð	Þ ¼
ðu2

u1

ð	

a

f ðx; 	Þ d	
� �

dx

By Leibnitz’s rule,

 0ð	Þ ¼
ðu2

u1

@

@	

ð	

a

f ðx; 	Þ d	
� �

dx ¼
ðu2

u1

f ðx; 	Þ dx ¼ �ð	Þ

Then by integration, ð2Þ  ð	Þ ¼
ð	

a

�ð	Þ d	þ c

Since  ðaÞ ¼ 0 from (1), we have c ¼ 0 in (2). Thus from (1) and (2) with c ¼ 0, we find
ðu2

u1

ð	

a

f ðx; 	Þ dx
� �

dx ¼
ð	

a

ðu2

u1

f ðx; 	Þ dx
� �

d	

Putting 	 ¼ b, the required result follows.
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8.19. Prove that

ð�

0

ln
b� cos x

a� cos x

� �

dx ¼ � ln
bþ

ffiffiffiffiffiffiffiffiffiffiffiffiffi

b2 � 1
p

aþ
ffiffiffiffiffiffiffiffiffiffiffiffiffi

a2 � 1
p

 !

if a; b > 1.

From Problem 5.58, Chapter 5,

ð�

0

dx

	� cos x
¼ �

ffiffiffiffiffiffiffiffiffiffiffiffiffi

	2 � 1
p ; 	 > 1:

Integrating the left side with respect to 	 from a to b yields

ð�

0

ðb

a

d	

	� cosx

� �

dx ¼
ð�

0

lnð	� cos xÞ












b

a

dx ¼
ð�

0

ln
b� cosx

a� cosx

� �

dx

Integrating the right side with respect to 	 from a to b yields

ð�

0

�d	
ffiffiffiffiffiffiffiffiffiffiffiffiffi

	2 � 1
p ¼ � lnð	þ

ffiffiffiffiffiffiffiffiffiffiffiffiffi

	2 � 1
p

Þ












b

a

¼ � ln
bþ

ffiffiffiffiffiffiffiffiffiffiffiffiffi

b2 � 1
p

aþ
ffiffiffiffiffiffiffiffiffiffiffiffiffi

a2 � 1
p

 !

and the required result follows.

MAXIMA AND MINIMA

8.20. Prove that a necessary condition for f ðx; yÞ to have a relative extremum (maximum or minimum)
at ðx0; y0Þ is that fxðx0; y0Þ ¼ 0, fyðx0; y0Þ ¼ 0.

If f ðx0; y0Þ is to be an extreme value for f ðx; yÞ, then it must be an extreme value for both f ðx; y0Þ and
f ðx0; yÞ. But a necessary condition that these have extreme values at xx ¼ 0 and y ¼ y0, respectively, is

fxðx0; y0Þ ¼ 0, fyðx0; y0Þ ¼ 0 (using results for functions of one variable).

8.21. Let f be continuous and have continuous partial derivatives of order two, at least, in a region R
with the critical point P0ðx0; y0Þ an interior point. Determine the sufficient conditions for relative
extrema at P0.

In the case of one variable, sufficient conditions for a relative extrema were formulated through the
second derivative [if positive then a relative minimum, if negative then a relative maximum, if zero a possible
point of inflection but more investigation is necessary]. In the case of z ¼ f ðx; yÞ that is before us we can

expect the second partial derivatives to supply information. (See Fig. 8-6.)

First observe that solutions of the quadratic equation

At2 þ 2Btþ C ¼ 0 are t ¼ �2B�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

4B2 � 4AC
p

2A

Further observe that the nature of these solutions is determined by B2 � AC. If the quantity is positive
the solutions are real and distinct; if negative, they are complex conjugate; and if zero, the two solutions are
coincident.
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The expression B2 � AC also has the property of invariance with respect to plane rotations

x ¼ �xx cos � � �yy sin �

y ¼ �xx sin � þ �yy cos �

It has been discovered that with the identifications A ¼ fxx;B ¼ fxy;C ¼ fyy, we have the partial deri-
vative form f 2xy � fxxfyy that characterizes relative extrema.

The demonstration of invariance of this form can be found in analytic geometric books. However, if

you would like to put the problem in the context of the second partial derivative, observe that

f �xx ¼ fx
@x

@ �xx
þ fy

@y

@ �xx
¼ fx cos � þ fy sin �

f �yy ¼ fx
@x

@ �yy
þ fy

@y

@ �yy
¼ �fx sin � þ fy cos �

Then using the chain rule to compute the second partial derivatives and proceeding by straightforward
but tedious calculation one shows that

f 2xy ¼ fxxfyy ¼ f 2�xx �yy � f �xx �xxf �yy �yy:

The following equivalences are a consequence of this invariant form (independently of direction in the
tangent plane at P0):

f 2xy � fxx fyy < 0 and fxx fyy > 0 ð1Þ
f 2xy � fxx fyy > 0 and fxx fyy < 0 ð2Þ

The key relation is (1) because in order that this equivalence hold, both fx fy must have the same sign.

We can look to the one variable case (make the same argument for each coordinate direction) and conclude
that there is a relative minimum at P0 if both partial derivatives are positive and a relative maximum if both
are negative. We can make this argument for any pair of coordinate directions because of the invariance

under rotation that was established.

If (2) holds, then the point is called a saddle point. If the quadratic form is zero, no information results.

Observe that this situation is analogous to the one variable extreme value theory in which the nature of
f at x, and with f 0ðxÞ ¼ 0, is undecided if f 00ðxÞ ¼ 0.

8.22. Find the relative maxima and minima of f ðx; yÞ ¼ x3 þ y3 � 3x� 12yþ 20.

fx ¼ 3x2 � 3 ¼ 0 when x ¼ �1; fy ¼ 3y2 � 12 ¼ 0 when y ¼ �2. Then critical points are Pð1; 2Þ,
Qð�1; 2Þ;Rð1;�2Þ;Sð�1;�2Þ.

fxx ¼ 6x; fyy ¼ 6y; fxy ¼ 0. Then � ¼ fxxfyy � f 2xy ¼ 36xy.

At Pð1; 2Þ;� > 0 and fxx (or fyyÞ > 0; hence P is a relative minimum point.

At Qð�1; 2Þ;� < 0 and Q is neither a relative maximum or minimum point.

At Rð1;�2Þ;� < 0 and R is neither a relative maximum or minimum point.

At Sð�1;�2Þ;� > 0 and fxx (or fyyÞ < 0 so S is a relative maximum point.

Thus, the relative minimum value of f ðx; yÞ occurring at P is 2, while the relative maximum value

occurring at S is 38. Points Q and R are saddle points.

8.23. A rectangular box, open at the top, is to have a volume of 32 cubic feet. What must be the
dimensions so that the total surface is a minimum?

If x, y and z are the edges (see Fig. 8-7), then

ð1Þ Volume of box ¼ V ¼ xyz ¼ 32

ð2Þ Surface area of box ¼ S ¼ xyþ 2yzþ 2xz

or, since z ¼ 32=xy from (1),

S ¼ xyþ 64

x
þ 64

y
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@S

@x
¼ y� 64

x2
¼ 0 when ð3Þ x2y ¼ 64;

@S

@y
¼ x� 64

y2
¼ 0 when ð4Þ xy2 ¼ 64

Dividing equations (3) and (4), we find y ¼ x so that x3 ¼ 64 or x ¼ y ¼ 4 and z ¼ 2.

For x ¼ y ¼ 4, � ¼ SxxSyy � S2
xy ¼

128

x3

� �

128

y3

� �

� 1 > 0 and sxx ¼ 128

x3
> 0. Hence, it follows that

the dimensions 4 ft 4 ft 2 ft give the minimum surface.

LAGRANGE MULTIPLIERS FOR MAXIMA AND MINIMA

8.24. Consider Fðx; y; zÞ subject to the constraint condition Gðx; y; zÞ ¼ 0. Prove that a necessary
condition that Fðx; y; zÞ have an extreme value is that FxGy � FyGx ¼ 0.

Since Gðx; y; zÞ ¼ 0, we can consider z as a function of x and y, say z ¼ f ðx; yÞ. A necessary condition
that F ½x; y; f ðx; yÞ� have an extreme value is that the partial derivatives with respect to x and y be zero. This

gives

ð1Þ Fx þ Fzzx ¼ 0 ð2Þ Fy þ FzZy ¼ 0

Since Gðx; y; zÞ ¼ 0, we also have

ð3Þ Gx þ Gxzx ¼ 0 ð4Þ Gy þ Gzzy ¼ 0

From (1) and (3) we have (5) FxGx � FxGx ¼ 0, and from (2) and (4) we have (6) FyGz � FzGy ¼ 0. Then
from (5) and (6) we find FxGy � FyGx ¼ 0:

The above results hold only if Fz 6¼ 0;Gz 6¼ 0.

8.25. Referring to the preceding problem, show that the stated condition is equivalent to the conditions
�x ¼ 0; �y ¼ 0 where � ¼ F þ �G and � is a constant.

If �x ¼ 0;Fx þ �Gx ¼ 0. If �y ¼ 0;Fy þ �Gy ¼ 0. Elimination of � between these equations yields
FxGy � FyGx ¼ 0.

The multiplier � is the Lagrange multiplier. If desired we can consider equivalently � ¼ �F þ G where

�x ¼ 0; �y ¼ 0.

8.26. Find the shortest distance from the origin to the hyperbola x2 þ 8xyþ 7y2 ¼ 225, z ¼ 0.

We must find the minimum value of x2 þ y2 (the square of the distance from the origin to any point in
the xy plane) subject to the constraint x2 þ 8xyþ 7y2 ¼ 225.

According to the method of Lagrange multipliers, we consider � ¼ x2 þ 8xyþ 7y2 � 225þ �ðx2 þ y2Þ.
Then

�x ¼ 2xþ 8yþ 2�x ¼ 0 or ð1Þ ð�þ 1Þxþ 4y ¼ 0

�y ¼ 8xþ 14yþ 2�y ¼ 0 or ð2Þ 4xþ ð�þ 7Þy ¼ 0

From (1) and (2), since ðx; yÞ 6¼ ð0; 0Þ, we must have

�þ 1 4
4 �þ 7

























¼ 0; i:e:; �2 þ 8�� 9 ¼ 0 or � ¼ 1;�9

Case 1: � ¼ 1. From (1) or (2), x ¼ �2y and substitution in x2 þ 8xyþ 7y2 ¼ 225 yields �5y2 ¼ 225, for

which no real solution exists.

Case 2: � ¼ �9. From (1) or (2), y ¼ 2x and substitution in x2 þ 8xyþ 7y2 ¼ 225 yields 45x2 ¼ 225.
Then x2 ¼ 5; y2 ¼ 4x2 ¼ 20 and so x2 þ y2 ¼ 25. Thus the required shortest distance is

ffiffiffiffiffi

25
p ¼ 5.

8.27 (a) Find the maximum and minimum values of x2 þ y2 þ z2 subject to the constraint conditions
x2=4þ y2=5þ z2=25 ¼ 1 and z ¼ xþ y. (b) Give a geometric interpretation of the result in (a).
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(a) We must find the extrema of F ¼ x2 þ y2 þ z2 subject to the constraint conditions �1 ¼
x2

4
þ y2

5
þ

z2

25
� 1 ¼ 0 and �2 ¼ xþ y� z ¼ 0. In this case we use two Lagrange multipliers �1; �2 and consider

the function

G ¼ F þ �1�1 þ �2�2 ¼ x2 þ y2 þ z2 þ �1
x2

4
þ y2

5
þ z2

25
� 1

 !

þ �2ðxþ y� zÞ

Taking the partial derivatives of G with respect to x; y; z and setting them equal to zero, we find

Gx ¼ 2xþ �1x
2

þ �2 ¼ 0; Gy ¼ 2yþ 2�1y

5
þ �2 ¼ 0; Gx ¼ 2zþ 2�1z

25
� �2 ¼ 0 ð1Þ

Solving these equations for x; y; z, we find

x ¼ �2�2
�1 þ 4

; y ¼ �5�2
2�1 þ 10

; z ¼ 25�2
2�1 þ 50

ð2Þ

From the second constraint condition, xþ y� z ¼ 0, we obtain on division by �2, assumed dif-
ferent from zero (this is justified since otherwise we would have x ¼ 0; y ¼ 0; z ¼ 0, which would not
satisfy the first constraint condition), the result

2

�1 þ 4
þ 5

2�1 þ 10
þ 25

2�1 þ 50
¼ 0

Multiplying both sides by 2ð�1 þ 4Þð�1 þ 5Þð�1 þ 25Þ and simplifying yields

17�21 þ 245�1 þ 750 ¼ 0 or ð�1 þ 10Þð17�1 þ 75Þ ¼ 0

from which �1 ¼ �10 or �75=17.

Case 1: �1 ¼ �10.

From (2), x ¼ 1
3 �2; y ¼ 1

2 �2; z ¼ 5
6�2. Substituting in the first constraint condition, x2=4þ y2=5þ

z2=25 ¼ 1, yields �22 ¼ 180=19 or �2 ¼ �6
ffiffiffiffiffiffiffiffiffiffi

5=19
p

. This gives the two critical points

ð2
ffiffiffiffiffiffiffiffiffiffi

5=19
p

; 3
ffiffiffiffiffiffiffiffiffiffi

5=19
p

; 5
ffiffiffiffiffiffiffiffiffiffi

5=19
p

Þ; ð�2
ffiffiffiffiffiffiffiffiffiffi

5=19
p

;�3
ffiffiffiffiffiffiffiffiffiffi

5=19
p

;�5
ffiffiffiffiffiffiffiffiffiffi

5=19
p

Þ
The value of x2 þ y2 þ z2 corresponding to these critical points is ð20þ 45þ 125Þ=19 ¼ 10.

Case 2: �1 ¼ �75=17:
From (2), x ¼ 34

7 �2; y ¼ � 17
4 �2; z ¼ 17

28 �2. Substituting in the first constraint condition,
x2=4þ y2=5þ z2=25 ¼ 1, yields �2 ¼ �140=ð17 ffiffiffiffiffiffiffiffi

646
p Þ which gives the critical points

ð40=
ffiffiffiffiffiffiffiffi

646
p

;�35
ffiffiffiffiffiffiffiffi

646
p

; 5=
ffiffiffiffiffiffiffiffi

646
p

Þ; ð�40=
ffiffiffiffiffiffiffiffi

646
p

; 35=
ffiffiffiffiffiffiffiffi

646
p

;�5=
ffiffiffiffiffiffiffiffi

646
p

Þ
The value of x2 þ y2 þ z2 corresponding to these is ð1600þ 1225þ 25Þ=646 ¼ 75=17.

Thus, the required maximum value is 10 and the minimum value is 75/17.

(b) Since x2 þ y2 þ z2 represents the square of the distance of ðx; y; zÞ from the origin ð0; 0; 0Þ, the problem
is equivalent to determining the largest and smallest distances from the origin to the curve of intersec-

tion of the ellipsoid x2=4þ y2=5þ z2=25 ¼ 1 and the plane z ¼ xþ y. Since this curve is an ellipse, we
have the interpretation that

ffiffiffiffiffi

10
p

and
ffiffiffiffiffiffiffiffiffiffiffiffi

75=17
p

are the lengths of the semi-major and semi-minor axes of
this ellipse.

The fact that the maximum and minimum values happen to be given by ��1 in both Case 1 and
Case 2 is more than a coincidence. It follows, in fact, on multiplying equations (1) by x, y, and z in

succession and adding, for we then obtain

2x2 þ �1x
2

2
þ �2xþ 2y2 þ 2�1y

2

5
þ �2yþ 2z2 þ 2�1z

2

25
� �2z ¼ 0

x2 þ y2 þ z2 þ �1
x2

4
þ y2

5
þ z2

25

 !

þ �2ðxþ y� zÞ ¼ 0i.e.,

Then using the constraint conditions, we find x2 þ y2 þ z2 ¼ ��1.
For a generalization of this problem, see Problem 8.76.
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APPLICATIONS TO ERRORS

8.28. The period T of a simple pendulum of length l is given by T ¼ 2�
ffiffiffiffiffiffiffi

l=g
p

. Find the (a) error and
(b) percent error made in computing T by using l ¼ 2m and g ¼ 9:75m=sec2, if the true values
are l ¼ 19:5m and g ¼ 9:81m=sec2.

(a) T ¼ 2�l1=2g�1=2. Then

dT ¼ ð2�g�1=2ð12 l�1=2dlÞ þ ð2�l1=2Þð� 1
2 g

�3=2dgÞ ¼ �
ffiffiffiffi

lg
p dl � �

ffiffiffiffiffi

l

g3

s

dg ð1Þ

Error in g ¼ �g ¼ dg ¼ þ0:06; error in l ¼ �l ¼ dl ¼ �0:5

The error in T is actually �T , which is in this case approximately equal to dT . Thus, we have

from (1),

Error in T ¼ dT ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið2Þð9:75Þp ð�0:05Þ � �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2

ð9:75Þ3
s

ðþ0:06Þ ¼ �0:0444 sec (approx.)

The value of T for l ¼ 2; g ¼ 9:75 is T ¼ 2�

ffiffiffiffiffiffiffiffiffi

2

9:75

r

¼ 2:846 sec (approx.)

ðbÞ Percent error (or relative error) in T ¼ dT

T
¼ �0:0444

2:846
¼ �1:56%:

Another method: Since lnT ¼ ln 2�þ 1
2 ln l � 1

2 ln g,

dT

T
¼ 1

2

dl

l
� 1

2

dg

g
¼ 1

2

�0:05

2

� �

� 1

2

þ0:06

9:75

� �

¼ �1:56% ð2Þ

as before. Note that (2) can be written

Percent error in T ¼ 1
2 Percent error in l � 1

2 Percent error in g

MISCELLANEOUS PROBLEMS

8.29. Evaluate

ð1

0

x� 1

ln x
dx.

In order to evaluate this integral, we resort to the following device. Define

�ð	Þ ¼
ð1

0

x	 � 1

ln x
dx 	 > 0

Then by Leibnitz’s rule

� 0ð	Þ ¼
ð1

0

@

@	

x	 � 1

ln x

� �

dx ¼
ð1

0

x	 lnx

ln x
dx ¼

ð1

0

x	 dx ¼ 1

	þ 1

Integrating with respect to 	, �ð	Þ ¼ lnð	þ 1Þ þ c. But since �ð0Þ ¼ 0; c ¼ 0; and so �ð	Þ ¼ lnð	þ 1Þ.
Then the value of the required integral is �ð1Þ ¼ ln 2.
The applicability of Leibnitz’s rule can be justified here, since if we define Fðx; 	Þ ¼ ðx	 � 1Þ= lnx,

0 < x < 1, Fð0; 	Þ ¼ 0;Fð1; 	Þ ¼ 	, then Fðx; 	Þ is continuous in both x and 	 for 0 @ x @ 1 and all finite

	 > 0.

8.30. Find constants a and b for which

Fða; bÞ ¼
ð�

0

fsin x� ðax2 þ bxÞg2 dx

is a minimum.



The necessary conditions for a minimum are @F=@a ¼ 0, @F=@b ¼ 0. Performing these differentiations,

we obtain

@F

@a
¼
ð�

0

@

@a
fsin x� ðax2 þ bxÞg2 dx ¼ �2

ð�

0

x2fsinx� ðax2 þ bxÞg dx ¼ 0

@F

@b
¼
ð�

0

@

@b
fsin x� ðax2 þ bxÞg2 dx ¼ �2

ð�

0

xfsinx� ðax2 þ bxÞg dx ¼ 0

From these we find

a

ð�

0

x4 dxþ b

ð�

0

x3 dx ¼
ð�

0

x2 sin x dx

a

ð�

0

x3 dxþ b

ð�

0

x2 dx ¼
ð�

0

x sin x dx

8

>

>

<

>

>

:

or

�5a

5
þ �

4b

4
¼ �2 � 4

�4a

4
þ �

3b

3
¼ �

8

>

>

<

>

>

:

Solving for a and b, we find

a ¼ 20

�3
� 320

�5
� �0:40065; b� 240

�4
� 12

�2
� 1:24798

We can show that for these values, Fða; bÞ is indeed a minimum using the sufficiency conditions on Page
188.

The polynomial ax2 þ bx is said to be a least square approximation of sinx over the interval ð0; �Þ. The
ideas involved here are of importance in many branches of mathematics and their applications.

Supplementary Problems

TANGENT PLANE AND NORMAL LINE TO A SURFACE

8.31. Find the equations of the (a) tangent plane and (b) normal line to the surface x2 þ y2 ¼ 4z at ð2;�4; 5Þ.
Ans. (a) x� 2y� z ¼ 5; ðbÞ x� 2

1
¼ yþ 4

�2
¼ z� 5

�1
:

8.32. If z ¼ f ðx; yÞ, prove that the equations for the tangent plane and normal line at point Pðx0; y0; z0Þ are given
respectively by

ðaÞ z� z0 ¼ fxjPðx� x0Þ þ fyjPð y� y0Þ and ðbÞ x� x0
fxjP

¼ y� y0
fyjP

¼ z� z0
�1

8.33. Prove that the acute angle � between the z axis and the normal to the surface Fðx; y; zÞ ¼ 0 at any point is

given by sec � ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

F2
x þ F2

y þ F2
z

q

=jFzj.

8.34. The equation of a surface is given in cylindrical coordinates by Fð�; �; zÞ ¼ 0, where F is continuously
differentiable. Prove that the equations of (a) the tangent plane and (b) the normal line at the point

Pð�0; �0; z0Þ are given respectively by

Aðx� x0Þ þ Bð y� y0Þ þ Cðz� z0Þ ¼ 0 and
x� x0

A
¼ y� y0

B
¼ z� z0

C
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where x0 ¼ �0 cos�0, y0 ¼ �0 sin�0 and

A ¼ F�jP cos�0 �
1

�
F�jP sin�0; B ¼ F�jP sin�0 þ

1

�
F�jP cos�0; C ¼ FzjP

8.35. Use Problem 8.34 to find the equation of the tangent plane to the surface �z ¼ �� at the point where � ¼ 2,
� ¼ �=2, z ¼ 1. To check your answer work the problem using rectangular coordinates.
Ans. 2x� �yþ 2�z ¼ 0

TANGENT LINE AND NORMAL PLANE TO A CURVE

8.36. Find the equations of the (a) tangent line and (b) normal plane to the space curve x ¼ 6 sin t, y ¼ 4 cos 3t,
z ¼ 2 sin 5t at the point where t ¼ �=4.

Ans: ðaÞ x� 3
ffiffiffi

2
p

3
¼ yþ 2

ffiffiffi

2
p

�6
¼ zþ ffiffiffi

2
p

�5
ðbÞ 3x� 6y� 5z ¼ 26

ffiffiffi

2
p

8.37. The surfaces xþ yþ z ¼ 3 and x2 � y2 þ 2z2 ¼ 2 intersect in a space curve. Find the equations of the
(a) tangent line (b) normal plane to this space curve at the point ð1; 1; 1Þ.

Ans: ðaÞ x� 1

�3
¼ y� 1

1
¼ z� 1

2
; ðbÞ 3x� y� 2z ¼ 0

ENVELOPES

8.38. Find the envelope of each of the following families of curves in the xy plane. In each case construct a graph.

(a) y ¼ 	x� 	2; ðbÞ x2

	
þ y2

1� 	 ¼ 1.

Ans. (a) x2 ¼ 4y; ðbÞ xþ y ¼ �1; x� y ¼ �1

8.39. Find the envelope of a family of lines having the property that the length intercepted between the x and y
axes is a constant a. Ans. x2=3 þ y2=3 ¼ a2=3

8.40. Find the envelope of the family of circles having centers on the parabola y ¼ x2 and passing through its

vertex. [Hint: Let ð	; 	2Þ be any point on the parabola.] Ans. x2 ¼ �y3=ð2yþ 1Þ

8.41. Find the envelope of the normals (called an evolute) to the parabola y ¼ 1
2x

2 and construct a graph.
Ans. 8ðy� 1Þ3 ¼ 27x2

8.42. Find the envelope of the following families of surfaces:

ðaÞ 	ðx� yÞ � 	2z ¼ 1; ðbÞ ðx� 	Þ2 þ y2 ¼ 2	z
Ans. ðaÞ 4z ¼ ðx� yÞ2; ðbÞ y2 ¼ z2 þ 2xz

8.43. Prove that the envelope of the two parameter family of surfaces Fðx; y; z; 	; 
Þ ¼ 0, if it exists, is obtained by

eliminating 	 and 
 in the equations F ¼ 0;F	 ¼ 0;F
 ¼ 0.

8.44. Find the envelope of the two parameter families (a) z ¼ 	xþ 
y� 	2 � 
2 and (b) x cos	þ y cos
þ
z cos � ¼ a where cos2 	þ cos2 
þ cos2 � ¼ 1 and a is a constant.
Ans. ðaÞ 4z ¼ x2 þ y2; ðbÞ x2 þ y2 þ z2 ¼ a2

DIRECTIONAL DERIVATIVES

8.45. (a) Find the directional derivative ofU ¼ 2xy� z2 at ð2;�1; 1Þ in a direction toward ð3; 1;�1Þ. (b) In what

direction is the directional derivative a maximum? (c) What is the value of this maximum?
Ans. ðaÞ 10=3; ðbÞ � 2iþ 4j� 2k; ðcÞ 2

ffiffiffi

6
p
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8.46. The temperature at any point ðx; yÞ in the xy plane is given by T ¼ 100xy=ðx2 þ y2Þ. (a) Find the direc-

tional derivative at the point ð2; 1Þ in a direction making an angle of 608 with the positive x-axis. (b) In
what direction from ð2; 1Þ would the derivative be a maximum? (c) What is the value of this maximum?
Ans. (a) 12

ffiffiffi

3
p � 6; (b) in a direction making an angle of �� tan�1 2 with the positive x-axis, or in the

direction �iþ 2j; (c) 12
ffiffiffi

5
p

8.47. Prove that if Fð�; �; zÞ is continuously differentiable, the maximum directional derivative of F at any point is

given by

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

@F

@�

� �2

þ 1

�2
@F

@�

� �2

þ @F

@z

� �2
s

.

DIFFERENTIATION UNDER THE INTEGRAL SIGN

8.48. If �ð	Þ ¼
ð1=	

ffiffi

	
p cos	x2 dx, find

d�

d	
. Ans. �

ð1=	

ffiffi

	
p x2 sin 	x2 dx� 1

	2
cos

1

	
� 1

2
ffiffiffi

	
p cos	2

8.49. (a) If Fð	Þ ¼
ð	2

0

tan�1 x

	
dx, find

dF

d	
by Leibnitz’s rule. (b) Check the result in (a) by direct integration.

Ans. ðaÞ 2	 tan�1 	� 1
2 lnð	2 þ 1Þ

8.50. Given

ð1

0

xp dx ¼ 1

pþ 1
; p > �1. Prove that

ð1

0

xpðln xÞm dx ¼ ð�1Þmm!

ðpþ 1Þmþ1
;m ¼ 1; 2; 3; . . . .

8.51. Prove that

ð�

0

lnð1þ 	 cos xÞ dx ¼ � ln
1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffi

1� 	2
p

2

 !

; j	j < 1.

8.52. Prove that

ð�

0

lnð1� 2	 cos xþ 	2Þ dx ¼ � ln 	2; j	j < 1
0; j	j > 1

�

. Discuss the case j	j ¼ 1.

8.53. Show that

ð�

0

dx

ð5� 3 cos xÞ3 ¼
59�

2048
:

INTEGRATION UNDER THE INTEGRAL SIGN

8.54. Verify that

ð1

0

ð2

1

ð	2 � x2Þ dx
� �

d	 ¼
ð2

1

ð1

0

ð	2 � x2Þ d	
� �

dx.

8.55. Starting with the result

ð2�

0

ð	� sin xÞ dx ¼ 2�	, prove that for all constants a and b,

ð2�

0

fðb� sinxÞ2 � ða� sin xÞ2g dx ¼ 2�ðb2 � a2Þ

8.56. Use the result

ð2�

0

dx

	þ sin x
¼ 2�

ffiffiffiffiffiffiffiffiffiffiffiffiffi

	2 � 1
p ; 	 > 1 to prove that

ð2�

0

ln
5þ 3 sin x

5þ 4 sin x

� �

dx ¼ 2� ln
9

8

� �

8.57. (a) Use the result

ð�=2

0

dx

1þ 	 cos x ¼ cos�1 	
ffiffiffiffiffiffiffiffiffiffiffiffiffi

1� 	2
p ; 0 @ 	 < 1 to show that for 0 @ a < 1; 0 @ b < 1

ð�=2

0

sec x ln
1þ b cos x

1þ a cos x

� �

dx ¼ 1
2 fðcos�1 aÞ2 � ðcos�1 bÞ2g

(b) Show that

ð�=2

0

sec x lnð1þ 1
2 cos xÞ dx ¼ 5�2

72
.
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MAXIMA AND MINIMA, LAGRANGE MULTIPLIERS

8.58. Find the maxima and minima of Fðx; y; zÞ ¼ xy2z3 subject to the conditions xþ yþ z ¼ 6, x > 0; y > 0,

z > 0. Ans. maximum value ¼ 108 at x ¼ 1; y ¼ 2; z ¼ 3

8.59. What is the volume of the largest rectangular parallelepiped which can be inscribed in the ellipsoid

x2=9þ y2=16þ z2=36 ¼ 1? Ans. 64
ffiffiffi

3
p

8.60. (a) Find the maximum and minimum values of x2 þ y2 subject to the condition 3x2 þ 4xyþ 6y2 ¼ 140.
(b) Give a geometrical interpretation of the results in (a).

Ans. maximum value ¼ 70, minimum value ¼ 20

8.61. Solve Problem 8.23 using Lagrange multipliers.

8.62. Prove that in any triangle ABC there is a point P such that PA
2 þ PB

2 þ PC
2
is a minimum and that P is the

intersection of the medians.

8.63. (a) Prove that the maximum and minimum values of f ðx; yÞ ¼ x2 þ xyþ y2 in the unit square 0 @ x @ 1,
0 @ y @ 1 are 3 and 0, respectively. (b) Can the result of (a) be obtained by setting the partial derivatives
of f ðx; yÞ with respect to x and y equal to zero. Explain.

8.64. Find the extreme values of z on the surface 2x2 þ 3y2 þ z2 � 12xyþ 4xz ¼ 35.
Ans. maximum ¼ 5, minimum ¼ �5

8.65. Establish the method of Lagrange multipliers in the case where we wish to find the extreme values of
Fðx; y; zÞ subject to the two constraint conditions Gðx; y; zÞ ¼ 0, Hðx; y; zÞ ¼ 0.

8.66. Prove that the shortest distance from the origin to the curve of intersection of the surfaces xyz ¼ a and
y ¼ bx where a > 0; b > 0, is 3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

aðb2 þ 1Þ=2b
p

.

8.67. Find the volume of the ellipsoid 11x2 þ 9y2 þ 15z2 � 4xyþ 10yz� 20xz ¼ 80. Ans. 64�
ffiffiffi

2
p
=3

APPLICATIONS TO ERRORS

8.68. The diameter of a right circular cylinder is measured as 6:0� 0:03 inches, while its height is measured as
4:0� 0:02 inches. What is the largest possible (a) error and (b) percent error made in computing the
volume? Ans. (a) 1.70 in3, (b) 1.5%

8.69. The sides of a triangle are measured to be 12.0 and 15.0 feet, and the included angle 60.08. If the lengths can
be measured to within 1% accuracy, while the angle can be measured to within 2% accuracy, find the

maximum error and percent error in determining the (a) area and (b) opposite side of the triangle.
Ans. (a) 2.501 ft2, 3.21%; (b) 0.287 ft, 2.08%

MISCELLANEOUS PROBLEMS

8.70. If � and � are cylindrical coordinates, a and b are any positive constants, and n is a positive integer, prove

that the surfaces �n sin n� ¼ a and �n cos n� ¼ b are mutually perpendicular along their curves of intersec-
tion.

8.71. Find an equation for the (a) tangent plane and (b) normal line to the surface 8r�� ¼ �2 at the point where
r ¼ 1, � ¼ �=4; � ¼ �=2; ðr; �; �Þ being spherical coordinates.

Ans: ðaÞ 4x� ð�2 þ 4�Þ yþ ð4�� �2Þz ¼ ��2
ffiffiffi

2
p
; ðbÞ x

�4
¼ y� ffiffiffi

2
p
=2

�2 þ 4�
¼ z� ffiffiffi

2
p
=2

�2 � 4�
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8.72. (a) Prove that the shortest distance from the point ða; b; cÞ to the plane Axþ Byþ CzþD ¼ 0 is

Aaþ Bbþ CcþD
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

A2 þ B2 þ C2
p































(b) Find the shortest distance from ð1; 2;�3Þ to the plane 2x� 3yþ 6z ¼ 20. Ans. (b) 6

8.73. The potential V due to a charge distribution is given in spherical coordinates ðr; �; �Þ by

V ¼ p cos �

r2

where p is a constant. Prove that the maximum directional derivative at any point is

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

sin2 � þ 4 cos2 �
p

r3

8.74. Prove that

ð1

0

xm � xn

lnx
dx ¼ ln

mþ 1

nþ 1

� �

if m > 0; n > 0. Can you extend the result to the case

m > �1; n > �1?

8.75. (a) If b2 � 4ac < 0 and a > 0; c > 0, prove that the area of the ellipse ax2 þ bxyþ cy2 ¼ 1 is 2�=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

4ac� b2
p

.
[Hint: Find the maximum and minimum values of x2 þ y2 subject to the constraint ax2 þ bxyþ cy2 ¼ 1.]

8.76. Prove that the maximum and minimum distances from the origin to the curve of intersection defined by
x2=a2 þ y2=b2 þ z2=c2 ¼ 1 and Axþ Byþ Cz ¼ 0 can be obtained by solving for d the equation

A2a2

a2 � d2
þ B2b2

b2 � d2
þ C2c2

c2 � d2
¼ 0

8.77. Prove that the last equation in the preceding problem always has two real solutions d2
1 and d2

2 for any real
non-zero constants a; b; c and any real constants A;B;C (not all zero). Discuss the geometrical significance
of this.

8.78. (a) Prove that IM ¼
ðM

0

dx

ðx2 þ 	2Þ2 ¼
1

2	3
tan�1 M

	
þ M

2	2ð	2 þM2Þ

ðbÞ Find lim
M!1

IM : This can be denoted by

ðx

0

dx

ðx2 þ 	2Þ2 :

ðcÞ Is lim
M!1

d

d	

ðM

0

dx

ðx2 þ 	2Þ2 ¼
d

d	
lim

M!1

ðM

0

dx

ðx2 þ 	2Þ2 ?

8.79. Find the point on the paraboloid z ¼ x2 þ y2 which is closest to the point ð3;�6; 4Þ.
Ans. ð1;�2; 5Þ

8.80. Investigate the maxima and minima of f ðx; yÞ ¼ ðx2 � 2xþ 4y2 � 8yÞ2.
Ans. minimum value ¼ 0

8.81. (a) Prove that

ð�=2

0

cosx dx

	 cos xþ sin x
¼ 	�

2ð	2 þ 1Þ �
ln 	

	2 þ 1
:

ðbÞ Use ðaÞ to prove that

ð�=2

0

cos2 x dx

ð2 cos xþ sin xÞ2 ¼
3�þ 5� 8 ln 2

50
:

8.82. (a) Find sufficient conditions for a relative maximum or minimum of w ¼ f ðx; y; zÞ.
(b) Examine w ¼ x2 þ y2 þ z2 � 6xyþ 8xz� 10yz for maxima and minima.
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[Hint: For (a) use the fact that the quadratic form A	2 þ B
2 þ C�2 þ 2D	
þ 2E	� þ 2F
� > 0 (i.e., is

positive definite) if

A > 0;
A D
D B

























> 0;
A D F
D B E
F E C





































> 0
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Multiple Integrals

Much of the procedure for double and triple integrals may be
thought of as a reversal of partial differentiation and otherwise is
analogous to that for single integrals. However, one complexity
that must be addressed relates to the domain of definition. With
single integrals, the functions of one variable were defined on
intervals of real numbers. Thus, the integrals only depended on
the properties of the functions. The integrands of double and
triple integrals are functions of two and three variables, respec-
tively, and as such are defined on two- and three-dimensional
regions. These regions have a flexibility in shape not possible
in the single-variable cases. For example, with functions of two
variables, and the corresponding double integrals, rectangular
regions, a @ x @ b, c @ y @ d are common. However, in
many problems the domains are regions bound above and below by segments of plane curves. In
the case of functions of three variables, and the corresponding triple integrals other than the regions
a @ x @ b; c @ y @ d; e @ z @ f , there are those bound above and below by portions of surfaces. In
very special cases, double and triple integrals can be directly evaluated. However, the systematic
technique of iterated integration is the usual procedure. It is here that the reversal of partial differentia-
tion comes into play.

Definitions of double and triple integrals are given below. Also, the method of iterated integration
is described.

DOUBLE INTEGRALS

Let Fðx; yÞ be defined in a closed region r of the xy plane (see Fig. 9-1). Subdivide r into n
subregions �rk of area �Ak, k ¼ 1; 2; . . . ; n. Let ð�k; �kÞ be some point of �Ak. Form the sum

X

n

k¼1

Fð�k; �kÞ�Ak ð1Þ

Consider

lim
n!1

X

n

k¼1

Fð�k; �kÞ�Ak ð2Þ

Fig. 9-1
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where the limit is taken so that the number n of subdivisions increases without limit and such that the
largest linear dimension of each�Ak approaches zero. See Fig. 9-2(a). If this limit exists, it is denoted by

ð

r

ð

Fðx; yÞ dA ð3Þ

and is called the double integral of Fðx; yÞ over the region r.

It can be proved that the limit does exist if Fðx; yÞ is continuous (or sectionally continuous) in r.

The double integral has a great variety of interpretations with any individual one dependent on the
form of the integrand. For example, if Fðx; yÞ ¼ �ðx; yÞ represents the variable density of a flat iron
plate then the double integral,

Ð

A � dA, of this function over a same shaped plane region, A, is the mass of
the plate. In Fig. 9-2(b) we assume that Fðx; yÞ is a height function (established by a portion of a surface
z ¼ Fðx; yÞÞ for a cylindrically shaped object. In this case the double integral represents a volume.

ITERATED INTEGRALS

If r is such that any lines parallel to the y-axis meet the boundary of r in at most two points (as is

true in Fig. 9-1), then we can write the equations of the curves ACB and ADB bounding r as y ¼ f1ðxÞ
and y ¼ f2ðxÞ, respectively, where f1ðxÞ and f2ðxÞ are single-valued and continuous in a @ x @ b. In this

case we can evaluate the double integral (3) by choosing the regions �rk as rectangles formed by

constructing a grid of lines parallel to the x- and y-axes and �Ak as the corresponding areas. Then

(3) can be written

ð ð

r

Fðx; yÞ dx dy ¼
ðb

x¼a

ðf2ðxÞ

y¼f1ðxÞ
Fðx; yÞ dy dx ð4Þ

¼
ðb

x¼a

ðf2ðxÞ

y¼f1ðxÞ
Fðx; yÞ dy

� �

dx
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where the integral in braces is to be evaluated first (keeping x constant) and finally integrating with

respect to x from a to b. The result (4) indicates how a double integral can be evaluated by expressing it

in terms of two single integrals called iterated integrals.

The process of iterated integration is visually illustrated in Fig. 9-3a,b and further illustrated as

follows.

The general idea, as demonstrated with respect to a given three-space region, is to establish a plane
section, integrate to determine its area, and then add up all the plane sections through an integration
with respect to the remaining variable. For example, choose a value of x (say, x ¼ x 0Þ. The intersection
of the plane x ¼ x 0 with the solid establishes the plane section. In it z ¼ Fðx 0; yÞ is the height function,
and if y ¼ f1ðxÞ and y ¼ f2ðxÞ (for all z) are the bounding cylindrical surfaces of the solid, then the width

is f2ðx 0Þ � f1ðx 0Þ, i.e., y2 � y1. Thus, the area of the section is A ¼
ðy2

y1

Fðx 0; yÞ dy. Now establish slabs

Aj�xj , where for each interval �xj ¼ xj � xj�1, there is an intermediate value x 0
j . Then sum these to get

an approximation to the target volume. Adding the slabs and taking the limit yields

V ¼ lim
n!1

X

n

j¼1

Aj �xj ¼
ðb

a

ðy2

y1

Fðx; yÞ dy
� �

dx

In some cases the order of integration is dictated by the geometry. For example, ifr is such that any
lines parallel to the x-axis meet the boundary of r in at most two points (as in Fig. 9-1), then the
equations of curves CAD and CBD can be written x ¼ g1ðyÞ and x ¼ g2ð yÞ respectively and we find
similarly

ð ð

r

Fðx; yÞ dx dy ¼
ðd

y¼c

ðg2ð yÞ

x¼g1ð yÞ
Fðx; yÞ dx dy ð5Þ

¼
ðd

y¼c

ðg2ð yÞ

x¼g1ð yÞ
Fðx; yÞ dx

� �

dy

If the double integral exists, (4) and (5) yield the same value. (See, however, Problem 9.21.) In writing a
double integral, either of the forms (4) or (5), whichever is appropriate, may be used. We call one form
an interchange of the order of integration with respect to the other form.
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In case r is not of the type shown in the above figure, it can generally be subdivided into regions
r1;r2; . . . which are of this type. Then the double integral over r is found by taking the sum of the
double integrals over r1;r2; . . . .

TRIPLE INTEGRALS

The above results are easily generalized to closed regions in three dimensions. For example,
consider a function Fðx; y; zÞ defined in a closed three-dimensional region r. Subdivide the region
into n subregions of volume �Vk, k ¼ 1; 2; . . . ; n. Letting ð�k; �k; �kÞ be some point in each subregion,
we form

lim
n!1

X

n

k¼1

Fð�k; �k; �kÞ�Vk ð6Þ

where the number n of subdivisions approaches infinity in such a way that the largest linear dimension of
each subregion approaches zero. If this limit exists, we denote it by

ð ð

r

ð

Fðx; y; zÞ dV ð7Þ

called the triple integral of Fðx; y; zÞ overr. The limit does exist if Fð; x; y; zÞ is continuous (or piecemeal
continuous) in r.

If we construct a grid consisting of planes parallel to the xy, yz, and xz planes, the region r is
subdivided into subregions which are rectangular parallelepipeds. In such case we can express the triple
integral over r given by (7) as an iterated integral of the form

ðb

x¼a

ðg2ðaÞ

y¼g1ðxÞ

ðf2ðx;yÞ

z¼f1ðx;yÞ
Fðx; y; zÞ dx dy dz ¼

ðb

x¼a

ðg2ðxÞ

y¼g1ðxÞ

ðf2ðx;yÞ

z¼f1ðx;yÞ
Fðx; y; zÞ dz

� �

dy

� �

dx ð8Þ

(where the innermost integral is to be evaluated first) or the sum of such integrals. The integration can
also be performed in any other order to give an equivalent result.

The iterated triple integral is a sequence of integrations; first from surface portion to surface portion,
then from curve segment to curve segment, and finally from point to point. (See Fig. 9-4.)

Extensions to higher dimensions are also possible.
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TRANSFORMATIONS OF MULTIPLE INTEGRALS

In evaluating a multiple integral over a region r, it is often convenient to use coordinates other than
rectangular, such as the curvilinear coordinates considered in Chapters 6 and 7.

If we let ðu; vÞ be curvilinear coordinates of points in a plane, there will be a set of transformation
equations x ¼ f ðu; vÞ; y ¼ gðu; vÞ mapping points ðx; yÞ of the xy plane into points ðu; vÞ of the uv plane.
In such case the region r of the xy plane is mapped into a region r 0 of the uv plane. We then have

ð ð

r

Fðx; yÞ dx dy ¼
ð ð

r 0

Gðu; vÞ @ðx; yÞ
@ðu; vÞ
























du dv ð9Þ

where Gðu; vÞ � Ff f ðu; vÞ; gðu; vÞg and

@ðx; yÞ
@ðu; vÞ �

@x

@u

@x

@v
@y

@u

@y

@v











































ð10Þ

is the Jacobian of x and y with respect to u and v (see Chapter 6).

Similarly if ðu; v;wÞ are curvilinear coordinates in three dimensions, there will be a set of transfor-
mation equations x ¼ f ðu; v;wÞ; y ¼ gðu; v;wÞ; z ¼ hðu; v;wÞ and we can write

ð ð ð

r

Fðx; y; zÞ dx dy dz ¼
ð ð ð

r 0

Gðu; v;wÞ @ðx; y; zÞ
@ðu; v;wÞ
























du dv dw ð11Þ

where Gðu; v;wÞ � Fff ðu; v;wÞ; gðu; v;wÞ; hðu; v;wÞg and

@ðx; y; zÞ
@ðu; v;wÞ �

@x

@u

@x

@v

@x

@w
@y

@u

@y

@v

@y

@w
@z

@u

@z

@v

@z

@w









































































ð12Þ

is the Jacobian of x, y, and z with respect to u, v, and w.

The results (9) and (11) correspond to change of variables for double and triple integrals.

Generalizations to higher dimensions are easily made.

THE DIFFERENTIAL ELEMENT OF AREA IN POLAR COORDINATES, DIFFERENTIAL

ELEMENTS OF AREA IN CYLINDRAL AND SPHERICAL COORDINATES

Of special interest is the differential element of area, dA, for polar coordinates in the plane, and the
differential elements of volume, dV , for cylindrical and spherical coordinates in three space. With these
in hand the double and triple integrals as expressed in these systems are seen to take the following forms.
(See Fig. 9-5.)

The transformation equations relating cylindrical coordinates to rectangular Cartesian ones
appeared in Chapter 7, in particular,

x ¼ � cos�; y ¼ � sin�; z ¼ z

The coordinate surfaces are circular cylinders, planes, and planes. (See Fig. 9-5.)

At any point of the space (other than the origin), the set of vectors
@r

@�
;
@r

@�
;
@r

@z

� �

constitutes an
orthogonal basis.
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In the cylindrical case r ¼ � cos �iþ � sin�jþ zk and the set is

@r

@�
¼ cos �iþ sin�j;

@r

@�
¼ �� sin�iþ � cos�j; @r

@z
¼ k

Therefore
@r

@�
� @r
@�

 @r

@z
¼ �.

That the geometric interpretation of
@r

@�
� @r
@�

 @r

@z
d� d� dz is an infinitesimal rectangular parallele-

piped suggests the differential element of volume in cylindrical coordinates is

dV ¼ � d� d� dz

Thus, for an integrable but otherwise arbitrary function, Fð�; �; zÞ, of cylindrical coordinates, the
iterated triple integral takes the form

ðz2

z1

ðg2ðzÞ

g1ðzÞ

ðf2ð�;zÞ

f1ð�;zÞ
Fð�; �; zÞ� d� d� dz

The differential element of area for polar coordinates in the plane results by suppressing the z
coordinate. It is

dA ¼ @r

@�
 @r

@�

























d� d�

and the iterated form of the double integral is

ð�2

�1

ð�2ð�Þ

�1ð�Þ
Fð�; �Þ� d� d�

The transformation equations relating spherical and rectangular Cartesian coordinates are

x ¼ r sin � cos�; y ¼ r sin � sin�; z ¼ r cos �

In this case the coordinate surfaces are spheres, cones, and planes. (See Fig. 9-5.)
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Following the same pattern as with cylindrical coordinates we discover that

dV ¼ r2 sin � dr d� d�

and the iterated triple integral of Fðr; �; �Þ has the spherical representation

ðr2

r1

ð�2ð�Þ

�1ð�Þ

ð�2ðr;�Þ

�1ðr;�Þ
Fðr; �; �Þ r2 sin � dr d� d�

Of course, the order of these integrations may be adapted to the geometry.
The coordinate surfaces in spherical coordinates are spheres, cones, and planes. If r is held

constant, say, r ¼ a, then we obtain the differential element of surface area

dA ¼ a2 sin � d� d�

The first octant surface area of a sphere of radius a is
ð�=2

0

ð�=2

0

a2 sin � d� d� ¼
ð�=2

0

a2ð� cos �Þ�20 d� ¼
ð�=2

0

a2 d� ¼ a2
�

2

Thus, the surface area of the sphere is 4�a2.

Solved Problems

DOUBLE INTEGRALS

9.1. (a) Sketch the region r in the xy plane bounded by y ¼ x2; x ¼ 2; y ¼ 1.

(b) Give a physical interpreation to

ð ð

r

ðx2 þ y2Þ dx dy.

(c) Evaluate the double integral in (b).

(a) The required region r is shown shaded in Fig. 9-6 below.

(b) Since x2 þ y2 is the square of the distance from any point ðx; yÞ to ð0; 0Þ, we can consider the double
integral as representing the polar moment of inertia (i.e., moment of inertia with respect to the origin) of
the region r (assuming unit density).
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We can also consider the double integral as representing the mass of the region r assuming a

density varying as x2 þ y2.

(c) Method 1: The double integral can be expressed as the iterated integral

ð2

x¼1

ðx2

y¼1

ðx2 þ y2Þ dy dx ¼
ð2

x¼1

ðx2

y¼1

ðx2 þ y2Þ dy
( )

dx ¼
ð2

x¼1

x2yþ y3

3













x2

y¼1

dx

¼
ð2

x¼1

x4 þ x6

3
� x2 � 1

3

 !

dx ¼ 1006

105

The integration with respect to y (keeping x constant) from y ¼ 1 to y ¼ x2 corresponds formally

to summing in a vertical column (see Fig. 9-6). The subsequent integration with respect to x from x ¼ 1
to x ¼ 2 corresponds to addition of contributions from all such vertical columns between x ¼ 1 and
x ¼ 2.

Method 2: The double integral can also be expressed as the iterated integral

ð4

y¼1

ð2

x¼ ffiffi

y
p ðx2 þ y2Þ dx dy ¼

ð4

y¼1

ð2

x¼ ffiffi

y
p ðx2 þ y2Þ dx

( )

dy ¼
ð4

y¼1

x3

3
þ xy2













2

x¼ ffiffi

y
p dy

¼
ð4

y¼1

8

3
þ 2y2 � y3=2

3
� y5=2

 !

dy ¼ 1006

105

In this case the vertical column of region r in Fig. 9-6 above is replaced by a horizontal column as
in Fig. 9-7 above. Then the integration with respect to x (keeping y constant) from x ¼ ffiffiffi

y
p

to x ¼ 2

corresponds to summing in this horizontal column. Subsequent integration with respect to y from
y ¼ 1 to y ¼ 4 corresponds to addition of contributions for all such horizontal columns between y ¼ 1
and y ¼ 4.

9.2. Find the volume of the region bound by the elliptic paraboloid z ¼ 4� x2 � 1
4 y

2 and the plane
z ¼ 0.

Because of the symmetry of the elliptic paraboloid, the result can be obtained by multiplying the first
octant volume by 4.

Letting z ¼ 0 yields 4x2 þ y2 ¼ 16. The limits of integration are determined from this equation. The

required volume is

4

ð2

0

ð2
ffiffiffiffiffiffiffiffi

4�x2
p

0

4� x2 � 1

4
y2

� �

dy dx ¼ 4

ð2

0

4y� x2y� 1

4

y3

3

 !2
ffiffiffiffiffiffiffiffi

4�x2
p

0

dx

¼ 16�

Hint: Use trigonometric substitutions to complete the integrations.

9.3. The geometric model of a material body is a plane region R bound by y ¼ x2 and y ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi

2� x2
p

on
the interval 0 @ x @ 1, and with a density function � ¼ xy (a) Draw the graph of the region.
(b) Find the mass of the body. (c) Find the coordinates of the center of mass. (See Fig. 9-8.)

(a)
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M ¼
ðb

a

ðf2

f1

� dy dx ¼
ð1

0

ð

ffiffiffiffiffiffiffiffi

2�x2
p

x2
yx dy dx ¼

ð1

0

y2

2

" #

ffiffiffiffiffiffiffiffi

2�x2
p

x2

x dxðbÞ

¼
ð1

0

1

2
xð2� x2 � x4Þ dx ¼ x2

2
� x4

8
� x6

12

" #1

0

¼ 7

24

(c) The coordinates of the center of mass are defined to be

�xx ¼ 1

M

ðb

a

ðf2ðxÞ

f1ðxÞ
x � dy dx and �yy ¼ 1

M

ðb

a

ðf2ðxÞ

f1ðxÞ
y � dy dx

where

M ¼
ðb

a

ðf2ðxÞ

f1ðxÞ
� dy dx

Thus,

M �xx ¼
ð1

0

ð

ffiffiffiffiffiffiffiffi

2�x2
p

x2
xxy dy dx ¼

ð1

0

x2
y2

2

" #

ffiffiffiffiffiffiffiffi

2�x2
p

x2

dx ¼
ð1

0

x2
1

2
½2� x2 � x4� dx

¼ x3

3
� x5

10
� x7

14

" #1

0

¼ 1

3
� 1

10
� 1

14
¼ 17

105

M �yy ¼
ð1

0

ð

ffiffiffiffiffiffiffiffi

2�x2
p

x2
yx dy dx ¼ � 13

120
þ 4

ffiffiffi

2
p

15

9.4. Find the volume of the region common to the intersecting cylinders x2 þ y2 ¼ a2 and
x2 þ z2 ¼ a2.

Required volume ¼ 8 times volume of region shown in Fig. 9-9

¼ 8

ða

x¼0

ð

ffiffiffiffiffiffiffiffiffiffi

a2�x2
p

y¼0

z dy dx

¼ 8

ða

x¼0

ð

ffiffiffiffiffiffiffiffiffiffi

a2�x2
p

y¼0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

a2 � x2
p

dy dx

¼ 8

ða

x¼0

ða2 � x2Þ dx ¼ 16a3

3

As an aid in setting up this integral, note that z dy dx corresponds to the volume of a column such as
shown darkly shaded in the figure. Keeping x constant and integrating with respect to y from y ¼ 0 to
y ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

a2 � x2
p

corresponds to adding the volumes of all such columns in a slab parallel to the yz plane, thus

giving the volume of this slab. Finally, integrating with respect to x from x ¼ 0 to x ¼ a corresponds to
adding the volumes of all such slabs in the region, thus giving the required volume.

9.5. Find the volume of the region bounded by

z ¼ xþ y; z ¼ 6; x ¼ 0; y ¼ 0; z ¼ 0
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Required volume ¼ volume of region shown in Fig. 9-10

¼
ð6

x¼0

ð6�x

y¼0

f6� ðxþ yÞg dy dx

¼
ð6

x¼0

ð6� xÞy� 1

2
y2












6�x

y¼0

dx

¼
ð6

x¼0

1

2
ð6� xÞ2 dx ¼ 36

In this case the volume of a typical column (shown darkly shaded) corresponds to f6� ðxþ yÞg dy dx.
The limits of integration are then obtained by integrating over the region r of the figure. Keeping x

constant and integrating with respect to y from y ¼ 0 to y ¼ 6� x (obtained from z ¼ 6 and z ¼ xþ yÞ
corresponds to summing all columns in a slab parallel to the yz plane. Finally, integrating with respect to x
from x ¼ 0 to x ¼ 6 corresponds to adding the volumes of all such slabs and gives the required volume.

TRANSFORMATION OF DOUBLE INTEGRALS

9.6. Justify equation (9), Page 211, for changing variables in a double integral.

In rectangular coordinates, the double integral of Fðx; yÞ over the region r (shaded in Fig. 9-11) is
ð ð

r

Fðx; yÞ dx dy. We can also evaluate this double integral by considering a grid formed by a family of u and

v curvilinear coordinate curves constructed on the region r as shown in the figure.
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Let P be any point with coordinates ðx; yÞ or ðu; vÞ, where x ¼ f ðu; vÞ and y ¼ gðu; vÞ. Then the vector r

from O to P is given by r ¼ xiþ yj ¼ f ðu; vÞiþ gðu; vÞj. The tangent vectors to the coordinate curves u ¼ c1
and v ¼ c2, where c1 and c2 are constants, are @r=@v and @r=@u, respectively. Then the area of region �r of

Fig. 9-11 is given approximately by
@r

@u
 @r

@v

























�u�v.

But

@r

@u
 @r

@v
¼

i j k

@x

@u

@y

@u
0

@x

@v

@y

@v
0





























































¼
@x

@u

@y

@u
@x

@v

@y

@v

















































k ¼ @ðx; yÞ
@ðu; vÞ k

@r

@u
 @r

@v

























�u�v ¼ @ðx; yÞ
@ðu; vÞ
























�u�vso that

The double integral is the limit of the sum

X

Ff f ðu; vÞ; gðu; vÞg @ðx; yÞ
@ðu; vÞ
























�u�v

taken over the entire region r. An investigation reveals that this limit is
ð ð

r 0

Ff f ðu; vÞ; gðu; vÞg @ðx; yÞ
@ðu; vÞ
























du dv

where r 0 is the region in the uv plane into which the region r is mapped under the transformation
x ¼ f ðu; vÞ; y ¼ gðu; vÞ.

Another method of justifying the above method of change of variables makes use of line integrals and
Green’s theorem in the plane (see Chapter 10, Problem 10.32).

9.7. If u ¼ x2 � y2 and v ¼ 2xy, find @ðx; yÞ=@ðu; vÞ in terms of u and v.

@ðu; vÞ
@ðx; yÞ ¼

ux uy
vx vy

























¼ 2x �2y
2y 2x

























¼ 4ðx2 þ y2Þ

From the identify ðx2 þ y2Þ2 ¼ ðx2 � y2Þ2 þ ð2xyÞ2 we have

ðx2 þ y2Þ2 ¼ u2 þ v2 and x2 þ y2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

u2 þ v2
p

Then by Problem 6.43, Chapter 6,

@ðx; yÞ
@ðu; vÞ ¼

1

@ðu; vÞ=@ðx; yÞ ¼
1

4ðx2 þ y2Þ ¼
1

4
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

u2 þ v2
p

Another method: Solve the given equations for x and y in terms of u and v and find the Jacobian directly.

9.8. Find the polar moment of inertia of the region in the xy plane bounded by x2 � y2 ¼ 1,
x2 � y2 ¼ 9, xy ¼ 2; xy ¼ 4 assuming unit density.

Under the transformation x2 � y2 ¼ u, 2xy ¼ v the required region r in the xy plane [shaded in Fig.
9-12(a)] is mapped into region r 0 of the uv plane [shaded in Fig. 9-12(b)]. Then:

Required polar moment of inertia ¼
ð ð

r

ðx2 þ y2Þ dx dy ¼
ð ð

r 0

ðx2 þ y2Þ @ðx; yÞ
@ðu; vÞ
























du dv

¼
ð ð

r 0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

u2 þ v2
p du dv

4
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

u2 þ v2
p ¼ 1

4

ð9

u¼1

ð8

v¼4

du dv ¼ 8

where we have used the results of Problem 9.7.
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Note that the limits of integration for the regionr 0 can be constructed directly from the regionr in the
xy plane without actually constructing the region r 0. In such case we use a grid as in Problem 9.6. The

coordinates ðu; vÞ are curvilinear coordinates, in this case called hyperbolic coordinates.

9.9. Evaluate

ð ð

r

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

x2 þ y2
q

dx dy, where r is the region in the xy plane bounded by x2 þ y2 ¼ 4 and

x2 þ y2 ¼ 9.

The presence of x2 þ y2 suggests the use of polar coordinates ð�; �Þ, where x ¼ � cos�; y ¼ � sin� (see
Problem 6.39, Chapter 6). Under this transformation the region r [Fig. 9-13(a) below] is mapped into the
region r 0 [Fig. 9-13(b) below].

Since
@ðx; yÞ
@ð�; �Þ ¼ �, it follows that

ð ð

r

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

x2 þ y2
q

dx dy ¼
ð ð

r 0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

x2 þ y2
q

@ðx; yÞ
@ð�; �Þ
























d� d� ¼
ð ð

r 0

� � � d� d�

¼
ð2�

�¼0

ð3

�¼2

�2 d� d� ¼
ð2�

�¼0

�3

3













3

2

d� ¼
ð2�

�¼0

19

3
d� ¼ 38�

3
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We can also write the integration limits for r 0 immediately on observing the region r, since for fixed �,
� varies from � ¼ 2 to � ¼ 3 within the sector shown dashed in Fig. 9-13(a). An integration with respect to
� from � ¼ 0 to � ¼ 2� then gives the contribution from all sectors. Geometrically, � d� d� represents the
area dA as shown in Fig. 9-13(a).

9.10. Find the area of the region in the xy plane bounded by the lemniscate �2 ¼ a2 cos 2�.

Here the curve is given directly in polar coordinates ð�; �Þ. By assigning various values to � and finding
corresponding values of �, we obtain the graph shown in Fig. 9-14. The required area (making use of
symmetry) is

4

ð�=4

�¼0

ða
ffiffiffiffiffiffiffiffiffi

cos 2�
p

�¼0

� d� d� ¼ 4

ð�=4

�¼0

�3

2













a
ffiffiffiffiffiffiffiffiffi

cos 2�
p

�¼0

d�

¼ 2

ð�=4

�¼0

a2 cos 2� d� ¼ a2 sin 2�













�=4

�¼0

¼ a2

TRIPLE INTEGRALS

9.11. (a) Sketch the three-dimensional regionr bounded by xþ yþ z ¼ a ða > 0Þ; x ¼ 0; y ¼ 0; z ¼ 0.
(b) Give a physical interpretation to

ð ð ð

r

ðx2 þ y2 þ z2Þ dx dy dz

(c) Evaluate the triple integral in (b).

(a) The required region r is shown in Fig. 9-15.

(b) Since x2 þ y2 þ z2 is the square of the distance from any point ðx; y; zÞ to ð0; 0; 0Þ, we can consider the

triple integral as representing the polar moment of inertia (i.e., moment of inertia with respect to the

origin) of the region r (assuming unit density).

We can also consider the triple integral as representing the mass of the region if the density varies

as x2 þ y2 þ z2.
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(c) The triple integral can be expressed as the iterated integral

ða

x¼0

ða�x

y¼0

ða�x�y

z¼0

ðx2 þ y2 þ z2Þ dz dy dx

¼
ða

x¼0

ða�x

y¼0

x2zþ y2zþ z3

3













a�x�y

z¼0

dy dx

¼
ða

x¼0

ða�x

y¼0

x2ða� xÞ � x2yþ ða� xÞy2 � y3 þ ða� x� yÞ3
3

( )

dy dx

¼
ða

x¼0

x2ða� xÞy� x2y2

2
þ ða� xÞy3

3
� y4

4
� ða� x� yÞ4

12













a�x

y¼0

dx

¼
ða

0

x2ða� xÞ2 � x2ða� xÞ2
2

þ ða� xÞ4
3

� ða� xÞ4
4

þ ða� xÞ4
12

( )

dx

¼
ða

0

x2ða� xÞ2
2

þ ða� xÞ4
6

( )

dx ¼ a5

20

The integration with respect to z (keeping x and y constant) from z ¼ 0 to z ¼ a� x� y corre-

sponds to summing the polar moments of inertia (or masses) corresponding to each cube in a vertical

column. The subsequent integration with respect to y from y ¼ 0 to y ¼ a� x (keeping x constant)

corresponds to addition of contributions from all vertical columns contained in a slab parallel to the yz

plane. Finally, integration with respect to x from x ¼ 0 to x ¼ a adds up contributions from all slabs

parallel to the yz plane.

Although the above integration has been accomplished in the order z; y;x, any other order is

clearly possible and the final answer should be the same.

9.12. Find the (a) volume and (b) centroid of the region r bounded by the parabolic cylinder
z ¼ 4� x2 and the planes x ¼ 0, y ¼ 0, y ¼ 6, z ¼ 0 assuming the density to be a constant �.

The region r is shown in Fig. 9-16.
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ðaÞ Required volume ¼
ð ð ð

r

dx dy dz

¼
ð2

x¼0

ð6

y¼0

ð4�x2

z¼0

dz dy dx

¼
ð2

x¼0

ð6

y¼0

ð4� x2Þ dy dx

¼
ð2

x¼0

ð4� x2Þy












6

y¼0

dx

¼
ð2

x¼0

ð24� 6x2Þ dx ¼ 32

(b) Total mass ¼
ð2

x¼0

ð6

y¼0

ð4�x2

z¼0

� dz dy dx ¼ 32� by part (a), since � is constant. Then

�xx ¼ Total moment about yz plane

Total mass
¼

ð2

x¼0

ð6

y¼0

ð4�x2

z¼0

�x dz dy dx

Total mass
¼ 24�

32�
¼ 3

4

�yy ¼ Total moment about xz plane

Total mass
¼
Ð 2

x¼0

Ð 6

y¼0

Ð 4�x2

z¼0 �y dz dy dx

Total mass
¼ 96�

32�
¼ 3

�zz ¼ Total moment about xy plane

Total mass
¼

ð2

x¼0

ð6

y¼0

ð4�x2

z¼0

�z dz dy dx

Total mass
¼ 256�=5

32�
¼ 8

5

Thus, the centroid has coordinates ð3=4; 3; 8=5Þ.
Note that the value for �yy could have been predicted because of symmetry.

TRANSFORMATION OF TRIPLE INTEGRALS

9.13. Justify equation (11), Page 211, for changing variables in a triple integral.

By analogy with Problem 9.6, we construct a grid of curvilinear coordinate surfaces which subdivide the

region r into subregions, a typical one of which is �r (see Fig. 9-17).
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The vector r from the origin O to point P is

r ¼ xiþ yjþ zk ¼ f ðu; v;wÞiþ gðu; v;wÞjþ hðu; v;wÞk
assuming that the transformation equations are x ¼ f ðu; v;wÞ; y ¼ gðu; v;wÞ, and z ¼ hðu; v;wÞ.

Tangent vectors to the coordinate curves corresponding to the intersection of pairs of coordinate
surfaces are given by @r=@u; @r=@v; @r=@w. Then the volume of the region �r of Fig. 9-17 is given approxi-
mately by

@r

@u
� @r
@v

 @r

@w

























�u�v�w ¼ @ðx; y; zÞ
@ðu; v;wÞ
























�u�v�w

The triple integral of Fðx; y; zÞ over the region is the limit of the sum

X

Ff f ðu; v;wÞ; gðu; v;wÞ; hðu; v;wÞg @ðx; y; zÞ
@ðu; v;wÞ
























�u�v�w

An investigation reveals that this limit is
ð ð ð

r 0

F f f ðu; v;wÞ; gðu; v;wÞ; hðu; v;wÞg @ðx; y; zÞ
@ðu; v;wÞ
























du dv dw

where r 0 is the region in the uvw space into which the region r is mapped under the transformation.

Another method for justifying the above change of variables in triple integrals makes use of Stokes’

theorem (see Problem 10.84, Chapter 10).

9.14. What is the mass of a circular cylindrical body represented by the region
0 @ �@ c; 0 @ �@ 2�; 0 @ z @ h, and with the density function � ¼ z sin2 �?

M ¼
ðh

0

ð2�

0

ðc

0

z sin2 �� d� d� dz ¼ �

9.15. Use spherical coordinates to calculate the volume of a sphere of radius a.

V ¼ 8

ða

0

ð�=2

0

ð�=2

0

a2 sin � dr d� d� ¼ 4

3
�a3

9.16. Express

ð ð ð

r

Fðx; y; zÞ dx dy dz in (a) cylindrical and (b) spherical coordinates.

(a) The transformation equations in cylindrical coordinates are x ¼ � cos�; y ¼ � sin�; z ¼ z.

As in Problem 6.39, Chapter 6, @ðx; y; zÞ=@ð�; �; zÞ ¼ �. Then by Problem 9.13 the triple integral

becomes
ð ð ð

r 0

Gð�; �; zÞ � d� d� dz

where r 0 is the region in the �; �; z space corresponding to r and where Gð�; �; z �
Fð� cos�; � sin�; zÞ.

(b) The transformation equations in spherical coordinates are x ¼ r sin � cos�; y ¼ r sin � sin�; z ¼ r cos �.
By Problem 6.101, Chapter 6, @ðx; y; zÞ=@ðr; �; �Þ ¼ r2 sin �. Then by Problem 9.13 the triple

integral becomes
ð ð ð

r 0

Hðr; �; �Þr2 sin � dr d� d�

where r 0 is the region in the r; �; � space corresponding to r, and where Hðr; �; �Þ � Fðr sin � cos�,
r sin � sin�; r cos �Þ.
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9.17. Find the volume of the region above the xy plane bounded by the paraboloid z ¼ x2 þ y2 and the
cylinder x2 þ y2 ¼ a2.

The volume is most easily found by using cylindrical coordinates. In these coordinates the equations
for the paraboloid and cylinder are respectively z ¼ �2 and � ¼ a. Then

Required volume ¼ 4 times volume shown in Fig. 9-18

¼ 4

ð�=2

�¼0

ða

�¼0

ð�2

z¼0

� dz d� d�

¼ 4

ð�=2

�¼0

ða

�¼0

�3 d� d�

¼ 4

ð�=2

hi¼0

�4

4













a

¼0

d� ¼ �

2
a4

The integration with respect to z (keeping � and � constant) from z ¼ 0 to z ¼ �2 corresponds to

summing the cubical volumes (indicated by dVÞ in a vertical column extending from the xy plane to the

paraboloid. The subsequent integration with respect to � (keeping � constant) from � ¼ 0 to � ¼ a

corresponds to addition of volumes of all columns in the wedge-shaped region. Finally, integration with

respect to � corresponds to adding volumes of all such wedge-shaped regions.

The integration can also be performed in other orders to yield the same result.

We can also set up the integral by determining the region r 0 in �; �; z space into which r is mapped by

the cylindrical coordinate transformation.

9.18. (a) Find the moment of inertia about the z-axis of the region in Problem 9.17, assuming that the
density is the constant �. (b) Find the radius of gyration.

(a) The moment of inertia about the z-axis is

Iz ¼ 4

ð�=2

�0

ða

�¼0

ð�2

z¼0

�2 � �� dz d� d�

¼ 4�

ð�=2

�¼0

ða

�¼0

�5 d� d� ¼ 4�

ð�=2

�¼0

�6

6













a

�¼0

d� ¼ �a6�

3
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The result can be expressed in terms of the mass M of the region, since by Problem 9.17,

M ¼ volume density ¼ �

2
a4� so that Iz ¼

�a6�

3
¼ �a6

3
� 2M
�a4

¼ 2

3
Ma2

Note that in setting up the integral for Iz we can think of �� dz d� d� as being the mass of the
cubical volume element, �2 � �� dz d� d�, as the moment of inertia of this mass with respect to the z-axis

and

ð ð ð

r

�2 � �� dz d� d� as the total moment of inertia about the z-axis. The limits of integration are

determined as in Problem 9.17.

(b) The radius of gyration is the value K such that MK2 ¼ 2
3Ma2, i.e., K2 ¼ 2

3 a
2 or K ¼ a

ffiffiffiffiffiffiffiffi

2=3
p

.

The physical significance of K is that if all the mass M were concentrated in a thin cylindrical shell
of radius K, then the moment of inertia of this shell about the axis of the cylinder would be Iz.

9.19. (a) Find the volume of the region
bounded above by the sphere
x2 þ y2 þ z2 ¼ a2 and below by the
cone z2 sin2 	 ¼ ðx2 þ y2Þ cos2 	, where
	 is a constant such that 0 @ 	@ �.
(b) From the result in (a), find the
volume of a sphere of radius a.

In spherical coordinates the equation
of the sphere is r ¼ a and that of the
cone is � ¼ 	. This can be seen directly
or by using the transformation equations

x ¼ r sin � cos�; y ¼ r sin � sin�, z ¼ r cos �.
For example, z2 sin2 	 ¼ ðx2 þ y2Þ cos2 	
becomes, on using these equations,

r2 cos2 � sin2 	 ¼
ðr2 sin2 � cos2 �þ r2 sin2 � sin2 �Þ cos2 	

i.e., r2 cos2 � sin2 	 ¼ r2 sin2 � cos2 	

from which tan � ¼ � tan	 and so � ¼ 	 or � ¼ �� 	. It is sufficient to consider one of these, say, � ¼ 	.

ðaÞ Required volume ¼ 4 times volume (shaded) in Fig. 9-19

¼ 4

ð�=2

�¼0

ð	

�¼0

ða

r¼0

r2 sin � dr d� d�

¼ 4

ð�=2

�¼0

ð	

�¼0

r3

3
sin �













	

r¼0

d� d�

¼ 4a3

3

ð�=2

�¼0

ð	

�¼0

sin � d� d�

¼ 4a3

3

ð�=2

�¼0

� cos �













	

�¼0

d�

¼ 2�a3

3
ð1� cos	Þ

The integration with respect to r (keeping � and � constant) from r ¼ 0 to r ¼ a corresponds to
summing the volumes of all cubical elements (such as indicated by dV) in a column extending from

r ¼ 0 to r ¼ a. The subsequent integration with respect to � (keeping � constant) from � ¼ 0 to � ¼ �=4
corresponds to summing the volumes of all columns in the wedge-shaped region. Finally, integration
with respect to � corresponds to adding volumes of all such wedge-shaped regions.
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(b) Letting 	 ¼ �, the volume of the sphere thus obtained is

2�a3

3
ð1� cos�Þ ¼ 4

3
�a3

9.20. ðaÞ Find the centroid of the region in Problem 9.19.
(b) Use the result in (a) to find the centroid of a hemisphere.

(a) The centroid ð �xx; �yy; �zzÞ is, due to symmetry, given by �xx ¼ �yy ¼ 0 and

�zz ¼ Total moment about xy plane

Total mass
¼
Ð Ð Ð

z� dV
Ð Ð Ð

� dV

Since z ¼ r cos � and � is constant the numerator is

4�

ð�=2

�¼0

ð	

�¼0

ða

r¼0

r cos � � r2 sin � dr d� d� ¼ 4�

ð�=2

�¼0

ð	

�¼0

r4

4













a

r¼0

sin � cos � d� d�

¼ �a4
ð�=2

�¼0

ð	

�¼0

sin � cos � d� d�

¼ �a4
ð�=2

�¼0

sin2 �

2













	

�¼0

d� ¼ ��a4 sin2 	

4

The denominator, obtained by multiplying the result of Problem 9.19(a) by �, is 2
3��a

3ð1� cos	Þ.
Then

�zz ¼
1
4��a

4 sin2 	
2
3��a

3ð1� cos	Þ ¼
3

8
að1þ cos	Þ:

(b) Letting 	 ¼ �=2; �zz ¼ 3
8 a.

MISCELLANEOUS PROBLEMS

9.21. Prove that (a)

ð1

0

ð1

0

x� y

ðxþ yÞ3 dy

� �

dx ¼ 1

2
, (b)

ð1

0

ð1

0

x� y

ðxþ yÞ3 dx

� �

dy ¼ � 1

2
.

ðaÞ
ð1

0

ð1

0

x� y

ðxþ yÞ3 dy

� �

dx ¼
ð1

0

ð1

0

2x� ðxþ yÞ
ðxþ yÞ3 dy

� �

dx

¼
ð1

0

ð1

0

2x

ðxþ yÞ3 �
1

ðxþ yÞ2
� �

dy

� �

dx

¼
ð1

0

�x

ðxþ yÞ2 þ
1

xþ y

� �











1

y¼0

dx

¼
ð1

0

dx

ðxþ 1Þ2 ¼
�1

xþ 1













1

0

¼ 1

2

(b) This follows at once on formally interchanging x and y in (a) to obtain

ð1

0

ð1

0

y� x

ðxþ yÞ3 dx

� �

dy ¼ 1

2
and

then multiplying both sides by �1.

This example shows that interchange in order of integration may not always produce equal results.
A sufficient condition under which the order may be interchanged is that the double integral over the

corresponding region exists. In this case

ð ð

r

x� y

ðxþ yÞ3 dx dy, where r is the region

0 @ x @ 1; 0 @ y @ 1 fails to exist because of the discontinuity of the integrand at the origin. The
integral is actually an improper double integral (see Chapter 12).

9.22. Prove that

ðx

0

ðt

0

FðuÞ du
� �

dt ¼
ðx

0

ðx� uÞFðuÞ du.
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Let IðxÞ ¼
ðx

0

ðt

0

FðuÞ du
� �

dt; JðxÞ ¼
ðz

0

ðx� uÞFðuÞ du: Then

I 0ðxÞ ¼
ðz

0

FðuÞ du; J 0ðxÞ ¼
ðz

0

FðuÞ du

using Leibnitz’s rule, Page 186. Thus, I 0ðxÞ ¼ J 0ðxÞ, and so IðxÞ � JðxÞ ¼ c, where c is a constant. Since
Ið0Þ ¼ Jð0Þ ¼ 0, c ¼ 0, and so IðxÞ ¼ JðxÞ.

The result is sometimes written in the form
ðx

0

ðx

0

FðxÞ dx2 ¼
ðx

0

ðx� uÞFðuÞ du

The result can be generalized to give (see Problem 9.58)
ðx

0

ðx

0

� � �
ðx

0

FðxÞ dxn ¼ 1

ðn� 1Þ!
ðx

0

ðx� uÞn�1FðuÞ du

Supplementary Problems

DOUBLE INTEGRALS

9.23. (a) Sketch the region r in the xy plane bounded by y2 ¼ 2x and y ¼ x. (b) Find the area of r. (c) Find
the polar moment of inertia of r assuming constant density �.
Ans. (b) 2

3 ; ðcÞ 48�=35 ¼ 72M=35, where M is the mass of r.

9.24. Find the centroid of the region in the preceding problem. Ans. �xx ¼ 4
5 ; �yy ¼ 1

9.25. Given

ð3

y¼0

ð

ffiffiffiffiffiffi

4�y
p

x¼1

ðxþ yÞ dx dy. (a) Sketch the region and give a possible physical interpretation of the

double integral. (b) Interchange the order of integration. (c) Evaluate the double integral.

Ans: ðbÞ
ð2

x¼1

ð4�x2

y¼0

ðxþ yÞ dy dx; ðcÞ 241=60

9:26: Show that

ð2

x¼1

ðx

y¼ ffiffi

x
p sin

�x

2y
dy dxþ

ð4

x¼2

ð2

y¼ ffiffi

x
p sin

�x

2y
dy dx ¼ 4ð�þ 2Þ

�3
:

9.27. Find the volume of the tetrahedron bounded by x=aþ y=bþ z=c ¼ 1 and the coordinate planes.
Ans. abc=6

9.28. Find the volume of the region bounded by z ¼ x3 þ y2; z ¼ 0;x ¼ �a; x ¼ a; y ¼ �a; y ¼ a.

Ans. 8a4=3

9.29. Find (a) the moment of inertia about the z-axis and (b) the centroid of the region in Problem 9.28
assuming a constant density �.
Ans. (a) 112

45 a
6� ¼ 14

15Ma2, where M ¼ mass; (b) �xx ¼ �yy ¼ 0; �zz ¼ 7
15 a

2

TRANSFORMATION OF DOUBLE INTEGRALS

9.30. Evaluate

ð ð

r

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

x2 þ y2
q

dx dy, where r is the region x2 þ y2 @ a2. Ans. 2
3�a

3
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9:31: If r is the region of Problem 9.30, evaluate

ð ð

r

e�ðx2þy2Þ dx dy: Ans: �ð1� e�a2 Þ

9.32. By using the transformation xþ y ¼ u; y ¼ uv, show that

ð1

x¼0

ð1�x

y¼0

ey=ðxþyÞ dy dx ¼ e� 1

2

9.33. Find the area of the region bounded by xy ¼ 4;xy ¼ 8; xy3 ¼ 5;xy3 ¼ 15. [Hint: Let xy ¼ u; xy3 ¼ v.]
Ans: 2 ln 3

9.34. Show that the volume generated by revolving the region in the first quadrant bounded by the parabolas
y2 ¼ x; y2 ¼ 8x; x2 ¼ y;x2 ¼ 8y about the x-axis is 279�=2. [Hint: Let y2 ¼ ux;x2 ¼ vy.]

9.35. Find the area of the region in the first quadrant bounded by y ¼ x3; y ¼ 4x3;x ¼ y3; x ¼ 4y3.
Ans: 1

8

9.36. Letr be the region bounded by xþ y ¼ 1;x ¼ 0; y ¼ 0. Show that

ð ð

r

cos
x� y

xþ y

� �

dx dy ¼ sin 1

2
. [Hint: Let

x� y ¼ u;xþ y ¼ v.]

TRIPLE INTEGRALS

9.37. (a) Evaluate

ð1

x¼0

ð1

y¼0

ð2

z¼
ffiffiffiffiffiffiffiffiffiffi

x2þy2
p xyz dz dy dx: ðbÞ Give a physical interpretation to the integral in (a).

Ans: ðaÞ 3
8

9.38. Find the (a) volume and (b) centroid of the region in the first octant bounded by x=aþ y=bþ z=c ¼ 1,
where a; b; c are positive. Ans: ðaÞ abc=6; ðbÞ �xx ¼ a=4; �yy ¼ b=4; �zz ¼ c=4

9.39. Find the (a) moment of inertia and (b) radius of gyration about the z-axis of the region in Problem 9.38.
Ans: ðaÞ Mða2 þ b2Þ=10; ðbÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ða2 þ b2Þ=10
p

9.40. Find the mass of the region corresponding to x2 þ y2 þ z2 @ 4; x A 0; y A 0; z A 0, if the density is equal
to xyz. Ans: 4=3

9.41. Find the volume of the region bounded by z ¼ x2 þ y2 and z ¼ 2x. Ans: �=2

TRANSFORMATION OF TRIPLE INTEGRALS

9.42. Find the volume of the region bounded by z ¼ 4� x2 � y2 and the xy plane. Ans: 8�

9.43. Find the centroid of the region in Problem 9.42, assuming constant density �.
Ans: �xx ¼ �yy ¼ 0; �zz ¼ 4

3

9.44. (a) Evaluate

ð ð ð

r

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

x2 þ y2 þ z2
q

dx dy dz, where r is the region bounded by the plane z ¼ 3 and the cone

z ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

x2 þ y2
p

. (b) Give a physical interpretation of the integral in (a). [Hint: Perform the integration in

cylindrical coordinates in the order �; z; �.] Ans: 27�ð2 ffiffiffi

2
p � 1Þ=2

9.45. Show that the volume of the region bonded by the cone z ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

x2 þ y2
p

and the paraboloid z ¼ x2 þ y2 is �=6.

9.46. Find the moment of inertia of a right circular cylinder of radius a and height b, about its axis if the density is
proportional to the distance from the axis. Ans: 3

5Ma2
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9.47. (a) Evaluate

ð ð ð

r

dx dy dz

ðx2 þ y2 þ z2Þ3=2, where r is the region bounded by the spheres x2 þ y2 þ z2 ¼ a2 and

x2 þ y2 þ z2 ¼ b2 where a > b > 0. (b) Give a physical interpretation of the integral in (a).
Ans: ðaÞ 4� lnða=bÞ

9.48. (a) Find the volume of the region bounded above by the sphere r ¼ 2a cos �, and below by the cone � ¼ 	
where 0 < 	 < �=2. (b) Discuss the case 	 ¼ �=2. Ans: 4

3�a
3ð1� cos4 	Þ

9.49. Find the centroid of a hemispherical shell having outer radius a and inner radius b if the density (a) is
constant, (b) varies as the square of the distance from the base. Discuss the case a ¼ b.

Ans. Taking the z-axis as axis of symmetry: (a) �xx ¼ �yy ¼ 0; �zz ¼ 3
8 ða4 � b4Þ=ða3 � b3Þ; ðbÞ �xx ¼ �yy ¼ 0,

�zz ¼ 5
8 ða6 � b6Þ=ða5 � b5Þ

MISCELLANEOUS PROBLEMS

9.50. Find the mass of a right circular cylinder of radius a and height b if the density varies as the square of the
distance from a point on the circumference of the base.
Ans: 1

6�a
2bkð9a2 þ 2b2Þ, where k ¼ constant of proportionality.

9.51. Find the (a) volume and (b) centroid of the region bounded above by the sphere x2 þ y2 þ z2 ¼ a2 and
below by the plane z ¼ b where a > b > 0, assuming constant density.
Ans: ðaÞ 1

3�ð2a3 � 3a2bþ b3Þ; ðbÞ �xx ¼ �yy ¼ 0; �zz ¼ 3
4 ðaþ bÞ2=ð2aþ bÞ

9.52. A sphere of radius a has a cylindrical hole of radius b bored from it, the axis of the cylinder coinciding with a

diameter of the sphere. Show that the volume of the sphere which remains is 4
3�½a3 � ða2 � b2Þ3=2�.

9.53. A simple closed curve in a plane is revolved about an axis in the plane which does not intersect the curve.
Prove that the volume generated is equal to the area bounded by the curve multiplied by the distance
traveled by the centroid of the area (Pappus’ theorem).

9.54. Use Problem 9.53 to find the volume generated by revolving the circle x2 þ ðy� bÞ2 ¼ a2; b > a > 0 about
the x-axis. Ans: 2�2a2b

9.55. Find the volume of the region bounded by the hyperbolic cylinders xy ¼ 1;xy ¼ 9; xz ¼ 4;xz ¼ 36, yz ¼ 25,
yz ¼ 49. [Hint: Let xy ¼ u; xz ¼ v; yz ¼ w:] Ans: 64

9.56. Evaluate

ð ð ð

r

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� ðx2=a2 þ y2=b2 þ z2=c2Þ
q

dx dy dz, where r is the region interior to the ellipsoid

x2=a2 þ y2=b2 þ z2=c2 ¼ 1. [Hint: Let x ¼ au; y ¼ bv; z ¼ cw. Then use spherical coordinates.]
Ans: 1

4�
2abc

9.57. If r is the region x2 þ xyþ y2 @ 1, prove that

ð ð

r

e�ðx2þxyþy2Þ dx dy ¼ 2�

e
ffiffiffi

3
p ðe� 1Þ. [Hint: Let

x ¼ u cos	� v sin 	, y ¼ u sin	þ v cos	 and choose 	 so as to eliminate the xy term in the integrand.
Then let u ¼ a� cos�, v ¼ b� sin� where a and b are appropriately chosen.]

9.58. Prove that

ðx

0

ðx

0

� � �
ðx

0

FðxÞ dxn ¼ 1

ðn� 1Þ!
ðx

0

ðx� uÞn�1FðuÞ du for n ¼ 1; 2; 3; . . . (see Problem 9.22).
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229

Line Integrals, Surface
Integrals, and Integral

Theorems

Construction of mathematical models of physical phenomena requires functional domains of greater
complexity than the previously employed line segments and plane regions. This section makes progress
in meeting that need by enriching integral theory with the introduction of segments of curves and
portions of surfaces as domains. Thus, single integrals as functions defined on curve segments take
on new meaning and are then called line integrals. Stokes’s theorem exhibits a striking relation between
the line integral of a function on a closed curve and the double integral of the surface portion that is
enclosed. The divergence theorem relates the triple integral of a function on a three-dimensional region
of space to its double integral on the bounding surface. The elegant language of vectors best describes
these concepts; therefore, it would be useful to reread the introduction to Chapter 7, where the impor-
tance of vectors is emphasized. (The integral theorems also are expressed in coordinate form.)

LINE INTEGRALS

The objective of this section is to geometrically view the domain of a vector or scalar function as a
segment of a curve. Since the curve is defined on an interval of real numbers, it is possible to refer the
function to this primitive domain, but to do so would suppress much geometric insight.

A curve, C, in three-dimensional space may be represented by parametric equations:

x ¼ f1ðtÞ; y ¼ f2ðtÞ; z ¼ f3ðtÞ; a @ t @ b ð1Þ
or in vector notation:

x ¼ rðtÞ ð2Þ
where

rðtÞ ¼ xiþ yjþ zk

(see Fig. 10-1).
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For this discussion it is assumed that r is continuously differentiable. While (as we are doing) it is
convenient to refer the Euclidean space to a rectangular Cartesian coordinate system, it is not necessary.
(For example, cylindrical and spherical coordinates sometimes are more useful.) In fact, one of the
objectives of the vector language is to free us from any particular frame of reference. Then, a vector
A½xðtÞ; yðtÞ; zðtÞ� or a scalar, �, is pictured on the domain C, which according to the parametric repre-
sentation, is referred to the real number interval a @ t @ b.

The Integral

ð

C

A � dr ð3Þ

of a vector field A defined on a curve segment C is called a line integral. The integrand has the
representation

A1 dxþ A2 dyþ A3 dz

obtained by expanding the dot product.

The scalar and vector integrals

ð

C

�ðtÞ dt ¼ lim
n!1

X

n

k¼1

�ð�k; �k; �kÞ�tk ð4Þ
ð

C

AðtÞdt ¼ lim
n!1

X

n

k¼1

Að�k; �k; �kÞ�tÞk ð5Þ

can be interpreted as line integrals; however, they do not play a major role [except for the fact that the
scalar integral (3) takes the form (4)].

The following three basic ways are used to evaluate the line integral (3):

1. The parametric equations are used to express the integrand through the parameter t. Then

ð

C

A � dr ¼
ðt2

t1

A � dr
dt

dt

2. If the curve C is a plane curve (for example, in the xy plane) and has one of the representations
y ¼ f ðxÞ or x ¼ gðyÞ, then the two integrals that arise are evaluated with respect to x or y,
whichever is more convenient.

230 LINE INTEGRALS, SURFACE INTEGRALS, AND INTEGRAL THEOREMS [CHAP. 10

Fig. 10-1



3. If the integrand is a perfect differential, then it may be evaluated through knowledge of the end
points (that is, without reference to any particular joining curve). (See the section on indepen-
dence of path on Page 232; also see Page 237.)

These techniques are further illustrated below for plane curves and for three space in the problems.

EVALUATION OF LINE INTEGRALS FOR PLANE CURVES

If the equation of a curve C in the plane z ¼ 0 is given as y ¼ f ðxÞ, the line integral (2) is evaluated
by placing y ¼ f ðxÞ; dy ¼ f 0ðxÞ dx in the integrand to obtain the definite integral

ða2

a1

Pfx; f ðxÞg dxþQfx; f ðxÞg f 0ðxÞ dx ð7Þ

which is then evaluated in the usual manner.

Similarly, if C is given as x ¼ gðyÞ, then dx ¼ g 0ðyÞ dy and the line integral becomes

ðb2

b1

Pfgð yÞ; ygg 0ð yÞ dyþQfgð yÞ; yg dy ð8Þ

If C is given in parametric form x ¼ �ðtÞ; y ¼  ðtÞ, the line integral becomes

ðt2

t1

Pf�ðtÞ;  ðtÞg� 0ðtÞ dtþQf�ðtÞ;  ðtÞg;  0ðtÞ dt ð9Þ

where t1 and t2 denote the values of t corresponding to points A and B, respectively.

Combinations of the above methods may be used in the evaluation. If the integrand A � dr is a
perfect differential, d�, then

ð

C

A � dr ¼
ððc;dÞ

ða;bÞ
d� ¼ �ðc; dÞ ��ða; bÞ ð6Þ

Similar methods are used for evaluating line integrals along space curves.

PROPERTIES OF LINE INTEGRALS EXPRESSED FOR PLANE CURVES

Line integrals have properties which are analogous to those of ordinary integrals. For example:

1:

ð

C

Pðx; yÞ dxþQðx; yÞ dy ¼
ð

C

Pðx; yÞ dxþ
ð

C

Qðx; yÞ dy

2:

ðða2;b2Þ

ða1;b1Þ
PdxþQdy ¼ �

ðða1;b1Þ

ða2;b2Þ
Pdxþ q dy

Thus, reversal of the path of integration changes the sign of the line integral.

3:

ðða2;b2Þ

ða2;b1Þ
PdxþQdy ¼

ðða3;b3Þ

ða1;b1Þ
PdxþQdyþ

ðða2;b2Þ

ða3;b3Þ
PdxþQdy

where ða3; b3Þ is another point on C.

Similar properties hold for line integrals in space.
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SIMPLE CLOSED CURVES, SIMPLY AND MULTIPLY CONNECTED REGIONS

A simple closed curve is a closed curve which does not intersect itself anywhere. Mathematically, a
curve in the xy plane is defined by the parametric equations x ¼ �ðtÞ; y ¼  ðtÞ where � and  are single-
valued and continuous in an interval t1 @ t @ t2. If �ðt1Þ ¼ �ðt2Þ and  ðt1Þ ¼  ðt2Þ, the curve is said to
be closed. If �ðuÞ ¼ �ðvÞ and  ðuÞ ¼  ðvÞ only when u ¼ v (except in the special case where u ¼ t1 and
v ¼ t2), the curve is closed and does not intersect itself and so is a simple closed curve. We shall also
assume, unless otherwise stated, that � and  are piecewise differentiable in t1 @ t @ t2.

If a plane region has the property that any closed
curve in it can be continuously shrunk to a point
without leaving the region, then the region is called
simply connected; otherwise, it is called multiply con-
nected (see Fig. 10-2 and Page 118 of Chapter 6).

As the parameter t varies from t1 to t2, the plane
curve is described in a certain sense or direction.
For curves in the xy plane, we arbitrarily describe
this direction as positive or negative according as a person traversing the curve in this direction with his
head pointing in the positive z direction has the region enclosed by the curve always toward his left or
right, respectively. If we look down upon a simple closed curve in the xy plane, this amounts to saying
that traversal of the curve in the counterclockwise direction is taken as positive while traversal in the
clockwise direction is taken as negative.

GREEN’S THEOREM IN THE PLANE

This theorem is needed to prove Stokes’ theorem (Page 237). Then it becomes a special case of that
theorem.

Let P, Q, @P=@y; @Q=@x be single-valued and continuous in a simply connected region r bounded by
a simple closed curve C. Then

þ

C

P dxþQdy ¼
ð ð

r

@Q

@x
� @P
@y

� �

dx dy ð10Þ

where

þ

C

is used to emphasize that C is closed and that it is described in the positive direction.

This theorem is also true for regions bounded by two or more closed curves (i.e., multiply connected
regions). See Problem 10.10.

CONDITIONS FOR A LINE INTEGRAL TO BE INDEPENDENT OF THE PATH

The line integral of a vector field A is independent of path if its value is the same regardless of the
(allowable) path from initial to terminal point. (Thus, the integral is evaluated from knowledge of the
coordinates of these two points.)

For example, the integral of the vector field A ¼ yiþ xj is independent of path since
ð

C

A � dr ¼
ð

C

y dxþ x dy ¼
ðx2y2

x1y1

dðxyÞ ¼ x2y2 � x1y1

Thus, the value of the integral is obtained without reference to the curve joining P1 and P2.
This notion of the independence of path of line integrals of certain vector fields, important to theory

and application, is characterized by the following three theorems:

Theorem 1. A necessary and sufficient condition that

ð

C

A � dr be independent of path is that there
exists a scalar function � such that A ¼ r�.

232 LINE INTEGRALS, SURFACE INTEGRALS, AND INTEGRAL THEOREMS [CHAP. 10

Fig. 10-2



Theorem 2. A necessary and sufficient condition that the line integral,

ð

C

A � dr be independent of path
is that r  A ¼ 0.

Theorem 3. If r  A ¼ 0, then the line integral of A over an allowable closed path is 0, i.e.,

þ

A � dr ¼ 0.

If C is a plane curve, then Theorem 3 follows immediately from Green’s theorem, since in the plane
case r  A reduces to

@A1

@y
¼ @A2

@x

EXAMPLE. Newton’s second law for forces is F ¼ dðmvÞ
dt

, where m is the mass of an object and v is its velocity.

When F has the representation F ¼ �r�, it is said to be conservative. The previous theorems tell us that the
integrals of conservative fields of force are independent of path. Furthermore, showing that r  F ¼ 0 is the

preferred way of showing that F is conservative, since it involves differentiation, while demonstrating that � exists
such that F ¼ �r� requires integration.

SURFACE INTEGRALS

Our previous double integrals have been related to a very special surface, the plane. Now we
consider other surfaces, yet, the approach is quite similar. Surfaces can be viewed intrinsically, i.e., as
non-Euclidean spaces; however, we do not do that. Rather, the surface is thought of as embedded in a
three-dimensional Euclidean space and expressed through a two-parameter vector representation:

x ¼ rðv1; v2Þ
While the purpose of the vector representation is to be general (that is, interpretable through any

allowable three-space coordinate system), it is convenient to initially think in terms of rectangular
Cartesian coordinates; therefore, assume

r ¼ xiþ yjþ zk

and that there is a parametric representation

x ¼ rðv1; v2Þ; y ¼ rðv1; v2Þ; z ¼ rðv1; v2Þ ð11Þ
The functions are assumed to be continuously differentiable.

The parameter curves v2 ¼ const and v1 ¼ const establish a coordinate system on the surface (just as
y ¼ const, and x ¼ const form such a system in the plane). The key to establishing the surface integral
of a function is the differential element of surface area. (For the plane that element is dA ¼ dx; dy.)

At any point, P, of the surface

dx ¼ @r

@v1
dv1 þ

@r

@v2
dv2

spans the tangent plane to the surface. In particular, the directions of the coordinate curves v2 ¼ const

and v1 ¼ const are designated by dx1 ¼
@r

@v1
dv1 and dx2 ¼

@r

@v2
dv2, respectively (see Fig. 10-3).

The cross product

dx1x dx2 ¼
@r

@v1
 @r

@v2
dv1 dv2

is normal to the tangent plane at P, and its magnitude
@r

@v1
 @r

@v2

























is the area of a differential coordinate
parallelogram.
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(This is the usual geometric interpretation of the cross product abstracted to the differential level.)
This strongly suggests the following definition:

Definition. The differential element of surface area is

dS ¼ @r

@v1
 @r

@v2

























dv1 dv2 ð12Þ

For a function �ðv1; v2Þ that is everywhere integrable on S
ð ð

S

� dS ¼
ð ð

S

�ðv1; v2Þ
@r

@v1
 @r

@v2

























dv1 dv2 ð13Þ

is the surface integral of the function �:

In general, the surface integral must be referred to three-space coordinates to be evaluated. If the
surface has the Cartesian representation z ¼ f ðx; yÞ and the identifications

v1 ¼ x; v2 ¼ y; z ¼ f ðv1; v2Þ
are made then

@r

@v1
¼ iþ @z

@x
k;

@r

@v2
¼ jþ @z

@y
k

and

@r

@v2
 @r

@v2
¼ k� @z

@y
j� @z

@x
i

Therefore,

@r

@v1
 @r

@v2

























¼ 1þ @z

@x

� �2

þ @z

@y

� �2
" #1=2

Thus, the surface integral of � has the special representation

S ¼
ð ð

S

�ðx; y; zÞ 1þ @z

@x

� �2

þ @z

@y

� �2
" #1=2

dx dy ð14Þ

If the surface is given in the implicit form Fðx; y; zÞ ¼ 0, then the gradient may be employed to
obtain another representation. To establish it, recall that at any surface point P the gradient, rF is
perpendicular (normal) to the tangent plane (and hence to S).

Therefore, the following equality of the unit vectors holds (up to sign):
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rF
jrF j ¼ � @r

@x
 @r

@y

� �

@r

@v1
 @r

@v2

























ð15Þ

[Now a conclusion of the theory of implicit functions is that from Fðx; y; zÞ ¼ 0 (and under appro-
priate conditions) there can be produced an explicit representation z ¼ f ðx; yÞ of a portion of the surface.
This is an existence statement. The theorem does not say that this representation can be explicitly
produced.] With this fact in hand, we again let v1 ¼ x; v2 ¼ y; z ¼ f ðv1; v2Þ. Then

rF ¼ Fxiþ fyjþ Fzk

Taking the dot product of both sides of (15) yields

Fz

jrF j ¼ � 1

@r

@v1
 @r

@v2

























The ambiguity of sign can be eliminated by taking the absolute value of both sides of the equation.
Then

@r

@v1
 @r

@v2

























¼ jrF j
jFzj

¼ ½ðFxÞ2 þ ðFyÞ2 þ ðFzÞ2�1=2
jFzj

and the surface integral of � takes the form

ð ð

S

½ðFxÞ2 þ ðFyÞ2 þ ðFzÞ2�1=2
jFzj

dx dy ð16Þ

The formulas (14) and (16) also can be introduced in the following nonvectorial manner.

Let S be a two-sided surface having projection r on the xy plane as in the adjoining Fig. 10-4.
Assume that an equation for S is z ¼ f ðx; yÞ, where f is single-valued and continous for all x and y in r .
Divide r into n subregions of area �Ap; p ¼ 1; 2; . . . ; n, and erect a vertical column on each of these
subregions to intersect S in an area �Sp.

Let �ðx; y; zÞ be single-valued and continuous at all points of S. Form the sum

X

n

p¼1

�ð�p; �p; �pÞ�Sp ð17Þ
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where ð�p; �p; �pÞ is some point of �Sp. If the limit of this sum as n ! 1 in such a way that each
�Sp ! 0 exists, the resulting limit is called the surface integral of �ðx; y; zÞ over S and is designated by

ð ð

S

�ðx; y; zÞ dS ð18Þ

Since �Sp ¼ j sec �pj�Ap approximately, where �p is the angle between the normal line to S and the
positive z-axis, the limit of the sum (17) can be written

ð ð

r

�ðx; y; zÞj sec �j dA ð19Þ

The quantity j sec �j is given by

j sec �j ¼ 1

jnp � kj
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ @z

@x

� �2

þ @z

@y

� �2
s

ð20Þ

Then assuming that z ¼ f ðx; yÞ has continuous (or sectionally continuous) derivatives in r, (19) can be
written in rectangular form as

ð ð

r

�ðx; y; zÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ @z

@x

� �2

þ @z

@y

� �2
s

dx dy ð21Þ

In case the equation for S is given as Fðx; y; zÞ ¼ 0, (21) can also be written

ð ð

r

�ðx; y; zÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðFxÞ2 þ ðFyÞ2 þ ðFzÞ2
q

jFzj
dx dy ð22Þ

The results (21) or (22) can be used to evaluate (18).
In the above we have assumed that S is such that any line parallel to the z-axis intersects S in only

one point. In case S is not of this type, we can usually subdivide S into surfaces S1;S2; . . . ; which are of
this type. Then the surface integral over S is defined as the sum of the surface integrals over S1;S2; . . . .

The results stated hold when S is projected on to a region r on the xy plane. In some cases it is
better to project S on to the yz or xz planes. For such cases (18) can be evaluated by appropriately
modifying (21) and (22).

THE DIVERGENCE THEOREM

The divergence theorem establishes equality between triple integral (volume integral) of a function
over a region of three-dimensional space and the double integral of the function over the surface that
bounds that region. This relation is very important in the expression of physical theory. (See Fig.
10-5.)

Divergence (or Gauss) Theorem

Let A be a vector field that is continuously differentiable on a closed-space region, V , bound by a
smooth surface, S. Then

ð ð ð

V

r � A dV ¼
ð ð

S

A � n dS ð23Þ

where n is an outwardly drawn normal.
If n is expressed through direction cosines, i.e., n ¼ i cos	þ j cos
þ k cos �, then (23) may be

written
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ð ð ð

@A1

@x
þ @A2

@y
þ @A3

@z

� �

dV ¼
ð ð

S

ðA1 cos	þ A2 cos
þ A3 cos �Þ dS ð24Þ

The rectangular Cartesian component form of (23) is
ð ð ð

V

@A1

@x
þ @A2

@y
þ @A3

@z

� �

dV ¼
ð ð

S

ðA1 dy dzþ A2 dz dxþ A3 dx dyÞ ð25Þ

EXAMPLE. If B is the magnetic field vector, then one of Maxwell’s equations of electromagnetic theory is
r � B ¼ 0. When this equation is substituted into the left member of (23), the right member tells us that the

magnetic flux through a closed surface containing a magnetic field is zero. A simple interpretation of this fact
results by thinking of a magnet enclosed in a ball. All magnetic lines of force that flow out of the ball must return
(so that the total flux is zero). Thus, the lines of force flow from one pole to the other, and there is no dispersion.

STOKES’ THEOREM

Stokes’ theorem establishes the equality of the double integral of a vector field over a portion of a
surface and the line integral of the field over a simple closed curve bounding the surface portion. (See
Fig. 10-6.)

Suppose a closed curve, C, bounds a smooth surface portion, S. If the component functions of
x ¼ rðv1; v2Þ have continuous mixed partial derivatives, then for a vector field A with continuous partial
derivatives on S

þ

C

A � dr ¼
ð ð

S

n � r  A dS ð26Þ

where n ¼ cos	iþ cos
jþ cos �k with 	; 
, and � representing the angles made by the outward normal
n and i; j, and k, respectively.

Then the component form of (26) is
þ

C

ðA1 dxþ A2 dyþ A3 dzÞ ¼
ð ð

S

@A3

@y
� @A2

@z

� �

cos	þ @A1

@z
� @A3

@x

� �

cos
þ @A2

@x
� @A1

@y

� �

cos �

� �

dS

ð27Þ
If r  A ¼ 0, Stokes’ theorem tells us that

þ

C

A � dr ¼ 0. This is Theorem 3 on Page 237.
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Solved Problems

LINE INTEGRALS

10.1. Evaluate

ðð1;2Þ

ð0;1Þ
ðx2 � yÞ dxþ ðy2 þ xÞ dy along (a) a straight line from ð0; 1Þ to ð1; 2Þ, (b) straight

lines from ð0; 1Þ to ð1; 1Þ and then from ð1; 1Þ to ð1; 2Þ, (c) the parabola x ¼ t, y ¼ t2 þ 1.

(a) An equation for the line joining ð0; 1Þ and ð1; 2Þ in the xy plane is y ¼ xþ 1. Then dy ¼ dx and the line
integral equals

ð1

x¼0

fx2 � ðxþ 1Þg dxþ fðxþ 1Þ2 þ xg dx ¼
ð1

0

ð2x2 þ 2xÞ dx ¼ 5=3

(b) Along the straight line from ð0; 1Þ to ð1; 1Þ, y ¼ 1; dy ¼ 0 and the line integral equals

ð1

x¼0

ðx2 � 1Þ dxþ ð1þ xÞð0Þ ¼
ð1

0

ðx2 � 1Þ dx ¼ �2=3

Along the straight line from ð1; 1Þ to ð1; 2Þ, x ¼ 1; dx ¼ 0 and the line integral equals

ð2

y¼1

ð1� yÞð0Þ þ ð y2 þ 1Þ dy ¼
ð2

1

ð y2 þ 1Þ dy ¼ 10=3

Then the required value ¼ �2=3þ 10=3 ¼ 8:3.

(c) Since t ¼ 0 at ð0; 1Þ and t ¼ 1 at ð1; 2Þ, the line integral equals

ð1

t¼0

ft2 � ðt2 þ 1Þg dtþ fðt2 þ 1Þ2 þ tg 2t dt ¼
ð1

0

ð2t5 þ 4t3 þ 2t2 þ 2t� 1Þ dt ¼ 2

10.2. If A ¼ ð3x2 � 6yzÞiþ ð2yþ 3xzÞjþ ð1� 4xyz2Þk, evaluate
ð

C

A � dr from ð0; 0; 0Þ to ð1; 1; 1Þ along
the following paths C:
ðaÞ x ¼ t; y ¼ t2; z ¼ t3

ðbÞ The straight lines from ð0; 0; 0Þ to ð0; 0; 1Þ, then to ð0; 1; 1Þ, and then to ð1; 1; 1Þ
ðcÞ The straight line joining ð0; 0; 0Þ and ð1; 1; 1Þ

ð

C

A � dr ¼
ð

C

fð3x2 � 6yzÞiþ ð2yþ 3xzÞjþ ð1� 4xyz2Þkg � ðdxiþ dyjþ dzkÞ

¼
ð

C

ð3x2 � 6yzÞ dxþ ð2yþ 3xzÞ dyþ ð1� 4xyz2Þ dz

(a) If x ¼ t; y ¼ t2; z ¼ t3, points ð0; 0; 0Þ and ð1; 1; 1Þ correspond to t ¼ 0 and t ¼ 1, respectively. Then
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ð

C

A � dr ¼
ð1

t¼0

f3t2 � 6ðt2Þðt3Þg dtþ f2t2 þ 3ðtÞðt3Þg dðt2Þ þ f1� 4ðtÞðt2Þðt3Þ2g dðt3Þ

¼
ð1

t¼0

ð3t2 � 6t5Þ dtþ ð4t3 þ 6t5Þ dtþ ð3t2 � 12t11Þ dt ¼ 2

Another method:

Along C, A ¼ ð3t2 � 6t5Þiþ ð2t2 þ 3t4Þjþ ð1� 4t9Þk and r ¼ xiþ yjþ zk ¼ tiþ t2jþ t3k,
dr ¼ ðiþ 2tjþ 3t2kÞ dt. Then

ð

C

A � dr ¼
ð1

0

ð3t2 � 6t5Þ dtþ ð4t3 þ 6t5Þ dtþ ð3t2 � 12t11Þ dt ¼ 2

(b) Along the straight line from ð0; 0; 0Þ to ð0; 1; 1Þ, x ¼ 0; y ¼ 0; dx ¼ 0; dy ¼ 0, while z varies from 0 to 1.
Then the integral over this part of the path is

ð1

z¼0

f3ð0Þ2 � 6ð0ÞðzÞg0þ f2ð0Þ þ 3ð0ÞðzÞg0þ f1� 4ð0Þð0Þðz2Þg dz ¼
ð1

z¼0

dz ¼ 1

Along the straight line from ð0; 0; 1Þ to ð0; 1; 1Þ, x ¼ 0; z ¼ 1; dx ¼ 0; dz ¼ 0, while y varies from 0
to 1. Then the integral over this part of the path is

ð1

y¼0

f3ð0Þ2 � 6ð yÞð1Þg0þ f2yþ 3ð0Þð1Þg dyþ f1� 4ð0Þð yÞð1Þ2g0 ¼
ð1

y¼0

2y dy ¼ 1

Along the straight line from ð0; 1; 1Þ to ð1; 1; 1Þ, y ¼ 1; z ¼ 1; dy ¼ 0; dz ¼ 0, while x varies from 0

to 1. Then the integral over this part of the path is

ð1

x¼0

f3x2 � 6ð1Þð1Þg dxþ f2ð1Þ þ 3xð1Þg0þ f1� 4xð1Þð1Þ2g0 ¼
ð1

x¼0

ð3x2 � 6Þ dx ¼ �5

Adding,

ð

C

A � dr ¼ 1þ 1� 5 ¼ �3:

(c) The straight line joining ð0; 0; 0Þ and ð1; 1; 1Þ is given in parametric form by x ¼ t; y ¼ t; z ¼ t. Then

ð

C

A � dr ¼
ð1

t¼0

ð3t2 � 6t2Þ dtþ ð2tþ 3t2Þ dtþ ð1� 4t4Þ dt ¼ 6=5

10.3. Find the work done in moving a particle once around an
ellipse C in the xy plane, if the ellipse has center at the
origin with semi-major and semi-minor axes 4 and 3,
respectively, as indicated in Fig. 10-7, and if the force
field is given by

F ¼ ð3x� 4yþ 2zÞiþ ð4xþ 2y� 3z2Þjþ ð2xz� 4y2 þ z3Þk
In the plane z ¼ 0;F ¼ ð3x� 4yÞiþ ð4xþ 2yÞj� 4y2k and

dr ¼ dxiþ dyj so that the work done is
þ

C

F � dr ¼
ð

C

fð3x� 4yÞiþ ð4xþ 2yÞj� 4y2kg � ðdxiþ dyjÞ

¼
þ

C

ð3x� 4yÞ dxþ ð4xþ 2yÞ dy

Choose the parametric equations of the ellipse as x ¼ 4 cos t, y ¼ 3 sin t, where t varies from 0 to 2� (see
Fig. 10-7). Then the line integral equals

ð2�

t¼0

f3ð4 cos tÞ � 4ð3 sin tÞgf�4 sin tg dtþ f4ð4 cos tÞ þ 2ð3 sin tÞgf3 cos tg dt

¼
ð2�

t¼0

ð48� 30 sin t cos tÞ dt ¼ ð48t� 15 sin2 tÞj2�0 ¼ 96�
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In traversing C we have chosen the counterclockwise direction indicated in Fig. 10-7. We call this the

positive direction, or say that C has been traversed in the positive sense. If C were tranversed in the
clockwise (negative) direction, the value of the integral would be �96�.

10.4. Evaluate

ð

C

y ds along the curve C given by y ¼ 2
ffiffiffi

x
p

from x ¼ 3 to x ¼ 24.

Since ds ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

dx2 þ dy2
p

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ ð y 0Þ2
q

dx ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ 1=x
p

dx, we have

ð

C

y ds ¼
ð24

2

2
ffiffiffi

x
p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ 1=x
p

dx ¼ 2

ð24

3

ffiffiffiffiffiffiffiffiffiffiffi

xþ 1
p

dx ¼ 4

3
ðxþ 1Þ3=2













24

3

¼ 156

GREEN’S THEOREM IN THE PLANE

10.5. Prove Green’s theorem in the plane if C is a closed curve
which has the property that any straight line parallel to
the coordinate axes cuts C in at most two points.

Let the equations of the curves AEB and AFB (see adjoin-
ing Fig. 10-8) be y ¼ Y1ðxÞ and y ¼ Y2ðxÞ, respectively. If r is
the region bounded by C, we have

ð ð

r

@P

@y
dx dy ¼

ðb

x¼a

ðY2ðxÞ

y¼Y1ðxÞ

@P

@y
dy

� �

dx

¼
ðb

x¼a

Pðx; yÞjY2ðxÞ
y¼Y1ðxÞ dx ¼

ðb

a

½Pðx;Y2Þ � Pðx;Y1Þ� dx

¼ �
ðb

a

Pðx;Y1Þ dx�
ða

b

Pðx;Y2Þ dx ¼ �
þ

C

P dx

Then

ð1Þ
þ

C

Pdx ¼ �
ð ð

r

@P

@y
dx dy

Similarly let the equations of curves EAF and EBF be x ¼ X1ð yÞ and x ¼ X2ð yÞ respectively. Then

ð ð

r

@Q

@x
dx dy ¼

ðf

y¼c

ðX2ð yÞ

x¼x1ð yÞ

@Q

@x
dx

� �

dy ¼
ðf

c

½QðX2; yÞ �QðX1; yÞ� dy

¼
ðc

f

QðX1; yÞ dyþ
ðf

c

QðX2; yÞ dy ¼
þ

C

Qdy

ð2Þ
þ

C

Q dy ¼
ð ð

r

@Q

@x
dx dyThen

Adding (1) and (2),

þ

C

PdxþQdy ¼
ð ð

r

@Q

@x
� @P
@y

� �

dx dy

10.6. Verify Green’s theorem in the plane for
þ

C

ð2xy� x2Þ dxþ ðxþ y2Þ dy

where C is the closed curve of the region bounded by y ¼ x2 and y2 ¼ x.
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The plane curves y ¼ x2 and y2 ¼ x intersect at ð0; 0Þ and ð1; 1Þ. The positive direction in traversing C

is as shown in Fig. 10-9.

Along y ¼ x2, the line integral equals

ð1

x¼0

fð2xÞðx2Þ � x2g dxþ fxþ ðx2Þ2g dðx2Þ ¼
ð1

0

ð2x3 þ x2 þ 2x5Þ dx ¼ 7=6

Along y2 ¼ x the line integral equals

ð0

y¼1

f2ð y2Þ ð yÞ � ð y2Þ2g dð y2Þ þ f y2 þ y2g dy ¼
ð0

1

ð4y4 � 2y5 þ 2y2Þ dy ¼ �17=15

Then the required line integral ¼ 7=6� 17=15 ¼ 1=30.
ð ð

r

@Q

@x
� @P
@y

� �

dx dy ¼
ð ð

r

@

@x
ðxþ y2Þ � @

@y
ð2xy� x2Þ

� �

dx dy

¼
ð ð

r

ð1� 2xÞ dx dy ¼
ð1

x¼0

ð

ffiffi

x
p

y¼x2
ð1� 2xÞ dy dx

¼
ð1

x¼0

ð y� 2xyÞj
ffiffi

x
p
y¼x2

dx

¼
ð1

0

ðx1=2 � 2x3=2 � x2 þ 2x3Þ dx ¼ 1=30

Hence, Green’s theorem is verified.

10.7. Extend the proof of Green’s theorem in the plane given in Problem
10.5 to the curves C for which lines parallel to the coordinate axes
may cut C in more than two points.

Consider a closed curve C such as shown in the adjoining Fig. 10-10,
in which lines parallel to the axes may meet C in more than two points.
By constructing line ST the region is divided into two regions r1 and r2,
which are of the type considered in Problem 10.5 and for which Green’s

theorem applies, i.e.,

ð1Þ
ð

STUS

P dxþQdy ¼
ð ð

r1

@Q

@x
� @P
@y

� �

dx dy;

ð2Þ
ð

SVTS

P dxþQdy ¼
ð ð

r2

@Q

@x
� @P
@y

� �

dx dy

Adding the left-hand sides of (1) and (2), we have, omitting the integrand PdxþQdy in each case,
ð

STUS

þ
ð

SVTS

¼
ð

ST

þ
ð

TUS

þ
ð

SVT

þ
ð

TS

¼
ð

TUS

þ
ð

SVT

¼
ð

TUSVT

using the fact that

ð

ST

¼ �
ð

TS

.

Adding the right-hand sides of (1) and (2), omitting the integrand,

ð ð

r1

þ
ð ð

r2

¼
ð ð

r

where r consists of
regions r1 and r2.

Then

ð

TUSVT

P dxþQdy ¼
ð ð

r

@Q

@x
� @P
@y

� �

dx dy and the theorem is proved.

A region r such as considered here and in Problem 10.5, for which any closed curve lying in r can be
continuously shrunk to a point without leaving r, is called a simply connected region. A region which is not
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simply connected is called multiply connected. We have shown here that Green’s theorem in the plane

applies to simply connected regions bounded by closed curves. In Problem 10.10 the theorem is extended to
multiply connected regions.

For more complicated simply connected regions, it may be necessary to construct more lines, such as
ST , to establish the theorem.

10.8. Show that the area bounded by a simple closed curve C is given by 1
2

þ

C

x dy� y dx.

In Green’s theorem, put P ¼ �y;Q ¼ x. Then
þ

C

x dy� y dx ¼
ð ð

r

@

@x
ðxÞ � @

@y
ð�yÞ

� �

dx dy ¼ 2

ð ð

r

dx dy ¼ 2A

where A is the required area. Thus, A ¼ 1
2

þ

C

x dy� y dx.

10.9. Find the area of the ellipse x ¼ a cos �; y ¼ b sin �.

Area ¼ 1
2

þ

C

x dy� y dx ¼ 1
2

ð2�

0

ða cos �Þðb cos �Þ d� � ðb sin �Þð�a sin �Þ d�

¼ 1
2

ð2�

0

abðcos2 � þ sin2 �Þ d� ¼ 1
2

ð2�

0

ab d� ¼ �ab

10.10. Show that Green’s theorem in the plane is also valid for a multiply connected region r such as
shown in Fig. 10-11.

The shaded region r, shown in the figure, is multiply
connected since not every closed curve lying in r can be
shrunk to a point without leaving r, as is observed by con-
sidering a curve surrounding DEFGD, for example. The

boundary of r, which consists of the exterior boundary
AHJKLA and the interior boundary DEFGD, is to be tra-
versed in the positive direction, so that a person traveling in

this direction always has the region on his left. It is seen that
the positive directions are those indicated in the adjoining
figure.

In order to establish the theorem, construct a line, such
as AD, called a cross-cut, connecting the exterior and interior
boundaries. The region bounded by ADEFGDALKJHA is

simply connected, and so Green’s theorem is valid. Then
þ

ADEFGDALKJHA

PdxþQdy ¼
ð ð

r

@Q

@x
� @P
@y

� �

dx dy

But the integral on the left, leaving out the integrand, is equal to
ð

AD

þ
ð

DEFGD

þ
ð

DA

þ
ð

ALKJHA

¼
ð

DEFGD

þ
ð

ALKJHA

since

ð

AD

¼ �
ð

DA

. Thus, if C1 is the curve ALKJHA, C2 is the curve DEFGD and C is the boundary of r

consisting of C1 and C2 (traversed in the positive directions), then

ð

C1

þ
ð

C2

¼
ð

C

and so

þ

C

PdxþQdy ¼
ð ð

r

@Q

@x
� @P
@y

� �

dx dy
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INDEPENDENCE OF THE PATH

10.11. Let Pðx; yÞ and Qðx; yÞ be continuous and have continuous first partial derivatives at each point
of a simply connected region r. Prove that a necessary and sufficient condition that
þ

C

P dxþQdy ¼ 0 around every closed path C in r is that @P=@y ¼ @Q=@x identically in r.

Sufficiency. Suppose @P=@y ¼ @Q=@x. Then by Green’s theorem,

þ

C

PdxþQdy ¼
ð ð

r

@Q

@x
� @P
@y

� �

dx dy ¼ 0

where r is the region bounded by C.

Necessity.

Suppose

þ

C

P dxþQdy ¼ 0 around every closed path C in r and that @P=@y 6¼ @Q=@x at some point of

r. In particular, suppose @P=@y� @Q=@x > 0 at the point ðx0; y0Þ.
By hypothesis @P=@y and @Q=@x are continuous in r, so that there must be some region  containing

ðx0; y0Þ as an interior point for which @P=@y� @Q=@x > 0. If � is the boundary of , then by Green’s
theorem

þ

�

PdxþQdy ¼
ð ð



@Q

@x
� @P
@y

� �

dx dy > 0

contradicting the hypothesis that

þ

PdxþQdy ¼ 0 for all closed curves in r. Thus @Q=@x� @P=@y cannot
be positive.

Similarly, we can show that @Q=@x� @P=@y cannot be negative, and it follows that it must be identically
zero, i.e., @P=@y ¼ @Q=@x identically in r.

10.12. Let P and Q be defined as in Problem 10.11. Prove that a

necessary and sufficient condition that

ðB

A

P dxþQdy be inde-

pendent of the path in r joining points A and B is that

@P=@y ¼ @Q=@x identically in r.

Sufficiency. If @P=@y ¼ @Q=@x, then by Problem 10.11,
ð

ADBEA

P dxþQdy ¼ 0

(see Fig. 10-12). From this, omitting for brevity the integrand PdxþQdy, we have

ð

ADB

þ
ð

BEA

¼ 0;

ð

ADB

¼ �
ð

BEA

¼
ð

AEB

and so

ð

C1

¼
ð

C2

i.e., the integral is independent of the path.

Necessity.

If the integral is independent of the path, then for all paths C1 and C2 in r we have

ð

C1

¼
ð

C2

;

ð

ADB

¼
ð

AEB

and

ð

ADBEA

¼ 0

From this it follows that the line integral around any closed path in r is zero, and hence by Problem 10.11
that @P=@y ¼ @Q=@x.
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10.13. Let P and Q be as in Problem 10.11.
(a) Prove that a necessary and sufficient condition that PdxþQdy be an exact differential of a

function �ðx; yÞ is that @P=@y ¼ @Q=@x.

(b) Show that in such case

ðB

A

P dxþQdy ¼
ðB

A

d� ¼ �ðBÞ � �ðAÞ where A and B are any two
points.

(a) Necessity.

If PdxþQdy ¼ d� ¼ @�

@x
dxþ @�

@y
dy, an exact differential, then (1) @�=@x ¼ P, (2) @�=@y ¼ 0.

Thus, by differentiating (1) and (2) with respect to y and x, respectively, @P=@y ¼ @Q=@x since we are

assuming continuity of the partial derivatives.

Sufficiency.

By Problem 10.12, if @P=@y ¼ @Q=@x, then

ð

PdxþQdy is independent of the path joining two

points. In particular, let the two points be ða; bÞ and ðx; yÞ and define

�ðx; yÞ ¼
ððx;yÞ

ða;bÞ
PdxþQdy

Then

�ðxþ�x; yÞ � �ðx; yÞ ¼
ðxþ�x;y

ða;bÞ
PdxþQdy�

ððx;yÞ

ða;bÞ
PdxþQdy

¼
ððxþ�x;yÞ

ðx;yÞ
PdxþQdy

Since the last integral is independent of the path joining ðx; yÞ and ðxþ�x; yÞ, we can choose the path
to be a straight line joining these points (see Fig. 10-13) so that dy ¼ 0. Then by the mean value
theorem for integrals,

�ðxþ�x; yÞ � �ðx; yÞ
�x

¼ 1

�x

ððxþ�x;yÞ

ðx;yÞ
Pdx ¼ Pðxþ ��x; yÞ 0 < � < 1

Taking the limit as �x ! 0, we have @�=@x ¼ P.

Similarly we can show that @�=@y ¼ Q.

Thus it follows that PdxþQdy ¼ @�

@x
dxþ @�

@y
dy ¼ d�:
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(b) Let A ¼ ðx1; y1Þ;B ¼ ðx2; y2Þ. From part (a),

�ðx; yÞ ¼
ððx;yÞ

ða;bÞ
PdxþQdy

Then omitting the integrand PdxþQdy, we have

ðB

A

¼
ððx2;y2Þ

ðx1;y1Þ
¼
ððx2;y2Þ

ða;bÞ
�
ððx1;y1Þ

ða;bÞ
¼ �ðx2; y2Þ � �ðx1; y1Þ ¼ �ðBÞ � �ðAÞ

10.14. (a) Prove that

ðð3;4Þ

ð1;2Þ
ð6xy2 � y3Þ dxþ ð6x2y� 3xy2Þ dy is independent of the path joining ð1; 2Þ and

ð3; 4Þ. (b) Evaluate the integral in (a).

(a) P ¼ 6xy2 � y3;Q ¼ 6x2y� 3xy2. Then @P=@y ¼ 12xy� 3y2 ¼ @Q=@x and by Problem 10.12 the line
integral is independent of the path.

(b) Method 1: Since the line integral is independent of the path, choose any path joining ð1; 2Þ and ð3; 4Þ,
for example that consisting of lines from ð1; 2Þ to ð3; 2Þ [along which y ¼ 2; dy ¼ 0] and then ð3; 2Þ to
ð3; 4Þ [along which x ¼ 3; dx ¼ 0]. Then the required integral equals

ð3

x¼1

ð24x� 8Þ dxþ
ð4

y¼2

ð54y� 9y2Þ dy ¼ 80þ 156 ¼ 236

Method 2: Since
@P

@y
¼ @Q

@x
; we must have ð1Þ @�

@x
¼ 6xy2 � y3; ð2Þ @�

@y
¼ 6x2y� 3xy2:

From (1), � ¼ 3x2y2 � xy3 þ f ð yÞ. From (2), � ¼ 3x2y2 � xy3 þ gðxÞ. The only way in which
these two expressions for � are equal is if f ð yÞ ¼ gðxÞ ¼ c, a constant. Hence � ¼ 3x2y2 � xy3 þ c.
Then by Problem 10.13,

ðð3;4Þ

ð1;2Þ
ð6xy2 � y3Þ dxþ ð6x2y� 3xy2Þ dy ¼

ðð3;4Þ

ð1;2Þ
dð3x2y2 � xy3 þ cÞ

¼ 3x2y2 � xy3 þ cjð3;4Þð1;2Þ ¼ 236

Note that in this evaluation the arbitrary constant c can be omitted. See also Problem 6.16, Page 131.

We could also have noted by inspection that

ð6xy2 � y3Þ dxþ ð6x2y� 3xy2Þ dy ¼ ð6xy2 dxþ 6x2y dyÞ � ð y3 dxþ 3xy2 dyÞ
¼ dð3x2y2Þ � dðxy3Þ ¼ dð3x2y2 � xy3Þ

from which it is clear that � ¼ 3x2y2 � xy3 þ c.

10.15. Evaluate

þ

ðx2y cos x þ 2xy sin x � y2exÞ dx þ ðx2 sin x � 2yexÞ dy around the hypocycloid

x2=3 þ y2=3 ¼ a2=3:

P ¼ x2y cos xþ 2xy sinx� y2ex;Q ¼ x2 sinx� 2yex

Then @P=@y ¼ x2 cos xþ 2x sin x� 2yex ¼ @Q=@x, so that by Problem 10.11 the line integral around any
closed path, in particular x2=3 þ y2=3 ¼ a2=3 is zero.

SURFACE INTEGRALS

10.16. If � is the angle between the normal line to any point ðx; y; zÞ of a surface S and the
positive z-axis, prove that
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j sec �j ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ z2x þ z2y

q

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

F2
x þ F2

y þ F2
z

q

jFzj
according as the equation for S is z ¼ f ðx; yÞ or Fðx; y; zÞ ¼ 0.

If the equation of S is Fðx; y; zÞ ¼ 0, a normal to S at ðx; y; zÞ is rF ¼ Fxiþ Fyjþ Fzk. Then

rF � k ¼ jrF jjkj cos � or Fz ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

F2
x þ F2

y þ F2
z

q

cos �

from which j sec �j ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

F2
x þ F2

y þ F2
z

q

jFzj
as required.

In case the equation is z ¼ f ðx; yÞ, we can write Fðx; y; zÞ ¼ z� f ðx; yÞ ¼ 0, from which

Fx ¼ �zx;Fy � zy;Fz ¼ 1 and we find j sec �j ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ z2x þ z2y

q

.

10.17. Evaluate

ð ð

S

Uðx; y; zÞ dS where S is the surface of the paraboloid z ¼ 2� ðx2 þ y2Þ above the xy

plane and Uðx; y; zÞ is equal to (a) 1, (b) x2 þ y2, (c) 3z. Give a physical interpretation in
each case. (See Fig. 10-14.)

The required integral is equal to

ð ð

r

Uðx; y; zÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ z2x þ z2y

q

dx dy ð1Þ

where r is the projection of S on the xy plane given by
x2 þ y2 ¼ 2; z ¼ 0.

Since zx ¼ �2x; zy ¼ �2y, (1) can be written

ð ð

r

Uðx; y; zÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ 4x2 þ 4y2
q

dx dy ð2Þ

(a) If Uðx; y; zÞ ¼ 1, (2) becomes

ð ð

r

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ 4x2 þ 4y2
q

dx dy

To evaluate this, transform to polar coordinates

ð�; �Þ. Then the integral becomes

ð2�

�¼0

ð

ffiffi

2
p

�¼0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ 4�2
p

� d� d� ¼
ð2�

�¼0

1

12
ð1þ 4�2Þ3=2













ffiffi

2
p

�¼0

d� ¼ 13�

3

Physically this could represent the surface area of S, or the mass of S assuming unit density.

(b) If Uðx; y; zÞ ¼ x2 þ y2, (2) becomes

ð ð

r

ðx2 þ y2Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ 4x2 þ 4y2
q

dx dy or in polar coordinates

ð2�

�¼0

ð

ffiffi

2
p

�¼0

�3
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ 4�2
p

d� d� ¼ 149�

30

where the integration with respect to � is accomplished by the substitution
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ 4�2
p

¼ u.

Physically this could represent the moment of inertia of S about the z-axis assuming unit density,
or the mass of S assuming a density ¼ x2 þ y2.
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(c) If Uðx; y; zÞ ¼ 3z, (2) becomes

ð ð

r

3z

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ 4x2 þ 4y2
q

dx dy ¼
ð ð

r

3f2� ðx2 þ y2Þg
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ 4x2 þ 4y2
q

dx dy

or in polar coordinates,

ð2�

�¼0

ð

ffiffi

2
p

�¼0

3�ð2� �2Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ 4�2
p

d� d� ¼ 111�

10

Physically this could represent the mass of S assuming a density ¼ 3z, or three times the first
moment of S about the xy plane.

10.18. Find the surface area of a hemisphere of radius a cut off
by a cylinder having this radius as diameter.

Equations for the hemisphere and cylinder (see Fig. 10-15)
are given respectively by x2 þ y2 þ z2 ¼ a2 (or z ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

a2 � x2 � y2
p

Þ and ðx� a=2Þ2 þ y2 ¼ a2=4 (or x2 þ y2 ¼ ax).

Since

zx ¼ �x
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

a2 � x2 � y2
p and zy ¼

�y
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

a2 � x2 � y2
p

we have

Required surface area ¼ 2

ð ð

r

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ z2x þ z2y

q

dx dy ¼ 2

ð ð

r

a
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

a2 � x2 � y2
p dx dy

Two methods of evaluation are possible.

Method 1: Using polar coordinates.

Since x2 þ y2 ¼ ax in polar coordinates is � ¼ a cos�, the integral becomes

2

ð�=2

�¼0

ða cos�

�¼0

a
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

a2 � �2
p � d� d� ¼ 2a

ð�=2

�¼0

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

a2 � �2
p













a cos�

�¼0

d�

¼ 2a2
ð�=2

0

ð1� sin�Þ d� ¼ ð�� 2Þa2

Method 2: The integral is equal to

2

ða

x¼0

ð

ffiffiffiffiffiffiffiffiffiffi

ax�x2
p

y¼0

a
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

a2 � x2 � y2
p dy dx ¼ 2a

ða

x¼0

sin�1 y
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ax� x2
p













ffiffiffiffiffiffiffiffiffiffi

ax�x2
p

y¼0

dx

¼ 2a

ða

0

sin1

ffiffiffiffiffiffiffiffiffiffiffi

x

aþ x

r

dx

Letting x ¼ a tan2 �, this integral becomes

4a2
ð�=4

0

� tan � sec2 �d� ¼ 4a2 1
2 � tan

2 �j�=40 � 1
2

ð�=4

0

tan2 � d�

� �

¼ 2a2 � tan2 �j�=40 �
ð�=4

0

ðsec2 � � 1Þ d�
� �

¼ 2a2 �=4� ðtan � � �Þj�=40

n o

¼ ð�� 2Þa2

Note that the above integrals are actually improper and should be treated by appropriate limiting
procedures (see Problem 5.74, Chapter 5, and also Chapter 12).
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10.19. Find the centroid of the surface in Problem 10.17.

By symmetry, �xx ¼ �yy ¼ 0 and �zz ¼

ð ð

S

z dS

ð ð

S

dS

¼

ð ð

r

z

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ 4x2 þ 4y2
q

dx dy

ð ð

r

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ 4x2 þ 4y2
q

dx dy

The numerator and denominator can be obtained from the results of Problems 10.17(c) and 10.17(a),

respectively, and we thus have �zz ¼ 37�=10

13�=3
¼ 111

130
.

10.20. Evaluate

ð ð

S

A � n dS, where A ¼ xyi� x2jþ ðxþ zÞk, S is that portion of the plane

2xþ 2yþ z ¼ 6 included in the first octant, and
n is a unit normal to S. (See Fig. 10-16.)

A normal to S is rð2xþ 2yþ z� 6Þ ¼ 2iþ

2jþ k, and so n ¼ 2iþ 2jþ k
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

22 þ 22 þ 12
p ¼ 2iþ 2jþ k

3
. Then

A � n ¼ fxyi� x2jþ ðxþ zÞkg � 2iþ 2jþ k

3

� �

¼ 2xy� 2x2 þ ðxþ zÞ
3

¼ 2xy� 2x2 þ ðxþ 6� 2x� 2yÞ
3

¼ 2xy� 2x2 � x� 2yþ 6

3

The required surface integral is therefore
ð ð

S

2xy� 2x2 � x� 2yþ 6

3

 !

dS ¼
ð ð

r

2xy� 2x2 � x� 2yþ 6

3

 !

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ z2x þ z2y

q

dx dy

¼
ð ð

r

2xy� 2x2 � x� 2yþ 6

3

 !

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

12 þ 22 þ 22
p

dx dy

¼
ð3

x¼0

ð3�x

y¼0

ð2xy� 2x2 � x� 2yþ 6Þ dy dx

¼
ð3

x¼0

ðxy2 � 2x2y� xy� y2 þ 6yÞj3�x
0 dx ¼ 27=4

10.21. In dealing with surface integrals we have restricted
ourselves to surfaces which are two-sided. Give an
example of a surface which is not two-sided.

Take a strip of paper such as ABCD as shown in the
adjoining Fig. 10-17. Twist the strip so that points A and

B fall on D and C, respectively, as in the adjoining figure.
If n is the positive normal at point P of the surface, we
find that as n moves around the surface, it reverses its

original direction when it reaches P again. If we tried
to color only one side of the surface, we would find the
whole thing colored. This surface, called a Möbius strip,
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is an example of a one-sided surface. This is sometimes called a nonorientable surface. A two-sided surface

is orientable.

THE DIVERGENCE THEOREM

10.22. Prove the divergence theorem. (See Fig. 10-18.)

Let S be a closed surface which is such that any line parallel to the coordinate axes cuts S in at most two
points. Assume the equations of the lower and upper portions, S1 and S2, to be z ¼ f1ðx; yÞ and z ¼ f2ðx; yÞ,
respectively. Denote the projection of the surface on the xy plane by r. Consider

ð ð ð

V

@A3

@z
dV ¼

ð ð ð

V

@A3

@z
dz dy dx ¼

ð ð

r

ðf2ðx;yÞ

z¼f1ðx;yÞ

@A3

@z
dz

� �

dy dx

¼
ð ð

r

A3ðx; y; zÞ












f2

z¼f1

dy dx ¼
ð ð

r

½A3ðx; y; f2Þ � A3ðx; y; f1Þ� dy dx

For the upper portion S2, dy dx ¼ cos �2 dS2 ¼ k � n2 dS2 since the normal n2 to S2 makes an acute angle
�2 with k.

For the lower portion S1, dy dx ¼ � cos �1 dS1 ¼ �k � n1 dS1 since the normal n1 to S1 makes an obtuse
angle �1 with k.

ð ð

r

A3ðx; y; f2Þ dy dx ¼
ð ð

S2

A3 k � n2 dS2Then

ð ð

r

A3ðx; y; f1Þ dy dx ¼ �
ð ð

S1

A3 k � n1 dS1

and

ð ð

r

A3ðx; y; f2Þ dy dx�
ð ð

r

A3ðx; y; f1Þ dy dx ¼
ð ð

S2

A3 k � n2 dS2 þ
ð ð

S1

A3 k � n1 dS1

¼
ð ð

S

A3 k � n dS
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so that

ð1Þ
ð ð ð

V

@A3

@z
dV ¼

ð ð

S

A3k � n dS

Similarly, by projecting S on the other coordinate planes,

ð2Þ
ð ð ð

V

@A1

@x
dV ¼

ð ð

S

A1 i � n dS

ð3Þ
ð ð ð

V

@A2

@y
dV ¼

ð ð

S

A2 j � n dS

Adding (1), (2), and (3),

ð ð ð

V

@A1

@x
þ @A2

@y
þ @A3

@z

� �

dV ¼
ð ð

S

ðA1iþ A2jþ A3kÞ � n dS
ð ð ð

V

r � A dV ¼
ð ð

S

A � n dSor

The theorem can be extended to surfaces which are such that lines parallel to the coordinate axes meet
them in more than two points. To establish this extension, subdivide the region bounded by S into

subregions whose surfaces do satisfy this condition. The procedure is analogous to that used in Green’s
theorem for the plane.

10.23. Verify the divergence theorem for A ¼ ð2x� zÞiþ x2yj� xz2k taken over the region bounded by
x ¼ 0; x ¼ 1; y ¼ 0; y ¼ 1; z ¼ 0; z ¼ 1.

We first evaluate

ð ð

S

A � n dS where S is the surface of the cube in Fig. 10-19.

Face DEFG: n ¼ i;x ¼ 1. Then

ð ð

DEFG

A � n dS ¼
ð1

0

ð1

0

fð2� zÞiþ j� z2kg � i dy dz

¼
ð1

0

ð1

0

ð2� zÞ dy dz ¼ 3=2

Face ABCO: n ¼ �i;x ¼ 0. Then

ð ð

ABCO

A � n dS ¼
ð1

0

ð1

0

ð�ziÞ � ð�iÞ dy dz

¼
ð1

0

ð1

0

z dy dz ¼ 1=2

Face ABEF: n ¼ j; y ¼ 1. Then

ð ð

ABEF

A � n dS ¼
ð1

0

ð1

0

fð2x� zÞiþ x2j� xz2kg � j dx dz ¼
ð1

0

ð1

0

x2 dx dz ¼ 1=3

Face OGDC: n ¼ �j; y ¼ 0. Then

ð ð

OGDC

A � n dS ¼
ð1

0

ð1

0

fð2x� zÞi� xz2kg � ð�jÞ dx dz ¼ 0
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Face BCDE: n ¼ k; z ¼ 1. Then

ð ð

BCDE

A � n dS ¼
ð1

0

ð1

0

fð2x� 1Þiþ x2yj� xkg � k dx dy ¼
ð1

0

ð1

0

�x dx dy� 1=2

Face AFGO: n ¼ �k; z ¼ 0. Then

ð ð

AFGO

A � n dS ¼
ð1

0

ð1

0

f2xi� x2yjg � ð�kÞ dx dy ¼ 0

Adding,

ð ð

S

A � n dS ¼ 3
2 þ 1

2 þ 1
3 þ 0� 1

2 þ 0 ¼ 11
6 : Since

ð ð ð

V

r � A dV ¼
ð1

0

ð1

0

ð1

0

ð2þ x2 � 2xzÞ dx dy dz ¼ 11

6

the divergence theorem is verified in this case.

10.24. Evaluate

ð ð

S

r � n dS, where S is a closed surface.

By the divergence theorem,
ð ð

S

r � n dS ¼
ð ð ð

V

r � r dV

¼
ð ð ð

V

@

@x
iþ @

@y
jþ @

@z
k

� �

� ðxiþ yjþ zkÞ dV

¼
ð ð ð

V

@x

@x
þ @y
@y

þ @z
@z

� �

dV ¼ 3

ð ð ð

V

dV ¼ 3V

where V is the volume enclosed by S.

10.25. Evaluate

ð ð

S

xz2 dy dzþ ðx2y� z3Þ dz dxþ ð2xyþ y2zÞ dx dy, where S is the entire surface of the

hemispherical region bounded by z ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

a2 � x2 � y2
p

and z ¼ 0 (a) by the divergence theorem
(Green’s theorem in space), (b) directly.

(a) Since dy dz ¼ dS cos	; dz dx ¼ dS cos
; dx dy ¼ dS cos �, the integral can be written
ð ð

S

fxz2 cos	þ ðx2y� z3Þ cos
þ ð2xyþ y2zÞ cos �g dS ¼
ð ð

S

A � n dS

where A ¼ xz2iþ ðx2y� z3Þjþ ð2xyþ y2zÞk and n ¼ cos	iþ cos
jþ cos �k, the outward drawn unit
normal.

Then by the divergence theorem the integral equals
ð ð ð

V

r � A dV ¼
ð ð ð

V

@

@x
ðxz2Þ þ @

@y
ðx2y� z3Þ þ @

@z
ð2xyþ y2zÞ

� �

dV ¼
ð ð ð

V

ðx2 þ y2 þ z2Þ dV

where V is the region bounded by the hemisphere and the xy plane.

By use of spherical coordinates, as in Problem 9.19, Chapter 9, this integral is equal to

4

ð�=2

�¼0

ð�=2

�¼0

ð	

r¼0

r2 � r2 sin � dr d� d� ¼ 2�a5

5
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(b) If S1 is the convex surface of the hemispherical region and S2 is the base ðz ¼ 0Þ, then
ð ð

S1

xz2 dy dz ¼
ða

y¼�a

ð

ffiffiffiffiffiffiffiffiffi

a2�y2
p

z¼0

z2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

a2 � y2 � z2
q

dz dy�
ða

y¼�a

ð

ffiffiffiffiffiffiffiffiffi

a2�y2
p

z¼0

�z2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

a2 � y2 � z2
q

dz dy

ð ð

S1

ðx2y� z3Þ dz dx ¼
ða

x¼�a

ð

ffiffiffiffiffiffiffiffiffiffi

a2�x2
p

x¼0

fx2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

a2 � x2 � z2
p

� z3g dz dx

�
ða

x¼�a

ð

ffiffiffiffiffiffiffiffiffiffi

a2�x2
p

z¼0

f�x2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

a2 � x2 � z2
p

� z3g dz dx
ð ð

S1

ð2xyþ y2zÞ dx dy ¼
ða

x¼�a

ð

ffiffiffiffiffiffiffiffiffiffi

a2�x2
p

y¼�
ffiffiffiffiffiffiffiffiffiffi

a2�x2
p f2xyþ y2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

a2 � x2 � y2
q

g dy dx
ð ð

S2

xz2 dy dz ¼ 0;

ð ð

S2

ðx2y� z3Þ dz dx ¼ 0;

ð ð

S2

ð2xyþ y2zÞ dx dy ¼
ð ð

S2

f2xyþ y2ð0Þg dx dy ¼
ða

x¼�a

ð

ffiffiffiffiffiffiffiffiffiffi

a2�x2
p

y¼�
ffiffiffiffiffiffiffiffiffiffi

a2�x2
p 2xy dy dx ¼ 0

By addition of the above, we obtain

4

ða

y¼0

ð

ffiffiffiffiffiffiffiffiffiffi

a
2�y2

p

x¼0

z2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

a2 � y2 � z2
q

dz dyþ 4

ða

x¼0

ð

ffiffiffiffiffiffiffiffiffiffi

a2�x2
p

z¼0

x2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

a2 � x2 � z2
p

dz dx

þ 4

ða

x¼0

ð

ffiffiffiffiffiffiffiffiffiffi

a2�x2
p

y¼0

y2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

a2 � x2 � y2
q

dy dx

Since by symmetry all these integrals are equal, the result is, on using polar coordinates,

12

ða

x¼0

ð

ffiffiffiffiffiffiffiffiffiffi

a2�x2
p

y¼0

y2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

a2 � x2 � y2
q

dy dx ¼ 12

ð�=2

�¼0

ða

�¼0

�2 sin2 �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

a2 � �2
p

� d� d� ¼ 2�a5

5

STOKES’ THEOREM

10.26. Prove Stokes’ theorem.

Let S be a surface which is such that its projections on the xy, yz, and xz planes are regions bounded by
simple closed curves, as indicated in Fig. 10-20. Assume S to have representation z ¼ f ðx; yÞ or x ¼ gðy; zÞ
or y ¼ hðx; zÞ, where f ; g; h are single-valued, continuous, and differentiable functions. We must show that

ð ð

S

ðr  AÞ � n dS ¼
ð ð

S

½r  ðA1iþ A2jþ A3kÞ� � n dS

¼
ð

C

A � dr

where C is the boundary of S.

Consider first

ð ð

S

½r  ðA1iÞ� � n dS:

Since r  ðA1iÞ ¼
i j k

@

@x

@

@y

@

@z

A1 0 0

















































¼ @A1

@z
j� @A1

@y
k;
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½r  ðA1iÞ� � n dS ¼ @A1

@z
n � j� @A1

@y
n � k

� �

dS ð1Þ

If z ¼ f ðx; yÞ is taken as the equation of S, then the position vector to any point of S is r ¼ xiþ yjþ zk ¼
xiþ yjþ f ðx; yÞk so that

@r

@y
¼ jþ @z

@y
k ¼ jþ @ f

@y
k. But

@r

@y
is a vector tangent to S and thus perpendicular to

n, so that

n � @r
@y

¼ n � jþ @z

@y
n � k ¼ 0 or n � j ¼ � @z

@y
n � k

Substitute in (1) to obtain

@A1

@z
n � j� @A1

@y
n � k

� �

dS ¼ � @A1

@z

@z

@y
n � k� @A1

@y
n � k

� �

dS

or

½r  ðA1iÞ� � n dS ¼ � @A1

@y
þ @A1

@z

@z

@y

� �

n � k dS ð2Þ

Now on S, A1ðx; y; zÞ ¼ A1½x; y; f ðx; yÞ� ¼ Fðx; yÞ; hence, @A1

@y
þ @A1

@z

@z

@y
¼ @F

@y
and (2) becomes

½r  ðA1iÞ� � n dS ¼ � @F
@y

n � k dS ¼ � @F
@y

dx dy

Then

ð ð

S

½r  ðA1iÞ� � n dS ¼
ð ð

r

� @F
@y

dx dy

where r is the projection of S on the xy plane. By Green’s theorem for the plane, the last integral equals
þ

�

F dx where � is the boundary of r. Since at each point ðx; yÞ of � the value of F is the same as the value

of A1 at each point ðx; y; zÞ of C, and since dx is the same for both curves, we must have

þ

�

F dx ¼
þ

C

A1 dx
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or
ð ð

S

½r  ðA1iÞ� � n dS ¼
þ

C

A1 dx

Similarly, by projections on the other coordinate planes,
ð ð

S

½r  ðA2jÞ� � n dS ¼
þ

C

A2 dy;

ð ð

S

½r  ðA3kÞ� � n dS ¼
þ

C

A3 dz

Thus, by addition,
ð ð

S

ðr  AÞ � n dS ¼
þ

C

A � dr

The theorem is also valid for surfaces S which may not satisfy the restrictions imposed above. For
assume that S can be subdivided into surfaces S1;S2; . . . ;Sk with boundaries C1;C2; . . . ;Ck which do satisfy

the restrictions. Then Stokes’ theorem holds for each such surface. Adding these surface integrals, the total
surface integral over S is obtained. Adding the corresponding line integrals over C1;C2; . . . ;Ck, the line
integral over C is obtained.

10.27. Verify Stoke’s theorem for A ¼ 3yi� xzjþ yz2k, where S is
the surface of the paraboloid 2z ¼ x2 þ y2 bounded by z ¼ 2
and C is its boundary. See Fig. 10-21.

The boundary C of S is a circle with equations
x2 þ y2 ¼ 4; z ¼ 2 and parametric equations x ¼ 2 cos t; y ¼
2 sin t; z ¼ 2, where 0 @ t < 2�. Then

þ

C

A � dr ¼
þ

C

3y dx� xz dyþ yz2 dz

¼
ð0

2�

3ð2 sin tÞð�2 sin tÞ dt� ð2 cos tÞð2Þð2 cos tÞ dt

¼
ð2�

0

ð12 sin2 tþ 8 cos2 tÞ dt ¼ 20�

r  A ¼
i j k

@

@x

@

@y

@

z

3y �xz yz2























































¼ ðz2 þ xÞi� ðzþ 3ÞkAlso,

n ¼ rðx2 þ y2 � 2zÞ
jrðx2 þ y2 � 2zÞj ¼

xiþ yj� k
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

x2 þ y2 þ 1
p :and

Then
ð ð

S

ðr  AÞ � n dS ¼
ð ð

r

ðr  AÞ � n dx dyjn � kj ¼
ð ð

r

ðxz2 þ x2 þ zþ 3Þ dx dy

¼
ð ð

r

x
x2 þ y2

2

 !2

þx2 þ x2 þ y2

2
þ 3

8

<

:

9

=

;

dx dy

In polar coordinates this becomes

ð2�

�¼0

ð2

�¼0

fð� cos�Þð�4=2Þ þ �2 cos2 �þ �2=2þ 3g � d� d� ¼ 20�
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10.28. Prove that a necessary and sufficient condition that

þ

C

A � dr ¼ 0 for every closed curve C is that
r  A ¼ 0 identically.

Sufficiency. Suppose r  A ¼ 0. Then by Stokes’ theorem
þ

C

A � dr ¼
ð ð

S

ðr  AÞ � n dS ¼ 0

Necessity.

Suppose

þ

C

A � dr ¼ 0 around every closed path C, and assume r  A 6¼ 0 at some point P. Then

assuming r  A is continuous, there will be a region with P as an interior point, where r  A 6¼ 0. Let S be

a surface contained in this region whose normal n at each point has the same direction as r  A, i.e.,
r  A ¼ 	n where 	 is a positive constant. Let C be the boundary of S. Then by Stokes’ theorem

þ

C

A � dr ¼
ð ð

S

ðr  AÞ � n dS ¼ 	

ð ð

S

n � n dS > 0

which contradicts the hypothesis that

þ

C

A � dr ¼ 0 and shows that r  A ¼ 0.

It follows that r  A ¼ 0 is also a necessary and sufficient condition for a line integral

ðP2

P1

A � dr to be
independent of the path joining points P1 and P2.

10.29. Prove that a necessary and sufficient condition that r  A ¼ 0 is that A ¼ r�.
Sufficiency. If A ¼ r�, then r  A ¼ r r� ¼ 0 by Problem 7.80, Chap. 7, Page 179.

Necessity.

If r  A ¼ 0, then by Problem 10.28,

þ

A � dr ¼ 0 around every closed path and

ð

C

A � dr is independent
of the path joining two points which we take as ða; b; cÞ and ðx; y; zÞ. Let us define

�ðx; y; zÞ ¼
ððx;y;zÞ

ða;b;cÞ
A � dr ¼

ððx;y;zÞ

ða;b;cÞ
A1 dxþ A2 dyþ A3 dz

Then

�ðxþ�x; y; zÞ � �ðx; y; zÞ ¼
ððxþ�x;y;zÞ

ðx;y;zÞ
A1 dxþ A2 dyþ A3 dz

Since the last integral is independent of the path joining ðx; y; zÞ and ðxþ�x; y; zÞ, we can choose the
path to be a straight line joining these points so that dy and dz are zero. Then

�ðxþ�x; y; zÞ � �ðx; y; zÞ
�x

¼ 1

�x

ððxþ�x;y;zÞ

ðx;y;zÞ
A1 dx ¼ A1ðxþ ��x; y; zÞ 0 < � < 1

where we have applied the law of the mean for integrals.

Taking the limit of both sides as �x ! 0 gives @�=@x ¼ A1.
Similarly, we can show that @�=@y ¼ A2; @�=@z ¼ A3:

Thus, A ¼ A1iþ A2jþ A3k ¼ @�

@x
iþ @�

@y
jþ @�

@z
k ¼ r�:

10.30. (a) Prove that a necessary and sufficient condition that A1 dxþ A2 dyþ A3 dz ¼ d�, an exact
differential, is that r  A ¼ 0 where A ¼ A1iþ A2jþ A3k.
(b) Show that in such case,

ððx2;y2;z2Þ

ðx1;y1;z1Þ
A1 dxþ A2 dyþ A3 dz ¼

ððx2;y2;z2Þ

ðx1;y1;z1Þ
d� ¼ �ðx2; y2; z2Þ � �ðx1; y1; z1Þ
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(a) Necessity. If A1 dxþ A2 dyþ A3 dz ¼ d� ¼ @�

@x
dxþ @�

@y
dyþ @�

@z
dz, then

ð1Þ @�

@x
¼ A1 ð2Þ @�

@y
¼ A2; ð3Þ @�

@z
¼ A3

Then by differentiating we have, assuming continuity of the partial derivatives,

@A1

@y
¼ @A2

@x
;

@A2

@z
¼ @A3

@y
;

@A1

@z
¼ @A3

@x

which is precisely the condition r  A ¼ 0.

Another method: If A1 dxþ A2 dyþ A3 dz ¼ d�, then

A ¼ A1iþ A2jþ A3k ¼ @�

@x
iþ @�

@y
jþ @�

@z
k ¼ r�

from which r  A ¼ r  r� ¼ 0.

Sufficiency. If r  A ¼ 0, then by Problem 10.29, A ¼ r� and

A1 dxþ A2 dyþ A3 dz ¼ A � dr ¼ r� � dr ¼ @�

@x
dxþ @�

@y
dyþ @�

@z
dz ¼ d�

(b) From part (a), �ðx; y; zÞ ¼
ððx;y;zÞ

ða;b;cÞ
A1 dxþ A2 dyþ A3 dz.

Then omitting the integrand A1 dxþ A2 dyþ A3 dz, we have

ððx2;y2;z2Þ

ðx1;y1;z1Þ
¼
ððx2;y2;z2Þ

ða;b;cÞ
�
ððx1;y1;z1Þ

ða;b;cÞ
¼ �ðx2; y2; z2Þ � �ðx1; y1; z1Þ

10.31. (a) Prove that F ¼ ð2xz3 þ 6yÞiþ ð6x� 2yzÞjþ ð3x2z2 � y2Þk is a conservative force field.

(b) Evaluate

ð

C

F � dr where C is any path from ð1;�1; 1Þ to ð2; 1;�1Þ. (c) Give a physical

interpretation of the results.

(a) A force field F is conservative if the line integral

ð

C

F � dr is independent of the path C joining any two

points. A necessary and sufficient condition that F be conservative is that r  F ¼ 0.

Since here r  F ¼
i j k
@

@x

@

@y

@

@z
2xz3 þ 6y 6x� 2yz 3x2z2 � y2

















































¼ 0; F is conservative

(b) Method 1: By Problem 10.30, F � dr ¼ ð2xz3 þ 6yÞ dxþ ð6x� 2yzÞ dyþ ð3x2z2 � y2Þ dz is an exact dif-
ferential d�, where � is such that

ð1Þ @�

@x
¼ 2xz3 þ 6y ð2Þ @�

@y
¼ 6x� 2yz ð3Þ @�

@z
¼ 3x2z2 � y2

From these we obtain, respectively,

� ¼ x2z3 þ 6xyþ f1ð y; zÞ � ¼ 6xy� y2zþ f2ðx; zÞ � ¼ x2z3 � y2zþ f3ðx; yÞ
These are consistent if f1ðy; zÞ ¼ �y2zþ c; f2ðx; zÞ ¼ x2z3 þ c; f3ðx; yÞ ¼ 6xyþ c, in which case
� ¼ x2z3 þ 6xy� y2zþ c. Thus, by Problem 10.30,

ðð2;1;�1Þ

ð1;�1;1Þ
F � dr ¼ x2z3 þ 6xy� y2zþ cjð2;1;�1Þ

ð1;�1;1Þ ¼ 15
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Alternatively, we may notice by inspection that

F � dr ¼ ð2xz3 dxþ 3x2z2 dzÞ þ ð6y dxþ 6x dyÞ � ð2yz dyþ y2 dzÞ
¼ dðx2z3Þ þ dð6xyÞ � dðy2zÞ ¼ dðx2z3 þ 6xy� y2zþ cÞ

from which � is determined.

Method 2: Since the integral is independent of the path, we can choose any path to evaluate it; in
particular, we can choose the path consisting of straight lines from ð1;�1; 1Þ to ð2;�1; 1Þ, then to
ð2; 1; 1Þ and then to ð2; 1;�1Þ. The result is

ð2

x¼1

ð2x� 6Þ dxþ
ð1

y¼�1

ð12� 2yÞ dyþ
ð�1

z¼1

ð12z2 � 1Þ dz ¼ 15

where the first integral is obtained from the line integral by placing y ¼ �1; z ¼ 1; dy ¼ 0; dz ¼ 0;
the second integral by placing x ¼ 2; z ¼ 1; dx ¼ 0; dz ¼ 0; and the third integral by placing

x ¼ 2; y ¼ 1; dx ¼ 0; dy ¼ 0.

(c) Physically

ð

C

F � dr represents the work done in moving an object from ð1;�1; 1Þ to ð2; 1;�1Þ along C.

In a conservative force field the work done is independent of the path C joining these points.

MISCELLANEOUS PROBLEMS

10.32. (a) If x ¼ f ðu; vÞ; y ¼ gðu; vÞ defines a transformation which maps a region r of the xy plane into
a region r 0 of the uv plane, prove that

ð ð

r

dx dy ¼
ð ð

r 0

@ðx; yÞ
@ðu; vÞ
























du dv

(b) Interpret geometrically the result in (a).

(a) If C (assumed to be a simple closed curve) is the boundary of r, then by Problem 10.8,
ð ð

r

dx dy ¼ 1

2

þ

C

x dy� y dx ð1Þ

Under the given transformation the integral on the right of (1) becomes

1

2

þ

C 0
x
@y

@u
duþ @y

@v
dv

� �

� y
@x

@u
duþ @x

@v
dv

� �

¼ 1

2

ð

C 0
x
@y

@u
� y

@x

@u

� �

duþ x
@y

@v
� y

@x

@v

� �

dv ð2Þ

where C 0 is the mapping of C in the uv plane (we suppose the mapping to be such that C 0 is a simple
closed curve also).

By Green’s theorem if r 0 is the region in the uv plane bounded by C 0, the right side of (2) equals

1

2

ð ð

r 0

@

@u
x
@y

@v
� y

@x

@v

� �

� @

@v
x
@y

@u
� y

@x

@u

� �
























du dv ¼
ð ð

r 0

@x

@u

@y

@v
� @x
@v

@y

@u

























du dv

¼
ð ð

r 0

@ðx; yÞ
@ðu; vÞ
























du dv

where we have inserted absolute value signs so as to ensure that the result is non-negative as is

ð ð

r

dx dy

In general, we can show (see Problem 10.83) that
ð ð

r

Fðx; yÞ dx dy ¼
ð ð

r 0

Ff f ðu; vÞ; gðu; vÞg @ðx; yÞ
@ðu; vÞ
























du dv ð3Þ
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(b)

ð ð

r

dx dy and

ð ð

r 0

@ðx; yÞ
@ðu; vÞ
























du dv represent the area of region r, the first expressed in rectangular

coordinates, the second in curvilinear coordinates. See Page 212, and the introduction of the differ-
ential element of surface area for an alternative to Part (a).

10.33. Let F ¼ �yiþ xj

x2 þ y2
. (a) Calculate r  F: ðbÞ Evaluate

þ

F � dr around any closed path and

explain the results.

ðaÞ r  F ¼

i j k

@

@x

@

@y

@

@z
�y

x2 þ y2
x

x2 þ y2
0





























































¼ 0 in any region excluding ð0; 0Þ:

(b)

þ

F � dr ¼
þ�y dxþ x dy

x2 þ y2
. Let x ¼ � cos�; y ¼ � sin�, where ð�; �Þ are polar coordinates. Then

dx ¼ �� sin� d�þ d� cos�; dy ¼ � cos� d�þ d� sin�

�y dxþ x dy

x2 þ y2
¼ d� ¼ d arc tan

y

x

� �

and so

For a closed curve ABCDA [see Fig. 10-22(a) below] surrounding the origin, � ¼ 0 at A and � ¼ 2�

after a complete circuit back to A. In this case the line integral equals

ð2�

0

d� ¼ 2�.

For a closed curve PQRSP [see Fig. 10-22(b) above] not surrounding the origin, � ¼ �0 at P and

� ¼ �0 after a complete circuit back to P. In this case the line integral equals

ð�0

�0

d� ¼ 0.

Since F ¼ PiþQj;r  F ¼ 0 is equivalent to @P=@y ¼ @Q=@x and the results would seem to con-

tradict those of Problem 10.11. However, no contradiction exists since P ¼ �y

x2 þ y2
and Q ¼ x

x2 þ y2

do not have continuous derivatives throughout any region including ð0; 0Þ, and this was assumed in

Problem 10.11.

10.34. If divA denotes the divergence of a vector field A at a point P, show that

divA ¼ lim
�V!0

ð ð

�s

A � n dS

�V
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where �V is the volume enclosed by the surface �S and the limit is obtained by shrinking �V to
the point P.

By the divergence theorem,

ð ð ð

�V

div A dV ¼
ð ð

�S

A � n dS

By the mean value theorem for integrals, the left side can be written

div A

ð ð ð

�V

dV ¼ div A�V

where div A is some value intermediate between the maximum and minimum of div A throughout �V .
Then

div A ¼

ð ð

�S

A � n dS

�V

Taking the limit as �V ! 0 such that P is always interior to �V, div A approaches the value div A at
point P; hence

div A ¼ lim
�V!0

ð ð

�S

A � n dS

�V

This result can be taken as a starting point for defining the divergence of A, and from it all the
properties may be derived including proof of the divergence theorem. We can also use this to extend the

concept of divergence to coordinate systems other than rectangular (see Page 159).

Physically,

ð ð ð

�S

A � n ds
0

@

1

A=�V represents the flux or net outflow per unit volume of the vector A from

the surface �S. If div A is positive in the neighborhood of a point P, it means that the outflow from P is

positive and we call P a source. Similarly, if div A is negative in the neighborhood of P, the outflow is really
an inflow and P is called a sink. If in a region there are no sources or sinks, then div A ¼ 0 and we call A a
solenoidal vector field.

Supplementary Problems

LINE INTEGRALS

10.35. Evaluate

ðð4;2Þ

ð1;1Þ
ðxþ yÞ dxþ ðy� xÞ dy along (a) the parabola y2 ¼ x, (b) a straight line, (c) straight lines

from ð1; 1Þ to ð1; 2Þ and then to ð4; 2Þ, (d) the curve x ¼ 2t2 þ tþ 1; y ¼ t2 þ 1.
Ans: ðaÞ 34=3; ðbÞ 11; ðcÞ 14; ðdÞ 32=3

10.36. Evaluate

þ

ð2x� yþ 4Þ dxþ ð5yþ 3x� 6Þ dy around a triangle in the xy plane with vertices at ð0; 0Þ; ð3; 0Þ,
ð3; 2Þ traversed in a counterclockwise direction. Ans. 12

10.37. Evaluate the line integral in the preceding problem around a circle of radius 4 with center at ð0; 0Þ.
Ans: 64�

10.38. (a) If F ¼ ðx2 � y2Þiþ 2xyj, evaluate

ð

C

F � dr along the curve C in the xy plane given by y ¼ x2 � x from the

point ð1; 0Þ to ð2; 2Þ. (b) Interpret physically the result obtained.
Ans. (a) 124/15

CHAP. 10] LINE INTEGRALS, SURFACE INTEGRALS, AND INTEGRAL THEOREMS 259



10.39. Evaluate

ð

C

ð2xþ yÞ ds, where C is the curve in the xy plane given by x2 þ y2 ¼ 25 and s is the arc length

parameter, from the point ð3; 4Þ to ð4; 3Þ along the shortest path. Ans: 15

10.40. If F ¼ ð3x� 2yÞiþ ð yþ 2zÞj� x2k, evaluate

ð

C

F � dr from ð0; 0; 0Þ to ð1; 1; 1Þ, where C is a path consisting

of (a) the curve x ¼ t; y ¼ t2; z ¼ t3, (b) a straight line joining these points, (c) the straight lines from
ð0; 0; 0Þ to ð0; 1; 0Þ, then to ð0; 1; 1Þ and then to ð1; 1; 1Þ, (d) the curve x ¼ z2; z ¼ y2.
Ans: ðaÞ 23=15; ðbÞ 5=3; ðcÞ 0; ðdÞ 13=15

10.41. If T is the unit tangent vector to a curve C (plane or space curve) and F is a given force field, prove that under

appropriate conditions

ð

C

F � dr ¼
ð

C

F � T ds where s is the arc length parameter. Interpret the result

physically and geometrically.

GREEN’S THEOREM IN THE PLANE, INDEPENDENCE OF THE PATH

10.42. Verify Green’s theorem in the plane for

þ

C

ðx2 � xy3Þ dxþ ð y2 � 2xyÞ dy where C is a square with vertices at

ð0; 0Þ; ð2; 0Þ; ð2; 2Þ; ð0; 2Þ and counterclockwise orientation. Ans. common value ¼ 8

10.43. Evaluate the line integrals of (a) Problem 10.36 and (b) Problem 10.37 by Green’s theorem.

10.44. (a) Let C be any simple closed curve bounding a region having area A. Prove that if a1; a2; a3; b1; b2; b3 are
constants,

þ

C

ða1xþ a2yþ a3Þ dxþ ðb1xþ b2yþ b3Þ dy ¼ ðb1 � a2ÞA

(b) Under what conditions will the line integral around any path C be zero? Ans. (b) a2 ¼ b1

10.45. Find the area bounded by the hypocycloid x2=3 þ y2=3 ¼ a2=3.

[Hint: Parametric equations are x ¼ a cos3 t; y ¼ a sin3 t; 0 @ t @ 2�.] Ans: 3�a2=8

10.46. If x ¼ � cos�; y ¼ � sin�, prove that 1
2

þ

x dy� y dx ¼ 1
2

ð

�2 d� and interpret.

10.47. Verify Green’s theorem in the plane for

þ

C

ðx3 � x2yÞ dxþ xy2 dy, where C is the boundary of the region

enclosed by the circles x2 þ y2 ¼ 4 and x2 þ y2 ¼ 16. Ans: common value ¼ 120�

10.48. (a) Prove that

ðð2;1Þ

ð1;0Þ
ð2xy� y4 þ 3Þ dxþ ðx2 � 4xy3Þ dy is independent of the path joining ð1; 0Þ and ð2; 1Þ.

(b) Evaluate the integral in (a). Ans: ðbÞ 5

10.49. Evaluate

ð

C

ð2xy3 � y2 cos xÞ dxþ ð1� 2y sin xþ 3x2y2Þ dy along the parabola 2x ¼ �y2 from ð0; 0Þ to

ð�=2; 1Þ. Ans. �2=4

10.50. Evaluate the line integral in the preceding problem around a parallelogram with vertices at ð0; 0Þ; ð3; 0Þ,
ð5; 2Þ; ð2; 2Þ. Ans: 0

10.51. (a) Prove that G ¼ ð2x2 þ xy� 2y2Þ dxþ ð3x2 þ 2xyÞ dy is not an exact differential. (b) Prove that e y=xG=x
is an exact differential of � and find �. (c) Find a solution of the differential equation ð2x2 þ xy� 2y2Þ dxþ
ð3x2 þ 2xyÞ dy ¼ 0.
Ans: ðbÞ � ¼ e y=xðx2 þ 2xyÞ þ c; ðcÞ x2 þ 2xyþ ce�y=x ¼ 0
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SURFACE INTEGRALS

10.52. (a) Evaluate

ð ð

S

ðx2 þ y2Þ dS, where S is the surface of the cone z2 ¼ 3ðx2 þ y2Þ bounded by z ¼ 0 and z ¼ 3.

(b) Interpret physically the result in (a). Ans: ðaÞ 9�

10.53. Determine the surface area of the plane 2xþ yþ 2z ¼ 16 cut off by (a) x ¼ 0; y ¼ 0;x ¼ 2; y ¼ 3,
(b) x ¼ 0; y ¼ 0, and x2 þ y2 ¼ 64. Ans: ðaÞ 9; ðbÞ 24�

10.54. Find the surface area of the paraboloid 2z ¼ x2 þ y2 which is outside the cone z ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

x2 þ y2
p

.

Ans: 2
3�ð5

ffiffiffi

5
p � 1Þ

10.55. Find the area of the surface of the cone z2 ¼ 3ðx2 þ y2Þ cut out by the paraboloid z ¼ x2 þ y2.
Ans: 6�

10.56. Find the surface area of the region common to the intersecting cylinders x2 þ y2 ¼ a2 and x2 þ z2 ¼ a2.

Ans: 16a2

10.57. (a) Obtain the surface area of the sphere x2 þ y2 þ z2 ¼ a2 contained within the cone z tan	 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

x2 þ y2
p

,
0 < 	 < �=2. (b) Use the result in (a) to find the surface area of a hemisphere. (c) Explain why formally
placing 	 ¼ � in the result of (a) yields the total surface area of a sphere.

Ans: ðaÞ 2�a2ð1� cos	Þ; ðbÞ 2�a2 (consider the limit as 	! �=2Þ
10.58. Determine the moment of inertia of the surface of a sphere of radius a about a point on the surface. Assume

a constant density �. Ans: 2Ma2, where mass M ¼ 4�a2�

10.59. (a) Find the centroid of the surface of the sphere x2 þ y2 þ z2 ¼ a2 contained within the cone

z tan	 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

x2 þ y2
p

, 0 < 	 < �=2. (b) From the result in (a) obtain the centroid of the surface of a hemi-
sphere. Ans: ðaÞ 1

2 að1þ cos	Þ; ðbÞ a=2

THE DIVERGENCE THEOREM

10.60. Verify the divergence theorem for A ¼ ð2xyþ zÞiþ y2j� ðxþ 3yÞk taken over the region bounded by

2xþ 2yþ z ¼ 6; x ¼ 0; y ¼ 0; z ¼ 0. Ans: common value ¼ 27

10.61. Evaluate

ð ð

S

F � n dS, where F ¼ ðz2 � xÞi� xyjþ 3zk and S is the surface of the region bounded by

z ¼ 4� y2;x ¼ 0; x ¼ 3 and the xy plane. Ans. 16

10.62. Evaluate

ð ð

S

A � n dS, where A ¼ ð2xþ 3zÞi� ðxzþ yÞjþ ð y2 þ 2zÞk and S is the surface of the sphere having

center at ð3;�1; 2Þ and radius 3. Ans: 108�

10.63. Determine the value of

ð ð

S

x dy dzþ y dz dxþ z dx dy, where S is the surface of the region bounded by the

cylinder x2 þ y2 ¼ 9 and the planes z ¼ 0 and z ¼ 3, (a) by using the divergence theorem, (b) directly.
Ans: 81�

10.64. Evaluate

ð ð

S

4xz dy dz� y2 dz dxþ yz dx dy, where S is the surface of the cube bounded by x ¼ 0, y ¼ 0,

z ¼ 0, x ¼ 1; y ¼ 1; z ¼ 1, (a) directly, (b) By Green’s theorem in space (divergence theorem).
Ans. 3/2

10.65. Prove that

ð ð

S

ðr  AÞ � n dS ¼ 0 for any closed surface S.
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10.66. Prove that

ð ð

S

n dS ¼ 0, where n is the outward drawn normal to any closed surface S. [Hint: Let A ¼ �c,

where c is an arbitrary vector constant. Express the divergence theorem in this special case. Use the
arbitrary property of c.

10.67. If n is the unit outward drawn normal to any closed surface S bounding the region V , prove that
ð ð ð

V

div n dV ¼ S

STOKES’ THEOREM

10.68. Verify Stokes’ theorem for A ¼ 2yiþ 3xj� z2k, where S is the upper half surface of the sphere
x2 þ y2 þ z2 ¼ 9 and C is its boundary. Ans. common value ¼ 9�

10.69. Verify Stokes’ theorem for A ¼ ð yþ zÞi� xzjþ y2k, where S is the surface of the region in the first octant
bounded by 2xþ z ¼ 6 and y ¼ 2 which is not included in the (a) xy plane, (b) plane y ¼ 2, (c) plane

2xþ z ¼ 6 and C is the corresponding boundary.
Ans. The common value is (a) �6; ðbÞ � 9; ðcÞ � 18

10.70. Evaluate

ð ð

S

ðr  AÞ � n dS, where A ¼ ðx� zÞiþ ðx3 þ yzÞj� 3xy2k and S is the surface of the cone

z ¼ 2�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

x2 þ y2
p

above the xy plane. Ans: 12�

10.71. If V is a region bounded by a closed surface S and B ¼ r  A, prove that

ð ð

S

B � n dS ¼ 0.

10.72. (a) Prove that F ¼ ð2xyþ 3Þiþ ðx2 � 4zÞj� 4yk is a conservative force field. (b) Find � such that F ¼ r�.
(c) Evaluate

ð

C

F � dr, where C is any path from ð3;�1; 2Þ to ð2; 1;�1Þ.
Ans: ðbÞ � ¼ x2y� 4yzþ 3xþ constant; (c) 6

10.73. Let C be any path joining any point on the sphere x2 þ y2 þ z2 ¼ a2 to any point on the sphere

x2 þ y2 þ z2 ¼ b2. Show that if F ¼ 5r3r, where r ¼ xiþ yjþ zk, then

ð

C

F � dr ¼ b5 � a5.

10.74. In Problem 10.73 evaluate

ð

C

F � dr is F ¼ f ðrÞr, where f ðrÞ is assumed to be continuous.

Ans:

ðb

a

r f ðrÞ dr

10.75. Determine whether there is a function � such that F ¼ r�, where:
(a) F ¼ ðxz� yÞiþ ðx2yþ z3Þjþ ð3xz2 � xyÞk:
(b) F ¼ 2xe�y

iþ ðcos z� x2e�yÞj� y sin zk. If so, find it.

Ans: ðaÞ � does not exist. ðbÞ � ¼ x2e�y þ y cos zþ constant

10.76. Solve the differential equation ðz3 � 4xyÞ dxþ ð6y� 2x2Þ dyþ ð3xz2 þ 1Þ dz ¼ 0.
Ans: xz3 � 2x2yþ 3y2 þ z ¼ constant

MISCELLANEOUS PROBLEMS

10.77. Prove that a necessary and sufficient condition that

þ

C

@U

@x
dy� @U

@y
dx be zero around every simple closed

path C in a region r (where U is continuous and has continuous partial derivatives of order two, at least) is

that
@2U

@x2
þ @

2U

@y2
¼ 0.
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10.78. Verify Green’s theorem for a multiply connected region containing two ‘‘holes’’ (see Problem 10.10).

10.79. If PdxþQdy is not an exact differential but �ðPdxþQdyÞ is an exact differential where � is some function

of x and y, then � is called an integrating factor. (a) Prove that if F and G are functions of x alone, then
ðFyþ GÞ dxþ dy has an integrating factor � which is a function of x alone and find �. What must be
assumed about F and G? (b) Use (a) to find solutions of the differential equation xy 0 ¼ 2xþ 3y.

Ans: ðaÞ � ¼ e
Ð

FðxÞ dx ðbÞ y ¼ cx3 � x, where c is any constant

10.80. Find the surface area of the sphere x2 þ y2 þ ðz� aÞ2 ¼ a2 contained within the paraboloid z ¼ x2 þ y2.

Ans: 2�a

10.81. If f ðrÞ is a continuously differentiable function of r ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

x2 þ y2 þ z2
p

, prove that
ð ð

S

f ðrÞ n dS ¼
ð ð ð

V

f 0ðrÞ
r

r dV

10.82. Prove that

ð ð

S

r  ð�nÞ dS ¼ 0 where � is any continuously differentiable scalar function of position and n is

a unit outward drawn normal to a closed surface S. (See Problem 10.66.)

10.83. Establish equation (3), Problem 10.32, by using Green’s theorem in the plane.
[Hint: Let the closed region r in the xy plane have boundary C and suppose that under the transformation
x ¼ f ðu; vÞ; y ¼ gðu; vÞ, these are transformed into r 0 and C 0 in the uv plane, respectively. First prove

that

ð ð

r

Fðx; yÞ dx dy ¼
ð

C

Qðx; yÞ dy where @Q=@y ¼ Fðx; yÞ. Then show that apart from sign this last

integral is equal to

ð

C 0
Q½ f ðu; vÞ; gðu; vÞ� @g

@u
duþ @g

@v
dv

� �

. Finally, use Green’s theorem to transform this

into

ð ð

r 0

F ½ f ðu; vÞ; gðu; vÞ� @ðx; yÞ
@ðu; vÞ
























du dv.

10.84. If x ¼ f ðu; v;wÞ; y ¼ gðu; v;wÞ; z ¼ hðu; v;wÞ defines a transformation which maps a region r of xyz space

into a region r 0 of uvw space, prove using Stokes’ theorem that
ð ð ð

r

Fðx; y; zÞ dx dy dz ¼
ð ð ð

r 0

Gðu; v;wÞ @ðx; y; zÞ
@ðu; v;wÞ
























du dv dw

where Gðu; v;wÞ � F ½ f ðu; v;wÞ; gðu; v;wÞ; hðu; v;wÞ�. State sufficient conditions under which the result
is valid. See Problem 10.83. Alternatively, employ the differential element of volume dV ¼
@r

@u
� @r
@v

 @r

@w
du dv dw (recall the geometric meaning).

10.85. (a) Show that in general the equation r ¼ rðu; vÞ geometrically represents a surface. (b) Discuss the geo-
metric significance of u ¼ c1; v ¼ c2, where c1 and c2 are constants. (c) Prove that the element of arc length
on this surface is given by

ds2 ¼ E du2 þ 2F du dvþ Gdv2

where E ¼ @r

@u
� @r
@u
; F ¼ @r

@u
� @r
@v
; G ¼ @r

@v
� @r
@v
:
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10.86. (a) Referring to Problem 10.85, show that the element of surface area is given by dS ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

EG� F2
p

du dv.

(b) Deduce from (a) that the area of a surface r ¼ rðu; vÞ is
ð ð

S

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

EG� F2
p

du dv.

[Hint: Use the fact that
@r

@u
 @r

@v

























¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

@r

@u
 @r

@v

� �

� @r

@u

� �

 @r

@v

� �

s

and then use the identity

ðA BÞ � ðCDÞ ¼ ðA � CÞðB �DÞ � ðA �DÞðB � CÞ.

10.87. (a) Prove that r ¼ a sin u cos v iþ a sin u sin v jþ a cos u, 0 @ u @ �; 0 @ v < 2� represents a sphere of

radius a. (b) Use Problem 10.86 to show that the surface area of this sphere is 4�a2.

10.88. Use the result of Problem 10.34 to obtain div A in (a) cylindrical and (b) spherical coordinates. See Page
161.
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Infinite Series

The early developers of the calculus, including Newton and Leibniz, were well aware of the

importance of infinite series. The values of many functions such as sine and cosine were geometrically

obtainable only in special cases. Infinite series provided a way of developing extensive tables of values

for them.

This chapter begins with a statement of what is meant by infinite series, then the question of when

these sums can be assigned values is addressed. Much information can be obtained by exploring infinite

sums of constant terms; however, the eventual objective in analysis is to introduce series that depend on

variables. This presents the possibility of representing functions by series. Afterward, the question of

how continuity, differentiability, and integrability play a role can be examined.

The question of dividing a line segment into infinitesimal parts has stimulated the imaginations of

philosophers for a very long time. In a corruption of a paradox introduce by Zeno of Elea (in the fifth

century B.C.) a dimensionless frog sits on the end of a one-dimensional log of unit length. The frog

jumps halfway, and then halfway and halfway ad infinitum. The question is whether the frog ever

reaches the other end. Mathematically, an unending sum,

1

2
þ 1

4
þ � � � þ 1

2n
þ � � �

is suggested. ‘‘Common sense’’ tells us that the sum must approach one even though that value is never

attained. We can form sequences of partial sums

S1 ¼
1

2
;S2 ¼

1

2
þ 1

4
; . . . ;Sn ¼

1

2
þ 1

4
þ � � � þ 1

2n
þ � � �

and then examine the limit. This returns us to Chapter 2 and the modern manner of thinking about the

infinitesimal.

In this chapter consideration of such sums launches us on the road to the theory of infinite series.

DEFINITIONS OF INFINITE SERIES AND THEIR CONVERGENCE AND DIVERGENCE

Definition: The sum

S ¼
X

1

n¼1

un ¼ u1 þ u2 þ � � � þ un þ � � � ð1Þ
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is an infinite series. Its value, if one exists, is the limit of the sequence of partial sums fSng
S ¼ lim

n!1 Sn ð2Þ

If there is a unique value, the series is said to converge to that sum, S. If there is not a unique sum
the series is said to diverge.

Sometimes the character of a series is obvious. For example, the series
X

1

n¼1

1

2n
generated by the

frog on the log surely converges, while
X

1

n¼1

n is divergent. On the other hand, the variable series

1� xþ x2 � x3 þ x4 � x5 þ � � �
raises questions.

This series may be obtained by carrying out the division
1

1� x
. If �1 < x < 1, the sums Sn yields an

approximations to
1

1� x
and (2) is the exact value. The indecision arises for x ¼ �1. Some very great

mathematicians, including Leonard Euler, thought that S should be equal to 1
2, as is obtained by

substituting �1 into
1

1� x
. The problem with this conclusion arises with examination of

1� 1þ 1� 1þ 1� 1þ � � � and observation that appropriate associations can produce values of 1 or
0. Imposition of the condition of uniqueness for convergence put this series in the category of divergent
and eliminated such possibility of ambiguity in other cases.

FUNDAMENTAL FACTS CONCERNING INFINITE SERIES

1. If �un converges, then lim
n!1 un ¼ 0 (see Problem 2.26, Chap. 2). The converse, however, is not

necessarily true, i.e., if lim
n!1 un ¼ 0, �un may or may not converge. It follows that if the nth

term of a series does not approach zero the series is divergent.

2. Multiplication of each term of a series by a constant different from zero does not affect the
convergence or divergence.

3. Removal (or addition) of a finite number of terms from (or to) a series does not affect the
convergence or divergence.

SPECIAL SERIES

1. Geometric series
X

1

n¼1

arn�1 ¼ aþ arþ ar2 þ � � � , where a and r are constants, converges to

S ¼ a

1� r
if jrj < 1 and diverges if jrj A 1. The sum of the first n terms is Sn ¼

að1� rnÞ
1� r

(see Problem 2.25, Chap. 2).

2. The p series
X

1

n¼1

1

n p ¼
1

1p
þ 1

2p
þ 1

3p
þ � � � ; where p is a constant, converges for p > 1 and diverges

for p @ 1. The series with p ¼ 1 is called the harmonic series.

TESTS FOR CONVERGENCE AND DIVERGENCE OF SERIES OF CONSTANTS

More often than not, exact values of infinite series cannot be obtained. Thus, the search turns
toward information about the series. In particular, its convergence or divergence comes in question.
The following tests aid in discovering this information.
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1. Comparison test for series of non-negative terms.

(a) Convergence. Let vn A 0 for all n > N and suppose that �vn converges. Then if
0 @ un @ vn for all n > N, �un also converges. Note that n > N means from some
term onward. Often, N ¼ 1.

EXAMPLE: Since
1

2n þ 1
@

1

2n
and

X 1

2n
converges,

X 1

2n þ 1
also converges.

(b) Divergence. Let vn A 0 for all n > N and suppose that �vn diverges. Then if un A vn for
all n > N, �un also diverges.

EXAMPLE: Since
1

ln n
>

1

n
and

X

1

n¼2

1

n
diverges,

X

1

n¼2

1

ln n
also diverges.

2. The Limit-Comparison or Quotient Test for series of non-negative terms.

(a) If un A 0 and vn A 0 and if lim
n!1

un
vn

¼ A 6¼ 0 or 1, then �un and �vn either both converge
or both diverge.

(b) If A ¼ 0 in (a) and �vn converges, then �un converges.

(c) If A ¼ 1 in (a) and �vn diverges, then �un diverges.

This test is related to the comparison test and is often a very useful alternative to it. In
particlar, taking vn ¼ 1=np, we have from known facts about the p series the

Theorem 1. Let lim
n!1 np un ¼ A. Then

(i) �un converges if p > 1 and A is finite.

(ii) �un diverges if p @ 1 and A 6¼ 0 (A may be infinite).

EXAMPLES: 1:
X n

4n3 � 2
converges since lim

n!1 n2 � n

4n3 � 2
¼ 1

4
:

2:
X ln n

ffiffiffiffiffiffiffiffiffiffiffi

nþ 1
p diverges since lim

n!1 n1=2 � ln n

ðnþ 1Þ1=2 ¼ 1:

3. Integral test for series of non-negative terms.
If f ðxÞ is positive, continuous, and monotonic decreasing for x A N and is such that

f ðnÞ ¼ un; n ¼ N;N þ 1;N þ 2; . . . , then �un converges or diverges according as
ð1

N

f ðxÞ dx ¼ lim
M!1

ðM

n

f ðxÞ dx converges or diverges. In particular we may have N ¼ 1, as

is often true in practice.
This theorem borrows from the next chapter since the integral has an unbounded upper

limit. (It is an improper integral. The convergence or divergence of these integrals is defined in
much the same way as for infinite series.)

EXAMPLE:
X

1

n¼1

1

n2
converges since lim

M!1

ðM

1

dx

x2
¼ lim

M!1
1� 1

M

� �

exists.

4. Alternating series test. An alternating series is one whose successive terms are alternately
positive and negative.

An alternating series converges if the following two conditions are satisfied (see Problem
11.15).

(a) junþ1j @ junj for n A N (Since a fixed number of terms does not affect the conver-
gence or divergence of a series, N may be any positive integer. Frequently it is chosen to
be 1.)

(b) lim
n!1 un ¼ 0 or lim

n!1 junj ¼ 0
� �
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EXAMPLE. For the series 1� 1
2 þ 1

3 � 1
4 þ 1

5 � � � � ¼
X

1

n¼1

ð�1Þn�1

n
, we have un ¼

ð�1Þn�1

n
, junj ¼

1

n
,

junþ1j ¼
1

nþ 1
. Then for n A 1, junþ1j @ junj. Also lim

n!1 junj ¼ 0. Hence, the series converges.

Theorem 2. The numerical error made in stopping at any particular term of a convergent alternating
series which satisfies conditions (a) and (b) is less than the absolute value of the next term.

EXAMPLE. If we stop at the 4th term of the series 1� 1
2 þ 1

3 � 1
4 þ 1

5 � � � � , the error made is less than
1
5 ¼ 0:2.

5. Absolute and conditional convergence. The series �un is called absolutely convergent if �junj
converges. If �un converges but �junj diverges, then �un is called conditionally convergent.

Theorem 3. If �junj converges, then �un converges. In words, an absolutely convergent series is
convergent (see Problem 11.17).

EXAMPLE 1.
1

12
þ 1

22
� 1

32
� 1

42
þ 1

52
þ 1

62
� � � � is absolutely convergent and thus convergent, since the

series of absolute values
1

12
þ 1

22
þ 1

32
þ 1

42
þ � � � converges.

EXAMPLE 2. 1� 1

2
þ 1

3
� 1

4
þ � � � converges, but 1þ 1

2
þ 1

3
þ 1

4
þ � � � diverges. Thus, 1� 1

2
þ 1

3
� 1

4
þ � � �

is conditionally convergent.

Any of the tests used for series with non-negative terms can be used to test for absolute
convergence. Also, tests that compare successive terms are common. Tests 6, 8, and 9 are of
this type.

6. Ratio test. Let lim
n!1

unþ1

un

























¼ L. Then the series �un

(a) converges (absolutely) if L < 1

(b) diverges if L > 1.

If L ¼ 1 the test fails.

7. The nth root test. Let lim
n!1

ffiffiffiffiffiffiffiffi

junjn
p

¼ L. Then the series �un

(a) converges (absolutely) if L < 1

(b) diverges if L > 1:

If L ¼ 1 the test fails.

8. Raabe’s test. Let lim
n!1n 1� un þ 1

un

























� �

¼ L. Then the series �un

(a) converges (absolutely) if L > 1

(b) diverges or converges conditionally if L < 1.

If L ¼ 1 the test fails.
This test is often used when the ratio tests fails.

9. Gauss’ test. If
unþ1

un

























¼ 1� L

n
þ cn
n2
, where jcnj < P for all n > N, then the series �un

(a) converges (absolutely) if L > 1

(b) diverges or converges conditionally if L @ 1.

This test is often used when Raabe’s test fails.
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THEOREMS ON ABSOLUTELY CONVERGENT SERIES

Theorem 4. (Rearrangement of Terms) The terms of an absolutely convergent series can be rearranged
in any order, and all such rearranged series will converge to the same sum. However, if the terms of a
conditionally convergent series are suitably rearranged, the resulting series may diverge or converge to
any desired sum (see Problem 11.80).

Theorem 5. (Sums, Differences, and Products) The sum, difference, and product of two absolutely
convergent series is absolutely convergent. The operations can be performed as for finite series.

INFINITE SEQUENCES AND SERIES OF FUNCTIONS, UNIFORM CONVERGENCE

We opened this chapter with the thought that functions could be expressed in series form. Such
representation is illustrated by

sin x ¼ x� x3

3!
þ x5

5!
�þ � � � þ ð�1Þn�1 x2n�1

ð2n� 1Þ!þ � � �

where

sin x ¼ lim
n!1Sn; with S1 ¼ x;S2 ¼ x� x3

3!
; . . .Sn ¼

X

n

k¼1

ð�1Þk�1 x2k�1

ð2k� 1Þ! :

Observe that until this section the sequences and series depended on one element, n. Now there is
variation with respect to x as well. This complexity requires the introduction of a new concept called
uniform convergence, which, in turn, is fundamental in exploring the continuity, differentiation, and
integrability of series.

Let funðxÞg; n ¼ 1; 2; 3; . . . be a sequence of functions defined in ½a; b�. The sequence is said to
converge to FðxÞ, or to have the limit FðxÞ in ½a; b�, if for each � > 0 and each x in ½a; b� we can find
N > 0 such that junðxÞ � FðxÞj < � for all n > N. In such case we write lim

n!1 unðxÞ ¼ FðxÞ. The number

N may depend on x as well as �. If it depends only on � and not on x, the sequence is said to converge to
FðxÞ uniformly in ½a; b� or to be uniformly convergent in ½a; b�.

The infinite series of functions

X

1

n¼1

unðxÞ ¼ u1ðxÞ þ u2ðxÞ þ u3ðxÞ þ � � � ð3Þ

is said to be convergent in ½a; b� if the sequence of partial sums fSnðxÞg, n ¼ 1; 2; 3; . . . ; where
SnðxÞ ¼ u1ðxÞ þ u2ðxÞ þ � � � þ unðxÞ, is convergent in ½a; b�. In such case we write lim

n!1 SnðxÞ ¼ SðxÞ
and call SðxÞ the sum of the series.

It follows that �unðxÞ converges to SðxÞ in ½a; b� if for each � > 0 and each x in ½a; b� we can find
N > 0 such that jSnðxÞ � SðxÞj < � for all n > N. If N depends only on � and not on x, the series is called
uniformly convergent in ½a; b�.

Since SðxÞ � SnðxÞ ¼ RnðxÞ, the remainder after n terms, we can equivalently say that �unðxÞ is
uniformly convergent in ½a; b� if for each � > 0 we can find N depending on � but not on x such that
jRnðxÞj < � for all n > N and all x in ½a; b�.

These definitions can be modified to include other intervals besides a @ x @ b, such as a < x < b,
and so on.

The domain of convergence (absolute or uniform) of a series is the set of values of x for which the
series of functions converges (absolutely or uniformly).

EXAMPLE 1. Suppose un ¼ xn=n and� 1
2 @ x @ 1. Now think of the constant function FðxÞ ¼ 0 on this interval.

For any � > 0 and any x in the interval, there is N such that for all n > Njun � FðxÞj < �, i.e., jxn=nj < �. Since the
limit does not depend on x, the sequence is uniformly convergent.
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EXAMPLE 2. If un ¼ xn and 0 @ x @ 1, the sequence is not uniformly convergent because (think of the function

FðxÞ ¼ 0, 0 @ x < 1, Fð1Þ ¼ 1Þ
jxn � 0j < � when xn < �;

thus

n ln x < ln �:

On the interval 0 @ x < 1, and for 0 < � < 1, both members

of the inequality are negative, therefore, n >
ln �

ln x
: Since

ln �

ln x
¼ ln 1� ln �

ln 1� nn x
¼ lnð=�Þ

lnð1=xÞ, it follows that we must choose N

such that

n > N >
ln 1=�

ln 1=x

From this expression we see that �! 0 then ln
1

�
! 1 and

also as x ! 1 from the left ln
1

x
! 0 from the right; thus, in either

case, N must increase without bound. This dependency on both
� and x demonstrations that the sequence is not uniformly
convergent. For a pictorial view of this example, see Fig. 11-1.

SPECIAL TESTS FOR UNIFORM CONVERGENCE OF SERIES

1. Weierstrass M test. If sequence of positive constants M1;M2;M3; . . . can be found such that
in some interval

(a) junðxÞj @ Mn n ¼ 1; 2; 3; . . .

(b) �Mn converges

then �unðxÞ is uniformly and absolutely convergent in the interval.

EXAMPLE.
X

1

n¼1

cos nx

n2
is uniformly and absolutely convergent in ½0; 2�� since cos nx

n2

























@
1

n2
and

X 1

n2

converges.

This test supplies a sufficient but not a necessary condition for uniform convergence, i.e., a
series may be uniformly convergent even when the test cannot be made to apply.

One may be led because of this test to believe that uniformly convergent series must be
absolutely convergent, and conversely. However, the two properties are independent, i.e., a
series can be uniformly convergent without being absolutely convergent, and conversely. See
Problems 11.30, 11.127.

2. Dirichlet’s test. Suppose that

(a) the sequence fang is a monotonic decreasing sequence of positive constants having limit
zero,

(b) there exists a constant P such that for a @ x @ b

ju1ðxÞ þ u2ðxÞ þ � � � þ unðxÞj < P for all n > N:

Then the series

a1u1ðxÞ þ a2u2ðxÞ þ � � � ¼
X

1

n¼1

anunðxÞ

is uniformly convergent in a @ x @ b.
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THEOREMS ON UNIFORMLY CONVERGENT SERIES

If an infinite series of functions is uniformly convergent, it has many of the properties possessed by
sums of finite series of functions, as indicated in the following theorems.

Theorem 6. If funðxÞg; n ¼ 1; 2; 3; . . . are continuous in ½a; b� and if �unðxÞ converges uniformly to the
sum SðxÞ in ½a; b�, then SðxÞ is continuous in ½a; b�.

Briefly, this states that a uniformly convergent series of continuous functions is a continuous
function. This result is often used to demonstrate that a given series is not uniformly convergent by
showing that the sum function SðxÞ is discontinuous at some point (see Problem 11.30).

In particular if x0 is in ½a; b�, then the theorem states that

lim
x!x0

X

1

n¼1

unðxÞ ¼
X

1

n¼1

lim
x!x0

unðxÞ ¼
X

1

n¼1

unðx0Þ

where we use right- or left-hand limits in case x0 is an endpoint of ½a; b�.

Theorem 7. If funðxÞg; n ¼ 1; 2; 3; . . . ; are continuous in ½a; b� and if �unðxÞ converges uniformly to the
sum SðxÞ in ½a; b�, then

ðb

a

SðxÞ dx ¼
X

1

n¼1

ðb

a

unðxÞ dx ð4Þ

or

ðb

a

X

1

n¼1

unðxÞ
( )

dx ¼
X

1

n¼1

ðb

a

unðxÞ dx ð5Þ

Briefly, a uniformly convergent series of continuous functions can be integrated term by term.

Theorem 8. If funðxÞg; n ¼ 1; 2; 3; . . . ; are continuous and have continuous derivatives in ½a; b� and if
�unðxÞ converges to SðxÞ while �u 0

nðxÞ is uniformly convergent in ½a; b�, then in ½a; b�

S 0ðxÞ ¼
X

1

n¼1

u 0
nðxÞ ð6Þ

or

d

dx

X

1

n¼1

unðxÞ
( )

¼
X

1

n¼1

d

dx
unðxÞ ð7Þ

This shows conditions under which a series can be differentiated term by term.

Theorems similar to the above can be formulated for sequences. For example, if funðxÞg,
n ¼ 1; 2; 3; . . . is uniformly convergent in ½a; b�, then

lim
n!1

ðb

a

unðxÞ dx ¼
ðb

a

lim
n!1 unðxÞ dx ð8Þ

which is the analog of Theorem 7.
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POWER SERIES

A series having the form

a0 þ a1xþ a2x
2 þ � � � ¼

X

1

n¼0

anx
n ð9Þ

where a0; a1; a2; . . . are constants, is called a power series in x. It is often convenient to abbreviate the
series (9) as �anx

n.
In general a power series converges for jxj < R and diverges for jxj > R, where the constant R is

called the radius of convergence of the series. For jxj ¼ R, the series may or may not converge.
The interval jxj < R or �R < x < R, with possible inclusion of endpoints, is called the interval of

convergence of the series. Although the ratio test is often successful in obtaining this interval, it may fail
and in such cases, other tests may be used (see Problem 11.22).

The two special cases R ¼ 0 and R ¼ 1 can arise. In the first case the series converges only for
x ¼ 0; in the second case it converges for all x, sometimes written �1 < x <1 (see Problem 11.25).
When we speak of a convergent power series, we shall assume, unless otherwise indicated, that R > 0.

Similar remarks hold for a power series of the form (9), where x is replaced by ðx� aÞ.

THEOREMS ON POWER SERIES

Theorem 9. A power series converges uniformly and absolutely in any interval which lies entirely within
its interval of convergence.

Theorem 10. A power series can be differentiated or integrated term by term over any interval lying
entirely within the interval of convergence. Also, the sum of a convergent power series is continuous in
any interval lying entirely within its interval of convergence.

This follows at once from Theorem 9 and the theorems on uniformly convergent series on Pages 270
and 271. The results can be extended to include end points of the interval of convergence by the
following theorems.

Theorem 11. Abel’s theorem. When a power series converges up to and including an endpoint of its
interval of convergence, the interval of uniform convergence also extends so far as to include this
endpoint. See Problem 11.42.

Theorem 12. Abel’s limit theorem. If
X

1

n¼0

anx
n converges at x ¼ x0, which may be an interior point or an

endpoint of the interval of convergence, then

lim
x!x0

X

1

n¼0

anx
n

( )

¼
X

1

n¼0

lim
x!x0

anx
n

� �

¼
X

1

n¼0

anx
n
0 ð10Þ

If x0 is an end point, we must use x ! x0þ or x ! x0� in (10) according as x0 is a left- or right-hand
end point.

This follows at once from Theorem 11 and Theorem 6 on the continuity of sums of uniformly
convergent series.

OPERATIONS WITH POWER SERIES

In the following theorems we assume that all power series are convergent in some interval.

Theorem 13. Two power series can be added or subtracted term by term for each value of x common to
their intervals of convergence.
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Theorem 14. Two power series, for example,
X

1

n¼0

anx
n and

X

1

n¼0

bnx
n, can be multiplied to obtain

X

1

n¼0

cnx
n

where

cn ¼ a0bn þ a1bn�1 þ a2bn�2 þ � � � þ anb0 ð11Þ
the result being valid for each x within the common interval of convergence.

Theorem 15. If the power series
X

1

n¼0

anx
n is divided by the power series �bnx

n where b0 6¼ 0, the quotient

can be written as a power series which converges for sufficiently small values of x.

Theorem 16. If y ¼
X

1

n¼0

anx
n, then by substituting x ¼

X

1

n¼0

bny
n, we can obtain the coefficients bn in

terms of an. This process is often called reversion of series.

EXPANSION OF FUNCTIONS IN POWER SERIES

This section gets at the heart of the use of infinite series in analysis. Functions are represented
through them. Certain forms bear the names of mathematicians of the eighteenth and early nineteenth
century who did so much to develop these ideas.

A simple way (and one often used to gain information in mathematics) to explore series representa-
tion of functions is to assume such a representation exists and then discover the details. Of course,
whatever is found must be confirmed in a rigorous manner. Therefore, assume

f ðxÞ ¼ A0 þ A1ðx� cÞ þ A2ðx� cÞ2 þ � � � þ Anðx� cÞn þ � � �
Notice that the coefficients An can be identified with derivatives of f . In particular

A0 ¼ f ðcÞ;A1 ¼ f 0ðcÞ;A2 ¼
1

2!
f 00ðcÞ; . . . ;An ¼

1

n!
f ðnÞðcÞ; . . .

This suggests that a series representation of f is

f ðxÞ ¼ f ðcÞ þ f 0ðcÞðx� cÞ þ 1

2!
f 00ðcÞðx� cÞ2 þ � � � þ 1

n!
f ðnÞðcÞðx� cÞn þ � � �

A first step in formalizing series representation of a function, f , for which the first n derivatives exist,
is accomplished by introducing Taylor polynomials of the function.

P0ðxÞ ¼ f ðcÞ P1ðxÞ ¼ f ðcÞ þ f 0ðcÞðx� cÞ;
P2ðxÞ ¼ f ðcÞ þ f 0ðcÞðx� cÞ þ 1

2!
f 00ðcÞðx� cÞ2;

PnðxÞ ¼ f ðcÞ þ f 0ðcÞðx� cÞ þ � � � þ 1

n!
f ðnÞðcÞðx� cÞn ð12Þ

TAYLOR’S THEOREM

Let f and its derivatives f 0; f 00; . . . ; f ðnÞ exist and be continuous in a closed interval a � x � b and
suppose that f ðnþ1Þ exists in the open interval a < x < b. Then for c in ½a; b�,

f ðxÞ ¼ PnðxÞ þ RnðxÞ;
where the remainder RnðxÞ may be represented in any of the three following ways.

For each n there exists � such that
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RnðxÞ ¼
1

ðnþ 1Þ! f
ðnþ1Þð�Þðx� cÞnþ1 (Lagrange form) ð13Þ

(� is between c and x.)
(The theorem with this remainder is a mean value theorem. Also, it is called Taylor’s formula.)
For each n there exists � such that

RnðxÞ ¼
1

n!
f ðnþ1Þð�Þðx� �Þnðx� cÞ (Cauchy form) ð14Þ

RnðxÞ ¼
1

n!

ðx

c

ðx� tÞn f ðnþ1ÞðtÞ dt (Integral form) ð15Þ

If all the derivatives of f exist, then

f ðxÞ ¼
X

1

n¼0

1

n!
f ðnÞðcÞðx� cÞn ð16Þ

This infinite series is called a Taylor series, although when c ¼ 0, it can also be referred to as a
MacLaurin series or expansion.

One might be tempted to believe that if all derivatives of f ðxÞ exist at x ¼ c, the expansion (16) would
be valid. This, however, is not necessarily the case, for although one can then formally obtain the series
on the right of (16), the resulting series may not converge to f ðxÞ. For an example of this see Problem
11.108.

Precise conditions under which the series converges to f ðxÞ are best obtained by means of the theory
of functions of a complex variable. See Chapter 16.

The determination of values of functions at desired arguments is conveniently approached through
Taylor polynomials.

EXAMPLE. The value of sin x may be determined geometrically for 0;
�

6
, and an infinite number of other

arguments. To obtain values for other real number arguments, a Taylor series may be expanded about any of
these points. For example, let c ¼ 0 and evaluate several derivatives there, i.e., f ð0Þ ¼ sin 0 ¼ 0; f 0ð0Þ ¼ cos 0 ¼ 1,

f 00ð0Þ ¼ � sin 0 ¼ 0; f 000ð0Þ ¼ � cos 0 ¼ �1; f 1vð0Þ ¼ sin 0 ¼ 0; f vð0Þ ¼ cos 0 ¼ 1.

Thus, the MacLaurin expansion to five terms is

sin x ¼ 0þ x� 0� 1

3!
x3 þ 0� 1

51
x5 þ � � �

Since the fourth term is 0 the Taylor polynomials P3 and P4 are equal, i.e.,

P3ðxÞ ¼ P4ðxÞ ¼ x� x3

3!

and the Lagrange remainder is

R4ðxÞ ¼
1

5!
cos � x5

Suppose an approximation of the value of sin :3 is required. Then

P4ð:3Þ ¼ :3� 1

6
ð:3Þ3 � :2945:

The accuracy of this approximation can be determined from examination of the remainder. In
particular, (remember j cos �j � 1)

jR4j ¼
1

5!
cos �ð:3Þ5

























� 1

120

243

105
< :000021
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Thus, the approximation P4ð:3Þ for sin :3 is correct to four decimal
places.

Additional insight to the process of approximation of functional
values results by constructing a graph of P4ðxÞ and comparing it to
y ¼ sin x. (See Fig. 11-2.)

P4ðxÞ ¼ x� x3

6

The roots of the equation are 0;� ffiffiffi

6
p

. Examination of the first and
second derivatives reveals a relative maximum at x ¼ ffiffiffi

2
p

and a relative
minimum at x ¼ � ffiffiffi

2
p

. The graph is a local approximation of the sin
curve. The reader can show that P6ðxÞ produces an even better approximation.

(For an example of series approximation of an integral see the example below.)

SOME IMPORTANT POWER SERIES

The following series, convergent to the given function in the indicated intervals, are frequently
employed in practice:

1. sin x ¼ x� x3

3!
þ x5

5!
� x7

7!
þ � � � ð�1Þn�1 x2n�1

ð2n� 1Þ!þ � � � �1 < x <1

2. cos x ¼ 1� x2

2!
þ x4

4!
� x6

6!
þ � � � ð�1Þn�1 x2n�2

ð2n� 2Þ!þ � � � �1 < x <1

3. ex ¼ 1þ xþ x2

2!
þ x3

3!
þ � � � þ xn�1

ðn� 1Þ!þ � � � �1 < x <1

4. ln j1þ xj ¼ x� x2

2
þ x3

3
� x4

4
þ � � � ð�1Þn�1 x

n

n
þ � � � � 1 < x @ 1

5. 1
2 ln

1þ x

1� x

























¼ xþ x3

3
þ x5

5
þ x7

7
þ � � � þ x2n�1

2n� 1
þ � � � � 1 < x < 1

6. tan�1 x ¼ x� x3

3
þ x5

5
� x7

7
þ � � � ð�1Þn�1 x2n�1

2n� 1
þ � � � � 1 @ x @ 1

7. ð1þ xÞp ¼ 1þ pxþ pð p� 1Þ
2!

x2 þ � � � þ pð p� 1Þ . . . ð p� nþ 1Þ
n!

xn þ � � �
This is the binomial series.

(a) If p is a positive integer or zero, the series terminates.

(b) If p > 0 but is not an integer, the series converges (absolutely) for �1 @ x @ 1:

ðcÞ If �1 < p < 0, the series converges for �1 < x @ 1:

(d) If p @ � 1, the series converges for �1 < x < 1.

For all p the series certainly converges if �1 < x < 1.

EXAMPLE. Taylor’s Theorem applied to the series for ex enables us to estimate the value of the integral

ð1

0

ex
2

dx.

Substituting x2 for x, we obtain
Ð 1

0 ex
2

dx ¼ Ð 1

0 1þ xþ x4

2!
þ x6

3!
þ x8

4!
þ e�

5!
x10

 !

dx

where

P4ðxÞ ¼ 1þ xþ 1

2!
x4 þ 1

3!
x6 þ 1

4!
x8

and

R4ðxÞ ¼
e�

5!
x10; 0 < � < x
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Then

ð1

0

P4ðxÞ dx ¼ 1þ 1

3
þ 1

5ð2!Þ þ
1

7ð3!Þ þ
1

9ð4!Þ � 1:4618

ð1

0

R4ðxÞ dx
























�
ð1

0

e�

5!
x10































dx � e

ð1

0

x10

5!
dx ¼ e

11:5
< :0021

Thus, the maximum error is less than .0021 and the value of the integral is accurate to two decimal places.

SPECIAL TOPICS

1. Functions defined by series are often useful in applications and frequently arise as solutions of
differential equations. For example, the function defined by

JpðxÞ ¼
xp

2pp!
1� x2

2ð2pþ 2Þ þ
x4

2 � 4ð2pþ 2Þð2pþ 4Þ � � � �
( )

¼
X

1

n¼0

ð�1Þnðx=2Þpþ2n

n!ðnþ pÞ! ð16Þ

is a solution of Bessel’s differential equation x2y 00 þ xy 0 þ ðx2 � p2Þy ¼ 0 and is thus called a
Bessel function of order p. See Problems 11.46, 11.110 through 11.113.

Similarly, the hypergeometric function

Fða; b; c; xÞ ¼ 1þ a � B
1 � c xþ aðaþ 1Þbðbþ 1Þ

1 � 2 � cðcþ 1Þ x2 þ � � � ð17Þ

is a solution of Gauss’ differential equation xð1� xÞy 00 þ fc� ðaþ bþ 1Þxgy 0 � aby ¼ 0.
These functions have many important properties.

2. Infinite series of complex terms, in particular power series of the form
X

1

n¼0

anz
n, where z ¼ xþ iy

and an may be complex, can be handled in a manner similar to real series.
Such power series converge for jzj < R, i.e., interior to a circle of convergence x2 þ y2 ¼ R2,

where R is the radius of convergence (if the series converges only for z ¼ 0, we say that the radius
of convergence R is zero; if it converges for all z, we say that the radius of convergence is
infinite). On the boundary of this circle, i.e., jzj ¼ R, the series may or may not converge,
depending on the particular z.

Note that for y ¼ 0 the circle of convergence reduces to the interval of convergence for real
power series. Greater insight into the behavior of power series is obtained by use of the theory
of functions of a complex variable (see Chapter 16).

3. Infinite series of functions of two (or more) variables, such as
X

1

n¼1

unðx; yÞ can be treated in a

manner analogous to series in one variable. In particular, we can discuss power series in x and y
having the form

a00 þ ða10xþ a01yÞ þ ða20x2 þ a11xyþ a02y
2Þ þ � � � ð18Þ

using double subscripts for the constants. As for one variable, we can expand suitable functions
of x and y in such power series. In particular, the Taylor theroem may be extended as follows.

TAYLOR’S THEOREM (FOR TWO VARIABLES)

Let f be a function of two variables x and y. If all partial derivatives of order n are continuous in a
closed region and if all the ðnþ 1Þ partial derivatives exist in the open region, then
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f ðx0 þ h; y0 þ kÞ ¼ f ðx0; y0Þ þ h
@

@x
þ k

@

@y

� �

f ðx0; y0Þ þ
1

2!
h
@

@x
þ k

@

@y

� �2

f ðx0; y0Þ þ � � �

þ 1

n!
h
@

@x
þ k

@

@y

� �n

f ðx0; y0Þ þ Rn

ð18Þ

where

Rn ¼
1

ðnþ 1Þ! h
@

@x
þ k

@

@y

� �nþ1

f ðx0 þ �h; y0 þ �kÞ; 0 < � < 1

and where the meaning of the operator notation is as follows:

h
@

@x
þ k

@

@y

� �

f ¼ hfx þ kfy;

h
@

@x
þ k

@

@y

� �2

¼ h2fxx þ 2hkfxy þ k2fyy

and we formally expand h
@

@x
þ k

@

@y

� �n

by the binomial theorem.

Note: In alternate notation h ¼ �x ¼ x� x0, k ¼ �y ¼ y� y0.

If Rn ! 0 as n ! 1 then an unending continuation of terms produces the Taylor series for f ðx; yÞ.
Multivariable Taylor series have a similar pattern.

4. Double Series. Consider the array of numbers (or functions)

u11 u12 u13 . . .
u21 u22 u23 . . .
u31 u32 u33 . . .

..

. ..
. ..

.

0

B

B

B

@

1

C

C

C

A

Let Smn ¼
X

m

p¼1

X

n

q¼1

upq be the sum of the numbers in the first m rows and first n columns of this

array. If there exists a number S such that lim
m!1
n!1

Smn ¼ S, we say that the doubles series

X

1

p¼1

X

1

q¼1

upq converges to the sum S; otherwise, it diverges.

Definitions and theorems for double series are very similar to those for series already
considered.

5. Infinite Products. Let Pn ¼ ð1þ u1Þð1þ u2Þð1þ u3Þ . . . ð1þ unÞ denoted by
Y

n

k¼1

ð1þ ukÞ, where
we suppose that uk 6¼ �1; k ¼ 1; 2; 3; . . . . If there exists a number P 6¼ 0 such that lim

n!1Pn ¼ P,

we say that the the infinite product ðð1þ u1Þð1þ u2Þð1þ u3Þ . . . ¼
Y

1

k¼1

ð1þ ukÞ, or briefly
�ð1þ ukÞ, converges to P; otherwise, it diverges.

If�ð1þ jukjÞ converges, we call the infinite product�ð1þ ukÞ absolutely convergent. It can
be shown that an absolutely convergent infinite product converges and that factors can in such
cases be rearranged without affecting the result.

Theorems about infinite products can (by taking logarithms) often be made to depend on
theorems for infinite series. Thus, for example, we have the following theorem.

Theorem. A necessary and sufficient condition that �ð1þ ukÞ converge absolutely is that �uk converge
absolutely.
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6. Summability. Let S1;S2;S3; . . . be the partial sums of a divergent series �un. If the sequence

S1;
S1;S2

2
;
S1 þ S2 þ S3

3
; . . . (formed by taking arithmetic means of the first n terms of

S1;S2;S3; . . .) converges to S, we say that the series �un is summable in the Césaro sense, or
C-1 summable to S (see Problem 11.51).

If �un converges to S, the Césaro method also yields the result S. For this reason the
Césaro method is said to be a regular method of summability.

In case the Césaro limit does not exist, we can apply the same technique to the sequence

S1;
S1 þ S2

3
;
S1 þ S2 þ S3

3
; . . . : If the C-1 limit for this sequence exists and equals S, we say

that �uk converges to S in the C-2 sense. The process can be continued indefinitely.

Solved Problems

CONVERGENCE AND DIVERGENCE OF SERIES OF CONSTANTS

11.1. (a) Prove that
1

1 � 3þ
1

3 � 5þ
1

5 � 7þ � � � ¼
X

1

n¼1

1

ð2n� 1Þð2nþ 1Þ converges and (b) find its sum.

un ¼
1

ð2n� 1Þð2nþ 1Þ ¼
1

2

1

2n� 1
� 1

2nþ 1

� �

: Then

Sn ¼ u1 þ u2 þ � � � þ un ¼
1

2

1

1
� 1

3

� �

þ 1

2

1

3
� 1

5

� �

þ � � � þ 1

2

1

2n� 1
� 1

2nþ 1

� �

¼ 1

2

1

1
� 1

3
þ 1

3
� 1

5
þ 1

5
� � � � þ 1

2n� 1
� 1

2nþ 1

� �

¼ 1

2
1� 1

2nþ 1

� �

Since lim
n!1 Sn ¼ lim

n!1
1

2
1� 1

2nþ 1

� �

¼ 1

2
; the series converges and its sum is 1

2 :

The series is sometimes called a telescoping series, since the terms of Sn, other than the first and last,
cancel out in pairs.

11.2. (a) Prove that 2
3 þ ð23Þ2 þ ð23Þ3 þ � � � ¼

X

1

n¼1

ð23Þn converges and (b) find its sum.

This is a geometric series; therefore, the partial sums are of the form Sn ¼
að1� rnÞ
1� r

. Since jrj < 1

S ¼ lim
n!1Sn ¼

a

1� r
and in particular with r ¼ 2

3 and a ¼ 2
3, we obtain S ¼ 2.

11.3. Prove that the series 1
2 þ 2

3 þ 3
4 þ 4

5 þ � � � ¼
X

1

n¼1

n

nþ 1
diverges.

lim
n!1 un ¼ lim

n!1
n

nþ 1
¼ 1. Hence by Problem 2.26, Chapter 2, the series is divergent.

11.4. Show that the series whose nth term is un ¼
ffiffiffiffiffiffiffiffiffiffiffi

nþ 1
p � ffiffiffi

n
p

diverges although lim
n!1 un ¼ 0.

The fact that lim
n!1 un ¼ 0 follows from Problem 2.14(c), Chapter 2.

Now Sn ¼ u1 þ u2 þ � � � þ un ¼ ð ffiffiffi

2
p � ffiffiffi

1
p Þ þ ð ffiffiffi

3
p � ffiffiffi

2
p Þ þ � � � þ ð ffiffiffiffiffiffiffiffiffiffiffi

nþ 1
p � ffiffiffi

n
p Þ ¼ ffiffiffiffiffiffiffiffiffiffiffi

nþ 1
p � ffiffiffi

1
p

.

Then Sn increases without bound and the series diverges.
This problem shows that lim

n!1 ¼ 0 is a necessary but not sufficient condition for the convergence of �un.
See also Problem 11.6.
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COMPARISON TEST AND QUOTIENT TEST

11.5. If 0 @ un @ vn; n ¼ 1; 2; 3; . . . and if �vn converges, prove that �un also converges (i.e., establish
the comparison test for convergence).

Let Sn ¼ u1 þ u2 þ � � � þ un;Tn ¼ v1 þ v2 þ � � � þ vn.

Since �vn converges, lim
n!1Tn exists and equals T , say. Also, since vn A 0;Tn @ T .

Then Sn ¼ u1 þ u2 þ � � � þ un @ v1 þ v2 þ � � � þ vn @ T or 0 @ Sn @ T :
Thus Sn is a bounded monotonic increasing sequence and must have a limit (see Chapter 2), i.e., �un

converges.

11.6. Using the comparison test prove that 1þ 1
2 þ 1

3 þ � � � ¼
X

1

n¼1

1

n
diverges.

1 A 1
2We have

1
2 þ 1

3 A
1
4 þ 1

4 ¼ 1
2

1
4 þ 1

5 þ 1
6 þ 1

7 A
1
8 þ 1

8 þ 1
8 þ 1

8 ¼ 1
2

1
8 þ 1

9 þ 1
10 þ � � � þ 1

15 A
1
16 þ 1

16 þ 1
16 þ � � � þ 1

16 (8 terms) ¼ 1
2

etc. Thus, to any desired number of terms,

1þ 1
2 þ 1

3

� 	þ 1
4 þ 1

5 þ 1
6 þ 1

7

� 	þ � � � A 1
2 þ 1

2 þ 1
2 þ � � �

Since the right-hand side can be made larger than any positive number by choosing enough terms, the given
series diverges.

By methods analogous to that used here, we can show that
X

1

n¼1

1

np, where p is a constant, diverges if

p @ 1 and converges if p > 1. This can also be shown in other ways [see Problem 11.13(a)].

11.7. Test for convergence or divergence
X

1

n¼1

ln n

2n3 � 1
.

Since ln n < n and
1

2n3 � 1
@

1

n3
; we have

ln n

2n3 � 1
@

n

n3
¼ 1

n2
:

Then the given series converges, since
X

1

n¼1

1

n2
converges.

11.8. Let un and vn be positive. If lim
n!1

un
vn

¼ constant A 6¼ 0, prove that �un converges or diverges

according as �vn converges or diverges.

By hypothesis, given � > 0 we can choose an integer N such that
un
vn

� A

























< � for all n > N. Then for
n ¼ N þ 1;N þ 2; . . .

�� < un
vn

� A < � or ðA� �Þvn < un < ðAþ �Þvn ð1Þ

Summing from N þ 1 to 1 (more precisely from N þ 1 to M and then letting M ! 1),

ðA� �Þ
X

1

Nþ1

vn @
X

1

Nþ1

un @ ðAþ �Þ
X

1

Nþ1

vn ð2Þ

There is no loss in generality in assuming A� � > 0. Then from the right-hand inequality of (2), �un
converges when �vn does. From the left-hand inequality of (2), �un diverges when �vn does. For the cases
A ¼ 0 or A ¼ 1, see Problem 11.66.
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11.9. Test for convergence; (a)
X

1

n¼1

4n2 � nþ 3

n3 þ 2n
; ðbÞ

X

1

n¼1

nþ ffiffiffi

n
p

2n3 � 1
; ðcÞ

X

1

n¼1

ln n

n2 þ 3
.

(a) For large n,
4n2 � nþ 3

n3 þ 2n
is approximately

4n2

n3
¼ 4

n
. Taking un ¼

4n2 � nþ 3

n3 þ 2n
and vn ¼

4

n
, we have

lim
n!1

un
vn

¼ 1.

Since �vn ¼ 4�1=n diverges, �un also diverges by Problem 11.8.

Note that the purpose of considering the behavior of un for large n is to obtain an appropriate
comparison series vn. In the above we could just as well have taken vn ¼ 1=n.

Another method: lim
n!1 n

4n2 � nþ 3

n3 þ 2n

 !

¼ 4. Then by Theorem 1, Page 267, the series converges.

(b) For large n, un ¼
nþ ffiffiffi

n
p

2n3 � 1
is approximately vn ¼

n

2n3
¼ 1

2n2
.

Since lim
n!1

un
vn

¼ 1 and
X

vn ¼
1

2

X 1

n2
converges ( p series with p ¼ 2), the given series converges.

Another method: lim
n!1 n2

nþ ffiffiffi

n
p

2n3 � 1

� �

¼ 1

2
. Then by Theorem 1, Page 267, the series converges.

(c) lim
n!1 n3=2

ln n

n2 þ 3

� �

@ lim
n!1 n3=2

ln n

n2

� �

¼ lim
n!1

ln n
ffiffiffi

n
p ¼ 0 (by L’Hospital’s rule or otherwise). Then by

Theorem 1 with p ¼ 3=2, the series converges.

Note that the method of Problem 11.6(a) yields
ln n

n2 þ 3
<

n

n2
¼ 1

n
, but nothing can be deduced since

�1=n diverges.

11.10. Examine for convergence: (a)
X

1

n¼1

e�n2 ; ðbÞ
X

1

n¼1

sin3
1

n

� �

.

(a) lim
n!1 n2e�n2 ¼ 0 (by L’Hospital’s rule or otherwise). Then by Theorem 1 with p ¼ 2, the series con-

verges.

(b) For large n, sinð1=nÞ is approximately 1=n. This leads to consideration of

lim
n!1 n3 sin3

1

n

� �

¼ lim
n!1

sinð1=nÞ
1=n

� �3

¼ 1

from which we deduce, by Theorem 1 with p ¼ 3, that the given series converges.

INTEGRAL TEST

11.11. Establish the integral test (see Page 267).

We perform the proof taking N ¼ 1. Modifications are easily made if N > 1.

From the monotonicity of f ðxÞ, we have

unþ1 ¼ f ðnþ 1Þ @ f ðxÞ @ f ðnÞ ¼ un n ¼ 1; 2; 3; . . .

Integrating from x ¼ n to x ¼ nþ 1, using Property 7, Page 92,

unþ1 @
ðnþ1

n

f ðxÞ dx @ un n ¼ 1; 2; 3 . . .

Summing from n ¼ 1 to M � 1,

u2 þ u3 þ � � � þ uM @
ðM

1

f ðxÞ dx @ u1 þ u2 þ � � � þ uM�1 ð1Þ

If f ðxÞ is strictly decreasing, the equality signs in (1) can be omitted.
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If lim
M!1

ðM

1

f ðxÞ dx exists and is equal to S, we see from the left-hand inequality in (1) that

u2 þ u3 þ � � � þ uM is monotonic increasing and bounded above by S, so that �un converges.

If lim
M!1

ðM

1

f ðxÞ dx is unbounded, we see from the right-hand inequality in (1) that �un diverges.

Thus the proof is complete.

11.12. Illustrate geometrically the proof in Problem
11.11.

Geometrically, u2 þ u3 þ � � � þ uM is the total area
of the rectangles shown shaded in Fig. 11-3, while
u1 þ u2 þ � � � þ uM�1 is the total area of the rectangles

which are shaded and nonshaded.
The area under the curve y ¼ f ðxÞ from x ¼ 1 to

x ¼ M is intermediate in value between the two areas

given above, thus illustrating the result (1) of Problem
11.11.

11.13. Test for convergence: (a)
X

1

1

1

nP
; p ¼ constant;

ðbÞ
X

1

1

n

n2 þ 1
; ðcÞ

X

1

2

1

n ln n
; ðdÞ

X

1

1

ne�n2 .

ðaÞ Consider

ðM

1

dx

xp
¼
ðM

1

x�p dx ¼ x1�p

1� p













M

1

¼ M1�p � 1

1� p
where p 6¼ 1:

If p < 1; lim
M!1

M1�p � 1

1� p
¼ 1, so that the integral and thus the series diverges.

If p > 1; lim
M!1

M1�p � 1

1� p
¼ 1

p� 1
, so that the integral and thus the series converges.

If p ¼ 1,

ðM

1

dx

xp
¼
ðM

1

dx

x
¼ lnM and lim

M!1
lnM ¼ 1, so that the integral and thus the series

diverges.

Thus, the series converges if p > 1 and diverges if p @ 1.

ðbÞ lim
M!1

ðM

1

x dx

x2 þ 1
¼ lim

M!1
1
2 lnðx2 þ 1ÞjM1 ¼ lim

M!1
1
2 lnðM2 þ 1Þ � 1

2 ln 2
� � ¼ 1 and the series diverges.

ðcÞ lim
M!1

ðM

2

dx

x lnx
¼ lim

M!1
lnðlnxÞjM2 ¼ lim

M!1
flnðlnMÞ � lnðln 2Þg ¼ 1 and the series diverges.

ðdÞ lim
M!1

ðM

1

xe�x2 dx ¼ lim
M!1

� 1
2 e

�x2 jM1 ¼ lim
M!1

1
2 e

�1 � 1
2 e

�M2
n o

¼ 1
2 e

�1 and the series converges.

Note that when the series converges, the value of the corresponding integral is not (in general) the

same as the sum of the series. However, the approximate sum of a series can often be obtained quite
accurately by using integrals. See Problem 11.74.

11.14. Prove that
�

4
<
X

1

n¼1

1

n2 þ 1
<

1

2
þ �

4
.
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From Problem 11.11 it follows that

lim
M!1

X

M

n¼2

1

n2 þ 1
< lim

M!1

ðM

1

dx

x2 þ 1
< lim

M!1

X

M�1

n¼1

1

n2 þ 1

i.e.,
X

1

n¼2

1

n2 þ 1
<
�

4
<
X

1

n¼1

1

n2 þ 1
, from which

�

4
<
X

1

n¼1

1

n2 þ 1
as required.

Since
X

1

n¼2

1

n2 þ 1
<
�

4
, we obtain, on adding 1

2 to each side,
X

1

n¼1

1

n2 þ 1
<

1

2
þ �

4
:

The required result is therefore proved.

ALTERNATING SERIES

11.15. Given the alternating series a1 � a2 þ a3 � a4 þ � � � where 0 @ anþ1 @ an and where lim
n!1 an ¼ 0.

Prove that (a) the series converges, (b) the error made in stopping at any term is not greater
than the absolute value of the next term.

(a) The sum of the series to 2M terms is

S2M ¼ ða1 � a2Þ þ ða3 � a4Þ þ � � � þ ða2M�1 � a2MÞ
¼ a1 � ða2 � a3Þ � ða4 � a5Þ � � � � � ða2M�2 � a2M�1Þ � a2M

Since the quantities in parentheses are non-negative, we have

S2M A 0; S2 @ S4 @ S6 @ S8 @ � � � @ S2M @ a1

Therefore, fS2Mg is a bounded monotonic increasing sequence and thus has limit S.
Also, S2Mþ1 ¼ S2M þ a2Mþ1. Since lim

M!1
S2M ¼ S and lim

M!1
a2Mþ1 ¼ 0 (for, by hypothesis,

lim
n!1 an ¼ 0), it follows that lim

M!1
S2Mþ1 ¼ lim

M!1
S2M þ lim

M!1
a2Mþ1 ¼ S þ 0 ¼ S.

Thus, the partial sums of the series approach the limit S and the series converges.

(b) The error made in stopping after 2M terms is

ða2Mþ1 � a2Mþ2Þ þ ða2Mþ3 � a2Mþ4Þ þ � � � ¼ a2Mþ1 � ða2Mþ2 � a2Mþ3Þ � � � �
and is thus non-negative and less than or equal to a2Mþ1, the first term which is omitted.

Similarly, the error made in stopping after 2M þ 1 terms is

�a2Mþ2 þ ða2Mþ3 � a2Mþ4Þ þ � � � ¼ �ða2Mþ2 � a2Mþ3Þ � ða2Mþ4 � a2Mþ5Þ � � � �
which is non-positive and greater than �a2Mþ2.

11.16. (a) Prove that the series
X

1

n¼1

ð�1Þnþ1

2n� 1
converges. (b) Find the maximum error made in approx-

imating the sum by the first 8 terms and the first 9 terms of the series. (c) How many terms of the
series are needed in order to obtain an error which does not exceed .001 in absolute value?

(a) The series is 1� 1
3 þ 1

5 � 1
7 þ 1

9 � � � � . If un ¼
ð�1Þnþ1

2n� 1
, then an ¼ junj ¼

1

2n� 1
, anþ1 ¼ junþ1j ¼

1

2nþ 1
.

Since
1

2nþ 1
@

1

2n� 1
and since lim

n!1
1

2n� 1
¼ 0, it follows by Problem 11.5(a) that the series

converges.

(b) Use the results of Problem 11.15(b). Then the first 8 terms give 1� 1
3 þ 1

5 � 1
7 þ 1

9 � 1
11 þ 1

13 � 1
15 and the

error is positive and does not exceed 1
17.

Similarly, the first 9 terms are 1� 1
3 þ 1

5 � 1
7 þ 1

9 � 1
11 þ 1

13 � 1
15 þ 1

17 and the error is negative and

greater than or equal to � 1
19, i.e., the error does not exceed 1

19 in absolute value.
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(c) The absolute value of the error made in stopping after M terms is less than 1=ð2M þ 1Þ. To obtain the

desired accuracy, we must have 1=ð2M þ 1Þ @ :001, from which M A 499:5. Thus, at least 500 terms
are needed.

ABSOLUTE AND CONDITIONAL CONVERGENCE

11.17. Prove that an absolutely convergent series is convergent.

Given that �junj converges, we must show that �un converges.
Let SM ¼ u1 þ u2 þ � � � þ uM and TM ¼ ju1j þ ju2j þ � � � þ juM j. Then

SM þ TM ¼ ðu1 þ ju1jÞ þ ðu2 þ ju2jÞ þ � � � þ ðuM þ juM jÞ
@ 2ju1j þ 2ju2j þ � � � þ 2juM j

Since �junj converges and since un þ junj A 0, for n ¼ 1; 2; 3; . . . ; it follows that SM þ TM is a bounded

monotonic increasing sequence, and so lim
M!1

ðSM þ TMÞ exists.
Also, since lim

M!1
TM exists (since the series is absolutely convergent by hypothesis),

lim
M!1

SM ¼ lim
M!1

ðSM þ TM � TMÞ ¼ lim
M!1

ðSM þ TMÞ � lim
M!1

TM

must also exist and the result is proved.

11.18. Investigate the convergence of the series
sin

ffiffiffi

1
p

13=2
� sin

ffiffiffi

2
p

23=2
þ sin

ffiffiffi

3
p

33=2
� � � � .

Since each term is in absolute value less than or equal to the corresponding term of the series
1

13=2
þ 1

23=2
þ 1

33=2
þ � � � , which converges, it follows that the given series is absolutely convergent and

hence convergent by Problem 11.17.

11.19. Examine for convergence and absolute convergence:

ðaÞ
X

1

n¼1

ð�1Þn�1n

n2 þ 1
; ðbÞ

X

1

n¼2

ð�1Þn�1

n ln2 n
; ðcÞ

X

1

n¼1

ð�1Þn�12n

n2
:

(a) The series of absolute values is
X

1

n¼1

n

n2 þ 1
which is divergent by Problem 11.13(b). Hence, the given

series is not absolutely convergent.

However, if an ¼ junj ¼
n

n2 þ 1
and anþ1 ¼ junþ1j ¼

nþ 1

ðnþ 1Þ2 þ 1
, then anþ1 @ an for all n A 1, and

also lim
n!1 an ¼ lim

n!1
n

n2 þ 1
¼ 0. Hence, by Problem 11.15 the series converges.

Since the series converges but is not absolutely convergent, it is conditionally convergent.

(b) The series of absolute values is
X

1

n¼2

1

n ln2 n
.

By the integral test, this series converges or diverges according as lim
M!1

ðM

2

dx

x ln2 x
exists or does not

exist.

If u ¼ ln x;

ð

dx

x ln2 x
¼
ð

du

u2
¼ � 1

u
þ c ¼ � 1

lnx
þ c:

Hence, lim
M!1

ðM

2

dx

x ln2 x
¼ lim

M!1
1

ln 2
� 1

lnM

� �

¼ 1

ln 2
and the integral exists. Thus, the series

converges.

Then
X

1

n¼2

ð�1Þn�1

n ln2 n
converges absolutely and thus converges.
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Another method:

Since
1

ðnþ 1Þ ln2ðnþ 1Þ @
1

n ln2 n
and lim

n!1
1

n ln2 n
¼ 0, it follows by Problem 11.15(a), that the

given alternating series converges. To examine its absolute convergence, we must proceed as above.

(c) Since lim
n!1 un 6¼ 0 where un ¼

ð�1Þn�12n

n2
, the given series cannot be convergent. To show that

lim
n!1 un 6¼ 0, it suffices to show that lim

n!1 junj ¼ lim
n!1

2n

n2
6¼ 0. This can be accomplished by L’Hospital’s

rule or other methods [see Problem 11.21(b)].

RATIO TEST

11.20. Establish the ratio test for convergence.

Consider first the series u1 þ u2 þ u3 þ � � � where each term is non-negative. We must prove that if

lim
n!1

unþ1

un
¼ L < 1, then necessarily �un converges.

By hypothesis, we can choose an integer N so large that for all n A N, ðunþ1=unÞ < r where L < r < 1.

Then

uNþ1 < r uN

uNþ2 < r uNþ1 < r2 uN

uNþ3 < r uNþ2 < r3 uN

etc. By addition,

uNþ1 þ uNþ2 þ � � � < uNðrþ r2 þ r3 þ � � �Þ
and so the given series converges by the comparison test, since 0 < r < 1.

In case the series has terms with mixed signs, we consider ju1j þ ju2j þ ju3j þ � � � . Then by the above

proof and Problem 11.17, it follows that if lim
n!1

unþ1

un

























¼ L < 1, then �un converges (absolutely).

Similarly, we can prove that if lim
n!1

unþ1

un

























¼ L > 1 the series �un diverges, while if lim
n!1

unþ1

un

























¼ L ¼ 1

the ratio test fails [see Problem 11.21(c)].

11.21. Investigate the convergence of (a)
X

1

n¼1

n4e�n2 ; ðbÞ
X

1

n¼1

ð�1Þn�12n

n2
; ðcÞ

X

1

n¼1

ð�1Þn�1n

n2 þ 1
.

(a) Here un ¼ n4e�n2 . Then

lim
n!1

unþ1

un

























¼ lim
n!1

ðnþ 1Þ4e�ðnþ1Þ2

n4 e�n2































¼ lim
n!1

ðnþ 1Þ4 e�ðn2þ2nþ1Þ

n4 e�n2

¼ lim
n!1

nþ 1

n

� �4

e�2n�1 ¼ lim
n!1

nþ 1

n

� �4

lim
n!1 e�2n�1 ¼ 1 � 0 ¼ 0

Since 0 < 1, the series converges.

(b) Here un ¼
ð�1Þn�12n

n2
. Then

lim
n!1

unþ1

un

























¼ lim
n!1

ð�1Þn2nþ1

ðnþ 1Þ2 � n2

ð�1Þn�12n































¼ lim
n!1

2n2

ðnþ 1Þ2 ¼ 2

Since s > 1, the series diverges. Compare Problem 11.19(c).

(c) Here un ¼
ð�1Þn�1n

n2 þ 1
. Then
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lim
n!1

unþ1

un

























¼ lim
n!1

ð�1Þnðnþ 1Þ
ðnþ 1Þ2 þ 1

� n2 þ 1

ð�1Þn�1n































¼ lim
n!1

ðnþ 1Þðn2 þ 1Þ
ðn2 þ 2nþ 2Þn ¼ 1

and the ratio test fails. By using other tests [see Problem 11.19(a)], the series is seen to be convergent.

MISCELLANEOUS TESTS

11.22. Test for convergence 1þ 2rþ r2 þ 2r3 þ r4 þ 2r5 þ � � � where (a) r ¼ 2=3, (b) r ¼ �2=3,
(c) r ¼ 4=3.

Here the ratio test is inapplicable, since
unþ1

un

























¼ 2jrj or 1
2 jrj depending on whether n is odd or even.

However, using the nth root test, we have

ffiffiffiffiffiffiffiffi

junjn
p

¼
ffiffiffiffiffiffiffiffiffi

2jrnjn
p ¼ ffiffiffi

2n
p jrj if n is odd

ffiffiffiffiffiffiffijrnjn
p ¼ jrj if n is even

(

Then lim
n!1

ffiffiffiffiffiffiffiffi

junjn
p

¼ jrj (since lim
n!1 21=n ¼ 1).

Thus, if jrj < 1 the series converges, and if jrj > 1 the series diverges.

Hence, the series converges for cases (a) and (b), and diverges in case (c).

11.23. Test for convergence
1

3

� �2

þ 1 � 4
3 � 6
� �2

þ 1 � 4 � 7
3 � 6 � 9
� �2

þ � � � þ 1 � 4 � 7 . . . ð3n� 2Þ
3 � 6 � 9 . . . ð3nÞ

� �2

þ � � � .

The ratio test fails since lim
n!1

unþ1

un

























¼ lim
n!1

3nþ 1

3nþ 3

� �2

¼ 1. However, by Raabe’s test,

lim
n!1 n 1� unþ1

un

























� �

¼ lim
n!1 n 1� 3nþ 1

3nþ 3

� �2
( )

¼ 4

3
> 1

and so the series converges.

11.24. Test for convergence
1

2

� �2

þ 1 � 3
2 � 4
� �2

þ 1 � 3 � 5
24t

� �2

þ � � � þ 1 � 3 � 5 . . . ð2n� 1Þ
2 � 4 � 6 . . . ð2nÞ

� �2

þ � � � .

The ratio test fails since lim
n!1

unþ1

un

























¼ lim
n!1

2nþ 1

2nþ 2

� �2

¼ 1. Also, Raabe’s test fails since

lim
n!1 n 1� unþ1

un

























� �

¼ lim
n!1 n 1� 2nþ 1

2nþ 2

� �2
( )

¼ 1

However, using long division,

unþ1

un

























¼ 2nþ 1

2nþ 2

� �2

¼ 1� 1

n
þ 5� 4=n

4n2 þ 8nþ 4
¼ 1� 1

n
þ cn
n2

where jcnj < P

so that the series diverges by Gauss’ test.

CHAP. 11] INFINITE SERIES 285



SERIES OF FUNCTIONS

11.25. For what values of x do the following series converge?

ðaÞ
X

1

n¼1

xn�1

n � 3n ; ðbÞ
X

1

n¼1

ð�1Þn�1x2n�1

ð2n� 1Þ! ; ðcÞ
X

1

n¼1

n!ðx� aÞn; ðdÞ
X

1

n¼1

nðx� 1Þn
2nð3n� 1Þ :

(a) un ¼
xn�1

n � 3n. Assuming x 6¼ 0 (if x ¼ 0 the series converges), we have

lim
n!1

unþ1

un

























¼ lim
n!1

xn

ðnþ 1Þ � 3nþ1
� n � 3

n

xn�1

























¼ lim
n!1

n

3ðnþ 1Þ jxj ¼
jxj
3

Then the series converges if
jxj
3
< 1, and diverges if

jxj
3
> 1. If

jxj
3

¼ 1, i.e., x ¼ �3, the test fails.

If x ¼ 3 the series becomes
X

1

n¼1

1

3n
¼ 1

3

X

1

n¼1

1

n
, which diverges.

If x ¼ �3 the series becomes
X

1

n¼1

ð�1Þn�1

3n
¼ 1

3

X

1

n¼1

ð�1Þn�1

n
, which converges.

Then the interval of convergence is �3 @ x < 3. The series diverges outisde this interval.

Note that the series converges absolutely for �3 < x < 3. At x ¼ �3 the series converges con-
ditionally.

(b) Proceed as in part (a) with un ¼
ð�1Þn�1x2n�1

ð2n� 1Þ! . Then

lim
n!1

unþ1

un

























¼ lim
n!1

ð�1Þnx2nþ1

ð2nþ 1Þ! � ð2n� 1Þ!
ð�1Þn�1x2n�1































¼ lim
n!1

ð2n� 1Þ!
ð2nþ 1Þ! x

2

¼ lim
n!1

ð2n� 1Þ!
ð2nþ 1Þð2nÞð2n� 1Þ! x

2 ¼ lim
n!1

x2

ð2nþ 1Þð2nÞ ¼ 0

Then the series converges (absolutely) for all x, i.e., the interval of (absolute) convergence is
�1 < x <1.

ðcÞ un ¼ n!ðx� aÞn; lim
n!1

unþ1

un

























¼ lim
n!1

ðnþ 1Þ!ðx� aÞnþ1

n!ðx� aÞn






























¼ lim
n!1ðnþ 1Þjx� aj:

This limit is infinite if x 6¼ a. Then the series converges only for x ¼ a.

ðdÞ un ¼
nðx� 1Þn
2nð3n� 1Þ ; unþ1 ¼

ðnþ 1Þðx� 1Þnþ1

2nþ1ð3nþ 2Þ : Then

lim
n!1

unþ1

un

























¼ lim
n!1

ðnþ 1Þð3n� 1Þðx� 1Þ
2nð3nþ 2Þ

























¼ x� 1

2

























¼ jx� 1j
2

Thus, the series converges for jx� 1j < 2 and diverges for jx� 1j > 2.

The test fails for jx� 1j ¼ 2, i.e., x� 1 ¼ �2 or x ¼ 3 and x ¼ �1.

For x ¼ 3 the series becomes
X

1

n¼1

n

3n� 1
, which diverges since the nth term does not approach zero.

For x ¼ �1 the series becomes
X

1

n¼1

ð�1Þnn
3n� 1

, which also diverges since the nth term does not

approach zero.

Then the series converges only for jx� 1j < 2, i.e., �2 < x� 1 < 2 or �1 < x < 3.
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11.26. For what values of x does (a)
X

1

n¼1

1

2n� 1

xþ 2

x� 1

� �n

; ðbÞ
X

1

n¼1

1

ðxþ nÞðxþ n� 1Þ converge?

ðaÞ un ¼
1

2n� 1

xþ 2

x� 1

� �n

: Then lim
n!1

unþ1

un

























¼ lim
n!1

2n� 1

2nþ 1

xþ 2

x� 1

























¼ xþ 2

x� 1

























if x 6¼ 1;�2:

Then the series converges if
xþ 2

x� 1

























< 1, diverges if
xþ 2

x� 1

























> 1, and the test fails if
xþ 2

x� 1

























¼ 1, i.e.,

x ¼ � 1
2.

If x ¼ 1 the series diverges.

If x ¼ �2 the series converges.

If x� 1
2 the series is

X

1

n¼1

ð�1Þn
2n� 1

which converges.

Thus, the series converges for
xþ 2

x� 1

























< 1, x ¼ � 1
2 and x ¼ �2, i.e., for x @ � 1

2.

(b) The ratio test fails since lim
n!1

unþ1

un

























¼ 1, where un ¼
1

ðxþ nÞðxþ n� 1Þ : However, noting that

1

ðxþ nÞðxþ n� 1Þ ¼
1

xþ n� 1
� 1

xþ n

we see that if x 6¼ 0;�1;�2; . . . ;�n,

Sn ¼ u1 þ u2 þ � � � þ un ¼
1

x
� 1

xþ 1

� �

þ 1

xþ 1
� 1

xþ 2

� �

þ � � � þ 1

xþ n� 1
� 1

xþ n

� �

¼ 1

x
� 1

xþ n

and lim
n!1Sn ¼ 1=x, provided x 6¼ 0;�1;�2;�3; . . . .

Then the series converges for all x except x ¼ 0;�1;�2;�3; . . . ; and its sum is 1=x.

UNIFORM CONVERGENCE

11.27. Find the domain of convergence of ð1� xÞ þ xð1� xÞ þ x2ð1� xÞ þ � � � .
Method 1:

Sum of first n terms ¼ SnðxÞ ¼ ð1� xÞ þ xð1� xÞ þ x2ð1� xÞ þ � � � þ xn�1ð1� xÞ
¼ 1� xþ x� x2 þ x2 þ � � � þ xn�1 � xn

¼ 1� xn

If jxj < 1, lim
n!1SnðxÞ ¼ lim

n!1ð1� xnÞ ¼ 1.

If jxj > 1, lim
n!1SnðxÞ does not exist.

If x ¼ 1;SnðxÞ ¼ 0 and lim
n!1SnðxÞ ¼ 0.

If x ¼ �1;SnðxÞ ¼ 1� ð�1Þn and lim
n!1SnðxÞ does not exist.

Thus, the series converges for jxj < 1 and x ¼ 1, i.e., for �1 < x @ 1.

Method 2, using the ratio test.
The series converges if x ¼ 1. If x 6¼ 1 and un ¼ xn�1ð1� xÞ, then lim

n!1
unþ1

un

























¼ lim
n!1 jxj.

Thus, the series converges if jxj < 1, diverges if jxj > 1. The test fails if jxj ¼ 1. If x ¼ 1, the series
converges; if x ¼ �1, the series diverges. Then the series converges for �1 < x @ 1:

11.28. Investigate the uniform convergence of the series of Problem 11.27 in the interval
(a) � 1

2 < x < 1
2, (b) � 1

2 @ x @ 1
2, ðcÞ � :99 @ x @ :99; ðdÞ � 1 < x < 1,

ðeÞ 0 @ x < 2.
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(a) By Problem 11.27, SnðxÞ ¼ 1� xn;SðxÞ ¼ lim
n!1SnðxÞ ¼ 1 if � 1

2 < x < 1
2; thus, the series converges in this

interval. We have

Remainder after n terms ¼ RnðxÞ ¼ SðxÞ � SnðxÞ ¼ 1� ð1� xnÞ ¼ xn

The series is uniformly convergent in the interval if given any � > 0 we can find N dependent on �,
but not on x, such that jRnðxÞj < � for all n > N. Now

jRnðxÞj ¼ jxnj ¼ jxjn < � when n ln jxj < ln � or n >
ln �

ln jxj

since division by ln jxj (which is negative since jxj < 1
2) reverses the sense of the inequality.

But if jxj < 1
2 ; ln jxj < ln ð12Þ, and n >

ln �

ln jxj >
ln �

lnð12Þ
¼ N. Thus, since N is independent of x, the

series is uniformly convergent in the interval.

(b) In this case jxj @ 1
2 ; ln jxj @ ln ð12Þ; and n >

ln �

ln jxj A
ln �

lnð12Þ
¼ N, so that the series is also uniformly

convergent in � 1
2 @ x @ 1

2 :

(c) Reasoning similar to the above, with 1
2 replaced by .99, shows that the series is uniformly convergent in

�:99 @ x @ :99.

(d) The arguments used above break down in this case, since
ln �

ln jxj can be made larger than any positive

number by choosing jxj sufficiently close to 1. Thus, no N exists and it follows that the series is not
uniformly convergent in �1 < x < 1.

(e) Since the series does not even converge at all points in this interval, it cannot converge uniformly in the

interval.

11.29. Discuss the continuity of the sum function SðxÞ ¼ lim
n!1SnðxÞ of Problem 11.27 for the interval

0 @ x @ 1.

If 0 @ x < 1;SðxÞ ¼ lim
n!1SnðxÞ ¼ lim

n!1ð1� xnÞ ¼ 1.

If x ¼ 1;SnðxÞ ¼ 0 and SðxÞ ¼ 0.

Thus, SðxÞ ¼ 1 if 0 @ x < 1
0 if x ¼ 1

�

and SðxÞ is discontinuous at x ¼ 1 but continuous at all other points in
0 @ x < 1.

In Problem 11.34 it is shown that if a series is uniformly convergent in an interval, the sum function SðxÞ
must be continuous in the interval. It follows that if the sum function is not continuous in an interval, the

series cannot be uniformly convergent. This fact is often used to demonstrate the nonuniform convergence
of a series (or sequence).

11.30. Investigate the uniform convergence of x2 þ x2

1þ x2
þ x2

ð1þ x2Þ2 þ � � � þ x2

ð1þ x2Þn þ � � � .

Suppose x 6¼ 0. Then the series is a geometric series with ratio 1=ð1þ x2Þ whose sum is (see Problem

2.25, Chap. 2).

SðxÞ ¼ x2

1� 1=ð1þ x2Þ ¼ 1þ x2

If x ¼ 0 the sum of the first n terms is Snð0Þ ¼ 0; hence Sð0Þ ¼ lim
n!1Snð0Þ ¼ 0.

Since lim
x!0

SðxÞ ¼ 1 6¼ Sð0Þ, SðxÞ is discontinuous at x ¼ 0. Then by Problem 11.34, the series cannot be

uniformly convergent in any interval which includes x ¼ 0, although it is (absolutely) convergent in any

interval. However, it is uniformly convergent in any interval which excludes x ¼ 0.

This can also be shown directly (see Problem 11.93).
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WEIERSTRASS M TEST

11.31. Prove the Weierstrass M test, i.e., if junðxÞj @ Mn; n ¼ 1; 2; 3; . . . ; where Mn are positive
constants such that �Mn converges, then �unðxÞ is uniformly (and absolutely) convergent.

The remainder of the series �unðxÞ after n terms is RnðxÞ ¼ unþ1ðxÞ þ unþ2ðxÞ þ � � � . Now

jRnðxÞj ¼ junþ1ðxÞ þ unþ2ðxÞ þ � � � j @ junþ1ðxÞj þ junþ2ðxÞj þ � � � @ Mnþ1 þMnþ2 þ � � �
But Mnþ1 þMnþ2 þ � � � can be made less than � by choosing n > N, since �Mn converges. Since N is clearly
independent of x, we have jRnðxÞj < � for n > N, and the series is uniformly convergent. The absolute
convergence follows at once from the comparison test.

11.32. Test for uniform convergence:

ðaÞ
X

1

n¼1

cos nx

n4
; ðbÞ

X

1

n¼1

xn

n3=2
; ðcÞ

X

1

n¼1

sin nx

n
; ðdÞ

X

1

n¼1

1

n2 þ x2
:

(a)
cos nx

n4

























@
1

n4
¼ Mn. Then since �Mn converges ð p series with p ¼ 4 > 1Þ, the series is uniformly (and

absolutely) convergent for all x by the M test.

(b) By the ratio test, the series converges in the interval �1 @ x @ 1, i.e., jxj @ 1.

For all x in this interval,
xn

n3=2

























¼ jxjn
n3=2

@
1

n3=2
. Choosing Mn ¼

1

n3=2
, we see that �Mn converges.

Thus, the given series converges uniformly for �1 @ x @ 1 by the M test.

(c)
sin nx

n

























@
1

n
. However, �Mn, where Mn ¼

1

n
, does not converge. The M test cannot be used in this

case and we cannot conclude anything about the uniform convergence by this test (see, however,

Problem 11.125).

(d)
1

n2 þ x2

























@
1

n2
, and �

1

n2
converges. Then by the M test the given series converges uniformly for all x.

11.33. If a power series �anx
n converges for x ¼ x0, prove that it converges (a) absolutely in the

interval jxj < jx0j, (b) uniformly in the interval jxj @ jx1j; where jx1j < jx0j.
(a) Since �anx

n
0 converges, lim

n!1 anx
n
0 ¼ 0 and so we can make janxn0j < 1 by choosing n large enough, i.e.,

janj <
1

jx0jn
for n > N. Then

X

1

Nþ1

janxnj ¼
X

1

Nþ1

janjjxjn <
X

1

Nþ1

jxjn
jx0jn

ð1Þ

Since the last series in (1) converges for jxj < jx0j, it follows by the comparison test that the first
series converges, i.e., the given series is absolutely convergent.

(b) Let Mn ¼
jx1jn
jx0jn

. Then �Mn converges since jx1j < jx0j. As in part (a), janxnj <Mn for jxj @ jx1j, so
that by the Weierstrass M test, �anx

n is uniformly convergent.

It follows that a power series is uniformly convergent in any interval within its interval of con-
vergence.

THEOREMS ON UNIFORM CONVERGENCE

11.34. Prove Theorem 6, Page 271.

We must show that SðxÞ is continuous in ½a; b�.
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Now SðxÞ ¼ SnðxÞ þ RnðxÞ, so that Sðxþ hÞ ¼ Snðxþ hÞ þ Rnðxþ hÞ and thus

Sðxþ hÞ � SðxÞ ¼ Snðxþ hÞ � SnðxÞ þ Rnðxþ hÞ � RnðxÞ ð1Þ
where we choose h so that both x and xþ h lie in ½a; b� (if x ¼ b, for example, this will require h < 0).

Since SnðxÞ is a sum of finite number of continuous functions, it must also be continuous. Then given
� > 0, we can find � so that

jSnðxþ hÞ � SnðxÞj < �=3 whenever jhj < � ð2Þ
Since the series, by hypothesis, is uniformly convergent, we can choose N so that

jRnðxÞj < �=3 and jRnðxþ hÞj < �=3 for n > N ð3Þ
Then from (1), (2), and (3),

jSðxþ hÞ � SðxÞj @ jSnðxþ hÞ � SnðxÞj þ jRnðxþ hÞj þ jRnðxÞj < �

for jhj < �, and so the continuity is established.

11.35. Prove Theorem 7, Page 271.

If a function is continuous in ½a; b�, its integral exists. Then since SðxÞ;SnðxÞ, and RnðxÞ are continuous,
ðb

a

SðxÞ ¼
ðb

a

SnðxÞ dxþ
ðb

a

RnðxÞ dx

To prove the theorem we must show that

ðb

a

SðxÞ dx�
ðb

a

SnðxÞ dx






























¼
ðb

a

RnðxÞ dx






























can be made arbitrarily small by choosing n large enough. This, however, follows at once, since by the

uniform convergence of the series we can make jRnðxÞj < �=ðb� aÞ for n > N independent of x in ½a; b�, and
so

ðb

a

RnðxÞ dx






























@
ðb

a

jRnðxÞj dx <
ðb

a

�

b� a
dx ¼ �

This is equivalent to the statements

ðb

a

SðxÞ dx ¼ lim
n!1

ðb

a

SnðxÞ dx or lim
n!1

ðb

a

SnðxÞ dx ¼
ðb

a

lim
n!1SnðxÞ
n o

dx

11.36. Prove Theorem 8, Page 271.

Let gðxÞ ¼
X

1

n¼1

u 0
nðxÞ. Since, by hypothesis, this series converges uniformly in ½a; b�, we can integrate

term by term (by Problem 11.35) to obtain

ðx

a

gðxÞ dx ¼
X

1

n¼1

ðx

a

u 0
nðxÞ dx ¼

X

1

n¼1

funðxÞ � unðaÞg

¼
X

1

n¼1

unðxÞ �
X

1

n¼1

unðaÞ ¼ SðxÞ � SðaÞ

because, by hypothesis,
X

1

n¼1

unðxÞ converges to SðxÞ in ½a; b�.

Differentiating both sides of

ðx

a

gðxÞ dx ¼ SðxÞ � SðaÞ then shows that gðxÞ ¼ S 0ðxÞ, which proves the
theorem.
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11.37. Let SnðxÞ ¼ nxe�nx2 ; n ¼ 1; 2; 3; . . . ; 0 @ x @ 1.

ðaÞ Determine whether lim
n!1

ð1

0

SnðxÞ dx ¼
ð1

0

lim
n!1SnðxÞ dx:

ðbÞ Explain the result in (aÞ:

ðaÞ
ð1

0

snðxÞ dx ¼
ð1

0

nxe�nx2 dx ¼ � 1
2 e

�nx2 j10 ¼ 1
2 ð1� e�nÞ: Then

lim
n!1

ð1

0

SnðxÞ dx ¼ lim
n!1

1
2 ð1� e�nÞ ¼ 1

2

SðxÞ ¼ lim
n!1SnðxÞ ¼ lim

n!1 nxe�nx2 ¼ 0; whether x ¼ 0 or 0 < x @ 1: Then,

ð1

0

SðxÞ dx ¼ 0

It follows that lim
n!1

ð1

0

SnðxÞ dx 6¼
ð1

0

lim
n!1SnðxÞ dx, i.e., the limit cannot be taken under the integral

sign.

(b) The reason for the result in (a) is that although the sequence SnðxÞ converges to 0, it does not converge

uniformly to 0. To show this, observe that the function nxe�nx2 has a maximum at x ¼ 1=
ffiffiffiffiffi

2n
p

(by the

usual rules of elementary calculus), the value of this maximum being
ffiffiffiffiffi

1
2 n

q

e�1=2. Hence, as n ! 1,

SnðxÞ cannot be made arbitrarily small for all x and so cannot converge uniformly to 0.

11.38. Let f ðxÞ ¼
X

1

n¼1

sin nx

n3
: Prove that

ð�

0

f ðxÞ dx ¼ 2
X

1

n¼1

1

ð2n� 1Þ4.

We have
sin nx

n3

























@
1

n3
. Then by the Weierstrass M test the series is uniformly convergent for all x, in

particular 0 @ x @ �, and can be integrated term by term. Thus

ð�

0

f ðxÞ dx ¼
ð�

0

X

1

n¼1

sin nx

n3

 !

dx ¼
X

1

n¼1

ð�

0

sin nx

n3
dx

¼
X

1

n¼1

1� cos n�

n4
¼ 2

1

14
þ 1

34
þ 1

54
þ � � �

� �

¼ 2
X

1

n¼1

1

ð2n� 1Þ4

POWER SERIES

11.39. Prove that both the power series
X

1

n¼0

anx
n and the corresponding series of derivatives

X

1

n¼0

nanx
n�1

have the same radius of convergence.

Let R > 0 be the radius of convergence of �anx
n. Let 0 < jx0j < R. Then, as in Problem 11.33, we can

choose N as that janj <
1

jx0jn
for n > N.

Thus, the terms of the series �jnanxn�1j ¼ � njanjjxjn�1 can for n > N be made less than corresponding

terms of the series � n
jxjn�1

jx0jn
, which converges, by the ratio test, for jxj < jx0j < R.

Hence, �nanx
n�1 converges absolutely for all points x0 (no matter how close jx0j is to R).

If, however, jxj > R, lim
n!1 anx

n 6¼ 0 and thus lim
n!1 nanx

n�1 6¼ 0, so that �nanx
n�1 does not converge.
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Thus, R is the radius of convergence of �nanx
n�1.

Note that the series of derivatives may or may not converge for values of x such that jxj ¼ R.

11.40. Illustrate Problem 11.39 by using the series
X

1

n¼1

xn

n2 � 3n.

lim
n!1

unþ1

un

























¼ lim
n!1

xnþ1

ðnþ 1Þ2 � 3nþ1
� n

2 � 3n
xn































¼ lim
n!1

n2

3ðnþ 1Þ2 jxj ¼
jxj
3

so that the series converges for jxj < 3. At x ¼ �3 the series also converges, so that the interval of
convergence is �3 @ x @ 3.

The series of derivatives is

X

1

n¼1

nxn�1

n2 � 3n ¼
X

1

n¼1

xn�1

n � 3n

By Problem 11.25(a) this has the interval of convergence �3 @ x < 3.

The two series have the same radius of convergence, i.e., R ¼ 3, although they do not have the same

interval of convergence.

Note that the result of Problem 11.39 can also be proved by the ratio test if this test is applicable. The

proof given there, however, applies even when the test is not applicable, as in the series of Problem 11.22.

11.41. Prove that in any interval within its interval of convergence a power series
ðaÞ represents a continuous function, say, f ðxÞ,
ðbÞ can be integrated term by term to yield the integral of f ðxÞ,
ðcÞ can be differentiated term by term to yield the derivative of f ðxÞ.

We consider the power series �anx
n, although analogous results hold for �anðx� aÞn.

(a) This follows from Problem 11.33 and 11.34, and the fact that each term anx
n of the series is continuous.

(b) This follows from Problems 11.33 and 11.35, and the fact that each term anx
n of the series is continuous

and thus integrable.

(c) From Problem 11.39, the series of derivatives of a power series always converges within the interval of
convergence of the original power series and therefore is uniformly convergent within this interval.
Thus, the required result follows from Problems 11.33 and 11.36.

If a power series converges at one (or both) end points of the interval of convergence, it is possible to
establish (a) and (b) to include the end point (or end points). See Problem 11.42.

11.42. Prove Abel’s theroem that if a power series converges at an end point of its interval of conver-
gence, then the interval of uniform convergence includes this end point.

For simplicity in the proof, we assume the power series to be
X

1

k¼0

akx
k with the end point of its interval

of convergence at x ¼ 1, so that the series surely converges for 0 @ x @ 1. Then we must show that the
series converges uniformly in this interval.

Let

RnðxÞ ¼ anx
n þ anþ1x

nþ1 þ anþ2x
nþ2 þ � � � ; Rn ¼ an þ anþ1 þ anþ2 þ � � �

To prove the required result we must show that given any � > 0, we can find N such that jRnðxÞj < � for
all n > N, where N is independent of the particular x in 0 @ x @ 1.
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Now

RnðxÞ ¼ ðRn � Rnþ1Þxn þ ðRnþ1 � Rnþ2Þxnþ1 þ ðRnþ2 � Rnþ3Þxnþ2 þ � � �
¼ Rnx

n þ Rnþ1ðxnþ1 � xnÞ þ Rnþ2ðxnþ2 � xnþ1Þ þ � � �
¼ xnfRn � ð1� xÞðRnþ1 þ Rnþ2xþ Rnþ3x

2 þ � � �Þg
Hence, for 0 @ x < 1,

jRnðxÞj @ jRnj þ ð1� xÞðjRnþ1j þ jRnþ2jxþ jRnþ3jx2 þ � � �Þ ð1Þ
Since �ak converges by hypothesis, it follows that given � > 0 we can choose N such that jRkj < �=2 for

all k A n. Then for n > N we have from (1),

jRnðxÞj @
�

2
þ ð1� xÞ �

2
þ �

2
xþ �

2
x2 þ � � �

� �

¼ �

2
þ �

2
¼ � ð2Þ

since ð1� xÞð1þ xþ x2 þ x3 þ � � �Þ ¼ 1 (if 0 @ x < 1).

Also, for x ¼ 1; jRnðxÞj ¼ jRnj < � for n > N.

Thus, jRnðxÞj < � for all n > N, where N is independent of the value of x in 0 @ x @ 1, and the
required result follows.

Extensions to other power series are easily made.

11.43. Prove Abel’s limit theorem (see Page 272).

As in Problem 11.42, assume the power series to be
X

1

k¼1

akx
k, convergent for 0 @ x @ 1.

Then we must show that lim
x!1�

X

1

k¼0

akx
k ¼

X

1

k¼0

ak.

This follows at once from Problem 11.42, which shows that �akx
k is uniformly convergent for

0 @ x @ 1, and from Problem 11.34, which shows that �akx
k is continuous at x ¼ 1.

Extensions to other power series are easily made.

11.44. (a) Prove that tan�1 x ¼ x� x3

3
þ x5

5
� x7

7
þ � � � where the series is uniformly convergent in

�1 @ x @ 1.

(b) Prove that
�

4
¼ 1� 1

3
þ 1

5
� 1

7
þ � � � .

(a) By Problem 2.25 of Chapter 2, with r ¼ �x2 and a ¼ 1, we have

1

1þ x2
¼ 1� x2 þ x4 � x6 þ � � � � 1 < x < 1 ð1Þ

Integrating from 0 to x, where �1 < x < 1, yields

ðx

0

dx

1þ x2
¼ tan�1 x ¼ x� x3

3
þ x5

5
� x7

7
þ � � � ð2Þ

using Problems 11.33 and 11.35.

Since the series on the right of (2) converges for x ¼ �1, it follows by Problem 11.42 that the series
is uniformly convergent in �1 @ x @ 1 and represents tan�1 x in this interval.

(b) By Problem 11.43 and part (a), we have

lim
x!1�

tan�1 x ¼ lim
x!1�

x� x3

3
þ x5

5
� x7

7
þ � � �

 !

or
�

4
¼ 1� 1

3
þ 1

5
� 1

7
þ � � �

11.45. Evaluate

ð1

0

1� e�x2

x2
dx to 3 decimal place accuracy.
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We have eu ¼ 1þ uþ u2

2!
þ u3

3!
þ u4

4!
þ u5

5!
þ � � � ; �1 < u <1:

Then if u ¼ �x2; e�x2 ¼ 1� x2 þ x4

2!
� x6

3!
þ x8

3!
¼ x10

5!
þ � � � ; �1 < x <1:

Thus
1� e�x2

x2
¼ 1� x2

2!
þ x4

3!
� x6

4!
þ x8

5!
� � � � :

Since the series converges for all x and so, in particular, converges uniformly for 0 @ x @ 1, we can

integrate term by term to obtain

ð1

0

1� e�x2

x2
dx ¼ x� x3

3 � 2!þ
x5

5 � 3!�
x7

7 � 4!þ
x9

9 � 5!� � � �












1

0

¼ 1� 1

3 � 2!þ
1

5 � 3!�
1

7 � 4!þ
1

9 � 5!� � � �
¼ 1� 0:16666þ 0:03333� 0:00595þ 0:00092� � � � ¼ 0:862

Note that the error made in adding the first four terms of the alternating series is less than the fifth term,

i.e., less than 0.001 (see Problem 11.15).

MISCELLANEOUS PROBLEMS

11.46. Prove that y ¼ JpðxÞ defined by (16), Page 276, satisfies Bessel’s differential equation

x2y 00 þ xy 0 þ ðx2 � p2Þy ¼ 0

The series for JpðxÞ converges for all x [see Problem 11.110(a)]. Since a power series can be differ-

entiated term by term within its interval of convergence, we have for all x,

y ¼
X

1

n¼0

ð�1Þnxpþ2n

2pþ2nn!ðnþ pÞ!

y 0 ¼
X

1

n¼0

ð�1Þnð pþ 2nÞxpþ2n�1

2pþ2nn!ðnþ pÞ!

y 00 ¼
X

1

n¼0

ð�1Þnð pþ 2nÞð pþ 2n� 1Þ xpþ2n�2

2pþ2nn!ðnþ pÞ!

Then,

ðx2 � p2Þy ¼
X

1

n¼0

ð�1Þnxpþ2nþ2

2pþ2nn!ðnþ pÞ!�
X

1

n¼0

ð�1Þnp2xpþ2n

2pþ2nn!ðnþ pÞ!

xy 0 ¼
X

1

n¼0

ð�1Þnðpþ 2nÞxpþ2n

2pþ2nn!ðnþ pÞ!

x2y 00 ¼
X

1

n¼0

ð�1Þnð pþ 2nÞð pþ 2n� 1Þxpþ2n

2pþ2nn!ðnþ pÞ!
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Adding,

x2y 00 þ xy 0 þ ðx2 � p2Þy ¼
X

1

n¼0

ð�1Þnxpþ2nþ2

2pþ2nn!ðnþ pÞ!

þ
X

1

n¼0

ð�1Þn½�p2 þ ð pþ 2nÞ þ ð pþ 2nÞð pþ 2n� 1Þ�xpþ2n

2pþ2nn!ðnþ pÞ!

¼
X

1

n¼0

ð�1Þnxpþ2nþ2

2pþ2nn!ðnþ pÞ!þ
X

1

n¼0

ð�1Þn½4nðnþ pÞ�xpþ2n

2pþ2nn!ðnþ pÞ!

¼
X

1

n¼1

ð�1Þn�1xpþ2n

2pþ2n�2ðn� 1Þ!ðn� 1þ pÞ!þ
X

1

n¼1

ð�1Þn4xpþ2n

2pþ2nðn� 1Þ!ðnþ p� 1Þ!

¼ �
X

1

n¼1

ð�1Þn4xpþ2n

2pþ2nðn� 1Þ!ðnþ p� 1Þ!þ
X

1

n¼1

ð�1Þn4xpþ2n

2pþ2nðn� 1Þ!ðnþ p� 1Þ!
¼ 0

11.47. Test for convergence the complex power series
X

1

n¼1

zn�1

n3 � 3n�1
.

Since lim
n!1

unþ1

un

























¼ lim
n!1

zn

ðnþ 1Þ3 � 3n �
n3 � 3n�1

zn�1































¼ lim
n!1

n3

3ðnþ 1Þ3 jzj ¼
jzj
3
, the series converges for

jzj
3
< 1,

i.e., jzj < 3, and diverges for jzj > 3.

For jzj ¼ 3, the series of absolute values is
X

1

n¼1

jzjn�1

n3 � 3n�1
¼
X

1

n¼1

1

n3
, so that the series is absolutely

convergent and thus convergent for jzj ¼ 3.

Thus, the series converges within and on the circle jzj ¼ 3.

11.48. Assuming the power series for ex holds for complex numbers, show that

eix ¼ cos xþ i sin x

Letting z ¼ ix in ez ¼ 1þ zþ z2

2!
þ z3

3!
þ � � � ; we have

eix ¼ 1þ ixþ i2x2

2!
þ i3x3

3!
þ � � � ¼ 1� x2

2!
þ x4

4!
� � � �

 !

þ i x� x3

3!
þ x5

5!
� � � �

 !

¼ cos xþ i sinx

Similarly, e�ix ¼ cos x� i sinx. The results are called Euler’s identities.

11.49. Prove that lim
n!1 1þ 1

2
þ 1

3
þ 1

4
þ � � � þ 1

n
� ln n

� �

exists.

Letting f ðxÞ ¼ 1=x in (1), Problem 11.11, we find

1

2
þ 1

3
þ 1

4
þ � � � þ 1

M
@ lnM @ 1þ 1

2
þ 1

3
þ 1

4
þ � � � þ 1

M � 1

from which we have on replacing M by n,

1

n
@ 1þ 1

2
þ 1

3
þ 1

4
þ � � � þ 1

n
� ln n @ 1

Thus, the sequence Sn ¼ 1þ 1

2
þ 1

3
þ 1

4
þ � � � þ 1

n
� ln n is bounded by 0 and 1.
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Consider Snþ1 � Sn ¼
1

nþ 1
� ln

nþ 1

n

� �

. By integrating the inequality
1

nþ 1
@

1

x
@

1

n
with respect

to x from n to nþ 1, we have

1

nþ 1
@ ln

nþ 1

n

� �

@
1

n
or

1

nþ 1
� 1

n
@

1

nþ 1
� ln

nþ 1

n

� �

@ 0

i.e., Snþ1 � Sn @ 0, so that Sn is monotonic decreasing.

Since Sn is bounded and monotonic decreasing, it has a limit. This limit, denoted by �, is equal to
0:577215 . . . and is called Euler’s constant. It is not yet known whether � is rational or not.

11.50. Prove that the infinite product
Y

1

k¼1

ð1þ ukÞ, where uk > 0, converges if
X

1

k¼1

uk converges.

According to the Taylor series for ex (Page 275), 1þ x @ ex for x > 0, so that

Pn ¼
Y

n

k¼1

ð1þ ukÞ ¼ ð1þ u1Þð1þ u2Þ � � � ð1þ unÞ @ eu1 � eu2 � � � eun ¼ eu1þu2þ���þun

Since u1 þ u2 þ � � � converges, it follows that Pn is a bounded monotonic increasing sequence and so has

a limit, thus proving the required result.

11.51. Prove that the series 1� 1þ 1� 1þ 1� 1þ � � � is C � 1 summable to 1/2.

The sequence of partial sums is 1; 0; 1; 0; 1; 0; . . . .

Then S1 ¼ 1;
S1 þ S2

2
¼ 1þ 0

2
¼ 1

2
;
S1 þ S2 þ S3

3
¼ 1þ 0þ 1

3
¼ 2

3
; . . . :

Continuing in this manner, we obtain the sequence 1; 12 ;
2
3 ;

1
2 ;

3
5 ;

1
2 ; . . . ; the nth term being

Tn ¼ 1=2 if n is even
n=ð2n� 1Þ if n is odd

�

. Thus, lim
n!1Tn ¼ 1

2 and the required result follows.

11.52. (a) If f ðnþ1ÞðxÞ is continuous in ½a; b� prove that for c in ½a; b�, f ðxÞ ¼ f ðcÞ þ f 0ðcÞðx� cÞ þ
1

2!
f 00ðcÞðx� cÞ2 þ � � � þ 1

n!
f ðnÞðcÞðx� cÞn þ 1

n!

ðx

c

ðx� tÞn f ðnþ1ÞðtÞ dt.
(b) Obtain the Lagrange and Cauchy forms of the remainder in Taylor’s Formula. (See Page

274.)

The proof of (a) is made using mathematical induction. (See Chapter 1.) The result holds for n ¼ 0
since

f ðxÞ ¼ f ðcÞ þ
ðx

C

f 0ðtÞ dt ¼ f ðcÞ þ f ðxÞ � f ðcÞ

We make the induction assumption that it holds for n ¼ k and then use integration by parts with

dv ¼ ðx� tÞk
k!

dt and u ¼ f kþ1ðtÞ

Then

v ¼ � ðx� tÞkþ1

ðkþ 1Þ! and du ¼ f kþ2ðtÞ dt

Thus,

1

k!

ðx

C

ðx� tÞk f ðkþ1ÞðtÞ dt ¼ � f kþ1ðtÞðx� tÞkþ1

ðkþ 1Þ!












x

C

þ 1

ðkþ 1Þ!
ðx

C

ðx� tÞkþ1 f ðkþ2ÞðtÞ dt

¼ f kþ1ðcÞðx� cÞkþ1

ðkþ 1Þ! þ 1

ðkþ 1Þ!
ðx

C

ðx� tÞkþ1f ðkþ2ÞðtÞ dt

Having demonstrated that the result holds for kþ 1, we conclude that it holds for all positive integers.



To obtain the Lagrange form of the remainder Rn, consider the form

f ðxÞ ¼ f ðcÞ þ f 0ðcÞðx� cÞ þ 1

2!
f 00ðcÞðx� cÞ2 þ � � � þ K

n!
ðx� cÞn

This is the Taylor polynomial Pn�1ðxÞ plus
K

n!
ðx� cÞn: Also, it could be looked upon as Pn except that

in the last term, f ðnÞðcÞ is replaced by a number K such that for fixed c and x the representation of f ðxÞ is
exact. Now define a new function

�ðtÞ ¼ f ðtÞ � f ðxÞ þ
X

n�1

j¼1

f ð jÞðtÞ ðx� tÞ j
j!

þ Kðx� tÞn
n!

The function � satisfies the hypothesis of Rolle’s Theorem in that �ðcÞ ¼ �ðxÞ ¼ 0, the function is

continuous on the interval bound by c and x, and � 0 exists at each point of the interval. Therefore, there
exists � in the interval such that � 0ð�Þ ¼ 0. We proceed to compute � 0 and set it equal to zero.

� 0ðtÞ ¼ f 0ðtÞ þ
X

n�1

j¼1

f ð jþ1ÞðtÞ ðx� tÞ j
j!

�
X

n�1

j¼1

f ð jÞðtÞ ðx� tÞ j�1

ð j � 1Þ! � Kðx� tÞn�1

ðn� 1Þ!

This reduces to

� 0ðtÞ ¼ f ðnÞðtÞ
ðn� 1Þ! ðx� tÞn�1 � K

ðn� 1Þ! ðx� tÞn�1

According to hypothesis: for each n there is �n such that

�ð�nÞ ¼ 0

Thus

K ¼ f ðnÞð�nÞ
and the Lagrange remainder is

Rn�1 ¼
f ðnÞð�nÞ

n!
ðx� cÞn

or equivalently

Rn ¼
1

ðnþ 1Þ! f
ðnþ1Þð�nþ1Þðx� cÞnþ1

The Cauchy form of the remainder follows immediately by applying the mean value theorem for
integrals. (See Page 274.)

11.53. Extend Taylor’s theorem to functions of two variables x and y.

Define FðtÞ ¼ f ðx0 þ ht; y0 þ ktÞ, then applying Taylor’s theorem for one variable (about t ¼ 0Þ

FðtÞ ¼ Fð0Þ þ F 0ð0Þ þ 1

2!
F 00ð0Þt2 þ � � � þ 1

n!
F ðnÞð0Þtn þ 1

ðnþ 1Þ!F
ðnþ1Þð�Þtnþ1; 0 < � < t

Now let t ¼ 1

Fð1Þ ¼ f ðx0 þ h; y0 þ kÞ ¼ Fð0Þ þ F 0ð0Þ þ 1

2!
F 00ð0Þ þ � � � þ 1

n!
F ðnÞð0Þ þ 1

ðnþ 1Þ!F
ðnþ1Þð�Þ

When the derivatives F 0ðtÞ; . . . ;F ðnÞðtÞ;F ðnþ1Þð�Þ are computed and substituted into the previous expres-
sion, the two variable version of Taylor’s formula results. (See Page 277, where this form and notational
details can be found.)

11.54. Expand x2 þ 3y� 2 in powers of x� 1 and yþ 2. Use Taylor’s formula with h ¼ x� x0,
k ¼ y� y0, where x0 ¼ 1 and y0 ¼ �2.
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x2 þ 3y� 2 ¼ �10� 4ðx� 1Þ þ 4ð yþ 2Þ � 2ðx� 1Þ2 þ 2ðx� 1Þð yþ 2Þ þ ðx� 1Þ2ð yþ 2Þ
(Check this algebraically.)

11.55. Prove that ln
xþ y

2
¼ xþ y� 2

2þ �ðxþ y� 2Þ ; 0 < � < 1; x > 0; y > 0. Hint: Use the Taylor formula

with the linear term as the remainder.

11.56. Expand f ðx; yÞ ¼ sin xy in powers of x� 1 and y� �
2
to second-degree terms.

1� 1

8
�2ðx� 1Þ2 � �

2
ðx� 1Þ y� �

2

� �

� y� �
2

� �2

Supplementary Problems

CONVERGENCE AND DIVERGENCE OF SERIES OF CONSTANTS

11.57. (a) Prove that the series
1

3 � 7þ
1

7 � 11þ
1

11 � 15þ � � � ¼
X

1

n¼1

1

ð4n� 1Þð4nþ 3Þ converges and (b) find its sum.

Ans. (b) 1/12

11.58. Prove that the convergence or divergence of a series is not affected by (a) multiplying each term by the
same non-zero constant, (b) removing (or adding) a finite number of terms.

11.59. If �un and �vn converge to A and B, respectively, prove that �ðun þ vnÞ converges to Aþ B.

11.60. Prove that the series 3
2 þ ð32Þ2 þ ð32Þ3 þ � � � ¼ �ð32Þn diverges.

11.61. Find the fallacy: Let S ¼ 1� 1þ 1� 1þ 1� 1þ � � � . Then S ¼ 1� ð1� 1Þ � ð1� 1Þ � � � � ¼ 1 and
S ¼ ð1� 1Þ þ ð1� 1Þ þ ð1� 1Þ þ � � � ¼ 0. Hence, 1 ¼ 0.

COMPARISON TEST AND QUOTIENT TEST

11.62. Test for convergence:

ðaÞ
X

1

n¼1

1

n2 þ 1
; ðbÞ

X

1

n¼1

n

4n2 � 3
; ðcÞ

X

1

n¼1

nþ 2

ðnþ 1Þ ffiffiffiffiffiffiffiffiffiffiffi

nþ 3
p ; ðdÞ

X

1

n¼1

3n

n � 5n ; ðeÞ
X

1

n¼1

1

5n� 3
;

ð f Þ
X

1

n¼1

2n� 1

ð3nþ 2Þn4=3:

Ans: ðaÞ conv., ðbÞ div., ðcÞ div., ðdÞ conv., ðeÞ div., ð f Þ conv.

11.63. Investigate the convergence of (a)
X

1

n¼1

4n2 þ 5n� 2

nðn2 þ 1Þ3=2 ; ðbÞ
X

1

n¼1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

n� ln n

n2 þ 10n3

r

. Ans. (a) conv., (b) div.

11.64. Establish the comparison test for divergence (see Page 267).
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11.65. Use the comparison test to prove that

ðaÞ
X

1

n¼1

@
1

np
converges if p > 1 and diverges if p @ 1; ðbÞ

X

1

n¼1

tan�1 n

n
diverges, ðcÞ

X

1

n¼1

n2

2n
converges.

11.66. Establish the results (b) and (c) of the quotient test, Page 267.

11.67. Test for convergence:

ðaÞ
X

1

n¼1

ðln nÞ2
n2

; ðbÞ
X

1

n¼1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

n tan�1ð1=n3Þ
q

; ðcÞ
X

1

n¼1

3þ sin n

nð1þ e�nÞ ; ðdÞ
X

1

n¼1

n sin2ð1=nÞ:

Ans. (a) conv., (b) div., (c) div., (d) div.

11.68. If �un converges, where un A 0 for n > N, and if lim
n!1 nun exists, prove that lim

n!1 nun ¼ 0.

11.69. (a) Test for convergence
X

1

n¼1

1

n1þ1=n
. (b) Does your answer to (a) contradict the statement about the p

series made on Page 266 that �1=np converges for p > 1?
Ans. (a) div.

INTEGRAL TEST

11.70. Test for convergence: (a)
X

1

n¼1

n2

2n3 � 1
; ðbÞ

X

1

n¼2

1

nðln nÞ3 ; ðcÞ
X

1

n¼1

n

2n
; ðdÞ

X

1

n¼1

e�
ffiffi

n
p

ffiffiffi

n
p ðeÞ

X

1

n¼2

ln n

n
;

ð f Þ
X

1

n¼10

2lnðln nÞ

n ln n
:

Ans: ðaÞ div., ðbÞ conv., ðcÞ conv., ðdÞ conv., ðeÞ div., ð f Þ div.

11.71. Prove that
X

1

n¼2

1

nðln nÞp, where p is a constant, (a) converges if p > 1 and (b) diverges if p @ 1.

11.72. Prove that
9

8
<
X

1

n¼1

1

n3
<

5

4
.

11.73. Investigate the convergence of
X

1

n¼1

etan
�1 n

n2 þ 1
:

Ans: conv.

11.74. (a) Prove that 2
3 n

3=2 þ 1
3 @

ffiffiffi

1
p þ ffiffiffi

2
p þ ffiffiffi

3
p þ � � � þ ffiffiffi

n
p

@ 2
3 n

3=2 þ n1=2 � 2
3.

(b) Use (a) to estimate the value of
ffiffiffi

1
p þ ffiffiffi

2
p þ ffiffiffi

3
p þ � � � þ ffiffiffiffiffiffiffiffi

100
p

, giving the maximum error.

(c) Show how the accuracy in (b) can be improved by estimating, for example,
ffiffiffiffiffi

10
p þ ffiffiffiffiffi

11
p þ � � � þ ffiffiffiffiffiffiffiffi

100
p

and adding on the value of
ffiffiffi

1
p þ ffiffiffi

2
p þ � � � þ ffiffiffi

9
p

computed to some desired degree of accuracy.

Ans: ðbÞ 671:5� 4:5

ALTERNATING SERIES

11.75. Test for convergence: (a)
X

1

n¼1

ð�1Þnþ1

2n
; ðbÞ

X

1

n¼1

ð�1Þn
n2 þ 2nþ 2

; ðcÞ
X

1

n¼1

ð�1Þnþ1n

3n� 1
;

ðdÞ
X

1

n¼1

ð�1Þn sin�1 1

n
; ðeÞ

X

1

n¼2

ð�1Þn ffiffiffi

n
p

ln n
:

Ans. (a) conv., (b) conv., (c) div., (d) conv., (e) div.
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11.76. (a) What is the largest absolute error made in approximating the sum of the series
X

1

n¼1

ð�1Þn
2nðnþ 1Þ by the sum

of the first 5 terms?
Ans. 1/192
(b) What is the least number of terms which must be taken in order that 3 decimal place accuracy will
result?

Ans. 8 terms

11.77. (a) Prove that S ¼ 1

13
þ 1

23
þ 1

33
þ � � � ¼ 4

3

1

13
� 1

23
þ 1

33
� � � �

� �

.

(b) How many terms of the series on the right are needed in order to calculate S to six decimal place

accuracy?
Ans. (b) at least 100 terms

ABSOLUTE AND CONDITIONAL CONVERGENCE

11.78. Test for absolute or conditional convergence:

ðaÞ
X

1

n¼1

ð�1Þn�1

n2 þ 1
ðcÞ

X

1

n¼2

ð�1Þn
n ln n

ðeÞ
X

1

n¼1

ð�1Þn�1

2n� 1
sin

1
ffiffiffi

n
p

ðbÞ
X

1

n¼1

ð�1Þn�1n

n2 þ 1
ðdÞ

X

1

n¼1

ð�1Þnn3
ðn2 þ 1Þ4=3 ð f Þ

X

1

n¼1

ð�1Þn�1n3

2n � 1

Ans. (a) abs. conv., (b) cond. conv., (c) cond. conv., (d) div., (e) abs. conv., ( f ) abs. conv.

11.79. Prove that
X

1

n¼1

cos n�a

x2 þ n2
converges absolutely for all real x and a.

11.80. If 1� 1
2 þ 1

3 � 1
4 þ � � � converges to S, prove that the rearranged series 1þ 1

3 � 1
2 þ 1

5 þ 1
7 � 1

4 þ 1
9 þ 1

11 � 1
6 þ � � �

¼ 3
2S. Explain.

[Hint: Take 1/2 of the first series and write it as 0þ 1
2 þ 0� 1

4 þ 0þ 1
6 þ � � �; then add term by term to the first

series. Note that S ¼ ln 2, as shown in Problem 11.100.]

11.81. Prove that the terms of an absolutely convergent series can always be rearranged without altering the sum.

RATIO TEST

11.82. Test for convergence:

ðaÞ
X

1

n¼1

ð�1Þnn
ðnþ 1Þen ; ðbÞ

X

1

n¼1

102n

ð2n� 1Þ! ; ðcÞ
X

1

n¼1

3n

n3
; ðdÞ

X

1

n¼1

ð�1Þn23n
32n

; ðeÞ
X

1

n¼1

ð ffiffiffi

5
p � 1Þn
n2 þ 1

:

Ans. (a) conv. (abs.), (b) conv., (c) div., (d) conv. (abs.), (e) div.

11.83. Show that the ratio test cannot be used to establish the conditional convergence of a series.

11.84. Prove that (a)
X

1

n¼1

n!

nn
converges and (b) lim

n!1
n!

nn
¼ 0.

MISCELLANEOUS TESTS

11.85. Establish the validity of the nth root test on Page 268.

11.86. Apply the nth root test to work Problems 11.82ðaÞ, (c), (d), and (e).

11.87. Prove that 1
3 þ ð23Þ2 þ ð13Þ3 þ ð23Þ4 þ ð13Þ5 þ ð23Þ6 þ � � � converges.
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11.88. Test for convergence: (a)
1

3
þ 1 � 4
3 � 6þ

1 � 4 � 7
3 � 6 � 9þ � � � , (b)

2

9
þ 2 � 5
9 � 12þ

2 � 5 � 8
9 � 12 � 15þ � � � .

Ans. (a) div., (b) conv.

11.89. If a; b, and d are positive numbers and b > a, prove that

a

b
þ aðaþ dÞ
bðbþ dÞ þ

aðaþ dÞðaþ 2dÞ
bðbþ dÞðbþ 2dÞ þ � � �

converges if b� a > d, and diverges if b� a @ d.

SERIES OF FUNCTIONS

11.90. Find the domain of convergence of the series:

ðaÞ
X

1

n¼1

xn

n3
; ðbÞ

X

1

n¼1

ð�1Þnðx� 1Þn
2nð3n� 1Þ ; ðcÞ

X

1

n¼1

1

nð1þ x2Þn ; ðdÞ
X

1

n¼1

n2
1� x

1þ x

� �n

; ðeÞ
X

1

n¼1

enx

n2 � nþ 1

Ans: ðaÞ � 1 @ x @ 1; ðbÞ � 1 < x @ 3; ðcÞ all x 6¼ 0; ðdÞ x > 0; ðeÞ x @ 0

11.91. Prove that
X

1

n¼1

1 � 3 � 5 � � � ð2n� 1Þ
2 � 4 � 6 � � � ð2nÞ xn converges for �1 @ x < 1.

UNIFORM CONVERGENCE

11.92. By use of the definition, investigate the uniform convergence of the series

X

1

n¼1

x

½1þ ðn� 1Þx�½1þ nx�
�

Hint: Resolve the nth term into partial fractions and show that the nth partial sum is SnðxÞ ¼ 1� 1

1þ nx
:

�

Ans. Not uniformly convergent in any interval which includes x ¼ 0; uniformly convergent in any other

interval.

11.93. Work Problem 11.30 directly by first obtaining SnðxÞ.

11.94. Investigate by any method the convergence and uniform convergence of the series:

ðaÞ
X

1

n¼1

x

3

� �n

; ðbÞ
X

1

n¼1

sin2 nx

2n � 1
; ðcÞ

X

1

n¼1

x

ð1þ xÞn ; x A 0:

Ans. (a) conv. for jxj < 3; unif. conv. for jxj @ r < 3. (b) unif. conv. for all x. (c) conv. for x A 0; not
unif. conv. for x A 0, but unif. conv. for x A r > 0.

11.95. If FðxÞ ¼
X

1

n¼1

sin nx

n3
, prove that:

(a) FðxÞ is continuous for all x, (b) lim
x!0

FðxÞ ¼ 0; ðcÞ F 0ðxÞ ¼
X

1

n¼1

cos nx

n2
is continous everywhere.

11.96. Prove that

ð�

0

cos 2x

1 � 3 þ cos 4x

3 � 5 þ cos 6x

5 � 7 þ � � �
� �

dx ¼ 0.

11.97. Prove that FðxÞ ¼
X

1

n¼1

sin nx

sinh n�
has derivatives of all orders for any real x.

11.98. Examine the sequence unðxÞ ¼
1

1þ x2n
; n ¼ 1; 2; 3; . . . ; for uniform convergence.

11.99. Prove that lim
n!1

ð1

0

dx

ð1þ x=nÞn ¼ 1� e�1.
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POWER SERIES

11.100. (a) Prove that lnð1þ xÞ ¼ x� x2

2
þ x3

3
� x4

4
þ � � � .

ðbÞ Prove that ln 2 ¼ 1� 1
2 þ 1

3 � 1
4 þ � � � :

�

Hint: Use the fact that
1

1þ x
¼ 1� xþ x2 � x3 þ � � � and integrate.

�

11.101. Prove that sin�1 x ¼ xþ 1

2

x3

3
þ 1 � 3
2 � 4

x5

5
þ 1 � 3 � 5
2 � 4 � 6

x7

7
þ � � � , �1 @ x @ 1.

11.102. Evaluate (a)

ð1=2

0

e�x2 dx; ðdÞ
ð1

0

1� cos x

x
dx to 3 decimal places, justifying all steps.

Ans. ðaÞ 0:461; ðbÞ 0:486

11.103. Evaluate (a) sin 408; ðbÞ cos 658; ðcÞ tan 128 correct to 3 decimal places.
Ans: ðaÞ 0:643; ðbÞ 0:423; ðcÞ 0:213

11.104. Verify the expansions 4, 5, and 6 on Page 275.

11.105. By multiplying the series for sinx and cos x, verify that 2 sin x cos x ¼ sin 2x.

11.106. Show that ecos x ¼ e 1� x2

2!
þ 4x4

4!
� 31x6

6!
þ � � �

 !

; �1 < x <1.

11.107. Obtain the expansions

ðaÞ tanh�1 x ¼ xþ x3

3
þ x5

5
þ x7

7
þ � � � � 1 < x < 1

ðbÞ lnðxþ
ffiffiffiffiffiffiffiffiffiffiffiffiffi

x2 þ 1
p

Þ ¼ x� 1

2

x3

3
þ 1 � 3
2 � 4

x5

5
� 1 � 3 � 5
2 � 4 � 6

x7

7
þ � � � � 1 @ x @ 1

11.108. Let f ðxÞ ¼ e�1=x2 x 6¼ 0
0 x ¼ 0

�

. Prove that the formal Taylor series about x ¼ 0 corresponding to f ðxÞ exists
but that it does not converge to the given function for any x 6¼ 0.

11.109. Prove that

ðaÞ lnð1þ xÞ
1þ x

¼ x� 1þ 1

2

� �

x2 þ 1þ 1

2
þ 1

3

� �

x3 � � � � for � 1 < x < 1

ðbÞ flnð1þ xÞg2 ¼ x2 � 1þ 1

2

� �

2x3

3
þ 1þ 1

2
þ 1

3

� �

2x4

4
� � � � for � 1 < x @ 1

MISCELLANEOUS PROBLEMS

11.110. Prove that the series for JpðxÞ converges (a) for all x, (b) absolutely and uniformly in any finite interval.

11.111. Prove that (a)
d

dx
fJ0ðxÞg ¼ �J1ðxÞ; ðbÞ d

dx
fxpJpðxÞg ¼ xpJp�1ðxÞ; ðcÞ Jpþ1ðxÞ ¼

2p

x
JpðxÞ � Jp�1ðxÞ.

11.112. Assuming that the result of Problem 11.111(c) holds for p ¼ 0;�1;�2; . . . ; prove that

(a) J�1ðxÞ ¼ �J1ðxÞ; ðbÞ J�2ðxÞ ¼ J2ðxÞ; ðcÞ J�nðxÞ ¼ ð�1ÞnJnðxÞ; n ¼ 1; 2; 3; . . . :

11.113. Prove that e1=2xðt�1=tÞ ¼
X

1

p¼�1
JpðxÞ tp.

[Hint: Write the left side as ext=2e�x=2t, expand and use Problem 11.112.]
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11.114. Prove that
X

1

n¼1

ðnþ 1Þzn
nðnþ 2Þ2 is absolutely and uniformly convergent at all points within and on the circle jzj ¼ 1.

11.115. (a) If
X

1

n¼1

anx
n ¼

X

1

n¼1

bnx
n for all x in the common interval of convergence jxj < R where R > 0, prove that

an ¼ bn for n ¼ 0; 1; 2; . . . . (b) Use (a) to show that the Taylor expansion of a function exists, the

expansion is unique.

11.116. Suppose that lim
ffiffiffiffiffiffiffiffijunjn

p ¼ L. Prove that �un converges or diverges according as L < 1 or L > 1. If L ¼ 1

the test fails.

11.117. Prove that the radius of convergence of the series �anx
n can be determined by the following limits, when

they exist, and give examples: (a) lim
n!1

an
anþ1

























; ðbÞ lim
n!1

1
ffiffiffiffiffiffiffiffijanjn

p ; ðcÞ lim
n!1

1
ffiffiffiffiffiffiffiffijanjn

p :

11.118. Use Problem 11.117 to find the radius of convergence of the series in Problem 11.22.

11.119. (a) Prove that a necessary and sufficient condition that the series �un converge is that, given any � > 0, we

can find N > 0 depending on � such that jSp � Sqj < � whenever p > N and q > N, where
Sk ¼ u1 þ u2 þ � � � þ uk.

ðbÞ Use ðaÞ to prove that the series
X

1

n¼1

n

ðnþ 1Þ3n converges.

ðcÞ How could you use ðaÞ to prove that the series
X

1

n¼1

1

n
diverges?

[Hint: Use the Cauchy convergence criterion, Page 25.]

11.120. Prove that the hypergeometric series (Page 276) (a) is absolutely convergent for jxj < 1, (b) is divergent

for jxj > 1, (c) is absolutely divergent for jxj ¼ 1 if aþ b� c < 0; ðdÞ satisfies the differential equation
xð1� xÞy 00 þ fc� ðaþ bþ 1Þxgy 0 � aby ¼ 0.

11.121. If Fða; b; c; xÞ is the hypergeometric function defined by the series on Page 276, prove that
(a) Fð�p; 1; 1;�xÞ ¼ ð1þ xÞp; ðbÞ xFð1; 1; 2;�xÞ ¼ lnð1þ xÞ; ðcÞ Fð12 ; 12 ; 32 ; x2Þ ¼ ðsin�1 xÞ=x.

11.122. Find the sum of the series SðxÞ ¼ xþ x3

1 � 3þ
x5

1 � 3 � 5þ � � � .
[Hint: Show that S 0ðxÞ � 1þ xSðxÞ and solve.]

Ans: ex
2=2

ðx

0

e�x2=2 dx

11.123. Prove that

1þ 1

1 � 3þ
1

1 � 3 � 5þ
1

1 � 3 � 5 � 7þ � � � ¼ ffiffiffi

e
p

1� 1

2 � 3þ
1

22 � 2! � 5�
1

23 � 3! � 7þ
1

24 � 4! � 9� � � �
� �

11.124. Establish the Dirichlet test on Page 270.

11.125. Prove that
X

1

n¼1

sin nx

n
is uniformly convergent in any interval which does not include 0;��;�2�; . . . .

[Hint: use the Dirichlet test, Page 270, and Problem 1.94, Chapter 1.]

11.126. Establish the results on Page 275 concerning the binomial series.
[Hint: Examine the Lagrange and Cauchy forms of the remainder in Taylor’s theorem.]
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11.127. Prove that
X

1

n¼1

ð�1Þn�1

nþ x2
converges uniformly for all x, but not absolutely.

11.128. Prove that 1� 1

4
þ 1

7
� 1

10
þ � � � ¼ �

3
ffiffiffi

3
p þ 1

3
ln 2

11.129. If x ¼ yey, prove that y ¼
X

1

n¼1

ð�1Þn�1nn�1

n!
xn for �1=e < x @ 1=e.

11.130. Prove that the equation e�� ¼ �� 1 has only one real root and show that it is given by

� ¼ 1þ
X

1

n¼1

ð�1Þn�1nn�1e�n

n!

11.131. Let
x

ex � 1
¼ 1þ B1xþ B2x

2

2!
þ B3x

3

3!
þ � � � . (a) Show that the numbers Bn, called the Bernoulli numbers,

satisfy the recursion formula ðBþ 1Þn � Bn ¼ 0 where Bk is formally replaced by Bk after expanding.
(b) Using (a) or otherwise, determine B1; . . . ;B6.

Ans: ðbÞ B1 ¼ � 1
2 ;B2 ¼ 1

6 ;B3 ¼ 0;B4 ¼ � 1
30 ;B5 ¼ 0;B6 ¼ 1

42.

11.132. (a) Prove that
x

ex � 1
¼ x

2
coth

x

2
� 1

� �

: ðbÞ Use Problem 11.127 and part (a) to show that B2kþ1 ¼ 0 if

k ¼ 1; 2; 3; . . . :

11.133. Derive the series expansions:

ðaÞ cothx ¼ 1

x
þ x

3
� x3

45
þ � � � þ B2nð2xÞ2n

ð2nÞ!x þ � � �

ðbÞ cotx ¼ 1

x
� x

3
� x3

45
þ � � � ð�1Þn B2nð2xÞ2n

ð2nÞ!x þ � � �

ðcÞ tanx ¼ xþ x3

3
þ 2x5

15
þ � � � ð�1Þn�1 2ð22n � 1ÞB2nð2xÞ2n�1

ð2nÞ! þ � � �

ðdÞ cscx ¼ 1

x
þ x

6
þ 7

360
x3 þ � � � ð�1Þn�1 2ð22n�1 � 1ÞB2nx

2n�1

ð2nÞ! þ � � �

[Hint: For (a) use Problem 11.132; for (b) replace x by ix in (a); for (c) use tanx ¼ cot x� 2 cot 2x; for (d) use

csc x ¼ cotxþ tanx=2.]

11.134. Prove that
Y

1

n¼1

1þ 1

n3

� �

converges.

11.135. Use the definition to prove that
Y

1

n¼1

1þ 1

n

� �

diverges.

11.136. Prove that
Y

1

n¼1

ð1� unÞ, where 0 < un < 1, converges if and only if �un converges.

11.137. (a) Prove that
Y

1

n¼2

1� 1

n2

� �

converges to 1
2. (b) Evaluate the infinite product in (a) to 2 decimal places and

compare with the true value.

11.138. Prove that the series 1þ 0� 1þ 1þ 0� 1þ 1þ 0� 1þ � � � is the C � 1 summable to zero.
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11.139. Prove that the Césaro method of summability is regular. [Hint: See Page 278.]

11.140. Prove that the series 1þ 2xþ 3x2 þ 4x3 þ � � � þ nxn�1 þ � � � converges to 1=ð1� xÞ2 for jxj < 1.

11.141. A series
X

1

n¼0

an is called Abel summable to S if S ¼ lim
x!1�

X

1

n¼0

anx
n exists. Prove that

ðaÞ
X

1

n¼0

ð�1Þnðnþ 1Þ is Abel summable to 1/4 and

ðbÞ
X

1

n¼0

ð�1Þnðnþ 1Þðnþ 2Þ
2

is Abel summable to 1/8.

11.142. Prove that the double series
X

1

m¼1

X

1

n¼1

1

ðm2 þ n2Þp, where p is a constant, converges or diverges according as

p > 1 or p @ 1, respectively.

11.143. (a) Prove that

ð1

x

ex�u

u
du ¼ 1

x
� 1

x2
þ 2!

x3
� 3!

x4
þ � � � ð�1Þn�1ðn� 1Þ!

xn
þ ð�1Þnn!

ð1

x

ex�u

unþ1
du.

ðbÞ Use ðaÞ to prove that

ð1

x

ex�u

u
du � 1

x
� 1

x2
þ 2!

x3
� 3!

x4
þ � � �
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306

Improper Integrals

DEFINITION OF AN IMPROPER INTEGRAL

The functions that generate the Riemann integrals of Chapter 6 are continuous on closed intervals.
Thus, the functions are bounded and the intervals are finite. Integrals of functions with these char-
acteristics are called proper integrals. When one or more of these restrictions is relaxed, the integrals are
said to be improper. Categories of improper integrals are established below.

The integral

ðb

a

f ðxÞ dx is called an improper integral if

1. a ¼ �1 or b ¼ 1 or both, i.e., one or both integration limits is infinite,

2. f ðxÞ is unbounded at one or more points of a @ x @ b. Such points are called singularities of
f ðxÞ.

Integrals corresponding to (1) and (2) are called improper integrals of the first and second kinds,
respectively. Integrals with both conditions (1) and (2) are called improper integrals of the third kind.

EXAMPLE 1.

ð1

0

sinx2 dx is an improper integral of the first kind.

EXAMPLE 2.

ð4

0

dx

x� 3
is an improper integral of the second kind.

EXAMPLE 3.

ð1

0

e�x

ffiffiffi

x
p dx is an improper integral of the third kind.

EXAMPLE 4.

ð1

0

sin x

x
dx is a proper integral since lim

x!0þ
sinx

x
¼ 1.

IMPROPER INTEGRALS OF THE FIRST KIND (Unbounded Intervals)

If f is an integrable on the appropriate domains, then the indefinite integrals

ðx

a

f ðtÞ dt and
ða

x

f ðtÞ dt
(with variable upper and lower limits, respectively) are functions. Through them we define three forms
of the improper integral of the first kind.

Definition

(a) If f is integrable on a @ x <1, then

ð1

a

f ðxÞ dx ¼ lim
x!1

ðx

a

f ðtÞ dt.

(b) If f is integrable on �1 < x @ a, then

ða

�1
f ðxÞ dx ¼ lim

x!�1

ða

x

f ðtÞ dt:
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(c) If f is integrable on �1 < x <1, then
ð1

�1
f ðxÞ dx ¼

ða

�1
f ðxÞ dxþ

ð1

a

f ðxÞ dx

¼ lim
x!�1

ða

x

f ðtÞ dtþ lim
x!1

ðx

a

f ðtÞ dt:

In part (c) it is important to observe that

lim
x!�1

ða

x

f ðtÞ dtþ lim
x!1

ðx

a

f ðtÞ dt:

and

lim
x!1

ða

�x

f ðtÞ dtþ
ðx

a

f ðtÞ dt
� �

are not necessarily equal.
This can be illustrated with f ðxÞ ¼ xex

2

. The first expression is not defined since neither of the
improper integrals (i.e., limits) is defined while the second form yields the value 0.

EXAMPLE. The function FðxÞ ¼ 1
ffiffiffiffiffiffi

2�
p e�ðx2=2Þ is called the normal density function and has numerous applications

in probability and statistics. In particular (see the bell-shaped curve in Fig. 12-1)

ð1

1

1
ffiffiffiffiffiffi

2�
p e� x2

2
: dx ¼ 1

(See Problem 12.31 for the trick of making this evaluation.)

Perhaps at some point in your academic career you were
‘‘graded on the curve.’’ The infinite region under the curve with
the limiting area of 1 corresponds to the assurance of getting a
grade. C’s are assigned to those whose grades fall in a desig-
nated central section, and so on. (Of course, this grading
procedure is not valid for a small number of students, but as
the number increases it takes on statistical meaning.)

In this chapter we formulate tests for convergence or diver-
gence of improper integrals. It will be found that such tests and
proofs of theorems bear close analogy to convergence and
divergence tests and corresponding theorems for infinite series
(See Chapter 11).

CONVERGENCE OR DIVERGENCE OF IMPROPER INTEGRALS OF THE FIRST KIND

Let f ðxÞ be bounded and integrable in every finite interval a @ x @ b. Then we define

ð1

a

f ðxÞ dx ¼ lim
b!1

ðb

a

f ðxÞ dx ð1Þ

where b is a variable on the positive real numbers.
The integral on the left is called convergent or divergent according as the limit on the right does or

does not exist. Note that

ð1

a

f ðxÞ dx bears close analogy to the infinite series
X

1

n¼1

un, where un ¼ f ðnÞ,
while

ðb

a

f ðxÞ dx corresponds to the partial sums of such infinite series. We often write M in place of

b in (1).
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Similarly, we define

ðb

�1
f ðxÞ dx ¼ lim

a!�1

ðb

a

f ðxÞ dx ð2Þ

where a is a variable on the negative real numbers. And we call the integral on the left convergent or
divergent according as the limit on the right does or does not exist.

EXAMPLE 1.

ð1

1

dx

x2
¼ lim

b!1

ðb

1

dx

x2
¼ lim

b!1
1� 1

b

� �

¼ 1 so that

ð1

1

dx

x2
converges to 1.

EXAMPLE 2.

ðu

�1
cos x dx ¼ lim

a!�1

ðu

a

cos x dx ¼ lim
a!�1ðsin u� sin aÞ. Since this limit does not exist,

ðu

�1
cos x dx

is divergent.

In like manner, we define
ð1

�1
f ðxÞ dx ¼

ðx0

�1
f ðxÞ dxþ

ð1

x0

f ðxÞ dx ð3Þ

where x0 is a real number, and call the integral convergent or divergent according as the integrals on the
right converge or not as in definitions (1) and (2). (See the previous remarks in part (c) of the definition
of improper integrals of the first kind.)

SPECIAL IMPROPER INTEGRALS OF THE FIRST KIND

1. Geometric or exponential integral

ð1

a

e�tx dx, where t is a constant, converges if t > 0 and

diverges if t @ 0. Note the analogy with the geometric series if r ¼ e�t so that e�tx ¼ rx.

2. The p integral of the first kind

ð1

a

dx

xp
, where p is a constant and a > 0, converges if p > 1 and

diverges if p @ 1. Compare with the p series.

CONVERGENCE TESTS FOR IMPROPER INTEGRALS OF THE FIRST KIND

The following tests are given for cases where an integration limit is 1. Similar tests exist where an
integration limit is �1 (a change of variable x ¼ �y then makes the integration limit 1). Unless
otherwise specified we shall assume that f ðxÞ is continuous and thus integrable in every finite interval
a @ x @ b.

1. Comparison test for integrals with non-negative integrands.

(a) Convergence. Let gðxÞ A 0 for all x A a, and suppose that

ð1

a

gðxÞ dx converges. Then if

0 @ f ðxÞ @ gðxÞ for all x A a,

ð1

a

f ðxÞ dx also converges.

EXAMPLE. Since
1

ex þ 1
@

1

ex
¼ e�x and

ð1

0

e�x dx converges,

ð1

0

dx

ex þ 1
also converges.

(b) Divergence. Let gðxÞ A 0 for all x A a, and suppose that

ð1

a

gðxÞ dx diverges. Then if

f ðxÞ A gðxÞ for all x A a,

ð1

a

f ðxÞ dx also diverges.

EXAMPLE. Since
1

lnx
>

1

x
for x A 2 and

ð1

2

dx

x
diverges ( p integral with p ¼ 1),

ð1

2

dx

ln x
also diverges.
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2. Quotient test for integrals with non-negative integrands.

(a) If f ðxÞ A 0 and gðxÞ A 0, and if lim
x!1

f ðxÞ
gðxÞ ¼ A 6¼ 0 or 1, then

ð1

a

f ðxÞ dx and

ð1

a

gðxÞ dx
either both converge or both diverge.

(b) If A ¼ 0 in (a) and

ð1

a

gðxÞ dx converges, then

ð1

a

f ðxÞ dx converges.

(c) If A ¼ 1 in (a) and

ð1

a

gðxÞ dx diverges, then

ð1

a

f ðxÞ dx diverges.

This test is related to the comparison test and is often a very useful alternative to it. In particular,
taking gðxÞ ¼ 1=xp, we have from known facts about the p integral, the following theorem.

Theorem 1. Let lim
x!1 xp f ðxÞ ¼ A. Then

(i)

ð1

a

f ðxÞ dx converges if p > 1 and A is finite

(ii)

ð1

a

f ðxÞ dx diverges if p @ 1 and A 6¼ 0 (A may be infinite).

EXAMPLE 1.

ð1

0

x2 dx

4x4 þ 25
converges since lim

x!1x2 � x2

4x4 þ 25
¼ 1

4
.

EXAMPLE 2.

ð1

0

x dx
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

x4 þ x2 þ 1
p diverges since lim

x!1 x � x
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

x4 þ x2 þ 1
p ¼ 1.

Similar test can be devised using gðxÞ ¼ e�tx.

3. Series test for integrals with non-negative integrands.

ð1

a

f ðxÞ dx converges or diverges accord-
ing as �un, where un ¼ f ðnÞ, converges or diverges.

4. Absolute and conditional convergence.

ð1

a

f ðxÞ dx is called absolutely convergent if

ð1

a

j f ðxÞj dx

converges. If

ð1

a

f ðxÞ dx converges but

ð1

a

j f ðxÞj dx diverges, then

ð1

a

f ðxÞ dx is called con-

ditionally convergent.

Theorem 2. If

ð1

a

j f ðxÞj dx converges, then

ð1

a

f ðxÞ dx converges. In words, an absolutely convergent

integral converges.

EXAMPLE 1.

ð1

a

cos x

x2 þ 1
dx is absolutely convergent and thus convergent since

ð1

0

cos x

x2 þ 1

























dx @
ð1

0

dx

x2 þ 1
and

ð1

0

dx

x2 þ 1
converges.

EXAMPLE 2.

ð1

0

sinx

x
dx converges (see Problem 12.11), but

ð1

0

sinx

x

























dx does not converge (see

Problem 12.12). Thus,

ð1

0

sin x

x
dx is conditionally convergent.

Any of the tests used for integrals with non-negative integrands can be used to test for absolute
convergence.
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IMPROPER INTEGRALS OF THE SECOND KIND

If f ðxÞ becomes unbounded only at the end point x ¼ a of the interval a @ x @ b, then we define

ðb

a

f ðxÞ dx ¼ lim
�!0þ

ðb

aþ�
f ðxÞ dx ð4Þ

and define it to be an improper integral of the second kind. If the limit on the right of (4) exists, we call
the integral on the left convergent; otherwise, it is divergent.

Similarly if f ðxÞ becomes unbounded only at the end point x ¼ b of the interval a @ x @ b, then we
extend the category of improper integrals of the second kind.

ðb

a

f ðxÞ dx ¼ lim
�!0þ

ðb��

a

f ðxÞ dx ð5Þ

Note: Be alert to the word unbounded. This is distinct from undefined. For example,

ð1

0

sin x

x
dx ¼

lim
�!0

ð1

�

sin x

x
dx is a proper integral, since lim

x!0

sin x

x
¼ 1 and hence is bounded as x ! 0 even though the

function is undefined at x ¼ 0. In such case the integral on the left of (5) is called convergent or
divergent according as the limit on the right exists or does not exist.

Finally, the category of improper integrals of the second kind also includes the case where f ðxÞ
becomes unbounded only at an interior point x ¼ x0 of the interval a @ x @ b, then we define

ðb

a

f ðxÞ dx ¼ lim
�1!0þ

ðx0��1

a

f ðxÞ dxþ lim
�2!0þ

ðb

x0þ�2
f ðxÞ dx ð6Þ

The integral on the left of (6) converges or diverges according as the limits on the right exist or do
not exist.

Extensions of these definitions can be made in case f ðxÞ becomes unbounded at two or more points
of the interval a @ x @ b.

CAUCHY PRINCIPAL VALUE

It may happen that the limits on the right of (6) do not exist when �1 and �2 approach zero
independently. In such case it is possible that by choosing �1 ¼ �2 ¼ � in (6), i.e., writing

ðb

a

f ðxÞ dx ¼ lim
�!0þ

ðx0��

a

f ðxÞ dxþ
ðb

x0þ�
f ðxÞ dx

� �

ð7Þ

the limit does exist. If the limit on the right of (7) does exist, we call this limiting value the Cauchy
principal value of the integral on the left. See Problem 12.14.

EXAMPLE. The natural logarithm (i.e., base e) may be defined as follows:

ln x ¼
ðx

1

dt

t
; 0 < x <1

Since f ðxÞ ¼ 1

x
is unbounded as x ! 0, this is an improper integral of the second kind (see Fig. 12-2). Also,

ð1

0

dt

t
is an integral of the third kind, since the interval to the right is unbounded.

Now lim
�!0

ð1

�

dt

t
¼ lim

�!0
½ln 1� ln �� ! �1 as �! 0; therefore, this improper integral of the second kind is

divergent. Also,

ð1

1

dt

t
¼ lim

x!1

ðx

1

dt

t
¼ lim

x!1 ½lnx� ln i� ! 1; this integral (which is of the first kind) also diverges.
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SPECIAL IMPROPER INTEGRALS OF THE SECOND KIND

1.

ðb

a

dx

ðx� aÞp converges if p < 1 and diverges if p A 1.

2.

ðb

a

dx

ðb� xÞp converges if p < 1 and diverges if p A 1.

These can be called p integrals of the second kind. Note that when p @ 0 the integrals are proper.

CONVERGENCE TESTS FOR IMPROPER INTEGRALS OF THE SECOND KIND

The following tests are given for the case where f ðxÞ is unbounded only at x ¼ a in the interval
a @ x @ b. Similar tests are available if f ðxÞ is unbounded at x ¼ b or at x ¼ x0 where a < x0 < b.

1. Comparison test for integrals with non-negative integrands.

(a) Convergence. Let gðxÞ A 0 for a < x @ b, and suppose that

ðb

a

gðxÞ dx converges. Then if

0 @ f ðxÞ @ gðxÞ for a < x @ b,

ðb

a

f ðxÞ dx also converges.

EXAMPLE.
1
ffiffiffiffiffiffiffiffiffiffiffiffiffi

x4 � 1
p <

1
ffiffiffiffiffiffiffiffiffiffiffi

x� 1
p for x > 1. Then since

ð5

1

dx
ffiffiffiffiffiffiffiffiffiffiffi

x� 1
p converges ( p integral with a ¼ 1,

p ¼ 1
2),

ð5

1

dx
ffiffiffiffiffiffiffiffiffiffiffiffiffi

x4 � 1
p also converges.

(b) Divergence. Let gðxÞ A 0 for a < x @ b, and suppose that

ðb

a

gðxÞ dx diverges. Then if

f ðxÞ A gðxÞ for a < x @ b,

ðb

a

f ðxÞ dx also diverges.

EXAMPLE.
lnx

ðx� 3Þ4 >
1

ðx� 3Þ4 for x > 3. Then since

ð6

3

dx

ðx� 3Þ4 diverges ( p integral with a ¼ 3, p ¼ 4),
ð6

3

ln x

ðx� 3Þ4 dx also diverges.

2. Quotient test for integrals with non-negative integrands.

(a) If f ðxÞ A 0 and gðxÞ A 0 for a < x @ b, and if lim
x!a

f ðxÞ
gðxÞ ¼ A 6¼ 0 or 1, then

ðb

a

f ðxÞ dx and
ðb

a

gðxÞ dx either both converge or both diverge.
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(b) If A ¼ 0 in (a), then

ðb

a

gðxÞ dx converges, then

ðb

a

f ðxÞ dx converges.

(c) If A ¼ 1 in (a), and

ðb

a

gðxÞ dx diverges, then

ðb

a

f ðxÞ dx diverges.

This test is related to the comparison test and is a very useful alternative to it. In particular
taking gðxÞ ¼ 1=ðx� aÞp we have from known facts about the p integral the following theorems.

Theorem 3. Let lim
x!aþðx� aÞp f ðxÞ ¼ A. Then

(i)

ðb

a

f ðxÞ dx converges if p < 1 and A is finite

(ii)

ðb

a

f ðxÞ dx diverges if p A 1 and A 6¼ 0 (A may be infinite).

If f ðxÞ becomes unbounded only at the upper limit these conditions are replaced by those in

Theorem 4. Let lim
x!b�

ðb� xÞp f ðxÞ ¼ B. Then

(i)

ðb

a

f ðxÞ dx converges if p < 1 and B is finite

(ii)

ðb

a

f ðxÞ dx diverges if p A 1 and B 6¼ 0 (B may be infinite).

EXAMPLE 1.

ð5

1

dx
ffiffiffiffiffiffiffiffiffiffiffiffiffi

x4 � 1
p converges, since lim

x!1þ
ðx� 1Þ1=2 � 1

ðx4 � 1Þ1=2 ¼ lim
x!1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffi

x� 1

x4 � 1

r

¼ 1

2
.

EXAMPLE 2.

ð3

0

dx

ð3� xÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffi

x2 þ 1
p diverges, since lim

x!3�
ð3� xÞ � 1

ð3� xÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffi

x2 þ 1
p ¼ 1

ffiffiffiffiffi

10
p .

3. Absolute and conditional convergence.

ðb

a

f ðxÞ dx is called absolute convergent if

ðb

a

j f ðxÞj dx

converges. If

ðb

a

f ðxÞ dx converges but

ðb

a

j f ðxÞj dx diverges, then

ðb

a

f ðxÞ dx is called condition-

ally convergent.

Theorem 5. If

ðb

a

j f ðxÞj dx converges, then

ðb

a

f ðxÞ dx converges. In words, an absolutely convergent

integral converges.

EXAMPLE. Since
sinx
ffiffiffiffiffiffiffiffiffiffiffiffi

x� �3
p
























@
1
ffiffiffiffiffiffiffiffiffiffiffiffi

x� �3
p and

ð4�

�

dx
ffiffiffiffiffiffiffiffiffiffiffiffi

x� �3
p converges ( p integral with a ¼ �; p ¼ 1

3), it follows that

ð4�

�

sinx
ffiffiffiffiffiffiffiffiffiffiffiffi

x� �3
p
























dx converges and thus

ð4�

�

sin x
ffiffiffiffiffiffiffiffiffiffiffiffi

x� �3
p dx converges (absolutely).

Any of the tests used for integrals with non-negative integrands can be used to test for absolute

convergence.
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IMPROPER INTEGRALS OF THE THIRD KIND

Improper integrals of the third kind can be expressed in terms of improper integrals of the first and
second kinds, and hence the question of their convergence or divergence is answered by using results
already established.

IMPROPER INTEGRALS CONTAINING A PARAMETER, UNIFORM CONVERGENCE

Let

�ð	Þ ¼
ð1

a

f ðx; 	Þ dx ð8Þ

This integral is analogous to an infinite series of functions. In seeking conditions under which we
may differentiate or integrate �ð	Þ with respect to 	, it is convenient to introduce the concept of uniform
convergence for integrals by analogy with infinite series.

We shall suppose that the integral (8) converges for 	1 @ 	@ 	2, or briefly ½	1; 	2�.
Definition.

The integral (8) is said to be uniformly convergent in ½	1; 	2� if for each � > 0, we can find a number N
depending on � but not on 	, such that

�ð	Þ �
ðu

a

f ðx; 	Þ dx
























< � for all u > N and all 	 in ½	1; 	2�

This can be restated by nothing that �ð	Þ �
ðu

a

f ðx; 	Þ dx
























¼
ð1

u

f ðx; 	Þ dx
























, which is analogous in

an infinite series to the absolute value of the remainder after N terms.

The above definition and the properties of uniform convergence to be developed are formulated in
terms of improper integrals of the first kind. However, analogous results can be given for improper
integrals of the second and third kinds.

SPECIAL TESTS FOR UNIFORM CONVERGENCE OF INTEGRALS

1. Weierstrass M test. If we can find a function MðxÞ A 0 such that

(a) j f ðx; 	Þj @ MðxÞ 	1 @ 	@ 	2; x > a

(b)

ð1

a

MðxÞ dx converges,

then

ð1

a

f ðx; 	Þ dx is uniformly and absolutely convergent in 	1 @ 	@ 	2.

EXAMPLE. Since
cos	x

x2 þ 1

























@
1

x2 þ 1
and

ð1

0

dx

x2 þ 1
converges, it follows that

ð1

0

cos	x

x2 þ 1
dx is uniformly

and absolutely convergent for all real values of 	.

As in the case of infinite series, it is possible for integrals to be uniformly convergent
without being absolutely convergent, and conversely.
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2. Dirichlet’s test. Suppose that

(a)  ðxÞ is a positive monotonic decreasing function which approaches zero as x ! 1.

(b)

ðu

a

f ðx; 	Þ dx
























< P for all u > a and 	1 @ 	@ 	2.

Then the integral

ð1

a

f ðx; 	Þ ðxÞ dx is uniformly convergent for 	1 @ 	@ 	2.

THEOREMS ON UNIFORMLY CONVERGENT INTEGRALS

Theorem 6. If f ðx; 	Þ is continuous for x A a and 	1 @ 	@ 	2, and if

ð1

a

f ðx; 	Þ dx is uniformly

convergent for 	1 @ 	@ 	2, then �ð	Þ ¼
ð1

a

f ðx; 	Þ dx is continous in 	1 @ 	@ 	2. In particular, if

	0 is any point of 	1 @ 	@ 	2, we can write

lim
	!	0

�ð	Þ ¼ lim
	!	0

ð1

a

f ðx; 	Þ dx ¼
ð1

a

lim
	!	0

f ðx; 	Þ dx ð9Þ

If 	0 is one of the end points, we use right or left hand limits.

Theorem 7. Under the conditions of Theorem 6, we can integrate �ð	Þ with respect to 	 from 	1 to 	2 to
obtain

ð	2

	1

�ð	Þ d	 ¼
ð	2

	1

ð1

a

f ðx; 	Þ dx
� �

d	 ¼
ð1

a

ð	2

	1

f ðx; 	Þ d	
� �

dx ð10Þ

which corresponds to a change of the order of integration.

Theorem 8. If f ðx; 	Þ is continuous and has a continuous partial derivative with respect to 	 for x A a

and 	1 @ 	@ 	2, and if

ð1

a

@f

@	
dx converges uniformly in 	1 @ 	@ 	2, then if a does not depend on 	,

d�

d	
¼
ð1

a

@f

@	
dx ð11Þ

If a depends on 	, this result is easily modified (see Leibnitz’s rule, Page 186).

EVALUATION OF DEFINITE INTEGRALS

Evaluation of definite integrals which are improper can be achieved by a variety of techniques. One
useful device consists of introducing an appropriately placed parameter in the integral and then differ-
entiating or integrating with respect to the parameter, employing the above properties of uniform
convergence.

LAPLACE TRANSFORMS

Operators that transform one set of objects into another are common in mathematics. The
derivative and the indefinite integral both are examples. Logarithms provide an immediate arithmetic
advantage by replacing multiplication, division, and powers, respectively, by the relatively simpler
processes of addition, subtraction, and multiplication. After obtaining a result with logarithms an
anti-logarithm procedure is necessary to find its image in the original framework. The Laplace trans-
form has a role similar to that of logarithms but in the more sophisticated world of differential
equations. (See Problems 12.34 and 12.36.)
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The Laplace transform of a function FðxÞ is
defined as

f ðsÞ ¼ lfFðxÞg ¼
ð1

0

e�sxFðxÞ dx ð12Þ

and is analogous to power series as seen by replacing
e�s by t so that e�sx ¼ tx. Many properties of power
series also apply to Laplace transforms. The adjacent
short table of Laplace transforms is useful. In each
case a is a real constant.

LINEARITY

The Laplace transform is a linear operator, i.e.,

�fFðxÞ þ GðxÞg ¼ �fFðxÞg þ �fGðxÞg:
This property is essential for returning to the solution after having calculated in the setting of the

transforms. (See the following example and the previously cited problems.)

CONVERGENCE

The exponential e�st contributes to the convergence of the improper integral. What is required is
that FðxÞ does not approach infinity too rapidly as x ! 1. This is formally stated as follows:

If there is some constant a such that jFðxÞj � eax for all sufficiently large values of x, then

f ðsÞ ¼
ð1

0

e�sxFðxÞ dx converges when s > a and f has derivatives of all orders. (The differentiations

of f can occur under the integral sign >.)

APPLICATION

The feature of the Laplace transform that (when combined with linearity) establishes it as a tool for

solving differential equations is revealed by applying integration by parts to f ðsÞ ¼
ðx

0

e�stFðtÞ dt. By
letting u ¼ FðtÞ and dv ¼ e�st dt, we obtain after letting x ! 1

ðx

0

e�stFðtÞ dt ¼ 1

s
Fð0Þ þ 1

s

ð1

0

e�stF 0ðtÞ dt:

Conditions must be satisfied that guarantee the convergence of the integrals (for example, e�stFðtÞ ! 0
as t ! 1).

This result of integration by parts may be put in the form

(a) �fF 0ðtÞg ¼ s�fFðtÞg þ F 0ð0Þ.
Repetition of the procedure combined with a little algebra yields

(b) �fF 00ðtÞg ¼ s2�fFðtÞg � sFð0Þ � F 0ð0Þ.
The Laplace representation of derivatives of the order needed can be obtained by repeating the
process.

To illustrate application, consider the differential equation

d2y

dt2
þ 4y ¼ 3 sin t;

where y ¼ FðtÞ and Fð0Þ ¼ 1, F 0ð0Þ ¼ 0. We use
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FðxÞ lfFðxÞg

a
a

8
8 > 0

eax
1

8� a
8 > a

sin ax
a

82 þ a2
8 > 0

cos ax
8

82 þ a2
8 > 0

xn n ¼ 1; 2; 3; . . .
n!

8nþ1
8 > 0

Y 0ðxÞ 8lfYðxÞg � Yð0Þ

Y 00ðxÞ 82lfYðxÞg � 8Yð0Þ � Y 0ð0Þ



�fsin atg ¼ a

s2 þ a2
; �fcos atg ¼ s

s2 þ a2

and recall that

f ðsÞ ¼ �fFðtÞg�fF 00ðtÞg þ 4�fFðtÞg ¼ 3�fsin tg
Using (b) we obtain

s2 f ðsÞ � sþ 4f ðsÞ ¼ 3

s2 þ 1
:

Solving for f ðsÞ yields

f ðsÞ ¼ 3

ðs2 þ 4Þðs2 þ 1Þ þ
s

s2 þ 4
¼ 1

s2 þ 1
� 1

s2 þ 4
þ s

s2 þ 4
:

(Partial fractions were employed.)
Referring to the table of Laplace transforms, we see that this last expression may be written

f ðsÞ ¼ �fsin tg � 1
2 �fsin 2tg þ �fcos 2tg

then using the linearity of the Laplace transform

f ðsÞ ¼ �fsin t� 1
2 sin 2tþ cos 2tg:

We find that

FðtÞ ¼ sin t� 1
2 sin 2tþ cos 2t

satisfies the differential equation.

IMPROPER MULTIPLE INTEGRALS

The definitions and results for improper single integrals can be extended to improper multiple
integrals.

Solved Problems

IMPROPER INTEGRALS

12.1. Classify according to the type of improper integral.

(a)

ð1

�1

dx
ffiffiffi

x3
p ðxþ 1Þ (c)

ð10

3

x dx

ðx� 2Þ2 (e)

ð�

0

1� cos x

x2
dx

(b)

ð1

0

dx

1þ tan x
(d)

ð1

�1

x2 dx

x4 þ x2 þ 1

(a) Second kind (integrand is unbounded at x ¼ 0 and x ¼ �1).

(b) Third kind (integration limit is infinite and integrand is unbounded where tan x ¼ �1Þ.
(c) This is a proper integral (integrand becomes unbounded at x ¼ 2, but this is outside the range of

integration 3 @ x @ 10).

(d) First kind (integration limits are infinite but integrand is bounded).
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(e) This is a proper integral

�

since lim
x!0þ

1� cos x

x2
¼ 1

2
by applying L’Hospital’s rule

�

.

12.2. Show how to transform the improper integral of the second kind,

ð2

1

dx
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

xð2� xÞp , into

(a) an improper integral of the first kind, (b) a proper integral.

(a) Consider

ð2��

1

dx
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

xð2� xÞp where 0 < � < 1, say. Let 2� x ¼ 1

y
. Then the integral becomes

ð1=�

1

dy

y
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2y� 1
p . As �! 0þ, we see that consideration of the given integral is equivalent to considera-

tion of

ð1

1

dy

y
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2y� 1
p , which is an improper integral of the first kind.

(b) Letting 2� x ¼ v2 in the integral of (a), it becomes 2

ð1

ffiffi

�
p

dv
ffiffiffiffiffiffiffiffiffiffiffiffiffi

v2 þ 2
p . We are thus led to consideration of

2

ð1

0

dv
ffiffiffiffiffiffiffiffiffiffiffiffiffi

v2 þ 1
p , which is a proper integral.

From the above we see that an improper integral of the first kind may be transformed into an
improper integral of the second kind, and conversely (actually this can always be done).

We also see that an improper integral may be transformed into a proper integral (this can only
sometimes be done).

IMPROPER INTEGRALS OF THE FIRST KIND

12.3. Prove the comparison test (Page 308) for convergence of improper integrals of the first kind.

Since 0 @ f ðxÞ @ gðxÞ for x A a, we have using Property 7, Page 92,

0 @
ðb

a

f ðxÞ dx @
ðb

a

gðxÞ dx @
ð1

a

gðxÞ dx

But by hypothesis the last integral exists. Thus

lim
b!1

ðb

a

f ðxÞ dx exists, and hence

ð1

a

f ðxÞ dx converges

12.4. Prove the quotient test (a) on Page 309.

By hypothesis, lim
x!1

f ðxÞ
gðxÞ ¼ A > 0. Then given any � > 0, we can find N such that

f ðxÞ
gðxÞ � A

























< � when

x A N. Thus for x A N, we have

A� �@ f ðxÞ
gðxÞ @ Aþ � or ðA� �ÞgðxÞ @ f ðxÞ @ ðAþ �ÞgðxÞ

Then

ðA� �Þ
ðb

N

gðxÞ dx @
ðb

N

f ðxÞ dx @ ðAþ �Þ
ðb

N

gðxÞ dx ð1Þ

There is no loss of generality in choosing A� � > 0.

If

ð1

a

gðxÞ dx converges, then by the inequality on the right of (1),

lim
b!1

ðb

N

f ðxÞ dx exists, and so

ð1

a

f ðxÞ dx converges

If

ð1

a

gðxÞ dx diverges, then by the inequality on the left of (1),
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lim
b!1

ðb

N

f ðxÞ dx ¼ 1 and so

ð1

a

f ðxÞ dx diverges

For the cases where A ¼ 0 and A ¼ 1, see Problem 12.41.
As seen in this and the preceding problem, there is in general a marked similarity between proofs for

infinite series and improper integrals.

12.5. Test for convergence: (a)

ð1

1

x dx

3x4 þ 5x2 þ 1
; ðbÞ

ð1

2

x2 � 1
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

x6 þ 16
p dx.

(a) Method 1: For large x, the integrand is approximately x=3x4 ¼ 1=3x3.

Since
x

3x4 þ 5x2 þ 1
@

1

3x3
, and

1

3

ð1

1

dx

x3
converges ( p integral with p ¼ 3), it follows by the

comparison test that

ð1

1

x dx

3x4 þ 5x2 þ 1
also converges.

Note that the purpose of examining the integrand for large x is to obtain a suitable comparison
integral.

Method 2: Let f ðxÞ ¼ x

3x4 þ 5x2 þ 1
; gðxÞ ¼ 1

x3
. Since lim

x!1
f ðxÞ
gðxÞ ¼

1

3
, and

ð1

1

gðxÞ dx converges,
ð1

1

f ðxÞ dx also converges by the quotient test.

Note that in the comparison function gðxÞ, we have discarded the factor 1
3. It could, however, just

as well have been included.

Method 3: lim
x!1x3

x

3x4 þ 5x2 þ 1

� �

¼ 1

3
. Hence, by Theorem 1, Page 309, the required integral

converges.

(b) Method 1: For large x, the integrand is approximately x2=
ffiffiffiffiffi

x6
p

¼ 1=x.

For x A 2,
x2 � 1
ffiffiffiffiffiffiffiffiffiffiffiffiffi

x6 þ 1
p A

1

2
� 1
x
. Since

1

2

ð1

2

dx

x
diverges,

ð1

2

x2 � 1
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

x6 þ 16
p dx also diverges.

Method 2: Let f ðxÞ ¼ x2 � 1
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

x6 � 16
p , gðxÞ ¼ 1

x
. Then since lim

x!1
f ðxÞ
gðxÞ ¼ 1, and

ð1

2

gðxÞ dx diverges,
ð1

2

f ðxÞ dx also diverges.

Method 3: Since lim
x!1x

x2 � 1
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

x6 þ 16
p

 !

¼ 1, the required integral diverges by Theorem 1, Page 309.

Note that Method 1 may (and often does) require one to obtain a suitable inequality factor (in this

case 1
2, or any positive constant less than 1

2) before the comparison test can be applied. Methods 2 and
3, however, do not require this.

12.6. Prove that

ð1

0

e�x2 dx converges.

lim
x!1x2e�x2 ¼ 0 (by L’Hospital’s rule or otherwise). Then by Theorem 1, with A ¼ 0; p ¼ 2 the given

integral converges. Compare Problem 11.10(a), Chapter 11.

12.7. Examine for convergence:

ðaÞ
ð1

1

ln x

xþ a
dx; where a is a positive constant; ðbÞ

ð1

0

1� cos x

x2
dx:

(a) lim
x!1 x � ln x

xþ a
¼ 1. Hence by Theorem 1, Page 309, with A ¼ 1; p ¼ 1, the given integral diverges.

318 IMPROPER INTEGRALS [CHAP. 12



ðbÞ
ð1

0

1� cos x

x2
dx ¼

ð�

0

1� cos x

x2
dxþ

ð1

�

1� cos x

x2
dx

The first integral on the right converges [see Problem 12.1(e)].

Since lim
x!1x3=2

1� cos x

x2

� �

¼ 0, the second integral on the right converges by Theorem 1, Page 309,

with A ¼ 0 and p ¼ 3=2.

Thus, the given integral converges.

12.8. Test for convergence: (a)

ð�1

�1

ex

x
dx; ðbÞ

ð1

�1

x3 þ x2

x6 þ 1
dx:

(a) Let x ¼ �y. Then the integral becomes �
ð1

1

e�y

y
dy.

Method 1:
e�y

y
@ e�y for y @ 1. Then since

ð1

1

e�y dy converges,

ð1

1

e�y

y
dy converges; hence the

given integral converges.

Method 2: lim
y!1 y2

e�y

y

� �

¼ lim
y!1 ye�y ¼ 0. Then the given integral converges by Theorem 1, Page

309, with A ¼ 0 and p ¼ 2.

(b) Write the given integral as

ð0

�1

x3 þ x2

x6 þ 1
dxþ

ð1

0

x3 þ x2

x6 þ 1
dx. Letting x ¼ �y in the first integral, it

becomes �
ð1

0

y3 � y2

y6 þ 1
dy. Since lim

y!1 y3
y3 � y2

y6 þ 1

 !

¼ 1, this integral converges.

Since lim
x!1x3

x3 þ x2

x6 þ 1

 !

¼ 1, the second integral converges.

Thus the given integral converges.

ABSOLUTE AND CONDITIONAL CONVERGENCE FOR IMPROPER INTEGRALS OF THE

FIRST KIND

12.9. Prove that

ð1

a

f ðxÞ dx converges if

ð1

a

j f ðxÞj dx converges, i.e., an absolutely convergent integral is

convergent.

We have �j f ðxÞj @ f ðxÞ @ j f ðxÞj, i.e., 0 @ f ðxÞ þ j f ðxÞj @ 2j f ðxÞj. Then

0 @
ðb

a

½ f ðxÞ þ j f ðxÞj� dx @ 2

ðb

a

j f ðxÞj dx

If

ð1

a

j f ðxÞj dx converges, it follows that

ð1

a

½ f ðxÞ þ j f ðxÞj� dx converges. Hence, by subtracting
ð1

a

j f ðxÞj dx, which converges, we see that

ð1

a

f ðxÞ dx converges.

12.10. Prove that

ð1

1

cos x

x2
dx converges.

Method 1:

cosx

x2

























@
1

x2
for x A 1. Then by the comparison test, since

ð1

1

dx

x2
converges, it follows that

ð1

1

cos x

x2

























dx converges, i.e.,

ð1

1

cosx

x2
dx converges absolutely, and so converges by Problem 12.9.
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Method 2:

Since lim
x!1x3=2

cos x

x2

























¼ lim
x!1

cos x

x1=2

























¼ 0, it follows from Theorem 1, Page 309, with A ¼ 0 and p ¼ 3=2,

that

ð1

1

cos x

x2

























dx converges, and hence

ð1

1

cosx

x2
dx converges (absolutely).

12.11. Prove that

ð1

0

sin x

x
dx converges.

Since

ð1

0

sinx

x
dx converges because

sinx

x
is continuous in 0 < x @ 1 and lim

x!0þ
sinx

x
¼ 1

� �

we need

only show that

ð1

1

sin x

x
dx converges.

Method 1: Integration by parts yields

ðM

1

sin x

x
dx ¼ � cos x

x













M

1

þ
ðM

1

cos x

x2
dx ¼ cos 1� cosM

M
þ
ðM

1

cosx

x2
dx ð1Þ

or on taking the limit on both sides of (1) as M ! 1 and using the fact that lim
M!1

cosM

M
¼ 0,

ð1

1

sin x

x
dx ¼ cos 1þ

ð1

1

cosx

x2
dx ð2Þ

Since the integral on the right of (2) converges by Problem 12.10, the required results follows.

The technique of integration by parts to establish convergence is often useful in practice.

Method 2:

ð1

0

sinx

x
dx ¼

ð�

0

sin x

x
dxþ

ð2�

�

sin x

x
dxþ � � � þ

ððnþ1Þ�

n�

sinx

x
dxþ � � �

¼
X

1

n¼0

ððnþ1Þ�

n�

sin x

x
dx

Letting x ¼ vþ n�, the summation becomes

X

1

n¼0

ð�1Þn
ð�

0

sin v

nþ n�
dv ¼

ð�

0

sin v

v
dv�

ð�

0

sin v

vþ � dvþ
ð�

0

sin v

vþ 2�
dv� � � �

This is an alternating series. Since
1

vþ n�
@

1

vþ ðnþ 1Þ� and sin v A 0 in ½0; ��, it follows that
ð�

0

sin v

vþ n�
dv @

ð�

0

sin v

vþ ðnþ 1Þ� dv

lim
n!1

ð�

0

sin v

vþ n�
dv @ lim

n!1

ð�

0

dv

n�
¼ 0Also,

Thus, each term of the alternating series is in absolute value less than or equal to the preceding term,
and the nth term approaches zero as n ! 1. Hence, by the alternating series test (Page 267) the series and
thus the integral converges.

12.12. Prove that

ð1

0

sin x

x
dx converges conditionally.

Since by Problem 12.11 the given integral converges, we must show that it is not absolutely convergent,

i.e.,

ð1

0

sinx

x

























dx diverges.

As in Problem 12.11, Method 2, we have
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ð1

0

sinx

x

























dx ¼
X

1

n¼0

ððnþ1Þ�

n�

sin x

x

























dx ¼
X

1

n¼0

ð�

0

sin v

vþ n�
dv ð1Þ

Now
1

vþ n�
A

1

ðnþ 1Þ� for 0 @ v @ �: Hence,

ð�

0

sin v

vþ n�
dv A

1

ðnþ 1Þ�
ð�

9

sin v dv ¼ 2

ðnþ 1Þ� ð2Þ

Since
X

1

n¼0

2

ðnþ 1Þ� diverges, the series on the right of (1) diverges by the comparison test. Hence,

ð1

0

sin x

x

























dx diverges and the required result follows.

IMPROPER INTEGRALS OF THE SECOND KIND, CAUCHY PRINCIPAL VALUE

12.13. (a) Prove that

ð7

�1

dx
ffiffiffiffiffiffiffiffiffiffiffi

xþ 13
p converges and (b) find its value.

The integrand is unbounded at x ¼ �1. Then we define the integral as

lim
�!0þ

ð7

�1þ�

dx
ffiffiffiffiffiffiffiffiffiffiffi

xþ 13
p ¼ lim

�!0þ
ðxþ 1Þ2=3

2=3













7

�1þ�
¼ lim

�!0þ
6� 3

2
�2=3

� �

¼ 6

This shows that the integral converges to 6.

12.14. Determine whether

ð5

�1

dx

ðx� 1Þ3 converges (a) in the usual sense, (b) in the Cauchy principal

value sense.

(a) By definition,

ð5

�1

dx

ðx� 1Þ3 ¼ lim
�1!0þ

ð1��1

�1

dx

ðx� 1Þ3 þ lim
�2!0þ

ð5

1þ�2

dx

ðx� 1Þ3

¼ lim
�1!0þ

1

8
� 1

2�21

� �

þ lim
�2!0þ

1

2�22
� 1

32

� �

and since the limits do not exist, the integral does not converge in the usual sense.

(b) Since

lim
�!0þ

ð1��

�1

dx

ðx� 1Þ3 þ
ð5

1þ�

dx

ðx� 1Þ3
� �

¼ lim
�!0þ

1

8
� 1

2�2
þ 1

2�2
� 1

32

� �

¼ 3

32

the integral exists in the Cauchy principal value sense. The principal value is 3/32.

12.15. Investigate the convergence of:

(a)

ð3

2

dx

x2ðx3 � 8Þ2=3 (c)

ð5

1

dx
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið5� xÞðx� 1Þp (e)

ð�=2

0

dx

ðcos xÞ1=n ; n > 1:

(b

ð�

0

sin x

x3
dx (d)

ð1

�1

2sin
�1 x

1� x
dx

(a) lim
x!2þ

ðx� 2Þ2=3 � 1

x2ðx3 � 8Þ2=3 ¼ lim
x!2þ

1

x2
1

x2 þ 2xþ 4

� �2=3

¼ 1

8
ffiffiffiffiffi

183
p . Hence, the integral converges by

Theorem 3(i), Page 312.
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(b) lim
x!0þ

x2 � sin x
x3

¼ 1. Hence, the integral diverges by Theorem 3(ii) on Page 312.

ðcÞ Write the integral as

ð3

1

dx
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið5� xÞðx� 1Þp þ

ð5

3

dx
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið5� xÞðx� 1Þp :

Since lim
x!1þ

ðx� 1Þ1=2 � 1
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið5� xÞðx� 1Þp ¼ 1

2
, the first integral converges.

Since lim
x!5�

ð5� xÞ1=2 � 1
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið5� xÞðx� 1Þp ¼ 1

2
, the second integral converges.

Thus, the given integral converges.

(d) lim
x!1�

ð1� xÞ � 2
sin�1 x

1� x
¼ 2�=2. Hence, the integral diverges.

Another method:

2sin
�1 x

1� x
A

2��=2

1� x
, and

ð1

�1

dx

1� x
diverges. Hence, the given integral diverges.

ðeÞ lim
x!1=2��

ð�=2� xÞ1=n � 1

ðcos xÞ1=n ¼ lim
x!1=2��

�=2� x

cos x

� �1=n

¼ 1: Hence the integral converges.

12.16. If m and n are real numbers, prove that

ð1

0

xm�1ð1� xÞn�1 dx (a) converges if m > 0 and n > 0

simultaneously and (b) diverges otherwise.

(a) For m A 1 and n A 1 simultaneously, the integral converges, since the integrand is continuous in
0 @ x @ 1. Write the integral as

ð1=2

0

xm�1ð1� xÞn�1 dxþ
ð1

1=2

xm�1ð1� xÞn�1 dx ð1Þ

If 0 < m < 1 and 0 < n < 1, the first integral converges, since lim
x!0þ

x1�m � xm�1ð1� xÞn�1 ¼ 1, using

Theorem 3(i), Page 312, with p ¼ 1�m and a ¼ 0.
Similarly, the second integral converges since lim

x!1�
ð1� xÞ1�n � xm�1ð1� xÞn�1 ¼ 1, using Theorem

4(i), Page 312, with p ¼ 1� n and b ¼ 1.

Thus, the given integral converges if m > 0 and n > 0 simultaneously.

(b) If m @ 0, lim
x!0þ

x � xm�1ð1� xÞn�1 ¼ 1. Hence, the first integral in (1) diverges, regardless of the value

of n, by Theorem 3(ii), Page 312, with p ¼ 1 and a ¼ 0.

Similarly, the second integral diverges if n @ 0 regardless of the value of m, and the required result
follows.

Some interesting properties of the given integral, called the beta integral or beta function, are

considered in Chapter 15.

12.17. Prove that

ð�

0

1

x
sin

1

x
dx converges conditionally.

Letting x ¼ 1=y, the integral becomes

ð1

1=�

sin y

y
dy and the required result follows from Problem 12.12.

IMPROPER INTEGRALS OF THE THIRD KIND

12.18. If n is a real number, prove that

ð1

0

xn�1e�x dx (a) converges if n > 0 and (b) diverges if n @ 0.
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Write the integral as

ð1

0

xn�1e�x dxþ
ð1

1

xn�1e�x dx ð1Þ

(a) If n A 1, the first integral in (1) converges since the integrand is continuous in 0 @ x @ 1.

If 0 < n < 1, the first integral in (1) is an improper integral of the second kind at x ¼ 0. Since
lim
x!0þ

x1�n � xn�1e�x ¼ 1, the integral converges by Theorem 3(i), Page 312, with p ¼ 1� n and a ¼ 0.

Thus, the first integral converges for n > 0.

If n > 0, the second integral in (1) is an improper integral of the first kind. Since

lim
x!1 x2 � xn�1e�x ¼ 0 (by L’Hospital’s rule or otherwise), this integral converges by Theorem 1ðiÞ,
Page 309, with p ¼ 2.

Thus, the second integral also converges for n > 0, and so the given integral converges for n > 0.

(b) If n @ 0, the first integral of (1) diverges since lim
x!0þ

x � xn�1e�x ¼ 1 [Theorem 3(ii), Page 312].

If n @ 0, the second integral of (1) converges since lim
x!1x � xn�1e�x ¼ 0 [Theorem 1(i), Page 309].

Since the first integral in (1) diverges while the second integral converges, their sum also diverges,
i.e., the given integral diverges if n @ 0.

Some interesting properties of the given integral, called the gamma function, are considered in
Chapter 15.

UNIFORM CONVERGENCE OF IMPROPER INTEGRALS

12.19. (a) Evaluate �ð	Þ ¼
ð1

0

	e�	x dx for 	 > 0.

(b) Prove that the integral in (a) converges uniformly to 1 for 	A 	1 > 0.
(c) Explain why the integral does not converge uniformly to 1 for 	 > 0.

ðaÞ �ð	Þ ¼ lim
b!1

ðb

a

	e�	x dx ¼ lim
b!1

�e�	x












b

x¼0

¼ lim
b!1

1� e�	b ¼ 1 if 	 > 0

.

Thus, the integral converges to 1 for all 	 > 0.

(b) Method 1, using definition:

The integral converges uniformly to 1 in 	A 	1 > 0 if for each � > 0 we can find N, depending on

� but not on 	, such that 1�
ðu

0

	e�	x dx
























< � for all u > N.

Since 1�
ðu

0

	e�	x dx
























¼ j1� ð1� e�	uÞj ¼ e�	u @ e�	1u < � for u >
1

	1
ln
1

�
¼ N, the result fol-

lows.

Method 2, using the Weierstrass M test:

Since lim
x!1x2 � 	e�	x ¼ 0 for 	A 	1 > 0, we can choose j	e�	xj < 1

x2
for sufficiently large x, say

x A x0. Taking MðxÞ ¼ 1

x2
and noting that

ð1

x0

dx

x2
converges, it follows that the given integral is

uniformly convergent to 1 for 	A 	1 > 0.

(c) As 	1 ! 0, the number N in the first method of (b) increases without limit, so that the integral cannot
be uniformly convergent for 	 > 0.

12.20. If �ð	Þ ¼
ð1

0

f ðx; 	Þ dx is uniformly convergent for 	1 @ 	@ 	2, prove that �ð	Þ is continuous in
this interval.
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Let �ð	Þ ¼
ðu

a

f ðx; 	Þ dxþ Rðu; 	Þ; where Rðu; 	Þ ¼
ð1

u

f ðx; 	Þ dx:

Then �ð	þ hÞ ¼
ðu

a

f ðx; 	þ hÞ dxþ Rðu; 	þ hÞ and so

�ð	þ hÞ � �ð	Þ ¼
ðu

a

f f ðx; 	þ hÞ � f ðx; 	Þg dxþ Rðu; 	þ hÞ � Rðu; 	Þ

Thus

j�ð	þ hÞ � �ð	Þj @
ðu

a

j f ðx; 	þ hÞ � f ðx; 	Þjdxþ jRðu; 	þ hÞj þ jRðu; 	Þj ð1Þ

Since the integral is uniformly convergent in 	1 @ 	@ 	2, we can, for each � > 0, find N independent
of 	 such that for u > N,

jRðu; 	þ hÞj < �=3; jRðu; 	Þj < �=3 ð2Þ
Since f ðx; 	Þ is continuous, we can find � > 0 corresponding to each � > 0 such that

ðu

a

j f ðx; 	þ hÞ � f ðx; 	Þj dx < �=3 for jhj < � ð3Þ

Using (2) and (3) in (1), we see that j�ð	þ hÞ � �ð	Þj < � for jhj < �, so that �ð	Þ is continuous.
Note that in this proof we assume that 	 and 	þ h are both in the interval 	1 @ 	@ 	2. Thus, if

	 ¼ 	1, for example, h > 0 and right-hand continuity is assumed.

Also note the analogy of this proof with that for infinite series.

Other properties of uniformly convergent integrals can be proved similarly.

12.21. (a) Show that lim
	!0þ

ð1

0

	e�	x dx 6¼
ð1

0

lim
	!0þ

	e�	x
� �

dx: ðbÞ Explain the result in (a).

ðaÞ lim
	!0þ

ð1

0

	e�	x dx ¼ lim
	!0þ

¼ 1 by Problem 12.19ðaÞ:

ð1

0

lim
	!0þ

	e�	x
� �

dx ¼
ð1

0

0 dx ¼ 0. Thus the required result follows.

(b) Since �ð	Þ ¼
ð1

0

	e�ax dx is not uniformly convergent for 	A 0 (see Problem 12.19), there is no

guarantee that �ð	Þ will be continuous for 	A 0. Thus lim
	!0þ

�ð	Þ may not be equal to �ð0Þ.

12.22. (a) Prove that

ð1

0

e�	x cos rx dx ¼ 	

	2 þ r2
for 	 > 0 and any real value of r.

(b) Prove that the integral in (a) converges uniformly and absolutely for a @ 	@ b, where
0 < a < b and any r.

(a) From integration formula 34, Page 96, we have

lim
M!1

ðM

0

e�	x cos rx dx ¼ lim
M!1

e�	xðr sin rx� 	 cos rxÞ
	2 þ r2













M

0

¼ 	

	2 þ r2

(b) This follows at once from the Weierstrass M test for integrals, by noting that je�	x cos rxj @ e�	x and
ð1

0

e�	x dx converges.
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EVALUATION OF DEFINITE INTEGRALS

12.23. Prove that

ð�=2

0

ln sin x dx ¼ ��
2
ln 2.

The given integral converges [Problem 12.42( f )]. Letting x ¼ �=2� y,

I ¼
ð�=2

0

ln sin x dx ¼
ð�=2

0

ln cos y dy ¼
ð�=2

0

ln cosx dx

Then

2I ¼
ð�=2

0

ðln sinxþ ln cos xÞ dx ¼
ð�=2

0

ln
sin 2x

2

� �

dx

¼
ð�=2

0

ln sin 2x dx�
ð�=2

0

ln 2 dx ¼
ð�=2

0

ln sin 2x dx� �
2
ln 2 ð1Þ

Letting 2x ¼ v,

ð�=2

0

ln sin 2x dx ¼ 1

2

ð�

0

ln sin v dv ¼ 1

2

ð�=2

0

ln sin v dvþ
ð�

�=2

ln sin v dv

� �

¼ 1

2
ðI þ IÞ ¼ I (letting v ¼ �� u in the last integral)

Hence, (1) becomes 2I ¼ I � �
2
ln 2 or I ¼ ��

2
ln 2.

12.24. Prove that

ð�

0

x ln sin x dx ¼ ��
2

2
ln 2.

Let x ¼ �� y. Then, using the results in the preceding problem,

J ¼
ð�

0

x ln sinx dx ¼
ð�

0

ð�� uÞ ln sin u du ¼
ð�

0

ð�� xÞ ln sinx dx

¼ �

ð�

0

ln sinx dx�
ð�

0

x ln sin x dx

¼ ��2 ln 2� J

or J ¼ ��
2

2
ln 2:

12.25. (a) Prove that �ð	Þ ¼
ð1

0

dx

x2 þ 	 is uniformly convergent for 	A 1.

ðbÞ Show that �ð	Þ ¼ �

2
ffiffiffi

	
p . ðcÞ Evaluate

ð1

0

dx

ðx2 þ 1Þ2 :

ðdÞ Prove that

ð1

0

dx

ðx2 þ 1Þnþ1
¼
ð�=2

0

cos2n � d� ¼ 1 � 3 � 5 � � � ð2n� 1Þ
2 � 4 � 6 � � � ð2nÞ

�

2
:

(a) The result follows from the Weierestrass test, since
1

x2 þ 	 @
1

x2 þ 1
for a A 1 and

ð1

0

dx

x2 þ 1
converges.

ðbÞ �ð	Þ ¼ lim
b!1

ðb

0

dx

x2 þ 	 ¼ lim
b!1

1
ffiffiffi

	
p tan�1 x

ffiffiffi

	
p













b

0

¼ lim
b!1

1
ffiffiffi

	
p tan�1 b

ffiffiffi

	
p ¼ �

2
ffiffiffi

	
p :
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(c) From (b),

ð1

0

dx

x2 þ 	 ¼ �

2
ffiffiffi

	
p . Differentiating both sides with respect to 	, we have

ð1

0

@

@	

1

x2 þ 	
� �

dx ¼ �
ð1

0

dx

ðx2 þ 	Þ2 ¼ ��
4
	�3=2

the result being justified by Theorem 8, Page 314, since

ð1

0

dx

ðx2 þ 	Þ2 is uniformly convergent for 	A 1
�

because
1

ðx2 þ 	Þ2 @
1

ðx2 þ 1Þ2 and

ð1

0

dx

ðx2 þ 1Þ2 converges

�

.

Taking the limit as 	! 1þ, using Theorem 6, Page 314, we find

ð1

0

dx

ðx2 þ 1Þ2 ¼
�

4
.

(d) Differentiating both sides of

ð1

0

dx

x2 þ 	 ¼ �

2
	�1=2 n times, we find

ð�1Þð�2Þ � � � ð�nÞ
ð1

0

dx

ðx2 þ 	Þnþ1
¼ � 1

2

� �

� 3

2

� �

� 5

2

� �

� � � � 2n� 1

2

� �

�

2
	�ð2nþ1Þ=2

where justification proceeds as in part (c). Letting 	! 1þ, we find

ð1

0

dx

ðx2 þ 1Þnþ1
¼ 1 � 3 � 5 � � � ð2n� 1Þ

2nn!

�

2
¼ 1 � 3 � 5 � � � ð2n� 1Þ

2 � 4 � 6 � � � ð2nÞ
�

2

Substituting x ¼ tan �, the integral becomes

ð�=2

0

cos2n � d� and the required result is obtained.

12.26. Prove that

ð1

0

e�ax � e�bx

x sec rx
dx ¼ 1

2
ln
b2 þ r2

a2 þ r2
where a; b > 0.

From Problem 12.22 and Theorem 7, Page 314, we have

ð1

x¼0

ðb

	¼a

e�	x cos rx d	
� �

dx ¼
ðb

	¼a

ð1

x¼0

e�	x cos rx dx
� �

d	

or

ð1

x¼0

e�	x cos rx
�x













b

	¼a

dx ¼
ðb

	¼a

	

	2 þ r2
d	

ð1

0

e�ax � e�bx

x sec rx
dx ¼ 1

2
ln
b2 þ r2

a2 þ r2
i.e.,

12.27. Prove that

ð1

0

e�	x
1� cos x

x2
dx ¼ tan�1 1

	
� 	

2
lnð	2 þ 1Þ, 	 > 0.

By Problem 12.22 and Theorem 7, Page 314, we have
ðr

0

ð1

0

e�	x cos rx dx
� �

dr ¼
ð1

0

ðr

0

e�	x cos rx dr
� �

dx

ð1

0

e�	x
sin rx

x
dx ¼

ðr

0

a

	2 þ r2
¼ tan�1 r

	
or

Integrating again with respect to r from 0 to r yields
ð1

0

e�	x
1� cos rx

x2
dx ¼

ðr

0

tan�1 r

	
dr ¼ r tan�1 r

	
� 	

2
lnð	2 þ r2Þ

using integration by parts. The required result follows on letting r ¼ 1.
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12.28. Prove that

ð1

0

1� cos x

x2
dx ¼ �

2
.

Since e�	x
1� cos x

x2
@

1� cos x

x2
for 	A 0;x A 0 and

ð1

0

1� cos x

x2
dx converges [see Problem

12.7(b)], it follows by the Weierstrass test that

ð1

0

e�	x
1� cos x

x2
dx is uniformly convergent and represents

a continuous function of 	 for 	A 0 (Theorem 6, Page 314). Then letting 	! 0þ, using Problem 12.27, we
have

lim
	!0þ

ð1

0

e�	x
1� cos x

x2
dx ¼

ð1

0

1� cos x

x2
dx ¼ lim

	!0
tan�1 1

	
� 	

2
lnð	2 þ 1Þ

� �

¼ �

2

12.29. Prove that

ð1

0

sin x

x
¼
ð1

0

sin2 x

x2
dx ¼ �

2
.

Integrating by parts, we have

ðM

�

1� cos x

x2
dx ¼ � 1

x

� �

ð1� cos xÞ












M

�

þ
ðM

�

sin x

x
dx ¼ 1� cos �

�
� 1� cosM

M
þ
ðM

�

sinx

x
dx

Taking the limit as �! 0þ and M ! 1 shows that
ð1

0

sinx

x
dx ¼

ð1

0

1� cosx

x
dx ¼ �

2

Since

ð1

0

1� cos x

x2
dx ¼ 2

ð1

0

sin2ðx=2Þ
x2

dx ¼
ð1

0

sin2 u

u2
du on letting u ¼ x=2, we also have

ð1

0

sin2 x

x2
dx ¼ �

2
.

12.30. Prove that

ð1

0

sin3 x

x
dx ¼ �

4
.

sin3 x ¼ eix � e�ix

2i

� �2

¼ ðeixÞ3 � 3ðeixÞ2ðe�ixÞ þ 3ðeixÞðe�ixÞ2 � ðe�ixÞ3
ð2iÞ3

¼ � 1

4

e�3ix � e�3ix

2i

 !

þ 3

4

eix � e�ix

2i

� �

¼ � 1

4
sin 3xþ 3

4
sin x

Then

ð1

0

sin3 x

x
dx ¼ 3

4

ð1

0

sinx

x
dx� 1

4

ð1

0

sin 3x

x
dx ¼ 3

4

ð1

0

sinx

x
dx� 1

4

ð1

0

sin u

u
du

¼ 3

4

�

2

� �

� 1

4

�

2

� �

¼ �

4

MISCELLANEOUS PROBLEMS

12.31. Prove that

ð1

0

e�x2 dx ¼ ffiffiffi

�
p

=2.

By Problem 12.6, the integral converges. Let IM ¼
ðM

0

e�x2 dx ¼
ðM

0

e�y2 dy and let lim
M!1

IM ¼ I , the

required value of the integral. Then
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I2M ¼
ðM

0

e�x2 dx

� �
ðM

0

e�y2 dy

� �

¼
ðM

0

ðM

0

e�ðx2þy2Þ dx dy

¼
ð ð

rM

e�ðx2þy2Þ dx dy

where rM is the square OACE of side M (see Fig. 12-3). Since integrand is positive, we have
ð ð

r1

e�ðx2þy2Þ dx dy @ I2M @
ð ð

r2

e�ðx2þy2Þ dx dy ð1Þ

where r1 and r2 are the regions in the first quadrant bounded
by the circles having radii M and M

ffiffiffi

2
p

, respectively.

Using polar coordinates, we have from (1),

ð�=2

�¼0

ðM

�¼0

e��
2

� d� d�@ I2M @
ð�=2

�¼0

ðM
ffiffi

2
p

�¼0

e��
2

� d� d� ð2Þ

or

�

4
ð1� e�M2 Þ @ I2M @

�

4
ð1� e�2M2 Þ ð3Þ

Then taking the limit as M ! 1 in (3), we find
lim

M!1
I2M ¼ I2 ¼ �=4 and I ¼ ffiffiffi

�
p

=2.

12.32. Evaluate

ð1

0

e�x2 cos	x dx.

Let Ið	Þ ¼
ð1

0

e�x2 cos	x dx. Then using integration by

parts and appropriate limiting procedures,

dI

d	
¼
ð1

0

�xe�x2 sin 	x dx ¼ 1

2
e�x2 sin	xj10 � 1

2
	

ð1

0

e�x2 cos	x dx ¼ �	
2
I

The differentiation under the integral sign is justified by Theorem 8, Page 314, and the fact that
ð1

0

xe�x2 sin 	x dx is uniformly convergent for all 	 (since by the Weierstrass test, jxe�x2 sin	xj @ xe�x2

and

ð1

0

xe�x2 dx converges).

From Problem 12.31 and the uniform convergence, and thus continuity, of the given integral (since

je�x2 cos	xj @ e�x2 and

ð1

0

e�x2dx converges, so that that Weierstrass test applies), we have

Ið0Þ ¼ lim
	!0

Ið	Þ ¼ 1
2

ffiffiffi

�
p

.

Solving
dI

d	
¼ � 	

2
I subject to Ið0Þ ¼

ffiffiffi

�
p
2
, we find Ið	Þ ¼

ffiffiffi

�
p
2

e�	
2=4.

12.33. (a) Prove that Ið	Þ ¼
ð1

0

e�ðx�	=xÞ2 dx ¼
ffiffiffi

�
p
2
. (b) Evaluate

ð1

0

e�ðx2þx�2Þ dx.

(a) We have I 0ð	Þ ¼ 2

ð1

0

e�ðx�	=xÞ2 ð1� 	=x2Þ dx.

The differentiation is proved valid by observing that the integrand remains bounded as x ! 0þ
and that for sufficiently large x,
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e�ðx�	=xÞ2 ð1� 	=x2Þ ¼ e�x2þ2	�	2=x2 ð1� 	=x2Þ @ e2	e�x2

so that I 0ð	Þ converges uniformly for 	A 0 by the Weierstrass test, since

ð1

0

e�x2dx converges. Now

I 0ð	Þ ¼ 2

ð1

0

e�ðx�	=xÞ2 dx� 2	

ð1

0

e�ðx�	=xÞ2

x2
dx ¼ 0

as seen by letting 	=x ¼ y in the second integral. Thus Ið	Þ ¼ c, a constant. To determine c, let 	! 0þ in
the required integral and use Problem 12.31 to obtain c ¼ ffiffiffi

�
p

=2.

(b) From (a),

ð1

0

e�ðx�	=xÞ2dx ¼
ð1

0

e�ðx2�2	þ	2x�2Þ dx ¼ e2	
ð1

0

e�ðx2þ	2x�2Þ dx ¼
ffiffiffi

�
p
2
.

Then

ð1

0

e�ðx2þ	2x�2Þ dx ¼
ffiffiffi

�
p
2

e�2	: Putting 	 ¼ 1;

ð1

0

e�ðx2þx�2Þ dx ¼
ffiffiffi

�
p
2

e�2:

12.34. Verify the results: (a) lfeaxg ¼ 1

s� a
; s > a; ðbÞ lfcos axg ¼ s

s2 þ a2
; s > 0.

lfeaxg ¼
ð1

0

e�sxeax dx ¼ lim
M!1

ðM

0

e�ðs�aÞx dxðaÞ

¼ lim
M!1

1� e�ðs�aÞM

s� a
¼ 1

s� a
if s > a

ðbÞ lfcos axg ¼
ð1

0

e�sx cos ax dx ¼ s

s2 þ a2
by Problem 12.22 with 	 ¼ s; r ¼ a:

Another method, using complex numbers.

From part (a), lfeaxg ¼ 1

s� a
. Replace a by ai. Then

lfeaixg ¼ lfcos axþ i sin axg ¼ lfcos axg þ ilfsin axg
¼ 1

s� ai
¼ sþ ai

s2 þ a2
¼ s

s2 þ a2
þ i

a

s2 þ a2

Equating real and imaginary parts: lfcos axg ¼ s

s2 þ a2
, lfsin axg ¼ a

s2 þ a2
.

The above formal method can be justified using methods of Chapter 16.

12.35. Prove that (a) lfY 0ðxÞg ¼ slfYðxÞg � Yð0Þ; ðbÞ lfY 00ðxÞg ¼ s2lfYðxÞg � sYð0Þ � Y 0ð0Þ
under suitable conditions on YðxÞ.
(a) By definition (and with the aid of integration by parts)

lfY 0ðxÞg ¼
ð1

0

e�sxY 0ðxÞ dx ¼ lim
M!0

ðM

0

e�sxY 0ðxÞ dx

¼ lim
M!1

e�sxYðxÞ












M

0

þ s

ðM

0

e�sxYðxÞ dx
( )

¼ s

ð1

0

e�sxYðxÞ dx� Yð0Þ ¼ slfYðxÞg � Yð0Þ

assuming that s is such that lim
M!1

e�sMYðMÞ ¼ 0.

(b) Let UðxÞ ¼ Y 0ðxÞ. Then by part (a), lfU 0ðxÞg ¼ slfUðxÞg �Uð0Þ. Thus

lfY 00ðxÞg ¼ slfY 0ðxÞg � Y 0ð0Þ ¼ s½slfYðxÞg � Yð0Þ� � Y 0ð0Þ
¼ s2lfYðxÞg � sYð0Þ � Y 0ð0Þ
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12.36. Solve the differential equation Y 00ðxÞ þ YðxÞ ¼ x;Yð0Þ ¼ 0;Y 0ð0Þ ¼ 2.

Take the Laplace transform of both sides of the given differential equation. Then by Problem 12.35,

lfY 00ðxÞ þ YðxÞg ¼ lfxg; lfY 00ðxÞg þlfYðxÞg ¼ 1=s2

s2lfYðxÞg � sYð0Þ � Y 0ð0Þ þlfYðxÞg ¼ 1=s2and so

Solving for lfYðxÞg using the given conditions, we find

lfYðxÞg ¼ 2s2

s2ðs2 þ 1Þ ¼
1

s2
þ 1

s2 þ 1
ð1Þ

by methods of partial fractions.

Since
1

s2
¼ lfxg and

1

s2 þ 1
¼ lfsin xg; it follows that

1

s2
þ 1

s2 þ 1
¼ lfxþ sin xg:

Hence, from (1), lfYðxÞg ¼ lfxþ sin xg, from which we can conclude that YðxÞ ¼ xþ sinx which is,
in fact, found to be a solution.

Another method:

If lfFðxÞg ¼ f ðsÞ, we call f ðsÞ the inverse Laplace transform of FðxÞ and write f ðsÞ ¼ l�1fFðxÞg.
By Problem 12.78, l�1f f ðsÞ þ gðsÞg ¼ l�1f f ðsÞg þl�1fgðsÞg. Then from (1),

YðxÞ ¼ l�1 1

s2
þ 1

s2 þ 1

� �

¼ l�1 1

s2

� �

þl�1 1

s2 þ 1

� �

¼ xþ sin x

Inverse Laplace transforms can be read from the table on Page 315.

Supplementary Problems

IMPROPER INTEGRALS OF THE FIRST KIND

12.37. Test for convergence:

ðaÞ
ð1

0

x2 þ 1

x4 þ 1
dx ðdÞ

ð1

�1

dx

x4 þ 4
ðgÞ

ð1

�1

x2 dx

ðx2 þ xþ 1Þ5=2

ðbÞ
ð1

2

x dx
ffiffiffiffiffiffiffiffiffiffiffiffiffi

x3 � 1
p ðeÞ

ð1

�1

2þ sinx

x2 þ 1
dx ðhÞ

ð1

1

ln x dx

xþ e�x

ðcÞ
ð1

1

dx

x
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

3xþ 2
p ð f Þ

ð1

2

x dx

ðln xÞ3 ðiÞ
ð1

0

sin2 x

x2
dx

Ans. (a) conv., (b) div., (c) conv., (d) conv., (e) conv., ( f ) div., (g) conv., (h) div., (i) conv.

12.38. Prove that

ð1

�1

dx

x2 þ 2axþ b2
¼ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

b2 � a2
p if b > jaj.

12.39. Test for convergence: (a)

ð1

1

e�x lnx dx; ðbÞ
ð1

0

e�x lnð1þ exÞ dx; ðcÞ
ð1

0

e�x cosh x2 dx.

Ans. (a) conv., (b) conv., (c) div.
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12.40. Test for convergence, indicating absolute or conditional convergence where possible: (a)

ð1

0

sin 2x

x3 þ 1
dx;

(b)

ð1

�1
e�ax2 cos bx dx, where a; b are positive constants; (c)

ð1

0

cos x
ffiffiffiffiffiffiffiffiffiffiffiffiffi

x2 þ 1
p dx; ðdÞ

ð1

0

x sinx
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

x2 þ a2
p dx;

(e)

ð1

0

cos x

cosh x
dx.

Ans. (a) abs. conv., (b) abs. conv., (c) cond. conv., (d) div., (e) abs. conv.

12.41. Prove the quotient tests (b) and (c) on Page 309.

IMPROPER INTEGRALS OF THE SECOND KIND

12.42. Test for convergence:

ðaÞ
ð1

0

dx

ðxþ 1Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffi

1� x2
p ðdÞ

ð2

1

ln x
ffiffiffiffiffiffiffiffiffiffiffiffiffi

8� x3
3
p dx ðgÞ

ð3

0

x2

ð3� xÞ2 dx ð jÞ
ð1

0

dx

xx

ðbÞ
ð1

0

cosx

x2
dx ðeÞ

ð1

0

dx
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

lnð1=xÞp ðhÞ
ð�=2

0

e�x cos x

x
dx

ðcÞ
ð1

�1

etan
�1 x

x
dx ð f Þ

ð�=2

0

ln sin x dx ðiÞ
ð1

0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� k2x2

1� x2

s

dx; jkj < 1

Ans. (a) conv., (b) div., (c) div., (d) conv., (e) conv., ( f Þ conv., (g) div., (h) div., (i) conv.,
( jÞ conv.

12.43. (a) Prove that

ð5

0

dx

4� x
diverges in the usual sense but converges in the Cauchy principal value senses.

(b) Find the Cauchy principal value of the integral in (a) and give a geometric interpretation.

Ans. (b) ln 4

12.44. Test for convergence, indicating absolute or conditional convergence where possible:

ðaÞ
ð1

0

cos
1

x

� �

dx; ðbÞ
ð1

0

1

x
cos

1

x

� �

dx; ðcÞ
ð1

0

1

x2
cos

1

x

� �

dx:

Ans. (a) abs. conv., (b) cond. conv., (c) div.

12.45. Prove that

ð4�

0

3x2 sin
1

x
� x cos

1

x

� �

dx ¼ 32
ffiffiffi

2
p

�3
.

IMPROPER INTEGRALS OF THE THIRD KIND

12.46. Test for convergence: (a)

ð1

0

e�x ln x dx; ðbÞ
ð1

0

e�x dx
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

x lnðxþ 1Þp ; ðcÞ
ð1

0

e�x dx
ffiffiffi

x3
p ð3þ 2 sin xÞ.

Ans. (a) conv., (b) div., (c) conv.

12.47. Test for convergence: (a)

ð1

0

dx
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

x4 þ x2
3
p ; ðbÞ

ð1

0

ex dx
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

sinh ðaxÞp ; a > 0.

Ans. (a) conv., (b) conv. if a > 2, div. if 0 < a @ 2.

12.48. Prove that

ð1

0

sinh ðaxÞ
sinh ð�xÞ dx converges if 0 @ jaj < � and diverges if jaj @ �.

12.49. Test for convergence, indicating absolute or conditional convergence where possible:
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ðaÞ
ð1

0

sinx
ffiffiffi

x
p dx; ðbÞ

ð1

0

sin
ffiffiffi

x
p

sinh
ffiffiffi

x
p dx: Ans: ðaÞ cond. conv., ðbÞ abs. conv.

UNIFORM CONVERGENCE OF IMPROPER INTEGRALS

12.50. (a) Prove that �ð	Þ ¼
ð1

0

cos	x

1þ x2
dx is uniformly convergent for all 	.

(b) Prove that �ð	Þ is continuous for all 	. (c) Find lim
	!0

�ð	Þ: Ans. (c) �=2:

12.51. Let �ð	Þ ¼
ð1

0

Fðx; 	Þ dx, where Fðx; 	Þ ¼ 	2xe�	x
2

. (a) Show that �ð	Þ is not continuous at 	 ¼ 0, i.e.,

lim
	!0

ð1

0

Fðx; 	Þ dx 6¼
ð1

0

lim
	!0

Fðx; 	Þ dx. (b) Explain the result in (a).

12.52. Work Problem 12.51 if Fðx; 	Þ ¼ 	2xe�	x.

12.53. If FðxÞ is bounded and continuous for �1 < x <1 and

Vðx; yÞ ¼ 1

�

ð1

�1

yFð�Þ d�
y2 þ ð�� xÞ2

prove that lim
y!0

Vðx; yÞ ¼ FðxÞ.

12.54. Prove (a) Theorem 7 and (b) Theorem 8 on Page 314.

12.55. Prove the Weierstrass M test for uniform convergence of integrals.

12.56. Prove that if

ð1

0

FðxÞ dx converges, then

ð1

0

e�	x FðxÞ dx converges uniformly for 	A 0.

12.57. Prove that ðaÞ �ðaÞ ¼
ð1

0

e�ax sinx

x
dx converges uniformly for a A 0, ðbÞ �ðaÞ ¼ �

2
� tan�1 a,

(c)

ð1

0

sinx

x
dx ¼ �

2
(compare Problems 12.27 through 12.29).

12.58. State the definition of uniform convergence for improper integrals of the second kind.

12.59. State and prove a theorem corresponding to Theorem 8, Page 314, if a is a differentiable function of 	.

EVALUATION OF DEFINITE INTEGRALS

Establish each of the following results. Justify all steps in each case.

12.60.

ð1

0

e�ax � e�bx

x
dx ¼ lnðb=aÞ; a; b > 0

12.61.

ð1

0

e�ax � e�bx

x csc rx
dx ¼ tan�1ðb=rÞ � tan�1ða=rÞ; a; b; r > 0

12.62.

ð1

0

sin rx

xð1þ x2Þ dx ¼ �

2
ð1� e�rÞ; r A 0

12.63.

ð1

0

1� cos rx

x2
dx ¼ �

2
jrj

12.64.

ð1

0

x sin rx

a2 þ x2
dx ¼ �

2
e�ar; a; r A 0
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12.65. (a) Prove that

ð1

0

e�	x
cos ax� cos bx

x

� �

dx ¼ 1

2
ln

	2 þ b2

	2 þ a2

 !

; 	A 0.

(b) Use (a) to prove that

ð1

0

cos ax� cos bx

x
dx ¼ ln

b

a

� �

.

�

The results of (b) and Problem 12.60 are special cases of Frullani’s integral,

ð1

0

FðaxÞ � FðbxÞ
x

dx ¼

Fð0Þ ln b

a

� �

, where FðtÞ is continuous for t > 0, F 0ð0Þ exists and
ð1

1

FðtÞ
t

dt converges.

�

12.66. Given

ð1

0

e�	x
2

dx ¼ 1
2

ffiffiffiffiffiffiffiffi

�=	
p

, 	 > 0. Prove that for p ¼ 1; 2; 3; . . .,
ð1

0

x2pe�	x
2

dx ¼ 1

2
� 3
2
� 5
2
� � � ð2p� 1Þ

2

ffiffiffi

�
p

2	ð2pþ1Þ=2

12.67. If a > 0; b > 0, prove that

ð1

0

ðe�a=x2 � e�b=x2 Þ dx ¼
ffiffiffiffiffiffi

�b
p

� ffiffiffiffiffiffi

�a
p

.

12.68. Prove that

ð1

0

tan�1ðx=aÞ � tan�1ðx=bÞ
x

dx ¼ �

2
ln

b

a

� �

where a > 0; b > 0.

12.69. Prove that

ð1

�1

dx

ðx2 þ xþ 1Þ3 ¼
4�

3
ffiffiffi

3
p . [Hint: Use Problem 12.38.]

MISCELLANEOUS PROBLEMS

12.70. Prove that

ð1

0

lnð1þ xÞ
x

� �2

dx converges.

12.71. Prove that

ð1

0

dx

1þ x3 sin2 x
converges. Hint: Consider

X

1

n¼0

ððnþ1Þ�

n�

dx

1þ x3 sin2 x
and use the fact that

"

ððnþ1Þ�

n�

dx

1þ x3 sin2 x
@

ððnþ1Þ�

n�

dx

1þ ðn�Þ3 sin2 x :
�

12.72. Prove that

ð1

0

x dx

1þ x3 sin2 x
diverges.

12.73. (a) Prove that

ð1

0

lnð1þ 	2x2Þ
1þ x2

dx ¼ � lnð1þ 	Þ; 	A 0.

(b) Use (a) to show that

ð�=2

0

ln sin � d� ¼ ��
2
ln 2:

12.74. Prove that

ð1

0

sin4 x

x4
dx ¼ �

3
.

12.75. Evaluate (a) lf1= ffiffiffi

x
p g; ðbÞ lfcosh axg; ðcÞ lfðsin xÞ=xg.

Ans: ðaÞ
ffiffiffiffiffiffiffi

�=s
p

; s > 0 ðbÞ s

s2 � a2
; s > jaj ðcÞ tan�1 1

s

� �

; s > 0:

12.76. (a) If lfFðxÞg ¼ f ðsÞ, prove that lfeaxFðxÞg ¼ f ðs� aÞ; ðbÞ Evaluate lfeax sin bxg.

Ans: ðbÞ b

ðs� aÞ2 þ b2
; s > a
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12.77. (a) If lfFðxÞg ¼ f ðsÞ, prove that lfxnFðxÞg ¼ ð�1Þn f ðnÞðsÞ, giving suitable restrictions on FðxÞ.

(b) Evaluate lfx cos xg. Ans: ðbÞ s2 � 1

ðs2 þ 1Þ2 ; s > 0

12.78. Prove that l�1ff ðsÞ þ gðsÞg ¼ l�1f f ðsÞg þl�1fgðsÞg, stating any restrictions.

12.79. Solve using Laplace transforms, the following differential equations subject to the given conditions.
(a) Y 00ðxÞ þ 3Y 0ðxÞ þ 2YðxÞ ¼ 0; Yð0Þ ¼ 3;Y 0ð0Þ ¼ 0
(b) Y 00ðxÞ � Y 0ðxÞ ¼ x; Yð0Þ ¼ 2;Y 0ð0Þ ¼ �3

(c) Y 00ðxÞ þ 2Y 0ðxÞ þ 2YðxÞ ¼ 4; Yð0Þ ¼ 0;Y 0ð0Þ ¼ 0
Ans. ðaÞ YðxÞ ¼ 6e�x � 3e�2x; ðbÞ YðxÞ ¼ 4� 2ex � 1

2 x
2 � x; ðcÞ YðxÞ ¼ 1� e�xðsin xþ cos xÞ

12.80. Prove that lfFðxÞg exists if FðxÞ is piecewise continuous in every finite interval ½0; b� where b > 0 and if FðxÞ
is of exponential order as x ! 1, i.e., there exists a constant 	 such that je�	xFðxÞj < P (a constant) for all

x > b.

12.81. If f ðsÞ ¼ lfFðxÞg and gðsÞ ¼ lfGðxÞg, prove that f ðsÞgðsÞ ¼ lfHðxÞg where

HðxÞ ¼
ðx

0

FðuÞGðx� uÞ du

is called the convolution of F and G, written F�G.
�

Hint: Write f ðsÞgðsÞ ¼ lim
M!1

ðM

0

e�suFðuÞ du
� �

ðM

0

e�svGðvÞ dv
� �

¼ lim
M!1

ðM

0

ðM

0

e�sðuþvÞFðuÞGðvÞ du dv and then let uþ v ¼ t:

�

12.82. (a) Find l�1 1

ðs2 þ 1Þ2
� 











: ðbÞ Solve Y 00ðxÞ þ YðxÞ ¼ RðxÞ;Yð0Þ ¼ Y 0ð0Þ ¼ 0.

(c) Solve the integral equation YðxÞ ¼ xþ
ðx

0

YðuÞ sinðx� uÞ du. [Hint: Use Problem 12.81.]

Ans. (a) 1
2 ðsin x� x cos xÞ; ðbÞ YðxÞ ¼

ðx

0

RðuÞ sinðx� uÞ du; ðcÞ YðxÞ ¼ xþ x3=6

12.83. Let f ðxÞ; gðxÞ, and g 0ðxÞ be continuous in every finite interval a @ x @ b and suppose that g 0ðxÞ @ 0.

Suppose also that hðxÞ ¼
ðx

a

f ðxÞ dx is bounded for all x A a and lim
x!0

gðxÞ ¼ 0.

(a) Prove that

ð1

a

f ðxÞ gðxÞ dx ¼ �
ð1

a

g 0ðxÞ hðxÞ dx.

(b) Prove that the integral on the right, and hence the integral on the left, is convergent. The result is that

under the give conditions on f ðxÞ and gðxÞ,
ð1

a

f ðxÞ gðxÞ dx converges and is sometimes called Abel’s
integral test.

�

Hint: For (a), consider lim
b!1

ðb

a

f ðxÞ gðxÞ dx after replacing f ðxÞ by h 0ðxÞ and integrating by parts. For (b),

first prove that if jhðxÞj < H (a constant), then

ðb

a

g 0ðxÞ hðxÞ dx






























@ HfgðaÞ � gðbÞg; and then let b ! 1.

�

12.84. Use Problem 12.83 to prove that (a)

ð1

0

sin x

x
dx and (b)

ð1

0

sin xp dx; p > 1, converge.
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12.85. (a) Given that

ð1

0

sinx2 dx ¼
ð1

0

cos x2 dx ¼ 1

2

ffiffiffi

�

2

r

[see Problems 15.27 and 15.68(a), Chapter 15], evaluate
ð1

0

ð1

0

sinðx2 þ y2Þ dx dy

(b) Explain why the method of Problem 12.31 cannot be used to evaluate the multiple integral in (a).

Ans. �=4
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Fourier Series

Mathematicians of the eighteenth century, including Daniel Bernoulli and Leonard Euler, expressed
the problem of the vibratory motion of a stretched string through partial differential equations that had
no solutions in terms of ‘‘elementary functions.’’ Their resolution of this difficulty was to introduce
infinite series of sine and cosine functions that satisfied the equations. In the early nineteenth century,
Joseph Fourier, while studying the problem of heat flow, developed a cohesive theory of such series.
Consequently, they were named after him. Fourier series and Fourier integrals are investigated in this
and the next chapter. As you explore the ideas, notice the similarities and differences with the chapters
on infinite series and improper integrals.

PERIODIC FUNCTIONS

A function f ðxÞ is said to have a period T or to be periodic with period T if for all x, f ðxþ TÞ ¼ f ðxÞ,
where T is a positive constant. The least value of T > 0 is called the least period or simply the period of
f ðxÞ.

EXAMPLE 1. The function sinx has periods 2�; 4�; 6�; . . . ; since sin ðxþ 2�Þ; sin ðxþ 4�Þ; sin ðxþ 6�Þ; . . . all
equal sinx. However, 2� is the least period or the period of sin x.

EXAMPLE 2. The period of sin nx or cos nx, where n is a positive integer, is 2�=n.

EXAMPLE 3. The period of tan x is �.

EXAMPLE 4. A constant has any positive number as period.

Other examples of periodic functions are shown in the graphs of Figures 13-1(a), (b), and (c) below.

f (x)

x

Pe
ri

od f (x) f (x)

x x

Pe
ri

od Pe
ri

od

(a) (b) (c)

Fig. 13-1
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FOURIER SERIES

Let f ðxÞ be defined in the interval ð�L;LÞ and outside of this interval by f ðxþ 2LÞ ¼ f ðxÞ, i.e., f ðxÞ
is 2L-periodic. It is through this avenue that a new function on an infinite set of real numbers is created
from the image on ð�L;LÞ. The Fourier series or Fourier expansion corresponding to f ðxÞ is given by

a0
2
þ
X

1

n¼1

an cos
n�x

L
þ bn sin

n�x

L

� �

ð1Þ

where the Fourier coefficients an and bn are

an ¼
1

L

ðL

�L

f ðxÞ cos n�x
L

dx
n ¼ 0; 1; 2; . . .

bn ¼
1

L

ðL

�L

f ðxÞ sin n�x

L
dx

8

>

>

>

<

>

>

>

:

ð2Þ

ORTHOGONALITY CONDITIONS FOR THE SINE AND COSINE FUNCTIONS

Notice that the Fourier coefficients are integrals. These are obtained by starting with the series, (1),
and employing the following properties called orthogonality conditions:

(a)

ðL

�L

cos
m�x

L
cos

n�x

L
dx ¼ 0 if m 6¼ n and L if m ¼ n

(b)

ðL

�L

sin
m�x

L
sin

n�x

L
dx ¼ 0 if m 6¼ n and L if m ¼ n (3)

(c)

ðL

�L

sin
m�x

L
cos

n�x

L
dx ¼ 0. Where m and n can assume any positive integer values.

An explanation for calling these orthogonality conditions is given on Page 342. Their application in
determining the Fourier coefficients is illustrated in the following pair of examples and then demon-
strated in detail in Problem 13.4.

EXAMPLE 1. To determine the Fourier coefficient a0, integrate both sides of the Fourier series (1), i.e.,

ðL

�L

f ðxÞ dx ¼
ðL

�L

a0
2

dxþ
ðL

�L

X

1

n¼1

an cos
n�x

L
þ bn sin

n�x

L

n o

dx

Now

ðL

�L

a0
2

dx ¼ a0L;

ðL

�l

sin
n�x

L
dx ¼ 0;

ðL

�L

cos
n�x

L
dx ¼ 0, therefore, a0 ¼

1

L

ðL

�L

f ðxÞ dx

EXAMPLE 2. To determine a1, multiply both sides of (1) by cos
�x

L
and then integrate. Using the orthogonality

conditions (3)a and (3)c, we obtain a1 ¼
1

L

ðL

�L

f ðxÞ cos �x
L

dx. Now see Problem 13.4.

If L ¼ �, the series (1) and the coefficients (2) or (3) are particularly simple. The function in this
case has the period 2�.

DIRICHLET CONDITIONS

Suppose that

(1) f ðxÞ is defined except possibly at a finite number of points in ð�L;LÞ
(2) f ðxÞ is periodic outside ð�L;LÞ with period 2L
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(3) f ðxÞ and f 0ðxÞ are piecewise continuous in ð�L;LÞ.

Then the series (1) with Fourier coefficients converges to

ðaÞ f ðxÞ if x is a point of continuity

ðbÞ f ðxþ 0Þ þ f ðx� 0Þ
2

if x is a point of discontinuity

Here f ðxþ 0Þ and f ðx� 0Þ are the right- and left-hand limits of f ðxÞ at x and represent lim
�!0þ

f ðxþ �Þ and
lim
�!0þ

f ðx� �Þ, respectively. For a proof see Problems 13.18 through 13.23.

The conditions (1), (2), and (3) imposed on f ðxÞ are sufficient but not necessary, and are generally
satisfied in practice. There are at present no known necessary and sufficient conditions for convergence
of Fourier series. It is of interest that continuity of f ðxÞ does not alone ensure convergence of a Fourier
series.

ODD AND EVEN FUNCTIONS

A function f ðxÞ is called odd if f ð�xÞ ¼ �f ðxÞ. Thus, x3; x5 � 3x3 þ 2x; sin x; tan 3x are odd
functions.

A function f ðxÞ is called even if f ð�xÞ ¼ f ðxÞ. Thus, x4; 2x6 � 4x2 þ 5; cos x; ex þ e�x are even
functions.

The functions portrayed graphically in Figures 13-1(a) and 13-1ðbÞ are odd and even respectively,
but that of Fig. 13-1(c) is neither odd nor even.

In the Fourier series corresponding to an odd function, only sine terms can be present. In the
Fourier series corresponding to an even function, only cosine terms (and possibly a constant which we
shall consider a cosine term) can be present.

HALF RANGE FOURIER SINE OR COSINE SERIES

A half range Fourier sine or cosine series is a series in which only sine terms or only cosine terms are
present, respectively. When a half range series corresponding to a given function is desired, the function
is generally defined in the interval ð0;LÞ [which is half of the interval ð�L;LÞ, thus accounting for the
name half range] and then the function is specified as odd or even, so that it is clearly defined in the other
half of the interval, namely, ð�L; 0Þ. In such case, we have

an ¼ 0; bn ¼
2

L

ðL

0

f ðxÞ sin n�x

L
dx for half range sine series

bn ¼ 0; an ¼
2

L

ðL

0

f ðxÞ cos n�x
L

dx for half range cosine series

8

>

>

>

<

>

>

>

:

ð4Þ

PARSEVAL’S IDENTITY

If an and bn are the Fourier coefficients corresponding to f ðxÞ and if f ðxÞ satisfies the Dirichlet
conditions.

Then
1

L

ðL

�L

f f ðxÞg2 dx ¼ a20
2
þ
X

1

n¼1

ða2n þ b2nÞ (5)

(See Problem 13.13.)
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DIFFERENTIATION AND INTEGRATION OF FOURIER SERIES

Differentiation and integration of Fourier series can be justified by using the theorems on Pages 271
and 272, which hold for series in general. It must be emphasized, however, that those theorems provide
sufficient conditions and are not necessary. The following theorem for integration is especially useful.

Theorem. The Fourier series corresponding to f ðxÞmay be integrated term by term from a to x, and the

resulting series will converge uniformly to

ðx

a

f ðxÞ dx provided that f ðxÞ is piecewise continuous in

�L @ x @ L and both a and x are in this interval.

COMPLEX NOTATION FOR FOURIER SERIES

Using Euler’s identities,

ei� ¼ cos � þ i sin �; e�i� ¼ cos � � i sin � ð6Þ
where i ¼ ffiffiffiffiffiffiffi�1

p
(see Problem 11.48, Chapter 11, Page 295), the Fourier series for f ðxÞ can be written as

f ðxÞ ¼
X

1

n¼�1
cn e

in�x=L ð7Þ

where

cn ¼
1

2L

ðL

�L

f ðxÞe�in�x=L dx ð8Þ

In writing the equality (7), we are supposing that the Dirichlet conditions are satisfied and further
that f ðxÞ is continuous at x. If f ðxÞ is discontinuous at x, the left side of (7) should be replaced by
ðf ðxþ 0Þ þ f ðx� 0Þ

2
:

BOUNDARY-VALUE PROBLEMS

Boundary-value problems seek to determine solutions of partial differential equations satisfying
certain prescribed conditions called boundary conditions. Some of these problems can be solved by
use of Fourier series (see Problem 13.24).

EXAMPLE. The classical problem of a vibrating string may be idealized in the following way. See Fig. 13-2.

Suppose a string is tautly stretched between points ð0; 0Þ and ðL; 0Þ. Suppose the tension, F, is the
same at every point of the string. The string is made to
vibrate in the xy plane by pulling it to the parabolic
position gðxÞ ¼ mðLx� x2Þ and releasing it. (m is a
numerically small positive constant.) Its equation will
be of the form y ¼ f ðx; tÞ. The problem of establishing
this equation is idealized by (a) assuming that the con-
stant tension, F , is so large as compared to the weight wL
of the string that the gravitational force can be neglected,
(b) the displacement at any point of the string is so small
that the length of the string may be taken as L for any of
its positions, and (c) the vibrations are purely transverse.

The force acting on a segment PQ is
w

g
�x

@2y

@t2
;

x < x1 < xþ�x; g � 32 ft per sec:2. If 	 and 
 are the
angles that F makes with the horizontal, then the vertical
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difference in tensions is Fðsin 	� sin 
Þ. This is the force producing the acceleration that accounts for
the vibratory motion.

Now Ffsin 	� sin 
g ¼ F
tan 	
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ tan2 	
p � tan


ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ tan2 

p

( )

� Fftan	� tan
g ¼ F
@y

@x
ðxþ�x; tÞ�

�

@y

@x
ðx; tÞ

�

, where the squared terms in the denominator are neglected because the vibrations are small.

Next, equate the two forms of the force, i.e.,

F
@y

@x
ðxþ�x; tÞ � @y

@x
ðx; tÞ

� �

¼ w

g
�x

@2y

@t2

divide by �x, and then let �x ! 0. After letting 	 ¼
ffiffiffiffiffiffi

Fg

w

r

, the resulting equation is

@2y

@t2
¼ 	2

@2y

@x2

This homogeneous second partial derivative equation is the classical equation for the vibrating
string. Associated boundary conditions are

yð0; tÞ ¼ 0; yðL; tÞ ¼ 0; t > 0

The initial conditions are

yðx; 0Þ ¼ mðLx� x2Þ; @y
@t

ðx; 0Þ ¼ 0; 0 < x < L

The method of solution is to separate variables, i.e., assume

yðx; tÞ ¼ GðxÞHðtÞ
Then upon substituting

GðxÞH 00ðtÞ ¼ 	2G 00ðxÞHðtÞ
Separating variables yields

G 00

G
¼ k;

H 00

H
¼ 	2k; where k is an arbitrary constant

Since the solution must be periodic, trial solutions are

GðxÞ ¼ c1 sin
ffiffiffiffiffiffiffi

�k
p

xþ c2 cos
ffiffiffiffiffiffiffi

�k
p

x; < 0

HðtÞ ¼ c3 sin 	
ffiffiffiffiffiffiffi

�k
p

tþ c4 cos 	
ffiffiffiffiffiffiffi

�k
p

t

Therefore

y ¼ GH ¼ ½c1 sin
ffiffiffiffiffiffiffi

�k
p

xþ c2 cos
ffiffiffiffiffiffiffi

�k
p

x�½c3 sin 	
ffiffiffiffiffiffiffi

�k
p

tþ c4 cos	
ffiffiffiffiffiffiffi

�k
p

t�
The initial condition y ¼ 0 at x ¼ 0 for all t leads to the evaluation c2 ¼ 0.

Thus

y ¼ ½c1 sin
ffiffiffiffiffiffiffi

�k
p

x�½c3 sin 	
ffiffiffiffiffiffiffi

�k
p

tþ c4 cos	
ffiffiffiffiffiffiffi

�k
p

t�
Now impose the boundary condition y ¼ 0 at x ¼ L, thus 0 ¼ ½c1 sin

ffiffiffiffiffiffiffi�k
p

L�½c3 sin 	
ffiffiffiffiffiffiffi�k

p
tþ

c4 cos	
ffiffiffiffiffiffiffi�k

p
t�:

c1 6¼ 0 as that would imply y ¼ 0 and a trivial solution. The next simplest solution results from the

choice
ffiffiffiffiffiffiffi�k

p ¼ n�

L
, since y ¼ c1 sin

n�

L
x

h i

c3 sin 	
n�

l
tþ c4 cos	

n�

L
t

h i

and the first factor is zero when

x ¼ L.
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With this equation in place the boundary condition
@y

@t
ðx; 0Þ ¼ 0, 0 < x < L can be considered.

@y

@t
¼ c1 sin

n�

L
x

h i

c3	
n�

L
cos	

n�

L
t� c4	

n�

L
sin 	

n�

L
t

h i

At t ¼ 0

0 ¼ c1 sin
n�

L
x

h i

c3	
n�

L

Since c1 6¼ 0 and sin
n�

L
x is not identically zero, it follows that c3 ¼ 0 and that

y ¼ c1 sin
n�

L
x

h i

c4	
n�

L
cos	

n�

L
t

h i

The remaining initial condition is

yðx; 0Þ ¼ mðLx� x2Þ; 0 < x < L

When it is imposed

mðLx� x2Þ ¼ c1c4	
n�

L
sin

n�

L
x

However, this relation cannot be satisfied for all x on the interval ð0;LÞ. Thus, the preceding
extensive analysis of the problem of the vibrating string has led us to an inadequate form

y ¼ c1c4	
n�

L
sin

n�

L
x cos	

n�

L
t

and an initial condition that is not satisfied. At this point the power of Fourier series is employed. In
particular, a theorem of differential equations states that any finite sum of a particular solution also is a
solution. Generalize this to infinite sum and consider

y ¼
X

1

n¼1

bn sin
n�

L
x cos 	

n�

L
t

with the initial condition expressed through a half range sine series, i.e.,

X

1

n¼1

bn sin
n�

L
x ¼ mðLx� x2Þ; t ¼ 0

According to the formula of Page 338 for coefficient of a half range sine series

L

2m
bn ¼

ðL

0

ðLx� x2Þ sin n�x
L

dx

That is

L

2m
bn ¼

ðL

0

Lx sin
n�x

L
dx�

ðL

0

x2 sin
n�x

L
dx

Application of integration by parts to the second integral yields

L

2m
bn ¼ L

ðL

0

x sin
n�x

L
dxþ L3

n�
cos n�þ

ðL

0

L

n�
cos

n�x

L
2x dx

When integration by parts is applied to the two integrals of this expression and a little algebra is
employed the result is

bn ¼
4L2

ðn�Þ3 ð1� cos n�Þ
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Therefore,

y ¼
X

1

n¼1

bn sin
n�

L
x cos	

n�

L
t

with the coefficients bn defined above.

ORTHOGONAL FUNCTIONS

Two vectors A and B are called orthogonal (perpendicular) if A � B ¼ 0 or A1B1 þ A2B2 þ A3B3 ¼ 0,
where A ¼ A1iþ A2jþ A3k and B ¼ B1iþ B2jþ B3k. Although not geometrically or physically evi-
dent, these ideas can be generalized to include vectors with more than three components. In particular,
we can think of a function, say, AðxÞ, as being a vector with an infinity of components (i.e., an infinite
dimensional vector), the value of each component being specified by substituting a particular value of x in
some interval ða; bÞ. It is natural in such case to define two functions, AðxÞ and BðxÞ, as orthogonal in
ða; bÞ if

ðb

a

AðxÞBðxÞ dx ¼ 0 ð9Þ

A vector A is called a unit vector or normalized vector if its magnitude is unity, i.e., if A � A ¼ A2 ¼ 1.
Extending the concept, we say that the function AðxÞ is normal or normalized in ða; bÞ if

ðb

a

fAðxÞg2 dx ¼ 1 ð10Þ

From the above it is clear that we can consider a set of functions f�kðxÞg; k ¼ 1; 2; 3; . . . ; having the
properties

ðb

a

�mðxÞ�nðxÞ dx ¼ 0 m 6¼ n ð11Þ
ðb

a

f�mðxÞg2 dx ¼ 1 m ¼ 1; 2; 3; . . . ð12Þ

In such case, each member of the set is orthogonal to every other member of the set and is also
normalized. We call such a set of functions an orthonormal set.

The equations (11) and (12) can be summarized by writing

ðb

a

�mðxÞ�nðxÞ dx ¼ �mn ð13Þ

where �mn, called Kronecker’s symbol, is defined as 0 if m 6¼ n and 1 if m ¼ n.

Just as any vector r in three dimensions can be expanded in a set of mutually orthogonal unit vectors
i; j; k in the form r ¼ c1iþ c2jþ c3k, so we consider the possibility of expanding a function f ðxÞ in a set
of orthonormal functions, i.e.,

f ðxÞ ¼
X

1

n¼1

cn�nðxÞ a @ x @ b ð14Þ

As we have seen, Fourier series are constructed from orthogonal functions. Generalizations of
Fourier series are of great interest and utility both from theoretical and applied viewpoints.
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Solved Problems

FOURIER SERIES

13.1. Graph each of the following functions.

ðaÞ f ðxÞ ¼ 3 0 < x < 5

�3 �5 < x < 0
Period ¼ 10

�

Since the period is 10, that portion of the graph in �5 < x < 5 (indicated heavy in Fig. 13-3 above) is
extended periodically outside this range (indicated dashed). Note that f ðxÞ is not defined at
x ¼ 0; 5;�5; 10;�10; 15;�15, and so on. These values are the discontinuities of f ðxÞ.

ðbÞ f ðxÞ ¼ sin x 0 @ x @ �

0 � < x < 2�
Period ¼ 2�

�

Refer to Fig. 13-4 above. Note that f ðxÞ is defined for all x and is continuous everywhere.

ðcÞ f ðxÞ ¼
0 0 @ x < 2

1 2 @ x < 4

0 4 @ x < 6

Period ¼ 6

8

>

<

>

:

Refer to Fig. 13-5 above. Note that f ðxÞ is defined for all x and is discontinuous at x ¼ �2;�4;�8;
�10;�14; . . . .
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13.2. Prove

ðL

�L

sin
k�x

L
dx ¼

ðL

�L

cos
k�x

L
dx ¼ 0 if k ¼ 1; 2; 3; . . . .

ðL

�L

sin
k�x

L
dx ¼ � L

k�
cos

k�x

L













L

�L

¼ � L

k�
cos k�þ L

k�
cosð�k�Þ ¼ 0

ðL

�L

cos
k�x

L
dx ¼ L

k�
sin

k�x

L













L

�L

¼ L

k�
sin k�� L

k�
sinð�k�Þ ¼ 0

13.3. Prove (a)

ðL

�L

cos
m�x

L
cos

n�x

L
dx ¼

ðL

�L

sin
m�x

L
sin

n�x

L
dx ¼ 0 m 6¼ n

L m ¼ n

�

(b)

ðL

�L

sin
m�x

L
cos

n�x

L
dx ¼ 0

where m and n can assume any of the values 1; 2; 3; . . . .

(a) From trigonometry: cosA cosB ¼ 1
2 fcosðA� BÞ þ cosðAþ BÞg; sinA sinB ¼ 1

2 fcosðA� BÞ � cos

ðAþ BÞg:
Then, if m 6¼ n, by Problem 13.2,

ðL

�L

cos
m�x

L
cos

n�x

L
dx ¼ 1

2

ðL

�L

cos
ðm� nÞ�x

L
þ cos

ðmþ nÞ�x
L

� �

dx ¼ 0

Similarly, if m 6¼ n,

ðL

�L

sin
m�x

L
sin

n�x

L
dx ¼ 1

2

ðL

�L

cos
ðm� nÞ�x

L
� cos

ðmþ nÞ�x
L

� �

dx ¼ 0

If m ¼ n, we have

ðL

�L

cos
m�x

L
cos

n�x

L
dx ¼ 1

2

ðL

�L

1þ cos
2n�x

L

� �

dx ¼ L

ðL

�L

sin
m�x

L
sin

n�x

L
dx ¼ 1

2

ðL

�L

1� cos
2n�x

L

� �

dx ¼ L

Note that if m ¼ n these integrals are equal to 2L and 0 respectively.

(b) We have sinA cosB ¼ 1
2 fsinðA� BÞ þ sinðAþ BÞg. Then by Problem 13.2, if m 6¼ n,

ðL

�L

sin
m�x

L
cos

n�x

L
dx ¼ 1

2

ðL

�L

sin
ðm� nÞ�x

L
þ sin

ðmþ nÞ�x
L

� �

dx ¼ 0

If m ¼ n,

ðL

�L

sin
m�x

L
cos

n�x

L
dx ¼ 1

2

ðL

�L

sin
2n�x

L
dx ¼ 0

The results of parts (a) and (b) remain valid even when the limits of integration �L;L are replaced
by c; cþ 2L, respectively.

13.4. If the series Aþ
X

1

n¼1

an cos
n�x

L
þ bn sin

n�x

L

� �

converges uniformly to f ðxÞ in ð�L;LÞ, show that

for n ¼ 1; 2; 3; . . . ;

ðaÞ an ¼
1

L

ðL

�L

f ðxÞ cos n�x
L

dx; ðbÞ bn ¼
1

L

ðL

�L

f ðxÞ sin n�x

L
dx; ðcÞ A ¼ a0

2
:
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(a) Multiplying

f ðxÞ ¼ Aþ
X

1

n¼1

an cos
n�x

L
þ bn sin

n�x

L

� �

ð1Þ

by cos
m�x

L
and integrating from �L to L, using Problem 13.3, we have

ðL

�L

f ðxÞ cos m�x
L

dx ¼ A

ðL

�L

cos
m�x

L
dx

þ
X

1

n¼1

an

ðL

�L

cos
m�x

L
cos

n�x

L
dxþ bn

ðL

�L

cos
m�x

L
sin

n�x

L
dx

� �

¼ amL if m 6¼ 0

am ¼ 1

L

ðL

�L

f ðxÞ cos m�x
L

dx if m ¼ 1; 2; 3; . . .Thus

(b) Multiplying (1) by sin
m�x

L
and integrating from �L to L, using Problem 13.3, we have

ðL

�L

f ðxÞ sin m�x

L
dx ¼ A

ðL

�L

sin
m�x

L
dx

þ
X

1

n¼1

an

ðL

�L

sin
m�x

L
cos

n�x

L
dxþ bn

ðL

�L

sin
m�x

L
sin

n�x

L
dx

� �

¼ bmL

bm ¼ 1

L

ðL

�L

f ðxÞ sin m�x

L
dx if m ¼ 1; 2; 3; . . .Thus

(c) Integrating of (1) from �L to L, using Problem 13.2, gives

ðL

�L

f ðxÞ dx ¼ 2AL or A ¼ 1

2L

ðL

�L

f ðxÞ dx

Putting m ¼ 0 in the result of part (a), we find a0 ¼
1

L

ðL

�L

f ðxÞ dx and so A ¼ a0
2
.

The above results also hold when the integration limits �L;L are replaced by c; cþ 2L:
Note that in all parts above, interchange of summation and integration is valid because the series is

assumed to converge uniformly to f ðxÞ in ð�L;LÞ. Even when this assumption is not warranted, the
coefficients am and bm as obtained above are called Fourier coefficients corresponding to f ðxÞ, and the
corresponding series with these values of am and bm is called the Fourier series corresponding to f ðxÞ.
An important problem in this case is to investigate conditions under which this series actually converges

to f ðxÞ. Sufficient conditions for this convergence are the Dirichlet conditions established in Problems
13.18 through 13.23.

13.5. (a) Find the Fourier coefficients corresponding to the function

f ðxÞ ¼ 0 �5 < x < 0
3 0 < x < 5

Period ¼ 10

�

(b) Write the corresponding Fourier series.
(c) How should f ðxÞ be defined at x ¼ �5; x ¼ 0; and x ¼ 5 in order that the Fourier series will

converge to f ðxÞ for �5 @ x @ 5?

The graph of f ðxÞ is shown in Fig. 13-6.
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(a) Period ¼ 2L ¼ 10 and L ¼ 5. Choose the interval c to cþ 2L as �5 to 5, so that c ¼ �5. Then

an ¼
1

L

ðcþ2L

c

f ðxÞ cos n�x
L

dx ¼ 1

5

ð5

�5

f ðxÞ cos n�x
5

dx

¼ 1

5

ð0

�5

ð0Þ cos n�x
5

dxþ
ð5

0

ð3Þ cos n�x
5

dx

� �

¼ 3

5

ð5

0

cos
n�x

5
dx

¼ 3

5

5

n�
sin

n�x

5

� �











5

0

¼ 0 if n 6¼ 0

If n ¼ 0; an ¼ a0 ¼
3

5

ð5

0

cos
0�x

5
dx ¼ 3

5

ð5

0

dx ¼ 3:

bn ¼
1

L

ðcþ2L

c

f ðxÞ sin n�x

L
dx ¼ 1

5

ð5

�5

f ðxÞ sin n�x

5
dx

¼ 1

5

ð0

�5

ð0Þ sin n�x

5
dxþ

ð5

0

ð3Þ sin n�x

5
dx

� �

¼ 3

5

ð5

0

sin
n�x

5
dx

¼ 3

5
� 5

n�
cos

n�x

5

� �












5

0

¼ 3ð1� cos n�Þ
n�

(b) The corresponding Fourier series is

a0
2
þ
X

1

n¼1

an cos
n�x

L
þ bn sin

n�x

L

� �

¼ 3

2
þ
X

1

n¼1

3ð1� cos n�Þ
n�

sin
n�x

5

¼ 3

2
þ 6

�
sin

�x

5
þ 1

3
sin

3�x

5
þ 1

5
sin

5�x

5
þ � � �

� �

(c) Since f ðxÞ satisfies the Dirichlet conditions, we can say that the series converges to f ðxÞ at all points of
continuity and to

f ðxþ 0Þ þ f ðx� 0Þ
2

at points of discontinuity. At x ¼ �5, 0, and 5, which are points

of discontinuity, the series converges to ð3þ 0Þ=2 ¼ 3=2 as seen from the graph. If we redefine f ðxÞ as
follows,

f ðxÞ ¼

3=2 x ¼ �5
0 �5 < x < 0
3=2 x ¼ 0
3 0 < x < 5
3=2 x ¼ 5

Period ¼ 10

8

>

>

>

>

<

>

>

>

>

:

then the series will converge to f ðxÞ for �5 @ x @ 5.

13.6. Expand f ðxÞ ¼ x2; 0 < x < 2� in a Fourier series if (a) the period is 2�, (b) the period is not
specified.

(a) The graph of f ðxÞ with period 2� is shown in Fig. 13-7 below.
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Period ¼ 2L ¼ 2� and L ¼ �. Choosing c ¼ 0, we have

an ¼
1

L

ðcþ2L

c

f ðxÞ cos n�x
L

dx ¼ 1

�

ð2�

0

x2 cos nx dx

¼ 1

�
ðx2Þ sin nx

n

� �

� ð2xÞ � cos nx

n2

� �

þ 2
� sin nx

n3

� �� �











2�

0

¼ 4

n2
; n 6¼ 0

If n ¼ 0; a0 ¼
1

�

ð2�

0

x2 dx ¼ 8�2

3
:

bn ¼
1

L

ðcþ2L

c

f ðxÞ sin n�x

L
dx ¼ 1

�

ð2�

0

x2 sin nx dx

¼ 1

�
ðx2Þ � cos nx

n

� �

� ð2xÞ � sin nx

n2

� �

þ ð2Þ cos nx

n3

� �� �












2�

0

¼ �4�

n

Then f ðxÞ ¼ x2 ¼ 4�2

3
þ
X

1

n¼1

4

n2
cos nx� 4�

n
sin nx

� �

:

This is valid for 0 < x < 2�. At x ¼ 0 and x ¼ 2� the series converges to 2�2.

(b) If the period is not specified, the Fourier series cannot be determined uniquely in general.

13.7. Using the results of Problem 13.6, prove that
1

12
þ 1

22
þ 1

32
þ � � � ¼ �2

6
.

At x ¼ 0 the Fourier series of Problem 13.6 reduces to
4�2

3
þ
X

1

n¼1

4

n2
.

By the Dirichlet conditions, the series converges at x ¼ 0 to 1
2 ð0þ 4�2Þ ¼ 2�2.

Then
4�2

3
þ
X

1

n¼1

4

n2
¼ 2�2, and so

X

1

n¼1

1

n2
¼ �2

6
.

ODD AND EVEN FUNCTIONS, HALF RANGE FOURIER SERIES

13.8. Classify each of the following functions according as they are even, odd, or neither even nor odd.

ðaÞ f ðxÞ ¼ 2 0 < x < 3

�2 �3 < x < 0
Period ¼ 6

�

From Fig. 13-8 below it is seen that f ð�xÞ ¼ �f ðxÞ, so that the function is odd.

ðbÞ f ðxÞ ¼ cos x 0 < x < �

0 � < x < 2�
Period ¼ 2�

�
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From Fig. 13-9 below it is seen that the function is neither even nor odd.

ðcÞ f ðxÞ ¼ xð10� xÞ; 0 < x < 10;Period ¼ 10:

From Fig. 13-10 below the function is seen to be even.

13.9. Show that an even function can have no sine terms in its Fourier expansion.

Method 1: No sine terms appear if bn ¼ 0; n ¼ 1; 2; 3; . . . . To show this, let us write

bn ¼
1

L

ðL

�L

f ðxÞ sin n�x

L
dx ¼ 1

L

ð0

�L

f ðxÞ sin n�x

L
dxþ 1

L

ðL

0

f ðxÞ sin n�x

L
dx ð1Þ

If we make the transformation x ¼ �u in the first integral on the right of (1), we obtain

1

L

ð0

�L

f ðxÞ sin n�x

L
dx ¼ 1

L

ðL

0

f ð�uÞ sin � n�u

L

� �

du ¼ � 1

L

ðL

0

f ð�uÞ sin n�u

L
du ð2Þ

¼ � 1

L

ðL

0

f ðuÞ sin n�u

L
du ¼ � 1

L

ðL

0

f ðxÞ sin n�x

L
dx

where we have used the fact that for an even function f ð�uÞ ¼ f ðuÞ and in the last step that the dummy
variable of integration u can be replaced by any other symbol, in particular x. Thus, from (1), using (2), we
have
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bn ¼ � 1

L

ðL

0

f ðxÞ sin n�x

L
dxþ 1

L

ðL

0

f ðxÞ sin n�x

L
dx ¼ 0

f ðxÞ ¼ a0
2
þ
X

1

n¼1

an cos
n�x

L
þ bn sin

n�x

L

� �

:Method 2: Assume

f ð�xÞ ¼ a0
2
þ
X

1

n¼1

an cos
n�x

L
� bN sin

n�x

L

� �

:Then

If f ðxÞ is even, f ð�xÞ ¼ f ðxÞ. Hence,

a0
2
þ
X

1

n¼1

an cos
n�x

L
þ bn sin

n�x

L

� �

¼ a0
2
þ
X

1

n¼1

an cos
n�x

L
� bn sin

n�x

L

� �

X

1

n¼1

bn sin
n�x

L
¼ 0; i.e., f ðxÞ ¼ a0

2
þ
X

1

n¼1

an cos
n�x

L
and so

and no sine terms appear.

In a similar manner we can show that an odd function has no cosine terms (or constant term) in its
Fourier expansion.

13.10. If f ðxÞ is even, show that (a) an ¼
2

L

ðL

0

f ðxÞ cos n�x
L

dx; ðbÞ bn ¼ 0.

an ¼
1

L

ðL

�L

f ðxÞ cos n�x
L

dx ¼ 1

L

ð0

�L

f ðxÞ cos n�x
L

dxþ 1

L

ðL

0

f ðxÞ cos n�x
L

dxðaÞ

Letting x ¼ �u,

1

L

ð0

�L

f ðxÞ cos n�x
L

dx ¼ 1

L

ðL

0

f ð�uÞ cos �n�u

L

� �

du ¼ 1

L

ðL

0

f ðuÞ cos n�u
L

du

since by definition of an even function f ð�uÞ ¼ f ðuÞ. Then

an ¼
1

L

ðL

0

f ðuÞ cos n�u
L

duþ 1

L

ðL

0

f ðxÞ cos n�x
L

dx ¼ 2

L

ðL

0

f ðxÞ cos n�x
L

dx

(b) This follows by Method 1 of Problem 13.9.

13.11. Expand f ðxÞ ¼ sin x; 0 < x < �, in a Fourier cosine series.

A Fourier series consisting of cosine terms alone is obtained only for an even function. Hence, we
extend the definition of f ðxÞ so that it becomes even (dashed part of Fig. 13-11 below). With this extension,

f ðxÞ is then defined in an interval of length 2�. Taking the period as 2�, we have 2L ¼ 2� so that L ¼ �.

By Problem 13.10, bn ¼ 0 and

an ¼
2

L

ðL

0

f ðxÞ cos n�x
L

dx ¼ 2

�

ð�

0

sinx cos nx dx
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¼ 1

�

ð�

0

fsinðxþ nxÞ þ sinðx� nxÞg ¼ 1

�
� cosðnþ 1Þx

nþ 1
þ cosðn� 1Þx

n� 1

� �











�

0

¼ 1

�

1� cosðnþ 1Þ�
nþ 1

þ cosðn� 1Þ�� 1

n� 1

� �

¼ 1

�

1þ cos n�

nþ 1
� 1þ cos n�

n� 1

� �

¼ �2ð1þ cos n�Þ
�ðn2 � 1Þ if n 6¼ 1:

For n ¼ 1; a1 ¼
2

�

ð�

0

sin x cos x dx ¼ 2

�

sin2 x

2













�

0

¼ 0:

For n ¼ 0; a0 ¼
2

�

ð�

0

sin x dx ¼ 2

�
ð� cos xÞ













�

0

¼ 4

�
:

f ðxÞ ¼ 2

�
� 2

�

X

1

n¼2

ð1þ cos n�Þ
n2 � 1

cos nxThen

¼ 2

�
� 4

�

cos 2x

22 � 1
þ cos 4x

42 � 1
þ cos 6x

62 � 1
þ � � �

� �

13.12. Expand f ðxÞ ¼ x; 0 < x < 2, in a half range (a) sine series, (b) cosine series.

(a) Extend the definition of the given function to that of the odd function of period 4 shown in Fig. 13-12
below. This is sometimes called the odd extension of f ðxÞ. Then 2L ¼ 4;L ¼ 2.

Thus an ¼ 0 and

bn ¼
2

L

ðL

0

f ðxÞ sin n�x

L
dx ¼ 2

2

ð2

0

x sin
n�x

2
dx

¼ ðxÞ �2

n�
cos

n�x

2

� �

� ð1Þ �4

n2�2
sin

n�x

2

� �� �












2

0

¼ �4

n�
cos n�

f ðxÞ ¼
X

1

n¼1

�4

n�
cos n� sin

n�x

2
Then

¼ 4

�
sin

�x

2
� 1

2
sin

2�x

2
þ 1

3
sin

3�x

2
� � � �

� �

(b) Extend the definition of f ðxÞ to that of the even function of period 4 shown in Fig. 13-13 below. This is

the even extension of f ðxÞ. Then 2L ¼ 4;L ¼ 2.
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Thus bn ¼ 0,

an ¼
2

L

ðL

0

f ðxÞ cos n�x
L

dx ¼ 2

2

ð2

0

x cos
n�x

2
dx

¼ ðxÞ 2

n�
sin

n�x

2

� �

� ð1Þ �4

n2�2
cos

n�x

2

� �� �











2

0

¼ 4

n2�2
ðcos n�� 1Þ If n 6¼ 0

If n ¼ 0; a0 ¼
ð2

0

x dx ¼ 2:

f ðxÞ ¼ 1þ
X

1

n¼1

4

n2�2
ðcos n�� 1Þ cos n�x

2
Then

¼ 1� 8

�2
cos

�x

2
þ 1

32
cos

3�x

2
þ 1

52
cos

5�x

2
þ � � �

� �

It should be noted that the given function f ðxÞ ¼ x, 0 < x < 2, is represented equally well by the
two different series in (a) and (b).

PARSEVAL’S IDENTITY

13.13. Assuming that the Fourier series corresponding to f ðxÞ converges uniformly to f ðxÞ in ð�L;LÞ,
prove Parseval’s identity

1

L

ðL

�L

f f ðxÞg2 dx ¼ a20
2
þ�ða2n þ b2nÞ

where the integral is assumed to exist.

If f ðxÞ ¼ a0
2
þ
X

1

n¼1

an cos
n�x

L
þ bn sin

n�x

L

� �

, then multiplying by f ðxÞ and integrating term by term

from �L to L (which is justified since the series is uniformly convergent) we obtain

ðL

�L

f f ðxÞg2 dx ¼ a0
2

ðL

�L

f ðxÞ dxþ
X

1

n¼1

an

ðL

�L

f ðxÞ cos n�x
L

dxþ bn

ðL

�L

f ðxÞ sin n�x

L
dx

� �

¼ a20
2
Lþ L

X

1

n¼1

ða2n þ b2nÞ ð1Þ

where we have used the results

ðL

�L

f ðxÞ cos n�x
L

dx ¼ Lan;

ðL

�L

f ðxÞ sin n�x

L
dx ¼ Lbn;

ðL

�L

f ðxÞ dx ¼ La0 ð2Þ

obtained from the Fourier coefficients.
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The required result follows on dividing both sides of (1) by L. Parseval’s identity is valid under less

restrictive conditions than that imposed here.

13.14. (a) Write Parseval’s identity corresponding to the Fourier series of Problem 13.12(b).

(b) Determine from (a) the sum S of the series
1

14
þ 1

24
þ 1

34
þ � � � þ 1

n4
þ � � � .

(a) Here L ¼ 2; a0 ¼ 2; an ¼
4

n2�2
ðcos n�� 1Þ; n 6¼ 0; bn ¼ 0.

Then Parseval’s identity becomes

1

2

ð2

�2

f f ðxÞg2 dx ¼ 1

2

ð2

�2

x2 dx ¼ ð2Þ2
2

þ
X

1

n¼1

16

n4�4
ðcos n�� 1Þ2

or
8

3
¼ 2þ 64

�4
1

14
þ 1

34
þ 1

54
þ � � �

� �

; i.e.,
1

14
þ 1

34
þ 1

54
þ � � � ¼ �4

96:

ðbÞ S ¼ 1

14
þ 1

24
þ 1

34
þ � � � ¼ 1

14
þ 1

34
þ 1

54
þ � � �

� �

þ 1

24
þ 1

44
þ 1

64
þ � � �

� �

¼ 1

14
þ 1

34
þ 1

54
þ � � �

� �

þ 1

24
1

14
þ 1

24
þ 1

34
þ � � �

� �

¼ �4

96
þ S

16
; from which S ¼ �4

90

13.15. Prove that for all positive integers M,

a20
2
þ
X

M

n¼1

ða2n þ b2nÞ@
1

L

ðL

�L

f f ðxÞg2 dx

where an and bn are the Fourier coefficients corresponding to f ðxÞ, and f ðxÞ is assumed piecewise
continuous in ð�L;LÞ.

Let SMðxÞ ¼ a0
2
þ
X

M

n¼1

an cos
n�x

L
þ bn sin

n�x

L

� �

(1)

For M ¼ 1; 2; 3; . . . this is the sequence of partial sums of the Fourier series corresponding to f ðxÞ.
We have

ðL

�L

f f ðxÞ � SMðxÞg2 dx A 0 ð2Þ

since the integrand is non-negative. Expanding the integrand, we obtain

2

ðL

�L

f ðxÞSMðxÞ dx�
ðL

�L

S2
MðxÞ dx @

ðL

�L

f f ðxÞg2 dx ð3Þ

Multiplying both sides of (1) by 2 f ðxÞ and integrating from �L to L, using equations (2) of Problem
13.13, gives

2

ðL

�L

f ðxÞSMðxÞ dx ¼ 2L
a20
2
þ
X

M

n¼1

ða2n þ b2nÞ
( )

ð4Þ

Also, squaring (1) and integrating from �L to L, using Problem 13.3, we find

ðL

�L

S2
MðxÞ dx ¼ L

a20
2
þ
X

M

n¼1

ða2n þ b2nÞ
( )

ð5Þ

Substitution of (4) and (5) into (3) and dividing by L yields the required result.
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Taking the limit as M ! 1, we obtain Bessel’s inequality

a20
2
þ
X

1

n¼1

ða2n þ b2nÞ @
1

L

ðL

�L

f f ðxÞg2 dx ð6Þ

If the equality holds, we have Parseval’s identity (Problem 13.13).

We can think of SMðxÞ as representing an approximation to f ðxÞ, while the left-hand side of (2), divided
by 2L, represents the mean square error of the approximation. Parseval’s identity indicates that as M ! 1
the mean square error approaches zero, while Bessels’ inequality indicates the possibility that this mean
square error does not approach zero.

The results are connected with the idea of completeness of an orthonormal set. If, for example, we were
to leave out one or more terms in a Fourier series (say cos 4�x=L, for example), we could never get the mean
square error to approach zero no matter how many terms we took. For an analogy with three-dimensional

vectors, see Problem 13.60.

DIFFERENTIATION AND INTEGRATION OF FOURIER SERIES

13.16. (a) Find a Fourier series for f ðxÞ ¼ x2; 0 < x < 2, by integrating the series of Problem 13.12(a).

(b) Use (a) to evaluate the series
X

1

n¼1

ð�1Þn�1

n2
.

(a) From Problem 13.12(a),

x ¼ 4

�
sin

�x

2
� 1

2
sin

2�x

2
þ 1

3
sin

3�x

2
� � � �

� �

ð1Þ

Integrating both sides from 0 to x (applying the theorem of Page 339) and multiplying by 2, we find

x2 ¼ C � 16

�2
cos

�x

2
� 1

22
cos

2�x

2
þ 1

32
cos

3�x

2
� � � �

� �

ð2Þ

where C ¼ 16

�2
1� 1

22
þ 1

32
� 1

42
þ � � �

� �

:

(b) To determine C in another way, note that (2) represents the Fourier cosine series for x2 in 0 < x < 2.
Then since L ¼ 2 in this case,

C ¼ a0
2
¼ 1

L

ðL

0

f ðxÞ ¼ 1

2

ð2

0

x2 dx ¼ 4

3

Then from the value of C in (a), we have

X

1

n¼1

ð�1Þn�1

n2
¼ 1� 1

22
þ 1

32
¼ 1

42
þ � � � ¼ �2

16
� 4
3
¼ �2

12

13.17. Show that term by term differentiation of the series in Problem 13.12(a) is not valid.

Term by term differentiation yields 2 cos
�x

2
� cos

2�x

2
þ cos

3�x

2
� � � �

� �

:

Since the nth term of this series does not approach 0, the series does not converge for any value of x.
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CONVERGENCE OF FOURIER SERIES

13.18. Prove that (a) 1
2 þ cos tþ cos 2tþ � � � þ cosMt ¼ sinðM þ 1

2Þt
2 sin 1

2 t

(b)
1

�

ð�

0

sinðM þ 1
2Þt

2 sin 1
2 t

dt ¼ 1

2
;

1

�

ð0

��

sinðM þ 1
2Þt

2 sin 1
2 t

dt ¼ 1

2
:

(a) We have cos nt sin 1
2 t ¼ 1

2 fsinðnþ 1
2Þt� sinðn� 1

2Þtg.
Then summing from n ¼ 1 to M,

sin 1
2 tfcos tþ cos 2tþ � � � þ cosMtg ¼ ðsin 3

2 t� sin 1
2 tÞ þ ðsin 5

2 t� sin 3
2 tÞ

þ � � � þ sinðM þ 1
2Þt� sinðM � 1

2Þt
� 	

¼ 1
2 fsinðM þ 1

2Þt� sin 1
2 tg

On dividing by sin 1
2 t and adding 1

2, the required result follows.

(b) Integrating the result in (a) from �� to 0 and 0 to �, respectively. This gives the required results, since

the integrals of all the cosine terms are zero.

13.19. Prove that lim
n!1

ð�

��
f ðxÞ sin nx dx ¼ lim

n!1

ð�

��
f ðxÞ cos nx dx ¼ 0 if f ðxÞ is piecewise continuous.

This follows at once from Problem 13.15, since if the series
a20
2
þ
X

1

n¼1

ða2n þ b2nÞ is convergent, lim
n!1 an ¼

lim
n!1 bn ¼ 0.

The result is sometimes called Riemann’s theorem.

13.20. Prove that lim
M!1

ð�

��
f ðxÞ sinðM þ 1

2Þx dx ¼ 0 if f ðxÞ is piecewise continuous.

We have
ð�

��
f ðxÞ sinðM þ 1

2Þx dx ¼
ð�

��
f f ðxÞ sin 1

2 xg cosMxdxþ
ð�

��
f f ðxÞ cos 12 xg sinMxdx

Then the required result follows at once by using the result of Problem 13.19, with f ðxÞ replaced by

f ðxÞ sin 1
2 x and f ðxÞ cos 12 x respectively, which are piecewise continuous if f ðxÞ is.

The result can also be proved when the integration limits are a and b instead of �� and �.

13.21. Assuming that L ¼ �, i.e., that the Fourier series corresponding to f ðxÞ has period 2L ¼ 2�, show
that

SMðxÞ ¼ a0
2
þ
X

M

n¼1

ðan cos nxþ bn sin nxÞ ¼
1

�

ð�

��
f ðtþ xÞ sinðM þ 1

2Þt
2 sin 1

2 t
dt

Using the formulas for the Fourier coefficients with L ¼ �, we have

an cos nxþ bn sin nx ¼ 1

�

ð�

��
f ðuÞ cos nu du

� �

cos nxþ 1

�

ð�

��
f ðuÞ sin nu du

� �

sin nx

¼ 1

�

ð�

��
f ðuÞ cos nu cos nxþ sin nu sin nxð Þ du

¼ 1

�

ð�

��
f ðuÞ cos nðu� xÞ du

a0
2
¼ 1

2�

ð�

��
f ðuÞ duAlso,
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SMðxÞ ¼ a0
2
þ
X

M

n¼1

ðan cos nxþ bn sin nxÞThen

¼ 1

2�

ð�

��
f ðuÞ duþ 1

�

X

M

n¼1

ð�

��
f ðuÞ cos nðu� xÞ du

¼ 1

�

ð�

��
f ðuÞ 1

2
þ
X

M

n¼1

cos nðu� xÞ
( )

du

¼ 1

�

ð�

��
f ðuÞ sinðM þ 1

2Þðu� xÞ
2 sin 1

2 ðu� xÞ du

using Problem 13.18. Letting u� x ¼ t, we have

SMðxÞ ¼ 1

�

ð��x

���x

f ðtþ xÞ sinðM þ 1
2Þt

2 sin 1
2 t

dt

Since the integrand has period 2�, we can replace the interval ��� x; �� x by any other interval of

length 2�, in particular, ��; �. Thus, we obtain the required result.

13.22. Prove that

SMðxÞ � f ðxþ 0Þ þ f ðx� 0Þ
2

� �

¼ 1

�

ð0

��

f ðtþ xÞ � f ðx� 0Þ
2 sin 1

2 t

 !

sinðM þ 1
2Þt dt

þ 1

�

ð�

0

f ðtþ xÞ � f ðxþ 0Þ
2 sin 1

2 t

 !

sinðM þ 1
2Þt dt

From Problem 13.21,

SMðxÞ ¼ 1

�

ð0

��
f ðtþ xÞ sinðM þ 1

2Þt
2 sin 1

2 t
dtþ 1

�

ð�

0

f ðtþ xÞ sinðM þ 1
2Þt

2 sin 1
2 t

dt ð1Þ

Multiplying the integrals of Problem 13.18(b) by f ðx� 0Þ and f ðxþ 0Þ, respectively,
f ðxþ 0Þ þ f ðx� 0Þ

2
¼ 1

�

ð0

��
f ðx� 0Þ sinðM þ 1

2Þt
2 sin 1

2 t
dtþ 1

�

ð�

0

f ðxþ 0Þ sinðM þ 1
2Þt

2 sin 1
2 t

dt ð2Þ

Subtracting (2) from (1) yields the required result.

13.23. If f ðxÞ and f 0ðxÞ are piecewise continuous in ð��; �Þ, prove that

lim
M!1

SMðxÞ ¼ f ðxþ 0Þ þ f ðx� 0Þ
2

The function
f ðtþ xÞ � f ðxþ 0Þ

2 sin 1
2 t

is piecewise continuous in 0 < t @ � because f ðxÞ is piecewise con-

tinous.

Also, lim
t!0þ

f ðtþ xÞ � f ðxþ 0Þ
2 sin 1

2 t
¼ lim

t!0þ
f ðtþ xÞ � f ðxþ 0Þ

t
� t

2 sin 1
2 t

¼ lim
t!0þ

f ðtþ xÞ � f ðxþ 0Þ
t

exists,

since by hypothesis f 0ðxÞ is piecewise continuous so that the right-hand derivative of f ðxÞ at each x exists.

Thus,
f ðtþ xÞ � f ðx� 0Þ

2 sin 1
2 t

is piecewise continous in 0 @ t @ �.

Similarly,
f ðtþ xÞ � f ðx� 0Þ

2 sin 1
2 t

is piecewise continous in ��@ t @ 0.
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Then from Problems 13.20 and 13.22, we have

lim
M!1

SMðxÞ � f ðxþ 0Þ þ f ðx� 0Þ
2

� �

¼ 0 or lim
M!1

SMðxÞ ¼ f ðxþ 0Þ þ f ðx� 0Þ
2

BOUNDARY-VALUE PROBLEMS

13.24. Find a solution Uðx; tÞ of the boundary-value problem

@U

@t
¼ 3

@2U

@x2
t > 0; 0 < x < 2

Uð0; tÞ ¼ 0;Uð2; tÞ ¼ 0 t > 0

Uðx; 0Þ ¼ x 0 < x < 2

A method commonly employed in practice is to assume the existence of a solution of the partial
differential equation having the particular form Uðx; tÞ ¼ XðxÞTðtÞ, where XðxÞ and TðtÞ are functions of
x and t, respectively, which we shall try to determine. For this reason the method is often called the method

of separation of variables.

Substitution in the differential equation yields

ð1Þ @

@t
ðXTÞ ¼ 3

@2

@x2
ðXTÞ or ð2Þ X

dT

dt
¼ 3T

d2X

dx2

where we have written X and T in place of XðxÞ and TðtÞ.
Equation (2) can be written as

1

3T

dT

dt
¼ 1

X

d2X

dx2
ð3Þ

Since one side depends only on t and the other only on x, and since x and t are independent variables, it is

clear that each side must be a constant c.

In Problem 13.47 we see that if c A 0, a solution satisfying the given boundary conditions cannot exist.

Let us thus assume that c is a negative constant which we write as ��2. Then from (3) we obtain two
ordinary differentiation equations

dT

dt
þ 3�2T ¼ 0;

d2X

dx2
þ �2X ¼ 0 ð4Þ

whose solutions are respectively

T ¼ C1e
�3�2t; X ¼ A1 cos �xþ B1 sin �x ð5Þ

A solution is given by the product of X and T which can be written

Uðx; tÞ ¼ e�3�2tðA cos �xþ B sin �xÞ ð6Þ
where A and B are constants.

We now seek to determine A and B so that (6) satisfies the given boundary conditions. To satisfy the
condition Uð0; tÞ ¼ 0, we must have

e�s�2tðAÞ ¼ 0 or A ¼ 0 ð7Þ
so that (6) becomes

Uðx; tÞ ¼ Be�s�2t sin �x ð8Þ
To satisfy the condition Uð2; tÞ ¼ 0, we must then have

Be�s�2t sin 2� ¼ 0 ð9Þ

356 FOURIER SERIES [CHAP. 13



Since B ¼ 0 makes the solution (8) identically zero, we avoid this choice and instead take

sin 2� ¼ 0; i.e., 2� ¼ m� or � ¼ m�

2
ð10Þ

where m ¼ 0;�1;�2; . . . .
Substitution in (8) now shows that a solution satisfying the first two boundary conditions is

Uðx; tÞ ¼ Bme
�3m2�2t=4 sin

m�x

2
ð11Þ

where we have replaced B by Bm, indicating that different constants can be used for different values of m.
If we now attempt to satisfy the last boundary condition Uðx; 0Þ ¼ x; 0 < x < 2, we find it to be

impossible using (11). However, upon recognizing the fact that sums of solutions having the form (11)
are also solutions (called the principle of superposition), we are led to the possible solution

Uðx; tÞ ¼
X

1

m¼1

Bme
�3m2�2t=4 sin

m�x

2
ð12Þ

From the condition Uðx; 0Þ ¼ x; 0 < x < 2, we see, on placing t ¼ 0, that (12) becomes

x ¼
X

1

m¼1

Bm sin
m�x

2
0 < x < 2 ð13Þ

This, however, is equivalent to the problem of expanding the function f ðxÞ ¼ x for 0 < x < 2 into a sine

series. The solution to this is given in Problem 13.12(a), from which we see that Bm ¼ �4

m�
cosm� so that

(12) becomes

Uðx; tÞ ¼
X

1

m¼1

� 4

m�
cosm�

� �

e�3m2�2t=4 sin
m�x

2
ð14Þ

which is a formal solution. To check that (14) is actually a solution, we must show that it satisfies the partial
differential equation and the boundary conditions. The proof consists in justification of term by term
differentiation and use of limiting procedures for infinite series and may be accomplished by methods of

Chapter 11.
The boundary value problem considered here has an interpretation in the theory of heat conduction.

The equation
@U

@t
¼ k

@2U

@x2
is the equation for heat conduction in a thin rod or wire located on the x-axis

between x ¼ 0 and x ¼ L if the surface of the wire is insulated so that heat cannot enter or escape. Uðx; tÞ is
the temperature at any place x in the rod at time t. The constant k ¼ K=s� (where K is the thermal
conductivity, s is the specific heat, and � is the density of the conducting material) is called the diffusivity.
The boundary conditions Uð0; tÞ ¼ 0 and UðL; tÞ ¼ 0 indicate that the end temperatures of the rod are kept
at zero units for all time t > 0, while Uðx; 0Þ indicates the initial temperature at any point x of the rod. In

this problem the length of the rod is L ¼ 2 units, while the diffusivity is k ¼ 3 units.

ORTHOGONAL FUNCTIONS

13.25. (a) Show that the set of functions

1; sin
�x

L
; cos

�x

L
; sin

2�x

L
; cos

2�x

L
; sin

3�x

L
; cos

3�x

L
; . . .

forms an orthogonal set in the interval ð�L;LÞ.
(b) Determine the corresponding normalizing constants for the set in (a) so that the set is
orthonormal in ð�L;LÞ.
(a) This follows at once from the results of Problems 13.2 and 13.3.

(b) By Problem 13.3,

ðL

�L

sin2
m�x

L
dx ¼ L;

ðL

�L

cos2
m�x

L
dx ¼ L
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ðL

�L

ffiffiffiffi

1

L

r

sin
m�x

L

 !2

dx ¼ 1;

ðL

�L

ffiffiffiffi

1

L

r

cos
m�x

L

 !2

dx ¼ 1Then

ðL

�L

ð1Þ2 dx ¼ 2L or

ðL

�L

1
ffiffiffiffiffiffi

2L
p
� �2

dx ¼ 1Also,

Thus the required orthonormal set is given by

1
ffiffiffiffiffiffi

2L
p ;

1
ffiffiffiffi

L
p sin

�x

L
;
1
ffiffiffiffi

L
p cos

�x

L
;
1
ffiffiffiffi

L
p sin

2�x

L
;
1
ffiffiffiffi

L
p cos

2�x

L
; . . .

MISCELLANEOUS PROBLEMS

13.26. Find a Fourier series for f ðxÞ ¼ cos	x;��@ x @ �, where 	 6¼ 0;�1;�2;�3; . . . .

We shall take the period as 2� so that 2L ¼ 2�;L ¼ �. Since the function is even, bn ¼ 0 and

an ¼
2

L

ðL

0

f ðxÞ cos nx dx ¼ 2

�

ð�

0

cos	x cos nx dx

¼ 1

�

ð�

0

fcosð	� nÞxþ cosð	þ nÞxg dx

¼ 1

�

sinð	� nÞ�
	� n

þ sinð	þ nÞ�
	þ n

� �

¼ 2	 sin 	� cos n�

�ð	2 � n2Þ
	0 ¼

2 sin	�

	�

Then

cos	x ¼ sin	�

	�
þ 2	 sin	�

�

X

1

n¼1

cos n�

	2 � n2
cos nx

¼ sin	�

�

1

	
� 2	

	2 � 12
cos xþ 2	

	2 � 22
cos 2x� 2	

	2 � 32
cos 3xþ � � �

� �

13.27. Prove that sin x ¼ x 1� x2

�2

 !

1� x2

ð2�Þ2
 !

1� x2

ð3�Þ2
 !

� � � .

Let x ¼ � in the Fourier series obtained in Problem 13.26. Then

cos	 ¼ sin	�

�

1

	
þ 2	

	2 � 12
þ 2	

	2 � 22
þ 2	

	2 � 32
þ � � �

� �

or

� cot 	�� 1

	
¼ 2	

	2 � 12
þ 2	

	2 � 22
þ 2	

	2 � 32
þ � � � ð1Þ

This result is of interest since it represents an expansion of the contangent into partial fractions.

By the Weierstrass M test, the series on the right of (1) converges uniformly for 0 @ j	j @ jxj < 1 and
the left-hand side of (1) approaches zero as 	! 0, as is seen by using L’Hospital’s rule. Thus, we can
integrate both sides of (1) from 0 to x to obtain

ðx

0

� cot	�� 1

	

� �

d	 ¼
ðx

0

2	

	2 � 1
d	þ

ðx

0

2	

	2 � 22
d	þ � � �

ln
sin	�

	�

� �











x

0

¼ ln 1� x2

12

 !

þ ln 1� x2

22

 !

þ � � �or
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ln
sin�x

�x

� �

¼ lim
n!1 ln 1� x2

12

 !

þ ln 1� x2

22

 !

þ � � � þ ln 1� x2

n2

 !

i.e.,

¼ lim
n!1 ln 1� x2

12

 !

1� x2

22

 !

� � � 1� x2

n2

 !( )

¼ ln lim
n!1 1� x2

12

 !

1� x2

22

 !

� � � 1� x2

n2

 !( )

so that

sin�x

�x
¼ lim

n!1 1� x2

12

 !

1� x2

22

 !

� � � 1� x2

n2

 !

¼ 1� x2

12

 !

1� x2

22

 !

� � � ð2Þ

Replacing x by x=�, we obtain

sin x ¼ x 1� x2

�2

 !

1� x2

ð2�Þ2
 !

� � � ð3Þ

called the infinite product for sin x, which can be shown valid for all x. The result is of interest since it
corresponds to a factorization of sinx in a manner analogous to factorization of a polynomial.

13.28. Prove that
�

2
¼ 2 � 2 � 4 � 4 � 6 � 6 � 8 � 8 . . .

1 � 3 � 3 � 5 � 5 � 7 � 7 � 9 . . ..

Let x ¼ 1=2 in equation (2) of Problem 13.27. Then,

2

�
¼ 1� 1

22

� �

1� 1

42

� �

1� 1

62

� �

� � � ¼ 1

2
� 3
2

� �

3

4
� 5
4

� �

5

6
� 7
6

� �

� � �

Taking reciprocals of both sides, we obtain the required result, which is often called Wallis’ product.

Supplementary Problems

FOURIER SERIES

13.29. Graph each of the following functions and find their corresponding Fourier series using properties of even

and odd functions wherever applicable.

ðaÞ f ðxÞ ¼ 8 0 < x < 2

�8 2 < x < 4
Period 4 ðbÞ f ðxÞ ¼ �x �4 @ x @ 0

x 0 @ x @ 4
Period 8

��

ðcÞ f ðxÞ ¼ 4x; 0 < x < 10; Period 10 ðdÞ f ðxÞ ¼ 2x 0 @ x < 3

0 �3 < x < 0
Period 6

�

Ans: ðaÞ 16

�

X

1

n¼1

ð1� cos n�Þ
n

sin
n�x

2
ðbÞ 2� 8

�2

X

1

n¼1

ð1� cos n�Þ
n2

cos
n�x

4

ðcÞ 20� 40

�

X

1

n¼1

1

n
sin

n�x

5
ðdÞ 3

2
þ
X

1

n¼1

6ðcos n�� 1Þ
n2�2

cos
n�x

3
� 6 cos n�

n�
sin

n�x

3

� �

13.30. In each part of Problem 13.29, tell where the discontinuities of f ðxÞ are located and to what value the series

converges at the discontunities.
Ans. (a) x ¼ 0;�2;�4; . . . ; 0 ðbÞ no discontinuities (c) x ¼ 0;�10;�20; . . . ; 20

(d) x ¼ �3;�9;�15; . . . ; 3
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13.31. Expand f ðxÞ ¼ 2� x 0 < x < 4
x� 6 4 < x < 8

�

in a Fourier series of period 8.

Ans:
16

�2
cos

�x

4
þ 1

32
cos

3�x

4
þ 1

52
cos

5�x

4
þ � � �

� �

13.32. (a) Expand f ðxÞ ¼ cos x; 0 < x < �, in a Fourier sine series.
(b) How should f ðxÞ be defined at x ¼ 0 and x ¼ � so that the series will converge to f ðxÞ for 0 @ x @ �?

Ans: ðaÞ 8

�

X

1

n¼1

n sin 2nx

4n2 � 1
ðbÞ f ð0Þ ¼ f ð�Þ ¼ 0

13.33. (a) Expand in a Fourier series f ðxÞ ¼ cos x; 0 < x < � if the period is �; and (b) compare with the result of
Problem 13.32, explaining the similarities and differences if any.
Ans. Answer is the same as in Problem 13.32.

13.34. Expand f ðxÞ ¼ x 0 < x < 4
8� x 4 < x < 8

�

in a series of (a) sines, (b) cosines.

Ans: ðaÞ 32

�2

X

1

n¼1

1

n2
sin

n�

2
sin

n�x

8
ðbÞ 16

�2

X

1

n¼1

2 cos n�=2� cos n�� 1

n2

� �

cos
n�x

8

13.35. Prove that for 0 @ x @ �,

ðaÞ xð�� xÞ ¼ �2

6
� cos 2x

12
þ cos 4x

22
þ cos 6x

32
þ � � �

� �

ðbÞ xð�� xÞ ¼ 8

�

sinx

13
þ sin 3x

33
þ sin 5

53
þ � � �

� �

13.36. Use the preceding problem to show that

ðaÞ
X

1

n¼1

1

n2
¼ �2

6
; ðbÞ

X

1

n¼1

ð�1Þn�1

n2
¼ �2

12
; ðcÞ

X

1

n¼1

ð�1Þn�1

ð2n� 1Þ3 ¼
�3

32
:

13.37. Show that
1

13
þ 1

33
� 1

53
� 1

73
þ 1

93
þ 1

113
� � � � ¼ 3�2

ffiffiffi

2
p

16
.

DIFFERENTIATION AND INTEGRATION OF FOURIER SERIES

13.38. (a) Show that for �� < x < �,

x ¼ 2
sinx

1
� sin 2x

2
þ sin 3x

3
� � � �

� �

(b) By integrating the result of (a), show that for ��@ x @ �,

x2 ¼ �2

3
� 4

cos x

12
� cos 2x

22
þ cos 3x

32
� � � �

� �

(c) By integrating the result of (b), show that for ��@ x @ �,

xð�� xÞð�þ xÞ ¼ 12
sinx

13
� sin 2x

23
þ sin 3x

33
� � � �

� �

13.39. (a) Show that for �� < x < �,

x cos x ¼ � 1

2
sinxþ 2

2

1 � 3 sin 2x� 3

2 � 4 sin 3xþ 4

3 � 5 sin 4x� � � �
� �

(b) Use (a) to show that for ��@ x @ �,

x sin x ¼ 1� 1

2
cos x� 2

cos 2x

1 � 3 � cos 3x

2 � 4 þ cos 4x

3 � 5 � � � �
� �
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13.40. By differentiating the result of Problem 13.35(b), prove that for 0 @ x @ �,

x ¼ �

2
� 4

�

cos x

12
þ cos 3x

32
þ cos 5x

52
þ � � �

� �

PARSEVAL’S IDENTITY

13.41. By using Problem 13.35 and Parseval’s identity, show that

ðaÞ
X

1

n¼1

1

n4
¼ �4

90
ðbÞ

X

1

n¼1

1

n6
¼ �6

945

13.42. Show that
1

12 � 32 þ
1

32 � 52 þ
1

52 � 72 þ � � � ¼ �2 � 8

16
. [Hint: Use Problem 13.11.]

13.43. Show that (a)
X

1

n¼1

1

ð2n� 1Þ4 ¼
�4

96
; ðbÞ

X

1

n¼1

1

ð2n� 1Þ6 ¼
�6

960
.

13.44. Show that
1

12 � 22 � 32 þ
1

22 � 32 � 42 þ
1

32 þ 42 þ 52
þ � � � ¼ 4�2 � 39

16
.

BOUNDARY-VALUE PROBLEMS

13.45. (a) Solve
@U

@t
¼ 2

@2U

@x2
subject to the conditions Uð0; tÞ ¼ 0;Uð4; tÞ ¼ 0;Uðx; 0Þ ¼ 3 sin�x� 2 sin 5�x, where

0 < x < 4; t > 0.

(b) Give a possible physical interpretation of the problem and solution.

Ans: ðaÞ Uðx; tÞ ¼ 3e�2�2t sin�x� 2e�50�2t sin 5�x.

13.46. Solve
@U

@t
¼ @2U

@x2
subject to the conditions Uð0; tÞ ¼ 0;Uð6; tÞ ¼ 0;Uðx; 0Þ ¼ 1 0 < x < 3

0 3 < x < 6

�

and interpret

physically.

Ans: Uðx; tÞ ¼
X

1

m¼1

2
1� cosðm�=3Þ

m�

� �

e�m2�2t=36 sin
m�x

6

13.47. Show that if each side of equation (3), Page 356, is a constant c where c A 0, then there is no solution
satisfying the boundary-value problem.

13.48. A flexible string of length � is tightly stretched between points x ¼ 0 and x ¼ � on the x-axis, its ends are
fixed at these points. When set into small transverse vibration, the displacement Yðx; tÞ from the x-axis of

any point x at time t is given by
@2Y

@t2
¼ a2

@2Y

@x2
, where a2 ¼ T=�;T ¼ tension, � ¼ mass per unit length.

(a) Find a solution of this equation (sometimes called the wave equation) with a2 ¼ 4 which satisfies the

conditions Yð0; tÞ ¼ 0;Yð�; tÞ ¼ 0;Yðx; 0Þ ¼ 0:1 sinxþ 0:01 sin 4x;Ytðx; 0Þ ¼ 0 for 0 < x < �; t > 0.
(b) Interpret physically the boundary conditions in (a) and the solution.
Ans. (a) Yðx; tÞ ¼ 0:1 sinx cos 2tþ 0:01 sin 4x cos 8t

13.49. (a) Solve the boundary-value problem
@2Y

@t2
¼ 9

@2Y

@x2
subject to the conditions Yð0; tÞ ¼ 0;Yð2; tÞ ¼ 0,

Yðx; 0Þ ¼ 0:05xð2� xÞ;Ytðx; 0Þ ¼ 0, where 0 < x < 2; t > 0. (b) Interpret physically.

Ans: ðaÞ Yðx; tÞ ¼ 1:6

�3

X

1

n¼1

1

ð2n� 1Þ3 sin
ð2n� 1Þ�x

2
cos

3ð2n� 1Þ�t
2

13.50. Solve the boundary-value problem
@U

@t
¼ @2U

@x2
;Uð0; tÞ ¼ 1;Uð�; tÞ ¼ 3;Uðx; 0Þ ¼ 2.

[Hint: Let Uðx; tÞ ¼ Vðx; tÞ þ FðxÞ and choose FðxÞ so as to simplify the differential equation and boundary
conditions for Vðx; tÞ:�



Ans: Uðx; tÞ ¼ 1þ 2x

�
þ
X

1

m¼1

4 cosm�

m�
e�m2t sinmx

13.51. Give a physical interpretation to Problem 13.50.

13.52. Solve Problem 13.49 with the boundary conditions for Yðx; 0Þ and Ytðx; 0Þ interchanged, i.e., Yðx; Þ ¼ 0;
Ytðx; 0Þ ¼ 0:05xð2� xÞ, and give a physical interpretation.

Ans: Yðx; tÞ ¼ 3:2

3�4

X

1

n¼1

1

ð2n� 1Þ4 sin
ð2n� 1Þ�x

2
sin

3ð2n� 1Þ�t
2

13.53. Verify that the boundary-value problem of Problem 13.24 actually has the solution (14), Page 357.

MISCELLANEOUS PROBLEMS

13.54. If �� < x < � and 	 6¼ 0;�1;�2; . . . ; prove that

�

2

sin	x

sin 	�
¼ sin x

12 � 	2 �
2 sin 2x

22 � 	2 þ
3 sin 3x

32 � 	2 � � � �

13.55. If �� < x < �, prove that

ðaÞ �

2

sinh 	x

sinh 	�
¼ sin x

	2 þ 12
� 2 sin 2x

	2 þ 23
þ 3 sin 3x

	2 þ 32
� � � �

ðbÞ �

2

cosh	x

sinh 	�
¼ 1

2	
� 	 cos x

	2 þ 12
þ 	 cos 2x
	2 þ 22

� � � �

13.56. Prove that sinh x ¼ x 1þ x2

�2

 !

1þ x2

ð2�Þ2
 !

1þ x2

ð3�Þ2
 !

� � �

13.57. Prove that cos x ¼ 1� 4x2

�2

 !

1� 4x2

ð3�Þ2
 !

1� 4x2

ð5�Þ2
 !

� � �

[Hint: cos x ¼ ðsin 2xÞ=ð2 sin xÞ:�

13.58. Show that (a)

ffiffiffi

2
p

2
¼ 1 � 3 � 5 � 7 � 9 � 22 � 13 � 15 . . .

2 � 2 � 6 � 6 � 10 � 10 � 14 � 14 . . .
(b) �

ffiffiffi

2
p ¼ 4

4 � 4 � 8 � 8 � 12 � 12 � 16 � 16 . . .
3 � 5 � 7 � 9 � 11 � 13 � 15 � 17 . . .
� �

13.59. Let r be any three dimensional vector. Show that

(a) ðr � iÞ2 þ ðr � jÞ2 @ ðrÞ2; ðbÞ ðr � iÞ2 þ ðr � jÞ2 þ ðr � kÞ2 ¼ r
2

and discusse these with reference to Parseval’s identity.

13.60. If f�nðxÞg; n ¼ 1; 2; 3; . . . is orthonormal in (a; b), prove that

ðb

a

f ðxÞ �
X

1

n¼1

cn�nðxÞ
( )2

dx is a minimum when

cn ¼
ðb

a

f ðxÞ�nðxÞ dx

Discuss the relevance of this result to Fourier series.
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Fourier Integrals

Fourier integrals are generalizations of Fourier series. The series representation

a0
2
þ
X

1

n¼1

an cos
n�x

L
þ bn sin

n�x

L

n o

of a function is a periodic form on �1 < x <1 obtained by gen-

erating the coefficients from the function’s definition on the least period ½�L;L�. If a function defined

on the set of all real numbers has no period, then an analogy to Fourier integrals can be envisioned as

letting L ! 1 and replacing the integer valued index, n, by a real valued function 	. The coefficients an
and bn then take the form Að	Þ and Bð	Þ. This mode of thought leads to the following definition. (See

Problem 14.8.)

THE FOURIER INTEGRAL

Let us assume the following conditions on f ðxÞ:

1. f ðxÞ satisfies the Dirichlet conditions (Page 337) in every finite interval ð�L;LÞ.
2.

ð1

�1
j f ðxÞj dx converges, i.e. f ðxÞ is absolutely integrable in ð�1;1Þ.

Then Fourier’s integral theorem states that the Fourier integral of a function f is

f ðxÞ ¼
ð1

0

fAð	Þ cos	xþ Bð	Þ sin 	xg d	 ð1Þ

where

Að	Þ ¼ 1

�

ð1

�1
f ðxÞ cos	x dx

Bð	Þ ¼ 1

�

ð1

�1
f ðxÞ sin 	x dx

8

>

>

<

>

>

:

(2)

Að	Þ and Bð	Þ with �1 < 	 <1 are generalizations of the Fourier coefficients an and bn. The

right-hand side of (1) is also called a Fourier integral expansion of f . (Since Fourier integrals are

improper integrals, a review of Chapter 12 is a prerequisite to the study of this chapter.) The result

(1) holds if x is a point of continuity of f ðxÞ. If x is a point of discontinuity, we must replace f ðxÞ by
f ðxþ 0Þ þ f ðx� 0Þ

2
as in the case of Fourier series. Note that the above conditions are sufficient but not

necessary.
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In the generalization of Fourier coefficients to Fourier integrals, a0 may be neglected, since whenever
ð1

�1
f ðxÞ dx exists,

ja0j ¼
1

L

ðL

�L

f ðxÞ dx
























! 0 as L ! 1

EQUIVALENT FORMS OF FOURIER’S INTEGRAL THEOREM

Fourier’s integral theorem can also be written in the forms

f ðxÞ ¼ 1

�

ð1

	¼0

ð1

u¼�1
f ðuÞ cos	ðx� uÞ du d	 ð3Þ

f ðxÞ ¼ 1

2�

ð1

�1
e�i	x d	

ð1

�1
f ðuÞ ei	u du ð4Þ

¼ 1

2�

ð1

�1

ð1

�1
f ðuÞ ei	ðu�xÞ du d	

where it is understood that if f ðxÞ is not continuous at x the left side must be replaced by
f ðxþ 0Þ þ f ðx� 0Þ

2
.

These results can be simplified somewhat if f ðxÞ is either an odd or an even function, and we have

f ðxÞ ¼ 2

�

ð1

0

cos	x d	

ð1

0

f ðuÞ cos	u du if f ðxÞ is even ð5Þ

f ðxÞ ¼ 2

�

ð1

0

sin 	x d	

ð1

0

f ðuÞ sin 	u du if f ðxÞ is odd ð6Þ

An entity of importance in evaluating integrals and solving differential and integral equations is
introduced in the next paragraph. It is abstracted from the Fourier integral form of a function, as can
be observed by putting (4) in the form

f ðxÞ ¼ 1
ffiffiffiffiffiffi

2�
p

ð1

�1
e�i	x 1

ffiffiffiffiffiffi

2�
p

ð1

�1
ei	u f ðuÞ du

� �

d	

and observing the parenthetic expression.

FOURIER TRANSFORMS

From (4) it follows that

Fð	Þ ¼ 1
ffiffiffiffiffiffi

2�
p

ð1

�1
f ðuÞ ei	u du ð7Þ

then f ðxÞ ¼ 1
ffiffiffiffiffiffi

2�
p

ð1

�1
Fð	Þ e�i	x d	 (8)

The function Fð	Þ is called the Fourier transform of f ðxÞ and is sometimes written Fð	Þ ¼ ff f ðxÞg.
The function f ðxÞ is the inverse Fourier transform of Fð	Þ and is written f ðxÞ ¼ f�1fFð	Þg.

Note: The constants preceding the integral signs in (7) and (8) were here taken as equal to 1=
ffiffiffiffiffiffi

2�
p

.
However, they can be any constants different from zero so long as their product is 1=2�. The above is
called the symmetric form. The literature is not uniform as to whether the negative exponent appears in
(7) or in (8).
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EXAMPLE. Determine the Fourier transform of f if f ðxÞ ¼ e�x for x > 0 and e2x when x < 0.

Fð	Þ ¼ 1

2
ffiffiffiffiffiffi

2�
p

ð1

�1
ei	x f ðxÞ dx ¼ 1

ffiffiffiffiffiffi

2�
p

ð0

�1
ei	xe2x dxþ

ð1

0

ei	xe�x dx

� �

¼ 1
ffiffiffiffiffiffi

2�
p ei	þ2

i	þ 2













x!0�

x!�1
þ ei	�1

i	� 1













x!1

x!0þ

( )

¼ 1
ffiffiffiffiffiffi

2�
p 1

2þ 	i þ
1

1� 	i
� �

If f ðxÞ is an even function, equation (5) yields

Fcð	Þ ¼
ffiffiffi

2

�

r

ð1

0

f ðuÞ cos	u du

f ðxÞ ¼
ffiffiffi

2

�

r

ð1

0

Fcð	Þ cos 	x d	

8

>

>

>

<

>

>

>

:

ð9Þ

and we call Fcð	Þ and f ðxÞ Fourier cosine transforms of each other.

If f ðxÞ is an odd function, equation (6) yields

Fsð	Þ ¼
ffiffiffi

2

�

r

ð1

0

f ðuÞ sin 	u du

f ðxÞ ¼
ffiffiffi

2

�

r

ð1

0

Fsð	Þ sin 	x d	

8

>

>

>

<

>

>

>

:

ð10Þ

and we call Fsð	Þ and f ðxÞ Fourier sine transforms of each other.

Note: The Fourier transforms Fc and Fs are (up to a constant) of the same form as Að	Þ and Bð	Þ.
Since f is even for Fc and odd for Fs, the domains can be shown to be 0 < 	 <1.

When the product of Fourier transforms is considered, a new concept called convolution comes into
being, and in conjunction with it, a new pair (function and its Fourier transform) arises. In particular, if
Fð	Þ and Gð	Þ are the Fourier transforms of f and g, respectively, and the convolution of f and g is
defined to be

f � g ¼ 1
ffiffiffi

�
p

ð1

�1
f ðuÞ gðx� uÞ du ð11Þ

then

Fð	ÞGð	Þ ¼ 1
ffiffiffi

�
p

ð1

�1
ei	uf � g du ð12Þ

f � g ¼ 1
ffiffiffi

�
p

ð1

�1
e�i	xFð	ÞGð	Þ d	 ð13Þ

where in both (11) and (13) the convolution f � g is a function of x.

It may be said that multiplication is exchanged with convolution. Also ‘‘the Fourier transform of
the convolution of two functions, f and g is the product of their Fourier transforms,’’ i.e.,

Tðf � gÞ ¼ Gð f ÞTðgÞ:
ðFð	ÞGð	Þ and f � g) are demonstrated to be a Fourier transform pair in Problem 14.29.)

Now equate the representations of f � g expressed in (11) and (13), i.e.,

1
ffiffiffi

�
p

ð1

�1
f ðuÞ gðx� uÞ du ¼ 1

ffiffiffi

�
p

ð1

�1
e�i	x Fð	ÞGð	Þ d	 ð14Þ

and let the parameter x be zero, then
ð1

�1
f ðuÞ gð�uÞ du ¼

ð1

�1
Fð	ÞGð	Þ d	 ð15Þ
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Now suppose that g ¼ �ff and thus G ¼ �FF , where the bar symbolizes the complex conjugate function.
Then (15) takes the form

ð1

�1
j f ðuÞj2 du ¼

ð1

�1
jFð	Þj2 d	 ð16Þ

This is Parseval’s theorem for Fourier integrals.
Furthermore, if f and g are even functions, it can be shown that (15) reduces to the following

Parseval identities:
ð1

0

f ðuÞ gðuÞ du ¼
ð1

0

Fcð	ÞGcð	Þ d	 ð17Þ

where Fc and Gc are the Fourier cosine transforms of f and g. If f and g are odd functions, the (15)
takes the form

ð1

0

f ðuÞ gðuÞ du ¼
ð1

0

Fsð	ÞGsð	Þ d	 ð18Þ

where Fs and Gs are the Fourier sine transforms of f and g. (See Problem 14.3.)

Solved Problems

THE FOURIER INTEGRAL AND FOURIER TRANSFORMS

14.1. (a) Find the Fourier transform of f ðxÞ ¼ 1 jxj < a
0 jxj > a

�

.

(b) Graph f ðxÞ and its Fourier transform for a ¼ 3.

(a) The Fourier transform of f ðxÞ is

Fð	Þ ¼ 1
ffiffiffiffiffiffi

2�
p

ð1

�1
f ðuÞ ei	u du ¼ 1

ffiffiffiffiffiffi

2�
p

ða

�a

ð1Þ ei	u du ¼ 1
ffiffiffiffiffiffi

2�
p ei	u

i	













a

�a

¼ 1
ffiffiffiffiffiffi

2�
p ei	a � e�i	a

i	

� �

¼
ffiffiffi

2

�

r

sin	a

	
; 	 6¼ 0

For 	 ¼ 0, we obtain Fð	Þ ¼ ffiffiffiffiffiffiffiffi

2=�
p

a.

(b) The graphs of f ðxÞ and Fð	Þ for a ¼ 3 are shown in Figures 14-1 and 14-2, respectively.
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14.2. (a) Use the result of Problem 14.1 to evaluate

ð1

�1

sin 	a cos	x

	
d	

ðbÞ Deduce the value of

ð1

0

sin u

u
du:

(a) From Fourier’s integral theorem, if

Fð	Þ ¼ 1
ffiffiffiffiffiffi

2�
p

ð1

�1
f ðuÞ ei	u du then f ðxÞ ¼ 1

ffiffiffiffiffiffi

2�
p

ð1

�1
Fð	Þ e�i	x d	

Then from Problem 14.1,

1
ffiffiffiffiffiffi

2�
p

ð1

�1

ffiffiffi

2

�

r

sin 	a

	
e�i	x d	 ¼

1 jxj < a
1=2 jxj ¼ a
0 jxj > a

8

<

:

ð1Þ

The left side of (1) is equal to

1

�

ð1

�1

sin 	a cos	x

	
d	� i

�

ð1

�1

sin	a sin	x

	
d	 ð2Þ

The integrand in the second integral of (2) is odd and so the integral is zero. Then from (1) and
(2), we have

ð1

�1

sin	a cos	x

	
d	 ¼

� jxj < a
�=2 jxj ¼ a
0 jxj > a

8

<

:

ð3Þ

Alternative solution: Since the function, f , in Problem 14.1 is an even function, the result follows

immediately from the Fourier cosine transform (9).

(b) If x ¼ 0 and a ¼ 1 in the result of (a), we have
ð1

�1

sin	

	
d	 ¼ � or

ð1

0

sin 	

	
d	 ¼ �

2

since the integrand is even.

14.3. If f ðxÞ is an even function show that:

ðaÞ Fð	Þ ¼
ffiffiffi

2

�

r

ð1

0

f ðuÞ cos	u du; ðbÞ f ðxÞ ¼
ffiffiffi

2

�

r

ð1

0

Fð	Þ cos	x d	:

We have

Fð	Þ ¼ 1
ffiffiffiffiffiffi

2�
p

ð1

�1
f ðuÞ ei	u du ¼ 1

ffiffiffiffiffiffi

2�
p

ð1

�1
f ðuÞ cos	u duþ i

ffiffiffiffiffiffi

2�
p

ð1

�1
f ðuÞ sin 	u du ð1Þ

(a) If f ðuÞ is even, f ðuÞ cos �u is even and f ðuÞ sin �u is odd. Then the second integral on the right of (1) is
zero and the result can be written

Fð	Þ ¼ 2
ffiffiffiffiffiffi

2�
p

ð1

0

f ðuÞ cos	u du ¼
ffiffiffi

2

�

r

ð1

0

f ðuÞ cos	u du

(b) From (a), Fð�	Þ ¼ Fð	Þ so that Fð	Þ is an even function. Then by using a proof exactly analogous to
that in (a), the required result follows.

A similar result holds for odd functions and can be obtained by replacing the cosine by the sine.

14.4. Solve the integral equation

ð1

0

f ðxÞ cos 	x dx ¼ 1� 	 0 @ 	@ 1
0 	 > 1

�
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Let

ffiffiffi

2

�

r

ð1

0

f ðxÞ cos	x dx ¼ Fð	Þ and choose Fð	Þ ¼
ffiffiffiffiffiffiffiffi

2=�
p ð1� 	Þ 0 @ 	@ 1

0 	 > 1

�

. Then by Problem

14.3,

f ðxÞ ¼
ffiffiffi

2

�

r

ð1

0

Fð	Þ cos	x d	 ¼
ffiffiffi

2

�

r

ð1

0

ffiffiffi

2

�

r

ð1� 	Þ cos	x d	

¼ 2

�

ð1

0

ð1� 	Þ cos	x d	 ¼ 2ð1� cos xÞ
�x2

14.5. Use Problem 14.4 to show that

ð1

0

sin2 u

u2
du ¼ �

2
.

As obtained in Problem 14.4,

2

�

ð1

0

1� cos x

x2
cos	x dx ¼ 1� 	 0 @ 	@ 1

0 	 > 1

�

Taking the limit as 	! 0þ, we find
ð1

0

1� cos x

x2
dx ¼ �

2

But this integral can be written as

ð1

0

2 sin2ðx=2Þ
x2

dx which becomes

ð1

0

sin2 u

u2
du on letting x ¼ 2u, so that

the required result follows.

14.6. Show that

ð1

0

cos	x

	2 þ 1
d	 ¼ �

2
e�x; x A 0.

Let f ðxÞ ¼ e�x in the Fourier integral theorem

f ðxÞ ¼ 2

�

ð1

0

cos	x d	

ð1

0

f ðuÞ cos �u du

2

�

ð1

0

cos	x d	

ð1

0

e�u cos	u du ¼ e�xThen

But by Problem 12.22, Chapter 12, we have

ð1

0

e�u cos	u du ¼ 1

	2 þ 1
. Then

2

�

ð1

0

cos	x

	2 þ 1
d	 ¼ e�x or

ð1

0

cos	x

	2 þ 1
d	 ¼ �

2
e�x

PARSEVAL’S IDENTITY

14.7. Verify Parseval’s identity for Fourier integrals for the Fourier transforms of Problem 14.1.

We must show that
ð1

�1
f f ðxÞg2 dx ¼

ð1

�1
fFð	Þg2 d	

where f ðxÞ ¼ 1 jxj < a

0 jxj > a
and Fð	Þ ¼

ffiffiffi

2

�

r

sin 	a

	
:

(
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This is equivalent to

ða

�a

ð1Þ2 dx ¼
ð1

�1

2

�

sin2 	a

	2
d	

ð1

�1

sin2 	a

	2
d	 ¼ 2

ð1

0

sin2 	a

	2
d	 ¼ �aor

ð1

0

sin2 	a

	2
d	 ¼ �a

2
i.e.,

By letting 	a ¼ u and using Problem 14.5, it is seen that this is correct. The method can also be used to

find

ð1

0

sin2 u

u2
du directly.

PROOF OF THE FOURIER INTEGRAL THEOREM

14.8. Present a heuristic demonstration of Fourier’s integral theorem by use of a limiting form of
Fourier series.

Let

f ðxÞ ¼ a0
2
þ
X

1

n¼1

an cos
n�x

L
þ bn sin

n�x

L

� �

ð1Þ

where an ¼
1

L

ðL

�L

f ðuÞ cos n�u
L

du and bn ¼
1

L

ðL

�L

f ðuÞ sin n�u

L
du:

Then by substitution (see Problem 13.21, Chapter 13),

f ðxÞ ¼ 1

2L

ðL

�L

f ðuÞ duþ 1

L

X

1

n¼1

ðL

�L

f ðuÞ cos n�
L

ðu� xÞ du ð2Þ

If we assume that

ð1

�1
j f ðuÞj du converges, the first term on the right of (2) approaches zero as L ! 1,

while the remaining part appears to approach

lim
L!1

1

L

X

1

n¼1

ð1

�1
f ðuÞ cos n�

L
ðu� xÞ du ð3Þ

This last step is not rigorous and makes the demonstration heuristic.

Calling �	 ¼ �=L, (3) can be written

f ðxÞ ¼ lim
�	!0

X

1

n¼1

�	Fðn�	Þ ð4Þ

where we have written

Fð	Þ ¼ 1

�

ð1

�1
f ðuÞ cos	ðu� xÞ du ð5Þ

But the limit (4) is equal to

f ðxÞ ¼
ð1

0

Fð	Þ d	 ¼ 1

�

ð1

0

d	

ð1

�1
f ðuÞ cos	ðu� xÞ du

which is Fourier’s integral formula.

This demonstration serves only to provide a possible result. To be rigorous, we start with the integral

1

�

ð1

0

d	

ð1

�1
f ðuÞ cos	ðu� xÞ dx

and examine the convergence. This method is considered in Problems 14.9 through 14.12.



14.9. Prove that: (a) lim
	!1

ðL

0

sin 	v

v
dv ¼ �

2
; ðbÞ lim

	!1

ð0

�L

sin 	v

v
dv ¼ �

2
.

(a) Let 	v ¼ y. Then lim
	!1

ðL

0

sin 	v

v
dv ¼ lim

	!1

ð	L

0

sin y

y
dy ¼

ð1

0

sin y

y
dy ¼ �

2
by Problem 12.29, Chap. 12.

ðbÞ Let 	v ¼ �y. Then lim
	!1

ð0

�L

sin	v

v
dv ¼ lim

	!1

ð	L

0

sin y

y
dy ¼ �

2
:

14.10. Riemann’s theorem states that if FðxÞ is piecewise continuous in ða; bÞ, then

lim
	!1

ðb

a

FðxÞ sin 	x dx ¼ 0

with a similar result for the cosine (see Problem 14.32). Use this to prove that

ðaÞ lim
	!1

ðL

0

f ðxþ vÞ sin 	v
v

dv ¼ �

2
f ðxþ 0Þ

ðbÞ lim
	!1

ð0

�L

f ðxþ vÞ sin 	v
v

dv ¼ �

2
f ðx� 0Þ

where f ðxÞ and f 0ðxÞ are assumed piecewise continuous in ð0;LÞ and ð�L; 0Þ respectively.
(a) Using Problem 9(a), it is seen that a proof of the given result amounts to proving that

lim
	!1

ðL

0

f f ðxþ vÞ � f ðxþ 0Þg sin 	v
v

dv ¼ 0

This follows at once from Riemann’s theorem, because FðvÞ ¼ f ðxþ vÞ � f ðxþ 0Þ
v

is piecewise contin-

uous in ð0;LÞ since lim
n!0þ

FðvÞ exists and f ðxÞ is piecewise continuous.

(b) A proof of this is analogous to that in part (a) if we make use of Problem 14.9(b).

14.11. If f ðxÞ satisfies the additional condition that

ð1

�1
j f ðxÞj dx converges, prove that

ðaÞ lim
	!1

ð1

0

f ðxþ vÞ sin 	v
v

dv ¼ �

2
f ðxþ 0Þ; ðbÞ lim

	!1

ð0

�1
f ðxþ vÞ sin 	v

v
dv ¼ �

2
f ðx� 0Þ:

We have

ð1

0

f ðxþ vÞ sin 	v
v

dv ¼
ðL

0

f ðxþ vÞ sin	v
v

dvþ
ð1

L

f ðxþ vÞ sin 	v
v

dv ð1Þ
ð1

0

f ðxþ 0Þ sin	v
v

dv ¼
ðL

0

f ðxþ 0Þ sin	v
v

dvþ
ð1

L

f ðxþ 0Þ sin 	v
v

dv ð2Þ

Subtracting,

ð1

0

f f ðxþ vÞ � f ðxþ 0Þg sin 	v
v

dv ¼
ðL

0

f f ðxþ vÞ � f ðxþ 0Þg sin	v
v

dv

þ
ð1

L

f ðxþ vÞ sin 	v
v

dv�
ð1

L

f ðxþ 0Þ sin	v
v

dv

Denoting the integrals in (3) by I; I1; I2, and I3, respectively, we have I ¼ I1 þ I2 þ I3 so that

jI j @ jI1j þ jI2j þ jI3j ð4Þ

jI2j @
ð1

L

f ðxþ vÞ sin 	v
v

























dv @
1

L

ð1

L

j f ðxþ vÞj dvNow
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jI3j @ j f ðxþ 0Þj
ð1

L

sin	v

v
dv

























Also

Since

ð1

0

j f ðxÞj dx and

ð1

0

sin	v

v
dv both converge, we can choose L so large that jI2j @ �=3, jI3j @ �=3.

Also, we can choose 	 so large that jI1j @ �=3. Then from (4) we have jI j < � for 	 and L sufficiently large,
so that the required result follows.

This result follows by reasoning exactly analogous to that in part (a).

14.12. Prove Fourier’s integral formula where f ðxÞ satisfies the conditions stated on Page 364.

We must prove that lim
L!1

1

�

ðL

	¼0

ð1

u¼�1
f ðuÞ cos	ðx� uÞ du d	 ¼ f ðxþ 0Þ þ f ðx� 0Þ

2

Since

ð1

�1
f ðuÞ cos	ðx� uÞ du

























@
ð1

�1
j f ðuÞj du, which converges, it follows by the Weierstrass test

that

ð1

�1
f ðuÞ cos	ðx� uÞ du converges absolutely and uniformly for all 	. Thus, we can reverse the

order of integration to obtain

1

�

ðL

	¼0

d	

ð1

u¼�1
f ðuÞ cos	ðx� uÞ du ¼ 1

�

ð1

u¼�1
f ðuÞ du

ðL

	¼0

cos	ðx� uÞ d	

¼ 1

�

ð1

u¼�1
f ðuÞ sinLðu� xÞ

u� x
du

¼ 1

�

ð1

u¼�1
f ðxþ vÞ sinLv

v
dv

¼ 1

�

ð0

�1
f ðxþ vÞ sinLv

v
dvþ 1

�

ð1

0

f ðxþ vÞ sinLv
v

dv

where we have let u ¼ xþ v.

Letting L ! 1, we see by Problem 14.11 that the given integral converges to
f ðxþ 0Þ þ f ðx� 0Þ

2
as

required.

MISCELLANEOUS PROBLEMS

14.13. Solve
@U

@t
¼ @2U

@x2
subject to the conditions Uð0; tÞ ¼ 0;Uðx; 0Þ ¼ 1 0 < x < 1

0 x A 1

�

, Uðx; tÞ is

bounded where x > 0; t > 0.

We proceed as in Problem 13.24, Chapter 13. A solution satisfying the partial differential equation and

the first boundary condition is given by Be��
2t sin �x. Unlike Problem 13.24, Chapter 13, the boundary

conditions do not prescribe the specific values for �, so we must assume that all values of � are possible. By
analogy with that problem we sum over all possible values of �, which corresponds to an integration in this

case, and are led to the possible solution

Uðx; tÞ ¼
ð1

0

Bð�Þ e��2t sin �x d� ð1Þ

where Bð�Þ is undetermined. By the second condition, we have
ð1

0

Bð�Þ sin �x d� ¼ 1 0 < x < 1
0 x A 1

¼ f ðxÞ
�

ð2Þ

from which we have by Fourier’s integral formula

Bð�Þ ¼ 2

�

ð1

0

f ðxÞ sin �x dx ¼ 2

�

ð1

0

sin �x dx ¼ 2ð1� cos �Þ
��

ð3Þ
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so that, at least formally, the solution is given by

Uðx; tÞ ¼ 2

�

ð1

0

1� cos �

�

� �

e��
2t sin �x dx ð4Þ

See Problem 14.26.

14.14. Show that e�x2=2 is its own Fourier transform.

Since e�x2=2 is even, its Fourier transform is given by
ffiffiffiffiffiffiffiffi

2=�
p

¼
ð1

0

e�x2=2 cos x	 dx.

Letting x ¼ ffiffiffi

2
p

u and using Problem 12.32, Chapter 12, the integral becomes

2
ffiffiffi

�
p

ð1

0

e�u2 cosð	
ffiffiffi

2
p

uÞ du ¼ 2
ffiffiffi

�
p �

ffiffiffi

�
p
2

e�	
2=2 ¼ e�	

2=2

which proves the required result.

14.15. Solve the integral equation

yðxÞ ¼ gðxÞ þ
ð1

�1
yðuÞ rðx� uÞ du

where gðxÞ and rðxÞ are given.

Suppose that the Fourier transforms of yðxÞ; gðxÞ; and rðxÞ exist, and denote them by Yð	Þ;Gð	Þ; and
Rð	Þ, respectively. Then taking the Fourier transform of both sides of the given integral equation, we have
by the convolution theorem

Yð	Þ ¼ Gð	Þ þ
ffiffiffiffiffiffi

2�
p

Yð	ÞRð	Þ or Yð	Þ ¼ Gð	Þ
1� ffiffiffiffiffiffi

2�
p

Rð	Þ

yðxÞ ¼ f�1 Gð	Þ
1� ffiffiffiffiffiffi

2�
p

Rð	Þ

� �

¼ 1
ffiffiffiffiffiffi

2�
p

ð1

�1

Gð	Þ
1� ffiffiffiffiffiffi

2�
p

Rð	Þ e
�i	x d	Then

assuming this integral exists.

Supplementary Problems

THE FOURIER INTEGRAL AND FOURIER TRANSFORMS

14.16. (a) Find the Fourier transform of f ðxÞ ¼ 1=2� jxj @ �
0 jxj > �

�

(b) Determine the limit of this transform as �! 0þ and discuss the result.

Ans: ðaÞ 1
ffiffiffiffiffiffi

2�
p sin 	�

	�
; ðbÞ 1

ffiffiffiffiffiffi

2�
p

14.17. (a) Find the Fourier transform of f ðxÞ ¼ 1� x2 jxj < 1
0 jxj > 1

�

(b) Evaluate

ð1

0

x cos x� sinx

x3

� �

cos
x

2
dx.

Ans: ðaÞ 2

ffiffiffi

2

�

r

	 cos	� sin	

	3

� �

; ðbÞ 3�

16
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14.18. If f ðxÞ ¼ 1 0 @ x < 1
0 x A 1

�

find the (a) Fourier sine transform, (b) Fourier cosine transform of f ðxÞ. In

each case obtain the graph of f ðxÞ and its transform.

Ans: ðaÞ
ffiffiffi

2

�

r

1� cos	

	

� �

; ðbÞ
ffiffiffi

2

�

r

sin	

	
:

14.19. (a) Find the Fourier sine transform of e�x, x A 0

ðbÞ Show that

ð1

0

x sinmx

x2 þ 1
dx ¼ �

2
e�m;m > 0 by using the result in ðaÞ:

(c) Explain from the viewpoint of Fourier’s integral theorem why the result in (b) does not hold for m ¼ 0.

Ans. (a)
ffiffiffiffiffiffiffiffi

2=�
p ½	=ð1þ 	2Þ�

14.20. Solve for YðxÞ the integral equation

ð1

0

YðxÞ sinxt dx ¼
1 0 @ t < 1
2 1 @ t < 2
0 t A 2

8

<

:

and verify the solution by direction substitution.
Ans. YðxÞ ¼ ð2þ 2 cos x� 4 cos 2xÞ=�x

PARSEVAL’S IDENTITY

14.21. Evaluate (a)

ð1

0

dx

ðx2 þ 1Þ2 ; ðbÞ
ð1

0

x2 dx

ðx2 þ 1Þ2 by use of Parseval’s identity.

[Hint: Use the Fourier sine and cosine transforms of e�x, x > 0.]
Ans: ðaÞ �=4; ðbÞ �=4

14.22. Use Problem 14.18 to show that (a)

ð1

0

1� cosx

x

� �2

dx ¼ �

2
; ðbÞ

ð1

0

sin4 x

x2
dx ¼ �

2
.

14.23. Show that

ð1

0

ðx cosx� sinxÞ2
x6

dx ¼ �

15
.

MISCELLANEOUS PROBLEMS

14.24. (a) Solve
@U

@t
¼ 2

@2U

@x2
, Uð0; tÞ ¼ 0;Uðx; 0Þ ¼ e�x; x > 0;Uðx; tÞ is bounded where x > 0; t > 0.

(b) Give a physical interpretation.

Ans: Uðx; tÞ ¼ 2

�

ð1

0

�e�2�2t sin �x

�2 þ 1
d�

14.25. Solve
@U

@t
¼ @2U

@x2
;Uxð0; tÞ ¼ 0;Uðx; 0Þ ¼ x 0 @ x @ 1

0 x > 1

�

, Uðx; tÞ is bounded where x > 0; t > 0.

Ans: Uðx; tÞ ¼ 2

�

ð1

0

sin �

�
þ cos �� 1

�2

� �

e��
2t cos �x d�

14.26. (a) Show that the solution to Problem 14.13 can be written

Uðx; tÞ ¼ 2
ffiffiffi

�
p

ðx=2
ffiffi

t
p

0

e�v2 dv� 1
ffiffiffi

�
p

ðð1þxÞ=2 ffiffitp

ð1�xÞ=2 ffiffitp e�v2 dv
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(b) Prove directly that the function in (a) satisfies
@U

@t
¼ @2U

@x2
and the conditions of Problem 14.13.

14.27. Verify the convolution theorem for the functions f ðxÞ ¼ gðxÞ ¼ 1 jxj < 1
0 jxj > 1

�

.

14.28. Establish equation (4), Page 364, from equation (3), Page 364.

14.29. Prove the result (12), Page 365.
�

Hint: If Fð	Þ ¼ 1
ffiffiffiffiffiffi

2�
p

ð1

�1
f ðuÞ ei	u du and Gð	Þ ¼ 1

ffiffiffiffiffiffi

2�
p

ð1

�1
gðvÞ ei	v dv, then

Fð	ÞGð	Þ ¼ 1

2�

ð1

�1

ð1

�1
ei	ðuþvÞ f ðuÞ gðvÞ du dv

Now make the transformation uþ v ¼ x:

�

Fð	ÞGð	Þ ¼ 1
ffiffiffi

�
p

ð1

�1

ð1

�1
ei	x f ðuÞ gðx� uÞ du dx

Define

f � g ¼ 1
ffiffiffi

�
p

ð1

�1
f ðuÞ gðx� uÞ du ð f � g is a function of xÞ

then

Fð	ÞGð	Þ ¼ 1
ffiffiffi

�
p

ð1

�1

ð1

�1
ei	x f � g dx

Thus, Fð	ÞGð	Þ is the Fourier transform of the convolution f � g and conversely as indicated in (13)
f � g is the Fourier transform of Fð	ÞGð	Þ.

14.30. If Fð	Þ and Gð	Þ are the Fourier transforms of f ðxÞ and gðxÞ respectively, prove (by repeating the pattern of
Problem 14.29) that

ð1

�1
Fð	ÞGð	Þ d	 ¼

ð1

�1
f ðxÞ gðxÞ dx

where the bar signifies the complex conjugate. Observe that if G is expressed as in Problem 14.29 then

�GGð	Þ ¼ 1

�

ð1

�1
e�i	x f ðuÞ �ggðvÞ dv

14.31. Show that the Fourier transform of gðu� xÞ is ei	x, i.e.,

ei	x Gð	Þ ¼ 1
ffiffiffi

�
p

ð1

�1
ei	u f ðuÞ gðu� xÞ du

Hint: See Problem 14.29. Let v ¼ u� x.

14.32. Prove Riemann’s theorem (see Problem 14.10).
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375

Gamma and Beta
Functions

THE GAMMA FUNCTION

The gamma function may be regarded as a generalization of n! (n-factorial), where n is any positive
integer to x!, where x is any real number. (With limited exceptions, the discussion that follows will be
restricted to positive real numbers.) Such an extension does not seem reasonable, yet, in certain ways,
the gamma function defined by the improper integral

�ðxÞ ¼
ð1

0

tx�1 e�t dt ð1Þ

meets the challenge. This integral has proved valuable in applications. However, because it cannot be
represented through elementary functions, establishment of its properties take some effort. Some of the
important ones are outlined below.

The gamma function is convergent for x > 0. (See Problem 12.18, Chapter 12.)
The fundamental property

�ðxþ 1Þ ¼ x�ðxÞ ð2Þ
may be obtained by employing the technique of integration by
parts to (1). The process is carried out in Problem 15.1.
From the form (2) the function �ðxÞ can be evaluated for all
x > 0 when its values in the interval 1 % x < 2 are known.
(Any other interval of unit length will suffice.) The table and
graph in Fig. 15-1 illustrates this idea.

TABLES OF VALUES AND GRAPH OF THE GAMMA

FUNCTION

n �ðnÞ
1.00 1.0000
1.10 0.9514
1.20 0.9182
1.30 0.8975

5

4

3

2

1

_1

_2

_3

_4

_5

_5 _4
_3 _2 _1 1 2 3 4 5

n

Γ (n)

Fig. 15-1
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1.40 0.8873

1.50 0.8862

1.60 0.8935

1.70 0.9086

1.80 0.9314

1.90 0.9618

2.00 1.0000

The equation (2) is a recurrence relationship that leads to the factorial concept. First observe that if
x ¼ 1, then (1) can be evaluated, and in particular,

�ð1Þ ¼ 1:

From (2)

�ðxþ 1Þ ¼ x�ðxÞ ¼ xðx� 1Þ�ðx� 1Þ ¼ � � � xðx� 1Þðx� 2Þ � � � ðx� kÞ�ðx� kÞ
If x ¼ n, where n is a positive integer, then

�ðnþ 1Þ ¼ nðn� 1Þðn� 2Þ . . . 1 ¼ n! ð3Þ
If x is a real number, then x! ¼ �ðxþ 1Þ is defined by �ðxþ 1Þ. The value of this identification is in

intuitive guidance.

If the recurrence relation (2) is characterized as a differential equation, then the definition of �ðxÞ
can be extended to negative real numbers by a process called analytic continuation. The key idea is that

even though �ðxÞ is defined in (1) is not convergent for x < 0, the relation �ðxÞ ¼ 1

x
�ðxþ 1Þ allows the

meaning to be extended to the interval �1 < x < 0, and from there to �2 < x < �1, and so on. A
general development of this concept is beyond the scope of this presentation; however, some information
is presented in Problem 15.7.

The factorial notion guides us to information about �ðxþ 1Þ in more than one way. In the
eighteenth century, Sterling introduced the formula (for positive integer values n)

lim
n!1

ffiffiffiffiffiffi

2�
p

nnþ1 e�n

n!
¼ 1 ð4Þ

This is called Sterling’s formula and it indicates that n! asymptotically approaches
ffiffiffiffiffiffi

2�
p

nnþ1 e�n for large
values of n. This information has proved useful, since n! is difficult to calculate for large values of n.

There is another consequence of Sterling’s formula. It suggests the possibility that for sufficiently
large values of x,

x! ¼ �ðxþ 1Þ �
ffiffiffiffiffiffi

2�
p

xxþ1 e�x ð5aÞ
(An argument supporting this is made in Problem 15.20.)

It is known that �ðxþ 1Þ satisfies the inequality
ffiffiffiffiffiffi

2�
p

xxþ1 e�x < �ðxþ 1Þ <
ffiffiffiffiffiffi

2�
p

xxþ1 e�x e
1

12ðxþ1Þ ð5bÞ
Since the factor e

1
12ðxþ1Þ ! 0 for large values of x, the suggested value (5a) of �ðxþ 1Þ is consistent

with (5b).

An exact representation of �ðxþ 1Þ is suggested by the following manipulation of n!. (It depends on
ðnþ kÞ! ¼ ðkþ nÞ!.)

n! ¼ lim
k!1

12 . . . nðnþ 1Þ þ ðnþ 2Þ . . . ðnþ kÞ
ðnþ 1Þðnþ 2Þ . . . ðnþ kÞ ¼ lim

k!1
k! kn

ðnþ 1Þ . . . ðnþ kÞ lim
k!1

ðkþ 1Þðkþ 2Þ . . . ðkþ nÞ
kn

:

Since n is fixed the second limit is one, therefore, n! ¼ lim
k!1

k! kn

ðnþ 1Þ . . . ðnþ kÞ : (This must be read as an
infinite product.)
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This factorial representation for positive integers suggests the possibility that

�ðxþ 1Þ ¼ x! ¼ lim
k!1

k! kx

ðxþ 1Þ . . . ðxþ kÞ x 6¼ �1;�2;�k ð6Þ

Gauss verified this identification back in the nineteenth century.

This infinite product is symbolized by �ðx; kÞ, i.e., �ðx; kÞ ¼ k! kx

ðxþ 1Þ � � � ðxþ kÞ. It is called Gauss’s

function and through this symbolism,

�ðxþ 1Þ ¼ lim
k!1

�ðx; kÞ ð7Þ

The expression for
1

�ðxÞ (which has some advantage in developing the derivative of �ðxÞ) results as
follows. Put (6a) in the form

lim
k!1

kx

ð1þ xÞð1þ x=2Þ . . . ð1þ x=kÞ x 6¼ � 1

2
;
1

3
; . . . ;

1

k

Next, introduce

�k ¼ 1þ 1

2
þ 1

3
þ � � � 1

k
� ln k

Then

� ¼ lim
k!1

�k

is Euler’s constant. This constant has been calculated to many places, a few of which are
� � 0:57721566 . . . .

By letting kx ¼ ex ln k ¼ ex½��kþ1þ1=2þ���þ1=k�, the representation (6) can be further modified so that

�ðxþ 1Þ ¼ e��x lim
k!1

ex

1þ x

ex=2

1þ x=2
� � � ex=k

1þ x=k
¼ e��x

Y

1

k¼1

e�x ex ln k= 1þ x

k

� �

¼
Y

1

�¼1

kx k!ðkþ xÞ ¼ lim
k!1

1 � 2 � 3 � � � k
ðxþ 1Þðxþ 2Þ � � � ðxþ kÞ x

x ¼ lim
k!1

�ðx; kÞ ð8Þ

Since �ðxþ 1Þ ¼ x�ðxÞ;

1

�ðxÞ ¼ xe�x lim
k!1

1þ x

ex
1þ x=2

ex=2
� � � 1þ x=k

ex=k
¼ xe�x

Y

1

�¼1

ð1þ x=kÞ e�x=k ð9Þ

Another result of special interest emanates from a comparison of �ðxÞ�ð1� xÞ with the ‘‘famous’’
formula

�x

sin�x
¼ lim

k!1
1

1� x2
1

1� ðx=2Þ2 � � �
1

ð1� x=kÞ2
� �

¼
Y

1

�¼1

f1� ðx=kÞ2g ð10Þ

(See Differential and Integral Calculus, by R. Courant (translated by E. J. McShane), Blackie & Son
Limited.)

�ð1� xÞ is obtained from �ð yÞ ¼ 1

y
�ð yþ 1Þ by letting y ¼ �x, i.e.,

�ð�xÞ ¼ � 1

x
�ð1� xÞ or �ð1� xÞ ¼ �x�ð�xÞ
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Now use (8) to produce

�ðxÞ�ð1� xÞ ¼

x�1 e��x lim
k!1

Y

1

�¼1

ð1þ x=kÞ�1ex=k

( ) !

e�x lim
k!1

Y

1

�¼1

ð1� x=kÞ�1 e�x=k

 !

¼ 1

x
lim
k!1

Y

1

�¼1

ð1� ðx=kÞ2Þ

Thus

�ðxÞ�ð1� xÞ ¼ �

sin�x
; 0 < x < 1 ð11aÞ

Observe that (11) yields the result

�ð12Þ ¼
ffiffiffi

�
p ð11bÞ

Another exact representation of �ðxþ 1Þ is

�ðxþ 1Þ ¼
ffiffiffiffiffiffi

2�
p

xxþ1 e�x 1þ 1

12x
þ 1

288x2
þ 139

51840x3
þ � � �

� �

ð12Þ

The method of obtaining this result is closely related to Sterling’s asymptotic series for the gamma
function. (See Problem 15.20 and Problem 15.74.)

The duplication formula

22x�1�ðxÞ� xþ 1
2

� 	 ¼ ffiffiffi

�
p

�ð2xÞ ð13aÞ
also is part of the literature. Its proof is given in Problem 15.24.

The duplication formula is a special case ðm ¼ 2Þ of the following product formula:

�ðxÞ� xþ 1

m

� �

� xþ 2

m

� �

� � �� X þm� 1

m

� �

¼ m
1
2�mxð2�Þm�1

2 �ðmxÞ ð13bÞ

It can be shown that the gamma function has continuous derivatives of all orders. They are
obtained by differentiating (with respect to the parameter) under the integral sign.

It helps to recall that �ðxÞ ¼
ð1

0

tx�1e�yt dt and that if y ¼ tx�1, then ln y ¼ ln tx�1 ¼ ðx� 1Þ ln t.
Therefore,

1

y
y 0 ¼ ln t.

It follows that

� 0ðxÞ ¼
ð1

0

tx�1 e�t ln t dt: ð14aÞ

This result can be obtained (after making assumptions about the interchange of differentiation with
limits) by taking the logarithm of both sides of (9) and then differentiating.

In particular,

� 0ð1Þ ¼ �� ð� is Euler’s constant.) ð14bÞ
It also may be shown that

� 0ðxÞ
�ðxÞ ¼ �� þ 1

1
� 1

x

� �

þ 1

2
� 1

xþ 1

� �

þ � � � 1

n
� 1

xþ n� 1

� �

ð15Þ

(See Problem 15.73 for further information.)

THE BETA FUNCTION

The beta function is a two-parameter composition of gamma functions that has been useful enough in
application to gain its own name. Its definition is

378 GAMMA AND BETA FUNCTIONS [CHAP. 15



CHAP. 15] GAMMA AND BETA FUNCTIONS 379

Bðx; yÞ ¼
ð1

0

tx�1ð1� tÞ y�1 dt ð16Þ

If x 
 1 and y 
 1, this is a proper integral. If x > 0; y > 0 and either or both x < 1 or y < 1, the
integral is improper but convergent.

It is shown in Problem 15.11 that the beta function can be expressed through gamma functions in the
following way

Bðx; yÞ ¼ �ðxÞ�ð yÞ
�ðxþ yÞ ð17Þ

Many integrals can be expressed through beta and gamma functions. Two of special interest are
ð�=2

0

sin2x�1 � cos2y�1 � d� ¼ 1

2
Bðx; yÞ ¼ 1

2

�ðxÞ�ð yÞ
�ðxþ yÞ ð18Þ

ð1

0

xp�1

1þ x
dx ¼ �ð pÞ�ð p� 1Þ ¼ �

sin�p
0 < p < 1 ð19Þ

See Problem 15.17. Also see Page 377 where a classical reference is given. Finally, see Chapter 16,
Problem 16.38 where an elegant complex variable resolution of the integral is presented.

DIRICHLET INTEGRALS

If V denotes the closed region in the first octant bounded by the surface
x

a

� � p

þ y

b

� �q

þ z

c

� �r

¼ 1 and
the coordinate planes, then if all the constants are positive,

ð ð ð

V

x	�1 y
�1 z��1 dx dy dz ¼ a	b
c�

pqr

�
	

p

� �

�



q

� �

�
�

r

� �

� 1þ 	
p
þ 


q
þ �

r

� � ð20Þ

Integrals of this type are called Dirichlet integrals and are often useful in evaluating multiple
integrals (see Problem 15.21).

Solved Problems

THE GAMMA FUNCTION

15.1. Prove: (a) �ðxþ 1Þ ¼ x�ðxÞ; x > 0; ðbÞ �ðnþ 1Þ ¼ n!; n ¼ 1; 2; 3; . . . .

ðaÞ �ðvþ 1Þ ¼
ð1

0

xv e�x dx ¼ lim
M!1

ðM

0

xv e�x dx

¼ lim
M!1

ðxvÞð�e�xÞjM0 �
ðM

0

ð�e�xÞðvxv�1Þ dx
� �

¼ lim
M!1

�Mv e�M þ v

ðM

0

xv�1 e�x dx

� �

¼ v�ðvÞ if v > 0

ðbÞ �ð1Þ ¼
ð1

0

e�x dx ¼ lim
M!1

ðM

0

e�x dx ¼ lim
M!1

ð1� e�MÞ ¼ 1:

Put n ¼ 1; 2; 3; . . . in �ðnþ 1Þ ¼ n�ðnÞ. Then

�ð2Þ ¼ 1�ð1Þ ¼ 1;�ð3Þ ¼ 2�ð2Þ ¼ 2 � 1 ¼ 2!;�ð4Þ ¼ 3�ð3Þ ¼ 3 � 2! ¼ 3!

In general, �ðnþ 1Þ ¼ n! if n is a positive integer.



15.2. Evaluate each of the following.

ðaÞ �ð6Þ
2�ð3Þ ¼

5!

2 � 2! ¼
5 � 4 � 3 � 2

2 � 2 ¼ 30

ðbÞ �ð52Þ
�ð12Þ

¼
3
2�ð32Þ
�ð12Þ

¼
3
2 � 12�ð12Þ
�ð12Þ

¼ 3

4

ðcÞ �ð3Þ�ð2:5Þ
�ð5:5Þ ¼ 2!ð1:5Þð0:5Þ�ð0:5Þ

ð4:5Þð3:5Þð2:5Þð1:5Þð0:5Þ�ð0:5Þ ¼
16

315

ðdÞ 6�ð83Þ
5�ð23Þ

¼ 6ð53Þð23Þ�ð23Þ
5�ð23Þ

¼ 4

3

15.3. Evaluate each integral.

ðaÞ
ð1

0

x3 e�x dx ¼ �ð4Þ ¼ 3! ¼ 6

ðbÞ
ð1

0

x6 e�2x dx: Let 2x ¼ 7. Then the integral becomes

ð1

0

y

2

� �6

e�y dy

2
¼ 1

27

ð1

0

y6 e�y dy ¼ �ð7Þ
27

¼ 6!

27
¼ 45

8

15.4. Prove that �ð12Þ ¼
ffiffiffi

�
p

.

�ð12Þ ¼
ð1

0

x�1=2 e�x dx. Letting x ¼ u2 this integral becomes

2

ð1

0

e�u2 du ¼ 2

ffiffiffi

�
p
2

� �

¼ ffiffiffi

�
p

using Problem 12.31, Chapter 12

This result also is described in equation (11a,b) earlier in the chapter.

15.5. Evaluate each integral.

ðaÞ
ð1

0

ffiffiffi

y
p

e�y2 dy. Letting y3 ¼ x, the integral becomes

ð1

0

ffiffiffiffiffiffiffiffi

x1=3
p

e�x � 1
3
x�2=3 dx ¼ 1

3

ð1

0

x�1=2 e�x dx ¼ 1

3
�

1

2

� �

¼
ffiffiffi

�
p
3

ðbÞ
ð1

0

3�4x2 dx ¼
ð1

0

ðeln 3Þð�4x2Þ dz ¼
ð1

0

e�ð4 ln 3Þz2 dz. Let ð4 ln 3Þz2 ¼ x and the integral becomes

ð1

0

e�x d
x1=2
ffiffiffiffiffiffiffiffiffiffiffi

4 ln 3
p

 !

¼ 1

2
ffiffiffiffiffiffiffiffiffiffiffi

4 ln 3
p

ð1

0

x�1=2 e�x dx ¼ �ð1=2Þ
2
ffiffiffiffiffiffiffiffiffiffiffi

4 ln 3
p ¼

ffiffiffi

�
p

4
ffiffiffiffiffiffiffiffi

ln 3
p

(c)

ð1

0

dx
ffiffiffiffiffiffiffiffiffiffiffiffi� lnx

p : Let � ln x ¼ u. Then x ¼ e�u. When x ¼ 1; u ¼ 0; when x ¼ 0; u ¼ 1. The integral

becomes

ð1

0

e�u

ffiffiffi

u
p du ¼

ð1

0

u�1=2 e�u du ¼ �ð1=2Þ ¼ ffiffiffi

�
p

15.6. Evaluate

ð1

0

xm e�axn dx where m; n; a are positive constants.

380 GAMMA AND BETA FUNCTIONS [CHAP. 15



Letting axn ¼ y, the integral becomes

ð1

0

y

a

� �1=n
� �m

e�y d
y

a

� �1=n
� �

¼ 1

naðmþ1Þ=n

ð1

0

yðmþ1Þ=n�1 e�y dy ¼ 1

naðmþ1Þ=n �
mþ 1

n

� �

15.7. Evaluate (a) �ð�1=2Þ; ðbÞ ð�5=2Þ.

We use the generalization to negative values defined by �ðxÞ ¼ �ðxþ 1Þ
x

.

ðaÞ Letting x ¼ � 1
2 ; �ð�1=2Þ ¼ �ð1=2Þ

�1=2
¼ �2

ffiffiffi

�
p

:

ðbÞ Letting x ¼ �3=2; �ð�3=2Þ ¼ �ð�1=2Þ
�3=2

¼ �2
ffiffiffi

�
p

�3=2
¼ 4

ffiffiffi

�
p
3
; using ðaÞ:

Then �ð�5=2Þ ¼ �ð�3=2Þ
�5=2

¼ � 8

15

ffiffiffi

�
p

:

15.8. Prove that

ð1

0

xmðln xÞn dx ¼ ð�1Þnn!
ðmþ 1Þnþ1

, where n is a positive integer and m > �1.

Letting x ¼ e�y, the integral becomes ð�1Þn
ð1

0

yn e�ðmþ1Þy dy. If ðmþ 1Þy ¼ u, this last integral becomes

ð�1Þn
ð1

0

un

ðmþ 1Þn e�u du

mþ 1
¼ ð�1Þn

ðmþ 1Þnþ1

ð1

0

un e�u du ¼ ð�1Þn
ðmþ 1Þnþ1

�ðnþ 1Þ ¼ ð�1Þnn!
ðmþ 1Þnþ1

Compare with Problem 8.50, Chapter 8, page 203.

15.9. A particle is attracted toward a fixed point O with a force inversely proportional to its instanta-
neous distance from O. If the particle is released from rest, find the time for it to reach O.

At time t ¼ 0 let the particle be located on the x-axis at x ¼ a > 0 and let O be the origin. Then by

Newton’s law

m
d2x

dt2
¼ � k

x
ð1Þ

where m is the mass of the particle and k > 0 is a constant of proportionality.

Let
dx

dt
¼ v, the velocity of the particle. Then

d2x

dt2
¼ dv

dt
¼ dv

dx
� dx
dt

¼ v � dv
dx

and (1) becomes

mv
dv

dx
¼ � k

x
or

mv2

2
¼ �k lnxþ c ð2Þ

upon integrating. Since v ¼ 0 at x ¼ a, we find c ¼ k ln a. Then

mv2

2
¼ k ln

a

x
or v ¼ dx

dt
¼ �

ffiffiffiffiffi

2k

m

r

ffiffiffiffiffiffiffiffiffi

ln
a

x

r

ð3Þ

where the negative sign is chosen since x is decreasing as t increases. We thus find that the time T taken for
the particle to go from x ¼ a to x ¼ 0 is given by

T ¼
ffiffiffiffiffi

m

2k

r

ða

0

dx
ffiffiffiffiffiffiffiffiffiffiffiffiffi

ln a=x
p ð4Þ
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Letting ln a=x ¼ u or x ¼ ae�u, this becomes

T ¼ a

ffiffiffiffiffi

m

2k

r

ð1

0

u�1=2 e�u du ¼ a

ffiffiffiffiffi

m

2k

r

�ð12Þ ¼ a

ffiffiffiffiffiffiffi

�m

2k

r

THE BETA FUNCTION

15.10. Prove that (a) Bðu; vÞ ¼ Bðv; uÞ; ðbÞ Bðu; vÞ ¼ 2

ð�=2

0

sin2u�1 � cos2v�1 � d�.

(a) Using the transformation x ¼ 1� y, we have

Bðu; vÞ ¼
ð1

0

xu�1ð1� xÞv�1 dx ¼
ð1

0

ð1� yÞu�1 yv�1 dy ¼
ð1

0

yv�1ð1� yÞu�1 dy ¼ Bðv; uÞ

(b) Using the transformation x ¼ sin2 �, we have

Bðu; vÞ ¼
ð1

0

xu�1ð1� xÞv�1 dx ¼
ð�=2

0

ðsin2 �Þu�1ðcos2 �Þv�1 2 sin � cos � d�

¼ 2

ð�=2

0

sin2u�1 � cos2v�1 � d�

15.11. Prove that Bðu; vÞ ¼ �ðuÞ�ðvÞ
�ðuþ vÞ u; v > 0.

Letting z2 ¼ x2; we have �ðuÞ ¼
ð1

0

zu�1 e�z dx ¼ 2

ð1

0

x2u�1 e�x2 dx:

Similarly, �ðvÞ ¼ 2

ð1

0

y2v�1 e�y2 dy: Then

�ðuÞ�ðvÞ ¼ 4

ð1

0

x2u�1 e�x2 dx

� �
ð1

0

y2v�1 e�y2dy

� �

¼ 4

ð1

0

ð1

0

x2u�1 y2v�1 e�ðx2þy2Þ dx dy

Transforming to polar coordiantes, x ¼ � cos�; y ¼ � sin�,

�ðuÞ�ðvÞ ¼ 4

ð�=2

�¼0

ð1

�¼0

�2ðuþvÞ�1 e��
2

cos2u�1 � sin2v�1 � d� d�

¼ 4

ð1

�¼0

�2ðuþvÞ�1 e��
2

d�

� �
ð�=2

�¼0

cos2u�1 � sin2v�1 � d�

� �

¼ 2�ðuþ vÞ
ð�=2

0

cos2u�1 � sin2v�1 � d� ¼ �ðuþ vÞBðv; uÞ
¼ �ðuþ vÞBðu; vÞ

using the results of Problem 15.10. Hence, the required result follows.

The above argument can be made rigorous by using a limiting procedure as in Problem 12.31,
Chapter 12.

15.12. Evaluate each of the following integrals.

ðaÞ
ð1

0

x4ð1� xÞ3 dx ¼ Bð5; 4Þ ¼ �ð5Þ�ð4Þ
�ð9Þ ¼ 4!3!

8!
¼ 1

280
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ðbÞ
ð2

0

x2 dx
ffiffiffiffiffiffiffiffiffiffiffi

2� x
p : Letting x ¼ 2v; the integral becomes

4
ffiffiffi

2
p ð1

0

v2
ffiffiffiffiffiffiffiffiffiffiffi

1� v
p dv ¼ 4

ffiffiffi

2
p ð1

0

v2ð1� vÞ�1=2 dv ¼ 4
ffiffiffi

2
p

Bð3; 12Þ ¼
4
ffiffiffi

2
p

�ð3Þ�ð1=2Þ
�ð7=2Þ ¼ 64

ffiffiffi

2
p

15

ðcÞ
ða

0

y4
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

a2 � y2
q

dy: Letting y2 ¼ a2x or y ¼ ffiffiffi

x
p

; the integral becomes

a6
ð1

0

x3=2ð1� xÞ1=2 dx ¼ a6Bð5=2; 3=2Þ ¼ a6�ð5=2Þ�ð3=2Þ
�ð4Þ ¼ �a6

16

15.13. Show that

ð�=2

0

sin2u�1 � cos2v�1 � d� ¼ �ðuÞ�ðvÞ
2�ðuþ vÞ u; v > 0.

This follows at once from Problems 15.10 and 15.11.

15.14. Evaluate (a)

ð�=2

0

sin6 � d�; ðbÞ
ð�=2

0

sin4 � cos5 � d�; ðcÞ
ð�

0

cos4 � d�.

ðaÞ Let 2u� 1 ¼ 6; 2v� 1 ¼ 0; i.e., u ¼ 7=2; v ¼ 1=2; in Problem 15.13:

Then the required integral has the value
�ð7=2Þ�ð1=2Þ

2�ð4Þ ¼ 5�

32
:

ðbÞ Letting 2u� 1 ¼ 4; 2v� 1 ¼ 5; the required integral has the value
�ð5=2Þ�ð3Þ
2�ð11=2Þ ¼ 8

315
:

ðcÞ The given integral ¼ 2

ð�=2

0

cos4 � d�:

Thus letting 2u� 1 ¼ 0; 2v� 1 ¼ 4 in Problem 15.13, the value is
2�ð1=2Þ�ð5=2Þ

2�ð3Þ ¼ 3�

8
.

15.15. Prove

ð�=2

0

sin p � d� ¼
ð�=2

0

cos p � d� ¼ ðaÞ 1 � 3 � 5 � � � ð p� 1Þ
2 � 4 � 6 � � � p

�

2
if p is an even positive integer,

(b)
2 � 4 � 6 � � � ð p� 1Þ

1 � 3 � 5 � � � p is p is an odd positive integer.

From Problem 15.13 with 2u� 1 ¼ p; 2v� 1 ¼ 0, we have

ð�=2

0

sin p � d� ¼ �½12 ð pþ 1Þ��ð12Þ
2�½12 ð pþ 2Þ�

(a) If p ¼ 2r, the integral equals

�ðrþ 1
2Þ�ð12Þ

2�ðrþ 1Þ ¼ ðr� 1
2Þðr� 3

2Þ � � � 12 �ð12Þ � �ð12Þ
2rðr� 1Þ � � � 1 ¼ ð2r� 1Þð2r� 3Þ � � � 1

2rð2r� 2Þ � � � 2
�

2
¼ 1 � 3 � 5 � � � ð2r� 1Þ

2 � 4 � 6 � � � 2r
�

2

(b) If p ¼ 2rþ 1, the integral equals

�ðrþ 1Þ�ð12Þ
2�ðrþ 3

2Þ
¼ rðr� 1Þ � � � 1 � ffiffiffi

�
p

2ðrþ 1
2Þðr� 1

2Þ � � � 12
ffiffiffi

�
p ¼ 2 � 4 � 6 � � � 2r

1 � 3 � 5 � � � ð2rþ 1Þ

In both cases

ð�=2

0

sin p � d� ¼
ð�=2

0

cos p � d�, as seen by letting � ¼ �=2� �.
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15.16. Evaluate (a)

ð�=2

0

cos6 � d�; ðbÞ
ð�=2

0

sin3 � cos2 � d�; ðcÞ
ð2�

0

sin8 � d�.

(a) From Problem 15.15 the integral equals
1 � 3 � 5
2 � 4 � 6 ¼ 5�

32
[compare Problem 15.14(a)].

(b) The integral equals

ð�=2

0

sin3 �ð1� sin2 �Þ d� ¼
ð�=2

0

sin3 � d� �
ð�=2

0

sin5 � d� ¼ 2

1 � 3�
2 � 4

1 � 3 � 5 ¼ 2

15

The method of Problem 15.14(b) can also be used.

ðcÞ The given integral equals 4

ð�=2

0

sin8 � d� ¼ 4
1 � 3 � 5 � 7
2 � 4 � 6 � 8

�

2

� �

¼ 35�

64
:

15.17. Given

ð1

0

xp�1

1þ x
dx ¼ �

sin p�
, show that �ð pÞ�ð1� pÞ ¼ �

sin p�
, where 0 < p < 1.

Letting
x

1þ x
¼ y or x ¼ y

1� y
, the given integral becomes

ð1

0

yp�1ð1� yÞ�p dy ¼ Bð p; 1� pÞ ¼ �ð pÞ�ð1� pÞ

and the result follows.

15.18. Evaluate

ð1

0

dy

1þ y4
.

Let y4 ¼ x. Then the integral becomes
1

4

ð1

0

x�3=4

1þ x
dx ¼ �

4 sinð�=4Þ ¼
�

ffiffiffi

2
p

4
by Problem 15.17 with p ¼ 1

4.

The result can also be obtained by letting y2 ¼ tan �.

15.19. Show that

ð2

0

x
ffiffiffiffiffiffiffiffiffiffiffiffiffi

8� x3
3
p

dx ¼ 16�

9
ffiffiffi

3
p .

Letting x3 � 8y or x ¼ 2y1=3, the integral comes

ð1

0

2y1=3 �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

8ð1� yÞ3
p

� 23 y�2=3 dy ¼ 8
3

ð1

0

y�1=3ð1� yÞ1=3 dy ¼ 8
3 Bð23 ; 43Þ

¼ 8

3

�ð23 �ð43Þ
�ð2Þ ¼ 8

9
�ð13Þ�ð23Þ ¼

8

9
� �

sin�=3
¼ 16�

9
ffiffiffi

3
p

STIRLING’S FORMULA

15.20. Show that for large positive integers n; n! ¼ ffiffiffiffiffiffiffiffi

2�n
p

nn e�n approximately.

By definition �ðzÞ ¼
ð1

0

tz�1 e�t dt. Let lfz ¼ xþ 1 then

�ðxþ 1Þ ¼
ð1

0

tx e�t dt ¼
ð1

0

e�tþln tx dt ¼
ð1

0

e�tþx ln t dt ð1Þ

For a fixed value of x the function x ln t� t has a relative maximum for t ¼ x (as is demonstrated by
elementary ideas of calculus). The substutition t ¼ xþ y yields

�ðxþ 1Þ ¼ e�x

ð1

�x

ex lnðxþyÞ�y dy ¼ xx e�x

ð1

�x

ex lnð1þ
y
xÞ�y dy ð2Þ
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To this point the analysis has been rigorous. The following formal steps can be made rigorous by

incorporating appropriate limiting procedures; however, because of the difficulty of the proofs, they shall be
omitted.

In (2) introduce the logarithmic expansion

ln 1þ y

x

� �

¼ y

x
� y2

2x2
þ y3

3x3
�þ � � � ð3Þ

and also let

y ¼ ffiffiffi

x
p

v; dy ¼ ffiffiffi

x
p

dv

Then

�ðxþ 1Þ ¼ xx e�x ffiffiffi

x
p ð1

�x

e�v2=2þðv3=3Þ ffiffixp ���� dv ð4Þ

For large values of x

�ðxþ 1Þ � xx e�x ffiffiffi

x
p ð1

�x

e�v2=2 dv ¼ xx e�x
ffiffiffiffiffiffiffiffi

2�x
p

When x is replaced by integer values n, then the Stirling relation

n! ¼ �ðxþ 1Þ �
ffiffiffiffiffiffiffiffi

2�x
p

xx e�x ð5Þ
is obtained.

It is of interest that from (4) we can also obtain the result (12) on Page 378. See Problem 15.72.

DIRICHLET INTEGRALS

15.21. Evaluate I ¼
ð ð ð

V

x	�1 y
�1 z��1 dx dy dz where V is

the region in the first octant bounded by the sphere

x2 þ y2 þ z2 ¼ 1 and the coordinate planes.

Let x2 ¼ u; y2 ¼ v; z2 ¼ w. Then

I ¼
ð ð ð

r

uð	�1Þ=2 vð
�1Þ=2 wð��1Þ=2 du

2
ffiffiffi

u
p dv

2
ffiffiffi

v
p dw

2
ffiffiffiffi

w
p

¼ 1

8

ð ð ð

r

uð	=2Þ�1 vð
=2Þ�1 wð�=2Þ�1 du dv dw ð1Þ

where r is the region in the uvw space bounded by the plane
uþ vþ w ¼ 1 and the uv; vw, and uw planes as in Fig. 15-2.
Thus,

I ¼ 1

8

ð1

u¼0

ð1�u

v¼0

ð1�u�v

w¼0

uð	=2Þ�1 vð
=2Þ�1 wð�=2Þ�1 du dv dw ð2Þ

¼ 1

4�

ð1

u¼0

ð1�u

v¼0

uð	=2Þ�1 vð
=2Þ�1ð1� u� vÞ�=2 du dv

¼ 1

4�

ð1

u¼0

uð	=2Þ�1

ð1�u

v¼0

vð
=2Þ�1 ð1� u� vÞ�=2 dv
� �

du

Letting v ¼ ð1� uÞt, we have

ð1�u

v¼0

vð
=2Þ�1 ð1� u� vÞ�=2 dv ¼ ð1� uÞð
þ�Þ=2
ð1

t¼0

tð
=2Þ�1 ð1� tÞ�=2 dt

¼ ð1� uÞð
þ�Þ=2 �ð
=2Þ�ð�=2þ 1Þ
�½ð
þ �Þ=2þ 1�
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so that (2) becomes

I ¼ 1

4�

�ð
=2Þ�ð�=2þ 1Þ
�½ð
þ �Þ=2þ 1�

ð1

u¼0

uð	=2Þ�1 ð1� uÞð
þ�Þ=2 du ð3Þ

¼ 1

4�

�ð
=2Þ�ð�=2þ 1Þ
�½ð
þ �Þ=2þ 1� � �ð	=2Þ�½ð
þ �Þ=2þ 1�

�½ð	þ 
þ �Þ=2þ 1� ¼ �ð	=2Þ�ð
=2Þ�ð�=2Þ
8�½ð	þ 
þÞ=2þ 1�

where we have used ð�=2Þ�ð�=2Þ ¼ �ð�=2þ 1Þ.
The integral evaluated here is a special case of the Dirichlet integral (20), Page 379. The general case

can be evaluated similarly.

15.22. Find the mass of the region bounded by x2 þ y2 þ z2 ¼ a2 if the density is � ¼ x2y2z2.

The required mass ¼ 8

ð ð ð

V

x2y2z2 dx dy dz, where V is the region in the first octant bounded by the

sphere x2 þ y2 þ z2 ¼ a2 and the coordinate planes.

In the Dirichlet integral (20), Page 379, let b ¼ c ¼ a; p ¼ q ¼ r ¼ 2 and 	 ¼ 
 ¼ � ¼ 3. Then the
required result is

8 � a
3 � a3 � a3
2 � 2 � 2

�ð3=2Þ�ð3=2Þ�ð3=2Þ
�ð1þ 3=2þ 3=2þ 3=2Þ ¼

4�s9

945

MISCELLANEOUS PROBLEMS

15.23. Show that

ð1

0

ffiffiffiffiffiffiffiffiffiffiffiffiffi

1� x4
p

dx ¼ f�ð1:4Þg2
6
ffiffiffiffiffiffi

2�
p .

Let x4 ¼ y. Then the integral becomes

1

4

ð1

0

y�3=4ð1� yÞ1=2 dy ¼ 1

4

�ð1=4Þ�ð3=2Þ
�ð7=4Þ ¼

ffiffiffi

�
p
6

f�ð1=4Þg2
�ð1:4Þ�ð3=4Þ

From Problem 15.17 with p ¼ 1=4;�ð1=4Þ�ð3=4Þ ¼ �
ffiffiffi

2
p

so that the required result follows.

15.24. Prove the duplication formula 22p�1�ð pÞ�ð pþ 1
2Þ ¼

ffiffiffi

�
p

�ð2pÞ.

Let I ¼
ð�=2

0

sin2p x dx; J ¼
ð�=2

0

sin2p 2x dx.

Then I ¼ 1
2 Bð pþ 1

2 ;
1
2Þ ¼

�ð pþ 1
2Þ

ffiffiffi

�
p

2�ð pþ 1Þ
Letting 2x ¼ u, we find

J ¼ 1
2

ð�

0

sin2p u du ¼
ð�=2

0

sin2p u du ¼ I

J ¼
ð�=2

0

ð2 sinx cos xÞ2pdx ¼ 22p
ð�=2

0

sin2p x cos2p x dxBut

¼ 22p�1 Bð pþ 1
2 ; pþ 1

2Þ ¼
22p�1f�ð pþ 1

2Þg2
�ð2pþ 1Þ

Then since I ¼ J,

�ð pþ 1
2Þ

ffiffiffi

�
p

2p�ð pÞ ¼ 22p�1f�ð pþ 1
2Þg2

2p�ð2pÞ
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and the required result follows. (See Problem 15.74, where the duplication formula is developed for the

simpler case of integers.)

15.25. Show that

ð�=2

0

d�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� 1
2 sin

2 �
q ¼ f�ð1=4Þg2

4
ffiffiffi

�
p .

Consider

I ¼
ð�=2

0

d�
ffiffiffiffiffiffiffiffiffiffi

cos �
p ¼

ð�=2

0

cos�1=2 � d� ¼ 1
2 Bð14 ; 12Þ ¼

�ð14Þ
ffiffiffi

�
p

2�ð34Þ
¼ f�ð14Þg2

2
ffiffiffiffiffiffi

2�
p

as in Problem 15.23.

But I ¼
ð�=2

0

d�
ffiffiffiffiffiffiffiffiffiffi

cos �
p ¼

ð�=2

0

d�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

cos2 �=2� sin2 �=2
p ¼

ð�=2

0

d�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� 2 sin2 �=2
p :

Letting
ffiffiffi

2
p

sin �=2 ¼ sin� in this last integral, it becomes
ffiffiffi

2
p ð�=2

0

d�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� 1
2 sin

2 �
q , from which the result

follows.

15.26. Prove that

ð1

0

cos x

xp dx ¼ �

2�ð pÞ cosð p�=2Þ ; 0 < p < 1.

We have
1

xp ¼
1

�ð pÞ
ð1

0

up�1 e�xu du. Then

ð1

0

cos x

xp dx ¼ 1

�ð pÞ
ð1

0

ð1

0

up�1 e�xu cos x du dx

¼ 1

�ð pÞ
ð1

0

up

1þ u2
du ð1Þ

where we have reversed the order of integration and used Problem 12.22, Chapter 12.
Letting u2 ¼ v in the last integral, we have by Problem 15.17

ð1

0

up

1þ u2
du ¼ 1

2

ð1

0

vð p�1Þ=2

1þ v
dv ¼ �

2 sinð pþ 1Þ�=2 ¼ �

2 cos p�=2
ð2Þ

Substitution of (2) in (1) yields the required result.

15.27. Evaluate

ð1

0

cos x2 dx.

Letting x2 ¼ y, the integral becomes
1

2

ð1

0

cos y
ffiffiffi

y
p dy ¼ 1

2

�

2�ð12Þ cos�=4

 !

¼ 1
2

ffiffiffiffiffiffiffiffi

�=2
p

by Problem 15.26.

This integral and the corresponding one for the sine [see Problem 15.68(a)] are called Fresnel integrals.

Supplementary Problems

THE GAMMA FUNCTION

15.28. Evaluate (a)
�ð7Þ

2�ð4Þ�ð3Þ ; ðbÞ �ð3Þ�ð3=2Þ
�ð9=2Þ ; ðcÞ �ð1=2Þ�ð3=2Þ�ð5=2Þ.

Ans. ðaÞ 30; ðbÞ 16=105; ðcÞ 3
8�

3=2
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15.29. Evaluate (a)

ð1

0

x4 e�x dx; ðbÞ
ð1

0

x6 e�3x dx; ðcÞ
ð1

0

x2 e�2x2 dx:

Ans. ðaÞ 24; ðbÞ 80

243
; ðcÞ

ffiffiffiffiffiffi

2�
p

16

15.30. Find (a)

ð1

0

e�x2 dx; ðbÞ
ð1

0

ffiffiffi

x4
p

e�
ffiffi

x
p

dx; ðcÞ
ð1

0

y3 e�2y5 dy.

Ans. ðaÞ 1
3 �ð13Þ; ðbÞ 3

ffiffiffi

�
p
2
; ðcÞ �ð4=5Þ

5
ffiffiffiffiffi

165
p

15.31. Show that

ð1

0

e�st

ffiffi

t
p dt ¼

ffiffiffi

�

8

r

; s > 0.

15.32. Prove that �ðvÞ ¼
ð1

0

ln
1

x

� �v�1

dx; v > 0.

15.33. Evaluate (a)

ð1

0

ðlnxÞ4 dx; ðbÞ
ð1

0

ðx lnxÞ3 dx; ðcÞ
ð1

0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

lnð1=xÞ3
p

dx.

Ans: ðaÞ 24; ðbÞ � 3=128; ðcÞ 1
3 �ð13Þ

15.34. Evaluate (a) �ð�7=2Þ; ðbÞ �ð�1=3Þ. Ans: ðaÞ ð16 ffiffiffi

�
p Þ=105; ðbÞ � 3�ð2=3Þ

15.35. Prove that lim
x!�m

�ðxÞ ¼ 1 where m ¼ 0; 1; 2; 3; . . .

15.36. Prove that if m is a positive interger, �ð�mþ 1
2Þ ¼

ð�1Þm2m ffiffiffi

�
p

1 � 3 � 5 � � � ð2m� 1Þ

15.37. Prove that � 0ð1Þ ¼
ð1

0

e�x ln x dx is a negative number (it is equal to ��, where � ¼ 0:577215 . . . is called

Euler’s constant as in Problem 11.49, Page 296).

THE BETA FUNCTION

15.38. Evaluate (a) Bð3; 5Þ; ðbÞ Bð3=2; 2Þ; ðcÞ Bð1=3; 2=3Þ: Ans: ðaÞ 1=105; ðbÞ 4=15; ðcÞ 2�=
ffiffiffi

3
p

15.39. Find (a)

ð1

0

x2ð1� xÞ3 dx; ðbÞ
ð1

0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ð1� xÞ=x
p

dx; ðcÞ
ð2

0

ð4� x2Þ3=2 dx.

Ans: ðaÞ 1=60; ðbÞ �=2; ðcÞ 3�

15.40. Evaluate (a)

ð4

0

u3=2ð4� uÞ5=2 du; ðbÞ
ð3

0

dx
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

3x� x2
p : Ans: ðaÞ 12�; ðbÞ �

15.41. Prove that

ða

0

dy
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

a4 � y4
p ¼ f�ð1=4Þg2

4a
ffiffiffiffiffiffi

2�
p :

15.42. Evaluate (a)

ð�=2

0

sin4 � cos4 � d�; ðbÞ
ð2�

0

cos6 � d�: Ans: ðaÞ 3�=256; ðbÞ 5�=8

15.43. Evaluate (a)

ð�

0

sin5 � d�; ðbÞ
ð�=2

0

cos5 � sin2 � d�: Ans: ðaÞ 16=15; ðbÞ 8=105

15.44. Prove that

ð�=2

0

ffiffiffiffiffiffiffiffiffiffi

tan �
p

d� ¼ �=
ffiffiffi

2
p

.
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15.45. Prove that (a)

ð1

0

x dx

1þ x6
¼ �

3
ffiffiffi

3
p ; ðbÞ

ð1

0

y2 dy

1þ y4
¼ �

2
ffiffiffi

2
p .

15.46. Prove that

ð1

�1

e2x

ae3x þ b
dx ¼ 2�

3
ffiffiffi

3
p

a2=3b1=3
where a; b > 0.

15.47. Prove that

ð1

�1

e2x

ðe3x þ 1Þ dx ¼ 2�

9
ffiffiffi

3
p

[Hint: Differentiate with respect to b in Problem 15.46.]

15.48. Use the method of Problem 12.31, Chapter 12, to justify the procedure used in Problem 15.11.

DIRICHLET INTEGRALS

15.49. Find the mass of the region in the xy plane bounded by xþ y ¼ 1;x ¼ 0; y ¼ 0 if the density is � ¼ ffiffiffiffiffiffi

xy
p

.
Ans: �=24

15.50. Find the mass of the region bounded by the ellipsoid
x2

a2
þ y2

b2
þ z2

c2
¼ 1 if the density varies as the square of

the distance from its center.

Ans:
�abck

30
ða2 þ b2 þ c2Þ; k ¼ constant of proportionality

15.51. Find the volume of the region bounded by x2=3 þ y2=3 þ z2=3 ¼ 1.
Ans: 4�=35

15.52. Find the centroid of the region in the first octant bounded by x2=3 þ y2=3 þ z2=3 ¼ 1.

Ans: �xx ¼ �yy ¼ �zz ¼ 21=128

15.53. Show that the volume of the region bounded by xm þ ym þ zm ¼ am, where m > 0, is given by
8f�ð1=mÞg3
3m2 �ð3=mÞ a

3.

15.54. Show that the centroid of the region in the first octant bounded by xm þ ym þ zm ¼ am, where m > 0, is given
by

�xx ¼ �yy ¼ �zz ¼ 3�ð2=mÞ�ð3=mÞ
4�ð1=mÞ�ð4=mÞ a

MISCELLANEOUS PROBLEMS

15.55. Prove that

ðb

a

ðx� aÞ pðb� xÞq dx ¼ ðb� aÞ pþqþ1 Bð pþ 1; qþ 1Þ where p > �1; q > �1 and b > a.

[Hint: Let x� a ¼ ðb� aÞy:]

15.56. Evaluate (a)

ð3

1

dx
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðx� 1Þð3� xÞp ; ðbÞ

ð7

3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ð7� xÞðx� 3Þ4
p

dx.

Ans: ðaÞ �; ðbÞ 2 f�ð1=4Þg2
3
ffiffiffi

�
p

15.57. Show that
f�ð1=3Þg2
�ð1=6Þ ¼

ffiffiffi

�
p ffiffiffi

23
p
ffiffiffi

3
p .

15.58. Prove that Bðu; vÞ ¼ 1

2

ð1

0

xu�1 þ xv�1

ð1þ xÞuþv dx where u; v > 0.

[Hint: Let y ¼ x=ð1þ xÞ:�
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15.59. If 0 < p < 1 prove that

ð�=2

0

tan p � d� ¼ �

2
sec

p�

2
.

15.60. Prove that

ð1

0

xu�1ð1� xÞv�1

ðxþ rÞuþv ¼ Bðu; vÞ
ruð1þ rÞuþv where u; v, and r are positive constants.

[Hint: Let x ¼ ðrþ 1Þy=ðrþ yÞ.]

15.61. Prove that

ð�=2

0

sin2u�1 � cos2v�1 � d�

ða sin2 � þ b cos2 �Þuþv
¼ Bðu; vÞ

2avbu
where u; v > 0.

[Hint: Let x ¼ sin2 � in Problem 15.60 and choose r appropriately.]

15.62. Prove that

ð1

0

dx

xx
¼ 1

11
þ 1

22
þ 1

33
þ � � �

15.63. Prove that for m ¼ 2; 3; 4; . . .

sin
�

m
sin

2�

m
sin

3�

m
� � � sin ðm� 1Þ�

m
¼ m

2m�1

[Hint: Use the factored form xm � 1 ¼ ðx� 1Þðx� 	1Þðx� 	2Þ � � � ðx� 	n�1Þ, divide both sides by x� 1, and
consider the limit as x ! 1.]

15.64. Prove that

ð�=2

0

ln sinx dx ¼ ��=2 ln 2 using Problem 15.63.

[Hint: Take logarithms of the result in Problem 15.63 and write the limit as m ! 1 as a definite integral.]

15.65. Prove that �
1

m

� �

�
2

m

� �

�
3

m

� �

� � � � m� 1

m

� �

¼ ð2�Þðm�1Þ=2
ffiffiffiffi

m
p :

[Hint: Square the left hand side and use Problem 15.63 and equation (11a), Page 378.]

15.66. Prove that

ð1

0

ln�ðxÞ dx ¼ 1
2 lnð2�Þ.

[Hint: Take logarithms of the result in Problem 15.65 and let m ! 1.]

15.67. (a) Prove that

ð1

0

sinx

x p dx ¼ �

2�ð pÞ sinð p�=2Þ ; 0 < p < 1.

(b) Discuss the cases p ¼ 0 and p ¼ 1.

15.68. Evaluate (a)

ð1

0

sin x2 dx; ðbÞ
ð1

0

x cos x3 dx.

Ans: ðaÞ 1
2

ffiffiffiffiffiffiffiffi

�=2
p

; ðbÞ �

3
ffiffiffi

3
p

�ð1=3Þ

15.69. Prove that

ð1

0

x p�1 lnx

1þ x
dx ¼ ��2 csc p� cot p�; 0 < p < 1.

15.70. Show that

ð1

0

ln x

x4 þ 1
dx ¼ ��2 ffiffiffi

2
p

16
.

15.71. If a > 0; b > 0, and 4ac > b2, prove that
ð1

�1

ð1

�1
e�ðax2þbxyþcy2Þ dx dy ¼ 2�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

4ac� b2
p
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15.72. Obtain (12) on Page 378 from the result (4) of Problem 15.20.

[Hint: Expand ev
3=ð3 ffiffinp Þ þ � � � in a power series and replace the lower limit of the integral by �1.]

15.73. Obtain the result (15) on Page 378.

[Hint: Observe that �ðxÞ ¼ 1

x
�ðxþ !Þ, thus ln�ðxÞ ¼ ln�ðxþ 1Þ � lnx, and

� 0ðxÞ
�ðxÞ ¼ � 0ðxþ 1Þ

�ðxþ 1Þ �
1

x

Furthermore, according to (6) page 377.

�ðxþ !Þ ¼ lim
k!1

k! kx

ðxþ 1Þ � � � ðxþ kÞ
Now take the logarithm of this expression and then differentiate. Also recall the definition of the Euler

constant, �.

15.74. The duplication formula (13a) Page 378 is proved in Problem 15.24. For further insight, develop it for
positive integers, i.e., show that

22n�1�ðnþ 1
2Þ�ðnÞ ¼ �ð2nÞ ffiffiffi

�
p

Hint: Recall that �ð12Þ ¼ �, then show that

�ðnþ 1
2Þ ¼ �

2nþ 1Þ
2

� �

¼ ð2n� 1Þ � � � 5 � 3 � 1
2n

ffiffiffi

�
p

:

Observe that

�ð2nþ 1Þ
2n�ðnþ 1Þ ¼

ð2nÞ!
2nn!

¼ ð2n� 1Þ � � � 5 � 3 � 1

Now substitute and refine.
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392

Functions of a Complex
Variable

Ultimately it was realized that to accept numbers that provided solutions to equations such as
x2 þ 1 ¼ 0 was no less meaningful than had been the extension of the real number system to admit a
solution for xþ 1 ¼ 0, or roots for x2 � 2 ¼ 0. The complex number system was in place around 1700,
and by the early nineteenth century, mathematicians were comfortable with it. Physical theories took
on a completeness not possible without this foundation of complex numbers and the analysis emanating
from it. The theorems of the differential and integral calculus of complex functions introduce math-
ematical surprises as well as analytic refinement. This chapter is a summary of the basic ideas.

FUNCTIONS

If to each of a set of complex numbers which a variable zmay assume there corresponds one or more
values of a variable w, then w is called a function of the complex variable z, written w ¼ f ðzÞ. The
fundamental operations with complex numbers have already been considered in Chapter 1.

A function is single-valued if for each value of z there corresponds only one value of w; otherwise it is
multiple-valued or many-valued. In general, we can write w ¼ f ðzÞ ¼ uðx; yÞ þ ivðx; yÞ, where u and v are
real functions of x and y.

EXAMPLE. w ¼ z2 ¼ ðxþ iyÞ2 ¼ x2 � y2 þ 2ixy ¼ uþ iv so that uðx; yÞ ¼ x2 � y2; vðx; yÞ ¼ 2xy. These are
called the real and imaginary parts of w ¼ z2 respectively.

In complex variables, multiple-valued functions often are replaced by a specially constructed single-
valued function with branches. This idea is discussed in a later paragraph.

EXAMPLE. Since e2�ki ¼ 1, the general polar form of z is z ¼ � eið�þ2�kÞ. This form and the fact that the logarithm
and exponential functions are inverse leads to the following definition of ln z

ln z ¼ ln �þ ð� þ 2�kÞi k ¼ 0; 1; 2; . . . ; n . . .

Each value of k determines a single-valued function from this collection of multiple-valued functions. These
are the branches from which (in the realm of complex variables) a single-valued function can be constructed.
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LIMITS AND CONTINUITY

Definitions of limits and continuity for functions of a complex variable are analogous to those for a
real variable. Thus, f ðzÞ is said to have the limit l as z approaches z0 if, given any � > 0, there exists a
� > 0 such that j f ðzÞ � lj < � whenever 0 < jz� z0j < �.

Similarly, f ðzÞ is said to be continuous at z0 if, given any � > 0, there exists a � > 0 such that
j f ðzÞ � f ðz0Þj < � whenever jz� z0j < �. Alternatively, f ðzÞ is continuous at z0 if lim

z!z0
f ðzÞ ¼ f ðz0Þ.

Note: While these definitions have the same appearance as in the real variable setting, remember that
jz� z0j < � means

jðx� x0j þ ið y� y0Þj ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðx� x0Þ2 þ ð y� y0Þ2
q

< �:

Thus there are two degrees of freedom as ðx; yÞ ! ðx0; y0Þ:

DERIVATIVES

If f ðzÞ is single-valued in some region of the z plane the derivative of f ðzÞ, denoted by f 0ðzÞ, is defined
as

lim
�z!0

ðf ðzþ�zÞ � f ðzÞ
�z

ð1Þ

provided the limit exists independent of the manner in which �z ! 0. If the limit (1) exists for z ¼ z0,
then f ðzÞ is called analytic at z0. If the limit exists for all z in a region r, then f ðzÞ is called analytic in r.
In order to be analytic, f ðzÞ must be single-valued and continuous. The converse, however, is not
necessarily true.

We define elementary functions of a complex variable by a natural extension of the corresponding
functions of a real variable. Where series expansions for real functions f ðxÞ exists, we can use as
definition the series with x replaced by z. The convergence of such complex series has already been
considered in Chapter 11.

EXAMPLE 1. We define ex ¼ 1þ zþ z2

2!
þ z3

3!
þ � � � ; sin z ¼ z� z3

3!
þ z5

5!
� z7

7!
þ � � � ; cos z ¼ 1� z2

2!
þ z4

4!
� z6

6!
þ � � � .

From these we can show that ex ¼ exþiy ¼ exðcos yþ i sin yÞ, as well as numerous other relations.

Rules for differentiating functions of a complex variable are much the same as for those of real

variables. Thus,
d

dz
ðznÞ ¼ nzn�1;

d

dz
ðsin zÞ ¼ cos z, and so on.

CAUCHY-RIEMANN EQUATIONS

A necessary condition that w ¼ f ðzÞ ¼ uðx; yÞ þ ivðx; yÞ be analytic in a region r is that u and v
satisfy the Cauchy-Riemann equations

@u

@x
¼ @v

@y
;

@u

@y
¼ � @v

@x
ð2Þ

(see Problem 16.7). If the partial derivatives in (2) are continuous in r, the equations are sufficient
conditions that f ðzÞ be analytic in r.

If the second derivatives of u and v with respect to x and y exist and are continuous, we find by
differentiating (2) that

@2u

@x2
þ @

2u

@y2
¼ 0;

@2v

@x2
þ @2v

@y2
¼ 0 ð3Þ

Thus, the real and imaginary parts satisfy Laplace’s equation in two dimensions. Functions satisfying
Laplace’s equation are called harmonic functions.
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INTEGRALS

Let f ðzÞ be defined, single-valued and continuous in a regionr. We define the integral of f ðzÞ along
some path C in r from point z1 to point z2, where z1 ¼ x1 þ iy1; z2 ¼ x2 þ iy2, as

ð

C

f ðzÞ dz ¼
ððx2;y2Þ

ðx1;y1Þ
ðuþ ivÞðdxþ i dyÞ ¼

ððx2;y2Þ

ðx1;y1Þ
u dx� v dyþ i

ððx2;y2Þ

ðx1;y1Þ
v dxþ u dy

With this definition the integral of a function of a complex variable can be made to depend on line
integrals for real functions already considered in Chapter 10. An alternative definition based on the
limit of a sum, as for functions of a real variable, can also be formulated and turns out to be equivalent
to the one above.

The rules for complex integration are similar to those for real integrals. An important result is
ð

C

f ðzÞ dz
























@
ð

C

j f ðzÞjjdzj @ M

ð

C

ds ¼ ML ð4Þ

where M is an upper bound of j f ðzÞj on C, i.e., j f ðzÞj @ M, and L is the length of the path C.
Complex function integral theory is one of the most esthetically pleasing constructions in all of

mathematics. Major results are outlined below.

CAUCHY’S THEOREM

Let C be a simple closed curve. If f ðzÞ is analytic within the region bounded by C as well as on C,
then we have Cauchy’s theorem that

ð

C

f ðzÞ dz �
þ

C

f ðzÞ dz ¼ 0 ð5Þ

where the second integral emphasizes the fact that C is a simple closed curve.

Expressed in another way, (5) is equivalent to the statement that

ðz2

z1

f ðzÞ dz has a value independent of
the path joining z1 and z2. Such integrals can be evaluated as Fðz2Þ � Fðz1Þ, where F 0ðzÞ ¼ f ðzÞ. These
results are similar to corresponding results for line integrals developed in Chapter 10.

EXAMPLE. Since f ðzÞ ¼ 2z is analytic everywhere, we have for any simple closed curve C
þ

C

2z dz ¼ 0

Also,

ð1þi

2i

2z dz ¼ z2












1þi

2i

¼ ð1þ iÞ2ð2iÞ2 ¼ 2i þ 4

CAUCHY’S INTEGRAL FORMULAS

If f ðzÞ is analytic within and on a simple closed curve C and a is any point interior to C, then

f ðaÞ ¼ 1

2�i

þ

C

f ðzÞ
z� a

dz ð6Þ

where C is traversed in the positive (counterclockwise) sense.
Also, the nth derivative of f ðzÞ at z ¼ a is given by

f ðnÞðaÞ ¼ n!

2�i

þ

C

f ðzÞ
ðz� aÞnþ1

dz ð7Þ

These are called Cauchy’s integral formulas. They are quite remarkable because they show that if
the function f ðzÞ is known on the closed curve C then it is also known within C, and the various
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derivatives at points within C can be calculated. Thus, if a function of a complex variable has a first
derivative, it has all higher derivatives as well. This, of course, is not necessarily true for functions of
real variables.

TAYLOR’S SERIES

Let f ðzÞ be analytic inside and on a circle having its center at z ¼ a. Then for all points z in the circle
we have the Taylor series representation of f ðzÞ given by

f ðzÞ ¼ f ðaÞ þ f 0ðaÞðz� aÞ þ f 00ðaÞ
2!

ðz� aÞ2 þ f 000ðaÞ
3!

ðz� aÞ3 þ � � � ð8Þ

See Problem 16.21.

SINGULAR POINTS

A singular point of a function f ðzÞ is a value of z at which f ðzÞ fails to be analytic. If f ðzÞ is analytic
everywhere in some region except at an interior point z ¼ a, we call z ¼ a an isolated singularity of f ðzÞ.

EXAMPLE. If f ðzÞ ¼ 1

ðz� 3Þ2, then z ¼ 3 is an isolated singularity of f ðzÞ.

EXAMPLE. The function f ðzÞ ¼ sin z

z
has a singularity at z ¼ 0. Because lim

z!0
is finite, this singularity is called a

removable singularity.

POLES

If f ðzÞ ¼ �ðzÞ
ðz� aÞn ; �ðaÞ 6¼ 0, where �ðzÞ is analytic everywhere in a region including z ¼ a, and if n is a

positive integer, then f ðzÞ has an isolated singularity at z ¼ a, which is called a pole of order n. If n ¼ 1,
the pole is often called a simple pole; if n ¼ 2, it is called a double pole, and so on.

LAURENT’S SERIES

If f ðzÞ has a pole of order n at z ¼ a but is analytic at every other point inside and on a circle C with
center at a, then ðz� aÞn f ðzÞ is analytic at all points inside and on C and has a Taylor series about z ¼ a
so that

f ðzÞ ¼ a�n

ðz� aÞn þ
a�nþ1

ðz� aÞn�1
þ � � � þ a�1

z� a
þ a0 þ a1ðz� aÞ þ a2ðz� aÞ2 þ � � � ð9Þ

This is called a Laurent series for f ðzÞ. The part a0 þ a1ðz� aÞ þ a2ðz� aÞ2 þ � � � is called the analytic
part, while the remainder consisting of inverse powers of z� a is called the principal part. More

generally, we refer to the series
X

1

k¼�1
akðz� aÞk as a Laurent series, where the terms with k < 0 constitute

the principal part. A function which is analytic in a region bounded by two concentric circles having
center at z ¼ a can always be expanded into such a Laurent series (see Problem 16.92).

It is possible to define various types of singularities of a function f ðzÞ from its Laurent series. For
example, when the principal part of a Laurent series has a finite number of terms and a�n 6¼ 0 while
a�n�1; a�n�2; . . . are all zero, then z ¼ a is a pole of order n. If the principal part has infinitely many
terms, z ¼ a is called an essential singularity or sometimes a pole of infinite order.

EXAMPLE. The function e1=z ¼ 1þ 1

z
þ 1

2! z2
þ � � � has an essential singularity at z ¼ 0.
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BRANCHES AND BRANCH POINTS

Another type of singularity is a branch point. These points play a vital role in the construction of

single-valued functions from ones that are multiple-valued, and they have an important place in the

computation of integrals.

In the study of functions of a real variable, domains were chosen so that functions were single-

valued. This guaranteed inverses and removed any ambiguities from differentiation and integration.

The applications of complex variables are best served by the approach illustrated below. It is in the

realm of real variables and yet illustrates a pattern appropriate to complex variables.

Let y2 ¼ x; x > 0, then y ¼ � ffiffiffi

x
p

. In real variables two functions f1 and f2 are described by

y ¼ þ ffiffiffi

x
p

on x > 0, and y ¼ � ffiffiffi

x
p

on x > 0, respectively. Each of them is single-valued.

An approach that can be extended to complex variable results by defining the positive x-axis (not

including zero) as a cut in the plane. This creates two branches f1 and f2 of a new function on a domain

called the Riemann axis. The only passage joining the spaces in which the branches f1 and f2, respec-

tively, are defined is through 0. This connecting point, zero, is given the special name branch point.

Observe that two points x� in the space of f1 and x�� in that of f2 can appear to be near each other in the

ordinary view but are not from the Riemannian perspective. (See Fig. 16-1.)

The above real variables construction suggests one for complex variables illustrated by w ¼ z1=2.

In polar coordinates e2�i ¼ 1; therefore, the general representation of w ¼ z1=2 in that system is

w ¼ �1=2 eið�þ2�kÞ=2, k ¼ 0; 1.

Thus, this function is double-valued.

If k ¼ 0, then w1 ¼ �1=2 � ei�=2, 0 < � � 2�; � > 0

If k ¼ 1, then w2 ¼ �1=2 � eið�þ2�Þ=2 ¼ �1=2 � ei�=2�i� ¼ ��1=2 � ei�=2; 2� < � � 4�; � > 0.

Thus, the two branches of w are w1 and w2, where w1 ¼ �w2. (The double valued characteristic of w

is illustrated by noticing that as z traverses a circle, C: jzj ¼ � through the values � to 2�. The functional
values run from �1=2ei�=2 to �1=2e�i. In other words, as z navigates the entire circle, the range variable
only moves halfway around the corresponding range circle. In order for that variable to complete the

circuit, z would have to make a second revolution. Thus, we would have coincident positions of z giving
rise to distinct values of w. For example, z1 ¼ eð�=2Þ=i and z2 ¼ eð�=2þ2�Þi are coincident points on the unit

circle. The distinct functional values are z1=21 ¼
ffiffiffi

2
p

2
ð1þ iÞ and z1=22 ¼ �

ffiffiffi

2
p

2
ð1þ iÞ.

The following abstract construction replaces the multiple-valued function with a new single-valued
one.

Make a cut in the complex plane that includes all of the positive x-axis except the origin. Think of
two planes, P1 and P2, the first one of infinitesimal distance above the complex plane and the other
infinitesimally below it. The point 0 which connects these spaces is called a branch point. The planes
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and the connecting point constitute a Riemann surface, and w1 and w2 are the branches of the function

each defined in one of the planes. (Since the space of complex variables is the complex plane, this

Riemann surface may be thought of as a flight of fancy that supports a rigorous analytic construction.)

To visualize this Riemann surface and perceive the single-valued character of the new function in it,

first think of duplicates, C1 and C2 of the domain circle, C: jzj ¼ � in the planes P1 and P2, respectively.

Start at � ¼ � on C1, and proceed counterclockwise to the edge U2 of the cut of P1. (This edge

corresponds to � ¼ 2�). Paste U2 to L1, the initial edge of the cut on P2. Transfer to P2 through

this join and continue on C2. Now after a complete counterclockwise circuit of C2 we reach the edge L2

of the cut. Pasting L2 to U1 provides passage back to P1 and makes it possible to close the curve in the

Riemann plane. See Fig. 16-2.

Note that the function is not continuous on the positive x-axis. Also the cut is somewhat arbitrary.
Other rays and even curves extending from the origin to infinity can be employed. In many integration
applications the cut � ¼ �i proves valuable. On the other hand, the branch point (0 in this example) is
special. If another point, z0 6¼ 0 were chosen as the center of a small circle with radius less than jz0j, then
the origin would lie outside it. As a point z traversed its circumference, its argument would return to the
original value as would the value of w. However, for any circle that has the branch point as an interior
point, a similar traversal of the circumference will change the value of the argument by 2�, and the
values of w1 and w2 will be interchanged. (See Problem 16.37.)

RESIDUES

The coefficients in (9) can be obtained in the customary manner by writing the coefficients for the
Taylor series corresponding to ðz� aÞnf ðzÞ. In further developments, the coefficient a�1, called the
residue of f ðzÞ at the pole z ¼ a, is of considerable importance. It can be found from the formula

a�1 ¼ lim
z!a

1

ðn� 1Þ!
dn�1

dzn�1
fðz� aÞn f ðzÞg ð10Þ

where n is the order of the pole. For simple poles the calculation of the residue is of particular simplicity
since it reduces to

a�1 ¼ lim
z!a

ðz� aÞ f ðzÞ ð11Þ

RESIDUE THEOREM

If f ðzÞ is analytic in a region r except for a pole of order n at z ¼ a and if C is any simple closed
curve in r containing z ¼ a, then f ðzÞ has the form (9). Integrating (9), using the fact that
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þ

C

dz

ðz� aÞn ¼
0 if n 6¼ 1
2�i if n ¼ 1

�

ð12Þ

(see Problem 16.13), it follows that

þ

C

f ðzÞ dz ¼ 2�ia�1 ð13Þ

i.e., the integral of f ðzÞ around a closed path enclosing a single pole of f ðzÞ is 2�i times the residue at the

pole.

More generally, we have the following important theorem.

Theorem. If f ðzÞ is analytic within and on the boundary C of a region r except at a finite number of
poles a; b; c; . . . within r, having residues a�1; b�1; c�1; . . . ; respectively, then

þ

C

f ðzÞ dz ¼ 2�iða�1 þ b�1 þ c�1 þ � � �Þ ð14Þ

i.e., the integral of f ðzÞ is 2�i times the sum of the residues of f ðzÞ at the poles enclosed by C. Cauchy’s

theorem and integral formulas are special cases of this result, which we call the residue theorem.

EVALUATION OF DEFINITE INTEGRALS

The evaluation of various definite integrals can often be achieved by using the residue theorem

together with a suitable function f ðzÞ and a suitable path or contour C, the choice of which may reuqire

great ingenuity. The following types are most common in practice.

1.

ð1

0

FðxÞ dx;FðxÞ is an even function.

Consider

þ

C

FðzÞ dz along a contour C consisting of the line along the x-axis from �R to

þR and the semicircle above the x-axis having this line as diameter. Then let R ! 1. See
Problems 16.29 and 16.30.

2.

ð2�

0

Gðsin �; cos �Þ d�, G is a rational function of sin � and cos �.

Let z ¼ ei�. Then sin � ¼ z� z�1

2i
; cos � ¼ zþ z�1

2
and dz ¼ iei� d� or d� ¼ dz=iz. The

given integral is equivalent to

þ

C

FðzÞ dz, where C is the unit circle with center at the origin. See

Problems 16.31 and 16.32.

3.

ð1

�1
FðxÞ cosmx

sinmx

� �

dx;FðxÞ is a rational function.

Here we consider

þ

C

FðzÞeimz dz where C is the same contour as that in Type 1. See

Problem 16.34.

4. Miscellaneous integrals involving particular contours. See Problems 16.35 and 16.38. In
particular, Problem 16.38 illustrates a choice of path for an integration about a branch point.
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Solved Problems

FUNCTIONS, LIMITS, CONTINUITY

16.1. Determine the locus represented by
(a) jz� 2j ¼ 3; ðbÞ jz� 2j ¼ jzþ 4j; ðcÞ jz� 3j þ jzþ 3j ¼ 10.

(a) Method 1: jz� 2j ¼ jxþ iy� 2j ¼ jx� 2þ iyj ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðx� 2Þ2 þ y2
q

¼ 3 or ðx� 2Þ2 þ y2 ¼ 9, a circle with
center at ð2; 0Þ and radius 3.

Method 2: jz� 2j is the distance between the complex numbers z ¼ xþ iy and 2þ 0i. If this distance is

always 3, the locus is a circle of radius 3 with center at 2þ 0i or ð2; 0Þ.

(b) Method 1: jxþ iy� 2j ¼ jxþ iyþ 4j or
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðx� 2Þ2 þ y2
q

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðxþ 4Þ2 þ y
2

q

. Squaring, we find x ¼ �1, a

straight line.

Method 2: The locus is such that the distance from any point on it to ð2; 0Þ and ð�4; 0Þ are equal. Thus,
the locus is the perpendicular besector of the line joining ð2; 0Þ and ð�4; 0Þ, or x ¼ �1.

(c) Method 2: The locus is given by

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðx� 3Þ2 þ y2
q

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðxþ 3Þ2 þ y2
q

¼ 10 or

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðx� 3Þ2 þ y2
q

¼ 10�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðxþ 3Þ2 þ y2
q

. Squaring and simplifying, 25þ 3x ¼ 5

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðxþ 3Þ2 þ y2
q

. Squaring and simplifying

again yields
x2

25
þ y2

16
¼ 1, an ellipse with semi-major and semi-minor axes of lengths 5 and 4, respec-

tively.

Method 2: The locus is such that the sum of the distances from any point on it to ð3; 0Þ and ð�3; 0Þ is 10.
Thus the locus is an ellipse whose foci are at ð�3; 0Þ and ð3; 0Þ and whose major axis has length 10.

16.2. Determine the region in the z plane represented by each of the following.
(a) jzj < 1.

Interior of a circle of radius 1. See Fig. 16-3(a) below.

(b) 1 < jzþ 2ij @ 2.

jzþ 2ij is the distance from z to �2i, so that jzþ 2ij ¼ 1 is a circle of radius 1 with center at �2i,

i.e., ð0;�2Þ; and jzþ 2ij ¼ 2 is a circle of radius 2 with center at �2i. Then 1 < jzþ 2ij @ 2 represents
the region exterior to jzþ 2ij ¼ 1 but interior to or on jzþ 2ij ¼ 2. See Fig. 16-3(b) below.

(c) �=3 @ arg z @ �=2.

Note that arg z ¼ �, where z ¼ �ei�. The required region is the infinite region bounded by the lines
� ¼ �=3 and � ¼ �=2, including these lines. See Fig. 16-3(c) below.
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16.3. Express each function in the form uðx; yÞ þ ivðx; yÞ, where u and v are real:
(a) z3; ðbÞ 1=ð1� zÞ; ðcÞ e3z; ðdÞ ln z.

ðaÞ w ¼ z3 ¼ ðxþ iyÞ3 ¼ x3 þ 3x2ðiyÞ þ 3xðiyÞ2 þ ðiyÞ3 ¼ x3 þ 3ix2y� 3xy2 � iy2

¼ x3 � 3xy2 þ ið3x2y� y3Þ
Then uðx; yÞ ¼ x3 � 3xy2; vðx; yÞ ¼ 3x2y� y3.

ðbÞ w ¼ 1

1� z
¼ 1

1� ðxþ iyÞ ¼
1

1� x� iy
� 1� xþ iy

1� xþ iy
¼ 1� xþ iy

ð1� xÞ2 þ y2

Then uðx; yÞ ¼ 1� x

ð1� xÞ2 þ y2
; vðx; yÞ ¼ y

ð1� xÞ2 þ y2
:

ðcÞ e3z ¼ e3ðxþiyÞ ¼ e3x e3iy ¼ e3xðcos 3yþ i sin 3yÞ and u ¼ e3x cos 3y; v ¼ e3x sin 3y

ðdÞ ln z ¼ lnð�ei�Þ ¼ ln �þ i� ¼ ln

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

x2 þ y2
q

þ i tan�1 y=x and

u ¼ 1
2 lnðx2 þ y2Þ; v ¼ tan�1 y=x

Note that ln z is a multiple-valued function (in this case it is infinitely many-valued), since � can be
increased by any multiple of 2�. The principal value of the logarithm is defined as that value for which
0 @ � < 2� and is called the principal branch of ln z.

16.4. Prove (a) sinðxþ iyÞ ¼ sin x cosh yþ i cos x sinh y
(b) cosðxþ iyÞ ¼ cos x cosh y� i sin x sinh y.

We use the relations eix ¼ cos zþ i sin z; e�ix ¼ cos z� i sin z, from which

sin z ¼ eiz � e�iz

2i
; cos z ¼ eiz þ e�iz

2

Then sin z ¼ sinðxþ iyÞ ¼ eiðxþiyÞ � e�iðxþiyÞ

2i
¼ eix�y � e�ixþy

2i

¼ 1

2i
fe�yðcosxþ i sin xÞ � e yðcos x� i sinxÞg ¼ ðsinxÞ e y þ e�y

2

� �

þ iðcos xÞ e y � e�y

2

� �

¼ sin x cosh yþ i cos x sinh y

Similarly, cos z ¼ cosðxþ iyÞ ¼ eiðxþiyÞ þ e�iðxþiyÞ

2

¼ 1
2 feix�y þ e�ixþyg ¼ 1

2 fe�yðcos xþ i sinxÞ þ eyðcos x� i sinxÞg

¼ ðcos xÞ e y þ e�y

2

� �

� iðsin xÞ e y � e�y

2

� �

¼ cos x cosh y� i sinx sinh y

DERIVATIVES, CAUCHY-RIEMANN EQUATIONS

16.5. Prove that
d

dz
�zz, where �zz is the conjugate of z, does not exist anywhere.

By definition,
d

dz
f ðzÞ ¼ lim

�z!0

f ðzþ�zÞ � f ðzÞ
�z

if this limit exists independent of the manner in which

�z ¼ �xþ i�y approaches zero. Then
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d

dz
�zz ¼ lim

�z!0

zþ�z� �zz

�z
¼ lim

�x!0
�y!0

xþ iyþ�xþ i�y� xþ iy

�xþ i�y

¼ lim
�x!0
�y!0

x� iyþ�xþ i�y� ðx� iyÞ
�xþ i�y

¼ lim
�x!0
�y!0

�x� i�y

�xþ i�y

If �y ¼ 0, the required limit is lim
�x!0

�x

�x
¼ 1:

If �x ¼ 0, the required limit is lim
�y!0

�i�y

i�y
¼ �1:

These two possible approaches show that the limit depends on the manner in which �z ! 0, so that the

derivative does not exist; i.e., �zz is nonanalytic anywhere.

16.6. (a) If w ¼ f ðzÞ ¼ 1þ z

1� z
, find

dw

dz
. (b) Determine where w is nonanalytic.

ðaÞ Method 1:
dw

dz
¼ lim

�z!0

1þ ðzþ�zÞ
1� ðzþ�zÞ �

1þ z

1� z

�z
¼ lim

�z!0

2

ð1� z��zÞð1� zÞ
¼ 2

ð1� zÞ2 provided z 6¼ 1, independent of the manner in which �z ! 0:

Method 2. The usual rules of differentiation apply provided z 6¼ 1. Thus, by the quotient rule for
differentiation,

d

dz

1þ z

1� z

� �

¼
ð1� zÞ d

dz
ð1þ zÞ � ð1þ zÞ d

dz
ð1� zÞ

ð1� zÞ2 ¼ ð1� zÞð1Þ � ð1þ zÞð�1Þ
ð1� zÞ2 ¼ 2

ð1� zÞ2

(b) The function is analytic everywhere except at z ¼ 1, where the derivative does not exist; i.e., the function
is nonanalytic at z ¼ 1.

16.7. Prove that a necessary condition for w ¼ f ðzÞ ¼ uðx; yÞ þ i vðx; yÞ to be analytic in a region is that

the Cauchy-Riemann equations
@u

@x
¼ @v

@y
,
@u

@y
¼ � @v

@x
be satisfied in the region.

Since f ðzÞ ¼ f ðxþ iyÞ ¼ uðx; yÞ þ i vðx; yÞ, we have

f ðzþ�zÞ ¼ f ½xþ�xþ ið yþ�yÞ� ¼ uðxþ�x; yþ�yÞ þ i vðxþ�x; yþ�yÞ
Then

lim
�z!0

f ðzþ�zÞ � f ðzÞ
�z

¼ lim
�x!0
�y!0

uðxþ�x; yþ�yÞ � uðx; yÞ þ ifvðxþ�x; yþ�yÞ � vðx; yÞg
�xþ i�y

If �y ¼ 0, the required limit is

lim
�x!0

uðxþ�x; yÞ � uðx; yÞ
�x

þ i
vðxþ�x; yÞ � vðx; yÞ

�x

� �

¼ @u

@x
þ i

@v

@x

If �x ¼ 0, the required limit is

lim
�y!0

uðx; yþ�yÞ � uðx; yÞ
i�y

þ vðx; yþ�yÞ � vðx; yÞ
�y

� �

¼ 1

i

@u

@y
þ @v

@y

If the derivative is to exist, these two special limits must be equal, i.e.,

@u

@x
þ i

@v

@x
¼ 1

i

@u

@y
þ @v

@y
¼ �i

@u

@y
þ @v

@y
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so that we must have
@u

@x
¼ @v

@y
and

@v

@x
¼ � @u

@y
:

Conversely, we can prove that if the first partial derivatives of u and v with respect to x and y are

continuous in a region, then the Cauchy–Riemann equations provide sufficient conditions for f ðzÞ to be
analytic.

16.8. (a) If f ðzÞ ¼ uðx; yÞ þ i vðx; yÞ is analytic in a region r, prove that the one parameter families of
curves uðx; yÞ ¼ C1 and vðx; yÞ ¼ C2 are orthogonal families. (b) Illustrate by using f ðzÞ ¼ z2.

(a) Consider any two particular members of these families uðx; yÞ ¼ u0; vðx; yÞ ¼ v0 which intersect at the
point ðx0; y0Þ.

Since du ¼ ux dxþ uy dy ¼ 0, we have
dy

dx
¼ � ux

uy
:

Also since dv ¼ vx dxþ vy dy ¼ 0;
dy

dx
¼ � vx

vy
:

When evaluated at ðx0; y0Þ, these represent
respectively the slopes of the two curves at this

point of intersection.

By the Cauchy–Riemann equations, ux ¼
vy; uy ¼ �vx, we have the product of the slopes at
the point ðx0; y0Þ equal to

� ux
uy

� �

� vx
vy

� �

¼ �1

so that any two members of the respective families

are orthogonal, and thus the two families are ortho-
gonal.

(b) If f ðzÞ ¼ z2, then u ¼ x2 � y2; v ¼ 2xy. The graphs
of several members of x2 � y2 ¼ C1, 2xy ¼ C2 are

shown in Fig. 16-4.

16.9. In aerodynamics and fluid mechanics, the functions
� and  in f ðzÞ ¼ �þ i , where f ðzÞ is analytic, are called the velocity potential and stream
function, respectively. If � ¼ x2 þ 4x� y2 þ 2y, (a) find  and (b) find f ðzÞ.

(a) By the Cauchy-Riemann equations,
@�

@x
¼ @ 

@y
;
@ 

@x
¼ � @�

@y
. Then

ð1Þ @ 

@y
¼ 2xþ 4 ð2Þ @ 

@x
¼ 2y� 2

Method 1. Integrating (1),  ¼ 2xyþ 4yþ FðxÞ.
Integrating (2),  ¼ 2xy� 2xþ Gð yÞ.

These are identical if FðxÞ ¼ �2xþ c;Gð yÞ ¼ 4yþ c, where c is a real constant. Thus,
 ¼ 2xyþ 4y� 2xþ c.

Method 2. Integrating (1),  ¼ 2xyþ 4yþ FðxÞ. Then substituting in (2), 2yþ F 0ðxÞ ¼ 2y� 2 or

F 0ðxÞ ¼ �2 and FðxÞ ¼ �2xþ c. Hence,  ¼ 2xyþ 4y� 2xþ c.

ðaÞ From ðaÞ; f ðzÞ ¼ �þ i ¼ x2 þ 4x� y2 þ 2yþ ið2xyþ 4y� 2xþ cÞ
¼ ðx2 � y2 þ 2ixyÞ þ 4ðxþ iyÞ � 2iðxþ iyÞ þ ic ¼ z2 þ 4z� 2izþ c1

where c1 is a pure imaginary constant.
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This can also be accomplished by nothing that z ¼ xþ iy; �zz ¼ x� iy so that x ¼ zþ �zz

2
, y ¼ z� �zz

2i
.

The result is then obtained by substitution; the terms involving �zz drop out.

INTEGRALS, CAUCHY’S THEOREM, CAUCHY’S INTEGRAL FORMULAS

16.10. Evaluate

ð2þ4i

1þi

z2 dz

(a) along the parabola x ¼ t; y ¼ t2 where 1 @ t @ 2,
(b) along the straight line joining 1þ i and 2þ 4i,
(c) along straight lines from 1þ i to 2þ i and then to 2þ 4i.

We have

ð2þ4i

1þi

z2 dz ¼
ðð2;4Þ

ð1;1Þ
ðxþ iyÞ2ðdxþ i dyÞ ¼

ðð2;4Þ

ð1;1Þ
ðx2 � y2 þ 2ixyÞðdxþ i dyÞ

¼
ðð2;4Þ

ð1;1
ðx2 � y2Þ dx� 2xy dyþ i

ðð2;4Þ

ð1;1Þ
2xy dxþ ðx2 � y2Þ dy

Method 1. (a) The points ð1; 1Þ and ð2; 4Þ correspond to t ¼ 1 and t ¼ 2, respectively. Then the above
line integrals become

ð2

t¼1

fðt2 � t4Þ dt� 2ðtÞðt2Þ2t dtg þ i

ð2

t¼1

f2ðtÞðt2Þ dtþ ðt2 � t4Þð2tÞ dtg ¼ � 86

3
� 6i

(b) The line joining ð1; 1Þ and ð2; 4Þ has the equation y� 1 ¼ 4� 1

2� 1
ðx� 1Þ or y ¼ 3x� 2. Then we find

ð2

x¼1

½x2 � ð3x� 2Þ2� dx� 2xð3x� 2Þ3 dx� �

þ i

ð2

x¼1

2xð3x� 2Þ dxþ ½x2 � ð3x� 2Þ2�3 dx� � ¼ � 86

3
� 6i

(c) From 1þ i to 2þ i [or ð1; 1Þ to ð2; 1Þ], y ¼ 1; dy ¼ 0 and we have

ð2

x¼1

ðx2 � 1Þ dxþ i

ð2

x¼1

2x dx ¼ 4

3
þ 3i

From 2þ i to 2þ 4i [or ð2; 1Þ to ð2; 4Þ], x ¼ 2; dx ¼ 0 and we have

ð4

y¼1

�4y dyþ i

ð4

y¼1

ð4� y2Þ dy ¼ �30� 9i

Adding, ð43 þ 3iÞ þ ð�30� 91Þ ¼ � 86
3 � 6i.

Method 2. By the methods of Chapter 10 it is seen that the line integrals are independent of the path, thus
accounting for the same values obtained in (a), (b), and (c) above. In such case the integral can be evaluated
directly, as for real variables, as follows:

ð2þ4i

1þi

z2 dz ¼ z3

3













2þ4i

1i

¼ ð2þ 4iÞ3
3

� ð1þ iÞ3
3

¼ � 86

3
� 6i

16.11. (a) Prove Cauchy’s theorem: If f ðzÞ is analytic inside and on a simple closed curve C, then
þ

C

f ðzÞ dz ¼ 0.
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(b) Under these conditions prove that

ðP2

P1

f ðzÞ dz is independent of the path joining P1 and P2.

ðaÞ
þ

C

f ðzÞ dz ¼
þ

C

ðuþ ivÞðdxþ i dyÞ ¼
þ

C

u dx� v dyþ i

þ

C

v dxþ u dy

By Green’s theorem (Chapter 10),
þ

C

u dx� v dy ¼
ð ð

r

� @v
@x

� @u
@y

� �

dx dy;

þ

C

v dxþ u dy ¼
ð ð

r

@u

@x
� @v

@y

� �

dx dy

where r is the region (simply-connected) bounded by C.

Since f ðzÞ is analytic,
@u

@x
¼ @v

@y
;
@v

@x
¼ � @u

@y
(Problem 16.7), and so the above integrals are zero.

Then

þ

C

f ðzÞ dz ¼ 0, assuming f 0ðzÞ [and thus the partial derivatives] to be continuous.

(b) Consider any two paths joining points P1 and P2 (see Fig. 16-5). By Cauchy’s theorem,
ð

P1AP2BP1

f ðzÞ dz ¼ 0

Then

ð

P1AP2

f ðzÞ dzþ
ð

P2BP1

f ðzÞ dz ¼ 0

or

ð

P1AP2

f ðzÞ dz ¼ �
ð

P2BP1

f ðzÞ dz ¼
ð

P1BP2

f ðzÞ dz

i.e., the integral along P1AP2 (path 1) ¼ integral along P1BP2

(path 2), and so the integral is independent of the path joining P1

and P2.

This explains the results of Problem 16.10, since f ðzÞ ¼ z2 is analytic.

16.12. If f ðzÞ is analytic within and on the boundary of a region bounded by two closed curves C1 and C2

(see Fig. 16-6), prove that
þ

C1

f ðzÞ dz ¼
þ

C2

f ðzÞ dz

As in Fig. 16-6, construct line AB (called a cross-cut) connecting any point on C2 and a point on C1. By
Cauchy’s theorem (Problem 16.11),

ð

AQPABRSTBA

f ðzÞ dz ¼ 0

since f ðzÞ is analytic within the region shaded and also on the
boundary. Then

ð

AQPA

f ðzÞ dzþ
ð

AB

f ðzÞ dzþ
ð

BRSTB

f ðzÞ dzþ
ð

BA

f ðzÞ dz ¼ 0 ð1Þ

But

ð

AB

f ðzÞ dz ¼ �
ð

BA

f ðzÞ dz. Hence, (1) gives

ð

AQPA

f ðzÞ dz ¼ �
ð

BRSTB

f ðzÞ dz ¼
ð

BTSRB

f ðzÞ dz
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þ

C1

f ðzÞ dz ¼
þ

C2

f ðzÞ dzi.e.,

Note that f ðzÞ need not be analytic within curve C2.

16.13. (a) Prove that

þ

C

dz

ðz� aÞn ¼
2�i if n ¼ 1
0 if n ¼ 2; 3; 4; . . .

�

, where C is a simple closed curve bounding

a region having z ¼ a as interior point.
(b) What is the value of the integral if n ¼ 0;
�1;�2;�3; . . . ?

(a) Let C1 be a circle of radius � having center at z ¼ a (see Fig.
16-7). Since ðz� aÞ�n is analytic within and on the boundary

of the region bounded by C and C1, we have by Problem
16.12,

þ

C

dz

ðz� aÞn ¼
þ

C1

dz

ðz� aÞn

To evaluate this last integral, note that on C1, jz� aj ¼ � or z� a ¼ �ei� and dz ¼ i�ei� d�. The
integral equals

ð2�

0

i�ei� d�

�n ein�
¼ i

�n�1

ð2�

0

eð1�nÞi� d� ¼ i

�n�1

eð1�nÞi�

ð1� nÞi












2�

0

¼ 0 if n 6¼ 1

If n ¼ 1, the integral equals i

ð2�

0

d� ¼ 2�i.

(b) For n ¼ 0;�1;�2; . . . the integrand is 1; ðz� aÞ; ðz� aÞ2; . . . and is analytic everywhere inside C1,
including z ¼ a. Hence, by Cauchy’s theorem the integral is zero.

16.14. Evaluate

þ

C

dz

z� 3
, where C is (a) the circle jzj ¼ 1; ðbÞ the circle jzþ ij ¼ 4.

(a) Since z ¼ 3 is not interior to jzj ¼ 1, the integral equals zero (Problem 16.11).

(b) Since z ¼ 3 is interior to jzþ ij ¼ 4, the integral equals 2�i (Problem 16.13).

16.15. If f ðzÞ is analytic inside and on a simple closed curve C, and a is any point within C, prove that

f ðaÞ ¼ 1

2�i

þ

C

f ðzÞ
z� a

dz

Referring to Problem 16.12 and the figure of Problem 16.13, we have
þ

C

f ðzÞ
z� a

dz ¼
þ

C1

f ðzÞ
z� a

dz

Letting z� a ¼ �ei�, the last integral becomes i

ð2�

0

f ðaþ �ei�Þ d�. But since f ðzÞ is analytic, it is
continuous. Hence,

lim
�!0

i

ð2�

0

f ðaþ �ei�Þ d� ¼ i

ð2�

0

lim
�!0

f ðaþ �ei�Þ d� ¼ i

ð2�

0

f ðaÞ d� ¼ 2�i f ðaÞ

and the required result follows.

16.16. Evaluate (a)

þ

C

cos z

z� � dz; ðbÞ
þ

C

ex

zðzþ 1Þ dz, where C is the circle jz� 1j ¼ 3.
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(a) Since z ¼ � lies within C,
1

2�i

þ

C

cos z

z� � dz ¼ cos� ¼ �1 by Problem 16.15 with f ðzÞ ¼ cos z, a ¼ �.

Then

þ

C

cos z

z� � dz ¼ �2�i.

þ

C

ez

zðzþ 1Þ dz ¼
þ

C

ez
1

z
� 1

zþ 1

� �

dz ¼
þ

C

ez

z
dz�

þ

C

ez

zþ 1
dzðbÞ

¼ 2�ie0 � 2�ie�1 ¼ 2�ið1� e�1Þ
by Problem 16.15, since z ¼ 0 and z ¼ �1 are both interior to C.

16.17. Evaluate

þ

C

5z2 � 3zþ 2

ðz� 1Þ3 dz where C is any simple closed curve enclosing z ¼ 1.

Method 1. By Cauchy’s integral formula, f ðnÞðaÞ ¼ n!

2�i

þ

C

f ðzÞ
ðz� aÞnþ1

dz.

If n ¼ 2 and f ðzÞ ¼ 5z2 � 3zþ 2, then f 00ð1Þ ¼ 10. Hence,

10 ¼ 2!

2�i

þ

C

5z2 � 3zþ 2

ðz� 1Þ3 dz or

þ

C

5z2 � 3zþ 2

ðz� 1Þ3 dz ¼ 10�i

Method 2. 5z2 � 3zþ 2 ¼ 5ðz� 1Þ2 þ 7ðz� 1Þ þ 4. Then

þ

C

5z2 � 3zþ 2

ðz� 1Þ3 dz ¼
þ

C

5ðz� 1Þ2 þ 7ðz� 1Þ þ 4

ðz� 1Þ3 dz

¼ 5

þ

C

d

z� 1
þ 7

þ

C

dz

ðz� 1Þ2 þ 4

þ

C

dz

ðz� 1Þ3 ¼ 5ð2�iÞ þ 7ð0Þ þ 4ð0Þ

¼ 10�i

by Problem 16.13.

SERIES AND SINGULARITIES

16.18. For what values of z does each series converge?

ðaÞ
X

1

n¼1

zn

n2 2n
: The nth term ¼ un ¼

zn

n2 2n
: Then

lim
n!1

unþ1

un

























¼ lim
n!1

znþ1

ðnþ 1Þ2 2nþ1
� n

2 2n

zn































¼ jzj
2

By the ratio test the series converges if jzj < 2 and diverges if jzj > 2. If jzj ¼ 2 the ratio test fails.

However, the series of absolute values
X

1

n¼1

zn

n2 2n

























¼
X

1

n¼1

jzjn
n2 2n

converges if jzj ¼ 2, since
X

1

n¼1

1

n2

converges.

Thus, the series converges (absolutely) for jzj @ 2, i.e., at all points inside and on the circle jzj ¼ 2.

ðbÞ
X

1

n¼1

ð�1Þn�1 z2n�1

ð2n� 1Þ! ¼ z� z3

3!
þ z5

5!
� � � � : We have

lim
n!1

unþ1

un

























¼ lim
n!1

ð�1Þnz2nþ1

ð2nþ 1Þ! � ð2n� 1Þ!
ð�1Þn�1 z2n�1































¼ lim
n!1

�z2

2nð2nþ 1Þ































¼ 0

Then the series, which represents sin z, converges for all values of z.
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ðcÞ
X

1

n¼1

ðz� iÞn
3n

: We have lim
n!1

unþ1

un

























¼ lim
n!1

ðz� iÞnþ1

3nþ1
� 3n

ðz� iÞn






























¼ jz� ij
3

:

The series converges if jz� ij < 3, and diverges if jz� ij > 3.

If jz� ij ¼ 3, then z� i ¼ 3ei� and the series becomes
X

1

n¼1

ein�. This series diverges since the nth

term does not approach zero as n ! 1.

Thus, the series converges within the circle jz� ij ¼ 3 but not on the boundary.

16.19. If
X

1

n¼0

anz
n is absolutely convergent for jzj @ R, show that it is uniformly convergent for these

values of z.

The definitions, theorems, and proofs for series of complex numbers are analogous to those for real
series.

In this case we have janznj @ janjRn ¼ Mn. Since by hypothesis
X

1

n¼1

Mn converges, it follows by the

Weierstrass M test that
X

1

n¼0

anz
n converges uniformly for jzj @ R.

16.20. Locate in the finite z plane all the singularities, if any, of each function and name them.

ðaÞ z2

ðzþ 1Þ3 : z ¼ �1 is a pole of order 3.

(b)
2z3 � zþ 1

ðz� 4Þ2ðz� iÞðz� 1þ 2iÞ. z ¼ 4 is a pole of order 2 (double pole); z ¼ i and z ¼ 1� 2i are poles of

order 1 (simple poles).

(c)
sinmz

z2 þ 2zþ 2
, m 6¼ 0. Since z2 þ 2zþ 2 ¼ 0 when z ¼ �2� ffiffiffiffiffiffiffiffiffiffiffi

4� 8
p

2
¼ �2� 2i

2
¼ �1� i, we can write

z2 þ 2zþ 2 ¼ fz� ð�1þ iÞgfz� ð�1� iÞg ¼ ðzþ 1� iÞðzþ 1þ iÞ.
The function has the two simple poles: z ¼ �1þ i and z ¼ �1� i.

(d)
1� cos z

z
. z ¼ 0 appears to be a singularity. However, since lim

x!0

1� cos z

z
¼ 0, it is a removable

singularity.

Another method:

Since
1� cos z

z
¼ 1

z
1� 1� z2

2!
þ z4

4!
� z6

6!
þ � � �

 !( )

¼ z

2!
� z3

4!
þ � � � , we see that z ¼ 0 is a remova-

ble singularity.

ðeÞ e�1=ðx�1Þ2 ¼ 1� 1

ðz� 1Þ2 þ
1

2!ðz� 1Þ4 � � � � :

This is a Laurent series where the principal part has an infinite number of non-zero terms. Then
z ¼ 1 is an essential singularity.

( f ) ez.

This function has no finite singularity. However, letting z ¼ 1=u, we obtain e1=u, which has an
essential singularity at u ¼ 0. We conclude that z ¼ 1 is an essential singularity of ez.

In general, to determine the nature of a possible singularity of f ðzÞ at z ¼ 1, we let z ¼ 1=u and

then examine the behavior of the new function at u ¼ 0.

16.21. If f ðzÞ is analytic at all points inside and on a circle of radius R with center at a, and if aþ h is any
point inside C, prove Taylor’s theorem that
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f ðaþ hÞ ¼ f ðaÞ þ h f 0ðaÞ þ h2

2!
f 00ðaÞ þ h3

3!
f 000ðaÞ þ � � �

By Cauchy’s integral formula (Problem 16.15), we have

f ðaþ hÞ ¼ 1

2�i

þ

C

f ðzÞ dz
z� a� h

ð1Þ

By division

1

z� a� h
¼ 1

ðz� aÞ½1� h=ðz� aÞ�

¼ 1

ðz� aÞ 1þ h

ðz� aÞ þ
h2

ðz� aÞ2 þ � � � þ hn

ðz� aÞn þ
hnþ1

ðz� aÞnðz� a� hÞ

( )

ð2Þ

Substituting (2) in (1) and using Cauchy’s integral formulas, we have

f ðaþ hÞ ¼ 1

2�i

þ

C

f ðzÞ dz
z� a

þ h

2�i

þ

C

f ðzÞ dz
ðz� aÞ2 þ � � � þ hn

2�i

þ

C

f ðzÞ dz
ðz� aÞnþ1

þ Rn

¼ f ðaÞ þ h f 0ðaÞ þ h2

2!
f 00ðaÞ þ � � � þ hn

n!
f ðnÞðaÞ þ Rn

Rn ¼
hnþ1

2�i

þ

C

f ðzÞ dz
ðz� aÞnþ1ðz� a� hÞwhere

Now when z is on C,
f ðzÞ

z� a� h

























@ M and jz� aj ¼ R, so that by (4), Page 394, we have, since 2�R is
the length of C

jRnj @
jhjnþ1M

2�Rnþ1
� 2�R

As n ! 1; jRnj ! 0. Then Rn ! 0 and the required result follows.

If f ðzÞ is analytic in an annular region r1 @ jz� aj @ r2, we can generalize the Taylor series to a
Laurent series (see Problem 16.92). In some cases, as shown in Problem 16.22, the Laurent series can be
obtained by use of known Taylor series.

16.22. Find Laurent series about the indicated singularity for each of the following functions. Name the
singularity in each case and give the region of convergence of each series.

ðaÞ ez

ðz� 1Þ2 ; z ¼ 1: Let z� 1 ¼ u: Then z ¼ 1þ u and

ez

ðz� 1Þ2 ¼
e1þu

u2
¼ e � e

u

u2
¼ e

u2
1þ uþ u2

2!
þ u3

3!
þ u4

4!
þ � � �

( )

¼ e

ðz� 1Þ2 þ
e

z� 1
þ e

2!
þ eðz� 1Þ

3!
þ eðz� 1Þ2

4!
þ � � �

z ¼ 1 is a pole of order 2, or double pole.

The series converges for all values of z 6¼ 1.

ðbÞ z cos
1

z
; z ¼ 0:

z cos
1

z
¼ z 1� 1

2! z2
þ 1

4! z4
� 1

6! z6
þ � � �

� �

¼ z� 1

2! z
þ 1

4! z3
� 1

6! z5
þ � � �

z ¼ 0 is an essential singularity.

The series converges for all values of z 6¼ 0.
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ðcÞ sin z

z� � ; z ¼ �: Let z� � ¼ u: Then z ¼ �þ u and

sin z

z� � ¼ sinðuþ �Þ
u

¼ � sin u

u
¼ � 1

u
u� u3

3!
þ u5

5!
� � � �

 !

¼ �1þ u2

3!
� u4

5!
þ � � � ¼ �1þ ðz� �Þ2

3!
� ðz� �Þ4

5!
þ � � �

z ¼ � is a removable singularity.
The series converges for all values of z.

ðdÞ z

ðzþ 1Þðzþ 2Þ ; z ¼ �1: Let zþ 1 ¼ u. Then

z

ðzþ 1Þðzþ 2Þ ¼
u� 1

uðuþ 1Þ ¼
u� 1

u
ð1� uþ u2 � u3 þ u4 � � � �Þ

¼ � 1

u
þ 2� 2uþ 2u2 � 2u3 þ � � �

¼ � 1

zþ 1
þ 2� 2ðzþ 1Þ þ 2ðzþ 1Þ2 � � � �

z ¼ �1 is a pole of order 1, or simple pole.

The series converges for values of z such that 0 < jzþ 1j < 1.

ðeÞ 1

zðzþ 2Þ3 ; z ¼ 0;�2:

Case 1, z ¼ 0. Using the binomial theorem,

1

zðzþ 2Þ3 ¼
1

8zð1þ z=2Þ3 ¼
1

8z
1þ ð�3Þ z

2

� �

þ ð�3Þð�4Þ
2!

z

2

� �2

þ ð�3Þð�4Þð�5Þ
3!

z

2

� �3

þ � � �
� �

¼ 1

8z
� 3

16
þ 3

16
z� 5

32
z2 þ � � �

z ¼ 0 is a pole of order 1, or simple pole.
The series converges for 0 < jzj < 2.

Case 2, z ¼ �2. Let zþ 2 ¼ u. Then

1

zðzþ 2Þ3 ¼
1

ðu� 2Þu3 ¼
1

�2u3ð1� u=2Þ ¼ � 1

2u3
1þ u

2
þ u

2

� �2

þ u

2

� �3

þ u

2

� �4

þ � � �
� �

¼ � 1

2u3
� 1

4u2
� 1

8u
� 1

16
� 1

32
u� � � �

¼ � 1

2ðzþ 2Þ3 �
1

4ðzþ 2Þ2 �
1

8ðzþ 2Þ �
1

16
� 1

32
ðzþ 2Þ � � � �

z ¼ �2 is a pole of order 3.
The series converges for 0 < jzþ 2j < 2.

RESIDUES AND THE RESIDUE THEOREM

16.23. Suppose f ðzÞ is analytic everywhere inside and on a simple closed curve C except at z ¼ a which is
a pole of order n. Then

f ðzÞ ¼ a�n

ðz� aÞn þ
a�nþ1

ðz� aÞn�1
þ � � � þ a0 þ a1ðz� aÞ þ a2ðz� aÞ2 þ � � �

where a�n 6¼ 0. Prove that
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ðaÞ
þ

C

f ðzÞ dz ¼ 2�ia�1

ðbÞ a�1 ¼ lim
z!a

1

ðn� 1Þ!
dn�1

dzn�1
fðz� aÞn f ðzÞg:

(a) By integration, we have on using Problem 16.13
þ

C

f ðzÞ dz ¼
þ

C

a�n

ðz� aÞn dzþ � � � þ
þ

C

a�1

z� a
dzþ

þ

C

fa0 þ a1ðz� aÞ þ a2ðz� aÞ2 þ � � �g dz
¼ 2�ia�1

Since only the term involving a�1 remains, we call a�1 the residue of f ðzÞ at the pole z ¼ a.

(b) Multiplication by ðz� aÞn gives the Taylor series

ðz� aÞn f ðzÞ ¼ a�n þ a�nþ1ðz� aÞ þ � � � þ a�1ðz� aÞn�1 þ � � �
Taking the ðn� 1Þst derivative of both sides and letting z ! a, we find

ðn� 1Þ!a�1 ¼ lim
z!a

dn�1

dzn�1
fðz� aÞn f ðzÞg

from which the required result follows.

16.24. Determine the residues of each function at the indicated poles.

ðaÞ z2

ðz� 2Þðz2 þ 1Þ ; z ¼ 2; i;�i: These are simple poles. Then:

Residue at z ¼ 2 is lim
z!2

ðz� 2Þ z2

ðz� 2Þðz2 þ 1Þ

( )

¼ 4

5
:

Residue at z ¼ i is lim
z!i

ðz� iÞ z2

ðz� 2Þðz� iÞðzþ iÞ

( )

¼ i2

ði � 2Þð2iÞ ¼
1� 2i

10
:

Residue at z ¼ �i is lim
z!�i

ðzþ iÞ z2

ðz� 2Þðz� iÞðzþ iÞ

( )

¼ i2

ð�i � 2Þð�2iÞ ¼
1þ 2i

10
:

ðbÞ 1

zðzþ 2Þ3 ; z ¼ 0;�2: z ¼ 0 is a simple pole, z ¼ �2 is a pole of order 3. Then:

Residue at z ¼ 0 is lim
z!0

z � 1

zðzþ 2Þ3 ¼
1

8
:

Residue at z ¼ �2 is lim
z!�2

1

2!

d2

dz2
ðzþ 2Þ3 � 1

zðzþ 2Þ3
� �

¼ lim
z!�2

1

2

d2

dz2
1

z

� �

¼ lim
z!�2

1

2

2

z3

� �

¼ � 1

8
:

Note that these residues can also be obtained from the coefficients of 1=z and 1=ðzþ 2Þ in the
respective Laurent series [see Problem 16.22(e)].

ðcÞ zezt

ðz� 3Þ2 ; z ¼ 3; a pole of order 2 or double pole. Then:

Residue is lim
z!3

d

dz
ðz� 3Þ2 � zezt

ðz� 3Þ2
� �

¼ lim
z!3

d

dz
ðzeztÞ ¼ lim

z!3
ðezt þ zteztÞ

¼ e3t þ 3te3t
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(d) cot z; z ¼ 5�, a pole of order 1. Then:

Residue is lim
z!5�

ðz� 5�Þ � cos z
sin z

¼ lim
z!5�

z� 5�

sin z

� �

lim
z!5�

cos z

� �

¼ lim
z!5�

1

cos z

� �

ð�1Þ

¼ ð�1Þð�1Þ ¼ 1

where we have used L’Hospital’s rule, which can be shown applicable for functions of a complex
variable.

16.25. If f ðzÞ is analytic within and on a simple closed curve C except at a number of poles a; b; c; . . .
interior to C, prove that

þ

C

f ðzÞ dz ¼ 2�i fsum of residues of f ðzÞ at poles a; b; c; etc.g

Refer to Fig. 16-8.

By reasoning similar to that of Problem 16.12 (i.e., by con-
structing cross cuts from C to C1;C2;C3; etc.), we have

þ

C

f ðzÞ dz ¼
þ

C1

f ðzÞ dzþ
þ

C2

f ðzÞ dzþ � � �

For pole a,

f ðzÞ ¼ a�m

ðz� aÞm þ � � � þ a�1

ðz� aÞ þ a0 þ a1ðz� aÞ þ � � �

hence, as in Problem 16.23,

þ

C1

f ðzÞ dz ¼ 2�i a�1:

Similarly for pole b; f ðzÞ ¼ b�n

ðz� bÞn þ � � � þ b�1

ðz� bÞ þ b0 þ b1ðz� bÞ þ � � �

þ

C2

f ðzÞ dz ¼ 2�i b�1so that

Continuing in this manner, we see that
þ

C

f ðzÞ dz ¼ 2�iða�1 þ b�1 þ � � �Þ ¼ 2�i (sum of residues)

16.26. Evaluate

þ

C

ez dz

ðz� 1Þðzþ 3Þ2 where C is given by (a) jzj ¼ 3=2; ðbÞ jzj ¼ 10.

Residue at simple pole z ¼ 1 is lim
z!1

ðz� 1Þ ez

ðz� 1Þðzþ 3Þ2
� �

¼ e

16

Residue at double pole z ¼ �3 is

lim
z!�3

d

dz
ðzþ 3Þ2 ez

ðz� 1Þðzþ 3Þ2
� �

¼ lim
z!�3

ðz� 1Þez � ez

ðz� 1Þ2 ¼ �5e�3

16

(a) Since jzj ¼ 3=2 encloses only the pole z ¼ 1,

the required integral ¼ 2�i
e

16

� �

¼ �ie

8
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(b) Since jzj ¼ 10 encloses both poles z ¼ 1 and z ¼ �3

the required integral ¼ 2�i
e

16
� 5e�3

16

 !

¼ �iðe� 5e�3Þ
8

EVALUATION OF DEFINITE INTEGRALS

16.27. If j f ðzÞj @ M

Rk
for z ¼ Rei�, where k > 1 and M are constants, prove that lim

R!1

ð

�

f ðzÞ dz ¼ 0

where � is the semicircular arc of radius R shown in Fig. 16-9.

By the result (4), Page 394, we have
ð

�

f ðzÞ dz
























@
ð

�

j f ðzÞjjdzj @ M

Rk
� �Rþ �M

Rk�1

since the length of arc L ¼ �R. Then

lim
R!1

ð�

f ðzÞ dz
























¼ 0 and so lim
R!1

ð

�

f ðzÞ dz ¼ 0

16.28. Show that for z ¼ Rei�, j f ðzÞj @ M

Rk
; k > 1 if

f ðzÞ ¼ 1

1þ z4
.

If z ¼ Rei�, j f ðzÞj ¼ 1

1þ R4e4i�

























@
1

jR4e4i�j � 1
¼ 1

R4 � 1
@

2

R4
if R is large enough (say R > 2, for

example) so that M ¼ 2; k ¼ 4.

Note that we have made use of the inequality jz1 þ z2j A jz1j � jz2j with z1 ¼ R4 e4i� and z2 ¼ 1.

16.29. Evaluate

ð1

0

dx

x4 þ 1
.

Consider

þ

C

dz

z4 þ 1
, where C is the closed contour of Problem 16.27 consisting of the line from �R to R

and the semicircle �, traversed in the positive (counterclockwise) sense.

Since z4 þ 1 ¼ 0 when z ¼ e�i=4; e3�i=4; e5�i=4; e7�i=4, these are simple poles of 1=ðz4 þ 1Þ. Only the poles
e�i=4 and e3�i=4 lie within C. Then using L’Hospital’s rule,

Residue at e�i=4 ¼ lim
z!e�i=4

ðz� e�i=4Þ 1

z4 þ 1

� �

¼ lim
z!e�i=4

1

4z3
¼ 1

4
e�3�i=4

Residue at e3�i=4 ¼ lim
z!e3�i=4

ðz� e3�i=4Þ 1

z4 þ 1

� �

¼ lim
z!e3�i=4

1

4z3
¼ 1

4
e�9�i=4

Thus

þ

C

dz

z4 þ 1
¼ 2�i 1

4 e
�3�i=4 þ 1

4 e
�9�i=4� � ¼ �

ffiffiffi

2
p

2
ð1Þ
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i.e.,

ðR

�R

dx

x4 þ 1
þ
ð

�

dz

z4 þ 1
¼ �

ffiffiffi

2
p

2
ð2Þ

Taking the limit of both sides of (2) as R ! 1 and using the results of Problem 16.28, we have

lim
R!1

ðR

�R

dx

x4 þ 1
¼
ð1

�1

dx

x4 þ 1
¼ �

ffiffiffi

2
p

2

Since

ð1

�1

dx

x4 þ 1
¼ 2

ð1

0

dx

x4 þ 1
; the required integral has the value

�
ffiffiffi

2
p

4
:

16.30. Show that

ð1

�1

x2 dx

ðx2 þ 1Þ2ðx2 þ 2xþ 2Þ ¼
7�

50
:

The poles of
z2

ðz2 þ 1Þ2ðz2 þ 2zþ 2Þ enclosed by the contour C of Problem 16.27 are z ¼ i of order 2 and

z ¼ �1þ i of order 1.

Residue at z ¼ i is lim
z!i

d

dz
ðz� iÞ2 z2

ðzþ iÞ2ðz� iÞ2ðz2 þ 2zþ 2Þ

( )

¼ 9i � 12

100
:

Residue at z ¼ �1þ i is lim
z!�1þi

ðzþ 1� iÞ z2

ðz2 þ 1Þ2ðzþ 1� iÞðzþ 1þ iÞ ¼
3� 4i

25

þ

C

z2 dz

ðz2 þ 1Þ2ðz2 þ 2zþ 2Þ ¼ 2�i
9i � 12

100
þ 3� 4i

25

� �

¼ 7�

50
Then

ðR

�R

x2 dx

ðx2 þ 1Þ2ðx2 þ 2xþ 2Þ þ
ð

�

z2 dz

ðz2 þ 1Þ2ðz2 þ 2zþ 2Þ ¼
7�

50
or

Taking the limit as R ! 1 and noting that the second integral approaches zero by Problem 16.27, we
obtain the required result.

16.31. Evaluate

ð2�

0

d�

5þ 3 sin �
.

Let z ¼ ei�. Then sin � ¼ ei� � e�i�

2i
¼ z� z�1

2i
, dz ¼ iei� d� ¼ iz d� so that

ð2�

0

d�

5þ 3 sin �
¼
þ

C

dz=iz

5þ 3
z� z�1

2i

 ! ¼
þ

C

2 dz

3z2 þ 10iz� 3

where C is the circle of unit radius with center at the origin, as shown in Fig. 16-10 below.

The poles of
2

3z2 þ 10iz� 3
are the simple poles

z ¼ �10i � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�100þ 36
p

6

¼ �10i � 8i

6

¼ �3i;�i=3:

Only �i=3 lies inside C.
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Residue at �i=3 ¼ lim
z!�i=2

zþ i

3

� �

2

3z2 þ 10iz� 3

� �

¼ lim
z!�i=2

2

6zþ 10i
¼ 1

4i
by L’Hospital’s rule.

Then

þ

C

2 dz

3z2 þ 10iz� 3
¼ 2�i

1

4i

� �

¼ �

2
, the required value.

16.32. Show that

ð2�

0

cos 3�

5� 4 cos �
d� ¼ �

12
.

If z ¼ ei�, cos � ¼ zþ z�1

2
; cos 3� ¼ e3i� þ e�3i�

2
¼ z3 þ z�3

2
; dz ¼ iz d�.

ð2�

0

cos 3�

5� 4 cos �
d� ¼

þ

C

ðz3 þ z�3Þ=2

5� 4
zþ z�1

2

 !

dz

iz
Then

¼ � 1

2i

þ

C

z6 þ 1

z3ð2z� 1Þðz� 2Þ dz

where C is the contour of Problem 16.31.

The integrand has a pole of order 3 at z ¼ 0 and a simple pole z ¼ 1
2 within C.

Residue at z ¼ 0 is lim
z!0

1

2!

d2

dz2
z3 � z6 þ 1

z3ð2z� 1Þðz� 2Þ

( )

¼ 21

8
:

Residue at z ¼ 1
2 is lim

z!1=2
ðz� 1

2Þ �
z6 þ 1

z3ð2z� 1Þðz� 2Þ

( )

¼ � 65

24
:

Then � 1

2i

þ

C

z6 þ 1

z3ð2z� 1Þðz� 2Þ dz ¼ � 1

2i
ð2�iÞ 21

8
� 65

24

� �

¼ �

12
as required.

16.33. If j f ðzÞj @ M

Rk
for z ¼ Rei�, where k > 0 and M are constants, prove that

lim
R!1

ð

�

eimz f ðzÞ dz ¼ 0

where � is the semicircular arc of the contour in Problem 16.27 and m is a positive constant.

If z ¼ Rei�;

ð

�

eimz f ðzÞ dz ¼
ð�

0

eimRei� f ðRei�Þ iRei� d�:

ð�

0

eimRei� f ðRei�Þ iRei� d�
























@
ð�

0

eimRei� f ðRei�Þ iRei�

















d�Then

¼
ð�

0

eimR cos ��mR sin � f ðRei�Þ iRei�

















d�

¼
ð�

0

e�mR sin �j f ðRei�ÞjRd�

@
M

Rk�1

ð�

0

e�mR sin � d� ¼ 2M

Rk�1

ð�=2

0

e�mr sin � d�

Now sin �A 2�=� for 0 @ �@ �=2 (see Problem 4.73, Chapter 4). Then the last integral is less than or
equal to

2M

Rk�1

ð�=2

0

e�2mR�=� d� ¼ �M

mRk
ð1� e�mRÞ

As R ! 1 this approaches zero, since m and k are positive, and the required result is proved.
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16.34. Show that

ð1

0

cosmx

x2 þ 1
dx ¼ �

2
e�m;m > 0.

Consider

þ

C

eimz

z2 þ 1
dz where C is the contour of Problem 16.27.

The integrand has simple poles at z ¼ �i, but only z ¼ i lies within C.

Residue at z ¼ i is lim
z!i

ðz� iÞ eimz

ðz� iÞðzþ iÞ
� �

¼ e�m

2i
:

þ

C

eimz

z2 þ 1
dz ¼ 2�i

e�m

2i

� �

¼ �e�mThen

ðR

�R

eimx

x2 þ 1
dxþ

ð

�

eimz

z2 þ 1
dz ¼ �e�mor

ðR

�R

cosmx

x2 þ 1
dxþ i

ðR

�R

sinmx

x2 þ 1
dxþ

ð

�

eimz

z2 þ 1
dz ¼ �e�mi.e.,

and so

2

ðR

0

cosmx

x2 þ 1
dxþ

ð

�

eimz

z2 þ 1
dz ¼ �e�m

Taking the limit as R ! 1 and using Problem 16.33 to show that the integral around � approaches

zero, we obtain the required result.

16.35. Show that

ð1

0

sin x

x
dx ¼ �

2
.

The method of Problem 16.34 leads us to consider the integral of eiz=z around the contour of Problem
16.27. However, since z ¼ 0 lies on this path of integration and since we cannot integrate through a

singularity, we modify that contour by indenting the path at z ¼ 0, as shown in Fig. 16-11, which we call
contour C 0 or ABDEFGHJA.

Since z ¼ 0 is outside C 0, we have

ð

C 0

eiz

z
dz ¼ 0

or

ð�r

�R

eix

x
dxþ

ð

HJA

eiz

z
dzþ

ðR

r

eix

x
dxþ

ð

BDEFG

eiz

z
dz ¼ 0
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Replacing x by �x in the first integral and combining with the third integral, we find,

ðR

r

eix � e�ix

x
dxþ

ð

HJA

eiz

z
dzþ

ð

BDEFG

eiz

z
dz ¼ 0

or

2i

ðR

r

sinx

x
dx ¼ �

ð

HJA

eiz

z
dz�

ð

BDEFG

eix

z
dz

Let r ! 0 and R ! 1. By Problem 16.33, the second integral on the right approaches zero. The first
integral on the right approaches

� lim
r!0

ð0

�

eire
i�

rei�
irei� d� ¼ � lim

r!0

ð0

�

ieire
i�

d� ¼ �i

since the limit can be taken under the integral sign.

Then we have

lim
R!1
r!0

2i

ðR

r

sinx

x
dx ¼ �i or

ð1

0

sin x

x
dx ¼ �

2

MISCELLANEOUS PROBLEMS

16.36. Let w ¼ z2 define a transformation from the z plane (xy plane) to the w plane ðuv plane).
Consider a triangle in the z plane with vertices at Að2; 1Þ;Bð4; 1Þ;Cð4; 3Þ. (a) Show that the
image or mapping of this triangle is a curvilinear triangle in the uv plane. (b) Find the angles of
this curvilinear triangle and compare with those of the original triangle.

(a) Since w ¼ z2, we have u ¼ x2 � y2; v ¼ 2xy as the transformation equations. Then point Að2; 1Þ in the

xy plane maps into point A 0ð3; 4Þ of the uv plane (see figures below). Similarly, points B and C map
into points B 0 and C 0 respectively. The line segments AC;BC;AB of triangle ABC map respectively
into parabolic segments A 0C 0;B 0C 0;A 0B 0 of curvilinear triangle A 0B 0C 0 with equations as shown in
Figures 16-12(a) and (b).
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(b) The slope of the tangent to the curve v2 ¼ 4ð1þ uÞ at ð3; 4Þ is m1 ¼
dv

du













ð3;4Þ
¼ 2

v













ð3;4Þ
¼ 1

2
.

The slope of the tangent to the curve u2 ¼ 2vþ 1 at ð3; 4Þ is m2 ¼
dv

du













ð3;4Þ
¼ u ¼ 3.

Then the angle � between the two curves at A 0 is given by

tan � ¼ m2 �m1

1þm1m2

¼ 3� 1
2

1þ ð3Þð12Þ
¼ 1; and � ¼ �=4

Similarly, we can show that the angle between A 0C 0 and B 0C 0 is �=4, while the angle between A 0B 0

and B 0C 0 is �=2. Therefore, the angles of the curvilinear triangle are equal to the corresponding ones of
the given triangle. In general, if w ¼ f ðzÞ is a transformation where f ðzÞ is analytic, the angle between
two curves in the z plane intersecting at z ¼ z0 has the same magnitude and sense (orientation) as the

angle between the images of the two curves, so long as f 0ðz0Þ 6¼ 0. This property is called the conformal
property of analytic functions, and for this reason, the transformation w ¼ f ðzÞ is often called a con-
formal transformation or conformal mapping function.

16.37. Let w ¼ ffiffiffi

z
p

define a transformation from the z plane to the w plane. A point moves counter-
clockwise along the circle jzj ¼ 1. Show that when it has returned to its starting position for the
first time, its image point has not yet returned, but that when it has returned for the second time,
its image point returns for the first time.

Let z ¼ ei�. Then w ¼ ffiffiffi

z
p ¼ ei�=2. Let � ¼ 0 correspond to the starting position. Then z ¼ 1 and

w ¼ 1 [corresponding to A and P in Figures 16-13(a) and (b)].

When one complete revolution in the z plane has been made, � ¼ 2�; z ¼ 1, but w ¼ ei�=2 ¼ ei� ¼ �1, so

the image point has not yet returned to its starting position.

However, after two complete revolutions in the z plane have been made, � ¼ 4�; z ¼ 1 and

w ¼ ei�=2 ¼ e2�i ¼ 1, so the image point has returned for the first time.

It follows from the above that w is not a single-valued function of z but is a double-valued function of z;

i.e., given z, there are two values of w. If we wish to consider it a single-valued function, we must restrict �.
We can, for example, choose 0 @ � < 2�, although other possibilities exist. This represents one branch of

the double-valued function w ¼ ffiffiffi

z
p

. In continuing beyond this interval we are on the second branch, e.g.,

2�@ � < 4�. The point z ¼ 0 about which the rotation is taking place is called a branch point. Equiva-

lently, we can insure that f ðzÞ ¼ ffiffiffi

z
p

will be single-valued by agreeing not to cross the line Ox, called a branch

line.

16.38. Show that

ð1

0

xp�1

1þ x
dx ¼ �

sin p�
; 0 < p < 1.
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Consider

þ

C

zp�1

1þ z
dz. Since z ¼ 0 is a branch point, choose C as the contour of Fig. 16-14 where AB

and GH are actually coincident with x-axis but are shown separated for visual purposes.

The integrand has the pole z ¼ �1 lying within C.
Residue at z ¼ �1 ¼ e�i is

lim
z!�1

ðzþ 1Þ z
p�1

1þ z
¼ ðe�iÞp�1 ¼ eðp�1Þ�i

þ

C

zp�1

1þ z
dz ¼ 2�i eðp�1Þ�iThen

or, omitting the integrand,
ð

AB

þ
ð

BDEFG

þ
ð

GH

þ
ð

HJA

¼ 2�i eðp�1Þ�i

We thus have

ðR

r

xp�1

1þ x
dxþ

ð2�

0

ðRei�Þp�1iRei� d�

1þ Rei�
þ
ðr

R

ðxe2�iÞp�1

1þ xe2�i
dx

þ
ð0

2�

ðrei�Þp�1irei� d�

1þ rei�
¼ 2�i eðp�1Þ�i

where we have to use z ¼ xe2�i for the integral along GH, since the argument of z is increased by 2� in going
round the circle BDEFG.

Taking the limit as r ! 0 and R ! 1 and noting that the second and fourth integrals approach zero,

we find

ð1

0

xp�1

1þ x
dxþ

ð0

1

e2�iðp�1Þxp�1

1þ x
dx ¼ 2� eðp�1Þ�i

ð1� e2�iðp�1ÞÞ
ð1

0

xp�1

1þ x
dx ¼ 2�i eðp�1Þ�ior

so that

ð1

0

xp�1

1þ x
dx ¼ 2�i eðp�1Þ�i

1� e2�iðp�1Þ ¼
2�i

ep�i � e�p�i ¼
�

sin p�

Supplementary Problems

FUNCTIONS, LIMITS, CONTINUITY

16.39. Describe the locus represented by (a) jzþ 2� 3ij ¼ 5; ðbÞ jzþ 2j ¼ 2jz� 1j; ðcÞ jzþ 5j � jz� 5j ¼ 6.

Construct a figure in each case.
Ans. ðaÞ Circle ðxþ 2Þ2 þ ð y� 3Þ2 ¼ 25, center ð�2; 3Þ, radius 5.

(b) Circle ðx� 2Þ2 þ y2 ¼ 4, center ð2; 0Þ, radius 2.
(c) Branch of hyperbola x2=9� y2=16 ¼ 1, where x A 3.

16.40. Determine the region in the z plane represented by each of the following:

(a) jz� 2þ ij A 4; ðbÞ jzj @ 3; 0 @ arg z @
�

4
; ðcÞ jz� 3j þ jzþ 3j < 10.

Construct a figure in each case.
Ans. (a) Boundary and exterior of circle ðx� 2Þ2 þ ð yþ 1Þ2 ¼ 16.
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(b) Region in the first quadrant bounded by x2 þ y2 ¼ 9, the x-axis and the line y ¼ x.

(c) Interior of ellipse x2=25þ y2=16 ¼ 1.

16.41. Express each function in the form uðx; yÞ þ ivðx; yÞ, where u and v are real.

(a) z2 þ 2iz; ðbÞ z=ð3þ zÞ; ðcÞ ez
2

; ðdÞ lnð1þ zÞ.
Ans. (a) u ¼ x3 � 3xy2 � 2y; v ¼ 3x2y� y2 þ 2x

(b) u ¼ x2 þ 3xþ y2

x2 þ 6xþ y2 þ 9
; v ¼ 3y

x2 þ 6xþ y2 þ 9

(c) u ¼ ex
2�y2 cos 2xy; v ¼ ex

2�y2 sin 2xy

(d) u ¼ 1
2 lnfð1þ xÞ2 þ y2g; v ¼ tan�1 y

1þ x
þ 2k�; k ¼ 0;�1;�2; . . .

16.42. Prove that (a) lim
z!x0

z2 ¼ z20; ðbÞ f ðzÞ ¼ z2 is continuous at z ¼ z0 directly from the definition.

16.43. (a) If z ¼ ! is any root of z5 ¼ 1 different from 1, prove that all the roots are 1; !; !2; !3; !4.
(b) Show that 1þ !þ !2 þ !3 þ !4 ¼ 0.
(c) Generalize the results in (a) and (b) to the equation zn ¼ 1.

DERIVATIVES, CAUCHY-RIEMANN EQUATIONS

16.44. (a) If w ¼ f ðzÞ ¼ zþ 1

z
, find

dw

dz
directly from the definition.

(b) For what finite values of z is f ðzÞ nonanalytic?
Ans. ðaÞ 1� 1=z2; ðbÞ z ¼ 0

16.45. Given the function w ¼ z4. (a) Find real functions u and v such that w ¼ uþ iv. (b) Show that the
Cauchy-Riemann equations hold at all points in the finite z plane. (c) Prove that u and v are harmonic

functions. (d) Determine dw=dz.
Ans: ðaÞ u ¼ x4 � 6x2y2 þ y4; v ¼ 4x3y� 4xy2 ðdÞ 4z3

16.46. Prove that f ðzÞ ¼ zjzj is not analytic anywhere.

16.47. Prove that f ðzÞ ¼ 1

z� 2
is analytic in any region not including z ¼ 2.

16.48. If the imaginary part of an analytic function is 2xð1� yÞ, determine (a) the real part, (b) the function.
Ans: ðaÞ y2 � x2 � 2yþ c; ðbÞ 2iz� z2 þ c, where c is real

16.49. Construct an analytic function f ðzÞ whose real part is e�xðx cos yþ y sin yÞ and for which f ð0Þ ¼ 1.
Ans: ze�z þ 1

16.50. Prove that there is no analytic function whose imaginary part is x2 � 2y.

16.51. Find f ðzÞ such that f 0ðzÞ ¼ 4z� 3 and f ð1þ iÞ ¼ �3i.
Ans: f ðzÞ ¼ 2z2 � 3zþ 3� 4i

INTEGRALS, CAUCHY’S THEOREM, CAUCHY’S INTEGRAL FORMULAS

16.52. Evaluate

ð3þi

1�2i

ð2zþ 3Þ dz:

(a) along the path x ¼ 2tþ 1; y ¼ 4t2 � t� 2 0 @ t @ 1.
(b) along the straight line joining 1� 2i and 3þ i.

(c) along straight lines from 1� 2i to 1þ i and then to 3þ i.
Ans: 17þ 19i in all cases
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16.53. Evaluate

ð

C

ðz2 � zþ 2Þ dz, where C is the upper half of the circle jzj ¼ 1 tranversed in the positive sense.

Ans: � 14=3

16.54. Evaluate

þ

C

z;

2z� 5
, where C is the circle (a) jzj ¼ 2; ðbÞ jz� 3j ¼ 2:

Ans: ðaÞ 0; ðbÞ 5�i=2

16.55. Evaluate

þ

C

z2

ðzþ 2Þðz� 1Þ dz, where C is: (a) a square with vertices at �1� i;�1þ i;�3þ i;�3� i;

(b) the circle jzþ ij ¼ 3; (c) the circle jzj ¼ ffiffiffi

2
p

.

Ans: ðaÞ � 8�i=3 ðbÞ � 2�i ðcÞ 2�i=3

16.56. Evaluate (a)

þ

C

cos�z

z� 1
dz; ðbÞ

þ

C

ez þ z

ðz� 1Þ4 dz where C is any simple closed curve enclosing z ¼ 1.

Ans: ðaÞ � 2�i ðbÞ �ie=3

16.57. Prove Cauchy’s integral formulas.
[Hint: Use the definition of derivative and then apply mathematical induction.]

SERIES AND SINGULARITIES

16.58. For what values of z does each series converge?

ðaÞ
X

1

n¼1

ðzþ 2Þn
n!

; ðbÞ
X

1

n¼1

nðz� iÞn
nþ 1

; ðcÞ
X

1

n¼1

ð�1Þnðz2 þ 2zþ 2Þ2n:

Ans: ðaÞ all z (b) jz� ij < 1 ðcÞ z ¼ �1� i

16.59. Prove that the series
X

1

n¼1

zn

nðnþ 1Þ is (a) absolutely convergent, (b) uniformly convergent for jzj @ 1.

16.60. Prove that the series
X

1

n¼0

ðzþ iÞn
2n

converges uniformly within any circle of radius R such that jzþ ij < R < 2.

16.61. Locate in the finite z plane all the singularities, if any, of each function and name them:

ðaÞ z� 2

ð2zþ 1Þ4 ; ðbÞ z

ðz� 1Þðzþ 2Þ2 ; ðcÞ z2 þ 1

z2 þ 2zþ 2
; ðdÞ cos

1

z
; ðeÞ sinðz� �=3Þ

3z� � ; ð f Þ cos z

ðz2 þ 4Þ2 :

Ans. (a) z ¼ � 1
2, pole of order 4 (d) z ¼ 0, essential singularity

(b) z ¼ 1, simple pole; z ¼ �2, double pole (e) z ¼ �=3, removable singularity
(c) simple poles z ¼ �1� i ( f ) z ¼ �2i, double poles

16.62. Find Laurent series about the indicated singularity for each of the following functions, naming the singu-
larity in each case. Indicate the region of convergence of each series.

ðaÞ cos z

z� � ; z ¼ � ðbÞ z2e�1=z; z ¼ 0 ðcÞ z2

ðz� 1Þ2ðzþ 3Þ ; z ¼ 1

Ans: ðaÞ � 1

z� �þ z� �
2!

� ðz� �Þ3
4!

þ ðz� �Þ5
6!

� � � � ; simple pole, all z 6¼ �

ðbÞ z2 � zþ 1

2!
� 1

3! z
þ 1

4! z2
� 1

5! z3
þ � � � ; essential singularity, all z 6¼ 0
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ðcÞ 1

4ðz� 1Þ2 þ
7

16ðz� 1Þ þ
9

64
� 9ðz� 1Þ

256
þ � � � ; double pole, 0 < jz� 1j < 4

RESIDUES AND THE RESIDUE THEOREM

16.63. Determine the residues of each function at its poles:

ðaÞ 2zþ 3

z2 � 4
; ðbÞ z� 3

z3 þ 5z2
; ðcÞ ezt

ðz� 2Þ3 ; ðdÞ z

ðz2 þ 1Þ2 :

Ans. (a) z ¼ 2; 7=4; z ¼ �2; 1=4 (c) z ¼ 2; 12 t
2 e2t

(b) z ¼ 0; 8=25; z ¼ �5;�8=25 (d) z ¼ i; 0; z ¼ �i; 0

16.64. Find the residue of ezt tan z at the simple pole z ¼ 3�=2.
Ans: � e3�t=2

16.65. Evaluate

þ

C

z2 dz

ðzþ 1Þðzþ 3Þ, where C is a simple closed curve enclosing all the poles.

Ans: � 8�i

16.66. If C is a simple closed curve enclosing z ¼ �i, show that

þ

C

zezt

ðz2 þ 1Þ2 dz ¼ 1
2 t sin t

16.67. If f ðzÞ ¼ PðzÞ=QðzÞ, where PðzÞ and QðzÞ are polynomials such that the degree of PðzÞ is at least two less than

the degree of QðzÞ, prove that

þ

C

f ðzÞ dz ¼ 0, where C encloses all the poles of f ðzÞ.

EVALUATION OF DEFINITE INTEGRALS

Use contour integration to verify each of the following

16.68.

ð1

0

x2 dx

x4 þ 1
¼ �

2
ffiffiffi

2
p 16.75.

ð2�

0

d�

ð2þ cos �Þ2 ¼
4�

ffiffiffi

3
p

9

16.69.

ð1

�1

dx

x6 þ a6
¼ 2�

3a5
; a > 0 16.76.

ð�

0

sin2 �

5� 4 cos �
d� ¼ �

8

16.70.

ð1

0

dx

ðx2 þ 4Þ2 ¼
�

32
16.77.

ð2�

0

d�

ð1þ sin2 �Þ2 ¼
3�

2
ffiffiffi

2
p

16.71.

ð1

0

ffiffiffi

x
p

x3 þ 1
dx ¼ �

3
16.78.

ð2�

0

cos n� d�

1� 2a cos � þ a2
¼

2�an

1� a2
; n ¼ 0; 1; 2; 3; . . . ; 0 < a < 1

16.72.

ð1

0

dx

ðx4 þ a4Þ2 ¼
3�

8
ffiffiffi

2
p a�7; a > 0 16.79.

ð2�

0

d�

ðaþ b cos �Þ3 ¼
ð2a2 þ b2Þ�
ða2 � b2Þ5=2 ; a > jbj

16.73.

ð1

�1

dx

ðx2 þ 1Þ2ðx2 þ 4Þ ¼
�

9
16.80.

ð1

0

x sin 2x

x2 þ 4
dx ¼ �e�4

4

16.74.

ð2�

0

d�

2� cos �
¼ 2�

ffiffiffi

3
p 16.81.

ð1

0

cos 2�x

x4 þ 4
dx ¼ �e��

8
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16.82.

ð1

0

x sin�x

ðx2 þ 1Þ2 dx ¼ �2 e��

4
16.84.

ð1

0

sin2 x

x2
dx ¼ �

2

16.83.

ð1

0

sin x

xðx2 þ 1Þ2 dx ¼ �ð2e� 3Þ
4e

16.85.

ð1

0

sin3 x

x3
dx ¼ 3�

8

16.86.

ð1

0

cosx

cosh x
dx ¼ �

2 coshð�=2Þ.
�

Hint: Consider

þ

C

eiz

cosh z
dz, where C is a rectangle with vertices at ð�R; 0Þ,

ðR; 0Þ; ðR; �Þrð�R; �Þ. Then let R ! 1:

�

MISCELLANEOUS PROBLEMS

16.87. If z ¼ �ei� and f ðzÞ ¼ uð�; �Þ þ i vð�; �Þ, where � and � are polar coordinates, show that the Cauchy-Rie-
mann equations are

@u

@�
¼ 1

�

@v

@�
;

@v

@�
¼ � 1

�

@u

@�

16.88. If w ¼ f ðzÞ, where f ðzÞ is analytic, defines a transformation from the z plane to the w plane where z ¼ xþ iy
and w ¼ uþ iv, prove that the Jacobian of the transformation is given by

@ðu; vÞ
@ðx; yÞ ¼ j f 0ðzÞj2

16.89. Let Fðx; yÞ be transformed to Gðu; vÞ by the transformation w ¼ f ðzÞ. Show that if
@2F

@x2
þ @

2F

@y2
¼ 0, then at

all points where f 0ðzÞ 6¼ 0,
@2G

@u2
þ @

2G

@v2
¼ 0.

16.90. Show that by the bilinear transformation w ¼ azþ b

czþ d
, where ad � bc 6¼ 0, circles in the z plane are trans-

formed into circles of the w plane.

16.91. If f ðzÞ is analytic inside and on the circle jz� aj ¼ R, prove Cauchy’s inequality, namely

j f ðnÞðaÞj @ n!M

Rn

where j f ðzÞj @ M on the circle. [Hint: Use Cauchy’s integral formulas.]

16.92. Let C1 and C2 be concentric circles having center a and radii r1 and r2, respectively, where r1 < r2. If aþ h is

any point in the annular region bounded by C1 and C2, and f ðzÞ is analytic in this region, prove Laurent’s
theorem that

f ðaþ hÞ ¼
X

1

�1
anh

n

an ¼
1

2�i

þ

C

f ðzÞ dz
ðz� aÞnþ1

where

C being any closed curve in the angular region surrounding C1.
�

Hint: Write f ðaþ hÞ ¼ 1

2�i

þ

C2

f ðzÞ dz
z� ðaþ hÞ �

1

2�i

þ

C1

f ðzÞ dz
z� ðaþ hÞ and expand

1

z� a� h
in two different

ways.

�

16.93. Find a Laurent series expansion for the function f ðzÞ ¼ z

ðzþ 1Þðzþ 2Þ which converges for 1 < jzj < 2 and
diverges elsewhere.
�

Hint: Write
z

ðzþ 1Þðzþ 2Þ ¼
�1

zþ 1
þ 2

zþ 2
¼ �1

zð1þ 1=zÞ þ
1

1þ z=2
:

�
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Ans: � � � � 1

z5
þ 1

z4
� 1

z3
þ 1

z2
� 1

z
þ 1� z

2
þ z2

4
� z3

8
þ � � �

16.94. Let

ð1

0

e�stFðtÞ dt ¼ f ðsÞ where f ðsÞ is a given rational function with numerator of degree less than that of the

denominator. If C is a simple closed curve enclosing all the poles of f ðsÞ, we can show that

FðtÞ ¼ 1

2�i

þ

C

ezt f ðzÞ dz ¼ sum of residues of ezt f ðzÞ at its poles

Use this result to find FðtÞ if f ðsÞ is (a)
s

s2 þ 1
; ðbÞ 1

s2 þ 2sþ 5
; ðcÞ s2 þ 1

sðs� 1Þ2 ; ðdÞ 1

ðs2 þ 1Þ2 and

check results in each case.

[Note that f ðsÞ is the Laplace transform of FðtÞ, and FðtÞ is the inverse Laplace transform of f ðsÞ (see Chapter
12). Extensions to other functions f ðxÞ are possible.]

Ans. (a) cos t; ðbÞ 1
2 e

�t sin 2t; ðcÞ 1
4 þ 5

2 te
2t þ 3

4 e
2t; ðdÞ 1

2 ðsin t� t cos tÞ
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425

Abel, integral test of, 334
summability, 305
theorems of, 282, 293

Absolute convergence:
of integrals, 309, 312, 319–321
of series, 268, 283, 300
theorems on, 269, 283

Absolute maximum or minimum,
42 (See also Maxima and
minima)

Absolute value, 3
of complex numbers, 6

Acceleration, 74, 158
centripetal, 175
in cylindrical and spherical

coordinates, 181
normal and tangential

components of, 177
Accumulation, point of, 5, 117

(See also Limit points)
Addition, 1
associative law of, 2, 8
commutative law of, 2
of complex numbers, 7, 13
of vectors, 151, 152, 163

Aerodynamics, 402
Aleph-null, 5
Algebra:
fundamental theorem of, 43
of complex numbers, 6, 7, 13–15
of vectors, 151, 152, 163–171

Algebraic functions, 43
Algebraic numbers, 6, 13
countability of, 13

Alternating series, 267, 268, 282
convergence test for, 267, 268
error in computations using, 268,

282
Amplitude, 7
Analytic continuation, of gamma

function, 376
Analytic functions, 393

Analytic part, of a Laurent series,
395

Anti-derivatives, 94
Approximations (see Numerical

methods)
by partial sums of Fourier series,
352

by use of differentials, 78, 79, 130,
131

least square, 201
to irrational numbers, 9
using Newton’s method, 74
using Taylor’s theorem, 274–275

Archimedes, 90
Arc length, 99, 109

element, 157, 161, 174
Area, 100, 109

expressed as a line integral, 242
of an ellipse, 205
of a parallelogram, 155, 168

Argand diagram, 7
Argument, 7
Arithmetic mean, 10
Associative law, 2, 4

for vectors, 152, 155
Asymptotic series or expansions:

for gamma function, 286, 292
Axiomatic foundations:

of complex numbers, 6, 7
of real number, 4
of vector analysis, 155

Axis, real, 2
x, y and z, 121

Base, of logarithms, 4
Bases, orthonormal, 152
Bernoulli, Daniel, 336
Bernoulli numbers, 304
Bernoulli’s inequality, 16
Bessel functions, 276
Bessel differential equation, 276

Beta functions, 375, 378, 379, 382,
384

relation, to gamma functions, 379
Bilinear transformation, 422 (See

also Fractional linear
transformation)

Binary scale, 16, 21
system, 2

Binomial coefficients, 21
series, 275
theorem, 21

Bolzano-Weierstrass theorem, 6, 12,
19, 117

Boundary conditions, 339
Boundary point, 117
Boundary-value problems:

and Fourier integrals, 371
and Fourier series, 339, 356, 357
in heat conduction, 356, 357
in vibration of strings, 361
separation of variables method
for solving, 356

Bounded functions, 40, 41
sequences, 24, 30–32, 36
sets, 6

Bounds, lower and upper, 6, 12, 13
Box product, 155
Branches of a function, 41
Branch line, 417
Branch point, 396, 417

Calculus, fundamental theorem of
integral, 94, 95, 104

Cardinal number of the continuum,
5

Cardioid, 114
Catenary, 113
Cauchy principal value, 310, 321
Cauchy-Riemann equations, 393,

400–403
derivation of, 401
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Cauchy-Riemann equations (Cont.):
in polar form, 422

Cauchy’s:
convergence criterion, 25, 33
form of remainder in Taylor’s
theorem, 274, 296

generalized theorem of the mean,
72, 82

inequality, 422
integral formulas, 394, 403–406
theorem, 394, 403–406

Centripetal acceleration, 175
Chain rules, 69, 122, 133
for Jacobians, 124

Circle of convergence, 276
Class, 1 (See also Sets)
Closed interval, 5
region, 117
set, 6, 12, 13, 117

Closure law or property, 2
Cluster point, 5, 117 (See also Limit

points)
Collection, 1 (See also Sets)
Commutative law, 2
for dot products, 153
for vectors, 154, 166, 167

Comparison test:
for integrals, 308, 311, 319
for series, 267, 279, 280

Completeness, of an orthonormal
set, 310

Complex numbers, 6, 13, 14
absolute value of, 6
amplitude of, 7
argument of, 7
as ordered pairs of real numbers, 7
as vectors, 20
axiomatic foundations of, 7
conjugate of, 6
equality of, 6
modulus of, 6
operations with, 6, 13, 14
polar form of, 7, 14
real and imaginary parts of, 6
roots of, 7, 13

Complex plane, 7
Complex variable, 392, 393 (See also

Functions of a complex
variable)

Components, of a vector, 153
Composite fuctions, 47
continuity of, 47
differentiation of, 69, 132–135

Conditional convergence:
of integrals, 309, 312, 319, 320
of series, 268, 300

Conductivity, thermal, 357
Conformal mapping or

transformation, 417
(See also Transformations)

Conjugate, complex 6
Connected region, 237
set, 117

Connected region (Cont.):
simply-, 117, 232

Conservative field, 233
Constants, 5
Constraints, 188
Continuity, 46–64, 119, 127, 128, 399
and differentiability, 66, 72, 73,
120, 121

definition of, 46, 47
in an interval, 47
in a region, 119
of an infinite series of functions,
271, 272, 288

of functions of a complex
variable, 393, 399, 400

of integrals, 99, 314
of vector functions, 156
right- and left-hand, 47
piecewise, 48
theorems on, 47, 48
uniform, 48, 119

Continuous (see Continuity)
differentiability, 67, 121

Continuously differentiable
functions, 66, 67, 120

Continuum, cardinality of, 5
Contour integration, 398
Convergence:
absolute (see Absolute
convergence)

circle of, 276
conditional (see Conditional
convergence)

criterion of Cauchy, 33, 37
domain of, 272
interval of, 25, 272
of Fourier integrals
(see Fourier’s integral theorem)

of Fourier series, 338, 354–356
of improper integrals
(see Improper integrals)

of infinite series (see Infinite
series)

of series of constants, 278–285
radius of, 272, 276
region of, 117
uniform (see Uniform
convergence)

Convergent (see Convergence)
integrals, 306–309 (See also
Improper integrals)

sequences, 23, 269 (See also
Sequences)

series, 25 (See also Infinite series)
Convolution theorem:
for Fourier transforms, 365
for Laplace transforms, 334

Coordinate curve, 160
Coordinates:
curvilinear, 139, 160 (See also
Curvilinear coordinates)

cylindrical, 161, 174
hyperbolic, 218

Coordinates (Cont.):
polar, 7
rectangular, 152
spherical, 162, 190

Correspondence, 2, 11, 23, 39, 160
one to one, 2, 11

Countability, 5, 11, 12
of algebraic numbers, 13
of rational numbers, 11, 12

Countable set, 5, 11, 12
measure of a, 91, 103

Critical points, 73
Cross products, 154, 166–169
proof of distributive law for, 166

Curl, 158, 159, 172–174
in curvilinear coordinates, 161

Curvature, radius of, 177, 181
Curve, coordinate, 150
simple closed, 117, 232, 242
space, 157

Curvilinear coordinates, 125, 139
curl, divergence, gradient, and
Laplacian in, 161, 162

Jacobians and, 161, 162
multiple integrals in, 207–228
orthogonal, 207–228
special, 161, 162
transformations and, 139, 140,
160

vectors and, 161, 162
Cut (see Dedekind cut)
Cycloid, 99
Cylindrical coordinates, 161, 174, 175
arc length element in, 161
divergence in, 175
gradient in, 175
Laplacian in, 161, 173
multiple integrals in, 222
parabolic, 180
volume element in, 161, 175

Decimal representation of real
numbers, 2

Decimals, recurring, 2
Decreasing functions, 41, 47
monotonic, 41
strictly, 41, 47

Decreasing sequences, monotonic
and strictly, 24

Dedekind cuts, 4, 16
Definite integrals, 90–95, 103 (See

also Integrals)
change of variable in, 95, 105–108
definition of, 90, 91
mean value theorems for, 92, 93,
104

numerical methods for evaluating,
98, 108, 109

properties of, 91, 92
theorem for existence of, 91
with variable limits, 95, 186, 313,
314
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Degree, of a polynomial equation, 6
of homogeneous fuctions, 122

Del (r), 159
formulas involving, 159
in curl, gradient, and divergence,

159
Deleted neighborhood, 6, 117
De Moivre’s theorem, 7, 15
Dense, everywhere, 2
Denumerable set (see Countable

set)
Dependent variable, 39, 116
Derivatives, 65–89, 75–79 (See also

Differentiation)
chain rules for, 70, 124
continuity and, 66, 72, 121, 130
definition of, 65, 66
directional, 186, 193, 202
evaluation of, 71, 75–89
graphical interpretation of, 66
higher order, 71, 120
of functions of a complex

variable, 393, 400–403
of infinite series of functions, 269,

400–403
of elementary functions, 71, 78–80
of vector functions, 157, 171, 172
partial (see Partial derivatives)
right- and left-hand, 67, 77, 78, 86
rules for finding, 70
table of, 71

Determinant:
for cross product, 154
for curl, 159
for scalar triple product, 155
Jacobian (see Jacobian)

Dextral system, 152
Difference equations, 65
Differentiability, 66, 67, 121
and continuity, 66, 72, 73
continuous, 66
piecewise, 66

Differential:
as a linear function, 68, 121
elements of area, of volume, 160,

163, 212, 213, 233
Differential equation:
Gauss’, 276
solution of, by Laplace

transforms, 314, 330
Differential geometry, 158, 181
Differentials, 67, 68, 69, 78, 120–122
approximations by use of, 78, 79,

120
exact, 122, 131, 132
geometric interpretation of, 68,

69, 121
of functions of several variables,

120, 130
of vector functions, 156
total, 120

Differentiation (See alsoDerivatives)
of Fourier series, 339, 353

Differentiation (Cont.):
rules for, 70, 78–80, 87
under the integral sign, 186, 194,
203

Diffusivity, 357
Directed line segments, 150
Directional derivatives, 186, 193,

202
Dirichlet conditions, 337, 345

integrals, 379, 385, 389
Dirichlet’s test:

for integrals, 314
for series, 270, 303

Discontinuities, 47, 119
removable, 56, 119

Distance between points, 165
Distributive law, 2

for cross products, 154
for dot products, 153

Divergence, 158, 159, 172–174
in curvilinear coordinates, 161
in cylindrical coordinates, 161
of improper integrals, 306–309
(See also Improper integrals)

of infinite series (see Infinite
series)

Divergence theorem, 236, 249–252,
261

proof of, 249, 250
Divergent integrals, 306–335

sequences, 23 (See also Sequences)
series, 25 (See also Series)

Division, 1
by zero, 8
of complex numbers, 6, 7

Domain, of a function, 39, 116
of convergence, 272

Dot products, 153, 154, 165, 166
commutative law for, 153
distributive law for, 153
laws for, 153, 154

Double series, 277
Dummy variable, 94
Duplication formula for gamma

function, 286, 378, 386

e, 4
Electric field vector, 181
Electromagnetic theory, 181
Elementary transcendental

functions, 43, 71, 95
Elements, of a set, 1
Ellipse, 114

area of, 114
Empty set, 1
Envelopes, 185, 186, 192
Equality, of complex number, 6

of vectors, 158
Equations:

difference, 65
differential (see Differential
equation)

Equations (Cont.):
integral, 364, 369, 370
polynomial, 6, 43

Equipotential surfaces, 186
Errors, applications to, 189, 200, 204

in computing sums of alternating
series, 266, 282

mean square, 353
Essential singularity, 395
Eudoxus, 90
Euler, Leonhart, 336
Euler’s, constant, 296, 378, 388

formulas or indentities, 8, 295
theorem on homogeneous
functions, 122

Even function, 338, 347–351
Everywhere dense set, 2
Evolute, 185
Exact differentials, 122, 131, 132,

231 (See also Differentials)
Expansion of functions:

in Fourier series (see Fourier
series)

in power series, 272
Expansions (see Series)
Explicit functions, 123
Exponential function, 42

order, 334
Exponents, 3, 11

Factorial function (see Gamma
functions)

Fibonacci sequence, 35, 37
Field, 2

conservative, 233
scalar, 153
vector, 153

Fluid mechanics, 402
Fourier coefficients, 337, 345

expansion (see Fourier series)
Fourier integrals, 363–374 (See also

Fourier transforms)
convergence of (see Fourier’s
integral theorem)

solution of boundary-value
problems by, 371

Fourier, Joseph, 336
Fourier series, 336 –362

complex notation for, 339
convergence of, 338, 354–356
differentiation and integration of,
339

Dirichlet conditions for
convergence of, 337

half range, 338, 347–351
Parseval’s identity for, 310, 338,
351, 352

solution of boundary-value
problems by, 339, 356–358

Fourier’s integral theorem, 363, 364
heuristic demonstration of, 369
proof of, 369
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Fourier transforms, 364–368 (See
also Fourier integrals)

convolution theorem for, 365
inverse, 364
Parselval’s identities for, 366, 368,
373

symmetric form for, 364
Fractions, 1
Frenet-Serret formulas, 159
Fresnel integrals, 387
Frullani’s integral, 333
Functional determinant, 123, 136

(See also Jacobians)
Functional notation, 39, 116
Functions, 39–64, 116, 132, 392
algebraic, 43
beta (see Beta functions)
bounded, 40, 41
branches of, 41
composite (see Composite
functions)

continuity of (see Continuity)
decreasing, 41, 42
definition of, 39, 116
derivatives of (see Derivatives)
differential of (see Differentials)
domain of, 39, 116
elementary transcendental, 43, 44
even, 338, 347–351
explicit and implicit, 123
gamma (see Gamma functions)
harmonic, 393
hyperbolic, 44, 45
hypergeometric, 276, 303
increasing, 41, 42
inverse (see Inverse functions)
limits of (see Limits of functions)
maxima and minima of (see
Maxima and minima)

monotonic, 41
multipled-valued (see Multiple-
valued function)

normalized, 342
odd, 238, 347–351
of a complex variable (see
Functions of a complex
variable)

of a function (see Composite
function)

of several variables, 116, 123, 126
orthogonal, 342, 357, 358
orthonormal, 342
periodic, 336
polynomial, 43
sequences and series of, 269, 270,
272, 286, 289

single-valued, 39, 392
staircase of step, 51
transcendental, 43, 44
types of, 43, 44
vector (see Vector fuctions)

Functions of a complex variable,
392–423

Functions of a complex variable
(Cont.):

analytic, 393
Cauchy-Riemann equations, 393,
400 (see Cauchy-Riemann
equations)

continuity of, 393, 399, 400
definition of, 392
derivatives of, 393, 400–403
elementary, 393
imaginary part of, 392, 400
integrals of, 394, 403–406
Jacobians and, 422
Laplace transforms and, 423
limits of, 393, 399, 400
line integrals and, 394
multiple-valued, 392
poles of, 395
real part of, 392, 400
residue theorem for (see Residue
theorem)

series of, 286, 395, 406–409
single-valued, 392
singular points of, 395

Fundamental theorem:
of algebra, 43
of calculus, 94, 104

Gamma functions, 375–391
analytic continuation of, 376
asymptotic formulas for, 376, 378
duplication formula for, 378, 386
infinite product for, 377
recurrence formula for, 375, 376
Stirling’s formulas and
asymptotic series for, 378, 384

table and graph of, 375
Gauss’:
differential equation, 276
� function, 377
test, 268, 283

Geometric integral, 308
Gibbs, Williard, 150
G.l.b (see Greatest lower bound)
Gradient, 158, 161, 162, 172
in curvilinear coordinates, 161
in cylindrical coordinates, 162

Graph, of a function of one
variable, 41

of a function of two variables,
144, 145

Grassman, Herman, 150
Greater than, 3
Greatest limit (see Limit superior)
Greatest lower bound, 6
of a function, 41
of a sequence, 24, 32, 36

Green’s theorem in the plane, 232,
240–243, 260

in space, (seeDivergence theorem)
Grouping method, for exact

differentials, 132

Half range Fourier sine or cosine
series, 238, 239, 347–351

Hamilton, William Rowen, 150, 158
Harmonic functions, 393
series, 266

Heat conduction equation, 357
solution of, by Fourier integrals,
369

solution of, by Fourier series, 354,
355

Homogeneous functions, Euler’s
theorem on, 122

Hyperbolic coordinates, 218
Hyperbolic functions, 44, 45
inverse, 41

Hyperboloid of one sheet, 127
Hypergeometric function or series,

276
Hypersphere, 116
Hypersurface, 116

Identity, with respect to addition
and multiplication, 2

Image or mapping, 124, 416
Imaginary part, of a complex

number, 6
of functions of a complex
variable, 392, 399, 400

Imaginary unit, 6
Implicit functions, 69, 123
and Jacobians, 135–139

Improper integrals, 97, 110, 114,
306–335

absolute and conditional
convergence of, 309, 312,
319–321

comparison test for, 308, 311
containing a parameter, 313
definition of, 306
of the first kind, 306–308, 317–321
of the second kind, 306, 310–312,
321, 322

of the third kind, 306, 313, 322
quotient test for, 304, 311, 315
uniform convergence of, 313, 314,
323, 324

Weierstrass M test for, 313,
324–329

Increasing functions, 41
monotonic, 41
strictly, 41, 47

Increasing sequences, monotonic
and strictly, 24

Indefinite integrals, 94 (See also
Integrals)

Independence of the path, 212, 213,
243–245, 260

Independent variable, 39, 116
Indeterminate forms, 56, 82–84
L’Hospital’s rules for (see
L’Hospital’s rules)

Induction, mathematical, 8
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Inequalities, 3, 10
Inequality, 3
Bernoulli’s, 16
Cauchy’s, 422
Schwarz’s, 10, 18, 110

Inferior limit (see Limit inferior)
Infinite:
countably, 5
interval, 5

Infinite product, 277
for gamma function, 376

Infinite series, 25, 33, 37, 265–305
(See also Series)

absolute convergence of, 268, 283,
300

comparison test for, 267, 279, 280
conditional convergence of, 268,

283
convergence tests for, 266–268
functions defined by, 276
Gauss’ test for, 268
integral test for, 267, 280–283
nth root test for, 268
of complex terms, 276
of functions, 269, 270, 276, 277
partial sums of, 25, 266
quotient test for, 267, 278
Raabe’s test for, 268, 285
ratio test for, 268, 284, 300
rearrangement of terms in, 269
special, 270
uniform convergence of, 269, 270

(See also Uniform convergence)
Weierstrass M test for, 270, 289

Infinitesimal, 89
Infinity, 25, 46
Inflection, point of, 74
Initial point, of a vector, 150
Integers, positive and negative, 1
Integrable, 91
Integral equations, 367, 372, 373
Integral formulas of Cauchy, 394,

403–406
Integrals, 90–115, 207–228, 306–335,

363–374, 394, 398, 409–423
(See also Integration)

definite, 90, 91 (See also Definite
integrals)

Dirichlet, 379, 385, 389
double, 207, 213–219
evaluation of, 314, 325–327, 398,

412–416
Fresnel, 387
Frullani’s, 333
improper, 97 (see Improper

integrals)
indefinite, 94
iterated, 208–210
line (see Line integrals)
mean value theorems for, 72, 92
multiple (see Multiple integrals)
of functions of a complex

variable, 392–423

Integrals (Cont.):
of infinite series of functions, 272,
275

of elementary functions, 96
Schwarz’s inequality for, 110
table of, 96
transformations of, 95, 103–108,
299

uniform convergence of, 313, 314,
323, 324

Integral test for infinite series, 267
Integrand, 91
Integrating factor, 223
Integration, applications of, 98, 109,

110, 114 (See also Integrals)
by parts, 97–102
contour, 398
interchange of order of, 209
limits, of, 91
of Fourier series, 339, 353
of elementary functions, 96, 97,
107

range of, 91
special methods of, 97, 105–108
under integral sign, 186, 195

Intercepts, 126
Interior point, 117
Intermediate value theorem, 48
Intersection of sets, 12
Intervals:

closed, 5
continuity in, 47
infinite, 5
nested, 25, 32
of convergence, 25
open, 5
unbounded, 5

Invariance relations, 181, 182
Invariant, scalar, 182

Fourier transforms, 369 (See also
Fourier transforms)

Laplace transforms, 315, 423,
(See also Laplace transforms)

Inverse functions, 41
continuity of, 47
hyperbolic, 45
trigonometric, 44

Inverse, of addition and
multiplication, 2, 3

Irrantional algebraic functions, 43
Irrationality of

ffiffiffi

2
p

, proof of, 9
Irrational numbers, 2, 9, 10

approximations to, 9
definition of, 2 (See alsoDedekind
cut)

Isolated singularity, 395
Iterated integrals, 208–210

limits, 119

Jacobian determinant (see Jacobians)
Jacobians, 123, 135–139, 161, 162,

174, 175

Jacobians (Cont.):
chain rules for, 124
curvilinear coordinates and, 161,
162

functions of a complex variable
and, 422

implicit functions and, 135–139
multiple integrals and, 211
of transformations, 124
partial derivatives using, 123
theorems on, 124, 162
vector interpretation of, 160

Kronecker’s symbol, 342

Lagrange multipliers, 188, 198, 199
Lagrange’s form of the remainder,

in Taylor series, 274, 297
Laplace’s equation, 129 (See also

Laplacian operator)
Laplace transforms, 314, 315, 333

convolution theorem for, 334
inverse, 330, 423
relation of functions of a complex
variable to, 423

table of, 315
use of, in solving differential
equations, 315, 330

Laplacian operator, 161, 162 (See
also Laplace’s equation)

in curvilinear coordinates, 161
in cylindrical coordinates, 161, 173
in spherical coordinates, 161

Laurent’s series, 395, 407, 408
theorem, 408, 409

Least limit (see Limit inferior)
Least square approximations, 201
Least upper bound, 6, 32

of functions, 41
of sequences, 24, 36

Left-hand continuity, 47
derivatives, 67, 77, 78
limits, 45

Leibnitz’s formula for nth derivative
of a product, 89

rule for differentiating under the
integral sign, 186, 194

Leibniz, Gottfried Wilhelm, 65, 90,
265

Lemniscate, 114
Length, of a vector, 150
Less than, 2
Level curves and surfaces, 144, 186
L’Hospital’s rules, 72, 82–84, 88

proofs of, 82, 83
Limit inferior, 32, 36
Limit points, 5, 12, 117

Bolzano-Weirstrass theorem on
(see Bolzano-Weirstrass)

Limits of functions, 39–64, 117, 118,
393, 399, 400

definition of, 43, 118, 119
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Limits of functions (Cont.):
iterated, 119, 208
of a complex variable, 393, 399,
400

proofs of theorems on, 54–56
right- and left-hand, 45
special, 46
theorems on, 45

Limits of integration, 91
Limits of sequences, 23, 24, 25, 27
definition of, 23
of functions, 45, 269
theorems of, 23, 24, 28–30

Limits of vector functions, 156
Limit superior, 32, 36
Linear dependence of vectors, 182
Linear transformations, 148
fractional (see Fractional linear
transformation)

Line integrals, 229–231, 238–240,
259

evaluation of, 231
independence of path of, 232, 238,
243–245

properties of, 231
relation of, to functions of a
complex variable, 394

vector notation for, 230
Line, normal (see Normal line)
tangent (see Tangent line)

Logarithms, 4, 10, 11, 351
as multiple-valued functions, 392
base of, 4

Lower bound, 6, 12, 13
of functions, 40
of sequences, 24

Lower limit (see Limit inferior)
L.u.b. (see Least upper bound)

Maclaurin series, 274
Magnetic field vector, 181
Magnitude, of a vector, 150
Many-valued function (see

Multiple-valued function)
Mappings, 124 (See also

Transformations)
conformal, 417

Mathematical induction, 8, 15
Maxima and minima, 42, 73, 174,

185, 187, 196–198
absolute, 42
Lagrange’s multiplier method for,
188, 198, 199, 204

of functions of several variables,
187, 188, 196–198

relative, 42
Taylor’s theorem and, 276, 277,
297, 298

Maximum (see Maxima and
minima)

Maxwell’s equations, 181
Mean square error, 353

Mean value theorems:
for derivatives, 72, 80–82, 87, 125,
141

for integrals, 93, 104, 112
Measure zero, 91, 103
Mechanics, 158
fluid, 402

Members, of a set, 1
Minimum (see Maxima and

minima)
Moebius strip, 248
Moment of inertia, 101
polar, 213, 219

Monotonic functions, 41
Monotonic sequences, 24, 30–32
fundamental theorem on, 24

Multiple integrals, 207–228
improper, 316
in curvilinear coordinates, 211,
212, 221, 222

in cylindrical coordinates, 211
in spherical coordinates, 212
Jacobians and, 211
transformations of, 211–213

Multiple-valued functions, 39, 117,
392

logarithm as a, 392
Multiplication, 2
associative law of, 2
involving vectors, 153–155
of complex numbers, 6, 7

Multiply-connected regions, 117

Natural base of logarithms, 3
Natural numbers, 4
Negative integers, 1
numbers, 1, 2

Neighborhoods, 6, 117
Nested intervals, 25, 32
Newton, Isaac, 65, 90, 265
first and second laws, 68

Newton’s methods, 74
Normal component of acceleration,

177
Normalized vectors and functions,

342
Normal line:
parametric equations for, 184, 201
principal, 177, 180
to a surface, 184, 189–191

Normal plane, 184, 185, 191, 192
nth root test, 268
Null set, 1
vector, 151

Number, cardinal, 5
Numbers, 1–22
algebraic (see Algebraic number)
Bernoulli, 304
complex (see Complex numbers)
history, 2, 5
irrational (see Irrational numbers)
natural, 1

Numbers (Cont.):
negative, 1, 2
operations with, 2–15
positive, 1, 2
rational (see Rational numbers)
real (see Real numbers)
roots of, 3
transcendental, 6, 13

Numerator, 1
Numerical methods (see

Approximations)
for evaluating definite integrals,
98, 108–110

Odd functions, 338, 347–351
Open ball, 117
Open interval, 5
region, 117

Operations:
with complex numbers, 6, 13, 14
with power series, 372, 373
with real numbers, 2, 8

Ordered pairs of real numbers, 7
triplets of real numbers, 155

Order, exponential, 334
of derivatives, 71
of poles, 395, 396

Orientable surface, 248
Origin, of a coordinate system, 116
Orthogonal curvilinear coordinates

(see Curvilinear coordinates)
Orthogonal families, 402, 403
functions, 153, 342, 357, 358

Orthonormal functions, 357

Pappus’ theorem, 228
Parabola, 50
Parabolic cylindrical coordinates,

180
Parallelepiped, volume of, 155, 169
Parallelogram, area of, 155, 168
law, 151, 163

Parametric equations, of line, 189
of normal line, 184
of space curve, 157

Parseval’s identity:
for Fourier integrals, 366, 368
for Fourier series, 338, 351, 362,
373

Partial derivatives, 116–149
applications of, 183–206
definition of, 120
evaluation of, 120, 128–130
higher order, 120
notations for, 120
order of differentiation of, 120
using Jacobians, 123

Partial sums of infinite series, 25,
265, 266

Period, of a function, 336
Piecewise continous, 48
differentiable, 66
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p integrals, 308
Plane, complex, 7
Plane, equation of, 170
normal to a curve (see Normal

plane)
tangent to a surface (see Tangent

place)
Point:
boundary, 117
branch, 396, 397
cluster, 5, 117 (See also Limit

points)
critical, 73
interior, 117
limit (see Limit points)
neighborhood of, 5, 117
of accumulation, 5 (See also Limit

points)
singular (see Singular points)

Point set:
one-dimensional, 5
two-dimensional, 117

Polar coordinates, 7
Polar form, of complex numbers, 7,

14
Poles, 395
defined from a Laurent series, 395
of infinite order, 395
residues at, 395

Polynomial functions, 43
degree of, 43

Position vector, 157
Positive definite quadratic form,

206
Positive direction, 232
normal, 236

Positive integers, 1
numbers, 1, 2

Potential, velocity, 402
Power series, 272, 275, 276, 291–294
Abel’s theorem on, 272
expansion of functions in, 273
operations with, 273, 274
radius of convergence of, 272
special, 276, 277
theorems on, 272
uniform covergence of, 272

Prime, relatively, 9
Principal branch:
of a function, 41
of a logarithm, 397

Principal normal, to a space curve,
177, 180

Principal part, 67, 120
of a Laurent series, 395

Principal value:
of functions, 41, 44, 45
of integrals (see Cauchy principal

value)
of inverse hyperbolic functions, 44
of inverse trigonometric

functions, 44
of logarithms, 392

Product, 1
box, 155
cross or vector (see Cross
products)

dot or scalar (see Dot products)
infinite (see Infinite product)
nth derivative of, 89
triple (see Triple products)
Wallis’, 359

p series, 266

Quadratic equation, solutions of, 14
Quadratic form, 206
Quotient, 1
Quotient test:

for integrals, 309, 311, 317
for series, 267, 279, 280

Raabe’s test, 268, 285
Radius of convergence, 272, 276

of curvature, 177, 181
of torsion, 181

Radius vector, 153
Range, of integration, 91
Rates of change, 74
Rational algebraic functions, 43
Rational numbers, 1, 9, 10

countability of, 11, 12
Ratio test, 268, 284, 285

proof of, 284
Real axis, 2
Real numbers, 1 (See also Numbers)

absolute value of, 3
axiomatic foundations of, 3
decimal representation of, 2
geometric representation of, 2
inequalities for (see Inequality)
non-countability of, 12
operations with, 2, 8, 9
ordered pairs and triplets of, 7,
155

roots of, 3, 11
Real part:

of a complex number, 6
of functions of a complex
variable, 392, 399, 400

Rectangular component vectors,
152

Rectangular coordinates, 7, 116, 160
Rectangular neighborhood, 117

rule for integration, 98
Recurring:

decimal, 2
Region, 117

closed, 117
connected, 232
multiply-connected, 117
of convergence, 117
open, 117
simply-connected, 117, 232, 241

Regular summability, 278, 304
Relative extrema, 73

Relativity, theory of, 182
Removable discontinuity, 56, 119

singularity, 393, 407
Residues, 397, 409–412
Residue theorem, 397, 398, 409–412

evaluation of integrals by, 398,
403–406

proof of, 409, 410
Resultant of vectors, 151, 163
Reversion of series, 273
Riemann:

axis, 396
surface, 397

Riemann integrable, 91
Riemann’s theorem, 354, 370
Right-hand continuity, 47

derivatives, 67, 77, 78
limits, 45

Right-handed rectangular
coordinate system, 152, 153

Rolle’s theorem, 72
proof of, 80

Roots:
of complex numbers, 7, 14
of real numbers, 3, 11

Roots of equations, 43
computations, 59
Newton’s method for finding, 89

Saddle points, 188
Scalar, 153

field, 153
invariant, 182
product (see Dot products)
triple product, 155

Scale factors, 160
Scale of two (see Binary scale)
Schwarz’s inequality:

for integrals, 110
for real numbers, 10, 18

Section (see Dedekind cut)
Separation of variables in boundary-

value problems, 356
Sequence, Fibonacci, 35
Sequences, 23–38, 269

bounded, monotonic, 24, 30–32
convergent and divergent, 23, 269
decreasing, 25
definition of, 23
finite and infinite, 269
increasing, 25
limits of, 23, 27, 269 (See also
Limits of sequences)

of functions, 269
terms of, 26
uniform covergence of, 269

Series (see Infinite series)
alternating (see Alternating series)
asymptotic (see Asymptotic
series)

binomial, 275
double, 277
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Series (Cont.):
geometric, 25, 266
harmonic, 266
Laurent’s, 395, 407, 408, 420
Maclaurin, 274
of functions of a complex
variable, 406–409

p-, 266
partial sums of, 25, 266
power (see Power series)
reversion of, 273
sum of, 25, 266
Taylor (see Taylor series)
telescoping, 278
terms of, 266
test for integrals, 280

Sets, 1
bounded, 6
closed, 6, 12, 13
connected, 117
countable or denumerable (see
Countable set)

elements of, 1
everywhere dense, 2
intersection of, 12
orthonormal, 337, 342
point, 117
union of, 12

Simple closed curves, 117, 232, 241
Simple poles, 395
Simply connected region, 117, 232,

241
Simpson’s rule, 98, 108, 109
Single-valued function, 39, 116, 392
Singular points or singularities,

395–398, 406–409
defined from Laurent series, 395
essential, 395, 407
isolated, 395
removable, 395, 407

Sink, 259
Slope, 66
Smooth function (see Piecewise

differentiability)
Solenoidal vector fields, 259
Source, 259
Space curve, 157
Specific heat, 356, 357
Spherical coordinates, 162, 174, 175
arc length element in, 162, 174
Laplacian in, 162, 176
multiple integrals in, 222
volume element in, 162, 175

Staircase or step function, 51
Stirling’s asymptotic formula and

series, 378, 384
Stokes’ theorem, 237, 252–257
proof of, 252, 253

Stream function, 402
Subset, 1
Subtraction, 2
of complex numbers, 13, 14
of vectors, 151

Sum, 2
of series, 25, 266
of vectors, 151, 163
partial, 25, 266

Summability, 278, 296, 304
Abel, 305
Césaro, 278, 296
regular, 278, 304

Superior limit (see Limit superior)
Superposition, principal of, 357
Surface, 116
equipotential, 186
level, 144, 186
normal line to (see Normal line)
orientable, 248
tangent place to (see Tangent
plane)

Surface integrals, 233–236, 245–249,
261

Tangential component of
acceleration, 180, 181

Tangent line, to a coordinate curve,
84

to a curve, 65, 184, 202
Tangent plane, 183, 189–191, 200
in curvilinear coordinates, 201,
202

Tangent vector, 157, 177
Taylor polynomials, 273
Taylor series, in one variable, 274

(See also Taylor’s theorem)
in several variables, 276
of functions of a complex
variable, 395

Taylor’s theorem, 273, 297
(See also Taylor series)

for functions of one variable, 273
for functions of several variables,
276, 277

proof of, 297, 407, 408
remainder in, 274

Telescoping series, 278
Tensor analysis, 182
Term, of a sequence, 23
of a series, 266

Terminal point of a vector, 150
Thermal conductivity, 356, 357
Thermodynamics, 148
Torsion, radius of, 181
Total differential, 122 (See also

Differentials)
Trace, on a place, 127
Transcendental functions, 45, 46
numbers, 6, 13

Transformations, 124, 139, 140
and curvilinear coordinates, 139,
140, 160

conformal, 417
Jacobians of, 125, 160
of integrals, 95, 105–108, 211–213,
216–219

Transforms (see Fourier transforms
and Laplace transforms)

Transitivity, law of, 2
Trigonometric functions, 46, 96
derivatives of, 71
integrals of, 95, 96
inverse, 44

Triple integrals, 210, 219–221
transformation of, 221–225

Triple products, scalar, 155
vector, 155

Unbounded interval, 5
Uniform continuity, 48, 58, 63, 119
Uniform convergence, 269, 270, 287,

288
of integrals, 313, 314
of power series, 272
of sequences, 269
of series, 269, 270
tests for integrals, 313, 314
tests for series, 270
theorems for integrals, 314
theorems for series, 270, 271, 272
Weirstrass M test for (see
Weirstrass M test)

Union of sets, 12
Unit tangent vector, 157
Unit vectors, 152, 342
infinite dimensional, 342
rectangular, 152

Upper bound, 6
of functions, 40, 41
of sequences, 24

Upper limit (see Limit superior)

Variable, 5, 39
change of, in differentiation, 69, 70
change of, in integration, 95,
105–108, 211

complex, 392, 393 (See also
Functions of a complex
variable)

dependent and independent, 40,
116

dummy, 94
limits of integration, 94, 186, 194,
313

Vector algebra, 151, 152, 161–165
Vector analysis (see Vectors)
Vector:
bound, 150
free, 150

Vector field, 156
solenoidal, 259

Vector functions, 156
limits, continuity and derivatives
of, 156, 171, 172

Vector product (see Cross products)
Vectors, 20, 150–182
algebra of, 151, 152, 178
axiomatic foundations for, 155
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Vectors (Cont.):
complex numbers as, 20
components of, 153
curvilinear coordinates and, 161,

162
equality of, 150
infinite dimensional, 342
Jacobians interpreted in terms of,

160
length or magnitude of, 150
normalized, 342
null, 151
position, 153
radius, 153
resultant or sum of, 151, 163
scalar product, 153
tangent, 157, 177, 179

Vectors (Cont.):
unit, 152, 153, 342

Vector triple product, 155, 169–171
Velocity, 74, 177

of light, 181
potential, 402

Vibrating string, equation of, 361
Volume, 100

element of, 161, 162, 175
of parallelepiped, 161, 169

Volume of revolution:
disk method, 100
shell method, 101

Wallis’ product, 359
Wave equation, 361

Weierstrass M test:
for integrals, 313, 324–329
for series, 270, 289

Wilson, E.B., 150
Work, as a line integral, 239

x-axis, 116

z-axis, 116
intercept, 126

Zeno of Elea, 265
Zero, 1

division by, 8
measure, 91, 103
vector, 151
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