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CHAPTER P. PRELIMINARIES

Section P.1 Real Numbers and the Real Line
(page 10)

1.
2

9
= 0.22222222 · · · = 0.2

2.
1

11
= 0.09090909 · · · = 0.09

3. If x = 0.121212 · · ·, then 100x = 12.121212 · · · = 12 + x .
Thus 99x = 12 and x = 12/99 = 4/33.

4. If x = 3.277777 · · ·, then 10x − 32 = 0.77777 · · · and
100x − 320 = 7 + (10x − 32), or 90x = 295. Thus
x = 295/90 = 59/18.

5. 1/7 = 0.142857142857 · · · = 0.142857

2/7 = 0.285714285714 · · · = 0.285714

3/7 = 0.428571428571 · · · = 0.428571

4/7 = 0.571428571428 · · · = 0.571428

note the same cyclic order of the repeating digits

5/7 = 0.714285714285 · · · = 0.714285

6/7 = 0.857142857142 · · · = 0.857142

6. Two different decimal expansions can represent the same
number. For instance, both 0.999999 · · · = 0.9 and
1.000000 · · · = 1.0 represent the number 1.

7. x ≥ 0 and x ≤ 5 define the interval [0, 5].

8. x < 2 and x ≥ −3 define the interval [−3, 2).

9. x > −5 or x < −6 defines the union
(−∞,−6) ∪ (−5,∞).

10. x ≤ −1 defines the interval (−∞,−1].

11. x > −2 defines the interval (−2,∞).
12. x < 4 or x ≥ 2 defines the interval (−∞,∞), that is, the

whole real line.

13. If −2x > 4, then x < −2. Solution: (−∞,−2)

14. If 3x + 5 ≤ 8, then 3x ≤ 8 − 5 − 3 and x ≤ 1. Solution:
(−∞, 1]

15. If 5x − 3 ≤ 7− 3x , then 8x ≤ 10 and x ≤ 5/4. Solution:
(−∞, 5/4]

16. If
6− x

4
≥ 3x − 4

2
, then 6 − x ≥ 6x − 8. Thus 14 ≥ 7x

and x ≤ 2. Solution: (−∞, 2]

17. If 3(2 − x) < 2(3 + x), then 0 < 5x and x > 0. Solution:
(0,∞)

18. If x2 < 9, then |x | < 3 and −3 < x < 3. Solution:
(−3, 3)

19. Given: 1/(2 − x) < 3.
CASE I. If x < 2, then 1 < 3(2− x) = 6− 3x , so 3x < 5
and x < 5/3. This case has solutions x < 5/3.
CASE II. If x > 2, then 1 > 3(2− x) = 6−3x , so 3x > 5
and x > 5/3. This case has solutions x > 2.
Solution: (−∞, 5/3) ∪ (2,∞).

20. Given: (x + 1)/x ≥ 2.
CASE I. If x > 0, then x + 1 ≥ 2x , so x ≤ 1.
CASE II. If x < 0, then x + 1 ≤ 2x , so x ≥ 1. (not
possible)
Solution: (0, 1].

21. Given: x2 − 2x ≤ 0. Then x(x − 2) ≤ 0. This is only
possible if x ≥ 0 and x ≤ 2. Solution: [0, 2].

22. Given 6x2 − 5x ≤ −1, then (2x − 1)(3x − 1) ≤ 0, so
either x ≤ 1/2 and x ≥ 1/3, or x ≤ 1/3 and x ≥ 1/2.
The latter combination is not possible. The solution set is
[1/3, 1/2].

23. Given x3 > 4x , we have x(x2 − 4) > 0. This is possible
if x < 0 and x2 < 4, or if x > 0 and x2 > 4. The
possibilities are, therefore, −2 < x < 0 or 2 < x < ∞.
Solution: (−2, 0) ∪ (2,∞).

24. Given x2−x ≤ 2, then x2−x−2 ≤ 0 so (x−2)(x+1) ≤ 0.
This is possible if x ≤ 2 and x ≥ −1 or if x ≥ 2 and
x ≤ −1. The latter situation is not possible. The solution
set is [−1, 2].

25. Given:
x

2
≥ 1+ 4

x
.

CASE I. If x > 0, then x2 ≥ 2x + 8, so that
x2 − 2x − 8 ≥ 0, or (x − 4)(x + 2) ≥ 0. This is
possible for x > 0 only if x ≥ 4.
CASE II. If x < 0, then we must have (x−4)(x +2) ≤ 0,
which is possible for x < 0 only if x ≥ −2.
Solution: [−2, 0) ∪ [4,∞).

26. Given:
3

x − 1
<

2

x + 1
.

CASE I. If x > 1 then (x − 1)(x + 1) > 0, so that
3(x+1) < 2(x−1). Thus x < −5. There are no solutions
in this case.
CASE II. If −1 < x < 1, then (x − 1)(x + 1) < 0, so
3(x + 1) > 2(x − 1). Thus x > −5. In this case all
numbers in (−1, 1) are solutions.
CASE III. If x < −1, then (x − 1)(x + 1) > 0, so that
3(x + 1) < 2(x − 1). Thus x < −5. All numbers x < −5
are solutions.
Solutions: (−∞,−5) ∪ (−1, 1).

27. If |x | = 3 then x = ±3.

28. If |x − 3| = 7, then x − 3 = ±7, so x = −4 or x = 10.

29. If |2t + 5| = 4, then 2t + 5 = ±4, so t = −9/2 or
t = −1/2.

30. If|1 − t | = 1, then 1 − t = ±1, so t = 0 or t = 2.

1
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31. If |8− 3s| = 9, then 8− 3s = ±9, so 3s = −1 or 17, and
s = −1/3 or s = 17/3.

32. If
∣
∣
∣
s

2
− 1

∣
∣
∣ = 1, then

s

2
− 1 = ±1, so s = 0 or s = 4.

33. If |x | < 2, then x is in (−2, 2).

34. If |x | ≤ 2, then x is in [−2, 2].

35. If |s − 1| ≤ 2, then 1 − 2 ≤ s ≤ 1+ 2, so s is in [−1, 3].

36. If |t + 2| < 1, then −2 − 1 < t < −2 + 1, so t is in
(−3,−1).

37. If |3x − 7| < 2, then 7 − 2 < 3x < 7 + 2, so x is in
(5/3, 3).

38. If |2x + 5| < 1, then −5 − 1 < 2x < −5 + 1, so x is in
(−3,−2).

39. If
∣
∣
∣
x

2
− 1

∣
∣
∣ ≤ 1, then 1− 1 ≤ x

2
≤ 1 + 1, so x is in [0, 4].

40. If
∣
∣
∣2 − x

2

∣
∣
∣ <

1

2
, then x/2 lies between 2 − (1/2) and

2+ (1/2). Thus x is in (3, 5).

41. The inequality |x + 1| > |x − 3| says that the distance
from x to −1 is greater than the distance from x to 3, so
x must be to the right of the point half-way between −1
and 3. Thus x > 1.

42. |x − 3| < 2|x | ⇔ x2 − 6x + 9 = (x − 3)2 < 4x2

⇔ 3x2 + 6x − 9 > 0 ⇔ 3(x + 3)(x − 1) > 0. This
inequality holds if x < −3 or x > 1.

43. |a| = a if and only if a ≥ 0. It is false if a < 0.

44. The equation |x − 1| = 1− x holds if |x − 1| = −(x − 1),
that is, if x − 1 < 0, or, equivalently, if x < 1.

45. The triangle inequality |x + y| ≤ |x | + |y| implies that

|x | ≥ |x + y| − |y|.

Apply this inequality with x = a − b and y = b to get

|a − b| ≥ |a| − |b|.

Similarly, |a − b| = |b − a| ≥ |b| − |a|. Since
∣
∣
∣|a| − |b|

∣
∣
∣

is equal to either |a| − |b| or |b| − |a|, depending on the
sizes of a and b, we have

|a − b| ≥
∣
∣
∣|a| − |b|

∣
∣
∣.

Section P.2 Cartesian Coordinates in the
Plane (page 16)

1. From A(0, 3) to B(4, 0), �x = 4− 0 = 4 and
�y = 0− 3 = −3. |AB| =

√

42 + (−3)2 = 5.

2. From A(−1, 2) to B(4,−10), �x = 4 − (−1) = 5 and
�y = −10− 2 = −12. |AB| = √

52 + (−12)2 = 13.

3. From A(3, 2) to B(−1,−2), �x = −1 − 3 = −4 and
�y = −2− 2 = −4. |AB| = √

(−4)2 + (−4)2 = 4
√

2.

4. From A(0.5, 3) to B(2, 3), �x = 2− 0.5 = 1.5 and
�y = 3− 3 = 0. |AB| = 1.5.

5. Starting point: (−2, 3). Increments �x = 4, �y = −7.
New position is (−2 + 4, 3+ (−7)), that is, (2,−4).

6. Arrival point: (−2,−2). Increments �x = −5, �y = 1.
Starting point was (−2− (−5),−2− 1), that is, (3,−3).

7. x2 + y2 = 1 represents a circle of radius 1 centred at the
origin.

8. x2 + y2 = 2 represents a circle of radius
√

2 centred at
the origin.

9. x2 + y2 ≤ 1 represents points inside and on the circle of
radius 1 centred at the origin.

10. x2 + y2 = 0 represents the origin.

11. y ≥ x2 represents all points lying on or above the
parabola y = x2.

12. y < x2 represents all points lying below the parabola
y = x2.

13. The vertical line through (−2, 5/3) is x = −2; the hori-
zontal line through that point is y = 5/3.

14. The vertical line through (
√

2,−1.3) is x = √2; the
horizontal line through that point is y = −1.3.

15. Line through (−1, 1) with slope m = 1 is
y = 1+ 1(x + 1), or y = x + 2.

16. Line through (−2, 2) with slope m = 1/2 is
y = 2+ (1/2)(x + 2), or x − 2y = −6.

17. Line through (0, b) with slope m = 2 is y = b + 2x .

18. Line through (a, 0) with slope m = −2 is
y = 0− 2(x − a), or y = 2a − 2x .

19. At x = 2, the height of the line 2x + 3y = 6 is
y = (6− 4)/3 = 2/3. Thus (2, 1) lies above the line.

20. At x = 3, the height of the line x − 4y = 7 is
y = (3− 7)/4 = −1. Thus (3,−1) lies on the line.

21. The line through (0, 0) and (2, 3) has slope
m = (3 − 0)/(2 − 0) = 3/2 and equation y = (3/2)x or
3x − 2y = 0.

22. The line through (−2, 1) and (2,−2) has slope
m = (−2− 1)/(2 + 2) = −3/4 and equation
y = 1− (3/4)(x + 2) or 3x + 4y = −2.

23. The line through (4, 1) and (−2, 3) has slope
m = (3 − 1)/(−2 − 4) = −1/3 and equation

y = 1− 1

3
(x − 4) or x + 3y = 7.

2
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24. The line through (−2, 0) and (0, 2) has slope
m = (2− 0)/(0 + 2) = 1 and equation y = 2+ x .

25. If m = −2 and b = √2, then the line has equation
y = −2x +√2.

26. If m = −1/2 and b = −3, then the line has equation
y = −(1/2)x − 3, or x + 2y = −6.

27. 3x + 4y = 12 has x-intercept a = 12/3 = 4 and y-
intercept b = 12/4 = 3. Its slope is −b/a = −3/4.

y

x

3x + 4y = 12

Fig. P.2.27

28. x + 2y = −4 has x-intercept a = −4 and y-intercept
b = −4/2 = −2. Its slope is −b/a = 2/(−4) = −1/2.

y

x

x + 2y = −4

Fig. P.2.28

29.
√

2x − √3y = 2 has x-intercept a = 2/
√

2 = √2
and y-intercept b = −2/

√
3. Its slope is

−b/a = 2/
√

6 = √2/3.
y

x√
2x −√3y = 2

Fig. P.2.29

30. 1.5x − 2y = −3 has x-intercept a = −3/1.5 = −2 and y-
intercept b = −3/(−2) = 3/2. Its slope is −b/a = 3/4.

y

x

1.5x − 2y = −3

Fig. P.2.30

31. line through (2, 1) parallel to y = x + 2 is y = x − 1; line
perpendicular to y = x + 2 is y = −x + 3.

32. line through (−2, 2) parallel to 2x + y = 4 is
2x + y = −2; line perpendicular to 2x + y = 4 is
x − 2y = −6.

33. We have

3x + 4y = −6

2x − 3y = 13

�⇒ 6x + 8y = −12

6x − 9y = 39.

Subtracting these equations gives 17y = −51, so y = −3
and x = (13−9)/2 = 2. The intersection point is (2,−3).

34. We have

2x + y = 8

5x − 7y = 1

�⇒ 14x + 7y = 56

5x − 7y = 1.

Adding these equations gives 19x = 57, so x = 3 and
y = 8− 2x = 2. The intersection point is (3, 2).

35. If a 	= 0 and b 	= 0, then (x/a) + (y/b) = 1 represents
a straight line that is neither horizontal nor vertical, and
does not pass through the origin. Putting y = 0 we get
x/a = 1, so the x-intercept of this line is x = a; putting
x = 0 gives y/b = 1, so the y-intercept is y = b.

36. The line (x/2) − (y/3) = 1 has x-intercept a = 2, and
y-intercept b = −3.

y

x

−3

x

2
− y

3
= 1

2

Fig. P.2.36

37. The line through (2, 1) and (3,−1) has slope
m = (−1 − 1)/(3 − 2) = −2 and equation
y = 1− 2(x − 2) = 5− 2x . Its y-intercept is 5.

3



SECTION P.2 (PAGE 16) R. A. ADAMS: CALCULUS

38. The line through (−2, 5) and (k, 1) has x-intercept 3, so
also passes through (3, 0). Its slope m satisfies

1 − 0

k − 3
= m = 0− 5

3+ 2
= −1.

Thus k − 3 = −1, and so k = 2.

39. C = Ax + B. If C = 5, 000 when x = 10, 000 and
C = 6, 000 when x = 15, 000, then

10, 000A + B = 5, 000

15, 000A + B = 6, 000

Subtracting these equations gives 5, 000A = 1, 000, so
A = 1/5. From the first equation, 2, 000 + B = 5, 000,
so B = 3, 000. The cost of printing 100,000 pamphlets is
$100, 000/5+ 3, 000 = $23, 000.

40. −40◦ and −40◦ is the same temperature on both the
Fahrenheit and Celsius scales.

C

-50

-40

-30

-20

-10

10

20

30

40

F-50 -40 -30 -20 -10 10 20 30 40 50 60 70 80

(−40,−40)

C = 5

9
(F − 32)

C = F

Fig. P.2.40

41. A = (2, 1), B = (6, 4), C = (5,−3)

|AB| =
√

(6 − 2)2 + (4 − 1)2 = √25 = 5

|AC | =
√

(5 − 2)2 + (−3− 1)2 = √25 = 5

|BC | =
√

(6 − 5)2 + (4 + 3)2 = √50 = 5
√

2.
Since |AB| = |AC |, triangle ABC is isosceles.

42. A = (0, 0), B = (1,√3), C = (2, 0)
|AB| =

√

(1 − 0)2 + (√3− 0)2 = √4 = 2

|AC | =
√

(2 − 0)2 + (0 − 0)2 = √4 = 2

|BC | =
√

(2 − 1)2 + (0 −√3)2 = √4 = 2.
Since |AB| = |AC | = |BC |, triangle ABC is equilateral.

43. A = (2,−1), B = (1, 3), C = (−3, 2)

|AB| =
√

(1 − 2)2 + (3+ 1)2 = √17

|AC | =
√

(−3− 2)2 + (2 + 1)2 = √34 = √2
√

17

|BC | =
√

(−3− 1)2 + (2 − 3)2 = √17.

Since |AB| = |BC | and |AC | = √2|AB|, triangle ABC
is an isosceles right-angled triangle with right angle at
B. Thus ABC D is a square if D is displaced from C
by the same amount A is from B, that is, by increments
�x = 2− 1 = 1 and �y = −1− 3 = −4. Thus
D = (−3+ 1, 2+ (−4)) = (−2,−2).

44. If M = (xm , ym) is the midpoint of P1 P2, then the dis-
placement of M from P1 equals the displacement of P2
from M:

xm − x1 = x2 − xm , ym − y1 = y2 − ym.

Thus xm = (x1 + x2)/2 and ym = (y1 + y2)/2.

45. If Q = (xq , yq) is the point on P1 P2 that is two thirds of
the way from P1 to P2, then the displacement of Q from
P1 equals twice the displacement of P2 from Q:

xq − x1 = 2(x2 − xq), yq − y1 = 2(y2 − yq).

Thus xq = (x1 + 2x2)/3 and yq = (y1 + 2y2)/3.

46. Let the coordinates of P be (x, 0) and those of Q be
(X,−2X). If the midpoint of PQ is (2, 1), then

(x + X)/2 = 2, (0 − 2X)/2 = 1.

The second equation implies that X = −1, and the sec-
ond then implies that x = 5. Thus P is (5, 0).

47.
√

(x − 2)2 + y2 = 4 says that the distance of (x, y) from
(2, 0) is 4, so the equation represents a circle of radius 4
centred at (2, 0).

48.
√

(x − 2)2 + y2 = √

x2 + (y − 2)2 says that (x, y) is
equidistant from (2, 0) and (0, 2). Thus (x, y) must
lie on the line that is the right bisector of the line from
(2, 0) to (0, 2). A simpler equation for this line is x = y.

49. The line 2x + ky = 3 has slope m = −2/k. This line
is perpendicular to 4x + y = 1, which has slope −4,
provided m = 1/4, that is, provided k = −8. The line is
parallel to 4x + y = 1 if m = −4, that is, if k = 1/2.

50. For any value of k, the coordinates of the point of inter-
section of x + 2y = 3 and 2x − 3y = −1 will also satisfy
the equation

(x + 2y − 3)+ k(2x − 3y + 1) = 0

4
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because they cause both expressions in parentheses to be
0. The equation above is linear in x and y, and so rep-
resents a straight line for any choice of k. This line will
pass through (1, 2) provided 1+ 4− 3+ k(2− 6+ 1) = 0,
that is, if k = 2/3. Therefore, the line through the point
of intersection of the two given lines and through the
point (1, 2) has equation

x + 2y − 3+ 2

3
(2x − 3y + 1) = 0,

or, on simplification, x = 1.

Section P.3 Graphs of Quadratic Equations
(page 22)

1. x2 + y2 = 16

2. x2 + (y − 2)2 = 4, or x2 + y2 − 4y = 0

3. (x + 2)2 + y2 = 9, or x2 + y2 + 4y = 5

4. (x − 3)2 + (y + 4)2 = 25, or x2 + y2 − 6x + 8y = 0.

5. x2 + y2 − 2x = 3

x2 − 2x + 1+ y2 = 4

(x − 1)2 + y2 = 4
centre: (1, 0); radius 2.

6. x2 + y2 + 4y = 0

x2 + y2 + 4y + 4 = 4

x2 + (y + 2)2 = 4
centre: (0,−2); radius 2.

7. x2 + y2 − 2x + 4y = 4

x2 − 2x + 1+ y2 + 4y + 4 = 9

(x − 1)2 + (y + 2)2 = 9
centre: (1,−2); radius 3.

8. x2 + y2 − 2x − y + 1 = 0

x2 − 2x + 1+ y2 − y + 1
4 = 1

4

(x − 1)2 + (

y − 1
2

)2 = 1
4

centre: (1, 1/2); radius 1/2.

9. x2 + y2 > 1 represents all points lying outside the circle
of radius 1 centred at the origin.

10. x2 + y2 < 4 represents the open disk consisting of all
points lying inside the circle of radius 2 centred at the
origin.

11. (x + 1)2 + y2 ≤ 4 represents the closed disk consisting of
all points lying inside or on the circle of radius 2 centred
at the point (−1, 0).

12. x2 + (y − 2)2 ≤ 4 represents the closed disk consisting of
all points lying inside or on the circle of radius 2 centred
at the point (0, 2).

13. Together, x2 + y2 > 1 and x2 + y2 < 4 represent annulus
(washer-shaped region) consisting of all points that are
outside the circle of radius 1 centred at the origin and
inside the circle of radius 2 centred at the origin.

14. Together, x2 + y2 ≤ 4 and (x + 2)2 + y2 ≤ 4 represent the
region consisting of all points that are inside or on both
the circle of radius 2 centred at the origin and the circle
of radius 2 centred at (−2, 0).

15. Together, x2+ y2 < 2x and x2+ y2 < 2y (or, equivalently,
(x − 1)2 + y2 < 1 and x2 + (y − 1)2 < 1) represent the
region consisting of all points that are inside both the
circle of radius 1 centred at (1, 0) and the circle of radius
1 centred at (0, 1).

16. x2 + y2 − 4x + 2y > 4 can be rewritten
(x−2)2+(y+1)2 > 9. This equation, taken together with
x + y > 1, represents all points that lie both outside the
circle of radius 3 centred at (2,−1) and above the line
x + y = 1.

17. The interior of the circle with centre (−1, 2) and radius√
6 is given by (x + 1)2 + (y − 2)2 < 6, or

x2 + y2 + 2x − 4y < 1.

18. The exterior of the circle with centre (2,−3) and ra-
dius 4 is given by (x − 2)2 + (y + 3)2 > 16, or
x2 + y2 − 4x + 6y > 3.

19. x2 + y2 < 2, x ≥ 1

20. x2 + y2 > 4, (x − 1)2 + (y − 3)2 < 10

21. The parabola with focus (0, 4) and directrix y = −4 has
equation x2 = 16y.

22. The parabola with focus (0,−1/2) and directrix y = 1/2
has equation x2 = −2y.

23. The parabola with focus (2, 0) and directrix x = −2 has
equation y2 = 8x .

24. The parabola with focus (−1, 0) and directrix x = 1 has
equation y2 = −4x .

25. y = x2/2 has focus (0, 1/2) and directrix y = −1/2.
y

x

(0,1/2)

y=−1/2

y=x2/2

Fig. P.3.25

26. y = −x2 has focus (0,−1/4) and directrix y = 1/4.

5
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y

x

y=1/4

(0,−1/4)

y=−x2

Fig. P.3.26

27. x = −y2/4 has focus (−1, 0) and directrix x = 1.
y

x

x=1

(−1,0)

x=−y2/4

Fig. P.3.27

28. x = y2/16 has focus (4, 0) and directrix x = −4.
y

x

(4,0)

x=y2/16
x=−4

Fig. P.3.28

29.

y

x

(3, 3)

4

(4,−2)

−3

y = x2

Version (b)

Version (c)

Version (d)

Version (a)

Fig. P.3.29

a) has equation y = x2 − 3.

b) has equation y = (x − 4)2 or y = x2 − 8x + 16.

c) has equation y = (x − 3)2 + 3 or y = x2 − 6x + 12.

d) has equation y = (x − 4)2 − 2, or y = x2 − 8x + 14.

30. a) If y = mx is shifted to the right by amount x1, the
equation y = m(x− x1) results. If (a, b) satisfies this
equation, then b = m(a−x1), and so x1 = a−(b/m).
Thus the shifted equation is
y = m(x − a + (b/m)) = m(x − a)+ b.

b) If y = mx is shifted vertically by amount y1,
the equation y = mx + y1 results. If (a, b)
satisfies this equation, then b = ma + y1, and
so y1 = b − ma. Thus the shifted equation is
y = mx + b − ma = m(x − a) + b, the same
equation obtained in part (a).

31. y = √

(x/3)+ 1

32. 4y = √x + 1

33. y = √

(3x/2)+ 1

34. (y/2) = √4x + 1

35. y = 1− x2 shifted down 1, left 1 gives y = −(x + 1)2.

36. x2 + y2 = 5 shifted up 2, left 4 gives
(x + 4)2 + (y − 2)2 = 5.

37. y = (x − 1)2 − 1 shifted down 1, right 1 gives
y = (x − 2)2 − 2.

38. y = √x shifted down 2, left 4 gives y =√x + 4− 2.

6
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39. y = x2 + 3, y = 3x + 1. Subtracting these equations
gives
x2 − 3x + 2 = 0, or (x − 1)(x − 2) = 0. Thus x = 1 or
x = 2. The corresponding values of y are 4 and 7. The
intersection points are (1, 4) and (2, 7).

40. y = x2 − 6, y = 4x − x2. Subtracting these equations
gives
2x2 − 4x − 6 = 0, or 2(x − 3)(x + 1) = 0. Thus x = 3
or x = −1. The corresponding values of y are 3 and −5.
The intersection points are (3, 3) and (−1,−5).

41. x2+ y2 = 25, 3x+4y = 0. The second equation says that
y = −3x/4. Substituting this into the first equation gives
25x2/16 = 25, so x = ±4. If x = 4, then the second
equation gives y = −3; if x = −4, then y = 3. The
intersection points are (4,−3) and (−4, 3). Note that
having found values for x , we substituted them into the
linear equation rather than the quadratic equation to find
the corresponding values of y. Had we substituted into
the quadratic equation we would have got more solutions
(four points in all), but two of them would have failed to
satisfy 3x + 4y = 12. When solving systems of nonlinear
equations you should always verify that the solutions you
find do satisfy the given equations.

42. 2x2 + 2y2 = 5, xy = 1. The second equation says that
y = 1/x . Substituting this into the first equation gives
2x2 + (2/x2) = 5, or 2x4 − 5x2 + 2 = 0. This equation
factors to (2x2 − 1)(x2 − 2) = 0, so its solutions are
x = ±1/

√
2 and x = ±√2. The corresponding values

of y are given by y = 1/x . Therefore, the intersection
points are (1/

√
2,
√

2), (−1/
√

2,−√2), (
√

2, 1/
√

2), and
(−√2,−1/

√
2).

43. (x2/4) + y2 = 1 is an ellipse with major axis between
(−2, 0) and (2, 0) and minor axis between (0,−1) and
(0, 1).

y

x

x2

4 +y2=1

Fig. P.3.43

44. 9x2 + 16y2 = 144 is an ellipse with major axis between
(−4, 0) and (4, 0) and minor axis between (0,−3) and
(0, 3).

y

x

9x2+16y2=144

Fig. P.3.44

45.
(x − 3)2

9
+ (y + 2)2

4
= 1 is an ellipse with centre at

(3,−2), major axis between (0,−2) and (6,−2) and
minor axis between (3,−4) and (3, 0).

y

x

(3,−2)

(x−3)2

9 + (y+2)2

4 =1

Fig. P.3.45

46. (x − 1)2 + (y + 1)2

4
= 4 is an ellipse with centre at

(1,−1), major axis between (1,−5) and (1, 3) and minor
axis between (−1,−1) and (3,−1).

y

x

(x−1)2+ (y+1)2

4 =4

(1,−1)

Fig. P.3.46

47. (x2/4) − y2 = 1 is a hyperbola with centre at the ori-
gin and passing through (±2, 0). Its asymptotes are
y = ±x/2.

7
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y

x

x2

4 −y2=1

y=−x/2

y=x/2

Fig. P.3.47

48. x2 − y2 = −1 is a rectangular hyperbola with centre at
the origin and passing through (0,±1). Its asymptotes
are y = ±x .

y

x

x2−y2=−1

y=−x

y=x

Fig. P.3.48

49. xy = −4 is a rectangular hyperbola with centre at
the origin and passing through (2,−2) and (−2, 2). Its
asymptotes are the coordinate axes.

y

x

xy=−4

Fig. P.3.49

50. (x − 1)(y + 2) = 1 is a rectangular hyperbola with centre
at (1,−2) and passing through (2,−1) and (0,−3). Its
asymptotes are x = 1 and y = −2.

y

x

x = 1

y = −2

(x − 1)(y + 2) = 1

Fig. P.3.50

51. a) Replacing x with −x replaces a graph with its re-
flection across the y-axis.

b) Replacing y with −y replaces a graph with its re-
flection across the x-axis.

52. Replacing x with −x and y with −y reflects the graph in
both axes. This is equivalent to rotating the graph 180◦
about the origin.

53. |x | + |y| = 1.
In the first quadrant the equation is x + y = 1.
In the second quadrant the equation is −x + y = 1.
In the third quadrant the equation is −x − y = 1.
In the fourth quadrant the equation is x − y = 1.

y

x

1
|x | + |y| = 1

1
−1

−1

Fig. P.3.53

Section P.4 Functions and Their Graphs
(page 31)

1. f (x) = 1+ x2; domain �, range [1,∞)
2. f (x) = 1−√x ; domain [0,∞), range (−∞, 1]

3. G(x) = √8− 2x ; domain (−∞, 4], range [0,∞)
4. F(x) = 1/(x − 1); domain (−∞, 1) ∪ (1,∞), range

(−∞, 0) ∪ (0,∞)

8
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5. h(t) = t√
2− t

; domain (−∞, 2), range �. (The equa-

tion y = h(t) can be squared and rewritten as
t2 + y2t − 2y2 = 0, a quadratic equation in t having real
solutions for every real value of y. Thus the range of h
contains all real numbers.)

6. g(x) = 1

1 −√x − 2
; domain (2, 3) ∪ (3,∞), range

(−∞, 0) ∪ (0,∞). The equation y = g(x) can be solved
for
x = 2 − (1 − (1/y))2 so has a real solution provided
y 	= 0.

7.

y

x

y

x

y

x

y

x

graph (i)

graph (iii) graph (iv)

graph (ii)

Fig. P.4.7

Graph (ii) is the graph of a function because vertical
lines can meet the graph only once. Graphs (i), (iii),
and (iv) do not have this property, so are not graphs of
functions.

8.

y

x

y

x

y

x

y

x

graph (a) graph (b)

graph (d)graph (c)

Fig. P.4.8

a) is the graph of x(1−x)2, which is positive for x > 0.

b) is the graph of x2− x3 = x2(1− x), which is positive
if x < 1.

c) is the graph of x− x4, which is positive if 0 < x < 1
and behaves like x near 0.

d) is the graph of x3 − x4, which is positive if
0 < x < 1 and behaves like x3 near 0.

9.
x f (x) = x4

0 0
±0.5 0.0625
±1 1
±1.5 5.0625
±2 16

y

x

y = x4

Fig. P.4.9

9
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10.
x f (x) = x2/3

0 0
±0.5 0.62996
±1 1
±1.5 1.3104
±2 1.5874

y

x

y = x2/3

Fig. P.4.10

11. f (x) = x2 + 1 is even: f (−x) = f (x)

12. f (x) = x3 + x is odd: f (−x) = − f (x)

13. f (x) = x

x2 − 1
is odd: f (−x) = − f (x)

14. f (x) = 1

x2 − 1
is even: f (−x) = f (x)

15. f (x) = 1

x − 2
is odd about (2, 0): f (2− x) = − f (2+ x)

16. f (x) = 1

x + 4
is odd about (−4, 0):

f (−4− x) = − f (−4 + x)

17. f (x) = x2−6x is even about x = 3: f (3− x) = f (3+ x)

18. f (x) = x3 − 2 is odd about (0,−2):
f (−x)+ 2 = −( f (x)+ 2)

19. f (x) = |x3| = |x |3 is even: f (−x) = f (x)

20. f (x) = |x + 1| is even about x = −1:
f (−1− x) = f (−1+ x)

21. f (x) = √2x has no symmetry.

22. f (x) = √

(x − 1)2 is even about x = 1:
f (1 − x) = f (1 + x)

23.
y

xy=−x2

24.
y

x

y=1−x2

25.
y

x

y=(x−1)2

26.
y

x

y=(x−1)2+1

27.
y

x

y=1−x3

28.
y

x

y=(x+2)3

10
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29.
y

x

y=√x+1

30.
y

x

y=√x+1

31.
y

x

y=−|x|

32.
y

x

y=|x|−1

33.
y

x

y=|x−2|

34.
y

x

y=1+|x−2|

35.
y

x

y= 2
x+2

x=−2

36.
y

x

x=2

y= 1
2−x

37.
y

x

y= x
x+1

x=−1

y=1

38.
y

x

x=1

y=−1

y= x
1−x

11
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39.
y

x

y= f (x)+2
(1,3)

2 (2,2)

y

x

y= f (x)
(1,1)

2

Fig. P.4.39(a) Fig. P.4.39(b)

40.
y

x

y= f (x)+2
(1,3)

2 (2,2)

y

x
1

y= f (x)−1
(2,−1)−1

Fig. P.4.40(a) Fig. P.4.40(b)
41.

y

x

y= f (x+2)
(−1,1)

−2

42.
y

x

(2,1)

1 3

y= f (x−1)

43.
y

x
2

y=− f (x)
(1,−1)

44.
y

x

y= f (−x)
(−1,1)

−2

45.
y

x

(3,1)

2 4

y= f (4−x)

46.
y

x

(1,1)

y=1− f (1−x)

(−1,1)

47. Range is approximately [−0.18, 0.68].
y

-1.0

-0.8

-0.6

-0.4

-0.2

0.2

0.4

0.6

0.8

x-5 -4 -3 -2 -1 1 2 3 4y = −0.18

y = 0.68
y = x + 2

x2 + 2x + 3

Fig. P.4.47

48. Range is approximately (−∞, 0.17].
y

-7

-6

-5

-4

-3

-2

-1
x-5 -4 -3 -2 -1 1 2 3 4

y = 0.17

y = x − 1

x2 + x

Fig. P.4.48
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49.
y

-1

1

2

3

4

5

x-5 -4 -3 -2 -1 1 2 3 4

y = x4 − 6x3 + 9x2 − 1
Fig. P.4.49

Apparent symmetry about x = 1.5.
This can be confirmed by calculating f (3 − x), which
turns out to be equal to f (x).

50.
y

-1

1

2

x-5 -4 -3 -2 -1 1 2 3 4

y = 3− 2x + x2

2− 2x + x2

Fig. P.4.50

Apparent symmetry about x = 1.
This can be confirmed by calculating f (2 − x), which
turns out to be equal to f (x).

51.
y

-2

-1

1

2

3

4

x-3 -2 -1 1 2 3 4 5 6

y = x − 1

x − 2

y = −x + 3

y = x − 1

Fig. P.4.51

Apparent symmetry about (2, 1), and about the lines
y = x − 1 and y = 3− x .

These can be confirmed by noting that f (x) = 1+ 1

x − 2
,

so the graph is that of 1/x shifted right 2 units and up
one.

52.
y

-2

-1

1

2

3

4

5

x-7 -6 -5 -4 -3 -2 -1 1 2

y = 2x2 + 3x

x2 + 4x + 5

Fig. P.4.52

Apparent symmetry about (−2, 2).
This can be confirmed by calculating shifting the graph
right by 2 (replace x with x − 2) and then down 2 (sub-
tract 2). The result is −5x/(1+ x2), which is odd.

53. If f is both even and odd the f (x) = f (−x) = − f (x),
so f (x) = 0 identically.

Section P.5 Combining Functions to Make
New Functions (page 37)

1. f (x) = x , g(x) = √x − 1.
D( f ) = �, D(g) = [1,∞).
D( f + g) = D( f − g) = D( f g) = D(g/ f ) = [1,∞),
D( f/g) = (1,∞).
( f + g)(x) = x +√x − 1

( f − g)(x) = x −√x − 1

( f g)(x) = x
√

x − 1

( f/g)(x) = x/
√

x − 1

(g/ f )(x) = (√1− x)/x

2. f (x) = √1− x , g(x) = √1+ x .
D( f ) = (−∞, 1], D(g) = [−1,∞).
D( f + g) = D( f − g) = D( f g) = [−1, 1],
D( f/g) = (−1, 1], D(g/ f ) = [−1, 1).
( f + g)(x) = √1− x +√1+ x

( f − g)(x) = √1− x −√1+ x

( f g)(x) =
√

1− x2

( f/g)(x) = √

(1 − x)/(1 + x)

(g/ f )(x) = √

(1 + x)/(1 − x)

13
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3.

y = x

y = −x2

y = x − x2

y

x

4.
y

-2

-1

1

x-2 -1 1

y = −x

y = x3

y = x3 − x

5.
y

x

y = x + |x |

y = |x |

y = x = |x |

y = x

6.
y

-1

1

2

3

4

x-2 -1 1 2 3 4 5

y = |x |

y = |x − 2|

y = |x | + |x − 2|

7. f (x) = x + 5, g(x) = x2 − 3.
f ◦ g(0) = f (−3) = 2, g( f (0)) = g(5) = 22

f (g(x)) = f (x2 − 3) = x2 + 2

g ◦ f (x) = g( f (x)) = g(x + 5) = (x + 5)2 − 3

f ◦ f (−5) = f (0) = 5, g(g(2)) = g(1) = −2

f ( f (x)) = f (x + 5) = x + 10

g ◦ g(x) = g(g(x)) = (x2 − 3)2 − 3

8. f (x) = 2/x , g(x) = x/(1− x).
f ◦ f (x) = 2/(2/x) = x; D( f ◦ f ) = {x : x 	= 0}
f ◦ g(x) = 2/(x/(1 − x)) = 2(1 − x)/x;

D( f ◦ g) = {x : x 	= 0, 1}
g ◦ f (x) = (2/x)/(1 − (2/x)) = 2/(x − 2);

D(g ◦ f ) = {x : x 	= 0, 2}
g ◦ g(x) = (x/(1 − x))/(1 − (x/(1 − x))) = x/(1− 2x);

D(g ◦ g) = {x : x 	= 1/2, 1}

9. f (x) = 1/(1− x), g(x) = √x − 1.
f ◦ f (x) = 1/(1 − (1/(1 − x))) = (x − 1)/x;

D( f ◦ f ) = {x : x 	= 0, 1}
f ◦ g(x) = 1/(1 −√x − 1);

D( f ◦ g) = {x : x ≥ 1, x 	= 2}
g ◦ f (x) = √

(1/(1 − x))− 1 = √

x/(1− x);
D(g ◦ f ) = [0, 1)

g ◦ g(x) =
√√

x − 1− 1; D(g ◦ g) = [2,∞)
10. f (x) = (x + 1)/(x − 1) = 1 + 2/(x − 1), g(x) = sgn (x).

f ◦ f (x) = 1 + 2/(1 + (2/(x − 1)− 1)) = x;
D( f ◦ f ) = {x : x 	= 1}
f ◦ g(x) = sgn x + 1

sgn x − 1
= 0; D( f ◦ g) = (−∞, 0)

g ◦ f (x) = sgn

(
x + 1

x − 1

)

=
{ 1 if x < −1 or x > 1
−1 if −1 < x < 1

;
D(g ◦ f ) = {x : x 	= −1, 1}

g ◦ g(x) = sgn (sgn (x)) = sgn (x); D(g ◦ g) = {x : x 	= 0}
f (x) g(x) f ◦ g(x)

11. x2 x + 1 (x + 1)2

12. x − 4 x + 4 x
13.

√
x x2 |x |

14. 2x3 + 3 x1/3 2x + 3
15. (x + 1)/x 1/(x − 1) x
16. 1/(x + 1)2 x − 1 1/x2

17. y = √x .
y = 2+√x : previous graph is raised 2 units.
y = 2+√3+ x : previous graph is shiftend left 3 units.
y = 1/(2 +√3+ x): previous graph turned upside down
and shrunk vertically.

14



INSTRUCTOR’S SOLUTIONS MANUAL SECTION P.5 (PAGE 37)

y

x

y = √x

y = 2+√x

y = 2+√x + 3

y = 1/(2 +√x + 3)

Fig. P.5.17

18.
y

x

y = 2x

y = 2x − 1

y = 1− 2x

y = √1 − 2x

y = 1√
1− 2x

y = 1√
1− 2x

− 1

Fig. P.5.18

19.
y

x82

(1,2)

y=2 f (x)

20.
y

x

2

y=−(1/2) f (x)

21.
y

x

y= f (2x)
(1/2,1)

1

22.
y

x

y= f (x/3)

63

23.
y

x

y=1+ f (−x/2)

(−2,2)

24.
y

x

y=2 f ((x−1)/2)

1 5

25.
y

x

y = f (x)

(1, 1)

2

26.
y

x

y = g(x)

(1, 1)

-2

15
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27. F(x) = Ax + B
(a) F ◦ F(x) = F(x)
⇒ A(Ax + B)+ B = Ax + B
⇒ A[(A − 1)x + B] = 0
Thus, either A = 0 or A = 1 and B = 0.
(b) F ◦ F(x) = x
⇒ A(Ax + B)+ B = x
⇒ (A2 − 1)x + (A + 1)B = 0
Thus, either A = −1 or A = 1 and B = 0

28. �x� = 0 for 0 ≤ x < 1; 
x� = 0 for −1 ≤ x < 0.

29. �x� = 
x� for all integers x .

30. 
−x� = −�x� is true for all real x ; if x = n + y where n
is an integer and 0 ≤ y < 1, then −x = −n − y, so that

−x� = −n and �x� = n.

31.
y

x

y = x − �x�

32. f (x) is called the integer part of x because | f (x)|
is the largest integer that does not exceed x ; i.e.
|x | = | f (x)| + y, where 0 ≤ y < 1.

y

x

y = f (x)

Fig. P.5.32

33. If f is even and g is odd, then: f 2, g2, f ◦ g, g ◦ f ,
and f ◦ f are all even. f g, f/g, g/ f , and g ◦ g are odd,
and f + g is neither even nor odd. Here are two typical
verifications:

f ◦ g(−x) = f (g(−x)) = f (−g(x)) = f (g(x)) = f ◦ g(x)

( f g)(−x) = f (−x)g(−x) = f (x)[−g(x)]

= − f (x)g(x) = −( f g)(x).

The others are similar.

34. f even ⇔ f (−x) = f (x)
f odd ⇔ f (−x) = − f (x)
f even and odd ⇒ f (x) = − f (x)⇒ 2 f (x) = 0
⇒ f (x) = 0

35. a) Let E(x) = 1
2 [ f (x)+ f (−x)].

Then E(−x) = 1
2 [ f (−x) + f (x)] = E(x). Hence,

E(x) is even.
Let O(x) = 1

2 [ f (x)− f (−x)].
Then O(−x) = 1

2 [ f (−x) − f (x)] = −O(x) and
O(x) is odd.

E(x)+ O(x)

= 1
2 [ f (x)+ f (−x)] + 1

2 [ f (x)− f (−x)]

= f (x).

Hence, f (x) is the sum of an even function and an
odd function.

b) If f (x) = E1(x) + O1(x) where E1 is even and O1
is odd, then

E1(x)+ O1(x) = f (x) = E(x)+ O(x).

Thus E1(x)− E(x) = O(x)−O1(x). The left side of
this equation is an even function and the right side
is an odd function. Hence both sides are both even
and odd, and are therefore identically 0 by Exercise
36. Hence E1 = E and O1 = O. This shows that
f can be written in only one way as the sum of an
even function and an odd function.

Section P.6 Polynomials and
Rational Functions (page 43)

1. x2 − 7x + 10 = (x + 5)(x + 2)
The roots are −5 and −2.

2. x2 − 3x − 10 = (x − 5)(x + 2)
The roots are 5 and −2.

3. If x2 + 2x + 2 = 0, then x = −2±√4− 8

2
= −1 ± i .

The roots are −1+ i and −1− i .
x2 + 2x + 2 = (x + 1− i )(x + 1+ i ).

4. Rather than use the quadratic formula this time, let us
complete the square.

x2 − 6x + 13 = x2 − 6x + 9+ 4

= (x − 3)2 + 22

= (x − 3− 2i )(x − 3+ 2i ).

The roots are 3+ 2i and 3 − 2i .

5. 16x4 − 8x2 + 1 = (4x2 − 1)2 = (2x − 1)2(2x + 1)2. There
are two double roots: 1/2 and −1/2.

6. x4 + 6x3 + 9x2 = x2(x2 + 6x + 9) = x2(x + 3)2. There
are two double roots, 0 and −3.

16
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7. x3 + 1 = (x + 1)(x2 − x + 1). One root is −1. The other
two are the solutions of x2 − x + 1 = 0, namely

x = 1±√1− 4

2
= 1

2
±
√

3

2
i.

We have

x3 + 1 = (x + 1)

(

x − 1

2
−
√

3

2
i

)(

x − 1

2
+
√

3

2
i

)

.

8. x4 − 1 = (x2 − 1)(x2 + 1) = (x − 1)(x + 1)(x − i )(x + i ).
The roots are 1, −1, i , and −i .

9. x6 − 3x4 + 3x2 − 1 = (x2 − 1)3 = (x − 1)3(x + 1)3. The
roots are 1 and −1, each with multiplicity 3.

10. x5 − x4 − 16x + 16 = (x − 1)(x4 − 16)

= (x − 1)(x2 − 4)(x4 + 4)

= (x − 1)(x − 2)(x + 2)(x − 2i )(x + 2i ).

The roots are 1, 2, −2, 2i , and −2i .

11. x5 + x3 + 8x2 + 8 = (x2 + 1)(x3 + 8)

= (x + 2)(x − i )(x + i )(x2 − 2x + 4)
Three of the five roots are −2, i and −i . The remain-
ing two are solutions of x2 − 2x + 4 = 0, namely

x = 2±√4− 16

2
= 1±√3 i . We have

x5+x3+8x2+8 = (x+2)(x−i )(x+i )(x−a+√3 i )(x−a−√3 i ).

12. x9 − 4x7 − x6 + 4x4 = x4(x5 − x2 − 4x3 + 4)

= x4(x3 − 1)(x2 − 4)

= x4(x − 1)(x − 2)(x + 2)(x2 + x + 1).

Seven of the nine roots are: 0 (with multiplicity 4),
1, 2, and −2. The other two roots are solutions of
x2 + x + 1 = 0, namely

x = −1±√1− 4

2
= −1

2
±
√

3

2
i.

The required factorization of x9 − 4x7 − x6 + 4x4 is

x4(x−1)(x−2)(x+2)

(

x − 1

2
+
√

3

2
i

)(

x − 1

2
−
√

3

2
i

)

.

13.
x3 − 1

x2 − 2
= x3 − 2x + 2x − 1

x2 − 2

= x(x2 − 2)+ 2x − 1

x2 − 2

= x + 2x − 1

x2 − 2
.

14.
x2

x2 + 5x + 3
= x2 + 5x + 3− 5x − 3

x2 + 5x + 3

= 1+ −5x − 3

x2 + 5x + 3
.

15.
x3

x2 + 2x + 3
= x3 + 2x2 + 3x − 2x2 − 3x

x2 + 2x + 3

= x(x2 + 2x + 3)− 2x2 − 3x

x2 + 2x + 3

= x − 2(x2 + 2x + 3)− 4x − 6 − 3x

x2 + 2x + 3

= x − 2+ 7x + 6

x2 + 2x + 3
.

16.
x4 + x2

x3 + x2 + 1
= x(x3 + x2 + 1)− x3 − x + x2

x3 + x2 + 1

= x + −(x
3 + x2 + 1)+ x2 + 1− x + x2

x3 + x2 + 1

= x − 1+ 2x2 − x + 1

x3 + x2 + 1
.

17. Let P(x) = anxn + an−1xn−1 + · · · + a1x + a0, where
n ≥ 1. By the Factor Theorem, x − 1 is a factor of
P(x) if and only if P(1) = 0, that is, if and only if
an + an−1 + · · · + a1 + a0 = 0.

18. Let P(x) = anxn + an−1xn−1 + · · · + a1x + a0, where
n ≥ 1. By the Factor Theorem, x + 1 is a factor of
P(x) if and only if P(−1) = 0, that is, if and only if
a0−a1+a2−a3+· · ·+ (−1)nan = 0. This condition says
that the sum of the coefficients of even powers is equal
to the sum of coefficients of odd powers.

19. Let P(x) = anxn + an−1xn−1 + · · · + a1x + a0, where the
coefficients ak , 0 ≤ k ≤ n are all real numbers, so that
āk = ak . Using the facts about conjugates of sums and
products mentioned in the statement of the problem, we
see that if z = x + i y, where x and y are real, then

P(z) = anzn + an−1zn−1 + · · · + a1z + a0

= an z̄n + an−1 z̄n−1 + · · · + a1 z̄ + a0

= P(z̄).

If z is a root of P, then P(z̄) = P(z) = 0̄ = 0, and z̄ is
also a root of P.

20. By the previous exercise, z̄ = u − iv is also a root of
P. Therefore P(x) has two linear factors x − u − iv
and x − u + iv. The product of these factors is the real
quadratic factor (x − u)2 − i 2v2 = x2 − 2ux + u2 + v2,
which must also be a factor of P(x).

21. By the previous exercise

P(x)

x2 − 2ux + u2 + v2 =
P(x)

(x − u − iv)(x − u + iv)
= Q1(x),

17
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where Q1, being a quotient of two polynomials with real
coefficients, must also have real coefficients. If z = u+iv
is a root of P having multiplicity m > 1, then it must
also be a root of Q1 (of multiplicity m − 1), and so,
therefore, z̄ must be a root of Q1, as must be the real
quadratic x2 − 2ux + u2 + v2. Thus

P(x)

(x2 − 2ux + u2 + v2)2
= Q1(x)

x2 − 2ux + u2 + v2 = Q2(x),

where Q2 is a polynomial with real coefficients. We can
continue in this way until we get

P(x)

(x2 − 2ux + u2 + v2)m
= Qm(x),

where Qm no longer has z (or z̄) as a root. Thus z and z̄
must have the same multiplicity as roots of P.

Section P.7 The Trigonometric Functions
(page 55)

1. cos

(
3π

4

)

= cos
(

π − π
4

)

= − cos
π

4
= − 1√

2

2. tan
−3π

4
= − tan

3π

4
= −1

3. sin
2π

3
= sin

(

π − π
3

)

= sin
π

3
=
√

3

2

4. sin

(
7π

12

)

= sin
(π

4
+ π

3

)

= sin
π

4
cos

π

3
+ cos

π

4
sin

π

3

= 1√
2

1

2
+ 1√

2

√
3

2
= 1+√3

2
√

2

5. cos
5π

12
= cos

(
2π

3
− π

4

)

= cos
2π

3
cos

π

4
+ sin

2π

3
sin

π

4

= −
(

1

2

)(
1√
2

)

+
(√

3

2

) (
1√
2

)

=
√

3 − 1

2
√

2

6. sin
11π

12
= sin

π

12

= sin
(π

3
− π

4

)

= sin
π

3
cos

π

4
− cos

π

3
sin

π

4

=
(√

3

2

) (
1√
2

)

−
(

1

2

)(
1√
2

)

=
√

3− 1

2
√

2

7. cos(π + x) = cos
(

2π − (π − x)
)

= cos
(

−(π − x)
)

= cos(π − x) = − cos x

8. sin(2π − x) = − sin x

9. sin

(
3π

2
− x

)

= sin
(

π −
(

x − π
2

))

= sin
(

x − π
2

)

= − sin
(π

2
− x

)

= − cos x

10. cos

(
3π

2
+ x

)

= cos
3π

2
cos x − sin

3π

2
sin x

= (−1)(− sin x) = sin x

11. tan x + cot x = sin x

cos x
+ cos x

sin x

= sin2 x + cos2 x

cos x sin x

= 1

cos x sin x

12.
tan x − cot x

tan x + cot x
=

( sin x

cos x
− cos x

sin x

)

( sin x

cos x
+ cos x

sin x

)

=

(
sin2 x − cos2 x

cos x sin x

)

(
sin2 x + cos2 x

cos x sin x

)

= sin2 x − cos2 x

13. cos4 x − sin4 x = (cos2 x − sin2 x)(cos2 x + sin2 x)

= cos2 x − sin2 x = cos(2x)

14. (1 − cos x)(1 + cos x) = 1 − cos2 x = sin2 x implies
1− cos x

sin x
= sin x

1+ cos x
. Now

1− cos x

sin x
=

1− cos 2
( x

2

)

sin 2
( x

2

)

=
1−

(

1− 2 sin2
( x

2

))

2 sin
x

2
cos

x

2

=
sin

x

2

cos
x

2

= tan
x

2

15.
1− cos x

1+ cos x
=

2 sin2
( x

2

)

2 cos2
( x

2

) = tan2
( x

2

)

18
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16.
cos x − sin x

cos x + sin x
= (cos x − sin x)2

(cos x + sin x)(cos x − sin x)

= cos2 x − 2 sin x cos x + sin2 x

cos2 x − sin2 x

= 1− sin(2x)

cos(2x)
= sec(2x)− tan(2x)

17. sin 3x = sin(2x + x)

= sin 2x cos x + cos 2x sin x

= 2 sin x cos2 x + sin x(1− 2 sin2 x)

= 2 sin x(1 − sin2 x)+ sin x − 2 sin3 x

= 3 sin x − 4 sin3 x

18. cos 3x = cos(2x + x)

= cos 2x cos x − sin 2x sin x

= (2 cos2 x − 1) cos x − 2 sin2 x cos x

= 2 cos3 x − cos x − 2(1 − cos2 x) cos x

= 4 cos3 x − 3 cos x

19. cos 2x has period π .
y

x2ππ

π/2

1
y = cos(2x)

Fig. P.7.19

20. sin
x

2
has period 4π .

y

xπ 2π

−1

1

Fig. P.7.20

21. sinπx has period 2.
y

x2 431

1

−1

y = sin(π x)

Fig. P.7.21

22. cos
πx

2
has period 4.

y

x
1

3
5

1

−1

Fig. P.7.22

23.
y

-3

-2

-1

1

2

x

y = 2 cos
(

x − π
3

)

π−π

24.
y

-1

1

2

x

y = 1+ sin
(π

4

)

−π π

25. sin x = 3

5
,

π

2
< x < π

cos x = −4

5
, tan x = −3

4

x

53

−4

Fig. P.7.25

26. tan x = 2 where x is in [0,
π

2
]. Then

sec2 x = 1+ tan2 x = 1+ 4 = 5. Hence,

sec x = √5 and cos x = 1

sec x
= 1√

5
,

sin x = tan x cos x = 2√
5

.

19



SECTION P.7 (PAGE 55) R. A. ADAMS: CALCULUS

27. cos x = 1

3
, −π

2
< x < 0

sin x = −
√

8

3
= −2

3

√
2

tan x = −
√

8

1
= −2

√
2

x

−√8

1

3

Fig. P.7.27

28. cos x = − 5

13
where x is in

[π

2
, π

]

. Hence,

sin x = √1− cos2 x =
√

1− 25

169
= 12

13
,

tan x = −12

5
.

29. sin x = − 1

2
, π < x <

3π

2

cos x = −
√

3

2

tan x = 1√
3

x

2−1

−√3

Fig. P.7.29

30. tan x = 1

2
where x is in [π,

3π

2
]. Then,

sec2 x = 1+ 1

4
= 5

4
. Hence,

sec x = −
√

5

2
, cos x = − 2√

5
,

sin x = tan x cos x = − 1√
5

.

31. c = 2, B = π

3

a = c cos B = 2 × 1

2
= 1

b = c sin B = 2×
√

3

2
= √3

32. b = 2, B = π

3

B

a

C

b

Ac
2

a
= tan B = √3⇒ a = 2√

3
2

c
= sin B =

√
3

2
⇒ c = 4√

3

33. a = 5, B = π

6

b = a tan B = 5× 1√
3
= 5√

3

c =
√

a2 + b2 =
√

25 + 25

3
= 10√

3

34. sin A = a

c
⇒ a = c sin A

35.
a

b
= tan A⇒ a = b tan A

36. cos B = a

c
⇒ a = c cos B

37.
b

a
= tan B ⇒ a = b cot B

38. sin A = a

c
⇒ c = a

sin A

39.
b

c
= cos A⇒ c = b sec A

40. sin A = a

c

41. sin A = a

c
=
√

c2 − b2

c

42. sin A = a

c
= a√

a2 + b2

43. a = 4, b = 3, A = π

4

sin B = b
sin A

a
= 3

4

1√
2
= 3

4
√

2

44. Given that a = 2, b = 2, c = 3.

C

b

A

c

B
a

Since a2 = b2 + c2 − 2bc cos A,

cos A = a2 − b2 − c2

−2bc

= 4− 4 − 9

−2(2)(3)
= 3

4
.

45. a = 2, b = 3, c = 4
b2 = a2 + c2 − 2ac cos B

Thus cos B = 4+ 16− 9

2× 2× 4
= 11

16

sin B =
√

1 − 112

162 =
√

256 − 121

16
=
√

135

16
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46. Given that a = 2, b = 3, C = π

4
.

c2 = a2+b2−2ab cos C = 4+9−2(2)(3) cos
π

4
= 13− 12√

2
.

Hence, c =
√

13− 12√
2
≈ 2.12479.

47. c = 3, A = π

4
, B = π

3
implies C = 5π

12
a

sin A
= c

sin C
⇒ a = 1√

2

3

sin

(
5π

12

)

a = 3√
2

1

sin

(
7π

12

)

= 3√
2

2
√

2

1+√3
(by #5)

= 6

1+√3

48. Given that a = 2, b = 3, C = 35◦. Then
c2 = 4+ 9 − 2(2)(3) cos 35◦, hence c ≈ 1.78050.

49. a = 4, B = 40◦, C = 70◦
Thus A = 70◦.

b

sin 40◦
= 4

sin 70◦
so b = 4

sin 40◦

sin 70◦
= 2.736

50. If a = 1, b = √2, A = 30◦, then
sin B

b
= sin A

a
= 1

2
.

Thus sin B =
√

2

2
= 1√

2
, B = π

4
or

3π

4
, and

C = π−
(π

4
+ π

6

)

= 7π

12
or C = π−

(
3π

4
+ π

6

)

= π

12
.

Thus, cos C = cos
7π

12
= cos

(π

4
+ π

3

)

= 1−√3

2
√

2
or

cos C = cos
π

12
= cos

(π

3
− π

4

)

= 1+√3

2
√

2
.

Hence,

c2 = a2 + b2 − 2ab cos C

= 1+ 2− 2
√

2 cos C

= 3− (1−√3) or 3 − (1 +√3)

= 2+√3 or 2−√3.

Hence, c =
√

2+√3 or
√

2 −√3.

π/6

√
2

1 1

C

A B ′ B ′′

Fig. P.7.50

51. Let h be the height of the pole and x be the distance
from C to the base of the pole.
Then h = x tan 50◦ and h = (x + 10) tan 35◦
Thus x tan 50◦ = x tan 35◦ + 10 tan 35◦ so

x = 10 tan 35◦

tan 50◦ − tan 35◦

h = 10 tan 50◦ tan 35◦

tan 50◦ − tan 35◦
≈ 16.98

The pole is about 16.98 metres high.

52. See the following diagram. Since tan 40◦ = h/a, there-
fore a = h/ tan 40◦. Similarly, b = h/ tan 70◦.
Since a + b = 2 km, therefore,

h

tan 40◦
+ h

tan 70◦
= 2

h = 2(tan 40◦ tan 70◦)
tan 70◦ + tan 40◦

≈ 1.286 km.

h

a b BA

Balloon

70◦40◦

Fig. P.7.52

53. Area �ABC = 1

2
|BC |h = ah

2
= ac sin B

2
= ab sin C

2

By symmetry, area �ABC also = 1

2
bc sin A

b

C

A

h

B

c

P

Fig. P.7.53
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54. From Exercise 53, area = 1
2 ac sin B. By Cosine Law,

cos B = a2 + c2 − b2

2ac
. Thus,

sin B =
√

1−
(

a2 + c2 − b2

2ac

)2

=
√−a4 − b4 − c4 + 2a2b2 + 2b2c2 + 2a2c2

2ac
.

Hence, Area =
√−a4 − b4 − c4 + 2a2b2 + 2b2c2 + 2a2c2

4
square units. Since,

s(s − a)(s − b)(s − c)

= b + c + a

2

b + c − a

2

a − b + c

2

a + b − c

2

= 1

16

(

(b + c)2 − a2
)(

a2 − (b − c)2
)

= 1

16

(

a2
(

(b + c)2 + (b − c)2
)

− a4 − (b2 − c2)2
)

= 1

16

(

2a2b2 + 2a2c2 − a4 − b4 − c4 + 2b2c2
)

Thus
√

s(s − a)(s − b)(s − c) = Area of triangle.
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CHAPTER 1. LIMITS AND CONTINUITY

Section 1.1 Examples of Velocity, Growth
Rate, and Area (page 61)

1. Average velocity =
�x

�t
= (t + h)2 − t2

h
m/s.

2.
h Avg. vel. over [2, 2+ h]

1 5.0000
0.1 4.1000
0.01 4.0100

0.001 4.0010
0.0001 4.0001

3. Guess velocity is v = 4 m/s at t = 2 s.

4. Average volocity on [2, 2+ h] is

(2 + h)2 − 4

(2+ h)− 2
= 4+ 4h + h2 − 4

h
= 4h + h2

h
= 4+ h.

As h approaches 0 this average velocity approaches 4
m/s

5. x = 3t2 − 12t + 1 m at time t s.
Average velocity over interval [1, 2] is
(3 × 22 − 12 × 2+ 1)− (3× 12 − 12× 1+ 1)

2− 1
= −3

m/s.
Average velocity over interval [2, 3] is
(3 × 32 − 12 × 3+ 1)− (3× 22 − 12× 2+ 1)

3− 2
= 3 m/s.

Average velocity over interval [1, 3] is
(3 × 32 − 12 × 3+ 1)− (3× 12 − 12× 1+ 1)

3− 1
= 0 m/s.

6. Average velocity over [t, t + h] is

3(t + h)2 − 12(t + h)+ 1− (3t2 − 12t + 1)

(t + h)− t

= 6th + 3h2 − 12h

h
= 6t + 3h − 12 m/s.

This average velocity approaches 6t − 12 m/s as h ap-
proaches 0.
At t = 1 the velocity is 6× 1− 12 = −6 m/s.
At t = 2 the velocity is 6× 2− 12 = 0 m/s.
At t = 3 the velocity is 6× 3− 12 = 6 m/s.

7. At t = 1 the velocity is v = −6 < 0 so the particle is
moving to the left.
At t = 2 the velocity is v = 0 so the particle is station-
ary.
At t = 3 the velocity is v = 6 > 0 so the particle is
moving to the right.

8. Average velocity over [t − k, t + k] is

3(t + k)2 − 12(t + k) + 1− [3(t − k)2 − 12(t − k) + 1]

(t + k) − (t − k)

= 1

2k

(

3t2 + 6tk + 3k2 − 12t − 12k + 1− 3t2 + 6tk − 3k2

+ 12t − 12k + 1
)

= 12tk − 24k

2k
= 6t − 12 m/s,

which is the velocity at time t from Exercise 7.

9.
y

1

2

t1 2 3 4 5

y = 2+ 1

π
sin(π t)

Fig. 1.1.9

At t = 1 the height is y = 2 ft and the weight is
moving downward.

10. Average velocity over [1, 1+ h] is

2+ 1

π
sinπ(1 + h)−

(

2+ 1

π
sinπ

)

h

= sin(π + πh)

πh
= sinπ cos(πh)+ cosπ sin(πh)

πh

= − sin(πh)

πh
.

h Avg. vel. on [1, 1+ h]

1.0000 0
0.1000 -0.983631643
0.0100 -0.999835515
0.0010 -0.999998355

11. The velocity at t = 1 is about v = −1 ft/s. The “−”
indicates that the weight is moving downward.
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12. We sketched a tangent line to the graph on page 55 in
the text at t = 20. The line appeared to pass through
the points (10, 0) and (50, 1). On day 20 the biomass is
growing at about (1− 0)/(50 − 10) = 0.025 mm2/d.

13. The curve is steepest, and therefore the biomass is grow-
ing most rapidly, at about day 45.

14. a)
profit

25
50
75

100
125
150
175

year
2000 2001 2002 2003 2004

Fig. 1.1.14

b) Average rate of increase in profits between 2002 and
2004 is

174− 62

2004 − 2002
= 112

2
= 56 (thousand$/yr).

c) Drawing a tangent line to the graph in (a) at
t = 2002 and measuring its slope, we find that
the rate of increase of profits in 1992 is about 43
thousand$/year.

Section 1.2 Limits of Functions (page 68)

1. From inspecting the graph
y

x−1 1

1

y = f (x)

Fig. 1.2.1

we see that

lim
x→−1

f (x) = 1, lim
x→0

f (x) = 0, lim
x→1

f (x) = 1.

2. From inspecting the graph

y

x
1 2 3

1
y = g(x)

Fig. 1.2.2

we see that

lim
x→1

g(x) does not exist

(left limit is 1, right limit is 0)

lim
x→2

g(x) = 1, lim
x→3

g(x) = 0.

3. lim
x→1− g(x) = 1

4. lim
x→1+ g(x) = 0

5. lim
x→3+ g(x) = 0

6. lim
x→3− g(x) = 0

7. lim
x→4

(x2 − 4x + 1) = 42 − 4(4) + 1 = 1

8. lim
x→2

3(1 − x)(2− x) = 3(−1)(2 − 2) = 0

9. lim
x→3

x + 3

x + 6
= 3 + 3

3 + 6
= 2

3

10. lim
t→−4

t2

4− t
= (−4)2

4+ 4
= 2

11. lim
x→1

x2 − 1

x + 1
= 12 − 1

1+ 1
= 0

2
= 0

12. lim
x→−1

x2 − 1

x + 1
= lim

x→−1
(x − 1) = −2

13. lim
x→3

x2 − 6x + 9

x2 − 9
= lim

x→3

(x − 3)2

(x − 3)(x + 3)

= lim
x→3

x − 3

x + 3
= 0

6
= 0

14. lim
x→−2

x2 + 2x

x2 − 4
= lim

x→−2

x

x − 2
= −2

−4
= 1

2

15. limh→2
1

4− h2
does not exist; denominator approaches 0

but numerator does not approach 0.

16. limh→0
3h + 4h2

h2 − h3
= lim

h→0

3+ 4h

h − h2
does not exist; denomi-

nator approaches 0 but numerator does not approach 0.
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17. lim
x→9

√
x − 3

x − 9
= lim

x→9

(
√

x − 3)(
√

x + 3)

(x − 9)(
√

x + 3)

= lim
x→9

x − 9

(x − 9)(
√

x + 3)
= lim

x→9

1√
x + 3

= 1

6

18. lim
h→0

√
4+ h − 2

h

= lim
h→0

4+ h − 4

h(
√

4 + h + 2)

= lim
h→0

1√
4 + h + 2

= 1

4

19. lim
x→π

(x − π)2
πx

= 02

π2
= 0

20. lim
x→−2

|x − 2| = | − 4| = 4

21. lim
x→0

|x − 2|
x − 2

= | − 2|
−2

= −1

22. lim
x→2

|x − 2|
x − 2

= lim
x→2

{

1, if x > 2
−1, if x < 2.

Hence, lim
x→2

|x − 2|
x − 2

does not exist.

23. lim
t→1

t2 − 1

t2 − 2t + 1

lim
t→1

(t − 1)(t + 1)

(t − 1)2
= lim

t→1

t + 1

t − 1
does not exist

(denominator → 0, numerator → 2.)

24. lim
x→2

√
4− 4x + x2

x − 2

= lim
x→2

|x − 2|
x − 2

does not exist.

25. lim
t→0

t√
4 + t −√4− t

= lim
t→0

t (
√

4 + t +√4 − t)

(4 + t)− (4− t)

= lim
t→0

√
4+ t +√4− t

2
= 2

26. lim
x→1

x2 − 1√
x + 3− 2

= lim
x→1

(x − 1)(x + 1)(
√

x + 3 + 2)

(x + 3)− 4

= lim
x→1

(x + 1)(
√

x + 3+ 2) = (2)(√4+ 2) = 8

27. lim
t→0

t2 + 3t

(t + 2)2 − (t − 2)2

= lim
t→0

t (t + 3)

t2 + 4t + 4 − (t2 − 4t + 4)

= lim
t→0

t + 3

8
= 3

8

28. lim
s→0

(s + 1)2 − (s − 1)2

s
= lim

s→0

4s

s
= 4

29. lim
y→1

y − 4
√

y + 3

y2 − 1

= lim
y→1

(
√

y − 1)(
√

y − 3)

(
√

y − 1)(
√

y + 1)(y + 1)
= −2

4
= −1

2

30. lim
x→−1

x3 + 1

x + 1

= lim
x→−1

(x + 1)(x2 − x + 1)

x + 1
= 3

31. lim
x→2

x4 − 16

x3 − 8

= lim
x→2

(x − 2)(x + 2)(x2 + 4)

(x − 2)(x2 + 2x + 4)

= (4)(8)

4+ 4 + 4
= 8

3

32. lim
x→8

x2/3 − 4

x1/3 − 2

= lim
x→8

(x1/3 − 2)(x1/3 + 2)

(x1/3 − 2)
= lim

x→8
(x1/3 + 2) = 4

33. lim
x→2

(
1

x − 2
− 4

x2 − 4

)

= lim
x→2

x + 2− 4

(x − 2)(x + 2)
= lim

x→2

1

x + 2
= 1

4

34. lim
x→2

(
1

x − 2
− 1

x2 − 4

)

= lim
x→2

x + 2− 1

(x − 2)(x + 2)

= lim
x→2

x + 1

(x − 2)(x + 2)
does not exist.

35. lim
x→0

√
2+ x2 −√2− x2

x2

= lim
x→0

(2 + x2)− (2 − x2)

x2(
√

2+ x2 +√2− x2)

= lim
x→0

2x2

x2
(√

2+ x2)+√2 − x2
)

= 2√
2+√2

= 1√
2

36. lim
x→0

|3x − 1| − |3x + 1|
x

= lim
x→0

(3x − 1)2 − (3x + 1)2

x (|3x − 1| + |3x + 1|)
= lim

x→0

−12x

x (|3x − 1| + |3x + 1|) =
−12

1+ 1
= −6

37. f (x) = x2

lim
h→0

f (x + h)− f (x)

h
= lim

h→0

(x + h)2 − x2

h

= lim
h→0

2hx + h2

h
= lim

h→0
2x + h = 2x
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38. f (x) = x3

lim
h→0

f (x + h)− f (x)

h
= lim

h→0

(x + h)3 − x3

h

= lim
h→0

3x2h + 3xh2 + h3

h
= lim

h→0
3x2 + 3xh + h2 = 3x2

39. f (x) = 1/x

lim
h→0

f (x + h)− f (x)

h
= lim

h→0

1

x + h
− 1

x
h

= lim
h→0

x − (x + h)

h(x + h)x

= lim
h→0
− 1

(x + h)x
= − 1

x2

40. f (x) = 1/x2

lim
h→0

f (x + h)− f (x)

h
= lim

h→0

1

(x + h)2
− 1

x2

h

= lim
h→0

x2 − (x2 + 2xh + h2)

h(x + h)2x2

= lim
h→0
− 2x + h

(x + h)2x2
= −2x

x4
= − 2

x3

41. f (x) = √x

lim
h→0

f (x + h)− f (x)

h
= lim

h→0

√
x + h −√x

h

= lim
h→0

x + h − x

h(
√

x + h +√x)

= lim
h→0

1√
x + h +√x

= 1

2
√

x

42. f (x) = 1/
√

x

lim
h→0

f (x + h)− f (x)

h
= lim

h→0

1√
x + h

− 1√
x

h

= lim
h→0

√
x −√x + h

h
√

x
√

x + h

= lim
h→0

x − (x + h)

h
√

x
√

x + h(
√

x +√x + h)

= lim
h→0

−1√
x
√

x + h(
√

x +√x + h)

= −1

2x3/2

43. lim
x→π/2 sin x = sinπ/2 = 1

44. lim
x→π/4 cos x = cosπ/4 = 1/

√
2

45. lim
x→π/3 cos x = cosπ/3 = 1/2

46. lim
x→2π/3

sin x = sin 2π/3 = √3/2

47.
x (sin x)/x

±1.0 0.84147098
±0.1 0.99833417
±0.01 0.99998333
±0.001 0.99999983
0.0001 1.00000000

It appears that lim
x→0

sin x

x
= 1.

48.
x (1− cos x)/x2

±1.0 0.45969769
±0.1 0.49958347
±0.01 0.49999583
±0.001 0.49999996
0.0001 0.50000000

It appears that lim
x→0

1− cos x

x2 = 1

2
.

49. lim
x→2−

√
2− x = 0

50. lim
x→2+

√
2− x does not exist.

51. lim
x→−2−

√
2 − x = 2

52. lim
x→−2+

√
2 − x = 2

53. lim
x→0

√

x3 − x does not exist.

(x3 − x < 0 if 0 < x < 1)

54. lim
x→0−

√

x3 − x = 0

55. lim
x→0+

√

x3 − x does not exist. (See # 9.)

56. lim
x→0+

√

x2 − x4 = 0

57. lim
x→a−

|x − a|
x2 − a2

= lim
x→a−

|x − a|
(x − a)(x + a)

= − 1

2a
(a �= 0)

58. lim
x→a+

|x − a|
x2 − a2 = lim

x→a+
x − a

x2 − a2 =
1

2a

59. lim
x→2−

x2 − 4

|x + 2| =
0

4
= 0

60. lim
x→2+

x2 − 4

|x + 2| =
0

4
= 0
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61. f (x) =
{ x − 1 if x ≤ −1

x2 + 1 if −1 < x ≤ 0
(x + π)2 if x > 0

lim
x→−1− f (x) = lim

x→−1− x − 1 = −1− 1 = −2

62. lim
x→−1+ f (x) = lim

x→−1+ x2 + 1 = 1+ 1 = 2

63. lim
x→0+ f (x) = lim

x→0+(x + π)
2 = π2

64. lim
x→0− f (x) = lim

x→0− x2 + 1 = 1

65. If lim
x→4

f (x) = 2 and lim
x→4

g(x) = −3, then

a) lim
x→4

(

g(x)+ 3
)

= −3+ 3 = 0

b) lim
x→4

x f (x) = 4× 2 = 8

c) lim
x→4

(

g(x)
)2 = (−3)2 = 9

d) lim
x→4

g(x)

f (x)− 1
= −3

2− 1
= −3

66. If lim x → a f (x) = 4 and lim
x→a

g(x) = −2, then

a) lim
x→a

(

f (x)+ g(x)
)

= 4+ (−2) = 2

b) lim
x→a

f (x) · g(x) = 4× (−2) = −8

c) lim
x→a

4g(x) = 4(−2) = −8

d) lim
x→a

f (x)

g(x)
= 4

−2
= −2

67. If lim
x→2

f (x)− 5

x − 2
= 3, then

lim
x→2

(

f (x)− 5
)

= lim
x→2

f (x)− 5

x − 2
(x − 2) = 3(2 − 2) = 0.

Thus limx→2 f (x) = 5.

68. If lim
x→0

f (x)

x2 = −2 then

limx→0 f (x) = limx→0 x2 f (x)

x2 = 0 × (−2) = 0,

and similarly,

limx→0
f (x)

x
= lim

x→0
x

f (x)

x2
= 0× (−2) = 0.

69.

y

-0.4

-0.2

0.2

0.4

0.6

0.8

1.0

1.2

x-3 -2 -1 1 2

y = sin x

x

Fig. 1.2.69

lim
x→0

sin x

x
= 1

70.
y

-0.4

-0.2

0.2

0.4

0.6

0.8

x-0.08 -0.04 0.04 0.08

y = sin(2πx)

sin(3πx)

Fig. 1.2.70

limx→0 sin(2πx)/ sin(3πx) = 2/3

71.
y

-0.1

0.1

0.2
0.3
0.4
0.5

0.6
0.7
0.8

x0.2 0.4 0.6 0.8 1.0

y = sin
√

1− x√
1− x2

Fig. 1.2.71

lim
x→1−

sin
√

1− x√
1− x2

≈ 0.7071

72.
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y

-1.2

-1.0

-0.8

-0.6

-0.4

-0.2

x0.2 0.4 0.6 0.8

y = x −√x√
sin x

Fig. 1.2.72

lim
x→0+

x −√x√
sin x

= −1

73.
y

-0.2

-0.1

0.1

x-0.2 -0.1 0.1

y = −x

y = x sin(1/x)

y = x

Fig. 1.2.73

f (x) = x sin(1/x) oscillates infinitely often as x ap-
proaches 0, but the amplitude of the oscillations decreases
and, in fact, limx→0 f (x) = 0. This is predictable be-
cause |x sin(1/x)| ≤ |x |. (See Exercise 95 below.)

74. Since
√

5− 2x2 ≤ f (x) ≤ √5− x2 for −1 ≤ x ≤ 1, and
limx→0

√
5− 2x2 = limx→0

√
5− x2 = √5, we have

limx→0 f (x) = √5 by the squeeze theorem.

75. Since 2 − x2 ≤ g(x) ≤ 2 cos x for all x , and since
limx→0(2 − x2) = limx→0 2 cos x = 2, we have
limx→0 g(x) = 2 by the squeeze theorem.

76. a)

y

1

2

3

x-2 -1 1

y = x2

y = x4

(−1, 1) (1, 1)

Fig. 1.2.76

b) Since the graph of f lies between those of x2 and
x4, and since these latter graphs come together at
(±1, 1) and at (0, 0), we have limx→±1 f (x) = 1
and limx→0 f (x) = 0 by the squeeze theorem.

77. x1/3 < x3 on (−1, 0) and (1,∞). x1/3 > x3 on
(−∞,−1) and (0, 1). The graphs of x1/3 and x3 inter-
sect at (−1,−1), (0, 0), and (1, 1). If the graph of h(x)
lies between those of x1/3 and x3, then we can determine
limx→a h(x) for a = −1, a = 0, and a = 1 by the
squeeze theorem. In fact

lim
x→−1

h(x) = −1, lim
x→0

h(x) = 0, lim
x→1

h(x) = 1.

78. f (x) = s sin
1

x
is defined for all x �= 0; its domain is

(−∞, 0) ∪ (0,∞). Since | sin t | ≤ 1 for all t , we have
| f (x)| ≤ |x | and −|x | ≤ f (x) ≤ |x | for all x �= 0.
Since limx→0 = (−|x |) = 0 = limx→0 |x |, we have
limx→0 f (x) = 0 by the squeeze theorem.

79. | f (x)| ≤ g(x)⇒ −g(x) ≤ f (x) ≤ g(x)
Since lim

x→a
g(x) = 0, therefore 0 ≤ lim

x→a
f (x) ≤ 0.

Hence, lim
x→a

f (x) = 0.

If lim
x→a

g(x) = 3, then either −3 ≤ lim
x→a

f (x) ≤ 3 or

limx→a f (x) does not exist.

Section 1.3 Limits at Infinity and Infinite
Limits (page 75)

1. lim
x→∞

x

2x − 3
= lim

x→∞
1

2 − (3/x) =
1

2

2. lim
x→∞

x

x2 − 4
= lim

x→∞
1/x

1 − (4/x2)
= 0

1
= 0

3. lim
x→∞

3x3 − 5x2 + 7

8+ 2x − 5x3

= lim
x→∞

3− 5

x
+ 7

x3

8

x3 +
2

x2 − 5
= −3

5
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4. lim
x→−∞

x2 − 2

x − x2

= lim
x→−∞

1− 2

x2

1

x
− 1
= 1

−1
= −1

5. lim
x→−∞

x2 + 3

x3 + 2
= lim

x→−∞

1

x
+ 3

x3

1 + 2

x3

= 0

6. lim
x→∞

x2 + sin x

x2 + cos x
= lim

x→∞
1+ sin x

x2

1+ cos x

x2

= 1

1
= 1

We have used the fact that limx→∞
sin x

x2 = 0 (and simi-

larly for cosine) because the numerator is bounded while
the denominator grows large.

7. lim
x→∞

3x + 2
√

x

1− x

= lim
x→∞

3+ 2√
x

1

x
− 1

= −3

8. lim
x→∞

2x − 1√
3x2 + x + 1

= lim
x→∞

x

(

2− 1

x

)

|x |
√

3+ 1

x
+ 1

x2

(but |x | = x as x →∞)

= lim
x→∞

2− 1

x
√

3+ 1

x
+ 1

x2

= 2√
3

9. lim
x→−∞

2x − 1√
3x2 + x + 1

= lim
x→−∞

2− 1

x

−
√

3 + 1

x
+ 1

x2

= − 2√
3

,

because x → −∞ implies that x < 0 and so
√

x2 = −x .

10. lim
x→−∞

2x − 5

|3x + 2| = lim
x→−∞

2x − 5

−(3x + 2)
= −2

3

11. lim
x→3

1

3− x
does not exist.

12. lim
x→3

1

(3 − x)2
= ∞

13. lim
x→3−

1

3 − x
= ∞

14. lim
x→3+

1

3 − x
= −∞

15. lim
x→−5/2

2x + 5

5x + 2
= 0
−25

2
+ 2
= 0

16. lim
x→−2/5

2x + 5

5x + 2
does not exist.

17. lim
x→−(2/5)−

2x + 5

5x + 2
= −∞

18. lim
x→−2/5+

2x + 5

5x + 2
= ∞

19. lim
x→2+

x

(2 − x)3
= −∞

20. lim
x→1−

x√
1− x2

= ∞

21. lim
x→1+

1

|x − 1| = ∞

22. lim
x→1−

1

|x − 1| = ∞

23. lim
x→2

x − 3

x2 − 4x + 4
= lim

x→2

x − 3

(x − 2)2
= −∞

24. lim
x→1+

√
x2 − x

x − x2
= lim

x→1+
−1√

x2 − x
= −∞

25. lim
x→∞

x + x3 + x5

1 + x2 + x3

= lim
x→∞

1

x2
+ 1+ x2

1

x3
+ 1

x
+ 1
= ∞

26. lim
x→∞

x3 + 3

x2 + 2
= lim

x→∞
x + 3

x2

1 + 2

x2

= ∞

27. lim
x→∞

x
√

x + 1
(

1−√2x + 3
)

7− 6x + 4x2

= lim
x→∞

x2

(√

1+ 1

x

)(

1√
x
−

√

2+ 3

x

)

x2

(
7

x2 −
6

x
+ 4

)

= 1(−√2)

4
= −1

4

√
2

28. lim
x→∞

(
x2

x + 1
− x2

x − 1

)

= lim
x→∞

−2x2

x2 − 1
= −2
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29. lim
x→−∞

(√

x2 + 2x −
√

x2 − 2x
)

= lim
x→−∞

(x2 + 2x)− (x2 − 2x)√
x2 + 2x +√x2 − 2x

= lim
x→−∞

4x

(−x)

(√

1+ 2

x
+

√

1− 2

x

)

= − 4

1+ 1
= −2

30. lim
x→∞

(
√

x2 + 2x −
√

x2 − 2x

)

= lim
x→∞

x2 + 2x − x2 + 2x√
x2 + 2x +√x2 − 2x

= lim
x→∞

4x

x

√

1+ 2

x
+ x

√

1 − 2

x

= lim
x→∞

4
√

1+ 2

x
+

√

1− 2

x

= 4

2
= 2

31. lim
x→∞

1√
x2 − 2x − x

= lim
x→∞

√
x2 − 2x + x

(
√

x2 − 2x + x)(
√

x2 − 2x − x)

= lim
x→∞

√
x2 − 2x + x

x2 − 2x − x2

= lim
x→∞

x(
√

1− (2/x)+ 1)

−2x
= 2

−2
= −1

32. lim
x→−∞

1√
x2 + 2x − x

= lim
x→−∞

1

|x |(√1 + (2/x)+ 1
= 0

33. By Exercise 35, y = −1 is a horizontal asymptote (at the

right) of y = 1√
x2 − 2x − x

. Since

lim
x→−∞

1√
x2 − 2x − x

= lim
x→−∞

1

|x |(√1 − (2/x)+ 1
= 0,

y = 0 is also a horizontal asymptote (at the left).
Now

√
x2 − 2x − x = 0 if and only if x2 − 2x = x2, that

is, if and only if x = 0. The given function is undefined
at x = 0, and where x2 − 2x < 0, that is, on the interval
[0, 2]. Its only vertical asymptote is at x = 0, where

limx→0−
1√

x2 − 2x − x
= ∞.

34. Since lim
x→∞

2x − 5

|3x + 2| =
2

3
and lim

x→−∞
2x − 5

|3x + 2| = −
2

3
,

y = ±(2/3) are horizontal asymptotes of
y = (2x − 5)/|3x + 2|. The only vertical asymptote
is x = −2/3, which makes the denominator zero.

35. lim
x→0+ f (x) = 1

36. lim
x→1

f (x) = ∞
37.

y

-1

1

2

3

x1 2 3 4 5 6

y = f (x)

Fig. 1.3.37

limx→2+ f (x) = 1

38. lim
x→2− f (x) = 2

39. lim
x→3− f (x) = −∞

40. lim
x→3+ f (x) = ∞

41. lim
x→4+ f (x) = 2

42. lim
x→4− f (x) = 0

43. lim
x→5−

f (x) = −1

44. lim
x→5+

f (x) = 0

45. lim
x→∞ f (x) = 1

46. horizontal: y = 1; vertical: x = 1, x = 3.

47. lim
x→3+	x
 = 3

48. lim
x→3−	x
 = 2

49. lim
x→3
	x
 does not exist

50. lim
x→2.5

	x
 = 2

51. lim
x→0+	2− x
 = lim

x→2−	x
 = 1

52. lim
x→−3−	x
 = −4

53. lim
t→t0

C(t) = C(t0) except at integers t0

lim
t→t0−

C(t) = C(t0) everywhere

lim
t→t0+

C(t) = C(t0) if t0 �= an integer

lim
t→t0+

C(t) = C(t0)+ 1.5 if t0 is an integer
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y

x

6.00

4.50

3.00

1.50

1 2 3 4

y = C(t)

Fig. 1.3.53

54. lim
x→0+ f (x) = L

(a) If f is even, then f (−x) = f (x).
Hence, lim

x→0− f (x) = L .

(b) If f is odd, then f (−x) = − f (x).
Therefore, lim

x→0− f (x) = −L .

55. lim
x→0+ f (x) = A, lim

x→0− f (x) = B

a) lim
x→0+ f (x3 − x) = B (since x3− x < 0 if 0 < x < 1)

b) lim
x→0− f (x3 − x) = A (because x3 − x > 0 if

−1 < x < 0)

c) lim
x→0− f (x2 − x4) = A

d) lim
x→0+ f (x2 − x4) = A (since x2 − x4 > 0 for

0 < |x | < 1)

Section 1.4 Continuity (page 85)

1. g is continuous at x = −2, discontinuous at
x = −1, 0, 1, and 2. It is left continuous at x = 0
and right continuous at x = 1.

y

1

2

x-2 -1 1 2

(1, 2)

(−1, 1)
y = g(x)

Fig. 1.4.1

2. g has removable discontinuities at x = −1 and x = 2.
Redefine g(−1) = 1 and g(2) = 0 to make g continuous
at those points.

3. g has no absolute maximum value on [−2, 2]. It takes
on every positive real value less than 2, but does not take
the value 2. It has absolute minimum value 0 on that
interval, assuming this value at the three points x = −2,
x = −1, and x = 1.

4. Function f is discontinuous at x = 1, 2, 3, 4, and 5. f
is left continuous at x = 4 and right continuous at x = 2
and x = 5.
y

-1

1

2

3

x1 2 3 4 5 6

y = f (x)

Fig. 1.4.4

5. f cannot be redefined at x = 1 to become continuous
there because limx→1 f (x) (= ∞) does not exist. (∞ is
not a real number.)

6. sgn x is not defined at x = 0, so cannot be either continu-
ous or discontinuous there. (Functions can be continuous
or discontinuous only at points in their domains!)

7. f (x) =
{

x if x < 0
x2 if x ≥ 0

is continuous everywhere on the

real line, even at x = 0 where its left and right limits are
both 0, which is f (0).

8. f (x) =
{

x if x < −1
x2 if x ≥ −1

is continuous everywhere on the

real line except at x = −1 where it is right continuous,
but not left continuous.

lim
x→−1− f (x) = lim

x→−1− x = −1 �= 1

= f (−1) = lim
x→−1+ x2 = lim

x→−1+ f (x).

9. f (x) =
{

1/x2 if x �= 0
0 if x = 0

is continuous everywhere ex-

cept at x = 0, where it is neither left nor right continuous
since it does not have a real limit there.

10. f (x) =
{

x2 if x ≤ 1
0.987 if x > 1

is continuous everywhere

except at x = 1, where it is left continuous but not right
continuous because 0.987 �= 1. Close, as they say, but no
cigar.
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11. The least integer function �x
 is continuous everywhere
on � except at the integers, where it is left continuous
but not right continuous.

12. C(t) is discontinuous only at the integers. It is continu-
ous on the left at the integers, but not on the right.

13. Since
x2 − 4

x − 2
= x + 2 for x �= 2, we can define the

function to be 2 + 2 = 4 at x = 2 to make it continuous
there. The continuous extension is x + 2.

14. Since
1 + t3

1 − t2
= (1 + t)(1 − t + t2)

(1 + t)(1 − t)
= 1− t + t2

1− t
for

t �= −1, we can define the function to be 3/2 at t = −1
to make it continuous there. The continuous extension is
1− t + t2

1 − t
.

15. Since
t2 − 5t + 6

t2 − t − 6
= (t − 2)(t − 3)

(t + 2)(t − 3)
= t − 2

t + 2
for t �= 3,

we can define the function to be 1/5 at t = 3 to make it

continuous there. The continuous extension is
t − 2

t + 2
.

16. Since
x2 − 2

x4 − 4
= (x −√2)(x +√2)

(x −√2)(x +√2)(x2 + 2)
= x +√2

(x +√2)(x2 + 2)
for x �= √2, we can define the function to be 1/4 at
x = √2 to make it continuous there. The continuous

extension is
x +√2

(x +√2)(x2 + 2)
. (Note: cancelling the

x +√2 factors provides a further continuous extension to
x = −√2.

17. limx→2+ f (x) = k − 4 and limx→2− f (x) = 4 = f (2).
Thus f will be continuous at x = 2 if k − 4 = 4, that is,
if k = 8.

18. limx→3− g(x) = 3 − m and
limx→3+ g(x) = 1 − 3m = g(3). Thus g will be con-
tinuous at x = 3 if 3 −m = 1− 3m, that is, if m = −1.

19. x2 has no maximum value on −1 < x < 1; it takes all
positive real values less than 1, but it does not take the
value 1. It does have a minimum value, namely 0 taken
on at x = 0.

20. The Max-Min Theorem says that a continuous function
defined on a closed, finite interval must have maximum
and minimum values. It does not say that other functions
cannot have such values. The Heaviside function is not
continuous on [−1, 1] (because it is discontinuous at
x = 0), but it still has maximum and minimum values.
Do not confuse a theorem with its converse.

21. Let the numbers be x and y, where x ≥ 0, y ≥ 0, and
x + y = 8. If P is the product of the numbers, then

P = xy = x(8 − x) = 8x − x2 = 16 − (x − 4)2.

Therefore P ≤ 16, so P is bounded. Clearly P = 16 if
x = y = 4, so the largest value of P is 16.

22. Let the numbers be x and y, where x ≥ 0, y ≥ 0, and
x + y = 8. If S is the sum of their squares then

S = x2 + y2 = x2 + (8 − x)2

= 2x2 − 16x + 64 = 2(x − 4)2 + 32.

Since 0 ≤ x ≤ 8, the maximum value of S occurs at
x = 0 or x = 8, and is 64. The minimum value occurs at
x = 4 and is 32.

23. Since T = 100 − 30x + 3x2 = 3(x − 5)2 + 25, T will
be minimum when x = 5. Five programmers should be
assigned, and the project will be completed in 25 days.

24. If x desks are shipped, the shipping cost per desk is

C = 245x − 30x2 + x3

x
= x2 − 30x + 245

= (x − 15)2 + 20.

This cost is minimized if x = 15. The manufacturer
should send 15 desks in each shipment, and the shipping
cost will then be $20 per desk.

25. f (x) = x2 − 1

x
= (x − 1)(x + 1)

x
f = 0 at x = ±1. f is not defined at 0.
f (x) > 0 on (−1, 0) and (1,∞).
f (x) < 0 on (−∞,−1) and (0, 1).

26. f (x) = x2 + 4x + 3 = (x + 1)(x + 3)
f (x) > 0 on (−∞,−3) and (−1,∞)
f (x) < 0 on (−3,−1).

27. f (x) = x2 − 1

x2 − 4
= (x − 1)(x + 1)

(x − 2)(x + 2)
f = 0 at x = ±1.
f is not defined at x = ±2.
f (x) > 0 on (−∞,−2), (−1, 1), and (2,∞).
f (x) < 0 on (−2,−1) and (1, 2).

28. f (x) = x2 + x − 2

x3 = (x + 2)(x − 1)

x3

f (x) > 0 on (−2, 0) and (1,∞)
f (x) < 0 on (−∞,−2) and (0, 1).

29. f (x) = x3 + x − 1, f (0) = −1, f (1) = 1.
Since f is continuous and changes sign between 0 and 1,
it must be zero at some point between 0 and 1 by IVT.

30. f (x) = x3 − 15x + 1 is continuous everywhere.
f (−4) = −3, f (−3) = 19, f (1) = −13, f (4) = 5.
Because of the sign changes f has a zero between −4
and −3, another zero between −3 and 1, and another
between 1 and 4.
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31. F(x) = (x − a)2(x − b)2 + x . Without loss of generality,
we can assume that a < b. Being a polynomial, F is
continuous on [a, b]. Also F(a) = a and F(b) = b.
Since a < 1

2 (a + b) < b, the Intermediate-Value Theorem
guarantees that there is an x in (a, b) such that
F(x) = (a + b)/2.

32. Let g(x) = f (x) − x . Since 0 ≤ f (x) ≤ 1 if 0 ≤ x ≤ 1,
therefore, g(0) ≥ 0 and g(1) ≤ 0. If g(0) = 0 let c = 0,
or if g(1) = 0 let c = 1. (In either case f (c) = c.)
Otherwise, g(0) > 0 and g(1) < 0, and, by IVT, there
exists c in (0, 1) such that g(c) = 0, i.e., f (c) = c.

33. The domain of an even function is symmetric about the
y-axis. Since f is continuous on the right at x = 0,
therefore it must be defined on an interval [0, h] for
some h > 0. Being even, f must therefore be defined
on [−h, h]. If x = −y, then

lim
x→0− f (x) = lim

y→0+ f (−y) = lim
y→0+ f (y) = f (0).

Thus, f is continuous on the left at x = 0. Being contin-
uous on both sides, it is therefore continuous.

34. f odd ⇔ f (−x) = − f (x)
f continuous on the right ⇔ lim

x→0+ f (x) = f (0)

Therefore, letting t = −x , we obtain

lim
x→0− f (x) = lim

t→0+ f (−t) = lim
t→0+− f (t)

= − f (0) = f (−0) = f (0).

Therefore f is continuous at 0 and f (0) = 0.

35. max 1.593 at −0.831, min −0.756 at 0.629

36. max 0.133 at x = 1.437; min −0.232 at x = −1.805

37. max 10.333 at x = 3; min 4.762 at x = 1.260

38. max 1.510 at x = 0.465; min 0 at x = 0 and x = 1

39. root x = 0.682

40. root x = 0.739

41. roots x = −0.637 and x = 1.410

42. roots x = −0.7244919590 and x = 1.220744085

43. fsolve gives an approximation to the single real root to
10 significant figures; solve gives the three roots (includ-
ing a complex conjugate pair) in exact form involving the

quantity
(

108+ 12
√

69
)1/3

; evalf(solve) gives approxi-

mations to the three roots using 10 significant figures for
the real and imaginary parts.

Section 1.5 The Formal Definition of Limit
(page 90)

1. We require 39.9 ≤ L ≤ 40.1. Thus

39.9 ≤ 39.6 + 0.025T ≤ 40.1

0.3 ≤ 0.025T ≤ 0.5

12 ≤ T ≤ 20.

The temperature should be kept between 12 ◦C and 20 ◦C.

2. Since 1.2% of 8,000 is 96, we require the edge length x
of the cube to satisfy 7904 ≤ x3 ≤ 8096. It is sufficient
that 19.920 ≤ x ≤ 20.079. The edge of the cube must be
within 0.079 cm of 20 cm.

3. 3− 0.02 ≤ 2x − 1 ≤ 3+ 0.02

3.98 ≤ 2x ≤ 4.02

1.99 ≤ x ≤ 2.01

4. 4− 0.1 ≤ x2 ≤ 4+ 0.1

1.9749 ≤ x ≤ 2.0024

5. 1− 0.1 ≤ √x ≤ 1.1

0.81 ≤ x ≤ 1.21

6. −2− 0.01 ≤ 1

x
≤ −2+ 0.01

− 1

2.01
≥ x ≥ − 1

1.99
−0.5025 ≤ x ≤ −0.4975

7. We need −0.03 ≤ (3x+1)−7 ≤ 0.03, which is equivalent
to −0.01 ≤ x − 2 ≤ 0.01 Thus δ = 0.01 will do.

8. We need −0.01 ≤ √2x + 3− 3 ≤ 0.01. Thus

2.99 ≤ √2x + 3 ≤ 3.01

8.9401 ≤ 2x + 3 ≤ 9.0601

2.97005 ≤ x ≤ 3.03005

3− 0.02995 ≤ x − 3 ≤ 0.03005.

Here δ = 0.02995 will do.

9. We need 8 − 0.2 ≤ x3 ≤ 8.2, or 1.9832 ≤ x ≤ 2.0165.
Thus, we need −0.0168 ≤ x − 2 ≤ 0.0165. Here
δ = 0.0165 will do.

10. We need 1 − 0.05 ≤ 1/(x + 1) ≤ 1 + 0.05,
or 1.0526 ≥ x + 1 ≥ 0.9524. This will occur if
−0.0476 ≤ x ≤ 0.0526. In this case we can take
δ = 0.0476.

11. To be proved: lim
x→1

(3x + 1) = 4.

Proof: Let ε > 0 be given. Then |(3x + 1)− 4| < ε holds
if 3|x−1| < ε, and so if |x−1| < δ = ε/3. This confirms
the limit.
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12. To be proved: lim
x→2

(5 − 2x) = 1.

Proof: Let ε > 0 be given. Then |(5− 2x)− 1| < ε holds
if |2x−4| < ε, and so if |x−2| < δ = ε/2. This confirms
the limit.

13. To be proved: lim
x→0

x2 = 0.

Let ε > 0 be given. Then |x2 − 0| < ε holds if
|x − 0| = |x | < δ = √ε.

14. To be proved: lim
x→2

x − 2

1+ x2
= 0.

Proof: Let ε > 0 be given. Then

∣
∣
∣
∣

x − 2

1+ x2
− 0

∣
∣
∣
∣
= |x − 2|

1+ x2
≤ |x − 2| < ε

provided |x − 2| < δ = ε.

15. To be proved: lim
x→1/2

1− 4x2

1− 2x
= 2.

Proof: Let ε > 0 be given. Then if x �= 1/2 we have

∣
∣
∣
∣

1− 4x2

1 − 2x
− 2

∣
∣
∣
∣
= |(1+2x)−2| = |2x−1| = 2

∣
∣
∣
∣
x − 1

2

∣
∣
∣
∣
< ε

provided |x − 1
2 | < δ = ε/2.

16. To be proved: lim
x→−2

x2 + 2x

x + 2
= −2.

Proof: Let ε > 0 be given. For x �= −2 we have

∣
∣
∣
∣

x2 + 2x

x + 2
− (−2)

∣
∣
∣
∣
= |x + 2| < ε

provided |x + 2| < δ = ε. This completes the proof.

17. To be proved: lim
x→1

1

x + 1
= 1

2
.

Proof: Let ε > 0 be given. We have

∣
∣
∣
∣

1

x + 1
− 1

2

∣
∣
∣
∣
=

∣
∣
∣
∣

1− x

2(x + 1)

∣
∣
∣
∣
= |x − 1|

2|x + 1| .

If |x − 1| < 1, then 0 < x < 2 and 1 < x + 1 < 3, so that
|x + 1| > 1. Let δ = min(1, 2ε). If |x − 1| < δ, then

∣
∣
∣
∣

1

x + 1
− 1

2

∣
∣
∣
∣
= |x − 1|

2|x + 1| <
2ε

2
= ε.

This establishes the required limit.

18. To be proved: lim
x→−1

x + 1

x2 − 1
= −1

2
.

Proof: Let ε > 0 be given. If x �= −1, we have

∣
∣
∣
∣

x + 1

x2 − 1
− 1

2

∣
∣
∣
∣
=

∣
∣
∣
∣

1

x − 1
−

(

−1

2

)∣
∣
∣
∣
= |x + 1|

2|x − 1| .

If |x+1| < 1, then −2 < x < 0, so −3 < x−1 < −1 and
|x − 1| > 1. Ler δ = min(1, 2ε). If 0 < |x − (−1)| < δ

then |x − 1| > 1 and |x + 1| < 2ε. Thus
∣
∣
∣
∣

x + 1

x2 − 1
− 1

2

∣
∣
∣
∣
= |x + 1|

2|x − 1| <
2ε

2
= ε.

This completes the required proof.

19. To be proved: lim
x→1

√
x = 1.

Proof: Let ε > 0 be given. We have

|√x − 1| =
∣
∣
∣
∣

x − 1√
x + 1

∣
∣
∣
∣
≤ |x − 1| < ε

provided |x − 1| < δ = ε. This completes the proof.

20. To be proved: lim
x→2

x3 = 8.

Proof: Let ε > 0 be given. We have
|x3 − 8| = |x − 2||x2 + 2x + 4|. If |x − 2| < 1,
then 1 < x < 3 and x2 < 9. Therefore
|x2 + 2x + 4| ≤ 9 + 2 × 3 + 4 = 19. If
|x − 2| < δ = min(1, ε/19), then

|x3 − 8| = |x − 2||x2 + 2x + 4| < ε

19
× 19 = ε.

This completes the proof.

21. We say that limx→a− f (x) = L if the following condition
holds: for every number ε > 0 there exists a number
δ > 0, depending on ε, such that

a − δ < x < a implies | f (x)− L | < ε.

22. We say that limx→−∞ f (x) = L if the following condi-
tion holds: for every number ε > 0 there exists a number
R > 0, depending on ε, such that

x < −R implies | f (x)− L | < ε.

23. We say that limx→a f (x) = −∞ if the following con-
dition holds: for every number B > 0 there exists a
number δ > 0, depending on B, such that

0 < |x − a| < δ implies f (x) < −B.

24. We say that limx→∞ f (x) = ∞ if the following condition
holds: for every number B > 0 there exists a number
R > 0, depending on B, such that

x > R implies f (x) > B.

25. We say that limx→a+ f (x) = −∞ if the following con-
dition holds: for every number B > 0 there exists a
number δ > 0, depending on R, such that

a < x < a + δ implies f (x) < −B.
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26. We say that limx→a− f (x) = ∞ if the following con-
dition holds: for every number B > 0 there exists a
number δ > 0, depending on B, such that

a − δ < x < a implies f (x) > B.

27. To be proved: limx→1+
1

x − 1
= ∞. Proof: Let B > 0

be given. We have
1

x − 1
> B if 0 < x − 1 < 1/B, that

is, if 1 < x < 1 + δ, where δ = 1/B. This completes the
proof.

28. To be proved: limx→1−
1

x − 1
= −∞. Proof: Let B > 0

be given. We have
1

x − 1
< −B if 0 > x − 1 > −1/B,

that is, if 1− δ < x < 1, where δ = 1/B.. This completes
the proof.

29. To be proved: limx→∞
1√

x2 + 1
= 0. Proof: Let ε > 0

be given. We have

∣
∣
∣
∣

1√
x2 + 1

∣
∣
∣
∣
= 1√

x2 + 1
<

1

x
< ε

provided x > R, where R = 1/ε. This completes the
proof.

30. To be proved: limx→∞
√

x = ∞. Proof: Let B > 0 be
given. We have

√
x > B if x > R where R = B2. This

completes the proof.

31. To be proved: if lim
x→a

f (x) = L and lim
x→a

f (x) = M , then

L = M .
Proof: Suppose L �= M . Let ε = |L − M|/3. Then
ε > 0. Since lim

x→a
f (x) = L , there exists δ1 > 0 such that

| f (x)−L | < ε if |x−a| < δ1. Since lim
x→a

f (x) = M , there

exists δ2 > 0 such that | f (x) − M| < ε if |x − a| < δ2.
Let δ = min(δ1, δ2). If |x − a| < δ, then

3ε = |L − M| = |( f (x)− M)+ (L − f (x)|
≤ | f (x)− M| + | f (x)− L | < ε + ε = 2ε.

This implies that 3 < 2, a contradiction. Thus the origi-
nal assumption that L �= M must be incorrect. Therefore
L = M .

32. To be proved: if lim
x→a

g(x) = M , then there exists δ > 0

such that if 0 < |x − a| < δ, then |g(x)| < 1+ |M|.
Proof: Taking ε = 1 in the definition of limit, we obtain
a number δ > 0 such that if 0 < |x − a| < δ, then
|g(x)− M| < 1. It follows from this latter inequality that

|g(x)| = |(g(x)−M)+M| ≤ |G(x)−M|+|M| < 1+|M|.

33. To be proved: if lim
x→a

f (x) = L and lim
x→a

g(x) = M , then

lim
x→a

f (x)g(x) = L M .

Proof: Let ε > 0 be given. Since lim
x→a

f (x) = L , there

exists δ1 > 0 such that | f (x) − L | < ε/(2(1 + |M|))
if 0 < |x − a| < δ1. Since lim

x→a
g(x) = M , there ex-

ists δ2 > 0 such that |g(x) − M| < ε/(2(1 + |L |)) if
0 < |x − a| < δ2. By Exercise 32, there exists δ3 > 0
such that |g(x)| < 1 + |M| if 0 < |x − a| < δ3. Let
δ = min(δ1, δ2, δ3). If |x − a| < δ, then

| f (x)g(x) − L M = | f (x)g(x)− Lg(x)+ Lg(x)− L M|
= |( f (x)− L)g(x)+ L(g(x)− M)|
≤ |( f (x)− L)g(x)| + |L(g(x)− M)|
= | f (x)− L ||g(x)| + |L ||g(x)− M|
<

ε

2(1 + |M|) (1 + |M|)+ |L |
ε

2(1+ |L |)
≤ ε

2
+ ε

2
= ε.

Thus lim
x→a

f (x)g(x) = L M .

34. To be proved: if lim
x→a

g(x) = M where M �= 0, then

there exists δ > 0 such that if 0 < |x − a| < δ, then
|g(x)| > |M|/2.
Proof: By the definition of limit, there exists δ > 0 such
that if 0 < |x − a| < δ, then |g(x) − M| < |M|/2
(since |M|/2 is a positive number). This latter inequality
implies that

|M| = |g(x)+(M−g(x))| ≤ |g(x)|+|g(x)−M| < |g(x)|+ |M|
2
.

It follows that |g(x)| > |M| − (|M|/2) = |M|/2, as
required.

35. To be proved: if lim
x→a

g(x) = M where M �= 0, then

lim
x→a

1

g(x)
= 1

M
.

Proof: Let ε > 0 be given. Since lim
x→a

g(x) = M �= 0,

there exists δ1 > 0 such that |g(x) − M| < ε|M|2/2 if
0 < |x − a| < δ1. By Exercise 34, there exists δ2 > 0
such that |g(x)| > |M|/2 if 0 < |x − a| < δ3. Let
δ = min(δ1, δ2). If 0 < |x − a| < δ, then

∣
∣
∣
∣

1

g(x)
− 1

M

∣
∣
∣
∣
= |M − g(x)|
|M||g(x)| <

ε|M|2
2

2

|M|2 = ε.

This completes the proof.

36. To be proved: if lim
x→a

f (x) = L and lim
x→a

f (x) = M �= 0,

then lim
x→a

f (x)

g(x)
= L

M
.

Proof: By Exercises 33 and 35 we have

lim
x→a

f (x)

g(x)
= lim

x→a
f (x)× 1

g(x)
= L × 1

M
= L

M
.
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37. To be proved: if f is continuous at L and lim
x→c

g(x) = L ,

then lim
x→c

f (g(x)) = f (L).

Proof: Let ε > 0 be given. Since f is continuous at L ,
there exists a number γ > 0 such that if |y−L | < γ , then
| f (y)− f (L)| < ε. Since limx→c g(x) = L , there exists
δ > 0 such that if 0 < |x − c| < δ, then |g(x)− L | < γ .
Taking y = g(x), it follows that if 0 < |x − c| < δ, then
| f (g(x))− f (L)| < ε, so that limx→c f (g(x)) = f (L).

38. To be proved: if f (x) ≤ g(x) ≤ h(x) in an open interval
containing x = a (say, for a − δ1 < x < a + δ1, where
δ1 > 0), and if limx→a f (x) = limx→a h(x) = L , then
also limx→a g(x) = L .
Proof: Let ε > 0 be given. Since limx→a f (x) = L ,
there exists δ2 > 0 such that if 0 < |x − a| < δ2,
then | f (x) − L | < ε/3. Since limx→a h(x) = L ,
there exists δ3 > 0 such that if 0 < |x − a| < δ3,
then |h(x) − L | < ε/3. Let δ = min(δ1, δ2, δ3). If
0 < |x − a| < δ, then

|g(x)− L | = |g(x)− f (x)+ f (x)− L |
≤ |g(x)− f (x)| + | f (x)− L |
≤ |h(x)− f (x)| + | f (x)− L |
= |h(x)− L + L − f (x)| + | f (x)− L |
≤ |h(x)− L | + | f (x)− L | + | f (x)− L |
<
ε

3
+ ε

3
+ ε

3
= ε.

Thus limx→a g(x) = L .

Review Exercises 1 (page 91)

1. The average rate of change of x3 over [1, 3] is

33 − 13

3− 1
= 26

2
= 13.

2. The average rate of change of 1/x over [−2,−1] is

(1/(−1)) − (1/(−2))

−1− (−2)
= −1/2

1
= −1

2
.

3. The rate of change of x3 at x = 2 is

lim
h→0

(2 + h)3 − 23

h
= lim

h→0

8+ 12h + 6h2 + h3 − 8

h
= lim

h→0
(12 + 6h + h2) = 12.

4. The rate of change of 1/x at x = −3/2 is

lim
h→0

1

−(3/2)+ h
−

(
1

−3/2

)

h
= lim

h→0

2

2h − 3
+ 2

3
h

= lim
h→0

2(3 + 2h − 3)

3(2h − 3)h

= lim
h→0

4

3(2h − 3)
= −4

9
.

5. lim
x→1

(x2 − 4x + 7) = 1− 4+ 7 = 4

6. lim
x→2

x2

1− x2
= 22

1− 22
= −4

3

7. lim
x→1

x2

1− x2 does not exist. The denominator approaches

0 (from both sides) while the numerator does not.

8. lim
x→2

x2 − 4

x2 − 5x + 6
= lim

x→2

(x − 2)(x + 2)

(x − 2)(x − 3)
= lim

x→2

x + 2

x − 3
= −4

9. lim
x→2

x2 − 4

x2 − 4x + 4
= lim

x→2

(x − 2)(x + 2)

(x − 2)2
= lim

x→2

x + 2

x − 2
does not exist. The denominator approaches 0 (from both
sides) while the numerator does not.

10. lim
x→2−

x2 − 4

x2 − 4x + 4
= lim

x→2−
x + 2

x − 2
= −∞

11. lim
x→−2+

x2 − 4

x2 + 4x + 4
= lim

x→−2+
x − 2

x + 2
= −∞

12. lim
x→4

2−√x

x − 4
= lim

x→4

4− x

(2 +√x)(x − 4)
= −1

4

13. lim
x→3

x2 − 9√
x −√3

= lim
x→3

(x − 3)(x + 3)(
√

x +√3)

x − 3

= lim
x→3

(x + 3)(
√

x +√3) = 12
√

3

14. lim
h→0

h√
x + 3h −√x

= lim
h→0

h(
√

x + 3h +√x)

(x + 3h)− x

= lim
h→0

√
x + 3h +√x

3
= 2
√

x

3

15. lim
x→0+

√

x − x2 = 0

16. lim
x→0

√

x − x2 does not exist because
√

x − x2 is not de-

fined for x < 0.

17. lim
x→1

√

x − x2 does not exist because
√

x − x2 is not de-

fined for x > 1.

18. lim
x→1−

√

x − x2 = 0

19. lim
x→∞

1− x2

3x2 − x − 1
= lim

x→∞
(1/x2)− 1

3− (1/x)− (1/x2)
= −1

3
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20. lim
x→−∞

2x + 100

x2 + 3
= lim

x→−∞
(2/x)+ (100/x2)

1+ (3/x2)
= 0

21. lim
x→−∞

x3 − 1

x2 + 4
= lim

x→−∞
x − (1/x2)

1 + (4/x2)
= −∞

22. lim
x→∞

x4

x2 − 4
= lim

x→∞
x2

1− (4/x2)
= ∞

23. lim
x→0+

1√
x − x2

=∞

24. lim
x→1/2

1√
x − x2

= 1√
1/4
= 2

25. lim
x→∞ sin x does not exist; sin x takes the values −1 and 1

in any interval (R,∞), and limits, if they exist, must be
unique.

26. lim
x→∞

cos x

x
= 0 by the squeeze theorem, since

− 1

x
≤ cos x

x
≤ 1

x
for all x > 0

and limx→∞(−1/x) = limx→∞(1/x) = 0.

27. lim
x→0

x sin
1

x
= 0 by the squeeze theorem, since

−|x | ≤ x sin
1

x
≤ |x | for all x �= 0

and limx→0(−|x |) = limx→0 |x | = 0.

28. lim
x→0

sin
1

x2 does not exist; sin(1/x2) takes the values −1

and 1 in any interval (−δ, δ), where δ > 0, and limits, if
they exist, must be unique.

29. lim
x→−∞[x +

√

x2 − 4x + 1]

= lim
x→−∞

x2 − (x2 − 4x + 1)

x −√x2 − 4x + 1

= lim
x→−∞

4x − 1

x − |x |√1− (4/x)+ (1/x2)

= lim
x→−∞

x[4 − (1/x)]
x + x

√

1− (4/x)+ (1/x2)

= lim
x→−∞

4 − (1/x)
1+√

1− (4/x)+ (1/x2)
= 2.

Note how we have used |x | = −x (in the second last
line), because x →−∞.

30. lim
x→∞[x +

√

x2 − 4x + 1] =∞+∞ =∞
31. f (x) = x3 − 4x2 + 1 is continuous on the whole real line

and so is discontinuous nowhere.

32. f (x) = x

x + 1
is continuous everywhere on its domain,

which consists of all real numbers except x = −1. It is
discontinuous nowhere.

33. f (x) =
{

x2 if x > 2
x if x ≤ 2

is defined everywhere and dis-

continuous at x = 2, where it is, however, left continuous
since limx→2− f (x) = 2 = f (2).

34. f (x) =
{

x2 if x > 1
x if x ≤ 1

is defined and continuous ev-

erywhere, and so discontinuous nowhere. Observe that
limx→1− f (x) = 1 = limx→1+ f (x).

35. f (x) = H(x − 1) =
{

1 if x ≥ 1
0 if x < 1

is defined everywhere

and discontinuous at x = 1 where it is, however, right
continuous.

36. f (x) = H(9 − x2) =
{ 1 if −3 ≤ x ≤ 3

0 if x < −3 or x > 3
is defined

everywhere and discontinuous at x = ±3. It is right
continuous at −3 and left continuous at 3.

37. f (x) = |x |+|x+1| is defined and continuous everywhere.
It is discontinuous nowhere.

38. f (x) =
{ |x |/|x + 1| if x �= −1

1 if x = −1
is defined everywhere

and discontinuous at x = −1 where it is neither left nor
right continuous since limx→−1 f (x) = ∞, while
f (−1) = 1.

Challenging Problems 1 (page 92)

1. Let 0 < a < b. The average rate of change of x3 over
[a, b] is

b3 − a3

b − a
= b2 + ab + a2.

The instantaneous rate of change of x3 at x = c is

lim
h→0

(c + h)3 − c3

h
= lim

h→0

3c2h + 3ch2 + h3

h
= 3c2.

If c = √

(a2 + ab + b2)/3, then 3c2 = a2 + ab + b2, so
the average rate of change over [a, b] is the instantaneous
rate of change at

√

(a2 + ab + b2)/3.
Claim:

√

(a2 + ab + b2)/3 > (a + b)/2.
Proof: Since a2 − 2ab + b2 = (a − b)2 > 0, we have

4a2 + 4ab + 4b2 > 3a2 + 6ab + 3b2

a2 + ab + b2

3
>

a2 + 2ab + b2

4
=

(
a + b

2

)2

√

a2 + ab + b2

3
>

a + b

2
.

2. For x near 0 we have |x −1| = 1− x and |x +1| = x +1.
Thus

lim
x→0

x

|x − 1| − |x + 1| = lim
x→0

x

(1 − x)− (x + 1)
= −1

2
.
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3. For x near 3 we have |5− 2x | = 2x − 5, |x − 2| = x − 2,
|x − 5| = 5− x , and |3x − 7| = 3x − 7. Thus

lim
x→3

|5− 2x | − |x − 2|
|x − 5| − |3x − 7| = lim

x→3

2x − 5 − (x − 2)

5− x − (3x − 7)

= lim
x→3

x − 3

4(3 − x)
= −1

4
.

4. Let y = x1/6. Then we have

lim
x→64

x1/3 − 4

x1/2 − 8
= lim

y→2

y2 − 4

y3 − 8

= lim
y→2

(y − 2)(y + 2)

(y − 2)(y2 + 2y + 4)

= lim
y→2

y + 2

y2 + 2y + 4
= 4

12
= 1

3
.

5. Use a − b = a3 − b3

a2 + ab + b2 to handle the denominator.

We have

lim
x→1

√
3+ x − 2

3
√

7 + x − 2

= lim
x→1

3+ x − 4√
3+ x + 2

× (7 + x)2/3 + 2(7 + x)1/3 + 4

(7 + x)− 8

= lim
x→1

(7+ x)2/3 + 2(7 + x)1/3 + 4√
3+ x + 2

= 4+ 4+ 4

2+ 2
= 3.

6. r+(a) = −1+√1+ a

a
, r−(a) = −1−√1 + a

a
.

a) lima→0 r−(a) does not exist. Observe that the right
limit is −∞ and the left limit is ∞.

b) From the following table it appears that
lima→0 r+(a) = 1/2, the solution of the linear equa-
tion 2x − 1 = 0 which results from setting a = 0 in
the quadratic equation ax2 + 2x − 1 = 0.

a r+(a)
1 0.41421

0.1 0.48810
−0.1 0.51317
0.01 0.49876
−0.01 0.50126
0.001 0.49988
−0.001 0.50013

c) lim
a→0

r+(a) = lim
a→0

√
1+ a − 1

a

= lim
a→0

(1+ a)− 1

a(
√

1+ a + 1)

= lim
a→0

1√
1+ a + 1

= 1

2
.

7. TRUE or FALSE

a) If limx→a f (x) exists and limx→a g(x) does not

exist, then limx→a

(

f (x)+ g(x)
)

does not exist.

TRUE, because if limx→a

(

f (x) + g(x)
)

were to

exist then

lim
x→a

g(x) = lim
x→a

(

f (x)+ g(x)− f (x)
)

= lim
x→a

(

f (x)+ g(x)
)

− lim
x→a

f (x)

would also exist.

b) If neither limx→a f (x) nor limx→a g(x) exists, then

limx→a

(

f (x)+ g(x)
)

does not exist.

FALSE. Neither limx→0 1/x nor limx→0(−1/x) ex-

ist, but limx→0

(

(1/x) + (−1/x)
)

= limx→0 0 = 0
exists.

c) If f is continuous at a, then so is | f |.
TRUE. For any two real numbers u and v we have

∣
∣
∣|u| − |v|

∣
∣
∣ ≤ |u − v|.

This follows from

|u| = |u − v + v| ≤ |u − v| + |v|, and

|v| = |v − u + u| ≤ |v − u| + |u| = |u − v| + |u|.

Now we have

∣
∣
∣| f (x)| − | f (a)|

∣
∣
∣ ≤ | f (x)− f (a)|

so the left side approaches zero whenever the right
side does. This happens when x → a by the conti-
nuity of f at a.

d) If | f | is continuous at a, then so is f .

FALSE. The function f (x) =
{−1 if x < 0

1 if x ≥ 0
is

discontinuous at x = 0, but | f (x)| = 1 everywhere,
and so is continuous at x = 0.

e) If f (x) < g(x) in an interval around a and if
limx→a f (x) = L and limx→a g(x) = M both
exist, then L < M .

FALSE. Let g(x) =
{

x2 if x �= 0
1 if x = 0

and let

f (x) = −g(x). Then f (x) < g(x) for all x , but
limx→0 f (x) = 0 = limx→0 g(x). (Note: under the
given conditions, it is TRUE that L ≤ M , but not
necessarily true that L < M .)
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8. a) To be proved: if f is a continuous function defined
on a closed interval [a, b], then the range of f is a
closed interval.
Proof: By the Max-Min Theorem there exist num-
bers u and v in [a, b] such that f (u) ≤ f (x) ≤ f (v)
for all x in [a, b]. By the Intermediate-Value The-
orem, f (x) takes on all values between f (u)
and f (v) at values of x between u and v, and
hence at points of [a, b]. Thus the range of f is
[ f (u), f (v)], a closed interval.

b) If the domain of the continuous function f is an
open interval, the range of f can be any interval
(open, closed, half open, finite, or infinite).

9. f (x) = x2 − 1

|x2 − 1| =
{−1 if −1 < x < 1

1 if x < −1 or x > 1
.

f is continuous wherever it is defined, that is at all
points except x = ±1. f has left and right limits −1
and 1, respectively, at x = 1, and has left and right limits
1 and −1, respectively, at x = −1. It is not, however,
discontinuous at any point, since −1 and 1 are not in its
domain.

10. f (x) = 1

x − x2 =
1

1
4 −

( 1
4 − x + x2

) = 1
1
4 −

(

x − 1
2

)2 .

Observe that f (x) ≥ f (1/2) = 4 for all x in (0, 1).

11. Suppose f is continuous on [0, 1] and f (0) = f (1).

a) To be proved: f (a) = f (a+ 1
2 ) for some a in [0, 1

2 ].
Proof: If f (1/2) = f (0) we can take a = 0 and be
done. If not, let

g(x) = f (x + 1
2 )− f (x).

Then g(0) �= 0 and

g(1/2) = f (1)− f (1/2) = f (0)− f (1/2) = −g(0).

Since g is continuous and has opposite signs at
x = 0 and x = 1/2, the Intermediate-Value The-
orem assures us that there exists a between 0 and
1/2 such that g(a) = 0, that is, f (a) = f (a + 1

2 ).

b) To be proved: if n > 2 is an integer, then
f (a) = f (a + 1

n ) for some a in [0, 1− 1
n ].

Proof: Let g(x) = f (x + 1
n ) − f (x). Consider

the numbers x = 0, x = 1/n, x = 2/n, . . . ,
x = (n − 1)/n. If g(x) = 0 for any of these num-
bers, then we can let a be that number. Otherwise,
g(x) �= 0 at any of these numbers. Suppose that the
values of g at all these numbers has the same sign
(say positive). Then we have

f (1) > f ( n−1
n ) > · · · > f ( 2

n ) >
1
n > f (0),

which is a contradiction, since f (0) = f (1). There-
fore there exists j in the set {0, 1, 2, . . . , n − 1} such
that g( j/n) and g(( j + 1)/n) have opposite sign. By
the Intermediate-Value Theorem, g(a) = 0 for some
a between j/n and ( j + 1)/n, which is what we had
to prove.
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CHAPTER 2. DIFFERENTIATION

Section 2.1 Tangent Lines and Their Slopes
(page 98)

1. Slope of y = 3x − 1 at (1, 2) is

m = lim
h→0

3(1+ h)− 1− (3 × 1− 1)

h
= lim

h→0

3h

h
= 3.

The tangent line is y− 2 = 3(x − 1), or y = 3x − 1. (The
tangent to a straight line at any point on it is the same
straight line.)

2. Since y = x/2 is a straight line, its tangent at any point
(a, a/2) on it is the same line y = x/2.

3. Slope of y = 2x2 − 5 at (2, 3) is

m = lim
h→0

2(2 + h)2 − 5− (2(22)− 5)

h

= lim
h→0

8+ 8h + 2h2 − 8

h
= lim

h→0
(8 + 2h) = 8

Tangent line is y − 3 = 8(x − 2) or y = 8x − 13.

4. The slope of y = 6 − x − x2 at x = −2 is

m = lim
h→0

6 − (−2+ h)− (−2+ h)2 − 4

h

= lim
h→0

3h − h2

h
= lim

h→0
(3− h) = 3.

The tangent line at (−2, 4) is y = 3x + 10.

5. Slope of y = x3 + 8 at x = −2 is

m = lim
h→0

(−2+ h)3 + 8− (−8 + 8)

h

= lim
h→0

−8+ 12h − 6h2 + h3 + 8− 0

h

= lim
h→0

(

12− 6h + h2
)

= 12

Tangent line is y − 0 = 12(x + 2) or y = 12x + 24.

6. The slope of y = 1

x2 + 1
at (0, 1) is

m = lim
h→0

1

h

(
1

h2 + 1
− 1

)

= lim
h→0

−h

h2 + 1
= 0.

The tangent line at (0, 1) is y = 1.

7. Slope of y = √x + 1 at x = 3 is

m = lim
h→0

√
4+ h − 2

h
·
√

4 + h + 2√
4 + h + 2

= lim
h→0

4+ h − 4

h
(√

h + h + 2
)

= lim
h→0

1√
4+ h + 2

= 1

4
.

Tangent line is y − 2 = 1

4
(x − 3), or x − 4y = −5.

8. The slope of y = 1√
x

at x = 9 is

m = lim
h→0

1

h

(
1√

9+ h
− 1

3

)

= lim
h→0

3−√9 + h

3h
√

9+ h
· 3+√9+ h

3+√9+ h

= lim
h→0

9− 9 − h

3h
√

9+ h(3+√9+ h)

= − 1

3(3)(6)
= − 1

54
.

The tangent line at (9, 1
3 ) is y = 1

3 − 1
54 (x − 9), or

y = 1
2 − 1

54 x .

9. Slope of y = 2x

x + 2
at x = 2 is

m = lim
h→0

2(2+ h)

2+ h + 2
− 1

h

= lim
h→0

4+ 2h − 2− h − 2

h(2+ h + 2)

= lim
h→0

h

h(4 + h)
= 1

4
.

Tangent line is y − 1 = 1

4
(x − 2),

or x − 4y = −2.

10. The slope of y = √5− x2 at x = 1 is

m = lim
h→0

√

5− (1 + h)2 − 2

h

= lim
h→0

5 − (1 + h)2 − 4

h
(√

5 − (1 + h)2 + 2
)

= lim
h→0

−2− h
√

5− (1 + h)2 + 2
= −1

2

The tangent line at (1, 2) is y = 2 − 1
2 (x − 1), or

y = 5
2 − 1

2 x .
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11. Slope of y = x2 at x = x0 is

m = lim
h→0

(x0 + h)2 − x2
0

h
= lim

h→0

2x0h + h2

h
= 2x0.

Tangent line is y − x2
0 = 2x0(x − x0),

or y = 2x0x − x2
0 .

12. The slope of y = 1

x
at (a, 1

a ) is

m = lim
h→0

1

h

(
1

a + h
+ 1

a

)

= lim
h→0

a − a − h

h(a + h)(a)
= − 1

a2
.

The tangent line at (a,
1

a
) is y = 1

a
− 1

a2 (x − a), or

y = 2

a
− x

a2 .

13. Since limh→0

√|0+ h| − 0

h
= lim

h→0

1

|h|sgn (h)
does not

exist (and is not ∞ or −∞), the graph of f (x) = √|x |
has no tangent at x = 0.

14. The slope of f (x) = (x − 1)4/3 at x = 1 is

m = lim
h→0

(1+ h − 1)4/3 − 0

h
= lim

h→0
h1/3 = 0.

The graph of f has a tangent line with slope 0 at x = 1.
Since f (1) = 0, the tangent has equation y = 0

15. The slope of f (x) = (x + 2)3/5 at x = −2 is

m = lim
h→0

(−2+ h + 2)3/5 − 0

h
= lim

h→0
h−2/5 = ∞.

The graph of f has vertical tangent x = −2 at x = −2.

16. The slope of f (x) = |x2 − 1| at x = 1 is

m = limh→0
|(1 + h)2 − 1| − |1− 1|

h
= lim

h→0

|2h + h2|
h

,

which does not exist, and is not −∞ or ∞. The graph
of f has no tangent at x = 1.

17. If f (x) =
{√

x if x ≥ 0
−√−x if x < 0

, then

lim
h→0+

f (0+ h)− f (0)

h
= lim

h→0+

√
h

h
= ∞

lim
h→0−

f (0+ h)− f (0)

h
= lim

h→0−
−√−h

h
= ∞

Thus the graph of f has a vertical tangent x = 0.

18. The slope of y = x2 − 1 at x = x0 is

m = lim
h→0

[(x0 + h)2 − 1]− (x2
0 − 1)

h

= lim
h→0

2x0h + h2

h
= 2x0.

If m = −3, then x0 = − 3
2 . The tangent line with slope

m = −3 at (− 3
2 ,

5
4 ) is y = 5

4 − 3(x + 3
2 ), that is,

y = −3x − 13
4 .

19. a) Slope of y = x3 at x = a is

m = lim
h→0

(a + h)3 − a3

h

= lim
h→0

a3 + 3a2h + 3ah2 + h3 − a3

h
= lim

h→0
(3a2 + 3ah + h2) = 3a2

b) We have m = 3 if 3a2 = 3, i.e., if a = ±1.
Lines of slope 3 tangent to y = x3 are
y = 1 + 3(x − 1) and y = −1 + 3(x + 1), or
y = 3x − 2 and y = 3x + 2.

20. The slope of y = x3 − 3x at x = a is

m = lim
h→0

1

h

[

(a + h)3 − 3(a + h)− (a3 − 3a)
]

= lim
h→0

1

h

[

a3 + 3a2h + 3ah2 + h3 − 3a − 3h − a3 + 3a
]

= lim
h→0

[3a2 + 3ah + h2 − 3] = 3a2 − 3.

At points where the tangent line is parallel to the x-axis,
the slope is zero, so such points must satisfy 3a2− 3 = 0.
Thus, a = ±1. Hence, the tangent line is parallel to the
x-axis at the points (1,−2) and (−1, 2).

21. The slope of the curve y = x3 − x + 1 at x = a is

m = lim
h→0

(a + h)3 − (a + h)+ 1− (a3 − a + 1)

h

= lim
h→0

3a2h + 3ah2 + a3 − h

h
= lim

h→0
(3a2 + 3ah + h2 − 1) = 3a2 − 1.

The tangent at x = a is parallel to the line y = 2x + 5 if
3a2 − 1 = 2, that is, if a = ±1. The corresponding points
on the curve are (−1, 1) and (1, 1).

22. The slope of the curve y = 1/x at x = a is

m = lim
h→0

1

a + h
− 1

a
h

= lim
h→0

a − (a + h)

ah(a + h)
= − 1

a2 .

The tangent at x = a is perpendicular to the line
y = 4x − 3 if −1/a2 = −1/4, that is, if a = ±2. The
corresponding points on the curve are (−2,−1/2) and
(2, 1/2).
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23. The slope of the curve y = x2 at x = a is

m = lim
h→0

(a + h)2 − a2

h
= lim

h→0
(2a + h) = 2a.

The normal at x = a has slope −1/(2a), and has equa-
tion

y − a2 = − 1

2a
(x − a), or

x

2a
+ y = 1

2
+ a2.

This is the line x + y = k if 2a = 1, and so
k = (1/2)+ (1/2)2 = 3/4.

24. The curves y = kx2 and y = k(x − 2)2 intersect at (1, k).
The slope of y = kx2 at x = 1 is

m1 = lim
h→0

k(1 + h)2 − k

h
= lim

h→0
(2 + h)k = 2k.

The slope of y = k(x − 2)2 at x = 1 is

m2 = lim
h→0

k(2 − (1 + h))2 − k

h
= lim

h→0
(−2+ h)k = −2k.

The two curves intersect at right angles if
2k = −1/(−2k), that is, if 4k2 = 1, which is satisfied
if k = ±1/2.

25. Horizontal tangents at (0, 0), (3, 108), and (5, 0).
y

-20

20

40

60

80

100

x-1 1 2 3 4 5

(3, 108)

y = x3(5 − x)2

Fig. 2.1.25

26. Horizontal tangent at (−1, 8) and (2,−19).
y

-30

-20

-10

10

20

x-2 -1 1 2 3

(−1, 8)

(2,−19)

y = 2x3 − 3x2 − 12x + 1

Fig. 2.1.26

27. Horizontal tangent at (−1/2, 5/4). No tangents at
(−1, 1) and (1,−1).

y

-3

-2

-1

1

2

x-3 -2 -1 1 2

y = |x2 − 1| − x

Fig. 2.1.27

28. Horizontal tangent at (a, 2) and (−a,−2) for all a > 1.
No tangents at (1, 2) and (−1,−2).

y

-3

-2

-1

1

2

x-3 -2 -1 1 2

y = |x + 1| − |x − 1|

Fig. 2.1.28

29. Horizontal tangent at (0,−1). The tangents at (±1, 0)
are vertical.

y

-3

-2

-1

1

2

x-3 -2 -1 1 2

y = (x2 − 1)1/3

Fig. 2.1.29

30. Horizontal tangent at (0, 1). No tangents at (−1, 0) and
(1, 0).
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y

1

2

x-2 -1 1 2

y = ((x2 − 1)2)1/3

Fig. 2.1.30

31. The graph of the function f (x) = x2/3 (see Figure 2.1.7
in the text) has a cusp at the origin O, so does not have
a tangent line there. However, the angle between O P
and the positive y-axis does → 0 as P approaches 0
along the graph. Thus the answer is NO.

32. The slope of P(x) at x = a is

m = lim
h→0

P(a + h)− P(a)

h
.

Since P(a + h) = a0 + a1h + a2h2 + · · · + anhn and
P(a) = a0, the slope is

m = lim
h→0

a0 + a1h + a2h2 + · · · + anhn − a0

h
= lim

h→0
a1 + a2h + · · · + anhn−1 = a1.

Thus the line y = �(x) = m(x − a) + b is tangent to
y = P(x) at x = a if and only if m = a1 and b = a0,
that is, if and only if

P(x)−�(x) = a2(x − a)2 + a3(x − a)3 + · · · + an(x − a)n

= (x − a)2
[

a2 + a3(x − a)+ · · · + an(x − a)n−2
]

= (x − a)2 Q(x)

where Q is a polynomial.

Section 2.2 The Derivative (page 105)

1.
y

x

y = f ′(x)

2.
y

xy = g′(x)

3.
y

x

y = h ′(x)

4.
y

x

y = k′(x)

5. Assuming the tick marks are spaced 1 unit apart, the
function f is differentiable on the intervals (−2,−1),
(−1, 1), and (1, 2).

6. Assuming the tick marks are spaced 1 unit apart, the
function g is differentiable on the intervals (−2,−1),
(−1, 0), (0, 1), and (1, 2).

7. y = f (x) has its minimum at x = 3/2 where f ′(x) = 0
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y

x

y

x

y = f (x) = 3x − x2 − 1

y = f ′(x)

Fig. 2.2.7

8. y = f (x) has horizontal tangents at the points near 1/2
and 3/2 where f ′(x) = 0

y

x

y

x

y = f (x) = x3 − 3x2 + 2x + 1

y = f ′(x)

Fig. 2.2.8

9. y = f (x) fails to be differentiable at x = −1, x = 0,
and x = 1. It has horizontal tangents at two points, one
between −1 and 0 and the other between 0 and 1.

y

x

y

x

y = f (x) = |x3 − 1|

y = f ′(x)

Fig. 2.2.9

10. y = f (x) is constant on the intervals (−∞,−2), (−1, 1),
and (2,∞). It is not differentiable at x = ±2 and
x = ±1.

y

x

y

x

y = f (x) = |x2 − 1| − |x2 − 4|

y = f ′(x)

Fig. 2.2.10

11. y = x2 − 3x

y ′ = lim
h→0

(x + h)2 − 3(x + h)− (x2 − 3x)

h

= lim
h→0

2xh + h2 − 3h

h
= 2x − 3
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12. f (x) = 1+ 4x − 5x2

f ′(x) = lim
h→0

1+ 4(x + h)− 5(x + h)2 − (1 + 4x − 5x2)

h

= lim
h→0

4h − 10xh − 5h2

h
= 4− 10x

13. f (x) = x3

f ′(x) = lim
h→0

(x + h)3 − x3

h

= lim
h→0

3x2h + 3xh2 + h3

h
= 3x2

14. s = 1

3+ 4t
ds

dt
= lim

h→0

1

h

[
1

3+ 4(t + h)
− 1

3+ 4t

]

= lim
h→0

3+ 4t − 3− 4t − 4h

h(3+ 4t)[3 + (4t + h)]
= − 4

(3+ 4t)2

15. F(t) = √2t + 1

F ′(t) = lim
h→0

√
2(t + h)+ 1−√2t + 1

h

= lim
h→0

2t + 2h + 1− 2t − 1

h
(√

2(t + h)+ 1+√2t + 1
)

= lim
h→0

2√
2(t + h)+ 1+√2t + 1

= 1√
2t + 1

16. f (x) = 3
4

√
2− x

f ′(x) = lim
h→0

3
4

√
2− (x + h)− 3

4

√
2− x

h

= lim
h→0

3

4

[
2− x − h − 2+ x

h(
√

2 − (x + h)+√2− x)

]

= − 3

8
√

2− x

17. y = x + 1

x

y ′ = lim
h→0

x + h + 1

x + h
− x − 1

x
h

= lim
h→0

(

1+ x − x − h

h(x + h)x

)

= 1 + lim
h→0

−1

(x + h)x
= 1− 1

x2

18. z = s

1+ s
dz

ds
= lim

h→0

1

h

[
s + h

1+ s + h
− s

1+ s

]

= lim
h→0

(s + h)(1+ s)− s(1+ s + h)

h(1+ s)(1 + s + h)
= 1

(1 + s)2

19. F(x) = 1√
1+ x2

F ′(x) = lim
h→0

1
√

1 + (x + h)2
− 1√

1+ x2

h

= lim
h→0

√
1+ x2 −√1+ (x + h)2

h
√

1+ (x + h)2
√

1 + x2

= lim
h→0

1 + x2 − 1− x2 − 2hx − h2

h
√

1+ (x + h)2
√

1+ x2
(√

1+ x2 +√1+ (x + h)2
)

= −2x

2(1+ x2)3/2
= − x

(1+ x2)3/2

20. y = 1

x2

y ′ = lim
h→0

1

h

[
1

(x + h)2
− 1

x2

]

= lim
h→0

x2 − (x + h)2

hx2(x + h)2
= − 2

x3

21. y = 1√
1+ x

y ′(x) = lim
h→0

1√
1+ x + h

− 1√
1+ x

h

= lim
h→0

√
1+ x −√1+ x + h

h
√

1+ x + h
√

1+ x

= lim
h→0

1+ x − 1− x − h

h
√

1+ x + h
√

1 + x
(√

1+ x +√1+ x + h
)

= lim
h→0
− 1√

1+ x + h
√

1 + x
(√

1+ x +√1+ x + h
)

= − 1

2(1+ x)3/2

22. f (t) = t2 − 3

t2 + 3

f ′(t) = lim
h→0

1

h

(
(t + h)2 − 3

(t + h)2 + 3
− t2 − 3

t2 + 3

)

= lim
h→0

[(t + h)2 − 3](t2 + 3)− (t2 − 3)[(t + h)2 + 3]

h(t2 + 3)[(t + h)2 + 3]

= lim
h→0

12th + 6h2

h(t2 + 3)[(t + h)2 + 3]
= 12t

(t2 + 3)2

23. Since f (x) = x sgn x = |x |, for x �= 0, f will become
continuous at x = 0 if we define f (0) = 0. However,
f will still not be differentiable at x = 0 since |x | is not
differentiable at x = 0.

24. Since g(x) = x2 sgn x = x |x | =
{

x2 if x > 0
−x2 if x < 0

, g

will become continuous and differentiable at x = 0 if we
define g(0) = 0.
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25. h(x) = |x2 + 3x + 2| fails to be differentiable where
x2 + 3x + 2 = 0, that is, at x = −2 and x = −1. Note:
both of these are single zeros of x2 + 3x + 2. If they
were higher order zeros (i.e. if (x + 2)n or (x + 1)n were
a factor of x2 + 3x + 2 for some integer n ≥ 2) then h
would be differentiable at the corresponding point.

26. y = x3 − 2x

x
f (x)− f (1)

x − 1
0.9 0.71000
0.99 0.97010
0.999 0.99700
0.9999 0.99970

x
f (x)− f (1)

x − 1
1.1 1.31000
1.01 1.03010
1.001 1.00300
1.0001 1.00030

d

dx
(x3 − 2x)

∣
∣
∣
∣
x=1
= lim

h→0

(1+ h)3 − 2(1 + h)− (−1)

h

= lim
h→0

h + 3h2 + h3

h
= lim

h→0
1+ 3h + h2 = 1

27. f (x) = 1/x

x
f (x)− f (2)

x − 2
1.9 −0.26316
1.99 −0.25126
1.999 −0.25013
1.9999 −0.25001

x
f (x)− f (2)

x − 2
2.1 −0.23810
2.01 −0.24876
2.001 −0.24988
2.0001 −0.24999

f ′(2) = lim
h→0

1

2+ h
− 2

h
= lim

h→0

2 − (2 + h)

h(2+ h)2

= lim
h→0
− 1

(2+ h)2
= −1

4

28. The slope of y = 5 + 4x − x2 at x = 2 is

dy

dx

∣
∣
∣
∣
x=2
= lim

h→0

5 + 4(2 + h)− (2 + h)2 − 9

h

= lim
h→0

−h2

h
= 0.

Thus, the tangent line at x = 2 has the equation y = 9.

29. y = √x + 6. Slope at (3, 3) is

m = lim
h→0

√
9 + h − 3

h
= lim

h→0

9+ h − 9

h
(√

9+ h + 3
) = 1

6
.

Tangent line is y − 3 = 1

6
(x − 3), or x − 6y = −15.

30. The slope of y = t

t2 − 2
at t = −2 and y = −1 is

dy

dt

∣
∣
∣
∣
t=−2
= lim

h→0

1

h

[ −2+ h

(−2+ h)2 − 2
− (−1)

]

= lim
h→0

−2+ h + [(−2 + h)2 − 2]

h[(−2 + h)2 − 2]
= −3

2
.

Thus, the tangent line has the equation
y = −1− 3

2 (t + 2), that is, y = − 3
2 t − 4.

31. y = 2

t2 + t
Slope at t = a is

m = lim
h→0

2

(a + h)2 + (a + h)
− 2

a2 + a
h

= lim
h→0

2(a2 + a − a2 − 2ah − h2 − a − h)

h[(a + h)2 + a + h](a2 + a)

= lim
h→0

−4a − 2h − 2

[(a + h)2 + a + h](a2 + a)

= − 4a + 2

(a2 + a)2

Tangent line is y = 2

a2 + a
− 2(2a + 1)

(a2 + a)2
(t − a)

32. f ′(x) = −17x−18 for x �= 0

33. g′(t) = 22t21 for all t

34.
dy

dx
= 1

3
x−2/3 for x �= 0

35.
dy

dx
= −1

3
x−4/3 for x �= 0

36.
d

dt
t−2.25 = −2.25t−3.25 for t > 0

37.
d

ds
s119/4 = 119

4
s115/4 for s > 0

38.
d

ds

√
s

∣
∣
∣
∣
s=9
= 1

2
√

s

∣
∣
∣
∣
s=9
= 1

6
.

39. F(x) = 1

x
, F ′(x) = − 1

x2 , F ′
(

1

4

)

= −16

40. f ′(8) = −2

3
x−5/3

∣
∣
∣
∣
x=8
= − 1

48

41.
dy

dt

∣
∣
∣
∣
t=4
= 1

4
t−3/4

∣
∣
∣
∣
t=4
= 1

8
√

2

42. The slope of y = √x at x = x0 is

dy

dx

∣
∣
∣
∣
x=x0

= 1

2
√

x0
.

Thus, the equation of the tangent line is

y = √x0 + 1

2
√

x0
(x − x0), that is, y = x + x0

2
√

x0
.
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43. Slope of y = 1

x
at x = a is − 1

x2

∣
∣
∣
∣
x=a
= 1

a2
.

Normal has slope a2, and equation y − 1

a
= a2(x − a),

or y = a2x − a3 + 1

a

44. The intersection points of y = x2 and x + 4y = 18 satisfy

4x2 + x − 18 = 0

(4x + 9)(x − 2) = 0.

Therefore x = − 9
4 or x = 2.

The slope of y = x2 is m1 = dy

dx
= 2x .

At x = −9

4
, m1 = −9

2
. At x = 2, m1 = 4.

The slope of x + 4y = 18, i.e. y = − 1
4 x + 18

4 , is
m2 = − 1

4 .
Thus, at x = 2, the product of these slopes is
(4)(− 1

4 ) = −1. So, the curve and line intersect at right
angles at that point.

45. Let the point of tangency be (a, a2). Slope of tangent is
d

dx
x2
∣
∣
∣
∣
x=a
= 2a

This is the slope from (a, a2) to (1,−3), so
a2 + 3

a − 1
= 2a, and

a2 + 3 = 2a2 − 2a

a2 − 2a − 3 = 0

a = 3 or − 1

The two tangent lines are
(for a = 3): y − 9 = 6(x − 3) or 6x − 9
(for a = −1): y − 1 = −2(x + 1) or y = −2x − 1

y

x

(a,a2)

(1,−3)

y = x2

Fig. 2.2.45

46. The slope of y = 1

x
at x = a is

dy

dx

∣
∣
∣
∣
x=a
= − 1

a2
.

If the slope is −2, then − 1

a2 = −2, or a = ± 1√
2

.

Therefore, the equations of the two straight lines are

y = √2− 2

(

x − 1√
2

)

and y = −√2− 2

(

x + 1√
2

)

,

or y = −2x ± 2
√

2.

47. Let the point of tangency be (a,
√

a)

Slope of tangent is
d

dx

√
x

∣
∣
∣
∣
x=a
= 1

2
√

a

Thus
1

2
√

a
=
√

a − 0

a + 2
, so a + 2 = 2a, and a = 2.

The required slope is
1

2
√

2
.

y

x

(a,
√

a)

y=√x

−2

Fig. 2.2.47

48. If a line is tangent to y = x2 at (t, t2), then its slope is
dy

dx

∣
∣
∣
∣
x=t
= 2t . If this line also passes through (a, b), then

its slope satisfies

t2 − b

t − a
= 2t, that is t2 − 2at + b = 0.

Hence t = 2a ±√4a2 − 4b

2
= a ±

√

a2 − b.

If b < a2, i.e. a2 − b > 0, then t = a ± √a2 − b
has two real solutions. Therefore, there will be two dis-
tinct tangent lines passing through (a, b) with equations

y = b + 2
(

a ±√a2 − b
)

(x − a). If b = a2, then t = a.

There will be only one tangent line with slope 2a and
equation y = b + 2a(x − a).
If b > a2, then a2−b < 0. There will be no real solution
for t . Thus, there will be no tangent line.
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49. Suppose f is odd: f (−x) = − f (x). Then

f ′(−x) = lim
h→0

f (−x + h)− f (−x)

h

= lim
h→0
− f (x − h)− f (x)

h
(let h = −k)

= lim
k→0

f (x + k) − f (x)

k
= f ′(x)

Thus f ′ is even.
Now suppose f is even: f (−x) = f (x). Then

f ′(−x) = lim
h→0

f (−x + h)− f (−x)

h

= lim
h→0

f (x − h)− f (x)

h

= lim
k→0

f (x + k) − f (x)

−k
= − f ′(x)

so f ′ is odd.

50. Let f (x) = x−n . Then

f ′(x) = lim
h→0

(x + h)−n − x−n

h

= lim
h→0

1

h

(
1

(x + h)n
− 1

xn

)

= lim
h→0

xn − (x + h)n

hxn(x + h)n

= lim
h→0

x − (x + h)

hxn((x + h)n
×

(

xn−1 + xn−2(x + h)+ · · · + (x + h)n−1
)

= − 1

x2n
× nxn−1 = −nx−(n+1).

51. f (x) = x1/3

f ′(x) = lim
h→0

(x + h)1/3 − x1/3

h

= lim
h→0

(x + h)1/3 − x1/3

h

× (x + h)2/3 + (x + h)1/3x1/3 + x2/3

(x + h)2/3 + (x + h)1/3x1/3 + x2/3

= lim
h→0

x + h − x

h[(x + h)2/3 + (x + h)1/3x1/3 + x2/3]

= lim
h→0

1

(x + h)2/3 + (x + h)1/3x1/3 + x2/3

= 1

3x2/3 =
1

3
x−2/3

52. Let f (x) = x1/n . Then

f ′(x) = lim
h→0

(x + h)1/n − x1/n

h
(let x + h = an , x = bn)

= lim
a→b

a − b

an − bn

= lim
a→b

1

an−1 + an−2b + an−3b2 + · · · + bn−1

= 1

nbn−1
= 1

n
x (1/n)−1.

53.
d

dx
xn = lim

h→0

(x + h)n − xn

h

= lim
h→0

1

h

[

xn + n

1
xn−1h + n(n − 1)

1× 2
xn−2h2

+ n(n − 1)(n − 2)

1× 2× 3
xn−3h3 + · · · + hn − xn

]

= lim
h→0

(

nxn−1 + h

[
n(n − 1)

1× 2
xn−2h

+ n(n − 1)(n − 2)

1× 2× 3
xn−3h2 + · · · + hn−1

])

= nxn−1

54. Let

f ′(a+) = lim
h→0+

f (a + h)− f (a)

h

f ′(a−) = lim
h→0−

f (a + h)− f (a)

h

If f ′(a+) is finite, call the half-line with equation
y = f (a) + f ′(a+)(x − a), (x ≥ a), the right tangent
line to the graph of f at x = a. Similarly, if f ′(a−)
is finite, call the half-line y = f (a) + f ′(a−)(x − a),
(x ≤ a), the left tangent line. If f ′(a+) = ∞ (or −∞),
the right tangent line is the half-line x = a, y ≥ f (a) (or
x = a, y ≤ f (a)). If f ′(a−) = ∞ (or −∞), the right
tangent line is the half-line x = a, y ≤ f (a) (or x = a,
y ≥ f (a)).
The graph has a tangent line at x = a if and only if
f ′(a+) = f ′(a−). (This includes the possibility that both
quantities may be +∞ or both may be −∞.) In this
case the right and left tangents are two opposite halves of
the same straight line. For f (x) = x2/3, f ′(x) = 2

3 x−1/3.

At (0, 0), we have f ′(0+) = +∞ and f ′(0−) = −∞.
In this case both left and right tangents are the positive
y-axis, and the curve does not have a tangent line at the
origin.
For f (x) = |x |, we have

f ′(x) = sgn (x) =
{

1 if x > 0
−1 if x < 0.

At (0, 0), f ′(0+) = 1, and f ′(0−) = −1. In this case
the right tangent is y = x , (x ≥ 0), and the left tangent is
y = −x , (x ≤ 0). There is no tangent line.
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Section 2.3 Differentiation Rules
(page 113)

1. y = 3x2 − 5x − 7, y ′ = 6x − 5.

2. y = 4x1/2 − 5

x
, y ′ = 2x−1/2 + 5x−2

3. f (x) = Ax2 + Bx + C, f ′(x) = 2Ax + B.

4. f (x) = 6

x3 +
2

x2 − 2, f ′(x) = −18

x4 −
4

x3

5. z = s5 − s3

15
,

dz

dx
= 1

3
s4 − 1

5
s2.

6. y = x45 − x−45 y ′ = 45x44 + 45x−46

7. g(t) = t1/3 + 2t1/4 + 3t1/5

g′(t) = 1

3
t−2/3 + 1

2
t−3/4 + 3

5
t−4/5

8. y = 3
3
√

t2 − 2√
t3
= 3t2/3 − 2t−3/2

dy

dt
= 2t−1/3 + 3t−5/2

9. u = 3

5
x5/3 − 5

3
x−3/5

du

dx
= x2/3 + x−8/5

10. F(x) = (3x − 2)(1 − 5x)

F ′(x) = 3(1 − 5x)+ (3x − 2)(−5) = 13− 30x

11. y = √x

(

5− x − x2

3

)

= 5
√

x − x3/2 − 1

3
x5/2

y ′ = 5

2
√

x
− 3

2

√
x − 5

6
x3/2

12. g(t) = 1

2t − 3
, g′(t) = − 2

(2t − 3)2

13. y = 1

x2 + 5x

y ′ = − 1

(x2 + 5x)2
(2x + 5) = − 2x + 5

(x2 + 5x)2

14. y = 4

3− x
, y ′ = 4

(3 − x)2

15. f (t) = π

2− π t

f ′(t) = − π

(2− π t)2
(−π) = π2

(2− π t)2

16. g(y) = 2

1 − y2
, g′(y) = 4y

(1 − y2)2

17. f (x) = 1− 4x2

x3
= x−3 − 4

x

f ′(x) = −3x−4 + 4x−2 = 4x2 − 3

x4

18. g(u) = u
√

u − 3

u2 = u−1/2 − 3u−2

g′(u) = −1

2
u−3/2 + 6u−3 = 12− u

√
u

2u3

19. y = 2+ t + t2
√

t
= 2t−1/2 +√t + t3/2

dy

dt
= −t−3/2 + 1

2
√

t
+ 3

2

√
t = 3t2 + t − 2

2t
√

t

20. z = x − 1

x2/3 = x1/3 − x−2/3

dz

dx
= 1

3
x−2/3 + 2

3
x−5/3 = x + 2

3x5/3

21. f (x) = 3− 4x

3+ 4x

f ′(x) = (3 + 4x)(−4) − (3 − 4x)(4)

(3 + 4x)2

= − 24

(3+ 4x)2

22. z = t2 + 2t

t2 − 1

z′ = (t2 − 1)(2t + 2)− (t2 + 2t)(2t)

(t2 − 1)2

= −2(t2 + t + 1)

(t2 − 1)2

23. s = 1+√t

1−√t

ds

dt
=
(1−√t)

1

2
√

t
− (1+√t)(− 1

2
√

t
)

(1−√t)2

= 1√
t(1 −√t)2

24. f (x) = x3 − 4

x + 1

f ′(x) = (x + 1)(3x2)− (x3 − 4)(1)

(x + 1)2

= 2x3 + 3x2 + 4

(x + 1)2

25. f (x) = ax + b

cx + d

f ′(x) = (cx + d)a − (ax + b)c

(cx + d)2

= ad − bc

(cx + d)2
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26. F(t) = t2 + 7t − 8

t2 − t + 1

F ′(t) = (t2 − t + 1)(2t + 7)− (t2 + 7t − 8)(2t − 1)

(t2 − t + 1)2

= −8t2 + 18t − 1

(t2 − t + 1)2

27. f (x) = (1 + x)(1 + 2x)(1 + 3x)(1 + 4x)

f ′(x) = (1 + 2x)(1 + 3x)(1 + 4x)+ 2(1 + x)(1 + 3x)(1 + 4x)

+ 3(1 + x)(1 + 2x)(1 + 4x)+ 4(1 + x)(1 + 2x)(1 + 3x)

OR

f (x) = [(1+ x)(1 + 4x)] [(1 + 2x)(1 + 3x)]

= (1 + 5x + 4x2)(1 + 5x + 6x2)

= 1+ 10x + 25x2 + 10x2(1 + 5x)+ 24x4

= 1+ 10x + 35x2 + 50x3 + 24x4

f ′(x) = 10 + 70x + 150x2 + 96x3

28. f (r) = (r−2 + r−3 − 4)(r2 + r3 + 1)

f ′(r) = (−2r−3 − 3r−4)(r2 + r3 + 1)

+ (r−2 + r−3 − 4)(2r + 3r2)

or

f (r) = −2+ r−1 + r−2 + r−3 + r − 4r2 − 4r3

f ′(r) = −r−2 − 2r−3 − 3r−4 + 1− 8r − 12r2

29. y = (x2 + 4)(
√

x + 1)(5x2/3 − 2)

y ′ = 2x(
√

x + 1)(5x2/3 − 2)

+ 1

2
√

x
(x2 + 4)(5x2/3 − 2)

+ 10

3
x−1/3(x2 + 4)(

√
x + 1)

30. y = (x2 + 1)(x3 + 2)

(x2 + 2)(x3 + 1)

= x5 + x3 + 2x2 + 2

x5 + 2x3 + x2 + 2

y ′ = (x5 + 2x3 + x2 + 2)(5x4 + 3x2 + 4x)

(x5 + 2x3 + x2 + 2)2

− (x
5 + x3 + 2x2 + 2)(5x4 + 6x2 + 2x)

(x5 + 2x3 + x2 + 2)2

= 2x7 − 3x6 − 3x4 − 6x2 + 4x

(x5 + 2x3 + x2 + 2)2

= 2x7 − 3x6 − 3x4 − 6x2 + 4x

(x2 + 2)2(x3 + 1)2

31. y = x

2x + 1

3x + 1

= 3x2 + x

6x2 + 2x + 1

y ′ = (6x2 + 2x + 1)(6x + 1)− (3x2 + x)(12x + 2)

(6x2 + 2x + 1)2

= 6x + 1

(6x2 + 2x + 1)2

32. f (x) = (
√

x − 1)(2 − x)(1 − x2)√
x(3 + 2x)

=
(

1− 1√
x

)

· 2 − x − 2x2 + x3

3+ 2x

f ′(x) =
(

1

2
x−3/2

)
2− x − 2x2 + x3

3+ 2x
+
(

1− 1√
x

)

× (3 + 2x)(−1 − 4x + 3x2)− (2 − x − 2x2 + x3)(2)

(3 + 2x)2

= (2 − x)(1 − x2)

2x3/2(3+ 2x)

+
(

1− 1√
x

)
4x3 + 5x2 − 12x − 7

(3 + 2x)2

33.
d

dx

(
x2

f (x)

)∣
∣
∣
∣
x=2
= f (x)(2x)− x2 f ′(x)

[ f (x)]2

∣
∣
∣
∣
x=2

= 4 f (2)− 4 f ′(2)
[ f (2)]2

= −4

4
= −1

34.
d

dx

(
f (x)

x2

)∣
∣
∣
∣
x=2
= x2 f ′(x)− 2x f (x)

x4

∣
∣
∣
∣
x=2

= 4 f ′(2)− 4 f (2)

16
= 4

16
= 1

4

35.
d

dx

(

x2 f (x)
)
∣
∣
∣
∣
x=2
=
(

2x f (x)+ x2 f ′(x)
)
∣
∣
∣
∣
x=2

= 4 f (2)+ 4 f ′(2) = 20

36.
d

dx

(
f (x)

x2 + f (x)

)∣
∣
∣
∣
x=2

= (x2 + f (x)) f ′(x)− f (x)(2x + f ′(x))
(x2 + f (x))2

∣
∣
∣
∣
x=2

= (4 + f (2)) f ′(2)− f (2)(4 + f ′(2))
(4 + f (2))2

= 18− 14

62 = 1

9

37.
d

dx

(
x2 − 4

x2 + 4

)

|x=−2 = d

dx

(

1− 8

x2 + 4

)∣
∣
∣
∣
x=−2

= 8

(x2 + 4)2
(2x)

∣
∣
∣
∣
x=−2

= −32

64
= −1

2

38.
d

dt

[
t (1 +√t)

5 − t

] ∣
∣
∣
∣
t=4

= d

dt

[
t + t3/2

5− t

] ∣
∣
∣
∣
t=4

= (5 − t)(1 + 3
2 t1/2)− (t + t3/2)(−1)

(5− t)2

∣
∣
∣
∣
t=4

= (1)(4) − (12)(−1)

(1)2
= 16
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39. f (x) =
√

x

x + 1

f ′(x) =
(x + 1)

1

2
√

x
−√x(1)

(x + 1)2

f ′(2) =
3

2
√

2
−√2

9
= − 1

18
√

2

40.
d

dt
[(1 + t)(1 + 2t)(1 + 3t)(1 + 4t)]

∣
∣
∣
∣
t=0

= (1)(1 + 2t)(1 + 3t)(1 + 4t)+ (1 + t)(2)(1 + 3t)(1 + 4t)+
(1+ t)(1 + 2t)(3)(1 + 4t)+ (1 + t)(1 + 2t)(1 + 3t)(4)

∣
∣
∣
∣
t=0

= 1+ 2 + 3+ 4 = 10

41. y = 2

3− 4
√

x
, y ′ = − 2

(

3− 4
√

x
)2

(

− 4

2
√

x

)

Slope of tangent at (1,−2) is m = 8

(−1)22
= 4

Tangent line has the equation y = −2 + 4(x − 1) or
y = 4x − 6

42. For y = x + 1

x − 1
we calculate

y ′ = (x − 1)(1)− (x + 1)(1)

(x − 1)2
= − 2

(x − 1)2
.

At x = 2 we have y = 3 and y′ = −2. Thus, the
equation of the tangent line is y = 3 − 2(x − 2), or
y = −2x + 7. The normal line is y = 3 + 1

2 (x − 2), or
y = 1

2 x + 2.

43. y = x + 1

x
, y ′ = 1− 1

x2

For horizontal tangent: 0 = y′ = 1 − 1

x2 so x2 = 1 and

x = ±1
The tangent is horizontal at (1, 2) and at (−1,−2)

44. If y = x2(4 − x2), then

y ′ = 2x(4− x2)+ x2(−2x) = 8x − 4x3 = 4x(2 − x2).

The slope of a horizontal line must be zero, so
4x(2 − x2) = 0, which implies that x = 0 or x = ±√2.
At x = 0, y = 0 and at x = ±√2, y = 4.
Hence, there are two horizontal lines that are tangent to
the curve. Their equations are y = 0 and y = 4.

45. y = 1

x2 + x + 1
, y ′ = − 2x + 1

(x2 + x + 1)2
For horizon-

tal tangent we want 0 = y′ = − 2x + 1

(x2 + x + 1)2
. Thus

2x + 1 = 0 and x = −1

2

The tangent is horizontal only at

(

−1

2
,

4

3

)

.

46. If y = x + 1

x + 2
, then

y ′ = (x + 2)(1) − (x + 1)(1)

(x + 2)2
= 1

(x + 2)2
.

In order to be parallel to y = 4x , the tangent line must
have slope equal to 4, i.e.,

1

(x + 2)2
= 4, or (x + 2)2 = 1

4 .

Hence x + 2 = ± 1
2 , and x = − 3

2 or − 5
2 . At x = − 3

2 ,

y = −1, and at x = − 5
2 , y = 3.

Hence, the tangent is parallel to y = 4x at the points
(− 3

2 ,−1
)

and
(

− 5
2 , 3

)

.

47. Let the point of tangency be (a, 1
a ). The slope of the

tangent is − 1

a2
= b − 1

a

0− a
. Thus b − 1

a = 1
a and a = 2

b
.

Tangent has slope −b2

4
so has equation y = b − b2

4
x .

y

x

(

a, 1a

)

y = 1

x

b

Fig. 2.3.47

48. Since
1√
x
= y = x2 ⇒ x5/2 = 1, therefore x = 1 at

the intersection point. The slope of y = x2 at x = 1 is

2x

∣
∣
∣
∣
x=1
= 2. The slope of y = 1√

x
at x = 1 is

dy

dx

∣
∣
∣
∣
x=1
= −1

2
x−3/2

∣
∣
∣
∣
x=1
= −1

2
.

The product of the slopes is (2)
(− 1

2

) = −1. Hence, the
two curves intersect at right angles.
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49. The tangent to y = x3 at (a, a3) has equation
y = a3 + 3a2(x − a), or y = 3a2x − 2a3. This line
passes through (2, 8) if 8 = 6a2 − 2a3 or, equivalently, if
a3−3a2+4 = 0. Since (2, 8) lies on y = x3, a = 2 must
be a solution of this equation. In fact it must be a double
root; (a − 2)2 must be a factor of a3 − 3a2 + 4. Dividing
by this factor, we find that the other factor is a + 1, that
is,

a3 − 3a2 + 4 = (a − 2)2(a + 1).

The two tangent lines to y = x3 passing through (2, 8)
correspond to a = 2 and a = −1, so their equations are
y = 12x − 16 and y = 3x + 2.

50. The tangent to y = x2/(x−1) at (a, a2/(a−1)) has slope

m = (x − 1)2x − x2(1)

(x − 1)2

∣
∣
∣
∣
x=a
= a2 − 2a

(a − 1)2
.

The equation of the tangent is

y − a2

a − 1
= a2 − 2a

(a − 1)2
(x − a).

This line passes through (2, 0) provided

0− a2

a − 1
= a2 − 2a

(a − 1)2
(2 − a),

or, upon simplification, 3a2 − 4a = 0. Thus we can have
either a = 0 or a = 4/3. There are two tangents through
(2, 0). Their equations are y = 0 and y = −8x + 16.

51.
d

dx

√

f (x) = lim
h→0

√
f (x + h)−√ f (x)

h

= lim
h→0

f (x + h)− f (x)

h

1√
f (x + h)+√ f (x)

= f ′(x)
2
√

f (x)
d

dx

√

x2 + 1 = 2x

2
√

x2 + 1
= x√

x2 + 1

52. f (x) = |x3| =
{

x3 if x ≥ 0
−x3 if x < 0

. Therefore f is differen-

tiable everywhere except possibly at x = 0, However,

lim
h→0+

f (0+ h)− f (0)

h
= lim

h→0+ h2 = 0

lim
h→0−

f (0+ h)− f (0)

h
= lim

h→0−(−h2) = 0.

Thus f ′(0) exists and equals 0. We have

f ′(x) =
{

3x2 if x ≥ 0
−3x2 if x < 0.

53. To be proved:
d

dx
xn/2 = n

2
x (n/2)−1 for n = 1, 2, 3, . . . .

Proof: It is already known that the case n = 1 is true:
the derivative of x1/2 is (1/2)x−1/2.
Assume that the formula is valid for n = k for some
positive integer k:

d

dx
xk/2 = k

2
x (k/2)−1.

Then, by the Product Rule and this hypothesis,

d

dx
x (k+1)/2 = d

dx
x1/2xk/2

= 1

2
x−1/2xk/2 + k

2
x1/2x (k/2)−1 = k + 1

2
x (k+1)/2−1.

Thus the formula is also true for n = k + 1. Therefore it
is true for all positive integers n by induction.
For negative n = −m (where m > 0) we have

d

dx
xn/2 = d

dx

1

xm/2

= −1

xm

m

2
x (m/2)−1

= −m

2
x−(m/2)−1 = n

2
x (n/2)−1.

54. To be proved:

( f1 f2 · · · fn)
′

= f ′1 f2 · · · fn + f1 f ′2 · · · fn + · · · + f1 f2 · · · f ′n

Proof: The case n = 2 is just the Product Rule. Assume
the formula holds for n = k for some integer k > 2.
Using the Product Rule and this hypothesis we calculate

( f1 f2 · · · fk fk+1)
′

= [( f1 f2 · · · fk) fk+1]′

= ( f1 f2 · · · fk)′ fk+1 + ( f1 f2 · · · fk) f ′k+1

= ( f ′1 f2 · · · fk + f1 f ′2 · · · fk + · · · + f1 f2 · · · f ′k) fk+1

+ ( f1 f2 · · · fk) f ′k+1

= f ′1 f2 · · · fk fk+1 + f1 f ′2 · · · fk fk+1 + · · ·
+ f1 f2 · · · f ′k fk+1 + f1 f2 · · · fk f ′k+1

so the formula is also true for n = k + 1. The formula is
therefore for all integers n ≥ 2 by induction.

Section 2.4 The Chain Rule (page 118)

1. y = (2x + 3)6, y ′ = 6(2x + 3)52 = 12(2x + 3)5

2. y =
(

1− x

3

)99

y ′ = 99
(

1− x

3

)98
(

−1

3

)

= −33
(

1− x

3

)98

52
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3. f (x) = (4 − x2)10

f ′(x) = 10(4 − x2)9(−2x) = −20x(4− x2)9

4.
dy

dx
= d

dx

√

1− 3x2 = −6x

2
√

1− 3x2
= − 3x√

1− 3x2

5. F(t) =
(

2+ 3

t

)−10

F ′(t) = −10

(

2+ 3

t

)−11 −3

t2
= 30

t2

(

2+ 3

t

)−11

6. z = (1 + x2/3)3/2

z′ = 3
2 (1 + x2/3)1/2( 2

3 x−1/3) = x−1/3(1 + x2/3)1/2

7. y = 3

5− 4x

y ′ = − 3

(5 − 4x)2
(−4) = 12

(5 − 4x)2

8. y = (1 − 2t2)−3/2

y ′ = − 3
2 (1 − 2t2)−5/2(−4t) = 6t (1 − 2t2)−5/2

9. y = |1− x2|, y ′ = −2xsgn (1− x2) = 2x3 − 2x

|1− x2|
10. f (t) = |2+ t3|

f ′(t) = [sgn (2 + t3)](3t2) = 3t2(2 + t3)

|2+ t3|
11. y = 4x + |4x − 1|

y ′ = 4 + 4(sgn (4x − 1))

=
{

8 if x > 1
4

0 if x < 1
4

12. y = (2 + |x |3)1/3
y ′ = 1

3 (2 + |x |3)−2/3(3|x |2)sgn (x)

= |x |2(2 + |x |3)−2/3
(

x

|x |
)

= x |x |(2+ |x |3)−2/3

13. y = 1

2+√3x + 4

y ′ = − 1
(

2+√3x + 4
)2

(
3

2
√

3x + 4

)

= − 3

2
√

3x + 4
(

2+√3x + 4
)2

14. f (x) =
(

1+
√

x − 2

3

)4

f ′(x) = 4

(

1+
√

x − 2

3

)3
(

1

2

√

3

x − 2

)(
1

3

)

= 2

3

√

3

x − 2

(

1+
√

x − 2

3

)3

15. z =
(

u + 1

u − 1

)−5/3

dz

du
= −5

3

(

u + 1

u − 1

)−8/3 (

1− 1

(u − 1)2

)

= −5

3

(

1− 1

(u − 1)2

)(

u + 1

u − 1

)−8/3

16. y = x5
√

3+ x6

(4 + x2)3

y ′ = 1

(4 + x2)6

(

(4+ x2)3

[

5x4
√

3+ x6 + x5

(

3x5

√
3+ x6

)]

− x5
√

3+ x6
[

3(4 + x2)2(2x)
])

=
(4 + x2)

[

5x4(3 + x6)+ 3x10
]

− x5(3+ x6)(6x)

(4 + x2)4
√

3+ x6

= 60x4 − 3x6 + 32x10 + 2x12

(4 + x2)4
√

3+ x6

17.
y

t−21/3

y=|2+t3 |

18.
y

x

(
1
4 ,1
)

slope 8

slope 0

y=4x+|4x−1|

19.
d

dx
x1/4 = d

dx

√√
x = 1

2
√√

x
× 1

2
√

x
= 1

4
x−3/4

20.
d

dx
x3/4 = d

dx

√

x
√

x = 1

2
√

x
√

x

(√
x + x

2
√

x

)

= 3

4
x−1/4

21.
d

dx
x3/2 = d

dx

√

x3 = 1

2
√

x3
(3x2) = 3

2
x1/2

22.
d

dt
f (2t + 3) = 2 f ′(2t + 3)

23.
d

dx
f (5x − x2) = (5 − 2x) f ′(5x − x2)
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24.
d

dx

[

f

(
2

x

)]3

= 3

[

f

(
2

x

)]2

f ′
(

2

x

)(−2

x2

)

= − 2

x2
f ′
(

2

x

)[

f

(
2

x

)]2

25.
d

dx

√

3+ 2 f (x) = 2 f ′(x)
2
√

3+ 2 f (x)
= f ′(x)√

3 + 2 f (x)

26.
d

dt
f (
√

3+ 2t) = f ′(
√

3+ 2t)
2

2
√

3 + 2t

= 1√
3+ 2t

f ′(
√

3+ 2t)

27.
d

dx
f (3+ 2

√
x) = 1√

x
f ′(3 + 2

√
x)

28.
d

dt
f

(

2 f
(

3 f (x)
))

= f ′
(

2 f
(

3 f (x)
))

· 2 f ′
(

3 f (x)
)

· 3 f ′(x)

= 6 f ′(x) f ′
(

3 f (x)
)

f ′
(

2 f
(

3 f (x)
))

29.
d

dx
f
(

2− 3 f (4− 5t)
)

= f ′
(

2− 3 f (4 − 5t)
)(

−3 f ′(4− 5t)
)

(−5)

= 15 f ′(4 − 5t) f ′
(

2− 3 f (4 − 5t)
)

30.
d

dx

(√
x2 − 1

x2 + 1

) ∣
∣
∣
∣
x=−2

=
(x2 + 1)

x√
x2 − 1

−
√

x2 − 1(2x)

(x2 + 1)2

∣
∣
∣
∣
x=−2

=
(5)

(

− 2√
3

)

−√3(−4)

25
= 2

25
√

3

31.
d

dt

√
3t − 7

∣
∣
∣
∣
t=3
= 3

2
√

3t − 7

∣
∣
∣
∣
t=3
= 3

2
√

2

32. f (x) = 1√
2x + 1

f ′(4) = − 1

(2x + 1)3/2

∣
∣
∣
∣
x=4
= − 1

27

33. y = (x3 + 9)17/2

y ′
∣
∣
∣
∣
x=−2

= 17

2
(x3 + 9)15/23x2

∣
∣
∣
∣
x=−2

= 17

2
(12) = 102

34. F(x) = (1 + x)(2 + x)2(3 + x)3(4 + x)4

F ′(x) = (2 + x)2(3 + x)3(4+ x)4+
2(1+ x)(2 + x)(3 + x)3(4 + x)4+
3(1+ x)(2 + x)2(3 + x)2(4+ x)4+
4(1+ x)(2 + x)2(3 + x)3(4+ x)3

F ′(0) = (22)(33)(44)+ 2(1)(2)(33)(44)+
3(1)(22)(32)(44)+ 4(1)(22)(33)(43)

= 4(22 · 33 · 44) = 110, 592

35. y =
(

x +
(

(3x)5 − 2
)−1/2)−6

y ′ = −6

(

x +
(

(3x)5 − 2
)−1/2

)−7

×
(

1 − 1

2

(

(3x)5 − 2
)−3/2(

5(3x)43
))

= −6

(

1− 15

2
(3x)4

(

(3x)5 − 2
)−3/2

)

×
(

x +
(

(3x)5 − 2
)−1/2

)−7

36. The slope of y = √1+ 2x2 at x = 2 is

dy

dx

∣
∣
∣
∣
x=2
= 4x

2
√

1+ 2x2

∣
∣
∣
∣
x=2
= 4

3
.

Thus, the equation of the tangent line at (2, 3) is
y = 3+ 4

3 (x − 2), or y = 4
3 x + 1

3 .

37. Slope of y = (1+ x2/3)3/2 at x = −1 is
3

2
(1 + x2/3)1/2

(
2

3
x−1/3

)∣
∣
∣
∣
x=−1

= −√2

The tangent line at (−1, 23/2) has equation
y = 23/2 −√2(x + 1).

38. The slope of y = (ax + b)8 at x = b

a
is

dy

dx

∣
∣
∣
∣
x=b/a

= 8a(ax + b)7
∣
∣
∣
∣
x=b/a

= 1024ab7.

The equation of the tangent line at x = b

a
and

y = (2b)8 = 256b8 is

y = 256b8+1024ab7
(

x − b

a

)

, or y = 210ab7x−3×28b8.

39. Slope of y = 1/(x2 − x + 3)3/2 at x = −2 is

−3

2
(x2−x+3)−5/2(2x−1)

∣
∣
∣
∣
x=−2

= −3

2
(9−5/2)(−5) = 5

162

The tangent line at (−2,
1

27
) has equation

y = 1

27
+ 5

162
(x + 2).
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40. Given that f (x) = (x − a)m (x − b)n then

f ′(x) = m(x − a)m−1(x − b)n + n(x − a)m (x − b)n−1

= (x − a)m−1(x − b)n−1(mx − mb + nx − na).

If x �= a and x �= b, then f ′(x) = 0 if and only if

mx − mb + nx − na = 0,

which is equivalent to

x = n

m + n
a + m

m + n
b.

This point lies lies between a and b.

41. x(x4 + 2x2 − 2)/(x2 + 1)5/2

42. 4(7x4 − 49x2 + 54)/x7

43. 857, 592

44. 5/8

45. The Chain Rule does not enable you to calculate the
derivatives of |x |2 and |x2| at x = 0 directly as a compo-
sition of two functions, one of which is |x |, because |x |
is not differentiable at x = 0. However, |x |2 = x2 and
|x2| = x2, so both functions are differentiable at x = 0
and have derivative 0 there.

46. It may happen that k = g(x + h) − g(x) = 0 for values
of h arbitrarily close to 0 so that the division by k in the
“proof” is not justified.

Section 2.5 Derivatives of Trigonometric
Functions (page 123)

1.
d

dx
csc x = d

dx

1

sin x
= − cos x

sin2 x
= − csc x cot x

2.
d

dx
cot x = d

dx

cos x

sin x
= − cos2 x − sin2 x

sin2 x
= −csc2x

3. y = cos 3x, y ′ = −3 sin 3x

4. y = sin
x

5
, y ′ = 1

5
cos

x

5
.

5. y = tanπx, y ′ = π sec2 πx

6. y = sec ax, y ′ = a sec ax tan ax .

7. y = cot(4 − 3x), y ′ = 3 csc2(4− 3x)

8.
d

dx
sin

π − x

3
= −1

3
cos

π − x

3

9. f (x) = cos(s − r x), f ′(x) = r sin(s − r x)

10. y = sin(Ax + B), y ′ = A cos(Ax + B)

11.
d

dx
sin(π x2) = 2πx cos(π x2)

12.
d

dx
cos(
√

x) = − 1

2
√

x
sin(
√

x)

13. y = √1+ cos x, y ′ = − sin x

2
√

1+ cos x

14.
d

dx
sin(2 cos x) = cos(2 cos x)(−2 sin x)

= −2 sin x cos(2 cos x)

15. f (x) = cos(x + sin x)

f ′(x) = −(1+ cos x) sin(x + sin x)

16. g(θ) = tan(θ sin θ)

g′(θ) = (sin θ + θ cos θ) sec2(θ sin θ)

17. u = sin3(π x/2), u′ = 3π

2
cos(π x/2) sin2(π x/2)

18. y = sec(1/x), y ′ = −(1/x2) sec(1/x) tan(1/x)

19. F(t) = sin at cos at (= 1

2
sin 2at)

F ′(t) = a cos at cos at − a sin at sin at

( = a cos 2at)

20. G(θ) = sin aθ

cos bθ

G ′(θ) = a cos bθ cos aθ + b sin aθ sin bθ

cos2 bθ
.

21.
d

dx

(

sin(2x)− cos(2x)
)

= 2 cos(2x)+ 2 sin(2x)

22.
d

dx
(cos2 x − sin2 x) = d

dx
cos(2x)

= −2 sin(2x) = −4 sin x cos x

23.
d

dx
(tan x + cot x) = sec2 x − csc2 x

24.
d

dx
(sec x − csc x) = sec x tan x + csc x cot x

25.
d

dx
(tan x − x) = sec2 x − 1 = tan2 x

26.
d

dx
tan(3x) cot(3x) = d

dx
(1) = 0

27.
d

dt
(t cos t − sin t) = cos t − t sin t − cos t = −t sin t

28.
d

dt
(t sin t + cos t) = sin t + t cos t − sin t = t cos t

29.
d

dx

sin x

1+ cos x
= (1 + cos x)(cos x)− sin(x)(− sin x)

(1 + cos x)2

= cos x + 1

(1 + cos x)2
= 1

1 + cos x

30.
d

dx

cos x

1+ sin x
= (1+ sin x)(− sin x)− cos(x)(cos x)

(1+ sin x)2

= − sin x − 1

(1+ sin x)2
= −1

1+ sin x
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31.
d

dx
x2 cos(3x) = 2x cos(3x)− 3x2 sin(3x)

32. g(t) = √(sin t)/t

g′(t) = 1

2
√
(sin t)/t

× t cos t − sin t

t2

= t cos t − sin t

2t3/2
√

sin t

33. v = sec(x 2) tan(x2)

v′ = 2x sec(x2) tan2(x2)+ 2x sec3(x2)

34. z = sin
√

x

1+ cos
√

x

z′ = (1 + cos
√

x)(cos
√

x/2
√

x)− (sin√x)(− sin
√

x/2
√

x)

(1+ cos
√

x)2

= 1+ cos
√

x

2
√

x(1 + cos
√

x)2
= 1

2
√

x(1 + cos
√

x)

35.
d

dt
sin(cos(tan t)) = −(sec2 t)(sin(tan t)) cos(cos(tan t))

36. f (s) = cos(s + cos(s + cos s))

f ′(s) = −[sin(s + cos(s + cos s))]

× [1 − (sin(s + cos s))(1 − sin s)]

37. Differentiate both sides of sin(2x) = 2 sin x cos x and
divide by 2 to get cos(2x) = cos2 x − sin2 x .

38. Differentiate both sides of cos(2x) = cos2 x − sin2 x and
divide by −2 to get sin(2x) = 2 sin x cos x .

39. Slope of y = sin x at (π, 0) is cosπ = −1. Therefore
the tangent and normal lines to y = sin x at (π, 0) have
equations y = −(x − π) and y = x − π , respectively.

40. The slope of y = tan(2x) at (0, 0) is 2 sec2(0) = 2.
Therefore the tangent and normal lines to y = tan(2x) at
(0, 0) have equations y = 2x and y = −x/2, respectively.

41. The slope of y = √
2 cos(x/4) at (π, 1) is

−(√2/4) sin(π/4) = −1/4. Therefore the tangent and
normal lines to y = √2 cos(x/4) at (π, 1) have equations
y = 1− (x − π)/4 and y = 1+ 4(x − π), respectively.

42. The slope of y = cos2 x at (π/3, 1/4) is
− sin(2π/3) = −√3/2. Therefore the tangent and normal
lines to y = tan(2x) at (0, 0) have equations
y = (1/4)− (√3/2)(x − (π/3)) and
y = (1/4)+ (2/√3)(x − (π/3)), respectively.

43. Slope of y = sin(x◦) = sin
( πx

180

)

is

y ′ = π

180
cos

( πx

180

)

. At x = 45 the tangent line has

equation

y = 1√
2
+ π

180
√

2
(x − 45).

44. For y = sec (x◦) = sec
( xπ

180

)

we have

dy

dx
= π

180
sec

( xπ

180

)

tan
( xπ

180

)

.

At x = 60 the slope is
π

180
(2
√

3) = π
√

3

90
.

Thus, the normal line has slope − 90

π
√

3
and has equation

y = 2− 90

π
√

3
(x − 60).

45. The slope of y = tan x at x = a is sec2 a. The tan-
gent there is parallel to y = 2x if sec2 a = 2, or
cos a = ±1/

√
2. The only solutions in (−π/2, π/2)

are a = ±π/4. The corresponding points on the graph
are (π/4, 1) and (−π/4, 1).

46. The slope of y = tan(2x) at x = a is 2 sec2(2a). The
tangent there is normal to y = −x/8 if 2 sec2(2a) = 8, or
cos(2a) = ±1/2. The only solutions in (−π/4, π/4) are
a = ±π/6. The corresponding points on the graph are
(π/6,

√
3) and (−π/6,−√3).

47.
d

dx
sin x = cos x = 0 at odd multiples of π/2.

d

dx
cos x = − sin x = 0 at multiples of π .

d

dx
sec x = sec x tan x = 0 at multiples of π .

d

dx
csc x = − csc x cot x = 0 at odd multiples of π/2.

Thus each of these functions has horizontal tangents at
infinitely many points on its graph.

48.
d

dx
tan x = sec2 x = 0 nowhere.

d

dx
cot x = − csc2 x = 0 nowhere.

Thus neither of these functions has a horizontal tangent.

49. y = x + sin x has a horizontal tangent at x = π because
dy/dx = 1+ cos x = 0 there.

50. y = 2x + sin x has no horizontal tangents because
dy/dx = 2+ cos x ≥ 1 everywhere.

51. y = x + 2 sin x has horizontal tangents at x = 2π/3 and
x = 4π/3 because dy/dx = 1 + 2 cos x = 0 at those
points.

52. y = x + 2 cos x has horizontal tangents at x = π/6 and
x = 5π/6 because dy/dx = 1 − 2 sin x = 0 at those
points.

53. lim
x→0

tan(2x)

x
= lim

x→0

sin(2x)

2x

2

cos(2x)
= 1× 2 = 2

54. lim
x→π sec(1 + cos x) = sec(1− 1) = sec 0 = 1

55. lim
x→0

x2 csc x cot x = lim
x→0

( x

sin x

)2
cos x = 12 × 1 = 1
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56. lim
x→0

cos

(
π − π cos2 x

x2

)

= lim
x→0

cosπ
( sin x

x

)2 = cosπ = −1

57. lim
h→0

1− cos h

h2 = lim
h→0

2 sin2(h/2)

h2 = lim
h→0

1

2

(
sin(h/2)

h/2

)2

= 1

2

58. f will be differentiable at x = 0 if

2 sin 0+ 3 cos 0 = b, and

d

dx
(2 sin x + 3 cos x)

∣
∣
∣
∣
x=0
= a.

Thus we need b = 3 and a = 2.

59. There are infinitely many lines through the origin that
are tangent to y = cos x . The two with largest slope are
shown in the figure.

y

x

y = cos x

−π π 2π

Fig. 2.5.59

The tangent to y = cos x at x = a has equation
y = cos a − (sin a)(x − a). This line passes through
the origin if cos a = −a sin a. We use a calculator with
a “solve” function to find solutions of this equation near
a = −π and a = 2π as suggested in the figure. The
solutions are a ≈ −2.798386 and a ≈ 6.121250. The
slopes of the corresponding tangents are given by − sin a,
so they are 0.336508 and 0.161228 to six decimal places.

60. 1

61. −√2π + 3(2π3/2 − 4π + 3)/π

62. a) As suggested by the figure in the problem,
the square of the length of chord AP is
(1 − cos θ)2 + (0 − sin θ)2, and the square of the
length of arc AP is θ2. Hence

(1+ cos θ)2 + sin2 θ < θ2,

and, since squares cannot be negative, each term in
the sum on the left is less than θ2. Therefore

0 ≤ |1− cos θ | < |θ |, 0 ≤ | sin θ | < |θ |.

Since limθ→0 |θ | = 0, the squeeze theorem implies
that

lim
θ→0

1− cos θ = 0, lim
θ→0

sin θ = 0.

From the first of these, limθ→0 cos θ = 1.

b) Using the result of (a) and the addition formulas for
cosine and sine we obtain

lim
h→0

cos(θ0 + h) = lim
h→0

(cos θ0 cos h − sin θ0 sin h) = cos θ0

lim
h→0

sin(θ0 + h) = lim
h→0

(sin θ0 cos h + cos θ0 sin h) = sin θ0.

This says that cosine and sine are continuous at any
point θ0.

Section 2.6 The Mean-Value Theorem
(page 131)

1. f (x) = x2, f ′(x) = 2x

b + a = b2 − a2

b − a
= f (b)− f (a)

b − a

= f ′(c) = 2c ⇒ c = b + a

2

2. If f (x) = 1

x
, and f ′(x) = − 1

x2
then

f (2)− f (1)

2− 1
= 1

2
− 1 = −1

2
= − 1

c2 = f ′(c)

where c = √2 lies between 1 and 2.

3. f (x) = x3 − 3x + 1, f ′(x) = 3x2 − 3, a = −2, b = 2
f (b)− f (a)

b − a
= f (2)− f (−2)

4

= 8− 6+ 1− (−8 + 6+ 1)

4

= 4

4
= 1

f ′(c) = 3c2 − 3

3c2 − 3 = 1⇒ 3c2 = 4⇒ c = ± 2√
3

(Both points will be in (−2, 2).)

4. If f (x) = cos x + (x2/2), then f ′(x) = x − sin x > 0
for x > 0. By the MVT, if x > 0, then
f (x) − f (0) = f ′(c)(x − 0) for some c > 0, so
f (x) > f (0) = 1. Thus cos x + (x2/2) > 1 and
cos x > 1 − (x2/2) for x > 0. Since both sides of
the inequality are even functions, it must hold for x < 0
as well.

5. Let f (x) = tan x . If 0 < x < π/2, then by the MVT
f (x)− f (0) = f ′(c)(x − 0) for some c in (0, π/2).
Thus tan x = x sec2 c > x , since secc > 1.

6. Let f (x) = (1 + x)r − 1 − r x where r > 1.
Then f ′(x) = r(1 + x)r−1 − r .
If −1 ≤ x < 0 then f ′(x) < 0; if x > 0, then f ′(x) > 0.
Thus f (x) > f (0) = 0 if −1 ≤ x < 0 or x > 0.
Thus (1 + x)r > 1+ r x if −1 ≤ x < 0 or x > 0.
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7. Let f (x) = (1 + x)r where 0 < r < 1. Thus,
f ′(x) = r(1 + x)r−1. By the Mean-Value Theorem, for
x ≥ −1, and x �= 0,

f (x)− f (0)

x − 0
= f ′(c)

⇒ (1− x)r − 1

x
= r(1 + c)r−1

for some c between 0 and x . Thus,
(1 + x)r = 1+ r x(1+ c)r−1.
If −1 ≤ x < 0, then c < 0 and 0 < 1+ c < 1. Hence

(1 + c)r−1 > 1 (since r − 1 < 0),

r x(1 + c)r−1 < r x (since x < 0).

Hence, (1+ x)r < 1+ r x .
If x > 0, then

c > 0

1+ c > 1

(1 + c)r−1 < 1

r x(1 + c)r−1 < r x .

Hence, (1+ x)r < 1+ r x in this case also.
Hence, (1+ x)r < 1+ r x for either −1 ≤ x < 0 or x > 0.

8. If f (x) = x2 + 2x + 2 then f ′(x) = 2x + 2 = 2(x + 1).
Evidently, f ′(x) > 0 if x > −1 and f ′(x) < 0 if x < −1.
Therefore, f is increasing on (−1,∞) and decreasing on
(−∞,−1).

9. f (x) = x3 − 4x + 1
f ′(x) = 3x2 − 4

f ′(x) > 0 if |x | > 2√
3

f ′(x) < 0 if |x | < 2√
3

f is increasing on (−∞,− 2√
3
) and (

2√
3
,∞).

f is decreasing on (− 2√
3
,

2√
3
).

10. If f (x) = x3 + 4x + 1, then f ′(x) = 3x2 + 4. Since
f ′(x) > 0 for all real x , hence f (x) is increasing on the
whole real line, i.e., on (−∞,∞).

11. f (x) = (x2 − 4)2

f ′(x) = 2x2(x2 − 4) = 4x(x − 2)(x + 2)
f ′(x) > 0 if x > 2 or −2 < x < 0
f ′(x) < 0 if x < −2 or 0 < x < 2
f is increasing on (−2, 0) and (2,∞).
f is decreasing on (−∞,−2) and (0, 2).

12. If f (x) = 1

x2 + 1
then f ′(x) = −2x

(x2 + 1)2
. Evidently,

f ′(x) > 0 if x < 0 and f ′(x) < 0 if x > 0. Therefore, f
is increasing on (−∞, 0) and decreasing on (0,∞).

13. f (x) = x3(5 − x)2

f ′(x) = 3x2(5 − x)2 + 2x3(5− x)(−1)

= x2(5 − x)(15 − 5x)

= 5x2(5 − x)(3− x)
f ′(x) > 0 if x < 0, 0 < x < 3, or x > 5
f ′(x) < 0 if 3 < x < 5
f is increasing on (−∞, 3) and (5,∞).
f is decreasing on (3, 5).

14. If f (x) = x − 2 sin x , then f ′(x) = 1 − 2 cos x = 0 at
x = ±π/3+ 2nπ for n = 0,±1,±2, . . ..
f is decreasing on (−π/3+ 2nπ,π + 2nπ).
f is increasing on (π/3 + 2nπ,−π/3 + 2(n + 1)π) for
integers n.

15. If f (x) = x + sin x , then f ′(x) = 1+ cos x ≥ 0
f ′(x) = 0 only at isolated points x = ±π, ±3π, ....
Hence f is increasing everywhere.

16. If x1 < x2 < . . . < xn belong to I , and f (xi ) = 0,
(1 ≤ i ≤ n), then there exists yi in (xi , xi+1) such that
f ′(yi ) = 0, (1 ≤ i ≤ n − 1) by MVT.

17. There is no guarantee that the MVT applications for f
and g yield the same c.

18. For x �= 0, we have f ′(x) = 2x sin(1/x) − cos(1/x)
which has no limit as x → 0. However,
f ′(0) = limh→0 f (h)/h = limh→0 h sin(1/h) = 0
does exist even though f ′ cannot be continuous at 0.

19. If f ′ exists on [a, b] and f ′(a) �= f ′(b), let us assume,
without loss of generality, that f ′(a) > k > f ′(b). If
g(x) = f (x) − kx on [a, b], then g is continuous on
[a, b] because f , having a derivative, must be contin-
uous there. By the Max-Min Theorem, g must have a
maximum value (and a minimum value) on that interval.
Suppose the maximum value occurs at c. Since g′(a) > 0
we must have c > a; since g′(b) < 0 we must have
c < b. By Theorem 14, we must have g′(c) = 0 and so
f ′(c) = k. Thus f ′ takes on the (arbitrary) intermediate
value k.

20. f (x) =
{

x + 2x2 sin(1/x) if x �= 0
0 if x = 0.

a) f ′(0) = lim
h→0

f (0 + h)− f (0)

h

= lim
h→0

h + 2h2 sin(1/h)

h
= lim

h→0
(1 + 2h sin(1/h) = 1,

because |2h sin(1/h)| ≤ 2|h| → 0 as h → 0.

b) For x �= 0, we have

f ′(x) = 1+ 4x sin(1/x)− 2 cos(1/x).
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There are numbers x arbitrarily close to 0 where
f ′(x) = −1; namely, the numbers x = ±1/(2nπ),
where n = 1, 2, 3, . . . . Since f ′(x) is continuous at
every x �= 0, it is negative in a small interval about
every such number. Thus f cannot be increasing on
any interval containing x = 0.

Section 2.7 Using Derivatives (page 136)

1. If y = x2, then �y ≈ 2x �x . If �x = (2/100)x , then
�y ≈ (4/100)x2 = (4/100)y, so y increases by about
4%.

2. If y = 1/x , then �y ≈ (−1/x2)�x . If �x = (2/100)x ,
then �y ≈ (−2/100)/x = (−2/100)y, so y decreases by
about 2%.

3. If y = 1/x2, then �y ≈ (−2/x3)�x . If �x = (2/100)x ,
then �y ≈ (−4/100)/x2 = (−4/100)y, so y decreases by
about 4%.

4. If y = x3, then �y ≈ 3x2�x . If �x = (2/100)x , then
�y ≈ (6/100)x3 = (6/100)y, so y increases by about
6%.

5. If y = √x , then �y ≈ (1/2√x) �x . If �x = (2/100)x ,
then �y ≈ (1/100)

√
x = (1/100)y, so y increases by

about 1%.

6. If y = x−2/3, then �y ≈ (−2/3)x−5/3 �x . If
�x = (2/100)x , then �y ≈ (−4/300)x2/3 = (−4/300)y,
so y decreases by about 1.33%.

7. If V = 4
3πr3, then �V = 4πr2�r . If r increases by

2%, then �r = 2r/100 and �V ≈ 8πr3/100. Therefore
�V/V ≈ 6/100. The volume increases by about 6%.

8. If V is the volume and x is the edge length of the cube
then V = x3. Thus �V ≈ 3x2�x . �V = −(6/100)V ,
then −6x3/100 = 3x2�x , so �x ≈ −(2/100)x . The
edge of the cube decreases by about 2%.

9. Rate change of Area A with respect to side s, where

A = s2, is
d A

ds
= 2s. When s = 4 ft, the area is changing

at rate 8 ft2/ft.

10. If A = s2, then s = √A and ds/d A = 1/(2
√

A).
If A = 16 m2, then the side is changing at rate
ds/d A = 1/8 m/m2.

11. The diameter D and area A of a circle are related by
D = 2

√
A/π . The rate of change of diameter with re-

spect to area is d D/d A = √1/(π A) units per square
unit.

12. Since A = πD2/4, the rate of change of area with re-
spect to diameter is d A/d D = πD/2 square units per
unit.

13. Rate of change of V = 4

3
πr3 with respect to radius r is

dV

dr
= 4πr2. When r = 2 m, this rate of change is 16π

m3/m.

14. Let A be the area of a square, s be its side length and L
be its diagonal. Then, L2 = s2 + s2 = 2s2 and

A = s2 = 1
2 L2, so

d A

dL
= L . Thus, the rate of change of

the area of a square with respect to its diagonal L is L .

15. If the radius of the circle is r then C = 2πr and
A = πr2.

Thus C = 2π

√

A

π
= 2
√
π
√

A.

Rate of change of C with respect to A is
dC

d A
=
√
π√
A
= 1

r
.

16. Let s be the side length and V be the volume of a cube.

Then V = s3 ⇒ s = V 1/3 and
ds

dV
= 1

3 V−2/3. Hence,

the rate of change of the side length of a cube with re-
spect to its volume V is 1

3 V−2/3.

17. If f (x) = x2 − 4, then f ′(x) = 2x . The critical point of
f is x = 0. f is increasing on (0,∞) and decreasing on
(−∞, 0).

18. If f (x) = x3 − 12x + 1, then f ′(x) = 3(x2 − 4).
The critical points of f are x = ±2. f is increasing on
(−∞,−2) and (2,∞) where f ′(x) > 0, and is decreas-
ing on (−2, 2) where f ′(x) < 0.

19. If y = x3 + 6x2, then y′ = 3x2 + 12x = 3x(x + 4).
The critical points of y are x = 0 and x = −4. y is
increasing on (−∞,−4) and (0,∞) where y′ > 0, and is
decreasing on (−4, 0) where y′ < 0.

20. If y = 1− x− x5, then y′ = −1−5x4 < 0 for all x . Thus
y has no critical points and is decreasing on the whole
real line.

21. f (x) = x3 is increasing on (−∞, 0) and (0,∞) because
f ′(x) = 3x2 > 0 there. But f (x1) < f (0) = 0 < f (x2)

whenever x1 < 0 < x2, so f is also increasing on inter-
vals containing the origin.

22. If f (x) = x + 2 sin x , then f ′(x) = 1 + 2 cos x > 0
if cos x > −1/2. Thus f is increasing on the intervals
(−(4π/3)+ 2nπ, (4π/3)+ 2nπ) where n is any integer.

23. CPs x = 0.535898 and x = 7.464102

24. CPs x = −1.366025 and x = 0.366025

25. CPs x = −0.518784 and x = 0

26. CP x = 0.521350

27. Volume in tank is V (t) = 350(20 − t)2 L at t min.
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a) At t = 5, water volume is changing at rate

dV

dt

∣
∣
∣
∣
t=5
= −700(20 − t)

∣
∣
∣
∣
t=5
= −10, 500.

Water is draining out at 10,500 L/min at that time.
At t = 15, water volume is changing at rate

dV

dt

∣
∣
∣
∣
t=15
= −700(20 − t)

∣
∣
∣
∣
t=15
= −3, 500.

Water is draining out at 3,500 L/min at that time.

b) Average rate of change between t = 5 and t = 15 is

V (15)− V (5)

15− 5
= 350 × (25 − 225)

10
= −7, 000.

The average rate of draining is 7,000 L/min over that
interval.

28. Flow rate F = kr4, so �F ≈ 4kr3 �r . If �F = F/10,
then

�r ≈ F

40kr3 =
kr4

40kr3 = 0.025r.

The flow rate will increase by 10% if the radius is in-
creased by about 2.5%.

29. F = k/r 2 implies that d F/dr = −2k/r3. Since
d F/dr = 1 pound/mi when r = 4, 000 mi, we have
2k = 4, 0003. If r = 8, 000, we have
d F/dr = −(4, 000/8, 000)3 = −1/8. At r = 8, 000
mi F decreases with respect to r at a rate of 1/8
pounds/mi.

30. If price = $p, then revenue is $R = 4, 000p − 10p2.

a) Sensitivity of R to p is d R/dp = 4, 000 − 20p. If
p = 100, 200, and 300, this sensitivity is 2,000 $/$,
0 $/$, and −2, 000 $/$ respectively.

b) The distributor should charge $200. This maximizes
the revenue.

31. Cost is $C(x) = 8, 000 + 400x − 0.5x2 if x units are
manufactured.

a) Marginal cost if x = 100 is
C ′(100) = 400 − 100 = $300.

b) C(101) − C(100) = 43, 299.50 − 43, 000 = $299.50
which is approximately C′(100).

32. Daily profit if production is x sheets per day is $P(x)
where

P(x) = 8x − 0.005x2 − 1, 000.

a) Marginal profit P′(x) = 8 − 0.01x . This is positive
if x < 800 and negative if x > 800.

b) To maximize daily profit, production should be 800
sheets/day.

33. C = 80, 000

n
+ 4n + n2

100
dC

dn
= −80, 000

n2 + 4+ n

50
.

(a) n = 100,
dC

dn
= −2. Thus, the marginal cost of

production is −$2.

(b) n = 300,
dC

dn
= 82

9
≈ 9.11. Thus, the marginal cost

of production is approximately $9.11.

34. Daily profit P = 13x − Cx = 13x − 10x − 20− x2

1000

= 3x − 20− x2

1000
Graph of P is a parabola opening downward. P will be
maximum where the slope is zero:

0 = d P

dx
= 3− 2x

1000
so x = 1500

Should extract 1500 tonnes of ore per day to maximize
profit.

35. One of the components comprising C(x) is usually a
fixed cost, $S, for setting up the manufacturing opera-
tion. On a per item basis, this fixed cost $S/x , decreases
as the number x of items produced increases, especially
when x is small. However, for large x other components
of the total cost may increase on a per unit basis, for
instance labour costs when overtime is required or main-
tenance costs for machinery when it is over used.

Let the average cost be A(x) = C(x)

x
. The minimal av-

erage cost occurs at point where the graph of A(x) has a
horizontal tangent:

0 = d A

dx
= xC ′(x)− C(x)

x2 .

Hence, xC ′(x) − C(x) = 0 ⇒ C ′(x) = C(x)

x
= A(x).

Thus the marginal cost C ′(x) equals the average cost at
the minimizing value of x .

36. If y = Cp−r , then the elasticity of y is

− p

y

dy

dp
= − p

Cp−r
(−r)Cp−r−1 = r.
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Section 2.8 Higher-Order Derivatives
(page 140)

1. y = (3− 2x)7

y ′ = −14(3− 2x)6

y ′′ = 168(3 − 2x)5

y ′′′ = −1680(3 − 2x)4

2. y = x2 − 1

x

y ′ = 2x + 1

x2

y ′′ = 2− 2

x3

y ′′′ = 6

x4

3. y = 6

(x − 1)2
= 6(x − 1)−2

y ′ = −12(x − 1)−3

y ′′ = 36(x − 1)−4

y ′′′ = −144(x − 1)−5

4. y = √ax + b

y ′ = a

2
√

ax + b

y ′′ = − a2

4(ax + b)3/2

y ′′′ = 3a3

8(ax + b)5/2

5. y = x1/3 − x−1/3

y ′ = 1

3
x−2/3 + 1

3
x−4/3

y ′′ = −2

9
x−5/3 − 4

9
x−7/3

y ′′′ = 10

27
x−8/3 + 28

27
x−10/3

6. y = x10 + 2x8

y ′ = 10x9 + 16x7

y ′′ = 90x8 + 112x6

y ′′′ = 720x7 + 672x5

7. y = (x2 + 3)
√

x = x5/2 + 3x1/2

y ′ = 5

2
x3/2 + 3

2
x−1/2

y ′′ = 15

4
x1/2 − 3

4
x−3/2

y ′′′ = 15

8
x−1/2 + 9

8
x−5/2

8. y = x − 1

x + 1

y ′ = 2

(x + 1)2

y ′′ = − 4

(x + 1)3

y ′′′ = 12

(x + 1)4

9. y = tan x

y ′ = sec2 x

y ′′ = 2 sec2 x tan x

y ′′′ = 2 sec4 x + 4 sec2 x tan2 x

10. y = sec x

y ′ = sec x tan x

y ′′ = sec x tan2 x + sec3 x

y ′′′ = sec x tan3 x + 5 sec3 x tan x

11. y = cos(x2)

y ′ = −2x sin(x2)

y ′′ = −2 sin(x2)− 4x2 cos(x2)

y ′′′ = −12x cos(x2)+ 8x3 sin(x2)

12. y = sin x

x

y ′ = cos x

x
− sin x

x2

y ′′ = (2− x2) sin x

x3
− 2 cos x

x2

y ′′′ = (6− x2) cos x

x3 + 3(x2 − 2) sin x

x4

13. f (x) = 1

x
= x−1

f ′(x) = −x−2

f ′′(x) = 2x−3

f ′′′(x) = −3!x−4

f (4)(x) = 4!x−5

Guess: f (n)(x) = (−1)nn!x−(n+1) (∗)
Proof: (*) is valid for n = 1 (and 2, 3, 4).
Assume f (k)(x) = (−1)kk!x−(k+1) for some k ≥ 1

Then f (k+1)(x) = (−1)k k!
(

−(k + 1)
)

x−(k+1)−1

= (−1)k+1(k + 1)!x−((k+1)+1) which is (*) for n = k + 1.
Therefore, (*) holds for n = 1, 2, 3, . . . by induction.

14. f (x) = 1

x2 = x−2

f ′(x) = −2x−3

f ′′(x) = −2(−3)x−4 = 3!x−4

f (3)(x) = −2(−3)(−4)x−5 = −4!x−5

Conjecture:

f (n)(x) = (−1)n(n + 1)!x−(n+2) for n = 1, 2, 3, . . .

Proof: Evidently, the above formula holds for n = 1, 2
and 3. Assume it holds for n = k,
i.e., f (k)(x) = (−1)k (k + 1)!x−(k+2) . Then

f (k+1)(x) = d

dx
f (k)(x)

= (−1)k(k + 1)![(−1)(k + 2)]x−(k+2)−1

= (−1)k+1(k + 2)!x−[(k+1)+2] .

Thus, the formula is also true for n = k + 1. Hence it is
true for n = 1, 2, 3, . . . by induction.

15. f (x) = 1

2− x
= (2 − x)−1

f ′(x) = +(2− x)−2

f ′′(x) = 2(2− x)−3

f ′′′(x) = +3!(2− x)−4

Guess: f (n)(x) = n!(2 − x)−(n+1) (∗)
Proof: (*) holds for n = 1, 2, 3.
Assume f (k)(x) = k!(2 − x)−(k+1) (i.e., (*) holds for
n = k)

Then f (k+1)(x) = k!
(

−(k + 1)(2 − x)−(k+1)−1(−1)
)

= (k + 1)!(2 − x)−((k+1)+1).
Thus (*) holds for n = k + 1 if it holds for k.
Therefore, (*) holds for n = 1, 2, 3, . . . by induction.
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16. f (x) = √x = x1/2

f ′(x) = 1
2 x−1/2

f ′′(x) = 1
2 (− 1

2 )x
−3/2

f ′′′(x) = 1
2 (− 1

2 )(− 3
2 )x
−5/2

f (4)(x) = 1
2 (− 1

2 )(− 3
2 )(− 5

2 )x
−7/2

Conjecture:

f (n)(x) = (−1)n−1 1 · 3 · 5 · · · (2n − 3)

2n
x−(2n−1)/2 (n ≥ 2).

Proof: Evidently, the above formula holds for n = 2, 3
and 4. Assume that it holds for n = k, i.e.

f (k)(x) = (−1)k−1 1 · 3 · 5 · · · (2k − 3)

2k
x−(2k−1)/2.

Then

f (k+1)(x) = d

dx
f (k)(x)

= (−1)k−1 1 · 3 · 5 · · · (2k − 3)

2k
·
[−(2k − 1)

2

]

x−[(2k−1)/2]−1

= (−1)(k+1)−1 1 · 3 · 5 · · · (2k − 3)[2(k + 1)− 3]

2k+1 x−[2(k+1)−1]/2 .

Thus, the formula is also true for n = k + 1. Hence, it is
true for n ≥ 2 by induction.

17. f (x) = 1

a + bx
= (a + bx)−1

f ′(x) = −b(a + bx)−2

f ′′(x) = 2b2(a + bx)−3

f ′′′(x) = −3!b3(a + bx)−4

Guess: f (n)(x) = (−1)nn!bn(a + bx)−(n+1) (∗)
Proof: (*) holds for n = 1, 2, 3
Assume (*) holds for n = k:
f (k)(x) = (−1)k k!bk (a + bx)−(k+1)

Then
f (k+1)(x) = (−1)kk!bk

(

−(k + 1)
)

(a + bx)−(k+1)−1(b)

= (−1)k+1(k + 1)!bk+1(a + bx)((k+1)+1)

So (*) holds for n = k + 1 if it holds for n = k.
Therefore, (*) holds for n = 1, 2, 3, 4, . . . by induction.

18. f (x) = x2/3

f ′(x) = 2
3 x−1/3

f ′′(x) = 2
3 (− 1

3 )x
−4/3

f ′′′(x) = 2
3 (− 1

3 )(− 4
3 )x
−7/3

Conjecture:

f (n)(x) = 2(−1)n−1 1 · 4 · 7 · · · · (3n − 5)

3n
x−(3n−2)/3 for

n ≥ 2.
Proof: Evidently, the above formula holds for n = 2 and
3. Assume that it holds for n = k, i.e.

f (k)(x) = 2(−1)k−1 1 · 4 · 7 · · · · (3k − 5)

3k
x−(3k−2)/3.

Then,

f (k+1)(x) = d

dx
f (k)(x)

= 2(−1)k−1 1 · 4 · 7 · · · · (3k − 5)

3k
·
[−(3k − 2)

3

]

x−[(3k−2)/3]−1

= 2(−1)(k+1)−1 1 · 4 · 7 · · · · (3k − 5)[3(k + 1)− 5]

3(k + 1)
x−[3(k+1)−2]/3 .

Thus, the formula is also true for n = k + 1. Hence, it is
true for n ≥ 2 by induction.

19. f (x) = cos(ax)

f ′(x) = −a sin(ax)

f ′′(x) = −a2 cos(ax)

f ′′′(x) = a3 sin(ax)

f (4)(x) = a4 cos(ax) = a4 f (x)
It follows that f (n)(x) = a4 f (n−4)(x) for n ≥ 4, and

f (n)(x) =

⎧

⎪⎨

⎪⎩

an cos(ax) if n = 4k
−an sin(ax) if n = 4k + 1
−an cos(ax) if n = 4k + 2
an sin(ax) if n = 4k + 3

(k = 0, 1, 2, . . .)

Differentiating any of these four formulas produces the
one for the next higher value of n, so induction confirms
the overall formula.

20. f (x) = x cos x

f ′(x) = cos x − x sin x

f ′′(x) = −2 sin x − x cos x

f ′′′(x) = −3 cos x + x sin x

f (4)(x) = 4 sin x + x cos x
This suggests the formula (for k = 0, 1, 2, . . .)

f (n)(x) =

⎧

⎪⎨

⎪⎩

n sin x + x cos x if n = 4k
n cos x − x sin x if n = 4k + 1
−n sin x − x cos x if n = 4k + 2
−n cos x + x sin x if n = 4k + 3

Differentiating any of these four formulas produces the
one for the next higher value of n, so induction confirms
the overall formula.

21. f (x) = x sin(ax)

f ′(x) = sin(ax)+ ax cos(ax)

f ′′(x) = 2a cos(ax)− a2x sin(ax)

f ′′′(x) = −3a2 sin(ax)− a3x cos(ax)

f 4)(x) = −4a3 cos(ax)+ a4x sin(ax)
This suggests the formula

f (n)(x) =

⎧

⎪⎨

⎪⎩

−nan−1 cos(ax)+ anx sin(ax) if n = 4k
nan−1 sin(ax)+ anx cos(ax) if n = 4k + 1
nan−1 cos(ax)− an x sin(ax) if n = 4k + 2
−nan−1 sin(ax)− an x cos(ax) if n = 4k + 3
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for k = 0, 1, 2, . . .. Differentiating any of these four
formulas produces the one for the next higher value of n,
so induction confirms the overall formula.

22. f (x) = 1

|x | = |x |
−1. Recall that

d

dx
|x | = sgn x , so

f ′(x) = −|x |−2sgn x .

If x �= 0 we have

d

dx
sgn x = 0 and (sgn x)2 = 1.

Thus we can calculate successive derivatives of f using
the product rule where necessary, but will get only one
nonzero term in each case:

f ′′(x) = 2|x |−3(sgn x)2 = 2|x |−3

f (3)(x) = −3!|x |−4sgn x

f (4)(x) = 4!|x |−5.

The pattern suggests that

f (n)(x) =
{−n!|x |−(n+1)sgn x if n is odd

n!|x |−(n+1) if n is even

Differentiating this formula leads to the same formula
with n replaced by n + 1 so the formula is valid for all
n ≥ 1 by induction.

23. f (x) = √1− 3x = (1 − 3x)1/2

f ′(x) = 1

2
(−3)(1 − 3x)−1/2

f ′′(x) = 1

2

(

−1

2

)

(−3)2(1 − 3x)−3/2

f ′′′(x) = 1

2

(

−1

2

)(

−3

2

)

(−3)3(1 − 3x)−5/2

f (4)(x) = 1

2

(

−1

2

)(

−3

2

)(

−5

2

)

(−3)4(1 − 3x)7/2

Guess: f (n)(x) = −1× 3× 5× · · · × (2n − 3)

2n
3n

(1 − 3x)−(2n−1)/2 (∗)
Proof: (*) is valid for n = 2, 3, 4, (but not n = 1)
Assume (*) holds for n = k for some integer k ≥ 2

i.e., f (k)(x) = −1× 3× 5× . . .× (2k − 3)

2k
3k

(1 − 3x)−(2k−1)/2

Then f (k+1)(x) = −1× 3× 5× · · · × (2k − 3)

2k
3k

(

−2(k − 1)

2

)

(1− 3x)−(2k−1)/2−1(−3)

= −
1× 3× 5× · · ·

(

2(k + 1)− 1
)

2k+1
3k+1

(1 − 3x)−(2(k+1)−1)/2

Thus (*) holds for n = k + 1 if it holds for n = k.
Therefore, (*) holds for n = 2, 3, 4, . . . by induction.

24. If y = tan(kx), then y ′ = k sec2(kx) and

y ′′ = 2k2sec2(kx)tan(kx)

= 2k2(1 + tan2(kx)) tan(kx) = 2k2 y(1+ y2).

25. If y = sec(kx), then y ′ = k sec(kx) tan(kx) and

y ′′ = k2(sec2(kx) tan2(kx) + sec3(kx))

= k2 y(2 sec2(kx) − 1) = k2 y(2y2 − 1).

26. To be proved: if f (x) = sin(ax + b), then

f (n)(x) =
{

(−1)kan sin(ax + b) if n = 2k
(−1)kan cos(ax + b) if n = 2k + 1

for k = 0, 1, 2, . . . Proof: The formula works for k = 0
(n = 2× 0 = 0 and n = 2× 0+ 1 = 1):

{

f (0)(x) = f (x) = (−1)0a0 sin(ax + b) = sin(ax + b)
f (1)(x) = f ′(x) = (−1)0a1 cos(ax + b) = a cos(ax + b)

Now assume the formula holds for some k ≥ 0.
If n = 2(k + 1), then

f (n)(x) = d

dx
f (n−1)(x) = d

dx
f (2k+1)(x)

= d

dx

(

(−1)ka2k+1 cos(ax + b)

)

= (−1)k+1a2k+2 sin(ax + b)

and if n = 2(k + 1)+ 1 = 2k + 3, then

f (n)(x) = d

dx

(

(−1)k+1a2k+2 sin(ax + b)

= (−1)k+1a2k+3 cos(ax + b).

Thus the formula also holds for k + 1. Therefore it holds
for all positive integers k by induction.

27. If y = tan x , then

y ′ = sec2 x = 1+ tan2 x = 1+ y2 = P2(y),

where P2 is a polynomial of degree 2. Assume that
y(n) = Pn+1(y) where Pn+1 is a polynomial of degree
n + 1. The derivative of any polynomial is a polynomial
of one lower degree, so

y(n+1) = d

dx
Pn+1(y) = Pn(y)

dy

dx
= Pn(y)(1+y2) = Pn+2(y),

a polynomial of degree n + 2. By induction,
(d/dx)n tan x = Pn+1(tan x), a polynomial of degree
n + 1 in tan x .
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28. ( f g)′′ = ( f ′g + f g′) = f ′′g + f ′g′ + f ′g′ + f g′′

= f ′′g + 2 f ′g′ + f g′′

29. ( f g)(3) = d

dx
( f g)′′

= d

dx
[ f ′′g + 2 f ′g′ + f g′′]

= f (3)g + f ′′g′ + 2 f ′′g′ + 2 f ′g′′ + f ′g′′ + f g(3)

= f (3)g + 3 f ′′g′ + 3 f ′g′′ + f g(3).

( f g)(4) = d

dx
( f g)(3)

= d

dx
[ f (3)g + 3 f ′′g′ + 3 f ′g′′ + f g(3)]

= f (4)g + f (3)g′ + 3 f (3)g′ + 3 f ′′g′′ + 3 f ′′g′′

+ 3 f ′g(3) + f ′g(3) + f g(4)

= f (4)g + 4 f (3)g′ + 6 f ′′g′′ + 4 f ′g(3) + f g(4).

( f g)(n) = f (n)g + n f (n − 1)g′ + n!

2!(n − 2)!
f (n−2)g′′

+ n!

3!(n − 3)!
f (n−3)g(3) + · · · + n f ′g(n−1) + f g(n)

=
n
∑

k=0

n!

k!(n − k)!
f (n−k)g(k).

30. Let a, b, and c be three points in I where f vanishes;
that is, f (a) = f (b) = f (c) = 0. Suppose a < b < c.
By the Mean-Value Theorem, there exist points r in
(a, b) and s in (b, c) such that f ′(r) = f ′(s) = 0. By
the Mean-Value Theorem applied to f ′ on [r, s], there
is some point t in (r, s) (and therefore in I ) such that
f ′′(t) = 0.

31. If f (n) exists on interval I and f vanishes at n + 1 dis-
tinct points of I , then f (n) vanishes at at least one point
of I .
Proof: True for n = 2 by Exercise 8.
Assume true for n = k. (Induction hypothesis)
Suppose n = k + 1, i.e., f vanishes at k + 2 points of I
and f (k+1) exists.
By Exercise 7, f ′ vanishes at k + 1 points of I .
By the induction hypothesis, f (k+1) = ( f ′)(k) vanishes at
a point of I so the statement is true for n = k + 1.
Therefore the statement is true for all n ≥ 2 by induction.
(case n = 1 is just MVT.)

32. Given that f (0) = f (1) = 0 and f (2) = 1:

a) By MVT,

f ′(a) = f (2)− f (0)

2− 0
= 1− 0

2− 0
= 1

2

for some a in (0, 2).

b) By MVT, for some r in (0, 1),

f ′(r) = f (1)− f (0)

1− 0
= 0− 0

1− 0
= 0.

Also, for some s in (1, 2),

f ′(s) = f (2)− f (1)

2− 1
= 1− 0

2− 1
= 1.

Then, by MVT applied to f ′ on the interval [r, s],
for some b in (r, s),

f ′′(b) = f ′(s)− f ′(r)
s − r

= 1− 0

s − r

= 1

s − r
>

1

2

since s − r < 2.

c) Since f ′′(x) exists on [0, 2], therefore f ′(x) is con-
tinuous there. Since f ′(r) = 0 and f ′(s) = 1, and
since 0 < 1

7 < 1, the Intermediate-Value Theorem
assures us that f ′(c) = 1

7 for some c between r and
s.

Section 2.9 Implicit Differentiation
(page 145)

1. xy − x + 2y = 1
Differentiate with respect to x :
y + xy ′ − 1+ 2y′ = 0

Thus y ′ = 1− y

2+ x

2. x3 + y3 = 1

3x2 + 3y2y ′ = 0, so y ′ = − x2

y2 .

3. x2 + xy = y3

Differentiate with respect to x :
2x + y + xy ′ = 3y2y ′

y ′ = 2x + y

3y2 − x

4. x3y + xy5 = 2
3x2y + x3y ′ + y5 + 5xy4y ′ = 0

y ′ = −3x2y − y5

x3 + 5xy4

5. x2y3 = 2x − y
2xy3 + 3x2y2y ′ = 2− y ′

y ′ = 2− 2xy3

3x2 y2 + 1

6. x2 + 4(y − 1)2 = 4

2x + 8(y − 1)y ′ = 0, so y ′ = x

4(1 − y)
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7.
x − y

x + y
= x2

y
+ 1 = x2 + y

y
Thus xy− y2 = x3+ x2y+ xy+ y2, or x3+ x2y+2y2 = 0
Differentiate with respect to x :
3x2 + 2xy + x2y ′ + 4yy ′ = 0

y ′ = −3x2 + 2xy

x2 + 4y

8. x
√

x + y = 8 − xy
√

x + y + x
1

2
√

x + y
(1+ y ′) = −y − xy ′

2(x + y)+ x(1+ y ′) = −2
√

x + y(y + xy ′)

y ′ = −3x + 2y + 2y
√

x + y

x + 2x
√

x + y

9. 2x2 + 3y2 = 5
4x + 6yy ′ = 0

At (1, 1): 4+ 6y′ = 0, y ′ = −2

3

Tangent line: y − 1 = −2

3
(x − 1) or 2x + 3y = 5

10. x2y3 − x3y2 = 12
2xy3 + 3x2 y2y ′ − 3x2y2 − 2x3 yy ′ = 0
At (−1, 2): −16 + 12y′ − 12 + 4y′ = 0, so the slope is

y ′ = 12+ 16

12+ 4
= 28

16
= 7

4
.

Thus, the equation of the tangent line is
y = 2+ 7

4 (x + 1), or 7x − 4y + 15 = 0.

11.
x

y
+
( y

x

)3 = 2

x4 + y4 = 2x3 y
4x3 + 4y3y ′ = 6x2 y + 2x3y ′
at (−1,−1): −4− 4y′ = −6− 2y′
2y ′ = 2, y ′ = 1
Tangent line: y + 1 = 1(x + 1) or y = x .

12. x + 2y + 1 = y2

x − 1

1+ 2y′ = (x − 1)2yy ′ − y2(1)

(x − 1)2

At (2,−1) we have 1+ 2y′ = −2y ′ − 1 so y ′ = − 1
2 .

Thus, the equation of the tangent is
y = −1− 1

2 (x − 2), or x + 2y = 0.

13. 2x + y − √2 sin(xy) = π/2
2+ y ′ − √2 cos(xy)(y + xy ′) = 0
At (π/4, 1): 2 + y′ − (1 + (π/4)y ′) = 0, so
y ′ = −4/(4− π). The tangent has equation

y = 1− 4

4 − π
(

x − π
4

)

.

14. tan(xy2) = (2/π)xy
(sec2(xy2))(y2 + 2xyy ′) = (2/π)(y + xy ′).
At (−π, 1/2): 2((1/4) − πy′) = (1/π)− 2y′, so
y ′ = (π − 2)/(4π(π − 1)). The tangent has equation

y = 1

2
+ π − 2

4π(π − 1)
(x + π).

15. x sin(xy − y2) = x2 − 1
sin(xy − y2)+ x(cos(xy − y2))(y + xy ′ − 2yy ′) = 2x .
At (1, 1): 0+(1)(1)(1− y′) = 2, so y ′ = −1. The tangent
has equation y = 1− (x − 1), or y = 2− x .

16. cos
(πy

x

)

= x2

y
− 17

2
[

− sin
(πy

x

)] π(xy ′ − y)

x2
= 2xy − x2y ′

y2
.

At (3, 1): −
√

3

2

π(3y ′ − 1)

9
= 6− 9y ′,

so y ′ = (108 − √3π)/(162 − 3
√

3π). The tangent has
equation

y = 1+ 108 −√3π

162 − 3
√

3π
(x − 3).

17. xy = x + y

y + xy ′ = 1+ y ′ ⇒ y ′ = y − 1

1− x
y ′ + y ′ + xy ′′ = y ′′

Therefore, y′′ = 2y ′

1− x
= 2(y − 1)

(1 − x)2

18. x2 + 4y2 = 4, 2x + 8yy ′ = 0, 2+ 8(y′)2 + 8yy ′′ = 0.

Thus, y ′ = −x

4y
and

y ′′ = −2− 8(y′)2

8y
= − 1

4y
− x2

16y3 =
−4y2 − x2

16y3 = − 1

4y3 .

19. x3 − y2 + y3 = x

3x2 − 2yy ′ + 3y2y ′ = 1⇒ y ′ = 1− 3x2

3y2 − 2y
6x − 2(y ′)2 − 2yy ′′ + 6y(y ′)2 + 3y2y ′′ = 0

y ′′ = (2 − 6y)(y′)2 − 6x

3y2 − 2y
=
(2− 6y)

(1− 3x2)2

(3y2 − 2y)2
− 6x

3y2 − 2y

= (2 − 6y)(1− 3x2)2

(3y2 − 2y)3
− 6x

3y2 − 2y
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20. x3 − 3xy + y3 = 1
3x2 − 3y − 3xy ′ + 3y2y ′ = 0
6x − 3y ′ − 3y ′ − 3xy ′′ + 6y(y ′)2 + 3y2y ′′ = 0
Thus

y ′ = y − x2

y2 − x

y ′′ = −2x + 2y ′ − 2y(y ′)2

y2 − x

= 2

y2 − x

[

−x +
(

y − x2

y2 − x

)

− y

(
y − x2

y2 − x

)2]

= 2

y2 − x

[ −2xy

(y2 − x)2

]

= 4xy

(x − y2)3
.

21. x2 + y2 = a2

2x + 2yy ′ = 0 so x + yy ′ = 0 and y′ = − x

y
1+ y ′y ′ + yy ′′ = 0 so

y ′′ = −1+ (y ′)2
y

= −
1+ x2

y2

y

= − y2 + x2

y3 = −a2

y3

22. Ax2 + By2 = C

2Ax + 2Byy ′ = 0⇒ y ′ = − Ax

By
2A + 2B(y ′)2 + 2Byy ′′ = 0.
Thus,

y ′′ = −A− B(y ′)2

By
=
−A− B

(
Ax

By

)2

By

= −A(By2 + Ax2)

B2y3
= − AC

B2y3
.

23. Maple gives 0 for the value.

24. Maple gives the slope as
206

55
.

25. Maple gives the value −26.

26. Maple gives the value −855, 000

371, 293
.

27. Ellipse: x2 + 2y2 = 2

2x + 4yy ′ = 0

Slope of ellipse: y′E = −
x

2y
Hyperbola: 2x2 − 2y2 = 1

4x − 4yy ′ = 0

Slope of hyperbola: y′H =
x

y

At intersection points

{

x2 + 2y2 = 2
2x2 − 2y2 = 1

3x2 = 3 so x2 = 1, y2 = 1

2

Thus y ′E y ′H = −
x

2y

x

y
= − x2

2y2 = −1

Therefore the curves intersect at right angles.

28. The slope of the ellipse
x2

a2
+ y2

b2
= 1 is found from

2x

a2 +
2y

b2 y ′ = 0, i.e. y′ = −b2x

a2 y
.

Similarly, the slope of the hyperbola
x2

A2 −
y2

B2 = 1 at

(x, y) satisfies

2x

A2
− 2y

B2
y ′ = 0, or y′ = B2x

A2 y
.

If the point (x, y) is an intersection of the two curves,
then

x2

a2 +
y2

b2 =
x2

A2 −
y2

B2

x2
(

1

A2 −
1

a2

)

= y2
(

1

B2 +
1

b2

)

.

Thus,
x2

y2 =
b2 + B2

B2b2 ·
A2a2

a2 − A2 .

Since a2 − b2 = A2 + B2, therefore B2 + b2 = a2 − A2,

and
x2

y2
= A2a2

B2b2
. Thus, the product of the slope of the

two curves at (x, y) is

−b2x

a2 y
· B2x

A2 y
= −b2B2

a2 A2
· A2a2

B2b2
= −1.

Therefore, the curves intersect at right angles.

29. If z = tan(x/2), then

1 = sec2(x/2)
1

2

dx

dz
= 1+ tan2(x/2)

2

dx

dz
= 1+ z2

2

dx

dz
.

Thus dx/dz = 2/(1+ z2). Also

cos x = 2 cos2(x/2)− 1 = 2

sec2(x/2)
− 1

= 2

1+ z2
− 1 = 1− z2

1+ z2

sin x = 2 sin(x/2) cos(x/2) = 2 tan(x/2)

1+ tan2(x/2)
= 2z

1+ z2 .
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30.
x − y

x + y
= x

y
+ 1⇔ xy − y2 = x2 + xy + xy + y2

⇔ x2 + 2y2 + xy = 0
Differentiate with respect to x :

2x + 4yy ′ + y + xy ′ = 0 ⇒ y ′ = −2x + y

4y + x
.

However, since x2 + 2y2 + xy = 0 can be written

x + xy + 1

4
y2 + 7

4
y2 = 0, or (x + y

2
)2 + 7

4
y2 = 0,

the only solution is x = 0, y = 0, and these values do not
satisfy the original equation. There are no points on the
given curve.

Section 2.10 Antiderivatives and
Initial-Value Problems (page 151)

1.
∫

5 dx = 5x + C

2.
∫

x2 dx = 1
3 x3 + C

3.
∫ √

x dx = 2

3
x3/2 + C

4.
∫

x12 dx = 1
13 x13 + C

5.
∫

x3 dx = 1

4
x4 + C

6.
∫

(x + cos x) dx = x2

2
+ sin x + C

7.
∫

tan x cos x dx =
∫

sin x dx = − cos x + C

8.
∫

1+ cos3 x

cos2 x
dx =

∫

(sec2 x+cos x) dx = tan x+sin x+C

9.
∫

(a2 − x2) dx = a2x − 1

3
x3 + C

10.
∫

(A + Bx + Cx2) dx = Ax + B

2
x2 + C

3
x3 + K

11.
∫

(2x1/2 + 3x1/3 dx = 4

3
x3/2 + 9

4
x4/3 + C

12.
∫

6(x − 1)

x4/3 dx =
∫

(6x−1/3 − 6x−4/3) dx

= 9x2/3 + 18x−1/3 + C

13.
∫ (

x3

3
− x2

2
+ x − 1

)

dx = 1

12
x4− 1

6
x3+ 1

2
x2− x +C

14. 105
∫

(1 + t2 + t4 + t6) dt

= 105(t + 1
3 t3 + 1

5 t5 + 1
7 t7)+ C

= 105t + 35t3 + 21t5 + 15t7 + C

15.
∫

cos(2x) dx = 1

2
sin(2x)+ C

16.
∫

sin
( x

2

)

dx = −2 cos
( x

2

)

+ C

17.
∫

dx

(1 + x)2
= − 1

1+ x
+ C

18.
∫

sec(1 − x) tan(1 − x) dx = − sec(1− x)+ C

19.
∫ √

2x + 3 dx = 1

3
(2x + 3)3/2 + C

20. Since
d

dx

√
x + 1 = 1

2
√

x + 1
, therefore

∫
4√

x + 1
dx = 8

√
x + 1+ C.

21.
∫

2x sin(x2) dx = − cos(x2)+ C

22. Since
d

dx

√

x2 + 1 = x√
x2 + 1

, therefore

∫
2x√

x2 + 1
dx = 2

√

x2 + 1+ C.

23.
∫

tan2 x dx =
∫

(sec2 x − 1) dx = tan x − x + C

24.
∫

sin x cos x dx =
∫

1

2
sin(2x) dx = −1

4
cos(2x)+ C

25.
∫

cos2 x dx =
∫

1+ cos(2x)

2
dx = x

2
+ sin(2x)

4
+ C

26.
∫

sin2 x dx =
∫

1− cos(2x)

2
dx = x

2
− sin(2x)

4
+ C

27.

{

y ′ = x − 2 ⇒ y = 1

2
x2 − 2x + C

y(0) = 3 ⇒ 3 = 0+ C therefore C = 3

Thus y = 1

2
x2 − 2x + 3 for all x .

28. Given that {

y ′ = x−2 − x−3

y(−1) = 0,
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then y =
∫

(x−2 − x−3) dx = −x−1 + 1
2 x−2 + C

and 0 = y(−1) = −(−1)−1 + 1
2 (−1)−2 + C so C = − 3

2 .

Hence, y(x) = − 1

x
+ 1

2x2
− 3

2
which is valid on the

interval (−∞, 0).

29.
{

y ′ = 3
√

x ⇒ y = 2x3/2 + C
y(4) = 1 ⇒ 1 = 16 + C so C = −15

Thus y = 2x3/2 − 15 for x > 0.

30. Given that {

y ′ = x1/3

y(0) = 5,

then y =
∫

x1/3 dx = 3
4 x4/3 + C and 5 = y(0) = C .

Hence, y(x) = 3
4 x4/3+ 5 which is valid on the whole real

line.

31. Since y ′ = Ax2 + Bx + C we have

y = A

3
x3 + B

2
x2 + Cx + D. Since y(1) = 1, therefore

1 = y(1) = A

3
+ B

2
+C + D. Thus D = 1− A

3
− B

2
−C ,

and

y = A

3
(x3 − 1)+ B

2
(x2 − 1)+ C(x − 1)+ 1 for all x

32. Given that {

y ′ = x−9/7

y(1) = −4,

then y =
∫

x−9/7 dx = − 7
2 x−2/7 + C .

Also, −4 = y(1) = − 7
2 + C , so C = − 1

2 . Hence,
y = − 7

2 x−2/7 − 1
2 , which is valid in the interval (0,∞).

33. For

{

y ′ = cos x
y(π/6) = 2

, we have

y =
∫

cos x dx = sin x + C

2 = sin
π

6
+ C = 1

2
+ C 
⇒ C = 3

2

y = sin x + 3

2
(for all x).

34. For

{

y ′ = sin(2x)
y(π/2) = 1

, we have

y =
∫

sin(2x) dx = −1

2
cos(2x)+ C

1 = −1

2
cosπ + C = 1

2
+ C 
⇒ C = 1

2

y = 1

2

(

1− cos(2x)
)

(for all x).

35. For

{

y ′ = sec2 x
y(0) = 1

, we have

y =
∫

sec2 x dx = tan x + C

1 = tan 0+ C = C 
⇒ C = 1

y = tan x + 1 (for −π/2 < x < π/2).

36. For

{

y ′ = sec2 x
y(π) = 1

, we have

y =
∫

sec2 x dx = tan x + C

1 = tanπ + C = C 
⇒ C = 1

y = tan x + 1 (for π/2 < x < 3π/2).

37. Since y ′′ = 2, therefore y′ = 2x + C1.
Since y′(0) = 5, therefore 5 = 0+ C1, and y′ = 2x + 5.
Thus y = x2 + 5x + C2.
Since y(0) = −3, therefore −3 = 0 + 0 + C2, and
C2 = −3.
Finally, y = x2 + 5x − 3, for all x .

38. Given that ⎧

⎨

⎩

y ′′ = x−4

y ′(1) = 2
y(1) = 1,

then y′ =
∫

x−4 dx = − 1
3 x−3 + C .

Since 2 = y′(1) = − 1
3 + C , therefore C = 7

3 ,
and y ′ = − 1

3 x−3 + 7
3 . Thus

y =
∫ (

− 1
3 x−3 + 7

3

)

dx = 1
6 x−2 + 7

3 x + D,

and 1 = y(1) = 1
6 + 7

3 + D, so that D = − 3
2 . Hence,

y(x) = 1
6 x−2 + 7

3 x − 3
2 , which is valid in the interval

(0,∞).

39. Since y ′′ = x3 − 1, therefore y′ = 1

4
x4 − x + C1.

Since y′(0) = 0, therefore 0 = 0 − 0 + C1, and

y ′ = 1

4
x4 − x .

Thus y = 1

20
x5 − 1

2
x2 + C2.

Since y(0) = 8, we have 8 = 0 − 0+ C2.

Hence y = 1

20
x5 − 1

2
x2 + 8 for all x .

40. Given that ⎧

⎨

⎩

y ′′ = 5x2 − 3x−1/2

y ′(1) = 2
y(1) = 0,
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we have y ′ =
∫

5x2 − 3x−1/2 dx = 5
3 x3 − 6x1/2 + C .

Also, 2 = y′(1) = 5
3 − 6 + C so that C = 19

3
. Thus,

y ′ = 5
3 x3 − 6x1/2 + 19

3 , and

y =
∫ (

5
3 x3− 6x1/2+ 19

3

)

dx = 5
12 x4 − 4x3/2+ 19

3 x + D.

Finally, 0 = y(1) = 5
12 − 4 + 19

3 + D so that D = − 11
4 .

Hence, y(x) = 5
12 x4 − 4x3/2 + 19

3 x − 11
4 .

41. For

⎧

⎨

⎩

y ′′ = cos x
y(0) = 0
y ′(0) = 1

we have

y ′ =
∫

cos x dx = sin x + C1

1 = sin 0+ � 1 
⇒ C1 = 1

y =
∫

(sin x + 1) dx = − cos x + x + C2

0 = − cos 0+ 0+ C2 
⇒ C2 = 1

y = 1+ x − cos x .

42. For

⎧

⎨

⎩

y ′′ = x + sin x
y(0) = 2
y ′(0) = 0

we have

y ′ =
∫

(x + sin x) dx = x2

2
− cos x + C1

0 = 0− cos 0+ � 1 
⇒ C1 = 1

y =
∫ (

x2

2
− cos x + 1

)

dx = x3

6
− sin x + x + C2

2 = 0− sin 0+ 0 + C2 
⇒ C2 = 2

y = x3

6
− sin x + x + 2.

43. Let y = Ax + B

x
. Then y ′ = A − B

x2 , and y′′ = 2B

x3 .

Thus, for all x �= 0,

x2y ′′ + xy ′ − y = 2B

x
+ Ax − B

x
− Ax − B

x
= 0.

We will also have y(1) = 2 and y′(1) = 4 provided

A+ B = 2, and A− B = 4.

These equations have solution A = 3, B = −1, so the
initial value problem has solution y = 3x − (1/x).

44. Let r1 and r2 be distinct rational roots of the equation
ar(r − 1)+ br + c = 0
Let y = Axr1 + Bxr2 (x > 0)
Then y ′ = Ar1xr1−1 + Br2xr2−1,
and y ′′ = Ar1(r1 − 1)xr1−2 + Br2(r2 − 1)xr2−2. Thus
ax2y ′′ + bxy ′ + cy

= ax2(Ar1(r1 − 1)xr1−2 + Br2(r2 − 1)xr2−2

+ bx(Ar1xr1−1 + Br2xr2−1)+ c(Axr1 + Bxr2)

= A
(

ar1(r1 − 1)+ br1 + c
)

xr1

+ B(ar2(r2 − 1)+ br2 + c
)

xr2

= 0xr1 + 0xr2 ≡ 0 (x > 0)

45.

⎧

⎨

⎩

4x2y ′′ + 4xy ′ − y = 0 (∗) ⇒ a = 4, b = 4, c = −1
y(4) = 2
y ′(4) = −2

Auxilary Equation: 4r(r − 1)+ 4r − 1 = 0

4r2 − 1 = 0

r = ±1

2
By #31, y = Ax1/2 + Bx−1/2 solves (∗) for x > 0.

Now y′ = A

2
x−1/2 − B

2
x−3/2

Substitute the initial conditions:

2 = 2A + B

2
⇒1 = A + B

4

−2 = A

4
− B

16
⇒− 8 = A − B

4
.

Hence 9 = B

2
, so B = 18, A = −7

2
.

Thus y = −7

2
x1/2 + 18x−1/2 (for x > 0).

46. Consider ⎧

⎨

⎩

x2y ′′ − 6y = 0
y(1) = 1
y ′(1) = 1.

Let y = xr , y ′ = r xr−1, y ′′ = r(r − 1)xr−2. Substituting
these expressions into the differential equation we obtain

x2[r(r − 1)xr−2] − 6xr = 0

[r(r − 1)− 6]xr = 0.

Since this equation must hold for all x > 0, we must
have

r(r − 1)− 6 = 0

r2 − r − 6 = 0

(r − 3)(r + 2) = 0.

There are two roots: r1 = −2, and r2 = 3. Thus the
differential equation has solutions of the form
y = Ax−2 + Bx3. Then y ′ = −2Ax−3 + 3Bx2. Since
1 = y(1) = A + B and 1 = y ′(1) = −2A + 3B, therefore
A = 2

5 and B = 3
5 . Hence, y = 2

5 x−2 + 3
5 x3.
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Section 2.11 Velocity and Acceleration
(page 157)

1. x = t2 − 4t + 3, v = dx

dt
= 2t − 4, a = dv

dt
= 2

a) particle is moving: to the right for t > 2

b) to the left for t < 2

c) particle is always accelerating to the right

d) never accelerating to the left

e) particle is speeding up for t > 2

f) slowing down for t < 2

g) the acceleration is 2 at all times

h) average velocity over 0 ≤ t ≤ 4 is

x(4)− x(0)

4− 0
= 16 − 16 + 3− 3

4
= 0

2. x = 4+ 5t − t2, v = 5− 2t , a = −2.

a) The point is moving to the right if v > 0, i.e., when
t < 5

2 .

b) The point is moving to the left if v < 0, i.e., when
t > 5

2 .

c) The point is accelerating to the right if a > 0, but
a = −2 at all t ; hence, the point never accelerates to
the right.

d) The point is accelerating to the left if a < 0, i.e., for
all t .

e) The particle is speeding up if v and a have the same
sign, i.e., for t > 5

2 .

f) The particle is slowing down if v and a have oppo-
site sign, i.e., for t < 5

2 .

g) Since a = −2 at all t , a = −2 at t = 5
2 when v = 0.

h) The average velocity over [0, 4] is
x(4)− x(0)

4
= 8− 4

4
= 1.

3. x = t3 − 4t + 1, v = dx

dt
= 3t2 − 4, a = dv

dt
= 6t

a) particle moving: to the right for t < −2/
√

3 or
t > 2/

√
3,

b) to the left for −2/
√

3 < t < 2/
√

3

c) particle is accelerating: to the right for t > 0

d) to the left for t < 0

e) particle is speeding up for t > 2/
√

3 or for
−2/
√

3 < t < 0

f) particle is slowing down for t < −2/
√

3 or for
0 < t < 2/

√
3

g) velocity is zero at t = ±2/
√

3. Acceleration at these
times is ±12/

√
3.

h) average velocity on [0, 4] is
43 − 4× 4+ 1− 1

4− 0
= 12

4. x = t

t2 + 1
, v = (t2 + 1)(1) − (t)(2t)

(t2 + 1)2
= 1− t2

(t2 + 1)2
,

a = (t2 + 1)2(−2t)− (1 − t2)(2)(t2 + 1)(2t)

(t2 + 1)4
= 2t (t2 − 3)

(t2 + 1)3
.

a) The point is moving to the right if v > 0, i.e., when
1 − t2 > 0, or −1 < t < 1.

b) The point is moving to the left if v < 0, i.e., when
t < −1 or t > 1.

c) The point is accelerating to the right if a > 0, i.e.,
when 2t (t2 − 3) > 0, that is, when
t >
√

3 or −√3 < t < 0.

d) The point is accelerating to the left if a < 0, i.e., for
t < −√3 or 0 < t <

√
3.

e) The particle is speeding up if v and a have the same
sign, i.e., for t < −√3, or −1 < t < 0 or
1 < t <

√
3.

f) The particle is slowing down if v and a have oppo-
site sign, i.e., for −√3 < t < −1, or 0 < t < 1 or
t >
√

3.

g) v = 0 at t = ±1. At t = −1, a = −2(−2)

(2)3
= 1

2
.

At t = 1, a = 2(−2)

(2)3
= −1

2
.

h) The average velocity over [0, 4] is
x(4)− x(0)

4
=

4
17 − 0

4
= 1

17
.

70



INSTRUCTOR’S SOLUTIONS MANUAL SECTION 2.11 (PAGE 157)

5. y = 9.8t − 4.9t2 metres (t in seconds)

velocity v = dy

dt
= 9.8 − 9.8t

acceleration a = dv

dt
= −9.8

The acceleration is 9.8 m/s2 downward at all times.
Ball is at maximum height when v = 0, i.e., at t = 1.

Thus maximum height is y
∣
∣
∣
t=1
= 9.8− 4.9 = 4.9 metres.

Ball strikes the ground when y = 0, (t > 0), i.e.,
0 = t (9.8 − 4.9t) so t = 2.
Velocity at t = 2 is 9.8− 9.8(2) = −9.8 m/s.
Ball strikes the ground travelling at 9.8 m/s (downward).

6. Given that y = 100 − 2t − 4.9t2, the time t at which
the ball reaches the ground is the positive root of the
equation y = 0, i.e., 100− 2t − 4.9t2 = 0, namely,

t = −2+√4+ 4(4.9)(100)

9.8
≈ 4.318 s.

The average velocity of the ball is
−100

4.318
= −23.16 m/s.

Since −23.159 = v = −2− 9.8t , then t � 2.159 s.

7. D = t2, D in metres, t in seconds

velocity v = d D

dt
= 2t

Aircraft becomes airborne if

v = 200 km/h = 200, 000

3600
= 500

9
m/s.

Time for aircraft to become airborne is t = 250

9
s, that

is, about 27.8 s.
Distance travelled during takeoff run is t2 ≈ 771.6 me-
tres.

8. Let y(t) be the height of the projectile t seconds after it
is fired upward from ground level with initial speed v0.
Then

y ′′(t) = −9.8, y′(0) = v0, y(0) = 0.

Two antidifferentiations give

y = −4.9t2 + v0t = t (v0 − 4.9t).

Since the projectile returns to the ground at t = 10 s,
we have y(10) = 0, so v0 = 49 m/s. On Mars, the
acceleration of gravity is 3.72 m/s2 rather than 9.8 m/s2,
so the height of the projectile would be

y = −1.86t2 + v0t = t (49 − 1.86t).

The time taken to fall back to ground level on Mars
would be t = 49/1.86 ≈ 26.3 s.

9. The height of the ball after t seconds is
y(t) = −(g/2)t2 + v0t m if its initial speed was v0
m/s. Maximum height h occurs when dy/dt = 0, that is,
at t = v0/g. Hence

h = − g

2
· v

2
0

g2 + v0 · v0

g
= v2

0

2g
.

An initial speed of 2v0 means the maximum height will
be 4v2

0/2g = 4h. To get a maximum height of 2h an
initial speed of

√
2v0 is required.

10. To get to 3h metres above Mars, the ball would have to
be thrown upward with speed

vM =
√

6gMh =
√

6gMv
2
0/(2g) = v0

√

3gM/g.

Since gM = 3.72 and g = 9.80, we have vM ≈ 1.067v0
m/s.

11. If the cliff is h ft high, then the height of the rock t sec-
onds after it falls is y = h − 16t2 ft. The rock hits the
ground (y = 0) at time t = √h/16 s. Its speed at that
time is v = −32t = −8

√
h = −160 ft/s. Thus

√
h = 20,

and the cliff is h = 400 ft high.

12. If the cliff is h ft high, then the height of the rock t sec-
onds after it is thrown down is y = h−32t−16t2 ft. The
rock hits the ground (y = 0) at time

t = −32+√322 + 64h

32
= −1+ 1

4

√
16+ h s.

Its speed at that time is

v = −32− 32t = −8
√

16 + h = −160 ft/s.

Solving this equation for h gives the height of the cliff as
384 ft.

13. Let x(t) be the distance travelled by the train in
the t seconds after the brakes are applied. Since
d2x/dt2 = −1/6 m/s2 and since the initial speed is
v0 = 60 km/h = 100/6 m/s, we have

x(t) = − 1

12
t2 + 100

6
t.

The speed of
the train at time t is v(t) = −(t/6) + (100/6) m/s, so
it takes the train 100 s to come to a stop. In that time it
travels x(100) = −1002/12 + 1002/6 = 1002/12 ≈ 833
metres.
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14. x = At2 + Bt + C, v = 2At + B.
The average velocity over [t1, t2] is
x(t2)− x(t1)

t2 − t1

= At2
2 + Bt1 + C − At2

1 − Bt1 − C

t2 − t1

= A(t2
2 − t2

1 )+ B(t2 − t1)

(t2 − t1)

= A(t2 + t1)(t2 − t1)+ B(t2 − t1)

(t2 − t1)= A(t2 + t1)+ B.
The instantaneous velocity at the midpoint of [t1, t2] is

v

(
t2 + t1

2

)

= 2A

(
t2 + t1

2

)

+ B = A(t2 + t1)+ B.

Hence, the average velocity over the interval is equal to
the instantaneous velocity at the midpoint.

15. s =
⎧

⎨

⎩

t2 0 ≤ t ≤ 2
4t − 4 2 < t < 8
−68+ 20t − t2 8 ≤ t ≤ 10

Note: s is continuous at 2 and 8 since 22 = 4(2) − 4 and
4(8)− 4 = −68+ 160− 64

velocity v = ds

dt
=
{ 2t if 0 < t < 2

4 if 2 < t < 8
20 − 2t if 8 < t < 10

Since 2t → 4 as t → 2−, therefore, v is continuous at 2
((v(2) = 4).
Since 20 − 2t → 4 as t → 8+, therefore v is continuous
at 8 (v(8) = 4). Hence the velocity is continuous for
0 < t < 10

acceleration a = dv

dt
=
{ 2 if 0 < t < 2

0 if 2 < t < 8
−2 if 8 < t < 10

is discontinuous at t = 2 and t = 8
Maximum velocity is 4 and is attained on the interval
2 ≤ t ≤ 8.

16. This exercise and the next three refer to the following
figure depicting the velocity of a rocket fired from a
tower as a function of time since firing.
v

t

(4, 96)

(14,−224)

Fig. 2.11.16

The rocket’s acceleration while its fuel lasted is the slope
of the first part of the graph, namely 96/4 = 24 ft/s.

17. The rocket was rising for the first 7 seconds.

18. As suggested in Example 1 on page 154 of the text, the
distance travelled by the rocket while it was falling from
its maximum height to the ground is the area between the
velocity graph and the part of the t-axis where v < 0.
The area of this triangle is (1/2)(14 − 7)(224) = 784 ft.
This is the maximum height the rocket achieved.

19. The distance travelled upward by the rocket while it was
rising is the area between the velocity graph and the part
of the t-axis where v > 0, namely (1/2)(7)(96) = 336 ft.
Thus the height of the tower from which the rocket was
fired is 784 − 336 = 448 ft.

20. Let s(t) be the distance the car travels in the t seconds
after the brakes are applied. Then s′′(t) = −t and the
velocity at time t is given by

s ′(t) =
∫

(−t) dt = − t2

2
+ C1,

where C1 = 20 m/s (that is, 72km/h) as determined in
Example 6. Thus

s(t) =
∫ (

20− t2

2

)

dt = 20t − t3

6
+ C2,

where C2 = 0 because s(0) = 0. The time taken to come
to a stop is given by s′(t) = 0, so it is t = √40 s. The
distance travelled is

s = 20
√

40 − 1

6
403/2 ≈ 84.3 m.

Review Exercises 2 (page 158)

1. y = (3x + 1)2

dy

dx
= lim

h→0

(3x + 3h + 1)2 − (3x + 1)2

h

= lim
h→0

9x2 + 18xh + 9h2 + 6x + 6h + 1− (9x2 + 6x + 1)

h
= lim

h→0
(18x + 9h + 6) = 18x + 6

2.
d

dx

√

1− x2 = lim
h→0

√

1− (x + h)2 −√1 − x2

h

= lim
h→0

1− (x + h)2 − (1 − x2)

h(
√

1− (x + h)2 +√1− x2)

= lim
h→0

−2x − h
√

1− (x + h)2 +√1− x2
= − x√

1− x2
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3. f (x) = 4/x2

f ′(2) = lim
h→0

4

(2+ h)2
− 1

h

= lim
h→0

4− (4 + 4h + h2)

h(2 + h)2
= lim

h→0

−4− h

(2 + h)2
= −1

4. g(t) = t − 5

1 +√t

g′(9) = lim
h→0

4+ h

1 +√9+ h
− 1

h

= lim
h→0

(3+ h −√9 + h)(3 + h +√9+ h)

h(1+√9+ h)(3 + h +√9+ h)

= lim
h→0

9+ 6h + h2 − (9 + h)

h(1+√9+ h)(3 + h +√9+ h)

= lim
h→0

5+ h

(1+√9+ h)(3 + h +√9+ h)

= 5

24

5. The tangent to y = cos(π x) at x = 1/6 has slope

dy

dx

∣
∣
∣
∣
x=1/6

= −π sin
π

6
= −π

2
.

Its equation is

y =
√

3

2
− π

2

(

x − 1

6

)

.

6. At x = π the curve y = tan(x/4) has slope
(sec2(π/4))/4 = 1/2. The normal to the curve there
has equation y = 1− 2(x − π).

7.
d

dx

1

x − sin x
= − 1− cos x

(x − sin x)2

8.
d

dx

1+ x + x2 + x3

x4 = d

dx
(x−4 + x−3 + x−2 + x−1)

= −4x−5 − 3x−4 − 2x−3 − x−2

= −4+ 3x + 2x2 + x3

x5

9.
d

dx
(4 − x2/5)−5/2 = −5

2
(4 − x2/5)−7/2

(

−2

5
x−3/5

)

= x−3/5(4 − x2/5)−7/2

10.
d

dx

√

2+ cos2 x = −2 cos x sin x

2
√

2+ cos2 x
= − sin x cos x√

2+ cos2 x

11.
d

dθ
(tan θ − θ sec2 θ) = sec2 θ − sec2 θ − 2θ sec2 θ tan θ

= −2θ sec2 θ tan θ

12.
d

dt

√
1+ t2 − 1√
1+ t2 + 1

=
(
√

1+ t2 + 1)
t√

1+ t2
− (
√

1+ t2 − 1)
t√

1+ t2

(
√

1+ t2 + 1)2

= 2t√
1+ t2(

√
1 + t2 + 1)2

13. lim
h→0

(x + h)20 − x20

h
= d

dx
x20 = 20x19

14. lim
x→2

√
4x + 1− 3

x − 2
= lim

h→0
4

√
9+ 4h − 3

4h

= d

dx
4
√

x

∣
∣
∣
∣
x=9
= 4

2
√

9
= 2

3

15. lim
x→π/6

cos(2x)− (1/2)
x − π/6 = lim

h→0
2

cos((π/3) + 2h)− cos(π/3)

2h

= 2
d

dx
cos x

∣
∣
∣
∣
x=π/3

= −2 sin(π/3) = −√3

16. lim
x→−a

(1/x2)− (1/a2)

x + a
= lim

h→0

1

(−a + h)2
− 1

(−a)2

h

= d

dx

1

x2

∣
∣
∣
∣
x=−a

= 2

a3

17.
d

dx
f (3 − x2) = −2x f ′(3 − x2)

18.
d

dx
[ f (
√

x)]2 = 2 f (
√

x) f ′(
√

x)
1

2
√

x
= f (

√
x) f ′(

√
x)√

x

19.
d

dx
f (2x)

√

g(x/2) = 2 f ′(2x)
√

g(x/2)+ f (2x)g′(x/2)
4
√

g(x/2)

20.
d

dx

f (x)− g(x)

f (x)+ g(x)

= 1

( f (x)+ g(x))2

[

f (x)+ g(x))( f ′(x)− g′(x))

− ( f (x)− g(x))( f ′(x)+ g′(x)
]

= 2( f ′(x)g(x)− f (x)g′(x))
( f (x)+ g(x))2

21.
d

dx
f (x + (g(x))2) = (1 + 2g(x)g′(x)) f ′(x + (g(x))2)

22.
d

dx
f

(
g(x2)

x

)

= 2x2g′(x2)− g(x2)

x2 f ′
(

g(x2)

x

)

23.
d

dx
f (sin x)g(cos x)

= (cos x) f ′(sin x)g(cos x)− (sin x) f (sin x)g′(cos x)
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24.
d

dx

√

cos f (x)

sin g(x)

= 1

2

√

sin g(x)

cos f (x)

× − f ′(x) sin f (x) sin g(x)− g′(x) cos f (x) cos g(x)

(sin g(x))2

25. If x3y+2xy3 = 12, then 3x2y+ x3y ′ +2y3+6xy2y ′ = 0.
At (2, 1): 12 + 8y′ + 2 + 12y′ = 0, so the slope there is
y ′ = −7/10. The tangent line has equation
y = 1− 7

10 (x − 2) or 7x + 10y = 24.

26. 3
√

2x sin(π y)+ 8y cos(π x) = 2
3
√

2 sin(π y)+ 3π
√

2x cos(π y)y ′ + 8y ′ cos(π x)
−8πy sin(π x) = 0
At (1/3, 1/4): 3 + πy′ + 4y ′ − π√3 = 0, so the slope

there is y′ = π
√

3− 3

π + 4
.

27.
∫

1+ x4

x2 dx =
∫ (

1

x2 + x2
)

dx = − 1

x
+ x3

3
+ C

28.
∫

1+ x√
x

dx =
∫

(x−1/2 + x1/2) dx = 2
√

x + 2

3
x3/2 + C

29.
∫

2+ 3 sin x

cos2 x
dx =

∫

(2 sec2 x + 3 sec x tan x) dx

= 2 tan x + 3 sec x + C

30.
∫

(2x + 1)4 dx =
∫

(16x4 + 32x3 + 24x2 + 8x + 1) dx

= 16x5

5
+ 8x4 + 8x3 + 4x2 + x + C

or, equivalently,
∫

(2x + 1)4 dx = (2x + 1)5

10
+ C

31. If f ′(x) = 12x2 + 12x3, then f (x) = 4x3 + 3x4 + C .
If f (1) = 0, then 4 + 3 + C = 0, so C = −7 and
f (x) = 4x3 + 3x4 − 7.

32. If g′(x) = sin(x/3)+ cos(x/6), then

g(x) = −3 cos(x/3)+ 6 sin(x/6)+ C.

If (π, 2) lies on y = g(x), then −(3/2) + 3 + C = 2, so
C = 1/2 and g(x) = −3 cos(x/3)+ 6 sin(x/6)+ (1/2).

33.
d

dx
(x sin x + cos x) = sin x + x cos x − sin x = x cos x

d

dx
(x cos x − sin x) = cos x − x sin x − cos x = −x sin x

∫

x cos x dx = x sin x + cos x + C
∫

x sin x dx = −x cos x + sin x + C

34. If f ′(x) = f (x) and g(x) = x f (x), then

g′(x) = f (x)+ x f ′(x) = (1 + x) f (x)

g′′(x) = f (x)+ (1 + x) f ′(x) = (2 + x) f (x)

g′′′(x) = f (x)+ (2 + x) f ′(x) = (3 + x) f (x)

Conjecture: g(n)(x) = (n + x) f (x) for n = 1, 2, 3, . . .
Proof: The formula is true for n = 1, 2, and 3 as shown
above. Suppose it is true for n = k; that is, suppose
g(k)(x) = (k + x) f (x). Then

g(k+1)(x) = d

dx

(

(k + x) f (x)
)

= f (x)+ (k + x) f ′(x) = ((k + 1)+ x) f (x).

Thus the formula is also true for n = k+1. It is therefore
true for all positive integers n by induction.

35. The tangent to y = x3 + 2 at x = a has equation
y = a3 + 2 + 3a2(x − a), or y = 3a2x − 2a3 + 2. This
line passes through the origin if 0 = −2a3 + 2, that is, if
a = 1. The line then has equation y = 3x .

36. The tangent to y = √2+ x2 at x = a has slope
a/
√

2+ a2 and equation

y =
√

2+ a2 + a√
2+ a2

(x − a).

This line passes through (0, 1) provided

1 =
√

2 + a2 − a2
√

2+ a2
√

2+ a2 = 2+ a2 − a2 = 2

2+ a2 = 4

The possibilities are a = ±√2, and the equations of the
corrresponding tangent lines are y = 1± (x/√2).

37.
d

dx

(

sinn x sin(nx)
)

= n sinn−1 x cos x sin(nx)+ n sinn x cos(nx)

= n sinn−1 x[cos x sin(nx)+ sin x cos(nx)]

= n sinn−1 x sin((n + 1)x)
y = sinn x sin(nx) has a horizontal tangent at
x = mπ/(n + 1), for any integer m.
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38.
d

dx

(

sinn x cos(nx)
)

= n sinn−1 x cos x cos(nx)− n sinn x sin(nx)

= n sinn−1 x[cos x cos(nx)− sin x sin(nx)]

= n sinn−1 x cos((n + 1)x)
d

dx

(

cosn x sin(nx)
)

= −n cosn−1 x sin x sin(nx)+ n cosn x cos(nx)

= n cosn−1 x[cos x cos(nx)− sin x sin(nx)]

= n cosn−1 x cos((n + 1)x)
d

dx

(

cosn x cos(nx)
)

= −n cosn−1 x sin x cos(nx)− n cosn x sin(nx)

= −n cosn−1 x[sin x cos(nx)+ cos x sin(nx)]

= −n cosn−1 x sin((n + 1)x)

39. Q = (0, 1). If P = (a, a2) on the curve y = x2, then
the slope of y = x2 at P is 2a, and the slope of PQ is
(a2 − 1)/a. PQ is normal to y = x2 if a = 0 or
[(a2 − 1)/a](2a) = −1, that is, if a = 0 or a2 = 1/2.
The points P are (0, 0) and (±1/

√
2, 1/2). The distances

from these points to Q are 1 and
√

3/2, respectively.
The distance from Q to the curve y = x2 is the shortest
of these distances, namely

√
3/2 units.

40. The average profit per tonne if x tonnes are exported is
P(x)/x , that is the slope of the line joining (x, P(x)) to
the origin. This slope is maximum if the line is tangent
to the graph of P(x). In this case the slope of the line is
P ′(x), the marginal profit.

41. F(r) =
{

mgR2

r2 if r ≥ R

mkr if 0 ≤ r < R

a) For continuity of F(r) at r = R we require
mg = mkR, so k = g/R.

b) As r increases from R, F changes at rate

d

dr

mgR2

r2

∣
∣
∣
∣
r=R
= −2mgR2

R3 = −2mg

R
.

As r decreases from R, F changes at rate

− d

dr
(mkr)

∣
∣
∣
r=R
= −mk = −mg

R
.

Observe that this rate is half the rate at which F
decreases when r increases from R.

42. PV = kT . Differentiate with respect to P holding T
constant to get

V + P
dV

d P
= 0

Thus the isothermal compressibility of the gas is

1

V

dV

d P
= 1

V

(

−V

P

)

= − 1

P
.

43. Let the building be h m high. The height of the first ball
at time t during its motion is

y1 = h + 10t − 4.9t2.

It reaches maximum height when dy1/dt = 10−9.8t = 0,
that is, at t = 10/9.8 s. The maximum height of the first
ball is

y1 = h + 100

9.8
− 4.9× 100

(9.8)2
= h + 100

19.6
.

The height of the second ball at time t during its motion
is

y2 = 20t − 4.9t2.

It reaches maximum height
when dy2/dt = 20 − 9.8t = 0, that is, at t = 20/9.8 s.
The maximum height of the second ball is

y2 = 400

9.8
− 4.9× 400

(9.8)2
= 400

19.6
.

These two maximum heights are equal, so

h + 100

19.6
= 400

19.6
,

which gives h = 300/19.6 ≈ 15.3 m as the height of the
building.

44. The first ball has initial height 60 m and initial velocity
0, so its height at time t is

y1 = 60− 4.9t2 m.

The second ball has initial height 0 and initial velocity
v0, so its height at time t is

y2 = v0t − 4.9t2 m.

The two balls collide at a height of 30 m (at time T ,
say). Thus

30 = 60− 4.9T 2

30 = v0T − 4.9T 2.

Thus v0T = 60 and T 2 = 30/4.9. The initial upward
speed of the second ball is

v0 = 60

T
= 60

√

4.9

30
≈ 24.25 m/s.
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At time T , the velocity of the first ball is

dy1

dt

∣
∣
∣
∣
t=T
= −9.8T ≈ −24.25 m/s.

At time T , the velocity of the second ball is

dy2

dt

∣
∣
∣
∣
t=T
= v0 − 9.8T = 0 m/s.

45. Let the car’s initial speed be v0. The car decelerates at
20 ft/s2 starting at t = 0, and travels distance s in time t ,
where d2s/dt2 = −20. Thus

ds

dt
= v0 − 20t

x = v0t − 10t2.

The car stops at time t = v0/20. The stopping distance is
s = 160 ft, so

160 = v2
0

20
− v

2
0

40
= v2

0

40
.

The car’s initial speed cannot exceed
v0 =

√
160 × 40 = 80 ft/s.

46. P = 2π
√

L/g = 2πL1/2g−1/2.

a) If L remains constant, then

�P ≈ d P

dg
�g = −πL1/2g−3/2�g

�P

P
≈ −πL1/2g−3/2

2πL1/2g−1/2 �g = −1

2

�g

g
.

If g increases by 1%, then �g/g = 1/100, and
�P/P = −1/200. Thus P decreases by 0.5%.

b) If g remains constant, then

�P ≈ d P

dL
�L = πL−1/2g−1/2 �L

�P

P
≈ πL−1/2g−1/2

2πL1/2g−1/2 �L = 1

2

�L

L
.

If L increases by 2%, then �L/L = 2/100, and
�P/P = 1/100. Thus P increases by 1%.

Challenging Problems 2 (page 159)

1. The line through (a, a2) with slope m has equation
y = a2 +m(x − a). It intersects y = x2 at points x
that satisfy

x2 = a2 + mx − ma, or

x2 − mx + ma − a2 = 0

In order that this quadratic have only one solution x = a,
the left side must be (x − a)2, so that m = 2a. The
tangent has slope 2a.
This won’t work for more general curves whose tangents
can intersect them at more than one point.

2. f ′(x) = 1/x , f (2) = 9.

a) lim
x→2

f (x2 + 5)− f (9)

x − 2
= lim

h→0

f (9+ 4h + h2)− f (9)

h

= lim
h→0

f (9 + 4h + h2)− f (9)

4h + h2 × 4h + h2

h

= lim
k→0

f (9 + k) − f (9)

k
× lim

h→0
(4 + h)

= f ′(9)× 4 = 4

9

b) lim
x→2

√
f (x)− 3

x − 2
= lim

h→0

√
f (2 + h)− 3

h

= lim
h→0

f (2 + h)− 9

h
× 1√

f (2+ h)+ 3

= f ′(2)× 1

6
= 1

12
.

3. f ′(4) = 3, g′(4) = 7, g(4) = 4, g(x) �= 4 if x �= 4.

a) lim
x→4

(

f (x)− f (4)
)

= lim
x→4

f (x)− f (4)

x − 4
(x − 4)

= f ′(4)(4 − 4) = 0

b) lim
x→4

f (x)− f (4)

x2 − 16
= lim

x→4

f (x)− f (4)

x − 4
× 1

x + 4

= f ′(4)× 1

8
= 3

8

c) lim
x→4

f (x)− f (4)√
x − 2

= lim
x→4

f (x)− f (4)

x − 4
× (√x + 2)

= f ′(4)× 4 = 12

d) lim
x→4

f (x)− f (4)
1

x
− 1

4

= lim
x→4

f (x)− f (4)

x − 4
× x − 4

(4− x)/4x

= f ′(4)× (−16) = −48

e) lim
x→4

f (x)− f (4)

g(x)− 4
= lim

x→4

f (x)− f (4)

x − 4
g(x)− g(4)

x − 4

= f ′(4)
g′(4)

= 3

7

f) lim
x→4

f (g(x)) − f (4)

x − 4

= lim
x→4

f (g(x))− f (4)

g(x)− 4
× g(x)− g(4)

x − 4

= f ′(g(4)) × g′(4) = f ′(4)× g′(4) = 3 × 7 = 21

4. f (x) =
{

x if x = 1, 1/2, 1/3, . . .
x2 otherwise

.
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a) f is continuous except at 1/2, 1/3, 1/4, . . . . It is
continuous at x = 1 and x = 0 (and everywhere
else). Note that

lim
x→1

x2 = 1 = f (1),

lim
x→0

x2 = lim
x→0

x = 0 = f (0)

b) If a = 1/2 and b = 1/3, then

f (a) + f (b)

2
= 1

2

(
1

2
+ 1

3

)

= 5

12
.

If 1/3 < x < 1/2, then f (x) = x2 < 1/4 < 5/12.
Thus the statement is FALSE.

c) By (a) f cannot be differentiable at x = 1/2, 1/2,
. . .. It is not differentiable at x = 0 either, since

lim
h→0

h − 0h = 1 �= 0 = lim
h→0

h2 − 0

h
.

f is differentiable elsewhere, including at x = 1
where its derivative is 2.

5. If h �= 0, then

∣
∣
∣
∣

f (h)− f (0)

h

∣
∣
∣
∣
= | f (h)||h| >

√|h|
|h| → ∞

as h → 0. Therefore f ′(0) does not exist.

6. Given that f ′(0) = k, f (0) �= 0, and
f (x + y) = f (x) f (y), we have

f (0) = f (0+0) = f (0) f (0) 
⇒ f (0) = 0 or f (0) = 1.

Thus f (0) = 1.

f ′(x) = lim
h→0

f (x + h)− f (x)

h

= lim
h→0

f (x) f (h)− f (x)

h
= f (x) f ′(0) = k f (x).

7. Given that g′(0) = k and g(x + y) = g(x)+ g(y), then

a) g(0) = g(0 + 0) = g(0)+ g(0). Thus g(0) = 0.

b) g′(x) = lim
h→0

g(x + h)− g(x)

h

= lim
h→0

g(x)+ g(h)− g(x)

h
= lim

h→0

g(h)− g(0)

h
= g′(0) = k.

c) If h(x) = g(x) − kx , then h′(x) = g′(x)− k = 0
for all x . Thus h(x) is constant for all x . Since
h(0) = g(0) − 0 = 0, we have h(x) = 0 for all x ,
and g(x) = kx .

8. a) f ′(x) = lim
k→0

f (x + k) − f (x)

k
(let k = −h)

= lim
h→0

f (x − h)− f (x)

−h
= lim

h→0

f (x)− f (x − h)

h
.

f ′(x) = 1

2

(

f ′(x)+ f ′(x)
)

= 1

2

(

lim
h→0

f (x + h)− f (x)

h

+ lim
h→0

f (x)− f (x − h)

h

)

= lim
h→0

f (x + h)− f (x − h)

2h
.

b) The change of variables used in the first part of (a)
shows that

lim
h→0

f (x + h)− f (x)

h
and lim

h→0

f (x)− f (x − h)

h

are always equal if either exists.

c) If f (x) = |x |, then f ′(0) does not exist, but

lim
h→0

f (0 + h)− f (0 − h)

2h
= lim

h→0

|h| − |h|
h

= lim
h→0

0

h
= 0.

9. The tangent to y = x3 at x = 3a/2 has equation

y = 27a3

8
+ 27

4a2

(

x − 3a

2

)

.

This line passes through (a, 0) because

27a3

8
+ 27

4a2

(

a − 3a

2

)

= 0.

If a �= 0, the x-axis is another tangent to y = x3 that
passes through (a, 0).

The number of tangents to y = x3 that pass through
(x0, y0) is

three, if x0 �= 0 and y0 is between 0 and x3
0 ;

two, if x0 �= 0 and either y0 = 0 or y0 = x3
0 ;

one, otherwise.

This is the number of distinct real solutions b of the cu-
bic equation 2b3 − 3b2x0 + y0 = 0, which states that the
tangent to y = x3 at (b, b3) passes through (x0, y0).

10. By symmetry, any line tangent to both curves must pass
through the origin.
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y

x

y = x2 + 4x + 1

y = −x2 + 4x − 1

Fig. C-2.10

The tangent to y = x2 + 4x + 1 at x = a has equation

y = a2 + 4a + 1+ (2a + 4)(x − a)

= (2a + 4)x − (a2 − 1),

which passes through the origin if a = ±1. The two
common tangents are y = 6x and y = 2x .

11. The slope of y = x2 at x = a is 2a.
The slope of the line from (0, b) to (a, a2) is (a2 − b)/a.
This line is normal to y = x2 if either a = 0 or
2a((a2 − b)/a) = −1, that is, if a = 0 or 2a2 = 2b − 1.
There are three real solutions for a if b > 1/2 and only
one (a = 0) if b ≤ 1/2.

12. The point Q = (a, a2) on y = x2 that is closest to
P = (3, 0) is such that PQ is normal to y = x2 at Q.
Since PQ has slope a2/(a − 3) and y = x2 has slope 2a
at Q, we require

a2

a − 3
= − 1

2a
,

which simplifies to 2a3 + a − 3 = 0. Observe that a = 1
is a solution of this cubic equation. Since the slope of
y = 2x3 + x − 3 is 6x2 + 1, which is always positive,
the cubic equation can have only one real solution. Thus
Q = (1, 1) is the point on y = x2 that is closest to P.
The distance from P to the curve is |PQ| = √5 units.

13. The curve y = x2 has slope m = 2a at (a, a2). The
tangent there has equation

y = a2 + m(x − a) = mx − m2

4
.

The curve y = Ax2 + Bx + C has slope m = 2Aa + B
at (a, Aa2 + Ba + C). Thus a = (m − B)/(2A), and the
tangent has equation

y = Aa2 + Ba + C +m(x − a)

= mx + (m − B)2

4A
+ B(m − B)

2A
+ C − m(m − B)

2A

= mx + C + (m − B)2

4A
− (m − B)2

2A
= mx + f (m),

where f (m) = C − (m − B)2/(4A).

14. Parabola y = x2 has tangent y = 2ax − a2 at (a, a2).
Parabola y = Ax2 + Bx + C has tangent

y = (2Ab + B)x − Ab2 + C

at (b, Ab2 + Bb + C). These two tangents coincide if

2Ab + B = 2a

Ab2 − C = a2.

(∗)

The two curves have one (or more) common tangents if
(∗) has real solutions for a and b. Eliminating a between
the two equations leads to

(2Ab + B)2 = 4Ab2 − 4C,

or, on simplification,

4A(A − 1)b2 + 4ABb + (B2 + 4C) = 0.

This quadratic equation in b has discriminant

D = 16A2 B2−16A(A−1)(B2+4C) = 16A(B2−4(A−1)C).

There are five cases to consider:

CASE I. If A = 1, B �= 0, then (∗) gives

b = − B2 + 4C

4B
, a = B2 − 4C

4B
.

There is a single common tangent in this case.

CASE II. If A = 1, B = 0, then (∗) forces C = 0, which
is not allowed. There is no common tangent in this case.

CASE III. If A �= 1 but B2 = 4(A − 1)C , then

b = −B

2(A − 1)
= a.

There is a single common tangent, and since the points
of tangency on the two curves coincide, the two curves
are tangent to each other.

CASE IV. If A �= 1 and B2−4(A−1)C < 0, there are no
real solutions for b, so there can be no common tangents.

CASE V. If A �= 1 and B2 − 4(A − 1)C > 0, there are
two distinct real solutions for b, and hence two common
tangent lines.
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y

x

y

x

y

x

y

x

tangent curves

no common
tangent

one common
tangenttwo common

tangents

Fig. C-2.14

15. a) The tangent to y = x3 at (a, a3) has equation

y = 3a2x − 2a3.

For intersections of this line with y = x3 we solve

x3 − 3a2x + 2a3 = 0

(x − a)2(x + 2a) = 0.

The tangent also intersects y = x3 at (b, b3), where
b = −2a.

b) The slope of y = x3 at x = −2a is 3(−2a)2 = 12a2,
which is four times the slope at x = a.

c) If the tangent to y = x3 at x = a were also tangent
at x = b, then the slope at b would be four times
that at a and the slope at a would be four times that
at b. This is clearly impossible.

d) No line can be tangent to the graph of a cubic poly-
nomial P(x) at two distinct points a and b, because
if there was such a double tangent y = L(x), then
(x − a)2(x − b)2 would be a factor of the cubic poly-
nomial P(x) − L(x), and cubic polynomials do not
have factors that are 4th degree polynomials.

16. a) y = x4 − 2x2 has horizontal tangents at points x
satisfying 4x3 − 4x = 0, that is, at x = 0 and
x = ±1. The horizontal tangents are y = 0 and
y = −1. Note that y = −1 is a double tangent; it is
tangent at the two points (±1,−1).

b) The tangent to y = x4 − 2x2 at x = a has equation

y = a4 − 2a2 + (4a3 − 4a)(x − a)

= 4a(a2 − 1)x − 3a4 + 2a2.

Similarly, the tangent at x = b has equation

y = 4b(b2 − 1)x − 3b4 + 2b2.

These tangents are the same line (and hence a dou-
ble tangent) if

4a(a2 − 1) = 4b(b2 − 1)

− 3a4 + 2a2 = −3b4 + 2b2.

The second equation says that either a2 = b2 or
3(a2 + b2) = 2; the first equation says that
a3 − b3 = a − b, or, equivalently, a2 + ab + b2 = 1.
If a2 = b2, then a = −b (a = b is not allowed).
Thus a2 = b2 = 1 and the two points are (±1,−1)
as discovered in part (a).
If a2+b2 = 2/3, then ab = 1/3. This is not possible
since it implies that

0 = a2 + b2 − 2ab = (a − b)2 > 0.

Thus y = −1 is the only double tangent to
y = x4 − 2x2.

c) If y = Ax + B is a double tangent to
y = x4 − 2x2 + x , then y = (A − 1)x + B is a
double tangent to
y = x4 − 2x2. By (b) we must have A − 1 = 0
and B = −1. Thus the only double tangent to
y = x4 − 2x2 + x is y = x − 1.

17. a) The tangent to

y = f (x) = ax4 + bx3 + cx2 + dx + e

at x = p has equation

y = (4ap3+3bp2+2cp+d)x−3ap4−2bp3−cp2+e.

This line meets y = f (x) at x = p (a double root),
and

x = −2ap − b ±√b2 − 4ac − 4abp − 8a2 p2

2a
.

These two latter roots are equal (and hence corre-
spond to a double tangent) if the expression under
the square root is 0, that is, if

8a2 p2 + 4abp + 4ac − b2 = 0.

This quadratic has two real solutions for p provided
its discriminant is positive, that is, provided

16a2b2 − 4(8a2)(4ac − b2) > 0.
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This condition simplifies to

3b2 > 8ac.

For example, for y = x4−2x2+x−1, we have a = 1,
b = 0, and c = −2, so 3b2 = 0 > −16 = 8ac, and
the curve has a double tangent.

b) From the discussion above, the second point of tan-
gency is

q = −2ap − b

2a
= −p − b

2a
.

The slope of PQ is

f (q)− f (p)

q − p
= b3 − 4abc + 8a2d

8a2
.

Calculating f ′((p + q)/2) leads to the same expres-
sion, so the double tangent PQ is parallel to the
tangent at the point horizontally midway between P
and Q.

c) The inflection points are the real zeros of

f ′′(x) = 2(6ax2 + 3bx + c).

This equation has distinct real roots provided
9b2 > 24ac, that is, 3b2 > 8ac. The roots are

r = −3b −√9b2 − 24ac

12a

s = −3b +√9b2 − 24ac

12a
.

The slope of the line joining these inflection points
is

f (s)− f (r)

s − r
= b3 − 4abc + 8a2d

8a2 ,

so this line is also parallel to the double tangent.

18. a) Claim:
dn

dxn
cos(ax) = an cos

(

ax + nπ

2

)

.

Proof: For n = 1 we have

d

dx
cos(ax) = −a sin(ax) = a cos

(

ax + π
2

)

,

so the formula above is true for n = 1. Assume it is
true for n = k, where k is a positive integer. Then

dk+1

dxk+1 cos(ax) = d

dx

[

ak cos

(

ax + kπ

2

)]

= ak
[

−a sin

(

ax + kπ

2

)]

= ak+1 cos

(

ax + (k + 1)π

2

)

.

Thus the formula holds for n = 1, 2, 3, . . . by
induction.

b) Claim:
dn

dxn
sin(ax) = an sin

(

ax + nπ

2

)

.

Proof: For n = 1 we have

d

dx
sin(ax) = a cos(ax) = a sin

(

ax + π
2

)

,

so the formula above is true for n = 1. Assume it is
true for n = k, where k is a positive integer. Then

dk+1

dxk+1
sin(ax) = d

dx

[

ak sin

(

ax + kπ

2

)]

= ak
[

a cos

(

ax + kπ

2

)]

= ak+1 sin

(

ax + (k + 1)π

2

)

.

Thus the formula holds for n = 1, 2, 3, . . . by
induction.

c) Note that

d

dx
(cos4 x + sin4 x) = −4 cos3 x sin x + 4 sin3 x cos x

= −4 sin x cos x(cos2− sin2 x)

= −2 sin(2x) cos(2x)

= − sin(4x) = cos
(

4x + π
2

)

.

It now follows from part (a) that

dn

dxn
(cos4 x + sin4 x) = 4n−1 cos

(

4x + nπ

2

)

.

19.
(3, 39.2)

(12,−49)

(15,−1)

v (m/s)

-40

-30

-20

-10

10

20

30

40

t (s)
2 4 6 8 10 12 14

Fig. C-2.19

a) The fuel lasted for 3 seconds.

b) Maximum height was reached at t = 7 s.
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c) The parachute was deployed at t = 12 s.

d) The upward acceleration in [0, 3] was
39.2/3 ≈ 13.07 m/s2.

e) The maximum height achieved by the rocket is the
distance it fell from t = 7 to t = 15. This is the
area under the t-axis and above the graph of v on
that interval, that is,

12 − 7

2
(49) + 49+ 1

2
(15 − 12) = 197.5 m.

f) During the time interval [0, 7], the rocket rose a
distance equal to the area under the velocity graph
and above the t-axis, that is,

1

2
(7− 0)(39.2) = 137.2 m.

Therefore the height of the tower was
197.5 − 137.2 = 60.3 m.
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CHAPTER 3. TRANSCENDENTAL FUNC-
TIONS

Section 3.1 Inverse Functions (page 167)

1. f (x) = x − 1
f (x1) = f (x2)⇒ x1 − 1 = x2 − 1⇒ x1 = x2.
Thus f is one-to-one. Let y = f −1(x).
Then x = f (y) = y − 1 and y = x + 1. Thus
f −1(x) = x + 1.
D( f ) = D( f −1) = � = R( f ) = R( f −1).

2. f (x) = 2x−1. If f (x1) = f (x2), then 2x1−1 = 2x2−1.
Thus 2(x1 − x2) = 0 and x1 = x2. Hence, f is one-to-
one.
Let y = f −1(x). Thus x = f (y) = 2y − 1, so
y = 1

2 (x + 1). Thus f −1(x) = 1
2 (x + 1).

D( f ) = R( f −1) = (−∞,∞).
R( f ) = D( f −1) = (−∞,∞).

3. f (x) = √x − 1
f (x1) = f (x2)⇔

√

x1 − 1 =
√

x2 − 1, (x1, x2 ≥ 1)

⇔ x1 − 1 = x2 − 1 = 0

⇔ x1 = x2

Thus f is one-to-one. Let y = f −1(x).
Then x = f (y) = √y − 1, and y = 1 + x2. Thus
f −1(x) = 1+ x2, (x ≥ 0).
D( f ) = R( f −1) = [1,∞), R( f ) = D( f −1) = [0,∞).

4. f (x) = −√x − 1 for x ≥ 1.
If f (x1) = f (x2), then −√x1 − 1 = −√x2 − 1 and
x1 − 1 = x2 − 1. Thus x1 = x2 and f is one-to-one.
Let y = f −1(x). Then x = f (y) = −√y − 1 so
x2 = y − 1 and y = x2 + 1. Thus, f −1(x) = x2 + 1.
D( f ) = R( f −1) = [1,∞). R( f ) = D( f −1) = (−∞, 0].

5. f (x) = x3

f (x1) = f (x2)⇔ x3
1 = x3

2

⇒ (x1 − x2)(x
2
1 + x1x2 + x2

2 ) = 0

⇒ x1 = x2

Thus f is one-to-one. Let y = f −1(x).
Then x = f (y) = y3 so y = x1/3.
Thus f −1(x) = x1/3.
D( f ) = D( f −1) = � = R( f ) = R( f −1).

6. f (x) = 1 + 3
√

x . If f (x1) = f (x2), then
1 + 3
√

x1 = 1 + 3
√

x2 so x1 = x2. Thus, f is one-to-
one.
Let y = f −1(x) so that x = f (y) = 1 + 3

√
y. Thus

y = (x − 1)3 and f −1(x) = (x − 1)3.
D( f ) = R( f −1) = (−∞,∞).
R( f ) = D( f −1) = (−∞,∞).

7. f (x) = x2, (x ≤ 0)

f (x1) = f (x2)⇔ x2
1 = x2

2 , (x1 ≤ 0, x2 ≤ 0)

⇔ x1 = x2

Thus f is one-to-one. Let y = f −1(x).
Then x = f (y) = y2 (y ≤ 0).
therefore y = −√x and f −1(x) = −√x .
D( f ) = (−∞, 0] = R( f −1),
D( f −1) = [0,∞) = R( f ).

8. f (x) = (1− 2x)3. If f (x1) = f (x2), then
(1 − 2x1)

3 = (1 − 2x2)
3 and x1 = x2. Thus, f is one-to-

one.
Let y = f −1(x). Then x = f (y) = (1 − 2y)3 so
y = 1

2 (1− 3
√

x). Thus, f −1(x) = 1
2 (1 − 3

√
x).

D( f ) = R( f −1) = (−∞,∞).
R( f ) = D( f −1) = (−∞,∞).

9. f (x) = 1

x + 1
. D( f ) = {x : x �= −1} = R( f −1).

f (x1) = f (x2)⇔ 1

x1 + 1
= 1

x2 + 1
⇔ x2 + 1 = x1 + 1

⇔ x2 = x1

Thus f is one-to-one; Let y = f −1(x).

Then x = f (y) = 1

y + 1

so y + 1 = 1

x
and y = f −1(x) = 1

x
− 1.

D( f −1) = {x : x �= 0} = R( f ).

10. f (x) = x

1+ x
. If f (x1) = f (x2), then

x1

1+ x1
= x2

1+ x2
.

Hence x1(1 + x2) = x2(1 + x1) and, on simplification,
x1 = x2. Thus, f is one-to-one.

Let y = f −1(x). Then x = f (y) = y

1+ y
and

x(1+ y) = y. Thus y = x

1− x
= f −1(x).

D( f ) = R( f −1) = (−∞,−1) ∪ (−1,∞).
R( f ) = D( f −1) = (−∞, 1) ∪ (1,∞).

11. f (x) = 1− 2x

1+ x
. D( f ) = {x : x �= −1} = R( f −1)

f (x1) = f (x2)⇔ 1− 2x1

1 + x1
= 1− 2x2

1+ x2
⇔ 1+ x2 − 2x1 − 2x1x2 = 1 + x1 − 2x2 − 2x1x2

⇔ 3x2 = 3x1 ⇔ x1 = x2

Thus f is one-to-one. Let y = f −1(x).

Then x = f (y) = 1− 2y

1+ y
so x + xy = 1− 2y

and f −1(x) = y = 1− x

2+ x
.

D( f −1) = {x : x �= −2} = R( f ).
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12. f (x) = x√
x2 + 1

. If f (x1) = f (x2), then

x1
√

x2
1 + 1

= x2
√

x2
2 + 1

. (∗)

Thus x2
1 (x

2
2 + 1) = x2

2 (x
2
1 + 1) and x2

1 = x2
2 .

From (*), x1 and x2 must have the same sign. Hence,
x1 = x2 and f is one-to-one.

Let y = f −1(x). Then x = f (y) = y
√

y2 + 1
, and

x2(y2 + 1) = y2. Hence y2 = x2

1− x2 . Since f (y) and y

have the same sign, we must have y = x√
1 − x2

, so

f −1(x) = x√
1− x2

.

D( f ) = R( f −1) = (−∞,∞).
R( f ) = D( f −1) = (−1, 1).

13. g(x) = f (x)− 2
Let y = g−1(x). Then x = g(y) = f (y) − 2, so
f (y) = x + 2 and g−1(x) = y = f −1(x + 2).

14. h(x) = f (2x). Let y = h−1(x). Then x = h(y) = f (2y)
and 2y = f −1(x). Thus h−1(x) = y = 1

2 f −1(x).

15. k(x) = −3 f (x). Let y = k−1(x). Then

x = k(y) = −3 f (y), so f (y) = − x

3
and

k−1(x) = y = f −1
(

− x

3

)

.

16. m(x) = f (x − 2). Let y = m−1(x). Then
x = m(y) = f (y − 2), and y − 2 = f −1(x).
Hence m−1(x) = y = f −1(x)+ 2.

17. p(x) = 1

1+ f (x)
. Let y = p−1(x).

Then x = p(y) = 1

1 + f (y)
so f (y) = 1

x
− 1,

and p−1(x) = y = f −1
(

1

x
− 1

)

.

18. q(x) = f (x)− 3

2
Let y = q−1(x). Then

x = q(y) = f (y)− 3

2
and f (y) = 2x + 3. Hence

q−1(x) = y = f −1(2x + 3).

19. r(x) = 1− 2 f (3 − 4x)
Let y = r−1(x). Then x = r(y) = 1− 2 f (3− 4y).

f (3 − 4y) = 1− x

2

3− 4y = f −1
(

1− x

2

)

and r−1(x) = y = 1

4

(

3− f −1
(

1− x

2

))

.

20. s(x) = 1+ f (x)

1− f (x)
. Let y = s−1(x).

Then x = s(y) = 1 + f (y)

1 − f (y)
. Solving for f (y) we obtain

f (y) = x − 1

x + 1
. Hence s−1(x) = y = f −1

(
x − 1

x + 1

)

.

21. f (x) = x2 + 1 if x ≥ 0, and f (x) = x + 1 if x < 0.
If f (x1) = f (x2) then if x1 ≥ 0 and x2 ≥ 0 then
x2

1 + 1 = x2
2 + 1 so x1 = x2;

if x1 ≥ 0 and x2 < 0 then x2
1 + 1 = x2 + 1 so x2 = x2

1
(not possible);
if x1 < 0 and x2 ≥ 0 then x1 = x2

2 (not possible);
if x1 < 0 and x2 < 0 then x1 + 1 = x2 + 1 so x1 = x2.
Therefore f is one-to-one. Let y = f −1(x). Then

x = f (y) =
{

y2 + 1 if y ≥ 0
y + 1 if y < 0.

Thus f −1(x) = y =
{√

x − 1 if x ≥ 1
x − 1 if x < 1.

y

x

y = f (x)1

Fig. 3.1.21

22. g(x) = x3 if x ≥ 0, and g(x) = x1/3 if x < 0.
Suppose f (x1) = f (x2). If x1 ≥ 0 and x2 ≥ 0 then
x3

1 = x3
2 so x1 = x2.

Similarly, x1 = x2 if both are negative. If x1 and x2 have
opposite sign, then so do g(x1) and g(x2).
Therefore g is one-to-one. Let y = g−1(x). Then

x = g(y) =
{

y3 if y ≥ 0
y1/3 if y < 0.

Thus g−1(x) = y =
{

x1/3 if x ≥ 0
x3 if x < 0.

23. If x1 and x2 are both positive or both negative, and
h(x1) = h(x2), then x2

1 = x2
2 so x1 = x2. If x1 and x2

have opposite sign, then h(x1) and h(x2) are on opposite
sides of 1, so cannot be equal. Hence h is one-to-one.

If y = h−1(x), then x = h(y) =
{

y2 + 1 if y ≥ 0
−y2 + 1 if y < 0

. If

y ≥ 0, then y = √x − 1. If y < 0, then y = √1− x .

Thus h−1(x) =
{√

x − 1 if x ≥ 1√
1− x if x < 1

24. y = f −1(x)⇔ x = f (y) = y3 + y. To find y = f −1(2)
we solve y3 + y = 2 for y. Evidently y = 1 is the only
solution, so f −1(2) = 1.
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25. g(x) = 1 if x3 + x = 10, that is, if x = 2. Thus
g−1(1) = 2.

26. h(x) = −3 if x |x | = −4, that is, if x = −2. Thus
h−1(−3) = −2.

27. If y = f −1(x) then x = f (y).

Thus 1 = f ′(y)
dy

dx
so

dy

dx
= 1

f ′(y)
= 1

1

y

= y

(since f ′(x) = 1/x).

28. f (x) = 1+ 2x3

Let y = f −1(x).
Thus x = f (y) = 1+ 2y3.

1 = 6y2 dy

dx
so ( f −1)′(x) = dy

dx
= 1

6y2 =
1

6[ f −1(x)]2

29. If f (x) = 4x3

x2 + 1
, then

f ′(x) = (x2 + 1)(12x2)− 4x3(2x)

(x2 + 1)2
= 4x2(x2 + 3)

(x2 + 1)2
.

Since f ′(x) > 0 for all x , except x = 0, f must be one-
to-one and so it has an inverse.

If y = f −1(x), then x = f (y) = 4y3

y2 + 1
, and

1 = f ′(y) = (y2 + 1)(12y2 y ′)− 4y3(2yy ′)
(y2 + 1)2

.

Thus y ′ = (y2 + 1)2

4y4 + 12y2 . Since f (1) = 2, therefore

f −1(2) = 1 and

(

f −1
)′
(2) = (y2 + 1)2

4y4 + 12y2

∣
∣
∣
∣
y=1
= 1

4
.

30. If f (x) = x
√

3+ x2 and y = f −1(x), then
x = f (y) = y

√

3+ y2, so,

1 = y ′
√

3 + y2 + y
2yy ′

2
√

3+ y2
⇒ y ′ =

√

3+ y2

3 + 2y2
.

Since f (−1) = −2 implies that f−1(−2) = −1, we have

(

f −1
)′
(−2) =

√

3+ y2

3+ 2y2

∣
∣
∣
∣
y=−1

= 2

5
.

Note: f (x) = x
√

3+ x2 = −2⇒ x2(3 + x2) = 4
⇒ x4 + 3x2 − 4 = 0⇒ (x2 + 4)(x2 − 1) = 0.
Since (x2 + 4) = 0 has no real solution, therefore
x2 − 1 = 0 and x = 1 or −1. Since it is given that
f (x) = −2, therefore x must be −1.

31. y = f −1(2)⇔ 2 = f (y) = y2/(1 +√y). We must solve
2 + 2

√
y = y2 for y. There is a root between 2 and 3:

f −1(2) ≈ 2.23362 to 5 decimal places.

32. g(x) = 2x + sin x ⇒ g′(x) = 2 + cos x ≥ 1 for
all x . Therefore g is increasing, and so one-to-one and
invertible on the whole real line.

y = g−1(x) ⇔ x = g(y) = 2y + sin y. For y = g−1(2),
we need to solve 2y + sin y − 2 = 0. The root is between
0 and 1; to five decimal places g−1(2) = y ≈ 0.68404.
Also

1 = dx

dx
= (2 + cos y)

dy

dx

(g−1)′(2) = dy

dx

∣
∣
∣
∣
x=2
= 1

2+ cos y
≈ 0.36036.

33. If f (x) = x sec x , then f ′(x) = sec x + x sec x tan x ≥ 1
for x in (−π/2, π/2). Thus f is increasing, and so one-
to-one on that interval. Moreover,
limx→−(π/2)+ f (x) = −∞ and limx→(π/2)+ f (x) = ∞,
so, being continuous, f has range (−∞,∞), and so f−1

has domain (−∞,∞).
Since f (0) = 0, we have f −1(0) = 0, and

( f −1)′(0) = 1

f ′( f −1(0)
= 1

f ′(0)
= 1.

34. If y = ( f ◦ g)−1(x), then x = f ◦ g(y) = f (g(y)). Thus
g(y) = f −1(x) and y = g−1( f −1(x)) = g−1 ◦ f −1(x).
That is, ( f ◦ g)−1 = g−1 ◦ f −1.

35. f (x) = x − a

bx − c

Let y = f −1(x). Then x = f (y) = y − a

by − c
and

bxy − cx = y − a so y = cx − a

bx − 1
. We have

f −1(x) = f (x) if
x − a

bx − c
= cx − a

bx − 1
. Evidently it is

necessary and sufficient that c = 1. a and b may have
any values.

36. Let f (x) be an even function. Then f (x) = f (−x).
Hence, f is not one-to-one and it is not invertible.
Therefore, it cannot be self-inverse.
An odd function g(x) may be self-inverse if its graph is
symmetric about the line x = y. Examples are g(x) = x
and g(x) = 1/x .

37. No. A function that is one-to-one on a single interval
need not be either increasing or decreasing. For example,
consider the function defined on [0, 2] by

f (x) =
{

x if 0 ≤ x ≤ 1
−x if 1 < x ≤ 2.

It is one-to-one but neither increasing nor decreasing on
all of [0, 2].
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38. First we consider the case where the domain of f is a
closed interval. Suppose that f is one-to-one and con-
tinuous on [a, b], and that f (a) < f (b). We show that
f must be increasing on [a, b]. Suppose not. Then there
are numbers x1 and x2 with a ≤ x1 < x2 ≤ b and
f (x1) > f (x2). If f (x1) > f (a), let u be a number
such that u < f (x1), f (x2) < u, and f (a) < u. By
the Intermediate-Value Theorem there exist numbers c1 in
(a, x1) and c2 in (x1, x2) such that f (c1) = u = f (c2),
contradicting the one-to-oneness of f . A similar con-
tradiction arises if f (x1) ≤ f (a) because, in this case,
f (x2) < f (b) and we can find c1 in (x1, x2) and c2 in
(x2, b) such that f (c1) = f (c2). Thus f must be increas-
ing on [a, b].

A similar argument shows that if f (a) > f (b), then
f must be decreasing on [a, b].

Finally, if the interval I where f is defined is not
necessarily closed, the same argument shows that if [a, b]
is a subinterval of I on which f is increasing (or de-
creasing), then f must also be increasing (or decreasing)
on any intervals of either of the forms [x1, b] or [a, x2],
where x1 and x2 are in I and x1 ≤ a < b ≤ x2. So f
must be increasing (or decreasing) on the whole of I .

Section 3.2 Exponential and Logarithmic
Functions (page 171)

1.
33
√

35
= 33−5/2 = 31/2 = √3

2. 21/281/2 = 21/223/2 = 22 = 4

3. (x−3)−2 = x6

4. ( 1
2 )

x 4x/2 = 2x

2x
= 1

5. log5 125 = log5 53 = 3

6. If log4(
1
8 ) = y then 4y = 1

8 , or 22y = 2−3. Thus
2y = −3 and log4(

1
8 ) = y = − 3

2 .

7. log1/3 32x = log1/3

(
1

3

)−2x

= −2x

8. 43/2 = 8 ⇒ log4 8 = 3
2 ⇒ 2log4 8 = 23/2 = 2

√
2

9. 10− log10(1/x) = 1

1/x
= x

10. Since loga

(

x1/(loga x)
) = 1

loga x
loga x = 1, therefore

x1/(loga x) = a1 = a.

11. (loga b)(logb a) = loga a = 1

12. logx

(

x(logy y2)
)

= logx(2x) = logx x + logx 2

= 1+ logx 2 = 1+ 1

log2 x

13. (log4 16)(log4 2) = 2× 1

2
= 1

14. log15 75 + log15 3 = log15 225 = 2

(since 152 = 225)

15. log6 9 + log6 4 = log6 36 = 2

16. 2 log3 12− 4 log3 6 = log3

(
42 · 32

24 · 34

)

= log3(3
−2) = −2

17. loga(x
4 + 3x2 + 2)+ loga(x

4 + 5x2 + 6)

− 4 loga

√

x2 + 2

= loga

(

(x2 + 2)(x2 + 1)
)

+ loga

(

(x2 + 2)(x2 + 3)
)

− 2 log1(x
2 + 2)

= loga(x
2 + 1)+ loga(x

2 + 3)

= loga(x
4 + 4x2 + 3)

18. logπ (1− cos x)+ logπ (1+ cos x)− 2 logπ sin x

= logπ

[
(1 − cos x)(1 + cos x)

sin2 x

]

= logπ
sin2 x

sin2 x

= logπ 1 = 0

19. y = 3
√

2, log10 y = √2 log10 3,

y = 10
√

2 log10 3 ≈ 4.72880

20. log3 5 = (log10 5)/(log10 3 ≈ 1.46497

21. 22x = 5x+1, 2x log10 2 = (x + 1) log10 5,
x = (log10 5)/(2 log10 2 − log10 5) ≈ −7.21257

22. x
√

2 = 3,
√

2 log10 x = log10 3,

x = 10(log10 3)/
√

2 ≈ 2.17458

23. logx 3 = 5, (log10 3)/(log10 x) = 5,
log10 x = (log10 3)/5, x = 10(log10 3)/5 ≈ 1.24573

24. log3 x = 5, (log10 x)/(log10 3) = 5,
log10 x = 5 log10 3, x = 105 log10 3 = 35 = 243

25. Let u = loga

(
1

x

)

then au = 1

x
= x−1. Hence, a−u = x

and u = − loga x .

Thus, loga

(
1

x

)

= − loga x .

26. Let loga x = u, loga y = v.
Then x = au , y = av .

Thus
x

y
= au

av
= au−v

and loga

(
x

y

)

= u − v = loga x − loga y.
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27. Let u = loga(x
y), then au = x y and au/y = x .

Therefore
u

y
= loga x , or u = y loga x .

Thus, loga(x
y) = y loga x .

28. Let logb x = u, logb a = v.
Thus bu = x and bv = a.
Therefore x = bu = bv(u/v) = au/v

and loga x = u

v
= logb x

logb a
.

29. log4(x + 4)− 2 log4(x + 1) = 1

2

log4
x + 4

(x + 1)2
= 1

2
x + 4

(x + 1)2
= 41/2 = 2

2x2 + 3x − 2 = 0 but we need x + 1 > 0, so x = 1/2.

30. First observe that log9 x = log3 x/ log3 9 = 1
2 log3 x . Now

2 log3 x + log9 x = 10

log3 x2 + log3 x1/2 = 10

log3 x5/2 = 10

x5/2 = 310, so x = (310)2/5 = 34 = 81

31. Note that logx 2 = 1/ log2 x .
Since limx→∞ log2 x = ∞, therefore limx→∞ logx 2 = 0.

32. Note that logx (1/2) = − logx 2 = −1/ log2 x .
Since limx→0+ log2 x = −∞, therefore
limx→0+ logx (1/2) = 0.

33. Note that logx 2 = 1/ log2 x .
Since limx→1+ log2 x = 0+, therefore
limx→1+ logx 2 = ∞.

34. Note that logx 2 = 1/ log2 x .
Since limx→1− log2 x = 0−, therefore
limx→1− logx 2 = −∞.

35. f (x) = ax and f ′(0) = lim
h→0

ah − 1

h
= k. Thus

f ′(x) = lim
h→0

ax+h − ax

h

= lim
h→0

axah − ax

h

= ax lim
h→0

ah − 1

h
= ax f ′(0) = axk = k f (x).

36. y = f −1(x)⇒ x = f (y) = ay

⇒ 1 = dx

dx
= kay dy

dx

⇒ dy

dx
= 1

kay
= 1

kx
.

Thus ( f −1)′(x) = 1/(kx).

Section 3.3 The Natural Logarithm
and Exponential (page 179)

1.
e3

√
e5
= e3−5/2 = e1/2 = √e

2. ln(e1/2e2/3) = 1
2 + 2

3 = 7
6

3. e5 ln x = x5

4. e(3 ln 9)/2 = 93/2 = 27

5. ln
1

e3x
= ln e−3x = −3x

6. e2 ln cos x +
(

ln esin x
)2 = cos2 x + sin2 x = 1

7. 3 ln 4− 4 ln 3 = ln
43

34 = ln
64

81

8. 4 ln
√

x + 6 ln(x1/3) = 2 ln x + 2 ln x = 4 ln x

9. 2 ln x + 5 ln(x − 2) = ln
(

x2(x − 2)5
)

10. ln(x2 + 6x + 9) = ln[(x + 3)2] = 2 ln(x + 3)

11. 2x+1 = 3x

(x + 1) ln 2 = x ln 3

x = ln 2

ln 3− ln 2
= ln 2

ln(3/2)

12. 3x = 91−x ⇒ 3x = 32(1−x)

⇒ x = 2(1 − x) ⇒ x = 2
3

13.
1

2x
= 5

8x+3

−x ln 2 = ln 5− (x + 3) ln 8

= ln 5− (3x + 9) ln 2

2x ln 2 = ln 5− 9 ln 2

x = ln 5− 9 ln 2

2 ln 2

14. 2x2−3 = 4x = 22x ⇒ x2 − 3 = 2x

x2 − 2x − 3 = 0⇒ (x − 3)(x + 1) = 0

Hence, x = −1 or 3.

15. ln(x/(2 − x)) is defined if x/(2− x) > 0, that is, if
0 < x < 2. The domain is the interval (0, 2).

16. ln(x2 − x − 2) = ln[(x − 2)(x + 1)] is defined if
(x − 2)(x + 1) > 0, that is, if x < −1 or x > 2. The
domain is the union (−∞,−1) ∪ (2,∞).

17. ln(2x − 5) > ln(7 − 2x) holds if 2x − 5 > 0, 7 − 2x > 0,
and 2x − 5 > 7 − 2x , that is, if x > 5/2, x < 7/2, and
4x > 12 (i.e., x > 3). The solution set is the interval
(3, 7/2).
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18. ln(x2 − 2) ≤ ln x holds if x2 > 2, x > 0, and x2 − 2 ≤ x .
Thus we need x >

√
2 and x2 − x − 2 ≤ 0. This latter

inequality says that (x − 2)(x + 1) ≤ 0, so it holds for
−1 ≤ x ≤ 2. The solution set of the given inequality is
(
√

2, 2].

19. y = e5x , y ′ = 5e5x

20. y = xex − x, y ′ = ex + xex − 1

21. y = x

e2x
= xe−2x

y ′ = e−2x − 2xe−2x

= (1 − 2x)e−2x

22. y = x2 ex/2, y ′ = 2xex/2 + 1
2 x2 ex/2

23. y = ln(3x − 2) y ′ = 3

3x − 2

24. y = ln |3x − 2|, y ′ = 3

3x − 2

25. y = ln(1 + ex ) y ′ = ex

1 + ex

26. f (x) = ex2
, f ′(x) = (2x)ex2

27. y = ex + e−x

2
, y ′ = ex − e−x

2

28. x = e3t ln t,
dx

dt
= 3e3t ln t + 1

t
e3t

29. y = e(e
x ), y ′ = exe(e

x ) = ex+ex

30. y = ex

1+ ex
= 1− 1

1+ ex
, y ′ = ex

(1 + ex)2

31. y = ex sin x, y ′ = ex(sin x + cos x)

32. y = e−x cos x, y ′ = −e−x cos x − e−x sin x

33. y = ln ln x y ′ = 1

x ln x

34. y = x ln x − x

y ′ = ln x + x

(
1

x

)

− 1 = ln x

35. y = x2 ln x − x2

2

y ′ = 2x ln x + x2

x
− 2x

2
= 2x ln x

36. y = ln | sin x |, y ′ = cos x

sin x
= cot x

37. y = 52x+1

y ′ = 2(52x+1) ln 5 = (2 ln 5)52x+1

38. y = 2(x
2−3x+8), y ′ = (2x − 3)(ln 2)2(x

2−3x+8)

39. g(x) = t x x t , g′(x) = t x x t ln t + t x+1xt−1

40. h(t) = t x − xt , h ′(t) = xt x−1 − xt ln x

41. f (s) = loga(bs + c) = ln(bs + c)

ln a

f ′(s) = b

(bs + c) ln a

42. g(x) = logx(2x + 3) = ln(2x + 3)

ln x

g′(x) =
ln x

(
2

2x + 3

)

− [ln(2x + 3)]

(
1

x

)

(ln x)2

= 2x ln x − (2x + 3) ln(2x + 3)

x(2x + 3)(ln x)2

43. y = x
√

x = e
√

x ln x

y ′ = e
√

x ln x
(

ln x

2
√

x
+
√

x

x

)

= x
√

x
(

1√
x

(
1

2
ln x + 1

))

44. Given that y =
(

1

x

)ln x

, let u = ln x . Then x = eu and

y =
(

1

eu

)u

= (e−u)u = e−u2
. Hence,

dy

dx
= dy

du
· du

dx
= (−2ue−u2

)

(
1

x

)

= −2 ln x

x

(
1

x

)ln x

.

45. y = ln | sec x + tan x |
y ′ = sec x tan x + sec2 x

sec x + tan x
= sec x

46. y = ln |x +
√

x2 − a2|

y ′ =
1+ 2x

2
√

x2 − a2

x +√x2 − a2
= 1√

x2 − a2

47. y = ln(
√

x2 + a2 − x)

y ′ =
x√

x2 + a2
− 1

√
x2 + a2 − x

= − 1√
x2 + a2

48. y = (cos x)x − xcos x = ex ln cos x − e(cos x)(ln x)

y ′ = ex ln cos x
[

ln cos x + x

(
1

cos x

)

(− sin x)

]

− e(cos x)(ln x)
[

− sin x ln x + 1

x
cos x

]

= (cos x)x (ln cos x − x tan x)

− xcos x
(

− sin x ln x + 1

x
cos x

)
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49. f (x) = xeax

f ′(x) = eax(1 + ax)

f ′′(x) = eax(2a + a2x)

f ′′′(x) = eax(3a2 + a3x)

...

f (n)(x) = eax(nan−1 + anx)

50. Since

d

dx
(ax2 + bx + c)ex = (2ax + b)ex + (ax2 + bx + c)ex

= [ax2 + (2a + b)x + (b + c)]ex

= [Ax2 + Bx + C]ex .

Thus, differentiating (ax2 + bx + c)ex produces another
function of the same type with different constants. Any
number of differentiations will do likewise.

51. y = ex2

y ′ = 2xex2

y ′′ = 2ex2 + 4x2ex2 = 2(1 + 2x2)ex2

y ′′′ = 2(4x)ex2 + 2(1 + 2x2)2xex2 = 4(3x + 2x3)ex2

y(4) = 4(3 + 6x2)ex2 + 4(3x + 2x3)2xex2

= 4(3 + 12x2 + 4x4)ex2

52. f (x) = ln(2x + 1)

f ′′(x) = (−1)22(2x + 1)−2

f (4)(x) = −(3!)24(2x + 1)−4

f ′(x) = 2(2x + 1)−1

f ′′′(x) = (2)23(2x + 1)−3

Thus, if n = 1, 2, 3, . . . we have
f (n)(x) = (−1)n−1(n − 1)!2n (2x + 1)−n .

53. a) f (x) = (x x )x = x (x
2)

ln f (x) = x2 ln x
1

f
f ′ = 2x ln x + x

f ′ = x x2+1(2 ln x + 1)

b) g(x) = xxx

ln g = xx ln x
1

g′
g′ = x x(1 + ln x) ln x + x x

x

g′ = x xx
x x
(

1

x
+ ln x + (ln x)2

)

Evidently g grows more rapidly than does f as x grows
large.

54. Given that x xx .
..

= a where a > 0, then

ln a = xxx .
..

ln x = a ln x .

Thus ln x = 1

a
ln a = ln a1/a , so x = a1/a .

55. f (x) = (x − 1)(x − 2)(x − 3)(x − 4)

ln f (x) = ln(x − 1)+ ln(x − 2)+ ln(x − 3)+ ln(x − 4)
1

f (x)
f ′(x) = 1

x − 1
+ 1

x − 2
+ 1

x − 3
+ 1

x − 4

f ′(x) = f (x)

(
1

x − 1
+ 1

x − 2
+ 1

x − 3
+ 1

x − 4

)

56. F(x) =
√

1+ x(1 − x)1/3

(1+ 5x)4/5

ln F(x) = 1
2 ln(1 + x)+ 1

3 ln(1− x)− 4
5 ln(1+ 5x)

F ′(x)
F(x)

= 1

2(1 + x)
− 1

3(1 − x)
− 4

(1 + 5x)

F ′(0) = F(0)

[
1

2
− 1

3
− 4

1

]

= (1)
[

1

2
− 1

3
− 4

]

= −23

6

57. f (x) = (x2 − 1)(x2 − 2)(x2 − 3)

(x2 + 1)(x2 + 2)(x2 + 3)

f (2) = 3× 2× 1

5× 6× 7
= 1

35
, f (1) = 0

ln f (x) = ln(x2 − 1)+ ln(x2 − 2)+ ln(x2 − 3)

− ln(x2 + 1)− ln(x2 + 2)− ln(x2 + 3)
1

f (x)
f ′(x) = 2x

x2 − 1
+ 2x

x2 − 2
+ 2x

x2 − 3

− 2x

x2 + 1
− 2x

x2 + 2
− 2x

x2 + 3

f ′(x) = 2x f (x)

(
1

x2 − 1
+ 1

x2 − 2
+ 1

x2 − 3

− 1

x2 + 1
− 1

x2 + 2
− 1

x2 + 3

)

f ′(2) = 4

35

(
1

3
+ 1

2
+ 1

1
− 1

5
− 1

6
− 1

7

)

= 4

35
× 139

105
= 556

3675
Since f (x) = (x2 − 1)g(x) where g(1) �= 0, then
f ′(x) = 2xg(x) + (x2 − 1)g′(x) and

f ′(1) = 2g(1)+ 0 = 2× (−1)(−2)

2× 3 × 4
= 1

6
.

58. Since y = x2e−x2
, then

y ′ = 2xe−x2 − 2x3e−x2 = 2x(1− x)(1 + x)e−x2
.

The tangent is horizontal at (0, 0) and

(

±1,
1

e

)

.

59. f (x) = xe−x

f ′(x) = e−x (1 − x), C.P. x = 1, f (1) = 1

e
f ′(x) > 0 if x < 1 ( f increasing)
f ′(x) < 0 if x > 1 ( f decreasing)
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y

x

(1,1/e) y = x e−x

Fig. 3.3.59

60. Since y = ln x and y ′ = 1

x
= 4 then x = 1

4 and

y = ln 1
4 = − ln 4. The tangent line of slope 4 is

y = − ln 4+ 4(x − 1
4 ), i.e., y = 4x − 1− ln 4.

61. Let the point of tangency be (a, ea).
Tangent line has slope

ea − 0

a − 0
= d

dx
ex
∣
∣
∣
∣
x=a
= ea.

Therefore, a = 1 and line has slope e.
The line has equation y = ex .

y

x

(a,ea)

y = ex

Fig. 3.3.61

62. The slope of y = ln x at x = a is y ′ = 1

x

∣
∣
∣
∣
x=a
= 1

a
. The

line from (0, 0) to (a, ln a) is tangent to y = ln x if

ln a − 0

a − 0
= 1

a

i.e., if ln a = 1, or a = e. Thus, the line is y = x

e
.

y

x

(a, ln a)

y = ln x

Fig. 3.3.62

63. Let the point of tangency be (a, 2a). Slope of the tangent
is

2a − 0

a − 1
= d

dx
2x

∣
∣
∣
∣
x=a
= 2a ln 2.

Thus a − 1 = 1

ln 2
, a = 1+ 1

ln 2
.

So the slope is 2a ln 2 = 21+(1/ ln 2) ln 2 = 2e ln 2.

(Note: ln 21/ ln 2 = 1

ln 2
ln 2 = 1⇒ 21/ ln 2 = e)

The tangent line has equation y = 2e ln 2(x − 1).

64. The tangent line to y = ax which passes through the
origin is tangent at the point (b, ab) where

ab − 0

b − 0
= d

dx
ax
∣
∣
∣
∣
x=b
= ab ln a.

Thus
1

b
= ln a, so ab = a1/ ln a = e. The line y = x will

intersect y = ax provided the slope of this tangent line

does not exceed 1, i.e., provided
e

b
≤ 1, or e ln a ≤ 1.

Thus we need a ≤ e1/e.
y

x

(b, ab)

y = ax

Fig. 3.3.64

65. exy ln
x

y
= x + 1

y

exy(y + xy ′) ln
x

y
+ exy y

x

(
y − xy ′

y2

)

= 1 − 1

y2
y ′

At

(

e,
1

e

)

we have

e

(
1

e
+ ey ′

)

2+ e
1

e2
(e − e3y ′) = 1− e2y ′

2+ 2e2y ′ + 1− e2y ′ = 1− e2y ′.
Thus the slope is y ′ = − 1

e2 .

66. xey + y − 2x = ln 2⇒ ey + xey y ′ + y ′ − 2 = 0.
At (1, ln 2), 2+ 2y′ + y ′ − 2 = 0⇒ y ′ = 0.
Therefore, the tangent line is y = ln 2.
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67. f (x) = Ax cos ln x + Bx sin ln x

f ′(x) = A cos ln x − A sin ln x + B sin ln x + B cos ln x

= (A + B) cos ln x + (B − A) sin ln x

If A = B = 1

2
then f ′(x) = cos ln x .

Therefore
∫

cos ln x dx = 1

2
x cos ln x + 1

2
x sin ln x + C .

If B = 1

2
, A = −1

2
then f ′(x) = sin ln x .

Therefore
∫

sin ln x dx = 1

2
x sin ln x − 1

2
x cos ln x + C .

68. FA,B (x) = Aex cos x + Bex sin x
d

dx
FA,B (x)

= Aex cos x − Aex sin x + Bex sin x + Bex cos x

= (A + B)ex cos x + (B − A)ex sin x = FA+B,B−A(x)

69. Since
d

dx
FA,B (x) = FA+B,B−A(x) we have

a)
d2

dx2 FA,B (x) = d

dx
FA+B,B−A(x) = F2B,−2A(x)

b)
d3

dx3 ex cos x = d3

dx3 F1,0(x) = d

dx
F0,−2(x)

= F−2,−2(x) = −2ex cos x − 2ex sin x

70.
d

dx
(Aeax cos bx + Beax sin bx)

= Aaeax cos bx − Abeax sin bx + Baeax sin bx

+ Bbeax cos bx

= (Aa + Bb)eax cos bx + (Ba − Ab)eax sin bx .

(a) If Aa+ Bb = 1 and Ba− Ab = 0, then A = a

a2 + b2

and B = b

a2 + b2 . Thus

∫

eax cos bx dx

= 1

a2 + b2

(

aeax cos bx + beax sin bx
)

+ C.

(b) If Aa+ Bb = 0 and Ba− Ab = 1, then A = −b

a2 + b2

and B = a

a2 + b2 . Thus

∫

eax sin bx dx

= 1

a2 + b2

(

aeax sin bx − beax cos bx
)

+ C.

71.
d

dx

[

ln
1

x
+ ln x

]

= 1

1/x

(−1

x2

)

+ 1

x
= − 1

x
+ 1

x
= 0.

Therefore ln
1

x
+ ln x = C (constant). Taking x = 1, we

get C = ln 1 + ln 1 = 0. Thus ln
1

x
= − ln x .

72. ln
x

y
= ln

(

x
1

y

)

= ln x + ln
1

y
= ln x − ln y.

73.
d

dx
[ln(xr )− r ln x] = r xr−1

xr
− r

x
= r

x
− r

x
= 0.

Therefore ln(xr ) − r ln x = C (constant). Taking
x = 1, we get C = ln 1 − r ln 1 = 0 − 0 = 0. Thus
ln(xr ) = r ln x .

74. Let x > 0, and F(x) be the area bounded by y = t2, the
t-axis, t = 0 and t = x . For h > 0, F(x + h) − F(x) is
the shaded area in the following figure.

y

t

y = t2

x x + h

Fig. 3.3.74

Comparing this area with that of the two rectangles, we
see that

hx2 < F(x + h)− F(x) < h(x + h)2.

Hence, the Newton quotient for F(x) satisfies

x2 <
F(x + h)− F(x)

h
< (x + h)2.

Letting h approach 0 from the right (by the Squeeze The-
orem applied to one-sided limits)

lim
h→0+

F(x + h)− F(x)

h
= x2.

If h < 0 and 0 < x + h < x , then

(x + h)2 <
F(x + h)− F(x)

h
< x2,

so similarly,

lim
h→0−

F(x + h)− F(x)

h
= x2.

Combining these two limits, we obtain

d

dx
F(x) = lim

h→0

F(x + h)− F(x)

h
= x2.
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Therefore F(x) =
∫

x2 dx = 1
3 x3 + C . Since

F(0) = C = 0, therefore F(x) = 1
3 x3. For x = 2,

the area of the region is F(2) = 8
3 square units.

75. a) The shaded area A in part (i) of the figure is less
than the area of the rectangle (actually a square)
with base from t = 1 to t = 2 and height 1/1 = 1.
Since ln 2 = A < 1, we have 2 < e1 = e; i.e., e > 2.

y

t

y=1/t

A

1 2

y

t1 2 3

A1
A2

y=1/t

(i) (ii)

Fig. 3.3.75

b) If f (t) = 1/t , then f ′(t) = −1/t2 and
f ′′(t) = 2/t3 > 0 for t > 0. Thus f ′(t) is an
increasing function of t for t > 0, and so the graph
of f (t) bends upward away from any of its tangent
lines. (This kind of argument will be explored fur-
ther in Chapter 5.)

c) The tangent to y = 1/t at t = 2 has slope −1/4. Its
equation is

y = 1

2
− 1

4
(x − 2) or y = 1− x

4
.

The tangent to y = 1/t at t = 3 has slope −1/9. Its
equation is

y = 1

3
− 1

9
(x − 3) or y = 2

3
− x

9
.

d) The trapezoid bounded by x = 1, x = 2, y = 0, and
y = 1− (x/4) has area

A1 = 1

2

(
3

4
+ 1

2

)

= 5

8
.

The trapezoid bounded by x = 2, x = 3, y = 0, and
y = (2/3)− (x/9) has area

A2 = 1

2

(
4

9
+ 1

3

)

= 7

18
.

e) ln 3 > A1 + A2 = 5

8
+ 7

18
= 73

72
> 1.

Thus 3 > e1 = e. Combining this with the result of
(a) we conclude that 2 < e < 3.

Section 3.4 Growth and Decay (page 187)

1. lim
x→∞ x3e−x = lim

x→∞
x3

ex
= 0 (exponential wins)

2. lim
x→∞ x−3ex = lim

x→∞
ex

x3
= ∞

3. lim
x→∞

2ex − 3

ex + 5
= lim

x→∞
2− 3e−x

1+ 5e−x
= 2− 0

1+ 0
= 2

4. lim
x→∞

x − 2e−x

x + 3e−x
= lim

x→∞
1− 2/(xex )

1+ 3/(xex )
= 1 − 0

1 + 0
= 1

5. lim
x→0+ x ln x = 0 (power wins)

6. lim
x→0+

ln x

x
= −∞

7. lim
x→0

x(ln |x |)2 = 0

8. lim
x→∞

(ln x)3√
x
= 0 (power wins)

9. Let N(t) be the number of bacteria present after t hours.
Then N(0) = 100, N(1) = 200.

Since
d N

dt
= kN we have N(t) = N(0)ekt = 100ekt .

Thus 200 = 100ek and k = ln 2.

Finally, N

(
5

2

)

= 100e(5/2) ln 2 ≈ 565.685.

There will be approximately 566 bacteria present after
another 11

2 hours.

10. Let y(t) be the number of kg undissolved after t hours.
Thus, y(0) = 50 and y(5) = 20. Since y′(t) = ky(t),
therefore y(t) = y(0)ekt = 50ekt . Then

20 = y(5) = 50e5k ⇒ k = 1
5 ln 2

5 .

If 90% of the sugar is dissolved at time T then
5 = y(T ) = 50ekT , so

T = 1

k
ln

1

10
= 5 ln(0.1)

ln(0.4)
≈ 12.56.

Hence, 90% of the sugar will dissolved in about 12.56
hours.

11. Let P(t) be the percentage undecayed after t years.
Thus P(0) = 100, P(15) = 70.

Since
d P

dt
= kP, we have P(t) = P(0)ekt = 100ekt .

Thus 70 = P(15) = 100e15k so k = 1

15
ln(0.7).

The half-life T satisfies if 50 = P(T ) = 100ekT , so

T = 1

k
ln(0.5) = 15 ln(0.5)

ln(0.7)
≈ 29.15.

The half-life is about 29.15 years.
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12. Let P(t) be the percentage remaining after t years. Thus
P ′(t) = kP(t) and P(t) = P(0)ekt = 100ekt . Then,

50 = P(1690) = 100e1690k ⇒ k = 1

1690
ln

1

2
≈ 0.0004101.

a) P(100) = 100e100k ≈ 95.98, i.e., about 95.98%
remains after 100 years.

b) P(1000) = 100e1000k ≈ 66.36, i.e., about 66.36%
remains after 1000 years.

13. Let P(t) be the percentage of the initial amount remain-
ing after t years.
Then P(t) = 100ekt and 99.57 = P(1) = 100ek .
Thus k = ln(0.9957).
The half-life T satisfies 50 = P(T ) = 100ekT ,

so T = 1

k
ln(0.5) = ln(0.5)

ln(0.995)
≈ 160.85.

The half-life is about 160.85 years.

14. Let N(t) be the number of bacteria in the culture t days
after the culture was set up. Thus N(3) = 3N(0) and
N(7) = 10 × 106. Since N(t) = N(0)ekt , we have

3N(0) = N(3) = N(0)e3k ⇒ k = 1
3 ln 3.

107 = N(7) = N(0)e7k ⇒ N(0) = 107e−(7/3) ln 3 ≈ 770400.

There were approximately 770,000 bacteria in the cul-
ture initially. (Note that we are approximating a discrete
quantity (number of bacteria) by a continuous quantity
N(t) in this exercise.)

15. Let W (t) be the weight t days after birth.
Thus W (0) = 4000 and W (t) = 4000ekt .

Also 4400 = W (14) = 4000e14k , is k = 1

14
ln(1.1).

Five days after birth, the baby weighs
W (5) = 4000e(5/14) ln(1.1) ≈ 4138.50 ≈ 4139 grams.

16. Since

I ′(t) = kI (t)⇒ I (t) = I (0)ekt = 40ekt ,

15 = I (0.01) = 40e0.01k ⇒ k = 1

0.01
ln

15

40
= 100 ln

3

8
,

thus,

I (t) = 40 exp

(

100t ln
3

8

)

= 40

(
3

8

)100t

.

17. $P invested at 4% compounded continuously grows to
$P(e0.04)7 = $Pe0.28 in 7 years. This will be $10,000 if
$P = $10, 000e−0.28 = $7, 557.84.

18. Let y(t) be the value of the investment after t years.
Thus y(0) = 1000 and y(5) = 1500. Since
y(t) = 1000ekt and 1500 = y(5) = 1000e5k , therefore,
k = 1

5 ln 3
2 .

a) Let t be the time such that y(t) = 2000, i.e.,

1000ekt = 2000

⇒ t = 1

k
ln 2 = 5 ln 2

ln( 3
2 )
= 8.55.

Hence, the doubling time for the investment is about
8.55 years.

b) Let r% be the effective annual rate of interest; then

1000(1 + r

100
) = y(1) = 1000ek

⇒r = 100(ek − 1) = 100[exp (1
5 ln 3

2 )− 1]

= 8.447.

The effective annual rate of interest is about 8.45%.

19. Let the purchasing power of the dollar be P(t) cents af-
ter t years.
Then P(0) = 100 and P(t) = 100ekt .
Now 91 = P(1) = 100ek so k = ln(0.91).
If 25 = P(t) = 100kt then

t = 1

k
ln(0.25) = ln(0.25)

ln(0.91)
≈ 14.7.

The purchasing power will decrease to $0.25 in about
14.7 years.

20. Let i% be the effective rate, then an original investment

of $A will grow to $A

(

1 + i

100

)

in one year. Let r%

be the nominal rate per annum compounded n times per
year, then an original investment of $A will grow to

$A

(

1+ r

100n

)n

in one year, if compounding is performed n times per
year. For i = 9.5 and n = 12, we have

$A

(

1+ 9.5

100

)

= $A

(

1+ r

1200

)12

⇒r = 1200
(

12
√

1.095− 1
)

= 9.1098.

The nominal rate of interest is about 9.1098%.

21. Let x(t) be the number of rabbits on the island t years
after they were introduced. Thus x(0) = 1,000,
x(3) = 3,500, and x(7) = 3,000. For t < 5 we have
dx/dt = k1x , so

x(t) = x(0)ek1 t = 1,000ek1 t

x(2) = 1,000e2k1 = 3,500 �⇒ e2k1 = 3.5

x(5) = 1,000e5k1 = 1,000
(

e2k1
)5/2 = 1,000(3.5)5/2

≈ 22,918.
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For t > 5 we have dx/dt = k2x , so that

x(t) = x(5)ek2(t−5)

x(7) = x(5)e2k2 = 3,000 �⇒ e2k2 ≈ 3,000

22,918

x(10) = x(5)35k2 = x(5)
(

e2k2
)5/2 ≈ 22,918

(
3,000

22,918

)5/2

≈ 142.

so there are approximately 142 rabbits left after 10 years.

22. Let N(t) be the number of rats on the island t months
after the initial population was released and before the
first cull. Thus N(0) = R and N(3) = 2R. Since
N(t) = Rekt , we have e3k = 2, so ek = 21/3. Hence
N(5) = Re5k = 25/3 R. After the first 1,000 rats
are killed the number remaining is 25/3 R − 1,000. If
this number is less than R, the number at the end of
succeeding 5-year periods will decline. The minimum
value of R for which this won’t happen must satisfy
25/3 R−1,000 = R, that is, R = 1,000/(25/3−1) ≈ 459.8.
Thus R = 460 rats should be brought to the island ini-
tially.

23. f ′(x) = a + b f (x).

a) If u(x) = a + b f (x), then
u′(x) = b f ′(x) = b[a + b f (x)] = bu(x).
This equation for u is the equation of exponential
growth/decay. Thus

u(x) = C1ebx ,

f (x) = 1

b

(

C1ebx − a
)

= Cebx − a

b
.

b) If
dy

dx
= a + by and y(0) = y0, then, from part (a),

y = Cebx − a

b
, y0 = Ce0 − a

b
.

Thus C = y0 + (a/b), and

y =
(

y0 + a

b

)

ebx − a

b
.

24. a) The concentration x(t) satisfies
dx

dt
= a − bx(t).

This says that x(t) is increasing if it is less than a/b
and decreasing if it is greater than a/b. Thus, the
limiting concentration is a/b.

b) The differential equation for x(t) resembles that of
Exercise 21(b), except that y(x) is replaced by x(t),
and b is replaced by −b. Using the result of Exer-
cise 21(b), we obtain, since x(0) = 0,

x(t) =
(

x(0)− a

b

)

e−bt + a

b

= a

b

(

1− e−bt
)

.

c) We will have x(t) = 1
2 (a/b) if 1 − e−bt = 1

2 , that is,
if e−bt = 1

2 , or −bt = ln(1/2) = − ln 2. The time
required to attain half the limiting concentration is
t = (ln 2)/b.

25. Let T (t) be the reading t minutes after the Thermometer
is moved outdoors. Thus T (0) = 72, T (1) = 48.

By Newton’s law of cooling,
dT

dt
= k(T − 20).

If V (t) = T (t)− 20, then
dV

dt
= kV , so

V (t) = V (0)ekt = 52ekt .
Also 28 = V (1) = 52ek , so k = ln(7/13).
Thus V (5) = 52e5 ln(7/13) ≈ 2.354. At t = 5 the ther-
mometer reads about T (5) = 20 + 2.354 = 22.35◦C.

26. Let T (t) be the temperature of the object t minutes after
its temperature was 45◦ C. Thus T (0) = 45 and

T (40) = 20. Also
dT

dt
= k(T + 5). Let

u(t) = T (t) + 5, so u(0) = 50, u(40) = 25, and
du

dt
= dT

dt
= k(T + 5) = ku. Thus,

u(t) = 50ekt ,

25 = u(40) = 50e40k ,

⇒k = 1

40
ln

25

50
= 1

40
ln

1

2
.

We wish to know t such that T (t) = 0, i.e., u(t) = 5,
hence

5 = u(t) = 50ekt

t =
40 ln

(
5

50

)

ln

(
1

2

) = 132.88 min.

Hence, it will take about (132.88 − 40) = 92.88 minutes
more to cool to 0◦ C.

93



SECTION 3.4 (PAGE 187) R. A. ADAMS: CALCULUS

27. Let T (t) be the temperature of the body t minutes after it
was 5◦.
Thus T (0) = 5, T (4) = 10. Room temperature = 20◦.
By Newton’s law of cooling (warming)

dT

dt
= k(T − 20).

If V (t) = T (t)− 20 then
dV

dt
= kV ,

so V (t) = V (0)ekt = −15ekt .

Also −10 = V (4) = −15e4k , so k = 1

4
ln

(
2

3

)

.

If T (t) = 15◦, then −5 = V (t) = −15ekt

so t = 1

k
ln

(
1

3

)

= 4
ln

(
1

3

)

ln

(
2

3

) ≈ 10.838.

It will take a further 6.84 minutes to warm to 15◦C.

28. By the solution given for the logistic equation, we have

y1 = Ly0

y0 + (L − y0)e−k
, y2 = Ly0

y0 + (L − y0)e−2k

Thus y1(L − y0)e−k = (L − y1)y0, and
y2(L − y0)e−2k = (L − y2)y0.
Square the first equation and thus eliminate e−k :

(
(L − y1)y0

y1(L − y0)

)2

= (L − y2)y0

y2(L − y0)

Now simplify: y0y2(L − y1)
2 = y2

1(L − y0)(L − y2)

y0y2L2−2y1y0y2L+y0y2
1 y2 = y2

1 L2−y2
1(y0+y2)L+y0y2

1 y2

Assuming L �= 0, L = y2
1(y0 + y2)− 2y0y1y2

y2
1 − y0y2

.

If y0 = 3, y1 = 5, y2 = 6, then

L = 25(9)− 180

25 − 18
= 45

7
≈ 6.429.

29. The rate of growth of y in the logistic equation is

dy

dt
= ky

(

1− y

L

)

.

Since
dy

dt
= − k

L

(

y − L

2

)2

+ kL

4
,

thus
dy

dt
is greatest when y = L

2
.

30. The solution y = Ly0

y0 + (L − y0)e−kt
is valid on the

largest interval containing t = 0 on which the denomina-
tor does not vanish.
If y0 > L then y0 + (L − y0)e−kt = 0 if

t = t∗ = −1

k
ln

y0

y0 − L
.

Then the solution is valid on (t∗,∞).
limt→t∗+ y(t) = ∞.

31. The solution

y = Ly0

y0 + (L − y0)e−kt

of the logistic equation is valid on any interval containing
t = 0 and not containing any point where the denomina-
tor is zero. The denominator is zero if y0 = (y0− L)e−kt ,
that is, if

t = t∗ = −1

k
ln

(
y0

y0 − L

)

.

Assuming k and L are positive, but y0 is negative, we
have t∗ > 0. The solution is therefore valid on (−∞, t∗).
The solution approaches −∞ as t → t∗−.

32. y(t) = L

1 + Me−kt

200 = y(0) = L

1 + M

1, 000 = y(1) = L

1 + Me−k

10, 000 = lim
t→∞ y(t) = L

Thus 200(1 + M) = L = 10, 000, so M = 49. Also
1, 000(1 + 49e−k) = L = 10, 000, so e−k = 9/49 and
k = ln(49/9) ≈ 1.695.

33. y(3) = L

1 + Me−3k
= 10, 000

1+ 49(9/49)3
≈ 7671 cases

y ′(3) = LkMe−3k

(1 + Me−3k)2
≈ 3, 028 cases/week.

Section 3.5 The Inverse Trigonometric
Functions (page 195)

1. sin−1

√
3

2
= π

3

2. cos−1
(

−1

2

)

= 2π

3

3. tan−1(−1) = −π
4

4. sec−1
√

2 = π

4

5. sin(sin−1 0.7) = 0.7

6. cos(sin−1 0.7) =
√

1− sin2( arcsin 0.7)

= √1− 0.49 = √0.51

7. tan−1
(

tan
2π

3

)

= tan−1(−√3) = −π
3

8. sin−1 (cos 40◦) = 90◦ − cos−1 (cos 40◦) = 50◦

9. cos−1
(

sin(−0.2)
)

= π

2
− sin−1

(

sin(−0.2)
)

= π

2
+ 0.2
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10. sin
(

cos−1(− 1
3 )
)

=
√

1 − cos2( arccos (− 1
3 )

=
√

1 − 1
9 =
√

8

3
= 2
√

2

3

11. cos

(

tan−1 1

2

)

= 1

sec

(

tan−1 1

2

)

= 1
√

1 + tan2

(

tan−1 1

2

)
= 2√

5

12. tan(tan−1 200) = 200

13. sin(cos−1 x) =
√

1− cos2(cos−1 x)

=
√

1− x2

14. cos(sin−1 x) =
√

1− sin2
(

sin−1 x
) =

√

1− x2

15. cos(tan−1 x) = 1

sec(tan−1 x)
= 1√

1+ x2

16. tan( arctan x) = x ⇒ sec( arctan x) =
√

1 + x2

⇒ cos( arctan x) = 1√
1+ x2

⇒ sin( arctan x) = x√
1+ x2

17. tan(cos−1 x) = sin(cos−1 x)

cos(cos−1 x

=
√

1 − x2

x
(by # 13)

18. cos(sec−1x) = 1

x
⇒ sin(sec−1x) =

√

1 − 1

x2 =
√

x2 − 1

|x |
⇒ tan(sec−1x) =

√

x2 − 1 sgn x

=
{√

x2 − 1 if x ≥ 1
−√x2 − 1 if x ≤ −1

19. y = sin−1
(

2x − 1

3

)

y ′ = 1
√

1−
(

2x − 1

3

)2

2

3

= 2
√

9− (4x2 − 4x + 1)

= 1√
2+ x − x2

20. y = tan−1 (ax + b), y ′ = a

1+ (ax + b)2
.

21. y = cos−1 x − b

a

y ′ = − 1
√

1− (x − b)2

a2

1

a

= −1
√

a2 − (x − b)2
(assuming) a > 0).

22. f (x) = x sin−1 x

f ′(x) = sin−1 x + x√
1− x2

.

23. f (t) = t tan−1 t

f ′(t) = tan−1 t + t

1+ t2

24. u = z2 sec−1 (1 + z2)

du

dz
= 2z sec−1 (1 + z2)+ z2(2z)

(1 + z2)
√

(1 + z2)2 − 1

= 2z sec−1 (1 + z2)+ 2z2sgn (z)

(1 + z2)
√

z2 + 2

25. F(x) = (1 + x2) tan−1 x

F ′(x) = 2x tan−1 x + 1

26. y = sin−1
(a

x

)

(|x | > |a|)

y ′ = 1
√

1−
(a

x

)2

[

− a

x2

]

= − a

|x |√x2 − a2

27. G(x) = sin−1 x

sin−1(2x)

G ′(x) =
sin−1(2x)

1√
1− x2

− sin−1 x
2√

1− 4x2
(

sin−1(2x)
)2

=
√

1 − 4x2 sin−1(2x)− 2
√

1− x2 sin−1 x
√

1− x2
√

1− 4x2
(

sin−1(2x)
)2

28. H(t) = sin−1 t

sin t

H ′(t) =
sin t

(
1√

1− t2

)

− sin−1 t cos t

sin2 t

= 1

(sin t)
√

1 − t2
− csc t cot t sin−1 t

29. f (x) = (sin−1 x2)1/2

f ′(x) = 1

2
(sin−1 x2)−1/2 2x√

1− x4

= x√
1− x4

√
sin−1 x2
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30. y = cos−1
(

a√
a2 + x2

)

y ′ = −
(

1 − a2

a2 + x2

)−1/2[

−a

2
(a2 + x2)−3/2(2x)

]

= asgn (x)

a2 + x2

31. y =
√

a2 − x2 + a sin−1 x

a

y ′ = − x√
a2 − x2

+ a
√

1− x2

a2

1

a

= a − x√
a2 − x2

=
√

a − x

a + x
(a > 0)

32. y = a cos−1
(

1 − x

a

)

−
√

2ax − x2 (a > 0)

y ′ = −a

[

1−
(

1 − x

a

)2]−1/2 (

− 1

a

)

− 2a − 2x

2
√

2ax − x2

= x√
2ax − x2

33. tan−1
(

2x

y

)

= πx

y2

1

1+ 4x2

y2

2y − 2xy ′

y2
= π y2 − 2xyy ′

y4

At (1, 2)
1

2

4− 2y′

4
= π 4− 4y′

16

8− 4y′ = 4π − 4πy ′ ⇒ y ′ = π − 2

π − 1

At (1, 2) the slope is
π − 2

π − 1

34. If y = sin−1 x , then y′ = 1√
1− x2

. If the slope is 2

then
1√

1− x2
= 2 so that x = ±

√
3

2
. Thus the equations

of the two tangent lines are

y = π

3
+ 2

(

x −
√

3

2

)

and y = −π
3
+ 2

(

x +
√

3

2

)

.

35.
d

dx
sin−1 x = 1√

1− x2
> 0 on (−1, 1).

Therefore, sin−1 is increasing.
d

dx
tan−1 x = 1

1+ x2 > 0 on (−∞,∞).
Therefore tan−1 is increasing.
d

dx
cos−1 x = − 1√

1 − x2
< 0 on (−1, 1).

Therefore cos−1 is decreasing.

36. Since the domain of sec−1 consists of two disjoint inter-
vals (−∞,−1] and [1,∞), the fact that the derivative of
sec−1 is positive wherever defined does not imply that
sec−1 is increasing over its whole domain, only that it is
increasing on each of those intervals taken independently.
In fact, sec−1 (−1) = π > 0 = sec−1 (1) even though
−1 < 1.

37.
d

dx
csc−1 x = d

dx
sin−1 1

x

= 1
√

1− 1

x2

(

− 1

x2

)

= − 1

|x |√x2 − 1
y

x

(1,π/2)

(−1,−π/2)

y = csc−1 x

Fig. 3.5.37

38. cot−1 x = arctan (1/x);
d

dx
cot−1 x = 1

1+ 1

x2

−1

x2 = −
1

1+ x2

y

x

−π/2

π/2

y = cot−1 x

Fig. 3.5.38

Remark: the domain of cot−1 can be extended to include
0 by defining, say, cot−1 0 = π/2. This will make cot−1

right-continuous (but not continuous) at x = 0. It is also
possible to define cot−1 in such a way that it is contin-
uous on the whole real line, but we would then lose the
identity cot−1 x = tan−1(1/x), which we prefer to main-
tain for calculation purposes.
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39.
d

dx
(tan−1 x + cot−1 x) = d

dx

(

tan−1 x + tan−1 1

x

)

= 1

1+ x2 +
1

1+ 1

x2

(

− 1

x2

)

= 0 if x �= 0

Thus tan−1 x + cot−1 x = C1 (const. for x > 0)

At x = 1 we have
π

4
+ π

4
= C1

Thus tan−1 x + cot−1 x = π

2
for x > 0.

Also tan−1 x + cot−1 x = C2 for (x < 0).

At x = −1, we get −π
4
− π

4
= C2.

Thus tan−1 x + cot−1 x = −π
2

for x < 0.

40. If g(x) = tan(tan−1 x) then

g′(x) = sec2 (tan−1 x)

1+ x2

= 1+ [tan(tan−1 x)]2

1 + x2
= 1 + x2

1 + x2
= 1.

If h(x) = tan−1 (tan x) then h is periodic with period π ,
and

h ′(x) = sec2 x

1+ tan2 x
= 1

provided that x �= (k+ 1
2 )π where k is an integer. h(x) is

not defined at odd multiples of
π

2
.

y

x

y=tan(tan−1 x)

y

x

(π/2,π/2)

π−π

y=tan−1(tan x)

Fig. 3.5.40(a) Fig. 3.5.40(b)

41.
d

dx
cos−1(cos x) = −1√

1− cos2 x
(− sin x)

=
{ 1 if sin x > 0
−1 if sin x < 0

cos−1(cos x) is continuous everywhere and differen-
tiable everywhere except at x = nπ for integers n.

y

x

y = cos−1(cos x)

−π π

π

Fig. 3.5.41

42.
d

dx
sin−1(cos x) = 1√

1− cos2 x
(− sin x)

=
{−1 if sin x > 0

1 if sin x < 0

sin−1(cos x) is continuous everywhere and differen-
tiable everywhere except at x = nπ for integers n.

y

x

y = sin−1(cos x)
π/2

−π π

Fig. 3.5.42

43.
d

dx
tan−1(tan x) = 1

1+ tan2 x
(sec2 x) = 1 except at odd

multiples of π/2.

tan−1(tan x) is continuous and differentiable every-
where except at x = (2n + 1)π/2 for integers n. It is not
defined at those points.

y

x

y = tan−1(tan x)

π−π

π/2

Fig. 3.5.43

44.
d

dx
tan−1(cot x) = 1

1+ cot2 x
(− csc2 x) = −1 except at

integer multiples of π .

tan−1(cot x) is continuous and differentiable every-
where except at x = nπ for integers n. It is not defined
at those points.

y

x

y = tan−1(cot x)

π−π

π/2

Fig. 3.5.44
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45. If |x | < 1 and y = tan−1 x√
1− x2

, then y > 0 ⇔ x > 0

and

tan y = x√
1− x2

sec2 y = 1 + x2

1− x2 =
1

1− x2

sin2 y = 1 − cos2 y = 1− (1 − x2) = x2

sin y = x .

Thus y = sin−1 x and sin−1 x = tan−1 x√
1 − x2

.

An alternative method of proof involves showing that the
derivative of the left side minus the right side is 0, and
both sides are 0 at x = 0.

46. If x ≥ 1 and y = tan−1
√

x2 − 1, then tan y = √x2 − 1
and sec y = x , so that y = sec−1 x .
If x ≤ −1 and y = π − tan−1

√
x2 − 1, then π

2 < y < 3π
2 ,

so sec y < 0. Therefore

tan y = tan(π − tan−1
√

x2 − 1) = −
√

x2 − 1

sec2 y = 1+ (x2 − 1) = x2

sec y = x,

because both x and sec y are negative. Thus y = sec−1 x
in this case also.

47. If y = sin−1 x√
1+ x2

, then y > 0⇔ x > 0 and

sin y = x√
1+ x2

cos2 y = 1− sin2 y = 1− x2

1+ x2 =
1

1 + x2

tan2 y = sec2 y − 1 = 1+ x2 − 1 = x2

tan y = x .

Thus y = tan−1 x and tan−1 x = sin−1 x√
1+ x2

.

48. If x ≥ 1 and y = sin−1

√
x2 − 1

x
, then 0 ≤ y < π

2 and

sin y =
√

x2 − 1

x

cos2 y = 1− x2 − 1

x2 = 1

x2

sec2 y = x2.

Thus sec y = x and y = sec−1 x .

If x ≤ −1 and y = π − sin−1

√
x2 − 1

x
, then π

2 ≤ y < 3π
2

and sec y < 0. Therefore

sin y = sin

(

π − sin−1

√
x2 − 1

x

)

=
√

x2 − 1

x

cos2 y = 1− x2 − 1

x2
= 1

x2

sec2 y = x2

sec y = x,

because both x and sec y are negative. Thus y = sec−1 x
in this case also.

49. f ′(x) ≡ 0 on (−∞,−1)

Thus f (x) = tan−1
(

x − 1

x + 1

)

− tan−1 x = C on

(−∞,−1).

Evaluate the limit as x →−∞:

lim
x→−∞ f (x) = tan−1 1−

(

−π
2

)

= 3π

4

Thus tan−1
(

x − 1

x + 1

)

− tan−1 x = 3π

4
on (−∞,−1).

50. Since f (x) = x − tan−1 (tan x) then

f ′(x) = 1− sec2 x

1+ tan2 x
= 1− 1 = 0

if x �= −(k + 1
2 )π where k is an integer. Thus, f is

constant on intervals not containing odd multiples of
π

2
.

f (0) = 0 but f (π) = π − 0 = π . There is no contra-

diction here because f ′
(π

2

)

is not defined, so f is not

constant on the interval containing 0 and π .

51. f (x) = x − sin−1(sin x) (−π ≤ x ≤ π)
f ′(x) = 1− 1√

1 − sin2 x
cos x

= 1− cos x

| cos x |

=
⎧

⎨

⎩

0 if −π
2
< x <

π

2
2 if −π < x < −π

2
or
π

2
< x < π

Note: f is not differentiable at ±π
2

.
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y

x

(π,π)

(−π,−π)

π/2

−π/2

y = f (x)

Fig. 3.5.51

52. y ′ = 1

1+ x2 ⇒ y = tan−1 x + C

y(0) = C = 1

Thus, y = tan−1 x + 1.

53.

⎧

⎪⎨

⎪⎩

y ′ = 1

9+ x2 ⇒ y = 1

3
tan−1 x

3
+ C

y(3) = 2 2 = 1

3
tan−11+ C C = 2− π

12

Thus y = 1

3
tan−1 x

3
+ 2 − π

12
.

54. y ′ = 1√
1− x2

⇒ y = sin−1 x + C

y( 1
2 ) = sin−1 ( 1

2 )+ C = 1

⇒ π

6
+ C = 1⇒ C = 1− π

6
.

Thus, y = sin−1 x + 1− π
6
.

55.

{

y ′ = 4√
25− x2

⇒ y = 4sin−1 x

5
+ C

y(0) = 0 0 = 0 + C ⇒ C = 0

Thus y = 4sin−1 x

5
.

Section 3.6 Hyperbolic Functions
(page 200)

1.
d

dx
sech x = d

dx

1

cosh x

= − 1

cosh2 x
sinh x = − sech x tanh x

d

dx
csch x = d

dx

1

sinh x

= − 1

sinh2 x
cosh x = − csch x coth x

d

dx
coth x = d

dx

cosh

sinh x

= sinh2 x − cosh2 x

sinh2 x
= − 1

sinh2 x
= − csch 2x

2. cosh x cosh y + sinh x sinh y

= 1
4 [(ex + e−x )(ey + e−y)+ (ex − e−x)(ey − e−y)]

= 1
4 (2ex+y + 2e−x−y) = 1

2 (e
x+y + e−(x+y))

= cosh(x + y).

sinh x cosh y + cosh x sinh y

= 1
4 [(ex − e−x )(ey + e−y)+ (ex + e−x)(ey − e−y)]

= 1
2 (e

x+y − e−(x+y)) = sinh(x + y).

cosh(x − y) = cosh[x + (−y)]

= cosh x cosh(−y)+ sinh x sinh(−y)

= cosh x cosh y − sinh x sinh y.

sinh(x − y) = sinh[x + (−y)]

= sinh x cosh(−y)+ cosh x sinh(−y)

= sinh x cosh y − cosh x sinh y.

3. tanh(x ± y) = sinh(x ± y)

cosh(x ± y)

= sinh x cosh y ± cosh x sinh y

cosh x cosh y ± sinh x sinh y

= tanh x ± tanh y

1± tanh x tanh y

4. y = coth x = ex + e−x

ex − e−x
y = sech x = 2

ex + e−x

y

x

1

−1

y = coth x

y

x

1 y = sech x

Fig. 3.6.4(a) Fig. 3.6.4(b)

y = csch x = 2

ex − e−x

y

x

y = csch x

Fig. 3.6.4
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5.
d

dx
sinh−1 x = d

dx
ln(x +

√

x2 + 1) =
1+ x√

x2 + 1
x +√x2 + 1

= 1√
x2 + 1

d

dx
cosh−1 x = d

dx
ln(x +

√

x2 − 1) =
1 + x√

x2 − 1
x +√x2 − 1

= 1√
x2 − 1

d

dx
tanh−1 x = d

dx

1

2
ln

(
1+ x

1− x

)

= 1

2

1− x

1+ x

1− x − (1 + x)(−1)

(1 − x)2
= 1

1− x2

∫ dx√
x2 + 1

= sinh−1 x + C

∫ dx√
x2 − 1

= cosh−1 x + C (x > 1)

∫ dx

1 − x2 = tanh−1 x + C (−1 < x < 1)

6. Let y = sinh−1
( x

a

)

⇔ x = a sinh y ⇒ 1 = a(cosh y)
dy

dx
.

Thus,

d

dx
sinh−1

( x

a

)

= 1

a cosh y

= 1

a
√

1+ sinh2 y
= 1√

a2 + x2

∫
dx√

a2 + x2
= sinh−1 x

a
+ C. (a > 0)

Let y = cosh−1 x

a
⇔ x = a Cosh y = a cosh y

for y ≥ 0, x ≥ a. We have 1 = a(sinh y)
dy

dx
. Thus,

d

dx
cosh−1 x

a
= 1

a sinh y

= 1

a
√

cosh2 y − 1
= 1√

x2 − a2

∫
dx√

x2 − a2
= cosh−1 x

a
+ C. (a > 0, x ≥ a)

Let y = tanh−1 x

a
⇔ x = a tanh y ⇒ 1 = a(sech2 y)

dy

dx
.

Thus,
d

dx
tanh−1 x

a
= 1

a sech2 y

= a

a2 − a2 tanh2 x
= a

a2 − x2
∫

dx

a2 − x2 =
1

a
tanh−1 x

a
+ C.

7. a) sinh ln x = 1

2
(eln x − e− ln x ) = 1

2

(

x − 1

x

)

= x2 − 1

2x

b) cosh ln x = 1

2
(eln x + e− ln x ) = 1

2

(

x + 1

x

)

= x2 + 1

2x

c) tanh ln x = sinh ln x

cosh ln x
= x2 − 1

x2 + 1

d)
cosh ln x + sinh ln x

cosh ln x − sinh ln x
= x2 + 1+ (x2 − 1)

(x2 + 1)− (x2 − 1)
= x2

8. csch−1x = sinh−1(1/x) = ln

(

1

x
+
√

1

x2
+ 1

)

has

domain and range consisting of all real numbers x except
x = 0. We have

d

dx
csch−1 x = d

dx
sinh−1 1

x

= 1
√

1+
(

1

x

)2

(−1

x2

)

= −1

|x |√x2 + 1
.

y

x

y = csch−1 x

Fig. 3.6.8

9. coth−1 x = tanh−1 1

x
= 1

2
ln

⎛

⎜
⎝

1+ 1

x

1− 1

x

⎞

⎟
⎠ = 1

2
ln

(
x + 1

x − 1

)

,

for |x | > 1. Also

d

dx
coth−1 x = d

dx
tanh−1 1

x

= 1

1 − (1/x)2
−1

x2
= −1

x2 − 1
.

y

x

−1

1

y = coth−1x

Fig. 3.6.9
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10. Let y = Sech−1 x where Sech x = sech x for x ≥ 0.
Hence, for y ≥ 0,

x = sech y ⇔ 1

x
= cosh y

⇔ 1

x
= Cosh y ⇔ y = Cosh−1 1

x
.

Thus,

Sech−1 x = Cosh−1 1

x
D(Sech−1) = R(sech) = (0, 1]

R(Sech−1) = D(sech) = [0,∞).
Also,

d

dx
Sech−1 x = d

dx
Cosh−1 1

x

= 1
√
(

1

x

)2

− 1

(−1

x2

)

= −1

x
√

1− x2
.

y

x1

y = Sech−1 x

Fig. 3.6.10

11. f A,B (x) = Aekx + Be−kx

f ′A,B (x) = k Aekx − kBe−kx

f ′′A,B (x) = k2 Aekx + k2 Be−kx

Thus f ′′A,B − k2 f A,B = 0

gC,D(x) = C cosh kx + D sinh kx

g′C,D(x) = kC cosh kx + kD sinh kx

g′′C,D(x) = k2C cosh kx + k2 D sinh kx
Thus g′′C,D − k2gC,D = 0

cosh kx + sinh kx = ekx

cosh kx − sinh kx = e−kx

Thus f A,B (x) = (A + B) cosh kx + (A − B) sinh kx , that
is,
f A,B (x) = gA+B,A−B (x), and

gC,D(x) = c

2
(ekx + e−kx )+ D

2
(ekx − e−kx ),

that is gC,D(x) = f(C+D)/2,(C−D)/2 (x).

12. Since

hL ,M(x) = L cosh k(x − a)+ M sinh k(x − a)

h ′′L ,M(x) = Lk2 cosh k(x − a)+ Mk2 sinh k(x − a)

= k2hL ,M(x)

hence, hL ,M(x) is a solution of y′′ − k2 y = 0 and

hL ,M(x)

= L

2

(

ekx−ka + e−kx+ka
)

+ M

2

(

ekx−ka − e−kx+ka
)

=
(

L

2
e−ka + M

2
e−ka

)

ekx +
(

L

2
eka − M

2
eka
)

e−kx

= Aekx + Be−kx = f A,B(x)

where A = 1
2 e−ka(L + M) and B = 1

2 eka(L − M).

13. y ′′ − k2 y = 0⇒ y = hL ,M(x)

= L cosh k(x − a) + M sinh k(x − a)
y(a) = y0 ⇒ y0 = L + 0⇒ L = y0,

y ′(a) = v0 ⇒ v0 = 0+ Mk ⇒ M = v0

k
Therefore y = hy0,v0/k(x)
= y0 cosh k(x − a)+ (v0/k) sinh k(x − a).

Section 3.7 Second-Order Linear DEs with
Constant Coefficients (page 206)

1. y ′′ + 7y ′ + 10y = 0

auxiliary eqn r2 + 7r + 10 = 0

(r + 5)(r + 2) = 0 ⇒ r = −5,−2

y = Ae−5t + Be−2t

2. y ′′ − 2y ′ − 3y = 0

auxiliary eqn r2 − 2r − 3 = 0 ⇒ r = −1, r = 3

y = Ae−t + Be3t

3. y ′′ + 2y ′ = 0

auxiliary eqn r2 + 2r = 0 ⇒ r = 0, −2

y = A + Be−2t

4. 4y ′′ − 4y ′ − 3y = 0

4r2 − 4r − 3 = 0⇒ (2r + 1)(2r − 3) = 0

Thus, r1 = − 1
2 , r2 = 3

2 , and y = Ae−(1/2)t + Be(3/2)t .

5. y ′′ + 8y ′ + 16y = 0

auxiliary eqn r2 + 8r + 16 = 0 ⇒ r = −4, −4

y = Ae−4t + Bte−4t

6. y ′′ − 2y ′ + y = 0

r2 − 2r + 1 = 0⇒ (r − 1)2 = 0

Thus, r = 1, 1, and y = Aet + Btet .

7. y ′′ − 6y ′ + 10y = 0

auxiliary eqn r2 − 6r + 10 = 0 ⇒ r = 3± i

y = Ae3t cos t + Be3t sin t
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8. 9y ′′ + 6y ′ + y = 0

9r2 + 6r + 1 = 0⇒ (3r + 1)2 = 0

Thus, r = − 1
3 , − 1

3 , and y = Ae−(1/3)t + Bte−(1/3)t .

9. y ′′ + 2y ′ + 5y = 0

auxiliary eqn r2 + 2r + 5 = 0 ⇒ r = −1± 2i

y = Ae−t cos 2t + Be−t sin 2t

10. For y ′′ − 4y ′ + 5y = 0 the auxiliary equation is
r2 − 4r + 5 = 0, which has roots r = 2 ± i . Thus, the
general solution of the DE is y = Ae2t cos t + Be2t sin t .

11. For y ′′ + 2y ′ + 3y = 0 the auxiliary equation is
r2+2r +3 = 0, which has solutions r = −1±√2i . Thus
the general solution of the given equation is
y = Ae−t cos(

√
2t)+ Be−t sin(

√
2t).

12. Given that y ′′ + y ′ + y = 0, hence r2 + r + 1 = 0. Since
a = 1, b = 1 and c = 1, the discriminant is
D = b2 − 4ac = −3 < 0 and −(b/2a) = − 1

2 and
ω = √3/2. Thus, the general solution is

y = Ae−(1/2)t cos

(√
3

2
t

)

+ Be−(1/2)t sin

(√
3

2
t

)

.

13.

⎧

⎨

⎩

2y ′′ + 5y ′ − 3y = 0
y(0) = 1
y ′(0) = 0

The DE has auxiliary equation 2r2 + 5y − 3 = 0, with
roots r = 1

2 and r = −3. Thus y = Aet/2 + Be−3t .

Now 1 = y(0) = A + B, and 0 = y′(0) = A

2
− 3B.

Thus B = 1/7 and A = 6/7. The solution is

y = 6

7
et/2 + 1

7
e−3t .

14. Given that y ′′ + 10y′ + 25y = 0, hence
r2 + 10r + 25 = 0⇒ (r + 5)2 = 0⇒ r = −5. Thus,

y = Ae−5t + Bte−5t

y ′ = −5e−5t (A + Bt)+ Be−5t .

Since
0 = y(1) = Ae−5 + Be−5

2 = y ′(1) = −5e−5(A + B)+ Be−5,

we have A = −2e5 and B = 2e5.
Thus, y = −2e5e−5t + 2te5e−5t = 2(t − 1)e−5(t−1).

15.

⎧

⎨

⎩

y ′′ + 4y ′ + 5y = 0
y(0) = 2
y ′(0) = 0

The auxiliary equation for the DE is r2 + 4r + 5 = 0,
which has roots r = −2± i . Thus

y = Ae−2t cos t + Be−2t sin t

y ′ = (−2Ae−2t + Be−2t) cos t − (Ae−2t + 2Be−2t ) sin t.

Now 2 = y(0) = A⇒ A = 2, and
2 = y ′(0) = −2A+ B ⇒ B = 6.
Therefore y = e−2t (2 cos t + 6 sin t).

16. The auxiliary equation r2 − (2 + ε)r + (1 + ε) factors
to (r − 1 − ε)(r − 1) = 0 and so has roots r = 1 + ε
and r = 1. Thus the DE y ′′ − (2 + ε)y ′ + (1 + ε)y = 0
has general solution y = Ae(1+ε)t + Bet . The function

yε(t) = e(1+ε)t − et

ε
is of this form with A = −B = 1/ε.

We have, substituting ε = h/t ,

lim
ε→0

yε(t) = lim
ε→0

e(1+ε)t − et

ε

= t lim
h→0

et+h − et

h

= t

(
d

dt
et
)

= t et

which is, along with et , a solution of the CASE II DE
y ′′ − 2y ′ + y = 0.

17. Given that a > 0, b > 0 and c > 0:
Case 1: If D = b2 − 4ac > 0 then the two roots are

r1,2 = −b ±√b2 − 4ac

2a
.

Since
b2 − 4ac < b2

±
√

b2 − 4ac < b

−b ±
√

b2 − 4ac < 0

therefore r1 and r2 are negative. The general solution is

y(t) = Aer1 t + Ber2t .

If t →∞, then er1t → 0 and er2t → 0.
Thus, lim

t→∞ y(t) = 0.

Case 2: If D = b2 − 4ac = 0 then the two equal roots
r1 = r2 = −b/(2a) are negative. The general solution is

y(t) = Aer1 t + Bter2t .

If t → ∞, then er1t → 0 and er2t → 0 at a faster rate
than Bt →∞. Thus, lim

t→∞ y(t) = 0.

Case 3: If D = b2 − 4ac < 0 then the general solution is

y = Ae−(b/2a)t cos(ωt)+ Be−(b/2a)t sin(ωt)

where ω =
√

4ac − b2

2a
. If t →∞, then the amplitude of

both terms Ae−(b/2a)t → 0 and Be−(b/2a)t → 0. Thus,
lim

t→∞ y(t) = 0.
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18. The auxiliary equation ar2 + br + c = 0 has roots

r1 = −b −√D

2a
, r2 = −b +√D

2a
,

where D = b2 − 4ac. Note that
a(r2 − r1) =

√
D = −(2ar1 + b). If y = er1t u, then

y ′ = er1t (u′ + r1u), and y′′ = er1t (u′′ + 2r1u′ + r2
1u). Sub-

stituting these expressions into the DE ay′′+by ′ +cy = 0,
and simplifying, we obtain

er1 t (au′′ + 2ar1u′ + bu′) = 0,

or, more simply, u′′ − (r2 − r1)u′ = 0. Putting v = u′
reduces this equation to first order:

v′ = (r2 − r1)v,

which has general solution v = Ce(r2−r1)t . Hence

u =
∫

Ce(r2−r1)t dt = Be(r2−r1)t + A,

and y = er1t u = Aer1t + Ber2t .

19. If y = A cosωt + B sinωt then

y ′′ + ω2y = −Aω2 cosωt − Bω2 sinωt

+ ω2(A cosωt + B sinωt) = 0

for all t . So y is a solution of (†).

20. If f (t) is any solution of (†) then f ′′(t) = −ω2 f (t) for
all t . Thus,

d

dt

[

ω2
(

f (t)
)2 +

(

f ′(t)
)2]

= 2ω2 f (t) f ′(t)+ 2 f ′(t) f ′′(t)
= 2ω2 f (t) f ′(t)− 2ω2 f (t) f ′(t) = 0

for all t . Thus, ω2
(

f (t)
)2 +

(

f ′(t)
)2

is constant. (This

can be interpreted as a conservation of energy statement.)

21. If g(t) satisfies (†) and also g(0) = g′(0) = 0, then by
Exercise 20,

ω2
(

g(t)
)2 +

(

g′(t)
)2

= ω2
(

g(0)
)2 +

(

g′(0)
)2 = 0.

Since a sum of squares cannot vanish unless each term
vanishes, g(t) = 0 for all t .

22. If f (t) is any solution of (†), let
g(t) = f (t) − A cosωt − B sinωt where A = f (0)
and Bω = f ′(0). Then g is also solution of (†). Also
g(0) = f (0) − A = 0 and g′(0) = f ′(0) − Bω = 0.
Thus, g(t) = 0 for all t by Exercise 24, and therefore
f (x) = A cosωt + B sinωt . Thus, it is proved that every
solution of (†) is of this form.

23. We are given that k = − b

2a
and ω2 = 4ac − b2

4a2 which is

positive for Case III. If y = ekt u, then

y ′ = ekt
(

u′ + ku
)

y ′′ = ekt
(

u′′ + 2ku′ + k2u
)

.

Substituting into ay′′ + by ′ + cy = 0 leads to

0 = ekt
(

au′′ + (2ka + b)u′ + (ak2 + bk + c)u
)

= ekt
(

au′′ + 0+ ((b2/(4a) − (b2/(2a)+ c)u
)

= a ekt
(

u′′ + ω2u
)

.

Thus u satisfies u′′ + ω2u = 0, which has general solution

u = A cos(ωt)+ B sin(ωt)

by the previous problem. Therefore ay′′ + by ′ + cy = 0
has general solution

y = Aekt cos(ωt)+ Bekt sin(ωt).

24. Because y ′′ + 4y = 0, therefore y = A cos 2t + B sin 2t .
Now

y(0) = 2⇒ A = 2,

y ′(0) = −5⇒ B = − 5
2 .

Thus, y = 2 cos 2t − 5
2 sin 2t .

circular frequency = ω = 2, frequency =
ω

2π
= 1

π
≈ 0.318

period =
2π

ω
= π ≈ 3.14

amplitude =
√

(2)2 + (− 5
2 )

2 � 3.20

25.

⎧

⎨

⎩

y ′′ + 100y = 0
y(0) = 0
y ′(0) = 3

y = A cos(10t)+ B sin(10t)

A = y(0) = 0, 10B = y ′(0) = 3

y = 3

10
sin(10t)
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26. y = A cos
(

ω(t − c)
)

+B sin
(

ω(t − c)
)

(easy to calculate y′′ + ω2y = 0)

y = A
(

cos(ωt) cos(ωc)+ sin(ωt) sin(ωc)
)

+B
(

sin(ωt) cos(ωc)− cos(ωt) sin(ωc)
)

=
(

A cos(ωc)−B sin(ωc)
)

cosωt

+
(

A sin(ωc)+B cos(ωc)
)

sinωt

= A cosωt + B sinωt
where A = A cos(ωc)−B sin(ωc) and
B =A sin(ωc)+B cos(ωc)

27. For y ′′ + y = 0, we have y = A sin t + B cos t . Since,

y(2) = 3 = A sin 2+ B cos 2

y ′(2) = −4 = A cos 2− B sin 2,

therefore
A = 3 sin 2− 4 cos 2

B = 4 sin 2 + 3 cos 2.

Thus,

y = (3 sin 2− 4 cos 2) sin t + (4 sin 2+ 3 cos 2) cos t

= 3 cos(t − 2)− 4 sin(t − 2).

28.

⎧

⎨

⎩

y ′′ + ω2y = 0
y(a) = A
y ′(a) = B

y = A cos
(

ω(t − a)
)

+ B

ω
sin
(

ω(t − a)
)

29. From Example 9, the spring constant is
k = 9 × 104 gm/sec2. For a frequency of 10 Hz (i.e., a
circular frequency ω = 20π rad/sec.), a mass m satisfy-
ing
√

k/m = 20π should be used. So,

m = k

400π2 =
9× 104

400π2 = 22.8 gm.

The motion is determined by
⎧

⎨

⎩

y ′′ + 400π2y = 0
y(0) = −1
y ′(0) = 2

therefore, y = A cos 20π t + B sin 20π t and

y(0) = −1⇒ A = −1

y ′(0) = 2⇒ B = 2

20π
= 1

10π
.

Thus, y = − cos 20π t + 1

10π
sin 20π t , with y in cm

and t in second, gives the displacement at time t . The

amplitude is

√

(−1)2 + ( 1

10π
)2 ≈ 1.0005 cm.

30. Frequency = ω

2π
, ω2 = k

m
(k = spring const, m = mass)

Since the spring does not change, ω2m = k (constant)
For m = 400 gm, ω = 2π(24) (frequency = 24 Hz)

If m = 900 gm, then ω2 = 4π2(24)2(400)

900

so ω = 2π × 24 × 2

3
= 32π .

Thus frequency =
32π

2π
= 16 Hz

For m = 100 gm, ω = 4π2(24)2400

100
so ω = 96π and frequency =

ω

2π
= 48 Hz.

31. Using the addition identities for cosine and sine,

y = ekt [A cosω(t − t0)B sinω(t − t0)]

= ekt [A cosωt cosωt0 + A sinωt sinωt0
+ B sinωt cosωt0 − B cosωt sinωt0]

= ekt [A1 cosωt + B1 sinωt],

where A1 = A cosωt0 − B sinωt0 and
B1 = A sinωt0 + B cosωt0. Under the conditions of
this problem we know that ekt cosωt and ekt sinωt are
independent solutions of ay′′ + by ′ + cy = 0, so our func-
tion y must also be a solution, and, since it involves two
arbitrary constants, it is a general solution.

32. Expanding the hyperbolic functions in terms of exponen-
tials,

y = ekt [A coshω(t − t0)B sinhω(t − t0)]

= ekt
[

A

2
eω(t−t0) + A

2
e−ω(t−t0)

+ B

2
eω(t−t0) − B

2
e−ω(t−t0)

]

= A1e(k+ω)t + B1e(k−ω)t

where A1 = (A/2)e−ωt0 + (B/2)e−ωt0 and
B1 = (A/2)eωt0 − (B/2)eωt0 . Under the conditions of
this problem we know that Rr = k ± ω are the two real
roots of the auxiliary equation ar2+br+c = 0, so e(k±ω)t
are independent solutions of ay′′ + by ′ + cy = 0, and our
function y must also be a solution. Since it involves two
arbitrary constants, it is a general solution.

33.

⎧

⎨

⎩

y ′′ + 2y ′ + 5y = 0
y(3) = 2
y ′(3) = 0
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The DE has auxiliary equation r2 + 2r + 5 = 0 with
roots r = −1 ± 2i . By the second previous prob-
lem, a general solution can be expressed in the form
y = e−t [A cos 2(t − 3)+ B sin 2(t − 3)] for which

y ′ = −e−t [A cos 2(t − 3)+ B sin 2(t − 3)]

+ e−t [−2A sin 2(t − 3)+ 2B cos 2(t − 3)].

The initial conditions give

2 = y(3) = e−3 A

0 = y ′(3) = −e−3(A + 2B)

Thus A = 2e3 and B = −A/2 = −e3. The IVP has
solution

y = e3−t [2 cos 2(t − 3)− sin 2(t − 3)].

34.

⎧

⎨

⎩

y ′′ + 4y ′ + 3y = 0
y(3) = 1
y ′(3) = 0

The DE has auxiliary equation r2 + 4r + 3 = 0 with roots
r = −2 + 1 = −1 and r = −2 − 1 = −3 (i.e. k ± ω,
where k = −2 and ω = 1). By the second previous
problem, a general solution can be expressed in the form
y = e−2t [A cosh(t − 3)+ B sinh(t − 3)] for which

y ′ = −2e−2t [A cosh(t − 3)+ B sinh(t − 3)]

+ e−2t [A sinh(t − 3)+ B cosh(t − 3)].

The initial conditions give

1 = y(3) = e−6 A

0 = y ′(3) = −e−6(−2A + B)

Thus A = e6 and B = 2A = 2e6. The IVP has solution

y = e6−2t [cosh(t − 3)+ 2 sinh(t − 3)].

35. Let u(x) = c − k2 y(x). Then u(0) = c − k2a.
Also u′(x) = −k2 y ′(x), so u′(0) = −k2b. We have

u′′(x) = −k2 y ′′(x) = −k2
(

c − k2 y(x)
)

= −k2u(x)

This IVP for the equation of simple harmonic motion has
solution

u(x) = (c − k2a) cos(kx) − kb sin(kx)

so that

y(x) = 1

k2

(

c − u(x)
)

= c

k2

(

c − (c − k2a) cos(kx) + kb sin(kx)
)

= c

k2 (1 − cos(kx) + a cos(kx) + b

k
sin(kx).

36. Since x ′(0) = 0 and x(0) = 1 > 1/5, the motion will be
governed by x ′′ = −x + (1/5) until such time t > 0 when
x ′(t) = 0 again.

Let u = x − (1/5). Then u′′ = x ′′ = −(x − 1/5) = −u,
u(0) = 4/5, and u′(0) = x ′(0) = 0. This sim-
ple harmonic motion initial-value problem has solution
u(t) = (4/5) cos t . Thus x(t) = (4/5) cos t + (1/4) and
x ′(t) = u′(t) = −(4/5) sin t . These formulas remain
valid until t = π when x′(t) becomes 0 again. Note that
x(π) = −(4/5)+ (1/5) = −(3/5).
Since x(π) < −(1/5), the motion for t > π will be
governed by x ′′ = −x − (1/5) until such time t > π

when x ′(t) = 0 again.

Let v = x + (1/5). Then v′′ = x ′′ = −(x + 1/5) = −v,
v(π) = −(3/5) + (1/5) = −(2/5), and
v′(π) = x ′(π) = 0. Thius initial-value problem has
solution v(t) = −(2/5) cos(t − π) = (2/5) cos t , so that
x(t) = (2/5) cos t − (1/5) and x ′(t) = −(2/5) sin t . These
formulas remain valid for t ≥ π until t = 2π when x′
becomes 0 again. We have x(2π) = (2/5) − (1/5) = 1/5
and x ′(2π) = 0.

The conditions for stopping the motion are met at
t = 2π ; the mass remains at rest thereafter. Thus

x(t) =

⎧

⎪⎨

⎪⎩

4
5 cos t + 1

5 if 0 ≤ t ≤ π
2
5 cos t − 1

5 if π < t ≤ 2π
1
5 if t > 2π

Review Exercises 3 (page 208)

1. f (x) = 3x + x3 ⇒ f ′(x) = 3(1 + x2) > 0 for all x ,
so f is increasing and therefore one-to-one and invertible.
Since f (0) = 0, therefore f −1(0) = 0, and

d

dx
( f −1)(x)

∣
∣
∣
∣
x=0
= 1

f ′( f −1(0))
= 1

f ′(0)
= 1

3
.

2. f (x) = sec2 x tan x ⇒ f ′(x) = 2 sec2 x tan2 x + sec4 x > 0
for x in (−π/2, π/2), so f is increasing and therefore
one-to-one and invertible there. The domain of f−1 is
(−∞,∞), the range of f . Since f (π/4) = 2, therefore
f −1(2) = π/4, and

( f −1)′(2) = 1

f ′( f −1(2))
= 1

f ′(π/4)
= 1

8
.
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3. lim
x→±∞ f (x) = lim

x→±∞
x

ex2 = 0.

4. Observe f ′(x) = e−x2
(1 − 2x2) is positive if x2 < 1/2

and is negative if x2 > 1/2. Thus f is increasing on
(−1/
√

2, 1/
√

2) and is decreasing on (−∞,−1/
√

2) and
on (1/

√
2,∞).

5. The max and min values of f are 1/
√

2e (at x = 1/
√

2)
and −1/

√
2e (at x = −1/

√
2).

6. y = e−x sin x , (0 ≤ x ≤ 2π) has a horizontal tangent
where

0 = dy

dx
= e−x (cos x − sin x).

This occurs if tan x = 1, so x = π/4 or x = 5π/4. The
points are (π/4, e−π/4/

√
2) and (5π/4,−e−5π/4/

√
2).

7. If f ′(x) = x for all x , then

d

dx

f (x)

ex2/2
= f ′(x)− x f (x)

ex2/2
= 0.

Thus f (x)/ex2/2 = C (constant) for all x .
Since f (2) = 3, we have C = 3/e2 and
f (x) = (3/e2)ex2/2 = 3e(x

2/2)−2.

8. Let the length, radius, and volume of the clay cylinder at
time t be �, r , and V , respectively. Then V = πr2�, and

dV

dt
= 2πr�

dr

dt
+ πr2 d�

dt
.

Since dV/dt = 0 and d�/dt = k� for some constant
k > 0, we have

2πr�
dr

dt
= −kπr2�, ⇒ dr

dt
= − kr

2
.

That is, r is decreasing at a rate proportional to itself.

9. a) An investment of $P at r% compounded continu-
ously grows to $PerT/100 in T years. This will be
$2P provided erT/100 = 2, that is, rT = 100 ln 2. If
T = 5, then r = 20 ln 2 ≈ 13.86%.

b) Since the doubling time is T = 100 ln 2/r , we have

�T ≈ dT

dr
�r = −100 ln 2

r2
�r.

If r = 13.863% and �r = −0.5%, then

�T ≈ − 100 ln 2

13.8632
(−0.5) ≈ 0.1803 years.

The doubling time will increase by about 66 days.

10. a) lim
h→0

ah − 1

h
= lim

h→0

a0+h − a0

h
= d

dx
ax
∣
∣
∣
∣
x=0
= ln a.

Putting h = 1/n, we get lim
n→∞ n

(

a1/n − 1
)

= ln a.

b) Using the technique described in the exercise, we
calculate

210
(

21/210 − 1
)

≈ 0.69338183

211
(

21/211 − 1
)

≈ 0.69326449

Thus ln 2 ≈ 0.693.

11.
d

dx

(

f (x)
)2 =

(

f ′(x)
)2

⇒ 2 f (x) f ′(x) =
(

f ′(x)
)2

⇒ f ′(x) = 0 or f ′(x) = 2 f (x).
Since f (x) is given to be nonconstant, we have
f ′(x) = 2 f (x). Thus f (x) = f (0)e2x = e2x .

12. If f (x) = (ln x)/x , then f ′(x) = (1 − ln x)/x2. Thus
f ′(x) > 0 if ln x < 1 (i.e., x < e) and f ′(x) < 0 if
ln x > 1 (i.e., x > e). Since f is increasing to the left
of e and decreasing to the right, it has a maximum value
f (e) = 1/e at x = e. Thus, if x > 0 and x �= e, then

ln x

x
<

1

e
.

Putting x = π we obtain (lnπ)/π < 1/e. Thus

ln(π e) = e lnπ < π = π ln e = ln eπ ,

and π e < eπ follows because ln is increasing.

13. y = x x = ex ln x ⇒ y ′ = x x (1 + ln x). The tangent to
y = x x at x = a has equation

y = aa + aa(1 + ln a)(x − a).

This line passes through the origin if
0 = aa [1−a(1+ ln a)], that is, if (1+ ln a)a = 1. Observe
that a = 1 solves this equation. Therefore the slope of
the line is 11(1 + ln 1) = 1, and the line is y = x .

14. a)
ln x

x
= ln 2

2
is satisfied if x = 2 or x = 4 (because

ln 4 = 2 ln 2).

b) The line y = mx through the origin intersects the
curve y = ln x at (b, ln b) if m = (ln b)/b. The same
line intersects y = ln x at a different point (x, ln x)
if (ln x)/x = m = (ln b)/b. This equation will have
only one solution x = b if the line y = mx intersects
the curve y = ln x only once, at x = b, that is, if the
line is tangent to the curve at x = b. In this case m
is the slope of y = ln x at x = b, so

1

b
= m = ln b

b
.

Thus ln b = 1, and b = e.

106



INSTRUCTOR’S SOLUTIONS MANUAL CHALLENGING PROBLEMS 3 (PAGE 209)

15. Let the rate be r%. The interest paid by account A is
1, 000(r/100) = 10r .
The interest paid by account B is 1, 000(er/100 − 1). This
is $10 more than account A pays, so

1, 000(er/100 − 1) = 10r + 10.

A TI-85 solve routine gives r ≈ 13.8165%.

16. If y = cos−1 x , then x = cos y and 0 ≤ y ≤ π . Thus

tan y = sgn x
√

sec2 y − 1 = sgn x

√

1

x2 − 1 =
√

1− x2

x
.

Thus cos−1x = tan−1((
√

1− x2)/x).

Since cot x = 1/ tan x , cot−1 x = tan−1(1/x).

csc−1 x = sin−1 1

x
= π

2
− cos−1 1

x

= π

2
− tan−1

√

1 − (1/x)2
1/x

= π

2
− sgn x tan−1

√

x2 − 1.

17. cos−1 x = π

2
− sin−1 x .

If y = cot−1 x , then x = cot y and 0 < y < π/2. Thus

csc y = sgn x
√

1+ cot2 y = sgn x
√

1+ x2

sin y = sgn x√
1+ x2

.

Thus cot−1 x = sin−1 sgn x√
1+ x2

= sgn xsin−1 1√
1+ x2

.

csc−1 x = sin−1 1

x
.

18. Let T (t) be the temperature of the milk t minutes after it
is removed from the refrigerator. Let U(t) = T (t) − 20.
By Newton’s law,

U ′(t) = kU(t) ⇒ U(t) = U(0)ekt .

Now T (0) = 5⇒ U(0) = −15 and
T (12) = 12⇒ U(12) = −8. Thus

− 8 = U(12) = U(0)e12k = −15e12k

e12k = 8/15, k = 1
12 ln(8/15).

If T (s) = 18, then U(s) = −2, so −2 = −15esk . Thus
sk = ln(2/15), and

s = ln(2/15)

k
= 12

ln(2/15)

ln(8/15)
≈ 38.46.

It will take another 38.46 − 12 = 26.46 min for the milk
to warm up to 18◦.

19. Let R be the temperature of the room, Let T (t) be the
temperature of the water t minutes after it is brought into
the room. Let U(t) = T (t)− R. Then

U ′(t) = kU(t) ⇒ U(t) = U(0)ekt .

We have

T (0) = 96⇒ U(0) = 96− R

T (10) = 60⇒ U(10) = 60 − R ⇒ 60− R = (96 − R)e10k

T (20) = 40⇒ U(20) = 40 − R ⇒ 40− R = (96 − R)e20k .

Thus
(

60− R

96− R

)2

= e20k = 40− R

96− R

(60 − R)2 = (96 − R)(40 − R)

3600− 120R + R2 = 3840 − 136R + R2

16R = 240 R = 15.

Room temperature is 15◦.
20. Let f (x) = ex − 1− x . Then f (0) = 0 and by the MVT,

f (x)

x
= f (x)− f (0)

x − 0
= f ′(c) = ec − 1

for some c between 0 and x . If x > 0, then c > 0, and
f ′(c) > 0. If x < 0, then c < 0, and f ′(c) < 0. In either
case f (x) = x f ′(c) > 0, which is what we were asked to
show.

21. Suppose that for some positive integer k, the inequality

ex > 1 + x + x2

2!
+ · · · + xk

k!

holds for all x > 0. This is certainly true for k = 1, as
shown in the previous exercise. Apply the MVT to

g(t) = et − 1− t − t2

2!
− · · · − tk+1

(k + 1)!

on the interval (0, x) (where x > 0) to obtain

g(x)

x
= g(x)− g(0)

x − 0
= g′(c)

for some c in (0, x). Since x and g′(c) are both positive,
so is g(x). This completes the induction and shows the
desired inequality holds for x > 0 for all positive integers
k.

Challenging Problems 3 (page 209)

1. a) (d/dx)x x = x x (1 + ln x) > 0 if ln x > −1, that is, if
x > e−1. Thus x x is increasing on [e−1,∞).
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b) Being increasing on [e−1,∞), f (x) = xx is invert-
ible on that interval. Let g = f−1. If y = xx , then
x = g(y). Note that y →∞ if and only if x →∞.
We have

ln y = x ln x

ln(ln y) = ln x + ln(ln x)

lim
y→∞

g(y) ln(ln y)

ln y
= lim

x→∞
x(ln x + ln(ln x))

x ln x

= lim
x→∞

(

1+ ln(ln x)

ln x

)

.

Now ln x <
√

x for sufficiently large x , so
ln(ln x) <

√
ln x for sufficiently large x .

Therefore, 0 <
ln(ln x)

ln x
<

1√
ln x
→ 0 as x → ∞,

and so

lim
y→∞

g(y) ln(ln y)

ln y
= 1+ 0 = 1.

2.
dv

dt
= −g − kv.

a) Let u(t) = −g − kv(t). Then
du

dt
= −k

dv

dt
= −ku,

and

u(t) = u(0)e−kt = −(g + kv0)e−kt

v(t) = −1

k

(

g + u(t)
)

= −1

k

(

g − (g + kv0)e−kt
)

.

b) limt→∞ v(t) = −g/k

c)
dy

dt
= v(t) = − g

k
+ g + kv0

k
e−kt , y(0) = y0

y(t) = − gt

k
− g + kv0

k2
e−kt + C

y0 = −0− g + kv0

k2
+ C ⇒ C = y0 + g + kv0

k2

y(t) = y0 − gt

k
+ g + kv0

k2

(

1− e−kt
)

3.
dv

dt
= −g + kv2 (k > 0)

a) Let u = 2t
√

gk. If v(t) =
√

g

k

1− eu

1+ eu
, then

dv

dt
=
√

g

k

(1+ eu)(−eu)− (1 − eu)eu

(1 + eu)2
2
√

gk

= −4geu

(1 + eu)2

kv2 − g = g

(
(1 − eu)2

(1 + eu)2
− 1

)

= −4geu

(1 + eu)2
= dv

dt
.

Thus v(t) =
√

g

k

1− e2t
√

gk

1+ e2t
√

gk
.

b) lim
t→∞ v(t) = lim

t→∞

√

g

k

e−2t
√

gk − 1

e−2t
√

gk + 1
= −

√

g

k

c) If y(t) = y0+
√

g

k
t− 1

k
ln

1+ e2t
√

gk

2
, then y(0) = y0

and

dy

dt
=
√

g

k
− 1

k

2
√

gke2t
√

gk

1+ e2t
√

gk

=
√

g

k

1− e2t
√

gk

1+ e2t
√

gk
= v(t).

Thus y(t) gives the height of the object at time t
during its fall.

4. If p = e−bt y, then
dp

dt
= e−bt

(
dy

dt
− by

)

.

The DE
dp

dt
= kp

(

1 − p

e−bt M

)

therefore transforms to

dy

dt
= by + kpebt

(

1 − p

e−bt M

)

= (b + k)y − ky2

M
= K y

(

1− y

L

)

,

where K = b + k and L = b + k

k
M . This is a standard

Logistic equation with solution (as obtained in Section
3.4) given by

y = Ly0

y0 + (L − y0)e−Kt
,

where y0 = y(0) = p(0) = p0. Converting this solution
back in terms of the function p(t), we obtain

p(t) = Lp0e−bt

p0 + (L − p0)e−(b+k)t

= (b + k)Mp0

p0kebt +
(

(b + k)M − kp0

)

e−kt
.

Since p represents a percentage, we must have
(b + k)M/k < 100.

If k = 10, b = 1, M = 90, and p0 = 1, then
b + k

k
M = 99 < 100. The numerator of the final expres-

sion for p(t) given above is a constant. Therefore p(t)
will be largest when the derivative of the denominator,

f (t) = p0kebt +
(

(b+ k)M − kp0

)

e−kt = 10et + 980e−10t

is zero. Since f ′(t) = 10et − 9, 800e−10t , this will
happen at t = ln(980)/11. The value of p at this t is
approximately 48.1. Thus the maximum percentage of
potential clients who will adopt the technology is about
48.1%.108
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CHAPTER 4. SOME APPLICATIONS OF
DERIVATIVES

Section 4.1 Related Rates (page 214)

1. If the side and area of the square at time t are x and A,
respectively, then A = x2, so

d A

dt
= 2x

dx

dt
.

If x = 8 cm and dx/dt = 2 cm/min, then the area is
increasing at rate d A/dt = 32 cm2/min.

2. As in Exercise 1, d A/dt = 2x dx/dt . If d A/dt = −2
ft2/s and x = 8 ft, then dx/dt = −2/(16). The side
length is decreasing at 1/8 ft/s.

3. Let the radius and area of the ripple t seconds after im-
pact be r and A respectively. Then A = πr2. We have

d A

dt
= 2πr

dr

dt
.

If r = 20 cm and
dr

dt
= 4 cm/s, then

d A

dt
= 40π(4) = 160π .

The area is increasing at 160π cm2/s.

4. Let A and r denote the area and radius of the circle.
Then

A = πr 2 ⇒ r =
√

A

π

⇒ dr

dt
=
(

1

2
√

Aπ

)
d A

dt
.

When
d A

dt
= −2, and A = 100,

dr

dt
= − 1

10
√
π

. The

radius is decreasing at the rate
1

10
√
π

cm/min when the

area is 100 cm2.

5. For A = πr2, we have d A/dt = 2πr dr/dt . If
d A/dt = 1/3 km2/h, then (a) dr/dt = 1/(6πr) km/h, or
(b) dr/dt = 1/(6π

√
A/π) = 1/(6

√
π A) km/h

6. Let the length, width, and area be l , w, and A at time t .
Thus A = lw.

d A

dt
= l

dw

dt
+ w dl

dt

When l = 16, w = 12,
dw

dt
= 3,

d A

dt
= 0, we have

0 = 16× 3+ 12
dl

dt
⇒ dl

dt
= −48

12
= −4

The length is decreasing at 4 m/s.

7. V = 4

3
πr3, so

dV

dt
= 4πr2 dr

dt
.

When r = 30 cm and dV/dt = 20 cm3/s, we have

20 = 4π(30)2
dr

dt
dr

dt
= 20

3600π
= 1

180π
.

The radius is increasing at 1/(180π) cm/s.

8. The volume V of the ball is given by

V = 4

3
πr3 = 4π

3

(
D

2

)3

= π

6
D3,

where D = 2r is the diameter of the ball. We have

dV

dt
= π

2
D2 d D

dt
.

When D = 6 cm, d D/dt = −.5 cm/h. At that time

dV

dt
= π

2
(36)(−0.5) = −9π ≈ −28.3.

The volume is decreasing at about 28.3 cm3/h.

9. The volume V , surface area S, and edge length x of a
cube are related by V = x3 and S = 6x2, so that

dV

dt
= 3x2 dx

dt
,

dS

dt
= 12x

dx

dt
.

If V = 64 cm3 and dV/dt = 2 cm3/s, then x = 4
cm and dx/dt = 2/(3 × 16) = 1/24 cm/s. Therefore,
dS/dt = 12(4)(1/24) = 2. The surface area is increasing
at 2 cm2/s.

10. Let V , r and h denote the volume, radius and height of
the cylinder at time t . Thus, V = πr2h and

dV

dt
= 2πrh

dr

dt
+ πr2 dh

dt
.

If V = 60,
dV

dt
= 2, r = 5,

dr

dt
= 1, then

h = V

πr2 =
60

25π
= 12

5π
dh

dt
= 1

πr2

(
dV

dt
− 2πrh

dr

dt

)

= 1

25π

(

2− 10π
12

5π

)

= − 22

25π
.

The height is decreasing at the rate
22

25π
cm/min.
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11. Let the length, width, depth, and volume at time t be l ,
w, h and V respectively. Thus V = lwh, and

dV

dt
= dl

dt
wh + lh

dw

dt
+ lw

dh

dt
.

If l = 6 cm, w =5cm, h= 4cm,
dl

dt
= dh

dt
= 1m/s, and

dw

dt
= −2cm/s, then

dV

dt
= 20− 48+ 30 = 2.

The volume is increasing at a rate of 2 cm3/s.

12. Let the length, width and area at time t be x , y and A
respectively. Thus A = xy and

d A

dt
= x

dy

dt
+ y

dx

dt
.

If
d A

dt
= 5,

dx

dt
= 10, x = 20, y = 16, then

5 = 20
dy

dt
+ 16(10)⇒ dy

dt
= −31

4
.

Thus, the width is decreasing at
31

4
m/s.

13. y = x2. Thus
dy

dt
= 2x

dx

dt
. If x = −2 and

dx

dt
= −3,

then
dy

dt
= −4(−3) = 12. y is increasing at rate 12.

14. Since x2y3 = 72, then

2xy3 dx

dt
+ 3x2y2 dy

dt
= 0⇒ dy

dt
= −2y

3x

dx

dt
.

If x = 3, y = 2,
dx

dt
= 2, then

dy

dt
= −8

9
. Hence, the

vertical velocity is −8

9
units/s.

15. We have

xy = t ⇒ x
dy

dt
+ y

dx

dt
= 1

y = t x2 ⇒ dy

dt
= x2 + 2xt

dx

dt

At t = 2 we have xy = 2, y = 2x2 ⇒ 2x3 = 2⇒ x = 1,
y = 2.

Thus
dy

dt
+ 2

dx

dt
= 1, and 1+ 4

dx

dt
= dy

dt
.

So 1+ 6
dx

dt
= 1⇒ dx

dt
= 0⇒ dy

dt
= 1⇒.

Distance D from origin satisfies D =√x2 + y2. So

d D

dt
= 1

2
√

x2 + y2

(

2x
dx

dt
+ 2y

dy

dt

)

= 1√
5

(

1(0)+ 2(1)
)

= 2√
5
.

The distance from the origin is increasing at a rate of
2/
√

5.

16. From the figure, x2 + k2 = s2. Thus

x
dx

dt
= s

ds

dt
.

When angle PC A = 45◦, x = k and s = √2k. The radar
gun indicates that ds/dt = 100 km/h. Thus
dx/dt = 100

√
2k/k ≈ 141. The car is travelling at about

141 km/h.

k s

x

A C

P

Fig. 4.1.16

17. We continue the notation of Exercise 16. If dx/dt = 90
km/h, and angle PC A = 30◦, then s = 2k, x = √3k, and
ds/dt = (√3k/2k)(90) = 45

√
3 = 77.94. The radar gun

will read about 78 km/h.

18. Let the distances x and y be as shown at time t . Thus

x2 + y2 = 25 and 2x
dx

dt
+ 2y

dy

dt
= 0.

If
dx

dt
= 1

3
and y = 3, then x = 4 and

4

3
+ 3

dy

dt
= 0 so

dy

dt
= −4

9
.

The top of the ladder is slipping down at a rate of
4

9
m/s.

5 m

x
1/3 m/s

y

Fig. 4.1.18
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19. Let x and y be the distances shown in the following fig-
ure. From similar triangles:

x

2
= x + y

5
⇒ x = 2y

3
⇒ dx

dt
= 2

3

dy

dt
.

Since
dy

dt
= −1

2
, then

dx

dt
= −1

3
and

d

dt
(x + y) = −1

2
− 1

3
= −5

6
.

Hence, the man’s shadow is decreasing at 1
3 m/s and the

shadow of his head is moving towards the lamppost at a
rate of 5

6 m/s.

5 m

2 m

y x

Fig. 4.1.19

20.

s

y 6

15

x
5

Fig. 4.1.20

Refer to the figure. s, y, and x are, respectively, the
length of the woman’s shadow, the distances from the
woman to the lamppost, and the distances from the
woman to the point on the path nearest the lamppost.
From one of triangles in the figure we have

y2 = x2 + 25.

If x = 12, then y = 13. Moreover,

2y
dy

dt
= 2x

dx

dt
.

We are given that dx/dt = 2 ft/s, so dy/dt = 24/13 ft/s
when x = 12 ft. Now the similar triangles in the figure
show that

s

6
= s + y

15
,

so that s = 2y/3. Hence ds/dt = 48/39. The woman’s
shadow is changing at rate 48/39 ft/s when she is 12 ft
from the point on the path nearest the lamppost.

21. C = 10, 000 + 3x + x2

8, 000
dC

dt
=
(

3+ x

4, 000

)
dx

dt
.

If dC/dt = 600 when x = 12, 000, then dx/dt = 100.
The production is increasing at a rate of 100 tons per
day.

22. Let x , y be distances travelled by A and B from their
positions at 1:00 pm in t hours.

Thus
dx

dt
= 16 km/h,

dy

dt
= 20 km/h.

Let s be the distance between A and B at time t .
Thus s2 = x2 + (25 + y)2

2s
ds

dt
= 2x

dx

dt
+ 2(25 + y)

dy

dt

At 1:30
(

t = 1
2

)

we have x = 8, y = 10,

s = √82 + 352 = √1289 so

√
1289

ds

dt
= 8× 16+ 35× 20 = 828

and
ds

dt
= 828√

1289
≈ 23.06. At 1:30, the ships are

separating at about 23.06 km/h.

pos. of B at 1:00 p.m.

20 km/h

B

y

s

pos. of A at 1:00 p.m.16 km/hA
x

25 km

Fig. 4.1.22

23. Let θ and ω be the angles that the minute hand and hour
hand made with the vertical t minutes after 3 o’clock.
Then

dθ

dt
= π

30
rad/min

dω

dt
= π

360
rad/min.
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Since θ = 0 and ω = π

2
at t = 0, therefore

θ = π

30
t and ω = π

360
t + π

2
.

At the first time after 3 o’clock when the hands of the
clock are together, i.e., θ = ω,

⇒ π

30
t = π

360
t + π

2
⇒ t = 180

11
.

Thus, the hands will be together at 16 4
11 minutes after 3

o’clock.

12

6

39

θ

ω

Fig. 4.1.23

24. Let y be the height of balloon t seconds after release.
Then y = 5t m.
Let θ be angle of elevation at B of balloon at time t .
Then tan θ = y/100. Thus

sec2 θ
dθ

dt
= 1

100

dy

dt
= 5

100
= 1

20
(

1+ tan2 θ
) dθ

dt
= 1

20
[

1+
( y

100

)2
]

dθ

dt
= 1

20
.

When y = 200 we have 5
dθ

dt
= 1

20
so

dθ

dt
= 1

100
.

The angle of elevation of balloon at B is increasing at a

rate of
1

100
rad/s.

B 100 m A

y

θ

Fig. 4.1.24

25. Let V , r and h be the volume, radius and height of the
cone. Since h = r , therefore

V = 1
3πr2h = 1

3πh3

dV

dt
= πh2 dh

dt
⇒ dh

dt
= 1

πh2

dV

dt
.

If
dV

dt
= 1

2
and h = 3, then

dV

dt
= 1

18π
. Hence, the

height of the pile is increasing at
1

18π
m/min.

26. Let r , h, and V be the top radius, depth, and volume of

the water in the tank at time t . Then
r

h
= 10

8
and

V = 1

3
πr2h = π

3

25

16
h3. We have

1

10
= π

3

25

16
3h2 dh

dt
⇒ dh

dt
= 16

250πh2 .

When h = 4 m, we have
dh

dt
= 1

250π
.

The water level is rising at a rate of
1

250π
m/min when

depth is 4 m.

8 m

10 m

r

h

Fig. 4.1.26

27. Let r and h be the radius and height of the water in the
tank at time t . By similar triangles,

r

h
= 10

8
⇒ r = 5

4
h.

The volume of water in the tank at time t is

V = 1

3
πr2h = 25π

48
h3.

Thus,

dV

dt
= 25π

16
h2 dh

dt
⇒ dh

dt
= 16

25πh2

dV

dt
.

If
dV

dt
= 1

10
− h3

1000
and h = 4, then

dh

dt
= 16

(25π)(4)2

(
1

10
− 43

1000

)

= 9

6250π
.
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Hence, the depth of water is increasing at
9

6250π
m/min

when the water is 4 m deep. The maximum depth occurs

when
dh

dt
= 0, i.e.,

16

25πh2

(
1

10
− h3

1000

)

= 0⇒ 1

10
− h3

1000
= 0

⇒ h = 3
√

100.

Thus, the maximum depth the water in the tank can get
is 3
√

100 ≈ 4.64 m.

28. Let r , h, and V be the top radius, depth, and volume of
the water in the tank at time t . Then

r

h
= 3

9
= 1

3

V = 1

3
πr2h = π

27
h3

dV

dt
= π

9
h2 dh

dt
.

If
dh

dt
= 20 cm/h = 2

10
m/h when h = 6 m, then

dV

dt
= π

9
× 36× 2

10
= 4π

5
≈ 2.51 m3/h.

Since water is coming in at a rate of 10 m3/h, it must be
leaking out at a rate of 10− 2.51 ≈ 7.49 m3/h.

3 m

r

9 m

h

Fig. 4.1.28

29. Let x and s be the distance as shown. Then
s2 = x2 + 302 and

2s
ds

dt
= 2x

dx

dt
⇒ ds

dt
= x

s

dx

dt
.

When x = 40,
dx

dt
= 10, s = √402 + 302 = 50, then

ds

dt
= 40

50
(10) = 8. Hence, one must let out line at 8

m/min.

x

30 m
s

10 m/min

Fig. 4.1.29

30. Let P, x , and y be your position, height above centre,
and horizontal distance from centre at time t . Let θ be
the angle shown. Then y = 10 sin θ , and x = 10 cos θ .
We have

dy

dt
= 10 cos θ

dθ

dt
,

dθ

dt
= 1 rpm = 2π rad/min.

When x = 6, then cos θ = 6

10
, so

dy

dt
= 10× 6

10
× 12π .

You are rising or falling at a rate of 12π m/min at the
time in question.

θ

y
10 m

xC

P

Fig. 4.1.30

31. Let x and y denote the distances of the two aircraft east
and north of the airport respectively at time t as shown in
the following diagram. Also let the distance between the
two aircraft be s, then s2 = x2 + y2. Thus,

2s
ds

dt
= 2x

dx

dt
+ 2y

dy

dt
.

Since
dx

dt
= −200 and

dy

dt
= 150 when x = 144 and

y = 60, we have s = √1442 + 602 = 156, and

ds

dt
= 1

156
[144(−200) + 60(150)] ≈ −126.9.

Thus, the distance between the aircraft is decreasing at
about 126.9 km/h.
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200 km/h

150 km/h

y
s

x

airport

Fig. 4.1.31

32. P = 1

3
x0.6y0.4

d P

dt
= 0.6

3
x−0.4y0.4 dx

dt
+ 0.4

3
x0.6y−0.6 dy

dt
.

If d P/dt = 0, x = 40, dx/dt = 1, and y = 10, 000, then

dy

dt
= −6y0.4

x0.4

y0.6

4x0.6

dx

dt
= −6y

4x

dx

dt
= −375.

The daily expenses are decreasing at $375 per day.

33. Let the position of the ant be (x, y) and the position of
its shadow be (0, s). By similar triangles,

s − y

x
= y

3− x
⇒ s = 3y

3 − x
.

Then,

ds

dt
=

3(3 − x)
dy

dt
+ 3y

dx

dt
(3− x)2

.

If the ant is at (1, 2) and
dx

dt
= 1

3
,

dy

dt
= −1

4
, then

ds

dt
= 3(2)(− 1

4 )+ 3(2)( 1
3 )

4
= 1

8
.

Hence, the ant’s shadow is moving at 1
8 units/s upwards

along the y-axis.
y

x

ant

S

3

lamp

y

x

Fig. 4.1.33

34. Let x and y be the distances travelled from the intersec-
tion point by the boat and car respectively in t minutes.
Then

dx

dt
= 20 × 1000

60
= 1000

3
m/min

dy

dt
= 80 × 1000

60
= 4000

3
m/min

The distance s between the boat and car satisfy

s2 = x2 + y2 + 202, s
ds

dt
= x

dx

dt
+ y

dy

dt
.

After one minute, x = 1000

3
, y = 4000

3
so s ≈ 1374. m.

Thus

1374.5
ds

dt
= 1000

3

1000

3
+ 4000

3

4000

3
≈ 1, 888, 889.

Hence
ds

dt
≈ 1374.2 m/min ≈ 82.45 km/h after 1 minute.

Car

Boat

20 m

x

s

y

Fig. 4.1.34

35. Let h and b (measured in metres) be the depth and the
surface width of the water in the trough at time t . We
have

h

( 1
2 b)
= tan 60◦ = √3⇒ b = 2√

3
h.

Thus, the volume of the water is

V =
(

1

2
hb

)

(10) = 10√
3

h2,

and
dV

dt
= 20√

3
h

dh

dt
⇒ dh

dt
=
√

3

20h

dV

dt
.

If
dV

dt
= 1

4
and h = 0.2 metres, then

dh

dt
=
√

3

20(0.2)

(
1

4

)

=
√

3

16
.

Hence, the water level is rising at

√
3

16
m/min.
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b/2

h

b/2

60◦

30◦
30 cm

Fig. 4.1.35

36. Let V and h be the volume and depth of water in the
pool at time t . If h ≤ 2, then

x

h
= 20

2
= 10, so V = 1

2
xh8 = 40h2.

If 2 ≤ h ≤ 3, then V = 160+ 160(h − 2).

a) If h = 2.5m, then −1 = dV

dt
= 160

dh

dt
.

So surface of water is dropping at a rate of
1

160
m/min.

b) If h = 1m, then −1 = dV

dt
= 80h

dh

dt
= 80

dh

dt
.

So surface of water is dropping at a rate of
1

80
m/min.

20

8

1
3

x

h

Fig. 4.1.36

37. Let the various distances be as shown in the figure.

√
32+x2

10 m

3 m

x

y

s

Fig. 4.1.37

a) By similar triangles,

y

10
= 3√

32 + x2
⇒ y = 30√

9 + x2
.

Thus,
dy

dt
= dy

dx

dx

dt
= −30x

(9+ x2)3/2

dx

dt
.

If x = 4 and
dx

dt
= 1

5
, then

dy

dt
= −30(4)

(9 + 16)3/2

(
1

5

)

= − 24

125
.

Hence, the free top end of the ladder is moving ver-
tically downward at 24/125 m/s.

b) By similar triangles,

x√
32 + x2

= s

10
⇒ s = 10x√

9+ x2
.

Then,

ds

dt
= ds

dx

dx

dt

=
(
√

9+ x2)(10) − (10x)

(
2x

2
√

9+ x2

)

(9+ x2)

dx

dt

= 90

(9+ x2)3/2

dx

dt
.

If x = 4 and
dx

dt
= 1

5
, then

ds

dt
= 90

(9 + 16)3/2

(
1

5

)

= 18

125
.

This is the rate of change of the length of the hori-
zontal projection of the ladder. The free top end of
the ladder is moving horizontally to the right at rate

dx

dt
− ds

dt
= 1

5
− 18

125
= 7

125
m/s.

38. Let x , y, and s be distances shown at time t . Then

s2 = x2 + 16,

s
ds

dt
= x

dx

dt
,

(15 − s)2 = y2 + 16

− (15 − s)
ds

dt
= y

dy

dt
.
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When x = 3 and
dx

dt
= 1

2
, then s = 5 and

y = √102 − 42 = √84.

Also
ds

dt
= 3

5

(
1

2

)

= 3

10
so

dy

dt
= − 10√

84

3

10
= − 3√

84
≈ 0.327.

Crate B is moving toward Q at a rate of 0.327 m/s.

Q

P

A

4

xy
B

s
15−s

Fig. 4.1.38

39. Let θ be the angle of elevation, and x and y the horizon-
tal and vertical distances from the launch site. We have

tan θ = y

x
⇒ sec2 θ

dθ

dt
=

x
dy

dt
− y

dx

dt
x2 .

At the instant in question

dx

dt
= 4 cos 30◦ = 2

√
3,

dy

dt
= 4 sin 30◦ = 2,

x = 50 km, y = 100 km.

Thus tan θ = 100

50
= 2, sec2 θ = 1+ tan2 θ = 5, and

dθ

dt
= 1

5

50(2)− 100(2
√

3)

(50)2
= 1− 2

√
3

125
≈ −0.0197.

Therefore, the angle of elevation is decreasing at about
0.0197 rad/s.

y

x

θ

30◦
4 km/s

Fig. 4.1.39

40. Let y be height of ball t seconds after it drops.

Thus
d2y

dt2
= −9.8,

dy

dt
|t=0 = 0, y|t=0 = 20, and

y = −4.9t2 + 20,
dy

dt
= −9.8t.

Let s be distance of shadow of ball from base of pole.

By similar triangles,
s − 10

y
= s

20
.

20s − 200 = sy, s = 200

20− y

20
ds

dt
= y

ds

dt
+ s

dy

dt
.

a) At t = 1, we have
dy

dt
= −9.8, y = 15.1,

4.9
ds

dt
= 200

4.9
(−9.8).

The shadow is moving at a rate of 81.63 m/s after
one second.

b) As the ball hits the ground, y = 0, s = 10,

t =
√

20

4.9
, and

dy

dt
= −9.8

√

20

4.9
, so

20
ds

dt
= 0+ 10

dy

dt
.

Now y = 0 implies that t =
√

20

4.9
. Thus

ds

dt
= −1

2
(9.8)

√

20

4.9
≈ −9.90.

The shadow is moving at about 9.90 m/s when the
ball hits the ground.

10 m

10 s−10
s

y

20 m

20−y

Fig. 4.1.40

41. Let y(t) be the height of the rocket t seconds after it
blasts off. We have

d2y

dt2 = 10,
dy

dt
= y = 0
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at t = 0. Hence y = 5t2, (y in metres, t in seconds).
Now

tan θ = y

2000
, so sec2 θ

dθ

dt
= dy/dt

2000
, and

(

1+
( y

2000

)2)dθ

dt
= 10t

2000
= t

200
dθ

dt
= t

200
· 1

1+ 25t4

20002

= t

200
· 1

1+ t4

4002

= 800t

4002 + t4 .

At t = 10, we have
dθ

dt
= 8000

4002 + 1002 ≈ 0.047 rad/s.

θ

2 km

y

Fig. 4.1.41

Section 4.2 Extreme Values (page 222)

1. f (x) = x + 2 on [−1, 1]
f ′(x) = 1 so f is increasing.
f has absolute minimum 1 at x = −1 and absolute maxi-
mum 3 at x = 1.

2. f (x) = x + 2 on (−∞, 0]
abs max 2 at x = 0, no min.

3. f (x) = x + 2 on [−1, 1)
f has absolute minimum 1 at x = −1 and has no abso-
lute maximum.

4. f (x) = x2 − 1
no max, abs min −1 at x = 0.

5. f (x) = x2 − 1 on [−2, 3]
f has abs min −1 at x = 0, abs max 8 at x = 3, and
local max 3 at x = −2.

6. f (x) = x2 − 1 on (2, 3)
no max or min values.

7. f (x) = x3 + x − 4 on [a, b]
f ′(x) = 3x2 + 1 > 0 for all x .
Therefore f has abs min a3 + a − 4 at x = a and abs
max b3 + b − 4 at x = b.

8. f (x) = x3 + x − 4 on (a, b)
Since f ′(x) = 3x2 + 1 > 0 for all x , therefore f is
increasing. Since (a, b) is open, f has no max or min
values.

9. f (x) = x5 + x3 + 2x on (a, b]
f ′(x) = 5x4 + 3x2 + 2 > 0 for all x .
f has no min value, but has abs max value b5 + b3 + 2b
at x = b.

10. f (x) = 1

x − 1
. Since f ′(x) = −1

(x − 1)2
< 0 for all x in

the domain of f , therefore f has no max or min values.

11. f (x) = 1

x − 1
on (0, 1)

f ′(x) = − 1

(x − 1)2
< 0 on (0, 1)

f has no max or min values.

12. f (x) = 1

x − 1
on [2, 3]

abs min 1
2 at x = 3, abs max 1 at x = 2.

13. Let f (x) = |x − 1| on [−2, 2]: f (−2) = 3, f (2) = 1.
f ′(x) = sgn (x − 1). No CP; SP x = 1, f (1) = 0.
Max value of f is 3 at x = −2; min value is 0 at
x = 1.

14. Let f (x) = |x2 − x − 2| = |(x − 2)(x + 1)| on [−3, 3]:
f (−3) = 10, f (3) = 4.
f ′(x) = (2x − 1)sgn (x2 − x − 2).
CP x = 1/2; SP x = −1, and x = 2. f (1/2) = 9/4,
f (−1) = 0, f (2) = 0.
Max value of f is 10 at x = −3; min value is 0 at
x = −1 or x = 2.

15. f (x) = 1

x2 + 1
, f ′(x) = − 2x

(x2 + 1)2
f has abs max value 1 at x = 0; f has no min values.

16. f (x) = (x + 2)(2/3)

no max, abs min 0 at x = −2.

17. f (x) = (x − 2)1/3, f ′(x) = 1

3
(x − 2)−2/3 > 0

f has no max or min values.
y

x2

y = (x − 2)1/3

Fig. 4.2.17

18. f (x) = x2 + 2x , f ′(x) = 2x + 2 = 2(x + 1)
Critical point: x = −1.
f (x)→∞ as x →±∞.

CP
f ′ − −1 +
−−−−−−−−−−−−−−−−−−−−−−→x|
f ↘ abs

min ↗
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Hence, f (x) has no max value, and the abs min is −1 at
x = −1.

y

x

y = x2 + 2x

(−1,−1)

Fig. 4.2.18

19. f (x) = x3 − 3x − 2
f ′(x) = 3x2 − 3 = 3(x − 1)(x + 1)

CP CP
f ′ + −1 − 1 +
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→x| |
f ↗ loc

max ↘ loc
min ↗

f has no absolute extrema.
y

x
−1

(1,−4)
y = x3 − 3x − 2

Fig. 4.2.19

20. f (x) = (x2 − 4)2, f ′(x) = 4x(x2 − 4) = 4x(x + 2)(x − 2)
Critical points: x = 0, ±2.
f (x)→∞ as x →±∞.

CP CP CP
f ′ − −2 + 0 − +2 +
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→x| | |
f ↘ abs

min ↗ loc
max ↘ abs

min ↗

Hence, f (x) has abs min 0 at x = ±2 and loc max 16 at
x = 0.

y

x2−2

16
y = (x2 − 4)2

Fig. 4.2.20

21. f (x) = x3(x − 1)2

f ′(x) = 3x2(x − 1)2 + 2x3(x − 1)

= x2(x − 1)(5x − 3)

CP x = 0,
3

5
, 1

CP CP CP
f ′ + 0 + 3

5 − 1 +
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→x| | |
f ↗ ↗ loc

max ↘ loc
min ↗

f has no absolute extrema.
y

x1

(
3
5 ,

108
55

)

y = x3(x − 1)2

Fig. 4.2.21

22. f (x) = x2(x − 1)2,
f ′(x) = 2x(x − 1)2 + 2x2(x − 1) = 2x(2x − 1)(x − 1)
Critical points: x = 0, 1

2 and 1.
f (x)→∞ as x →±∞.

CP CP CP
f ′ − 0 + 1

2 − 1 +
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→x| | |
f ↘ abs

min ↗ loc
max ↘ abs

min ↗

Hence, f (x) has loc max 1
16 at x = 1

2 and abs min 0 at
x = 0 and x = 1.
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y

x1

( 1
2 ,

1
16

)

y = x2(x − 1)2

Fig. 4.2.22

23. f (x) = x(x2 − 1)2

f ′(x) = (x2 − 1)2 + 2x(x2 − 1)2x

= (x2 − 1)(x2 − 1+ 4x2)

= (x2 − 1)(5x2 − 1)

= (x − 1)(x + 1)(
√

5x − 1)(
√

5x + 1)

CP CP CP CP
f ′ + −1 − − 1√

5
+ 1√

5
− 1 +

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→x| | | |
f ↗ loc

max ↘ loc
min ↗ loc

max ↘ loc
min ↗

f (±1) = 0, f (±1/
√

5) = ±16/25
√

5
y

x
1/
√

5 1

−1 −1/
√

5

y = x(x2 − 1)2

Fig. 4.2.23

24. f (x) = x

x2 + 1
, f ′(x) = 1− x2

(x2 + 1)2
Critical point: x = ±1.
f (x)→ 0 as x →±∞.

CP CP
f ′ − −1 + +1 −
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→x| |
f ↘ abs

min ↗ abs
max ↘

Hence, f has abs max 1
2 at x = 1 and abs min − 1

2 at
x = −1.

y

x

(1,0.5)

(−1,−0.5)
y = x

x2 + 1

Fig. 4.2.24

25. f (x) = x2

x2 + 1
= 1− 1

x2 + 1
< 1

f ′(x) = 2x

(x2 + 1)2

CP
f ′ − 0 +
−−−−−−−−−−−−−−−−−→x|
f ↘ abs

min ↗
y

x

y = 1

y = x2

x2 + 1

Fig. 4.2.25

26. f (x) = x√
x4 + 1

, f ′(x) = 1 − x4

(x4 + 1)3/2
Critical points: x = ±1.
f (x)→ 0 as x →±∞.

CP CP
f ′ − −1 + +1 −
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→x| |
f ↘ abs

min ↗ abs
max ↘

Hence, f has abs max 1√
2

at x = 1 and abs min − 1√
2

at

x = −1.
y

x

(

1, 1√
2

)

(

−1,− 1√
2

) y = x√
x4 + 1

Fig. 4.2.26

27. f (x) = x
√

2− x2 (|x | ≤ √2)

f ′(x) = √2− x2 − x2
√

2− x2
= 2(1 − x2)√

2 − x2

SP CP CP SP
f ′ −√2 − −1 + 1 − √

2
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→x| | | |
f loc

max ↘ abs
min ↗ abs

max ↘ loc
min
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y

x

(−1,−1)

√
2

−√2

(1,1)

y = x
√

2− x2

Fig. 4.2.27

28. f (x) = x + sin x , f ′(x) = 1+ cos x ≥ 0
f ′(x) = 0 at x = ±π, ±3π, ...
f (x)→±∞ as x →±∞.
Hence, f has no max or min values.

y

x

(π,π)

(2π,2π)

y = x + sin x

Fig. 4.2.28

29. f (x) = x − 2 sin x

f ′(x) = 1− 2 cos x

CP: x = ±π
3
+ 2nπ

n = 0,±1,±2, · · ·
alternating local maxima and minima

y

x

π
3

y = x − 2 sin x

y = x

Fig. 4.2.29

30. f (x) = x − 2 tan−1 x , f ′(x) = 1− 2

1+ x2
= x2 − 1

x2 + 1
Critical points: x = ±1.
f (x)→±∞ as x → ±∞.

CP CP
f ′ + −1 − +1 +
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→x| |
f ↗ loc

max ↘ loc
min ↗

Hence, f has loc max −1 + π

2
at x = −1 and loc min

1− π
2

at x = 1.

y

x

(
1,1− π2

)

(
−1,−1+ π2

)

y = x − 2 tan−1 x

Fig. 4.2.30

31. f (x) = 2x − sin−1 x (−1 ≤ x ≤ 1)

f ′(x) = 2 − 1√
1− x2

= 2
√

1− x2 − 1√
1− x2

= 3− 4x2

√
1− x2(2

√
1− x2 + 1)

CP: x = ±
√

3

2
, SP: (EP:) x = ±1

f

(

±
√

3

2

)

= ±
(√

3− π
3

)

SP CP CP SP

f ′ −1 − −
√

3
2 +

√
3

2 − 1
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→x| | | |
f loc

max ↘ abs
min ↗ abs

max ↘ loc
min
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y

x√
3

2

1

−1
−
√

3
2

y = 2x − sin−1 x

Fig. 4.2.31

32. f (x) = e−x2/2, f ′(x) = −xe−x2/2

Critical point: x = 0.
f (x)→ 0 as x →±∞.

CP
f ′ + 0 −
−−−−−−−−−−−−−−−−−−→x|
f ↗ abs

max ↘

Hence, f has abs max 1 at x = 0 and no min value.
y

x

1
y = e−x2/2

Fig. 4.2.32

33. f (x) = x2−x

f ′(x) = 2−x + x(−2−x ln 2)

= 2−x (1 − x ln 2)

CP
f ′ + 1/ ln 2 −
−−−−−−−−−−−−−−−−−→x|
f ↗ abs

max ↘

y

x

(
1

ln 2 ,
1

e ln 2

)

y = x 2−x

Fig. 4.2.33

34. f (x) = x2e−x2
, f ′(x) = 2xe−x2

(1− x2)

Critical points: x = 0,±1.
f (x)→ 0 as x →±∞.

CP CP CP
f ′ + −1 − 0 + 1 −
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→x| | |
f ↗ abs

max ↘ abs
min ↗ abs

max ↘

Hence, f has abs max 1/e at x = ±1 and abs min 0 at
x = 0.

y

x

(1,1/e)(−1,1/e)

y = x2 e−x2

Fig. 4.2.34

35. f (x) = ln x

x
(x > 0)

f ′(x) =
x

x
− ln x

x2 = 1− ln x

x2

f (x)→−∞ as x → 0+ (vertical asymptote),
f (x) → 0 as x → ∞ (horizontal asymp-
tote).

ASY CP
f ′ 0 + e −
−−−−−−−−−−−−−−−−−→x| |
f ↗ abs

max ↘

y

x

(

e, 1e

)

y = ln x

x

Fig. 4.2.35

36. Since f (x) = |x + 1|,

f ′(x) = sgn (x + 1) =
{

1, if x > −1;
−1, if x < −1.

−1 is a singular point; f has no max but has abs min 0
at x = −1.
f (x)→∞ as x →±∞.
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y

x−1

y = |x + 1|

Fig. 4.2.36

37. f (x) = |x2 − 1|
f ′(x) = 2xsgn (x2 − 1)

CP: x = 0

SP: x = ±1

SP CP SP
f ′ − −1 + 0 − 1 +
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→x| | |
f ↘ abs

min ↗ loc
max ↘ abs

min ↗

y

x−1 1

1

y = |x2 − 1|

Fig. 4.2.37

38. f (x) = sin |x |
f ′(x) = sgn (x) cos |x | = 0 at x = ±π

2
, ±3π

2
, ±5π

2
, ...

0 is a singular point. Since f (x) is an even function, its
graph is symmetric about the origin.

CP CP SP CP CP

f ′ − −3π

2
+ −π

2
− 0 + π

2
− 3π

2
+

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→x| | | | |
f ↘ abs

min ↗ abs
max ↘ loc

min ↗ abs
max ↘ abs

min ↗

Hence, f has abs max 1 at x = ±(4k + 1)
π

2
and abs min

−1 at x = ±(4k + 3)
π

2
where k = 0, 1, 2, . . . and loc

min 0 at x = 0.

y

x
π

1

−π

y = sin |x |

Fig. 4.2.38

39. f (x) = | sin x |
CP: x = ± (2n + 1)π

2
, SP = ±nπ

f has abs max 1 at all CP.
f has abs min 0 at all SP.

y

x−π π 2π

y = | sin x |

Fig. 4.2.39

40. f (x) = (x − 1)2/3 − (x + 1)2/3

f ′(x) = 2
3 (x − 1)−1/3 − 2

3 (x + 1)−1/3

Singular point at x = ±1. For critical points:
(x − 1)−1/3 = (x + 1)−1/3 ⇒ x − 1 = x + 1⇒ 2 = 0, so
there are no critical points.

SP SP
f ′ + −1 − +1 +
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→x| |
f ↗ abs

max ↘ abs
min ↗

Hence, f has abs max 22/3 at x = −1 and abs min
−22/3 at x = 1.

y

x

(1,−22/3)

(−1,22/3)

y = (x − 1)2/3 − (x + 1)2/3

Fig. 4.2.40

41. f (x) = x/
√

x2 + 1. Since

f ′(x) =
√

x2 + 1− x
2x

2
√

x2 + 1
x2 + 1

= 1

(x2 + 1)3/2
> 0,

for all x , f cannot have any maximum or minimum
value.

42. f (x) = x/
√

x4 + 1. f is continuous on �, and
limx→±∞ f (x) = 0. Since f (1) > 0 and f (−1) < 0,
f must have both maximum and minimum values.

f ′(x) =
√

x4 + 1− x
4x3

2
√

x4 + 1
x4 + 1

= 1− x4

(x4 + 1)3/2
.
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CP x = ±1. f (±1) = ±1/
√

2. f has max value 1/
√

2
and min value −1/

√
2.

y

x

(

1, 1√
2

)

(

−1,− 1√
2

) y = x√
x4 + 1

Fig. 4.2.42

43. f (x) = x
√

4− x2 is continuous on [−2, 2], and
f (±2) = 0.

f ′(x) =
√

4 − x2 + x
−2x

2
√

4− x2
= 2(2− x2)√

4− x2
.

CP x = ±√2. f (±√2) = ±2. f has maximum value 2
at x = √2 and min value −2 at x = −√2.

44. f (x) = x2/
√

4 − x2 is continuous on (−2, 2), and
limx→−2+ f (x) = limx→2− f (x) = ∞. Thus f can
have no maximum value, but will have a minimum value.

f ′(x) =
2x
√

4− x2 − x2 −2x

2
√

4− x2

4− x2 = 8x − x3

(4− x2)3/2
.

CP x = 0, x = ±√8. f (0) = 0, and ±√8 is not in the
domain of f . f has minimum value 0 at x = 0.

45. f (x) = 1/[x sin x] is continuous on (0, π), and
limx→0+ f (x) = ∞ = limx→π− f (x). Thus f can
have no maximum value, but will have a minimum value.
Since f is differentiable on (0, π), the minimum value
must occur at a CP in that interval.

46. f (x) = (sin x)/x is continuous and differentiable on �
except at x = 0 where it is undefined.
Since limx→0 f (x) = 1 (Theorem 8 of Section 2.5), and
| f (x)| < 1 for all x �= 0 (because | sin x | < |x |), f cannot
have a maximum value.
Since limx→±∞ f (x) = 0 and since f (x) < 0 at some
points, f must have a minimum value occurring at a crit-
ical point. In fact, since | f (x)| ≤ 1/|x | for x �= 0 and f
is even, the minimum value will occur at the two critical
points closest to x = 0. (See Figure 2.20 In Section 2.5
of the text.)

47. If it exists, an absolute max value is the maximum of
the set of all the local max values. Hence, if a function
has an absolute max value, it must have one or more
local max values. On the other hand, if a function has a
local max value, it may or may not have an absolute max
value. Since a local max value, say f (x0) at the point
x0, is defined such that it is the max within some interval
|x − x0| < h where h > 0, the function may have greater
values, and may even approach ∞ outside this interval.
There is no absolute max value in this latter case.

48. No. f (x) = −x2 has abs max value 0, but
g(x) = | f (x)| = x2 has no abs max value.

49. f (x) =
{

x sin
1

x
if x > 0

0 if x < 0| f (x)| ≤ |x | if x > 0 so limx→0+ f (x) = 0 = f (0).

Therefore f is continuous at x = 0. Clearly x sin
1

x
is continuous at x > 0. Therefore f is continuous on
[0,∞).
Given any h > 0 there exists x1 in (0, h) and x2 in (0, h)
such that f (x1) > 0 = f (0) and f (x2) < 0 = f (0).
Therefore f cannot be a local max or min value at 0.

Specifically, let positive integer n satisfy 2nπ >
1

h

and let x1 = 1

2nπ + π
2

, x2 = 1

2nπ + 3π

2

.

Then f (x1) = x1 > 0 and f (x2) < 0.

Section 4.3 Concavity and Inflections
(page 227)

1. f (x) = √x , f ′(x) = 1

2
√

x
, f ′′(x) = −1

4
x−3/2

f ′′(x) < 0 for all x > 0. f is concave down on (0,∞).
2. f (x) = 2x − x2, f ′(x) = 2 − 2x , f ′′(x) = −2 < 0.

Thus, f is concave down on (−∞,∞).
3. f (x) = x2 + 2x + 3, f ′(x) = 2x + 2, f ′′(x) = 2 > 0.

f is concave up on (−∞,∞).
4. f (x) = x − x3, f ′(x) = 1− 3x2,

f ′′(x) = −6x .

f ′′ + 0 −
−−−−−−−−−−−−−−−−−−−−→x|
f � infl �

5. f (x) = 10x3 − 3x5,

f ′(x) = 30x2 − 15x4,

f ′′(x) = 60(x − x3) = 60x(1− x)(1 + x).

f ′′ + −1 − 0 + 1 −
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→x| | |
f � infl � infl � infl �

6. f (x) = 10x3 + 3x5, f ′(x) = 30x2 + 15x4,
f ′′(x) = 60x + 60x3 = 60x(1 + x2).

f ′′ − 0 +
−−−−−−−−−−−−−−−−−−−−→x|
f � infl �
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7. f (x) = (3 − x2)2,

f ′(x) = −4x(3− x2) = −12x + 4x3,

f ′′(x) = −12+ 12x2 = 12(x − 1)(x + 1).

f ′′ + −1 − 1 +
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→x| |
f � infl � infl �

8. f (x) = (2 + 2x − x2)2, f ′(x) = 2(2 + 2x − x2)(2 − 2x),

f ′′(x) = 2(2 − 2x)2 + 2(2+ 2x − x2)(−2)

= 12x(x − 2).

f ′′ + 0 − 2 +
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→x| |
f � infl � infl �

9. f (x) = (x2 − 4)3,

f ′(x) = 6x(x2 − 4)2,

f ′′(x) = 6(x2 − 4)2 + 24x2(x2 − 4)

= 6(x2 − 4)(5x2 − 4).

f ′′ + −2 − − 2√
5
+ 2√

5
− 2 +

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→x| | | |
f � infl � infl � infl � infl �

10. f (x) = x

x2 + 3
, f ′(x) = 3 − x2

(x2 + 3)2
,

f ′′(x) = 2x(x2 − 9)

(x2 + 3)3
.

f ′′ − −3 + 0 − 3 +
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→x| | |
f � infl � infl � infl �

11. f (x) = sin x, f ′(x) = cos x, f ′′(x) = − sin x .
f is concave down on intervals (2nπ, (2n + 1)π) and
concave up on intervals ((2n − 1)π, 2nπ), where n ranges
over the integers. Points x = nπ are inflection points.

12. f (x) = cos 3x , f ′(x) = −3 sin 3x , f ′′(x) = −9 cos 3x .

Inflection points: x = (n + 1
2

) π

3
for n = 0, ±1, ±2, ....

f is concave up on

(
4n + 1

6
π,

4n + 3

6
π

)

and concave

down on

(
4n + 3

6
π,

4n + 5

6
π

)

.

13. f (x) = x + sin 2x,

f ′(x) = 1+ 2 cos 2x,

f ′′(x) = −4 sin 2x .

f is concave up on intervals

(
(2n − 1)π

2
, nπ

)

, and con-

cave down on intervals

(

nπ,
(2n + 1)π

2

)

. Points
nπ

2
are

inflection points.

14. f (x) = x − 2 sin x , f ′(x) = 1− 2 cos x , f ′′(x) = 2 sin x .
Inflection points: x = nπ for n = 0, ±1, ±2, ....

f is concave down on
(

(2n+1)π, (2n+2)π
)

and concave

up on
(

(2n)π, (2n + 1)π
)

.

15. f (x) = tan−1 x, f ′(x) = 1

1+ x2 ,

f ′′(x) = −2x

(1 + x2)2
.

f ′′ + 0 −
−−−−−−−−−−−−−−−−−−−−→x|
f � infl �

16. f (x) = xex , f ′(x) = ex(1 + x),
f ′′(x) = ex(2 + x).

f ′′ − −2 +
−−−−−−−−−−−−−−−−−−−−→x|
f � infl �

17. f (x) = e−x2
, f ′(x) = −2xe−x2

,

f ′′(x) = e−x2
(4x2 − 2).

f ′′ + − 1√
2
− 1√

2
+

−−−−−−−−−−−−−−−−−−−−−−−−→x| |
f � infl � infl �

18. f (x) = ln(x2)

x
, f ′(x) = 2− ln(x2)

x2 ,

f ′′(x) = −6+ 2 ln(x2)

x3 .

f has inflection point at x = ±e3/2 and f is undefined at
x = 0. f is concave up on (−e3/2, 0) and (e3/2,∞); and
concave down on (−∞,−e3/2) and (0, e3/2).

19. f (x) = ln(1 + x2), f ′(x) = 2x

1+ x2
,

f ′′(x) = (1+ x2)(2) − 2x(2x)

(1 + x2)2
= 2(1 − x2)

(1 + x2)2
.

f ′′ − −1 + 1 −
−−−−−−−−−−−−−−−−−−−−−−−−→x| |
f � infl � infl �
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20. f (x) = (ln x)2, f ′(x) = 2

x
ln x ,

f ′′(x) = 2(1 − ln x)

x2 for all x > 0.

f ′′ 0 + e −
−−−−−−−−−−−−−−−−−−−−−−−→x| |
f � infl �

21. f (x) = x3

3
− 4x2 + 12x − 25

3
,

f ′(x) = x2 − 8x + 12,

f ′′(x) = 2x − 8 = 2(x − 4).

f ′′ − 4 +
−−−−−−−−−−−−−−−−−−−−→x|
f � infl �

22. f (x) = (x − 1)1/3 + (x + 1)1/3,
f ′(x) = 1

3 [(x − 1)−2/3 + (x + 1)−2/3],
f ′′(x) = − 2

9 [(x − 1)−5/3 + (x + 1)−5/3].
f (x) = 0⇔ x − 1 = −(x + 1)⇔ x = 0.
Thus, f has inflection point at x = 0. f ′′(x) is undefined
at x = ±1. f is defined at ±1 and x = ±1 are also in-
flection points. f is concave up on (−∞,−1) and (0, 1);
and down on (−1, 0) and (1,∞).

23. According to Definition 4.3.1 and the subsequent discus-
sion, f (x) = ax + b has no concavity and therefore no
inflections.

24. f (x) = 3x3 − 36x − 3, f ′(x) = 9(x2 − 4), f ′′(x) = 18x .
The critical points are
x = 2, f ′′(2) > 0⇒ local min;
x = −2, f ′′(−2) < 0⇒ local max.

25. f (x) = x(x − 2)2 + 1 = x3 − 4x2 + 4x + 1

f ′(x) = 3x2 − 8x + 4 = (x − 2)(3x − 2)

CP: x = 2, x = 2

3

f ′′(x) = 6x − 8, f ′′(2) = 4 > 0, f ′′
(

2

3

)

= −4 < 0.

Therefore, f has a loc min at x = 2 and a loc max at

x = 2

3
.

26. f (x) = x + 4

x
, f ′(x) = 1− 4

x2 , f ′′(x) = 8x−3.

The critical points are
x = 2, f ′′(2) > 0⇒ local min;
x = −2, f ′′(−2) < 0⇒ local max.

27. f (x) = x3 + 1

x

f ′(x) = 3x2 − 1

x2 =
3x4 − 1

x2 , CP: x = ± 1
4
√

3
.

f ′′(x) = 6x + 2

x3
.

f ′′
(

1
4
√

3

)

> 0, f ′′
(−1

4
√

3

)

< 0.

Therefore f has a loc min at
1

4
√

3
and a loc max at

−1
4
√

3
.

28. f (x) = x

2x
, f ′(x) = 1− x ln 2

2x
,

f ′′(x) = ln 2(x ln 2− 2)

2x
.

The critical point is

x = 1

ln 2
, f ′′

(
1

ln 2

)

< 0⇒ local max.

29. f (x) = x

1+ x2

f ′(x) = (1 + x2)− x2x

(1 + x2)2
= 1− x2

(1 + x2)2

CP: x = ±1

f ′′(x) = (1+ x)2(−2x)− (1− x2)2(1 + x2)2x

(1 + x2)4

= −2x − 2x3 − 4x + 4x3

(1 + x2)3
= −6x + 2x3

(1 + x2)3

f ′′(1) = −1

2
, f ′′(−1) = 1

2
.

f has a loc max at 1 and a loc min at −1.

30. f (x) = xex , f ′(x) = ex(1 + x), f ′′(x) = ex (2+ x).
The critical point is x = −1.
f ′′(−1) > 0,⇒ local min.

31. f (x) = x ln x,

f ′(x) = 1+ ln x, CP: x = 1

e

f ′′(x) = 1

x
, f ′′(

1

e
) = e > 0.

f has a loc min at
1

e
.

32. f (x) = (x2−4)2, f ′(x) = 4x3−16x , f ′′(x) = 12x2−16.
The critical points are
x = 0, f ′′(0) < 0⇒ local max;
x = 2, f ′′(2) > 0⇒ local min;
x = −2, f ′′(−2) > 0⇒ local min.
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33. f (x) = (x2 − 4)3

f ′(x) = 6x(x2 − 4)2

CP: x = 0, x = ±2
f ′′(x) = 6(x2 − 4)2 + 24x2(x2 − 4)

= 6(x2 − 4)(5x2 − 4)

f ′′(0) > 0, f ′′(±2) = 0.
f has a loc min at x = 0. Second derivative test yields
no direct information about ±2. However, since f ′′ has
opposite signs on opposite sides of the points 2 and −2,
each of these points is an inflection point of f , and
therefore f cannot have a local maximum or minimum
value at either.

34. f (x) = (x2 − 3)ex ,

f ′(x) = (x2 + 2x − 3)ex = (x + 3)(x − 1)ex ,

f ′′(x) = (x2 + 4x − 1)ex .
The critical points are
x = −3, f ′′(−3) < 0⇒ local max;
x = 1, f ′′(1) > 0⇒ local min.

35. f (x) = x2e−2x2

f ′(x) = e−2x2
(2x − 4x3) = 2(x − 2x3)e−2x2

CP: x = 0, x = ± 1√
2

f ′′(x) = e−2x2
(2 − 20x2 + 16x4)

f ′′(0) > 0, f ′′
(

± 1√
2

)

= −4

e
< 0.

Therefore, f has a loc (and abs) min value at 0, and loc

(and abs) max values at ± 1√
2

.

36. Since

f (x) =
{

x2 if x ≥ 0
−x2 if x < 0,

we have

f ′(x) =
{ 2x if x ≥ 0
−2x if x < 0

= 2|x |
f ′′(x) =

{ 2 if x > 0
−2 if x < 0

= 2sgn x .

f ′(x) = 0 if x = 0. Thus, x = 0 is a critical point of
f . It is also an inflection point since the conditions of
Definition 3 are satisfied. f ′′(0) does not exist. If a the
graph of a function has a tangent line, vertical or not, at
x0, and has opposite concavity on opposite sides of x0,
the x0 is an inflection point of f , whether or not f ′′(x0)

even exists.

37. Suppose f is concave up (i.e., f ′′(x) > 0) on an open
interval containing x0.
Let h(x) = f (x)− f (x0)− f ′(x0)(x − x0).
Since h′(x) = f ′(x) − f ′(x0) = 0 at x = x0, x = x0 is a
CP of h.
Now h′′(x) = f ′′(x). Since h′′(x0) > 0, therefore h has a
min value at x0, so h(x) ≥ h(x0) = 0 for x near x0.
Since h(x) measures the distance y = f (x) lies above the
tangent line y = f (x0) + f ′(x0)(x − x0) at x , therefore
y = f (x) lies above that tangent line near x0.
Note: we must have h(x) > 0 for x near x0, x �= x0,
for otherwise there would exist x1 �= x0, x1 near x0, such
that h(x1) = 0 = h(x0). If x1 > x0, there would therefore
exist x2 such that x0 < x2 < x1 and f ′(x2) = f ′(x0).
Therefore there would exist x3 such that x0 < x3 < x2
and f ′(x3) = 0, a contradiction.
The same contradiction can be obtained if x1 < x0.

38. Suppose that f has an inflection point at x0. To be
specific, suppose that f ′′(x) < 0 on (a, x0) and
f ′′(x) > 0 on (x0, b) for some numbers a and b satis-
fying a < x0 < b.
If the graph of f has a non-vertical tangent line at x0,
then f ′(x0) exists. Let

F(x) = f (x)− f (x0)− f ′(x0)(x − x0).

F(x) represents the signed vertical distance between the
graph of f and its tangent line at x0. To show that the
graph of f crosses its tangent line at x0, it is sufficient to
show that F(x) has opposite signs on opposite sides of
x0.
Observe that F(x0) = 0, and F ′(x) = f ′(x) − f ′(x0),
so that F ′(x0) = 0 also. Since F ′′(x) = f ′′(x), the as-
sumptions above show that F ′ has a local minimum value
at x0 (by the First Derivative Test). Hence F(x) > 0 if
a < x < x0 or x0 < x < b. It follows (by Theorem
6) that F(x) < 0 if a < x < x0, and F(x) > 0 if
x0 < x < b. This completes the proof for the case of a
nonvertical tangent.
If f has a vertical tangent at x0, then its graph necessar-
ily crosses the tangent (the line x = x0) at x0, since the
graph of a function must cross any vertical line through a
point of its domain that is not an endpoint.

39. f (x) = xn

g(x) = −xn = − f (x), n = 2, 3, 4, . . .

f ′n(x) = nxn−1 = 0 at x = 0
If n is even, fn has a loc min, gn has a loc max at
x = 0.
If n is odd, fn has an inflection at x = 0, and so does
gn .

40. Let there be a function f such that

f ′(x0) = f ′′(x0) = ... = f (k−1)(x0) = 0,

f (k)(x0) �= 0 for some k ≥ 2.
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If k is even, then f has a local min value at x = x0
when f (k)(x0) > 0, and f has a local max value at
x = x0 when f (k)(x0) < 0.
If k is odd, then f has an inflection point at x = x0.

41. f (x) =
{

e−1/x2
if x �= 0

0 if x = 0

a) lim
x→0+ x−n f (x) = lim

x→0+
e−1/x2

xn
(put y = 1/x)

= lim
y→∞ yne−y2 = 0 by Theorem 5 of Sec. 4.4

Similarly, limx→0− x−n f (x) = 0, and
limx→0 x−n f (x) = 0.

b) If P(x) =∑n
j=0 aj x j then by (a)

lim
x→0

P

(
1

x

)

f (x) =
n∑

j=0

aj lim
x→0

x− j f (x) = 0.

c) If x �= 0 and P1(t) = 2t3, then

f ′(x) = 2

x3 e−1/x2 = P1

(
1

x

)

f (x).

Assume that f (k)(x) = Pk

(
1

x

)

f (x) for some

k ≥ 1, where Pk is a polynomial. Then

f (k+1)(x) = − 1

x2 P ′k
(

1

x

)

f (x)+ Pk

(
1

x

)

P1

(
1

x

)

f (x)

= Pk+1

(
1

x

)

f (x),

where Pk+1(t) = t2 P ′k(t) + P1(t)Pk (t) is a polyno-
mial.

By induction, f (n) = Pn

(
1

n

)

f (x) for n �= 0, where

Pn is a polynomial.

d) f ′(0) = limh→0
f (h)− f (0)

h
= lim

h→0
h−1 f (h) = 0 by

(a). Suppose that f (k)(0) = 0 for some k ≥ 1. Then

f (k+1)(0) = lim
h→0

f (k)(h)− f (k)(0)

h
= lim

h→0
h−1 f (k)(h)

= lim
h→0

h−1 Pk

(
1

h

)

f (h) = 0

by (b).
Thus f (n)(0) = 0 for n = 1, 2, . . . by induction.

e) Since f ′(x) < 0 if x < 0 and f ′(x) > 0 if x > 0,
therefore f has a local min value at 0 and − f has a
loc max value there.

f) If g(x) = x f (x) then g′(x) = f (x)+ x f ′(x),
g′′(x) = 2 f ′(x)+ x f ′′(x).
In general, g(n)(x) = n f (n−1)(x) + x f (n)(x) (by
induction).
Then g(n)(0) = 0 for all n (by (d)).
Since g(x) < 0 if x < 0 and g(x) > 0 if x > 0, g
cannot have a max or min value at 0. It must have
an inflection point there.

42. We are given that

f (x) =
{

x2 sin
1

x
, if x �= 0;

0, if x = 0.

If x �= 0, then

f ′(x) = 2x sin
1

x
− cos

1

x

f ′′(x) = 2 sin
1

x
− 2

x
cos

1

x
− 1

x2 sin
1

x
.

If x = 0, then

f ′(x) = lim
h→0

h2 sin
1

h
− 0

h
= 0.

Thus 0 is a critical point of f . There are points x ar-
bitrarily close to 0 where f (x) > 0, for example

x = 2

(4n + 1)π
, and other such points where f (x) < 0,

for example x = 2

(4n + 3)π
. Therefore f does not have

a local max or min at x = 0. Also, there are points
arbitrarily close to 0 where f ′′(x) > 0, for example

x = 1

(2n + 1)π
, and other such points where f ′′(x) < 0,

for instance x = 1

2nπ
. Therefore f does not have con-

stant concavity on any interval (0, a) where a > 0, so 0
is not an inflection point of f either.

Section 4.4 Sketching the Graph
of a Function (page 236)

1. Function (d) appears to be the derivative of function (c),
and function (b) appears to be the derivative of function
(d). Thus graph (c) is the graph of f , (d) is the graph of
f ′, (b) is the graph of f ′′, and (a) must be the graph of
the other function g.
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y

−5
−4
−3
−2
−1

1
2
3
4

x−5−4 −3−2−1 1 2 3 4

y

−5
−4
−3
−2
−1

1
2
3
4

x−5−4 −3−2−1 1 2 3 4

y

−5
−4
−3
−2
−1

1
2
3
4

x−5 −4−3−2 −1 1 2 3 4

y

−5
−4
−3
−2
−1

1
2
3
4

x−5 −4−3−2 −1 1 2 3 4

(a)

(c) (d)

(b)

Fig. 4.4.1

2.

y

−5
−4
−3
−2
−1

1
2
3
4

x−5−4 −3−2−1 1 2 3 4

y

−5
−4
−3
−2
−1

1
2
3
4

x−5−4 −3−2−1 1 2 3 4

y

−5
−4
−3
−2
−1

1
2
3
4

x−5 −4−3−2 −1 1 2 3 4

y

−5
−4
−3
−2
−1

1
2
3
4

x−5 −4−3−2 −1 1 2 3 4

(a)

(c) (d)

(b)

Fig. 4.4.2

The function graphed in Fig. 4.2(a):
is odd, is asymptotic to y = 0 at ±∞,
is increasing on (−∞,−1) and (1,∞),
is decreasing on (−1, 1),
has CPs at x = −1 (max) and 1 (min),
is concave up on (−∞,−2) and (0, 2) (approximately),
is concave down on (−2, 0) and (2,∞) (approximately),
has inflections at x = ±2 (approximately).

The function graphed in Fig. 4.2(b):
is even, is asymptotic to y = 0 at ±∞,
is increasing on (−1.7, 0) and (1.7,∞) (approximately),
is decreasing on (−∞,−1.7) and (0, 1.7) (approxi-
mately),
has CPs at x = 0 (max) and ±1.7 (min) (approximately),
is concave up on (−2.5,−1) and (1, 2.5) (approxi-
mately),
is concave down on (−∞,−2.5), (−1, 1), and (2.5,∞)

(approximately),
has inflections at ±2.5 and ±1 (approximately).

The function graphed in Fig. 4.2(c):
is even, is asymptotic to y = 2 at ±∞,
is increasing on (0,∞),
is decreasing on (−∞, 0),
has a CP at x = 0 (min),
is concave up on (−1, 1) (approximately),
is concave down on (−∞,−1) and (1,∞) (approxi-
mately),
has inflections at x = ±1 (approximately).

The function graphed in Fig. 4.2(d):
is odd, is asymptotic to y = 0 at ±∞,
is increasing on (−1, 1),
is decreasing on (−∞,−1) and (1,∞),
has CPs at x = −1 (min) and 1 (max),
is concave down on (−∞,−1.7) and (0, 1.7) (approxi-
mately),
is concave up on (−1.7, 0) and (1.7,∞) (approximately),
has inflections at 0 and ±1.7 (approximately).

3. f (x) = x/(1 − x2) has slope 1 at the origin, so its graph
must be (c).
g(x) = x3/(1 − x4) has slope 0 at the origin, but has the
same sign at all points as does f (x), so its graph must
be (b).
h(x) = (x3 − x)/

√
1+ x6 has no vertical asymptotes, so

its graph must be (d).
k(x) = x3/

√|x4 − 1| is positive for all positive x �= 1, so
its graph must be (a).

4.

y

−4

−3

−2

−1

1

2

3

x−5−4 −3−2−1 1 2 3 4

y

−4

−3

−2

−1

1

2

3

x−5 −4−3−2 −1 1 2 3 4

y

−4

−3

−2

−1

1

2

3

x−5 −4−3−2 −1 1 2 3 4

y

−4

−3

−2

−1

1

2

3

x−5−4 −3−2−1 1 2 3 4

(a)

(c) (d)

(b)

Fig. 4.4.4
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The function graphed in Fig. 4.4(a):
is odd, is asymptotic to x = ±1 and y = x ,
is increasing on (−∞,−1.5), (−1, 1), and (1.5,∞) (ap-
proximately),
is decreasing on (−1.5,−1) and (1, 1.5) (approximately),
has CPs at x = −1.5, x = 0, and x = 1.5,
is concave up on (0, 1) and (1,∞),
is concave down on (−∞,−1) and (−1, 0),
has an inflection at x = 0.

The function graphed in Fig. 4.4(b):
is odd, is asymptotic to x = ±1 and y = 0,
is increasing on (−∞,−1), (−1, 1), and (1,∞),
has a CP at x = 0,
is concave up on (−∞,−1) and (0, 1),
is concave down on (−1, 0) and (1,∞),
has an inflection at x = 0.

The function graphed in Fig. 4.4(c):
is odd, is asymptotic to x = ±1 and y = 0,
is increasing on (−∞,−1), (−1, 1), and (1,∞),
has no CP,
is concave up on (−∞,−1) and (0, 1),
is concave down on (−1, 0) and (1,∞),
has an inflection at x = 0.

The function graphed in Fig. 4.4(d):
is odd, is asymptotic to y = ±2,
is increasing on (−∞,−0.7) and (0.7,∞) (approxi-
mately),
is decreasing on (−0.7, 0.7) (approximately),
has CPs at x = ±0.7 (approximately),
is concave up on (−∞,−1) and (0, 1) (approximately),
is concave down on (−1, 0) and (1,∞) (approximately),
has an inflection at x = 0 and x = ±1 (approximately).

5. f (0) = 1 f (±1) = 0 f (2) = 1
limx→∞ f (x) = 2, limx→−∞ f (x) = −1

SP CP
f ′ + 0 − 1 +
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→x| |
f ↗ loc

max ↘ loc
min ↗

f ′′ + 0 + 2 −
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→x| |
f � � infl �

0 must be a SP because f ′′ > 0 on both sides and it is a
loc max. 1 must be a CP because f ′′ is defined there so
f ′ must be too.

y

x−1

(2,1)
1

y=2

1

y=−1

y = f (x)

Fig. 4.4.5

6. According to the given properties:
Oblique asymptote: y = x − 1.
Critical points: x = 0, 2. Singular point: x = −1.
Local max 2 at x = 0; local min 0 at
x = 2.

SP CP CP
f ′ + −1 + 0 − 2 +
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→x| | |
f ↗ ↗ loc

max ↘ loc
min ↗

Inflection points: x = −1, 1, 3.

f ′ + −1 − 1 + 3 −
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→x| | |
f � infl � infl � infl �

Since lim
x→±∞

(

f (x)+ 1− x
)

= 0, the line y = x − 1 is an

oblique asymptote.
y

x

(3,1)

2

(1,1)

2

−1

y=x−1

y = f (x)

Fig. 4.4.6

129



SECTION 4.4 (PAGE 236) R. A. ADAMS: CALCULUS

7. y = (x2 − 1)3

y ′ = 6x(x2 − 1)2

= 6x(x − 1)2(x + 1)2

y ′′ = 6[(x2 − 1)2 + 4x2(x2 − 1)]

= 6(x2 − 1)(5x2 − 1)

= 6(x − 1)(x + 1)(
√

5x − 1)(
√

5x + 1)
From y: Asymptotes: none. Symmetry: even. Intercepts:
x = ±1.
From y′: CP: x = 0, x = ±1. SP: none.

CP CP CP
y ′ − −1 − 0 + 1 +
−−−−−−−−−−−−−−−−−−−−−−−−→x| | |
y ↘ ↘ abs

min ↗ ↗

From y′′: y ′′ = 0 at x = ±1, x = ± 1√
5

.

y ′′ + −1 − − 1√
5
+ 1√

5
− 1 +

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→x| | | |
y � infl � infl � infl � infl �

y

x−1 1

1/
√

5−1/
√

5

y = (x2 − 1)3

−1

Fig. 4.4.7

8. y = x(x2−1)2, y ′ = (x2−1)(5x2−1), y ′′ = 4x(5x2−3).
From y: Intercepts: (0, 0), (1, 0). Symmetry: odd (i.e.,
about the origin).

From y′: Critical point: x = ±1, ± 1√
5

.

CP CP CP CP

y ′ + −1 − − 1√
5
+ 1√

5
− 1 +

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→x| | | |
y ↗ loc

max ↘ loc
min ↗ loc

max ↘ loc
min ↗

From y′′: Inflection points at

x = 0, ±
√

3
5 .

y ′′ − −
√

3
5 + 0 −

√

3
5 +

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→x| | |
y � infl � infl � infl �

y

x1√
5

√

3
5

1

y = x(x2 − 1)2

Fig. 4.4.8

9. y = 2− x

x
= 2

x
− 1, y ′ = − 2

x2 , y ′′ = 4

x3 .

From y: Asymptotes: x = 0, y = −1.
Symmetry: none obvious.
Intercept: (2, 0). Points: (−1,−3).
From y′: CP: none. SP: none.

ASY
y ′ − 0 −
−−−−−−−−−−−−−−−−−−−→x|
y ↘ ↘

From y′′: y ′′ = 0 nowhere.

ASY
y ′′ − 0 +
−−−−−−−−−−−−−−−−−−−→x|
y � �
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y

x
(2,0)

y = 2 − x

x

(−1,−3)

−1

Fig. 4.4.9

10. y = x − 1

x + 1
= 1− 2

x + 1
, y ′ = 2

(x + 1)2
, y ′′ = −4

(x + 1)3
.

From y: Intercepts: (0,−1), (1, 0). Asymptotes: y = 1
(horizontal), x = −1 (vertical). No obvious symmetry.
Other points: (−2, 3).
From y′: No critical point.

ASY
y ′ + −1 +
−−−−−−−−−−−−−−−−−−−−−−−−→x|
y ↗ ↗

From y′′: No inflection point.

ASY
y ′′ + −1 −
−−−−−−−−−−−−−−−−−−−−−−−−→x|
y � �

y

x

x=−1

y=1

y = x − 1

x + 1

(−2,3)

−1

1

Fig. 4.4.10

11. y = x3

1+ x

y ′ = (1 + x)3x2 − x3

(1 + x)2
= 3x2 + 2x3

(1+ x)2

y ′′ = (1 + x)2(6x + 6x2)− (3x2 + 2x3)2(1 + x)

(1+ x)4

= 6x(1 + x)2 − 6x2 − 4x3

(1 + x)3
= 6x + 6x2 + 2x3

(1+ x)3

= 2x(3 + 3x + x2)

(1+ x)3
From y:
Asymptotes: x = −1. Symmetry: none.
Intercepts (0, 0). Points (−3/2, 27/4).

From y′ CP: x = 0, x = −3

2
.

CP ASY CP
y ′ − − 3

2 + −1 + 0 +
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→x| | |
y ↘ loc

min ↗ ↗ ↗

From y′′: y ′′ = 0 only at x = 0.

ASY
y ′′ + −1 − 0 +
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→x| |
y � � infl �

y

x

(

− 3
2 ,

27
4

)

x=−1

y = x3

1+ x

Fig. 4.4.11

12. y = 1

4+ x2 , y ′ = −2x

(4+ x2)2
, y ′′ = 6x2 − 8

(4+ x2)3
.

From y: Intercept: (0, 1
4 ). Asymptotes: y = 0 (horizon-

tal). Symmetry: even (about y-axis).
From y′: Critical point: x = 0.

CP
y ′ + 0 −
−−−−−−−−−−−−−−−−−−−−−−−−→x|
y ↗ abs

max ↘
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From y′′: y ′′ = 0 at x = ± 2√
3

.

y ′′ + − 2√
3

− 2√
3

+
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→x| |
y � infl � infl �

y

x−2√
3

2√
3

1/4

y = 1

4+ x2

Fig. 4.4.12

13. y = 1

2− x2 , y ′ = 2x

(2− x2)2

y ′′ = 2

(2 − x2)2
+ 8x2

(2 − x2)3
= 4+ 6x2

(2 − x2)3

From y: Asymptotes: y = 0, x = ±√2.
Symmetry: even.
Intercepts (0, 1

2 ). Points (±2,− 1
2 ).

From y′: CP x = 0.

ASY CP ASY
y ′′ − −√2 − 0 + √

2 +
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→x| | |
y ↘ ↘ loc

min ↗ ↗
y ′′ : y ′′ = 0 nowhere.

ASY ASY
y ′′ − −√2 + √

2 −
−−−−−−−−−−−−−−−−−−−−−−−−→x| |
y � � �

y

x

(

2,− 1
2

)

1/2

x=√2x=−√2

(

−2,− 1
2

)

y = 1

2 − x2

Fig. 4.4.13

14. y = x

x2 − 1
, y ′ = − x2 + 1

(x2 − 1)2
, y ′′ = 2x(x2 + 3)

(x2 − 1)3
.

From y: Intercept: (0, 0). Asymptotes: y = 0 (horizon-
tal), x = ±1 (vertical). Symmetry: odd. Other points:
(2, 2

3 ), (−2,− 2
3 ).

From y′: No critical or singular points.

ASY ASY
y ′ − −1 − 1 −
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→x| |
y ↘ ↘ ↘

From y′′: y ′′ = 0 at x = 0.

ASY ASY
y ′′ − −1 + 0 − 1 +
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→x| | |
y � � infl � �

y

x

x=1

x=−1

y = x

x2 − 1

(

2, 23

)

(

−2,− 2
3

)

Fig. 4.4.14

15. y = x2

x2 − 1
= 1+ 1

x2 − 1

y ′ = −2x

(x2 − 1)2

y ′′ = −2
(x2 − 1)2 − x2(x2 − 1)2x

(x2 − 1)4
= 2(3x2 + 1)

(x2 − 1)3
From y: Asymptotes: y = 1, x = ±1. Symmetry: even.

Intercepts (0, 0). Points

(

±2,
4

3

)

.

From y′: CP x = 0.

ASY CP ASY
y ′ + −1 + 0 − 1 −
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→x| | |
y ↗ ↗ loc

max ↘ ↘
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From y′′: y ′′ = 0 nowhere.

ASY ASY
y ′′ + −1 − 1 +
−−−−−−−−−−−−−−−−−−−−−−−−→x| |
y � � �

y

x

(

2, 43

)

y = x2

x2 − 1

(

−2, 43

)

x=−1

y=1

x=1

Fig. 4.4.15

16. y = x3

x2 − 1
, y ′ = x2(x2 − 3)

(x2 − 1)2
, y ′′ = 2x(x2 + 3)

(x2 − 1)3
.

From y: Intercept: (0, 0). Asymptotes: x = ±1 (ver-
tical), y = x (oblique). Symmetry: odd. Other points:
(

±√3,±3
√

3

2

)

.

From y′: Critical point: x = 0, ±√3.

CP ASY CP ASY CP
y ′ + −√3 − −1 − 0 − 1 − √

3 +
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→x| | | | |
y ↗ loc

max ↘ ↘ ↘ ↘ loc
min ↗

From y′′: y ′′ = 0 at x = 0.

ASY ASY
y ′′ − −1 + 0 − 1 +
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→x| | |
y � � infl � �

y

x

y=x

x=1

x=−1

y = x3

x2 − 1

√
3

−√3

Fig. 4.4.16

17. y = x3

x2 + 1
= x3 + x − x

x2 + 1
= x − x

x2 + 1

y ′ = (x2 + 1)3x2 − x32x

(x2 + 1)2
= x4 + 3x2

(x2 + 1)2
= x2(x2 + 3)

(x2 + 1)2

y ′′ = (x2 + 1)2(4x3 + 6x)− (x4 + 3x2)2(x2 + 1)2x

(x2 + 1)4

= 4x5 + 10x3 + 6x − 4x5 − 12x3

(x2 + 1)3

= 2x(3 − x2)

(x2 + 1)3
From y: Asymptotes: y = x (oblique). Symmetry: odd.
Intercepts (0, 0).
Points (±√3,± 3

4

√
3).

From y′: CP: x = 0.

CP
y ′ + 0 +
−−−−−−−−−−−−−−−−−−−→x|
y ↗ ↗

From y′′: y ′′ = 0 at x = 0, x = ±√3.

y ′′ + −√3 − 0 + √
3 −

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→x| | |
y � infl � infl � infl �
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y

x

(√
3, 3
√

3
4

)

(

−√3,− 3
√

3
4

)

y = x3

x2 + 1

y=x

Fig. 4.4.17

18. y = x2

x2 + 1
, y ′ = 2x

(x2 + 1)2
, y ′′ = 2(1− 3x2)

(x2 + 1)3
.

From y: Intercept: (0, 0). Asymptotes: y = 1 (horizon-
tal). Symmetry: even.
From y′: Critical point: x = 0.

CP
y ′ − 0 +
−−−−−−−−−−−−−−−−−−−−−−−−→x|
y ↘ abs

min ↗

From y′′: y ′′ = 0 at x = ± 1√
3

.

y ′′ − − 1√
3

+ 1√
3

−
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→x| |
y � infl � infl �

y

x

y=1

y = x2

x2 + 1

1√
3

−1√
3

Fig. 4.4.18

19. y = x2 − 4

x + 1
= x − 1− 3

x + 1

y ′ = 1+ 3

(x + 1)2
= (x + 1)2 + 3

(x + 1)2

y ′′ = − 6

(x + 1)3
From y: Asymptotes: y = x − 1 (oblique), x = −1.

Symmetry: none.
Intercepts (0,−4), (±2, 0).
From y′: CP: none.

ASY
y ′ + −1 +
−−−−−−−−−−−−−−−−−−−→x|
y ↗ ↗

From y′′: y ′′ = 0 nowhere.

ASY
y ′′ + −1 −
−−−−−−−−−−−−−−−−−−−→x|
y � �

y

x2−2 −1

−4y=x−1

y = x2 − 4

x + 1

Fig. 4.4.19

20. y = x2 − 2

x2 − 1
, y ′ = 2x

(x2 − 1)2
, y ′′ = −2(3x2 + 1)

(x2 − 1)3
.

From y: Intercept: (0, 2), (±√2, 0). Asymptotes: y = 1
(horizontal), x = ±1 (vertical). Symmetry: even.
From y′: Critical point: x = 0.

ASY CP ASY
f ′ − −1 − 0 + 1 +
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→x| | |
f ↘ ↘ loc

min ↗ ↗

From y′′: y ′′ = 0 nowhere.

ASY ASY
y ′ − −1 + 1 −
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→x| |
y � � �
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y

x

y=1

√
2

x=1

2

x=−1

−√2

y = x2 − 2

x2 − 1

Fig. 4.4.20

21. y = x3 − 4x

x2 − 1
= x(x − 2)(x + 2)

x2 − 1

y ′ = (x2 − 1)(3x2 − 4)− (x3 − 4x)2x

(x2 − 1)2

= 3x4 − 7x2 + 4 − 2x4 + 8x2

(x2 − 1)2

= x4 + x2 + 4

(x2 − 1)2

y ′′ = (x2 − 1)2(4x3 + 2x)− (x4 + x2 + 4)2(x2 − 1)2x

(x2 − 1)4

= 4x5 − 2x3 − 2x − 4x5 − 4x3 − 16x

(x2 − 1)3

= −6x3 − 18x

(x2 − 1)3
= −6x

x2 + 3

(x2 − 1)3
From y: Asymptotes: y = x (oblique), x = ±1.
Symmetry: odd. Intercepts (0, 0), (±2, 0).
From y′: CP: none.

ASY ASY
y ′ + −1 + 1 +
−−−−−−−−−−−−−−−−−−−−−−−−→x| |
y ↗ ↗ ↗

From y′′: y ′′ = 0 at x = 0.

ASY ASY
y ′′ + −1 − 0 + 1 −
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→x| | |
y � � infl � �

y

x

x=−1
x=1

y=x

−2 2

y = x3 − 4x

x2 − 1

Fig. 4.4.21

22. y = x2 − 1

x2 = 1− 1

x2 , y ′ = 2

x3 , y ′′ = − 6

x4 .

From y: Intercepts: (±1, 0). Asymptotes: y = 1 (hori-
zontal), x = 0 (vertical). Symmetry: even.
From y′: No critical points.

ASY
y ′ − 0 +
−−−−−−−−−−−−−−−−−−−−−−−−→x|
y ↘ ↗

From y′′: y ′′ is negative for all x .
y

x1−1

y=1

y = x2 − 1

x2

Fig. 4.4.22
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23. y = x5

(x2 − 1)2
= x + 2x3 − x

(x2 − 1)2

y ′ = (x2 − 1)25x4 − x52(x2 − 1)2x

(x2 − 1)4

= 5x6 − 5x4 − 4x6

(x2 − 1)3
= x4(x2 − 5)

(x2 − 1)3

y ′′ = (x2 − 1)3(6x5 − 20x3)− (x6 − 5x4)3(x2 − 1)22x

(x2 − 1)6

= 6x7 − 26x5 + 20x3 − 6x7 + 30x5

(x2 − 1)4

= 4x3(x2 + 5)

(x2 − 1)4
From y: Asymptotes: y = x , x = ±1. Symmetry: odd.

Intercepts (0, 0). Points

(

±√5,±25

16

√
5

)

.

From y′: CP x = 0, x = ±√5.

CP ASY CP ASY CP
y ′ + −√5 − −1 + 0 + 1 − √5 +
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→x| | | | |
y ↗ loc

max ↘ ↗ ↗ ↘ loc
min ↗

From y′′: y ′′ = 0 if x = 0.

ASY ASY
y ′′ − −1 − 0 + 1 +
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→x| | |
y � � infl � �

y

x

y=x

√
51

−√5 −1

y = x5

(x2 − 1)2

Fig. 4.4.23

24. y = (2− x)2

x3 , y ′ = − (x − 2)(x − 6)

x4 ,

y ′′ = 2(x2 − 12x + 24)

x5
= 2(x − 6+ 2

√
3)(x − 6− 2

√
3)

x5
.

From y: Intercept: (2, 0). Asymptotes: y = 0 (hori-
zontal), x = 0 (vertical). Symmetry: none obvious. Other

points: (−2,−2), (−10,−0.144).
From y′: Critical points: x = 2, 6.

ASY CP CP
y ′ − 0 − 2 + 6 −
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→x| | |
y ↘ ↘ loc

min ↗ loc
max ↘

From y′′: y ′′ = 0 at x = 6± 2
√

3.

y ′′ − 0 + 6+ 2
√

3 − 6− 2
√

3 +
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→x| | |
y � � infl � infl �

y

x

(−10,−0.144)

2 6+2
√

3

6−2
√

3

y = (2 − x)2

x3

(6,2/27)

Fig. 4.4.24

25. y = 1

x3 − 4x
= 1

x(x − 2)(x + 2)

y ′ = − 3x2 − 4

(x3 − 4x)2
= − 3x2 − 4

x2(x2 − 4)2

y ′′ = − (x
3 − 4x)2(6x)− (3x2 − 4)2(x3 − 4x)(3x2 − 4)

(x3 − 4x)4

= −6x4 − 24x2 − 18x4 + 48x2 − 32

(x3 − 4x)3

= 12(x2 − 1)2 + 20

x3(x2 − 4)3
From y: Asymptotes: y = 0, x = 0,−2, 2.
Symmetry: odd. No intercepts.

Points:

(

± 2√
3
,± 16

3
√

3

)

,

(

±3,± 1

15

)

From y′: CP: x = ± 2√
3

.

ASY CP ASY CP ASY
y ′ − −2 − − 2√

3
+ 0 + 2√

3
− 2 −

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→x| | | | |
y ↘ ↘ loc

min ↗ ↗ loc
max ↘ ↘

136



INSTRUCTOR’S SOLUTIONS MANUAL SECTION 4.4 (PAGE 236)

From y′′: y ′′ = 0 nowhere.

ASY ASY ASY
y ′′ − −2 + 0 − 2 +
−−−−−−−−−−−−−−−−−−−−−−−−−−−→x| | |
y � � � �

y

x

2√
3−3

− 2√
3

3

y = 1

x3 − 4x x=2

x=−2

Fig. 4.4.25

26. y = x

x2 + x − 2
= x

(2+ x)(x − 1)
,

y ′ = −(x2 + 2)

(x + 2)2(x − 1)2
, y ′′ = 2(x3 + 6x + 2)

(x + 2)3(x − 1)3
.

From y: Intercepts: (0, 0). Asymptotes: y = 0 (horizon-
tal), x = 1, x = −2 (vertical). Other points: (−3,−3

4 ),
(2, 1

2 ).
From y′: No critical point.

ASY ASY
y ′ − −2 − 1 −
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→x| |
y ↘ ↘ ↘

From y′′: y ′′ = 0 if f (x) = x3 + 6x + 2 = 0. Since
f ′(x) = 3x2 + 6 ≥ 6, f is increasing and can only
have one root. Since f (0) = 2 and f (−1) = −5,
that root must be between −1 and 0. Let the root be
r .

ASY ASY
y ′′ − −2 + r − 1 +
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→x| | |
y � � infl � �

y

x

x=−2

x=1

y = x

x2 + x − 2

(−3,−3/4)

(2,1/2)

r

Fig. 4.4.26

27. y = x3 − 3x2 + 1

x3 = 1− 3

x
+ 1

x3

y ′ = 3

x2
− 3

x4
= 3(x2 − 1)

x4

y ′′ = − 6

x3
+ 12

x5
= 6

2 − x2

x5

From y : Asymptotes: y = 1, x = 0. Symmetry: none.
Intercepts: since limx→0+ y = ∞, and limx→0− y = −∞,
there are intercepts between −1 and 0, between 0 and 1,
and between 2 and 3.

Points: (−1, 3), (1,−1), (2,−3
8 ), (3,

1

27
).

From y′: CP: x = ±1.

CP ASY CP
y ′ + −1 − 0 − 1 +
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→x| | |
y ↗ loc

max ↘ ↘ loc
min ↗

From y′′: y ′′ = 0 at x = ±√2.

ASY
y ′′ + −√2 − 0 + √

2 −
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→x| | |
y � infl � � infl �
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y

x

(−1,3)

y=1

(1,−1)

y = x3 − 3x2 + 1

x3

Fig. 4.4.27

28. y = x + sin x , y ′ = 1+ cos x , y ′′ = − sin x .
From y: Intercept: (0, 0). Other points: (kπ, kπ), where
k is an integer. Symmetry: odd.
From y′: Critical point: x = (2k + 1)π , where k is an
integer.

CP CP CP
f ′ + −π + π − 3π +
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→x| | |
f ↗ ↗ ↗ ↗

From y′′: y ′′ = 0 at x = kπ , where k is an inte-
ger.

y ′′ + −2π − −π + 0 − π + 2π −
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→x| | | | |
y � infl � infl � infl � infl � infl �

y

xπ 2π

π

2π

y = x + sin x

Fig. 4.4.28

29. y = x + 2 sin x, y ′ = 1+ 2 cos x, y ′′ = −2 sin x .
y = 0 if x = 0

y ′ = 0 if x = −1

2
, i.e., x = ±2π

3
± 2nπ

y ′′ = 0 if x = ±nπ
From y: Asymptotes: (none). Symmetry: odd.

Points:

(

±2π

3
,±2π

3
+√3

)

,

(

±8π

3
,±8π

3
+√3

)

,
(

±4π

3
,±4π

3
−√3

)

.

From y′: CP: x = ±2π

3
± 2nπ .

CP CP CP CP CP
y ′ − − 8π

3 + − 4π
3 + − 2π

3 + 2π
3 − 4π

3 +
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→x| | | | |
y ↘ loc

min ↗ loc
max ↘ loc

min ↗ loc
max ↘ loc

min ↗
From y′′: y ′′ = 0 at x = ±nπ .

y ′′ + −2π − −π + 0 − π + 2π −
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→x| | | | |
y � infl � infl � infl � infl � infl �

y

x
1π
3

π
4π
3

2π
y=x

y = x + 2 sin x

Fig. 4.4.29

30. y = e−x2
, y ′ = −2xe−x2

, y ′′ = (4x2 − 2)e−x2
.

From y: Intercept: (0, 1). Asymptotes: y = 0 (horizon-
tal). Symmetry: even.
From y′: Critical point: x = 0.

CP
y ′ + 0 −
−−−−−−−−−−−−−−−−−−−−−−−−→x|
y ↗ abs

max ↘
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From y′′: y ′′ = 0 at x = ± 1√
2

.

y ′′ + − 1√
2

− 1√
2

+
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→x| |
y � infl � infl �

y

x

1

1√
2

−1√
2

y = e−x2

Fig. 4.4.30

31. y = xex , y ′ = ex(1+ x), y ′′ = ex(2 + x).
From y: Asymptotes: y = 0 (at x = −∞).
Symmetry: none. Intercept (0, 0).

Points:

(

−1,−1

e

)

,

(

−2,− 2

e2

)

,

From y′: CP: x = −1.

CP
y ′ − −1 +
−−−−−−−−−−−−−−−−−−−→x|
y ↘ abs

min ↗
From y′′: y ′′ = 0 at x = −2.

y ′′ − −2 +
−−−−−−−−−−−−−−−−−−−→x|
y � infl �

y

x

(

−1,− 1
e

)(

−2,− 2
e2

)

y = x ex

Fig. 4.4.31

32. y = e−x sin x (x ≥ 0),
y ′ = e−x(cos x − sin x), y ′′ = −2e−x cos x .
From y: Intercept: (kπ, 0), where k is an integer.
Asymptotes: y = 0 as x →∞.

From y′: Critical points: x = π

4
+ kπ , where k is an

integer.

CP CP CP

y ′ 0 + π

4
− 5π

4
+ 9π

4
−

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→x| | | |
y ↗ abs

max ↘ abs
min ↗ loc

max ↘

From y′′: y ′′ = 0 at x = (k + 1
2 )π , where k is an

integer.

y ′′ 0 − π

2
+ 3π

2
− 5π

2
+

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→x| | | |
y � infl � infl � infl �

y

x

(
π
4 ,e
−π/4/

√
2
)

y = e−x sin x

π

π
2

5π
4

3π
2

Fig. 4.4.32

33. y = x2e−x2

y ′ = e−x2
(2x − 2x3) = 2x(1 − x2)e−x2

y ′′ = e−x2
(2 − 6x2 − 2x(2x − 2x3))

= (2 − 10x2 + 4x4)e−x2

From y: Asymptotes: y = 0.
Intercept: (0, 0). Symmetry: even.

Points

(

±1,
1

e

)

From y′: CP x = 0, x = ±1.

CP CP CP
y ′ + −1 − 0 + 1 −
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→x| | |
y ↗ abs

max ↘ abs
min ↗ abs

max ↘
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From y′′: y ′′ = 0 if
2x4 − 5x2 + 1 = 0

x2 = 5±√25 − 8

4

= 5±√17

4
.

so x = ±a = ±
√

5 +√17

4
, x = ±b = ±

√

5−√17

4
.

y ′′ + −a − −b + b − a +
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→x| | | |
y � infl � infl � infl � infl �

y

x−a −b b a

(−1,1/e) (1,1/e)
y = x2e−x2

Fig. 4.4.33

34. y = x2ex , y ′ = (2x + x2)ex = x(2+ x)ex ,
y ′′ = (x2 + 4x + 2)ex = (x + 2 −√2)(x + 2+√2)ex .
From y: Intercept: (0, 0).
Asymptotes: y = 0 as x →−∞.
From y′: Critical point: x = 0, x = −2.

CP CP
y ′ + −2 − 0 +
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→x| |
y ↗ loc

max ↘ abs
min ↗

From y′′: y ′′ = 0 at x = −2±√2.

y ′′ + −2−√2 − −2+√2 +
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→x| |
y � infl � infl �

y

x−2−√2 −2+√2

(−2,4e−2)

y = x2 ex

Fig. 4.4.34

35. y = ln x

x
, y ′ = 1− ln x

x2

y ′′ =
x2
(

− 1

x

)

− (1− ln x)2x

x4 = 2 ln x − 3

x3

From y: Asymptotes: x = 0, y = 0.
Symmetry: none. Intercept: (1, 0).

Points:

(

e,
1

e

)

,

(

e3/2,
3

2e3/2

)

.

From y′: CP: x = e.

ASY CP
y ′ 0 + e −
−−−−−−−−−−−−−−−−−−−−−−−−→x| |
y ↗ abs

max ↘
From y′′: y ′′ = 0 at x = e3/2.

ASY
y ′′ 0 − e3/2 +
−−−−−−−−−−−−−−−−−−−−−−−−→x| |
y � infl �

y

xe3/21

y = ln x

x

(e,1/e)

Fig. 4.4.35

36. y = ln x

x2
(x > 0),

y ′ = 1 − 2 ln x

x3 , y ′′ = 6 ln x − 5

x4 .

From y: Intercepts: (1, 0). Asymptotes: y = 0, since

lim
x→∞

ln x

x2
= 0, and x = 0, since lim

x→0+
ln x

x2
= −∞.

From y′: Critical point: x = e1/2.

CP
y ′ 0 + √

e −
−−−−−−−−−−−−−−−−−−−−−−−−→x| |
y ↗ abs

max ↘
From y′′: y ′′ = 0 at x = e5/6.

y ′′ 0 − e5/6 +
−−−−−−−−−−−−−−−−−−−−−−−−→x| |
y � infl �
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y

xe5/61

(
√

e,(2e)−1)

y = ln x

x2

Fig. 4.4.36

37. y = 1√
4− x2

= (4 − x2)−1/2

y ′ = −1

2
(4− x2)−3/2(−2x) = x

(4− x2)3/2

y ′′ =
(4 − x2)3/2 − x

3

2
(4− x2)1/2(−2x)

(4 − x2)3

= 4+ 2x2

(4 − x2)5/2

From y: Asymptotes: x = ±2. Domain −2 < x < 2.
Symmetry: even. Intercept: (0, 1

2 ).
From y′: CP: x = 0.

ASY CP ASY
y ′ −2 − 0 + 2
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→x| | |
y ↘ abs

min ↗

From y′′: y ′′ = 0 nowhere, y′′ > 0 on (−2, 2).
Therefore, y is concave up.

y

x−2 2

1/2

y = 1√
4− x2

Fig. 4.4.37

38. y = x√
x2 + 1

, y ′ = (x2 + 1)−3/2, y ′′ = −3x(x2 + 1)−5/2.

From y: Intercept: (0, 0). Asymptotes: y = 1 as
x →∞, and y = −1 as x →−∞. Symmetry: odd.
From y′: No critical point. y′ > 0 and y is increasing
for all x .
From y′′: y ′′ = 0 at x = 0.

y ′′ + 0 −
−−−−−−−−−−−−−−−−−→x|
y � infl �

y

x

y=1

y=−1

y = x√
x2 + 1

Fig. 4.4.38

39. y = (x2 − 1)1/3

y ′ = 2

3
x(x2 − 1)−2/3

y ′′ = 2

3
[(x2 − 1)−2/3 − 2

3
x(x2 − 1)−5/32x]

= −2

3
(x2 − 1)−5/3

(

1+ x2

3

)

From y: Asymptotes: none.
Symmetry: even. Intercepts: (±1, 0), (0,−1).
From y′: CP: x = 0. SP: x = ±1.

SP CP SP
y ′ − −1 − 0 + 1 +
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→x| | |
y ↘ ↘ abs

min ↗ ↗

From y′′: y ′′ = 0 nowhere.

y ′′ − −1 + 1 −
−−−−−−−−−−−−−−−−−−−−−−−−→x| |
y � infl � infl �
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y

x
1−1

y = (x2 − 1)1/3

−1

Fig. 4.4.39

40. According to Theorem 5 of Section 4.4,

lim
x→0+ x ln x = 0.

Thus,

lim
x→0

x ln |x | = lim
x→0+ x ln x = 0.

If f (x) = x ln |x | for x �= 0, we may define f (0) such
that f (0) = lim

x→0
x ln |x | = 0. Then f is continuous on

the whole real line and

f ′(x) = ln |x | + 1, f ′′(x) = 1

|x | sgn (x).

From f : Intercept: (0, 0), (±1, 0). Asymptotes: none.
Symmetry: odd.

From f ′: CP: x = ±1

e
. SP: x = 0.

CP SP CP

f ′ + −1

e
− 0 − 1

e
+

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→x| | |
f ↗ loc

max ↘ ↘ loc
min ↗

From f ′′: f ′′ is undefined at x = 0.

f ′′ − 0 +
−−−−−−−−−−−−−−−−−−−−−−−−→x|
f � infl �

y

x
( 1

e ,
−1
e

)

(−1
e ,

1
e

)

y = x ln |x |

Fig. 4.4.40

41. y = 0 is an asymptote of y = sin x

1+ x2
.

Curve crosses asymptote at infinitely many points:
x = nπ (n = 0,±1,±2, . . .).

y

x

y = sin x

1+ x2
y= 1

1+x2

y=− 1
1+x2

Fig. 4.4.41

Section 4.5 Extreme-Value Problems
(page 242)

1. Let the numbers be x and 7 − x . Then 0 ≤ x ≤ 7. The
product is P(x) = x(7− x) = 7x − x2.
P(0) = P(7) = 0 and P(x) > 0 if 0 < x < 7. Thus
maximum P occurs at a CP:

0 = d P

dx
= 7− 2x ⇒ x = 7

2
.

The maximum product is P(7/2) = 49/4.

2. Let the numbers be x and
8

x
where x > 0. Their sum is

S = x + 8

x
. Since S → ∞ as x → ∞ or x → 0+, the

minimum sum must occur at a critical point:

0 = dS

dx
= 1− 8

x2 ⇒ x = 2
√

2.
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Thus, the smallest possible sum is 2
√

2+ 8

2
√

2
= 4
√

2.

3. Let the numbers be x and 60 − x . Then 0 ≤ x ≤ 60.
Let P(x) = x2(60 − x) = 60x2 − x3.
Clearly, P(0) = P(60) = 0 amd P(x) > 0 if 0 < x < 60.
Thus maximum P occurs at a CP:

0 = d P

dx
= 120x − 3x2 = 3x(40 − x).

Therefore, x = 0 or 40.
Max must correspond to x = 40. The numbers are 40
and 20.

4. Let the numbers be x and 16 − x . Let
P(x) = x3(16 − x)5. Since P(x) → −∞ as x → ±∞,
so the maximum must occur at a critical point:

0 = P ′(x) = 3x2(16− x)5 − 5x3(16 − x)4

= x2(16 − x)4(48 − 8x).

The critical points are 0, 6 and 16. Clearly,
P(0) = P(16) = 0, and P(6) = 216× 105. Thus, P(x) is
maximum if the numbers are 6 and 10.

5. Let the numbers be x and 10 − x . We want to minimize

S(x) = x3 + (10 − x)2, 0 ≤ x ≤ 10.

S(0) = 100 and S(10) = 1, 000. For CP:

0 = S′(x) = 3x2 − 2(10 − x) = 3x2 + 2x − 20.

The only positive CP is x = (−2+√4 + 240)/6 ≈ 2.270.
Since S(2.270) ≈ 71.450, the minimum value of S is
about 71.45.

6. If the numbers are x and n − x , then 0 ≤ x ≤ n and the
sum of their squares is

S(x) = x2 + (n − x)2.

Observe that S(0) = S(n) = n2. For critical points:

0 = S′(x) = 2x − 2(n − x) = 2(2x − n)⇒ x = n/2.

Since S(n/2) = n2/2, this is the smallest value of the
sum of squares.

7. Let the dimensions of a rectangle be x and y. Then the
area is A = xy and the perimeter is P = 2x + 2y.
Given A we can express

P = P(x) = 2x + 2A

x
, (0 < x <∞).

Evidently, minimum P occurs at a CP. For CP:

0 = d P

dx
= 2− 2A

x2 ⇒ x2 = A = xy ⇒ x = y.

Thus min P occurs for x = y, i.e., for a square.

8. Let the width and the length of a rectangle of given
perimeter 2P be x and P − x . Then the area of the rect-
angle is

A(x) = x(P − x) = Px − x2.

Since A(x) → −∞ as x → ±∞ the maximum must
occur at a critical point:

0 = d A

dx
= P − 2x ⇒ x = P

2

Hence, the width and the length are
P

2
and

(P − P

2
) = P

2
. Since the width equals the length, it

is a square.

9. Let the dimensions of the isosceles triangle be as shown.
Then 2x + 2y = P (given constant). The area is

A = xh = x
√

y2 − x2 = x

√
(

P

2
− x

)2

− x2.

Evidently, y ≥ x so 0 ≤ x ≤ P/4. If x = 0 or x = P/4,
then A = 0. Thus the maximum of A must occur at a
CP. For max A:

0 = d A

dx
=
√

P2

4
− Px − Px

2

√

P2

4
− Px

,

i.e.,
P2

2
− 2Px − Px = 0, or x = P

6
. Thus y = P/3 and

the triangle is equilateral since all three sides are P/3.

y
h

y

x x

Fig. 4.5.9

10. Let the various dimensions be as shown in the figure.
Since h = 10 sin θ and b = 20 cos θ , the area of the
triangle is

A(θ) = 1
2 bh = 100 sin θ cos θ

= 50 sin 2θ for 0 < θ <
π

2
.
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Since A(θ) → 0 as θ → 0 and θ → π

2
, the maximum

must be at a critial point:

0 = A′(θ) = 100 cos 2θ ⇒ 2θ = π

2
⇒ θ = π

4
.

Hence, the largest possible area is

A(π/4) = 50 sin

[

2
(π

4

)]

= 50 m2.

(Remark: alternatively, we may simply observe that the
largest value of sin 2θ is 1; therefore the largest possible
area is 50(1) = 50 m2.)

θ θ

h

b/2b/2

10 10

Fig. 4.5.10

11. Let the corners of the rectangle be as shown.
The area of the rectangle is A = 2xy = 2x

√
R2 − x2 (for

0 ≤ x ≤ R).
If x = 0 or x = R then A = 0; otherwise A > 0.
Thus maximum A must occur at a critical point:

0 = d A

dx
= 2

[
√

R2 − x2 − x2

√
R2 − x2

]

⇒ R2 − 2x2 = 0.

Thus x = R√
2

and the maximum area is

2
R√
2

√

R2 − R2

2
= R2 square units.

y

x

(x,y)

R

x

Fig. 4.5.11

12. Let x be as shown in the figure. The perimeter of the
rectangle is

P(x) = 4x + 2
√

R2 − x2 (0 ≤ x ≤ R).

For critical points:

0 = d P

dx
= 4+ −2x√

R2 − x2

⇒2
√

R2 − x2 = x ⇒ x = 2R√
5
.

Since

d2 P

dx2 =
−2R2

(R2 − x2)3/2
< 0

therefore P(x) is concave down on [0, R], so it must

have an absolute maximum value at x = 2R√
5

. The largest

perimeter is therefore

P

(
2R√

5

)

= 4

(
2R√

5

)

+
√

R2 − 4R2

5
= 10R√

5
units.

(x,
√

R2−x2)

R

x

Fig. 4.5.12

13. Let the upper right corner be (x, y) as shown. Then

x ≥ 0 and y = b

√

1 − x2

a2
, so x ≤ a.

The area of the rectangle is

A(x) = 4xy = 4bx

√

1− x2

a2 , (0 ≤ x ≤ a).

Clearly, A = 0 if x = 0 or x = a, so maximum A must
occur at a critical point:

0 = d A

dx
= 4b

⎛

⎜
⎜
⎜
⎜
⎝

√

1− x2

a2 −
2x2

a2

2

√

1− x2

a2

⎞

⎟
⎟
⎟
⎟
⎠

Thus 1 − x2

a2
− x2

a2
= 0 and x = a√

2
. Thus y = b√

2
.

The largest area is 4
a√
2

b√
2
= 2ab square units.
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y

x

(x,y)

x2

a2 + y2

b2 =1

Fig. 4.5.13

14. See the diagrams below.

a) The area of the rectangle is A = xy. Since

y

a − x
= b

a
⇒ y = b(a − x)

a
.

Thus, the area is

A = A(x) = bx

a
(a − x) (0 ≤ x ≤ a).

For critical points:

0 = A′(x) = b

a
(a − 2x)⇒ x = a

2
.

Since A′′(x) = −2b

a
< 0, A must have a maxi-

mum value at x = a

2
. Thus, the largest area for the

rectangle is

b

a

(a

2

)(

a − a

2

)

= ab

4
square units,

that is, half the area of the triangle ABC .

b

A

C Ba
x

y

a−x
A BD

C

Fig. 4.5.14(a) Fig. 4.5.14(b)

(b) This part has the same answer as part (a). To see
this, let C D ⊥ AB, and solve separate problems for
the largest rectangles in triangles AC D and BC D
as shown. By part (a), both maximizing rectangles
have the same height, namely half the length of C D.
Thus, their union is a rectangle of area half of that
of triangle ABC .

15. NEED FIGURE If the sides of the triangle are 10 cm,
10 cm, and 2x cm, then the area of the triangle is
A(x) = x

√
100 − x2 cm2, where 0 ≤ x ≤ 10. Evi-

dently A(0) = A(10) = 0 and A(x) > 0 for 0 < x < 10.
Thus A will be maximum at a critical point. For a criti-
cal point

0 = A′(x) =
√

100− x2 − x

(
1

2
√

100 − x2
(−2x)

)

= 100 − x2 − x2
√

100 − x2
.

Thus the critical point is given by 2x2 = 100, so
x = √50. The maximum area of the triangle is
A(
√

50) = 50 cm2.

16. NEED FIGURE If the equal sides of the isosceles trian-
gle are 10 cm long and the angles opposite these sides
are θ , then the area of the triangle is

A(θ) = 1

2
(10)(10 sin θ) = 50 sin θ cm2,

which is evidently has maximum value 50 cm2 when
θ = π/2, that is, when the triangle is right-angled. This
solution requires no calculus, and so is easier than the
one given for the previous problem.

17. Let the width and the height of the billboard be w and
h m respectively. The area of the board is A = wh. The
printed area is (w − 8)(h − 4) = 100.

Thus h = 4+ 100

w − 8
and A = 4w + 100w

w − 8
, (w > 8).

Clearly, A→∞ if w→∞ or w→ 8+. Thus minimum
A occurs at a critical point:

0 = d A

dw
= 4+ 100

w − 8
− 100w

(w − 8)2

100w = 4(w2 − 16w + 64)+ 100w − 800

w2 − 16w − 136 = 0

w = 16±√800

2
= 8± 10

√
2.

Since w > 0 we must have w = 8+ 10
√

2.

Thus h = 4+ 100

10
√

2
= 4+ 5

√
2.

The billboard should be 8 + 10
√

2 m wide and 4 + 5
√

2
m high.
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2

2

hh−4
4

4w−8

w

Fig. 4.5.17

18. Let x be the side of the cut-out squares. Then the vol-
ume of the box is

V (x) = x(70 − 2x)(150 − 2x) (0 ≤ x ≤ 35).

Since V (0) = V (35) = 0, the maximum value will occur
at a critical point:

0 = V ′(x) = 4(2625 − 220x + 3x2)

= 4(3x − 175)(x − 15)

⇒ x = 15 or
175

3
.

The only critical point in [0, 35] is x = 15. Thus, the
largest possible volume for the box is

V (15) = 15(70 − 30)(150 − 30) = 72, 000 cm3.

70

150

150−2x

70−2x

x
x

Fig. 4.5.18

19. Let the rebate be $x . Then number of cars sold per
month is

2000 + 200
( x

50

)

= 2000 + 4x .

The profit per car is 1000 − x , so the total monthly profit
is

P = (2000 + 4x)(1000 − x) = 4(500 + x)(1000 − x)

= 4(500, 000 + 500x − x2).

For maximum profit:

0 = d P

dx
= 4(500 − 2x)⇒ x = 250.

(Since
d2 P

dx2 = −8 < 0 any critical point gives a local

max.) The manufacturer should offer a rebate of $250 to
maximize profit.

20. If the manager charges $(40+x) per room, then (80−2x)
rooms will be rented.
The total income will be $(80− 2x)(40 + x) and the total
cost will be $(80 − 2x)(10) + (2x)(2). Therefore, the
profit is

P(x) = (80 − 2x)(40 + x)− [(80 − 2x)(10) + (2x)(2)]

= 2400 + 16x − 2x2 for x > 0.

If P′(x) = 16 − 4x = 0, then x = 4. Since
P ′′(x) = −4 < 0, P must have a maximum value at
x = 4. Therefore, the manager should charge $44 per
room.

21. Head for point C on road x km east of A. Travel time is

T =
√

122 + x2

15
+ 10− x

39
.

We have T (0) = 12

15
+ 10

39
= 1.0564 hrs

T (10) =
√

244

15
= 1.0414 hrs

For critical points:

0 = dT

dx
= 1

15

x√
122 + x2

− 1

39

⇒ 13x = 5
√

122 + x2

⇒ (132 − 52)x2 = 52 × 122 ⇒ x = 5

T (5) = 13

15
+ 5

39
= 0.9949 <

{

T (0)
T (10).

(Or note that

d2T

dt2 =
1

15

√
122 + x2 − x2

√
122 + x2

122 + x2

= 122

15(122 + x2)3/2
> 0

so any critical point is a local minimum.)
To minimize travel time, head for point 5 km east of A.
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A x C 10−x B

39 km/h

15 km/h √
122+x2

12

P

Fig. 4.5.21

22. This problem is similar to the previous one except that
the 10 in the numerator of the second fraction in the ex-
pression for T is replaced with a 4. This has no effect
on the critical point of T , namely x = 5, which now lies
outside the appropriate interval 0 ≤ x ≤ 4. Minimum T
must occur at an endpoint. Note that

T (0) = 12

15
+ 4

39
= 0.9026

T (4) = 1

15

√

122 + 42 = 0.8433.

The minimum travel time corresponds to x = 4, that is,
to driving in a straight line to B.

23. Use x m for the circle and 1 − x m for square. The sum
of areas is

A = πr2 + s2 = πx2

4π2
+
(

1− x

4

)2

= x2

4π
+ (1 − x)2

42 (0 ≤ x ≤ 1)

Now A(0) = 1

16
, A(1) = 1

4π
> A(0). For CP:

0 = d A

dx
= x

2π
−1− x

8
⇒ x

(
1

2π
+ 1

8

)

= 1

8
⇒ x = π

4+ π .

Since
d2 A

dx2 =
1

2π
+ 1

8
> 0, the CP gives local minimum

for A.

a) For max total area use none of wire for the square,
i.e., x = 1.

b) For minimum total area use 1 − π

4+ π =
4

4+ π m

for square.

x 1−x

s

r

1 metre

s

x=C=2πr 1−x=P=4s

Fig. 4.5.23

24. Let the dimensions of the rectangle be as shown in the
figure. Clearly,

x = a sin θ + b cos θ,

y = a cos θ + b sin θ.

Therefore, the area is

A(θ) = xy

= (a sin θ + b cos θ)(a cos θ + b sin θ)

= ab + (a2 + b2) sin θ cos θ

= ab + 1

2
(a2 + b2) sin 2θ for 0 ≤ θ ≤ π

2
.

If A′(θ) = (a2 + b2) cos 2θ = 0, then θ = π

4
. Since

A′′(θ) = −2(a2 + b2) sin 2θ < 0 when 0 ≤ θ ≤ π

2
,

therefore A(θ) must have a maximum value at θ = π

4
.

Hence, the area of the largest rectangle is

A
(π

4

)

= ab + 1

2
(a2 + b2) sin

(π

2

)

= ab + 1

2
(a2 + b2) = 1

2
(a + b)2 sq. units.

(Note: x = y = a√
2
+ b√

2
indicates that the rectangle

containing the given rectangle with sides a and b, has
largest area when it is a square.)

a

b

x

y

θ

θ

Fig. 4.5.24

25. Let the line have intercepts x , y as shown. Let θ be an-
gle shown. The length of line is

L = 9

cos θ
+
√

3

sin θ
(0 < θ <

π

2
).
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Clearly, L →∞ if θ → 0+ or θ → π

2
−.

Thus the minimum length occurs at a critical point.
For CP:

0 = dL

dθ
= 9 sin θ

cos2 θ
−
√

3 cos θ

sin2 θ
⇒ tan3 θ =

(
1√
3

)3

⇒ θ = π

6

Shortest line segment has length

L = 9√
3/2
+
√

3

1/2
= 8
√

3 units.

y

x

(9,
√

3)

X

9 √
3

Y

θ

θ

Fig. 4.5.25

26. The longest beam will have length equal to the minimum
of L = x + y, where x and y are as shown in the figure
below:

x = a

cos θ
, y = b

sin θ
.

Thus,

L = L(θ) = a

cos θ
+ b

sin θ

(

0 < θ <
π

2

)

.

a x

y

b

θ

Fig. 4.5.26

If L ′(θ) = 0, then

a sin θ

cos2 θ
− b cos θ

sin2 θ
= 0

⇔ a sin3 θ − b cos3 θ

cos2 θ sin2 θ
= 0

⇔ a sin3 θ − b cos3 θ = 0

⇔ tan3 θ = b

a

⇔ tan θ = b1/3

a1/3 .

Clearly, L(θ)→ ∞ as θ → 0+ or θ → π

2
−. Thus, the

minimum must occur at θ = tan−1
(

b1/3

a1/3

)

. Using the

triangle above for tan θ = b1/3

a1/3 , it follows that

cos θ = a1/3
√

a2/3 + b2/3
, sin θ = b1/3

√
a2/3 + b2/3

.

Hence, the minimum is

L(θ) = a
(

a1/3

√
a2/3 + b2/3

) + b
(

b1/3

√
a2/3 + b2/3

)

=
(

a2/3 + b2/3
)3/2

units.

27. If the largest beam that can be carried horizon-
tally around the corner is l m long (by Exercise 26,
l = (a2/3 + b2/3)2/3 m), then at the point of maximum
clearance, one end of the beam will be on the floor at
the outer wall of one hall, and the other will be on the
ceiling at the outer wall of the second hall. Thus the hor-
izontal projection of the beam will be l . So the beam
will have length

√

l2 + c2 = [(a2/3 + b2/3)3 + c2]1/2 units.

28. Let θ be the angle of inclination of the ladder. The
height of the fence is

h(θ) = 6 sin θ − 2 tan θ

(

0 < θ <
π

2

)

.

h

2 m

6 m

θ

Fig. 4.5.28
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For critical points:

0 = h′(θ) = 6 cos θ − 2 sec2 θ

⇒3 cos θ = sec2 θ ⇒ 3 cos3 θ = 1

⇒ cos θ = ( 1
3

)1/3
.

Since h′′(θ) = −6 sin θ − 4 sec2 θ tan θ < 0 for

0 < θ <
π

2
, therefore h(θ) must be maximum at

θ = cos−1
( 1

3

)1/3
. Then

sin θ =
√

32/3 − 1

31/3
, tan θ =

√

32/3 − 1.

Thus, the maximum height of the fence is

h(θ) = 6

(√
32/3 − 1

31/3

)

− 2
√

32/3 − 1

= 2(32/3 − 1)3/2 ≈ 2.24 m.

29. Let (x, y) be a point on x2y4 = 1. Then x2y4 = 1
and the square of distance from (x, y) to (0, 0) is

S = x2 + y2 = 1

y4 + y2, (y �= 0)

Clearly, S → ∞ as y → 0 or y → ±∞, so minimum S
must occur at a critical point. For CP:

0 = dS

dy
= −4

y5
+ 2y ⇒ y6 = 2⇒ y = ±21/6

⇒ x = ± 1

21/3

Thus the shortest distance from origin to curve is

S =
√

1

22/3 + 21/3 =
√

3

22/3 =
31/2

21/3 units.

30. The square of the distance from (8, 1) to the curve
y = 1+ x3/2 is

S = (x − 8)2 + (y − 1)2

= (x − 8)2 + (1 + x3/2 − 1)2

= x3 + x2 − 16x + 64.

Note that y, and therefore also S, is only defined for
x ≥ 0. If x = 0 then S = 64. Also, S →∞ if x → ∞.
For critical points:

0 = dS

dx
= 3x2 + 2x − 16 = (3x + 8)(x − 2)

⇒ x = − 8
3 or 2.

Only x = 2 is feasible. At x = 2 we have S = 44 < 64.
Therefore the minimum distance is

√
44 = 2

√
11 units.

31. Let the cylinder have radius r and height h. By sym-
metry, the centre of the cylinder is at the centre of the
sphere. Thus

r2 + h2

4
= R2.

The volume of cylinder is

V = πr2h = πh

(

R2 − h2

4

)

, (0 ≤ h ≤ 2R).

Clearly, V = 0 if h = 0 or h = 2R, so maximum V
occurs at a critical point. For CP:

0 = dV

dh
= π

[

R2 − h2

4
− 2h2

4

]

⇒ h2 = 4

3
R2 ⇒ h = 2R√

3

⇒ r =
√

2

3
R.

The largest cylinder has height
2R√

3
units and radius

√

2

3
R units.

r

R

h

h/2

Fig. 4.5.31

32. Let the radius and the height of the circular cylinder be r
and h. By similar triangles,

h

R − r
= H

R
⇒ h = H(R − r)

R
.

Hence, the volume of the circular cylinder is

V (r) = πr 2h = πr2 H(R − r)

R

= πH

(

r2 − r3

R

)

for 0 ≤ r ≤ R.
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Since V (0) = V (R) = 0, the maximum value of V must

be at a critical point. If
dV

dr
= πH

(

2r − 3r2

R

)

= 0,

then r = 2R

3
. Therefore the cylinder has maximum

volume if its radius is r = 2R

3
units, and its height is

h =
H

(

R − 2R

3

)

R
= H

3
units.

H

h

r

R

Fig. 4.5.32

33. Let the box have base dimensions x m and height y m.
Then x2y = volume = 4.
Most economical box has minimum surface area (bottom
and sides). This area is

S = x2 + 4xy = x2 + 4x

(
4

x2

)

= x2 + 16

x
, (0 < x <∞).

Clearly, S → ∞ if x → ∞ or x → 0+. Thus minimum
S occurs at a critical point. For CP:

0 = dS

dx
= 2x − 16

x2 ⇒ x3 = 8⇒ x = 2⇒ y = 1.

Most economical box has base 2 m × 2 m and
height 1 m.

x

x

y

Fig. 4.5.33

34.

2 ft

2 ft

s

x

x

x

Fig. 4.5.34

From the figure, if the side of the square base of the
pyramid is 2x , then the slant height of triangular walls
of the pyramid is s = √2 − x . The vertical height of the
pyramid is

h =
√

s2 − x2 =
√

2− 2
√

2x + x2 − x2 = √2

√

1 −√2x .

Thus the volume of the pyramid is

V = 4
√

2

3
x2
√

1−√2x,

for 0 ≤ x ≤ 1/
√

2. V = 0 at both endpoints, so the
maximum will occur at an interior critical point. For CP:

0 = dV

dx
= 4
√

2

3

[

2x

√

1−√2x −
√

2x2

2
√

1−√2x

]

4x(1 −√2x) = √2x2

4x = 5
√

2x2 , x = 4/(5
√

2).

V (4/(5
√

2)) = 32
√

2/(75
√

5). The largest volume of
such a pyramid is 32

√
2/(75

√
5) ft3.

35. Let the dimensions be as shown. The perimeter is

π
x

2
+ x + 2y = 10. Therefore,

(

1+ π
2

)

x + 2y = 10, or (2+ π)x + 4y = 20.

The area of the window is

A = xy + 1

2
π
( x

2

)2 = π x2

8
+ x

(

5− (2+ π)x
4

)

.
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To maximize light admitted, maximize the area A. For
CP:

0 = d A

dx
= πx

4
+ 5− 2+ π

4
x − 2 + π

4
x ⇒ x = 20

4+ π
⇒ y = 10

4+ π .

To admit greatest amount of light, let width = 20

4+ π m

and height (of the rectangular part) be
10

4+ π m.

x

x/2

yy

Fig. 4.5.35

36. Let h and r be the length and radius of the cylindrical
part of the tank. The volume of the tank is

V = πr 2h + 4
3πr3.

h

r

Fig. 4.5.36

If the cylindrical wall costs $k per unit area and the
hemispherical wall $2k per unit area, then the total cost
of the tank wall is

C = 2πrhk + 8πr2k

= 2πrk
V − 4

3πr3

πr2 + 8πr2k

= 2V k

r
+ 16

3
πr2k (0 < r <∞).

Since C →∞ as r → 0+ or r →∞, the minimum cost
must occur at a critical point. For critical points,

0 = dC

dr
= −2V kr−2+32

3
πrk ⇔ r =

(
3V

16π

)1/3

.

Since V = πr2h + 4
3πr3,

r3 = 3

16π

(

πr2h + 4

3
πr3

)

⇒ r = 1

4
h

⇒ h = 4r = 4

(
3V

16π

)1/3

.

Hence, in order to minimize the cost, the radius and
length of the cylindrical part of the tank should be
(

3V

16π

)1/3

and 4

(
3V

16π

)1/3

units respectively.

37. Let D′ be chosen so that mirror AB is the right bisector
of DD′. Let C D′ meet AB at X . Therefore, the travel
time along C X D is

TX = C X + X D

speed
= C X + X D′

speed
= C D′

speed
.

If Y is any other point on AB, travel time along CY D is

TY = CY + Y D

speed
= CY + Y D′

speed
>

C D′

speed
.

(The sum of two sides of a triangle is greater than the
third side.) Therefore, X minimizes travel time. Clearly,
X N bisects � C X D.

C

A B

D

D′

X Y

N

θ θ

Fig. 4.5.37

38. If the path of the light ray is as shown in the figure then
the time of travel from A to B is

T = T (x) =
√

a2 + x2

v1
+
√

b2 + (c − x)2

v2
.
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i

r b

x c−x

c

a

A

B

Fig. 4.5.38

To minimize T , we look for a critical point:

0 = dT

dx
= 1

v1

x√
a2 + x2

− 1

v2

c − x
√

b2 + (c − x)2

= 1

v1
sin i − 1

v2
sin r.

Thus,
sin i

sin r
= v1

v2
.

39. Let the width be w, and the depth be h. Therefore

(
h

2

)2

+
(w

2

)2 = R2.

The stiffness is S = wh3 = h3
√

4R2 − h2 for
(0 ≤ h ≤ 2R). We have S = 0 if h = 0 or h = 2R.
For maximum stiffness:

0 = dS

dh
= 3h2

√

4R2 − h2 − h4

√
4R2 − h2

.

Thus 3(4R2 − h2) = h2 so h = √3R, and w = R.
The stiffest beam has width R and depth

√
3R.

R

h

w

w/2

h/2

Fig. 4.5.39

40. The curve y = 1 + 2x − x3 has slope m = y ′ = 2 − 3x2.
Evidently m is greatest for x = 0, in which case y = 1
and m = 2. Thus the tangent line with maximal slope
has equation y = 1+ 2x .

41.
d Q

dt
= kQ3(L − Q)5 (k, L > 0)

Q grows at the greatest rate when f (Q) = Q3(L − Q)5

is maximum, i.e., when

0 = f ′(Q) = 3Q2(L − Q)5 − 5Q3(L − Q)4

= Q2(L − Q)4(3L − 8Q) ⇒ Q = 0, L ,
3L

8
.

Since f (0) = f (L) = 0 and f

(
3L

8

)

> 0, Q is growing

most rapidly when Q = 3L

8
.

42. Let h and r be the height and base radius of the cone
and R be the radius of the sphere. From similar trian-
gles,

r√
h2 + r2

= R

h − R

⇒ h = 2r2 R

r2 − R2
(r > R).

R

r

h−Rh √
h2+r2

R

Fig. 4.5.42

Then the volume of the cone is

V = 1

3
πr2h = 2

3
π R

r4

r2 − R2 (R < r <∞).

Clearly V → ∞ if r → ∞ or r → R+. Therefore to
minimize V , we look for a critical point:

0 = dV

dr
= 2

3
π R

[
(r2 − R2)(4r3)− r4(2r)

(r2 − R2)2

]

⇔ 4r5 − 4r3 R2 − 2r5 = 0

⇔ r = √2R.

Hence, the smallest possible volume of a right circular
cone which can contain sphere of radius R is

V = 2

3
π R

(
4R4

2R2 − R2

)

= 8

3
π R3 cubic units.
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43. If x cars are loaded, the total time for the trip is

T = t + 1+ x

1,000
where x = f (t) = 1,000 t

e−t + t
.

We can minimize the average time per car (or, equiva-
lently, maximize the number of cars per hour). The aver-
age time (in hours) per car is

A = T

x
= e−t + t

1,000
+ e−t + t

1,000t
+ 1

1,000

= 1

1,000

[
(

e−t + t
)
(

1+ 1

t

)

+ 1

]

.

This expression approaches ∞ as t → 0+ or t → ∞.
For a minimum we should look for a positive critical
point. Thus we want

0 = 1

1,000

[
(−e−t + 1

)
(

1+ 1

t

)

− (e−t + t
) 1

t2

]

,

which simplifies to

t2 + t + 1 = t2 et .

Both sides of this equation are increasing functions but
the left side has smaller slope than the right side for
t > 0. Since the left side is 1 while the right side is 0 at
t = 0, there will exist a unique solution in t > 0. Using
a graphing calculator or computer program we determine
that the critical point is approximately t = 1.05032. For
this value of t we have x ≈ 750.15, so the movement
of cars will be optimized by loading 750 cars for each
sailing.

44. Let distances and angles be as shown. Then tanα = 2

x
,

tan(θ + α) = 12

x

12

x
= tan θ + tanα

1 − tan θ tanα
=

tan θ + 2

x

1− 2

x
tan θ

12

x
− 24

x2 tan θ = tan θ + 2

x

tan θ

(

1+ 24

x2

)

= 10

x
, so tan θ = 10x

x2 + 24
= f (x).

To maximize θ (i.e., to get the best view of the mural),
we can maximize tan θ = f (x).
Since f (0) = 0 and f (x)→ 0 as x →∞, we look for a
critical point.

0 = f ′(x) = 10

[
x2 + 24− 2x2

(x2 + 24)2

]

⇒ x2 = 24

⇒ x = 2
√

6

Stand back 2
√

6 ft (≈ 4.9 ft) to see the mural best.

10

2

x

θ
α

Fig. 4.5.44

45. Let r be the radius of the circular arc and θ be the angle
shown in the left diagram below. Thus,

2rθ = 100 ⇒ r = 50

θ
.

θθ

wall

fence

r

y

θ

y=tan x

y=x

ππ/2

Fig. 4.5.45(a) Fig. 4.5.45(b)

The area of the enclosure is

A = 2θ

2π
πr2 − (r cos θ)(r sin θ)

= 502

θ
− 502

θ2

sin 2θ

2

= 502
(

1

θ
− sin 2θ

2θ2

)

for 0 < θ ≤ π . Note that A → ∞ as θ → 0+, and
for θ = π we are surrounding the entire enclosure with
fence (a circle) and not using the wall at all. Evidently
this would not produce the greatest enclosure area, so the
maximum area must correspond to a critical point of A:

0 = d A

dθ
= 502

(

− 1

θ2
− 2θ2(2 cos 2θ)− sin 2θ(4θ)

4θ4

)

⇔ 1

θ2 +
cos 2θ

θ2 = sin 2θ

θ3

⇔ 2θ cos2 θ = 2 sin θ cos θ

⇔ cos θ = 0 or tan θ = θ.
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Observe that tan θ = θ has no solutions in (0, π ]. (The
graphs of y = tan θ and y = θ cross at θ = 0 but
nowhere else between 0 and π .) Thus, the greatest en-
closure area must correspond to cos θ = 0, that is, to

θ = π

2
. The largest enclosure is thus semicircular, and

has area
2

π
(50)2 = 5000

π
m2.

46. Let the cone have radius r and height h.
Let sector of angle θ from disk be used.

Then 2πr = Rθ so r = R

2π
θ .

Also h = √R2 − r2 =
√

R2 − R2θ2

4π2 =
R

2π

√

4π2 − θ2

The cone has volume

V = πr2h

3
= π

3

R2

4π2
θ2 R

2π

√

4π2 − θ

= R3

24π2 f (θ) where f (θ) = θ2
√

4π2 − θ2 (0 ≤ θ ≤ 2π)

V (0) = V (2π) = 0 so maximum V must occur at a
critical point. For CP:

0 = f ′(θ) = 2θ
√

4π2 − θ2 − θ3

√
4π2 − θ2

⇒ 2(4π2 − θ2) = θ2 ⇒ θ2 = 8

3
π2.

The largest cone has volume V

(

π

√

8

3

)

= 2π R3

9
√

3
cu. units.

θ

Rθ

R

R

R
h

r
2πr

Fig. 4.5.46

47. Let the various distances be as labelled in the diagram.

a

h

a−x

x

hy−h

y

L

Fig. 4.5.47

From the geometry of the various triangles in the diagram
we have

x2 = h2 + (a − x)2 ⇒ h2 = 2ax − a2

y2 = a2 + (y − h)2 ⇒ h2 = 2hy − a2

hence hy = ax . Then

L2 = x2 + y2 = x2 + a2x2

h2

= x2 + a2x2

2ax − a2 =
2ax3

2ax − a2

for
a

2
< x ≤ a. Clearly, L → ∞ as x → a

2
+, and

L(a) = √2a. For critical points of L2:

0 = d(L2)

dx
= (2ax − a2)(6ax2)− (2ax3)(2a)

(2ax − a2)2

= 2a2x2(4x − 3a)

(2ax − a2)2
.

The only critical point in

(
a

2
, a

]

is x = 3a

4
. Since

L

(
3a

4

)

= 3
√

3a

4
< L(a), therefore the least possible

length for the fold is
3
√

3a

4
cm.

Section 4.6 Finding Roots of Equations
(page 251)

1. f (x) = x2 − 2, f ′(x) = 2x .
Newton’s formula xn+1 = g(xn), where

g(x) = x − x2 − 2

2x
= x2 + 2

2x
.

Starting with x0 = 1.5, get x3 = x4 = 1.41421356237.

2. f (x) = x2 − 3, f ′(x) = 2x .
Newton’s formula xn+1 = g(xn), where

g(x) = x − x2 − 3

2x
= x2 + 3

2x
.

Starting with x0 = 1.5, get x4 = x5 = 1.73205080757.

3. f (x) = x3 + 2x − 1, f ′(x) = 3x2 + 2.
Newton’s formula xn+1 = g(xn), where

g(x) = x − x3 + 2x − 1

3x2 + 2
= 2x3 + 1

3x2 + 2
.

Starting with x0 = 0.5, get x3 = x4 = 0.45339765152.
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4. f (x) = x3 + 2x2 − 2, f ′(x) = 3x2 + 4x .
Newton’s formula xn+1 = g(xn), where

g(x) = x − x3 + 2x2 − 2

3x2 + 4x
= 2x3 + 2x2 + 2

3x2 + 4x
.

Starting with x0 = 1.5, get x5 = x6 = 0.839286755214.

5. f (x) = x4 − 8x2 − x + 16, f ′(x) = 4x3 − 16x − 1.
Newton’s formula xn+1 = g(xn), where

g(x) = x − x4 − 8x2 − x + 16

4x3 − 16x − 1
= 3x4 − 8x2 − 16

4x3 − 16x − 1
.

Starting with x0 = 1.5, get x4 = x5 = 1.64809536561.
Starting with x0 = 2.5, get x5 = x6 = 2.35239264766.

6. f (x) = x3 + 3x2 − 1, f ′(x) = 3x2 + 6x .
Newton’s formula xn+1 = g(xn), where

g(x) = x − x3 + 3x2 − 1

3x2 + 6x
= 2x3 + 3x2 + 1

3x2 + 6x
.

Because f (−3) = −1, f (−2) = 3, f (−1) = 1,
f (0) = −1, f (1) = 3, there are roots between −3 and
−2, between −1 and 0, and between 0 and 1.
Starting with x0 = −2.5, get x5 = x6 = −2.87938524157.
Starting with x0 = −0.5, get
x4 = x5 = −0.652703644666.
Starting with x0 = 0.5, get x4 = x5 = 0.532088886328.

7. f (x) = sin x − 1+ x , f ′(x) = cos x + 1.
Newton’s formula is xn+1 = g(xn), where

g(x) = x − sin x − 1+ x

cos x + 1
.

The graphs of sin x and 1−x suggest a root near x = 0.5.
Starting with x0 = 0.5, get
x3 = x4 = 0.510973429389.

y

x0.5 1.0 1.5

y = 1− x

y = sin x

Fig. 4.6.7

8. f (x) = x2 − cos x , f ′(x) = 2x + sin x .
Newton’s formula is xn+1 = g(xn), where

g(x) = x − x2 − cos x

2x + sin x
.

The graphs of cos x and x2, suggest a root near
x = ±0.8. Starting with x0 = 0.8, get
x3 = x4 = 0.824132312303. The other root is the neg-
ative of this one, because cos x and x2 are both even
functions.

y

x-1.5 -1.0 -0.5 0.5 1.0 1.5

y = x2

y = cos x

Fig. 4.6.8

9. Since tan x takes all real values between any two consec-
utive odd multiples of π/2, its graph intersects y = x
infinitely often. Thus, tan x = x has infinitely many solu-
tions. The one between π/2 and 3π/2 is close to 3π/2,
so start with x0 = 4.5. Newton’s formula here is

xn+1 = xn − tan xn − xn

sec2 xn − 1
.

We get x3 = x4 = 4.49340945791.
y

x
π

y = tan x

y = x

Fig. 4.6.9

10. A graphing calculator shows that the equation

(1 + x2)
√

x − 1 = 0

has a root near x = 0.6. Use of a solve routine or New-
ton’s Method gives x = 0.56984029099806.
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12. Let f (x) = sin x

1+ x2 . Since | f (x)| ≤ 1/(1 + x2) → 0

as x → ±∞ and f (0) = 0, the maximum and minimum
values of f will occur at the two critical points of f that
are closest to the origin on the right and left, respectively.
For CP:

0 = f ′(x) = (1 + x2) cos x − 2x sin x

(1 + x2)2

0 = (1+ x2) cos x − 2x sin x

with 0 < x < π for the maximum and −π < x < 0 for
the minimum. Solving this equation using a solve routine
or Newton’s Method starting, say, with x0 = 1.5, we get
x = ±0.79801699184239. The corresponding max and
min values of f are ±0.437414158279.

13. Let f (x) = cos x

1 + x2
. Note that f is an even function, and

that f has maximum value 1 at x = 0. (Clearly f (0) = 1
and | f (x)| < 1 if x �= 0.) The minimum value will occur
at the critical points closest to but not equal to 0. For
CP:

0 = f ′(x) = (1+ x2)(− sin x)− 2x cos x

(1 + x2)2

0 = (1 + x2) sin x + 2x cos x .

The first CP to the right of zero is between π/2
and 3π/2, so start with x = 2.5, say, and get
x = 2.5437321475261. The minimum value is
f (x) = −0.110639672192.

14. For x2 = 0 we have xn+1 = xn − (x2
n/(2xn)) = xn/2.

If x0 = 1, then x1 = 1/2, x2 = 1/4, x3 = 1/8.

a) xn = 1/2n , by induction.

b) xn approximates the root x = 0 to within 0.0001
provided 2n > 10, 000. We need n ≥ 14 to ensure
this.

c) To ensure that x2
n is within 0.0001 of 0 we need

(1/2n)2 < 0.0001, that is, 22n > 10, 000. We need
n ≥ 7.

d) Convergence of Newton approximations to the root
x = 0 of x2 = 0 is slower than usual because the
derivative 2x of x2 is zero at the root.

15. f (x) =
{√

x if x ≥ 0√−x if x < 0
,

f ′(x) =
{

1/(2
√

x) if x > 0
−1/(2

√−x) if x < 0
.

The Newton’s Method formula says that

xn+1 = xn − f (xn)

f ′(xn)
= xn − 2xn = −xn .

If x0 = a, then x1 = −a, x2 = a, and, in general,
xn = (−1)na. The approximations oscillate back and
forth between two numbers.
If one observed that successive approximations were os-
cillating back and forth between two values a and b, one
should try their average, (a + b)/2, as a new starting
guess. It may even turn out to be the root!

16. Newton’s Method formula for f (x) = x1/3 is

xn+1 = xn − x1/3
n

(1/3)x−2/3
n

= xn − 3xn = −2xn .

If x0 = 1, then x1 = −2, x2 = 4, x3 = −8, x4 = 16, and,
in general, xn = (−2)n . The successive “approximations”
oscillate ever more widely, diverging from the root at
x = 0.

17. Newton’s Method formula for f (x) = x2/3 is

xn+1 = xn − x2/3
n

(2/3)x−1/3
n

= xn − 3
2 xn = − 1

2 xn .

If x0 = 1, then x1 = −1/2, x2 = 1/4, x3 = −1/8,
x4 = 1/16, and, in general, xn = (−1/2)n . The succes-
sive approximations oscillate around the root x = 0, but
still converge to it (though more slowly than is usual for
Newton’s Method).

18. To solve 1 + 1
4 sin x = x , start with x0 = 1 and iterate

xn+1 = 1+ 1
4 sin xn . x5 and x6 round to 1.23613.

19. To solve cos(x/3) = x , start with x0 = 0.9 and iterate
xn+1 = cos(xn/3). x4 and x5 round to 0.95025.

20. To solve (x + 9)1/3 = x , start with x0 = 2 and iterate
xn+1 = (xn + 9)1/3. x4 and x5 round to 2.24004.

21. To solve 1/(2 + x2) = x , start with x0 = 0.5 and iterate
xn+1 = 1/(2 + x2

n ). x6 and x7 round to 0.45340.

22. To solve x3 + 10x − 10 = 0, start with x0 = 1 and iterate
xn+1 = 1− 1

10 x3
n . x7 and x8 round to 0.92170.

23. r is a fixed point of N(x)

⇐⇒ r = N(r) = r − f (r)

f ′(r)
⇐⇒ 0 = − f (r)/ f ′(r)
⇐⇒ f (r) = 0

i.e., if and only if r is a root of f (x) = 0. In this case,
xn+1 = N(xn) is the nth Newton’s Method approximation
to the root, starting from the initial guess x0.

24. Let g(x) = f (x) − x for a ≤ x ≤ b. g is continuous
(because f is), and since a ≤ f (x) ≤ b whenever
a ≤ x ≤ b (by condition (i)), we know that g(a) ≥ 0
and g(b) ≤ 0. By the Intermediate-Value Theorem there
exists r in [a, b] such that g(r) = 0, that is, such that
f (r) = r .
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25. We are given that there is a constant K satisfying
0 < K < 1, such that

| f (u)− f (v)| ≤ K |u − v|

holds whenever u and v are in [a, b]. Pick any x0 in
[a, b], and let x1 = f (x0), x2 = f (x1), and, in general,
xn+1 = f (xn). Let r be the fixed point of f in [a, b]
found in Exercise 24. Thus f (r) = r . We have

|x1 − r | = | f (x0)− f (r)| ≤ K |x0 − r |
|x2 − r | = | f (x1)− f (r)| ≤ K |x1 − r | ≤ K 2|x0 − r |,

and, in general, by induction

|xn − r | ≤ K n |x0 − r |.

Since K < 1, limn→∞ K n = 0, so limn→∞ xn = r .
The iterates converge to the fixed point as claimed in
Theorem 6.

Section 4.7 Linear Approximations
(page 256)

1. f (x) = x2, f ′(x) = 2x , f (3) = 9, f ′(3) = 6.
Linearization at x = 3: L(x) = 9+ 6(x − 3).

2. f (x) = x−3, f ′(x) = −3x−4, f (2) = 1/8,
f ′(2) = −3/16.
Linearization at x = 2: L(x) = 1

8 − 3
16 (x − 2).

3. f (x) = √4− x , f ′(x) = −1/(2
√

4− x), f (0) = 2,
f ′(0) = −1/4.
Linearization at x = 0: L(x) = 2− 1

4 x .

4. f (x) = √3+ x2, f ′(x) = x/
√

3+ x2, f (1) = 2,
f ′(1) = 1/2.
Linearization at x = 1: L(x) = 2+ 1

2 (x − 1).

5. f (x) = (1 + x)−2, f ′(x) = −2(1 + x)−3, f (2) = 1/9,
f ′(2) = −2/27.
Linearization at x = 2: L(x) = 1

9 − 2
27 (x − 2).

6. f (x) = x−1/2, f ′(x) = (−1/2)x−3/2, f (4) = 1/2,
f ′(4) = −1/16.
Linearization at x = 4: L(x) = 1

2 − 1
16 (x − 4).

7. f (x) = sin x , f ′(x) = cos x , f (π) = 0, f ′(π) = −1.
Linearization at x = π : L(x) = −(x − π).

8. f (x) = cos(2x), f ′(x) = −2 sin(2x), f (π/3) = −1/2,
f ′(π/3) = −√3.
Linearization at x = π/3: L(x) = −1

2 −
√

3
(

x − π
3

)

.

9. f (x) = sin2 x , f ′(x) = 2 sin x cos x , f (π/6) = 1/4,
f ′(π/6) = √3/2.
Linearization at x = π/6: L(x) = 1

4 + (
√

3/2)
(

x − π
6

)

.

10. f (x) = tan x , f ′(x) = sec2 x , f (π/4) = 1, f ′(π/4) = 2.
Linearization at x = π/4: L(x) = 1 + 2

(

x − π
4

)

.

11. If A and x are the area and side length of the square,
then A = x2. If x = 10 cm and �x = 0.4 cm, then

�A ≈ d A

dx
�x = 2x �x = 20(0.4) = 8.

The area increases by about 8 cm2.

12. If V and x are the volume and side length of the cube,
then V = x3. If x = 20 cm and �V = −12 cm3, then

−12 = �V ≈ dV

dx
�x = 3x2�x = 1, 200�x,

so that �x = −1/100. The edge length must decrease by
about 0.01 cm in to decrease the volume by 12 cm3.

13. The circumference C and radius r of the orbit are linked
by C = 2πr . Thus �C = 2π �r . If �r = −10 mi then
�C ≈ 2π �r = 20π . The circumference of the orbit will
decrease by about 20π ≈ 62.8 mi if the radius decreases
by 10 mi. Note that the answer does not depend on the
actual radius of the orbit.

14. a = g[R/(R + h)]2 implies that

�a ≈ da

dh
�h = gR2 −2

(R + h)3
�h.

If h = 0 and �h = 10 mi, then

�a ≈ −20g

R
= −20× 32

3960
≈ 0.16 ft/s2.

15. f (x) = x1/2 f ′(x) = 1

2
x−1/2 f ′′(x) = −1

4
x−3/2

√
50 = f (50) ≈ f (49)+ f ′(49)(50 − 49)

= 7+ 1

14
= 99

14
≈ 7.071.

f ′′(x) < 0 on [49, 50], so error is negative:
√

50 <
99

14

| f ′′(x)| < 1

4× 493/2 =
1

4× 73 =
1

1372
≈ 0.00073 = k

on (49, 50).

Thus |error| ≤ k

2
(50 − 49)2 = 1

2744
= 0.00036. We have

99

14
− 1

2744
≤ √50 ≤ 99

14
,

i.e., 7.071064 ≤ √50 ≤ 7.071429

16. Let f (x) = √x , then f ′(x) = 1
2 x−1/2 and

f ′′(x) = − 1
4 x−3/2. Hence,

√
47 = f (47) ≈ f (49) + f ′(49)(47 − 49)

= 7 +
(

1

14

)

(−2) = 48

7
≈ 6.8571429.
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Clearly, if x ≥ 36, then

| f ′′(x)| ≤ 1

4× 63 =
1

864
= K .

Since f ′′(x) < 0, f is concave down. Therefore, the

error E = √47− 48

7
< 0 and

|E | < K

2
(47 − 49)2 = 1

432
.

Thus,
48

7
− 1

432
<
√

47 <
48

7
6.8548 <

√
47 < 6.8572.

17. f (x) = x1/4, f ′(x) = 1

4
x−3/4, f ′′(x) = − 3

16
x−7/4

4
√

85 = f (85) ≈ f (81)+ f ′(81)(85 − 81)

= 3 + 4

4× 27
= 3 + 1

27
= 82

27
≈ 3.037.

f ′′(x) < 0 on [81, 85] so error is negative: 4
√

85 <
82

27
.

| f ′′(x)| < 3

16× 37 =
1

11, 664
= k on [81, 85].

Thus |Error| ≤ k

2
(85 − 81)2 = 0.00069.

82

27
− 1

1458
<

4
√

85 <
82

27
,

or 3.036351 ≤ 4
√

85 ≤ 3.037037

18. Let f (x) = 1

x
, then f ′(x) = − 1

x2
and f ′′(x) = 2

x3
.

Hence,

1

2.003
= f (2.003) ≈ f (2)+ f ′(2)(0.003)

= 1

2
+
(

−1

4

)

(0.003) = 0.49925.

If x ≥ 2, then | f ′′(x)| ≤ 2
8 = 1

4 . Since f ′′(x) > 0 for
x > 0, f is concave up. Therefore, the error

E = 1

2.003
− 0.49925 > 0

and

|E | < 1

8
(0.003)2 = 0.000001125.

Thus,

0.49925 <
1

2.003
< 0.49925 + 0.000001125

0.49925 <
1

2.003
< 0.499251125.

19. f (x) = cos x, f ′(x) = − sin x, f ′′(x) = − cos x

cos 46◦ = cos
(π

4
+ π

180

)

≈ cos
π

4
− sin

(π

4

)( π

180

)

= 1√
2

(

1− π

180

)

≈ 0.694765.

f ′′(0) < 0 on [45◦, 46◦] so

|Error| < 1

2
√

2

( π

180

)2 ≈ 0.0001.

We have

1√
2

(

1− π

180
− π2

2× 1802

)

< cos 46◦ < 1√
2

(

1− π

180

)

i.e., 0.694658 ≤ cos 46◦ < 0.694765.

20. Let f (x) = sin x , then f ′(x) = cos x and
f ′′(x) = − sin x . Hence,

sin
(π

5

)

= f
(π

6
+ π

30

)

≈ f
(π

6

)

+ f ′
(π

6

) ( π

30

)

= 1

2
+
√

3

2

( π

30

)

≈ 0.5906900.

If x ≤ π

4
, then | f ′′(x)| ≤ 1√

2
. Since f ′′(x) < 0 on

0 < x ≤ 90◦, f is concave down. Therefore, the error E
is negative and

|E | < 1

2
√

2

( π

30

)2 = 0.0038772.

Thus,

0.5906900 − 0.0038772 < sin
(π

5

)

< 0.5906900

0.5868128 < sin
(π

5

)

< 0.5906900.

21. Let f (x) = sin x , then f ′(x) = cos x and
f ′′(x) = − sin x . The linearization at x = π gives:

sin(3.14) ≈ sinπ+cosπ(3.14−π) = π−3.14 ≈ 0.001592654.

Since f ′′(x) < 0 between 3.14 and π , the er-
ror E in the above approximation is negative:
sin(3.14) < 0.001592654. For 3.14 ≤ t ≤ π , we have

| f ′′(t)| = sin t ≤ sin(3.14) < 0.001592654.

Thus the error satisfies

|E | ≤ 0.001592654

2
(3.14 − π)2 < 0.000000002.
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Therefore 0.001592652 < sin(3.14) < 0.001592654.

22. Let f (x) = sin x , then f ′(x) = cos x and
f ′′(x) = − sin x . The linearization at x = 30◦ = π/6
gives

sin(33◦) = sin
(
π
6 + π

60

)

≈ sin
π

6
+ cos

π

6

( π

60

)

= 1

2
+
√

3

2

( π

60

)

≈ 0.545345.

Since f ′′(x) < 0 between 30◦ and 33◦, the error E in the
above approximation is negative: sin(33◦) < 0.545345.
For 30◦ ≤ t ≤ 33◦, we have

| f ′′(t)| = sin t ≤ sin(33◦) < 0.545345.

Thus the error satisfies

|E | ≤ 0.545345

2

( π

60

)2
< 0.000747.

Therefore

0.545345 − 0.000747 < sin(33◦) < 0.545345

0.544598 < sin(33◦) < 0.545345.

23. From the solution to Exercise 15, the linearization to
f (x) = x1/2 at x = 49 has value at x = 50 given by

L(50) = f (49) + f ′(49)(50 − 49) ≈ 7.071429.

Also, 7.071064 ≤ √50 ≤ 7.071429, and, since
f ′′(x) = −1/(4(

√
x)3),

−1

4(7)3
≤ f ′′(x) ≤ −1

4(
√

50)3
≤ −1

4(7.071429)3

for 49 ≤ x ≤ 50. Thus, on that interval,
M ≤ f ′′(x) ≤ N , where M = −0.000729 and
N = −0.000707. By Corollary C,

L(50)+ M

2
(50− 49)2 ≤ f (50) ≤ L(50)+ N

2
(50 − 49)2

7.071064 ≤ √50 ≤ 7.071075.

Using the midpoint of this interval as a new approxima-
tion for

√
50 ensures that the error is no greater than half

the length of the interval:

√
50 ≈ 7.071070, |error| ≤ 0.000006.

24. From the solution to Exercise 16, the linearization to
f (x) = x1/2 at x = 49 has value at x = 47 given by

L(47) = f (49)+ f ′(49)(47 − 49) ≈ 6.8571429.

Also, 6.8548 ≤ √47 ≤ 6.8572, and, since
f ′′(x) = −1/(4(

√
x)3),

−1

4(6.8548)3
≤ −1

4(
√

47)3
≤ f ′′(x) ≤ −1

4(7)3

for 47 ≤ x ≤ 49. Thus, on that interval,
M ≤ f ′′(x) ≤ N , where M = −0.000776 and
N = −0.000729. By Corollary C,

L(47)+ M

2
(47 − 49)2 ≤ f (47) ≤ L(47)+ N

2
(47 − 49)2

6.855591 ≤ √47 ≤ 6.855685.

Using the midpoint of this interval as a new approxima-
tion for

√
47 ensures that the error is no greater than half

the length of the interval:

√
47 ≈ 6.855638, |error| ≤ 0.000047.

25. From the solution to Exercise 17, the linearization to
f (x) = x1/4 at x = 81 has value at x = 85 given by

L(85) = f (81)+ f ′(81)(85 − 81) ≈ 3.037037.

Also, 3.036351 ≤ 851/4 ≤ 3.037037, and, since
f ′′(x) = −3/(16(x1/4)7),

−3

16(3)7
≤ f ′′(x) ≤ −3

16(851/4)7
≤ −3

16(3.037037)7

for 81 ≤ x ≤ 85. Thus, on that interval,
M ≤ f ′′(x) ≤ N , where M = −0.000086 and
N = −0.000079. By Corollary C,

L(85)+ M

2
(85 − 81)2 ≤ f (85) ≤ L(85)+ N

2
(85 − 81)2

3.036351 ≤ 851/4 ≤ 3.036405.

Using the midpoint of this interval as a new approxima-
tion for 851/4 ensures that the error is no greater than
half the length of the interval:

851/4 ≈ 3.036378, |error| ≤ 0.000028.

26. From the solution to Exercise 22, the linearization to
f (x) = sin x at x = 30◦ = π/6 has value at
x = 33◦ = π/6+ π/60 given by

L(33◦) = f (π/6)+ f ′(π/6)(π/60) ≈ 0.545345.
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Also, 0.544597 ≤ sin(33◦) ≤ 5.545345, and, since
f ′′(x) = − sin x ,

− sin(33◦) ≤ f ′′(x) ≤ − sin(30◦)

for 30◦ ≤ x ≤ 33◦. Thus, on that interval,
M ≤ f ′′(x) ≤ N , where M = −0.545345 and N = −0.5.
By Corollary C,

L(33◦)+ M

2
(π/60)2 ≤ sin(33◦) ≤ L(33◦)+ N

2
(π/60)2

0.544597 ≤ sin(33◦) ≤ 0.544660.

Using the midpoint of this interval as a new approxima-
tion for sin(33◦) ensures that the error is no greater than
half the length of the interval:

sin(33◦) ≈ 0.544629, |error| ≤ 0.000031.

27. f (2) = 4, f ′(2) = −1, 0 ≤ f ′′(x) ≤ 1

x
if x > 0.

f (3) ≈ f (2)+ f ′(2)(3 − 2) = 4− 1 = 3.
f ′′(x) ≥ 0⇒ error ≥ 0⇒ f (3) ≥ 3.

| f ′′(x)| ≤ 1

x
≤ 1

2
if 2 ≤ x ≤ 3, so |Error| ≤ 1

4
(3 − 2)2.

Thus 3 ≤ f (3) ≤ 3 1
4

28. The linearization of f (x) at x = 2 is

L(x) = f (2)+ f ′(2)(x − 2) = 4− (x − 2).

Thus L(3) = 3. Also, since 1/(2x) ≤ f ′′(x) ≤ 1/x for
x > 0, we have for 2 ≤ x ≤ 3, (1/6) ≤ f ′′(x) ≤ (1/2).
Thus

3+ 1

2

(
1

6

)

(3 − 2)2 ≤ f (3) ≤ 3+ 1

2

(
1

2

)

(3 − 2)2.

The best approximation for f (3) is the midpoint of this
interval: f (3) ≈ 31

6 .

29. The linearization of g(x) at x = 2 is

L(x) = g(2)+ g′(2)(x − 2) = 1+ 2(x − 2).

Thus L(1.8) = 0.6.
If |g′′(x)| ≤ 1 + (x − 2)2 for x > 0, then
|g′′(x)| < 1 + (−0.2)2 = 1.04 for 1.8 ≤ x ≤ 2. Hence

g(1.8) ≈ 0.6 with |error| < 1

2
(1.04)(1.8 − 2)2 = 0.0208.

30. If f (θ) = sin θ , then f ′(θ) = cos θ and f ′′(θ) = − sin θ .
Since f (0) = 0 and f ′(0) = 1, the linearization of f at
θ = 0 is L(θ) = 0+ 1(θ − 0) = θ .
If 0 ≤ t ≤ θ , then f ′′(t) ≤ 0, so 0 ≤ sin θ ≤ θ .
If 0 ≥ t ≥ θ , then f ′′(t) ≥ 0, so 0 ≥ sin θ ≥ θ .
In either case, | sin t | ≤ | sin θ | ≤ |θ | if t is between 0 and
θ . Thus the error E(θ) in the approximation sin θ ≈ θ

satisfies

|E(θ) ≤ |θ |
2
|θ |2 = |θ |

3

2
.

If |θ | ≤ 17◦ = 17π/180, then

|E(θ)|
|θ | ≤

1

2

(
17π

180

)2

≈ 0.044.

Thus the percentage error is less than 5%.

31. V = 4
3πr3 ⇒ �V ≈ 4πr2�r

If r = 20.00 and �r = 0.20, then
�V ≈ 4π(20.00)2(0.20) ≈ 1005.
The volume has increased by about 1005 cm2.

Section 4.8 Taylor Polynomials (page 264)

1. If f (x) = e−x , then f (k)(x) = (−1)k e−x , so
f (k)(0) = (−1)k . Thus

P4(x) = 1− x + x2

2!
− x3

3!
+ x4

4!
.

2. If f (x) = cos x , then f ′(x) = − sin x ,
f ′′(x) = − cos x , and f ′′′(x) = sin x . In par-
ticular, f (π/4) = f ′′′(π/4) = 1/

√
2 and

f ′(π/4) = f ′′(π/4) = −1/
√

2. Thus

P3(x) = 1√
2

[

1−
(

x − π
4

)

− 1

2

(

x − π
4

)2 + 1

6

(

x − π
4

)3
]

.

3. f (x) = ln x

f ′(x) = 1

x

f ′′(x) = −1

x2

f ′′′(x) = 2

x3

f (4)(x) = −6

x4

f (2) = ln 2

f ′(2) = 1

2

f ′′(2) = −1

4

f ′′′(2) = 2

8

f (4)(2) = −6

16

Thus

P4(x) = ln 2+1

2
(x−2)−1

8
(x−2)2+ 1

24
(x−2)3− 1

64
(x−2)4.

4. f (x) = sec x

f ′(x) = sec x tan x

f ′′(x) = 2 sec3 x − sec x

f ′′′(x) = (6 sec2 x − 1) sec x tan x

f (0) = 1

f ′(0) = 0

f ′′(0) = 1

f ′′′(0) = 0

Thus P3(x) = 1+ (x2/2).
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5. f (x) = x1/2

f ′(x) = 1

2
x−1/2

f ′′(x) = −1

4
x−3/2

f ′′′(x) = 3

8
x−5/2

f (4) = 2

f ′(4) = 1

4

f ′′(4) = −1

32

f ′′′(4) = 3

256

Thus

P3(x) = 2 + 1

4
(x − 4)− 1

64
(x − 4)2 + 1

512
(x − 4)3.

6. f (x) = (1− x)−1

f ′(x) = (1− x)−2

f ′′(x) = 2(1− x)−3

f ′′′(x) = 3!(1 − x)−4

...

f (n)(x) = n!(1− x)−(n+1)

f (0) = 1

f ′(0) = 1

f ′′(0) = 2

f ′′′(0) = 3!

...

f (n)(0) = n!

Thus
Pn(x) = 1+ x + x2 + x3 + · · · + xn .

7. f (x) = 1

2+ x

f ′(x) = −1

(2+ x)2

f ′′(x) = 2!

(2+ x)3

f ′′′(x) = −3!

(2+ x)4

...

f (n)(x) = (−1)nn!

(2+ x)n+1

f (1) = 1

3

f ′(1) = −1

9

f ′′(1) = 2!

27

f ′′′(1) = −3!

34

...

f (n)(1) = (−1)nn!

3n+1

Thus

Pn(x) = 1

3
− 1

9
(x−1)+ 1

27
(x−1)2−· · ·+ (−1)n

3n+1
(x−1)n .

8. f (x) = sin(2x)

f ′(x) = 2 cos(2x)

f ′′(x) = −22 sin(2x)

f ′′′(x) = −23 cos(2x)

f (4)(x) = 24 sin(2x) = 24 f (x)

f (5)(x) = 24 f ′(x)
...

f (π/2) = 0

f ′(π/2) = −2

f ′′(π/2) = 0

f ′′′(π/2) = 23

f (4)(π/2) = 0

f (5)(π/2) = −25

...

Evidently f (2n)(π/2) = 0 and
f (2n−1)(π/2) = (−1)n22n−1. Thus

P2n−1(x) = −2
(

x − π
2

)

+23

3!

(

x − π
2

)3−25

5!

(

x − π
2

)5+· · ·+(−1)n
22n−1

(2n − 1)!

(

x − π
2

)2n−1

9. f (x) = x1/3, f ′(x) = 1

3
x−2/3,

f ′′(x) = −2

9
x−5/3, f ′′′(x) = 10

27
x−8/3.

a = 8 : f (x) ≈ f (8)+ f ′(8)(x − 8)+ f ′′(8)
2

(x − 8)2

= 2+ 1

12
(x − 8)− 1

9× 32
(x − 8)2

91/2 ≈ 2+ 1

12
− 1

288
≈ 2.07986

Error = f ′′′(c)
3!

(9 − 8)3 = 10

27× 6

1

X8/3 for some c in

[8, 9].
For 8 ≤ c ≤ 9 we have c8/3 ≥ 88/3 = 28 = 256 so

0 < Error ≤ 5

81× 256
< 0.000241.

Thus 2.07986 < 91/3 < 2.08010.

10. Since f (x) = √x , then f ′(x) = 1
2 x−1/2,

f ′′(x) = − 1
4 x−3/2 and f ′′′(x) = 3

8 x−5/2. Hence,
√

61 ≈ f (64)+ f ′(64)(61 − 64)+ 1

2
f ′′(64)(61 − 64)2

= 8+ 1

16
(−3)− 1

2

(
1

2048

)

(−3)2 ≈ 7.8103027.

The error is R2 = R2( f ; 64, 61) = f ′′′(c)
3!

(61 − 64)3 for

some c between 61 and 64. Clearly R2 < 0. If t ≥ 49,
and in particular 61 ≤ t ≤ 64, then

| f ′′′(t)| ≤ 3
8 (49)−5/2 = 0.0000223 = K .

Hence,

|R2| ≤ K

3!
|61 − 64|3 = 0.0001004.

Since R2 < 0, therefore,

7.8103027 − 0.0001004 <
√

61 < 7.8103027

7.8102023 <
√

61 < 7.8103027.

11. f (x) = 1

x
, f ′(x) = − 1

x2 ,

f ′′(x) = 2

x3 , f ′′′(x) = −6

x4 .

a = 1 : f (x) ≈ 1− (x − 1)+ 2

2
(x − 1)2

1

1.02
≈ 1 − (0.02) + (0.02)2 = 0.9804.

Error = f ′′′(c)
3!

(0.02)3 = − 1

X4 (0.02)3 where

1 ≤ c ≤ 1.02.

Therefore, −(0.02)3 ≤ 1

1.02
− 0.9804 < 0,

i.e., 0.980392 ≤ 1

1.02
< 0.980400.
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12. Since f (x) = tan−1 x , then

f ′(x) = 1

1 + x2 , f ′′(x) = −2x

(1 + x2)2
, f ′′′(x) = −2+ 6x2

(1 + x2)3
.

Hence,

tan−1 (0.97) ≈ f (1)+ f ′(1)(0.97 − 1)+ 1
2 f ′′(1)(0.97 − 1)2

= π

4
+ 1

2
(−0.03)+

(

−1

4

)

(−0.03)2

= 0.7701731.

The error is R2 = f ′′′(c)
3!

(−0.03)3 for some c between

0.97 and 1. Note that R2 < 0. If 0.97 ≤ t ≤ 1, then

| f ′′′(t)| ≤ f ′′′(1) = −2+ 6

(1.97)3
< 0.5232 = K .

Hence,

|R2| ≤ K

3!
|0.97− 1|3 < 0.0000024.

Since R2 < 0,

0.7701731 − 0.0000024 < tan−1 (0.97) < 0.7701731

0.7701707 < tan−1 (0.97) < 0.7701731.

13. f (x) = ex , f (k)(x) = ex for k = 1, 2, 3 . . .

a = 0 : f (x) ≈ 1+ x + x2

2

e−0.5 ≈ 1− 0.5+ (0.5)
2

2
= 0.625

Error = f ′′′(c)
6

(0.5)3 = ec

6
(−0.05)3 for some c between

−0.5 and 0. Thus

|Error| < (0.5)3

6
< 0.020834,

and −0.020833 < e−0.5 − 0.625 < 0, or
0.604 < e−0.5 < 0.625.

14. Since f (x) = sin x , then f ′(x) = cos x , f ′′(x) = − sin x
and f ′′′(x) = − cos x . Hence,

sin(47◦) = f
(π

4
+ π

90

)

≈ f
(π

4

)

+ f ′
(π

4

)( π

90

)

+ 1

2
f ′′
(π

4

) ( π

90

)2

= 1√
2
+ 1√

2

( π

90

)

− 1

2
√

2

( π

90

)2

≈ 0.7313587.

The error is R2 = f ′′′(c)
3!

( π

90

)3
for some c between 45◦

and 47◦. Observe that R2 < 0. If 45◦ ≤ t ≤ 47◦, then

| f ′′′(t)| ≤ | − cos 45◦| = 1√
2
= K .

Hence,

|R2| ≤ K

3!

( π

90

)3
< 0.0000051.

Since R2 < 0, therefore

0.7313587 − 0.0000051 < sin(47◦) < 0.7313587

0.7313536 < sin(47◦) < 0.7313587.

15. f (x) = sin x

f ′(x) = cos x

f ′′(x) = − sin x

f ′′′(x) = − cos x

f (4)(x) = sin x
a = 0; n = 7:

sin x = 0+ x − 0− x3

3!
+ 0+ x5

5!
− 0 − x7

7!
+ R7

= x − x3

3!
+ x5

5!
− x7

7!
+ R7(x)

,

where R7(x) = sin c

8!
x8 for some c between 0 and x .

16. For f (x) = cos x we have

f ′(x) = − sin x

f (4)(x) = cos x

f ′′(x) = − cos x

f (5)(x) = − sin x

f ′′′(x) = sin x

f (6)(x) = − cos x .

The Taylor’s Formula for f with a = 0 and n = 6 is

cos x = 1− x2

2!
+ x4

4!
− x6

6!
+ R6( f ; 0, x)

where the Lagrange remainder R6 is given by

R6 = R6( f ; 0, x) = f (7)(c)

7!
x7 = sin c

7!
x7,

for some c between 0 and x .

17. f (x) = sin x a = π

4
, n = 4

sin x = 1√
2
+ 1√

2

(

x − π
4

)

− 1√
2

1

2!

(

x − π
4

)2

− 1√
2

1

3!

(

x − π
4

)3 + 1√
2

1

4!

(

x − π
4

)4 + R4(x)

where R4(x) = 1

5!
(cos c)

(

x − π
4

)5

for some c between
π

4
and x .

162



INSTRUCTOR’S SOLUTIONS MANUAL SECTION 4.8 (PAGE 264)

18. Given that f (x) = 1

1− x
, then

f ′(x) = 1

(1− x)2
, f ′′(x) = 2

(1 − x)3
.

In general,

f (n)(x) = n!

(1 − x)(n+1)
.

Since a = 0, f (n)(0) = n!. Hence, for n = 6, the Taylor’s
Formula is

1

1− x
= f (0)+

6
∑

n=1

f (n)(0)

n!
xn + R6( f ; 0, x)

= 1+ x + x2 + x3 + x4 + x5 + x6 + R6( f ; 0, x).

The Langrange remainder is

R6( f ; 0, x) = f (7)(c)

7!
x7 = x7

(1− c)8

for some c between 0 and x .

19. f (x) = ln x

f ′(x) = 1

x

f ′′(x) = −−1

x2

f ′′′(x) = 2!

x3

f (4)(x) = −3!

x4

f (5)(x) = 4!

x5

f (6)(x) = −5!

x6

f (7) = 6!

x7

a = 1, n = 6

ln x = 0+ 1(x − 1)− 1

2!
(x − 1)2 + 2!

3!
(x − 1)3

− 3!

4!
(x − 1)4 + 4!

5!
(x − 1)5 − 5!

6!
(x − 1)6 + R6(x)

= (x − 1)− (x − 1)2

2
+ (x − 1)3

3
− (x − 1)4

4

+ (x − 1)5

5
− (x − 1)6

6
+ R6(x)

where R6(x) = 1

7c7 (x − 1)7 for some c between 1 and x .

20. Given that f (x) = tan x , then

f ′(x) = sec2 x

f ′′(x) = 2 sec2 x tan x

f (3)(x) = 6 sec4 x − 4 sec2 x

f (4)(x) = 8 tan x(3 sec4 x − sec2 x).

Given that a = 0 and n = 3, the Taylor’s Formula is

tan x = f (0) + f ′(0)x + f ′′(0)
2!

x2 + f ′′′(0)
3!

x3 + R3( f ; 0, x)

= x + 2

3!
x3 + R3( f ; 0, x)

= x + 1

3
x3 + 2

15
x5.

The Lagrange remainder is

R3( f ; 0, x) = f (4)(c)

4!
x4 = tan c(3 sec4 X − sec2 C)

3
x4

for some c between 0 and x .

21. e3x = e3(x+1) e−3

P3(x) = e−3
[

1+ 3(x + 1)+ 9

2
(x + 1)2 + 9

2
(x + 1)3

]

.

22. For eu , P4(u) = 1 + u + u2

2!
+ u3

3!
+ u4

4!
. Let u = −x2.

Then for e−x2
:

P8(x) = 1− x2 + x4

2!
− x6

3!
+ x8

4!
.

23. For sin2 x = 1

2

(

1− cos(2x)
)

at x = 0, we have

P4(x) = 1

2

[

1−
(

1 − (2x)2

2!
+ (2x)4

4!

)]

= x2 − x4

3
.

24. sin x = sin
(

π + (x − π)
)

= − sin(x − π)

P5(x) = −(x − π)+ (x − π)
3

3!
− (x − π)

5

5!

25. For
1

1 − u
at u = 0, P3(u) = 1 + u + u2 + u3. Let

u = −2x2. Then for
1

1+ 2x2 at x = 0,

P6(x) = 1− 2x2 + 4x4 − 8x6.

26. cos(3x − π) = − cos(3x)

P8(x) = −1+ 32x2

2!
− 34x4

4!
+ 36x6

6!
− 38x8

8!
.

27. Since x3 = 0 + 0x + 0x2 + x3 + 0x4 + · · · we have
Pn(x) = 0 if 0 ≤ n ≤ 2; Pn(x) = x3 if n ≥ 3

28. Let t = x − 1 so that

x3 = (1 + t)3 = 1+ 3t + 3t2 + t3

= 13(x − 1)+ 3(x − 1)2 + (x − 1)3.
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Thus the Taylor polynomials for x3 at x = 1 are

P0(x) = 1

P1(x) = 1+ 3(x − 1)

P1(x) = 1+ 3(x − 1)+ 3(x − 1)2

Pn(x) = 1+ 3(x − 1)+ 3(x − 1)2 + (x − 1)3 if n ≥ 3.

29. sinh x = 1

2
(ex − e−x)

P2n+1(x) =1

2

(

1+ x + x2

2!
+ · · · + x2n+1

(2n + 1)!

)

− 1

2

(

1− x + x2

2!
+ · · · − x2n+1

(2n + 1)!

)

=x + x3

3!
+ x5

5!
+ · · · + x2n+1

(2n + 1)!
.

30. For ln(1 + x) at x = 0 we have

P2n+1(x) = x − x2

2
+ x3

3
− · · · + x2n+1

2n + 1
.

For ln(1 − x) at x = 0 we have

P2n+1(x) = −x − x2

2
− x3

3
− · · · − x2n+1

2n + 1
.

For tanh−1 x = 1

2
ln(1 + x)− 1

2
ln(1− x),

P2n+1(x) = x + x3

3
+ x5

5
+ · · · + x2n+1

2n + 1
.

31. f (x) = e−x

f (n)(x) =
{

e−x if n is even
−e−x if n is odd

e−x = 1 − x + x2

2!
− x3

3!
+ · · · + (−1)n

x5

n!
+ Rn(x)

where Rn(x) = (−1)n+1 Xn+1

(n + 1)!
for some X between 0

and x .
For x = 1, we have
1

e
= 1− 1+ 1

2!
− 1

3!
+ · · · + (−1)n

1

n!
+ Rn(1)

where Rn(1) = (−1)n+1 e−X xn+1

(n + 1)!
for some X between

−1 and 0.

Therefore, |Rn(1)| < 1

(n + 1)!
. We want

|Rn(1)| < 0.000005 for 5 decimal places.

Choose n so that
1

(n + 1)!
< 0.000005. n = 8 will do

since 1/9! ≈ 0.0000027.

Thus
1

e
≈ 1

2!
− 1

3!
+ 1

4!
− 1

5!
+ 1

6!
− 1

7!
+ 1

8!
≈ 0.36788 (to 5 decimal places).

32. In Taylor’s Formulas for f (x) = sin x with a = 0, only
odd powers of x have nonzero coefficients. Accordingly
we can take terms up to order x2n+1 but use the remain-
der after the next term 0x2n+2. The formula is

sin x = x − x3

3!
+ x5

5!
− · · · + (−1)n

x2n+1

(2n + 1)!
+ R2n+2,

where

R2n+2( f ; 0, x) = (−1)n+1 cos c

(2n + 3)!
x2n+3

for some c between 0 and x .
In order to use the formula to approximate
sin(1) correctly to 5 decimal places, we need
|R2n+2( f ; 0, 1)| < 0.000005. Since | cos c| ≤ 1, it is
sufficient to have 1/(2n + 3)! < 0.000005. n = 3 will do
since 1/9! ≈ 0.000003. Thus

sin(1) ≈ 1− 1

3!
+ 1

5!
− 1

7!
≈ 0.84147

correct to five decimal places.

33. f (x) = (x − 1)2, f ′(x) = 2(x − 1), f ′′(x) = 2.

f (x) ≈ 1− 2x + 2

2
x2 = 1− 2x + x2

Error = 0
g(x) = x3 + 2x2 + 3x + 4
Quadratic approx.: g(x) ≈ 4+ 3x + 2x2

Error = x3

Since g′′′(c) = 6 = 3!, error = g′′′(c)
3!

x3

so that constant
1

3!
in the error formula for the quadratic

approximation cannot be improved.

34. 1− xn+1 = (1− x)(1 + x + x2 + x3 + · · · + xn). Thus

1

1− x
= 1+ x + x2 + x3 + · · · + xn + xn+1

1− x
.

If |x | ≤ K < 1, then |1− x | ≥ 1 − K > 0, so

∣
∣
∣
∣

xn+1

1− x

∣
∣
∣
∣
≤ 1

1 − K
|xn+1| = O(xn+1)

as x → 0. By Theorem 11, the nth-order
Maclaurin polynomial for 1/(1 − x) must be
Pn(x) = 1+ x + x2 + x3 + · · · + xn .

35. Differentiating

1

1− x
= 1+ x + x2 + x3 + · · · + xn + xn+1

1− x
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with respect to x gives

1

(1 − x)2
= 1+ 2x + 3x2 + · · · + nxn−1 + n + 1− nx

(1− x)2
xn .

Then replacing n with n + 1 gives

1

(1 − x)2
= 1+2x+3x2+· · ·+(n+1)xn+n + 2− (n + 1)x

(1− x)2
xn+1.

If |x | ≤ K < 1, then |1− x | ≥ 1 − K > 0, and so

∣
∣
∣
∣

n + 2− (n + 1)x

(1 − x)2
xn+1

∣
∣
∣
∣
≤ n + 2

(1 − K )2
|xn+1| = O(xn+1)

as x → 0. By Theorem 11, the nth-order
Maclaurin polynomial for 1/(1 − x)2 must be
Pn(x) == 1 + 2x + 3x2 + · · · + (n + 1)xn .

Section 4.9 Indeterminate Forms
(page 269)

1. lim
x→0

3x

tan 4x

[
0

0

]

= lim
x→0

3

4 sec2 4x
= 3

4

2. lim
x→2

ln(2x − 3)

x2 − 4

[
0

0

]

=

(
2

2x − 3

)

2x
= 1

2
.

3. lim
x→0

sin ax

sin bx

[
0

0

]

= lim
x→0

a cos ax

b cos bx
= a

b

4. lim
x→0

1− cos ax

1− cos bx

[
0

0

]

= lim
x→0

a sin ax

b sin bx

[
0

0

]

= lim
x→0

a2 cos ax

b2 cos bx
= a2

b2 .

5. lim
x→0

sin−1 x

tan−1 x

[
0

0

]

= lim
x→0

1+ x2
√

1− x2
= 1

6. lim
x→1

x1/3 − 1

x2/3 − 1

[
0

0

]

= lim
x→1

( 1
3 )x
−2/3

( 2
3 )x
−1/3
= 1

2
.

7. lim
x→0

x cot x [0×∞]

= lim
x→0

( x

sin x

)

cos x

= 1× lim
x→0

x

sin x

[
0

0

]

= lim
x→0

1

cos x
= 1

8. lim
x→0

1− cos x

ln(1 + x2)

[
0

0

]

= lim
x→0

sin x
(

2x

1+ x2

)

= lim
x→0

(1 + x2) lim
x→0

sin x

2x

= lim
x→0

cos x

2
= 1

2
.

9. lim
t→π

sin2 t

t − π
[

0

0

]

= lim
t→π

2 sin t cos t

1
= 0

10. lim
x→0

10x − ex

x

[
0

0

]

= lim
x→0

10x ln 10− ex

1
= ln 10− 1.

11. lim
x→π/2

cos 3x

π − 2x

[
0

0

]

= lim
x→π/2

−3 sin 3x

−2
= 3

2
(−1) = −3

2

12. lim
x→1

ln(ex)− 1

sinπx

[
0

0

]

= lim
x→1

1

x
π cos(π x)

= − 1

π
.

13. lim
x→∞ x sin

1

x
[∞× 0]

= lim
x→∞

sin
1

x
1

x

[
0

0

]

= lim
x→∞

− 1

x2 cos
1

x

− 1

x2

= lim
x→∞ cos

1

x
= 1.
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14. lim
x→0

x − sin x

x3

[
0

0

]

= lim
x→0

1− cos x

3x2

[
0

0

]

= lim
x→0

sin x

6x

[
0

0

]

= lim
x→0

cos x

6
= 1

6
.

15. lim
x→0

x − sin x

x − tan x

[
0

0

]

= lim
x→0

1− cos x

1 − sec2 x

[
0

0

]

= lim
x→0

(cos2 x)
1− cos x

cos2 x − 1

= −1× lim
x→0

cos x − 1

(cos x − 1)(cos x + 1)

= −1

2

16. lim
x→0

2− x2 − 2 cos x

x4

[
0

0

]

= lim
x→0

−2x + 2 sin x

4x3

[
0

0

]

= −1

2
lim
x→0

x − sin x

x3

= −1

2

(
1

6

)

= − 1

12
(by Exercise 14).

17. lim
x→0+

sin2 x

tan x − x

[
0

0

]

= lim
x→0+

2 sin x cos x

sec2 x − 1

[
0

0

]

= 2× 1× lim
x→0+

cos x

2 sec2 x tan x
= ∞

18. lim
r→π/2

ln sin r

cos r

[
0

0

]

= lim
r→π/2

(cos r

sin r

)

− sin r
= 0.

19. lim
t→π/2

sin t

t
= 2

π

20. lim
x→1−

cos−1 x

x − 1

[
0

0

]

= lim
x→1−

−
(

1√
1− x2

)

1
= −∞.

21. lim
x→∞ x(2 tan−1 x − π) [0×∞]

= lim
x→∞

2 tan−1 x − π
1

x

[
0

0

]

= lim
x→∞

2

1+ x2

/

− 1

x2

= lim
x→∞−

2x2

1+ x2 = −2

22. lim
t→(π/2)−(sec t − tan t) [∞−∞]

= lim
t→(π/2)−

1 − sin t

cos t

[
0

0

]

= lim
t→(π/2)−

− cos t

− sin t
= 0.

23. lim
t→0

(
1

t
− 1

teat

)

(∞−∞)

= lim
t→0

eat − 1

teat

[
0

0

]

= lim
t→0

aeat

eat + ateat
= a

24. Since lim
x→0+

√
x ln x = lim

x→0+
ln x

x−1/2

[
0

0

]

= lim
x→0+

(
1

x

)

(

−1

2

)

x−3/2

= 0,

hence lim
x→0+ x

√
x

= lim
x→0+ e

√
x ln x = e0 = 1.

25. Let y = (csc x)sin
2 x .

Then ln y = sin2 x ln(csc x)

lim
x→0+ ln y = lim

x→0+
ln(csc x)

csc2 x

[∞
∞
]

= lim
x→0+

− csc x cot x

csc x
−2 csc2 x cot x

= lim
x→0+

1

2 csc2 x
= 0.

Thus limx→0+(csc x)sin
2 x = e0 = 1.
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26. lim
x→1+

(
x

x − 1
− 1

ln x

)

[∞−∞]

= lim
x→1+

x ln x − x + 1

(x − 1)(ln x)

[
0

0

]

= lim
x→1+

ln x

ln x + 1− 1

x

[
0

0

]

= lim
x→1+

1

x
1

x
+ 1

x2

= lim
x→1+ =

x

x + 1
= 1

2
.

27. lim
t→0

3 sin t − sin 3t

3 tan t − tan 3t

[
0

0

]

= lim
t→0

3(cos t − cos 3t)

3(sec2 t − sec2 3t)

[
0

0

]

= lim
t→0

cos t − cos 3t

cos2 3t − cos2 t

cos2 t cos2 3t

= − lim
t→0

cos 3t − cos t

cos2 3t − cos2 t

= − lim
t→0

1

cos 3t + cos t
= −1

2

28. Let y =
( sin x

x

)1/x2

.

lim
x→0

ln y = lim
x→0

ln
( sin x

x

)

x2

[
0

0

]

= lim
x→0

( x

sin x

)( x cos x − sin x

x2

)

2x

= lim
x→0

x cos x − sin x

2x2 sin x

[
0

0

]

= lim
x→0

−x sin x

4x sin x + 2x2 cos x

= lim
x→0

− sin x

4 sin x + 2x cos x

[
0

0

]

= lim
x→0

− cos x

6 cos x − 2x sin x
= −1

6
.

Thus, lim
x→0

( sin x

x

)1/x2

= e−1/6.

29. Let y = (cos 2t)1/t
2
.

Then ln y = ln(cos 2t)

t2 . We have

lim
t→0

ln y = lim
t→0

ln(cos 2t)

t2

[
0

0

]

= lim
t→0

−2 tan 2t

2t

[
0

0

]

= − lim
t→0

2 sec2 2t

1
= −2.

Therefore limt→0(cos 2t)1/t
2 = e−2.

30. lim
x→0+

csc x

ln x

[

−∞∞
]

= lim
x→0+

− csc x cot x
1

x

[

−∞∞
]

= lim
x→0+

−x cos x

sin2 x

[
0

0

]

= −
(

lim
x→0+ cos x

)

lim
x→0+

1

2 sin x cos x

= −∞.

31. lim
x→1−

ln sinπx

cscπx

[∞
∞
]

= lim
x→1−

π cosπx

sinπx
−π cscπx cotπx

= −π
π

lim
x→1− tanπx = 0

32. Let y = (1 + tan x)1/x .

lim
x→0

ln y = lim
x→0

ln(1 + tan x)

x

[
0

0

]

= lim
x→0

sec2 x

1+ tan x
= 1.

Thus, lim
x→0

(1+ tan x)1/x = e.

33. lim
h→0

f (x + h)− 2 f (x)+ f (x − h)

h2

[
0

0

]

= lim
h→0

f ′(x + h)− f ′(x − h)

2h

[
0

0

]

= lim
h→0

f ′′(x + h)+ f ′′(x − h)

2

= 2 f (x)

2
= f ′′(x)

34. lim
h→0

f (x + 3h)− 3 f (x + h)+ 3 f (x − h)− f (x − 3h)

h3

= lim
h→0

3 f ′(x + 3h)− 3 f ′(x + h)− 3 f ′(x − h)+ 3 f ′(x − 3h)

3h2

= lim
h→0

3 f ′′(x + 3h)− f ′′(x + h)+ f ′′(x − h)− 3 f ′′(x − 3h)

2h

= lim
h→0

9 f ′′′(x + 3h)− f ′′′(x + h)− f ′′′(x − h)+ 9 f ′′′(x − 3h)

2
=8 f ′′′(x).
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35. Suppose that f and g are continuous on [a, b] and
differentiable on (a, b) and g(x) �= 0 there. Let
a < x < t < b, and apply the Generalized Mean-Value
Theorem; there exists c in (x, t) such that

f (x)− f (t)

g(x)− g(t)
= f ′(c)

g′(c)

⇒
[

f (x)− f (t)

g(x)

][
g(x)

g(x)− g(t)

]

= f ′(c)
g′(c)

⇒ f (x)

g(x)
− f (t)

g(x)
= f ′(c)

g′(c)

[
g(x)− g(t)

g(x)

]

⇒ f (x)

g(x)
= f ′(c)

g′(c)
− g(t)

g(x)

f ′(c)
g′(c)

+ f (t)

g(x)

⇒ f (x)

g(x)
= f ′(c)

g′(c)
+ 1

g(x)

[

f (t)− g(t)
f ′(c)
g′(c)

]

⇒ f (x)

g(x)
− L = f ′(c)

g′(c)
− L + 1

g(x)

[

f (t)− g(t)
f ′(c)
g′(c)

]

.

Since |m + n| ≤ |m| + |n|, therefore,

∣
∣
∣
∣

f (x)

g(x)
−L

∣
∣
∣
∣
≤
∣
∣
∣
∣

f ′(c)
g′(c)

−L

∣
∣
∣
∣
+ 1

|g(x)|
[

| f (t)|+|g(t)|
∣
∣
∣
∣

f ′(c)
g′(c)

∣
∣
∣
∣

]

.

Now suppose that ε is an arbitrary small positive number.
Since limc→a+ f ′(c)/g′(c) = L , and since a < x < c < t ,
we can choose t sufficiently close to a to ensure that

∣
∣
∣
∣

f ′(c)
g′(c)

− L

∣
∣
∣
∣
<
ε

2
.

In particular,
∣
∣
∣
∣

f ′(c)
g′(c)

∣
∣
∣
∣
< |L | + ε

2
.

Since limx→a+ |g(x)| = ∞, we can choose x between a
and t sufficiently close to a to ensure that

1

|g(x)|
[

| f (t)| + |g(t)|
(

|L | + ε
2

)]

<
ε

2
.

It follows that

∣
∣
∣
∣

f (x)

g(x)
− L

∣
∣
∣
∣
<
ε

2
+ ε

2
= ε.

Thus limx→a+
f (x)

g(x)
= L .

Review Exercises 4 (page 270)

1. Since dr/dt = 2r/100 and V = (4/3)πr3, we have

dV

dt
= 4π

3
3r2 dr

dt
= 3V

2

100
= 6V

100
.

Hence The volume is increasing at 6%/min.

2. a) Since F must be continuous at r = R, we have

mgR2

R2 = mkR, or k = g

R
.

b) The rate of change of F as r decreases from R is

(

− d

dr
(mkr)

)∣
∣
∣
∣
r=R
= −mk = −mg

R
.

The rate of change of F as r increases from R is

(

− d

dr

mgR2

r2

)∣
∣
∣
∣
r=R
= −2mgR2

R3 = −2
mg

R
.

Thus F decreases as r increases from R at twice the
rate at which it decreases as r decreases from R.

3. 1/R = 1/R1 + 1/R2. If R1 = 250 ohms and R2 = 1, 000
ohms, then 1/R = (1/250) + (1/1, 000) = 1/200,
so R = 200 ohms. If d R1/dt = 100 ohms/min, then

− 1

R2

d R

dt
= − 1

R2
1

d R1

dt
− 1

R2
2

d R2

dt

1

2002

d R

dt
= 1

2502
(100) + 1

1, 0002

d R2

dt
.

a) If R remains constant, then d R/dt = 0, so

d R2

dt
= −1, 0002 × 100

2502
= −1, 600.

R2 is decreasing at 1,600 ohms/min.

b) If R is increasing at 10 ohms/min, then then
d R/dt = 10, and

d R2

dt
= 1, 0002

(
10

2002 −
100

2502

)

= −1, 350.

R2 is decreasing at 1,350 ohms/min.

4. If pV = 5.0T , then

dp

dt
V + p

dV

dt
= 5.0

dT

dt
.

a) If T = 400 K, dT/dt = 4 K/min, and V = 2.0 m3,
then dV/dt = 0, so dp/dt = 5.0(4)/2.0 = 10. The
pressure is increasing at 10 kPa/min.

b) If T = 400 K, dT/dt = 0, V = 2
m3, and dV/dt = 0.05 m3/min, then
p = 5.0(400)/2 = 1, 000 kPa, and
2 dp/dt + 1, 000(0.05) = 0, so dp/dt = −25.
The pressure is decreasing at 25 kPa/min.
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5. If x copies of the book are printed, the cost of printing
each book is

C = 10, 000

x
+ 8+ 6.25 × 10−7 x2.

Since C → ∞ as x → 0+ or x → ∞, C will be
minimum at a critical point. For CP:

0 = dC

dx
= −10, 000

x2
+ 12.5 × 10−7x,

so x3 = 8× 109 and x = 2 × 103. 2,000 books should be
printed.

6. If she charges $x per bicycle, her total profit is $P,
where

P = (x − 75)N(x) = 4.5× 106 x − 75

x2
.

Evidently P ≤ 0 if x ≤ 75, and P → 0 as x → ∞. P
will therefore have a maximum value at a critical point in
(75,∞). For CP:

0 = d P

dx
= 4.5× 106 x2 − (x − 75)2x

x4 ,

from which we obtain x = 150. She should charge $150
per bicycle and order N(150) = 200 of them from the
manufacturer.

7.

h

R

R

r

h−R

Fig. R-4.7

Let r , h and V denote the radius, height, and volume of
the cone respectively. The volume of a cone is one-third
the base area times the height, so

V = 1

3
π r2h.

From the small right-angled triangle in the figure,

(h − R)2 + r2 = R2.

Thus r2 = R2 − (h − R)2 and

V = V (h) = π

3
h
(

R2 − (h − R)2
)

= π

3

(

2Rh2 − h3
)

.

The height of any inscribed cone cannot exceed the di-
ameter of the sphere, so 0 ≤ h ≤ 2R. Being continu-
ous, V (h) must have a maximum value on this interval.
Since V = 0 when h = 0 or h = 2R, and V > 0 if
0 < h < 2R, the maximum value of V must occur at a
critical point. (V has no singular points.) For a critical
point,

0 = V ′(h) = π

3
(4Rh − 3h2) = π

3
h(4R − 3h),

h = 0 or h = 4R

3
.

V ′(h) > 0 if 0 < h < 4R/3 and V ′(h) < 0 if
4R/3 < h < 2R. Hence h = 4R/3 does indeed give
the maximum value for V . The volume of the largest
cone can be inscribed in a sphere of radius R is

V

(
4R

3

)

= π

3

(

2R

(
4R

3

)2

−
(

4R

3

)3
)

= 32

81
π R3 cubic units.

8.
C

x

(x,C(x))

slope =
C(x)

x
= average cost

Fig. R-4.8

a) For minimum C(x)/x , we need

0 = d

dx

C(x)

x
= xC ′(x)− C(x)

x2 ,

so C ′(x) = C(x)/x ; the marginal cost equals the
average cost.

b) The line from (0, 0) to (x,C(x)) has smallest slope
at a value of x which makes it tangent to the graph
of C(x). Thus C ′(x) = C(x)/x , the slope of the
line.

c) The line from (0, 0) to (x,C(x)) can be tangent to
the graph of C(x) at more than one point. Not all
such points will provide a minimum value for the
average cost. (In the figure, one such line will make
the average cost maximum.)
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9.

side bottom side top

flapside

side flap

80 cm

50 cm

Fig. R-4.9

If the edge of the cutout squares is x cm, then the vol-
ume of the folded box is

V (x) = x(50 − 2x)(40 − x)

= 2x3 − 130x2 + 2, 000x,

and is valid for 0 ≤ x ≤ 25. Since V (0) = V (25) = 0,
and V (x) > 0 if 0 < x < 25, the maximum will occur at
a CP:

0 = V ′(x) = 6x2 − 260x + 2, 000

= 2(3x2 − 130x + 1, 000)

= 2(3x − 100)(x − 10).

Thus x = 10 or x = 100/3. The latter CP is not in the
interval [0, 25], so the maximum occurs at x = 10. The
maximum volume of the box is V (10) = 9, 000 cm3.

10. If x more trees are planted, the yield of apples will be

Y = (60+ x)(800 − 10x)

= 10(60 + x)(80 − x)

= 10(4, 800+ 20x − x2).

This is a quadratic expression with graph opening down-
ward; its maximum occurs at a CP:

0 = dY

dx
= 10(20 − 2x) = 20(10 − x).

Thus 10 more trees should be planted to maximize the
yield.

11.

2 km

θ

y

Fig. R-4.11

It was shown in the solution to Exercise 41 in Section
3.2 that at time t s after launch, the tracking antenna
rotates upward at rate

dθ

dt
= 800t

4002 + t4
= f (t), say.

Observe that f (0) = 0 and f (t) → 0 as t → ∞. For
critical points,

0 = f ′(t) = 800

[
(4002 + t4)− 4t4

(4002 + t4)2

]

⇒ 3t4 = 4002, or t ≈ 15.197.

The maximum rate at which the antenna must turn is
f (15.197) ≈ 0.057 rad/s.

12. The narrowest hallway in which the table can be turned
horizontally through 180◦ has width equal to twice the
greatest distance from the origin (the centre of the table)
to the curve x2 + y4 = 1/8 (the edge of the table). We
maximize the square of this distance, which we express
as a function of y:

S(y) = x2 + y2 = y2 + 1

8
− y4, (0 ≤ y ≤ (1/8)1/4).

Note that S(0) = 1/8 and S((1/8)1/4) = 1/
√

8 > S(0).
For CP:

0 = dS

dy
= 2y − 4y3 = 2y(1− 2y2).
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The CPs are given by y = 0 (already considered), and
y2 = 1/2, where S(y) = 3/8. Since 3/8 > 1/

√
8, this is

the maximum value of S. The hallway must therefore be
at least 2

√
3/8 ≈ 1.225 m wide.

13. Let the ball have radius r cm. Its weight is proportional
to the volume of metal it contains, so the condition of the
problem states that

4π

3
r3 − 4π

3
(r − 2)3 = 1

2

4π

3
r3

r3 − 12r2 + 24r − 16 = 0.

Graphing the left side of this latter equation with a
graphics calculator shows a root between 9 and 10. A
“solve routine” or Newton’s Method then refines an ini-
tial guess of, say, r = 9.5 to give r = 9.69464420373 cm
for the radius of the ball.

14.
y

x

trajectory

y= 1,000
1+(x/500)2

Fig. R-4.14

If the origin is at sea level under the launch point, and
x(t) and y(t) are the horizontal and vertical coordinates
of the cannon ball’s position at time t s after it is fired,
then

d2x

dt2 = 0,
d2y

dt2 = −32.

At t = 0, we have dx/dt = dy/dt = 200/
√

2, so

dx

dt
= 200√

2
,

dy

dt
= −32t + 200√

2
.

At t = 0, we have x = 0 and y = 1, 000. Thus the
position of the ball at time t is given by

x = 200t√
2
, y = −16t2 + 200t√

2
+ 1, 000.

We can obtain the Cartesian equation for the path of the
cannon ball by solving the first equation for t and substi-
tuting into the second equation:

y = −16
2x2

2002
+ x + 1, 000.

The cannon ball strikes the ground when

−16
2x2

2002
+ x + 1, 000 = 1, 000

1+ (x/500)2
.

Graphing both sides of this equation suggests a solution
near x = 1, 900. Newton’s Method or a solve routine
then gives x ≈ 1, 873. The horizontal range is about
1,873 ft.

15. The percentage error in the approximation
−(g/L) sin θ ≈ −(g.L)θ is

100

∣
∣
∣
∣

sin θ − θ
sin θ

∣
∣
∣
∣
= 100

(
θ

sin θ
− 1

)

.

Since limθ→0 θ/(sin θ) = 1, the percentage error → 0
as θ → 0. Also, θ/ sin θ grows steadily larger as |θ |
increases from 0 towards π/2. Thus the maximum per-
centage error for |θ | ≤ 20◦ = π/9 will occur at θ = π/9.
This maximum percentage error is

100

(
π/9

sin(π/9)
− 1

)

≈ 2.06%.

16. sin2 x = 1

2

(

1− cos(2x)
)

= 1

2

[

1−
(

1− 22x2

2!
+ 24x4

4!
− 26x6

6!
+ O(x8)

)]

= x2 − x4

3
+ 2x6

45
+ O(x8)

lim
x→0

3 sin2 x − 3x2 + x4

x6

= lim
x→0

3x2 − x4 + 2

15
x6 + O(x8)− 3x2 − x4

x6

= lim
x→0

2

15
+ O(x2) = 2

15
.

17. f (x) = tan−1 x , f ′(x) = 1

1 + x2 , f ′′(x) = −2x

(1+ x2)2
,

f ′′′(x) = 6x2 − 2

(1+ x2)3
.

About x = 1, P2(x) = π

4
+ x − 1

2
− (x − 1)2

4
.

Thus tan−1(1.1) ≈ π

4
+ 1

20
− 1

400
≈ 0.832898. On

[1, 1.1], we have

| f ′′′(x)| ≤ 6(1.1)2 − 2

(1 + 1)3
= 0.6575.

Thus the error does not exceed
0.6575

3!
(1.1−1)3 ≈ .00011

in absolute value.
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18. The second approximation x1 is the x-intercept of the
tangent to y = f (x) at x = x0 = 2; it is the x-intercept
of the line 2y = 10x − 19. Thus x1 = 19/10 = 1.9.

19.
y

x

y = cos x

y = (x − 1)2

1

Fig. R-4.19

y = cos x and y = (x − 1)2 intersect at x = 0 and at a
point x between x = 1 and x = π/2 ≈ 1.57. Starting
with an initial guess x0 = 1.3, and iterating the Newton’s
Method formula

xn+1 = xn − (xn − 1)2 − cos xn

2(xn − 1)+ sin xn
,

we get x4 = x5 = 1.40556363276. To 10 decimal places
the two roots of the equation are x = 0 (exact), and
x = 1.4055636328.

20. The square of the distance from (2, 0) to (x, ln x) is
S(x) = (x − 2)2 + (ln x)2, for x > 0. Since S(x) → ∞
as x → ∞ or x → 0+, the minimum value of S(x) will
occur at a critical point. For CP:

0 = S′(x) = 2

(

x − 2+ ln x

x

)

.

We solve this equation using a TI-85 solve routine;
x ≈ 1.6895797. The minimum distance from the origin
to
y = ex is

√
S(x) ≈ 0.6094586.

21. If the car is at (a, ea), then its headlight beam lies along
the tangent line to y = ex there, namely

y = ea + ea(x − a) = ea(1 + x − a).

This line passes through (1, 1) if 1 = ea(2 − a). A solve
routine gives a ≈ −1.1461932. The corresponding value
of ea is about 0.3178444. The car is at (a, ea).

Challenging Problems 4 (page 272)

1.
dV

dt
= kx2(V0 − V ).

a) If V = x3, then 3x2 dx

dt
= dV

dt
= kx2(V0 − x3), so

dx

dt
= k

3
(V0 − x3).

b) The rate of growth of the edge is (k/3)(V0 − x3),
which is positive if 0 ≤ x < x0 = V 1/3

0 . The time
derivative of this rate is

−kx2 dx

dt
= − k2

3
x2 (V0 − x3) < 0

for 0 < x < x0. Thus the edge length is increasing
at a decreasing rate.

c) Initially, x grows at rate kV0/3. The rate of growth
of x will be half of this if

k

3
(V0 − x3) = kV0

6
,

that is, if x = (V0/2)1/3. Then V = V0/2.

2. Let the speed of the tank be v where v = dy

dt
= ky.

Thus, y = Cekt . Given that at t = 0, y = 4, then
4 = y(0) = C . Also given that at t = 10, y = 2, thus,

2 = y(10) = 4e10k ⇒ k = − 1
10 ln 2.

Hence, y = 4e(−
1
10 ln 2)t and v = dy

dt
= (− 1

10
ln 2)y. The

slope of the curve xy = 1 is m = dy

dx
= − 1

x2 . Thus, the

equation of the tangent line at the point

(
1

y0
, y0

)

is

y = y0 − 1
(

1

y0

)2

(

x − 1

y0

)

, i.e., y = 2y0 − xy2
0 .

y

x

θ

(1/y0,y0)

y = 1

x

y

x

Fig. C-4.2
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Hence, the x-intercept is x = 2

y0
and the y-intercept is

y = 2y0. Let θ be the angle between the gun and the
y-axis. We have

tan θ = x

y
=

(
2

y0

)

2y0
= 1

y2
0

= 4

y2

⇒ sec2 θ
dθ

dt
= −8

y3

dy

dt
.

Now

sec2 θ = 1+ tan2 θ = 1 + 16

y4
= y4 + 16

y4
,

so
dθ

dt
= − 8y

y4 + 16

dy

dt
= − 8ky2

y4 + 16
.

The maximum value of
y2

y4 + 16
occurs at a critical

point:

0 = (y4 + 16)2y − y2(4y3)

(y4 + 16)2

⇔ 2y5 = 32y,

or y = 2. Therefore the maximum rate of rotation of the
gun turret must be

−8k
22

24 + 16
= −k = 1

10
ln 2 ≈ 0.0693 rad/m,

and occurs when your tank is 2 km from the origin.

3. a) If q = 0.99, the number of tests required is
T = N ((1/x)+ 1 − 0.99x ). T is a decreasing
function for small values of x because the term
1/x dominates. It is increasing for large x because
−0.99x dominates. Thus T will have a minimum
value at a critical point, provided N is sufficiently
large that the CP is in (0, N). For CP:

0 = dT

dx
= N

(

− 1

x2
− 0.99x ln(0.99)

)

x2 = (0.99)−x

− ln(0.99)

x = (0.99)−x/2

√− ln(0.99)
= f (x), say.

b) Starting with x0 = 20, we iterate xn+1 = f (xn). The
first three iterations give

x1 ≈ 11.03, x2 ≈ 10.54, x3 ≈ 10.51.

This suggests the CP is near 10.5. Since x must
be an integer, we test x = 10 and x = 11:
T (10) ≈ 0.19562 and T (11) ≈ 0.19557. The
minimum cost should arise by using groups of 11
individuals.

4. P = 2π
√

L/g = 2πL1/2g−1/2.

a) If L remains constant, then

�P ≈ d P

dg
�g = −πL1/2g−3/2�g

�P

P
≈ −πL1/2g−3/2

2πL1/2g−1/2
�g = −1

2

�g

g
.

If g increases by 1%, then �g/g = 1/100, and
�P/P = −1/200. Thus P decreases by 0.5%.

b) If g remains constant, then

�P ≈ d P

dL
�L = πL−1/2g−1/2 �L

�P

P
≈ πL−1/2g−1/2

2πL1/2g−1/2
�L = 1

2

�L

L
.

If L increases by 2%, then �L/L = 2/100, and
�P/P = 1/100. Thus P increases by 1%.

5.
dV

dt
= −k

√
y, V = Ay.

a) A
dy

dt
= dV

dt
= −k

√
y, so

dy

dt
= − k

A

√
y.

b) If y(t) =
(√

y0 − kt

2A

)2

, then y(0) = y0, and

dy

dt
= 2

(√
y0 − kt

2A

)(

− k

2A

)

= − k

A

√

y(t).

Thus the given expression does solve the initial-value
problem for y.

c) If y(T ) = 0, then
kT

2A
= √y0, so k = 2A

√
y0/T .

Thus

y(t) =
(√

y0 − 2A
√

y0t

2AT

)2

= y0

(

1− t

T

)2

.

d) Half the liquid drains out in time t1, where

y0

(

1− t1
T

)2

= y0

2
.

Thus t1 = T (1 − (1/√2)).
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6. If the depth of liquid in the tank at time t is y(t), then
the surface of the liquid has radius r(t) = Ry(t)/H , and
the volume of liquid in the tank at that time is

V (t) = π

3

(
Ry(t)

H

)2

y(t) = π R2

3H2

(

y(t)
)3
.

By Torricelli’s law, dV/dt = −k
√

y. Thus

π R2

3H2 3y2 dy

dt
= dV

dt
= −k

√
y,

or, dy/dt = −k1 y−3/2, where k1 = kH2/(π R2).

If y(t) = y0

(

1− t

T

)2/5

, then y(0) = y0, y(T ) = 0, and

dy

dt
= 2

5
y0

(

1− t

T

)−3/5 (

− 1

T

)

= −k1 y−3/2,

where k1 = 2y0/(5T ). Thus this function y(t) satisfies
the conditions of the problem.

7. If the triangle has legs x and y and hypotenuse
√

x2 + y2, then

P = x + y +
√

x2 + y2

(P − x − y)2 = x2 + y2

P2 + x2 + y2 + 2xy − 2Px − 2Py = x2 + y2

y(2P − 2x) = P2 − 2Px

y = P(P − 2x)

2(P − x)
.

The area of the triangle is

A = xy

2
= P

4

Px − 2x2

P − x
.

A = 0 if x = 0 or x = P/2 and A > 0 between these
values of x . The maximum area will therefore occur at a
critical point.

0 = d A

dx
= P

4

(P − x)(P − 4x)− x(P − 2x)(−1)

(P − x)2

0 = P2 − 5Px + 4x2 + Px − 2x2

2x2 − 4Px + P2 = 0.

This quadratic has two roots, but the only one in [0, P/2]
is

x = 4P −√16P2 − 8P2

4
= P

(

1− 1√
2

)

.

This value of x gives A(x) = 1
2 P2

(

1 − 1√
2

)2
un2 for the

maximum area of the triangle. (Note that the maximal
triangle is isosceles, as we might have guessed.)

8. The slope of y = x3 + ax2 + bx + c is

y ′ = 3x2 + 2ax + b,

which → ∞ as x → ±∞. The quadratic expression
y ′ takes each of its values at two different points except
its minimum value, which is achieved only at one point
given by y′′ = 6x + 2a = 0. Thus the tangent to the
cubic at x = −a/3 is not parallel to any other tangent.
This tangent has equation

y = − a3

27
+ a3

9
− ab

3
+ c

+
(

a2

3
− 2a2

3
+ b

)(

x + a

3

)

= −a3

27
+ c +

(

b − a2

3

)

x .

9.
B

C

h

P

θ
A

Fig. C-4.9

a) The total resistance of path APC is

R = k|AP|
r2
1

+ k|PC |
r2
2

= k

(

L − h cot θ

r2
1

+ h csc θ

r2
2

)

.

We have

d R

dθ
= kh

(

csc2 θ

r2
1

− csc θ cot θ

r2
2

)

,

so the CP of R is given by
csc θ

cot θ
= r2

1

r2
2

, that

is, cos θ = (r2/r1)
2 or θ = cos−1((r2/r1)

2).
This CP will give the minimum resistance if it
is in the interval of possible values of θ , namely
[tan−1(h/L), π/2]; otherwise the minimum will oc-
cur for P = A. Thus, for large L , P should be
chosen to make cos θ = (r2/r1)

2.

b) This is the same problem as that in (a) except that
r1 and r2 are replaced with r2

1 and r2
2 , respectively.

Thus the minimum resistance corresponds to choos-
ing P so that cos θ = (r2/r1)

4. This puts P closer
to B than it was in part (a), which is reasonable
since the resistance ratio between the thin and thick
pipes is greater than for the wires in part (a).
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10.

R

h

y

Fig. C-4.10

a) Let the origin be at the point on the table di-
rectly under the hole. If a water particle leaves
the tank with horizontal velocity v, then its position
(X (t), Y (t)), t seconds later, is given by

d2 X

dt2 = 0

d X

dt
= v

X = vt

d2Y

dt2 = −g

dY

dt
= −gt

Y = −1

2
gt2 + h.

The range R of the particle (i.e., of the spurt) is the
value of X when Y = 0, that is, at time t = √2h/g.
Thus R = v√2h/g.

b) Since v = k
√

y − h, the range R is a function of y,
the depth of water in the tank.

R = k

√

2

g

√

h(y − h).

For a given depth y, R will be maximum if h(y − h)
is maximum. This occurs at the critical point
h = y/2 of the quadratic Q(h) = h(y − h).

c) By the result of part (c) of Problem 3 (with y re-
placed by y − h, the height of the surface of the
water above the drain in the current problem), we
have

y(t)− h = (y0 − h)

(

1− t

T

)2

, for 0 ≤ t ≤ T .

As shown above, the range of the spurt at time t is

R(t) = k

√

2

g

√

h
(

y(t)− h
)

.

Since R = R0 when y = y0, we have

k = R0
√

2

g

√
h(y0 − h)

.

Therefore R(t) = R0

√

h
(

y(t)− h
)

√
h(y0 − h)

= R0

(

1− t

T

)

.

11.

25 cm

25 cm

x

25−2x

x

25−2x

x
y

25−x

Fig. C-4.11

Note that the vertical back wall of the dustpan is perpen-
dicular to the plane of the top of the pan, not the bottom.
The volume of the pan is made up of three parts:

a triangular prism (the centre part) having
height x , width 25 − 2x , and depth y (all dis-
tances in cm), where y2 + x2 = (25 − x)2, and
so y = √625− 50x = 5

√
25− 2x , and

two triangular pyramids (one on each side) each
having height x and a right-triangular top with
dimensions x and y.

The volume of the pan is, therefore,

V = 1

2
xy(25− 2x)+ 2

(
1

3

)(
1

2
xy

)

x

= 1

2
xy

(

25− 2x + 2

3
x

)

= 5

6
x
√

25− 2x(75 − 4x) = V (x).

The appropriate values for x are 0 ≤ x ≤ 25/2. Note that
V (0) = V (25/2) = 0 and V (x) > 0 in (0, 25/2). The
maximum volume will therefore occur at a critical point:

0 = dV

dx
= −25

6

4x2 − 85x + 375√
25− 2x

(after simplification). The quadratic in the numerator
factors to (x − 15)(4x − 25), so the CPs are x = 15 and
x = 25/4. Only x = 25/4 is in the required interval.
The maximum volume of the dustpan is V (25/4) ≈ 921
cm3.
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CHAPTER 5. INTEGRATION

Section 5.1 Sums and Sigma Notation
(page 278)

1.
4
∑

i=1

i 3 = 13 + 23 + 33 + 43

2.
100∑

j=1

j

j + 1
= 1

2
+ 2

3
+ 3

4
+ · · · + 100

101

3.
n
∑

i=1

3i = 3+ 32 + 33 + · · · + 3n

4.
n−1
∑

i=0

(−1)i

i + 1
= 1− 1

2
+ 1

3
− · · · + (−1)n−1

n

5.
n∑

j=3

(−2) j

( j − 2)2
= −23

12 +
24

22 −
25

32 + · · · +
(−1)n2n

(n − 2)2

6.
n
∑

j=1

j2

n3 =
1

n3 +
4

n3 +
9

n3 + · · · +
n2

n3

7. 5+ 6+ 7 + 8+ 9 =
9
∑

i=5

i

8. 2+ 2+ 2 + · · · + 2 (200 terms) equals
200
∑

i=1

2

9. 22 − 32 + 42 − 52 + · · · − 992 =
99
∑

i=2

(−1)i i 2

10. 1+ 2x + 3x2 + 4x3 + · · · + 100x99 =
100
∑

i=1

i x i−1

11. 1+ x + x2 + x3 + · · · + xn =
n∑

i=0

xi

12. 1− x + x2 − x3 + · · · + x2n =
2n
∑

i=0

(−1)i x i

13. 1− 1

4
+ 1

9
− · · · + (−1)n−1

n2
=

n
∑

i=1

(−1)i−1

i 2

14.
1

2
+ 2

4
+ 3

8
+ 4

16
+ · · · + n

2n
=

n
∑

i=1

i

2i

15.
99
∑

j=0

sin j =
100
∑

i=1

sin(i − 1)

16.
m∑

k=−5

1

k2 + 1
=

m+6∑

i=1

1

((i − 6)2 + 1

17.
n
∑

i=1

(i 2+2i ) = n(n + 1)(2n + 1)

6
+2

n(n + 1)

2
= n(n + 1)(2n + 7)

6

18.
1,000
∑

j=1

(2 j + 3) = 2(1, 000)(1, 001)

2
+ 3, 000 = 1, 004, 000

19.
n
∑

k=1

(π k − 3) = π(πn − 1)

π − 1
− 3n

20.
n
∑

i=1

(2i − i 2) = 2n+1 − 2 − 1
6 n(n + 1)(2n + 1)

21.
n∑

m=1

ln m = ln 1 + ln 2+ · · · + ln n = ln(n!)

22.
n
∑

i=0

ei/n = e(n+1)/n − 1

e1/n − 1

23. 2+ 2+ · · · + 2 (200 terms) equals 400

24. 1+ x + x2 + · · · + xn =
{

1− xn+1

1− x
if x �= 1

n + 1 if x = 1

25. 1− x + x2 − x3 + · · · + x2n =
{

1+ x2n+1

1+ x
if x �= −1

2n + 1 if x = −1

26. Let f (x) = 1 + x + x2 + · · · + x100 = x101 − 1

x − 1
if x �= 1.

Then

f ′(x) = 1+ 2x + 3x2 + · · · + 100x99

= d

dx

x101 − 1

x − 1
= 100x101 − 101x100 + 1

(x − 1)2
.

27. 22 − 32 + 42 − 52 + · · · + 982 − 992

=
49
∑

k=1

[(2k)2 − (2k + 1)2] =
49
∑

k=1

[4k2 − 4k2 − 4k − 1]

= −
49
∑

k=1

[4k + 1] = −4
49× 50

2
− 49 = −4, 949

28. Let s = 1

2
+ 2

4
+ 3

8
+ · · · + n

2n
. Then

s

2
= 1

4
+ 2

8
+ 3

16
+ · · · + n

2n+1
.
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Subtracting these two sums, we get

s

2
= 1

2
+ 1

4
+ 1

8
+ · · · + 1

2n
− n

2n+1

= 1

2

1− (1/2n)

1− (1/2) −
n

2n+1

= 1− n + 2

2n+1
.

Thus s = 2+ (n + 2)/2n .

29.
n
∑

i=m

(

f (i + 1)− f (i )
)

=
n
∑

i=m

f (i + 1)−
n
∑

i=m

f (i )

=
n+1
∑

j=m+1

f ( j)−
n
∑

i=m

f (i )

= f (n + 1)− f (m),
because each sum has only one term that is not cancelled
by a term in the other sum. It is called “telescoping”
because the sum “folds up” to a sum involving only part
of the first and last terms.

30.
10
∑

n=1

(n4 − (n − 1)4 = 104 − 04 = 10, 000

31.
m∑

j=1

(2 j − 2 j−1) = 2m − 20 = 2m − 1

32.
2m
∑

i=m

(
1

i
− 1

i + 1

)

= 1

m
− 1

2m + 1
= m + 1

m(2m + 1)

33.
m∑

j=1

1

j ( j + 1)
=

m∑

j=1

(
1

j
− 1

j + 1

)

= 1− 1

n + 1
= n

n + 1

34. The number of small shaded squares is 1 + 2 + · · · + n.
Since each has area 1, the total area shaded is

∑n
i=1 i .

But this area consists of a large right-angled triangle of
area n2/2 (below the diagonal), and n small triangles
(above the diagonal) each of area 1/2. Equating these
areas, we get

n
∑

i=1

i = n2

2
+ n

1

2
= n(n + 1)

2
.

Fig. 5.1.34

35. To show that
n∑

i=1

i = n(n + 1)

2
,

we write n copies of the identity

(k + 1)2 − k2 = 2k + 1,

one for each k from 1 to n:

22 − 12 = 2(1)+ 1

32 − 22 = 2(2)+ 1

42 − 32 = 2(3)+ 1
...

(n + 1)2 − n2 = 2(n)+ 1.

Adding the left and right sides of these formulas we get

(n + 1)2 − 12 = 2
n
∑

i=1

i + n.

Hence,
∑n

i=1 i = 1

2
(n2 + 2n + 1− 1 − n) = n(n + 1)

2
.

36. The formula
∑n

i=1 i = n(n + 1)/2 holds for n = 1, since
it says 1 = 1 in this case. Now assume that it holds for
n = some number k ≥ 1; that is,

∑k
i=1 i = k(k + 1)/2.

Then for n = k + 1, we have

k+1
∑

i=1

i =
k
∑

i=1

i+(k+1) = k(k + 1)

2
+(k+1) = (k + 1)(k + 2)

2
.

Thus the formula also holds for n = k + 1. By induction,
it holds for all positive integers n.

177



SECTION 5.1 (PAGE 278) R. A. ADAMS: CALCULUS

37. The formula
∑n

i=1 i 2 = n(n + 1)(2n + 1)/6 holds for
n = 1, since it says 1 = 1 in this case. Now assume that
it holds for n = some number k ≥ 1; that is,
∑k

i=1 i 2 = k(k + 1)(2k + 1)/6. Then for n = k + 1, we
have

k+1∑

i=1

i 2 =
k∑

i=1

i 2 + (k + 1)2

= k(k + 1)(2k + 1)

6
+ (k + 1)2

= k + 1

6
[2k2 + k + 6k + 6]

= k + 1

6
(k + 2)(2k + 3)

= (k + 1)((k + 1)+ 1)(2(k + 1)+ 1)

6
.

Thus the formula also holds for n = k + 1. By induction,
it holds for all positive integers n.

38. The formula
∑n

i=1 r i−1 = (rn − 1)/(r − 1) (for r �= 1)
holds for n = 1, since it says 1 = 1 in this case. Now
assume that it holds for n = some number k ≥ 1; that is,
∑k

i=1 r i−1 = (rk − 1)/(r − 1). Then for n = k + 1, we
have

k+1
∑

i=1

r i−1 =
k
∑

i=1

r i−1 + rk = rk − 1

r − 1
+ r k = rk+1 − 1

r − 1
.

Thus the formula also holds for n = k + 1. By induction,
it holds for all positive integers n.

39.

1 2 3 · · · n
1
2

3

...

n

Fig. 5.1.39

The L-shaped region with short side i is a square of side
i (i + 1)/2 with a square of side (i − 1)i/2 cut out. Since

(
i (i + 1)

2

)2

−
(
(i − 1)i

2

)2

= i 4 + 2i3 + i 2 − (i 4 − 2i3 + i 2)

4
= i 3,

that L-shaped region has area i3. The sum of the areas
of the n L-shaped regions is the area of the large square
of side n(n + 1)/2, so

n
∑

i=1

i 3 =
(

n(n + 1)

2

)2

.

40. To show that

n∑

j=1

j3 = 13 + 23 + 33 + · · · + n3 = n2(n + 1)2

4
,

we write n copies of the identity

(k + 1)4 − k4 = 4k3 + 6k2 + 4k + 1,

one for each k from 1 to n:

24 − 14 = 4(1)3 + 6(1)2 + 4(1) + 1

34 − 24 = 4(2)3 + 6(2)2 + 4(2) + 1

44 − 34 = 4(3)3 + 6(3)2 + 4(3) + 1
...

(n + 1)4 − n4 = 4(n)3 + 6(n)2 + 4(n)+ 1.

Adding the left and right sides of these formulas we get

(n + 1)4 − 14 = 4
n
∑

j=1

j3 + 6
n
∑

j=1

j2 + 4
n
∑

j=1

j + n

= 4
n
∑

j=1

j3 + 6n(n + 1)(2n + 1)

6
+ 4n(n + 1)

2
+ n.

Hence,

4
n∑

j=1

j3 = (n + 1)4 − 1− n(n + 1)(2n + 1)− 2n(n + 1)− n

= n2(n + 1)2

so
n
∑

j=1

j3 = n2(n + 1)2

4
.

41. The formula
∑n

i=1 i 3 = n2(n + 1)2/4 holds for n = 1,
since it says 1 = 1 in this case. Now assume that it holds
for n = some number k ≥ 1; that is,
∑k

i=1 i 3 = k2(k + 1)2/4. Then for n = k + 1, we have

k+1
∑

i=1

i 3 =
k
∑

i=1

i 3 + (k + 1)3

= k2(k + 1)2

4
+ (k + 1)3 = (k + 1)2

4
[k2 + 4(k + 1)]

= (k + 1)2

4
(k + 2)2.
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Thus the formula also holds for n = k + 1. By induction,
it holds for all positive integers n.

42. To find
∑n

j=1 j4 = 14 + 24 + 34 + · · · + n4, we write n
copies of the identity

(k + 1)5 − k5 = 5k4 + 10k3 + 10k2 + 5k + 1,

one for each k from 1 to n:

25 − 15 = 5(1)4 + 10(1)3 + 10(1)2 + 5(1)+ 1

35 − 25 = 5(2)4 + 10(2)3 + 10(2)2 + 5(2)+ 1

45 − 35 = 5(3)4 + 10(3)3 + 10(3)2 + 5(3)+ 1
...

(n + 1)5 − n5 = 5(n)4 + 10(n)3 + 10(n)2 + 5(n)+ 1.

Adding the left and right sides of these formulas we get

(n + 1)5 − 15 = 5
n∑

j=1

j4 + 10
n∑

j=1

j3 + 10
n∑

j=1

j2 + 5
n∑

j=1

j + n.

Substituting the known formulas for all the sums except
∑n

j=1 j4, and solving for this quantity, gives

n
∑

j=1

j4 = n(n + 1)(2n + 1)(3n2 + 3n − 1)

30
.

Of course we got Maple to do the donkey work!

43.
n
∑

i=1

i 5 = 1

6
n6 + 1

2
n5 + 5

12
n4 − 1

12
n2

n
∑

i=1

i 6 = 1

7
n7 + 1

2
n6 + 1

2
n5 − 1

6
n3 + 1

42
n

n
∑

i=1

i 7 = 1

8
n8 + 1

2
n7 + 7

12
n6 − 7

24
n4 + 1

12
n2

n
∑

i=1

i 8 = 1

9
n9 + 1

2
n8 + · · ·

We would guess (correctly) that

n∑

i=1

i 10 = 1

11
n11 + 1

2
n10 + · · · .

Section 5.2 Areas as Limits of Sums
(page 284)

1. The area is the limit of the sum of the areas of the rect-
angles shown in the figure. It is

A = lim
n→∞

1

n

[
3

n
+ 3× 2

n
+ 3× 3

n
+ · · · + 3n

n

]

= lim
n→∞

3

n2 (1+ 2+ 3+ · · · + n)

= lim
n→∞

3

n2 ·
n(n + 1)

2
= 3

2
sq. units.

y

x1
n

2
n

3
n

4
n

n−1
n

n
n = 1

y=3x

(1,3)

Fig. 5.2.1

2. This is similar to #1; the rectangles now have width
3/n and the i th has height 2(3i/n)+1, the value of 2x+1
at x = 3i/n. The area is

A = lim
n→∞

n∑

i=1

3

n

(

2
3i

n
+ 1

)

= lim
n→∞

18

n2

n
∑

i=1

i + 3

n
n

= lim
n→∞

18

n2

n(n + 1)

2
+ 3 = 9+ 3 = 12sq. units.

3. This is similar to #1; the rectangles have width
(3−1)/n = 2/n and the i th has height the value of 2x−1
at x = 1+ (2i/n). The area is

A = lim
n→∞

n∑

i=1

2

n

(

2 + 2
2i

n
− 1

)

= lim
n→∞

8

n2

n
∑

i=1

i + 2

n
n

= lim
n→∞

8

n2

n(n + 1)

2
+ 2 = 4+ 2 = 6sq. units.
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4. This is similar to #1; the rectangles have width
(2 − (−1))/n = 3/n and the i th has height the value of
3x + 4 at x = −1+ (3i/n). The area is

A = lim
n→∞

n
∑

i=1

3

n

(

−3+ 3
3i

n
+ 4

)

= lim
n→∞

27

n2

n
∑

i=1

i + 3

n
n

= lim
n→∞

27

n2

n(n + 1)

2
+ 3 = 27

2
+ 3 = 33

2
sq. units.

5. The area is the limit of the sum of the areas of the rect-
angles shown in the figure. It is

A = lim
n→∞

2

n

[(

1 + 2

n

)2

+
(

1 + 4

n

)2

+ · · · +
(

1+ 2n

n

)2
]

= lim
n→∞

2

n

[

1+ 4

n
+ 4

n2 + 1 + 8

n
+ 16

n2

+ · · · + 1 + 4n

n
+ 4n2

n2

]

= lim
n→∞

(

2+ 8

n2 ·
n(n + 1)

2
+ 8

n3 ·
n(n + 1)(2n + 1)

6

)

= 2 + 4+ 8

3
= 26

3
sq. units.

y

x1 1+ 2
n 1+ 2n

n =3

y=x2

Fig. 5.2.5

6. Divide [0, a] into n equal subintervals of length �x = a

n

by points xi = i a

n
, (0 ≤ i ≤ n). Then

Sn =
n
∑

i=1

(a

n

) [( i a

n

)2

+ 1

]

=
(a

n

)3 n
∑

i=1

i 2 + a

n

n
∑

i=1

(1)

(Use Theorem 1(a) and 1(c).)

=
(a

n

)3 n(n + 1)(2n + 1)

6
+ a

n
(n)

= a3

6

(n + 1)(2n + 1)

n2 + a.

Area = lim
n→∞ Sn = a3

3
+ asq. units.

y

xax1 x2

y=x2+1

Fig. 5.2.6

7. The required area is (see the figure)

A = lim
n→∞

3

n

[(

−1+ 3

n

)2

+ 2

(

−1+ 3

n

)

+ 3

+
(

−1+ 6

n

)2

+ 2

(

−1+ 6

n

)

+ 3

+ · · · +
(

−1+ 3n

n

)2

+ 2

(

−1+ 3n

n

)

+ 3

]

= lim
n→∞

3

n

[(

1− 6

n
+ 32

n2
− 2+ 6

n
+ 3

)

+
(

1− 12

n
+ 62

n2
− 2+ 12

n
+ 3

)

+ · · · +
(

1− 6n

n
+ 9n2

n2 − 2+ 6n

n
+ 3

)]

= lim
n→∞

(

6 + 27

n3
· n(n + 1)(2n + 1)

6

)

= 6+ 9 = 15sq. units.

y

x

y=x2+2x+3

−1
−1+ 3

n −1+ 3n
n =2

Fig. 5.2.7
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8.
y

x
−1

A

y = x2 − 1

1

Fig. 5.2.8

The region in question lies between x = −1 and x = 1
and is symmetric about the y-axis. We can therefore dou-
ble the area between x = 0 and x = 1. If we divide this
interval into n equal subintervals of width 1/n and use
the distance 0 − (x2 − 1) = 1 − x2 between y = 0 and
y = x2 − 1 for the heights of rectangles, we find that the
required area is

A = 2 lim
n→∞

n
∑

i=1

1

n

(

1− i2

n2

)

= 2 lim
n→∞

n
∑

i=1

(
1

n
− i 2

n3

)

= 2 lim
n→∞

(
n

n
− n(n + 1)(2n + 1)

6n3

)

= 2− 4

6
= 4

3
sq. units.

9.
y

x

y = 1− x

A

2 4

Fig. 5.2.9

The height of the region at position x is
0− (1− x) = x−1. The “base” is an interval of length 2,
so we approximate using n rectangles of width 2/n. The
shaded area is

A = lim
n→∞

n
∑

i=1

2

n

(

2+ 2i

n
− 1

)

= lim
n→∞

n
∑

i=1

(
2

n
+ 4i

n2

)

= lim
n→∞

(
2n

n
+ 4

n(n + 1)

2n2

)

= 2 + 2 = 4 sq. units.

10.
y

x2

y = x2 − 2x

A

Fig. 5.2.10

The height of the region at position x is
0 − (x2 − 2x) = 2x − x2. The “base” is an interval of
length 2, so we approximate using n rectangles of width
2/n. The shaded area is

A = lim
n→∞

n∑

i=1

2

n

(

2
2i

n
− 4i2

n2

)

= lim
n→∞

n
∑

i=1

(
8i

n2 −
8i2

n3

)

= lim
n→∞

(
8

n2

n(n + 1)

2
− 8

n3

n(n + 1)(2n + 1)

6

)

= 4− 8

3
= 4

3
sq. units.

11.
y

x

y = 4x − x2 + 1

A

4

Fig. 5.2.11
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The height of the region at position x is
4x − x2 + 1 − 1 = 4x − x2. The “base” is an interval of
length 4, so we approximate using n rectangles of width
4/n. The shaded area is

A = lim
n→∞

n∑

i=1

4

n

(

4
4i

n
− 16i2

n2

)

= lim
n→∞

n
∑

i=1

(
64i

n2 −
64i2

n3

)

= lim
n→∞

(
64

n2

n(n + 1)

2
− 64

n3

n(n + 1)(2n + 1)

6

)

= 32− 64

3
= 32

3
sq. units.

12. Divide [0, b] into n equal subintervals of length �x = b

n

by points xi = i b

n
, (0 ≤ i ≤ n). Then

Sn =
n∑

i=1

b

n

(

e(ib/n)
)

= b

n

n∑

i=1

(

e(b/n)
)i

= b

n
e(b/n)

n
∑

i=1

(

e(b/n)
)i−1

(Use Thm. 6.1.2(d).)

= b

n
e(b/n)

e(b/n)n − 1

e(b/n) − 1

= b

n
e(b/n)

eb − 1

e(b/n) − 1
.

Let r = b

n
.

Area = lim
n→∞ Sn = (eb − 1) lim

r→0+ er lim
r→0+

r

er − 1

[
0

0

]

= (eb − 1)(1) lim
r→0+

1

er
= eb − 1sq. units.

13. The required area is

A = lim
n→∞

2

n

[

2−1+(2/n) + 2−1+(4/n) + · · · + 2−1+(2n/n)
]

= lim
n→∞

22/n

n

[

1+
(

22/n
)

+
(

22/n
)2 + · · · +

(

22/n
)n−1

]

= lim
n→∞

22/n

n
·
(

22/n
)n − 1

22/n − 1

= lim
n→∞ 22/n × 3× 1

n(22/n − 1)

= 3 lim
n→∞

1

n(22/n − 1)
.

Now we can use l’Hôpital’s rule to evaluate

lim
n→∞ n(22/n − 1) = lim

n→∞
22/n − 1

1

n

[
0

0

]

= lim
n→∞

22/n ln 2

(−2

n2

)

−1

n2

= lim
n→∞ 2(2/n)+1 ln 2 = 2 ln 2.

Thus the area is
3

2 ln 2
square units.

y

x

y=2x

−1
−1+ 2

n −1+ 4
n −1+ 6

n −1+ 2n
n =1

Fig. 5.2.13

14. Area = lim
n→∞

b

n

[(
b

n

)3

+
(

2b

n

)3

+ · · · +
(

nb

n

)3
]

= lim
n→∞

b4

n4 (1
3 + 23 + 33 + · · · + n3)

= lim
n→∞

b4

n4 ·
n2(n + 1)2

4
= b4

4
sq. units.

y

x

y=x3

b
n

2b
n

3b
n

(n−1)b
n

nb
n =b

Fig. 5.2.14

15. Let t =
(

b

a

)1/n

and let

x0 = a, x1 = at, x2 = at2, . . . , xn = atn = b.
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The i th subinterval [xi−1, xi ] has length �xi =
ati−1(t − 1). Since f (xi−1) = 1

ati−1 , we form the sum

Sn =
n∑

i=1

ati−1(t − 1)

(
1

ati−1

)

= n(t − 1) = n

[(
b

a

)1/n

− 1

]

.

Let r = 1

n
and c = b

a
. The area under the curve is

A = lim
n→∞ Sn = lim

r→0+
cr − 1

r

[
0

0

]

= lim
r→0+

cr ln c

1
= ln c = ln

(
b

a

)

square units.

This is not surprising because it follows from the defini-
tion of ln.

y

x

y = 1

x

a bx1 x2

Fig. 5.2.15

16.
y

x

2

y = 2(1 − x)

1

A

Fig. 5.2.16

sn =
n
∑

i=1

2

n

(

1− i

n

)

represents a sum of areas of n

rectangles each of width 1/n and having heights equal to
the height to the graph y = 2(1 − x) at the points
x = i/n. Thus limn→∞ Sn is the area A of the triangle
in the figure above, and therefore has the value 1.

17.
y

x

y = 1 − x

1 2
A1

A2

Fig. 5.2.17

sn =
n
∑

i=1

2

n

(

1− 2i

n

)

represents a sum of areas of n

rectangles each of width 2/n and having heights equal
to the height to the graph y = 1 − x at the points
x = 2i/n. Half of these rectangles have negative height,
and limn→∞ Sn is the difference A1 − A2 of the areas of
the two triangles in the figure above. It has the value 0
since the two triangles have the same area.

18.
y

x

y = 2+ 3x

1

A

Fig. 5.2.18

sn =
n
∑

i=1

2n + 3i

n2
=

n
∑

i=1

1

n

(

2+ 3i

n

)

represents a sum

of areas of n rectangles each of width 1/n and having
heights equal to the height to the graph y = 2 + 3x at
the points x = i/n. Thus limn→∞ Sn is the area of the
trapezoid in the figure above, and has the value
1(2 + 5)/2 = 7/2.

19. Sn =
n
∑

j=1

1

n

√

1−
(

j

n

)2

= sum of areas of rectangles in the figure.

Thus the limit of Sn is the area of a quarter circle of unit
radius:

lim
n→∞ Sn = π

4
.
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y

x

y=
√

1−x2

1
n

2
n

n−1
n

n
n=1

Fig. 5.2.19

Section 5.3 The Definite Integral
(page 290)

1. f (x) = x on [0, 2], n = 8.

P8 =
{

0,
1

4
,

1

2
,

3

4
, 1,

5

4
,

3

2
,

7

4
, 1

}

L( f, P8) = 2− 0

8

[

0 + 1

4
+ 1

2
+ 3

4
+ 1+ 5

4
+ 3

2
+ 7

4

]

= 7

4

U( f, P8) = 2− 0

8

[
1

4
+ 1

2
+ 3

4
+ 1+ 5

4
+ 3

2
+ 7

4
+ 2

]

= 9

4

2. f (x) = x2 on [0, 4], n = 4.

L( f, P4) =
(

4− 0

4

)

[0 + (1)2 + (2)2 + (3)2] = 14.

U( f, P4) =
(

4− 0

4

)

[(1)2 + (2)2 + (3)2 + (4)2] = 30.

3. f (x) = ex on [−2, 2], n = 4.

L( f, P4) = 1(e−2 + e−1 + e0 + e1) = e4 − 1

e2(e − 1)
≈ 4.22

U( f, P4) = 1(e−1 + e0 + e1 + e2) = e4 − 1

e(e − 1)
≈ 11.48.

4. f (x) = ln x on [1, 2], n = 5.

L( f, P5) =
(

2− 1

5

)[

ln 1+ ln
6

5
+ ln

7

5
+ ln

8

5
+ ln

9

5

]

≈ 0.3153168.

U( f, P5) =
(

2− 1

5

)[

ln
6

5
+ ln

7

5
+ ln

8

5
+ ln

9

5
+ ln 2

]

≈ 0.4539462.

5. f (x) = sin x on [0, π ], n = 6.

P6 =
{

0,
π

6
,
π

3
,
π

2
,

2π

3
,

5π

6
, π

}

L( f, P6) = π

6

[

0+ 1

2
+
√

3

2
+
√

3

2
+ 1

2
+ 0

]

= π

6
(1+√3) ≈ 1.43,

U( f, P6) = π

6

[

1

2
+
√

3

2
+ 1+ 1+

√
3

2
+ 1

2

]

= π

6
(3+√3) ≈ 2.48.

6. f (x) = cos x on [0, 2π ], n = 4.

L( f, P4) =
(

2π

4

)[

cos
π

2
+ cosπ + cosπ + cos

3π

2

]

= −π.

U( f, P4) =
(

2π

4

)[

cos 0+ cos
π

2
+ cos

3π

2
+ cos 2π

]

= π.
y

x

y=cos x

π/2 π

3π/2 2π

Fig. 5.3.6

7. f (x) = x on [0, 1]. Pn =
{

0, 1
n ,

2
n , . . . ,

n−1
n , n

n

}

. We
have

L( f, Pn) = 1

n

(

0+ 1

n
+ 2

n
+ · · · + n − 1

n

)

= 1

n2
· (n − 1)n

2
= n − 1

2n
,

U( f, Pn) = 1

n

(
1

n
+ 2

n
+ 3

n
+ · · · + n

n

)

= 1

n2 ·
n(n + 1)n

2
= n + 1

2n
.

Thus limn→∞ L( f, Pn) = limn→∞U( f, Pn) = 1/2.
If P is any partition of [0, 1], then

L( f, P) ≤ U( f, Pn) = n + 1

2n

for every n, so L( f, P) ≤ limn→∞U( f, Pn) = 1/2.
Similarly, U( f, P) ≥ 1/2. If there exists any number I
such that L( f, P) ≤ I ≤ U( f, P) for all P, then I can-
not be less than 1/2 (or there would exist a Pn such that
L( f, Pn) > I ), and, similarly, I cannot be greater than
1/2 (or there would exist a Pn such that U( f, Pn) < I ).
Thus I = 1/2 and

∫ 1
0 x dx = 1/2.
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8. f (x) = 1 − x on [0, 2]. Pn =
{

0, 2
n ,

4
n , . . . ,

2n−2
n , 2n

n

}

.

We have

L( f, Pn) = 2

n

((

1− 2

n

)

+
(

1− 4

n

)

+ · · · +
(

1− 2n

n

))

= 2

n
n − 4

n2

n
∑

i=1

i

= 2− 4

n2

n(n + 1)

2
= − 2

n
→ 0 as n→∞,

U( f, Pn) = 2

n

((

1− 0

n

)

+
(

1− 2

n

)

+ · · · +
(

1− 2n − 2

n

))

= 2

n
n − 4

n2

n−1
∑

i=0

i

= 2− 4

n2

(n − 1)n

2
= 2

n
→ 0 as n→∞.

Thus
∫ 2

0
(1 − x) dx = 0.

9. f (x) = x3 on [0, 1]. Pn =
{

0, 1
n ,

2
n , . . . ,

n−1
n , n

n

}

. We
have (using the result of Exercise 51 (or 52) of Section
6.1)

L( f, Pn) = 1

n

((
0

n

)3

+
(

1

n

)3

+ · · · +
(

n − 1

n

)3
)

= 1

n4

n−1
∑

i=0

i 3 = 1

n4

(n − 1)2n2

4

= 1

4

(
n − 1

n

)2

→ 1

4
as n→∞,

U( f, Pn) = 1

n

((
1

n

)3

+
(

2

n

)3

+ · · · +
(n

n

)3
)

= 1

n4

n∑

i=1

i 3 = 1

n4

n2(n + 1)2

4

= 1

4

(
n + 1

n

)2

→ 1

4
as n→∞.

Thus
∫ 1

0
x3 dx = 1

4
.

10. f (x) = ex on [0, 3]. Pn =
{

0, 3
n ,

6
n , . . . ,

3n−3
n , 3n

n

}

. We
have (using the result of Exercise 51 (or 52) of Section
6.1)

L( f, Pn) = 3

n

(

e0/n + e3/n + e6/n + · · · + e3(n−1)/n
)

= 3

n

e3n/n − 1

e3/n − 1
= 3(e3 − 1)

n(e3/n − 1)
,

U( f, Pn) = 3

n

(

e3/n + e6/n + e9/n + · · · + e3n/n
)

= e3/n L( f, Pn).

By l’Hôpital’s Rule,

lim
n→∞ n(e3/n − 1) = lim

n→∞
e3/n − 1

1/n

= lim
n→∞

e3/n(−3/n2)

−1/n2 = lim
n→∞

3e3/n

1
= 3.

Thus

lim
n→∞ L( f, Pn) = lim

n→∞U( f, Pn) = e3 − 1 =
∫ 3

0
ex dx .

11. lim
n→∞

n
∑

i=1

1

n

√

i

n
=
∫ 1

0

√
x dx

12. lim
n→∞

n
∑

i=1

1

n

√

i − 1

n
=
∫ 1

0

√
x dx

13. lim
n→∞

n
∑

i=1

π

n
sin

π i

n
=
∫ π

0
sin x dx

14. lim
n→∞

n
∑

i=1

2

n
ln

(

1+ 2i

n

)

=
∫ 2

0
ln(1 + x) dx

15. lim
n→∞

n∑

i=1

1

n
tan−1

(
2i − 1

2n

)

=
∫ 1

0
tan−1x dx

Note that
2i − 1

2n
is the midpoint of

[
i − 1

n
,

i

n

]

.

16. lim
n→∞

n
∑

i=1

n

n2 + i 2 = lim
n→∞

n
∑

i=1

1

n

1

1+ (i/n)2
=
∫ 1

0

dx

1+ x2

17. Let �x = b − a

n
and xi = a + i�x where 1 ≤ i ≤ n − 1.

Since f is continuous and nondecreasing,

L( f, Pn) = f (a)�x + f (x1)�x+
f (x2)�x + · · · + f (xn−1)�x

= b − a

n

[

f (a) +
n−1
∑

i=1

f (xi )

]

,

U( f, Pn) = f (x1)�x + f (x2)�x + · · ·+
f (xn−1)�x + f (b)�x

= b − a

n

[n−1
∑

i=1

f (xi )+ f (b)

]

.

Thus,

U( f, Pn)− L( f, Pn)

= b − a

n

[n−1
∑

i=1

f (xi )+ f (b)− f (a)−
n−1
∑

i=1

f (xi )

]

= (b − a)( f (b)− f (a))

n
.
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Since
lim

n→∞[U( f, Pn)− L( f, P − n)] = 0,

therefore f must be integrable on [a, b].

18. P = {x0 < x1 < · · · < xn},
P ′ = {x0 < x1 < · · · < xj−1 < x ′ < xj < · · · < xn}.
Let mi and Mi be, respectively, the minimum and max-
imum values of f (x) on the interval [xi−1, xi ], for
1 ≤ i ≤ n. Then

L( f, P) =
n
∑

i=1

mi (xi − xi−1),

U( f, P) =
n
∑

i=1

Mi (xi − xi−1).

If m′j and M ′j are the minimum and maximum values
of f (x) on [xj−1, x ′], and if m′′j and M ′′j are the corre-
sponding values for [x′, xj ], then

m ′j ≥ mj , m ′′j ≥ mj , M ′j ≤ Mj , M ′′j ≤ Mj .

Therefore we have

mj (xj − xj−1) ≤ m ′j(x ′ − xj−1)+ m ′′j (xj − x ′),
Mj (xj − xj−1) ≥ M ′j (x ′ − xj−1)+ M ′′j (xj − x ′).

Hence L( f, P) ≤ L( f, P′) and U( f, P) ≥ U( f, P′).
If P′′ is any refinement of P we can add the new points
in P ′′ to those in P one at a time, and thus obtain

L( f, P) ≤ L( f, P′′), U( f, P ′′) ≤ U( f, P).

Section 5.4 Properties of the
Definite Integral (page 296)

1.
∫ b

a
f (x) dx +

∫ c

b
f (x) dx +

∫ a

c
f (x) dx

=
∫ c

a
f (x) dx −

∫ c

a
f (x) dx = 0

2.
∫ 2

0
3 f (x) dx +

∫ 3

1
3 f (x) dx −

∫ 3

0
2 f (x) dx

−
∫ 2

1
3 f (x) dx

=
∫ 1

0
(3 − 2) f (x) dx +

∫ 2

1
(3 + 3 − 2− 3) f (x) dx

+
∫ 3

2
(3− 2) f (x) dx

=
∫ 3

0
f (x) dx

3.
∫ 2
−2(x + 2) dx = 1

2
(4)(4) = 8

y

x

y

x

(2,4)

y=x+2

−2 2

2

Fig. 5.4.3

4.
∫ 2

0 (3x + 1) dx = shaded area = 1
2 (1 + 7)(2) = 8

y

x

y=3x+1

2

Fig. 5.4.4

5.
∫ b

a x dx = b2

2
− a2

2
y

x

y=x

a b

Fig. 5.4.5

6.
∫ 2
−1(1 − 2x) dx = A1 − A2 = 0

y

x

1
2 2

y = 1− 2x

−1

A1

A2

Fig. 5.4.6

7.
∫
√

2
−√2

√
2− t2 dt = 1

2π(
√

2)2 = π
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y

t
−√2

√
2

y=
√

2−t2

Fig. 5.4.7

8.
∫ 0

−√2

√

2− x2 dx = quarter disk = 1

4
π(
√

2)2 = π

2

9.
∫ π

−π
sin(x3) dx = 0. (The integrand is an odd function

and the interval of integration is symmetric about x = 0.)

10.
∫ a
−a(a − |s|) ds = shaded area = 2( 1

2 a2) = a2

y

s

a

y=a−|s|

−a
a

Fig. 5.4.10

11.
∫ 1
−1(u

5 − 3u3 + π) du = π ∫ 1
−1 du = 2π

y

u1−1

1

Fig. 5.4.11

12. Let y =
√

2x − x2 ⇒ y2 + (x − 1)2 = 1.
∫ 2

0

√

2x − x2 dx = shaded area = 1

2
π(1)2 = π

2
.

y

x2

y=
√

2x−x2

Fig. 5.4.12

13.
∫ 4

−4
(ex − e−x) dx = 0 (odd function, symmetric interval)

14.
∫ 3

−3
(2+ t)

√

9− t2 dt = 2
∫ 3

−3

√

9 − t2 dt +
∫ 3

−3
t
√

9− t2 dt

= 2

(
1

2
π32

)

+ 0 = 9π

15.
∫ 1

0

√

4− x2 dx = area A1 in figure below

= 1

4
area of circle − area A2

(see #14 below)

= 1

4
(π22)−

(

2π

3
−
√

3

2

)

= π

3
+
√

3

2
y

x

P

R Q

O 1 2

A2

A1

y = √4− x2

Fig. 5.4.15

16.
∫ 2

1

√

4− x2 dx = area A2 in figure above

= area sector POQ − area triangle POR

= 1

6
(π22)− 1

2
(1)
√

3

= 2π

3
−
√

3

2

17.
∫ 2

0
6x2 dx = 6

∫ 2

0
x2 dx = 6

33

3
= 16

18.
∫ 3

2
(x2 − 4) dx =

∫ 3

0
x2 dx −

∫ 2

0
x2 dx − 4(3− 2)

= 33

3
− 23

3
− 4 = 7

3

19.
∫ 2

−2
(4− t2) dt = 2

∫ 2

0
(4− t2) dt

= 2

(

2(4)− 23

3

)

= 32

3

20.
∫ 2

0
(v2 − v) dv = 23

3
− 22

2
= 2

3

21.
∫ 1

0
(x2 +

√

1 − x2) dx = 13

3
+ 1

4
(π12)

= 1

3
+ π

4
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22.
∫ 6

−6
x2(2 + sin x) dx =

∫ 6

−6
2x2 dx +

∫ 6

−6
x2 sin x dx

= 4
∫ 6

0
x2 dx + 0 = 4

3
(63) = 288

23.
∫ 2

1

1

x
dx = ln 2

24.
∫ 4

2

1

t
dt =

∫ 4

1

1

t
dt −

∫ 2

1

1

t
dt

= ln 4− ln 2 = ln(4/2) = ln 2

25.
∫ 1

1/3

1

t
dt = −

∫ 1/3

1

1

t
dt = − ln

1

3
= ln 3

26.
∫ 3

1/4

1

s
ds =

∫ 3

1

1

s
ds −

∫ 1/4

1

1

s
ds

= ln 3− ln
1

4
= ln 3+ ln 4 = ln 12

27. Average = 1

4− 0

∫ 4

0
(x + 2) dx

= 1

4

[
1

2
(42)+ 2(4)

]

= 4

28. Average = 1

b − a

∫ b

a
(x + 2) dx

= 1

b − a

[
1

2
(b2 − a2)+ 2(b − a)

]

= 1

2
(b + a)+ 2 = 4+ a + b

2

29. Average = 1

π − (−π)
∫ π

−π
(1 + sin t) dt

= 1

2π

[∫ π

−π
1 dt +

∫ π

−π
sin t dt

]

= 1

2π
[2π + 0] = 1

30. Average = 1

3− 0

∫ 3

0
x2 dx = 1

3

33

3
= 3

31. Average value = 1

2− 0

∫ 2

0
(4 − x2)1/2 dx

= 1

2
(shaded area)

= 1

2

(
1

4
π(2)2

)

= π

2

y

x
2

y=
√

4−x2

Fig. 5.4.31

32. Average value = 1

2− (1/2)
∫ 2

1/2

1

s
ds

= 2

3

(

ln 2− ln
1

2

)

= 4

3
ln 2

33.
∫ 2
−1 sgn x dx = 2− 1 = 1

y

x

y=sgn x

−1
2

1

−1

Fig. 5.4.33

34. Let

f (x) =
{

1+ x if x < 0
2 if x ≥ 0.

Then

∫ 2

−3
f (x) dx = area(1) + area(2)− area(3)

= (2 × 2)+ 1
2 (1)(1) − 1

2 (2)(2) = 2 1
2 .

y

x

(1)
(2)

(3)

−3

−1 2

(−3,−2)

y=x+1

y=2

Fig. 5.4.34

35.
∫ 2

0
g(x) dx =

∫ 1

0
x2 dx +

∫ 2

1
x dx

= 13

3
+ 22 − 12

2
= 11

6
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36.
∫ 3

0
|2− x | dx =

∫ 2

0
(2 − x) dx +

∫ 3

2
(x − 2) dx

=
(

2x − x2

2

)
∣
∣
∣
∣
∣

2

0

+
(

x2

2
− 2x

)
∣
∣
∣
∣
∣

3

2

= 4− 2− 0+ 9

2
− 6 − 2+ 4 = 5

2

37. I =
∫ 2

0

√

4− x2sgn(x − 1) dx

= area A1 − area A2.

Area A1 = 1
6π22 − 1

2 (1)(
√

3) = 2
3π − 1

2

√
3.

Area A2 = 1
4π22− area A1 = 1

3π + 1
2

√
3.

Therefore I = (π/3)−√3.
y

x

y=
√

4−x2

π/3 1 2

√
3

A1

A2

2

Fig. 5.4.37

38.
∫ 3.5

0 [x] dx = shaded area = 1+ 2+ 1.5 = 4.5.
y

x1 2 3.5

y=
x�

Fig. 5.4.38

39.
y

x

A1

A2

y = |x + 1| − |x − 1| + |x + 2|

Fig. 5.4.39

∫ 4

−3
(|x + 1| − |x − 1| + |x + 2|) dx

= area A1 − area A2

= 1

2

5

3
(5)+ 5+ 8

2
(3)− 1+ 2

2
(1)− 1+ 2

2
(1)− 1

2

1

3
(1) = 41

2

40.
y

x

y = x2 − x

|x − 1|

A2

A1

3

Fig. 5.4.40

∫ 3

0

x2 − x

|x − 1| dx

= area A1 − area A2

= 1+ 3

2
(2)− 1

2
(1)(1) = 7

2

41. Average = 1

4

∫ 2

−2
|x + 1|sgn x dx

= 1

4

(∫ 2

0
(x + 1) dx −

∫ 0

−2
|x + 1| dx

)

= 1

4

(
1+ 3

2
× 2− 2× 1

2
× 1× 1

)

= 1− 1

4
= 3

4
.

y

x

1

(−2,−1)
−1

(2,3)

2−1
−2

A1

A2 A3

y=x+1

y=−(x+1)

Fig. 5.4.41
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42.
∫ b

a

(

f (x)− f̄
)

dx =
∫ b

a
f (x) dx −

∫ b

a
f̄ dx

= (b − a) f̄ − f̄
∫ b

a
dx

= (b − a) f̄ − (b − a) f̄ = 0

43.
∫ b

a

(

f (x)− k
)2

dx

=
∫ b

a

(

f (x)
)2

dx − 2k
∫ b

a
f (x) dx + k2

∫ b

a
dx

=
∫ b

a

(

f (x)
)2

dx − 2k(b − a) f̄ + k2(b − a)

= (b − a)(k − f̄ )2 +
∫ b

a

(

f (x)
)2

dx − (b − a) f̄
2

This is minimum if k = f̄ .

Section 5.5 The Fundamental Theorem
of Calculus (page 301)

1.
∫ 2

0
x3 dx = x4

4

∣
∣
∣
∣

2

0
= 16− 0

4
= 4

2.
∫ 4

0

√
x dx = 2

3
x3/2

∣
∣
∣
∣

4

0
= 16

3

3.
∫ 1

1/2

1

x2 dx = −1

x

∣
∣
∣
∣

1

1/2
= −1− (−2) = 1

4.
∫ −1

−2

(
1

x2
− 1

x3

)

dx =
(

− 1

x
+ 1

2x2

) ∣
∣
∣
∣

−1

−2

= 1+ 1

2
−
(

1

2
+ 1

8

)

= 7

8

5.
∫ 2

−1
(3x2 − 4x + 2) dx = (x3 − 2x2 + 2x)

∣
∣
∣
∣

2

−1
= 9

6.
∫ 2

1

(
2

x3 −
x3

2

)

dx =
(

− 1

x2 −
x4

8

)∣
∣
∣
∣

2

1
= −9/8

7.
∫ 2

−2
(x2 + 3)2 dx = 2

∫ 2

0
(x4 + 6x2 + 9) dx

= 2

(

x5

5
+ 2x3 + 9x

)∣
∣
∣
∣

2

0

= 2

(
32

5
+ 16 + 18

)

= 404

5

8.
∫ 9

4

(√
x − 1√

x

)

dx = 2

3
x3/2 − 2

√
x

∣
∣
∣
∣

9

4

=
[

2

3
(9)3/2 − 2

√
9

]

−
[

2

3
(4)3/2 − 2

√
4

]

= 32

3

9.
∫ −π/6

−π/4
cos x dx = sin x

∣
∣
∣
∣

−π/6

−π/4

= −1

2
+ 1√

2
= 2−√2

2
√

2

10.
∫ π/3

0
sec2 θ dθ = tan θ

∣
∣
∣
∣

π/3

0
= tan

π

3
= √3

11.
∫ π/3

π/4
sin θ dθ = − cos θ

∣
∣
∣
∣

π/3

π/4
=
√

2− 1

2

12.
∫ 2π

0
(1 + sin u) du = (u − cos u)

∣
∣
∣
∣

2π

0
= 2π

13.
∫ π

−π
ex dx = ex

∣
∣
∣
∣

π

−π
= eπ − e−π

14.
∫ 2

−2
(ex − e−x) dx = 0 (odd function, symmetric interval)

15.
∫ e

0
ax dx = ax

ln a

∣
∣
∣
∣

e

0
= ae − 1

ln a

16.
∫ 1

−1
2x dx = 2x

ln 2

∣
∣
∣
∣

1

−1
= 2

ln 2
− 1

2 ln 2
= 3

2 ln 2

17.
∫ 1

−1

dx

1 + x2 = tan−1x

∣
∣
∣
∣

1

−1
= π

2

18.
∫ 1/2

0

dx√
1− x2

= sin−1x

∣
∣
∣
∣

1/2

0
= π

6

19.
∫ 1

−1

dx√
4− x2

= sin−1 x

2

∣
∣
∣
∣

1

−1

= sin−1 1

2
− sin−1

(

−1

2

)

= π

6
−
(

−π
6

)

= π

3

20.
∫ 0

−2

dx

4 + x2 =
1

2
tan−1 x

2

∣
∣
∣
∣

0

−2
= 0− 1

2
tan−1(−1) = π

8

21. Area R = ∫ 1
0 x4 dx = x5

5

∣
∣
∣
∣

1

0
= 1

5
sq. units.

y

x

y=x4

(1,1)

R

1

Fig. 5.5.21
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22. Area =
∫ e2

e

1

x
dx = ln x

∣
∣
∣
∣

e2

e

= ln e2 − ln e = 2− 1 = 1 sq. units.
y

x

y= 1
x

e e2

Area

Fig. 5.5.22

23. Area R = −
∫ 4

0
(x2 − 4x) dx

= −
(

x3

3
− 2x2

)∣
∣
∣
∣

4

0

= −
(

64

3
− 32

)

= 32

3
sq. units.

y

x

y=x2−4x

R

4

Fig. 5.5.23

24. Since y = 5−2x−3x2 = (5+3x)(1− x), therefore y = 0
at x = − 5

3 and 1, and y > 0 if − 5
3 < x < 1. Thus, the

area is

∫ 1

−1
(5 − 2x − 3x2) dx = 2

∫ 1

0
(5 − 3x2) dx

= 2(5x − x3)

∣
∣
∣
∣

1

0
= 2(5 − 1) = 8 sq. units.

y

x−1

1

y=5−2x−3x2

Area

Fig. 5.5.24

25. For intersection of y = x2 − 3x + 3 and y = 1, we have

x2 − 3x + 3 = 1

x2 − 3x + 2 = 0

(x − 2)(x − 1) = 0.

Thus x = 1 or x = 2. The indicated region has area

Area R = 1−
∫ 2

1
(x2 − 3x + 3) dx

= 1−
(

x3

3
− 3x2

2
+ 3x

)∣
∣
∣
∣

2

1

= 1−
(

8

3
− 6+ 6−

[
1

3
− 3

2
+ 3

])

= 1

6
sq. units.

y

x

y=1

y=x2−3x+3

R

1 2

Fig. 5.5.25

26. Since y = √x and y = x

2
intersect where

√
x = x

2
, that

is, at x = 0 and x = 4, thus,

Area =
∫ 4

0

√
x dx −

∫ 4

0

x

2
dx

= 2

3
x3/2

∣
∣
∣
∣

4

0
− x2

4

∣
∣
∣
∣

4

0

= 16

3
− 16

4
= 4

3
sq. units.

y

x

y=√x

y=x/2
A

(4,2)

Fig. 5.5.26

27. Area R = 2× shaded area

= 2

(
1

2
−
∫ 1

0
x2 dx

)

= 2

(
1

2
− 1

3

)

= 1

3
sq. units.
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y

x

R

y=x2

(1,1)x=y2

Fig. 5.5.27

28. The two graphs intersect at (±3, 3), thus

Area = 2
∫ 3

0
(12 − x2) dx − 2

∫ 3

0
x dx

= 2

(

12x − 1

3
x3
)∣
∣
∣
∣

3

0
− 2

(
1

2
x2
)∣
∣
∣
∣

3

0
= 2(36 − 9)− 9 = 45 sq. units.

y

x

y=12−x2

(3,3)y=|x|
Area

Fig. 5.5.28

29. Area R =
∫ 1

0
x1/3 dx −

∫ 1

0
x1/2 dx

= 3

4
x4/3

∣
∣
∣
∣

1

0
− 2

3
x3/2

∣
∣
∣
∣

1

0
= 3

4
− 2

3
= 1

12
sq. units.

y

x

y=x1/2

(1,1)

R

y=x1/3

Fig. 5.5.29

30. Area = ∫ 0
−a e−x dx = −e−x

∣
∣
∣
∣

0

−a
= ea − 1 sq. units.

y

x−a

y = e−x
A

Fig. 5.5.30

31. Area R =
∫ 2π

0
(1 − cos x) dx

= (x − sin x)
∣
∣
∣

2π

0
= 2πsq. units.

y

x

R

y=1−cos x

2π

Fig. 5.5.31

32. Area =
∫ 27

1
x−1/3 dx = 3

2
x2/3

∣
∣
∣
∣

27

1

= 3

2
(27)2/3 − 3

2
= 12 sq. units.

y

x

y=x−1/3

1 27

Area

Fig. 5.5.32

33.
∫ 3π/2

0
| cos x | dx =

∫ π/2

0
cos x dx −

∫ 3π/2

π/2
cos x dx

= sin x

∣
∣
∣
∣

π/2

0
− sin x

∣
∣
∣
∣

3π/2

π/2

= 1+ 1+ 1 = 3

34.
∫ 3

1

sgn (x − 2)

x2 dx = −
∫ 2

1

dx

x2 +
∫ 3

2

dx

x2

= 1

x

∣
∣
∣
∣

2

1
− 1

x

∣
∣
∣
∣

3

2
= −1

3
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35. Average value

= 1

2

∫ 2

0
(1 + x + x2 + x3) dx

= 1

2

(

x + x2

2
+ x3

3
+ x4

4

)∣
∣
∣
∣

2

0

= 1

2

(

2+ 2+ 8

3
+ 4

)

= 16

3
.

36. Average value = 1

2− (−2)

∫ 2

−2
e3x dx

= 1

4

(
1

3
e3x
)∣
∣
∣
∣

2

−2

= 1

12
(e6 − e−6).

37. Avg. = 1

1/ ln 2

∫ 1/ ln 2

0
2x dx = (ln 2)

2x

ln 2

∣
∣
∣
∣

1/ ln 2

0
= e − 1

38. Since

g(t) =
{

0, if 0 ≤ t ≤ 1,
1, if 1 < t ≤ 3,

the average value of g(t) over [0,3] is

1

3

[∫ 1

0
(0) dt +

∫ 3

1
1 dt

]

= 1

3

[

0+ t

∣
∣
∣
∣

3

1

]

= 1

3
(3 − 1) = 2

3
.

39.
d

dx

∫ x

2

sin t

t
dt = sin x

x

40.
d

dt

∫ 3

t

sin x

x
dx = d

dt

[

−
∫ t

3

sin x

x
dx

]

= − sin t

t

41.
d

dx

∫ 0

x2

sin t

t
dt = − d

dx

∫ x2

0

sin t

t
dt

= −2x
sin x2

x2 = −2
sin x2

x

42.
d

dx
x2
∫ x2

0

sin u

u
du

= 2x
∫ x2

0

sin u

u
du + x2 d

dx

∫ x2

0

sin u

u
du

= 2x
∫ x2

0

sin u

u
du + x2

[
2x sin x2

x2

]

= 2x
∫ x2

0

sin u

u
du + 2x sin(x2)

43.
d

dt

∫ t

−π
cos y

1+ y2 dy = cos t

1+ t2

44.
d

dθ

∫ cos θ

sin θ

1

1− x2 dx

= d

dθ

[∫ cos θ

a

1

1− x2 dx −
∫ sin θ

a

1

1− x2 dx

]

= − sin θ

1− cos2 θ
− cos θ

1− sin2 θ

= −1

sin θ
− 1

cos θ
= − csc θ − sec θ

45. F(t) =
∫ t

0
cos(x2) dx

F(
√

x) =
∫ √x

0
cos(u2) du

d

dx
F(
√

x) = cos x
1

2
√

x
= cos x

2
√

x

46. H(x) = 3x
∫ x2

4
e−
√

t dt

H ′(x) = 3
∫ x2

4
e−
√

t dt + 3x(2xe−|x|)

H ′(2) = 3
∫ 4

4
e−
√

t dt + 3(2)(4e−2)

= 3(0)+ 24e−2 = 24

e2

47. f (x) = π + π
∫ x

1
f (t) dt

f ′(x) = π f (x) �⇒ f (x) = Ceπ x

π = f (1) = Ceπ �⇒ C = πe−π

f (x) = π eπ(x−1).

48. f (x) = 1−
∫ x

0
f (t) dt

f ′(x) = − f (x) �⇒ f (x) = Ce−x

1 = f (0) = C

f (x) = e−x .

49. The function 1/x2 is not defined (and therefore not
continuous) at x = 0, so the Fundamental Theorem of
Calculus cannot be applied to it on the interval [−1, 1].
Since 1/x2 > 0 wherever it is defined, we would ex-

pect
∫ 1

−1

dx

x2
to be positive if it exists at all (which it

doesn’t).

50. If F(x) =
∫ x

17

sin t

1+ t2 dt , then F ′(x) = sin x

1+ x2 and

F(17) = 0.

51. F(x) = ∫ 2x−x2

0 cos

(
1

1+ t2

)

dt .

Note that 0 <
1

1 + t2 ≤ 1 for all t , and hence

0 < cos(1) ≤ cos

(
1

1+ t2

)

≤ 1.
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The integrand is continuous for all t , so F(x) is defined
and differentiable for all x . Since
limx→±∞(2x − x2) = −∞, therefore
limx→±∞ F(x) = −∞. Now

F ′(x) = (2− 2x) cos

(
1

1+ (2x − x2)2

)

= 0

only at x = 1. Therefore F must have a maximum value
at x = 1, and no minimum value.

52. lim
n→∞

1

n

[(

1+ 1

n

)5

+
(

1+ 2

n

)5

+ · · · +
(

1+ n

n

)5]

= area below y = x5, above y = 0,

between x = 1 and x = 2

=
∫ 2

1
x5 dx = 1

6
x6
∣
∣
∣
∣

2

1
= 1

6
(26 − 1) = 21

2

53. lim
n→∞

π

n

(

sin
π

n
+ sin

2π

n
+ · · · + sin

nπ

n

)

= lim
n→∞ sum of areas of rectangles shown in figure

=
∫ π

0
sin x dx = − cos x

∣
∣
∣
∣

π

0
= 2

y

x
π
n

2π
n

3π
n

(n−1)π
n

π

......

y=sin x

Fig. 5.5.53

54. lim
n→∞

(
n

n2 + 1
+ n

n2 + 4
+ n

n2 + 9
+ · · · + n

2n2

)

= lim
n→∞

1

n

(
n2

n2 + 1
+ n2

n2 + 4
+ n2

n2 + 9
+ · · · + n2

2n2

)

= lim
n→∞

1

n

⎛

⎜
⎜
⎜
⎝

1

1+
(

1

n

)2
+ 1

1+
(

2

n

)2
+ · · · + 1

1 +
(n

n

)2

⎞

⎟
⎟
⎟
⎠

= area below y = 1

1+ x2
, above y = 0,

between x = 0 and x = 1

=
∫ 1

0

1

1+ x2
dx = tan−1 x

∣
∣
∣
∣

1

0
= π

4

y

x

y= 1
1+x2

1
n

2
n 1

Fig. 5.5.54

Section 5.6 The Method of Substitution
(page 308)

1.
∫

e5−2x dx Let u = 5− 2x

du = −2 dx

= −1

2

∫

eu du = −1

2
eu + C = −1

2
e5−2x + C.

2.
∫

cos(ax + b) dx Let u = ax + b

du = a dx

= 1

a

∫

cos u du = 1

a
sin u + C

= 1

a
sin(ax + b)+ C.

3.
∫ √

3x + 4 dx Let u = 3x + 4

du = 3 dx

= 1

3

∫

u1/2 du = 2

9
u3/2 + C = 2

9
(3x + 4)3/2 + C.

4.
∫

e2x sin(e2x ) dx Let u = e2x

du = 2e2x dx

= 1

2

∫

sin u du = −1

2
cos u + C

= −1

2
cos(e2x )+ C.

5.
∫

x dx

(4x2 + 1)5
Let u = 4x2 + 1

du = 8x dx

= 1

8

∫

u−5 du = − 1

32
u−4 + C = −1

32(4x2 + 1)4
+ C.

6.
∫

sin
√

x√
x

dx Let u = √x

du = dx

2
√

x

= 2
∫

sin u du = −2 cos u + C

= −2 cos
√

x + C.
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7.
∫

xex2
dx Let u = x2

du = 2x dx

= 1

2

∫

eu du = 1

2
eu + C = 1

2
ex2 + C.

8.
∫

x22x3+1 dx Let u = x3 + 1

du = 3x2 dx

= 1

3

∫

2u du = 1

3

2u

ln 2
+ C

= 2x3+1

3 ln 2
+ C.

9.
∫

cos x

4 + sin2 x
dx Let u = sin x

du = cos x dx

=
∫

du

4+ u2

= 1

2
tan−1 u

2
+ C = 1

2
tan−1

(
1

2
sin x

)

+ C.

10.
∫

sec2 x√
1− tan2 x

dx Let u = tan x

du = sec2 x dx

= du√
1− u2

= sin−1 u + C

= sin−1(tan x)+ C.

11.
∫

ex + 1

ex − 1
dx

=
∫

ex/2 + e−x/2

ex/2 − ex/2 dx Let u = ex/2 − e−x/2

du = 1
2

(

ex/2 + e−x/2
)

dx

= 2
∫

du

u
= 2 ln |u| + C

= 2 ln
∣
∣
∣ex/2 − e−x/2

∣
∣
∣+ C = ln

∣
∣
∣ex + e−x − 2

∣
∣
∣+ C.

12.
∫

ln t

t
dt Let u = ln t

du = dt

t

=
∫

u du = 1

2
u2 + C = 1

2
(ln t)2 + C.

13.
∫

ds√
4− 5s

Let u = 4− 5s

du = −5 ds

= −1

5

∫
du√

u

= −2

5
u1/2 + C = −2

5

√
4 − 5s + C.

14.
∫

x + 1√
x2 + 2x + 3

dx Let u = x2 + 2x + 3

du = 2(x + 1) dx

= 1

2

∫
1√
u

du = √u + C =
√

x2 + 2x + 3+ C

15.
∫

t√
4− t4

dt Let u = t2

du = 2t dt

= 1

2

∫
du√

4− u2

= 1

2
sin−1 u

2
+ C = 1

2
sin−1

(
t2

2

)

+ C.

16.
∫

x2

2 + x6
dx Let u = x3

du = 3x2 dx

= 1

3

∫
du

2 + u2 =
1

3
√

2
tan−1

(
u√
2

)

+ C

= 1

3
√

2
tan−1

(
x3

√
2

)

+ C.

17.
∫

dx

ex + 1
=
∫

e−x dx

1+ e−x
Let u = 1 + e−x

du = −e−x dx

= −
∫

du

u
= − ln |u| + C = − ln(1 + e−x )+ C.

18.
∫

dx

ex + e−x
=
∫

ex dx

e2x + 1
Let u = ex

du = ex dx

=
∫

du

u2 + 1
= tan−1 u + C

= tan−1 ex + C.

19.
∫

tan x ln cos x dx Let u = ln cos x

du = − tan x dx

= −
∫

u du = −1

2
u2 + C = −1

2

(

ln cos x
)2 + C.

20.
∫

x + 1√
1− x2

dx

=
∫

x dx√
1− x2

+
∫

dx√
1− x2

Let u = 1− x2

du = −2x dx
in the first integral only

= −1

2

∫
du√

u
+ sin−1 x = −√u + sin−1 x + C

= −
√

1− x2 + sin−1 x + C.

21.
∫

dx

x2 + 6x + 13
=
∫

dx

(x + 3)2 + 4
Let u = x + 3

du = dx

=
∫

du

u2 + 4
= 1

2
tan−1 u

2
+ C

= 1

2
tan−1 x + 3

2
+ C.

22.
∫

dx√
4+ 2x − x2

= dx
√

5 − (1 − x)2
Let u = 1− x

du = −dx

= −
∫

du√
5− u2

= − sin−1
(

u√
5

)

+ C

= − sin−1
(

1− x√
5

)

+ C = sin−1
(

x − 1√
5

)

+ C.
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23.
∫

sin3 x cos5 x dx

=
∫

sin x(cos5 x − cos7 x) dx Let u = cos x

du = − sin x dx

=
∫

(u7 − u5) du

= u8

8
− u6

6
+ C = cos8 x

8
− cos6 x

6
+ C.

24.
∫

sin4 t cos5 t dt

=
∫

sin4 t (1 − sin2 t)2 cos t dt Let u = sin t

du = cos t dt

=
∫

(u4 − 2u6 + u8) du = u5

5
− 2u7

7
+ u9

9
+ C

= 1

5
sin5 t − 2

7
sin7 t + 1

9
sin9 t + C.

25.
∫

sin ax cos2 ax dx Let u = cos ax

du = −a sin ax dx

= − 1

a

∫

u2 du

= − u3

3a
+ C = − 1

3a
cos3 ax + C.

26.
∫

sin2 x cos2 x dx =
∫ (

sin 2x

2

)2

dx

= 1

4

∫
1− cos 4x

2
dx = x

8
− sin 4x

32
+ C.

27.
∫

sin6 x dx =
∫ (

1 − cos 2x

2

)3

dx

= 1

8

∫

(1 − 3 cos 2x + 3 cos2 2x − cos3 2x) dx

= x

8
− 3 sin 2x

16
+ 3

16

∫

(1+ cos 4x) dx

− 1

8

∫

cos 2x(1 − sin2 2x) dx Let u = sin 2x

du = 2 cos 2x dx

= 5x

16
− 3 sin 2x

16
+ 3 sin 4x

64
− 1

16

∫

(1 − u2) du

= 5x

16
− 3 sin 2x

16
+ 3 sin 4x

64
− sin 2x

16
+ sin3 2x

48
+ C

= 5x

16
− sin 2x

4
+ 3 sin 4x

64
+ sin3 2x

48
+ C.

28.
∫

cos4 x dx =
∫

[1 + cos(2x)]2

4
dx

= 1

4

∫

[1+ 2 cos(2x)+ cos2(2x)] dx

= x

4
+ sin(2x)

4
+ 1

8

∫

1+ cos(4x) dx

= x

4
+ sin(2x)

4
+ x

8
+ sin(4x)

32
+ C

= 3x

8
+ sin(2x)

4
+ sin(4x)

32
+ C.

29.
∫

sec5 x tan x dx Let u = sec x

du = sec x tan x dx

=
∫

u4 du = u5

5
+ C = sec5 x

5
+ C.

30.
∫

sec6 x tan2 x dx

=
∫

sec2 x tan2 x(1+ tan2 x)2 dx Let u = tan x

du = sec2 x dx

=
∫

(u2 + 2u4 + u6) du = 1

3
u3 + 2

5
u5 + 1

7
u7 + C

= 1

3
tan3 x + 2

5
tan5 x + 1

7
tan7 x + C.

31.
∫ √

tan x sec4 x dx

=
∫ √

tan x(1 + tan2 x) sec2 x dx Let u = tan x

du = sec2 x dx

=
∫ (

u1/2 + u5/2
)

du

= 2u3/2

3
+ 2u7/2

7
+ C

= 2

3
(tan x)3/2 + 2

7
(tan x)7/2 + C.

32.
∫

sin−2/3 x cos3 x dx Let u = sin x

du = cos x dx

=
∫

1− u2

u2/3 du = 3u1/3 − 3

7
u7/3 + C

= 3 sin1/3 x − 3

7
sin7/3 x + C.

33.
∫

cos x sin4(sin x) dx Let u = sin x

du = cos x dx

=
∫

sin4 u du =
∫ (

1 − cos 2u

2

)2

du

= 1

4

∫ (

1− 2 cos 2u + 1+ cos 4u

2

)

du

= 3u

8
− sin 2u

4
+ sin 4u

32
+ C

= 3

8
sin x − 1

4
sin(2 sin x)+ 1

32
sin(4 sin x)+ C.
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34.
∫

sin3(ln x) cos3(ln x)

x
dx Let u = sin(ln x)

du = cos(ln x)

x
dx

=
∫

u3(1 − u2) du = 1

4
u4 − 1

6
u6 + C

= 1

4
sin4(ln x)− 1

6
sin6(ln x)+ C.

35.
∫

sin2 x

cos4 x
dx

=
∫

tan2 x sec2 x dx Let u = tan x

du = sec2 x dx

=
∫

u2 du = u3

3
+ C = 1

3
tan3 x + C.

36.
∫

sin3 x

cos4 x
dx =

∫

tan3 x sec x dx

=
∫

(sec2 x − 1) sec x tan x dx Let u = sec x

du = sec x tan x dx

=
∫

(u2 − 1) du = 1
3 u3 − u + C

= 1
3 sec3 x − sec x + C.

37.
∫

csc5 x cot5 x dx

=
∫

csc x cot x csc4 x(csc2 x − 1)2 dx

Let u = csc x

du = − csc x cot x dx

= −
∫

(u8 − 2u6 + u4) du

= −u9

9
+ 2u7

7
− u5

5
+ C

= −1

9
csc9 x + 2

7
csc7 x − 1

5
csc5 x + C.

38.
∫

cos4 x

sin8 x
dx =

∫

cot4 x csc4 x dx

=
∫

cot4 x(1 + cot2 x) csc2 x dx Let u = cot x

du = − csc2 x dx

= −
∫

u4(1+ u2) du = −u5

5
− u7

7
+ C

= −1

5
cot5 x − 1

7
cot7 x + C.

39.
∫ 4

0
x3(x2 + 1)−1/2 dx Let u = x2 + 1, x2 = u − 1

du = 2x dx

= 1

2

∫ 17

1
(u − 1)u−1/2 du

= 1

2

(
2

3
u3/2 − 2u1/2

)∣
∣
∣
∣

17

1

= 17
√

17− 1

3
− (√17 − 1) = 14

√
17

3
+ 2

3
.

40.
∫ √e

1

sin(π ln x)

x
dx Let u = π ln x

du = π

x
dx

= 1

π

∫ π/2

0
sin u du = − 1

π
cos u

∣
∣
∣
∣

π/2

0

= − 1

π
(0− 1) = 1

π
.

41.
∫ π/2

0
sin4 x dx =

∫ π/2

0

(
1− cos 2x

2

)2

= 1

4

∫ π/2

0

(

1 − 2 cos 2x + 1+ cos 4x

2

)

dx

= 3x

8

∣
∣
∣
∣

π/2

0
− sin 2x

4

∣
∣
∣
∣

π/2

0
+ sin 4x

32

∣
∣
∣
∣

π/2

0
= 3π

16
.

42.
∫ π

π/4
sin5 x dx

=
∫ π

π/4
(1 − cos2 x)2 sin x dx Let u = cos x

du = − sin x dx

= −
∫ −1

1/
√

2
(1 − 2u2 + u4) du = u − 2

3
u3 + 1

5
u5
∣
∣
∣
∣

1/
√

2

−1

= 1√
2
− 1

3
√

2
+ 1

20
√

2
−
(

−1+ 2

3
− 1

5

)

= 43

60
√

2
+ 8

15
.

43.
∫ e2

e

dt

t ln t
Let u = ln t

du = dt

t

=
∫ 2

1

du

u
= ln u

∣
∣
∣

2

1
= ln 2− ln 1 = ln 2.

44.
∫ π2/9

π2/16

2sin
√

x cos
√

x√
x

dx Let u = sin
√

x

du = cos
√

x

2
√

x
dx

= 2
∫
√

3/2

1/
√

2
2u du = 2(2u)

ln 2

∣
∣
∣
∣

√
3/2

1/
√

2

= 2

ln 2
(2
√

3/2 − 21/
√

2).
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45.
∫ π/2

0

√
1 + cos x dx =

∫ π/2

0

√

2 cos2 x

2
dx

= √2
∫ π/2

0
cos

x

2
dx = 2

√
2 sin

x

2

∣
∣
∣
∣

π/2

0
= 2.

∫ π/2

0

√
1 − sin x dx

=
∫ π/2

0

√

1 − cos
(
π
2 − x

)

dx Let u = π
2 − x

du = −dx

= −
∫ 0

π/2

√
1− cos u du

=
∫ π/2

0

√

2 sin2 u

2
du = √2

(

−2 cos
u

2

)
∣
∣
∣
∣

π/2

0

= −2+ 2
√

2 = 2(
√

2− 1).

46. Area =
∫ 2

0

x

x2 + 16
dx Let u = x2 + 16

du = 2x dx

= 1

2

∫ 20

16

du

u
= 1

2
ln u

∣
∣
∣
∣

20

16

= 1

2
(ln 20− ln 16) = 1

2
ln

(
5

4

)

sq. units.

47. Area R =
∫ 2

0

x dx

x4 + 16
Let u = x2

du = 2x dx

= 1

2

∫ 4

0

du

u2 + 16
= 1

8
tan−1 u

4

∣
∣
∣
∣

4

0
= π

32
sq. units.

y

x

y= x
x4+16

R

Fig. 5.6.47

48. The area bounded by the ellipse (x2/a2)+ (y2/b2) = 1 is

4
∫ a

0
b

√

1− x2

a2
dx Let x = au

dx = adu

= 4ab
∫ 1

0

√

1− u2 du.

The integral is the area of a quarter circle of radius 1.
Hence

Area = 4ab

(
π(1)2

4

)

= πab sq. units.

49. We start with the addition formulas

cos(x + y) = cos x cos y − sin x sin y

cos(x − y) = cos x cos y + sin x sin y

and take half their sum and half their difference to obtain

cos x cos y = 1

2

(

cos(x + y)+ cos(x − y)
)

sin x sin y = 1

2

(

cos(x − y)− cos(x + y)
)

.

Similarly, taking half the sum of the formulas

sin(x + y) = sin x cos y + cos x sin y

sin(x − y) = sin x cos y − cos x sin y,

we obtain

sin x cos y = 1

2

(

sin(x + y)+ sin(x − y)
)

.

50. We have

∫

cos ax cos bx dx

= 1

2

∫

[cos(ax − bx)+ cos(ax + bx)] dx

= 1

2

∫

cos[(a − b)x] dx + 1

2

∫

cos[(a + b)x] dx

Let u = (a − b)x , du = (a − b) dx in the first integral;

let v = (a + b)x , dv = (a + b) dx in the second integral.

= 1

2(a − b)

∫

cos u du + 1

2(a + b)

∫

cos v dv

= 1

2

[
sin[(a − b)x]

(a − b)
+ sin[(a + b)x]

(a + b)

]

+ C.
∫

sin ax sin bx dx

= 1

2

∫

[cos(ax − bx)− cos(ax + bx)] dx

= 1

2

[
sin[(a − b)x]

(a − b)
− sin[(a + b)x]

(a + b)

]

+ C.
∫

sin ax cos bx dx

= 1

2

∫

[sin(ax + bx)+ sin(ax − bx)] dx

= 1

2
[
∫

sin[(a + b)x] dx +
∫

sin[(a − b)x] dx]

= −1

2

[
cos[(a + b)x]

(a + b)
+ cos[(a − b)x]

(a − b)

]

+ C.
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51. If m and n are integers, and m �= n, then

∫ π

−π

{
cos mx cos nx

sin mx sin nx

}

dx

= 1

2

∫ π

−π

(

cos(m − n)x ± cos(m + n)x
)

dx

= 1

2

(
sin(m − n)x

m − n
± sin(m + n)x

m + n

)∣
∣
∣
∣

π

−π
= 0± 0 = 0.
∫ π

−π
sin mx cos nx dx

= 1

2

∫ π

−π

(

sin(m + n)x + sin(m − n)x
)

dx

= −1

2

(
cos(m + n)x

m + n
+ cos(m − n)x

m − n

)∣
∣
∣
∣

π

−π
= 0 (by periodicity).

If m = n �= 0 then

∫ π

−π
sin mx cos mx dx

= 1

2

∫ π

−π
sin 2mx dx

= − 1

4m
cos 2mx

∣
∣
∣
∣

π

−π
= 0 (by periodicity).

52. If 1 ≤ m ≤ k, we have

∫ π

−π
f (x) cos mx dx = a0

2

∫ π

−π
cos mx dx

+
k
∑

n=1

an

∫ π

−π
cos nx cos mx dx

+
k
∑

n=1

bn

∫ π

−π
sin nx cos mx dx .

By the previous exercise, all the integrals on the right
side are zero except the one in the first sum having
n = m. Thus the whole right side reduces to

am

∫ π

−π
cos2(mx) dx = am

∫ π

−π
1+ cos(2mx)

2
dx

= am

2
(2π + 0) = πam .

Thus

am = 1

π

∫ π

−π
f (x) cos mx dx .

A similar argument shows that

bm = 1

π

∫ π

−π
f (x) sin mx dx .

For m = 0 we have
∫ π

−π
f (x) cos mx dx =

∫ π

−π
f (x) dx

= a0

2

∫ π

−π
dx

+
k∑

n=1

(an cos(nx)+ bn sin(nx)) dx

= a0

2
(2π)+ 0+ 0 = a0π,

so the formula for am holds for m = 0 also.

Section 5.7 Areas of Plane Regions
(page 313)

1. Area of R =
∫ 1

0
(x − x2) dx

=
(

x2

2
− x3

3

)∣
∣
∣
∣

1

0
= 1

2
− 1

3
= 1

6
sq. units.

y

x

(1,1)

y=x2

R

y=x

Fig. 5.7.1

2. Area of R =
∫ 1

0
(
√

x − x2) dx

=
(

2

3
x3/2 − 1

3
x3
)∣
∣
∣
∣

1

0
= 2

3
− 1

3
= 1

3
sq. units.

y

x

(1,1)y=√x

y=x2
R

Fig. 5.7.2

3. Area of R = 2
∫ 2

0
(8 − 2x2) dx

=
(

16x − 4

3
x3
)∣
∣
∣
∣

2

0
= 64

3
sq. units.
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y

x

2−2

R

y=3−x2

y=x2−5

Fig. 5.7.3

4. For intersections:

x2 − 2x = 6x − x2 ⇒ 2x2 − 8x = 0

i.e., x = 0 or 4.

Area of R =
∫ 4

0

[

6x − x2 − (x2 − 2x)
]

dx

=
∫ 4

0
(8x − 2x2) dx

=
(

4x2 − 2

3
x3
)∣
∣
∣
∣

4

0
= 64

3
sq. units.

y

x

R

(4,8)

y=x2−2x

y=6x−x2

Fig. 5.7.4

5. For intersections:

2y = 4x − x2

2y + 3x = 6

}

⇒
4x − x2 = 6− 3x
x2 − 7x + 6 = 0
(x − 1)(x − 6) = 0

Thus intersections of the curves occur at x = 1 and
x = 6. We have

Area of R =
∫ 6

1

(

2x − x2

2
− 3+ 3x

2

)

dx

=
(

7x2

4
− x3

6
− 3x

)∣
∣
∣
∣

6

1

= 245

4
− 36 + 1

6
− 15 = 125

12
sq. units.

y

x
6

1 R

2y=4x−x2

2y+3x=6

Fig. 5.7.5

6. For intersections:

7+ y = 2y2 − y + 3⇒ 2y2 − 2y − 4 = 0

2(y − 2)(y + 1) = 0⇒ i.e., y = −1 or 2.

Area of R =
∫ 2

−1
[(7 + y)− (2y2 − y + 3)] dy

= 2
∫ 2

−1
(2 + y − y2) dy

= 2

(

2y + 1

2
y2 − 1

3
y3
)∣
∣
∣
∣

2

−1
= 9 sq. units.

y

x

R

(9,2)

x−y=7

x=2y2−y+3

(6,−1)

Fig. 5.7.6

7. Area of R = 2
∫ 1

0
(x − x3) dx

= 2

(
x2

2
− x4

4

)∣
∣
∣
∣

1

0
= 1

2
sq. units.

y

x

(1,1)

y=x3

(−1,−1)

y=x

R

R

Fig. 5.7.7
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8. 4 Shaded area =
∫ 1

0
(x2 − x3) dx

=
(

1

3
x3 − 1

4
x4
)∣
∣
∣
∣

1

0
= 1

12
sq. units.

y

x

(1,1)

y=x2

y=x3

Fig. 5.7.8

9. Area of R =
∫ 1

0
(
√

x − x3) dx

=
(

2

3
x3/2 − x4

4

)∣
∣
∣
∣

1

0
= 5

12
sq. units.

y

x

(1,1)

y=x3R

x=y2

y=√x

Fig. 5.7.9

10. For intersections:

y2 = 2y2 − y − 2⇒ y2 − y − 2 = 0

(y − 2)(y + 1) = 0⇒ i.e., y = −1 or 2.

Area of R =
∫ 2

−1
[y2 − (2y2 − y − 2)] dy

=
∫ 2

−1
[2+ y − y2] dy =

(

2y + 1

2
y2 − 1

3
y3
)∣
∣
∣
∣

2

−1

= 9

2
sq. units.

y

x
(1,−1)

(4,2)x=2y2−y−2

x=y2A

Fig. 5.7.10

11. For intersections:
1

x
= y = 5− 2x

2
.

Thus 2x2 − 5x + 2 = 0, i.e., (2x − 1)(x − 2) = 0. The
graphs intersect at x = 1/2 and x = 2. Thus

Area of R =
∫ 2

1/2

(
5− 2x

2
− 1

x

)

dx

=
(

5x

2
− x2

2
− ln x

)∣
∣
∣
∣

2

1/2

= 15

8
− 2 ln 2 sq. units.

y

x

(
1
2 ,2
)

(

2, 1
2

)

2x+2y=5
R

y=1/x

Fig. 5.7.11

12. Area of shaded region = 2
∫ 1

0
[(1 − x2)− (x2 − 1)2] dx

= 2
∫ 1

0
(x2 − x4) dx = 2

(
1

3
x3 − 1

5
x5
)∣
∣
∣
∣

1

0
= 4

15
sq. units.

y

x

y=1−x2

y=(x2−1)2

A A

Fig. 5.7.12
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13. The curves y = x2

2
and y = 1

1+ x2
intersect at x = ±1.

Thus

Area of R = 2
∫ 1

0

(
1

1+ x2 −
x2

2

)

dx

= 2

(

tan−1 x − x3

6

)∣
∣
∣
∣

1

0
= π

2
− 1

3
sq. units.

y

x1−1

R

y= x2

2

y= 1
x2+1

Fig. 5.7.13

14. For intersections:
4x

3+ x2 = 1⇒ x2 − 4x + 3 = 0

i.e., x = 1 or 3.

Shaded area =
∫ 3

1

[
4x

3+ x2 − 1

]

dx

= [2 ln(3+ x2)− x]

∣
∣
∣
∣

3

1
= 2 ln 3− 2 sq. units.

y

x

(1,1) (3,1)

y= 4x
3+x2

y=1

Fig. 5.7.14

15. The curves y = 4

x2 and y = 5 − x2 intersect where

x4 − 5x2 + 4 = 0, i.e., where (x2 − 4)(x2 − 1) = 0. Thus
the intersections are at x = ±1 and x = ±2. We have

Area of R = 2
∫ 2

1

(

5− x2 − 4

x2

)

dx

= 2

(

5x − x3

3
+ 4

x

)∣
∣
∣
∣

2

1
= 4

3
sq. units.

y

x−2 −1 1 2

R R

y=5−x2

y= 4
x2

Fig. 5.7.15

16. Area A =
∫ π

−π
(sin y − (y2 − π2)) dy

=
(

− cos y + π2 y − y3

3

)∣
∣
∣
∣

π

−π
= 4π3

3
sq. units.

y

x
x=y2−π2

A

x=sin y

Fig. 5.7.16

17. Area of R =
∫ 5π/4

π/4
(sin x − cos x) dx

= −(cos x + sin x)

∣
∣
∣
∣

5π/4

π/4

= √2+√2 = 2
√

2 sq. units.
y

x

5π/4R

y=sin x

π/4

y=cos x

Fig. 5.7.17

18. Area =
∫ π/2

−π/2
(1− sin2 x) dx

= 2
∫ π/2

0

1+ cos(2x)

2
dx

=
(

x + sin(2x)

2

)∣
∣
∣
∣

π/2

0
= π

2
sq. units.
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y

x

y=1

A
y=sin2 x

π
2

Fig. 5.7.18

19. Area A =
∫ π/2

0
(sin x − sin2 x) dx

=
(

− cos x + sin x cos x − x

2

)∣
∣
∣
∣

π/2

0
= 1− π

4
sq. units.

y

x

A
y=sin2 x

π
2

y=sin x

Fig. 5.7.19

20. Area A = 2
∫ π/4

0
(cos2 x − sin2 x) dx

= 2
∫ π/4

0
cos(2x) dx = sin(2x)

∣
∣
∣
∣

π/4

0
= 1 sq. units.

y

x

y=cos2 x

y=sin2 x A

π
4

Fig. 5.7.20

21. For intersections:
4x

π
= tan x ⇒ x = 0 or

π

4
.

Area =
∫ π/4

0

(
4x

π
− tan x

)

dx

=
(

2

π
x2 − ln | sec x |

)∣
∣
∣
∣

π/4

0
= π

8
− 1

2
ln 2 sq. units.

y

x

(
π
4 ,1
)

y= 4x
π

y=tan x

Fig. 5.7.21

22. For intersections: x1/3 = tan(π x/4). Thus x = ±1.

Area A = 2
∫ 1

0

(

x1/3 − tan
πx

4

)

dx

= 2

(
3

4
x4/3 − 4

π
ln
∣
∣
∣sec

πx

4

∣
∣
∣

)∣
∣
∣
∣

1

0

= 3

2
− 8

π
ln
√

2 = 3

2
− 4

π
ln 2 sq. units.

y

x1

y=tan(π x/4)

y=x1/3

A

A

Fig. 5.7.22

23. For intersections: sec x = 2. Thus x = ±π/3.

Area A = 2
∫ π/3

0
(2 − sec x) dx

= (4x − 2 ln | sec x + tan x |)
∣
∣
∣
∣

π/3

0

= 4π

3
− 2 ln(2 +√3) sq. units.

y

x

y=2

A

− π3
π
3

y=sec x

Fig. 5.7.23
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24. For intersections: |x | = √2 cos(π x/4). Thus x = ±1.

Area A = 2
∫ 1

0

(√
2 cos

πx

4
− x
)

dx

=
(

8
√

2

π
sin

πx

4
− x2

)∣
∣
∣
∣

1

0

= 8

π
− 1 sq. units.

y

x

y=√2 cos π x
4

A

1

y=|x|

Fig. 5.7.24

25. For intersections: x = sin(π x/2). Thus x = ±1.

Area A = 2
∫ 1

0

(

sin
πx

2
− x
)

dx

=
(

− 4

π
cos

πx

2
− x2

)∣
∣
∣
∣

1

0

= 4

π
− 1 sq. units.

y

x

y=x
y=sin π x

2

1
A

Fig. 5.7.25

26. For intersections: ex = x + 2. There are two roots, both
of which must be found numerically. We used a TI-85
solve routine to get x1 ≈ −1.841406 and x2 ≈ 1.146193.
Thus

Area A =
∫ x2

x1

(

x + 2− ex) dx

=
(

x2

2
+ 2x − ex

)∣
∣
∣
∣

x2

x1

≈ 1.949091 sq. units.

y

x

y=x+2

y=exA

x1 x2

Fig. 5.7.26

27. Area of R = 4
∫ 1

0

√

x2 − x4 dx

= 4
∫ 1

0
x
√

1− x2 dx Let u = 1 − x2

du = −2x dx

= 2
∫ 1

0
u1/2 du = 4

3
u3/2

∣
∣
∣
∣

1

0
= 4

3
sq. units.

y

x

y2=x2−x4

RR

Fig. 5.7.27

28. Loop area = 2
∫ 0

−2
x2
√

2+ x dx Let u2 = 2+ x

2u du = dx

= 2
∫
√

2

0
(u2 − 2)2u(2u) du = 4

∫
√

2

0
(u6 − 4u4 + 4u2) du

= 4

(
1

7
u7 − 4

5
u5 + 4

3
u3
)∣
∣
∣
∣

√
2

0
= 256

√
2

105
sq. units.

y

x
−2 A

y2=x4(2+x)

Fig. 5.7.28

29. The tangent line to y = ex at x = 1 is y − e = e(x − 1),
or y = ex . Thus

Area of R =
∫ 1

0
(ex − ex) dx

=
(

ex − ex2

2

)∣
∣
∣
∣

1

0
= e

2
− 1 sq. units.
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y

x

(1,e)

y=ex
R

y=ex

Fig. 5.7.29

30. The tangent line to y = x3 at (1, 1) is y−1 = 3(x−1), or
y = 3x − 2. The intersections of y = x3 and this tangent
line occur where x3 − 3x + 2 = 0. Of course x = 1
is a (double) root of this cubic equation, which therefore
factors to (x − 1)2(x + 2) = 0. The other intersection is
at x = −2. Thus

Area of R =
∫ 1

−2
(x3 − 3x + 2) dx

=
(

x4

4
− 3x2

2
+ 2x

)∣
∣
∣
∣

1

−2

= −15

4
− 3

2
+ 6+ 2+ 4 = 27

4
sq. units.

y

x
(1,1)

y=3x−2R

(−2,−8)

y=x3

Fig. 5.7.30

Review Exercises 5 (page 314)

1.
1

j2 −
1

( j + 1)2
= j2 + 2 j + 1− j2

j2( j + 1)2
= 2 j + 1

j2( j + 1)2
n
∑

j=1

2 j + 1

j2( j + 1)2
=

n
∑

j=1

(
1

j2 −
1

( j + 1)2

)

= 1

12 −
1

(n + 1)2
= n2 + 2n

(n + 1)2

2. The number of balls is

40× 30+ 39× 29+ · · · + 12× 2+ 11× 1

=
30
∑

i=1

i (i + 10) = (30)(31)(61)

6
+ 10

(30)(31)

2
= 14,105.

3. xi = 1+ (2i/n), (i = 0, 1, 2, . . . , n), �xi = 2/n.

∫ 3

1
f (x) dx = lim

n→∞

n
∑

i=1

(x2
i − 2xi + 3)

2

n

= lim
n→∞

2

n

n
∑

i=1

[(

1+ 4i

n
+ 4i2

n2

)

−
(

2 + 4i

n

)

+ 3

]

= lim
n→∞

2

n

n∑

i=1

[

2+ 4

n2 i 2
]

= lim
n→∞

(
4

n
n + 8

n3

n(n + 1)(2n + 1)

6

)

= 4+ 8

3
= 20

3

4. Rn =∑n
i=1(1/n)

√
1+ (i/n) is a Riemann sum for

f (x) = √1+ x on the interval [0, 1]. Thus

lim
n→∞ Rn =

∫ 1

0

√
1 + x dx

= 2

3
(1+ x)3/2

∣
∣
∣
∣

1

0
= 4
√

2 − 2

3
.

5.
∫ π

−π
(2− sin x) dx = 2(2π)−

∫ π

−π
sin x dx = 4π − 0 = 4π

6.
∫
√

5

0

√

5 − x2 dx = 1/4 of the area of a circle of radius
√

5

= 1

4
π(
√

5)2 = 5π

4

7.
∫ 3

1

(

1− x

2

)

dx = area A1 − area A2 = 0

y

x

y=1− x
2

A1

A2

3
1

Fig. R-5.7

8.
∫ π

0 cos x dx = area A1 − area A2 = 0
y

x

y=cos x

A1

A2

π

Fig. R-5.8

9. f̄ = 1

2π

∫ π

−π
(2− sin(x3)) dx = 1

2π
[2(2π) − 0] = 2

10. h̄ = 1

3

∫ 3

0
|x − 2| dx = 1

3

5

2
= 5

6
(via #9)
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11. f (t) =
∫ t

13
sin(x2) dx, f ′(t) = sin(t2)

12. f (x) =
∫ sin x

−13

√

1+ t2 dt, f ′(x) =
√

1+ sin2 x(cos x)

13. g(s) =
∫ 1

4s
esin u du, g′(s) = −4esin(4s)

14. g(θ) =
∫ ecos θ

esin θ
ln x dx

g′(θ) = (ln(ecos θ ))ecos θ (− sin θ)− (ln(esin θ ))esin θ cos θ

= − sin θ cos θ(ecos θ + esin θ )

15. 2 f (x)+ 1 = 3
∫ 1

x
f (t) dt

2 f ′(x) = −3 f (x) �⇒ f (x) = Ce−3x/2

2 f (1)+ 1 = 0

− 1

2
= f (1) = Ce−3/2 �⇒ C = −1

2
e3/2

f (x) = −1

2
e(3/2)(1−x).

16. I =
∫ π

0
x f (sin x) dx Let x = π − u

dx = −du

= −
∫ 0

π

(π − u) f (sin(π − u)) du (but sin(π − u) = sin u)

= π
∫ π

0
f (sin u) du −

∫ π

0
u f (sin u) du

= π
∫ π

0
f (sin x) dx − I .

Now, solving for I , we get

∫ π

0
x f (sin x) dx = I = π

2

∫ π

0
f (sin x) dx .

17. y = 2+ x − x2 and y = 0 intersect where 2+ x − x2 = 0,
that is, where (2 − x)(1 + x) = 0, namely at x = −1 and
x = 2. Since 2+ x − x2 ≥ 0 on [−1, 2], the required area
is

∫ 2

−1
(2+ x− x2) dx =

(

2x + x2

2
− x3

3

)∣
∣
∣
∣

2

−1
= 9

2
sq. units..

18. The area bounded by y = (x − 1)2, y = 0, and x = 0 is

∫ 1

0
(x − 1)2 dx = (x − 1)3

3

∣
∣
∣
∣

1

0
= 1

3
sq. units..

19. x = y − y4 and x = 0 intersect where y − y4 = 0, that
is, at y = 0 and y = 1. Since y − y4 ≥ 0 on [0, 1], the
required area is

∫ 1

0
(y − y4 − 0) dy =

(

y2

2
− y5

5

)∣
∣
∣
∣

1

0
= 3

10
sq. units.

20. y = 4x − x2 and y = 3 meet where x2 − 4x + 3 = 0, that
is, at x = 1 and x = 3. Since 4x − x2 ≥ 3 on [1, 3], the
required area is

∫ 3

1
(4x − x2− 3) dx =

(

2x2 − x3

3
− 3x

)∣
∣
∣
∣

3

1
= 4

3
sq. units.

21. y = sin x and y = cos(2x) intersect at x = π/6, but
nowhere else in the interval [0, π/6]. The area between
the curves in that interval is

∫ π/6

0
(cos(2x)− sin x) dx = ( 1

2 sin(2x)+ cos x
)
∣
∣
∣
∣

π/6

0

=
√

3

4
+
√

3

2
− 1 = 3

√
3

4
− 1 sq. units..

22. y = 5− x2 and y = 4/x2 meet where 5− x2 = 4/x2, that
is, where

x4 − 5x2 + 4 = 0

(x2 − 1)(x2 − 4) = 0.

There are four intersections: x = ±1 and x = ±2. By
symmetry (see the figure) the total area bounded by the
curves is

2
∫ 2

1

(

5− x2 − 4

x2

)

dx = 2

(

5x − x3

3
+ 4

x

)∣
∣
∣
∣

2

1
= 4

3
sq. units.

y

x

y = 4

x2

y = 5− x2

1 2

A A

Fig. R-5.22

23.
∫

x2 cos(2x3 + 1) dx Let u = 2x3 + 1

du = 6x2 dx

= 1

6

∫

cos u du = sin u

6
+ C = sin(2x3 + 1)

6
+ C

206



INSTRUCTOR’S SOLUTIONS MANUAL REVIEW EXERCISES 5 (PAGE 314)

24.
∫ e

1

ln x

x
dx Let u = ln x

du = dx/x

=
∫ 1

0
u du = u2

2

∣
∣
∣
∣

1

0
= 1

2

25.
∫ 4

0

√

9t2 + t4 dt

=
∫ 4

0
t
√

9 + t2 dt Let u = 9+ t2

du = 2t dt

= 1

2

∫ 25

9

√
u du = 1

3
u3/2

∣
∣
∣
∣

25

9
= 98

3

26.
∫

sin3(π x) dx

=
∫

sin(π x)
(

1− cos2(π x)
)

dx Let u = cos(π x)

du = −π sin(π x) dx

= − 1

π

∫

(1− u2) du

= 1

π

(
u3

3
− u

)

+ C = 1

3π
cos3(π x)− 1

π
cos(π x)+ C

27.
∫ ln 2

0

eu

4+ e2u
du Let v = eu

dv = eu du

=
∫ 2

1

dv

4+ v2

= 1

2
tan−1 v

2

∣
∣
∣
∣

2

1
= π

8
− 1

2
tan−1 1

2

28.
∫ 4√e

1

tan2(π ln x)

x
dx Let u = π ln x

du = (π/x) dx

= 1

π

∫ π/4

0
tan2 u du = 1

π

∫ π/4

0
(sec2 u − 1) du

= 1

π
(tan u − u)

∣
∣
∣
∣

π/4

0
= 1

π
− 1

4

29.
∫

sin
√

2s + 1√
2s + 1

ds Let u = √2s + 1

du = ds/
√

2s + 1

=
∫

sin u du = − cos u + C = − cos
√

2s + 1+ C

30.
∫

cos2 t

5
sin2 t

5
dt = 1

4

∫

sin2 2t

5
dt

= 1

8

∫ (

1− cos
4t

5

)

dt

= 1

8

(

t − 5

4
sin

4t

5

)

+ C

31. F(x) =
∫ x2−2x

0

1

1 + t2
dt .

Since 1/(1 + t2) > 0 for all t , F(x) will be minimum
when

x2 − 2x = (x − 1)2 − 1

is minimum, that is, when x = 1. The minimum value is

F(1) =
∫ −1

0

dt

1+ t2 = tan−1t

∣
∣
∣
∣

−1

0
= −π

4
.

F has no maximum value; F(x) < π/2 for all x , but
F(x)→ π/2 if x2 − 2x →∞, which happens as
x →±∞.

32. f (x) = 4x − x2 ≥ 0 if 0 ≤ x ≤ 4, and f (x) < 0
otherwise. If a < b, then

∫ b
a f (x) dx will be maximum if

[a, b] = [0, 4]; extending the interval to the left of 0 or to
the right of 4 will introduce negative contributions to the
integral. The maximum value is

∫ 4

0
(4x − x2) dx =

(

2x2 − x3

3

)∣
∣
∣
∣

4

0
= 32

3
.

33. The average value of v(t) = dx/dt over [t0, t1] is

1

t1 − t0

∫ t1

t0

dx

dt
dt = 1

t1 − t0
x(t)

∣
∣
∣
∣

t1

t0

= x(t1)− x(t0)

t1 − t0
= vav.

34. If y(t) is the distance the object falls in t seconds from
its release time, then

y ′′(t) = g, y(0) = 0, and y′(0) = 0.

Antidifferentiating twice and using the initial conditions
leads to

y(t) = 1

2
gt2.

The average height during the time interval [0, T ] is

1

T

∫ T

0

1

2
gt2 dt = g

2T

T 3

3
= gT 2

6
= y

(
T√

3

)

.

35. Let f (x) = ax3 + bx2 + cx + d so that

∫ 1

0
f (x) dx = a

4
+ b

3
+ c

2
+ d.

We want this integral to be
(

f (x1) + f (x2)
)

/2 for all

choices of a, b, c, and d . Thus we require that

a(x3
1 + x3

2 )+ b(x2
1 + x2

2 )+ c(x1 + x2)+ 2d

= 2
∫ 1

0
f (x) dx = a

2
+ 2b

3
+ c + 2d.
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It follows that x1 and x2 must satisfy

x3
1 + x3

2 =
1

2
(1)

x2
1 + x2

2 =
2

3
(2)

x2 + x2 = 1. (3)

At first glance this system may seem overdetermined;
there are three equations in only two unknowns. How-
ever, they do admit a solution as we now show. Squar-
ing equation (3) and subtracting equation (2) we get
2x1x2 = 1/3. Subtracting this latter equation from
equation (2) then gives (x2 − x1)

2 = 1/3, so that
x2 − x1 = 1/

√
3 (the positive square root since we want

x1 < x2). Adding and subtracting this equation and equa-
tion (3) then produces the values x2 = (

√
3 + 1)/(2

√
3)

and x1 = (
√

3 − 1)/(2
√

3). These values also satisfy
equation (1) since

x3
1 + x3

2 = (x2+ x2)(x2
1 − x1x2+ x2

2) = 1×
(

2

3
− 1

6

)

= 1

2
.

Challenging Problems 5 (page 315)

1. xi = 2i/n , 0 ≤ i ≤ n, f (x) = 1/x on [1, 2]. Since f is
decreasing, f is largest at the left endpoint and smallest
at the right endpoint of any interval [2(i−1)/n , 2i/n ] of the
partition. Thus

U( f, Pn) =
n
∑

i=1

1

2(i−1)/n
(2i/n − 2(i−1)/n)

=
n∑

i=1

(21/n − 1) = n(21/n − 1)

L( f, Pn) =
n
∑

i=1

1

2i/n
(2i/n − 2(i−1)/n)

=
n
∑

i=1

(1− 2−1/n) = n(1 − 2−1/n) = U( f, Pn)

21/n
.

Now, by l’Hôpital’s rule,

lim
n→∞ n(21/n − 1) = lim

x→∞
21/x − 1

1/x

[
0

0

]

= lim
x→∞

21/x ln 2(−1/x2)

−1/x2 = ln 2.

Thus limn→∞U( f, Pn) = limn→∞ L( f, Pn) = ln s.

2. a) cos
(

( j + 1
2 )t
)

− cos
(

( j − 1
2 )t
)

= cos( j t) cos( 1
2 t)− sin( j t) sin(1

2 t)

− cos( j t) cos( 1
2 t)− sin( j t) sin(1

2 t)

= −2 sin( j t) sin(1
2 t).

Therefore, we obtain a telescoping sum:

n
∑

j=1

sin( j t)

= − 1

2 sin( 1
2 t)

n
∑

j=1

[

cos
(

( j + 1
2 )t
)

− cos
(

( j − 1
2 )t
)]

= − 1

2 sin( 1
2 t)

[

cos
(

(n + 1
2 )t
)

− cos( 1
2 t)
]

= 1

2 sin( 1
2 t)

[

cos( 1
2 t)− cos

(

(n + 1
2 )t
)]

.

b) Let Pn = {0, π2n ,
2π
2n ,

3π
2n , . . .

nπ
2n } be the partition of

[0, π/2] into n subintervals of equal length
�x = π/2n. Using t = π/2n in the formula ob-
tained in part (a), we get

∫ π/2

0
sin x dx

= lim
n→∞

n∑

j=1

sin

(
jπ

2n

)
π

2n

= lim
n→∞

π

2n

1

2 sin(π/(4n))

(

cos
π

4n
− cos

(2n + 1)π

4n

)

= lim
n→∞

π/(4n)

sin(π/(4n))
lim

n→∞

(

cos
π

4n
− cos

(2n + 1)π

4n

)

= 1×
(

cos 0− cos
π

2

)

= 1.

3. a) sin
(

( j + 1
2 )t
)

− sin
(

( j − 1
2 )t
)

= sin( j t) cos( 1
2 t)+ cos( j t) sin( 1

2 t)

− sin( j t) cos( 1
2 t)+ cos( j t) sin( 1

2 t)

= 2 cos( j t) sin( 1
2 t).

Therefore, we obtain a telescoping sum:

n
∑

j=1

cos( j t)

= 1

2 sin( 1
2 t)

n
∑

j=1

[

sin
(

( j + 1
2 )t
)

− sin
(

( j − 1
2 )t
)]

= 1

2 sin( 1
2 t)

[

sin
(

(n + 1
2 )t
)

− sin( 1
2 t)
]

.
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b) Let Pn = {0, π3n ,
2π
3n ,

3π
3n , . . .

nπ
3n } be the partition of

[0, π/3] into n subintervals of equal length
�x = π/3n. Using t = π/3n in the formula ob-
tained in part (a), we get

∫ π/2

0
cos x dx

= lim
n→∞

n∑

j=1

cos

(
jπ

3n

)
π

3n

= lim
n→∞

π

3n

1

2 sin(π/(6n))

(

sin
(2n + 1)π

6n
− sin

π

6n

)

= lim
n→∞

π/(6n)

sin(π/(6n))
lim

n→∞

(

sin
(2n + 1)π

6n
− sin

π

6n

)

= 1×
(

sin
π

3
− sin 0

)

=
√

3

2
.

4. f (x) = 1/x2, 1 = x0 < x1 < x2 < · · · < xn = 2. If
ci = √xi−1xi , then

x2
i−1 < xi=1xi = c2

i < x2
i ,

so xi−1 < ci < xi . We have

n
∑

i=1

f (ci )�xi =
n
∑

i=1

1

xi−1xi
(xi − xi−1)

=
n∑

i=1

(
1

xi−1
− 1

xi

)

(telescoping)

= 1

x0
− 1

xn
= 1 − 1

2
= 1

2
.

Thus
∫ 2

1

dx

x2 = lim
n→∞

n
∑

i=1

f (ci )�xi = 1

2
.

5. We want to prove that for each positive integer k,

n∑

j=1

j k = nk+1

k + 1
+ nk

2
+ Pk−1(n),

where Pk−1 is a polynomial of degree at most k − 1.
First check the case k = 1:

n
∑

j=1

j = n(n + 1)

2
= n1+1

1+ 1
+ n

2
+ P0(n),

where P0(n) = 0 certainly has degree ≤ 0. Now assume
that the formula above holds for k = 1, 2, 3, . . . ,m. We
will show that it also holds for k = m + 1. To this end,
sum the the formula

( j+1)m+2− jm+2 = (m+2) jm+1+ (m + 2)(m + 1)

2
jm+· · ·+1

(obtained by the Binomial Theorem) for j = 1, 2, . . . , n.
The left side telescopes, and we get

(n + 1)m+2 − 1m+2 = (m + 2)
n
∑

j=1

jm+1

+ (m + 2)(m + 1)

2

n
∑

j=1

jm + · · · +
n
∑

j=1

1.

Expanding the binomial power on the left and using the
induction hypothesis on the other terms we get

nm+2 + (m + 2)nm+1 + · · · = (m + 2)
n
∑

j=1

jm+1

+ (m + 2)(m + 1)

2

nm+1

m + 1
+ · · · ,

where the · · · represent terms of degree m or lower in the
variable n. Solving for the remaining sum, we get

n∑

j=1

jm+1

= 1

m + 2

(

nm+2 + (m + 2)nm+1 + · · · − m + 2

2
nm+1 − · · ·

)

= nm+2

m + 2
+ nm+1

2
+ · · ·

so that the formula is also correct for k = m + 1. Hence
it is true for all positive integers k by induction.

b) Using the technique of Example 2 in Section 6.2 and
the result above,

∫ a

0
xk dx = lim

n→∞
a

n

n
∑

j=1

(a

n

) j

= ak+1 lim
n→∞

1

nk+1

n∑

j=1

j k

= ak+1 lim
n→∞

(
1

k + 1
+ 1

2n
+ Pk−1(n)

nk+1

)

= ak+1

k + 1
.

6. Let f (x) = ax3 + bx2 + cx + d . We used Maple to
calculate the following:

The tangent to y = f (x) at P = (p, f (p)) has equation

y = g(x) = ap3+bp2+ cp+d+ (3ap2+2bp+ c)(x− p).
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This line intersects y = f (x) at x = p (double root) and
at x = q, where

q = −2ap + b

a
.

Similarly, the tangent to y = f (x) at x = q has equation

y = h(x) = aq3+bq2+ cq+d+ (3aq2+2bq+ c)(x−q),

and intersects y = f (x) at x = q (double root) and
x = r , where

r = −2aq + b

a
= 4ap + b

a
.

The area between y = f (x) and the tangent line at P is
the absolute value of

∫ q

p
( f (x)− g(x) dx

= − 1

12

(
81a4 p4 + 108a3bp3 + 54a2b2 p2 + 12ab3 p + b4

a3

)

.

The area between y = f (x) and the tangent line at
Q = (q, f (q)) is the absolute value of

∫ r

q
( f (x)− h(x) dx

= −4

3

(
81a4 p4 + 108a3bp3 + 54a2b2 p2 + 12ab3 p + b4

a3

)

,

which is 16 times the area between y = f (x) and the
tangent at P.

7. We continue with the calculations begun in the previous
problem. P and Q are as they were in that problem, but
R = (r, f (r)) is now the inflection point of y = f (x),
given by f ′′(r) = 0. Maple gives

r = − b

3a
.

Since

p − r = b + 3ap

a
and r − q = 2(b + 3ap)

a

have the same sign, R must lie between Q and P on the
curve y = f (x). The line Q R has a rather complicated
equation y = k(x), which we won’t reproduce here, but
the area between this line and the curve y = f (x) is
the absolute value of

∫ q
r ( f (x) − k(x)) dx , which Maple

evaluates to be

− 4

81

(
81a4 p4 + 108a3bp3 + 54a2b2 p2 + 12ab3 p + b4

a3

)

,

which is 16/27 of the area between the curve and its
tangent at P. This leaves 11/27 of that area to lie be-
tween the curve, Q R, and the tangent, so Q R divides the
area between y = f (x) and its tangent at P in the ratio
16/11.

8. Let f (x) = ax4 + bx3 + cx2 + dx + e. The tangent to
y = f (x) at P = (p, f (p)) has equation

y = g(x) = ap4+bp3+cp2+dp+e+(4ap3+3bp2+2cp+d)(x−p),

and intersects y = f (x) at x = p (double root) and at the
two points

x = −2ap − b ±√b2 − 4ac − 4abp − 8a2 p2

2a
.

If these latter two points coincide, then the tangent is a
“double tangent.” This happens if

8a2 p2 + 4abp + 4ac − b2 = 0,

which has two solutions, which we take to be p and q:

p = −b +√3b2 − 8ac

4a

q = −b −√3b2 − 8ac

4a
= −p − b

2a
.

(Both roots exist and are distinct provided 3b2 > 8ac.)
The point T corresponds to x = t = (p + q)/2 = −b/4a.
The tangent to y = f (x) at x = t has equation

y = h(x) = − 3b4

256a3
+ b2c

16a2
−bd

4a
+e+

(
b3

8a2
− bc

2a
+ d

)(

x + b

4a

)

and it intersects y = f (x) at the points U and V with
x-coordinates

u = −b −√2
√

3b2 − 8ac

4a
,

v = −b +√2
√

3b2 − 8ac

4a
.

Q

P

A

R
U

B

S

V

T

Fig. C-5.8
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a) The areas between the curve y = f (x) and the lines
PQ and UV are, respectively, the absolute values of

A1 =
∫ q

p
( f (x)−g(x)) dx and A2 =

∫ v

u
(h(x)− f (x)) dx .

Maple calculates these two integrals and simplifies
the ratio A1/A2 to be 1/

√
2.

b) The two inflection points A and B of f have x-
coordinates shown by Maple to be

α = −3b −√3(3b2 − 8ac)

12a
and

β = −3b +√3(3b2 − 8ac)

12a
.

It then determines the four points of intersection of
the line y = k(x) through these inflection points and
the curve. The other two points have x-coordinates

r = −3b −
√

15(3b2 − 8ac)

12a
and

s = −3b +√15(3b2 − 8ac)

12a
.

The region bounded by RS and the curve y = f (x)
is divided into three parts by A and B. The areas of
these three regions are the absolute values of

A1 =
∫ α

r
(k(x) − f (x)) dx

A2 =
∫ β

α

( f (x)− k(x)) dx

A3 =
∫ s

β

(k(x) − f (x)) dx .

The expressions calculated by Maple for k(x) and
for these three areas are very complicated, but Maple
simplifies the rations A3/A1 and A2/A1 to 1 and 2
respectively, as was to be shown.
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CHAPTER 6. TECHNIQUES OF INTE-
GRATION

Section 6.1 Integration by Parts
(page 321)

1.
∫

x cos x dx

U = x

dU = dx

dV = cos x dx

V = sin x

= x sin x −
∫

sin x dx

= x sin x + cos x + C.

2.
∫

(x + 3)e2x dx

U = x + 3

dU = dx

dV = e2x dx

V = 1
2 e2x

= 1

2
(x + 3)e2x − 1

2

∫

e2x dx

= 1

2
(x + 3)e2x − 1

4
e2x + C.

3.
∫

x2 cosπx dx

U = x2

dU = 2x dx

dV = cosπx dx

V = sinπx

π

= x2 sinπx

π
− 2

π

∫

x sinπx dx

U = x

dU = dx

dV = sinπx dx

V = − cosπx

π

= x2 sinπx

π
− 2

π

(

− x cosπx

π
+ 1

π

∫

cosπx dx

)

= 1

π
x2 sinπx + 2

π2
x cosπx − 2

π3
sinπx + C.

4.
∫

(x2 − 2x)ekx dx

U = x2 − 2x

dU = (2x − 2) dx

dV = ekx

V = 1

k
ekx

= 1

k
(x2 − 2x)ekx − 1

k

∫

(2x − 2)ekx dx

U = x − 1

dU = dx

dV = ekx dx

V = 1

k
ekx

= 1

k
(x2 − 2x)ekx − 2

k

[
1

k
(x − 1)ekx − 1

k

∫

ekx dx

]

= 1

k
(x2 − 2x)ekx − 2

k2 (x − 1)ekx + 2

k3 ekx + C.

5.
∫

x3 ln x dx

U = ln x

dU = dx

x

dV = x3 dx

V = x4

4

= 1

4
x4 ln x − 1

4

∫

x3 dx

= 1

4
x4 ln x − 1

16
x4 + C.

6.
∫

x(ln x)3 dx = I3 where

In =
∫

x(ln x)n dx

U = (ln x)n

dU = n

x
(ln x)n−1 dx

dV = x dx

V = 1

2
x2

= 1

2
x2(ln x)n − n

2

∫

x(ln x)n−1 dx

= 1

2
x2(ln x)n − n

2
In−1

I3 = 1

2
x2(ln x)3 − 3

2
I2

= 1

2
x2(ln x)3 − 3

2

[
1

2
x2(ln x)2 − 2

2
I1

]

= 1

2
x2(ln x)3 − 3

4
x2(ln x)2 + 3

2

[
1

2
x2(ln x)− 1

2
I0

]

= 1

2
x2(ln x)3 − 3

4
x2(ln x)2 + 3

4
x2(ln x)− 3

4

∫

x dx

= x2

2

[

(ln x)3 − 3

2
(ln x)2 + 3

2
(ln x)− 3

4

]

+ C.

7.
∫

tan−1 x dx

U = tan−1 x

dU = dx

1+ x2

dV = dx

V = x

= x tan−1 x −
∫

x dx

1+ x2

= x tan−1 x − 1

2
ln(1 + x2)+ C.

8.
∫

x2 tan−1 x dx

U = tan−1 x

dU = dx

1+ x2

dV = x2 dx

V = x3

3

= x3

3
tan−1 x − 1

3

∫
x3

1+ x2 dx

= x3

3
tan−1 x − 1

3

∫ (

x − x

1+ x2

)

dx

= x3

3
tan−1 x − x2

6
+ 1

6
ln(1 + x2)+ C.
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9.
∫

x sin−1 x dx

U = sin−1 x

dU = dx√
1− x2

dV = x dx

V = x2

2

= 1

2
x2 sin−1 x − 1

2

∫
x2 dx√
1− x2

Let x = sin θ

dx = cos θ dθ

= 1

2
x2 sin−1 x − 1

2

∫

sin2 θ dθ

= 1

2
x2 sin−1 x − 1

4
(θ − sin θ cos θ)+ C

=
(

1

2
x2 − 1

4

)

sin−1 x + 1

4
x
√

1− x2 + C.

10.
∫

x5e−x2
dx = I2 where

In =
∫

x (2n+1)e−x2
dx

U = x2n

dU = 2nx(2n−1) dx

dV = xe−x2
dx

V = − 1
2 e−x2

= −1

2
x2ne−x2 + n

∫

x (2n−1)e−x2
dx

= −1

2
x2ne−x2 + nIn−1

I2 = −1

2
x4e−x2 + 2

[

−1

2
x2e−x2 +

∫

xe−x2
dx

]

= −1

2
e−x2

(x4 + 2x2 + 2)+ C.

11. In =
∫ π/4

0
secn x dx

U = secn−2 x

dU = (n − 2) secn−2 x tan x dx

dV = sec2 x dx

V = tan x

= tan x secn−2 x

∣
∣
∣
∣

π/4

0
− (n − 2)

∫ π/4

0
secn−2 x tan2 x dx

= (√2)n−2 − (n − 2)(In − In−2).

(n − 1)In = (
√

2)n−2 + (n − 2)In−2.

Therefore

In = (
√

2)n−2

n − 1
+ n − 2

n − 1
In−2, (n ≥ 2).

For n = 5 we have

∫ π/4

0
sec5 x dx = I5 = 2

√
2

4
+ 3

4
I3

=
√

2

2
+ 3

4

(√
2

2
+ 1

2
I1

)

= 7
√

2

8
+ 3

8
ln | sec x + tan x |

∣
∣
∣

π/4

0

= 7
√

2

8
+ 3

8
ln(1 +√2).

12. I =
∫

tan2 x sec x dx

U = tan x

dU = sec2 x dx

dV = sec x tan x dx

V = sec x

= sec x tan x −
∫

sec3 x dx

= sec x tan x −
∫

(1+ tan2 x) sec x dx

= sec x tan x − ln | sec x + tan x | − I

Thus, I = 1
2 sec x tan x − 1

2 ln | sec x + tan x | + C.

13. I =
∫

e2x sin 3x dx

U = e2x

dU = 2e2x dx

dV = sin 3x dx

V = − 1
3 cos 3x

= −1

3
e2x cos 3x + 2

3

∫

e2x cos 3x dx

U = e2x

dU = 2e2x dx

dV = cos 3x dx

V = 1
3 sin 3x

= −1

3
e2x cos 3x + 2

3

(
1

3
e2x sin 3x − 2

3
I

)

13

9
I = −1

3
e2x cos 3x + 2

9
e2x sin 3x + C1

I = 1

13
e2x(2 sin 3x − 3 cos 3x)+ C.

14. I =
∫

xe
√

x dx Let x = w2

dx = 2w dw

= 2
∫

w3ew dw = 2I3 where

In =
∫

wnew dw

U = wn

dU = nwn−1 dw

dV = ew dw

V = ew

= wnew − nIn−1.

I = 2I3 = 2w3ew − 6[w2ew − 2(wew − I0)]

= e
√

x(2x
√

x − 6x + 12
√

x − 12)+ C.
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15.
∫ 1

1/2

sin−1 x

x2 dx

U = sin−1 x

dU = dx√
1− x2

dV = dx

x2

V = − 1

x

= − 1

x
sin−1 x

∣
∣
∣
∣

1

1/2
+
∫ 1

1/2

dx

x
√

1− x2
Let x = sin θ

dx = cos θ dθ

= −π
2
+ π

3
+
∫ π/2

π/6
csc θ dθ

= −π
6
− ln | csc θ + cot θ |

∣
∣
∣

π/2

π/6

= −π
6
− ln 1 + ln(2+√3) = ln(2 +√3)− π

6
.

16.
∫ 1

0

√
x sin(π

√
x) dx Let x = w2

dx = 2w dw

= 2
∫ 1

0
w2 sin(πw) dw

U = w2

dU = 2w dw

dV = sin(πw) dw

V = − cos(πw)

π

= − 2

π
w2 cos(πw)

∣
∣
∣
∣

1

0
+ 4

π

∫ 1

0
w cos(πw) dw

U = w
dU = dw

dV = cos(πw) dw

V = sin(πw)

π

= 2

π
+ 4

π

[
w

π
sin(πw)

]∣
∣
∣
∣

1

0
− 4

π2

∫ 1

0
sin(πw) dw

= 2

π
+ 4

π3 cos(πw)

∣
∣
∣
∣

1

0
= 2

π
+ 4

π3 (−2) = 2

π
− 8

π3 .

17.
∫

x sec2 x dx

U = x

dU = dx

dV = sec2 x dx

V = tan x

= x tan x −
∫

tan x dx

= x tan x − ln | sec x | + C.

18.
∫

x sin2 x dx = 1

2

∫

(x − x cos 2x) dx

= x2

4
− 1

2

∫

x cos 2x dx

U = x

dU = dx

dV = cos 2x dx

V = 1
2 sin 2x

= x2

4
− 1

2

[
1

2
x sin 2x − 1

2

∫

sin 2x dx

]

= x2

4
− x

4
sin 2x − 1

8
cos 2x + C.

19. I =
∫

cos(ln x) dx

U = cos(ln x)

dU = − sin(ln x)

x
dx

dV = dx

V = x

= x cos(ln x)+
∫

sin(ln x) dx

U = sin(ln x)

dU = cos(ln x)

x
dx

dV = dx

V = x

= x cos(ln x)+ x sin(ln x)− I

I = 1

2

(

x cos(ln x)+ x sin(ln x)
)

+ C.

20. I =
∫ e

1
sin(ln x) dx

U = sin(ln x)

dU = cos(ln x)

x
dx

dV = dx

V = x

= x sin(ln x)

∣
∣
∣
∣

e

1
−
∫ e

1
cos(ln x) dx

U = cos(ln x)

dU = − sin(ln x)

x
dx

dV = dx

V = x

= e sin(1)−
[

x cos(ln x)

∣
∣
∣
∣

e

1
+ I

]

Thus, I = 1

2
[e sin(1)− e cos(1)+ 1].

21.
∫

ln(ln x)

x
dx Let u = ln x

du = dx

x

=
∫

ln u du

U = ln u

dU = du

u

dV = du

V = u

= u ln u −
∫

du = u ln u − u + C

= (ln x)(ln(ln x))− ln x + C.

22.
∫ 4

0

√
xe
√

x dx Let x = w2

dx = 2w dw

= 2
∫ 2

0
w2ew dw = 2I2

See solution #16 for the formula

In =
∫

wnew dw = wnew − nIn−1.

= 2
(

w2ew
∣
∣
∣
∣

2

0
− 2I1

)

= 8e2 − 4
(

wew
∣
∣
∣
∣

2

0
− I0

)

= 8e2 − 8e2 + 4
∫ 2

0
ew dw = 4(e2 − 1).
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23.
∫

cos−1 x dx

U = cos−1 x

dU = − dx√
1− x2

dV = dx

V = x

= x cos−1 x +
∫

x dx√
1− x2

= x cos−1 x −
√

1− x2 + C.

24.
∫

x sec−1 x dx

U = sec−1 x

dU = dx

|x |√x2 − 1

dV = x dx

V = 1

2
x2

= 1

2
x2 sec−1 x − 1

2

∫ |x |√
x2 − 1

dx

= 1

2
x2 sec−1 x − 1

2
sgn (x)

√

x2 − 1+ C.

25.
∫ 2

1
sec−1 x dx

=
∫ 2

1
cos−1 1

x

U = cos−1 1

x

dU = − 1
√

1− 1

x2

(

− 1

x2

)

dx

dV = dx

V = x

= x cos−1 1

x

∣
∣
∣
∣

2

1
−
∫ 2

1

dx√
x2 − 1

Let x = sec θ

dx = sec θ tan θ dθ

= 2π

3
− 0−

∫ π/3

0
sec θ dθ

= 2π

3
− ln | sec θ + tan θ |

∣
∣
∣

π/3

0

= 2π

3
− ln(2 +√3).

26.
∫

(sin−1 x)2 dx Let x = sin θ

dx = cos θ dθ

=
∫

θ2 cos θ dθ

U = θ2

dU = 2θ dθ

dV = cos θ dθ

V = sin θ

= θ2 sin θ − 2
∫

θ sin θ dθ

U = θ
dU = dθ

dV = sin θ dθ

V = − cos θ

= θ2 sin θ − 2(−θ cos θ +
∫

cos θ dθ)

= θ2 sin θ + 2θ cos θ − 2 sin θ + C

= x(sin−1 x)2 + 2
√

1− x2(sin−1 x)− 2x + C.

27.
∫

x(tan−1 x)2 dx

U = (tan−1 x)2

dU = 2 tan−1 x dx

1+ x2

dV = x dx

V = x2

2

= x2

2
(tan−1 x)2 −

∫
x2 tan−1 x

1+ x2 dx Let u = tan−1 x

du = dx

1+ x2

= x2

2
(tan−1 x)2 −

∫

u tan2 u du

= x2

2
(tan−1 x)2 +

∫

(u − u sec2 u) du

= x2

2
(tan−1 x)2 + u2

2
−
∫

u sec2 u du

U = u

dU = du

dV = sec2 u du

V = tan u

= 1

2
(x2 + 1)(tan−1 x)2 − u tan u +

∫

tan u du

= 1

2
(x2 + 1)(tan−1 x)2 − x tan−1 x + ln | sec u| + C

= 1

2
(x2 + 1)(tan−1 x)2 − x tan−1 x + 1

2
ln(1 + x2)+ C

.

28. By the procedure used in Example 4 of Section 7.1,

∫

ex cos x dx = 1
2 ex (sin x + cos x)+ C;

∫

ex sin x dx = 1
2 ex (sin x − cos x)+ C.

Now

∫

xex cos x dx

U = x

dU = dx

dV = ex cos x dx

V = 1
2 ex(sin x + cos x)

= 1
2 xex(sin+ cos x)− 1

2

∫

ex(sin x + cos x) dx

= 1
2 xex(sin+ cos x)

− 1
4 ex(sin x − cos x + sin x + cos x)+ C

= 1
2 xex(sin x + cos x)− 1

2 ex sin x + C.
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29. Area = A =
∫ π

0
e−x sin x dx

U = e−x

dU = −e−x dx

dV = sin x dx

V = − cos x

= −e−x cos x

∣
∣
∣
∣

π

0
−
∫ π

0
e−x cos x dx

U = e−x

dU = −e−x dx

dV = cos x dx

V = sin x

= e−π + 1−
(

e−x sin x

∣
∣
∣
∣

π

0
+ A

)

Thus Area = A = 1+ e−π

2
units2

30. The tangent line to y = ln x at x = 1 is y = x − 1,
Hence,

Shaded area = 1

2
(1)(1) + (1)(e − 2)−

∫ e

1
ln x dx

= e − 3

2
− (x ln x − x)

∣
∣
∣
∣

e

1

= e − 3

2
− e + e + 0− 1 = e − 5

2
sq. units.

y

x

y=1

y=x−1

(e,1)
y=ln x

1

Fig. 6.1.30

31. In =
∫

(ln x)n dx

U = (ln x)n

dU = n(ln x)n−1 dx

x

dV = dx

V = x

In = x(ln x)n − nIn−1.

I4 = x(ln x)4 − 4I3

= x(ln x)4 − 4
(

x(ln x)3 − 3I2

)

= x(ln x)4 − 4x(ln x)3 + 12
(

x(ln x)2 − 2I1

)

= x(ln x)4 − 4x(ln x)3 + 12x(ln x)2

− 24
(

x ln x − x
)

+ C

= x
(

(ln x)4 − 4(ln x)3 + 12(ln x)2 − 24 ln x + 24
)

+ C.

32. In =
∫ π/2

0
xn sin x dx

U = xn

dU = nxn−1 dx

dV = sin x dx

V = − cos x

= −xn cos x

∣
∣
∣
∣

π/2

0
+ n

∫ π/2

0
xn−1 cos x dx

U = xn−1

dU = (n − 1)xn−2 dx

dV = cos x dx

V = sin x

= n

[

xn−1 sin x

∣
∣
∣
∣

π/2

0
− (n − 1)

∫ π/2

0
xn−2 sin x dx

]

= n
(π

2

)n−1 − n(n − 1)In−2, (n ≥ 2).

I0 =
∫ π/2

0
sin x dx = − cos x

∣
∣
∣
∣

π/2

0
= 1.

I6 = 6
(π

2

)5 − 6(5)

{

4
(π

2

)3 − 4(3)

[

2
(π

2

)

− 2(1)I0

]}

= 3

16
π5 − 15π3 + 360π − 720.

33. In =
∫

sinn x dx (n ≥ 2)

U = sinn−1 x

dU = (n − 1) sinn−2 x cos x dx

dV = sin x dx

V = − cos x

= − sinn−1 x cos x + (n − 1)
∫

sinn−2 x cos2 x dx

= − sinn−1 x cos x + (n − 1)(In−2 − In)

nIn = − sinn−1 x cos x + (n − 1)In−2

In = − 1

n
sinn−1 x cos x + n − 1

n
In−2.

Note: I0 = x + C , I1 = − cos x + C . Hence

I6 = −1

6
sin5 x cos x + 5

6
I4

= −1

6
sin5 x cos x + 5

6

(

−1

4
sin3 x cos x + 3

4
I2

)

= −1

6
sin5 x cos x − 5

24
sin3 x cos x

+ 5

8

(

−1

2
sin x cos x + 1

2
I0

)

= −1

6
sin5 x cos x − 5

24
sin3 x cos x − 5

16
sin x cos x

+ 5

16
x + C

= 5x

16
− cos x

(

sin5 x

6
+ 5 sin3 x

24
+ 5 sin x

16

)

+ C.
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I7 = −1

7
sin6 x cos x + 6

7
I5

= −1

7
sin6 x cos x + 6

7

(

−1

5
sin4 x cos x + 4

5
I3

)

= −1

7
sin6 x cos x − 6

35
sin4 x cos x

+ 24

35

(

−1

3
sin2 x cos x + 2

3
I1

)

= −1

7
sin6 x cos x − 6

35
sin4 x cos x − 8

35
sin2 x cos x

− 16

35
cos x + C

= − cos x

(
sin6 x

7
+ 6 sin4 x

35
+ 8 sin2 x

35
+ 16

35

)

+ C.

34. We have

In =
∫

secn x dx (n ≥ 3)

U = secn−2 x

dU = (n − 2) secn−2 x tan x dx

dV = sec2 x dx

V = tan x

= secn−2 x tan x − (n − 2)
∫

secn−2 x tan2 x dx

= secn−2 x tan x − (n − 2)
∫

secn−2 x(sec2 x − 1) dx

= secn−2 x tan x − (n − 2)In + (n − 2)In−2 + C

In = 1

n − 1
(secn−2 x tan x)+ n − 2

n − 1
In−2 + C.

I1 =
∫

sec x dx = ln | sec x + tan x | + C;

I2 =
∫

sec2 x dx = tan x + C.

I6 = 1

5
(sec4 x tan x)+ 4

5

(
1

3
sec2 x tan x + 2

3
I2

)

+ C

= 1

5
sec4 x tan x + 4

15
sec2 x tan x + 8

15
tan x + C.

I7 = 1

6
(sec5 x tan x)+ 5

6

[
1

4
sec3 x tan x+

3

4

(
1

2
sec x tan x + 1

2
I1

)]

+ C

= 1

6
sec5 x tan x + 5

24
sec3 x tan x + 15

48
sec x tan x+

15

48
ln | sec x + tan x | + C.

35. In =
∫

dx

(x2 + a2)n
= 1

a2

∫
x2 + a2 − x2

(x2 + a2)n
dx

= 1

a2

∫
dx

(x2 + a2)n−1
− 1

a2

∫
x2

(x2 + a2)n
dx

U = x

dU = dx

dV = x dx

(x2 + a2)n

V = −1

2(n − 1)(x2 + a2)n−1

= 1

a2
In−1 − 1

a2

( −x

2(n − 1)(x2 + a2)n−1

+ 1

2(n − 1)

∫
dx

(x2 + a2)n−1
.

)

In = x

2(n − 1)a2(x2 + a2)n−1 +
2n − 3

2(n − 1)a2 In−1.

Now I1 = 1

a
tan−1 x

a
, so

I3 = x

4a2(x2 + a2)2
+ 3

4a2
I2

= x

4a2(x2 + a2)2
+ 3

4a2

(
x

2a2(x2 + a2)
+ 1

2a2 I1

)

= x

4a2(x2 + a2)2
+ 3x

8a4(x2 + a2)
+ 3

8a5
tan−1 x

a
+ C.

36. Given that f (a) = f (b) = 0.
∫ b

a
(x − a)(b − x) f ′′(x) dx

U = (x − a)(b − x)

dU = (b + a − 2x) dx

dV = f ′′(x) dx

V = f ′(x)

= (x − a)(b − x) f ′(x)
∣
∣
∣
∣

b

a
−
∫ b

a
(b + a − 2x) f ′(x) dx

U = b + a − 2x

dU = −2dx

dV = f ′(x) dx

V = f (x)

= 0−
[

(b + a − 2x) f (x)

∣
∣
∣
∣

b

a
+ 2

∫ b

a
f (x) dx

]

= −2
∫ b

a
f (x) dx .

37. Given: f ′′ and g′′ are continuous on [a, b], and
f (a) = g(a) = f (b) = g(b) = 0. We have

∫ b

a
f (x)g′′(x) dx

U = f (x)

dU = f ′(x) dx

dV = g′′(x) dx

V = g′(x)

= f (x)g′(x)
∣
∣
∣
∣

b

a
−
∫ b

a
f ′(x)g′(x) dx .

Similarly,
∫ b

a
f ′′(x)g(x) dx = f ′(x)g(x)

∣
∣
∣
∣

b

a
−
∫ b

a
f ′(x)g′(x) dx .
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Thus we have

∫ b

a
f (x)g′′(x) dx −

∫ b

a
f ′′(x)g(x) dx

=
(

f (x)g′(x)− f ′(x)g(x)
)
∣
∣
∣
∣

b

a
= 0

by the assumptions on f and g. Thus

∫ b

a
f (x)g′′(x) dx =

∫ b

a
f ′′(x)g(x) dx .

This equation is also valid for any (sufficiently smooth)
functions f and g for which

f (b)g′(b)− f ′(b)g(b) = f (a)g′(a) − f ′(a)g(a).

Examples are functions which are periodic with period
b − a, or if f (a) = f (b) = f ′(a) = f ′(b) = 0, or if
instead g satisfies such conditions. Other combinations of
conditions on f and g will also do.

38. In =
∫ π/2

0
cosn x dx .

a) For 0 ≤ x ≤ π/2 we have 0 ≤ cos x ≤ 1, and so
0 ≤ cos2n+2 x ≤ cos2n+1 x ≤ cos2n x . Therefore
0 ≤ I2n+2 ≤ I2n+1 ≤ I2n .

b) Since In = n − 1

n
In−2, we have I2n+2 = 2n + 1

2n + 2
I2n .

Combining this with part (a), we get

2n + 1

2n + 2
= I2n+2

I2n
≤ I2n+1

I2n
≤ 1.

The left side approaches 1 as n → ∞, so, by the
Squeeze Theorem,

lim
n→∞

I2n+1

I2n
= 1.

c) By Example 6 we have, since 2n + 1 is odd and 2n
is even,

I2n+1 = 2n

2n + 1
· 2n − 2

2n − 1
· · · 4

5
· 2

3

I2n = 2n − 1

2n
· 2n − 3

2n − 2
· · · 3

4
· 1

2
· π

2
.

Multiplying the expression for I2n+1 by π/2 and
dividing by the expression for I2n , we obtain, by
part (b),

lim
n→∞

2n

2n + 1
· 2n − 2

2n − 1
· · · 4

5
· 2

3
· π

2
2n − 1

2n
· 2n − 3

2n − 2
· · · 3

4
· 1

2
· π

2

= π

2
× 1 = π

2
,

or, rearranging the factors on the left,

lim
n→∞

2

1
· 2

3
· 4

3
· 4

5
· · · 2n

2n − 1
· 2n

2n + 1
= π

2
.

Section 6.2 Inverse Substitutions
(page 328)

1.
∫

dx√
1− 4x2

Let u = 2x

du = 2 dx

= 1

2

∫
du√

1− u2
= 1

2
sin−1 u + C = 1

2
sin−1(2x)+ C.

2.
∫

x2 dx√
1− 4x2

Let 2x = sin u

2 dx = cos u du

= 1

8

∫
sin2 u cos u du

cos u

= 1

16

∫

(1 − cos 2u) du = u

16
− sin 2u

32
+ C

= 1

16
sin−1 2x − 1

16
sin u cos u + C

= 1

16
sin−1 2x − 1

8
x
√

1− 4x2 + C.

3.
∫

x2 dx√
9− x2

Let x = 3 sin θ

dx = 3 cos θ dθ

=
∫

9 sin2 θ 3 cos θ dθ

3 cos θ

= 9

2
(θ − sin θ cos θ)+ C

= 9

2
sin−1 x

3
− 1

2
x
√

9− x2 + C.

4.
∫

dx

x
√

1− 4x2
Let x = 1

2 sin θ

dx = 1
2 cos θ dθ

=
∫

cos θ dθ

sin θ
√

1 − sin2 θ
=
∫

csc θ dθ

= ln | csc θ − cot θ | + C = ln

∣
∣
∣
∣
∣

1

2x
−
√

1 − 4x2

2x

∣
∣
∣
∣
∣
+ C

= ln

∣
∣
∣
∣
∣

1−√1− 4x2

x

∣
∣
∣
∣
∣
+ C1.

5.
∫

dx

x2
√

9− x2
Let x = 3 sin θ

dx = 3 cos θ dθ

=
∫

3 cos θ dθ

9 sin2 θ 3 cos θ

= 1

9

∫

csc2 θ dθ

= −1

9
cot θ + C = −1

9

√
9− x2

x
+ C.
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6.
∫

dx

x
√

9− x2
Let x = 3 sin θ

dx = 3 cos θ dθ

=
∫

3 cos θ dθ

3 sin θ 3 cos θ
= 1

3

∫

csc θ dθ

= 1

3
ln | csc θ − cot θ | + C = 1

3
ln

∣
∣
∣
∣
∣

3

x
−
√

9− x2

x

∣
∣
∣
∣
∣
+ C

= 1

3
ln

∣
∣
∣
∣
∣

3−√9− x2

x

∣
∣
∣
∣
∣
+ C.

7.
∫

x + 1√
9− x2

dx =
∫

x dx√
9− x2

+
∫

dx√
9− x2

= −
√

9− x2 + sin−1 x

3
+ C.

8.
∫

dx√
9+ x2

Let x = 3 tan θ

dx = 3 sec2 θ dθ

=
∫

3 sec2 θ dθ

3 sec θ
=
∫

sec θ dθ

= ln | sec θ + tan θ | + C = ln(x +
√

9+ x2)+ C1.

x

√
9+x2

θ

3

Fig. 6.2.8

9.
∫

x3 dx√
9+ x2

Let u = 9+ x2

du = 2x dx

= 1

2

∫
(u − 9) du√

u
= 1

2

∫

(u1/2 − 9u−1/2) du

= 1

3
u3/2 − 9u1/2 + C

= 1

3
(9 + x2)3/2 − 9

√

9+ x2 + C.

10.
∫ √

9+ x2

x4 dx Let x = 3 tan θ

dx = 3 sec2 θ dθ

=
∫
(3 sec θ)(3 sec2 θ) dθ

81 tan4 θ

= 1

9

∫
sec3 θ

tan4 θ
dθ = 1

9

∫
cos θ

sin4 θ
dθ Let u = sin θ

du = cos θ dθ

= 1

9

∫
du

u4 = −
1

27u3 + C = − 1

27 sin3 θ
+ C

= − (9+ x2)3/2

27x3 + C.

11.
∫

dx

(a2 − x2)3/2
Let x = a sin θ

dx = a cos θ dθ

=
∫

a cos θ dθ

a3 cos3 θ
= 1

a2

∫

sec2 θ dθ

= 1

a2
tan θ + C = 1

a2

x√
a2 − x2

+ C.

a
x

√
a2−x2

θ

Fig. 6.2.11

12.
∫

dx

(a2 + x2)3/2
Let x = a tan θ

dx = a sec2 θ dθ

=
∫

a sec2 θ dθ

(a2 + a2 tan2 θ)3/2
=
∫

a sec2 θ dθ

a3 sec3 θ

= 1

a2

∫

cos θ dθ = 1

a2 sin θ + C = x

a2
√

a2 + x2
+ C.

x

√
a2+x2

θ

a

Fig. 6.2.12

13.
∫

x2 dx

(a2 − x2)3/2
Let x = a sin θ

dx = a cos θ dθ

=
∫

a2 sin2 θ a cos θ dθ

a3 cos3 θ

=
∫

tan2 θ dθ =
∫

(sec2 θ − 1) dθ

= tan θ − θ + C (see Fig. s6-5-17)

= x√
a2 − x2

− sin−1 x

a
+ C.
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14.
∫

dx

(1 + 2x2)5/2
Let x = 1√

2
tan θ

dx = 1√
2

sec2 θ dθ

= 1√
2

∫
sec2 θ dθ

(1 + tan2 θ)5/2
= 1√

2

∫

cos3 θ dθ

= 1√
2

∫

(1− sin2 θ) cos θ dθ Let u = sin θ

du = cos θ dθ

= 1√
2

∫

(1− u2) du = 1√
2

(

u − 1

3
u3
)

+ C

= 1√
2

sin θ − 1

3
√

2
sin3 θ + C

=
√

2x√
2
√

1+ 2x2
− 1

3
√

2

( √
2x√

1+ 2x2

)3

+ C

= 4x3 + 3x

3(1 + 2x2)3/2
+ C.

√
2x

√
1+2x2

θ

1

Fig. 6.2.14

15.
∫

dx

x
√

x2 − 4
Let x = 2 sec θ (x > 2)

dx = 2 sec θ tan θ dθ

=
∫

2 sec θ tan θ dθ

2 sec θ 2 tan θ

= 1

2

∫

dθ = θ

2
+ C = 1

2
sec−1 x

2
+ C.

√
x2−4

x

θ

2

Fig. 6.2.15

16.
∫

dx

x2
√

x2 − a2
Let x = a sec θ (a > 0)

dx = a sec θ tan θ dθ

=
∫

a sec θ tan θ dθ

a2 sec2 θ a tan θ

= 1

a2

∫

cos θ dθ = 1

a2
sin θ + C

= 1

a2

√
x2 − a2

x
+ C.

√
x2−a2x

θ

a

Fig. 6.2.16

17.
∫

dx

x2 + 2x + 10
=
∫

dx

(x + 1)2 + 9
= 1

3
tan−1 x + 1

3
+ C.

18.
∫

dx

x2 + x + 1
=
∫

dx
(

x + 1

2

)2

+
(√

3

2

)2 Let u = x + 1
2

du = dx

=
∫

du

u2 +
(√

3

2

)2 =
2√
3

tan−1
(

2√
3

u

)

+ C

= 2√
3

tan−1
(

2x + 1√
3

)

+ C.

19.
∫

dx

(4x2 + 4x + 5)2

=
∫

dx
(

(2x + 1)2 + 4
)2 Let 2x + 1 = 2 tan θ

2 dx = 2 sec2 θ dθ

=
∫

sec2 θ dθ

16 sec4 θ
= 1

16

∫

cos2 θ dθ

= 1

32

(

θ + sin θ cos θ
)

= 1

32
tan−1 2x + 1

2
+ 1

16

2x + 1

4x2 + 4x + 5
+ C.

√
4x2+4x+5

2x+1

2
θ

Fig. 6.2.19

20.
∫

x dx

x2 − 2x + 3
=
∫

(x − 1)+ 1

(x − 1)2 + 2
dx Let u = x − 1

du = dx

=
∫

u du

u2 + 2
+
∫

du

u2 + 2

= 1

2
ln(u2 + 2)+ 1√

2
tan−1

(
u√
2

)

+ C

= 1

2
ln(x2 − 2x + 3)+ 1√

2
tan−1

(
x − 1√

2

)

+ C.

21.
∫

x dx√
2ax − x2

=
∫

x dx
√

a2 − (x − a)2
Let x − a = a sin θ

dx = a cos θ dθ

=
∫
(a + a sin θ)a cos θ dθ

a cos θ
= a(θ − cos θ)+ C

= a sin−1 x − a

a
−
√

2ax − x2 + C.
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a
x−a

√
2ax−x2

θ

Fig. 6.2.21

22.
∫

dx

(4x − x2)3/2

=
∫

dx

[4− (2 − x)2]3/2
Let 2 − x = 2 sin u

−dx = 2 cos u du

= −
∫

2 cos u du

8 cos3 u
= −1

4

∫

sec2 u du

= −1

4
tan u + C = 1

4

x − 2√
4x − x2

+ C.

2−x
2

u √
4x−x2

Fig. 6.2.22

23.
∫

x dx

(3 − 2x − x2)3/2

=
∫

x dx
(

4 − (x + 1)2
)3/2 Let x + 1 = 2 sin θ

dx = 2 cos θ dθ

=
∫
(2 sin θ − 1)2 cos θ dθ

8 cos3 θ

= 1

2

∫

sec θ tan θ dθ − 1

4

∫

sec2 θ dθ

= 1

2
sec θ − 1

4
tan θ + C

= 1√
3− 2x − x2

− 1

4

x + 1√
3− 2x − x2

+ C

= 1

4
· 3− x√

3− 2x − x2
+ C.

2
x+1

√
3−2x−x2

θ

Fig. 6.2.23

24.
∫

dx

(x2 + 2x + 2)2
=
∫

dx

[(x + 1)2 + 1]2
Let x + 1 = tan u

dx = sec2 u du

=
∫

sec2 u du

sec4 u
=
∫

cos2 u du

= 1

2

∫

(1+ cos 2u) du = u

2
+ sin 2u

4
+ C

= 1

2
tan−1(x + 1)+ 1

2
sin u cos u + C

= 1

2
tan−1(x + 1)+ 1

2

x + 1

x2 + 2x + 2
+ C.

x+1

√
x2+2x+2

u
1

Fig. 6.2.24

25.
∫

dx

(1 + x2)3
Let x = tan θ

dx = sec2 dθ

=
∫

sec2 θ

sec6 θ
dθ =

∫

cos4 θ dθ

=
∫ (

1+ cos 2θ

2

)2

dθ

= 1

4

∫ (

1+ 2 cos 2θ + 1+ cos 4θ

2

)

dθ

= 3θ

8
+ sin 2θ

4
+ sin 4θ

32
+ C

= 3θ

8
+ sin θ cos θ

2
+ sin 2θ cos 2θ

16
+ C

= 3θ

8
+ sin θ cos θ

2
+ 1

8
sin θ cos θ(2 cos2 θ − 1)+ C

= 3

8
tan−1 x + 1

2
· x

1+ x2
+ 1

8
· x

1+ x2

(
2

1+ x2
− 1

)

+ C

= 3

8
tan−1 x + 3

8
· x

1+ x2 +
1

4
· x

(1 + x2)2
+ C

= 3

8
tan−1 x + 3x3 + 5x

8(1 + x2)2
+ C.

√
1+x2

x

1
θ

Fig. 6.2.25
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26.
∫

x2 dx

(1 + x2)2
Let x = tan u

dx = sec2 u du

=
∫

tan2 u sec2 u du

sec4 u
=
∫

tan2 u du

sec2 u

=
∫

sin2 u du = 1

2

∫

(1 − cos 2u) du

= u

2
− sin u cos u

2
+ C

= 1

2
tan−1 x − 1

2

x

1+ x2 + C.

x

√
1+x2

u
1

Fig. 6.2.26

27.
∫ √

1− x2

x3 dx Let x = sin θ

dx = cos θ dθ

=
∫

cos2 θ

sin3 θ
dθ = I, where

I =
∫

cot2 θ csc θ dθ

U = cot θ

dU = − csc2 θ dθ

dV = cot θ csc θ dθ

V = − csc θ

= − csc θ cot θ −
∫

csc3 θ dθ

= − csc θ cot θ −
∫

csc θ dθ − I .

Therefore

I = −1

2
csc θ cot θ + 1

2
ln | csc θ + cot θ | + C

= −1

2

√
1− x2

x2 + 1

2
ln

∣
∣
∣
∣
∣

1

x
+
√

1− x2

x

∣
∣
∣
∣
∣
+ C

= 1

2
ln(1 +

√

1 − x2)− 1

2
ln |x | − 1

2

√
1− x2

x2 + C.

28. I =
∫
√

9+ x2 dx Let x = 3 tan θ

dx = 3 sec2 θ dθ

=
∫

3 sec θ 3 sec2 θ dθ

= 9
∫

sec3 θ dθ

U = sec θ

dU = sec θ tan θ dθ

dV = sec2 θ dθ

V = tan θ

= 9 sec θ tan θ − 9
∫

sec θ tan2 θ dθ

= 9 sec θ tan θ − 9
∫

sec θ(sec2 θ − 1) dθ

= 9 sec θ tan θ + 9
∫

sec θ dθ − 9
∫

sec3 θ dθ

= 9 sec θ tan θ + 9 ln | sec θ + tan θ | − I

I = 9

2

[(√
9+ x2

3

)
( x

3

)
]

+ 9

2
ln

∣
∣
∣
∣
∣

√
9+ x2

3
+ x

3

∣
∣
∣
∣
∣
+ C

= 1

2
x
√

9+ x2 + 9

2
ln
(√

9+ x2 + x
)

+ C1.

(where C1 = C − 9

2
ln 3)

29.
∫

dx

2 +√x
Let x = u2

dx = 2u du

=
∫

2u du

2+ u
= 2

∫ (

1 − 2

u + 2

)

du

= 2u − 4 ln |u + 2| + C = 2
√

x − 4 ln(2+√x)+ C.

30.
∫

dx

1 + x1/3 Let x = u3

dx = 3u2 du

= 3
∫

u2 du

1+ u
Let v = 1+ u

dv = du

= 3
∫
v2 − 2v + 1

v
dv = 3

∫ (

v − 2+ 1

v

)

dv

= 3

(
v2

2
− 2v + ln |v|

)

+ C

= 3

2
(1+ x1/3)2 − 6(1+ x1/3)+ 3 ln |1+ x1/3| + C.

31. I =
∫

1+ x1/2

1+ x1/3 dx Let x = u6

dx = 6u5 du

=
∫

1+ u3

1+ u2
6u5 du = 6

∫
u8 + u5

1 + u2
du.

.

Division is required to render the last integrand as a
polynomial with a remainder fraction of simpler form:
observe that

u8 = u8 + u6 − u6 − u4 + u4 + u2 − u2 − 1+ 1

= (u2 + 1)(u6 − u4 + u2 − 1)+ 1

u5 = u5 + u3 − u3 − u + u

= (u2 + 1)(u3 − u)+ u.
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Thus

u8 + u5

u2 + 1
= u6 − u4 + u3 + u2 − u − 1+ u + 1

u2 + 1
.

Therefore

I = 6
∫ (

u6 − u4 + u3 + u2 − u − 1+ u + 1

u2 + 1

)

du

= 6

(
u7

7
− u5

5
+ u4

4
+ u3

3
− u2

2
− u

+ 1

2
ln(u2 + 1)+ tan−1 u

)

+ C

= 6

7
x7/6 − 6

5
x5/6 + 3

2
x2/3 + 2x1/2 − 3x1/3 − 6x1/6

+ 3 ln(1 + x1/3)+ 6 tan−1 x1/6 + C.

32.
∫

x
√

2− x2
√

x2 + 1
dx Let u2 = x2 + 1

2u du = 2x dx

=
∫

u
√

3− u2 du

u

=
∫
√

3− u2 du Let u = √3 sin v

du = √3 cos v dv

=
∫

(
√

3 cos v)
√

3 cos v dv = 3
∫

cos2 v dv

= 3

2
(v + sin v cos v)+ C

= 3

2
sin−1

(
u√
3

)

+ 3

2

u
√

3− u2

3
+ C

= 3

2
sin−1

⎛

⎝

√

x2 + 1

3

⎞

⎠+ 1

2

√

(x2 + 1)(2 − x2)+ C.

33.
∫ 0

− ln 2
ex
√

1− e2x dx Let ex = sin θ

ex dx = cos θ dθ

=
∫ π/2

π/6
cos2 θ dθ = 1

2
(θ + sin θ cos θ)

∣
∣
∣

π/2

π/6

= 1

2

(

π

3
−
√

3

4

)

= π

6
−
√

3

8
.

34.
∫ π/2

0

cos x√
1 + sin2 x

dx Let u = sin x

du = cos x dx

=
∫ 1

0

du√
1+ u2

Let u = tanw

du = sec2 w dw

=
∫ π/4

0

sec2 w dw

secw
=
∫ π/4

0
secw dw

= ln | secw + tanw|
∣
∣
∣
∣

π/4

0

= ln |√2 + 1| − ln |1+ 0| = ln(
√

2+ 1).

35.
∫
√

3−1

−1

dx

x2 + 2x + 2

=
∫
√

3−1

−1

dx

(x + 1)2 + 1
Let u = x + 1

du = dx

=
∫
√

3

0

du

u2 + 1
= tan−1 u

∣
∣
∣
∣

√
3

0
= π

3
.

36.
∫ 2

1

dx

x2
√

9− x2
Let x = 3 sin u

dx = 3 cos u du

=
∫ x=2

x=1

3 cos u du

9 sin2 u(3 cos u)
= 1

9

∫ x=2

x=1
csc2 u du

= 1

9
(− cot u)

∣
∣
∣
∣

x=2

x=1
= −1

9

(√
9− x2

x

) ∣
∣
∣
∣

x=2

x=1

= −1

9

(√
5

2
−
√

8

1

)

= 2
√

2

9
−
√

5

18
.

x
3

u √
9−x2

Fig. 6.2.36

37.
∫

dθ

2 + sin θ
Let x = tan(θ/2),

sin θ = 2x

1+ x2 , dθ = 2 dx

1+ x2

=
∫

2 dx

1 + x2

2+ 2x

1+ x2

=
∫

dx

1+ x + x2

=
∫

dx
(

x + 1

2

)2

+ 3

4

= 2√
3

tan−1 2x + 1√
3
+ C

= 2√
3

tan−1
(

2 tan(θ/2)+ 1√
3

)

+ C.

38.
∫ π/2

0

dθ

1+ cos θ + sin θ
Let x = tan

θ

2
, dθ = 2

1+ x2 dx ,

cos θ = 1− x2

1+ x2 , sin θ = 2x

1+ x2 .

=
∫ 1

0

(
2

1+ x2

)

dx

1+
(

1− x2

1+ x2

)

+
(

2x

1 + x2

)

= 2
∫ 1

0

dx

2+ 2x
=
∫ 1

0

dx

1+ x

= ln |1+ x |
∣
∣
∣
∣

1

0
= ln 2.
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39.
∫

dθ

3 + 2 cos θ
Let x = tan(θ/2),

cos θ = 1− x2

1+ x2
, dθ = 2 dx

1+ x2

=
∫

2 dx

1+ x2

3+ 2 − 2x2

1+ x2

=
∫

2 dx

5+ x2

= 2√
5

tan−1 x√
5
+ C = 2√

5
tan−1

(
tan(θ/2)√

5

)

+ C.

40. Area =
∫ 1

1/2

dx√
2x − x2

=
∫ 1

1/2

dx
√

1− (x − 1)2

Let u = x − 1

du = dx

=
∫ 0

−1/2

du√
1− u2

= sin−1 u

∣
∣
∣
∣

0

−1/2

= 0−
(

−π
6

)

= π

6
sq. units.

41. For intersection of y = 9

x4 + 4x2 + 4
and y = 1 we have

x4 + 4x2 + 4 = 9

x4 + 4x2 − 5 = 0

(x2 + 5)(x2 − 1) = 0,

so the intersections are at x = ±1. The required area is

A = 2
∫ 1

0

(
9 dx

x4 + 4x2 + 4
− 1

)

dx

= 18
∫ 1

0

dx

(x2 + 2)2
− 2 Let x = √2 tan θ

dx = √2 sec2 θ

= 18
∫ x=1

x=0

√
2 sec2 θ dθ

4 sec4 θ
− 2

= 9√
2

∫ x=1

x=0
cos2 θ dθ − 2

= 9

2
√

2

(

θ + sin θ cos θ
)
∣
∣
∣
∣

x=1

x=0
− 2

= 9

2
√

2

(

tan−1 x√
2
+
√

2x

x2 + 2

)∣
∣
∣
∣

1

0
− 2

= 9

2
√

2

(

tan−1 1√
2

)

− 1

2
units2

y

x

y= 9
x4+4x2+4

y=1

−1 1

R

Fig. 6.2.41

42. Average value = 1

4

∫ 4

0

dx

(x2 − 4x + 8)3/2

= 1

4

∫ 4

0

dx

[(x − 2)2 + 4]3/2

Let x − 2 = 2 tan u

dx = 2 sec2 u du

= 1

4

∫ π/4

−π/4
2 sec2 u du

8 sec3 u

= 1

16

∫ π/4

−π/4
cos u du = 1

16
sin u

∣
∣
∣
∣

π/4

−π/4

= 1

16

(
1√
2
+ 1√

2

)

=
√

2

16
.

43. Area of R

= 2
∫
√

a2−b2

0

(√

a2 − x2 − b
)

dx Let x = a sin θ

dx = a cos θ dθ

= 2
∫ x=
√

a2−b2

x=0
a2 cos2 θ dθ − 2b

√

a2 − b2

= a2(θ + sin θ cos θ)

∣
∣
∣
∣

x=
√

a2−b2

x=0
− 2b

√

a2 − b2

=
(

a2 sin−1 x

a
+ x

√

a2 − x2
)
∣
∣
∣
∣

√
a2−b2

0
− 2b

√

a2 − b2

= a2 sin−1

√

1− b2

a2
+ b

√

a2 − b2 − 2b
√

a2 − b2

= a2 cos−1 b

a
− b

√

a2 − b2 units2
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y

x

R (
√

a2−b2,b)

x2+y2=a2

b
a

y=b

Fig. 6.2.43

44. The circles intersect at x = 1
4 , so the common area is

A1 + A2 where

A1 = 2
∫ 1

1/4

√

1− x2 dx Let x = sin u

dx = cos u du

= 2
∫ x=1

x=1/4
cos2 u du

= (u + sin u cos u)

∣
∣
∣
∣

x=1

x=1/4

= (sin−1 x + x
√

1 − x2)

∣
∣
∣
∣

x=1

x=1/4

= π

2
− sin−1 1

4
−
√

15

16
sq. units.

A2 = 2
∫ 1/4

0

√

4− (x − 2)2 dx Let x − 2 = 2 sin v

dx = 2 cos v dv

= 8
∫ x=1/4

x=0
cos2 v dv

= 4(v + sin v cos v)

∣
∣
∣
∣

x=1/4

x=0

= 4

[

sin−1
(

x − 2

2

)

+
(

x − 2

2

) √
4x − x2

2

]∣
∣
∣
∣

x=1/4

x=0

= 4

[

sin−1
(

−7

8

)

− 7
√

15

64
+ π

2

]

= −4 sin−1
(

7

8

)

− 7
√

15

16
+ 2π sq. units.

Hence, the common area is

A1 + A2 = 5π

2
−
√

15

2

− sin−1
(

1

4

)

− 4 sin−1
(

7

8

)

sq. units.

y

x
A

x2+y2=1

(x−2)2+y2=4

x= 1
4

Fig. 6.2.44

45. Required area =
∫ 4

3

(
√

25− x2 − 12

x

)

dx

=
∫ 4

3

√

25 − x2 dx −
∫ 4

3

12

x
dx

Let x = 5 sin u, dx = 5 cos u du in the first integral.

=
∫ x=4

x=3
25 cos2 u du − 12 ln x

∣
∣
∣
∣

4

3

= 25

2
(u + sin u cos u)

∣
∣
∣
∣

x=4

x=3
− 12 ln

4

3

= 25

2

(

sin−1 x

5

)

+ 1

2
x
√

25− x2

∣
∣
∣
∣

4

3
− 12 ln

4

3

= 25

2

(

sin−1 4

5
− sin−1 3

5

)

− 12 ln
4

3
sq. units.

y

x

(3,4)

(4,3)

xy=12

s2+y2=25

Fig. 6.2.45

46. Shaded area = 2
∫ a

c
b

√

1−
( x

a

)2
dx Let x = a sin u

dx = a cos u du

= 2ab
∫ x=a

x=c
cos2 u du

= ab(u + sin u cos u)

∣
∣
∣
∣

x−a

x=c

=
(

ab sin−1 x

a
+ b

a
x
√

a2 − x2

)∣
∣
∣
∣

a

c

= ab

(
π

2
− sin−1 c

a

)

− cb

a

√

a2 − c2 sq. units.
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y

x

x=c

x2

a2 + y2

b2 =1

Fig. 6.2.46

47. Area of R

= Y

2

√

1+ Y 2 −
∫
√

1+Y 2

1

√

x2 − 1 dx

Let x = sec θ

dx = sec θ tan θ dθ

= Y

2

√

1+ Y 2 −
∫ tan−1 Y

0
sec θ tan2 θ dθ

= Y

2

√

1+ Y 2 −
∫ tan−1 Y

0
sec3 θ dθ

+
∫ tan−1 Y

0
sec θ dθ

= Y

2

√

1+ Y 2 +
(

−1

2
sec θ tan θ

− 1

2
ln | sec θ + tan θ | + ln | sec θ + tan θ |

)∣
∣
∣
∣

tan−1 Y

0

= Y

2

√

1+ Y 2 − Y

2

√

1 + Y 2 + 1

2
ln(Y +

√

1+ Y 2)

= 1

2
ln(Y +

√

1+ Y 2) units2

If Y = sinh t , then we have

Area = 1

2
ln(sinh t + cosh t) = 1

2
ln et = t

2
units2

y

x

(
√

1+Y 2,Y )

R

1

x2−y2=1

Fig. 6.2.47

48.
∫

dx√
x2 − a2

Let x = a cosh u

dx = a sinh u du

=
∫

a sinh u du

a sinh u
= u + C

= cosh−1 x

a
+ C = ln(x +

√

x2 − a2)+ C, (x ≥ a).
∫

dx

x2
√

x2 − a2
=
∫

a sinh u du

a2 cosh2 u a sinh u

= 1

a2

∫

sech2u du = 1

a2 tanh u + C

= 1

a2
tanh

(

cosh−1 x

a

)

+ C

= 1

a2
·

x

a
+
√

x2

a2
− 1− 1

x

a
−
√

x2

a2 − 1

x

a
+
√

x2

a2 − 1+ 1

x

a
−
√

x2

a2 − 1

+ C

=
√

x2 − a2

a2x
+ C1.

Section 6.3 Integrals of Rational Functions
(page 336)

1.
∫

2 dx

2x − 3
= ln |2x − 3| + C.

2.
∫

dx

5− 4x
= −1

4
ln |5− 4x | + C.

3.
∫

x dx

πx + 2
= 1

π

∫
πx + 2− 2

πx + 2
dx

= x

π
− 2

π2 ln |πx + 2| + C.

4.
∫

x2

x − 4
dx =

∫ (

x + 4+ 16

x − 4

)

dx

= x2

2
+ 4x + 16 ln |x − 4| + C.

5.
1

x2 − 9
= A

x − 3
+ B

x + 3

= Ax + 3A + Bx − 3B

x2 − 9

⇒
{

A + B =0
3(A − B) =1

⇒ A = 1

6
, B = −1

6
.

∫
dx

x2 − 9
= 1

6

∫
dx

x − 3
− 1

6

∫
dx

x + 3

= 1

6

(

ln |x − 3| − ln |x + 3|
)

+ C

= 1

6
ln

∣
∣
∣
∣

x − 3

x + 3

∣
∣
∣
∣
+ C.
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6.
1

5− x2 =
A√

5 − x
+ B√

5+ x

= (A + B)
√

5+ (A − B)x

5− x2

⇒
{

A + B = 1√
5

A − B = 0
⇒ A = B = 1

2
√

5
.

∫
1

5− x2 dx = 1

2
√

5

∫ (
1√

5− x
+ 1√

5+ x

)

dx

= 1

2
√

5

(

− ln |√5− x | + ln |√5+ x |
)

+ C

= 1

2
√

5
ln

∣
∣
∣
∣
∣

√
5+ x√
5− x

∣
∣
∣
∣
∣
+ C.

7.
1

a2 − x2
= A

a − x
+ B

a + x

= Aa + Ax + Ba − Bx

a2 − x2

⇒
{ Aa + Ba = 1

A − B = 0
⇒ A = B = 1

2a
.

Thus
∫

dx

a2 − x2 =
1

2a

∫
dx

a − x
+ 1

2a

∫
dx

a + x

= 1

2a

(

− ln |a − x | + ln |a + x |
)

+ C

= 1

2a
ln

∣
∣
∣
∣

a + x

a − x

∣
∣
∣
∣
+ C.

8.
1

b2 − a2x2 =
A

b − ax
+ B

b + ax

= (A + B)b + (A − B)ax

b2 − a2x2

⇒A = B = 1

2b
∫

dx

b2 − a2x2 =
1

2b

∫ (
1

b − ax
+ 1

b + ax

)

dx

= 1

2b

(− ln |b − ax |
a

+ ln |b + ax |
a

)

+ C

= 1

2ab
ln

∣
∣
∣
∣

b + ax

b − ax

∣
∣
∣
∣
+ C.

9.
∫

x2 dx

x2 + x − 2
=
∫ (

1− x − 2

x2 + x − 2

)

dx

= x −
∫

x − 2

x2 + x − 2
dx .

If
x − 2

x2 + x − 2
= A

x + 2
+ B

x − 1
= Ax − A + Bx + 2B

x2 + x − 2
,

then A + B = 1 and −A + 2B = −2, so that A = 4/3
and B = −1/3. Thus

∫
x2 dx

x2 + x − 2
= x − 4

3

∫
dx

x + 2
+ 1

3

∫
dx

x − 1

= x − 4

3
ln |x + 2| + 1

3
ln |x − 1| + C.

10.
x

3x2 + 8x − 3
= A

3x − 1
+ B

x + 3

= (A + 3B)x + (3A − B)

3x2 + 8x − 3

⇒
{ A + 3B = 1

3A − B = 0
⇒ A = 1

10
, B = 3

10
.

∫
x dx

3x2 + 8x − 3
= 1

10

∫ (
1

3x − 1
+ 3

x + 3

)

dx

= 1

30
ln |3x − 1| + 3

10
ln |x + 3| + C.

11.
x − 2

x2 + x
= A

x
+ B

x + 1
= Ax + A + Bx

x2 + x

⇒
{ A + B = 1

A = −2
⇒ A = −2, B = 3.

∫
x − 2

x2 + x
dx = 3

∫
dx

x + 1
− 2

∫
dx

x
= 3 ln |x + 1| − 2 ln |x | + C.

12.
1

x3 + 9x
= A

x
+ Bx + C

x2 + 9

= Ax2 + 9A + Bx2 + Cx

x3 + 9x

⇒
{

A + B = 0
C = 0
9A = 1

⇒ A = 1

9
, B = −1

9
, C = 0.

∫
dx

x3 + 9x
= 1

9

∫ (
1

x
− x

x2 + 9

)

dx

= 1

9
ln |x | − 1

18
ln(x2 + 9)+ K .

13.
∫

dx

1− 6x + 9x2 =
∫

dx

(1 − 3x)2
= 1

3(1 − 3x)
+ C.

14.
∫

x

2 + 6x + 9x2 dx =
∫

x

(3x + 1)2 + 1
dx Let u = 3x + 1

du = 3 dx
1

9

∫
u − 1

u2 + 1
du = 1

9

∫
u

u2 + 1
du − 1

9

∫
1

u2 + 1
du

= 1

18
ln(u2 + 1)− 1

9
tan−1 u + C

= 1

18
ln(2 + 6x + 9x2)− 1

9
tan−1(3x + 1)+ C.

15.
∫

x2 + 1

6x − 9x2
dx = 1

9

∫
9x2 − 6x + 6x + 9

6x − 9x2
dx

= − x

9
+ 1

9

∫
2x + 3

x(2 − 3x)
dx .

Now

2x + 3

x(2 − 3x)
= A

x
+ B

2− 3x
= 2A − 3Ax + Bx

x(2 − 3x)
⇒2A = 3, −3A+ B = 2

⇒A = 3

2
, B = 13

2
.
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Therefore we have

∫
x2 + 1

6x − 9x2 dx

= − x

9
+ 1

6

∫
dx

x
+ 13

18

∫
dx

2 − 3x

= − x

9
+ 1

6
ln |x | − 13

54
ln |2− 3x | + C.

16. First divide to obtain

x3 + 1

x2 + 7x + 12
= x − 7+ 37x + 85

(x + 4)(x + 3)
37x + 85

(x + 4)(x + 3)
= A

x + 4
+ B

x + 3

= (A + B)x + 3A + 4B

x2 + 7x + 12

⇒
{ A + B = 37

3A + 4B = 85
⇒ A = 63, B = −26.

Now we have

∫
x3 + 1

12+ 7x + x2
dx =

∫ (

x − 7+ 63

x + 4
− 26

x + 3

)

dx

= x2

2
− 7x + 63 ln |x + 4| − 26 ln |x + 3| + C.

17.
1

x(x2 − a2)
= A

x
+ B

x − a
+ C

x + a

= Ax2 − Aa2 + Bx2 + Bax + Cx2 − Cax

x(x2 − a2)

⇒
{

A + B + C = 0
B − C = 0
−Aa2 = 1

⇒
{

A = −1/a2

B = C = 1/(2a2).

Thus we have

∫
dx

x(x2 − a2)

= 1

2a2

(

−2
∫

dx

x
+
∫

dx

x − a
+
∫

dx

x + a

)

= 1

2a2
(−2 ln |x | + ln |x − a| + ln |x + a|)+ K

= 1

2a2
ln
|x2 − a2|

x2
+ K .

18. The partial fraction decomposition is

1

x4 − a4 =
A

x − a
+ B

x + a
+ Cx + D

x2 + a2

= A(x3 + ax2 + a2x + a3)+ B(x3 − ax2 + a2x − a3)

x4 − a4

+ C(x3 − a2x)+ D(x2 − a2)

x4 − a4

⇒

⎧

⎪⎨

⎪⎩

A + B + C = 0
a A − aB + D = 0
a2 A + a2 B − a2C = 0
a3 A − a3 B − a2 D = 1

⇒A = 1

4a3 , B = − 1

4a3 , C = 0, D = − 1

2a2 .

∫
dx

x4 − a4 =
1

4a3

∫ (
1

x − a
− 1

x + a
− 2a

x2 + a2

)

dx

= 1

4a3
ln

∣
∣
∣
∣

x − a

x + a

∣
∣
∣
∣
− 1

2a3
tan−1

( x

a

)

+ K .

19.
a3

x3 − a3
= A

x − a
+ Bx + C

x2 + ax + a2

= Ax2 + Aax + Aa2 + Bx2 − Bax + Cx − Ca

x3 − a3

⇒
{ A + B = 0

Aa − Ba + C = 0
Aa2 − Ca = a3

⇒
{ A = a/3

B = −a/3
C = −2a2/3.

Therefore we have

∫
x3

x3 − a3
=
∫ (

1 + a3

x3 − a3

)

dx

= x + a

3

∫
dx

x − a
− a

3

∫
x + 2a

x2 + ax + a2

= x + a

3
ln |x − a| − a

6

∫
2x + a + 3a

x2 + ax + a2

= x + a

3
ln |x − a| − a

6
ln(x2 + ax + a2)

− a2

2

∫
dx

(

x + a

2

)2 + 3

4
a2

= x + a

3
ln |x − a| − a

6
ln(x2 + ax + a2)

− a2

2

2√
3a

tan−1 x + (a/2)
(
√

3a)/2
+ K

= x + a

3
ln |x − a| − a

6
ln(x2 + ax + a2)

− a√
3

tan−1 2x + a√
3a
+ K .
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20. Here the expansion is

1

x3 + 2x2 + 2x
= A

x
+ Bx + C

x2 + 2x + 2

= A(x2 + 2x + 2)+ Bx2 + Cx

x3 + 2x2 + 2

⇒
{

A + B = 0
2A + C = 0
2A = 1

⇒ A = −B = 1

2
, C = −1,

so we have

∫
dx

x3 + 2x2 + 2x
= 1

2

∫
dx

x
− 1

2

∫
x + 2

x2 + 2x + 2
dx

Let u = x + 1

du = dx

= 1

2
ln |x | − 1

2

∫
u + 1

u2 + 1
du

= 1

2
ln |x | − 1

4
ln(u2 + 1)− 1

2
tan−1 u + K

= 1

2
ln |x | − 1

4
ln(x2 + 2x + 2)− 1

2
tan−1(x + 1)+ K .

21.
1

x3 − 4x2 + 3x
= A

x
+ B

x − 1
+ C

x − 3

= A(x2 − 4x + 3)+ B(x2 − 3x)+ C(x2 − x)

x3 − 4x2 + 3x

⇒
{

A + B + C = 0
−4A − 3B − C = 0
3A = 1

⇒ A = 1

3
, B = −1

2
, C = 1

6
.

Therefore we have

∫
dx

x3 − 4x2 + 3x

= 1

3

∫
dx

x
− 1

2

∫
dx

x − 1
+ 1

6

∫
dx

x − 3

= 1

3
ln |x | − 1

2
ln |x − 1| + 1

6
ln |x − 3| + K .

22. Here the expansion is

x2 + 1

x3 + 8
= A

x + 2
+ Bx + C

x2 − 2x + 4

= A(x2 − 2x + 4)+ B(x2 + 2x)+ C(x + 2)

x3 + 8

⇒
{

A + B = 1
−2A + 2B + C = 0
4A + 2C = 1

⇒ A = 5

12
B = 7

12
, C = −1

3
,

so we have
∫

x2 + 1

x3 + 8
dx = 5

12

∫
dx

x + 2
+ 1

12

∫
7x − 4

(x − 1)2 + 3
dx

Let u = x − 1

du = dx

= 5

12
ln |x + 2| + 1

12

∫
7u + 3

u2 + 3
du

= 5

12
ln |x + 2| + 7

24
ln(x2 − 2x + 4)

+ 1

4
√

3
tan−1 x − 1√

3
+ K .

23.
1

(x2 − 1)2
= A

x − 1
+ B

(x − 1)2
+ C

x + 1
+ D

(x + 1)2

= 1

(x2 − 1)2

(

A(x − 1)(x + 1)2 + B(x + 1)2

+ C(x + 1)(x − 1)2 + D(x − 1)2
)

⇒

⎧

⎪⎨

⎪⎩

A + C = 0
A + B − C + D = 0
−A+ 2B − C − 2D = 0
−A+ B + C + D = 1

⇒

⎧

⎪⎨

⎪⎩

A = −1

4

B = C = D = 1

4
.

Thus
∫

dx

(x2 − 1)2

= 1

4

(

−
∫

dx

x − 1
+
∫

dx

(x − 1)2

+
∫

dx

x + 1
+
∫

dx

(x + 1)2

)

= 1

4

(

ln |x + 1| − ln |x − 1| − 1

x − 1
− 1

x + 1

)

+ K

= 1

4
ln

∣
∣
∣
∣

x + 1

x − 1

∣
∣
∣
∣
− x

2(x2 − 1)
+ K .

24. The expansion is

x2

(x2 − 1)(x2 − 4)
= A

x − 1
+ B

x + 1
+ C

x − 2
+ D

x + 2

A = lim
x→1

x2

(x + 1)(x2 − 4)
= 1

2(−3)
= −1

6

B = lim
x→−1

x2

(x − 1)(x2 − 4)
= 1

−2(−3)
= 1

6

C = lim
x→2

x2

(x2 − 1)(x + 2)
= 4

3(4)
= 1

3

D = lim
x→−2

x2

(x2 − 1)(x − 2)
= 4

3(−4)
= −1

3
.

Therefore
∫

x2

(x2 − 1)(x2 − 4)
dx = −1

6
ln |x − 1| + 1

6
ln |x + 1|+

1

3
ln |x − 2| − 1

3
ln |x + 2| + K .
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25.
1

x4 − 3x3 =
1

x3(x − 3)

= A

x
+ B

x2
+ C

x3
+ D

x − 3

= A(x3 − 3x2)+ B(x2 − 3x)+ C(x − 3)+ Dx3

x3(x − 3)

⇒

⎧

⎪⎨

⎪⎩

A+ D = 0
−3A+ B = 0
−3B + C = 0
−3C = 1

⇒

⎧

⎪⎨

⎪⎩

A = −1/27
B = −1/9
C = −1/3
D = 1/27.

Therefore
∫

dx

x4 − 3x3

= − 1

27

∫
dx

x
− 1

9

∫
dx

x2 −
1

3

∫
dx

x3 +
1

27

∫
dx

x − 3

= 1

27
ln

∣
∣
∣
∣

x − 3

x

∣
∣
∣
∣
+ 1

9x
+ 1

6x2
+ K .

26. We have
∫

x dx

(x2 − x + 1)2
=
∫

x dx
[

(x − 1
2 )

2 + 3
4

]2
Let u = x − 1

2
du = dx

=
∫

u du

(u2 + 3
4 )

2
+ 1

2

∫
du

(u2 + 3
4 )

2

Let u =
√

3

2
tan v,

du =
√

3

2
sec2 v dv in the second integral.

= −1

2

(

1

u2 + 3
4

)

+ 1

2

∫

√
3

2
sec2 v dv

9

16
sec4 v

= −1

2(x2 − x + 1)
+ 4

3
√

3

∫

cos2 v dv

= −1

2(x2 − x + 1)
+ 2

3
√

3
(v + sin v cos v)+ C

= −1

2(x2 − x + 1)
+ 2

3
√

3
tan−1 2x − 1√

3
+ 2

3
√

3

2(x − 1
2 )
√

3

(2
√

x2 − x + 1)2
+ C

= 2

3
√

3
tan−1 2x − 1√

3
+ x − 2

3(x2 − x + 1)
+ C.

2u

√
4u2+3

v √
3

Fig. 6.3.26

27.
t

(t + 1)(t2 + 1)2
= A

t + 1
+ Bt + C

t2 + 1
+ Dt + E

(t2 + 1)2

= 1

(t + 1)(t2 + 1)2

(

A(t4 + 2t2 + 1)+ B(t4 + t3 + t2 + t)

+ C(t3 + t2 + t + 1)+ D(t2 + t)+ E(t + 1)
)

⇒

⎧

⎪⎪⎪⎨

⎪⎪⎪⎩

A + B = 0
B + C = 0
2A + B + C + D = 0
B + C + D + E = 1
A + C + E = 0

⇒

⎧

⎪⎪⎪⎨

⎪⎪⎪⎩

B = −A
C = A
D = −2A
2D = 1
E = −2A.

Thus A = −1/4 = C , B = 1/4, D = E = 1/2. We have

∫
t dt

(t + 1)(t2 + 1)2

= −1

4

∫
dt

t + 1
+ 1

4

∫
(t − 1) dt

t2 + 1
+ 1

2

∫
(t + 1) dt

(t2 + 1)2

= −1

4
ln |t + 1| + 1

8
ln(t2 + 1)− 1

4
tan−1 t

− 1

4(t2 + 1)
+ 1

2

∫
dt

(t2 + 1)2
Let t = tan θ

dt = sec2 θ dθ

= −1

4
ln |t + 1| + 1

8
ln(t2 + 1)− 1

4
tan−1 t

− 1

4(t2 + 1)
+ 1

2

∫

cos2 θ dθ

= −1

4
ln |t + 1| + 1

8
ln(t2 + 1)− 1

4
tan−1 t

− 1

4(t2 + 1)
+ 1

4
(θ + sin θ cos θ)+ K

= −1

4
ln |t + 1| + 1

8
ln(t2 + 1)− 1

4
tan−1 t

− 1

4(t2 + 1)
+ 1

4
tan−1 t + 1

4

t

t2 + 1
+ K

= 1

4

t − 1

t2 + 1
− 1

4
ln |t + 1| + 1

8
ln(t2 + 1)+ K .

28. We have

∫
dt

(t − 1)(t2 − 1)2

=
∫

dt

(t − 1)3(t + 1)2
Let u = t − 1

du = dt

=
∫

du

u3(u + 2)2

1

u3(u + 2)2
= A

u
+ B

u2 +
C

u3 +
D

u + 2
+ E

(u + 2)2

= A(u4 + 4u3 + 4u2)+ B(u3 + 4u2 + 4u)

u3(u + 2)2

C(u2 + 4u + 4)+ D(u4 + 2u3)+ Eu3

u3(u + 2)2
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⇒

⎧

⎪⎪⎪⎨

⎪⎪⎪⎩

A + D = 0
4A + B + 2D + E = 0
4A + 4B + C = 0
4B + 4C = 0
4C = 1

⇒ A = 3

16
, B = −1

4
, C = 1

4
, D = − 3

16
, E = −1

8
.

∫
du

u3(u + 2)2

= 3

16

∫
du

u
− 1

4

∫
du

u2 +
1

4

∫
du

u3

− 3

16

∫
du

u + 2
− 1

8

∫
du

(u + 2)2

= 3

16
ln |t − 1| + 1

4(t − 1)
− 1

8(t − 1)2
−

3

16
ln |t + 1| + 1

8(t + 1)
+ K .

29. I
∫

dx

x(3 + x2)
√

1 − x2
Let 1− x2 = u2

−2x dx = 2u du

= −
∫

du

(1 − u2)(4 − u2)
.

1

(1 − u2)(4 − u2)

= A

1 − u
+ B

1+ u
+ C

2− u
+ D

2+ u

A = 1

(1 + u)(4 − u2)

∣
∣
∣
∣
u=1
= 1

6

B = 1

(1− u)(4 − u2)

∣
∣
∣
∣
u=−1

= 1

6

C = 1

(1− u2)(2 + u)

∣
∣
∣
∣
u=2
= − 1

12

D = 1

(1− u2)(2 − u)

∣
∣
∣
∣
u=−2

= − 1

12
.

Thus

I = −
(

1

6

∫
du

1− u
+ 1

6

∫
du

1+ u

− 1

12

∫
du

2− u
− 1

12

∫
du

2+ u

)

= 1

6
ln

∣
∣
∣
∣

1− u

1+ u

∣
∣
∣
∣
+ 1

12
ln

∣
∣
∣
∣

2+ u

2− u

∣
∣
∣
∣
+ K

= 1

6
ln

∣
∣
∣
∣
∣

1−√1− x2

1+√1− x2

∣
∣
∣
∣
∣
+ 1

12
ln

∣
∣
∣
∣
∣

2+√1− x2

2−√1− x2

∣
∣
∣
∣
∣
+ K

= 1

6
ln
(1−√1− x2)2

x2 + 1

12
ln
(2+√1 − x2)2

3+ x2 + K .

30.
∫

dx

e2x − 4ex + 4
=
∫

dx

(ex − 2)2
Let u = ex

du = ex dx

=
∫

du

u(u − 2)2

1

u(u − 2)2
= A

u
+ B

u − 2
+ C

(u − 2)2

= A(u2 − 4u + 4)+ B(u2 − 2u)++Cu

u(u − 2)2

⇒
{

A + B = 0
−4A − 2B + C = 0
4A = 1

⇒ A = 1

4
, B = −1

4
, C = 1

2
.

∫
du

u(u − 2)2
= 1

4

∫
du

u
− 1

4

∫
du

u − 2
+ 1

2

∫
du

(u − 2)2

= 1

4
ln |u| − 1

4
ln |u − 2| − 1

2

1

(u − 2)
+ K

= x

4
− 1

4
ln |ex − 2| − 1

2(ex − 2)
+ K .

31. I =
∫

dx

x(1+ x2)3/2
Let x = tan θ

dx = sec2 θ dθ

=
∫

sec2 θ dθ

tan θ sec3 θ
=
∫

cos2 θ dθ

sin θ

=
∫

cos2 θ sin θ dθ

sin2 θ
Let u = cos θ

du = − sin θ dθ

= −
∫

u2 du

1− u2
= u +

∫
du

u2 − 1
.

We have

1

u2 − 1
= 1

2

(
1

u − 1
− 1

u + 1

)

.

Thus

I = u + 1

2
ln

∣
∣
∣
∣

u − 1

u + 1

∣
∣
∣
∣
+ C

= cos θ + 1

2
ln

∣
∣
∣
∣

cos θ − 1

cos θ + 1

∣
∣
∣
∣
+ C

= 1√
1+ x2

+ 1

2
ln

∣
∣
∣
∣
∣
∣
∣
∣

1√
1+ x2

− 1

1√
1+ x2

+ 1

∣
∣
∣
∣
∣
∣
∣
∣

+ C

= 1√
1+ x2

+ 1

2
ln

(√
1+ x2 − 1√
1+ x2 + 1

)

+ C.

θ

√
1+x2

x

1

Fig. 6.3.31
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32. We have

I =
∫

dx

x(1− x2)3/2
Let u2 = 1− x2

2u du = −2x dx

= −
∫

u du

(1 − u2)u3 = −
∫

du

(1− u2)u2

1

u2(1 − u2)
= A

u
+ B

u2
+ C

1− u
+ D

1+ u

= A(u − u3)+ B(1− u2)+ C(u2 + u3)+ D(u2 − u3)

u2(1 − u2)

⇒

⎧

⎪⎨

⎪⎩

−A+ C − D = 0
−B + C + D = 0
A = 0
B = 1

⇒ A = 0, B = 1, C = 1

2
, D = 1

2
.

I = −
∫

du

(1 − u2)u2 = −
∫

du

u2 −
1

2

∫
du

1− u
− 1

2

∫
du

1+ u

= 1

u
+ 1

2
ln |1− u| − 1

2
ln |1+ u| + K

= 1√
1− x2

+ 1

2
ln

∣
∣
∣
∣
∣

1−√1 − x2

1+√1 − x2

∣
∣
∣
∣
∣
+ K

= 1√
1− x2

+ ln
(

1 −
√

1 − x2
)

− ln |x | + K .

33.
∫

dx

x2(x2 − 1)3/2
Let x = sec θ

dx = sec θ tan θ dθ

=
∫

sec θ tan θ dθ

sec2 θ tan3 θ
=
∫

cos3 θ dθ

sin2 θ

=
∫

1− sin2 θ

sin2 θ
cos θ dθ Let u = sin θ

du = cos θ dθ

=
∫

1− u2

u2 du = − 1

u
− u + C

= −
(

1

sin θ
+ sin θ

)

+ C

= −
(

x√
x2 − 1

+
√

x2 − 1

x

)

+ C.

θ

√
x2−1

x

1

Fig. 6.3.33

34.
∫

dθ

cos θ(1+ sin θ)
Let u = sin θ

du = cos θ dθ

=
∫

du

(1− u2)(1 + u)
=
∫

du

(1− u)(1 + u)2

1

(1− u)(1 + u)2
= A

1− u
+ B

1+ u
+ C

(1 + u)2

= A(1 + 2u + u2)+ B(1− u2)+ C(1− u)

(1 − u)(1 + u)2

⇒
{ A − B = 0

2A − C = 0
A + B + C = 1

⇒ A = 1

4
, B = 1

4
, C = 1

2
.

∫
du

(1 − u)(1 + u)2

= 1

4

∫
du

1 − u
+ 1

4

∫
du

1+ u
+ 1

2

∫
du

(1 + u)2

= 1

4
ln

∣
∣
∣
∣

1 + sin θ

1 − sin θ

∣
∣
∣
∣
− 1

2(1+ sin θ)
+ C.

35. Since Q(x) = (x − a1)(x − a2) · · · (x − an), we have

ln Q(x) = ln(x − a1)+ ln(x − a2)+ · · · + ln(x − an),

and, differentiating both sides,

Q ′(x)
Q(x)

= d

dx
[ln Q(x)] = 1

x − a1
+ 1

x − a2
+ · · · + 1

x − an

1

Q(x)
= 1

Q ′(x)

[
1

x − a1
+ 1

x − a2
+ · · · + 1

x − an

]

.

Since

P(x)

Q(x)
= A1

x − a1
+ A2

x − a2
+ · · · + An

x − an
,

we have

P(x)

Q ′(x)

[
1

x − a1
+ 1

x − a2
+ · · · + 1

x − an

]

= A1

x − a1
+ A2

x − a2
+ · · · + An

x − an
.

Multiply both sides by x − a1 and get

P(x)

Q ′(x)

[

1+ x − a1

x − a2
+ · · · + x − a1

x − an

]

= A1 + A2(x − a1)

x − a2
+ · · · + An(x − a1)

x − an
.

Now let x = a1 and obtain
P(a1)

Q ′(a1)
= A1.

Similarly, Aj = P(aj )

Q ′(aj )
for 1 ≤ j ≤ n.
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Section 6.4 Integration Using
Computer Algebra or Tables (page 340)

2. According to Maple

∫
1+ x + x2

(x4 − 1)(x4 − 16)2
dx

= ln(x − 1)

300
− ln(x + 1)

900
− 7

15,360(x − 2)

− 613

460,800
ln(x − 2)− 1

5,120(x + 2)
+ 79

153,600
ln(x + 2)

− ln(x2 + 1)

900
+ 47

115,200
ln(x2 + 4)

− 23

25,600
tan−1(x/2)− 6x + 8

15,360(x2 + 4)

One suspects it has forgotten to use absolute values in
some of the logarithms.

3. Neither the author’s version of Maple nor his version of
Mathematics would do

I =
∫

t5

√
3− 2t4

dt

as presented. Both did an integration by parts and left
an unevaluated integral. Both managed to evaluate the
integral after the substitution u = t2 was made. (See
Exercise 4.) However, Derive had no trouble doing the
integral in its original form, giving as the answer

3
√

2

16
sin−1

√
6t2

3
− t2
√

3 − 2t4

8
.

4. Maple, Mathematica, and Derive readily gave

∫ 1

0

1

(x2 + 1)3
dx = 3π

32
+ 1

4
.

5. Use the 6th integral in the list involving
√

x2 ± a2.

∫
x2 dx√
x2 − 2

= x

2

√

x2 − 2+ ln |x +
√

x2 − 2| + C

6. Use the last integral in the list involving
√

x2 ± a2.

∫
√

(x2 + 4)3 dx = x

4
(x2+10)

√

x2 + 4+6 ln |x+
√

x2 + 4|+C

7. Use the 8th integral in the list involving
√

x2 ± a2 after
making the change of variable x =√3t .

∫
dt

t2
√

3t2 + 5
Let x = √3t

dx = √3 dt

= 3√
3

∫
dx

x2
√

x2 + 5

= −√3

√
x2 + 5

5x
+ C = −

√
3t2 + 5

5t
+ C

8. Use the 8th integral in the miscellaneous algebraic set.

∫
dt

t
√

3t − 5
= 2√

5
tan−1

√

3t − 5

5
+ C

9. The 5th and 4th integrals in the exponential/logarithmic
set give

∫

x4(ln x)4 dx = x5(ln x)4

5
− 4

5

∫

x4(ln x)3 dx

= x5(ln x)4

5
− 4

5

(

x5(ln x)3

5
− 3

2

∫

x4(ln x)2 dx

)

= x5
(
(ln x)4

5
− 4(ln x)3

25

)

+ 12

25

(

x5(ln x)2

5
− 2

5

∫

x5 ln x dx

)

= x5
(
(ln x)4

5
− 4(ln x)3

25
+ 12(ln x)2

125
− 24 ln x

625
+ 24

3,125

)

+ C.

10. We make a change of variable and then use the first two
integrals in the exponential/logarithmic set.

∫

x7ex2
dx Let u = x2

du = 2x dx

= 1

2

∫

u3eu du

= 1

2

(

u3eu − 3
∫

u2eu du

)

= u3eu

2
− 3

2

(

u2eu − 2
∫

ueu du

)

=
(

u3

2
− 3u2

2
+ 3(u − 1)

)

eu + C

=
(

x6

2
− 3x4

2
+ 3x2 − 3

)

ex2 + C
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11. Use integrals 14 and 12 in the miscellaneous algebraic
set.
∫

x
√

2x − x2 dx

= − (2x − x2)3/2

3
+ 3

3

∫
√

2x − x2 dx

= − (2x − x2)3/2

3
+ x − 1

2

√

2x − x2 + 1

2
sin−1(x − 1)+ C

12. Use integrals 17 and 16 in the miscellaneous algebraic
set.

∫ √
2x − x2

x2 dx

= − (2x − x2)3/2

x2 − 1

1

∫ √
2x − x2

x
dx

= − (2x − x2)3/2

x2 −
√

2x − x2 − sin−1(x − 1)+ C

13. Use the last integral in the miscellaneous algebraic set.
∫

dx

(
√

4x − x2)3
= x − 2

4

1√
4x − x2

+ C

14. Use the last integral in the miscellaneous algebraic set.
Then complete the square, change variables, and use the
second last integral in the elementary list.
∫

dx

(
√

4x − x2)4

= x − 2

8
(
√

4x − x2)−2 + 1

8

∫
dx

4x − x2

= x − 2

8(4x − x2)
+ 1

8

∫
dx

4− (x − 2)2
Let u = x − 2

du = dx

= x − 2

8(4x − x2)
+ 1

8

∫
du

4− u2

= x − 2

8(4x − x2)
+ 1

32
ln

∣
∣
∣
∣

u + 2

u − 2

∣
∣
∣
∣
+ C

= x − 2

8(4x − x2)
+ 1

32
ln

∣
∣
∣
∣

x

x − 4

∣
∣
∣
∣
+ C

Section 6.5 Improper Integrals (page 347)

1.
∫ ∞

2

1

(x − 1)3
dx Let u = x − 1

du = dx

=
∫ ∞

1

du

u3 = lim
R→∞

∫ R

1

du

u3

= lim
R→∞

−1

2u2

∣
∣
∣
∣

R

1
= lim

R→∞

(
1

2
− 1

2R2

)

= 1

2

2.
∫ ∞

3

1

(2x − 1)2/3
dx Let u = 2x − 1

du = 2 dx

= 1

2

∫ ∞

5

du

u2/3 =
1

2
lim

R→∞

∫ R

5
u−2/3 du

= 1

2
lim

R→∞ 3u1/3
∣
∣
∣
∣

R

5
= ∞ (diverges)

3.
∫ ∞

0
e−2x dx = lim

R→∞
e−2x

−2

∣
∣
∣
∣

R

0

= lim
R→∞

(
1

2
− 1

2eR

)

= 1

2
. This integral converges.

4.
∫ −1

−∞
dx

x2 + 1
= lim

R→−∞

∫ −1

R

dx

x2 + 1

= lim
R→−∞

[

tan−1(−1)− tan−1(R)

]

= −π
4
−
(

−π
2

)

= π

4
.

This integral converges.

5.
∫ 1

−1

dx

(x + 1)2/3
= lim

c→−1+ 3(x + 1)1/3
∣
∣
∣
∣

1

c

= lim
c→−1+ 3

(

21/3 − (1 + c)1/3
)

= 3 3
√

2. This integral converges.

6.
∫ a

0

dx

a2 − x2
= lim

C→a−

∫ C

0

dx

a2 − x2

= lim
C→a−

1

2a
ln

∣
∣
∣
∣

a + x

a − x

∣
∣
∣
∣

∣
∣
∣
∣

C

0

= lim
C→a−

1

2a
ln

a + C

a − C
= ∞.

The integral diverges to infinity.

7.
∫ 1

0

dx

(1− x)1/3
Let u = 1− x

du = −dx

=
∫ 1

0

du

u1/3 = lim
c→0+

∫ 1

c

du

u1/3

= lim
c→0+

3

2
u2/3

∣
∣
∣
∣

1

c
= 3

2

8.
∫ 1

0

dx

x
√

1− x
Let u2 = 1− x

2u du = −dx

=
∫ 1

0

2u du

(1 − u2)u
= 2 lim

c→1−

∫ c

0

du

1− u2

= 2 lim
c→1−

1

2
ln

∣
∣
∣
∣

u + 1

u − 1

∣
∣
∣
∣

∣
∣
∣
∣

c

0
= ∞ (diverges)
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9.
∫ π/2

0

cos x dx

(1− sin x)2/3
Let u = 1− sin x

du = − cos x dx

=
∫ 1

0
u−2/3 du = lim

c→0+ 3u1/3
∣
∣
∣
∣

1

c
= 3.

The integral converges.

10.
∫ ∞

0
xe−x dx

= lim
R→∞

∫ R

0
xe−x dx

U = x

dU = dx

dV = e−x dx

V = −e−x

= lim
R→∞

(

−xe−x
∣
∣
∣
∣

R

0
+
∫ R

0
e−x dx

)

= lim
R→∞

(

− R

eR
− 1

eR
+ 1

)

= 1.

The integral converges.

11.
∫ 1

0

dx√
x(1 − x)

= 2
∫ 1/2

0

dx
√

1

4
−
(

x − 1

2

)2

= 2 lim
c→0+

∫ 1/2

c

dx
√

1

4
−
(

x − 1

2

)2

= 2 lim
c→0+ sin−1(2x − 1)

∣
∣
∣
∣

1/2

c
= π.

The integral converges.

12.
∫ ∞

0

x

1+ 2x2
dx = lim

R→∞

∫ R

0

x

1 + 2x2
dx

= lim
R→∞

1

4
ln(1 + 2x2)

∣
∣
∣
∣

R

0

= lim
R→∞

[
1

4
ln(1 + 2R2)− 1

4
ln 1

]

= ∞.
This integral diverges to infinity.

13.
∫ ∞

0

x dx

(1 + 2x2)3/2
Let u = 1 + 2x2

du = 4x dx

= 1

4

∫ ∞

1

du

u3/2 =
1

4
lim

R→∞

(

− 2√
u

)∣
∣
∣
∣

R

1

= 1

2
. The integral converges.

14.
∫ π/2

0
sec x dx = lim

C→(π/2)−
ln | sec x + tan x |

∣
∣
∣
∣

C

0

= lim
C→(π/2)− ln | sec C + tan C | = ∞.

This integral diverges to infinity.

15.
∫ π/2

0
tan x dx = lim

c→(π/2)− ln | sec x |
∣
∣
∣
∣

c

0

= lim
c→(π/2)−

ln sec c = ∞.
This integral diverges to infinity.

16.
∫ ∞

e

dx

x(ln x)
Let u = ln x

du = dx

x

= lim
R→∞

∫ ln R

1

du

u
= lim

R→∞ ln |u|
∣
∣
∣
∣

ln R

1

= lim
R→∞ ln(ln R)− ln 1 = ∞.

This integral diverges to infinity.

17.
∫ e

1

dx

x
√

ln x
Let u = ln x

du = dx/x

=
∫ 1

0

du√
u
= lim

c→0+ 2
√

u

∣
∣
∣
∣

1

c
= 2.

This integral converges.

18.
∫ ∞

e

dx

x(ln x)2
Let u = ln x

du = dx

x

= lim
R→∞

∫ ln R

1

du

u2 = lim
R→∞

(

− 1

ln R
+ 1

)

= 1.

The integral converges.

19. I =
∫ ∞

−∞
x dx

1 + x2
=
∫ 0

−∞
+
∫ ∞

0
= I1 + I2

I2 =
∫ ∞

0

x dx

1+ x2
Let u = 1+ x2

du = 2x dx

= lim
R→∞

1

2

∫ R

1

du

u
= ∞ (diverges)

20. I =
∫ ∞

−∞
x dx

1 + x4 =
∫ 0

−∞
+
∫ ∞

0
= I1 + I2

I2 =
∫ ∞

0

x dx

1+ x4 Let u = x2

du = 2x dx

= 1

2

∫ ∞

0

du

1+ u2 =
1

2
lim

R→∞ tan−1u

∣
∣
∣
∣

R

0
= π

4

Similarly, I1 = −π
4

. Therefore, I = 0.

21. I =
∫ ∞

−∞
xe−x2

dx =
∫ 0

−∞
+
∫ ∞

0
= I1 + I2

I2 =
∫ ∞

0
xe−x2

dx Let u = x2

du = 2x dx

= 1

2

∫ ∞

0
e−u du = 1

2
lim

R→∞−e−u
∣
∣
∣
∣

R

0
= 1

2
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Similarly, I1 = −1

2
. Therefore, I = 0.

22. I =
∫ ∞

−∞
e−|x| dx =

∫ 0

−∞
ex dx +

∫ ∞

0
e−x dx = I1 + I2

I2 =
∫ ∞

0
e−x dx = 1

Similarly, I1 = 1. Therefore, I = 2.

23. Area of R = −
∫ 1

0
ln x dx = − lim

c→0+(x ln x − x)

∣
∣
∣
∣

1

0

= −(0− 1)+ lim
c→0+(c ln c − c)

= 1− 0 = 1 units2

y

x

y=ln x

1

R

Fig. 6.5.23

24. Area of shaded region =
∫ ∞

0
(e−x − e−2x ) dx

= lim
R→∞

(

−e−x + 1

2
e−2x

)∣
∣
∣
∣

R

0

= lim
R→∞

(

−e−R + 1

2
e−2R + 1− 1

2

)

= 1

2
sq. units.

y

x

1

y=e−x

y=e−2x

Fig. 6.5.24

25. Area =
∫ ∞

1

(
4

2x + 1
− 2

x + 2

)

dx

= lim
R→∞ 2

(

ln(2x + 1)− ln(x + 2)
)
∣
∣
∣
∣

R

1

= lim
R→∞ 2 ln

(
2R + 1

R + 2

)

− 0 = 2 ln 2 sq. units.

26. The required area is

Area =
∫ ∞

0
x−2e−1/x dx

=
∫ 1

0
x−2e−1/x dx +

∫ ∞

1
x−2e−1/x dx

= I1 + I2.

Then let u = − 1

x
and du = x−2 dx in both I1 and I2:

I1 = lim
C→0+

∫ 1

C
x−2e−1/x dx = lim

C→0+

∫ −1

−1/C
eu du

= lim
C→0+(e

−1 − e−1/C ) = 1

e
.

I2 = lim
R→∞

∫ R

1
x−2e−1/x dx = lim

R→∞

∫ −1/R

−1
eu du

= lim
R→∞(e

−1/R − e−1) = 1− 1

e
.

Hence, the total area is I1 + I2 = 1 square unit.

27. First assume that p �= 1. Since a > 0 we have

∫ ∞

a
x−p dx = lim

R→∞
x−p+1

−p + 1

∣
∣
∣
∣

R

a

= −a−p+1

1− p
+ lim

R→∞
1

(1 − p)R p−1

=
{ 1

(p − 1)a p−1 if p > 1

∞ if p < 1
∫ a

0
x−p dx = lim

c→0+
x−p+1

−p + 1

∣
∣
∣
∣

a

c

= a−p+1

1− p
+ lim

c→0+
c1−p

p − 1

=
⎧

⎨

⎩

a1−p

1− p
if p < 1

∞ if p > 1.

If p = 1 both integrals diverge as shown in Examples 2
and 6(a).

28.
∫ 1

−1

x sgn x

x + 2
dx =

∫ 0

−1

−x

x + 2
dx +

∫ 1

0

x

x + 2
dx

=
∫ 0

−1

(

−1+ 2

x + 2

)

dx +
∫ 1

0

(

1 − 2

x + 2

)

dx

= (−x + 2 ln |x + 2|)
∣
∣
∣
∣

0

−1
+ (x − 2 ln |x + 2|)

∣
∣
∣
∣

1

0
= ln

16

9
.

29.
∫ 2

0
x2sgn (x − 1) dx

=
∫ 1

0
−x2 dx +

∫ 2

1
x2 dx

= − x3

3

∣
∣
∣
∣

1

0
+ x3

3

∣
∣
∣
∣

2

1
= −1

3
+ 8

3
− 1

3
= 2.
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30. Since
x2

x5 + 1
≤ 1

x3
for all x ≥ 0, therefore

I =
∫ ∞

0

x2

x5 + 1
dx

=
∫ 1

0

x2

x5 + 1
dx +

∫ ∞

1

x2

x5 + 1
dx

≤
∫ 1

0

x2

x5 + 1
dx +

∫ ∞

1

dx

x3

= I1 + I2.

Since I1 is a proper integral (finite) and I2 is a conver-
gent improper integral, (see Theorem 2), therefore I con-
verges.

31.
1

1+√x
≥ 1

2
√

x
on [1,∞).

Since
∫ ∞

1

dx√
x

diverges to infinity, so must
∫ ∞

1

dx

1+√x
.

Therefore
∫ ∞

0

dx

1+√x
also diverges to infinity.

32. Since
x
√

x

x2 − 1
≥ 1√

x
for all x > 1, therefore

I =
∫ ∞

2

x
√

x

x2 − 1
dx ≥

∫ ∞

2

dx√
x
= I1 = ∞.

Since I1 is a divergent improper integral, I diverges.

33.
∫ ∞

0
e−x3

dx =
(∫ 1

0
+
∫ ∞

1

)

e−x3
dx .

Now
∫ 1

0
e−x3

dx is a proper integral, and is therefore

finite. Since x3 ≥ x on [1,∞), we have

∫ ∞

1
e−x3

dx ≤
∫ ∞

1
e−x dx = 1

e
.

Thus
∫ ∞

0
e−x3

dx converges.

34. On [0,1],
1√

x + x2
≤ 1√

x
. On [1,∞), 1√

x + x2
≤ 1

x2 .

Thus,

∫ 1

0

dx√
x + x2

≤
∫ 1

0

dx√
x

∫ ∞

1

dx√
x + x2

≤
∫ ∞

1

dx

x2 .

Since both of these integrals are convergent, therefore so

is their sum
∫ ∞

0

dx√
x + x2

.

35.
ex

x + 1
≥ e−1

x + 1
on [−1, 1]. Thus

∫ 1

−1

ex

x + 1
dx ≥ 1

e

∫ 1

−1

dx

x + 1
= ∞.

The given integral diverges to infinity.

36. Since sin x ≤ x for all x ≥ 0, thus
sin x

x
≤ 1. Then

I =
∫ π

0

sin x

x
dx = lim

ε→0+

∫ π

ε

sin x

x
dx ≤

∫ π

0
(1) dx = π.

Hence, I converges.

37. Since sin x ≥ 2x

π
on [0, π/2], we have

∫ ∞

0

| sin x |
x2 dx ≥

∫ π/2

0

sin x

x2 dx

≥ 2

π

∫ π/2

0

dx

x
=∞.

The given integral diverges to infinity.
y

x

y=sin x

y= 2x
π

π
2

Fig. 6.5.37

38. Since 0 ≤ 1 − cos
√

x = 2 sin2
(√

x

2

)

≤ 2

(√
x

2

)2

= x

2
,

for x ≥ 0, therefore
∫ π2

0

dx

1 − cos
√

x
≥ 2

∫ π2

0

dx

x
, which

diverges to infinity.

39. On (0, π/2], sin x < x , and so csc x ≥ 1/x . Thus
∫ π/2

0
csc x dx >

∫ π/2

0

dx

x
= ∞.

Therefore
∫ π/2

−π/2
csc x dx must diverge. (It is of the form

∞−∞.)

40. Since ln x grows more slowly than any positive power of
x , therefore we have ln x ≤ kx1/4 for some constant k

and every x ≥ 2. Thus,
1√

x ln x
≥ 1

kx3/4 for x ≥ 2

and
∫ ∞

2

dx√
x ln x

diverges to infinity by comparison with

1

k

∫ ∞

2

dx

x3/4 .
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41.
∫ ∞

0

dx

xex
=
(∫ 1

0
+
∫ ∞

1

)
dx

xex
. But

∫ 1

0

dx

xex
≥ 1

e

∫ 1

0

dx

x
=∞.

Thus the given integral must diverge to infinity.

42. We are given that
∫ ∞

0
e−x2

dx = 1
2

√
π .

a) First we calculate
∫ ∞

0
x2e−x2

dx = lim
R→∞

∫ R

0
x2e−x2

dx

U = x

dU = dx

dV = xe−x2
dx

V = − 1
2 e−x2

= lim
R→∞

[

−1

2
xe−x2

∣
∣
∣
∣

R

0
+ 1

2

∫ R

0
e−x2

dx

]

= −1

2
lim

R→∞ Re−R2 + 1

2

∫ ∞

0
e−x2

dx

= 0+ 1

4

√
π = 1

4

√
π.

b) Similarly,

∫ ∞

0
x4e−x2

dx = lim
R→∞

∫ R

0
x4e−x2

dx

U = x3

dU = 3x2 dx

dV = xe−x2
dx

V = − 1
2 e−x2

= lim
R→∞

[

−1

2
x3e−x2

∣
∣
∣
∣

R

0
+ 3

2

∫ R

0
x2e−x2

dx

]

= −1

2
lim

R→∞ R3e−R2 + 3

2

∫ ∞

0
x2e−x2

dx

= 0+ 3

2

(
1

4

√
π

)

= 3

8

√
π.

43. Since f is continuous on [a, b], there exists a positive
constant K such that | f (x)| ≤ K for a ≤ x ≤ b. If
a < c < b, then

∣
∣
∣
∣

∫ b

c
f (x) dx −

∫ b

a
f (x) dx

∣
∣
∣
∣

=
∣
∣
∣
∣

∫ a

c
f (x) dx

∣
∣
∣
∣
≤ K (c − a)→ 0 as c→ a + .

Thus lim
c→a+

∫ b

c
f (x) dx =

∫ b

a
f (x) dx .

Similarly
∣
∣
∣
∣

∫ c

a
f (x) dx −

∫ b

a
f (x) dx

∣
∣
∣
∣

=
∣
∣
∣
∣

∫ c

b
f (x) dx

∣
∣
∣
∣
≤ K (b − c)→ 0 as c→ b − .

Thus lim
c→b−

∫ c

a
f (x) dx =

∫ b

a
f (x) dx .

44. �(x) =
∫ ∞

0
t x−1e−t dt .

a) Since limt→∞ t x−1e−t/2 = 0, there exists T > 0
such that t x−1e−t/2 ≤ 1 if t ≥ T . Thus

0 ≤
∫ ∞

T
t x−1e−t dt ≤

∫ ∞

T
e−t dt = 2e−T/2

and
∫ ∞

T
t x−1e−t dt converges by the comparison

theorem.

If x > 0, then

0 ≤
∫ T

0
t x−1e−t dt <

∫ T

0
t x−1 dt

converges by Theorem 2(b). Thus the integral defin-
ing �(x) converges.

b) �(x + 1) =
∫ ∞

0
t x e−t dt

= lim
c→0+
R→∞

∫ R

c
t x e−t dt

U = t x

dU = xt x−1 dx

dV = e−t dt

V = −e−t

= lim
c→0+
R→∞

(

−t xe−t

∣
∣
∣
∣

R

c
+ x

∫ R

c
t x−1e−t dt

)

= 0+ x
∫ ∞

0
t x−1e−t dt = x�(x).

c) �(1) =
∫ ∞

0
e−t dt = 1 = 0!.

By (b), �(2) = 1�(1) = 1× 1 = 1 = 1!.
In general, if �(k + 1) = k! for some positive integer
k, then
�(k + 2) = (k + 1)�(k + 1) = (k + 1)k! = (k + 1)!.
Hence �(n + 1) = n! for all integers n ≥ 0, by
induction.

d) �

(
1

2

)

=
∫ ∞

0
t−1/2e−t dt Let t = x2

dt = 2x dx

=
∫ ∞

0

1

x
e−x2

2x dx = 2
∫ ∞

0
e−x2

dx = √π

�

(
3

2

)

= 1

2
�

(
1

2

)

= 1

2

√
π.
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Section 6.6 The Trapezoid and Midpoint
Rules (page 354)

1. The exact value of I is

I =
∫ 2

0
(1+ x2) dx =

(

x + x3

3

)∣
∣
∣
∣

2

0

= 2+ 8

3
≈ 4.6666667.

The approximations are

T4 = 1

2

[
1

2
+
(

1+ 1

4

)

+ (1+ 1)+
(

1+ 9

4

)

+ 5

2

]

= 4.75

M4 = 1

2

[(

1+ 1

16

)

+
(

1+ 9

16

)

+
(

1+ 25

16

)

+
(

1+ 49

16

)]

= 4.625

T8 = 1

2
(T4 + M4) = 4.6875

M8 = 1

4

[(

1+ 1

64

)

+
(

1+ 9

64

)

+
(

1+ 25

64

)

+
(

1+ 49

64

)

+
(

1+ 81

64

)

+
(

1+ 121

64

)

+
(

1+ 169

64

)

+
(

1+ 225

64

)]

= 4.65625

T16 = 1

2
(T8 + M8) = 4.671875.

The exact errors are

I − T4 = −0.0833333;
I − T8 = −0.0208333;

I − T16 = −0.0052083.

I − M4 = 0.0416667;
I − M8 = 0.0104167;

If f (x) = 1 + x2, then f ′′(x) = 2 = K , and
K (2 − 0)

12
= 1

3
. Therefore, the error bounds are

Trapezoid : |I − T4| ≤ 1

3

(
1

2

)2

≈ 0.0833333;

|I − T8| ≤ 1

3

(
1

4

)2

≈ 0.0208333;

|I − T16| ≤ 1

3

(
1

8

)2

≈ 0.0052083.

Midpoint : |I − M4| ≤ 1

6

(
1

2

)2

≈ 0.0416667;

|I − M8| ≤ 1

6

(
1

4

)2

≈ 0.0104167.

Note that the actual errors are equal to these estimates
since f is a quadratic function.

2. The exact value of I is

I =
∫ 1

0
e−x dx = −e−x

∣
∣
∣
∣

1

0

= 1− 1

e
≈ 0.6321206.

The approximations are

T4 = 1
4 (

1
2 e0 + e−1/4 + e−1/2 + e−3/4 + 1

2 e−1)

≈ 0.6354094

M4 = 1
4 (e
−1/8 + e−3/8 + e−5/8 + e−7/8)

≈ 0.6304774

T8 = 1
2 (T4 + M4) ≈ 0.6329434

M8 = 1
8 (e
−1/16 + e−3/16 + e−5/16 + e−7/16+

e−9/16 + e−11/16 + e−13/16 + e−15/16)

≈ 0.6317092

T16 = 1
2 (T8 + M8) ≈ 0.6323263.

The exact errors are

I − T4 = −0.0032888;
I − T8 = −0.0008228;

I − T16 = −0.0002057.

I − M4 = 0.0016432;
I − M8 = 0.0004114;

If f (x) = e−x , then f (2)(x) = e−x . On [0,1],
| f (2)(x)| ≤ 1. Therefore, the error bounds are:

Trapezoid : |I − Tn | ≤ 1

12

(
1

n

)2

|I − T4| ≤ 1

12

(
1

16

)

≈ 0.0052083;

|I − T8| ≤ 1

12

(
1

64

)

≈ 0.001302;

|I − T16| ≤ 1

12

(
1

256

)

≈ 0.0003255.

Midpoint : |I − Mn | ≤ 1

24

(
1

n

)2

|I − M4| ≤ 1

24

(
1

16

)

≈ 0.0026041;

|I − M8| ≤ 1

24

(
1

64

)

≈ 0.000651.

Note that the actual errors satisfy these bounds.

3. The exact value of I is

I =
∫ π/2

0
sin x dx = 1.

239



SECTION 6.6 (PAGE 354) R. A. ADAMS: CALCULUS

The approximations are

T4 = π

8

(

0+ sin
π

8
+ sin

π

4
+ sin

3π

8
+ 1

2

)

≈ 0.9871158

M4 = π

8

(

sin
π

16
+ sin

3π

16
+ sin

5π

16
+ sin

7π

16

)

≈ 1.0064545

T8 = 1

2
(T4 + M4) ≈ 0.9967852

M8 = π

16

(

sin
π

32
+ sin

3π

32
+ sin

5π

32

+ sin
7π

32
+ sin

9π

32
+ sin

11π

32

+ sin
13π

32
+ sin

15π

32

)

≈ 1.0016082

T16 = 1

2
(T8 + M8) ≈ 0.9991967.

The actual errors are

I − T4 ≈ 0.0128842;
I − T8 ≈ 0.0032148;

I − T16 ≈ 0.0008033.

I − M4 ≈ −0.0064545;
I − M8 ≈ −0.0016082;

If f (x) = sin x , then f ′′(x) = − sin x , and
| f ′′(x)| ≤ 1 = K . Therefore, the error bounds are:

Trapezoid : |I − T4| ≤ 1

12

(π

2
− 0

) (π

8

)2 ≈ 0.020186;

|I − T8| ≤ 1

12

(π

2
− 0

) ( π

16

)2 ≈ 0.005047;

|I − T16| ≤ 1

12

(π

2
− 0

) ( π

32

)2 ≈ 0.001262.

Midpoint : |I − M4| ≤ 1

24

(π

2
− 0

) (π

8

)2 ≈ 0.010093;

|I − M8| ≤ 1

24

(π

2
− 0

) ( π

16

)2 ≈ 0.002523.

Note that the actual errors satisfy these bounds.

4. The exact value of I is

I =
∫ 1

0

dx

1+ x2
= tan−1 x

∣
∣
∣
∣

1

0
= π

4
≈ 0.7853982.

The approximations are

T4 = 1

4

[
1

2
(1)+ 16

17
+ 4

5
+ 16

25
+ 1

2

(
1

2

)]

≈ 0.7827941

M4 = 1

4

[
64

65
+ 64

73
+ 64

89
+ 64

113

]

≈ 0.7867001

T8 = 1

2
(T4 + M4) ≈ 0.7847471

M8 = 1

8

[
256

257
+ 256

265
+ 256

281
+ 256

305
+

256

337
+ 256

377
+ 256

425
+ 256

481

]

≈ 0.7857237

T16 = 1

2
(T8 + M8) ≈ 0.7852354.

The exact errors are

I − T4 = 0.0026041;
I − T8 = 0.0006511;

I − T16 = 0.0001628.

I − M4 = −0.0013019;
I − M8 = −0.0003255;

Since f (x) = 1

1+ x2 , then f ′(x) = −2x

(1 + x2)2
and

f ′′(x) = 6x2 − 2

(1 + x2)3
. On [0,1], | f ′′(x)| ≤ 4. Therefore,

the error bounds are

Trapezoid : |I − Tn | ≤ 4

12

(
1

n

)2

|I − T4| ≤ 4

12

(
1

16

)

≈ 0.0208333;

|I − T8| ≤ 4

12

(
1

64

)

≈ 0.0052083;

|I − T16| ≤ 4

12

(
1

256

)

≈ 0.001302.

Midpoint : |I − Mn | ≤ 4

24

(
1

n

)2

|I − M4| ≤ 4

24

(
1

16

)

≈ 0.0104167;

|I − M8| ≤ 4

24

(
1

64

)

≈ 0.0026042.

The exact errors are much smaller than these bounds.
In part, this is due to very crude estimates made for
| f ′′(x)|.

5. T4 = 2

2
[3 + 2(5 + 8+ 7)+ 3] = 46

T8 = 1

2
[3 + 2(3.8 + 5+ 6.7+ 8+ 8+ 7+ 5.2)+ 3] = 46.7
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6. M4 = 2(3.8 + 6.7+ 8+ 5.2) = 47.4

7. T4 = 100 × 2

2
[0+ 2(5.5 + 5 + 4.5)+ 0] = 3, 000 km2

T8 = 100 × 1

2
[0+ 2(4 + 5.5 + 5.5 + 5+ 5.5+ 4.5+ 4)+ 0]

= 3, 400 km2

8. M4 = 100 × 2(4 + 5.5+ 5.5+ 4) = 3, 800 km2

9. We have

T4 = 0.4
(

1
2 (1.4142) + 1.3860 + 1.3026 + 1.1772

+ 1
2 (0.9853)

)

≈ 2.02622

M4 = (0.4)(1.4071 + 1.3510 + 1.2411 + 1.0817) ≈ 2.03236

T8 = (T4 + M4)/2 ≈ 2.02929

M8 = (0.2)(1.4124 + 1.3983 + 1.3702 + 1.3285

+ 1.2734+ 1.2057 + 1.1258 + 1.0348) ≈ 2.02982

T16 = (T8 + M8)/2 ≈ 2.029555.

10. The approximations for I =
∫ 1

0
e−x2

dx are

M8 = 1

8

(

e−1/256 + e−9/256 + e−25/256 + e−49/256+

e−81/256 + e−121/256 + e−169/256 + e−225/256
)

≈ 0.7473

T16 = 1

16

[
1

2
(1)+ e−1/256 + e−1/64 + e−9/256 + e−1/16+

e−25/256 + e−9/64 + e−49/256 + e−1/4 + e−81/256+
e−25/64 + e−121/256 + e−9/16 + e−169/256 + e−49/64+
e−225/256 + 1

2
e−1

]

≈ 0.74658.

Since f (x) = e−x2
, we have f ′(x) = −2xe−x2

,
f ′′(x) = 2(2x2 − 1)e−x2

, and f ′′′(x) = 4x(3 − 2x2)e−x2
.

Since f ′′′(x) �= 0 on (0,1), therefore the maximum value
of | f ′′(x)| on [0, 1] must occur at an endpoint of that
interval. We have f ′′(0) = −2 and f ′′(1) = 2/e, so
| f ′′(x)| ≤ 2 on [0, 1]. The error bounds are

|I − Mn | ≤ 2

24

(
1

n

)2

⇒ |I − M8| ≤ 2

24

(
1

64

)

≈ 0.00130.

|I − Tn | ≤ 2

12

(
1

n

)2

⇒ |I − T16| ≤ 2

12

(
1

256

)

≈ 0.000651.

According to the error bounds,

∫ 1

0
e−x2

dx = 0.747,

accurate to two decimal places, with error no greater than
1 in the third decimal place.

11. I =
∫ π/2

0

sin x

x
dx . Note that lim

x→0

sin x

x
= 1.

T8 = π

16

[
1

2
+ 16

π
sin

π

16
+ 8

π
sin

π

8
+ 16

3π
sin

3π

16
+ 4

π
sin

π

4

+ 16

5π
sin

5π

16
+ 8

3π
sin

3π

8
+ 16

7π
sin

7π

16
+ 1

2

(
2

π

)]

≈ 1.3694596

M8 = π

16

[
32

π
sin

π

32
+ 32

3π
sin

3π

32
+ 32

5π
sin

5π

32
+ 32

7π
sin

7π

32

+ 32

9π
sin

9π

32
+ 32

11π
sin

11π

32
+ 32

13π
sin

13π

32

+ 32

15π
sin

15π

32

]

≈ 1.3714136

T16 = (T8 + M8)/2 ≈ 1.3704366, I ≈ 1.370.

12. The exact value of I is

I =
∫ 1

0
x2 dx = x3

3

∣
∣
∣
∣

1

0
= 1

3
.

The approximation is

T1 = (1)
[

1

2
(0)2 + 1

2
(1)2

]

= 1

2
.

The actual error is I − T1 = − 1
6 . However, since

f (x) = x2, then f ′′(x) = 2 on [0,1], so the error estimate
here gives

|I − T1| ≤ 2

12
(1)2 = 1

6
.

Since this is the actual size of the error in this case, the
constant “12” in the error estimate cannot be improved
(i.e., cannot be made larger).

13. I =
∫ 1

0
x2 dx = 1

3
. M1 =

(
1

2

)2

(1) = 1

4
. The actual

error is I − M1 = 1

3
− 1

4
= 1

12
.

Since the second derivative of x2 is 2, the error estimate
is

|I − M1| ≤ 2

24
(1 − 0)2(12) = 1

12
.

Thus the constant in the error estimate for the Midpoint
Rule cannot be improved; no smaller constant will work
for f (x) = x2.
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14. Let y = f (x). We are given that m1 is the midpoint of
[x0, x1] where x1 − x0 = h. By tangent line approximate
in the subinterval [x0, x1],

f (x) ≈ f (m1)+ f ′(m1)(x −m1).

The error in this approximation is

E(x) = f (x)− f (m1)− f ′(m1)(x −m1).

If f ′′(t) exists for all t in [x0, x1] and | f ′′(t)| ≤ K for
some constant K , then by Theorem 4 of Section 3.5,

|E(x)| ≤ K

2
(x −m1)

2.

Hence,

| f (x)− f (m1)− f ′(m1)(x −m1)| ≤ K

2
(x −m1)

2.

We integrate both sides of this inequlity. Noting that
x1 − m1 = m1 − x0 = 1

2 h, we obtain for the left side
∣
∣
∣
∣

∫ x1

x0

f (x) dx −
∫ x1

x0

f (m1) dx

−
∫ x1

x0

f ′(m1)(x −m1) dx

∣
∣
∣
∣

=
∣
∣
∣
∣
∣

∫ x1

x0

f (x) dx − f (m1)h − f ′(m1)
(x −m1)

2

2

∣
∣
∣
∣

x1

x0

∣
∣
∣
∣
∣

=
∣
∣
∣
∣

∫ x1

x0

f (x) dx − f (m1)h

∣
∣
∣
∣
.

Integrating the right-hand side, we get
∫ x1

x0

K

2
(x −m1)

2 dx = K

2

(x − m1)
3

3

∣
∣
∣
∣

x1

x0

= K

6

(
h3

8
+ h3

8

)

= K

24
h3.

Hence,
∣
∣
∣
∣

∫ x1

x0

f (x) dx − f (m1)h

∣
∣
∣
∣

=
∣
∣
∣
∣

∫ x1

x0

[ f (x)− f (m1)− f ′(m1)(x −m1)] dx

∣
∣
∣
∣

≤ K

24
h3.

A similar estimate holds on each subinterval [xj−1, xj ]
for 1 ≤ j ≤ n. Therefore,
∣
∣
∣
∣

∫ b

a
f (x) dx − Mn

∣
∣
∣
∣
=
∣
∣
∣
∣

n
∑

j=1

(∫ xj

xj−1

f (x) dx − f (mj )h

)∣
∣
∣
∣

≤
n
∑

j=1

∣
∣
∣
∣

∫ xj

xj−1

f (x) dx − f (mj )h

∣
∣
∣
∣

≤
n
∑

j=1

K

24
h3 = K

24
nh3 = K (b − a)

24
h2

because nh = b − a.

Section 6.7 Simpson’s Rule (page 359)

1. I =
∫ 2

0
(1 + x2) dx = 14

3
≈ 4.6666667

S4 = 1

6

[

1+ 4

(

1+ 1

4

)

+ 2(1 + 1)+ 4

(

1+ 9

4

)

+ (1 + 4)

]

= 14

3

S8 = 1

12

[

1+ 4

(

1+ 1

16

)

+ 2

(

1+ 1

4

)

+ 4

(

1+ 9

16

)

+ 2 (1+ 1)+ 4

(

1+ 25

16

)

+ 2

(

1+ 9

4

)

+ 4

(

1+ 49

16

)

+ (1 + 4)

]

= 14

3

The errors are zero because Simpson approximations are
exact for polynomials of degree up to three.

2. The exact value of I is

I =
∫ 1

0
e−x dx = −e−x

∣
∣
∣
∣

1

0

= 1− 1

e
≈ 0.6321206.

The approximations are

S4 = 1

12
(e0 + 4e−1/4 + 2e−1/2 + 4e−3/4 + e−1)

≈ 0.6321342

S8 = 1

24
(e0 + 4e−1/8 + 2e−1/4 + 4e−3/8+

2e−1/2 + 4e−5/8 + 2e−3/4 + 4e−7/8 + e−1)

≈ 0.6321214.

The actual errors are

I − S4 = −0.0000136; I − S8 = −0.0000008.

These errors are evidently much smaller than the cor-
responding errors for the corresponding Trapezoid Rule
approximations.
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3. I =
∫ π/2

0
sin x dx = 1.

S4 = π

24

(

0+ 4 sin
π

8
+ 2 sin

π

4
+ 4 sin

3π

8
+ sin

π

2

)

≈ 1.0001346

S8 = π

48

(

0+ 4 sin
π

16
+ 2 sin

π

8
+ 4 sin

3π

16
+ 2 sin

π

4

+ 4 sin
5π

16
+ 2 sin

3π

8
+ 4 sin

7π

16
+ sin

π

2

)

≈ 1.0000083.

Errors: I − S4 ≈ −0.0001346; I − S8 ≈ −0.0000083.

4. The exact value of I is

I =
∫ 1

0

dx

1+ x2 = tan−1 x

∣
∣
∣
∣

1

0
= π

4
≈ 0.7853982.

The approximations are

S4 = 1

12

[

1+ 4

(
16

17

)

+ 2

(
4

5

)

+ 4

(
16

25

)

+ 1

2

]

≈ 0.7853922

S8 = 1

24

[

1+ 4

(
64

65

)

+ 2

(
16

17

)

+ 4

(
64

73

)

+

2

(
4

5

)

+ 4

(
64

89

)

+ 2

(
16

25

)

+ 4

(
64

113

)

+ 1

2

]

≈ 0.7853981.

The actual errors are

I − S4 = 0.0000060; I − S8 = 0.0000001,

accurate to 7 decimal places. These errors are evidently
much smaller than the corresponding errors for the corre-
sponding Trapezoid Rule approximation.

5. S8 = 1

3
[3 + 4(3.8 + 6.7+ 8+ 5.2)+ 2(5 + 8+ 7)+ 3]

≈ 46.93

6. S8 = 100× 1

3
[0 + 4(4+ 5.5+ 5.5+ 4)+ 2(5.5 + 5+ 4.5)+ 0]

≈ 3, 533 km2

7. If f (x) = e−x , then f (4)(x) = e−x , and | f (4)(x)| ≤ 1 on
[0, 1]. Thus

|I − S4| ≤ 1(1 − 0)

180

(
1

4

)4

≈ 0.000022

|I − S8| ≤ 1(1 − 0)

180

(
1

8

)4

≈ 0.0000014.

If f (x) = sin x , then f (4)(x) = sin x , and | f (4)(x)| ≤ 1
on [0, π/2]. Thus

|I − S4| ≤ 1((π/2) − 0)

180

(π

8

)4 ≈ 0.00021

|I − S8| ≤ 1((π/2) − 0)

180

( π

16

)4 ≈ 0.000013.

8. Let I =
∫ b

a
f (x) dx , and the interval [a, b] be subdi-

vided into 2n subintervals of equal length h = (b−a)/2n.
Let yj = f (xj ) and xj = a + jh for 0 ≤ j ≤ 2n, then

S2n = 1

3

(
b − a

2n

)[

y0 + 4y1 + 2y2 + · · ·

+ 2y2n−2 + 4y2n−1 + y2n

]

= 1

3

(
b − a

2n

)[

y0 + 4
2n−1
∑

j=1

yj − 2
n−1
∑

j=1

y2 j + y2n

]

and

T2n = 1

2

(
b − a

2n

)(

y0 + 2
2n−1
∑

j=1

yj + y2n

)

Tn = 1

2

(
b − a

n

)(

y0 + 2
n−1∑

j=1

y2 j + y2n

)

.

Since T2n = 1
2 (Tn + Mn)⇒ Mn = 2T2n − Tn , then

Tn + 2Mn

3
= Tn + 2(2T2n − Tn)

3
= 4T2n − Tn

3
2T2n + Mn

3
= 2T2n + 2T2n − Tn

3
= 4T2n − Tn

3
.

Hence,

Tn + 2Mn

3
= 2T2n + Mn

3
= 4T2n − Tn

3
.

Using the formulas of T2n and Tn obtained above,

4T2n − Tn

3

= 1

3

[
4

2

(
b − a

2n

)(

y0 + 2
2n−1∑

j=1

yj + y2n

)

− 1

2

(
b − a

n

)(

y0 + 2
n−1
∑

j=1

y2 j + y2n

)]

= 1

3

(
b − a

2n

)[

y0 + 4
2n−1
∑

j=1

yj − 2
n−1
∑

j=1

y2 j + y2n

]

= S2n.
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Hence,

S2n = 4T2n − Tn

3
= Tn + 2Mn

3
= 2T2n + Mn

3
.

9. We use the results of Exercise 9 of Section 7.6 and Exer-
cise 8 of this section.

I =
∫ 1.6

0
f (x) dx

S4 = 0.4

3
(1.4142 + 4(1.3860) + 2(1.3026) + 4(1.1772)

+ 0.9853) ≈ 2.0343333

S8 = (T4 + 2M4)/3 ≈ 2.0303133

S16 = (T8 + 2M8)/3 ≈ 2.0296433.

10. The approximations for I =
∫ 1

0
e−x2

dx are

S8 = 1

3

(
1

8

)[

1 + 4

(

e−1/64 + e−9/64 + e−25/64+

e−49/64
)

+ 2

(

e−1/16 + e−1/4 + e−9/16
)

+ e−1
]

≈ 0.7468261

S16 = 1

3

(
1

16

)[

1+ 4

(

e−1/256 + e−9/256 + e−25/256+
e−49/256 + e−81/256 + e−121/256 + e−169/256+
e−225/256

)

+ 2

(

e−1/64 + e−1/16 + e−9/64 + e−1/4+

e−25/64 + e−9/16 + e−49/64
)

+ e−1
]

≈ 0.7468243.

If f (x) = e−x2
, then f (4)(x) = 4e−x2

(4x4 − 12x2 + 3).
On [0,1], | f (4)(x)| ≤ 12, and the error bounds are

|I − Sn| ≤ 12(1)

180

(
1

n

)4

|I − S8| ≤ 12

180

(
1

8

)4

≈ 0.0000163

|I − S16| ≤ 12

180

(
1

16

)4

≈ 0.0000010.

Comparing the two approximations,

I =
∫ 1

0
e−x2

dx = 0.7468,

accurate to 4 decimal places.

11. I =
∫ 1

0
x4 dx = 1

5
. S2 = 1

6

[

04 + 4

(
1

2

)4

+ 14

]

= 5

24
.

If f (x) = x4, then f (4)(x) = 24.

Error estimate: |I − S2| ≤ 24(1 − 0)

180

(
1

2

)4

= 1

120
.

Actual error: |I − S2| =
∣
∣
∣
∣

1

5
− 5

24

∣
∣
∣
∣
= 1

120
.

Thus the error estimate cannot be improved.

12. The exact value of I is

I =
∫ 1

0
x3 dx = x4

4

∣
∣
∣
∣

1

0
= 1

4
.

The approximation is

S2 = 1

3

(
1

2

)[

03 + 4

(
1

2

)3

+ 13
]

= 1

4
.

The actual error is zero. Hence, Simpson’s Rule is exact
for the cubic function f (x) = x3. Since it is evidently
exact for quadratic functions f (x) = Bx2 + Cx + D, it
must also be exact for arbitrary cubics
f (x) = Ax3 + Bx2 + Cx + D.

Section 6.8 Other Aspects of Approximate
Integration (page 364)

1.
∫ 1

0

dx

x1/3(1 + x)
Let x = u3

= 3
∫ 1

0

u2 du

u(1 + u3)
= 3

∫ 1

0

u du

1+ u3
.

2.
∫ 1

0

ex

√
1− x

dx Let t2 = 1− x

2t dt = −dx

= −
∫ 0

1

e1−t2

t
2t dt = 2

∫ 1

0
e1−t2

dt.

3. One possibility: let x = sin θ and get

I =
∫ 1

−1

ex dx√
1− x2

=
∫ π/2

−π/2
esin θ dθ.

Another possibility:

I =
∫ 0

−1

ex dx√
1 − x2

+
∫ 1

0

ex dx√
1 − x2

= I1 + I2.

In I1 put 1+ x = u2; in I2 put 1− x = u2:

I1 =
∫ 1

0

2eu2−1u du

u
√

2 − u2
= 2

∫ 1

0

eu2−1 du√
2− u2

I2 =
∫ 1

0

2e1−u2
u du

u
√

2 − u2
= 2

∫ 1

0

e1−u2
du√

2− u2
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so I = 2
∫ 1

0

eu2−1 + e1−u2

√
2− u2

du.

4.
∫ ∞

1

dx

x2 +√x + 1
Let x = 1

t2

dx = −2 dt

t3

=
∫ 0

1

1
(

1

t2

)2

+
√

1

t2 + 1

(

−2 dt

t3

)

= 2
∫ 1

0

t dt

t4 + t3 + 1
.

5.
∫ π/2

0

dx√
sin x

Let sin x = u2

2u du = cos x dx = √1 − u4 dx

= 2
∫ 1

0

u du

u
√

1− u4

= 2
∫ 1

0

du
√

(1 − u)(1 + u)(1 + y2
Let 1 − u = v2

−du = 2v dv

= 4
∫ 1

0

v dv

v
√

(1 + 1− v2)(1 + (1− v2)2)

= 4
∫ 1

0

dv
√

(2 − v2)(2 − 2v2 + v4)
.

6. Let

∫ ∞

0

dx

x4 + 1
=
∫ 1

0

dx

x4 + 1
+
∫ ∞

1

dx

x4 + 1
= I1 + I2.

Let x = 1

t
and dx = −dt

t2 in I2, then

I2 =
∫ 0

1

1
(

1

t

)4

+ 1

(

−dt

t2

)

=
∫ 1

0

t2

1+ t4 dt.

Hence,

∫ ∞

0

dx

x4 + 1
=
∫ 1

0

(
1

x4 + 1
+ x2

1 + x4

)

dx

=
∫ 1

0

x2 + 1

x4 + 1
dx .

7. I =
∫ 1

0

√
x dx = 2

3
≈ 0.666667.

T2 = 1

2

(

0+
√

1

2
+ 1

2

)

≈ 0.603553

T4 = 1

4

(

2T2 +
√

1

4
+
√

3

4

)

≈ 0.643283

T8 = 1

8

(

4T4 +
√

1

8
+
√

3

8
+
√

5

8
+
√

7

8

)

≈ 0.658130

T16 = 1

16

(

8T8 +
√

1

16
+
√

3

16
+
√

5

16
+
√

7

16

+
√

9

16
+
√

11

16
+
√

13

16
+
√

15

16

)

≈ 0.663581.

The errors are

I − T2 ≈ 0.0631

I − T4 ≈ 0.0234

I − T8 ≈ 0.0085

I − T16 ≈ 0.0031.

Observe that, although these errors are decreasing, they
are not decreasing like 1/n2; that is,

|I − T2n | >> 1

4
|I − Tn |.

This is because the second derivative of f (x) = √x is
f ′′(x) = −1/(4x3/2), which is not bounded on [0, 1].

8. Let

I =
∫ ∞

1
e−x2

dx Let x = 1

t

dx = −dt

t2

=
∫ 0

1
e−(1/t)2

(

− 1

t2

)

dt =
∫ 1

0

e−1/t2

t2
dt.

Observe that

lim
t→0+

e−1/t2

t2
= lim

t→0+
t−2

e1/t2

[∞
∞
]

= lim
t→0+

−2t−3

e1/t2
(−2t−3)

= lim
t→0+

1

e1/t2 = 0.
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Hence,

S2 = 1

3

(
1

2

)[

0+ 4(4e−4)+ e−1
]

≈ 0.1101549

S4 = 1

3

(
1

4

)[

0+ 4(16e−16)+ 2(4e−4)

+ 4

(
16

9
e−16/9

)

+ e−1
]

≈ 0.1430237

S8 = 1

3

(
1

8

)[

0+ 4

(

64e−64 + 64

9
e−64/9 + 64

25
e−64/25+

64

49
e−64/49

)

+ 2

(

16e−16 + 4e−4 + 16

9
e−16/9

)

+ e−1
]

≈ 0.1393877.

Hence, I ≈ 0.14, accurate to 2 decimal places. These
approximations do not converge very quickly, because the
fourth derivative of e−1/t2

has very large values for some
values of t near 0. In fact, higher and higher derivatives
behave more and more badly near 0, so higher order
methods cannot be expected to work well either.

9. Referring to Example 5, we have

ex = 1+ x + x2

2!
+ · · · + xn

n!
+ Rn( f ; 0, x),

where Rn( f ; 0, x) = eX xn+1

(n + 1)!
, for some X between 0

and x . Now

|Rn( f ; 0,−x2)| ≤ x2n+2

(n + 1)!

if 0 ≤ x ≤ 1 for any x , since −x2 ≤ X ≤ 0. Therefore

∣
∣
∣
∣

∫ 1

0
Rn( f ; 0,−x2) dx

∣
∣
∣
∣
≤ 1

(n + 1)!

∫ 1

0
x2n+2 dx

= 1

(2n + 3)(n + 1)!
.

This error
will be less than 10−4 if (2n + 3)(n + 1)! > 10, 000.
Since 15 × 7! > 10, 000, n = 6 will do. Thus we use
seven terms of the series (0 ≤ n ≤ 6):

∫ 1

0
e−x2

dx

≈
∫ 1

0

(

1− x2 + x4

2!
− x6

3!
+ x8

4!
− x10

5!
+ x12

6!

)

dx

= 1− 1

3
+ 1

5× 2!
− 1

7× 3!
+ 1

9× 4!
− 1

11 × 5!
+ 1

13× 6!
≈ 0.74684 with error less than 10−4.

10. We are given that
∫ ∞

0
e−x2

dx = 1
2

√
π and from the

previous exercise
∫ 1

0
e−x2

dx = 0.74684. Therefore,

∫ ∞

1
e−x2

dx =
∫ ∞

0
e−x2

dx −
∫ 1

0
e−x2

dx

= 1

2

√
π − 0.74684

= 0.139 (to 3 decimal places).

11. If f (x) = ax3 + bx2 + cx + d , then, by symmetry,

∫ 1

−1
f (x) dx = 2

∫ 1

0
(bx2 + d) dx = 2

(
b

3
+ d

)

Af (−u)+ Af (u) = 2A(bu2 + d).

These two expressions are identical provided A = 1 and
u2 = 1/3, so u = 1/

√
3.

12. For any function f we use the approximation

∫ 1

−1
f (x) dx ≈ f (−1/

√
3)+ f (1/

√
3).

We have

∫ 1

−1
x4 dx ≈

(

− 1√
3

)4

+
(

1√
3

)4

= 2

9

Error =
∫ 1

−1
x4 dx − 2

9
= 2

5
− 2

9
≈ 0.17778

∫ 1

−1
cos x dx ≈ cos

(

− 1√
3

)

+ cos

(
1√
3

)

≈ 1.67582

Error =
∫ 1

−1
cos x dx − 1.67582 ≈ 0.00712

∫ 1

−1
ex dx ≈ e−1/

√
3 + e1/

√
3 ≈ 2.34270

Error =
∫ 1

−1
ex dx − 2.34270 ≈ 0.00771.

13. If F(x) = ax5 + bx4 + cx3 + dx2 + ex + f , then, by
symmetry,

∫ 1

−1
F(x) dx = 2

∫ 1

0
(bx4 + dx2 + f ) dx = 2

(
b

5
+ d

3
+ f

)

AF(−u)+ BF(0)+ AF(u) = 2A(bu4 + du2 + f )+ B f .

These two expressions are identical provided

Au4 = 1

5
, Au2 = 1

3
, A + B

2
= 1.
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Dividing the first two equations gives u2 = 3/5, so
u = √3/5. Then 3A/5 = 1/3, so A = 5/9, and finally,
B = 8/9.

14. For any function f we use the approximation

∫ 1

−1
f (x) dx ≈ 5

9

[

f (−√3/5)+ f (
√

3/5)
]

+ 8

9
f (0).

We have

∫ 1

−1
x6 dx ≈ 5

9

⎡

⎣

(

−
√

3

5

)6

+
(√

3

5

)6
⎤

⎦+ 0 = 0.24000

Error =
∫ 1

−1
x6 dx − 0.24000 ≈ 0.04571

∫ 1

−1
cos x dx ≈ 5

9

[

cos

(

−
√

3

5

)

+ cos

(√

3

5

)]

+ 8

9

≈ 1.68300

Error =
∫ 1

−1
cos x dx − 1.68300 ≈ 0.00006

∫ 1

−1
ex dx ≈ e−

√
3/5 + e

√
3/5 ≈ 2.35034

Error =
∫ 1

−1
ex dx − 2.35034 ≈ 0.00006.

15. I =
∫ 1

0
e−x2

dx

T 0
0 = T1 = R0 = (1)

(
1

2
e0 + 1

2
e−1

)

≈ 0.6839397

T 0
1 = T2 = 1

2

(
1

2
e0 + e−1/4 + 1

2
e−1

)

≈ 0.7313703

T 0
2 = T4 = 1

4

(

2T2 + e−1/16 + e−9/16
)

≈ 0.7429841

T 0
3 = T8 = 1

8

(

4T4 + e−1/64 + e−9/64 + e−25/64 + e−49/64
)

≈ 0.7458656

T 1
1 = S2 = R1 = 4T 0

1 − T 0
0

3
≈ 0.7471805

T 1
2 = S4 = 4T 0

2 − T 0
1

3
≈ 0.7468554

T 1
3 = S8 = 4T 0

3 − T 0
2

3
≈ 0.7468261

T 2
2 = R2 = 16T 1

2 − T 1
1

15
≈ 0.7468337

T 2
3 =

16T 1
3 − T 1

2

15
≈ 0.7468242

T 3
3 = R3 = 64T 2

3 − T 2
2

63
≈ 0.7468241

I ≈ 0.746824 to 6 decimal places.

16. From Exercise 9 in Section 7.6, for I =
∫ 1.6

0
f (x) dx ,

T 0
0 = T1 = 1.9196

T 0
1 = T2 = 2.00188

T 0
2 = T4 = 2.02622

T 0
3 = T8 = 2.02929.

Hence,

R1 = T 1
1 =

4T 0
1 − T 0

0

3
= 2.0346684

T 1
2 =

4T 0
2 − T 0

1

3
= 2.0343333 = S4

R2 = T 2
2 =

16T 1
2 − T 1

1

15
= 2.0346684

T 1
3 =

4T 0
3 − T 0

2

3
= 2.0303133 = S8

T 2
3 =

16T 1
3 − T 1

2

15
= 2.0300453

R3 = T 3
3 =

64T 2
3 − T 2

2

63
= 2.0299719.

17. T 1
1 = S2 = 2h

3

(

y0 + 4y2 + y4

)

T 1
2 = S4 = h

3

(

y0 + 4y1 + 2y2 + 4y3 + y4

)

R2 = T 2
2 =

16T 1
2 − T 1

1

15

=
16h
3 (y0 + 4y1 + 2y2 + 4y3 + y4)− 2h

3 (y0 + 4y2 + y4)

15

= h

45

(

14y0 + 64y1 + 24y2 + 64y3 + 14y4

)

= 2h

45

(

7y0 + 32y1 + 12y2 + 32y3 + 7y4

)

18. Let

I =
∫ ∞

π

sin x

1+ x2 dx Let x = 1

t

dx = −dt

t2

=
∫ 0

1/π

sin

(
1

t

)

1+
(

1

t2

)

(

− 1

t2

)

dt

=
∫ 1/π

0

sin

(
1

t

)

1+ t2
dt.
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The transformation is not suitable because the derivative

of sin

(
1

t

)

is − 1

t2 cos

(
1

t

)

, which has very large values

at some points close to 0.
In order to approximate the integral I to an desired de-
gree of accuracy, say with error less than ε in absolute
value, we have to divide the integral into two parts:

I =
∫ ∞

π

sin x

1+ x2 dx

=
∫ t

π

sin x

1+ x2
dx +

∫ ∞

t

sin x

1+ x2
dx

= I1 + I2.

If t ≥ tan
π − ε

2
, then

∫ ∞

t

sin x

1+ x2 dx <
∫ ∞

t

dx

1+ x2

= tan−1 (x)

∣
∣
∣
∣

∞

t
= π

2
− tan−1 (t) ≤ ε

2
.

Now let A be a numerical approximation to the proper

integral
∫ t

π

sin x

1 + x2 dx , having error less than ε/2 in ab-

solute value. Then

|I − A| = |I1 + I2 − A|
≤ |I1 − A| + |I2|
≤ ε

2
+ ε

2
= ε.

Hence, A is an approximation to the integral I with the
desired accuracy.

19. f (x) = sin x

x
, f ′(x) = x cos c − sin x

x2 ,

f ′′(x) = x2(cos x − x sin x − cos x)− (x cos x − sin x)2x

x4

= −x2 sin x − 2x cos x + 2 sin x

x3
.

Now use l’Hôpital’s Rule to get

lim
x→0

f ′′(x)

= lim
x→0

−2x sin x − x2 cos x − 2 cos x + 2x sin x + 2 cos x

3x2

= lim
x→0
− cos x

3
= −1

3
.

Review Exercises on Techniques of
Integration (page 365)

1.
x

2x2 + 5x + 2
= A

2x + 1
+ B

x + 2

= Ax + 2A + 2Bx + B

2x2 + 5x + 2

⇒
{ A + 2B = 1

2A + B = 0

Thus A = −1/3 and B = 2/3. We have

∫
x dx

2x2 + 5x + 2
= −1

3

∫
dx

2x + 1
+ 2

3

∫
dx

x + 2

= 2

3
ln |x + 2| − 1

6
ln |2x + 1| + C.

2.
∫

x

(x − 1)3
dx Let u = x − 1

du = dx

=
∫

u + 1

u3
du =

∫ (
1

u2
+ 1

u3

)

du

= − 1

u
− 1

2u2 + C = − 1

x − 1
− 1

2(x − 1)2
+ C.

3.
∫

sin3 x cos3 x dx

=
∫

sin3 x(1− sin2 x) cos x dx Let u = sin x

du = cos x dx

=
∫

(u3 − u5) du = u4

4
− u6

6
+ C

= 1

4
sin4 x − 1

6
sin6 x + C.

4.
∫
(1 +√x)1/3√

x
dx Let u = 1+√x

du = dx

2
√

x

= 2
∫

u1/3 du = 2( 3
4 )u

4/3 + C

= 3
2 (1+

√
x)4/3 + C.

5.
3

4x2 − 1
= A

2x − 1
+ B

2x + 1

= 2Ax + A+ 2Bx − B

4x2 − 1

⇒
{ 2A + 2B = 0

A− B = 3
⇒ A = −B = 3

2
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∫
3 dx

4x2 − 1
= 3

2

(∫
dx

2x − 1
−
∫

dx

2x + 1

)

= 3

4
ln

∣
∣
∣
∣

2x − 1

2x + 1

∣
∣
∣
∣
+ C.

6.
∫

(x2 + x − 2) sin 3x dx

U = x2 + x − 2

dU = (2x + 1) dx

dV = sin 3x

V = − 1
3 cos 3x

= − 1
3 (x

2 + x − 2) cos 3x + 1
3

∫

(2x + 1) cos 3x dx

U = 2x + 1

dU = 2 dx

dV = cos 3x dx

V = 1
3 sin 3x

= − 1
3 (x

2 + x − 2) cos 3x + 1
9 (2x + 1) sin 3x

− 2
9

∫

sin 3x dx

= − 1
3 (x

2 + x − 2) cos 3x + 1
9 (2x + 1) sin 3x

+ 2

27
cos 3x + C.

7.
∫ √

1− x2

x4 dx Let x = sin θ

dx = cos θ dθ

=
∫

cos2 θ

sin4 θ
dθ

=
∫

csc2 θ cot2 θ dθ Let v = cot θ

dv = − csc2 θ dθ

= −
∫

v2 dv = −v
3

3
+ C

= − cot3 θ

3
+ C = −1

3

(√
1− x2

x

)3

+ C.

θ

1
x

√
1−x2

Fig. RT.7

8.
∫

x3 cos(x2) dx Let w = x2

dw = 2x dx

= 1
2

∫

w cosw dw

U = w
dU = dw

dV = cosw dw

V = sinw

= 1
2w sinw − 1

2

∫

sinw dw

= 1
2 x2 sin(x2)+ 1

2 cos(x2)+ C.

9.
∫

x2 dx

(5x3 − 2)2/3
Let u = 5x3 − 2

du = 15x2 dx

= 1

15

∫

u−2/3 du = 1

5
u1/3 + C

= 1

5
(5x3 − 2)1/3 + C.

10.
1

x2 + 2x − 15
= A

x − 3
+ B

x + 5
= (A + B)x + (5A − 3B)

x2 + 2x − 15

⇒
{ A + B = 0

5A − 3B = 1
⇒ A = 1

8
, B = −1

8
.

∫
dx

x2 + 2x − 15
= 1

8

∫
dx

x − 3
− 1

8

∫
dx

x + 5

= 1

8
ln

∣
∣
∣
∣

x − 3

x + 5

∣
∣
∣
∣
+ C.

11.
∫

dx

(4 + x2)2
Let x = 2 tan θ

dx = 2 sec2 θ dθ

=
∫

2 sec2 θ dθ

16 sec4 θ
= 1

8

∫

cos2 θ dθ

= 1

16
(θ + sin θ cos θ)+ C

= 1

16
tan−1 x

2
+ 1

8

(
x

4+ x2

)

+ C.

θ

√
4+x2

x

2

Fig. RT.11

12.
∫

(sin x + cos x)2 dx =
∫

(1 + sin 2x) dx

= x − 1
2 cos 2x + C.
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13.
∫

2x
√

1+ 4x dx Let 2x = tan θ

2x ln 2 dx = sec2 θ dθ

= 1

ln 2

∫

sec3 θ dθ

= 1

2 ln 2

(

sec θ tan θ + ln | sec θ + tan θ |
)

+ C

= 1

2 ln 2

(

2x
√

1+ 4x + ln(2x +√1+ 4x )
)

+ C.

θ

√
1+4x

2x

1

Fig. RT.13

14.
∫

cos x

1 + sin2 x
dx Let u = sin x

du = cos x dx

=
∫

du

1+ u2
= tan−1 u + C

= tan−1(sin x)+ C.

15.
∫

sin3 x

cos7 x
dx =

∫

tan3 x sec4 x dx

=
∫

tan3 x(1+ tan2 x) sec2 x dx Let u = tan x

du = sec2 x dx

=
∫

(u3 + u5) du = u4

4
+ u6

6
+ C

= 1

4
tan4 x + 1

6
tan6 x + C.

16. We have

∫
x2 dx

(3 + 5x2)3/2
Let x =

√

3
5 tan u

dx =
√

3
5 sec2 u du

=
∫ ( 3

5 tan2 u)(
√

3
5 sec2 u) du

(3)3/2 sec3 u

= 1

5
√

5

∫

(sec u − cos u) du

= 1

5
√

5
(ln | sec u + tan u| − sin u)+ C

= 1

5
√

5

(

ln

∣
∣
∣
∣
∣

√
5x2 + 3√

3
+
√

5x√
3

∣
∣
∣
∣
∣
−

√
5x√

5x2 + 3

)

+ C

= 1

5
√

5
ln
(√

5x2 + 3+√5x
)

− x

5
√

5x2 + 3
+ C0,

where C0 = C − 1

5
√

5
ln
√

3.

√
5x

√
5x2+3

u √
3

Fig. RT.16

17. I =
∫

e−x sin 2x dx

U = e−x

dU = −e−x dx

dV = sin 2x dx

V = −1

2
cos 2x

= −1

2
e−x cos 2x − 1

2

∫

e−x cos 2x dx

U = e−x

dU = −e−x dx

dV = cos 2x dx

V = 1

2
sin 2x

= −1

2
e−x cos 2x − 1

2

(
1

2
e−x sin 2x + 1

2
I

)

= −1

2
e−x cos 2x − 1

4
e−x sin 2x − 1

4
I

I = −e−x
(

2

5
cos 2x + 1

5
sin 2x

)

+ C.

18. I =
∫

2x2 + 4x − 3

x2 + 5x
dx =

∫
2x2 + 10x − 6x − 3

x2 + 5x
dx

=
∫ [

2− 6x + 3

x(x + 5)

]

dx

6x + 3

x(x + 5)
= A

x
+ B

x + 5
= (A + B)x + 5A

x(x + 5)

⇒
{

A + B = 6
5A = 3

⇒ A = 3

5
, B = 27

5
.

I =
∫

2 dx − 3

5

∫
dx

x
− 27

5

∫
dx

x + 5

= 2x − 3

5
ln |x | − 27

5
ln |x + 5| + C.

19. I =
∫

cos(3 ln x) dx

U = cos(3 ln x)

dU = −3 sin(3 ln x) dx

x

dV = dx

V = x

= x cos(3 ln x)+ 3
∫

sin(3 ln x) dx

U = sin(3 ln x)

dU = 3 cos(3 ln x) dx

x

dV = dx

V = x

= x cos(3 ln x)+ 3
(

x sin(3 ln x)− 3I
)

I = 1

10
x cos(3 ln x)+ 3

10
x sin(3 ln x)+ C.
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20.
1

4x3 + x
= A

x
+ Bx + C

4x2 + 1

= A(4x2 + 1)+ Bx2 + Cx

4x3 + x

⇒
{

4A + B = 0
C = 0, A = 1

⇒ B = −4.
∫

1

4x3 + x
dx =

∫
dx

x
− 4

∫
x dx

4x2 + 1

= ln |x | − 1

2
ln(4x2 + 1)+ C.

21.
∫

x ln(1 + x2)

1 + x2 dx Let u = ln(1 + x2)

du = 2x dx

1+ x2

= 1

2

∫

u du = u2

4
+ C

= 1

4

(

ln(1 + x2)
)2 + C.

22.
∫

sin2 x cos4 x dx

=
∫

1
2 (1− cos 2x)[ 1

2 (1 + cos 2x)]2 dx

= 1

8

∫

(1 + cos 2x − cos2 2x − cos3 2x) dx

= 1

8
x + 1

16
sin 2x − 1

16

∫

(1 + cos 4x) dx

− 1

8

∫

(1− sin2 2x) cos 2x dx

= x

8
+ 1

16
sin 2x − x

16
− 1

64
sin 4x − 1

16
sin 2x

+ 1

48
sin3 2x + C

= x

16
− sin 4x

64
+ sin3 2x

48
+ C.

23.
∫

x2 dx√
2− x2

Let x = √2 sin θ

dx = √2 cos θ dθ

= 2
∫

sin2 θ dθ = θ − sin θ cos θ + C

= sin−1 x√
2
− x
√

2− x2

2
+ C.

θ

√
2

x

√
2−x2

Fig. RT.23

24. We have

I =
∫

tan4 x sec x dx

U = tan3 x

dU = 3 tan2 x sec2 x dx

dV = tan x sec x dx

V = sec x

= tan3 x sec x − 3
∫

tan2 x sec3 x dx

= tan3 x sec x − 3
∫

tan2 x(tan2 x + 1) sec x dx

= tan3 x sec x − 3I − 3J where

J =
∫

tan2 x sec x dx

U = tan x

dU = sec2 x dx

dV = tan x sec x dx

V = sec x

= tan x sec x −
∫

sec3 x dx

= tan x sec x −
∫

(tan2 x + 1) sec x dx

= tan x sec x − J − ln | sec x + tan x | + C

J = 1
2 tan x sec x − 1

2 ln | sec x + tan x | + C.

I = 1
4 tan3 x sec x − 3

8 tan x sec x

+ 3
8 ln | sec x + tan x | + C.

25.
∫

x2 dx

(4x + 1)10 Let u = 4x + 1

du = 4 dx

= 1

4

∫ (
u − 1

4

)2 1

u10 du

= 1

64

∫

(u−8 − 2u−9 + u−10) du

= − 1

448
u−7 + 1

256
u−8 − 1

576
u−9 + C

= 1

64

(

− 1

7(4x + 1)7
+ 1

4(4x + 1)8
− 1

9(4x + 1)9

)

+ C.

26. We have
∫

x sin−1
( x

2

)

dx

U = sin−1
( x

2

)

dU = dx√
4− x2

dV = x dx

V = x2

2

= x2

2
sin−1

( x

2

)

− 1

2

∫
x2 dx√
4− x2

Let x = 2 sin u

dx = 2 cos u du

= x2

2
sin−1

( x

2

)

− 2
∫

sin2 u du

= x2

2
sin−1

( x

2

)

−
∫

(1− cos 2u) du

= x2

2
sin−1

( x

2

)

− u + sin u cos u + C
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=
(

x2

2
− 1

)

sin−1
( x

2

)

+ 1

4
x
√

4 − x2 + C.

27.
∫

sin5(4x) dx

=
∫

(1 − cos2 4x)2 sin 4x dx Let u = cos 4x

du = −4 sin 4x dx

= −1

4

∫

(1 − 2u2 + u4) du

= −1

4

(

u − 2

3
u3 + 1

5
u5
)

+ C

= −1

4
cos 4x + 1

6
cos3 4x − 1

20
cos5 4x + C.

28. We have

I =
∫

dx

x5 − 2x3 + x
=
∫

x dx

x6 − 2x4 + x2 Let u = x2

du = 2x dx

= 1

2

∫
du

u3 − 2u2 + u
= 1

2

∫
du

u(u − 1)2

1

u(u − 1)2
= A

u
+ B

u − 1
+ C

(u − 1)2

= A(u2 − 2u + 1)+ B(u2 − u)+ Cu

u3 − 2u2 + u

⇒
{

A + B = 0
−2A − B + C = 0
A = 1

⇒ A = 1, B = −1, C = 1.

1

2

∫
du

u3 − 2u2 + u
= 1

2

∫
du

u
− 1

2

∫
du

u − 1

+ 1

2

∫
du

(u − 1)2

= 1

2
ln |u| − 1

2
ln |u − 1| − 1

2

1

u − 1
+ K

= 1

2
ln

x2

|x2 − 1| −
1

2(x2 − 1)
+ K .

29.
∫

dx

2 + ex

=
∫

e−x dx

2e−x + 1
Let u = 2e−x + 1

du = −2e−x dx

= −1

2

∫
du

u
= −1

2
ln(2e−x + 1)+ C.

30. Let

In =
∫

xn3x dx

U = xn

dU = nxn−1 dx

dV = 3x dx

V = 3x

ln 3

= xn3x

ln 3
− n

ln 3
In−1.

I0 =
∫

3x dx = 3x

ln 3
+ C.

Hence,

I3 =
∫

x33x dx

= x33x

ln 3
− 3

ln 3

[
x23x

ln 3
− 2

ln 3

(
x3x

ln 3
− 1

ln 3
I0

)]

+ C1

= 3x
[

x3

ln 3
− 3x2

(ln 3)2
+ 6x

(ln 3)3
− 6

(ln 3)4

]

+ C1.

31.
∫

sin2 x cos x

2− sin x
dx Let u = sin x

du = cos x dx

=
∫

u2 du

2− u
Let 2− u = v
du = −dv

= −
∫

4− 4v + v2

v
dv =

∫ (

−4

v
+ 4− v

)

dv

= −4 ln |v| + 4v − v
2

2
+ C

= −4 ln |2− u| + 4(2 − u)− 1

2
(2 − u)2 + C

= −4 ln(2− sin x)− 2 sin x − 1

2
sin2 x + C1.

32. We have

∫
x2 + 1

x2 + 2x + 2
dx =

∫ (

1− 2x + 1

x2 + 2x + 2

)

dx

= x −
∫

2x + 1

(x + 1)2 + 1
dx Let u = x + 1

du = dx

= x −
∫

2u − 1

u2 + 1
du

= x − ln |u2 + 1| + tan−1 u + C

= x − ln(x2 + 2x + 2)+ tan−1 (x + 1)+ C.

33.
∫

dx

x2
√

1− x2
Let x = sin θ

dx = cos θ dθ

=
∫

cos θ dθ

sin2 θ cos θ
=
∫

csc2 θ dθ

= − cot θ + C = −
√

1− x2

x
+ C.

θ

1
x

√
1−x2

Fig. RT.33
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34. We have

∫

x3(ln x)2 dx

U = (ln x)2

dU = 2

x
ln x dx

dV = x3 dx

V = 1

4
x4

= 1

4
x4(ln x)2 − 1

2

∫

x3 ln x dx

U = ln x

dU = 1

x
dx

dV = x3 dx

V = 1

4
x4

= 1

4
x4(ln x)2 − 1

8
x4 ln x + 1

8

∫

x3 dx

= x4

4

[

(ln x)2 − 1

2
ln x + 1

8

]

+ C.

35.
∫

x3 dx√
1− 4x2

Let 2x = sin θ

2 dx = cos θ dθ

= 1

16

∫
sin3 θ cos θ dθ

cos θ
= 1

16

∫

(1− cos2 θ) sin θ dθ

= 1

16

(

− cos θ + 1

3
cos3 θ

)

+ C

= 1

48
(1 − 4x2)3/2 − 1

16

√

1− 4x2 + C.

θ

1
2x

√
1−4x2

Fig. RT.35

36.
∫

e1/x

x2 dx Let u = 1

x

du = − 1

x2
dx

= −
∫

eu du = −eu + C = −e1/x + C.

37.
∫

x + 1√
x2 + 1

dx

=
√

x2 + 1+
∫

dx√
x2 + 1

Let x = tan θ

dx = sec2 θ dθ

=
√

x2 + 1+
∫

sec θ dθ

=
√

x2 + 1+ ln | sec θ + tan θ | + C

=
√

x2 + 1+ ln(x +
√

x2 + 1)+ C.

θ

√
1+x2

x

1

Fig. RT.37

38.
∫

e(x
1/3) Let x = u3

dx = 3u2 du

= 3
∫

u2eu du = 3I2

See solution to #16 of Section 6.6 for

In =
∫

uneu dx = uneu − nIn−1.

= 3[u2eu − 2(ueu − eu)] + C

= e(x
1/3)(3x2/3 − 6x1/3 + 6)+ C.

39. I =
∫

x3 − 3

x3 − 9x
dx =

∫ (

1+ 9x − 3

x3 − 9x

)

dx .

9x − 3

x3 − 9x
= A

x
+ B

x − 3
+ C

x + 3

= Ax2 − 9A+ Bx2 + 3Bx + Cx2 − 3Cx

x3 − 9x

⇒
{ A + B + C = 0

3B − 3C = 9
−9A = −3

⇒
{ A = 1/3

B = 4/3
C = −5/3.

Thus we have

I = x + 1

3

∫
dx

x
+ 4

3

∫
dx

x − 3
− 5

3

∫
dx

x + 3

= x + 1

3
ln |x | + 4

3
ln |x − 3| − 5

3
ln |x + 3| + K .

40.
∫

10
√

x+2 dx√
x + 2

Let u = √x + 2

du = dx

2
√

x + 2

= 2
∫

10u du = 2

ln 10
10u + C = 2

ln 10
10
√

x+2 + C.

41.
∫

sin5 x cos9 x dx

=
∫

(1 − cos2 x)2 cos9 x sin x dx Let u = cos x

du = − sin x dx

= −
∫

(1 − 2u2 + u4)u9 du

= −u10

10
+ u12

6
− u14

14
+ C

= cos12 x

6
− cos10 x

10
− cos14 x

14
+ C.
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42. Assume that x ≥ 1 and let x = sec u and
dx = sec u tan u du. Then

∫
x2 dx√
x2 − 1

=
∫

sec3 u tan u du

tan u
=
∫

sec3 u du

= 1

2
sec u tan u + 1

2
ln | sec u + tan u| + C

= 1

2
x
√

x2 − 1+ 1

2
ln |x +

√

x2 − 1| + C.

Differentiation shows that this solution is valid for
x ≤ −1 also.

43. I =
∫

x dx

x2 + 2x − 1
=
∫
(x + 1− 1) dx

(x + 1)2 − 2
Let u = x + 1

du = dx

=
∫

u − 1

u2 − 2
du = 1

2
ln |u2 − 2| −

∫
du

u2 − 2
.

1

u2 − 2
= A

u −√2
+ B

u +√2

= Au +√2A + Bu −√2B

u2 − 2

⇒
{

A + B = 0√
2(A − B) = 1

⇒ A = −B = 1

2
√

2
.

Thus we have

I = 1

2
ln |u2 − 2| − 1

2
√

2
ln

∣
∣
∣
∣
∣

u −√2

u +√2

∣
∣
∣
∣
∣
+ K

= 1

2
ln |x2 + 2x − 1| − 1

2
√

2
ln

∣
∣
∣
∣
∣

x + 1−√2

x + 1+√2

∣
∣
∣
∣
∣
+ K .

44.
∫

2x − 3√
4− 3x + x2

dx Let u = 4− 3x + x2

du = (−3+ 2x) dx

=
∫

du√
u
= 2
√

u + C = 2
√

4− 3x + x2 + C.

45.
∫

x2 sin−1 2x dx

U = sin−1 2x

dU = 2 dx√
1− 4x2

dV = x2 dx

V = x3

3

= x3

3
sin−1 2x − 2

3

∫
x3 dx√
1− 4x2

Let v = 1− 4x2

dv = −8x dx

= x3

3
sin−1 2x − 2

3

∫
1− v
4v1/2

(

−1

8
dv

)

= x3

3
sin−1 2x + 1

48

∫ (

v−1/2 − v1/2
)

dv

= x3

3
sin−1 2x + 1

24

√
v − 1

72
v3/2 + C

= x3

3
sin−1 2x + 1

24

√

1− 4x2 − 1

72
(1− 4x2)3/2 + C.

46. Let
√

3x = sec u and
√

3 dx = sec u tan u du. Then

∫ √
3x2 − 1

x
dx

=
∫ tan u

1√
3

sec u tan u du

1√
3

sec u

=
∫

tan2 u du =
∫

(sec2 u − 1) du

= tan u − u + C =
√

3x2 − 1− sec−1(
√

3x)+ C

=
√

3x2 − 1+ sin−1
(

1√
3 x

)

+ C1.

47.
∫

cos4 x sin4 x dx = 1

16

∫

sin4 2x dx

= 1

64

∫

(1 − cos 4x)2 dx

= 1

64

∫ (

1− 2 cos 4x + 1+ cos 8x

2

)

dx

= 1

64

(
3x

2
− sin 4x

2
+ sin 8x

16

)

+ C

= 1

128

(

3x − sin 4x + sin 8x

8

)

+ C.

48.
∫
√

x − x2 dx

=
∫ √

1
4 − (x − 1

2 )
2 dx Let x − 1

2 = 1
2 sin u

dx = 1
2 cos u du

= 1
4

∫

cos2 u du = 1
8 u + 1

8 sin u cos u + C

= 1
8 sin−1(2x − 1)+ 1

4 (2x − 1)
√

x − x2 + C.
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u

1
2

√
x−x2

x− 1
2

Fig. RT.48

49.
∫

dx

(4 + x)
√

x
Let x = u2

dx = 2u du

=
∫

2u du

(4+ u2)u
= 2

∫
du

4+ u2

= 2

2
tan−1 u

2
+ C = tan−1

√
x

2
+ C.

50.
∫

x tan−1
( x

3

)

dx

U = tan−1
( x

3

)

dU = 3 dx

9+ x2

dV = x dx

V = x2

2

= x2

2
tan−1

( x

3

)

− 3

2

∫
x2

9+ x2 dx

= x2

2
tan−1

( x

3

)

− 3

2

∫ (

1− 9

9+ x2

)

dx

= x2

2
tan−1

( x

3

)

− 3x

2
+ 9

2
tan−1

( x

3

)

+ C.

51. I =
∫

x4 − 1

x3 + 2x2 dx

=
∫

x4 + 2x3 − 2x3 − 4x2 + 4x2 − 1

x3 + 2x2 dx

=
∫ (

x − 2 + 4x2 − 1

x3 + 2x2

)

dx .

4x2 − 1

x3 + 2x2 =
A

x
+ B

x2 +
C

x + 2

= Ax2 + 2Ax + Bx + 2B + Cx2

x3 + 2x2

⇒
{ A+ C = 4

2A+ B = 0
2B = −1

⇒
{ A = 1/4

B = −1/2
C = 15/4.

Thus

I = x2

2
− 2x + 1

4

∫
dx

x
− 1

2

∫
dx

x2 +
15

4

∫
dx

x + 2

= x2

2
− 2x + 1

4
ln |x | + 1

2x
+ 15

4
ln |x + 2| + K .

52. Let u = x2 and du = 2x dx ; then we have

I =
∫

dx

x(x2 + 4)2
=
∫

x dx

x2(x2 + 4)2
= 1

2

∫
du

u(u + 4)2
.

Since

1

u(u + 4)2
= A

u
+ B

u + 4
+ C

(u + 4)2

= A(u2 + 8u + 16)+ B(u2 + 4u)+ Cu

u(u + 4)2

⇒
{

A + B = 0
8A + 4B + C = 0
16A = 1

⇒ A = 1

16
, B = − 1

16
, C = −1

4
,

therefore

I = 1

32

∫
du

u
− 1

32

∫
du

u + 4
− 1

8

∫
du

(u + 4)2

= 1

32
ln

∣
∣
∣
∣

u

u + 4

∣
∣
∣
∣
+ 1

8

1

u + 4
+ C

= 1

32
ln

∣
∣
∣
∣

x2

x2 + 4

∣
∣
∣
∣
+ 1

8(x2 + 4)
+ C.

53.
∫

sin(2 ln x)

x
dx Let u = 2 ln x

du = 2

x
dx

= 1

2

∫

sin u du = −1

2
cos u + C

= −1

2
cos(2 ln x)+ C.

54. Since

I =
∫

sin(ln x)

x2 dx

U = sin(ln x)

dU = cos(ln x)

x
dx

dV = dx

x2

V = − 1

x

= − sin(ln x)

x
+
∫

cos(ln x)

x2 dx

U = cos(ln x)

dU = − sin(ln x)

x
dx

dV = dx

x2

V = −1

x

= − sin(ln x)

x
− cos(ln x)

x
− I,

therefore

I = − 1

2x

[

sin(ln x)+ cos(ln x)
]

+ C.

55.
∫

e2 tan−1 x

1+ x2
dx Let u = 2 tan−1 x

du = 2 dx

1 + x2

= 1

2

∫

eu du = 1

2
eu + C = 1

2
e2 tan−1 x + C.
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56. We have

I =
∫

x3 + x − 2

x2 − 7
dx =

∫
x3 − 7x + 8x − 2

x2 − 7
dx

=
∫ (

x + 8x − 2

x2 − 7

)

dx .

Since

8x − 2

x2 − 7
= A

x +√7
+ B

x −√7
= (A + B)x + (B − A)

√
7

x2 − 7

⇒
{ A + B = 8

B − A = − 2√
7
⇒ A = 4+ 1√

7
, B = 4− 1√

7
,

therefore

I =
∫ (

x + 8x − 2

x2 − 7

)

dx

= x2

2
+
(

4+ 1√
7

)∫
dx

x +√7
+
(

4− 1√
7

)∫
dx

x −√7

= x2

2
+
(

4+ 1√
7

)

ln |x +√7| +
(

4− 1√
7

)

ln |x −√7| + C.

57.
∫

ln(3 + x2)

3+ x2 x dx Let u = ln(3 + x2)

du = 2x dx

3+ x2

= 1

2

∫

u du = u2

4
+ C = 1

4

(

ln(3 + x2)
)2 + C.

58.
∫

cos7 x dx =
∫

(1− sin2 x)3 cos x dx Let u = sin x

du = cos x dx

=
∫

(1 − u2)3 du =
∫

(1− 3u2 + 3u4 − u6) du

= u − u3 + 3
5 u5 − 1

7 u7 + C

= sin x − sin3 x + 3
5 sin5 x − 1

7 sin7 x + C.

59.
∫

sin−1(x/2)

(4 − x2)1/2
dx Let u = sin−1(x/2)

du = dx

2
√

1− (x2/4)
= dx√

4 − x2

=
∫

u du = u2

2
+ C = 1

2

(

sin−1(x/2)
)2 + C.

60. We have
∫

tan4 (π x) dx =
∫

tan2(π x)[sec2(π x)− 1] dx

=
∫

tan2(π x) sec2(π x) dx −
∫

[sec2(π x)− 1] dx

= 1

3π
tan3(π x)− 1

π
tan(π x)+ x + C.

61.
∫

(x + 1) dx√
x2 + 6x + 10

=
∫
(x + 3 − 2) dx
√

(x + 3)2 + 1
Let u = x + 3

du = dx

=
∫
(u − 2) du√

u2 + 1

=
√

u2 + 1− 2
∫

du√
u2 + 1

Let u = tan θ

du = sec2 θ dθ

=
√

x2 + 6x + 10− 2
∫

sec θ dθ

=
√

x2 + 6x + 10− 2 ln | sec θ + tan θ | + C

=
√

x2 + 6x + 10− 2 ln
(

x + 3+
√

x2 + 6x + 10
)

+ C.

θ

√
x2+6x+10

x+3

1

Fig. RT.61

62.
∫

ex (1− e2x)5/2 dx Let ex = sin u

ex dx = cos u du

=
∫

cos6 u du =
(

1

2

)3 ∫

(1 + cos 2u)3 du

= 1

8

∫

(1+ 3 cos 2u + 3 cos2 2u + cos3 2u) du

= u

8
+ 3

16
sin 2u + 3

16

∫

(1+ cos 4u) du+
1

8

∫

(1− sin2 2u) cos 2u du

= 5u

16
+ 3

16
sin 2u + 3

64
sin 4u + sin 2u

16

− 1

48
sin3 2u + C

= 5

16
sin−1(ex )+ 1

4
sin[2 sin−1(ex )]+

3

64
sin[4 sin−1(ex )] − 1

48
sin3[2 sin−1(ex)] + C

= 5

16
sin−1(ex )+ 1

2
ex
√

1− e2x

+ 3

16
ex
√

1− e2x
(

1− 2e2x
)

− 1

6
e3x
(

1− e2x
)3/2 + C.
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63.
∫

x3 dx

(x2 + 2)7/2
Let x = √2 tan θ

dx = √2 sec2 θ dθ

=
∫

2
√

2 tan3 θ
√

2 sec2 θ dθ

8
√

2 sec7 θ

= 1

2
√

2

∫

sin3 θ cos2 θ dθ

= 1

2
√

2

∫

(1− cos2 θ) cos2 θ sin θ dθ Let u = cos θ

du = − sin θ dθ

= 1

2
√

2

∫

(u4 − u2) du = 1

2
√

2

(

u5

5
− u3

3

)

+ C

= 1

2
√

2

⎛

⎝
1

5

( √
2√

2+ x2

)5

− 1

3

( √
2√

2 + x2

)3
⎞

⎠+ C

= 2

5(2 + x2)5/2
− 1

3(2+ x2)3/2
+ C.

θ

√
2+x2

x

√
2

Fig. RT.63

64.
∫

x2

2x2 − 3
dx = 1

2

∫ (

1 + 3

2x2 − 3

)

dx

= x

2
+
√

3

4

∫ (
1√

2x −√3
− 1√

2x +√3

)

dx

= x

2
+
√

3

4
√

2
ln

∣
∣
∣
∣
∣

√
2x −√3√
2x +√3

∣
∣
∣
∣
∣
+ C.

65.
∫

x1/2

1 + x1/3 dx Let x = u6

dx = 6u5 du

= 6
∫

u8

u2 + 1
du

= 6
∫

u8 + u6 − u6 − u4 + u4 + u2 − u2 − 1 + 1

u2 + 1
du

= 6
∫ (

u6 − u4 + u2 − 1+ 1

u2 + 1

)

du

= 6

(

u7

7
− u5

5
+ u3

3
− u + tan−1 u

)

+ C

= 6

7
x7/6 − 6

5
x5/6 + 2

√
x − 6x1/6 + 6 tan−1 x1/6 + C.

66. We have

∫
dx

x(x2 + x + 1)1/2

=
∫

dx

x[(x + 1
2 )

2 + 3
4 ]1/2

Let x + 1

2
=
√

3

2
tan θ

dx =
√

3

2
sec2 θ dθ

=
∫

√
3

2
sec2 θ dθ

(√
3

2
tan θ − 1

2

)(√
3

2
sec θ

)

=
∫

2 sec θ dθ√
3 tan θ − 1

= 2
∫

dθ√
3 sin θ − cos θ

= 2
∫ √

3 sin θ + cos θ

3 sin2 θ − cos2 θ
dθ

= 2
√

3
∫

sin θ dθ

3 sin2 θ − cos2 θ
+ 2

∫
cos θ dθ

3 sin2 θ − cos2 θ

= 2
√

3
∫

sin θ dθ

3− 4 cos2 θ
+ 2

∫
cos θ dθ

4 sin2 θ − 1
Let u = cos θ , du = − sin θ dθ in the first integral;

let v = sin θ , dv = cos θ dθ in the second integral.

= −2
√

3
∫

du

3− 4u2
+ 2

∫
dv

4v2 − 1

= −
√

3

2

∫
du

3
4 − u2

− 1

2

∫
du

1
4 − v2

= −
√

3

2

(
1

2

)(
2√
3

)

ln

∣
∣
∣
∣
∣
∣
∣
∣

cos θ +
√

3

2

cos θ −
√

3

2

∣
∣
∣
∣
∣
∣
∣
∣

− 1

2

(
1

2

)

(2) ln

∣
∣
∣
∣
∣
∣
∣

sin θ + 1

2

sin θ − 1

2

∣
∣
∣
∣
∣
∣
∣

+ C

= 1

2
ln

∣
∣
∣
∣
∣
∣
∣
∣
∣

(

cos θ −
√

3

2

)(

sin θ − 1

2

)

(

cos θ +
√

3

2

)(

sin θ + 1

2

)

∣
∣
∣
∣
∣
∣
∣
∣
∣

+ C.

Since sin θ = 2x + 1

2
√

x2 + x + 1
and cos θ =

√
3

2
√

x2 + x + 1
,

therefore

∫
dx

x(x2 + x + 1)1/2
= 1

2
ln

∣
∣
∣
∣
∣

(x + 2)− 2
√

x2 + x + 1

(x + 2)+ 2
√

x2 + x + 1

∣
∣
∣
∣
∣
+C.
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67.
∫

1+ x

1 +√x
dx Let x = u2

dx = 2u du

= 2
∫

u(1 + u2)

1+ u
du

= 2
∫

u3 + u2 − u2 − u + 2u + 2− 2

1+ u
du

= 2
∫ (

u2 − u + 2− 2

1+ u

)

du

= 2

(
u3

3
− u2

2
+ 2u − 2 ln |1+ u|

)

+ C

= 2

3
x3/2 − x + 4

√
x − 4 ln(1 +√x)+ C.

68.
∫

x dx

4x4 + 4x2 + 5
Let u = x2

du = 2x dx

= 1

2

∫
du

4u2 + 4u + 5

= 1

2

∫
du

(2u + 1)2 + 4
Let w = 2u + 1

dw = 2du

= 1

4

∫
dw

w2 + 4
= 1

8
tan−1

(w

2

)

+ C

= 1

8
tan−1

(

x2 + 1

2

)

+ C.

69.
∫

x dx

(x2 − 4)2
Let u = x2 − 4

du = 2x dx

= 1

2

∫
du

u2 = −
1

2u
+ C

= − 1

2(x2 − 4)
+ C = − 1

2x2 − 8
+ C.

70. Use the partial fraction decomposition

1

x3 + x2 + x
= A

x
+ Bx + C

x2 + x + 1

= A(x2 + x + 1)+ Bx2 + Cx

x3 + x2 + x

⇒
{

A+ B = 0
A+ C = 0
A = 1

⇒ A = 1, B = −1, C = −1.

Therefore,

∫
dx

x3 + x2 + x

=
∫

dx

x
−
∫

x + 1

x2 + x + 1
dx Let u = x + 1

2
du = dx

= ln |x | −
∫

u + 1
2

u2 + 3
4

du

= ln |x | − 1

2
ln
(

x2 + x + 1
)

− 1√
3

tan−1
(

2x + 1√
3

)

+ C.

71.
∫

x2 tan−1 x dx

U = tan−1 x

dU = dx

1+ x2

dV = x2 dx

V = x3

3

= x3

3
tan−1 x − 1

3

∫
x3 dx

1+ x2

= x3

3
tan−1 x − 1

3

∫
x3 + x − x

x2 + 1
dx

= x3

3
tan−1 x − 1

6
x2 + 1

6
ln(1 + x2)+ C.

72.
∫

ex sec(ex) dx Let u = ex

du = ex dx

=
∫

sec u du = ln | sec u + tan u| + C

= ln | sec(ex )+ tan(ex )| + C.

73. I =
∫

dx

4 sin x − 3 cos x
Let z = tan

x

2
, dx = 2 dz

1+ z2

cos x = 1 − z2

1 + z2 , sin x = 2z

1+ z2

=
∫

2 dz

1+ z2

8z

1+ z2 −
3− 3z2

1+ z2

= 2
∫

dz

3z2 + 8z − 3
= 2

∫
dz

(3z − 1)(z + 3)
.

1

(3z − 1)(z + 3)
= A

3z − 1
+ B

z + 3

= Az + 3A + 3Bz − B

(3z − 1)(z + 3)

⇒
{

A + 3B = 0
3A − B = 1

⇒
{

A = 3/10
B = −1/10.

Thus

I = 3

5

∫
dz

3z − 1
− 1

5

∫
dz

z + 3

= 1

5
ln |3z − 1| − 1

5
ln |z + 3| + C

= 1

5
ln

∣
∣
∣
∣

3 tan−1(x/2)− 1

tan−1(x/2)+ 3

∣
∣
∣
∣
+ C.

74.
∫

dx

x1/3 − 1
Let x = (u + 1)3

dx = 3(u + 1)2 du

= 3
∫
(u + 1)2

u
du = 3

∫ (

u + 2+ 1

u

)

du

= 3

(
u2

2
+ 2u + ln |u|

)

+ C

= 3

2
(x1/3 − 1)2 + 6(x1/3 − 1)+ 3 ln |x1/3 − 1| + C.
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75.
∫

dx

tan x + sin x

=
∫

cos x dx

sin x(1+ cos x)
Let z = tan(x/2), dx = 2 dz

1+ z2

cos x = 1− z2

1+ z2
, sin x = 2z

1+ z2

=
∫

1 − z2

1 + z2

2 dz

1+ z2

2z

1+ z2

(

1+ 1− z2

1+ z2

)

=
∫

(1 − z2) dz

z(1+ z2 + 1− z2)
= 1

2

∫
1− z2

z
dz

= 1

2
ln |z| − z2

4
+ C

= 1

2
ln
∣
∣
∣tan

x

2

∣
∣
∣− 1

4

(

tan
x

2

)2 + C.

Remark: Since

tan2 x

2
=

sin2 x

2

cos2 x

2

= 1− cos x

1+ cos x
,

the answer can also be written as
1

4
ln

∣
∣
∣
∣

1− cos x

1+ cos x

∣
∣
∣
∣
− 1

4
· 1 − cos x

1 + cos x
+ C.

76.
∫

x dx√
3− 4x − 4x2

=
∫

x dx
√

4− (2x + 1)2
Let u = 2x + 1

du = 2 dx

= 1

4

∫
u − 1√
4− u2

du

= −1

4

√

4− u2 − 1

4
sin−1

(u

2

)

+ C

= −1

4

√

3− 4x − 4x2 − 1

4
sin−1

(

x + 1

2

)

+ C.

77.
∫ √

x

1 + x
dx Let x = u2

dx = 2u du

= 2
∫

u2 du

1+ u2 = 2
∫ (

1− 1

1+ u2

)

du

= 2
(

u − tan−1 u
)

+ C = 2
√

x − 2 tan−1√x + C.

78.
∫ √

1+ ex dx Let u2 = 1+ ex

2u du = ex dx

=
∫

2u2 du

u2 − 1
=
∫ (

2+ 2

u2 − 1

)

du

=
∫ (

2+ 1

u − 1
− 1

u + 1

)

du

= 2u + ln

∣
∣
∣
∣

u − 1

u + 1

∣
∣
∣
∣
+ C

= 2
√

1+ ex + ln

∣
∣
∣
∣
∣

√
1 + ex − 1√
1 + ex + 1

∣
∣
∣
∣
∣
+ C.

79. I =
∫

x4 dx

x3 − 8
=
∫ (

x + 8x

x3 − 8

)

dx .

8x

x3 − 8
= A

x − 2
+ Bx + C

x2 + 2x + 4

= Ax2 + 2Ax + 4A + Bx2 − 2Bx + Cx − 2C

x3 − 8

⇒
{ A+ B = 0

2A − 2B + C = 8
4A − 2C = 0

⇒
{

B = −A
C = 2A
6A = 8

Thus A = 4/3, B = −4/3, C = 8/3. We have

I = x2

2
+ 4

3

∫
dx

x − 2
− 4

3

∫
x − 2

x2 + 2x + 4
dx

= x2

2
+ 4

3
ln |x − 2| − 4

3

∫
x + 1− 3

(x + 1)2 + 3
dx

= x2

2
+ 4

3
ln |x − 2| − 2

3
ln(x2 + 2x + 4)

+ 4√
3

tan−1 x + 1√
3
+ K .

80. By the procedure used in Example 4 of Section 7.1,

∫

ex cos x dx = 1
2 ex (sin x + cos x)+ C,

∫

ex sin x dx = 1
2 ex (sin x − cos x)+ C.

Now

∫

xex cos x dx

U = x

dU = dx

dV = ex cos x dx

V = 1
2 ex(sin x + cos x)

= 1
2 xex(sin+ cos x)− 1

2

∫

ex(sin x + cos x) dx

= 1
2 xex(sin+ cos x)

− 1
4 ex(sin x − cos x + sin x + cos x)+ C

= 1
2 xex(sin x + cos x)− 1

2 ex sin x + C.
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Other Review Exercises 6 (page 366)

1.
d

dx
ex
[

(ax + b) cos x + (cx + d) sin x
]

= ex
[

(ax + b) cos x + (cx + d) sin x + a cos x + c sin x

− (ax + b) sin x + (cx + d) cos x
]

= ex
[(

(a + c)x + b + a + d
)

cos x

+
(

(c − a)x + d + c − b
)

sin x
]

If a+ c = 1, b+ a+ d = 0, c− a = 0, and d + c− b = 0,
then a = c = −d = 1/2 and b = 0. Thus

I =
∫

xex cos x dx = ex

2

[

x cos x + (x − 1) sin x
]

+ C.

If a+ c = 0, b+ a+ d = 0, c− a = 1, and d + c− b = 0,
then b = c = −a = 1/2 and d = 0. Thus

J =
∫

xex sin x dx = ex

2

[

x sin x − (x − 1) cos x
]

+ C.

2.
∫ ∞

0
xr e−x dx

= lim
c→0+
R→∞

∫ R

c
xr e−x dx

U = xr

dU = r xr−1 dr

dV = e−x dx

V = −e−x

= lim
c→0+
R→∞
−xr e−x

∣
∣
∣
∣

R

c
+ r

∫ ∞

0
xr−1e−x dx

= lim
c→0+ cr e−c + r

∫ ∞

0
xr−1e−x dx

because limR→∞ Rr e−R = 0 for any r . In order to en-
sure that limc→0+ cr e−c = 0 we must have
limc→0+ cr = 0, so we need r > 0.

3.
∫ π/2

0
csc x dx = lim

c→0+− ln | csc x + cot x |
∣
∣
∣
∣

π/2

c

= lim
c→0+ ln | csc c + cot c| = ∞ (diverges)

4.
∫ ∞

1

dx

x + x3 = lim
R→∞

∫ R

1

(
1

x
− x

1 + x2

)

dx

= lim
R→∞

(

ln |x | − 1

2
ln(1 + x2)

)∣
∣
∣
∣

R

1

= lim
R→∞

1

2

(

ln
R2

1+ R2 + ln 2

)

= ln 2

2

5.
∫ 1

0

√
x ln x dx Let x = u2

dx = 2u du

=
∫ 1

0
u(2 ln u)2u du

= 4
∫ 1

0
u2 ln u du

U = ln u

dU = du

u

dV = u2 du

V = u3

3

= 4 lim
c→0+

(

u3

3
ln u

∣
∣
∣
∣

1

c
− 1

3

∫ 1

c
u2 du

)

= −4

3
lim

c→0+ c3 ln c − 4

9
(1− c3) = −4

9

6.
∫ 1

0

dx

x
√

1− x2
>

∫ 1

0

dx

x
= ∞ (diverges)

Therefore
∫ 1

−1

dx

x
√

1− x2
diverges.

7. I =
∫ ∞

0

dx√
xex
=
∫ 1

0
+
∫ ∞

1
= I1 + I2

I1 =
∫ 1

0

dx√
xex

<

∫ 1

0

dx√
x
= 2

I2 =
∫ ∞

1

dx√
xex

<

∫ ∞

1
e−x dx = 1

e
Thus I converges, and I < 2+ (1/e).

8. Volume =
∫ 60

0 A(x) dx . The approximation is

T6 = 10

2

[

10, 200+ 2(9, 200+ 8, 000 + 7, 100

+ 4, 500+ 2, 400)+ 100
]

≈ 364, 000 m3.

9. S6 = 10

3

[

10, 200 + 4(9, 200 + 7, 100+ 2, 400)

+ 2(8, 000+ 4, 500)+ 100
]

≈ 367, 000 m3

10. I =
∫ 1

0

√

2+ sin(π x) dx

T4 = 1

8

[√
2+ 2(

√

2+ sin(π/4)+√2+ sin(π/2)

+√2+ sin(3π/4)+√2
]

≈ 1.609230

M4 = 1

4

[√

2+ sin(π/8)+√2+ sin(3π/8)
√

2+ sin(5π/8)+√2+ sin(7π/8)
]

≈ 1.626765

I ≈ 1.6
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11. T8 = 1

2
(T4 + M4) ≈ 1.617996

S8 = 1

3
(T4 + 2M4) ≈ 1.62092

I ≈ 1.62

12. I =
∫ ∞

1/2

x2

x5 + x3 + 1
dx Let x = 1/t

dx = −(1/t2) dt

=
∫ 2

0

(1/t4) dt

(1/t5)+ (1/t3)+ 1
=
∫ 2

0

t dt

t5 + t2 + 1
T4 ≈ 0.4444 M4 ≈ 0.4799

T8 ≈ 0.4622 M8 ≈ 0.4708

S8 ≈ 0.4681 S16 ≈ 0.4680

I ≈ 0.468 to 3 decimal places

13. a) T4 = 1

(
0.730

2
+ 1.001 + 1.332+ 1.729 + 2.198

2

)

= 5.526

S4 = 1

3

(

0.730 + 2.198+ 4(1.001 + 1.729)+ 2(1.332)

)

= 5.504.

b) If T8 = 5.5095, then S8 = 4T8 − T4

3
= 5.504.

c) Yes, S4 = S8 suggests that Sn may be independent of
n, which is consistent with a polynomial of degree
not exceeding 3.

Challenging Problems 6 (page 367)

1. a) Long division of x2 + 1 into
x4(1 − x)4 = x8 − 4x7 + 6x6 − 4x5 + x4 yields

x4(1 − x)4

x2 + 1
= x6 − 4x5 + 5x4 − 4x2 + 4− 4

x2 + 1
.

Integrating both sides over [0, 1] leads at once to

∫ 1

0

x4(1 − x)4

x2 + 1
dx = 22

7
− 4tan−11 = 22

7
− π.

Since
x4(1− x)4

x2 + 1
> 0 on (0, 1),

22

7
− π > 0, and so

π <
22

7
.

b) If I =
∫ 1

0
x4(1 − x)4 dx , then since 1 < x2 + 1 < 2

on (0, 1), we have

I >
∫ 1

0

x4(1 − x)4

x2 + 1
dx >

I

2
.

Thus I > (22/7)− π > I/2, or

22

7
− I < π <

22

7
− I

2
.

c) I = ∫ 1
0 (x

8 − 4x7 + 6x6 − 4x5 + x4) dx = 1

630
. Thus

22

7
− 1

630
< π <

22

7
− 1

1260
.

2. a) In =
∫

(1 − x2)n dx

U = (1 − x2)n

dU = −2nx(1− x2)n−1 dx

dV = dx

V = x

= x(1− x2)n + 2n
∫

x2(1 − x2)n−1 dx

= x(1− x2)n − 2n
∫

(1 − x2 − 1)(1 − x2)n−1 dx

= x(1− x2)n − 2nIn + 2nIn−1, so

In = 1

2n + 1
x(1− x2)n + 2n

2n + 1
In−1.

b) Let Jn =
∫ 1

0
(1 − x2)n dx . Observe that J0 = 1. By

(a), if n > 0, then we have

Jn = x(1− x2)n

2n + 1

∣
∣
∣
∣

1

0
+ 2n

2n + 1
Jn−1 = 2n

2n + 1
Jn−1.

Therefore,

Jn = 2n

2n + 1
· 2n − 2

2n − 1
· · · 4

5
· 2

3
J0

= [(2n)(2n − 2) · · · (4)(2)]2
(2n + 1)!

= 22n(n!)2

(2n + 1)!
.

c) From (a):

In−1 = 2n + 1

2n
In − 1

2n
x(1 − x2)n .

Thus

∫

(1− x2)−3/2 dx = I−3/2

= 2(−1/2)+ 1

−1
I−1/2 − 1

−1
x(1 − x2)−1/2

= x√
1 − x2

.
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3. a) x4+x2+1 = (x2+1)2−x2 = (x2−x+1)(x2+x+1).
Thus

∫
x2 + 1

x4 + x2 + 1
=
∫

x2 + 1

(x2 − x + 1)(x2 + x + 1)
dx

= 1

2

∫ (
1

x2 − x + 1
+ 1

x2 + x + 1

)

dx

= 1

2

∫
(

1
(

x − 1
2

)2 + 3
4

+ 1
(

x + 1
2

)2 + 3
4

)

dx

= 1√
3

(

tan−1 2x − 1√
3
+ tan−1 2x + 1√

3

)

+ C.

b) x4+1 = (x2+1)2−2x2 = (x2−√2x+1)(x2+√2x+1).
Thus

∫
x2 + 1

x4 + 1
=
∫

x2 + 1

(x2 −√2x + 1)(x2 +√2x + 1)
dx

= 1

2

∫ (
1

x2 −√2x + 1
+ 1

x2 +√2x + 1

)

dx

= 1

2

∫

⎛

⎜
⎝

1
(

x − 1√
2

)2 + 3
4

+ 1
(

x + 1√
2

)2 + 3
4

⎞

⎟
⎠ dx

= 1√
3

(

tan−1 2x −√2√
3
+ tan−1 2x +√2√

3

)

+ C.

4. Im,n =
∫ 1

0
xm(ln x)n dx Let x = e−t

dx = −e−t dt

=
∫ ∞

0
e−mt (−t)ne−t dt

= (−1)n
∫ ∞

0
tne−(m+1)t dt Let u = (m + 1)t

du = (m + 1) dt

= (−1)n

(m + 1)n

∫ ∞

0
une−u du

= (−1)n

(m + 1)n
�(n + 1) (see #50 in Section 7.5)

= (−1)nn!

(m + 1)n
.

5. a) 0 < In =
∫ 1

0
xne−x dx <

∫ 1

0
xn dx = 1

n + 1
,

because 0 < e−x < 1 on (0, 1). Thus limn→∞ In = 0
by the Squeeze Theorem.

b) I0 =
∫ 1

0
e−x dx = −e−x

∣
∣
∣
∣

1

0
= 1− 1

e

In =
∫ 1

0
xne−x dx

U = xn

dU = nxn−1 dx

dV = e−x dx

V = −e−x

= −xne−x
∣
∣
∣
∣

1

0
+ n

∫ 1

0
xn−1e−x dx

= nIn−1 − 1

e
if n ≥ 1

c) The formula

In = n!

⎛

⎝1− 1

e

n
∑

j=0

1

j !

⎞

⎠

holds for n = 0 by part (b). Assume that it holds for
some integer n = k ≥ 0. Then by (b),

Ik+1 = (k + 1)Ik − 1

e
= (k + 1)k!

⎛

⎝1 − 1

e

k
∑

j=0

1

j !

⎞

⎠− 1

e

= (k + 1)!

⎛

⎝1− 1

e

k
∑

j=0

1

j !
− 1

e(k + 1)!

⎞

⎠

= (k + 1)!

⎛

⎝1− 1

e

k+1
∑

j=0

1

j !

⎞

⎠ .

Thus the formula holds for all n ≥ 0, by induction.

d) Since limn→∞ In = 0, we must have

lim
n→∞

⎛

⎝1 − 1

e

n
∑

j=0

1

j !

⎞

⎠ = 0.

Thus e = lim
n→∞

n
∑

j=0

1

j !
.

6. I =
∫ 1

0
e−K x dx = e−K x

−K

∣
∣
∣
∣

1

0
= 1

K

(

1− 1

eK

)

.

For very large K , the value of I is very small
(I < 1/K ). However,

T100 = 1

100
(1 + · · ·) > 1

100

S100 = 1

300
(1 + · · ·) > 1

300

M100 = 1

100
(e−K/200 + · · ·) < 1

100
.
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In each case the · · · represent terms much less than the
first term (shown) in the sum. Evidently M100 is smallest
if k is much greater than 100, and is therefore the best
approximation. T100 appears to be the worst.

7. a) Let f (x) = Ax5+ Bx4+Cx3+Dx2+ Ex+ F . Then

∫ h

−h
f (x) dx = 2

(

Bh5

5
+ Dh3

3
+ Fh

)

.

Also

2h
[

a f (−h)+ b f (−h/2)+ c f (0)+ b f (h/2)+ a f (h)
]

= 2
[

a
(

2Bh5 + 2Dh3 + 2F
)

+b

(

2Bh5

16
+ 2Dh3

4
+ 2F

)

+ cFh

]

.

These expressions will be identical if the coefficients
of like powers of h on the two sides are identical.
Thus

2a + 2b

16
= 1

5
, 2a + 2b

4
= 1

3
, 2a + 2b + c = 1.

Solving these equations, we get a = 7/90,
b = 16/45, and c = 2/15. The approximation
for the integral of any function f on [m − h,m + h]
is
∫ m+h

m−h
f (x) dx ≈ 2h

[
7

90
f (m − h)+ 16

45
f (m − 1

2 h)

+ 2

15
f (m)+ 16

45
f (m + 1

2 h)+ 7

90
f (m + h)

]

.

b) If m = h = 1/2, we obtain

∫ 1

0
e−x dx ≈ 1

[
7

90
e0 + 16

45
e−1/4 + 2

15
e−1/2

+ 16

45
e−3/4 + 7

90
e−1

]

≈ 0.63212087501.

With two intervals having h = 1/4 and m = 1/4 and
m = 3/4, we get

∫ 1

0
e−x dx ≈ 1

2

[
7

90
e0 + 16

45
e−1/8 + 2

15
e−1/4

+ 16

45
e−3/8 + 7

45
e−1/2

+ 16

45
e−5/8 + 2

15
e−3/4 + 16

45
e−7/8 + 7

90
e−1

]

≈ 0.63212055883.

8. a) f ′(x) < 0 on [1,∞), and limx→∞ f (x) = 0. There-
fore

∫ ∞

1
| f ′(x)| dx = −

∫ ∞

1
f ′(x) dx

= − lim
R→∞

∫ R

1
f ′(x) dx

= lim
R→∞( f (1)− f (R)) = f (1).

Thus

∣
∣
∣
∣

∫ ∞

R
f ′(x) cos x dx

∣
∣
∣
∣
≤
∫ ∞

R
| f ′(x)| dx → 0 as R→∞.

Thus lim
R→∞

∫ R

1
f ′(x) cos x dx exists.

b)
∫ ∞

1
f (x) sin x dx

U = f (x)

dU = f ′(x) dx

dV = sin x dx

V = − cos x

= lim
R→∞ f (x) cos x

∣
∣
∣
∣

R

1
+
∫ ∞

1
f ′(x) cos x dx

= − f (1) cos(1)+
∫ ∞

1
f ′(x) cos x dx;

the integral converges.

c) f (x) = 1/x satisfies the conditions of part (a), so

∫ ∞

1

sin x

x
dx converges

by part (b). Similarly, it can be shown that

∫ ∞

1

cos(2x)

x
dx converges.

But since | sin x | ≥ sin2 x = 1
2 (1 − cos(2x)), we have

∫ ∞

1

| sin x |
x

dx ≥
∫ ∞

1

1− cos(2x)

2x
.

The latter integral diverges because
∫∞

1 (1/x) dx
diverges to infinity while

∫∞
1 (cos(2x))/(2x) dx con-

verges. Therefore

∫ ∞

1

| sin x |
x

dx diverges to infinity.
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CHAPTER 7. APPLICATIONS OF INTE-
GRATION

Section 7.1 Volumes of Solids of Revolution
(page 376)

1. By slicing:

V = π
∫ 1

0
x4 dx = π

5
cu. units.

By shells:

V = 2π
∫ 1

0
y(1−√y) dy

= 2π

(

y2

2
− 2y5/2

5

)∣
∣
∣
∣

1

0
= π

5
cu. units.

y

x

y=x2

(1,1)

x

Fig. 7.1.1

2. Slicing:

V = π
∫ 1

0
(1 − y) dy

= π
(

y − 1

2
y2

)∣
∣
∣
∣

1

0
= π

2
cu. units.

Shells:

V = 2π
∫ 1

0
x3 dx

= 2π

(
x4

4

) ∣
∣
∣
∣

1

0
= π

2
cu. units.

y

x

y=x2

1

Fig. 7.1.2

3. By slicing:

V = π
∫ 1

0
(x − x4) dx

= π
(

x2

2
− x5

5

)∣
∣
∣
∣

1

0
= 3π

10
cu. units.

By shells:

V = 2π
∫ 1

0
y(
√

y − y2) dy

= 2π

(

2y5/2

5
− y4

4

)∣
∣
∣
∣

1

0
= 3π

10
cu. units.

y

xx

y=x2

y=√x

Fig. 7.1.3

4. Slicing:

V = π
∫ 1

0
(y − y4) dy

= π
(

1

2
y2 − 1

5
y5

)∣
∣
∣
∣

1

0
= 3π

10
cu. units.

Shells:

V = 2π
∫ 1

0
x(x1/2 − x2) dx

= 2π

(
2

5
x5/2 − 1

4
x4

)∣
∣
∣
∣

1

0
= 3π

10
cu. units.

y

x

y=√x y=x2

(1,1)

Fig. 7.1.4
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5. a) About the x-axis:

V = π
∫ 2

0
x2(2− x)2 dx

= π
∫ 2

0
(4x2 − 4x3 + x4) dx

= π
(

4x3

3
− x4 + x5

5

)∣
∣
∣
∣

2

0
= 16π

15
cu. units.

b) About the y-axis:

V = 2π
∫ 2

0
x2(2 − x) dy

= 2π

(
2x3

3
− x4

4

)∣
∣
∣
∣

2

0
= 8π

3
cu. units.

y=2x−x2

2

y=2x−x2

2

y

y

x

x

(b)

(a)

Fig. 7.1.5

6. Rotate about

a) the x-axis

V = π
∫ 1

0
(x2 − x4) dx

= π
(

1

3
x3 − 1

5
x5

)∣
∣
∣
∣

1

0
= 2π

15
cu. units.

b) the y-axis

V = 2π
∫ 1

0
x(x − x2) dx

= 2π

(
1

3
x3 − 1

4
x4

)∣
∣
∣
∣

1

0
= π

6
cu. units.

y

x

(1,1)

y=x2

y=x

Fig. 7.1.6

7. a) About the x-axis:

V = 2π
∫ 3

0
y(4y − y2 − y) dy

= 2π

(

y3 − y4

4

)∣
∣
∣
∣

3

0
= 27π

2
cu. units.

b) About the y-axis:

V = π
∫ 3

0

[

(4y − y2)2 − y2
]

dy

= π
∫ 3

0
(15y2 − 8y3 + y4) dy

= π
(

5y3 − 2y4 + y5

5

)∣
∣
∣
∣

3

0
= 108π

5
cu. units.

y

x

(3,3)

x=4y−y2

x=y

Fig. 7.1.7

8. Rotate about

a) the x-axis

V = π
∫ π

0
[(1 + sin x)2 − 1] dx

= π
∫ π

0
(2 sin x + sin2 x) dx

=
(

−2π cos x + π
2

x − π
4

sin 2x

)∣
∣
∣
∣

π

0

= 4π + 1

2
π2 cu. units.
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b) the y-axis

V = 2π
∫ π

0
x sin x dx

U = x

dU = dx

dV = sin x dx

V = − cos x

= 2π

[

−x cos x

∣
∣
∣
∣

π

0
+

∫ π

0
cos x dx

]

= 2π2 cu. units.

9. a) About the x-axis:

V = π
∫ 1

0

(

4− 1

(1 + x2)2

)

dx Let x = tan θ

dx = sec2 θ dθ

= 4π − π
∫ π/4

0

sec2 θ

sec4 θ
dθ

= 4π − π
∫ π/4

0
cos2 θ dθ

= 4π − π
2
(θ + sin θ cos θ)

∣
∣
∣
∣

π/4

0

= 4π − π
2

8
− π

4
= 15π

4
− π

2

8
cu. units.

b) About the y-axis:

V = 2π
∫ 1

0
x

(

2− 1

1+ x2

)

dx

= 2π

(

x2 − 1

2
ln(1 + x2)

)∣
∣
∣
∣

1

0

= 2π

(

1− 1

2
ln 2

)

= 2π − π ln 2 cu. units.

y

x

y= 1
1+x2

y=2

x 1

Fig. 7.1.9

10. By symmetry, rotation about the x-axis gives the same
volume as rotation about the y-axis, namely

V = 2π
∫ 3

1/3
x

(
10

3
− x − 1

x

)

dx

= 2π

(
5

3
x2 − 1

3
x3 − x

)∣
∣
∣
∣

3

1/3

= 512π

81
cu. units.

y

x

3x+3y=10

y= 1
x (3,1/3)

(1/3,3)

Fig. 7.1.10

11. V = 2× 2π
∫ 1

0
(2 − x)(1 − x) dx

= 4π
∫ 1

0
(2 − 3x + x2) dx

= 4π

(

2x − 3x2

2
+ x3

3

)∣
∣
∣
∣

1

0
= 10π

3
cu. units.

y

x

y

x

x+y=1 x=2

x

Fig. 7.1.11

12. V = π
∫ 1

−1
[(1)2 − (x2)2] dx

= π
(

x − 1

5
x5

)∣
∣
∣
∣

1

−1

= 8π

5
cu. units.

y

x

x2
y=1

y=1−x2

x
dx

Fig. 7.1.12

13. The volume remaining is

V = 2× 2π
∫ 2

1
x
√

4− x2 dx Let u = 4− x2

du = −2x dx

= 2π
∫ 3

0

√
u du = 4π

3
u3/2

∣
∣
∣
∣

3

0
= 4π

√
3 cu. units.
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Since the volume of the ball is
4

3
π23 = 32π

3
cu. units.,

therefore the volume removed is
32π

3
− 4π

√
3 cu. units.

The percentage removed is

32π

3
− 4π

√
3

32π

3

× 100 = 100

(

1− 3
√

3

8

)

≈ 35.

About 35% of the volume is removed.
y

x
1 2

y=
√

4−x2

x

dx

Fig. 7.1.13

14. The radius of the hole is
√

R2 − 1
4 L2. Thus, by slicing,

the remaining volume is

V = π
∫ L/2

−L/2

[(

R2 − x2
)

−
(

R2 − L2

4

)]

dx

= 2π

(
L2

4
x − 1

3
x3

)∣
∣
∣
∣

L/2

0

= π

6
L3 cu. units (independent of R).

y

x

y=
√

R2−x2

R

L
2

√

R2− L2

4

L

y

x

Fig. 7.1.14

15. The volume remaining is

V = 2π
∫ b

a
xh

(

1− x

b

)

dx

= 2πh

(
x2

2
− x3

3b

)∣
∣
∣
∣

b

a

= πh(b2 − a2)− 2

3
πh

(

b2 − a3

b

)

= 1

3
πh

(

b2 − 3a2 + 2a3

b

)

cu. units.

y

x

h

x
b+

y
h =1

bx=a

x

dx

Fig. 7.1.15

16. Let a circular disk with radius a have centre at point
(a, 0). Then the disk is rotated about the y-axis which is
one of its tangent lines. The volume is:

V = 2× 2π
∫ 2a

0
x
√

a2 − (x − a)2 dx Let u = x − a

du = dx

= 4π
∫ a

−a
(u + a)

√

a2 − u2 du

= 4π
∫ a

−a
u
√

a2 − u2 du + 4πa
∫ a

−a

√

a2 − u2 du

= 0+ 4πa

(
1

2
πa2

)

= 2π2a3 cu. units.

(Note that the first integral is zero because the integrand
is odd and the interval is symmetric about zero; the sec-
ond integral is the area of a semicircle.)

y

xa

2a

(x−a)2+y2=a2

Fig. 7.1.16
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17. Volume of the smaller piece:

V = π
∫ a

b
(a2 − x2) dx

= π
(

a2x − x3

3

)∣
∣
∣
∣

a

b

= π
(

a2(a − b)− a3 − b3

3

)

= π

3
(a − b)[3a2 − (a2 + ab + b2)]

= π

3
(a − b)2(2a + b) cu. units.

y

x

y=
√

a2−x2

b x
adx

Fig. 7.1.17

18. Let the centre of the bowl be at (0, 30). Then the vol-
ume of the water in the bowl is

V = π
∫ 20

0

[

302 − (y − 30)2
]

dy

= π
∫ 20

0
60y − y2 dy

= π
[

30y2 − 1

3
y3

]∣
∣
∣
∣

20

0

≈ 29322 cm3.

y

x

20

30

x2+(y−30)2=302

Fig. 7.1.18

19. The volume of the ellipsoid is

V = 2π
∫ a

0
b2

(

1− x2

a2

)

dx

= 2πb2
(

x − x3

3a2

)∣
∣
∣
∣

a

0
= 4

3
πab2 cu. units.

y

x

y=b

√

1− x2

a2

a

b

x

dx

Fig. 7.1.19

20. The cross-section at height y is an annulus (ring)
having inner radius b −√

a2 − y2 and outer radius
b +√

a2 − y2. Thus the volume of the torus is

V = π
∫ a

−a

[

(b +
√

a2 − y2)2 − (b −
√

a2 − y2)2
]

dy

= 2π
∫ a

0
4b

√

a2 − y2 dy

= 8πb
πa2

4
= 2π2a2b cu. units..

We used the area of a quarter-circle of radius a to evalu-
ate the last integral.

21. a) Volume of revolution about the x-axis is

V = π
∫ ∞

0
e−2x dx

= π lim
R→∞

e−2x

−2

∣
∣
∣
∣

R

0
= π

2
cu. units.

b) Volume of revolution about the y-axis is

V = 2π
∫ ∞

0
xe−x dx

= 2π lim
R→∞(−xe−x − e−x)

∣
∣
∣
∣

R

0
= 2π cu. units.
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y

x

y=e−x

1

x
dx

Fig. 7.1.21

22. The volume is

V = π
∫ ∞

1
x−2k dx = π lim

R→∞
x1−2k

1− 2k

∣
∣
∣
∣

R

1

= π lim
R→∞

R1−2k

1− 2k
+ π

2k − 1
.

In order for the solid to have finite volume we need

1 − 2k < 0, that is, k >
1

2
.

23. The volume is V = 2π
∫∞

1 x1−k dx . This improper inte-
gral converges if 1− k < −1, i.e., if k > 2. The solid has
finite volume only if k > 2.

y

x

y=x−k

1 x

dx

Fig. 7.1.23

24. A solid consisting of points on parallel line segments
between parallel planes will certainly have congruent
cross-sections in planes parallel to and lying between the
two base planes, any solid satisfying the new definition
will certainly satisfy the old one. But not vice versa;
congruent cross-sections does not imply a family of par-
allel line segments giving all the points in a solid. For
a counterexample, see the next exercise. Thus the ear-
lier, incorrect definition defines a larger class of solids
than does the current definition. However, the formula
V = Ah for the volume of such a solid is still valid, as
all congruent cross-sections still have the same area, A,
as the base region.

25. Since all isosceles right-angled triangles having leg length
a cm are congruent, S does satisfy the condition for be-
ing a prism given in previous editions. It does not satisfy
the condition in this edition because one of the line seg-
ments joining vertices of the triangular cross-sections,
namely the x-axis, is not parallel to the line joining the
vertices of the other end of the hypotenuses of the two
bases.

The volume os S is still the constant cross-sectional
area a2/2 times the height b, that is, V = a2b/2 cm3.

26. Using heights f (x) estimated from the given graph, we
obtain

V = π
∫ 9

1

(

f (x)
)2

dx

≈ π

3

[

32 + 4(3.8)2 + 2(5)2 + 4(6.7)2 + 2(8)2

+ 4(8)2 + 2(7)2 + 4(5.2)2 + 32
]

≈ 938 cu. units.

27. Using heights f (x) estimated from the given graph, we
obtain

V = 2π
∫ 9

1
x f (x) dx

≈ 2π

3

[

1(3) + 4(2)(3.8) + 2(3)(5) + 4(4)(6.7) + 2(5)(8)

+ 4(6)(8) + 2(7)(7) + 4(8)(5.2) + 9(3)
]

≈ 1537 cu. units.

28. Using heights f (x) estimated from the given graph, we
obtain

V = 2π
∫ 9

1
(x + 1) f (x) dx

≈ 2π

3

[

2(3) + 4(3)(3.8) + 2(4)(5) + 4(5)(6.7) + 2(6)(8)

+ 4(7)(8) + 2(8)(7) + 4(9)(5.2) + 10(3)
]

≈ 1832 cu. units.
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29. The region is symmetric about x = y so has the same
volume of revolution about the two coordinate axes. The
volume of revolution about the y-axis is

V = 2π
∫ 8

0
x(4− x2/3)3/2 dx Let x = 8 sin3 u

dx = 24 sin2 u cos u du

= 3072π
∫ π/2

0
sin5 u cos4 u du

= 3072π
∫ π/2

0
(1− cos2 u)2 cos4 u sin u du Let v = cos u

dv = − sin u du

= 3072π
∫ 1

0
(1− v2)2v4 dv

= 3072π
∫ 1

0
(v4 − 2v6 + v8) dv

= 3072π

(
1

5
− 2

7
+ 1

9

)

= 8192π

105
cu. units.

30. The volume of the ball is
4

3
π R3. Expressing this volume

as the “sum” (i.e., integral) of volume elements that are
concentric spherical shells of radius r and thickness dr ,
and therefore surface area kr2 and volume kr2 dr , we
obtain

4

3
π R3 =

∫ R

0
kr2 dr = k

3
R3.

Thus k = 4π .

dr

R

r

Fig. 7.1.30

31. Let the ball have radius R, and suppose its centre is x
units above the top of the conical glass, as shown in the
figure. (Clearly the ball which maximizes wine overflow
from the glass must be tangent to the cone along some
circle below the top of the cone — larger balls will have
reduced displacement within the cone. Also, the ball will
not be completely submerged.)

h secα

(h+x) cosα
α

h

x

R

Fig. 7.1.31

Note that
R

x + h
= sinα, so R = (x + h) sinα.

Using the result of Exercise #17, the volume of wine
displaced by the ball is

V = π

3
(R − x)2(2R + x).

We would like to consider V as a function of x for
−2R ≤ x ≤ R since V = 0 at each end of this in-
terval, and V > 0 inside the interval. However, the
actual interval of values of x for which the above for-
mulation makes physical sense is smaller: x must satisfy
−R ≤ x ≤ h tan2 α. (The left inequality signifies non-
submersion of the ball; the right inequality signifies that
the ball is tangent to the glass somewhere below the rim.)
We look for a critical point of V , considered as a func-
tion of x . (As noted above, R is a function of x .) We
have

0 = dV

dx
= π

3

[

2(R − x)

(
d R

dx
− 1

)

(2R + x)

+ (R − x)2
(

2
d R

dx
+ 1

)]

d R

dx
(4R + 2x + 2R − 2x) = 4R + 2x − (R − x).

Thus

6R sinα = 3(R + x) = 3

(

R + R

sinα
− h

)

2R sin2 α = R sinα + R − h sinα

R = h sinα

1 − 2 sin2 α + sinα
= h sinα

cos 2α + sinα
.

This value of R yields a positive value of V , and corre-
sponds to x = R(2 sinα − 1). Since sinα ≥ sin2 α,

−R ≤ x = h sinα(2 sinα − 1)

1+ sinα − 2 sin2 α
≤ h sin2 α

cos2 α
= h tan2 α.

Therefore it gives the maximum volume of wine dis-
placed.
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32. Let P be the point (t, 5
2 − t). The line through P perpen-

dicular to AB has equation y = x + 5
2 − 2t , and meets the

curve xy = 1 at point Q with x-coordinate s equal to the
positive root of s2 + ( 5

2 − 2t)s = 1. Thus,

s = 1

2

[

2t − 5

2
+

√
(

5

2
− 2t

)2

+ 4

]

.

y

x

√
2 dt

x+y= 5
2

B(2,1/2)

A(1/2,2)

P

Q

y= 1
x

s t

Fig. 7.1.32

The volume element at P has radius

P Q = √2(t − s)

= √2

⎡

⎣
5

4
− 1

2

√
(

5

2
− 2t

)2

+ 4

⎤

⎦

and thickness
√

2 dt . Hence, the volume of the solid is

V = π
∫ 2

1/2

[√
2

(
5

4
− 1

2

√
(

5

2
− 2t

)2

+ 4

)]2√
2 dt

= 2
√

2π
∫ 2

1/2

⎡

⎣
25

16
− 5

4

⎛

⎝

√
(

5

2
− 2t

)2

+ 4

⎞

⎠ +

1

4

[(
5

2
− 2t

)2

+ 4

]]

dt Let u = 2t − 5
2

du = 2 dt

= √2π
∫ 3/2

−3/2

(
41

16
− 5

4

√

u2 + 4+ u2

4

)

du

= √2π

(
41

16
u + 1

12
u3

)∣
∣
∣
∣

3/2

−3/2
−

5
√

2π

4

∫ 3/2

−3/2

√

u2 + 4 du Let u = 2 tan v

du = 2 sec2 v dv

= 33
√

2π

4
− 5
√

2π
∫ tan−1 (3/4)

tan−1 (−3/4)
sec3 v dv

= 33
√

2π

4
− 10
√

2π
∫ tan−1 (3/4)

0
sec3 v dv

= 33
√

2π

4
− 5
√

2π
(

sec v tan v+

ln | sec v + tan v|
)
∣
∣
∣
∣

tan−1 (3/4)

0

= √2π

[
33

4
− 5

(
15

16
+ ln 2− 0− ln 1

)]

= √2π

(
57

16
− 5 ln 2

)

cu. units.

Section 7.2 Other Volumes by Slicing
(page 380)

1. V =
∫ 2

0
3x dx = 3

2
x2

∣
∣
∣
∣

2

0
= 6 m3

2. A horizontal slice of thickness dz at height a has volume
dV = z(h − z) dz. Thus the volume of the solid is

V =
∫ h

0
(z(h − z) dz =

(
hz2

2
− z3

3

)
∣
∣
∣
∣
∣

h

0

= h3

6
units3.

3. A horizontal slice of thickness dz at height a has volume
dV = π z

√
1− z2 dz. Thus the volume of the solid is

V =
∫ 1

0
z
√

1− z2 dz let u − 1− z2

= π

2

∫ 1

0

√
u du = π

2

2

3
u3/2

∣
∣
∣
∣
∣

1

0

= π

3
units3.

4. V =
∫ 3

1
x2 dx = x3

3

∣
∣
∣
∣

3

1
= 26

3
cu. units

5. V =
∫ 6

0
(2+ z)(8 − z) dz =

∫ 6

0
(16 + 6z − z2) dz

=
(

16z + 3z2 − z3

3

)∣
∣
∣
∣

6

0
= 132 ft3

6. The area of an equilateral triangle of edge
√

x is

A(x) = 1
2

√
x
(√

3
2

√
x
)

=
√

3
4 x sq. units. The volume of

the solid is

V =
∫ 4

1

√
3

4
x dx =

√
3

8
x2

∣
∣
∣
∣

4

1
= 15
√

3

8
cu. units.

7. The area of cross-section at height y is

A(y) = 2π(1 − (y/h))

2π
(πa2) = πa2

(

1− y

h

)

sq. units.
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The volume of the solid is

V =
∫ h

0
πa2

(

1− y

h

)

dy = πa2h

2
cu. units.

8. Since V = 4, we have

4 =
∫ 2

0
kx3 dx = k

x4

4

∣
∣
∣
∣

2

0
= 4k.

Thus k = 1.

9. The volume between height 0 and height z is z3. Thus

z3 =
∫ z

0
A(t) dt,

where A(t) is the cross-sectional area at height t . Dif-
ferentiating the above equation with respect to z, we
get 3z2 = A(z). The cross-sectional area at height z is
3z2 sq. units.

10. This is similar to Exercise 7. We have 4z =
∫ z

0
A(t) dt ,

so A(z) = 4. Thus the square cross-section at height z
has side 2 units.

11. V = 2
∫ r

0

(

2
√

r2 − y2
)2

dy

= 8
∫ r

0
(r2 − y2) dy = 8

(

r2 y − y3

3

)∣
∣
∣
∣

r

0
= 16r3

3
cu. units.

x

y

z

x=
√

r2−y2

2
√

r2−y2

Fig. 7.2.11

12. The area of an equilateral triangle of base 2y is
1
2 (2y)(

√
3y) = √3y2. Hence, the solid has volume

V = 2
∫ r

0

√
3(r2 − x2) dx

= 2
√

3

(

r2x − 1

3
x3

)∣
∣
∣
∣

r

0

= 4√
3

r3 cu. units.

x2+y2=r2

r

x

y

√
3y

2y

Fig. 7.2.12

13. The cross-section at distance y from the vertex of the
partial cone is a semicircle of radius y/2 cm, and hence
area πy2/8 cm2. The volume of the solid is

V =
∫ 12

0

π

8
y2 dy = π123

24
= 72π cm3.

x y

z

12
y

(12, 12, 0)

Fig. 7.2.13

14. The volume of a solid of given height h and given cross-
sectional area A(z) at height z above the base is given
by

V =
∫ h

0
A(z) dz.

If two solids have the same height h and the same area
function A(z), then they must necessarily have the same
volume.

15. Let the x-axis be along the diameter shown in the fig-
ure, with the origin at the centre of the base. The cross-
section perpendicular to the x-axis at x is a rectangle

having base 2
√

r2 − x2 and height h = a + b

2
+ a − b

2
x .

Thus the volume of the truncated cylinder is

V =
∫ r

−r
(2

√

r2 − x2)

(
a + b

2
+ a − b

2r
x

)

dx

=
∫ r

−r
(a + b)

√

r2 − x2 dx = πr2(a + b)

2
cu. units.
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x
r

x

y

h

y = √r2 − x2

Fig. 7.2.15

16. The plane z = k meets the ellipsoid in the ellipse

( x

a

)2 +
( y

b

)2 = 1−
(

k

c

)2

that is,
x2

a2

[

1−
(

k

c

)2] +
y2

b2

[

1−
(

k

c

)2] = 1

which has area

A(k) = πab

[

1−
(

k

c

)2]

.

The volume of the ellipsoid is found by summing volume
elements of thickness dk:

V =
∫ c

−c
πab

[

1−
(

k

c

)2]

dk

= πab

[

k − 1

3c2 k3
]∣
∣
∣
∣

c

−c

= 4

3
πabc cu. units.

  z

x

y

k

A(k)

c

a

b

x2

a2 + y2

b2 + z2

c2 =1

(one-eighth of the
solid is shown)

Fig. 7.2.16

17. Cross-sections of the wedge removed perpendicular to the
x-axis are isosceles, right triangles. The volume of the
wedge removed from the log is

V = 2
∫ 20

0

1

2
(
√

400 − x2)2 dx

=
(

400x − x3

3

)∣
∣
∣
∣

20

0
= 16, 000

3
cm3.

x

y

z

45◦
20

y=
√

400−x2

x

Fig. 7.2.17

18. The solution is similar to that of Exercise 15 except that
the legs of the right-triangular cross-sections are y − 10
instead of y, and x goes from −10

√
3 to 10

√
3 instead

of −20 to 20. The volume of the notch is

V = 2
∫ 10

√
3

0

1

2
(
√

400 − x2 − 10)2 dx

=
∫ 10

√
3

0

(

500 − x2 − 20
√

400 − x2
)

dx

= 3, 000
√

3− 4, 000π

3
≈ 1, 007 cm3.

19. The hole has the shape of two copies of the trun-
cated cylinder of Exercise 13, placed base to base,
with a + b = 3

√
2 in and r = 2 in. Thus the

volume of wood removed (the volume of the hole) is
V = 2(π22)(3

√
2/2) = 12

√
2π in3.

20. One eighth of the region lying inside both cylinders is
shown in the figure. If the region is sliced by a horizon-
tal plane at height z, then the intersection is a rectangle
with area

A(z) =
√

b2 − z2
√

a2 − z2.

The volume of the whole region is

V = 8
∫ b

0

√

b2 − z2
√

a2 − z2 dz.

273



SECTION 7.2 (PAGE 380) R. A. ADAMS: CALCULUS

  z

x

ya

b

z

A(z)

√
b2−z2

√
a2−z2

Fig. 7.2.20

21. By the result given in Exercise 18 with a = 4 cm and
b = 2 cm, the volume of wood removed is

V = 8
∫ 2

0

√

4− z2
√

16 − z2 dz ≈ 97.28 cm3.

(We used the numerical integration routine in Maple to
evaluate the integral.)

Section 7.3 Arc Length and Surface Area
(page 387)

1. y = 2x − 1, y ′ = 2, ds =
√

1+ 22 dx

L =
∫ 3

1

√
5 dx = 2

√
5 units.

2. y = ax + b, A ≤ x ≤ B, y ′ = a. The length is

L =
∫ B

A

√

1+ a2 dx =
√

1 + a2(B − A) units.

3. y = 2
3 x3/2, y ′ = √x, ds = √1 + x dx

L =
∫ 8

0

√
1+ x dx = 2

3
(1 + x)3/2

∣
∣
∣
∣

8

0
= 52

3
units.

4. y2 = (x − 1)3, y = (x − 1)3/2, y ′ = 3

2

√
x − 1

L =
∫ 2

1

√

1+ 9

4
(x − 1) dx = 1

2

∫ 2

1

√
9x − 5 dx

= 1

27
(9x − 5)3/2

∣
∣
∣
∣

2

1
= 133/2 − 8

27
units.

5. y = x2/3, y ′ = 2

3
x−1/3,

ds =
√

1+ 4

9
x−2/3 dx =

√
9x2/3 + 4

3|x |1/3 dx

L = 2
∫ 1

0

√
9x2/3 + 4

3x1/3
dx Let u = 9x2/3 + 4

du = 6x−1/3 dx

= 1

9

∫ 13

4

√
u du = 2(133/2)− 16

27
units.

6. 2(x + 1)3 = 3(y − 1)2, y = 1+
√

2
3 (x + 1)3/2

y ′ =
√

3
2 (x + 1)1/2,

ds =
√

1+ 3x + 3

2
dx =

√

3x + 5

2
dx

L = 1√
2

∫ 0

−1

√
3x + 5 dx =

√
2

9
(3x + 5)3/2

∣
∣
∣
∣

0

−1

=
√

2

9

(

53/2 − 23/2
)

units.

7. y = x3

12
+ 1

x
, y ′ = x2

4
− 1

x2

ds =
√

1+
(

x2

4
− 1

x2

)2

dx =
(

x2

4
+ 1

x2

)

dx

L =
∫ 4

1

(
x2

4
+ 1

x2

)

dx =
(

x3

12
− 1

x

)∣
∣
∣
∣

4

1
= 6 units.

8. y = x3

3
+ 1

4x
, y ′ = x2 − 1

4x2

ds =
√

1+
(

x2 − 1

4x2

)2

dx =
(

x2 + 1

4x2

)

dx

L =
∫ 2

1

(

x2 + 1

4x2

)

dx =
(

x3

3
− 1

4x

)∣
∣
∣
∣

2

1
= 59

24
units.

9. y = ln x

2
− x2

4
, y ′ = 1

2x
− x

2

ds =
√

1+
(

1

2x
− x

2

)2

dx =
(

1

2x
+ x

2

)

dx

L =
∫ e

1

(
1

2x
+ x

2

)

dx =
(

ln x

2
+ x2

4

)∣
∣
∣
∣

e

1

= 1

2
+ e2 − 1

4
= e2 + 1

4
units.

10. If y = x2 − ln x

8
then y′ = 2x − 1

8x
and

1 + (y ′)2 =
(

2x + 1

8x

)2

.
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Thus the arc length is given by

s =
∫ 2

1

√

1+
(

2x − 1

8x

)2

dx

=
∫ 2

1

(

2x + 1

8x

)

dx

=
(

x2 + 1

8
ln x

)∣
∣
∣
∣

2

1
= 3+ 1

8
ln 2 units.

11. s =
∫ a

0

√

1+ sinh2 x dx =
∫ a

0
cosh x dx

= sinh x

∣
∣
∣
∣

a

0
= sinh a = ea − e−a

2
units.

12. s =
∫ π/4

π/6

√

1+ tan2 x dx

=
∫ π/4

π/6
sec x dx = ln | sec x + tan x |

∣
∣
∣
∣

π/4

π/6

= ln(
√

2+ 1)− ln

(
2√
3
+ 1√

3

)

= ln

√
2+ 1√

3
units.

13. y = x2, 0 ≤ x ≤ 2, y ′ = 2x .

length =
∫ 2

0

√

1+ 4x2 dx Let 2x = tan θ

2 dx = sec2 θ dθ

= 1

2

∫ x=2

x=0
sec3 θ

= 1

4

(

sec θ tan θ + ln | sec θ + tan θ |
)
∣
∣
∣
∣

x=2

x=0

= 1

4

(

2x
√

1+ 4x2 + ln(2x +
√

1 + 4x2)
)
∣
∣
∣
∣

2

0

= 1

4

(

4
√

17+ ln(4 +√17)
)

= √17+ 1

4
ln(4 +√17) units.

14. y = ln
ex − 1

ex + 1
, 2 ≤ x ≤ 4

y ′ = ex + 1

ex − 1

(ex + 1)ex − (ex − 1)ex

(ex + 1)2

= 2ex

e2x − 1
.

The length of the curve is

L =
∫ 4

2

√

1+ 4e2x

(e2x − 1)2
dx

=
∫ 4

2

e2x + 1

e2x − 1
dx

=
∫ 4

2

ex + e−x

ex − e−x
dx = ln

∣
∣ex − e−x

∣
∣

∣
∣
∣
∣

4

2

= ln

(

e4 − 1

e4

)

− ln

(

e2 − 1

e2

)

= ln

(
e8 − 1

e4

e2

e4 − 1

)

= ln
e4 + 1

e2 units.

15. x2/3+y2/3 = x2/3. By symmetry, the curve has congruent
arcs in the four quadrants. For the first quadrant arc we
have

y =
(

a2/3 − x2/3
)3/2

y ′ = 3

2

(

a2/3 − x2/3
)1/2

(

−2

3
x−1/3

)

.

Thus the length of the whole curve is

L = 4
∫ a

0

√

1+ a2/3 − x2/3

x2/3 dx

= 4a1/3
∫ a

0
x−1/3 dx

= 4a1/3 3

2
x2/3

∣
∣
∣
∣

a

0
= 6a units.

16. The required length is

L =
∫ 1

0

√

1+ (4x3)2 dx =
∫ 1

0

√

1+ 16x6 dx .

Using a calculator we calculate some Simpson’s Rule
approximations as described in Section 7.2:

S2 ≈ 1.59921

S8 ≈ 1.60025

S4 ≈ 1.60110

S16 ≈ 1.60023.

To four decimal places the length is 1.6002 units.
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17. y = x1/3, 1 ≤ x ≤ 2, y ′ = 1

3
x−2/3.

Length = ∫ 2
1 f (x) dx , where f (x) =

√

1+ 1

9x4/3 . We

have
T4 = 1.03406

T8 = 1.03385

T16 = 1.03378

M4 = 1.03363

M8 = 1.03374

M16 = 1.00376.

Thus the length is approximately 1.0338 units.

18. For the ellipse 3x2 + y2 = 3, we have 6x + 2yy′ = 0, so
y ′ = −3x/y. Thus

ds =
√

1+ 9x2

3− 3x2 dx =
√

3+ 6x2

3− 3x2 dx .

The circumference of the ellipse is

4
∫ 1

0

√

3 + 6x2

3 − 3x2
dx ≈ 8.73775 units

(with a little help from Maple’s numerical integration
routine.)

19. For the ellipse x2 + 2y2 = 2, we have 2x + 4yy′ = 0, so
y ′ = −x/(2y). Thus

ds =
√

1+ x2

4− 2x2 dx =
√

4− x2

4− 2x2 dx

The length of the short arc from (0, 1) to (1, 1/
√

2) is

∫ 1

0

√

4− x2

4− 2x2
dx ≈ 1.05810 units

(with a little help from Maple’s numerical integration
routine).

20. S = 2π
∫ 2

0
|x |

√

1+ 4x2 dx Let u = 1+ 4x2

du = 8x dx

= π

4

∫ 17

1

√
u du = π

4

(2

3
u3/2

)∣
∣
∣
∣

17

1

= π

6
(17
√

17− 1) sq. units.

21. y = x3, 0 ≤ x ≤ 1. ds = √1+ 9x4 dx .
The area of the surface of rotation about the x-axis is

S = 2π
∫ 1

0
x3

√

1+ 9x4 dx Let u = 1+ 9x4

du = 36x3 dx

= π

18

∫ 10

1

√
u du = π

27
(103/2 − 1) sq. units.

22. y = x3/2, 0 ≤ x ≤ 1. ds =
√

1+ 9
4 x dx .

The area of the surface of rotation about the x-axis is

S = 2π
∫ 1

0
x3/2

√

1+ 9x

4
dx Let 9x = 4u2

9 dx = 8u du

= 128π

243

∫ 3/2

0
u4

√

1+ u2 du Let u = tan v

du = sec2 v dv

= 128π

243

∫ tan−1
(3/2)

0
tan4 v sec3 v dv

= 128π

243

∫ tan−1
(3/2)

0
(sec7 v − 2 sec5 v + sec3 v) dv.

At this stage it is convenient to use the reduction formula

∫

secn v dv = 1

n − 1
secn−2 v tan v + n − 2

n − 1

∫

secn−2 v dv

(see Exercise 36 of Section 7.1) to reduce the powers of
secant down to 3, and then use

∫ a

0
sec3 v dv = 1

2
(sec a tan a + ln | sec a + tan a|.

We have

I =
∫ a

0
(sec7 v − 2 sec5 v + sec3 v) dv

= sec5 v tan v

6

∣
∣
∣
∣

a

0
+

(
5

6
− 2

)∫ a

0
sec5 v dv +

∫ a

0
sec3 v dv

= sec5 a tan a

6
− 7

6

[

sec3 v tan v

4

∣
∣
∣
∣

a

0
+ 3

4

∫ a

0
sec3 v dv

]

+
∫ a

0
sec3 v dv

= sec5 a tan a

6
− 7 sec3 a tan a

24
+ 1

8

∫ a

0
sec3 v dv

= sec5 a tan a

6
− 7 sec3 a tan a

24

+ sec a tan a + ln | sec a + tan a|
16

.

Substituting a = arctan(3/2) now gives the following
value for the surface area:

S = 28
√

13π

81
+ 8π

243
ln

(

3 +√13

2

)

sq. units.
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23. If y = x3/2, 0 ≤ x ≤ 1, is rotated about the y-axis, the
surface area generated is

S = 2π
∫ 1

0
x

√

1+ 9x

4
dx Let u = 1+ 9x

4

du = 9

4
dx

= 32π

81

∫ 13/4

1
(u − 1)

√
u du

= 32π

81

(
2

5
u5/2 − 2

3
u3/2

)∣
∣
∣
∣

13/4

1

= 64π

81

(

(13/4)5/2 − 1

5
− (13/4)3/2 − 1

3

)

sq. units.

24. We have

S = 2π
∫ 1

0
ex

√

1 + e2x dx Let ex = tan θ

ex dx = sec2 θ dθ

= 2π
∫ x=1

x=0

√

1+ tan2 θ sec2 θ dθ = 2π
∫ x=1

x=0
sec3 θ dθ

= π
[

sec θ tan θ + ln | sec θ + tan θ |
]∣
∣
∣
∣

x=1

x=0
.

Since

x = 1⇒ tan θ = e, sec θ =
√

1+ e2,

x = 0⇒ tan θ = 1, sec θ = √2,

therefore

S = π
[

e
√

1+ e2 + ln |
√

1+ e2 + e| − √2− ln |√2+ 1|
]

= π
[

e
√

1+ e2 −√2+ ln

√
1+ e2 + e√

2+ 1

]

sq. units.

25. If y = sin x, 0 ≤ x ≤ π , is rotated about the x-axis, the
surface area generated is

S = 2π
∫ π

0
sin x

√

1+ cos2 dx Let u = cos x

du = − sin x dx

= 2π
∫ 1

−1

√

1+ u2 du Let u = tan θ

du = sec2 θ dθ

= 2π
∫ π/4

−π/4
sec3 θ dθ = 4π

∫ π/4

0
sec3 θ dθ

= 2π
(

sec θ tan θ + ln | sec θ + tan θ |
)
∣
∣
∣
∣

π/4

0

= 2π
(√

2+ ln(1 +√2)
)

sq. units.

26. 1+ (y ′)2 = 1+
(

x2

4
− 1

x2

)2

=
(

x2

4
+ 1

x2

)2

S = 2π
∫ 4

1

(
x3

12
+ 1

x

)(
x2

4
+ 1

x2

)

dx

= 2π
∫ 4

1

(

x5

48
+ x

3
+ 1

x3

)

dx

= 2π

(
x6

288
+ x2

6
− 1

2x2

) ∣
∣
∣
∣

4

1

= 275

8
π sq. units.

27. For y = x3

12
+ 1

x
, 1 ≤ x ≤ 4, we have

ds =
(

x2

4
+ 1

x2

)

dx .

The surface generated by rotating the curve about the
y-axis has area

S = 2π
∫ 4

1
x

(
x2

4
+ 1

x2

)

dx

= 2π

(
x4

16
+ ln |x |

)∣
∣
∣
∣

4

1

= 2π

(
255

16
+ ln 4

)

sq. units.

28. The area of the cone obtained by rotating the line
y = (h/r)x , 0 ≤ x ≤ r , about the y-axis is

S = 2π
∫ r

0
x
√

1+ (h/r)2 dx = 2π

√
r2 + h2

r

x2

2

∣
∣
∣
∣

r

0

= πr
√

r2 + h2 sq. units.

29. For the circle (x − b)2 + y2 = a2 we have

2(x − b)+ 2y
dy

dx
= 0 ⇒ dy

dx
= − x − b

y
.

Thus

ds =
√

1+ (x − b)2

y2 dx = a

y
dx = a

√

a2 − (x − b)2
dx

(if y > 0).
The surface area of the torus obtained by rotating the
circle about the line x = 0 is

S = 2× 2π
∫ b+a

b−a
x

a
√

a2 − (x − b)2
dx Let u = x − b

du = dx

= 4πa
∫ a

−a

u + b√
a2 − u2

du

= 8πab
∫ a

0

du√
a2 − u2

by symmetry

= 8πab sin−1 u

a

∣
∣
∣
∣

a

0
= 4π2ab sq. units.

277



SECTION 7.3 (PAGE 387) R. A. ADAMS: CALCULUS

30. The top half of x2 + 4y2 = 4 is y = 1

2

√

4− x2, so

dy

dx
= −x

2
√

4 − x2
, and

S = 2× 2π
∫ 2

0

√
4− x2

2

√

1+
(

x

2
√

4− x2

)2

dx

= π
∫ 2

0

√

16− 3x2 dx Let x =
√

16

3
sin θ

dx =
√

16

3
cos θ dθ

= π
∫ π/3

0
(4 cos θ)

4√
3

cos θ dθ

= 16π√
3

∫ π/3

0
cos2 θ dθ

= 8π√
3

(

θ + sin θ cos θ

)∣
∣
∣
∣

π/3

0

= 2π(4π + 3
√

3)

3
√

3
sq. units.

31. For the ellipse x2 + 4y2 = 4 we have

2x
dx

dy
+ 8y = 0 ⇒ dx

dy
= −4

y

x
.

The arc length element on the ellipse is given by

ds =
√

1 +
(

dx

dy

)2

dy

=
√

1 + 16y2

x2 dy = 1

x

√

4+ 12y2 dy.

If the ellipse is rotated about the y-axis, the resulting
surface has area

S = 2× 2π
∫ 1

0
x

1

x

√

4+ 12y2 dy

= 8π
∫ 1

0

√

1+ 3y2 dy Let
√

3y = tan θ√
3dy = sec2 θ dθ

= 8π√
3

∫ π/3

0
sec3 θ dθ

= 8π

2
√

3

(

sec θ tan θ + ln | sec θ + tan θ |
)
∣
∣
∣
∣

π/3

0

= 8π

2
√

3

(

2
√

3+ ln(2 +√3)
)

= 8π

(

1+ ln(2 +√3)

2
√

3

)

sq. units.

32. As in Example 4, the arc length element for the ellipse is

ds =
√

1 +
(

dy

dx

)2

dx =

√
√
√
√
√

a2 − a2 − b2

a2 x2

a2 − x2 dx .

To get the area of the ellipsoid, we must rotate both the
upper and lower semi-ellipses (see the figure for Exercise
20 of Section 8.1):

S = 2× 2π
∫ a

0

[(

c − b

√

1−
( x

a

)2
)

+
(

c + b

√

1−
( x

a

)2
)]

ds

= 8πc
∫ a

0

√
√
√
√
√

a2 − a2 − b2

a2
x2

a2 − x2
dx

= 8πc

[
1

4
of the circumference of the ellipse

]

= 8πcaE(ε)

where ε =
√

a2 − b2

a
and E(ε) = ∫ π/2

0

√
1− ε2 sin t dt

as defined in Example 4.

33. From Example 3, the length is

s = 10

π

∫ π/2

0

√

1+ π
2

4
cos2 t dt

= 10

π

∫ π/2

0

√

1+ π
2

4
− π

2

4
sin2 t dt

= 5

π

√

4+ π2

∫ π/2

0

√

1− π2

4+ π2 sin2 t dt

= 5

π

√

4+ π2 E

(
π√

4+ π2

)

.

34. Let the equation of the sphere be x2+ y2 = R2. Then the
surface area between planes x = a and x = b
(−R ≤ a < b ≤ R) is

S = 2π
∫ b

a

√

R2 − x2

√

1+
(

dy

dx

)2

dx

= 2π
∫ b

a

√

R2 − x2 R√
R2 − x2

dx

= 2π R
∫ b

a
dx = 2π R(b − a) sq. units.
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Thus, the surface area depends only on the radius R of
the sphere, and the distance (b − a) between the parellel
planes.

y

x

x2+y2=R2

ba

Fig. 7.3.34

35. If the curve y = xk , 0 < x ≤ 1, is rotated about the
y-axis, it generates a surface of area

S = 2π
∫ 1

0
x
√

1+ k2x2(k−1) dx

= 2π
∫ 1

0

√

x2 + k2x2k dx .

If k ≤ −1, we have S ≥ 2πk
∫ 1

0
xk dx , which is infinite.

If k ≥ 0, the surface area S is finite, since xk is bounded
on (0, 1] in that case.
Hence we need only consider the case −1 < k < 0. In
this case 2 < 2 − 2k < 4, and

S = 2π
∫ 1

0
x
√

1+ k2x2(k−1) dx

= 2π
∫ 1

0

√

x2−2k + k2 xk dx

< 2π
√

1+ k2

∫ 1

0
xk dx <∞.

Thus the area is finite if and only if k > −1.

36. S = 2π
∫ 1

0
|x |

√

1+ 1

x2
dx

= 2π
∫ 1

0

√

x2 + 1 dx Let x = tan θ

dx = sec2 θ dθ

= 2π
∫ π/4

0
sec3 θ dθ

= π
(

sec θ tan θ + ln | sec θ + tan θ |
)
∣
∣
∣
∣

π/4

0

= π [
√

2+ ln(
√

2+ 1)] sq. units.

37. a) Volume V = π ∫∞
1

dx

x2 = π cu. units.

b) The surface area is

S = 2π
∫ ∞

1

1

x

√

1 + 1

x4 dx

> 2π
∫ ∞

1

dx

x
= ∞.

c) Covering a surface with paint requires applying a
layer of paint of constant thickness to the surface.
Far to the right, the horn is thinner than any pre-
scribed constant, so it can contain less paint than
would be required to cover its surface.

Section 7.4 Mass, Moments, and
Centre of Mass (page 394)

1. The mass of the wire is

m =
∫ L

0
δ(s) ds =

∫ L

0
sin

πs

L
ds

= − L

π
cos

πs

L

∣
∣
∣
∣

L

0
= 2L

π
.

Since δ(s) is symmetric about s = L/2 (that is,
δ((L/2)− s) = δ((L/2)+ s)), the centre of mass is at the
midpoint of the wire: s̄ = L/2.

2. A slice of the wire of width dx at x has volume
dV = π(a + bx)2 dx . Therefore the mass of the whole
wire is

m =
∫ L

0
δ0π(a + bx)2 dx

= δ0π
∫ L

0
(a2 + 2abx + b2x2) dx

= δ0π
(

a2 L + abL2 + 1

3
b2L3

)

.

Its moment about x = 0 is

Mx=0 =
∫ L

0
xδ0π(a + bx)2 dx

= δ0π
∫ L

0
(a2x + 2abx2 + b2x3) dx

= δ0π
(

1

2
a2 L2 + 2

3
abL3 + 1

4
b2L4

)

.

Thus, the centre of mass is

x̄ =
δ0π

(
1

2
a2L2 + 2

3
abL3 + 1

4
b2L4

)

δ0π

(

a2 L + abL2 + 1

3
b2L3

)

=
L

(
1

2
a2 + 2

3
abL + 1

4
b2L2

)

a2 + abL + 1

3
b2L2

.
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3. The mass of the plate is m = δ0 × area = πδ0a2

4
.

The moment about x = 0 is

Mx=0 =
∫ a

0
xδ0

√

a2 − x2 dx Let u = a2 − x2

du = −2x dx

= δ0

2

∫ a2

0

√
u du

= δ0

2

2

3
u3/2

∣
∣
∣
∣

a2

0
= δ0a3

3
.

Thus x̄ = Mx=0

m
= δ0a3

3

4

πδ0a2 =
4a

3π
. By symmetry,

ȳ = x̄ . Thus the centre of mass of the plate is
(

4a

3π
,

4a

3π

)

.

y

x

dx
x a

y=
√

a2−x2

Fig. 7.4.3

4. A vertical strip has area d A = √a2 − x2 dx . Therefore,
the mass of the quarter-circular plate is

m =
∫ a

0
(δ0x)

√

a2 − x2 dx Let u = a2 − x2

du = −2x dx

= 1

2
δ0

∫ a2

0

√
u du = 1

2
δ0

(
2

3
u3/2

)∣
∣
∣
∣

a2

0
= 1

3
δ0a3.

The moment about x = 0 is

Mx=0 =
∫ a

0
δ0x2

√

a2 − x2 dx Let x = a sin θ

dx = a cos θ dθ

= δ0a4
∫ π/2

0
sin2 θ cos2 θ dθ

= δ0a4

4

∫ π/2

0
sin2 2θ dθ

= δ0a4

8

∫ π/2

0
(1− cos 4θ) dθ = πδ0a4

16
.

The moment about y = 0 is

My=0 = 1

2
δ0

∫ a

0
x(a2 − x2) dx

= 1

2
δ0

(
a2x2

2
− x4

4

)∣
∣
∣
∣

a

0
= 1

8
a4δ0.

Thus, x̄ = 3

16
πa and ȳ = 3

8
a. Hence, the centre of mass

is located at (
3

16
πa,

3

8
a).

5. The mass of the plate is

m = 2
∫ 4

0
ky

√

4− y dy Let u = 4− y

du = −dy

= 2k
∫ 4

0
(4 − u)u1/2 du

= 2k

(
8

3
u3/2 − 2

5
u5/2

)∣
∣
∣
∣

4

0
= 256k

15
.

By symmetry, Mx=0 = 0, so x̄ = 0.

My=0 = 2
∫ 4

0
ky2

√

4 − y dy Let u = 4− y

du = −dy

= 2k
∫ 4

0
(16u1/2 − 8u3/2 + u5/2) du

= 2k

(
32

3
u3/2 − 16

5
u5/2 + 2

7
u7/2

)∣
∣
∣
∣

4

0
= 4096k

105
.

Thus ȳ = 4096k

105
· 15

256k
= 16

7
. The centre of mass of the

plate is (0, 16/7).
y

x

2−2

density ky

x=√4−y

4

Fig. 7.4.5

6. A vertical strip at h has area d A = (2 − 2
3 h) dh. Thus,

the mass of the plate is

m =
∫ 3

0
(5h)

(

2− 2

3
h

)

dh = 10
∫ 3

0

(

h − h2

3

)

dh

= 10

(
h2

2
− h3

9

)∣
∣
∣
∣

3

0
= 15 kg.

The moment about x = 0 is

Mx=0 = 10
∫ 3

0

(

h2 − h3

3

)

dh

= 10

(
h3

3
− h4

12

)∣
∣
∣
∣

3

0
= 45

2
kg-m.
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The moment about y = 0 is

My=0 = 10
∫ 3

0

1

2

(

2 − 2

3
h

)(

h − 1

3
h2

)

dh

= 10
∫ 3

0

(

h − 2

3
h2 + 1

9
h3

)

dh

= 10

(
h2

2
− 2h3

9
+ h4

36

)∣
∣
∣
∣

3

0
= 15

2
kg-m.

Thus, x̄ =

(
45

2

)

15
= 3

2
and ȳ =

(
15

2

)

15
= 1

2
. The centre

of mass is located at (3
2 ,

1
2 ).

y

x

dh

h

y=2− 2
3 x

3

2

Fig. 7.4.6

7. The mass of the plate is

m =
∫ a

0
kx a dx = ka3

2
.

By symmetry, ȳ = a/2.

Mx=0 =
∫ a

0
kx2 a dx = ka4

3
.

Thus x̄ = ka4

3
· 2

ka3 =
2a

3
. The centre of mass of the

plate is

(
2a

3
,

a

2

)

.

y

xa

density kx

a

Fig. 7.4.7

8. A vertical strip has area d A = 2

(
a√
2
− r

)

dr . Thus, the

mass is

m = 2
∫ a/

√
2

0
kr

[

2

(
a√
2
− r

)]

dr

= 4k
∫ a/

√
2

0

(
a√
2

r − r2
)

dr = k

3
√

2
a3 g.

Since the mass is symmetric about the y-axis, and the
plate is symmetric about both the x- and y-axis, therefore
the centre of mass must be located at the centre of the
square.

y

x

y= a√
2
−x

a√
2

a√
2

r
dr

Fig. 7.4.8

9. m =
∫ b

a
δ(x)

(

g(x)− f (x)
)

dx

Mx=0 =
∫ b

a
xδ(x)

(

g(x)− f (x)
)

dx

My=0 = 1

2

∫ b

a
xδ(x)

(

(g(x))2 − ( f (x))2
)

dx

Centre of mass:

(
Mx=0

m
,

My=0

m

)

.

y

x

density ρ(x)

y=g(x)

y= f (x)

ba

Fig. 7.4.9

10. The slice of the brick shown in the figure has volume
dV = 50 dx . Thus, the mass of the brick is

m =
∫ 20

0
kx50 dx = 25kx2

∣
∣
∣

20

0
= 10000k g.

The moment about x = 0, i.e., the yz-plane, is

Mx=0 = 50k
∫ 20

0
x2 dx = 50

3
kx3

∣
∣
∣

20

0

= 50

3
(8000)k g-cm.
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Thus, x̄ =
50

3
(8000)k

10000k
= 40

3
. Since the density is inde-

pendent of y and z, ȳ = 5

2
and z̄ = 5. Hence, the centre

of mass is located on the 20 cm long central axis of the
brick, two-thirds of the way from the least dense 10 × 5
face to the most dense such face.

dx

x 20

5

10
z

y

x

Fig. 7.4.10

11. Choose axes through the centre of the ball as shown in
the following figure. The mass of the ball is

m =
∫ R

−R
(y + 2R)π(R2 − y2) dy

= 4π R

(

R2 y − y3

3

)∣
∣
∣
∣

R

0
= 8

3
π R4 kg.

By symmetry, the centre of mass lies along the y-axis;
we need only calculate ȳ.

My=0 =
∫ R

−R
y(y + 2R)π(R2 − y2) dy

= 2π
∫ R

0
y2(R2 − y2) dy

= 2π

(

R2 y3

3
− y5

5

)∣
∣
∣
∣

R

0
= 4

15
π R5.

Thus ȳ = 4π R5

15
· 3

8π R4 =
R

10
. The centre of mass is

on the line through the centre of the ball perpendicular to
the plane mentioned in the problem, at a distance R/10
from the centre of the ball on the side opposite to the
plane.

y

x

y+2R

−R

−2R

y

Fig. 7.4.11

12. A slice at height z has volume dV = πy2 dz and density
kz g/cm3. Thus, the mass of the cone is

m =
∫ b

0
kzπy2 dz

= πka2
∫ b

0
z

(

1− z

b

)2

dz

= πka2
(

z2

2
− 2z3

3b
+ z4

4b2

)∣
∣
∣
∣

b

0

= 1

12
πka2b2 g.

The moment about z = 0 is

Mz=0 = πka2
∫ b

0
z2

(

1− z

b

)2

dz = 1

30
πka2b3 g-cm.

Thus, z̄ = 2b

5
. Hence, the centre of mass is on the axis

of the cone at height 2b/5 cm above the base.

dz

y=a
(
1− z

b

)

b
z

z

a
y

Fig. 7.4.12

13. By symmetry, ȳ = 0.
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x

y

z

x

y

z

a
a

−a

z
√

a2−z2

a

Fig. 7.4.13

A horizontal slice of the solid at height z with thickness
dz is a half-disk of radius

√
a2 − z2 with centre of mass

at x̄ = 4
√

a2 − z2

3π
, by Exercise 3 above. Its mass is

dm = δ0z dz
π

2
(a2 − z2),

and its moment about x = 0 is

d Mx=0 = dm x̄ = πδ0

2
z(a2 − z2)

4
√

a2 − z2

3π

= 2δ0
3

z(a2 − z2)3/2.

Thus the mass of the solid is

m = πδ0

2

∫ a

0
(a2z − z3) dz

= πδ0

2

(
a2z2

2
− z4

4

)∣
∣
∣
∣

a

0
= πδ0a4

8
.

Also,

Mz=0 = πδ0

2

∫ a

0
(a2z2 − z4) dz

= πδ0

2

(

a2z3

3
− z5

5

)∣
∣
∣
∣

a

0
= πδ0a5

15
,

and z̄ = πδ0a5

15
· 8

πδ0a4 =
8a

15
.

Finally,

Mx=0 = 2δ0
3

∫ a

0
z(a2 − z2)3/2 dz Let u = a2 − z2

du = −2z dz

= δ0

3

∫ a2

0
u3/2 du

= δ0

3

(
2

5
u5/2

)∣
∣
∣
∣

a2

0
= 2δ0a5

15
,

so x̄ = 2δ0a5

15
· 8

πδ0a4 =
16a

15
.

The centre of mass is

(
16a

15
, 0,

8a

15

)

.

14. Assume the cone has its base in the xy-plane and its
vertex at height b on the z-axis. By symmetry, the cen-
tre of mass lies on the z-axis. A cylindrical shell of
thickness dx and radius x about the z-axis has height
z = b(1 − (x/a)). Since it’s density is constant kx , its
mass is

dm = 2πbkx2
(

1− x

a

)

dx .

Also its centre of mass is at half its height,

ȳshell = b

2

(

1− x

a

)

.

Thus its moment about z = 0 is

d Mz=0 = ȳshell dm = πbkx2
(

1 − x

a

)2
dx .

Hence

m =
∫ a

0
2πbkx2

(

1− x

a

)

dx = πkba3

6

Mz=0 =
∫ a

0
πbkx2

(

1− x

a

)2
dx = πkb2a3

30

and z̄ = Mz=0/m = b/5. The centre of mass is on the
axis of the cone at height b/5 cm above the base.

15.
y

x

ds

θ dθ
a−a s

x2+y2=a2

Fig. 7.4.15

Consider the area element which is the thin half-ring
shown in the figure. We have

dm = ks πs ds = kπ s2 ds.

Thus, m = kπ

3
a3.

Regard this area element as itself composed of smaller el-
ements at positions given by the angle θ as shown. Then

d My=0 =
(∫ π

0
(s sin θ)s dθ

)

ks ds

= 2ks3 ds,

My=0 = 2k
∫ a

0
s3 ds = ka4

2
.
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Therefore, ȳ = ka4

2
· 3

kπa3
= 3a

2π
. By symmetry, x̄ = 0.

Thus, the centre of mass of the plate is

(

0,
3a

2π

)

.

16.
y

x

ds

s

θ

L
π

Fig. 7.4.16

The radius of the semicircle is
L

π
. Let s measure the

distance along the wire from the point where it leaves
the positive x-axis. Thus, the density at position s is

δδ(s) = sin
(πs

L

)

g/cm. The mass of the wire is

m =
∫ L

0
sin

πs

L
ds = − L

π
cos

πs

L

∣
∣
∣
∣

L

0
= 2L

π
g.

Since an arc element ds at position s is at height

y = L

π
sin θ = L

π
sin

πs

L
, the moment of the wire about

y = 0 is

My=0 =
∫ L

0

L

π
sin2 πs

L
ds Let θ = πs/L

dθ = πds/L

=
(

L

π

)2 ∫ π

0
sin2 θ dθ

= L2

2π2

(

θ − sin θ cos θ
)
∣
∣
∣
∣

π

0
= L2

2π
g-cm.

Since the wire and the density function are both symmet-
ric about the y-axis, we have Mx=0 = 0.

Hence, the centre of mass is located at

(

0,
L

4

)

.

17. m =
∫ ∞

0
Ce−kr2

(4πr2) dr

= 4πC
∫ ∞

0
r2e−kr2

dr Let u = √k r

du = √k dr

= 4πC

k3/2

∫ ∞

0
u2e−u2

du

U = u

dU = du

dV = ue−u2
du

V = − 1
2 e−u2

= 4πC

k3/2 lim
R→∞

(

−ue−u2

2

∣
∣
∣
∣

R

0
+ 1

2

∫ R

0
e−u2

du

)

= 4πC

k3/2

(

0 + 1

2

∫ ∞

0
e−u2

du

)

= 4πC

k3/2

√
π

4
= C

(π

k

)3/2 ≈ 5.57C

k3/2 .

18. r̄ = 1

m

∫ ∞

0
rCe−kr2

(4πr2) dr

= 4πC

Cπ3/2k−3/2

∫ ∞

0
r3e−kr2

dr Let u = kr2

du = 2kr dr

= 4k3/2
√
π

1

2k2

∫ ∞

0
ue−u du

U = u

dU = du

dV = e−u du

V = −e−u

= 2√
πk

lim
R→∞

(

−ue−u
∣
∣
∣
∣

R

0
+

∫ R

0
e−u du

)

= 2√
πk

(

0+ lim
R→∞(e

0 − e−R
)

= 2√
πk
.

Section 7.5 Centroids (page 399)

1. A = πr2

4

Mx=0 =
∫ r

0
x
√

r2 − x2 dx Let u = r2 − x2

du = −2x dx

= 1

2

∫ r2

0
u1/2 du = u3/2

3

∣
∣
∣
∣

r2

0
= r3

3

x̄ = r3

3
· 4

πr2
= 4r

3π
= ȳ by symmetry.

The centroid is

(
4r

3π
,

4r

3π

)

.
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y

x

y=
√

r2−x2

dx

x r

r

Fig. 7.5.1

2. By symmetry, x̄ = 0. A horizontal strip at y has mass
dm = 2

√
9− y dy and moment d My=0 = 2y

√
9− y dy

about y = 0. Thus,

m = 2
∫ 9

0

√

9− y dy = −2

(
2

3

)

(9 − y)3/2
∣
∣
∣
∣

9

0
= 36

and

My=0 = 2
∫ 9

0
y
√

9− y dy Let u2 = 9− y

2u du = −dy

= 4
∫ 3

0
(9u2 − u4) du = 4(3u3 − 1

5 u5)

∣
∣
∣
∣

3

0
= 648

5
.

Thus, ȳ = 648

5 × 36
= 18

5
. Hence, the centroid is at

(

0,
18

5

)

.

y

x

dy y

y=9−x2
9

−3 3

Fig. 7.5.2

3. The area and moments of the region are

A =
∫ 1

0

dx√
1+ x2

Let x = tan θ

dx = sec2 θ dθ

=
∫ π/4

0
sec θ dθ

= ln | sec θ + tan θ |
∣
∣
∣
∣

π/4

0
= ln(1+√2)

Mx=0 =
∫ 1

0

x dx√
1+ x2

=
√

1+ x2

∣
∣
∣
∣

1

0
= √2− 1

My=0 = 1

2

∫ 1

0

dx

1+ x2
= 1

2
tan−1 x

∣
∣
∣
∣

1

0
= π

8
.

Thus x̄ =
√

2 − 1

ln(1 +√2)
, and ȳ = π

8 ln(1 +√2)
. The

centroid is

( √
2− 1

ln(1+√2)
,

π

8 ln(1+√2)

)

.

y

x

y= 1√
1+x2

1

Fig. 7.5.3

4. The area of the sector is A = 1
8πr2. Its moment about

x = 0 is

Mx=0 =
∫ r/
√

2

0
x2 dx +

∫ r

r/
√

2
x
√

r2 − x2 dx

= r3

6
√

2
− 1

3
(r2 − x2)3/2

∣
∣
∣
∣

r

r/
√

2
= r3

3
√

2
.

Thus, x̄ = r3

3
√

2
× 8

πr2 =
8r

3
√

2π
. By symmetry, the

centroid must lie on the line y = x

(

tan
π

8

)

= x(
√

2− 1).

Thus, ȳ = 8r(
√

2− 1)

3
√

2π
.

y

x

y=x
y=
√

r2−x2

rr√
2

Fig. 7.5.4
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5. By symmetry, x̄ = 0. We have

A = 2
∫
√

3

0

(√

4− x2 − 1
)

dx Let x = 2 sin θ

dx = 2 cos θ dθ

= 2

(

4
∫ π/3

0
cos2 θ dθ −√3

)

= 4(θ + sin θ cos θ)

∣
∣
∣
∣

π/3

0
− 2
√

3

= 4

(

π

3
+
√

3

4

)

− 2
√

3 = 4π

3
−√3

My=0 = 2× 1

2

∫
√

3

0

(√

4− x2 − 1
)2

dx

=
∫
√

3

0

(

5− x2 − 2
√

4− x2
)

dx

= 5
√

3 −√3− 2
∫
√

3

0

√

4− x2 dx

= 4
√

3 − 4

(

π

3
+
√

3

4

)

= 3
√

3 − 4π

3
.

Thus ȳ = 9
√

3− 4π

3
· 3

4π − 3
√

3
= 9
√

3− 4π

4π − 3
√

3
. The

centroid is

(

0,
9
√

3 − 4π

4π − 3
√

3

)

.

y

x√
3−√3

y=
√

4−x2−11

Fig. 7.5.5

6. By symmetry, x̄ = 0. The area is A = 1
2πab. The

moment about y = 0 is

My=0 = 1

2

∫ a

−a
b2

[

1−
(

x

a

)2]

dx = b2
∫ a

0
1− x2

a2 dx

= b2
(

x − x3

3a2

)∣
∣
∣
∣

a

0
= 2

3
ab2.

Thus, ȳ = 2ab2

3
× 2

πab
= 4b

3π
.

y

x

y=b

√

1− x2

a2

dx

a−a x

Fig. 7.5.6

7. The quadrilateral consists of two triangles, T1 and T2,
as shown in the figure. The area and centroid of T1 are
given by

A1 = 4× 1

2
= 2,

x̄1 = 0+ 3+ 4

3
= 7

3
, ȳ1 = 0+ 1+ 0

3
= 1

3
.

The area and centroid of T2 are given by

A2 = 4× 2

2
= 4,

x̄2 = 0+ 2+ 4

3
= 2, ȳ2 = 0− 2+ 0

3
= −2

3
.

It follows that

M1,x=0 = 7

3
× 2 = 14

3

M1,y=0 = 1

3
× 2 = 2

3

M2,x=0 = 2× 4 = 8

M2,y=0 = −2

3
× 4 = −8

3
.

Since areas and moments are additive, we have for the
whole quadrilateral

A = 2+ 4 = 6,

Mx=0 = 14

3
+ 8 = 38

3
, My=0 = 2

3
− 8

3
= −2.

Thus x̄ = 38

3× 6
= 19

9
, and ȳ = −2

6
= −1

3
. The centroid

of the quadrilateral is

(
19

9
,−1

3

)

.

y

x

(3,1)

4

(2,−2)

T1

T2

Fig. 7.5.7

286



INSTRUCTOR’S SOLUTIONS MANUAL SECTION 7.5 (PAGE 399)

8. The region is the union of a half-disk and a triangle. The

centroid of the half-disk is known to be at

(

1,
4

3π

)

and

that of the triangle is at

(
2

3
,−2

3

)

. The area of the semi-

circle is
π

2
and the triangle is 2. Hence,

Mx=0 =
(π

2

)

(1)+ (2)
(

2

3

)

= 3π + 8

6
;

My=0 =
(π

2

)(
4

3π

)

+ (2)
(

−2

3

)

= −2

3
.

Since the area of the whole region is
π

2
+ 2, then

x̄ = 3π + 8

3(π + 4)
and ȳ = − 4

3(π + 4)
.

y

x

y=
√

1−(x−1)2

21

y=x−2

−2

Fig. 7.5.8

9. A circular strip of the surface between heights y and
y + dy has area

d S = 2πx
dy

cos θ
= 2πx

r

x
dy = 2πr dy.

The total surface area is

S = 2πr
∫ r

0
dy = 2πr2.

The moment about y = 0 is

My=0 = 2πr
∫ r

0
y dy = πr(y2)

∣
∣
∣
∣

r

0
= πr3.

Thus ȳ = πr3

2πr2 =
r

2
. By symmetry, the centroid of the

hemispherical surface is on the axis of symmetry of the
hemisphere. It is halfway between the centre of the base
circle and the vertex.

y

x

(x,y)

θ

y

x

θ

dS

r

Fig. 7.5.9

10. By symmetry, x̄ = ȳ = 0. The volume is V = 2
3πr3. A

thin slice of the solid at height z will have volume
dV = πy2 dz = π(r2 − z2) dz. Thus, the moment about
z = 0 is

Mz=0 =
∫ r

0
zπ(r2 − z2) dz

= π
(

r2z2

2
− z4

4

) ∣
∣
∣
∣

r

0
= πr4

4
.

Thus, z̄ = πr4

4
× 3

2πr3 =
3r

8
. Hence, the centroid is

on the axis of the hemisphere at distance 3r/8 from the
base.

y=
√

r2−z2

dz

r

y

z

x

Fig. 7.5.10

11. The cone has volume V = 1
3πr2h. (See the following

figure.) The disk-shaped slice with vertical width dz has

radius y = r
(

1− z

h

)

, and therefore has volume

dV = πr2
(

1− z

h

)2
dz = π r2

h2
(h − z)2 dz.

We have

Mz=0 = πr2

h2

∫ h

0
z(h − z)2 dz Let u = h − z

du = −dz

= πr2

h2

∫ h

0
(h − u)u2 du

= πr2

h2

(
hu3

3
− u4

4

)∣
∣
∣
∣

h

0
= πr2h2

12
.

Therefore z̄ = πr2h2

12
· 3

πr2h
= h

4
. The centroid of the

solid cone is on the axis of the cone, at a distance above
the base equal to one quarter of the height of the cone.
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dz

y=r
(
1− z

h

)

h
z

z

r
y

Fig. 7.5.11

12. A band at height z with vertical width dz has radius

y = r

(

1− z

h

)

, and has actual (slant) width

ds =
√

1+
(

dy

dz

)2

dz =
√

1+ r2

h2 dz.

Its area is

d A = 2πr
(

1 − z

h

)

√

1+ r2

h2 dz.

Thus the area of the conical surface is

A = 2πr

√

1+ r2

h2

∫ h

0

(

1− z

h

)

dz = πr
√

r2 + h2.

The moment about z = 0 is

Mz=0 = 2πr

√

1+ r2

h2

∫ h

0
z

(

1− z

h

)

dz

= 2πr

√

1+ r2

h2

(
z2

2
− z3

3h

)∣
∣
∣
∣

h

0
= 1

3
πrh

√

r2 + h2.

Thus, z̄ = πrh
√

r2 + h2

3
× 1

πr
√

r2 + h2
= h

3
. By

symmetry, x̄ = ȳ = 0. Hence, the centroid is on the axis
of the conical surface, at distance h/3 from the base.

13. By symmetry, x̄ = π

2
. The area and y-moment of the

region are given by

A =
∫ π

0
sin x dx = 2

My=0 = 1

2

∫ π

0
sin2 x dx

= 1

4
(x − sin x cos x)

∣
∣
∣
∣

π

0
= π

4
.

Thus ȳ = π

8
, and the centroid is

(π

2
,
π

8

)

.

y

x

y=sin x

π/2 π

Fig. 7.5.13

14. The area of the region is

A =
∫ π/2

0
cos x dx = sin x

∣
∣
∣
∣

π/2

0
= 1.

The moment about x = 0 is

Mx=0 =
∫ π/2

0
x cos x dx

U = x

dU = dx

dV = cos x dx

V = sin x

= x sin x

∣
∣
∣
∣

π/2

0
−

∫ π/2

0
sin x dx = π

2
− 1.

Thus, x̄ = π

2
− 1. The moment about y = 0 is

My=0 = 1

2

∫ π/2

0
cos2 x dx

= 1

4

(

x + 1

2
sin 2x

)∣
∣
∣
∣

π/2

0
= π

8
.

Thus, ȳ = π

8
. The centroid is

(
π

2
− 1,

π

8

)

.

y

x

y=cos x1

dx

x π
2

Fig. 7.5.14

15. The arc has length L = πr

2
. By symmetry, x̄ = ȳ. An

element of the arc between x and x + dx has length

ds = dx

sin θ
= r dx

y
= r dx√

r2 − x2
.

288



INSTRUCTOR’S SOLUTIONS MANUAL SECTION 7.5 (PAGE 399)

Thus

Mx=0 =
∫ r

0

xr dx√
r2 − x2

= −r
√

r2 − x2

∣
∣
∣
∣

r

0
= r2.

Hence x̄ = r2 · 2

πr
= 2r

π
, and the centroid is

(
2r

π
,

2r

π

)

.

y

x

ds

x2+y2=r2
r

r

θ

x x+dx r

Fig. 7.5.15

16. The solid S in question consists of a solid cone C with
vertex at the origin, height 1, and top a circular disk of
radius 2, and a solid cylinder D of radius 2 and height
1 sitting on top of the cone. These solids have volumes
VC = 4π/3, VD = 4π , and VS = VC + VD = 16π/3.

By symmetry, the centroid of the solid lies on its verti-
cal axis of symmetry; let us continue to call this the y-
axis. We need only determine ȳS . Since D lies between
y = 1 and y = 2, its centroid satisfies ȳD = 3/2. Also,
by Exercise 11, the centroid of the solid cone satisfies
ȳC = 3/4. Thus C and D have moments about y = 0:

MC,y=0 =
(

4π

3

)(
3

4

)

= π, MD,y=0 = (4π)
(

3

2

)

= 6π.

Thus MS,y=0 = π + 6π = 7π , and
z̄S = 7π/(16π/3) = 21/16. The centroid of the solid S
is on its vertical axis of symmetry at height 21/16 above
the vertex of the conical part.

17. The region in figure (a) is the union of a rectangle of
area 2 and centroid (1, 3/2) and a triangle of area 1 and
centroid (2/3, 2/3). Therefore its area is 3 and its cen-
troid is (x̄, ȳ), where

3x̄ = 2(1) + 1

(
2

3

)

= 8

3

3ȳ = 2

(
3

2

)

+ 1

(
2

3

)

= 11

3
.

Therefore, the centroid is (8/9, 11/9).

18. The region in figure (b) is the union of a square of area
(
√

2)2 = 2 and centroid (0, 0) and a triangle of area 1/2
and centroid (2/3, 2/3). Therefore its area is 5/2 and its
centroid is (x̄, ȳ), where

5

2
x̄ = 2(0)+ 1

2

(
2

3

)

= 1

3
.

Therefore, x̄ = ȳ = 2/15, and the centroid is
(2/15, 2/15).

19. The region in figure (c) is the union of a half-disk of
area π/2 and centroid (0, 4/(3π)) (by Example 1) and a
triangle of area 1 and centroid (0,−1/3). Therefore its
area is (π/2) + 1 and its centroid is (x̄, ȳ), where x̄ = 0
and

π + 2

2
ȳ = π

2

(
4

3π

)

+ 1

(−1

3

)

= 1

3
.

Therefore, the centroid is (0, 2/[3(π + 2)]).

20. The region in figure (d) is the union of three half-disks,
one with area π/2 and centroid (0, 4/(3π)), and two
with areas π/8 and centroids (−1/2,−2/(3π)) and
(1/2,−2/(3π)). Therefore its area is 3π/4 and its cen-
troid is (x̄ , ȳ), where

3π

4
(x̄) = π

2
(0)+ π

8

(−1

2

)

+ π
8

(
1

2

)

= 0

3π

4
(ȳ) = π

2

(
4

3π

)

+ π
8

(−2

3π

)

+ π
8

(−2

3π

)

= 1

2
.

Therefore, the centroid is (0, 2/(3π)).

21. By symmetry the centroid is (1,−2).
y

x

(1,−2)

(1,1)
y=2x−x2

y=−2

Fig. 7.5.21

22. The line segment from (1, 0) to (0, 1) has centroid (1
2 ,

1
2 )

and length
√

2. By Pappus’s Theorem, the surface area
of revolution about x = 2 is

A = 2π

(

2− 1

2

)√
2 = 3π

√
2 sq. units.

y

x

1

1 2 3

r̄

1
2

Fig. 7.5.22
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23. The triangle T has centroid
( 1

3 ,
1
3

)

and area 1
2 . By Pap-

pus’s Theorem the volume of revolution about x = 2
is

V = 1

2
× 2π

(

2− 1

3

)

= 5π

3
cu. units.

y

x

T

1

1

x=2

Fig. 7.5.23

24. The altitude h of the triangle is
s
√

3

2
. Its centroid is at

height
h

3
= s

2
√

3
above the base side. Thus, by Pappus’s

Theorem, the volume of revolution is

V = 2π

(
s

2
√

3

)(

s

2
×
√

3s

2

)

= πs3

4
cu. units.

The centroid of one side is
h

2
= s
√

3

4
above the base.

Thus, the surface area of revolution is

S = 2× 2π

(√
3s

4

)

(s) = s2π
√

3 sq. units.

h

s

s

Fig. 7.5.24

25. For the purpose of evaluating the integrals in this prob-
lem and the next, the definite integral routine in the TI-85
calculator was used. For the region bounded by y = 0
and y = √x cos x between x = 0 and x = π/2, we have

A =
∫ π/2

0

√
x cos x dx ≈ 0.704038

x̄ = 1

A

∫ π/2

0
x3/2 cos x dx ≈ 0.71377

ȳ = 1

2A

∫ π/2

0
x cos2 x dx ≈ 0.26053.

26. The region bounded by y = 0 and y = ln(sin x) between
x = 0 and x = π/2 lies below the x-axis, so

A = −
∫ π/2

0
ln(sin x) dx ≈ 1.088793

x̄ = −1

A

∫ π/2

0
x ln(sin x) dx ≈ 0.30239

ȳ = −1

2A

∫ π/2

0

(

ln(sin x)
)2

dx ≈ −0.93986.

27. The area and moments of the region are

A =
∫ ∞

0

dx

(1 + x)3
= lim

R→∞
−1

2(1+ x)2

∣
∣
∣
∣

R

0
= 1

2

Mx=0 =
∫ ∞

0

x dx

(1 + x)3
Let u = x + 1

du = dx

=
∫ ∞

1

u − 1

u3 du

= lim
R→∞

(

− 1

u
+ 1

2u2

)∣
∣
∣
∣

R

1
= 1 − 1

2
= 1

2

My=0 = 1

2

∫ ∞

0

dx

(1+ x)6
= lim

R→∞
−1

10(1 + x)5

∣
∣
∣
∣

R

0
= 1

10
.

The centroid is
(

1, 1
5

)

.
y

x

1
y=

1

(x + 1)3

Fig. 7.5.27

28. The surface area is given by

S = 2π
∫ ∞

−∞
e−x2

√

1 + 4x2e−2x2 dx . Since

lim
x→±∞ 1+ 4x2e−2x2 = 1, this expression must be bounded

for all x , that is, 1 ≤ 1 + 4x2e−2x2 ≤ K 2 for some con-

stant K . Thus, S ≤ 2πK
∫ ∞

−∞
e−x2

dx = 2Kπ
√
π . The

integral converges and the surface area is finite. Since the
whole curve y = e−x2

lies above the x-axis, its centroid
would have to satisfy ȳ > 0. However, Pappus’s Theorem
would then imply that the surface of revolution would
have infinite area: S = 2π ȳ × (length of curve) = ∞.
The curve cannot, therefore, have any centroid.
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29. By analogy with the formulas for the region a ≤ x ≤ b,
f (x) ≤ y ≤ g(y), the region c ≤ y ≤ d , f (y) ≤ x ≤ g(y)
will have centroid (Mx=0/A, My=0/A), where

A =
∫ d

c

(

g(y)− f (y)
)

dy

Mx=0 = 1

2

∫ d

c

[(

g(y)
)2 −

(

f (y)
)2]

dy

My=0 =
∫ d

c
y
(

g(y)− f (y)
)

dy.

30. Let us take L to be the y-axis and suppose that a plane
curve C lies between x = a and x = b where 0 < a < b.
Thus, r̄ = x̄ , the x-coordinate of the centroid of C. Let
ds denote an arc length element of C at position x . This
arc length element generates, on rotation about L , a cir-
cular band of surface area d S = 2πx ds, so the surface
area of the surface of revolution is

S = 2π
∫ x=b

x=a
x ds = 2πMx=0 = 2π r̄ s.

31. y

x
t
(π/4)− t

P

N

M

L

(π/4)− t

1
t

1

√
2

√
2

Fig. 7.5.31

We need to find the x-coordinate x̄L M N P of the centre of
buoyancy, that is, of the centroid of quadrilateral L M N P.
From various triangles in the figure we can determine the
x-coordinates of the four points:

xL = − sec t, xP = sec t,

xM = − sec t + (1+ tan t) sin t

xN = sec t + (1 − tan t) sin t

Triangle L M N has area 1+ tan t , and the x-coordinate of
its centroid is

x̄L M N

= − sec t − sec t + (1+ tan t) sin t + sec t + (1− tan t) sin t

3

= 2 sin t − sec t

3
.

Triangle L N P has area 1 − tan t , and the x-coordinate of
its centroid is

x̄L N P = − sec t + sec t + sec t + (1 − tan t) sin t

3

= sec t + (1 − tan t) sin t

3
.

Therefore,

x̄L M N P = 1

6

[

(2 sin t − sec t)(1 + tan t)

+ (sec t + sin t − sin t tan t)(1 − tan t)
]

= 1

6

[

3 sin t − 2 sec t tan t + sin t tan2 t
]

= sin t

6

[

3− 2

cos2 t
+ sin2 t

cos2 t

]

= sin t

6 cos2 t

[

3 cos2 t + sin2 t − 2
]

= sin t

6 cos2 t

[

2 cos2 t − 1
]

= sin t

6 cos2 t

[

cos(2t)
]

which is positive provided 0 < t < π/4. Thus the beam
will rotate counterclockwise until an edge is on top.

Section 7.6 Other Physical Applications
(page 406)

1. a) The pressure at the bottom is p = 9, 800 × 6 N/m2.
The force on the bottom is 4× p = 235, 200 N.

b) The pressure at depth h metres is 9, 800h N/m2.
The force on a strip between depths h and h+ dh on
one wall of the tank is

d F = 9, 800h × 2 dh = 19, 600 h dh N.

Thus, the total force on one wall is

F = 19, 600
∫ 6

0
h dh = 19, 600 × 18 = 352, 800 N.
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dh
h

2 m

2 m

6 m

Fig. 7.6.1

2. A vertical slice of water at position y with thickness dy
is in contact with the botttom over an area
8 sec θ dy = 4

5

√
101 dy m2, which is at depth

x = 1
10 y + 1 m. The force exerted on this area is then

d F = ρg( 1
10 y + 1) 4

5

√
101 dy. Hence, the total force

exerted on the bottom is

F = 4

5

√
101 ρg

∫ 20

0

(
1

10
y + 1

)

dy

= 4

5

√
101 (1000)(9.8)

(
y2

20
+ y

)∣
∣
∣
∣

20

0

≈ 3.1516× 106 N.

20

3

1

dy

θ

y

x

x= y
10+1

y

Fig. 7.6.2

3. A strip along the slant wall of the dam between depths h
and h + dh has area

d A = 200 dh

cos θ
= 200× 26

24
dh.

The force on this strip is

d F = 9, 800 h d A ≈ 2.12× 106 h dh N.

Thus the total force on the dam is

F = 2.12× 106
∫ 24

0
h dh ≈ 6.12 × 108 N.

h
h+dh

24

θ

26

Fig. 7.6.3

4. The height of each triangular face is 2
√

3 m and the
height of the pyramid is 2

√
2 m. Let the angle between

the triangular face and the base be θ , then sin θ =
√

2

3

and cos θ = 1√
3

.

2
√

32
√

2

2

4

4
θ

Fig. 7.6.4

θ
x=√2y+10−2

√
2

dy

10−2
√

2

x

10 dy sec θ=√3dy

4

front view of

one face

side view of one face

60◦
2

y

Fig. 7.6.4

A vertical slice of water with thickness dy at a distance
y from the vertex of the pyramid exerts a force on the
shaded strip shown in the front view, which has area
2
√

3y dy m2 and which is at depth
√

2y + 10 − 2
√

2
m. Hence, the force exerted on the triangular face is

F = ρg
∫ 2

0
(
√

2y + 10− 2
√

2)2
√

3y dy

= 2
√

3(9800)

[√
2

3
y3 + (5−√2)y2

]∣
∣
∣
∣

2

0

≈ 6.1495 × 105 N.
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5. The unbalanced force is

F = 9, 800 × 5
∫ 20

6
h dh

= 9, 800 × 5

(
h2

2

)∣
∣
∣
∣

20

6
≈ 8.92 × 106 N.

6 m

20 m

5 m

Fig. 7.6.5

6. The spring force is F(x) = kx , where x is the amount
of compression. The work done to compress the spring 3
cm is

100 N·cm = W =
∫ 3

0
kx dx = 1

2
kx2

∣
∣
∣
∣

3

0
= 9

2
k.

Hence, k = 200

9
N/cm. The work necessary to compress

the spring a further 1 cm is

W =
∫ 4

3
kx dx =

(
200

9

)
1

2
x2

∣
∣
∣
∣

4

3
= 700

9
N·cm.

7. A layer of water in the tank between depths h and h+dh
has weight d F = ρg dV = 4ρg dh. The work done
to raise the water in this layer to the top of the tank is
dW = h d F = 4ρgh dh. Thus the total work done to
pump all the water out over the top of the tank is

W = 4ρg
∫ 6

0
h dh = 4× 9, 800 × 18 ≈ 7.056 × 105 N·m.

8. The horizontal cross-sectional area of the pool at depth h
is

A(h) =
{

160, if 0 ≤ h ≤ 1;
240− 80h, if 1 < h ≤ 3.

The work done to empty the pool is

W = ρg
∫ 3

0
h A(h) dh

= ρg

[∫ 1

0
160h dh +

∫ 3

1
240h − 80h2 dh

]

= 9800

[

80h2
∣
∣
∣
∣

1

0
+

(

120h2 − 80

3
h3

)∣
∣
∣
∣

3

1

]

= 3.3973 × 106 N·m.

8

1

20

A(h)

h

3

Fig. 7.6.8

9. A layer of water between depths y and y + dy
has volume dV = π(a2 − y2) dy and weight
d F = 9, 800π(a2 − y2) dy N. The work done to raise
this water to height h m above the top of the bowl is

dW = (h + y) d F = 9, 800π(h + y)(a2 − y2) dy N·m.

Thus the total work done to pump all the water in the
bowl to that height is

W = 9, 800π
∫ a

0
(ha2 + a2 y − hy2 − y3) dy

= 9, 800π

[

ha2 y + a2 y2

2
− hy3

3
− y4

4

]∣
∣
∣
∣

a

0

= 9, 800π

[
2a3h

3
+ a4

4

]

= 9, 800πa3 3a + 8h

12
= 2450πa3

(

a + 8h

3

)

N·m.

dy
y a

Fig. 7.6.9
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10. Let the time required to raise the bucket to height h m
be t minutes. Given that the velocity is 2 m/min, then

t = h

2
. The weight of the bucket at time t is

16 kg − (1 kg/min)(t min) = 16 − h

2
kg. Therefore,

the work done required to move the bucket to a height of
10 m is

W = g
∫ 10

0

(

16 − h

2

)

dh

= 9.8

(

16h − h2

4

)∣
∣
∣
∣

10

0
= 1323 N·m.

Section 7.7 Applications in Business,
Finance, and Ecology (page 409)

1. Cost = $4, 000 +
∫ 1,000

0

(

6− 2x

103 +
6x2

106

)

dx

= $11, 000.

2. The number of chips sold in the first year was

1, 000
∫ 52

0
te−t/10 dt = 100, 000− 620, 000e−26/5

that is, about 96,580.

3. The monthly charge is

∫ x

0

4

1 +√t
dt let t = u2

=8
∫ √x

0

u

1+ u
du = 8

∫ √x

0

(

1− 1

1+ u

)

du

=$8
(√

x − ln(1 +√x)
)

.

4. The price per kg at time t (years) is $10 + 5t . Thus the
revenue per year at time t is 400(10 + 5t)/(1 + 0.1t)
$/year. The total revenue over the year is

∫ 1

0

400(10 + 5t)

1+ 0.1t
dt ≈ $4, 750.37.

5. The present value of continuous payments of $1,000 per
year for 10 years at a discount rate of 2% is

V =
∫ 10

0
1,000e−0.02t dt = 1,000

−0.02
e−0.02t

∣
∣
∣
∣

10

0
= $9,063.46.

6. The present value of continuous payments of $1,000 per
year for 10 years at a discount rate of 5% is

V =
∫ 10

0
1,000e−0.05t dt = 1,000

−0.05
e−0.05t

∣
∣
∣
∣

10

0
= $7,869.39.

7. The present value of continuous payments of $1,000 per
year for 10 years beginning 2 years from now at a dis-
count rate of 8% is

V =
∫ 12

2
1,000e−0.08t dt = 1,000

−0.08
e−0.08t

∣
∣
∣
∣

12

2
= $5,865.64.

8. The present value of continuous payments of $1,000 per
year for 25 years beginning 10 years from now at a dis-
count rate of 5% is

V =
∫ 35

10
1,000e−0.05t dt = 1,000

−0.05
e−0.05t

∣
∣
∣
∣

35

10
= $8,655.13.

9. The present value of continuous payments of $1,000 per
year for all future time at a discount rate of 2% is

V =
∫ ∞

0
1,000e−0.02t dt = 1, 000

−0.02
= $50, 000.

10. The present value of continuous payments of $1,000 per
year beginning 10 years from now and continuing for all
future time at a discount rate of 5% is

V =
∫ ∞

10
1,000e−0.05t dt = 1,000

−0.05
e−0.5 = $12,130.61.

11. After t years, money is flowing at $(1,000 + 100t) per
year. The present value of 10 years of payments dis-
counted at 5% is

V = 100
∫ 10

0
(10 + t)e−0.05t dt

U = 10+ t

dU = dt

dV = e−0.05t dt

V = e−0.05t

−0.05

= 100(10 + t)
e−0.05t

−0.05

∣
∣
∣
∣

10

0
+ 100

0.05

∫ 10

0
e−0.05t dt

= −4261.23 + 100

−(0.05)2
e−0.05t

∣
∣
∣
∣

10

0
= $11, 477.54.

294



INSTRUCTOR’S SOLUTIONS MANUAL SECTION 7.7 (PAGE 409)

12. After t years, money is flowing at $1,000(1.1)t per year.
The present value of 10 years of payments discounted at
5% is

V = 1,000
∫ 10

0
et ln(1.1)e−0.05t dt

= 1,000

ln(1.1)− 0.05
et (ln(1.1)−0.05

∣
∣
∣
∣

10

0
= $12, 650.23.

13. The amount after 10 years is

A = 5, 000
∫ 10

0
e0.05t dt = 5,000

0.05
e0.05t

∣
∣
∣
∣

10

0
= $64,872.13.

14. Let T be the time required for the account balance to
reach $1,000,000. The $5, 000(1.1)t dt deposited in the
time interval [t, t + dt] grows for T − t years, so the
balance after T years is

∫ T

0
5, 000(1.1)t (1.06)T−t dt = 1, 000, 000

(1.06)T
∫ T

0

(
1.1

1.06

)t

dt = 1, 000, 000

5, 000
= 200

(1.06)T

ln(1.1/1.06)

[(
1.1

1.06

)T

− 1

]

= 200

(1.1)T − (1.06)T = 200 ln
1.1

1.06
.

This equation can be solved by Newton’s method or
using a calculator “solve” routine. The solution is
T ≈ 26.05 years.

15. Let P(τ ) be the value at time τ < t that will grow to
$P = P(t) at time t . If the discount rate at time τ is
δ(τ), then

d

dτ
P(τ ) = δ(τ)P(τ ),

or, equivalently,

d P(τ )

P(τ )
= δ(τ) dτ.

Integrating this from 0 to t , we get

ln P(t)− ln P(0) =
∫ t

0
δ(τ) dτ = λ(t),

and, taking exponentials of both sides and solving for
P(0), we get

P(0) = P(t)e−λ(t) = Pe−λ(t).

The present value of a stream of payments due at a rate
P(t) at time t from t = 0 to t = T is

∫ T

0
P(t)e−λ(t) dt, where λ(t) =

∫ t

0
δ(τ) dτ.

16. The analysis carried out in the text for the logistic growth
model showed that the total present value of future har-
vests could be maximized by holding the population size
x at a value that maximizes the quadratic expression

Q(x) = kx
(

1− x

L

)

− δx .

If the logistic model dx/dt = kx(1 − (x/L)) is replaced
with a more general growth model dx/dt = F(x), ex-
actly the same analysis leads us to maximize

Q(x) = F(x)− δx .

For realistic growth functions, the maximum will occur
where Q′(x) = 0, that is, where F ′(x) = δ.

17. We are given L = 80, 000, k = 0.12, and δ = 0.05.
According to the analysis in the text, the present value of
future harvests will be maximized if the population level
is maintained at

x = (k − δ) L

2k
= 0.07

0.24
(80, 000) = 23, 333.33

The annual revenue from harvesting to keep the popula-
tion at this level (given a price of $6 per fish) is

6(0.12)(23, 333.33)

(

1− 23, 333.33

80, 000

)

= $11, 900.

18. We are given that k = 0.02, L = 150, 000, p = $10, 000.
The growth rate at population level x is

dx

dt
= 0.02x

(

1− x

150, 000

)

.

a) The maximum sustainable annual harvest is

dx

dt

∣
∣
∣
∣
x=L/2

= 0.02(75, 000)(0.5) = 750 whales.

b) The resulting annual revenue is
$750p = $7, 500, 000.

c) If the whole population of 75,000 is harvested and
the proceeds invested at 2%, the annual interest will
be

75, 000($10, 000)(0.02) = $15, 000, 000.
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d) At 5%, the interest would be
(5/2)($15, 000) = $37, 500, 000.

e) The total present value of all future harvesting rev-
enue if the population level is maintained at 75,000
and δ = 0.05 is

∫ ∞

0
e−0.05t7, 500, 000 dt = 7, 500, 000

0.05
= $150, 000, 000.

19. If we assume that the cost of harvesting 1 unit of pop-
ulation is $C(x) when the population size is x , then the
effective income from 1 unit harvested is $(p − C(x)).
Using this expression in place of the constant p in the
analysis given in the text, we are led to choose x to max-
imize

Q(x) =
(

p − C(x)
) [

kx
(

1− x

L

)

− δx
]

.

A reasonable cost function C(x) will increase as x de-
creases (the whales are harder to find), and will exceed
p if x ≤ x0, for some positive population level x0. The
value of x that maximizes Q(x) must exceed x0, so the
model no longer predicts extinction, even for large dis-
count rates δ. However, the optimizing population x may
be so low that other factors not accounted for in the sim-
ple logistic growth model may still bring about extinction
whether it is economically indicated or not.

Section 7.8 Probability (page 421)

1. The expected winnings on a toss of the coin are

$1× 0.49 + $2 × 0.49 + $50 × 0.02 = $2.47.

If you pay this much to play one game, in the long term
you can expect to break even.

2. (a) We need
∑6

n=1 K n = 1. Thus 21K = 1, and
K = 1/21.
(b) Pr(X ≤ 3) = (1/21)(1 + 2+ 3) = 2/7.

3. From the second previous Exercise, the mean winings is
µ = $2.47. Now

σ 2 = 1× 0.49 + 4× 0.49 + 2,500× 0.02 − µ2

≈ 52.45 − 6.10 = 46.35.

The standard deviation is thus σ ≈ $6.81.

4. Since Pr(X = n) = n/21, we have

µ =
6∑

n=1

nPr(X = n) = 1× 1+ 2× 2+ · · · + 6× 6

21
= 13

3
≈ 4.33

σ 2 =
6

∑

n=1

n2Pr(X = n)− µ2 = 12 + 23 + · · · + 63

21
− µ2

= 21− 169

9
= 20

9
≈ 2.22

σ =
√

20

3
≈ 1.49.

5. The mean of X is

µ = 1× 9

60
+ (2+ 3+ 4+ 5)× 1

6
+ 6× 1160 ≈ 3.5833.

The expectation of X2 is

E(X2) = 12× 9

60
+(22+32+42+52)×1

6
+62×1160 ≈ 15.7500.

Hence the standard deviation of X is√
15.75− 3.58332 ≈ 1.7059.

Also Pr(X ≤ 3) = 9

60
+ 2

6
= 29

60
≈ 0.4833.

6. (a) Calculating as we did to construct the probability
function in Example 2, but using the different values for
the probabilities of “1” and “6”, we obtain

f (2) = 9

60
× 9

60
≈ 0.0225

f (3) = 2× 9

60
× 16 = 0.0500

f (4) = 2× 9

60
× 16+ 1

36
= 0.0778

f (5) = 2× 9

60
× 16+ 2

36
= 0.1056

f (6) = 2× 9

60
× 16+ 3

36
= 0.1333

f (7) = 2× 9

60
× 1160 + 4

36
= 0.1661

f (8) = 2× 11

60
× 16+ 3

36
= 0.1444

f (9) = 2× 11

60
× 16+ 2

36
= 0.1167

f (10) = 2× 11

60
× 16+ 1

36
= 0.0889

f (11) = 2× 11

60
× 16 = 0.0611

f (12) = 11

60
× 1160 = 0.0336.
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(b) Multiplying each value f (n) by n and summing, we
get

µ =
12
∑

n=2

n f (n) ≈ 7.1665.

Similarly,

E(X2) =
12
∑

n=2

n2 f (n) ≈ 57.1783,

so the standard deviation of X is

σ =
√

E(X2)− µ2 ≈ 2.4124.

The mean is somewhat larger than the value (7) ob-
tained for the unweighted dice, because the weight-
ing favours more 6s than 1s showing if the roll is
repeated many times. The standard deviation is just
a tiny bit smaller than that found for the unweighted
dice (2.4152); the distribution of probability is just
slightly more concentrated around the mean here.

7. (a) The sample space consists of the eight triples
(H, H, H), (H, H, T ), (H, T, H), (T, H, H),
(H, T, T ), (T, H, T ), (T, T, H), and (T, T, T ).

(b) We have

Pr(H, H, H) = (0.55)3 = 0.166375

Pr(H, H, T ) = Pr(H, T, H) = Pr(T, H, H) = (0.55)2(0.45)

= 0.136125

Pr(H, T, T ) = Pr(T, H, T ) = Pr(T, T, H) = (0.55)(0.45)2

= 0.111375

Pr(T, T, T ) = (0.45)3 = 0.091125.

(c) The probability function f for X is given by

f (0) = (0.45)3 = 0.911125

f (1) = 3 × (0.55)(0.45)2 = 0.334125

f (2) = 3 × (0.55)2(0.45) = 0.408375

f (3) = (0.55)3 = 0.166375.

(d) Pr(X ≥ 1) = 1− Pr(X = 0) = 0.908875.

(e) E(X) = 0× f (0)+1× f (1)+2× f (2)+3× f (3) = 1.6500.

8. The number of red balls in the sack must be
0.6× 20 = 12. Thus there are 8 blue balls.

(a) The probability of pulling out one blue ball is 8/20.
If you got a blue ball, then there would be only 7
blue balls left among the 19 balls remaining in the
sack, so the probability of pulling out a second blue
ball is 7/19. Thus the probability of pulling out two

blue balls is
8

20
× 7

19
= 14

95
.

(b) The sample space for the three ball selection consists
of all eight triples of the form (x, y, z), where each
of x, y, z is either R(ed) or B(lue). Let X be the
number of red balls among the three balls pulled
out. Arguing in the same way as in (a), we calculate

Pr(X = 0) = Pr(B, B, B) = 8

20
× 7

19
× 6

18
= 14

285
≈ 0.0491

Pr(X = 1) = Pr(R, B, B)+ Pr(B, R, B)+ Pr(B, B, R)

= 3× 12

20
× 8

19
× 7

18
= 28

95
≈ 0.2947

Pr(X = 2) = Pr(R, R, B)+ Pr(R, B, R)+ Pr(B, R, R)

= 3× 12

20
× 11

19
× 8

18
= 44

95
≈ 0.4632

Pr(X = 3) = Pr(R, R, R) = 12

20
× 11

19
× 10

18
= 11

57
≈ 0.1930

Thus the expected value of X is

E(X) = 0× 14

285
+ 1× 28

95
+ 2× 44

95
+ 3× 11

57

= 9

5
= 1.8.

9. We have f (x) = Cx on [0, 3].

a) C is given by

1 =
∫ 3

0
Cx dx = C

2
x2

∣
∣
∣
∣

3

0
= 9

2
C.

Hence, C = 2

9
.

b) The mean is

µ = E(X) = 2

9

∫ 3

0
x2 dx = 2

27
x3

∣
∣
∣
∣

3

0
= 2.

Since E(X2) = 2

9

∫ 3

0
x3 dx = 2

36
x4

∣
∣
∣
∣

3

0
= 9

2
, the

variance is

σ 2 = E(X2)− µ2 = 9

2
− 4 = 1

2
,

and the standard deviation is σ = 1/
√

2.

c) We have

Pr(µ− σ ≤ X ≤ µ+ σ) = 2

9

∫ µ+σ

µ−σ
x dx

= (µ+ σ)2 − (µ− σ)2
9

= 4µσ

9
≈ 0.6285.
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10. We have f (x) = Cx on [1, 2].

a) To find C , we have

1 =
∫ 2

1
Cx dx = C

2
x2

∣
∣
∣
∣

2

1
= 3

2
C.

Hence, C = 2

3
.

b) The mean is

µ = E(X) = 2

3

∫ 2

1
x2 dx = 2

9
x3

∣
∣
∣
∣

2

1
= 14

9
≈ 1.556.

Since E(X2) = 2

3

∫ 2

1
x3 dx = 1

6
x4

∣
∣
∣
∣

2

1
= 5

2
, the

variance is

σ 2 = E(X2)− µ2 = 5

2
− 196

81
= 13

162

and the standard deviation is

σ =
√

13

162
≈ 0.283.

c) We have

Pr(µ− σ ≤ X ≤ µ+ σ) = 2

3

∫ µ+σ

µ−σ
x dx

= (µ+ σ)2 − (µ− σ)2
3

= 4µσ

3
≈ 0.5875.

11. We have f (x) = Cx2 on [0, 1].

a) C is given by

1 =
∫ 1

0
Cx2 dx = C

3
x3

∣
∣
∣
∣

1

0
= C

3
.

Hence, C = 3.

b) The mean, variance, and standard deviation are

µ = E(X) = 3
∫ 1

0
x3 dx = 3

4

σ 2 = E(X2)− µ2 = 3
∫ 1

0
x4 dx − 9

16
= 3

5
− 9

16
= 3

80

σ = √

3/80.

c) We have

Pr(µ− σ ≤ X ≤ µ+ σ) = 3
∫ µ+σ

µ−σ
x2 dx

= (µ+ σ)3 − (µ− σ)3

=
(

3

4
+

√

3

80

)3

−
(

3

4
−

√

3

80

)3

≈ 0.668.

12. We have f (x) = C sin x on [0, π ].

a) To find C , we calculate

1 =
∫ π

0
C sin x dx = −C cos x

∣
∣
∣
∣

π

0
= 2C.

Hence, C = 1

2
.

b) The mean is

µ = E(X) = 1

2

∫ π

0
x sin x dx

U = x

dU = dx

dV = sin x dx

V = − cos x

= 1

2

[

−x cos x

∣
∣
∣
∣

π

0
+

∫ π

0
cos x dx

]

= π

2
= 1.571.

Since

E(X2) = 1

2

∫ π

0
x2 sin x dx

U = x2

dU = 2x dx

dV = sin x dx

V = − cos x

= 1

2

[

−x2 cos x

∣
∣
∣
∣

π

0
+ 2

∫ π

0
x cos x dx

]

U = x

dU = dx

dV = cos x dx

V = sin x

= 1

2

[

π2 + 2

(

x sin x

∣
∣
∣
∣

π

0
−

∫ π

0
sin x dx

)]

= 1

2
(π2 − 4).

Hence, the variance is

σ 2 = E(X2)−µ2 = π2 − 4

2
− π

2

4
= π2 − 8

4
≈ 0.467

and the standard deviation is

σ =
√

π2 − 8

4
≈ 0.684.
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c) Then

Pr(µ− σ ≤ X ≤ µ+ σ) = 1

2

∫ µ+σ

µ−σ
sin x dx

= −1

2

[

cos(µ+ σ)− cos(µ− σ)
]

= sinµ sinσ = sin σ ≈ 0.632.

13. We have f (x) = C(x − x2) on [0, 1].

a) C is given by

1 =
∫ 1

0
C(x − x2) dx = C

(
x2

2
− x3

3

) ∣
∣
∣
∣

1

0
= C

6
.

Hence, C = 6.

b) The mean, variance, and standard deviation are

µ = E(X) = 6
∫ 1

0
(x2 − x3) dx = 1

2

σ 2 = E(X2)− µ2 = 6
∫ 1

0
(x3 − x4) dx − 1

4

= 3

10
− 1

4
= 1

20
σ = √

1/20.

c) We have

Pr(µ− σ ≤ X ≤ µ+ σ) = 6
∫ (1/2)+σ

(1/2)−σ
(x − x2) dx

= 6
∫ (1/2)+σ

(1/2)−σ

[

1

4
−

(

x − 1

2

)2
]

dx

Let u = x − 1
2

du = dx

= 12
∫ σ

0

[
1

4
− u2

]

du = 12

[
σ

4
− σ

3

3

]

= 12√
20

[
1

4
− 1

60

]

≈ 0.626.

14. It was shown in Section 6.1 (p. 349) that

∫

xne−x dx = −xne−x + n
∫

xn−1e−x dx .

If In =
∫ ∞

0
xne−x dx , then

In = lim
R→∞−Rne−R + nIn−1 = nIn−1 if n ≥ 1.

Since I0 =
∫ ∞

0
e−x dx = 1, therefore In = n! for n ≥ 1.

Let u = kx ; then

∫ ∞

0
xne−kx dx = 1

kn+1

∫ ∞

0
une−u du = 1

kn+1 In = n!

kn+1 .

Now let f (x) = Cxe−kx on [0,∞).
a) To find C , observe that

1 = C
∫ ∞

0
xe−kx dx = C

k2 .

Hence, C = k2.

b) The mean is

µ = E(X) = k2
∫ ∞

0
x2e−kx dx = k2

(
2

k3

)

= 2

k
.

Since E(X2) = k2
∫ ∞

0
x3e−kx dx = k2

(
6

k4

)

= 6

k2
,

then the variance is

σ 2 = E(X2)− µ2 = 6

k2 −
4

k2 =
2

k2

and the standard deviation is σ =
√

2

k
.

c) Finally,

Pr(µ− σ ≤ X ≤ µ+ σ)
= k2

∫ µ+σ

µ−σ
xe−kx dx Let u = kx

du = k dx

=
∫ k(µ+σ )

k(µ−σ )
ue−u du

= −ue−u
∣
∣
∣
∣

k(µ+σ )

k(µ−σ )
+

∫ k(µ+σ )

k(µ−σ )
e−u du

= −(2+√2)e−(2+
√

2) + (2−√2)e−(2−
√

2)

− e−(2+
√

2) + e−(2−
√

2)

≈ 0.738.

15. a) We have

1 = C
∫ ∞

0
e−x2

dx = C

2

∫ ∞

−∞
e−x2

dx = C
√
π

2
.

Thus C = 2/
√
π .
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b) The mean, variance, and standard deviation are

µ = 2√
π

∫ ∞

0
xe−x2

dx = − e−x2

√
π

∣
∣
∣
∣

∞

0
= 1√

π

σ 2 = − 1

π
+ 2√

π

∫ ∞

0
x2e−x2

dx

U = x

dU = dx

dV = xe−x2
dx

V = − 1
2 e−x2

= − 1

π
+ 2√

π

(

− x

2
e−x2

∣
∣
∣
∣

∞

0
+ 1

2

∫ ∞

0
e−x2

dx

)

= − 1

π
+ 2√

π

(

0+ 1

2
·
√
π

2

)

= 1

2
− 1

π

σ =
√

1

2
− 1

π
≈ 0.426.

c) We have

Pr(µ− σ ≤ X ≤ µ+ σ) = 2√
π

∫ µ+σ

µ−σ
e−x2

dx

Let x = z/
√

2

dx = dz/
√

2

=
√

2

π

∫
√

2(µ+σ )
√

2(µ−σ )
e−z2/2 dz.

But
√

2(µ − σ) ≈ 0.195 and
√

2(µ + σ) ≈ 1.40.
Thus, if Z is a standard normal random variable, we
obtain by interpolation in the table on page 386 in
the text,

Pr(µ− σ ≤ X ≤ µ+ σ) = 2Pr(0.195 ≤ Z ≤ 1.400)

≈ 2(0.919 − 0.577) ≈ 0.68.

16. No. The identity
∫ ∞

−∞
C dx = 1 is not satisfied for any

constant C .

17. fµ,σ (x) = 1

σ
√

2π
e−(x−µ)2/2σ 2

mean = 1

σ
√

2π

∫ ∞

−∞
xe−(x−µ)2/2σ 2

dx Let z = x − µ
σ

dz = 1

σ
dx

= 1√
2π

∫ ∞

−∞
(µ+ σ z)e−z2/2 dz

= µ√
2π

∫ ∞

−∞
e−z2/2 dz = µ

variance = E
(

(x − µ)2
)

= 1

σ
√

2π

∫ ∞

−∞
(x − µ)2e−(x−µ)2/2σ 2

dx

= 1

σ
√

2π

∫ ∞

−∞
σ 2z2e−z2/2 dz = σVar(Z) = σ

18. Since f (x) = 2

π(1 + x2)
> 0 on [0,∞) and

2

π

∫ ∞

0

dx

1+ x2 = lim
R→∞

2

π
tan−1(R) = 2

π

(π

2

)

= 1,

therefore f (x) is a probability density function on
[0,∞). The expectation of X is

µ = E(X) = 2

π

∫ ∞

0

x dx

1 + x2

= lim
R→∞

1

π
ln(1 + R2) = ∞.

No matter what the cost per game, you should be will-
ing to play (if you have an adequate bankroll). Your ex-
pected winnings per game in the long term is infinite.

19. a) The density function for the uniform distribution on
[a, b] is given by f (x) = 1/(b − a), for a ≤ x ≤ b.
By Example 5, the mean and standard deviation are
given by

µ = b + a

2
, σ = b − a

2
√

3
.

Since µ + 2σ = b + a

2
+ b − a√

3
> b, and similarly,

µ− 2σ < a, therefore Pr(|X − µ| ≥ 2σ) = 0.

b) For f (x) = ke−kx on [0,∞), we know that

µ = σ = 1

k
(Example 6). Thus µ − 2σ < 0 and

µ+ 2σ = 3

k
. We have

Pr(|X − µ| ≥ 2σ) = Pr

(

X ≥ 3

k

)

= k
∫ ∞

3/k
e−kx dx

= −e−kx

∣
∣
∣
∣

∞

3/k
= e−3 ≈ 0.050.

c) For fµ,σ (x) = 1

σ
√

2π
e(x−µ)2/2σ 2

, which has mean µ

and standard deviation σ , we have

Pr(|X − µ| ≥ 2σ) = 2Pr(X ≤ µ− 2σ)

= 2
∫ µ−2σ

−∞
1

σ
√

2π
e−(x−µ)2/2σ 2

dx

Let z = x − µ
σ

dz = 1

σ
dx

= 2√
2π

∫ −2

−∞
e−z2

dz

= 2Pr(Z ≤ −2) ≈ 2× 0.023 = 0.046
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from the table in this section.

20. The density function for T is f (t) = ke−kt on [0,∞),
where k = 1

µ
= 1

20
(see Example 6). Then

Pr(T ≥ 12) = 1

20

∫ ∞

12
e−t/20 dt = 1− 1

20

∫ 12

0
e−t/20 dt

= 1+ e−t/20
∣
∣
∣
∣

12

0
= e−12/20 ≈ 0.549.

The probability that the system will last at least 12 hours
is about 0.549.

21. If X is distributed normally, with mean µ = 5, 000, and
standard deviation σ = 200, then

Pr(X ≥ 5500)

= 1

200
√

2π

∫ ∞

5500
e−(x−5000)2/(2×2002) dx

Let z = x − 5000

200

dz = dx

200

= 1√
2π

∫ ∞

5/2
e−z2/2 dz

= Pr(Z ≥ 5/2) = Pr(Z ≤ −5/2) ≈ 0.006

from the table in this section.

22. If X is the random variable giving the spinner’s value,
then Pr(X = 1/4) = 1/2 and the density function for the
other values of X is f (x) = 1/2. Thus the mean of X is

µ = E(X) = 1

4
Pr

(

X = 1

4

)

+
∫ 1

0
x f (x) dx = 1

8
+1

4
= 3

8
.

Also,

E(X2) = 1

16
Pr

(

X = 1

4

)

+
∫ 1

0
x2 f (x) dx = 1

32
+ 1

6
= 19

96

σ 2 = E(X2)− µ2 = 19

96
− 9

64
= 11

192
.

Thus σ = √11/192.

Section 7.9 First-Order
Differential Equations (page 429)

1.
dy

dx
= y

2x

2
dy

y
= dx

x

2 ln y = ln x + C1 ⇒ y2 = Cx

2.
dy

dx
= 3y − 1

x
∫

dy

3y − 1
=

∫
dx

x
1

3
ln |3y − 1| = ln |x | + 1

3
ln C

3y − 1

x3
= C

⇒ y = 1

3
(1+ Cx3).

3.
dy

dx
= x2

y2 ⇒ y2 dy = x2 dx

y3

3
= x3

3
+ C1, or x3 − y3 = C

4.
dy

dx
= x2 y2

∫
dy

y2
=

∫

x2 dx

− 1

y
= 1

3
x3 + 1

3
C

⇒ y = − 3

x3 + C
.

5.
dY

dt
= tY ⇒ dY

Y
= t dt

ln Y = t2

2
+ C1, or Y = Cet2/2

6.
dx

dt
= ex sin t

∫

e−x dx =
∫

sin t dt

−e−x = − cos t − C

⇒ x = − ln(cos t + C).

7.
dy

dx
= 1− y2 ⇒ dy

1− y2 = dx

1

2

(
1

1+ y
+ 1

1− y

)

dy = dx

1

2
ln

∣
∣
∣
∣

1 + y

1 − y

∣
∣
∣
∣
= x + C1

1+ y

1− y
= Ce2x or y = Ce2x − 1

Ce2x + 1

8.
dy

dx
= 1+ y2

∫
dy

1+ y2
=

∫

dx

tan−1 y = x + C

⇒ y = tan(x + C).
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9.
dy

dt
= 2+ ey ⇒ dy

2 + ey
= dt

∫
e−y dy

2e−y + 1
=

∫

dt

− 1

2
ln(2e−y + 1) = t + C1

2e−y + 1 = C2e−2t , or y = − ln

(

Ce−2t − 1

2

)

10. We have
dy

dx
= y2(1 − y)

∫
dy

y2(1 − y)
=

∫

dx = x + K .

Expand the left side in partial fractions:

1

y2(1 − y)
= A

y
+ B

y2 +
C

1− y

= A(y − y2)+ B(1− y)+ Cy2

y2(1− y)

⇒
{−A+ C = 0;

A− B = 0;
B = 1.

⇒ A = B = C = 1.

Hence,
∫

dy

y2(1 − y)
=

∫ (
1

y
+ 1

y2 +
1

1− y

)

dy

= ln |y| − 1

y
− ln |1− y|.

Therefore,

ln

∣
∣
∣
∣

y

1− y

∣
∣
∣
∣
− 1

y
= x + K .

11.
dy

dx
− 2

x
y = x2 (linear)

µ = exp

(∫

− 2

x
dx

)

= 1

x2

1

x2

dy

dx
− 2

x3
y = 1

d

dx

y

x2
= 1

y

x2 = x + C, so y = x3 + Cx2

12. We have
dy

dx
+ 2y

x
= 1

x2
. Let

µ =
∫

2

x
dx = 2 ln x = ln x2, then eµ = x2, and

d

dx
(x2 y) = x2 dy

dx
+ 2xy

= x2
(

dy

dx
+ 2y

x

)

= x2
(

1

x2

)

= 1

⇒ x2 y =
∫

dx = x + C

⇒ y = 1

x
+ C

x2 .

13.
dy

dx
+ 2y = 3 µ = exp

(∫

2 dx

)

= e2x

d

dx
(e2x y) = e2x(y ′ + 2y) = 3e2x

e2x y = 3

2
e2x + C ⇒ y = 3

2
+ Ce−2x

14. We have
dy

dx
+ y = ex . Let µ = ∫

dx = x , then eµ = ex ,

and

d

dx
(ex y) = ex dy

dx
+ ex y = ex

(
dy

dx
+ y

)

= e2x

⇒ ex y =
∫

e2x dx = 1

2
e2x + C.

Hence, y = 1

2
ex + Ce−x .

15.
dy

dx
+ y = x µ = exp

(∫

1 dx

)

= ex

d

dx
(ex y) = ex(y ′ + y) = xex

ex y =
∫

xex dx = xex − ex + C

y = x − 1+ Ce−x

16. We have
dy

dx
+ 2ex y = ex . Let µ = ∫

2ex dx = 2ex , then

d

dx

(

e2ex
y
)

= e2ex dy

dx
+ 2exe2ex

y

= e2ex
(

dy

dx
+ 2ex y

)

= e2ex
ex .

Therefore,

e2ex
y =

∫

e2ex
ex dx Let u = 2ex

du = 2ex dx

= 1

2

∫

eu du = 1

2
e2ex + C.

Hence, y = 1

2
+ Ce−2ex

.
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17.
dy

dt
+ 10y = 1, y

( 1
10

) = 2
10

µ =
∫

10 dt = 10t

d

dt
(e10t y) = e10t dy

dt
+ 10e10t y = e10t

e10t y(t) = 1

10
e10t + C

y
( 1

10

) = 2
10 ⇒

2e

10
= e

10
+ C ⇒ C = e

10

y = 1

10
+ 1

10
e1−10t .

18.
dy

dx
+ 3x2 y = x2, y(0) = 1

µ =
∫

3x2 dx = x3

d

dx
(ex3

y) = ex3 dy

dx
+ 3x2ex3

y = x2ex3

ex3
y =

∫

x2ex3
dx = 1

3
ex3 + C

y(0) = 1 ⇒ 1 = 1

3
+ C ⇒ C = 2

3

y = 1

3
+ 2

3
e−x3

.

19. x2 y ′ + y = x2e1/x , y(1) = 3e

y ′ + 1

x2
y = e1/x

µ =
∫

1

x2 dx = − 1

x
d

dx

(

e−1/x y
)

= e−1/x
(

y ′ + 1

x2
y

)

= 1

e−1/x y =
∫

1 dx = x + C

y(1) = 3e ⇒ 3 = 1+ C ⇒ C = 2

y = (x + 2)e1/x .

20. y ′ + (cos x)y = 2xe− sin x , y(π) = 0

µ =
∫

cos x dx = sin x

d

dx
(esin x y) = esin x(y ′ + (cos x)y) = 2x

esin x y =
∫

2x dx = x2 + C

y(π) = 0 ⇒ 0 = π2 + C ⇒ C = −π2

y = (x2 − π2)e− sin x .

21. y(x) = 2+
∫ x

0

t

y(t)
dt 
⇒ y(0) = 2

dy

dx
= x

y
, i.e. y dy = x dx

y2 = x2 + C

22 = 02 + C 
⇒ C = 4

y =
√

4+ x2.

22. y(x) = 1+
∫ x

0

(y(t))2

1+ t2 dt 
⇒ y(0) = 1

dy

dx
= y2

1+ x2
, i.e. dy/y2 = dx/(1+ x2)

− 1

y
= tan−1 x + C

− 1 = 0 + C 
⇒ C = −1

y = 1/(1 − tan−1 x).

23. y(x) = 1+
∫ x

1

y(t)

t (t + 1)
dt 
⇒ y(1) = 1

dy

dx
= y

x(x + 1)
, for x > 0

dy

y
= dx

x(x + 1)
= dx

x
− dx

x + 1

ln y = ln
x

x + 1
+ ln C

y = Cx

x + 1
, 
⇒ 1 = C/2

y = 2x

x + 1
.

24. y(x) = 3+
∫ x

0
e−y dt 
⇒ y(0) = 3

dy

dx
= e−y, i.e. ey dy = dx

ey = x + C 
⇒ y = ln(x + C)

3 = y(0) = ln C 
⇒ C = e3

y = ln(x + e3).

25. Since a > b > 0 and k > 0,

lim
t→∞ x(t) = lim

t→∞
ab

(

e(b−a)kt − 1
)

be(b−a)kt − a

= ab(0 − 1)

0− a
= b.

26. Since b > a > 0 and k > 0,

lim
t→∞ x(t) = lim

t→∞
ab

(

e(b−a)kt − 1
)

be(b−a)kt − a

= lim
t→∞

ab
(

1− e(a−b)kt
)

b − ae(a−b)kt

= ab(1 − 0)

b − 0
= a.
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27. The solution given, namely

x = ab
(

e(b−a)kt − 1
)

be(b−a)kt − a
,

is indeterminate (0/0) if a = b.
If a = b the original differential equation becomes

dx

dt
= k(a − x)2,

which is separable and yields the solution

1

a − x
=

∫
dx

(a − x)2
= k

∫

dt = kt + C.

Since x(0) = 0, we have C = 1

a
, so

1

a − x
= kt + 1

a
.

Solving for x , we obtain

x = a2kt

1 + akt
.

This solution also results from evaluating the limit of
solution obtained for the case a �= b as b approaches a
(using l’Hôpital’s Rule, say).

28. Given that m
dv

dt
= mg − kv, then

∫
dv

g − k

m
v

=
∫

dt

− m

k
ln

∣
∣
∣
∣
g − k

m
v

∣
∣
∣
∣
= t + C.

Since v(0) = 0, therefore C = −m

k
ln g. Also, g − k

m
v

remains positive for all t > 0, so

m

k
ln

g

g − k

m
v

= t

g − k

m
v

g
= e−kt/m

⇒ v = v(t) = mg

k

(

1− e−kt/m
)

.

Note that lim
t→∞ v(t) =

mg

k
. This limiting velocity can be

obtained directly from the differential equation by setting
dv

dt
= 0.

29. We proceed by separation of variables:

m
dv

dt
= mg − kv2

dv

dt
= g − k

m
v2

dv

g − k

m
v2
= dt

∫
dv

mg

k
− v2

= k

m

∫

dt = kt

m
+ C.

Let a2 = mg/k, where a > 0. Thus, we have
∫

dv

a2 − v2 =
kt

m
+ C

1

2a
ln

∣
∣
∣
∣

a + v
a − v

∣
∣
∣
∣
= kt

m
+ C

ln

∣
∣
∣
∣

a + v
a − v

∣
∣
∣
∣
= 2akt

m
+ C1 = 2

√

kg

m
t + C1

a + v
a − v = C2e2t

√
kg/m .

Assuming v(0) = 0, we get C2 = 1. Thus

a + v = e2t
√

kg/m (a − v)
v
(

1+ e2t
√

kg/m
)

= a
(

e2t
√

kg/m − 1
)

=
√

mg

k

(

e2t
√

kg/m − 1
)

v =
√

mg

k

e2t
√

kg/m − 1

e2t
√

kg/m + 1

Clearly v →
√

mg

k
as t → ∞. This also follows from

setting
dv

dt
= 0 in the given differential equation.

30. The balance in the account after t years is y(t) and
y(0) = 1000. The balance must satisfy

dy

dt
= 0.1y − y2

1, 000, 000
dy

dt
= 105 y − y2

106
∫

dy

105 y − y2
=

∫
dt

106

1

105

∫ (
1

y
+ 1

105 − y

)

dy = t

106 −
C

105

ln |y| − ln |105 − y| = t

10
− C

105 − y

y
= eC−(t/10)

y = 105

eC−(t/10) + 1
.
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Since y(0) = 1000, we have

1000 = y(0) = 105

eC + 1
⇒ C = ln 99,

and

y = 105

99e−t/10 + 1
.

The balance after 1 year is

y = 105

99e−1/10 + 1
≈ $1, 104.01.

As t →∞, the balance can grow to

lim
t→∞ y(t) = lim

t→∞
105

e(4.60−0.1t) + 1
= 105

0+ 1
= $100, 000.

For the account to grow to $50,000, t must satisfy

50, 000 = y(t) = 100, 000

99e−t/10 + 1
⇒ 99e−t/10 + 1 = 2

⇒ t = 10 ln 99 ≈ 46 years.

31. The hyperbolas xy = C satisfy the differential equation

y + x
dy

dx
= 0, or

dy

dx
= − y

x
.

Curves that intersect these hyperbolas at right angles

must therefore satisfy
dy

dx
= x

y
, or x dx = y dy, a sep-

arated equation with solutions x2 − y2 = C , which is
also a family of rectangular hyperbolas. (Both families
are degenerate at the origin for C = 0.)

32. Let x(t) be the number of kg of salt in the
solution in the tank after t minutes. Thus,
x(0) = 50. Salt is coming into the tank at a rate of
10 g/L × 12 L/min = 0.12 kg/min. Since the contents
flow out at a rate of 10 L/min, the volume of the solu-
tion is increasing at 2 L/min and thus, at any time t , the
volume of the solution is 1000 + 2t L. Therefore the con-

centration of salt is
x(t)

1000+ 2t
L. Hence, salt is being

removed at a rate

x(t)

1000 + 2t
kg/L× 10 L/min = 5x(t)

500+ t
kg/min.

Therefore,
dx

dt
= 0.12 − 5x

500 + t
dx

dt
+ 5

500+ t
x = 0.12.

Let µ =
∫

5

500 + t
dt = 5 ln |500 + t | = ln(500 + t)5 for

t > 0. Then eµ = (500 + t)5, and

d

dt

[

(500 + t)5x
]

= (500 + t)5
dx

dy
+ 5(500 + t)4x

= (500 + t)5
(

dx

dy
+ 5x

500+ t

)

= 0.12(500 + t)5.

Hence,

(500 + t)5x = 0.12
∫

(500 + t)5 dt = 0.02(500 + t)6 + C

⇒ x = 0.02(500 + t)+ C(500+ t)−5.

Since x(0) = 50, we have C = 1.25× 1015 and

x = 0.02(500 + t)+ (1.25 × 1015)(500 + t)−5.

After 40 min, there will be

x = 0.02(540) + (1.25 × 1015)(540)−5 = 38.023 kg

of salt in the tank.

Review Exercises 7 (page 430)

1.

3 cm5 cm

1 cm

3 cm 3 cm

5 cm1 cm

1 cm

Fig. R-7.1

The volume of thread that can be wound on the left spool
is π(32 − 12)(5) = 40π cm3.
The height of the winding region of the right spool at
distance r from the central axis of the spool is of the
form h = A + Br . Since h = 3 if r = 1, and h = 5 if
r = 3, we have A = 2 and B = 1, so h = 2 + r . The
volume of thread that can be wound on the right spool is

2π
∫ 3

1
r(2+ r) dr = 2π

(

r2 + r3

3

)∣
∣
∣
∣

3

1
= 100π

3
cm3.

The right spool will hold
100

3 × 40
(1, 000) = 833.33 m of

thread.
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2. Let A(y) be the cross-sectional area of the bowl at height
y above the bottom. When the depth of water in the
bowl is Y , then the volume of water in the bowl is

V (Y ) =
∫ Y

0
A(y) dy.

The water evaporates at a rate proportional to exposed
surface area. Thus

dV

dt
= k A(Y )

dV

dY

dY

dt
= k A(Y )

A(Y )
dY

dt
= k A(Y ).

Hence dY/dt = k; the depth decreases at a constant
rate.

3. The barrel is generated by revolving x = a − by2,
(−2 ≤ y ≤ 2), about the y-axis. Since the top and
bottom disks have radius 1 ft, we have a − 4b = 1. The
volume of the barrel is

V = 2
∫ 2

0
π(a − by2)2 dy

= 2π

(

a2 y − 2aby3

3
+ b2 y5

5

)∣
∣
∣
∣

2

0

== 2π

(

2a2 − 16

3
ab + 32

5
b2

)

.

Since V = 16 and a = 1 + 4b, we have

2π

(

2(1 + 4b)2 − 16

3
b(1+ 4b)+ 32

5
b2

)

= 16

128b2 + 80b + 15− 60

π
= 0.

Solving this quadratic gives two solutions, b ≈ 0.0476
and b ≈ −0.6426. Since the second of these leads to an
unacceptable negative value for a, we must have
b ≈ 0.0476, and so a = 1+ 4b ≈ 1.1904.

4. A vertical slice parallel to the top ridge of the solid at
distance x to the right of the centre is a rectangle of base
2
√

100− x2 cm^and height
√

3(10 − x) cm. Thus the
solid has volume

V = 2
∫ 10

0

√
3(10 − x)2

√

100 − x2 dx

= 40
√

3
∫ 10

0

√

100− x2 dx − 4
√

3
∫ 10

0
x
√

100− x2 dx

Let u = 100 − x2

du = −2x dx

= 40
√

3
100π

4
− 2
√

3
∫ 100

0

√
u du

= 1, 000
√

3

(

π − 4

3

)

cm3.

60◦

10 cm x

Fig. R-7.4

5. The arc length of y = 1

a
cosh(ax) from x = 0 to x = 1 is

s =
∫ 1

0

√

1+ sinh2(ax) dx =
∫ 1

0
cosh(ax) dx

= 1

a
sinh(ax)

∣
∣
∣
∣

1

0
= 1

a
sinh a.

We want
1

a
sinh a = 2, that is, sinh a = 2a. Solving this

by Newton’s Method or a calculator solve function, we
get a ≈ 2.1773.

6. The area of revolution of y = √x , (0 ≤ x ≤ 6), about the
x-axis is

S = 2π
∫ 6

0
y

√

1+
(

dy

dx

)2

dx

= 2π
∫ 6

0

√
x

√

1+ 1

4x
dx

= 2π
∫ 6

0

√

x + 1

4
dx

= 4π

3

(

x + 1

4

)3/2∣
∣
∣
∣

6

0
= 4π

3

[
125

8
− 1

8

]

= 62π

3
sq. units.

7. The region is a quarter-elliptic disk with semi-axes a = 2
and b = 1. The area of the region is A = πab/4 = π/2.
The moments about the coordinate axes are

Mx=0 =
∫ 2

0
x

√

1− x2

4
dx Let u = 1− x2

4

du = − x

2
dx

= 2
∫ 1

0

√
u du = 4

3

My=0 = 1

2

∫ 2

0

(

1− x2

4

)

dx

= 1

2

(

x − x3

12

)∣
∣
∣
∣

2

0
= 2

3
.
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Thus x̄ = Mx=0/A = 8/(3π) and
ȳ = My=0/A = 4/(3π). The centroid is
(

8/(3π), 4/(3π)
)

.

8.
y

x
31

Fig. R-7.8

Let the disk have centre (and therefore centroid) at (0, 0).
Its area is 9π . Let the hole have centre (and therefore
centroid) at (1, 0). Its area is π . The remaining part has
area 8π and centroid at (x̄, 0), where

(9π)(0) = (8π)x̄ + (π)(1).

Thus x̄ = −1/8. The centroid of the remaining part is
1/8 ft from the centre of the disk on the side opposite
the hole.

9. Let the area of cross-section of the cylinder be A. When
the piston is y cm above the base, the volume of gas in
the cylinder is V = Ay, and its pressure P(y) satisfies
P(y)V = k (constant). The force exerted by the piston is

F(y) = P(y)A = k A

Ay
= k

y
.

We are told that F = 1, 000 N when y = 20 cm. Thus
k = 20, 000 N·cm. The work done by the piston as it
descends to 5 cm is

W =
∫ 20

5

20, 000

y
dy = 20, 000 ln

20

5
≈ 27, 726 N·cm.

10. We are told that for any a > 0,

π

∫ a

0

[(

f (x)
)2−

(

g(x)
)2]

dx = 2π
∫ a

0
x
[

f (x)−g(x)
]

dx .

Differentiating both sides of this equation with respect to
a, we get

(

f (a)
)2 −

(

g(a)
)2 = 2a

[

f (a) − g(a)
]

,

or, equivalently, f (a) + g(a) = 2a. Thus f and g must
satisfy

f (x)+ g(x) = 2x for every x > 0.

11.
dy

dx
= 3y

x − 1
⇒

∫
dy

y
= 3

dx

x − 1

⇒ ln |y| = ln |x − 1|3 + ln |C |
⇒ y = C(x − 1)3.

Since y = 4 when x = 2, we have 4 = C(2− 1)3 = C , so
the equation of the curve is y = 4(x − 1)3.

12. The ellipses 3x2 + 4y2 = C all satisfy the differential
equation

6x + 8y
dy

dx
= 0, or

dy

dx
= −3x

4y
.

A family of curves that intersect these ellipses at right

angles must therefore have slopes given by
dy

dx
= 4y

3x
.

Thus

3
∫

dy

y
= 4

∫
dx

x

3 ln |y| = 4 ln |x | + ln |C |.
The family is given by y3 = Cx4.

13. The original $8,000 grows to $8, 000e0.08 in two years.
Between t and t + dt , an amount $10, 000 sin(2π t) dt
comes in, and this grows to $10, 000 sin(2π t)e0.04(2−t) dt
by the end of two years. Thus the amount in the account
after 2 years is

8, 000e0.08+10, 000
∫ 2

0
sin(2π t)e0.04(2−t) dt ≈ $8, 798.85.

(We omit the details of evaluation of the integral, which
is done by the method of Example 4 of Section 7.1.)

Challenging Problems 7 (page 430)

1. a) The nth bead extends from x = (n − 1)π to x = nπ ,
and has volume

Vn = π
∫ nπ

(n−1)π
e−2kx sin2 x dx

= π

2

∫ nπ

(n−1)π
e−2kx (1 − cos(2x)) dx

Let x = u + (n − 1)π

dx = du

= π

2

∫ π

0
e−2kue−2k(n−1)π

[

1− cos(2u + 2(n − 1)π)
]

du

= π

2
e−2k(n−1)π

∫ π

0
e−2ku (1 − cos(2u)) du

= e−2k(n−1)πV1.
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Thus
Vn+1

Vn
= e−2knπV1

e−2k(n−1)πV1
= e−2kπ , which de-

pends on k but not n.

b) Vn+1/Vn = 1/2 if −2kπ = ln(1/2) = − ln 2, that is,
if k = (ln 2)/(2π).

c) Using the result of Example 4 in Section 7.1, we
calculate the volume of the first bead:

V1 = π

2

∫ π

0
e−2kx (1 − cos(2x)) dx

= πe−2kx

−4k

∣
∣
∣
∣

π

0
− π

2

e−2kx (2 sin(2x)− 2k cos(2x))

4(1 + k2)

∣
∣
∣
∣

π

0

= π

4k
(1− e−2kπ )− π

4(1 + k2)
(k − ke−2kπ )

= π

4k(1 + k2)
(1 − e−2kπ ).

By part (a) and Theorem 1(d) of Section 6.1, the
sum of the volumes of the first n beads is

Sn = π

4k(1 + k2)
(1 − e−2kπ )

×
[

1 + e−2kπ +
(

e−2kπ
)2 + · · · +

(

e−2kπ
)n−1]

= π

4k(1 + k2)
(1 − e−2kπ )

1 − e−2knπ

1 − e−2kπ

= π

4k(1 + k2)
(1 − e−2knπ ).

Thus the total volume of all the beads is

V = lim
n→∞ Sn = π

4k(1 + k2)
cu. units..

2.

10 m

1 m

Fig. C-7.2

h(r) = a(r2 − 100)(r2 − k2), where 0 < k < 10

h ′(r) = 2ar(r2 − k2)+ 2ar(r2 − 100) = 2ar(2r2 − 100− k2).

The deepest point occurs where 2r2 = 100 + k2, i.e.,
r2 = 50 + (k2/2). Since this depth must be 1 m, we
require

a

(
k2

2
− 50

)(

50− k2

2

)

= −1,

or, equivalently, a(100 − k2)2 = 4. The volume of the
pool is

VP = 2πa
∫ 10

k
r(100 − r2)(r2 − k2) dr

= 2πa

(
250, 000

3
− 2, 500k2 + 25k4 − 1

12
k6

)

.

The volume of the hill is

VH = 2πa
∫ k

0
r(r2−100)(r2−k2) dr = 2πa

(

25k4 − 1

12
k6

)

.

These two volumes must be equal, so k2 = 100/3 and
k ≈ 5.77 m. Thus a = 4/(100 − k2)2 = 0.0009. The
volume of earth to be moved is VH with these values of
a and k, namely

2π(0.0009)

[

25

(
100

3

)2

− 1

12

(
100

3

)4
]

≈ 140 m3.

3.
y

x

(h, r)

y = ax + bx2 + cx3

Fig. C-7.3

f (x) = ax + bx2 + cx3 must satisfy f (h) = r , f ′(h) = 0,
and f ′(x) > 0 for 0 < x < h. The first two conditions
require that

ah + bh2 + ch3 = r

a + 2bh + 3ch2 = 0,

from which we obtain by solving for b and c,

b = 3r − 2ah

h2
, c = ah − 2r

h3
.

The volume of the nose cone is then

V (a) = π
∫ h

0

(

f (x)
)2

dx = πh

210
(13ahr + 78r2 + 2a2h2).

Solving dV/da = 0 gives only one critical point,
a = −13r/(4h). This is unacceptable, because the con-
dition f ′(x) > 0 on (0, h) forces us to require a ≥ 0. In
fact

f ′(x) = a + 2(3r − 2ah)

h2 x + 3(ah − 2r)

h3 x2
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is clearly positive for small x if a > 0. Its two roots are
x1 = h and x2 = h2a/(3ah − 6r). a must be restricted
so that x2 is not in the interval (0, h). If a < 2r/h, then
x2 < 0. If 2r/h < a < 3r/h, then x2 > h. If a > 3r/h,
then 0 < x2 < h. Hence the interval of acceptable values
of a is 0 ≤ a ≤ 3r/h. We have

V (0) = 13πr2h

35
, V

(
3r

h

)

= 9πr2h

14
.

The largest volume corresponds to a = 3r/h, which is
the largest allowed value for a and so corresponds to the
bluntest possible nose. The corresponding cubic f (x) is

f (x) = r

h3 (3h2x − 3hx2 + x3).

4. a) If f (x) =
{

a + bx + cx2 for 0 ≤ x ≤ 1
p + qx + r x2 for 1 ≤ x ≤ 3

, then

f ′(x) =
{

b + 2cx for 0 < x < 1
q + 2r x for 1 < x < 3

. We require that

a = 1

a + b + c = 2

b + 2c = m

p + 3q + 9r = 0

p + q + r = 2

q + 2r = m.

The solutions of these systems are a = 1, b = 2−m,
c = m − 1, p = 3

2 (1 − m), q = 2m + 1, and
r = − 1

2 (1 + m). f (x,m) is f (x) with these values
of the six constants.

b) The length of the spline is

L(m) =
∫ 1

0

√

1+ (b + 2cx)2 dx +
∫ 3

1

√

1+ (q + 2r x)2 dx

with the values of b, c, q, and r determined above.
A plot of the graph of L(m) reveals a minimum
value in the neighbourhood of m = −0.3. The
derivative of L(m) is a horrible expression, but
Mathematica determined its zero to be about
m = −0.281326, and the corresponding minimum
value of L is about 4.41748. The polygonal line
ABC has length 3

√
2 ≈ 4.24264, which is only

slightly shorter.

5. Let b = ka so that the cross-sectional curve is given by

y = f (x) = ax(1 − x)(x + k).

The requirement that f (x) ≥ 0 for 0 ≤ x ≤ 1 is satisfied
provided either a > 0 and k ≥ 0 or a < 0 and k ≤ −1.
The volume of the wall is

V (a, k) =
∫ 1

0
2π(15 + x) f (x) dx = πa

30
(78 + 155k).

To minimize this expression for a > 0 we should take
k = 0. This gives f (x) = ax2(1 − x). To minimize
V (a, k) for a < 0 we should take k = −1. This gives
f (x) = −ax(1 − x)2. Since we want the maximum
value of f to be 2 in either case, we calculate the critical
points of these two possible functions. For a > 0 the CP
is x = 2/3 and f (2/3) = 2 gives a = 27/2. The volume
in this case is V (27/2, 0) = (27π/60)(78 − 0). For a < 0
the CP is x = 1/3 and f (1/3) = 2 gives a = −27/2.
The volume in this case is
V (−27/2,−1) = −(27π/60)(78 − 155) = (27π/60)(77).
Thus the minimum volume occurs for
f (x) = (27/2)x(1 − x)2, i.e. b = −a = 27/2.

6. Starting with V1(r) = 2r , and using repeatedly the for-
mula

Vn(r) =
∫ r

−r
Vn−1(

√

r2 − x2) dx,

Maple gave the following results:

V1(r) = 2r

V3(r) = 4

3
πr3

V5(r) = 8

15
π2r5

V7(r) = 16

105
π3r7

V9(r) = 32

945
π4r9

V2(r) = πr2

V4(r) = 1

2
π2r4

V6(r) = 1

6
π3r6

V8(r) = 1

24
π4r8

V10(r) = 1

120
π5r10

It appears that

V2n(r) = 1

n!
πnr2n, and

V2n−1(r) = 2n

1 · 3 · 5 · · · (2n − 1)
πn−1r2n−1

= 22n−1(n − 1)!

(2n − 1)!
πn−1r2n−1.

These formulas predict that

V11(r) = 2115!

11!
π5r11 and V12(r) = 1

6!
π6r12,

both of which Maple is happy to confirm.

7. With y and θ as defined in the statement of the problem,
we have

0 ≤ y ≤ 10 and 0 ≤ θ < π.

The needle crosses a line if y < 5 sin θ . The probability
of this happening is the ratio of the area under the curve
to the area of the rectangle in the figure, that is,

Pr = 1

10π

∫ π

0
5 sin θ dθ = 1

π
.
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y

θ

y = 10

y = 5 sin x

π

Fig. C-7.7

8. y

x

P(x, y)

(L , 0)

L

Q

y = f (x)

Fig. C-7.8

If Q = (0, Y ), then the slope of P Q is

y − Y

x − 0
= f ′(x) = dy

dx
.

Since |P Q| = L , we have (y − Y )2 = L2 − x2. Since the
slope dy/dx is negative at P, dy/dx = −√L2 − x2/x .
Thus

y = −
∫ √

L2 − x2

x
dx = L ln

(

L +√L2 − x2

x

)

−
√

L2 − x2+C.

Since y = 0 when x = L , we have C = 0 and the
equation of the tractrix is

y = L ln

(

L +√L2 − x2

x

)

−
√

L2 − x2.

Note that the first term can be written in an alternate
way:

y = L ln

(
x

L −√L2 − x2

)

−
√

L2 − x2.

9. a) S(a, a, c) is the area of the surface obtained by
rotating the ellipse (x2/a2) + (y2/c2) = 1
(where a > c) about the y-axis. Since
y ′ = −cx/(a

√
a2 − x2), we have

S(a, a, c) = 2× 2π
∫ a

0
x

√

1+ c2x2

a2(a2 − x2)
dx

= 4π

a

∫ a

0
x

√

a4 − (a2 − c2)x2
√

a2 − x2
dx

Let x = a sin u

dx = a cos u du

= 4π

a

∫ π/2

0
a sin u

√

a4 − (a2 − c2)a2 sin2 u du

= 4πa
∫ π/2

0
sin u

√

a2 − (a2 − c2)(1 − cos2 u) du

Let v = cos u

dv = − sin u du

= 4πa
∫ 1

0

√

c2 + (a2 − c2)v2 dv.

This integral can now be handled using tables or
computer algebra. It evaluates to

S(a, a, c) = 2πa2 + 2πac2

√
a2 − c2

ln

(

a +√a2 − c2

c

)

.

b) S(a, c, c) is the area of the surface obtained by ro-
tating the ellipse of part (a) about the y-axis. Since
y ′ = −cx/(a

√
a2 − x2), we have

S(a, c, c) = 2× 2π
∫ a

0
y

√

1 + c2x2

a2(a2 − x2)
dx

= 4πc

a2

∫ a

0

√

a2 − x2

√

a4 − (a2 − c2)x2
√

a2 − x2
dx

= 4πc

a2

∫ a

0

√

a4 − (a2 − c2)x2 dx

= 4πc
∫ a

0

√

1− a2 − c2

a4 x2 dx

= 2πc2 + 2πa2c√
a2 − c2

cos−1 c

a
.

c) Since b =
(

b − c

a − c

)

a +
(

a − b

a − c

)

c, we use

S(a, b, c) ≈
(

b − c

a − c

)

S(a, a, c)+
(

a − b

a − c

)

S(a, c, c).
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d) We cannot evaluate S(3, 2, 1) even numerically at
this stage. The double integral necessary to calculate
it is not treated until a later chapter. (The value is
approximately 48.882 sq. units.) However, using the
formulas obtained above,

S(3, 2, 1) ≈ S(3, 3, 1)+ S(3, 1, 1)

2

= 1

2

(

18π + 6π√
8

ln(3+√8)+ 2π + 18π√
8

cos−1(1/3)

)

≈ 49.595 sq. units.
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CHAPTER 8. CONICS, PARAMETRIC
CURVES, AND POLAR CURVES

Section 8.1 Conics (page 443)

1. The ellipse with foci (0,±2) has major axis along the
y-axis and c = 2. If a = 3, then b2 = 9 − 4 = 5. The
ellipse has equation

x2

5
+ y2

9
= 1.

2. The ellipse with foci (0, 1) and (4, 1) has c = 2, centre
(2, 1), and major axis along y = 1. If ε = 1/2, then
a = c/ε = 4 and b2 = 16 − 4 = 12. The ellipse has
equation

(x − 2)2

16
+ (y − 1)2

12
= 1.

3. A parabola with focus (2, 3) and vertex (2, 4) has
a = −1 and principal axis x = 2. Its equation is
(x − 2)2 = −4(y − 4) = 16− 4y.

4. A parabola with focus at (0,−1) and principal axis
along y = −1 will have vertex at a point of the
form (v,−1). Its equation will then be of the form
(y + 1)2 = ±4v(x − v). The origin lies on this curve
if
1 = ±4(−v2). Only the − sign is possible, and in this
case v = ±1/2. The possible equations for the parabola
are (y + 1)2 = 1± 2x .

5. The hyperbola with semi-transverse axis a = 1 and foci
(0,±2) has transverse axis along the y-axis, c = 2, and
b2 = c2 − a2 = 3. The equation is

y2 − x2

3
= 1.

6. The hyperbola with foci at (±5, 1) and asymptotes
x = ±(y − 1) is rectangular, has centre at (0, 1) and
has transverse axis along the line y = 1. Since c = 5
and a = b (because the asymptotes are perpendicular to
each other) we have a2 = b2 = 25/2. The equation of
the hyperbola is

x2 − (y − 1)2 = 25

2
.

7. If x2 + y2 + 2x = −1, then (x + 1)2 + y2 = 0. This
represents the single point (−1, 0).

8. If x2 + 4y2 − 4y = 0, then

x2 + 4

(

y2 − y + 1

4

)

= 1, or
x2

1
+ (y −

1
2 )

2

1
4

= 1.

This represents an ellipse with centre at

(

0,
1

2

)

,

semi-major axis 1, semi-minor axis
1

2
, and foci at

(

±
√

3

2
,

1

2

)

.

y

x

1
2

1
x2+4y2−4y=0

1

Fig. 8.1.8

9. If 4x2 + y2 − 4y = 0, then

4x2 + y2 − 4y + 4 = 4

4x2 + (y − 2)2 = 4

x2 + (y − 2)2

4
= 1

This is an ellipse with semi-axes 1 and 2, centred at
(0, 2).

y

x

4
4x2+y2−4y=0

(1,2)2(−1,2)

Fig. 8.1.9

10. If 4x2 − y2 − 4y = 0, then

4x2 − (y2 + 4y + 4) = −4, or
x2

1
− (y + 2)2

4
= −1.

This represents a hyperbola with centre at (0,−2), semi-
transverse axis 2, semi-conjugate axis 1, and foci at
(0,−2±√5). The asymptotes are y = ±2x − 2.
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y

x

−2

4x2−y2−4y=0

Fig. 8.1.10

11. If x2 + 2x − y = 3, then (x + 1)2 − y = 4.
Thus y = (x + 1)2 − 4. This is a parabola with vertex
(−1,−4), opening upward.

y

x

(−1,−4)

x2+2x−y=3

Fig. 8.1.11

12. If x + 2y + 2y2 = 1, then

2

(

y2 + y + 1

4

)

= 3

2
− x

⇔ x = 3

2
− 2

(

y + 1

2

)2

.

This represents a parabola with vertex at (3
2 ,− 1

2 ), focus
at ( 11

8 ,− 1
2 ) and directrix x = 13

8 .
y

x
(

3
2 ,−

1
2

)

x+2y+2y2=1

Fig. 8.1.12

13. If x2 − 2y2 + 3x + 4y = 2, then

(

x + 3

2

)2

− 2(y − 1)2 = 9

4
(

x + 3
2

)2

9
4

− (y − 1)2

9
8

= 1

This is a hyperbola with centre
(− 3

2 , 1
)

, and asymptotes

the straight lines 2x + 3 = ±2
√

2(y − 1).
y

x

1

(− 3
2 ,1)

(−3,1)
x2−2y2+3x+4y=2

Fig. 8.1.13

14. If 9x2 + 4y2 − 18x + 8y = −13, then

9(x2 − 2x + 1)+ 4(y2 + 2y + 1) = 0

⇔9(x − 1)2 + 4(y + 1)2 = 0.

This represents the single point (1,−1).

15. If 9x2 + 4y2 − 18x + 8y = 23, then

9(x2 − 2x + 1)+ 4(y2 + 2y + 1) = 23 + 9 + 4 = 36

9(x − 1)2 + 4(y + 1)2 = 36

(x − 1)2

4
+ (y + 1)2

9
= 1.

This is an ellipse with centre (1,−1), and semi-axes 2
and 3.

y

x

(1,−4)

(1,2)

(1,−1) (3,−1)

9x2+4y2−18x+8y=23

(−1,−1)

Fig. 8.1.15

16. The equation (x − y)2 − (x + y)2 = 1 simplifies to
4xy = −1 and hence represents a rectangular hyperbola
with centre at the origin, asymptotes along the coordinate
axes, transverse axis along y = −x , conjugate axis along
y = x , vertices at

( 1
2 ,− 1

2

)

and
(− 1

2 ,
1
2

)

, semi-transverse

and semi-conjugate axes equal to 1/
√

2, semi-focal sepa-

ration equal to
√

1
2 + 1

2 = 1, and hence foci at the points
(

1√
2
,− 1√

2

)

and
(

− 1√
2
, 1√

2

)

. The eccentricity is
√

2.
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y

x

(
1
2 ,

1
2

)

(x−y)2−(x+y)2=1

Fig. 8.1.16

17. The parabola has focus at (3, 4) and principal axis along
y = 4. The vertex must be at a point of the form (v, 4),
in which case a = ±(3 − v) and the equation of the
parabola must be of the form

(y − 4)2 = ±4(3 − v)(x − v).

This curve passes through the origin if 16 = ±4(v2− 3v).
We have two possible equations for v: v2 − 3v − 4 = 0
and v2 − 3v + 4 = 0. The first of these has solutions
v = −1 or v = 4. The second has no real solutions. The
two possible equations for the parabola are

(y − 4)2 = 4(4)(x + 1) or y2 − 8y = 16x

(y − 4)2 = 4(−1)(x − 4) or y2 − 8y = −4x

18. The foci of the ellipse are (0, 0) and (3, 0), so the centre
is (3/2, 0) and c = 3/2. The semi-axes a and b must
satisfy a2 − b2 = 9/4. Thus the possible equations of the
ellipse are

(x − (3/2))2
(9/4) + b2

+ y2

b2
= 1.

19. For xy + x − y = 2 we have A = C = 0, B = 1. We
therefore rotate the coordinate axes (see text pages 407–
408) through angle θ = π/4.
(Thus cot 2θ = 0 = (A − C)/B.) The transformation is

x = 1√
2
(u − v), y = 1√

2
(u + v).

The given equation becomes

1

2
(u2 − v2)+ 1√

2
(u − v)− 1√

2
(u + v) = 2

u2 − v2 − 2
√

2v = 4

u2 −
(

v +√2
)2 = 2

u2

2
− (v +

√
2)2

2
= 1.

This is a rectangular hyperbola with centre (0,−√2),
semi-axes a = b = √2, and eccentricity

√
2. The semi-

focal separation is 2; the foci are at (±2,−√2). The
asymptotes are u = ±(v +√2).
In terms of the original coordinates, the centre is (1,−1),
the foci are (±√2+ 1,±√2− 1), and the asymptotes are
x = 1 and y = −1.

y

x(1,−1)

xy+x−y=2

Fig. 8.1.19

20. We have x2 + 2xy + y2 = 4x − 4y + 4 and
A = 1, B = 2, C = 1, D = −4, E = 4 and
F = −4. We rotate the axes through angle θ satisfy-

ing tan 2θ = B/(A − C) = ∞ ⇒ θ = π

4
. Then A′ = 2,

B ′ = 0, C ′ = 0, D′ = 0, E ′ = 4
√

2 and the transformed
equation is

2u2 + 4
√

2v − 4 = 0 ⇒ u2 = −2
√

2

(

v − 1√
2

)

which represents a parabola with vertex at

(u, v) =
(

0, 1√
2

)

and principal axis along u = 0.

The distance a from the focus to the vertex is given by
4a = 2

√
2, so a = 1/

√
2 and the focus is at (0, 0). The

directrix is v = √2.

Since x = 1√
2
(u − v) and y = 1√

2
(u + v), the vertex

of the parabola in terms of xy-coordinates is (−1
2 ,

1
2 ),

and the focus is (0, 0). The directrix is x − y = 2. The
principal axis is y = −x .

y

x

(−1/2,1/2)

y=−x

x2+2xy+y2=4x−4y+4

Fig. 8.1.20
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21. For 8x2 + 12xy + 17y2 = 20, we have A = 8, B = 12,
C = 17, F = −20. Rotate the axes through angle θ
where

tan 2θ = B

A− C
= −12

9
= −4

3
.

Thus cos 2θ = 3/5, sin 2θ = −4/5, and

2 cos2 θ − 1 = cos 2θ = 3

5
⇒ cos2 θ = 4

5
.

We may therefore take cos θ = 2√
5

, and sin θ = − 1√
5

.

The transformation is therefore

x = 2√
5

u + 1√
5
v

y = − 1√
5

u + 2√
5
v

u = 2√
5

x − 1√
5

y

v = 1√
5

x + 2√
5

y

The coefficients of the transformed equation are

A′ = 8

(
4

5

)

+ 12

(

−2

5

)

+ 17

(
1

5

)

= 5

B ′ = 0

C ′ = 8

(
1

5

)

− 12

(

−2

5

)

+ 17

(
4

5

)

= 20.

The transformed equation is

5u2 + 20v2 = 20, or
u2

4
+ v2 = 1.

This is an ellipse with centre (0, 0), semi-axes a = 2 and
b = 1, and foci at u = ±√3, v = 0.
In terms of the original coordinates, the centre is (0, 0),

the foci are ±
(

2
√

3√
5
,−
√

3√
5

)

.

y

x

8x2+12xy+17y2=20

Fig. 8.1.21

22. We have x2−4xy+4y2+2x+ y = 0 and A = 1, B = −4,
C = 4, D = 2, E = 1 and F = 0. We rotate the axes
through angle θ satisfying tan 2θ = B/(A−C) = 4

3 . Then

sec 2θ =
√

1+ tan2 2θ = 5

3
⇒ cos 2θ = 3

5

⇒

⎧

⎪⎪⎨

⎪⎪⎩

cos θ =
√

1+ cos 2θ

2
=
√

4

5
= 2√

5
;

sin θ =
√

1− cos 2θ

2
=
√

1

5
= 1√

5
.

Then A′ = 0, B ′ = 0, C ′ = 5, D′ = √5, E ′ = 0 and the
transformed equation is

5v2 +√5u = 0 ⇒ v2 = − 1√
5

u

which represents a parabola with vertex at (u, v) = (0, 0),
focus at

(

− 1

4
√

5
, 0

)

. The directrix is u = 1

4
√

5
and the

principal axis is v = 0. Since x = 2√
5

u − 1√
5
v and

y = 1√
5

u+ 2√
5
v, in terms of the xy-coordinates, the ver-

tex is at (0, 0), the focus at

(

− 1

10
,− 1

20

)

. The directrix

is 2x + y = 1
4 and the principal axis is 2y − x = 0.

y

x

x2−4xy+4y2+2x+y=0

x=2y

Fig. 8.1.22

23. The distance from P to F is
√

x2 + y2.
The distance from P to D is x + p. Thus

√

x2 + y2

x + p
= ε

x2 + y2 = ε2(x2 + 2px + p2)

(1 − ε2)x2 + y2 − 2pε2x = ε2 p2.

y

x

x=−p

D

P=(x,y)

F

Fig. 8.1.23
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24. Let the equation of the parabola be y2 = 4ax . The fo-
cus F is at (a, 0) and vertex at (0, 0). Then the distance
from the vertex to the focus is a. At x = a,
y = √4a(a) = ±2a. Hence, � = 2a, which is twice the
distance from the vertex to the focus.

y

x(a,0)

�

y2=4ax

Fig. 8.1.24

25. We have
c2

a2 +
�2

b2 = 1. Thus

�2 = b2
(

1− c2

a2

)

but c2 = a2 − b2

= b2
(

1− a2 − b2

a2

)

= b2 b2

a2
.

Therefore � = b2/a.
y

x

x2

a2 + y2

b2 =1

�
a

c

b

Fig. 8.1.25

26. Suppose the hyperbola has equation
x2

a2 −
y2

b2 = 1. The

vertices are at (±a, 0) and the foci are at (±c, 0) where
c = √a2 + b2. At x = √a2 + b2,

a2 + b2

a2 − y2

b2 = 1

(a2 + b2)b2 − a2y2 = a2b2

y = ±b2

a
.

Hence, � = b2

a
.

y

x
a c

�

x2

a2 − y2

b2 =1

Fig. 8.1.26

27.

F2

F1

C2

C1

A

B

V

P

S2

S1

Fig. 8.1.27

Let the spheres S1 and S2 intersect the cone in the circles
C1 and C2, and be tangent to the plane of the ellipse at
the points F1 and F2, as shown in the figure.
Let P be any point on the ellipse, and let the straight
line through P and the vertex of the cone meet C1 and
C2 at A and B respectively. Then PF1 = P A, since both
segments are tangents to the sphere S1 from P. Simi-
larly, PF2 = P B.
Thus PF1 + PF2 = P A + P B = AB = constant (dis-
tance from C1 to C2 along all generators of the cone is
the same.) Thus F1 and F2 are the foci of the ellipse.

28. Let F1 and F2 be the points where the plane is tangent to
the spheres. Let P be an arbitrary point P on the hyper-
bola in which the plane intersects the cone. The spheres
are tangent to the cone along two circles as shown in the
figure. Let P AV B be a generator of the cone (a straight
line lying on the cone) intersecting these two circles at
A and B as shown. (V is the vertex of the cone.) We
have PF1 = P A because two tangents to a sphere from
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a point outside the sphere have equal lengths. Similarly,
PF2 = P B. Therefore

PF2 − PF1 = P B − P A = AB = constant,

since the distance between the two circles in which the
spheres intersect the cone, measured along the generators
of the cone, is the same for all generators. Hence, F1
and F2 are the foci of the hyperbola.

P

F1

F2

B

V

A

Fig. 8.1.28

29. Let the plane in which the sphere is tangent to the cone
meet AV at X . Let the plane through F perpendicular to
the axis of the cone meet AV at Y . Then V F = V X ,
and, if C is the centre of the sphere, FC = XC . There-
fore V C is perpendicular to the axis of the cone. Hence
Y F is parallel to V C , and we have Y V = V X = V F .
If P is on the parabola, F P ⊥ V F , and the line from P
to the vertex A of the cone meets the circle of tangency
of the sphere and the cone at Q, then

F P = PQ = Y X = 2V X = 2V F.

Since F P = 2V F , F P is the semi-latus rectum of the
parabola. (See Exercise 18.) Therefore F is the focus of
the parabola.

Y

V

X

A

Q

P

C

F

Fig. 8.1.29

Section 8.2 Parametric Curves (page 449)

1. If x = t , y = 1− t , (0 ≤ t ≤ 1) then
x + y = 1. This is a straight line segment.

y

x1

1
x=t
y=1−t
(0≤t≤1)

Fig. 8.2.1

2. If x = 2− t and y = t + 1 for 0 ≤ t <∞, then
y = 2 − x + 1 = 3 − x for −∞ < x ≤ 2, which is a half
line.

y

x

(2,1)

x=2−t
y=t+1

Fig. 8.2.2

3. If x = 1/t , y = t − 1, (0 < t < 4), then y = 1

x
− 1. This

is part of a hyperbola.
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y

x

(
1
4 ,3
)

t=4

t=1

y=−1

y= 1
x − 1

Fig. 8.2.3

4. If x = 1

1+ t2
and y = t

1+ t2
for −∞ < t <∞, then

x2 + y2 = 1+ t2

(1+ t2)2
= 1

1+ t2 = x

⇔
(

x − 1

2

)2

+ y2 = 1

4
.

This curve consists of all points of the circle with centre
at ( 1

2 , 0) and radius 1
2 except the origin (0, 0).
y

x

x=1/(1+t2 )

y=t/(1+t2)

t=0t=∞
t=−∞

Fig. 8.2.4

5. If x = 3 sin 2t , y = 3 cos 2t , (0 ≤ t ≤ π/3), then
x2 + y2 = 9. This is part of a circle.

y

x

t=π3

t=0

x2+y2=9

Fig. 8.2.5

6. If x = a sec t and y = b tan t for −π
2
< t <

π

2
, then

x2

a2 −
y2

b2 = sec2 t − tan2 t = 1.

The curve is one arch of this hyperbola.

y

x
t=0

a

bx=ay

bx=−ay

Fig. 8.2.6

7. If x = 3 sinπ t , y = 4 cosπ t , (−1 ≤ t ≤ 1), then
x2

9
+ y2

16
= 1. This is an ellipse.

y

x

t=0

t=1t=−1

x2

9 +
y2

16=1

Fig. 8.2.7

8. If x = cos sin s and y = sin sin s for −∞ < s <∞, then
x2 + y2 = 1. The curve consists of the arc of this circle
extending from (a,−b) through (1, 0) to (a, b) where
a = cos(1) and b = sin(1), traversed infinitely often back
and forth.

y

x

x=cos sin s

y=sin sin s

1 rad

Fig. 8.2.8

9. If x = cos3 t , y = sin3 t , (0 ≤ t ≤ 2π), then
x2/3 + y2/3 = 1. This is an astroid.
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y

t=3π/2

t=2π

t=0

t=π/2

x2/3+y2/3=1

t=π

Fig. 8.2.9

10. If x = 1−√4− t2 and y = 2+ t for −2 ≤ t ≤ 2 then

(x − 1)2 = 4− t2 = 4− (y − 2)2.

The parametric curve is the left half of the circle of ra-
dius 4 centred at (1, 2), and is traced in the direction of
increasing y.

y

x

(1,2)

x=1−
√

4−t2

y=2+t
−2≤t≤2

Fig. 8.2.10

11. x = cosh t , y = sinh t represents the right half (branch) of
the rectangular hyperbola x2 − y2 = 1.

12. x = 2− 3 cosh t , y = −1+ 2 sinh t represents the left half
(branch) of the hyperbola

(x − 2)2

9
− (y + 1)2

4
= 1.

13. x = t cos t , y = t sin t , (0 ≤ t ≤ 4π) represents two
revolutions of a spiral curve winding outwards from the
origin in a counterclockwise direction. The point on the
curve corresponding to parameter value t is t units distant
from the origin in a direction making angle t with the
positive x-axis.

14. (i) If x = cos4 t and y = sin4 t , then

(x − y)2 = (cos4 t − sin4 t)2

=
[

(cos2 t + sin2 t)(cos2 t − sin2 t)
]2

= (cos2 t − sin2 t)2

= cos4 t + sin4 t − 2 cos2 t sin2 t

and

1 = (cos2 t+sin2 t)2 = cos4 t+sin4 t+2 cos2 t sin2 t.

Hence,

1 + (x − y)2 = 2(cos4 t + sin4 t) = 2(x + y).

(ii) If x = sec4 t and y = tan4 t , then

(x − y)2 = (sec4 t − tan4 t)2

= (sec2 t + tan2 t)2

= sec4 t + tan4 t + 2 sec2 t tan2 t

and

1 = (sec2 t−tan2 t)2 = sec4 t+tan4 t−2 sec2 t tan2 t.

Hence,

1 + (x − y)2 = 2(sec4 t + tan4 t) = 2(x + y).

(iii) Similarly, if x = tan4 t and y = sec4 t , then

1+ (x − y)2 = 1+ (y − x)2

= (sec2 t − tan2 t)2 + (sec4 t − tan4 t)2

= 2(tan4 t + sec4 t)

= 2(x + y).

These three parametric curves above correspond to
different parts of the parabola 1+(x− y)2 = 2(x+ y),
as shown in the following diagram.

y

x

x=tan4 t
y=sec4 t

x=cos4 t
y=sin4 t

1

1

x=sec4 t
y=tan4 t

The parabola
2(x+y)=1+(x−y)2

Fig. 8.2.14

15. The slope of y = x2 at x is m = 2x . Hence the parabola
can be parametrized x = m/2, y = m2/4,
(−∞ < m <∞).

16. If (x, y) is any point on the circle x2 + y2 = R2 other
than (R, 0), then the line from (x, y) to (R, 0) has slope

m = y

x − R
. Thus y = m(x − R), and

x2 + m2(x − R)2 = R2

(m2 + 1)x2 − 2x Rm2 + (m2 − 1)R2 = 0
[

(m2 + 1)x − (m2 − 1)R
]

(x − R) = 0

⇒ x = (m2 − 1)R

m2 + 1
or x = R.
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The parametrization of the circle in terms of m is given
by

x = (m2 − 1)R

m2 + 1

y = m

[
(m2 − 1)R

m2 + 1
− R

]

= − 2Rm

m2 + 1

where −∞ < m < ∞. This parametrization gives every
point on the circle except (R, 0).

y

x

(x,y)

(R,0)

slope m

x2+y2=R2

Fig. 8.2.16

17.
y

x

T

X

P = (x, y)

a
t

Fig. 8.2.17

Using triangles in the figure, we see that the coordinates
of P satisfy

x = a sec t, y = a sin t.

The Cartesian equation of the curve is

y2

a2 +
a2

x2 = 1.

The curve has two branches extending to infinity to the
left and right of the circle as shown in the figure.

18. The coordinates of P satisfy

x = a sec t, y = b sin t.

The Cartesian equation is
y2

b2 +
a2

x2 = 1.

y

x
X

Y

T

t

P = (x, y)

a

b

Fig. 8.2.18

19. If x = 3t

1+ t3
, y = 3t2

1+ t3
, (t �= −1), then

x3 + y3 = 27t3

(1 + t3)3
(1 + t3) = 27t3

(1 + t3)2
= 3xy.

As t →−1, we see that |x | → ∞ and |y| → ∞, but

x + y = 3t (1 + t)

1+ t3 = 3t

1− t + t2 →−1.

Thus x + y = −1 is an asymptote of the curve.
y

x

t=1

t→−1−

t=0

t→∞

folium of Descartes

Fig. 8.2.19

20. Let C0 and P0 be the original positions of the centre of
the wheel and a point at the bottom of the flange whose
path is to be traced. The wheel is also shown in a subse-
quent position in which it makes contact with the rail at
R. Since the wheel has been rotated by an angle θ ,

O R = arc S R = aθ.
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Thus, the new position of the centre is C = (aθ, a). Let
P = (x, y) be the new position of the point; then

x = O R − PQ = aθ − b sin(π − θ) = aθ − b sin θ,

y = RC + C Q = a + b cos(π − θ) = a − b cos θ.

These are the parametric equations of the prolate cycloid.
y

x

C0

O

P0

P

S

Q

C
θ

R

b

a

Fig. 8.2.20

y

x
2πa

x=aθ−b sin θ

y=a−b cos θ

Fig. 8.2.20

21. Let t and θt be the angles shown in the figure below.
Then arc ATt = arc Tt Pt , that is, at = bθt . The centre Ct

of the rolling circle is Ct =
(

(a − b) cos t, (a − b) sin t
)

.

Thus

x − (a − b) cos t = b cos(θt − t)

y − (a − b) sin t = −b sin(θt − t).

Since θt − t = a

b
t − t = a − b

b
t , therefore

x = (a − b) cos t + b cos

(
(a − b)t

b

)

y = (a − b) sin t − b sin

(
(a − b)t

b

)

.

y

x

Tt

t

t A

Ct

Pt=(x,y)

θt

a

b

Fig. 8.2.21

If a = 2 and b = 1, then x = 2 cos t , y = 0. This is a
straight line segment.
If a = 4 and b = 1, then

x = 3 cos t + cos 3t

= 3 cos t + (cos 2t cos t − sin 2t sin t)

= 3 cos t +
(

(2 cos2 t − 1) cos t − 2 sin2 t cos t
)

= 2 cos t + 2 cos3 t − 2 cos t (1 − sin2 t) = 4 cos3 t

y = 3 sin t + sin 3t

= 3 sin t − sin 2t cos t − (cos 2t sin t)

= 3 sin t − 2 sin t cos2 t −
(

(1 − 2 sin2 t) sin t
)

= 2 sin t − 2 sin t + 2 sin3 t + 2 sin3 t = 4 sin3 t

This is an astroid, similar to that of Exercise 11.

22. a) From triangles in the figure,

x = |T X | = |OT | tan t = tan t

y = |OY | = sin
(
π
2 − t

) = |OY | cos t

= |OT | cos t cos t = cos2 t.

y

x

P = (x, y)

y = 1

1
2

t

T X

Y

O

Fig. 8.2.22
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b)
1

y
= sec2 t = 1+ tan2 t = 1+ x2. Thus y = 1

1+ x2 .

23. x = sin t, y = sin(2t)
y

x

Fig. 8.2.23

24. x = sin t, y = sin(3t)
y

x

Fig. 8.2.24

25. x = sin(2t), y = sin(3t)
y

x

Fig. 8.2.25

26. x = sin(2t), y = sin(5t)
y

x

Fig. 8.2.26

27. x =
(

1+ 1

n

)

cos t − 1

n
cos(nt)

y =
(

1+ 1

n

)

sin t − 1

n
sin(nt)

represents a cycloid-like curve that is wound around the
circle x2 + y2 = 1 instead of extending along the x-
axis. If n ≥ 2 is an integer, the curve closes after one
revolution and has n − 1 cusps. The left figure below
shows the curve for n = 7. If n is a rational number, the
curve will wind around the circle more than once before
it closes.

y

x

Fig. 8.2.27

28. x =
(

1+ 1

n

)

cos t + 1

n
cos((n − 1)t)

y =
(

1+ 1

n

)

sin t − 1

n
sin((n − 1)t)

represents a cycloid-like curve that is wound around the

inside circle x2 + y2 =
(

1 + (2/n)
)2

and is externally

tangent to x2 + y2 = 1. If n ≥ 2 is an integer, the curve
closes after one revolution and has n cusps. The figure
shows the curve for n = 7. If n is a rational number but
not an integer, the curve will wind around the circle more
than once before it closes.

y

x

Fig. 8.2.28

Section 8.3 Smooth Parametric Curves and
Their Slopes (page 453)

1. x = t2 + 1
dx

dt
= 2t

y = 2t − 4
dy

dt
= 2

No horizontal tangents. Vertical tangent at t = 0, i.e., at
(1,−4).
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2. x = t2 − 2t
dx

dt
= 2t − 2

y = t2 + 2t
dy

dt
= 2t + 2

Horizontal tangent at t = −1, i.e., at (3,−1).
Vertical tangent at t = 1, i.e., at (−1, 3).

3. x = t2 − 2t
dx

dt
= 2(t − 1)

y = t3 − 12t
dy

dt
= 3(t2 − 4)

Horizontal tangent at t = ±2, i.e., at (0,−16) and
(8, 16).
Vertical tangent at t = 1, i.e., at (−1,−11).

4. x = t3 − 3t
dx

dt
= 3(t2 − 1)

y = 2t3 + 3t2

dy

dt
= 6t (t + 1)

Horizontal tangent at t = 0, i.e., at (0, 0).
Vertical tangent at t = 1, i.e., at (−2, 5).
At t = −1 (i.e., at (2, 1)) both dx/dt and dy/dt change
sign, so the curve is not smooth there. (It has a cusp.)

5. x = te−t2/2

dx

dt
= (1 − t2)e−t2/2

y = e−t2

dy

dt
= −2te−t2

Horizontal tangent at t = 0, i.e., at (0, 1).
Vertical tangent at t = ±1, i.e. at (±e−1/2, e−1).

6. x = sin t
dx

dt
= cos t

y = sin t − t cos t
dy

dt
= t sin t

Horizontal tangent at t = nπ , i.e., at (0,−(−1)nnπ) (for
integers n).
Vertical tangent at t = (n + 1

2 )π , i.e. at (1, 1) and
(−1,−1).

7. x = sin(2t)
dx

dt
= 2 cos(2t)

y = sin t
dy

dt
= cos t

Horizontal tangent at t = (n + 1
2 )π , i.e., at (0,±1).

Vertical tangent at t = 1
2 (n+ 1

2 )π , i.e., at (±1, 1/
√

2) and

(±1,−1/
√

2).

8. x = 3t

1+ t3

dx

dt
= 3(1 − 2t3)

(1 + t3)2

y = 3t2

1+ t3

dy

dt
= 3t (2 − t3)

(1+ t3)2

Horizontal tangent at t = 0 and t = 21/3, i.e., at (0, 0)
and (21/3, 22/3).
Vertical tangent at t = 2−1/3, i.e., at (22/3, 21/3). The
curve also approaches (0, 0) vertically as t →±∞.

9. x = t3 + t
dx

dt
= 3t2 + 1

y = 1− t3

dy

dt
= −3t2

At t = 1;
dy

dx
= −3(1)2

3(1)2 + 1
= −3

4
.

10. x = t4 − t2

dx

dt
= 4t3 − 2t

y = t3 + 2t
dy

dt
= 3t2 + 2

At t = −1;
dy

dx
= 3(−1)2 + 2

4(−1)3 − 2(−1)
= −5

2
.

11. x = cos(2t)
dx

dt
= −2 sin(2t)

y = sin t
dy

dt
= cos t

At t = π

6
;

dy

dx
= cos(π/6)

−2 sin(π/3)
= −1

2
.

12. x = e2t

dx

dt
= 2e2t

y = te2t

dy

dt
= e2t (1 + 2t)

At t = −2;
dy

dx
= e−4(1 − 4)

2e−4
= −3

2
.

13. x = t3 − 2t = −1
dx

dt
= 3t2 − 2 = 1

y = t + t3 = 2 at t = 1
dy

dt
= 1+ 3t2 = 4 at t = 1

Tangent line: x = −1 + t , y = 2 + 4t . This line is at
(−1, 2) at t = 0. If you want to be at that point at t = 1
instead, use

x = −1+ (t − 1) = t − 2, y = 2+ 4(t − 1) = 4t − 2.

14. x = t − cos t = π

4
− 1√

2
dx

dt
= 1+ sin t = 1+ 1√

2

y = 1− sin t = 1− 1√
2

at t = π

4
dy

dt
= − cos t = − 1√

2
at t = π

4

Tangent line: x = π

4
− 1√

2
+
(

1+ 1√
2

)

t ,

y = 1− 1√
2
− t√

2
.

15. x = t3 − t , y = t2 is at (0, 1) at t = −1 and t = 1. Since

dy

dx
= 2t

3t2 − 1
= ±2

2
= ±1,

the tangents at (0, 1) at t = ±1 have slopes ±1.

16. x = sin t , y = sin(2t) is at (0, 0) at t = 0 and t = π .
Since

dy

dx
= 2 cos(2t)

cos t
=
{

2 if t = 0
−2 if t = π ,

the tangents at (0, 0) at t = 0 and t = π have slopes 2
and −2, respectively.
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17. x = t3

dx

dt
= 3t2

y = t2

dy

dt
= 2t both vanish at t = 0.

dy

dx
= 2

3t
has no limit as t → 0.

dx

dy
= 3t

2
→ 0 as

t → 0, but dy/dt changes sign at t = 0. Thus the curve
is not smooth at t = 0. (In this solution, and in the next
five, we are using the Remark following Example 2 in
the text.)

18. x = (t − 1)4

dx

dt
= 4(t − 1)3

y = (t − 1)3

dy

dt
= 3(t − 1)2 both vanish at t = 1.

Since
dx

dy
= 4(t − 1)

3
→ 0 as t → 1, and dy/dt does not

change sign at t = 1, the curve is smooth at t = 1 and
therefore everywhere.

19. x = t sin t
dx

dt
= sin t + t cos t

y = t3

dy

dt
= 3t2 both vanish at t = 0.

lim
t→0

dy

dx
= lim

t→0

3t2

sin t + t cos t
= lim

t→0

6t

2 cos t − t sin t
= 0,

but dx/dt changes sign at t = 0. dx/dy has no limit at
t = 0. Thus the curve is not smooth at t = 0.

20. x = t3

dx

dt
= 3t2

y = t − sin t
dy

dt
= 1− cos t both vanish at t = 0.

lim
t→0

dx

dy
= lim

t→0

3t2

1− cos t
= lim

t→0

6t

sin t
= 6 and dy/dt does

not change sign at t = 0. Thus the curve is smooth at
t = 0, and hence everywhere.

21. If x = t2 − 2t and y = t2 − 4t , then

dx

dt
= 2(t − 1),

dy

dt
= 2(t − 2)

d2x

dt2 =
d2y

dt2 = 2

d2y

dx2
= 1

dx/dt

d

dt

dy

dx

= 1

2(t − 1)

d

dt

t − 2

t − 1
= 1

2(t − 1)3
.

Directional information is as follows:

1 2
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→t| |
dx/dt − + +
dy/dt − − +

x ← → →
y ↓ ↓ ↑

curve ↙ ↘ ↗

The tangent is horizontal at t = 2, (i.e., (0,−4)), and
is vertical at t = 1 (i.e., at (−1,−3). Observe that
d2y/dx2 > 0, and the curve is concave up, if t > 1.
Similarly, d2y/dx2 < 0 and the curve is concave down if
t < 1.

y

x

t=2

t=1

x=t2−2t
y=t2−4t

Fig. 8.3.21

22. If x = f (t) = t3 and y = g(t) = 3t2 − 1, then

f ′(t) = 3t2,

g′(t) = 6t,

f ′′(t) = 6t;
g′′(t) = 6.

Both f ′(t) and g′(t) vanish at t = 0. Observe that

dy

dx
= 6t

3t2
= 2

t
.

Thus,

lim
t→0+

dy

dx
=∞, lim

t→0−
dy

dx
= −∞

and the curve has a cusp at t = 0, i.e., at (0,−1). Since

d2y

dx2 =
(3t2)(6) − (6t)(6t)

(3t2)3
= − 2

3t4 < 0

for all t , the curve is concave down everywhere.
y

x

−1

x=t3

y=3t2−1

Fig. 8.3.22
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23. x = t3 − 3t , y = 2/(1 + t2). Observe that y → 0,
x →±∞ as t →±∞.

dx

dt
= 3(t2 − 1),

dy

dt
= − 4t

(1 + t2)2

dy

dx
= − 4t

3(t2 − 1)(1 + t2)2

d2x

dt2 = 6t,
d2y

dt2 =
4(3t2 − 1)

(1+ t2)3

d2y

dx2 =
3(t2 − 1)

4(3t2 − 1)

(1+ t2)3
− 4t (6t)

(1 + t2)2

[3(t2 − 1)]3

= 60t4 + 48t2 + 12

27(t2 − 1)3(1 + t2)3

Directional information:

−1 0 1
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→t| | |
dx/dt + − − +
dy/dt + + − −

x → ← ← →
y ↑ ↑ ↓ ↓

curve ↗ ↖ ↙ ↘

The tangent is horizontal at t = 0, i.e., (0, 2), and vertical
at t = ±1, i.e., (±2, 1).

−1 1
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→t| |
d2y

dx2
+ − +

curve � � �

y

x

x=t3−3t

y=
2

1+ t2
t=0

t=−1t=1

Fig. 8.3.23

24. If x = f (t) = t3 − 3t − 2 and y = g(t) = t2 − t − 2, then

f ′(t) = 3t2 − 3,

g′(t) = 2t − 1,

f ′′(t) = 6t;
g′′(t) = 2.

The tangent is horizontal at t = 1

2
, i.e., at

(

−27

8
,−9

4

)

.

The tangent is vertical at t = ±1, i.e., (−4,−2) and
(0, 0). Directional information is as follows:

t −1 1
2 1

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→| | |
f ′(t) + − − +
g′(t) − − + +

x → ← ← →
y ↓ ↓ ↑ ↑

curve ↘ ↙ ↖ ↗

For concavity,

d2y

dx2 =
3(t2 − 1)(2)− (2t − 1)(6t)

[3(t2 − 1)]3
= −2(t2 − t + 1)

9(t2 − 1)3

which is undefined at t = ±1, therefore

t −1 1
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→| |
d2y

dx2 − + −
curve � � �

y

xt=−1, 2

t= 1
2

t=1

x=t3−3t−2

y=t2−2t−2

Fig. 8.3.24

25. x = cos t + t sin t, y = sin t − t cos t, (t ≥ 0).

dx

dt
= t cos t,

dy

dt
= t sin t,

dy

dt
= tan t

d2x

dt2 = cos t − t sin t

d2y

dt2 = sin t + t cos t

d2y

dx2 =
dx

dt

d2y

dt2 −
dy

dt

d2x

dt2
(

dx

dt

)3

= 1

t cos3 t

Tangents are vertical at t = (n + 1
2

)

π ,
and horizontal at t = nπ (n = 0, 1, 2, . . .).
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y

xt=0

t=π

t=3π/2

t=2π

Fig. 8.3.25

Section 8.4 Arc Lengths and Areas for
Parametric Curves (page 458)

1. x = 3t2

dx

dt
= 6t

y = 2t3 (0 ≤ t ≤ 1)
dy

dt
= 6t2

Length =
∫ 1

0

√

(6t)2 + (6t2)2 dt

= 6
∫ 1

0
t
√

1 + t2 dt Let u = 1+ t2

du = 2t dt

= 3
∫ 2

1

√
u du = 2u3/2

∣
∣
∣
∣

2

1
= 4
√

2− 2 units

.

2. If x = 1+ t3 and y = 1− t2 for −1 ≤ t ≤ 2, then the arc
length is

s =
∫ 2

−1

√

(3t2)2 + (−2t)2 dt

=
∫ 2

−1
|t |
√

9t2 + 4 dt

=
(∫ 1

0
+
∫ 2

0

)

t
√

9t2 + 4 dt Let u = 9t2 + 4

du = 18t dt

= 1

18

(∫ 13

4
+
∫ 40

4

)√
u du

= 1

27

(

13
√

13+ 40
√

40− 16
)

units.

3. x = a cos3 t , y = a sin3 t , (0 ≤ t ≤ 2π). The length is

∫ 2π

0

√

9a2 cos4 t sin2 t + 9a2 sin4 t cos2 t dt

=3a
∫ 2π

0
| sin t cos t | dt

=12a
∫ π/2

0

1

2
sin 2t dt

=6a

(

− cos 2t

2

)∣
∣
∣
∣

π/2

0
= 6a units.

4. If x = ln(1+ t2) and y = 2 tan−1 t for 0 ≤ t ≤ 1, then

dx

dt
= 2t

1+ t2 ;
dy

dt
= 2

1 + t2 .

The arc length is

s =
∫ 1

0

√

4t2 + 4

(1 + t2)2
dt

= 2
∫ 1

0

dt√
1+ t2

Let t = tan θ

dt = sec2 θ dθ

= 2
∫ π/4

0
sec θ dθ

= 2 ln | sec θ + tan θ |
∣
∣
∣
∣

π/4

0
= 2 ln(1 +√2) units.

5. x = t2 sin t , y = t2 cos t , (0 ≤ t ≤ 2π).

dx

dt
= 2t sin t + t2 cos t

dy

dt
= 2t cos t − t2 sin t

(
ds

dt

)2

= t2
[

4 sin2 t + 4t sin t cos t + t2 cos2 t

+ 4 cos2 t − 4t sin t cos t + t2 sin2 t

]

= t2(4 + t2).

The length of the curve is

∫ 2π

0
t
√

4+ t2 dt Let u = 4+ t2

du = 2t dt

=1

2

∫ 4+4π2

4
u1/2 du = 1

3
u3/2

∣
∣
∣
∣

4+4π2

4

=8

3

(

(1 + π2)3/2 − 1

)

units.

6. x = cos t + t sin t
dx

dt
= t cos t

y = sin t − t cos t (0 ≤ t ≤ 2π)
dy

dt
= t sin t

Length =
∫ 2π

0

√

t2 cos2 t + t2 sin2 t dt

=
∫ 2π

0
t dt = t2

2

∣
∣
∣
∣

2π

0
= 2π2 units.

7. x = t + sin t
dx

dt
= 1+ cos t

y = cos t (0 ≤ t ≤ π)
dy

dt
= − sin t
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Length =
∫ π

0

√

1+ 2 cos t + cos2 t + sin2 t dt

=
∫ π

0

√

4 cos2(t/2) dt = 2
∫ π

0
cos

t

2
dt

= 4 sin
t

2

∣
∣
∣
∣

π

0
= 4 units.

8. x = sin2 t
dx

dt
= 2 sin t cos t

y = 2 cos t (0 ≤ t ≤ π/2)
dy

dt
= −2 sin t

Length

=
∫ π/2

0

√

4 sin2 t cos2 t + 4 sin2 t dt

= 2
∫ π/2

0
sin t

√

1+ cos2 t dt Let cos t = tan u

− sin t dt = sec2 u du

= 2
∫ π/4

0
sec3 u du

=
(

sec u tan u + ln(sec u + tan u)

)∣
∣
∣
∣

π/4

0

= √2 + ln(1 +√2) units.

9. x = a(t − sin t)
dx

dt
= a(1 − cos t)

y = a(1 − cos t) (0 ≤ t ≤ 2π)
dy

dt
= a sin t

Length =
∫ 2π

0

√

a2(1 − 2 cos t + cos2 t + sin2 t) dt

= a
∫ 2π

0

√
2− 2 cos t dt = a

∫ 2π

0

√

sin2 t

2
dt

= 2a
∫ π

0
sin

t

2
dt = −4a cos

t

2

∣
∣
∣
∣

π

0
= 4a units.

10. If x = at − a sin t and y = a − a cos t for 0 ≤ t ≤ 2π ,
then

dx

dt
= a − a cos t,

dy

dt
= a sin t;

ds =
√

(a − a cos t)2 + (a sin t)2 dt

= a
√

2
√

1− cos t dt = a
√

2

√

2 sin2

(
t

2

)

dt

= 2a sin

(
t

2

)

dt.

a) The surface area generated by rotating the arch about
the x-axis is

Sx = 2π
∫ 2π

0
|y|ds

= 4π
∫ π

0
(a − a cos t)2a sin

(
t

2

)

dt

= 16πa2
∫ π

0
sin3

(
t

2

)

dt

= 16πa2
∫ π

0

[

1 − cos2
(

t

2

)]

sin

(
t

2

)

dt

Let u = cos

(
t

2

)

du = −1

2
sin

(
t

2

)

dt

= −32πa2
∫ 0

1
(1− u2) du

= 32πa2
[

u − 1

3
u3
]∣
∣
∣
∣

1

0

= 64

3
πa3 sq. units.

b) The surface area generated by rotating the arch about
the y-axis is

Sy = 2π
∫ 2π

0
|x | ds

= 2π
∫ 2π

0
(at − a sin t)2a sin

(
t

2

)

dt

= 4πa2
∫ 2π

0

[

t − 2 sin

(
t

2

)

cos

(
t

2

)]

sin

(
t

2

)

dt

= 4πa2
∫ 2π

0
t sin

(
t

2

)

dt

− 8πa2
∫ 2π

0
sin2

(
t

2

)

cos

(
t

2

)

dt

= 4πa2
[

−2t cos

(
t

2

) ∣
∣
∣
∣

2π

0
+ 2

∫ 2π

0
cos

(
t

2

)

dt

]

− 0

= 4πa2[4π + 0] = 16π2a2 sq. units.

11. x = et cos t
dx

dt
= et (cos t − sin t)

y = et sin t (0 ≤ t ≤ π/2)
dy

dt
= et (sin t + cos t)

Arc length element:

ds =
√

e2t (cos t − sin t)2 + e2t (sin t + cos t)2 dt

= √2et dt.
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The area of revolution about the x-axis is

∫ t=π/2

t=0
2πy ds = 2

√
2π
∫ π/2

0
e2t sin t dt

= 2
√

2π
e2t

5
(2 sin t − cos t)

∣
∣
∣
∣

π/2

0

= 2
√

2π

5
(2eπ + 1) sq. units.

12. The area of revolution of the curve in Exercise 11 about
the y-axis is

∫ t=π/2

t=0
2πx ds = 2

√
2π
∫ π/2

0
e2t cos t dt

= 2
√

2π
e2t

5
(2 cos t + sin t)

∣
∣
∣
∣

π/2

0

= 2
√

2π

5
(eπ − 2) sq. units.

13. x = 3t2

dx

dt
= 6t

y = 2t3 (0 ≤ t ≤ 1)
dy

dt
= 6t2

Arc length element:
ds =

√

36(t2 + t4) dt = 6t
√

1+ t2 dt .
The area of revolution about the y-axis is

∫ t=1

t=0
2πx ds = 36π

∫ 1

0
t3
√

1+ t2 dt Let u = 1+ t2

du = 2t dt

= 18π
∫ 2

1
(u − 1)

√
u du

= 18π

(
2

5
u5/2 − 2

3
u3/2

)∣
∣
∣
∣

2

1

= 72π

15
(1 +√2) sq. units.

14. The area of revolution of the curve of Exercise 13 about
the x-axis is

∫ t=1

t=0
2πy ds = 24π

∫ 1

0
t4
√

1+ t2 dt Let t = tan u

dt = sec2 u du

= 24π
∫ π/4

0
tan4 u sec3 u du

= 24π
∫ π/4

0
(sec7 u − 2 sec5 u + sec3 u) du

= π

2

(

7
√

2+ 3 ln(1 +√2)
)

sq. units.

We have omitted the details of evaluation of the final
integral. See Exercise 24 of Section 8.3 for a similar
evaluation.

15. x = t3 − 4t , y = t2, (−2 ≤ t ≤ 2).

Area =
∫ 2

−2
t2(3t2 − 4) dt

= 2
∫ 2

0
(3t4 − 4t2) dt

= 2

(

3t5

5
− 4t3

3

)∣
∣
∣
∣

2

0
= 256

15
sq. units.

y

x

x=t3−4t

y=t2

A

Fig. 8.4.15

16. Area of R = 4×
∫ 0

π/2
(a sin3 t)(−3a sin t cos2 t) dt

= −12a2
∫ 0

π/2
sin4 t cos2 t dt

= 12a2
[

t

16
− sin(4t)

64
− sin3 (2t)

48

] ∣
∣
∣
∣

π/2

0

(See Exercise 34 of Section 6.4.)

= 3

8
πa2 sq. units.

y

x−a

−a

a

a
x=a cos3 t
y=a sin3 t

R

Fig. 8.4.16

17. x = sin4 t , y = cos4 t ,
(

0 ≤ t ≤ π

2

)

.

Area =
∫ π/2

0
(cos4 t)(4 sin3 t cos t) dt

= 4
∫ π/2

0
cos5 t (1 − cos2 t) sin t dt Let u = cos t

du = − sin t dt

= 4
∫ 1

0
(u5 − u7) du = 6

(
1

6
− 1

8

)

= 1

6
sq. units.

328



INSTRUCTOR’S SOLUTIONS MANUAL SECTION 8.4 (PAGE 458)

y

x

A

x=sin4 t

y=cos4 t

0≤t≤π/2

Fig. 8.4.17

18. If x = cos s sin s = 1
2 sin 2s and y = sin2 s = 1

2 − 1
2 cos 2s

for 0 ≤ s ≤ 1
2π , then

x2 +
(

y − 1

2

)2

= 1

4
sin2 2s + 1

4
cos2 2s = 1

4

which is the right half of the circle with radius 1
2 and

centre at (0, 1
2 ). Hence, the area of R is

1

2

[

π

(
1

2

)2]

= π

8
sq. units.

y

x

1
2

1 x=cos s sin s
y=sin2 s

Fig. 8.4.18

19. x = (2+ sin t) cos t , y = (2 + sin t) sin t , (0 ≤ t ≤ 2π).
This is just the polar curve r = 2+ sin θ .

Area = −
∫ 2π

0
(2 + sin t) sin t

d

dt

(

(2 + sin t) cos t
)

dt

= −
∫ 2π

0
(2 sin t + sin2 t)(cos2 t − 2 sin t − sin2 t) dt

=
∫ 2π

0

[

4 sin2 t + 4 sin3 t + sin4 t

− 2 sin t cos2 t − sin2 t cos2 t
]

dt

=
∫ 2π

0

[

2(1 − cos 2t)+ 1− cos 2t

2
(− cos 2t)

]

dt

+
∫ 2π

0
sin t

[

4− 6 cos2 t
]

dt

= 4π + π
2
+ 0 = 9π

2
sq. units.

y

x

A

x=(2+sin t) cos t

y=(2+sin t) sin t

0≤t≤2π

Fig. 8.4.19

20. To find the shaded area we subtract the area under the
upper half of the hyperbola from that of a right triangle:

Shaded area = Area �ABC − Area sector ABC

= 1

2
sec t0 tan t0 −

∫ t0

0
tan t (sec t tan t) dt

= 1

2
sec t0 tan t0 −

∫ t0

0
(sec3 t − sec t) dt

= 1

2
sec t0 tan t0 −

[
1

2
sec t tan t+

1

2
ln | sec t + tan t | − ln | sec t + tan t |

]∣
∣
∣
∣

t0

0

= 1

2
ln | sec t0 + tan t0| sq. units.

y

x

R

t=t0

t=0

x=sec t
y=tan t

Fig. 8.4.20

21. See the figure below. The area is the area of a triangle
less the area under the hyperbola:

A = 1

2
cosh t0 sinh t0 −

∫ t0

0
sinh t sinh t dt

= 1

4
sinh 2t0 −

∫ t0

0

cosh 2t − 1

2
dt

= 1

4
sinh 2t0 − 1

4
sinh 2t0 + 1

2
t0

= t0
2

sq. units.
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y

x

(cosh t0,sinh t0)

A

Fig. 8.4.21

22. If x = f (t) = at − a sin t and y = g(t) = a − a cos t ,
then the volume of the solid obtained by rotating about
the x-axis is

V =
∫ t=2π

t=0
πy2 dx = π

∫ t=2π

t=0
[g(t)]2 f ′(t) dt

= π
∫ 2π

0
(a − a cos t)2(a − a cos t) dt

= πa3
∫ 2π

0
(1− cos t)3 dt

= πa3
∫ 2π

0
(1− 3 cos t + 3 cos2 t − cos3 t) dt

= πa3
[

2π − 0+ 3

2

∫ 2π

0
(1 + cos 2t) dt − 0

]

= πa3
[

2π + 3

2
(2π)

]

= 5π2a3 cu. units.

y

xdx

t=2πt=0

x=at−a sin t
y=a−a cos t

Fig. 8.4.22

23. Half of the volume corresponds to rotating x = a cos3 t ,
y = a sin3 t (0 ≤ t ≤ π/2) about the x-axis. The whole
volume is

V = 2
∫ π/2

0
πy2 (−dx)

= 2π
∫ π/2

0
a2 sin6 t (3a cos2 t sin t) dt

= 6πa3
∫ π/2

0
(1 − cos2 t)3 cos2 t sin t dt Let u = cos t

du = − sin t dt

= 6πa3
∫ 1

0
(1 − 3u2 + 3u4 − u6)u2 du

= 6πa3
(

1

3
− 3

5
+ 3

7
− 1

9

)

= 32πa3

105
cu. units.

Section 8.5 Polar Coordinates and Polar
Curves (page 464)

1. r = 3 sec θ

r cos θ = 3

x = 3 vertical straight line.

2. r = −2 csc θ ⇒ r sin θ = −2

⇔ y = −2 a horizontal line.

3. r = 5/(3 sin θ − 4 cos θ)

3r sin θ − 4r cos θ = 5

3y − 4x = 5 straight line.

4. r = sin θ + cos θ

r2 = r sin θ + r cos θ

x2 + y2 = y + x
(

x − 1

2

)2

+
(

y − 1

2

)2

= 1

2

a circle with centre

(
1

2
,

1

2

)

and radius
1√
2

.

5. r 2 = csc 2θ

r2 sin 2θ = 1

2r2 sin θ cos θ = 1

2xy = 1 a rectangular hyperbola.

6. r = sec θ tan θ ⇒ r cos θ = r sin θ

r cos θ
x2 = y a parabola.

7. r = sec θ(1+ tan θ)

r cos θ = 1+ tan θ

x = 1 + y

x
x2 − x − y = 0 a parabola.

8. r = 2√
cos2 θ + 4 sin2 θ

r2 cos2 θ + 4r2 sin2 θ = 4

x2 + 4y2 = 4 an ellipse.

9. r = 1

1 − cos θ
r − x = 1

r2 = (1+ x)2

x2 + y2 = 1+ 2x + x2

y2 = 1+ 2x a parabola.
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10. r = 2

2− cos θ
2r − r cos θ = 2

4r2 = (2 + x)2

4x2 + 4y2 = 4+ 4x + x2

3x2 + 4y2 − 4x = 4 an ellipse.

11. r = 2

1− 2 sin θ
r − 2y = 2

x2 + y2 = r2 = 4(1 + y)2 = 4+ 8y + 4y2

x2 − 3y2 − 8y = 4 a hyperbola.

12. r = 2

1+ sin θ
r + r sin θ = 2

r2 = (2− y)2

x2 + y2 = 4− 4y + y2

x2 = 4− 4y a parabola.

13. r = 1+ sin θ (cardioid)
y

x

2

Fig. 8.5.13

14. If r = 1− cos

(

θ + π
4

)

, then r = 0 at θ = −π
4

and
7π

4
.

This is a cardioid.
y

x

r=1−cos(θ+π4 )

θ=−π4

Fig. 8.5.14

15. r = 1+ 2 cos θ
r = 0 if θ = ±2π/3.

y

x

2π/3

1 3

−2π/3

Fig. 8.5.15

16. If r = 1− 2 sin θ , then r = 0 at θ = π

6
and

5π

6
.

y

x

r=1−2 sin θ

θ= 5π
6

θ=π6

Fig. 8.5.16

17. r = 2+ cos θ
y

x
3−1

Fig. 8.5.17

18. If r = 2 sin 2θ , then r = 0 at θ = 0, ±π
2

and π .

y

x

(
√

2,
√

2)

r=2 sin 2θ

Fig. 8.5.18

19. r = cos 3θ (three leaf rosette)
r = 0 at θ = ±π/6, ±π/2, ±5π/6.
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y

x

π/6

Fig. 8.5.19

20. If r = 2 cos 4θ , then r = 0 at θ = ±π
8
, ±3π

8
, ±5π

8
and

±7π

8
. (an eight leaf rosette)

y

x

θ=π8

r=2 cos 4θ

θ=3π
8

Fig. 8.5.20

21. r 2 = 4 sin 2θ . Thus r = ±2
√

sin 2θ . This is a lemniscate.
r = 0 at θ = 0, θ = ±π/2, and θ = π .

y

x

Fig. 8.5.21

22. If r2 = 4 cos 3θ , then r = 0 at θ = ±π
6
, ±π

2
and

±5π

6
. This equation defines two functions of r , namely

r = ±2
√

cos 3θ . Each contributes 3 leaves to the graph.

y

x

θ=π6

r2=4 cos 3θ

Fig. 8.5.22

23. r 2 = sin 3θ . Thus r = ±√sin 3θ . This is a lemniscate.
r = 0 at θ = 0, ±π/3, ±2π/3, π .

y

x

π/3

Fig. 8.5.23

24. If r = ln θ , then r = 0 at θ = 1. Note that

y = r sin θ = ln θ sin θ = (θ ln θ)

(
sin θ

θ

)

→ 0

as θ → 0+. Therefore, the (negative) x-axis is an asymp-
tote of the curve.

y

x

r=ln θ

Fig. 8.5.24

25. r = √3 cos θ , and r = sin θ both pass through the origin,
and so intersect there. Also
sin θ = √3 cos θ ⇒ tan θ = √3 ⇒ θ = π/3, 4π/3.
Both of these give the same point [

√
3/2, π/3].

Intersections: the origin and [
√

3/2, π/3].

26. r 2 = 2 cos(2θ), r = 1.
cos(2θ) = 1/2 ⇒ θ = ±π/6 or θ = ±5π/6.
Intersections: [1,±π/6] and [1,±5π/6].
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27. r = 1 + cos θ , r = 3 cos θ . Both curves pass through the
origin, so intersect there. Also
3 cos θ = 1+cos θ ⇒ cos θ = 1/2 ⇒ θ = ±π/3.
Intersections: the origin and [3/2,±π/3].

28. Let r1(θ) = θ and r2(θ) = θ + π . Although the equation
r1(θ) = r2(θ) has no solutions, the curves r = r1(θ)

and r = r2(θ) can still intersect if r1(θ1) = −r2(θ2) for
two angles θ1 and θ2 having the opposite directions in the
polar plane. Observe that θ1 = −nπ and θ2 = (n − 1)π
are two such angles provided n is any integer. Since

r1(θ1) = −nπ = −r2((n − 1)π),

the curves intersect at any point of the form [nπ, 0] or
[nπ,π ].

29. If r = 1/θ for θ > 0, then

lim
θ→0+ y = lim

θ→0+
sin θ

θ
= 1.

Thus y = 1 is a horizontal asymptote.
y

x

y=1

r=1/θ

Fig. 8.5.29

30. The graph of r = cos nθ has 2n leaves if n is an even
integer and n leaves if n is an odd integer. The situation
for r2 = cos nθ is reversed. The graph has 2n leaves
if n is an odd integer (provided negative values of r are
allowed), and it has n leaves if n is even.

31. If r = f (θ), then

x = r cos θ = f (θ) cos θ

y = r sin θ = f (θ) sin θ.

32. r = cos θ cos(mθ)
For odd m this flower has 2m petals, 2 large ones and 4
each of (m − 1)/2 smaller sizes.
For even m the flower has m + 1 petals, one large and 2
each of m/2 smaller sizes.

33. r = 1+ cos θ cos(mθ)
These are similar to the ones in Exercise 32, but the
curve does not approach the origin except for θ = π

in the case of even m. The petals are joined, and less
distinct. The smaller ones cannot be distinguished.

34. r = sin(2θ) sin(mθ)
For odd m there are m + 1 petals, 2 each of (m + 1)/2
different sizes.
For even m there are always 2m petals. They are of n
different sizes if m = 4n − 2 or m = 4n.

35. r = 1+ sin(2θ) sin(mθ)
These are similar to the ones in Exercise 34, but the
petals are joined, and less distinct. The smaller ones can-
not be distinguished. There appear to be m + 2 petals in
both the even and odd cases.

36. r = C + cos θ cos(2θ)
The curve always has 3 bulges, one larger than the
other two. For C = 0 these are 3 distinct petals. For
0 < C < 1 there is a fourth supplementary petal inside
the large one. For C = 1 the curve has a cusp at the ori-
gin. For C > 1 the curve does not approach the origin,
and the petals become less distinct as C increases.

37. r = C + cos θ sin(3θ)
For C < 1 there appear to be 6 petals of 3 different sizes.
For C ≥ 1 there are only 4 of 2 sizes, and these coalesce
as C increases.

38.
y

x

r = ln(θ)

Fig. 8.5.38

We will have [ln θ1, θ1] = [ln θ2, θ2] if

θ2 = θ1 + π and ln θ1 = − ln θ2,

that is, if ln θ1 + ln(θ1 + π) = 0. This equa-
tion has solution θ1 ≈ 0.29129956. The correspond-
ing intersection point has Cartesian coordinates
(ln θ1 cos θ1, ln θ1 sin θ1) ≈ (−1.181442,−0.354230).
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39.
y

x

r = ln(θ)

r = 1/θ

Fig. 8.5.39

The two intersections of r = ln θ and r = 1/θ for
0 < θ ≤ 2π correspond to solutions θ1 and θ2 of

ln θ1 = 1

θ1
, ln θ2 = − 1

θ2 + π .

The first equation has solution θ1 ≈ 1.7632228, giv-
ing the point (−0.108461, 0.556676), and the second
equation has solution θ2 ≈ 0.7746477, giving the point
(−0.182488,−0.178606).

Section 8.6 Slopes, Areas, and Arc Lengths
for Polar Curves (page 468)

1. Area = 1

2

∫ 2π

0
θ dθ = (2π)2

4
= π2.

y

x

r=√θ

θ=2πθ=0

Fig. 8.6.1

2. Area = 1

2

∫ 2π

0
θ2 dθ = θ3

6

∣
∣
∣
∣

2π

0
= 4

3
π3 sq. units.

y

x
A

r=θ

Fig. 8.6.2

3. Area = 4× 1

2

∫ π/4

0
a2 cos 2θ dθ

= 2a2 sin 2θ

2

∣
∣
∣
∣

π/4

0
= a2 sq. units.

y

x

r2=a2 cos 2θ

Fig. 8.6.3

4. Area = 1

2

∫ π/3

0
sin2 3θ dθ = 1

4

∫ π/3

0
(1− cos 6θ) dθ

= 1

4

(

θ − 1

6
sin 6θ

)∣
∣
∣
∣

π/3

0
= π

12
sq. units.

y

x

A

θ=π3

r=sin 3θ

Fig. 8.6.4

5. Total area = 16 × 1

2

∫ π/8

0
cos2 4θ dθ

= 4
∫ π/8

0
(1+ cos 8θ) dθ

= 4

(

θ + sin 8θ

8

)∣
∣
∣
∣

π/8

0
= π

2
sq. units.
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y

x

π/8

r=cos 4θ

Fig. 8.6.5

6. The circles r = a and r = 2a cos θ intersect
at θ = ±π/3. By symmetry, the common area is
4×(area of sector−area of right triangle) (see the figure),
i.e.,

4 ×
[(

1

6
πa2

)

−
(

1

2

a

2

√
3a

2

)]

= 4π − 3
√

3

6
a2 sq. units.

y

x

r=a
r=2a cos θ

A

Fig. 8.6.6

7. Area = 2× 1

2

∫ π

π/2
(1 − cos θ)2 dθ − π

2

=
∫ π

π/2

(

1− 2 cos θ + 1+ cos 2θ

2

)

dθ − π
2

= 3

2

(

π − π
2

)

−
(

2 sin θ − sin 2θ

4

)∣
∣
∣
∣

π

π/2
− π

2

= π

4
+ 2 sq. units.

y

x

r=1−cos θ

r=1

Fig. 8.6.7

8. Area = 1

2
πa2 + 2× 1

2

∫ π/2

0
a2(1 − sin θ)2 dθ

= πa2

2
+ a2

∫ π/2

0

(

1− 2 sin θ + 1− cos 2θ

2

)

dθ

= πa2

2
+ a2

(
3

2
θ + 2 cos θ − 1

4
sin 2θ

)∣
∣
∣
∣

π/2

0

=
(

5π

4
− 2

)

a2 sq. units.

y

xA

r=a

r=a(1−sin θ)

Fig. 8.6.8

9. For intersections: 1 + cos θ = 3 cos θ . Thus 2 cos θ = 1
and θ = ±π/3. The shaded area is given by

2× 1

2

[∫ π

π/3
(1 + cos θ)2 dθ − 9

∫ π/2

π/3
cos2 θ dθ

]

=
∫ π

π/3

(

1+ 2 cos θ + 1+ cos 2θ

2

)

dθ

− 9

2

∫ π/2

π/3
(1 + cos 2θ) dθ

= 3

2

(
2π

3

)

+
(

2 sin θ + sin 2θ

4

)∣
∣
∣
∣

π

π/3

− 9

2

(

θ + sin 2θ

2

)∣
∣
∣
∣

π/2

π/3

= π

4
−√3−

√
3

8
+ 9

4

(√
3

2

)

= π

4
sq. units.

y

x

r=1+cos θ

r=3 cos θ

π/3

Fig. 8.6.9
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10. Since r 2 = 2 cos 2θ meets r = 1 at θ = ±π
6

and ±5π

6
,

the area inside the lemniscate and outside the circle is

4× 1

2

∫ π/6

0

[

2 cos 2θ − 12
]

dθ

= 2 sin 2θ

∣
∣
∣
∣
∣

π/6

0

− π
3
= √3 − π

3
sq. units.

y

x
AA

r=1

r2=2 cos 2θ

Fig. 8.6.10

11. r = 0 at θ = ±2π/3. The shaded area is

2 × 1

2

∫ π

2π/3
(1 + 2 cos θ)2 dθ

=
∫ π

2π/3

(

1+ 4 cos θ + 2(1 + cos 2θ)
)

dθ

= 3
(π

3

)

+ 4 sin θ

∣
∣
∣
∣

π

2π/3
+ sin 2θ

∣
∣
∣
∣

π

2π/3

= π − 2
√

3+
√

3

2
= π − 3

√
3

2
sq. units.

y

x

2π/3

1 3

−2π/3

r=1+2 cos θ

Fig. 8.6.11

12. s =
∫ π

0

√
(

dr

dθ

)2

+ r2 dθ =
∫ π

0

√

4θ2 + θ4 dθ

=
∫ π

0
θ
√

4 + θ2 dθ Let u = 4+ θ2

du = 2θ dθ

= 1

2

∫ 4+π2

4

√
u du = 1

3
u3/2

∣
∣
∣
∣

4+π2

4

= 1

3

[

(4 + π2)3/2 − 8
]

units.

13. r = eaθ , (−π ≤ θ ≤ π). dr

dθ
= aeaθ .

ds = √e2aθ + a2e2aθ dθ = √1+ a2eaθ dθ . The length of
the curve is

∫ π

−π

√

1+ a2eaθ dθ =
√

1+ a2

a
(eaπ − e−aπ ) units.

14. s =
∫ 2π

0

√

a2 + a2θ2 dθ

= a
∫ 2π

0

√

1+ θ2 dθ Let θ = tan u

dθ = sec2 u dθ

= a
∫ θ=2π

θ=0
sec3 u du

= a

2

(

sec u tan u + ln | sec u + tan u|
)
∣
∣
∣
∣

θ=2π

θ=0

= a

2

[

θ
√

1+ θ2 + ln |
√

1+ θ2 + θ |
]
∣
∣
∣
∣

θ=2π

θ=0

= a

2

[

2π
√

1+ 4π2 + ln(2π +
√

1+ 4π2)
]

units.

15. r 2 = cos 2θ

2r
dr

dθ
= −2 sin 2θ ⇒ dr

dθ
= − sin 2θ

r

ds =
√

cos 2θ + sin2 2θ

cos 2θ
dθ = √sec 2θ dθ

Length = 4
∫ π/4

0

√
sec 2θ dθ.

y

x

r2=cos 2θ

Fig. 8.6.15

16. If r2 = cos 2θ , then

2r
dr

dθ
= −2 sin 2θ ⇒ dr

dθ
= − sin 2θ√

cos 2θ

and

ds =
√

cos 2θ + sin2 2θ

cos 2θ
dθ = dθ√

cos 2θ
.
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a) Area of the surface generated by rotation about the
x- axis is

Sx = 2π
∫ π/4

0
r sin θ ds

= 2π
∫ π/4

0

√
cos 2θ sin θ

dθ√
cos 2θ

= −2π cos θ

∣
∣
∣
∣

π/4

0
= (2 −√2)π sq. units.

b) Area of the surface generated by rotation about the
y- axis is

Sy = 2π
∫ π/4

−π/4
r cos θ ds

= 4π
∫ π/4

0

√
cos 2θ cos θ

dθ√
cos 2θ

= 4π sin θ

∣
∣
∣
∣

π/4

0
= 2
√

2π sq. units.

17. For r = 1 + sin θ ,

tanψ = r

dr/dθ
= 1+ sin θ

cos θ
.

If θ = π/4, then tanψ = √2+ 1 and ψ = 3π/8.
If θ = 5π/4, then tanψ = 1 −√2 and ψ = −π/8.
The line y = x meets the cardioid r = 1 + sin θ at
the origin at an angle of 45◦, and also at first and third
quadrant points at angles of 67.5◦ and −22.5◦ as shown
in the figure.

y

x

r=1+sin θ

θ = π/4
ψ

Fig. 8.6.17

18. The two curves r 2 = 2 sin 2θ and r = 2 cos θ intersect
where

2 sin 2θ = 4 cos2 θ

4 sin θ cos θ = 4 cos2 θ

(sin θ − cos θ) cos θ = 0

⇔ sin θ = cos θ or cos θ = 0,

i.e., at P1 =
[√

2,
π

4

]

and P2 = (0, 0).

For r2 = 2 sin 2θ we have 2r
dr

dθ
= 4 cos 2θ . At P1 we

have r = √2 and dr/dθ = 0. Thus the angle ψ between
the curve and the radial line θ = π/4 is ψ = π/2.
For r = 2 cos θ we have dr/dθ = −2 sin θ , so the angle
between this curve and the radial line θ = π/4 satisfies

tanψ = r

dr/dθ

∣
∣
∣
∣
θ=π/4

= −1, and ψ = 3π/4. The two

curves intersect at P1 at angle
3π

4
− π

2
= π

4
.

The Figure shows that at the origin, P2, the circle meets
the lemniscate twice, at angles 0 and π/2.

y

x

r=2 cos θr2=2 sin 2θ

Fig. 8.6.18

19. The curves r = 1 − cos θ and r = 1 − sin θ intersect on
the rays θ = π/4 and θ = 5π/4, as well as at the origin.
At the origin their cusps clearly intersect at right angles.
For r = 1 − cos θ , tanψ1 = (1− cos θ)/ sin θ .
At θ = π/4, tanψ1 =

√
2 − 1, so ψ1 = π/8.

At θ = 5π/4, tanψ1 = −(
√

2+ 1), so ψ1 = −3π/8.
For r = 1 − sin θ , tanψ2 = (1 − sin θ)/(− cos θ).
At θ = π/4, tanψ2 = 1−√2, so ψ2 = −π/8.
At θ = 5π/4, tanψ2 =

√
2+ 1, so ψ2 = 3π/8.

At π/4 the curves intersect at angle π/8−(−π/8) = π/4.
At 5π/4 the curves intersect at angle 3π/8− (−3π/8)
= 3π/4 (or π/4 if you use the supplementary angle).

y

x

r=1−cos θ

r=1−sin θ

Fig. 8.6.19

20. We have r = cos θ + sin θ . For horizontal tangents:

0 = dy

dθ
= d

dθ

(

cos θ sin θ + sin2 θ
)

= cos2 θ − sin2 θ + 2 sin θ cos θ

⇔ cos 2θ = − sin 2θ ⇔ tan 2θ = −1.
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Thus θ = −π
8

or
3π

8
. The tangents are horizontal at

[

cos

(
π

8

)

− sin

(
π

8

)

,−π
8

]

and
[

cos

(
3π

8

)

+ sin

(
3π

8

)

,
3π

8

]

.

For vertical tangent:

0 = dx

dθ
= d

dθ

(

cos2 θ + cos θ sin θ
)

= −2 cos θ sin θ + cos2 θ − sin2 θ

⇔ sin 2θ = cos 2θ ⇔ tan 2θ = 1.

Thus θ = π/8 of 5π/8. There are vertical tangents at
[

cos

(
π

8

)

+ sin

(
π

8

)

,
π

8

]

and
[

cos

(
5π

8

)

+ sin

(
5π

8

)

,
5π

8

]

.

y

x

r=cos θ+sin θ

Fig. 8.6.20

21. r = 2 cos θ . tanψ = r

dr/dθ
= − cot θ .

For horizontal tangents we want tanψ = − tan θ . Thus
we want − tan θ = − cot θ , and so θ = ±π/4 or ±3π/4.
The tangents are horizontal at [

√
2,±π/4].

For vertical tangents we want tanψ = cot θ . Thus we
want − cot θ = cot θ , and so θ = 0, ±π/2, or π . There
are vertical tangents at the origin and at [2, 0].

y

x

r=2 cos θ

θ=π/4

2

θ=−π/4

Fig. 8.6.21

22. We have r 2 = cos 2θ , and 2r
dr

dθ
= −2 sin 2θ . For hori-

zontal tangents:

0 = d

dθ
r sin θ = r cos θ + sin θ

(

− sin 2θ

r

)

⇔ cos 2θ cos θ = sin 2θ sin θ

⇔ (cos2 θ − sin2 θ) cos θ = 2 sin2 θ cos θ

⇔ cos θ = 0 or cos2 θ = 3 sin2 θ.

There are no points on the curve where cos θ = 0. There-
fore, horizontal tangents occur only where
tan2 θ = 1/3. There are horizontal tangents at
[

1√
2
,±π

6

]

and

[
1√
2
,±5π

6

]

.

For vertical tangents:

0 = d

dθ
r cos θ = −r sin θ + cos θ

(

− sin 2θ

r

)

⇔ cos 2θ sin θ = − sin 2θ cos θ

⇔ (cos2 θ − sin2 θ) sin θ = −2 sin θ cos2 θ

⇔ sin θ = 0 or 3 cos2 θ = sin2 θ.

There are no points on the curve where tan2 θ = 3, so the
only vertical tangents occur where sin θ = 0, that is, at
the points with polar coordinates [1, 0] and [1, π ].

y

x

r2=cos 2θ

Fig. 8.6.22

23. r = sin 2θ . tanψ = sin 2θ

2 cos 2θ
= 1

2 tan 2θ .

For horizontal tangents:

tan 2θ = −2 tan θ
2 tan θ

1− tan2 θ
= −2 tan θ

tan θ
(

1+ (1− tan2 θ)
)

= 0

tan θ(2− tan2 θ) = 0.

Thus θ = 0, π , ± tan−1
√

2, π ± tan−1
√

2.
There are horizontal tangents at the origin and the points
[

2
√

2

3
,± tan−1

√
2

]

and

[

2
√

2

3
, π ± tan−1

√
2

]

.

Since the rosette r = sin 2θ is symmetric about x = y,
there must be vertical tangents at the origin and at the
points
[

2
√

2

3
,± tan−1 1√

2

]

and

[

2
√

2

3
, π ± tan−1 1√

2

]

.
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y

x

r=sin 2θ

Fig. 8.6.23

24. We have r = eθ and
dr

dθ
= eθ . For horizontal tangents:

0 = d

dθ
r sin θ = eθ cos θ + eθ sin θ

⇔ tan θ = −1 ⇔ θ = −π
4
+ kπ,

where k = 0,±1,±2, . . .. At the points
[ekπ−π/4, kπ − π/4] the tangents are horizontal.
For vertical tangents:

0 = d

dθ
r cos θ = eθ cos θ − eθ sin θ

⇔ tan θ = 1 ↔ θ = π

4
+ kπ.

At the points [ekπ+π/4, kπ + π/4] the tangents are verti-
cal.

25. r = 2(1 − sin θ), tanψ = −1− sin θ

cos θ
.

For horizontal tangents tanψ = − cot θ , so

− 1− sin θ

cos θ
= − sin θ

cos θ
cos θ = 0, or 2 sin θ = 1.

The solutions are θ = ±π/2, ±π/6, and ±5π/6.
θ = π/2 corresponds to the origin where the cardioid
has a cusp, and therefore no tangent. There are horizon-
tal tangents at [4,−π/2], [1, π/6], and [1, 5π/6].
For vertical tangents tanψ = cot θ , so

− 1− sin θ

cos θ
= cos θ

sin θ
sin2 θ − sin θ = cos2 θ = 1− sin2 θ

2 sin2 θ − sin θ − 1 = 0

(sin θ − 1)(2 sin θ + 1) = 0

The solutions here are θ = π/2 (the origin again),
θ = −π/6 and θ = −5π/6. There are vertical tangents at
[3,−π/6] and [3,−5π/6].

y

x

r=2(1−sin θ)

Fig. 8.6.25

26. x = r cos θ = f (θ) cos θ , y = r sin θ = f (θ) sin θ .

dx

dθ
= f ′(θ) cos θ − f (θ) sin θ,

dy

dθ
= f ′(θ) sin θ + f (θ) cos θ

ds =
√
(

f ′(θ) cos θ − f (θ) sin θ
)2 +

(

f ′(θ) sin θ + f (θ) cos θ
)2

dθ

=
[(

f ′(θ)
)2

cos2 θ − 2 f ′(θ) f (θ) cos θ sin θ +
(

f (θ)
)2

sin2 θ

+
(

f ′(θ)
)2

sin2 θ + 2 f ′(θ) f (θ) sin θ cos θ +
(

f (θ)
)2

cos2 θ

]1/2

dθ

=
√
(

f ′(θ)
)2 +

(

f (θ)
)2

dθ.

Review Exercises 8 (page 469)

1. x2 + 2y2 = 2 ⇔ x2

2
+ y2 = 1

Ellipse, semi-major axis a = √2, along the x-axis. Semi-
minor axis b = 1.
c2 = a2 − b2 = 1. Foci: (±1, 0).

2. 9x2 − 4y2 = 36 ⇔ x2

4
− y2

9
= 1

Hyperbola, transverse axis along the x-axis.
Semi-transverse axis a = 2, semi-conjugate axis b = 3.
c2 = a2 + b2 = 13. Foci: (±√13, 0).
Asymptotes: 3x ± 2y = 0.

3. x + y2 = 2y + 3 ⇔ (y − 1)2 = 4 − x
Parabola, vertex (4, 1), opening to the left, principal axis
y = 1.
a = −1/4. Focus: (15/4, 1).

4. 2x2 + 8y2 = 4x − 48y
2(x2 − 2x + 1)+ 8(y2 + 6y + 9) = 74

(x − 1)2

37
+ (y + 3)2

37/4
= 1.

Ellipse, centre (1,−3), major axis along y = −3.
a = √37, b = √37/2, c2 = a2 − b2 = 111/4.
Foci: (1 ±√111/2,−3).

5. x = t , y = 2 − t , (0 ≤ t ≤ 2).
Straight line segment from (0, 2) to (2, 0).
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6. x = 2 sin(3t), y = 2 cos(3t), (0 ≤ t ≤ 2)
Part of a circle of radius 2 centred at the origin from the
point (0, 2) clockwise to (2 sin 6, 2 cos 6).

7. x = cosh t , y = sinh2 t .
Parabola x2 − y = 1, or y = x2 − 1, traversed left to
right.

8. x = et , y = e−2t , (−1 ≤ t ≤ 1).
Part of the curve x2y = 1 from (1/e, e2) to (e, 1/e2).

9. x = cos(t/2), y = 4 sin(t/2), (0 ≤ t ≤ π).
The first quadrant part of the ellipse 16x2 + y2 = 16,
traversed counterclockwise.

10. x = cos t + sin t , y = cos t − sin t , (0 ≤ t ≤ 2π)
The circle x2 + y2 = 2, traversed clockwise, starting and
ending at (1, 1).

11. x = 4

1+ t2

dx

dt
= − 8t

(1 + t2)2

y = t3 − 3t

dy

dt
= 3(t2 − 1)

Horizontal tangent at t = ±1, i.e., at (2,±2).
Vertical tangent at t = 0, i.e., at (4, 0).
Self-intersection at t = ±√3, i.e., at (1, 0).

y

x
t=0

t=−1

t=±√3

t=1

Fig. R-8.11

12. x = t3 − 3t
dx

dt
= 3(t2 − 1)

y = t3 + 3t
dy

dt
= 3(t2 + 1)

Horizontal tangent: none.
Vertical tangent at t = ±1, i.e., at (2,−4) and (−2, 4).

Slope
dy

dx
= t2 + 1

t2 − 1

{

> 0 if |t | > 1
< 0 if |t | < 1

Slope → 1 as t →±∞.
y

x

(2,−4)

(−2,4) x=t3−3t
y=t3+3t

Fig. R-8.12

13. x = t3 − 3t
dx

dt
= 3(t2 − 1)

y = t3

dy

dt
= 3t2

Horizontal tangent at t = 0, i.e., at (0, 0).
Vertical tangent at t = ±1, i.e., at (2,−1) and (−2, 1).

Slope
dy

dx
= t2

t2 − 1

{

> 0 if |t | > 1
< 0 if |t | < 1

Slope → 1 as t →±∞.
y

xt=−1

t=1

Fig. R-8.13

14. x = t3 − 3t
dx

dt
= 3(t2 − 1)

y = t3 − 12t
dy

dt
= 3(t2 − 4)

Horizontal tangent at t = ±2, i.e., at (2,−16) and
(−2, 16).
Vertical tangent at t = ±1, i.e., at (2, 11) and (−2,−11).

Slope
dy

dx
= t2 − 4

t2 − 1

{

> 0 if |t | > 2 or |t | < 1
< 0 if 1 < |t | < 2

Slope → 1 as t →±∞.
y

x

(2,11)

x=t3−3t
y=t3−12t

(−2,−11)

(−2,16)

(2,−16)

Fig. R-8.14

15. The curve x = t3 − t , y = |t3| is symmetric about x = 0
since x is an odd function and y is an even function. Its
self-intersection occurs at a nonzero value of t that makes
x = 0, namely, t = ±1. The area of the loop is

A = 2
∫ t=1

t=0
(−x) dy = −2

∫ 1

0
(t3 − t)3t2 dt

=
(

−t6 + 3

2
t4
)∣
∣
∣
∣

1

0
= 1

2
sq. units.
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y

x

t=±1

x = t3 − t
y = |t3|

t=0

Fig. R-8.15

16. The volume of revolution about the y-axis is

V = π
∫ t=1

t=0
x2 dy

= π
∫ 1

0
(t6 − 2t4 + t2)3t2 dt

= 3π
∫ 1

0
(t8 − 2t6 + t4) dt

= 3π

(
1

9
− 2

7
+ 1

5

)

= 8π

105
cu. units.

17. x = et − t , y = 4et/2, (0 ≤ t ≤ 2). Length is

L =
∫ 2

0

√

(et − 1)2 + 4et dt

=
∫ 2

0

√

(et + 1)2 dt =
∫ 2

0
(et + 1) dt

= (et + t)

∣
∣
∣
∣

2

0
= e2 + 1 units.

18. Area of revolution about the x-axis is

S = 2π
∫

4et/2(et + 1) dt

= 8π

(
2

3
e3t/2 + 2et/2

)∣
∣
∣
∣

2

0

= 16π

3
(e3 + 3e − 4) sq. units.

19. r = θ, (−3π
2 ≤ θ ≤ 3π

2

)

y

x

r = θ

Fig. R-8.19

20. r = |θ |, (−2π ≤ θ ≤ 2π)
y

x

r=|θ |

Fig. R-8.20

21. r = 1+ cos(2θ)
y

x

r=1+cos 2θ

Fig. R-8.21

22. r = 2+ cos(2θ)
y

x

r=2+cos(2θ)

Fig. R-8.22

23. r = 1+ 2 cos(2θ)
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y

x

r=1+2 cos 2θ

Fig. R-8.23

24. r = 1− sin(3θ)
y

x

π/6

r=1−sin(3θ)

Fig. R-8.24

25. Area of a large loop:

A = 2 × 1

2

∫ π/3

0
(1 + 2 cos(2θ))2 dθ

=
∫ π/3

0
[1 + 4 cos(2θ)+ 2(1 + cos(4θ))] dθ

=
(

3θ + 2 sin(2θ)+ 1

2
sin(4θ)

)∣
∣
∣
∣

π/3

0

= π + 3
√

3

4
sq. units.

26. Area of a small loop:

A = 2 × 1

2

∫ π/2

π/3
(1 + 2 cos(2θ))2 dθ

=
∫ π/2

π/3
[1 + 4 cos(2θ)+ 2(1 + cos(4θ))] dθ

=
(

3θ + 2 sin(2θ)+ 1

2
sin(4θ)

)∣
∣
∣
∣

π/2

π/3

= π

2
− 3
√

3

4
sq. units.

27. r = 1 + √2 sin θ approaches the origin in the directions
for which sin θ = −1/

√
2, that is, θ = −3π/4 and

θ = −π/4. The smaller loop corresponds to values of θ
between these two values. By symmetry, the area of the
loop is

A = 2 × 1

2

∫ −π/4

−π/2
(1 + 2

√
2 sin θ + 2 sin2 θ) dθ

=
∫ −π/4

−π/2
(2 + 2

√
2 sin θ − cos(2θ)) dθ

=
(

2θ − 2
√

2 cos θ − 1

2
sin(2θ)

)∣
∣
∣
∣

−π/4

−π/2

= π

2
− 2+ 1

2
= π − 3

2
sq. units.

y

x−π/4−3π/4

r=1+√2 sin θ

Fig. R-8.27

28. r cos θ = x = 1/4 and r = 1+ cos θ intersect where

1+ cos θ = 1

4 cos θ
4 cos2 θ + 4 cos θ − 1 = 0

cos θ = −4±√16+ 16

8
= ±
√

2 − 1

2
.

Only (
√

2 − 1)/2 is between −1 and 1, so is a possible

value of cos θ . Let θ0 = cos−1

√
2− 1

2
. Then

sin θ0 =
√
√
√
√1−

(√
2− 1

2

)2

=
√

1+ 2
√

2

2
.

By symmetry, the area inside r = 1 + cos θ to the left of
the line x = 1/4 is

A = 2 × 1

2

∫ π

θ0

(

1+ 2 cos θ + 1+ cos(2θ)

2

)

dθ + cos θ0 sin θ0

= 3

2
(π − θ0)+

(

2 sin θ + 1

4
sin(2θ)

)∣
∣
∣
∣

π

θ0

+ (
√

2− 1)
√

1 + 2
√

2

4

= 3

2

(

π − cos−1

√
2− 1

2

)

+
√

1+ 2
√

2

(√
2− 9

8

)

sq. units.
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y

x

x=1/4
r=1+cos θ

θ0

Fig. R-8.28

Challenging Problems 8 (page 469)

1. The surface of the water is elliptical (see Problem 2 be-
low) whose semi-minor axis is 4 cm, the radius of the
cylinder, and whose semi-major axis is 4 sec θ cm be-
cause of the tilt of the glass. The surface area is that of
the ellipse

x = 4 sec θ cos t, y = 4 sin t, (0 ≤ t ≤ 2π).

This area is

A = 4
∫ t=π/2

t=0
x dy

= 4
∫ π/2

0
(4 sec θ cos t)(4 cos t) dt

= 32 sec θ
∫ π/2

0
(1 + cos(2t)) dt = 16π sec θ cm2.

θ

4 sec θ cm

4 cm

Fig. C-8.1

2. Let S1 and S2 be two spheres inscribed in the cylinder,
one on each side of the plane that intersects the cylinder
in the curve C that we are trying to show is an ellipse.
Let the spheres be tangent to the cylinder around the
circles C1 and C2, and suppose they are also tangent to
the plane at the points F1 and F2, respectively, as shown
in the figure.

P F1

A1

A2

F2
C2

S2

C1

S1

C

Fig. C-8.2

Let P be any point on C . Let A1 A2 be the line through
P that lies on the cylinder, with A1 on C1 and A2 on C2.
Then PF1 = P A1 because both lengths are of tangents
drawn to the sphere S1 from the same exterior point P.
Similarly, PF2 = P A2. Hence

PF1 + PF2 = P A1 + P A2 = A1 A2,

which is constant, the distance between the centres of the
two spheres. Thus C must be an ellipse, with foci at F1
and F2.

3. Given the foci F1 and F2, and the point P on the ellipse,
construct N1 PN2, the bisector of the angle F1 PF2. Then
construct T1 PT2 perpendicular to N1 N2 at P. By the
reflection property of the ellipse, N1 N2 is normal to the
ellipse at P. Therefore T1T2 is tangent there.

θ
θ

P

T1

T2

N2

N1

F1 F2

Fig. C-8.3

4. Without loss of generality, choose the axes and axis
scales so that the parabola has equation y = x2. If P is
the point (x0, x2

0 ) on it, then the tangent to the parabola
at P has equation

y = x2
0 + 2x0(x − x0),
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which intersects the principal axis x = 0 at (0,−x2
0 ).

Thus R = (0,−x2
0 ) and Q = (0, x2

0 ). Evidently the
vertex V = (0, 0) bisects RQ.

y

x

P = (x0, x2
0 )

R

V

Q

Fig. C-8.4

To construct the tangent at a given point P on a parabola
with given vertex V and principal axis L , drop a perpen-
dicular from P to L , meeting L at Q. Then find R on L
on the side of V opposite Q and such that QV = V R.
Then P R is the desired tangent.

5.
y

x

2 ft

2 ft a

b

c

Fig. C-8.5

Let the ellipse be
x2

a2 +
y2

b2 = 1, with a = 2 and foci at

(0,±2) so that c = 2 and b2 = a2 + c2 = 8. The volume
of the barrel is

V = 2
∫ 2

0
πx2 dy = 2π

∫ 2

0
4

(

1− y2

8

)

dy

= 8π

(

y − y3

24

)∣
∣
∣
∣

2

0
= 40π

3
ft3.

6.
y

x

P = [r, θ ]

r

a

[a, θ0]

θ0

θ
L

Fig. C-8.6

a) Let L be a line not passing through the origin, and
let [a, θ0] be the polar coordinates of the point on
L that is closest to the origin. If P = [r, θ ] is any
point on the line, then, from the triangle in the fig-
ure,

a

r
= cos(θ − θ0), or r = a

cos(θ − θ0)
.

b) As shown in part (a), any line not passing through
the origin has equation of the form

r = g(θ) = a

cos(θ − θ0)
= a sec(θ − θ0),

for some constants a and θ0. We have

g′(θ) = a sec(θ − θ0) tan(θ − θ0)

g′′(θ) = a sec(θ − θ0) tan2(θ − θ0)

+ a sec3(θ − θ0)
(

g(θ)
)2 + 2

(

g′(θ)
)2 − g(θ)g′′(θ)

= a2 sec2(θ − θ0)+ 2a2 sec2(θ − θ0) tan2(θ − θ0)

− a2 sec2(θ − θ0) tan2(θ − θ0)− a2 sec4(θ − θ0)

= a2
[

sec2(θ − θ0)
(

1+ tan2(θ − θ0)
)

− sec4(θ − θ0)
]

= 0.

c) If r = g(θ) is the polar equation of the tangent to
r = f (θ) at θ = α, then g(α) = f (α) and
g′(α) = f ′(α). Suppose that

(

f (α)
)2 + 2

(

f ′(α)
)2 − f (α) f ′′(α) > 0.

By part (b) we have

(

g(α)
)2 + 2

(

g′(α)
)2 − g(α)g′′(α) = 0.
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Subtracting, and using g(α) = f (α) and
g′(α) = f ′(α), we get f ′′(α) < g′′(α). It follows
that f (θ) < g(θ) for values of θ near α; that is, the
graph of r = f (θ) is curving to the origin side of its
tangent at α. Similarly, if

(

f (α)
)2 + 2

(

f ′(α)
)2 − f (α) f ′′(α) < 0,

then the graph is curving to the opposite side of the
tangent, away from the origin.

7.

r

θ

0 x(t)

x

R

B A

Fig. C-8.7

When the vehicle is at position x , as shown in the fig-
ure, the component of the gravitational force on it in the
direction of the tunnel is

ma(r) cos θ = −mgr

R
cos θ = −mg

R
x .

By Newton’s Law of Motion, this force produces an ac-
celeration d2x/dt2 along the tunnel given by

m
d2x

dt2 = −
mg

R
x,

that is

d2x

dt2 + ω2x = 0, where ω2 = g

R
.

This is the equation of simple harmonic motion, with
period T = 2π/ω = 2π

√
R/g.

For R ≈ 3960 mi ≈ 2.09 × 107 ft, and g ≈ 32 ft/s2, we
have T ≈ 5079 s ≈ 84.6 minutes. This is a rather short
time for a round trip between Atlanta and Baghdad, or
any other two points on the surface of the earth.

8. Take the origin at station O as shown in the figure. Both
of the lines L1 and L2 pass at distance 100 cos ε from
the origin. Therefore, by Problem 6(a), their equations
are

L1 : r = 100 cos ε

cos
[

θ − (π2 − ε
)] = 100 cos ε

sin(θ + ε)
L2 : r = 100 cos ε

cos
[

θ − (π2 + ε
)] = 100 cos ε

sin(θ − ε) .

The search area A(ε) is, therefore,

A(ε) = 1

2

∫ π
4 +ε

π
4 −ε

(
1002 cos2 ε

sin2(θ − ε) −
1002 cos2 ε

sin2(θ + ε)
)

dθ

= 5, 000 cos2 ε

∫ π
4 +ε

π
4 −ε

(

csc2(θ − ε)− csc2(θ + ε)
)

dθ

= 5, 000 cos2 ε
[

cot
(
π
4 + 2ε

)− 2 cot π4 + cot
(
π
4 − 2ε

)]

= 5, 000 cos2 ε

[

cos
(
π
4 + 2ε

)

sin
(
π
4 + 2ε

) + sin
(
π
4 + 2ε

)

cos
(
π
4 + 2ε

) − 2

]

= 10, 000 cos2 ε
[

csc
(
π
2 + 4ε

) − 1
]

= 10, 000 cos2 ε(sec(4ε) − 1) mi2.

For ε = 3◦ = π/60, we have A(ε) ≈ 222.8 square miles.
Also

A′(ε) = −20, 000 cos ε sin ε(sec(4ε) − 1)

+ 40, 000 cos2 ε sec(4ε) tan(4ε)

A′(π/60) ≈ 8645.

When ε = 3◦, the search area increases at about
8645(π/180) ≈ 151 square miles per degree increase
in ε.

y

x

Area A(ε)

ε

ε

π/4

100 mi

L1

L2

O

Fig. C-8.8

9. The easiest way to determine which curve is which is
to calculate both their areas; the outer curve bounds the
larger area.
The curve C1 with parametric equations

x = sin t, y = 1

2
sin(2t), (0 ≤ t ≤ 2π)
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has area

A1 = 4
∫ t=π/2

t=0
y dx

= 4
∫ π/2

0

1

2
sin(2t) cos t dt

= 4
∫ π/2

0
sin t cos2 t dt

Let u = cos t

du = − sin t dt

= 4
∫ 1

0
u2 du = 4

3
sq. units.

The curve C2 with polar equation r2 = cos(2θ) has area

A2 = 4

2

∫ π/4

0
cos(2θ) dθ = sin(2θ)

∣
∣
∣
∣

π/4

0
= 1 sq. units.

C1 is the outer curve, and the area between the curves is
1/3 sq. units.

y

x

Fig. C-8.9
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CHAPTER 9. SEQUENCES, SERIES,
AND POWER SERIES

Section 9.1 Sequences and Convergence
(page 478)

1.
{

2n2

n2 + 1

}

=
{

2 − 2

n2 + 1

}

=
{

1,
8

5
,

9

5
, . . .

}

is bounded,

positive, increasing, and converges to 2.

2.
{

2n

n2 + 1

}

=
{

1,
4

5
,

3

5
,

8

17
, . . .

}

is bounded, positive,

decreasing, and converges to 0.

3.
{

4− (−1)n

n

}

=
{

5,
7

2
,

13

3
, . . .

}

is bounded, positive, and

converges to 4.

4.
{

sin
1

n

}

=
{

sin 1, sin

(
1

2

)

, sin

(
1

3

)

, . . .

}

is bounded,

positive, decreasing, and converges to 0.

5.
{

n2 − 1

n

}

=
{

n − 1

n

}

=
{

0,
3

2
,

8

3
,

15

4
, . . .

}

is bounded

below, positive, increasing, and diverges to infinity.

6.
{

en

πn

}

=
{

e

π
,
( e

π

)2
,
( e

π

)3
, . . .

}

is bounded, positive,

decreasing, and converges to 0, since e < π .

7.
{

en

πn/2

}

=
{(

e√
π

)n}

. Since e/
√
π > 1, the sequence

is bounded below, positive, increasing, and diverges to
infinity.

8.
{
(−1)n n

en

}

=
{−1

e
,

2

e2
,
−3

e3
, . . .

}

is bounded, alternat-

ing, and converges to 0.

9. {2n/nn} is bounded, positive, decreasing, and converges
to 0.

10.
(n!)2

(2n)!
= 1

n + 1

2

n + 2

3

n + 3
· · · n

2n
≤
(

1

2

)n

.

Also,
an+1

an
= (n + 1)2

(2n + 2)(2n + 1)
<

1

2
. Thus the sequence

{
(n!)2

(2n)!

}

is positive, decreasing, bounded, and convergent

to 0.

11. {n cos(nπ/2)} = {0,−2, 0, 4, 0,−6, . . .} is divergent.

12.
{ sin n

n

}

=
{

sin 1,
sin 2

2
,

sin 3

3
, . . .

}

is bounded and con-

verges to 0.

13. {1, 1,−2, 3, 3,−4, 5, 5,−6, . . .} is divergent.

14. lim
5 − 2n

3n − 7
= lim

5

n
− 2

3− 7

n

= −2

3
.

15. lim
n2 − 4

n + 5
= lim

n − 4

n

1+ 5

n

= ∞.

16. lim
n2

n3 + 1
= lim

1

n

1+ 1

n3

= 0.

17. lim(−1)n
n

n3 + 1
= 0.

18. lim
n2 − 2

√
n + 1

1− n − 3n2
= lim

1− 2

n
√

n
+ 1

n2

1

n2 −
1

n
− 3

= −1

3
.

19. lim
en − e−n

en + e−n
= lim

1 − e−2n

1 + e−2n
= 1.

20. lim n sin
1

n
= lim

x→0+
sin x

x
= lim

x→0+
cos x

1
= 1.

21. lim

(
n − 3

n

)n

= lim

(

1+ −3

n

)n

= e−3 by l’Hôpital’s

Rule.

22. lim
n

ln(n + 1)
= lim

x→∞
x

ln(x + 1)

= lim
x→∞

1
(

1

x + 1

) = lim
x→∞ x + 1 = ∞.

23. lim(
√

n + 1−√n) = lim
n + 1− n√
n + 1+√n

= 0.

24. lim
(

n −
√

n2 − 4n
)

= lim
n2 − (n2 − 4n)

n +√n2 − 4n

= lim
4n

n +√n2 − 4n
= lim

4

1+
√

1− 4

n

= 2.

25. lim(
√

n2 + n −
√

n2 − 1)

= lim
n2 + n − (n2 − 1)√
n2 + n +√n2 − 1

= lim
n + 1

n

(√

1+ 1

n
+
√

1− 1

n2

)

= lim
1+ 1

n
√

1+ 1

n
+
√

1− 1

n2

= 1

2
.
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26. If an =
(

n − 1

n + 1

)n

, then

lim an = lim

(
n − 1

n

)n ( n

n + 1

)n

= lim

(

1 − 1

n

)n /

lim

(

1+ 1

n

)n

= e−1

e
= e−2 (by Theorem 6 of Section 3.4).

27. an = (n!)2

(2n)!
= (1 · 2 · 3 · · · n)(1 · 2 · 3 · · · n)

1 · 2 · 3 · · · n · (n + 1) · (n + 2) · · · 2n

= 1

n + 1
· 2

n + 2
· 3

n + 3
· · · n

n + n
≤
(

1

2

)n

.

Thus lim an = 0.

28. We have lim
n2

2n
= 0 since 2n grows much faster than n2

and lim
4n

n!
= 0 by Theorem 3(b). Hence,

lim
n2 2n

n!
= lim

n2

2n
· 22n

n!
=
(

lim
n2

2n

)(

lim
4n

n!

)

= 0.

29. an = πn

1+ 22n
⇒ 0 < an < (π/4)n . Since π/4 < 1,

therefore (π/4)n → 0 as n→∞. Thus lim an = 0.

30. Let a1 = 1 and an+1 = √1+ 2an for n = 1, 2, 3, . . ..
Then we have a2 =

√
3 > a1. If ak+1 > ak for some k,

then

ak+2 =
√

1+ 2ak+1 >
√

1+ 2ak = ak+1.

Thus, {an} is increasing by induction. Observe that
a1 < 3 and a2 < 3. If ak < 3 then

ak+1 =
√

1+ 2ak <
√

1+ 2(3) = √7 <
√

9 = 3.

Therefore, an < 3 for all n, by induction. Since {an}
is increasing and bounded above, it converges. Let
lim an = a. Then

a = √1+ 2a ⇒ a2 − 2a − 1 = 0⇒ a = 1±√2.

Since a = 1 −√2 < 0, it is not appropriate. Hence, we
must have lim an = 1+√2.

31. Let a1 = 3 and an+1 = √15+ 2an for n = 1, 2, 3, . . ..
Then we have a2 =

√
21 > 3 = a1. If ak+1 > ak for

some k, then

ak+2 =
√

15+ 2ak+1 >
√

15+ 2ak = ak+1.

Thus, {an} is increasing by induction. Observe that
a1 < 5 and a2 < 5. If ak < 5 then

ak+1 =
√

15+ 2ak <
√

15+ 2(5) = √25 = 5.

Therefore, an < 5 for all n, by induction. Since {an}
is increasing and bounded above, it converges. Let
lim an = a. Then

a = √15 + 2a ⇒ a2− 2a− 15 = 0⇒ a = −3, or a = 5.

Since a > a1, we must have lim an = 5.

32. Let an =
(

1+ 1

n

)n

so ln an = n ln

(

1 + 1

n

)

.

a) If f (x) = x ln

(

1+ 1

x

)

= x ln(x + 1)− x ln x , then

f ′(x) = ln(x + 1)+ x

x + 1
− ln x − 1

= ln

(
x + 1

x

)

− 1

x + 1

=
∫ x+1

x

dt

t
− 1

x + 1

>
1

x + 1

∫ x+1

x
dt − 1

x + 1

= 1

x + 1
− 1

x + 1
= 0.

Since f ′(x) > 0, f (x) must be an increasing func-
tion. Thus, {an} = {e f (xn)} is increasing.

b) Since ln x ≤ x − 1,

ln ak = k ln

(

1 + 1

k

)

≤ k

(

1+ 1

k
− 1

)

= 1

which implies that ak ≤ e for all k. Since {an} is
increasing, e is an upper bound for {an}.

33. Suppose {an} is ultimately increasing, say an+1 ≥ an if
n ≥ N .
Case I. If there exists a real number K such that an ≤ K
for all n, then lim an = a exists by completeness.
Case II. Otherwise, for every integer K , there exists
n ≥ N such that an > K , and hence aj > K for all
j ≥ n. Thus lim an =∞.

If {an} is ultimately decreasing, then either it is bounded
below, and therefore converges, or else it is unbounded
below, and therefore diverges to negative infinity.

34. If {|an |} is bounded then it is bounded above, and there
exists a constant K such that |an | ≤ K for all n. There-
fore, −K ≤ an ≤ K for all n, and so {an} is bounded
above and below, and is therefore bounded.
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35. Suppose limn→∞ |an | = 0. Given any ε > 0,
there exists an integer N = N(ε) such that if
n > N , then ||an| − 0| < ε. In this case
|an − 0| = |an | = ||an | − 0| < ε, so limn→∞ an = 0.

36. a) “If lim an = ∞ and lim bn = L > 0, then
lim an bn = ∞” is TRUE. Let R be an arbitrary,
large positive number. Since lim an = ∞, and

L > 0, it must be true that an ≥ 2R

L
for n suf-

ficiently large. Since lim bn = L , it must also be

that bn ≥ L

2
for n sufficiently large. Therefore

anbn ≥ 2R

L

L

2
= R for n sufficiently large. Since

R is arbitrary, lim anbn = ∞.

b) “If lim an = ∞ and lim bn = −∞, then
lim(an + bn) = 0” is FALSE. Let an = 1 + n
and bn = −n; then lim an = ∞ and lim bn = −∞
but lim(an + bn) = 1.

c) “If lim an = ∞ and lim bn = −∞, then
lim an bn = −∞” is TRUE. Let R be an arbi-
trary, large positive number. Since lim an = ∞
and lim bn = −∞, we must have an ≥

√
R

and bn ≤ −
√

R, for all sufficiently large n. Thus
anbn ≤ −R, and lim anbn = −∞.

d) “If neither {an} nor {bn} converges, then {an bn} does
not converge” is FALSE. Let an = bn = (−1)n ;
then lim an and lim bn both diverge. But
an bn = (−1)2n = 1 and {an bn} does converge
(to 1).

e) “If {|an |} converges, then {an} converges”
is FALSE. Let an = (−1)n . Then
limn→∞ |an | = limn→∞ 1 = 1, but limn→∞ an does
not exist.

Section 9.2 Infinite Series (page 484)

1.
1

3
+ 1

9
+ 1

27
+ · · · = 1

3

(

1+ 1

3
+
(

1

3

)2

+ · · ·
)

= 1

3
· 1

1− 1

3

= 1

2
.

2. 3− 3

4
+ 3

16
− 3

64
+ · · · =

∞
∑

n=1

3

(

−1

4

)n−1

= 3

1+ 1
4

= 12

5
.

3.
∞∑

n=5

1

(2 + π)2n

= 1

(2+ π)10
+ 1

(2 + π)12
+ 1

(2 + π)14
+ · · ·

= 1

(2+ π)10

[

1 + 1

(2 + π)2 +
1

(2 + π)4 + · · ·
]

= 1

(2+ π)10 ·
1

1− 1

(2+ π)2
= 1

(2 + π)8
[

(2 + π)2 − 1
] .

4.
∞
∑

n=0

5

103n
= 5

[

1 + 1

1000
+
(

1

1000

)2

+ · · ·
]

= 5

1− 1

1000

= 5000

999
.

5.
∞
∑

n=2

(−5)n

82n
= (−5)2

84 + (−5)3

86 + (−5)4

88 + · · ·

= 25

84

[

1− 5

64
+ 52

642 − · · ·
]

= 25

84
· 1

1 + 5

64

= 25

64 × 69
= 25

4416
.

6.
∞∑

n=0

1

en
= 1+ 1

e
+
(

1

e

)2

+ · · · = 1

1 − 1

e

= e

e − 1
.

7.
∞
∑

k=0

2k+3

ek−3 = 8e3
∞
∑

k=0

(
2

e

)k

= 8e3

1− 2

e

= 8e4

e − 2
.

8.
∑∞

j=1 π
j/2 cos( jπ) = ∑∞j=2(−1) jπ j/2 diverges because

limj→∞(−1) jπ j/2 does not exist.

9.
∑∞

n=1
3+ 2n

2n+2 diverges to ∞ because

lim
n→∞

3+ 2n

2n+2 = lim
n→∞

3

2n
+ 1

4
= 1

4
> 0.

10.
∞
∑

n=0

3 + 2n

3n+2
= 1

3

∞
∑

n=0

(
1

3

)n

+ 1

9

∞
∑

n=0

(
2

3

)n

= 1

3
· 1

1 − 1

3

+ 1

9
· 1

1− 2

3

= 1

2
+ 1

3
= 5

6
.
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11. Since
1

n(n + 2)
= 1

2

(
1

n
− 1

n + 2

)

, therefore

sn = 1

1× 3
+ 1

2× 4
+ 1

3 × 5
+ · · · + 1

n(n + 2)

= 1

2

[
1

1
− 1

3
+ 1

2
− 1

4
+ 1

3
− 1

5
+ 1

4
− 1

6
+ · · ·

+ 1

n − 2
− 1

n
+ 1

n − 1
− 1

n + 1
+ 1

n
− 1

n + 2

]

= 1

2

[

1+ 1

2
− 1

n + 1
− 1

n + 2

]

.

Thus lim sn = 3

4
, and

∞∑

n=1

1

n(n + 2)
= 3

4
.

12. Let

∞
∑

n=1

1

(2n − 1)(2n + 1)
= 1

1 × 3
+ 1

3× 5
+ 1

5× 7
+ · · · .

Since
1

(2n − 1)(2n + 1)
= 1

2

(
1

2n − 1
− 1

2n + 1

)

, the

partial sum is

sn = 1

2

(

1− 1

3

)

+ 1

2

(
1

3
− 1

5

)

+ · · ·

+ 1

2

(
1

2n − 3
− 1

2n − 1

)

+ 1

2

(
1

2n − 1
− 1

2n + 1

)

= 1

2

(

1− 1

2n + 1

)

.

Hence,

∞∑

n=1

1

(2n − 1)(2n + 1)
= lim sn = 1

2
.

13. Since
1

(3n − 2)(3n + 1)
= 1

3

(
1

3n − 2
− 1

3n + 1

)

, there-

fore

sn = 1

1× 4
+ 1

4× 7
+ 1

7× 10
+ · · · + 1

(3n − 2)(3n + 1)

= 1

3

[
1

1
− 1

4
+ 1

4
− 1

7
+ 1

7
− 1

10
+ · · ·

+ 1

3n − 5
− 1

3n − 2
+ 1

3n − 2
− 1

3n + 1

]

= 1

3

(

1− 1

3n + 1

)

→ 1

3
.

Thus
∑∞

n=1
1

(3n − 2)(3n + 1)
= 1

3
.

14. Since

1

n(n + 1)(n + 2)
= 1

2

[
1

n
− 2

n + 1
+ 1

n + 2

]

,

the partial sum is

sn = 1

2

(

1− 2

2
+ 1

3

)

+ 1

2

(
1

2
− 2

3
+ 1

4

)

+ · · ·

+ 1

2

(
1

n − 1
− 2

n
+ 1

n + 1

)

+ 1

2

(
1

n
− 2

n + 1
+ 1

n + 2

)

= 1

2

(
1

2
− 1

n + 1
+ 1

n + 2

)

.

Hence,
∞
∑

n=1

1

n(n + 1)(n + 2)
= lim sn = 1

4
.

15. Since
1

2n − 1
>

1

2n
= 1

2
· 1

n
, therefore the partial sums

of the given series exceed half those of the divergent har-
monic series

∑
(1/2n). Hence the given series diverges

to infinity.

16.
∞∑

n=1

n

n + 2
diverges to infinity since lim

n

n + 2
= 1 > 0.

17. Since n−1/2 = 1√
n
≥ 1

n
for n ≥ 1, we have

n∑

k=1

k−1/2 ≥
n∑

k=1

1

k
→∞,

as n → ∞ (harmonic series). Thus
∑

n−1/2 diverges to
infinity.

18.
∞
∑

n=1

2

n + 1
= 2

(
1

2
+ 1

3
+ 1

4
+ · · ·

)

diverges to infinity

since it is just twice the harmonic series with the first
term omitted.

19. sn = −1+ 1− 1 + · · · + (−1)n =
{−1 if n is odd

0 if n is even
.

Thus lim sn does not exist, and
∑
(−1)n diverges.

20. Since 1 + 2 + 3 + · · · + n = n(n + 1)

2
, the given series

is
∑∞

n=1
2

n(n + 1)
which converges to 2 by the result of

Example 3 of this section.

21. The total distance is

2+ 2

[

2 × 3

4
+ 2×

(
3

4

)2

+ · · ·
]

= 2+ 2× 3

2

[

1+ 3

4
+
(

3

4

)2

+ · · ·
]

=2+ 3

1− 3

4

= 14 metres.
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2 m

Fig. 9.2.21

22. The balance at the end of 8 years is

sn = 1000
[

(1.1)8 + (1.1)7 + · · · + (1.1)2 + (1.1)
]

= 1000(1.1)

(
(1.1)8 − 1

1.1 − 1

)

≈ $12, 579.48.

23. For n > N let sn =
n
∑

j=1

aj , and Sn =
n
∑

j=N

aj .

Then sn = Sn + C , where C =∑N−1
j=1 aj . We have

lim
n→∞ sn = lim

n→∞ Sn + C :

either both sides exist or neither does. Hence
∑∞

n=1 an

and
∑∞

n=N both converge or neither does.

24. If {an} is ultimately positive, then the sequence {sn} of
partial sums of the series must be ultimately increasing.
By Theorem 2, if {sn} is ultimately increasing, then either
it is bounded above, and therefore convergent, or else
it is not bounded above and diverges to infinity. Since
∑

an = lim sn ,
∑

an must either converge when {sn}
converges and lim sn = s exists, or diverge to infinity
when {sn} diverges to infinity.

25. If {an} is ultimately negative, then the series
∑

an must
either converge (if its partial sums are bounded below),
or diverge to −∞ (if its partial sums are not bounded
below).

26. “If an = 0 for every n, then
∑

an converge” is TRUE
because sn =∑n

k=0 0 = 0, for every n, and so
∑

an = lim sn = 0.

27. “If
∑

an converges, then
∑

1/an diverges to infinity” is
FALSE. A counterexample is

∑
(−1)n/2n .

28. “If
∑

an and
∑

bn both diverge, then so does
∑
(an + bn)” is FALSE. Let an = 1

n
and

bn = − 1

n
, then

∑
an = ∞ and

∑
bn = −∞ but

∑
(an + bn) =∑(0) = 0.

29. “If an ≥ c > 0 for all n, then
∑

an diverges to infinity”
is TRUE. We have

sn = a1 + a2 + a3 + · · · + an ≥ c + c + c + · · · + c = nc,

and nc→∞ as n→∞.

30. “If
∑

an diverges and {bn} is bounded, then
∑

an bn

diverges” is FALSE. Let an = 1

n
and bn = 1

n + 1
.

Then
∑

an = ∞ and 0 ≤ bn ≤ 1/2. But
∑

anbn = ∑ 1

n(n + 1)
which converges by Example

3.

31. “If an > 0 and
∑

an converges, then
∑

a2
n converges” is

TRUE.
Since

∑
an converges, therefore lim an = 0.

Thus there exists N such that 0 < an ≤ 1 for n ≥ N .
Thus 0 < a2

n ≤ an for n ≥ N .

If Sn =
n
∑

k=N

a2
k and sn =

n
∑

k=N

ak , then {Sn} is increasing

and bounded above:

Sn ≤ sn ≤
∞
∑

k=1

ak <∞.

Thus
∞
∑

k=N

a2
k converges, and so

∞
∑

k=1

a2
k converges.

Section 9.3 Convergence Tests for Positive
Series (page 494)

1.
∑ 1

n2 + 1
converges by comparison with

∑ 1

n2
since

0 <
1

n2 + 1
<

1

n2
.

2.
∞∑

n=1

n

n4 − 2
converges by comparison with

∞∑

n=1

1

n3 since

lim

(
n

n4 − 2

)

(
1

n3

) = 1, and 0 < 1 <∞.

3.
∑ n2 + 1

n3 + 1
diverges to infinity by comparison with

∑ 1

n
, since

n2 + 1

n3 + 1
>

1

n
.
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4.
∞∑

n=1

√
n

n2 + n + 1
converges by comparison with

∞∑

n=1

1

n3/2

since

lim

( √
n

n2 + n + 1

)

(
1

n3/2

) = 1, and 0 < 1 <∞.

5. Since sin x ≤ x for x ≥ 0, we have

∣
∣
∣
∣
sin

1

n2

∣
∣
∣
∣
= sin

1

n2 ≤
1

n2 ,

so
∑
∣
∣
∣
∣
sin

1

n2

∣
∣
∣
∣

converges by comparison with
∑ 1

n2
.

6.
∞
∑

n=8

1

πn + 5
converges by comparison with the geometric

series
∞∑

n=8

(
1

π

)n

since 0 <
1

πn + 5
<

1

πn
.

7. Since (ln n)3 < n for large n,
∑ 1

(ln n)3
diverges to

infinity by comparison with
∑ 1

n
.

8.
∞
∑

n=1

1

ln(3n)
diverges to infinity by comparison with the

harmonic series
∞
∑

n=1

1

3n
since

1

ln(3n)
>

1

3n
for n ≥ 1.

9. Since limn→∞
πn

πn − nπ
= lim

1

1− nπ

πn

= 1, the series

∑ 1

πn − nπ
converges by comparison with the geomet-

ric series
∑ 1

πn
.

10.
∞
∑

n=0

1+ n

2+ n
diverges to infinity since lim

1 + n

2 + n
= 1 > 0.

11.
∑ 1+ n4/3

2+ n5/3
diverges to infinity by comparison with the

divergent p-series
∑ 1

n1/3
, since

lim
n→∞

1+ n4/3

2+ n5/3

/
1

n1/3 = lim
n1/3 + n5/3

2+ n5/3
= 1.

12.
∞∑

n=1

n2

1+ n
√

n
diverges to infinity since

lim
n2

1 + n
√

n
= ∞.

13.
∞
∑

n=3

1

n ln n
√

ln ln n
diverges to infinity by the integral test,

since ∫ ∞

3

dt

t ln t
√

ln ln t
=
∫ ∞

ln ln 3

du√
u
= ∞.

14.
∞
∑

n=2

1

n ln n(ln ln n)2
converges by the integral test:

∫ ∞

a

dt

t ln t (ln ln t)2
=
∫ ∞

ln ln a

du

u2 <∞ if ln ln a > 0.

15.
∑ 1− (−1)n

n4 converges by comparison with
∑ 1

n4 ,

since 0 ≤ 1− (−1)n

n4
≤ 2

n4
.

16. The series
∞
∑

n=1

1+ (−1)n√
n

= 0 + 2√
2
+ 0 + 2√

4
+ 0 + 2√

6
+ · · ·

= 2
∞
∑

k=1

1√
2k
= √2

∞
∑

k=1

1√
k

diverges to infinity.

17. Since
1

2n(n + 1)
<

1

2n
, the series

∑ 1

2n(n + 1)
con-

verges by comparison with the geometric series
∑ 1

2n
.

18.
∞
∑

n=1

n4

n!
converges by the ratio test since

lim

(n + 1)4

(n + 1)!
n4

n!

= lim

(
n + 1

n

)4 1

n + 1
= 0.

19.
∑ n!

n2en
diverges to infinity by the ratio test, since

ρ = lim
(n + 1)!

(n + 1)2en+1
· n2en

n!
= 1

e
lim

n2

n + 1
= ∞.

20.
∞∑

n=1

(2n)!6n

(3n)!
converges by the ratio test since

lim
(2n + 2)!6n+1

(3n + 3)!

/
(2n)!6n

(3n)!

= lim
(2n + 2)(2n + 1)6

(3n + 3)(3n + 2)(3n + 1)
= 0.
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21.
∞∑

n=2

√
n

3n ln n
converges by the ratio test, since

ρ = lim

√
n + 1

3n+1 ln(n + 1)
· 3n ln n√

n

= 1

3
lim

√

n + 1

n
· lim ln n

ln(n + 1)
= 1

3
< 1.

22.
∞∑

n=0

n100 2n

√
n!

converges by the ratio test since

lim
(n + 1)100 2n+1
√
(n + 1)!

/
n100 2n

√
n!

= lim 2

(
n + 1

n

)100 1√
n + 1

= 0.

23.
∑ (2n)!

(n!)3
converges by the ratio test, since

ρ = lim
(2n + 2)!

((n + 1)!)3
· (n!)3

(2n)!
= lim

(2n + 2)(2n + 1)

(n + 1)3
= 0 < 1.

24.
∞
∑

n=1

1+ n!

(1+ n)!
diverges by comparison with the harmonic

series
∞
∑

n=1

1

n + 1
since

1 + n!

(1 + n)!
>

n!

(1+ n)!
= 1

n + 1
.

25.
∑ 2n

3n − n3
converges by the ratio test since

ρ = lim
2n+1

3n+1 − (n + 1)3
· 3n − n3

2n

= 2

3
lim

3n − n3

3n − (n + 1)3

3

= 2

3
lim

1− n3

3n

1− (n + 1)3

3n+1

= 2

3
< 1.

26.
∞
∑

n=1

nn

πnn!
converges by the ratio test since

lim
(n + 1)n+1

π(n+1)(n + 1)!

/
nn

πnn!
= 1

π
lim

(

1+ 1

n

)n

= e

π
< 1.

27. f (x) = 1/x4 is positive, continuous, and decreasing on
[1,∞). Let

An =
∫ ∞

n

dx

x4
= lim

R→∞

(

− 1

3x3

)∣
∣
∣
∣

R

n
= 1

3n3
.

We use the approximation

s ≈ s∗n = sn + 1

2

(
1

3(n + 1)3
+ 1

3n3

)

.

The error satisfies

|s − s∗n | ≤
1

2

(
1

3n3
− 1

3(n + 1)3

)

= 1

6

(n + 1)3 − n3

n3(n + 1)3

= 1

6

3n2 + 3n + 1

n3(n + 1)3
<

7

6n4 .

We have used 3n2 + 3n+ 1 ≤ 7n2 and n3(n + 1)3 > n6 to
obtain the last inequality. We will have |s − s∗n | < 0.001
provided

7

6n4 < 0.001,

that is, if n4 > 7000/6. Since 64 = 1296 > 7000/6,
n = 6 will do. Thus

∞
∑

n=1

1

n4
≈ s∗6 = 1+ 1

24
+ 1

34
+ 1

44
+ 1

54
+ 1

64
+ 1

6

(
1

73
+ 1

63

)

≈ 1.082 with error less than 0.001 in absolute value.

28. Since f (x) = 1

x3
is positive, continuous and decreasing

on [1,∞), for any n = 1, 2, 3, . . ., we have

sn + An+1 ≤ s ≤ sn + An

where sn =
n
∑

k=1

1

k3 and An =
∫ ∞

n

dx

x3 =
1

2n2 . If

s∗n = sn + 1

2
(An+1 + An), then

|sn − s∗n | ≤
An − An+1

2
= 1

4

[
1

n2 −
1

(n + 1)2

]

= 1

4

2n + 1

n2(n + 1)2
< 0.001

if n = 8. Thus, the error in the approximation s ≈ s∗8 is
less than 0.001.

29. Since f (x) = 1

x3/2
is positive, continuous and decreasing

on [1,∞), for any n = 1, 2, 3, . . ., we have

sn + An+1 ≤ s ≤ sn + An
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where sn =
n
∑

k=1

1

k3/2
and An =

∫ ∞

n

dx

x3/2
= 2√

n
. If

s∗n = sn + 1

2
(An+1 + An) = sn +

(
1√
n
+ 1√

n + 1

)

, then

|sn − s∗n | ≤
An − An+1

2

= 1

2

(
2√
n
− 2√

n + 1

)

=
√

n + 1−√n√
n
√

n + 1
= 1√

n
√

n + 1(
√

n +√n + 1)

<
1

2n3/2 < 0.001

if n ≥ 63. Thus, the error in the approximation s ≈ s∗63 is
less than 0.001.

30. Again, we have sn + An+1 ≤ s ≤ sn + An where

sn =∑n
k=1

1

k2 + 4
and

An =
∫ ∞

n

dx

x2 + 4
= 1

2
tan−1

( x

2

)
∣
∣
∣
∣

∞

n
= π

4
−1

2
tan−1

(n

2

)

.

If s∗n = sn + 1

2
(An+1 + An), then

|sn − s∗n | ≤
An − An+1

2

= 1

2

[
π

4
− 1

2
tan−1

(n

2

)

− π
4
+ 1

2
tan−1

(
n + 1

2

)]

= 1

4

[

tan−1
(

n + 1

2

)

− tan−1
(n

2

)]

= 1

4
(a − b),

where a = tan−1
(

n + 1

2

)

and b = tan−1
(n

2

)

. Now

tan(a − b) = tan a − tan b

1+ tan a tan b

=

(
n + 1

2

)

−
(n

2

)

1+
(

n + 1

2

)(n

2

)

= 2

n2 + n + 4

⇔ a − b = tan−1
(

2

n2 + n + 4

)

.

We want error less than 0.001:

1

4
(a − b) = 1

4
tan−1

(
2

n2 + n + 4

)

< 0.001

⇔ 2

n2 + n + 4
< tan 0.004

⇔ n2 + n > 2 cot(0.004)− 4 ≈ 496.

n = 22 will do. The approximation s ≈ s∗22 has error less
than 0.001.

31. We have s =
∞
∑

k=1

1

2kk!
and

sn =
n
∑

k=1

1

2kk!
= 1

2
+ 1

222!
+ 1

233!
+ · · · + 1

2nn!
.

Then

0 < s − sn

= 1

2n+1(n + 1)!
+ 1

2n+2(n + 2)!
+ 1

2n+3(n + 3)!
+ · · ·

= 1

2n+1(n + 1)!

[

1+ 1

2(n + 2)
+ 1

22(n + 2)(n + 3)
+ · · ·

]

<
1

2n+1(n + 1)!

[

1+ 1

2(n + 2)
+
(

1

2(n + 2)

)2

+ · · ·
]

= 1

2n+1(n + 1)!
· 1

1− 1

2(n + 2)

= n + 2

2n(n + 1)!(2n + 3)
< 0.001

if n = 4. Thus, s ≈ s4 = 1

2
+ 1

222!
+ 1

233!
+ 1

244!
with

error less than 0.001.

32. We have s =
∞∑

k=1

1

(2k − 1)!
and

sn =
n∑

k=1

1

(2k − 1)!
= 1

1!
+ 1

3!
+ 1

5!
+ · · · + 1

(2n − 1)!
.

Then

0 < s − sn = 1

(2n + 1)!
+ 1

(2n + 3)!
+ 1

(2n + 5)!
+ · · ·

= 1

(2n + 1)!

[

1+ 1

(2n + 2)(2n + 3)
+

1

(2n + 2)(2n + 3)(2n + 4)(2n + 5)
+ · · ·

]

<
1

(2n + 1)!

[

1+ 1

(2n + 2)(2n + 3)
+

1

[(2n + 2)(2n + 3)]2
+ · · ·

]

= 1

(2n + 1)!

⎡

⎢
⎢
⎣

1

1− 1

(2n + 2)(2n + 3)

⎤

⎥
⎥
⎦

= 1

(2n + 1)!

4n2 + 10n + 6

4n2 + 10n + 5
< 0.001
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if n = 3. Thus, s ≈ s3 = 1+ 1

3!
+ 1

5!
= 1.175 with error

less than 0.001.

33. We have s =
∞
∑

k=0

2k

(2k)!
and sn =

n−1
∑

k=0

2k

(2k)!
. Thus

0 < s − sn

= 2n

(2n)!
+ 2n+1

(2n + 2)!
+ 2n+2

(2n + 4)!
+ · · ·

= 2n

(2n)!

[

1+ 2

(2n + 1)(2n + 2)

+ 22

(2n + 1)(2n + 2)(2n + 3)(2n + 4)
+ · · ·

]

<
2n

(2n)!

[

1+ 2

(2n + 1)(2n + 2)
+
(

2

(2n + 1)(2n + 2)

)2

+ · · ·
]

= 2n

(2n)!
· 1

1− 2

(2n + 1)(2n + 2)

= 2n

(2n)!
· 4n2 + 6n + 2

4n2 + 6n
< 0.001

if n = 4. Thus, s ≈ s4 with error less than 0.001.

34. We have s =
∞
∑

k=1

1

kk
and

sn =
n
∑

k=1

1

kk
= 1

1
+ 1

22
+ 1

33
+ · · · + 1

nn
.

Then

0 < s − sn = 1

(n + 1)n+1 +
1

(n + 2)n+2 +
1

(n + 3)n+3 + · · ·

<
1

(n + 1)n+1

[

1 + 1

n + 1
+ 1

(n + 1)2
+ · · ·

]

= 1

(n + 1)n+1

⎡

⎢
⎣

1

1− 1

n + 1

⎤

⎥
⎦

= 1

n(n + 1)n
< 0.001

if n = 4. Thus, s ≈ s4 = 1+ 1

22 +
1

33 +
1

44 = 1.291 with

error less than 0.001.

35. Let f (x) = 1

1 + x2 . Then f is decreasing on [1,∞).

Since
∞
∑

n=1

f (n) is a right Riemann sum for

∫ ∞

0
f (x) dx = lim

R→∞ tan−1x

∣
∣
∣
∣

R

0
= π

2
,

∞∑

n=1

1

1+ n2 =
∞∑

n=1

f (n) converges by the integral test, and

its sum is less than π/2.

36. Let u = ln ln t , du = dt

t ln t
and ln ln a > 0; then

∫ ∞

a

dt

t ln t (ln ln t)p
=
∫ ∞

ln ln a

du

u p

will converge if and only if p > 1. Thus,
∞
∑

n=3

1

n ln n(ln ln n)p
will converge if and only if p > 1.

Similarly,

∞
∑

n=N

1

n(ln n)(ln ln n) · · · (lnj n)(lnj+1 n)p

converges if and only if p > 1, where N is large enough
that lnj N > 1.

37. Let an > 0 for all n. (Let’s forget the “ultimately” part.)
Let σ = lim(an)

1/n .

CASE I. Suppose σ < 1. Pick λ such that σ < λ < 1.
Then there exists N such that (an)

1/n ≤ λ for all n ≥ N .
Therefore

aN ≤ λN , aN+1 ≤ λN+1, aN+2 ≤ λN+2, . . . .

Thus
∞∑

n=N

an converges by comparison with the geometric

series
∞∑

n=N

λn , and
∞∑

n=1

an also converges.

CASE II. Suppose σ > 1. Then (an)
1/n ≥ 1, and

an ≥ 1, for all sufficiently large values of n. There-
fore lim an �= 0 and

∑

an must diverge. Since an > 0 it
diverges to infinity.

CASE III. Let an = 1

n
and bn = 1

n2
.

Since lim n1/n = 1 (because lim
ln n

n
= 0), we have

lim(an)
1/n = 1 and lim(bn)

1/n = 1. That is, σ = 1 for
both series. But

∑

an diverges to infinity, while
∑

bn

converges. Thus the case σ = 1 provides no information
on the convergence or divergence of a series.

38. Let an = 2n+1/nn . Then

lim
n→∞

n
√

an = lim
n→∞

2× 21/n

n
= 0.

Since this limit is less than 1,
∑∞

n=1 an converges by the
root test.
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39.
∞
∑

n=1

(
n

n + 1

)n2

converges by the root test of Exercise 31

since

σ = lim
n→∞

[(
n

n + 1

)n2]1/n

= lim
n→∞

1
(

1+ 1

n

)n =
1

e
< 1.

40. Let an = 2n+1

nn
. Then

an+1

an
= 2n+2

(n + 1)n+1
· nn

2n+1

= 2

(n + 1)

(
n

n + 1

)n =
2

n + 1
· 1
(

1+ 1

n

)n

→ 0× 1

e
= 0 as n→∞.

Thus
∑∞

n=1 an converges by the ratio test.
(Remark: the question contained a typo. It was intended
to ask that #33 be repeated, using the ratio test. That is a
little harder.)

41. Trying to apply the ratio test to
∑ 22n(n!)2

(2n)!
, we obtain

ρ = lim
22n+2((n + 1)!)2

(2n + 2)!
· (2n)!

22n(n!)2
= lim

4(n + 1)2

(2n + 2)(2n + 1)
= 1.

Thus the ratio test provides no information. However,

22n(n!)2

(2n)!
= [2n(2n − 2) · · · 6 · 4 · 2]2

2n(2n − 1)(2n − 2) · · · 3 · 2 · 1
= 2n

2n − 1
· 2n − 2

2n − 3
· · · · · 4

3
· 2

1
> 1.

Since the terms exceed 1, the series diverges to infinity.

42. We have

an = (2n)!

22n(n!)2
= 1× 2× 3× 4× · · · × 2n

(2 × 4× 6× 8× · · · × 2n)2

= 1× 3× 5× · · · × (2n − 1)

2× 4× 6× · · · × (2n − 2)× 2n

= 1× 3

2
× 5

4
× 7

6
× · · · × 2n − 1

2n − 2
× 1

2n
>

1

2n
.

Therefore
∞
∑

n=1

(2n)!

22n(n!)2
diverges to infinity by comparison

with the harmonic series
∞
∑

n=1

1

2n
.

43. a) If n is a positive integer and k > 0, then

(1 + k)n ≥ 1 + nk > nk, so n <
1

k
(1+ k)n .

b) Let sN =
N
∑

n=0

n

2n
<

1

k

N
∑

n=0

(
1+ k

2

)n

= 1

k

N
∑

n=0

rn = 1

k
· 1− r N+1

1− r
,

where r = (1 + k)/n. Thus

sn <
1

k
·

1−
(

1+ k

2

)N+1

1− 1+ k

2

= 2

k(1 − k)

(

1−
(

1+ k

2

)N+1
)

≤ 2

k(1 − k)
.

Therefore, s =
∞
∑

n=0

n

2n
≤ 2

k(1 − k)
.

Since the maximum value of k(1 − k) is 1/4 (at
k = 1/2), the best upper bound we get for s by this
method is s ≤ 8.

c) s − sn =
∞
∑

j=n+1

j

2 j
<

1

k

∞
∑

j=n+1

(
1+ k

2

) j

= 1

k

(
1+ k

2

)n+1

· 1

1− 1+ k

2

= (1+ k)n+1

k(1 − k)2n
= G(k)

2n
,

where G(k) = (1+ k)n+1

k(1 − k)
. For minimum G(k), look

for a critical point:

k(1 − k)(n + 1)(1 + k)n − (1 + k)n+1(1 − 2k)

k2(1− k)2
= 0

(k − k2)(n + 1)− (1 + k)(1 − 2k) = 0

k2(n + 1)− k(n + 1)+ 1 − k − 2k2 = 0

(n − 1)k2 − (n + 2)k + 1 = 0

k = (n + 2)±
√

(n + 2)2 − 4(n − 1)

2(n − 1)

= n + 2 ±√n2 + 8

2(n − 1)
.

For given n, the upper bound is minimal if

k = n + 2−√n2 + 8

2(n − 1)
(for n ≥ 2).

44. If s =
∞
∑

k=1

ck =
∞
∑

k=1

1

k2(k + 1)
, then we have

sn + An+1 ≤ s ≤ sn + An
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where sn =
n
∑

k=1

1

k2(k + 1)
and

An =
∫ ∞

n

dx

x2(x + 1)
=
∫ ∞

n

(−1

x
+ 1

x2 +
1

x + 1

)

dx

= − ln x − 1

x
+ ln(x + 1)

∣
∣
∣
∣

∞

n

= ln

(

1+ 1

x

)

− 1

x

∣
∣
∣
∣

∞

n

= 1

n
− ln

(

1+ 1

n

)

.

If s∗n = sn + 1

2
(An+1 + An), then

|sn − s∗n | ≤
An − An+1

2

= 1

2

[
1

n
− ln

(

1+ 1

n

)

− 1

n + 1
+ ln

(

1+ 1

n + 1

)]

= 1

2

[
1

n(n + 1)
+ ln

(
n2 + 2n

n2 + 2n + 1

)]

≤ 1

2

[
1

n(n + 1)
+
(

n2 + 2n

n2 + 2n + 1
− 1

)]

= 1

2n(n + 1)2
< 0.001

if n = 8. Thus,

∞
∑

n=1

1

n2 = 1+ s∗8 = 1+ s8 + 1

2
(A9 + A8)

= 1+
[

1

2
+ 1

22(3)
+ 1

32(4)
+ · · · + 1

82(9)

]

+
1

2

[(
1

9
− ln

10

9

)

+
(

1

8
− ln

9

8

)]

= 1.6450

with error less than 0.001.

45. s =∑∞n=1 1/(2n + 1).

(a) We have

0 < s − sn =
∞
∑

i=1

1

2i + 1
= 1

2n+1 +
1

2n+2 +
1

2n+3 + · · ·

= 1

2n+1

(

1 + 1

2
+ 1

22
+ · · ·

)

= 1

2n
<

1

1,000
if 2n > 1,000.

Since 210 = 1,024, s10 will approximate s to within
0.001.

(b) Let Sn =∑n
i=1 bi , where bn = 1

2n
− 1

2n + 1
. Since

0 < bn = 2n + 1− 2n

2n(2n + 1)
<

1

4n
,

we have

0 <
∞
∑

i=1

bi − Sn = bn+1 + bn+2 + bn+3 + · · ·

<
1

4n+1

(

1+ 1

4
+ 1

42 + · · ·
)

= f rac14n+1 × 4

3
= 1

3 × 4n
<

1

1,000

provided 4n > 1,000/3. Thus n = 5 will do (but
n = 4 is insufficient). S5 approximates

∑∞
n=1 bn to

within 0.001.

(c) Since
∑∞

n=1 1/2n = 1, we have

∞
∑

n=1

1

2n + 1
=
∞
∑

n=1

1

2n
−
∞
∑

n=1

bn

≈ 1−
5∑

n=1

bn

= 1−
(

1

2
− 1

3

)

−
(

1

4
− 1

5

)

−
(

1

8
− 1

9

)

−
(

1

16
− 1

17

)

−
(

1

32
− 1

33

)

≈ 0.765 with error less than 0.001.

Section 9.4 Absolute and Conditional
Convergence (page 501)

1.
∑ (−1)n√

n
converges by the alternating series test (since

the terms alternate in sign, decrease in size, and approach
0). However, the convergence is only conditional, since
∑ 1√

n
diverges to infinity.

2.
∞
∑

n=1

(−1)n

n2 + ln n
converges absolutely since

∣
∣
∣
∣

(−1)n

n2 + ln n

∣
∣
∣
∣
≤ 1

n2 and
∞
∑

n=1

1

n2 converges.

3.
∑ cos(nπ)

(n + 1) ln(n + 1)
=
∑ (−1)n

(n + 1) ln(n + 1)
converges

by the alternating series test, but only conditionally since
∑ 1

(n + 1) ln(n + 1)
diverges to infinity (by the integral

test).
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4.
∞∑

n=1

(−1)2n

2n
=
∞∑

n=1

1

2n
is a positive, convergent geometric

series so must converge absolutely.

5.
∑ (−1)n(n2 − 1)

n2 + 1
diverges since its terms do not ap-

proach zero.

6.
∞
∑

n=1

(−2)n

n!
converges absolutely by the ratio test since

lim

∣
∣
∣
∣

(−2)n+1

(n + 1)!
· n!

(−2)n

∣
∣
∣
∣
= 2 lim

1

n + 1
= 0.

7.
∑ (−1)n

nπn
converges absolutely, since, for n ≥ 1,

∣
∣
∣
∣

(−1)n

nπn

∣
∣
∣
∣
≤ 1

πn
,

and
∑ 1

πn
is a convergent geometric series.

8.
∞
∑

n=0

−n

n2 + 1
diverges to −∞ since all terms are negative

and
∞∑

n=0

n

n2 + 1
diverges to infinity by comparison with

∞
∑

n=0

1

n
.

9.
∑

(−1)n
20n2 − n − 1

n3 + n2 + 33
converges by the alternating se-

ries test (the terms are ultimately decreasing in size, and
approach zero), but the convergence is only conditional

since
∑ 20n2 − n − 1

n3 + n2 + 33
diverges to infinity by compari-

son with
∑ 1

n
.

10.
∞∑

n=1

100 cos(nπ)

2n + 3
=
∞∑

n=1

100(−1)n

2n + 3
converges by the alter-

nating series test but only conditionally since

∣
∣
∣
∣

100(−1)n

2n + 3

∣
∣
∣
∣
= 100

2n + 3

and
∞
∑

n=1

100

2n + 3
diverges to infinity.

11.
∑ n!

(−100)n
diverges since lim

n!

100n
= ∞.

12.
∞∑

n=10

sin(n + 1
2 )π

ln ln n
=

∞∑

n=10

(−1)n

ln ln n
converges by the alter-

nating series test but only conditionally since
∞
∑

n=10

1

ln ln n

diverges to infinity by comparison with
∞
∑

n=10

1

n
.

(ln ln n < n for n ≥ 10.)

13. If s =
∞
∑

k=1

(−1)k−1 k

k2 + 1
, and sn =

n
∑

k=1

(−1)k−1 k

k2 + 1
,

then

|s − sn | < n + 1

(n + 1)2 + 1
< 0.001

if n = 999, because the series satisfies the conditions of
the alternating series test.

14. Since the terms of the series s = ∑∞n=0
(−1)n

(2n)!
are alter-

nating in sign and decreasing in size, the size of the error
in the approximation s ≈ sn does not exceed that of the
first omitted term:

|s − sn| ≤ 1

(2n + 2)!
< 0.001

if n = 3. Hence s ≈ 1 − 1

2!
+ 1

4!
− 1

6!
; four terms

will approximate s with error less than 0.001 in absolute
value.

15. If s =
∞
∑

k=1

(−1)k−1 k

2k
, and sn =

n
∑

k=1

(−1)k−1 k

2k
, then

|s − sn | < n + 1

2n+1 < 0.001

if n = 13, because the series satisfies the conditions of
the alternating series test from the second term on.

16. Since the terms of the series s = ∑∞
n=0(−1)n

3n

n!
are alternating in sign and ultimately decreasing in
size (they decrease after the third term), the size of
the error in the approximation s ≈ sn does not ex-
ceed that of the first omitted term (provided n ≥ 3):

|s− sn | ≤ 3n+1

(n + 1)!
< 0.001 if n = 12. Thus twelve terms

will suffice to approximate s with error less than 0.001 in
absolute value.

17. Applying the ratio test to
∑ xn

√
n + 1

, we obtain

ρ = lim

∣
∣
∣
∣
∣

xn+1
√

n + 2
·
√

n + 1

xn

∣
∣
∣
∣
∣
= |x | lim

√

n + 1

n + 2
= |x |.

Hence the series converges absolutely if |x | < 1, that is,
if −1 < x < 1. The series converges conditionally for
x = −1, but diverges for all other values of x .
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18. Let an = (x − 2)n

n222n
. Apply the ratio test

ρ = lim

∣
∣
∣
∣

(x − 2)n+1

(n + 1)222n+2 ×
n222n

(x − 2)n

∣
∣
∣
∣
= |x − 2|

4
< 1

if and only if |x − 2| < 4, that is −2 < x < 6. If

x = −2, then
∞
∑

n=1

an =
∞
∑

n=1

(−1)n

n2 , which converges

absolutely. If x = 6, then
∞∑

n=1

an =
∞∑

n=1

1

n2 , which also

converges absolutely. Thus, the series converges abso-
lutely if −2 ≤ x ≤ 6 and diverges elsewhere.

19. Apply the ratio test to
∑

(−1)n
(x − 1)n

2n + 3
:

ρ = lim

∣
∣
∣
∣

(x − 1)n+1

2n + 5
· 2n + 3

(x − 1)n

∣
∣
∣
∣
= |x − 1|.

The series converges absolutely if |x − 1| < 1, that is,
if 0 < x < 2, and converges conditionally if x = 2. It
diverges for all other values of x .

20. Let an = 1

2n − 1

(
3x + 2

−5

)n

. Apply the ratio test

ρ = lim

∣
∣
∣
∣
∣

1

2n + 1

(
3x + 2

−5

)n+1

× 2n − 1

1

(
3x + 2

−5

)−n
∣
∣
∣
∣
∣

=
∣
∣
∣
∣

3x + 2

5

∣
∣
∣
∣
< 1

if and only if

∣
∣
∣
∣
x + 2

3

∣
∣
∣
∣
<

5

3
, that is −7

3
< x < 1. If

x = −7

3
, then

∞
∑

n=1

an =
∞
∑

n=1

1

2n − 1
, which diverges.

If x = 1, then
∞
∑

n=1

an =
∞
∑

n=1

(−1)n

2n − 1
, which converges

conditionally. Thus, the series converges absolutely if

−7

3
< x < 1, converges conditionally if x = 1 and

diverges elsewhere.

21. Apply the ratio test to
∑ xn

2n ln n
:

ρ = lim

∣
∣
∣
∣

xn+1

2n+1 ln(n + 1)
· 2n ln n

xn

∣
∣
∣
∣
= |x |

2
lim

ln n

ln(n + 1)
= |x |

2
.

(The last limit can be evaluated by l’Hôpital’s Rule.) The
given series converges absolutely if |x | < 2, that is, if
−2 < x < 2. By the alternating series test, it converges
conditionally if x = −2. It diverges for all other values
of x .

22. Let an = (4x + 1)n

n3 . Apply the ratio test

ρ = lim

∣
∣
∣
∣

(4x + 1)n+1

(n + 1)3
× n3

(4x + 1)n

∣
∣
∣
∣
= |4x + 1| < 1

if and only if −1

2
< x < 0. If x = −1

2
, then

∞∑

n=1

an =
∞∑

n=1

(−1)n

n3 , which converges absolutely. If

x = 0, then
∞
∑

n=1

an =
∞
∑

n=1

1

n3
, which also converges

absolutely. Thus, the series converges absolutely if

−1

2
≤ x ≤ 0 and diverges elsewhere.

23. Apply the ratio test to
∑ (2x + 3)n

n1/34n
:

ρ = lim

∣
∣
∣
∣

(2x + 3)n+1

(n + 1)1/34n+1
· n1/34n

(2x + 3)n

∣
∣
∣
∣
= |2x + 3|

4
=
∣
∣x + 3

2

∣
∣

2
.

The series converges absolutely if

∣
∣
∣
∣
x + 3

2

∣
∣
∣
∣
< 2, that is, if

−7

2
< x <

1

2
. By the alternating series test it converges

conditionally at x = −7

2
. It diverges elsewhere.

24. Let an = 1

n

(

1+ 1

x

)n

. Apply the ratio test

ρ = lim

∣
∣
∣
∣
∣

1

n + 1

(

1 + 1

x

)n+1

× n

1

(

1+ 1

x

)−n
∣
∣
∣
∣
∣
=
∣
∣
∣
∣
1+ 1

x

∣
∣
∣
∣
< 1

if and only if |x + 1| < |x |, that is,

−2 <
1

x
< 0 ⇒ x < −1

2
. If x = −1

2
, then

∞
∑

n=1

an =
∞
∑

n=1

(−1)n

n
, which converges conditionally.

Thus, the series converges absolutely if x < −1

2
, con-

verges conditionally if x = −1

2
and diverges elsewhere.

It is undefined at x = 0.

25.
∞
∑

n=1

sin(nπ/2)

n
= 1+ 0− 1

3
+ 0+ 1

5
+ 0− 1

7
+ 0+ · · ·

The alternating series test does not apply directly, but
does apply to the modified series with the zero terms
deleted. Since this latter series converges conditionally,
the given series also converges conditionally.

26. If

an =

⎧

⎪⎨

⎪⎩

10

n2
, if n is even;

−1

10n3 , if n is odd;
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then |an | ≤ 10

n2 for every n ≥ 1. Hence,
∞∑

n=1

an converges

absolutely by comparison with
∞
∑

n=1

10

n2
.

27. a) “
∑

an converges implies
∑
(−1)nan converges” is

FALSE. an = (−1)n

n
is a counterexample.

b) “
∑

an converges and
∑
(−1)nan converges implies

∑
an converges absolutely” is FALSE. The series of

Exercise 25 is a counterexample.

c) “
∑

an converges absolutely implies
∑
(−1)nan con-

verges absolutely” is TRUE, because
|(−1)nan | = |an |.

28. a) We have

ln(n!) = ln 1+ ln 2+ ln 3+ · · · + ln n

= sum of area of the shaded rectangles

>

∫ n

1
ln t dt = (t ln t − t)

∣
∣
∣
∣

n

1

= n ln n − n + 1.

y

x

y=ln x

1 2 3 4 n−1 n

Fig. 9.4.28

b) Let an = n!xn

nn
. Apply the ratio test

ρ = lim

∣
∣
∣
∣

(n + 1)!xn+1

(n + 1)n+1
× nn

n!xn

∣
∣
∣
∣

= lim
|x |

(

1 + 1

n

)n =
|x |
e
< 1

if and only if −e < x < e. If x = ±e, then, by (a),

ln

∣
∣
∣
∣

n!en

nn

∣
∣
∣
∣
= ln(n!)+ ln en − ln nn

> (n ln n − n + 1)+ n − n ln n = 1.

⇒
∣
∣
∣
∣

n!en

nn

∣
∣
∣
∣
> e.

Hence,
∞∑

n=1

an converges absolutely if −e < x < e

and diverges elsewhere.

29. Applying the ratio test to
∑ (2n)!xn

22n(n!)2
=
∑

anxn , we

obtain

ρ = lim |x | (2n + 2)(2n + 1)

4(n + 1)2
= |x |.

Thus
∑

anxn converges absolutely if −1 < x < 1, and
diverges if x > 1 or x < −1. In Exercise 36 of Sec-

tion 9.3 it was shown that an ≥ 1

2n
, so the given series

definitely diverges at x = 1 and may at most converge
conditionally at x = −1. To see whether it does converge
at −1, we write, as in Exercise 36 of Section 9.3,

an = (2n)!

22n(n!)2
= 1× 2× 3× 4× · · · × 2n

(2 × 4× 6× 8× · · · × 2n)2

= 1× 3× 5× · · · × (2n − 1)

2× 4× 6× · · · × (2n − 2)× 2n

= 1

2
× 3

4
× · · · × 2n − 3

2n − 2
× 2n − 1

2n

=
(

1− 1

2

)(

1 − 1

4

)

· · ·
(

1− 1

2n − 2

)(

1− 1

2n

)

.

It is evident that an decreases as n increases. To see
whether lim an = 0, take logarithms and use the inequal-
ity ln(1+ x) ≤ x :

ln an = ln

(

1− 1

2

)

+ ln

(

1− 1

4

)

+ · · · + ln

(

1− 1

2n

)

≤ −1

2
− 1

4
− · · · − 1

2n

= −1

2

(

1+ 1

2
+ · · · + 1

n

)

→−∞ as n→∞.

Thus lim an = 0, and the given series converges condi-
tionally at x = −1 by the alternating series test.

30. Let pn = 1

2n − 1
and qn = − 1

2n
. Then

∑
pn diverges

to ∞ and
∑

qn diverges to −∞. Also, the alternating
harmonic series is the sum of all the pns and qns in a
specific order:

∞∑

n=1

(−1)n−1

n
=
∞∑

n=1

(pn + qn).

a) Rearrange the terms as follows: first add terms of
∑

pn until the sum exceeds 2. Then add q1. Then
add more terms of

∑
pn until the sum exceeds 3.

Then add q2. Continue in this way; at the nth stage,
add new terms from

∑
pn until the sum exceeds

n + 1, and then add qn . All partial sums after the
nth stage exceed n, so the rearranged series diverges
to infinity.
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b) Rearrange the terms of the original alternating har-
monic series as follows: first add terms of

∑
qn

until the sum is less than −2. Then add p1. The
sum will now be greater than −2. (Why?) Then re-
sume adding new terms from

∑
qn until the sum is

less than −2 again, and add p2, which will raise the
sum above −2 again. Continue in this way. After
the nth stage, all succeeding partial sums will differ
from −2 by less than 1/n, so the rearranged series
will converge to −2.

Section 9.5 Power Series (page 511)

1. For
∞
∑

n=0

x2n

√
n + 1

we have R = lim

∣
∣
∣
∣
∣

√
n + 2√
n + 1

∣
∣
∣
∣
∣
= 1. The

radius of convergence is 1; the centre of convergence
is 0; the interval of convergence is (−1, 1). (The series
does not converge at x = −1 or x = 1.)

2. We have
∞∑

n=0

3n(x + 1)n . The centre of convergence is

x = −1. The radius of convergence is

R = lim
3n

3(n + 1)
= 1.

The series converges absolutely on (−2, 0) and diverges
on (−∞,−2) and (0,∞). At x = −2, the series is
∞
∑

n=0

3n(−1)n , which diverges. At x = 0, the series is

∞
∑

n=0

3n, which diverges to infinity. Hence, the interval of

convergence is (−2, 0).

3. For
∞
∑

n=1

1

n

(
x + 2

2

)n

we have R = lim
2n+1(n + 1)

2nn
= 2.

The radius of convergence is 2; the centre of convergence
is −2. For x = −4 the series is an alternating harmonic
series, so converges. For x = 0, the series is a divergent
harmonic series. Therefore the interval of convergence is
[−4, 0).

4. We have
∞
∑

n=1

(−1)n

n422n
xn . The centre of convergence is

x = 0. The radius of convergence is

R = lim

∣
∣
∣
∣

(−1)n

n422n
· (n + 1)4 22n+2

(−1)n+1

∣
∣
∣
∣

= lim

∣
∣
∣
∣

(
n + 1

n

)4

· 4
∣
∣
∣
∣
= 4.

At x = 4, the series is
∞∑

n=1

(−1)n

n4 , which converges.

At x = −4, the series is
∞
∑

n=1

1

n4
, which also converges.

Hence, the interval of convergence is [−4, 4].

5.
∞
∑

n=0

n3(2x − 3)n =
∞
∑

n=0

2nn3 (x − 3
2

)n
. Here

R = lim
2nn3

2n+1(n + 1)3
= 1

2
. The radius of convergence

is 1/2; the centre of convergence is 3/2; the interval of
convergence is (1, 2).

6. We have
∞
∑

n=1

en

n3 (4 − x)n . The centre of convergence is

x = 4. The radius of convergence is

R = lim
en

n3
· (n + 1)3

en+1
= 1

e
.

At x = 4 + 1

e
, the series is

∞
∑

n=1

(−1)n

n3 , which converges.

At x = 4− 1

e
, the series is

∞
∑

n=1

1

n3
, which also converges.

Hence, the interval of convergence is

[

4 − 1

e
, 4+ 1

e

]

.

7. For
∑∞

n=0
1+ 5n

n!
xn we have

R = lim
1+ 5n

n!
· (n + 1)!

1+ 5n+1 = ∞. The radius of con-

vergence is infinite; the centre of convergence is 0; the
interval of convergence is the whole real line (−∞,∞).

8. We have
∞∑

n=1

(4x − 1)n

nn
=
∞∑

n=1

(
4

n

)n (

x − 1

4

)n

. The cen-

tre of convergence is x = 1
4 . The radius of convergence

is

R = lim
4n

nn
· (n + 1)n+1

4n+1

= 1

4
lim

(
n + 1

n

)n

(n + 1) = ∞.

Hence, the interval of convergence is (−∞,∞).
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9. By Example 5(a),

1 + 2x + 3x2 + 4x3 + · · · = 1

(1− x)2

× 1 + x + x2 + x3 + · · · = 1

1− x

1 + 2x + 3x2 + 4x3 + · · ·
x + 2x2 + 3x3 + · · ·

x2 + 2x3 + · · ·
x3 + · · ·

· · ·
1 + 3x + 6x2 + 10x3 + · · · = 1

(1− x)3

Thus
1

(1 − x)3
=
∞
∑

n=0

(n + 1)(n + 2)

2
xn,

for −1 < x < 1.

10. We have

1+ x + x2 + x3 + · · · = 1

1− x
=
∞
∑

n=0

xn

and

1− x + x2 − x3 + · · · = 1

1+ x
=
∞
∑

n=0

(−1)n xn

holds for −1 < x < 1. Since an = 1 and bn = (−1)n for
n = 0, 1, 2, . . ., we have

Cn =
n
∑

j=0

(−1)n− j =
{

0, if n is odd;
1, if n is even.

Then the Cauchy product is

1+ x2 + x4 + · · · =
∞
∑

n=0

x2n = 1

1− x
· 1

1 + x
= 1

1− x2

for −1 < x < 1.

11. By long division:

1 + 2x + 3x2 + 4x3 + · · ·
1 − 2x + x2 1

1 − 2x + x2

2x − x2

2x − 4x2 + 2x3 + · · ·
3x2 − 2x3 + · · ·
3x2 − 6x3 + · · ·

4x3 + · · ·

Thus
1

(1 − x)2
=
∞∑

n=0

(n + 1)xn , for −1 < x < 1.

12.
1

2− x
= 1

2

1
(

1− x

2

) = 1

2

∞
∑

n=0

( x

2

)n

= 1

2
+ x

22 +
x2

23 +
x3

24 + · · · (−2 < x < 2).

13.
1

2− x
= 1

2
· 1

1− x

2

= 1

2
+ x

22 +
x2

23 +
x3

24 · · ·
for −2 < x < 2. Now differentiate to get

1

(2− x)2
= 1

22 +
2x

23 +
3x2

24 + · · ·

=
∞
∑

n=0

(n + 1)xn

2n+2 , (−2 < x < 2).

14.
1

1+ 2x
=
∞
∑

n=0

(−2x)n

= 1− 2x + 22x2 − 23x3 + · · · (− 1
2 < x < 1

2 ).

15.
∫ x

0

dt

2− t
=
∫ x

0

∞
∑

n=0

tn

2n+1 dt

− ln(2 − t)

∣
∣
∣
∣

x

0
=
∞
∑

n=0

tn+1

2n+1(n + 1)

∣
∣
∣
∣

x

0

− ln(2 − x)+ ln 2 =
∞
∑

n=0

xn+1

2n+1(n + 1)

ln(2 − x) = ln 2−
∞
∑

n=1

xn

2nn
. (−2 ≤ x < 2).

16. Let y = x − 1. Then x = 1+ y and

1

x
= 1

1+ y
=
∞
∑

n=0

(−y)n (−1 < y < 1)

=
∞
∑

n=0

[

−(x − 1)
]n

= 1− (x − 1)+ (x − 1)2 − (x − 1)3 + (x − 1)4 − · · ·
(for 0 < x < 2).

17. Let x + 2 = t , so x = t − 2. Then

1

x2 =
1

(2− t)2
=
∞
∑

n=0

(n + 1)tn

2n+2

=
∞
∑

n=0

(n + 1)(x + 2)n

2n+2 , (−4 < x < 0).
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18.
1− x

1+ x
= 2

1+ x
− 1

= 2(1 − x + x2 − x3 + · · ·)− 1

= 1+ 2
∞∑

n=1

(−x)n (−1 < x < 1).

19. We have

x3

1 − 2x2 = x3

( ∞
∑

n=0

(2x2)n

)

=
∞
∑

n=0

2nx2n+3,

(

− 1√
2
< x <

1√
2

)

.

20. Let y = x − 4. Then x = 4+ y and

1

x
= 1

4+ y
= 1

4

1
(

1+ y

4

) = 1

4

∞
∑

n=0

(

− y

4

)n

= 1

4

∞
∑

n=0

[

− (x − 4)

4

]n

= 1

4
− (x − 4)

42 + (x − 4)2

43 − (x − 4)3

44 + · · ·

for 0 < x < 8. Therefore,

ln x =
∫ x

1

dt

t
=
∫ 4

1

dt

t
+
∫ x

4

dt

t

= ln 4+
∫ x

4

[
1

4
− (t − 4)

42 + (t − 4)2

43 − (t − 4)3

44 + · · ·
]

dt

= ln 4+ x − 4

4
− (x − 4)2

2 · 42 + (x − 4)3

3 · 43 − (x − 4)4

4 · 44 + · · ·
(for 0 < x ≤ 8).

21. 1 = 4x + 16x2 − 64x3 + · · ·
=1+ (−4x)+ (−4x)2 − (−4x)3 + · · ·
= 1

1− (−4x)
= 1

1 + 4x
,
(− 1

4 < x < 1
4

)

.

22. We differentiate the series

∞
∑

n=0

xn = 1+ x + x2 + x3 + · · · = 1

1− x

and multiply by x to get

∞
∑

n=0

nxn = x + 2x2 + 3x3 + · · · = x

(1 − x)2

for −1 < x < 1. Therefore,

∞
∑

n=0

(n + 3)xn =
∞
∑

n=0

nxn + 3
∞
∑

n=0

xn

= x

(1 − x)2
+ 3

1− x

= 3− 2x

(1 − x)2
(−1 < x < 1).

23.
1

3
+ x

4
+ x2

5
+ x3

6
+ · · ·

= 1

x3

(

x3

3
+ x4

4
+ x5

5
+ · · ·

)

= 1

x3

(

x + x2

2
+ x3

3
+ x4

4
++ · · · − x − x2

2

)

= 1

x3

[

− ln(1 − x)− x − x2

2

]

=− 1

x3 ln(1− x)− 1

x2 −
1

2x
. (−1 ≤ x < 1, x �= 0).

24. We start with

1 − x + x2 − x3 + x4 − · · · = 1

1+ x

and differentiate to get

−1+ 2x − 3x3 + 4x3 − · · · = − 1

(1+ x)2
.

Now we multiply by −x3:

x3 − 2x4 + 3x5 − 4x6 + · · · = x3

(1 + x)2
.

Differentiating again we get

3x2 − 2× 4x3 + 3× 5x4 − 4× 6x5 + · · · = x3 + 3x2

(1+ x)3
.

Finally, we remove the factor x2:

3− 2× 4x + 3 × 5x2 − 4× 6x3 + · · · = x + 3

(1 + x)3
.

All steps are valid for −1 < x < 1.

25. Since 1 + x2 + x4 + x6 + · · · = 1

1− x2 , for −1 < x < 1,

we obtain by differentiation

2x + 4x3 + 6x5 + 8x7 + · · · = 2x

(1 − x2)2
,

or, on division by x ,

2+ 4x2 + 6x4 + 8x6 + · · · = 2

(1 − x2)2
,

for −1 < x < 1.
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26. Since x− x2

2
+ x3

3
− x4

4
+· · · = ln(1+ x) for −1 < x ≤ 1,

therefore

x2 − x4

2
+ x6

3
− x8

4
+ · · · = ln(1 + x2)

for −1 ≤ x ≤ 1, and, dividing by x2,

1− x2

2
+ x4

3
− x6

4
+· · · =

{

ln(1 + x2)

x2
if −1 ≤ x ≤ 1, x �= 0

1 if x = 0.

27. From Example 5(a),

∞
∑

n=1

nxn−1 = 1

(1 − x)2
, (−1 < x < 1).

Putting x = 1/3, we get

∞
∑

n=1

n

3n−1 =
1

(

1− 1
3

)2 =
9

4
.

Thus
∞∑

n=1

n

3n
= 1

3
· 9

4
= 3

4
.

28. From Example 5(a) with x = 1/2,

∞
∑

n=0

n + 1

2n
=
∞
∑

k=1

k

(
1

2

)k−1

= 1
(

1− 1
2

)2
= 4.

29. From Example 7,
∞
∑

n=1

n2xn−1 = 1+ x

(1 − x)3
for

−1 < x < 1. Putting x = 1/π , we get

∞
∑

n=0

(n + 1)2

πn
=
∞
∑

k=1

k2

π k−1 =
1+ 1

π

(1− 1
π
)3
= π2(π + 1)

(π − 1)3
.

30. From Example 5(a),

∞
∑

n=1

nxn−1 = 1

(1 − x)2
, (−1 < x < 1).

Differentiate with respect to x and then replace n by
n + 1:

∞
∑

n=2

n(n − 1)xn−2 = 2

(1− x)3
, (−1 < x < 1)

∞
∑

n=1

(n + 1)nxn−1 = 2

(1− x)3
, (−1 < x < 1).

Now let x = −1/2:

∞
∑

n=1

(−1)n−1 n(n + 1)

2n−1 = 16

27
.

Finally, multiply by −1/2:

∞∑

n=1

(−1)n
n(n + 1)

2n
= − 8

27
.

31. Since
∞
∑

n=1

(−1)n−1 xn

n
= ln(1 + x) for −1 < x ≤ 1,

therefore

∞
∑

n=1

(−1)n−1

n2n
= ln

(

1+ 1

2

)

= ln
3

2
.

32. In the series for ln(1+ x) in Example 5(c), put x = −1/2
to get

∞
∑

n=1

(−1)
1

n2n
=
∞
∑

k=0

(−1)k

k + 1

(

−1

2

)k+1

= ln

(

1− 1

2

)

= − ln 2.

Therefore

∞
∑

n=1

1

n2n
= ln 2

∞
∑

n=3

1

n2n
= ln 2 − 1

2
− 1

8
= ln 2− 5

8
.

Section 9.6 Taylor and Maclaurin Series
(page 520)

1. e3x+1 = e · e3x = e

( ∞
∑

n=0

(3x)n

n!

)

=
∞
∑

n=0

e3nxn

n!
(for all x).

2. cos(2x3) = 1− (2x3)2

2!
+ (2x3)4

4!
− (2x3)6

6!
+ · · ·

= 1− 22x6

2!
+ 24x12

4!
− 26x18

6!
+ · · ·

=
∞
∑

n=0

(−1)n4n

(2n)!
x6n (for all x).
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3. sin
(

x − π
4

)

= sin x cos
π

4
− cos x sin

π

4

= 1√
2

∞∑

n=0

(−1)n
x2n+1

(2n + 1)!
− 1√

2

∞∑

n=0

(−1)n
x2n

(2n)!

= 1√
2

∞∑

n=0

(−1)n
[

− x2n

(2n)!
+ x2n+1

(2n + 1)!

]

(for all x).

4. cos(2x − π) = − cos(2x)

= −1+ 22x2

2!
− 24x4

4!
+ 26x6

6!
− · · ·

= −
∞
∑

n=0

(−1)n

(2n)!
(2x)2n

=
∞∑

n=0

(−1)n+1

(2n)!
4n(x)2n (for all x).

5. x2 sin
x

3
=
∞
∑

n=0

(−1)n x2n+3

32n+1(2n + 1)!
(for all x).

6. cos2
( x

2

)

= 1

2
(1 + cos x)

= 1

2

(

1+ 1− x2

2!
+ x4

4!
− x6

6!
+ · · ·

)

= 1+ 1

2

∞∑

n=1

(−1)n

(2n)!
x2n (for all x).

7. sin x cos x = 1

2
sin(2x)

=
∞
∑

n=0

(−1)n
22n x2n+1

(2n + 1)!
(for all x).

8. tan−1 (5x2) = (5x2)− (5x2)3

3
+ (5x2)5

5
− (5x2)7

7
+ · · ·

=
∞
∑

n=0

(−1)n

(2n + 1)
(5x2)2n+1

=
∞
∑

n=0

(−1)n52n+1

(2n + 1)
x4n+2

(

for − 1√
5
≤ x ≤ 1√

5

)

.

9.
1+ x3

1+ x2 = (1 + x3)
(

1 − x2 + x4 − x6 + · · ·
)

= 1 − x2 + x3 + x4 − x5 − x6 + x7 + x8 − · · ·

= 1 − x2 +
∞
∑

n=2

(−1)n
(

x2n−1 + x2n
)

(|x | < 1).

10. ln(2 + x2) = ln 2

(

1+ x2

2

)

= ln 2+ ln

(

1+ x2

2

)

= ln 2+
[

x2

2
− 1

2

(
x2

2

)2

+ 1

3

(
x2

2

)3

− · · ·
]

= ln 2+
∞
∑

n=1

(−1)n−1

n
· x2n

2n

(for −√2 ≤ x ≤ √2).

11. ln
1+ x

1− x
= ln(1+ x)− ln(1 − x)

=
∞∑

n=1

xn

n
−
∞∑

n=1

(−1)n−1 xn

n

= 2
∞∑

n=1

x2n−1

2n − 1
(−1 < x < 1).

12.
e2x2 − 1

x2
= 1

x2

(

e2x2 − 1
)

= 1

x2

(

1+ 2x2 + (2x2)2

2!
+ (2x2)3

3!
+ · · · − 1

)

= 2 + 22x2

2!
+ 23x4

3!
+ 24x6

4!
+ · · ·

=
∞∑

n=0

2n+1

(n + 1)!
x2n (for all x �= 0).

13. cosh x − cos x =
∞
∑

n=0

[

1− (−1)n
] x2n

(2n)!

= 2

(
x2

2!
+ x6

6!
+ x10

10!
+ · · ·

)

= 2
∞∑

n=0

x4n+2

(4n + 2)!
(for all x).

14. sinh x − sin x =
∞
∑

n=0

[

1− (−1)n
] x2n+1

(2n + 1)!

= 2

(
x2

2!
+ x6

6!
+ x10

10!
+ · · ·

)

= 2
∞∑

n=0

x4n+3

(4n + 3)!
(for all x).

15. Let t = x + 1, so x = t − 1. We have
f (x) = e−2x = e−2(t−1)

= e2
∞
∑

n=0

(−2)n tn

n!

= e2
∞
∑

n=0

(−1)n2n(x + 1)n

n!
(for all x).
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16. Let y = x − π

2
; then x = y + π

2
. Hence,

sin x = sin

(

y + π
2

)

= cos y

= 1 − y2

2!
+ y4

4!
− · · · (for all y)

= 1 − 1

2!

(

x − π
2

)2

+ 1

4!

(

x − π
2

)4

− · · ·

=
∞
∑

n=0

(−1)n

(2n)!

(

x − π
2

)2n

(for all x).

17. Let t = x − π , so x = t + π . Then

f (x) = cos x = cos(t + π) = − cos t = −
∞
∑

n=0

(−1)n
t2n

(2n)!

=
∞
∑

n=0

(−1)n+1

(2n)!
(x − π)2n (for all x).

18. Let y = x − 3; then x = y + 3. Hence,

ln x = ln(y + 3) = ln 3+ ln

(

1+ y

3

)

= ln 3+ y

3
− 1

2

( y

3

)2 + 1

3

( y

3

)3 − 1

4

( y

3

)4 + · · ·

= ln 3+ (x − 3)

3
− (x − 3)2

2 · 32 + (x − 3)3

3 · 33 − (x − 3)4

4 · 34 + · · ·

= ln 3+
∞∑

n=1

(−1)n−1

n · 3n
(x − 3)n (0 < x ≤ 6).

19. ln(2 + x) = ln[4 + (x − 2)] = ln

[

4

(

1 + x − 2

4

)]

= ln 4+ ln

(

1+ x − 2

4

)

= ln 4+
∞
∑

n=1

(−1)n−1 (x − 2)n

n4n
(−2 < x ≤ 6).

20. Let t = x + 1. Then x = t − 1, and

e2x+3 = e2t+1 = e e2t

= e
∞
∑

n=0

2ntn

n!
(for all t)

=
∞
∑

n=0

e2n(x + 1)n

n!
(for all x).

21. Let t = x − (π/4), so x = t + (π/4). Then
f (x) = sin x − cos x

= sin
(

t + π
4

)

− cos
(

t + π
4

)

= 1√
2

[

(sin t + cos t)− (cos t − sin t)
]

= √2 sin t = √2
∞
∑

n=0

(−1)n
t2n+1

(2n + 1)!

= √2
∞∑

n=0

(−1)n

(2n + 1)!

(

x − π
4

)2n+1
(for all x).

22. Let y = x − π
8

; then x = y + π
8

. Thus,

cos2 x = cos2
(

y + π
8

)

= 1

2

[

1 + cos

(

2y + π
4

)]

= 1

2

[

1 + 1√
2

cos(2y)− 1√
2

sin(2y)

]

= 1

2
+ 1

2
√

2

[

1− (2y)2

2!
+ (2y)4

4!
− · · ·

]

− 1

2
√

2

[

2y − (2y)3

3!
+ (2y)5

5!
− · · ·

]

= 1

2
+ 1

2
√

2

[

1− 2y − (2y)2

2!
+ (2y)3

3!

+ (2y)4

4!
− (2y)5

5!
− · · ·

]

= 1

2
+ 1

2
√

2

[

1− 2

(

x − π
8

)

− 22

2!

(

x − π
8

)2

+ 23

3!

(

x − π
8

)3

+ 24

4!

(

x − π
8

)4

− 25

5!

(

x − π
8

)5

− · · ·
]

= 1

2
+ 1

2
√

2
+ 1

2
√

2

∞∑

n=1

(−1)n
[

22n−1

(2n − 1)!

(

x − π
8

)2n−1

+ 22n

(2n)!

(

x − π
8

)2n]

(for all x).

23. Let t = x + 2, so x = t − 2. We have

f (x) = 1

x2 =
1

(t − 2)2
= 1

4

(

1− t

2

)2

= 1

4

∞
∑

n=1

n
tn−1

2n−1 (−2 ≤ t < 2)

= 1

4

∞
∑

n=1

n(x + 2)n−1

2n−1

= 1

4

∞
∑

n=0

(n + 1)(x + 2)n

2n
(−4 < x < 0).
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24. Let y = x − 1; then x = y + 1. Thus,

x

1+ x
= 1+ y

2+ y
= 1− 1

2
(

1+ y

2

)

= 1− 1

2

[

1 − y

2
+
( y

2

)2 −
( y

2

)3 + · · ·
]

= 1

2

[

1+ y

2
− y2

22 +
y3

23 −
y4

24 + · · ·
]

(−1 < y < 1)

= 1

2
+ 1

22 (x − 1)− 1

23 (x − 1)2 + 1

24 (x − 1)3 − · · ·

= 1

2
+
∞
∑

n=1

(−1)n−1

2n+1
(x − 1)n (for 0 < x < 2).

25. Let u = x − 1. Then x = 1+ u, and

x ln x = (1 + u) ln(1+ u)

= (1 + u)
∞
∑

n=1

(−1)n−1 un

n
(−1 < u ≤ 1)

=
∞
∑

n=1

(−1)n−1 un

n
+
∞
∑

n=1

(−1)n−1 un+1

n
.

Replace n by n − 1 in the last sum.

x ln x =
∞
∑

n=1

(−1)n−1 un

n
+
∞
∑

n=2

(−1)n−2 un

n − 1

= u +
∞
∑

n=2

(−1)n−1
(

1

n
− 1

n − 1

)

un

= (x − 1)+
∞
∑

n=2

(−1)n

n(n − 1)
(x − 1)n (0 ≤ x ≤ 2).

26. Let u = x + 2. Then x = u − 2, and

xex = (u − 2)eu−2

= (u − 2)e−2
∞∑

n=0

un

n!
(for all u)

=
∞
∑

n=0

e−2un+1

n!
−
∞
∑

n=0

2e−2un

n!
.

In the first sum replace n by n − 1.

xex =
∞
∑

n=1

e−2un

(n − 1)!
−
∞
∑

n=0

2e−2un

n!

= − 2

e2 +
∞
∑

n=1

1

e2

(
1

(n − 1)!
− 2

n!

)

un

= − 2

e2 +
∞
∑

n=1

1

e2

(
1

(n − 1)!
− 2

n!

)

(x + 2)n (for all x).

27. cos x = 1− x2

2
+ x4

24
− · · ·.

1 + x2

2
+ 5x4

24
+ · · ·

1 − x2

2
+ x4

24
− · · · 1

1 − x2

2
+ x4

24
− · · ·

x2

2
− x4

24
+ · · ·

x2

2
− x4

4
+ · · ·

5x4

24
− · · ·

Thus sec x = 1 + x2

2
+ 5x4

24
+ · · ·.

28. If we divide the first four terms of the series

cos x = 1− x2

2
+ x4

24
− x6

720
+ · · ·

into 1 we obtain

sec x = 1+ x2

2
+ 5x4

24
+ 61x6

720
+ · · · .

Now we can differentiate and obtain

sec x tan x = x + 5x3

6
+ 61x5

120
+ · · · .

(Note: the same result can be obtained by multiplying
the first three nonzero terms of the series for sec x (from
Exercise 25) and tan x (from Example 6(b)).)

29. ex − 1 = x + x2

2
+ x3

6
+ · · ·

tan−1(ex − 1) = (ex − 1)− (e
x − 1)3

3

+ (e
x − 1)5

5
− · · ·

= x + x2

2
+ x3

6
+ · · ·

− 1

3

(

x + x2

2
+ x3

6
+ · · ·

)3

+ 1

5

(

x + x2

2
+ x3

6
+ · · ·

)5

+ · · ·

= x + x2

2
+ x3

6
− 1

3

(

x3 + · · ·
)

+ · · ·

= x + x2

2
− x3

6
+ · · ·
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30. We have

etan−1 x − 1 = exp

[

x − x3

3
+ x5

5
− x7

7
+ · · ·

]

− 1

= 1+
(

x − x3

3
+ x5

5
− · · ·

)

+ 1

2!

(

x − x3

3
+ · · ·

)2

+ 1

3!
(x − · · ·)3 + · · · − 1

= x − x3

3
+ x2

2
+ x3

6
+ higher degree terms

= x + x2

2
− x3

6
+ · · · .

31. Let
√

1+ x = 1+ ax + bx2 + · · ·.
Then 1+ x = 1+ 2ax + (a2 + 2b)x2+ · · ·, so 2a = 1, and
a2 + 2b = 0. Thus a = 1/2 and b = −1/8.
Therefore

√
1 + x = 1+ (x/2)− (x2/8)+ · · ·.

32. csc x does not have a Maclaurin series because
limx→0 csc x does not exist.

Let y = x − π

2
. Then x = y + π

2
and sin x = cos y.

Therefore, using the result of Exercise 25,

csc x = sec y = 1+ y2

2
+ 5y4

24
+ · · ·

= 1+ 1

2

(

x − π
2

)2 + 5

24

(

x − π
2

)4 + · · · .

33. 1+ x2 + x4

2!
+ x6

3!
+ · · · = ex2

(for all x).

34. x3 − x9

3! × 4
+ x15

5! × 16
− x21

7!× 64
+ x27

9!× 256
− · · ·

= 2

[

x3

2
− 1

3!

(
x3

2

)3

+ 1

5!

(
x3

2

)5

− · · ·
]

= 2 sin

(
x3

2

)

(for all x).

35. 1+ x2

3!
+ x4

5!
+ x6

7!
+ · · ·

= 1

x
sinh x = ex − e−x

2x
if x �= 0. The sum is 1 if x = 0.

36. 1+ 1

2 × 2!
+ 1

4 × 3!
+ 1

8× 4!
+ · · ·

= 2

[

1

2
+ 1

2!

(
1

2

)2

+ 1

3!

(
1

2

)3

+ · · ·
]

= 2
(

e1/2 − 1
)

.

37. P(x) = 1 + x + x2.

a) The Maclaurin series for P(x) is 1 + x + x2

(for all x).

b) Let t = x − 1, so x = t + 1. Then

P(x) = P(t + 1) = 1+ t + 1+ (t + 1)2 = 3+ 3t + t2.

The Taylor series for P(x) about 1 is
3 + 3(x − 1)+ (x − 1)2.

38. If a �= 0 and |x − a| < |a|, then

1

x
= 1

a + (x − a)
= 1

a

1

1+ x − a

a

= 1

a

[

1 − x − a

a
+ (x − a)2

a2 − (x − a)3

a3 + · · ·
]

.

The radius of convergence of this series is |a|, and the
series converges to 1/x throughout its interval of conver-
gence. Hence, 1/x is analytic at a.

39. If a > 0 and t = x − a, then x = t + a and

ln x = ln(a + t) = ln a + ln

(

1 + t

a

)

= ln a +
∞
∑

n=1

(−1)n−1 tn

an
(−a < t ≤ a)

= ln a +
∞
∑

n=1

(−1)n−1 (x − a)n

an
(0 < x < 2a).

Since the series converges to ln x on an interval of posi-
tive radius (a), centred at a, ln is analytic at a.

40. If

f (x) =
{

e−1/x2
, if x �= 0;

0, if x = 0;

then the Maclaurin series for f (x) is the identically zero
series 0 + 0x + 0x2 + · · · since f (k)(0) = 0 for every k.
The series converges for every x , but converges to f (x)
only at x = 0, since f (x) �= 0 if x �= 0. Hence, f cannot
be analytic at 0.

41. exey =
( ∞
∑

n=0

xn

n!

)( ∞
∑

m=0

ym

m!

)

ex+y =
∞
∑

k=0

(x + y)k

k!
=
∞
∑

k=0

1

k!

k
∑

j=0

k!

j !(k − j)!
x j yk− j

=
∞
∑

j=0

x j

j !

∞
∑

k= j

yk− j

(k − j)!
(let k − j = m)

=
∞
∑

j=0

x j

j !

∞
∑

m=0

ym

m!
= exey.

42. We want to prove that f (x) = Pn(x) + En(x), where Pn

is the nth-order Taylor polynomial for f about c and

En(x) = 1

n!

∫ x

c
(x − t)n f (n+1)(t) dt.
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(a) The Fundamental Theorem of Calculus written
in the form

f (x) = f (c)+
∫ x

c
f ′(t) dt = P0(x)+ E0(x)

is the case n = 0 of the above formula. We
now apply integration by parts to the integral,
setting

U = f ′(t),
dU = f ′′(t) dt,

dV = dt,

V = −(x − t).

(We have broken our usual rule about not in-
cluding a constant of integration with V . In this
case we have included the constant −x in V in
order to have V vanish when t = x .) We have

f (x) = f (c)− f ′(t)(x − t)

∣
∣
∣
∣

t=x

t=c
+
∫ x

c
(x − t) f ′′(t) dt

= f (c)+ f ′(c)(x − c)+
∫ x

c
(x − t) f ′′(t) dt

= P1(x)+ E1(x).

We have now proved the case n = 1 of the
formula.

(b) We complete the proof for general n by math-
ematical induction. Suppose the formula holds
for some n = k:

f (x) = Pk(x)+ Ek(x)

= Pk(x)+ 1

k!

∫ x

c
(x − t)k f (k+1)(t) dt.

Again we integrate by parts. Let

U = f (k+1)(t),

dU = f (k+2)(t) dt,

dV = (x − t)k dt,

V = −1

k + 1
(x − t)k+1 .

We have

f (x) = Pk(x)+ 1

k!

(

− f (k+1)(t)(x − t)k+1

k + 1

∣
∣
∣
∣

t=x

t=c

+
∫ x

c

(x − t)k+1 f (k+2)(t)

k + 1
dt

)

= Pk(x)+ f (k+1)(c)

(k + 1)!
(x − c)k+1

+ 1

(k + 1)!

∫ x

c
(x − t)k+1 f (k+2)(t) dt

= Pk+1(x)+ Ek+1(x).

Thus the formula is valid for n = k + 1 if it
is valid for n = k. Having been shown to be
valid for n = 0 (and n = 1), it must therefore
be valid for every positive integer n for which
En(x) exists.

43. If f (x) = ln(1+ x), then

f ′(x) = 1

1+ x
, f ′′(x) = −1

(1 + x)2
, f ′′′(x) = 2

(1 + x)3
,

f (4)(x) = −3!

(1 + x)4
, . . . , f (n) = (−1)n−1(n − 1)!

(1+ x)n

and

f (0) = 0, f ′(0) = 1, f ′′(0) = −1, f ′′′(0) = 2,

f (4)(0) = −3!, . . . , f (n)(0) = (−1)n−1(n − 1)!.

Therefore, the Taylor Formula is

f (x) = x + −1

2!
x2 + 2

3!
x3 + −3!

4!
x4 + · · ·+

(−1)n−1(n − 1)!

n!
xn + En(x)

where

En(x) = 1

n!

∫ x

0
(x − t)n f (n+1)(t) dt

= 1

n!

∫ x

0
(x − t)n

(−1)nn!

(1 + t)n+1
dt

= (−1)n
∫ x

0

(x − t)n

(1 + t)n+1 dt.

If 0 ≤ t ≤ x ≤ 1, then 1+ t ≥ 1 and

|En(x)| ≤
∫ x

0
(x − t)n dt = xn+1

n + 1
≤ 1

n + 1
→ 0

as n→∞.
If −1 < x ≤ t ≤ 0, then

∣
∣
∣
∣

x − t

1 + t

∣
∣
∣
∣
= t − x

1 + t
≤ |x |,

because
t − x

1 + t
increases from 0 to −x = |x | as t in-

creases from x to 0. Thus,

|En(x)| < 1

1+ x

∫ |x|

0
|x |n dt = |x |

n+1

1+ x
→ 0

as n→∞ since |x | < 1. Therefore,

f (x) = x − x2

2
+ x3

3
− x4

4
+ · · · =

∞
∑

n=1

(−1)n−1 xn

n
,

for −1 < x ≤ 1.

44. We follow the steps outlined in the problem:
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(a) Note that ln( j − 1) <
∫ j

j−1 ln x dx < ln j ,
j = 1, 2, . . .. For j = 0 the integral is improper
but convergent. We have

n ln n − n =
∫ n

0
ln x dx < ln(n!) <

∫ n+1

1
ln x dx

= (n + 1) ln(n + 1)− n − 1 < (n + 1) ln(n + 1)− n.

(b) If cn = ln(n!)− (n + 1
2

)

ln n + n, then

cn − cn+1 = ln
n!

(n + 1)!
− (n + 1

2

)

ln n

+ (n + 3
2

)

ln(n + 1)− 1

= ln
1

n + 1
− (n + 1

2

)

ln n

+ (n + 1
2

)

ln(n + 1)+ ln(n + 1)− 1

= (n + 1
2

)

ln
n + 1

n
− 1

= (n + 1
2

)

ln
1+ 1

2n+1

1− 1
2n+1

− 1.

(c) ln
1+ t

1− t
= 2

(

t + t3

3
+ t5

5
+ · · ·

)

for

−1 < t < 1. Thus

0 < cn − cn+1 = (2n + 1)

(

1

2n + 1
+ 1

3(2n + 1)3

+ 1

5(2n + 1)5
+ · · ·

)

− 1

<
1

3

(
1

(2n + 1)2
+ 1

(2n + 1)4
+ · · ·

)

(geometric)

= 1

3(2n + 1)2
1

1− 1

(2n + 1)2

= 1

12(n2 + n)

= 1

12

(
1

n
− 1

n + 1

)

.

These inequalities imply that {cn} is de-
creasing and

{

cn − 1
12n

}

is increasing. Thus
{cn} is bounded below by c1 − 1

12 = 11
12

and so limn→∞ cn = c exists. Since
ecn = n!n−(n+1/2)en , we have

lim
n→∞

n!

nn+1/2e−n
= lim

n→∞ ecn = ec

exists. It remains to show that ec = √2π .

(d) The Wallis Product,

lim
n→∞

2

1

2

3

4

3

4

5

6

5
· · · 2n

2n − 1

2n

2n + 1
= π

2

can be rewritten in the form

lim
n→∞

2nn!

1 · 3 · 5 · · · (2n − 1)
√

2n + 1
=
√

π

2
,

or, equivalently,

lim
n→∞

22n(n!)2

(2n)!
√

2n + 1
=
√

π

2
.

Substituting n! = nn+1/2e−necn and a similar
expression for (2n)!, we obtain

lim
n→∞

22nn2n+1e−2ne2cn

22n+1/2n2n+1/2e−2nec2n
√

2n
= e2c

2ec
= ec

2
.

Thus ec/2 = √π2, and ec = √2π , which
completes the proof of Stirling’s Formula.

Section 9.7 Applications of Taylor and
Maclaurin Series (page 524)

1. If f (x) = sin x , then P5(x) = x − x3

6
+ x5

120
.

METHOD I. (using an alternating series bound)

| f (0.2) − P5(0.2)| ≤ (0.2)7

7!
< 2.6 × 10−9.

METHOD II. (using Taylor’s Theorem) Since
P5(x) = P6(x) (Maclaurin polynomials for sin have only
odd degree terms) we are better off using the remainder
E6.

| f (0.2) − P5(0.2)| = |E6(0.2)| = | f
(7)(s)|
7!

(0.2)7,

for some s between 0 and 0.2. Now f (7)(x) = − cos x ,
so

| f (0.2)− P5(0.2)| < 1

7!
× (0.2)7 < 2.6× 10−9.

2. If f (x) = ln x , then f ′(x) = 1/x , f ′′(x) = −1/x2,
f ′′′(x) = 2/x3, f (4)(x) = −6/x4, and f (5)(x) = 24/x5.
If P4(x) is the Taylor polynomial for f about x = 2,
then for some s between 1.95 and 2 we have (using Tay-
lor’s Theorem)

| f (1.95)− P4(1.95)| = 24

s5
· (0.05)5

5!

≤ 24(0.05)5

(1.95)5120
< 2.22× 10−9.
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3. e0.2 ≈ 1 + 0.2+ (0.2)
2

2!
+ · · · + (0.2)

n

n!
= sn

Error estimate:

0 < e0.2 − sn = (0.2)n+1

(n + 1)!
+ (0.2)

n+2

(n + 2)!
+ · · ·

≤ (0.2)
n+1

(n + 1)!

[

1+ 0.2

n + 2
+ (0.2)2

(n + 2)2
+ · · ·

]

= (0.2)n+1

(n + 1)!
· 10n + 20

10n + 18
< 5× 10−5 if n = 4.

e0.2 ≈ 1 + 0.2+ (0.2)
2

2!
+ (0.2)

3

3!
+ (0.2)

4

4!
≈ 1.221400

4. We have

1

e
= e−1 = 1− 1

1!
+ 1

2!
− 1

3!
+ 1

4!
− · · ·

which satisfies the conditions for the alternating series
test, and the error incurred in using a partial sum to ap-
proximate e−1 is less than the first omitted term in abso-

lute value. Now
1

(n + 1)!
< 5× 10−5 if n = 7, so

1

e
≈ 1

2
− 1

6
+ 1

24
− 1

120
+ 1

720
− 1

5040
≈ 0.36786

with error less than 5× 10−5 in absolute value.

5. e1.2 = ee0.2. From Exercise 1: e0.2 ≈ 1.221400,

with error less than
(0.2)5

5!
· 60

58
≈ 0.000003. Since

e = 2.718281828 · · ·, it follows that e1.2 ≈ 3.3201094 · · ·,
with error less than 3× 0.000003 = 0.000009 <

1

20, 000
.

Thus e1.2 ≈ 3.32011 with error less than 1/20,000.

6. We have

sin(0.1) = 0.1− (0.1)
3

3!
+ (0.1)

5

5!
− (0.1)

7

7!
+ · · · .

Since
(0.1)5

5!
= 8.33× 10−8 < 5× 10−5, therefore

sin(0.1) = 0.1− (0.1)
3

3!
≈ 0.09983

with error less than 5× 10−5 in absolute value.

7. cos 5◦ = cos
5π

180
= cos

π

36

≈ 1− 1

2!

( π

36

)2 + 1

4!

( π

36

)4 − · · · + (−1)n

(2n)!

( π

36

)2n

|Error| < 1

(2n + 2)!

( π

36

)2n+2

<
1

(2n + 2)!92n+2 < 0.00005 if n = 1.

cos 5◦ ≈ 1 − 1

2!

( π

36

)2 ≈ 0.996192

with error less than 0.00005.

8. We have

ln

(
6

5

)

= ln

(

1+ 1

5

)

= 1

5
− 1

2

(
1

5

)2

+ 1

3

(
1

5

)3

− 1

4

(
1

5

)4

+ · · · .

Since
1

n

(
1

5

)n

< 5× 10−5 if n = 6, therefore

ln

(
6

5

)

≈ 1

5
− 1

2

(
1

5

)2

+ 1

3

(
1

5

)3

− 1

4

(
1

5

)4

+ 1

5

(
1

5

)5

≈ 0.18233

with error less than 5× 10−5 in absolute value.

9. ln(0.9) = ln(1 − 0.1)

≈ −0.1− (0.1)
2

2
− (0.1)

3

3
− · · · − (0.1)

n

n

|Error| < (0.1)n+1

n + 1
+ (0.1)

n+2

n + 2
+ · · ·

<
(0.1)n+1

n + 1

[

1 + 0.1 + (0.1)2 + · · ·
]

= (0.1)n+1

n + 1
· 10

9
< 0.00005 if n = 3.

ln(0.9) ≈ −0.1− (0.1)
2

2
− (0.1)

3

3
≈ −0.10533

with error less than 0.00005.

10. We have

sin 80◦ = cos 10◦ = cos
( π

18

)

= 1− 1

2!

( π

18

)2 + 1

4!

( π

18

)4 − · · · .

Since
1

4!

( π

18

)4
< 5 × 10−5, therefore

sin 80◦ ≈ 1− 1

2!

( π

18

)2 ≈ 0.98477

with error less than 5× 10−5 in absolute value.

11. cos 65◦ = cos

(
π

3
+ 5π

180

)

= 1

2
cos

5π

180
−
√

3

2
sin

5π

180
From Exercise 5, cos(5π/180) ≈ 0.996192 with error less
than 0.000003. Also

sin
5π

180
= 5π

180
− 1

3!

(
5π

180

)3

≈ 0.0871557
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with error less than
55π5

5!1805
< 0.00000005. Thus

cos 65◦ ≈ 0.996192

2
−
√

3(0.0871557)

2
≈ 0.42262

with error less than 0.00005.

12. We have

tan−1 (0.2) = 0.2− (0.2)
3

3
+ (0.2)

5

5
− (0.2)

7

7
+ · · · .

Since
(0.2)7

7
< 5× 10−5, therefore

tan−1 (0.2) ≈ 0.2 − (0.2)
3

3
+ (0.2)

5

5
≈ 0.19740

with error less than 5× 10−5 in absolute value.

13. cosh 1 ≈ 1+ 1

2!
+ 1

4!
+ · · · + 1

(2n)!
with error less than

1

(2n + 2)!

[

1+ 1

(2n + 3)2
+ 1

(2n + 3)4
+ · · ·

]

= 1

(2n + 2)!
· 1

1− 1

(2n + 3)2

< 0.00005 if n = 3.

Thus cosh 1 ≈ 1 + 1

2
+ 1

24
+ 1

720
≈ 1.54306 with error

less than 0.00005.

14. We have

ln

(
3

2

)

= ln

(

1+ 1

2

)

= 1

2
− 1

2

(
1

2

)2

+ 1

3

(
1

2

)3

− 1

4

(
1

2

)4

+ · · · .

Since
1

n

(
1

2

)n

<
1

20000
if n = 11, therefore

ln

(
3

2

)

≈ 1

2
− 1

2

(
1

2

)2

+ 1

3

(
1

2

)3

− · · · − 1

10

(
1

2

)10

≈ 0.40543

with error less than 5× 10−5 in absolute value.

15. I (x) =
∫ x

0

sin t

t
dt

=
∫ x

0

[

1− t2

3!
+ t4

5!
− t6

7!
+ · · ·

]

dt

= x − x3

3× 3!
+ x5

5× 5!
− · · ·

=
∞
∑

n=0

(−1)n
x2n+1

(2n + 1)(2n + 1)!
for all x .

16. J (x) =
∫ x

0

et − 1

t
dt

=
∫ x

0

(

1+ t

2!
+ t2

3!
+ t3

4!
+ · · ·

)

dt

= x + x2

2! · 2 +
x3

3! · 3 +
x4

4! · 4 + · · ·

=
∞
∑

n=1

xn

n! · n .

17. K (x) =
∫ 1+x

1

ln t

t − 1
dt let u = t − 1

=
∫ x

0

ln(1+ u)

u
du

=
∫ x

0

[

1− u

2
+ u2

3
− u3

4
+ · · ·

]

du

= x − x2

22
+ x3

32
− x4

42
+ · · ·

=
∞
∑

n=0

(−1)n
xn+1

(n + 1)2
(−1 ≤ x ≤ 1)

18. L(x) =
∫ x

0
cos(t2) dt

=
∫ x

0

(

1− t4

2!
+ t8

4!
− t12

6!
+ · · ·

)

dt

= x − x5

2! · 5 +
x9

4! · 9 −
x13

6! · 13
+ · · ·

=
∞
∑

n=0

(−1)n
x4n+1

(2n)! · (4n + 1)
.

19. M(x) =
∫ x

0

tan−1(t2)

t2 dt

=
∫ x

0

[

1− t4

3
+ t8

5
− t12

7
+ · · ·

]

dt

= x − x5

3× 5
+ x9

5× 9
− x13

7× 13
+ · · ·

=
∞∑

n=0

(−1)n
x4n+1

(2n + 1)(4n + 1)
(−1 ≤ x ≤ 1)

20. We have

L(0.5) = 0.5− (0.5)
5

2! · 5 +
(0.5)9

4! · 9 −
(0.5)13

6! · 13
+ · · · .

Since
(0.5)4n+1

(2n)! · (4n + 1)
< 5× 10−4 if n = 2, therefore

L(0.5) ≈ 0.5− (0.5)
5

2! · 5 ≈ 0.497

rounded to 3 decimal places.
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21. From Exercise 13:

I (x) = x − x3

3!3
+ x5

5!5
− · · ·

I (1) ≈ 1− 1

3!3
+ 1

5!5
− · · · + (−1)n

1

(2n + 1)!(2n + 1)

|Error| ≤ 1

(2n + 3)!(2n + 3)
< 0.0005 if n = 2.

Thus I (1) ≈ 1 − 1

3!3
+ 1

5!5
≈ 0.946 correct to three

decimal places.

22. lim
x→0

sin(x2)

sinh x
= lim

x→0

x2 − x6

3!
+ x10

5!
− · · ·

x + x3

3!
+ x5

5!
+ · · ·

= lim
x→0

x − x5

3!
+ x9

5!
− · · ·

1 + x2

3!
+ x4

5!
+ · · ·

= 0.

23. lim
x→0

1− cos(x2)

(1 − cos x)2
= lim

x→0

1 − 1+ x4

2!
− x8

4!
+ · · ·

(

1− 1+ x2

2!
− x4

4!
+ · · ·

)2

= lim
x→0

1

2!
+ O(x2)

1

4
+ O(x2)

= 2.

24. We have

lim
x→0

(ex − 1− x)2

x2 − ln(1 + x2)
= lim

x→0

( x2

2!
+ x3

3!
+ x4

4!
+ · · ·

)2

x4

2
− x6

3
+ x8

4
− · · ·

= lim
x→0

x4

4

(

1+ x

3
+ x2

12
+ · · ·

)2

x4

2
− x6

3
+ x8

4
− · · ·

=
(1

4

)

(1

2

) = 1

2
.

25. lim
x→0

2 sin 3x − 3 sin 2x

5x − tan−1 5x

= lim
x→0

2

(

3x − 33x3

3!
+ · · ·

)

− 3

(

2x − 23x3

3!
+ · · ·

)

5x −
(

5x − 53x3

3
+ · · ·

)

= lim
x→0

−9+ 4+ O(x2)

125

3
+ O(x2)

= −5× 3

125
= − 3

25
.

26. We have

lim
x→0

sin(sin x)− x

x[cos(sin x)− 1]

= lim
x→0

(

sin x − 1

3!
sin3 x + 1

5!
sin5 x − · · ·

)

− x

x
[

1− 1

2!
sin2 x + 1

4!
sin4 x − · · · − 1

]

= lim
x→0

(

x − x3

3!
+ · · ·

)

− 1

3!

(

x − x3

3!
+ · · ·

)3 + 1

5!

(

x − · · ·
)5 − · · · − x

x
[

− 1

2!

(

x − x3

3!
+ · · ·

)2 + 1

4!

(

x − · · ·
)4 − · · ·

]

= lim
x→0

− 2

3!
x3 + higher degree terms

− 1

2!
x3 + higher degree terms

=
2

3!
1

2!

= 2

3
.

27. lim
x→0

sinh x − sin x

cosh x − cos x

= lim
x→0

(

x + x3

3!
+ · · ·

)

−
(

x − x3

3!
+ · · ·

)

(

1 + x2

2!
+ · · ·

)

−
(

1 − x2

2!
+ · · ·

)

= lim
x→0

x3

3
+ O(x5)

x2 + O(x4)
= 0.

Section 9.8 The Binomial Theorem and
Binomial Series (page 528)

1.
√

1+ x = (1+ x)1/2

= 1+ x

2
+ 1

2

(

−1

2

)
x2

2!
+ 1

2

(

−1

2

)(

−3

2

)
x3

3!
+ · · ·

= 1+ x

2
+
∞
∑

n=2

(−1)n−1 1 · 3 · 5 · · · (2n − 3)

2nn!
xn

= 1+ x

2
+
∞
∑

n=2

(−1)n−1 (2n − 2)!

22n−1(n − 1)!n!
xn (−1 < x < 1).

2. x
√

1− x = x(1− x)1/2

= x − x2

2
+ 1

2

(

−1

2

)
(−1)2x3

2!

+ 1

2

(

−1

2

)(

−3

2

)
(−1)3x4

3!
+ · · ·

= x − x2

2
−
∞
∑

n=2

1 · 3 · 5 · · · (2n − 3)

2nn!
xn+1

= x − x2

2
−
∞
∑

n=2

(−1)n−1 (2n − 2)!

22n−1(n − 1)!n!
xn+1 (−1 < x < 1).
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3.
√

4 + x = 2

√

1 + x

4

= 2

⎡

⎢
⎢
⎣

1 + 1

2
· x

4
+

1

2

(

−1

2

)

2!

( x

4

)2

+
1

2

(

−1

2

)(

−3

2

)

3!

( x

4

)3 + · · ·

⎤

⎥
⎥
⎦

= 2+ x

4
+ 2

∞
∑

n=2

(−1)n−1 1 · 3 · 5 · · · (2n − 3)

23nn!
xn

= 2+ x

4
+ 2

∞
∑

n=2

(−1)n−1 (2n − 1)!

24n−1n!(n − 1)!
xn

(−4 < x < 4).

4.
1√

4+ x2
= 1

2

√

1 +
( x

2

)2
= 1

2

[

1+
( x

2

)2
]−1/2

= 1

2

[

1 +
(

−1

2

)( x

2

)2 + 1

2!

(

−1

2

)(

−3

2

)( x

2

)4+
1

3!

(

−1

2

)(

−3

2

)(

−5

2

)( x

2

)6 + · · ·
]

= 1

2
− 1

24 x2 + 3

272!
x4 − 3× 5

2103!
x6 + · · ·

= 1

2
+
∞
∑

n=1

(−1)n
1× 2× 3× · · · × (2n − 1)

23n+1n!
x2n

(−2 ≤ x ≤ 2).

5. (1− x)−2

= 1− 2(−x)+ (−2)(−3)

2!
(−x)2 + (−2)(−3)(−4)

3!
(−x)3 + · · ·

= 1+ 2x + 3x2 + 4x3 + · · · =
∞
∑

n=1

nxn−1 (−1 < x < 1).

6. (1+ x)−3 = 1− 3x + (−3)(−4)

2!
x2 + (−3)(−4)(−5)

3!
x3 + · · ·

= 1− 3x + (3)(4)
2

x2 − (4)(5)
2

x3 + · · ·

=
∞
∑

n=0

(−1)n
(n + 2)(n + 1)

2
xn (−1 < x < 1).

7. i)
(n

0

)

= n!

0!n!
= 1,

(n

n

)

= n!

n!0!
= 1.

ii) If 0 ≤ k ≤ n, then

(
n

k − 1

)

+
(n

k

)

= n!

(k − 1)!(n − k + 1)!
+ n!

k!(n − k)!

= n!

k!(n − k + 1)!

(

k + (n − k + 1)
)

= (n + 1)!

k!(n + 1− k)!
=
(

n + 1

k

)

.

8. The formula (a + b)n =∑n
k=0

(n

k

)

an−kbk

holds for n = 1; it says a + b = a + b in this case.
Suppose the formula holds for n = m, where m is some
positive integer. Then

(a + b)m+1 = (a + b)
m
∑

k=0

(m

k

)

am−kbk

=
m
∑

k=0

(m

k

)

am+1−kbk +
m
∑

k=0

(m

k

)

am−kbk+1

(replace k by k − 1 in the latter sum)

=
m
∑

k=0

(m

k

)

am+1−kbk +
m+1
∑

k=1

(
m

k − 1

)

am+1−k bk

= am+1 +
m
∑

k=1

[(m

k

)

+
(

m

k − 1

)]

am+1−kbk + bm+1

(by #13(i))

= am+1 +
m
∑

k=1

(
m + 1

k

)

am+1−kbk + bm+1 (by #13(ii))

=
m+1∑

k=0

(
m + 1

k

)

am+1−kbk (by #13(i) again).

Thus the formula holds for n = m + 1. By induction it
holds for all positive integers n.

9. Consider the Leibniz Rule:

( f g)(n) =
n
∑

k=0

(n

k

)

f (n−k)g(k).
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This holds for n = 1; it says ( f g)′ = f ′g + f g′ in this
case. Suppose the formula holds for n = m, where m is
some positive integer. Then

( f g)(m+1) = d

dx
( f g)(m)

= d

dx

m
∑

k=0

(m

k

)

f (m−k)g(k)

=
m
∑

k=0

(m

k

)

f (m+1−k)g(k) +
m
∑

k=0

(m

k

)

f (m−k)g(k+1)
]

(replace k by k − 1 in the latter sum)

=
m
∑

k=0

(m

k

)

f (m+1−k)g(k) +
m+1
∑

k=1

(
m

k − 1

)

f (m+1−k)g(k)

= f (m+1)g(0) +
m
∑

k=1

[(m

k

)

+
(

m

k − 1

)]

× f (m+1−k)g(k) + f (0)g(m+1)

(by Exercise 7(i))

= f (m+1)g(0) +
m
∑

k=1

(
m + 1

k

)

f (m+1−k)g(k) + f (0)g(m+1)

(by Exercise 7(ii))

=
m+1∑

k=0

(
m + 1

k

)

f (m+1−k)g(k) (by 7(i) again).

Thus the Rule holds for n = m+1. By induction, it holds
for all positive integers n.

Section 9.9 Fourier Series (page 534)

1. f (t) = sin(3t) has fundamental period 2π/3 since sin t
has fundamental period 2π :

f
(

t + 2π
3

) = sin
(

3
(

t + 2π
3

)) = sin(3t + 2π)

= sin(3t) = f (t).

2. g(t) = cos(3 + π t) has fundamental period 2 since cos t
has fundamental period 2π :

g(t + 2) = cos
(

3+ π(t + 2)
)

= cos(3 + π t + 2π)

= cos(3 + π t) = g(t).

3. h(t) = cos2 t = 1
2 (1 + cos 2t) has fundamental period π :

h(t + π) = 1+ cos(2t + 2π)

2
= 1+ cos 2t)

2
= h(t).

4. Since sin 2t has periods π , 2π , 3π , . . . , and cos 3t
has periods 2π

3 , 4π
3 , 6π

3 = 2π , 8π
3 , . . . , the sum

k(t) = sin(2t) + cos(3t) has periods 2π , 4π , . . . . Its
fundamental period is 2π .

5. Since f (t) = t is odd on (−π,π) and has period 2π , its
cosine coefficients are 0 and its sine coefficients are given
by

bn = 2

2π

∫ π

−π
t sin(nt) dt = 2

π

∫ π

0
t sin(nt) dt.

This integral can be evaluated by a single integration by
parts. Instead we used Maple to do the integral:

bn = − 2

n
cos(nπ) = (−1)n+1 2

n
.

The Fourier series of f is
∞
∑

n=1

(−1)n+1 2

n
sin(nt).

6. f (t) =
{

0 if 0 ≤ t < 1
1 if 1 ≤ t < 2

, f has period 2.

The Fourier coefficients of f are as follows:

a0

2
= 1

2

∫ 2

0
f (t) dt = 1

2

∫ 2

1
dt = 1

2

an =
∫ 2

0
f (t) cos(nπ t) dt =

∫ 2

1
cos(nπ t) dt

= 1

nπ
sin(nπ t)

∣
∣
∣
∣

2

1
= 0, (n ≥ 1)

bn =
∫ 2

1
sin(nπ t) dt = − 1

nπ
cos(nπ t)

∣
∣
∣
∣

2

1

= −1− (−1)n

nπ
=
{

− 2

nπ
if n is odd

0 if n is even

The Fourier series of f is

1

2
−
∞
∑

n=1

2

(2n − 1)π
sin
(

(2n − 1)π t
)

.

7. f (t) =
{

0 if −1 ≤ t < 0
t if 0 ≤ t < 1

, f has period 2.

The Fourier coefficients of f are as follows:

a0

2
= −1

1

∫ 1

−1
f (t) dt = 1

2

∫ 1

0
t dt = 1

4

an =
∫ 1

−1
f (t) cos(nπ t) dt =

∫ 1

0
t cos(nπ t) dt

= (−1)n − 1

n2π2 =
{

−2/(nπ)2 if n is odd
0 if n is even

bn =
∫ 1

0
t sin(nπ t) dt

= − (−1)n

nπ
.
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The Fourier series of f is

1

4
− 2

π2

∞∑

n=1

1

(2n − 1)2
cos
(

(2n−1)π t)− 1

π

∞∑

n=1

(−1)n

n
sin(nπ t).

8. f (t) =
{ t if 0 ≤ t < 1

1 if 1 ≤ t < 2
3 − t if 2 ≤ t < 3

, f has period 3.

f is even, so its Fourier sine coefficients are all zero. Its
cosine coefficients are

a0

2
= 1

2
· 2

3

∫ 3

0
f (t) dt = 2

3
(2) = 2

3

an = 2

3

∫ 3

0
f (t) cos

2nπ t

3
dt

= 2

3

[∫ 1

0
t cos

2nπ t

3
dt +

∫ 2

1
cos

2nπ t

3
dt

+
∫ 3

2
(3 − t) cos

2nπ t

3
dt

]

= 3

2n2π2

[

cos
2nπ

3
− 1− cos(2nπ)+ cos

4nπ

3

]

.

The latter expression was obtained using Maple to eval-
uate the integrals. If n = 3k, where k is an integer, then
an = 0. For other integers n we have an = −9/(2π2n2).
Thus the Fourier series of f is

2

3
− 9

2π2

∞∑

n=1

1

n2 cos
2nπ t

3
+ 1

2π2

∞∑

n=1

1

n2 cos(2nπ t).

9. The even extension of h(t) = 1 on [0, 1] to [−1, 1] has
the value 1 everywhere. Therefore all the coefficients an

and bn are zero except a0, which is 2. The Fourier series
is a0/2 = 1.

10. The Fourier sine series of g(t) = π − t on [0, π ] has
coefficients

bn = 2

π

∫ π

0
(π − t) sin nt dt = 2

n
.

The required Fourier sine series is

∞
∑

n=1

2

n
sin nt.

11. The Fourier sine series of f (t) = t on [0, 1] has coeffi-
cients

bn = 2
∫ 1

0
t sin(nπ t) dt = −2

(−1)n

nπ
.

The required Fourier sine series is

∞
∑

n=1

2(−1)n

nπ
sin(nπ t).

12. The Fourier cosine series of f (t) = t on [0, 1] has coeffi-
cients

a0

2
=
∫ 1

0
t dt = 1

2

an = 2
∫ 1

0
t cos(nπ t) dt

= 2(−1)n − 2

n2π2 =
{

0 if n is even−4

n2π2 if n is odd.

The required Fourier cosine series is

1

2
− 4

π2

∞
∑

n=1

cos
(

(2n − 1)π t
)

(2n − 1)2
.

13. From Example 3,

π

2
+
∞
∑

n=1

4

π(2n − 1)2
cos
(

(2n − 1)π t
)

= π − |t |

for −π ≤ t ≤ π . Putting t = π , we obtain

π

2
+
∞∑

n=1

4

π(2n − 1)2
(−1) = 0.

Thus
∞
∑

n=1

1

(2n − 1)2
= π

2
· π

4
= π

8
.

14. If f is even and has period T , then

bn = 2

T

∫ T/2

−T/2
f (t) sin

2nπ t

T
dt

= 2

T

[∫ 0

−T/2
f (t) sin

2nπ t

T
dt +

∫ T/2

0
f (t) sin

2nπ t

T
dt

]

.

In the first integral in the line above replace t with −t .
Since f (−t) = f (t) and sine is odd, we get

bn = 2

T

[∫ 0

T/2
f (t)

(

− sin
2nπ t

T

)

(−dt)

+
∫ T/2

0
f (t) sin

2nπ t

T
dt

]

= 2

T

[

−
∫ T/2

0
f (t) sin

2nπ t

T
dt +

∫ T/2

0
f (t) sin

2nπ t

T
dt

]

= 0.
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Similarly,

an = 2

T

[∫ 0

−T/2
f (t) cos

2nπ t

T
dt +

∫ T/2

0
f (t) cos

2nπ t

T
dt

]

= 2

T

[∫ 0

T/2
f (t) cos

2nπ t

T
(−dt)+

∫ T/2

0
f (t) cos

2nπ t

T
dt

]

= 4

T

∫ T/2

0
f (t) cos

2nπ t

T
dt.

The corresponding result for an odd function f
states that an = 0 and

bn = 4

T

∫ T/2

0
f (t) sin

2nπ t

T
dt,

and is proved similarly.

Review Exercises 9 (page 534)

1. lim
n→∞

(−1)nen

n!
= 0. The sequence converges.

2. lim
n→∞

n100 + 2nπ

2n
= lim

n→∞

(

π + n100

2n

)

= π .

The sequence converges.

3. lim
n→∞

ln n

tan−1n
≥ lim

n→∞
ln n

π/2
= ∞.

The sequence diverges to infinity.

4. lim
n→∞

(−1)nn2

πn(n − π) = lim
n→∞

(−1)n

1− (π/n)
does not exist.

The sequence diverges (oscillates).

5. Let a1 >
√

2 and an+1 = an

2
+ 1

an
.

If f (x) = x

2
+ 1

x
, then f ′(x) = 1

2
− 1

x2
> 0 if x >

√
2.

Since f (
√

2) = √2, we have f (x) >
√

2 if x >
√

2.
Therefore, if an >

√
2, then an+1 = f (an) >

√
2.

Thus an >
√

2 for all n ≥ 1, by induction.

an >
√

2⇒ 2 < a2
n ⇒ a2

n + 2 < 2a2
n

⇒ a2
n + 2

2an
< an ⇒ an+1 < an .

Thus {an} is decreasing and an >
√

2 for all n.

Being decreasing and bounded below by
√

2, {an}
must converge by the completeness axiom. Let
limn→∞ an = a. Then a ≥ √2, and

lim
n→∞ an+1 = lim

n→∞

(
an

2
+ 1

an

)

a = a

2
+ 1

a
.

Thus a/2 = 1/a, so a2 = 2, and limn→∞ an = a = √2.

6. By l’Hôpital’s Rule,

lim
x→∞

ln(x + 1)

ln x
= lim

x→∞
1/(x + 1)

1/x
= lim

x→∞
x

x + 1
= 1.

Thus

lim
n→∞

(

ln ln(n+1)−ln ln n
)

= lim
n→∞ ln

ln(n + 1)

ln n
= ln 1 = 0.

7.
∞∑

n=1

2−(n−5)/2 = 22
(

1+ 1√
2
+ 1

2
+ · · ·

)

= 4

1− (1/√2)
= 4

√
2√

2− 1
.

8.
∞
∑

n=0

4n−1

(π − 1)2n
= 1

4

∞
∑

n=0

(
4

(π − 1)2

)n

= 1

4
· 1

1− 4

(π − 1)2

= (π − 1)2

4(π − 1)2 − 16
,

since (π − 1)2 > 4.

9.
∞∑

n=1

1

n2 − 1
4

=
∞∑

n=1

(

1

n − 1
2

− 1

n + 1
2

)

(telescoping)

= 2− lim
N→∞

1

N + 1
2

= 2.

10.
∞
∑

n=1

1

n2 − 9
4

=
∞
∑

n=1

1

3

(

1

n − 3
2

− 1

n + 3
2

)

(telescoping)

= 1

3

[
1

−1/2
− 1

5/2
+ 1

1/2
− 1

7/2

+ 1

3/2
− 1

9/2
+ 1

5/2
− 1

11/2
+ · · ·

]

= 1

3

[

−2+ 2 + 2

3

]

= 2

9
.

11. Since 0 ≤ n − 1

n3
≤ 1

n2
for n ≥ 1 and

∞
∑

n=1

1

n2
converges,

∞
∑

n=1

n − 1

n3 must also converge.

12.
∞
∑

n=1

n + 2n

1+ 3n
converges by comparison with the convergent

geometric series
∞∑

n=1

(
2

3

)n

because

lim
n→∞

n + 2n

1+ 3n

(2/3)n
= lim

n→∞
(n/2n)+ 1

(1/3n)+ 1
= 1.
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13.
∞∑

n=1

n

(1+ n)(1 + n
√

n)
converges by comparison with the

convergent p-series
∞
∑

n=1

1

n3/2
because

lim
n→∞

n

(1+ n)(1 + n
√

n)
1

n3/2

= lim
n→∞

1
(

1

n
+ 1

)(
1

n3/2 + 1

) = 1.

14.
∞∑

n=1

n2

(1+ 2n)(1 + n
√

n)
converges by comparison with

the convergent series
∞
∑

n=1

√
n

2n
(which converges by the

ratio test) because

lim
n→∞

n2

(1+ 2n)(1 + n
√

n)√
n

2n

= lim
n→∞

1
(

1

2n
+ 1

)(
1

n3/2 + 1

) = 1.

15.
∞
∑

n=1

32n+1

n!
converges by the ratio test, because

lim
n→∞

32(n+1)+1

(n + 1)!
· n!

32n+1 = lim
n→∞

9

n + 1
= 0 < 1.

16.
∞∑

n=1

n!

(n + 2)! + 1
converges by comparison with the con-

vergent p-series
∞
∑

n=1

1

n2
, because

0 ≤ n!

(n + 2)! + 1
<

n!

(n + 2)!
= 1

(n + 2)(n + 1)
<

1

n2 .

17.
∞
∑

n=1

(−1)n−1

1+ n3 converges absolutely by comparison with

the convergent p-series
∞∑

n=1

1

n3 , because

0 ≤
∣
∣
∣
∣

(−1)n−1

1 + n3

∣
∣
∣
∣
≤ 1

n3 .

18.
∞∑

n=1

(−1)n

2n − n
converges absolutely by comparison with the

convergent geometric series
∞
∑

n=1

1

2n
, because

lim
n→∞

∣
∣
∣
∣

(−1)n

2n − n

∣
∣
∣
∣

1

2n

= lim
n→∞

1

1− n

2n

= 1.

19.
∞∑

n=1

(−1)n−1

ln ln n
converges by the alternating series test, but

the convergence is only conditional since
∞
∑

n=1

1

ln ln n

diverges to infinity by comparison with the divergent

harmonic series
∞
∑

n=1

1

n
. (Note that ln ln n < n for all

n ≥ 1.)

20.
∞∑

n=1

n2 cos(nπ)

1+ n3 converges by the alternating series test

(note that cos(nπ) = (−1)n), but the convergence is only
conditional because

∣
∣
∣
∣

n2 cos(nπ)

1+ n3

∣
∣
∣
∣
= n2

1+ n3 ≥
1

2n

for n ≥ 1, and
∞∑

n=1

1

2n
is a divergent harmonic series.

21. lim
n→∞

∣
∣
∣
∣
∣
∣
∣
∣
∣

(x − 2)n+1

3n+1
√

n + 1
(x − 2)n

3n
√

n

∣
∣
∣
∣
∣
∣
∣
∣
∣

= lim
n→∞

|x − 2|
3

√
n

n + 1
= |x − 2|

3
.

∞
∑

n=1

(x − 2)n

3n
√

n
converges absolutely if

|x − 2|
3

< 1, that is,

if −1 < x < 5, and diverges if x < −1 or x > 5.

If x = −1 the series is
∑ (−1)n√

n
, which converges

conditionally.

If x = 5 the series is
∑ 1√

n
, which diverges (to ∞).

22. lim
n→∞

∣
∣
∣
∣
∣
∣
∣
∣

(5 − 2x)n+1

n + 1
(5 − 2x)n

n

∣
∣
∣
∣
∣
∣
∣
∣

= lim
n→∞ |5− 2x | n

n + 1
= |5− 2x |.

∞
∑

n=1

(5− 2x)n

n
converges absolutely if |5 − 2x | < 1, that

is, if 2 < x < 3, and diverges if x < 2 or x > 3.
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If x = 2 the series is
∑ 1

n
, which diverges.

If x = 3 the series is
∑ (−1)n

n
, which converges condi-

tionally.

23. Let s =
∞∑

k=1

1

k3 and sn =
n∑

k=1

1

k3 . Then

∫ ∞

n+1

dt

t3 < s − sn <

∫ ∞

n

dt

t3

sn + 1

2(n + 1)2
< s < sn + 1

2n2
.

Let

s∗n =
1

2

[

sn + 1

2(n + 1)2
+ sn + 1

2n2

]

= sn+n2 + (n + 1)2

4n2(n + 1)2
.

Then s ≈ s∗n with error satisfying

|s − s∗n | <
1

2

[
1

2n2 −
1

2(n + 1)2

]

= 2n + 1

4n2(n + 1)2
.

This error is less than 0.001 if n ≥ 8. Hence

s ≈ 1

13
+ 1

23
+ 1

33
+ 1

43
+ 1

53
+ 1

63
+ 1

73
+ 1

83

+ 64+ 81

4(64)(81)
≈ 1.202

with error less than 0.001.

24. Let s =
∞
∑

k=1

1

4+ k2 and sn =
n
∑

k=1

1

4+ k2 . Then

∫ ∞

n+1

dt

4 + t2 < s − sn <

∫ ∞

n

dt

4+ t2

sn + π
4
− 1

2
tan−1 n + 1

2
< s < sn + π

4
− 1

2
tan−1 n

2
.

Let

s∗n = sn + π
4
− 1

4

[

tan−1 n + 1

2
+ tan−1 n

2

]

.

Then s ≈ s∗n with error satisfying

|s − s∗n | <
1

4

[

tan−1 n + 1

2
− tan−1 n

2

]

.

This error is less than 0.001 if n ≥ 22. Hence

s ≈
22
∑

k=1

1

4+ k2 +
π

4
− 1

4

[

tan−1 23

2
+ tan−1(11)

]

≈ 0.6605

with error less than 0.001.

25.
1

3− x
= 1

3
(

1− x

3

)

= 1

3

∞
∑

n=0

( x

3

)n =
∞
∑

n=0

xn

3n+1
(−3 < x < 3).

26. Replace x with x2 in Exercise 25 and multiply by x to
get

x

3− x2
=
∞
∑

n=0

x2n+1

3n+1
(−√3 < x <

√
3).

27. ln(e + x2) = ln e + ln

(

1+ x2

e

)

= ln e +
∞
∑

n=1

(−1)n−1 x2n

nen
(−√e < x ≤ √e).

28.
1− e−2x

x
= 1

x

(

1− 1−
∞
∑

n=1

(−2x)n

n!

)

=
∞∑

n=1

(−1)n−1 2nxn−1

n!
(for all x �= 0).

29. x cos2 x = x

2
(1 + cos(2x))

= x

2

(

1+
∞
∑

n=0

(−1)n
(2x)2n

(2n)!

)

= x +
∞
∑

n=1

(−1)n
22n−1x2n+1

(2n)!
(for all x).

30. sin
(

x + π
3

)

= sin x cos
π

3
+ cos x sin

π

3

= 1

2

∞
∑

n=0

(−1)n
x2n+1

(2n + 1)!
+
√

3

2

∞
∑

n=0

(−1)n
x2n

(2n)!

=
∞∑

n=0

(−1)n

2

(√
3x2n

(2n)!
+ x2n+1

(2n + 1)!

)

(for all x).

31. (8+ x)−1/3 = 1

2

(

1 + x

8

)−1/3

= 1

2

[

1 − 1

3

( x

8

)

+

(

−1

3

)(

−4

3

)

2!

( x

8

)2

+

(

−1

3

)(

−4

3

)(

−7

3

)

3!

( x

8

)3 + · · ·
]

= 1

2
+
∞
∑

n=1

(−1)n
1 · 4 · 7 · · · (3n − 2)

2 · 3n · 8n · n!
xn (−8 < x < 8).

(Remark: Examining the ln of the absolute value of the
nth term at x = 8 shows that this term → 0 as n → ∞.
Therefore the series also converges at x = 8.)
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32. (1+ x)1/3 = 1+ 1

3
x +

(
1

3

)(

−2

3

)

2!
x2

+

(
1

3

)(

−2

3

)(

−5

3

)

3!
x3 + · · ·

= 1+ x

3
+
∞
∑

n=2

(−1)n−1 2 · 5 · 8 · · · (3n − 4)

3nn!
xn (−1 < x < 1).

(Remark: the series also converges at x = 1.)

33.
1

x
= 1

π + (x − π) =
1

π
· 1

1+ x − π
π

= 1

π

∞
∑

n=0

(−1)n
(

x − π
π

)n

=
∞
∑

n=0

(−1)n
(x − π)n
πn+1

(0 < x < 2π).

34. Let u = x − (π/4), so x = u + (π/4). Then

sin x + cos x = sin
(

u + π
4

)

+ cos
(

u + π
4

)

= 1√
2

(

(sin u + cos u)+ (cos u − sin u)
)

= √2 cos u = √2
∞∑

n=0

(−1)n
u2n

(2n)!

= √2
∞∑

n=0

(−1)n

(2n)!

(

x − π
4

)2n
(for all x).

35. ex2+2x = ex2
e2x

= (1+ x2 + · · ·)
(

1 + 2x + 4x2

2!
+ 8x3

3!
+ · · ·

)

= 1+ 2x + 2x2 + 4

3
x3 + x2 + 2x3 + · · ·

P3(x) = 1+ 2x + 3x2 + 10

3
x3.

36. sin(1 + x) = sin(1) cos x + cos(1) sin x

= sin(1)

(

1− x2

2!
+ · · ·

)

+ cos(1)

(

x − x3

3!
+ · · ·

)

P3(x) = sin(1) + cos(1)x − sin(1)

2
x2 − cos(1)

6
x3.

37. cos(sin x) = 1−

(

x − x3

3!
+ · · ·

)2

2!
+ (x − · · ·)

4

4!
− · · ·

= 1− 1

2

(

x2 − x4

3
+ · · ·

)

+ x4

24
+ · · ·

P4(x) = 1− 1

2
x2 + 5

24
x4.

38.
√

1+ sin x = 1+ 1

2
sin x +

(
1

2

)(

−1

2

)

2!
(sin x)2

+

(
1

2

)(

−1

2

)(

−3

2

)

3!
(sin x)3

+

(
1

2

)(

−1

2

)(

−3

2

)(

−5

2

)

4!
(sin x)4 + · · ·

= 1+ 1

2

(

x − x3

6
+ · · ·

)

− 1

8

(

x − x3

6
+ · · ·

)2

+ 1

16
(x − · · ·)3 − 5

128
(x − · · ·)4 + · · ·

= 1+ x

2
− x3

12
− x2

8
+ x4

24
+ x3

16
− 5x4

128
+ · · ·

P4(x) = 1+ x

2
− x2

8
− x3

48
+ x4

384
.

39. The series
∞
∑

n=0

(−1)nxn

(2n)!
is the Maclaurin series for cos x

with x2 replaced by x . For x > 0 the series therefore

represents cos
√

x . For x < 0, the series is
∞
∑

n=0

|x |n
(2n)!

,

which is the Maclaurin series for cosh
√|x |. Thus the

given series is the Maclaurin series for

f (x) =
{

cos
√

x if x ≥ 0
cosh
√|x | if x < 0.

40. Since

1+
∞
∑

n=1

x2n

n2 =
∞
∑

k=0

f (k)(0)

k!
xk

for x near 0, we have, for n = 1, 2, 3, . . .

f (2n)(0) = (2n)!

n2 , f (2n−1)(0) = 0.

41.
∞∑

n=0

xn = 1

1− x

∞∑

n=0

nxn−1 =
∞∑

n=1

nxn−1 = 1

(1 − x)2

∞∑

n=0

nxn = x

(1 − x)2

∞
∑

n=0

n + 1

πn
=

1

π
(

1− 1

π

)2 +
1

1− 1

π

= π

(π − 1)2
+ π

π − 1
=
(

π

π − 1

)2

.
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42.
∞∑

n=0

nxn = x

(1 − x)2
as in Exercise 23

∞∑

n=0

n2xn−1 = d

dx

x

(1 − x)2
= 1+ x

(1− x)3

∞
∑

n=0

n2xn = x(1 + x)

(1 − x)3

∞
∑

n=0

n2

πn
=

1

π

(

1+ 1

π

)

(

1 − 1

π

)3
= π(π + 1)

(π − 1)3
.

43.
∞
∑

n=1

xn

n
= − ln(1 − x)

∞
∑

n=1

1

nen
= − ln

(

1 − 1

e

)

= 1− ln(e − 1).

44.
∞
∑

n=1

(−1)n−1x2n−1

(2n − 1)!
= sin x

∞
∑

n=1

(−1)nπ2n−1

(2n − 1)!
= − sinπ = 0

∞
∑

n=2

(−1)nπ2n−4

(2n − 1)!
= 1

π3

(

0 − (−1)π

1!

)

= 1

π2 .

45. S(x) =
∫ x

0
sin(t2) dt

=
∫ x

0

(

t2 − t6

3!
+ · · ·

)

dt

= x3

3
− x7

7 · 3!
+ · · ·

lim
x→0

x3 − 3S(x)

x7
= lim

x→0

x3 − x3 + x7

14
− · · ·

x7
= 1

14
.

46. lim
x→0

(x − tan−1x)(e2x − 1)

2x2 − 1+ cos(2x)

= lim
x→0

(

x − x + x3

3
− x5

5
+ · · ·

)(

2x + 4x2

2!
+ · · ·

)

2x2 − 1+ 1− 4x2

2!
+ 16x4

4!
− · · ·

= lim
x→0

x4
(

2

3
+ · · ·

)

x4

(
2

3
+ · · ·

) = 1.

47.
∫ 1/2

0
e−x4

dx =
∫ 1/2

0

∞∑

n=0

(−x4)n

n!
dx

=
∞∑

n=0

(−1)nx4n+1

(4n + 1)n!

∣
∣
∣
∣

1/2

0

=
∞∑

n=0

(−1)n

24n+1(4n + 1)n!
.

The series satisfies the conditions of the alternating series
test, so if we truncate after the term for n = k − 1, then
the error will satisfy

|error| ≤ 1

24k+1(4k + 1)k!
.

This is less than 0.000005 if 24k+1(4k + 1)k! > 200, 000,
which happens if k ≥ 3. Thus, rounded to five decimal
places,

∫ 1/2

0
e−x4

dx ≈ 1

2 · 1 · 1−
1

32 · 5 · 1+
1

512 · 9 · 2 ≈ 0.49386.

48. If f (x) = ln(sin x), then calculation of successive deriva-
tives leads to

f (5)(x) = 24 csc4 x cot x − 8 csc2 cot x .

Observe that 1.5 < π/2 ≈ 1.5708, that csc x ≥ 1 and
cot x ≥ 0, and that both functions are decreasing on that
interval. Thus

| f (5)(x)| ≤ 24 csc4(1.5) cot(1.5) ≤ 2

for 1.5 ≤ x ≤ π/2. Therefore, the error in the approxi-
mation

ln(sin 1.5) ≈ P4(x),

where P4 is the 4th degree Taylor polynomial for f (x)
about x = π/2, satisfies

|error| ≤ 2

5!

∣
∣
∣1.5− π

2

∣
∣
∣

5 ≤ 3× 10−8.

49. The Fourier sine series of f (t) = π − t on [0, π ] has
coefficients

bn = 2

π

∫ π

0
(π − t) sin(nt) dt = 2

n
.

The series is
∞
∑

n=1

2

n
sin(nt).
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50. f (t) =
{

1 if −π < t ≤ 0
t if 0 < t ≤ π has period 2π . Its Fourier

coefficients are

a0

2
= 1

2π

∫ π

−π
f (t) dt

= 1

2π

[∫ 0

−π
dt +

∫ π

0
t dt

]

= 1

2
+ π

4

an = 1

π

[∫ 0

−π
cos(nt) dt +

∫ π

0
t cos(nt) dt

]

= 1

π

∫ π

0
(1 + t) cos(nt) dt

= (−1)n − 1

πn2 =
{

−2/(πn2) if n is odd
0 if n is even

bn = 1

π

[∫ 0

−π
sin(nt) dt +

∫ π

0
t sin(nt) dt

]

= 1

π

∫ π

0
(t − 1) sin(nt) dt

= −1+ (−1)n(π − 1)

πn
=
{

(π − 2/(πn) if n is odd
−(1/n) if n is even.

The required Fourier series is, therefore,

2+ π
4

−
∞
∑

n=1

[2 cos
(

(2n − 1)t
)

π(2n − 1)2
+
(2 − π) sin

(

(2n − 1)t
)

π(2n − 1)
+ sin(2nt)

2n

]

.

Challenging Problems 9 (page 535)

1. If an > 0 and
an+1

an
>

n

n + 1
for all n, then

a2

a1
>

1

2
⇒ a2 >

a1

2
a3

a2
>

2

3
⇒ a3 >

2a2

3
>

a1

3
...

an

an−1
>

n − 1

n
⇒ an >

a1

n
.

(This can be verified by induction.)
Therefore

∑∞
n=1 an diverges by comparison with the har-

monic series
∑∞

n=1
1

n
.

2. a) If sn =∑n
k=1 vk for n ≥ 1, and s0 = 0, then

vk = sk − sk−1 for k ≥ 1, and

n
∑

k=1

ukvk =
n
∑

k=1

uksk −
n
∑

k=1

uksk−1.

In the second sum on the right replace k with k + 1:

n∑

k=1

ukvk =
n∑

k=1

uksk −
n−1∑

k=0

uk+1sk

=
n
∑

k=1

(uk − uk+1)sk − u1s0 + un+1sn

= un+1sn +
n
∑

k=1

(uk − uk+1)sk .

b) If {un} is positive and decreasing, and
limn→∞ un = 0, then

n
∑

k=1

(uk − uk+1) = u1 − u2 + u2 − u3 + · · · + un − un+1

= u1 − un+1 → u1 as n→∞.

Thus
n∑

k=1

(uk − uk+1) is a convergent, positive, tele-

scoping series.

If the partial sums sn of {vn} are bounded, say |sn| ≤ K
for all n, then

|(un − un+1)sn | ≤ K (un − un+1),

so
∑∞

n=1(un − un+1)sn is absolutely convergent (and
therefore convergent) by the comparison test. Therefore,
by part (a),

∞
∑

k=1

ukvk = lim
n→∞

(

un+1sn +
n
∑

k=1

(uk − uk+1)sk

)

=
∞
∑

k=1

(uk − uk+1)sk

converges.

3. If x = mπ for some integer m, then all the terms of the
series

∑∞
n=1(1/n) sin(nx) are 0, so the series converges

to 0.

If x �= mπ for any integer m, then sin(x/2) �= 0. Using
the addition formulas we obtain

sin(nx) sin(x/2) = 1

2

[

cos
(

(n − 1
2 )x
)

− cos
(

(n + 1
2 )x
)]

.

Therefore, using the telescoping property of these terms,

N
∑

n=1

sin(nx) =
N
∑

n=1

[

cos
(

(n − 1
2 )x
)

− cos
(

(n + 1
2 )x
)]

2 sin(x/2)

=
cos(x/2)− cos

(

(N + 1
2 )x
)

2 sin(x/2)
.
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Therefore, the partial sums of
∑∞

n=1 sin(nx) are bounded.
Since the sequence {1/n} is positive, decreasing, and has
limit 0, part (b) of Problem 2 shows that

∑∞
n=1 sin(nx)/n

converges in this case too. Therefore the series converges
for all x .

4. Let an be the nth integer that has no zeros in its decimal
representation. The number of such integers that have m
digits is 9m . (There are nine possible choices for each of
the m digits.) Also, each such m-digit number is greater
than 10m−1 (the smallest m-digit number). Therefore the
sum of all the terms 1/an for which an has m digits is
less than 9m/(10m−1). Therefore,

∞
∑

n=1

1

an
< 9

∞
∑

m=1

(
9

10

)m−1

= 90.

5.
∫ k+1/2

k−1/2
f (x) dx − f (k) = f ′′(c)

24
, for some c in the

interval [k − 1
2 , k + 1

2 ].

a) By the Mean-Value Theorem,

f ′
(

k + 3
2

)− f ′
(

k + 1
2

) = ( 3
2 − 1

2

)

f ′′(u) = f ′′(u)

for some u in [k + 1
2 , k + 3

2 ]. Similarly,

f ′
(

k − 1
2

)− f ′
(

k − 3
2

) = (− 1
2 + 3

2

)

f ′′(v) = f ′′(v)

for some v in [k − 3
2 , k − 1

2 ]. Since f ′′ is decreasing
and v ≤ c ≤ u, we have f ′′(u) ≤ f ′′(c) ≤ f ′′(v),
and so

f ′
(

k + 3
2

)− f ′
(

k + 1
2

) ≤ f ′′(c) ≤ f ′
(

k − 1
2

)− f ′
(

k − 3
2

)

.

b) If f ′′ is decreasing,
∫∞

N+ 1
2

f (x) dx converges, and

f ′(x)→ 0 as x →∞, then

∞∑

n=N+1

f (n)−
∫ ∞

N+ 1
2

f (x) dx

=
∞
∑

n=N+1

⎛

⎝ f (n)−
∫ n+ 1

2

n− 1
2

f (x) dx

⎞

⎠

= − 1

24

∞
∑

n=N+1

f ′′(cn),

for some numbers cn in [n − 1
2 , n + 1

2 ]. Using the
result of part (a), we see that
∞∑

n=N+1

[

f ′(n + 3
2 )− f ′(n + 1

2 )
] ≤

∞∑

n=N+1

f ′′(cn)

≤
∞
∑

n=N+1

[

f ′(n − 1
2 )− f ′(n − 3

2 )
]

− f ′(N + 3
2 ) ≤

∞
∑

n=N+1

f ′′(cn) ≤ − f ′(N − 1
2 )

f ′(N − 1
2 )

24
≤

∞
∑

n=N+1

f (n)−
∫ ∞

N+ 1
2

f (x) dx ≤ f ′(N + 3
2 )

24
.

c) Let f (x) = 1/x2. Then f ′(x) = −2/x3 → 0 as
x →∞, f ′′(x) = 6/x4 is decreasing, and

∫ ∞

N+ 1
2

f (x) dx =
∫ ∞

N+ 1
2

dx

x2 =
1

N + 1
2

converges. From part (b) we obtain
∣
∣
∣
∣
∣

∞
∑

n=N+1

1

n2
− 1

N + 1
2

∣
∣
∣
∣
∣
≤ 1

12
(

N − 1
2

)3
.

The right side is less than 0.001 if N = 5. Therefore

∞∑

n=1

1

n2 =
5∑

n=1

1

n2 +
1

5.5
≈ 1.6454

correct to within 0.001.

6. a) Since e =
∞
∑

j=0

1

j !
, we have

0 < e −
n
∑

j=0

1

j !
=

∞
∑

j=n+1

1

j !

= 1

(n + 1)!

(

1+ 1

n + 2
+ 1

(n + 2)(n + 3)
+ · · ·

)

≤ 1

(n + 1)!

(

1+ 1

n + 2
+ 1

(n + 2)2
+ · · ·

)

= 1

(n + 1)!
· 1

1− 1

n + 2

= n + 2

(n + 1)!(n + 1)
<

1

n!n
.

The last inequality follows from
n + 2

(n + 1)2
<

1

n
, that

is, n2 + 2n < n2 + 2n + 1.

b) Suppose e is rational, say e = M/N where M and
N are positive integers. Then N !e is an integer and
N !
∑N

j=0(1/j !) is an integer (since each j ! is a fac-
tor of N !). Therefore the number

Q = N !

⎛

⎝e −
N
∑

j=0

1

j !

⎞

⎠

is a difference of two integers and so is an integer.
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c) By part (a), 0 < Q <
1

N
≤ 1. By part (b), Q is

an integer. This is not possible; there are no integers
between 0 and 1. Therefore e cannot be rational.

7. Let f (x) =
∞
∑

k=0

ak x2k+1, where ak = 22kk!

(2k + 1)!
.

a) Since

lim
k→∞

∣
∣
∣
∣

ak+1x2k+3

ak x2k+1

∣
∣
∣
∣

= |x |2 lim
k→∞

22k+2

22k
· (k + 1)!

k!
· (2k + 1)!

(2k + 3)!

= |x |2 lim
k→∞

4k + 4

(2k + 3)(2k + 2)
= 0

for all x , the series for f (x) converges for all x . Its
radius of convergence is infinite.

b) f ′(x) =
∞∑

k=0

22kk!

(2k + 1)!
(2k + 1)x2k = 1+

∞∑

k=1

22kk!

(2k)!
x2k

1+ 2x f (x) = 1+
∞∑

k=0

22k+1k!

(2k + 1)!
x2k+2

(replace k with k − 1)

= 1+
∞∑

k=1

22k−1(k − 1)!

(2k − 1)!
x2k

= 1+
∞∑

k=1

22kk!

(2k)!
x2k = f ′(x).

c)
d

dx

(

e−x2
f (x)

)

= e−x2
(

f ′(x)− 2x f (x)
)

= e−x2
.

d) Since f (0) = 0, we have

e−x2
f (x)− f (0) =

∫ x

0

d

dt

(

e−t2
f (t)

)

dt =
∫ x

0
e−t2

dt

f (x) = ex2
∫ x

0
e−t2

dt.

8. Let f be a polynomial and let

g(x) =
∞
∑

j=0

(−1) j f (2 j)(x).

This “series” is really just a polynomial since sufficiently
high derivatives of f are all identically zero.

a) By replacing j with j − 1, observe that

g′′(x) =
∞∑

j=0

(−1) j f (2 j+2)(x)

=
∞
∑

j=1

(−1) j−1 f (2 j)(x) = −
(

g(x)− f (x)
)

.

Also

d

dx

(

g′(x) sin x − g(x) cos x
)

= g′′(x) sin x + g′(x) cos x − g′(x) cos x + g(x) sin x

=
(

g′′(x)+ g(x)
)

sin x = f (x) sin x .

Thus

∫ π

0
f (x) sin x dx =

(

g′(x) sin x − g(x) cos x
)
∣
∣
∣
∣

π

0
= g(π)+ g(0).

b) Suppose that π = m/n, where m and n are positive
integers. Since limk→∞ xk/k! = 0 for any x , there
exists an integer k such that (πm)k/k! < 1/2. Let

f (x) = xk(m − nx)k

k!
= 1

k!

k
∑

j=0

(
k

j

)

mk− j (−n) j x j+k .

The sum is just the binomial expansion.
For 0 < x < π = m/n we have

0 < f (x) <
π kmk

k!
<

1

2
.

Thus 0 <
∫ π

0 f (x) sin x dx <
1

2

∫ π

0
sin x dx = 1, and

so 0 < g(π)+ g(0) < 1.

c) f (i)(x) = 1

k!

k
∑

j=0

(
k

j

)

mk− j (−n) j

× ( j + k)( j + k − 1) · · · ( j + k − i + 1)x j+k−i

= 1

k!

k
∑

j=0

(
k

j

)

mk− j (−n) j ( j + k)!

( j + k − i )!
x j+k−i .

d) Evidently f (i)(0) = 0 if i < k or if i > 2k.
If k ≤ i ≤ 2k, the only term in the sum for f (i)(0)
that is not zero is the term for which j = i − k. This
term is the constant

1

k!

(
k

i − k

)

mk− j (−n) j i !

0!
.

This constant is an integer because the binomial co-

efficient

(
k

i − k

)

is an integer and i !/k! is an in-

teger. (The other factors are also integers.) Hence
f (i)(0) is an integer, and so g(0) is an integer.
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e) Observe that f (π − x) = f ((m/n) − x) = f (x) for
all x . Therefore f (i)(π) is an integer (for each i ),
and so g(π) is an integer. Thus g(π) + g(0) is an
integer, which contradicts the conclusion of part (b).
(There is no integer between 0 and 1.) Therefore, π
cannot be rational.

9. Let x > 0, and let

Ik =
∫ x

0
tke−1/t dt

U = tk+2

dU = (k + 2)tk+1 dt

dV = 1

t2 e−1/t dt

V = e−1/t

= tk+2e−1/t
∣
∣
∣
∣

x

0
− (k + 2)

∫ x

0
tk+1e−1/t dt

Ik = xk+2e−1/x − (k + 2)Ik+1.

Therefore,
∫ x

0
e−1/t dt = I0 = x2e−1/x − 2I1

= x2e−1/x − 2
(

x3e−1/x − 3I2

)

= e−1/x [x2 − 2!x3]+ 3!
(

x4e−1/x − 4I3

)

= e−1/x [x2 − 2!x3 + 3!x4] − 4!
(

x5e−1/x − 5I4

)

...

= e−1/x
N∑

n=2

(−1)n(n − 1)!xn

+ (−1)N+1 N !
∫ x

0
t N−1e−1/t dt.

The Maclaurin series for e−1/t does not exist. The func-
tion is not defined at t = 0.
For x = 0.1 and N = 5, the approximation

I =
∫ 0.1

0
e−1/t dt ≈ e−10

5
∑

n=2

(−1)n(n − 1)!(0.1)n

= e−10
(

(0.1)2 − 2(0.1)3 + 6(0.1)4 − 24(0.1)5
)

≈ 0.00836e−10

has error E given by

E = (−1)65!
∫ 0.1

0
t4e−1/t dt.

Since e−1/t ≤ e−10 for 0 ≤ t ≤ 0.1, we have

|E | ≤ 120e−10
∫ 0.1

0
t4 dt ≈ 2.4× 10−4e−10,

which is about 3% of the size of I .

For N = 10, the error estimate is

|E | ≤ 10!e−10
∫ 0.1

0
t9 dt ≈ 3.6 × 10−5e−10,

which is about 0.4% of the size of I .
For N = 20, the error estimate is

|E | ≤ 20!e−10
∫ 0.1

0
t19 dt ≈ 1.2× 10−3e−10,

which is about 15% of the size of I .
Observe, therefore, that the sum for N = 10 does a
better job of approximating I than those for N = 5 or
N = 20.
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CHAPTER 10. VECTORS AND COORDI-
NATE GEOMETRY IN 3-SPACE

Section 10.1 Analytic Geometry in
Three Dimensions (page 542)

1. The distance between (0, 0, 0) and (2,−1,−2) is

√

22 + (−1)2 + (−2)2 = 3 units.

2. The distance between (−1,−1,−1) and (1, 1, 1) is

√

(1 + 1)2 + (1 + 1)2 + (1+ 1)2 = 2
√

3 units.

3. The distance between (1, 1, 0) and (0, 2,−2) is

√

(0− 1)2 + (2 − 1)2 + (−2− 0)2 = √6 units.

4. The distance between (3, 8,−1) and (−2, 3,−6) is

√

(−2− 3)2 + (3 − 8)2 + (−6+ 1)2 = 5
√

3 units.

5. a) The shortest distance from (x, y, z) to the xy-plane
is |z| units.

b) The shortest distance from (x, y, z) to the x-axis is√

y2 + z2 units.

6. If A = (1, 2, 3), B = (4, 0, 5), and C = (3, 6, 4), then

|AB| =
√

32 + (−2)2 + 22 = √17

|AC | =
√

22 + 42 + 12 = √21

|BC | =
√

(−1)2 + 62 + (−1)2 = √38.

Since |AB|2 + |AC |2 = 17 + 21 = 38 = |BC |2, the
triangle ABC has a right angle at A.

7. If A = (2,−1,−1), B = (0, 1,−2), and C = (1,−3, 1),
then

c = |AB| =
√

(0− 2)2 + (1 + 1)2 + (−2+ 1)2 = 3

b = |AC | =
√

(1− 2)2 + (−3 + 1)2 + (1+ 1)2 = 3

a = |BC | =
√

(1− 0)2 + (−3 − 1)2 + (1+ 2)2 = √26.

By the Cosine Law,

a2 = b2 + c2 − 2bc cos � A

26 = 9+ 9 − 18 cos � A

� A = cos−1 26− 18

−18
≈ 116.4◦.

8. If A = (1, 2, 3), B = (1, 3, 4), and C = (0, 3, 3), then

|AB| =
√

(1− 1)2 + (3 − 2)2 + (4 − 3)2 = √2

|AC | =
√

(0− 1)2 + (3 − 2)2 + (3 − 3)2 = √2

|BC | =
√

(0− 1)2 + (3 − 3)2 + (3 − 4)2 = √2.

All three sides being equal, the triangle is equilateral.

9. IfA = (1, 1, 0), B = (1, 0, 1), and C = (0, 1, 1), then

|AB| = |AC | = |BC | = √2.

Thus the triangle ABC is equilateral with sides
√

2. Its
area is, therefore,

1

2
×√2×

√

2− 1

2
=
√

3

2
sq. units.

10. The distance from the origin to (1, 1, 1, . . . , 1) in �n is

√

12 + 12 + 12 + · · · + 1 = √n units.

11. The point on the x1-axis closest to (1, 1, 1, . . . , 1) is
(1, 0, 0, . . . , 0). The distance between these points is

√

02 + 12 + 12 + · · · + 12 = √n − 1 units.

12. z = 2 is a plane, perpendicular to the z-axis at (0, 0, 2).

x
y

z

z=2

2

Fig. 10.1.12

13. y ≥ −1 is the half-space consisting of all points on the
plane y = −1 (which is perpendicular to the y-axis at
(0,−1, 0)) and all points on the same side of that plane
as the origin.

x
y

z

y=−1

−1

Fig. 10.1.13

14. z = x is a plane containing the y-axis and making 45◦
angles with the positive directions of the x- and z-axes.
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x
y

z

z=x

(1,0,1)

Fig. 10.1.14

15. x + y = 1 is a vertical plane (parallel to the z-axis)
passing through the points (1, 0, 0) and (0, 1, 0).

x
y

z

x+y=1

1

1

Fig. 10.1.15

16. x2 + y2 + z2 = 4 is a sphere centred at the origin and
having radius 2 (i.e., all points at distance 2 from the
origin).

17. (x − 1)2 + (y + 2)2 + (z − 3)2 = 4 is a sphere of radius 2
with centre at the point (1,−2, 3).

18. x2 + y2 + z2 = 2z can be rewritten

x2 + y2 + (z − 1)2 = 1,

and so it represents a sphere with radius 1 and centre at
(0, 0, 1). It is tangent to the xy-plane at the origin.

x y

z

(0,0,1)

x2+y2+z2=2z

Fig. 10.1.18

19. y2+z2 ≤ 4 represents all points inside and on the circular
cylinder of radius 2 with central axis along the x-axis (a
solid cylinder).

20. x2 + z2 = 4 is a circular cylindrical surface of radius 2
with axis along the y-axis.

x

y

z

2

x2+z2=4

Fig. 10.1.20

21. z = y2 is a “parabolic cylinder” — a surface all of whose
cross-sections in planes perpendicular to the x-axis are
parabolas.

x y

z

z=y2

Fig. 10.1.21

22. z ≥ √

x2 + y2 represents every point whose distance
above the xy-plane is not less than its horizontal distance
from the z-axis. It therefore consists of all points inside
and on a circular cone with axis along the positive z-axis,
vertex at the origin, and semi-vertical angle 45◦.

x y

z

45◦
z=
√

x2+y2

Fig. 10.1.22

23. x + 2y + 3z = 6 represents the plane that intersects the
coordinate axes at the three points (6, 0, 0), (0, 3, 0), and
(0, 0, 2). Only the part of the plane in the first octant is
shown in the figure.

x

y

z
(0,0,2)

(6,0,0)

(0,3,0)

Fig. 10.1.23

24.
{

x = 1
y = 2

represents the vertical straight line in which the

plane x = 1 intersects the plane y = 2.
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x
y

z

y=2

x=1

(1,2,0)

Fig. 10.1.24

25.
{

x = 1
y = z

is the straight line in which the plane z = 1

intersects the plane y = z. It passes through the points
(1, 0, 0) and (1, 1, 1).

x

y

z

x=1

z=y

(1,0,0)

(1,1,1)

Fig. 10.1.25

26.
{

x2 + y2 + z2 = 4
z = 1

is the circle in which the horizontal

plane z = 1 intersects the sphere of radius 2 centred at
the origin. The circle has centre (0, 0, 1) and radius√

4− 1 = √3.

x

y

z

√
3

(0,0,1)

1 2

z=1

x2+y2+z2=4

Fig. 10.1.26

27.
{

x2 + y2 + z2 = 4
x2 + y2 + z2 = 4z

is the circle in which the sphere of

radius 2 centred at the origin intersects the sphere of ra-
dius 2 centred at (0, 0, 2). (The second equation can be
rewritten x2 + y2 + (z − 2)2 = 4 for easier recogni-
tion.) Subtracting the equations of the two spheres we
get z = 1, so the circle must lie in the plane z = 1 as
well. Thus it is the same circle as in the previous exer-
cise.

28.
{

x2 + y2 + z2 = 4
x2 + z2 = 1

represents the two circles in

which the cylinder x2 + z2 − 1 intersects the sphere
x2 + y2 + z2 = 4. Subtracting the two equations, we
get y2 = 3. Thus, one circle lies in the plane y = √3
and has centre (0,

√
3, 0) and the other lies in the plane

y = −√3 and has centre (0,−√3, 0). Both circles have
radius 1.

x

y

z

2
1

√
3

Fig. 10.1.28

29.
{

x2 + y2 = 1
z = x

is the ellipse in which the slanted plane

z = x intersects the vertical cylinder x2 + y2 = 1.

x

y

z

z=x

x2+y2=1

Fig. 10.1.29

30.
{ y ≥ x

z ≤ y is the quarter-space consisting of all points lying

on or on the same side of the planes y = x and z = y as
does the point (0, 1, 0).
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31.
{

x2 + y2 ≤ 1
z ≥ y

represents all points which are inside or

on the vertical cylinder x2 + y2 = 1, and are also above
or on the plane z = y.

x y

z

x2+y2=1

z=y

Fig. 10.1.31

32.
{

x2 + y2 + z2 ≤ 1√

x2 + y2 ≤ z
represents all points which are inside

or on the sphere of radius 1 centred at the origin and
which are also inside or on the upper half of the circular
cone with axis along the z-axis, vertex at the origin, and
semi-vertical angle 45◦.

x

y

z

x2+y2+z2=1

z=
√

x2+y2

Fig. 10.1.32

33. S = {(x, y) : 0 < x2 + y2 < 1}
The boundary of S consists of the origin and all points
on the circle x2 + y2 = 1. The interior of S is S, which
is therefore open. S is bounded; all points in it are at
distance less than 1 from the origin.

34. S = {(x, y) : x ≥ 0, y < 0}
The boundary of S consists of points (x, 0) where x ≥ 0,
and points (0, y) where y ≤ 0.
The interior of S consists of all points of S that are not
on the y-axis, that is, all points (x, y) satisfying x > 0
and y < 0.
S is neither open nor closed; it contains some, but not
all, of its boundary points.
S is not bounded; (x,−1) belongs to S for 0 < x <∞.

35. S = {(x, y) : x + y = 1}
The boundary of S is S. The interior of S is the empty
set. S is closed, but not bounded. There are points on
the line x + y = 1 arbitrarily far away from the origin.

36. S = {(x, y) : |x | + |y| ≤ 1}
The boundary of S consists of all points on the edges of
the square with vertices (±1, 0) and (0,±1).
The interior of S consists of all points inside that square.
S is closed since it contains all its boundary points. It is
bounded since all points in it are at distance not greater
than 1 from the origin.

37. S = {(x, y, z) : 1 ≤ x2 + y2 + z2 ≤ 4}
Boundary: the spheres of radii 1 and 2 centred at the
origin.
Interior: the region between these spheres. S is closed.

38. S = {(x, y, z) : x ≥ 0, y > 1, z < 2}
Boundary: the quarter planes x = 0, (y ≥ 1, z ≤ 2),
y = 1, (x ≥ 0, z ≤ 2), and z = 2, (x ≥ 0, y ≥ 1).
Interior: the set of points (x, y, z) such that x > 0,
y > 1, z < 2.
S is neither open nor closed.

39. S = {(x, y, z) : (x − z)2 + (y − z)2 = 0}
The boundary of S is S, that is, the line x = y = z. The
interior of S is empty. S is closed.

40. S = {(x, y, z) : x2 + y2 < 1, y + z > 2}
Boundary: the part of the cylinder x2 + y2 = 1 that lies
on or above the plane y + z = 2 together with the part of
that plane that lies inside the cylinder.
Interior: all points that are inside the cylinder x2+ y2 = 1
and above the plane y + z = 2. S is open.

Section 10.2 Vectors (page 551)

1. A = (−1, 2), B = (2, 0), C = (1,−3), D = (0, 4).

(a)
−→
AB = 3i − 2j (b)

−→
B A = −3i+ 2j

(c)
−→
AC = 2i − 5j (d)

−→
B D = −2i+ 4j

(e)
−→
D A = −i− 2j (f)

−→
AB − −→BC = 4i + j

(g)
−→
AC − 2

−→
AB + 3

−→
C D = −7i+ 20j

(h)
1

3

(−→
AB + −→AC +−→AD

)

= 2i− 5

3
j

2. u = i− j
v = j + 2k

a) u + v = i+ 2k
u − v = i− 2j − 2k

2u − 3v = 2i− 5j− 6k
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b) |u| = √1+ 1 = √2

|v| = √1+ 4 = √5

c) û = 1√
2
(i − j)

v̂ = 1√
5
(j + 2k)

d) u • v = 0− 1+ 0 = −1

e) The angle between u and v is

cos−1 −1√
10
≈ 108.4◦.

f) The scalar projection of u in the direction of v is
u • v
|v| =

−1√
5

.

g) The vector projection of v along u is
(v • u)u
|u|2 = −1

2
(i − j).

3. u = 3i + 4j − 5k
v = 3i − 4j − 5k

a) u+ v = 6i− 10k
u− v = 8j

2u − 3v = −3i+ 20j + 5k

b) |u| = √9+ 16+ 25 = 5
√

2

|v| = √9+ 16+ 25 = 5
√

2

c) û = 1

5
√

2
(3i + 4j− 5k)

v̂ = 1

5
√

2
(3i − 4j− 5k)

d) u • v = 9− 16+ 25 = 18

e) The angle between u and v is

cos−1 18

50
≈ 68.9◦.

f) The scalar projection of u in the direction of v is
u • v
|v| =

18

5
√

2
.

g) The vector projection of v along u is
(v • u)u
|u|2 = 9

25
(3i + 4j − 5k).

4. If a = (−1, 1), B = (2, 5) and C = (10,−1), then−→
AB = 3i + 4j and

−→
BC = 8i − 6j. Since

−→
AB • −→BC = 0,

therefore,
−→
AB ⊥ −→BC . Hence, 
ABC has a right angle at

B.

5. Let the triangle be ABC . If M and N are the midpoints
of AB and AC respectively, then

−−→
AM = 1

2
−→
AB, and−→

AN = 1
2
−→
AC . Thus

−−→M N = −→AN −−−→AM =
−→
AC −−→AB

2
=
−→
BC

2
.

Thus M N is parallel to and half as long as BC .

A M
B

N

C

Fig. 10.2.5

6. We have

−→
PQ = −→P B + −→BQ = 1

2
−→
AB + 1

2
−→
BC = 1

2
−→
AC;

−→
S R = −→S D +−→DR = 1

2
−→
AD + 1

2
−→
DC = 1

2
−→
AC .

Therefore,
−→
PQ = −→S R. Similarly,

−→
Q R = −→QC +−→C R = 1

2
−→
B D;

−→
PS = −→P A +−→AS = 1

2
−→
B D.

Therefore, −→Q R = −→PS. Hence, PQ RS is a parallelogram.

C

R

D
A

S

P

B
Q

Fig. 10.2.6

7. Let the parallelogram be ABC O. Take the origin at O.
The position vector of the midpoint of O B is

−→
O B

2
=
−→
O B +−→C B

2
=
−→
OC +−→O A

2
.

The position vector of the midpoint of C A is

−→
OC +

−→
C A

2
= −→OC +

−→
O A −−→OC

2

=
−→
OC +−→O A

2
.

Thus the midpoints of the two diagonals coincide, and
the diagonals bisect each other.
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C B

AO

Fig. 10.2.7

8. Let X be the point of intersection of the medians AQ
and B P as shown. We must show that C X meets AB
in the midpoint of AB. Note that

−→
P X = α

−→
P B and−→

Q X = β−→Q A for certain real numbers α and β. Then

−→C X = 1

2
−→C B + β−→Q A = 1

2
−→C B + β

(
1

2
−→C B +−→B A

)

= 1+ β
2
−→
C B + β−→B A;

−→
C X = 1

2
−→
C A+ α−→P B = 1

2
−→
C A+ α

(
1

2
−→
C A+−→AB

)

= 1+ α
2
−→
C A+ α−→AB.

Thus,

1+ β
2
−→
C B + β−→B A = 1 + α

2
−→
C A+ α−→AB

(β + α)−→B A = 1 + α
2
−→
C A− 1+ β

2
−→
C B

(β + α)(−→C A −−→C B) = 1 + α
2
−→
C A− 1+ β

2
−→
C B

(

β + α − 1 + α
2

)−→
C A =

(

β + α − 1+ β
2

)−→
C B.

Since
−→
C A is not parallel to

−→
C B,

β + α − 1+ α
2
= β + α − 1+ β

2
= 0

⇒ α = β = 1

3
.

Since α = β, x divides AQ and B P in the same ratio.
By symmetry, the third median C M must also divide the
other two in this ratio, and so must pass through X and
M X = 1

3 MC .

C

P

Q
B

M

A

X

Fig. 10.2.8

9. Let i point east and j point north. Let the wind velocity
be

vwind = ai + bj.

Now vwind = vwind rel car + vcar.
When vcar = 50j, the wind appears to come from the
west, so vwind rel car = λi. Thus

ai + bj = λi+ 50j,

so a = λ and b = 50.
When vcar = 100j, the wind appears to come from the
northwest, so vwind rel car = µ(i-j). Thus

ai + bj = µ(i− j)+ 100j,

so a = µ and b = 100− µ.
Hence 50 = 100 − µ, so µ = 50. Thus a = b = 50. The
wind is from the southwest at 50

√
2 km/h.

10. Let the x-axis point east and the y-axis north. The veloc-
ity of the water is

vwater = 3i.

If you row through the water with speed 5 in the direc-
tion making angle θ west of north, then your velocity
relative to the water will be

vboat rel water = −5 sin θ i+ 5 cos θ j.

Therefore, your velocity relative to the land will be

vboat rel land = vboat rel water + vwater

= (3− 5 sin θ)i+ 5 cos θ j.

To make progress in the direction j, choose θ so that
3 = 5 sin θ . Thus θ = sin−1(3/5) ≈ 36.87◦. In this case,
your actual speed relative to the land will be

5 cos θ = 4

5
× 5 = 4 km/h.

To row from A to B, head in the direction 36.87◦ west
of north. The 1/2 km crossing will take (1/2)/4 = 1/8
of an hour, or about 71

2 minutes.

θ
j

i

B

A

vwater

vboat rel water

Fig. 10.2.10
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11. We use the notations of the solution to Exercise 4. You

now want to make progress in the direction ki + 1

2
j, that

is, in the direction making angle

φ = tan−1 1

2k

with vector i. Head at angle θ upstream of this direction.
Since your rowing speed is 2, the triangle with angles θ
and φ has sides 2 and 3 as shown in the figure. By the

Sine Law,
3

sin θ
= 2

sinφ
, so

sin θ = 3

2
sinφ = 3

2

1

2
√

k2 + 1
4

= 3

2
√

4k2 + 1
.

This is only possible if
3

2
√

4k2 + 1
≤ 1, that is, if

k ≥
√

5

4
.

Head in the direction θ = sin−1 3

2
√

4k2 + 1
upstream of

the direction of AC , as shown in the figure. The trip is
not possible if k <

√
5/4.

3i

φ

φ

θ

3

2
1
2

B
k

C

A

Fig. 10.2.11

12. Let i point east and j point north. If the aircraft heads in
a direction θ north of east, then its velocity relative to the
air is

750 cos θ i+ 750 sin θ j.

The velocity of the air relative to the ground is

−100√
2

i+−100√
2

j.

Thus the velocity of the aircraft relative to the ground is

(

750 cos θ − 100√
2

)

i+
(

750 sin θ − 100√
2

)

j.

If this velocity is true easterly, then

750 sin θ = 100√
2
,

so θ ≈ 5.41◦. The speed relative to the ground is

750 cos θ − 100√
2
≈ 675.9 km/h.

The time for the 1500 km trip is
1500

675.9
≈ 2.22 hours.

y

x

750

100

θ

Fig. 10.2.12

13. The two vectors are perpendicular if their dot product is
zero:

(2t i + 4j− (10 + t)k) • (i + tj + k) = 0

2t + 4t − 10− t = 0 ⇒ t = 2.

The vectors are perpendicular if t = 2.

14. The cube with edges i, j, and k has diagonal i + j + k.
The angle between i and the diagonal is

cos−1 i • (i + j+ k)√
3

= cos−1 1√
3
≈ 54.7◦.

x
y

z

θ

i

i+ j + k

Fig. 10.2.14
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15. The cube of Exercise 10 has six faces, each with 2 diag-
onals. The angle between i + j + k and the face diagonal
i+ j is

cos−1 (i + j) • (i + j + k)√
2
√

3
= cos−1 2√

6
≈ 35.26◦.

Six of the face diagonals make this angle with i + j + k.
The face diagonal i− j (and five others) make angle

cos−1 (i − j) • (i+ j+ k)√
2
√

3
= cos−1 0 = 90◦

with the cube diagonal i+ j+ k.

16. If u = u1i + u2j+ u3k, then cosα
u • i
|u| =

u1

|u| .
Similarly, cos β = u2

|u| and cos γ = u3

|u| .
Thus, the unit vector in the direction of u is

û = u
|u| = cosαi+ cos βj + cos γk,

and so cos2 α + cos2 β + cos2 γ = |û|2 = 1.

17. If û makes equal angles α = β = γ with the coordinate
axes, then 3 cos2 α = 1, and cosα = 1/

√
3. Thus

û = i+ j+ k√
3

.

18. If A = (1, 0, 0), B = (0, 2, 0), and C = (0, 0, 3), then

� ABC = cos−1
−→
B A • −→BC

|B A||BC | = cos−1 4√
5
√

13
≈ 60.26◦

� BC A = cos−1
−→
C B • −→C A

|C B||C A| = cos−1 9√
10
√

13
≈ 37.87◦

� C AB = cos−1
−→
AC • −→AB

|AC ||AB| = cos−1 1√
10
√

5
≈ 81.87◦.

19. Since r − r1 = λr1 + (1 − λ)r2 − r1 = (1 − λ)(r1 − r2),
therefore r − r1 is parallel to r1 − r2, that is, parallel to
the line P1 P2. Since P1 is on that line, so must P be on
it.

If λ = 1

2
, then r = 1

2
(r1 + r2), so P is midway between

P1 and P2.

If λ = 2

3
, then r = 2

3
r1 + 1

3
r2, so P is two-thirds of the

way from P2 towards P1 along the line.
If λ = −1, the r = −r1 + 2r2 = r2 + (r2 − r1), so P is
such that P2 bisects the segment P1 P.
If λ = 2, then r = 2r1 − r2 = r1 + (r1 − r2), so P is such
that P1 bisects the segment P2 P.

20. If a �= 0, then a • r = 0 implies that the position vector
r is perpenducular to a. Thus the equation is satisfied by
all points on the plane through the origin that is normal
(perpendicular) to a.

21. If r • a = b, then the vector projection of r along a is the
constant vector

r • a
|a|

a
|a| =

b

|a|2 a = r0, say.

Thus r • a = b is satisfied by all points on the plane
through r0 that is normal to a.

In Exercises 22–24, u = 2i + j − 2k, v = i + 2j − 2k,
and w = 2i− 2j+ k.

22. Vector x = x i + yj+ zk is perpendicular to both u and v
if

u • x = 0 ⇔ 2x + y − 2z = 0

v • x = 0 ⇔ x + 2y − 2z = 0.

Subtracting these equations, we get x − y = 0, so x = y.
The first equation now gives 3x = 2z. Now x is a unit
vector if x2 + y2 + z2 = 1, that is, if x2 + x2 + 9

4 x2 = 1,

or x = ±2/
√

17. The two unit vectors are

x = ±
(

2√
17

i+ 2√
17

j+ 3√
17

k
)

.

23. Let x = x i+ yj+ zk. Then

x • u = 9 ⇔ 2x + y − 2z = 9

x • v = 4 ⇔ x + 2y − 2z = 4

x • w = 6 ⇔ 2x − 2y + z = 6.

This system of linear equations has solution x = 2,
y = −3, z = −4. Thus x = 2i− 3j − 4k.

24. Since u, v, and w all have the same length (3), a vector
x = x i + yj+ zk will make equal angles with all three if
it has equal dot products with all three, that is, if

2x + y − 2z = x + 2y − 2z ⇔ x = y = 0

2x + y − 2z = 2x − 2y + z ⇔ 3y − 3z = 0.

Thus x = y = z. Two unit vectors satisfying this condi-
tion are

x = ±
(

1√
3

i + 1√
3

j+ 1√
3

k
)

.

25. Let û = u/|u| and v̂ = v/|v|.
Then û + v̂ bisects the angle between u and v. A unit
vector which bisects this angle is

û+ v̂
|û+ v̂| =

u
|u| +

v
|v|

∣
∣
∣
∣

u
|u| +

v
|v|
∣
∣
∣
∣

= |v|u+ |u|v∣
∣
∣|v|u+ |u|v

∣
∣
∣

.
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u

v

û+ v̂
û

v̂

Fig. 10.2.25

26. If u and v are not parallel, then neither is the zero vec-
tor, and the origin and the two points with position
vectors u and v lie on a unique plane. The equation
r = λu + µv (λ, µ real) gives the position vector of
an arbitrary point on that plane.

27. a) |u+ v|2 = (u + v) • (u+ v)
= u • u+ u • v + v • u + v • v

= |u|2 + 2u • v+ |v|2.
b) If θ is the angle between u and v, then cos θ ≤ 1, so

u • v = |u||v| cos θ ≤ |u||v|.

c) |u+ v|2 = |u|2 + 2u • v+ |v|2
≤ |u|2 + 2|u||v| + |v|2
= (|u| + |v|)2.

Thus |u+ v| ≤ |u| + |v|.

28. a) u, v, and u+ v are the sides of a triangle. The trian-
gle inequality says that the length of one side cannot
exceed the sum of the lengths of the other two sides.

b) If u and v are parallel and point in the same direc-
tion, (or if at least one of them is the zero vector),
then |u+ v| = |u| + |v|.

29. u = 3
5 i + 4

5 j, v = 4
5 i− 3

5 j, w = k.

a) |u| =
√

9
25 + 16

25 = 1, |v| =
√

16
25 + 9

25 = 1, |w| = 1,

u • v = 12
25 − 12

25 = 0, u • w = 0, v • w = 0.

b) If r = x i+ yj+ zk, then

(r • u)u + (r • v)v+ (r • w)w

=
(

3

5
x + 4

5
y

)(
3

5
i + 4

5
j
)

+
(

4

5
x − 3

5
y

)(
4

5
i − 3

5
j
)

+ zk

= 9x + 16x

25
i+ 16y + 9y

25
j + zk

= x i+ yj+ zk = r.

30. Suppose |u| = |v| = |w| = 1, and u•v = u•w = v•w = 0,
and let r = au + bv+ ww. Then

r • u = au • u+ bv • u+ cw • u = a|u|2 + 0 + 0 = a.

Similarly, r • v = b and r • w = c.

31. Let u = w • a
|a|2 a, (the vector projection of w along a).

Let v = w − u. Then w = u + v. Clearly u is parallel to
a, and

v • a = w • a− w • a
|a|2 a • a = w • a −w • a = 0,

so v is perpendicular to a.

v

w

u

a

Fig. 10.2.31

32. Let n̂ be a unit vector that is perpendicular to u and lies
in the plane containing the origin and the points U , V ,
and P. Then û = u/|u| and n̂ constitute a standard ba-
sis in that plane, so each of the vectors v and r can be
expressed in terms of them:

v = sû+ tn̂
r = x û+ yn̂.

Since v is not parallel to u, we have t �= 0. Thus
n̂ = (1/t)(v − sû) and

r = x û+ y

t
(v− sû) = λu+ µv,

where λ = (t x − ys)/(t |u|) and µ = y/t .

33. Let |a|2 − 4rst = K 2, where K > 0. Now

|a|2 = a • a = (rx + sy) • (rx + sy)

= r2|x|2 + s2|y|2 + 2rsx • y

K 2 = |a|2 − 4rsx • y

= |rx− sy|2

(since x • y = t).
Therefore rx− sy = K û, for some unit vector û.
Since rx+ sy = a, we have

2rx = a+ K û
2sy = a− K û.

Thus

x = a + K û
2r

, y = a− K û
2s

,
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where K = √|a|2 − 4rst , and û is any unit vector. (The
solution is not unique.)

34. The derivation of the equation of the hanging cable given
in the text needs to be modified by replacing W = −δgsj
with W = −δgxj. Thus Tv = δgx , and the slope of the
cable satisfies

dy

dx
= δgx

H
= ax

where a = δg/H . Thus

y = 1

2
ax2 + C;

the cable hangs in a parabola.

35. If y = 1

a
cosh(ax), then y′ = sinh(ax), so

s =
∫ x

0

√

1 + sinh2(au) du =
∫ x

0
cosh(au) du

= sinh(au)

a

∣
∣
∣
∣

x

0
= 1

a
sinh(ax).

As shown in the text, the tension T at P has horizontal

and vertical components that satisfy Th = H = δg

a
and

Tv = δgs = δg

a
sinh(ax). Hence

|T| =
√

T 2
h + T 2

v =
δg

a
cosh(ax) = δgy.

36. The cable hangs along the curve y = 1

a
cosh(ax), and

its length from the lowest point at x = 0 to the support
tower at x = 45 m is 50 m. Thus

50 =
∫ 45

0

√

1+ sinh2(ax) dx = 1

a
sinh(45a).

The equation sinh(45a) = 50a has approximate solution
a ≈ 0.0178541. The vertical distance between the lowest
point on the cable and the support point is

1

a

(

cosh(45a) − 1
)

≈ 19.07 m.

37. The equation of the cable is of the form y = 1

a
cosh(ax).

At the point P where x = 10 m, the slope of the cable is
sinh(10a) = tan(55◦). Thus

a = 1

10
sinh−1(tan(55◦) ≈ 0.115423.

The length of the cable between x = 0 and x = 10 m is

L =
∫ 10

0

√

1 + sinh2(ax) dx

=
∫ 10

0
cosh(ax) dx = 1

a
sinh(ax)

∣
∣
∣
∣

10

0

= 1

a
sinh(10a) ≈ 12.371 m.

Section 10.3 The Cross Product in 3-Space
(page 559)

1. (i − 2j + 3k)× (3i + j− 4k) = 5i+ 13j + 7k

2. (j + 2k)× (−i − j + k) = 3i− 2j + k

3. If A = (1, 2, 0), B = (1, 0, 2), and C = (0, 3, 1), then−→AB = −2j+2k, −→AC = −i+ j+k, and the area of triangle
ABC is

|−→AB ×−→AC |
2

= | − 4i − 2j − 2k|
2

= √6 sq. units.

4. A vector perpendicular to the plane containing the three
given points is

(−ai + bj)× (−ai + ck) = bci+ acj + abk.

A unit vector in this direction is

bci+ acj+ abk√
b2c2 + a2c2 + a2b2

.

The triangle has area
1

2

√

b2c2 + a2c2 + a2b2.

5. A vector perpendicular to i+ j and j+ 2k is

±(i+ j)× (j + 2k) = ±(2i− 2j+ k),

which has length 3. A unit vector in that direction is

±
(

2

3
i− 2

3
j + 1

3
k
)

.

6. A vector perpendicular to u = 2i − j − 2k and to
v = 2i − 3j + k is the cross product

u× v =
∣
∣
∣
∣
∣

i j k
2 −1 −2
2 −3 1

∣
∣
∣
∣
∣
= −7i− 6j − 4k,

which has length
√

101. A unit vector with positive k
component that is perpenducular to u and v is

−1√
101

u× v = 1√
101

(7i + 6j+ 4k).
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7. Since u makes zero angle with itself, |u × u| = 0 and
u× u = 0.

8. u× v =
∣
∣
∣
∣
∣

i j k
u1 u2 u3
v1 v2 v3

∣
∣
∣
∣
∣

= −
∣
∣
∣
∣
∣

i j k
v1 v2 v3
u1 u2 u3

∣
∣
∣
∣
∣
= −v× u.

9. (u + v)× w =
∣
∣
∣
∣
∣

i j k
u1 + v1 u2 + v2 u3 + v3
w1 w2 w3

∣
∣
∣
∣
∣

=
∣
∣
∣
∣
∣

i j k
u1 u2 u3
w1 w2 w3

∣
∣
∣
∣
∣
+
∣
∣
∣
∣
∣

i j k
v1 v2 v3
w1 w2 w3

∣
∣
∣
∣
∣

= u× w+ v× w.

10. (tu)× v =
∣
∣
∣
∣
∣

i j k
tu1 tu2 tu3
v1 v2 v3

∣
∣
∣
∣
∣

= t

∣
∣
∣
∣
∣

i j k
u1 u2 u3
v1 v2 v3

∣
∣
∣
∣
∣
= t (u × v),

u× (tv) = −(tv)× u
= −t (v × u) = t (u × v).

11. u • (u × v)

= u1

∣
∣
∣
∣

u2 u3
v2 v3

∣
∣
∣
∣
− u2

∣
∣
∣
∣

u1 u3
v1 v3

∣
∣
∣
∣
+ u3

∣
∣
∣
∣

u1 u2
v1 v2

∣
∣
∣
∣

= u1u2v3 − u1v2u3 − u2u1v3

+ u2v1u3 + u3u1v2 − u3v1u2 = 0,

v • (u × v) = −v • (v × u) = 0.

12. Both u = cosβ i + sinβ j and v = cosα i + sinα j are
unit vectors. They make angles β and α, respectively,
with the positive x-axis, so the angle between them is
|α − β| = α − β, since we are told that 0 ≤ α − β ≤ π .
They span a parallelogram (actually a rhombus) having
area

|u× v| = |u||v| sin(α − β) = sin(α − β).

But

u × v =
∣
∣
∣
∣
∣

i j k
cos β sin β 0
cosα sinα 0

∣
∣
∣
∣
∣
= (sin α cos β − cosα sinβ)k.

Because v is displaced counterclockwise from u, the
cross product above must be in the positive k direction.
Therefore its length is the k component. Therefore

sin(α − β) = sinα cosβ − cosα sin β.

13. Suppose that u+ v+w = 0. Then

u × v+ v× v+ w× v = 0× v = 0.

Thus u × v+w× v = 0.
Thus u × v = −w× v = v× w.
By symmetry, we also have v× w = w× u.

14. The base of the tetrahedron is a triangle spanned by v
and w, which has area

A = 1

2
|v× w|.

The altitude h of the tetrahedron (measured perpendicular
to the plane of the base) is equal to the length of the pro-
jection of u onto the vector v×w (which is perpendicular
to the base). Thus

h = |u • (v × w)|
|v× w| .

The volume of the tetrahedron is

V = 1

3
Ah = 1

6
|u • (v × w)|

= 1

6
|
∣
∣
∣
∣
∣

u1 u2 u3
v1 v2 v3
w1 w2 w3

∣
∣
∣
∣
∣
|.

h

u

w

v

h

u× v

Fig. 10.3.14

15. The tetrahedron with vertices (1, 0, 0), (1, 2, 0), (2, 2, 2),
and (0, 3, 2) is spanned by u = 2j, v = i + 2j + 2k, and
w = −i+ 3j + 2k. By Exercise 14, its volume is

V = 1

6
|
∣
∣
∣
∣
∣

0 2 0
1 2 2
−1 3 2

∣
∣
∣
∣
∣
| = 4

3
cu. units.

16. Let the cube be as shown in the figure. The required
parallelepiped is spanned by ai+aj, aj+ak, and ai+ak.
Its volume is

V = |
∣
∣
∣
∣
∣

a a 0
0 a a
a 0 a

∣
∣
∣
∣
∣
| = 2a3 cu. units.
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x
y

z

(0,a,a)

(a,a,0)

(a,0,a)

Fig. 10.3.16

17. The points A = (1, 1,−1), B = (0, 3,−2),
C = (−2, 1, 0), and D = (k, 0, 2) are coplanar if
(
−→
AB ×−→AC) • −→AD = 0. Now

−→
AB ×−→AC =

∣
∣
∣
∣
∣

i j k
−1 2 −1
−3 0 1

∣
∣
∣
∣
∣
= 2i + 4j + 6k.

Thus the four points are coplanar if

2(k − 1)+ 4(0 − 1)+ 6(2 + 1) = 0,

that is, if k = −6.

18. u • (v × w) =
∣
∣
∣
∣
∣

u1 u2 u3
v1 v2 v3
w1 w2 w3

∣
∣
∣
∣
∣

= −
∣
∣
∣
∣
∣

v1 v2 v3
u1 u2 u3
w1 w2 w3

∣
∣
∣
∣
∣

=
∣
∣
∣
∣
∣

v1 v2 v3
w1 w2 w3
u1 u2 u3

∣
∣
∣
∣
∣

= v • (w× u)
= w • (u × v) (by symmetry).

19. If u • (v × w) �= 0, and x = λu+ µv + νw, then

x • (v× w)
= λu • (v× w)+ µv • (v × w)+ νw • (v× w)
= λu • (v× w).

Thus

λ = x • (v × w)
u • (v × w)

.

Since u • (v × w) = v • (w × u) = w • (u × v), we have,
by symmetry,

µ = x • (w × u)
u • (v× w)

, ν = x • (u× v)
u • (v × w)

.

20. If v×w �= 0, then (v×w) • (v×w) �= 0. By the previous
exercise, there exist constants λ, µ and ν such that

u = λv+ µw + ν(v× w).

But v× w is perpendicular to both v and w, so

u • (v ×w) = 0+ 0+ ν(v× w) • (v × w).

If u • (v × w) = 0, then ν = 0, and

u = λv+ µw.

21. u = i+ 2j+ 3k
v = 2i− 3j
w = j− k
u× (v ×w) = u × (3i + 2j+ 2k) = −2i+ 7j− 4k
(u × v)× w = (9i + 6j− 7k)× w = i+ 9j+ 9k.
u× (v ×w) lies in the plane of v and w;

(u × v)× w lies in the plane of u and v.

22. u • v × w makes sense in that it must mean u • (v × w).
((u • v) × w makes no sense since it is the cross product
of a scalar and a vector.)

u × v × w makes no sense. It is ambiguous, since
(u × v)× w and u× (v × w) are not in general equal.

23. As suggested in the hint, let the x-axis lie in the direction
of v, and let the y-axis be such that w lies in the xy-
plane. Thus

v = v1i, w = w1i+w2j.

Thus v ×w = v1w2i× j = v1w2k, and

u× (v × w) = (u1i + u2j+ u3k)× (v1w2k)
= u1v1w2i× k+ u2v1w2j× k
= −u1v1w2i− u1v1w2j.

But
(u • w)v − (u • v)w
= (u1w1 + u2w2)v1i − u1v1(w1i+ w2j)
= u2v1w2i− u1v1w2j.

Thus u × (v× w) = (u • w)v − (u • v)w.

24. If u, v, and w are mutually perpendicular, then v × w is
parallel to u, so u × (v× w) = 0. In this case,
u • (v × w) = ±|u||v||w|; the sign depends on whether u
and v× w are in the same or opposite directions.

25. Applying the result of Exercise 23 three times, we obtain

u × (v× w)+ v× (w × u)+w× (u × v)
= (u • w)v − (u • v)w + (v • u)w − (v • w)u
+ (w • v)u − (w • u)v

= 0.
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26. If a = −i+ 2j + 3k and x = x i+ yj+ zk, then

a× x =
∣
∣
∣
∣
∣

i j k
−1 2 3
x y z

∣
∣
∣
∣
∣

= (2z − 3y)i+ (3x + z)y− (y + 2x)k
= i+ 5j− 3k,

provided 2z − 3y = 1, 3x + z = 5, and −y − 2x = −3.
This system is satisfied by x = t , y = 3− 2t , z = 5 − 3t ,
for any real number t . Thus

x = t i+ (3− 2t)j + (5− 3t)k

gives a solution of a × x = i + 5j − 3k for any t . These
solutions constitute a line parallel to a.

27. Let a = −i+ 2j+ 3k and b = i+ 5j. If x is a solution of
a× x = b, then

a • b = a • (a × x) = 0.

However, a • b �= 0, so there can be no such solution x.

28. The equation a × x = b can be solved for x if and only
if a • b = 0. The “only if” part is demonstrated in the
previous solution. For the “if” part, observe that if
a • b = 0 and x0 = (b × a)/|a|2, then by Exercise 23,

a × x0 = 1

|a|2 a× (b × a) = (a • a)b − (a • b)a
|a|2 = b.

The solution x0 is not unique; as suggested by the exam-
ple in Exercise 26, any multiple of a can be added to it
and the result will still be a solution. If x = x0 + ta, then

a× x = a× x0 + ta× a = b + 0 = b.

Section 10.4 Planes and Lines (page 567)

1. a) x2+ y2+z2 = z2 represents a line in 3-space, namely
the z-axis.

b) x + y + z = x + y + z is satisfied by every point in
3-space.

c) x2 + y2 + z2 = −1 is satisfied by no points in (real)
3-space.

2. The plane through (0, 2,−3) normal to 4i − j − 2k has
equation

4(x − 0)− (y − 2)− 2(z + 3) = 0,

or 4x − y − 2z = 4.

3. The plane through the origin having normal i− j+ 2k has
equation x − y + 2z = 0.

4. The plane passing through (1, 2, 3), parallel to the plane
3x + y − 2z = 15, has equation 3z + y − 2z = 3 + 2− 6,
or 3x + y − 2z = −1.

5. The plane through (1, 1, 0), (2, 0, 2), and (0, 3, 3) has
normal

(i − j+ 2k)× (i − 2j− 3k) = 7i+ 5j − k.

It therefore has equation

7(x − 1)+ 5(y − 1)− (z − 0) = 0,

or 7x + 5y − z = 12.

6. The plane passing through (−2, 0, 0), (0, 3, 0), and
(0, 0, 4) has equation

x

−2
+ y

3
+ z

4
= 1,

or 6x − 4y − 3z = −12.

7. The normal n to a plane through (1, 1, 1) and (2, 0, 3)
must be perpendicular to the vector i − j + 2k joining
these points. If the plane is perpendicular to the plane
x + 2y − 3z = 0, then n must also be perpendicular to
i+ 2j− 3k, the normal to this latter plane. Hence we can
use

n = (i− j+ 2k)× (i + 2j − 3k) = −i+ 5j+ 3k.

The plane has equation

−(x − 1)+ 5(y − 1)+ 3(z − 1) = 0,

or x − 5y − 3z = −7.

8. Since (−2, 0,−1) does not lie on x − 4y + 2z = −5, the
required plane will have an equation of the form

2x + 3y − z + λ(x − 4y + 2z + 5) = 0

for some λ. Thus

−4+ 1+ λ(−2− 2+ 5) = 0,

so λ = 3. The required plane is 5x − 9y + 5z = −15.

9. A plane through the line x + y = 2, y − z = 3 has
equation of the form

x + y − 2+ λ(y − z − 3) = 0.

This plane will be perpendicular to 2x + 3y + 4z = 5 if

(2)(1) + (1 + λ)(3) − (λ)(4) = 0,
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that is, if λ = 5. The equation of the required plane is

x + 6y − 5z = 17.

10. Three distinct points will not determine a unique plane
through them if they all lie on a straight line. If the
points have position vectors r1, r2, and r3, then they will
all lie on a straight line if

(r2 − r1)× (r3 − r1) = 0.

11. If the four points have position vectors ri , (1 ≤ i ≤ 4),
then they are coplanar if, for example,

(r2 − r1) •
[

(r3 − r1)× (r4 − r1)
]

= 0

(or if they satisfy any similar such condition that asserts
that the tetrahedron whose vertices they are has zero vol-
ume).

12. x + y + z = λ is the family of all (parallel) planes normal
to the vector i+ j + k.

13. x + λy + λz = λ is the family of all planes containing the
line of intersection of the planes x = 0 and y + z = 1,
except the plane y + z = 1 itself. All these planes pass
through the points (0, 1, 0) and (0, 0, 1).

14. The distance from the planes

λx +
√

1 − λ2 y = 1

to the origin is 1/
√
λ2 + 1− λ2 = 1. Hence the equation

represents the family of all vertical planes at distance 1
from the origin. All such planes are tangent to the cylin-
der x2 + y2 = 1.

15. The line through (1, 2, 3) parallel to 2i − 3j − 4k has
equations given in vector parametric form by

r = (1 + 2t)i + (2 − 3t)j + (3 − 4t)k,

or in scalar parametric form by

x = 1+ 2t, y = 2− 3t, z = 3− 4t,

or in standard form by

x − 1

2
= y − 2

−3
− z − 3

−4
.

16. The line through (−1, 0, 1) perpendicular to the plane
2x − y + 7z = 12 is parallel to the normal vector
2i− j+ 7k to that plane. The equations of the line are, in
vector parametric form,

r = (−1+ 2t)i − tj + (1 + 7t)k,

or in scalar parametric form,

x = −1+ 2t, y = −t, z = 1+ 7t,

or in standard form

x + 1

2
= y

−1
= z − 1

7
.

17. A line parallel to the line with equations

x + 2y − z = 2, 2x − y + 4z = 5

is parallel to the vector

(i + 2j − k)× (2i − j+ 4k) = 7i− 6j− 5k.

Since the line passes through the origin, it has equations

r = 7t i− 6tj− 5tk (vector parametric)

x = 7t, y = −6t, z = −5t (scalar parametric)
x

7
= y

−6
= z

−5
(standard form).

18. A line parallel to x + y = 0 and to x − y + 2z = 0
is parallel to the cross product of the normal vectors to
these two planes, that is, to the vector

(i + j)× (i − j + 2k) = 2(i − j− k).

Since the line passes through (2,−1,−1), its equations
are, in vector parametric form

r = (2 + t)i− (1 + t)j − (1+ t)k,

or in scalar parametric form

x = 2+ t, y = −(1 + t), z = −(1+ t),

or in standard form

x − 2 = −(y + 1) = −(z + 1).

19. A line making equal angles with the positive directions
of the coordinate axes is parallel to the vector i + j + k.
If the line passes through the point (1, 2,−1), then it has
equations

r = (1 + t)i + (2+ t)j + (−1+ t)k (vector parametric)

x = 1+ t, y = 2+ t, z = −1+ t (scalar parametric)

x − 1 = y − 2 = z + 1 (standard form).
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20. The line r = (1− 2t)i+ (4+ 3t)j+ (9− 4t)k has standard
form

x − 1

−2
= y − 4

3
= z − 9

−4
.

21. The line

{
x = 4− 5t
y = 3t
z = 7

has standard form

x − 4

−5
= y

3
, z = 7.

22. The line

{

x − 2y + 3z = 0
2x + 3y − 4z = 4

is parallel to the vector

(i − 2j+ 3k)× (2i + 3j − 4k) = −i+ 10j + 7k.

We need a point on this line. Putting z = 0, we get

x − 2y = 0, 2x + 3y = 4.

The solution of this system is y = 4/7, x = 8/7. A
possible standard form for the given line is

x − 8

7
−1

=
y − 4

7
10
= z

7
,

though, of course, this answer is not unique as the coor-
dinates of any point on the line could have been used.

23. The equations
⎧

⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

x = x1 + t (x2 − x1)

y = y1 + t (y2 − y1)

z = z1 + t (z2 − z1)

certainly represent a straight line. Since
(x, y, z) = (x1, y1, z1) if t = 0, and
(x, y, z) = (x2, y2, z2) if t = 1, the line must pass
through P1 and P2.

24. The point on the line corresponding to t = −1 is the
point P3 such that P1 is midway between P3 and P2.
The point on the line corresponding to t = 1/2 is the
midpoint between P1 and P2.
The point on the line corresponding to t = 2 is the point
P4 such that P2 is the midpoint between P1 and P4.

25. Let ri be the position vector of Pi (1 ≤ i ≤ 4). The
line P1 P2 intersects the line P3 P4 in a unique point if
the four points are coplanar, and P1 P2 is not parallel to
P3 P4. It is therefore sufficient that

(r2 − r1)× (r4 − r3) �= 0, and

(r3 − r1) •
[

(r2 − r1)× (r4 − r3)
]

= 0.

(Other similar answers are possible.)

26. The distance from (0, 0, 0) to x + 2y + 3z = 4 is

4√
12 + 22 + 32

= 4√
14

units.

27. The distance from (1, 2, 0) to 3x − 4y − 5z = 2 is

|3− 8 − 0− 2|√
32 + 42 + 52

= 7

5
√

2
units.

28. A vector parallel to the line x+ y+z = 0, 2x− y−5z = 1
is

a = (i+ j+ k)× (2i− j− 5k) = −4i+ 7j− 3k.

We need a point on this line: if z = 0 then x + y = 0
and 2x − y = 1, so x = 1/3 and y = −1/3. The position
vector of this point is

r1 = 1

3
i − 1

3
j.

The distance from the origin to the line is

s = |r1 × a|
|a| = |i+ j + k|√

74
=
√

3

74
units.

29. The line

{

x + 2y = 3
y + 2z = 3

contains the points (1, 1, 1) and

(3, 0, 3/2), so is parallel to the vector 2i − j + 1

2
k, or to

4i− 2j+ k.

The line
{

x + y + z = 6
x − 2z = −5

contains the points (−5, 11, 0)

and (−1, 5, 2), and so is parallel to the vector 4i−6j+2k,
or to 2i − 3j + k.
Using the values

r1 = i+ j+ k
r2 = −i+ 5j+ 2k

a1 = 4i− 2j + k
a2 = 2i− 3j + k,

we calculate the distance between the two lines by the
formula in Section 10.4 as

s = |(r1 − r2) • (a1 × a2)|
|a1 × a2|

= |(2i − 4j − k) • (i− 2j − 8k)|
|i − 2j − 8k|

= 18√
69

units.

400



INSTRUCTOR’S SOLUTIONS MANUAL SECTION 10.5 (PAGE 570)

30. The line x − 2 = y + 3

2
= z − 1

4
passes through the point

(2,−3, 1), and is parallel to a = i+ 2j + 4k.
The plane 2y − z = 1 has normal n = 2j− k.
Since a • n = 0, the line is parallel to the plane.
The distance from the line to the plane is equal to the
distance from (2,−3, 1) to the plane 2y − z = 1, so is

D = | − 6− 1− 1|√
4+ 1

= 8√
5

units.

31. (1 − λ)(x − x0) = λ(y − y0) represents any line in the
xy-plane passing through (x0, y0). Therefore, in 3-space
the pair of equations

(1 − λ)(x − x0) = λ(y − y0), z = z0

represents all straight lines in the plane z = z0 which
pass through the point (x0, y0, z0).

32.
x − x0√
1− λ2

= y − y0

λ
= z − z0 represents all lines through

(x0, y0, z0) parallel to the vectors

a =
√

1 − λ2i+ λj+ k.

All such lines are generators of the circular cone

(z − z0)
2 = (x − x0)

2 + (y − y0)
2,

so the given equations specify all straight lines lying on
that cone.

33. The equation

(A1x + B1y + C1z + D1)(A2x + B2y + C2z + D2) = 0

is satisfied if either A1x + B1y + C1z + D1 = 0 or
A2x + B2y + C2z + D2 = 0, that is, if (a, y, z) lies on
either of these planes. It is not necessary that the point
lie on both planes, so the given equation represents all
the points on each of the planes, not just those on the
line of intersection of the planes.

Section 10.5 Quadric Surfaces (page 570)

1. x2 + 4y2 + 9z2 = 36

x2

62 +
y2

32 +
z2

22 = 1

This is an ellipsoid with centre at the origin and semi-
axes 6, 3, and 2.

2. x2 + y2 + 4z2 = 4 represents an oblate spheroid, that is,
an ellipsoid with its two longer semi-axes equal. In this
case the longer semi-axes have length 2, and the shorter
one (in the z direction) has length 1. Cross-sections in
planes perpendicular to the z-axis between z = −1 and
z = 1 are circles.

3. 2x2 + 2y2 + 2z2 − 4x + 8y − 12z + 27 = 0

2(x2 − 2x + 1)+ 2(y2 + 4y + 4)+ 2(z2 − 6z + 9)

= −27+ 2+ 8+ 18

(x − 1)2 + (y + 2)2 + (z − 3)2 = 1

2

This is a sphere with radius 1/
√

2 and centre (1,−2, 3).

4. x2 + 4y2 + 9z2 + 4x − 8y = 8

(x + 2)2 + 4(y − 1)2 + 9z2 = 8 + 8 = 16

(x + 2)2

42 + (y − 1)2

22 + z2

(4/3)2
= 1

This is an ellipsoid with centre (−2, 1, 0) and semi-axes
4, 2, and 4/3.

5. z = x2 + 2y2 represents an elliptic paraboloid with vertex
at the origin and axis along the positive z-axis. Cross-
sections in planes z = k > 0 are ellipses with semi-axes√

k and
√

k/2.

x y

z

z=x2+2y2

Fig. 10.5.5

6. z = x2 − 2y2 represents a hyperbolic paraboloid.

x
y

z

z=x2−2y2

Fig. 10.5.6

7. x2 − y2 − z2 = 4 represents a hyperboloid of two sheets
with vertices at (±2, 0, 0) and circular cross-sections in
planes x = k, where |k| > 2.
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x

y

z

x2−y2−z2=4

Fig. 10.5.7

8. −x2 + y2 + z2 = 4 represents a hyperboloid of one sheet,
with circular cross-sections in all planes perpendicular to
the x-axis.

x

y

z

y

−x2+y2+z2=4

Fig. 10.5.8

9. z = xy represents a hyperbolic paraboloid containing the
x- and y-axes.

x

y

z

z=xy

Fig. 10.5.9

10. x2 + 4z2 = 4 represents an elliptic cylinder with axis
along the y-axis.

x

y

z

x2+4z2=4

Fig. 10.5.10

11. x2 − 4z2 = 4 represents a hyperbolic cylinder with axis
along the y-axis.

x

y

z

x

x2−4z2=4

Fig. 10.5.11

12. y = z2 represents a parabolic cylinder with vertex line
along the x-axis.

x
y

z

y=z2

Fig. 10.5.12

13. x = z2+z =
(

z + 1

2

)2

−1

4
represents a parabolic cylinder

with vertex line along the line z = −1/2, x = −1/4.
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x

y

z

x=z2+z

Fig. 10.5.13

14. x2 = y2 + 2z2 represents an elliptic cone with vertex at
the origin and axis along the x-axis.

x

y

z

x2=y2+2z2

Fig. 10.5.14

15. (z − 1)2 = (x − 2)2 + (y − 3)2 represents a circular
cone with axis along the line x = 2, y = 3, and vertex at
(2, 3, 1)

x

y

z

(2,3,1)

(z−1)2=(x−2)2+(y−3)2

Fig. 10.5.15

16. (z−1)2 = (x−2)2+ (y−3)2+4 represents a hyperboloid
of two sheets with centre at (2, 3, 1), axis along the line
x = 2, y = 3, and vertices at (2, 3,−1) and (2, 3, 3).

x

y

z

(2,3,1)

(z−1)2=(x−2)2+(y−3)2+4

Fig. 10.5.16

17.
{

x2 + y2 + z2 = 4
x + y + z = 1

represents the circle of intersection of

a sphere and a plane. The circle lies in the plane
x + y + z = 1, and has centre (1/3, 1/3, 1/3) and radius√

4− (3/9) = √11/3.

x
y

z

(
1
3 ,

1
3 ,

1
3

)

x2+y2+z2=4

x+y+z=1

Fig. 10.5.17

18.
{

x2 + y2 = 1
z = x + y

is the ellipse of intersection of the plane

z = x + y and the circular cylinder x2 + y2 = 1. The
centre of the ellipse is at the origin, and the ends of the
major axis are ±(1/√2, 1/

√
2,
√

2).

x

y

z

z=x+y

x2+y2=1

Fig. 10.5.18
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19.
{

z2 = x2 + y2

z = 1+ x
is the parabola in which the plane

z = 1 + x intersects the circular cone z2 = x2 + y2. (It
is a parabola because the plane is parallel to a generator
of the cone, namely the line z = x , y = 0.) The vertex
of the parabola is (−1/2, 0, 1/2), and its axis is along the
line y = 0, z = 1+ x .

x y

z

z=1+x

z2=x2+y2

Fig. 10.5.19

20.
{

x2 + 2y2 + 3z2 = 6
y = 1

is an ellipse in the plane

y = 1. Its projection onto the xz-plane is the ellipse
x2 + 3z2 = 4. One quarter of the ellipse is shown in the
figure.

x
y

z

y=1

√
2

√
3

x2+2y2+3z2=6
√

6

Fig. 10.5.20

21.
x2

a2 +
y2

b2 −
z2

c2 = 1

x2

a2 −
z2

c2 = 1− y2

b2
( x

a
+ z

c

)( x

a
− z

c

)

=
(

1+ y

b

)(

1− y

b

)

Family 1:

⎧

⎨

⎩

x

a
+ z

c
= λ

(

1+ y

b

)

λ
( x

a
− z

c

)

= 1− y

b
.

Family 2:

⎧

⎨

⎩

x

a
+ z

c
= µ

(

1− y

b

)

µ
( x

a
− z

c

)

= 1+ y

b
.
.

22. z = xy

Family 1:

{

z = λx
λ = y.

Family 2:
{ z = µy

µ = x .

23. The cylinder 2x2 + y2 = 1 intersects horizontal planes
in ellipses with semi-axes 1 in the y direction and 1/

√
2

in the x direction. Tilting the plane in the x direction
will cause the shorter semi-axis to increase in length.
The plane z = cx intersects the cylinder in an ellipse
with principal axes through the points (0,±1, 0) and
(±1/
√

2, 0,±c/
√

2). The semi-axes will be equal (and
the ellipse will be a circle) if (1/2) + (c2/2) = 1, that is,
if c = ±1. Thus cross-sections of the cylinder perpendic-
ular to the vectors a = i± k are circular.

24. The plane z = cx + k intersects the elliptic cone
z2 = 2x2 + y2 on the cylinder

c2x2 + 2ckx + k2 = 2x2 + y2

(2 − c2)x2 − 2ckx + y2 = k2

(2 − c2)

(

x − ck

2− c2

)2

+ y2 = k2 + c2k2

2− c2 =
2k2

2− c2

(x − x0)
2

a2 + y2

b2 = 1,

where x0 = ck

2− c2 , a2 = 2k2

(2 − c2)2
, and b2 = 2k2

2− c2 .

As in the previous exercise, z = cx + k intersects the
cylinder (and hence the cone) in an ellipse with principal
axes joining the points

(x0 − a, 0, c(x0 − a)+ k) to (x0 + a, 0, c(x0 + a)+ k),

and (x0,−b, cx0 + k) to (x0, b, cx0 + k).

The centre of this ellipse is (x0, 0, cx0 + k). The ellipse
is a circle if its two semi-axes have equal lengths, that is,
if

a2 + c2a2 = b2,

that is,

(1+ c2)
2k2

(2 − c2)2
= 2k2

2− c2
,

or 1 + c2 = 2 − c2. Thus c = ±1/
√

2. A vector normal
to the plane z = ±(x/√2)+ k is a = i ±√2k.

Section 10.6 A Little Linear Algebra
(page 579)

1.

( 3 0 −2
1 1 2
−1 1 −1

)( 2 1
3 0
0 −2

)

=
( 6 7

5 −3
1 1

)

2.

( 1 1 1
0 1 1
0 0 1

)( 1 1 1
0 1 1
0 0 1

)

=
( 1 2 3

0 1 2
0 0 1

)

3.
(

a b
c d

)(

w x
y z

)

=
(

aw + by ax + bz
cw+ dy cx + dz

)
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4.
(

w x
y z

)(

a b
c d

)

=
(

aw + cx bw + dx
ay + cz by + dz

)

5. AAT =
⎛

⎜
⎝

1 1 1 1
0 1 1 1
0 0 1 1
0 0 0 1

⎞

⎟
⎠

⎛

⎜
⎝

1 0 0 0
1 1 0 0
1 1 1 0
1 1 1 1

⎞

⎟
⎠

=
⎛

⎜
⎝

4 3 2 1
3 3 2 1
2 2 2 1
1 1 1 1

⎞

⎟
⎠

A2 =
⎛

⎜
⎝

1 1 1 1
0 1 1 1
0 0 1 1
0 0 0 1

⎞

⎟
⎠

⎛

⎜
⎝

1 1 1 1
0 1 1 1
0 0 1 1
0 0 0 1

⎞

⎟
⎠

=
⎛

⎜
⎝

1 2 3 4
0 1 2 3
0 0 1 2
0 0 0 1

⎞

⎟
⎠

6. x =
( x

y
z

)

, A =
( a p q

p b r
q r c

)

xxT =
( x

y
z

)

(x, y, z) =
( x2 xy xz

xy y2 yz
xz yz z2

)

xT x = (x, y, z)

( x
y
z

)

= (x2 + y2 + z2)

xT Ax = (x, y, z)

( a p q
p b r
q r c

)( x
y
z

)

= (x, y, z)

( ax + py + qz
px + by + r z
qx + r y + cz

)

= ax2 + by2 + cz2 + 2pxy + 2qxz + 2r yz

7.

∣
∣
∣
∣
∣
∣
∣

2 3 −1 0
4 0 2 1
1 0 −1 1
−2 0 0 1

∣
∣
∣
∣
∣
∣
∣

= −3

∣
∣
∣
∣
∣

4 2 1
1 −1 1
−2 0 1

∣
∣
∣
∣
∣

= −3

(

−2

∣
∣
∣
∣

1 1
−2 1

∣
∣
∣
∣
− 1

∣
∣
∣
∣

4 1
−2 1

∣
∣
∣
∣

)

= 6(3)+ 3(6) = 36

8.

∣
∣
∣
∣
∣
∣
∣

1 1 1 1
1 2 3 4
−2 0 2 4
3 −3 2 −2

∣
∣
∣
∣
∣
∣
∣

= −2

∣
∣
∣
∣
∣

1 1 1
2 3 4
−3 2 −2

∣
∣
∣
∣
∣
+ 2

∣
∣
∣
∣
∣

1 1 1
1 2 4
3 −3 −2

∣
∣
∣
∣
∣

− 4

∣
∣
∣
∣
∣

1 1 1
1 2 3
3 −3 2

∣
∣
∣
∣
∣

= −2

∣
∣
∣
∣
∣

1 1 1
0 1 2
0 5 1

∣
∣
∣
∣
∣
+ 2

∣
∣
∣
∣
∣

1 1 1
0 1 3
0 −6 −5

∣
∣
∣
∣
∣

− 4

∣
∣
∣
∣
∣

1 1 1
0 1 2
0 −6 −1

∣
∣
∣
∣
∣

= −2

∣
∣
∣
∣

1 2
5 1

∣
∣
∣
∣
+ 2

∣
∣
∣
∣

1 3
−6 −5

∣
∣
∣
∣
− 4

∣
∣
∣
∣

1 2
−6 −1

∣
∣
∣
∣

= −2(−9)+ 2(13)− 4(11) = 0

9.

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

a11 a12 a13 · · · a1n

0 a22 a23 · · · a2n

0 0 a33 · · · a3n
...

...
...

. . .
...

0 0 0 · · · ann

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

= a11

∣
∣
∣
∣
∣
∣
∣
∣

a22 a23 · · · a2n

0 a33 · · · a3n
...

...
. . .

...

0 0 · · · ann

∣
∣
∣
∣
∣
∣
∣
∣

= a11a22

∣
∣
∣
∣
∣
∣

a33 · · · a3n
...

. . .
...

0 · · · ann

∣
∣
∣
∣
∣
∣

= a11a22a33 · · · ann

(or use induction on n)

10.
∣
∣
∣
∣

1 1
x y

∣
∣
∣
∣
= y − x . If

f (x, y, z) =
∣
∣
∣
∣
∣

1 1 1
x y z
x2 y2 z2

∣
∣
∣
∣
∣
,

then f is a polynomial of degree 2 in z.
Since f (x, y, x) = 0 and f (x, y, y) = 0, we must have
f (x, y, z) = A(z − x)(z − y) for some A independent of
z. But

Axy = f (x, y,0) =
∣
∣
∣
∣
∣

1 1 1
x y 0
x2 y2 0

∣
∣
∣
∣
∣
= xy(y − x),

so A = y − x and

f (x, y, z) = (y − x)(z − x)(z − y).
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Generalization:

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

1 1 1 · · · 1
x1 x2 x3 · · · xn

x2
1 x2

2 x2
3 · · · x2

n
...

...
...

. . .
...

xn−1
1 xn−1

2 xn−1
3 · · · xn−1

n

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

=
∏

1≤i< j≤n

(xj − xi ).

11. Let A =
(

a b
c d

)

, B =
(


 m
n p

)

, C =
(

w x
y z

)

. Then

(AB)C =
(

a
+ bn am + bp
c
+ dn cm + dp

)(

w x
y z

)

=
(

a
w + bnw + amy + bpy a
x + bnx + amz + bpz
c
w + dnw + cmy + dpy c
x + dnx + cmz + dpz

)

A(BC) =
(

a b
c d

)(


w + my 
x +mz
nw + py nx + pz

)

=
(

a
w + amy + bnw + bpy a
x + amz + bnx + bpz
c
w + cmy + dnw + dpy c
x + cmz + dnx + dpz

)

Thus (AB)C = A(BC).

12. If A =
(

a b
c d

)

, then AT =
(

a c
b d

)

, and

det(A) = ad − bc = det(AT ).

We generalize this by induction.
Suppose det(BT )=det(B) for any (n− 1)× (n− 1) matrix,
where n ≥ 3. Let

A =

⎛

⎜
⎜
⎝

a11 a12 · · · a1n

a21 a22 · · · a2n
...

...
. . .

...

an1 an2 · · · ann

⎞

⎟
⎟
⎠

be an n × n matrix. If det(A) is expanded in minors
about the first row, and det(AT ) is expanded in minors
about the first column, the corresponding terms in these
expansions are equal by the induction hypothesis. (The
(n − 1) × (n − 1) matrices whose determinants appear
in one expansion are the transposes of those in the other
expansion.) Therefore det(AT )=det(A) for any square
matrix A.

13. Let A =
(

a b
c d

)

and B =
(

w x
y z

)

. Then

AB =
(

aw + by ax + bz
cw + dy cx + dz

)

.

Therefore,

det(A)det(B) = (ad − bc)(wz − xy)

= adwz − adxy − bcwz + bcxy

det(AB) = (aw + by)(cx + dz)− (ax + bz)(cw + dy)

= awcx + awdz + bycx + bydz

− axwc − axdy − bzcw− bzdy

= adwz − adxy − bcwz + bcxy

= det(A)det(B).

14. If Aθ =
(

cos θ sin θ
− sin θ cos θ

)

, then

A−θ =
(

cos(−θ) sin(−θ)
− sin(−θ) cos(−θ)

)

=
(

cos θ − sin θ
sin θ cos θ

)

,

and

AθA−θ =
(

1 0
0 1

)

= I .

Thus A−θ = (Aθ )
−1.

15. Let A =
( 1 1 1

0 1 1
0 0 1

)

, A−1 =
( a b c

d e f
g h i

)

. Since

AA−1 = I we must have

a + d + g = 1

d + g = 0

g = 0

b + e + h = 0

e + h = 1

h = 0

c + f + i = 0

f + i = 0

i = 1.

Thus a = 1, d = g = 0, h = 0, e = 1, b = −1, i = 1,
f = −1, c = 0, and so

A−1 =
( 1 −1 0

0 1 −1
0 0 1

)

.

16. Let A =
( 1 0 −1
−1 1 0
2 1 3

)

, A−1 =
( a b c

d e f
g h i

)

. Since

AA−1 = I we must have

a − g = 1

−a + d = 0

2a + d + 3g = 0

b − h = 0

−b + e = 1

2b + e + 3h = 0

c − i = 0

−c + f = 0

2c + f + 3i = 1.

Solving these three systems of equations, we get

A−1 =
⎛

⎝

1
2 − 1

6
1
6

1
2

5
6

1
6

− 1
2 − 1

6
1
6

⎞

⎠ .

17. The given system of equations is

A

( x
y
z

)

=
(−2

1
13

)

.
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Thus ( x
y
z

)

=A−1

(−2
1
13

)

=
( 1

2
3

)

,

so x = 1, y = 2, and z = 3.

18. If A is the matrix of Exercises 16 and 17 then
det(A) = 6. By Cramer’s Rule,

x = 1

6

∣
∣
∣
∣
∣

−2 0 −1
1 1 0
13 1 3

∣
∣
∣
∣
∣
= 6

6
= 1

y = 1

6

∣
∣
∣
∣
∣

1 −2 −1
−1 1 0
2 13 3

∣
∣
∣
∣
∣
= 12

6
= 2

z = 1

6

∣
∣
∣
∣
∣

1 0 −2
−1 1 1
2 1 13

∣
∣
∣
∣
∣
= 18

6
= 3.

19. A =
⎛

⎜
⎝

1 1 1 1
1 1 1 −1
1 1 −1 −1
1 −1 −1 −1

⎞

⎟
⎠

det(A) =

∣
∣
∣
∣
∣
∣
∣

0 0 0 2
0 0 2 0
0 2 0 0
1 −1 −1 −1

∣
∣
∣
∣
∣
∣
∣

= −2

∣
∣
∣
∣
∣

0 0 2
0 2 0
1 −1 −1

∣
∣
∣
∣
∣
= −4

∣
∣
∣
∣

0 2
1 −1

∣
∣
∣
∣
= 8

x1 = 1

8

∣
∣
∣
∣
∣
∣
∣

0 1 1 1
4 1 1 −1
6 1 −1 −1
2 −1 −1 −1

∣
∣
∣
∣
∣
∣
∣

= 1

8

∣
∣
∣
∣
∣
∣
∣

0 1 1 1
4 0 0 −2
6 2 0 0
2 0 0 0

∣
∣
∣
∣
∣
∣
∣

= −2

8

∣
∣
∣
∣
∣

1 1 1
0 0 −2
2 0 0

∣
∣
∣
∣
∣
= −4

8

∣
∣
∣
∣

1 1
0 −2

∣
∣
∣
∣
= 1

x2 = 1

8

∣
∣
∣
∣
∣
∣
∣

1 0 1 1
1 4 1 −1
1 6 −1 −1
1 2 −1 −1

∣
∣
∣
∣
∣
∣
∣

= 1

8

∣
∣
∣
∣
∣
∣
∣

2 0 0 1
0 4 2 −1
0 6 0 −1
0 2 0 −1

∣
∣
∣
∣
∣
∣
∣

= 2

8

∣
∣
∣
∣
∣

4 2 −1
6 0 −1
2 0 −1

∣
∣
∣
∣
∣
= −4

8

∣
∣
∣
∣

6 −1
2 −1

∣
∣
∣
∣
= 2

x3 = 1

8

∣
∣
∣
∣
∣
∣
∣

1 1 0 1
1 1 4 −1
1 1 6 −1
1 −1 2 −1

∣
∣
∣
∣
∣
∣
∣

= 1

8

∣
∣
∣
∣
∣
∣
∣

0 2 0 1
0 0 4 −1
0 0 6 −1
2 −2 2 −1

∣
∣
∣
∣
∣
∣
∣

= −2

8

∣
∣
∣
∣
∣

2 0 1
0 4 −1
0 6 −1

∣
∣
∣
∣
∣
= −4

8

∣
∣
∣
∣

4 −1
6 −1

∣
∣
∣
∣
= −1

x4 = −(x1 + x2 + x3) = −2.

20. Let F(x1, x2) = F

(

x1
x2

)

, where F =
(

a b
c d

)

.

Let G(y1, y2) = G

(

y1
y2

)

, where G =
(

p q
r s

)

.

If y1 = ax1 + bx2 and y2 = cx1 + dx2, then

G ◦ F(x1, x2) = G(y1, y2)

=
(

p q
r s

)(

ax1 + bx2
cx1 + dx2

)

=
(

pax1 + pbx2 + qcx1 + qdx2
rax1 + rbx2 + scx1 + sdx2

)

=
(

pa + qc pb + qd
ra + sc rb + sd

)(

x1
x2

)

=
(

p q
r s

)(

a b
c d

)(

x1
x2

)

= GF

(

x1
x2

)

.

Thus, G ◦ F is represented by the matrix GF.

21. A =
(−1 1

1 −2

)

. Use Theorem 8. D1 = −1 < 0,

D2 =
∣
∣
∣
∣

−1 1
1 −2

∣
∣
∣
∣
= 1 > 0. Thus A is negative definite.

22. A =
( 1 2 0

2 1 0
0 0 1

)

. Use Theorem 8.

D1 = 1 > 0, D2 =
∣
∣
∣
∣

1 2
2 1

∣
∣
∣
∣
= −3 < 0,

D3 =
∣
∣
∣
∣
∣

1 2 0
2 1 0
0 0 1

∣
∣
∣
∣
∣
= −3 < 0.

Thus A is indefinite.

23. A =
( 2 1 1

1 2 1
1 1 2

)

. Use Theorem 8.

D1 = 2 > 0, D2 =
∣
∣
∣
∣

2 1
1 2

∣
∣
∣
∣
= 3 > 0,
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D3 =
∣
∣
∣
∣
∣

2 1 1
1 2 1
1 1 2

∣
∣
∣
∣
∣
= 4 > 0.

Thus A is positive definite.

24. A =
( 1 1 0

1 1 0
0 0 1

)

. Since D2 =
∣
∣
∣
∣

1 1
1 1

∣
∣
∣
∣
= 0, we cannot

use Theorem 8. The corresponding quadratic form is

Q(x, y, z) = x2 + y2 + 2xy + z2 = (x + y)2 + z2,

which is positive semidefinite. (Q(1,−1, 0) = 0.). Thus
A is positive semidefinite.

25. A =
( 1 0 1

0 1 −1
1 −1 1

)

. Use Theorem 8.

D1 = 1 > 0, D2 =
∣
∣
∣
∣

1 0
0 1

∣
∣
∣
∣
= 1 > 0,

D3 =
∣
∣
∣
∣
∣

1 0 1
0 1 −1
1 −1 1

∣
∣
∣
∣
∣
= −1 < 0.

Thus A is indefinite.

26. A =
( 2 0 1

0 4 11
1 −1 1

)

. Use Theorem 8.

D1 = 2 > 0, D2 =
∣
∣
∣
∣

2 0
0 4

∣
∣
∣
∣
= 8 > 0,

D3 =
∣
∣
∣
∣
∣

2 0 1
0 4 11
1 −1 1

∣
∣
∣
∣
∣
= 2 > 0.

Thus A is positive definite.

Section 10.7 Using Maple for Vector and
Matrix Calculations (page 588)

It is assumed that the Maple package LinearAlgebra
has been loaded for all the calculations in this section.

1. We use the result of Example 9 of Section 10.4.

> r1 := <3|0|2>: v1 := <2,1,-2>:
> r2 := <1|2|4>: v2 := <1,3,4>:
> v1xv2 := v1 &x v2:
> dist :=
abs((r2-r1).v1xv2)/Norm(v1xv2,2);

di st := 2

The distance between the two lines is 2 units.

2. The plane P through the origin containing the vectors
v1 = i − 2j − 3k and v2 = 2i + 3j + 4k has normal
n = v1 × v2.

> n := <1|-2|-3> &x <2|3|4>;
n := [1,−10, 7]

The angle between v = i− j+ 2k and n (in degrees) is

> angle
:= evalf((180/Pi)*VectorAngle(n,<1,-
1,2>));

angvn := 33.55730975

Since this angle is acute, the angle between v and the
plane P is its complement.

> angle := 90 - angvn;
angle := 56.44269025

3. These calculations verify the identity:

> U := Vector[row](3,symbol=u): V :=
Vector[row](3,symbol=v):

> W := Vector[row](3,symbol=w):

> a := DotProduct(U,(V &x
W),conjugate=false):

> b := DotProduct(V,(W &x
U),conjugate=false):

> c := DotProduct(W,(U &x
V),conjugate=false):

> simplify(a-b); simplify(a-c);

0
0

4. These calculations verify the identity:

> U := Vector[row](3,symbol=u): V :=
Vector[row](3,symbol=v):

> W := Vector[row](3,symbol=w):

> LHS := (U &x V) &x (U &x W):
> RHS := (DotProduct(U,(V &x
W),conjugate=false))*U:

> simplify(LHS-RHS);

[0, 0, 0]

5. sp := (U,V) -> DotProd-
uct(U,Normalize(V,2),conjugate=false)
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6. vp := (U,V) -> DotProd-
uct(U,Normalize(V,2), conju-
gate=false)*Normalize(V,2)

7. ang := (u,v) ->
evalf((180/Pi)*VectorAngle(U,V))

8. unitn := (U,V)->Normalize((U &x V),2)

9. VolT :=
(U,V,W)->(1/6)*abs(DotProduct(U,(V
&x W), conjugate=false))

10. dist:=(A,B)->Norm(A-B,2)

> dist(<1,1,1,1>,<3,-1,2,5>);
5

11. We use LinearSolve.

> A := Matrix([[1,2,3,4,5],
> [6,-1,6,2,-3],[2,8,-8,-2,1],
> [1,1,1,1,1],[10,-3,3,-2,2]]):
> X :=
LinearSolve(A,<20,0,6,5,5>,free=t);

X :=

⎡

⎢
⎢
⎢
⎣

1
0
−1
3
2

⎤

⎥
⎥
⎥
⎦

The solution is u = 1, v = 0, x = −1, y = 3, z = 2.

12. We use LinearSolve.

> B := Matrix([[1,1,1,1,0],
> [1,0,0,1,1],[1,0,1,1,0],
> [1,1,1,0,1],[0,1,0,1,-1]]):
> X :=
LinearSolve(B,<10,10,8,11,1>,free=t);

X :=

⎡

⎢
⎢
⎢
⎣

11− 2t5
2

−2+ t5
−1+ t5

t5

⎤

⎥
⎥
⎥
⎦

There is a one-parameter family of solutions: u = 11−2t ,
v = 2, x = −2+ t , y = −1+ t , z = t , for arbitrary t .

13. > A := Matrix([[1,2,3,4,5],
> [6,-1,6,2,-3],[2,8,-8,-2,1],
> [1,1,1,1,1],[10,-3,3,-2,2]]):
> Determinant(A);

−935

14. > B := Matrix([[1,1,1,1,0],
> [1,0,0,1,1],[1,0,1,1,0],
> [1,1,1,0,1],[0,1,0,1,-1]]):
> Digits := 5: evalf(Eigenvalues(B));

⎡

⎢
⎢
⎢
⎣

0
3.3133 − 0.0000053418I
0.8693 + 0.0000073520I
−1.2728− 0.0000025143I
−1.9098 + 5.041 10−7 I

⎤

⎥
⎥
⎥
⎦

The tiny imaginary parts are due to roundoff error in
the calculations. They should all be 0. Since B is a
real, symmetric matrix, its eigenvalues are all real. The
eigenvalues, rounded to 5 decimal places are 0, 3.3133,
0.8693, −1.2728, and −1.9098.

15. > A := Matrix([[1,1/2,1/3],
> [1/2,1/3,1/4],[1/3,1/4,1/5]]):
> Ainv := MatrixInverse(A);

Ainv :=
[ 9 −36 30
−36 192 −180
30 −180 180

]

16. > A := Matrix([[1,1/2,1/3],
> [1/2,1/3,1/4],[1/3,1/4,1/5]]):
> Ainv := MatrixInverse(A):

> Digits := 10:
evalf(Eigenvalues(A));

[ 1.408318927 − 4 10−11 I
0.00268734034 − 5.673502694 10−10 I
0.1223270659 + 5.873502694 10−10 I

]

> evalf(Eigenvalues(Ainv));

[ 372.1151279 − 2 10−9 I
0.710066409 − 5.096152424 10−8 I
8.174805711 + 5.296152424 10−8 I

]

The small imaginary parts are due to round-off errors in
the solution process. The eigenvalues are real since the
matrix and its inverse are real and symmetric.

Although they appear in different orders, each eigenvalue
of A−1 is the reciprocal of an eigenvalue of A. This is to
be expected since

A−1x = λx ≡ (1/λ)x = Ax.

Review Exercises 10 (page 589)

1. x + 3z = 3 represents a plane parallel to the y-axis and
passing through the points (3, 0, 0) and (0, 0, 1).

2. y − z ≥ 1 represents all points on or below the plane par-
allel to the x-axis that passes through the points (0, 1, 0)
and (0, 0,−1).

3. x + y + z ≥ 0 represents all points on or above the plane
through the origin having normal vector i+ j+ k.

4. x − 2y − 4z = 8 represents all points on the plane
passing through the three points (8, 0, 0), (0,−4, 0), and
(0, 0,−2).
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5. y = 1+ x2+ z2 represents the circular paraboloid obtained
by rotating about the y-axis the parabola in the xy-plane
having equation y = 1+ x2.

6. y = z2 represents the parabolic cylinder parallel to the
x-axis containing the curve y = z2 in the yz-plane.

7. x = y2 − z2 represents the hyperbolic paraboloid whose
intersections with the xy- and xz-planes are the parabolas
x = y2 and x = −z2, respectively.

8. z = xy is the hyperbolic paraboloid containing the x- and
y-axes that results from rotating the hyperbolic paraboloid
z = (x2 − y2)/2 through 45◦ about the z-axis.

9. x2 + y2 + 4z2 < 4 represents the interior of the circu-
lar ellipsoid (oblate spheroid) centred at the origin with
semi-axes 2, 2, and 1 in the x , y, and z directions, re-
spectively.

10. x2 + y2 − 4z2 = 4 represents a hyperboloid of one sheet
with circular cross-sections in planes perpendicular to the
z-axis, and asymptotic to the cone obtained by rotating
the line x = 2z about the z-axis.

11. x2 − y2 − 4z2 = 0 represents an elliptic cone with axis
along the x-axis whose cross-sections in planes x = k
are ellipses with semi-axes |k| and |k|/2 in the y and z
directions, respectively.

12. x2 − y2 − 4z2 = 4 represents a hyperboloid of two sheets
asymptotic to the cone of the previous exercise.

13. (x − z)2 + y2 = 1 represents an elliptic cylinder with
oblique axis along the line z = x in the xz-plane, having
circular cross-sections of radius 1 in horizontal planes
z = k.

14. (x − z)2+ y2 = z2 represents an elliptic cone with oblique
axis along the line z = x in the xz-plane, having circular
cross-sections of radius |k| in horizontal planes z = k.
The z-axis lies on the cone.

15. x + 2y = 0, z = 3 together represent the horizontal
straight line through the point (0, 0, 3) parallel to the
vector 2i − j.

16. x + y + 2z = 1, x + y + z = 0 together represent the
straight line through the points (−1, 0, 1) and (0,−1, 1).

17. x2 + y2 + z2 = 4, x + y + z = 3 together represent
the circle in which the sphere of radius 2 centred at the
origin intersects the plane through (1, 1, 1) with normal
i + j + k. Since this plane lies at distance

√
3 from the

origin, the circle has radius
√

4− 3 = 1.

18. x2 + z2 ≤ 1, x − y ≥ 0 together represent all points
that lie inside or on the circular cylinder of radius 1 and
axis along the y-axis and also either on the vertical plane
x − y = 0 or on the side of that plane containing the
positive x-axis.

19. The given line is parallel to the vector a = 2i − j + 3k.
The plane through the origin perpendicular to a has equa-
tion 2x − y + 3z = 0.

20. A plane through (2,−1, 1) and (1, 0,−1) is parallel to
b = (2 − 1)i+ (−1− 0)j + (1 − (−1))k = i − j + 2k. If
it is also parallel to the vector a in the previous solution,
then it is normal to

a × b =
∣
∣
∣
∣
∣

i j k
2 −1 3
1 −1 2

∣
∣
∣
∣
∣
= i− j− k.

The plane has equation (x − 1)− (y − 0)− (z+ 1) = 0, or
x − y − z = 2.

21. A plane perpendicular to x−y+z = 0 and 2x+y−3z = 2
has normal given by the cross product of the normals of
these two planes, that is, by

∣
∣
∣
∣
∣

i j k
1 −1 1
2 1 −3

∣
∣
∣
∣
∣
= 2i + 5j + 3k.

If the plane also passes through (2,−1, 1), then its equa-
tion is

2(x − 2)+ 5(y + 1)+ 3(z − 1) = 0,

or 2x + 5y + 3z = 2.

22. The plane through A = (−1, 1, 0), B = (0, 4,−1) and
C = (2, 0, 0) has normal

−→
AC ×−→AB =

∣
∣
∣
∣
∣

i j k
3 −1 0
1 3 −1

∣
∣
∣
∣
∣
= i + 3j + 10k.

Its equation is (x−2)+3y+10z = 0, or x+3y+10z = 2.

23. A plane containing the line of intersection of the planes
x + y + z = 0 and 2x + y − 3z = 2 has equation

2x + y − 3z − 2+ λ(x + y + z − 0) = 0.

This plane passes through (2, 0, 1) if −1 + 3λ = 0. In
this case, the equation is 7x + 4y − 8z = 6.

24. A plane containing the line of intersection of the planes
x + y + z = 0 and 2x + y − 3z = 2 has equation

2x + y − 3z − 2+ λ(x + y + z − 0) = 0.

This plane is perpendicular to x − 2y − 5z = 17 if their
normals are perpendicular, that is, if

1(2 + λ)− 2(1+ λ)− 5(−3+ λ) = 0,

or 9x + 7y − z = 4.
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25. The line through (2, 1,−1) and (−1, 0, 1) is parallel to
the vector 3i + j − 2k, and has vector parametric equation

r = (2+ 3t)i + (1 + t)j − (1 + 2t)k.

26. A vector parallel to the planes x − y = 3 and
x + 2y + z = 1 is (i − j)× (i+ 2j + k) = −i− j+ 3k. A
line through (1, 0,−1) parallel to this vector is

x − 1

−1
= y

−1
= z + 1

3
.

27. The line through the origin perpendicular to the plane
3x − 2y + 4z = 5 has equations x = 3t , y = −2t , z = 4t .

28. The vector

a = (1 + t)i − tj − (2+ 2t)k −
(

2si+ (s − 2)j − (1 + 3s)k
)

= (1 + t − 2s)i− (t + s − 2)j − (1 + 2t − 3s)k

joins points on the two lines and is perpendicular to both
lines if a • (i− j− 2k) = 0 and a • (2i+ j− 3k) = 0, that
is, if

1+ t − 2s + t + s − 2 + 2+ 4t − 6s = 0

2 + 2t − 4s − t − s + 2 + 3+ 6t − 9s = 0,

or, on simplification,

6t − 7s = −1

7t − 14s = −7.

This system has solution t = 1, s = 1. We would expect
to use a as a vector perpendicular to both lines, but, as it
happens, a = 0 if t = s = 1, because the two given lines
intersect at (2,−1,−4). A nonzero vector perpendicular
to both lines is

∣
∣
∣
∣
∣

i j k
1 −1 −2
2 1 −3

∣
∣
∣
∣
∣
= 5i− j+ 3k.

Thus the required line is parallel to this vector and passes
through (2,−1,−4), so its equation is

r = (2+ 5t)i − (1 + t)j + (−4+ 3t)k.

29. The points with position vectors r1, r2, and r3 are
collinear if the triangle having these points as vertices
has zero area, that is, if

(r2 − r1)× (r3 − r1) = 0.

(Any permutation of the subscripts 1, 2, and 3 in the
above equation will do as well.)

30. The points with position vectors r1, r2, r3, and r4 are
coplanar if the tetrahedron having these points as vertices
has zero volume, that is, if

[

(r2 − r1)× (r3 − r1)
]

• (r4 − r1) = 0.

(Any permutation of the subscripts 1, 2, 3, and 4 in the
above equation will do as well.)

31. The triangle with vertices A = (1, 2, 1), B = (4,−1, 1),
and C = (3, 4,−2) has area

1

2
|−→AB ×−→AC | = 1

2
|
∣
∣
∣
∣
∣

i j k
3 −3 0
2 2 −3

∣
∣
∣
∣
∣
|

= 1

2
|9i+ 9j + 12k| = 3

√
34

2
sq. units.

32. The tetrahedron with vertices A = (1, 2, 1),
B = (4,−1, 1), C = (3, 4,−2), and D = (2, 2, 2) has
volume

1

6
|(−→AB ×−→AC) • −→AD| = 1

6
|(9i + 9j + 12k) • (i + k)|

= 9+ 12

6
= 7

2
cu. units.

33. The inverse of A satisfies
⎛

⎜
⎝

1 0 0 0
2 1 0 0
3 2 1 0
4 3 2 1

⎞

⎟
⎠

⎛

⎜
⎝

a b c d
e f g h
i j k l
m n o p

⎞

⎟
⎠ =

⎛

⎜
⎝

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

⎞

⎟
⎠ .

Expanding the product on the left we get four systems of
equations:

a = 1,

b = 0,

c = 0,

d = 0,

2a + e = 0,

2b + f = 1,

2c + g = 0,

2d + h = 0,

3a + 2e + i = 0,

3b + 2 f + j = 0,

3c + 2g + k = 1,

3d + 2h + l = 0,

4a + 3e + 2i + m = 0.

4b + 3 f + 2 j + n = 0.

4c + 3g + 2k + o = 0.

4d + 3h + 2l + p = 1.

These systems have solutions

a = 1,

b = 0,

c = 0,

d = 0,

e = −2,

f = 1,

g = 0,

h = 0,

i = 1,

j = −2,

k = 1,

l = 0,

m = 0,

n = 1,

o = −2,

p = 1.

Thus

A−1 =
⎛

⎜
⎝

1 0 0 0
−2 1 0 0
1 −2 1 0
0 1 −2 1

⎞

⎟
⎠ .
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34. Let A =
( 1 1 1

2 1 0
1 0 −1

)

, x =
( x1

x2
x3

)

, and b =
( b1

b2
b3

)

.

Then
Ax = b ⇔ x1 + x2 + x3 = b1

2x1 + x2 = b2

x1 − x3 = b3.

The sum of the first and third equations is
2x1+ x2 = b1+b3, which is incompatible with the second
equation unless b2 = b1 + b3, that is, unless

b • (i− j+ k) = 0.

If b satisfies this condition then there will be a line of
solutions; if x1 = t , then x2 = b2 − 2t , and x3 = t − b3,
so

x =
( t

b2 − 2t
t − b3

)

is a solution for any t .

35. A =
( 3 −1 1
−1 1 −1
1 −1 2

)

. We use Theorem 8.

D1 = 3 > 0, D2 =
∣
∣
∣
∣

3 −1
−1 3

∣
∣
∣
∣
= 2 > 0,

D3 =
∣
∣
∣
∣
∣

3 −1 1
−1 1 −1
1 −1 2

∣
∣
∣
∣
∣
= 2 > 0.

Thus A is positive definite.

Challenging Problems 10 (page 589)

1. If d is the distance from P to the line AB, then d is the
altitude of the triangle AP B measured perpendicular to
the base AB. Thus the area of the triangle is

(1/2)d|−→B A| = (1/2)d|rA − rB |.

On the other hand, the area is also given by

(1/2)|−→P A ×−→P B| = (1/2)|(rA − rP)× (rB − rP )|.

Equating these two expressions for the area of the trian-
gle and solving for d we get

d = |(rA − rP)× (rB − rP)|
|rA − rB | .

2. By the formula for the vector triple product given in Ex-
ercise 23 of Section 1.3,

(u × v)× (w × x) = [(u × v) • x]w − [(u × v) • w]x
(u × v)× (w × x) = −(w × x)× (u × v)

= −[(w × x) • v]u + [(w × x) • u]v.

In particular, if w = u, then, since (u × v) • u = 0, we
have

(u × v)× (u × x) = [(u × v) • x]u,

or, replacing x with w,

(u × v)× (u × w) = [(u × v) • w]u.

3. The triangle with vertices (x1, y1, 0), (x2, y2, 0), and
(x3, y3, 0), has two sides corresponding to the vectors
(x2 − x1)i + (y2 − y1)j and (x3 − x1)i + (y3 − y1)j. Thus
the triangle has area given by

A = 1

2
|
∣
∣
∣
∣
∣

i j k
x2 − x1 y2 − y1 0
x3 − x1 y3 − y1 0

∣
∣
∣
∣
∣
|

= 1

2
|[(x2 − x1)(y3 − y1)− (x3 − x1)(y2 − y1)]k|

= 1

2
|x2 y3 − x2 y1 − x1 y3 − x3 y2 + x3 y1 + x1 y2|

= 1

2
|
∣
∣
∣
∣
∣

x1 y1 1
x2 y2 1
x3 y3 1

∣
∣
∣
∣
∣
|.

4. a) Let Q1 and Q2 be the points on lines L1 and L2,
respectively, that are closest together. As observed in
Example 9 of Section 1.4,

−−−→
Q1 Q2 is perpendicular to

both lines.
Therefore, the plane P1 through Q1 having normal−−−→
Q1 Q2 contains the line L1. Similarly, the plane P2
through Q2 having normal

−−−→
Q1 Q2 contains the line

L2. These planes are parallel since they have the
same normal. They are different planes because
Q1 �= Q2 (because the lines are skew).
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b) Line L1 through (1, 1, 0) and (2, 0, 1) is parallel to
i − j + k, and has parametric equation

r1 = (1 + t)i+ (1 − t)j + tk.

Line L2 through (0, 1, 1) and (1, 2, 2) is parallel to
i + j + k, and has parametric equation

r2 = si+ (1 + s)j + (1 + s)k.

Now r2 − r1 = (s − t − 1)i + (s + t)j + (1+ s − t)k.

To find the points Q1 on L1 and Q2 on L2 for
which

−−−→
Q1 Q2 is perpendicular to both lines, we solve

(s − t − 1)− (s + t)+ (1+ s − t) = 0

(s − t − 1)+ (s + t)+ (1+ s − t) = 0.

Subtracting these equations gives s + t = 0, so
t = −s. Then substituting into either equation
gives 2s − 1 + 1 + 2s = 0, so s = −t = 0.
Thus Q1 = (1, 1, 0) and Q2 = (0, 1, 1), and−−−→
Q1 Q2 = −i + k. The required planes are x − z = 1
(containing L1) and x − z = −1 (containing L2).

5. This problem is similar to Exercise 28 of Section 1.3.
The equation a×x = b has no solution x unless a•b = 0.
If this condition is satisfied, then x = x0+ ta is a solution
for any scalar t , where x0 = (b × a)/|a|2.
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CHAPTER 11. VECTOR FUNCTIONS
AND CURVES

Section 11.1 Vector Functions of
One Variable (page 597)

1. Position: r = i+ tj
Velocity: v = j
Speed: v = 1
Acceleration : a = 0
Path: the line x = 1 in the xy-plane.

2. Position: r = t2i + k
Velocity: v = 2t i
Speed: v = 2|t |
Acceleration : a = 2i
Path: the line z = 1, y = 0.

3. Position: r = t2j + tk
Velocity: v = 2tj+ k
Speed: v = √4t2 + 1
Acceleration : a = 2j
Path: the parabola y = z2 in the plane x = 0.

4. Position: r = i+ tj+ tk
Velocity: v = j+ k
Speed: v = √2
Acceleration : a = 0
Path: the straight line x = 1, y = z.

5. Position: r = t2i − t2j+ k
Velocity: v = 2t i− 2tj
Speed: v = 2

√
2t

Acceleration: a = 2i − 2j
Path: the half-line x = −y ≥ 0, z = 1.

6. Position: r = t i+ t2j + t2k
Velocity: v = i+ 2tj + 2tk
Speed: v = √1+ 8t2

Acceleration: a = 2j + 2k
Path: the parabola y = z = x2.

7. Position: r = a cos t i+ a sin tj + ctk
Velocity: v = −a sin t i + a cos tj + ck
Speed: v = √a2 + c2

Acceleration: a = −a cos t i− a sin tj
Path: a circular helix.

8. Position: r = a cosωt i+ bj + a sinωtk
Velocity: v = −aω sinωt i+ aω cosωtk
Speed: v = |aω|
Acceleration: a = −aω2 cosωt i− aω2 sinωtk
Path: the circle x2 + z2 = a2, y = b.

9. Position: r = 3 cos t i + 4 cos tj+ 5 sin tk
Velocity: v = −3 sin t i− 4 sin tj + 5 cos tk
Speed: v = √9 sin2 t + 16 sin2 t + 25 cos2 t = 5
Acceleration : a = −3 cos t i− 4 cos tj − 5 sin tk = −r
Path: the circle of intersection of the sphere
x2 + y2 + z2 = 25 and the plane 4x = 3y.

10. Position: r = 3 cos t i + 4 sin tj + tk
Velocity: v = −3 sin t i+ 4 cos tj + k
Speed: v = √9 sin2 t + 16 cos2 t + 1 = √10+ 7 cos2 t
Acceleration : a = −3 cos t i− 4 sin tj = tk − r
Path: a helix (spiral) wound around the elliptic cylinder
(x2/9)+ (y2/16) = 1.

11. Position: r = aet i+ bet j+ cetk
Velocity and acceleration: v = a = r
Speed: v = et

√
a2 + b2 + c2

Path: the half-line
x

a
= y

b
= z

c
> 0.

12. Position: r = at cosωt i+ at sinωtj+ b ln tk
Velocity: v = a(cosωt − ωt sinωt)i

+ a(sinωt + ωt cosωt)j + (b/t)k
Speed: v = √a2(1+ ω2t2)+ (b2/t2)

Acceleration: a = −aω(2 sinωt + ω cosωt)i

+ aω(2 cosωt − ω sinωt)j − (b/t2)k
Path: a spiral on the surface x2 + y2 = a2ez/b .

13. Position: r = e−t cos(et )i + e−t sin(et )j − etk

Velocity: v = −
(

e−t cos(et )+ sin(et )
)

i

−
(

e−t sin(et )− cos(et )
)

j− etk

Speed: v = √1+ e−2t + e2t

Acceleration: a =
(

(e−t − et ) cos(et )+ sin(et )
)

i

+
(

(e−t − et ) sin(et )− cos(et )
)

j− etk

Path: a spiral on the surface z
√

x2 + y2 = −1.

14. Position: r = a cos t sin t i + a sin2 tj+ a cos tk

= a

2
sin 2t i+ a

2

(

1− cos 2t
)

j + a cos tk

Velocity: v = a cos 2t i + a sin 2tj− a sin tk
Speed: v = a

√
1+ sin2 t

Acceleration: a = −2a sin 2t i + 2a cos 2tj − a cos tk
Path: the path lies on the sphere x2 + y2 + z2 = a2, on
the surface defined in terms of spherical polar coordinates
by φ = θ , on the circular cylinder x2 + y2 = ay, and on
the parabolic cylinder ay + z2 = a2. Any two of these
surfaces serve to pin down the shape of the path.

15. The position of the particle is given by

r = 5 cos(ωt)i + 5 sin(ωt)j,

where ω = π to ensure that r has period 2π/ω = 2 s.
Thus

a = d2r
dt2 = −ω2r = −π2r.

At (3, 4), the acceleration is −3π2i− 4π2j.
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16. When its x-coordinate is x , the particle is at position
r = x i+ (3/x)j, and its velocity and speed are

v = dr
dt
= dx

dt
i− 3

x2

dx

dt
j

v =
∣
∣
∣
∣

dx

dt

∣
∣
∣
∣

√

1+ 9

x4
.

We know that dx/dt > 0 since the particle is moving to
the right. When x = 2, we have
10 = v = (dx/dt)

√
1+ (9/16) = (5/4)(dx/dt). Thus

dx/dt = 8. The velocity at that time is v = 8i− 6j.

17. The particle moves along the curve z = x2, x + y = 2, in
the direction of increasing y. Thus its position at time t
is

r = (2 − y)i+ yj+ (2 − y)2k,

where y is an increasing function of time t . Thus

v = dy

dt

[

−i+ j− 2(2 − y)k
]

v = dy

dt

√

1+ 1+ 4(2 − y)2 = 3

since the speed is 3. When y = 1, we have
dy/dt = 3/

√
6 = √3/2. Thus

v =
√

3

2
(−i + j − 2k).

18. The position of the object when its x-coordinate is x is

r = x i+ x2j+ x3k,

so its velocity is v = dx

dt

[

i + 2xj + 3x2k
]

. Since

dz/dt = 3x2 dx/dt = 3, when x = 2 we have
12 dx/dt = 3, so dx/dt = 1/4. Thus

v = 1

4
i+ j+ 3k.

19. r = 3ui + 3u2j+ 2u3k

v = du

dt
(3i + 6uj + 6u2k)

a = d2u

dt2 (3i + 6uj+ 6u2k)+
(

du

dt

)2

(6j + 12uk).

Since u is increasing and the speed of the particle is 6,

6 = |v| = 3
du

dt

√

1+ 4u2 + 4u4 = 3(1 + 2u2)
du

dt
.

Thus
du

dt
= 2

1 + 2u2 , and

d2u

dt2
= −2

(1 + 2u2)2
4u

du

dt
= −16u

(1+ 2u2)3
.

The particle is at (3, 3, 2) when u = 1. At this point
du/dt = 2/3 and d2u/dt2 = −16/27, and so

v = 2

3
(3i + 6uj + 6u2k) = 2i + 4j + 4k

a = −16

27
(3i + 6j + 6k) +

(
2

3

)2

(6j + 12k)

= 8

9
(−2i− j+ 2k).

20. r = x i− x2j ++x2k

v = dx

dt
(i − 2xj+ 2xk)

a = d2x

dt2
(i− 2xj+ 2xk)+

(
dx

dt

)2

(−2j + 2k).

Thus |v| =
∣
∣
∣
∣

dx

dt

∣
∣
∣
∣

√
1+ 4x4 + 4x4 = √1+ 8x4 dx

dt
,

since x is increasing. At (1,−1, 1), x = 1 and
|v| = 9, so dx/dt = 3, and the velocity at that point
is v = 3i− 6j+ 6k. Now

d

dt
|v| =

√

1+ 8x4 d2x

dt2 +
16x3
√

1+ 8x4

(
dx

dt

)2

.

The left side is 3 when x = 1, so 3(d2x/dt2) + 48 = 3,
and d2x/dt2 = −15 at that point, and the acceleration
there is

a = −15(i− 2j+ 2k)+ 9(−2j+ 2k) = −15i+ 12j− 12k.

21.
d

dt
|v|2 = d

dt
v • v = 2v • a.

If v • a > 0 then the speed v = |v| is increasing.
If v • a < 0 then the speed is decreasing.

22. If u(t) = u1(t)i + u2(t)j + u3(t)k
v(t) = v1(t)i + v2(t)j + v3(t)k

then u • v = u1v2 + u2v2 + u3v3, so

d

dt
u • v = du1

dt
v1 + u1

dv1

dt
+ du2

dt
v2 + u2

dv2

dt

+ du3

dt
v3 + u3

dv3

dt

= du
dt
• v+ u • dv

dt
.
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23.
d

dt

∣
∣
∣
∣
∣

a11 a12 a13
a21 a22 a23
a31 a32 a33

∣
∣
∣
∣
∣

= d

dt

[

a11a22a33 + a12a23a31 + a13a21a32

− a11a23a32 − a12a21a33 − a13a22a31

]

= a′11a22a33 + a11a′22a33 + a11a22a′33

+ a′12a23a31 + a12a′23a31 + a12a23a′31

+ a′13a21a32 + a13a′21a32 + a13a21a′32

− a′11a23a32 − a11a′23a32 − a11a23a′32

− a′12a21a33 − a12a′21a33 − a12a21a′33

− a′13a22a31 − a13a′22a31 − a13a22a′31

=
∣
∣
∣
∣
∣

a′11 a′12 a′13
a21 a22 a23
a31 a32 a33

∣
∣
∣
∣
∣
+
∣
∣
∣
∣
∣

a11 a12 a13
a′21 a′22 a′23
a31 a32 a33

∣
∣
∣
∣
∣

+
∣
∣
∣
∣
∣

a11 a12 a13
a21 a22 a23
a′31 a′32 a′33

∣
∣
∣
∣
∣

24.
d

dt
|r|2 = d

dt
r • r = 2r • v = 0 implies that |r| is constant.

Thus r(t) lies on a sphere centred at the origin.

25.
d

dt
|r− r0|2 = d

dt
(r− r0) • (r− r0)

= 2(r − r0) • dr
dt
= 0

implies that |r − r0| is constant. Thus r(t) lies on a
sphere centred at the point P0 with position vector r0.

26. If r • v > 0 then |r| is increasing. (See Exercise 16
above.) Thus r is moving farther away from the origin.
If r • v < 0 then r is moving closer to the origin.

27.
d

dt

(
du
dt
× d2u

dt2

)

= d2u
dt2 ×

d2u
dt2 +

du
dt
× d3u

dt3

= du
dt
× d3u

dt3 .

28.
d

dt

(

u • (v ×w)
)

= u′ • (v × w)+ u • (v′ × w)+ u • (v× w′).

29.
d

dt

(

u × (v× w)
)

= u′ × (v ×w)+ u× (v′ × w)+ u × (v× w′).

30.
d

dt

(

u×
(

du
dt
× d2u

dt2

))

= du
dt
×
(

du
dt
× d2u

dt2

)

+ u ×
(

d2u
dt2
× d2u

dt2

)

+ u×
(

du
dt
× d3u

dt3

)

= du
dt
×
(

du
dt
× d2u

dt2

)

+ u ×
(

du
dt
× d3u

dt3

)

.

31.
d

dt

[

(u + u′′) • (u× u′)
]

= (u′ + u′′′) • (u × u′)+ (u + u′′) • (u′ × u′)
+ (u + u′′) • (u × u′′)

= u′′′ • (u × u′).

32.
d

dt

[

(u × u′) • (u′ × u′′)
]

= (u′ × u′) • (u′ × u′′)+ (u × u′′) • (u′ × u′′)
+ (u × u′) • (u′′ × u′′)+ (u × u′) • (u′ × u′′′)

= (u × u′′) • (u′ × u′′)+ (u × u′) • (u′ × u′′′).

33. Since
dr
dt
= v(t) = 2r(t) and r(0) = r0, we have

r(t) = r(0)e2t = r0e2t ,

a(t) = dv
dt
= 2

dr
dt
= 4r0e2t .

The path is the half-line from the origin in the direction
of r0.

34. r = r0 cosωt +
(v0

ω

)

sinωt

dr
dt
= −ωr0 sinωt + v0 cosωt

d2r
dt2 = −ω2r0 cosωt − ωv0 sinωt = −ω2r

r(0) = r0,
dr
dt

∣
∣
∣
∣
t=0
= v0.

Observe that r • (r0 × v0) = 0 for all t . Therefore the
path lies in a plane through the origin having normal
N = r0 × v0.
Let us choose our coordinate system so that r0 = ai
(a > 0) and v0 = ωbi + ωcj (c > 0). Therefore, N is in
the direction of k. The path has parametric equations

x = a cosωt + b sinωt

y = c sinωt.

The curve is a conic section since it has a quadratic
equation:

1

a2

(

x − by

c

)2

+ y2

c2 = 1.

Since the path is bounded (|r(t)| ≤ |r0| + (|v0|/ω)), it
must be an ellipse.

If r0 is perpendicular to v0, then b = 0 and the path is
the ellipse (x/a)2 + (y/c)2 = 1 having semi-axes a = |r0|
and c = |v0|/ω.

35.
d2r
dt2 = −gk− c

dr
dt

r(0) = r0,
dr
dt

∣
∣
∣
∣
t=0
= v0.
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Let w = ect dr
dt

. Then

dw
dt
= cect dr

dt
+ ect d2r

dt2

= cect dr
dt
− ect gk− cect dr

dt
= −ect gk

w(t) = −
∫

ect gk dt = − ect

c
gk +C.

Put t = 0 and get v0 = − g

c
k +C, so

ect dr
dt
= w = v0 + g

c
(1− ect )k

dr
dt
= e−ctv0 − g

c
(1− e−ct )k

r = − e−ct

c
v0 − g

c

(

t + e−ct

c

)

k+ D

r0 = r(0) = −1

c
v0 − g

c2 k +D.

Thus we have

r = r0 + 1− e−ct

c
v0 − g

c2 (ct + e−ct − 1)k.

The limit of this solution, as c → 0, is calculated via
l’Hôpital’s Rule:

lim
c→0

r(t) = r0 + v0 lim
c→0

te−ct

1
− gk lim

c→0

t − te−ct

2c

= r0 + v0t − gk lim
c→0

t2e−ct

2

= r0 + v0t − 1

2
gt2k,

which is the solution obtained in Example 4.

Section 11.2 Some Applications of Vector
Differentiation (page 604)

1. It was shown in the text that

v(T )− v(0) = − ln

(
m(0)

m(T )

)

ve.

If v(0) = 0 and v(T ) = −ve then ln(m(0)/m(T )) = 1
and m(T ) = (1/e)m(0). The rocket must therefore

burn fraction
e − 1

e
of its initial mass to accelerate to

the speed of its exhaust gases.

Similarly, if v(T ) = −2ve, then m(T ) = (1/e2)m(0), so

the rocket must burn fraction
e2 − 1

e2 of its initial mass to

accelerate to twice the speed of its exhaust gases.

2. Let v(t) be the speed of the tank car at time t seconds.
The mass of the car at time t is m(t) = M − kt kg.
At full power, the force applied to the car is F = Ma
(since the motor can accelerate the full car at a m/s2).
By Newton’s Law, this force is the rate of change of the
momentum of the car. Thus

d

dt

[

(M − kt)v
]

= Ma

(M − kt)
dv

dt
− kv = Ma

dv

Ma + kv
= dt

M − kt
1

k
ln(Ma + kv) = −1

k
ln(M − kt) + 1

k
ln C

Ma + kv = C

M − kt
.

At t = 0 we have v = 0, so Ma = C/M . Thus
C = M2a and

kv = M2a

M − kt
− Ma = Makt

M − kt
.

The speed of the tank car at time t (before it is empty) is

v(t) = Mat

M − kt
m/s.

3. Given:
dr
dt
= k× r, r(0) = i+ k.

Let r(t) = x(t)i + y(t)j + z(t)k. Then x(0) = z(0) = 1
and y(0) = 0.
Since k • (dr/dt) = k • (k× r) = 0, the velocity is always
perpendicular to k, so z(t) is constant: z(t) = z(0) = 1
for all t . Thus

dx

dt
i+ dy

dt
j = dr

dt
= k× r = xj− yi.

Separating this equation into components,

dx

dt
= −y,

dy

dt
= x .

Therefore,
d2x

dt2 = −
dy

dt
= −x,

and x = A cos t + B sin t . Since x(0) = 1 and y(0) = 0,
we have A = 1 and B = 0. Thus x(t) = cos t and
y(t) = sin t . The path has equation

r = cos t i+ sin tj+ k.
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Remark: This result also follows from comparing
the given differential equation with that obtained for cir-
cular motion in the text. This shows that the motion is
a rotation with angular velocity k, that is, rotation about
the z-axis with angular speed 1. The initial value given
for r then forces

r = cos t i+ sin tj+ k.

4. First observe that

d

dt
|r−b|2 = 2(r−b)• dr

dt
= 2(r−b)•

(

a× (r−b)
)

= 0,

so |r − b| is constant; for all t the object lies on the
sphere centred at the point with position vector b having
radius r0 − b.
Next, observe that

d

dt
(r− r0) • a =

(

a× (r− b)
)

• a = 0,

so r − r0 ⊥ a; for all t the object lies on the plane
through r0 having normal a. Hence the path of the ob-
ject lies on the circle in which this plane intersects the
sphere described above. The angle between r − b and a
must therefore also be constant, and so the object’s speed
|dr/dt | is constant. Hence the path must be the whole
circle.

5. Use a coordinate system with origin at the observer, i
pointing east, and j pointing north. The angular velocity
of the earth is 2π/24 radians per hour northward:

Ω = π

12
j.

Because the earth is rotating west to east, the true north
to south velocity of the satellite will appear to the ob-
server to be shifted to the west by π R/12 km/h, where R
is the radius of the earth in kilometres. Since the satellite
circles the earth at a rate of π radians/h, its velocity, as
observed at the moving origin, is

vR = −π Rj− π R

12
i.

vR makes angle tan−1
(
π R/12

π R

)

= tan−1(1/12) ≈ 4.76◦

with the southward direction. Thus the satellite appears
to the observer to be moving in a direction 4.76◦ west of
south.

The apparent Coriolis force is

−2Ω× vR = −2π

12
j×

(

−π Rj− π R

12
i
)

= −π
2R

72
k,

which is pointing towards the ground.

6. We use the fixed and rotating frames as described in
the text. Assume the satellite is in an orbit in the plane
spanned by the fixed basis vectors I and K. When the
satellite passes overhead an observer at latitude 45◦, its
position is

R = R
I+K√

2
,

where R is the radius of the earth, and since it circles the
earth in 2 hours, its velocity at that point is

V = π R
I−K√

2
.

The angular velocity of the earth is Ω = (π/12)K.

The rotating frame with origin at the observer’s position
has, at the instant in question, its basis vectors satisfying

I = − 1√
2

j + 1√
2

k

J = i

K = 1√
2

j+ 1√
2

k.

As shown in the text, the velocity v of the satellite as it
appears to the observer is given by V = v+Ω×R. Thus

v = V −Ω×R

= π R√
2
(I −K)− pi

12
K× R√

2
(I+K)

= π R√
2
(I −K)− π R

12
√

2
J

= −π Rj − π R

12
√

2
i.

v makes

angle tan−1

(

π R/12
√

2

π R

)

= tan−1(1/(12
√

2) ≈ 3.37◦

with the southward direction. Thus the satellite appears
to the observer to be moving in a direction 3.37◦ west of
south.

The apparent Coriolis force is

−2Ω× v = −2
π

12
K×

(
π R√

2
(I−K − π R

12
√

2
J
)

= −π
2R

6
√

2

(

J+ 1

12
I
)

= −π
2R

6
√

2

(

i+ 1

12
√

2
(−j+ k)

)

.
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7. The angular velocity of the earth is Ω, pointing due
north. For a particle moving with horizontal velocity
v, the tangential and normal components of the Coriolis
force C, and of Ω, are related by

CT = −2ΩN × v, CN = −2ΩT × v.

At the north or south pole, ΩT = 0 and ΩN = Ω. Thus
CN = 0 and CT = −2Ω × v. The Coriolis force is
horizontal. It is 90◦ east of v at the north pole and 90◦
west of v at the south pole.

At the equator, ΩN = 0 and ΩT = Ω. Thus CT = 0 and
CN = −2Ω× v. The Coriolis force is vertical.

8. We continue with the same notation as in Example 4.
Since j points northward at the observer’s position,
the angle µ between the direction vector of the sun,
S = cos σ I+ sin σJ and north satisfies

cosµ = S • j = − cosσ cosφ cos θ + sin σ sinφ.

For the sun, θ = 0 and at sunrise and sunset we have, by
Example 4, cos θ = − tan σ/ tanφ, so that

cosµ = cos σ cosφ
tan σ

tanφ
+ sin σ sinφ

= sin σ
cos2 φ

sinφ
+ sin σ sinφ

= sin σ

sinφ
.

9. At Vancouver, φ = 90◦ − 49.2◦ = 40.8◦. On June
21st, σ = 23.3◦. Ignoring the mountains and the rain, by
Example 4 there will be

24

π
cos−1

(

− tan 23.3◦

tan 40.8◦
)

≈ 16

hours between sunrise and sunset. By Exercise 8, the sun
will rise and set at an angle

cos−1
(

sin 23.3◦

sin 40.8◦
)

≈ 52.7◦

to the east and west of north.

10. At Umeå, φ = 90◦ − 63.5◦ = 26.5◦. On June 21st,
σ = 23.3◦. By Example 4 there will be

24

π
cos−1

(

− tan 23.3◦

tan 26.5◦
)

≈ 20

hours between sunrise and sunset. By Exercise 8, the sun
will rise and set at an angle

cos−1
(

sin 23.3◦

sin 26.5◦
)

≈ 27.6◦

to the east and west of north.

Section 11.3 Curves and Parametrizations
(page 611)

1. On the first quadrant part of the circle x2 + y2 = a2

we have x = √

a2 − y2, 0 ≤ y ≤ a. The required
parametrization is

r = r(y) =
√

a2 − y2i+ yj, (0 ≤ y ≤ a).

2. On the first quadrant part of the circle x2 + y2 = a2

we have y = √a2 − x2, 0 ≤ x ≤ a. The required
parametrization is

r = r(x) = x i+
√

a2 − x2j, (0 ≤ x ≤ a).

3. From the figure we see that

φ = θ + π
2
, 0 ≤ θ ≤ π

2

x = a cos θ = a cos
(

φ − π
2

)

= a sinφ

y = a sin θ = a sin
(

φ − π
2

)

= −a cosφ.

The required parametrization is

r = a sinφi− a cosφj,
(π

2
≤ φ ≤ π

)

.

y

x

θ

(x,y)

φ

a

a

Fig. 11.3.3

4. x = a sin
s

a
, y = a cos

s

a
, 0 ≤ s

a
≤ π

2

r = a sin
s

a
i + a cos

s

a
j,

(

0 ≤ s ≤ aπ

2

)

.
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y

x

s
a

s

(x,y)

a

a

Fig. 11.3.4

5. z = x2, z = 4y2. If t = y, then z = 4t2, so x = ±2t .
The curve passes through (2,−1, 4) when t = −1, so
x = −2t . The parametrization is r = −2t i+ tj+ 4t2k.

6. z = x2, x + y + z = 1. If t = x , then
z = t2 and y = 1 − t − t2. The parametrization is
r = t i+ (1− t − t2)j + t2k.

7. z = x + y, x2 + y2 = 9. One possible parametrization is
r = 3 cos t i + 3 sin tj + 3(cos t + sin t)k.

8. x + y = 1, z = √1 − x2 − y2. If x = t , then y = 1 − t
and
z = √

1 − t2 − (1 − t)2 = √

2(t − t2). One possible
parametrization is

r = t i+ (1− t)j +
√

2(t − t2)k.

9. z = x2+ y2, 2x −4y− z−1 = 0. These surfaces intersect
on the vertical cylinder

x2 + y2 = 2x − 4y − 1, that is

(x − 1)2 + (y + 2)2 = 4.

One possible parametrization is

x = 1+ 2 cos t

y = −2+ 2 sin t

z = −1+ 2(1 + 2 cos t)− 4(−2+ 2 sin t) = 9+ 4 cos t − 8 sin t

r = (1+ 2 cos t)i − 2(1− sin t)j + (9 + 4 cos t − 8 sin t)k.

10. yz + x = 1, xz − x = 1. One possible parametrization is
x = t , z = (1+ t)/t , and y = (1− t)/z = (1− t)t/(1+ t),
that is,

r = t i+ t − t2

1+ t
j + 1+ t

t
k.

11. z2 = x2 + y2, z = 1+ x .

a) If t = x , then z = 1+ t , so 1+2t + t2 = t2+ y2, and
y = ±√1+ 2t . Two parametrizations are needed to
get the whole parabola, one for y ≤ 0 and one for
y ≥ 0.

b) If t = y, then x2 + t2 = z2 = 1+ 2x + x2, so
2x + 1 = t2, and x = (t2 − 1)/2. Thus
z = 1 + x = (t2 + 1)/2. The whole parabola is
parametrized by

r = t2 − 1

2
i + tj + t2 + 1

2
k.

c) If t = z, then x = t − 1 and t2 = t2 − 2t + 1 + y2,
so y = ±√2t − 1. Again two parametrizations are
needed to get the whole parabola.

12. By symmetry, the centre of the circle C of intersection of
the plane x + y + z = 1 and the sphere x2 + y2 + z2 = 1
must lie on the plane and must have its three coordinates
equal. Thus the centre has position vector

r0 = 1

3
(i + j + k).

Since C passes through the point (0, 0, 1), its radius is

√
(

0− 1

3

)2

+
(

0 − 1

3

)2

+
(

1− 1

3

)2

=
√

2

3
.

Any vector v that satisfies v • (i+ j+ k) = 0 is parallel to
the plane x + y + z = 1 containing C. One such vector is
v1 = i − j. A second one, perpendicular to v1, is

v2 = (i + j+ k)× (i − j) = i+ j − 2k.

Two perpendicular unit vectors that are parallel to the
plane of C are

v̂1 = i− j√
2
, v̂2 = i + j − 2k√

6
.

Thus one possible parametrization of C is

r = r0 +
√

2

3
(cos t v̂1 + sin t v̂2)

= i+ j+ k
3

+ cos t√
3
(i − j)+ sin t

3
(i+ j− 2k).

13. r = t2i + t2j + t3k, (0 ≤ t ≤ 1)

v =
√

(2t)2 + (2t)2 + (3t2)2 = t
√

8+ 9t2

Length =
∫ 1

0
t
√

8+ 9t2 dt Let u = 8+ 9t2

du = 18t dt

= 1

18

2

3
u3/2

∣
∣
∣
∣

17

8
= 17
√

17− 16
√

2

27
units.
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14. r = t i+ λt2j+ t3k, (0 ≤ t ≤ T )

v =
√

1+ (2λt)2 + 9t4 =
√

(1+ 3t2)2

if 4λ2 = 6, that is, if λ = ±√3/2. In this case, the
length of the curve is

s(T ) =
∫ T

0
(1 + 3t2) dt = T + T 3.

15. Length =
∫ T

1

∣
∣
∣
∣

dr
dt

∣
∣
∣
∣

dt

=
∫ T

1

√

4a2t2 + b2 + c2

t2 dt units.

If b2 = 4ac then

Length =
∫ T

1

√
(

2at + c

t

)2
dt

=
∫ T

1

(

2at + c

t

)

dt

= a(T 2 − 1)+ c ln T units.

16. x = a cos t sin t = a

2
sin 2t ,

y = a sin2 t = a

2
(1 − cos 2t),

z = bt .
The curve is a circular helix lying on the cylinder

x2 +
(

y − a

2

)2 = a2

4
.

Its length, from t = 0 to t = T , is

L =
∫ T

0

√

a2 cos2 2t + a2 sin2 2t + b2 dt

= T
√

a2 + b2 units.

17. r = t cos t i + t sin tj+ tk, 0 ≤ t ≤ 2π

v = (cos t − t sin t)i + (sin t + t cos t)j + k

v = |v| =
√

(1 + t2)+ 1 =
√

2+ t2.
The length of the curve is

L =
∫ 2π

0

√

2+ t2 dt Let t = √2 tan θ

dt = √2 sec2 θ dθ

= 2
∫ t=2π

t=0
sec3 θ dθ

=
(

sec θ tan θ + ln | sec θ + tan θ |
)
∣
∣
∣
∣

t=2π

t=0

= t
√

2+ t2

2
+ ln

(√
2 + t2
√

2
+ t√

2

)∣
∣
∣
∣

2π

0

= π
√

2 + 4π2 + ln
(√

1+ 2π2 +√2π
)

units.

The curve is called a conical helix because it is a spiral
lying on the cone x2 + y2 = z2.

18. One-eighth of the curve C lies in the first octant. That
part can be parametrized

x = cos t, z = 1√
2

sin t, (0 ≤ t ≤ π/2)

y =
√

1− cos2 t − 1

2
sin2 t = 1√

2
sin t.

Since the first octant part of C lies in the plane y = z, it
must be a quarter of a circle of radius 1. Thus the length
of all of C is 8× (π/2) = 4π units.
If you wish to use an integral, the length is

8
∫ π/2

0

√

sin2 t + 1

2
cos2 t + 1

2
cos2 t dt

= 8
∫ π/2

0
dt = 4π units.

x
y

z

x2 + y2 + z2 = 1

x2 + 2z2 = 1

C

Fig. 11.3.18

19. If C is the curve

x = et cos t, y = et sin t, z = t, (0 ≤ t ≤ 2π),

then the length of C is

L =
∫ 2π

0

√
(

dx

dt

)2

+
(

dy

dt

)2

+
(

dz

dt

)2

dt

=
∫ 2π

0

√

e2t (cos t − sin t)2 + e2t (sin t + cos t)2 + 1 dt

=
∫ 2π

0

√

2e2t + 1 dt Let 2e2t + 1 = v2

2e2t dt = v dv

=
∫ t=2π

t=0

v2 dv

v2 − 1
=
∫ t=2π

t=0

(

1+ 1

v2 − 1

)

dv

=
(

v + 1

2
ln

∣
∣
∣
∣

v − 1

v + 1

∣
∣
∣
∣

)∣
∣
∣
∣

t=2π

t=0
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=
√

2e4π + 1−√3+ 1

2
ln

√
2e2t + 1− 1√
2e2t + 1+ 1

∣
∣
∣
∣

2π

0

=
√

2e4π + 1−√3+ ln

√
2e2t + 1− 1√

2et

∣
∣
∣
∣

2π

0

=
√

2e4π + 1−√3+ ln
(√

2e4π + 1− 1
)

− 2π − ln(
√

3− 1) units.

Remark: This answer appears somewhat different
from that given in the answers section of the text. The
two are, however, equal. Somewhat different simplifica-
tions were used in the two.

20. r = t3i + t2j

v = 3t2i + 2tj

v = |v| =
√

9t4 + 4t2 = |t |
√

9t2 + 4

The length L between t = −1 and t = 2 is

L =
∫ 0

−1
(−t)

√

9t2 + 4 dt +
∫ 2

0
t
√

9t2 + 4 dt.

Making the substitution u = 9t2 + 4 in each integral, we
obtain

L = 1

18

[∫ 13

4
u1/2 du +

∫ 40

4
u1/2 du

]

= 1

27

(

133/2 + 403/2 − 16
)

units.

21. r1 = t i + tj, (0 ≤ t ≤ 1) represents the straight line
segment from the origin to (1, 1) in the xy-plane.

r2 = (1− t)i+ (1+ t)j, (0 ≤ t ≤ 1) represents the straight
line segment from (1, 1) to (0, 2).

Thus C = C1 + C2 is the 2-segment polygonal line from
the origin to (1, 1) and then to (0, 2).

22. (Solution due to Roland Urbanek, a student at Okanagan
College.) Suppose the spool is vertical and the cable
windings make angle θ with the horizontal at each point.

b a

2a

θ

H

Fig. 11.3.22

The centreline of the cable is wound around a cylinder of

radius a+b and must rise a vertical distance
2a

cos θ
in one

revolution. The figure below shows the cable unwound
from the spool and inclined at angle θ . The total length
of spool required is the total height H of the cable as
shown in that figure.

θ

2a
cos θ

a
a

L sin θ

2a cos θ

L

2π(a + b)
one revolution

Fig. 11.3.22

Observe that tan θ = 2a

cos θ
× 1

2π(a + b)
. Therefore

sin θ = a

π(a + b)

cos θ =
√

1− a2

π2(a + b)2
=
√

π2(a + b)2 − a2

π(a + b)
.

The total length of spool required is

H = L sin θ + 2a cos θ

= a

π(a + b)

(

L + 2
√

π2(a + b)2 − a2
)

units.

23. r = At i + Btj+ Ctk.
The arc length from the point where t = 0 to the point
corresponding to arbitrary t is

s = s(t) =
∫ t

0

√

A2 + B2 + C2 du =
√

A2 + B2 + C2 t.

Thus t = s/
√

A2 + B2 + C2. The required parametriza-
tion is

r = Asi+ Bsj+ Csk√
A2 + B2 + C2

.

24. r = et i+√2tj − e−t k
v = et i+√2j+ e−tk
v = |v| = √e2t + 2+ e−2t = et + e−t .

The arc length from the point where t = 0 to the point
corresponding to arbitrary t is

s = s(t) =
∫ t

0
(eu + e−u) du = et − e−t = 2 sinh t.
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Thus t = sinh−1(s/2) = ln

(

s +√s2 + 4

2

)

,

and et = s +√s2 + 4

2
. The required parametrization is

r = s +√s2 + 4

2
i+√2 ln

(

s +√s2 + 4

2

)

j− 2k

s +√s2 + 4
.

25. r = a cos3 t i+ a sin3 tj + b cos 2tk, 0 ≤ t ≤ π
2

v = −3a cos2 t sin t i+ 3a sin2 t cos tj − 4b sin t cos tk

v =
√

9a2 + 16b2 sin t cos t

s =
∫ t

0

√

9a2 + 16b2 sin u cos u du

= 1

2

√

9a2 + 16b2 sin2 t = K sin2 t

where K = 1

2

√

9a2 + 16b2

Therefore sin t =
√

s

K
, cos t =

√

1− s

K
,

cos 2t = 1− 2 sin2 t = 1− 2s

K
.

The required parametrization is

r = a
(

1− s

K

)3/2
i+ a

( s

K

)3/2 + b

(

1− 2s

K

)

k

for 0 ≤ s ≤ K , where K = 1

2

√

9a2 + 16b2.

26. r = 3t cos t i+ 3t sin tj + 2
√

2t3/2k, (t ≥ 0)

v = 3(cos t − t sin t)i+ 3(sin t + t cos t)j + 3
√

2
√

tk

v = |v| = 3
√

1 + t2 + 2t = 3(1 + t)

s =
∫ t

0
3(1+ u) du = 3

(

t + t2

2

)

Thus t2+2t = 2s

3
, so t = −1+

√

1+ 2s

3
since t ≥ 0. The

required parametrization is the given one with t replaced
by −1+√1+ (2s)/3.

27. As claimed in the statement of the problem,

r1(t) = r2

(

u(t)
)

, where u is a function from [a, b] to

[c, d], having u(a) = c and u(b) = d . We assume u
is differentiable. Since u is one-to-one and orientation-
preserving, du/dt ≥ 0 on [a, b]. By the Chain Rule:

d

dt
r1(t) = d

du
r2(u)

du

dt
,

and so

∫ b

a

∣
∣
∣
∣

d

dt
r1(t)

∣
∣
∣
∣

dt =
∫ b

a

∣
∣
∣
∣

d

du
r2

(

u(t)
)
∣
∣
∣
∣

du

dt
dt =

∫ d

c

∣
∣
∣
∣

d

du
r2(u)

∣
∣
∣
∣

du.

28. If r = r(t) has nonvanishing velocity v = dr/dt on
[a, b], then for any t0 in [a, b], the function

s = g(t) =
∫ t

t0
|v(u)| du,

which gives the (signed) arc length s measured from r(t0)
along the curve, is an increasing function:

ds

dt
= g′(t) = |v(t)| > 0

on [a, b], by the Fundamental Theorem of Calculus.
Hence g is invertible, and defines t as a function of arc
length s:

t = g−1(s)⇔ s = g(t).

Then
r = r2(s) = r

(

g−1(s)
)

is a parametrization of the curve r = r(t) in terms of arc
length.

Section 11.4 Curvature, Torsion, and the
Frenet Frame (page 619)

1. r = t i− 2t2j + 3t3k

v = i− 4tj+ 9t2k

v =
√

1 + 16t2 + 81t4

T̂ = v
v
= i− 4tj+ 9t2k√

1+ 16t2 + 81t4
.

2. r = a sinωt i+ a cosωtk
v = aω cosωt i− aω sinωtk, v = |aω|
T̂ = sgn(aω)

[

cosωt i− sinωtk
]

.

3. r = cos t sin t i + sin2 t + cos tk

= 1

2
sin 2t i+ 1

2
(1 − cos 2t)j + cos tk

v = cos 2t i+ sin 2tj − sin tk

v = |v| =
√

1+ sin2 t

T̂ = 1√
1+ sin2 t

(

cos 2t i+ sin 2tj− sin tk
)

.

4. r = a cos t i+ b sin tj + tk
v = −a sin t i+ b cos tj+ k

v =
√

a2 sin2 t + b2 cos2 t + 1

T̂ = v
v
= −a sin t i + b cos tj + k√

a2 sin2 t + b2 cos2 t + 1
.
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5. If κ(s) = 0 for all s, then
dT̂
ds
= κN̂ = 0, so

T̂(s) = T̂(0) is constant. This says that
dr
ds
= T̂(0), so

r = T̂(0)s + r(0), which is the vector parametric equation
of a straight line.

6. If τ(s) = 0 for all s, then
dB̂
ds
= −τ N̂ = 0, so B̂(s) = B̂(0) is constant. Therefore,

d

ds

(

r(s)− r(0)
)

• B̂(s) = dr
ds
• B̂(s) = T̂(s) • B̂(s) = 0.

It follows that
(

r(s)− r(0)
)

• B̂(0) =
(

r(s)− r(0)
)

• B̂(s) = 0

for all s. This says that r(s) lies in the plane through
r(0) having normal B̂(0).

7. The circle C1 given by

r = 1

C
cos Csi+ 1

C
sin Csj

is parametrized in terms of arc length, and has curvature
C and torsion 0. (See Examples 2 and 3.)
If curve C has constant curvature κ(s) = C and constant
torsion τ(s) = 0, then C is congruent to C1 by Theorem
3. Thus C must itself be a circle (with radius 1/C).

8. The circular helix C1 given by

r = a cos t i+ a sin tj+ btk

has curvature and torsion given by

κ(s) = a

a2 + b2
, τ (s) = b

a2 + b2
,

by Example 3.
if a curve C has constant curvature κ(s) = C > 0, and
constant torsion τ(s) = T 
= 0, then we can choose a and
b so that

a

a2 + b2 = C,
b

a2 + b2 = T .

(Specifically, a = C

C2 + T 2 , and b = T

C2 + T 2 .) By

Theorem 3, C is itself a circular helix, congruent to C1.

Section 11.5 Curvature and Torsion for
General Parametrizations (page 625)

1. For y = x2 we have

κ(x) = |d2y/dx2|
(1 + (dy/dx)2)3/2

= 2

(1+ 4x2)3/2
.

Hence κ(0) = 2 and κ(
√

2) = 2/27. The radii of cur-
vature at x = 0 and x = √2 are 1/2 and 27/2, respec-
tively.

2. For y = cos we have

κ(x) = |d2y/dx2|
(1 + (dy/dx)2)3/2

= | cos x |
(1 + sin2 x)3/2

.

Hence κ(0) = 1 and κ(π/2) = 0. The radius of curvature
at x = 0 is 1. The radius of curvature at x = π/2 is
infinite.

3. r = 2t i+ (1/t)j − 2tk

v = 2i− (1/t2)j − 2k

a = (2/t3)j

v× a = (4/t3)i + (4/t3)k
At (2, 1,−2), that is, at t = 1, we have

κ = κ(1) = |v× a|
v3

= 4
√

2

27
.

Thus the radius of curvature is 27/(4
√

2).

4. r = t3i+ t2j+ tk

v = 3t2i+ 2tj + k
a = 6t i + 2j

v(1) = 3i + 2j + k, a(1) = 6i+ 2j
v(1)× a(1) = −2i+ 6j− 6k

κ(1) =
√

4+ 36 + 36

(9 + 4 + 1)3/2
= 2
√

19

143/2

At t = 1 the radius of curvature is 143/2/(2
√

19).

5. r = t i+ t2j+ 2k
v = i+ 2tj
a = 2j

v× a = 2k
At (1, 1, 2), where t = 1, we have

T̂ = v/|v| = (i + 2j)/
√

5

B̂ = (v × a)/|v × a| = k

N̂ = B̂× T̂ = (−2i+ j)/
√

5.
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6. r = t i+ t2j + tk
v = i+ 2tj+ k
a = 2j

v× a = −2i+ 2k
At (1, 1, 1), where t = 1, we have

T̂ = v/|v| = (i + 2j + k)/
√

6

B̂ = (v × a)/|v × a| = −(i− k)/
√

2

N̂ = B̂× T̂ = −(i− j+ k)/
√

3.

7. r = t i+ t2

2
j+ t3

3
k

v = i+ tj+ t2k

a = j+ 2tk,
da
dt
= 2k

v× a = t2i− 2tj + k

v = |v| =
√

1+ t2 + t4, |v× a| =
√

1+ 4t2 + t4

(v× a) • da
dt
= 2

T̂ = v
v
= i+ tj + t2k√

1 + t2 + t4

B̂ = v × a
|v× a| =

t2i− 2tj + k√
1+ 4t2 + t4

N̂ = B̂× T̂ = −(2t3 + t)i + (1− t4)j + (t3 + 2t)k
√

(1 + t2 + t4)(1 + 4t2 + t4)

κ = |v× a|
v3 =

√
1+ 4t2 + t4

(1 + t2 + t4)3/2

τ =
(v× a) • da

dt
|v× a|2 = 2

1+ 4t2 + t4 .

8. r = et cos t i+ et sin tj+ etk
v = et (cos t − sin t)i + et (sin t + cos t)j + etk
a = −2et sin t i+ 2et cos tj + etk

da
dt
= −2et (cos t + sin t)i + 2et (cos t − sin t)j + etk

v× a = e2t (sin t − cos t)i − e2t (cos t + sin t)j + 2e2tk

v = |v| = √3et , |v× a| = √6e2t

(v× a) • da
dt
= 2e3t

T̂ = v
v
= (cos t − sin t)i+ (cos t + sin t)j + k√

3

B̂ = v× a
|v× a| =

(sin t − cos t)i − (cos t + sin t)j + 2k√
6

N̂ = B̂× T̂ = − (cos t + sin t)i− (cos t − sin t)j√
2

κ = |v× a|
v3

=
√

2

3et

τ =
(v× a) • da

dt
|v× a|2 = 1

3et
.

9. r = (2+√2 cos t)i + (1 − sin t)j + (3 + sin t)k

v = −√2 sin t i− cos tj + cos tk

v =
√

2 sin2 t + cos2 t + cos2 t = √2

a = −√2 cos t i + sin tj − sin tk
da
dt
= √2 sin t i+ cos tj − cos tk

v × a = −√2j−√2k

κ = |v× a|
v3 = 2

2
√

2
= 1√

2

(v × a) • da
dt
= −√2 cos t +√2 cos t = 0

τ = 0.
Since κ = 1/

√
2 is constant, and τ = 0, the curve is a

circle. Its centre is (2, 1, 3) and its radius is
√

2. It lies
in a plane with normal j + k(= −√2B̂).

10. r = x i+ sin xj

v = dx

dt
i+ cos x

dx

dt
j = k(i + cos xj)

v = k
√

1+ cos2 x

a = −k sin x
dx

dt
j = −k2 sin xj

v× a = −k3 sin xk

κ = |v× a|
v3 = | sin x |

(1 + cos2 x)3/2
.
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The tangential and normal components of acceleration are

dv

dt
= k

2
√

1+ cos2 x
2 cos x)(− sin x)

dx

dt
= − k2 cos x sin x√

1 + cos2 x

v2κ = k2| sin x |√
1 + cos2 x

.

11. r = sin t cos t i+ sin2 tj+ cos tk
v = cos 2t i + sin 2tj − sin tk
a = −2 sin 2t i + 2 cos 2tj− cos tk

da
dt
= −4 cos 2t i− 4 sin 2tj+ sin tk.

At t = 0 we have v = i, a = 2j − k,
da
dt
= −4i,

v× a = j + 2k, (v× a) • da
dt
= 0.

Thus T̂ = i, B̂ = (j + 2k)/
√

5, N̂ = (2j − k)/
√

5,
κ = √5, and τ = 0.

At t = π/4 we have v = j− 1√
2

k, a = −2i− 1√
2

k,

da
dt
= −4j+ 1√

2
k, v× a = − 1√

2
i+√2j+ 2k,

(v × a) • da
dt
= −3

√
2.

Thus

T̂ = 1√
3
(
√

2j− k)

B̂ = 1√
13
(−i+ 2j + 2

√
2k)

N̂ = − 1√
39
(6i + j+√2k)

κ = 2
√

39

9
, τ = −6

√
2

13
.

12. r = a cos t i+ b sin tj
v = −a sin t i+ b cos tj
a = −a cos t i − b sin tj

v× a = abk

v =
√

a2 sin2 t + b2 cos2 t .

The tangential component of acceleration is

dv

dt
= (a2 − b2) sin t cos t√

a2 sin2 t + b2 cos2 t
,

which is zero if t is an integer multiple of π/2, that is, at
the ends of the major and minor axes of the ellipse.
The normal component of acceleration is

v2κ = v2 |v× a|
v3

= ab√
a2 sin2 t + b2 cos2 t

.

13. The ellipse is the same one considered in Exercise 16, so
its curvature is

κ = ab

(a2 sin2 t + b2 cos2 t)3/2

= ab
(

(a2 − b2) sin2 t + b2
)3/2 .

If a > b > 0, then the maximum curvature occurs when
sin t = 0, and is a/b2. The minimum curvature occurs
when sin t = ±1, and is b/a2.

14. By Example 2, the curvature of y = x2 at (1, 1) is

κ = 2

(1 + 4x2)3/2

∣
∣
∣
∣
x=1
= 2

5
√

5
.

Thus the magnitude of the normal acceleration of the
bead at that point is v2κ = 2v2/(5

√
5).

The rate of change of the speed, dv/dt , is the tan-
gential component of the acceleration, and is due entirely
to the tangential component of the gravitational force
since there is no friction:

dv

dt
= g cos θ = g(−j) • T̂,

where θ is the angle between T̂ and −j. (See the fig-
ure.) Since the slope of y = x2 at (1, 1) is 2, we have
T̂ = −(i+ 2j)/

√
5, and therefore dv/dt = 2g/

√
5.

y

x

v2κN̂

−gj

(1, 1)

dv

dt
T̂

y = x2

θ

Fig. 11.5.14

15. Curve: r = x i+ ex j.
Velocity: v = i + ex j. Speed: v = √1+ e2x .
Acceleration: a = ex j. We have

v× a = exk, |v× a| = ex .

The curvature is κ = ex

(1 + e2x)3/2
. Therefore, the radius

of curvature is ρ = (1 + e2x )3/2

ex
.
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The unit normal is

N̂ = B̂× T̂ = (v × a)× v
|(v × a)× v| =

−ex i+ j√
1+ e2x

.

The centre of curvature is

rc = r+ ρN̂

= x i+ ex j+ (1+ e2x)

(

−i+ 1

ex
j
)

= (x − 1− e2x )i+ (2ex + e−x )j.

This is the equation of the evolute.

16. The curve with polar equation r = f (θ) is given para-
metrically by

r = f (θ) cos θ i+ f (θ) sin θ j.

Thus we have

v =
(

f ′(θ) cos θ − f (θ) sin θ
)

i

+
(

f ′(θ) sin θ + f (θ) cos θ
)

j

a =
(

f ′′(θ) cos θ − 2 f ′(θ) sin θ − f (θ) cos θ
)

i

+
(

f ′′(θ) sin θ + 2 f ′(θ) cos θ − f (θ) sin θ
)

j

v = |v| =
√
(

f ′(θ)
)2 +

(

f (θ)
)2

v × a =
[

2
(

f ′(θ)
)2 +

(

f (θ)
)2 − f (θ) f ′′(θ)

]

k.

The curvature is, therefore,

|2
(

f ′(θ)
)2 +

(

f (θ)
)2 − f (θ) f ′′(θ)|

[(

f ′(θ)
)2 +

(

f (θ)
)2]3/2 .

17. If r = a(1 − cos θ), then r ′ = a sin θ , and r ′′ = a cos θ .
By the result of Exercise 20, the curvature of this car-
dioid is

κ = 1
(

a2 sin2 θ + a2(1− cos θ)2
)3/2 ×

∣
∣
∣2a2 sin2 θ

+ a2(1− cos θ)2 − a2(cos θ − cos2 θ)

∣
∣
∣

= 3a2(1 − cos θ)
(

2a2(1 − cos θ)
)3/2 =

3

2
√

2ar
.

18. By Exercise 8 of Section 2.4, the required curve must be
a circular helix with parameters a = 1/2 (radius), and
b = 1/2. Its equation will be

r = 1

2
cos t i1 + 1

2
sin tj1 + 1

2
tk1 + r0

for some right-handed basis {i1, j1, k1}, and some con-
stant vector r0. Example 3 of Section 2.4 provides values
for T̂(0), N̂(0), and B̂(0), which we can equate to the
given values of these vectors:

i = T̂(0) = 1√
2

j1 + 1√
2

k1

j = N̂(0) = −i1

k = B̂(0) = − 1√
2

j1 + 1√
2

k1.

Solving these equations for i1, j1, and k1 in terms of the
given basis vectors, we obtain

i1 = −j

j1 = 1√
2

i− 1√
2

k

k1 = 1√
2

i+ 1√
2

k.

Therefore

r(t) = t + sin t

2
√

2
i− cos t

2
j+ t − sin t

2
√

2
k+ r0.

We also require that r(0) = i, so r0 = i + 1

2
j. The

required equation is, therefore,

r(t) =
(

t + sin t

2
√

2
+ 1

)

i+ 1− cos t

2
j+ t − sin t

2
√

2
k.

19. Given that
dr
dt
= c× r(t), we have

d

dt
|r|2 = d

dt
r • r = 2r • (c× r) = 0

d

dt

(

r(t)− r(0)
)

• c = dr
dt
• c = (c× r) • c = 0.

Thus |r(t)| = |r(0)| is constant, and
(

r(t) − r(0)
)

• c = 0

is constant. Thus r(t) lies on the sphere centred at the
origin with radius |r(0)|, and also on the plane through
r(0) with normal c. The curve is the circle of intersec-
tion of this sphere and this plane.

20. For r = a cos t i + a sin tj + btk, we have, by Example 3
of Section 2.4,

N̂ = − cos t i− sin tj, κ = a

a2 + b2 .
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The centre of curvature rc is given by

rc = r+ ρN̂ = r+ 1

κ
N̂.

Thus the evolute has equation

r = a cos t i + a sin tj + btk

− a2 + b2

a
(cos t i+ sin tj)

= −b2

a
cos t i− b2

a
sin tj + btk.

The evolute is also a circular helix.

21. The parabola y = x2 has curvature

κ = 2

(1+ 4x2)3/2
,

by Exercise 18. The normal at (x, x2) is perpendicular to
the tangent, so has slope −1/(2x). Since the unit normal
points upward (the concave side of the parabola), we
have

N̂ = −2x i+ j√
1+ 4x2

.

Thus the evolute of the parabola has equation

r = x i+ x2j + (1 + 4x2)3/2

2

( −2x i+ j√
1+ 4x2

)

= x i+ x2j − (1 + 4x2)x i+ 1+ 4x2

2
j

= −4x3i+
(

3x2 + 1

2

)

j.

22. For the ellipse r = 2 cos t i+ sin tj, we have

v = −2 sin t i + cos tj
a = −2 cos t i− sin tj
v× a = 2k

v =
√

4 sin2 t + cos2 t =
√

3 sin2 t + 1.

The curvature is κ = 2

(3 sin2 t + 1)3/2
, so the radius of

curvature is ρ = (3 sin2 t + 1)3/2

2
. We have

T̂ = −2 sin t i+ cos tj√
3 sin2 t + 1

, B̂ = k

N̂ = − cos t i+ 2 sin tj√
3 sin2 t + 1

.

Therefore the evolute has equation

r = 2 cos t i+ sin tj− 3 sin2 t + 1

2
(cos t i+ 2 sin tj)

= 3

2
cos3 i− 3 sin3 tj.

23. We require that

f (1) = 1,

f (−1) = −1,

f ′(1) = 0,

f ′(−1) = 0,

f ′′(1) = 0,

f ′′(−1) = 0.

As in Example 5, we try a polynomial of degree 5. How-
ever, here it is clear that an odd function will do, and we
need only impose the conditions at x = 1. Thus we try

f (x) = Ax + Bx3 + Cx5

f ′(x) = A + 3Bx2 + 5Cx4

f ′′(x) = 6Bx + 20Cx3.

The conditions at x = 1 become

A + B + C = 1
A + 3B + 5C = 0

6B + 20C = 0.

This system has solution A = 15/8, B = −5/4, and
C = 3/8. Thus

f (x) = 15

8
x − 5

4
x3 + 3

8
x5

is one possible solution.
y

x

y=1

y=−1

y= f (x)

(−1,−1)

(1,1)

Fig. 11.5.23

24. We require

f (0) = 1,

f (−1) = 1,

f ′(0) = 0,

f ′(−1) = 0,

f ′′(0) = −1,

f ′′(−1) = 0.

The condition f ′′(0) = −1 follows from the fact that

d2

dx2

√

1− x2

∣
∣
∣
∣
x=0
= −1.
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As in Example 5, we try

f (x) = A + Bx + Cx2 + Dx3 + Ex4 + Fx5

f ′(x) = B + 2Cx + 3Dx2 + 4Ex3 + 5Fx4

f ′′ = 2C + 6Dx + 12Ex2 + 20Fx3.

The required conditions force the coefficients to satisfy
the system of equations

A− B + C − D + E − F = 1

B − 2C + 3D − 4E + 5F = 0

2C − 6D + 12E − 20F = 0

A = 1

B = 0

2C = −1

which has solution A = 1, B = 0, C = −1/2, D = −3/2,
E = −3/2, F = −1/2. Thus we can use a track section
in the shape of the graph of

f (x) = 1− 1

2
x2 − 3

2
x3 − 3

2
x4 − 1

2
x5 = 1− 1

2
x2(1+ x)3.

y

x

(−1,1)

x2+y2=1

y=1 y= f (x)

Fig. 11.5.24

25. Given: a(t) = λ(t)r(t)+ µ(t)v(t), v× a 
= 0. We have

v× a = λv× r+ µv × v = λv× r
da
dt
= λ′r+ λv+ µ′v+ µa

= λ′r+ (λ+ µ′)v + µ(λr + µv)

= (λ′ + µλ)r+ (λ+ µ′ + µ2)v.

Since v × r is perpendicular to both v and r, we have

(v × a) • da
dt
= 0.

Thus the torsion τ(t) of the curve is identically zero.
It remains zero when expressed in terms of arc length:
τ(s) = 0. By Exercise 6 of Section 2.4, r(t) must be a
plane curve.

26. After loading the LinearAlgebra and VectorCalculus pack-
ages, issue the following commands:

> R := t -> <cos(t), 2*sin(t),
cos(t)>;
> assume(t::real):
> interface(showassumed=0):
> V := t -> diff(R(t),t):
> A := t -> diff(V(t),t):
> v := t -> Norm(V(t),2):
> VxA := t -> V(t) &x A(t):
> vxa := t -> Norm(VxA(t),2):
> Ap := t -> diff(A(t),t):
> Curv := t ->
> simplify(vxa(t)/(v(t))ˆ3):
> Tors := t -> simplify(
> (VxA(t).Ap(t))/(vxa(t))ˆ2):
> Curv(t); Tors(t);

This leads to the values

√
2

(cos(t)2 + 1)
√

2 cos(t)2 + 2
and 0

for the curvature and torsion, respectively. Maple
doesn’t seem to recognize that the curvature simplifies
to 1/(cos2 t+1)3/2. The torsion is zero because the curve
is lies in the plane z = x . It is the ellipse in which this
plane intersects the ellipsoid 2x2 + y2 + 2z2 = 4. The
maximum and minimum values of the curvature are 1
and 1/23/2, respectively, at the ends of the major and
minor axes of the ellipse.

27. After loading the LinearAlgebra and VectorCalculus pack-
ages, issue the following commands:

> R := t -> <t-sin(t), 1-cos(t), t>;
> assume(t::real):
> interface(showassumed=0):
> V := t -> diff(R(t),t):
> A := t -> diff(V(t),t):
> v := t -> Norm(V(t),2):
> VxA := t -> V(t) &x A(t):
> vxa := t -> Norm(VxA(t),2):
> Ap := t -> diff(A(t),t):
> Curv := t ->
> simplify(vxa(t)/(v(t))ˆ3):
> Tors := t -> simplify(
> (VxA(t).Ap(t))/(vxa(t))ˆ2):
> Curv(t); Tors(t);

This leads to the values

√

cos(t)2 + 2− 2 cos(t)

(3 − 2 cos(t))3/2
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and

− 1

2 cos(t)2 + sin(t)2 − 2 cos(t)+ 1

for the curvature and torsion, respectively. Each of these
formulas can be simplified somewhat:

Curv(t) =
√

2 − 2 cos t + cos2 t

(3− 2 cos t)3/2

Tors(t) = −1

2− 2 cos t + cos2 t
.

Since 3 − 2 cos t > 0
and 2 − 2 cos t + cos2 t = 1 + (1 − cos t)2 > 0 for
all t , the curvature and torsion are both continuous for all
t . The curve appears to be some sort of helix (but not
a circular one) with central axis along the line x = z,
y = 1.

28. After loading the LinearAlgebra and VectorCalculus pack-
ages, issue the following commands:

> R := t -> <cos(t)*cos(2*t),
cos(t)*sin(2*t), sin(t)>;
> assume(t::real):
> interface(showassumed=0):
> V := t -> diff(R(t),t):
> A := t -> diff(V(t),t):
> v := t -> Norm(V(t),2):
> VxA := t -> V(t) &x A(t):
> vxa := t -> Norm(VxA(t),2):
> Ap := t -> diff(A(t),t):
> Curv := t ->
> simplify(vxa(t)/(v(t))ˆ3):
> Tors := t -> simplify(
> (VxA(t).Ap(t))/(vxa(t))ˆ2):
> Curv(t); Tors(t);
> simplify(%,trig);

The last line simplifies the rather complicated expression
that Tors(t) returns by applying some trigonometric
identities. The values for the curvature and torsion are

Curv(t) =
√

17 + 60 cos(t)2 + 48 cos(t)4
(

4 cos(t)2 + 1
)3/2

Tors(t) = 12 cos t (2 cos(t)2 + 3)

17+ 60 cos(t)2 + 48 cos(t)4
.

Plotting the curvature as a function of t ,
(plot(Curv(t),t=-2*Pi..2*Pi)), shows
that the minimum curvature occurs at t = 0 (and
any integer multiple of π ). The minimum curvature is√

125/53/2 = 1.

The command simplify(Norm(R(t),2));
gives output 1, indicating that the curve lies on the
sphere x2 + y2 + z2 = 1.

29. After loading the LinearAlgebra and VectorCalculus pack-
ages, issue the following commands:

> R := t -> <t+cos(t), t+sin(t), 1+t-
cos(t)>;
> assume(t::real):
> interface(showassumed=0):
> V := t -> diff(R(t),t):
> A := t -> diff(V(t),t):
> v := t -> Norm(V(t),2):
> VxA := t -> V(t) &x A(t):
> vxa := t -> Norm(VxA(t),2):
> Ap := t -> diff(A(t),t):
> Curv := t ->
> simplify(vxa(t)/(v(t))ˆ3):
> Tors := t -> simplify(
> (VxA(t).Ap(t))/(vxa(t))ˆ2):
> Curv(t); Tors(t);

This leads to the values

Curv(t) = 2
√

cos(t)2 + cos t + 1
(

5− cos(t)2 + 2 cos t
)3/2

Tors(t) = 1

2(cos(t)2)+ cos t + 1

This appears to be an elliptical helix with central axis
along the line x = y = z − 1.

30. evolute := R -> (t ->
R(t)+TNBFrame(R)[2](t)
*(1/Curvature(R)(t)));

31. tanline := R ->
((t,u) ->

R(t)+TNBFrame(R)[1](t)*u);

Section 11.6 Kepler’s Laws of
Planetary Motion (page 634)

1. r = 


1 + ε cos θ
�⇒ r + εx = 


r = 
− εx
x2 + y2 = r2 = 
2 − 2
εx + ε2x2

(1− ε2)x2 + 2
εx + y2 = 
2

(1− ε2)

(

x + 
ε

1− ε2

)2

+ y2 = 
2 + 
2ε2

1− ε2 =

2

1− ε2

(

x + 
ε

1 − ε2

)2

(



1− ε2

)2 + y2

(

√

1− ε2

)2 = 1.
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2. Position: r = r r̂ = kr̂.
Velocity: v = k ˙̂r = kθ̇ θ̂; speed: v = kθ̇ .

Acceleration: kθ̈ θ̂+ kθ̇ ˙̂θ = −kθ̇2r̂+ kθ̈ θ̂.
Radial component of acceleration: −kθ̇2.
Transverse component of acceleration: kθ̈ = v̇ (the rate
of change of the speed).

3. Position: on the curve r = eθ .
Radial velocity: ṙ = eθ θ̇ .
Transverse velocity: r θ̇ = eθ θ̇ .
Speed v = √2eθ θ̇ = 1 �⇒ θ̇ = (1/√2)e−θ .
Thus θ̈ = −(1/√2)e−θ θ̇ = −e−2θ /2.
Radial velocity = transverse velocity = 1/

√
2.

Radial acceleration:
r̈ − r θ̇2 = eθ θ̇2 + eθ θ̈ − eθ θ̇2 = eθ θ̈ = −e−θ /2.
Transverse acceleration:
r θ̈ + 2ṙ θ̇ = −(e−θ )/2 + e−θ = e−θ /2.

4. Path: r = θ . Thus ṙ = θ̇ , r̈ = θ̈ .
Speed: v =

√

(ṙ)2 + (r θ̇ )2 = θ̇√1+ r2.
Transverse acceleration = 0 (central force). Thus
r θ̈ + 2ṙ θ̇ = 0, or θ̈ = −2θ̇2/r .
Radial acceleration:

r̈ − r θ̇2 = θ̈ − r θ̇2

= −
(

2

r
+ r

)

θ̇2 = − (2+ r2)v2

r(1+ r2)
.

The magnitude of the acceleration is, therefore,
(2 + r2)v2

r(1+ r2)
.

5. For a central force, r2θ̇ = h (constant), and the accelera-
tion is wholly radial, so

|a| = |r̈ − r θ̇2|.

For r = θ−2, we have

ṙ = −2θ−3θ̇ = −2θ−3 h

r2
= −2hθ.

Thus r̈ = −2h θ̇ = −2h2/r2. The speed v is given by

v2 = ṙ2 + r2θ̇2 = 4h2θ2 + (h2/r2).

Since the speed is v0 when θ = 1 (and so r = 1), we
have v2

0 = 5h2, and h = v0/
√

5. Hence the magnitude of
the acceleration at any point on the path is

|a| =
∣
∣
∣
∣
−2

h2

r2 − r
h2

r4

∣
∣
∣
∣
= v2

0

5

(
2

r2 +
1

r3

)

.

6. Let the period and the semi-major axis of the orbit of
Halley’s comet be TH = 76 years and aH km respec-
tively. Similar parameters for the earth’s orbit are TE = 1
year and aE = 150 × 106 km. By Kepler’s third law

T 2
H

a3
H

= T 2
E

a3
E

.

Thus

aH = 150 × 106 × 762/3 ≈ 2.69× 109.

The major axis of Halley’s comet’s orbit is
2aH ≈ 5.38 × 109 km.

7. The period and semi-major axis of the moon’s orbit
around the earth are

TM ≈ 27 days, aM ≈ 385, 000 km.

The satellite has a circular orbit of radius aS and period
TS = 1 day. (If the orbit is in the plane of the equa-
tor, the satellite will remain above the same point on the
earth.) By Kepler’s third law,

T 2
S

a3
S

= T 2
M

a3
M

.

Thus aS = 385, 000× (1/27)2/3 ≈ 42, 788. The satellite’s
orbit should have radius about 42,788 km, and should lie
in the equatorial plane.

8. The period T (in years) and radius R (in km) of the as-
teroid’s orbit satisfies

T 2

R3
= T 2

earth

R3
earth

= 12

(150 × 106)3
.

Thus the radius of the asteroid’s orbit is
R ≈ 150× 106T 2/3 km.

9. If R is the radius and T is the period of the asteroid’s
circular orbit, then almost stopping the asteroid causes
it to drop into a very eccentric elliptical orbit with major
axis approximately R. (Thus, a = R/2.) The period Te

of the new elliptical orbit satisfies

T 2
e

T 2
= (R/2)3

R3
= 1

8
.

Thus Te = T/(2
√

2). The time the asteroid will take to
fall into the sun is half of Te . Thus it is T/(4

√
2).

R

Fig. 11.6.9
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10. At perihelion, r = a − c = (1 − ε)a.
At aphelion r = a + c = (1 + ε)a.
Since ṙ = 0 at perihelion and aphelion, the speed is
v = r θ̇ at each point. Since r2θ̇ = h is constant over the
orbit, v = h/r . Therefore

vperihelion = h

a(1 − ε) , vaphelion = h

a(1 + ε) .

If vperihelion = 2vaphelion then

h

a(1 − ε) =
2h

a(1 + ε) .

Hence 1+ ε = 2(1− ε), and ε = 1/3. The eccentricity of
the orbit is 1/3.

11. The orbital speed v of a planet satisfies (by conservation
of energy)

v2

2
− k

r
= K (total energy).

If v is constant so must be r , and the orbit will therefore
be circular.

12. Since r 2θ̇ = h = constant for the planet’s orbit, and since
the speed is v = r θ̇ at perihelion and at aphelion (the
radial velocity is zero at these points), we have

rpvp = rava,

where the subscripts p and a refer to perihelion and
aphelion, respectively. Since rp/ra = 8/10, we must
have vp/va = 10/8 = 1.25. Also,

rp = 


1+ ε cos 0
= 


1+ ε , ra = 


1 + ε cosπ
= 


1 − ε .

Thus 
/(1+ε) = (8/10)
/(1−ε), and so 10−10ε = 8+8ε.
Hence 2 = 18ε. The eccentricity of the orbit is
ε = 1/9.

13. Let the radius of the circular orbit be R, and let the pa-
rameters of the new elliptical orbit be a and c, as shown
in the figure. Then R = a + c. At the moment of the
collision, r does not change (r = R), but the speed r θ̇
is cut in half. Therefore θ̇ is cut in half, and so h = r2θ̇

is cut in half. Let H be the value of r2θ̇ for the circular
orbit, and let h be the value for the new elliptical orbit.
Thus h = H/2. We have

R = H2

k
, a = h2

k(1 − ε2)
= H2

4k(1 − ε2)
= R

4(1 − ε2)
.

Similarly, c = εa = εR

4(1 − ε2)
, so

R = c + a = (1 + ε)R
4(1− ε2)

= R

4(1 − ε) .

It follows that 1 = 4− 4ε, so ε = 3/4. The new elliptical
orbit has eccentricity ε = 3/4.

S

c a

R

Fig. 11.6.13

14. As in Exercise 12, rPvP = rAvA, where rA = 
/(1 − ε)
and rP = 
/(1 + ε), ε being the eccentricity of the orbit.
Thus

vP

vA
= rA

rP
= 1+ ε

1− ε .

Solving this equation for ε in terms of vP and vA, we
get

ε = vP − vA

vP + vA
.

By conservation of energy the speed v at the ends of the
minor axis of the orbit (where r = a) satisfies

v2

2
− k

a
= v2

P

2
− k

rP
= v2

A

2
− k

rA
.

The latter equality shows that

v2
P − v2

A = 2k

(
1

rP
− 1

rA

)

= 4kε



.

Using this result and the parameters of the orbit given in
the text, we obtain

v2 = v2
P + 2k

(
1

a
− 1

rP

)

= v2
P +

2k




(

1− ε2 − (1 + ε)
)

= v2
P −

2kε



(1+ ε)

= v2
P −

v2
P − v2

A

2

(

1+ vP − vA

vP + vA

)

= v2
P −

vP − vA

2
(2vP ) = vPvA.

Thus v = √vPvA.
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15. Since the radial line from the sun to the planet sweeps
out equal areas in equal times, the fraction of the planet’s
period spend on the same side of the minor axis as the
sun is equal to the shaded area in the figure to the total
area of the ellipse, that is,

1
2πab − 1

2 (2bc)

πab
=

1
2πab − εab

πab
= 1

2
− ε

π
,

where ε = c/a is the eccentricity of the orbit.

b a

c

A

Fig. 11.6.15

16. By conservation of energy, we have

k

r
− 1

2

(

ṙ2 + h2

r2

)

= −K

where K is a constant for the orbit (the total energy).
The term in the parentheses is v2, the square of the
speed. Thus

k

r
− 1

2
v2 = −K = k

r0
− 1

2
v2

0,

where r0 and v0 are the given distance and speed. We
evaluate −K at perihelion.
The parameters of the orbit are


 = h2

k
, a = h2

k(1 − ε2)
, b = h2

k
√

1− ε2
, c = εa.

At perihelion P we have

r = a − c = (1 − ε)a = h2

k(1 + ε) .

Since ṙ = 0 at perihelion, the speed there is v = rθ̇ . By
Kepler’s second law, r2θ̇ = h, so v = h/r = k(1 + ε)/h.
Thus

−K = k

r
− v

2

2

= k2

h2
(1+ ε)− 1

2

k2

h2
(1 + ε)2

= k2

2h2
(1 + ε)

[

2− (1+ ε)
]

= k2

2h2 (1 − ε2) = k

2a
.

Thus a = k

−2K
. By Kepler’s third law,

T 2 = 4π2

k
a3 = 4π2

k

(
k

−2K

)3

.

Thus T = 2π√
k

(

2

r0
− v

2
0

k

)−3/2

.

y

x
a c

a

S P

b

Fig. 11.6.16

17. Let r1(s) and r2(s) be the distances from the point
P = r(s) on the ellipse E to the two foci. (Here s de-
notes arc length on E, measured from any convenient
point.) By symmetry

∫

E
r1(s) ds =

∫

E
r2(s) ds.

But r1(s)+ r2(s) = 2a for any s. Therefore,

∫

E
r1(s) ds +

∫

E
r2(s) ds =

∫

E
2a ds = 2ac(E).

Hence
∫

E r1(s) ds = ac(E), and

1

c(E)

∫

E
r1(s) ds = a.

y

x

P

F2 F1

r2 r1

E

Fig. 11.6.17
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18. Start with

r̈ − h2

r3 = −
k

r2 .

Let r(t) = 1

u(θ)
, where θ = θ(t). Since r2θ̇ = h

(constant), we have

ṙ = − 1

u2

du

dθ
θ̇ = −r2 du

dθ

h

r2 = −h
du

dθ

r̈ = −h
d2u

dθ2
θ̇ = −h2

r2

d2u

dθ2
= −h2u2 d2u

dθ2
.

Thus −h2u2 d2u

dθ2
− h2u3 = −ku2, or

d2u

dθ2 + u = k

h2 .

This is the DE for simple harmonic motion with a con-
stant forcing term (nonhomogeneous term) on the right-
hand side. It is easily verified that

u = k

h2

(

1+ ε cos(θ − θ0)
)

is a solution for any choice of the constants ε and θ0.
Expressing the solution in terms of r , we have

r = h2/k

1+ ε cos(θ − θ0)
,

which is an ellipse if |ε| < 1.

19. For inverse cube attraction, the equation of motion is

r̈ − h2

r3 = −
k

r3 ,

where r2θ̇ = h is constant, since the force is central.
Making the same change of variables used in Exercise
18, we obtain

−h2u2 d2u

dθ2
− h2u3 = −ku3,

or
d2u

dθ2 −
k − h2

h2 u = 0.

There are three cases to consider.

CASE I. If k < h2 the DE is
d2u

dθ2
+ ω2u = 0, where

ω2 = (h2− k)/h2. This has solution u = A cosω(θ − θ0).
Thus

r = 1

A cosω(θ − θ0)
.

Note that r →∞ as θ → θ0+ π

2ω
. There are no bounded

orbits in this case.

CASE II. If k > h2 the DE is
d2u

dθ2 −ω2u = 0, where

ω2 = (k − h2)/h2. This has solution u = Aeωθ + Be−ωθ .
Since u → 0 or ∞ as θ → ∞, the corresponding solu-
tion r = 1/u cannot be both bounded and bounded away
from zero. (Note that θ̇ = h/r2 ≥ K > 0 for any or-
bit which is bounded away from zero, so we can be sure
θ →∞ on such an orbit.)

CASE III. If k = h2 the DE is
d2u

dθ2 = 0, which has

solutions u = Aθ + B, corresponding to

r = 1

Aθ + B
.

Such orbits are bounded away from zero and infinity only
if A = 0, in which case they are circular.

Thus, the only possible orbits which are bounded
away from zero and infinity (i.e., which do not escape
to infinity or plunge into the sun) in a universe with an
inverse cube gravitational attraction are some circular or-
bits for which h2 = k. Such orbits cannot be considered
“stable” since even slight loss of energy would result in
decreased h and the condition h2 = k would no longer
be satisfied. Now aren’t you glad you live in an inverse
square universe?

20. Since
k

r
= 1

2
v2 − K by conservation of energy, if K < 0,

then
k

r
≥ −K > 0,

so r ≤ − k

K
. The orbit is, therefore, bounded.

21. r = 


1+ ε cos θ
, (ε > 1).

See the following figure.
Vertices: At V1, θ = 0 and r = 
/(1 + ε).
At V2, θ = π and r = 
/(1− ε) = −
/(ε − 1).
Semi-focal separation:

c = 1

2

(



1+ ε +



1− ε
)

= 
ε

ε2 − 1
.

The centre is (c, 0).
Semi-transverse axis:

a = 
ε

ε2 − 1
− 


ε + 1
= 


ε2 − 1
.

Semi-conjugate axis:

b =
√

c2 − a2 = 
√
ε2 − 1

.
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Direction of asymptotes (see figure):

θ = tan−1 b

a
= cos−1 a

c
= cos−1 1

ε
.

y

x

θ F2

V2V1F1 C

θ

c b

a

Fig. 11.6.21

22. By Exercise 17, the asymptotes make angle
θ = cos−1(1/ε) with the transverse axis, as shown in the
figure. The angle of deviation δ satisfies 2θ + δ = π , so

θ = π

2
− δ

2
, and

cos θ = sin
δ

2
, sin θ = cos

δ

2
.

y

xS

D

rp

θ 2θ

a

δ

(c,0)

Fig. 11.6.22

By conservation of energy,

v2

2
− k

r
= constant = v2∞

2

for all points on the orbit. At perihelion,

r = rp = c − a = (ε − 1)a = 


ε + 1
,

v = vp = rpθ̇ = h

rp
= h(ε + 1)



.

Since h2 = k
, we have

v2∞ = v2
p −

2k

rp

= h2


2
(ε + 1)2 − 2k



(ε + 1)

= k




[

(ε + 1)2 − 2(ε + 1)
]

= k



(ε2 − 1) = k

a
.

Thus av2∞ = k.

If D is the perpendicular distance from the sun S to
an asymptote of the orbit (see the figure) then

D = c sin θ = εa sin θ = a
sin θ

cos θ

= a
cos(δ/2)

sin(δ/2)
= a cot

δ

2
.

Therefore
Dv2∞

k
= v2∞a

k
cot

δ

2
= cot

δ

2
.

Review Exercises 11 (page 636)

1. Given that a • r = 0 and a • v = 0, we have

d

dt
|r(t)− tv(t)|2

= 2
(

r(t)− tv(t)
)

•
(

v(t)− v(t)− ta(t)
)

= 2
(

r(t)− tv(t)
)

• a(t) = 0 − 0 = 0.

2. r = t cos t i+ t sin tj+ (2π− t)k, (0 ≤ t ≤ 2π) is a conical
helix wound around the cone z = 2π −√x2 + y2 starting
at the vertex (0, 0, 2π), and completing one revolution to
end up at (2π, 0, 0). Since

v = (cos t − t sin t)i + (sin t + t cos t)j − k,

the length of the curve is

L =
∫ 2π

0

√

2+ t2 dt = π
√

2 + 4π2+ln

(

2π +√2 + 4π2
√

2

)

units.
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3. The position of the particle at time t is

r = x i+ x2j + 2
3 x3k,

where x is an increasing function of t . Thie velocity is

v = dx

dt

(

i+ 2xj+ 2x2k
)

.

Since the speed is 6, we have

6 = dx

dt

√

1 + 4x2 + 4x4 = (2x2 + 1)
dx

dt
,

so that dx/dt = 6/(2x2 + 1). The particle is at (1, 1, 2
3 )

when x = 1. At this time its velocity is

v(1) = 2(i + 2j + 2k).

Also

d2x

dt2 = −
6

(2x2 + 1)2
(4x)

dx

dt
= − 144x

(2x2 + 1)3

a = d2x

dt2 (i + 2xj+ 2x2k)

+ dx

dt

(

2
dx

dt
j+ 4x

dx

dt
k
)

.

At x = 1, we have

a(1) = −16

3
(i + 2j + 2k)+ 2(4j + 8k)

= 8

3
(−2i − j + 2k).

4. The position, velocity, speed, and acceleration of the par-
ticle are given by

r = x i+ x2j

v = dx

dt
(i + 2xj), v =

∣
∣
∣
∣

dx

dt

∣
∣
∣
∣

√

1+ 4x2

a = d2x

dt2 (i+ 2xj)+ 2

(
dx

dt

)2

j.

Let us assume that the particle is moving to the right, so
that dx/dt > 0. Since the speed is t , we have

dx

dt
= t√

1+ 4x2

d2x

dt2
=
√

1+ 4x2 − 4t x√
1+ 4x2

dx

dt
1+ 4x2

.

If the particle is at (
√

2, 2) at t = 3, then dx/dt = 1 at
that time, and

d2x

dt2 =
3− 4

√
2

9
.

Hence the acceleration is

a = 3− 4
√

2

9
(i+ 2

√
2j)+ 2j.

If the particle is moving to the left, so that dx/dt < 0, a
similar calculation shows that at t = 3 its acceleration is

a = −3+ 4
√

2

9
(i+ 2

√
2j)+ 2j.

5. r = et i+√2tj + e−tk

v = et i+√2j− e−tk
a = et i+ e−t k

da
dt
= et i− e−t k

v× a = √2e−t i− 2j −√2etk

v =
√

e2t + 2 + e−2t = et + e−t

|v× a| = √2(et + e−t )

κ = |v× a|
v3 =

√
2

(et + e−t )2

τ =
(v× a) • da

dt
|v× a|2 =

√
2

(et + e−t )2
= κ.

6. Tangential acceleration: dv/dt = et − e−t .
Normal acceleration: v2κ = √2.
Since v = 2 cosh t , the minimum speed is 2 at time
t = 0.

7. For x(s) =
∫ s

0
cos

kt2

2
dt , y(s) =

∫ s

0
sin

kt2

2
dt , we have

dx

ds
= cos

ks2

2
,

dy

ds
= sin

ks2

2
,

so that the speed is unity:

v =
√
(

dx

ds

)2

+
(

dy

ds

)2

= 1.

Since x(0) = y(0) = 0, the arc length along the curve,
measured from the origin, is s. Also,

v = cos
ks2

2
i+ sin

ks2

2
j

a = −ks sin
ks2

2
i+ ks cos

ks2

2
j

v× a = ksk.

Therefore the curvature at position s is
κ = |v× a|/v3 = ks.
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8. If r = e−θ , and θ̇ = k, then ṙ = −e−θ θ̇ = −kr , and
r̈ = k2r . Since r = r r̂, we have

v = ṙ r̂+ r θ̇ θ̂ = −kr r̂ + kr θ̂

a = (r̈ − r θ̇2)r̂+ (r θ̈ + 2ṙ θ̇ )θ̂

= (k2r − k2r)r̂+ (0− 2k2r)θ̂ = −2k2r θ̂.

9. r = a(t − sin t)i+ a(1 − cos t)j
v = a(1 − cos t)i + a sin tj

v = a
√

1− 2 cos t + cos2 t + sin2 t

= a
√

2
√

1− cos t = 2a sin
t

2
if 0 ≤ t ≤ 2π .

The length of the cycloid from t = 0 to t = T ≤ 2π is

s(T ) =
∫ T

0
2a sin

t

2
dt = 4a

(

1− cos
T

2

)

units.

10. s = 4a

(

1 − cos
t

2

)

⇒ t = 2cos−1
(

1 − s

4a

)

= t (s).

The required arc length parametrization of the cycloid is

r = a
(

t (s)− sin t (s)
)

i+ a
(

1− cos t (s)
)

j.

11. From Exercise 9 we have

T̂(t) = v
v
= (1 − cos t)i + sin tj

2 sin(t/2)

= sin
t

2
i+ cos

t

2
j

dT̂
ds
= 1

v

dT̂
dt
=

1

2
cos

t

2
i− 1

2
sin

t

2
j

2a sin
t

2

= 1

4a

(

cot
t

2
i− j

)

κ(t) =
∣
∣
∣
∣
∣

dT̂
ds

∣
∣
∣
∣
∣
= 1

4a sin(t/2)

rC (t) = r(t)+ ρ(t)N̂(t) = r(t)+ 1

(κ(t))2
dT̂
ds

= r(t)+ 16a2 sin2(t/2)

4a

(

cot
t

2
i− j

)

= r(t)+ 4a cos
t

2
sin

t

2
i− 4a sin2 t

2
j

= a(t − sin t)i+ a(1 − cos t)j
+ 2a sin t i− 2a(1 − cos t)j

= a(t + sin t)i− a(1 − cos t)j (let t = u − π )

= a(u − sin u − π)i + a(1 − cos u − 2)j.

This is the same cycloid as given by r(t) but translated
πa units to the right and 2a units downward.

12. Let P be the point with position vector r(t)
on the cycloid. By Exercise 9, the arc O P has
length 4a − 4a cos(t/2), and so PQ has length
4a - arc O P = 4a cos(t/2) units. Thus

−→
PQ = 4a cos

t

2
T̂(t)

= 4a cos
t

2

(

sin
t

2
i+ cos

t

2
j
)

= 2a sin t i + 2a(1 + cos t)j.

It follows that Q has position vector

rQ = r+−→PQ

= a(t − sin t)i+ a(1 − cos t)j + 2a sin t i + 2a(1 + cos t)j
= a(t + sin t)i+ a(1 + cos t + 2)j (let t = u + π )

= a(u − sin u + π)i+ a(1 − cos u + 2)j.

Thus rQ(t) represents the same cycloid as r(t), but trans-
lated πa units to the left and 2a units upward. From
Exercise 11, the given cycloid is the evolute of its invo-
lute.

y

x

A

Q

P

O

Fig. R-11.12

13. The position vector of P is given by

r = ρ sinφ cos θ i+ ρ sinφ sin θ j+ ρ cosφk.

Mutually perpendicular unit vectors in the directions of
increasing ρ, φ and θ can be found by differentiating r
with respect to each of these coordinates and dividing the
resulting vectors by their lengths. They are

ρ̂ = dr
dρ
= sinφ cos θ i+ sinφ sin θ j+ cosφk

φ̂ = 1

ρ

dr
dφ
= cosφ cos θ i+ cosφ sin θ j− sinφk

θ̂ = 1

ρ sinφ

dr
dθ
= − sin θ i+ cos θ j.

The triad{ρ̂, φ̂, θ̂} is right-handed. This is the reason for
ordering the spherical polar coordinates (ρ, φ, θ) rather
than (ρ, θ, φ).
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14. By Kepler’s Second Law the position vector r from the
origin (the sun) to the planet sweeps out area at a con-
stant rate, say h/2:

d A

dt
= h

2
.

As observed in the text, d A/dt = r2θ̇/2, so r2θ̇ = h, and

r× v = (r r̂)× (ṙ r̂+ r θ̇ θ̂) = r2θ̇ r̂× θ̂ = hk = h

is a constant vector.

15. By Exercise 14, r × ṙ = r × v = h is constant, so, by
Newton’s second law of motion,

r× F(r) = mr× r̈ = m
d

dt
(r× ṙ) = 0.

Thus F(r) is parallel to r, and therefore has zero trans-
verse component:

F(r) = − f (r)r̂

for some scalar function f (r).

16. By Exercise 15, F(r) = m(r̈ − r θ̇2)r̂ = − f (r)r̂. We are
given that r = 
/(1 + ε cos θ). Thus

ṙ = − 


(1+ ε cos θ)2
(−ε sin θ)θ̇

= ε
 sin θ

(1 + ε cos θ)2
θ̇

= ε sin θ



r2θ̇ = hε



sin θ

r̈ = hε



(cos θ)θ̇ = h2ε cos θ


r2 .

It follows that

r̈ − r θ̇2 = h2ε cos θ


r2
− h2

r3

= h2


r2

(

ε cos θ − 

r

)

= − h2


r2 ,

(because (
/r) = 1+ ε cos θ ). Hence

f (r) = mh2


r2 .

This says that the magnitude of the force on the planet is
inversely proportional to the square of its distance from
the sun. Thus Newton’s law of gravitation follows from
Kepler’s laws and the second law of motion.

Challenging Problems 11 (page 636)

1. a) The angular velocity Ω of the earth points north-
ward in the direction of the earth’s axis; in terms of
the basis vectors defined at a point P at 45◦ north
latitude, it points in the direction of j + k:

Ω = 
 j+ k√
2
, 
 = 2π

24× 3,600
rad/s.

b) If v = −vk, then

aC = 2Ω× v = −2
v√
2
(j + k)× k = −√2
vi.

c) If r(t) = x(t)i + y(t)j + z(t)k is the position of the
falling object at time t , then r(t) satisfies the DE

d2r
dt2 = −gk+ 2Ω× dr

dt

and the initial conditions r(0) = 100k, r′(0) = 0. If
we use the approximation

dr
dt
≈ dz

dt
k,

which is appropriate since 
 is much smaller than g,
then

2Ω× dr
dt
≈ √2


dz

dt
i.

Breaking the DE into its components, we get

d2x

dt2 =
√

2

dz

dt
,

d2y

dt2 = 0,
d2z

dt2 = −g.

Solving these equations (beginning with the last
one), using the initial conditions, we get

z(t) = 100− gt2

2
, y(t) = 0, x(t) = −
gt3

3
√

2
.

Since g ≈ 9.8 m/s2, the time of fall is

t =
√

200

g
≈ 4.52,

at which time we have

x ≈ − 2π

24× 3,600

9.8

3
√

2
(4.52)3 ≈ −0.0155 m.

The object strikes the ground about 15.5 cm west of
P.
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2.

⎧

⎨

⎩

dv
dt
= k× v− 32k

v(0) = 70i

a) If v = v1i+v2j+v3k, then k×v = v1j−v2i. Thus the
initial-value problem breaks down into component
equations as

⎧

⎨

⎩

dv1

dt
= −v2

v1(0) = 70

⎧

⎨

⎩

dv2

dt
= v1

v2(0) = 0

⎧

⎨

⎩

dv3

dt
= −32

v3(0) = 0.

b) If r = x i+yj+zk denotes the position of the baseball
t s after it is thrown, then x(0) = y(0) = z(0) = 0
and we have

dz

dt
= v3 = −32t ⇒ z = −16t2.

Also,
d2v1

dt2
= −dv2

dt
= −v1 (the equation of simple

harmonic motion), so

v1(t) = A cos t + B sin t, v2(t) = A sin t − B cos t.

Since v1(0) = 70, v2(0) = 0, x(0) = 0, and
y(0) = 0, we have

dx

dt
= v1 = 70 cos t

x(t) = 70 sin t

dy

dt
= v2 = 70 sin t

y(t) = 70(1 − cos t).

At time t seconds after it is thrown, the ball is at
position

r = 70 sin t i + 70(1 − cos t)j − 16t2k.

c) At t = 1/5 s, the ball is at about (13.9, 1.40,−0.64).
If it had been thrown without the vertical spin, its
position at time t would have been

r = 70t i − 16t2k,

so its position at t = 1/5 s would have been
(14, 0,−0.64). Thus the spin has deflected the ball
approximately 1.4 ft to the left (as seen from above)
of what would have been its parabolic path had it
not been given the spin.

3.

⎧

⎨

⎩

dv
dt
= ωv× k, ω = q B

m
v(0) = v0

a)
d

dt
(v • k) = dv

dt
• k = ω(v× k) • k = 0.

Thus v • k = constant = v0 • k.

Also,
d

dt
|v|2 = 2

dv
dt
• v = 2ω(v × k) • v = 0,

so |v| = constant = |v0| for all t .

b) If w(t) = v(t)− (v0 •k)k, then w •k = 0 by part (a).
Also, using the result of Exercise 23 of Section 1.3,
we have

d2w
dt2
= d2v

dt2
= ωdv

dt
× k = ω2(v × k)× k

= −ω2
[

(k • k)v − (k • v)k
]

= −ω2
[

v− (v0 • k)k
]

= −ω2w,

the equation of simple harmonic motion. Also,

w(0) = v0 − (v0 • k)k
w′(0) = ωv0 × k.

c) Solving the above initial-value problem for w, we
get

w = A cos(ωt)+ B sin(ωt), where

A = w(0) = v0 − (v0 • k)k, and

ωB = w′(0) = ω × k.

Therefore,

v(t) = w(t)+ (v0 • k)k

=
[

v0 − (v0 • k)k
]

cos(ωt)+ (v0 × k) sin(ωt)

+ (v0 • k)k.

d) If dr/dt = v and r(0) = 0, then

r(t) = v0 − (v0 • k)k
ω

sin(ωt)

+ v0 × k
ω

(

1− cos(ωt)
)

+ (v0 • k)tk.

Since the three constant vectors

v0 − (v0 • k)k
ω

,
v0 × k
ω

, and (v0 • k)k

are mutually perpendicular, and the first two have the
same length because

|v0 − (v0 • k)k| = |v0| sin θ = |v0 × k|,

where θ is the angle between v0 and k, the curve
r(t) is generally a circular helix with axis in the z
direction. However, it will be a circle if v0 • k = 0,
that is, if v0 is horizontal, and it will be a straight
line if v0 × k = 0, that is, if v0 is vertical.
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4. The arc length element on x = a(θ − sin θ),
y = a(cos θ − 1) is (for θ ≤ π )

ds = a
√

(1 − cos θ)2 + sin2 θ dθ

= a
√

2(1 − cos θ) dθ = 2a sin(θ/2) dθ.

If the bead slides downward from rest at height y(θ0)
to height y(θ), its gravitational potential energy has de-
creased by

mg
[

y(θ0)− y(θ)
]

= mga(cos θ0 − cos θ).

Since there is no friction, all this potential energy is con-
verted to kinetic energy, so its speed v at height y(θ) is
given by

1

2
mv2 = mga(cos θ0 − cos θ),

and so v = √2ga(cos θ0 − cos θ). The time required for
the bead to travel distance ds at speed v is dt = ds/v, so
the time T required for the bead to slide from its starting
position at θ = θ0 to the lowest point on the wire, θ = π ,
is

T =
∫ θ=π

θ=θ0
ds

v
=
∫ π

θ0

1

v

ds

dθ
dθ

=
√

2a

g

∫ π

θ0

sin(θ/2)√
cos θ0 − cos θ

dθ

=
√

2a

g

∫ π

θ0

sin(θ/2)
√

2 cos2(θ0/2)− 2 cos2(θ/2)
dθ

Let u = cos(θ/2)

du = − 1
2 sin(θ/2) dθ

= 2
√

a

g

∫ cos(θ0/2)

0

du
√

cos2(θ0/2)− u2

= 2
√

a

g
sin−1

(
u

cos(θ0/2)

)∣
∣
∣
∣

cos(θ0/2)

0

= π√ag

which is independent of θ0.

y
x

θ = θ0 starting point

θ = π

Fig. C-11.4

5. a) The curve BC D is the graph of an even function; a
fourth degree polynomial with terms of even degree
only will enable us to match the height, slope, and
curvature at D, and therefore also at C . We have

f (x) = ax4 + bx2 + c

f ′(x) = 4ax3 + 2bx

f ′′(x) = 12ax2 + 2b.

At D we have x = 2, so we need

2 = f (2) = 16a + 4b + c

1 = f ′(2) = 32a + 4b

0 = f ′′(2) = 48a + 2b.

These equations yield a = −1/64, b = 3/8, c = 3/4,
so the curved track BC D is the graph of

y = f (x) = 1

64
(−x4 + 24x2 + 48).

b) Since we are ignoring friction, the speed v of the
car during its drop is given by v = √2gs, where s
is the vertical distance dropped. (See the previous
solution.) At B the car has dropped about 7.2 m, so
its speed there is v ≈ √2(9.8)(7.2) ≈ 11.9 m/s. At
C the car has dropped 10 − (c/√2) ≈ 9.47 m, so
its speed there is v = 13.6 m/s. At D the car has
dropped 10 m, so its speed is v = 14.0 m/s.

c) At C we have x = 0, f ′(0) = 0, and
f ′′(0) = 2b = 3/4. Thus the curvature of the track
at C is

κ = | f ′′(0)|
(1+ ( f ′(0))2)3/2

= 3

4
.

The normal acceleration is v2κ ≈ 138.7 m/s2 (or
about 14g). Since v = √2gs, we have

dv

dt
=
√

2g

2
√

s

ds

dt
=
√

2g

2
√

s
v ≈

√
19.6

2
√

9.47
(13.6) ≈ 9.78 m/s2,

so the total acceleration has magnitude approxi-
mately

√

(138.7)2 + (9.78)2 ≈ 139 m/s2,

which is again about 14g.
y

x

B

A E

D

C

(2, 2)(−2, 2)

g = (g/√2)(i − j)

vertical section horizontal section

Fig. C-11.5
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6. a) At time t , the hare is at P = (0, vt) and the fox is

at Q =
(

x(t), y(t)
)

, where x and y are such that the

slope dy/dx of the fox’s path is the slope of the line
PQ:

dy

dx
= y − vt

x
.

b) Since
d

dt

dy

dx
= d2y

dx2

dx

dt
, we have

dx

dt

d2y

dx2 =
d

dt

(
y − vt

x

)

=
x

(
dy

dt
− v

)

− (y − vt)
dx

dt
x2

= 1

x

(
dy

dx

dx

dt
− v

)

− 1

x2
(y − vt)

dx

dt

= 1

x2 (y − vt)
dx

dt
− v

x
− 1

x2 (y − vt)
dx

dt

= − v
x
.

Thus x
d2y

dx2 = −
v

dx/dt
.

Since the fox’s speed is also v, we have

(
dx

dt

)2

+
(

dy

dt

)2

= v2.

Also, the fox is always running to the left (towards
the y-axis from points where x > 0), so dx/dt < 0.
Hence

v

−
(

dx

dt

) =
√

1+ (dy/dt)2

(dx/dt)2
=
√

1+
(

dy

dx

)2

,

and so the fox’s path y = y(x) satisfies the DE

x
d2y

dx2 =
√

1+
(

dy

dx

)2

.

c) If u = dy/dx , then u = 0 and y = 0 when x = a,
and

x
du

dx
=
√

1+ u2

∫
du√

1 + u2
=
∫

dx

x
Let u = tan θ

du = sec2 θ dθ
∫

sec θ dθ = ln x + ln C

ln(tan θ + sec θ) = ln(Cx)

u +
√

1+ u2 = Cx .

Since u = 0 when x = a, we have C = 1/a.

√

1+ u2 = x

a
− u

1+ u2 = x2

a2 −
2xu

a
+ u2

2xu

a
= x2

a2 − 1

dy

dx
= u = x

2a
− a

2x

y = x2

4a
− a

2
ln x + C1.

Since y = 0 when x = a, we have

C1 = −a

4
+ a

2
ln a, so

y = x2 − a2

4
− a

2
ln

x

a

is the path of the fox.

7. a) Since you are always travelling northeast at speed v,
you are always moving north at rate v/

√
2. There-

fore you will reach the north pole in finite time

T = πa/2

v/
√

2
= πa√

2v
.

b) Since your velocity at any point has a northward
component v/

√
2, and progress northward is mea-

sured along a circle of radius a (a meridian), your
colatitude φ(t) satisfies

a
dφ

dt
= − v√

2
.

Since φ(0) = π/2, it follows that

φ(t) = π

2
− vt

a
√

2
.

Since your velocity also has an eastward component
v/
√

2 measured along a parallel of latitude that is a
circle of radius a sinφ, your longitude coordinate θ
satisfies

(a sinφ)
dθ

dt
= v√

2
(

cos
vt

a
√

2

)
dθ

dt
= v

a
√

2

θ = v

a
√

2

∫

sec

(
vt

a
√

2

)

dt

= ln

(

sec
vt

a
√

2
+ tan

vt

a
√

2

)

+ C.

As θ = 0 at t = 0, we have C = 0, and so

θ(t) = ln

(

sec
vt

a
√

2
+ tan

vt

a
√

2

)

.

c) As t → T = πa/(
√

2v), the expression for
θ(t) → ∞, so your path spirals around the north
pole, crossing any meridian infinitely often.
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CHAPTER 12. PARTIAL DIFFERENTIA-
TION

Section 12.1 Functions of Several Variables
(page 645)

1. f (x, y) = x + y

x − y
.

The domain consists of all points in the xy-plane not on
the line x = y.

2. f (x, y) = √xy.
Domain is the set of points (x, y) for which xy ≥ 0, that
is, points on the coordinate axes and in the first and third
quadrants.

3. f (x, y) = x

x2 + y2 .

The domain is the set of all points in the xy-plane except
the origin.

4. f (x, y) = xy

x2 − y2 .

The domain consists of all points not on the lines
x = ±y.

5. f (x, y) = √4x2 + 9y2 − 36.
The domain consists of all points (x, y) lying on or out-
side the ellipse 4x2 + 9y2 = 36.

6. f (x, y) = 1/
√

x2 − y2.
The domain consists of all points in the part of the plane
where |x | > |y|.

7. f (x, y) = ln(1 + xy).
The domain consists of all points satisfying xy > −1,
that is, points lying between the two branches of the hy-
perbola xy = −1.

8. f (x, y) = sin−1(x + y).
The domain consists of all points in the strip
−1 ≤ x + y ≤ 1.

9. f (x, y, z) = xyz

x2 + y2 + z2
.

The domain consists of all points in 3-dimensional space
except the origin.

10. f (x, y, z) = exyz

√
xyz

.

The domain consists of all points (x, y, z) where
xyz > 0, that is, all points in the four octants x > 0,
y > 0, z > 0; x > 0, y < 0, z < 0; x < 0, y > 0, z < 0;
and x < 0, y < 0, z > 0.

11. z = f (x, y) = x

x

y

z

(2,0,2)

(2,3,2)

z = x

3

Fig. 12.1.11

12. f (x, y) = sin x, 0 ≤ x ≤ 2π, 0 ≤ y ≤ 1

x

y

z

z = sin x

2π

1

Fig. 12.1.12

13. z = f (x, y) = y2

x

y

z

z = y2

Fig. 12.1.13

14. f (x, y) = 4 − x2 − y2, (x2 + y2 ≤ 4, x ≥ 0, y ≥ 0)
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x

y

z

z = 4− x2 − y2

2

2

4

Fig. 12.1.14

15. z = f (x, y) = √x2 + y2

x
y

z

z = √x2 + y2

Fig. 12.1.15

16. f (x, y) = 4 − x2

x

y

z

z = 4 − x2

Fig. 12.1.16

17. z = f (x, y) = |x | + |y|

x
y

z

Fig. 12.1.17

18. f (x, y) = 6 − x − 2y

x

y

z

6

z = 6− x − 2y

3

6

Fig. 12.1.18

19. f (x, y) = x − y = C , a family of straight lines of slope
1.

y

x

x − y = c

c=−3

c=−2

c=−1

c=0

c=1
c=2

c=3

Fig. 12.1.19

20. f (x, y) = x2 + 2y2 = C , a family of similar ellipses
centred at the origin.
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y

x

x2 + 2y2 = c

c=1

c=4

c=9 c=16

Fig. 12.1.20

21. f (x, y) = xy = C , a family of rectangular hyperbolas
with the coordinate axes as asymptotes.

y

x

xy = c

c=1

c=4

c=9

c=−1

c=−4

c=−9

c=0

Fig. 12.1.21

22. f (x, y) = x2

y
= C , a family of parabolas, y = x2/C ,

with vertices at the origin and vertical axes.
y

x
x2

y = c

c=0.5
c=1

c=2

c=−2

c=−1c=−0.5

Fig. 12.1.22

23. f (x, y) = x − y

x + y
= C , a family of straight lines through

the origin, but not including the origin.
y

x

x−y
x+y = c

c=−2

c=2

c=−.5

c=0

c=.5

c=1

c=−1

Fig. 12.1.23

24. f (x, y) = y

x2 + y2 = C .

This is the family x2 + (y − 1
2C

)2 = 1
4C2 of circles

passing through the origin and having centres on the
y-axis. The origin itself is, however, not on any of the
level curves.

y

x

c=1

c=2

c=3

c=−3

c=−2

c=−1

y
x2+y2 = c

Fig. 12.1.24

25. f (x, y) = xe−y = C .

This is the family of curves y = ln
x

C
.
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y

x

c=4

c=2

xe−y = c

c=−4

c=−2

c=−1 c=1

Fig. 12.1.25

26. f (x, y) =
√

1

y
− x2 = C ⇒ y = 1

x2 + C2 .

y

x

C = 0.8

C = 1

C = 2

f (x, y) =
√

1

y
− x2 = C

Fig. 12.1.26

27. The landscape is steepest at B where the level curves are
closest together.

A C B

200

300
400

600

500

500

100

N

S

W E

Fig. 12.1.27

28. C is a “pass” between two peaks to the east and west.
The land is level at C and rises as you move to the east
or west, but falls as you move to the north or south.

A C B

200

300
400

600

500

500

100

N

S

W E

Fig. 12.1.28

29. The graph of the function whose level curves are as
shown in part (a) of Figure 12.1.29 is a plane containing
the y-axis and sloping uphill to the right. It is consistent
with, say, a function of the form f (x, y) = y.

y

x

y

x

y

x

y

x

C=5
C=3

C=−5
C=0

C=−5 C=0

C=10

C=5

(a) (b)

(d)(c)

Fig. 12.1.29

30. The graph of the function whose level curves are as
shown in part (b) of Figure 12.1.29 is a cylinder paral-
lel to the x-axis, rising from height zero first steeply and
then more and more slowly as y increases. It is consis-
tent with, say, a function of the form f (x, y) =√y + 5.
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y

x

y

x

y

x

y

x

C=5
C=3

C=−5
C=0

C=−5 C=0

C=10

C=5

(a) (b)

(d)(c)

Fig. 12.1.30

31. The graph of the function whose level curves are as
shown in part (c) of Figure 12.1.29 is an upside down
circular cone with vertex at height 5 on the z-axis and
base circle in the xy-plane. It is consistent with, say, a
function of the form f (x, y) = 5−√x2 + y2.

y

x

y

x

y

x

y

x

C=5
C=3

C=−5
C=0

C=−5 C=0

C=10

C=5

(a) (b)

(d)(c)

Fig. 12.1.31

32. The graph of the function whose level curves are as
shown in part (d) of Figure 12.1.29 is a cylinder (possi-
bly parabolic) with axis in the yz-plane, sloping upwards
in the direction of increasing y. It is consistent with, say,
a function of the form f (x, y) = y − x2.

y

x

y

x

y

x

y

x

C=5
C=3

C=−5
C=0

C=−5 C=0

C=10

C=5

(a) (b)

(d)(c)

Fig. 12.1.32

33. The curves y = (x − C)2 are all horizontally shifted
versions of the parabola y = x2, and they all lie in the
half-plane y ≥ 0. Since each of these curves intersects all
of the others, they cannot be level curves of a function
f (x, y) defined in y ≥ 0. To be a family of level curves
of a function f (x, y) in a region, the various curves in
the family cannot intersect one another in that region.

34. 4z2 = (x − z)2 + (y − z)2.
If z = c > 0, we have (x − c)2 + (y − c)2 = 4c2, which
is a circle in the plane z = c, with centre (c, c, c) and
radius 2c.

y

x

c=1

c=2

c=3

(x − c)2 + (y − c)2 = 4c2

Fig. 12.1.34
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The graph of the function z = z(x, y) ≥ 0 defined
by the given equation is (the upper half of) an elliptic
cone with axis along the line x = y = z, and circular
cross-sections in horizontal planes.

35. a) f (x, y) = C is x2 + y2 = C2 implies that
f (x, y) = √x2 + y2.

b) f (x, y) = C is x2 + y2 = C4 implies that
f (x, y) = (x2 + y2)1/4.

c) f (x, y) = C is x2 + y2 = C implies that
f (x, y) = x2 + y2.

d) f (x, y) = C is x2 + y2 = (ln C)2 implies that

f (x, y) = e
√

x2+y2
.

36. If the level surface f (x, y, z) = C is the plane

x

C3 +
y

2C3 +
z

3C3 = 1,

that is, x + y

2
+ z

3
= C3, then

f (x, y, z) =
(

x + y

2
+ z

3

)1/3
.

37. f (x, y, z) = x2 + y2 + z2.
The level surface f (x, y, z) = c > 0 is a sphere of radius√

c centred at the origin.

38. f (x, y, z) = x + 2y + 3z.
The level surfaces are parallel planes having common
normal vector i + 2j + 3k.

39. f (x, y, z) = x2 + y2.
The level surface f (x, y, z) = c > 0 is a circular cylinder
of radius

√
c with axis along the z-axis.

40. f (x, y, z) = x2 + y2

z2
.

The equation f (x, y, z) = c can be rewritten
x2 + y2 = C2z2. The level surfaces are circular cones
with vertices at the origin and axes along the z-axis.

41. f (x, y, z) = |x | + |y| + |z|.
The level surface f (x, y, z) = c > 0 is the surface of
the octahedron with vertices (±c, 0, 0), (0,±c, 0), and
(0, 0,±c). (An octahedron is a solid with eight planar
faces.)

42. f (x, y, z, t) = x2 + y2 + z2 + t2.
The “level hypersurface” f (x, y, z, t) = c > 0 is the
“4-sphere” of radius

√
c centred at the origin in �4. That

is, it consists of all points in �4 at distance
√

c from the
origin.

43.

x

y

z

z = 1

1+ x2 + y2

Fig. 12.1.43

44.

x

y

z
z = cos x

1+ y2

−5 ≤ x ≤ 5, −5 ≤ y ≤ 5

Fig. 12.1.44

45.

x

y

z

z = y

1+ x2 + y2

Fig. 12.1.45
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46.

x

y

z
z = x

(x2 − 1)2 + y2

Fig. 12.1.46

47.

x

y

z

z = xy

Fig. 12.1.47

48. The graph is asymptotic to the coordinate planes.

x

y

z

z = 1

xy

−4 ≤ x ≤ 4−4 ≤ y ≤ 4

Fig. 12.1.48

Section 12.2 Limits and Continuity
(page 650)

1. lim
(x,y)→(2,−1)

xy + x2 = 2(−1)+ 22 = 2

2. lim
(x,y)→(0,0)

√

x2 + y2 = 0

3. lim
(x,y)→(0,0)

x2 + y2

y
does not exist.

If (x, y)→ (0, 0) along x = 0, then
x2 + y2

y
= y→ 0.

If (x, y) → (0, 0) along y = x2, then
x2 + y2

y
= 1+ x2→ 1.

4. Let f (x, y) = x

x2 + y2
.

Then | f (x, 0)| = |1/x | → ∞ as x → 0.
But | f (0, y)| = 0→ 0 as y→ 0.
Thus lim(x,y)→(0,0) f (x, y) does not exist.

5. lim
(x,y)→(1,π)

cos(xy)

1 − x − cos y
= cosπ

1− 1 − cosπ
= −1

6. lim
(x,y)→(0,1)

x2(y − 1)2

x2 + (y − 1)2
= 0, because

0 ≤
∣
∣
∣
∣

x2(y − 1)2

x2 + (y − 1)2

∣
∣
∣
∣
≤ x2

and x2→ 0 as (x, y)→ (0, 1).

7.
∣
∣
∣
∣

y3

x2 + y2

∣
∣
∣
∣
≤ y2

x2 + y2 |y| ≤ |y| → 0

as (x, y)→ (0, 0). Thus lim
(x,y)→(0,0)

y3

x2 + y2 = 0.

8. lim
(x,y)→(0,0)

sin(x − y)

cos(x + y)
= sin 0

cos 0
= 0.

9. Let f (x, y) = sin(xy)

x2 + y2 .

Now f (0, y) = 0/x2 = 0→ 0 as x → 0.

However, f (x, x) = sin x2

2x2 →
1

2
as x → 0.

Therefore lim
(x,y)→(0,0)

f (x, y) does not exist.

10. The fraction is not defined at points of the line y = 2x
and so cannot have a limit at (1, 2) by Definition 4.
However, if we use the extended Definition 6, then, can-
celling the common factor 2x − y, we get

lim
(x,y)→(1,2)

2x2 − xy

4x2 − y2 = lim
(x,y)→(1,2)

x

2x + y
= 1

4
.

11. x2 ≤ x2 + y4. Thus
x2y2

x2 + y4
≤ y2 → 0 as y → 0. Thus

lim
(x,y)→(0,0)

x2y2

x2 + y4 = 0.
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12. If x = 0 and y �= 0, then
x2y2

2x4 + y4
= 0.

If x = y �= 0, then
x2y2

2x4 + y4 =
x4

2x4 + x4 =
1

3
.

Therefore lim
(x,y)→(0,0)

x2y2

2x4 + y4
does not exist.

13. f (x, y) = x2 + y2 − x3y3

x2 + y2
= 1 − x3y3

x2 + y2
. But

∣
∣
∣
∣

x3y3

x2 + y2

∣
∣
∣
∣
=
∣
∣
∣
∣

x2

x2 + y2

∣
∣
∣
∣
|xy3| ≤ |xy3| → 0

as (x, y)→ (0, 0). Thus lim
(x,y)→(0,0)

f (x, y) = 1− 0 = 1.

Define f (0, 0) = 1.

14. For x �= y, we have

f (x, y) = x3 − y3

x − y
= x2 + xy + y2.

The latter expression has the value 3x2 at points of the
line x = y. Therefore, if we extend the definition of
f (x, y) so that f (x, x) = 3x2, then the resulting func-
tion will be equal to x2 + xy + y2 everywhere, and so
continuous everywhere.

15. f (x, y) = x − y

x2 − y2
= x − y

(x − y)(x + y)
.

Since f (x, y) = 1/(x + y) at all points off the line x = y
and so is defined at some points in any neighbourhood of
(1, 1), it approaches 1/(1 + 1) = 1/2 as (x, y)→ (1, 1);
If we define f (1, 1) = 1/2, then f becomes continuous
at (1, 1). Similarly, f (x, y) can be defined to be 1/(2x)
at any point on the line x = y except the origin, and
becomes continuous at such points.

However there is no way to define f (x,−x) so
that f becomes continuous on y = −x , since
| f (x, y)| = 1/|x + y| → ∞ as y→−x .

16. Let f be the function of Example 3 of Section 3.2:

f (x, y) =
{ 2xy

x2 + y2
if (x, y) �= (0, 0)

0 if (x, y) = (0, 0).
Let a = b = 0. If g(x) = f (x, 0) and h(y) = f (0, y),
then g(x) = 0 for all x , and h(y) = 0 for all y, so g
and h are continuous at 0. But, as shown in Example 3
of Section 3.2, f is not continuous at (0, 0).

If f (x, y) is continuous at (a, b), then g(x) = f (x, b) is
continuous at x = a because

lim
x→a

g(x) = lim
x→a
y=b

f (x, y) = f (a, b).

Similarly, h(y) = f (a, y) is continuous at y = b.

17. fu(t) = f (a + tu, b + tv), where u = ui + vj is a unit
vector.

f (x, y) may not be continuous at (a, b) even if fu(t) is
continuous at t = 0 for every unit vector u. A counterex-
ample is the function f of Example 4 in this section.
Here a = b = 0. The condition that each fu should
be continuous is the condition that f should be contin-
uous on each straight line through (0, 0), which it is if
we extend the domain of f to include (0, 0) by defin-
ing f (0, 0) = 0. (We showed that f (x, y) → 0 as
(x, y) → (0, 0) along every straight line.) However, we
also showed that lim(x,y)→(0,0) f (x, y) did not exist.

On the other hand, if f (x, y) is continuous at (a, b), then
f (x, y)→ f (a, b) if (x, y) approaches (a, b) in any way,
in particular, along the line through (a, b) parallel to u.
Thus all such functions fu(t) must be continuous at
t = 0.

18. Since |x | ≤ √x2 + y2 and |y| ≤ √x2 + y2, we have

∣
∣
∣
∣

xm yn

(x2 + y2)p

∣
∣
∣
∣
≤ (x2 + y2)(m+n)/2

(x2 + y2)p
= (x2 + y2)−p+(m+n)/2.

The expression on the right → 0 as (x, y) → (0, 0),
provided m + n > 2p. In this case

lim
(x,y)→(0,0)

xm yn

(x2 + y2)p
= 0.

19. Suppose (x, y)→ (0, 0) along the ray y = kx . Then

f (x, y) = xy

ax2 + bxy + cy2
= k

a + bk + ck2
.

Thus f (x, y) has different constant values along differ-
ent rays from the origin unless a = c = 0 and b �= 0.
If this condition is not satisfied, lim(x,y)→(0,0) f (x, y)
does not exist. If the condition is satisfied, then
lim(x,y)→(0,0) f (x, y) = 1/b does exist.

20. f (x, y) = sin x sin3 y

1− cos(x2 + y2)
cannot be defined at (0, 0)

so as to become continuous there, because f (x, y) has
no limit as (x, y) → (0, 0). To see this, observe that
f (x, 0) = 0, so the limit must be 0 if it exists at all.
However,

f (x, x) = sin4 x

1− cos(2x2)
= sin4 x

2 sin2(x2)

which approaches 1/2 as x → 0 by l’Hôpital’s Rule or by
using Maclaurin series.
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21.

x

y

z
z = 2xy

x2 + y2

Fig. 12.2.21

The graphing software is unable to deal effectively with
the discontinuity at (x, y) = (0, 0) so it leaves some
gaps and rough edges near the z-axis. The surface lies
between a ridge of height 1 along y = x and a ridge of
height −1 along y = −x . It appears to be creased along
the z-axis. The level curves are straight lines through the
origin.

22. The graphing software is unable to deal effectively with
the discontinuity at (x, y) = (0, 0) so it leaves some
gaps and rough edges near the z-axis. The surface lies
between a ridge along y = x2, z = 1, and a ridge along
y = −x2, z = −1. It appears to be creased along the
z-axis. The level curves are parabolas y = kx2 through
the origin. One of the families of rulings on the surface
is the family of contours corresponding to level curves.

x

y

z

z = 2x2y

x4 + y2

Fig. 12.2.22

23. The graph of a function f (x, y) that is continuous on
region R in the xy-plane is a surface with no breaks or
tears in it and that intersects each line parallel to the z-
axis through a point (x, y) of R at exactly one point.

Section 12.3 Partial Derivatives
(page 656)

1. f (x, y) = x − y + 2,
f1(x, y) = 1 = f1(3, 2), f2(x, y) = −1 = f2(3, 2).

2. f (x, y) = xy + x2,
f1(x, y) = y + 2x , f2(x, y) = x ,
f1(2, 0) = 4, f2(2, 0) = 2.

3. f (x, y, z) = x3y4z5,
f1(x, y, z) = 3x2 y4z5, f1(0,−1,−1) = 0,
f2(x, y, z) = 4x3 y3z5, f2(0,−1,−1) = 0,
f3(x, y, z) = 5x3 y4z4, f3(0,−1,−1) = 0.

4. g(x, y, z) = xz

y + z
,

g1(x, y, z) = z

y + z
, g1(1, 1, 1) = 1

2
,

g2(x, y, z) = −xz

(y + z)2
, g2(1, 1, 1) = −1

4
,

g3(x, y, z) = xy

(y + z)2
, g3(1, 1, 1) = 1

4
.

5. z = tan−1
( y

x

)

∂z

∂x
= 1

1 + y2

x2

(

− y

x2

)

= − y

x2 + y2

∂z

∂y
= 1

1 + y2

x2

(
1

x

)

= x

x2 + y2

∂z

∂x

∣
∣
∣
∣
(−1,1)

= −1

2
,

∂z

∂y

∣
∣
∣
∣
(−1,1)

= −1

2
.

6. w = ln(1+ exyz),
∂w

∂x
= yzexyz

1 + exyz
,

∂w

∂y
= xzexyz

1+ exyz
,
∂w

∂z
= xyexyz

1+ exyz
,

At (2, 0,−1):
∂w

∂x
= 0,

∂w

∂y
= −1,

∂w

∂z
= 0.

7. f (x, y) = sin(x
√

y),

f1(x, y) = √y cos(x
√

y), f1
(π

3
, 4
)

= −1,

f2(x, y) = x

2
√

y
cos(x

√
y), f2

(π

3
, 4
)

= − π
24
.
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√

x2 + y2
,

f1(x, y) = −1

2
(x2 + y2)−3/2(2x) = − x

(x2 + y2)3/2
,

By symmetry, f2(x, y) = − y

(x2 + y2)3/2
,

f1(−3, 4) = 3

125
, f2(−3, 4) = − 4

125
.

9. w = x y ln z ,
∂w

∂x
= y ln z x y ln z−1,

∂w

∂x

∣
∣
∣
∣
(e,2,e)

= 2e,

∂w

∂y
= ln x ln z x y ln z,

∂w

∂y

∣
∣
∣
∣
(e,2,e)

= e2,

∂w

∂z
= y

z
ln x x y ln z,

∂w

∂z

∣
∣
∣
∣
(e,2,e)

= 2e.

10. If g(x1, x2, x3, x4) = x1 − x2
2

x3 + x2
4

, then

g1(x1, x2, x3, x4) = 1

x3 + x2
4

g1(3, 1,−1,−2) = 1

3

g2(x1, x2, x3, x4) = −2x2

x3 + x2
4

g2(3, 1,−1,−2) = −2

3

g3(x1, x2, x3, x4) = x2
2 − x1

(x3 + x2
4 )

2
g3(3, 1,−1,−2) = −2

9

g4(x1, x2, x3, x4) = (x2
2 − x1)2x4

(x3 + x2
4 )

2
g4(3, 1,−1,−2) = 8

9
.

11. f (x, y) =
⎧

⎨

⎩

2x3 − y3

x2 + 3y2
if (x, y) �= (0, 0)

0 if (x, y) = (0, 0)
f1(0, 0) = lim

h→0

2h3 − 0

h(h2 + 0)
= 2

f2(0, 0) = lim
k→0

−k3 − 0

k(0 + 3k2)
= −1

3
.

12. f (x, y) =
⎧

⎨

⎩

x2 − 2y2

x − y
if x �= y

0 if x = y

f1(0, 0) = lim
h→0

f (h, 0)− f (0, 0)

h
= lim

h→0

h − 0

h
= 1,

f2(0, 0) = lim
k→0

f (0, k) − f (0, 0)

k
= lim

k→0

2k

k
= 2.

13. f (x, y) = x2 − y2

f1(x, y) = 2x

f2(x, y) = −2y

f (−2, 1) = 3

f1(−2, 1) = −4

f2(−2, 1) = −2
Tangent plane: z = 3− 4(x + 2)− 2(y − 1), or
4x + 2y + z = −3.

Normal line:
x + 2

−4
= y − 1

−2
= z − 3

−1
.

14. f (x, y) = x − y

x + y
, f (1, 1) = 0,

f1(x, y) = (x + y)− (x − y)

(x + y)2
, f1(1, 1) = 1

2

f2(x, y) = (x + y)(−1)− (x − y)

(x + y)2
, f2(1, 1) = −1

2
.

Tangent plane to z = f (x, y) at (1,1) has equation

z = x − 1

2
− y − 1

2
, or 2z = x − y.

Normal line: 2(x − 1) = −2(y − 1) = −z.

15. f (x, y) = cos
x

y

f1(x, y) = − 1

y
sin

x

y

f2(x, y) = x

y2 sin
x

y

f (π, 4) = 1√
2

f1(π, 4) = − 1

4
√

2

f2(π, 4) = π

16
√

2
The tangent plane at x = π , y = 4 is

z = 1√
2

(

1− 1

4
(x − π)+ π

16
(y − 4)

)

,

or 4x − πy + 16
√

2z = 16.
Normal line:

−4
√

2(x − π) = 16
√

2

π
(y − 4) = −

(

z − (1/√2)
)

.

16. f (x, y) = exy , f1(x, y) = yexy, f2(x, y) = xexy ,
f (2, 0) = 1, f1(2, 0) = 0, f2(2, 0) = 2.
Tangent plane to z = exy at (2,0) has equation z = 1+2y.
Normal line: x = 2, y = 2− 2z.

17. f (x, y) = x

x2 + y2

f1(x, y) = (x2 + y2)(1) − x(2x)

(x2 + y2)2
= y2 − x2

(x2 + y2)2

f2(x, y) = − 2xy

(x2 + y2)2

f (1, 2) = 1

5
, f1(1, 2) = 3

25
, f2(1, 2) = − 4

25
.

The tangent plane at x = 1, y = 2 is

z = 1

5
+ 3

25
(x − 1)− 4

25
(y − 2),

or 3x − 4y − 25z = −10.

Normal line:
x − 1

3
= y − 2

−4
= 5z − 1

−125
.

18. f (x, y) = ye−x2
, f1 = −2xye−x2

, f2 = e−x2
,

f (0, 1) = 1, f1(0, 1) = 0, f2(0, 1) = 1.
Tangent plane to z = f (x, y) at (0, 1) has equation
z = 1+ 1(y − 1), or z = y.
Normal line: x = 0, y + z = 2.
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19. f (x, y) = ln(x2 + y2)

f1(x, y) = 2x

x2 + y2

f2(x, y) = 2y

x2 + y2

f (1,−2) = ln 5

f1(1,−2) = 2

5

f2(1,−2) = −4

5
The tangent plane at (1,−2, ln 5) is

z = ln 5+ 2

5
(x − 1)− 4

5
(y + 2),

or 2x − 4y − 5z = 10 − 5 ln 5.

Normal line:
x − 1

2/5
= y + 2

−4/5
= z − ln 5

−1
.

20. f (x, y) = 2xy

x2 + y2 , f (0, 2) = 0

f1(x, y) = (x2 + y2)2y − 2xy(2x)

(x2 + y2)2
= 2y(y2 − x2)

(x2 + y2)2

f2(x, y) = 2x(x2 − y2)

(x2 + y2)2
(by symmetry)

f1(0, 2) = 1, f2(0, 2) = 0.
Tangent plane at (0, 2): z = x .
Normal line: z + x = 0, y = 2.

21. f (x, y) = tan−1
( y

x

)

, f (1,−1) = −π
4

,

f1(x, y) = 1

1+ y2

x2

(

− y

x2

)

= − y

x2 + y2 ,

f2(x, y) = 1

1+ y2

x2

(
1

x

)

= x

x2 + y2
,

f1(1,−1) = f2(1,−1) = 1

2
. The tangent plane is

z = −π
4
+ 1

2
(x − 1)+ 1

2
(y + 1), or z = −π

4
+ 1

2
(x + y).

Normal line: 2(x − 1) = 2(y + 1) = −z − π
4

.

22. f (x, y) =
√

1+ x3y2

f1(x, y) = 3x2y2

2
√

1+ x3y2

f2(x, y) = 2x3y

2
√

1+ x3y2

f (2, 1) = 3

f1(2, 1) = 2

f2(2, 1) = 8

3

Tangent plane: z = 3+ 2(x − 2)+ 8
3 (y − 1), or

6x + 8y − 3z = 11.

Normal line:
x − 2

2
= y − 1

8/3
= z − 3

−1
.

23. z = x4 − 4xy3 + 6y2 − 2
∂z

∂x
= 4x3 − 4y3 = 4(x − y)(x2 + xy + y2)

∂z

∂y
= −12xy2 + 12y = 12y(1− xy).

The tangent plane will be horizontal at points where both
first partials are zero. Thus we require x = y and either
y = 0 or xy = 1.
If x = y and y = 0, then x = 0.
If x = y and xy = 1, then x2 = 1, so x = y = ±1.
The tangent plane is horizontal at the points (0, 0), (1, 1),
and (−1,−1).

24. z = xye−(x2+y2)/2

∂z

∂x
= ye−(x2+y2)/2 − x2ye−(x2+y2)/2 = y(1− x2)e−(x2+y2)/2

∂z

∂y
= x(1 − y2)e−(x2+y2)/2 (by symmetry)

The tangent planes are horizontal at points where both
of these first partials are zero, that is, points satisfying

y(1− x2) = 0 and x(1− y2) = 0.

These points are (0, 0), (1, 1), (−1,−1), (1,−1) and
(−1, 1).
At (0,0) the tangent plane is z = 0.
At (1, 1) and (−1,−1) the tangent plane is z = 1/e.
At (1,−1) and (−1, 1) the tangent plane is z = −1/e.

25. If z = xey , then
∂z

∂x
= ey and

∂z

∂y
= xey .

Thus x
∂z

∂x
= xey = ∂z

∂y
.

26. z = x + y

x − y
,

∂z

∂x
= (x − y)(1)− (x + y)(1)

(x − y)2
= −2y

(x − y)2
,

∂z

∂y
= (x − y)(1)− (x + y)(−1)

(x − y)2
= 2x

(x − y)2
.

Therefore

x
∂z

∂x
+ y

∂z

∂y
= − 2xy

(x − y)2
+ 2xy

(x − y)2
= 0.

27. If z = √x2 + y2, then
∂z

∂x
= x
√

x2 + y2
, and

∂z

∂y
= y
√

x2 + y2
. Thus

x
∂z

∂x
+ y

∂z

∂y
= x2 + y2
√

x2 + y2
= z.
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28. w = x2 + yz,
∂w

∂x
= 2x,

∂w

∂y
== z,

∂w

∂z
= y.

Therefore

x
∂w

∂x
+ y

∂w

∂y
+ z

∂w

∂z

= 2x2 + yz + yz

= 2(x2 + yz) = 2w.

29. If w = 1

x2 + y2 + z2
, then

∂w

∂x
= − 2x

(x2 + y2 + z2)2
,

∂w

∂y
= − 2y

(x2 + y2 + z2)2
, and

∂w

∂z
= − 2z

(x2 + y2 + z2)2
.

Thus

x
∂w

∂x
+ y

∂w

∂y
+ z

∂w

∂z
= −2

x2 + y2 + z2

(x2 + y2 + z2)2
= −2w.

30. z = f (x2 + y2),
∂z

∂x
= f ′(x2 + y2)(2x),

∂z

∂y
= f ′(x2 + y2)(2y).

Thus y
∂z

∂x
− x

∂z

∂y
= 2xy f ′(x2+ y2)−2xy f ′(x2+ y2) = 0.

31. z = f (x2 − y2),
∂z

∂x
= f ′(x2 − y2)(2x),

∂z

∂y
= f ′(x2 − y2)(−2y).

Thus y
∂z

∂x
+ x

∂z

∂y
= (2xy − 2xy) f ′(x2 − y2) = 0.

32. f1(x, y, z) = lim
h→0

f (x + h, y, z)− f (x, y, z)

h

f2(x, y, z) = lim
k→0

f (x, y + k, z)− f (x, y, z)

k

f3(x, y, z) = lim
�→0

f (x, y, z + �)− f (x, y, z)

�

33. At
(

a, b, c, f (a, b, c)
)

the graph of w = f (x, y, z) has

tangent hyperplane

w = f (a, b, c)+ f1(a, b, c)(x − a)+ f2(a, b, c)(y − b)

+ f3(a, b, c)(z − c).

34. If Q = (X, Y, Z) is the point on the surface z = x2 + y2

that is closest to P = (1, 1, 0), then

−→
PQ = (X − 1)i+ (Y − 1)j + Zk

must be normal to the surface at Q, and hence must be
parallel to n = 2X i + 2Y j − k. Hence

−→
PQ = tn for some

real number t , so

X − 1 = 2t X, Y − 1 = 2tY, Z = −t.

Thus X = Y = 1

1− 2t
, and, since Z = X2 + Y 2, we must

have

−t = 2

(1− 2t)2
.

Evidently this equation is satisfied by t = −1

2
. Since the

left and right sides of the equation have graphs similar
to those in Figure 12.18(b) (in the text), the equation has

only this one real solution. Hence X = Y = 1

2
, and so

Z = 1

2
.

The distance from (1, 1, 0) to z = x2 is the distance from
(1, 1, 0) to

( 1
2 ,

1
2 ,

1
2

)

, which is
√

3/2 units.

35. If Q = (X, Y, Z) is the point on the surface z = x2 + 2y2

that is closest to P = (0, 0, 1), then

−→PQ = X i + Y j+ (Z − 1)k

must be normal to the surface at Q, and hence must be
parallel to n = 2X i+ 4Y j − k. Hence −→PQ = tn for some
real number t , so

X = 2t X, Y = 4tY, Z − 1 = −t.

If X �= 0, then t = 1/2, so Y = 0, Z = 1/2, and
X = √Z = 1/

√
2. The distance from (1/

√
2, 0, 1/2) to

(0, 0, 1) is
√

3/2 units.
If Y �= 0, then t = 1/4, so X = 0, Z = 3/4, and
Y = √Z/2 = √3/8. The distance from (0,

√
3/8, 3/4) to

(0, 0, 1) is
√

7/4 units.
If X = Y = 0, then Z = 0 (and t = 1). The distance
from (0, 0, 0) to (0, 0, 1) is 1 unit.
Since √

7

4
<

√
3

2
< 1,

the closest point to (0, 0, 1) on z = x2 + 2y2 is
(0,
√

3/8, 3/4), and the distance from (0, 0, 1) to that
surface is

√
7/4 units.

36. f (x, y) = 2xy

x2 + y2 if (x, y) �= (0, 0), f (0, 0) = 0

f1(0, 0) = lim
h→0

f (h, 0)− f (0, 0)

h
= lim

h→0

0− 0

h
= 0

f2(0, 0) = lim
k→0

f (0, k) − f (0, 0)

h
= lim

k→0

0 − 0

k
= 0

Thus f1(0, 0) and f2(0, 0) both exist even though f is
not continuous at (0, 0) (as shown in Example 2 of Sec-
tion 3.2).
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37. f (x, y) =
{

(x3 + y) sin
1

x2 + y2 if (x, y) �= (0, 0)
0 if (x, y) = (0, 0)

f1(0, 0) = lim
h→0

1

h

(

h3 sin
1

h2

)

= lim
h→0

h2 sin
1

h2 = 0

f2(0, 0) = lim
k→0

1

k

(

k sin
1

k2

)

= lim
k→0

sin
1

k2 does not exist.

38. If (x, y) �= (0, 0), then

f1(x, y) = 3x2 sin
1

x2 + y2 −
(x3 + y)2x

(x2 + y2)2
cos

1

x2 + y2 .

The first term on the right → 0 as (x, y) → (0, 0),
but the second term has no limit at (0, 0). (It is 0 along
x = 0, but along x = y it is

−2x4 + 2x2

4x4 cos
1

2x2 = −
1

2

(

1+ 1

x2

)

cos
1

2x2 ,

which has no limit as x → 0.) Thus f1(x, y) has no
limit at (0, 0) and is not continuous there.

39. f (x, y) =
⎧

⎨

⎩

x3 − y3

x2 + y2
if (x, y) �= (0, 0)

0 if (x, y) = (0, 0).
If (x, y) �= (0, 0), then

f1(x, y) = (x2 + y2)3x2 − (x3 − y3)2x

(x2 + y2)2

= x4 + 3x2y2 + 2xy3

(x2 + y2)2

f2(x, y) = (x2 + y2)(−3y2)− (x3 − y3)2y

(x2 + y2)2

= − y4 + 3x2y2 + 2x3y

(x2 + y2)2
.

Also, at (0, 0),

f1(0, 0) = lim
h→0

h3

h · h2
= 1, f2(0, 0) = lim

k→0

−k3

k · k2
= −1.

Neither f1 nor f2 has a limit at (0, 0) (the limits along
x = 0 and y = 0 are different in each case), so neither
function is continuous at (0, 0). However, f is continu-
ous at (0, 0) because

| f (x, y)| ≤
∣
∣
∣
∣

x3

x2 + y2

∣
∣
∣
∣
+
∣
∣
∣
∣

y3

x2 + y2

∣
∣
∣
∣
≤ |x | + |y|,

which → 0 as (x, y)→ (0, 0).

40. f (x, y, z) =
⎧

⎨

⎩

xy2z

x4 + y4 + z4 if (x, y, z) �= (0, 0, 0)
0 if (x, y, z) = (0, 0, 0).

By symmetry we have

f3(0, 0, 0) = f1(0, 0, 0) = lim
h→0

0

h5
= 0.

Also,

f2(0, 0, 0) = lim
k→0

0

k5
= 0.

f is not continuous at (0, 0, 0); it has different limits as
(x, y, z)→ (0, 0, 0) along x = 0 and along x = y = z.
None of f1, f2, and f3 is continuous at (0, 0, 0) either.
For example,

f1(x, y, z) = (y4 + z4 − 3x4)y2z

(x4 + y4 + z4)2
,

which has no limit as (x, y, z) → (0, 0, 0) along the line
x = y = z.

Section 12.4 Higher-Order Derivatives
(page 662)

1. z = x2(1 + y2)

∂z

∂x
= 2x(1 + y2),

∂z

∂y
= 2x2y,

∂2z

∂x2 = 2(1+ y2),
∂2z

∂y2 = 2x2,

∂2z

∂y∂x
= 4xy = ∂2z

∂x∂y
.

2. f (x, y) = x2 + y2, f1(x, y) = 2x, f2(x, y) = 2y,
f11(x, y) = f22(x, y) = 2, f12(x, y) = f21(x, y) = 0.

3. w = x3y3z3,

∂w

∂x
= 3x2y3z3,

∂w

∂y
= 3x3y2z3,

∂w

∂z
= 3x3y3z2,

∂2w

∂x2
= 6xy3z3,

∂2w

∂y2
= 6x3yz3,

∂2w

∂z2
= 6x3y3z,

∂2w

∂x∂y
= 9x2y2z3 = ∂2w

∂y∂x
,

∂2w

∂x∂z
= 9x2y3z2 = ∂2w

∂z∂x
,

∂2w

∂y∂z
= 9x3y2z2 = ∂2w

∂z∂y
.
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4. z =
√

3x2 + y2,

∂z

∂x
= 3x
√

3x2 + y2
,

∂z

∂y
= y
√

3x2 + y2
,

∂2z

∂x2 =

√

3x2 + y2(3)− 3x
3x

√

3x2 + y2

3x2 + y2 = 3y2

(3x2 + y2)3/2
,

∂2z

∂y2 =

√

3x2 + y2 − y
y

√

3x2 + y2

3x2 + y2 = 3x2

(3x2 + y2)3/2
,

∂2z

∂x∂y
= ∂2z

∂y∂x
= − 3xy

(3x2 + y2)3/2
.

5. z = xey − yex,

∂z

∂x
= ey − yex,

∂z

∂y
= xey − ex ,

∂2z

∂x2 = −yex,
∂2z

∂y2 = xey,

∂2z

∂y∂x
= ey − ex = ∂2z

∂x∂y
.

6. f (x, y) = ln(1+ sin(xy))

f1(x, y) = y cos(xy)

1 + sin(xy)
, f2(x, y) = x cos(xy)

1+ sin(xy)

f11(x, y)

= (1+ sin(xy))(−y2 sin(xy))− (y cos(xy))(y cos(xy))

(1+ sin(xy))2

= − y2

1+ sin(xy)

f22(x, y) = − x2

1+ sin(xy)
(by symmetry)

f12(x, y) =
(1+ sin(xy))(cos(xy)− xy sin(xy))− (y cos(xy))(x cos(xy))

(1 + sin(xy))2

= cos(xy)− xy

1+ sin(xy)
= f21(x, y).

7. A function f (x, y, z) of three variables can have
33 = 27 partial derivatives of order 3. Of these, ten can
have different values, namely f111, f222, f333, f112, f122,
f223, f233, f113, f133, and f123.
For f (x, y, z) = xexy cos(xz), we have

f133 = f313 = f331 = ∂

∂x

(

−x3exy cos(xz)
)

= −(3x2 + x3y)exy cos(xz)+ x3zexy sin(xz).

8. f (x, y) = A(x2 − y2)+ Bxy, f1 = 2Ax + By,

f2 = −2Ay + Bx,

f11 = 2A, f22 = −2A,
Thus f11 + f22 = 0, and f is harmonic.

9. f (x, y) = 3x2 y − y3,
f1(x, y) = 6xy, f11(x, y) = 6y,
f2(x, y) = 3x2 − 3y2, f22(x, y) = −6y.
Thus f11 + f22 = 0 and f is harmonic.
Also g(x, y) = x3 − 3xy2 is harmonic.

10. f (x, y) = x

x2 + y2

f1(x, y) = x2 + y2 − 2x2

(x2 + y2)2
= y2 − x2

(x2 + y2)2

f2(x, y) = − 2xy

(x2 + y2)2

f11(x, y) = (x2 + y2)2(−2x)− (y2 − x2)2(x2 + y2)(2x)

(x2 + y2)4

= 2x3 − 6xy2

(x2 + y2)3

f22(x, y) = − (x
2 + y2)2(2x)− 2xy2(x2 + y2)(2y)

(x2 + y2)4

= −2x3 + 6xy2

(x2 + y2)3
.

Evidently f11(x, y) + f22(x, y) = 0 for (x, y) �= (0, 0).
Hence f is harmonic except at the origin.

11. f (x, y) = ln(x2 + y2), f1 = 2x

x2 + y2 , f2 = 2y

x2 + y2

f11 = (x2 + y2)(2) − 2x(2x)

(x2 + y2)2
= 2(y2 − x2)

(x2 + y2)2

f22 = 2(x2 − y2)

(x2 + y2)2
(by symmetry)

Thus f11 + f22 = 0 (everywhere except at the origin), and
f is harmonic.

12. f (x, y) = tan−1
( y

x

)

, (x �= 0).

f1(x, y) = 1

1+ y2

x2

(

− y

x2

)

= − y

x2 + y2 ,

f2(x, y) = 1

1+ y2

x2

(
1

x

)

= x

x2 + y2
,

f11 = 2xy

(x2 + y2)2
, f22 = − 2xy

(x2 + y2)2
.

Thus f11 + f22 = 0 and f is harmonic.

13. w = e3x+4y sin(5z),

w1 = 3w, w2 = 4w, w11 = 9w, w22 = 16w,

w3 = 5e3x+4y cos(5z), w33 = −25w.
Thus w11 + w22 + w33 = (9 + 16 − 25)w = 0, and w is
harmonic in 3-space.

14. Let g(x, y, z) = z f (x, y). Then

g1(x, y, z) = z f1(x, y),

g2(x, y, z) = z f2(x, y),

g3(x, y, z) = f (x, y),

g11(x, y, z) = z f11(x, y)

g22(x, y, z) = z f22(x, y)

g33(x, y, z) = 0.
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Thus g11 + g22 + g33 = z( f11 + f22) = 0 and g is
harmonic because f is harmonic. This proves (a). The
proofs of (b) and (c) are similar.

If h(x, y, z) = f (ax + by, cz), then h11 = a2 f11,
h22 = b2 f11 and h33 = c2 f22. If a2 + b2 = c2 and f is
harmonic then

h11 + h22 + h33 = c2( f11 + f22) = 0,

so h is harmonic.

15. Since
∂u

∂x
= ∂v

∂y
,
∂u

∂y
= − ∂v

∂x
, and the second partials of

u are continuous, we have

∂2u

∂x2 =
∂

∂x

∂v

∂y
= ∂

∂y

∂v

∂x
= −∂

2u

∂y2 .

Thus
∂2u

∂x2
+ ∂

2u

∂y2
= 0, and u is harmonic. The proof that

v is harmonic is similar.

16. Let

f (x, y) =
{ 2xy

x2 + y2 if (x, y) �= (0, 0)
0 if (x, y) = (0, 0).

For (x, y) �= (0, 0), we have

f1(x, y) = (x2 + y2)2y − 2xy(2x)

(x2 + y2)2
= 2y(y2 − x2)

(x2 + y2)2

f2(x, y) = 2x(x2 − y2)

(x2 + y2)2
(by symmetry).

Let F(x, y) = (x2 − y2) f (x, y). Then we calculate

F1(x, y) = 2x f (x, y)+ (x2 − y2) f1(x, y)

= 2x f (x, y)− 2y(y2 − x2)2

(x2 + y2)2

F2(x, y) = −2y f (x, y)+ (x2 − y2) f2(x, y)

= −2y f (x, y)+ 2x(x2 − y2)2

(x2 + y2)2

F12(x, y) = 2(x6 + 9x4y2 − 9x2y4 − y6)

(x2 + y2)3
= F21(x, y).

For the values at (0, 0) we revert to the definition of
derivative to calculate the partials:

F1(0, 0) = lim
h→0

F(h, 0)− F(0, 0)

h
= 0 = F2(0, 0)

F12(0, 0) = lim
k→0

F1(0, k) − F1(0, 0)

k
= lim

k→0

−2k(k4)

k(k4)
= −2

F21(0, 0) = lim
h→0

F2(h, 0)− F2(0, 0)

h
= lim

h→0

2h(h4)

h(h4)
= 2

This does not contradict Theorem 1 since the partials
F12 and F21 are not continuous at (0, 0). (Observe, for
instance, that F12(x, x) = 0, while F12(x, 0) = 2 for
x �= 0.)

17. u(x, t) = t−1/2e−x2/4t

∂u

∂t
=
(

−1

2
t−3/2 + 1

4
t−5/2x2

)

e−x2/4t

∂u

∂x
= −1

2
xt−3/2e−x2/4t

∂2u

∂x2 =
(

−1

2
t−3/2 + 1

4
t−5/2x2

)

e−x2/4t

= ∂u

∂t
.

18. u(x, y, t) = t−1e−(x2+y2)/4t

∂u

∂t
= − 1

t2
e−(x2+y2)/4t + x2 + y2

4t3
e−(x2+y2)/4t

∂u

∂x
= − x

2t2 e−(x2+y2)/4t

∂2u

∂x2
= − 1

2t2
e−(x2+y2)/4t + x2

4t3
e−(x2+y2)/4t

∂2u

∂y2
= − 1

2t2
e−(x2+y2)/4t + y2

4t3
e−(x2+y2)/4t

Thus
∂u

∂t
= ∂2u

∂x2 +
∂2u

∂y2 .

19. For
∂u

∂t
= ∂2u

∂x2
+ ∂

2u

∂y2
+ ∂

2u

∂z2
the solution is

u(x, y, z, t) = t−3/2e−(x2+y2+z2)/4t ,

which is verified similarly to the previous Exercise.

20. u(x, y) is biharmonic ⇔ ∂2u

∂x2 +
∂2u

∂y2 is harmonic

⇔
(
∂2

∂x2
+ ∂2

∂y2

)(
∂2u

∂x2
+ ∂

2u

∂y2

)

= 0

⇔ ∂4u

∂x4
+ 2

∂4u

∂x2∂y2
+ ∂

4u

∂y4
= 0

by the equality of mixed partials.
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21. If u(x, y) = x4 − 3x2y2, then

∂2u

∂x2 =
∂

∂x
(4x3 − 6xy2) = 12x2 − 6y2

∂2u

∂y2 =
∂

∂y
(−6x2y) = −6x2

∂4u

∂x4 =
∂

∂x
(24x) = 24

∂4u

∂x2∂y2
= ∂

∂x
(−12x) = −12

∂4u

∂y4 = 0

∂4u

∂x4 + 2
∂4u

∂x2∂y2 +
∂4u

∂y4 = 24− 24 = 0.

Thus u is biharmonic.

22. If u is harmonic, then
∂2u

∂x2 +
∂2u

∂y2 = 0. If

v(x, y) = xu(x, y), then

∂2v

∂x2
= ∂

∂x

(

u + x
∂u

∂x

)

= 2
∂u

∂x
+ x

∂2u

∂x2

∂2v

∂y2 =
∂

∂y

(

x
∂u

∂y

)

= x
∂2u

∂y2

∂2v

∂x2 +
∂2v

∂y2 = 2
∂u

∂x
+ x

(
∂2u

∂x2 +
∂2u

∂y2

)

= 2
∂u

∂x
.

Since u is harmonic, so is ∂u/dx :

(
∂2

∂x2 +
∂2

∂y2

)
∂u

∂x
= ∂

∂x

(
∂2u

∂x2 +
∂2u

∂y2

)

= ∂

∂x
(0) = 0.

Thus
∂2v

∂x2
+ ∂2v

∂y2
is harmonic, and so v is biharmonic.

The proof that w(x, y) = yu(x, y) is biharmonic is simi-
lar.

23. By Example 3, ex sin y is harmonic. Therefore xex sin y
is biharmonic by Exercise 22.

24. By Exercise 11, ln(x2 + y2) is harmonic (except at the
origin). Therefore y ln(x2+ y2) is biharmonic by Exercise
22.

25. By Exercise 10,
x

x2 + y2 is harmonic (except at the ori-

gin). Therefore
xy

x2 + y2 is biharmonic by Exercise 22.

26. u(x, y, z) is biharmonic ⇔ ∂2u

∂x2 +
∂2u

∂y2 +
∂2u

∂z2 is harmonic

⇔
(
∂2

∂x2
+ ∂2

∂y2
+ ∂2

∂z2

)(
∂2u

∂x2
+ ∂

2u

∂y2
+ ∂

2u

∂z2

)

= 0

⇔ ∂4u

∂x4 +
∂4u

∂y4 +
∂4u

∂z4 + 2

(
∂4u

∂x2∂y2 +
∂4u

∂x2∂z2 +
∂4u

∂y2∂z2

)

= 0

by the equality of mixed partials.

If u(x, y, z) is harmonic then the functions xu(x, y, z),
yu(x, y, z), and zu(x, y, z) are all biharmonic. The proof
is almost identical to that given in Exercise 22.

27. > f := x*y/(xˆ2+yˆ2);

f := xy

x2 + y2

> simplify(diff(f,x$4) +
2*diff(f,x$2,y$2) + diff(f,y$4));

0

Section 12.5 The Chain Rule (page 671)

1. If w = f (x, y, z) where x = g(s, t), y = h(s, t), and
z = k(s, t), then

∂w

∂t
= f1(x, y, z)g2(s, t)+ f2(x, y, z)h2(s, t)

+ f3(x, y, z)k2(s, t).

2. If w = f (x, y, z) where x = g(s), y = h(s, t) and
z = k(t), then

∂w

∂t
= f2(x, y, z)h2(s, t)+ f3(x, y, z)k′(t).

3. If z = g(x, y) where y = f (x) and x = h(u, v), then

∂z

∂u
= g1(x, y)h1(u, v)+ g2(x, y) f ′(x)h1(u, v).

4. If w = f (x, y) where x = g(r, s), y = h(r, t), r = k(s, t)
and s = m(t), then

dw

dt
= f1(x, y)

[

g1(r, s)
(

k1(s, t)m ′(t)

+ k2(s, t)
)

+ g2(r, s)m ′(t)
]

+ f2(x, y)
[

h1(r, t)
(

k1(s, t)m
′(t)

+ k2(s, t)
)

+ h2(r, t)
]

.

5. If w = f (x, y, z) where x = g(y, z) and y = h(z), then

dw

dz
= f1(x, y, z)

[

g1(y, z)h
′(z)+ g2(y, z)

]

+ f2(x, y, z)h ′(z)+ f3(x, y, z)

∂w

∂z

∣
∣
∣
∣
x
= f2(x, y, z)h ′(z)+ f3(x, y, z)

∂w

∂z

∣
∣
∣
∣
x,y
= f3(x, y, z).
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6. If u = √

x2 + y2, where x = est and y = 1 + s2 cos t ,
then

Method I.

∂u

∂t
= x
√

x2 + y2
sest + y

√

x2 + y2
(−s2 sin t)

= xsest − ys2 sin t
√

x2 + y2
.

Method II.

u =
√

e2st + (1 + s2 cos t)2

∂u

∂t
= 2se2st − 2s2 sin t (1 + s2 cos t)

2
√

e2st + (1 + s2 cos t)2

= x2s − ys2 sin t
√

x2 + y2
.

7. If z = tan−1 u

v
, where u = 2x + y and v = 3x − y, then

Method I.

∂z

∂x
= ∂z

∂u

∂u

∂x
+ ∂z

∂v

∂v

∂x

= 1

1+ u2

v2

(
1

v

)

(2)+ 1

1 + u2

v2

(−u

v2

)

(3)

= 2v − 3u

u2 + v2 = −
5y

13x2 − 2xy + 2y2 .

Method II.

z = tan−1 2x + y

3x − y
∂z

∂x
= 1

1+ (2x + y)2

(3x − y)2

(3x − y)(2)− (2x + y)(3)

(3x − y)2

= −5y

(3x − y)2 + (2x + y)2
= −5y

13x2 − 2xy + 2y2 .

8. If z = t xy2, where x = t + ln(y + t2) and y = et , then

Method I.

dz

dt
= ∂z

∂t
+ ∂z

∂x

(
∂x

∂t
+ ∂x

∂y

∂y

∂t

)

+ ∂z

∂y

∂y

∂t

= xy2 + t y2
(

1+ y + 2t

y + t2

)

+ 2t xy2.

Method II.

z = t
(

t + ln(et + t2)
)

e2t

∂z

∂t
=
(

t + ln(et + t2)
)

e2t + te2t
(

1+ et + 2t

et + t2

)

+ 2te2t
(

t + ln(et + t2)
)

= xy2 + t y2
(

1 + y + 2t

y + t2

)

+ 2t xy2.

9.
∂

∂x
f (2x, 3y) = 2 f1(2x, 3y).

10.
∂

∂x
f (2y, 3x) = 3 f2(2y, 3x).

11.
∂

∂x
f (y2, x2) = 2x f2(y2, x2).

12.
∂

∂y
f
(

y f (x, t), f (y, t)
)

= f (x, t) f1
(

y f (x, t), f (y, t)
)

+ f1(y, t) f2
(

y f (x, t), f (y, t)
)

.

13. T = e−t z, where z = f (t).

dT

dt
= ∂T

∂t
+ ∂T

∂z

dz

dt
= −e−t f (t)+ e−t f ′(t).

If f (t) = et , then f ′(t) = et and
dT

dt
= 0. The tem-

perature is rising with respect to depth at the same rate at
which it is falling with respect to time.

14. If E = f (x, y, z, t), where x = sin t , y = cos t and z = t ,
then the rate of change of E is

d E

dt
= ∂E

∂x
cos t − ∂E

∂y
sin t + ∂E

∂z
+ ∂E

∂t
.

15. z = f (x, y), where x = 2s + 3t and y = 3s − 2t .

a)
∂2z

∂s2 =
∂

∂s

(

2 f1(x, y)+ 3 f2(x, y)
)

= 2(2 f11 + 3 f12)+ 3(2 f21 + 3 f22)

= 4 f11 + 12 f12 + 9 f22

b)
∂2z

∂s∂t
= ∂2z

∂t∂s
= ∂

∂t
(2 f1 + 3 f2)

= 2(3 f11 − 2 f12)+ 3(3 f21 − 2 f22)

= 6 f11 + 5 f12 − 6 f22

c)
∂2z

∂t2 =
∂

∂t
(3 f1 − 2 f2)

= 3(3 f11 − 2 f12)− 2(3 f21 − 2 f22)

= 9 f11 − 12 f12 + 4 f22

459



SECTION 12.5 (PAGE 671) R. A. ADAMS: CALCULUS

16. Let u = x

x2 + y2
, v = − y

x2 + y2
. Then

∂u

∂x
= y2 − x2

(x2 + y2)2

∂u

∂y
= − 2xy

(x2 + y2)2

∂v

∂x
= 2xy

(x2 + y2)2

∂v

∂y
= y2 − x2

(x2 + y2)2
.

We have

∂

∂x
f (u, v) = f1(u, v)

∂u

∂x
+ f2(u, v)

∂v

∂x
∂

∂y
f (u, v) = f1(u, v)

∂u

∂y
+ f2(u, v)

∂v

∂y

∂2

∂x2
f (u, v) = f11

(
∂u

∂x

)2

+ f12
∂u

∂x

∂v

∂x
+ f1

∂2u

∂x2

+ f21
∂u

∂x

∂v

∂x
+ f22

(
∂v

∂x

)2

+ f2
∂2v

∂x2

∂2

∂y2 f (u, v) = f11

(
∂u

∂y

)2

+ f12
∂u

∂y

∂v

∂y
+ f1

∂2u

∂y2

+ f21
∂u

∂y

∂v

∂y
+ f22

(
∂v

∂y

)2

+ f2
∂2v

∂y2 .

Noting that

(
∂u

∂x

)2

+
(
∂u

∂y

)2

= 1

(x2 + y2)2
=
(
∂v

∂x

)2

+
(
∂v

∂y

)2

∂u

∂x

∂v

∂x
+ ∂u

∂y

∂v

∂y
= 0,

we have

∂2

∂x2 f (u, v)+ ∂2

∂y2 f (u, v)

= f11

[(
∂u

∂x

)2

+
(
∂u

∂y

)2
]

+ f22

[(
∂v

∂x

)2

+
(
∂v

∂y

)2
]

+ 2 f12

[
∂u

∂x

∂v

∂x
+ ∂u

∂y

∂v

∂y

]

+ f1

[
∂2u

∂x2
+ ∂

2u

∂y2

]

+ f2

[
∂2v

∂x2
+ ∂

2v

∂y2

]

= f1

[
∂2u

∂x2 +
∂2u

∂y2

]

+ f2

[
∂2v

∂x2 +
∂2v

∂y2

]

,

because we are given that f is harmonic, that is,
f11(u, v)+ f22(u, v) = 0.

Finally, u is harmonic by Exercise 10 of Section 3.4, and,
by symmetry, so is v. Thus

∂2

∂x2 f (u, v)+ ∂2

∂y2 f (u, v) = 0

and f

(
x

x2 + y2 ,−
y

x2 + y2

)

is harmonic for

(x, y) �= (0, 0).

17. If x = t sin s and y = t cos s, then

∂2

∂s∂t
f (x, y) = ∂

∂s

(

sin s f1(x, y)+ cos s f2(x, y)
)

= cos s f1 + t sin s cos s f11 − t sin2 s f12

− sin s f2 + t cos2 s f12 − t sin s cos s f22

= cos s f1 − sin s f2 + t cos s sin s( f11 − f22)

+ t (cos2 s − sin2 s) f12,

where all partials of f are evaluated at (t sin s, t cos s).

18.
∂3

∂x∂y2 f (2x + 3y, xy) = ∂2

∂x∂y
(3 f1 + x f2)

= ∂

∂x
(9 f11 + 3x f12 + 3x f21 + x2 f22)

= ∂

∂x
(9 f11 + 6x f12 + x2 f22)

= 18 f111 + 9y f112 + 6 f12 + 12x f121 + 6xy f122

+ 2x f22 + 2x2 f221 + x2y f222

= 18 f111 + (12x + 9y) f112 + (6xy + 2x2) f122 + x2y f222

+ 6 f12 + 2x f22,

where all partials are evaluated at (2x + 3y, xy).

19.
∂2

∂y∂x
f (y2, xy,−x2) = ∂

∂y
(y f2 − 2x f3)

= f2 + 2y2 f21 + xy f22 − 4xy f31 − 2x2 f32,

where all partials are evaluated at (y2, xy,−x2).

20.
∂3

∂t2∂s
f (s2 − t, s + t2) = ∂2

∂t2
(2s f1 + f2)

= ∂

∂t
(−2s f11 + 4st f12 − f21 + 2t f22)

= ∂

∂t
(−2s f11 + (4st − 1) f12 + 2t f22)

= 2s f111 − 4st f112 + 4s f12 − (4st − 1) f121

+ 2t (4st − 1) f122 + 2 f22 − 2t f221 + 4t2 f222

= 2s f111 + (1− 8st) f112 + 4t (2st − 1) f122 + 4t2 f222

+ 4s f12 + 2 f22,

where all partials are evaluated at (s2 − t, s + t2).
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21. Let g(x, y) = f (u, v), where u = u(x, y), v = v(x, y).
Then

g1(x, y) = f1(u, v)u1(x, y)+ f2(u, v)v1(x, y)

g2(x, y) = f1(u, v)u2(x, y)+ f2(u, v)v2(x, y)

g11(x, y) = f1(u, v)u11(x, y)+ f11(u, v)(u1(x, y))2

+ f12(u, v)u1(x, y)v1(x, y)+ f2(u, v)v11(x, y)

+ f21(u, v)u1(x, y)v1(x, y)+ f22(u, v)(v1(x, y))2

g22(x, y) = f1(u, v)u22(x, y)+ f11(u, v)(u2(x, y))2

+ f12(u, v)u2(x, y)v2(x, y)+ f2(u, v)v22(x, y)

+ f21(u, v)u2(x, y)v2(x, y)+ f22(u, v)(v2(x, y))2

g11(x, y)+ g22(x, y)

= f1(u, v)[u11(x, y)+ u22(x, y)]

+ f2(u, v)[v11(x, y)+ v22(x, y)]

+ [(u1(x, y))2 + (u2(x, y))2] f11(u, v)

+ [(v1(x, y))2 + (v2(x, y))2] f22(u, v)

+ 2[u1(x, y)v1(x, y)+ u2(x, y)v2(x, y)] f12(u, v).

The first two terms on the right are zero because u
and v are harmonic. The next two terms simplify to
[(v1)

2 + (v2)
2][ f11 + f22] = 0 because u and v satisfy the

Cauchy-Riemann equations and f is harmonic. The last
term is zero because u and v satisfy the Cauchy-Riemann
equations. Thus g is harmonic.

22. If r2 = x2 + y2 + z2, then 2r
∂r

∂x
= 2x , so

∂r

∂x
= x

r
.

Similarly,
∂r

∂y
= y

r
and

∂r

∂z
= z

r
. If u = 1

r
, then

∂u

∂x
= − 1

r2

∂r

∂x
= − x

r3

∂2u

∂x2 = −
1

r3 +
3x

r4

x

r
= 3x2 − r2

r5
.

Similarly,

∂2u

∂y2 =
3y2 − r2

r5
,

∂2u

∂z2 =
3z2 − r2

r5
.

Adding these three expressions, we get

∂2u

∂x2 +
∂2u

∂y2 +
∂2u

∂z2 = 0,

so u is harmonic except at r = 0.

23. If x = es cos t and y = es sin t , then

∂x

∂s
= es cos t

∂x

∂t
= −ex sin t

∂y

∂s
= es sin t

∂y

∂t
= es cos t.

Therefore we have

∂z

∂s
= es cos t

∂z

∂x
+ es sin t

∂z

∂y
∂z

∂t
= −es sin t

∂z

∂x
+ es cos t

∂z

∂y

∂2z

∂s2 = es cos t
∂z

∂x
+ es sin t

∂z

∂y

+ es cos t

(

es cos t
∂2z

∂x2 + es sin t
∂2z

∂y∂x

)

+ es sin t

(

es cos t
∂2z

∂x∂y
+ es sin t

∂2z

∂y2

)

∂2z

∂t2
= −es cos t

∂z

∂x
− es sin t

∂z

∂y

− es sin t

(

−es sin t
∂2z

∂x2 + es cos t
∂2z

∂y∂x

)

+ es cos t

(

−es sin t
∂2z

∂x∂y
+ es cos t

∂2z

∂y2

)

.

It follows that

∂2z

∂s2 +
∂2z

∂t2 = e2s(cos2 t + sin2 t)

(
∂2z

∂x2 +
∂2z

∂y2

)

= (x2 + y2)

(
∂2z

∂x2 +
∂2z

∂y2

)

.

24. If x = r cos θ and y = r sin θ , then r2 = x2 + y2 and

tan θ = y/x . Thus 2r
∂r

∂x
= 2x , so

∂r

∂x
= x

r
= cos θ , and

similarly,
∂r

∂y
= y

r
= sin θ . Also

sec2 θ
∂θ

∂x
= − y

x2

∂θ

∂x
= − y

x2 + y2

= − sin θ

r

sec2 θ
∂θ

∂y
= 1

x
∂θ

∂x
= x

x2 + y2

= cos θ

r
.
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Now

∂u

∂x
= ∂u

∂r

∂r

∂x
+ ∂u

∂θ

∂θ

∂x
= cos θ

∂u

∂r
− sin θ

r

∂u

∂θ
∂u

∂y
= ∂u

∂r

∂r

∂y
+ ∂u

∂θ

∂θ

∂y
= sin θ

∂u

∂r
+ cos θ

r

∂u

∂θ

∂2u

∂x2
=
(
∂

∂x
cos θ

)
∂u

∂r
+ cos θ

(

cos θ
∂2u

∂r2
− sin θ

r

∂2u

∂θ∂r

)

−
(
∂

∂x

sin θ

r

)
∂u

∂θ
− sin θ

r

(

cos θ
∂2u

∂r∂θ
− sin θ

r

∂2u

∂θ2

)

= sin2 θ

r

∂u

∂r
+ 2 sin θ cos θ

r2

∂u

∂θ
+ cos2 θ

∂2u

∂r2

− 2 sin θ cos θ

r

∂2u

∂r∂θ
+ sin2 θ

r2

∂2u

∂θ2

∂2u

∂y2 =
(
∂

∂y
sin θ

)
∂u

∂r
+ sin θ

(

sin θ
∂2u

∂r2 +
cos θ

r

∂2u

∂θ∂r

)

+
(
∂

∂y

cos θ

r

)
∂u

∂θ
+ cos θ

r

(

sin θ
∂2u

∂r∂θ
+ cos θ

r

∂2u

∂θ2

)

= cos2 θ

r

∂u

∂r
− 2 sin θ cos θ

r2

∂u

∂θ
+ sin2 θ

∂2u

∂r2

+ 2 sin θ cos θ

r

∂2u

∂r∂θ
+ cos2 θ

r2

∂2u

∂θ2
.

Therefore

∂2u

∂x2
+ ∂

2u

∂y2
= ∂2u

∂r2
+ 1

r

∂u

∂r
+ 1

r2

∂2u

∂θ2
,

as was to be shown.

25. If u = r2 ln r , where r2 = x2 + y2, then, since
∂r/∂x = x/r and ∂r/∂y = y/r , we have

∂u

∂x
= (2r ln r + r)

x

r
= x(1+ 2 ln r)

∂2u

∂x2 = 1+ 2 ln r + 2x2

r2

∂2u

∂y2
= 1+ 2 ln r + 2y2

r2
(similarly)

∂2u

∂x2 +
∂2u

∂y2 = 2+ 4 ln r + 2(x2 + y2)

r2 = 4+ 4 ln r.

The constant 4 is harmonic, and so is 4 ln r by Exercise

11 of Section 3.4. Therefore
∂2u

∂x2 +
∂2u

∂y2 is harmonic, and

so u is biharmonic.

26. f (t x, t y) = t k f (x, y)

x f1(t x, t y)+ y f2(t x, t y) = ktk−1 f (x, y)

x
(

x f11(t x, t y)+ y f12(t x, t y)
)

+ y
(

x f21(t x, t y)+ y f22(t x, t y)
)

= k(k − 1)tk−2 f (x, y)
Put t = 1 and get

x2 f11(x, y)+2xy f12(x, y)+y2 f22(x, y) = k(k−1) f (x, y).

27. If f (x1, · · · , xn) is positively homogeneous of degree k
and has continuous partial derivatives of second order,
then

n∑

i, j=1

x1xj fi j (x1, · · · , xn) = k(k − 1) f (x1, · · · , xn).

Proof: Differentiate f (t x1, · · · , t xn) = tk f (x1, · · · , xn)

twice with respect to t :

n
∑

i=1

xi fi (t x1, · · · , t xn) = ktk−1 f/xn

n
∑

i, j=1

xi xj fi j (t x1, · · · , t xn) = k(k − 1)tk−2 f (x1, · · · , xn),

and then put t = 1.

28. If f (x1, · · · , xn) is positively homogeneous of degree k
and has continuous partial derivatives of mth order, then

n
∑

i1,...,im=1

xi1 · · · xim fi1...im (x1, · · · , xn)

= k(k − 1) · · · (k − m + 1) f (x1, · · · , xn).

The proof is identical to those of Exercises 26 or 27, ex-
cept that you differentiate m times before putting t = 1.

29. F(x, y) =
⎧

⎨

⎩

2xy(x2 − y2)

x2 + y2 if (x, y) �= (0, 0)
0 if (x, y) = (0, 0)

a) For (x, y) �= (0, 0),

F(x, y) = 2xy(x2 − y2)

x2 + y2 = −2xy(y2 − x2)

x2 + y2 = −F(y, x).

Since 0 = −0, this holds for (x, y) = (0, 0) also.

b) For (x, y) �= (0, 0),

F1(x, y) = ∂

∂x
F(x, y) = − ∂

∂x
F(y, x) = −F2(y, x)

F12(x, y) = ∂

∂y
F1(x, y) = − ∂

∂y
F2(y, x) = −F21(y, x).

c) If (x, y) �= (0, 0),

then F1(x, y) = 2y(x2 − y2)

x2 + y2 + 2xy
∂

∂x

x2 − y2

x2 + y2 .

Thus F1(0, y) = −2y + 0 = −2y for
y �= 0. This result holds for y = 0 also, since
F1(0, 0) = limh→0(0− 0)/h = 0..
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d) By (b) and (c), F2(x, 0) = −F1(0, x) = 2x , and
F21(0, 0) = 2.

30. a) Since F12(x, y) = −F21(y, x) for (x, y) �= (0, 0),
we have F12(x, x) = −F21(x, x) for x �= 0. How-
ever, all partial derivatives of the rational function F
are continuous except possibly at the origin. Thus
F12(x, x) = F21(x, x) for x �= 0. Therefore,
F12(x, x) = 0 for x �= 0.

b) F12 cannot be continuous at (0, 0) because its
value there (which is −2) differs from the value of
F21(0, 0) (which is 2). Alternatively, F12(0, 0) is not
the limit of F12(x, x) as x → 0.

31. If ξ = x + ct , η = x , and v(ξ, η) = v(x + ct, x) = u(x, t),
then

∂u

∂t
= ∂v

∂ξ

∂ξ

∂t
= c

∂v

∂ξ

∂u

∂x
= ∂v

∂ξ

∂ξ

∂x
+ ∂v
∂η

∂η

∂x
= ∂v

∂ξ
+ ∂v
∂η
.

If u satisfies
∂u

∂t
= c

∂u

∂x
, then v satisfies

c
∂v

∂ξ
= c

∂v

∂ξ
+ c

∂v

∂η
, that is,

∂v

∂η
= 0.

Thus v is independent of η, so v(ξ, η) = f (ξ) for an
arbitrary differentiable function f of one variable. The
original differential equation has solution

u(x, t) = f (x + ct).

32. If w(r) = f (r) + g(s), where f and g are arbitrary twice
differentiable functions, then

∂2w

∂r∂s
= ∂

∂r
g′(s) = 0.

33. If r = x + ct , s = x − ct , and
w(r, s) = w(x + ct, x − ct) = u(x, t), then

∂u

∂t
= c

∂w

∂r
− c

∂w

∂s
∂2w

∂t2 = c2 ∂
2w

∂r2 − 2c2 ∂
2w

∂r∂s
+ c2 ∂

2w

∂s2

∂u

∂x
= ∂w

∂r
+ ∂w
∂s

∂2w

∂x2 =
∂2w

∂r2 + 2
∂2w

∂r∂s
+ ∂

2w

∂s2 .

If u satisfies
∂2u

∂t2 = c2 ∂
2u

∂x2 , then w satisfies

c2
(
∂2w

∂r2 − 2
∂2w

∂r∂s
+ ∂

2w

∂s2

)

= c2
(
∂2w

∂r2 + 2
∂2w

∂r∂s
+ ∂

2w

∂s2

)

and hence
∂2w

∂r∂s
= 0.

By Exercise 38, w(r, s) = f (r) + g(s), where f and
g are arbitrary twice differentiable functions. Hence the
original differential equation has solution

u(x, t) = f (x + ct)+ g(x − ct).

34. By Exercise 39, the DE ut = c2uxx has solution

u(x, t) = f (x + ct)+ g(x − ct),

for arbitrary sufficiently smooth functions f and g. The
initial conditions imply that

p(x) = u(x, 0) = f (x)+ g(x)

q(x) = ut (x, 0) = c f ′(x)− cg′(x).

Integrating the second of these equations, we get

f (x)− g(x) = 1

c

∫ x

a
q(s) ds,

where a is a constant. Solving the two equations for f
and g we obtain

f (x) = 1

2
p(x)+ 1

2c

∫ x

a
q(s) ds

g(x) = 1

2
p(x)− 1

2c

∫ x

a
q(s) ds.

Thus the solution to the initial-value problem is

u(x, t) = p(x + ct)+ p(x − ct)

2
+ 1

2c

∫ x+ct

x−ct
q(s) ds.

35. > f := u(r*cos(t),r*sin(t)):
> simplify( diff(f,r$2) +
(1/r)*diff(f,r)
> +(1/rˆ2)*diff(f,t$2));

D2,2(u)(r cos(t), r sin(t)) + D1,1(u)(r cos(t), r sin(t))

which confirms the identity.

36. > g := f(x/(xˆ2+yˆ2),y/(xˆ2+yˆ2)):
> simplify(diff(g,x$2)+diff(g,y$2));

D1,1( f )

(
x

x2 + y2
,

y

x2 + y2

)

+ D2,2( f )

(
x

x2 + y2
,

y

x2 + y2

)

(x2 + y2)2
.

If f is harmonic, then the numerator is zero so g is har-
monic.
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37. > simplify(diff(diff(
> f(yˆ2,x*y,-xˆ2),x),y));

2y2D1,2( f )+ xy D2,2( f )+ D2( f )
−4xy D1,3( f )− 2x2 D2,3( f )

where all terms are evaluated at (y2, xy,−x2).

38. > simplify(diff(diff
> (f(sˆ2-t,s+tˆ2),s),t$2));
2s D1,1,1( f )− 8st D1,1,2( f )+ 8st2 D1,2,2( f )+ 4s D1,2( f )
+D1,1,2( f )− 4t D1,2,2( f )+ 4t2 D2,2,2( f )+ 2D2,2( f )

where all terms are evaluated at (s2 − t, s + t2).

39. > z := u(x,y):
> x := exp(s)*cos(t): y :=
exp(s)*sin(t):
> simplify(
> (diff(z,s$2)+diff(z,t$2))/(xˆ2+yˆ2));

D2,2(u)(es cos t, es sin t)+ D1,1(u)(es cos t, es sin t),

which confirms the identity in Exercise 23.

40. > u := (x,t) -> (p(x-c*t)+p(x+c*t))/2
> +(1/((2*c))*int(q(s),x=x-
c*t..x+c*t):
> simplify(diff(u(x,t),t$2)
> -cˆ2*diff(u(x,t),x$2));

0
> simplify(u(x,0));

p(x)
>

simplify(subs(t=0,diff(u(x,t),t)));
q(x)

so u satisfies the PDE and initial conditions given in Ex-
ercise 34.

Section 12.6 Linear Approximations,
Differentiability, and Differentials
(page 679)

1. f (x, y) = x2y3

f1(x, y) = 2xy3

f2(x, y) = 3x2 y2

f (3, 1) = 9

f1(3, 1) = 6

f2(3, 1) = 27

f (3.1, 0.9) = f (3+ 0.1, 1 − 0.1)

≈ f (3, 1)+ 0.1 f1(3, 1)− 0.1 f2(3, 1)

= 9+ 0.6− 2.7 = 6.9

2. f (x, y) = tan−1 y

x
f (3, 3) = π

4

f1(x, y) = − y

x2 + y2 f1(3, 3) = −1

6

f2(x, y) = x

x2 + y2
f2(3, 3) = 1

6
f (3.01, 2.99) = f (3+ 0.01, 3 − 0.01)

≈ f (3, 3)+ 0.01 f1(3, 3)− 0.01 f2(3, 3)

= π

4
− 0.01

6
− 0.01

6
= π

4
− 0.01

3
≈ 0.7820648

3. f (x, y) = sin(π xy + ln y), f (0, 1) = 0
f1(x, y) = πy cos(π xy + ln y), f1(0, 1) = π
f2(x, y) =

(

πx + 1

y

)

cos(π xy + ln y), f2(0, 1) = 1

f (0.01, 1.05) ≈ f (0, 1)+ 0.01 f1(0, 1)+ 0.05 f2(0, 1)

= 0+ 0.01π + 0.05 ≈ 0.081416

4. f (x, y) = 24

x2 + xy + y2

f1(x, y) = −24(2x + y)

(x2 + xy + y2)2
, f2(x, y) = −24(x + 2y)

(x2 + xy + y2)2

f (2, 2) = 2, f1(2, 2) = −1, f2(2, 2) = −1

f (2.1, 1.8) ≈ f (2, 2)+ 0.1 f1(2, 2)− 0.2 f2(2, 2)

= 2− 0.1+ 0.2 = 2.1

5. f (x, y, z) = √x + 2y + 3z, f (2, 2, 1) = 3

f1(x, y, z) = 1

2
√

x + 2y + 3z
, f2(x, y, z) = 1√

x + 2y + 3z

f3(x, y, z) = 3

2
√

x + 2y + 3z

f (1.9, 1.8, 1.1) ≈ f (2, 2, 1)

− 0.1 f1(2, 2, 1)− 0.2 f2(2, 2, 1)+ 0.1 f3(2, 2, 1)

= 3− 0.1

6
− 0.2

3
+ 0.1

2
≈ 2.967

6. f (x, y) = xey+x2
f (2,−4) = 2

f1(x, y) = ey+x2
(1+ 2x2) f1(2,−4) = 9

f2(x, y) = xey+x2
f2(2,−4) = 2

f (2.05,−3.92) ≈ f (2,−4)+ 0.05 f1(2,−4)+ 0.08 f2(2,−4)

= 2+ 0.45 + 0.16 = 2.61

7. If the edges are x , y, and z, and
dx

x
= dy

y
= dz

z
= 1

100
,

then

a) V = xyz⇒ dV = yz dx + xz dy + xy dz

⇒ dV

V
= dx

x
+ dy

y
+ dz

z
= 3

100
.

The volume can be in error by about 3%.
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b) A = xy ⇒ d A = y dx + x dy

⇒ d A

A
= dx

x
+ dy

y
= 2

100
.

The area of a face can be in error by about 2%.

c) D2 = x2 + y2 + z2 ⇒ 2D d D = 2x dx + 2y dy + 2z dz

⇒ d D

D
= x2

D2

dx

x
+ y2

D2

dy

y
+ z2

D2

dz

z
= 1

100
.

The diagonal can be in error by about 1%.

8. V = 1
3πr2h ⇒ dV = 2

3πrh dr + 1
3πr2 dh. If r = 25 ft,

h = 21 ft, and dr = dh = 0.5/12 ft, then

dV = π

3
(2 × 25× 21+ 252)

0.5

12
≈ 73.08.

The calculated volume can be in error by about 73 cubic
feet.

9. S = πr
√

r2 + h2, so

dS =
(

π
√

r2 + h2 + πr2

√
r2 + h2

)

dr + πrh√
r2 + h2

dh

= π
(
√

252 + 212 + 252 + 25× 21√
252 + 212

)
0.5

12
≈ 8.88.

The surface area can be in error by about 9 square feet.

10. If the sides and contained angle of the triangle are x and
y m and θ radians, then its area A satisfies

A = 1

2
xy sin θ

d A = 1

2
y sin θ dx + 1

2
x sin θ dy + 1

2
xy cos θ dθ

d A

A
= dx

x
+ dy

y
+ cot θ dθ.

For x = 224, y = 158, θ = 64◦ = 64π/180,
dx = dy = 0.4, and dθ = 2◦ = 2π/180, we have

d A

A
= 0.4

224
+ 0.4

158
+ (cot 64◦) 2π

180
≈ 0.0213.

The calculated area of the plot can be in error by a little
over 2%.

11. From the figure we have

h = s tan θ

h = (s + x) tanφ =
(

h

tan θ
+ x

)

tanφ.

Solving the latter equation for h, we obtain

h = x tanφ tan θ

tan θ − tanφ
.

We calculate the values of h and its first partials at
x = 100, θ = 50◦, φ = 35◦:

h ≈ 170
∂h

∂x
= tan φ tan θ

tan θ − tanφ
≈ 1.70

∂h

∂θ
= x tanφ

(tan θ − tanφ) sec2 θ − tan θ sec2 θ

(tan θ − tanφ)2

= − x tan2 φ sec2 θ

(tan θ − tanφ)2
≈ −491.12

∂h

∂φ
= x tan2 θ sec2 φ

(tan θ − tanφ)2
≈ 876.02.

Thus dh ≈ 1.70 dx − 491 dθ + 876 dφ. For dx = 0.1 m
and |dθ | = |dφ| = 1◦ = π/180, the largest value of dh
will come from taking dθ negative and dφ positive:

dh ≈ (1.70)(0.1) + (491 + 876)
π

180
≈ 24.03.

The calculated height of the tower is 170 m and can
be in error by as much as 24 m. The calculation of the
height is most sensitive to the accuracy of the measure-
ment of φ.

s A x B

φθ

h

Fig. 12.6.11

12. w = x2y3

z4

∂w

∂y
= 3x2y2

z4 = 3w

y

∂w

∂x
= 2xy3

z4 =
2w

x
∂w

∂z
= −4x2y3

z5
= −4w

x
.

dw = ∂w

∂x
dx + ∂w

∂y
dy + ∂w

∂z
dz

dw

w
= 2

dx

x
+ 3

dy

y
− 4

dz

z
.

Since x increases by 1%, then
dx

x
= 1

100
. Similarly,

dy

y
= 2

100
and

dz

z
= 3

100
. Therefore

�w

w
≈ dw

w
= 2+ 6− 12

100
= − 4

100
,

and w decreases by about 4%.
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13. f(r, θ) = (r cos θ, r sin θ)

Df(r, θ) =
(

cos θ −r sin θ
sin θ r cos θ

)

14. f(ρ, φ, θ) = (ρ sinφ cos θ, ρ sinφ sin θ, ρ cosφ)

Df(ρ, φ, θ) =
( sinφ cos θ ρ cosφ cos θ −ρ sinφ sin θ

sinφ sin θ ρ cosφ sin θ ρ sinφ cos θ
cosφ −ρ sinφ 0

)

15. f(x, y, z) =
(

x2 + yz
y2 − x ln z

)

Df(x, y, z) =
(

2x z y
− ln z 2y −x/z

)

Df(2, 2, 1) =
(

4 1 2
0 4 −2

)

f(1.98, 2.01, 1.03) ≈ f(2, 2, 1)+ Df(2, 2, 1)

(−0.02
0.01
0.03

)

=
(

6
4

)

+
(−0.01
−0.02

)

=
(

5.99
3.98

)

16. g(r, s, t) =
( r2s

r2t
s2 − t2

)

Dg(r, s, t) =
( 2rs r2 0

2r t 0 r2

0 2s −2t

)

Dg(1, 3, 3) =
( 6 1 0

6 0 1
0 6 −6

)

g(0.99, 3.02, 2.97) ≈ g(1, 3, 3)+ Dg(1, 3, 3)

(−0.01
0.02
−0.03

)

=
( 3

3
0

)

+
(−0.04
−0.09
0.30

)

=
( 2.96

2.91
0.30

)

17. If f is differentiable at (a, b), then

f (a + h, b + k) − f (a, b)− h f1(a, b)− k f2(a, b)√
h2 + k2

approaches 0 as (h, k) → (0, 0). Since the denominator
of this fraction approaches zero, the numerator must also
approach 0 or the fraction would not have a limit. Since
the terms h f1(a, b) and k f2(a, b) both approach 0, we
must have

lim
(h,k)→(0,0)

[ f (a + h, b + k) − f (a, b)] = 0.

Thus f is continuous at (a, b).

18. Let g(t) = f (a + th, b + tk). Then

g′(t) = h f1(a + th, b + tk) + k f2(a + th, b + tk).

If h and k are small enough that (a+ h, b+ k) belongs to
the disk referred to in the statement of the problem, then
we can apply the (one-variable) Mean-Value Theorem to
g(t) on [0, 1] and obtain

g(1) = g(0)+ g′(θ),

for some θ satisfying 0 < θ < 1, i.e.,

f (a + h, b + k) = f (a, b)+ h f1(a + θh, b + θk)

+ k f2(a + θh, b + θk).

19. Apply Taylor’s Formula:

g(1) = g(0)+ g′(0)+ g′′(θ)
2!

for some θ between 0 and 1 to g(t) = f (a + th, b + tk).
We have

g′(t) = h f1(a + th, b + tk) + k f2(a + th, b + tk)

g′(0) = h f1(a, b)+ k f2(a, b)

g′′(t) = h2 f11(a + th, b + tk) + 2hk f12(a + th, b + tk)

+ k2 f22(a + th, b + tk).

Thus

f (a + h, b + k) = f (a, b)+ h f1(a, b)+ k f2(a, b)

+ 1

2

(

h2 f11(a + θh, b + θk)+ 2hk f12(a + θh,b + θk)

+ k2 f22(a + θh, b + θk)

)

� f = f (a + h, b + k) − f (a, b)

d f = h f1(a, b)+ k f2(a, b)
∣
∣
∣� f − d f

∣
∣
∣

≤ 1

2

∣
∣
∣
∣
h2 f11(a + θh, b + θk)+ 2hk f12(a + θh, b + θk)

+ k2 f22(a + θh, b + θk)

∣
∣
∣
∣

≤ K (h2 + k2) (since 2hk ≤ h2 + k2),

for some K depending on f , and valid in some disk
h2 + k2 ≤ R2 of positive radius R.

Section 12.7 Gradients and Directional
Derivatives (page 688)

1. f (x, y) = x2 − y2, f (2,−1) = 3.
∇ f (x, y) = 2x i− 2yj, ∇ f (2,−1) = 4i+ 2j.
Tangent plane to z = f (x, y) at (2,−1, 3) has equation
4(x − 2)+ 2(y + 1) = z − 3, or 4x + 2y − z = 3.
Tangent line to f (x, y) = 3 at (2,−1) has equation
4(x − 2)+ 2(y + 1) = 0, or 2x + y = 3.
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2. f (x, y) = x − y

x + y
, f (1, 1) = 0.

∇ f = 2yi− 2xj
(x + y)2

,

∇ f (1, 1) = 1

2
(i − j). Tangent plane to z = f (x, y)

at (1, 1, 0) has equation 1
2 (x − 1) − 1

2 (y − 1) = z, or
x − y − 2z = 0.
Tangent line to f (x, y) = 0 at (1, 1) has equation
1
2 (x − 1)− 1

2 (y − 1), or x = y.

3. f (x, y) = x

x2 + y2 ,

f1(x, y) = (x2 + y2)(1) − x(2x)

(x2 + y2)2
= y2 − x2

(x2 + y2)2
,

f2(x, y) = − 2xy

(x2 + y2)2
.

∇ f (x, y) = 1

(x2 + y2)2

(

(y2 − x2)i − 2xyj
)

,

∇ f (1, 2) = 3
25 i− 4

25 j.

Tangent plane to z = f (x, y) at (1, 2, 1
5 ) has equation

3

25
(x − 1)− 4

25
(y− 2) = z− 1

5
, or 3x − 4y− 25z = −10.

Tangent line to f (x, y) = 1/5 at (1, 2) has equation
3

25
(x − 1)− 4

25
(y − 2) = 0, or 3x − 4y = −5.

4. f (x, y) = exy , ∇ f = yexy i+ xexyj,
∇ f (2, 0) = 2j. Tangent plane to z = f (x, y) at (2, 0, 1)
has equation 2y = z − 1, or 2y − z = −1.
Tangent line to f (x, y) = 1 at (2, 0) has equation y = 0.

5. f (x, y) = ln(x2 + y2), ∇ f (x, y) = 2x i+ 2yj
x2 + y2 ,

∇ f (1,−2) = 2
5 i − 4

5 j. Tangent plane to z = f (x, y) at

(1,−2, ln 5) has equation
2

5
(x − 1)− 4

5
(y + 2) = z − ln 5,

or 2x − 4y − 5z = 10 − 5 ln 5.
Tangent line to f (x, y) = ln 5 at (1,−2) has equation
2

5
(x − 1)− 4

5
(y + 2) = 0, or x − 2y = 5.

6. f (x, y) = √1+ xy2, f (2,−2) = 3.

∇ f (x, y) = y2i + 2xyj

2
√

1+ xy2
,

∇ f (2,−2) = 2

3
i− 4

3
j.

Tangent plane to z = f (x, y) at (2,−2, 3) has equation
2

3
(x − 2)− 4

3
(y + 2) = z − 3, or 2x − 4y − 3z = 3.

Tangent line to f (x, y) = 3 at (2,−2) has equation
2

3
(x − 2)− 4

3
(y + 2) = 0, or x − 2y = 6.

7. f (x, y, z) = x2y + y2z + z2x , f (1,−1, 1) = 1.
∇ f (x, y, z) = (2xy + z2)i+ (x2 + 2yz)j+ (y2 + 2zx)k,
∇ f (1,−1, 1) = −i− j + 3k.
Tangent plane to f (x, y, z) = 1 at (1,−1, 1) has equation
−(x − 1)− (y + 1)+ 3(z − 1) = 0, or x + y − 3z = −3.

8. f (x, y, z) = cos(x + 2y + 3z),

f
(π

2
, π, π

)

= cos
11π

2
= 0.

∇ f (x, y, z) = − sin(x + 2y + 3z)(i + 2j + 3k),

∇ f
(π

2
, π, π

)

= − sin
11π

2
(i + 2j + 3k) = i+ 2j + 3k.

Tangent plane to f (x, y, z) = 0 at
(π

2
, π, π

)

has equa-

tion
x − π

2
+ 2(y − π)+ 3(z − π) = 0,

or x + 2y + 3z = 11π

2
.

9. f (x, y, z) = ye−x2
sin z, f (0, 1, π/3) = √3/2.

∇ f (x, y, z) = −2xye−x2
sin zi+e−x2

sin zj+ ye−x2
cos zk,

∇ f (0, 1, π/3) =
√

3

2
j+ 1

2
k.

The tangent plane to f (x, y, z) =
√

3

2
at 0, 1, π/3) has

equation √
3

2
(y − 1)+ 1

2

(

z − π
3

)

= 0,

or
√

3y + z = √3+ π
3

.

10. f (x, y) = 3x − 4y, ∇ f (0, 2) = ∇ f (x, y) = 3i− 4j,
D−i f (0, 2) = −i • (3i − 4j) = −3.

11. f (x, y) = x2y, ∇ f = 2xyi+ x2j,
∇ f (−1,−1) = 2i + j.
Rate of change of f at (−1,−1) in the direction of i+ 2j
is

i+ 2j√
5
• (2i + j) = 4√

5
.

12. f (x, y) = x

1+ y
, ∇ f (x, y) = 1

1+ y
i− x

(1 + y)2
j,

∇ f (0, 0) = i, u = i− j√
2
,

Du f (0, 0) = i •
(

i − j√
2

)

= 1√
2
.

13. f (x, y) = x2 + y2, ∇ f = 2x i+ 2yj,
∇ f (1,−2) = 2i− 4j.
A unit vector in the direction making a 60◦ angle with

the positive x-axis is u = 1
2 i +

√
3

2 j.
The rate of change of f at (1,−2) in the direction of u
is u • ∇ f (1,−2) = 1− 2

√
3.
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14. f (x, y) = ln |r|, where r = x i+yj. Since |r| = √x2 + y2,
we have

∇ f (x, y) = 1

|r|
(

x

|r| i +
y

|r| j
)

= r
|r|2 .

15. f (x, y, z) = |r|−n , where r = x i + yj + zk. Since
|r| = √x2 + y2 + z2, we have

∇ f (x, y, z) = −n|r|−n−1
(

x

|r| i+
y

|r| j+
z

|r|k
)

= − nr
|r|n+2 .

16. Since x = r cos θ and y = r sin θ , we have

∂ f

∂r
= cos θ

∂ f

∂x
+ sin θ

∂ f

∂y
∂ f

∂θ
= −r sin θ

∂ f

∂x
+ r cos θ

∂ f

∂y
.

Also,

r̂ = x i+ yj
r
= (cos θ)i+ (sin θ)j

θ̂ = −yi+ xj
r

= −(sin θ)i+ (cos θ)j.

Therefore,

∂ f

∂r
r̂+ 1

r

∂ f

∂θ
θ̂

=
(

cos2 θ
∂ f

∂x
+ sin θ cos θ

∂ f

∂y

)

i

+
(

cos θ sin θ
∂ f

∂x
+ sin2 θ

∂ f

∂y

)

j

+
(

sin2 θ
∂ f

∂x
− sin θ cos θ

∂ f

∂y

)

i

+
(

− cos θ sin θ
∂ f

∂x
+ cos2 θ

∂ f

∂y

)

j

= ∂ f

∂x
i+ ∂ f

∂y
j = ∇ f.

17. f (x, y) = xy, ∇ f (x, y) = yi+ xj, ∇ f (2, 0) = 2j.
Let u = u1i + u2j be a unit vector. Thus u2

1 + u2
2 = 1.

We have

−1 = Du f (2, 0)u • ∇ f (2, 0) = 2u2

if u2 = −1

2
, and therefore u1 = ±

√
3

2
. At (2, 0), f has

rate of change −1 in the directions ±
√

3

2
i− 1

2
j.

If −3 = Du f (2, 0) = 2u2, then u2 = −3

2
. This is

not possible for a unit vector u, so there is no direction
at (2, 0) in which f changes at rate −3.

If −2 = Du f (2, 0) = 2u2, then u2 = −1 and
u1 = 0. At (2, 0), f has rate of change −2 in the direc-
tion −j.

18. f (x, y, z) = x2 + y2 − z2.
∇ f (a, b, c) = 2ai + 2bj − 2ck. The maximum rate of
change of f at (a, b, c) is in the direction of ∇ f (a, b, c),
and is equal to |∇ f (a, b, c)|.
Let u be a unit vector making an angle θ with
∇ f (a, b, c). The rate of change of f at (a, b, c) in
the direction of u will be half of the maximum rate of
change of f at that point provided

1

2
|∇ f (a, b, c)| = u • ∇ f (a, b, c) = |∇ f (a, b, c)| cos θ,

that is, if cos θ = 1

2
, which means θ = 60◦. At (a, b, c),

f increases at half its maximal rate in all directions mak-
ing 60◦ angles with the direction ai + bj− ck.

19. Let ∇ f (a, b) = ui+ vj. Then

3
√

2 = D
(i+j)/

√
2 f (a, b) = i+ j√

2
• (ui + vj) = u + v√

2

5 = D(3i−4j)/5 f (a, b) = 3i− 4j
5
• (ui + vj) = 3u − 4v

5
.

Thus u + v = 6 and 3u − 4v = 25. This system has
solution u = 7, v = −1. Thus ∇ f (a, b) = 7i − j.

20. Given the values Dφ1 f (a, b) and Dφ2 f (a, b), we can
solve the equations

f1(a, b) cosφ1 + f2(a, b) sinφ1 = Dφ1 f (a, b)

f1(a, b) cosφ2 + f2(a, b) sinφ2 = Dφ2 f (a, b)

for unique values of f1(a, b) and f2(a, b) (and hence
determine ∇ f (a, b) uniquely), provided the coefficients
satisfy

0 �=
∣
∣
∣
∣

cosφ1 sinφ1
cosφ2 sinφ2

∣
∣
∣
∣
= sin(φ2 − φ1).

Thus φ1 and φ2 must not differ by an integer multiple of
π .

21. a) T (x, y) = x2 − 2y2.
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y

x

(2,−1)

T=8

T=−8

T=−2

T=2

T=−8

T=0

Fig. 12.7.21

b) ∇T = 2x i− 4yj, ∇T (2,−1) = 4i+ 4j.
An ant at (2,−1) should move in the direction of
−∇T (2,−1), that is, in the direction −i− j, in order
to cool off as rapidly as possible.

c) If the ant moves at speed k in the direction
−i − j, it will experience temperature decreasing at
rate |∇T (2,−1)|k = 4

√
2k degrees per unit time.

d) If the ant moves at speed k in the direction
−i− 2j, it experiences temperature changing at rate

−i− 2j√
5
• (4i + 4j)k = −12k√

5
,

that is, decreasing at rate 12k/
√

5 degrees per unit
time.

e) To continue to experience maximum rate of cooling,
the ant should crawl along the curve x = x(t),
y = y(t), which is everywhere tangent to ∇T (x, y).
Thus we want

dx

dt
i+ dy

dt
j = λ(2x i− 4yj).

Thus
1

y

dy

dt
= − 2

x

dx

dt
, from which we obtain, on

integration,

ln |y(t)| = −2 ln |x(t)| + ln |C |,
or yx2 = C . Since the curve passes through (2,−1),
we have yx2 = −4. Thus, the ant should crawl
along the path y = −4/x2.

22. Let the curve be y = g(x). At (x, y) this curve has

normal ∇
(

g(x)− y
)

= g′(x)i − j.

A curve of the family x4 + y2 = C has normal
∇(x4 + y2) = 4x3i+ 2yj.
These curves will intersect at right angles if their normals
are perpendicular. Thus we require that

0 = 4x3g′(x)− 2y = 4x3g′(x)− 2g(x),

or, equivalently,
g′(x)
g(x)

= 1

2x3
.

Integration gives ln |g(x)| = − 1

4x2
+ ln |C |,

or g(x) = Ce−(1/4x2).

Since the curve passes through (1, 1), we must have
1 = g(1) = Ce−1/4, so C = e1/4.
The required curve is y = e(1/4)−(1/4x2).

23. Let the curve be y = f (x). At (x, y) it has normal
dy

dx
i− j.

The curve x2y3 = K has normal 2xy3i+ 3x2 y2j.
These curves will intersect at right angles if their normals
are perpendicular, that is, if

2xy3 dy

dx
− 3x2y2 = 0

dy

dx
= 3x

2y

2y dy = 3x dx

y2 = 3

2
x2 + C.

Since the curve must pass through (2,−1), we have
1 = 6+ C , so C = −5.
The required curve is 3x2 − 2y2 = 10.

24. Let f (x, y) = e−(x2+y2). Then

∇ f (x, y) = −2e−(x2+y2)(x i + yj).

The vector u = ai + bj√
a2 + b2

is a unit vector in the direc-

tion directly away from the origin at (a, b).
The first directional derivative of f at (x, y) in the direc-
tion of u is

u • ∇ f (x, y) = − 2√
a2 + b2

(ax + by)e−(x2+y2).

The second directional derivative is

u • ∇
(

− 2√
a2 + b2

(ax + by)e−(x2+y2)

)

= − 2

a2 + b2 (ai + bj) • e−(x2+y2)

[(

a − 2x(ax + by)
)

i+
(

b − 2y(ax + by)
)

j
]

.
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At (a, b) this second directional derivative is

− 2e−(a2+b2)

a2 + b2

(

a2 − 2a4 − 2a2b2 + b2 − 2a2b2 − 2b4
)

= 2

a2 + b2

(

2(a2 + b2)2 − a2 − b2
)

e−(a2+b2)

= 2
(

2(a2 + b2)− 1
)

e−(a2+b2).

Remark: Since f (x, y) = e−r2
(expressed in terms of

polar coordinates), the second directional derivative of f
at (a, b) in the direction directly away from the origin
(i.e., the direction of increasing r ) can be more easily
calculated as

d2

dr2
e−r2

∣
∣
∣
∣
r2=a2+b2

.

25. f (x, y, z) = xyz, ∇ f (x, y, z) = yzi+ xzj+ xyk.
The first directional derivative of f in the direction
i− j− k is

i− j − k√
3
• ∇ f (x, y, z) = 1√

3
(yz − xz − xy).

The second directional derivative in that direction is

i− j− k√
3
• 1√

3
∇(yz − xz − xy)

= i− j− k
3

•
[

−(y + z)i + (z − x)j + (y − x)k
]

= 1

3

[

−(y + z)− (z − x)− (y − x)
]

= 2x − 2y − 2z

3
.

At (2, 3, 1) this second directional derivative has value
−4/3.

26. At (1,−1, 1) the surface x2 + y2 = 2 has normal

n1 = ∇(x2 + y2)

∣
∣
∣
∣
(1,−1,1)

= 2i− 2j,

and y2 + z2 = 2 has normal

n2 = ∇(y2 + z2)

∣
∣
∣
∣
(1,−1,1)

= −2j+ 2k.

A vector tangent to the curve of intersection of the two
surfaces at (1,−1, 1) must be perpendicular to both these
normals. Since

(i − j)× (−j + k) = −(i+ j+ k),

the vector i + j + k, or any scalar multiple of this vector,
is tangent to the curve at the given point.

27. The vector n1 = i + j + k is normal to the plane
x + y + z = 6 at (1, 2, 3). A normal to the sphere
x2 + y2 + z2 = 14 at that point is

n2 = ∇(x2 + y2 + z2)

∣
∣
∣
∣
(1,2,3)

= 2i+ 4j+ 6k.

A vector tangent to the circle of intersection of the two
surfaces at (1, 2, 3) is

n1 × n2 =
∣
∣
∣
∣
∣

i j k
1 1 1
2 4 6

∣
∣
∣
∣
∣
= 2i− 4j + 2k.

Any vector parallel to i− 2j+ k is tangent to the circle at
(1, 2, 3).

28. A vector tangent to the path of the fly at (1, 1, 2) is
given by

v = ∇(3x2 − y2 − z)× ∇(2x2 + 2y2 − z2)

∣
∣
∣
∣
(1,1,2)

= (6x i − 2yj− k)× (4x i + 4yj− 2zk)

∣
∣
∣
∣
(1,1,2)

= (6i − 2j− k)× (4i+ 4j − 4k)

= 4

∣
∣
∣
∣
∣

i j k
6 −2 −1
1 1 −1

∣
∣
∣
∣
∣
= 4(3i + 5j + 8k).

The temperature T = x2 − y2 + z2 + xz2 has gradient at
(1, 1, 2) given by

∇T (1, 1, 2) = (2x + z2)i − 2yj+ 2z(1 + x)k
∣
∣
∣
∣
(1,1,2)

= 6i− 2j + 8k.

Thus the fly, passing through (1, 1, 2) with speed 7, expe-
riences temperature changing at rate

7× v
|v| • ∇T (1, 1, 2) = 7

3i + 5j + 8k√
98

• (6i − 2j+ 8k)

= 1√
2
(18 − 10 + 64) = 72√

2
.

We don’t know which direction the fly is moving along
the curve, so all we can say is that it experiences temper-
ature changing at rate 36

√
2 degrees per unit time.

29. If f (x, y, z) is differentiable at the point (a, b, c) and
∇ f (a, b, c) �= 0, then ∇ f (a, b, c) is normal to the level
surface of f which passes through (a, b, c).
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The proof is very similar to that of Theorem 6 of Section
3.7, modified to include the extra variable. The angle θ
between ∇ f (a, b, c) and the secant vector from (a, b, c)
to a neighbouring point (a + h, b + k, c + �) on the level
surface of f passing through (a, b, c) satisfies

cos θ = ∇ f (a, b, c) • (hi+ kj + �k)
|∇ f (a, b, c)|√h2 + k2 + �2

= h f1(a, b, c)+ k f2(a, b, c)+ � f3(a, b, c)

|∇ f (a, b, c)|√h2 + k2 + �2

= −1

|∇ f (a, b, c)|√h2 + k2 + �2

[

f (a + h, b + k, c + �)

− f (a, b, c)− h f1(a, b, c)− k f2(a, b, c)− � f3(a, b, c)
]

→ 0 as (h, k, �)→ (0, 0, 0)

because f is differentiable at (a, b, c). Thus θ → π

2
, and

∇ f (a, b, c) is normal to the level surface of f through
(a, b, c).

30. The level surface of f (x, y, z) = cos(x+2y+3z) through
(π, π, π) has equation cos(x + 2y + 3z) = cos(6π) = 1,
which simplifies to x + 2y + 3z = 6π . This level sur-
face is a plane, and is therefore its own tangent plane.
We cannot determine this plane by the method used to
find the tangent plane to the level surface of f through
(π/2, π, π) in Exercise 10, because ∇ f (π, π, π) = 0, so
the gradient does not provide a usable normal vector to
define the tangent plane.

31. By the version of the Mean-Value Theorem in Exercise
18 of Section 3.6,

f (x, y) = f (0, 0)+ x f1(θ x, θ y)+ y f2(θ x, θ y)

for some θ between 0 and 1. Since ∇ f is assumed to
vanish throughout the disk x2 + y2 < r2, this implies
that f (x, y) = f (0, 0) throughout the disk, that is, f
is constant there. (Note that Theorem 3 of Section 3.6
can be used instead of Exercise 18 of Section 3.6 in this
argument.)

32. Let f (x, y) = x3 − y2. Then ∇ f (x, y) = 3x2i − 2yj
exists everywhere, but equals 0 at (0, 0). The level curve
of f passing through (0, 0) is y2 = x3, which has a cusp
at (0, 0), so is not smooth there.

y

x

y3=x2

Fig. 12.7.32

33. Let v = v1i+ v2j + v3k. Thus

Dv f = v1
∂ f

∂x
+ v2

∂ f

∂y
+ v3

∂ f

∂z

∇(Dv f ) =
(

v1
∂2 f

∂x2
+ v2

∂2 f

∂x∂y
+ v3

∂2 f

∂x∂z

)

i

+
(

v1
∂2 f

∂y∂x
+ v2

∂2 f

∂y2 + v3
∂2 f

∂y∂z

)

j

+
(

v1
∂2 f

∂x∂z
+ v2

∂2 f

∂y∂z
+ v3

∂2 f

∂z2

)

k

Dv(Dv f ) = v • ∇(Dv f )

= v2
1
∂2 f

∂x2 + 2v1v2
∂2 f

∂x∂y
+ 2v1v3

∂2 f

∂x∂z

+ v2
2
∂2 f

∂y2 + 2v2v3
∂2 f

∂y∂z
+ v2

3
∂2 f

∂z2

(assuming all second partials are continuous).

Dv(Dv f ) gives the second time derivative of the
quantity f as measured by an observer moving with con-
stant velocity v.

34. T = T (x, y, z). As measured by the observer,

dT

dt
= Dv(t)T = v(t) • ∇T

d2T

dt2 = a(t) • ∇T + v(t) • d

dt
∇T

= Da(t)T +
(

v1(t)
d

dt

∂T

∂x
+ · · ·

)

= Da(t)T +
(

v1(t)v(t) • ∇ ∂T

∂x
+ · · ·

)

= Da(t)T +
((

v1(t)
)2 ∂2T

∂x2 + v1(t)v2(t)
∂2T

∂y∂x
+ · · ·

)

= Da(t)T + Dv(t)(Dv(t)T )

(as in Exercise 37 above).

35. T = T (x, y, z, t). The calculation is similar to that of
Exercise 38, but produces a few more terms because of
the dependence of T explicitly on time t . We continue to
use ∇ to denote the gradient with respect to the spatial
variables only. Using the result of Exercise 38, we have

dT

dt
= ∂T

∂t
+ v(t) • ∇T

d2T

dt2
= d

dt

∂T

∂t
+ d

dt
v(t) • ∇T

= ∂2T

∂t2
+ v(t) • ∂T

∂t

+ v(t) • ∂
∂t
∇T + Da(t)T + Dv(t)(Dv(t)T )

= ∂2T

∂t2 + 2Dv(t)

(
∂T

∂t

)

+ Da(t)T + Dv(t)(Dv(t)T ).
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36. f (x, y) =
⎧

⎨

⎩

sin(xy)
√

x2 + y2
if (x, y) �= (0, 0)

0 if (x, y) = (0, 0)
.

a) f1(0, 0) = lim
h→0

0− 0

h
= 0 = f2(0, 0). Thus

∇ f (0, 0) = 0.

b) If u = (i + j)/
√

2, then

Du f (0, 0) = lim
h→0+

1

h

sin(h2/2)√
h2

= 1

2
.

c) f cannot be differentiable at (0, 0); if it were, then
the directional derivative obtained in part (b) would
have been u • ∇ f (0, 0) = 0.

37. f (x, y) =
⎧

⎨

⎩

2x2y

x4 + y2 if (x, y) �= (0, 0)
0 if (x, y) = (0, 0)

.

Let u = ui+ vj be a unit vector. If v �= 0, then

Du f (0, 0) = lim
h→0+

1

h

2(h2u2)(hv)

h4u4 + h2v2

= lim
h→0+

2u2v

h2u4 + v2 =
2u2

v
.

If v = 0, then u = ±1 and

Du f (0, 0) = lim
h→0+ =

1

h

0

h2
= 0.

Thus f has a directional derivative in every direction at
the origin even though it is not continuous there.

Section 12.8 Implicit Functions (page 698)

1. xy3 + x4y = 2 defines x as a function of y.

y3 dx

dy
+ 3xy2 + 4x3y

dx

dy
+ x4 = 0

dx

dy
= − x4 + 3xy2

y3 + 4x3 y
.

The given equation has a solution x = x(y) with this
derivative near any point where y3 + 4x3y �= 0, i.e.,
y �= 0 and y2 + 4x3 �= 0.

2. xy3 = y − z: x = x(y, z)

y3 ∂x

∂y
+ 3xy2 = 1

∂x

∂y
= 1 − 3xy2

y3 .

The given equation has a solution x = x(y, z) with this
partial derivative near any point where y �= 0.

3. z2 + xy3 = xz

y
: z = z(x, y)

2z
∂z

∂y
+ 3xy2 = x

y

∂z

∂y
− xz

y2

∂z

∂y
=

xz

y2 + 3xy2

x

y
− 2z

= xz + 3xy4

xy − 2y2z
.

The given equation has a solution z = z(x, y) with this
derivative near any point where y �= 0 and x �= 2yz.

4. eyz − x2z ln y = π : y = y(x, z)

eyz
(

z
∂y

∂z
+ y

)

− x2 ln y − x2z

y

∂y

∂z
= 0

∂y

∂z
= x2 ln y − yeyz

zeyz − x2z

y

= x2y ln y − y2eyz

yzeyz − x2z
.

The given equation has a solution y = y(x, z) with this
derivative near any point where y > 0, z �= 0, and
yeyz �= x2.

5. x2y2+ y2z2+ z2t2+ t2w2− xw = 0: x = x(y, z, t, w)

2xy2 ∂x

∂w
+ 2t2w − w ∂x

∂w
− x = 0

∂x

∂w
= x − 2t2w

2xy2 −w .
The given equation has a solution with this derivative
wherever w �= 2xy2.

6. F(x, y, x2 − y2) = 0: y = y(x)

F1 + F2
dy

dx
+ F3

(

2x − 2y
dy

dx

)

= 0

dy

dx
= F1(x, y, x2 − y2)+ 2x F3(x, y, x2 − y2)

2yF3(x, y, x2 − y2)− F2(x, y, x2 − y2)
.

The given equation has a solution with
this derivative near any point where
F2(x, y, x2 − y2) �= 2yF3(x, y, x2 − y2).

7. G(x, y, z, u, v) = 0: u = u(x, y, z, v)

G1 + G4
∂u

∂x
∂u

∂x
= −G1(x, y, z, u, v)

G4(x, y, z, u, v)
.

The given equation has a solution with this derivative
near any point where G4(x, y, z, u, v) �= 0.

8. F(x2 − z2, y2 + xz) = 0: z = z(x, y)

F1

(

2x − 2z
∂z

∂x

)

+ F2

(

x
∂z

∂x
+ z

)

= 0

∂z

∂x
= 2x F1(x2 − z2, y2 + xz)+ zF2(x2 − z2, y2 + xz)

2zF1(x2 − z2, y2 + xz)− x F2(x2 − z2, y2 + xz)
.

The given equation has a solution with this derivative
near any point where
x F2(x2 − z2, y2 + xz) �= 2zF1(x2 − z2, y2 + xz).
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9. H(u2w, v2t, wt) = 0: w = w(u, v, t)
H1u2 ∂w

∂t
+ H2v

2 + H3

(

t
∂w

∂t
+w

)

= 0

∂w

∂t
= −H2(u2w, v2t, wt)v2 + H3(u2w, v2t, wt)w

H1(u2w, v2t, wt)u2 + H3(u2w, v2t, wt)t
.

The given equation has a solution with this derivative
near any point where
t H3(u2w, v2t, wt) �= −u2 H1(u2w, v2t, wt).

10.
{

xyuv = 1
x + y + u + v = 0

⇒
{

y = y(x, u)
v = v(x, u)

Differentiate the given equations with respect to x :

yuv + xuv
∂y

∂x
+ xyu

∂v

∂x
= 0

1 + ∂y

∂x
+ ∂v

∂x
= 0

Multiply the last equation by xyu and subtract the two
equations:

yuv − xyu + (xuv − xyu)
∂y

∂x
= 0

(
∂y

∂x

)

u
= y(x − v)

x(v − y)
.

The given equations have a solution of the indicated form
with this derivative near any point where u �= 0, x �= 0
and y �= v.

11.
{

x2 + y2 + z2 + w2 = 1
x + 2y + 3z + 4w = 2

⇒
{

x = x(y, z)
w = w(y, z)

2x
∂x

∂y
+ 2y + 2w

∂w

∂y
= 0 × 2

∂x

∂y
+ 2 + 4

∂w

∂y
= 0 × w

(4x −w)∂x

∂y
+ 4y − 2w = 0

(
∂x

∂y

)

z
= 2w − 4y

4x −w .

The given equations have a solution of the indicated form
with this derivative near any point where w �= 4x .

12.
{

x2y + y2u − u3 = 0
x2 + yu = 1

⇒
{

u = u(x)
y = y(x)

2xy + (x2 + 2yu)
dy

dx
+ (y2 − 3u2)

du

dx
= 0

2x + u
dy

dx
+ y

du

dx
= 0

Multiply the first equation by u and the second by
x2 + 2yu and subtract:

2x(x2 + yu)+ (x2y + y2u + 3u3)
du

dx
= 0

du

dx
= − 2x(x2 + yu)

3u3 + x2y + y2u
= − x

2u3 .

The given equations have a solution with the indicated
derivative near any point where u �= 0.

13.
{

x = u3 + v3

y = uv − v2 ⇒
{

u = u(x, y)
v = v(x, y)

Take partials with respect to x :

1 = 3u2 ∂u

∂x
+ 3v2 ∂v

∂x

0 = v
∂u

∂x
+ (u − 2v)

∂v

∂x
.

At u = v = 1 we have

1 = 3
∂u

∂x
+ 3

∂v

∂x

0 = ∂u

∂x
− ∂v

∂x
.

Thus
∂u

∂x
= ∂v

∂x
= 1

6
.

Similarly, differentiating the given equations with respect
to y and putting u = v = 1, we get

0 = 3
∂u

∂y
+ 3

∂v

∂y

1 = ∂u

∂y
− ∂v

∂y
.

Thus
∂u

∂y
= −∂v

∂y
= 1

2
.

Finally,
∂(u, v)

∂(x, y)
=
∣
∣
∣
∣

1
6

1
6

1
2 − 1

2

∣
∣
∣
∣
= −1

6
.

14.
{

x = r2 + 2s
y = s2 − 2r

∂(x, y)

∂(r, s)
=
∣
∣
∣
∣

2r 2
−2 2s

∣
∣
∣
∣
= 4(rs + 1).

The given system can be solved for r and s as functions
of x and y near any point (r, s) where rs �= −1.
We have

1 = 2r
∂r

∂x
+ 2

∂s

∂x

0 = −2
∂r

∂x
+ 2s

∂s

∂x

0 = 2r
∂r

∂y
+ 2

∂s

∂y

1 = −2
∂r

∂y
+ 2s

∂s

∂y
.
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Thus

∂r

∂x
= s

2(rs + 1)
∂s

∂x
= 1

2(rs + 1)

∂r

∂y
= − 1

2(rs + 1)
∂s

∂y
= r

2(rs + 1)
.

15. x = r cos θ, y = r sin θ

∂(x, y)

∂(r, θ)
=
∣
∣
∣
∣

cos θ −r sin θ
sin θ r cos θ

∣
∣
∣
∣
= r.

The transformation is one-to-one (and hence invertible)
near any point where r �= 0, that is, near any point except
the origin.

16. x = ρ sinφ cos θ , y = ρ sinφ sin θ , z = ρ cosφ.

∂(x, y, z)

∂(ρ, φ, θ)
=
∣
∣
∣
∣
∣

sinφ cos θ ρ cosφ cos θ −ρ sinφ sin θ
sinφ sin θ ρ cosφ sin θ ρ sinφ cos θ

cosφ −ρ sinφ 0

∣
∣
∣
∣
∣

= cosφ

∣
∣
∣
∣

ρ cosφ cos θ −ρ sinφ sin θ
ρ cosφ sin θ ρ sinφ cos θ

∣
∣
∣
∣

+ ρ sinφ

∣
∣
∣
∣

sinφ cos θ −ρ sinφ sin θ
sinφ sin θ ρ sinφ cos θ

∣
∣
∣
∣

= ρ2 cosφ
[

cosφ sinφ cos2 θ + sinφ cosφ sin2 θ
]

+ ρ2 sinφ
[

sin2 φ cos2 θ + sin2 φ sin2 θ
]

= ρ2 cos2 φ sinφ + ρ2 sin3 φ = ρ2 sinφ.

The transformation is one-to-one (and invertible) near any
point where ρ2 sinφ �= 0, that is, near any point not on
the z-axis.

17. Let F(x, y, z, u, v) = xy2 + zu + v2 − 3

G(x, y, z, u, v) = x3z + 2y − uv − 2

H(x, y, z, u, v) = xu + yv − xyz − 1.
Then

∂(F,G, H)

∂(x, y, z)
=
∣
∣
∣
∣
∣

y2 2xy u
3x2z 2 x3

u − yz v − xz −xy

∣
∣
∣
∣
∣
.

At point P0 where x = y = z = u = v = 1, we have

∂(F,G, H)

∂(x, y, z)
=
∣
∣
∣
∣
∣

1 2 1
3 2 1
0 0 −1

∣
∣
∣
∣
∣
= 4.

Since this Jacobian is not zero, the equations
F = G = H = 0 can be solved for x , y, and z as
functions of u and v near P0. Also,

(
∂y

∂u

)

v

∣
∣
∣
∣
(1,1)
= −1

4

∂(F,G, H)

∂(x, u, z)

∣
∣
∣
∣
P0

= −1

4

∣
∣
∣
∣
∣

y2 z u
3x2z −v x3

u − yz x −xy

∣
∣
∣
∣
∣

∣
∣
∣
∣
P0

= −1

4

∣
∣
∣
∣
∣

1 1 1
3 −1 1
0 1 −1

∣
∣
∣
∣
∣
= −3

2
.

18. Let F(x, y, z, u, v) = xey + uz − cos v − 2

G(x, y, z, u, v) = u cos y + x2v − yz2 − 1.
If P0 is the point where (x, y, z) = (2, 0, 1) and
(u, v) = (1, 0), then

∂(F,G)

∂(u, v)

∣
∣
∣
∣
P0

=
∣
∣
∣
∣

z sin v
cos y x2

∣
∣
∣
∣

∣
∣
∣
∣
P0

=
∣
∣
∣
∣

1 0
1 4

∣
∣
∣
∣
= 4.

Since this Jacobian is not zero, the equations F = G = 0
can be solved for u, and v in terms of x , y and z near
P0. Also,

(
∂u

∂z

)

x,y

∣
∣
∣
∣
(2,0,1)

= −1

4

∂(F,G)

∂(z, v)

∣
∣
∣
∣
P0

= −1

4

∣
∣
∣
∣

u sin v
−2yz x2

∣
∣
∣
∣

∣
∣
∣
∣
P0

= −1

4

∣
∣
∣
∣

1 0
0 4

∣
∣
∣
∣
= −1.

19.

{ F(x, y, z, w) =0
G(x, y, z, w) =0
H(x, y, x,w) =0

⇒
{ x =x(y)

z =z(y)
w =w(y)

F1
dx

dy
+ F2 + F3

dz

dy
+ F4

dw

dy
= 0

G1
dx

dy
+ G2 + G3

dz

dy
+ G4

dw

dy
= 0

H1
dx

dy
+ H2 + H3

dz

dy
+ H4

dw

dy
= 0

By Cramer’s Rule,

dx

dy
= −

∂(F,G, H)

∂(y, z, w)
∂(F,G, H)

∂(x, z, w)

.
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20. F(x, y, z, u, v) = 0

G(x, y, z, u, v) = 0

H(x, y, z, u, v) = 0

To calculate
∂x

∂y
we require that x be one of three de-

pendent variables, and y be one of two independent vari-
ables. The other independent variable can be z or u or
v. The possible interpretations for this partial, and their
values, are

(
∂x

∂y

)

z
= −

∂(F,G, H)

∂(y, u, v)
∂(F,G, H)

∂(x, u, v)

(
∂x

∂y

)

u
= −

∂(F,G, H)

∂(y, z, v)
∂(F,G, H)

∂(x, z, v)

(
∂x

∂y

)

v

= −
∂(F,G, H)

∂(y, z, u)
∂(F,G, H)

∂(x, z, u)

.

21. F(x1, x2, . . . , x8) = 0

G(x1, x2, . . . , x8) = 0

H(x1, x2, . . . , x8) = 0

To find
∂x1

∂x2
we require that x1 be one of three depen-

dent variables, and that x2 be one of five independent
variables. The other four independent variables must be
chosen from among the six remaining variables. This can
be done in (

6

4

)

= 6!

4!2!
= 15 ways.

There are 15 possible interpretations for
∂x1

∂x2
.

We have

(
∂x1

∂x2

)

x4x6x7x8

= −
∂(F,G, H)

∂(x2, x3, x5)

∂(F,G, H)

∂(x1, x3, x5)

.

22. If F(x, y, z) = 0 ⇒ z = z(x, y), then

F1 + F3
∂z

∂x
= 0, F2 + F3

∂z

∂y
= 0

F11 + F13
∂z

∂x
+ F31

∂z

∂x
+ F33

(
∂z

∂x

)2

+ F3
∂2z

∂x2 = 0.

Thus

∂2z

∂x2
= − 1

F3

[

F11 + 2F13

(

− F1

F3

)

+ F33

(

− F1

F3

)2
]

= − 1

F3
3

[

F11 F2
3 − 2F1F3 F13 + F2

1 F33

]

.

Similarly,

∂2z

∂y2
= − 1

F3
3

[

F22F2
3 − 2F2 F3F23 + F2

2 F33

]

.

Also,

F12 + F13
∂z

∂y
+
(

F32 + F33
∂z

∂y

)
∂z

∂x
+ F3

∂2z

∂y∂x
.

Therefore

∂2z

∂x∂y
= − 1

F3

[

F12 + F13

(

− F2

F3

)

+ F23

(

− F1

F3

)

+ F33

(

F1 F2

F2
3

)]

= − 1

F2
3

[

F2
3 F12 − F2F3 F13 − F1F3 F23 + F1 F2F33

]

.

23. x = u + v, y = uv, z = u2 + v2.
The first two equations define u and v as functions of x
and y, and therefore derivatives of z with respect to x
and y can be determined by the Chain Rule.
Differentiate the first two equations with respect to x :

1 = ∂u

∂x
+ ∂v

∂x

0 = v
∂u

∂x
+ u

∂v

∂x
.

Thus
∂u

∂x
= u

u − v and
∂v

∂x
= v

v − u
, and

∂z

∂x
= ∂z

∂u

∂u

∂x
+ ∂z

∂v

∂v

∂x

= 2u
u

u − v + 2v
v

v − u
= 2(u2 − v2)

u − v = 2(u + v) = 2x .

Similarly, differentiating the first two of the given equa-
tions with respect to y, we get

0 = ∂u

∂y
+ ∂v

∂y

1 = v
∂u

∂y
+ u

∂v

∂y
.

Thus
∂u

∂y
= 1

v − u
and

∂v

∂y
= 1

u − v , and

∂z

∂y
= 2u

v − u
+ 2v

u − v =
2(u − v)
v − u

= −2

∂2z

∂x∂y
= 0.
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24. pV = T − 4p

T 2 , T = T (p, V )

a) V = ∂T

∂p
− 4

T 2 +
8p

T 3

∂T

∂p

p = ∂T

∂V
+ 8p

T 3

∂T

∂V
.

Putting p = V = 1 and T = 2, we obtain

2
∂T

∂p
= 2, 2

∂T

∂V
= 1,

so
∂T

∂p
= 1 and

∂T

∂V
= 1

2
.

b) dT = ∂T

∂p
dp + ∂T

∂V
dV .

If p = 1, |dp| ≤ 0.001, V = 1, and |dV | ≤ 0.002,
then T = 2 and

|dT | ≤ (1)(0.001) + 1

2
(0.002) = 0.002.

The approximate maximum error in T is 0.002.

25. F(x, y, z) = 0

F1

(
∂x

∂y

)

z
+ F2 = 0, ⇒

(
∂x

∂y

)

z
= − F2

F1
.

Similarly,

(
∂y

∂z

)

x
= − F3

F2
, and

(
∂z

∂x

)

y
= − F1

F3
. Hence

(
∂x

∂y

)

z

(
∂y

∂z

)

x

(
∂z

∂x

)

y
= (−1)3 = −1.

For F(x, y, z, u) = 0 we have, similarly,

(
∂x

∂y

)

z,u

(
∂y

∂z

)

u,x

(
∂z

∂u

)

x,y

(
∂u

∂x

)

y,z
= (−1)4 = 1.

For F(x, y, z, u, v) = 0 we have, similarly,

(
∂x

∂y

)

z,u,v

(
∂y

∂z

)

u,v,x

(
∂z

∂u

)

v,x,y

(
∂u

∂v

)

x,y,z

(
∂v

∂x

)

y,z,u

= (−1)5 = −1.

In general, if F(x1, x2, . . . , xn) = 0, then

(
∂x1

∂x2

)

x3,...,xn

(
∂x2

∂x3

)

x4,...,xn ,x1

· · ·
(
∂xn

∂x1

)

x2,...,xn−1

= (−1)n .

26. Given F(x, y, u, v) = 0, G(x, y, u, v) = 0, let

� = ∂(F,G)

∂(x, y)
= ∂F

∂x

∂G

∂y
− ∂F

∂y

∂G

∂x
.

Then, regarding the given equations as defining x and y
as functions of u and v, we have

∂x

∂u
= − 1

�

∂(F,G)

∂(u, y)
∂x

∂v
= − 1

�

∂(F,G)

∂(v, y)

∂y

∂u
= − 1

�

∂(F,G)

∂(x, u)
∂y

∂v
= − 1

�

∂(F,G)

∂(x, v)
.

Therefore,

∂(x, y)

∂(u, v)
= 1

�2

(
∂(F,G)

∂(u, y)

∂(F,G)

∂(x, v)
− ∂(F,G)

∂(v, y)

∂(F,G)

∂(x, u)

)

= 1

�2

[(
∂F

∂u

∂G

∂y
− ∂F

∂y

∂G

∂u

)(
∂F

∂x

∂G

∂v
− ∂F

∂v

∂G

∂x

)

−
(
∂F

∂v

∂G

∂y
− ∂F

∂y

∂G

∂v

)(
∂F

∂x

∂G

∂u
− ∂F

∂u

∂G

∂x

)]

= 1

�2

[
∂F

∂u

∂G

∂y

∂F

∂x

∂G

∂v
− ∂F

∂y

∂G

∂u

∂F

∂x

∂G

∂v

− ∂F

∂u

∂G

∂y

∂F

∂v

∂G

∂x
+ ∂F

∂y

∂G

∂u

∂F

∂v

∂G

∂x

− ∂F

∂v

∂G

∂y

∂F

∂x

∂G

∂u
+ ∂F

∂v

∂G

∂y

∂F

∂u

∂G

∂x

+ ∂F

∂y

∂G

∂v

∂F

∂x

∂G

∂u
− ∂F

∂y

∂G

∂v

∂F

∂u

∂G

∂x

]

= 1

�2

[
∂F

∂u

∂G

∂y

∂F

∂x

∂G

∂v
+ ∂F

∂y

∂G

∂u

∂F

∂v

∂G

∂x

− ∂F

∂v

∂G

∂y

∂F

∂x

∂G

∂u
− ∂F

∂y

∂G

∂v

∂F

∂u

∂G

∂x

]

= 1

�2

(
∂F

∂x

∂G

∂y
− ∂F

∂y

∂G

∂x

)(
∂F

∂u

∂G

∂v
− ∂F

∂v

∂G

∂u

)

= 1

�2

∂(F,G)

∂(x, y)

∂(F,G)

∂(u, v)

= 1

�

∂(F,G)

∂(u, v)
= ∂(F,G)

∂(u, v)

/
∂(F,G)

∂(x, y)
.

27. By Exercise 26, with the roles of (x, y) and (u, v) re-
versed, we have

∂(u, v)

∂(x, y)
= ∂(F,G)

∂(x, y)

/
∂(F,G)

∂(u, v)
.

Apply this with

F(x, y, u, v) = f (u, v)− x = 0

G(x, y, u, v) = g(u, v)− y = 0

so that
∂(F,G)

∂(x, y)
=
∣
∣
∣
∣

−1 0
0 −1

∣
∣
∣
∣
= 1

and
∂(F,G)

∂(u, v)
= ∂( f, g)

∂(u, v)
= ∂(x, y)

∂(u, v)
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and we obtain

∂(u, v)

∂(x, y)
= 1

/
∂(x, y)

∂(u, v)
.

28. By the Chain Rule,

⎛

⎝

∂x

∂r

∂x

∂s
∂y

∂r

∂y

∂s

⎞

⎠

=
⎛

⎝

∂x

∂u

∂u

∂r
+ ∂x

∂v

∂v

∂r

∂x

∂u

∂u

∂s
+ ∂x

∂v

∂v

∂s
∂y

∂u

∂u

∂r
+ ∂y

∂v

∂v

∂r

∂y

∂u

∂u

∂s
+ ∂y

∂v

∂v

∂s

⎞

⎠

=
⎛

⎝

∂x

∂u

∂x

∂v
∂y

∂u

∂y

∂v

⎞

⎠

⎛

⎝

∂u

∂r

∂u

∂s
∂v

∂r

∂v

∂s

⎞

⎠ .

Since the determinant of a product of matrices is the
product of their determinants, we have

∂(x, y)

∂(r, s)
= ∂(x, y)

∂(u, v)

∂(u, v)

∂(r, s)
.

29. If f (x, y) = k
(

g(x, y)
)

, then

∂ f

∂x
= k′

(

g(x, y)
)∂g

∂x
,

∂ f

∂y
= k′

(

g(x, y)
)∂g

∂y
.

Therefore,

∂( f, g)

∂(x, y)
= k′

(

g(x, y)
)∂(g, g)

∂(r, s)
= 0.

30. Let u = f (x, y) and v = g(x, y), and suppose that

∂(u, v)

∂(x, y)
= ∂( f, g)

∂(x, y)
= 0

for all (x, y). Thus

∂ f

∂x

∂g

∂y
− ∂ f

∂y

∂g

∂x
= 0.

Now consider the equations u = f (x, y) and v = g(x, y)
as defining u and y as functions of x and v. Holding v
constant and differentiating with respect to x , we get

∂g

∂x
+ ∂g

∂y

∂y

∂x
= 0,

and (
∂u

∂x

)

v

= ∂ f

∂x
+ ∂ f

∂y

∂y

∂x

= 1
∂g

∂y

(
∂ f

∂x

∂g

∂y
− ∂ f

∂y

∂g

∂x

)

= 0.

This says that u = u(x, v) is independent of x , and so
depends only on v: u = k(v) for some function k of one

variable. Thus f (x, y) = k
(

g(x, y)
)

, so f and g are

functionally dependent.

Section 12.9 Taylor Series and
Approximations (page 704)

1. Since the Maclaurin series for
1

1+ t
is

1− t + t2 − · · · =
∞
∑

n=0

(−1)n tn,

the Taylor series for

f (x, y) = 1

2+ xy2 =
1

2

1

1+ xy2

2

about (0, 0) is
∞∑

n=0

(−1)n
xn y2n

2n+1 .

2. Since f (x, y) = ln(1 + x + y + xy)

= ln
(

(1+ x)(1 + y)
)

= ln(1 + x)+ ln(1 + y),
the Taylor series for f about (0, 0) is

∞
∑

n=1

(−1)n−1 xn + yn

n
.

3. Since f (x, y) = tan−1(x + xy) = tan−1(ux), where
u = y + 1, the Taylor series for f about (0,−1) is

∞∑

n=0

(−1)n
(ux)2n+1

2n + 1
=
∞∑

n=0

(−1)n
x2n+1(1 + y)2n+1

2n + 1
.

4. Let u = x − 1, v = y + 1. Thus

f (x, y) = x2 + xy + y3

= (u + 1)2 + (u + 1)(v − 1)+ (v − 1)3

= 1+ 2u + u2 − 1+ v − u + uv + v3 − 3v2 + 3v − 1

= −1+ u + 4v + u2 + uv − 3v2 + v3

= −1+ (x − 1)+ 4(y + 1)+ (x − 1)2

+ (x − 1)(y + 1)− 3(y + 1)2 + (y + 1)3.

This is the Taylor series for f about (1,−1).
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5. f (x, y) = ex2+y2

=
∞
∑

n=0

(x2 + y2)n

n!

=
∞∑

n=0

1

n!

n∑

j=0

n!

j !(n − j)!
x2 j y2n−2 j

=
∞∑

n=0

n∑

j=0

x2 j y2n−2 j

j !(n − j)!
.

This is the Taylor series for f about (0, 0).

6. f (x, y) = sin(2x + 3y) =
∞∑

n=0

(−1)n
(2x + 3y)2n+1

(2n + 1)!

=
∞∑

n=0

(−1)n

(2n + 1)!

2n+1∑

j=0

(2n + 1)!

j !(2n + 1 − j)!
(2x) j (3y)2n+1− j

=
∞
∑

n=0

2n+1
∑

j=0

(−1)n2 j 32n+1− j

j !(2n + 1 − j)!
x j y2n+1− j .

This is the Taylor series for f about (0, 0).

7. Let u = x − 2, v = y − 1. Then

f (x, y) = 1

2+ x − 2y
= 1

2+ (2+ u)− 2(v + 1)

= 1

2 + u − 2v
= 1

2

(

1+ u − 2v

2

)

= 1

2

[

1− u − 2v

2
+
(

u − 2v

2

)2

−
(

u − 2v

2

)3

+ · · ·
]

= 1

2
− u

4
+ v

2
+ u2

8
− uv

2

+ v
2

2
− u3

16
+ 3u2v

8
− 3uv2

4
+ v

3

2
+ · · · .

The Taylor polynomial of degree 3 for f about (2, 1) is

1

2
− x − 2

4
+ y − 1

2
+ (x − 1)2

8

− (x − 2)(y − 1)

2
+ (y − 1)2

2
− (x − 2)3

16

+ 3(x − 2)2(y − 1)

8
− 3(x − 2)(y − 1)2

4
+ (y − 1)3

2
.

8. Let u = x − 1. Then

f (x, y) = ln(x2 + y2) = ln(1+ 2u + u2 + y2)

= (2u + u2 + y2)− (2u + u2 + y2)2

2

+ (2u + u2 + y2)3

3
− · · ·

= 2u + u2 + y2 − 2u2 − 2u3 − 2uy2 + 8u3

3
+ · · · .

The Taylor polynomial of degree 3 for f near (1, 0) is

2(x − 1)− (x − 1)2 + y2 − 2(x − 1)3

− 2(x − 1)y2 + 8

3
(x − 1)3.

9. f (x, y) =
∫ x+y2

0
e−t2

dt

=
∫ x+y2

0

(

1− t2 + · · ·
)

dt

=
(

t − t3

3
+ · · ·

)∣
∣
∣
∣

x+y2

0

= x + y2 − 1

3
(x + y2)3 + · · ·

= x + y2 − x3

3
+ · · · .

The Taylor polynomial of degree 3 for f near (0, 0) is

x + y2 − x3

3
.

10. f (x, y) = cos(x + sin y)

= 1− (x + sin y)2

2!
+ (x + sin y)4

4!
− · · ·

= 1−

(

x + y − y3

6
+ · · ·

)2

2
+ (x + y − · · ·)4

4
− · · ·

= 1− 1

2

(

x2 + y2 + 2xy − xy3

3
− y4

3
+ · · ·

)

+ 1

4
(x4 + 4x3 y + 6x2y2 + 4xy3 + y4 + · · ·).

The Taylor polynomial of degree 4 for f near (0, 0) is

1− x2

2
− xy − y2

2
+ x4

4
+ x3y

+ 3x2y2

2
+ 7xy3

6
+ 5y4

12
.

11. Let u = x − π

2
, v = y − 1. Then

f (x, y) = sin x

y
= sin(u + π/2)

1+ v = cos u

1+ v
=
(

1− u2

2
+ · · ·

)

(1 − v + v2 − · · ·)

= 1− v − u2

2
+ v2 + · · · .

The Taylor polynomial of degree 2 for f near (π/2, 1) is

1− (y − 1)− 1

2

(

x − π
2

)2 + (y − 1)2.
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12. f (x, y) = 1+ x

1+ x2 + y4

= (1 + x)
(

1− (x2 + y4)+ · · ·
)

= 1+ x − x2 − · · · .
The Taylor polynomial of degree 2 for f near (0, 0) is

1+ x − x2.

13. The equation x sin y = y + sin x can be written
F(x, y) = 0 where F(x, y) = x sin y − y − sin x .
Since F(0, 0) = 0, and F2(0, 0) = −1 �= 0, the given
equation has a solution of the form y = f (x) where
f (0) = 0.
Try y = a1x + a2x2 + a3x3 + a4x4 + · · ·. Then

sin y = y − 1

6
y3 + · · ·

= a1x + a2x2 + a3x3 + a4x4 + · · · − 1

6
(a1x + · · ·)3 + · · · .

Substituting into the given equation we obtain

a1x2 + a2x3 +
(

a3 − 1

6
a3

1

)

x4 + · · ·

= a1x + a2x2 + a3x3 + a4x4 + · · · + x − 1

6
x3 + · · · .

Comparing coefficients of various powers of x on both
sides, we get

a1 + 1 = 0, a2 = a1, a3 − 1

6
= a2.

Thus a1 = −1, a2 = −1, and a3 = −5/6. The required
solution is

y = −x − x2 − 5

6
x3 + · · · .

14. The equation
√

1+ xy = 1+x+ ln(1+ y) can be rewritten
F(x, y) = 0, where F(x, y) = √1+ xy−1−x− ln(1+ y).
Since F(0, 0) = 0 and F2(0, 0) = −1 �= 0, the given
equation has a solution of the form y = f (x) where
f (0) = 0.

Try y = a1x + a2x2 + a3x3 + a4x4 + · · ·. We have
√

1+ xy

=
√

1+ a1x2 + a2x3 + a3x4 + · · ·
= 1+ 1

2
(a1x2 + a2x3 + a3x4 + · · ·)

− 1

8
(a1x2 + · · ·)2 + · · ·

1+ x + ln(1 + y)

= 1+ x + (a1x + a2x2 + a3x3 + a4x4 + · · ·)
− 1

2
(a1x + a2x2 + a3x3 + · · ·)2 + 1

3
(a1x + a2x2 · · ·)3 − · · ·

Thus we must have

0 = 1+ a1

1

2
a1 = a2 − 1

2
a2

1

1

2
a2 = a3 − a1a2 + 1

3
a3

1

1

2
a3 − 1

8
a2

1 = a4 − 1

2
a2

2 − a1a3 + a2
1a2,

and a1 = −1, a2 = 0, a3 = 1

3
, a4 = − 7

24
. The required

solution is

y = −x + 1

3
x3 − 7

24
x4 + · · · .

15. The equation x + 2y + z + e2z = 1 can be written
F(x, y, z) = 0, where F(x, y, z) = x + 2y + z + e2z − 1.
Since F(0, 0, 0) = 0 and F3(0, 0, 0) = 3 �= 0, the given
equation has a solution of the form z = f (x, y), where
f (0, 0) = 0.

Try z = Ax + By + Cx2 + Dxy + Ey2 + · · ·. Then

x + 2y + Ax + By + Cx2 + Dxy + Ey2 + · · ·
+ 1 + 2(Ax + By + Cx2 + Dxy + Ey2 + · · ·)
+ 2(Ax + By + · · ·)2 + · · · = 1.

Thus

1 + A + 2A = 0 ⇒ A = −1/3

2 + B + 2B = 0 ⇒ B = −2/3

C + 2C + 2A2 = 0 ⇒ C = −2/27

D + 2D + 4AB = 0 ⇒ D = −8/27

E + 2E + 2B2 = 0 ⇒ E = −8/27.

The Taylor polynomial of degree 2 for z is

−1

3
x − 2

3
y − 2

27
x2 − 8

27
xy − 8

27
y2.

16. The coefficient of x2y in the Taylor series for
f (x, y) = tan−1(x + y) about (0, 0) is

1

2!1!
f112(0, 0) = 1

2
f112(0, 0).

But

tan−1(x + y) = x + y − 1

3
(x + y)3 + · · ·

= x + y − 1

3
(x3 + 3x2y + 3xy2 + y3)+ · · ·
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so the coefficient of x2y is −1. Hence f112(0, 0) = −2.

17. Let f (x, y) = 1

1+ x2 + y2
.

The coefficient of x2n y2n in the Taylor series for f (x, y)
about (0, 0) is

1

(2n)!(2n)!

∂4n

∂x2n∂y2n
f (x, y)

∣
∣
∣
∣
(0,0)

.

However,

f (x, y) =
∞
∑

j=0

(−1) j (x2 + y2) j

=
∞
∑

j=0

(−1) j
j
∑

k=0

j !

k!( j − k)!
x2k y2 j−2k.

The coefficient of x2n y2n is

(−1)2n (2n)!

n!n!
= (2n)!

(n!)2
.

Thus
∂4n

∂x2n∂y2n
f (x, y)

∣
∣
∣
∣
(0,0)
= [(2n)!]3

(n!)2
.

Review Exercises 12 (page 704)

1. x + 4y2

x
= C

x2 + 4y2 = Cx
(

x − (C/2)
)2

(C/2)2
+ y2

(C/4)2
= 1

Ellipse: centre ((C/2), 0), semi-axes: C/2, C/4, with the
origin deleted.

y

x

C = 1
C = 2

C = 3
C = 4

C = −1
C = −2

C = −3

C = −4

Fig. R-12.1

2. T = 140 + 30x2 − 60x + 120y2

8+ x2 − 2x + 4y2

= 30 − 100

(x − 1)2 + 4y2 + 7
Ellipses: centre (1, 0), values of T between 30 − (100/7)
(minimum) at (1, 0) and 30 (at infinite distance from
(1, 0)).

y

x-4 -3 -2 -1 1 2 3 4 5
T=15.7

T=18
T=21

T=24
T=27

Fig. R-12.2

3. The graph is a saddle-like surface with downward slopes
for legs and a tail, thus monkey saddle.

y

x

C=−16

C=16

C=8

C=16

C=0

Fig. R-12.3

4. f (x, y) =
{

x3/(x2 + y2) if (x, y) �= (0, 0)
0 if (x, y) = (0, 0) .

f1(0, 0) = lim
h→0

(h3 − 0)/h2

h
= 1

f2(0, 0) = lim
k→0

0− 0

k
= 0.

For (x, y) �= (0, 0), we have

f1(x, y) = x4 + 3x2y2

(x2 + y2)2

f2(x, y) = − 2x3y

(x2 + y2)2

f12(0, 0) = lim
k→0

f1(0, k) − f1(0, 0)

k
= lim

k→0

0− 1

k
does not exist

f21(0, 0) = lim
h→0

f2(h, 0)− f2(0, 0)

h
= lim

h→0

0− 0

h
= 0.

5. f (x, y) = x3 − y3

x2 − y2 =
(x − y)(x2 + xy + y2)

(x − y)(x + y)
.
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f is continuous except on the lines x = y and x = −y
where it is not defined. It has a continuous extension,

namely
x2 + xy + y2

x + y
, to all points of x = y except the

origin. It cannot be extended so as to be continuous at
the origin. For example, if (x, y) → (0, 0) along the
curve y = −x + x4, then

f (x, y) = x2 − x2 + x5 + (x4 − x)2

x4
= x6 − x3 + 1

x2
,

which →∞ as x → 0.

If we define f (0, 0) = 0, then

f1(0, 0) = lim
h→0

f (h, 0)− f (0, 0)

h
= lim

h→0

h

h
= 1

f2(0, 0) = lim
k→0

f (0, k) − f (0, 0)

k
= lim

k→0

k

k
= 1.

6. f (x, y) = ex2−2x−4y2+5

f1(x, y) = 2(x − 1)ex2−2x−4y2+5

f2(x, y) = −8yex2−2x−4y2+5

f (1,−1) = 1

f1(1,−1) = 0

f2(1,−1) = 8.

a) The tangent plane to z = f (x, y) at (1,−1, 1) has
equation z = 1+ 8(y + 1), or z = 8y + 9.

b) f (x, y) = C ⇒ (x − 1)2 − 4y2 + 4 = ln C

⇒ (x − 1)2 − 4y2 = ln C − 4.
These are hyperbolas with centre (1, 0) and asymp-
totes x = 1± 2y.

y

x-4 -3 -2 -1 1 2 3 4 5

C=1
C=10

C=100

C=1,000

C=10,000

Fig. R-12.6

7. Let f (x, y, z) = x2 + y2 + 4z2. Then S has equation
f (x, y, z) = 16.

a) ∇ f (a, b, c) = 2ai + 2bj + 8ck. The tangent plane to
S at (a, b, c) has equation

2a(x − a)+ 2b(y − b)+ 4c(z − c) = 0, or

ax + by + 4cz = a2 + b2 + 4c2 = 16.

b) The tangent plane ax +by+4cz = 16 passes through
(0, 0, 4) if 16c = 16, that is, if c = 1. In this case
a2+b2 = 16−4c2 = 12. These points (a, b, c) lie on
a horizontal circle of radius

√
12 centred at (0, 0, 1)

in the plane z = 1.

c) The tangent plane of part (a) is parallel to the plane
x + y + 2

√
2z = 97 if

ai + bj+ 4ck = t (i + j + 2
√

2k),

that is, a = t , b = t , c = t/
√

2. Then
16 = a2 + b2 + 4c2 = 4t2, so t = ±2. The
two points on S where the tangent plane is par-
allel to x + y + 2

√
2z = 97 are (2, 2,

√
2) and

(−2,−2,−√2).

8.
1

R
= 1

R1
+ 1

R2

− 1

R2
d R = − 1

R2
1

d R1 − 1

R2
2

d R2

If R1 = 100 and R2 = 25, so that R = 20, and if
|d R1/R1| = 5/100 and |d R2/R2| = 2/100, then

1

20

∣
∣
∣
∣

d R

R

∣
∣
∣
∣
≤ 1

100
· 5

100
+ 1

25
· 2

100
= 13

1002 .

Thus |d R/R| ≤ 13/500; R can be in error by about
2.6%.

9. The measured sides of the field are x = 150 m and
y = 200 m with |dx | = 1 and |dy| = 1, and
the contained angle between them is θ = 30◦ with
|dθ | = 2◦ = π/90 rad. The area A of the field satis-
fies

A = 1

2
xy sin θ ≈ 7, 500

d A = y

2
sin θ dx + x

2
sin θ dy + xy

2
cos θ dθ

= 175

2
+ 15, 000

√
3

2
· π

90
≈ 541.

The area is 7,500 m2, accurate to within about 540 m2

for a percentage error of about 7.2%.

10. T = x3y + y3z + z3x .

a) ∇T = (3x2y + z3)i+ (3y2z + x3)j + (3z2x + y3)k
∇T (2,−1, 0) = −12i+ 8j− k.
A unit vector in the direction from (2,−1, 0) to-
wards (1, 1, 2) is u = (−i + 2j + 2k)/3. The direc-
tional derivative of T at (2,−1, 0) in the direction of
u is

u • ∇T (2,−1, 0) = 12+ 16− 2

3
= 26

3
.

b) Since ∇(2x2 + 3y2 + z2) = 4x i+ 6yj+ 2zk, at t = 0
the fly is at (2,−1, 0) and is moving in the direction
±(8i − 6j), so its velocity is

±5
8i− 6j

10
= ±(4i − 3j).
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Since the fly is moving in the direction of increasing
T , the rate at which it experiences T increasing is

dT

dt
= |(4i − 3j) • (−12i + 8j− k)| = 48+ 24 = 72.

11. f (x, y, z) = x2y + yz + z2.

a) ∇ f (x, y, z) = 2xyi+ (x2 + z)j+ (y + 2z)k
∇ f (1,−1.1) = −2i+ 2j+ k.
The directional derivative of f in the direction i + k
at (1,−1, 1) is

i + k√
2
• (−2i+ 2j+ k) = − 1√

2
.

b) The plane x+ y+z = 1 intersects the level surface of
f through (1,−1, 1) in a curve whose tangent vector
at (1,−1, 1) is perpendicular to both ∇ f (1,−1, 1)
and the normal vector i+j+k to the plane. Thus the
ant is crawling in the direction of the cross product
of these vectors:

±
∣
∣
∣
∣
∣

i j k
−2 2 1
1 1 1

∣
∣
∣
∣
∣
= ±(i+ 3j − 4k).

c) The second ant is crawling in the direction of the
vector projection of ∇ f (1,−1, 1) onto the plane
x+ y+z = 1, which is ∇ f (1,−1, 1) minus its vector
projection onto the normal to that plane:

∇ f (1,−1, 1)− ∇ f (1,−1, 1) • (i+ j+ k)
|i+ j + k|2 (i + j+ k)

= −2i+ 2j + k− 1

3
(i+ j+ k) = −7i+ 5j + 2k

3
,

that is, in the direction −7i+ 5j + 2k.

12. f (x, y, z) = (x2 + z2) sin
πxy

2
+ yz2, P0 = (1, 1,−1).

a) ∇ f =
(

2x sin
πxy

2
+ πy

2
(x2 + z2) cos

πxy

2

)

i

+
(πx

2
(x2 + z2) cos

πxy

2
+ z2

)

j

+ 2z
(

sin
πxy

2
+ y

)

k

∇ f (P0) = 2i + j − 4k.

b) Since f (P0) = 2 + 1 = 3, the linearization of f at
P0 is

L(x, y, z) = 3+ 2(x − 1)+ (y − 1)− 4(z + 1).

c) The tangent plane at P0 to the level surface of f
through P0 has equation

∇ f (P0) •
(

(x − 1)i + (y − 1)j + (z + 1)k
)

= 0

2(x − 1)+ (y − 1)− 4(z + 1) = 0

2x + y − 4z = 7.

d) The bird is flying in direction

(2 − 1)i + (−1− 1)j + (1 + 1)k = i − 2j + 2k,

a vector of length 3. Since the bird’s speed is 5, its
velocity is

v = 5

3
(i − 2j + 2k).

The rate of change of f as experienced by the bird
is

d f

dt
= v • ∇ f (P0) = 5

3
(2− 2− 8) = −40

3
.

e) To experience the greatest rate of increase of f
while flying through P0 at speed 5, the bird should
fly in the direction of ∇ f (P0), that is, 2i + j − 4k.

13. u = k
(

ln cos
x

k
− ln cos

y

k

)

ux = k

(

−1

k
tan

x

k

)

= − tan
x

k

uy = k

(
1

k
tan

y

k

)

= tan
y

k

uxx = −1

k
sec2 x

k

uyy = 1

k
sec2 y

k
uxy = 0

(1+u2
x )uyy − uuxuyuxy + (1+ u2

y)uxx

= 1

k
sec2 x

k
sec2 y

k
− 0− 1

k
sec2 y

k
sec2 x

k
= 0.

14. If F(x, y, z) = 0, G(x, y, z) = 0 are solved for x = x(y),
z = z(y), then

F1
dx

dy
+ F2 + F3

dz

dy
= 0

G1
dx

dy
+ G2 + G3

dz

dy
= 0.

Eliminating dz/dy from these equations, we obtain

dx

dy
= − F2G3 − F3G2

F1G3 − F3G1
.

Similarly, if the equations are solved for x = x(z),
y = y(z), then

dy

dz
= − F3G1 − F1G3

F2G1 − F1G2
,
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and if the equations are solved for y = y(x), z = z(x),
then

dz

dx
= − F1G2 − F2G1

F3G2 − F2G3
.

Hence

dx

dy
· dy

dz
· dz

dx

= − F2G3 − F3G2

F1G3 − F3G1
· F3G1 − F1G3

F2G1 − F1G2
· F1G2 − F2G1

F3G2 − F2G3
= 1.

15. x = u3 − uv

y = 3uv + 2v2

Assume these equations define u = u(x, y)
and v = v(x, y) near the point P where
(u, v, x, y) = (−1, 2, 1, 2).

a) Differentiating both equations with respect to x , we
get

1 = 3u2 ∂u

∂x
− v ∂u

∂x
− u

∂v

∂x

0 = 3v
∂u

∂x
+ 3u

∂v

∂x
+ 4v

∂v

∂x
.

At P, these equations become

1 = ∂u

∂x
+ ∂v
∂x
, 0 = 6

∂u

∂x
+ 5

∂v

∂x
,

from which we obtain ∂u/∂x
∣
∣
∣
P
= −5.

Similarly, differentiating the given equations with
respect to y leads to

0 = ∂u

∂y
+ ∂v
∂y
, 1 = 6

∂u

∂y
+ 5

∂v

∂y
,

from which we obtain ∂u/∂y
∣
∣
∣
P
= 1.

b) Since u(1, 2) = −1, we have

u(1.02, 1.97) ≈ −1+ ∂u

∂x

∣
∣
∣
∣
P
(0.02)+ ∂u

∂y

∣
∣
∣
∣
P
(−0.03)

= −1− 5(0.02)+ 1(−0.03) = −1.13.

16. u = x2 + y2

v = x2 − 2xy2

Assume these equations define x = x(u, v) and
y = y(u, v) near the point (u, v) = (5,−7), with x = 1
and y = 2 at that point.

a) Differentiate the given equations with respect to u to
obtain

1 = 2x
∂x

∂u
+ 2y

∂y

∂u

0 = 2(x − y2)
∂x

∂u
− 4xy

∂y

∂u
.

At x = 1, y = 2,

2
∂x

∂u
+ 4

∂y

∂u
= 1

−6
∂x

∂u
− 8

∂y

∂u
= 0,

from which we obtain ∂x/∂u = −1 and
∂y/∂u = 3/4 at (5,−7).

b) If z = ln(y2 − x2), then

∂z

∂u
= 1

y2 − x2

[

−2x
∂x

∂u
+ 2y

∂y

∂u

]

.

At (u, v) = (5,−7), we have (x, y) = (1, 2), and so

∂z

∂u
= 1

3

[

−2 (−1)+ 4

(
3

4

)]

= 5

3
.

Challenging Problems 12 (page 705)

1. a) If f is differentiable at (a, b), then its graph has a
nonvertical tangent plane at (a, b, f (a, b)). Any line
through that point, part of which lies on the surface
z = f (x, y) near (a, b), must be tangent to that
surface at (a, b), so must lie in the tangent plane.

b) The surface S with equation z = y g(x/y) has the
property that if P = (x0, y0, z0) is any point on
it, then all points other than the origin on the line
joining P0 to the origin also lie on S. Specifically, if
t �= 0, then (t x0, t y0, t z0) lies on S, because

t z0 = t y0 g

(
t x0

t y0

)

⇔ z0 = y0 g

(
x0

y0

)

.

Thus S consists entirely of lines through the origin;
it is some kind of “cone” with vertex at the origin.
By part (a), all tangent planes to S contain the lines
on S through the points of contact, so all tangent
planes must pass through the origin.

2. Let the position vector of the particle at time t be
r = x(t)i+ y(t)j+ z(t)k. Then the velocity of the particle
is

v = dx

dt
i+ dy

dt
j+ dz

dt
k.

This velocity must be parallel to

∇ f (x, y, z) = −2x i− 4yj+ 6zk

at every point of the path, that is,

dx

dt
= −2t x,

dy

dt
= −4t y,

dz

dt
= 6t z,
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so that
dx

−2x
= dy

−4y
= dz

6z
. Integrating these equations,

we get

ln |y| = 2 ln |x | + C1, ln |z| = −3 ln |x | + C2.

Since the path passes through (1, 1, 8), C1 and C2 are
determined by

ln 1 = 2 ln 1 + C1, ln 8 = −3 ln 1 + C2.

Thus C1 = 0 and C2 = ln 8. The path therefore has
equations y = x2, z = 8/x3. Evidently (2, 4, 1) lies on
the path, and (3, 7, 0) does not.

3. We used Maple V to verify the stated identity. Using
r, p, and t to represent ρ, φ, and θ , respectively, we
defined

> v := (r,p,t) ->
> u(r*sin(p)*cos(t),
r*sin(p)*sin(t),
> r*cos(p));

and then asked Maple to calculate and simplify the left
side of the identity:

> simplify(diff(v(r,,p,t),r$2)
> +(2/r)*diff(v(r,p,t),r)
> +(cot(p)/rˆ2)*diff(v(r,p,t),p)
> +(1/rˆ2)*diff(v(r,p,t),p$2)
> +(1/(r*sin(p))ˆ2)*diff(v(r,p,t),t$2));

Maple responded with

D1,1(u)+ D3,3(u)+ D2,2(u),

with all three terms evaluated at
(r sin(p) cos(t), r sin(p) sin(t), r cos(p)), thus confirming
the identity.

4. If u(x, y, z, t) = v(ρ, t) = f (ρ − ct)

ρ
is independent of θ

and φ, then

∂2u

∂x2
+ ∂

2u

∂y2
+ ∂

2u

∂z2
= ∂2v

∂ρ2
+ 2

ρ

∂v

∂ρ

by Problem 3. We have

∂v

∂ρ
= f ′(ρ − ct)

ρ
− f (ρ − ct)

ρ2

∂2v

∂ρ2
= f ′′(ρ − ct)

ρ
− 2 f ′(ρ − ct)

ρ2
+ 2 f (ρ − ct)

ρ3

∂v

∂t
= − c f ′(ρ − ct)

ρ

∂2v

∂t2 =
c2 f ′′(ρ − ct)

ρ

∂2v

∂ρ2 +
2

ρ

∂v

∂ρ

= f ′′(ρ − ct)

ρ
− 2 f ′(ρ − ct)

ρ2 + 2 f (ρ − ct)

ρ3

+ 2 f ′(ρ − ct)

ρ2 − 2 f (ρ − ct)

ρ3

= f ′′(ρ − ct)

ρ

= 1

c2

∂2v

∂t2 =
1

c2

∂2u

∂t2 .

The function f (ρ − ct)/ρ represents the shape of a sym-
metrical wave travelling uniformly away from the origin
at speed c. Its amplitude at distance ρ from the origin
decreases as ρ increases; it is proportional to the recipro-
cal of ρ.
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CHAPTER 13. APPLICATIONS OF
PARTIAL DERIVATIVES

Section 13.1 Extreme Values (page 714)

1. f (x, y) = x2 + 2y2 − 4x + 4y

f1(x, y) = 2x − 4 = 0 if x = 2

f2(x, y) = 4y + 4 = 0 if y = −1.
Critical point is (2,−1). Since f (x, y) → ∞ as
x2 + y2 → ∞, f has a local (and absolute) minimum
value at that critical point.

2. f (x, y) = xy − x + y, f1 = y − 1, f2 = x + 1
A = f11 = 0, B = f12 = 1, C = f22 = 0.
Critical point (−1, 1) is a saddle point since
B2 − AC > 0.

3. f (x, y) = x3 + y3 − 3xy

f1(x, y) = 3(x2 − y), f2(x, y) = 3(y2 − x).
For critical points: x2 = y and y2 = x . Thus x4 − x = 0,
that is, x(x − 1)(x2 + x + 1) = 0. Thus x = 0 or x = 1.
The critical points are (0, 0) and (1, 1). We have

A = f11(x, y) = 6x, B = f12(x, y) = −3,

C = f22(x, y) = 6y.

At (0, 0): A = C = 0, B = −3. Thus AC < B2, and
(0, 0) is a saddle point of f .
At (1, 1): A = C = 6, B = −3, so AC > B2. Thus f
has a local minimum value at (1, 1).

4. f (x, y) = x4+y4−4xy, f1 = 4(x3−y), f2 = 4(y3−x)

A = f11 = 12x2, B = f12 = −4, C = f22 = 12y2.
For critical points: x3 = y and y3 = x . Thus x9 = x , or
x(x8 − 1) = 0, and x = 0, 1, or −1. The critical points
are (0, 0), (1, 1) and (−1,−1).
At (0, 0), B2 − AC = 16 − 0 > 0, so (0, 0) is a saddle
point.
At (1, 1) and (−1,−1), B2− AC = 16− 144 < 0, A > 0,
so f has local minima at these points.

5. f (x, y) = x

y
+ 8

x
− y

f1(x, y) = 1

y
− 8

x2 = 0 if 8y = x2

f2(x, y) = − x

y2 − 1 = 0 if x = −y2.

For critical points: 8y = x2 = y4, so y = 0 or y = 2.
f (x, y) is not defined when y = 0, so the only critical
point is (−4, 2). At (−4, 2) we have

A = f11 = 16

x3 = −
1

4
, B = f12 = − 1

y2 = −
1

4
,

C = f22 = 2x

y3 = −1.

Thus B2 − AC = 1

16
− 1

4
< 0, and (−4, 2) is a local

maximum.

6. f (x, y) = cos(x + y), f1 = − sin(x + y) = f2.
All points on the lines x + y = nπ (n is an integer) are
critical points. If n is even, f = 1 at such points; if n is
odd, f = −1 there. Since −1 ≤ f (x, y) ≤ 1 at all points
in �2, f must have local and absolute maximum values
at points x + y = nπ with n even, and local and absolute
minimum values at such points with n odd.

7. f (x, y) = x sin y. For critical points we have

f1 = sin y = 0, f2 = x cos y = 0.

Since sin y and cos y cannot vanish at the same point, the
only critical points correspond to x = 0 and sin y = 0.
They are (0, nπ), for all integers n. All are saddle
points.

8. f (x, y) = cos x + cos y, f1 = − sin x, f2 = − sin y
A = f11 = − cos x, B = f12 = 0, C = f22 = − cos y.
The critical points are points (mπ, nπ), where m and n
are integers.
Here B2− AC = − cos(mπ) cos(nπ) = (−1)m+n+1 which
is negative if m + n is even, and positive if m + n is odd.
If m + n is odd then f has a saddle point at (mπ, nπ).
If m + n is even and m is odd then f has a local (and
absolute) minimum value, −2, at (mπ, nπ). If m + n
is even and m is even then f has a local (and absolute)
maximum value, 2, at (mπ, nπ).

9. f (x, y) = x2ye−(x2+y2)

f1(x, y) = 2xy(1− x2)e−(x2+y2)

f2(x, y) = x2(1− 2y2)e−(x2+y2)

A = f11(x, y) = 2y(1− 5x2 + 2x4)e−(x2+y2)

B = f12(x, y) = 2x(1− x2)(1 − 2y2)e−(x2+y2)

C = f22(x, y) = 2x2y(2y2 − 3)e−(x2+y2).

For critical points:

xy(1− x2) = 0

x2(1 − 2y2) = 0.

The critical points are (0, y) for all y, (±1, 1/
√

2), and
(±1,−1/

√
2).

Evidently, f (0, y) = 0. Also f (x, y) > 0 if y > 0 and
x �= 0, and f (x, y) < 0 if y < 0 and x �= 0. Thus f has
a local minimum at (0, y) if y > 0, and a local maximum
if y < 0. The origin is a saddle point.

At (±1, 1/
√

2): A = C = −2
√

2e−3/2, B = 0, and so
AC > B2. Thus f has local maximum values at these
two points.
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At (±1,−1/
√

2): A = C = 2
√

2e−3/2, B = 0, and so
AC > B2. Thus f has local minimum values at these
two points.

Since f (x, y) → 0 as x2 + y2 → ∞, the value
f (±1, 1/

√
2) = e−3/2/

√
2 is the absolute maximum

value for f , and the value f (±1,−1/
√

2) = −e−3/2/
√

2
is the absolute minimum value.

10. f (x, y) = xy

2 + x4 + y4

f1 = (2 + x4 + y4)y − xy4x3

(2 + x4 + y4)2
= y(2+ y4 − 3x4)

(2 + x4 + y4)2

f2 = x(2 + x4 − 3y4)

(2 + x4 + y4)2
.

For critical points, y(2+ y4 − 3x4) = 0 and
x(2+ x4 − 3y4) = 0.
One critical point is (0, 0). Since f (0, 0) = 0 but
f (x, y) > 0 in the first quadrant and f (x, y) < 0 in
the second quadrant, (0, 0) must be a saddle point of f .
Any other critical points must satisfy 2 + y4 − 3x4 = 0
and 2+ x4 − 3y4 = 0, that is, y4 = x4, or y = ±x . Thus
2 − 2x4 = 0 and x = ±1. Therefore there are four other
critical points: (1, 1), (−1,−1), (1,−1) and (−1, 1). f
is positive at the first two of these, and negative at the
other two. Since f (x, y) → 0 as x2 + y2 → ∞, f
must have maximum values at (1, 1) and (−1,−1), and
minimum values at (1,−1) and (−1, 1).

11. f (x, y) = xe−x3+y3

f1(x, y) = (1− 3x3)e−x3+y3

f2(x, y) = 3xy2e−x3+y3

A = f11(x, y) = 3x2(3x3 − 4)e−x3+y3

B = f12(x, y) = −3y2(3x3 − 1)e−x3+y3

C = f22(x, y) = 3xy(3y3 + 2)e−x3+y3

For critical points: 3x3 = 1 and 3xy2 = 0. The only crit-
ical point is (3−1/3, 0). At that point we have B = C = 0
so the second derivative test is inconclusive.
However, note that f (x, y) = f (x, 0)ey3

, and ey3
has an

inflection point at y = 0. Therefore f (x, y) has neither
a maximum nor a minimum value at (3−1/3, 0), so has a
saddle point there.

12. f (x, y) = x2

x2 + y2

f1(x, y) = (x2 + y2)2x − 2x3

(x2 + y2)2
= 2xy2

(x2 + y2)2

f2(x, y) = − 2x2y

(x2 + y2)2
.

Both partial derivatives are zero at all points of the coor-
dinate axes. Also f (x, 0) = 1 for x �= 0, and f (0, y) = 0
for y �= 0.
Evidently 0 ≤ f (x, y) ≤ 1 for all (x, y) �= (0, 0).
Thus, f has absolute maximum value 1 at all points

(x, 0) for x �= 0, and absolute minimum value 0 at all
points (0, y) for all y �= 0.

13. f (x, y) = xy

x2 + y2

f1(x, y) = (x2 + y2)y − 2x2y

(x2 + y2)2

= y(y2 − x2)

(x2 + y2)2

f2(x, y) = x(x2 − y2)

(x2 + y2)2
(by symmetry).

Both partial derivatives are zero at all points of the
lines y = ±x for x �= 0. Also f (x, x) = 1

2 , and
f (x,−x) = − 1

2 for x �= 0.
Since x2 ± 2xy + y2 = (x ± y)2 ≥ 0, we have
|xy| ≤ 1

2 (x
2+ y2) for all (x, y) �= (0, 0), so | f (x, y)| ≤ 1

2
on its domain.
Thus, f has absolute maximum value 1

2 at all points
(x, x) for x �= 0, and absolute minimum value −1

2 at
all points (x,−x) for all x �= 0.

14. f (x, y) = 1

1− x + y + x2 + y2

= 1
(

x − 1

2

)2

+
(

y + 1

2

)2

+ 1

2

.

Evidently f has absolute maximum value 2 at

(
1

2
,−1

2

)

.

Since

f1(x, y) = 1− 2x

(1 − x + y + x2 + y2)2

f2(x, y) = − 1+ 2y

(1 − x + y + x2 + y2)2
,

(
1

2
,−1

2

)

is the only critical point of f .

15. f (x, y) =
(

1+ 1

x

)(

1+ 1

y

)(
1

x
+ 1

y

)

= (x + 1)(y + 1)(x + y)

x2y2

f1(x, y) = − (y + 1)(xy + x + 2y)

x3y2

f2(x, y) = − (x + 1)(xy + y + 2x)

x2y3

A = f11(x, y) = 2(y + 1)(xy + x + 3y)

x4y2

B = f12(x, y) = 2(xy + x + y)

x3y3

C = f22(x, y) = 2(x + 1)(xy + y + 3x)

x2y4 .
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For critical points:

y = −1 or xy + x + 2y = 0,

and x = −1 or xy + y + 2x = 0.

If y = −1, then x = −1 or x − 1 = 0.
If x = −1, then y = −1 or y − 1 = 0.
If x �= −1 and y �= −1, then x − y = 0, so x2 + 3x = 0.
Thus x = 0 or x = −3. However, the definition of f
excludes x = 0. Thus, the only critical points are

(1,−1), (−1, 1), (−1,−1), and (−3,−3).

At (1,−1), (−1, 1), and (−1,−1) we have AC = 0 and
B �= 0. Therefore these three points are saddle points of
f .
At (−3,−3), A = C = 4/243 and B = 2/243, so
AC > B2. Therefore f has a local minimum value at
(−3,−3).

16. f (x, y, z) = xyz − x 2 − y2 − z2. For critical points we
have

0 = f1 = yz−2x, 0 = f2 = xz−2y, 0 = f3 = xy−2z.

Thus xyz = 2x2 = 2y2 = 2z2, so x2 = y2 = z2.
Hence x3 = ±2x2, and x = ±2 or 0. Similarly for
y and z. The only critical points are (0, 0, 0), (2, 2, 2),
(−2,−2, 2), (−2, 2,−2), and (2,−2,−2).

Let u = ui+ vj +wk, where u2 + v2 +w2 = 1. Then

Du f (x, y, z) = (yz − 2x)u + (xz − 2y)v + (xy − 2z)w

Du

(

Du f (x, y, z)
)

= (−2u + zv + yw)u

+ (zu − 2v + xw)v + (yu + xv − 2w)w.

At (0, 0, 0), Du

(

Du f (0, 0, 0)
)

= −2u2 − 2v2 − 2w2 < 0

for u �= 0, so f has a local maximum value at (0, 0, 0).

At (2, 2, 2), we have

Du

(

Du f (2, 2, 2)
)

= (−2u + 2v + 2w)u + (2u − 2v + 2w)v

+ (2u + 2v − 2w)w

= −2(u2 + v2 + w2)+ 4(uv + vw + wu)

= −2[(u − v − w)2 − 4vw]
{

< 0 if v = w = 0, u �= 0
> 0 if v = w �= 0, u − v − w = 0.

Thus (2, 2, 2) is a saddle point.

At (2,−2,−2), we have

Du

(

Du f
)

= −2(u2 + v2 +w2 + 2uv + 2uw − 2vw)

= −2[(u + v + w)2 − 4vw]
{

< 0 if v = w = 0, u �= 0
> 0 if v = w �= 0, u + v + w = 0.

Thus (2,−2,−2) is a saddle point. By symmetry, so are
the remaining two critical points.

17. f (x, y, z) = xy + x2z − x2 − y − z2

f1(x, y, z) = y + 2x(z − 1)

f2(x, y, z) = x − 1

f3(x, y, z) = x2 − 2z.

The only critical point is
(

1, 1, 1
2

)

. We have

D = f
(

1+ h, 1+ k, 1
2 + m

)− f
(

1, 1, 1
2

)

= 1+ h + k + hk + 1+ 2h + h2

2
+ (1 + 2h + h2)m

− 1 − 2h − h2 − 1− k − 1

4
−m −m2 −

(

−3

4

)

= h2(2m − 1)+ 2h(k + 2m)− 2m2

2
.

If m = h and k = 0, then D = h2(1+ 2h)

2
> 0 for small

|h|.
If h = k = 0, then D = −m2 < 0 for m �= 0.
Thus f has a saddle point at

(

1, 1, 1
2

)

.

18. f (x, y, z) = 4xyz − x 4 − y4 − z4

D = f (1+ h, 1 + k, 1+m)− f (1, 1, 1)

= 4(1 + h)(1 + k)(1 + m)− (1 + h)4 − (1 + k)4

− (1 +m)4 − 1

= 4(1 + h + k +m + hk + hm + km + hkm)

− (1 + 4h + 6h2 + 4h3 + h4)

− (1 + 4k + 6k2 + 4k3 + k4)

− (1 + 4m + 6m2 + 4m3 + m4)− 1

= 4(hk + hm + km)− 6(h2 + k2 +m2)+ · · · ,
where · · · stands for terms of degree 3 and 4 in the vari-
ables h, k, and m. Completing some squares among the
quadratic terms we obtain

D = −2
[

(h−k)2+(k−m)2+(h−m)2+h2+k2+m2
]

+· · ·

which is negative if |h|, |k| and |m| are small and not
all 0. (This is because the terms of degree 3 and 4 are
smaller in size than the quadratic terms for small values
of the variables.)
Hence f has a local maximum value at (1, 1, 1).

19. f (x, y) = xye−(x2+y4)

f1(x, y) = y(1− 2x2)e−(x2+y4)

f2(x, y) = x(1 − 4y4)e−(x2+y4)
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For critical points y(1 − 2x2) = 0 and x(1 − 4y4) = 0.
The critical points are

(0, 0),

(

± 1√
2
,

1√
2

)

,

(

± 1√
2
,− 1√

2

)

.

We have

f (0, 0) = 0

f

(
1√
2
,

1√
2

)

= f

(

− 1√
2
,− 1√

2

)

= 1

2
e−3/4 > 0

f

(

− 1√
2
,

1√
2

)

= f

(
1√
2
,− 1√

2

)

= −1

2
e−3/4 < 0

Since f (x, y)→ 0 as x2 + y2 → ∞, the maximum and

minimum values of f are
1

2
e−3/4 and −1

2
e−3/4 respec-

tively.

20. f (x, y) = x

1 + x2 + y2

f1(x, y) = 1 + y2 − x2

(1 + x2 + y2)2

f2(x, y) = −2xy

(1 + x2 + y2)2
.

For critical points, x2 − y2 = 1, and xy = 0. The critical
points are (±1, 0). f (±1, 0) = ±1

2 .
Since f (x, y)→ 0 as x2 + y2 → ∞, the maximum and
minimum values of f are 1/2 and −1/2 respectively.

21. f (x, y, z) = xyze−(x2+y2+z2)

f1(x, y, z) = yz(1− 2x2)e−(x2+y2+z2)

f2(x, y, z) = xz(1− 2y2)e−(x2+y2+z2)

f3(x, y, z) = xy(1− 2z2)e−(x2+y2+z2).

Any critical point must satisfy

yz(1− 2x2) = 0 i.e., y = 0 or z = 0 or x = ± 1√
2

xz(1− 2y2) = 0 i.e., x = 0 or z = 0 or y = ± 1√
2

xy(1− 2z2) = 0 i.e., x = 0 or y = 0 or z = ± 1√
2
.

Since f (x, y, z) is positive at some points, negative at
others, and approaches 0 as (x, y, z) recedes to infinity,
f must have maximum and minimum values at critical
points. Since f (x, y, z) = 0 if x = 0 or y = 0 or z = 0,
the maximum and minimum values must occur among
the eight critical points where x = ±1/

√
2, y = ±1/

√
2,

and z = ±1/
√

2. At four of these points, f has the value
1

2
√

2
e−3/2, the maximum value. At the other four f has

the value − 1

2
√

2
e−3/2, the minimum value.

22. f (x, y) = x + 8y + 1

xy
, (x > 0, y > 0)

f1(x, y) = 1 − 1

x2y
= 0 ⇒ x2y = 1

f2(x, y) = 8 − 1

xy2 = 0 ⇒ 8xy2 = 1.

The critical points must satisfy

x

y
= x2y

xy2 = 8,

that is, x = 8y. Also, x2y = 1, so 64y3 = 1.
Thus y = 1/4, and x = 2; the critical point is

(

2, 1
4

)

.
Since f (x, y) → ∞ if x → 0+, y → 0+,
or x2 + y2 → ∞, the critical point must give
a minimum value for f . The minimum value is
f
(

2, 1
4

) = 2+ 2+ 2 = 6.

23. Let the length, width, and height of the box be x , y, and
z, respectively. Then V = xyz. The total surface area of
the bottom and sides is

S = xy + 2xz + 2yz = xy + 2(x + y)
V

xy

= xy + 2V

x
+ 2V

y
,

where x > 0 and y > 0. Since S → ∞ as x → 0+ or
y→ 0+ or x2+ y2→∞, S must have a minimum value
at a critical point in the first quadrant. For CP:

0 = ∂S

∂x
= y − 2V

x2

0 = ∂S

∂y
= x − 2V

y2
.

Thus x2y = 2V = xy2, so that x = y = (2V )1/3 and
z = V/(2V )2/3 = 2−2/3V 1/3.

24. Let the length, width, and height of the box be x , y, and
z, respectively. Then V = xyz. If the top and side walls
cost $k per unit area, then the total cost of materials for
the box is

C = 2kxy + kxy + 2kxz + 2kyz

= k

[

3xy + 2(x + y)
V

xy

]

= k

[

3xy + 2V

x
+ 2V

y

]

,

where x > 0 and y > 0. Since C → ∞ as x → 0+
or y → 0+ or x2 + y2 → ∞, C must have a minimum
value at a critical point in the first quadrant. For CP:

0 = ∂C

∂x
= k

(

3y − 2V

x2

)

0 = ∂C

∂y
= k

(

3x − 2V

y2

)

.
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Thus 3x2 y = 2V = 3xy2, so that x = y = (2V/3)1/3 and
z = V/(2V/3)2/3 = (9V/4)1/3.

25. Let (x, y, z) be the coordinates of the corner of the box
that is in the first octant of space. Thus x, y, z ≥ 0, and

x2

a2
+ y2

b2
+ z2

c2
= 1.

The volume of the box is

V = (2x)(2y)(2z) = 8cxy

√

1− x2

a2 −
y2

b2

for x ≥ 0, y ≥ 0, and (x2/a2)+(y2/b2) ≤ 1. For analysis
it is easier to deal with V 2 than with V :

V 2 = 64c2
(

x2y2 − x4y2

a2 −
x2y4

b2

)

.

Since V = 0 if x = 0 or y = 0 or (x2/a2)+ (y2/b2) = 1,
the maximum value of V2, and hence of V , will occur at
a critical point of V 2 where x > 0 and y > 0. For CP:

0 = ∂V 2

∂x
= 64c2

(

2xy2 − 4x3y2

a2 − 2xy4

b2

)

= 128c2xy2
(

1− 2x2

a2 −
y2

b2

)

0 = ∂V 2

∂y
= 128c2x2y

(

1 − x2

a2
− 2y2

b2

)

.

Hence we must have

2x2

a2 +
y2

b2 = 1 = x2

a2 +
2y2

b2 ,

so that x2/a2 = y2/b2 = 1/3, and x = a/
√

3, y = b/
√

3.
The largest box has volume

V = 8abc

3

√

1 − 1

3
− 1

3
= 8abc

3
√

3
cubic units.

26. Given that a > 0, b > 0, c > 0, and a + b + c = 30, we
want to maximize

P = ab2c3 = (30 − b − c)b2c3 = 30b2c3 − b3c3 − b2c4.

Since P = 0 if b = 0 or c = 0 or b + c = 30 (i.e.,
a = 0), the maximum value of P will occur at a critical
point (b, c) satisfying b > 0, c > 0, and b + c < 30. For
CP:

0 = ∂P

∂b
= 60bc3 − 3b2c3 − 2bc4 = bc3(60 − 3b − 2c)

0 = ∂P

∂c
= 90b2c2 − 3b3c2 − 4b2c3 = b2c2(90 − 3b − 4c).

Hence 9b + 6c = 180 = 6b + 8c, from which we obtain
3b = 2c = 30. The three numbers are b = 10, c = 15,
and a = 30− 10 − 15 = 5.

27. Differentiate the given equation

e2zx−x2 − 3e2zy+y2 = 2

with respect to x and y, regarding z as a function of x
and y:

e2zx−x2
(

2x
∂z

∂x
+ 2z − 2x

)

− 3e2zy+y2
(

2y
∂z

∂x

)

= 0 (∗)

e2zx−x2
(

2x
∂z

∂y

)

− 3e2zy+y2
(

2y
∂z

∂y
+ 2z + 2y

)

= 0 (∗∗)

For a critical point we have
∂z

∂x
= 0 and

∂z

∂y
= 0, and it

follows from the equations above that z = x and z = −y.
Substituting these into the given equation, we get

ez2 − 3e−z2 = 2

(ez2
)2 − 2ez2 − 3 = 0

(ez2 − 3)(ez2 + 1) = 0.

Thus ez2 = 3 or ez2 = −1. Since ez2 = −1 is not possi-
ble, we have ez2 = 3, so z = ±√ln 3.
The critical points are (

√
ln 3,−√ln 3), and

(−√ln 3,
√

ln 3).

28. We will use the second derivative test to classify the two
critical points calculated in Exercise 25. To calculate the
second partials

A = ∂2z

∂x2 , B = ∂2z

∂x∂y
, C = ∂2z

∂y2 ,

we differentiate the expressions (∗), and (∗∗) obtained in
Exercise 25.
Differentiating (∗) with respect to x , we obtain

e2zx−x2
[(

2x
∂z

∂x
+ 2z − 2x

)2

+ 4
∂z

∂x
+ 2x

∂2z

∂x2 − 2

]

− 3e2zy+y2
[(

2y
∂z

∂x

)2

+ 2y
∂2z

∂x2

]

= 0.
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At a critical point,
∂z

∂x
= 0, z = x , z = −y, and

z2 = ln 3, so

3

(

2x
∂2z

∂x2 − 2

)

− 3

3

(

2y
∂2z

∂x2

)

= 0,

A = ∂2z

∂x2 =
6

6x − 2y
.

Differentiating (∗∗) with respect to y gives

e2zx−x2
[(

2x
∂z

∂y

)2

+ 2x
∂2z

∂y2

]

− 3e2zy+y2
[(

2y
∂z

∂y
+ 2z + 2y

)2

+ 4
∂z

∂y
+ 2y

∂2z

∂y2 + 2

]

= 0,

and evaluation at a critical point gives

3

(

2x
∂2z

∂y2

)

− 3

3

(

2y
∂2z

∂y2 + 2

)

= 0,

C = ∂2z

∂y2 =
2

6x − 2y
.

Finally, differentiating (∗) with respect to y gives

e2zx−x2
[(

2x
∂z

∂x
+ 2z − 2x

)(

2x
∂z

∂y

)

+ 2x
∂2z

∂x∂y
+ 2

∂z

∂y

]

− 3e2zy+y2
[(

2y
∂z

∂y
+ 2z + 2y

)(

2y
∂z

∂x

)

+ 2
∂z

∂x
+ 2y

∂2z

∂x∂y

]

= 0,

and, evaluating at a critical point,

(6x − 2y)
∂2z

∂x∂y
= 0,

so that

B = ∂2z

∂x∂y
= 0.

At the critical point (
√

ln 3,−√ln 3) we have

A = 6

8 ln 3
, B = 0, C = 2

8 ln 3
,

so B2 − AC < 0, and f has a local minimum at that
critical point.
At the critical point (−√ln 3,

√
ln 3) we have

A = − 6

8 ln 3
, B = 0, C = − 2

8 ln 3
,

so B2 − AC < 0, and f has a local maximum at that
critical point.

29. f (x, y) = (y − x2)(y − 3x2) = y2 − 4x2y + 3x4

f1(x, y) = −8xy + 12x3 = 4x(3x2 − 2y)

f2(x, y) = 2y − 4x2.

Since f1(0, 0) = f2(0, 0) = 0, therefore (0, 0) is a critical
point of f .
Let g(x) = f (x, kx) = k2x2 − 4kx3 + 3x4. Then

g′(x) = 2k2x − 12kx2 + 12x3

g′′(x) = 2k2 − 24kx + 36x2.

Since g′(0) = 0 and g′′(0) = 2k2 > 0 for k �= 0, g has a
local minimum value at x = 0. Thus f (x, kx) has a local
minimum at x = 0 if k �= 0. Since f (x, 0) = 3x4 and
f (0, y) = y2 both have local minimum values at (0, 0),
f has a local minimum at (0, 0) when restricted to any
straight line through the origin.
However, on the curve y = 2x2 we have

f (x, 2x2) = x2(−x2) = −x4,

which has a local maximum value at the origin. There-
fore f does not have an (unrestricted) local minimum
value at (0, 0).

Note that A = f11(0, 0) = (−8y + 36x2)

∣
∣
∣
∣
(0,0)
= 0

B = f12(0, 0) = −8x

∣
∣
∣
∣
(0,0)
= 0.

Thus AC = B2, and the second derivative test is indeter-
minate at the origin.

30. We have

Q(u, v) = Au2 + 2Buv + Cv2

= A

(

u2 + 2B

A
uv + B2

A2 v
2
)

+
(

C − B2

A

)

v2

= A

(

u + Bv

A

)2

+ AC − B2

A
v2.

If

∣
∣
∣
∣

A B
B C

∣
∣
∣
∣
= AC − B2 > 0, both terms above have

the same sign, positive if A > 0 and negative if A < 0,
ensuring that Q is positive definite or negative definite
respectively, since the two terms cannot both vanish if
(u, v) �= (0, 0). If AC − B2 < 0, Q(u, v) is a difference
of squares, and must be indefinite.

31. Let

Q(u, v, w) = Au2+ Bv2+Cw2+ 2Duv+ 2Euw+ 2Fvw
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and let

K1 = A, K2 =
∣
∣
∣
∣

A D
D B

∣
∣
∣
∣
= AB − D2

K3 =
∣
∣
∣
∣
∣

A D E
D B F
E F C

∣
∣
∣
∣
∣
= ABC + 2DE F − BE 2 − C D2 − AF2.

Suppose that K1 �= 0, K2 �= 0, and K3 �= 0. We have

Q(u, v, w)

= A

[

u2 + 2u
Dv + Ew

A
+
(

Dv + Ew

A

)2
]

+ AB − D2

A
v2 + AC − E2

A
w2 + 2(AF − DE)

A
vw

= A

(

u + Dv + Ew

A

)2

+ AB − D2

A

(

v2 + 2(AF − DE)

AB − D2 vw +
(

AF − DE

AB − D2

)2

w2

)

+
[

AC − E2

A
− (AF − DE)2

A(AB − D2)

]

w2

= A

(

u + Dv + Ew

A

)2

+ AB − D2

A

(

v + AF − DE

AB − D2
w

)2

+ A(ABC − BE2 − AF2 − C D2 + 2DE F)

A(AB − D2)
w2

= K1

(

u + Dv + Ew

A

)2

+ K2

K1

(

v + AF − DE

AB − D2
w

)2

+ K3

K2
w2.

If K1 > 0, K2 > 0, and K3 > 0, then all three squares
the last expression above have positive coefficients, and
so Q is positive definite. If K1 < 0, K2 > 0, and
K3 < 0, then all three squares the last expression above
have negative coefficients, and so Q is negative definite.
In all other cases where none of the Ki = 0, the co-
efficients of the squares are not all of the same sign so
choices of (u, v, w) can be made which make the expres-
sion either positive or negative, and Q is indefinite.

If f has continuous partial derivatives of order two
and (a, b, c) is a critical point of f (x, y, z), let

A = f11(a, b, c),

B = f22(a, b, c),

C = f33(a, b, c),

D = f12(a, b, c),

E = f23(a, b, c),

F = f23(a, b, c).

Then f has a local minimum value at (a, b, c) if K1 > 0,
K2 > 0, and K3 > 0, a local maximum value at (a, b, c)
if K1 < 0, K2 > 0, and K3 < 0, and a saddle point at
(a, b, c) if K1, K2, K3 are all nonzero but satisfy neither
of the above conditions.

Section 13.2 Extreme Values of Functions
Defined on Restricted Domains (page 720)

1. f (x, y) = x − x2 + y2 on
R = {(x, y) : 0 ≤ x ≤ 2, 0 ≤ y ≤ 1}.
For critical points:

0 = f1(x, y) = 1− 2x, 0 = f2(x, y) = 2y.

The only CP is (1/2, 0), which lies on the boundary of
R.
The boundary consists of four segments; we investigate
each.
On x = 0 we have f (x, y) = f (0, y) = y2 for
0 ≤ y ≤ 1, which has minimum value 0 and maximum
value 1.
On y = 0 we have f (x, y) = f (x, 0) = x − x2 = g(x)
for 0 ≤ x ≤ 2. Since g′(x) = 1 − 2x = 0 at x = 1/2,
g(1/2) = 1/4, g(0) = 0, and g(2) = −2, the maxi-
mum and minimum values of f on the boundary segment
y = 0 are 1/4 and −2 respectively.
On x = 2 we have f (x, y) = f (2, y) = −2 + y2 for
0 ≤ y ≤ 1, which has minimum value −2 and maximum
value −1.
On y = 1, f (x, y) = f (x, 1) = x − x2 + 1 = g(x) + 1
for 0 ≤ x ≤ 2. Thus the maximum and minimum values
of f on the boundary segment y = 1 are 5/4 and −1
respectively.
Overall, f has maximum value 5/4 and minimum value
−2 on the rectangle R.

2. f (x, y) = xy − 2x on
R = {(x, y) : −1 ≤ x ≤ 1, 0 ≤ y ≤ 1}.
For critical points:

0 = f1(x, y) = y − 2, 0 = f2(x, y) = x .

The only CP is (0, 2), which lies outside R. Therefore
the maximum and minimum values of f on R lie on one
of the four boundary segments of R.
On x = −1 we have f (−1, y) = 2 − y for 0 ≤ y ≤ 1,
which has maximum value 2 and minimum value 1.
On x = 1 we have f (1, y) = y − 2 for 0 ≤ y ≤ 1, which
has maximum value −1 and minimum value −2.
On y = 0 we have f (x, 0) = −2x for −1 ≤ x ≤ 1,
which has maximum value 2 and minimum value −2.
On y = 1 we have f (x, 1) = −x for −1 ≤ x ≤ 1, which
has maximum value 1 and minimum value −1.
Thus the maximum and minimum values of f on the
rectangle R are 2 and −2 respectively.

3. f (x, y) = xy − y2 on D = {(x, y) : x2 + y2 ≤ 1}.
For critical points:

0 = f1(x, y) = y, 0 = f2(x, y) = x − 2y.
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The only CP is (0, 0), which lies inside D. We have
f (0, 0) = 0.
The boundary of D is the circle x = cos t , y = sin t ,
−π ≤ t ≤ π . On this circle we have

g(t) = f (cos t, sin t) = cos t sin t − sin2 t

= 1

2

[

sin 2t + cos 2t − 1
]

, (−π ≤ t ≤ π).
g(0) = g(2π) = 0

g′(t) = cos 2t − sin 2t.

The critical points of g satisfy cos 2t = sin 2t , that is,

tan 2t = 1, so 2t = ±π
4

or ±5π

4
, and t = ±π

8
or ±5π

8
.

We have

g
(π

8

)

= 1

2
√

2
− 1

2
+ 1

2
√

2
= 1√

2
− 1

2
> 0

g
(

−π
8

)

= − 1

2
√

2
− 1

2
+ 1

2
√

2
= −1

2

g

(
5π

8

)

= − 1

2
√

2
− 1

2
− 1

2
√

2
= − 1√

2
− 1

2

g

(

−5π

8

)

= 1

2
√

2
− 1

2
− 1

2
√

2
= −1

2
.

Thus the maximum and minimum values of f on the

disk D are
1√
2
− 1

2
and − 1√

2
− 1

2
respectively.

4. f (x, y) = x + 2y on the closed disk x2 + y2 ≤ 1. Since
f1 = 1 and f2 = 2, f has no critical points, and the
maximum and minimum values of f , which must exist
because f is continuous on a closed, bounded set in the
plane, must occur at boundary points of the domain, that
is, points of the circle x2 + y2 = 1. This circle can be
parametrized x = cos t , y = sin t , so that

f (x, y) = f (cos t, sin t) = cos t + 2 sin t = g(t), say.

For critical points of g: 0 = g′(t) = − sin t + 2 cos t .
Thus tan t = 2, and x = ±1/

√
5, y = ±2/

√
5. The

critical points are (−1/
√

5,−2/
√

5), where f has value
−√5, and (1/

√
5, 2/
√

5), where f has value
√

5. Thus
the maximum and minimum values of f (x, y) on the
disk are

√
5 and −√5 respectively.

5. f (x, y) = xy − x3y2 on the square S: 0 ≤ x ≤ 1,
0 ≤ y ≤ 1.
f1 = y − 3x2 y2 = y(1− 3x2y),
f2 = x − 2x3 y = x(1 − 2x2 y).
(0, 0) is a critical point. Any other critical points must
satisfy 3x2y = 1 and 2x2y = 1, that is, x2y = 0.
Therefore (0, 0) is the only critical point, and it is on the
boundary of S. We need therefore only consider the val-
ues of f on the boundary of S.
On the sides x = 0 and y = 0 of S, f (x, y) = 0.

On the side x = 1 we have f (1, y) = y − y2 = g(y),
(0 ≤ y ≤ 1). g has maximum value 1/4 at its critical
point y = 1/2.
On the side y = 1 we have f (x, 1) = x − x3 = h(x),
(0 ≤ x ≤ 1). h has critical point given by 1 − 3x2 = 0;
only x = 1/

√
3 is on the side of S.

h

(
1√
3

)

= 2

3
√

3
>

1

4
.

On the square S, f (x, y) has minimum value 0 (on the
sides x = 0 and y = 0 and at the corner (1, 1) of
the square), and maximum value 2/(3

√
3) at the point

(1/
√

3, 1). There is a smaller local maximum value at
(1, 1/2).

6. f (x, y) = xy(1 − x − y) on the triangle T shown in
the figure. Evidently f (x, y) = 0 on all three bound-
ary segements of T , and f (x, y) > 0 inside T . Thus
the minimum value of f on T is 0, and the maximum
value must occur at an interior critical point. For critical
points:

0 = f1(x, y) = y(1−2x−y), 0 = f2(x, y) = x(1−x−2y).

The only critical points are (0, 0), (1, 0) and (0, 1),
which are on the boundary of T , and (1/3, 1/3),
which is inside T . The maximum value of f over T
is f (1/3, 1/3) = 1/27.

y

x

1

x+y=1

T

1

Fig. 13.2.6

7. Since −1 ≤ f (x, y) = sin x cos y ≤ 1 everywhere, and
since f (π/2, 0) = 1, f (3π/2, 0) = −1, and both (π/2, 0)
and (3π/2, 0) belong to the triangle bounded by x = 0,
y = 0 and x + y = 2π , therefore the maximum and
minimum values of f over that triangle must be 1 and
−1 respectively.

8. f (x, y) = sin x sin y sin(x + y) on the triangle T shown
in the figure. Evidently f (x, y) = 0 on the boundary
of T , and f (x, y) > 0 at all points inside T . Thus the
minimum value of f on T is zero, and the maximum
value must occur at an interior critical point. For critical
points inside T we must have

0 = f1(x, y) = cos x sin y sin(x + y)+ sin x sin y cos(x + y)

0 = f2(x, y) = sin x cos y sin(x + y)+ sin x sin y cos(x + y).
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Therefore cos x sin y = cos y sin x , which implies x = y
for points inside T , and

cos x sin x sin 2x + sin2 x cos 2x = 0

2 sin2 x cos2 x + 2 sin2 x cos2 x − sin2 x = 0

4 cos2 x = 1.

Thus cos x = ±1/2, and x = ±π/3. The interior critical
point is (π/3, π/3), where f has the value 3

√
3/8. This

is the maximum value of f on T .
y

x

T

π

z+y=π

π

Fig. 13.2.8

9. T = (x + y)e−x2−y2
on D = {(x, y) : x2 + y2 ≤ 1}.

For critical points:

0 = ∂T

∂x
=
(

1− 2x(x + y)
)

e−x2−y2

0 = ∂T

∂y
=
(

1− 2y(x + y)
)

e−x2−y2
.

The critical points are given by
2x(x + y) = 1 = 2y(x + y), which forces x = y and

4x2 = 1, so x = y = ±1

2
.

The two critical points are

(
1

2
,

1

2

)

and

(

−1

2
,−1

2

)

,

both of which lie inside D. T takes the values ±e−1/2 at
these points.

On the boundary of D, x = cos t , y = sin t , 0 ≤ t ≤ 2π ,
so that

T = (cos t + sin t)e−1 = g(t), (0 ≤ t ≤ 2π).

We have g(0) = g(2π) = e−1. For critical points of g:

0 = g′(t) = (cos t − sin t)e−1,

so tan t = 1 and t = π/4 or t = 5π/4. Observe that
g(π/4) = √2e−1, and g(5π/4) = −√2e−1.
Since e−1/2 >

√
2e−1 (because e > 2), the maximum and

minimum values of T on the disk are ±e−1/2, the values
at the interior critical points.

10. f (x, y) = x − y

1 + x2 + y2 on the half-plane y ≥ 0.

For critical points:

0 = f1(x, y) = 1− x2 + y2 + 2xy

(1 + x2 + y2)2

0 = f2(x, y) = −1− x2 + y2 − 2xy

(1+ x2 + y2)2
.

Any critical points must satisfy 1 − x2 + y2 + 2xy = 0
and −1 − x2 + y2 − 2xy = 0, and hence x2 = y2 and
2xy = −1. Therefore y = −x = ±1/

√
2. The only

critical point in the region y ≥ 0 is (−1/
√

2, 1/
√

2),
where f has the value −1/

√
2.

On the boundary y = 0 we have

f (x, 0) = x

1+ x2 = g(x), (−∞ < x <∞).

Evidently, g(x)→ 0 as x →±∞.

Since g′(x) = 1− x2

(1+ x2)2
, the critical points of g are

x = ±1. We have g(±1) = ±1

2
.

The maximum and minimum values of f on the upper
half-plane y ≥ 0 are 1/2 and −1/

√
2 respectively.

11. Let f (x, y, z) = xy2+yz2 on the ball B: x2+y2+z2 ≤ 1.
First look for interior critical points:

0 = f1 = y2, 0 = f2 = 2xy + z2, 0 = f3 = 2yz.

All points on the x-axis are CPs, and f = 0 at all such
points.

Now consider the boundary sphere z2 = 1 − x2 − y2. On
it

f (x, y, z) = xy2+y(1−x2−y2) = xy2+y−x2y−y3 = g(x, y),

where g is defined for x2+ y2 ≤ 1. Look for interior CPs
of g:

0 = g1 = y2 − 2xy = y(y − 2x)

0 = g2 = 2xy + 1− x2 − 3y2.

Case I: y = 0. Then g = 0 and f = 0.
Case II: y = 2x . Then 4x2 + 1 − x2 − 12x2 = 0, so
9x2 = 1 and x = ±1/3. This case produces critical
points

(
1

3
,

2

3
,±2

3

)

, where f = 4

9
, and

(

−1

3
,−2

3
,±2

3

)

, where f = −4

9
.

Now we must consider the boundary x2 + y2 = 1 of the
domain of g. Here

g(x, y) = xy2 = x(1− x2) = x − x3 = h(x)
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for −1 ≤ x ≤ 1. At the endpoints x = ±1, h = 0, so
g = 0 and f = 0. For CPs of h:

0 = h ′(x) = 1− 3x2,

so x = ±1/
√

3 and y = ±√2/3. The value of h at such
points is ±2/(3

√
3). However 2/(3

√
3) < 4/9, so the

maximum value of f is 4/9, and the minimum value is
−4/9.

12. Let f (x, y, z) = xz + yz on the ball x2 + y2 + z2 ≤ 1.
First look for interior critical points:

0 = f1 = z, 0 = f2 = z, 0 = f3 = x + y.

All points on the line z = 0, x + y = 0 are CPs, and
f = 0 at all such points.

Now consider the boundary sphere x2 + y2 + z2 = 1. On
it

f (x, y, z) = (x + y)z = ±(x + y)
√

1− x2 − y2 = g(x, y),

where g has domain x2 + y2 ≤ 1. On the boundary of its
domain, g is identically 0, although g takes both positive
and negative values at some points inside its domain.
Therefore, we need consider only critical points of g in
x2 + y2 < 1. For such CPs:

0 = g1 =
√

1− x2 − y2 + (x + y)(−2x)

2
√

1− x2 − y2

= 1− x2 − y2 − x2 − xy
√

1− x2 − y2

0 = g2 = 1− x2 − y2 − xy − y2
√

1− x2 − y2
.

Therefore 2x2+ y2+ xy = 1 = x2+2y2+ xy, from which
x2 = y2.
Case I: x = −y. Then g = 0, so f = 0.
Case II: x = y. Then 2x2+ x2+ x2 = 1, so x2 = 1/4 and
x = ±1/2. g (which is really two functions depending
on our choice of the “+” or “−” sign) has four CPs, two
corresponding to x = y = 1/2 and two to x = y = −1/2.
The values of g at these four points are ±1/

√
2.

Since we have considered all points where f can have
extreme values, we conclude that the maximum value
of f on the ball is 1/

√
2 (which occurs at the boundary

points ±(1
2 ,

1
2 ,

1√
2
)) and minimum value −1/

√
2 (which

occurs at the boundary points ±(1
2 ,

1
2 ,− 1√

2
)).

13. f (x, y) = xye−xy on Q = {(x, y) : x ≥ 0, y ≥ 0}.
Since f (x, kx) = kx2e−kx2 → 0 as x →∞ if k > 0, and
f (x, 0) = f (0, y) = 0, we have f (x, y) → 0 as (x, y)
recedes to infinity along any straight line from the origin
lying in the first quadrant Q.

However, f

(

x,
1

x

)

= 1 and f (x, 0) = 0 for all x > 0,

even though the points

(

x,
1

x

)

and (x, 0) become ar-

bitrarily close together as x increases. Thus f does not
have a limit as x2 + y2→∞.
Observe that f (x, y) = re−r = g(r) on the hyperbola
xy = r > 0. Since g(r) → 0 as r approaches 0 or ∞,
and

g′(r) = (1− r)e−r = 0 ⇒ r = 1,

f (x, y) is everywhere on Q less than g(1) = 1/e. Thus
f does have a maximum value on Q.

14. f (x, y) = xy2e−xy on Q = {(x, y) : x ≥ 0, y ≥ 0}.
As in Exercise 13, f (x, 0) = f (0, y) = 0 and
limx→∞ f (x, kx) = k2x3e−x2 = 0.

Also, f (0, y) = 0 while f

(
1

y
, y

)

= y

e
→ ∞ as

y → ∞, so that f has no limit as x2 + y2 → ∞ in Q,
and f has no maximum value on Q.

15. If brewery A produces x litres per month and brewery B
produces y litres per month, then the monthly profits of
the two breweries are given by

P = 2x − 2x2 + y2

106 , Q = 2y − 4y2 + x2

2× 106 .

STRATEGY I. Each brewery selects its production level
to maximize its own profit, and assumes its competitor
does the same.
Then A chooses x to satisfy

0 = ∂P

∂x
= 2− 4x

106
⇒ x = 5× 105.

B chooses y to satisfy

0 = ∂Q

∂y
= 2− 8y

2 × 106 ⇒ y = 5× 105.

The total profit of the two breweries under this strategy is

P + Q = 106 − 3× 25× 1010

106 + 106 − 5× 25 × 1010

2× 106

= $625, 000.

STRATEGY II. The two breweries cooperate to maximize
the total profit

T = P + Q = 2x + 2y − 5x2 + 6y2

2× 106
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by choosing x and y to satisfy

0 = ∂T

∂x
= 2− 10x

2 × 106 ,

0 = ∂T

∂y
= 2− 12y

2 × 106 .

Thus x = 4× 105 and y = 1

3
× 106.

In this case the total monthly profit is

P + Q = 8× 105 + 2

3
× 106 −

80× 1010 + 2

3
× 1012

2× 106

≈ $733, 333.

Observe that the total profit is larger if the two breweries
cooperate and fix prices to maximize it.

16. Let the dimensions be as shown in the figure. Then
2x + y = 100, the length of the fence. For maximum area
A of the enclosure we will have x > 0 and 0 < θ < π/2.
Since h = x cos θ , the area A is

A = xy cos θ + 2× 1

2
(x sin θ)(x cos θ)

= x(100 − 2x) cos θ + x2 sin θ cos θ

= (100x − 2x2) cos θ + 1

2
x2 sin 2θ.

We look for a critical point of A satisfying x > 0 and
0 < θ < π/2.

wall

h
h

x

y

x

θ θ

Fig. 13.2.16

0 = ∂A

∂x
= (100 − 4x) cos θ + x sin 2θ

⇒ cos θ(100− 4x + 2x sin θ) = 0

⇒ 4x − 2x sin θ = 100⇒ x = 50

2− sin θ

0 = ∂A

∂θ
= −(100x − 2x2) sin θ + x2 cos 2θ

⇒ x(1− 2 sin2 θ)+ 2x sin θ − 100 sin θ = 0.

Substituting the first equation into the second we obtain

50

2− sin θ

(

1− 2 sin2 θ + 2 sin θ
)

− 100 sin θ = 0

50(1 − 2 sin2 θ + 2 sin θ) = 100(2 sin θ − sin2 θ)

50 = 100 sin θ.

Thus sin θ = 1/2, and θ = π/6.

Therefore x = 50

2− (1/2) =
100

3
, and

y = 100− 2x = 100

3
.

The maximum area for the enclosure is

A =
(

100

3

)2 √3

2
+
(

100

3

)2 1

2

√
3

2
= 2500√

3

square units. All three segments of the fence will be the
same length, and the bend angles will be 120◦.

17. To maximize Q(x, y) = 2x + 3y subject to

x ≥ 0, y ≥ 0, y ≤ 5, x + 2y ≤ 12, 4x + y ≤ 12.

The constraint region is shown in the figure.
y

x

4x+y=12

y=5

x+2y=12

(
7
4 ,5
)

Fig. 13.2.17

Observe that any point satisfying y ≤ 5 and 4x + y ≤ 12
automatically satisfies x + 2y ≤ 12. Since y = 5 and

4x + y = 12 intersect at

(
7

4
, 5

)

, the maximum value of

Q(x, y) subject to the given constraints is

Q

(
7

4
, 5

)

= 7

2
+ 15 = 37

2
.

18. Minimize F(x, y, z) = 2x + 3y + 4z subject to

x ≥ 0,

x + y ≥ 2,

y ≥ 0,

y + z ≥ 2,

z ≥ 0,

x + z ≥ 2.
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Here the constraint region has vertices (1, 1, 1),
(2, 2, 0), (2, 0, 2), and (0, 2, 2). Since F(1, 1, 1) = 9,
F(2, 2, 0) = 10, F(2, 0, 2) = 12, and F(0, 2, 2) = 14, the
minimum value of F subject to the constraints is 9.

x

y

z

(0,2,2)

(2,2,0)

(1,1,1)

(2,0,2)

x+y=2

x+z=2

x=0

z=0

y+z=2

y=0

Fig. 13.2.18

19. Suppose that x kg of deluxe fabric and y kg of standard
fabric are produced. Then the total revenue is

R = 3x + 2y.

The constraints imposed by raw material availability are

20

100
x + 10

100
y ≤ 2, 000, ⇔ 2x + y ≤ 20, 000

50

100
x + 40

100
y ≤ 6, 000, ⇔ 5x + 4y ≤ 60, 000

30

100
x + 50

100
y ≤ 6, 000, ⇔ 3x + 5y ≤ 60, 000.

The lines 2x + y = 20, 000 and 5x + 4y = 60, 000

intersect at the point

(
20, 000

3
,

20, 000

3

)

, which satisfies

3x + 5y ≤ 60, 000, so lies in the constraint region. We
have

f

(
20, 000

3
,

20, 000

3

)

≈ 33, 333.

The lines 2x + y = 20, 000 and 3x + 5y = 60, 000 in-

tersect at the point

(
40, 000

7
,

60, 000

7

)

, which does not

satisfy 5x + 4y ≤ 60, 000 and so does not lie in the con-
straint region.
The lines 5x + 4y = 60, 000 and 3x + 5y = 60, 000 in-

tersect at the point

(
60, 000

13
,

120, 000

13

)

, which satisfies

2x + y ≤ 20, 000 and so lies in the constraint region. We
have

f

(
60, 000

13
,

120, 000

13

)

≈ 32, 307.

To produce the maximum revenue, the manufacturer
should produce 20, 000/3 ≈ 6, 667 kg of each grade
of fabric.

20. If the developer builds x houses, y duplex units, and z
apartments, his profit will be

P = 40, 000x + 20, 000y + 16, 000z.

The legal constraints imposed require that

x

6
+ y

8
+ z

12
≤ 10, that is 4x + 3y + 2z ≤ 240,

and also
z ≥ x + y.

Evidently we must also have x ≥ 0, y ≥ 0, and z ≥ 0.
The planes 4x + 3y + 2z = 240 and z = x + y intersect
where 6x + 5y = 240. Thus the constraint region has
vertices (0, 0, 0), (40, 0, 40), (0, 48, 48), and (0, 0, 120),
which yield revenues of $0, $2,240,000, $1,728,000, and
$1,920,000 respectively.
For maximum profit, the developer should build 40
houses, no duplex units, and 40 apartments.

Section 13.3 Lagrange Multipliers
(page 728)

1. First we observe that f (x, y) = x3y5 must have a max-
imum value on the line x + y = 8 because if x → −∞
then y → ∞ and if x → ∞ then y → −∞. In either
case f (x, y)→−∞.
Let L = x3y5 + λ(x + y − 8). For CPs of L :

0 = ∂L

∂x
= 3x2y5 + λ

0 = ∂L

∂y
= 5x3y4 + λ

0 = ∂L

∂λ
= x + y − 8.

The first two equations give 3x2y5 = 5x3y4, so that ei-
ther x = 0 or y = 0 or 3y = 5x . If x = 0 or y = 0 then
f (x, y) = 0. If 3y = 5x , then x + 5

3 x = 8, so 8x = 24
and x = 3. Then y = 5, and f (x, y) = 3355 = 84, 375.
This is the maximum value of f on the line.

2. a) Let D be the distance from (3, 0) to the point (x, y)
on the curve y = x2. Then

D2 = (x − 3)2 + y2 = (x − 3)2 + x4.

For a minimum, 0 = d D2

dx
= 2(x − 3) + 4x3. Thus

2x3 + x − 3 = 0. Clearly x = 1 is a root of this
cubic equation. Since

2x3 + x − 3

x − 1
= 2x2 + 2x + 3,
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and 2x2 + 2x + 3 has negative discriminant, x = 1 is
the only critical point. Thus the minimum distance
from (3, 0) to y = x2 is D =

√

(−2)2 + 14 = √5
units.

b) We want to minimize D2 = (x − 3)2 + y2

subject to the constraint y = x2. Let
L = (x − 3)2 + y2 + λ(x2 − y). For critical points of
L we want

0 = ∂L

∂x
= 2(x − 3)+ 2λx

⇒ (1 + λ)x − 3 = 0 (A)

0 = ∂L

∂y
= 2y − λ (B)

0 = ∂L

∂λ
= x2 − y. (C)

Eliminating λ from (A) and (B), we get
x + 2xy − 3 = 0.
Substituting (C) then leads to 2x3 + x − 3 = 0, or
(x − 1)(2x2 + 2x + 3) = 0. The only real solution
is x = 1, so the point on y = x2 closest to (3, 0) is
(1, 1).
Thus the minimum distance from (3, 0) to y = x2 is
D = √(1 − 3)2 + 12 = √5 units.

3. Let (X, Y, Z) be the point on the plane x + 2y + 2z = 3
closest to (0, 0, 0).

a) The vector ∇(x + 2y + 2z) = i + 2j + 2k is perpen-
dicular to the plane, so must be parallel to the vector
X i + Y j+ Zk from the origin to (X, Y, Z). Thus

X i+ Y j + Zk = t (i + 2j + 2k),

for some scalar t . Thus X = t , Y = 2t , Z = 2t , and,
since (X, Y, Z) lies on the plane,

3 = X + 2Y + 2Z = t + 4t + 4t = 9t.

Thus t = 1
3 , and we have X = 1

3 and Y = Z = 2
3 .

The minimum distance from the origin to the plane
is therefore 1

3

√
1+ 4+ 4 = 1 unit.

b) (X, Y, Z) must minimize the square of the distance
from the origin to (x, y, z) on the plane. Thus it is a
critical point of S = x2 + y2 + z2. Since
x + 2y + 2z = 3, we have x = 3− 2(y + z), and

S = S(y, z) =
(

3 − 2(y + z)
)2 + y2 + z2.

The critical points of this function are given by

0 = ∂S

∂y
= −4

(

3− 2(y + z)
)

+ 2y = −12+ 10y + 8z

0 = ∂S

∂z
= −4

(

3− 2(y + z)
)

+ 2z = −12+ 8y + 10z.

Therefore Y = Z = 2
3 and X = 1

3 , and the distance
is 1 unit as in part (a).

c) The point (X, Y, Z) must be a critical point of the
Lagrangian function

L = x2 + y2 + z2 + λ(x + 2y + 2z − 3).

To find these critical points we have

0 = ∂L

∂x
= 2x + λ

0 = ∂L

∂y
= 2y + 2λ

0 = ∂L

∂z
= 2z + 2λ

0 = ∂L

∂λ
= x + 2y + 2z − 3.

The first three equations yield y = z = −λ,
x = −λ/2. Substituting these into the fourth equa-
tion we get λ = − 2

3 , so that the critical point is once
again

( 1
3 ,

2
3 ,

2
3

)

, whose distance from the origin is 1
unit.

4. Let f (x, y, z) = x + y − z, and define the Lagrangian

L = x + y − z + λ(x2 + y2 + z2 − 1).

Solutions to the constrained problem will be found
among the critical points of L . To find these we have

0 = ∂L

∂x
= 1+ 2λx,

0 = ∂L

∂y
= 1+ 2λy,

0 = ∂L

∂z
= −1+ 2λz,

0 = ∂L

∂λ
= x2 + y2 + z2 − 1.

Therefore 2λx = 2λy = −2λz. Either λ = 0 or
x = y = −z. λ = 0 is not possible. (It implies 0 = 1
from the first equation.) From x = y = −z we obtain

1 = x2 + y2 + z2 = 3x2, so x = ± 1√
3

. L has critical

points at

(
1√
3
,

1√
3
,− 1√

3

)

and

(
1

−√3
,− 1√

3
,

1√
3

)

.

At the first f = √3, which is the maximum value of
f on the sphere; at the second f = −√3, which is the
minimum value.

5. The distance D from (2, 1,−2) to (x, y, z) is given by

D2 = (x − 2)2 + (y − 1)2 + (z + 2)2.
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We can extremize D by extremizing D2. If (x, y, z) lies
on the sphere x2+ y2+z2 = 1, we should look for critical
points of the Lagrangian

L = (x − 2)2 + (y − 1)2 + (z + 2)2 + λ(x2 + y2+ z2 − 1).

Thus

0 = ∂L

∂x
= 2(x − 2)+ 2λx ⇔ x = 2

1+ λ
0 = ∂L

∂y
= 2(y − 1)+ 2λy ⇔ y = 1

1 + λ
0 = ∂L

∂z
= 2(z + 2)+ 2λz ⇔ z = −2

1 + λ
0 = ∂L

∂λ
= x2 + y2 + z2 − 1.

Substituting the solutions of the first three equations into
the fourth, we obtain

1

(1 + λ)2 (4 + 1+ 4) = 1

(1 + λ)2 = 9

1 + λ = ±3.

Thus we must consider the two points P = ( 2
3 ,

1
3 ,− 2

3

)

,
and Q = (− 2

3 ,− 1
3 ,

2
3

)

for giving extreme values for D.
At P, D = 2. At Q, D = 4. Thus the greatest and least
distances from (2, 1,−2) to the sphere x2 + y2 + z2 = 1
are 4 units and 2 units respectively.

6. Let L = x2 + y2 + z2 + λ(xyz2 − 2). For critical points:

0 = ∂L

∂x
= 2x + λyz2 ⇔ −λxyz2 = 2x2

0 = ∂L

∂y
= 2y + λxz2 ⇔ −λxyz2 = 2y2

0 = ∂L

∂z
= 2z + 2λxyz ⇔ −λxyz2 = z2

0 = ∂L

∂λ
= xyz2 − 2.

From the first three equations, x2 = y2 and z2 = 2x2.
The fourth equation then gives x2y24z4 = 4, or x8 = 1.
Thus x2 = y2 = 1 and z2 = 2.
The shortest distance from the origin to the surface
xyz2 = 2 is √

1+ 1+ 2 = 2 units.

7. We want to minimize V = 4πabc

3
subject to the con-

straint
1

a2 +
4

b2 +
1

c2 = 1. Note that abc cannot be zero.

Let

L = 4πabc

3
+ λ

(
1

a2 +
4

b2 +
1

c2 − 1

)

.

For critical points of L :

0 = ∂L

∂a
= 4πbc

3
− 2λ

a3 ⇔ 2πabc

3
= λ

a2

0 = ∂L

∂b
= 4πac

3
− 8λ

b3
⇔ 2πabc

3
= 4λ

b2

0 = ∂L

∂c
= 4πab

3
− 2λ

c3 ⇔ 2πabc

3
= λ

c2

0 = ∂L

∂λ
= 1

a2 +
4

b2 +
1

c2 − 1.

abc �= 0 implies λ �= 0, and so we must have

1

a2
= 4

b2
= 1

c2
= 1

3
,

so a = ±√3, b = ±2
√

3, and c = ±√3.

8. Let L = x2 + y2 + λ(3x2 + 2xy + 3y2 − 16). We have

0 = ∂L

∂x
= 2x + 6λx + 2λy (A)

0 = ∂L

∂y
= 2y + 6λy + 2λx . (B)

Multiplying (A) by y and (B) by x and subtracting we
get

2λ(y2 − x2) = 0.

Thus, either λ = 0, or y = x , or y = −x .
λ = 0 is not possible, since it implies x = 0 and y = 0,
and the point (0, 0) does not lie on the given ellipse.
If y = x , then 8x2 = 16, so x = y = ±√2.
If y = −x , then 4x2 = 16, so x = −y = ±2.
The points on the ellipse nearest the origin are (

√
2,
√

2)
and (−√2,−√2). The points farthest from the origin are
(2,−2) and (−2, 2). The major axis of the ellipse lies
along y = −x and has length 4

√
2. The minor axis lies

along y = x and has length 4.

9. Let L = xyz + λ(x2 + y2 + z2 − 12). For CPs of L :

0 = ∂L

∂x
= yz + 2λx (A)

0 = ∂L

∂y
= xz + 2λy (B)

0 = ∂L

∂z
= xy + 2λz (C)

0 = ∂L

∂λ
= x2 + y2 + z2 − 12. (D)

Multiplying equations (A), (B), and (C) by x , y, and z,
respectively, and subtracting in pairs, we conclude that
λx2 = λy2 = λz2, so that either λ = 0 or x2 = y2 = z2.
If λ = 0, then (A) implies that yz = 0, so xyz = 0. If
x2 = y2 = z2, then (D) gives 3x2 = 12, so x2 = 4.
We obtain eight points (x, y, z) where each coordinate is
either 2 or −2. At four of these points xyz =8, which is
the maximum value of xyz on the sphere. At the other
four xyz = −8, which is the minimum value.
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10. Let L = x + 2y − 3z + λ(x2 + 4y2 + 9z2 − 108). For CPs
of L :

0 = ∂L

∂x
= 1+ 2λx (A)

0 = ∂L

∂y
= 2+ 8λy (B)

0 = ∂L

∂z
= −3+ 18λz (C)

0 = ∂L

∂λ
= x2 + 4y2 + 9z2 − 108. (D)

From (A), (B), and (C),

λ = − 1

2x
= − 2

8y
= 3

18z
,

so x = 2y = −3z. From (D):

x2 + 4

(
x2

4

)

+ 9

(
x2

9

)

= 108,

so x2 = 36, and x = ±6. There are two CPs: (6, 3,−2)
and (−6,−3, 2). At the first, x + 2y − 3z = 18, the
maximum value, and at the second, x + 2y − 3z = −18,
the minimum value.

11. Let L = x + λ(x + y − z)+ µ(x2 + 2y2 + 2z2 − 8). For
critical points of L :

0 = ∂L

∂x
= 1 + λ+ 2µx (A)

0 = ∂L

∂y
= λ+ 4µy (B)

0 = ∂L

∂z
= −λ+ 4µz (C)

0 = ∂L

∂λ
= x + y − z (D)

0 = ∂L

∂µ
= x2 + 2y2 + 2z2 − 8. (E)

From (B) and (C) we have µ(y + z) = 0. Thus µ = 0 or
y + z = 0.

CASE I. µ = 0. Then λ = 0 by (B), and 1 = 0 by (A),
so this case is not possible.

CASE II. y + z = 0. Then z = −y and, by (D),
x = −2y. Therefore, by (E), 4y2+ 2y2+ 2y2 = 8, and so
y = ±1. From this case we obtain two points: (2,−1, 1)
and (−2, 1,−1).
The function f (x, y, z) = x has maximum value 2
and minimum value −2 when restricted to the curve
x + y = z, x2 + 2y2 + 2z2 = 8.

12. Let L = x2 + y2 + z2 + λ(x2 + y2 − z2)+ µ(x − 2z − 3).
For critical points of L :

0 = ∂L

∂x
= 2x(1+ λ)+ µ (A)

0 = ∂L

∂y
= 2y(1+ λ) (B)

0 = ∂L

∂z
= 2z(1− λ)− 2µ (C)

0 = ∂L

∂λ
= x2 + y2 − z2 (D)

0 = ∂L

∂µ
= x − 2z − 3. (E)

From (B), either y = 0 or λ = −1.

CASE I. y = 0. Then (D) implies x = ±z.
If x = z then (E) implies z = −3, so we get the point
(−3, 0,−3).
If x = −z then (E) implies z = −1, so we get the point
(1, 0,−1).

CASE II. λ = −1. Then (A) implies µ = 0 and (C)
implies z = 0. By (D), x = y = 0, and this contradicts
(E), so this case is not possible.

If f (x, y, z) = x2 + y2 + z2, then f (−3, 0,−3) = 18
is the maximum value of f on the ellipse x2 + y2 = z2,
x − 2z = 3, and f (1, 0,−1) = 2 is the minimum value.

13. Let L = 4− z + λ(x2 + y2 − 8)+ µ(x + y + z − 1). For
critical points of L :

0 = ∂L

∂x
= 2λx + µ (A)

0 = ∂L

∂y
= 2λy + µ (B)

0 = ∂L

∂z
= −1+ µ (C)

0 = ∂L

∂λ
= x2 + y2 − 8 (D)

0 = ∂L

∂µ
= x + y + z − 1. (E)

From (C), µ = 1. From (A) and (B), λ(x − y) = 0, so
either λ = 0 or x = y.

CASE I. λ = 0. Then µ = 0 by (A), and this contradicts
(C), so this case is not possible.

CASE II. x = y. Then x = y = ±2 by (D).
If x = y = 2, then z = −3 by (E).
If x = y = −2, then z = 5 by (E).
Thus we have two points, (2, 2,−3) and (−2,−2, 5),
where f (x, y, z) = 4 − z takes the values 7 (maximum),
and −1 (minimum) respectively.

14. The max and min values of f (x, y, z) = x + y2z subject
to the constraints y2 + z2 = 2 and z = x will be found
among the critical points of

L = x + y2z + λ(y2 + z2 − 2)+ µ(z − x).
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Thus

0 = ∂L

∂x
= 1− µ = 0,

0 = ∂L

∂y
= 2yz + 2λy = 0,

0 = ∂L

∂z
= y2 + 2λz + µ = 0,

0 = ∂L

∂λ
= y2 + z2 − 2,

0 = ∂L

∂µ
= z − x .

From the first equation µ = 1. From the second, either
y = 0 or z = −λ.
If y = 0 then z2 = 2, z = x , so critical points are
(
√

2, 0,
√

2) and (−√2, 0,−√2). f has the values ±√2
at these points. If z = −λ then y2 − 2z2 + 1 = 0. Thus
2z2−1 = 2− z2, or z2 = 1, z = ±1. This leads to critical
points (1,±1, 1) and (−1,±1,−1) where f has values
±2. The maximum value of f subject to the constraints
is 2; the minimum value is −2.

15. Let

L = (x − a)2 + (y − b)2 + (z − c)2 + λ(x − y)+ µ(y − z)

+ σ(a + b)+ τ(c − 2).

For critical points of L , we have

0 = ∂L

∂x
= 2(x − a)+ λ (A)

0 = ∂L

∂y
= 2(y − b)− λ+ µ (B)

0 = ∂L

∂z
= 2(z − c)− µ (C)

0 = ∂L

∂a
= −2(x − a)+ σ (D)

0 = ∂L

∂b
= −2(y − b)+ σ (E)

0 = ∂L

∂c
= −2(z − c)+ τ (F)

0 = ∂L

∂λ
= x − y (G)

0 = ∂L

∂µ
= y − z (H)

0 = ∂L

∂σ
= a + b (I )

0 = ∂L

∂τ
= c − 2. (J )

Subtracting (D) and (E) we get x − y = a − b. From (G),
x = y, and therefore a = b. From (I), a = b = 0, and
from (J), c = 2.
Adding (A), (B) and (C), we get x+ y+z = a+b+c = 2.
From (G) and (H), x = y = z = 2/3.
The minimum distance between the two lines is
√
(

2

3
− 0

)2

+
(

2

3
− 0

)2

+
(

2

3
− 2

)2

=
√

24

9
= 2
√

6

3
units.

16. Let L = x1 + x2 + · · · + xn + λ(x2
1 + x2

2 + · · · + x2
n − 1).

For critical points of L we have

0 = ∂L

∂x1
= 1+ 2λx1, . . . 0 = ∂L

∂xn
= 1+ 2λxn

0 = ∂L

∂λ
= x2

1 + x2
2 + · · · + x2

n − 1.

The first n equations give

x1 = x2 = · · · = xn = − 1

2λ
,

and the final equation gives

1

4λ2 +
1

4λ2 + · · · +
1

4λ2 = 1,

so that 4λ2 = n, and λ = ±√n/2.
The maximum and minimum values of x1 + x2 + · · · + xn

subject to x2
1 + · · · + x2

n = 1 are ± n

2λ
, that is,

√
n and

−√n respectively.

17. Let L = x1 + 2x2 + · · · + nxn + λ(x2
1 + x2

2 + · · · + x2
n − 1).

For critical points of L we have

0 = ∂L

∂x1
= 1+ 2λx1 ⇔ x1 = − 1

2λ

0 = ∂L

∂x2
= 2+ 2λx2 ⇔ x2 = − 2

2λ

0 = ∂L

∂x3
= 3+ 2λx3 ⇔ x3 = − 3

2λ
...

0 = ∂L

∂xn
= n + 2λxn ⇔ xn = − n

2λ

0 = ∂L

∂λ
= x2

1 + x2
2 + · · · + x2

n − 1.

Thus

1

4λ2
+ 4

4λ2
+ 9

4λ2
+ · · · + n2

4λ2
= 1

4λ2 = 1+ 4+ 9+ · · · + n2 = n(n + 1)(2n + 1)

6

λ = ±1

2

√

n(n + 1)(2n + 1)

6
.
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Thus the maximum and minimum values of
x1 + 2x2 + · · · + nxn over the hypersphere
x2

1 + x2
2 + · · · + x2

n = 1 are

±
√

6

n(n + 1)(2n + 1)
(12 + 22 + 32 + · · · + n2)

= ±
√

n(n + 1)(2n + 1)

6
.

18. Let the width, depth, and height of the box be x , y and z
respectively. We want to minimize the surface area

S = xy + 2xz + 2yz

subject to the constraint that xyz = V , where V is a
given positive volume. Let

L = xy + 2xz + 2yz + λ(xyz − V ).

For critical points of L ,

0 = ∂L

∂x
= y + 2z + λyz ⇔ −λxyz = xy + 2xz

0 = ∂L

∂y
= x + 2z + λxz ⇔ −λxyz = xy + 2yz

0 = ∂L

∂z
= 2x + 2y + λxy ⇔ −λxyz = 2xz + 2yz

0 = ∂L

∂λ
= xyz − V .

From the first three equations, xy = 2xz = 2yz. Since
x , y, and z are all necessarily positive, we must therefore
have x = y = 2z. Thus the most economical box with no
top has width and depth equal to twice the height.

19. We want to maximize V = xyz subject to 4x+2y+z = 2.
Let

L = xyz + λ(4x + 2y + z − 2).

For critical points of L ,

0 = ∂L

∂x
= yz + 4λ ⇔ xyz + 4λx = 0

0 = ∂L

∂y
= xz + 2λ ⇔ xyz + 2λy = 0

0 = ∂L

∂z
= xy + λ ⇔ xyz + λz = 0

0 = ∂L

∂λ
= 4x + 2y + z − 2 = 0.

The first three equations imply that z = 2y = 4x (since
we cannot have λ = 0 if V is positive). The fourth equa-
tion then implies that 12x = 2. Hence x = 1/6, y = 1/3,
and z = 2/3.
The largest box has volume

V = 1

6
× 1

3
× 2

3
= 1

27
cubic units.

20. We want to maximize xyz subject to xy+2yz+3xz = 18.
Let

L = xyz + λ(xy + 2yz + 3xz − 18).

For critical points of L ,

0 = ∂L

∂x
= yz + λ(y + 3z) ⇔ −xyz = λ(xy + 3xz)

0 = ∂L

∂y
= xz + λ(x + 2z) ⇔ −xyz = λ(xy + 2yz)

0 = ∂L

∂z
= xy + λ(2y + 3x) ⇔ −xyz = λ(2yz + 3xz)

0 = ∂L

∂λ
= xy + 2yz + 3xz − 18.

From the first three equations xy = 2yz = 3xz. From the
fourth equation, the sum of these expressions is 18. Thus

xy = 2yz = 3xz = 6.

Thus the maximum volume of the box is

V = xyz = √(xy)(yz)(xz) = √6× 3× 2 = 6 cubic units.

21. Let the width, depth, and height of the box be x , y, and
z as shown in the figure. Let the cost per unit area of the
back and sides be $k. Then the cost per unit area of the
front and bottom is $5k. We want to minimize

C = 5k(xz + xy)+ k(2yz + xz)

subject to the constraint xyz = V (constant). Let

L = k(5xy + 6xz + 2yz)+ λ(xyz − V ).

For critical points of L ,

0 = ∂L

∂x
= 5ky + 6kz + λyz ⇔ −λxyz = 5kxy + 6kxz

0 = ∂L

∂y
= 5kx + 2kz + λxz ⇔ −λxyz = 5kxy + 2kyz

0 = ∂L

∂z
= 6kx + 2ky + λxy ⇔ −λxyz = 6kxz + 2kyz

0 = ∂L

∂λ
= xyz − V .

From the first three of these equations we obtain

5xy = 6xz = 2yz. Thus y = 3x and z = 5x

2
. From the

fourth equation, V = xyz = 15

2
x3.

The largest box has width

(
2V

15

)1/3

, depth 3

(
2V

15

)1/3

,

and height
5

2

(
2V

15

)1/3

.
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z

yx

bottom

front side

side

back

Fig. 13.3.21

22. f (x, y, z) = xy+ z2 on B = {(x, y, z) : x2+ y2+ z2 ≤ 1}.
For critical points of f ,

0 = f1(x, y, z) = y, 0 = f2(x, y, z) = x,

0 = f3(x, y, z) = 2z.

Thus the only critical point is the interior point (0, 0, 0),
where f has the value 0, evidently neither a maximum
nor a minimum. The maximum and minimum must
therefore occur on the boundary of B, that is, on the
sphere
x2 + y2 + z2 = 1. Let

L = xy + z2 + λ(x2 + y2 + z2 − 1).

For critical points of L ,

0 = ∂L

∂x
= y + 2λx (A)

0 = ∂L

∂y
= x + 2λy (B)

0 = ∂L

∂z
= 2z(1+ λ) (C)

0 = ∂L

∂λ
= x2 + y2 + z2 − 1. (D)

From (C) either z = 0 or λ = −1.

CASE I. z = 0. (A) and (B) imply that y2 = x2 and (D)
then implies that x2 = y2 = 1/2. At the four points

(
1√
2
,± 1√

2
, 0

)

and

(

− 1√
2
,± 1√

2
, 0

)

f takes the values
1

2
and −1

2
.

CASE II. λ = −1. (A) and (B) imply that x = y = 0,
and so by (D), z = ±1. f has the value 1 at the points
(0, 0,±1).
Thus the maximum and minimum values of f on B are
1 and −1/2 respectively.

23. In this problem we do the boundary analysis for Exercise
22 using the suggested parametrization of the sphere
x2 + y2 + z2 = 1. We have

f (x, y, z) = xy + z2

= sin2 φ sin θ cos θ + cos2 φ

= 1

2
sin2 φ sin 2θ + cos2 φ

= g(φ, θ)

for 0 ≤ φ ≤ π and 0 ≤ θ ≤ 2π . For critical points of g,

0 = g1(φ, θ) = sinφ cosφ sin 2θ − 2 sinφ cosφ

= sinφ cosφ(sin 2θ − 2)

0 = g2(φ, θ) = sin2 φ cos 2θ.

The first of these equations implies that either sinφ = 0
or cosφ = 0.
If sinφ = 0, then both equations are satisfied. Since
cosφ = ±1 in this case, we have g(φ, θ) = 1.
If cosφ = 0, then sinφ = ±1, and the second equation

requires cos 2θ = 0. Thus θ = ±π
4

or ±3π

4
. In this case

g(φ, θ) = ±1

2
.

Again we find that f (x, y, z) = xy + z2 has maximum

value 1 and minimum value −1

2
when restricted to the

surface of the ball B. These are the maximum and mini-
mum values for the whole ball as noted in Exercise 22.

24. Let L = sin
x

2
sin

y

2
sin

z

2
+ λ(x + y + z − π). Then

0 = ∂L

∂x
= 1

2
cos

x

2
sin

y

2
sin

z

2
+ λ (A)

0 = ∂L

∂y
= 1

2
sin

x

2
cos

y

2
sin

z

2
+ λ (B)

0 = ∂L

∂z
= 1

2
sin

x

2
sin

y

2
cos

z

2
+ λ. (C)

For any triangle we must have 0 ≤ x ≤ π , 0 ≤ y ≤ π
and 0 ≤ z ≤ π . Also

P = sin
x

2
sin

y

2
sin

z

2

is 0 if any of x , y or z is 0 or π . Subtracting equations
(A) and (B) gives

1

2
sin

z

2
sin

x − y

2
= 0.

It follows that we must have x = y; all other possibilities
lead to a zero value for P. Similarly, y = z. Thus the
triangle for which P is maximum must be equilateral:
x = y = z = π/3. Since sin(π/3) = 1/2, the maximum
value of P is 1/8.

502



INSTRUCTOR’S SOLUTIONS MANUAL SECTION 13.4 (PAGE 734)

25. We are given that g2(a, b) �= 0, and therefore that the
equation g(x, y) = C has a solution of the form y = h(x)

valid near (a, b). Since g
(

x, h(x)
)

= C holds identically

for x near a, we must have

0 =
(

d

dx
g
(

x, h(x)
))
∣
∣
∣
∣
x=a
= g1(a, b)+ g2(a, b)h

′(a).

If f (x, y), subject to the constraint g(x, y) = C , has an

extreme value at (a, b), then F(x) = f
(

x, h(x)
)

has an

extreme value at x = a, so

0 = F ′(a) = f1(a, b)+ f2(a, b)h
′(a).

Together these equations imply that
g1(a, b) f2(a, b) = g2(a, b) f1(a, b), and therefore that

f1(a, b)

g1(a, b)
= f2(a, b)

g2(a, b)
= −λ (say).

(Since g2(a, b) �= 0, therefore, if g1(a, b) = 0, then
f1(a, b) = 0 also.) It follows that

0 = f1(a, b)+ λg1(a, b), 0 = f2(a, b)+ λg2(a, b),

so (a, b) is a critical point of L = f (x, y)+ λg(x, y).

26. As can be seen in the figure, the minimum distance
from (0,−1) to points of the semicircle y = √1− x2

is
√

2, the closest points to (0,−1) on the semicircle
being (±1, 0). These points will not be found by the
method of Lagrange multipliers because the level curve
f (x, y) = 2 of the function f giving the square of the
distance from (x, y) to (0,−1) is not tangent to the semi-
circle at (±1, 0). This could only have happened because
(±1, 0) are endpoints of the semicircle.

y

x

y=
√

1−x2

(1,0)

(0,−1)

(−1,0)

Fig. 13.3.26

27. If f (x, y) has an extreme value on g(x, y) = 0 at a point
(x0, y0) where ∇g �= 0, and if ∇ f exists at that point,
then ∇ f (x0, y0) must be parallel to ∇g(x0, y0);

∇ f (x0, y0)+ λ∇g(x0, y0) = 0

as shown in the text. The argument given there holds
whether or not ∇ f (x0, y0) is 0. However, if

∇ f (x0, y0) = 0

then we will have λ = 0.

Section 13.4 The Method of Least Squares
(page 734)

1. If the power plant is located at (x, y), then x and y
should minimize (and hence be a critical point of)

S =
n
∑

i=1

[

(x − xi )
2 + (y − y2)

2
]

.

Thus we must have

0 = ∂S

∂x
= 2

n∑

i=1

(x − xi ) = 2

(

nx −
n∑

i=1

xi

)

0 = ∂S

∂y
= 2

n
∑

i=1

(y − yi ) = 2

(

ny −
n
∑

i=1

yi

)

.

Thus x = 1

n

n∑

i=1

xi = x̄ , and y = 1

n

n∑

i=1

yi = ȳ.

Place the power plant at the position whose coordinates
are the averages of the coordinates of the machines.

2. We want to minimize S =∑n
i=1(ax2

i − yi)
2. Thus

0 = dS

da
=

n
∑

i=1

2(ax2
i − yi )x2

i

= 2
n
∑

i=1

(ax4
i − x2

i yi ),

and a = (∑n
i=1 x2

i yi
)
/
(∑n

i=1 x4
i

)

.

3. We minimize S =∑n
i=1(aexi − yi )

2. Thus

0 = dS

da
= 2

n
∑

i=1

(aexi − yi )e
xi
,

and a = (∑n
i=1 yiexi

)
/
(∑n

i=1 e2xi
)

.

4. We choose a, b, and c to minimize

S =
n
∑

i=1

(

axi + byi + c − zi

)2
.

503



SECTION 13.4 (PAGE 734) R. A. ADAMS: CALCULUS

Thus

0 = ∂S

∂a
= 2

n
∑

i=1

(axi + byi + c − zi )xi

0 = ∂S

∂b
= 2

n∑

i=1

(axi + byi + c − zi )yi

0 = ∂S

∂c
= 2

n
∑

i=1

(axi + byi + c − zi ).

Let A = ∑
x2

i , B = ∑
xi yi , C = ∑

xi , D = ∑
y2

i ,
E =∑ yi , F = ∑ xi zi , G = ∑ yi zi , and H =∑ zi . In
terms of these quantities the above equations become

Aa + Bb + Cc = F
Ba + Db + Ec = G
Ca + Eb + nc = H.

By Cramer’s Rule (Theorem 5 of Section 1.6) the solu-
tion is

a = 1

�

∣
∣
∣
∣
∣

F B C
G D E
H E n

∣
∣
∣
∣
∣
,

c = 1

�

∣
∣
∣
∣
∣

A B F
B D G
C E H

∣
∣
∣
∣
∣
,

b = 1

�

∣
∣
∣
∣
∣

A F C
B G E
C H n

∣
∣
∣
∣
∣
,

where � =
∣
∣
∣
∣
∣

A B C
B D E
C E n

∣
∣
∣
∣
∣
.

5. If x = (x1, . . . , xn), y = (y1, . . . , yn), z = (z1, . . . , zn),
w = (1, . . . , 1), and p = ax+by+ cw, we want to choose
a, b, and c so that p is the vector projection of z onto
the subspace of �3 spanned by x, y and w. Thus p − z
must be perpendicular to each of x, y, and w:

(p − z) • x = 0, (p − z) • y = 0, (p − z) • w = 0.

When written in terms of the components of the vectors
involved, these three equations are the same as the equa-
tions for a, b, and c encountered in Exercise 4, and so
they have the same solution as given for that exercise.

6. The relationship y = p + qx2 is linear in p and q, so we
choose p and q to minimize

S =
n
∑

i=1

(p + qx2
i − yi )

2.

Thus

0 = ∂S

∂p
= 2

n
∑

i=1

(p + qx2
i − yi )

0 = ∂S

∂q
= 2

n
∑

i=1

(p + qx2
i − yi )x

2
i ,

that is,

np + (∑
x2

i

)

q = ∑
yi

(∑
x2

i

)

p + (∑
x4

i

)

q = ∑
x2

i yi ,

so

p =
(∑

yi
) (∑

x4
i

)− (∑ x2
i yi
) (∑

x2
i

)

n
(∑

x4
i

)− (∑ x2
i

)2

q = n
(∑

x2
i yi
)− (∑ yi

) (∑
x2

i

)

n
(∑

x4
i

)− (∑ x2
i

)2 .

This is the result obtained by direct linear regression.
(No transformation of variables was necessary.)

7. We transform y = peqx into the form ln y = ln p + qx ,
which is linear in ln p and q. We let ηi = ln yi and use
the regression line η = a + bx obtained from the data
(xi , ηi ), with b = q and a = ln p.
Using the formulas for a and b obtained in the text, we
have

ln p = a = n
(∑

xi ln yi
)− (∑ xi

) (∑
ln yi

)

n
(∑

x2
i

)− (∑ xi
)2

q = b =
(∑

x2
i

) (∑
ln yi

)− (∑ xi
) (∑

xi ln yi
)

n
(∑

x2
i

)− (∑ xi
)2

p = ea.

These values of p and q are not the same values that
minimize the expression

S =
n
∑

i=1

(yi − peqxi )2.

8. We transform y = ln(p + qx) into the form ey = p + qx ,
which is linear in p and q. We let ηi = eyi and use the
regression line η = ax+b obtained from the data (xi , ηi ),
with a = q and b = p.
Using the formulas for a and b obtained in the text, we
have

q = a = n
(∑

xi eyi
)− (∑ xi

) (∑
eyi
)

n
(∑

x2
i

)− (∑ xi
)2

p = b =
(∑

x2
i

) (∑
eyi
)− (∑ xi

) (∑
xi eyi

)

n
(∑

x2
i

)− (∑ xi
)2

.

These values of p and q are not the same values that
minimize the expression

S =
n
∑

i=1

(

ln(p + qxi )− yi

)2
.

9. The relationship y = px + qx2 is linear in p and q, so
we choose p and q to minimize

S =
n
∑

i=1

(pxi + qx2
i − yi )

2.
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Thus

0 = ∂S

∂p
= 2

n
∑

i=1

(pxi + qx2
i − yi)xi

0 = ∂S

∂q
= 2

n
∑

i=1

(pxi + qx2
i − yi)x

2
i ,

that is,

(∑
x2

i

)

p + (∑
x3

i

)

q = ∑
xi yi

(∑
x3

i

)

p + (∑
x4

i

)

q = ∑
x2

i yi ,

so

p =
(∑

xi yi
) (∑

x4
i

)− (∑ x2
i yi
) (∑

x3
i

)

(∑
x2

i

) (∑
x4

i

)− (∑ x3
i

)2

q =
(∑

x2
i

) (∑
x2

i yi
)− (∑ xi yi

) (∑
x3

i

)

(∑
x2

i

) (∑
x4

i

)− (∑ x3
i

)2 .

This is the result obtained by direct linear regression.
(No transformation of variables was necessary.)

10. We transform y = √(px + q) into the form y2 = px + q,
which is linear in p and q. We let ηi = y2

i and use the
regression line η = ax +b obtained from the data (xi , ηi ),
with a = p and b = q.
Using the formulas for a and b obtained in the text, we
have

p = a = n
(∑

xi y2
i

)− (∑ xi
) (∑

y2
i

)

n
(∑

x2
i

)− (∑ xi
)2

q = b =
(∑

x2
i

) (∑
y2

i

)− (∑ xi
) (∑

xi y2
i

)

n
(∑

x2
i

)− (∑ xi
)2

.

These values of p and q are not the same values that
minimize the expression

S =
n
∑

i=1

(√
pxi + q − yi

)2
.

11. The relationship y = pex + qe−x is linear in p and q, so
we choose p and q to minimize

S =
n∑

i=1

(

pexi + qe−xi − yi

)2
.

Thus

0 = ∂S

∂p
= 2

n
∑

i=1

(

pexi + qe−xi − yi

)

exi

0 = ∂S

∂q
= 2

n
∑

i=1

(

pexi + qe−xi − yi

)

e−xi .

that is,
(∑

e2xi
)

p + nq = ∑
exi yi

np + (∑
e−2xi

)

q = ∑
e−xi yi ,

so

p =
(∑

e−2xi
) (∑

exi yi
)− n

(∑
e−xi yi

)

(∑
e2xi

) (∑
e−2xi

)− n2

q =
(∑

e2xi
) (∑

e−xi yi
)− n

(∑
exi yi

)

(∑
e2xi

) (∑
e−2xi

)− n2
.

This is the result obtained by direct linear regression.
(No transformation of variables was necessary.)

12. We use the result of Exercise 6. We have n = 6 and
∑

x2
i = 115,

∑

yi = 55.18,

∑

x4
i = 4051,

∑

x2
i yi = 1984.50.

Therefore

p =
(∑

yi
) (∑

x4
i

)− (∑ x2
i yi
) (∑

x2
i

)

n
(∑

x4
i

)− (∑ x2
i

)2

= 55.18 × 4051 − 1984.50 × 115

6× 4051− 1152 ≈ −0.42

q = n
(∑

x2
i yi
)− (∑ yi

) (∑
x2

i

)

n
(∑

x4
i

)− (∑ x2
i

)2

= 6 × 1984.50 − 55.18 × 115

6× 4051 − 1152
≈ 0.50.

We have (approximately) y = −0.42 + 0.50x2. The pre-
dicted value of y at x = 5 is −0.42+ 0.50× 25 ≈ 12.1.

13. Choose a, b, and c to minimize

S =
n
∑

i=1

(

ax2
i + bxi + c − yi

)2
.

Thus

0 = ∂S

∂a
= 2

n
∑

i=1

(ax2
i + bxi + c − yi )x2

i

0 = ∂S

∂b
= 2

n
∑

i=1

(ax2
i + bxi + c − yi )xi

0 = ∂S

∂c
= 2

n
∑

i=1

(ax2
i + bxi + c − yi ).

Let A = ∑
x4

i , B = ∑
x3

i , C = ∑
x2

i , D = ∑
xi ,

H = ∑
x2

i yi , I = ∑
xi yi , and J = ∑

yi . In terms of
these quantities the above equations become

Aa + Bb + Cc = H
Ba + Cb + Dc = I
Ca + Db + nc = J.
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By Cramer’s Rule (Theorem 5 of Section 1.6) the solu-
tion is

a = 1

�

∣
∣
∣
∣
∣

H B C
I C D
J D n

∣
∣
∣
∣
∣
,

c = 1

�

∣
∣
∣
∣
∣

A B H
B C I
C D J

∣
∣
∣
∣
∣
,

b = 1

�

∣
∣
∣
∣
∣

A H C
B I D
C J n

∣
∣
∣
∣
∣
,

where � =
∣
∣
∣
∣
∣

A B C
B C D
C D n

∣
∣
∣
∣
∣
.

14. Since y = pex + q + re−x is equivalent to

ex y = p(ex )2 + qex + r,

we let ξi = exi and ηi = exi yi for i = 1, 2, . . . , n. We
then have p = a, q = b, and r = c, where a, b, and c are
the values calculated by the formulas in Exercise 13, but
for the data (ξi , ηi ) instead of (xi , yi ).

15. To minimize I =
∫ 1

0
(ax2 − x3)2 dx , we choose a so that

0 = d I

da
=
∫ 1

0
2(ax2 − x3)x2 dx

=
(

2a
x5

5
− 2x6

6

)∣
∣
∣
∣

1

0
= 2a

5
− 1

3
.

Thus a = 5/6, and the minimum value of I is

∫ 1

0

(

25x4

36
− 5x5

3
+ x6

)

dx

= 5

36
− 5

18
+ 1

7
= 1

252
.

16. To maximize I =
∫ π

0

(

ax(π − x)− sin x
)2

dx , we choose

a so that

0 = d I

da
=
∫ π

0
2
(

ax(π − x)− sin x
)

x(π − x) dx

= 2a
∫ π

0
x2(π − x)2 dx − 2

∫ π

0
x(π − x) sin x dx

= π5a

15
− 8.

(We have omited the details of evaluation of these inte-
grals.) Hence a = 120/π5. The minimum value of I
is

∫ π

0

(
120

π5
x(π − x)− sin x

)2

dx = π

2
− 480

π5
≈ 0.00227.

17. To minimize I =
∫ 1

0
(ax2+b− x3)2 dx , we choose a and

b so that

0 = ∂ I

∂a
=
∫ 1

0
2(ax2 + b − x3)x2 dx = 2a

5
+ 2b

3
− 1

3

0 = ∂ I

∂b
=
∫ 1

0
2(ax2 + b − x3) dx = 2a

3
+ 2b − 1

2
.

Solving these two equations, we get a = 15/16 and
b = −1/16. The minimum value of I is

∫ 1

0

(
15x2

16
− 1

16
− x3

)2

dx = 1

448
.

18. To minimize
∫ 1

0
(x3 − ax2 − bx − c)2 dx , choose a, b and

c so that

0 = 2
∫ 1

0
(x3 − ax2 − bx − c)(−x2) dx

0 = 2
∫ 1

0
(x3 − ax2 − bx − c)(−x) dx

0 = 2
∫ 1

0
(x3 − ax2 − bx − c)(−1) dx,

that is,
a

5
+ b

4
+ c

3
= 1

6
a

4
+ b

3
+ c

2
= 1

5
a

3
+ b

2
+ c = 1

4

for which the solution is a = 3

2
, b = −3

5
, and c = 1

20
.

19. To minimize
∫ π

0
(sin x − ax2 − bx)2 dx we choose a and

b so that

0 = 2
∫ π

0
(sin x − ax2 − bx)(−x2) dx

0 = 2
∫ π

0
(sin x − ax2 − bx)(−x) dx .

We omit the details of the evaluation of the integrals.
The result of the evaluation is that a and b satisfy

π5

5
a + π4

4
b = π2 − 4

π4

4
a + π3

3
b = π,

for which the solution is

a = 20

π5
(π2 − 16)

b = 12

π4 (20 − π2).
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20. J =
∫ 1

−1
(x − a sinπx − b sin 2πx − c sin 3πx)2 dx .

To minimize J , choose a, b, and c to satisfy

0 = ∂ J

∂a

= −2
∫ 1

−1
(x − a sinπx − b sin 2πx − c sin 3πx) sinπx dx

= 2

π
(πa − 2)

0 = ∂ J

∂b

= −2
∫ 1

−1
(x − a sinπx − b sin 2πx − c sin 3πx) sin 2πx dx

= 2

π
(πb + 1)

0 = ∂ J

∂c

= −2
∫ 1

−1
(x − a sinπx − b sin 2πx − c sin 3πx) sin 3πx dx

= 2

3π
(3πc − 2).

We have omitted the details of evaluation of these inte-
grals, but note that

∫ 1

−1
sin mπx sin nπx dx = 0

if m and n are different integers.

The equations above imply that a = 2/π , b = −1/π , and
c = 2/(3π). These are the values that minimize J .

21. To minimize

I =
∫ π

0

(

f (x)− a0

2
−

n
∑

k=1

ak cos kx

)2

dx

we require

0 = ∂ I

∂a0
= 2

∫ π

0

(

f (x)− a0

2
−

n
∑

k=1

ak cos kx

)(

−1

2

)

dx,

and

0 = ∂ I

∂an
= 2

∫ π

0

(

f (x)− a0

2
−

n∑

k=1

ak cos kx

)

(− cos nx) dx

for n = 1, 2, . . .. Thus

a0 = 2

π

∫ π

0
f (x) dx,

and, since

∫ π

0
cos kx cos nx dx =

{
0 if k �= n
π

2
if k = n = 1, 2, . . .

we also have

an = 2

π

∫ π

0
f (x) cos nx dx (n = 1, 2, . . .).

22. The Fourier sine series coefficients for f (x) = x on
(0, π) are

bn = 2

π

∫ π

0
x sin(nx) dx = (−1)n−1 2

n

for n = 1, 2, . . .. Thus the series is

∞
∑

n=0

(−1)n−1 2

n
sin nx .

Since x and the functions sin nx are all odd functions,
we would also expect the series to converge to x on
(−π, 0).

23. The Fourier cosine series coefficients for f (x) = x on
(0, π) are

a0 = 2

π

∫ π

0
x dx = π

an = 2

π

∫ π

0
x cos(nx) dx = −

2
(

1− (−1)n
)

n2π

=
{

0 if n ≥ 2 is even

− 4

n2π
if n ≥ 1 is odd.

Thus the Fourier cosine series is

π − 4

π

∞∑

n=0

cos((2n + 1)x)

(2n + 1)2
.

Since the terms of this series are all even functions, and
the series converges to x if 0 < x < π , it will converge
to −x = |x | if −π < x < 0.

Remark: since |x | is continuous at x = 0, the series also
converges at x = 0 to 0. It follows that

1+ 1

32 +
1

52 + · · · =
∞
∑

n=0

1

(2n + 1)2
= π2

4
.

24. We are given that x1 ≤ x2 ≤ x3 ≤ . . . ≤ xn .
To motivate the method, look at a special case, n = 5
say.
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x1 x2 x3 x4 x5

Fig. 13.4.24

If x = x3, then

5
∑

i=1

|x − xi |

= (x3 − x1)+ (x3 − x2)+ 0 + (x4 − x3)+ (x5 − x3)

= (x5 − x1)+ (x4 − x2).

If x moves away from x3 in either direction, then

5
∑

i=1

|x − xi | = (x5 − x1)+ (x4 − x2)+ |x − x3|.

Thus the minimum sum occurs if x = x3.
In general, if n is odd, then

∑n
i=1 |x − xi | is minimum

if x = x(n+1)/2, the middle point of the set of points
{x1, x2, . . . , xn}. The value of x is unique in this case.
If n is even and x satisfies xn/2 ≤ x ≤ x(n/2)+1, then

n
∑

i=1

|x − xi | =
n/2
∑

i=1

|xn+1−i − xi |,

and the sum will increase if x is outside that interval. In
this case the value of x which minimizes the sum is not
unique unless it happens that xn/2 = x(n/2)+1.

Section 13.5 Parametric Problems
(page 743)

1. F(x) =
∫ 1

0
t x dt = 1

x + 1
(x > −1)

F ′(x) =
∫ 1

0
t x ln t dt = − 1

(x + 1)2

F ′′(x) =
∫ 1

0
t x (ln t)2 dt = 2

(x + 1)3

...

F (n)(x) =
∫ 1

0
t x (ln t)n dt = (−1)nn!

(x + 1)n+1 .

2.
∫ ∞

−∞
e−u2

du = √π Let u = xt

du = x dt
∫ ∞

−∞
e−x2 t2

dt =
√
π

x
.

Differentiate with respect to x :
∫ ∞

−∞
−2xt2e−t2x2

dt = −
√
π

x2
∫ ∞

−∞
t2e−x2 t2

dt =
√
π

2x3 . (∗)

If x = 1 we get
∫ ∞

−∞
t2e−t2

dt =
√
π

2
.

Differentiate (∗) with respect to x again:

∫ ∞

−∞
−2xt4e−x2 t2

dt = −3
√
π

2x4 .

Divide by −2 and let x = 1:

∫ ∞

−∞
t4e−t2

dt = 3
√
π

4
.

3. Let I (x, y) =
∫ ∞

−∞
e−xt2 − e−yt2

t2 dt , where x > 0 and

y > 0. Then

∂ I

∂x
= −

∫ ∞

−∞
e−xt2

dt Let
√

xt = s√
x dt = ds

= − 1√
x

∫ ∞

−∞
e−s2

ds = −
√
π√
x
.

Similarly,
∂ I

∂y
=
√
π√
y

. Now

I (x, y) = −√π
∫

dx√
x
= −2

√
πx + C1(y)

√
π√
y
= ∂ I

∂y
= ∂C1

∂y
⇒ C1(y) = 2

√
πy + C2

I (x, y) = 2
√
π
(√

y −√x
)

+ C2.

But I (x, x) = 0. Therefore C2 = 0, and

I (x, y) =
∫ ∞

−∞
e−xt2 − e−yt2

t2 dt = 2
√
π
(√

y −√x
)

.

4. Let I (x, y) =
∫ 1

0

t x − t y

ln t
dt , where x > −1 and y > −1.

Then
∂ I

∂x
=
∫ 1

0
t x dt = 1

x + 1
∂ I

∂y
= − 1

y + 1
.

Thus

I (x, y) =
∫

dx

x + 1
= ln(x + 1)+ C1(y)

−1

y + 1
= ∂ I

∂y
= ∂C1

∂y
⇒ C1(y) = − ln(y + 1)+ C2

I (x, y) = ln

(
x + 1

y + 1

)

+ C2.
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But I (x, x) = 0, so C2 = 0. Thus

I (x, y) =
∫ 1

0

t x − t y

ln t
dt = ln

(
x + 1

y + 1

)

for x > −1 and y > −1.

5.
∫ ∞

0
e−xt sin t dt = 1

1+ x2 if x > 0.

Multiply by −1 and differentiate with respect to x twice:

∫ ∞

0
te−xt sin t dt = 2x

(1 + x2)2
∫ ∞

0
t2e−xt sin t dt = 2(3x2 − 1)

(1+ x2)3
.

6. F(x) =
∫ ∞

0
e−xt sin t

t
dt

F ′(x) =
∫ ∞

0
−e−xt sin t dt = − 1

1+ x2
(x > 0).

Therefore F(x) = −
∫

dx

1+ x2
= − tan−1 x + C .

Now, make the change of variable xt = s in the integral
defining F(x), and obtain

F(x) =
∫ ∞

0
e−s sin(s/x)

s/x

ds

x
=
∫ ∞

0

e−s

s
sin

s

x
ds.

Since | sin(s/x)| ≤ s/x if s > 0, x > 0, we have

|F(x)| ≤ 1

|x |
∫ ∞

0
e−s ds = 1

|x | → 0 as x →∞.

Hence −π
2
+ C = 0, and C = π

2
. Therefore

F(x) =
∫ ∞

0
e−xt sin t

t
dt = π

2
− tan−1 x .

In particular,
∫∞

0
sin t

t
dt = lim

x→0
F(x) = π

2
.

7.
∫ ∞

0

dt

x2 + t2 =
1

x
tan−1 t

x

∣
∣
∣
∣

∞

0
= π

2x
for x > 0.

Differentiate with respect to x :

∫ ∞

0

−2x dt

(x2 + t2)2
= − π

2x2
∫ ∞

0

dt

(x2 + t2)2
= π

4x3 .

Differentiate with respect to x again:

∫ ∞

0

−4x dt

(x2 + t2)3
= − 3π

4x4
∫ ∞

0

dt

(x2 + t2)3
= 3π

16x5
.

8.
∫ x

0

dt

x2 + t2
= 1

x
tan−1 t

x

∣
∣
∣
∣

x

0
= π

4x
for x > 0.

Differentiate with respect to x :

1

2x2 +
∫ x

0

−2x dt

(x2 + t2)2
= − π

4x2
∫ x

0

dt

(x2 + t2)2
= − 1

2x

[

− π

4x2 −
1

2x2

]

= π

8x3 +
1

4x3 .

Differentiate with respect to x again:

1

4x4 +
∫ x

0

−4x dt

(x2 + t2)3
= − 3

x4

[
π

8
+ 1

4

]

∫ x

0

dt

(x2 + t2)3
= − 1

4x

[

− 3π

8x4 −
3

4x4 −
1

4x4

]

= 3π

32x5
+ 1

4x5
.

9. f (x) = 1+
∫ x

a
(x − t)n f (t) dt ⇒ f (a) = 1

f ′(x) = n
∫ x

a
(x − t)n−1 f (t) dt

f ′′(x) = n(n − 1)
∫ x

a
(x − t)n−2 f (t) dt

...

f (n)(x) = n!
∫ x

a
f (t) dt

f (n+1)(x) = n! f (x) ⇒ f (n+1)(a) = n! f (a) = n!.

10. f (x) = Cx + D +
∫ x

0
(x − t) f (t) dt ⇒ f (0) = D

f ′(x) = C +
∫ x

0
f (t) dt ⇒ f ′(0) = C

f ′′(x) = f (x) ⇒ f (x) = A cosh x + B sinh x

D = f (0) = A, C = f ′(0) = B

⇒ f (x) = D cosh x + C sinh x .

11. f (x) = x +
∫ x

0
(x − 2t) f (t) dt ⇒ f (0) = 0

f ′(x) = 1− x f (x)+
∫ x

0
f (t) dt ⇒ f ′(0) = 1

f ′′(x) = − f (x)− x f ′(x)+ f (x) = −x f ′(x).

If u = f ′(x), then
du

u
= −x dx , so ln u = − x2

2
+ ln C1.

Therefore
f ′(x) = u = C1e−x2/2.
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We have 1 = f ′(0) = C1, so f ′(x) = e−x2/2 and

f (x) =
∫ x

0
e−t2/2 dt + C2.

But 0 = f (0) = C2, and so

f (x) =
∫ x

0
e−t2/2 dt.

12. f (x) = 1+
∫ 1

0
(x + t) f (t) dt

f ′(x) =
∫ 1

0
f (t) dt = C, say,

since the integral giving f ′(x) does not depend on x .
Thus f (x) = A + Cx , where A = f (0). Substituting this
expression into the given equation, we obtain

A + Cx = 1+
∫ 1

0
(x + t)(A + Ct) dt

= 1+ Ax + A

2
+ Cx

2
+ C

3
.

Therefore

A

2
− 1− C

3
+ x

(
C

2
− A

)

= 0.

This can hold for all x only if

A

2
− 1− C

3
= 0 and

C

2
− A = 0.

Thus C = 2A and
A

2
− 2A

3
= 1, so that A = −6 and

C = −12. Therefore f (x) = −6− 12x .

13. We eliminate c from the pair of equations

f (x, y, c) = 2cx − c2 − y = 0
∂

∂c
f (x, y, c) = 2x − 2c = 0.

Thus c = x and 2x2 − x2 − y = 0. The envelope is
y = x2.

14. We eliminate c from the pair of equations

f (x, y, c) = y − (x − c) cos c − sin c = 0
∂

∂c
f (x, y, c) = cos c + (x − c) sin c − cos c = 0.

Thus c = x and y − 0− sin x = 0.
The envelope is y = sin x .

15. We eliminate c from the pair of equations

f (x, y, c) = x cos c + y sin c − 1 = 0
∂

∂c
f (x, y, c) = −x sin c + y cos c = 0.

Squaring and adding these equations yields x2 + y2 = 1,
which is the equation of the envelope.

16. We eliminate c from the pair of equations

f (x, y, c) = x

cos c
+ y

sin c
− 1 = 0

∂

∂c
f (x, y, c) = x sin c

cos2 c
− y cos c

sin2 c
= 0.

From the second equation, y = x tan3 c. Thus

x

cos c
(1+ tan2 c) = 1

which implies that x = cos3 c, and hence y = sin3 c.
The envelope is the astroid x2/3 + y2/3 = 1.

17. We eliminate c from the pair of equations

f (x, y, c) = c + (x − c)2 − y = 0
∂

∂c
f (x, y, c) = 1+ 2(c − x) = 0.

Thus c = x − 1

2
. The envelope is the line y = x − 1

4
.

18. We eliminate c from the pair of equations

f (x, y, c) = (x − c)2 + (y − c)2 − 1 = 0
∂

∂c
f (x, y, c) = 2(c − x)+ 2(c − y) = 0.

Thus c = (x + y)/2, and

(
x − y

2

)2

+
(

y − x

2

)2

= 1

or x − y = ±√2. These two parallel lines constitute the
envelope of the given family which consists of circles of
radius 1 with centres along the line y = x .

19. Not every one-parameter family of curves in the plane
has an envelope. The family of parabolas y = x2 + c ev-
idently does not. (See the figure.) If we try to calculate
the envelope by eliminating c from the equations

f (x, y, c) = y − x2 − c = 0
∂

∂c
f (x, y, c) = −1 = 0,

we fail because the second equation is contradictory.
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y

x

y=x2+c

Fig. 13.5.19

20. The curve x2+(y−c)2 = kc2 is a circle with centre (0, c)
and radius

√
kc, provided k > 0. Consider the system:

f (x, y, c) = x2 + (y − c)2 − kc2 = 0
∂

∂c
f (x, y, c) = −2(y − c)− 2kc = 0.

The second equation implies that y − c = −kc, and the
first equation then says that x2 = k(1− k)c2. This is only
possible if 0 ≤ k ≤ 1.
The cases k = 0 and k = 1 are degenerate. If k = 0
the “curves” are just points on the y-axis. If k = 1 the
curves are circles, all of which are tangent to the x-axis
at the origin. There is no reasonable envelope in either
case. If 0 < k < 1, the envelope is the pair of lines given

by x2 = k

1− k
y2, that is, the lines

√
1− kx = ±√ky.

These lines make angle sin−1
√

k with the y-axis.
y

x

circles

x2+(y−c)2=kc2

envelope
(1−k)x2=ky2

Fig. 13.5.20

21. We eliminate c from the equations

f (x, y, c) = y3 − (x + c)2 = 0
∂

∂c
f (x, y, c) = −2(x + c) = 0.

Thus x = −c, and we obtain the equation y = 0 for the
envelope. However, this is not really an envelope at all.
The curves y3 = (x + c)2 all have cusps along the x-axis;
none of them is tangent to the axis.

y

x
f (x,y,c)=y3−(x+c)2=0

Fig. 13.5.21

22. If the family of surfaces f (x, y, z, λ,µ) = 0 has an
envelope, that envelope will have parametric equations

x = x(λ,µ), y = y(λ,µ), z = z(λ, µ),

giving the point on the envelope where the envelope is
tangent to the particular surface in the family having pa-
rameter values λ and µ. Thus

f
(

x(λ, µ), y(λ,µ), z(λ,µ), λ, µ
)

= 0.

Differentiating with respect to λ, we obtain

f1
∂x

∂λ
+ f2

∂y

∂λ
+ f3

∂z

∂λ
+ f4 = 0.

However, since for fixed µ, the parametric curve

x = x(t, µ), y = y(t, µ), z = z(t, µ)

is tangent to the surface f (x, y, z, λ, µ) = 0 at t = λ, its
tangent vector there,

T = ∂x

∂λ
i + ∂y

∂λ
j+ ∂z

∂λ
k,

is perpendicular to the normal

N = ∇ f = f1i+ f2j+ f3k,

so

f1
∂x

∂λ
+ f2

∂y

∂λ
+ f3

∂z

∂λ
= 0.

Hence we must also have
∂ f

∂λ
= f4(x, y, z, λ, µ) = 0.

Similarly,
∂ f

∂µ
= 0.

The parametric equations of the envelope must therefore
satisfy the three equations

f (x, y, z, λ, µ) = 0
∂

∂λ
f (x, y, z, λ, µ) = 0

∂

∂µ
f (x, y, z, λ, µ) = 0.
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The envelope can be found by eliminating λ and µ from
these three equations.

23. To find the envelope we eliminate λ and µ from the
equations

x sin λ cosµ+ y sin λ sinµ+ z cosλ = 1 (1)

x cosλ cosµ+ y cosλ sinµ− z sin λ = 0 (2)

− x sin λ sinµ+ y sin λ cosµ = 0. (3)

Multiplying (1) by cos λ and (2) by sin λ and subtracting
the two gives

z = cosλ.

Therefore (2) and (3) can be rewritten

x cosµ+ y sinµ = sinλ

x sinµ− y cosµ = 0.

Squaring and adding these equations gives

x2 + y2 = sin2 λ.

Therefore

x2 + y2 + z2 = sin2 λ+ cos2 λ = 1;

the envelope is the sphere of radius 1 centred at the ori-
gin.

24. (x − λ)2 + (y − µ)2 + z2 = λ2 + µ2

2
.

Differentiate with respect to λ and µ:

−2(x − λ) = λ, −2(y − µ) = µ.

Thus λ = 2x , µ = 2y, and

x2 + y2 + z2 = 2x2 + 2y2.

The envelope is the cone z2 = x2 + y2.

25. y + ε sin(π y) = x ⇒ y = y(ε, x)
∂y

∂ε
+ sin(π y)+ πε cos(π y)

∂y

∂ε
= 0

∂2y

∂ε2 + 2π cos(π y)
∂y

∂ε
− π2ε sin(π y)

(
∂y

∂ε

)2

+ πε cos(π y)
∂2y

∂ε2 = 0.

If ε = 0 then y = x , so y(x, 0) = x . Also, at ε = 0,

yε(x, 0)(1 + 0) = − sin(π y(x, 0)) = − sin(π x),

that is, yε(x, 0) = − sin(π x). Also,

yεε(x, 0)(1 + 0) = −2π cos(π x)yε(x, 0)+ 0

= 2π cos(π x) sin(π x) = π sin(2πx).

Thus

y = y(x, ε) = y(x, 0)+ εyε(x, 0)+ ε
2

2!
yεε(x, 0)+ · · ·

= x − ε sin(π x)+ ε
2

2
π sin(2πx)+ · · ·

26. y2 + εe−y2 = 1+ x2

2yyε + e−y2 − 2yεe−y2
yε = 0

2y
(

1− εe−y2
)

yε + e−y2 = 0

2yε
(

1 − εe−y2
)

yε − 2ye−y2
yε + 2y

(

2yεe−y2
yε
)

yε

+ 2y
(

1− εe−y2
)

yεε − 2ye−y2
yε = 0.

At ε = 0 we have y(x, 0) = √1+ x2, and

2
√

1+ x2yε(x, 0)+ e−(1+x2) = 0

yε(x, 0) = − 1

2
√

1+ x2
e−(1+x2)

2y2
ε − 4ye−y2

yε + 2yyεε = 0

yyεε = 2yyεe
−y2 − y2

ε

yεε(x, 0) = −
(

1√
1 + x2

+ 1

4(1+ x2)3/2

)

e−2(1+x2).

Thus

y = y(x, ε) = y(x, 0)+ εyε(x, 0)+ ε
2

2!
yεε(x, 0)+ · · ·

=
√

1 + x2 − ε

2
√

1 + x2
e−(1+x2)

− ε
2

2

(
1√

1+ x2
+ 1

4(1 + x2)3/2

)

e−2(1+x2) + · · · .

27. 2y + εx

1+ y2 = 1

2yε + x

1+ y2
− 2εxyyε
(1 + y2)2

= 0

2yεε − 4xyyε
(1+ y2)2

− ε ∂
∂ε

(
2xyyε

(1+ y2)2

)

= 0.

At ε = 0 we have y(x, 0) = 1

2
, and

yε(x, 0) = −1

2

x

1 + 1

4

= −2x

5

yεε = 1

2

4x

(
1

2

)(

−2x

5

)

(

1+ 1

4

)2
= −32x2

125
.
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Thus

y = y(x, ε) = y(x, 0)+ εyε(x, 0)+ ε
2

2!
yεε(x, 0)+ · · ·

= 1

2
− 2εx

5
− 16ε2x2

125
+ · · · .

28. Let y(x, ε) be the solution of y + εy5 = 1

2
. Then we

have

yε
(

1+ 5εy4
)

+ y5 = 0

yεε
(

1 + 5εy4
)

+ 20εy3y2
ε + 10y4yε = 0

yεεε
(

1+ 5εy4
)

+ yεε
(

60εy3yε + 15y4
)

+ 60εy3
ε y2 + 60y3y2

ε = 0.

At ε = 0 we have

y(x, 0) = 1

2

yε(x, 0) = − 1

32

yεε(x, 0) = −10

16

(

− 1

32

)

= 5

162

yεεε(x, 0) = − 5

162

(
15

16

)

− 60

8

(

− 1

32

)2

= − 105

4096
.

For ε = 1

100
we have

y = 1

2
− 1

32
× 1

100
+ 5

256
× 1

2× 1002

− 105

4096
× 1

6× 1003 + · · ·
≈ 0.49968847

with error less than 10−8 in magnitude.

29. Let x(ε) and y(ε) be the solution of

x + 2y + εe−x = 3
x − y + εe−y = 0.

Thus

x ′ + 2y ′ + e−x − εe−x x ′ = 0
x ′ − y ′ + e−y − εe−y y ′ = 0
x ′′ + 2y ′′ − 2e−x x ′ + εe−x (x ′)2 − εe−x x ′′ = 0
x ′′ − y ′′ − 2e−y y ′ + εe−y(y ′)2 − εe−y y ′′ = 0.

At ε = 0 we have

x + 2y = 3
x − y = 0

}

⇒ x = y = 1

x ′ + 2y ′ = −1

e

x ′ − y ′ = −1

e

⎫

⎪⎬

⎪⎭

⇒ x ′ = −1

e
y ′ = 0

x ′′ + 2y ′′ = − 2

e2

x ′′ − y ′′ = 0

}

⇒ x ′′ = y ′′ = −2

3e2
.

Thus

x = 1 − ε
e
− ε2

3e2 + · · · , y = 1 − ε2

3e2 + · · · .

For ε = 1

100
we have

x = 1− 1

100e
+ 1

30, 000e2 + · · ·

y = 1− 1

30, 000e2 + · · · .

Section 13.6 Newton’s Method (page 746)

For each of Exercises 1–6, and 9, we sketch the graphs of the two given equations, f (x, y) = 0 and g(x, y) = 0, and use
their intersections to make initial guesses x0 and y0 for the solutions. These guesses are then refined using the formulas

xn+1 = xn − f g2 − g f2
f1g2 − g1 f2

∣
∣
∣
∣
(xn,yn)

, yn+1 = yn − f1g − g1 f

f1g2 − g1 f2

∣
∣
∣
∣
(xn,yn)

.

NOTE: The numerical values in the tables below were obtained by programming a microcomputer to calculate the iterations
of the above formulas. In most cases the computer was using more significant digits than appear in the tables, and did not
truncate the values obtained at one step before using them to calculate the next step. If you use a calculator, and use the
numbers as quoted on one line of a table to calculate the numbers on the next line, your results may differ slightly (in the
last one or two decimal places).
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1.
y

x

y=ex

x=sin y

Fig. 13.6.1

f (x, y) = y − ex

g(x, y) = x − sin y

f1(x, y) = −ex

f2(x, y) = 1

g1(x, y) = 1

g2(x, y) = − cos y

.

We start with x0 = 0.9, y0 = 2.0.
n xn yn f (xn, yn) g(xn, yn)

0 0.9000000 2.0000000 −0.4596031 −0.0092974
1 0.8100766 2.2384273 −0.0096529 0.0247861
2 0.7972153 2.2191669 −0.0001851 0.0001464
3 0.7971049 2.2191071 0.0000000 0.0000000
4 0.7971049 2.2191071 0.0000000 0.0000000

Thus x = 0.7971049, y = 2.2191071.

2.
y

x

x2+y2=1

y=ex

Fig. 13.6.2

f (x, y) = x2 + y2 − 1

g(x, y) = y − ex
f1(x, y) = 2x

f2(x, y) = 2y

g1(x, y) = −ex

g2(x, y) = 1

.

Evidently one solution is x = 0, y = 1. The second solution is near (−1, 0). We try x 0 = −0.9, y0 = 0.2.
n xn yn f (xn, yn) g(xn, yn)

0 −0.9000000 0.2000000 −0.1500000 −0.2065697
1 −0.9411465 0.3898407 0.0377325 −0.0003395
2 −0.9170683 0.3995751 0.0006745 −0.0001140
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3 −0.9165628 0.3998911 0.0000004 −0.0000001
4 −0.9165626 0.3998913 0.0000000 0.0000000

The second solution is x = −0.9165626, y = 0.3998913.

3.
y

x

x4+y2=16

xy=1

2

4

Fig. 13.6.3

f (x, y) = x4 + y2 − 16

g(x, y) = xy − 1

f1(x, y) = 4x3

f2(x, y) = 2y

g1(x, y) = y

g2(x, y) = x

.

There are four solutions as shown in the figure. We will find the two in the first quadrant; the other two are the negatives of
these by symmetry.
The first quadrant solutions appear to be near (1.9, 0.5) and (0.25, 3.9).

n xn yn f (xn, yn) g(xn, yn)

0 1.9000000 0.5000000 −2.7179000 −0.0500000
1 1.9990542 0.5002489 0.2200049 0.0000247
2 1.9921153 0.5019730 0.0011548 −0.0000120
3 1.9920783 0.5019883 0.0000000 0.0000000
4 1.9920783 0.5019883 0.0000000 0.0000000

n xn yn f (xn, yn) g(xn, yn)

0 0.2500000 3.9000000 −0.7860937 −0.0250000
1 0.2499499 4.0007817 0.0101569 −0.0000050
2 0.2500305 3.9995117 0.0000016 −0.0000001
3 0.2500305 3.9995115 0.0000000 0.0000000

The four solutions are x = ±1.9920783,±y = 0.5019883, and x = ±0.2500305, y = ±3.9995115.
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4.
y

x

x(1+y2)=1

y(1+x2)=2

1

2

Fig. 13.6.4

f (x, y) = x(1+ y2)− 1

g(x, y) = y(1+ x 2)− 2

f1(x, y) = 1+ y2

f2(x, y) = 2xy

g1(x, y) = 2xy

g2(x, y) = 1+ x2

.

The solution appears to be near x = 0.2, y = 1.8.
n xn yn f (xn, yn) g(xn, yn)

0 0.2000000 1.8000000 −0.1520000 −0.1280000
1 0.2169408 1.9113487 0.0094806 0.0013031
2 0.2148268 1.9117785 −0.0000034 0.0000081
3 0.2148292 1.9117688 0.0000000 0.0000000

The solution is x = 0.2148292, y = 1.9117688.

5.
y

x
1

−1

x2+(y+1)2=2

y=sin x

−1

Fig. 13.6.5

f (x, y) = y − sin x

g(x, y) = x2 + (y + 1)2 − 2

f1(x, y) = − cos x

f2(x, y) = 1

g1(x, y) = 2x

g2(x, y) = 2(y + 1)

.

Solutions appear to be near (0.5, 0.3) and (−1.5,−1).
n xn yn f (xn, yn) g(xn, yn)

0 0.5000000 0.3000000 −0.1794255 −0.0600000
1 0.3761299 0.3707193 0.0033956 0.0203450
2 0.3727877 0.3642151 0.0000020 0.0000535
3 0.3727731 0.3641995 0.0000000 0.0000000
4 0.3727731 0.3641995 0.0000000 0.0000000
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n xn yn f (xn, yn) g(xn, yn)

0 −1.5000000 −1.0000000 −0.0025050 0.2500000
1 −1.4166667 −0.9916002 −0.0034547 0.0070150
2 −1.4141680 −0.9877619 −0.0000031 0.0000210
3 −1.4141606 −0.9877577 0.0000000 0.0000000
4 −1.4141606 −0.9877577 0.0000000 0.0000000

The solutions are x = 0.3727731, y = 0.3641995, and x = −1.4141606, y = −0.9877577.

6.
y

x

(π,π/2)

(π/2,π)

π/2

π/2

y2=x3

sin x + sin y = 1

Fig. 13.6.6

f (x, y) = sin x + sin y − 1

g(x, y) = y2 − x3

f1(x, y) = cos x

f2(x, y) = cos y

g1(x, y) = −3x2

g2(x, y) = 2y

.

There are infinitely many solutions for the given pair of equations, since the level curve of f (x, y) = 0 is repeated
periodically throughout the plane. We will find the two solutions closest to the origin in the first quadrant. From the figure,
it appears that these solutions are near (0.6, 0.4) and (2, 3).

n xn yn f (xn, yn) g(xn, yn)

0 0.6000000 0.4000000 −0.0459392 −0.0560000
1 0.5910405 0.4579047 −0.0007050 0.0032092
2 0.5931130 0.4567721 −0.0000015 −0.0000063
3 0.5931105 0.4567761 0.0000000 0.0000000
4 0.5931105 0.4567761 0.0000000 0.0000000

n xn yn f (xn, yn) g(xn, yn)

0 2.0000000 3.0000000 0.0504174 1.0000000
1 2.0899016 3.0131366 −0.0036336 −0.0490479
2 2.0854887 3.0116804 −0.0000086 −0.0001199
3 2.0854779 3.0116770 0.0000000 0.0000000
4 2.0854779 3.0116770 0.0000000 0.0000000

The solutions are x = 0.5931105, y = 0.4567761, and x = 2.0854779, y = 3.0116770.

7. By analogy with the two-dimensional case, the Newton’s Method iteration formulas are

xn+1 = xn − 1

�

∣
∣
∣
∣
∣

f f2 f3
g g2 g3
h h2 h3

∣
∣
∣
∣
∣

∣
∣
∣
∣
(xn,yn,zn)

zn+1 = zn − 1

�

∣
∣
∣
∣
∣

f1 f2 f
g1 g2 g
h1 h2 h

∣
∣
∣
∣
∣

∣
∣
∣
∣
(xn,yn,zn )

yn+1 = yn − 1

�

∣
∣
∣
∣
∣

f1 f f3
g1 g g3
h1 h h3

∣
∣
∣
∣
∣

∣
∣
∣
∣
(xn,yn,zn )

where� =
∣
∣
∣
∣
∣

f1 f2 f3
g1 g2 g3
h1 h2 h3

∣
∣
∣
∣
∣

∣
∣
∣
∣
(xn,yn,zn )
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8. f (x, y, z) = y2 + z2 − 3

f1(x, y, z) = 0

f2(x, y, z) = 2y

f3(x, y, z) = 2z

g(x, y, z) = x2 + z2 − 2

g1(x, y, z) = 2x

g2(x, y, z) = 0

g3(x, y, z) = 2z

h(x, y, z) = x2 − z

h1(x, y, z) = 2x

h2(x, y, z) = 0

h3(x, y, z) = −1

It is easily seen that the system

f (x, y, z) = 0, g(x, y, z) = 0, h(x, y, z) = 0

has first-quadrant solution x = z = 1, y = √2. Let us start at the “guess” x0 = y0 = z0 = 2.
n xn yn zn f (xn, yn, zn) g(xn, yn, zn) h(xn, yn, zn)

0 2.0000000 2.0000000 2.0000000 5.0000000 6.0000000 2.0000000
1 1.3000000 1.5500000 1.2000000 0.8425000 1.1300000 0.4900000
2 1.0391403 1.4239564 1.0117647 0.0513195 0.1034803 0.0680478
3 1.0007592 1.4142630 1.0000458 0.0002313 0.0016104 0.0014731
4 1.0000003 1.4142136 1.0000000 0.0000000 0.0000006 0.0000006
5 1.0000000 1.4142136 1.0000000 0.0000000 0.0000000 0.0000000

9. f (x, y) = y − x 2

g(x, y) = y − x3

f1(x, y) = −2x

f2(x, y) = 1

g1(x, y) = −3x2

g2(x, y) = 1
y

x

(1,1)

y=x3

y=x2

Fig. 13.6.9

n xn yn

0 0.1000000 0.1000000
1 0.0470588 −0.0005882
2 0.0229337 −0.0000561
3 0.0113307 −0.0000062
4 0.0056327 −0.0000007
5 0.0028083 −0.0000001
...

15 0.0000027 0.0000000
16 0.0000014 0.0000000
17 0.0000007 0.0000000
18 0.0000003 0.0000000

n xn yn

0 0.9000000 0.9000000
1 1.0285714 1.0414286
2 1.0015038 1.0022771
3 1.0000045 1.0000068
4 1.0000000 1.0000000

Eighteen iterations were needed to obtain the solution x = y = 0 correct to six decimal places, starting from x = y = 0.1.
This slow convergence is due to the fact that the curves y = x 2 and y = x3 are tangent at (0, 0). Only four iterations were
needed to obtain the solution x = y = 1 starting from x = y = 0, because, although the angle between the curves is small
at (1, 1), it is not 0. The curves are not tangent there.
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Section 13.7 Calculations with Maple
(page 751)

1. The equation z = xy can be used to reduce the given
system of three equations in three variables to a sys-
tem of 2 equations in two variables:

x2 + y2 + x2y2 = 1

6x2y = 1.

The first equation can only be satisfied by points
(x, y) satisfying |x | ≤ 1 and |y| ≤ 1.

> Digits := 6:

> eqns := {xˆ2+yˆ2+(x*y)ˆ2=1,
6*xˆ2*y=1}:

We use plots[implicitplot] to locate suitable
starting points for fsolve.

> plots[implicitplot](eqns,x=-1..1,
y=-1..1);

The resulting plot (omitted here) shows four roots;
two in the first quadrant near (.9, .2) and (.5, .8),
and two more that are reflections of these in the y-
axis. We use fsolve to find the two first-quadrant
roots and calculate the corresponding values for z by
substitution.

> vars := {x=0.9, y=0.2}:

> xy := fsolve(eqns,vars);

> z=evalf(subs(xy,x*y));

xy := {x = 0.968971, y = 0.177512}
z = 0.172004

> vars := {x=0.5, y=0.8}:

> xy := fsolve(eqns,vars);

> z=evalf(subs(xy,x*y));

xy := {y = 0.812044, x = 0.453038}
z = 0.367887

The four solutions
are (x, y, z) = (±0.96897, 0.17751,±0.17200) and
(x, y, z) = (±0.45304, 81204,±0.36789), rounded to
five figures.

2. The equation y = sin z can be used to reduce the
given system of three equations in three variables to
a system of 2 equations in two variables:

x4 + sin2 z + z2 = 1

z + z3 + z4 = x + sin z.

The first equation can only be satisfied by points
(x, z) satisfying |x | ≤ 1 and |z| ≤ 1.

> Digits := 6:

> eqns := {xˆ4+(sin(z))ˆ2+zˆ2=1,

> z+zˆ3+z4̂=x+sin(z)}:

We use plots[implicitplot] to locate suitable
starting points for fsolve.

> plots[implicitplot](eqns,x=-1..1,
z=-1..1);

The resulting plot shows two roots in the xz-plane,
one near (0.6, 0.7) and the other near (−0.2,−0.7).
We use fsolve to find them more precisely, and
we then calculate the corresponding values for y by
substitution.

> vars := {x=0.6, z=0.7}:

> xz := fsolve(eqns,vars);

> y=evalf(subs(xz,sin(z)));

xy := {z = 0.686259, x = 0.597601}
y = 0.633648

> vars := {x=-0.2, z=-0.7}:

> xy := fsolve(eqns,vars);

> y=evalf(subs(xz,sin(z)));

xy := {z = −0.738742, x = −0.170713}
y = −0.673358

The two so-
lutions are (x, y, z) = (0.59760, 0.63365, 0.68626)
and (x, y, z) = (−0.17071,−0.67336,−0.73874),
each rounded to five figures.

3. First define the expression f :

> f := (x*y-x-2*y)/(1+xˆ2+yˆ2)ˆ2:
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Because the numerator grows much more slowly than
the denominator for large x 2 + y2, global max and
min values will be near the origin. We plot contours
of f on, say, the square |x | ≤ 2, |y| ≤ 2.

> contourplot(f(x,y), x=-2..2,
> y=-2..2, contours=16);

The resulting plot (which we omit here) indicates the
only likely critical points are near (−0.3,−0.6) and
(0.2, 0.6). We determine them using fsolve and
use substitution to evaluate f .

> Digits := 6:

> eqns := {diff(f,x), diff(f,y)}:

> vars := {x=-0.3, y=-0.6}:

> cp := fsolve(eqns,vars);

> val=evalf(subs(cp,f));

cp := {x = −.338532, y = −.520621}
val = 0.810414

> vars := {x=0.2, y=0.6}:

> cp := fsolve(eqns,vars);

> val=evalf(subs(cp,f));

cp := {x = 0.133192, y = 0.536823}
val = − .665721

There are only two critical points and the values of
f at them have opposite sign. Since f → 0 as
x2 + y2 → ∞, f has absolute maximum value
0.81041 at (−0.33853,−0.52062) and absolute min-
imum value −0.66572 at (0.13319, 0.53682), all nu-
merical values rounded to five figures.

4. We begin with

> Digits := 6:

> f := 1 - 10*xˆ4 - 8*yˆ4 - 7*zˆ4:

> g := y*z - x*y*z - x - 2*y + z:

> h := f + g:

Since h = 1 at (0, 0, 0) and h →−∞ as x 2+ y2+ z2

increases, the maximum value of g will be near
(0, 0, 0).

We can try various choices of starting points includ-
ing (0, 0, 0) itself. It turns out they all lead to the
same critical point:

> eqns :=
{diff(h,x),diff(h,y),diff(h,z)}:
> vars := x=0,y=0,z=0:
> cp := fsolve(eqns,vars); val =
evalf(subs(cp,h));

cp := {x = −.28429, y = −.372953, z = 0.265109}
val = 1.91367

The absolute maximum value of h is 1.91367 (to five
decimal places).

5. Because of the small coefficients on the xy and xz
terms and the fact that without them f would cer-
tainly have a minimum value near the origin, we can
use fsolve starting with various points near the
origin. It turns out they all lead to only one critical
point.

> Digits := 6:

> f := xˆ2 + yˆ2 + zˆ2

> +0.2*x*y-0.3*x*z+4*x-y:

> eqns :=
{diff(f,x),diff(f,y),diff(f,z)}:
> vars := x=0,y=0,z=0:
> cp := fsolve(eqns,vars); val =
evalf(subs(cp,f));

cp := {x = −2.11886, y = 0.711886, z = −.317829}
val = − 4.59368

To confirm that this CP does give a lo-
cal minimum, you can calculate Vector-
Calculus[Hessian](f,[x,y,z]) and
then evalf the result of LinearAlge-
bra[Eigenvalues](subs(cp,%)) and observe
that all three eigenvalues are positive.

The minimum value of f is −4.59368.

6. First define the function:

> f := (x+1.1y-0.9z+1)/(1+xˆ2+yˆ2);
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Since f (x, y, z)→ 0 as x2+ y2+ z2→∞ we expect
f to have maximum and minimum values in some
neighbourhood of the origin. If the numerator were
instead x+ y− z, we would expect the extreme values
to occur along the line x = y = −z by symmetry.
Accordingly, we use starting points along this line.

> Digits := 6:

> f :=
(x+1.1*y-0.9*z+1)/(1+xˆ2+yˆ2+zˆ2):

> eqns :=
{diff(f,x),diff(f,y),diff(f,z)}:
> vars := x=1,y=1,z=-1:
> cp := fsolve(eqns,vars); val =
evalf(subs(cp,f));

This attempt fails; fsolve cannot locate a solution.
We try a guess closer to the origin.

> vars := x=0.5,y=0.5,z=-0.5:
> cp := fsolve(eqns,vars); val =
evalf(subs(cp,f));

cp := {y = 0.366057, z = −.299501, x = 0.332779}
val = 1.50250

> vars := x=-0.5,y=-0.5,z=+0.5:
> cp := fsolve(eqns,vars); val =
evalf(subs(cp,f));

cp := {x = −.995031, z = 0.895528, y = −1.09453}
val = − .502494

The eigenvalues of the Hessian matrix of f at each
of these critical points confirms that the first is a
local maximum and gives f its absolute maximum
value 1.50250 and the second is a local minimum so
the absolute minimum value of f is −0.502494.

Review Exercises 13 (page 752)

1. f (x, y) = xye−x+y

f1(x, y) = (y − xy)e−x+y = y(1− x)e−x+y

f2(x, y) = (x + xy)e−x+y = x(1+ y)e−x+y

A = f11 = (−2y + xy)e−x+y

B = f12 = (1− x + y − xy)e−x+y

C = f22 = (2x + xy)e−x+y.

For CP: either y = 0 or x = 1, and either x = 0 or
y = −1. The CPs are (0, 0) and (1,−1).

CP A B C AC − B2 class

(0, 0) 0 1 0 −1 saddle
(1,−1) e−2 0 e−2 e−4 loc. min

2. f (x, y) = x2y − 2xy2 + 2xy

f1(x, y) = 2xy − 2y2 + 2y = 2y(x − y + 1)

f2(x, y) = x2 − 4xy + 2x = x(x − 4y + 2)

A = f11 = 2y

B = f12 = 2x − 4y + 2

C = f22 = −4x .
For CP: either y = 0 or x − y + 1 = 0, and either
x = 0 or x − 4y + 2 = 0. The CPs are (0, 0), (0, 1),
(−2, 0), and (−2/3, 1/3).

CP A B C AC − B2 class

(0, 0) 0 2 0 −4 saddle
(0, 1) 2 −2 0 −4 saddle
(−2, 0) 0 −2 8 −4 saddle
(− 2

3 ,
1
3 )

2
3 − 2

3
8
3

4
3 loc. min

3. f (x, y) = 1

x
+ 4

y
+ 9

4− x − y

f1(x, y) = − 1

x2 +
9

(4− x − y)2

f2(x, y) = − 4

y2 +
9

(4− x − y)2

A = f11 = 2

x3 +
18

(4− x − y)3

B = f12 = 18

(4− x − y)3

C = f22 = 8

y3
+ 18

(4− x − y)3
.

For CP: y2 = 4x2 so that y = ±2x . If y = 2x , then
9x2 = (4 − 3x)2, from which x = 2/3, y = 4/3.
If y = −2x , then 9x 2 = (4 + x)2, from which
x = −1 or x = 2. The CPs are (2/3, 4/3), (−1, 2),
and (2,−4).

CP A B C AC − B2 class

(−1, 2) − 4
3

2
3

5
3 − 8

3 saddle
(2,−4) 1

3
1
12 − 1

24 − 1
48 saddle

( 2
3 ,

4
3 ) 9 9

4
45
8

729
16 loc. min
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4. f (x, y) = x2y(2− x − y) = 2x 2y − x3y − x2y2

f1(x, y) = 4xy − 3x 2y − 2xy2 = xy(4− 3x − 2y)

f2(x, y) = 2x2 − x3 − 2x2y = x2(2− x − 2y)

A = f11 = 4y − 6xy − 2y2

B = f12 = 4x − 3x2 − 4xy

C = f22 = −2x2.

(0, y) is a CP for any y. If x �= 0 but y = 0, then
x = 2 from the second equation. Thus (2, 0) is a CP.

If neither x nor y is 0, then x + 2y = 2 and
3x + 2y = 4, so that x = 1 and y = 1/2. The
third CP is (1, 1/2).

CP A B C AC − B2 class

(0, y) 4y − 2y2 0 0 0 ?
(2, 0) 0 −4 −8 −16 saddle
(1, 1

2 ) − 3
2 −1 −2 2 loc. max

The second derivative test is unable to classify the
line of critical points along the y-axis. However, di-
rect inspection of f (x, y) shows that these are local
minima if y(2 − y) > 0 (that is, if 0 < y < 2)
and local maxima if y(2 − y) < 0 (that is, if y < 0
or y > 2). The points (0, 0) and (0, 2) are neither
maxima nor minima, so they are saddle points.

5. f (x, y, z) = g(s) = s+(1/s), where s = x 2+ y2+z2.
Since g(s) → ∞ as s → ∞ or s → 0+, g must
have a minimum value at a critical point in (0,∞).
For CP: 0 = g′(s) = 1 − (1/s2), that is, s = 1.
g(1) = 2. The minimum value of f is 2, and is
assumed at every point of the sphere x 2+ y2+z2 = 1.

6. x2 + y2 + z2 − xy − xz − yz

= 1

2

[

(x2 − 2xy + y2)+ (x2 − 2xz + z2)

+ (y2 − 2yz + z2)
]

= 1

2

[

(x − y)2 + (x − z)2 + (y − z)2
] ≥ 0.

The minimum value, 0, is assumed at the origin and
at all points of the line x = y = z.

7. f (x, y) = xye−x2−4y2
satisfies lim

x2+y2→∞
f (x, y) = 0.

Since f (1, 1) > 0 and f (−1, 1) < 0, f must have
maximum and minimum values and these must occur
at critical points. For CP:

0 = f1 = e−x2−4y2
(y − 2x2y) = e−x2−4y2

y(1− 2x2)

0 = f2 = e−x2−4y2
(x − 8xy2) = e−x2−4y2

x(1− 8y2).

The CPs are (0, 0) (where f = 0), ±( 1√
2
, 1

2
√

2

)

(where f = 1/4e), and ±( 1√
2
,− 1

2
√

2

)

(where

f = −1/4e). Thus f has maximum value 1/4e and
minimum value −1/4e.

8. f (x, y) = (4x 2 − y2)e−x2+y2

f1(x, y) = e−x2+y2
2x(4− 4x 2 + y2)

f2(x, y) = e−x2+y2
(−2y)(1− 4x 2 + y2).

f has CPs (0, 0), (±1, 0). f (0, 0) = 0.
f (±1, 0) = 4/e.

a) Since f (0, y) = −y2ey2 → −∞ as y → ±∞,
and since f (x, x) = 3x 2e0 = 3x2 → ∞ as
x → ±∞, f does not have a minimum or a
maximum value on the xy-plane.

b) On y = 3x , f (x, 3x) = −5x 2e8x2 → −∞ as
x → ∞. Thus f can have no minimum value
on the wedge 0 ≤ y ≤ 3x . However, as noted in
(a), f (x, x)→ ∞ as x →∞. Since (x, x) is in
the wedge for x > 0, f cannot have a maximum
value on the wedge either.

9. Let the three pieces of wire have lengths x , y, and
L − x − y cm, respectively. The sum of areas of the
squares is

S = 1

16

(

x2 + y2 + (L − x − y)2
)

,

for which we must find extreme values over the trian-
gle x ≥ 0, y ≥ 0, x + y ≤ L. For critical points:

0 = ∂S

∂x
= 1

8

(

x − (L − x − y)
)

0 = ∂S

∂y
= 1

8

(

y − (L − x − y)
)

,

from which we obtain x = y = L/3. This CP is
inside the triangle, and S = L 2/48 at it.

On the boundary segment x = 0, we have

S = 1

16

(

y2 + (L − y)2
)

, (0 ≤ y ≤ L).

At y = 0 or y = L, we have S = L 2/16. For critical
points

0 = dS

dy
= 1

8

(

y − (L − y)
)

,
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so y = L/2 and S = L2/32. By symmetry the
extreme values of S on the other two boundary seg-
ments are the same.
Thus the minimum value of S is L 2/48, and corre-
sponds to three equal squares. The maximum value
of S is L2/16, and corresponds to using the whole
wire for one square.

10. Let the length, width, and height of the box be x , y,
and z in, respectively. Then the girth is g = 2x + 2y.
We require g + z ≤ 120 in. The volume V = xyz
of the box will be maximized under the constraint
2x + 2y + z = 120, so we look for CPs of

L = xyz + λ(2x + 2y + z − 120).

For CPs:

0 = ∂L

∂x
= yz + 2λ (A)

0 = ∂L

∂y
= xz + 2λ (B)

0 = ∂L

∂z
= xy + λ (C)

0 = ∂L

∂λ
= 2x + 2y + z − 120. (D)

Comparing (A), (B), and (C), we see that
x = y = z/2. Then (D) implies that 3z = 120,
so z = 40 and x = y = 20 in. The largest box has
volume

V = (20)(20)(40) = 16, 000 in3,

or, about 9.26 cubic feet.

11. The ellipse (x/a)2+(y/b)2 = 1 contains the rectangle
−1 ≤ x ≤ 1, −2 ≤ y ≤ 2, if (1/a2) + (4/b2) = 1.
The area of the ellipse is A = πab. We minimize A
by looking for critical points of

L = πab+ λ
(

1

a2 +
4

b2 − 1

)

.

For CPs:

0 = ∂L

∂a
= πb − 2λ

a3 (A)

0 = ∂L

∂b
= πa − 8λ

b3 (B)

0 = ∂L

∂λ
= 1

a2 +
4

b2 − 1. (C)

Multiplying (A) by a and (B) by b, we obtain
2λ/a2 = 8λ/b2, so that either λ = 0 or b = 2a.
Now λ = 0 implies b = 0, which is inconsistent with
(C). If b = 2a, then (C) implies that 2/a 2 = 1, so
a = √2. The smallest area of the ellipse is V = 4π
square units.

12. The ellipsoid (x/a)2 + (y/b)2 + (z/c)2 = 1 contains
the rectangle −1 ≤ x ≤ 1, −2 ≤ y ≤ 2, −3 ≤ z ≤ 3,
provided (1/a2) + (4/b2) + (9/c)2 = 1. The volume
of the ellipsoid is V = 4πabc/3. We minimize V by
looking for critical points of

L = 4π

3
abc+ λ

(
1

a2 +
4

b2 +
9

c2 − 1

)

.

For CPs:

0 = ∂L

∂a
= 4π

3
bc− 2λ

a3 (A)

0 = ∂L

∂b
= 4π

3
ac− 8λ

b3 (B)

0 = ∂L

∂c
= 4π

3
ab− 18λ

c3 (C)

0 = ∂L

∂λ
= 1

a2
+ 4

b2
+ 9

c2
− 1. (D)

Multiplying (A) by a, (B) by b, and (C) by c, we
obtain 2λ/a2 = 8λ/b2 = 18λ/c2, so that either λ = 0
or b = 2a, c = 3a. Now λ = 0 implies bc = 0,
which is inconsistent with (D). If b = 2a and c = 3a,
then (D) implies that 3/a2 = 1, so a = √3. The
smallest volume of the ellipsoid is

V = 4π

3
(
√

3)(2
√

3)(3
√

3) = 24
√

3π cubic units.

13. The box −1 ≤ x ≤ 1, −2 ≤ y ≤ 2, 0 ≤ z ≤ 2 is
contained in the region

0 ≤ z ≤ a

(

1− x2

b2 −
y2

c2

)

provided that (2/a)+ (1/b2) + (4/c2) = 1. The vol-
ume of the region would normally be calculated via
a “double integral” which we have not yet encoun-
tered. (See Chapter 5.) It can also be done directly
by slicing. A horizontal plane at height z (where
0 ≤ z ≤ a) intersects the region in an elliptic disk
bounded by the ellipse

x2

b2 +
y2

c2 = 1− z

a
.
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The area of this disk is

A(z) = π
(

b

√

1− z

a

)(

c

√

1− z

a

)

= πbc
(

1− z

a

)

.

Thus the region has volume

V = πbc
∫ a

0

(

1− z

a

)

dz = πabc

2
.

Thus we look for critical points of

L = πabc

2
+ λ

(
2

a
+ 1

b2 +
4

c2 − 1

)

.

For critical points:

0 = ∂L

∂a
= π

2
bc − 2λ

a2 (A)

0 = ∂L

∂b
= π

2
ac − 2λ

b3 (B)

0 = ∂L

∂c
= π

2
ab− 8λ

c3 (C)

0 = ∂L

∂λ
= 2

a
+ 1

b2
+ 4

c2
− 1. (D)

Multiplying (A) by a, (B) by b, and (C) by c, we
obtain 2λ/a = 2λ/b2 = 8λ/c2, so that either λ = 0
or b2 = a, c2 = 4a. Now λ = 0 implies bc = 0,
which is inconsistent with (D). If b2 = a and
c2 = 4a, then (D) implies that 4/a = 1, so a = 4.
The smallest volume of the region is
V = π(4)(2)(4)/2 = 16π cubic units.

14.

z

yy

z

x

Fig. R-13.14

The area of the window is

A = xy + x

2

√

z2 − x2

4
,

or, since x + 2y + 2z = L,

A = x

2

⎛

⎝L − x − 2z +
√

z2 − x2

4

⎞

⎠ .

For maximum A, we look for critical points:

0 = ∂A

∂x
= 1

2

⎛

⎝L − x − 2z +
√

z2 − x2

4

⎞

⎠

+ x

2

⎛

⎜
⎜
⎝
−1− x

4

√

z2 − x2

4

⎞

⎟
⎟
⎠

= L

2
− x − z + 2z2 − x2

4

√

z2 − x2

4

(A)

0 = ∂A

∂z
= −x + xz

2

√

z2 − x2

4

. (B)

Now (B) implies that either x = 0 or
z = 2

√

z2 − (x2/4). But x = 0 gives zero area rather
than maximum area, so the second alternative must
hold, and it implies that z = x/

√
3. Then (A) gives

L

2
=
(

1+ 1√
3

)

x + x

2
√

3
,

from which we obtain x = L/(2 + √3). The maxi-
mum area of the window is, therefore,

A

∣
∣
∣
∣
x= L

2+√3
, z= L/

√
3

2+√3

= 1

4

L2

2+√3

≈ 0.0670L2 sq. units.

15. If $1, 000x widgets per month are manufactured and
sold for $y per widget, then the monthly profit is
$1, 000P, where

P = xy − x2y3

27
− x .

We are required to maximize P over the rectangular
region R satisfying 0 ≤ x ≤ 3 and 0 ≤ y ≤ 2.
First look for critical points:

0 = ∂P

∂x
= y − 2xy3

27
− 1 (A)

0 = ∂P

∂y
= x − x2y2

9
. (B)
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(B) implies that x = 0, which yields zero profit, or
xy2 = 9, which, when substituted into (A), gives
y = 3 and x = 1. Unfortunately, the critical point
(1, 3) lies outside of R. Therefore the maximum P
must occur on the boundary of R.
We consider all four boundary segments of R.
On segment x = 0, we have P = 0.
On segment y = 0, we have P = −x ≤ 0.
On segment x = 3, 0 ≤ y ≤ 2, we have
P = 3y − (y3/3) − 3, which has values P = −3 at
y = 0 and P = 1/3 at y = 2. It also has a critical
point given by

0 = d P

dy
= 3− y2,

so y = √3 and P = 2
√

3− 3 ≈ 0.4641.
On segment y = 2, 0 ≤ x ≤ 3, we have
P = x − (8x2/27), which has values P = 0 at x = 0
and P = 1/3 at x = 3. It also has a critical point
given by

0 = d P

dx
= 1− 16x

27
,

so x = 27/16 and P = 27/32 ≈ 0.84375.
It appears that the greatest monthly profit corresponds
to manufacturing 27, 000/16 ≈ 1, 688 widgets/month
and selling them for $2 each.

16. The envelope of y = (x − c)3 + 3c is found by
eliminating c from that equation and

0 = ∂

∂c
[(x − c)3 + 3c] = −3(x − c)2 + 3.

This later equation implies that (x − c)2 = 1, so
x − c = ±1.
The envelope is y = (±1)3+ 3(x ∓ 1), or y = 3x ± 2.

17. Look for a solution of y + εxe y = −2x in the form
of a Maclaurin series

y = y(x, ε) = y(x, 0)+ εyε(x, 0)+ ε
2

2!
yεε(x, 0)+· · · .

Putting ε = 0 in the given equation, we get
y(x, 0) = −2x . Now differentiate the given equation
with respect to ε twice:

yε + xey + εxey yε = 0

yεε + 2xey yε + εxey y2
ε + εxey yεε = 0.

The first of these equations gives

yε(x, 0) = −xey(x,0) = −xe−2x .

The second gives

yεε(x, 0) = −2xey(x,0)yε(x, 0) = 2x2e−4x .

Thus y = −2x − 2εxe−2x + ε2x2e−4x + · · · .

18. a) G(y) =
∫ ∞

0

tan−1(xy)

x
dx

G′(y) =
∫ ∞

0

1

x

x

1+ x2y2 dx Let u = xy

du = y dx

= 1

y

∫ ∞

0

du

1+ u2 =
π

2y
for y > 0.

b)
∫ ∞

0

tan−1(πx)− tan−1x

x
dx

= G(π)− G(1) =
∫ π

1
G′(y) dy = π

2

∫ π

1

dy

y
= π lnπ

2
.

Challenging Problems 13 (page 753)

1. To minimize

In =
∫ π

−π

[

f (x)− a0

2
−

n
∑

k=1

(ak cos kx + bk sin kx)

]2

dx

we choose ak and bk to satisfy

0 = ∂ In

∂a0

= −
∫ π

−π

[

f (x)− a0

2
−

n∑

k=1

(ak cos kx + bk sin kx)

]

dx

=
[

πa0 −
∫ π

−π
f (x) dx

]

0 = ∂ In

∂am

= −2
∫ π

−π

[

f (x)− a0

2
−

n
∑

k=1

(ak cos kx + bk sin kx)

]

cos mx dx

= 2am

∫ π

−π
cos2 mx dx −

∫ π

−π
f (x) cos mx dx

0 = ∂ In

∂bm

= −2
∫ π

−π

[

f (x)− a0

2
−

n
∑

k=1

(ak cos kx + bk sin kx)

]

sin mx dx

= 2bm

∫ π

−π
sin2 mx dx −

∫ π

−π
f (x) sin mx dx .
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The simplifications in the integrals above resulted
from the facts that for any integers k and m,

∫ π

−π
cos kx cos mx dx = 0 unless k = m

∫ π

−π
sin kx sin mx dx = 0 unless k = m, and

∫ π

−π
cos kx sin mx dx = 0.

Since

∫ π

−π
cos2 mx dx =

∫ π

−π
sin2 mx dx = π,

In is minimized when

am = 1

π

∫ π

−π
f (x) cos mx dx for 0 ≤ m ≤ n, and

bm = 1

π

∫ π

−π
f (x) sin mx dx for 1 ≤ m ≤ n.

2. If f (x) =
{

0 for −π ≤ x < 0
x for 0 ≤ x ≤ π , then

a0 = 1

π

∫ π

0
x dx = π

2

ak = 1

π

∫ π

0
x cos kx dx

U = x

dU = dx

dV = cos kx dx

V = 1

k
sin kx

= 1

πk

(

x sin kx

∣
∣
∣
∣

π

0
−
∫ π

0
sin kx dx

)

= cos kπ − 1

πk2 =
{

0 if k is even

− 2

πk2 if k is odd

bk = 1

π

∫ π

0
x sin kx dx

U = x

dU = dx

dV = sin kx dx

V = −1

k
cos kx

= − 1

πk

(

x cos kx

∣
∣
∣
∣

π

0
−
∫ π

0
cos kx dx

)

= (−1)k+1

k
.

Because of the properties of trigonometric integrals
listed in the solution to Problem 1,

∫ π

−π

(

a0

2
+

n∑

k=1

(ak cos kx + bk sin kx)

)2

dx

= πa2
0

2
+ π

n
∑

k=0

(a2
k + b2

k)

∫ π

−π
f (x)

(

a0

2
+

n
∑

k=1

(ak cos kx + bk sin kx)

)

dx

= πa2
0

2
+ π

n
∑

k=0

(a2
k + b2

k).

Therefore

In =
∫ π

−π

[

f (x)−
(

a0

2
+

n
∑

k=1

(ak cos kx + bk sin kx)

)]2

dx

=
∫ π

−π
(

f (x)
)2

dx − 2

(

πa2
0

2
+ π

n
∑

k=0

(a2
k + b2

k)

)

+ πa2
0

2
+ π

n∑

k=0

(a2
k + b2

k)

=
∫ π

−π
(

f (x)
)2

dx −
(

πa2
0

2
+ π

n
∑

k=0

(a2
k + b2

k)

)

.

In fact, it can be shown that In → 0 as n→∞.

3. Let I (x) =
∫ x

0

ln(1+ t x)

1+ t2 dt . Then

I ′(x) = ln(1+ x2)

1+ x2
+
∫ x

0

t

(1+ t2)(1+ t x)
dt .

If we expand the latter integrand in partial fractions
with respect to t , we obtain

t

(1+ t2)(1+ t x)
= x + t

(1+ x2)(1+ t2)
− x

(1+ x2)(1+ t x)
.
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Now we have
∫ x

0

(x + t) dt

(1+ x2)(1+ t2)
= 2x tan−1t + ln(1+ t2)

2(1+ x2)

∣
∣
∣
∣

x

0

= 2x tan−1x + ln(1+ x2)

2(1+ x2)

= 1

2

d

dx
tan−1x ln(1+ x2)

∫ x

0

x dt

(1+ x2)(1+ t x)
= x

1+ x2

∫ x

0

dt

1+ t x
Let u = 1+ t x

du = x dt

= 1

1+ x2

∫ 1+x2

1

du

u
= ln(1+ x2)

1+ x2 .

Thus

I ′(x) = ln(1+ x2)

1+ x2 + 1

2

d

dx
tan−1x ln(1+ x2)− ln(1+ x2)

1+ x2

= 1

2

d

dx
tan−1x ln(1+ x2).

Therefore, I (x) = 1

2
tan−1x ln(1 + x2) + C . Since

I (0) = 0, we have C = 0, and
∫ x

0

ln(1+ t x)

1+ t2 dx = 1

2
tan−1x ln(1+ x2).

4.
y

x

θ1

θ2

P1

P3

θ3D2

D3
P2

D1

P

Fig. C-13.4

If Di = |P Pi | for i = 1, 2, 3, then

D2
i = (x − xi )

2 + (y − yi)
2

2Di
∂Di

∂x
= 2(x − xi )

∂Di

∂x
= x − xi

Di
= cos θi

where θi is the angle between
−−→
P Pi and i.

Similarly ∂Di/∂y = sin θi . To minimize
S = D1 + D2 + D3 we look for critical points:

0 = ∂S

∂x
= cos θ1 + cos θ2 + cos θ3

0 = ∂S

∂y
= sin θ1 + sin θ2 + sin θ3.

Thus cos θ1 + cos θ2 = − cos θ3 and
sin θ1 + sin θ2 = − sin θ3. Squaring and adding these
two equations we get

2+ 2(cos θ1 cos θ2 + sin θ1 sin θ2) = 1,

or cos(θ1 − θ2) = −1/2. Thus θ1 − θ2 = ±2π/3.
Similarly θ1 − θ3 = θ2 − θ3 = ±2π/3. Thus P
should be chosen so that

−−→
P P1,

−−→
P P2,and

−−→
P P3 make

120◦ angles with each other. This is possible only if
all three angles of the triangle are less than 120◦. If
the triangle has an angle of 120◦ or more (say at P1),
then P should be that point on the side P2 P3 such
that P P1 ⊥ P2 P3.
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CHAPTER 14. MULTIPLE INTEGRATION

Section 14.1 Double Integrals (page 759)

1. f (x, y) = 5− x − y

R = 1×
[

f (0, 1)+ f (0, 2)+ f (1, 1)+ f (1, 2)

+ f (2, 1)+ f (2, 2)
]

= 4+ 3+ 3+ 2 + 2+ 1 = 15

2. R = 1 ×
[

f (1, 1)+ f (1, 2)+ f (2, 1)+ f (2, 2)

+ f (3, 1)+ f (3, 2)
]

= 3 + 2+ 2+ 1 + 1+ 0 = 9

3. R = 1 ×
[

f (0, 0)+ f (0, 1)+ f (1, 0)+ f (1, 1)

+ f (2, 0)+ f (2, 1)
]

= 5 + 4+ 4+ 3 + 3+ 2 = 21

4. R = 1 ×
[

f (1, 0)+ f (1, 1)+ f (2, 0)+ f (2, 1)

+ f (3, 0)+ f (3, 1)
]

= 4 + 3+ 3+ 2 + 2+ 1 = 15

5. R = 1 ×
[

f ( 1
2 ,

1
2 )+ f ( 1

2 ,
3
2 )+ f ( 3

2 ,
1
2 )+ f ( 3

2 ,
3
2 )

+ f ( 5
2 ,

1
2 )+ f ( 5

2 ,
3
2 )
]

= 4 + 3+ 3+ 2 + 2+ 1 = 15

6. I =
∫∫

D
(5 − x − y) d A is the volume of the solid in the

figure.

x y

z

3

5

32

2

z = 5− x − y

Fig. 14.1.6

The solid is split by the vertical plane through the z-
axis and the point (3, 2, 0) into two pyramids, each with
a trapezoidal base; one pyramid’s base is in the plane
y = 0 and the other’s is in the plane z = 0. I is the sum
of the volumes of these pyramids:

I = 1

3

(
5+ 2

2
(3)(2)

)

+ 1

3

(
5+ 3

2
(2)(3)

)

= 15.

7. J =
∫∫

D
1 d A

R = 4× 1×
[

5+ 5+ 5+ 5+ 4] = 96

8. R = 4× 1×
[

4 + 4+ 4+ 3+ 0] = 60

9. R = 4× 1×
[

5 + 5+ 4+ 4+ 2] = 80

10. J = area of disk = π(52) ≈ 78.54

11. R = 1× (e1/2 + e1/2 + e3/2 + e3/2 + e5/2 + e5/2)

≈ 32.63

12. f (x, y) = x2 + y2

R = 4× 1×
[

f ( 1
2 ,

1
2 )+ f ( 3

2 ,
1
2 )+ f ( 5

2 ,
1
2 )+ f ( 7

2 ,
1
2 )

+ f ( 9
2 ,

1
2 )+ f ( 1

2 ,
3
2 )+ f ( 3

2 ,
3
2 )+ f ( 5

2 ,
3
2 )

+ f ( 7
2 ,

3
2 )+ f ( 9

2 ,
3
2 )

+ f ( 1
2 ,

5
2 )+ f ( 3

2 ,
5
2 )+ f ( 5

2 ,
5
2 )+ f ( 7

2 ,
5
2 )

+ f ( 1
2 ,

7
2 )+ f ( 3

2 ,
7
2 )+ f ( 5

2 ,
7
2 )+ f ( 1

2 ,
9
2 )+ f ( 3

2 ,
9
2 )
]

= 918

13.
∫∫

R d A = area of R = 4× 5 = 20.
y

x

3−1

1

−4

R

Fig. 14.1.13

14.
∫∫

D
(x + 3) d A =

∫∫

D
x d A+ 3

∫∫

D
d A

= 0+ 3(area of D)

= 3× π22

2
= 6π.

The integral of x over D is zero because D is symmetri-
cal about x = 0.
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y

x

2

D

y=
√

4−x2

2−2

Fig. 14.1.14

15. T is symmetric about the line x + y = 0. Therefore,
∫∫

T
(x + y) d A = 0.

y

x

T

(2,2)

(1,−1)

(−2,−2)

(−1,1)

Fig. 14.1.15

16.
∫∫

|x|+|y|≤1

(

x3 cos(y2)+ 3 sin y − π
)

d A

= 0+ 0 − π
(

area bounded by |x | + |y| = 1

= −π × 4× 1

2
(1)(1) = −2π.

(Each of the first two terms in the integrand is an odd
function of one of the variables, and the square is sym-
metrical about each coordinate axis.)

y

x

1

1

−1

−1

Fig. 14.1.16

17.
∫∫

x2+y2≤1
(4x2 y3 − x + 5) d A

= 0− 0 + 5(area of disk) (by symmetry)

= 5π.

y

x

x2+y2=1

1

Fig. 14.1.17

18.
∫∫

x2+y2≤a2

√

a2 − x2 − y2 d A

= volume of hemisphere shown in the figure

= 1

2

(
4

3
πa3

)

= 2

3
πa3.

x

y

z

a z=
√

a2−x2−y2

x2+y2=a2

a

Fig. 14.1.18

19.
∫∫

x2+y2≤a2

(

a −
√

x2 + y2
)

d A

= volume of cone shown in the figure

= 1

3
πa3.

x

y

z
a

y=a−
√

x2+y2

x2+y2=a2

a

Fig. 14.1.19

20. By the symmetry of S with respect to x and y we have

∫∫

S
(x + y) d A = 2

∫∫

S
x d A

= 2 × (volume of wedge shown in the figure)

= 2 × 1

2
(a2)a = a3.
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x

y

z

z=x

S

(a,a,0)

Fig. 14.1.20

21.
∫∫

T
(1− x − y) d A

= volume of the tetrahedron shown in the figure

= 1

3

(1

2
(1)(1)

)

(1) = 1

6
.

x

y

z

z=1−x−y

(0,0,1)

(0,1,0)

(1,0,0)

T

Fig. 14.1.21

22.
∫∫

R

√

b2 − y2 d A

= volume of the quarter cylinder shown in the figure

= 1

4
(πb2)a = 1

4
πab2.

x
y

z

b z=
√

b2−y2

b

a

Fig. 14.1.22

Section 14.2 Iteration of Double Integrals in
Cartesian Coordinates (page 766)

1.
∫ 1

0
dx
∫ x

0
(xy + y2) dy

=
∫ 1

0
dx

(
xy2

2
+ y3

3

)∣
∣
∣
∣

y=x

y=0

= 5

6

∫ 1

0
x3 dx = 5

24
.

2.
∫ 1

0

∫ y

0
(xy + y2) dx dy

=
∫ 1

0

(
x2y

2
+ xy2

)∣
∣
∣
∣

x=y

x=0
dy

= 3

2

∫ 1

0
y3 dy = 3

8
.

3.
∫ π

0

∫ x

−x
cos y dy dx

=
∫ π

0
sin y

∣
∣
∣
∣

y=x

y=−x
dx

= 2
∫ π

0
sin x dx = −2 cos x

∣
∣
∣
∣

π

0
= 4.

4.
∫ 2

0
dy

∫ y

0
y2exy dx

=
∫ 2

0
y2 dy

(

1

y
exy
∣
∣
∣
∣

x=y

x=0

)

=
∫ 2

0
y(ey2 − 1) dy = ey2 − y2

2

∣
∣
∣
∣

2

0
= e4 − 5

2
.

5.
∫∫

R
(x2 + y2) d A =

∫ a

0
dx
∫ b

0
(x2 + y2) dy

=
∫ a

0
dx

(

x2y + y3

3

)∣
∣
∣
∣

y=b

y=0

=
∫ a

0

(

bx2 + 1

3
b3
)

dx

= 1

3

(

bx3 + b3x
)
∣
∣
∣
∣

a

0
= 1

3
(a3b + ab3).

y

xx a

b

R

Fig. 14.2.5

6.
∫∫

R
x2y2 d A =

∫ a

0
x2 dx

∫ b

0
y2 dy

= a3

3

b3

3
= a3b3

9
.
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7.
∫∫

S
(sin x + cos y) d A

=
∫ π/2

0
dx

∫ π/2

0
(sin x + cos y) dy

=
∫ π/2

0
dx
(

y sin x + sin y
)
∣
∣
∣
∣

y=π/2

y=0

=
∫ π/2

0

(π

2
sin x + 1

)

dx

=
(

−π
2

cos x + x
)
∣
∣
∣
∣

π/2

0
= π

2
+ π

2
= π.

y

xx
π
2

π
2

S

Fig. 14.2.7

8.
∫∫

T
(x − 3y) d A =

∫ a

0
dx

∫ b(1−(x/a))

0
(x − 3y) dy

=
∫ a

0
dx

(

xy − 3

2
y2
)∣
∣
∣
∣

y=b(1−(x/a))

y=0

=
∫ a

0

[

b

(

x − x2

a

)

− 3

2
b2
(

1− 2x

a
+ x2

a2

)]

dx

=
(

b
x2

2
− b

a

x3

3
− 3

2
b2x + 3

2

b2x2

a
− 1

2

b2x3

a2

)∣
∣
∣
∣

a

0

= a2b

6
− ab2

2
.

y

xx a

T

b
x
a+

y
b=1

Fig. 14.2.8

9.
∫∫

R
xy2 d A =

∫ 1

0
x dx

∫ √x

x2
y2 dy

=
∫ 1

0
x dx

(
1

3
y3
)∣
∣
∣
∣

y=√x

y=x2

= 1

3

∫ 1

0

(

x5/2 − x7
)

dx

= 1

3

(
2

7
x7/2 − x8

8

)∣
∣
∣
∣

1

0

= 1

3

(
2

7
− 1

8

)

= 3

56
.

y

x

(1,1)

y=x2

x=y2

R

x

Fig. 14.2.9

10.
∫∫

D
x cos y d A

=
∫ 1

0
x dx

∫ 1−x2

0
cos y dy

=
∫ 1

0
x dx (sin y)

∣
∣
∣
∣

y=1−x2

y=0

=
∫ 1

0
x sin(1− x2) dx Let u = 1− x2

du = −2x dx

= −1

2

∫ 0

1
sin u du = 1

2
cos u

∣
∣
∣
∣

0

1
= 1− cos(1)

2
.

y

x

1
y=1−x2

1

D

Fig. 14.2.10
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11. For intersection: xy = 1, 2x + 2y = 5.
Thus 2x2 − 5x + 2 = 0, or (2x − 1)(x − 2) = 0. The
intersections are at x = 1/2 and x = 2. We have

∫∫

D
ln x d A =

∫ 2

1/2
ln x dx

∫ (5/2)−x

1/x
dy

=
∫ 2

1/2
ln x

(
5

2
− x − 1

x

)

dx

=
∫ 2

1/2
ln x

(
5

2
− x

)

dx − 1

2

(

ln x
)2
∣
∣
∣
∣

2

1/2

U = ln x

dU = dx

x

dV =
(

5

2
− x

)

dx

V = 5

2
x − x2

2

= −1

2

(

(ln 2)2 − (ln 1

2
)2
)

+
(

5

2
x − x2

2

)

ln x

∣
∣
∣
∣

2

1/2

−
∫ 2

1/2

(
5

2
− x

2

)

dx

= (5 − 2) ln 2−
(

5

4
− 1

8

)

ln
1

2
− 15

4
+ 15

16

= 33

8
ln 2− 45

16
.

y

x

(
1
2 ,2
)

2x+2y=5(
2, 12

)

xy=1

D

Fig. 14.2.11

12.
∫∫

T

√

a2 − y2 d A =
∫ a

0

√

a2 − y2 dy
∫ a

y
dx

=
∫ a

0
(a − y)

√

a2 − y2 dy

= a
∫ a

0

√

a2 − y2 dy −
∫ a

0
y
√

a2 − y2 dy

Let u = a2 − y2

du = −2y dy

= a
πa2

4
+ 1

2

∫ 0

a2
u1/2 du

= πa3

4
− 1

3
u3/2

∣
∣
∣
∣

a2

0
=
(
π

4
− 1

3

)

a3.

y

x

(a,a)

T
y=x

a

y

Fig. 14.2.12

13.
∫∫

R

x

y
ey d A =

∫ 1

0

ey

y
dy

∫ √y

y
x dx

= 1

2

∫ 1

0
(1 − y)ey dy

U = 1− y

dU = −dy

dV = ey dy

V = ey

= 1

2

[

(1 − y)ey
∣
∣
∣
∣

1

0
+
∫ 1

0
ey dy

]

= −1

2
+ 1

2
(e − 1) = e

2
− 1.

y

x

y=x2

(1,1)

R

y=x

Fig. 14.2.13

14.
∫∫

T

xy

1 + x4 d A =
∫ 1

0

x

1+ x4 dx
∫ x

0
y dy

= 1

2

∫ 1

0

x3

1+ x4 dx

= 1

8
ln(1+ x4)

∣
∣
∣
∣

1

0
= ln 2

8
.

y

x

(1,1)

T

y=x

1

Fig. 14.2.14
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15.
∫ 1

0
dy

∫ 1

y
e−x2

dx =
∫

R
e−x2

dx (R as shown)

=
∫ 1

0
e−x2

dx
∫ x

0
dy

=
∫ 1

0
xe−x2

dx Let u = x2

du = 2x dx

= 1

2

∫ 1

0
e−u du = −1

2
e−u

∣
∣
∣
∣

1

0
= 1

2

(

1− 1

e

)

.

y

x

(1,1)

R

y=x

1

1

Fig. 14.2.15

16.
∫ π/2

0
dy

∫ π/2

y

sin x

x
dx =

∫∫

R

sin x

x
d A (R as shown)

=
∫ π/2

0

sin x

x
dx

∫ x

0
dy =

∫ π/2

0
sin x dx = 1.

y

x

(π/2,π/2)

R

y=x

π/2

1

Fig. 14.2.16

17.
∫ 1

0
dx

∫ 1

x

yλ

x2 + y2
dy (λ > 0)

=
∫∫

R

yλ

x2 + y2 d A (R as shown)

=
∫ 1

0
yλ dy

∫ y

0

dx

x2 + y2

=
∫ 1

0
yλ dy

1

y

(

tan−1 x

y

)∣
∣
∣
∣

x=y

x=0

= π

4

∫ 1

0
yλ−1 dy = πyλ

4λ

∣
∣
∣
∣

1

0
= π

4λ
.

y

x

(1,1)

R

y=x

1

Fig. 14.2.17

18.
∫ 1

0
dx

∫ x1/3

x

√

1− y4 dy

=
∫∫

R

√

1 − y4 d A (R as shown)

=
∫ 1

0
y
√

1− y4 dy −
∫ 1

0
y3
√

1− y4 dy

Let u = y2

du = 2y dy

Let v = 1− y4

dv = −4y3 dy

= 1

2

∫ 1

0

√

1− u2 du + 1

4

∫ 0

1
v1/2 dv

= 1

2

(π

4
× 12

)

+ 1

6
v3/2

∣
∣
∣
∣

0

1
= π

8
− 1

6
.

y

x

y=x1/3
(1,1)

y=x
R

Fig. 14.2.18

19. V =
∫ 1

0
dx
∫ x

0
(1− x2) dy

=
∫ 1

0
(1− x2)x dx = 1

2
− 1

4
= 1

4
cu. units.

20. V =
∫ 1

0
dy
∫ y

0
(1− x2) dx

=
∫ 1

0

(

y − y3

3

)

dy = 1

2
− 1

12
= 5

12
cu. units.
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21. V =
∫ 1

0
dx
∫ 1−x

0
(1 − x2 − y2) dy

=
∫ 1

0

(

(1 − x2)y − y3

3

)∣
∣
∣
∣

y=1−x

y=0
dx

=
∫ 1

0

(

(1 − x2)(1 − x)− (1− x)3

3

)

dx

=
∫ 1

0

(
2

3
− 2x2 + 4x3

3

)

dx = 2

3
− 2

3
+ 1

3
= 1

3
cu. units.

22. z = 1 − y2 and z = x2 intersect on the cylinder
x2 + y2 = 1. The volume lying below z = 1 − y2

and above z = x2 is

V =
∫∫

x2+y2≤1
(1− y2 − x2) d A

= 4
∫ 1

0
dx
∫
√

1−x2

0
(1 − x2 − y2) dy

= 4
∫ 1

0
dx

(

(1 − x2)y − y3

3

)∣
∣
∣
∣

y=
√

1−x2

y=0

= 8

3

∫ 1

0
(1 − x2)3/2 dx Let x = sin u

dx = cos u du

= 8

3

∫ π/2

0
cos4 u du = 2

3

∫ π/2

0
(1 + cos 2u)2 du

= 2

3

∫ π/2

0

(

1 + 2 cos 2u + 1 + cos 4u

2

)

du

= 2

3

3

2

π

2
= π

2
cu. units.

23. V =
∫ 2

1
dx
∫ x

0

1

x + y
dy

=
∫ 2

1
dx

(

ln(x + y)

∣
∣
∣
∣

y=x

y=0

)

=
∫ 2

1
(ln 2x − ln x) dx = ln 2

∫ 2

1
dx = ln 2 cu. units.

24. V =
∫ π1/4

0
dy
∫ y

0
x2 sin(y4) dx

= 1

3

∫ π1/4

0
y3 sin(y4) dy Let u = y4

du = 4y3 dy

= 1

12

∫ π

0
sin u du = 1

6
cu. units.

25. Vol =
∫∫

E
(1− x2 − 2y2) d A

= 4
∫ 1

0
dx

∫
√
(1−x2)/2

0
(1− x2 − 2y2) dy

= 4
∫ 1

0

(
1√
2
(1 − x2)3/2 − 2

3

(1− x2)3/2

2
√

2

)

dx

= 4
√

2

3

∫ 1

0
(1− x2)3/2 dx Let x = sin θ

dx = cos θ dθ

= 4
√

2

3

∫ π/2

0
cos4 θ dθ = 4

√
2

3

∫ π/2

0

(
1+ cos 2θ

2

)2

dθ

=
√

2

3

∫ π/2

0

(

1+ 2 cos 2θ + 1+ cos 4θ

2

)

dθ

=
√

2

3

[
3θ

2
+ sin 2θ + 1

8
sin 4θ

]∣
∣
∣
∣

π/2

0
= π

2
√

2
cu. units.

y

x

x2+2y2=1

1

1/
√

2

Fig. 14.2.25

26. Vol =
∫∫

T

(

2− x

a
− y

b

)

d A

=
∫ a

0
dx

∫ b(1−(x/a))

0

(

2− x

a
− y

b

)

dy

=
∫ a

0

[(

2 − x

a

)

b
(

1− x

a

)

− 1

2b
b2
(

1− x

a

)2
]

dx

= b

2

∫ a

0

(

3− 4x

a
+ x2

a2

)

dx

= b

2

(

3x − 2x2

a
+ x3

3a2

)∣
∣
∣
∣

a

0
= 2

3
ab cu. units.

y

x

b
x
a +

y
b=1

T

a

Fig. 14.2.26
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27. Vol = 8 × part in the first octant

= 8
∫ a

0
dx

∫
√

a2−x2

0

√

a2 − x2 dy

= 8
∫ a

0
(a2 − x2) dx

= 8

(

a2x − x3

3

)∣
∣
∣
∣

a

0
= 16

3
a3 cu. units.

x

y

z

a

x2+z2=a2

a

x2+y2=a2
a

Fig. 14.2.27

28. The part of the plane z = 8 − x lying inside the elliptic
cylinder x2 = 2y2 = 8 lies above z = 0. The part of
the plane z = y − 4 inside the cylinder lies below z = 0.
Thus the required volume is

Vol =
∫∫

x2+2y2≤8

(

8− x − (y − 4)
)

d A

=
∫∫

x2+2y2≤8
12 d A (by symmetry)

= 12× area of ellipse
x2

8
+ y2

4
= 1

= 12× π(2√2)(2) = 48
√

2π cu. units.

29. With g(x) and G(x) defined as in the statement of the
problem, we have

∫ x

a
G(u) du =

∫ x

a
du

∫ d

c
f1(u, t) dt

=
∫ d

c
dt
∫ x

a
f1(u, t) du

=
∫ d

c

(

f (x, t)− f (a, t)
)

dt = g(x)− C,

where C =
∫ d

c
f (a, t) dt is independent of x . Applying

the Fundamental Theorem of Calculus we obtain

g′(x) = d

dx

∫ x

a
G(u) du = G(x).

30. Since F ′(x) = f (x) and G ′(x) = g(x) on a ≤ x ≤ b, we
have

∫∫

T
f (x)g(x) d A =

∫ b

a
f (x) dx

∫ x

a
G ′(y) dy

=
∫ b

a
f (x)

(

G(x)− G(a)
)

dx

=
∫ b

a
f (x)G(x) dx − G(a)F(b)+ G(a)F(a)

∫∫

T
f (x)g(x) d A =

∫ b

a
g(y) dy

∫ b

y
F ′(x) dx

=
∫ b

a
g(y)

(

F(b)− F(y)
)

dy

= F(b)G(b)− F(b)G(a)−
∫ b

a
F(y)g(y) dx .

Thus

∫ b

a
f (x)G(x) dx = F(b)G(b)−F(a)G(a)−

∫ b

a
g(y)F(y) dy.

y

x

(b,b)

T

(a,a) (b,a)

Fig. 14.2.30

Section 14.3 Improper Integrals and a
Mean-Value Theorem (page 771)

1.
∫∫

Q
e−x−y d A =

∫ ∞

0
e−x dx

∫ ∞

0
e−y dy

=
(

lim
R→∞(−e−x )

∣
∣
∣
∣

R

0

)2

= 1 (converges)

2.
∫∫

Q

d A

(1 + x2)(1 + y2)
=
∫ ∞

0

dx

1+ x2

∫ ∞

0

dy

1+ y2

=
(

lim
R→∞(tan−1x)

∣
∣
∣
∣

R

0

)2

= π2

4

(converges)
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3.
∫∫

S

y

1+ x2 d A =
∫ 1

0
y dy

∫ ∞

−∞
dx

1+ x2

= 1

2

(

lim
S→−∞
R→∞

tan−1x)

∣
∣
∣
∣

R

S

)

= π

2
(converges)

4.
∫∫

T

1

x
√

y
d A =

∫ 1

0

dx

x

∫ 2x

x

dy√
y

=
∫ 1

0

2(
√

2x −√x)

x
dx

= 2(
√

2 − 1)
∫ 1

0

dx√
x
= 4(
√

2 − 1) (converges)

y

x

(1, 2)

(1, 1)
T

y = x

y = 2x

Fig. 14.3.4

5.
∫∫

Q

x2 + y2

(1 + x2)(1 + y2)
d A

= 2
∫∫

Q

x2 d A

(1 + x2)(1 + y2)
(by symmetry)

= 2
∫ ∞

0

x2 dx

1+ x2

∫ ∞

0

dy

1+ y2 = π
∫ ∞

0

x2 dx

1+ x2 ,

which diverges to infinity, since x2/(1 + x2) ≥ 1/2 on
[1,∞).

6.
∫∫

H

d A

1+ x + y
=
∫ ∞

0
dx
∫ 1

0

1

1 + x + y
dy

=
∫ ∞

0

(

ln(1+ x + y)

∣
∣
∣
∣

y=1

y=0

)

dx

=
∫ ∞

0
ln

(
2+ x

1+ x

)

dx =
∫ ∞

0
ln

(

1 + 1

1+ x

)

dx .

Since lim
u→0+

ln(1 + u)

u
= 1, we have ln(1 + u) ≥ u/2 on

some interval (0, u0). Therefore

ln

(

1+ 1

1 + x

)

≥ 1

2(1 + x)

on some interval (x0,∞), and

∫ ∞

0
ln

(

1+ 1

1+ x

)

dx ≥
∫ ∞

x0

1

2(1 + x)
dx,

which diverges to infinity. Thus the given double integral
diverges to infinity by comparison.

7.
∫∫

�
2

e−(|x|+|y|) d A = 4
∫∫

x≥0
y≥0

e−(x+y) d A

= 4
∫ ∞

0
e−x dx

∫ ∞

0
e−y dy

= 4

(

lim
R→∞−e−x

∣
∣
∣
∣

R

0

)2

= 4

(The integral converges.)

8. On the strip S between the parallel lines x + y = 0 and
x + y = 1 we have e−|x+y| = e−(x+y) ≥ 1/e. Since S has
infinite area,

∫∫

S
e−|x+y| d A =∞.

Since e−|x+y| > 0 for all (x, y) in �2, we have

∫∫

�
2

e−|x+y| d A >
∫∫

S
e−|x+y| d A,

and the given integral diverges to infinity.
y

x

x+y=1

x+y=0

S

Fig. 14.3.8

9.
∫∫

T

1

x3
e−y/x d A =

∫ ∞

1

dx

x3

∫ x

0
e−y/x dy

=
∫ ∞

1

dx

x3

(

−xe−y/x
∣
∣
∣
∣

y=x

y=0

)

=
(

1− 1

e

)∫ ∞

1

dx

x2

=
(

1− 1

e

)

lim
R→∞

(

− 1

x

∣
∣
∣
∣

R

1

)

= 1− 1

e

(The integral converges.)
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y

x

y=x

T(1,1)

1

Fig. 14.3.9

10.
∫∫

T

d A

x2 + y2 =
∫ ∞

1
dx

∫ x

0

dy

x2 + y2

=
∫ ∞

1
dx

(

1

x
tan−1 y

x

∣
∣
∣
∣

y=x

y=0

)

= π

4

∫ ∞

1

dx

x
= ∞

(The integral diverges to infinity.)

11. Since e−xy > 0 on Q we have

∫∫

Q
e−xy d A >

∫∫

R
e−xy d A,

where R satisfies 1 ≤ x <∞, 0 ≤ y ≤ 1/x . Thus

∫∫

Q
e−xy d A >

∫ ∞

1
dx

∫ 1/x

0
e−xy dy >

1

e

∫ ∞

1

dx

x
=∞.

The given integral diverges to infinity.
y

x

y= 1
x

R

1

Q

Fig. 14.3.11

12.
∫∫

R

1

x
sin

1

x
d A =

∫ ∞

2/π

1

x
sin

1

x
dx

∫ 1/x

0
dy

=
∫ ∞

2/π

1

x2
sin

1

x
dx Let u = 1/x

du = −1/x2 dx

= −
∫ 0

π/2
sin u du = cos u

∣
∣
∣
∣

0

π/2
= 1

(The integral converges.)

13. a) I =
∫∫

S

d A

x + y
=
∫ 1

0
dx

∫ 1

0

dy

x + y

=
∫ 1

0
dx

(

ln(x + y)

∣
∣
∣
∣

y=1

y=0

)

= lim
c→0+

[

(x + 1) ln(x + 1)− x ln x
]
∣
∣
∣
∣

1

c

= lim
c→0+ 2 ln 2− 0− (c + 1) ln(c + 1)+ c ln c = 2 ln 2.

y

x

S

(1,1)

y

x

T

(1,1)

Fig. 14.3.13a Fig. 14.3.13b

b) I = 2
∫∫

T

d A

x + y
= 2 lim c→ 0+

∫ 1

c
dx

∫ x

0

dy

x + y

= 2 lim c→ 0+
∫ 1

c
dx

(

ln(x + y)

∣
∣
∣
∣

y=x

y=0

)

= 2 lim
c→0+

∫ 1

c
(ln 2x − ln x) dx = 2 ln 2

∫ 1

0
dx = 2 ln 2.

14. Vol =
∫∫

S

2xy

x2 + y2 d A

= 4
∫∫

T

2xy

x2 + y2 d A (T as in #9(b))

= 4
∫ 1

0
x dx

∫ x

0

y dy

x2 + y2
Let u = x2 + y2

du = 2y dy

= 2
∫ 1

0
x dx

∫ 2x2

x2

du

u

= 2 ln 2
∫ 1

0
x dx = ln 2 cu. units.

15.
∫∫

Dk

d A

xa
=
∫ 1

0

dx

xa

∫ xk

0
dy =

∫ 1

0
xk−a dx , which con-

verges if k − a > −1, that is, if k > a − 1.

16.
∫∫

Dk

yb d A =
∫ 1

0
dx

∫ xk

0
yb dy =

∫ 1

0

xk(b+1)

b + 1
dx if

b > −1. This latter integral converges if k(b + 1) > −1.
Thus, the given integral converges if b > −1 and
k > −1/(b + 1).

17.
∫∫

Rk

xa d A =
∫ ∞

1
xa dx

∫ xk

0
dy =

∫ ∞

1
xk+a dx , which

converges if k + a < −1, that is, if k < −(a + 1).
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18.
∫∫

Rk

d A

yb
=
∫ ∞

1
dx

∫ xk

0

dy

yb
=
∫ ∞

1

xk(1−b)

1− b
dx if b < 1.

This latter integral converges if k(1 − b) < −1. Thus, the
given integral converges if b < 1 and k < −1/(1 − b).

19.
∫∫

Dk

xa yb d A =
∫ 1

0
xa dx

∫ xk

0
yb dy =

∫ 1

0

xa+(b+1)k

b + 1
dx ,

if b > −1. This latter integral converges if
a + (b + 1)k > −1. Thus, the given integral converges if
b > −1 and k > −(a + 1)/(b + 1).

20.
∫∫

Rk

xa yb d A =
∫ ∞

1
xa dx

∫ xk

0
yb dy =

∫ ∞

1

xa+(b+1)k

b + 1
dx ,

if b > −1. This latter integral converges if
a + (b + 1)k < −1. Thus, the given integral converges if
b > −1 and k < −(a + 1)/(b + 1).

21. One iteration:

∫∫

S

x − y

(x + y)3
d A =

∫ 1

0
dx

∫ 1

0

x − y

(x + y)3
dy Let u = x + y

du = dy

=
∫ 1

0
dx

∫ x+1

x

2x − u

u3 du

=
∫ 1

0
dx

(
1

u
− x

u2

)∣
∣
∣
∣

u=x+1

u=x

=
∫ 1

0

(
1

x + 1
− x

(x + 1)2
− 1

x
+ 1

x

)

dx

=
∫ 1

0

dx

(x + 1)2
= − 1

x + 1

∣
∣
∣
∣

1

0
= 1

2
.

Other iteration:

∫∫

S

x − y

(x + y)3
d A =

∫ 1

0
dy

∫ 1

0

x − y

(x + y)3
dx Let u = x + y

du = dx

=
∫ 1

0
dy

∫ y+1

y

u − 2y

u3 du

=
∫ 1

0
dy

(
y

u2 −
1

u

)∣
∣
∣
∣

u=y+1

u=y

=
∫ 1

0

(
y

(y + 1)2
− 1

y + 1
− 1

y
+ 1

y

)

dy

= −
∫ 1

0

dx

(y + 1)2
= 1

y + 1

∣
∣
∣
∣

1

0
= −1

2
.

These seemingly contradictory results are explained by
the fact that the given double integral is improper and
does not, in fact, exist, that is, it does not converge. To
see this, we calculate the integral over a certain sub-
set of the square S, namely the triangle T defined by
0 < x < 1, 0 < y < x .

∫∫

T

x − y

(x + y)3
d A =

∫ 1

0
dx

∫ x

0

x − y

(x + y)3
dy

Let u = x + y

du = dy

=
∫ 1

0
dx

∫ 2x

x

2x − u

u3 du

=
∫ 1

0
dx

(
1

u
− x

u2

)∣
∣
∣
∣

u=2x

u=x

= 1

4

∫ 1

0

dx

x

which diverges to infinity.

22. The average value of x2 over the rectangle R is

1

(b − a)(d − c)

∫∫

R
x2 d A

= 1

(b − a)(d − c)

∫ b

a
x2 dx

∫ d

c
dy

= 1

b − a

b3 − a3

3
= a2 + ab + b2

3
.

y

xa b

R

c

d

Fig. 14.3.22

23. The average value of x2 + y2 over the triangle T is

2

a2

∫∫

T
(x2 + y2) d A

= 2

a2

∫ a

0
dx

∫ a−x

0
(x2 + y2) dy

= 2

a2

∫ a

0
dx

(

x2y + y3

3

)∣
∣
∣
∣

y=a−x

y=0

= 2

3a2

∫ a

0

[

3x2(a − x)+ (a − x)3
]

dx

= 2

3a2

∫ a

0

[

a3 − 3a2x + 6ax2 − 4x3
]

dx = a2

3
.
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y

x

a

y=a−x

a
T

Fig. 14.3.23

24. The area of region R is

∫ 1

0
(
√

x − x2) dx = 1

3
sq. units.

The average value of 1/x over R is

3
∫∫

R

d A

x
= 3

∫ 1

0

dx

x

∫ √x

x2
dy

= 3
∫ 1

0

(

x−1/2 − x
)

dx = 9

2
.

y

x

(1,1)

y=x2

x=y2

x

R

Fig. 14.3.24

25. The distance from (x, y) to the line x + y = 0 is
(x + y)/

√
2. The average value of this distance over

the quarter-disk Q is

4

πa2

∫∫

Q

x + y√
2

d A = 4
√

2

πa2

∫∫

Q
x d A

= 4
√

2

πa2

∫ a

0
x dx

∫
√

a2−x2

0
dy

= 4
√

2

πa2

∫ a

0
x
√

a2 − x2 dx Let u = a2 − x2

du = −2x dx

= 2
√

2

πa2

∫ a2

0
u1/2 du = 4

√
2a

3π
.

y

x

y=
√

a2−x2

x+y=0

Q

a

a

Fig. 14.3.25

26. Let R be the region 0 ≤ x < ∞, 0 ≤ y ≤ 1/(1 + x2). If
f (x, y) = x , then
∫

R
f (x, y) d A =

∫ ∞

0
x dx

∫ 1/(1+x2)

0
dy =

∫ ∞

0

x dx

1+ x2

which diverges to infinity. Thus f has no average value
on R.

27. If f (x, y) = xy on the region R of the previous exercise,
then
∫∫

R
f (x, y) d A =

∫ ∞

0
x dx

∫ 1/(1+x2)

0
y dy

= 1

2

∫ ∞

0

x dx

(1 + x2)2
Let u = 1 + x2

du = 2x dx

= 1

4

∫ ∞

1

du

u2 =
1

4

Area =
∫ ∞

0

dx

1+ x2 =
π

2
.

Thus f (x, y) has average value
2

π
× 1

4
= 1

2π
on R.

28. The integral in Example 2 reduced to
∫ ∞

1
ln

(

1 + 1

x2

)

dx

U = ln

(

1 + 1

x2

)

dU = − 2 dx

x(x2 + 1)

dV = dx

V = x

= lim
R→∞

[

x ln

(

1+ 1

x2

)∣
∣
∣
∣

R

1
+ 2

∫ R

1

dx

1+ x2

]

= 2
(π

2
− π

4

)

− ln 2+ lim
R→∞

ln
(

1+ (1/R2)
)

1/R

= π

2
− ln 2 + lim

R→∞
−(2/R3)

(

1+ (1/R2)
)

(−1/R2)

= π

2
− ln 2.

29. By the Mean-Value Theorem (Theorem 3),
∫∫

Rhk

f (x, y) d A = f (x0, y0)hk

539



SECTION 14.3 (PAGE 771) R. A. ADAMS: CALCULUS

for some point (x0, y0) in Rhk . Since (x0, y0) → (a, b)
as (h, k) → (0, 0), and since f is continuous at (a, b),
we have

lim
(h,k)→(0,0)

1

hk

∫∫

Rhk

f (x, y) d A

= lim
(h,k)→(0,0) f (x0, y0) = f (a, b).

30. If R = {(x, y) : a ≤ x ≤ a + h, b ≤ y ≤ b + k}, then

∫∫

R
f12(x, y) d A =

∫ a+h

a
dx

∫ b+k

b
f12(x, y) dy

=
∫ a+h

a

[

f1(x, b + k) − f1(x, b)
]

dx

= f (a + h, b + k) − f (a, b + k) − f (a + h, b)+ f (a, b)
∫∫

R
f21(x, y) d A =

∫ b+k

b
dy

∫ a+h

a
f21(x, y) dx

=
∫ b+k

b

[

f2(a + h, y)− f2(a, y)
]

dy

= f (a + h, b + k) − f (a + h, b)− f (a, b + k) + f (a, b).

Thus ∫∫

R
f12(x, y) d A =

∫∫

R
f21(x, y) d A.

Divide both sides of this identity by hk and let
(h, k) → (0, 0) to obtain, using the result of Exercise
31,

f12(a, b) = f21(a, b).

Section 14.4 Double Integrals in
Polar Coordinates (page 780)

1.
∫∫

D
(x2 + y2) d A =

∫ 2π

0
dθ
∫ a

0
r2r dr

= 2π
a4

4
= πa4

2

2.
∫∫

D

√

x2 + y2 d A =
∫ 2π

0
dθ
∫ a

0
r r dr = 2πa3

3

3.
∫∫

D

d A
√

x2 + y2
=
∫ 2π

0
dθ
∫ a

0

r dr

r
= 2πa

4.
∫∫

D
|x | d A = 4

∫ π/2

0
dθ
∫ a

0
r cos θ r dr

= 4 sin θ

∣
∣
∣
∣

π/2

0

a3

3
= 4a3

3

5.
∫∫

D
x2 d A = πa4

4
; by symmetry the value of this inte-

gral is half of that in Exercise 1.

6.
∫∫

D
x2y2 d A = 4

∫ π/2

0
dθ
∫ a

0
r4 cos2 θ sin2 θr dr

= a6

6

∫ π/2

0
sin2(2θ) dθ

= a6

12

∫ π/2

0

(

1− cos(4θ)
)

dθ = πa6

24

7.
∫∫

Q
y d A =

∫ π/2

0
dθ
∫ a

0
r sin θ r dr

= (− cos θ)

∣
∣
∣
∣

π/2

0

a3

3
= a3

3

8.
∫∫

Q
(x + y) d A = 2a3

3
; by symmetry, the value is twice

that obtained in the previous exercise.

9.
∫∫

Q
ex2+y2

d A =
∫ π/2

0
dθ
∫ a

0
er2

r dr

= π

2

(
1

2
er2
)∣
∣
∣
∣

a

0
= π(ea2 − 1)

4

10.
∫∫

Q

2xy

x2 + y2 d A =
∫ π/2

0
dθ
∫ a

0

2r2 sin θ cos θ

r2 r dr

= a2

2

∫ π/2

0
sin(2θ) dθ = −a2 cos(2θ)

4

∣
∣
∣
∣

π/2

0
= a2

2

11.
∫∫

S
(x + y) d A =

∫ π/3

0
dθ

∫ a

0
(r cos θ + r sin θ)r dr

=
∫ π/3

0
(cos θ + sin θ) dθ

∫ a

0
r2 dr

= a3

3
(sin θ − cos θ)

∣
∣
∣
∣

π/3

0

=
[(√

3

2
− 1

2

)

− (−1)

]

a3

3
= (
√

3 + 1)a3

6

y

x

y=√3x

x2+y2=a2

π/3

S

a

Fig. 14.4.11
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12.
∫∫

S
x d A = 2

∫ π/4

0
dθ

∫
√

2

sec θ
r cos θ r dr

= 2

3

∫ π/4

0
cos θ

(

2
√

2 − sec3 θ
)

dθ

= 4
√

2

3
sin θ

∣
∣
∣
∣

π/4

0
− 2

3
tan θ

∣
∣
∣
∣

π/4

0

= 4

3
− 2

3
= 2

3
y

x
π/4

√
2S

1

Fig. 14.4.12

13.
∫∫

T
(x2 + y2) d A =

∫ π/4

0
dθ

∫ sec θ

0
r3 dr

= 1

4

∫ π/4

0
sec4 θ dθ

= 1

4

∫ π/4

0
(1 + tan2 θ) sec2 θ dθ Let u = tan θ

du = sec2 θ dθ

= 1

4

∫ 1

0
(1 + u2) du

= 1

4

(

u + u3

3

)∣
∣
∣
∣

1

0
= 1

3

y

x

(1,1)

T

y=x

1

π/4

x=1
r=sec θ

Fig. 14.4.13

14.
∫∫

x2+y2≤1
ln(x2 + y2) d A =

∫ 2π

0
dθ

∫ 1

0
(ln r2)r dr

= 4π
∫ 1

0
r ln r dr

U = ln r

dU = dr

r

dV = r dr

V = r2

2

= 4π

[

r2

2
ln r

∣
∣
∣
∣

1

0
− 1

2

∫ 1

0
r dr

]

= 4π

[

0− 0 − 1

4

]

= −π
(Note that the integral is improper, but converges since
limr→0+ r2 ln r = 0.)

15. The average distance from the origin to points in the disk
D: x2 + y2 ≤ a2 is

1

πa2

∫∫

D

√

x2 + y2 d A = 1

πa2

∫ 2π

0
dθ

∫ a

0
r2 dr = 2a

3
.

16. The annular region R: 0 < a ≤ √

x2 + y2 ≤ b has

area π(b2 − a2). The average value of e−(x2+y2) over the
region is

1

π(b2 − a2)

∫∫

R
e−(x2+y2) d A

= 1

π(b2 − a2)

∫ 2π

0
dθ

∫ b

a
e−r2

r dr Let u = r 2

du = 2r dr

= 1

π(b2 − a2)
(2π)

1

2

∫ b2

a2
e−u du

= 1

b2 − a2

(

e−a2 − e−b2
)

.

17. If D is the disk x2 + y2 ≤ 1, then

∫∫

D

d A

(x2 + y2)k
=
∫ 2π

0
dθ

∫ 1

0
r−2kr dr = 2π

∫ 1

0
r1−2k dr

which converges if 1 − 2k > −1, that is, if k < 1. In this
case the value of the integral is

2π
r2−2k

2 − 2k

∣
∣
∣
∣

1

0
= π

1− k
.

18.
∫∫

�
2

d A

(1 + x2 + y2)k

=
∫ 2π

0
dθ

∫ ∞

0

r dr

(1+ r2)k
Let u = 1+ r2

du = 2r dr

= π
∫ ∞

1
u−k du = −π

1− k
if k > 1.
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The integral converges to
π

k − 1
if k > 1.

19.
∫∫

D
xy d A =

∫ π/4

0
dθ

∫ a

0
r cos θr sin θr dr

= 1

2

∫ π/4

0
sin 2θ dθ

∫ a

0
r3 dr

= a4

8

(

− cos 2θ

2

)∣
∣
∣
∣

π/4

0
= a4

16
.

y

x

x2+y2=a2

y=x

D
π/4

a

Fig. 14.4.19

20.
∫∫

C
y d A =

∫ π

0
dθ

∫ 1+cos θ

0
r sin θr dr

= 1

3

∫ π

0
sin θ(1+ cos θ)3 dθ Let u = 1 + cos θ

du = − sin θ dθ

= 1

3

∫ 2

0
u3 du = u4

12

∣
∣
∣
∣

2

0
= 4

3
y

x

C

r=1+cos θ

2

Fig. 14.4.20

21. The paraboloids z = x2 + y2 and 3z = 4 − x2 − y2

intersect where 3(x2 + y2) = 4 − (x2 + y2), i.e., on the
cylinder x2+ y2 = 1. The volume they bound is given by

V =
∫∫

x2+y2≤1

[
4− x2 − y2

3
− (x2 + y2)

]

d A

=
∫ 2π

0
dθ

∫ 1

0

[
4− r2

3
− r2

]

r dr

= 8π

3

∫ 1

0
(r − r3) dr

= 8π

3

(
r2

2
− r4

4

)∣
∣
∣
∣

1

0
= 2π

3
cu. units.

22. One quarter of the required volume lies in the first octant.
(See the figure.) In polar coordinates the cylinder
x2 + y2 = ax becomes r = a cos θ . Thus, the required
volume is

V = 4
∫∫

D

√

a2 − x2 − y2 d A

= 4
∫ π/2

0
dθ

∫ a cos θ

0

√

a2 − r2r dr Let u = a2 − r2

du = −2r dr

= 2
∫ π/2

0
dθ

∫ a2

a2 sin2 θ

u1/2 du

= 4

3

∫ π/2

0
dθ

⎛

⎝u3/2
∣
∣
∣
∣

a2

a2 sin2 θ

⎞

⎠

= 4

3
a3
∫ π/2

0
(1− sin3 θ) dθ

= 4

3
a3
(
π

2
−
∫ π/2

0
sin θ(1− cos2 θ) dθ

)

Let v = cos θ

dv = − sin θ dθ

= 2πa3

3
− 4a3

3

∫ 1

0
(1− v2) dv

= 2πa3

3
− 4a3

3

(

v − v
3

3

)∣
∣
∣
∣

1

0

= 2πa3

3
− 8a3

9
= 2

9
a3(3π − 4) cu. units.

x

y

z

x2+y2+z2=a2

x2+y2=ax

a

a
D

a

Fig. 14.4.22

23. The volume inside the sphere x2 + y2 + z2 = 2a2 and the
cylinder x2 + y2 = a2 is

V = 8
∫ π/2

0
dθ

∫ a

0

√

2a2 − r2r dr Let u = 2a2 − r2

du = −2r dr

= 2π
∫ 2a2

a2
u1/2 du = 4πa3

3

(

2
√

2− 1
)

cu. units.
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x

y

z

√
2a

x2+y2=a2

x2+y2+z2=2a2

a √
2a

Fig. 14.4.23

24. Volume =
∫ 2π

0
dθ

∫ 2

0
(r cos θ + r sin θ + 4)r dr

=
∫ 2π

0
(cos θ + sin θ) dθ

∫ 2

0
r2 dr + 8π

∫ 2

0
r dr

= 0+ 4π(22) = 16π cu. units.

25. One eighth of the required volume lies in the first oc-
tant. This eighth is divided into two equal parts by the
plane x = y. One of these parts lies above the circular
sector D in the xy-plane specified in polar coordinate by
0 ≤ r ≤ a, 0 ≤ θ ≤ π/4, and beneath the cylinder
z = √a2 − x2. Thus, the total volume lying inside all
three cylinders is

V = 16
∫∫

D

√

a2 − x2 d A

= 16
∫ π/4

0
dθ

∫ a

0

√

a2 − r2 cos2 θr dr

Let u = a2 − r2 cos2 θ

du = −2r cos2 θ dr

= 8
∫ π/4

0

dθ

cos2 θ

∫ a2

a2 sin2 θ

u1/2 du

= 16a3

3

∫ π/4

0

1− sin3 θ

cos2 θ
dθ

= 16a3

3

∫ π/4

0

(

sec2 θ − 1 − cos2 θ

cos2 θ
sin θ

)

dθ

= 16a3

3

(

tan θ − 1

cos θ
− cos θ

)∣
∣
∣
∣

π/4

0

= 16a3

3

(

1− 0−√2+ 1− 1√
2
+ 1

)

= 16

(

1− 1√
2

)

a3 cu. units.

x
y

z

y2+z2=a2

x2+z2=a2

x2+y2=a2

D
a a

a

x=y

Fig. 14.4.25

26. One quarter of the required volume V is shown in the
figure. We have

V = 4
∫∫

D

√
y d A

= 4
∫ π/2

0
dθ

∫ 2 sin θ

0

√
r sin θ r dr

= 4
∫ π/2

0

√
sin θ dθ

(

2

5
r5/2

∣
∣
∣
∣

2 sin θ

0

)

= 32
√

2

5

∫ π/2

0
sin3 dθ = 64

√
2

15
cu. units.

x

y

z

D

y=z2

x2+y2=2y

2
1

Fig. 14.4.26

27. By symmetry, we need only calculate the average dis-
tance from points in the sector S: 0 ≤ θ ≤ π/4,
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0 ≤ r ≤ 1 to the line x = 1. This average value is

8

π

∫∫

S
(1 − x) d A = 8

π

∫ π/4

0
dθ

∫ 1

0
(1− r cos θ)r dr

= 8

π

[
π

8
−
∫ π/4

0
cos θ dθ

∫ 1

0
r2 dr

]

= 1− 8

3
√

2π
= 1− 4

√
2

3π
units.

y

x

S
1

Fig. 14.4.27

28. The area of S is (4π − 3
√

3)/3 sq. units. Thus

x̄ = 3

4π − 3
√

3

∫∫

S
x d A

= 6

4π − 3
√

3

∫ π/3

0
dθ

∫ 2

sec θ
r cos θ r dr

= 2

4π − 3
√

3

∫ π/3

0
cos θ(8− sec3 θ) dθ

= 2

4π − 3
√

3

(

4
√

3− tan θ

∣
∣
∣
∣

π/3

0

)

= 6
√

3

4π − 3
√

3
.

The segment has centroid

(

6
√

3

4π − 3
√

3
, 0

)

.

y

x

2

π/3 S

√
3

1 2

Fig. 14.4.28

29. Let E be the region in the first quadrant of the xy-plane
bounded by the coordinate axes and the ellipse
x2

a2 +
y2

b2 = 1. The volume of the ellipsoid is

V = 8c
∫∫

E

√

1− x2

a2
− y2

b2
dx dy.

Let x = au, y = bv. Then

dx dy =
∣
∣
∣
∣

∂(x, y)

∂(u, v)

∣
∣
∣
∣

du dv = ab du dv.

The region E corresponds to the quarter disk Q:
u2 + v2 ≤ 1, u, v ≥ 0 in the uv-plane. Thus

V = 8abc
∫∫

Q

√

1− u2 − v2 du dv

= 8abc ×
(

1

8
× volume of ball of radius 1

)

= 4

3
πabc cu. units.

30. We use the same regions and change of variables as in
the previous exercise. The required volume is

V =
∫∫

E

(

1 − x2

a2 −
y2

b2

)

dx dy

= ab
∫∫

Q
(1− u2 − v2) du dv.

Now transform to polar coordinates in the uv-plane:
u = r cos θ , v = r sin θ .

V = ab
∫ π/2

0
dθ

∫ 1

0
(1 − r2)r dr

= πab

2

(
r2

2
− r4

4

)∣
∣
∣
∣

1

0
= πab

8
cu. units.

31. Let x = u + v
2

, y = u − v
2

, so that x + y = u and

x − y = v. We have

dx dy = |
∣
∣
∣
∣

1
2

1
2

1
2 − 1

2

∣
∣
∣
∣
| du dv = 1

2
du dv.

Under the above transformation the square |x | + |y| ≤ a
corresponds to the square S: −a ≤ u ≤ a, −a ≤ v ≤ a.
Thus

∫∫

|x|+|y|≤a
ex+y d A = 1

2

∫∫

S
eu du dv

= 1

2

∫ a

−a
eu du

∫ a

−a
dv

= a(ea − e−a) = 2a sinh a.

32. The parallelogram P bounded by x + y = 1, x + y = 2,
3x + 4y = 5, and 3x + 4y = 6 corresponds to the square
S bounded by u = 1, u = 2,v = 5, and v = 6 under the
transformation

u = x + y, v = 3x + 4y,
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or, equivalently,

x = 4u − v, y = v − 3u.

y

x

3x+4y=6

x+y=2

3x+4y=5

x+y=1

P

v

u

Ru=1 u=2

v=5

v=6

Fig. 14.4.32a Fig. 14.4.32b

We have
∂(x, y)

∂(u, v)
=
∣
∣
∣
∣

4 −1
−3 1

∣
∣
∣
∣
= 1,

so dx dy = du dv. Also

x2 + y2 = (4u − v)2 + (v − 3u)2 = 25u2 − 14uv + 2v2.

Thus we have
∫∫

P
(x2 + y2) dx dy =

∫∫

S
(25u2 − 14uv + 2v2) du dv

=
∫ 2

1
du

∫ 6

5
(25u2 − 14uv + 2v2) dv = 7

2
.

33. Let u = xy, v = y/x . Then

∂(u, v)

∂(x, y)
=
∣
∣
∣
∣

y x
−y/x2 1/x

∣
∣
∣
∣
= 2

y

x
= 2v,

so that
∂(x, y)

∂(u, v)
= 1

2v
. The region D in the first quadrant

of the xy-plane bounded by xy = 1, xy = 4, y = x , and
y = 2x corresponds to the rectangle R in the uv-plane
bounded by u = 1, u = 4, v = 1, and v = 2. Thus the
area of D is given by

∫∫

D
dx dy =

∫∫

R

1

2v
du dv

= 1

2

∫ 4

1
du

∫ 2

1

dv

v
= 3

2
ln 2 sq. units.

y

x

D

y=2x

y=x

xy=4

xy=1

Fig. 14.4.33

v

u

u=4Ru=1

v=1

v=2

Fig. 14.4.33

34. Under the transformation u = x2 − y2, v = xy, the
region R in the first quadrant of the xy-plane bounded by
y = 0, y = x , xy = 1, and x2 − y2 = 1 corresponds to
the square S in the uv-plane bounded by u = 0, u = 1,
v = 0, and v = 1. Since

∂(u, v)

∂(x, y)
=
∣
∣
∣
∣

2x −2y
y x

∣
∣
∣
∣
= 2(x2 + y2),

we therefore have

(x2 + y2) dx dy = 1

2
du dv.

Hence,

∫∫

R
(x2 + y2) dx dy =

∫∫

S

1

2
du dv = 1

2
.

35. I =
∫∫

T
e(y−x)/(y+x) d A.

a) I =
∫ π/2

0
dθ

∫ 1/(cos θ+sin θ)

0
e

cos θ−sin θ
sin θ+cos θ r dr

= 1

2

∫ π/2

0
e

cos θ−sin θ
sin θ+cos θ

dθ

(cos θ + sin θ)2

Let u = cos θ − sin θ

sin θ + cos θ

du = − 2 dθ

(sin θ + cos θ)2

= 1

4

∫ 1

−1
eu du = e − e−1

4
.

y v

x u

x+y=1

1

1

1 (1,1)(−1,1)

T ′
T

Fig. 14.4.35
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b) If u = y − x , v = y + x then

∂(u, v)

∂(x, y)
=
∣
∣
∣
∣

−1 1
1 1

∣
∣
∣
∣
= −2,

so that d A = dx dy = 1

2
du dv. Also, T corresponds

to the triangle T ′ bounded by u = −v, u = v, and
v = 1. Thus

I = 1

2

∫∫

T ′
eu/v du dv

= 1

2

∫ 1

0
dv

∫ v

−v
eu/v du

= 1

2

∫ 1

0
dv
(

veu/v)
∣
∣
∣
∣

v

−v

= 1

2

(

e − e−1
) ∫ 1

0
v dv = e − e−1

4
.

36. The region R whose area we must find is shown in part
(a) of the figure. The change of variables x = 3u, y = 2v
maps the ellipse 4x2+9y2 = 36 to the circle u2+v2 = 1,
and the line 2x + 3y = 1 to the line u + v = 1. Thus it
maps R to the region S in part (b) of the figure. Since

dx dy = |
∣
∣
∣
∣

3 0
0 2

∣
∣
∣
∣
| du dv = 6 du dv,

the area of R is

A =
∫∫

R
dx dy = 6

∫∫

S
du dv.

But the area of S is (π/4) − (1/2), so A = (3π/2) − 3
square units.

y

x

v

u

R
S

1

13

(a) (b)

Fig. 14.4.36

37. Erf(x) = 2√
π

∫ x

0
e−t2

dt = 2√
π

∫ x

0
e−s2

ds. Thus

(

Erf(x)
)2 = 4

π

∫∫

S
e−(s2+t2) ds dt,

where S is the square 0 ≤ s ≤ x , 0 ≤ t ≤ x . By
symmetry,

(

Erf(x)
)2 = 8

π

∫∫

T
e−(s2+t2) ds dt,

where T is the triangle 0 ≤ s ≤ x , 0 ≤ t ≤ s.
t

s

T

(x,x)

s=t

x

Fig. 14.4.37

Now transform to polar coordinates in the st-plane. We
have

(

Erf(x)
)2 = 8

π

∫ π/4

0
dθ

∫ x sec θ

0
e−r2

r dr

= 4

π

∫ π/4

0
dθ
(

−e−r2
)
∣
∣
∣
∣

x sec θ

0

= 4

π

∫ π/4

0

(

1− e−x2/ cos2 θ
)

dθ.

Since cos2 θ ≤ 1, we have e−x2/ cos2 θ ≤ e−x2
, so

(

Erf(x)
)2 ≥ 1− e−x2

Erf(x) ≥
√

1 − e−x2
.

38. a) �(x) =
∫ ∞

0
t x−1e−t dt Let t = s2

dt = 2s ds

= 2
∫ ∞

0
s2x−1e−s2

ds.

b) �
( 1

2

) = 2
∫ ∞

0
e−s2

ds = 2

√
π

2
= √π

�
( 3

2

) = 1

2
�
( 1

2

) = 1

2

√
π.

c) B(x, y) =
∫ 1

0
t x−1(1 − t)y−1 dt (x > 0, y > 0)

let t = cos2 θ , dt = −2 sin θ cos θ dθ

= 2
∫ π/2

0
cos2x−1 θ sin2y−1 θ dθ.
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d) If Q is the first quadrant of the st-plane,

�(x)�(y) =
(

2
∫ ∞

0
s2x−1e−s2

ds

)(

2
∫ ∞

0
t2y−1e−t2

dt

)

= 4
∫∫

Q
s2x−1t2y−1e−(s2+t2) ds dt

(change to polar coordinates)

= 4
∫ π/2

0
dθ

∫ ∞

0
r2x−1 cos2x−1 θr2y−1 sin2y−1 θe−r2

r dr

=
(

2
∫ π/2

0
cos2x−1 θ sin2y−1 θ dθ

)

×
(

2
∫ ∞

0
r2(x+y)−1e−r2

dr

)

= B(x, y)�(x + y) by (a) and (c).

Thus B(x, y) = �(x)�(y)

�(x + y)
.

Section 14.5 Triple Integrals (page 787)

1. R is symmetric about the coordinate planes and has vol-
ume 8abc. Thus

∫∫∫

R
(1+ 2x − 3y) dV = volume of R + 0− 0 = 8abc.

2.
∫∫∫

B
xyz dV =

∫ 1

0
x dx

∫ 0

−2
y dy

∫ 4

1
z dz

= 1

2

(

−4

2

)(
16 − 1

2

)

= −15

2
.

3. The hemispherical dome x2 + y2 + z2 ≤ 4, z ≥ 0, is
symmetric about the planes x = 0 and y = 0. Therefore

∫∫∫

D
(3 + 2xy) dV = 3

∫∫∫

D
dV + 2

∫∫∫

D
xy dV

= 3× 2

3
π(23)+ 0 = 16π.

4.
∫∫∫

R
x dV =

∫ a

0
x dx

∫ b
(
1− x

a

)

0
dy

∫ c
(
1− x

a −
y
b

)

0
dz

= c
∫ a

0
x dx

∫ b
(
1− x

a

)

0

(

1 − x

a
− y

b

)

dy

= c
∫ a

0
x

[

b
(

1− x

a

)2 − b2

2b

(

1 − x

a

)2
]

dx

= bc

2

∫ a

0

(

1− x

a

)2
x dx Let u = 1− (x/a)

du = −(1/a) dx

= a2bc

2

∫ 1

0
u2(1− u) du = a2bc

24
.

x

y

z

x
a +

y
b+

z
c=1

c

b

R

a

x y

Fig. 14.5.4

5. R is the cube 0 ≤ x, y, z ≤ 1. By symmetry,
∫∫∫

R
(x2 + y2) dV = 2

∫∫∫

R
x2 dV

= 2
∫ 1

0
x2 dx

∫ 1

0
dy

∫ 1

0
dz = 2

3
.

6. As in Exercise 5,
∫∫∫

R
(x2 + y2 + z2) dV = 3

∫∫∫

R
x2 dV = 3

3
= 1.

7. The set R: 0 ≤ z ≤ 1 − |x | − |y| is a pyramid, one
quarter of which lies in the first octant and is bounded by
the coordinate planes and the plane x + y + z = 1. (See
the figure.) By symmetry, the integral of xy over R is 0.
Therefore,
∫∫∫

R
(xy + z2) dV =

∫∫∫

R
z2 dV

= 4
∫ 1

0
z2 dz

∫ 1−z

0
dy

∫ 1−z−y

0
dx

= 4
∫ 1

0
z2 dz

∫ 1−z

0
(1 − z − y) dy

= 4
∫ 1

0
z2
[

(1 − z)2 − 1

2
(1− z)2

]

dz

= 2
∫ 1

0
(z2 − 2z3 + z4) dz = 1

15
.

x

y

z

y+z=1

1

1

z=1−x−y

x+y=11

R

Fig. 14.5.7
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8. R is the cube 0 ≤ x, y, z ≤ 1. We have

∫∫∫

R
yz2e−xyz dV

=
∫ 1

0
z dz

∫ 1

0
dy
(−e−xyz)

∣
∣
∣
∣

x=1

x=0

=
∫ 1

0
z dz

∫ 1

0
(1 − e−yz) dy

=
∫ 1

0
z

(

1 + 1

z
e−yz

∣
∣
∣
∣

y=1

y=0

)

dz

= 1

2
+
∫ 1

0
(e−z − 1) dz

= 1

2
− 1 − e−z

∣
∣
∣
∣

1

0
= 1

2
− 1

e
.

9.
∫∫∫

R
sin(π y3) dV =

∫ 1

0
sin(π y3) dy

∫ y

0
dz
∫ y

0
dx

=
∫ 1

0
y2 sin(π y3) dy = − cos(π y3)

3π

∣
∣
∣
∣

1

0

= 2

3π
.

x

y

z

z=y
(0,1,1)

1

(1,1,0)

x=y

(1,1,1)

R

Fig. 14.5.9

10.
∫∫∫

R
y dV =

∫ 1

0
y dy

∫ 1

1−y
dz
∫ 2−y−z

0
dx

=
∫ 1

0
y dy

∫ 1

1−y
(2− y − z) dz

=
∫ 1

0
y dy

(

(2 − y)z − z2

2

)∣
∣
∣
∣

z=1

z=1−y

=
∫ 1

0
y

(

(2− y)y − 1

2

(

1− (1− y)2
))

dy

=
∫ 1

0

1

2

(

2y2 − y3
)

dy = 5

24
.

x

y

z

(0,1,1)
1

1

x+y+z=2

y+z=1

(1,1,0)

(1,0,1)

R

Fig. 14.5.10

11. R is bounded by z = 1, z = 2, y = 0, y = z, x = 0, and
x = y+ z. These bounds provide an iteration of the triple
integral without our having to draw a diagram.

∫∫∫

R

dV

(x + y + z)3

=
∫ 2

1
dz
∫ z

0
dy

∫ y+z

0

dx

(x + y + z)3

=
∫ 2

1
dz
∫ z

0
dy

( −1

2(x + y + z)2

)∣
∣
∣
∣

x=y+z

x=0

= 3

8

∫ 2

1
dz
∫ z

0

dy

(y + z)2

= 3

8

∫ 2

1

( −1

y + z

)∣
∣
∣
∣

y=z

y=0
dz

= 3

16

∫ 2

1

dz

z
= 3

16
ln 2.

12. We have

∫∫∫

R
cos x cos y cos z dV

=
∫ π

0
cos x dx

∫ π−x

0
cos y dy

∫ π−x−y

0
cos z dz

=
∫ π

0
cos x dx

∫ π−x

0
cos y dy (sin z)

∣
∣
∣
∣

z=π−x−y

z=0

=
∫ π

0
cos x dx

∫ π−x

0
cos y sin(x + y) dy

recall that sin a cos b = 1

2

(

sin(a + b)+ sin(a − b)
)

=
∫ π

0
cos x dx

∫ π−x

0

1

2

[

sin(x + 2y)+ sin x
]

dy

= 1

2

∫ π

0
cos x dx

[

− cos(x + 2y)

2
+ y sin x

]∣
∣
∣
∣

y=π−x

y=0

= 1

2

∫ π

0

(

− cos x cos(2π − x)

2
+ cos2 x

2
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+ (π − x) cos x sin x

)

dx

= 1

2

∫ π

0

π − x

2
sin 2x dx

U = π − x

dU = −dx

dV = sin 2x dx

V = − cos 2x

2

= 1

4

[

−π − x

2
cos 2x

∣
∣
∣
∣

π

0
− 1

2

∫ π

0
cos 2x dx

]

= 1

8

[

π − sin 2x

2

∣
∣
∣
∣

π

0

]

= π

8
.

13. By Example 4 of Section 5.4,
∫ ∞

−∞
e−u2

du = √π . If

k > 0, let u = √kt , so that du = √k dt . Thus

∫ ∞

−∞
e−kt2

dt =
√

π

k
.

Thus

∫∫∫

�
3

e−x2−2y2−3y2
dV

=
∫ ∞

−∞
e−x2

dx
∫ ∞

−∞
e−2y2

dy
∫ ∞

−∞
e−3z2

dz

= √π
√

π

2

√
π

3
= π3/2

√
6
.

14. Let E be the elliptic disk bounded by x2 + 4y2 = 4.
Then E has area π(2)(1) = 2π square units. The volume
of the region of 3-space lying above E and beneath the
plane z = 2+ x is

V =
∫∫

E
(2 + x) d A = 2

∫∫

E
d A = 4π cu. units,

since
∫∫

E x d A = 0 by symmetry.

15.
∫∫∫

T
x dV =

∫ 1

0
x dx

∫ 1

1−x
dy

∫ 1

2−x−y
dz

=
∫ 1

0
x dx

∫ 1

1−x
(x + y − 1) dy

=
∫ 1

0
x

[
(x − 1)2

2
+ x − 1

2

]

dx

=
∫ 1

0

x3

2
dx = 1

8
.

x
y

z

(0,1,1)

(1,1,1)

(1,1,0)

(1,0,1)

Fig. 14.5.15

16.

x

y

z

(0, 1, 1)

x + y = 1

x = (1 − x)2

z = y2

Fig. 14.5.16

∫∫∫

R
f (x, y, z) dV =

∫ 1

0
dx
∫ 1−x

0
dy
∫ y2

0
f (x, y, z) dz

=
∫ 1

0
dy
∫ 1−y

0
dx
∫ y2

0
f (x, y, z) dz

=
∫ 1

0
dy
∫ y2

0
dz
∫ 1−y

0
f (x, y, z) dx

=
∫ 1

0
dz
∫ 1

√
z
dy
∫ 1−y

0
f (x, y, z) dx

=
∫ 1

0
dx
∫ (1−x)2

0
dz
∫ 1−x

√
z

f (x, y, z) dy

=
∫ 1

0
dz
∫ 1−√z

0
dx
∫ 1−x

√
z

f (x, y, z) dy.

17.
∫ 1

0
dz
∫ 1−z

0
dy

∫ 1

0
f (x, y, z) dx

=
∫∫∫

R
f (x, y, z) dV (R is the prism in the figure)

=
∫ 1

0
dx

∫ 1

0
dy

∫ 1−y

0
f (x, y, z) dz.
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x
y

z

R

1

1

(1,1,0)
1

(1,0,1)
y+z=1

Fig. 14.5.17

18.
∫ 1

0
dz
∫ 1

z
dy

∫ y

0
f (x, y, z) dx

=
∫∫∫

R
f (x, y, z) dV (R is the pyramid in the figure)

=
∫ 1

0
dx

∫ 1

x
dy

∫ y

0
f (x, y, z) dz.

x

y

z

z=y

x=0

y=1

z=0

R

(0,1,1)

y=x

(1,1,1)

(1,1,0)

Fig. 14.5.18

19.
∫ 1

0
dz
∫ 1

z
dx

∫ x−z

0
f (x, y, z) dy

=
∫∫∫

R
f (x, y, z) dV (R is the tetrahedron in the figure)

=
∫ 1

0
dx

∫ x

0
dy

∫ x−y

0
f (x, y, z) dz.

x

y

z

(1,0,1)

1

(1,1,0)

z=x−y

Fig. 14.5.19

20.
∫ 1

0
dy

∫
√

1−y2

0
dz
∫ 1

y2+z2
f (x, y, z) dx

=
∫∫∫

R
f (x, y, z) dV (R is the paraboloid in the figure)

=
∫ 1

0
dx

∫ √x

0
dy

∫
√

x−y2

0
f (x, y, z) dz.

x

y

z

x=y2+z2

R

1

Fig. 14.5.20

21. I =
∫ 1

0
dz
∫ 1−z

0
dy
∫ 1

0
f (x, y, z) dx .

The given iteration corresponds to

0 ≤ z ≤ 1, 0 ≤ y ≤ 1− z, 0 ≤ x ≤ 1.

Thus 0 ≤ x ≤ 1, 0 ≤ y ≤ 1− 0 = 1, 0 ≤ z ≤ 1− y, and

I =
∫ 1

0
dx
∫ 1

0
dy
∫ 1−y

0
f (x, y, z) dz.

22. I =
∫ 1

0
dz
∫ 1

z
dy
∫ y

0
f (x, y, z) dx .

The given iteration corresponds to

0 ≤ z ≤ 1, z ≤ y ≤ 1, 0 ≤ x ≤ y.

Thus 0 ≤ x ≤ 1, x ≤ y ≤ 1, 0 ≤ z ≤ y, and

I =
∫ 1

0
dx
∫ 1

x
dy
∫ y

0
f (x, y, z) dz.

23. I =
∫ 1

0
dz
∫ 1

z
dx
∫ x−z

0
f (x, y, z) dy.

The given iteration corresponds to

0 ≤ z ≤ 1, z ≤ x ≤ 1, 0 ≤ y ≤ x − z.

Thus 0 ≤ x ≤ 1, 0 ≤ y ≤ x , 0 ≤ z ≤ x − y, and

I =
∫ 1

0
dx
∫ x

0
dy
∫ x−y

0
f (x, y, z) dz.
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24. I =
∫ 1

0
dy
∫
√

1−y2

0
dz
∫ 1

y2+z2
f (x, y, z) dx .

The given iteration corresponds to

0 ≤ y ≤ 1, 0 ≤ z ≤
√

1− y2, y2 + z2 ≤ x ≤ 1.

Thus 0 ≤ x ≤ 1, 0 ≤ y ≤ √x , 0 ≤ z ≤ √x − y2, and

I =
∫ 1

0
dx
∫ √x

0
dy
∫
√

x−y2

0
f (x, y, z) dz.

25. I =
∫ 1

0
dy
∫ 1

y
dz
∫ z

0
f (x, y, z) dx .

The given iteration corresponds to

0 ≤ y ≤ 1, y ≤ z ≤ 1, 0 ≤ x ≤ z.

Thus 0 ≤ x ≤ 1, x ≤ z ≤ 1, 0 ≤ y ≤ z, and

I =
∫ 1

0
dx
∫ 1

x
dz
∫ z

0
f (x, y, z) dy.

26.

x

y

z

(0, 1, 1)

(0, 1, 0)

(1, 1, 1)

Fig. 14.5.26

I =
∫ 1

0
dx
∫ 1

x
dy
∫ y

x
f (x, y, z) dz =

∫∫∫

P
f (x, y, z) dV ,

where P is the triangular pyramid (see the figure) with
vertices at (0, 0, 0), (0, 1, 0), (0, 1, 1), and (1, 1, 1). If
we we reiterate I to correspond to the horizontal slice
shown then

∫ 1

0
dz
∫ 1

z
dy
∫ z

0
f (x, y, z) dx .

27.
∫ 1

0
dz
∫ 1

z
dx

∫ x

0
ex3

dy

=
∫∫∫

R
ex3

dV (R is the pyramid in the figure)

=
∫ 1

0
ex3

dx
∫ x

0
dy

∫ x

0
dz

=
∫ 1

0
x2ex3

dx = e − 1

3
.

x

y

z

(1,1,1)

(1,0,1)

(1,1,0)

(1,0,0)

R

z=x

y=x

y=0

x=1

z=0

Fig. 14.5.27

28.
∫ 1

0
dx

∫ 1−x

0
dy

∫ 1

y

sin(π z)

z(2− z)
dz

=
∫∫∫

R

sin(π z)

z(2− z)
dV (R is the pyramid in the figure)

=
∫ 1

0

sin(π z)

z(2 − z)
dz
∫ z

0
dy

∫ 1−y

0
dx

=
∫ 1

0

sin(π z)

z(2 − z)
dz
∫ z

0
(1 − y) dy

=
∫ 1

0

sin(π z)

z(2 − z)

(

z − z2

2

)

dz

=1

2

∫ 1

0
sin(π z) dz = 1

π
.

x

y

z
z=1

x=0

(0,1,1)

z=y

y=1−x(1,0,0)

y=0

(1,0,1)

(0,0,1)

Fig. 14.5.28

29. The average value of f (x, y, z) over R is

f̄ = 1

volume of R

∫∫∫

R
f (x, y, z) dV .
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If f (x, y, z) = x2 + y2 + z2 and R is the cube
0 ≤ x, y, z ≤ 1, then, by Exercise 6,

f̄ = 1

1

∫∫∫

R
(x2 + y2 + z2) dV = 1.

30. If the function f (x, y, z) is continuous on a closed,
bounded, connected set D in 3-space, then there exists
a point (x0, y0, z0) in D such that

∫∫∫

D
f (x, y, z) dV = f (x0, y0, z0)× (volume of D).

Apply this with D = Bε(a, b, c), which has volume
4

3
πε3, to get

∫∫∫

Bε(a,b,c)
f (x, y, z) dV = f (x0, y0, z0)

4

3
πε3

for some (x0, y0, z0) in Bε(a, b, c). Thus

lim
ε→0

3

4πε3

∫∫∫

Bε(a,b,c)
f (x, y, z) dV

= lim
ε→0

f (x0, y0, z0) = f (a, b, c)

since f is continuous at (a, b, c).

Section 14.6 Change of Variables in Triple
Integrals (page 795)

1. Spherical: [4, π/3, 2π/3];
Cartesian: (−√3, 3,−2); Cylindrical: [2

√
3, 2π/3, 2].

2. Cartesian: (2,−2, 1);
Cylindrical: [2

√
2,−π/4, 1];

Spherical: [3, cos−1(1/3),−π/4].

3. Cylindrical: [2, π/6,−2];
Cartesian: (

√
3, 1,−2]; Spherical: [2

√
2, 3π/4, π/6].

4. Spherical: [1, φ, θ ]; Cylindrical: [r, π/4, r ].

x = sinφ cos θ = r cosπ/4 = r/
√

2

y = sinφ sin θ = r sinπ/4 = r/
√

2

z = cosφ = r.

Thus x = y, θ = π/4, and r = sinφ = cosφ. Hence
φ = π/4, so r = 1/

√
2. Finally: x = y = 1/2,

z = 1/
√

2.
Cartesian: (1/2, 1/2, 1/

√
2).

5. θ = π/2 represents the half-plane x = 0, y > 0.

6. φ = 2π/3 represents the lower half of the right-circular
cone with vertex at the origin, axis along the z-axis,
and semi-vertical angle π/3. Its Cartesian equation is
z = −√(x2 + y2)/3.

7. φ = π/2 represents the xy-plane.

8. ρ = 4 represents the sphere of radius 4 centred at the
origin.

9. r = 4 represents the circular cylinder of radius 4 with
axis along the z-axis.

10. ρ = z represents the positive half of the z-axis.

11. ρ = r represents the xy-plane.

12. ρ = 2x represents the half-cone with vertex at the origin,
axis along the positive x-axis, and semi-vertical angle
π/3. Its Cartesian equation is x = √(y2 + z2)/3.

13. If ρ = 2 cosφ, then ρ2 = 2ρ cosφ, so

x2 + y2 + z2 = 2z

x2 + y2 + z2 − 2z + 1 = 1

x2 + y2 + (z − 1)2 = 1.

Thus ρ = 2 cosφ represents the sphere of radius 1 cen-
tred at (0, 0, 1).

14. r = 2 cos θ ⇒ x2 + y2 = r2 = 2r cos θ = 2x , or
(x − 1)2 + y2 = 1. Thus the given equation represents the
circular cylinder of radius 1 with axis along the vertical
line x = 1, y = 0.

15. V =
∫ 2π

0
dθ

∫ π/4

0
sinφ dφ

∫ a

0
R2 d R

= 2πa3

3

(

1− 1√
2

)

cu. units.

x

y

z

π/4
R=a

Fig. 14.6.15
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16. The surface z = √r intersects the sphere r2 + z2 = 2
where r2 + r − 2 = 0. This equation has positive root
r = 1. The required volume is

V =
∫ 2π

0
dθ

∫ 1

0
r dr

∫
√

2−r2

√
r

dz

=
∫ 2π

0
dθ

∫ 1

0

(√

2− r2 −√r
)

r dr

= 2π

(∫ 1

0
r
√

2− r2 dr − 2

5

)

Let u = 2− r2

du = −2r dr

= π
∫ 2

1
u1/2 du − 4π

5

= 2π

3

(

2
√

2− 1
)

− 4π

5
= 4
√

2π

3
− 22π

15
cu. units.

x

y

z

z=√r

r2+z2=2

Fig. 14.6.16

17. The paraboloids z = 10 − r2 and z = 2(r2 − 1) intersect
where r2 = 4, that is, where r = 2. The volume lying
between these surfaces is

V =
∫ 2π

0
dθ

∫ 2

0
[10 − r2 − 2(r2 − 1)]r dr

= 2π
∫ 2

0
(12r − 3r3) dr = 24π cu. units.

y

z

z=10−r2

z=2(r2−1)

2

Fig. 14.6.17

18. The paraboloid z = r2 intersects the sphere r2 + z2 = 12
where r4 + r2 − 12 = 0, that is, where r = √3. The
required volume is

V =
∫ 2π

0
dθ

∫
√

3

0

(√

12− r2 − r2
)

r dr

= 2π
∫
√

3

0
r
√

12− r2 dr − 9π

2
Let u = 12 − r2

du = −2r dr

= π
∫ 12

9
u1/2 du − 9π

2

= 2π

3

(

123/2 − 27
)

− 9π

2
= 16
√

3π − 45π

2
cu. units.

2

z=x2+y2

x2+y2+z2=12

Fig. 14.6.18

19. One half of the required volume V lies in the first octant,
inside the cylinder with polar equation r = 2a sin θ . Thus

V = 2
∫ π/2

0
dθ

∫ 2a sin θ

0
(2a − r)r dr

= 2a
∫ π/2

0
4a2 sin2 θ dθ − 2

3

∫ π/2

0
8a3 sin3 θ dθ

= 4a3
∫ π/2

0
(1 − cos 2θ) dθ − 16a3

3

∫ π/2

0
sin3 θ dθ

= 2πa3 − 32a3

9
cu. units.

x

y

z

z=2a−r

r=2a sin θ 2a

Fig. 14.6.19
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20. The required volume V lies above z = 0, below
z = 1 − r2, and between θ = −π/4 and θ = π/3.
Thus

V =
∫ π/3

−π/4
dθ

∫ 1

0
(1 − r2)r dr

= 7π

12

(
1

2
− 1

4

)

= 7π

48
cu. units.

21. Let R be the region in the first octant, inside the ellipsoid

x2

a2 +
y2

b2 +
z2

c2 = 1,

and between the planes y = 0 and y = x . Under the
transformation

x = au, y = bv, z = cw,

R corresponds to the region S in the first octant of uvw-
space, inside the sphere

u2 + v2 + w2 = 1,

and between the planes v = 0 and bv = au. Therefore,
the volume of R is

V =
∫∫∫

R
dx dy dz = abc

∫∫∫

S
du dv dw.

Using spherical coordinates in uvw-space, S corresponds
to

0 ≤ R ≤ 1, 0 ≤ φ ≤ π

2
, 0 ≤ θ ≤ tan−1 a

b
.

Thus

V = abc
∫ tan−1(a/b)

0
dθ

∫ π/2

0
sinφ dφ

∫ 1

0
R2 d R

= 1

3
abc tan−1 a

b
cu. units.

22. One eighth of the required volume V lies in the first oc-
tant. Call this region R. Under the transformation

x = au, y = bv, z = cw,

R corresponds to the region S in the first octant of uvw-
space bounded by w = 0, w = 1, and u2 + v2 − w2 = 1.
Thus

V = 8abc × (volume of S).

The volume of S can be determined by using horizontal
slices:

V = 8abc
∫ 1

0

π

4
(1 +w2) dw = 8

3
πabc cu. units.

x

y

z

a b

x2

a2 + y2

b2 + z2

c2 =1

Fig. 14.6.22

23. Let x = au, y = bv, z = w. The indicated region R cor-
responds to the region S above the uv-plane and below
the surface w = 1− u2 − v2. We use polar coordinates in
the uv-plane to calculate the volume V of R:

V =
∫∫∫

R
dV = ab

∫∫∫

S
du dv dw

= ab
∫ 2π

0
dθ

∫ 1

0
(1− r2)r dr = πab

2
cu. units.

24.
∫∫∫

R
(x2 + y2 + z2) dV

=
∫ 2π

0
dθ

∫ a

0
r dr

∫ h

0
(r2 + z2) dz

= 2π
∫ a

0

(

r3h + 1

3
rh3

)

dr

= 2π

(
a4h

4
+ a2h3

6

)

= πa4h

2
+ πa2h3

3
.

25.
∫∫∫

B
(x2 + y2) dV

=
∫ 2π

0
dθ

∫ π

0
sinφ dφ

∫ a

0
R2 sin2 φ R2 d R

= 2π
∫ π

0
sin3 φ dφ

∫ a

0
R4 d R

= 2π

(
4

3

)
a5

5
= 8πa5

15
.

26.
∫∫∫

B
(x2 + y2 + z2) dV

=
∫ 2π

0
dθ

∫ π

0
sinφ dφ

∫ a

0
R4 d R = 4πa5

5
.

27.
∫∫∫

R
(x2 + y2 + z2) dV

=
∫ 2π

0
dθ

∫ tan−1(1/c)

0
sinφ dφ

∫ a

0
R4 d R

= 2πa5

5

[

1 − cos

(

tan−1 1

c

)]

= 2πa5

5

(

1− c√
c2 + 1

)

.
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28.
∫∫∫

R
(x2 + y2) dV

=
∫ 2π

0
dθ

∫ tan−1(1/c)

0
sin3 φ dφ

∫ a

0
R4 d R

= 2πa5

5

∫ tan−1(1/c)

0
sinφ(1 − cos2 φ) dφ Let u = cosφ

du = − sinφ dφ

= 2πa5

5

∫ 1

c/
√

c2+1
(1− u2) du

= 2πa5

5

(

u − u3

3

)∣
∣
∣
∣

1

c/
√

c2+1

= 2πa5

5

(
2

3
− c√

c2 + 1
+ c3

3(c2 + 1)3/2

)

.

29. z = r 2 and z = √2− r2 intersect where r4 + r2 − 2 = 0,
that is, on the cylinder r = 1. Thus

∫∫∫

R
z dV =

∫ 2π

0
dθ

∫ 1

0
r dr

∫
√

2−r2

r2
z dz

= π
∫ 1

0
(2 − r2 − r4)r dr = 7π

12
.

30. By symmetry, both integrals have the same value:

∫∫∫

R
x dV =

∫∫∫

R
z dV

=
∫ π/2

0
dθ

∫ π/2

0
cosφ sinφ dφ

∫ a

0
R3 d R

= π

2

(
1

2

)
a4

4
= πa4

16
.

31.
∫∫∫

R
x dV =

∫ π/2

0
dθ

∫ a

0
r dr

∫ h(1−(r/a))

0
r cos θ dz

= h
∫ π/2

0
cos θ dθ

∫ a

0
r2
(

1− r

a

)

dr = ha3

12
,

∫∫∫

R
z dV =

∫ π/2

0
dθ

∫ a

0
r dr

∫ h(1−(r/a))

0
z dz

= πh2

4

∫ a

0

(

1− r

a

)2
r dr

= πh2

4

(
r2

2
− 2r3

3a
+ r4

4a2

)∣
∣
∣
∣

a

0
= πa2h2

48
.

32. If
x = au, y = bv, z = cw,

then the volume of a region R in xyz-space is abc times
the volume of the corresponding region S in uvw-space.

If R is the region inside the ellipsoid

x2

a2 +
y2

b2 +
z2

c2 = 1

and above the plane y + z = b, then the corresponding
region S lies inside the sphere

u2 + v2 + w2 = 1

and above the plane bv + cw = b. The distance from the
origin to this plane is

D = b√
b2 + c2

(assuming b > 0)

by Example 7 of Section 1.4. By symmetry, the volume
of S is equal to the volume lying inside the sphere
u2 + v2 + w2 = 1 and above the plane w = D. We
calculate this latter volume by slicing; it is

π

∫ 1

D
(1 −w2) dw = π

(

w − w
3

3

)∣
∣
∣
∣

1

D

= π
(

2

3
− D + D3

3

)

.

Hence, the volume of R is

πabc

(
2

3
− b√

b2 + c2
+ b3

3(b2 + c2)3/2

)

cu. units.

33. By Example 10 of Section 3.5, we know that

∂2u

∂x2 +
∂2u

∂y2 =
∂2u

∂r2 +
1

r

∂u

∂r
+ 1

r2

∂2u

∂θ2 .

The required result follows if we add
∂2u

∂z2
to both sides.

34. Cylindrical and spherical coordinates are related by

z = ρ cosφ, r = ρ sinφ.

(The θ coordinates are identical in the two systems.) Ob-
serve that z, r, ρ, and φ play, respectively, the same
roles that x , y, r , and θ play in the transformation from
Cartesian to polar coordinates in the plane. We can ex-
ploit this correspondence to avoid repeating the calcu-
lations of partial derivatives of a function u, since the
results correspond to calculations made (for a function
z) in Example 10 of Section 3.5. Comparing with the
calculations in that Example, we have

∂u

∂ρ
= cosφ

∂u

∂z
+ sinφ

∂u

∂r
∂u

∂φ
= −ρ sinφ

∂u

∂z
+ ρ cosφ

∂u

∂r

∂2u

∂ρ2 = cos2 φ
∂2u

∂z2 + 2 cosφ sinφ
∂2u

∂z∂r
+ sin2 φ

∂2u

∂r2

∂2u

∂φ2
= −ρ ∂u

∂ρ
+ ρ2

(

sin2 φ
∂2u

∂z2

− 2 cosφ sinφ
∂2u

∂z∂r
+ cos2 φ

∂2u

∂r2

)

.
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Substituting these expressions into the expression for 	u
given in the statement of this exercise in terms of spher-
ical coordinates, we obtain the expression in terms of
cylindrical coordinates established in the previous exer-
cise:

∂2u

∂ρ2 +
2

ρ

∂u

∂ρ
+ cotφ

ρ2

∂u

∂φ
+ 1

ρ2

∂2u

∂φ2 +
1

ρ2 sin2 φ

∂2u

∂θ2

= ∂2u

∂r2 +
1

r

∂u

∂r
+ 1

r2

∂2u

∂θ2 +
∂2u

∂z2

= ∂2u

∂x2 +
∂2u

∂y2 = 	u

by Exercise 33.

35. Consider the transformation

x = x(u, v, w), y = y(u, v, w), z = z(u, v, w),

and let P be the point in xyz-space corresponding to
u = a, v = b, w = c. Fixing v = b, w = c, results
in a parametric curve (with parameter u) through P. The
vector

−→
PQ = ∂x

∂u
i + ∂y

∂u
j + ∂z

∂u
k

and corresponding vectors

−→
P R = ∂x

∂v
i+ ∂y

∂v
j+ ∂z

∂v
k

−→
PS = ∂x

∂w
i + ∂y

∂w
j+ ∂z

∂w
k

span a parallelepiped in xyz-space corresponding to a
rectangular box with volume du dv dw in uvw-space.
The parallelepiped has volume

|(−→PQ ×−→P R) • −→PS| =
∣
∣
∣
∣

∂(x, y, z)

∂(u, v, w)

∣
∣
∣
∣

du dv dw.

Thus

dV = dx dy dz =
∣
∣
∣
∣

∂(x, y, z)

∂(u, v, w)

∣
∣
∣
∣

du dv dw.

Section 14.7 Applications of
Multiple Integrals (page 803)

1. z = 2x + 2y,
∂z

∂x
= 2 = ∂z

∂y

dS =
√

1 + 22 + 22 d A = 3 d A

S =
∫∫

x2+y2≤1
3 d A = 3π(12) = 3π sq. units.

2. z = (3x − 4y)/5,
∂z

∂x
= 3

5
,

∂z

∂y
= 4

5

dS =
√

1 + 32 + 42

52 d A = √2 d A

S =
∫∫

(x/2)2+y2≤1

√
2 d A = √2π(2)(1) = 2

√
2π sq. units.

3. z =
√

a2 − x2 − y2

∂z

∂x
= − x

√

a2 − x2 − y2
,

∂z

∂y
= − y

√

a2 − x2 − y2

dS =
√

1+ x2 + y2

a2 − x2 − y2
d A = a

√

a2 − x2 − y2
d A

S =
∫∫

x2+y2≤a2

a d A
√

a2 − x2 − y2
(use polars)

= a
∫ 2π

0
dθ
∫ a

0

r dr√
a2 − r2

Let u = a2 − r2

du = −2r dr

= πa
∫ a2

0
u−1/2 du = 2πa2 sq. units.

4. z = 2
√

1− x2 − y2

∂z

∂x
= − 2x

√

1− x2 − y2
,

∂z

∂y
= − 2y

√

1 − x2 − y2

dS =
√

1+ 4(x2 + y2)

1 − x2 − y2
d A =

√

1+ 3(x2 + y2)

1− x2 − y2
d A

S =
∫∫

x2+y2≤1
dS

=
∫ 2π

0
dθ
∫ 1

0

√

1+ 3r2

1− r2 r dr Let u2 = 1− r2

u du = −r dr

= 2π
∫ 1

0

√

4 − 3u2 du Let
√

3u = 2 sin v√
3 du = 2 cos v dv

= 2π
∫ π/3

0
(2 cos2 v)

2 dv√
3

= 4π√
3

∫ π/3

0
(1 + cos 2v) dv

= 4π√
3

(

v + sin 2v

2

)∣
∣
∣
∣

π/3

0
= 4π2

3
√

3
+ π sq. units.

5. 3z2 = x2 + y2, 6z
∂z

∂x
= 2x,

∂z

∂x
= x

3z
,

∂z

∂y
= y

3z

dS =
√

1+ x2 + y2

9z2 d A =
√

9z2 + 3z2

9z2 d A = 2√
3

d A

S =
∫∫

x2+y2≤12

2√
3

d A = 2√
3
π(12) = 24π√

3
sq. units.

556



INSTRUCTOR’S SOLUTIONS MANUAL SECTION 14.7 (PAGE 803)

6. z = 1− x2 − y2,
∂z

∂x
= −2x,

∂z

∂y
= −2y

dS =
√

1 + 4x2 + 4y2 d A

S =
∫∫

x2+y2≤1, x≥0, y≥0

√

1+ 4(x2 + y2) d A

=
∫ π/2

0
dθ
∫ 1

0

√

1+ 4r2 r dr Let u = 1+ 4r2

du = 8r dr

= π

16

∫ 5

1
u1/2 du

= π

16

(
2

3
u3/2

)∣
∣
∣
∣

5

1
= π(5

√
5− 1)

24
sq. units.

7. The triangle is defined by 0 ≤ y ≤ 1, 0 ≤ x ≤ y.

z = y2,
∂z

∂y
= 2y, dS =

√

1+ 4y2 d A

S =
∫ 1

0
dy
∫ y

0

√

1+ 4y2 dx

=
∫ 1

0
y
√

1+ 4y2 dy Let u = 1+ 4y2

du = 8y dy

= 1

8

∫ 5

1
u1/2 du = 1

8

(
2

3
u3/2

)∣
∣
∣
∣

5

1
= 5
√

5− 1

12
sq. units.

8. z = √x,
∂z

∂x
= 1

2
√

x
, dS =

√

1+ 1

4x
d A

S =
∫ 1

0
dx
∫ √x

0

√

1+ 1

4x
dy =

∫ 1

0

√

4x + 1

4x

√
x dx

= 1

2

∫ 1

0

√
4x + 1 dx Let u = 4x + 1

du = 4 dx

= 1

8

∫ 5

1
u1/2 du = 1

8

(
2

3
u3/2

)∣
∣
∣
∣

5

1
= 5
√

5− 1

12
sq. units.

9. z2 = 4− x2, 2z
∂z

∂x
= −2x,

∂z

∂x
= − x

z

dS =
√

1 + x2

z2 d A = 2

z
d A = 2√

4− x2
d A

(since z ≥ 0 on the part of the surface

whose area we want to find)

S =
∫ 2

0
dx
∫ x

0

2√
4− x2

dy

=
∫ 2

0

2x√
4− x2

dx Let u = 4− x2

du = −2x dx

=
∫ 4

0
u−1/2 du = 2

√
u

∣
∣
∣
∣

4

0
= 4 sq. units.

10. The area elements on z = 2xy and z = x2 + y2, respec-
tively, are

dS1 =
√

1+ (2y)2 + (2x)2 d A =
√

1 + 4x2 + 4y2 dx dy,

dS2 =
√

1+ (2x)2 + (2y)2 d A =
√

1 + 4x2 + 4y2 dx dy.

Since these elements are equal, the area of the parts of
both surfaces defined over any region of the xy-plane
will be equal.

11. If z = 1
2 (x

2 + y2), then dS = √

1+ x2 + y2 d A. One-
eighth of the part of the surface above −1 ≤ x ≤ 1,
−1 ≤ y ≤ 1, lies above the triangle T : given by
0 ≤ x ≤ 1, 0 ≤ y ≤ x , or, in polar coordinates, by
0 ≤ θ ≤ π/4, 0 ≤ r ≤ 1/ cos θ = sec θ . Thus

S = 8
∫∫

T

√

1+ x2 + y2 d A

= 8
∫ π/4

0
dθ
∫ sec θ

0

√

1+ r2 r dr Let u = 1+ r2

du = 2r dr

= 4
∫ π/4

0
dθ
∫ 1+sec2 θ

0

√
u du

= 8

3

∫ π/4

0

[

(1 + sec2 θ)3/2 − 1
]

dθ

= 8

3

∫ π/4

0
(1 + sec2 θ)3/2 dθ − 2π

3
.

Using a TI-85 numerical integration routine, we obtain
the numerical value S ≈ 5.123 sq. units.

12. As the figure suggests, the area of the canopy is the
area of a hemisphere of radius

√
2 minus four times

the area of half of a spherical cap cut off from the
sphere x2 + y2 + z2 = 2 by a plane at distance 1
from the origin, say the plane z = 1. Such a spher-
ical cap, z = √

2− x2 − y2, lies above the disk

x2 + y2 ≤ 2− 1 = 1. Since
∂z

∂x
= −x/z and

∂z

∂y
= −y/z

on it, the area of the spherical cap is

∫∫

x2+y2≤1

√

1+ x2 + y2

z2 d A

= 2
√

2π
∫ 1

0

r dr√
2− r2

Let u = 2− r2

du = −2r dr

= √2π
∫ 2

1
u−1/2 du = 2

√
2(
√

2− 1) = 4− 2
√

2.

Thus the area of the canopy is

S = 2π(
√

2)2−4× 1

2
×(4−2

√
2) = 4(π+√2)−8 sq. units.
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x y

z

Fig. 14.7.12

13. Mass =
∫ 2π

0
dθ

∫ π

0
sinφ dφ

∫ a

0

Aρ2 dρ

B + ρ2

= 4π A
∫ a

0

(

1− B

ρ2 + B

)

dρ

= 4π A

(

a −√B tan−1 a√
B

)

units.

14. A slice of the ball at height z, having thickness dz, is a
circular disk of radius

√
a2 − z2 and areal density δ dz.

As calculated in the text, this disk attracts mass m at
(0, 0, b) with vertical force

d F = 2πkmδdz

(

1− b − z
√

a2 − z2 + (b − z)2

)

.

Thus the ball attracts m with vertical force

F = 2πkmδ
∫ a

−a

(

1− b − z√
a2 + b2 − 2bz

)

dz

let v = a2 + b2 − 2bz, dv = −2b dz

then b − z = b − a2 + b2 − v
2b

= b2 − a2 + v
2b

= 2πkmδ

[

2a − 1

4b2

∫ (b+a)2

(b−a)2

b2 − a2 + v√
v

dv

]

= 2πkmδ

[

2a − b2 − a2

2b2

(

b + a − (b − a)
)

− 1

6b2

(

(b + a)3 − (b − a)3
)]

= 4πkmδa3

3b2 = kmM

b2 ,

where M = (4/3)πa3δ is the mass of the ball. Thus the
ball attracts the external mass m as though the ball were
a point mass M located at its centre.

x

y

z

z

(0,0,b)

a

Fig. 14.7.14

15. The force is

F = 2πkmδ
∫ h

0

(

1− b − z
√

a2 + (b − z)2

)

dz

Let u = a2 + (b − z)2

du = −2(b − z) dz

= 2πkmδ

(

h − 1

2

∫ a2+b2

a2+(b−h)2

du√
u

)

= 2πkmδ
(

h −
√

a2 + b2 +
√

a2 + (b − h)2
)

.

x
y

z

z

h

(0,0,b)

a

Fig. 14.7.15

16. The force is

F = 2πkmδ
∫ b

0

(

1 − b − z
√

a2(b − z)2 + (b − z)2

)

dz

= 2πkmδ
∫ b

0

(

1− 1√
a2 + 1

)

dz

= 2πkmδb

(

1 − 1√
a2 + 1

)

.
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x
y

z

b

z=b− r
a

ab

Fig. 14.7.16

17. The force is

F = 2πkmδ
∫ a

0

(

1− b − z√
a2 + b2 − 2bz

)

dz

use the same substitution as in Exercise 2)

= 2πkmδ

(

a − 1

4b2

∫ a2+b2

(b−a)2

b2 − a2 + v√
v

dv

)

= 2πkmδ

(

a − b2 − a2

2b2

(√

a2 + b2 − (b − a)
)

− 1

6b2

(

(a2 + b2)3/2 − (b − a)3
))

= 2πkmδ

3b2

(

2b3 + a3 − (2b2 − a2)
√

a2 + b2
)

.

x
y

z

(0,0,b)

z=
√

a2−x2−y2

Fig. 14.7.17

18. m =
∫ a

0
dx

∫ a

0
dy

∫ a

0
(x2 + y2 + z2) dz

= 3
∫ a

0
x2 dx

∫ a

0
dy

∫ a

0
dz = a5

Mx=0 =
∫ a

0
x dx

∫ a

0
dy

∫ a

0
(x2 + y2 + z2) dz

=
∫ a

0
x dx

∫ a

0

(

a(x2 + y2)+ a3

3

)

dy

=
∫ a

0

(
2a4

3
+ a2x2

)

x dx = 7a6

12
.

Thus x̄ = Mx=0/m = 7a

12
.

By symmetry, the centre of mass is

(
7a

12
,

7a

12
,

7a

12

)

.

19. Since the base triangle has centroid

(
1

3
,

1

3
, 0

)

, the cen-

troid of the prism is

(
1

3
,

1

3
,

1

2

)

.

x
y

z

1

P

1
1

Fig. 14.7.19

20. Volume of region =
∫ 2π

0
dθ

∫ ∞

0
e−r2

r dr = π . By

symmetry, the moments about x = 0 and y = 0 are both
zero. We have

Mz=0 =
∫ 2π

0
dθ

∫ ∞

0
r dr

∫ e−r2

0
z dz

= π
∫ ∞

0
re−2r2

dr = π

4
.

The centroid is (0, 0, 1/4).

21. The volume is
1

8

(
4

3
πa3

)

= πa3

6
. By symmetry, the

moments about all three coordinate planes are equal. We
have

Mz=0 =
∫ π/2

0
dθ

∫ π/2

0
sinφ dφ

∫ a

0
ρ cosφ ρ2 dρ

= πa4

8

∫ π/2

0
sinφ cosφ dφ = πa4

16
.

Thus z̄ = Mz=0/volume = 3a/8.

The centroid is

(
3a

8
,

3a

8
,

3a

8

)

.

x
y

z

r=a2z

1

Fig. 14.7.21
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22. The cube has centroid (1/2, 1/2, 1/2). The tetrahedron
lying above the plane x + y + x = 2 has centroid
(3/4, 3/4, 3/4) and volume 1/6. Therefore the part of
the cube lying below the plane has centroid (c, c, c) and
volume 5/6, where

5

6
c + 3

4
× 1

6
= 1

2
× 1.

Thus c = 9/20; the centroid is

(
9

20
,

9

20
,

9

20

)

.

x
y

z

1

1
1

Fig. 14.7.22

23. The model still involves angular acceleration to spin the
ball — it doesn’t just fall. Part of the gravitational poten-
tial energy goes to producing this spin as the ball falls,
even in the limiting case where the fall is vertical.

24. I = δ
∫ 2π

0
dθ

∫ a

0
r3 dr

∫ h

0
dz

= 2πδh

(
a4

4

)

= πδha4

2
.

m = πδa2h, D̄ = √I/m = a√
2
.

25. I = δ
∫ 2π

0
dθ

∫ a

0
r dr

∫ h

0
(x2 + z2) dz

= δ
∫ 2π

0
dθ

∫ a

0

(

hr2 cos2 θ + h3

3

)

r dr

= δ
∫ 2π

0

(
ha4

4
cos2 θ + h3a2

6

)

dθ

= δ
(
πha4

4
+ πh3a2

3

)

= πδa2h

(
a2

4
+ h2

3

)

m = πδa2h, D̄ = √I/m =
√

a2

4
+ h2

3
.

26. I = δ
∫ 2π

0
dθ

∫ a

0
r3 dr

∫ h(1−(r/a))

0
dz

= 2πδh
∫ a

0
r3
(

1 − r

a

)

dr = πδa4h

10
,

m = πδa2h

3
, D̄ = √I/m =

√

3

10
a.

x
y

z

h

z
h +

r
a=1

a
a

Fig. 14.7.26

27. I = δ
∫ 2π

0
dθ

∫ a

0
r dr

∫ h(1−(r/a))

0
(x2 + z2) dz

= δ
∫ 2π

0
dθ

∫ a

0

[

h
(

1− r

a

)

r2 cos2 θ

+ h3

3

(

1 − r

a

)3
]

r dr

= πδh
∫ a

0

(

r3 − r4

a

)

dr + 2πδh3

3

∫ a

0
r
(

1− r

h

)3
dr

in the second integral put u = 1− (r/a)
= πδa4h

20
+ 2πδa2h3

3

∫ 1

0
(1− u)u3 du

= πδa4h

20
+ 2πδa2h3

60
= πδa2h

60
(3a2 + 2h2),

m = πδa2h

3
, D̄ = √I/m =

√

3a2 + 2h2

20
.

28. I = δ
∫∫∫

Q
(x2 + y2) dV

= 2δ
∫ a

0
x2 dx

∫ a

0
dy

∫ a

0
dz = 2δa5

3
,

m = δa3, D̄ = √I/m =
√

2

3
a.

x
y

z

a

a

a

Fig. 14.7.28

29. The distance s from (x, y, z) to the line x = y, z = 0
satisfies s2 = u2 + z2, where u is the distance from
(x, y, 0) to the line x = y in the xy-plane. By Example
7 of Section 1.4 u = |x − y|/√2, so

s2 = (x − y)2

2
+ z2.
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The moment of inertia of the cube about this line is

I = δ
∫ a

0
dx

∫ a

0
dy

∫ a

0

(
(x − y)2

2
+ z2

)

dz

= δ
∫ a

0
dx

∫ a

0

(
a

2
(x − y)2 + a3

3

)

dy Let u = x − y

du = −dy

= δa5

3
+ δa

2

∫ a

0
dx

∫ x

x−a
u2 du

= δa5

3
+ δa

6

∫ a

0
(3ax2 − 3a2x + a3) dx

= δa5

3
+ δa

6

(

a4 − 3a4

2
+ a4

)

= 5δa5

12
,

m = δa3, D̄ = √I/m =
√

5

12
a.

30. The line L through the origin parallel to the vector
v = i + j + k is a diagonal of the cube Q. By Exam-
ple 8 of Section 1.4, the distance from the point with
position vector r = x i + yj + zk to L is s = |v × r|/|v|.
Thus, the square of the distance from (x, y, z) to L is

s2 = (x − y)2 + (y − z)2 + (z − x)2

3

= 2

3

(

x2 + y2 + z2 − xy − xz − yz
)

.

We have

∫∫∫

Q
x2 dV =

∫∫∫

Q
y2 dV =

∫∫∫

Q
z2 dV = a5

3
∫∫∫

Q
xy dV =

∫∫∫

Q
yz dV =

∫∫∫

Q
xz dV = a5

4
.

Therefore, the moment of inertia of Q about L is

I = 2δ

3

(

3× a5

3
− 3× a5

4

)

= δa5

6
.

The mass of Q is m = δa3, so the radius of gyration is

D̄ = √I/m = a√
6
.

31. I = δ
∫ a

−a
dx

∫ b

−b
dy

∫ c

−c
(x2 + y2) dz

= 2δc
∫ a

−a

(

2bx2 + 2b3

3

)

dx

= 8δabc

3
(a2 + b2),

m = 8δabc, D̄ = √I/m =
√

a2 + b2

3
.

32. I = δ
∫ 2π

0
dθ

∫ c

0
dz
∫ b

a
r3 dr = πδc(b4 − a4)

2
,

m = πδc(b2 − a2), D̄ =
√

b2 + a2

2
.

x
y

z

c

r=a r=b

Fig. 14.7.32

33. m = 2δ
∫ 2π

0
dθ

∫ a

b
r dr

∫
√

a2−r2

0
dz

= 4πδ
∫ a

b
r
√

a2 − r2 dr Let u = a2 − r2

du = −2r dr

= 2πδ
∫ a2−b2

0

√
u du = 4πδ

3
(a2 − b2)3/2,

I = 2δ
∫ 2π

0

∫ a

b
r3 dr

∫
√

a2−r2

0
dz

= 4πδ
∫ a

b
r3
√

a2 − r2 dr Let u = a2 − r2

du = −2r dr

= 2πδ
∫ a2−b2

0
(a2 − u)

√
u du

= 2πδ

(
2

3
a2(a2 − b2)3/2 − 2

5
(a2 − b2)5/2

)

= 4πδ(a2 − b2)3/2
1

15
(2a2 + 3b2) = 1

5
m(2a2 + 3b2).

x
y

z

b a

Fig. 14.7.33
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34. By Exercise 26, the cylinder has moment of inertia

I = πδa4h

2
= ma2

2
,

where m is its mass. Following the method of Example
4(b), the kinetic energy of the cylinder rolling down the
inclined plane with speed v is

K E = 1

2
mv2 + 1

2
I�2

= 1

2
mv2 + 1

4
ma2 v

2

a2
= 3

4
mv2.

The potential energy of the cylinder when it is at height
h is mgh, so, by conservation of energy,

3

4
mv2 + mgh = constant.

Differentiating this equation with respect to time t , we
obtain

0 = 3

2
mv

dv

dt
+ mg

dh

dt

= 3

2
mv

dv

dt
+ mgv sinα.

Thus the cylinder rolls down the plane with acceleration

−dv

dt
= 2

3
g sinα.

35. By Exercise 35, the ball with hole has moment of inertia

I = m

5
(2a2 + 3b2)

about the axis of the hole. The kinetic energy of the
rolling ball is

K E = 1

2
mv2 + m

10
(2a2 + 3b2)

v2

a2

= mv2
(

1

2
+ 2a2 + 3b2

10a2

)

= mv2 7a2 + 3b2

10a2 .

By conservation of energy,

mv2 7a2 + 3b2

10a2 + mgh = constant.

Differentiating with respect to time, we obtain

7a2 + 3b2

5a2
mv

dv

dt
+mgv sinα = 0.

Thus the ball rolls down the plane (with its hole remain-
ing horizontal) with acceleration

−dv

dt
= 5a2

7a2 + 3b2 g sinα.

36. The kinetic energy of the oscillating pendulum is

K E = 1

2
I

(
dθ

dt

)2

.

The potential energy is mgh, where h is the distance of
C above A. In this case, h = −a cos θ . By conservation
of energy,

1

2
I

(
dθ

dt

)2

− mga cos θ = constant.

Differentiating with respect to time t , we obtain

I

(
dθ

dt

)
d2θ

dt2
+ mga sin θ

(
dθ

dt

)

= 0,

or
d2θ

dt2 +
mga

I
sin θ = 0.

For small oscillations we have sin θ ≈ θ , and the above
equation is approximated by

d2θ

dt2 + ω2θ = 0,

where ω2 = mga/I . The period of oscillation is

T = 2π

ω
= 2π

√

I

mga
.

θ
a

A

C

Fig. 14.7.36

37. If the centre of mass of B is at the origin, then

Mx=0 =
∫∫∫

B
xδ dV = 0.
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If line L0 is the z-axis, and Lk is the line x = k, y = 0,
then the moment of inertia Ik of B about Lk is

Ik =
∫∫∫

B

(

(x − k)2 + y2
)

δ dV

=
∫∫∫

B
(x2 + y2 + k2 − 2kx) δ dV

= I0 + k2m − 2kMx=0 = I0 + k2m,

where m is the mass of B and I0 is the moment about
L0.

x

y

z

k

Lk

L0

B

Fig. 14.7.37

38. The moment of inertia of the ball about the point where
it contacts the plane is, by Example 4(b) and Exercise 39,

I = 8

15
πδa5 +

(
4

3
πδa3

)

a2

=
(

2

5
+ 1

)

ma2 = 7

5
ma2.

The kinetic energy of the ball, regarded as rotating about
the point of contact with the plane, is therefore

K E = 1

2
I�2 = 7

10
ma2 v

2

a2
= 7

10
mv2.

39. By Example 7 of Section 1.4, the distance from the point
with position vector r = x i+ yj+ zk to the straight line L
through the origin parallel to the vector a = Ai+ Bj+Ck
is

s = |a× r|
|a| .

The moment of inertia of the body occupying region R
about L is, therefore,

I = 1

|a|2
∫∫∫

R
|a× r|2δ dV

= 1

A2 + B2 + C2

∫∫∫

R

[

(Bz − Cy)2 + (Cx − Az)2

+ (Ay − Bx)2
]

δ dV

= 1

A2 + B2 + C2

[

(B2 + C2)Pxx + (A2 + C2)Pyy

+ (A2 + B2)Pzz − 2AB Pxy − 2AC Pxz − 2BC Pyz

]

.

Review Exercises 14 (page 804)

1. By symmetry,

∫∫

R
(x + y) d A = 2

∫∫

R
x d A = 2

∫ 1

0
x dx

∫ √x

x2
dy

= 2
∫ 1

0
(x3/2 − x3) dx

= 2

(
2

5
x5/2 − x4

4

)∣
∣
∣
∣

1

0
= 2

(
2

5
− 1

4

)

= 3

10

y

x

(1, 1)

y = x2

y = √x
x = y2

R

Fig. R-14.1

2.
∫∫

P
(x2 + y2) d A =

∫ 1

0
dy
∫ 2+y

y
(x2 + y2) dx

=
∫ 1

0

(
x3

3
+ xy2

)∣
∣
∣
∣

x=2+y

x=y
dy

=
∫ 1

0

(
(2 + y)3

3
+ y2(2+ y)− y3

3
− y3

)

dy

=
∫ 1

0

(
8

3
+ 4y + 4y2

)

dy = 8

3
+ 2+ 4

3
= 6

y

x

P

(1, 1) (3, 1)

x = 2+ y

y = x

2
Fig. R-14.2

3.
∫∫

D

y

x
d A =

∫ π/4

0
dθ
∫ 2

0
tan θ r dr

= ln sec θ

∣
∣
∣
∣

π/4

0

r2

2

∣
∣
∣
∣

2

0
= 2 ln

√
2 = ln 2
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y

x

S

2

y = x

Fig. R-14.3

4. a) I =
∫
√

3

0
dy
∫
√

4−y2

y/
√

3
e−x2−y2

dx

=
∫∫

R
e−x2−y2

d A

where R is as shown in the figure.
y

x1 2

y = √3x

R

r = 2

Fig. R-14.4

b) I =
∫ 1

0
dx
∫
√

3x

0
e−x2−y2

dy

+
∫ 2

1
dx
∫
√

4−x2

0
e−x2−y2

dy

c) I =
∫ π/3

0
dθ
∫ 2

0
e−r2

r dr

d) I = π

3

(

− e−r2

2

)∣
∣
∣
∣

2

0
= π(1 − e−4)

6

5. The cone z = k
√

x2 + y2 has semi-vertical angle
φ0 = tan−1(1/k). Thus the volume inside the cone and
inside the sphere x2 + y2 + z2 = a2 is

V =
∫ 2π

0
dθ
∫ φ0

0
sinφ dφ

∫ a

0
ρ2 dρ

= 2πa3

3
(1 − cosφ0) = 2πa3

3

(

1− k√
k2 + 1

)

.

To have

V = 1

4

(
4

3
πa3

)

= πa3

3
,

we need to ensure that

2

(

1 − k√
k2 + 1

)

= 1.

Thus k2 + 1 = (2k)2, and so 3k2 = 1, and k = 1/
√

3.

z = krφ0
a

Fig. R-14.5

6. I =
∫ 2

0
dy
∫ y

0
f (x, y) dx +

∫ 6

2
dy
∫
√

6−y

0
f (x, y) dx

=
∫∫

R
f (x, y) d A,

where R is as shown in the figure. Thus

I =
∫ 2

0
dx
∫ 6−x2

x
f (x, y) dy.

y

x

y = 6− x2

R
(2, 2)

y = x

6

Fig. R-14.6

7. J =
∫ 1

0
dz
∫ z

0
dy
∫ y

0
f (x, y, z) dx

corresponds to the region

0 ≤ z ≤ 1, 0 ≤ y ≤ z, 0 ≤ x ≤ y,

which can also be expressed in the form

0 ≤ x ≤ 1, x ≤ y ≤ 1, y ≤ z ≤ 1.

Thus J =
∫ 1

0
dx
∫ 1

x
dy
∫ 1

y
f (x, y, z) dz.

8. A horizontal slice of the object at height z above the
base, and having thickness dz, is a disk of radius
r = 1

2 (10 − z) m. Its volume is

dV = π (10− z)2

4
dz m3.
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The density of the slice is δ = kz2 kg/m3. Since
δ = 3, 000 when z = 10, we have k = 30.

a) The mass of the object is

m =
∫ 10

0
30z2 π

4
(10 − z)2 dz

= 15π

2

∫ 10

0
(100z2 − 20z3 + z4) dz

= 15π

2

(
100, 000

3
− 50, 000+ 20, 000

)

≈ 78, 540 kg.

b) The moment of inertia (about its central axis) of the
disk-shaped slice at height z is

d I = 30z2 dz
∫ 2π

0
dθ
∫ (10−z)/2

0
r3 dr.

Thus the moment of inertia about the whole solid
cone is

I =
∫ 10

0
30z2 dz

∫ 2π

0
dθ
∫ (10−z)/2

0
r3 dr.

9. f (t) =
∫ a

t
e−x2

dx

f̄ = 1

a

∫ a

0
f (t) dt = 1

a

∫ a

0
dt
∫ a

t
e−x2

dx

= 1

a

∫ a

0
e−x2

dx
∫ x

0
dt = 1

a

∫ a

0
xe−x2

dx

= 1

a

(

− e−x2

2

)∣
∣
∣
∣

a

0
= 1 − e−a2

2a

10. If f (x, y) = 	x + y
, then f = 0, 1, or 2, in parts of the
quarter disk Q, as shown in the figure.

y

1

2

3

x1 2 3

f = 2

f = 1

f = 0 Q

Fig. R-14.10

Thus
∫∫

Q
f (x, y) d A = 0

(
1

2

)

+ 1

(
3

2

)

+ 2 (π − 2) = 2π − 5

2
,

and f̄ = 1

π

(

2π − 5

2

)

= 2 − 5

2π
.

11. The sphere x2 + y2 + z2 = 6a2 and the paraboloid
z = (x2+ y2)/a intersect where z2+az−6a2 = 0, that is,
where (z + 3a)(z − 2a) = 0. Only z = 2a is possible; the
plane z = −3a does not intersect the sphere. If z = 2a,
then x2 + y2 = r2 = 6a2 − 4a2 = 2a2, so the intersection
is on the vertical cylinder of radius

√
2a with axis on the

z-axis. We have,
∫∫∫

D
(x2 + y2) dV

=
∫ 2π

0
dθ
∫
√

2a

0
r3 dr

∫
√

6a2−r2

r2/a
dz

= 2π
∫
√

2a

0

[

r3
√

6a2 − r2 − r5

a

]

dr

Let u = 6a2 − r2

du = −2r dr

= π
∫ 6a2

4a2
(6a2 − u)

√
u du − π

3a
(
√

2a)6

= π
(

4a2u3/2 − 2

5
u5/2

)∣
∣
∣
∣

6a2

4a2
− 8

3
πa5

= 8π

15
(18
√

6− 41)a5

12. The solid S lies above the region in the xy-plane
bounded by the circle x2 + y2 = 2ay, which has polar
equation r = 2a sin θ , (0 ≤ θ ≤ π). It lies below the
cone
z = √x2 + y2 = r . The moment of inertia of S about the
z-axis is

I =
∫∫∫

S
(x2 + y2) dV =

∫ π

0
dθ
∫ 2a sin θ

0
r3 dr

∫ r

0
dz

=
∫ π

0
dθ
∫ 2a sin θ

0
r4 dr = 32a5

5

∫ π

0
sin5 θ dθ

= 32a5

5

∫ π

0
(1 − cos2 θ)2 sin θ dθ Let u = cos θ

du = − sin θ dθ

= 32a5

5

∫ 1

−1
(1− 2u2 + u4) du

= 64a5

5

(

1 − 2

3
+ 1

5

)

= 512a5

75
.

13. A horizontal slice of D at height z is a right triangle
with legs (2 − z)/2 and 2− z. Thus the volume of D is

V = 1

4

∫ 1

0
(2− z)2 dz = 7

12
.
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Its moment about z = 0 is

Mz=0 = 1

4

∫ 1

0
z(2 − z)2 dz

= 1

4

∫ 1

0
(4z − 4z2 + z3) dz = 11

48
.

The z-coordinate of the centroid of D is

z̄ = 11

48

/
7

12
= 11

28
.

x
y

z

(0, 1, 1)
(0, 0, 1)

(0, 2, 0)

(0, 0, 0)

( 1
2 , 0, 1)

(1, 0, 0)

2x + y + z = 2

y + z = 2

2x + z = 2

Fig. R-14.13

14. V =
∫∫∫

S
dV =

∫ 1

0
dy
∫ 1−y

0
dz
∫ 2−y−2z

0
dx

=
∫ 1

0
dy
∫ 1−y

0
(2 − y − 2z) dz

=
∫ 1

0
[(2 − y)(1− y)− (1 − y)2] dy

=
∫ 1

0
(1 − y) dy = 1

2

Mx=0 =
∫∫∫

S
x dV =

∫ 1

0
dy
∫ 1−y

0
dz
∫ 2−y−2z

0
x dx

= 1

2

∫ 1

0
dy
∫ 1−y

0
[(2 − y)2 − 4(2 − y)z + 4z2] dz

= 1

2

∫ 1

0

[

(2 − y)2(1− y)− 2(2− y)(1− y)2

+ 4

3
(1 − y)3

]

dy Let u = 1− y

du = −dy

= 1

2

∫ 1

0

[

(u + 1)2u − 2(u + 1)u2 + 4

3
u3
]

du

= 1

2

∫ 1

0

[
1

3
u3 + u

]

du = 7

24

x̄ = 7

24

/
1

2
= 7

12

x

y

z

(0, 0, 1)

(0, 1, 0)
2

S

(1, 1, 0)
(2, 0, 0)

x = 2− y − 2z

y + z = 1

Fig. R-14.14

15.
∫∫∫

S
z dV =

∫ 1

0
z dz

∫ 1+z

0
dy
∫ 1+z−y

0
dx

=
∫ 1

0
z dz

∫ 1+z

0
(1 + z − y) dy

=
∫ 1

0
z

[

(1 + z)2 − (1 + z)2

2

]

dz

= 1

2

∫ 1

0
(z + 2z2 + z3) dz = 17

24

x

y

z

(0, 0, 1)

(0, 2, 1)

(0, 1, 0)

(1, 0, 0)

(2, 0, 1)
y = 1+ zS

x + y − z = 1

Fig. R-14.15

16. The plane z = 2x intersects the paraboloid z = x2 + y2

on the circular cylinder x2 + y2 = 2x , (that is,
(x − 1)2 + y2 = 1), which has radius 1. Since
dS = √1+ 22 d A = √5 d A on the plane, the area of
the part of the plane inside the paraboloid (and therefore
inside the cylinder) is

√
5 times the area of a circle of

radius 1, that is,
√

5π square units.

17. As noted in the previous exercise, the part of the
paraboloid z = x2 + y2 that lies below the plane z = 2x
is inside the vertical cylinder x2 + y2 = 2x , which has
polar equation r = 2 cos θ (−π/2 ≤ θ ≤ π/2). On the
paraboloid:

dS =
√

1+ (2x)2 + (2y)2 d A =
√

1+ 4r2 r dr dθ.

566



INSTRUCTOR’S SOLUTIONS MANUAL CHALLENGING PROBLEMS 14 (PAGE 805)

The area of that part of the paraboloid is

S =
∫ π/2

−π/2
dθ
∫ 2 cos θ

0

√

1 + 4r2 r dr Let u = 1+ 4r2

du = 8r dr

= 1

8

∫ π/2

−π/2
dθ
∫ 1+16 cos2 θ

1
u1/2 du

= 1

4

∫ π/2

0

2

3
[(1 + 16 cos2 θ)3/2 − 1] dθ

= 1

6

∫ π/2

0
[(1 + 16 cos2 θ)3/2 − 1] dθ

≈ 7.904 sq. units.

(using a TI-85 numerical integration function).

18. The region R inside the ellipsoid
x2

36
+ y2

9
+ z2

4
= 1

and above the plane x + y + z = 1 is transformed by the
change of variables

x = 6u, y = 3v, z = 2w

to the region S inside the sphere u2 + v2 + w2 = 1 and
above the plane 6u+ 3v+ 2w = 1. The distance from the
origin to this plane is

D = 1√
62 + 32 + 22

= 1

7
,

so, by symmetry, the volume of S is equal to the volume
inside the sphere and above the plane w = 1/7, that is,

∫ 1

1/7
π(1 −w2) dw = π

(

w − w
3

3

)∣
∣
∣
∣

1

1/7
= 180π

343
units3.

Since |∂(x, y, z)/∂(u, v, w)| = 6 ·3 ·2 = 18, the volume of
R is 18× (180π/343) = 3240π/343 ≈ 29.68 cu. units.

Challenging Problems 14 (page 805)

1. This problem is similar to Review Exercise 18 above.

The region R inside the ellipsoid
x2

a2
+ y2

b2
+ z2

c2
= 1 and

above the plane
x

a
+ y

b
+ z

c
= 1 is transformed by the

change of variables

x = au, y = bv, z = cw

to the region S inside the sphere u2 + v2 + w2 = 1 and
above the plane u + v + w = 1. The distance from the

origin to this plane is
1√
3

, so, by symmetry, the volume

of S is equal to the volume inside the sphere and above
the plane w = 1/

√
3, that is,

∫ 1

1/
√

3
π(1 − w2) dw = π

(

w − w
3

3

)∣
∣
∣
∣

1

1
√

3

= 2π(9 − 4
√

3)

27
cu. units.

Since |∂(x, y, z)/∂(u, v, w)| = abc, the volume of R is
2π(9 − 4

√
3)

27
abc cu. units.

2. The plane (x/a) + (y/b) + (z/c) = 1 intersects the
ellipsoid
(x/a)2 + (y/b)2 + (z/c)2 = 1 above the region R in the
xy-plane bounded by the ellipse

x2

a2 +
y2

b2 +
(

1− x

a
− y

b

)2 = 1,

or, equivalently,

x2

a2 +
y2

b2 +
xy

ab
− x

a
− y

b
= 0.

Thus the area of the part of the plane lying inside the
ellipsoid is

S =
∫∫

R

√

1 + c2

a2 +
c2

b2 dx dy

=
√

a2b2 + a2c2 + b2c2

ab
(area of R).

Under the transformation x = a(u + v), y = b(u − v), R
corresponds to the ellipse in the uv-plane bounded by

(u + v)2 + (u − v)2 + (u2 − v2)− (u + v)− (u − v) = 0

3u2 + v2 − 2u = 0

3

(

u2 − 2

3
u + 1

9

)

+ v2 = 1

3

(u − 1/3)2

1/9
+ v2

1/3
= 1,

an ellipse with area π(1/3)(1/
√

3) = π/(3√3) sq. units.
Since

dx dy = |
∣
∣
∣
∣

a a
b −b

∣
∣
∣
∣
| du dv = 2ab du dv,

we have

S = 2π

3
√

3

√

a2b2 + a2c2 + b2c2 sq. units.
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3. a)
1

1− xy
= 1+ xy + (xy)2 + · · · =

∞∑

n=1

(xy)n−1

∫ 1

0

∫ 1

0

dx dy

1− xy
=
∞∑

n=1

∫ 1

0
xn−1 dx

∫ 1

0
yn−1 dy

=
∞
∑

n=1

1

n2 .

Remark: The series for 1/(1 − xy) converges for
|xy| < 1. Therefore the outer integral is improper (i.e.,
limc→1−

∫ c
0 dx). We cannot do a detailed analysis of the

convergence here, but the convergence of
∑

1/n2 shows
that the iterated double integral must converge.

b) Similarly,

1

1+ xy
= 1− xy + (xy)2 − · · · =

∞∑

n=1

(−xy)n−1

∫ 1

0

∫ 1

0

dx dy

1+ xy

=
∞
∑

n=1

(−1)n−1
∫ 1

0
xn−1 dx

∫ 1

0
yn−1 dy

=
∞∑

n=1

(−1)n−1

n2

∫ 1

0

∫ 1

0

∫ 1

0

dx dy

1− xyz

=
∞
∑

n=1

∫ 1

0
xn−1 dx

∫ 1

0
yn−1 dy

∫ 1

0
zn−1 dz

=
∞
∑

n=1

1

n3

∫ 1

0

∫ 1

0

∫ 1

0

dx dy

1+ xyz

=
∞
∑

n=1

(−1)n−1
∫ 1

0
xn−1 dx

∫ 1

0
yn−1 dy

∫ 1

0
zn−1 dz

=
∞
∑

n=1

(−1)n−1

n3 .

4. Under the transformation u = a • r, v = b • r, w = c • r,
where r = x i + yj+ zk, the parallelepiped P corresponds
to the rectangle R specified by 0 ≤ u ≤ d1, 0 ≤ v ≤ d2,
0 ≤ w ≤ d3. If a = a1i+a2j+a3k and similar expressions
hold for b and c, then

∂(u, v, w)

∂(x, y, z)
=
∣
∣
∣
∣
∣

a1 a2 a3
b1 b2 b3
c1 c2 c3

∣
∣
∣
∣
∣
= a • (b × c).

Therefore

dx dy dz =
∣
∣
∣
∣

∂(x, y, z)

∂(u, v, w)

∣
∣
∣
∣

du dv dw = du dv dw

|a • (b × c)| ,

and we have
∫∫∫

P
(a • r)(b • r)(c • r) dx dy dz

=
∫∫∫

R

uvw

|a • (b × c)| du dv dw

= 1

|a • (b × c)|
∫ d1

0
u du

∫ d2

0
v dv

∫ d3

0
w dw

= d2
1 d2

2 d2
3

8|a • (b × c)| .

5. The volume V0 removed from the ball is eight times the
part in the first octant, which is itself split into two equal
parts by the plane x = y:

V0 = 16
∫ 1

0
dx
∫ x

0

√

4− x2 − y2 dy

= 16
∫ π/4

0
dθ
∫ sec θ

0

√

4− r2 r dr Let u = 4− r2

du = −2r dr

= 8
∫ π/4

0
dθ
∫ 4

4−sec2 θ

u1/2 du

= 16

3

∫ π/4

0

[

8 − (4 − sec2 θ)3/2
]

dθ

= 32π

3
− 16

3

∫ π/4

0

(4 cos2 θ − 1)3/2

cos3 θ
dθ.

Now the volume of the whole ball is (4π/3)23 = 32π/3,
so the volume remaining after the hole is cut is

V = 32π

3
− V0

= 16

3

∫ π/4

0

(3 − 4 sin2 θ)3/2

(1 − sin2 θ)2
cos θ dθ Let v = sin θ

dv = cos θ dθ

= 16

3

∫ 1/
√

2

0

(3− 4v2)3/2

(1 − v2)2
dv.

We submitted this last integral to Mathematica to obtain

V = 4

3

(

32sin−1

√

2

3
− 23/2 + 11tan−1(3− 23/2)

− 11tan−1(3 + 23/2)

)

≈ 18.9349.

6. Under the transformation x = u3, y = v3,
z = w3, the region R bounded by the surface
x2/3 + y2/3 + z2/3 = a2/3 gets mapped to the ball B
bounded by u2 + v2 + w2 = a2/3. Assume that a > 0.
Since

∂(x, y, z)

∂(u, v, w)
= 27u2v2w2,
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the volume of R is

V = 27
∫∫∫

B
u2v2w2 du dv dw.

Now switch to polar coordinates [ρ, φ, θ ] in uvw-space.
Since

uvw = (ρ sinφ cos θ)(ρ sinφ sin θ)(ρ cosφ),

we have

V = 27
∫ 2π

0
cos2 θ sin2 θ dθ

∫ π

0
sin5 φ cos2 φ dφ

∫ a1/3

0
ρ8 dρ

= 3a3
∫ 2π

0

sin2(2θ)

4
dθ
∫ π

0
(1 − cos2 φ)2 cos2 φ sinφ dφ

Let t = cosφ, dt = − sinφ dφ

= 3a3
∫ 2π

0

1− cos(4θ)

8
dθ
∫ 1

−1
(1 − t2)2t2 dt

= 3a3

8
(2π)2

∫ 1

0
(t2 − 2t4 + t6) dt = 4πa3

35
cu. units.

7. One-eighth of the required volume lies in the first octant.
Under the transformation x = u6, y = v6, z = w6, the
region first-octant R bounded by the surface
x1/3 + y1/3 + z1/3 = a1/3 and the coordinate planes gets
mapped to the first octant part B of the ball bounded by
u2 + v2 + w2 ≤ a1/3. Assume that a > 0. Since

∂(x, y, z)

∂(u, v, w)
= 63u5v5w5,

the required volume is

V = 8(63)

∫∫∫

B
u5v5w5 du dv dw.

Now switch to polar coordinates [ρ, φ, θ ] in uvw-space.
Since

uvw = (ρ sinφ cos θ)(ρ sinφ sin θ)(ρ cosφ),

we have

V = 1, 728
∫ π/2

0
(cos θ sin θ)5 dθ

∫ π/2

0
(sin2 φ cosφ)5 sinφ dφ

×
∫ a1/6

0
ρ17 dρ

= 96a3
∫ π/2

0

sin5(2θ)

32
dθ
∫ π/2

0
sin11 φ(1 − sin2 φ)2 cosφ dφ

Let s = sinφ, ds = cosφ dφ

= 3a3
∫ π/2

0
(1 − cos2(2θ))2 sin(2θ) dθ

∫ 1

0
s11(1 − s2)2 ds

Let t = cos(2θ), dt = −2 sin(2θ) dθ

= 3a3

2

∫ 1

−1
(1 − 2t2 + t4) dt

∫ 1

0
(s11 − 2s13 + s15) ds

= 3a3
(

1− 2

3
+ 1

5

)(
1

12
− 1

7
+ 1

16

)

= a3

210
cu. units.
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CHAPTER 15. VECTOR FIELDS

Section 15.1 Vector and Scalar Fields
(page 811)

1. F = x i+ xj.

The field lines satisfy
dx

x
= dy

x
, i.e., dy = dx . The field

lines are y = x + C , straight lines parallel to y = x .
y

x

Fig. 15.1.1

2. F = x i+ yj.

The field lines satisfy
dx

x
= dy

y
.

Thus ln y = ln x + ln C , or y = Cx . The field lines are
straight half-lines emanating from the origin.

y

x

Fig. 15.1.2

3. F = yi+ xj.

The field lines satisfy
dx

y
= dy

x
.

Thus x dx = y dy. The field lines are the rectangular
hyperbolas (and their asymptotes) given by x2 − y2 = C .

y

x

Fig. 15.1.3

4. F = i+ sin xj.

The field lines satisfy dx = dy

sin x
.

Thus
dy

dx
= sin x . The field lines are the curves

y = − cos x + C .
y

x

Fig. 15.1.4

5. F = ex i+ e−x j.

The field lines satisfy
dx

ex
= dy

e−x
.

Thus
dy

dx
= e−2x . The field lines are the curves

y = −1

2
e−2x + C .

y

x

Fig. 15.1.5

6. F = ∇(x2 − y) = 2x i− j.

The field lines satisfy
dx

2x
= dy

−1
. They are the curves

y = −1

2
ln x + C .

y

x

Fig. 15.1.6
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7. F = ∇ ln(x2 + y2) = 2x i+ 2yj
x2 + y2

.

The field lines satisfy
dx

x
= dy

y
. Thus they are radial

lines y = Cx (and x = 0)
y

x

Fig. 15.1.7

8. F = cos yi− cos xj.

The field lines satisfy
dx

cos y
= − dy

cos x
, that is,

cos x dx + cos y dy = 0. Thus they are the curves
sin x + sin y = C .

y

x

Fig. 15.1.8

9. v(x, y, z) = yi− yj− yk.
The streamlines satisfy dx = −dy = −dz. Thus
y + x = C1, z + x = C2. The streamlines are straight
lines parallel to i− j− k.

10. v(x, y, z) = x i+ yj− xk.

The streamlines satisfy
dx

x
= dy

y
= −dz

x
. Thus

z + x = C1, y = C2x . The streamlines are straight half-
lines emanating from the z-axis and perpendicular to the
vector i + k.

11. v(x, y, z) = yi− xj+ k.

The streamlines satisfy
dx

y
= −dy

x
= dz. Thus

x dx + y dy = 0, so x2 + y2 = C2
1 . Therefore,

dz

dx
= 1

y
= 1
√

C2
1 − x2

.

This implies that z = sin−1 x

C1
+ C2. The streamlines

are the spirals in which the surfaces x = C1 sin(z − C2)

intersect the cylinders x2 + y2 = C2
1 .

12. v = x i+ yj
(1 + z2)(x2 + y2)

.

The streamlines satisfy dz = 0 and
dx

x
= dy

y
. Thus

z = C1 and y = C2x . The streamlines are horizontal
half-lines emanating from the z-axis.

13. v = xzi+ yzj+ xk. The field lines satisfy

dx

xz
= dy

yz
= dz

x
,

or, equivalently, dx/x = dy/y and dx = z dz. Thus the
field lines have equations y = C1x , 2x = z2+C2, and are
therefore parabolas.

14. v = exyz(x i+ y2j+ zk). The field lines satisfy

dx

x
= dy

y2 =
dz

z
,

so they are given by z = C1x , ln |x | = ln |C2| − (1/y) (or,
equivalently, x = C2e−1/y).

15. v(x, y) = x2i − yj. The field lines sat-
isfy dx/x2 = −dy/y, so they are given by
ln |y| = (1/x)+ ln |C |, or y = Ce1/x .

16. v(x, y) = x i+ (x + y)j. The field lines satisfy

dx

x
= dy

x + y
dy

dx
= x + y

x
Let y = xv(x)
dy

dx
= v + x

dv

dx

v + x
dv

dx
= x(1+ v)

x
= 1+ v.

Thus dv/dx = 1/x , and so v(x) = ln |x | + C . The field
lines have equations y = x ln |x | + Cx .

17. F = r̂ + r θ̂. The field lines satisfy dr = dθ , so they are
the spirals r = θ + C .

18. F = r̂ + θ θ̂. The field lines satisfy dr = r dθ/θ , or
dr/r = dθ/θ , so they are the spirals r = Cθ .

19. F = 2r̂ + θ θ̂. The field lines satisfy dr/2 = r dθ/θ , or
dr/r = 2dθ/θ , so they are the spirals r = Cθ2.

20. F = r r̂ − θ̂. The field lines satisfy dr/r = −r dθ , or
−dr/r2 = dθ , so they are the spirals 1/r = θ + C , or
r = 1/(θ + C).
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Section 15.2 Conservative Fields
(page 819)

1. F = x i − 2yj + 3zk, F1 = x , F2 = −2y, F3 = 3z. We
have

∂F1

∂y
= 0 = ∂F2

∂x
,

∂F1

∂z
= 0 = ∂F3

∂x
,

∂F2

∂z
= 0 = ∂F3

∂y
.

Therefore, F may be conservative. If F = ∇φ, then

∂φ

∂x
= x,

∂φ

∂y
= −2y,

∂φ

∂z
= 3z.

Evidently φ(x, y, z) = x2

2
− y2+ 3z2

2
is a potential for F.

Thus F is conservative on �3.

2. F = yi+ xj+ z2k, F1 = y, F2 = x , F3 = z2. We have

∂F1

∂y
= 1 = ∂F2

∂x
,

∂F1

∂z
= 0 = ∂F3

∂x
,

∂F2

∂z
= 0 = ∂F3

∂y
.

Therefore, F may be conservative. If F = ∇φ, then

∂φ

∂x
= y,

∂φ

∂y
= x,

∂φ

∂z
= z2.

Therefore,

φ(x, y, z) =
∫

y dx = xy + C1(y, z)

x = ∂φ

∂y
= x + ∂C1

∂y
⇒ ∂C1

∂y
= 0

C1(y, z) = C2(z), φ(x, y, z) = xy + C2(z)

z2 = ∂φ

∂z
= C ′2(z)⇒ C2(z) = z3

3
.

Thus φ(x, y, z) = xy + z3

3
is a potential for F, and F is

conservative on �3.

3. F = x i− yj
x2 + y2

, F1 = x

x2 + y2
, F2 = − y

x2 + y2
. We have

∂F1

∂y
= − 2xy

(x2 + y2)2
,

∂F2

∂x
= 2xy

(x2 + y2)2
.

Thus F cannot be conservative.

4. F = x i+ yj
x2 + y2

, F1 = x

x2 + y2
, F2 = y

x2 + y2
. We have

∂F1

∂y
= − 2xy

(x2 + y2)2
= ∂F2

∂x
.

Therefore, F may be conservative. If F = ∇φ, then

∂φ

∂x
= x

x2 + y2 ,
∂φ

∂y
= y

x2 + y2 .

Therefore,

φ(x, y) =
∫

x

x2 + y2 dx = ln(x2 + y2)

2
+ C1(y)

y

x2 + y2
= ∂φ

∂y
= y

x2 + y2
+ c′1(y)⇒ c′1(y) = 0.

Thus we can choose C1(y) = 0, and

φ(x, y) = 1

2
ln(x2 + y2)

is a scalar potential for F, and F is conservative every-
where on �2 except at the origin.

5. F = (2xy − z2)i + (2yz + x2)j − (2zx − y2)k,
F1 = 2xy − z2, F2 = 2yz + x2, F3 = y2 − 2zx . We have

∂F1

∂y
= 2x = ∂F2

∂x
,

∂F1

∂z
= −2z = ∂F3

∂x
,

∂F2

∂z
= 2y = ∂F3

∂y
.

Therefore, F may be conservative. If F = ∇φ, then

∂φ

∂x
= 2xy − z2,

∂φ

∂y
= 2yz + x2,

∂φ

∂z
= y2 − 2zx .

Therefore,

φ(x, y, z) =
∫

(2xy − z2) dx = x2y − xz2 + C1(y, z)

2yz + x2 = ∂φ

∂y
= x2 + ∂C1

∂y

⇒ ∂C1

∂y
= 2yz ⇒ C1(y, z) = y2z + C2(z)

φ(x, y, z) = x2y − xz2 + y2z + C2(z)

y2 − 2zx = ∂φ

∂z
= −2xz + y2 + C ′2(z)

⇒ C ′2(z) = 0.

Thus φ(x, y, z) = x2y − xz2 + y2z is a scalar potential
for F, and F is conservative on �3.
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6. F = ex2+y2+z2
(xzi + yzj+ xyk).

F1 = xzex2+y2+z2
, F2 = yzex2+y2+z2

,
F3 = xyex2+y2+z2

. We have

∂F1

∂y
= 2xyzex2+y2+z2 = ∂F2

∂x
,

∂F1

∂z
= (x + 2xz2)ex2+y2+z2

,

∂F3

∂x
= (y + 2x2y)ex2+y2+z2 �= ∂F1

∂z
.

Thus F cannot be conservative.

7. φ(r) = 1

|r− r0|2
∂φ

∂x
= − 2

|r− r0|3
∂

∂x
|r− r0|

= − 2

|r− r0|3
(r − r0) • ∂r

∂x
|r− r0|

= −2(x − x0)

|r− r0|4 .
Since similar formulas hold for the other first partials of
φ, we have

F = ∇φ
= − 2

|r− r0|4
[

(x − x0)i + (y − y0)j + (z − z0)k
]

= −2
r− r0

|r− r0|4 .

This is the vector field whose scalar potential is φ.

8.
∂

∂x
ln |r| = 1

|r|
r • ∂r

∂x
|r| =

x

|r|2
∇ ln |r| = x i+ yj+ zk

|r|2 = r
|r|2 .

9. F = 2x

z
i+ 2y

z
j − x2 + y2

z2 k,

F1 = 2x

z
, F2 = 2y

z
, F3 = − x2 + y2

z2
. We have

∂F1

∂y
= 0 = ∂F2

∂x
,

∂F1

∂z
= −2x

z2 =
∂F3

∂x
,

∂F2

∂z
= −2y

z2
= ∂F3

∂y
.

Therefore, F may be conservative in �3 except on the
plane z = 0 where it is not defined. If F = ∇φ, then

∂φ

∂x
= 2x

z
,

∂φ

∂y
= 2y

z
,

∂φ

∂z
= − x2 + y2

z2 .

Therefore,

φ(x, y, z) =
∫

2x

z
dx = x2

z
+ C1(y, z)

2y

z
= ∂φ

∂y
= ∂C1

∂y
⇒ C1(y, z) = y2

z
+ C2(z)

φ(x, y, z) = x2 + y2

z
+ C2(z)

− x2 + y2

z2
= ∂φ

∂z
= − x2 + y2

z2
+ C ′2(z)

⇒ C2(z) = 0.

Thus φ(x, y, z) = x2 + y2

z
is a potential for F, and F is

conservative on �3 except on the plane z = 0.

The equipotential surfaces have equations

x2 + y2

z
= C, or Cz = x2 + y2.

Thus the equipotential surfaces are circular paraboloids.

The field lines of F satisfy

dx
2x

z

= dy
2y

z

= dz

− x2 + y2

z2

.

From the first equation,
dx

x
= dy

y
, so y = Ax for an

arbitrary constant A. Therefore

dx

2x
= z dz

−(x2 + y2)
= z dz

−x2(1 + A2)
,

so −(1 + A2)x dx = 2z dz. Hence

1+ A2

2
x2 + z2 = B

2
,

or x2 + y2 + 2z2 = B, where B is a second arbitrary
constant. The field lines of F are the ellipses in which
the vertical planes containing the z-axis intersect the el-
lipsoids x2 + y2 + 2z2 = B. These ellipses are orthogonal
to all the equipotential surfaces of F.

10. F = 2x

z
i + 2y

z
j − x2 + y2

z2
k = G+ k,

where G is the vector field F of Exercise 9. Since G is
conservative (except on the plane z = 0), so is F, which
has scalar potential

φ(x, y, z) = x2 + y2

z
+ z = x2 + y2 + z2

z
,

573



SECTION 15.2 (PAGE 819) R. A. ADAMS: CALCULUS

since
x2 + y2

z
is a potential for G and z is a potential for

the vector k.

The equipotential surfaces of F are φ(x, y, z) = C ,
or

x2 + y2 + z2 = Cz

which are spheres tangent to the xy-plane having centres
on the z-axis.

The field lines of F satisfy

dx
2x

z

= dy
2y

z

= dz

1− x2 + y2

z2

.

As in Exercise 9, the first equation has solutions y = Ax ,
representing vertical planes containing the z-axis. The
remaining equations can then be written in the form

dz

dx
= z2 − x2 − y2

2xz
= z2 − (1+ A2)x2

2zx
.

This first order DE is of homogeneous type (see Section
9.2), and can be solved by a change of dependent vari-
able: z = xv(x). We have

v + x
dv

dx
= dz

dx
= x2v2 − (1 + A2)x2

2x2v

x
dv

dx
= v2 − (1 + A2)

2v
− v = −v

2 + (1 + A2)

2v
2v dv

v2 + (1+ A2)
= −dx

x

ln
(

v2 + (1 + A2)
)

= − ln x + ln B

v2 + 1+ A2 = B

x
z2

x2 + 1+ A2 = B

x
z2 + x2 + y2 = Bx .

These are spheres centred on the x-axis and passing
through the origin. The field lines are the intersections
of the planes y = Ax with these spheres, so they are ver-
tical circles passing through the origin and having centres
in the xy-plane. (The technique used to find these circles
excludes those circles with centres on the y-axis, but they
are also field lines of F.)

Note: In two dimensions, circles passing through the
origin and having centres on the x-axis intersect perpen-
dicularly circles passing through the origin and having
centres on the y-axis. Thus the nature of the field lines
of F can be determined geometrically from the nature of
the equipotential surfaces.

11. The scalar potential for the two-source system is

φ(x, y, z) = φ(r) = − m

|r− �k| −
m

|r+ �k| .

Hence the velocity field is given by

v(r) = ∇φ(r)
= m(r− �k)
|r− �k|3 +

m(r+ �k)
|r+ �k|3

= m(x i+ yj+ (z − �)k)
[x2 + y2 + (z − �)2]3/2

+ m(x i+ yj+ (z + �)k)
[x2 + y2 + (z − �)2]3/2

.

Observe that v1 = 0 if and only if x = 0, and v2 = 0 if
and only if y = 0. Also

v(0, 0, z) = m

(
z − �
|z − �|3 +

z + �
|z + �|3

)

k,

which is 0 if and only if z = 0. Thus v = 0 only at the
origin.

At points in the xy-plane we have

v(x, y, 0) = 2m(x i+ yj)
(x2 + y2 + �2)3/2

.

The velocity is radially away from the origin in the
xy-plane, as is appropriate by symmetry. The speed at
(x, y, 0) is

v(x, y, 0) = 2m
√

x2 + y2

(x2 + y2 + �2)3/2
= 2ms

(s2 + �2)3/2
= g(s),

where s = √x2 + y2. For maximum g(s) we set

0 = g′(s) = 2m
(s2 + �2)3/2 − 3

2
s(s2 + �2)1/22s

(s2 + �2)3

= 2m(�2 − 2s2)

(s2 + �2)5/2
.

Thus, the speed in the xy-plane is greatest at points of
the circle x2 + y2 = �2/2.

12. The scalar potential for the source-sink system is

φ(x, y, z) = φ(r) = − 2

|r| +
1

|r− k| .

Thus, the velocity field is

v = ∇φ = 2r
|r|3 −

r− k
|r− k|3

= 2(x i + yj+ zk)
(x2 + y2 + z2)3/2

− x i+ yj+ (z − 1)k
(x2 + y2 + (z − 1)2)3/2

.
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For vertical velocity we require

2x

(x2 + y2 + z2)3/2
= x

(x2 + y2 + (z − 1)2)3/2
,

and a similar equation for y. Both equations will be sat-
isfied at all points of the z-axis, and also wherever

2
(

x2 + y2 + (z − 1)2
)3/2 =

(

x2 + y2 + z2
)3/2

22/3
(

x2 + y2 + (z − 1)2
)

= x2 + y2 + z2

x2 + y2 + (z − K )2 = K 2 − K ,

where K = 22/3/(22/3−1). This latter equation represents
a sphere, S, since K 2− K > 0. The velocity is vertical at
all points on S, as well as at all points on the z-axis.

Since the source at the origin is twice as strong as
the sink at (0, 0, 1), only half the fluid it emits will be
sucked into the sink. By symmetry, this half will the half
emitted into the half-space z > 0. The rest of the fluid
emitted at the origin will flow outward to infinity. There
is one point where v = 0. This point (which is easily
calculated to be (0, 0, 2 +√2)) lies inside S. Streamlines
emerging from the origin parallel to the xy-plane lead to
this point. Streamlines emerging into z > 0 cross S and
approach the sink. Streamlines emerging into z < 0 flow
to infinity. Some of these cross S twice, some others are
tangent to S, some do not intersect S anywhere.

z

x

Fig. 15.2.12

13. Fluid emitted by interval �z in time interval [0, t] occu-
pies, at time t , a cylinder of radius r , where

πr2�Z = vol. of cylinder = 2πmt�z.

Thus r2 = 2mt , and r
dr

dt
= m. The surface of this

cylinder is moving away from the z-axis at rate

dr

dt
= m

r
= m
√

x2 + y2
,

so the velocity at any point (x, y, z) is

v = m
√

x2 + y2
× unit vector in direction x i+ yj

= m(x i+ yj)
x2 + y2 .

14. For v(x, y) = m(x i+ yj)
x2 + y2 , we have

∂v1

∂y
= − 2mxy

(x2 + y2)2
= ∂v2

∂x
,

so v may be conservative, except at (0, 0). We have

φ(x, y) = m
∫

x dx

x2 + y2 =
m

2
ln(x2 + y2)+ C1(y)

my

x2 + y2
= ∂φ

∂y
= my

x2 + y2
+ dC1

dy
.

Thus we may take C1(y) = 0, and obtain

φ(x, y) = m

2
ln(x2 + y2) = m ln |r|,

as a scalar potential for the velocity field v of a line
source of strength of m.

15. The two-dimensional dipole of strength µ has potential

φ(x, y)

= lim
�→0

m�=µ

m

2

[

ln

(

x2 +
(

y − �
2

)2
)

− ln

(

x2 +
(

y + �
2

)2
)]

= µ

2
lim
�→0

ln

(

x2 +
(

y − �
2

)2
)

− ln

(

x2 +
(

y + �
2

)2
)

�

(apply l’Hôpital’s Rule)

= µ

2
lim
�→0

−
(

y − �
2

)

x2 +
(

y − �
2

)2 −

(

y + �
2

)

x2 +
(

y + �
2

)2

= − µy

x2 + y2
= −µy

r2
.

Now

∂φ

∂x
= 2µy

r3

∂r

∂x
= 2µxy

r4

∂φ

∂y
= −µ

r2 − 2yr
y

r
r4 = µ(y2 − x2)

r4 .

Thus

F = ∇φ = µ

(x2 + y2)2

(

2xyi+ (y2 − x2)j
)

.
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16. The equipotential curves for the two-dimensional dipole
have equations y = 0 or

− µy

x2 + y2 =
1

C

x2 + y2 + µCy = 0

x2 +
(

y + µC

2

)2

= µ2C2

4
.

These equipotentials are circles tangent to the x-axis at
the origin.

17. All circles tangent to the y-axis at the origin intersect all
circles tangent to the x-axis at the origin at right angles,
so they must be the streamlines of the two-dimensional
dipole.

As an alternative derivation of this fact, the streamlines
must satisfy

dx

2xy
= dy

y2 − x2
,

or, equivalently,

dy

dx
= y2 − x2

2xy
.

This homogeneous DE can be solved (as was that in
Exercise 10) by a change in dependent variable. Let
y = xv(x). Then

v + x
dv

dx
= dy

dx
= v2x2 − x2

2vx2

x
dv

dx
= v2 − 1

2v
− v = −v

2 + 1

2v
2v dv

v2 + 1
= −dx

x
ln(v2 + 1) = − ln x + ln C

v2 + 1 = C

x
⇒ y2

x2 + 1 = C

x
x2 + y2 = Cx

(x − C)2 + y2 = C2.

These streamlines are circles tangent to the y-axis at the
origin.

18. The velocity field for a point source of strength m dt at
(0, 0, t) is

vt (x, y, z) =
m
(

x i+ yj+ (z − t)k
)

(

x2 + y2 + (z − t)2
)3/2

.

Hence we have
∫ ∞

−∞
vt (x, y, z) dt

= m
∫ ∞

−∞
x i+ yj+ (z − t)k

(

x2 + y2 + (z − t)2
)3/2 dt

= m(x i+ yj)
∫ ∞

−∞
dt

(

x2 + y2 + (z − t)2
)3/2

Let z − t = √x2 + y2 tan θ

−dt = √x2 + y2 sec2 θ dθ

= m(x i+ yj)
x2 + y2

∫ π/2

−π/2
cos θ dθ

= 2m(x i+ yj)
x2 + y2 ,

which is the velocity field of a line source of strength 2m
along the z-axis.

The definition of strength of a point source in 3-space
was made to ensure that the velocity field of a source
of strength 1 had speed 1 at distance 1 from the source.
This corresponds to fluid being emitted from the source
at a volume rate of 4π . Similarly, the definition of
strength of a line source guaranteed that a source of
strength 1 gives rise to fluid speed of 1 at unit distance
1 from the line source. This corresponds to a fluid
emission at a volume rate 2π per unit length along the
line. Thus, the integral of a 3-dimensional source gives
twice the volume rate of a 2-dimensional source, per unit
length along the line.

The potential of a point source m dt at (0, 0, t) is

φ(x, y, z) = − m
√

x2 + y2 + (x − t)2
.

This potential cannot be integrated to give the potential
for a line source along the z-axis because the integral

−m
∫ ∞

−∞
dt

√

x2 + y2 + (z − t)2

does not converge, in the usual sense in which conver-
gence of improper integrals was defined.

19. Since x = r cos θ and y = r sin θ , we have

∂φ

∂r
= cos θ

∂φ

∂x
+ sin θ

∂φ

∂y
∂φ

∂θ
= −r sin θ

∂φ

∂x
+ r cos θ

∂φ

∂y
.

Also,

r̂ = x i+ yj
r
= (cos θ)i+ (sin θ)j

θ̂ = −yi+ xj
r

= −(sin θ)i+ (cos θ)j.
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Therefore,

∂φ

∂r
r̂+ 1

r

∂φ

∂θ
θ̂

=
(

cos2 θ
∂φ

∂x
+ sin θ cos θ

∂φ

∂y

)

i

+
(

cos θ sin θ
∂φ

∂x
+ sin2 θ

∂φ

∂y

)

j

+
(

sin2 θ
∂φ

∂x
− sin θ cos θ

∂φ

∂y

)

i

+
(

− cos θ sin θ
∂φ

∂x
+ cos2 θ

∂φ

∂y

)

j

= ∂φ

∂x
i+ ∂φ

∂y
j = ∇φ.

20. If F = Fr (r, θ)r̂+ Fθ (r, θ)θ̂ is conservative, then F = ∇φ
for some scalar field φ(r, θ), and by Exercise 19,

∂φ

∂r
= Fr ,

1

r

∂φ

∂θ
= Fθ .

For the equality of the mixed second partial derivatives of
φ, we require that

∂Fr

∂θ
= ∂

∂r
(r Fθ ) = Fθ + r

∂Fθ
∂r

,

that is,
∂Fr

∂θ
− r

∂Fθ
∂r
= Fθ .

21. If F = r sin(2θ)r̂ + r cos(2θ)θ̂ = ∇φ(r, θ), then we must
have

∂φ

∂r
= r sin(2θ),

1

r

∂φ

∂θ
= r cos(2θ).

Both of these equations are satisfied by

φ(rθ) = 1

2
r2 sin(2θ)+ C,

so F is conservative and this φ is a potential for it.

22. If F = r 2 cos θ r̂ + αrβ sin θ θ̂ = ∇φ(r, θ), then we must
have

∂φ

∂r
= r2 cos θ,

1

r

∂φ

∂θ
= αrβ sin θ.

From the first equation

φ(r, θ) = r3

3
cos θ + C(θ).

The second equation then gives

C ′(θ)− r3

3
sin θ = ∂φ

∂θ
= αrβ+1 sin θ.

This equation can be solved for a function C(θ) indepen-
dent of r only if α = −1/3 and β = 2. In this case,
C(θ) = C (a constant). F is conservative if α and β have
these values, and a potential for it is φ = 1

3r3 cos θ + C .

Section 15.3 Line Integrals (page 824)

1. C: r = a cos t sin t i + a sin2 tj + a cos tk, 0 ≤ t ≤ π/2.
Since

|r|2 = a2(cos2 t sin2 t + sin4 t + cos2 t) = a2

for all t , C must lie on the sphere of radius a centred at
the origin. We have

ds = a
√

(cos2 t − sin2 t)2 + 4 sin2 t cos2 t + sin2 t dt

= a
√

cos2 2t + sin2 2t + sin2 t dt

= a
√

1+ sin2 t dt.

Thus

∫

C
z ds =

∫ π/2

0
a cos t a

√

1+ sin2 t dt Let u = sin t

du = cos t dt

= a2
∫ 1

0

√

1+ u2 du Let u = tanφ

du = sec2 φ dφ

= a2
∫ π/4

0
sec3 φ dφ

= a2

2

[

secφ tanφ + ln | secφ + tanφ|
]
∣
∣
∣
∣

π/4

0

= a2

2

(√
2+ ln(1 +√2)

)

.

2. C: x = t cos t , y = t sin t , z = t , (0 ≤ t ≤ 2π). We have

ds =
√

(cos t − t sin t)2 + (sin t + t cos t)2 + 1 dt

=
√

2+ t2 dt.

Thus

∫

C
z ds =

∫ 2π

0
t
√

2+ t2 dt Let u = 2+ t2

du = 2t dt

= 1

2

∫ 2+4π2

2
u1/2 du

= 1

3
u3/2

∣
∣
∣
∣

2+4π2

2
= (2+ 4π2)3/2 − 23/2

3
.
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3. Wire: r = 3t i + 3t2j+ 2t3k, (0 ≤ t ≤ 1)

v = 3i + 6tj + 6t2k

v = 3
√

1+ 4t2 + 4t4 = 3(1 + 2t2).

If the wire has density δ(t) = 1 + t g/unit length, then its
mass is

m = 3
∫ 1

0
(1 + 2t2)(1 + t) dt

= 3

(

t + t2

2
+ 2t3

3
+ t4

2

)∣
∣
∣
∣

1

0
= 8 g.

4. The wire of Example 3 lies in the first octant on the sur-
faces z = x2 and z = 2− x2−2y2, and, therefore, also on
the surface x2 = 2− x2 − 2y2, or x2 + y2 = 1, a circular
cylinder. Since it goes from (1, 0, 1) to (0, 1, 0) it can be
parametrized

r = cos t i + sin tj+ cos2 k, (0 ≤ t ≤ π/2)
v = − sin t i+ cos tj − 2 cos t sin tk

v =
√

1+ sin2(2t) =
√

2− cos2(2t).

Since
the wire has density δ = xy = sin t cos t = 1

2 sin(2t),
its mass is

m = 1

2

∫ π/2

0

√

2− cos2(2t) sin(2t) dt Let v = cos(2t)

dv = −2 sin(2t) dt

= 1

4

∫ 1

−1

√

2− v2 dv = 1

2

∫ 1

0

√

2− v2 dv,

which is the same integral obtained in Example 3, and
has value (π + 2)/8.

5. C: r = et cos t i+ et sin tj + tk, 0 ≤ t ≤ 2π).

ds =
√

e2t (cos t − sin t)2 + e2t (sin t + cos t)2 + 1 dt

=
√

1+ 2e2t dt.

The moment of inertia of C about the z-axis is

I = δ
∫

C
(x2 + y2) ds

= δ
∫ 2π

0
e2t
√

1+ 2e2t dt Let u = 1 + 2e2t

du = 4e2t dt

= δ

4

∫ 1+2e4π

3

√
u du

= δ

6
u3/2

∣
∣
∣
∣

1+2e4π

3
= δ

6

[

(1 + 2e4π )3/2 − 33/2
]

.

6. C is the same curve as in Exercise 5. We have

∫

C
ez ds =

∫ 2π

0
et
√

1+ 2e2t dt Let
√

2et = tan θ√
2et dt = sec2 θ dθ

= 1√
2

∫ t=2π

t=0
sec3 θ dθ

= 1

2
√

2

[

sec θ tan θ + ln | sec θ + tan θ |
]
∣
∣
∣
∣

t=2π

t=0

=
√

2et
√

1+ 2e2t + ln(
√

2et +√1+ 2e2t )

2
√

2

∣
∣
∣
∣

2π

0

= e2π
√

1+ 2e4π −√3

2

+ 1

2
√

2
ln

√
2e2π +√1+ 2e4π
√

2 +√3
.

7. The line of intersection of the planes x − y + z = 0
and x + y + 2z = 0 from (0, 0, 0) to (3, 1,−2) can be
parametrized

r = 3t i + tj − 2tk, (0 ≤ t ≤ 1).

Thus ds = √14 dt and

∫

C
x2 ds = √14

∫ 1

0
9t2 dt = 3

√
14.

8. The curve C of intersection of x2 + z2 = 1 and y = x2

can be parametrized

r = cos t i + cos2 tj + sin tk, (0 ≤ t ≤ 2π).

Thus

ds =
√

sin2 t + 4 sin2 t cos2 t + cos2 t dt =
√

1+ sin2 2t dt.

We have

∫

C

√

1+ 4x2z2 ds

=
∫ 2π

0

√

1+ 4 cos2 t sin2 t
√

1+ sin2 2t dt

=
∫ 2π

0
(1 + sin2 2t) dt

=
∫ 2π

0

(

1+ 1− cos 4t

2

)

dt

= 3

2
(2π) = 3π.
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9. r = cos t i + sin tj + tk, (0 ≤ t ≤ 2π)

v = − sin t i+ cos tj+ k, v = √2.
If the density is δ = z = t , then

m = √2
∫ 2π

0
t dt = 2π2

√
2

Mx=0 =
√

2
∫ 2π

0
t cos t dt = 0

My=0 =
√

2
∫ 2π

0
t sin t dt = −2π

√
2

Mz=0 =
√

2
∫ 2π

0
t2 dt = 8π3

√
2

3
.

(We have omitted the details of the evaluation of these

integrals.) The centre of mass is

(

0,− 1

π
,

4π

3

)

.

10. Here the wire of Exercise 9 extends only from t = 0 to
t = π :

m = √2
∫ π

0
t dt = π2

√
2

2

Mx=0 =
√

2
∫ π

0
t cos t dt = −2

√
2

My=0 =
√

2
∫ π

0
t sin t dt = π√2

Mz=0 =
√

2
∫ π

0
t2 dt = π3

√
2

3
.

The centre of mass is

(

− 4

π2
,

2

π
,

2π

3

)

.

11. r = et i +√2tj + e−tk, (0 ≤ t ≤ 1)

v = et i +√2j− e−tk

v =
√

e2t + 2 + e−2t = et + e−t

∫

C
(x2 + z2) ds =

∫ 1

0
(e2t + e−2t )(et + e−t ) dt

=
∫ 1

0
(e3t + et + e−t + e−3t ) dt

= e3

3
+ e − 1

e
− 1

3e3
.

12. m =
∫ 1

0
(et + e−t ) dt = e2 − 1

e

Mx=0 =
∫ 1

0
et (et + e−t ) dt = e2 + 1

2

My=0 =
∫ 1

0

√
2t (et + e−t ) dt = 2

√
2(e − 1)

e

Mz=0 =
∫ 1

0
e−t (et + e−t ) dt = 3e2 − 1

2e2

The centroid is

(

e3 + e

2e2 − 2
,

2
√

2

e + 1
,

3e2 − 1

2e3 − 2e

)

.

13. The first octant part C of the curve x2 + y2 = a2, z = x ,
can be parametrized

r = a cos t i+ a sin tj+ a cos tk, (0 ≤ t ≤ π/2).
We have ds = a

√
1+ sin2 t dt , so

∫

C
x ds = a2

∫ π/2

0
cos t

√

1 + sin2 t dt Let sin t = tan θ

cos t dt = sec2 θ dθ

= a2
∫ t=π/2

t=0
sec3 θ dθ

= a2

2

[

sec θ tan θ + ln | sec θ + tan θ |
]
∣
∣
∣
∣

t=π/2

t=0

= a2

2

[

sin t
√

1 + sin2 t + ln | sin t +
√

1 + sin2 t |
]
∣
∣
∣
∣

π/2

0

= a2

2

[√
2+ ln(1 +√2)

]

.

14. On C, we have

z =
√

1 − x2 − y2 =
√

1− x2 − (1 − x)2 =
√

2(x − x2).

Thus C can be parametrized

r = t i+ (1− t)j +
√

2(t − t2)k, (0 ≤ t ≤ 1).

Hence

ds =
√

1+ 1+ (1 − 2t)2

2(t − t2)
dt = dt

√

2(t − t2)
.

We have
∫

C
z ds =

∫ 1

0

√

2(t − t2)
dt

√

2(t − t2)
= 1.

15. The parabola z2 = x2+ y2, x+z = 1, can be parametrized
in terms of y = t since

(1 − x)2 = z2 = x2 + y2 = x2 + t2

⇒ 1 − 2x = t2 ⇒ x = 1− t2

2

⇒ z = 1− x = 1+ t2

2
.

Thus ds = √t2 + 1+ t2 dt = √1 + 2t2 dt , and

∫

C

ds

(2y2 + 1)3/2
=
∫ ∞

−∞

√
1+ 2t2

(2t2 + 1)3/2
dt

= 2
∫ ∞

0

dt

1+ 2t2

= √2 tan−1(
√

2t)

∣
∣
∣
∣

∞

0
= √2

π

2
= π√

2
.
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16. C: y = x2, z = y2, from (0, 0, 0) to (2, 4, 16).
Parametrize C by

r = t i + t2j+ t4k, (0 ≤ t ≤ 2).

Since ds = √1+ 4t2 + 16t6 dt , we have

∫

C
xyz ds =

∫ 2

0
t7
√

1+ 4t2 + 16t6 dt.

17. Helix: x = a cos t , y = b sin t , z = ct (0 < a < b).

ds =
√

a2 sin2 t + b2 cos2 t + c2 dt

=
√

c2 + b2 − (b2 − a2) sin2 t dt

=
√

b2 + c2
√

1− k2 sin2 t dt (k2 = b2 − a2

b2 + c2 ).

One complete revolution of the helix corresponds to
0 ≤ t ≤ 2π , and has length

L =
√

b2 + c2

∫ 2π

0

√

1 − k2 sin2 t dt

= 4
√

b2 + c2

∫ π/2

0

√

1− k2 sin2 t dt

= 4
√

b2 + c2E(k) = 4
√

b2 + c2E

⎛

⎝

√

b2 − a2

b2 + c2

⎞

⎠ units.

The length of the part of the helix from t = 0 to
t = T < π/2 is

L =
√

b2 + c2

∫ T

0

√

1− k2 sin2 t dt

=
√

b2 + c2E(k, T ) =
√

b2 + c2E

⎛

⎝

√

b2 − a2

b2 + c2 , T

⎞

⎠ units.

18. The straight line L with equation Ax + By = C , (C �= 0),
lies at distance D = √|C |/√A2 + B2 from the origin.
So does the line L1 with equation y = D. Since x2 + y2

depends only on distance from the origin, we have, by
symmetry,

∫

L

ds

x2 + y2
=
∫

L1

ds

x2 + y2

=
∫ ∞

−∞
dx

x2 + D2

= 2

D
tan−1 x

D

∣
∣
∣
∣

∞

0
= 2

D

(π

2
− 0

)

= π

D
= π
√

A2 + B2

|C | .

Section 15.4 Line Integrals of Vector Fields
(page 831)

1. F = xyi− x2j.

C : r = t i+ t2j, (0 ≤ t ≤ 1).
∫

C
F • dr =

∫ 1

0
[t3 − t2(2t)] dt = −

∫ 1

0
t3 dt = −1

4
.

2. F = cos x i− yj = ∇
(

sin x − y2

2

)

.

C : y = sin x from (0,0) to (π, 0).
∫

C
F • dr =

(

sin x − y2

2

)∣
∣
∣
∣

(π,0)

(0,0)
= 0.

3. F = yi+ zj− xk.
C : r = t i+ tj + tk, (0 ≤ t ≤ 1).
∫

C
F • dr =

∫ 1

0
(t + t − t) dt = t2

2

∣
∣
∣
∣

1

0
= 1

2
.

4. F = zi− yj+ 2xk.
C: r = t i+ t2j+ t3k, (0 ≤ t ≤ 1).

∫

C
F • dr =

∫ 1

0
[t3 − t2(2t)+ 2t (3t2)] dt

=
∫ 1

0
5t3 dt = 5t4

4

∣
∣
∣
∣

1

0
= 5

4
.

5. F = yzi+ xzj+ xyk = ∇(xyz).
C: a curve from (−1, 0, 0) to (1, 0, 0). (Since F is con-
servative, it doesn’t matter what curve.)

∫

C
F • dr = xyz

∣
∣
∣
∣

(1,0,0)

(−1,0,0)
= 0− 0 = 0.

6. F = (x − z)i + (y − z)j − (x + y)k

= ∇
(

x2 + y2

2
− (x + y)z

)

.

C is a given polygonal path from (0,0,0) to (1,1,1) (but
any other piecewise smooth path from the first point to
the second would do as well).
∫

C
F • dr =

(
x2 + y2

2
− (x + y)z

)∣
∣
∣
∣

(1,1,1)

(0,0,0)
= 1− 2 = −1.

7. F = (x + y)i+ (x − z)j + (z − y)k

= ∇
(

x2 + z2

2
+ y(x − z)

)

.

The work done by F in moving an object from (1, 0,−1)
to (0,−2, 3) is

W =
∫

C
F • dr =

(
x2 + z2

2
+ y(x − z)

)∣
∣
∣
∣

(0,−2,3)

(1,0,−1)

= 9

2
− 2(−3)− (1 + 0) = 19

2
units.
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8. C is made up of four segments as shown in the figure.
On C1, y = 0, dy = 0, and x goes from 0 to 1.
On C2, x = 1, dx = 0, and y goes from 0 to 1.
On C3, y = 1, dy = 0, and x goes from 1 to 0.
On C4, x = 0, dx = 0, and y goes from 1 to 0.
Thus

∫

C1

x2y2 dx + x3y dy = 0

∫

C2

x2y2 dx + x3y dy =
∫ 1

0
y dy = 1

2
∫

C3

x2y2 dx + x3y dy =
∫ 0

1
x2 dx = −1

3
∫

C4

x2y2 dx + x3y dy = 0.

Finally, therefore,
∫

C
x2y2 dx + x3y dy = 0 + 1

2
− 1

3
+ 0 = 1

6
.

y

x

(1,1)

C2

C3

C4

C1

Fig. 15.4.8

9. Observe that if φ = ex+y sin(y + z), then

∇φ = ex+y sin(y + z)i+ ex+y
(

sin(y + z)+ cos(y + z)
)

j

+ ex+y cos(y + z)k.

Thus, for any piecewise smooth path from (0, 0, 0) to
(

1, π4 ,
π
4

)

, we have
∫

C
ex+y sin(y + z) dx + ex+y

(

sin(y + z)+ cos(y + z)
)

dy

+ ex+y cos(y + z) dz

=
∫

C
∇φ • dr = φ(x, y, z)

∣
∣
∣
∣

(1,π/4,π/4)

(0,0,0)
= e1+(π/4).

10. F = (axy + z)i + x2j + (bx + 2z)k is conservative if

∂F1

∂y
= ∂F2

∂x
⇔ a = 2

∂F1

∂z
= ∂F3

∂x
⇔ b = 1

∂F2

∂z
= ∂F3

∂y
⇔ 0 = 0.

If a = 2 and b = 1, then F = ∇φ where

φ =
∫

(2xy + z) dx = x2y + xz + C2(y, z)

∂C1

∂y
+ x2 = F2 = x2 ⇒ C1(y, z) = C2(z)

dC2

dz
+ x = F3 = x + 2z ⇒ C2(z) = z2 + C.

Thus φ = x2y + xz + z2 + C is a potential for F.

11. F = Ax ln zi+ By2zj+
(

x2

z
+ y3

)

k is conservative if

∂F1

∂y
= ∂F2

∂x
⇔ 0 = 0

∂F1

∂z
= ∂F3

∂x
⇔ A = 2

∂F2

∂z
= ∂F3

∂y
⇔ B = 3.

If A = 2 and B = 3, then F = ∇φ where
φ = x2 ln z + y3z. If C is the straight line x = t + 1,
y = 1, z = t + 1, (0 ≤ t ≤ 1), from (1, 1, 1) to (2, 1, 2),
then

∫

C
2x ln z dx + 2y2z dy + y3 dz

=
∫

C
∇φ • dr−

∫

C
y2z dy + x2

z
dz

= (x2 ln z + y3z)

∣
∣
∣
∣

(2,1,2)

(1,1,1)
−
∫ 1

0
[(t + 1)(0) + (t + 1)] dt

= 4 ln 2+ 2− 1−
(

t2

2
+ t

)∣
∣
∣
∣

1

0
= 4 ln 2 − 1

2
.

12. F = (y2 cos x + z3)i + (2y sin x − 4)j + (3xz2 + 2)k

= ∇(y2 sin x + xz3 − 4y + 2z).
The curve C: x = sin−1t , y = 1 − 2t , z = 3t − 1,
(0 ≤ t ≤ 1), goes from (0, 1,−1) to (π/2,−1, 2). The
work done by F in moving a particle along C is

W =
∫

C
F • dr

= (y2 sin x + xz3 − 4y + 2z)

∣
∣
∣
∣

(π/2,−1,2)

(0,1,−1)

= 1+ 4π + 4 + 4− 0− 0+ 4+ 2 = 15 + 4π.
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13. For z = ln(1+ x), y = x , from x = 0 to x = 1, we have

∫

C

[

(2x sin(π y)− ez) dx

+ (π x2 cos(π y)− 3ez) dy − xez dz
]

=
∫

C
∇
(

x2 sin(π y)− xez
)

• dr− 3
∫

C
ez dy

=
(

x2 sin(π y)− xez
)
∣
∣
∣
∣

(1,1,ln 2)

(0,0,0)
− 3

∫ 1

0
(1+ x) dx

= −2− 3

(

x + x2

2

)∣
∣
∣
∣

1

0
= −2− 9

2
= −13

2
.

14. a) S = {(x, y) : x > 0, y ≥ 0} is a simply connected
domain.

b) S = {(x, y) : x = 0, y ≥ 0} is not a domain. (It has
empty interior.)

c) S = {(x, y) : x �= 0, y > 0} is a domain but is
not connected. There is no path in S from (−1, 1)
to (1, 1).

d) S = {(x, y, z) : x2 > 1} is a domain but is not
connected. There is no path in S from (−2, 0, 0) to
(2, 0, 0).

e) S = {(x, y, z) : x2 + y2 > 1} is a connected domain
but is not simply connected. The circle x2 + y2 = 2,
z = 0 lies in S, but cannot be shrunk through S to
a point since it surrounds the cylinder x2 + y2 ≤ 1
which is outside S.

f) S = {(x, y, z) : x2 + y2 + z2 > 1} is a simply
connected domain even though it has a ball-shaped
“hole” in it.

15. C is the curve r = a cos t i + a sin tj, (0 ≤ t ≤ 2π).

∮

C
x dy =

∫ 2π

0
a cos t a cos t dt = πa2

∮

C
y dx =

∫ 2π

0
a sin t (−a sin t) dt = −πa2.

16. C is the curve r = a cos t i + b sin tj, (0 ≤ t ≤ 2π).

∮

C
x dy =

∫ 2π

0
a cos t b cos t dt = πab

∮

C
y dx =

∫ 2π

0
b sin t (−a sin t) dt = −πab.

17. C consists of two parts:
On C1, y = 0, dy = 0, and x goes from −a to a.
On C2, x = a cos t , y = a sin t , t goes from 0 to π .

∮

C
x dy =

∫

C1

x dy +
∫

C2

x dy

= 0+
∫ π

0
a2 cos2 t dt = πa2

2
,

∮

C
y dx =

∫

C1

y dx +
∫

C2

y dx

= 0+
∫ π

0
(−a2 cos2 t) dt = −πa2

2
.

y

x

C1

C2

−a a

Fig. 15.4.17

18. C is made up of four segments as shown in the figure.
On C1, y = 0, dy = 0, and x goes from 0 to 1.
On C2, x = 1, dx = 0, and y goes from 0 to 1.
On C3, y = 1, dy = 0, and x goes from 1 to 0.
On C4, x = 0, dx = 0, and y goes from 1 to 0.

∮

C
x dy =

∫

C1

+
∫

C2

+
∫

C3

+
∫

C4

= 0+
∫ 1

0
dy + 0+ 0 = 1

∮

C
y dx =

∫

C1

+
∫

C2

+
∫

C3

+
∫

C4

= 0+ 0 +
∫ 0

1
dx + 0 = −1.

y

x

(1,1)

C2

C3

C4

C1

Fig. 15.4.18
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19. C is made up of three segments as shown in the figure.
On C1, y = 0, dy = 0, and x goes from 0 to a.
On C2, y = bt , x = a(1 − t), and t goes from 0 to 1.
On C3, x = 0, dx = 0, and y goes from b to 0.

∮

C
x dy =

∫

C1

+
∫

C2

+
∫

C3

= 0+
∫ 1

0
a(1 − t) b dt + 0 = ab

2
∮

C
y dx =

∫

C1

+
∫

C2

+
∫

C3

= 0+
∫ 1

0
bt (−a dt)+ 0 = −ab

2
.

y

x

C1

C2C3

b

a

Fig. 15.4.19

20. Conjecture: If D is a domain in �2 whose boundary is
a closed, non-self-intersecting curve C, oriented counter-
clockwise, then

∮

C
x dy = area of D,

∮

C
y dx = − area of D.

Proof for a domain D that is x-simple and y-simple:
Since D is x-simple, it can be specified by the inequali-
ties

c ≤ y ≤ d, f (y) ≤ x ≤ g(y).

Let C consist of the four parts shown in the figure. On
C1 and C3, dy = 0.
On C2, x = g(y), where y goes from c to d .
On C2, x = f (y), where y goes from d to c. Thus

∮

C
x dy =

∫

C1

+
∫

C2

+
∫

C3

+
∫

C4

= 0+
∫ d

c
g(y) dy + 0+

∫ c

d
f (y) dy

=
(

g(y)− f (y)
)

dy = area of D.

The proof that
∮

C
y dx = −(area of D) is similar, and

uses the fact that D is y-simple.

y

x

C2

C3

C4

C1
x=g(y)

D

x= f (y)

c

d

Fig. 15.4.20

21. ∇( f g) = +
(

f
∂g

∂x
+ ∂ f

∂x
g

)

i+
(

f
∂g

∂y
+ ∂ f

∂y
g

)

j

+
(

f
∂g

∂z
+ ∂ f

∂z
g

)

k

= g∇ f + f∇g.
Thus, since C goes from P to Q,

∫

C
f∇g • dr+

∫

C
g∇ f • dr

=
∫

C
∇( f g) • dr = ( f g)

∣
∣
∣
∣

Q

P

= f (Q)g(Q)− f (P)g(P).

22. a) C: x = a cos t , x = a sin t , 0 ≤ t ≤ 2π .

1

2π

∮

C

x dy − y dx

x2 + y2

= 1

2π

∫ 2π

0

a2 cos2 t + a2 sin2 t

a2 cos2 t + a2 sin2 t
dt = 1.

y

x

C

a

y

x
C3

C2

C1

C4

1

1−1

−1

Fig. 15.4.22(a) Fig. 15.4.22(b)
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b) See the figure. C has four parts.
On C1, x = 1, dx = 0, y goes from 1 to −1.
On C2, y = −1, dy = 0, x goes from 1 to −1.
On C3, x = −1, dx = 0, y goes from −1 to 1.
On C4, x = 1, dx = 0, y goes from 1 to −1.

1

2π

∮

C

x dy − y dx

x2 + y2

= 1

2π

[∫ −1

1

dy

1+ y2
+
∫ −1

1

dx

x2 + 1
∫ 1

−1

−dy

1 + y2
+
∫ 1

−1

−dx

x2 + 1

]

= − 2

π

∫ 1

−1

dt

1+ t2

= − 2

π
tan−1 t

∣
∣
∣
∣

1

−1
= − 2

π

(π

4
+ π

4

)

= −1.

y

x

C2

C1

C4

C3

−2 −1 1 2

Fig. 15.4.22

c) See the figure. C has four parts.
On C1, y = 0, dy = 0, x goes from 1 to 2.
On C2, x = 2 cos t , y = 2 sin t , t goes from 0 to π .
On C3, y = 0, dy = 0, x goes from −2 to −1.
On C4, x = cos t , y = sin t , t goes from π to 0.

1

2π

∮

C

x dy − y dx

x2 + y2

= 1

2π

[

0+
∫ π

0

4 cos2 t + 4 sin2 t

4 cos2 t + 4 sin2 t
dt

+ 0+
∫ 0

π

cos2 t + sin2 t

cos2 t + sin2 t
dt

]

= 1

2π
(π − π) = 0.

23. Although

∂

∂y

( −y

x2 + y2

)

= ∂

∂x

(
x

x2 + y2

)

for all (x, y) �= (0, 0), Theorem 1 does not imply that
∮

C

x dy − y dx

x2 + y2
is zero for all closed curves C in �2.

The set consisting of points in � except the origin is not
simply connected, and the vector field

F = −yi+ xj
x2 + y2

is not conservative on any domain in �2 that contains
the origin in its interior. (See Example 5.) However, the
integral will be 0 for any closed curve that does not con-
tain the origin in its interior. (An example is the curve in
Exercise 22(c).)

24. If C is a closed, piecewise smooth curve in �2 having
equation r = r(t), a ≤ t ≤ b, and if C does not
pass through the origin, then the polar angle function

θ = θ
(

x(t), y(t)
)

= θ(t) can be defined so as to vary

continuously on C. Therefore,

θ(x, y)

∣
∣
∣
∣

t=b

t=a
= 2π ×w(C),

where w(C) is the number of times C winds around the
origin in a counterclockwise direction. For example,
w(C) equals 1, −1 and 0 respectively, for the curves C
in parts (a), (b) and (c) of Exercise 22. Since

∇θ = ∂θ

∂x
i+ ∂θ

∂y
j

= −yi+ xj
x2 + y2 ,

we have

1

2π

∮

C

x dy − y dx

x2 + y2 = 1

2π

∮

C
∇θ • dr

= 1

2π
θ(x, y)

∣
∣
∣
∣

t=b

t=a
= w(C).

Section 15.5 Surfaces and Surface Integrals
(page 842)

1. The polar curve r = g(θ) is parametrized by

x = g(θ) cos θ, y = g(θ) sin θ.

Hence its arc length element is

ds =
√
(

dx

dθ

)2

+
(

dy

dθ

)2

dθ

=
√
(

g′(θ) cos θ − g(θ) sin θ
)2 +

(

g′(θ) sin θ + g(θ) cos θ
)2

dθ

=
√
(

g(θ)
)2 +

(

g′(θ)
)2

dθ.
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The area element on the vertical cylinder r = g(θ) is

dS = ds dz =
√
(

g(θ)
)2 +

(

g′(θ)
)2

dθ dz.

2. The area element dS is bounded by the curves in which
the coordinate planes at θ and θ + dθ and the coordinate
cones at φ and φ + dφ intersect the sphere R = a. (See
the figure.) The element is rectangular with sides a dφ
and a sinφ dθ . Thus

dS = a2 sinφ dφ dθ.

x

y

z

θ

dθ

φ

dφ

dS

a

a sinφ

Fig. 15.5.2

3. The plane Ax + By + Cz = D has normal
n = Ai + Bj + Ck, and so an area element on it is
given by

dS = |n|
|n • k| dx dy =

√
A2 + B2 + C2

|C | dx dy.

Hence the area S of that part of the plane lying inside
the elliptic cylinder

x2

a2 +
y2

b2 = 1

is given by

S =
∫∫

x2

a2 + y2

b2 ≤1

√
A2 + B2 + C2

|C | dx dy

= πab
√

A2 + B2 + C2

|C | sq. units.

4. One-quarter of the required area is shown in the figure.
It lies above the semicircular disk R bounded by
x2 + y2 = 2ay, or, in terms of polar coordinates,
r = 2a sin θ . On the sphere x2 + y2 + z2 = 4a2, we have

2z
∂z

∂x
= −2x, or

∂z

∂x
= − x

z
.

Similarly,
∂z

∂y
= − y

z
, so the surface area element on the

sphere can be written

dS =
√

1+ x2 + y2

z2
dx dy = 2a dx dy

√

4a2 − x2 − y2
.

The required area is

S = 4
∫∫

R

2a
√

4a2 − x2 − y2
dx dy

= 8a
∫ π/2

0
dθ
∫ 2a sin θ

0

r dr√
4a2 − r2

Let u = 4a2 − r2

du = −2r dr

= 4a
∫ π/2

0
dθ
∫ 4a2

4a2 cos2 θ

u−1/2 du

= 8a
∫ π/2

0
(2a − 2a cos θ) dθ

= 16a2(θ − sin θ)

∣
∣
∣
∣

π/2

0
= 8a2(π − 2) sq. units.

x

y

z

z2=4a2−x2−y22a

2a

r=2a sin θ

2a

Fig. 15.5.4

5. dS =
∣
∣
∣
∣

∇F(x, y, z)

F2(x, y, z)

∣
∣
∣
∣

dx dz

dS =
∣
∣
∣
∣

∇F(x, y, z)

F1(x, y, z)

∣
∣
∣
∣

dy dz

6. The cylinder x2 + y2 = 2ay intersects the sphere
x2 + y2 + z2 = 4a2 on the parabolic cylinder
2ay + z2 = 4a2. By Exercise 5, the area element on
x2 + y2 − 2ay = 0 is

dS =
∣
∣
∣
∣

2x i+ (2y − 2a)j
2x

∣
∣
∣
∣

dy dz

=
√

1 + (y − a)2

2ay − y2 dy dz

=
√

2ay − y2 + y2 − 2ay + a2

2ay − y2 dy dz = a
√

2ay − y2
dy dz.

585



SECTION 15.5 (PAGE 842) R. A. ADAMS: CALCULUS

The area of the part of the cylinder inside the sphere
is 4 times the part shown in Figure 15.23 in the text,
that is, 4 times the double integral of dS over the region
0 ≤ y ≤ 2a, 0 ≤ z ≤ √4a2 − 2ay, or

S = 4
∫ 2a

0

a dy
√

2ay − y2

∫
√

4a2−2ay

0
dz

= 4a
∫ 2a

0

√
2a(2a − y)√
y(2a − y)

dy = 4
√

2a3/2
∫ 2a

0

dy√
y

= 4
√

2a3/2(2
√

y)

∣
∣
∣
∣

2a

0
= 16a2 sq. units.

7. On the surface S with equation z = x2/2 we have
∂z/∂x = x and ∂z/∂y = 0. Thus

dS =
√

1+ x2 dx dy.

If R is the first quadrant part of the disk x2 + y2 ≤ 1,
then the required surface integral is

∫∫

S
x dS =

∫∫

R
x
√

1+ x2 dx dy

=
∫ 1

0
x
√

1+ x2 dx
∫
√

1−x2

0
dy

=
∫ 1

0
x
√

1− x4 dx Let u = x2

du = 2x dx

= 1

2

∫ 1

0

√

1− u2 du = 1

2

π

4
= π

8
.

8. The normal to the cone z2 = x2 + y2 makes a 45◦ angle
with the vertical, so dS = √2 dx dy is a surface area
element for the cone. Both nappes (halves) of the cone
pass through the interior of the cylinder x2 + y2 = 2ay,
so the area of that part of the cone inside the cylinder is
2
√

2πa2 square units, since the cylinder has a circular
cross-section of radius a.

9. One-quarter of the required area lies in the first octant.
(See the figure.) In polar coordinates, the Cartesian equa-
tion x2 + y2 = 2ay becomes r = 2a sin θ . The arc length
element on this curve is

ds =
√

r2 +
(

dr

dθ

)2

dθ = 2a dθ.

Thus dS = √

x2 + y2 ds = 2ar dθ = 4a2 sin θ dθ on
the cylinder. The area of that part of the cylinder lying
between the nappes of the cone is

4
∫ π/2

0
4a2 sin θ dθ = 16a2 sq. units..

x

y

z

dS

x2+y2=2yds

z2=x2+y2

Fig. 15.5.9

10. One-eighth of the required area lies in the first octant,
above the triangle T with vertices (0, 0, 0), (a, 0, 0) and
(a, a, 0). (See the figure.)
The surface x2 + z2 = a2 has normal n = x i + zk, so an
area element on it can be written

dS = |n|
|n • k| dx dy = a

z
dx dy = a dx dy√

a2 − x2
.

The area of the part of that cylinder lying inside the
cylinder y2 + z2 = a2 is

S = 8
∫∫

T

a dx dy√
a2 − x2

= 8a
∫ a

0

dx√
a2 − x2

∫ x

0
dy

= 8a
∫ a

0

x dx√
a2 − x2

= −8a
√

a2 − x2

∣
∣
∣
∣

a

0
= 8a2 sq. units.

x

y

z

y2+z2=a2x2+z2=a2

T

(a,a,0)

Fig. 15.5.10
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11. Let the sphere be x2 + y2 + z2 = R2, and the cylinder be
x2 + y2 = R2. Let S1 and S2 be the parts of the sphere
and the cylinder, respectively, lying between the planes
z = a and z = b, where −R ≤ a ≤ b ≤ R.
Evidently, the area of S2 is S2 = 2π R(b−a) square units.
An area element on the sphere is given in terms of spher-
ical coordinates by

dS = R2 sinφ dφ dθ.

On S1 we have z = R cosφ, so S1 lies between
φ = cos−1(b/R) and φ = cos−1(a/R). Thus the area of
S1 is

S1 = R2
∫ 2π

0
dθ
∫ cos−1(a/R)

cos−1(b/R)
sinφ dφ

= 2π R2(− cosφ)

∣
∣
∣
∣

cos−1(a/R)

cos−1(b/R)
= 2π R(b − a) sq. units.

Observe that S1 and S2 have the same area.

x

y

z

z=b

z=a

z=R

z=−R

Fig. 15.5.11

12. We want to find A1, the area of that part of the cylinder
x2 + z2 = a2 inside the cylinder y2 + z2 = b2, and A2,
the area of that part of y2 + z2 = b2 inside x2 + z2 = a2.
We have

A1 = 8× (area of S1),

A2 = 8× (area of S2),

where S1 and S2 are the parts of these surfaces lying in
the first octant, as shown in the figure.
A normal to S1 is n1 = x i + zk, and the area element on
S1 is

dS1 = |n1|
|n1 • i| dy dz = a dy dz√

a2 − z2
.

x
y

z

y2+z2=b2

S1

S2

R2
R1

a

bx2+z2=a2

Fig. 15.5.12

A normal to S2 is n2 = xj + zk, and the area element on
S2 is

dS2 = |n2|
|n2 • j| dx dz = b dx dz√

b2 − z2
.

Let R1 be the region of the first quadrant of the yz-plane
bounded by y2 + z2 = b2, y = 0, z = 0, and z = a.
Let R2 be the quarter-disk in the first quadrant of the xz-
plane bounded by x2 + z2 = a2, x = 0, and z = 0.
Then

A1 = 8
∫∫

R1

dS1 = 8a
∫ a

0

dz√
a2 − z2

∫
√

b2−z2

0
dy

= 8a
∫ a

0

√
b2 − z2
√

a2 − z2
dz Let z = a sin t

dz = a cos t dt

= 8a
∫ π/2

0

√

b2 − a2 sin2 t dt

= 8ab
∫ π/2

0

√

1− a2

b2
sin2 t dt

= 8abE
(a

b

)

sq. units.

A2 = 8
∫∫

R2

dS2 = 8b
∫ a

0

dz√
b2 − z2

∫
√

a2−z2

0
dx

= 8b
∫ a

0

√
a2 − z2
√

b2 − z2
dz Let z = b sin t

dz = b cos t dt

= 8b
∫ sin−1(a/b)

0

√

a2 − b2 sin2 t dt

= 8ab
∫ sin−1(a/b)

0

√

1− b2

a2
sin2 t dt

= 8abE

(
b

a
, sin−1 a

b

)

sq. units.
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13. The intersection of the plane z = 1 + y and the cone
z = √

2(x2 + y2) has projection onto the xy-plane the
elliptic disk E bounded by

(1+ y)2 = 2(x2 + y2)

1+ 2y + y2 = 2x2 + 2y2

2x2 + y2 − 2y + 1 = 2

x2 + (y − 1)2

2
= 1.

Note that E has area A = π(1)(√2) and centroid (0, 1).
If S is the part of the plane lying inside the cone, then
the area element on S is

dS =
√

1+
(
∂z

∂y

)2

dx dy = √2 dx dy.

Thus
∫∫

S
y dS = √2

∫∫

E
y dx dy = √2Aȳ = 2π.

14. Continuing the above solution, the cone z = √2(x2 + y2)

has area element

dS =
√

1+
(
∂z

∂x

)2

+
(
∂z

∂y

)2

dx dy

=
√

1+ 4(x2 + y2)

z2 dx dy = √3 dx dy.

If S is the part of the cone lying below the plane
z = 1+ y, then

∫∫

S
y dS = √3

∫∫

E
y dx dy = √3Aȳ = √6π.

15. If S is the part of z = x2 in the first octant and inside
(that is, below) z = 1 − 3x2 − y2, then S has projection
E onto the xy-plane bounded by x2 = 1 − 3x2 − y2, or
4x2 + y2 = 1, an ellipse. Since z = x2 has area element
dS = √1+ 4x2 dx dy, we have

∫∫

S
xz dS =

∫∫

E
x3
√

1+ 4x2 dx dy

=
∫ 1/2

0
x3
√

1+ 4x2 dx
∫
√

1−4x2

0
dy

=
∫ 1/2

0
x3
√

1− 16x4 dx Let u = 1− 16x4

du = −64x3 dx

= 1

64

∫ 1

0
u1/2 du = 1

96
.

16. The surface z = √2xy has area element

dS =
√

1 + y

2x
+ x

2y
dx dy

=
√

2xy + y2 + x2

2xy
dx dy = |x + y|√

2xy
dx dy.

If its density is kz, the mass of the specified part of the
surface is

m =
∫ 5

0
dx
∫ 2

0
k
√

2xy
x + y√

2xy
dy

= k
∫ 5

0
dx
∫ 2

0
(x + y) dy

= k
∫ 5

0
(2x + 2) dx = 35k units.

17. The surface S is given by x = eu cos v, y = eu sin v,
z = u, for 0 ≤ u ≤ 1, 0 ≤ v ≤ π . Since

∂(y, z)

∂(u, v)
=
∣
∣
∣
∣

eu sin v eu cos v
1 0

∣
∣
∣
∣
= −eu cos v

∂(z, x)

∂(u, v)
=
∣
∣
∣
∣

1 0
eu cos v −eu sin v

∣
∣
∣
∣
= −eu sin v

∂(x, y)

∂(u, v)
=
∣
∣
∣
∣

eu cos v −eu sin v
eu sin v eu cos v

∣
∣
∣
∣
= e2u

the area element on S is

dS =
√

e2u cos2 v + e2u sin2 v + e4u du dv = eu
√

1+ e2u du dv.

If the charge density on S is
√

1+ e2u , then the total
charge is

∫∫

S

√

1+ e2u dS =
∫ 1

0
eu(1 + e2u) du

∫ π

0
dv

= π
(

eu + e3u

3

)∣
∣
∣
∣

1

0
= π

3
(3e + e3 − 4).

18. The upper half of the spheroid
x2

a2
+ y2

a2
+ z2

c2
= 1 has a

circular disk of radius a as projection onto the xy-plane.
Since

2x

a2 +
2z

c2

∂z

∂x
= 0 ⇒ ∂z

∂x
= − c2x

a2z
,
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and, similarly,
∂z

∂y
= − c2y

a2z
, the area element on the

spheroid is

dS =
√

1+ c4

a4

x2 + y2

z2 dx dy

=
√

1+ c2

a2

x2 + y2

a2 − x2 − y2 dx dy

=
√

a4 + (c2 − a2)r2

a2(a2 − r2)
r dr dθ

in polar coordinates. Thus the area of the spheroid is

S = 2

a

∫ 2π

0
dθ
∫ a

0

√

a4 + (c2 − a2)r2

a2 − r2 r dr

Let u2 = a2 − r2

u du = −r dr

= 4π

a

∫ a

0

√

a4 + (c2 − a2)(a2 − u2) du

= 4π

a

∫ a

0

√

a2c2 − (c2 − a2)u2 du

= 4πc
∫ a

0

√

1− c2 − a2

a2c2
u2 du.

For the case of a prolate spheroid 0 < a < c, let

k2 = c2 − a2

a2c2 . Then

S = 4πc
∫ a

0

√

1− k2u2 du Let ku = sin v

k du = cos v dv

= 4πc

k

∫ sin−1
(ka)

0
cos2 v dv

= 2πc

k
(v + sin v cos v)

∣
∣
∣
∣

sin−1
(ka)

0

= 2πac2
√

c2 − a2
sin−1

√
c2 − a2

c
+ 2πa2 sq. units.

19. We continue from the formula for the surface area of a
spheroid developed part way through the solution above.
For the case of an oblate spheroid 0 < c < a, let

k2 = a2 − c2

a2c2
. Then

S = 4πc
∫ a

0

√

1 + k2u2 du Let ku = tan v

k du = sec2 v dv

= 4πc

k

∫ tan−1
(ka)

0
sec3 v dv

= 2πc

k

(

sec v tan v + ln(sec v + tan v)
)
∣
∣
∣
∣

tan−1
(ka)

0

= 2πac2
√

a2 − c2

[

a
√

a2 − c2

c2 + ln

(

a

c
+
√

a2 − c2

c

)]

= 2πa2 + 2πac2
√

a2 − c2
ln

(

a +√a2 − c2

c

)

sq. units.

20. x = au cos v, y = au sin v, z = bv,
(0 ≤ u ≤ 1, 0 ≤ v ≤ 2π). This surface is a spiral
(helical) ramp of radius a and height 2πb, wound around
the z-axis. (It’s like a circular staircase with a ramp in-
stead of stairs.) We have

∂(x, y)

∂(u, v)
=
∣
∣
∣
∣

a cos v −au sin v
a sin v au cos v

∣
∣
∣
∣
= a2u

∂(y, z)

∂(u, v)
=
∣
∣
∣
∣

a sin v au cos v
0 b

∣
∣
∣
∣
= ab sin v

∂(z, x)

∂(u, v)
=
∣
∣
∣
∣

0 b
a cos v −au sin v

∣
∣
∣
∣
= −ab cos v

dS =
√

a4u2 + a2b2 sin2 v + a2b2 cos2 v du dv

= a
√

a2u2 + b2 du dv.

The area of the ramp is

A = a
∫ 1

0

√

a2u2 + b2 du
∫ 2π

0
dv

= 2πa
∫ 1

0

√

a2u2 + b2 du Let au = b tan θ

a du = b sec2 θ dθ

= 2πb2
∫ u=1

u=0
sec3 θ dθ

= πb2
(

sec θ tan θ + ln | sec θ + tan θ |
)
∣
∣
∣
∣

u=1

u=0

= πb2

(

au
√

a2u2 + b2

b2 + ln

∣
∣
∣
∣
∣

au +√a2u2 + b2

b

∣
∣
∣
∣
∣

)∣
∣
∣
∣

1

0

= πa
√

a2 + b2 + πb2 ln

(

a +√a2 + b2

b

)

sq. units.
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x y

z

a

2πb

Fig. 15.5.20

21. The distance from the origin to the plane P with equation
Ax + By + Cz = D, (D �= 0) is

δ = |D|√
A2 + B2 + C2

.

If P1 is the plane z = δ, then, since the integrand de-
pends only on distance from the origin, we have

∫∫

P

dS

(x2 + y2 + z2)3/2

=
∫∫

P1

dS

(x2 + y2 + z2)3/2

=
∫ 2π

0
dθ
∫ ∞

0

r dr

(r2 + δ2)3/2
Let u = r2 + δ2

du = 2r dr

= 2π × 1

2

∫ ∞

δ2

du

u3/2

= π
(

− 2√
u

)∣
∣
∣
∣

∞

δ2

= 2π

δ
= 2π

√
A2 + B2 + C2

|D| .

22. Use spherical coordinates. The area of the eighth-sphere
S is

A = 1

8
(4πa2) = πa2

2
sq. units.

The moment about z = 0 is

Mz=0 =
∫∫

S
z dS

=
∫ π/2

0
dθ
∫ π/2

0
a cosφ a2 sinφ dφ

= πa3

2

∫ π/2

0

sin 2φ

2
dφ = πa3

4
.

Thus z̄ = Mz=0

A
= a

2
. By symmetry, x̄ = ȳ = z̄,

so the centroid of that part of the surface of the sphere

x2 + y2 + z2 = a2 lying in the first octant is
(a

2
,

a

2
,

a

2

)

.

23. The cone z = h

(

1−
√

x2 + y2

a

)

has normal

n = − ∂z

∂x
i− ∂z

∂y
j + k

= −h

a

(

x i+ yj
√

x2 + y2

)

+ k,

so its surface area element is

dS =
√

h2

a2 + 1 dx dy =
√

a2 + h2

a
dx dy.

The mass of the conical shell is

m = σ
∫∫

x2+y2≤a2
dS = σ

√
a2 + h2

a
(πa2) = πσa

√

a2 + h2.

The moment about z = 0 is

Mz=0 = σ
∫∫

x2+y2≤a2
h

(

1−
√

x2 + y2

a

) √
a2 + h2

a
dx dy

= 2πσh
√

a2 + h2

a

∫ a

0

(

1− r

a

)

r dr

= πσha
√

a2 + h2

3
.

Thus z̄ = h

3
. By symmetry, x̄ = ȳ = 0. The centre

of mass is on the axis of the cone, one-third of the way
from the base towards the vertex.

x y

z

h

a a

z=h− h
a

√
x2+y2

Fig. 15.5.23

24. By symmetry, the force of attraction of the hemisphere
shown in the figure on the mass m at the origin is verti-
cal. The vertical component of the force exerted by area
element dS = a2 sinφ dφ dθ at the position with spheri-
cal coordinates (a, φ, θ) is

d F = kmσ dS

a2 cosφ = kmσ sinφ cosφ dφ dθ.
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Thus, the total force on m is

F = kmσ
∫ 2π

0
dθ
∫ π/2

0
sinφ cosφ dφ = πkmσ units.

x y

z

φ

dS

a a

a

m

Fig. 15.5.24

25. The surface element dS = a dθ dz at the point with
cylindrical coordinates (a, θ, z) attracts mass m at point
(0, 0, b) with a force whose vertical component (see the
figure) is

d F = kmσ dS

D2 cosψ = kmσa(b − z) dθ dz

D3

= kmσa(b − z) dθ dz
(

a2 + (b − z)2
)3/2 .

The total force exerted by the cylindrical surface on the
mass m is

F = −
∫ 2π

0
dθ
∫ h

0

kmσa(b − z) dz
(

a2 + (b − z)2
)3/2 Let b − z = a tan t

−dz = a sec2 t dt

= 2πkmσa
∫ z=h

z=0

a tan t a sec2 t dt

a3 sec3 t

= 2πkmσ
∫ z=h

z=0
sin t dt

= 2πkmσ(− cos t)

∣
∣
∣
∣

z=h

z=0

= 2πkmσ
a

√

a2 + (b − z)2

∣
∣
∣
∣

h

0

= 2πkmσa

(

1
√

a2 + (b − h)2
− 1√

a2 + b2

)

.

x y

z

ψ

a a

dS

a

D

(0,0,b)
m

h

Fig. 15.5.25

26. S is the cylindrical surface x2 + y2 = a2, 0 ≤ z ≤ h,
with areal density σ . Its mass is m = 2πahσ . Since all
surface elements are at distance a from the z-axis, the
radius of gyration of the cylindrical surface about the z-
axis is D̄ = a. Therefore the moment of inertia about
that axis is

I = mD̄2 = ma2 = 2πσa3h.

27. S is the spherical shell, x2+ y2+ z2 = a2, with areal den-
sity σ . Its mass is 4πσa2. Its moment of inertia about
the z-axis is

I = σ
∫∫

S
(x2 + y2) dS

= σ
∫ 2π

0
dθ
∫ π

0
a2 sin2 φ a2 sinφ dφ

= 2πσa4
∫ π

0
sinφ(1− cos2 φ) dφ Let u = cosφ

du = − sinφ dφ

= 2πσa4
∫ 1

−1
(1 − u2) du = 8πσa4

3
.

The radius of gyration is D̄ = √I/m =
√

2

3
a.

28. The surface area element for a conical surface S,

z = h

(

1−
√

x2 + y2

a

)

,

having base radius a and height h, was determined in the
solution to Exercise 23 to be

dS =
√

a2 + h2

a
dx dy.
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The mass of S, which has areal density σ , was also de-
termined in that exercise: m = πσa

√
a2 + h2. The

moment of inertia of S about the z-axis is

I = σ
∫∫

S
(x2 + y2) dS

= σ
√

a2 + h2

a

∫ 2π

0
dθ
∫ a

0
r2 r dr

= 2πσ
√

a2 + h2

a

a4

4
= πσa3

√
a2 + h2

2
.

The radius of gyration is D̄ = √I/m = a√
2

.

29. By Exercise 27, the moment of inertia of a spherical

shell of radius a about its diameter is I = 2

3
ma2. Fol-

lowing the argument given in Example 4(b) of Section
5.7, the kinetic energy of the sphere, rolling with speed
v down a plane inclined at angle α above the horizontal
(and therefore rotating with angular speed � = v/a) is

K .E . = 1

2
mv2 + 1

2
I�2

= 1

2
mv2 + 1

2

2

3
ma2 v

2

a2

= 5

6
mv2.

The potential energy is P.E . = mgh, so, by conservation
of total energy,

5

6
mv2 + mgh = constant.

Differentiating with respect to time t , we get

0 = 5

6
m 2v

dv

dt
+mg

dh

dt
= 5

3
mv

dv

dt
+ mgv sinα.

Thus the sphere rolls with acceleration

dv

dt
= 3

5
g sinα.

Section 15.6 Oriented Surfaces and
Flux Integrals (page 848)

1. F = x i+ zj.
The surface S of the tetrahedron has four faces:
On S1, x = 0, N̂ = −i, F • N̂ = 0.
On S2, y = 0, N̂ = −j, F • N̂ = −z, dS = dx dz.
On S3, z = 0, N̂ = −k, F • N̂ = 0.

On S4, x+2y+3z = 6, N̂ = i + 2j + 3k√
14

, F•N̂ = x + 2z√
14

,

dS = dx dy

|N̂ • j| =
√

14

2
dx dz.

We have

∫∫

S1

F • N̂ dS =
∫∫

S3

F • N̂ dS = 0

∫∫

S2

F • N̂ dS = −
∫ 2

0
z dz

∫ 6−3z

0
dx

= −
∫ 2

0
(6z − 3z2) dz = −4

∫∫

S4

F • N̂ dS =
√

14

2

1√
14

∫ 2

0
dz
∫ 6−3z

0
(x + 2z) dx

= 1

2

∫ 2

0

(
(6− 3z)2

2
+ 2z(6 − 3z)

)

dz

= 1

4

∫ 2

0
(6− 3z)(6 + z) dz

= 1

4
(36z − 6z2 − z3)

∣
∣
∣
∣

2

0
= 10.

The flux of F out of the tetrahedron is
∫∫

S
F • N̂ dS = 0 − 4+ 0+ 10 = 6.

x

y

z

S1

S3

S4

2

3

6

S2

Fig. 15.6.1

2. On the sphere S with equation x2+ y2+ z2 = a2 we have

N̂ = x i+ yj+ zk
a

.
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If F = x i + yj+ zk, then F • N̂ = a on S. Thus the flux
of F out of S is

∫∫

S
F • N̂ dS = a × 4πa2 = 4πa3.

3. F = x i+ yj+ zk.
The box has six faces. F • N̂ = 0 on the three faces
x = 0, y = 0, and z = 0. On the face x = a, we have
N̂ = i, so F • N̂ = a. Thus the flux of F out of that face
is

a × (area of the face) = abc.

By symmetry, the flux of F out of the faces y = b and
z = c are also each abc. Thus the total flux of F out of
the box is 3abc.

x y

z

c

ba

Fig. 15.6.3

4. F = yi+ zk. Let S1 be the conical surface and S2 be the
base disk. The flux of F outward through the surface of
the cone is

∫∫

S
F • N̂ =

∫∫

S1

+
∫∫

S2

.

On S1: N̂ = 1√
2

(

x i+ yj
√

x2 + y2
+ k

)

, dS = √2 dx dy.

Thus

∫∫

S1

F • N̂ dS

=
∫∫

x2+y2≤1

(

xy
√

x2 + y2
+ 1 −

√

x2 + y2

)

dx dy

= 0+ π × 12 −
∫ 2π

0
dθ
∫ 1

0
r2 dr

= π − 2π

3
= π

3
.

On S2: N̂ = −k and z = 0, so F • N̂ = 0. Thus, the total
flux of F out of the cone is π/3.

x y

z

N̂

N̂

z=1−
√

x2+y2

1

S1

S2

1

Fig. 15.6.4

5. The part S of z = a − x2 − y2 lying above z = b < a
lies inside the vertical cylinder x2 + y2 = a − b. For
z = a − x2 − y2, the upward vector surface element is

N̂ dS = 2x i+ 2yj+ k
1

dx dy.

Thus the flux of F = x i+ yj+ zk upward through S is
∫∫

S
F • N̂ dS

=
∫∫

x2+y2≤a−b
[2(x2 + y2)+ a − x2 − y2] dx dy

=
∫ 2π

0
dθ
∫
√

a−b

0
(r2 + a)r dr

= 2π

(
(a − b)2

4
+ a(a − b)

2

)

= π

2
(a − b)(3a − b).

6. For z = x2 − y2 the upward surface element is

N̂ dS = −2x i+ 2yj+ k
1

dx dy.

The flux of F = x i + xj + k upward through S, the part
of z = x2 − y2 inside x2 + y2 = a2 is
∫∫

S
F • N̂ dS =

∫∫

x2+y2≤a2
(−2x2 + 2xy + 1) dx dy

= −2
∫ 2π

0
cos2 θ dθ

∫ a

0
r3 dr + 0+ πa2

= πa2 − 2(π)
a4

4
= π

2
a2(2− a2).

7. The part S of z = 4− x2− y2 lying above z = 2x + 1 has
projection onto the xy-plane the disk D bounded by

2x + 1 = 4− x2 − y2, or (x + 1)2 + y2 = 4.

Note that D has area 4π and centroid (−1, 0). For
z = 4− x2 − y2, the downward vector surface element is

N̂ dS = −2x i− 2yj− k
1

dx dy.
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Thus the flux of F = y3i+ z2j + xk downward through S
is
∫∫

S
F • N̂ dS = −

∫∫

D

(

2xy3 + 2y(4− x2 − y2)2 + x
)

dx dy

(use the symmetry of D about the x-axis)

= −
∫∫

D
x d A = −(4π)(−1) = 4π.

8. The upward vector surface element on the top half of
x2 + y2 + z2 = a2 is

N̂ dS = 2x i+ 2yj+ 2zk
2z

dx dy =
(

x i+ yj
z
+ k

)

dx dy.

The flux of F = z2k upward through the first octant part
S of the sphere is

∫∫

S
F • N̂ dS =

∫ π/2

0
dθ
∫ a

0
(a2 − r2)r dr = πa4

8
.

9. The upward vector surface element on z = 2 − x2 − 2y2

is

N̂ dS = 2x i+ 4yj+ k
1

dx dy.

If E is the elliptic disk bounded by
x2

2
+ y2 = 1, then the

flux of F = x i+ yj through the required surface S is
∫∫

S
F • N̂ dS

=
∫∫

E
(2x2 + 4y2) dx dy Let x = √2u, y = v

dx dy = √2 du dv

= 4
√

2
∫∫

u2+v2≤1
(u2 + v2) du dv (now use polars)

= 4
√

2
∫ 2π

0
dθ
∫ 1

0
r3 dr = 2

√
2π.

10. S: r = u2vi + uv2j + v3k, (0 ≤ u ≤ 1, 0 ≤ v ≤ 1), has
upward surface element

N̂ dS = ∂r
∂u
× ∂r
∂v

du dv

= (2uvi + v2j)× (u2i+ 2uvj + 3v2k) du dv

= (3v4i− 6uv3j + 3u2v2k) du dv.

The flux of F = 2x i+ yj+ zk upward through S is
∫∫

S
F • N̂ dS

=
∫ 1

0
du
∫ 1

0
(6u2v5 − 6u2v5 + 3u2v5) dv

= 1

2

∫ 1

0
u2 du = 1

6
.

11. S: r = u cos vi + u sin vj + uk, (0 ≤ u ≤ 2, 0 ≤ v ≤ π),
has upward surface element

N̂ dS = ∂r
∂u
× ∂r
∂v

du dv

= (−u cos vi− u sin vj+ uk) du dv.

The flux of F = x i+ yj+ z2k upward through S is

∫∫

S
F • N̂ dS

=
∫ 2

0
du
∫ π

0
(−u2 cos2 v − u2 sin2 v + u3) dv

=
∫ 2

0
(u3 − u2) du

∫ π

0
dv = 4π

3
.

12. S: r = eu cos vi+ eu sin vj+ uk, (0 ≤ u ≤ 1, 0 ≤ v ≤ π),
has upward surface element

N̂ dS = ∂r
∂u
× ∂r
∂v

du dv

= (−eu cos vi− eu sin vj + e2uk) du dv.

The flux of F = yzi− xzj+ (x2 + y2)k upward through S
is
∫∫

S
F • N̂ dS

=
∫ 1

0
du
∫ π

0
(−ue2u sin v cos v + ue2u sin v cos v + e4u) dv

=
∫ 1

0
e4u du

∫ π

0
dv = π (e

4 − 1)

4
.

13. F = mr
|r|3 =

m(x i+ yj+ zk)
(x2 + y2 + z2)3/2

.

By symmetry, the flux of F out of the cube
−a ≤ x, y, z ≤ a is 6 times the flux out of the top
face, z = a, where N̂ = k and dS = dx dy. The total flux
is

y

x

a

a

R
−a

−a

Fig. 15.6.13
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6ma
∫

−a≤x≤a
−a≤y≤a

dx dy

(x2 + y2 + a2)3/2

= 48ma
∫∫

R

r dr dθ

(r2 + a2)3/2

(R as shown in the figure)

= 48ma
∫ π/4

0
dθ
∫ a sec θ

0

r dr

(r2 + a2)3/2

Let u = r2 + a2

du = 2r dr

= 24ma
∫ π/4

0
dθ
∫ a2(1+sec2 θ)

a2

du

u3/2

= 48ma
∫ π/4

0

(
1

a
− 1

a
√

1+ sec2 θ

)

dθ

= 48m

(
π

4
−
∫ π/4

0

cos θ dθ√
cos2 θ + 1

)

= 48m

(
π

4
−
∫ π/4

0

cos θ dθ√
2 − sin2 θ

)

Let
√

2 sin v = sin θ√
2 cos v dv = cos θ dθ

= 48m

(

π

4
−
∫ π/6

0

√
2 cos v dv√

2 cos v

)

= 48m
(π

4
− π

6

)

= 4πm.

14. The flux of F = mr
|r|3 out of the cube 1 ≤ x, y, z ≤ 2

is equal to three times the total flux out of the pair of
opposite faces z = 1 and z = 2, which have outward
normals −k and k respectively. This latter flux is
2mI2 −mI1, where

Ik =
∫ 2

1
dx
∫ 2

1

dy

(x2 + y2 + k2)3/2

Let y = √x2 + k2 tan u

dy = √x2 + k2 sec2 u du

=
∫ 2

1

dx

x2 + k2

∫ y=2

y=1
cos u du

=
∫ 2

1

dx

x2 + k2

(

sin u
)
∣
∣
∣
∣

y=2

y=1

=
∫ 2

1

dx

x2 + k2

(

y
√

x2 + y2 + k2

∣
∣
∣
∣

2

1

)

= Jk2 − Jk1,

where

Jkn = n
∫ 2

1

dx

(x2 + k2)
√

x2 + n2 + k2

Let x = √n2 + k2 tan v

dx = √n2 + k2 sec2 v dv

= n
∫ x=2

x=1

sec2 v dv
[

(n2 + k2) tan2 v + k2
]

sec v

= n
∫ x=2

x=1

cos v dv

(n2 + k2) sin2 v + k2 cos2 v

= n
∫ x=2

x=1

cos v dv

k2 + n2 sin2 v
Let w = n sin v

dw = n cos v dv

=
∫ x=2

x=1

dw

k2 + w2 =
1

k
tan−1 w

k

∣
∣
∣
∣

x=2

x=1

= 1

k
tan−1 n sin v

k

∣
∣
∣
∣

x=2

x=1

= 1

k
tan−1 nx

k
√

x2 + n2 + k2

∣
∣
∣
∣

2

1

= 1

k

(

tan−1 2n

k
√

4+ n2 + k2
− tan−1 n

k
√

1+ n2 + k2

)

.

Thus

Ik = 1

k

[

tan−1 4

k
√

8 + k2
− 2 tan−1 2

k
√

5+ k2

+ tan−1 1

k
√

2 + k2

]

.

The contribution to the total flux from the pair of sur-
faces z = 1 and z = 2 of the cube is

2mI2 − mI1

= m

[

tan−1 1√
3
− 2 tan−1 1

3
+ tan−1 1

2
√

6

− tan−1 4

3
+ 2 tan−1 2√

6
− tan−1 1√

3

]

.

Using the identities

2 tan−1 a = tan−1 2a

1− a2 , and

tan−1 a = π

2
− tan−1 1

a
,

we calculate

− 2 tan−1 1

3
= − tan−1 3

4
= −π

2
+ tan−1 4

3

2 tan−1 2√
6
= tan−1 12√

6
= π

2
− tan−1 1

2
√

6
.

Thus the net flux out of the pair of opposite faces is 0.
By symmetry this holds for each pair, and the total flux
out of the cube is 0. (You were warned this would be a
difficult calculation!)
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15. The flux of the plane vector field F across the piecewise
smooth curve C, in the direction of the unit normal N̂ to
the curve, is ∫

C
F • n ds.

The flux of F = x i+ yj outward across

a) the circle x2 + y2 = a2 is

∮

C
F •

(
x i+ yj

a

)

ds = a2

a
× 2πa = 2πa2.

b) the boundary of the square −1 ≤ x, y ≤ 1 is

4
∫ 1

−1
(i+ yj) • i dy = 4

∫ 1

−1
dy = 8.

16. F = − x i+ yj
x2 + y2 .

a) The flux of F inward across the circle of Exercise
7(a) is

−
∮

C

(

− x i+ yj
a2

)

• x i+ yj
a

ds

=
∮

C

a2

a3
ds = 1

a
× 2πa = 2π.

b) The flux of F inward across the boundary of the
square of Exercise 7(b) is four times the flux inward
across the edge x = 1, −1 ≤ y ≤ 1. Thus it is

−4
∫ 1

−1

(

− i+ yj
1+ y2

)

• i dy = 4
∫ 1

−1

dy

1+ y2

= 4 tan−1 y

∣
∣
∣
∣

1

−1
= 2π.

17. The flux of N̂ across S is
∫∫

S
N̂ • N̂ dS =

∫∫

S
dS = area of S.

18. Let F = F1i+ F2j+ F3k be a constant vector field.

a) If R is a rectangular box, we can choose the origin
and coordinate axes in such a way that the box is
0 ≤ x ≤ a, 0 ≤ y ≤ b, 0 ≤ z ≤ c. On the faces
x = 0 and x = a we have N̂ = −i and N̂ = i
respectively. Since F1 is constant, the total flux out
of the box through these two faces is

∫∫

0≤y≤b
0≤z≤c

(F1 − F1) dy dz = 0.

The flux out of the other two pairs of opposite faces
is also 0. Thus the total flux of F out of the box is
0.

b) If S is a sphere of radius a we can choose the origin
so that S has equation x2 + y2 + z2 = a2, and so its
outward normal is

N̂ = x i+ yj+ zk
a

.

Thus the flux out of S is

1

a

∫∫

S
(F1x + F2y + F3z) ds = 0,

since the sphere S is symmetric about the origin.

Review Exercises 15 (page 848)

1. C : x = t, y = 2et , z = e2t , (−1 ≤ t ≤ 1)

v =
√

1+ 4e2t + 4e4t = 1+ 2e2t

∫

C

ds

y
=
∫ 1

−1

1 + 2e2t

2et
dt

=
(

− e−t

2
+ et

)∣
∣
∣
∣

1

−1
= 3(e2 − 1)

2e
.

2. C can be parametrized x = t , y = 2t , z = t + 4t2,
(0 ≤ t ≤ 2). Thus

∫

C
2y dx + x dy + 2 dz

=
∫ 2

0
[4t (1) + t (2)+ 2(1 + 8t)] dt

=
∫ 2

0
(22t + 2) dt = 48.

3. The cone z = √x2 + y2 has area element

dS =
√

1+ x2 + y2

z2 dx dy = √2 dx dy.

If S is the part of the cone in the region 0 ≤ x ≤ 1 − y2

(which itself lies between y = −1 and y = 1), then

∫∫

S
x dS = √2

∫ 1

−1
dy
∫ 1−y2

0
x dx

= 2
√

2
∫ 1

0

1− 2y2 + y4

2
dy = 8

√
2

15
.
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4. The plane x+ y+ z = 1 has area element dS = √3 dx dy.
If S is the part of the plane in the first octant, then the
projection of S on the xy-plane is the triangle 0 ≤ x ≤ 1,
0 ≤ y ≤ 1− x . Thus

∫∫

S
xyz dS = √3

∫ 1

0
x dx

∫ 1−x

0
y(1− x − y) dy

= √3
∫ 1

0

x(1− x)3

6
dx Let u = 1 − x

du = −dx

=
√

3

6

∫ 1

0
u3(1 − u) du =

√
3

6

(
1

4
− 1

5

)

=
√

3

120
.

5. For z = xy, the upward vector surface element is

N̂ dS = −yi− xj+ k
1

dx dy.

The flux of F = x2yi−10xy2j upward through S, the part
of z = xy satisfying 0 ≤ x ≤ 1 and 0 ≤ y ≤ 1 is

∫∫

S
F • N̂ dS =

∫ 1

0
dx
∫ 1

0
(−x2y2 + 10x2y2) dy

=
∫ 1

0
3x2 dx

∫ 1

0
3y2 dy = 1.

6. The plane x + 2y + 3z = 6 has downward vector surface
element

N̂ dS = −i− 2j − 3k
3

dx dy.

If S is the part of the plane in the first octant, then the
projection of S on the xy-plane is the triangle 0 ≤ y ≤ 3,
0 ≤ x ≤ 6− 2y. Thus

∫∫

S
(x i+ yj+ zk) • N̂ dS

= −1

3

∫ 3

0
dy
∫ 6−2y

0
(x + 2y + 6 − x − 2y) dx

= −2
∫ 3

0
(6− 2y) = −36+ 18 = −18.

7. r = a sin t i+ a cos tj+ btk, (0 ≤ t ≤ 6π)
r(0) = aj, r(6π) = aj + 6πbk.

a) The force F = −mgk = −∇(mgz) is conserva-
tive, so the work done by F as the bead moves from
r(6π) to r(0) is

W =
∫ t=0

t=6π
F • dr = −mgz

∣
∣
∣
∣

z=0

z=6πb
= 6πmgb.

b) v = a cos t i − a sin tj + bk, |v| = √a2 + b2. A force
of constant magnitude R opposing the motion of the
bead is in the direction of −v, so it is

F = −R
v
|v| = −

R√
a2 + b2

v.

Since dr = v dt , the work done against the resistive
force is

W =
∫ 6π

0

R√
a2 + b2

|v|2 dt = 6π R
√

a2 + b2.

8.
∫

C F • dr can be determined using only the endpoints of
C, provided

F = (axy + 3yz)i+ (x2 + 3xz + by2z)j+ (bxy + cy3)k

is conservative, that is, if

ax + 3z = ∂F1

∂y
= ∂F2

∂x
= 2x + 3z

3y = ∂F1

∂z
= ∂F3

∂x
= by

3x + by2 = ∂F2

∂z
= ∂F3

∂y
= bx + 3cy2.

Thus we need a = 2, b = 3, and c = 1.
With these values, F = ∇(x2y + 3xyz + y3z). Thus

∫

C
F•dr = (x2 y+3xyz+ y3z)

∣
∣
∣
∣

(2,1,1,)

(0,1,−1)
= 11− (−1) = 12.

9. F = (x2/y)i+ yj+ k.

The field lines satisfy
y dx

x2 =
dy

y
= dz. Thus

dx/x2 = dy/y2 and the field lines are given by

1

x
= 1

y
+ C1, ln y = z + C2.

The field line passes through (1, 1, 0) provided
C1 = 0 and C2 = 0. In this case the field
line also passes through (e, e, 1), and the seg-
ment from (1, 1, 0) to (e, e, 1) can be parametrized
r(t) = et i+ et j+ tk, (0 ≤ t ≤ 1). Then

∫

C
F • dr =

∫ 1

0
(e2t + e2t + 1) dt

= (e2t + t)

∣
∣
∣
∣

1

0
= e2.

10. a) F = (1+ x)ex+y i+ (xex+y + 2y)j− 2zk

= ∇(xex+y + y2 − z2).
Thus F is conservative.
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b) G = (1+ x)ex+y i+ (xex+y + 2z)j− 2yk
= F+ 2(z − y)(j+ k).

C : r = (1 − t)et i+ tj+ 2tk, (0 ≤ t ≤ 1).
r(0) = (1, 0, 0), r(1) = (0, 1, 2). Thus

∫

C
G • dr =

∫

C
F • dr+

∫

C
2(z − y)(j+ k) • dr

= (xex+y + y2 − z2)

∣
∣
∣
∣

(0,1,2)

(1,0,0)

+ 2
∫ 1

0
(2t − t)(1 + 2) dt

= −3− e + 3t2
∣
∣
∣
∣

1

0
= −e.

11. Since the field lines of F are xy = C , and so satisfy

y dx + x dy = 0, or
dx

x
= −dy

y
,

thus F = λ(x, y)(x i− yj). Since |F(x, y)| = 1 if
(x, y) �= (0, 0), λ(x, y) = ±1/

√

x2 + y2, and

F(x, y) = ± x i− yj
√

x2 + y2
.

Since F(1, 1) = (i − j)/
√

2, we need the plus sign. Thus

F(x, y) = x i− yj
√

x2 + y2
,

which is continuous everywhere except at (0, 0).

12. The first octant part of the cylinder y2 + z2 = 16 has
outward vector surface element

N̂ dS = 2yj+ 2zk
2z

dx dy =
(

y
√

16− y2
j+ k

)

dx dy.

The flux of 3z2x i− xj− yk outward through the specified
surface S is

F • N̂ dS =
∫ 5

0
dx
∫ 4

0

(

0 − xy
√

16 − y2
− y

)

dy

=
∫ 5

0

(

x
√

16 − y2 − y2

2

)∣
∣
∣
∣

y=4

y=0
dx

= −
∫ 5

0
(4x + 8) dx = −90.

Challenging Problems 15 (page 849)

1. Given: x = (2 + cos v) cos u, y = (2 + cos v) sin u,
z = sin v for 0 ≤ u ≤ 2π , 0 ≤ v ≤ π .
The cylindrical coordinate r satisfies

r2 = x2 + y2 = (2 + cos v)2

r = 2+ cos v

(r − 2)2 + z2 = 1.

This equation represents the surface of a torus, obtained
by rotating about the z-axis the circle of radius 1 in the
xz-plane centred at (2, 0, 0). Since 0 ≤ v ≤ π implies
that z ≥ 0, the given surface is only the top half of the
toroidal surface.
By symmetry, x̄ = 0 and ȳ = 0.
A ring-shaped strip on the surface at angular position v
with width dv has radius 2+cos v, and so its surface area
is dS = 2π(2 + cos v) dv. The area of the whole given
surface is

S =
∫ π

0
2π(2 + cos v) dv = 4π2.

The strip has moment z dS = 2π(2 + cos v) sin v dv about
z = 0, so the moment of the whole surface about z = 0 is

Mz=0 = 2π
∫ π

0
(2 + cos v) sin v dv

= 2π

(

−2 cos v − 1

4
cos(2v)

)∣
∣
∣
∣

π

0
= 8π.

Thus z̄ = 8π

4π2
= 2

π
. The centroid is (0, 0, 2/π).

2. This is a trick question. Observe that the given
parametrization r(u, v) satisfies

r(u + π, v) = r(u,−v).

Therefore the surface S is traced out twice as u goes
from 0 to 2π . (It is a Möbius band. See Figure 15.28
in the text.) If S1 is the part of the surface correspond-
ing to 0 ≤ u ≤ π , and S2 is the part corresponding to
π ≤ u ≤ 2π , then S1 and S2 coincide as point sets,
but their normals are oppositely oriented: N̂2 = −N̂1 at
corresponding points on the two surfaces. Hence

∫∫

S1

F • N̂1 dS = −
∫∫

S2

F • N̂2 dS,
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for any smooth vector field, and
∫∫

S
F • N̂ dS =

∫∫

S1

F • N̂1 dS +
∫∫

S2

F • N̂2 dS = 0.

3.

D

m

φ

dS

(0, 0, b)

ψ

a
a cosφ

b − a cosφ

Fig. C-15.3

The mass element σ dS at position [a, φ, θ ] on the
sphere is at distance D = √a2 + b2 − 2ab cosφ from the
mass m located at (0, 0, b), and thus it attracts m with a
force of magnitude d F = kmσdS/D2. By symmetry,
the horizontal components of d F coresponding to mass
elements on opposite sides of the sphere (i.e., at [a, φ, θ ]
and [a, φ, θ + π ]) cancel, but the vertical components

d F cosψ = kmσ dS

D2

b − a cosφ

D
reinforce. The total force on the mass m is the sum of
all such vertical components. Since dS = a2 sinφ dφ dθ ,
it is

F = kmσa2
∫ 2π

0
dθ
∫ π

0

(b − a cosφ) sinφ dφ

(a2 + b2 − 2ab cosφ)3/2

= 2πkmσa2
∫ 1

−1

(b − at)dt

(a2 − 2abt + b2)3/2
.

We have made the change of variable t = cosφ to get
the last integral. This integral can be evaluated by using
another substitution. Let u = √a2 − 2abt + b2. Thus

t = a2 + b2 − u2

2ab
, dt = − u du

ab
, b−at = u2 + b2 − a2

2b
.

When t = −1 and t = 1 we have u = a + b and
u = |a − b| respectively. Therefore

F = 2πkmσa2
∫ |a−b|

a+b

u2 + b2 − a2

2bu3

(

− u du

ab

)

= πkmσa

b2

∫ a+b

|a−b|

(

1 + b2 − a2

u2

)

du

= πkmσa

b2

(

u − b2 − a2

u

)∣
∣
∣
∣

a+b

|a−b|
.

There are now two cases to consider. If the mass m is
outside the sphere, so that b > a and |a − b| = b − a,
then

F = πkmσa

b2

(

(a+b)−(b−a)−(b−a)+(b+a)

)

= 4πkmσ
a2

b2 .

However, if m is inside the sphere, so that b < a and
|a − b| = a − b, then

F = πkmσa

b2

(

(a+ b)+ (a− b)− (a− b)− (a+ b)

)

= 0.
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CHAPTER 16. VECTOR CALCULUS

Section 16.1 Gradient, Divergence, and Curl
(page 858)

1. F = x i+ yj

div F = ∂

∂x
(x)+ ∂

∂y
(y)+ ∂

∂z
(0) = 1+ 1 = 2

curl F =

∣
∣
∣
∣
∣
∣
∣

i j k
∂

∂x

∂

∂y

∂

∂z
x y 0

∣
∣
∣
∣
∣
∣
∣

= 0

2. F = yi+ xj

div F = ∂

∂x
(y)+ ∂

∂y
(x)+ ∂

∂z
(0) = 0+ 0 = 0

curl F =

∣
∣
∣
∣
∣
∣
∣

i j k
∂

∂x

∂

∂y

∂

∂z
y x 0

∣
∣
∣
∣
∣
∣
∣

= (1 − 1)k = 0

3. F = yi+ zj+ xk

div F = ∂

∂x
(y)+ ∂

∂y
(z)+ ∂

∂z
(x) = 0

curl F =

∣
∣
∣
∣
∣
∣
∣

i j k
∂

∂x

∂

∂y

∂

∂z
y z x

∣
∣
∣
∣
∣
∣
∣

= −i− j− k

4. F = yzi+ xzj+ xyk

div F = ∂

∂x
(yz)+ ∂

∂y
(xz)+ ∂

∂z
(xy) = 0

curl F =

∣
∣
∣
∣
∣
∣
∣

i j k
∂

∂x

∂

∂y

∂

∂z
yz xz xy

∣
∣
∣
∣
∣
∣
∣

= (x − x)i+ (y − y)j+ (z − z)k = 0

5. F = x i+ xk

div F = ∂

∂x
(x)+ ∂

∂y
(0)+ ∂

∂z
(x) = 1

curl F =

∣
∣
∣
∣
∣
∣
∣

i j k
∂

∂x

∂

∂y

∂

∂z
x 0 x

∣
∣
∣
∣
∣
∣
∣

= −j

6. F = xy2i− yz2j + zx2k

div F = ∂

∂x

(

xy2
)

+ ∂

∂y

(

−yz2
)

+ ∂

∂z

(

zx2
)

= y2 − z2 + x2

curl F =

∣
∣
∣
∣
∣
∣
∣

i j k
∂

∂x

∂

∂y

∂

∂z
xy2 −yz2 zx2

∣
∣
∣
∣
∣
∣
∣

= 2yzi− 2xzj− 2xyk

7. F = f (x)i + g(y)j+ h(z)k

div F = ∂

∂x
f (x)+ ∂

∂y
g(y)+ ∂

∂z
h(z)

= f ′(x)+ g′(y)+ h ′(z)

curl F =

∣
∣
∣
∣
∣
∣
∣

i j k
∂

∂x

∂

∂y

∂

∂z
f (x) g(y) h(z)

∣
∣
∣
∣
∣
∣
∣

= 0

8. F = f (z)i − f (z)j

div F = ∂

∂x
f (z)+ ∂

∂y

(

− f (z)
)

= 0

curl F =

∣
∣
∣
∣
∣
∣
∣

i j k
∂

∂x

∂

∂y

∂

∂z
f (z) − f (z) 0

∣
∣
∣
∣
∣
∣
∣

= f ′(z)(i + j)

9. Since x = r cos θ , and y = r sin θ , we have r2 = x2 + y2,
and so

∂r

∂x
= x

r
= cos θ

∂r

∂y
= y

r
= sin θ

∂

∂x
sin θ = ∂

∂x

y

r
= −xy

r3
= − cos θ sin θ

r
∂

∂y
sin θ = ∂

∂y

y

r
= 1

r
− y2

r3

= x2

r3 =
cos2 θ

r
∂

∂x
cos θ = ∂

∂x

x

r
= 1

r
− x2

r3

= y2

r3
= sin2 θ

r
∂

∂y
cos θ = ∂

∂y

x

r
= −xy

r3
= − cos θ sin θ

r
.

(The last two derivatives are not needed for this exercise,
but will be useful for the next two exercises.) For

F = r i+ sin θ j,

we have

div F = ∂r

∂x
+ ∂

∂y
sin θ = cos θ + cos2 θ

r

curl F =

∣
∣
∣
∣
∣
∣
∣

i j k
∂

∂x

∂

∂y

∂

∂z
r sin θ 0

∣
∣
∣
∣
∣
∣
∣

=
(

− sin θ cos θ

r
− sin θ

)

k.
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10. F = r̂ = cos θ i+ sin θ j

div F = sin2 θ

r
+ cos2 θ

r
= 1

r
= 1

√

x2 + y2

curl F =

∣
∣
∣
∣
∣
∣
∣

i j k
∂

∂x

∂

∂y

∂

∂z
cos θ sin θ 0

∣
∣
∣
∣
∣
∣
∣

= −
(

cos θ sin θ

r
− cos θ sin θ

r

)

k = 0

11. F = θ̂ = − sin θ i+ cos θ j

div F = cos θ sin θ

r
− cos θ sin θ

r
= 0

curl F =

∣
∣
∣
∣
∣
∣
∣

i j k
∂

∂x

∂

∂y

∂

∂z
− sin θ cos θ 0

∣
∣
∣
∣
∣
∣
∣

=
(

sin2 θ

r
+ cos2 θ

r

)

k = 1

r
k = 1

√

x2 + y2
k

12. We use the Maclaurin expansion of F, as presented in the
proof of Theorem 1:

F = F0 + F1x + F2y + F3z + · · · ,
where

F0 = F(0, 0, 0)

F1 = ∂

∂x
F(x, y, z)

∣
∣
∣
∣
(0,0,0)

=
(
∂F1

∂x
i + ∂F2

∂x
j+ ∂F3

∂x
k
)∣

∣
∣
∣
(0,0,0)

F2 = ∂

∂y
F(x, y, z)

∣
∣
∣
∣
(0,0,0)

=
(
∂F1

∂y
i + ∂F2

∂y
j+ ∂F3

∂y
k
)∣

∣
∣
∣
(0,0,0)

F3 = ∂

∂z
F(x, y, z)

∣
∣
∣
∣
(0,0,0)

=
(
∂F1

∂z
i + ∂F2

∂z
j+ ∂F3

∂z
k
)∣

∣
∣
∣
(0,0,0)

and where · · · represents terms of degree 2 and higher in
x , y, and z.
On the top of the box Ba,b,c, we have z = c and N̂ = k.
On the bottom of the box, we have z = −c and N̂ = −k.
On both surfaces dS = dx dy. Thus

(∫∫

top
+

∫∫

bottom

)

F • N̂ dS

=
∫ a

−a
dx

∫ b

−b
dy

(

cF3 • k − cF3 • (−k)
)

+ · · ·

= 8abcF3 • k + · · · = 8abc
∂

∂z
F3(x, y, z)

∣
∣
∣
∣
(0,0,0)

+ · · · ,

where · · · represents terms of degree 4 and higher in a,
b, and c.
Similar formulas obtain for the two other pairs of faces,
and the three formulas combine into

∫

©
∫

Ba,b,c

F • N̂ dS = 8abcdiv F(0, 0, 0)+ · · · .

It follows that

lim
a,b,c→0+

1

8abc

∫

©
∫

Ba,b,c

F • N̂ dS = div F(0, 0, 0).

13. This proof just mimics that of Theorem 1. F can be ex-
panded in Maclaurin series

F = F0 + F1x + F2y + · · · ,

where

F0 = F(0, 0)

F1 = ∂

∂x
F(x, y)

∣
∣
∣
∣
(0,0)
=

(
∂F1

∂x
i+ ∂F2

∂x
j
)∣

∣
∣
∣
(0,0)

F2 = ∂

∂y
F(x, y)

∣
∣
∣
∣
(0,0)
=

(
∂F1

∂y
i+ ∂F2

∂y
j
)∣

∣
∣
∣
(0,0)

and where · · · represents terms of degree 2 and higher in
x and y.
On the curve Cε of radius ε centred at (0, 0), we have

N̂ = 1

ε
(x i + yj). Therefore,

F • N̂ = 1

ε

(

F0 • ix + F0 • jy + F1 • ix2

+ F1 • jxy + F2 • ixy + F2 • jy2 + · · ·
)

where · · · represents terms of degree 3 or higher in x and
y. Since

∮

Cε

x ds =
∮

Cε

y ds =
∮

Cε

xy ds = 0

∮

Cε

x2 ds =
∮

Cε

y2 ds =
∫ 2π

0
ε2 cos2 θ ε dθ = πε3,

we have

1

πε2

∮

Cε

F • N̂ ds = 1

πε2

πε3

ε
(F1 • i+ F2 • j)+ · · ·

= div F(0, 0)+ · · ·

where · · · represents terms of degree 1 or higher in ε.
Therefore, taking the limit as ε → 0 we obtain

lim
ε→0

1

πε2

∮

Cε

F • N̂ ds = div F(0, 0).
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14. We use the same Maclaurin expansion for F as in Exer-
cises 12 and 13. On Cε we have

r = ε cos θ i+ ε sin θ j, (0 ≤ θ ≤ 2π)

dr = −ε sin θ i+ ε cos θ j

F • dr =
(

−ε sin θF0 • i+ ε cos θF0 • j

− ε2 sin θ cos θF1 • i+ ε2 cos2 θF1 • j

− ε2 sin2 θF2 • i+ ε2 sin θ cos θF2 • j + · · ·
)

ds,

where · · · represents terms of degree 3 or higher in ε.
Since

∫ 2π

0
sin θ dθ =

∫ 2π

0
cos θ dθ =

∫ 2π

0
sin θ cos θ dθ = 0

∫ 2π

0
cos2 θ dθ =

∫ 2π

0
sin2 θ dθ = π,

we have

1

πε2

∮

Cε

F • dr = F1 • j− F2 • i+ · · · ,

where · · · represents terms of degree at least 1 in ε.
Hence

lim
ε→0+

1

πε2

∮

Cε

F • dr = F1 • j − F2 • i

= ∂F2

∂x
− ∂F1

∂y

= curl F • k = curl F • N̂.

Section 16.2 Some Identities Involving Grad,
Div, and Curl (page 864)

1. Theorem 3(a):

∇(φψ) = ∂

∂x
(φψ)+ ∂

∂y
(φψ)+ ∂

∂z
(φψ)

=
(

φ
∂ψ

∂x
+ ∂φ
∂x
ψ

)

i+ · · · +
(

φ
∂ψ

∂z
+ ∂φ
∂z
ψ

)

k

= φ∇ψ + ψ∇φ.

2. Theorem 3(b):

∇ • (φF) = ∂

∂x
(φF1)+ ∂

∂y
(φF2)+ ∂

∂z
(φF3)

= ∂φ

∂x
F1 + φ ∂F1

∂x
+ · · · + ∂φ

∂z
F3 + φ ∂F3

∂z
+ · · ·

= ∇φ • F+ φ∇ • F.

3. Theorem 3(d):

∇ • (F×G) = ∂

∂x
(F2G3 − F3G2)+ · · ·

= ∂F2

∂x
G3 + F2

∂G3

∂x
− ∂F3

∂x
G2 − F3

∂G2

∂x
+ · · ·

= (∇ × F) •G− F • (∇ ×G).

4. Theorem 3(f). The first component of ∇(F •G) is

∂F1

∂x
G1+ F1

∂G1

∂x
+ ∂F2

∂x
G2+ F2

∂G2

∂x
+ ∂F3

∂x
G3+ F3

∂G3

∂x
.

We calculate the first components of the four terms on
the right side of the identity to be proved.
The first component of F× (∇ ×G) is

F2

(
∂G2

∂x
− ∂G1

∂y

)

− F3

(
∂G1

∂z
− ∂G3

∂x

)

.

The first component of G × (∇ × F) is

G2

(
∂F2

∂x
− ∂F1

∂y

)

− G3

(
∂F1

∂z
− ∂F3

∂x

)

.

The first component of (F • ∇)G is

F1
∂G1

∂x
+ F2

∂G1

∂y
+ F3

∂G1

∂z
.

The first component of (G • ∇)F is

G1
∂F1

∂x
+ G2

∂F1

∂y
+ G3

∂F1

∂z
.

When we add these four first components, eight of the
fourteen terms cancel out and the six remaining terms
are the six terms of the first component of ∇(F • G),
as calculated above. Similar calculations show that the
second and third components of both sides of the identity
agree. Thus

∇(F•G) = F×(∇×G)+G×(∇×F)+(F•∇)G+(G•∇)F.

5. Theorem 3(h). By equality of mixed partials,

∇ × ∇φ =

∣
∣
∣
∣
∣
∣
∣
∣
∣

i j k
∂

∂x

∂

∂y

∂

∂z
∂φ

∂x

∂φ

∂y

∂φ

∂z

∣
∣
∣
∣
∣
∣
∣
∣
∣

=
(
∂

∂y

∂φ

∂z
− ∂

∂z

∂φ

∂y

)

i + · · · = 0.

6. Theorem 3(i). We examine the first components of the
terms on both sides of the identity

∇ × (∇ × F) = ∇(∇ • F)− ∇2F.
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The first component of ∇ × (∇ × F) is

∂

∂y

(
∂F2

∂x
− ∂F1

∂y

)

− ∂

∂z

(
∂F1

∂z
− ∂F3

∂x

)

= ∂2F2

∂y∂x
− ∂

2 F1

∂y2
− ∂

2 F1

∂z2
+ ∂2F3

∂z∂x
.

The first component of ∇(∇ • F) is

∂

∂x
∇ • F = ∂2 F1

∂x2 +
∂2F2

∂x∂y
+ ∂2F3

∂x∂z
.

The first component of −∇2F is

−∇2F1 = −∂
2F1

∂x2 −
∂2F1

∂y2 −
∂2F1

∂z2 .

Evidently the first components of both sides of the given
identity agree. By symmetry, so do the other compo-
nents.

7. If the field lines of F(x, y, z) are parallel straight lines, in
the direction of the constant nonzero vector a say, then

F(x, y, z) = φ(x, y, z)a

for some scalar field φ, which we assume to be smooth.
By Theorem 3(b) and (c) we have

div F = div (φa) = ∇φ • a
curl F = curl (φa) = ∇φ × a.

Since ∇φ is an arbitrary gradient, div F can have any
value, but curl F is perpendicular to a, and thereofore to
F.

8. If r = x i+ yj+ zk and r = |r|, then

∇ • r = 3, ∇ × r = 0, ∇r = r
r
.

If c is a constant vector, then its divergence and curl are
both zero. By Theorem 3(d), (e), and (f) we have

∇ • (c× r) = (∇ × c) • r− c • (∇ × r) = 0
∇ × (c× r) = (∇ • r)c+ (r • ∇)c− (∇ • c)r− (c • ∇)r

= 3c+ 0− 0− c = 2c

∇(c • r) = c× (∇ × r)+ r× (∇ × c)+ (c • ∇)r+ (r • ∇)c
= 0+ 0+ c+ 0 = c.

9. ∇ •
(

f (r)r
)

=
(

∇ f (r)
)

• r+ f (r)(∇ • r)

= f ′(r)r • r
r
+ 3 f (r)

= r f ′(r)+ 3 f (r).

If f (r)r is solenoidal then ∇ •
(

f (r)r
)

= 0, so that

u = f (r) satisfies

r
du

dr
+ 3u = 0

du

u
= −3 dr

r
ln |u| = −3 ln |r | + ln |C |
u = Cr−3.

Thus f (r) = Cr−3, for some constant C .

10. Given that div F = 0 and curl F = 0, Theorem 3(i)
implies that ∇2F = 0 too. Hence the components of F
are harmonic functions.
If F = ∇φ, then

∇2φ = ∇ • ∇φ = ∇ • F = 0,

so φ is also harmonic.

11. By Theorem 3(e) and 3(f),

∇ × (F× r) = (∇ • r)F+ (r • ∇)F− (∇ • F)r − (F • ∇)r
∇(F • r) = F× (∇ × r)+ r× (∇ × F)

+ (F • ∇)r + (r • ∇)F.

If r = x i+ yj+ zk, then ∇ • r = 3 and ∇ × r = 0. Also,

(F • ∇)r = F1
∂r
∂x
+ F2

∂r
∂y
+ F3

∂r
∂z
= F.

Combining all these results, we obtain

∇ × (F× r)−∇(F • r) = 3F− 2(F • ∇)r
− (∇ • F)r− r× (∇ × F)
= F− (∇ • F)r− r× (∇ × F).

In particular, if ∇ • F = 0 and ∇ × F = 0, then

∇ × (F× r)−∇(F • r) = F.

12. If ∇2φ = 0 and ∇2ψ = 0, then

∇ • (φ∇ψ − ψ∇φ)
= ∇φ • ∇ψ + φ∇2ψ −∇ψ • ∇φ − ψ∇2φ = 0,

so φ∇ψ − ψ∇φ is solenoidal.

13. By Theorem 3(c) and (h),

∇ × (φ∇ψ) = ∇φ × ∇ψ + φ∇ × ∇ψ = ∇φ × ∇ψ
−∇ × (ψ∇φ) = −∇ψ × ∇φ − ψ∇ × ∇φ = ∇φ × ∇ψ.
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14. By Theorem 3(b), (d), and (h), we have

∇ •
(

f (∇g × ∇h)
)

= ∇ f • (∇g × ∇h)+ f∇ • (∇g × ∇h)

= ∇ f • (∇g × ∇h)+ f
(

(∇ × ∇g) • ∇h −∇g • (∇ × ∇h)
)

= ∇ f • (∇g × ∇h)+ 0− 0 = ∇ f • (∇g × ∇h).

15. If F = ∇φ and G = ∇ψ , then ∇ × F = 0 and ∇ ×G = 0
by Theorem 3(h). Therefore, by Theorem 3(d) we have

∇ • (F×G) = (∇ × F) •G+ F • (∇ ×G) = 0.

Thus F×G is solenoidal. By Exercise 13,

∇ × (φ∇ψ) = ∇φ × ∇ψ = F×G,

so φ∇ψ is a vector potential for F×G. (So is −ψ∇φ.)

16. If ∇ ×G = F = −yi+ xj, then

∂G3

∂y
− ∂G2

∂z
= −y

∂G1

∂z
− ∂G3

∂x
= x

∂G2

∂x
− ∂G1

∂y
= 0.

As in Example 1, we try to find a solution with G2 = 0.
Then

G3 = −
∫

y dy = − y2

2
+ M(x, z).

Again we try M(x, z) = 0, so G3 = − y2

2
. Thus

∂G3

∂x
= 0 and

G1 =
∫

x dz = xz + N(x, y).

Since
∂G1

∂y
= 0 we may take N(x, y) = 0.

G = xzi − 1

2
y2k is a vector potential for F. (Of course,

this answer is not unique.)

17. If F = xe2zi+ ye2zj− e2zk, then

div F = e2z + e2z − 2e2z = 0,

so F is solenoidal.
If F = ∇ ×G, then

∂G3

∂y
− ∂G2

∂z
= xe2z

∂G1

∂z
− ∂G3

∂x
= ye2z

∂G2

∂x
− ∂G1

∂y
= −e2z .

Look for a solution with G2 = 0. We have

G3 =
∫

xe2z dy = xye2z + M(x, z).

Try M(x, z) = 0. Then G3 = xye2z, and

∂G1

∂z
= ye2z + ∂G3

∂x
= 2ye2z.

Thus

G1 =
∫

2ye2z dz = ye2z + N(x, y).

Since

−e2z = −∂G1

∂y
= −e2z − ∂N

∂y
,

we can take N(x, y) = 0.
Thus G = ye2zi+ xye2zk is a vector potential for F.

18. For (x, y, z) in D let v = x i+ yj+ zk. The line segment
r(t) = tv, (0 ≤ t ≤ 1), lies in D, so div F = 0 on the
path. We have

G(x, y, z) =
∫ 1

0
tF

(

r(t)
)

× v dt

=
∫ 1

0
tF

(

ξ(t), η(t), ζ(t)
)

× v dt

where ξ = t x, η = t y, ζ = t z. The first component of
curl G is

(curl G)1

=
∫ 1

0
t
(

curl (F× v)
)

1
dt

=
∫ 1

0
t

(
∂

∂y
(F× v)3 − ∂

∂z
(F× v)2

)

dt

=
∫ 1

0
t

(
∂

∂y
(F1 y − F2x)− ∂

∂z
(F3x − F1z)

)

dt

=
∫ 1

0

(

t F1 + t2y
∂F1

∂η
− t2x

∂F2

∂η
− t2x

∂F3

∂ζ

+ t F1 + t2z
∂F1

∂ζ

)

dt

=
∫ 1

0

(

2t F1 + t2x
∂F1

∂ξ
+ t2y

∂F1

∂η
+ t2z

∂F1

∂ζ

)

dt.

604



INSTRUCTOR’S SOLUTIONS MANUAL SECTION 16.3 (PAGE 868)

To get the last line we used the fact that divF = 0 to

replace −t2x
∂F2

∂η
− t2x

∂F3

∂ζ
with t2x

∂F1

∂ξ
. Continuing the

calculation, we have

(curl G)1 =
∫ 1

0

d

dt

(

t2 F1(ξ, η, ζ )
)

dt

= t2F1(t x, t y, t z)

∣
∣
∣
∣

1

0
= F1(x, y, z).

Similarly, (curl G)2 = F2 and (curl G)3 = F3. Thus
curl G = F, as required.

19. In the following we suppress output (which for some
calculations can be quite lengthy) except for the final
check on each inequality. You may wish to use semi-
colons instead of colons to see what the output actually
looks like.

> with(VectorCalculus):

>

SetCoordinates(’cartesian’[x,y,z]):

> F := VectorField
(<u(x,y,z),v(x,y,z),w(x,y,z)>):

> G := VectorField
(<a(x,y,z),b(x,y,z),c(x,y,z)>):

(a) LHS := Del(phi(x,y,z)*psi(x,y,z)):
RHS := phi(x,y,z)*Del(psi(x,y,z))
+ psi(x,y,z)*Del(phi(x,y,z)):
simplify(LHS - RHS);

0 ēx

(b) LHS := Del . (F*phi(x,y,z)):
RHS := (Del(phi(x,y,z))).F +
phi(x,y,z)*(Del.F):
simplify(LHS - RHS);

0

(c) LHS := Del &x (phi(x,y,z)*F):
RHS := RHS := (Del(phi(x,y,z))) &x
F + phi(x,y,z)*(Del &x F):
simplify(LHS - RHS);

0 ēx

(d) LHS := Del . (F &x G):
RHS := (Del &x F) . G - F . (Del &x
G):
simplify(LHS - RHS);

0

(e) LHS := Del &x (F &x G):
RHS1 := (Del . G)*F:
RHS2 := G[1]*diff(F,x)
+G[2]*diff(F,y)+G[3]*diff(F,z):
RHS3 := (Del . F)*G:
RHS4 := F[1]*diff(G,x)
+F[2]*diff(G,y)+F[3]*diff(G,z):
RHS := RHS1 + RHS2 - RHS3 - RHS4:
simplify(LHS - RHS);

0 ēx

(f) LHS := Del(F . G):
RHS1 := F &x (Del &x G):
RHS2 := G &x (Del &x F):
RHS3 := F[1]*diff(G,x)
+F[2]*diff(G,y)+F[3]*diff(G,z):
RHS4 := G[1]*diff(F,x)
+G[2]*diff(F,y)+G[3]*diff(F,z):
RHS := RHS1 + RHS2 + RHS3 + RHS4:
simplify(LHS - RHS);

0 ēx

All these zero outputs indicate that the inequalities
(a)–(f) of the theorem are valid.

Section 16.3 Green’s Theorem in the Plane
(page 868)

1.
∮

C
(sin x + 3y2) dx + (2x − e−y2

) dy

=
∫∫

R

[
∂

∂x
(2x − e−y2

)− ∂

∂y
(sin x + 3y2)

]

d A

=
∫∫

R
(2 − 6y) d A

=
∫ π

0
dθ

∫ a

0
(2− 6r sin θ)r dr

= πa2 − 6
∫ π

0
sin θ dθ

∫ a

0
r2 dr

= πa2 − 4a3.

y

x−a a

C

R

Fig. 16.3.1

605



SECTION 16.3 (PAGE 868) R. A. ADAMS: CALCULUS

2.
∮

C
(x2 − xy) dx + (xy − y2) dy

= −
∫∫

T

[
∂

∂x
(xy − y2)− ∂

∂y
(x2 − xy)

]

d A

= −
∫∫

T
(y + x) d A

= −(ȳ + x̄)× (area of T ) = −
(

1

3
+ 1

)

× 1 = −4

3
.

y

x

(1,1)

C
T

2

Fig. 16.3.2

3.
∮

C
(x sin y2 − y2) dx + (x2 y cos y2 + 3x) dy

=
∫∫

T

[

2xy cos y2 + 3− (2xy cos y2 − 2y)
]

d A

=
∫∫

T
(3+ 2y) d A = 3

∫∫

T
d A + 0 = 3× 3 = 9.

y

x

2

(1,1)

CT

(1,−1)

−2

Fig. 16.3.3

4. Let D be the region x2 + y2 ≤ 9, y ≥ 0. Since C is the
clockwise boundary of D,

∮

C
x2y dx − xy2 dy

= −
∫∫

D

[
∂

∂x
(−xy2)− ∂

∂y
(x2y)

]

dx dy

=
∫∫

D
(y2 + x2) d A =

∫ π

0
dθ

∫ 3

0
r3 dr = 81π

4
.

5. By Example 1,

Area = 1

2

∮

C
x dy − y dx

= 1

2

∫ 2π

0

[

a cos3 t 3b sin2 t cos t

− b sin3 t (−3a cos2 t sin t)
]

dt

= 3ab

2

∫ 2π

0
sin2 t cos2 t dt

= 3ab

2

∫ 2π

0

sin2(2t)

4
dt = 3πab

8
.

6. Let R, C, and F be as in the statement of Green’s The-
orem. As noted in the proof of Theorem 7, the unit
tangent T̂ to C and the unit exterior normal N̂ satisfy
N̂ = T̂× k. Let

G = F2(x, y)i− F1(x, y)j.

Then F • T̂ = G • N̂. Applying the 2-dimensional Diver-
gence Theorem to G, we obtain

∫

C
F1 dx + F2 dy =

∫

C
F • T̂ ds =

∫

C
G • N̂ ds

=
∫∫

R
div G d A

=
∫∫

R

(
∂F2

∂x
− ∂F1

∂y

)

d A

as required

7. r = sin t i+ sin 2tj, (0 ≤ t ≤ 2π)
y

x

C

R1 R2

Fig. 16.3.7

F = yex2
i + x3eyj

curl F =

∣
∣
∣
∣
∣
∣
∣

i j k
∂

∂x

∂

∂y

∂

∂z
yex2

x3ey 0

∣
∣
∣
∣
∣
∣
∣

= (3x2ey − ex2
)k.

Observe that C bounds two congruent regions, R1
and R2, one counterclockwise and the other clockwise.
For R1, N̂ = k; for R2, N̂ = −k. Since R1 and R2
are mirror images of each other in the y-axis, and since
curl F is an even function of x , we have

∫∫

R1

curl F • N̂ dS = −
∫∫

R2

curl F • N̂ dS.
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Thus
∮

C
F • dr =

(∫∫

R1

+
∫∫

R2

)

curl F • N̂ dS = 0.

8. a) F = x2j
∮

C
F • dr =

∮

C
x2 dy =

∫∫

R
2x d A = 2Ax̄ .

b) F = xyi
∮

C
F • dr =

∮

C
xy dx = −

∫∫

R
x d A = −Ax̄ .

c) F = y2i+ 3xyj
∮

C
F • dr =

∮

C
y2 dx + 3xy dy

=
∫∫

R
(3y − 2y) d A = Aȳ.

9. The circle Cr of radius r and centre at r0 has
parametrization

r = r0 + r cos t i+ r sin tj, (0 ≤ t ≤ 2π).

Note that dr/dt = cos t i + sin tj = N̂, the unit normal to
Cr exterior to the disk Dr of which Cr is the boundary.
The average value of u(x, y) on Cr is

ūr = 1

2π

∫ 2π

0
u(x0 + r cos t, y0 + r sin t) dt,

and so

dūr

dr
= 1

2π

∫ 2π

0

(
∂u

∂x
cos t + ∂u

∂y
sin t

)

dt

= 1

2πr

∮

Cr

∇u • N̂ ds

since ds = r dt . By the (2-dimensional) divergence theo-
rem, and since u is harmonic,

dūr

dr
= 1

2πr

∫∫

Dr

∇ • ∇u dx dy

= 1

2πr

∫∫

Dr

(
∂2u

∂x2
+ ∂

2u

∂y2

)

dx dy = 0.

Thus ūr = limr→0 ūr = u(x0, y0).

Section 16.4 The Divergence Theorem
in 3-Space (page 873)

1. In this exercise, the sphere S bounds the ball B of radius
a centred at the origin.
If F = x i− 2yj+ 4zk, then div F = 1 − 2+ 4 = 3. Thus

∫

©
∫

S
F • N̂ dS =

∫∫∫

B
3 dV = 4πa3.

2. If F = yezi+ x2ezj+ xyk, then div F = 0, and

∫

©
∫

S
F • N̂ dS =

∫∫∫

B
0 dV = 0.

3. If F = (x2 + y2)i + (y2 − z2)j + zk, then
div F = 2x + 2y + 1, and

∫

©
∫

S
F•N̂ dS =

∫∫∫

B
(2x+2y+1) dV =

∫∫∫

B
1 dV = 4

3
πa3.

4. If F = x3i+ 3yz2j+ (3y2z + x2)k, then
div F = 3x2 + 3z2 + 3y2, and

∫

©
∫

S
F • N̂ dS = 3

∫∫∫

B
(x2 + y2 + z2) dV

= 3
∫ 2π

0
dθ

∫ π

0
sinφ dφ

∫ a

0
ρ4 dρ

= 12

5
πa5.

5. If F = x2i + y2j + z2k, then div F = 2(x + y + z).
Therefore the flux of F out of any solid region R is

Flux =
∫∫∫

R
div F dV

= 2
∫∫∫

R
(x + y + z) dV = 2(x̄ + ȳ + z̄)V

where (x̄, ȳ, z̄) is the centroid of R and V is the volume
of R.

If R is the ball (x − 2)2 + y2 + (z − 3)2 ≤ 9, then x̄ = 2,
ȳ = 0, z̄ = 3, and V = (4π/3)33 = 36π . The flux of F
out of R is 2(2 + 0+ 3)(36π) = 360π .

6. If F = x2i + y2j + z2k, then div F = 2(x + y + z).
Therefore the flux of F out of any solid region R is

Flux =
∫∫∫

R
div F dV

= 2
∫∫∫

R
(x + y + z) dV = 2(x̄ + ȳ + z̄)V

where (x̄, ȳ, z̄) is the centroid of R and V is the volume
of R.

If R is the ellipsoid x2 + y2 + 4(z − 1)2 ≤ 4, then x̄ = 0,
ȳ = 0, z̄ = 1, and V = (4π/3)(2)(2)(1) = 16π/3. The
flux of F out of R is 2(0+ 0+ 1)(16π/3) = 32π/3.
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7. If F = x2i + y2j + z2k, then div F = 2(x + y + z).
Therefore the flux of F out of any solid region R is

Flux =
∫∫∫

R
div F dV

= 2
∫∫∫

R
(x + y + z) dV = 2(x̄ + ȳ + z̄)V

where (x̄ , ȳ, z̄) is the centroid of R and V is the volume
of R.

If R is the tetrahedron with vertices (3, 0, 0), (0, 3, 0),
(0, 0, 3), and (0, 0, 0), then x̄ = ȳ = z̄ = 3/4, and
V = (1/6)(3)(3)(3) = 9/2. The flux of F out of R is
2((3/4) + (3/4) + (3/4))(9/2) = 81/4.

8. If F = x2i + y2j + z2k, then div F = 2(x + y + z).
Therefore the flux of F out of any solid region R is

Flux =
∫∫∫

R
div F dV

= 2
∫∫∫

R
(x + y + z) dV = 2(x̄ + ȳ + z̄)V

where (x̄ , ȳ, z̄) is the centroid of R and V is the volume
of R.

If R is the cylinder x2 + y2 ≤ 2y (or, equivalently,
x2 + (y − 1)2 ≤ 1), 0 ≤ z ≤ 4, then x̄ = 0, ȳ = 1,
z̄ = 2, and V = (π12)(4) = 4π . The flux of F out of R
is 2(0+ 1+ 2)(4π) = 24π .

9. If F = x i + yj + zk, then div F = 3. If C is any solid
region having volume V , then

∫∫∫

C
div F dV = 3V .

The region C described in the statement of the problem
is the part of a solid cone with vertex at the origin that
lies inside a ball of radius R with centre at the origin.
The surface S of C consists of two parts, the conical
wall S1, and the region D on the spherical boundary
of the ball. At any point P on S1, the outward normal
field N̂ is perpendicular to the line O P, that is, to F, so
F • N̂ = 0. At any point P on D, N̂ is parallel to F, in
fact N̂ = F/|F| = F/R. Thus
∫

©
∫

S
F • N̂ dS =

∫∫

S1

F • N̂ dS +
∫∫

D
F • N̂ dS

= 0 +
∫∫

D

F • F
R

dS = R2

R

∫∫

D
dS = AR

where A is the area of D. By the Divergence Theorem,
3V = AR, so V = AR/3.

10. The required surface integral,

I =
∫∫

S
∇φ • N̂ dS,

can be calculated directly by the methods of Section 6.6.
We will do it here by using the Divergence Theorem
instead. S is one face of a tetrahedral domain D whose
other faces are in the coordinate planes, as shown in the
figure. Since φ = xy + z2, we have

∇φ = yi+ xj+ 2zk, ∇ • ∇φ = ∇2φ = 2.

Thus ∫∫∫

D
∇ • ∇φ dV = 2× abc

6
= abc

3
,

the volume of the tetrahedron D being abc/6 cubic units.

x

y

z

back

bottom

b
a

side

c

S
D

Fig. 16.4.10

The flux of ∇φ out of D is the sum of its fluxes out of
the four faces of the tetrahedron.

On the bottom, N̂ = −k and z = 0, so ∇φ • N̂ = 0, and
the flux out of the bottom face is 0.

On the side, y = 0 and N̂ = −j, so ∇φ • N̂ = −x . The
flux out of the side face is

∫∫

side
∇φ • N̂ dS = −

∫∫

side
x dx dz = −ac

2
× a

3
= −a2c

6
.

(We used the fact that Mx=0 = area × x̄ and x̄ = a/3 for
that face.)

On the back face, x = 0 and N̂ = −i, so the flux out of
that face is

∫∫

back
∇φ•N̂ dS = −

∫∫

back
y dy dz = −bc

2
× b

3
= −b2c

6
.

Therefore, by the Divergence Theorem

I − a2c

6
− b2c

6
+ 0 = abc

3
,

so
∫∫

S
∇φ • N̂ dS = I = abc

3
+ c(a2 + b2)

6
.

11. F = (x + y2)i + (3x2 y + y3 − x3)j + (z + 1)k

div F = 1+ 3(x2 + y2)+ 1 = 2+ 3(x2 + y2).
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x
y

z

N̂

S

D

B

−k

aa

b

Fig. 16.4.11

Let D be the conical domain, S its conical surface, and
B its base disk, as shown in the figure. We have

∫∫∫

D
div F dV =

∫ 2π

0
dθ

∫ a

0
r dr

∫ b(1−(r/a))

0
(2 + 3r2) dz

= 2πb
∫ a

0
r(2+ 3r2)

(

1− r

a

)

dr

= 2πb
∫ a

0

(

2r + 3r3 − 2r2

a
− 3r4

a

)

dr

= 2πa2b

3
+ 3πa4b

10
.

On B we have z = 0, N̂ = −k, F • N̂ = −1, so

∫∫

B
F • N̂ dS = −area of B = −πa2.

By the Divergence Theorem,

∫∫

S
F • N̂ dS +

∫∫

B
F • N̂ dS =

∫∫∫

D
div F dV ,

so the flux of F upward through the conical surface S is

∫∫

S
= 2πa2b

3
+ 3πa4b

10
+ πa2.

12. F = (y + xz)i + (y + yz)j− (2x + z2)k
div F = z + (1+ z)− 2z = 1. Thus

∫∫∫

D
div F dV = volume of D = πa3

6
,

where D is the region in the first octant bounded by the
sphere and the coordinate planes. The boundary of D
consists of the spherical part S and the four planar parts,
called the bottom, side, and back in the figure.

x

y

z

a

back

D
S

side

bottom

a
a

Fig. 16.4.12

On the side, y = 0, N̂ = −j, F • N̂ = 0, so
∫∫

side
F • N̂ dS = 0.

On the back, x = 0, N̂ = −i, F • N̂ = −y, so
∫∫

back
F • N̂ dS = −

∫ π/2

0
dθ

∫ a

0
r cos θ r dr

= − sin θ

∣
∣
∣
∣

π/2

0
× a3

3
= −a3

3
.

On the bottom, z = 0, N̂ = −k, F • N̂ = 2x , so
∫∫

bottom
F • N̂ dS = 2

∫ π/2

0
dθ

∫ a

0
r cos θ r dr = 2a3

3
.

By the Divergence Theorem

∫∫

S
F • N̂ dS + 0− a3

3
+ 2a3

3
= πa3

6
.

Hence the flux of F upward through S is

∫∫

S
F • N̂ dS = πa3

6
− a3

3
.

13. F = (x + yz)i+ (y − xz)j+ (z − ex sin y)k
div F = 1+ 1+ 1 = 3.

x

y

z

N̂

D

N̂
S1

S2
2a

a

Fig. 16.4.13
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a) The flux of F out of D through S = S1 ∪ S2 is

∫

©
∫

S
F • N̂ dS =

∫∫∫

D
div F dV

= 3
∫ 2π

0
dθ

∫ 2a

a
r dr

∫
√

4a2−r2

0
2 dz

= 12π
∫ 2a

a
r
√

4a2 − r2 dr

Let u = 4a2 − r2

du = −2r dr

= 6π
∫ 3a2

0
u1/2 du = 12

√
3πa3.

b) On S1, N̂ = − x i+ yj
a

, dS = a dθ dz. The flux of F

out of D through S1 is

∫∫

S1

F • N̂ dS =
∫∫

S1

−x2 − xyz − y2 + xyz

a
a dθ dz

= −a2
∫ 2π

0
dθ

∫
√

3a

−√3a
dz = −4

√
3πa3.

c) The flux of F out of D through the spherical part S2
is

∫∫

S2

F • N̂ dS =
∫

©
∫

S
F • N̂ dS −

∫∫

S1

F • N̂ dS

= 12
√

3πa3 + 4
√

3πa3 = 16
√

3πa3.

14. Let D be the domain bounded by S, the coordinate
planes, and the plane x = 1. If

F = 3xz2i− xj− yk,

then div F = 3z2, so the total flux of F out of D is

∫

©
∫

bdry of D
F • N̂ dS =

∫∫∫

D
3z2 dV

= 3
∫ 1

0
dx

∫ π/2

0
dθ

∫ 1

0
r2 cos2 θ r dr

= 3× 1

4
× π

4
= 3π

16
.

The boundary of D consists of the cylindrical surface
S and four planar surfaces, the side, bottom, back, and
front.

x
y

z

1

back

side

front

1

bottom

1

D

S

Fig. 16.4.14

On the side, y = 0, N̂ = −j, F • N̂ = x , so
∫∫

side
F • N̂ dS =

∫ 1

0
x dx

∫ 1

0
dz = 1

2
.

On the bottom, z = 0, N̂ = −k, F • N̂ = y, so
∫∫

bottom
F • N̂ dS =

∫ 1

0
y dy

∫ 1

0
dx = 1

2
.

On the back, x = 0, N̂ = −i, F • N̂ = 0, so
∫∫

back
F • N̂ dS = 0.

On the front, x = 1, N̂ = i, F • N̂ = 3z2, so
∫∫

front
F • N̂ dS = 3

∫ π/2

0
dθ

∫ 1

0
r2 cos2 θ r dr = 3π

16
.

Hence,
∫∫

S
(3xz2i−xj− yk)•N̂dS = 3π

16
− 1

2
− 1

2
−0− 3π

16
= −1.

15. F = (x2 − x − 2y)i+ (2y2 + 3y − z)j − (z2 − 4z + xy)k
div F = 2x − 1 + 4y + 3− 2z + 4 = 2x + 4y − 2z + 6.

The flux of F out of R through its surface S is
∫

©
∫

S
F • N̂ dS =

∫∫∫

R
(2x + 4y − 2z + 6) dV .

Now
∫∫∫

R
x dV = Mx=0 = V x̄ , where R has volume

V and centroid (x̄, ȳ z̄). Similar formulas obtain for the
other variables, so the required flux is

∫

©
∫

S
F • N̂ dS = 2V x̄ + 4V ȳ − 2V z̄ + 6V .

16. F = x i+ yj+ zk implies that div F = 3. The total flux of
F out of D is

∫

©
∫

bdry of D
F • N̂ dS = 3

∫∫∫

D
dV = 12,
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since the volume of D is half that of a cube of side 2,
that is, 4 square units.
D has three triangular faces, three pentagonal faces, and
a hexagonal face. By symmetry, the flux of F out of each
triangular face is equal to that out of the triangular face
T in the plane z = 1. Since F • N̂ = k • k = 1 on that
face, these fluxes are

∫∫

T
dx dy = area of T = 1

2
.

Similarly, the flux of F out of each pentagonal face is
equal to the flux out of the pentagonal face P in the
plane z = −1, where F • N̂ = −k • (−k) = 1; that
flux is

∫∫

P
dx dy = area of P = 4− 1

2
= 7

2
.

Thus the flux of F out of the remaining hexagonal face
H is

12− 3 ×
(

1

2
+ 7

2

)

= 0.

(This can also be seen directly, since F radiates from
the origin, so is everywhere tangent to the plane of the
hexagonal face, the plane x + y + z = 0.)

x

y

z

P

D

H

T (−1,0,1)
(−1,−1,1)

(0,−1,1)

Fig. 16.4.16

17. The part of the sphere S: x2 + y2 + (z − a)2 = 4a2

above z = 0 and the disk D: x2 + y2 = 3a2 in the xy-
plane form the boundary of a region R in 3-space. The
outward normal from R on D is −k. If

F = (x2 + y + 2+ z2)i + (ex2 + y2)j + (3 + x)k,

then divF = 2x + 2y. By the Divergence Theorem,

∫∫

S
F • N̂ dS +

∫∫

D
F • (−k) dx dy =

∫∫∫

R
div F dV = 0

because R is symmetric about x = 0 and y = 0. Thus
the flux of F outward across S is

∫∫

S
F • N̂ dS =

∫∫

D
(3 + x) dx dy = 3π(3a2) = 9πa2.

18. φ = x2 − y2 + z2, G = 1
3 (−y3i+ x3j+ z3k).

F = ∇φ + µcurl G.

Let R be the region of 3-space occupied by the sandpile.
Then R is bounded by the upper surface S of the sand-
pile and by the disk D: x2 + y2 ≤ 1 in the plane z = 0.
The outward (from R) normal on D is −k. The flux of
F out of R is given by

∫∫

S
F • N̂ dS +

∫∫

D
F • (−k) d A =

∫∫∫

R
div F dV .

Now div curl G = 0 by Theorem 3(g). Also
div∇φ = div (2x i−2yj+2zk) = 2−2+2 = 2. Therefore

∫∫∫

R
div F dV =

∫∫∫

R
(2+ µ× 0) dV = 2(5π) = 10π.

In addition,

curl G = 1

3

∣
∣
∣
∣
∣
∣
∣

i j k
∂

∂x

∂

∂y

∂

∂z
−y3 x3 z3

∣
∣
∣
∣
∣
∣
∣

= 3(x2 + y2)k,

and ∇φ • k = 2z = 0 on D, so

∫∫

D
F • k d A = 3µ

∫ 2π

0
dθ

∫ 1

0
r3 dr = 3πµ

2
.

The flux of F out of S is 10π + (3πµ)/2.

19.
∫

©
∫

S
curl F • N̂ dS =

∫∫∫

D
div curl F = 0, by Theorem

3(g).

20. If r = x i+ yj+ zk, then div r = 3 and

1

3

∫

©
∫

S
r • N̂ dS = 1

3

∫∫∫

D
3 dV = V .

21. We use Theorem 7(b), the proof of which is given in
Exercise 29. Taking φ(x, y, z) = x2 + y2 + z2, we have

1

2V

∫

©
∫

S
(x2 + y2 + z2)N̂ dS = 1

2V

∫

©
∫

S
φN̂ dS

= 1

2V

∫∫∫

D
gradφ dV

= 1

V

∫∫∫

(x i + yj+ zk) dV

= r̄,

since
∫∫

x dV = Mx=0 = V x̄ .
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22. Taking F = ∇φ in the first identity in Theorem 7(a), we
have

∫

©
∫

S
∇φ × N̂ dS = −

∫∫∫

D
curl∇φ dV = 0,

since ∇ × ∇φ = 0 by Theorem 3(h).

23. div (φF) = φdiv F+ ∇φ • F by Theorem 3(b). Thus

∫∫∫

D
φdiv F dV +

∫∫∫

D
∇φ • F dV =

∫∫∫

D
div (φF) dV

=
∫

©
∫

S
φF • N̂ dS

by the Divergence Theorem.

24. If F = ∇φ in the previous exercise, then div F = ∇2φ

and
∫∫∫

D
φ∇2φ dV +

∫∫∫

D
|∇φ|2 dV =

∫

©
∫

S
φ∇φ • N̂ dS.

If ∇2φ = 0 in D and φ = 0 on S, then

∫∫∫

D
|∇φ|2 dV = 0.

Since φ is assumed to be smooth, ∇φ = 0 throughout D,
and therefore φ is constant on each connected component
of D. Since φ = 0 on S, these constants must all be 0,
and φ = 0 on D.

25. If u and v are two solutions of the given Dirichlet prob-
lem, and φ = u − v, then

∇2φ = ∇2u − ∇2v = f − f = 0 on D

φ = u − v = g − g = 0 on S.

By the previous exercise, φ = 0 on D, so u = v on D.
That is, solutions of the Dirichlet problem are unique.

26. Re-examine the solution to Exercise 24 above. If
∇2φ = 0 in D and ∂φ/∂n = ∇φ • N̂ = 0 on S, then we
can again conclude that

∫∫∫

D
|∇φ| dV = 0

and ∇φ = 0 throughout D. Thus φ is constant on the
connected components of D. (We can’t conclude the con-
stant is 0 because we don’t know the value of φ on S.)
If u and v are solutions of the given Neumann problem,
then φ = u − v satisfies

∇2φ = ∇2u − ∇2v = f − f = 0 on D
∂φ

∂n
= ∂u

∂n
− ∂v
∂n
= g − g = 0 on S,

so φ is constant on any connected component of S, and u
and v can only differ by a constant on S.

27. Apply the Divergence Theorem to F = ∇φ:

∫∫∫

D
∇2φ dV =

∫∫∫

D
∇ • ∇φ dV

=
∫

©
∫

S
∇φ • N̂ dS =

∫

©
∫

S

∂φ

∂n
dS.

28. By Theorem 3(b),

div (φ∇ψ − ψ∇φ)
= ∇φ • ∇ψ + φ∇2ψ − ∇ψ • ∇φ − ψ∇2φ

= φ∇2ψ − ψ∇2φ.

Hence, by the Divergence Theorem,

∫∫∫

D
(φ∇2ψ − ψ∇2φ) dV =

∫∫∫

D
div (φ∇ψ − ψ∇φ) dV

=
∫

©
∫

S
(φ∇ψ − ψ∇φ) • N̂ dS

=
∫

©
∫

S

(

φ
∂ψ

∂n
− ψ ∂φ

∂n

)

dS.

29. If F = φc, where c is an arbitrary, constant vector, then
div F = ∇φ • c, and by the Divergence Theorem,

c •
∫∫∫

D
∇φ dV =

∫∫∫

D
div F dV

=
∫

©
∫

S
F • N̂ dS

=
∫

©
∫

S
φc • N̂ dS = c •

∫

©
∫

S
φN̂ dS.

Thus

c •
(∫∫∫

D
∇φ dV −

∫

©
∫

S
φN̂ dS

)

= 0.

Since c is arbitrary, the vector in the large parentheses
must be the zero vector. Hence

∫∫∫

D
∇φ dV =

∫

©
∫

S
φN̂ dS.
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30.
1

vol(Dε)

∫

©
∫

Sε
F • N̂ dS = 1

vol(Dε)

∫∫∫

Dε
div F dV

= 1

vol(Dε)

[∫∫∫

Dε
div F(P0) dV

+
∫∫∫

Dε

(

div F− div F(P0)
)

dV

]

= div F(P0)+ 1

vol(Dε)

∫∫∫

Dε

(

div F− div F(P0)
)

dV .

Thus

∣
∣
∣
∣

1

vol(Dε )

∫

©
∫

Sε
F • N̂ dS − div F(P0)

∣
∣
∣
∣

≤ 1

vol(Dε)

∫∫∫

Dε
|div F− div F(P0)| dV

≤ max
P in Dε

|div F− div F(P0)|
→ 0 as ε → 0+ assuming div F is continuous.

lim
ε→0+

1

vol(Dε)

∫

©
∫

Sε
F • N̂ dS = div F(P0).

Section 16.5 Stokes’s Theorem (page 878)

1. The triangle T lies in the plane x + y + z = 1. We use
the downward normal

N̂ = − i+ j+ k√
3

on T , because of the given orientation of its boundary.
If F = xyi+ yzj+ zxk, then

curl F =

∣
∣
∣
∣
∣
∣
∣

i j k
∂

∂x

∂

∂y

∂

∂z
xy yz zx

∣
∣
∣
∣
∣
∣
∣

= −yi− zj − xk.

Therefore

∮

C
xy dx + yz dz + zx dz =

∮

C
F • dr

=
∫∫

T
curl F • N̂ dS =

∫∫

T

y + z + x√
3

dS

= 1√
3

∫∫

T
dS = 1√

3
× (area of T )

= 1√
3
×

(

1

2
×√2×

√
3√
2

)

= 1

2
.

x

y

z

1

1

T

C

1

Fig. 16.5.1

2. Let S be the part of the surface z = y2 lying inside the
cylinder x2 + y2 = 4, and having upward normal N̂.
Then C is the oriented boundary of S. Let D be the disk
x2 + y2 ≤ 4, z = 0, that is, the projection of S onto the
xy-plane.

x

y

z

S

D

C N̂

Fig. 16.5.2

If F = yi− xj+ z2k, then

curl F =

∣
∣
∣
∣
∣
∣
∣

i j k
∂

∂x

∂

∂y

∂

∂z
y −x z2

∣
∣
∣
∣
∣
∣
∣

= −2k.

Since dS = dx dy

k • N̂
on S, we have

∮

C
y dx − x dy + z2 dz =

∮

C
F • dr =

∫∫

S
curl F • N̂ dS

=
∫∫

D
−2k • N̂

dx dy

k • N̂
= −8π.

3. Let C be the circle x2 + y2 = a2, z = 0, oriented
counterclockwise as seen from the positive z-axis. Let D
be the disk bounded by C, with normal k. We have

F = 3yi− 2xzj+ (x2 − y2)k

curl F =

∣
∣
∣
∣
∣
∣
∣

i j k
∂

∂x

∂

∂y

∂

∂z
3y −2xz x2 − y2

∣
∣
∣
∣
∣
∣
∣

= 2(x − y)i− 2xj− (2z + 3)k.
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Applying Stokes’s Theorem (twice) we calculate

∫∫

S
=

∮

C
F • dr =

∫∫

D
curl F • k d A

= −
∫∫

D
3 d A = −3πa2.

x

y

z

k

D

S

N̂

C

Fig. 16.5.3

4. The surface S with equation

x2 + y2 + 2(z − 1)2 = 6, z ≥ 0,

with outward normal N̂, is that part of an ellipsoid of
revolution about the z-axis, centred at (0, 0, 1), and lying
above the xy-plane. The boundary of S is the circle C:
x2 + y2 = 4, z = 0, oriented counterclockwise as seen
from the positive z-axis. C is also the oriented boundary
of the disk x2 + y2 ≤ 4, z = 0, with normal N̂ = k.
If F = (xz − y3 cos z)i + x3ezj + xyzex2+y2+z2

k, then, on
z = 0, we have

curl F • k =
(
∂

∂x
x3ez − ∂

∂y
(xz − y3 cos z)

)∣
∣
∣
∣
z=0

=
(

3x2ez + 3y2 cos z
)
∣
∣
∣
∣
z=0
= 3(x2 + y2).

Thus

∫∫

S
curl F • N̂ dS =

∮

C
F • dr =

∫∫

D
curl F • k d A

=
∫ 2π

0
dθ

∫ 2

0
3r2 r dr = 24π.

5. The circle C of intersection of x2 + y2 + z2 = a2 and
x + y + z = 0 is the boundary of a circular disk of radius
a in the plane x + y + z = 0.
If F = yi+ zj+ xk, then

curl F =

∣
∣
∣
∣
∣
∣
∣

i j k
∂

∂x

∂

∂y

∂

∂z
y z x

∣
∣
∣
∣
∣
∣
∣

= −(i+ j+ k).

If C is oriented so that D has normal

N̂ = − i+ j+ k√
3

,

then curl F • N̂ = √3 on D, so
∮

C
y dx + z dy + x dz =

∮

C
F • dr =

∫∫

D
curl F • N̂ dS

= √3
∫∫

D
dS = √3πa2,

since D has area πa2.

6. The curve C:

r = cos t i+ sin tj+ sin 2tk, 0 ≤ t ≤ 2π,

lies on the surface z = 2xy, since sin 2t = 2 cos t sin t . It
also lies on the cylinder x2+y2 = 1, so it is the boundary
of that part of z = 2xy lying inside that cylinder. Since
C is oriented counterclockwise as seen from high on the
z-axis, S should be oriented with upward normal,

N̂ = −2yi− 2xj+ k
√

1+ 4(x2 + y2)
,

and has area element

dS =
√

1+ 4(x2 + y2) dx dy.

If F = (ex − y3)i + (ey + x3)j + ezk, then

curl F =

∣
∣
∣
∣
∣
∣
∣

i j k
∂

∂x

∂

∂y

∂

∂z
ex − y3 ey + x3 ez

∣
∣
∣
∣
∣
∣
∣

= 3(x2 + y2)k.

If D is the disk x2 + y2 ≤ 1 in the xy-plane, then
∮

C
F • dr =

∫∫

S
curl F • N̂ dS =

∫∫

D
3(x2 + y2) dx dy

= 3
∫ 2π

0
dθ

∫ 1

0
r2 r dr = 3π

2
.

7. The part of the paraboloid z = 9 − x2 − y2 lying above
the xy-plane having upward normal N̂ has boundary the
circle C: x2 + y2 = 9, oriented counterclockwise as seen
from above. C is also the oriented boundary of the plane
disk x2 + y2 ≤ 9, z = 0, oriented with normal field
N̂ = k.

If F = −yi+ x2j + zk, then

curl F =

∣
∣
∣
∣
∣
∣
∣

i j k
∂

∂x

∂

∂y

∂

∂z
−y x2 z

∣
∣
∣
∣
∣
∣
∣

= (2x + 1)k.
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By Stokes’s Theorem, the circulation of F around C is

∮

C
F • dr =

∫∫

D
(curl F • k) d A

=
∫∫

D
(2x + 1) d A = 0+ π(32) = 9π.

8. The closed curve

r = (1 + cos t)i + (1 + sin t)j + (1 − cos t − sin t)k,

(0 ≤ t ≤ 2π), lies in the plane x + y + z = 3 and is
oriented counterclockwise as seen from above. Therefore
it is the boundary of a region S in that plane with normal
field N̂ = (i + j + k)/

√
3. The projection of S onto the

xy-plane is the circular disk D of radius 1 with centre at
(1, 1).

If F = yex i+ (x2 + ex)j + z2ezk, then

curl F =

∣
∣
∣
∣
∣
∣
∣

i j k
∂

∂x

∂

∂y

∂

∂z
yex x2 + ex z2 + ez

∣
∣
∣
∣
∣
∣
∣

= 2xk.

By Stokes’s Theorem,

∮

C
F • dr =

∫∫

S
curl F • N̂ dS

=
∫∫

S

2x√
3

dS =
∫∫

D

2x√
3
(
√

3) dx dy

= 2x̄ A = 2π,

where x̄ = 1 is the x-coordinate of the centre of D, and
A = π12 = π is the area of D.

9. If S1 and S2 are two surfaces joining C1 to C2, each hav-
ing upward normal, then the closed surface S3 consisting
of S1 and −S2 (that is, S2 with downward normal) bound
a region R in 3-space. Then

∫∫

S1

F • N̂ dS −
∫∫

S2

F • N̂ dS

=
∫∫

S1

F • N̂ dS +
∫∫

−S2

F • N̂ dS

=
∫

©
∫

S3

F • N̂ dS = ±
∫∫∫

R
div F dV = 0,

provided that div F = 0 identically. Since

F = (αx2 − z)i+ (xy + y3 + z)j+ βy2(z + 1)k,

we have div F = 2αx + x + 3y2 + βy2 = 0 if α = −1/2
and β = −3. In this case we can evaluate

∫∫

S F•N̂ dS for
any such surface S by evaluating the special case where
S is the half-disk H : x2 + y2 ≤ 1, z = 0, y ≥ 0, with
upward normal N̂ = k. We have

∫∫

S
F • N̂ dS = −3

∫∫

H
y2 dx dy

= −3
∫ π

0
sin2 θ dθ

∫ 1

0
r3 dr = −3π

8
.

10. The curve C: (x − 1)2 + 4y2 = 16, 2x + y + z = 3,
oriented counterclockwise as seen from above, bounds an
elliptic disk S on the plane 2x + y + z = 3. S has normal
N̂ = (2i + j + k)/

√
6. Since its projection onto the xy-

plane is an elliptic disk with centre at (1, 0, 0) and area
π(4)(2) = 8π , therefore S has area 8

√
6π and centroid

(1, 0, 1). If

F = (z2 + y2 + sin x2)i + (2xy + z)j + (xz + 2yz)k,
then

curl F =

∣
∣
∣
∣
∣
∣
∣

i j k
∂

∂x

∂

∂y

∂

∂z
z2 + y2 + sin x2 2xy + z xz + 2yz

∣
∣
∣
∣
∣
∣
∣

= (2z − 1)i + zj.

By Stokes’s Theorem,

∮

C
F • dr =

∫∫

S
curl F • N̂ dS

= 1√
6

∫∫

S
(2(2z − 1)+ z) dS

= 5z̄ − 2√
6
(8
√

6π) = 24π.

11. As was shown in Exercise 13 of Section 7.2,

∇ × (φ∇ψ) = −∇ × (ψ × φ) = ∇φ × ∇ψ.

Thus, by Stokes’s Theorem,

∮

C
φ∇ψ =

∫∫

S
∇ × (φ∇ψ) • N̂ dS

=
∫∫

S
(∇φ × ∇ψ) • N̂ dS

−
∮

C
ψ∇φ =

∫∫

S
−∇ × (ψ∇φ) • N̂ dS

=
∫∫

S
(∇φ × ∇ψ) • N̂ dS.

∇φ × ∇ψ is solenoidal, with potential φ∇ψ , or −ψ∇φ.
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12. We are given that C bounds a region R in a plane P
with unit normal N̂ = ai + bj + ck. Therefore,
a2 + b2 + c2 = 1.
If F = (bz − cy)i+ (cx − az)j + (ay − bx)k, then

curl F =

∣
∣
∣
∣
∣
∣
∣

i j k
∂

∂x

∂

∂y

∂

∂z
bz − cy cx − az ay − bx

∣
∣
∣
∣
∣
∣
∣

= 2ai + 2bj+ 2ck.

Hence curl F • N̂ = 2(a2 + b2 + c2) = 2. We have

1

2

∮

C
(bz − cy) dx + (cx − az) dy + (ay − bx) dz

= 1

2

∮

C
F • dr = 1

2

∫∫

R
curl F • N̂ dS

= 1

2

∫∫

R
2 dS = area of R.

13. The circle Cε of radius ε centred at P is the oriented
boundary of the disk Sε of area πε2 having constant nor-
mal field N̂. By Stokes’s Theorem,

∮

Cε

F • dr =
∫∫

Sε
curl F • N̂ dS

=
∫∫

Sε
curl F(P) • N̂ dS

+
∫∫

Sε

(

curl F− curl F(P)
)

• N̂ dS

= πε2curl F(P) • N̂

+
∫∫

Sε

(

curl F− curl F(P)
)

• N̂ dS.

Since F is assumed smooth, its curl is continuous at P.
Therefore

∣
∣
∣
∣

1

πε2

∮

Cε

F • dr− curl F(P) • N̂

∣
∣
∣
∣

≤ 1

πε2

∫∫

Sε

∣
∣
∣

(

curl F− curl F(P)
)

• N̂
∣
∣
∣ dS

≤ max
Q on Sε

|curl F(Q)− curl F(P)|
→ 0 as ε → 0+.

Thus lim
ε→0+

∮

Cε

F • dr = curl F(P) • N̂.

Section 16.6 Some Physical Applications of
Vector Calculus (page 885)

1. a) If we measure depth in the liquid by −z, so that the z-
axis is vertical and z = 0 at the surface, then the pressure
at depth −z is p = −δgz, where δ is the density of the
liquid. Thus

∇ p = −δgk = δg,
where g = −gk is the constant downward vector acceler-
ation of gravity.
The force of the liquid on surface element dS of the
solid with outward (from the solid) normal N̂ is

dB = −pN̂ dS = −(−δgz)N̂ dS = δgzN̂ dS.

Thus, the total force of the liquid on the solid (the buoy-
ant force) is

B =
∫

©
∫

S
δgzN̂ dS

=
∫∫∫

R
∇(δgz) dV (see Theorem 7)

= −
∫∫∫

R
δg dV = −Mg,

where M =
∫∫∫

R
δ dV is the mass of the liquid

which would occupy the same space as the solid. Thus
B = −F, where F = Mg is the weight of the liquid
displaced by the solid.

x

y
z

N̂

S
R

z

dS

Fig. 16.6.1

b) The above argument extends to the case where the
solid is only partly submerged. Let R∗ be the part
of the region occupied by the solid that is below
the surface of the liquid. Let S∗ = S1 ∪ S2 be the
boundary of R∗, with S1 ⊂ S and S2 in the plane of
the surface of the liquid. Since p = −δgz = 0 on
S2, we have ∫∫

S2

δgzN̂ dS = 0.
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Therefore the buoyant force on the solid is

B =
∫∫

S1

δgzN̂ dS

=
∫∫

S1

δgzN̂ dS +
∫∫

S2

δgzN̂ dS

=
∫

©
∫

S∗
δgzN̂ dS

= −
∫∫∫

R∗
δg dV = −M∗g,

where M∗ =
∫∫∫

R∗
δ dV is the mass of the liquid

which would occupy R∗. Again we conclude that
the buoyant force is the negative of the weight of the
liquid displaced.

S2

S1
R∗

Fig. 16.6.1

2. The first component of F(G • N̂) is (F1G) • N̂. Applying
the Divergence Theorem and Theorem 3(b), we obtain

∫

©
∫

S
(F1G) • N̂ dS =

∫∫∫

D
div (F1G) dV

=
∫∫∫

D

(

∇F1 •G+ F1∇ •G
)

dS.

But ∇F1 • G is the first component of (G • ∇)F, and
F1∇ •G is the first component of Fdiv G. Similar results
obtain for the other components, so

∫

©
∫

S
F(G • N̂) dS =

∫∫∫

D

(

Fdiv G+ (G • ∇)F
)

dV .

3. Suppose the closed surface S bounds a region R in which
charge is distributed with density ρ. Since the electric
field E due to the charge satisfies div E = kρ, the to-
tal flux of E out of R through S is, by the Divergence
Theorem,

∫

©
∫

S
E • N̂ dS =

∫∫∫

R
div E dV = k

∫∫∫

R
ρ dV = kQ,

where Q = ∫∫∫

R ρ dV is the total charge in R.

4. If f is continuous and vanishes outside a bounded
region (say the ball of radius R centred at r), then
| f (ξ, η, ζ )| ≤ K , and, if (ρ, φ, θ) denote spherical co-
ordinates centred at r, then

∫∫∫

�
3

| f (s)|
|r− s| dVs ≤ K

∫ 2π

0
dθ

∫ π

0
sinφ dφ

∫ R

0

ρ2

ρ
dρ

= 2πK R2 a constant.

5. This derivation is similar to that of the continuity equa-
tion for fluid motion given in the text. If S is an (imag-
inary) surface bounding an arbitrary region D, then the
rate of change of total charge in D is

∂

∂t

∫∫∫

D
ρ dV =

∫∫∫

D

∂ρ

∂t
dV ,

where ρ is the charge density. By conservation of charge,
this rate must be equal to the rate at which charge is
crossing S into D, that is, to

∮

S
(−J) • N̂ dS = −

∫∫∫

D
div J dV .

(The negative sign occurs because N̂ is the outward (from
D) normal on S.) Thus we have

∫∫∫

D

(
∂ρ

∂t
+ div J

)

dV = 0.

Since D is arbitrary and we are assuming the integrand is
continuous, it must be 0 at every point:

∂ρ

∂t
+ div J = 0.

6. Since r = x i+ yj+ zk and b = b1i+ b2j + b3k, we have

|r− b|2 = (x − b1)
2 + (y − b2)

2 + (z − b3)
2

2|r− b| ∂
∂x
|r− b| = 2(x − b1)

∂

∂x
|r− b| = x − b1

|r− b| .

Similar formulas hold for the other first partials of |r−b|,
so

∇
(

1

|r− b|
)

= −1

|r− b|2
(
∂

∂x
|r− b|i+ · · · + ∂

∂z
|r− b|k

)

= −1

|r− b|2
(x − b1)i + (y − b2)j + (z − b3)k

|r− b|
= − r− b
|r− b|3 .
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7. Using the result of Exercise 4 and Theorem 3(d) and (h),
we calculate, for constant a,

div
(

a× r− b
|r− b|3

)

= −div
(

a× ∇ 1

|r− b|
)

= −(∇ × a) • ∇ 1

|r− b| + a • ∇ × ∇ 1

|r− b| = 0+ 0 = 0.

8. For any element ds on the filament F, we have

div
(

ds× r− s
|r− s|3

)

= 0

by Exercise 5, since the divergence is taken with respect
to r, and so s and ds can be regarded as constant. Hence

div
∮

F

ds× (r − s)
|r− s|3 =

∮

F
div

(

ds× r− s
|r− s|3

)

= 0.

9. By the result of Exercise 4 and Theorem 3(e), we calcu-
late

curl
(

a× r− b
|r− b|3

)

= −curl
(

a× ∇ 1

|r− b|
)

= −
(

∇ • ∇ 1

|r− b|
)

a−
(

∇ 1

|r− b| • ∇
)

a

+ (∇ • a)∇ 1

|r− b| + (a • ∇)∇
1

|r− b| .

Observe that ∇ • ∇ 1

|r− b| = 0 for r �= b, either by direct

calculation or by noting that ∇ 1

|r− b| is the field of a

point source at r = b and applying the result of Example
3 of Section 7.1.

Also −
(

∇ 1

|r− b| • ∇
)

a = 0 and ∇ • a = 0, since a is

constant. Therefore we have

curl
(

a× r− b
|r− b|3

)

= (a • ∇)∇ 1

|r− b|
= −(a • ∇) r− b

|r− b|3 .

10. The first component of (ds •∇)F(s) is ∇F1(s) • ds. Since
F is closed and ∇F1 is conservative,

i •
∮

F
(ds • ∇)F(s) =

∮

F
∇F1(s) • ds = 0.

Similarly, the other components have zero line integrals,
so ∮

F
(ds • ∇)F(s) = 0.

11. Using the results of Exercises 7 and 8, we have

curl
∮

F

ds× (r− s)
|r− s|3 =

∮

F
curl

(

ds× r− s
|r− s|3

)

= 0

for r not on F. (Again, this is because the curl is taken
with respect to r, so s and ds can be regarded as constant
for the calculation of the curl.)

12. By analogy with the filament case, the current in volume
element dV at position s is J(s) dV , which gives rise at
position r to a magnetic field

dH(r) = 1

4π

J(s)× (r− s)
|r− s|3 dV .

If R is a region of 3-space outside which J is identically
zero, then at any point r in 3-space, the total magnetic
field is

H(r) = 1

4π

∫∫∫

R

J(s)× (r − s)
|r− s|3 dV .

Now A(r) was defined to be

A(r) = 1

4π

∫∫∫

R

J(s)
|r− s| dV .

We have

curl A(r) = 1

4π

∫∫∫

R
∇r ×

(
1

|r− s|J(s)
)

dV

= 1

4π

∫∫∫

R
∇r

1

|r− s| × J(s) dV

(by Theorem 3(c))

= − 1

4π

∫∫∫

R

(r − s)× J(s)
|r− s|3 dV

(by Exercise 4)

= H(r).

13. A(r) = I

4π

∮

F

ds
|r− s|

div A(r) = I

4π

∮

F
div r

(
1

|r− s| ds
)

= I

4π

∮

F
∇

(
1

|r− s|
)

• ds

(by Theorem 3(b))

= 0 for r not on F,
since ∇(1/|r− s|) is conservative.
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14. A(r) = 1

4π

∫∫∫

R

J(s) dV

|r− s| , where R is a region of 3-

space such that J(s) = 0 outside R. We assume that J(s)
is continuous, so J(s) = 0 on the surface S of R.
In the following calculations we use subscripts s and r to
denote the variables with respect to which derivatives are
taken. By Theorem 3(b),

div s
J(s)
|r− s| =

(

∇s
1

|r− s|
)

• J(s)+ 1

|r− s|∇s • J(s)

= −∇r

(
1

|r− s|
)

• J(s)+ 0

because ∇r|r− s| = −∇s|r− s|, and because
∇ • J = ∇ • (∇ ×H) = 0 by Theorem 3(g). Hence

div A(r) = 1

4π

∫∫∫

R

(

∇r
1

|r− s|
)

• J(s) dV

= − 1

4π

∫∫∫

R
∇s • J(s)
|r− s| dV

= − 1

4π

∫

©
∫

S

J(s)
|r− s| • N̂ dS = 0

since J(s) = 0 on S.

By Theorem 3(i),

J = ∇ ×H = ∇ × (∇ ×A) = ∇(∇ • A)−∇2A = −∇2A.

15. By Maxwell’s equations, since ρ = 0 and J = 0,

div E = 0

curl E = −µ0
∂H
∂t

div H = 0

curl H = ε0 ∂E
∂t

Therefore,

curl curl E = grad div E−∇2E = −∇2E

∇2E = −curl curl E = µ0
∂

∂t
curl H = µ0ε0

∂2E
∂t2 .

Similarly,

∇2H = µ0ε0
∂2H
∂t2 .

Thus U = E and U = H both satisfy the wave equation

∂2U
∂t2 = c2∇2U, where c2 = 1

µ0ε0
.

16. The heat content of an arbitrary region R (with surface
S) at time t is

H(t) = δc
∫∫∫

R
T (x, y, z, t) dV .

This heat content increases at (time) rate

d H

dt
= δc

∫∫∫

R

∂T

∂t
dV .

If heat is not “created” or “destroyed” (by chemical or
other means) within R, then the increase in heat content
must be due to heat flowing into R across S.
The rate of flow of heat into R across surface element
dS with outward normal N̂ is

−k∇T • N̂ dS.

Therefore, the rate at which heat enters R through S is

k
∫

©
∫

S
∇T • N̂ dS.

By conservation of energy and the Divergence Theorem
we have

δc
∫∫∫

R

∂T

∂t
dV = k

∫

©
∫

S
∇T • N̂ dS

= k
∫∫∫

R
∇ • ∇T dV

= k
∫∫∫

R
∇2T dV .

Thus,
∫∫∫

R

(
∂T

∂t
− k

δc
∇2T

)

dV = 0.

Since R is arbitrary, and the temperature T is as-
sumed to be smooth, the integrand must vanish every-
where. Thus

∂T

∂t
= k

δc
∇2T = k

δc

[
∂2T

∂x2 +
∂2T

∂y2 +
∂2T

∂z2

]

.

Section 16.7 Orthogonal Curvilinear
Coordinates (page 896)

1. f (r, θ, z) = rθ z (cylindrical coordinates). By Example
9,

∇ f = ∂ f

∂r
r̂+ 1

r

∂ f

∂θ
θ̂+ ∂ f

∂z
k

= θ z r̂+ z θ̂+ rθ k.

2. f (ρ, φ, θ) = ρφθ (spherical coordinates). By Example
10,

∇ f = ∂ f

∂ρ
ρ̂+ 1

ρ

∂ f

∂φ
φ̂+ 1

ρ sinφ

∂ f

∂θ
θ̂

= φθ ρ̂+ θ φ̂+ φ

sinφ
θ̂.

619



SECTION 16.7 (PAGE 896) R. A. ADAMS: CALCULUS

3. F(r, θ, z) = r r̂

div F = 1

r

[
∂

∂r
(r2)

]

= 2

curl F = 1

r

∣
∣
∣
∣
∣
∣
∣

r̂ r θ̂ k
∂

∂r

∂

∂θ

∂

∂z
r 0 0

∣
∣
∣
∣
∣
∣
∣

= 0.

4. F(r, θ, z) = r θ̂

div F = 1

r

[
∂

∂θ
(r)

]

= 0

curl F = 1

r

∣
∣
∣
∣
∣
∣
∣
∣

r̂ r θ̂ k
∂

∂r

∂

∂θ

∂

∂z

0 r2 0

∣
∣
∣
∣
∣
∣
∣
∣

= 2k.

5. F(ρ, φ, θ) = sinφ ρ̂

div F = 1

ρ2 sinφ

[
∂

∂ρ

(

ρ2 sin2 φ
)]

= 2 sinφ

ρ

curl F = 1

ρ2 sinφ

∣
∣
∣
∣
∣
∣
∣
∣

ρ̂ ρ φ̂ ρ sinφ θ̂

∂

∂ρ

∂

∂φ

∂

∂θ

sinφ 0 0

∣
∣
∣
∣
∣
∣
∣
∣

= − cosφ

ρ
θ̂.

6. F(ρ, φ, θ) = ρ φ̂

div F = 1

ρ2 sinφ

[
∂

∂φ

(

ρ2 sinφ
)]

= cotφ

curl F = 1

ρ2 sinφ

∣
∣
∣
∣
∣
∣
∣
∣

ρ̂ ρ φ̂ ρ sinφ θ̂

∂

∂ρ

∂

∂φ

∂

∂θ

0 ρ2 0

∣
∣
∣
∣
∣
∣
∣
∣

= 2 θ̂.

7. F(ρ, φ, θ) = ρ θ̂

div F = 1

ρ2 sinφ

[
∂

∂θ

(

ρ2
)]

= 0

curl F = 1

ρ2 sinφ

∣
∣
∣
∣
∣
∣
∣
∣

ρ̂ ρ φ̂ ρ sinφ θ̂

∂

∂ρ

∂

∂φ

∂

∂θ

0 0 ρ2 sinφ

∣
∣
∣
∣
∣
∣
∣
∣

= cotφ ρ̂− 2 φ̂.

8. F(ρ, φ, θ) = ρ2 ρ̂

div F = 1

ρ2 sinφ

[
∂

∂ρ

(

ρ4 sinφ
)]

= 4ρ

curl F = 1

ρ2 sinφ

∣
∣
∣
∣
∣
∣
∣
∣

ρ̂ ρ φ̂ ρ sinφ θ̂

∂

∂ρ

∂

∂φ

∂

∂θ

ρ2 0 0

∣
∣
∣
∣
∣
∣
∣
∣

= 0.

9. Let r = x(u, v) i + y(u, v) j. The scale factors are

hu =
∣
∣
∣
∣

∂r
∂u

∣
∣
∣
∣

and hv =
∣
∣
∣
∣

∂r
∂v

∣
∣
∣
∣
.

The local basis consists of the vectors

û = 1

hu

∂r
∂u

and v̂ = 1

hv

∂r
∂v
.

The area element is d A = huhv du dv.

10. Since (u, v, z) constitute orthogonal curvilinear coordi-
nates in �3, with scale factors hu , hv and hz = 1, we
have, for a function f (u, v) independent of z,

∇ f (u, v) = 1

hu

∂ f

∂u
û + 1

hv

∂ f

∂v
v̂+ 1

1

∂ f

∂z
k

= 1

hu

∂ f

∂u
û + 1

hv

∂ f

∂v
v̂.

For F(u, v) = Fu(u, v) û + Fv(u, v) v̂ (independent of z
and having no k component), we have

div F(u, v) = 1

huhv

[
∂

∂u
(hu Fu)+ ∂

∂v
(hvFv)

]

curl F(u, v) = 1

huhv

∣
∣
∣
∣
∣
∣
∣
∣

hu û hv v̂ k
∂

∂u

∂

∂v

∂

∂z
hu Fu hvFv 0

∣
∣
∣
∣
∣
∣
∣
∣

= 1

huhv

[
∂

∂u
(hvFv)− ∂

∂v
(hu Fu)

]

k.

11. We can use the expressions calculated in the text for
cylindrical coordinates, applied to functions independent
of z and having no k components:

∇ f (r, θ) = ∂ f

∂r
r̂+ 1

r

∂ f

∂θ
θ̂

div F(r, θ) = ∂Fr

∂r
+ Fr

r
+ 1

r

∂Fθ
∂θ

curl F(r, θ) =
[
∂Fθ
∂r
+ Fθ

r
− 1

r

∂Fr

∂θ

]

k.

12. x = a cosh u cos v, y = a sinh u sin v.

a) u-curves: If A = a cosh u and B = a sinh u, then

x2

A2 +
y2

B2 = cos2 v + sin2 v = 1.

Since A2 − B2 = a2(cosh2 u − sinh2 u) = a2, the
u-curves are ellipses with foci at (±a, 0).

b) v-curves: If A = a cos v and B = a sin v, then

x2

A2 −
y2

B2 = cosh2 u − sinh2 u = 1.

Since A2 + B2 = a2(cos2 v + sin2 v) = a2, the
v-curves are hyperbolas with foci at (±a, 0).
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c) The u-curve u = u0 has parametric equations

x = a cosh u0 cos v, y = a sinh u0 sin v,

and therefore has slope at (u0, v0) given by

mu = dy

dx
= dy

dv

/
dx

dv

∣
∣
∣
∣
(u0,v0)

= a sinh u0 cos v0

−a cosh u0 sin v0
.

The v-curve v = v0 has parametric equations

x = a cosh u cos v0, y = a sinh u sin v0,

and therefore has slope at (u0, v0) given by

mv = dy

dx
= dy

du

/
dx

du

∣
∣
∣
∣
(u0,v0)

= a cosh u0 sin v0

a sinh u0 cos v0
.

Since the product of these slopes is mumv = −1, the
curves u = u0 and v = v0 intersect at right angles.

d) r = a cosh u cos v i + a sinh u sin v j
∂r
∂u
= a sinh u cos v i+ a cosh u sin v j

∂r
∂v
= −a cosh u sin v i + a sinh u cos v j.

The scale factors are

hu =
∣
∣
∣
∣

∂r
∂u

∣
∣
∣
∣
= a

√

sinh2 u cos2 v + cosh2 u sin2 v

hv =
∣
∣
∣
∣

∂r
∂v

∣
∣
∣
∣
= a

√

sinh2 u cos2 v + cosh2 u sin2 v = hu .

The area element is

d A = huhv du dv

= a2
(

sinh2 u cos2 v + cosh2 u sin2 v
)

du dv.

13. x = a cosh u cos v

y = a sinh u sin v

z = z.
Using the result of Exercise 12, we see that the coordi-
nate surfaces are
u = u0: vertical elliptic cylinders with focal axes
x = ±a, y = 0.
v = v0: vertical hyperbolic cylinders with focal axes
x = ±a, y = 0.
z = z0: horizontal planes.

The coordinate curves are
u-curves: the horizontal hyperbolas in which the v = v0
cylinders intersect the z = z0 planes.
v-curves: the horizontal ellipses in which the u = u0
cylinders intersect the z = z0 planes.
z-curves: sets of four vertical straight lines where the
elliptic cylinders u = u0 and hyperbolic cylinders v = v0
intersect.

14. ∇ f (r, θ, z) = ∂ f

∂r
r̂+ 1

r

∂ f

∂θ
θ̂+ ∂ f

∂z
k

∇ 2 f (r, θ, z) = div
(

∇ f (r, θ, z)
)

= 1

r

[
∂

∂r

(

r
∂ f

∂r

)

+ ∂

∂θ

(
1

r

∂ f

∂θ

)

+ ∂

∂z

(

r
∂ f

∂z

)]

= ∂2 f

∂r2
+ 1

r

∂ f

∂r
+ 1

r2

∂2 f

∂θ2
+ ∂

2 f

∂z2
.

15. ∇ f (ρ, φ, θ) = ∂ f

∂ρ
ρ̂+ 1

ρ

∂ f

∂φ
φ̂+ 1

ρ sinφ

∂ f

∂θ
θ̂

∇ 2 f (ρ, φ, θ) = div
(

f (ρ, φ, θ)
)

= 1

ρ2 sinφ

[
∂

∂ρ

(

ρ2 sinφ
∂ f

∂ρ

)

+ ∂

∂φ

(

ρ sinφ
1

ρ

∂ f

∂φ

)

+ ∂

∂θ

(
ρ

ρ sinφ

∂ f

∂θ

)]

= ∂2 f

∂ρ2 +
2

ρ

∂ f

∂ρ
+ 1

ρ2

∂2 f

∂φ2

+ cotφ

ρ2

∂ f

∂φ
+ 1

ρ2 sin2 φ

∂2 f

∂θ2 .

16. ∇ f (u, v, w) = 1

hu

∂ f

∂u
û+ 1

hv

∂ f

∂v
v̂+ 1

hw

∂ f

∂w
ŵ

∇ 2 f (u, v, w) = div
(

∇ f (u, v, w)
)

= 1

huhvhw

[
∂

∂u

(
hvhw

hu

∂ f

∂u

)

+ ∂

∂v

(
huhw

hv

∂ f

∂v

)

+ ∂

∂w

(
huhv
hw

∂ f

∂w

)]

= 1

h2
u

[
∂2 f

∂u2
+

(
1

hv

∂hv
∂u
+ 1

hw

∂hw
∂u
− 1

hu

∂hu

∂u

)
∂ f

∂u

]

+ 1

h2
v

[
∂2 f

∂v2 +
(

1

hu

∂hu

∂v
+ 1

hw

∂hw
∂v
− 1

hv

∂hv
∂v

)
∂ f

∂v

]

+ 1

h2
w

[
∂2 f

∂w2 +
(

1

hu

∂hu

∂w
+ 1

hv

∂hv
∂w
− 1

hw

∂hw
∂w

)
∂ f

∂w

]

.

Review Exercises 16 (page 896)

1. The semi-ellipsoid S with upward normal N̂ specified in
the problem and the disk D given by x2+y2 ≤ 16, z = 0,
with downward normal −k together bound the solid re-
gion R: 0 ≤ z ≤ 1

2

√

16 − x2 − y2. By the Divergence
Theorem:

∫∫

S
F • N̂ dS +

∫∫

D
F • (−k) d A =

∫∫∫

R
div F dV .
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For F = x2zi+ (y2z + 3y)j+ x2k we have
∫∫∫

R
div F dV =

∫∫∫

R
(2xz + 2yz + 3) dV

= 0+ 0+ 3
∫∫∫

R
dV = 3× (volume of R)

= 3

2

4

3
π422 = 64π.

The flux of F across S is
∫∫

S
F • N̂ dS = 64π +

∫∫

D
F • k d A

= 64π +
∫∫

D
x2 d A

= 64π +
∫ 2π

0
cos2 θ dθ

∫ 4

0
r3 dr = 128π.

2. Let R be the region inside the cylinder S and between
the planes z = 0 and z = b. The oriented boundary of R
consists of S and the disks D1 with normal N̂1 = k and
D2 with normal N̂2 = −k as shown in the figure. For
F = x i+ cos(z2)j + ezk we have div F = 1 + ez and

∫∫∫

R
div F dV =

∫∫

D2

dx dy
∫ b

0
(1 + ez) dz

=
∫∫

D2

[b + (eb − 1)] dx dy

= πa2b + πa2(eb − 1).

Also
∫∫

D2

F • (−k) d A = −
∫∫

D2

e0 d A = −πa2

∫∫

D1

F • k d A =
∫∫

D1

eb d A = πa2eb.

By the Divergence Theorem
∫∫

S
F • N̂ dS +

∫∫

D1

F • k d A+
∫∫

D2

F • (−k) d A

=
∫∫∫

R
div F dV = πa2b + πa2(eb − 1).

Therefore,
∫∫

S
F • N̂ dS = πa2b.

x y

z

S

N̂1 = k

D1

R

b

D2

N̂2 = −k

N̂

2a

Fig. R-16.2

3.
∮

C
(3y2 + 2xey2

) dx + (2x2yey2
) dy

=
∫∫

P
[4xyey2 − (6y + 4xyey2

)] d A

= −6
∫∫

P
y d A = −6ȳ A = −6,

since P has area A = 2 and its centroid has y-coordinate
ȳ = 1/2.

y

x

(1, 1) (3, 1)

C
P

(2, 0)

Fig. R-16.3

4. If F = −zi+ xj+ yk, then

curl F =

∣
∣
∣
∣
∣
∣
∣

i j k
∂

∂x

∂

∂y

∂

∂z−z x y

∣
∣
∣
∣
∣
∣
∣

= i− j+ k.

The unit normal N̂ to a region in the plane
2x + y + 2z = 7 is

N̂ = ± 2i + j + 2k
3

.

If C is the boundary of a disk D of radius a in that
plane, then

∮

C
F • dr =

∫∫

D
curl F • N̂ dS

= ±
∫∫

D

2− 1+ 2

3
dS = ±πa2.

5. If Sa is the sphere of radius a centred at the origin, then

div F(0, 0, 0) = lim
a→0+

1
4
3πa3

∫

©
∫

Sa

F • N̂ dS

= lim
a→0+

3

4πa3 (πa3 + 2a4) = 3

4
.

6. If S is any surface with upward normal N̂ and boundary
the curve C: x2+ y2 = 1, z = 2, then C is oriented coun-
terclockwise as seen from above, and it has parametriza-
tion

r = cos t i+ sin tj+ 2k (0 ≤ 2 ≤ 2π).
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Thus dr = (− sin t i+ cos tj) dt , and if
F = −yi + x cos(1 − x2 − y2)j + yzk, then the flux of
curl F upward through S is

∫∫

S
curl F • N̂ dS =

∮

C
F • dr

=
∫ 2π

0
(sin2 t + cos2 t + 0) dt = 2π.

7. F(r) = rλr where r = x i + yj + zk and r = |r|. Since
r2 = x2 + y2 + z2, therefore ∂r/∂x = x/r and

∂

∂x
(rλx) = λrλ−1 x2

r
+ rλ = rλ−2(λx2 + r2).

Similar expressions hold for (∂/∂y)(rλy) and
(∂/∂z)(rλz), so

div F(r) = rλ−2(λr2 + 3r2) = (λ + 3)rλ.

F is solenoidal on any set in �3 that excludes the origin
if an only if λ = −3. In this case F is not defined at
r = 0. There is no value of λ for which F is solenoidal
on all of �3.

8. If curl F = µF on �3, where µ �= 0 is a constant, then

div F = 1

µ
div curl F = 0

by Theorem 3(g) of Section 7.2. By part (i) of the same
theorem,

∇2F = ∇(div F)− curl curl F

= 0− µcurl F = −µ2F.

Thus ∇2F+ µ2F = 0.

9. Apply the variant of the Divergence Theorem given in
Theorem 7(b) of Section 7.3, namely

∫∫∫

P
gradφ dV =

∫

©
∫

S
φN̂ dS,

to the scalar field φ = 1 over the polyhedron P. Here

S =
n

⋃

i=1

Fi is the surface of P, oriented with outward

normal field N̂i on the face Fi . If Ni = Ai N̂i , where Ai

is the area of Fi , then, since gradφ = 0, we have

0 =
∫

©
∫

S
N̂ dS =

n
∑

i=1

∫∫

Fi

Ni

Ai
dS =

n
∑

i=1

Ni

Ai
Ai =

n
∑

i=1

Ni .

10. Let C be a simple, closed curve in the xy-plane bounding
a region R. If

F = (2y3 − 3y + xy2)i + (x − x3 + x2y)j,

then by Green’s Theorem, the circulation of F around C
is

∮

C
F • dr

=
∫∫

R

[
∂

∂x
(x − x3 + x2y)− ∂

∂y
(2y3 − 3y + xy2)

]

d A

=
∫∫

R
(1− 3x2 + 2xy − 6y2 + 3 − 2xy) d A

=
∫∫

R
(4− 3x2 − 6y2) dx dy.

The last integral has a maximum value when the region
R is bounded by the ellipse 3x2 + 6y2 = 4, oriented
counterclockwise; this is the largest region in the xy-
plane where the integrand is nonnegative.

11. Let S be a closed, oriented surface in �3 bounding a
region R, and having outward normal field N̂. If

F = (4x + 2x3z)i− y(x2 + z2)j − (3x2z2 + 4y2z)k,

then by the Divergence Theorem, the flux of F through S
is

∫

©
∫

S
F•N̂ dS =

∫∫∫

R
div F dV =

∫∫∫

R
(4−x2−4y2−z2) dV .

The last integral has a maximum value when the region
R is bounded by the ellipsoid x2 + 4y2 + z2 = 4 with
outward normal; this is the largest region in �3 where the
integrand is nonnegative.

12. Let C be a simple, closed curve on the plane
x + y + z = 1, oriented counterclockwise as seen from
above, and bounding a plane region S on x + y + z = 1.
Then S has normal N̂ = (i+ j+ k)/

√
3. If

F = xy2i+ (3z − xy2)j + (4y − x2y)k, then

curl F =

∣
∣
∣
∣
∣
∣
∣

i j k
∂

∂x

∂

∂y

∂

∂z
xy2 3z − xy2 4y − x2y

∣
∣
∣
∣
∣
∣
∣

= (1− x2)i + 2xyj− (y2 + 2xy)k.

By Stokes’s Theorem we have

∮

C
F • dr =

∫∫

S
curl F • N̂ dS =

∫∫

S

1− x2 − y2

√
3

dS.
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The last integral will be maximum if the projection of S
onto the xy-plane is the disk x2+ y2 ≤ 1. This maximum
value is

∫∫

x2+y2≤1

1− x2 − y2
√

3

√
3 dx dy

=
∫ 2π

0
dθ

∫ 1

0
(1 − r2)r dr = 2π

(
1

2
− 1

4

)

= π

2
.

Challenging Problems 16 (page 897)

1. By Theorem 1 of Section 7.1, we have

div v(r1) = lim
ε→0+

3

4πε3

∫

©
∫

Sε
v(r) • N̂(r) dS.

Here Sε is the sphere of radius ε centred at the point
(with position vector) r1 and having outward normal field
N̂(r). If r is (the position vector of) any point on Sε ,
then r = r1 + εN̂(r), and

∫

©
∫

Sε
v(r) • N̂(r) dS

=
∫

©
∫

Sε

[

v(r1)+
(

v(r)− v(r1)
)]

• N̂(r) dS

= v(r1) •
∫

©
∫

Sε
N̂(r) dS

+
∫

©
∫

Sε

(

v(r)− v(r1)
)

• r− r1

ε
dS.

But
∫

©
∫

Sε
N̂(r) dS = 0 by Theorem 7(b) of Section 7.3

with φ = 1. Also, since v satisfies

v(r2)− v(r1) = C |r2 − r1|2,
we have

∫

©
∫

Sε

(

v(r)− v(r1)
)

• r− r1

ε
dS

=
∫

©
∫

Sε

Cε2

ε
dS = 4πCε3.

Thus

div v(r1) = lim
ε→0+

3

4πε3 (0+ 4πCε3) = 3C.

The divergence of the large-scale velocity field of matter
in the universe is three times Hubble’s constant C .

2. a) The steradian measure of a half-cone of semi-vertical
angle α is

∫ 2π

0
dθ

∫ α

0
sinφ dφ = 2π(1 − cosα).

b) If S is the intersection of a smooth surface with the
general half-cone K , and is oriented with normal
field N̂ pointing away from the vertex P of K , and
if Sa is the intersection with K of a sphere of radius
a centred at P, with a chosen so that S and Sa do
not intersect in K , then S, Sa , and the walls of K
bound a solid region R that does not contain the
origin. If F = r/|r|3, then div F = 0 in R (see
Example 3 in Section 7.1), and F • N̂ = 0 on the
walls of K . It follows from the Divergence Theorem
applied to F over R that

∫∫

S
F • N̂ dS =

∫∫

Sa

F • r
|r| dS

= a2

a4

∫∫

Sa

dS = 1

a2 (area of Sa)

= area of S1.

The area of S1 (the part of the sphere of radius 1 in
K ) is the measure (in steradians) of the solid angle
subtended by K at its vertex P. Hence this measure
is given by

∫∫

S

r
|r|3 • N̂ dS.

3. a) Verification of the identity

∂

∂t

(

G • ∂r
∂s

)

− ∂

∂s

(

G • ∂r
∂t

)

= ∂F
∂t
• ∂r
∂s
+

(

(∇ × F)× ∂r
∂t

)

• ∂r
∂s
.

can be carried out using the following MapleV com-
mands:

> with(linalg):
> F:=(x,y,z,t)-> [F1(x,y,z,t),
> F2(x,y,z,t),F3(x,y,z,t)];
> r:=(s,t)->[x(s,t),y(s,t),z(s,t)];
>

G:=(s,t)->F(x(s,t),y(s,t),z(s,t),t);
> g:=(s,t)-> dotprod(G(s,t),
> map(diff,r(s,t),s));
> h:=(s,t)-> dotprod(G(s,t),
> map(diff,r(s,t),t));
> LH1:=diff(g(s,t),t);
> LH2:=diff(h(s,t),s);
> LHS:=simplify(LH1-LH2);
>

RH1:=dotprod(subs(x=x(s,t),y=y(s,t),
> z=z(s,t),diff(F(x,y,z,t),t)),
> diff(r(s,t),s));
>

RH2:=dotprod(crossprod(subs(x=x(s,t),
> y=y(s,t),z=z(s,t),
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> curl(F(x,y,z,t),[x,y,z])),
> diff(r(s,t),t)),diff(r(s,t),s));
> RHS:=RH1+RH2; LHS-RHS; simplify(%);

We omit the output here; some of the commands produce
screenfulls of output. The output of the final command is
0, indicating that the identity is valid.

b) As suggested by the hint,

d

dt

∫

Ct

F • dr =
∫ b

a

∂

∂t

(

G • ∂r
∂s

)

ds

=
∫ b

a

[
∂

∂s

(

G • ∂r
∂t

)

+
(
∂

∂t

(

G • ∂r
∂s

)

− ∂

∂s

(

G • ∂r
∂t

))]

ds

= G • ∂r
∂t

∣
∣
∣
∣

s=b

s=a

+
∫ b

a

[
∂F
∂t
+

(

(∇ × F)× ∂r
∂t

)]

• ∂r
∂s

ds

= F
(

r(b, t), t
)

• vC (b, t)− F
(

r(a, t), t
)

• vC (a, t)

+
∫

Ct

∂F
∂t
• dr+

∫

Ct

(

(∇ × F)× vC

)

• dr.

4. a) Verification of the identity

∂

∂t

(

G •
[
∂r
∂u
× ∂r
∂v

])

− ∂

∂u

(

G •
[
∂r
∂t
× ∂r
∂v

])

− ∂

∂v

(

G •
[
∂r
∂u
× ∂r
∂t

])

=∂F
∂t
•

[
∂r
∂u
× ∂r
∂v

]

+ (∇ • F)
∂r
∂t
•

[
∂r
∂u
× ∂r
∂v

]

.

can be carried out using the following MapleV com-
mands:

> with(linalg):
> F:=(x,y,z,t)->[F1(x,y,z,t),
> F2(x,y,z,t),F3(x,y,z,t)];
> r:=(u,v,t)->[x(u,v,t),y(u,v,t),
> z(u,v,t)];
> ru:=(u,v,t)->diff(r(u,v,t),u);
> rv:=(u,v,t)->diff(r(u,v,t),v);
> rt:=(u,v,t)->diff(r(u,v,t),t);
> G:=(u,v,t)->F(x(u,v,t),
> y(u,v,t),z(u,v,t),t);
>

ruxv:=(u,v,t)->crossprod(ru(u,v,t),
> rv(u,v,t));
>

rtxv:=(u,v,t)->crossprod(rt(u,v,t),
> rv(u,v,t));

>

ruxt:=(u,v,t)->crossprod(ru(u,v,t),
> rt(u,v,t));
> LH1:=diff(dotprod(G(u,v,t),
> ruxv(u,v,t)),t);
> LH2:=diff(dotprod(G(u,v,t),
> rtxv(u,v,t)),u);
> LH3:=diff(dotprod(G(u,v,t),
> ruxt(u,v,t)),v);
> LHS:=simplify(LH1-LH2-LH3);
> RH1:=dotprod(subs(x=x(u,v,t),
> y=y(u,v,t),z=z(u,v,t),
>

diff(F(x,y,z,t),t)),ruxv(u,v,t));
> RH2:=(divf(u,v,t))*
>

(dotprod(rt(u,v,t),ruxv(u,v,t)));
> RHS:=simplify(RH1+RH2);
> simplify(LHS-RHS);

Again the final output is 0, indicating that the identity is
valid.

b) If Ct is the oriented boundary of St and Lt is the
corresponding counterclockwise boundary of the
parameter region R in the uv-plane, then

∮

Ct

(

F× ∂r
∂t

)

• dr

=
∮

Lt

(

G × ∂r
∂t

)

•
(
∂r
∂u

du + ∂r
∂v

dv

)

=
∮

Lt

[

−G •
(
∂r
∂u
× ∂r
∂t

)

+G •
(
∂r
∂t
× ∂r
∂v

)]

dt

=
∫∫

R

[
∂

∂u

(

G •
(
∂r
∂t
× ∂r
∂v

))

+ ∂

∂v

(

G •
(
∂r
∂u
× ∂r
∂t

))]

du dv,

by Green’s Theorem.

c) Using the results of (a) and (b), we calculate

d

dt

∫∫

St

F • N̂ dS =
∫∫

R

∂

∂t

[

G •
(
∂r
∂u
× ∂r
∂v

)]

du dv

=
∫∫

R

∂F
∂t
•

(
∂r
∂u
× ∂r
∂v

)

du dv

+
∫∫

R
(div F)

∂r
∂t
•

(
∂r
∂u
× ∂r
∂v

)

du dv

+
∫∫

R

[
∂

∂u

(

G •
(
∂r
∂t
× ∂r
∂v

))

+ ∂

∂v

(

G •
(
∂r
∂u
× ∂r
∂t

))]

du dv

=
∫∫

St

∂F
∂t
• N̂ dS +

∫∫

St

(div F)vS • N̂ dS
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+
∫

©
∫

Ct (F× vC) • dr.

5. We have

1

�t

[∫∫∫

Dt+�t

f (r, t +�t) dV −
∫∫∫

Dt

f (r, t) dV

]

=
∫∫∫

Dt

f (r, t +�t)− f (r, t)
�t

dV

+ 1

�t

∫∫∫

Dt+�t−Dt

f (r, t +�t) dV

− 1

�t

∫∫∫

Dt−Dt+�t

f (r, t +�t) dV

= I1 + I2 − I3.

Evidently I1→
∫∫∫

Dt

∂ f

∂t
dV as �t → 0.

I2 and I3 are integrals over the parts of �Dt where the
surface §t is moving outwards and inwards, respectively,
that is, where vS•N̂ is, respectively, positive and negative.
Since dV = |vS • N̂| dS�T , we have

I2 − I3 =
∫∫

St

f (r, t +�t)vS • N̂ dS

=
∫∫

St

f (r, t)vS • N̂ dS

+
∫∫

St

(

f (r, t +�t)− f (r, t)
)

vS • N̂ dS.

The latter integral approaches 0 as �t → 0 because

∣
∣
∣
∣

∫∫

St

(

f (r, t +�t)− f (r, t)
)

vS • N̂ dS

∣
∣
∣
∣

≤ max |vS |
∣
∣
∣
∣

∂ f

∂t

∣
∣
∣
∣
(area of St )�t.
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CHAPTER 17. ORDINARY DIFFEREN-
TIAL EQUATIONS

Section 17.1 Classifying Differential
Equations (page 902)

1.
dy

dx
= 5y: 1st order, linear, homogeneous.

2.
d2y

dx2
+ x = y: 2nd order, linear, nonhomogeneous.

3. y
dy

dx
= x : 1st order, nonlinear.

4. y ′′′ + xy ′ = x sin x : 3rd order, linear, nonhomogeneous.

5. y ′′ + x sin x y ′ = y: 2nd order, linear, homogeneous.

6. y ′′ + 4y ′ − 3y = 2y2: 2nd order, nonlinear.

7.
d3y

dt3 + t
dy

dt
+ t2 y = t3:

3rd order, linear, nonhomogeneous.

8. cos x
dx

dt
+ x sin t = 0: 1st order, nonlinear, homogeneous.

9. y(4) + ex y ′′ = x3y ′: 4th order, linear, homogeneous.

10. x2y ′′ + ex y ′ = 1

y
: 2nd order, nonlinear.

11. If y = cos x , then y ′′ + y = − cos x + cos x = 0.
If y = sin x , then y′′ + y = − sin x + sin x = 0. Thus
y = cos x and y = sin x are both solutions of y′′ + y = 0.
This DE is linear and homogeneous, so any function of
the form

y = A cos x + B sin x,

where A and B are constants, is a solution also. There-
fore sin x − cos x is a solution (A = −1, B = 1), and

sin(x + 3) = sin 3 cos x + cos 3 sin x

is a solution, but sin 2x is not since it cannot be repre-
sented in the form A cos x + B sin x .

12. If y = ex , then y′′ − y = ex − ex = 0; if y = e−x , then
y ′′ − y = e−x − e−x = 0. Thus ex and e−x are both
solutions of y′′ − y = 0. Since y′′ − y = 0 is linear and
homogeneous, any function of the form

y = Aex + Be−x

is also a solution. Thus cosh x = 1
2 (e

x + e−x) is a solu-
tion, but neither cos x nor xe is a solution.

13. Given that y1 = cos(kx) is a solution of y′′ + k2 y = 0,
we suspect that y2 = sin(kx) is also a solution. This is
easily verified since

y ′′2 + k2 y2 = −k2 sin(kx) + k2 sin(kx) = 0.

Since the DE is linear and homogeneous,

y = Ay1 + By2 = A cos(kx) + B sin(kx)

is a solution for any constants A and B. It will satisfy

3 = y(π/k) = A cos(π)+ B sin(π) = −A

3 = y ′(π/k) = −Ak sin(π)+ Bk cos(π) = −Bk,

provided A = −3 and B = −3/k. The required solution
is

y = −3 cos(kx) − 3

k
sin(kx).

14. Given that y1 = ekx is a solution of y′′ − k2 y = 0, we
suspect that y2 = e−kx is also a solution. This is easily
verified since

y ′′2 − k2 y2 = k2e−kx − k2e−kx = 0.

Since the DE is linear and homogeneous,

y = Ay1 + By2 = Aekx + Be−kx

is a solution for any constants A and B. It will satisfy

0 = y(1) = Aek + Be−k

2 = y ′(1) = Akek − Bke−k ,

provided A = e−k/k and B = −ek/k. The required
solution is

y = 1

k
ek(x−1) − 1

k
e−k(x−1) .

15. By Exercise 11, y = A cos x + B sin x is a solution of
y ′′ + y = 0 for any choice of the constants A and B.
This solution will satisfy

0 = y(π/2)− 2y(0) = B − 2A,

3 = y(π/4) = A√
2
+ B√

2
,

provided A = √2 and B = 2
√

2. The required solution is

y = √2 cos x + 2
√

2 sin x .
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16. y = erx is a solution of the equation y′′ − y ′ − 2y = 0 if
r2erx − rerx − 2erx = 0, that is, if r2 − r − 2 = 0.
This quadratic has two roots, r = 2, and r = −1.
Since the DE is linear and homogeneous, the function
y = Ae2x + Be−x is a solution for any constants A and
B. This solution satisfies

1 = y(0) = A + B, 2 = y ′(0) = 2A − B,

provided A = 1 and B = 0. Thus, the required solution
is y = e2x .

17. If y = y1(x) = x , then y′1 = 1 and y′′1 = 0. Thus
y ′′1 + y1 = 0 + x = x . By Exercise 11 we know that
y2 = A cos x + B sin x satisfies the homogeneous DE
y ′′ + y = 0. Therefore, by Theorem 2,

y = y1(x)+ y2(x) = x + A cos x + B sin x

is a solution of y′′ + y = x . This solution satisfies

1 = y(π) = π − A, 0 = y ′(π) = 1− B,

provided A = π − 1 and B = 1. Thus the required
solution is y = x + (π − 1) cos x + sin x .

18. If y = y1(x) = −e, then y′1 = 0 and y′′1 = 0. Thus
y ′′1 − y1 = 0 + e = e. By Exercise 12 we know
that y2 = Aex + Be−x satisfies the homogeneous DE
y ′′ − y = 0. Therefore, by Theorem 2,

y = y1(x)+ y2(x) = −e + Aex + Be−x

is a solution of y′′ − y = e. This solution satisfies

0 = y(1) = Ae + B

e
− e, 1 = y ′(1) = Ae − B

e
,

provided A = (e + 1)/(2e) and B = e(e − 1)/2. Thus the
required solution is y = −e+ 1

2 (e+1)ex−1+ 1
2 (e−1)e1−x .

Section 17.2 Solving First-Order Equations
(page 907)

1.
dy

dx
= x + y

x − y
Let y = vx

v + x
dv

dx
= x(1+ v)

x(1− v)
x

dv

dx
= 1+ v

1− v − v =
1+ v2

1 − v
∫

1− v
1 + v2

dv =
∫

dx

x

tan−1 v − 1

2
ln(1 + v2) = ln |x | + C1

tan−1(y/x)− 1

2
ln

x2 + y2

x2 = ln |x | + C1

2 tan−1(y/x)− ln(x2 + y2) = C.

2.
dy

dx
= xy

x2 + 2y2 Let y = vx

v + x
dv

dx
= vx2

(1+ 2v2)x2

x
dv

dx
= v

1+ 2v2 − v = −
2v3

1+ 2v2
∫

1 + 2v2

v3 dv = −2
∫

dx

x

− 1

2v2 + 2 ln |v| = −2 ln |x | + C1

− x2

2y2
+ 2 ln |y| = C1

x2 − 4y2 ln |y| = Cy2.

3.
dy

dx
= x2 + xy + y2

x2 Let y = vx

v + x
dv

dx
= x2(1+ v + v2)

x2
∫

dv

1 + v2
=
∫

dx

x

tan−1 v = ln |x | + C
y

x
= tan

(

ln |x | + C
)

y = x tan
(

ln |x | + C
)

.

4.
dy

dx
= x3 + 3xy2

3x2y + y3 Let y = vx

v + x
dv

dx
= x3(1+ 3v2)

x3(3v + v3)

x
dv

dx
= 1+ 3v2

3v + v3 − v =
1− v4

v(3 + v2)
∫
(3 + v2)v dv

1 − v4 =
∫

dx

x
Let u = v2

du = 2v dv
1

2

∫
3+ u

1 − u2 du = ln |x | + C1

3

4
ln

∣
∣
∣
∣

u + 1

u − 1

∣
∣
∣
∣
− 1

4
ln |1− u2| = ln |x | + C1

3 ln

∣
∣
∣
∣

y2 + x2

y2 − x2

∣
∣
∣
∣
− ln

∣
∣
∣
∣

x4 − y4

x4

∣
∣
∣
∣
= 4 ln |x | + C2

ln

∣
∣
∣
∣
∣

(
x2 + y2

x2 − y2

)3
1

x4 − y4

∣
∣
∣
∣
∣
= C2

ln

∣
∣
∣
∣

(x2 + y2)2

(x2 − y2)4

∣
∣
∣
∣
= C2

x2 + y2 = C(x2 − y2)2.
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5. x
dy

dx
= y + x cos2

( y

x

)

(let y = vx)

xv + x2 dv

dx
= vx + x cos2 v

x
dv

dx
= cos2 v

sec2 v dv = dx

x
tan v = ln |x | + ln |C |
tan

( y

x

)

= ln |Cx |
y = x tan−1(ln |Cx |).

6.
dy

dx
= y

x
− e−y/x (let y=vx)

v + x
dv

dx
= v − e−v

ev dv = −dx

x
ev = − ln |x | + ln |C |
ey/x = ln

∣
∣
∣
∣

C

x

∣
∣
∣
∣

y = x ln ln

∣
∣
∣
∣

C

x

∣
∣
∣
∣
.

7. We require
dy

dx
= 2x

1+ y2 . Thus

∫

(1+ y2) dy =
∫

2x dx

y + 1

3
y3 = x2 + C.

Since (2, 3) lies on the curve, 12 = 4 + C . Thus C = 8

and y + 1

3
y3 − x2 = 8, or 3y + y3 − 3x2 = 24.

8.
dy

dx
= 1 + 2y

x
Let y = vx

v + x
dv

dx
= 1+ 2v

x
dv

dx
= 1+ v

∫
dv

1 + v =
∫

dx

x
ln |1+ v| = ln |x | + C1

1+ y

x
= Cx ⇒ x + y = Cx2.

Since (1, 3) lies on the curve, 4 = C . Thus the curve has
equation x + y = 4x2.

9. If ξ = x − x0, η = y − y0, and

dy

dx
= ax + by + c

ex + f y + g
,

then

dη

dξ
= dy

dx
= a(ξ + x0)+ b(η + y0)+ c

e(ξ + x0)+ f (η + y0)+ g

= aξ + bη + (ax0 + by0 + c)

eξ + f η + (ex0 + f y0 + g)

= aξ + bη

eξ + f η

provided x0 and y0 are chosen such that

ax0 + by0 + c = 0, and ex0 + f y0 + g = 0.

10. The system x0+2y0−4 = 0, 2x0− y0−3 = 0 has solution
x0 = 2, y0 = 1. Thus, if ξ = x − 2 and η = y − 1, where

dy

dx
= x + 2y − 4

2x − y − 3
,

then
dη

dξ
= ξ + 2η

2ξ − η Let η = vξ

v + ξ dv

dξ
= 1+ 2v

2− v
ξ

dv

dξ
= 1+ 2v

2− v − v =
1+ v2

2− v
∫ (

2 − v
1+ v2

)

dv =
∫

dξ

ξ

2 tan−1 v − 1

2
ln(1 + v2) = ln |ξ | + C1

4 tan−1 η

ξ
− ln(ξ2 + η2) = C.

Hence the solution of the original equation is

4 tan−1 y − 1

x − 2
− ln

(

(x − 2)2 + (y − 1)2
)

= C.

11. (xy2 + y) dx + (x2y + x) dy = 0

d

(
1

2
x2y2 + xy

)

= 0

x2y2 + 2xy = C.

12. (ex sin y + 2x) dx + (ex cos y + 2y) dy = 0

d(ex sin y + x2 + y2) = 0

ex sin y + x2 + y2 = C.

13. exy(1 + xy) dx + x2exy dy = 0

d
(

xexy
)

= 0 ⇒ xexy = C.

14.
(

2x + 1 − y2

x2

)

dx + 2y

x
dy = 0

d

(

x2 + x + y2

x

)

= 0

x2 + x + y2

x
= C.
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15. (x2 + 2y) dx − x dy = 0

M = x2 + 2y, N = −x

1

N

(
∂M

∂y
− ∂N

∂x

)

= − 3

x
(indep. of y)

dµ

µ
= − 3

x
dx ⇒ µ = 1

x3
(

1

x
+ 2y

x3

)

dx − 1

x2 dy = 0

d
(

ln |x | − y

x2

)

= 0

ln |x | − y

x2
= C1

y = x2 ln |x | + Cx2.

16. (xex + x ln y + y) dx +
(

x2

y
+ x ln x + x sin y

)

dy = 0

M = xex + x ln y + y, N = x2

y
+ x ln x + x sin y

∂M

∂y
= x

y
+ 1,

∂N

∂x
= 2x

y
+ ln x + 1+ sin y

1

N

(
∂M

∂y
− ∂N

∂x

)

= 1

N

(

− x

y
− ln x − sin y

)

= − 1

x
dµ

µ
= − 1

x
dx ⇒ µ = 1

x
(

ex + ln y + y

x

)

dx +
(

x

y
+ ln x + sin y

)

dy

d
(

ex + x ln y + y ln x − cos y
) = 0

ex + x ln y + y ln x − cos y = C.

17. If µ(y)M(x, y) dx + µ(y)N(x, y) dy is exact, then

∂

∂y

(

µ(y)M(x, y)
)

= ∂

∂x

(

µ(y)N(x, y)
)

µ′(y)M + µ∂M

∂y
= µ∂N

∂x
µ′

µ
= 1

M

(
∂N

∂x
− ∂M

∂y

)

.

Thus M and N must be such that

1

M

(
∂N

∂x
− ∂M

∂y

)

depends only on y.

18. 2y2(x + y2) dx + xy(x + 6y2) dy = 0

(2xy2 + 2y4)µ(y) dx + (x2y + 6xy3)µ(y) dy = 0
∂M

∂y
= (4xy + 8y3)µ(y)+ (2xy2 + 2y4)µ′(y)

∂N

∂x
= (2xy + 6y3)µ(y).

For exactness we require
(2xy2 + 2y4)µ′(y) = [(2xy + 6y3)− (4xy + 8y3)]µ(y)

y(2xy + 2y3)µ′(y) = −(2xy + 2y3)µ(y)

yµ′(y) = −µ(y) ⇒ µ(y) = 1

y

(2xy + 2y3) dx + (x2 + 6xy2) dy = 0

d(x2y + 2xy3) = 0 ⇒ x2y + 2xy3 = C.

19. Consider y dx − (2x + y3ey) dy = 0.

Here M = y, N = −2x − y3ey ,
∂M

∂y
= 1, and

∂N

∂x
= −2.

Thus

µ′

µ
= − 3

y
⇒ µ = 1

y3

1

y2 dx −
(

2x

y3 + ey
)

dy = 0

d

(
x

y2 − ey
)

= 0

x

y2 − ey = C, or x − y2ey = Cy2.

20. If µ(xy) is an integrating factor for M dx + N dy = 0,
then

∂

∂y
(µM) = ∂

∂x
(µN), or

xµ′(xy)M + µ(xy)
∂M

∂y
= yµ′(xy)N + µ(xy)

∂N

∂x
.

Thus M and N will have to be such that the right-hand
side of the equation

µ′(xy)

µ(xy)
= 1

x M − yN

(
∂N

∂x
− ∂M

∂y

)

depends only on the product xy.

21. For

(

x cos x + y2

x

)

dx −
(

x sin x

y
+ y

)

dy we have

M = x cos x + y2

x
, N = − x sin x

y
− y

∂M

∂y
= 2y

x
,

∂N

∂x
= − sin x

y
− x cos x

y
∂N

∂x
− ∂M

∂y
= −

(
sin x

y
+ x cos x

y
+ 2y

x

)

x M − yN = x2 cos x + y2 + x sin x + y2

1

x M − yN

(
∂N

∂x
− ∂M

∂y

)

= − 1

xy
.
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Thus, an integrating factor is given by

µ′(t)
µ(t)

= −1

t
⇒ µ(t) = 1

t
.

We multiply the original equation by 1/(xy) to make it
exact:

(
cos x

y
+ y

x2

)

dx −
(

sin x

y2 +
1

x

)

dy = 0

d

(
sin x

y
− y

x

)

= 0

sin x

y
− y

x
= C.

The solution is x sin x − y2 = Cxy.

Section 17.3 Existence, Uniqueness, and
Numerical Methods (page 915)

A computer spreadsheet was used in Exercises
1–12. The intermediate results appearing in the
spreadsheet are not shown in these solutions.

1. We start with x0 = 1, y0 = 0, and calculate

xn+1 = xn + h, yn+1 = yn + h(xn + yn).

a) For h = 0.2 we get x5 = 2, y5 = 1.97664.

b) For h = 0.1 we get x10 = 2, y10 = 2.187485.

c) For h = 0.05 we get x20 = 2, y20 = 2.306595.

2. We start with x0 = 1, y0 = 0, and calculate

xn+1 = xn + h, un+1 = yn + h(xn + yn)

yn+1 = yn + h

2
(xn + yn + xn+1 + un+1).

a) For h = 0.2 we get x5 = 2, y5 = 2.405416.

b) For h = 0.1 we get x10 = 2, y10 = 2.428162.

c) For h = 0.05 we get x20 = 2, y20 = 2.434382.

3. We start with x0 = 1, y0 = 0, and calculate

xn+1 = xn + h

pn = xn + yn

qn = xn + h

2
+ yn + h

2
pn

rn = xn + h

2
+ yn + h

2
qn

qn = xn + h + yn + hrn

yn+1 = yn + h

6
(pn + 2qn + 2rn + sn).

a) For h = 0.2 we get x5 = 2, y5 = 2.436502.

b) For h = 0.1 we get x10 = 2, y10 = 2.436559.

c) For h = 0.05 we get x20 = 2, y20 = 2.436563.

4. We start with x0 = 0, y0 = 0, and calculate

xn+1 = xn + h, yn+1 = hxn e−yn .

a) For h = 0.2 we get x10 = 2, y10 = 1.074160.

b) For h = 0.1 we get x20 = 2, y20 = 1.086635.

5. We start with x0 = 0, y0 = 0, and calculate

xn+1 = xn + h, un+1 = yn + hxne−yn

yn+1 = yn + h

2
(xne−yn + xn+1e−un+1 .

a) For h = 0.2 we get x10 = 2, y10 = 1.097897.

b) For h = 0.1 we get x20 = 2, y20 = 1.098401.

6. We start with x0 = 0, y0 = 0, and calculate

xn+1 = xn + h

pn = xne−yn

qn =
(

xn + h

2

)

e−(yn+(h/2)pn

rn =
(

xn + h

2

)

e−(yn+(h/2)qn

sn = (xn + h)e−(yn+hrn )

yn+1 = yn + h

6
(pn + 2qn + 2rn + sn).

a) For h = 0.2 we get x10 = 2, y10 = 1.098614.

b) For h = 0.1 we get x20 = 2, y20 = 1.098612.

7. We start with x0 = 0, y0 = 0, and calculate

xn+1 = xn + h, yn+1 = yn + h cos yn.

a) For h = 0.2 we get x5 = 1, y5 = 0.89441.

b) For h = 0.1 we get x10 = 1, y10 = 0.87996.

c) For h = 0.05 we get x20 = 1, y20 = 0.872831.

8. We start with x0 = 0, y0 = 0, and calculate

xn+1 = xn + h, un+1 = yn + h cos yn

yn+1 = yn + h

2
(cos yn + cos un+1).

a) For h = 0.2 we get x5 = 1, y5 = 0.862812.

b) For h = 0.1 we get x10 = 1, y10 = 0.865065.

c) For h = 0.05 we get x20 = 1, y20 = 0.865598.
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9. We start with x0 = 0, y0 = 0, and calculate

xn+1 = xn + h

pn = cos yn

qn = cos(yn + (h/2)pn)

rn = cos(yn + (h/2)qn)

qn = cos(yn + hrn)

yn+1 = yn + h

6
(pn + 2qn + 2rn + sn).

a) For h = 0.2 we get x5 = 1, y5 = 0.865766.

b) For h = 0.1 we get x10 = 1, y10 = 0.865769.

c) For h = 0.05 we get x20 = 1, y20 = 0.865769.

10. We start with x0 = 0, y0 = 0, and calculate

xn+1 = xn + h, yn+1 = yn + h cos(x2
n ).

a) For h = 0.2 we get x5 = 1, y5 = 0.944884.

b) For h = 0.1 we get x10 = 1, y10 = 0.926107.

c) For h = 0.05 we get x20 = 1, y20 = 0.915666.

11. We start with x0 = 0, y0 = 0, and calculate

xn+1 = xn + h, un+1 = yn + h cos(x2
n )

yn+1 = yn + h

2
(cos(x2

n )+ cos(x2
n+1)).

a) For h = 0.2 we get x5 = 1, y5 = 0.898914.

b) For h = 0.1 we get x10 = 1, y10 = 0.903122.

c) For h = 0.05 we get x20 = 1, y20 = 0.904174.

12. We start with x0 = 0, y0 = 0, and calculate

xn+1 = xn + h

pn = cos(x2
n )

qn = cos((xn + (h/2))2)
rn = cos((xn + (h/2))2)
qn = cos((xn + h)2)

yn+1 = yn + h

6
(pn + 2qn + 2rn + sn).

a) For h = 0.2 we get x5 = 1, y5 = 0.904524.

b) For h = 0.1 we get x10 = 1, y10 = 0.904524.

c) For h = 0.05 we get x20 = 1, y20 = 0.904524.

13. y(x) = 2+
∫ x

1

(

y(t)
)2

dt

dy

dx
=
(

y(x)
)2
, y(1) = 2+ 0 = 2

dy

y2
= dx ⇒ − 1

y(x)
= x + C

− 1

2
= 1+ C ⇒ C = −3

2

y = − 1

x − (3/2) =
2

3 − 2x
.

14. u(x) = 1+ 3
∫ x

2
t2u(t) dt

du

dx
= 3x2u(x), u(2) = 1+ 0 = 1

du

u
= 3x2 dx ⇒ ln u = x3 + C

0 = ln 1 = ln u(2) = 23 + C ⇒ C = −8

u = ex3−8.

15. For the problem y′ = f (x), y(a) = 0, the 1-step Runge-
Kutta method with h = b − a gives:

x0 = a, y0 = 0, x1 = x0 + h = b

p0 = f (a), q0 = f

(

a + h

2

)

= f

(
a + b

2

)

= r0

s0 = f (a + h) = f (b)

y1 = y0 + h

6
(p0 + 2q0 + 2r0 + s0)

= b − a

6

(

f (a) + 4 f

(
a + b

2

)

+ f (b)

)

,

which is the Simpson’s Rule approximation to
∫ b

a
f (x) dx based on 2 subintervals of length h/2.

16. If φ(0) = A ≥ 0 and φ′(x) ≥ kφ(x) on an interval [0, X],
where k > 0 and X > 0, then

d

dx

(
φ(x)

ekx

)

= ekxφ′(x)− kekxφ(x)

e2kx
≥ 0.

Thus φ(x)/ekx is increasing on [0, X]. Since its value at
x = 0 is φ(0) = A ≥ 0, therefore φ(x)/ekx ≥ A on
[0, X], and φ(x) ≥ Aekx there.

17. a) Suppose u′ = u2, y ′ = x + y2, and v′ = 1 + v2 on
[0, X], where u(0) = y(0) = v(0) = 1, and X > 0
is such that v(x) is defined on [0, X]. (In part (b)
below, we will show that X < 1, and we assume this
fact now.) Since all three functions are increasing on
[0, X], we have u(x) ≥ 1, y(x) ≥ 1, and v(x) ≥ 1
on [0, X].
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If φ(x) = y(x)− u(x), then φ(0) = 0 and

φ′(x) = x + y2 − u2 ≥ y2 − u2

≥ (y + u)(y − u) ≥ 2φ

on [0, X]. By Exercise 16, φ(x) ≥ 0 on [0, X], and
so
u(x) ≤ y(x) there.

Similarly, since X < 1, if φ(x) = v(x) − y(x), then
φ(0) = 0 and

φ′(x) = 1+ v2 − x − y2 ≥ v2 − y2

≥ (v + y)(v − y) ≥ 2φ

on [0, X], so y(x) ≤ v(x) there.

b) The IVP u′ = u2, u(0) = 1 has solution

u(x) = 1

1− x
, obtained by separation of variables.

This solution is valid for x < 1.

The IVP v′ = 1+ v2, v(0) = 1 has solution
v(x) = tan

(

x + π
4

)

, also obtained by separation of
variables. It is valid only for −3π/4 < x < π/4.
Observe that π/4 < 1, proving the assertion made
about v in part (a). By the result of part (a), the
solution of the IVP y′ = x + y2, y(0) = 1, increases
on an interval [0, X] and → ∞ as x → X from
the left, where X is some number in the interval
[π/4, 1].

c) Here are some approximations to y(x) for values of
x near 0.9 obtained by the Runge-Kutta method with
x0 = 0 and y0 = 1:

For h = 0.05

n = 17 xn = 0.85 yn = 12.37139

n = 18 xn = 0.90 yn = 31.777317

n = 19 xn = 0.95 yn = 4071.117315.

For h = 0.02

n = 43 xn = 0.86 yn = 14.149657

n = 44 xn = 0.88 yn = 19.756061

n = 45 xn = 0.90 yn = 32.651029

n = 46 xn = 0.92 yn = 90.770048

n = 47 xn = 0.94 yn = 34266.466629.

For h = 0.01

n = 86 xn = 0.86 yn = 14.150706

n = 87 xn = 0.87 yn = 16.493286

n = 88 xn = 0.88 yn = 19.761277

n = 89 xn = 0.89 yn = 24.638758

n = 90 xn = 0.90 yn = 32.703853

n = 91 xn = 0.91 yn = 48.591332

n = 92 xn = 0.92 yn = 94.087476

n = 93 xn = 0.93 yn = 636.786465

n = 94 xn = 0.94 yn = 2.8399 × 1011.

The values are still in reasonable agreement at
x = 0.9, but they start to diverge quickly thereafter.
This suggests that X is slightly greater than 0.9.

Section 17.4 Differential Equations of
Second Order (page 919)

1. If y1 = ex , then y′′1 −3y ′1+2y1 = ex (1−3+2) = 0, so y1
is a solution of the DE y′′ − 3y ′ + 2y = 0. Let y = exv.
Then

y ′ = ex(v′ + v), y ′′ = ex(v′′ + 2v′ + v)
y ′′ − 3y ′ + 2y = ex(v′′ + 2v′ + v − 3v′ − 3v + 2v)

= ex(v′′ − v′).

y satisfies y ′′ − 3y ′ + 2y = 0 provided w = v′ satisfies
w′ − w = 0. This equation has solution v′ = w = C1ex ,
so v = C1ex + C2. Thus the given DE has solution
y = exv = C1e2x + C2ex .

2. If y1 = e−2x , then y′′1 − y ′1 − 6y1 = e−2x (4 + 2 − 6) = 0,
so y1 is a solution of the DE y′′ − y ′ − 6y = 0. Let
y = e−2xv. Then

y ′ = e−2x (v′ − 2v), y ′′ = e−2x (v′′ − 4v′ + 4v)

y ′′ − y ′ − 6y = e−2x (v′′ − 4v′ + 4v − v′ + 2v − 6v)

= ex(v′′ − 5v′).

y satisfies y ′′ − y ′ − 6y = 0 provided w = v′ satisfies
w′ − 5w = 0. This equation has solution
v′ = w = (C1/5)e5x , so v = C1e5x + C2. Thus the given
DE has solution y = e−2xv = C1e3x + C2e−2x .

3. If y1 = x on (0,∞), then

x2y ′′1 + 2xy ′1 − 2y1 = 0+ 2x − 2x = 0,

so y1 is a solution of the DE x2y ′′ + 2xy ′ − 2y = 0. Let
y = xv(x). Then

y ′ = xv′ + v, y ′′ = xv′′ + 2v′

x2y ′′ + 2xy ′ − 2y = x3v′′ + 2x2v′ + 2x2v′ + 2xv − 2xv

= x2(xv′′ + 4v′).

y satisfies x2y ′′ + 2xy ′ − 2y = 0 provided w = v′ satisfies
xw′ + 4w = 0.
This equation has solution v′ = w = −3C1x−4 (obtained
by separation of variables), so v = C1x−3 + C2. Thus the
given DE has solution y = xv = C1x−2 + C2x .
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4. If y1 = x2 on (0,∞), then

x2y ′′1 − 3xy ′1 + 4y1 = 2x2 − 6x2 + 4x2 = 0,

so y1 is a solution of the DE x2y ′′ − 3xy ′ + 4y = 0. Let
y = x2v(x). Then

y ′ = x2v′ + 2xv, y ′′ = x2v′′ + 4xv′ + 2v

x2y ′′ − 3xy ′ + 4y = x4v′′ + 4x3v′ + 2x2v

− 3x3v′ − 6x2v + 4x2v

= x3(xv′′ + v′).

y satisfies x2y ′′ − 3xy ′ + 4y = 0 provided w = v′ satisfies
xw′ + w = 0. This equation has solution v′ = w = C1/x
(obtained by separation of variables), so v = C1 ln x +C2.
Thus the given DE has solution
y = x2v = C1x2 ln x + C2x2.

5. If y = x , then y′ = 1 and y′′ = 0. Thus

x2y ′′ − x(x + 2)y ′ + (x + 2)y = 0.

Now let y = xv(x). Then

y ′ = v + xv′, y ′′ = 2v′ + xv′′.

Substituting these expressions into the differential equa-
tion we get

2x2v′ + x3v′′ − x2v − 2xv − x3v′

− 2x2v′ + x2v + 2xv = 0

x3v′′ − x3v′ = 0, or v′′ − v′ = 0,

which has solution v = C1 + C2ex . Hence the general
solution of the given differential equation is

y = C1x + C2xex .

6. If y = x−1/2 cos x , then

y ′ = −1

2
x−3/2 cos x − x−1/2 sin x

y ′′ = 3

4
x−5/2 cos x + x−3/2 sin x − x−1/2 cos x .

Thus

x2y ′′ + xy ′ +
(

x2 − 1

4

)

y

= 3

4
x−1/2 cos x + x1/2 sin x − x3/2 cos x

− 1

2
x−1/2 cos x − x1/2 sin x + x3/2 cos x − 1

4
x−1/2 cos x

= 0.

Therefore y = x−1/2 cos x is a solution of the Bessel
equation

x2y ′′ + xy ′ +
(

x2 − 1

4

)

y = 0. (∗)

Now let y = x−1/2(cos x)v(x). Then

y ′ = −1

2
x−3/2(cos x)v − x−1/2(sin x)v + x−1/2(cos x)v′

y ′′ = 3

4
x−5/2(cos x)v + x−3/2(sin x)v − x−3/2(cos x)v′

− x−1/2(cos x)v − 2x−1/2(sin x)v′ + x−1/2(cos x)v′′.

If we substitute these expressions into the equation (∗),
many terms cancel out and we are left with the equation

(cos x)v′′ − 2(sin x)v′ = 0.

Substituting u = v′, we rewrite this equation in the form

(cos x)
du

dx
= 2(sin x)u

∫
du

u
= 2

∫

tan x dx ⇒ ln |u| = 2 ln | sec x | + C0.

Thus v′ = u = C1 sec2 x , from which we obtain

v = C1 tan x + C2.

Thus the general solution of the Bessel equation (∗) is

y = x−1/2(cos x)v = C1x−1/2 sin x + C2x−1/2 cos x .

7. If y1 = y and y2 = y ′ where y satisfies

y ′′ + a1(x)y ′ + a0(x)y = f (x),

then y′1 = y2 and y ′2 = −a0y1 − a1y2 + f . Thus

d

dx

(

y1
y2

)

=
(

0 1
−a0 −a1

)(

y1
y2

)

+
(

0
f

)

.

8. If y satisfies

y(n) + an−1(x)y
(n−1) + · · · + a1(x)y

′ + a0(x)y = f (x),

then let

y1 = y, y2 = y ′, y3 = y ′′, . . . yn = y(n−1).

Therefore

y ′1 = y2, y ′2 = y3, . . . y ′n−2 = yn−1, and

y ′n = −a0y1 − a1y2 − a2y3 − · · · − an−1yn + f,
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and we have

d

dx

⎛

⎜
⎜
⎝

y1
y2
...

yn

⎞

⎟
⎟
⎠
=

⎛

⎜
⎜
⎜
⎜
⎝

0 1 0 . . . 0
0 0 1 . . . 0
...

...
...

...

0 0 0 . . . 1
−a0 −a1 −a2 . . . −an

⎞

⎟
⎟
⎟
⎟
⎠

⎛

⎜
⎜
⎝

y1
y2
...

yn

⎞

⎟
⎟
⎠

+

⎛

⎜
⎜
⎜
⎜
⎝

0
0
...

0
f

⎞

⎟
⎟
⎟
⎟
⎠

.

9. If y = C1eλxv, then

y′ = C1λeλxv = C1eλxAv =Ay

provided λ and v satisfy Av = λv.

10.
∣
∣
∣
∣

2− λ 1
2 3− λ

∣
∣
∣
∣
= 6− 5λ+ λ2 − 2

= λ2 − 5λ+ 4

= (λ− 1)(λ − 4) = 0

if λ = 1 or λ = 4.

Let A =
(

2 1
2 3

)

.

If λ = 1 and Av = v, then

A =
(

2 1
2 3

)(

v1
v2

)

=
(

v1
v2

)

⇔ v1 + v2 = 0.

Thus we may take v = v1 =
(

1
−1

)

.

If λ = 4 and Av = 4v, then

A =
(

2 1
2 3

)(

v1
v2

)

= 4

(

v1
v2

)

⇔ 2v1 − v2 = 0.

Thus we may take v = v2 =
(

1
2

)

.

By the result of Exercise 9, y = exv1 and y = e4xv2 are
solutions of the homogeneous linear system y′ = Ay.
Therefore the general solution of the system is

y = C1exv1 + C2e4xv2,

that is

(

y1
y2

)

= C1ex
(

1
−1

)

+ C2e4x
(

1
2

)

, or

y1 = C1ex + C2e4x

y2 = −C1ex + 2C2e4x .

Section 17.5 Linear Differential Equations
with Constant Coefficients (page 923)

1. y ′′′ − 4y ′′ + 3y ′ = 0
Auxiliary: r3 − 4r2 + 3r = 0

r(r − 1)(r − 3) = 0 ⇒ r = 0, 1, 3
General solution: y = C1 + C2et + C3e3t .

2. y(4) − 2y ′′ + y = 0
Auxiliary: r4 − 2r2 + 1 = 0

(r2 − 1)2 = 0 ⇒ r = −1,−1, 1, 1
General solution: y = C1e−t + C2te−t + C3et + C4tet .

3. y(4) + 2y ′′ + y = 0
Auxiliary: r4 + 2r2 + 1 = 0

(r2 + 1)2 = 0 ⇒ r = −i,−i, i, i
General solution:
y = C1 cos t + C2 sin t + C3t cos t + C4t sin t .

4. y(4) + 4y(3) + 6y ′′ + 4y ′ + y = 0
Auxiliary: r4 + 4r3 + 6r2 + 4r + 1 = 0

(r + 1)4 = 0 ⇒ r = −1,−1,−1,−1
General solution: y = e−t (C1 + C2t + C3t2 + C4t3).

5. If y = e2t , then y′′′ − 2y ′ − 4y = e2t (8 − 4− 4) = 0.
The auxiliary equation for the DE is r3 − 2r − 4 = 0,
for which we already know that r = 2 is a root. Dividing
the left side by r − 2, we obtain the quotient r2 + 2r + 2.
Hence the other two auxiliary roots are −1± i .
General solution: y = C1e2t + C2e−t cos t + C3e−t sin t .

6. Aux. eqn: (r2 − r − 2)2(r2 − 4)2 = 0

(r + 1)2(r − 2)2(r − 2)2(r + 2)2 = 0

r = 2, 2, 2, 2,−1,−1,−2,−2.
The general solution is

y = e2t (C1 + C2t + C3t2 + C4t3)+ e−t (C5 + C6t)

+ e−2t (C7 + C8t).

7. x2y ′′ − xy ′ + y = 0

aux: r(r − 1)− r + 1 = 0

r2 − 2r + 1 = 0

(r − 1)2 = 0, r = 1, 1.

Thus y = Ax + Bx ln x .

8. x2y ′′ − xy ′ − 3y = 0

r(r − 1)− r − 3 = 0⇒ r2 − 2r − 3 = 0

⇒(r − 3)(r + 1) = 0⇒ r1 = −1 and r2 = 3

Thus, y = Ax−1 + Bx3.
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9. x2y ′′ + xy ′ − y = 0

aux: r(r − 1)+ r − 1 = 0 ⇒ r = ±1

y = Ax + B

x
.

10. Consider x2y ′′ − xy ′ + 5y = 0. Since a = 1, b = −1, and
c = 5, therefore (b−a)2 < 4ac. Then k = (a−b)/2a = 1
and ω2 = 4. Thus, the general solution is
y = Ax cos(2 ln x)+ Bx sin(2 ln x).

11. x2y ′′ + xy ′ = 0

aux: r(r − 1)+ r = 0 ⇒ r = 0, 0.

Thus y = A+ B ln x .

12. Given that x2y ′′ + xy ′ + y = 0. Since a = 1, b = 1, c = 1
therefore (b − a)2 < 4ac. Then k = (a − b)/2a = 0 and
ω2 = 1. Thus, the general solution is
y = A cos(ln x)+ B sin(ln x).

13. x3y ′′′ + xy ′ − y = 0.
Trying y = xr leads to the auxiliary equation

r(r − 1)(r − 2)+ r − 1 = 0

r3 − 3r2 + 3r − 1 = 0

(r − 1)3 = 0 ⇒ r = 1, 1, 1.

Thus y = x is a solution. To find the general solution,
try y = xv(x). Then

y ′ = xv′ + v, y ′′ = xv′′ + 2v′, y ′′′ = xv′′′ + 3v′′.

Now x3y ′′′ + xy ′ − y = x4v′′′ + 3x3v′′ + x2v′ + xv − xv

= x2(x2v′′′ + 3xv′′ + v′),
and y is a solution of the given equation if v′ = w is
a solution of x2w′′ + 3xw′ + w = 0. This equation
has auxiliary equation r(r − 1) + 3r + 1 = 0, that is
(r + 1)2 = 0, so its solutions are

v′ = w = C2

x
+ 2C3 ln x

x
v = C1 + C2 ln x + C3(ln x)2.

The general solution of the given equation is, therefore,

y = C1x + C2x ln x + C3x(ln x)2.

Section 17.6 Nonhomogeneous Linear
Equations (page 929)

1. y ′′ + y ′ − 2y = 1.
The auxiliary equation for y′′ + y ′ − 2y = 0 is
r2 + r − 2 = 0, which has roots r = −2 and r = 1. Thus
the complementary function is

yh = C1e−2x + C2ex .

For a particular solution yp of the given equation try
y = A. This satisfies the given equation if A = −1/2.
Thus the general solution of the given equation is

y = −1

2
+ C1e−2x + C2ex .

2. y ′′ + y ′ − 2y = x .
The complementary function is yh = C1e−2x + C2ex , as
shown in Exercise 1. For a particular solution try
y = Ax + B. Then y ′ = A and y ′′ = 0, so y satisfies the
given equation if

x = A − 2(Ax + B) = A− 2B − 2Ax .

We require A − 2B = 0 and −2A = 1, so A = −1/2 and
B = −1/4. The general solution of the given equation is

y = −2x + 1

4
+ C1e−2x + C2ex .

3. y ′′ + y ′ − 2y = e−x .
The complementary function is yh = C1e−2x + C2ex , as
shown in Exercise 1. For a particular solution try
y = Ae−x . Then y ′ = −Ae−x and y ′′ = Ae−x , so y
satisfies the given equation if

e−x = e−x(A − A − 2A) = −2Ae−x .

We require A = −1/2. The general solution of the given
equation is

y = −1

2
e−x + C1e−2x + C2ex .

4. y ′′ + y ′ − 2y = ex .
The complementary function is yh = C1e−2x + C2ex , as
shown in Exercise 1. For a particular solution try
y = Axex . Then

y ′ = Aex (1 + x), y ′′ = Aex (2+ x),

so y satisfies the given equation if

ex = Aex (2 + x + 1 + x − 2x) = 3Aex .

We require A = 1/3. The general solution of the given
equation is

y = 1

3
xex + C1e−2x + C3ex .
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5. y ′′ + 2y ′ + 5y = x2.
The homogeneous equation has auxiliary equation
r2 + 2r + 5 = 0 with roots r = −1 ± 2i . Thus the
complementary function is

yh = C1e−x cos(2x)+ C2e−x sin(2x).

For a particular solution, try y = Ax2 + Bx + C . Then
y ′ = 2Ax + B and y ′′ = 2A. We have

x2 = y ′′ + 2y ′ + 5y

= 2A + 4Ax + 2B + 5Ax2 + 5Bx + 5C.

Thus we require 5A = 1, 4A + 5B = 0, and
2A+2B+5C = 0. This gives A = 1/5, B = −4/25, and
C = −2/125. The given equation has general solution

y = x2

5
− 4x

25
− 2

125
+ e−x (C1 cos(2x)+ C2 sin(2x)).

6. y ′′ + 4y = x2. The complementary function is
y = C1 cos(2x) + C2 sin(2x). For the given equation,
try y = Ax2 + Bx + C . Then

x2 = y ′′ + 4y = 2A + 4Ax2 + 4Bx + 4C

Thus 2A + 4C = 0, 4A = 1, 4B = 0, and we have

A = 1

4
, B = 0, and C = −1

8
. The given equation has

general solution

y = 1

4
x2 − 1

8
+ C1 cos(2x)+ C2 sin(2x).

7. y ′′ − y ′ − 6y = e−2x .
The homogeneous equation has auxiliary equation
r2 − r − 6 = 0 with roots r = −2 and r = 3. Thus the
complementary function is

yh = C1e−2x + C2e3x .

For a particular solution, try y = Axe−2x . Then
y ′ = e−2x(A − 2Ax) and y ′′ = e−2x (−4A + 4Ax). We
have

e−2x = y ′′ − y ′ − 6y

= e−2x (−4A + 4Ax − A+ 2Ax − 6Ax) = −5Ae−2x .

Thus we require A = −1/5. The given equation has
general solution

y = −1

5
xe−2x + C1e−2x + C2e3x .

8. y ′′ + 4y ′ + 4y = e−2x .
The homogeneous equation has auxiliary equation
r2 + 4r + 4 = 0 with roots r = −2, −2. Thus the
complementary function is

yh = C1e−2x + C2xe−2x .

For a particular solution, try y = Ax2e−2x . Then
y ′ = e−2x(2Ax−2Ax2) and y ′′ = e−2x (2A−8Ax+4Ax2).
We have

e−2x = y ′′ + 4y ′ + 4y

= e−2x(2A − 8Ax + 4Ax2 + 8Ax − 8Ax2 + 4Ax2)

= 2Ae−2x .

Thus we require A = 1/2. The given equation has gen-
eral solution

y = e−2x
(

x2

2
+ C1 + C2x

)

.

9. y ′′ + 2y ′ + 2y = ex sin x .
The homogeneous equation has auxiliary equation
r2 + 2r + 2 = 0 with roots r = −1 ± i . Thus the
complementary function is

yh = C1e−x cos x + C2e−x sin x .

For a particular solution, try y = Aex cos x + Bex sin x .
Then

y ′ = (A + B)ex cos x + (B − A)ex sin x

y ′′ = 2Bex cos x − 2Aex sin x .

This satisfies the nonhomogeneous DE if

ex sin x = y ′′ + 2y ′ + 2y

= ex cos x(2B + 2(A + B)+ 2A)

+ ex sin x(−2A + 2(B − A)+ 2B)

= ex cos x(4A + 4B)+ ex sin x(4B − 4A).

Thus we require A + B = 0 and 4(B − A) = 1, that is,
B = −A = 1/8. The given equation has general solution

y = ex

8
(sin x − cos x)+ e−x(C1 cos x + C2 sin x).

10. y ′′ + 2y ′ + 2y = e−x sin x .
The complementary function is the same as in Exercise 9,
but for a particular solution we try

y = Axe−x cos x + Bxe−x sin x

y ′ = e−x cos x(A − Ax + Bx)+ e−x sin x(B − Bx − Ax)

y ′′ = e−x cos x(2B − 2Bx − 2A)

+ e−x sin x(2Ax − 2A − 2B).
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This satisfies the nonhomogeneous DE if

e−x sin x = y ′′ + 2y ′ + 2y

= 2Be−x cos x − 2Ae−x sin x .

Thus we require B = 0 and A = −1/2. The given
equation has general solution

y = −1

2
xe−x cos x + e−x(C1 cos x + C2 sin x).

11. y ′′ + y ′ = 4 + 2x + e−x .
The homogeneous equation has auxiliary equation
r2 + r = 0 with roots r = 0 and r = −1. Thus the
complementary function is yh = C1 + C2e−x . For a
particular solution, try y = Ax + Bx2 + Cxe−x . Then

y ′ = A+ 2Bx + e−x(C − Cx)

y ′′ = 2B + e−x(−2C + Cx).

This satisfies the nonhomogeneous DE if

4+ 2x + e−x = y ′′ + y ′

= A + 2B + 2Bx − Ce−x .

Thus we require A + 2B = 4, 2B = 2, and −C = 1,
that is, A = 2, B = 1, C = −1. The given equation has
general solution

y = 2x + x2 − xe−x + C1 + C2e−x .

12. y ′′ + 2y ′ + y = xe−x .
The homogeneous equation has auxiliary equation
r2 + 2r + 1 = 0 with roots r = −1 and r = −1. Thus the
complementary function is yh = C1e−x + C2xe−x . For a
particular solution, try y = e−x(Ax2 + Bx3). Then

y ′ = e−x(2Ax + (3B − A)x2 − Bx3)

y ′′ = e−x(2A + (6B − 4A)x − (6B − A)x2 + Bx3).

This satisfies the nonhomogeneous DE if

xe−x = y ′′ + 2y ′ + y

= e−x (2A + 6Bx).

Thus we require A = 0 and B = 1/6. The given equation
has general solution

y = 1

6
x3e−x + C1e−x + C2xe−x .

13. y ′′ + y ′ − 2y = e−x .
The complementary function is yh = C1e−2x + C2ex . For
a particular solution use

yp = e−2xu1(x)+ exu2(x),

where the coefficients u1 and u2 satisfy

−2e−2xu′1 + exu′2 = e−x

e−2xu′1 + exu′2 = 0.

Thus

u′1 = −
1

3
ex

u1 = −1

3
ex

u′2 =
1

3
e−2x

u2 = −1

6
e−2x .

Thus yp = −1

3
e−x − 1

6
e−x = −1

2
e−x . The general

solution of the given equation is

y = −1

2
e−x + C1e−2x + C2ex .

14. y ′′ + y ′ − 2y = ex .
The complementary function is yh = C1e−2x + C2ex . For
a particular solution use

yp = e−2xu1(x)+ exu2(x),

where the coefficients u1 and u2 satisfy

−2e−2xu′1 + exu′2 = ex

e−2xu′1 + exu′2 = 0.

Thus

u′1 = −
1

3
e3x

u1 = −1

9
e3x

u′2 =
1

3

u2 = 1

3
x .

Thus yp = −1

9
ex + 1

3
xex . The general solution of the

given equation is

y = −1

9
ex + 1

3
xex + C1e−2x + C2ex

= 1

3
xex + C1e−2x + C3ex .

15. x2y ′′ + xy ′ − y = x2.
If y = Ax2, then y′ = 2Ax and y ′′ = 2A. Thus

x2 = x2y ′′ + xy ′ − y

= 2Ax2 + 2Ax2 − Ax2 = 3Ax2,
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so A = 1/3. A particular solution of the given equation
is y = x2/3. The auxiliary equation for the homogeneous
equation x2y ′′ + xy ′ − y = 0 is 4r(r − 1)+ r − 1 = 0, or
r2−1 = 0, which has solutions r = ±1. Thus the general
solution of the given equation is

y = 1

3
x2 + C1x + C2

x
.

16. x2y ′′ + xy ′ − y = xr has a solution of the form y = Axr

provided r 
= ±1. If this is the case, then

xr = Axr
(

r(r − 1)+ r − 1
)

= Axr (r2 − 1).

Thus A = 1/(r2 − 1) and a particular solution of the DE
is

y = 1

r2 − 1
xr .

17. x2y ′′ + xy ′ − y = x .
Try y = Ax ln x . Then y ′ = A(ln x + 1) and y′′ = A/x .
We have

x = x2 A

x
+ x A(ln x + 1)− Ax ln x = 2Ax .

Thus A = 1/2. The complementary function was ob-
tained in Exercise 15. The given equation has general
solution

y = 1

2
x ln x + C1x + C2

x
.

18. x2y ′′ + xy ′ − y = x .

Try y = xu1(x)+ 1

x
u2(x), where u1 and u2 satisfy

xu′1 +
u′2
x
= 0, u′1 −

u′2
x2
= 1

x
.

Solving these equations for u′1 and u′2, we get

u′2 = −
x

2
, u′1 =

1

2x
.

Thus u1 = 1

2
ln x and u2 = − x2

4
. A particular solution is

y = 1

2
x ln x − x

4
.

The term −x/4 can be absorbed into the term C1x in the
complementary function, so the general solution is

y = 1

2
x ln x + C1x + C2

x
.

19. x2y ′′ − (2x + x2)y ′ + (2 + x)y = x3.
Since x and xex are independent solutions of the corre-
sponding homogeneous equation, we can write a solution
of the given equation in the form

y = xu1(x)+ xexu2(x),

where u1 and u2 are chosen to satisfy

xu′1 + xexu′2 = 0, u′1 + (1 + x)exu′2 = x .

Solving these equations for u′1 and u′2, we get u′1 = −1
and u′2 = e−x . Thus u1 = −x and u2 = −e−x . The
particular solution is y = −x2−x . Since −x is a solution
of the homogeneous equation, we can absorb that term
into the complementary function and write the general
solution of the given DE as

y = −x2 + C1x + C2xex .

20. x2y ′′ + xy ′ +
(

x2 − 1

4

)

y = x3/2.

A particular solution can be obtained in the form

y = x−1/2(cos x)u1(x)+ x−1/2(sin x)u2(x),

where u1 and u2 satisfy

x−1/2(cos x)u′1 + x−1/2(sin x)u′2 = 0
(

−1

2
x−3/2 cos x − x−1/2 sin x

)

u′1

−
(

1

2
x−3/2 sin x − x−1/2 cos x

)

u′2 = x−1/2.

We can simplify these equations by dividing the first by
x−1/2, and adding the first to 2x times the second, then
dividing the result by 2x1/2. The resulting equations are

(cos x)u′1 + (sin x)u′2 = 0

−(sin x)u′1 + (cos x)u′2 = 1,

which have solutions u′1 = − sin x , u′2 = cos x , so that
u1 = cos x and u2 = sin x . Thus a particular solution of
the given equation is

y = x−1/2 cos2 x + x−1/2 sin2 x = x−1/2.

The general solution is

y = x−1/2
(

1+ C2 cos x + C2 sin x
)

.
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Section 17.7 Series Solutions of Differential
Equations (page 933)

1. y ′′ = (x − 1)2 y. Try

y =
∞
∑

n=0

an(x − 1)n .

y ′′ =
∞
∑

n=2

n(n − 1)an(x − 1)n−2

=
∞
∑

n=0

(n + 2)(n + 1)an+2(x − 1)n

0 = y ′′ − (x − 1)2 y

=
∞
∑

n=0

(n + 2)(n + 1)an+2(x − 1)n −
∞
∑

n=0

an(x − 1)n+2

=
∞
∑

n=0

(n + 2)(n + 1)an+2(x − 1)n −
∞
∑

n=2

an−2(x − 1)n

= 2a2 + 6a3(x − 1)

+
∞
∑

n=2

[

(n + 2)(n + 1)an+2 − an−2

]

(x − 1)n .

Thus a2 = a3 = 0, and an+2 = an−2

(n + 1)(n + 2)
for n ≥ 2.

Given a0 and a1 we have

a4 = a0

3× 4

a8 = a4

7× 8
= a0

3× 4× 7× 8
...

a4n = a0

3× 4× 7× 8× · · · × (4n − 1)(4n)

= a0

4nn!× 3× 7× · · · × (4n − 1)

a5 = a1

4× 5

a9 = a5

8× 9
= a1

4× 5× 8× 9
...

a4n+1 = a1

4× 5× 8× 9× · · · × (4n)(4n + 1)

= a1

4nn!× 5× 9× · · · × (4n + 1)
a4n+3 = a4n+2 = · · · = a3 = a2 = 0.

The solution is

y = a0

(

1+
∞∑

n=1

(x − 1)4n

4nn!× 3× 7× · · · × (4n − 1)

)

+ a1

(

x − 1+
∞
∑

n=1

(x − 1)4n+1

4nn!× 5× 9× · · · × (4n + 1)

)

.

2. y ′′ = xy. Try
∞
∑

n=0

anxn . Then

y ′ =
∞
∑

n=0

nanxn−1 =
∞
∑

n=1

nanxn−1

y ′′ =
∞
∑

n=2

n(n − 1)an xn−2 =
∞
∑

n=0

(n + 2)(n + 1)an+2xn .

Thus we have

0 = y ′′ − xy

=
∞
∑

n=0

(n + 2)(n + 1)an+2xn −
∞
∑

n=0

anxn+1

=
∞
∑

n=0

(n + 2)(n + 1)an+2xn −
∞
∑

n=1

an−1xn

= 2a2 +
∞
∑

n=1

[

(n + 2)(n + 1)an+2 − an−1

]

xn.

Thus a2 = 0 and an+2 = an−1

(n + 2)(n + 1)
for n ≥ 1.

Given a0 and a1, we have

a3 = a0

2× 3

a6 = a3

5× 6
= a0

2 × 3 × 5 × 6
= 1× 4× a0

6!

a9 = a6

8× 9
= 1 × 4 × 7 × a0

9!
...

a3n = 1× 4× · · · × (3n − 2)a0

(3n)!

a4 = a1

3× 4
= 2 × a1

4!

a7 = a4

6× 7
= 2 × 5 × a1

7!
...

a3n+1 = 2× 5× · · · × (3n − 1)a1

(3n + 1)!
0 = a2 = a5 = a8 = · · · = a3n+2.

Thus the general solution of the given equation is

y = a0

(

1+
∞
∑

n=1

1× 4× · · · × (3n − 2)

(3n)!
x3n

)

+ a1

∞
∑

n=1

2× 5× · · · × (3n − 1)

(3n + 1)!
x3n+1.
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3.

⎧

⎨

⎩

y ′′ + xy ′ + 2y = 0
y(0) = 1
y ′(0) = 2

Let

y =
∞
∑

n=0

anxn y ′ =
∞
∑

n=1

nanxn−1

y ′′ =
∞
∑

n=2

n(n − 1)anxn−2 =
∞
∑

n=0

(n + 2)(n + 1)an+2xn .

Substituting these expressions into the differential equa-
tion, we get

∞
∑

n=0

(n + 2)(n + 1)an+2xn +
∞
∑

n=1

nanxn

+ 2
∞
∑

n=0

anxn = 0, so

2a2 + 2 +
∞
∑

n=1

[(n + 2)(n + 1)an+2 + (n + 2)an ]xn = 0.

It follows that

a2 = −1, an+2 = − an

n + 1
, n = 1, 2, 3, . . . .

Since a0 = y(0) = 1, and a1 = y ′(0) = 2, we have

a0 = 1

a2 = −1

a4 = 1

3

a6 = − 1

3× 5

a8 = 1

3× 5× 7

a1 = 2

a3 = −2

2

a5 = 2

2× 4

a7 = − 2

2× 4× 6

a9 = 2

2× 4 × 6 × 8
.

The patterns here are obvious:

a2n = (−1)n

3× 5× · · · × (2n − 1)
a2n+1 = (−1)n2

2nn!

= (−1)n2nn!

(2n)!

Thus y =∑∞n=0(−1)n
[

2nn!x2n

(2n)!
+ x2n+1

2n−1n!

]

.

4. If y =
∞
∑

n=0

anxn , then y′ =∑∞n=1 nanxn−1 and

y ′′ =
∞
∑

n=2

n(n − 1)anxn−2 =
∞
∑

n=0

(n + 2)(n + 1)an+2xn .

Thus,

0 = y ′′ + xy ′ + y

=
∞
∑

n=0

(n + 2)(n + 1)an+2xn + x
∞
∑

n=1

nanxn−1 +
∞
∑

n=0

anxn

= 2a2 + a0 +
∞
∑

n=1

[

(n + 2)(n + 1)an+2 + (n + 1)an

]

xn .

Since coefficients of all powers of x must vanish, there-
fore 2a2 + a0 = 0 and, for n ≥ 1,

(n + 2)(n + 1)an+2 + (n + 1)an = 0,

that is, an+2 = −an

n + 2
.

If y(0) = 1, then a0 = 1, a2 = −1

2
, a4 = 1

22 · 2!
,

a6 = −1

23 · 3!
, a8 = 1

24 · 4!
,. . .. If y′(0) = 0, then

a1 = a3 = a5 = . . . = 0. Hence,

y = 1− 1

2
x2 + 1

8
x4 − 1

48
x6 + · · · =

∞
∑

n=0

(−1)n

2n · n!
x2n .

5. y ′′ + (sin x)y = 0, y(0) = 1, y′(0) = 0. Try

y = a0 + a1x + a2x2 + a3x3 + a4x4 + a5x5 + · · · .
Then a0 = 1 and a1 = 0. We have

y ′′ = 2a2 + 6a3x + 12a4x2 + 20a5x3 + · · ·

(sin x)y =
(

x − x3

6
+ x5

120
− · · ·

)

× (1 + a2x2 + a3x3 + a4x4 + a5x5 + · · ·)
= x +

(

a2 − 1

6

)

x3 + a3x4

+
(

a4 − 1

6
a2 + 1

120

)

x5 + · · · .

Hence we must have 2a2 = 0, 6a3 + 1 = 0, 12a4 = 0,

20a5 + a2 − 1

6
= 0, . . . . That is, a2 = 0, a4 = 0,

a3 = −1

6
, a5 = 1

120
. The solution is

y = 1− 1

6
x3 + 1

120
x5 + · · · .

6. (1 − x2)y ′′ − xy ′ + 9y = 0, y(0) = 0, y′(0) = 1. Try

y =
∞
∑

n=0

anxn .
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Then a0 = 0 and a1 = 1. We have

y ′ =
∞∑

n=1

nanxn−1

y ′′ =
∞∑

n=2

n(n − 1)an xn−2

0 = (1 − x2)y ′′ − xy ′ + 9y

=
∞
∑

n=0

(n + 2)(n + 1)an+2xn −
∞
∑

n=2

n(n − 1)an xn

−
∞
∑

n=1

nanxn + 9
∞
∑

n=0

anxn

= 2a2 + 9a0 + (6a3 + 8a1)x

+
∞
∑

n=2

[

(n + 2)(n + 1)an+2 − (n2 − 9)an

]

xn .

Thus 2a2 + 9a0 = 0, 6a3 + 8a1 = 0, and

an+2 = (n2 − 9)an

(n + 1)(n + 2)
.

Therefore we have

a2 = a4 = a6 = · · · = 0

a3 = −4

3
, a5 = 0 = a7 = a9 = · · · .

The initial-value problem has solution

y = x − 4

3
x3.

7. 3xy ′′ + 2y ′ + y = 0.
Since x = 0 is a regular singular point of this equation,
try

y =
∞
∑

n=0

an xn+µ (a0 = 1)

y ′ =
∞
∑

n=0

(n + µ)an xn+µ−1

y ′′ =
∞
∑

n=0

(n + µ)(n + µ− 1)an xn+µ−2.

Then we have

0 = 3xy ′′ + 2y ′ + y

=
∞
∑

n=0

[

3(n + µ)2 − (n + µ)
]

anxn+µ−1 +
∞
∑

n=1

an−1xn+µ−1

= (3µ2 − µ)xµ−1

+
∞
∑

n=1

[(

3(n + µ)2 − (n + µ)
)

an + an−1

]

xn+µ−1.

Thus 3µ2 − µ = 0 and an = − an−1

3(n + µ)2 − (n + µ) for

n ≥ 1. There are two cases: µ = 0 and µ = 1/3.

CASE I. µ = 0. Then an = − an−1

n(3n − 1)
. Since a0 = 1

we have

a1 = − 1

1× 2
, a2 = 1

1× 2× 2× 5

a3 = − 1

1× 2× 2× 5× 3× 8
...

an = (−1)n

n!× 2× 5× · · · × (3n − 1)
.

One series solution is

y = 1+
∞∑

n=1

(−1)n xn

n!× 2× 5× · · · × (3n − 1)
.

CASE II. µ = 1

3
. Then

an = −an−1

3
(

n + 1
3

)2 − (n + 1
3

) =
−an−1

n(3n + 1)
.

Since a0 = 1 we have

a1 = − 1

1× 4
, a2 = 1

1× 4× 2× 7

a3 = − 1

1× 4× 2× 7× 3× 10
...

an = (−1)n

n!× 1× 4× 7× · · · × (3n + 1)
.

A second series solution is

y = x1/3

(

1+
∞
∑

n=1

(−1)n xn

n!× 1 × 4 × 7 × · · · × (3n + 1)

)

.

8. xy ′′ + y ′ + xy = 0.
Since x = 0 is a regular singular point of this equation,
try

y =
∞
∑

n=0

anxn+µ (a0 = 1)

y ′ =
∞
∑

n=0

(n + µ)an xn+µ−1

y ′′ =
∞
∑

n=0

(n + µ)(n + µ− 1)anxn+µ−2.
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Then we have

0 = xy ′′ + y ′ + xy

=
∞
∑

n=0

[

(n + µ)(n + µ− 1)+ (n + µ)
]

anxn+µ−1

+
∞
∑

n=0

anxn+µ+1

=
∞∑

n=0

(n + µ)2anxn+µ−1 +
∞∑

n=2

an−2xn+µ−1

= µ2xµ−1 + (1+ µ)2a1xµ

+
∞
∑

n=2

[

(n + µ)2an + an−2

]

xn+µ−1.

Thus µ = 0, a1 = 0, and an = −an−2

n2
for n ≥ 2.

It follows that 0 = a1 = a3 = a5 = · · ·, and, since a0 = 1,

a2 = − 1

22 , a4 = 1

2242 , . . .

a2n = (−1)n

2242 · · · (2n)2
= (−1)n

22n(n!)2
.

One series solution is

y = 1+
∞∑

n=1

(−1)nx2n

22n(n!)2
.

Review Exercises 17 (page 934)

1.
dy

dx
= 2xy

dy

y
= 2x dx ⇒ ln |y| = x2 + C1

y = Cex2

2.
dy

dx
= e−y sin x

ey dy = sin x dx ⇒ ey = − cos x + C

y = ln(C − cos x)

3.
dy

dx
= x + 2y ⇒ dy

dx
− 2y = x

d

dx
(e−2x y) = e−2x

(
dy

dx
− 2y

)

= xe−2x

e−2x y =
∫

xe−2x dx = − x

2
e−2x − 1

4
e−2x + C

y = − x

2
− 1

4
+ Ce2x

4.
dy

dx
= x2 + y2

2xy
(let y = xv(x))

v + x
dv

dx
= 1+ v2

2v

x
dv

dx
= 1+ v2

2v
− v = 1− v2

2v
2v dv

v2 − 1
= −dx

x

ln(v2 − 1) = ln
1

x
+ ln C = ln

C

x
y2

x2
− 1 = C

x
⇒ y2 − x2 = Cx

5.
dy

dx
= x + y

y − x

(x + y) dx + (x − y) dy = 0 (exact)

d

(
x2

2
+ xy − y2

2

)

= 0

x2 + 2xy − y2 = C

6.
dy

dx
= − y + ex

x + ey

(y + ex ) dx + (x + ey) dy = 0 (exact)

d
(

xy + ex + ey) = 0

xy + ex + ey = C

7.
d2y

dt2 =
(

dy

dt

)2

(let p = dy/dt)

dp

dt
= p2 ⇒ dp

p2 = dt

1

p
= C1 − t

dy

dt
= p = 1

C1 − t

y =
∫

dt

C1 − t
= − ln |t − C1| + C2

8. 2
d2y

dt2
+ 5

dy

dt
+ 2y = 0

Aux: 2r2 + 5r + 2 = 0 ⇒ r = −1/2, −2

y = C1e−t/2 + C2e−2t

9. 4y ′′ − 4y ′ + 5y = 0

Aux: 4r2 − 4r + 5 = 0

(2r − 1)2 + 4 = 0 ⇒ r = 1

2
± i

y = C1ex/2 cos x + C2ex/2 sin x

10. 2x2y ′′ + y = 0

Aux: 2r(r − 1)+ 1 = 0

2r2 − 2r + 1 = 0 ⇒ r = 1

2
(1 ± i )

y = C1|x |1/2 cos
( 1

2 ln |x |)+ C2|x |1/2 sin
( 1

2 ln |x |)
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11. t2 d2y

dt2
− t

dy

dt
+ 5y = 0

Aux: r(r − 1)− r + 5 = 0

(r − 1)2 + 4 = 0 ⇒ r = 1± 2i

y = C1t cos(2 ln |t |)+ C2t sin(2 ln |t |)

12.
d3y

dt3 + 8
d2y

dt2 + 16
dy

dt
= 0

Aux: r3 + 8r2 + 16r = 0

r(r + 4)2 = 0 ⇒ r = 0,−4,−4

y = C1 + C2e−4t + C3te−4t

13.
d2y

dx2 − 5
dy

dx
+ 6y = ex + e3x

Aux: r2 − 5r + 6 = 0 ⇒ r = 2, 3.
Complementary function: y = C1e2x + C2e3x .
Particular solution: y = Aex + Bxe3x

y ′ = Aex + B(1+ 3x)e3x

y ′′ = Aex + B(6+ 9x)e3x

ex + e3x = Aex (1 − 5 + 6)

+ Be3x(6 + 9x − 5− 15x + 6x)

= 2Aex + Be3x .

Thus A = 1/2 and B = 1. The general solution is

y = 1

2
ex + xe3x + C1e2x + C2e3x .

14.
d2y

dx2
− 5

dy

dx
+ 6y = xe2x

Same complementary function as in Exercise 13:
C1e2x + C2e3x . For a particular solution we try
y = (Ax2 + Bx)e2x . Substituting this into the given
DE leads to

xe2x = (2A − B)e2x − 2Axe2x ,

so that we need A = −1/2 and B = 2A = −1. The
general solution is

y = −
(

1

2
x2 + x

)

e2x + C1e2x + C2e3x .

15.
d2y

dx2
+ 2

dy

dx
+ y = x2

Aux: r2 + 2r + 1 = 0 has solutions r = −1,−1.
Complementary function: y = C1e−x + C2xe−x .
Particular solution: try y = Ax2 + Bx + C . Then

x2 = 2A + 2(2Ax + B)+ Ax2 + Bx + C.

Thus A = 1, B = −4, C = 6. The general solution is

y = x2 − 4x + 6+ C1e−x + C2xe−x .

16. x2 d2y

dx2 − 2y = x3.

The corresponding homogeneous equation has auxiliary
equation r(r − 1) − 2 = 0, with roots r = 2 and r = −1,
so the complementary function is
y = C1x2 + C2/x . A particular solution of the non-
homogeneous equation can have the form y = Ax3.
Substituting this into the DE gives

6Ax3 − 2Ax3 = x3,

so that A = 1/4. The general solution is

y = 1

4
x3 + C1x2 + C2

x
.

17.
dy

dx
= x2

y2 , y(2) = 1

y2 dy = x2 dx

y3 = x3 + C

1 = 8+ C ⇒ C = −7

y3 = x3 − 7 ⇒ y = (x3 − 7)1/3

18.
dy

dx
= y2

x2 , y(2) = 1

dy

y2
= dx

x2
⇒ − 1

y
= − 1

x
− C

1 = 1

2
+ C ⇒ C = 1

2

y =
(

1

x
+ 1

2

)−1

= 2x

x + 2

19.
dy

dx
= xy

x2 + y2 , y(0) = 1. Let y = xv(x). Then

v + x
dv

dx
= v

1+ v2

x
dv

dx
= v

1+ v2 − v = −
v3

1 + v2

− 1+ v2

v3 dv = dx

x
1

2v2 − ln |v| = ln |x | + ln C

x2

y2
= 1

v2
= ln(Cvx)2 = ln(C2y2)

C2y2 = ex2/y2
, y(0) = 1⇒ C2 = 1

y2 = ex2/y2
, or y = ex2/(2y2).
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20.
dy

dx
+ (cos x)y = 2 cos x, y(π) = 1

d

dx

(

esin x y
)

= esin x
(

dy

dx
+ (cos x)y

)

= 2 cos xesin x

esin x y = 2esin x + C

y = 2+ Ce− sin x

1 = 2+ Ce0 ⇒ C = −1

y = 2− e− sin x

21. y ′′ + 3y ′ + 2y = 0, y(0) = 1, y′(0) = 2
Aux: r2 + 3r + 2 = 0 ⇒ r = −1,−2.

y = Ae−x + Be−2x ⇒ 1 = A+ B

y ′ = −Ae−x − 2Be−2x ⇒ 2 = −A − 2B.

Thus B = −3, A = 4. The solution is
y = 4e−x − 3e−2x .

22. y ′′ + 2y ′ + (1 + π2)y = 0, y(1) = 0, y′(1) = π
Aux: r2 + 2r + 1 + π2 = 0 ⇒ r = −1± π i .

y = Ae−x cos(π x)+ Be−x sin(π x)

y ′ = e−x cos(π x)(−A + Bπ)+ e−x sin(π x)(−B − Aπ).

Thus −Ae−1 = 0 and (A − Bπ)e−1 = π , so that A = 0
and B = −e. The solution is y = −e1−x sin(π x).

23. y ′′ + 10y′ + 25y = 0, y(1) = e−5, y ′(1) = 0
Aux: r2 + 10r + 25 = 0 ⇒ r = −5, −5.

y = Ae−5x + Bxe−5x

y ′ = −5Ae−5x + B(1− 5x)e−5x .

We require e−5 = (A + B)e−5 and 0 = e−5(−5A − 4B).
Thus A + B = 1 and −5A = 4B, so that B = 5 and
A = −4. The solution is y = −4e−5x + 5xe−5x .

24. x2y ′′ − 3xy ′ + 4y = 0, y(e) = e2, y ′(e) = 0
Aux: r(r − 1) − 3r + 4 = 0, or (r − 2)2 = 0, so that
r = 2, 2.

y = Ax2 + Bx2 ln x

y ′ = 2Ax + 2Bx ln x + Bx .

We require e2 = Ae2 + Be2 and 0 = 2Ae + 3Be. Thus
A + B = 1 and 2A = −3B, so that A = 3 and B = −2.
The solution is y = 3x2 − 2x2 ln x , valid for x > 0.

25.
d2y

dt2
+ 4y = 8e2t , y(0) = 1, y′(0) = −2

Complementary function: y = C1 cos(2t) + C2 sin(2t).
Particular solution: y = Ae2t , provided 4A+ 4A = 8, that
is, A = 1. Thus

y = e2t + C1 cos(2t)+ C2 sin(2t)

y ′ = 2e2t − 2C1 sin(2t)+ 2C2 cos(2t).

We require 1 = y(0) = 1+ C1 and
−2 = y ′(0) = 2 + 2C2. Thus C1 = 0 and C2 = −2. The
solution is y = e2t − 2 sin(2t).

26. 2
d2y

dx2
+ 5

dy

dx
− 3y = 6+ 7ex/2, y(0) = 0, y′(0) = 1

Aux: 2r2 + 5r − 3 = 0 ⇒ r = 1/2, −3.
Complementary function: y = C1ex/2 + C2e−3x .
Particular solution: y = A + Bxex/2

y ′ = Bex/2
(

1+ x

2

)

y ′′ = Bex/2
(

1+ x

4

)

.

We need

Bex/2
(

2+ x

2
+ 5+ 5x

2
− 3x

)

− 3A = 6+ 7ex/2.

This is satisfied if A = −2 and B = 1. The general
solution of the DE is

y = −2+ xex/2 + C1ex/2 + C2e−3x .

Now the initial conditions imply that

0 = y(0) = −2+ C1 + C2

1 = y ′(0) = 1+ C1

2
− 3C2,

which give C1 = 12/7, C2 = 2/7. Thus the IVP has
solution

y = −2+ xex/2 + 1

7
(12ex/2 + 2e−3x ).

27. [(x + A)ex sin y + cos y] dx + x[ex cos y + B sin y] dy = 0
is M dx + N dy. We have

∂M

∂y
= (x + A)ex cos y − sin y

∂N

∂x
= ex cos y + B sin y + xex cos y.

These expressions are equal (and the DE is exact) if
A = 1 and B = −1. If so, the left side of the DE is
dφ(x, y), where

φ(x, y) = xex sin y + x cos y.

The general solution is xex sin y + x cos y = C .

28. (x2 + 3y2) dx + xy dy = 0. Multiply by xn :

xn(x2 + 3y2) dx + xn+1y dy = 0

is exact provided 6xn y = (n + 1)xn y, that is, provided
n = 5. In this case the left side is dφ, where

φ(x, y) = 1

2
x6y2 + 1

8
x8.
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The general solution of the given DE is

4x6y2 + x8 = C.

29. x2y ′′ − x(2+ x cot x)y ′ + (2+ x cot x)y = 0
If y = x , then y′ = 1 and y′′ = 0, so the DE is clearly
satisfied by y. To find a second, independent solution, try
y = xv(x). Then y ′ = v+ xv′, and y′′ = 2v′ + xv′′. Sub-
stituting these expressions into the given DE, we obtain

2x2v′ + x3v′′ − (xv + x2v′)(2 + x cot x)

+ xv(2 + x cot x) = 0

x3v′′ − x3v′ cot x = 0,

or, putting w = v′, w′ = (cot x)w, that is,

dw

w
= cos x dx

sin x
lnw = ln sin x + ln C2

v′ = w = C2 sin x ⇒ v = C1 − C2 cos x .

A second solution of the DE is x cos x , and the general
solution is

y = C1x + C2x cos x .

30. x2y ′′ − x(2+ x cot x)y ′ + (2+ x cot x)y = x3 sin x
Look for a particular solution of the form
y = xu1(x)+ x cos xu2(x), where

xu′1 + x cos xu′2 = 0

u′1 + (cos x − x sin x)u′2 = x sin x .

Divide the first equation by x and subtract from the sec-
ond equation to get

−x sin xu′2 = x sin x .

Thus u′2 = −1 and u2 = −x . The first equation now
gives u′1 = cos x , so that u1 = sin x . The general solution
of the DE is

y = x sin x − x2 cos x + C1x + C2x cos x .

31. Suppose y ′ = f (x, y) and y(x0) = y0, where f (x, y) is
continuous on the whole xy-plane and satisfies
| f (x, y)| ≤ K there. By the Fundamental Theorem of
Calculus, we have

y(x)− y0 = y(x)− y(x0)

=
∫ x

x0

y ′(t) dt =
∫ x

x0

f
(

t, y(t)
)

dt.

Therefore,
|y(x)− y0| ≤ K |x − x0|.

Thus y(x) is bounded above and below by the lines
y = y0± K (x − x0), and cannot have a vertical asymptote
anywhere.

Remark: we don’t seem to have needed the continuity of
∂ f/∂y, only the continuity of f (to enable the use of the
Fundamental Theorem).
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CHAPTER 17. ORDINARY DIFFEREN-
TIAL EQUATIONS

NOTE: SECTIONS 17.2 AND 17.5 AND THE
REVIEW EXERCISES FOR CHAPTER 17 IN
CALCULUS OF SEVERAL VARIABLES HAVE MORE
EXERCISES THAN THE CORRESPONDING
VERSIONS IN CALCULUS: A COMPLETE COURSE
AND SINGLE-VARIABLE CALCULUS. ONLY THE
SOLUTIONS FOR THOSE UNITS ARE GIVEN HERE;
FOR THE OTHERS SEE CHAPTER 17.

Section 17.2 Solving First-Order Equations
(page 913)

1.
dy

dx
= y

2x

2
dy

y
= dx

x

2 ln y = ln x + C1 ⇒ y2 = Cx

2.
dy

dx
= 3y − 1

x
∫

dy

3y − 1
=
∫

dx

x
1

3
ln |3y − 1| = ln |x | + 1

3
ln C

3y − 1

x3
= C

⇒ y = 1

3
(1+ Cx3).

3.
dy

dx
= x2

y2
⇒ y2 dy = x2 dx

y3

3
= x3

3
+ C1, or x3 − y3 = C

4.
dy

dx
= x2 y2

∫
dy

y2 =
∫

x2 dx

− 1

y
= 1

3
x3 + 1

3
C

⇒ y = − 3

x3 + C
.

5.
dY

dt
= tY ⇒ dY

Y
= t dt

ln Y = t2

2
+ C1, or Y = Cet2/2

6.
dx

dt
= ex sin t

∫

e−x dx =
∫

sin t dt

−e−x = − cos t − C

⇒ x = − ln(cos t + C).

7.
dy

dx
= 1− y2 ⇒ dy

1− y2
= dx

1

2

(
1

1+ y
+ 1

1− y

)

dy = dx

1

2
ln

∣
∣
∣
∣

1 + y

1 − y

∣
∣
∣
∣
= x + C1

1+ y

1− y
= Ce2x or y = Ce2x − 1

Ce2x + 1

8.
dy

dx
= 1+ y2

∫
dy

1+ y2 =
∫

dx

tan−1 y = x + C

⇒ y = tan(x + C).

9.
dy

dt
= 2+ ey ⇒ dy

2+ ey
= dt

∫
e−y dy

2e−y + 1
=
∫

dt

− 1

2
ln(2e−y + 1) = t + C1

2e−y + 1 = C2e−2t , or y = − ln

(

Ce−2t − 1

2

)

10. We have
dy

dx
= y2(1− y)

∫
dy

y2(1 − y)
=
∫

dx = x + K .

Expand the left side in partial fractions:

1

y2(1 − y)
= A

y
+ B

y2 +
C

1− y

= A(y − y2)+ B(1− y)+ Cy2

y2(1− y)

⇒
{−A+ C = 0;

A− B = 0;
B = 1.

⇒ A = B = C = 1.

Hence,
∫

dy

y2(1 − y)
=
∫ (

1

y
+ 1

y2 +
1

1− y

)

dy

= ln |y| − 1

y
− ln |1− y|.

Therefore,

ln

∣
∣
∣
∣

y

1− y

∣
∣
∣
∣
− 1

y
= x + K .
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11.
dy

dx
= x + y

x − y
Let y = vx

v + x
dv

dx
= x(1+ v)

x(1− v)
x

dv

dx
= 1+ v

1− v − v =
1+ v2

1 − v
∫

1− v
1 + v2 dv =

∫
dx

x

tan−1 v − 1

2
ln(1 + v2) = ln |x | + C1

tan−1(y/x)− 1

2
ln

x2 + y2

x2 = ln |x | + C1

2 tan−1(y/x)− ln(x2 + y2) = C.

12.
dy

dx
= xy

x2 + 2y2 Let y = vx

v + x
dv

dx
= vx2

(1 + 2v2)x2

x
dv

dx
= v

1+ 2v2 − v = −
2v3

1+ 2v2
∫

1 + 2v2

v3 dv = −2
∫

dx

x

− 1

2v2 + 2 ln |v| = −2 ln |x | + C1

− x2

2y2
+ 2 ln |y| = C1

x2 − 4y2 ln |y| = Cy2.

13.
dy

dx
= x2 + xy + y2

x2 Let y = vx

v + x
dv

dx
= x2(1 + v + v2)

x2
∫

dv

1 + v2
=
∫

dx

x

tan−1 v = ln |x | + C
y

x
= tan

(

ln |x | + C
)

y = x tan
(

ln |x | + C
)

.

14.
dy

dx
= x3 + 3xy2

3x2 y + y3
Let y = vx

v + x
dv

dx
= x3(1+ 3v2)

x3(3v + v3)

x
dv

dx
= 1+ 3v2

3v + v3 − v =
1− v4

v(3 + v2)
∫
(3 + v2)v dv

1 − v4 =
∫

dx

x
Let u = v2

du = 2v dv
1

2

∫
3+ u

1 − u2
du = ln |x | + C1

3

4
ln

∣
∣
∣
∣

u + 1

u − 1

∣
∣
∣
∣
− 1

4
ln |1− u2| = ln |x | + C1

3 ln

∣
∣
∣
∣

y2 + x2

y2 − x2

∣
∣
∣
∣
− ln

∣
∣
∣
∣

x4 − y4

x4

∣
∣
∣
∣
= 4 ln |x | + C2

ln

∣
∣
∣
∣
∣

(
x2 + y2

x2 − y2

)3
1

x4 − y4

∣
∣
∣
∣
∣
= C2

ln

∣
∣
∣
∣

(x2 + y2)2

(x2 − y2)4

∣
∣
∣
∣
= C2

x2 + y2 = C(x2 − y2)2.

15. x
dy

dx
= y + x cos2

( y

x

)

(let y = vx)

xv + x2 dv

dx
= vx + x cos2 v

x
dv

dx
= cos2 v

sec2 v dv = dx

x
tan v = ln |x | + ln |C |
tan

( y

x

)

= ln |Cx |
y = x tan−1(ln |Cx |).

16.
dy

dx
= y

x
− e−y/x (let y=vx)

v + x
dv

dx
= v − e−v

ev dv = −dx

x
ev = − ln |x | + ln |C |
ey/x = ln

∣
∣
∣
∣

C

x

∣
∣
∣
∣

y = x ln ln

∣
∣
∣
∣

C

x

∣
∣
∣
∣
.
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17.
dy

dx
− 2

x
y = x2 (linear)

µ = exp

(∫

− 2

x
dx

)

= 1

x2

1

x2

dy

dx
− 2

x3
y = 1

d

dx

y

x2 = 1

y

x2
= x + C, so y = x3 + Cx2

18. We have
dy

dx
+ 2y

x
= 1

x2 . Let

µ =
∫

2

x
dx = 2 ln x = ln x2, then eµ = x2, and

d

dx
(x2 y) = x2 dy

dx
+ 2xy

= x2
(

dy

dx
+ 2y

x

)

= x2
(

1

x2

)

= 1

⇒ x2 y =
∫

dx = x + C

⇒ y = 1

x
+ C

x2 .

19.
dy

dx
+ 2y = 3 µ = exp

(∫

2 dx

)

= e2x

d

dx
(e2x y) = e2x(y ′ + 2y) = 3e2x

e2x y = 3

2
e2x + C ⇒ y = 3

2
+ Ce−2x

20. We have
dy

dx
+ y = ex . Let µ = ∫ dx = x , then eµ = ex ,

and

d

dx
(ex y) = ex dy

dx
+ ex y = ex

(
dy

dx
+ y

)

= e2x

⇒ ex y =
∫

e2x dx = 1

2
e2x + C.

Hence, y = 1

2
ex + Ce−x .

21.
dy

dx
+ y = x µ = exp

(∫

1 dx

)

= ex

d

dx
(ex y) = ex(y ′ + y) = xex

ex y =
∫

xex dx = xex − ex + C

y = x − 1+ Ce−x

22. We have
dy

dx
+ 2ex y = ex . Let µ = ∫ 2ex dx = 2ex , then

d

dx

(

e2ex
y
)

= e2ex dy

dx
+ 2exe2ex

y

= e2ex
(

dy

dx
+ 2ex y

)

= e2ex
ex .

Therefore,

e2ex
y =

∫

e2ex
ex dx Let u = 2ex

du = 2ex dx

= 1

2

∫

eu du = 1

2
e2ex + C.

Hence, y = 1

2
+ Ce−2ex

.

23.
dy

dt
+ 10y = 1, y

( 1
10

) = 2
10

µ =
∫

10 dt = 10t

d

dt
(e10t y) = e10t dy

dt
+ 10e10t y = e10t

e10t y(t) = 1

10
e10t + C

y
( 1

10

) = 2
10 ⇒

2e

10
= e

10
+ C ⇒ C = e

10

y = 1

10
+ 1

10
e1−10t .

24.
dy

dx
+ 3x2 y = x2, y(0) = 1

µ =
∫

3x2 dx = x3

d

dx
(ex3

y) = ex3 dy

dx
+ 3x2ex3

y = x2ex3

ex3
y =

∫

x2ex3
dx = 1

3
ex3 + C

y(0) = 1 ⇒ 1 = 1

3
+ C ⇒ C = 2

3

y = 1

3
+ 2

3
e−x3

.

25. x2 y ′ + y = x2e1/x , y(1) = 3e

y ′ + 1

x2 y = e1/x

µ =
∫

1

x2
dx = − 1

x
d

dx

(

e−1/x y
)

= e−1/x
(

y ′ + 1

x2 y

)

= 1

e−1/x y =
∫

1 dx = x + C

y(1) = 3e ⇒ 3 = 1+ C ⇒ C = 2

y = (x + 2)e1/x .
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26. y ′ + (cos x)y = 2xe− sin x , y(π) = 0

µ =
∫

cos x dx = sin x

d

dx
(esin x y) = esin x(y ′ + (cos x)y) = 2x

esin x y =
∫

2x dx = x2 + C

y(π) = 0 ⇒ 0 = π2 + C ⇒ C = −π2

y = (x2 − π2)e− sin x .

27. y(x) = 2+
∫ x

0

t

y(t)
dt �⇒ y(0) = 2

dy

dx
= x

y
, i.e. y dy = x dx

y2 = x2 + C

22 = 02 + C �⇒ C = 4

y =
√

4+ x2.

28. y(x) = 1+
∫ x

0

(y(t))2

1+ t2
dt �⇒ y(0) = 1

dy

dx
= y2

1+ x2 , i.e. dy/y2 = dx/(1+ x2)

− 1

y
= tan−1 x + C

− 1 = 0 + C �⇒ C = −1

y = 1/(1− tan−1 x).

29. y(x) = 1+
∫ x

1

y(t)

t (t + 1)
dt �⇒ y(1) = 1

dy

dx
= y

x(x + 1)
, for x > 0

dy

y
= dx

x(x + 1)
= dx

x
− dx

x + 1

ln y = ln
x

x + 1
+ ln C

y = Cx

x + 1
, �⇒ 1 = C/2

y = 2x

x + 1
.

30. y(x) = 3+
∫ x

0
e−y dt �⇒ y(0) = 3

dy

dx
= e−y, i.e. ey dy = dx

ey = x + C �⇒ y = ln(x + C)

3 = y(0) = ln C �⇒ C = e3

y = ln(x + e3).

31. We require
dy

dx
= 2x

1+ y2 . Thus
∫

(1+ y2) dy =
∫

2x dx

y + 1

3
y3 = x2 + C.

Since (2, 3) lies on the curve, 12 = 4 + C . Thus C = 8

and y + 1

3
y3 − x2 = 8, or 3y + y3 − 3x2 = 24.

32.
dy

dx
= 1+ 2y

x
Let y = vx

v + x
dv

dx
= 1+ 2v

x
dv

dx
= 1+ v

∫
dv

1 + v =
∫

dx

x
ln |1+ v| = ln |x | + C1

1+ y

x
= Cx ⇒ x + y = Cx2.

Since (1, 3) lies on the curve, 4 = C . Thus the curve has
equation x + y = 4x2.

33. If ξ = x − x0, η = y − y0, and
dy

dx
= ax + by + c

ex + f y + g
,

then
dη

dξ
= dy

dx
= a(ξ + x0)+ b(η + y0)+ c

e(ξ + x0)+ f (η + y0)+ g

= aξ + bη + (ax0 + by0 + c)

eξ + f η + (ex0 + f y0 + g)

= aξ + bη

eξ + f η
provided x0 and y0 are chosen such that

ax0 + by0 + c = 0, and ex0 + f y0 + g = 0.

34. The system x0+2y0−4 = 0, 2x0− y0−3 = 0 has solution
x0 = 2, y0 = 1. Thus, if ξ = x − 2 and η = y − 1, where

dy

dx
= x + 2y − 4

2x − y − 3
,

then
dη

dξ
= ξ + 2η

2ξ − η Let η = vξ

v + ξ dv

dξ
= 1+ 2v

2− v
ξ

dv

dξ
= 1+ 2v

2− v − v =
1+ v2

2− v
∫ (

2 − v
1+ v2

)

dv =
∫

dξ

ξ

2 tan−1 v − 1

2
ln(1 + v2) = ln |ξ | + C1

4 tan−1 η

ξ
− ln(ξ2 + η2) = C.
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Hence the solution of the original equation is

4 tan−1 y − 1

x − 2
− ln

(

(x − 2)2 + (y − 1)2
)

= C.

35. (xy2 + y) dx + (x2 y + x) dy = 0

d

(
1

2
x2 y2 + xy

)

= 0

x2 y2 + 2xy = C.

36. (ex sin y + 2x) dx + (ex cos y + 2y) dy = 0

d(ex sin y + x2 + y2) = 0

ex sin y + x2 + y2 = C.

37. exy(1 + xy) dx + x2exy dy = 0

d
(

xexy
)

= 0 ⇒ xexy = C.

38.
(

2x + 1− y2

x2

)

dx + 2y

x
dy = 0

d

(

x2 + x + y2

x

)

= 0

x2 + x + y2

x
= C.

39. (x2 + 2y) dx − x dy = 0

M = x2 + 2y, N = −x

1

N

(
∂M

∂y
− ∂N

∂x

)

= − 3

x
(indep. of y)

dµ

µ
= − 3

x
dx ⇒ µ = 1

x3
(

1

x
+ 2y

x3

)

dx − 1

x2 dy = 0

d
(

ln |x | − y

x2

)

= 0

ln |x | − y

x2 = C1

y = x2 ln |x | + Cx2.

40. (xex + x ln y + y) dx +
(

x2

y
+ x ln x + x sin y

)

dy = 0

M = xex + x ln y + y, N = x2

y
+ x ln x + x sin y

∂M

∂y
= x

y
+ 1,

∂N

∂x
= 2x

y
+ ln x + 1+ sin y

1

N

(
∂M

∂y
− ∂N

∂x

)

= 1

N

(

− x

y
− ln x − sin y

)

= − 1

x
dµ

µ
= − 1

x
dx ⇒ µ = 1

x
(

ex + ln y + y

x

)

dx +
(

x

y
+ ln x + sin y

)

dy

d
(

ex + x ln y + y ln x − cos y
) = 0

ex + x ln y + y ln x − cos y = C.

41. Since a > b > 0 and k > 0,

lim
t→∞ x(t) = lim

t→∞
ab
(

e(b−a)kt − 1
)

be(b−a)kt − a

= ab(0 − 1)

0− a
= b.

42. Since b > a > 0 and k > 0,

lim
t→∞ x(t) = lim

t→∞
ab
(

e(b−a)kt − 1
)

be(b−a)kt − a

= lim
t→∞

ab
(

1− e(a−b)kt
)

b − ae(a−b)kt

= ab(1 − 0)

b − 0
= a.

43. The solution given, namely

x = ab
(

e(b−a)kt − 1
)

be(b−a)kt − a
,

is indeterminate (0/0) if a = b.
If a = b the original differential equation becomes

dx

dt
= k(a − x)2,

which is separable and yields the solution

1

a − x
=
∫

dx

(a − x)2
= k

∫

dt = kt + C.

Since x(0) = 0, we have C = 1

a
, so

1

a − x
= kt + 1

a
.

Solving for x , we obtain

x = a2kt

1 + akt
.

This solution also results from evaluating the limit of
solution obtained for the case a �= b as b approaches a
(using l’Hôpital’s Rule, say).

44. Given that m
dv

dt
= mg − kv, then

∫
dv

g − k

m
v

=
∫

dt

− m

k
ln

∣
∣
∣
∣
g − k

m
v

∣
∣
∣
∣
= t + C.
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Since v(0) = 0, therefore C = −m

k
ln g. Also, g − k

m
v

remains positive for all t > 0, so

m

k
ln

g

g − k

m
v

= t

g − k

m
v

g
= e−kt/m

⇒ v = v(t) = mg

k

(

1− e−kt/m
)

.

Note that lim
t→∞ v(t) =

mg

k
. This limiting velocity can be

obtained directly from the differential equation by setting
dv

dt
= 0.

45. We proceed by separation of variables:

m
dv

dt
= mg − kv2

dv

dt
= g − k

m
v2

dv

g − k

m
v2
= dt

∫
dv

mg

k
− v2

= k

m

∫

dt = kt

m
+ C.

Let a2 = mg/k, where a > 0. Thus, we have

∫
dv

a2 − v2 =
kt

m
+ C

1

2a
ln

∣
∣
∣
∣

a + v
a − v

∣
∣
∣
∣
= kt

m
+ C

ln

∣
∣
∣
∣

a + v
a − v

∣
∣
∣
∣
= 2akt

m
+ C1 = 2

√

kg

m
t + C1

a + v
a − v = C2e2t

√
kg/m .

Assuming v(0) = 0, we get C2 = 1. Thus

a + v = e2t
√

kg/m (a − v)
v
(

1+ e2t
√

kg/m
)

= a
(

e2t
√

kg/m − 1
)

=
√

mg

k

(

e2t
√

kg/m − 1
)

v =
√

mg

k

e2t
√

kg/m − 1

e2t
√

kg/m + 1

Clearly v →
√

mg

k
as t → ∞. This also follows from

setting
dv

dt
= 0 in the given differential equation.

46. The balance in the account after t years is y(t) and
y(0) = 1000. The balance must satisfy

dy

dt
= 0.1y − y2

1, 000, 000
dy

dt
= 105 y − y2

106
∫

dy

105 y − y2
=
∫

dt

106

1

105

∫ (
1

y
+ 1

105 − y

)

dy = t

106 −
C

105

ln |y| − ln |105 − y| = t

10
− C

105 − y

y
= eC−(t/10)

y = 105

eC−(t/10) + 1
.

Since y(0) = 1000, we have

1000 = y(0) = 105

eC + 1
⇒ C = ln 99,

and

y = 105

99e−t/10 + 1
.

The balance after 1 year is

y = 105

99e−1/10 + 1
≈ $1, 104.01.

As t →∞, the balance can grow to

lim
t→∞ y(t) = lim

t→∞
105

e(4.60−0.1t) + 1
= 105

0+ 1
= $100, 000.

For the account to grow to $50,000, t must satisfy

50, 000 = y(t) = 100, 000

99e−t/10 + 1
⇒ 99e−t/10 + 1 = 2

⇒ t = 10 ln 99 ≈ 46 years.

47. The hyperbolas xy = C satisfy the differential equation

y + x
dy

dx
= 0, or

dy

dx
= − y

x
.

Curves that intersect these hyperbolas at right angles

must therefore satisfy
dy

dx
= x

y
, or x dx = y dy, a sep-

arated equation with solutions x2 − y2 = C , which is
also a family of rectangular hyperbolas. (Both families
are degenerate at the origin for C = 0.)
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48. Let x(t) be the number of kg of salt in the
solution in the tank after t minutes. Thus,
x(0) = 50. Salt is coming into the tank at a rate of
10 g/L × 12 L/min = 0.12 kg/min. Since the contents
flow out at a rate of 10 L/min, the volume of the solu-
tion is increasing at 2 L/min and thus, at any time t , the
volume of the solution is 1000 + 2t L. Therefore the con-

centration of salt is
x(t)

1000+ 2t
L. Hence, salt is being

removed at a rate

x(t)

1000 + 2t
kg/L× 10 L/min = 5x(t)

500+ t
kg/min.

Therefore,
dx

dt
= 0.12 − 5x

500 + t
dx

dt
+ 5

500+ t
x = 0.12.

Let µ =
∫

5

500+ t
dt = 5 ln |500 + t | = ln(500 + t)5 for

t > 0. Then eµ = (500 + t)5, and

d

dt

[

(500 + t)5x
]

= (500 + t)5
dx

dy
+ 5(500 + t)4x

= (500 + t)5
(

dx

dy
+ 5x

500+ t

)

= 0.12(500 + t)5.

Hence,

(500 + t)5x = 0.12
∫

(500 + t)5 dt = 0.02(500 + t)6 + C

⇒ x = 0.02(500 + t)+ C(500+ t)−5.

Since x(0) = 50, we have C = 1.25× 1015 and

x = 0.02(500 + t)+ (1.25 × 1015)(500 + t)−5.

After 40 min, there will be

x = 0.02(540) + (1.25 × 1015)(540)−5 = 38.023 kg

of salt in the tank.

49. If µ(y)M(x, y) dx + µ(y)N(x, y) dy is exact, then

∂

∂y

(

µ(y)M(x, y)
)

= ∂

∂x

(

µ(y)N(x, y)
)

µ′(y)M + µ∂M

∂y
= µ∂N

∂x
µ′

µ
= 1

M

(
∂N

∂x
− ∂M

∂y

)

.

Thus M and N must be such that

1

M

(
∂N

∂x
− ∂M

∂y

)

depends only on y.

50. 2y2(x + y2) dx + xy(x + 6y2) dy = 0

(2xy2 + 2y4)µ(y) dx + (x2 y + 6xy3)µ(y) dy = 0
∂M

∂y
= (4xy + 8y3)µ(y)+ (2xy2 + 2y4)µ′(y)

∂N

∂x
= (2xy + 6y3)µ(y).

For exactness we require
(2xy2 + 2y4)µ′(y) = [(2xy + 6y3)− (4xy + 8y3)]µ(y)

y(2xy + 2y3)µ′(y) = −(2xy + 2y3)µ(y)

yµ′(y) = −µ(y) ⇒ µ(y) = 1

y

(2xy + 2y3) dx + (x2 + 6xy2) dy = 0

d(x2 y + 2xy3) = 0 ⇒ x2 y + 2xy3 = C.

51. Consider y dx − (2x + y3ey) dy = 0.

Here M = y, N = −2x − y3ey ,
∂M

∂y
= 1, and

∂N

∂x
= −2.

Thus

µ′

µ
= − 3

y
⇒ µ = 1

y3

1

y2
dx −

(
2x

y3
+ ey

)

dy = 0

d

(
x

y2 − ey
)

= 0

x

y2
− ey = C, or x − y2ey = Cy2.

52. If µ(xy) is an integrating factor for M dx + N dy = 0,
then

∂

∂y
(µM) = ∂

∂x
(µN), or

xµ′(xy)M + µ(xy)
∂M

∂y
= yµ′(xy)N + µ(xy)

∂N

∂x
.

Thus M and N will have to be such that the right-hand
side of the equation

µ′(xy)

µ(xy)
= 1

x M − yN

(
∂N

∂x
− ∂M

∂y

)

depends only on the product xy.
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53. For

(

x cos x + y2

x

)

dx −
(

x sin x

y
+ y

)

dy we have

M = x cos x + y2

x
, N = − x sin x

y
− y

∂M

∂y
= 2y

x
,

∂N

∂x
= − sin x

y
− x cos x

y
∂N

∂x
− ∂M

∂y
= −

(
sin x

y
+ x cos x

y
+ 2y

x

)

x M − yN = x2 cos x + y2 + x sin x + y2

1

x M − yN

(
∂N

∂x
− ∂M

∂y

)

= − 1

xy
.

Thus, an integrating factor is given by

µ′(t)
µ(t)

= −1

t
⇒ µ(t) = 1

t
.

We multiply the original equation by 1/(xy) to make it
exact:

(
cos x

y
+ y

x2

)

dx −
(

sin x

y2 +
1

x

)

dy = 0

d

(
sin x

y
− y

x

)

= 0

sin x

y
− y

x
= C.

The solution is x sin x − y2 = Cxy.

Section 17.5 Linear Differential Equations
with Constant Coefficients (page 934)

1. y ′′ + 7y ′ + 10y = 0

auxiliary eqn r2 + 7r + 10 = 0

(r + 5)(r + 2) = 0 ⇒ r = −5,−2

y = Ae−5t + Be−2t

2. y ′′ − 2y ′ − 3y = 0

auxiliary eqn r2 − 2r − 3 = 0 ⇒ r = −1, r = 3

y = Ae−t + Be3t

3. y ′′ + 2y ′ = 0

auxiliary eqn r2 + 2r = 0 ⇒ r = 0, −2

y = A + Be−2t

4. 4y ′′ − 4y ′ − 3y = 0

4r2 − 4r − 3 = 0⇒ (2r + 1)(2r − 3) = 0

Thus, r1 = − 1
2 , r2 = 3

2 , and y = Ae−(1/2)t + Be(3/2)t .

5. y ′′ + 8y ′ + 16y = 0

auxiliary eqn r2 + 8r + 16 = 0 ⇒ r = −4, −4

y = Ae−4t + Bte−4t

6. y ′′ − 2y ′ + y = 0

r2 − 2r + 1 = 0⇒ (r − 1)2 = 0

Thus, r = 1, 1, and y = Aet + Btet .

7. y ′′ − 6y ′ + 10y = 0

auxiliary eqn r2 − 6r + 10 = 0 ⇒ r = 3± i

y = Ae3t cos t + Be3t sin t

8. 9y ′′ + 6y ′ + y = 0

9r2 + 6r + 1 = 0⇒ (3r + 1)2 = 0

Thus, r = − 1
3 , − 1

3 , and y = Ae−(1/3)t + Bte−(1/3)t .

9. y ′′ + 2y ′ + 5y = 0

auxiliary eqn r2 + 2r + 5 = 0 ⇒ r = −1± 2i

y = Ae−t cos 2t + Be−t sin 2t

10. For y ′′ − 4y ′ + 5y = 0 the auxiliary equation is
r2 − 4r + 5 = 0, which has roots r = 2 ± i . Thus, the
general solution of the DE is y = Ae2t cos t + Be2t sin t .

11. For y ′′ + 2y ′ + 3y = 0 the auxiliary equation is
r2+2r +3 = 0, which has solutions r = −1±√2i . Thus
the general solution of the given equation is
y = Ae−t cos(

√
2t)+ Be−t sin(

√
2t).

12. Given that y ′′ + y ′ + y = 0, hence r2 + r + 1 = 0. Since
a = 1, b = 1 and c = 1, the discriminant is
D = b2 − 4ac = −3 < 0 and −(b/2a) = − 1

2 and

ω = √3/2. Thus, the general solution is

y = Ae−(1/2)t cos

(√
3

2
t

)

+ Be−(1/2)t sin

(√
3

2
t

)

.

13.

⎧

⎨

⎩

2y ′′ + 5y ′ − 3y = 0
y(0) = 1
y ′(0) = 0

The DE has auxiliary equation 2r2 + 5y − 3 = 0, with
roots r = 1

2 and r = −3. Thus y = Aet/2 + Be−3t .

Now 1 = y(0) = A + B, and 0 = y′(0) = A

2
− 3B.

Thus B = 1/7 and A = 6/7. The solution is

y = 6

7
et/2 + 1

7
e−3t .

14. Given that y ′′ + 10y′ + 25y = 0, hence
r2 + 10r + 25 = 0⇒ (r + 5)2 = 0⇒ r = −5. Thus,

y = Ae−5t + Bte−5t

y ′ = −5e−5t (A + Bt)+ Be−5t .

Since
0 = y(1) = Ae−5 + Be−5

2 = y ′(1) = −5e−5(A + B)+ Be−5,

we have A = −2e5 and B = 2e5.
Thus, y = −2e5e−5t + 2te5e−5t = 2(t − 1)e−5(t−1).
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15.

⎧

⎨

⎩

y ′′ + 4y ′ + 5y = 0
y(0) = 2
y ′(0) = 0

The auxiliary equation for the DE is r2 + 4r + 5 = 0,
which has roots r = −2± i . Thus

y = Ae−2t cos t + Be−2t sin t

y ′ = (−2Ae−2t + Be−2t) cos t − (Ae−2t + 2Be−2t ) sin t.

Now 2 = y(0) = A⇒ A = 2, and
2 = y ′(0) = −2A+ B ⇒ B = 6.
Therefore y = e−2t (2 cos t + 6 sin t).

16. The auxiliary equation r2 − (2 + ε)r + (1 + ε) factors
to (r − 1 − ε)(r − 1) = 0 and so has roots r = 1 + ε
and r = 1. Thus the DE y ′′ − (2 + ε)y ′ + (1 + ε)y = 0
has general solution y = Ae(1+ε)t + Bet . The function

yε(t) = e(1+ε)t − et

ε
is of this form with A = −B = 1/ε.

We have, substituting ε = h/t ,

lim
ε→0

yε(t) = lim
ε→0

e(1+ε)t − et

ε

= t lim
h→0

et+h − et

h

= t

(
d

dt
et
)

= t et

which is, along with et , a solution of the CASE II DE
y ′′ − 2y ′ + y = 0.

17. Given that a > 0, b > 0 and c > 0:
Case 1: If D = b2 − 4ac > 0 then the two roots are

r1,2 = −b ±√b2 − 4ac

2a
.

Since
b2 − 4ac < b2

±
√

b2 − 4ac < b

−b ±
√

b2 − 4ac < 0

therefore r1 and r2 are negative. The general solution is

y(t) = Aer1 t + Ber2t .

If t →∞, then er1t → 0 and er2t → 0.
Thus, lim

t→∞ y(t) = 0.

Case 2: If D = b2 − 4ac = 0 then the two equal roots
r1 = r2 = −b/(2a) are negative. The general solution is

y(t) = Aer1 t + Bter2t .

If t → ∞, then er1t → 0 and er2t → 0 at a faster rate
than Bt →∞. Thus, lim

t→∞ y(t) = 0.

Case 3: If D = b2 − 4ac < 0 then the general solution is

y = Ae−(b/2a)t cos(ωt)+ Be−(b/2a)t sin(ωt)

where ω =
√

4ac − b2

2a
. If t →∞, then the amplitude of

both terms Ae−(b/2a)t → 0 and Be−(b/2a)t → 0. Thus,
lim

t→∞ y(t) = 0.

18. The auxiliary equation ar2 + br + c = 0 has roots

r1 = −b −√D

2a
, r2 = −b +√D

2a
,

where D = b2 − 4ac. Note that
a(r2 − r1) =

√
D = −(2ar1 + b). If y = er1t u, then

y ′ = er1t (u′ + r1u), and y′′ = er1t (u′′ + 2r1u′ + r2
1u). Sub-

stituting these expressions into the DE ay′′+by ′ +cy = 0,
and simplifying, we obtain

er1t (au′′ + 2ar1u′ + bu′) = 0,

or, more simply, u′′ − (r2 − r1)u′ = 0. Putting v = u′
reduces this equation to first order:

v′ = (r2 − r1)v,

which has general solution v = Ce(r2−r1)t . Hence

u =
∫

Ce(r2−r1)t dt = Be(r2−r1)t + A,

and y = er1t u = Aer1 t + Ber2t .

19. y ′′′ − 4y ′′ + 3y ′ = 0
Auxiliary: r3 − 4r2 + 3r = 0

r(r − 1)(r − 3) = 0 ⇒ r = 0, 1, 3
General solution: y = C1 + C2et + C3e3t .

20. y(4) − 2y ′′ + y = 0
Auxiliary: r4 − 2r2 + 1 = 0

(r2 − 1)2 = 0 ⇒ r = −1,−1, 1, 1
General solution: y = C1e−t + C2te−t + C3et + C4tet .

21. y(4) + 2y ′′ + y = 0
Auxiliary: r4 + 2r2 + 1 = 0

(r2 + 1)2 = 0 ⇒ r = −i,−i, i, i
General solution:
y = C1 cos t + C2 sin t + C3t cos t + C4t sin t .

22. y(4) + 4y(3) + 6y ′′ + 4y ′ + y = 0
Auxiliary: r4 + 4r3 + 6r2 + 4r + 1 = 0

(r + 1)4 = 0 ⇒ r = −1,−1,−1,−1
General solution: y = e−t (C1 + C2t + C3t2 + C4t3).
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23. If y = e2t , then y′′′ − 2y ′ − 4y = e2t (8 − 4 − 4) = 0.
The auxiliary equation for the DE is r3 − 2r − 4 = 0,
for which we already know that r = 2 is a root. Dividing
the left side by r − 2, we obtain the quotient r2 + 2r + 2.
Hence the other two auxiliary roots are −1± i .
General solution: y = C1e2t + C2e−t cos t + C3e−t sin t .

24. Aux. eqn: (r2 − r − 2)2(r2 − 4)2 = 0

(r + 1)2(r − 2)2(r − 2)2(r + 2)2 = 0

r = 2, 2, 2, 2,−1,−1,−2,−2.
The general solution is

y = e2t (C1 + C2t + C3t2 + C4t3)+ e−t (C5 + C6t)

+ e−2t (C7 + C8t).

25. x2 y ′′ − xy ′ + y = 0

aux: r(r − 1)− r + 1 = 0

r2 − 2r + 1 = 0

(r − 1)2 = 0, r = 1, 1.

Thus y = Ax + Bx ln x .

26. x2 y ′′ − xy ′ − 3y = 0

r(r − 1)− r − 3 = 0⇒ r2 − 2r − 3 = 0

⇒(r − 3)(r + 1) = 0⇒ r1 = −1 and r2 = 3

Thus, y = Ax−1 + Bx3.

27. x2 y ′′ + xy ′ − y = 0

aux: r(r − 1)+ r − 1 = 0 ⇒ r = ±1

y = Ax + B

x
.

28. Consider x2 y ′′ − xy ′ + 5y = 0. Since a = 1, b = −1, and
c = 5, therefore (b−a)2 < 4ac. Then k = (a−b)/2a = 1
and ω2 = 4. Thus, the general solution is
y = Ax cos(2 ln x)+ Bx sin(2 ln x).

29. x2 y ′′ + xy ′ = 0

aux: r(r − 1)+ r = 0 ⇒ r = 0, 0.

Thus y = A+ B ln x .

30. Given that x2 y ′′ + xy ′ + y = 0. Since a = 1, b = 1, c = 1
therefore (b − a)2 < 4ac. Then k = (a − b)/2a = 0 and
ω2 = 1. Thus, the general solution is
y = A cos(ln x)+ B sin(ln x).

31. x3 y ′′′ + xy ′ − y = 0.
Trying y = xr leads to the auxiliary equation

r(r − 1)(r − 2)+ r − 1 = 0

r3 − 3r2 + 3r − 1 = 0

(r − 1)3 = 0 ⇒ r = 1, 1, 1.

Thus y = x is a solution. To find the general solution,
try y = xv(x). Then

y ′ = xv′ + v, y ′′ = xv′′ + 2v′, y ′′′ = xv′′′ + 3v′′.

Now x3 y ′′′ + xy ′ − y = x4v′′′ + 3x3v′′ + x2v′ + xv − xv

= x2(x2v′′′ + 3xv′′ + v′),
and y is a solution of the given equation if v′ = w is
a solution of x2w′′ + 3xw′ + w = 0. This equation
has auxiliary equation r(r − 1) + 3r + 1 = 0, that is
(r + 1)2 = 0, so its solutions are

v′ = w = C2

x
+ 2C3 ln x

x
v = C1 + C2 ln x + C3(ln x)2.

The general solution of the given equation is, therefore,

y = C1x + C2x ln x + C3x(ln x)2.

32. Because y ′′ + 4y = 0, therefore y = A cos 2t + B sin 2t .
Now

y(0) = 2⇒ A = 2,

y ′(0) = −5⇒ B = − 5
2 .

Thus, y = 2 cos 2t − 5
2 sin 2t .

circular frequency = ω = 2, frequency =
ω

2π
= 1

π
≈ 0.318

period =
2π

ω
= π ≈ 3.14

amplitude =
√

(2)2 + (− 5
2 )

2 	 3.20

33.

⎧

⎨

⎩

y ′′ + 100y = 0
y(0) = 0
y ′(0) = 3

y = A cos(10t)+ B sin(10t)

A = y(0) = 0, 10B = y ′(0) = 3

y = 3

10
sin(10t)

34. For y ′′ + y = 0, we have y = A sin t + B cos t . Since,

y(2) = 3 = A sin 2+ B cos 2

y ′(2) = −4 = A cos 2− B sin 2,

therefore
A = 3 sin 2− 4 cos 2

B = 4 sin 2+ 3 cos 2.

Thus,

y = (3 sin 2− 4 cos 2) sin t + (4 sin 2+ 3 cos 2) cos t

= 3 cos(t − 2)− 4 sin(t − 2).
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35.

⎧

⎨

⎩

y ′′ + ω2 y = 0
y(a) = A
y ′(a) = B

y = A cos
(

ω(t − a)
)

+ B

ω
sin
(

ω(t − a)
)

36. y = A cos
(

ω(t − c)
)

+B sin
(

ω(t − c)
)

(easy to calculate y′′ + ω2 y = 0)

y = A
(

cos(ωt) cos(ωc)+ sin(ωt) sin(ωc)
)

+B
(

sin(ωt) cos(ωc)− cos(ωt) sin(ωc)
)

=
(

A cos(ωc)−B sin(ωc)
)

cosωt

+
(

A sin(ωc)+B cos(ωc)
)

sinωt

= A cosωt + B sinωt
where A = A cos(ωc)−B sin(ωc) and
B =A sin(ωc)+B cos(ωc)

37. If y = A cosωt + B sinωt then

y ′′ + ω2 y = −Aω2 cosωt − Bω2 sinωt

+ ω2(A cosωt + B sinωt) = 0

for all t . So y is a solution of (†).

38. If f (t) is any solution of (†) then f ′′(t) = −ω2 f (t) for
all t . Thus,

d

dt

[

ω2
(

f (t)
)2 +

(

f ′(t)
)2]

= 2ω2 f (t) f ′(t)+ 2 f ′(t) f ′′(t)
= 2ω2 f (t) f ′(t)− 2ω2 f (t) f ′(t) = 0

for all t . Thus, ω2
(

f (t)
)2 +

(

f ′(t)
)2

is constant. (This

can be interpreted as a conservation of energy statement.)

39. If g(t) satisfies (†) and also g(0) = g′(0) = 0, then by
Exercise 20,

ω2
(

g(t)
)2 +

(

g′(t)
)2

= ω2
(

g(0)
)2 +

(

g′(0)
)2 = 0.

Since a sum of squares cannot vanish unless each term
vanishes, g(t) = 0 for all t .

40. If f (t) is any solution of (†), let
g(t) = f (t) − A cosωt − B sinωt where A = f (0)
and Bω = f ′(0). Then g is also solution of (†). Also
g(0) = f (0) − A = 0 and g′(0) = f ′(0) − Bω = 0.
Thus, g(t) = 0 for all t by Exercise 24, and therefore
f (x) = A cosωt + B sinωt . Thus, it is proved that every
solution of (†) is of this form.

41. We are given that k = − b

2a
and ω2 = 4ac − b2

4a2
which is

positive for Case III. If y = ekt u, then

y ′ = ekt
(

u′ + ku
)

y ′′ = ekt
(

u′′ + 2ku′ + k2u
)

.

Substituting into ay′′ + by ′ + cy = 0 leads to

0 = ekt
(

au′′ + (2ka + b)u′ + (ak2 + bk + c)u
)

= ekt
(

au′′ + 0+ ((b2/(4a) − (b2/(2a)+ c)u
)

= a ekt
(

u′′ + ω2u
)

.

Thus u satisfies u′′ + ω2u = 0, which has general solution

u = A cos(ωt)+ B sin(ωt)

by the previous problem. Therefore ay′′ + by ′ + cy = 0
has general solution

y = Aekt cos(ωt)+ Bekt sin(ωt).

42. From Example 9, the spring constant is
k = 9 × 104 gm/sec2. For a frequency of 10 Hz (i.e., a
circular frequency ω = 20π rad/sec.), a mass m satisfy-
ing
√

k/m = 20π should be used. So,

m = k

400π2 =
9× 104

400π2 = 22.8 gm.

The motion is determined by

⎧

⎨

⎩

y ′′ + 400π2 y = 0
y(0) = −1
y ′(0) = 2

therefore, y = A cos 20π t + B sin 20π t and

y(0) = −1⇒ A = −1

y ′(0) = 2⇒ B = 2

20π
= 1

10π
.

Thus, y = − cos 20π t + 1

10π
sin 20π t , with y in cm

and t in second, gives the displacement at time t . The

amplitude is

√

(−1)2 + ( 1

10π
)2 ≈ 1.0005 cm.
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43. Frequency = ω

2π
, ω2 = k

m
(k = spring const, m = mass)

Since the spring does not change, ω2m = k (constant)
For m = 400 gm, ω = 2π(24) (frequency = 24 Hz)

If m = 900 gm, then ω2 = 4π2(24)2(400)

900

so ω = 2π × 24× 2

3
= 32π .

Thus frequency =
32π

2π
= 16 Hz

For m = 100 gm, ω = 4π2(24)2400

100
so ω = 96π and frequency =

ω

2π
= 48 Hz.

44. Using the addition identities for cosine and sine,

y = ekt [A cosω(t − t0)B sinω(t − t0)]

= ekt [A cosωt cosωt0 + A sinωt sinωt0
+ B sinωt cosωt0 − B cosωt sinωt0]

= ekt [A1 cosωt + B1 sinωt],

where A1 = A cosωt0 − B sinωt0 and
B1 = A sinωt0 + B cosωt0. Under the conditions of
this problem we know that ekt cosωt and ekt sinωt are
independent solutions of ay′′ + by ′ + cy = 0, so our func-
tion y must also be a solution, and, since it involves two
arbitrary constants, it is a general solution.

45. Expanding the hyperbolic functions in terms of exponen-
tials,

y = ekt [A coshω(t − t0)B sinhω(t − t0)]

= ekt
[

A

2
eω(t−t0) + A

2
e−ω(t−t0)

+ B

2
eω(t−t0) − B

2
e−ω(t−t0)

]

= A1e(k+ω)t + B1e(k−ω)t

where A1 = (A/2)e−ωt0 + (B/2)e−ωt0 and
B1 = (A/2)eωt0 − (B/2)eωt0 . Under the conditions of
this problem we know that Rr = k ± ω are the two real
roots of the auxiliary equation ar2+br+c = 0, so e(k±ω)t
are independent solutions of ay′′ + by ′ + cy = 0, and our
function y must also be a solution. Since it involves two
arbitrary constants, it is a general solution.

46.

⎧

⎨

⎩

y ′′ + 2y ′ + 5y = 0
y(3) = 2
y ′(3) = 0

The DE has auxiliary equation r2 + 2r + 5 = 0 with
roots r = −1 ± 2i . By the second previous prob-
lem, a general solution can be expressed in the form
y = e−t [A cos 2(t − 3)+ B sin 2(t − 3)] for which

y ′ = −e−t [A cos 2(t − 3)+ B sin 2(t − 3)]

+ e−t [−2A sin 2(t − 3)+ 2B cos 2(t − 3)].

The initial conditions give

2 = y(3) = e−3 A

0 = y ′(3) = −e−3(A + 2B)

Thus A = 2e3 and B = −A/2 = −e3. The IVP has
solution

y = e3−t [2 cos 2(t − 3)− sin 2(t − 3)].

47.

⎧

⎨

⎩

y ′′ + 4y ′ + 3y = 0
y(3) = 1
y ′(3) = 0

The DE has auxiliary equation r2 + 4r + 3 = 0 with roots
r = −2 + 1 = −1 and r = −2 − 1 = −3 (i.e. k ± ω,
where k = −2 and ω = 1). By the second previous
problem, a general solution can be expressed in the form
y = e−2t [A cosh(t − 3)+ B sinh(t − 3)] for which

y ′ = −2e−2t [A cosh(t − 3)+ B sinh(t − 3)]

+ e−2t [A sinh(t − 3)+ B cosh(t − 3)].

The initial conditions give

1 = y(3) = e−6 A

0 = y ′(3) = −e−6(−2A + B)

Thus A = e6 and B = 2A = 2e6. The IVP has solution

y = e6−2t [cosh(t − 3)+ 2 sinh(t − 3)].

48. Let u(x) = c − k2 y(x). Then u(0) = c − k2a.
Also u′(x) = −k2 y ′(x), so u′(0) = −k2b. We have

u′′(x) = −k2 y ′′(x) = −k2
(

c − k2 y(x)
)

= −k2u(x)

This IVP for the equation of simple harmonic motion has
solution

u(x) = (c − k2a) cos(kx) − kb sin(kx)

so that

y(x) = 1

k2

(

c − u(x)
)

= c

k2

(

c − (c − k2a) cos(kx) + kb sin(kx)
)

= c

k2 (1 − cos(kx) + a cos(kx) + b

k
sin(kx).
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49. Since x ′(0) = 0 and x(0) = 1 > 1/5, the motion will be
governed by x ′′ = −x + (1/5) until such time t > 0 when
x ′(t) = 0 again.

Let u = x − (1/5). Then u′′ = x ′′ = −(x − 1/5) = −u,
u(0) = 4/5, and u′(0) = x ′(0) = 0. This sim-
ple harmonic motion initial-value problem has solution
u(t) = (4/5) cos t . Thus x(t) = (4/5) cos t + (1/4) and
x ′(t) = u′(t) = −(4/5) sin t . These formulas remain
valid until t = π when x′(t) becomes 0 again. Note that
x(π) = −(4/5)+ (1/5) = −(3/5).
Since x(π) < −(1/5), the motion for t > π will be
governed by x ′′ = −x − (1/5) until such time t > π

when x ′(t) = 0 again.

Let v = x + (1/5). Then v′′ = x ′′ = −(x + 1/5) = −v,
v(π) = −(3/5) + (1/5) = −(2/5), and
v′(π) = x ′(π) = 0. Thius initial-value problem has
solution v(t) = −(2/5) cos(t − π) = (2/5) cos t , so that
x(t) = (2/5) cos t − (1/5) and x ′(t) = −(2/5) sin t . These
formulas remain valid for t ≥ π until t = 2π when x′
becomes 0 again. We have x(2π) = (2/5) − (1/5) = 1/5
and x ′(2π) = 0.

The conditions for stopping the motion are met at
t = 2π ; the mass remains at rest thereafter. Thus

x(t) =

⎧

⎪⎨

⎪⎩

4
5 cos t + 1

5 if 0 ≤ t ≤ π
2
5 cos t − 1

5 if π < t ≤ 2π
1
5 if t > 2π

Review Exercises 17 (page 945)

SOLUTIONS FOR EXERCISES 1–26 ARE IN
CHAPTER 17

27.
dy

dx
= 3y

x − 1
⇒
∫

dy

y
= 3

dx

x − 1

⇒ ln |y| = ln |x − 1|3 + ln |C |
⇒ y = C(x − 1)3.

Since y = 4 when x = 2, we have 4 = C(2− 1)3 = C , so
the equation of the curve is y = 4(x − 1)3.

28. The ellipses 3x2 + 4y2 = C all satisfy the differential
equation

6x + 8y
dy

dx
= 0, or

dy

dx
= −3x

4y
.

A family of curves that intersect these ellipses at right

angles must therefore have slopes given by
dy

dx
= 4y

3x
.

Thus

3
∫

dy

y
= 4

∫
dx

x

3 ln |y| = 4 ln |x | + ln |C |.

The family is given by y3 = Cx4.

29. [(x + A)ex sin y + cos y] dx + x[ex cos y + B sin y] dy = 0
is M dx + N dy. We have

∂M

∂y
= (x + A)ex cos y − sin y

∂N

∂x
= ex cos y + B sin y + xex cos y.

These expressions are equal (and the DE is exact) if
A = 1 and B = −1. If so, the left side of the DE is
dφ(x, y), where

φ(x, y) = xex sin y + x cos y.

The general solution is xex sin y + x cos y = C .

30. (x2 + 3y2) dx + xy dy = 0. Multiply by xn :

xn(x2 + 3y2) dx + xn+1y dy = 0

is exact provided 6xn y = (n + 1)xn y, that is, provided
n = 5. In this case the left side is dφ, where

φ(x, y) = 1

2
x6 y2 + 1

8
x8.

The general solution of the given DE is

4x6 y2 + x8 = C.

31. x2 y ′′ − x(2+ x cot x)y ′ + (2+ x cot x)y = 0
If y = x , then y′ = 1 and y′′ = 0, so the DE is clearly
satisfied by y. To find a second, independent solution, try
y = xv(x). Then y ′ = v+ xv′, and y′′ = 2v′ + xv′′. Sub-
stituting these expressions into the given DE, we obtain

2x2v′ + x3v′′ − (xv + x2v′)(2 + x cot x)

+ xv(2 + x cot x) = 0

x3v′′ − x3v′ cot x = 0,

or, putting w = v′, w′ = (cot x)w, that is,

dw

w
= cos x dx

sin x
lnw = ln sin x + ln C2

v′ = w = C2 sin x ⇒ v = C1 − C2 cos x .

A second solution of the DE is x cos x , and the general
solution is

y = C1x + C2x cos x .

659



REVIEW EXERCISES 17 (PAGE 945) R. A. ADAMS: CALCULUS

32. x2 y ′′ − x(2+ x cot x)y ′ + (2+ x cot x)y = x3 sin x
Look for a particular solution of the form
y = xu1(x)+ x cos xu2(x), where

xu′1 + x cos xu′2 = 0

u′1 + (cos x − x sin x)u′2 = x sin x .

Divide the first equation by x and subtract from the sec-
ond equation to get

−x sin xu′2 = x sin x .

Thus u′2 = −1 and u2 = −x . The first equation now
gives u′1 = cos x , so that u1 = sin x . The general solution
of the DE is

y = x sin x − x2 cos x + C1x + C2x cos x .

33. Suppose y ′ = f (x, y) and y(x0) = y0, where f (x, y) is
continuous on the whole xy-plane and satisfies
| f (x, y)| ≤ K there. By the Fundamental Theorem of
Calculus, we have

y(x)− y0 = y(x)− y(x0)

=
∫ x

x0

y ′(t) dt =
∫ x

x0

f
(

t, y(t)
)

dt.

Therefore,
|y(x)− y0| ≤ K |x − x0|.

Thus y(x) is bounded above and below by the lines
y = y0± K (x − x0), and cannot have a vertical asymptote
anywhere.

Remark: we don’t seem to have needed the continuity of
∂ f/∂y, only the continuity of f (to enable the use of the
Fundamental Theorem).
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APPENDICES

Appendix I. Complex Numbers
(page A-10)

1. z = −5+ 2i, Re(z) = −5, Im(z) = 2
y

x

z = −5+ 2i

z = −6

z = −π i

z = 4− i

z-plane

Fig. .1

2. z = 4− i, Re(z) = 4, Im(z) = −1

3. z = −π i, Re(z) = 0, Im(z) = −π
4. z = −6, Re(z) = −6, Im(z) = 0

5. z = −1+ i, |z| = √2, Arg (z) = 3π/4

z = √2 (cos(3π/4)+ i sin(3π/4))

6. z = −2, |z| = 2, Arg (z) = π
z = 2(cos π + i sinπ)

7. z = 3i, |z| = 3, Arg (z) = π/2
z = 3(cos(π/2)+ i sin(π/2))

8. z = −5i, |z| = 5, Arg (z) = −π/2
z = 5(cos(−π/2)+ i sin(−π/2))

9. z = 1 + 2i, |z| = √5, θ = Arg (z) = tan−12

z = √5(cos θ + i sin θ)

10. z = −2+ i, |z| = √5, θ = Arg (z) = π − tan−1(1/2)

z = √5(cos θ + i sin θ)

11. z = −3− 4i, |z| = 5, θ = Arg (z) = −π + tan−1(4/3)

z = 5(cos θ + i sin θ)

12. z = 3 − 4i, |z| = 5, θ = Arg (z) = −tan−1(4/3)

z = 5(cos θ + i sin θ)

13. z = √3− i, |z| = 2, Arg (z) = −π/6
z = 2(cos(−π/6)+ i sin(−π/6))

14. z = −√3− 3i, |z| = 2
√

3, Arg (z) = −2π/3

z = 2
√

3(cos(−2π/3)+ i sin(−2π/3))

15. z = 3 cos
4π

5
+ 3i sin

4π

5

|z| = 3, Arg (z) = 4π

5

16. If Arg (z) = 3π

4
and Arg (w) = π

2
, then

arg (zw) = 3π

4
+ π

2
= 5π

4
, so

Arg (zw) = 5π

4
− 2π = −3π

4
.

17. If Arg (z) = −5π

6
and Arg (w) = π

4
, then

arg (z/w) = −5π

6
− π

4
= −13π

12
, so

Arg (z/w) = −13π

12
+ 2π = 11π

12
.

18. |z| = 2, arg (z) = π ⇒ z = 2(cosπ + i sinπ) = −2

19. |z| = 5, θ = arg (z) = π ⇒ sin θ = 3/5, cos θ = 4/5

z = 4 + 3i

20. |z| = 1, arg (z) = 3π

4
⇒ z =

(

cos
3π

4
+ i sin

3π

4

)

⇒ z = − 1√
2
+ 1√

2
i

21. |z| = π, arg (z) = π

6
⇒ z = π

(

cos
π

6
+ i sin

π

6

)

⇒ z = π
√

3

2
+ π

2
i

22. |z| = 0⇒ z = 0 for any value of arg (z)

23. |z| = 1

2
, arg (z) = −π

3
⇒ z = 1

2

(

cos
π

3
− i sin

π

3

)

⇒ z = 1

4
−
√

3

4
i

24. 5+ 3i = 5− 3i

25. −3− 5i = −3+ 5i

26. 4i = −4i

27. 2− i = 2+ i

28. |z| = 2 represents all points on the circle of radius 2
centred at the origin.

29. |z| ≤ 2 represents all points in the closed disk of radius 2
centred at the origin.

30. |z − 2i | ≤ 3 represents all points in the closed disk of
radius 3 centred at the point 2i .

31. |z − 3+ 4i | ≤ 5 represents all points in the closed disk of
radius 5 centred at the point 3− 4i .

32. arg (z) = π/3 represents all points on the ray from the
origin in the first quadrant, making angle 60◦ with the
positive direction of the real axis.
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33. π ≤ arg (z) ≤ 7π/4 represents the closed wedge-shaped
region in the third and fourth quadrants bounded by the
ray from the origin to −∞ on the real axis and the ray
from the origin making angle −45◦ with the positive
direction of the real axis.

34. (2 + 5i )+ (3− i ) = 5+ 4i

35. i − (3− 2i )+ (7 − 3i ) = −3+ 7 + i + 2i − 3i = 4

36. (4 + i )(4− i ) = 16− i2 = 17

37. (1 + i )(2− 3i ) = 2+ 2i − 3i − 3i2 = 5− i

38. (a + bi )(2a − bi) = (a + bi )(2a + bi ) = 2a2 − b2 + 3abi

39. (2 + i )3 = 8+ 12i + 6i2 + i 3 = 2+ 11i

40.
2− i

2+ i
= (2− i )2

4− i2 =
3− 4i

5

41.
1+ 3i

2− i
= (1 + 3i )(2 + i )

4− i2 = −1+ 7i

5

42.
1+ i

i (2+ 3i )
= 1+ i

−3+ 2i
= (1+ i )(−3− 2i )

9+ 4
= −1− 5i

13

43.
(1 + 2i )(2 − 3i )

(2 − i )(3 + 2i )
= 8+ i

8+ i
= 1

44. If z = x + yi and w = u + vi , where x , y, u, and v are
real, then

z +w = x + u + (y + v)i
= x + u − (y + v)i = x − yi + u − vi = z + w.

45. Using the fact that |zw| = |z||w|, we have

( z

w

)

=
(

zw

|w|2
)

= zw

|w|2 =
zw

ww
= z

w
.

46. z = 3+ i
√

3 = 2
√

3
(

cos
π

6
+ i sin

π

6

)

w = −1+ i
√

3 = 2

(

cos
2π

3
+ i sin

2π

3

)

zw = 4
√

3

(

cos
5π

6
+ i sin

5π

6

)

z

w
= √3

(

cos
−π
2
+ i sin

−π
2

)

= −i
√

3

47. z = −1+ i = √2

(

cos
3π

4
+ i sin

3π

4

)

w = 3i = 3
(

cos
π

2
+ i sin

π

2

)

zw = 3
√

2

(

cos
5π

4
+ i sin

5π

4

)

= −3− 3i

z

w
=
√

2

3

(

cos
π

4
+ i sin

π

4

)

= 1

3
+ 1

3
i

48. cos(3θ)+ i sin(3θ) = (cos θ + i sin θ)3

= cos3 θ + 3i cos2 θ sin θ − 3 cos θ sin2 θ − i sin3 θ
Thus

cos(3θ) = cos3 θ − 3 cos θ sin2 θ = 4 cos3 θ − 3 cos θ

sin(3θ) = 3 cos2 θ sin θ − sin3 θ = 3 sin θ − 4 sin3 θ.

49. a) z = 2/z can be rewritten |z|2 = zz = 2, so is
satisfied by all numbers z on the circle of radius

√
2

centred at the origin.

b) z = −2/z can be rewritten |z|2 = zz = −2, which
has no solutions since the square of |z| is nonnega-
tive for all complex z.

50. If z = w = −1, then zw = 1, so
√

zw = 1. But if we
use
√

z = √−1 = i and the same value for
√
w, then√

z
√
w = i 2 = −1 �= √zw.

51. The three cube roots of −1 = cosπ + i sinπ are of the
form cos θ+i sin θ where θ = π/3, θ = π , and θ = 5π/3.
Thus they are

1

2
+ i

√
3

2
, −1,

1

2
− i

√
3

2
.

52. The three cube roots of −8i = 8

(

cos
3π

2
+ i sin

3π

2

)

are of the form 2(cos θ + i sin θ) where θ = π/2,
θ = 7π/6, and
θ = 11π/6. Thus they are

2i, −√3− i,
√

3− i.

53. The three cube

roots of −1 + i = √2

(

cos
3π

4
+ i sin

3π

4

)

are of the

form 21/6(cos θ + i sin θ) where θ = π/4, θ = 11π/12,
and θ = 19π/12.

54. The four fourth roots of 4 = 4(cos 0 + i sin 0) are of the
form

√
2(cos θ + i sin θ) where θ = 0, θ = π/2, π , and

θ = 3π/2. Thus they are
√

2, i
√

2, −√2, and −i
√

2.

55. The equation z4 + 1 − i
√

3 = 0 has solutions that are the

four fourth roots of −1 + i
√

3 = 2

(

cos
2π

3
+ i sin

2π

3

)

.

Thus they are of the form 21/4(cos θ + i sin θ), where
θ = π/6, 2π/3, 7π/6, and 5π/3. They are the complex
numbers

±21/4

(√
3

2
+ 1

2
i

)

, ±21/4

(

1

2
−
√

3

2
i

)

.
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56. The equation z5 + a5 = 0 (a > 0) has solutions that are
the five fifth roots of −a5 = a (cosπ + i sinπ); they are
of the form a(cos θ + i sin θ), where θ = π/5, 3π/5, π ,
7π/5, and 9π/5.

57. The n nth roots of unity are

ω1 = 1

ω2 = cos
2π

n
+ i sin

2π

n

ω3 = cos
4π

n
+ i sin

4π

n
= ω2

2

ω4 = cos
6π

n
+ i sin

6π

n
= ω3

2

...

ωn = cos
2(n − 1)π

n
+ i sin

2(n − 1)π

n
= ωn−1

2 .

Hence

ω1 + ω2 + ω3 + · · · + ωn = 1 + ω2 + ω2
2 + · · · + ωn−1

2

= 1− ωn
2

1 − ω2
= 0

1 − ω2
= 0.

Appendix II. Complex Functions
(page A-19)

In Solutions 1–12, z = x + yi and w = u + vi , where x ,
y, u, and v are real.

1. The function w = z transforms the closed rectangle
0 ≤ x ≤ 1, 0 ≤ y ≤ 2 to the closed rectangle 0 ≤ u ≤ 1,
−2 ≤ v ≤ 0.

2. The function w = z transforms the line x + y = 1 to the
line u − v = 1.

3. The function w = z2 transforms the closed annular sector
1 ≤ |z| ≤ 2, π/2 ≤ arg (z) ≤ 3π/4 to the closed annular
sector 1 ≤ |w| ≤ 4, π ≤ arg (w) ≤ 3π/2.

4. The function w = z3 transforms the closed quarter-
circular disk 0 ≤ |z| ≤ 2, 0 ≤ arg (z) ≤ π/2 to the closed
three-quarter disk 0 ≤ |w| ≤ 8, 0 ≤ arg (w) ≤ 3π/2.

5. The function w = 1/z = z/|z|2 transforms the closed
quarter-circular disk 0 ≤ |z| ≤ 2, 0 ≤ arg (z) ≤ π/2
to the closed region lying on or outside the circle
|w| = 1/2 and in the fourth quadrant, that is, having
−π/2 ≤ arg (w) ≤ 0.

6. The function w = −i z rotates the z-plane −90◦, so trans-
forms the wedge π/4 ≤ arg (z) ≤ π/3 to the wedge
−π/4 ≤ arg (z) ≤ −π/6.

7. The function w = √z transforms the ray arg (z) = −π/3
(that is, Arg (z) = 5π/3) to the ray arg (w) = 5π/6.

8. The function w = z2 = x2 − y2 + 2xyi transforms the
line x = 1 to u = 1 − y2, v = 2y, which is the parabola
v2 = 4 − 4u with vertex at w = 1, opening to the left.

9. The function w = z2 = x2 − y2 + 2xyi transforms the
line y = 1 to u = x2 − 1, v = 2x , which is the parabola
v2 = 4u + 4 with vertex at w = −1 and opening to the
right.

10. The function w = 1/z = (x − yi )/(x2 + y2) transforms
the line x = 1 to the curve given parametrically by

u = 1

1+ y2 , v = −y

1+ y2 .

This curve is, in fact, a circle,

u2 + v2 = 1+ y2

(1 + y2)2
= u,

with centre w = 1/2 and radius 1/2.

11. The function w = ez = ex cos y + i ex sin y transforms
the horizontal strip −∞ < x < ∞, π/4 ≤ y ≤ π/2 to
the wedge π/4 ≤ arg (w) ≤ π/2, or, equivalently, u ≥ 0,
v ≥ u.

12. The function w = eiz = e−y(cos x + i sin x) transforms
the vertical half-strip 0 < x < π/2, 0 < y < ∞ to the
first-quadrant part of the unit open disk |w| = e−y < 1,
0 < arg (w) = x < π/2, that is u > 0, v > 0, u2+v2 < 1.

13. f (z) = z2 = (x + yi )2 = x2 − y2 + 2xyi

u = x2 − y2, v = 2xy
∂u

∂x
= 2x = ∂v

∂y
,

∂u

∂y
= −2y = − ∂v

∂x

f ′(z) = ∂u

∂x
+ i

∂v

∂x
= 2x + 2yi = 2z.

14. f (z) = z3 = (x + yi )3 = x3 − 3xy2 + (3x2y − y3)i

u = x3 − 3xy2, v = 3x2y − y3

∂u

∂x
= 3(x2 − y2) = ∂v

∂y
,

∂u

∂y
= −6xy = − ∂v

∂x

f ′(z) = ∂u

∂x
+ i

∂v

∂x
= 3(x2 − y2 + 2xyi ) = 3z2.

15. f (z) = 1

z
= x − yi

x2 + y2

u = x

x2 + y2 , v = −y

x2 + y2

∂u

∂x
= y2 − x2

(x2 + y2)2
= ∂v

∂y
,

∂u

∂y
= −2xy

(x2 + y2)2
= − ∂v

∂x

f ′(z) = ∂u

∂x
+ i

∂v

∂x
= −(x

2 − y2)+ 2xyi

(x2 + y2)2
= −(z)

2

(zz)2
= − 1

z2 .
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16. f (z) = ez2 = ex2−y2
(cos(2xy)+ i sin(2xy))

u = ex2−y2
cos(2xy), v = ex2−y2

sin(2xy)
∂u

∂x
= ex2−y2

(2x cos(2xy)− 2y sin(2xy)) = ∂v

∂y
∂u

∂y
= −ex2−y2

(2y cos(2xy)+ 2x sin(2xy)) = − ∂v
∂x

f ′(z) = ∂u

∂x
+ i

∂v

∂x

= ex2−y2
[2x cos(2xy)− 2y sin(2xy)

+ i (2y cos(2xy)+ 2x sin(2xy))]

= (2x + 2yi )ex2−y2
(cos(2xy)+ i sin(2xy)) = 2zez2

.

17. eyi = cos y + i sin y (for real y). Replacing y by −y, we
get e−yi = cos y − i sin y (since cos is even and sin is
odd). Adding and subtracting these two formulas gives

eyi + e−yi = 2 cos y, eyi − e−yi = 2i sin y.

Thus cos y = eyi + e−yi

2
and sin y = eyi − e−yi

2i
.

18. ez+2π i = ex(cos(y + 2π)+ i sin(y + 2π))

= ex(cos y + i sin y) = ez .

Thus ez is periodic with period 2π i . So is e−z = 1/ez .
Since ei(z+2π) = ezi+2π i = ezi , therefore ezi and also
e−zi are periodic with period 2π . Hence

cos z = ezi + e−zi

2
and sin z = ezi − e−zi

2i

are periodic with period 2π , and

cosh z = ez + e−z

2
and sinh z = ez − e−z

2

are periodic with period 2π i .

19.
d

dz
cos z = d

dz

ezi + e−zi

2
= i ezi − e−zi

2
= − sin z

d

dz
sin z = d

dz

ezi − e−zi

2i
= i ezi + e−zi

2i
= cos z

d

dz
cosh z = d

dz

ez + e−z

2
= ez − e−z

2
= sinh z

d

dz
sinh z = d

dz

ez − e−z

2
= ez + e−z

2
= cosh z

20. cosh(i z) = eiz + e−i z

2
= cosh z

−i sinh(i z) = 1

i

eiz − e−i z

2
= sin z

cos(i z) = e−z + ez

2
= cosh z

sin(i z) = e−z − ez

2i
= i
−e−z + ez

2
= i sinh z

21. cos z = 0⇔ ezi = −e−zi ⇔ e2zi = −1

⇔ e−2y[cos(2x)+ i sin(2x)] = −1

⇔ sin(2x) = 0, e−2y cos(2x) = −1

⇔ y = 0, cos(2x) = −1

=⇔ y = 0, x = ±π
2
, ±3π

2
, . . .

Thus the only complex zeros of cos z are its real zeros at
z = (2n + 1)π/2 for integers n.

22. sin z = 0⇔ ezi = e−zi ⇔ e2zi = 1

⇔ e−2y[cos(2x)+ i sin(2x)] = 1

⇔ sin(2x) = 0, e−2y cos(2x) = 1

⇔ y = 0, cos(2x) = 1

=⇔ y = 0, x = 0,±π, ±2π, . . .

Thus the only complex zeros of sin z are its real zeros at
z = nπ for integers n.

23. By Exercises 20 and 21, cosh z = 0 if and only if
cos(i z) = 0, that is, if and only if z = (2n + 1)π i/2
for integer n.
Similarly, sinh z = 0 if and only if sin(i z) = 0, that is, if
and only if z = nπ i for integer n.

24. ez = ex+yi = ex cos y + i ex sin y

e−z = e−x−yi = e−x cos y − e−x sin y

cosh z = ez + e−z

2
= ex + e−x

2
cos y + i

ex − e−x

2
sin y

= cosh x cos y + i sinh x sin y

Re(cosh z) = cosh x cos y, Im(cosh z) = sinh x sin y.

25. sinh z = ez − e−z

2
= ex − e−x

2
cos y + i

ex + e−x

2
sin y

= sinh x cos y + i cosh x sin y

Re(sinh z) = sinh x cos y, Im(cosh z) = cosh x sin y.

26. eiz = e−y+xi = e−y cos x + i e−y sin x

e−i z = ey−xi = ey cos x − i ey sin x

cos z = eiz + e−i z

2
= e−y + ey

2
cos x + i

e−y − ey

2
sin x

= cos x cosh y − i sin x sinh y

Re(cos z) = cos x cosh y, Im(cos z) = − sin x sinh y

sin z = eiz − e−i z

2i
= e−y − ey

2i
cos x + i

e−y + ey

2i
sin x

= sin x cosh y + i cos x sinh y

Re(sin z) = sin x cosh y, Im(sin z) = cos x sinh y.

27. z2 + 2i z = 0⇒ z = 0 or z = −2i

28. z2 − 2z + i = 0⇒ (z − 1)2 = 1− i

= √2

(

cos
7π

4
+ i sin

7π

4

)

⇒ z = 1± 21/4
(

cos
7π

8
+ i sin

7π

8

)
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29. z2 + 2z + 5 = 0⇒ (z + 1)2 = −4

⇒ z = −1± 2i

30. z2 − 2i z − 1 = 0⇒ (z − i )2 = 0

⇒ z = i (double root)

31. z3 − 3i z2 − 2z = z(z2 − 3i z − 2) = 0

⇒ z = 0 or z2 − 3i z − 2 = 0

⇒ z = 0 or

(

z − 3

2
i

)2

= −1

4

⇒ z = 0 or z =
(

3

2
± 1

2

)

i

⇒ z = 0 or z = i or z = 2i

32. z4 − 2z2 + 4 = 0 ⇒ (z2 − 1)2 = −3

z2 = 1− i
√

3 or z2 = 1 + i
√

3

z2 = 2

(

cos
5π

3
+ i sin

5π

3

)

, z2 = 2
(

cos
π

3
+ i sin

π

3

)

z = ±√2

(

cos
5π

6
+ i sin

5π

6

)

, or

z = ±√2
(

cos
π

6
+ i sin

π

6

)

z = ±
(√

3

2
− i√

2

)

, z = ±
(√

3

2
+ i√

2

)

33. z4 + 1 = 0 ⇒ z2 = i or z2 = −i

⇒ z = ±1+ i√
2
, z = ±1− i√

2

z4 + 1 =
(

z − 1+ i√
2

)(

z − 1− i√
2

)

×
(

z + 1+ i√
2

)(

z + 1− i√
2

)

=
([

z − 1√
2

]2

+ 1

2

) ([

z + 1√
2

]2

+ 1

2

)

= (z2 −√2z + 1)(z2 +√2z + 1)

34. Since P(z) = z4 − 4z3 + 12z2 − 16z + 16 has real
coefficients, if z1 = 1 −√3i is a zero of P(z), then so is
z1. Now

(z − z1)(z − z1) = (z − 1)2 + 3 = z2 − 2z + 4.

By long division (details omitted) we discover that

z4 − 4z3 + 12z2 − 16z + 16

z2 − 2z + 4
= z2 − 2z + 4.

Thus z1 and z1 are both double zeros of P(z). These
are the only zeros.

35. Since P(z) = z5 + 3z4 + 4z3 + 4z2 + 3z + 1 has real
coefficients, if z1 = i is a zero of P(z), then so is
z2 = −i . Now

(z − z1)(z − z2) = (z − i )(z + i ) = z2 + 1.

By long division (details omitted) we discover that

z5 + 3z4 + 4z3 + 4z2 + 3z + 1

z2 + 1
= z3 + 3z2 + 3z + 1

= (z + 1)3.

Thus P(z) has the five zeros: i , −i , −1, −1, and −1.

36. Since P(z) = z5 − 2z4 − 8z3 + 8z2 + 31z − 30 has real
coefficients, if z1 = −2 + i is a zero of P(z), then so is
z2 = −2− i . Now

(z − z1)(z − z2) = z2 + 4z + 5.

By long division (details omitted) we discover that

z5 − 2z4 − 8z3 + 8z2 + 31z − 30

z2 + 4z + 5
= z3 − 6z2 + 11z − 6.

Observe that z3 = 1 is a zero of z3 − 6z2 + 11z − 6. By
long division again:

z3 − 6z2 + 11z − 6

z − 1
= z2 − 5z + 6 = (z − 2)(z − 3).

Hence P(z) has the five zeros −2 + i , −2 − i , 1, 2, and
3.

37. If w = z4 + z3 − 2i z − 3 and |z| = 2, then |z4| = 16 and

|w − z4| = |z3 − 2i z − 3| ≤ 8+ 4+ 3 = 15 < 16.

By the mapping principle described in the proof of Theo-
rem 2, the image in the w-plane of the circle |z| = 2 is a
closed curve that winds around the origin the same num-
ber of times that the image of z4 does, namely 4 times.
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Appendix III. Continuous Functions
(page A-25)

1. To be proved: If a < b < c, f (x) ≤ g(x) for a ≤ x ≤ c,
limx→b f (x) = L , and limx→b g(x) = M , then L ≤ M .

Proof: Suppose, to the contrary, that L > M . Let
ε = (L − M)/3, so ε > 0. There exist numbers δ1 > 0
and δ2 > 0 such that if a ≤ x ≤ b, then

|x − b| < δ1 ⇒ | f (x)− L | < ε
|x − b| < δ2 ⇒ |g(x)− M| < ε.

Thus if |x − b| < δ = min{δ1, δ2, b − a, c − b}, then

f (x)−g(x) > L−ε−M−ε = L−M−2ε = L − M

3
> 0.

This contradicts the fact that f (x) ≤ g(x) on [a, b].
Therefore L ≤ M .

2. To be proved: If f (x) ≤ K on [a, b) and (b, c], and if
limx→b f (x) = L , then L ≤ K .

Proof: If L > K , then let ε = (L − K )/2; thus ε > 0.
There exists δ > 0 such that δ < b− a and δ < c− b, and
such that if 0 < |x − b| < δ, then | f (x)− L | < ε. In this
case

f (x) > L − ε = L − L − K

2
> K ,

which contradicts the fact that f (x) ≤ K on [a, b) and
(b, c]. Therefore L ≤ K .

3. Let ε > 0 be given. Let δ = ε1/r , (r > 0). Then

0 < x < δ ⇒ 0 < xr < δr = ε.

Thus limx→0+ xr = 0.

4. a) Let f (x) = C , g(x) = x . Let ε > 0 be given and let
δ = ε. For any real number x , if |x − a| < δ, then

| f (x)− f (a)| = |C − C | = 0 < ε,

|g(x)− g(a)| = |x − a| < δ = ε.
Thus limx→a f (x) = f (a) and limx→a g(x) = g(a),
and f and g are both continuous at every real num-
ber a.

5. A polynomial is constructed by adding and multiplying
finite numbers of functions of the type of f and g in
Exercise 4. By Theorem 1(a), such sums and products
are continuous everywhere, since their components have
been shown to be continuous everywhere.

6. If P and Q are polynomials, they are continuous every-
where by Exercise 5. If Q(a) �= 0, then

limx→a
P(x)

Q(x)
= P(a)

Q(a)
by Theorem 1(a). Hence P/Q is

continuous everywhere except at the zeros of Q.

7. Suppose n is a positive integer and a > 0.
Let ε > 0 be given. Let b = a1/n , and let
δ = min{a(1 − 2−n), bn−1ε}.
If |x − a| < δ, then x > a/2n , and if y = x1/n , then
y > b/2. Thus

∣
∣
∣x1/n − a1/n

∣
∣
∣ = |y − b|

= |yn − bn|
yn−1 + yn−2b + · · · + bn−1

<
|x − a|
bn−1 <

bn−1ε

bn−1 = ε.

Thus limx→a x1/n = a1/n , and x1/n is continuous at
x = a.

8. By Exercise 5, xm is continuous everywhere. By Exer-
cise 7, x1/n is continuous at each a > 0. Thus for a > 0
we have

lim
x→a

xm/n = lim
x→a

(

x1/n
)m =

(

lim
x→a

x1/n
)m

= (a1/n)m = am/n ,

and xm/n is continuous at each positive number.

9. If m and n are integers and n is odd, then
(−x)m/n = cxm/n , where c = (−1)m/n is either −1 or 1
depending on the parity of m. Since xm/n is continuous
at each positive number a, so is cxm/n . Thus (−x)m/n is
continuous at each positive number, and xm/n is continu-
ous at each negative number.

If r = m/n > 0, then limx→0+ xr = 0 by Exercise
3. Hence limx→0− xr = (−1)r limx→0+ xr = 0, also.
Therefore limx→0 xr = 0, and xr is continuous at x = 0.

10. Let ε > 0 be given. Let δ = ε. If a is any real number
then

∣
∣
∣|x | − |a|

∣
∣
∣ ≤ |x − a| < ε if |x − a| < δ.

Thus limx→a |x | = |a|, and the absolute value function is
continuous at every real number.

11. By the definition of sin, Pt = (cos t, sin t), and
Pa = (cos a, sin a) are two points on the unit circle
x2 + y2 = 1. Therefore

|t − a| = length of the arc from Pt to Pa

> length of the chord from Pt to Pa

=
√

(cos t − cos a)2 + (sin t − sin a)2.

If ε > 0 is given, and |t − a| < δ = ε, then the above
inequality implies that

| cos t − cos a| ≤ |t − a| < ε,

| sin t − sin a| ≤ |t − a| < ε.
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Thus sin is continuous everywhere.

12. The proof that cos is continuous everywhere is almost
identical to that for sin in Exercise 11.

13. Let a > 0 and ε > 0. Let δ = min
{a

2
,
εa

2

}

.

If |x − a| < δ, then x >
a

2
, so

1

t
<

2

a
whenever t is

between a and x . Thus

| ln x − ln a|
= area under y = 1

t
between t = a and t = x

<
2

a
|x − a| < 2

a

εa

2
= ε.

Thus limx→a ln x = ln a, and ln is continuous at each
point a in its domain (0,∞).

14. Let a be any real number, and let ε > 0 be given. As-
sume (making ε smaller if necessary) that ε < ea . Since

ln
(

1− ε

ea

)

+ ln
(

1+ ε

ea

)

= ln

(

1− ε2

e2a

)

< 0,

we have ln
(

1+ ε

ea

)

< − ln
(

1 − ε

ea

)

.

Let δ = ln
(

1+ ε

ea

)

. If |x − a| < δ, then

ln
(

1 − ε

ea

)

< x − a < ln
(

1+ ε

ea

)

1− ε

ea
< ex−a < 1+ ε

ea
∣
∣ex−a − 1

∣
∣ <

ε

ea

|ex − ea | = ea|ex−a − 1| < ε.

Thus limx→a ex = ea and ex is continuous at every point
a in its domain.

15. Suppose a ≤ xn ≤ b for each n, and lim xn = L . Then
a ≤ L ≤ b by Theorem 3. Let ε > 0 be given. Since
f is continuous on [a, b], there exists δ > 0 such that if
a ≤ x ≤ b and |x− L | < δ then | f (x)− f (L)| < ε. Since
lim xn = L , there exists an integer N such that if n ≥ N
then |xn − L | < δ. Hence | f (xn)− f (L)| < ε for such n.
Therefore lim( f (xn) = f (L).

16. Let g(t) = t

1+ |t | . For t �= 0 we have

g′(t) = 1+ |t | − t sgn t

(1+ |t |)2 = 1+ |t | − |t |
(1 + |t |)2 =

1

(1+ |t |)2 > 0.

If t = 0, g is also differentiable, and has derivative 1:

g′(0) = lim
h→0

g(h)− g(0)

h
= lim

h→0

1

1+ |h| = 1.

Thus g is continuous and increasing on �.
If f is continuous on [a, b], then

h(x) = g
(

f (x)
)

= f (x)

1+ | f (x)|
is also continuous there, being the composition of contin-
uous functions. Also, h(x) is bounded on [a, b], since

∣
∣
∣g

(

f (x)
)∣
∣
∣ ≤ | f (x)|

1+ | f (x)| ≤ 1.

By assumption in this problem, h(x) must assume max-
imum and minimum values; there exist c and d in [a, b]
such that

g
(

f (c)
)

≤ g
(

f (x)
)

≤ g
(

f (d)
)

for all x in [a, b]. Since g is increasing, so is its inverse
g−1. Therefore

f (c) ≤ f (x) ≤ f (d)

for all x in [a, b], and f is bounded on that interval.

Appendix IV. The Riemann Integral
(page A-30)

1. f (x) =
{

1 if 0 ≤ x ≤ 1
0 if 1 < x ≤ 2

Let 0 < ε < 1. Let P = {0, 1− ε
3 , 1+ ε

3 , 2}. Then

L( f, P) = 1
(

1− ε
3

)

+ 0+ 0 = 1− ε
3

U( f, P) = 1
(

1− ε
3

)

+ 1

(
2ε

3

)

+ 0 = 1 + ε
3
.

Since U( f, P)− L( f, P) < ε, f is integrable on [0, 2].
Since L( f, P) < 1 < U( f, P) for every ε, therefore
∫ 2

0
f (x) dx = 1.

2. f (x) =
{

1 if x = 1/n (n = 1, 2, 3, . . .)
0 otherwise

If P is any partition of [0, 1] then L( f, P) = 0. Let
0 < ε ≤ 2. Let N be an integer such that

N + 1 >
2

ε
≥ N . A partition P of [0, 1]

can be constructed so that the first two points of P

are 0 and
ε

2
, and such that each of the N points

1

n
(n = 1, 2, 3, . . . , n) lies in a subinterval of P having

length at most
ε

2N
. Since every number

1

n
with n a pos-

itive integer lies either in
[

0,
ε

2

]

or one of these other

N subintervals of P, and since max f (x) = 1 for these
subintervals and max f (x) = 0 for all other subintervals

of P, therefore U( f, P) ≤ ε

2
+ N

ε

2N
= ε. By Theorem

3, f is integrable on [0, 1]. Evidently
∫ 1

0
f (x) dx = least upper bound L( f, P) = 0.
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3. f (x) =
{

1/n if x = m/n in lowest terms
0 otherwise

Clearly L( f, P) = 0 for every partition P of [0, 1].
Let ε > 0 be given. To show that f is integrable we
must exhibit a partition P for which U( f, P) < ε. We
can assume ε < 1. Choose a positive integer N such
that 2/N < ε. There are only finitely many integers n
such that 1 ≤ n ≤ N . For each such n, there are only
finitely many integers m such that 0 ≤ m/n ≤ 1. There-
fore there are only finitely many points x in [0, 1] where
f (x) > ε/2. Let P be a partition of [0, 1] such that all
these points are contained in subintervals of the partition
having total length less than ε/2. Since f (x) ≤ 1 on
these subintervals, and f (x) < ε/2 on all other subinter-
vals P, therefore U( f, P) ≤ 1 × (ε/2) + (ε/2) × 1 = ε,
and f is integrable on [0, 1]. Evidently

∫ 1
0 f (x) dx = 0,

since all lower sums are 0.

4. Suppose, to the contrary, that I∗ > I ∗. Let ε = I∗ − I ∗

3
,

so ε > 0. By the definition of I∗ and I ∗, there exist
partitions P1 and P2 of [a, b], such that L( f, P1) ≥ I∗−ε
and U( f, P2) ≤ I ∗ + ε. By Theorem 2,
L( f, P1) ≤ U( f, P2), so

3ε = I∗ − I ∗ ≤ L( f, P1)+ ε −U( f, P2)+ ε ≤ 2ε.

Since ε > 0, it follows that 3 ≤ 2. This contradiction
shows that we must have I∗ ≤ I ∗.

5. Theorem 3 of Section 6.4: Proofs of parts (c)–(h).

c) Multiplying a function by a constant multiplies all
its Riemann sums by the same constant. If the con-
stant is positive, upper and lower sums remain upper
and lower; if the constant is negative upper sums
become lower and vice versa. Therefore

∫ b

a
A f (x) dx = A

∫ b

a
f (x) dx .

It therefore remains to be proved only that the in-
tegral of a sum of functions is the sum of the inte-
grals. Suppose that

∫ b

a
f (x) dx = I, and

∫ b

a
g(x) dx = J.

If ε > 0, then there exist partitions P1 and P2 of
[a, b] such that

U( f, P1)− ε
2
≤ I < L( f, P1)+ ε

2

U(g, P2)− ε
2
≤ J < L(g, P2)+ ε

2
.

Let P be the common refinement of P1 and
P2. Then the above inequalities hold with P re-
placing P1 and P2. If m1 ≤ f (x) ≤ M1
and m2 ≤ g(x) ≤ M2 on any interval, then
m1 + m2 ≤ f (x) + g(x) ≤ M1 + M2 there. It
follows that

U( f + g, P) ≤ U( f, P)+U(g, P),

L( f, P)+ L(g, P) ≤ L( f + g, P).

Therefore

U( f + g, P)− ε ≤ I + J ≤ L( f + g, P) + ε.

Hence
∫ b

a

(

f (x)+ g(x)
)

dx = I + J .

d) Assume a < b < c; the other cases are similar. Let
ε > 0. If

∫ b

a
f (x) dx = I, and

∫ c

b
f (x) dx = J,

then there exist partitions P1 of [a, b], and P2 of
[b, c] such that

L( f, P1) ≤ I < L( f, P1)+ ε
2

L( f, P2) ≤ J < L( f, P2)+ ε
2

(with similar inequalities for upper sums). Let P be
the partition of [a, c] formed by combining all the
subdivision points of P1 and P2. Then

L( f, P) = L( f, P1)+L( f, P2) ≤ I+ J < L( f, P)+ε.
Similarly, U( f, P)−ε < I + J ≤ U( f, P). Therefore

∫ c

a
f (x) dx = I + J.

e) Let

∫ b

a
f (x) dx = I, and

∫ b

a
g(x) dx = J,

where f (x) ≤ g(x) on [a, b]. We want to show that
I ≤ J . Suppose, to the contrary, that I > J . Then
there would exist a partition P of [a, b] for which

I < L( f, P)+ I − J

2
, and U(g, P)− I − J

2
< J.

Thus L( f, P) >
I + J

2
> U(g, P) ≥ L(g, P).

However, f (x) ≤ g(x) on [a, b] implies that
L( f, P) ≤ L(g, P) for any partition. Thus we have
a contradiction, and so I ≤ J .
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f) Since −| f (x)| ≤ f (x) ≤ | f (x)| for any x , we have
by part (e), if a ≤ b,

−
∫ b

a
| f (x)| dx ≤

∫ b

a
f (x) dx ≤

∫ b

a
| f (x)| dx .

Therefore

∣
∣
∣
∣

∫ b

a
f (x) dx

∣
∣
∣
∣
≤

∫ b

a
| f (x)| dx .

g) By parts (b), (c) and (d),

∫ a

−a
f (x) dx =

∫ 0

−a
f (x) dx +

∫ a

0
f (x) dx

=
∫ a

0
f (−x) dx +

∫ a

0
f (x) dx

=
∫ a

0
[ f (−x)+ f (x)] dx .

If f is odd, the last integral is 0. If f is even, the

last integral is
∫ a

0
2 f (x) dx . Thus both (g) and (h)

are proved.

6. Let ε > 0 be given. Let δ = ε2/2. Let 0 ≤ x ≤ 1 and
0 ≤ y ≤ 1. If x < ε2/4 and y < ε2/4 then
|√x −√y| ≤ √x +√y < ε.
If |x − y| < δ and either x ≥ ε2/4 or y ≥ ε2/4 then

|√x −√y| = |x − y|√
x +√y

<
2

ε
× ε

2

2
= ε.

Thus f (x) = √x is uniformly continuous on [0, 1].

7. Suppose f is uniformly continuous on [a, b]. Taking
ε = 1 in the definition of uniform continuity, we can find
a positive number δ such that | f (x)− f (y)| < 1 whenever
x and y are in [a, b] and |x− y| < δ. Let N be a positive
integer such that h = (b − a)/N satisfies h < δ.
If xk = a+kh, (0 ≤ k ≤ N ), then each of the subintervals
of the partition P = {x0, x1, . . . , xN } has length less than
δ. Thus

| f (xk)− f (xk−1)| < 1 for 1 ≤ k ≤ N .

By repeated applications of the triangle inequality,

| f (xk−1)− f (a)| = | f (xk−1)− f (x0)| < k − 1.

If x is any point in [a, b], then x belongs to one of the
intervals [xk−1, xk ], so, by the triangle inequality again,

| f (x)− f (a)| ≤ | f (x)− f (xk−1)|+| f (xk−1)− f (a)| < k ≤ N .

Thus | f (x)| < | f (a)| + N , and f is bounded on [a, b].

8. Suppose that | f (x)| ≤ K on [a, b] (where K > 0), and
that f is integrable on [a, b]. Let ε > 0 be given, and let
δ = ε/K . If x and y belong to [a, b] and |x − y| < δ,
then

|F(x)− F(y)| =
∣
∣
∣
∣

∫ x

a
f (t) dt −

∫ y

a
f (t) dt

∣
∣
∣
∣

=
∣
∣
∣
∣

∫ x

y
f (t) dt

∣
∣
∣
∣
≤ K |x − y| < K

ε

K
= ε.

(See Theorem 3(f) of Section 6.4.) Thus F is uniformly
continuous on [a, b].
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