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CHAPTER P. PRELIMINARIES

Section P.1 Real Numbers and the Real Line
(page 10)

2 _

3 = 0.22222222 -.-=10.2

il = 0.09090909 - - - = 0.09

If x =0.121212 .- ., then 100x = 12.121212 ... =12 4 X.

Thus 99x = 12 and x = 12/99 = 4/33.

If x = 3.277777 - - -, then 10x — 32 = 0.77777 --- and
100x — 320 = 7 + (10x — 32), or 90x = 295. Thus
X = 295/90 = 59/18.

1/7 = 0.142857142857 - - - = 0.142857

2/7 = 0.285714285714 - - . = 0.285714

3/7 = 0.428571428571 - - - = 0.428571

4/7 = 0.571428571428 - - - = 0.571428
note the same cyclic order of the repeating digits
5/7 = 0.714285714285 - - - = 0.714285
6/7 = 0.857142857142 ... = 0.857142

Two different decimal expansions can represent the same
number. For insta_nce, both 0.999999... = 0.9 and
1.000000 - - - = 1.0 represent the number 1.

x >0 and x <5 define the interval [0, 5].
X < 2 and x > —3 define the interval [—3, 2).

X > —=5o0rx < —6 defines the union

(=00, —6) U (=5, 00).
x < —1 defines the interval (—oo, —1].
x > —2 defines the interval (-2, c0).

X < 4 or x > 2 defines the interval (—oo, 00), that is, the
whole real line.

If —2x > 4, then x < —2. Solution: (—o0, —2)

If 3x +5<8,then3x <8—-5—-3and x < 1. Solution:
(—OO, 1]
If 5x —3 < 7 — 3x, then 8x < 10 and x < 5/4. Solution:
(—00,5/4]
6 —Xx

>

If 3)(—_4,then6—x36x—8. Thus 14 > 7x

and x < 2. Solution: (—o0, 2]

If 3(2 —x) <23 +x), then 0 < 5x and x > 0. Solution:

(0, 00)

If x2 < 9, then |x| < 3 and —3 < x < 3. Solution:
(-3,3)
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SECTION P1 (PAGE 10)

Given: 1/2—-x) < 3.

CASE I. If x <2,then 1 <32 —-x)=6—-3X,503x <5
and x < 5/3. This case has solutions x < 5/3.

CASE Il. If x > 2,then1>32—-x)=6-3X,503x >5
and x > 5/3. This case has solutions x > 2.

Solution: (—o00,5/3) U (2, 00).

Given: (x +1)/x > 2.

CASE I. If x >0, then x +1 > 2x, so x < 1.

CASE IlI. If x < 0, then x +1 < 2x,s0 x > 1. (not
possible)

Solution: (0, 1].

Given: x2 —2x < 0. Then x(x — 2) < 0. This is only
possible if x > 0 and x < 2. Solution: [0, 2].

Given 6x2 — 5x < —1, then (2x — 1)(3x — 1) < 0, so
either x < 1/2and x > 1/3,0or x < 1/3 and x > 1/2.
The latter combination is not possible. The solution set is
[1/3,1/2].

Given x3 > 4x, we have x(x2 —4) > 0. This is possible
if Xx < 0Oand x2 < 4, orif x > 0and x2 > 4. The
possibilities are, therefore, —2 < x < 0or2 < x < oo.
Solution: (=2,0) U (2, 00).

Given x2—x < 2, then x2—x—2 <0 50 (x—2)(x+1) < 0.
This is possible if x < 2and x > —1 or if x > 2 and

x < —1. The latter situation is not possible. The solution
set is [—1, 2].

SN

X
Given: 3 >1+ —.

X
CASE I. If x > 0, then x2 > 2x + 8, so that
x2—2x —8 > 0,0r (x —4)(X +2) > 0. This is
possible for x > 0 only if x > 4.

CASE II. If x < 0, then we must have (x —4)(x +2) <0,
which is possible for x < 0 only if x > —2.

Solution: [-2, 0) U [4, 00).

2

. 3
Given: 1 < 1
CASE I. If x > 1 then (x —1)(x + 1) > 0, so that
3(x+1) < 2(x—1). Thus x < —5. There are no solutions
in this case.

CASE Il If =1 < x < 1,then x —1)(x +1) <0, so
3x +1) > 2(x —1). Thus x > —5. In this case all
numbers in (=1, 1) are solutions.

CASE IIl. If x < —1, then (x — 1)(x + 1) > 0, so that
3x+1) <2(x —1). Thus x < —5. All numbers x < -5
are solutions.

Solutions: (—o0, —5) U (-1, 1).

If x| = 3 then x = £3.
If [x —3|=7,then x —3=47,50 x =—4 or x =10.

If |2t + 5] = 4,then 2t +5 = +4,s0t = —9/2 or
t=-1/2.

Ifjl—t|=1,thenl—-t=41,s0t=0o0rt =2
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If |8—3s| =09, then 8 —3s =49, s0 3s = —1 or 17, and
s=-1/30rs=17/3.

If‘%—l‘:l,then%—1=il,sos=Oors=4.

If |X] <2, then x isin (-2, 2).
If |x| <2, then x is in [-2, 2].
If|s—1 <2, thenl—-2<s<1+2,s0sisin[-1,3].

Iflt+2 <1,then -2—-1 <t < —-2+1,s0tisin
(=3, -1).

If 3x —7] <2,then7 -2 < 3x < 7+2,s0 X isin
(5/3, 3).

If 2x +5] < 1,then -=5—1 <2Xx < —-541,s0x isin
(=3, -2).

X .
If‘z—l‘sl, thenl—-1<—- <141, so0xisin[0,4].

X

2
X 1 .

If ‘2 — 5‘ <3 then x/2 lies between 2 — (1/2) and

2+ (1/2). Thus x is in (3, 5).

The inequality |x + 1| > |x — 3| says that the distance
from x to —1 is greater than the distance from x to 3, so
X must be to the right of the point half-way between —1
and 3. Thus x > 1.

Ix — 3| < 2|x] & x% —6x +9 = (x — 3)% < 4x?
& X2 +6x—9 >0 ¢ 3(x +3)(x —1) > 0. This
inequality holds if x < =3 or x > 1.

la| = a if and only if a > 0. It is false if a < 0.

The equation [x —1] =1 —x holds if |[x — 1] = —(x — 1),
that is, if x — 1 < 0, or, equivalently, if x < 1.

The triangle inequality |x + y| < |x| + |y| implies that
IXI = Ix+yl—Ilyl

Apply this inequality with x =a —b and y = b to get
la—b| > |a] — [b].

Similarly, |a — b| = [b—a] > |b| — |a]. Since ’|a| - |b|’

is equal to either |a] — |b] or |b| — |a|, depending on the
sizes of a and b, we have

ja—bl > |jal - Ibi|.

Section P.2 Cartesian Coordinates in the
Plane (page 16)

From A0, 3) to B(4,0), Ax=4—-0=4 and

Ay=0-3=-3. |AB| =42+ (-3)2=5.
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From A(-1,2) to B(4,-10), Ax =4 — (=1) = 5 and
Ay = —10 -2 = —12. |AB| = /52 + (—12)2 = 13.
From A@3,2) to B(-1,-2), Ax = -1 -3 = —4 and

Ay =-2-2=—4 |AB|=(-4)?2+ (-4?2 =42,

From A(0.5,3) to B(2,3), Ax =2—-0.5=1.5and
Ay=3-3=0. |AB|=15.

Starting point: (—2, 3). Increments Ax = 4, Ay = —7.
New position is (—2 + 4,3 4 (=7)), that is, (2, —4).

Arrival point: (=2, —2). Increments Ax = =5, Ay = 1.
Starting point was (—2 — (=5), —2 — 1), that is, (3, —3).

x% + y? = 1 represents a circle of radius 1 centred at the
origin.

x2 + y2 = 2 represents a circle of radius +/2 centred at
the origin.

x% 4+ y2 < 1 represents points inside and on the circle of
radius 1 centred at the origin.

x2 4+ y2 = 0 represents the origin.

y > x2 represents all points lying on or above the
parabola y = x2.

y < x2 represents all points lying below the parabola
y = x2.

The vertical line through (—2,5/3) is x = —2; the hori-
zontal line through that point is y = 5/3.

The vertical line through (v/2, —1.3) is x = /2; the
horizontal line through that point is y = —1.3.

Line through (—1,1) with slopem = 1is
y=1+1x+1),0ry=x+2.

Line through (-2, 2) with slope m =
y=2+(1/2)(x +2), or x —2y = —6.

Line through (0, b) with slope m =2 is y = b + 2x.

—21is

1/2 is

Line through (a, 0) with slope m =
y=0-2(x —a), or y =2a — 2x.
At x = 2, the height of the line 2x + 3y =6 is
y=(6—4)/3=2/3. Thus (2,1) lies above the line.

At x = 3, the height of the line x —4y =7 is
y=B3—-7)/4= -1 Thus (3, —1) lies on the line.
The line through (0, 0) and (2, 3) has slope

m = (3 —0)/(2—0) = 3/2 and equation y = (3/2)x or
3x —2y =0.

The line through (—2,1) and (2, —2) has slope
m=(—2-1)/(2+2) = —3/4 and equation
y=1—-(3/4)(x +2) or 3x +4y = —2.

The line through (4, 1) and (—2, 3) has slope

m = 3-1)/(-2—-4) = —1/3 and equation
yzl—%(x—4) orx+3y=7.
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24, The line through (—2,0) and (0, 2) has slope
m=(2-0)/(0+2) =1 and equation y = 2 + X.

25. Ifm=—2and b =+/2, then the line has equation
y = —2X + /2.

26. If m = —1/2 and b = —3, then the line has equation
y=—(1/2)x — 3, 0or x +2y = —6.

27. 3x + 4y = 12 has x-intercept a = 12/3 = 4 and y-

intercept b = 12/4 = 3. Its slope is —b/a = —3/4.
y A

d

X +4y =12

\ X
Fig. P.2.27
28. x + 2y = —4 has x-intercept a = —4 and y-intercept

b=—4/2=-2. Its slope is —b/a = 2/(—4) = —1/2.
y A

Fig. P.2.28

29. /2x — /3y = 2 has x-intercept a = 2//2 = /2
and y-intercept b = —2/4/3. lIts slope is
—bja=2/v6=.2/3.

y

Fig. P.2.29

30. 1.5x — 2y = —3 has x-intercept a = —3/1.5 = —2 and y-
intercept b = —3/(—2) = 3/2. lts slope is —b/a = 3/4.

3L
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15x —2y = -3 /

/ [

Fig. P.2.30

line through (2, 1) parallel to y =x+2isy = x —1; line
perpendicular to y =x +2is y = —x + 3.

line through (=2, 2) parallel to 2x +y = 4is
2X +y = —2; line perpendicular to 2x +y = 4 is
X —2y = —6.
We have
3X+4y=-6 =— 6x+8y=-12
2x —3y =13 6x — 9y = 39.

Subtracting these equations gives 17y = —51,s0 y = —3
and x = (13—9)/2 = 2. The intersection point is (2, —3).

We have

5 -7y =1

14x + 7y = 56
5 -7y =1.

Adding these equations gives 19x = 57, so x = 3 and
y =8 —2x = 2. The intersection point is (3, 2).

If a # 0and b # 0, then (x/a) + (y/b) = 1 represents
a straight line that is neither horizontal nor vertical, and
does not pass through the origin. Putting y = 0 we get
x/a =1, so the x-intercept of this line is x = a; putting
x = 0 gives y/b =1, so the y-intercept is y = b.
The line (x/2) — (y/3) = 1 has x-intercept a = 2, and
y-intercept b = —3.

y y

Fig. P.2.36

The line through (2, 1) and (3, —1) has slope
m = (-1 —-1)/@ — 2) = -2 and equation
y=1-2(x —2) =5—2x. Its y-intercept is 5.
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The line through (—2,5) and (k, 1) has x-intercept 3, so
also passes through (3, 0). Its slope m satisfies

Thus k —3 = —1, and so k = 2.

C = Ax + B. If C = 5,000 when x = 10, 000 and
C =6, 000 when x = 15, 000, then

10, 000A + B =5, 000
15, 000A + B = 6, 000

Subtracting these equations gives 5, 000A = 1, 000, so

A = 1/5. From the first equation, 2,000 + B = 5, 000,
so B = 3,000. The cost of printing 100,000 pamphlets is
$100, 000/5 + 3, 000 = $23, 000.

—40° and —40° is the same temperature on both the
Fahrenheit and Celsius scales.
C y
401
30+
20+

10+

.50 -40-30 -20-10/] 10 2030 40 50 60 70 8OF
04

5
o7 c=2= _
(F =32
-304
(—40, —40540‘
Fig. P.2.40
A=(2,1), B=(6,4), C=(5, -3

IABl=v(6-22+@4-12=v25=5
IAC| =v(5—22+(-3-1)2=+25=5

IBC|=+/(6—5)2+ (4 +3)2 = v/50 = 5v/2.
Since |AB| = |AC|, triangle ABC is isosceles.

A=(0,0), B=(1,+3), C=(2,0)

|AB|=\/(1—0)2+(x/§—0)2=\/71=2
IACI=v(2—-02+(0-02=+4=2

|BC|:\/(2—1)2+(O—x/§)2:«/4_1:2.
Since |AB| = |AC| = |BC|, triangle ABC is equilateral.
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A=(2,-1), B=(13), C=(=32
|ABl =v(1-22+@+1)2=417
IAC| = V(-3—-2)2 4+ (2+1)2 = /34 = V2V17
IBC| =+v(—=3—1)2+ (2 —23)2 = /17.
Since |AB| = |BC| and |AC| = +/2|AB|, triangle ABC
is an isosceles right-angled triangle with right angle at
B. Thus ABCD is a square if D is displaced from C
by the same amount A is from B, that is, by increments

Ax=2—-1=1and Ay =—-1—-3=—4. Thus
D=(-3+4+12+4(-4) = (-2 -2).

If M = (Xm, ym) is the midpoint of PP, then the dis-
placement of M from P; equals the displacement of P,
from M:

Xm —X1=X2—=Xm, Ym—Y1=Y2—Ym.

Thus xm = (X1 + X2)/2 and ym = (Y1 + ¥2)/2.
If Q = (Xg, Yq) is the point on Py P, that is two thirds of

the way from P; to Py, then the displacement of Q from
P; equals twice the displacement of P, from Q:

Xg — X1 =2(X2 — Xg), Yq — Y1 =2(Y2 — Yqg)-

Thus xq = (X1 + 2x2)/3 and yq = (y1 + 2y2)/3.

Let the coordinates of P be (x, 0) and those of Q be
(X, =2X). If the midpoint of PQ is (2, 1), then
x+X)/2=2, (0-2X)/2=1.

The second equation implies that X = —1, and the sec-
ond then implies that x = 5. Thus P is (5, 0).

V(X —2)2 + y2 = 4 says that the distance of (x, y) from
(2,0) is 4, so the equation represents a circle of radius 4

centred at (2, 0).

Vx =22 4+y2 = /x2 4+ (y — 2)2 says that (x,y) is
equidistant from (2, 0) and (0, 2). Thus (x, y) must

lie on the line that is the right bisector of the line from
(2,0) to (0, 2). A simpler equation for this line is x = y.

The line 2x + ky = 3 has slope m = —2/k. This line
is perpendicular to 4x + y = 1, which has slope —4,
provided m = 1/4, that is, provided k = —8. The line is
parallel to 4x +y =1 if m = —4, that is, if k = 1/2.

For any value of k, the coordinates of the point of inter-

section of x + 2y = 3 and 2x — 3y = —1 will also satisfy
the equation

X+2y—3)+k@2x —3y+1)=0
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because they cause both expressions in parentheses to be
0. The equation above is linear in x and y, and so rep-
resents a straight line for any choice of k. This line will
pass through (1, 2) provided 14+4—-3+k(2—-6+1) =0,
that is, if k = 2/3. Therefore, the line through the point
of intersection of the two given lines and through the
point (1, 2) has equation

2
x+2y—3+§(2x—3y+1)=0,
or, on simplification, x = 1.

Section P.3 Graphs of Quadratic Equations
(page 22)

x? +y2=16

X2+ (y—22=4,0rx2+y2—4y =0
(X+224+y2=9,0rx24+y2+4y=5
(X —=3)2 4+ (y+4)2=25 or x2+y2—6x +8y =0.
x2+y?—2x=3

X2 —2x+1+y?=4
x—12+y>=4

centre: (1, 0); radius 2.

x24+y2 44y =0
X2+y24+ay+4=4

X2+ (y+2>%=4

centre: (0, —2); radius 2.

X2 4+y2—2x +4y =4

X2 —2x+1+y24+4y+4=9
X—D*+(y+2°%=9

centre: (1, —2); radius 3.
X24+y?—2x—y+1=0
x2—2x+1+y2-y+i=1
(=12 4 (y - 3)° = |

centre: (1, 1/2); radius 1/2.

x2 +y? > 1 represents all points lying outside the circle
of radius 1 centred at the origin.

x2 4+ y? < 4 represents the open disk consisting of all
points lying inside the circle of radius 2 centred at the
origin.

(X + 1)2 4+ y2 < 4 represents the closed disk consisting of
all points lying inside or on the circle of radius 2 centred
at the point (-1, 0).

x2 + (y — 2)? < 4 represents the closed disk consisting of
all points lying inside or on the circle of radius 2 centred
at the point (0, 2).
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Together, x? + y2 > 1 and x? + y? < 4 represent annulus
(washer-shaped region) consisting of all points that are
outside the circle of radius 1 centred at the origin and
inside the circle of radius 2 centred at the origin.

Together, x? 4 y2 < 4 and (x +2)? 4 y? < 4 represent the
region consisting of all points that are inside or on both
the circle of radius 2 centred at the origin and the circle
of radius 2 centred at (-2, 0).

Together, x2+y2 < 2x and x2+y2 < 2y (or, equivalently,
(x — 12 +y? < 1and x? + (y — 1)? < 1) represent the
region consisting of all points that are inside both the
circle of radius 1 centred at (1, 0) and the circle of radius
1 centred at (0, 1).

x2 4+ y2 — 4x + 2y > 4 can be rewritten
(x—2)2+(y+1)%2 > 9. This equation, taken together with
X +y > 1, represents all points that lie both outside the
circle of radius 3 centred at (2, —1) and above the line
X+y=1

The interior of the circle with centre (—1, 2) and radius
V6 is given by (x +1)? + (y —2)? < 6, or
X2 +y2+2x —4y < 1.

The exterior of the circle with centre (2, —3) and ra-
dius 4 is given by (x — 2)2 + (y + 3)> > 16, or
X2 +y2 —4x 4+ 6y > 3.

x24+y?2 <2, x=>1
x2+y2 >4, (x-1%+(y-3?<10
The parabola with focus (0, 4) and directrix y = —4 has

equation x? = 16y.

The parabola with focus (0, —1/2) and directrix y = 1/2
has equation x2 = —2y.

The parabola with focus (2, 0) and directrix x = —2 has
equation y? = 8x.

The parabola with focus (—1, 0) and directrix x = 1 has
equation y2 = —4x.

y = x2/2 has focus (0, 1/2) and directrix y = —1,2.
y a

» (0.1/2)

Q' /
X
y=-1/2
Fig. P3.25

y = —x2 has focus (0, —1/4) and directrix y = 1/4.
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y A
y=1/4
X
0.-1/2)
y=-x?
Fig. P.3.26

27. x = —y?/4 has focus (—1,0) and directrix x = 1.

Yy 4

(L0

x=—y2/4

Fig. P.3.27

28. x =y?/16 has focus (4, 0) and directrix x = —4.
y

Fig. P.3.28

29.

30.

3L
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33.
34.
35.
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, Version (c)

y=x

3,3
(Ver)sion (b)

Version (d)

(45 _2)

\ersion (a)
3

Fig. P.3.29
a) has equation y = x2 — 3.
b) has equation y = (x — 4)2 or y = x2 — 8x + 16.
¢) has equation y = (x —3)2 +3 or y = x% — 6x + 12.
d) has equation y = (x —4)2 — 2, or y = x2 — 8x + 14.

a) If y = mx is shifted to the right by amount xi, the
equation y = m(x —xp) results. If (a, b) satisfies this
equation, then b = m(a—x1), and so x; = a—(b/m).
Thus the shifted equation is
y=mX-—a+ (b/m))=m(xx —a)+b.

b) If y = mx is shifted vertically by amount y,
the equation y = mx + yj results. If (a, b)
satisfies this equation, then b = ma + yj, and
so y1 = b — ma. Thus the shifted equation is
y = mx +b—ma = m(kx — a) + b, the same
equation obtained in part (a).

y=vx/3)+1
4y = v/x +1

y=/Bx/2) + 1
(y/2) = V4x +1
y = 1 — x2 shifted down 1, left 1 gives y = —(x + 1)2.

x2 + y2 = 5 shifted up 2, left 4 gives
X +42+(y—2?=5.

y = (x — 1)2 — 1 shifted down 1, right 1 gives
y=x-272%-2

y = /X shifted down 2, left 4 gives y = /X +4 — 2.
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y = x? +3, y = 3x + 1. Subtracting these equations
gives

x2—3x4+2=0,0r (x—1)(x—2)=0. Thusx =1 or
X = 2. The corresponding values of y are 4 and 7. The
intersection points are (1, 4) and (2, 7).

y = x2 — 6, y = 4x — x2. Subtracting these equations

gives
2x2 —4x —6=10,0r 2(x —3)(x +1) = 0. Thus x = 3
or x = —1. The corresponding values of y are 3 and —5.

The intersection points are (3, 3) and (-1, —5).

x2+y2 =25, 3x+4y = 0. The second equation says that
y = —3x/4. Substituting this into the first equation gives
25x2/16 = 25, s0 x = +4. If x = 4, then the second
equation gives y = —3; if x = —4,theny = 3. The
intersection points are (4, —3) and (—4, 3). Note that
having found values for x, we substituted them into the
linear equation rather than the quadratic equation to find
the corresponding values of y. Had we substituted into
the quadratic equation we would have got more solutions
(four points in all), but two of them would have failed to
satisfy 3x + 4y = 12. When solving systems of nonlinear
equations you should always verify that the solutions you
find do satisfy the given equations.

2x? 4+ 2y? = 5, xy = 1. The second equation says that
y = 1/x. Substituting this into the first equation gives
2x2 4 (2/x%) =5, or 2x* — 5x? 4+ 2 = 0. This equation
factors to (2x%2 — 1)(x2 — 2) = 0, so its solutions are

X = +1/4/2 and x = +£+/2. The corresponding values
of y are given by y = 1/x. Therefore, the intersection

points are (1/+/2, v/2), (=1/v/2, —v/2), (+/2,1/+/2), and

(=2, -1/2). 46.

(x2/4) + y? = 1 is an ellipse with major axis between
(—=2,0) and (2, 0) and minor axis between (0, —1) and
O, 1).

+ x2 2

N

S

Fig. P.3.43

9x? 4+ 16y2 = 144 is an ellipse with major axis between 47.

(—=4,0) and (4, 0) and minor axis between (0, —3) and
©, 3).

45,

SECTION P3 (PAGE 22)

y a
T9x2+16y2=144

Fig. P.3.44

(x =32 (y+2)?

= 1is an ellipse with centre at

9
(3, —2), major axis between (0, —2) and (6, —2) and
minor axis between (3, —4) and (3, 0).

a2 2
(=92 | 027,

Fig. P.3.45

1 2
x —1%+ Y+ = 4 is an ellipse with centre at

(1, —1), major axis between (1, —5) and (1, 3) and minor
axis between (-1, —1) and (3, —1).
y (x=1)2+

2
RSV

Fig. P.3.46

(x2/4) — y2 = 1 is a hyperbola with centre at the ori-
gin and passing through (2, 0). Its asymptotes are
y = +x/2.
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Fig. P.3.47
48, x2 —y2 = —1is a rectangular hyperbola with centre at
the origin and passing through (0, +1). Its asymptotes
are y = +£x.
Fig. P.3.48
49. xy = —4 s a rectangular hyperbola with centre at

the origin and passing through (2, —2) and (-2, 2). Its
asymptotes are the coordinate axes.

A

Fig. P.3.49

50. (x —1)(y +2) =1 is a rectangular hyperbola with centre
at (1, —2) and passing through (2, —1) and (0, —3). Its
asymptotes are x =1 and y = —2.

R. A. ADAMS: CALCULUS

y1 \
+ + + + + X~
X-Dy+2=1

T

Fig. P.3.50

51.  a) Replacing x with —x replaces a graph with its re-
flection across the y-axis.

b) Replacing y with —y replaces a graph with its re-
flection across the x-axis.

52. Replacing x with —x and y with —y reflects the graph in
both axes. This is equivalent to rotating the graph 180°
about the origin.

53. x|+ 1yl =1.
In the first quadrant the equation is x +y = 1.
In the second quadrant the equation is —x +y = 1.
In the third quadrant the equation is —x —y = 1.
In the fourth quadrant the equation is x —y = 1.

y

X[ +1yl=1

1

Fig. P.3.53

Section P.4 Functions and Their Graphs
(page 31)

1. f(x) =1+ x? domain R, range [1, o)
2. f(x) =1-./X; domain [0, co), range (—oo, 1]
3. G(x) = +/8 —2x; domain (—o0, 4], range [0, co)

4, F(x) = 1/(x — 1); domain (—o0, 1) U (1, c0), range
(—00,0) U (0, 00)



INSTRUCTOR’S SOLUTIONS MANUAL

t
h(t) = ———; domain (—o0, 2), range R. (The equa-
®) = N (=00, 2), range R. (The eq
tion y = h(t) can be squared and rewritten as
t? + y2t — 2y? = 0, a quadratic equation in t having real

solutions for every real value of y. Thus the range of h
contains all real numbers.)

gx) = # domain (2, 3) U (3, o0), range

(—o0, O) U (O oo) The equation y = g(x) can be solved
for
XxX=2-01- (1/y))2 so has a real solution provided

y #0.

\ graph (i) »  graph (ii)

\ graph (iii) » graph (iv)

y

> X > X

Fig. P47

Graph (ii) is the graph of a function because vertical
lines can meet the graph only once. Graphs (i), (iii),
and (iv) do not have this property, so are not graphs of
functions.

SECTION P4 (PAGE 31)

Y 1 graph (a) Y t  graph (b)

Yy t  graph (c) Yy t graph (d)

\x‘ 7- X

Fig. P48

a) is the graph of x(1—x)2, which is positive for x > 0.

b) is the graph of x2—x3 = x2(1 —x), which is positive
if x <1.

c) is the graph of x —x*, which is positive if 0 < x <1
and behaves like x near 0.

d) is the graph of x3 — x*, which is positive if
0 < x < 1 and behaves like x3 near 0.

x  fx)=x4

0 0
+0.5  0.0625
+1 1
+15  5.0625
+2 16

Fig. P.4.9



10.

11.
12.

13.

14.

15.

16.

17.
18.

19.
20.

21.
22.

23.

SECTION P4 (PAGE 31)

24,
x  f(x)=x23
0 0
+0.5 0.62996
+1 1
+1.5 1.3104
+2 1.5874
y
y = x2/3 1
25.
>
Fig. P4.10
f(x) =x2+1iseven: f(—x)= f(x)
f(x) =x3+x isodd: f(—x)=—"f(x)

X . ] 26.
f(x):m is odd: f(—x)=—"f(x) 6
f(x) = ; is even: f(—x) = f(x)

T x2-1 ' -

f(x) = ﬁ is odd about (2,0): f2—x)=—-f2+Xx)
f(x) = L is odd about (—4, 0):

=3 +4 e
f(—4—-x)=—f(=4+x)
f(x) = x2—6x is even about x =3: f(3—x) = f(3+X) 27
f(x) = x3 — 2 is odd about (0, —2): .
f(=x)+2=—(f(x)+2)
fx) = |x3 = |x|® is even: f(—=x) = f(X)
f(x) =[x + 1] is even about x = —1:
f(-1—x)=f(-1+4+x)
f(x) = +/2x has no symmetry.
f(x) =/ (x —1)2 is even about x = 1:
fl—x)=fA+x)

28.

10

R. A. ADAMS: CALCULUS

y=1-x2

y=(x=1)2+1

Xy

y=1-x3

y=(x+2)°




29.

30.

3L

32.

33.

INSTRUCTOR’S SOLUTIONS MANUAL

y=vx+1

v

Xy

y=—1Ix]

Xy

N

SECTION P4

34.
A
y=1+[x-2|
X
35.
y 4
X=—
36.
37.
X
x=—1
38.
y 4
x=1
y=-1

(PAGE 31)

11



39.

40.

41.

42,

43.

44,

SECTION P4 (PAGE 31)

Fig. P.4.39(a)

3)
y="1()+2

2)

Fig. P.4.39(h)

12

Fig. P.4.40(a)

Fig. P.4.40(b)

(2.1)

T ﬁ y="f(x-1)
X

R. A. ADAMS: CALCULUS

45.
y
V=1 (4—x) (23 X
—
2 4 X
46.

47. Range is approximately [—0.18, 0.68].

Y a
0.8t

Fig. P.4.47

48. Range is approximately (—oo, 0.17].

Yt y=o017
543 b 1 1 2 3
14
9 x—1
X2 4+ X
31
41
51
-6
7
Fig. P.4.48



49,

50.

51.
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N O w Ao <

;é\éjix'

=x*—6x3+9x2 -1

5 4 3 2 -1 /i
-1
y

Fig. P.4.49

Apparent symmetry about x = 1.5.
This can be confirmed by calculating f (3 — x), which
turns out to be equal to f(x).

32 +x?
Y= T xe

5 4 3 2 -1 23 4x

-1
Fig. P.4.50

Apparent symmetry about x = 1.
This can be confirmed by calculating f (2 — x), which
turns out to be equal to f(x).

Fig. P.4.51

52.

53.

SECTION P5 (PAGE 37)

Apparent symmetry about (2, 1), and about the lines
y=x—1andy=3-x.

1
These can be confirmed by noting that f(x) =1+ 2
so the graph is that of 1/x shifted right 2 units and up
one.

o 2x2 43 Y4
Y= i +s 5]
41
31
21
11
. i 2 x
1l
2

Fig. P.4.52

Apparent symmetry about (-2, 2).

This can be confirmed by calculating shifting the graph
right by 2 (replace x with x — 2) and then down 2 (sub-
tract 2). The result is —5x/(1 4+ x?), which is odd.

If f is both even and odd the f(X) = f(—x) = — f(X),
so f(x) = 0 identically.

Section P.5 Combining Functions to Make
New Functions (page 37)

f(X) =x, g(x) = /x — 1.
D(F) =R, D) =[1, 00).
D(f +9) = D(f —g) = D(fg) = D(/F) = [1, 00),
D(f/9) = (1, 00).
(F+9X) =x+v/x—1
(f =) =x—+x—-1
(fRx) =x+/x—1
(F/9)(x) =x/v/x =1
@/H(x) = W1-x)/x
fX)=+/1-x,9g(X) =+/1+x.
D(f +9)=D(f —g) = D(fg) =[-1,1],
(F+900) =v1I-x++/1+4x

(f =) =v1I-x—-V1+x
(fgx) = V1 -x2

(F/9)0) = v/ A =x)/A+x)

@/H) =v/A+x)/A-x)

13
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14

1y =x+|x|

-1

9.

10.

R. A. ADAMS: CALCULUS

f(x) =x+5, g(x) =x%-3.
fog(0)=1f(=3)=2 g(f@0)=906)=22

fgx) = f(x* =3) =x*+2
go f() =g(f(x)) =g(x+5 = (x+57° -3
fof(=5=1f0)=5 9¢@Q2)=901) =-2
f(fx) = f(x+5 =x+10
gog(x) =g(g() = (x* —3)* -3
f(x) =2/x, g(x) = x/(1 —x).
fof(X)=2/2/x) =x; D(fof)={x:x#0}
fog(x)=2/(x/1—x)) =21 —x)/x;
D(fog)={x : x#£0,1}
go f(x)=@2/x)/(L = (2/x)) =2/(x = 2);
Do fy={x :x#£0,2}
gog(X) = (x/(1 —x))/(1 = (x/(1 =x))) =x/(1—2x);
D(og)={x:x#1/2,1}

f(xX)=1/L —x), g(x) = +/x — L.

fof(x)=1/1-1/1-x)) =Xx-1/x;
D(fof)y=1{x:x=#£0,1}
fogx)=1/1—+/x—-1);
D(fog)={x :x>1 x#2}
go f(0 =1/ —x) —1=x/L-x);
D(go f)=1[0,1)
gog(x)=yvx—1-1 D(gog) =2 00)
fX)=x+1/x—1=1+2/(x —1), g(x) =sgn (x).
fof(X)=1+2/1+2/x-1)—-1) =x;
D(fof)y={x:x#£1}
fogon= 3T o pifog) = (<000
Og( )_Sgnx—l_ ) ( Og)—(—OO, )
X+1 1 ifx<-lorx>1,
gOf(X)ZSgn(X—l)z{—l if -1<x<1 ’
Do fy={x : x £-1, 1}
gog(x)=sgn(sgn(x)) =sgn(x); D(gog) ={x : x #0}
f(x) g(x) fog(x)
11. x2 x+1 (x + 1)
12. X —4 X+4 X
13. NG3 x2 IX|
14. 2x3 +3 x1/3 2x +3
15. x+1)/x 1/(x —1) X
16. 1/(x +1)2 x—1 1/x2
17. y =X

y = 2+ 4/X: previous graph is raised 2 units.
y =2+ +/3+ x: previous graph is shiftend left 3 units.
y =1/(2+ +/3+4x): previous graph turned upside down

and shrunk vertically.
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21.
y=2+/x+3
L y =X
y=1/Q+Vx+9 22.
S ———
~
Fig. P.5.17
18.
— _y=2x-1
T
1
= -1
1—2x 24,
Fig. P5.18
19.
25.
20. 26.

y=—(1/2) f (x§

SECTION P5 (PAGE 37)

y=2f(x-1)/2)

y=fx)
1,1

15



217.

28.
29.
30.

31.

32.

33.

34.

SECTION P5 (PAGE 37)

F(x)=Ax+ B

@ FoF(X)=FX)

= A(AX+B)+B=Ax+B

= A[(A-1x+B]=0

Thus, either A=0or A=1and B=0.
(b) FoF(x) =x

= A(AX+B)+B=x

= (A2-1x+ (A+1)B=0

Thus, either A=—1or A=1and B=0

IXx] =0for0<x <1, [x]=0for -1 <x <0.

[x] = [x] for all integers x.

[—x] = —|x] is true for all real x; if x =n+y where n
is an integer and 0 <y < 1, then —x = —n —y, so that
[—x] = —n and |x] = n.

y+ y=x-Ix]

f (x) is called the integer part of x because | f (x)]
is the largest integer that does not exceed x; i.e.
X| =]f(X)|+y, where 0 <y < 1.

Y s
——o
——o
X
o—e y=f(x)
o—s8
Fig. P.5.32

If f is even and g is odd, then: f2, g2 fog, go f,
and f o f are all even. fg, f/g, g/f, and g o g are odd,
and f + g is neither even nor odd. Here are two typical
verifications:

fog(=x) = f(@(-=x) = f(=g(x)) = f(gXx)) = fog(x)
(fP(—=x) = F(=x)g(=x) = F O[-g(X)]
=—-f00gx) = —(fg)(x).

The others are similar.

f even & f(—x) = f(x)

fodd & f(—x)=—-f®Xx)

fevenandodd = f(x) = —f(x) = 2f(x) =0
= fx)=0

16
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35. a) Let E(x) = 3[f(x)+ f(—x)].

Then E(—x) = 1[f(—x) + f(x)] = E(x). Hence,
E(x) is even.

Let O(x) = [ f(x) — f(=x)].

Then O(—x) = 3[f(—x) — f(x)] = —O(x) and
O(x) is odd.

EX)+ O(x)
=3[0+ F(=01+ 3[Fx) — F(=x)]
= f(x).

Hence, f(x) is the sum of an even function and an
odd function.

b) If f(x) = E1(X) + O1(x) where Ej is even and O3
is odd, then

E1(x) + 01(x) = f(x) = E(X) + O(x).

Thus E1(x) — E(x) = O(x) — O1(x). The left side of
this equation is an even function and the right side

is an odd function. Hence both sides are both even
and odd, and are therefore identically 0 by Exercise
36. Hence E; = E and O; = O. This shows that

f can be written in only one way as the sum of an
even function and an odd function.

Section P.6 Polynomials and
Rational Functions (page 43)

X2 —7x+10 = (X +5)(X +2)
The roots are —5 and —2.

x2—3x —10= (X = 5)(X + 2)
The roots are 5 and —2.

—-2+.4-8 .
Ifx2+2x+2=0,thenx=f=—1i|.

The roots are —1+1i and —1 — .
X4H2x4+2=x+1-DX+1+i).

Rather than use the quadratic formula this time, let us
complete the square.

X2 —6X+13=x2—6X+9+4
=(x—32%+22
=(xX—-3-2)(x—3+2i).

The roots are 3+ 2i and 3 — 2i.

16x* —8x2+1 = (4x2 —1)2 = (2x — 1)2(2x +1)2. There
are two double roots: 1/2 and —1/2.

x4 + 6x3 + 9x2 = x2(x2 4 6X + 9) = x2(x + 3)2. There
are two double roots, 0 and —3.



10.

11.

12.

13.
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x3+1=(x+1)(x2—x+1). One root is —1. The other
two are the solutions of x2 — x + 1 = 0, namely

(o 1EVI-4 1 V3
- 2 27 2 7
We have

3.9 CLoVBA (L, VB,
x+l—(x+1)<x 2 2|><x 2+2|.

Xf—1=02 -2+ =x—-DX+DX—D)X+i).
The roots are 1, —1, i, and —i.

x8—3x*+3x2—1=x2-1)%=(x —1)3x + 1)3. The
roots are 1 and —1, each with multiplicity 3.
x> —x* —16x + 16 = (x — 1)(x* — 16)

=X - D —Hx* +4)

=X—-DX—=2)(X+2)(x — 2i)(x + 2i).

The roots are 1, 2, —2, 2i, and —2i.
x>+ x3+8x2+8=x>+1)(x>+8)

=X4+2)X — )X +i)(x® —2x + 4)
Three of the five roots are —2, i and —i. The remain-
ing two are solutions of x2 — 2x 4+ 4 = 0, namely

2+v4-1
x=f6=1i\/§i. We have

X2+ x34+8X2+48 = (X+2) (X—i) (X+i)(X—a-+~/3i)(x—a—+/31).

X —axT —x8 paxt = x4 - x2— a3+ 4)
=x*x3 - 1)(x% - 4)

=x*X — (X — 2)(x + 2)(X> + X + 1).

Seven of the nine roots are: 0 (with multiplicity 4),
1, 2, and —2. The other two roots are solutions of
X2 +x +1=0, namely

Lo otEVI=A

L3,
2 2

+ —1I
2

The required factorization of x% — 4x” — x8 + 4x* is

Sy 1) (5 1 VB (L1 VB,
X" (X=1)(Xx—=2)(x+2) (x 2+ 5 |> (x 55 1]

x3-1 x3—2x+2x-1
x2_2 X2 -2
X(x2—2)+2x —1
- X2 -2
:X+2x—1
x2—-2°

14.

15.

16.

17.

19.

20.

21.

SECTION P.6 (PAGE 43)

x2 ~ x?4+5x+3-5x—3
X2 4+5x +3 X2 45x +3
—1g —b5x —3
X2 4+5x +3°
x3 x4 2x2 4 3x — 2x2 — 3x
X24+2x+3 X2 +2x +3
_X(x2+2x 4 3) —2x2 — 3x
B X2 +2x +3
. 2(x*42x+3) —4x — 6 — 3x
-0 X2 +2x +3
Cx_24 7X +6
X2 4+2x +3
x4 4 x2 x(x3+x24+1) —x3 —x+x?
X3 rxZ+1 X3+ x2+1
X+ D +x2+1—x+x?
=X+ >
X34+ xc+1
:X_1+2x2—x+1'
x34+x2+1

Let P(x) = anx" + an_1x"~1 + --- + a;x + ag, where
n > 1. By the Factor Theorem, x — 1 is a factor of
P(x) if and only if P(1) = 0, that is, if and only if
an+an-1+---+a1+a=0.

Let P(x) = anx" + an_1x" 1 + .-+ 4+ a1x + ag, where

n > 1. By the Factor Theorem, x + 1 is a factor of
P(x) if and only if P(—1) = 0, that is, if and only if
ag—ai+az—az+---+(—=1)"ay = 0. This condition says
that the sum of the coefficients of even powers is equal
to the sum of coefficients of odd powers.

Let P(x) = anX" + an_1x"" 1+ ... + a;x + ag, where the
coefficients ax, 0 < k < n are all real numbers, so that
a = ax. Using the facts about conjugates of sums and
products mentioned in the statement of the problem, we
see that if z=x + iy, where x and y are real, then

P(z) =anz" +an_1z" 1+ -+ a1z + ag
=anZ" +an12" -tz +a
= P(2).
If z is a root of P, then P(Z) = P(z) =0 =0, and Z is
also a root of P,

By the previous exercise, Z = u — iv is also a root of
P. Therefore P(x) has two linear factors x —u — iv
and x — u +iv. The product of these factors is the real
quadratic factor (x — u)?2 — i2v? = x2 — 2ux + u? + 2,
which must also be a factor of P(x).

By the previous exercise

P(x)
X2 —2ux +u2 402

P(x)

T X —u—inX—u+iv Q100

17
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where Q1, being a quotient of two polynomials with real
coefficients, must also have real coefficients. If z =u+iv
is a root of P having multiplicity m > 1, then it must
also be a root of Q1 (of multiplicity m — 1), and so,
therefore, Z must be a root of Q1, as must be the real
quadratic x> — 2ux + u? +v2. Thus

P () _ Q1(x)
(X2 —2ux + U2 +v29)2 X2 — 2ux + U2 + v2

= Qa(x),
where Q> is a polynomial with real coefficients. We can

continue in this way until we get

P(x)
(X2 —2ux +u2+4v

2)m = Qm(x),

where Qn no longer has z (or Z) as a root. Thus z and Z
must have the same multiplicity as roots of P.

Section P.7 The Trigonometric Functions
(page 55)

Cos 3—7[ —COS<N—£>——COS£——i
4) 4/ 4 2

tanﬁ:—tang—n:—l
4 4
sinz—ﬂ=sin(7r—z)=sinz=\/—§
3 3 3 2
At . /T T
sin (E) =sin (Z + 5)
. V1 T . 7T
=smzcos§+coszsm§
11 1J3 1+43
22 B2 T ks

b4 T L2 . ow
ZCOS?COS—-}—SIH—SIH—

4 3 4

()@ (2) @
= \/§_l

22

sinlll—; =sin%

= sin (%—%)
=sin%cos%—cos%sin%
(%) ()0
= ﬁ_l

2v2

18

7.

11.

12.

13.

14.

15.
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cos(r + X) = cos<2n — (T — x))

- Cos(—(n - x))
= coS(T — X) = — COS X

sin(2r — X) = —sinx

sin (37” — x) =sin (rr — (x — %))
=sin (x — %)
= —sin (% — x)

= —COSX

c0S St + X | = cos i COS X — sin 3 sinx
2 N 2 2
= (—=1)(—sinx) = sinx

sinx  COSX

cosX  sinx
sin? x + cos? x
€OS X Sin X
1

COoS X Sin X

(sinx
tanx —cotx  \cosx

tanx + cotx (smx i+ COSX)
cosX  sinx

sin? x — cos? x
( COS X Sin x )
sin? x + cos? x
( COoS X Sin X >

2x —cos? x

tanx + cot x

cosx)
sin x

=sin
cos* x — sin® x = (cos? x — sin? x)(cos? X + sin? x)
= c0s? X — sin® X = cos(2X)

(1 —cosx)(1 + cosx) = 1 —cos®x = sin®x implies

1—cosx sinx
- = . Now
sin x 1+ cosx
1—cosx 1—(:052(5
sinx

na(3)
1 (})

X X
2sin = cos —
2 2
sini
_ 2 _ X
_cosx _tanE
2

2
1—cosx 2sin (

X
1+4C0SX  9cos? é) = tan’ <§)
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COSX — Sinx
16.

(cos X — sin x)2

cosX +sinX ~ (COSX —+ SinX)(CoSX — sinX)

cos? X — 2sinx cos X + sin?

X

cos2 x — sinZ x
1 —sin(2x)
€0s(2x)

sec(2x) — tan(2x)

17. sin3x =sin(2x + x)
= sin 2X €0S X + C€0S 2X Sin X

= 2sinx cos® X + sinx(1 — 25sin’ x)

= 2sinx(1 — sin®x) 4 sinx — 2sin® x

= 3sinx — 4sin®x

18.  c0s3x = cos(2x + X)
= CO0S 2X COS X — Sin 2x sin x

= (2¢0s% X — 1) cos X — 25in? X cos X

= 2¢0s® X — cos X — 2(1 — cos? X) cos X

= 4cos® x — 3cos x

19. cos2x has period 7.

\

y

y = cos(2

X)

\/

T

VARV

Fig. P.7.19

20. sing has period 47.

:

2

X

-1

Fig. P.7.20

21. sinmx has period 2.

y

1 y = sin(nx)/\

AR v

Fig. P.7.21

22. cos % has period 4.

23.

24.

25.

26.

SECTION P.7 (PAGE 55)

Fig. P.7.22

y=2005(x—

. 3 b4
sinx ==, — <x<m
5 2

COSX = 4 tanx = 3
-5 T4

-4

Fig. P.7.25

tanx = 2 where x is in [0, %]. Then

sec?Xx =1+tan?x =1+4=5. I-{ence,

secX = +/5 and cOsSX = —— =
ec X

SiNX =tan X cosx =

N
S
- w

ﬁ’

19
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1
27. cosx=§, —%<x<0
sinx = E— E 2
-3 3
tanx:—?:—Z«/ﬁ
11 R
X
3\ |-v8
Fig. P.7.27
28 cosx——i where X is in [Z n] Hence
. -_ 13 25 . il
25 12
i = l— 2 = l——:—,
sinx = +/ oS 169~ 13
tanx = 12
=-<
1
29. sinx=—§, n<x<7n
COSX = V3
2
tanx = L
V3
i N
-1 2
Fig. P.7.29

30. tanx = % where x is in [r, 37”]. Then,

sec?x =1+ 1_ Hence
- 44 '

5
SecXx = - COSX = —

sinXx =tanXx cosx = —

5

Sl
Sl

T
3. c=2 B=2Z
¢ 3
1
2x =1
%2
V3
2

a=ccosB =

=3

b=csinB=2x

20

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

42,

43.

44,

45.

R. A. ADAMS: CALCULUS

b
b=2 B=—-
2 7 3 2
a:tanB:\/§2>a:\/—§ B c A
2—sinB—\/§ c—4
c ) = T /3 a b
s
=5 B== C
a 6
1 5
b=atanB=5x — = —
V3 V3

25
c=va?+b?2=,/254+— ="+
VK]

. a .
S|nA:E:>a:CS|nA
a
B:tanA:>a:btanA
a

cosB:E:a:ccosB
b
5:tanB:>a=bcotB
SinA =

gzcosA:c=bsecA

SinA=—
2 _p2

sinA:E: ¢ b

c c
. a a
SINA= — = ——

¢ JvaZ+b?
a:&b:&A:%

in A 1
sinB:bﬂzg—:i

a 4.2 42

Giventhata=2,b=2,¢c=3.
Since a2 = b2 4 ¢2 — 2bccos A,
cos A = a? —b?—c?

N —2bc
4-4-9 3
T —2(@3) 4

a=2,b=3,c=4

b2 = a2 4 c2 —42ac1(csos% "
Th B=—— =
U esE =5 2x4 16

112 /256 —121 /135

sinB=,/1-—
162 16



46.

47.

48,

49.

50.

INSTRUCTOR’S SOLUTIONS MANUAL

Giventhata=2, b=3, C = E_

2
12
¢? = a?4+h?2—2abcosC = 4+9-2(2)(3) cos% =13-—.

V2
12
Hence, c = [13 — — ~ 2.12479.
NZ]

b4 b4 57
, 7 plies C B
a C 1

\/_Esin (51—7;)

T 1+43
Given that a =2, b =3, C = 35°. Then
c?2 =4+ 9 —2(2)(3) cos 35°, hence ¢ ~ 1.78050.
a=4, B=40° C =70°
Thus A = 70°, .
b sin 40°

= 7o P = Agnres —27%0

sin 40°

Ifa:l,b:\/ﬁ,A:?)Oo,then?:ﬂzl.

a 2
2 1 3
ThussinB=£= Bzzor—n and

2 /2 4 4
T Vs b4 b4
1-43
LT V3
4 3 22

4" 6
1+/3
23/2

3
4

7
Thus, cosC = cos = = cos( or

12
b4

cosC :cos% :cos(% - Z) =

Hence,

2 —a% +b?—2abcosC

=1+2-—2v2cosC
=3-(1-+3)or3—(1++3)
=2++30r2-+3.

Hence, ¢ = v2 + /3 or V2 — /3.

c

/6

Fig. P.7.50

51.

52.

1
53. Area AABC = E|BC|h =

SECTION P.7 (PAGE 55)

Let h be the height of the pole and x be the distance
from C to the base of the pole.

Then h = xtan50° and h = (x + 10) tan 35°

Thus x tan50° = x tan 35° 4+ 10tan 35° so

10tan 35°

X= tan 50° — tan 35°
B 10 tan 50° tan 35°

= —— ~16.
tan 50° — tan 35° 6.98

The pole is about 16.98 metres high.

See the following diagram. Since tan40° = h/a, there-
fore a = h/tan40°. Similarly, b = h/tan70°.
Since a + b = 2 km, therefore,

h h
tan40°  tan70°
_ 2(tan 40° tan 70°)

~ 1.286 km.

" tan70° + tan 40°

Fig. P.7.52

ah acsinB  absinC
2 1 2 2
By symmetry, area AABC also = Ebcsin A

A
C h b
c
B P
Fig. P.7.53

21



54.

SECTION P.7 (PAGE 55)

From Exercise 53, area = %ac sin B. By Cosine Law,
a? 4+ c2 —b?
2ac

ing /1_ (remy
2ac
V—a% —b* —c% + 2a2b? + 2b2c? + 2ac?
- 2ac '
Vv—a% — b* — ¢4 + 2a2b? + 2b2c? + 2a2c2
4

cosB = . Thus,

Hence, Area =
square units. Since,
s(s—a)(s—bh)is —c)
b+c+ab+c—aa—-b+ca+b-c
-2 2 2 2

= 1_16 ((b +0)? - a2> (a2 —(b— c)2>

1
=—(az((b+c)2+(b—c)2)—a4—(b2—c2)2>
1
_ 1 212 2.2 4 4 4 2.2
_1—6(2ab +2a%2 —a*—b* —¢ +2bc)

22

R. A. ADAMS: CALCULUS

Thus +/s(s —a)(s — b)(s — ¢) = Area of triangle.



INSTRUCTOR’S SOLUTIONS MANUAL SECTION 1.1 (PAGE 61)

CHAPTER 1. LIMITS AND CONTINUITY 7. Att =1 the velocity is v = —6 < 0 so the particle is
moving to the left.

At t = 2 the velocity is v = 0 so the particle is station-
ary.

At t = 3 the velocity is v = 6 > 0 so the particle is
moving to the right.

Section 1.1 Examples of Velocity, Growth
Rate, and Area (page 61)

] AX  (t+h)2—t2 8.  Average velocity over [t —k,t +Kk] is
Average velocity = ~- n m/s.

3(t+ k)2 —12(t + k) + 1 —[3(t — k)2 —12(t — k) + 1]
(t+k)—(t —k)

h Avg. vel. over [2,2+ h] 1/, 2 2 2
- o =ﬁ<3t 4 6tk + 3k% — 12t — 12k + 1 — 3t2 + 6tk — 3k
0.1 4.1000 +12t — 12k + 1)
0.01 4.0100
0.001 4.0010 _lak—24k o s
0.0001 4.0001 2 :

which is the velocity at time t from Exercise 7.
Guess velocity isv=4m/satt=2s.

9.
Average volocity on [2,2 + h] is
2+h2—4 4+44h+h2—4 4h+h?
= = =4+h.
2+h)—2 h h 1
1 y =24 —sin(xt)
As h approaches 0 this average velocity approaches 4 T i
m/s
x=23t2 - 12t +1 m at time t s. 1 ? 3 4 5 t
Average velocity over interval [1, 2] is Fig. 1.1.9
Bx22-12x241)—-@x12-12x1+1) 3
2_1 - Att = 1 the height is y = 2 ft and the weight is
m/s. moving downward.
Average velocity over interval [2, 3] is
Bx3-12x3+1) - @x22-12x2+1) —3ms 10.  Average velocity over [1,1+ h] is
3-2 '
Average velocity over interval [1, 3] is 1 1
Bx3%-12x3+1)—(3x12-12x1+1) 2+ =sint(L+h)— 2+ =sinx
=0 mfs. T b4
3-1 N
_sin(x +mh)  sinmcos(rrh) + cosz sin(rh)
Average velocity over [t,t +h] is - h - h
B _sin(nh)
3t +h)2 —12(t+h)+1— 3t —12t +1) T xh
(t+h)—t
th h2 — 12h h Avg. vel. on[1,1+h
_Sh 3T A2 64 ah — 12 s, : [ ]
h 1.0000 0
0.1000 -0.983631643
This average velocity approaches 6t — 12 m/s as h ap- 0.0100 -0.999835515
proaches 0. 0.0010 -0.999998355

At t =1 the velocity is 6 x 1 — 12 = —6 m/s.

At t = 2 the velocity is 6 x 2 — 12 =0 m/s.

At t = 3 the velocity is 6 x 3 —12 =6 m/s. 11. The velocity at t = 1 is about v = —1 ft/s. The “—~
indicates that the weight is moving downward.

23



12.

13.

14.

1.

2.

SECTION 1.1 (PAGE 61)

We sketched a tangent line to the graph on page 55 in
the text at t = 20. The line appeared to pass through
the points (10, 0) and (50, 1). On day 20 the biomass is
growing at about (1 — 0)/(50 — 10) = 0.025 mm?/d.

The curve is steepest, and therefore the biomass is grow-
ing most rapidly, at about day 45.

) profit

175 %
150 +
125 ¢
100 +
75 1
50 +
25+

> year

2000 2001 2002 2003 2004
Fig. 1.1.14

b) Average rate of increase in profits between 2002 and

2004 is
174 — 62 112

2004 — 2002~ 2
c) Drawing a tangent line to the graph in (a) at
t = 2002 and measuring its slope, we find that

the rate of increase of profits in 1992 is about 43
thousand$/year.

= 56 (thousand$/yr).

Section 1.2 Limits of Functions (page 68)

From inspecting the graph

y=f)

—1
Fig. 1.2.1

we see that

Iim f(x)=1, Ilim f(x)=0, Ilim f(x)=1.
Xx—>—1 x—0 x—1

From inspecting the graph

24

10.

11.

12.

13.

14.

15.

16.

R. A. ADAMS: CALCULUS

we see that

lim g(x) does not exist
x—1

(left limit is 1, right limit is 0)

limgx) =1, limg(x) =0.
X—2 X—3

lim g(x) =1
X—1—
lim g(x) =0
Xx—1+
lim g(x) =0
X—3+
lim g(x) =0
X—3—
lim(x® —dx +1) =4 —44) +1=1
X—

Iim2 31-x2—-x)=3(-1)2-2)=0

i XT3 _3+3_ 2
x>3X+6 346 3
tZ _42
1 —:( ) =2
t>—44—1t 4+4
ox2—-1 12-1 o0
lim = =-=0
x—=1 X+1 1+1 2
2_1
lim "2 = lim (x—1) = -2
x—-1 X +1 x——1
Iimx2—6x+9 B (x —3)?
x—3 Xx2-—9 T x=3 (X —3)(x+23)
_im =30,
T x>3X+3 6
lim x24+2x im -2 1
x—>-2 X2 —4  xs>-—2X—2 —4 2

. 1 . .
limp_2 ypY does not exist; denominator approaches 0
but numerator does not approach O.

i 3 +4h% i 344
"0Th2"hs T nooh—h?
nator approaches 0 but numerator does not approach 0.

does not exist; denomi-



17.

18.

19.
20.

21.

22.

23.

24.

25.

26.

217.

28.

29.

INSTRUCTOR’S SOLUTIONS MANUAL

lim ﬁ_3: ”mw 30.
x=9 X —9 x=9 (X —9) (/X +3)
im— =% gip 1
T (X —9(WX+3)  x>9.X+3 6
lim Y4+ =2
h—0 h 31.
i _Ath—4
h—>0h(V/A+h+2)
1 1
=lim —==
h—~0./4+h+2 4
N2 2
lim &= _ 0—2 —0
X—>1 TX T 32
lim [x—2|=|—4=4 '
X——2
. Ix =2 | —2|
| =——=-1
W x—2 - =2
lim IX—2|_Iim 1, if x >2
x—>2 X —2  x=2| -1, ifx<2
. x =2 . 33.
Hence, Ilm2 does not exist.
X— —
lim -1
t—1 tz—]2-t+ll 1
L -LH+1H L t+ .
tIl_r)nlw = t_r)n1 —) does not exist 34.
(denominator — 0, numerator — 2.)
lim VA —4x +x2
X—2 X—2
. Ix=2] .
= lim ——— does not exist.
x—=>2 X —2
lim t —im t(VA+t+/4—1) 35,
t>0 /4t — A —t t=>0 (4+t)—(@4—1t)
im VEFT+J/E—1 _,
_t4>0 2 o
lim x2—-1 im X DX+ DEX+3+2)
x=1JX +3—2 x—1 x+3)—4
=limx + DWx+3+2) = @(V4+2) =8
X—
lim t? + 3t
10 (L £ 2)2 — (L — 2)2 36.
i tt +3)
Tto0t2 44t 44— (12 -4t +4)
lim t+3 3
_t~>0 8 _8
2 _ 2
lim SFD -6 _ 8y,
s—0 S s—>0 § 37.
—4 3
lim Y =4V +
y—1 y -1
WY-DW/Y—-3 =2 —1

Tl (VDYDY +D 4 2

SECTION 1.2 (PAGE 68)

x3+1
m
x—»-1 X+1
1)(x2 — 1
— lim X+ —x+ )=3
x——1 X+1
lim X216
x—>2 X3 —8
_lim X =2 +2)(x2+4)
T x=2 (X—2)(X2+2x + 4)
RGO
T 44444 3
i x%/3 — 4
Xl—r;% X1/3 1_32 1/3
/3_ /
_ lim (x 2)(x° +2)
x—8 (x1/3 - 2)

=limx"?+2)=4
x—8

lim ! 4
x>2\X—2 x2-4
— lim X+2-4 — lim 1 1
Txo2 (X—=2)(X+2) x—2x+2 4

lim ! !
x=2\X—2 x2—-4

X+2-1

:I-
s (X~ 2)(X +2)
X+1

- xlinz X —=2)(xX+2)

does not exist.

A2+ x2 —
lim >
x—0 X
R O e et &)
x=0 x2(8/2 + x2 + /2 — x2)
. 2x2
= lim
x>0 x2<«/2+x2)+\/2—x2)
_ 2 1
V2+v2 V2

. I3x =1 —3x + 1]
lim
x—0 X
—tim 3X— 1)? — (3x + 1)
T x>0 X (I3 — 1] 4+ 3x + 1))
—12x

2 —x2

= lim = = —
x>0 X (13X — 1|+ [3x+1]) 141

f(x) = x2
_ 2 2
lim XD =T ) AT —x
h—0 h h—0 h
2
—im 2T i ok b = 2x
h—0 h h—0

25



38.

39.

40.

41.

42,

43.

44,

45.

SECTION 1.2 (PAGE 68)

f(x) = x3
_ 3,3
lim f(x+h)— fx) —lim (X +h)° —x
h—0 h h—0 h
_3x%h 4 3xh? +h®
=lim ——M
h—0 h

- r!imozax2 +3xh +h? = 3x?
f(x) =1/x

1 1

fo+m— 00 _ o x+h X
h—0 h

X —(x+h)

~ he0 h(x + h)x

lim
h—0

= lim — =
h—0 (X +h)x X2

f(x) =1/x?
1 1
focem—f0 _ b k2 %2
h h—0 h
x2 — (x? 4+ 2xh +h?)
h(x + h)2x2
2x+h 2X 2

lim
h—0

= lim
h—0

h—>0 (X 4+ h)2x2 x4 x3

f(x) =vx
lim fx+h) - fx)

= lim
h—0 h

h—0

Vx+h— X
h

X+h-—x

= I. _—
A0 h(vx 21 + V%)
1

i 1
= AR VR 2R
fo0) =1/vx

1 1
li VX +h _ﬁ
=h@o h

h—0 h./Xv/X+h
_ lim X — (X +h)
=0 hyXVX +h(J/X + /X +h)
-1
= I.
h VXX +h(/X 4+ V/x +h)
-1

lim fx+h) - fx)
h—0 h

= 5x3/2

lim sinx =sinz/2=1

X—>1/2

lim cosx = cosm/4=1/v/2

X—>m /4

Iimscosx =cosn/3=1/2

X—1/

26

46.

47.

48.

49,

50.

51.

52.

53.

54.

55.

56.

57.

58.

59.

60.
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Iim/gsinx =sin2r/3 =+/3/2

X—27

X (sinx)/x

+1.0 0.84147098
+0.1 0.99833417
+0.01 0.99998333
+0.001 0.99999983
0.0001 1.00000000

. sinx
It appears that lim — = 1.
x—=0 X

X (1 — cosx)/x?

+1.0 0.45969769
+0.1 0.49958347
+0.01 0.49999583
+0.001 0.49999996
0.0001 0.50000000

It appears that lim 1 — cosx = L
PP x—0 X2 - 2
lim vV2—-x=0

X—2—

lim +/2 —x does not exist.

X—2+

lim +V2—-x=2

X——2—

lim V2—-x=2

X——2+

Iin}) v/ x3 — x does not exist.
X—

x3—x<0if0<x<1)

lim vx3—x=0

Xx—0—

Iirg+ v/ x3 — x does not exist. (See # 9.)
X—>

lim Vx2—-x4=0

X—0+

. X —a|
lim
x—a— X2 — a2
X —a 1

=M ax+n - 2 @70

x—a_l

lim X8l
x—a+ X2 — a2 2a

x—a+ X2 — a?

x2—4 0

lim ——
x—2— X +2| 4
0

. x2—4
lim ——
x—=2+ X + 2| 4



61.

62.

63.

64.

65.

66.

67.

68.

69.
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Xx—1 if x <-1

foy=4{x2+1 if-1<x<0
x+m)? ifx=>0
lim fx)= lim x-1=-1-1=-2
X——1— X—>—1—

lim fx)= lim x?+1=1+1=2
+ Xx——14

Xx——1

lim f(x)= lim (x +7)? =n?
X—0+ X—0+

lim f(x)= lim x2+1=1
X—0— X—0—

If lim f(x) =2 and lim g(x) = —3, then
X—4 X—4

a) le(g(x)+3)=—3+3=o

70.
b) limxf(x)=4x2=38
X—4
2
. _ 2
9 lim(g00)" = (-3 =9
. gx) -3 3
D lm to—1-2-1- °
If imx — af(x) =4 and Xlgr}i g(x) = =2, then
a) lim (00 +900) =4+ (-2) =2
b) X“_']; fX)-g(x) =4 x(-2) =-8
) xlig 49(x) = 4(-2) = -8
fxy 4
d) x“—rg g(x) - __2 - 71.
it 1im %0 =5 _ 3 then
X—2 X —
. o f(x)—5 . .
Xlez(foo—s) = lim ———>(x—2) =32 -2) =0,
Thus limy_» f(x) =5.
If lim L:) = —2 then
x—=0 X ¢
limy_o f(X) = limy_ox?2 % =0x (—2) =0,
and similarly,
limy_o m = lim x f(—;() =0x(=2)=0.
X x—>0 X
72.

SECTION 1.2 (PAGE 68)

0.8 1
0.6 -
0.4 1
0.2 -

0.2+
-0.4 1

Fig. 1.2.69

0.8 +

0.6+ .
B Sin(2m x)

041 Y= sin(37x)

008 ' -004 "0.04
021

0.4 1

Fig. 1.2.70

limy_, o sin(2rx)/ sin(37rx) = 2/3

y y
~—L
0.8 \
0.7+
0.6+ y= siny/1—x
05+ CJ/1-x2
044
0.3+
0.2+
0.1+
+ + + + + X'
0.1 0.2 0.4 0.6 0.8 1.0
Fig. 1.2.71
lim SNV X o707
X—1— 1— )(2

27
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Fig. 1.2.72

lim =YX _
x—0+ /SiNX

73.
y
\\‘u«y =X
TN Y = Xsin(1/y
0.1+

-0.2
Fig. 1.2.73

f(x) = xsin(1/x) oscillates infinitely often as x ap-
proaches 0, but the amplitude of the oscillations decreases
and, in fact, limy_o f(x) = 0. This is predictable be-

cause [xsin(1/x)| < [x|. (See Exercise 95 below.)

74, Since v5—2x2 < f(x) <+/5—x2 for -1 <x <1, and
limy_0 /5 — 2x2 = limy_0+/5 — x2 = /5, we have

limy_o f(x) = +/5 by the squeeze theorem.

75. Since 2 —x2 < g(x) < 2cosx for all x, and since
limy—o(2 — x2) = limy_g2cosx = 2, we have
limy_.0 g(x) = 2 by the squeeze theorem.

76. a)

28

77.

78.

79.

R. A. ADAMS: CALCULUS

Fig. 1.2.76

b) Since the graph of f lies between those of x2 and
x*, and since these latter graphs come together at
(£1,1) and at (0, 0), we have limy_,4+1 f(x) = 1
and limy_,o f(x) = 0 by the squeeze theorem.

x13 < x3on (-1,0) and (1, 00). x}3 > x3 on
(=00, —1) and (0, 1). The graphs of x1/3 and x3 inter-
sect at (—1, —1), (0,0), and (1, 1). If the graph of h(x)
lies between those of x1/3 and x3, then we can determine
limy_ah(x) fora = —1,a = 0,and a = 1 by the
squeeze theorem. In fact

lim h(x)=-1, IlimhXx)=0, IlimhX)=1.
X——1 x—0 x—1

1
f(x) = s sin— is defined for all x # 0; its domain is

(—00,0) U (0, o0). Since |sint| < 1 for all t, we have
[f(X)| < Ix]and —|x| < f(x) < |x]| forall x # 0.
Since limy_9 = (—|x|) = 0 = limy_q |X|, we have
limy_o f(x) = 0 by the squeeze theorem.

[fX)] <gx) = —g(x) < f(x) <gXx)

Since XIm;1 g(x) =0, therefore 0 < leg1 f(x) <o.
Hence, Xllma f(x) =0.

If Xlln; g(x) = 3, then either —3 < Xllng1 f(x) < 3or
limy_.a f(X) does not exist.

Section 1.3 Limits at Infinity and Infinite
Limits (page 75)

1
lim —— = lim —— = -
ergo 2x — 3 ergo 2—-@3/x) 2
1
lim — > im — % _9
x—>00 X2 —4  x—>o00 1 — (4/x2) 1
o 3x3—5x247
lim ———
><—>o<>8+2x—5x37
324 -
3 3
= lim X _X° - =
Xx—>o00 8 2 5
@ e
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lim =
>(—>—ooX—X2
2
1-— =
. 2 1
= lim — X = =-1
——00 1 —
X
1 3
im i = ;+F—0
x—>—00 X3 42 x—>—-00 2
1+
X
sinx
_ x2 4sinx I+-5 1
lim 5 = lim cosx =7 =1
X—00 X4 4+ COS X X—> 00 1+ . 1
X

. sinx -
We have used the fact that limy_, o — = 0 (and simi-
larly for cosine) because the numerator is bounded while
the denominator grows large.

3X + 2/X

lim
1-—x

X— —00 1 1 -
x X2
because x — —oo implies that X < 0 and so v/x2 = —x.
. 2x —5 . 2x —5 2
lim = lim =2—>~—~* _—_=Z
X— —00 |3X + 2| X— —00 —(3X —+ 2) 3

. 1 .
lim —— does not exist.
x—3 3 — X

xlins B-x)2

x—=3— 3 —X

x—3+ 3 — X

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

217.

28.
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im 2x+5 0 ~0
x—>-5/25x+2 =25 -
— +2
2
2X +5 .
im —+does not exist.
x—>—2/5 5X + 2
2X+5
im =—
X——(2/5)— BX + 2
2X +5
im =00
Xx——2/5+ BX + 2
. X
lim —— =—
x—>2+ (2 = x)3
lim —— = o
x—1- 1 _x2
. 1
lim =
X~>1+|X—l|
. 1
lim =00
x—1— |X — 1]
. Xx—3 . x—3
lim = lim = -0
x—>2 X2 —4X +4  x>2 (X — 2)?
im YK i L
x>+ X —X2 T xolt X2 —x
X 4+ x3 4+ x5
im ——
x—00 1 4 x2 4 x3
—2+1+X2
= m 7=
—S+-+1
X X
3
_x343 X+ im
lim lim =00
X—>ooX2—|— X— 00 2
x2
lim XX +1(1—+2x+3)
X—00 7 — 6X + 4x2
1 1 3
2
X 1+—)(—=—-./2+ -
= lim
- 7
X— 00 Xz(—2—§—|—4>
X
(2 _ 1.
4 T 4

. x2 x2 o —2x2
lim - = lim =-2
x—o00 \ X 4+ 1 X —1 x—oo X2 — 1

29
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lim (x/x2 +2x —x2 = 2x)
X—>—00
X2 +2x) — (X2 — 2x)
x—>—00 \/x2 4 2x +«/x
= I|m

Rt

l+1

XILrT;O(\/x2+2x —Vx2 -

- X2 4 2x — x2 + 2x
X=00 /X2 +2x -‘r\/XZ —2x
lim

X—00
X 1+ + X 1——

= lim
X—00
‘/l—i— 1/1——

lim

X—>00 (/x2 — 2x — X

VX2 —2X + X
M (m-i—X)(\/M—X)
lim /X2 —2X 4+ X
X—00 x2—2x—x2

x(ﬂ/—l—(z/x +H_ 2 _

X%oo —2X -2

1 1
lim ——— = lim =
X=>—00 \/x2 4 2x —x  x=—o [X|(/1+4(2/x) +1

By Exercise 35, y = —1 is a horizontal asymptote (at the

1
right) of y = ————. Since
ght) of y VX2 — 22X — X
. 1 . 1
lim ————— = lim =0,
X=>—00 \/x2 —2x —x  x=—o [X|(/1—=(2/x)+1

y = 0 is also a horizontal asymptote (at the left).

Now +/x2 —2x —x = 0 if and only if x2 — 2x = x2, that
is, if and only if x = 0. The given function is undefined
at x = 0, and where x2 — 2x < 0, that is, on the interval

[0, 2]. Its only vertical asymptote is at x = 0, where
1
limyoo ——— =0
" VX2 — 2% —x
Since lim 2x-5 _ 2 and lim 2x-5 _ 2
x—oo |3x +2| 3 x——o0 [3x +2| 3’

y = =£(2/3) are horizontal asymptotes of
y = (2x — 5)/|3x + 2|. The only vertical asymptote
is x = —2/3, which makes the denominator zero.

lim f(x)=1
x—0+
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AR

Fig. 1.3.37

IimX»2+ fx)=1
i 100=2
i 109=-
Jim, 100 =

Iim fx)=2

I|m fx)=0
X—>4—

lim f(x) =—
X—>5—

lim f(x)=0
X—5+

lim f(x)=1
X—00

horizontal: y = 1; vertical: x =1, x =3.
lim [x] =3

X—3+
li =2

iy L)

lim [x] does not exist
X—3

li =2
S
lim [2—x] = li =1
2 = g 1)
li =—
lm L)
tIith1 C(t) = C(tp) except at integers tp
—lo

. Ii{n C(t) = C(tp) everywhere
—1lp—

lim C(t) = C(tp) if tp # an integer
t—>to+
. Ii§n+C(t) = C(tp) + 1.5 if tg is an integer
—1lo
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6.0(}1 o0——=oe
4.50 o—o

3.00 O—yOZ O

1.50 I—O

T 1 2 3 4 X

Fig. 1.3.53

54, lim f(x)=1L
Xx—0+

(@) If f iseven, then f(—x)= fX).
Hence, Iir(r)1 f(x)=L.
X0

(b) If f is odd, then f(—x)=—fX).
Therefore, Iirg f(x) =-L.
X—0—

55. lim f(x)=A, lim fx)=B
Xx—0+ X—0—

a) lim f(x2—x)=B (since x3—x <0if0 <x <1)
X—0+

b) Iirg f(x3—x) = A (because x3 — x > 0 if
X—0—
—1<x<0)

¢ lim fx?—xH=A
Xx—0—

d) lim f(x> —x* = A (since x2 — x* > 0 for

X—0+

0< x| <1

Section 1.4 Continuity (page 85)

1. g is continuous at x = -2, discontinuous at
x = =1, 0,1, and 2. It is left continuous at x = 0
and right continuous at x = 1.

-2 -1 1
Fig. 1.4.1

2. g has removable discontinuities at x = —1 and x = 2.
Redefine g(—1) = 1 and g(2) = 0 to make g continuous
at those points.

3.

10.

SECTION 1.4 (PAGE 85)

g has no absolute maximum value on [—2, 2]. It takes
on every positive real value less than 2, but does not take
the value 2. It has absolute minimum value 0 on that
interval, assuming this value at the three points x = —2,
x =-1,and x = 1.

Function f is discontinuous at x =1, 2, 3, 4,and 5. f
is left continuous at x = 4 and right continuous at x = 2
and x = 5.

y ;

Fig. 1.4.4

f cannot be redefined at x = 1 to become continuous
there because limy_.1 f(x) (= oo) does not exist. (co is
not a real number.)

sgnx is not defined at x = 0, so cannot be either continu-
ous or discontinuous there. (Functions can be continuous
or discontinuous only at points in their domains!)

x ifx<0

o) = {xz if x>0
real line, even at x = 0 where its left and right limits are

both 0, which is f(0).

is continuous everywhere on the

x ifx<-1
x2 ifx > -1
real line except at x = —1 where it is right continuous,
but not left continuous.

f(x) = { is continuous everywhere on the

lim fx) = Iirn1 x=-1#1
X—>—1—

X——1—

2 f (%).

=f(-1)= lim x“= Ilim
X—>—1+ X——1+

1/x? ifx #£0
0 ifx=0
cept at x = 0, where it is neither left nor right continuous
since it does not have a real limit there.

f(X)z{xz if x <1
0987 ifx>1
except at x = 1, where it is left continuous but not right

continuous because 0.987 # 1. Close, as they say, but no
cigar.

f(x) = is continuous everywhere ex-

is continuous everywhere
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The least integer function [x] is continuous everywhere
on R except at the integers, where it is left continuous
but not right continuous.

22.

C(t) is discontinuous only at the integers. It is continu-
ous on the left at the integers, but not on the right.

2
. -4 .
Since ); > = x + 2 for x # 2, we can define the

function t?) be 2+ 2 =4 at x = 2 to make it continuous
there. The continuous extension is X + 2.

1+t Q400 -t4+1t2)  1—t41t2 for
1—-t2 7 d+vHa-t

Since
1-—-t

t # —1, we can define the function to be 3/2 att = —1 23.

to make i2t continuous there. The continuous extension is
1—t+t

1-t

t2 _5t+6 t—2)t—3 t—2
+6  ( )( ) fort # 3,

Since = =
t2—-t—6 t+2)t-3) t+2
we can define the function to be 1/5 at t = 3 to make it

. . N
continuous there. The continuous extension is H——Z

Since

22 x=V2x+v2) O x4+V2
XP—4 X — VDX +VDKZ+2) X+ V(X2 +2)
for x # +/2, we can define the function to be 1/4 at

X = /2 to make it continuous there. The continuous

X+ /2 25.

extension is . (Note: cancelling the

(X 4+ v2)(x2 4+ 2)
X 4 /2 factors provides a further continuous extension to
X =—+2.

limoop f(X) =k —4 and limyo_ f(X) = 4 = f(2). 26.

Thus f will be continuous at x = 2 if k — 4 = 4, that is,
if k =8.

limy3-gx) = 3 — mand
limy_34+ g(x) = 1 —3m = g(3). Thus g will be con-
tinuous at x =3 if 3—m =1 —3m, that is, if m = —1.

x2 has no maximum value on —1 < x < 1; it takes all
positive real values less than 1, but it does not take the
value 1. It does have a minimum value, namely O taken
onat x =0.

28.

The Max-Min Theorem says that a continuous function
defined on a closed, finite interval must have maximum
and minimum values. It does not say that other functions

cannot have such values. The Heaviside function is not 29.

continuous on [—1, 1] (because it is discontinuous at
x = 0), but it still has maximum and minimum values.
Do not confuse a theorem with its converse.

30.

Let the numbers be x and y, where x > 0, y > 0, and
X +y =8. If P is the product of the numbers, then

P=xy=x(8—Xx)=8x—x?=16— (x — 4)°.

32
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Therefore P < 16, so P is bounded. Clearly P = 16 if
X =y =4, so the largest value of P is 16.

Let the numbers be x and y, where x > 0, y > 0, and
X +y =8. If S is the sum of their squares then

S=x2+y?2=x%+ (8 —-x)>?
= 2x? — 16X + 64 = 2(x — 4)> + 32.
Since 0 < x < 8, the maximum value of S occurs at

X =0 or x =8, and is 64. The minimum value occurs at
X =4 and is 32.

Since T = 100 — 30x + 3x? = 3(x — 5)2 + 25, T will
be minimum when x = 5. Five programmers should be
assigned, and the project will be completed in 25 days.

If x desks are shipped, the shipping cost per desk is

_245x —30x2 +x°
= . =

C x% — 30X + 245

= (x — 15)2 +20.

This cost is minimized if x = 15. The manufacturer
should send 15 desks in each shipment, and the shipping
cost will then be $20 per desk.

2 _
f(x)= 1 =

X X

f =0at x==41. f is not defined at 0.
f(x) >0o0n (=1,0) and (1, c0).
f(x) <0on (—o0,—1) and (0, 1).

xX=-Dx+1

fX) =x24+4x+3=(x+1(x+23)
f(x) >0o0n (—oo, —3) and (-1, 00)
f(x) <0on (=3, -1).

x2-1 (x—-1(x+1)
0= 2~ x—ox+2
f=0atx==1.

f is not defined at x = +2.

f(x) >0o0n (—o0, —2), (—1,1), and (2, 00).
f(x) <0on (-2,-1) and (1, 2).

2 _ _
Fx) = X +X>; 2 _ (X +2))(gx 1)
f(x) >0o0n (=2,0) and (1, o0)
f(x) <0on (—o0,—2) and (0, 1).

fX)=x3+x—-1, f(0)=-1, f(1)=1.
Since f is continuous and changes sign between 0 and 1,
it must be zero at some point between 0 and 1 by IVT.

f(x) = x3 — 15x + 1 is continuous everywhere.
f(-4)=-3, f(-3)=19, f(1)=-13, f(4) =5.
Because of the sign changes f has a zero between —4
and —3, another zero between —3 and 1, and another
between 1 and 4.
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F(x) = (x —a)2(x — b)2 + x. Without loss of generality,
we can assume that a < b. Being a polynomial, F is
continuous on [a, b]. Also F(a) = a and F(b) = b.
Since a < %(a + b) < b, the Intermediate-Value Theorem
guarantees that there is an x in (a, b) such that

F(x) = (a+h)/2.

Letg(x) = f(x) —x. Since 0 < f(x) <1if0<x <1,
therefore, g(0) > 0 and g(1) < 0. If g(0) =0 letc =0,
or if g(1) =0 let c = 1. (In either case f(c) =c.)
Otherwise, g(0) > 0 and g(1) < O, and, by IVT, there
exists ¢ in (0, 1) such that g(c) =0, i.e., f(c) =c.

The domain of an even function is symmetric about the
y-axis. Since f is continuous on the right at x = 0,
therefore it must be defined on an interval [0, h] for
some h > 0. Being even, f must therefore be defined
on [—h,h]. If x = —y, then

lim f(x) = lim f(—=y)= lim f(y) = f(0).
X—0— y—0+ y—0+
Thus, f is continuous on the left at x = 0. Being contin-
uous on both sides, it is therefore continuous.

fodd & f(—x)=—-f(x)
f continuous on the right < Iir(g]+ f(x) = f(0)
X—

Therefore, letting t = —x, we obtain

g 100.= lig, 10 = i ~1)

=—f(0) = f(—0) = (0).

Therefore f is continuous at 0 and f(0) = 0.
max 1.593 at —0.831, min —0.756 at 0.629
max 0.133 at x = 1.437; min —0.232 at x = —1.805
max 10.333 at x = 3; min 4.762 at x = 1.260
max 1.510 at x =0.465; min O at x =0and x =1
root x = 0.682
root x = 0.739
roots x = —0.637 and x = 1.410
roots x = —0.7244919590 and x = 1.220744085
fsolve gives an approximation to the single real root to

10 significant figures; solve gives the three roots (includ-
ing a complex conjugate pair) in exact form involving the

13
guantity (108 + 12\/@) ; evalf(solve) gives approxi-

mations to the three roots using 10 significant figures for
the real and imaginary parts.

10.

11.

SECTION 1.5 (PAGE 90)

Section 1.5 The Formal Definition of Limit
(page 90)

We require 39.9 < L <40.1. Thus

39.9 < 39.6 +0.025T < 40.1
0.3 <0.025T <0.5
12 < T < 20.

The temperature should be kept between 12°C and 20 °C.

Since 1.2% of 8,000 is 96, we require the edge length x

of the cube to satisfy 7904 < x3 < 8096. It is sufficient

that 19.920 < x < 20.079. The edge of the cube must be
within 0.079 cm of 20 cm.

3—-002<2x—-1<3+0.02
3.98 < 2x <4.02
199 <x <201

4-01<x%2<4+01
1.9749 < x < 2.0024

1-01<4x<11
08l<x<121

—2-001<-<-2+0.01

x| =

—_ > X > -
201 — = 199
—0.5025 < x < —0.4975

We need —0.03 < (3x+1)—7 < 0.03, which is equivalent
to —0.01 < x —2 < 0.01 Thus § = 0.01 will do.

We need —0.01 < +/2Xx +3 — 3 < 0.01. Thus

2.99 < /2x +3 < 3.01

8.9401 < 2x + 3 < 9.0601
2.97005 < x < 3.03005

3—-0.02995 < x — 3 < 0.03005.

Here § = 0.02995 will do.

We need 8 — 0.2 < x3 < 8.2, or 1.9832 < x < 2.0165.
Thus, we need —0.0168 < x — 2 < 0.0165. Here
§ = 0.0165 will do.

Weneedl — 005 < 1/x +1) < 1+ 0.05,
or 1.0526 > x + 1 > 0.9524. This will occur if
—0.0476 < x < 0.0526. In this case we can take
8 = 0.0476.

To be proved: Iim1(3x +1)=4.
X—

Proof: Let € > 0 be given. Then |(3x +1) — 4| < € holds
if 3]Ix—1] < ¢, and so if [x—1] < § = ¢/3. This confirms
the limit.
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To be proved: Iimz(5 —2x)=1.

X—
Proof: Let € > 0 be given. Then |[(5 —2x) — 1| < ¢ holds
if |2x—4| < ¢, and so if [x—2| < § = €/2. This confirms
the limit.
To be proved: Iinz) x> =0.

X—>

Let € > 0 be given. Then |x% — 0| < ¢ holds if
X —0] = |X]| < & = /€.

X—2
To be proved: lim —— =
P x—>2 1+ x2
Proof: Let € > 0 be given. Then

= <|x—=2
1+x2 x2S P—el=e

X —2 ‘_|x—2|

provided |x — 2| < § = .

o 1-4x?
To be proved: lim =2
x—=1/2 1 — 2x

Proof: Let € > 0 be given. Then if x # 1/2 we have

1

X=3

‘1—4x2
< €

T o0 _2‘ =[1+2x)-2| =2x—-1| =2

provided |x — 3| < § = €/2.

2
. X5 42X
To be proved: lim X -2.
x—>—2 X+2
Proof: Let € > 0 be given. For x # —2 we have

x% 4+ 2x
X+2

—(—2)‘:|X+2|<e

provided |X + 2| < § = €. This completes the proof.
1

To be proved: lim .
P x—1X+1 2

Proof: Let € > 0 be given. We have

1-x |  Ix—=1f
2+ 1| 2x+1)°

X+1 2

1 1‘_‘

If [ x -1 <1,then0<x <2and 1l <x+1 <3, so that
X +1] > 1. Let § =min(l, 2¢). If |x —1| <4, then

x+1 2

= < =
2x +1] 2

1 1’_ X -1 2

This establishes the required limit.

. X+1
To be proved: lim ———— =
P x—>-1%x2 -1
Proof: Let € > 0 be given. If x # —1, we have

1
5

x+1 1| | 1 1\ x+1]
x2—1 2| |x-1 2] 2x =1
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If x+1] <1,then -2 <x <0,s0 -3 <x—1< —1 and
[Xx —1] > 1. Ler§ = min(1,2¢). If 0 < [x — (-=1)| < §
then |[x — 1| > 1 and |x + 1| < 2¢. Thus

x+1 1| x+1 2

—| = < =
x2 -1 2’ 2x —1] 2

This completes the required proof.
To be proved: Iimlﬁ =1

X—
Proof: Let € > 0 be given. We have
x—1
JX+1

provided |x — 1] < § = €. This completes the proof.

VR-11=|

’§|X—1|<E

To be proved: )!imzx3 =8.

Proof: Let € > 0 be given. We have

X3 =8 = [x —2||x2+2x +4|. If |x —=2| < 1,
thenl < x < 3andx? < 9. Therefore

X2 +2x + 4] < 9+2x3+4 = 19 If

X —2| < 8 =min(l, €/19), then

|x3—8|:|x—2||x2+2x+4|<1i9x19=e.

This completes the proof.

We say that limy_.4— f(x) = L if the following condition
holds: for every number ¢ > 0 there exists a number
8 > 0, depending on ¢, such that

a—8<x<a implies [f(x)—L|<e.
We say that limy_, _o, f(x) = L if the following condi-
tion holds: for every number € > 0 there exists a number
R > 0, depending on ¢, such that

X < —R implies |f(x)—L|<e.
We say that limy_.4 f(X) = —oo if the following con-
dition holds: for every number B > 0 there exists a
number § > 0, depending on B, such that

0<|x—al]<é implies f(x)< —B.

We say that limy_, o f(X) = oo if the following condition
holds: for every number B > 0 there exists a number
R > 0, depending on B, such that

x> R implies f(x) > B.
We say that limy_.a+ f(X) = —oo if the following con-
dition holds: for every number B > 0 there exists a

number § > 0, depending on R, such that

a<x<a+d implies f(x)<—B.



26.

217.

28.

29.

30.

31.

32.

INSTRUCTOR’S SOLUTIONS MANUAL

We say that limy_.5— f(X) = oo if the following con-
dition holds: for every number B > 0 there exists a
number § > 0, depending on B, such that

a—38<x<a implies f(x)> B.

. 1
To be proved: limy_. 14 1= o0o. Proof: Let B > 0

1
be given. We have -1 Bif0<x—1<1/B, that

is, if1 <x <1435, v;here 8 = 1/B. This completes the
proof.

To be proved: limy_.1— = —oo. Proof: Let B >0

1
1 x—1
be given. We have 1 <-Bif0>x-1> -1/B,

X —
that is, if 1—6 < x < 1, where § = 1/B.. This completes
the proof.

= 0. Proof: Lete >0

To be proved: limy_,
x2+1

be given. We have

‘ 1 ‘ 1 1
= < —
VX241 X241 X

provided x > R, where R = 1/¢. This completes the
proof.

To be proved: limy_, o +/X = co. Proof: Let B > 0 be
given. We have /X > B if x > R where R = B2, This
completes the proof.

<€

To be proved: if legi f(x) =L and XIm;1 f(x) = M, then
L =M.

Proof: Suppose L # M. Lete = |[L — M|/3. Then

e > 0. Since x“n; f (x) = L, there exists §; > 0 such that

[ f(x)—L| < ¢ if [x—a| < §1. Since x“n; f(x) = M, there
exists 8 > 0 such that | f (x) — M| < ¢ if [x —a| < 6.
Let § = min(81, 82). If [x —a| < 6, then

3e=|L-M[=[(f(x) = M)+ (L - fx)|
<|fX)=M|+|f(X) —L| <e+e=2e

This implies that 3 < 2, a contradiction. Thus the origi-
nal assumption that L # M must be incorrect. Therefore
L=M.

To be proved: if Xllm'51 g(x) = M, then there exists § > 0

such that if 0 < |x —a| < §, then [g(X)| < 1+ [M].
Proof: Taking ¢ = 1 in the definition of limit, we obtain
a number § > O suchthatif 0 < |[x —a|] < 4, then
[g(x) — M| < 1. It follows from this latter inequality that

9O = 1(@(x) =M)+M]| < |G(X) = M[+[M] < 1+[M].
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33. To be proved: if XIm;1 f(x) =L and xlmé g(x) = M, then

34.

35.

36.

)!irr; f(x)g(x) = LM.

Proof: Let € > 0 be given. Since Xlirr; f(x) = L, there
exists 81 > 0 such that | f (x) — L| < €/(2(1 + |[M}))
if 0 < |[x —al < 8. Since x“n; g(x) = M, there ex-
ists 8 > 0 such that |g(x) — M| < ¢/(2(1 + |L))) if
0 < |x —a| < 8. By Exercise 32, there exists 3 > 0
such that [g(x)] < 1+ M| if0 < |[x —a] < §3. Let
8 = min(d1, 82, 83). If [x —al < &, then

[fOOg(X) — LM =[f(x)g(x) — Lg(X) + Lg(x) — LM|
=[(f(x) —L)gx) + L@x) — M)
<P = Lgx) |+ LX) — M)
=[f() = L[Ige)| + [L[lg(x) — M|

1 +IM] + L]

€
=201+ M) 20+ L))
€ €

< 5 + 5 = €.
Thus )!m}i f(x)g(x) = LM.

To be proved: if XI|_r>r'1Sl g(x) = M where M # 0, then
there exists § > O such that if 0 < |x — a| < 4§, then
19(0)| > [M|/2.

Proof: By the definition of limit, there exists § > 0 such
that if 0 < |x —a| < §, then |g(xX) — M| < [M]|/2
(since |M|/2 is a positive number). This latter inequality
implies that

M

M| = [g(x)+(M—=g(x)| < [gX)[+Ig(x)—M] < Ig(X)|+7-

It follows that |g(x)| > |[M| — (]M]|/2) = [M]/2, as
required.

To be proved: if XIm;1 g(x) = M where M # 0, then
. 1

lim — = —.

x>ag(x) M

Proof: Let ¢ > 0 be given. Since Xlin; gx) = M #0,

there exists 81 > 0 such that [g(x) — M| < €|M|?/2 if
0 < |x —a| < 81. By Exercise 34, there exists §2 > 0
such that |g(x)| > |[M|/2if0 < |x —a| < J3. Let
8 =min(d1, 82). If 0 < |[x —al < &, then

‘1 1‘_|M—g(x)| €Mz 2

g M| T Mgl 2 M ©

This completes the proof.
To be proved: if Xllrr;1 f(x) =L and legi fx)=M #£0,

then lim m = L
X—a g(x) M
Proof: By Exercises 33 and 35 we have
. fx) . 1 1 L

35



37.

38.
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To be proved: if f is continuous at L and Xllmc gx) =1L,
then )!|mc f(g(x)) = f(L).

Proof: Let ¢ > 0 be given. Since f is continuous at L,
there exists a number y > 0 such that if [y—L| < y, then
[f(y) — f(L)] < e. Since limy_,c g(x) = L, there exists
§ > 0 such that if 0 < |[x —¢| < §, then |g(x) — L| < y.
Taking y = g(x), it follows that if 0 < |x —c| < &, then
[f(@x)) — f(L)| <€, so that limy_.¢ f(g(x)) = f(L).

To be proved: if f(x) < g(x) <h(x) in an open interval
containing x = a (say, fora — 81 < x < a + 81, where
81 > 0), and if limy_a f(X) = limy_a h(x) = L, then
also limy_,5 g(x) = L.

Proof: Let ¢ > 0 be given. Since limy_.a f(X) = L,
there exists o > O suchthatif 0 < |x —a| < &,
then | f(x) — L] < €/3. Since limy_ah(x) = L,
there exists 63 > O suchthatif 0 < |[x —a|] < &3,
then |h(x) — L| < ¢/3. Let § = min(81, 82, 83). If

0 < |x —al <34, then

[g(x) = L| =1g(x) — f(x) + f(x) —L|
<1ge) = FeOl + () — L]
<hx) = Ol +[f(x) —L|
=hx)—L+L—-fX)]|+]|f(x)—L]|
<|h) =L+ [fx) =L+ [f(x)—L]
€ € €

Thus limy_.4 g(x) = L.

Review Exercises 1 (page 91)

The average rate of change of x3 over [1, 3] is

343
U B3
3—-1 2

The average rate of change of 1/x over [-2, —1] is

1/-H)-1/(=2) =12 1
-1—-(-2) o1 T2

The rate of change of x3 at x =2 is

(2+4hB®—-28  84+12h+6h2+h3—38
lim = lim
h—0 h h—0 h

= lim (12 + 6h + h2) = 12.
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The rate of change of 1/x at x = —3/2 is

1 ( 1 ) 2 2
. —@B/2)+h \-3/2) . 2h—3 *3
lim = lim &—/———~
h—0 h h—0 h
2(3+2h —3)

= 32h —3)h
= lim = 4
T h=>03(2h—3) 9

Iiml(x2—4x+7)=1—4+7=4
X—

2 22
lim = =% __
x—21—x2 1-22

2

4
3

Iim1 %2 does not exist. The denominator approaches
X—> —
0 (from both sides) while the numerator does not.
2_4 -2
lim i X ZDXHD) e XF2
x>2X2 —5Xx+6 x>2(X—2)(Xx—3) x>2X-—3
) x2—4 L (X=X +2 X+2
lim — = lim =
x—>2 X2 —4x +4  x>2 (X —2)2 Xx—2 X — 2

does not exist. The denominator approaches 0 (from both
sides) while the numerator does not.

lim x2—4 - X+2
X2 X2 Ax 44 xor-x—2  °
. X2 —4 ox=2
Iim — = lim = -0
X—>—24 X2 +4X +4  x>-2+ X +2
lim 2=V i Amx 1
x—4 X —4 x—4 (2 4+ /X)X — 4) 4
i x2-9 i =K +3)(VX +3)
X%SX/—_\/g_X%3 X —3
= lim (x + 3) (VX ++/3) =124/3
X—>
. h . h(vx+3h+ /x)
Iim —m = lm ———M >~
h—0./Xx +3h — /X h>0 (x+3h)—x
_“m«/x+3h+\/¥_2ﬁ
_h—>0 3 - 3

lim vVx—=x2=0
X—0+

Iin}) V' x — x2 does not exist because v/x — x2 is not de-
X

fiﬁed for x < 0.

Iim1 VX — x2 does not exist because v/x — x2 is not de-

X—
fined for x > 1.

IiT VX —=x2=0
X—=1—
1—x? 1/x% -1 1

lim ——— = lim — _=
x—>003x2 —Xx —1 x—003— (1/x) — (1/x?) 3
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21.

22.

23.

24.

25.
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29.

30.
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32.
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- 2x +100 (2/x) + (100/x?)
Xx—>—00 X243 T Xx—>—00 l+(3/x2) -
lim x3-1 o x—(1/xY)
x—>—00 X2+ 4 x—>-c0 1+ (4/x2)
X4 2

lim =
x—=0+ /X — x2

. 1 1

lim =——=2
x—=1/2 /X — X2 J1/4

lim sinx does not exist; sinx takes the values —1 and 1
X—00
in any interval (R, 0co), and limits, if they exist, must be

unique.
. COSX .
lim —— =0 by the squeeze theorem, since
X—00 X
1 cosx 1
——<——=<- foralx>0
X X X

and limy_ oo (—1/x) = limy_, 5 (1/x) = 0.

. 1 .
lim x sin — = 0 by the squeeze theorem, since
Xx—0 X

1
—|X| sxsm; <|x|] forallx#0

and limy_o(—[x|) = limy_o |X| = 0.

o1 . .
lim sin = does not exist; sm(l/x2) takes the values —1
x—0 X

and 1 in any interval (-3, §), where § > 0, and limits, if
they exist, must be unique.

im [X + VX2 —4x + 1]
——00

X2 — (X2 —4x +1)

= lim
x>=00 x — /X2 —4x + 1
) 4x — 1
= lim
x==00 x — |x|\/I— (4/x) + (1/x2)
X—>—00 x | X\/l —@4/x¥)+ (1/X2)
) 4—(1/x)
=i -
x—>=00 1 4 /1 — (4/x) + (1/x2)
Note how we have used |x| = —x (in the second last

line), because x — —oo.

lim [Xx +vVx2 —4x + 1] =00 4+ 00 =00

X—00

f(x) = x3 — 4x2 + 1 is continuous on the whole real line
and so is discontinuous nowhere.

X . . . .
f(x) = —— is continuous everywhere on its domain,

which consists of all real numbers except x = —1. It is
discontinuous nowhere.

CHALLENGING PROBLEMS 1 (PAGE 92)

2 -
33. fx) = {X !f X >2 is defined everywhere and dis-

x ifx<2
continuous at x = 2, where it is, however, left continuous
since limy_o— f(x) =2 = f(2).
x2 ifx>1
34. fx) = x ifx<l
erywhere, and so discontinuous nowhere. Observe that
limy_1- f(x) =1=Ilimy_14 f(X).

3B, fX)=Hx-1) = {1 :: i ii is defined everywhere

and discontinuous at x = 1 where it is, however, right
continuous.
36. f(x)=H@O-x? = {(1) :]]: ;15_); §r3x 3 is defined

everywhere and discontinuous at x = =+3. It is right
continuous at —3 and left continuous at 3.

is defined and continuous ev-

37. f(x) = |x|+|x+1] is defined and continuous everywhere.
It is discontinuous nowhere.

38. f(x) = [|1X|/|X +1 :: i 7__é :i is defined everywhere

and discontinuous at x = —1 where it is neither left nor
right continuous since limy_, _1 f(x) = oo, while
f(-1) =1.

Challenging Problems 1 (page 92)

1. Let0 < a < b. The average rate of change of x3 over
[a,b] is
b3 _ a3

=b? +ab + a.
b—a

The instantaneous rate of change of x3 at x = ¢ is

. (c+h3—c®  3c®h+43ch? +hd

lim c+h = lim + + = 3c?.
h—0 h h—0 h

If c = /(a? + ab + b?)/3, then 3c? = a2 + ab + b?, so

the average rate of change over [a, b] is the instantaneous

rate of change at /(a2 + ab + b2)/3.
Claim: /(a2 + ab +b2)/3 > (a + b)/2.

Proof: Since a2 — 2ab +b? = (a — b)2 > 0, we have

4a?% + 4ab + 4b? > 3a? + 6ab + 3b?
a?+ab+b? a’+2ab+b?  (a+b)?
3 g 4 2

aZ+ab+b? a+b
V 3 ~ T

2. For x near 0 we have [x—1|=1—x and |x+1| =x+1.
Thus

1

X
lim = lim =——.
x=0 X =1 —|x+1 x-0(1—-—Xx)—X+1) 2

37
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For x near 3 we have |5 —2x| =2x —5, [Xx —2| =X — 2,

[Xx =5/=5-x,and |[3x — 7| =3x — 7. Thus

LB =2 = x=2] . 2X-=5-(X—2)
x=3|X =5 —|3x =7 x=35—x—(3x—7)
X —3 1

= lim — =—-.
x—3 4(3 — X) 4
Let y = x1/8. Then we have

X3 _—4  y2_4

xl—l>ng4 X2 _8 yflz y3—8
y—=2(y+2

Cy=2(y—2)(y2+2y+4)

y+2 4 1

:I. —_—_— = = .
2 VZi2y 14 12 3

3 _p3
a’—b .
Use a — b = ———— to handle the denominator.
a2 4+ ab + b2
We have
lim V3+x-—2
x—>1 3T 1rx—2
lim S +HX—4 T+x)22+27+x)Y3 + 4
= X
x=>1/3+Xx+2 7+x)—8
— lim (7+X)2/3+2(7+X)1/3+4_4+4+4_3
x>l V3EX+2 T 212 T
-14++J1+a -1-J1+a
ry(@ = —a r-@) = —a

a) lima_or_(a) does not exist. Observe that the right
limit is —oo and the left limit is co.

b) From the following table it appears that
lima—or4(@) = 1/2, the solution of the linear equa-
tion 2x — 1 = 0 which results from setting a = 0 in
the quadratic equation ax2 + 2x — 1 = 0.

a ry(a
0.41421
0.1 0.48810
—-0.1 0.51317

0.01 0.49876
—0.01 0.50126
0.001 0.49988

—0.001 0.50013

lim
a—0

v1+a-—1
a

9 limr.@

lim 1+a)—-1

a—»0a(v/1+a+1)
1

1
im ——=-.
a>0/1+a+1 2
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7. TRUE or FALSE

a) If limy_4 f(x) exists and limy_5 g(x) does not
exist, then Iimx%a<f x) + g(x)) does not exist.

TRUE, because if Iimx%a(f(x) + g(x)) were to
exist then

lim (£00 + 900 = £00)
lim (00 +900) = lim 00

Jim g(x)

would also exist.

b) If neither limy_.5 f(X) nor limy_.a g(x) exists, then
IimHa<f(x) + g(x)) does not exist.
FALSE. Neither limy_.01/x nor limy_.o(—1/x) ex-
ist, but Iimx%o((l/x) + (—1/x)) — limy00 = 0
exists.

c) If f is continuous at a, then so is | f|.
TRUE. For any two real numbers u and v we have

10l = fol] < ju = vl.
This follows from

Ul=u—v+v|<|u—v|+]v], and
[v|=1lv—u+u| <|v—ul+[ul=|u—v|+ Ul

Now we have
[Tl = [f@I <|fXx) - f@)]

so the left side approaches zero whenever the right
side does. This happens when x — a by the conti-
nuity of f at a.

d) If | f| is continuous at a, then so is f.
. -1 ifx<0.
FALSE. The function f(x) = 1 if x > 0 is
discontinuous at x = 0, but | f (x)| = 1 everywhere,
and so is continuous at x = 0.

e) If f(x) < g(x) in an interval around a and if
limy_a f(x) = L and limy_ 3 g(xX) = M both
exist, then L < M.

2 -
FALSE. Let g(x) = {X if X #0 and Jet
1 ifx=0

f(x) = —g(x). Then f(x) < g(x) for all x, but
limy_o f(x) = 0 = limy_,0 g(x). (Note: under the
given conditions, it is TRUE that L < M, but not
necessarily true that L < M.)
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a) To be proved: if f is a continuous function defined
on a closed interval [a, b], then the range of f is a
closed interval.

Proof: By the Max-Min Theorem there exist num-
bers u and v in [a, b] such that f(u) < f(x) < f(v)
for all x in [a, b]. By the Intermediate-Value The-
orem, f(x) takes on all values between f(u)

and f(v) at values of x between u and v, and

hence at points of [a, b]. Thus the range of f is

[f ), f(v)], a closed interval.

b) If the domain of the continuous function f is an
open interval, the range of f can be any interval
(open, closed, half open, finite, or infinite).

Foo = x2—1 :{—1 if—1<x<1

[x2 — 1] 1 ifx<—-lorx>1
f is continuous wherever it is defined, that is at all
points except x = +1. f has left and right limits —1
and 1, respectively, at x = 1, and has left and right limits
1 and —1, respectively, at x = —1. It is not, however,
discontinuous at any point, since —1 and 1 are not in its
domain.

1 1 1

ST S Py R sy

2
Observe that f(x) > f(1/2) =4 for all x in (0, 1).
Suppose f is continuous on [0, 1] and f(0) = f(1).

a) To be proved: f(a) = f(a—i—%) for some a in [0, %].

Proof: If f(1/2) = f(0) we can take a = 0 and be
done. If not, let

gx) = f(x+3) — f(x).

b)

CHALLENGING PROBLEMS 1 (PAGE 92)

Then g(0) # 0 and
9(1/2) = f(1) - £(1/2) = £(0) - 1(1/2) = —g(0).

Since g is continuous and has opposite signs at

X = 0 and x = 1/2, the Intermediate-Value The-
orem assures us that there exists a between 0 and
1/2 such that g(a) =0, that is, f(a) = f(@+ 3).

To be proved: if n > 2 is an integer, then

f(@) = f(a+ 1) for some ain [0,1 - 1].

Proof: Let g(x) = f(x + &) — f(x). Consider
the numbers x = 0, x = 1/n,x = 2/n, ...,

X = (n—1)/n. If g(x) = 0 for any of these num-
bers, then we can let a be that number. Otherwise,
g(x) # 0 at any of these numbers. Suppose that the
values of g at all these numbers has the same sign
(say positive). Then we have

fO)> > > f(2)> 110,

n

which is a contradiction, since f(0) = f(1). There-

fore there exists j in the set {0,1,2,...,n — 1} such
that g(j/n) and g((j + 1)/n) have opposite sign. By
the Intermediate-Value Theorem, g(a) = 0 for some

a between j/n and (j + 1)/n, which is what we had
to prove.
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CHAPTER 2. DIFFERENTIATION 7. Slope of y=+/x+1latx=31Is
o qim YAt -2 VAR 42
Section 2.1 Tangent Lines and Their Slopes T h—0 h " JA+h+2
(page 98) — lim 4+h—-4
~h>0h(Vh+h+2)
Slope of y =3x — 1 at (1,2) is i 1 1
=Ilim —=-.
h—0 \/ 4
30 4m-1-@x1-1) _ 3h drh2
m = lim = lim — =3.
h—0 h h—0 h

Tangent lineisy —2 = %(x —3), or x —4y = —5.
The tangent lineis y —2 =3(x — 1), or y =3x — 1. (The 1
tangent to a straight line at any point on it is the same 8. Theslopeofy=—"—atx=9is
straight line.) VX

m = lim -

Since y = x/2 is a straight line, its tangent at any point 1( 1 1)

(a,a/2) on it is the same line y = x/2.

Slope of y = 2x2 —5 at (2, 3) is

224+ h)2 —5—(2(22) —5)

=1 h
. 8+8h+2h2-8
=lim —mM
h—0 h

=hlir})(8+2h)=8

Tangent line is y —3=8(x —2) or y = 8x — 13.
The slope of y =6 —x —x2 at x = —2 is

6—(=2+h)—(=2+h)? -4

= I.
m hino h
_n2
= lim = lim@B-h)=3.
h—0 h—0

The tangent line at (—2,4) is y = 3x + 10.

Slope of y=x3+8at x = —2 is

(=2+h)3+8—(-8+8)

m = lim
h—0 h
 —8412h—6h2+h3+8—0
= lim
h—0 h

=h|i_r)r})(12—6h+h2)=12

Tangent line is y — 0 = 12(x +2) or y = 12x + 24.

1
The slope of y = ] at (0,1) is

m= tim £ 1 1) = lim —h =0
_h—>0h h2+1 _h—>0h2—|—1_ ’

The tangent line at (0,1) isy = 1.

40

“h>0h\J/9trnh 3
_ yn 3-VOFh 3+OFR
~ h>0 3h/9+h 3+.9+h

9—-9-h
= lim
h—03hva+h@3+ VI h)
1 1
T 336 54
The tangent line at (9, 3) isy = £ — & (x — 9), or
_1 1
Yy =13 5X
9. SlI fy= tx =21
ope of y = ~—— at x is
2(2+h)
h—0 h
. 442h—-2—-h-2
= lim

h—0 h@2+h+2)
h 1

= I —_— = .
nCOh@h) 4
L 1
Tangent lineisy — 1 = Z(X - 2),

or x —4y = —-2.
10. Theslopeof y=+/5—xZatx=11is
i VB )7 2

h—0 h
5—(1+h3?—-4
— lim (1+h)

On(VE— a2 +2)

. —2—h 1
=lim—-=—-
h—0 /5 — (L +h)2+2 2

The tangent line at (1,2) isy =2 — %(x — 1), or
_5_1
y=3-3%
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Slope of y = x2 at x = xg is
_(xo+h?2—xZ  2xh+h?
m = lim = lim

= 2Xo.
h—0 h h—0 h 0

Tangent line is y — xg = 2Xp(X — Xp),
or y = 2xoxX — X2.

1 .
The slope of y = S Ly is
m = lim + 1) 2 i Azach 2
“h>oh\a+h a) nsoh@+hya a2
The t i )isy==—5(x-—
e tangent line at (a, a) isy 2 2 (x —a), or
_2_X
Ta a?
J/10+h[—-0 1
- =1Im -—-—-
h h—0 [h|sgn (h)
exist (and is not co or —o0), the graph of f(x) = J/|X]
has no tangent at x = 0.

The slope of f(x)=(x —D*3atx =11is

Since limp_o does not

L+h—-1% -0
h

m = lim = limh? =0.
h—0

The graph of f has a tangent line with slope 0 at x = 1.

Since f(1) =0, the tangent has equation y =0
The slope of f(x) = (x +2)%% at x = —2 is

_ 3/5 _
m— fim S2FN+27° =0 g
h—0 h h—0

—2/5

= Q.

The graph of f has vertical tangent x = —2 at x = —2.

The slope of f(x) = [x2 — 1jatx = 1is

A+ -1 -1 _ . 120 +h?
h T h0 h

which does not exist, and is not —oo or co. The graph

of f has no tangent at x = 1.

m = |imhﬁo

00 =[ Y 4725 o
i fQ+m—f©O . vh
h—0+ h h—0+ h
h—0— h h—0— h

Thus the graph of f has a vertical tangent x = 0.

The slope of y =x? —1 at x = xg is

h2 —1] - (x2—1
m— lim [(xo +h) 1-xg—-1

h—0 h
2xgh + h?

h—0 h 0

SECTION 2.1 (PAGE 98)

If m = -3, then xg = —%. The tangent line with slope
m=-3at (-3, Disy = 3 —3x + 3, that is,
y=-3x-1

19. a) Slopeof y=x3atx =ais

. (a+h?®-ad
m = lim
h—0 h
. a%+3a’h +3ah?2+h3-ad
= lim
h—0 h

= r!imo(3a2 + 3ah + h?) = 332

b) We have m =3 if 3a2 = 3, i.e., if a = +1.
Lines of slope 3 tangent to y = x3 are
y=14+3x—-1Dandy = -1+ 3(x + 1), or
y=3x—2and y =3x + 2.

20. Theslopeof y=x3—-3x atx =a is

N T 1 3 3
m—hlfloﬁ[(a+h) —3@+h —q@ —3a)]

1
= lim —[a3 +3a%h +3ah? +h3 —3a — 3h — a° +3a]
h—0h

= hlim0[3a2 + 3ah 4+ h? — 3] =3a% — 3.

At points where the tangent line is parallel to the x-axis,

the slope is zero, so such points must satisfy 3a2 —3 = 0.
Thus, a = +1. Hence, the tangent line is parallel to the

x-axis at the points (1, —2) and (-1, 2).

21. Theslopeofthe curve y=x3—x+latx =ais

3_ (a3 _
m:”m(a—kh) @+hy+1—-@° —-a+1

h—0 h

. 3a%h +3ah?+a%—h
= lim

h—0 h

=hlin})(3a2+3ah +h%-1)=3a%-1.

The tangent at x = a is parallel to the line y = 2x + 5 if
3a2 — 1 =2, that is, if a = +1. The corresponding points
on the curve are (—1,1) and (1, 1).

22. The slope of the curve y =1/x at x = a is
1 1

m = lim ath a
h—0 h

a-@+h 1

“hoo ah@+h) a2’

The tangent at x = a is perpendicular to the line

y = 4x — 3 if —1/a%2 = —1/4, that is, if a = +2. The
corresponding points on the curve are (—2, —1/2) and
(2,1/2).
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23. The slope of the curve y =x2 at x = a is

2 _ a2
m=tim @V = _ i 2ath) = 2a.
h—0 h h—0
The normal at x = a has slope —1/(2a), and has equa-

tion
2

2 1 X 1
y—a :—g(x—a), or g ty=5+a%

Thisis the line x + y = kif2a = 1, and so
k= (1/2) + (1/2)? = 3/4.

24. The curves y = kx? and y = k(x — 2)? intersect at (1, k).

The slope of y = kx? at x = 1 is

2 _
my = lim k(1 +h)>—k

h—0 h - hlino(2 + Mk = 2k.

The slope of y =k(x —2)2 at x =1 is

_ 2 _
ms = lim k2—-@A+h) -k
h—0 h

The two curves intersect at right angles if
2k = —1/(—2k), that is, if 4k? = 1, which is satisfied
if k=41/2.

25. Horizontal tangents at (0, 0), (3, 108), and (5, 0).

V4 (3, 108)

100 +

80+
60 |
40 |

20 1

-1
Fig. 2.1.25
26. Horizontal tangent at (—1, 8) and (2, —19).
Y a
201
(-1.8) 19 [ y=2x -3 —12x +

Fig. 2.1.26

42

= lim (-2 4+ h)k = —2k.
h—0
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27. Horizontal tangent at (—1/2,5/4). No tangents at

(-1,1) and (1, —1).
y N
\i/ > X

14

y=|x2—1]—x

Fig. 2.1.27

28. Horizontal tangent at (a, 2) and (—a, —2) for all a > 1.
No tangents at (1, 2) and (-1, —2).

yu
y=Ix+1] —|x -1

Fig. 2.1.28

29. Horizontal tangent at (0, —1). The tangents at (£1, 0)

are vertical.
y A

y = (XZ _ 1)1/3 ol

Fig. 2.1.29

30. Horizontal tangent at (0, 1). No tangents at (—1, 0) and
(1, 0).
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y = ((x2 = 1)%)1/3
24

-2 -1

Fig. 2.1.30

31. The graph of the function f(x) = x2/3 (see Figure 2.1.7
in the text) has a cusp at the origin O, so does not have
a tangent line there. However, the angle between OP
and the positive y-axis does — 0 as P approaches 0

along the graph. Thus the answer is NO.

32. The slope of P(x) at x =a is

m = lim

h—0

Since P(a + h) = ag + ath + ah? + --- + a,h" and

P(a) = ay, the slope is

m = lim

P@+h)— P(@)

ag +ath +aph? + - - +aph" — ag

h—0

= limay +ah + - + ah" ! = ay.
h—0

Thus the line y = £(x) = m(x — a) + b is tangent to
y = P(x)atx =aifandonly if m = a; and b = ay,

that is, if and only if

P(X)—£(x) = a(x —a)® +ag(x —a)} +---+a (x —a)"
=X — a)z[az +az(x—a)+---+an(x — a)”*z]

= (x —a)’Q(X)

where Q is a polynomial.

Section 2.2 The Derivative

y
y= 1'%
oO—0

(page 105)

[e]

SECTION 2.2 (PAGE 105)

y
o——-0
y=gm *
oO——-0 0
r oO————0
y A
y=h(x)
, , , , —
y A
; t + X'
T y =k x)

Assuming the tick marks are spaced 1 unit apart, the
function f is differentiable on the intervals (-2, —1),
(=1,1), and (1, 2).

Assuming the tick marks are spaced 1 unit apart, the
function g is differentiable on the intervals (-2, —1),
(=1,0), (0,1), and (1, 2).

y = f(x) has its minimum at x = 3/2 where f'(x) =0
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y
=|x3-1

y="f
y=fx)=3x-x?>-1

|

I y = f/(x) I
y 1
\' y=f'x) | NI~

Fig. 2.2.7 Fig. 2.2.9

Xy

10. y = f(x) is constant on the intervals (—oo, —2), (—1, 1),
. ) and (2, oo). It is not differentiable at x = =+2 and
8. y = f(x) has horizontal tangents at the points near 1/2 X = +1.
and 3/2 where f/(x) =0 y

y/\/ y:f(X):|X2_1|_::X2_4|

.

y = f'(x) i
' + + T t + X

Xy

y=f)=x3-3x2+2x+1

y=f'(x) /

Fig. 2.2.8

Fig. 2.2.10

11, y=x2—3x
X +h)?2—3(x +h)— (x%—3x)

!/

. y' = lim
9. y = f(x) fails to be differentiable at x = —1, x = 0, h—0 h
and x = 1. It has horizontal tangents at two points, one _ lim 2xh +h? — 3h o _3
between —1 and 0 and the other between 0 and 1. ) h -
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12.  f(x) =1+4x —5x2
14 4(x +h) = 5(x + h)2 — (1 + 4x — 5x?)

o s
o) = lim, h
_ _ 2
=|imw=4_lox
h—0 h
13.  fx) =x°
U o D
oo = lim h
2 2 3
— lim 3x°h +3xh“ +h _ 32
h—0 h
1
14. =
T 3va
ds Iml 1 1
dt “h>0h [3+4@t+h) 344t
. 34+4t—-3—4t—4h 4
T h>0hB+4D)[3+ (4t +h)] (34 4t)2
15, Fi)=+2t+1
F't) = lim V2G+m+1-V2t+1
h—0 h
_ fim 2t+2h+1-2t—-1
h—0h (V2T +h) +1+ 2t +1)
= lim 2
h—0 /2t +h)+1+/2t+1
1
V2t +1
16.  fx)=3v2—x
3 3
3/2 = h— 32—
Fx) = lim Y2 M — gv2 -
h—0 h
_ 3[ 2—x—-h—-24+x ]
h—04 [h(V2Z— X+ M) ++/2—X)
_ 3
82 —x
1
17 =X+ =
y X+X
1 1
X+h+ h—x——
y/zhllm ‘:; X
X—X—h
=i 1+ —
hTo< +h(x+h)x)
-1 1
=141 =1-=
+h|—r>no(x+h)x x2
S
18. =—
: 1+s
d—z—l'ml s+h s
ds  h—>oh |1+4s+h 1+s
o 8 FMA+S) —sA+s+h) 1

h—0 h(1+s)(1+s+h) T (1+5)2

19.

20.

21.

22.

23.

24.

SECTION 2.2 (PAGE 105)

1
F =
W=
1 1
VI+x+h2  J1+x2
h
V14+x2—/1+ (x+h)?

~ he0 hy'1+ (x +h)2V/1 +x2

F'(x) = hlir})

i 1+x2—1—x?—2hx—h?
h=0h/T+ (X + N)2vI + X2 («/1+x2+\/1+(x+h)2)

_ —2X . X
T 2(14x2)3/2

IERCERORE

1
y==

T — !
Yy =%n (x+h2 x2
x2—(x+h? 2

T hoo hx2x +h)2 X3

>

1
= VI+x

1 1
o JTHx+h V14X
m
—0 h
_ lim VI+x—J/IT+x+h
- h=0 hyT+Xx+hyT+x
— lim l1+x—-1—-x—h
Ch0hyTH X +hyI+ X (vVI+Xx+/I+x+h)
= lim L
T =0 VTHX+hVI+x (VIFX+V/IFxFh)
1
T 20+ x)372

y(X)=r!

t2-3

=53

ey L2 -3 t2-3
FO=Ins (trnzrs s

i [t +h)2 = 3](t2 + 3) — (t2 — 3)[(t + h)2 + 3]
h—0 h(t2 +3)[(t +h)2 + 3]

i 12th 4 6h? _ 1
h—0h(t2 +3)[(t +h)2+3]  (t2+3)?

Since f(x) = xsgnx = |x|, for x # 0, f will become
continuous at x = 0 if we define f(0) = 0. However,

f will still not be differentiable at x = 0 since |x| is not
differentiable at x = 0.

x2  ifx>0 g
—x2 ifx <0

will become continuous and differentiable at x = 0 if we
define g(0) = 0.

Since g(x) = x2sgnx = x|x| =
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25.

26.

217.

28.

29.

SECTION 2.2 (PAGE 105)

h(x) = |x% 4 3x + 2| fails to be differentiable where
x2+3x+2 =0, that is, at x = —2 and x = —1. Note:
both of these are single zeros of x? + 3x + 2. If they
were higher order zeros (i.e. if (x +2)" or (x + 1)" were
a factor of x2 4 3x + 2 for some integer n > 2) then h
would be differentiable at the corresponding point.

y =x3—2x
fox)— f(D) f(x)— f(1)
X _ X [
x—1 x—1
0.9 0.71000 1.1 1.31000
0.99 0.97010 1.01 1.03010
0.999 0.99700 1.001 1.00300
0.9999 0.99970 1.0001 1.00030
3 _ (=
9 a0 = pim &P o204 W - (D
dx we1 h—0 h
_ h+3h24+h3
= lim ——
h—0 h
=lim1+3h+h?=1
h—0
f(x) =1/x
f(x)— f(©2) f(x)— (2
X —r X —
X —2 X —2
1.9 —0.26316 2.1 —0.23810
1.99 —0.25126 2.01 —0.24876
1.999 —0.25013 2.001 —0.24988
1.9999| -0.25001 2.0001| —0.24999
—1 2
’ _ i 2+h B _ 2—@2+h)
P& = lim = =M Tz 2
1

_hTO_(Z—i—h)Z T

The slope of y =5+4x —x? at x =2 is

dy . 54+4Q+h) —@2+h)?2-9
— = lim
dx |,_, h—0 h
_ —h?
=m - =°

Thus, the tangent line at x = 2 has the equation y = 9.
y = +/X + 6. Slope at (3, 3) is

m=||mwz |m9_|—hi_9=l
h—0 h h—0h(v/9+h+3) 6

1
Tangent line isy — 3 = E(X —3), or x —6y = —15.

46

30.

31.

32.
33.

34.

35.

36.

37.

38.

39.

40.

41.

42,

R. A. ADAMS: CALCULUS

t
Theslopeofy:ﬁatt:—Zandy:—lis

dy
dt

1 —2+h
t=—2 - h—>Oﬁ [m - (_1):|
—2+h+[(—2+h2-2] 3

= Jim, h[(—2 +h)2 — 2] T2

Thus, the tangent line has the equation
y=-1-3(t+2), thatis, y = -3t — 4.

=—— Slopeatt=alis
y t2 +t P
2 2
2 Y
m:h“mo (@a+h) +(a;—h) a‘c+a

i 2@ +a—a?—2ah—h2—a—h)
" h>0 h[(@a+h)2+a+h]@2+a)

i —4a —2h -2
" h—0[@@+h)2+a+h]@+a)
. 4a 42
T (a2 +a)?
2 2(2a+1)

Tangent line is y =

2ra @ragl ¥

f/(x) = —17x 18 for x £ 0
g/(t) = 22t%! for all t

d 1
d—){ = §x*2/3 for x #0
d 1
% = —gx*“/3 for x #0
%t*m =225t fort > 0
d
9 quos _ MW9cuisia g 62 g
ds 4
d 1 1
—/S = — = —.
ds\/_s=9 2«/§ s=9 6
1 1 1
FX)==, F)=—=, F/(Z)=-16
(x) < x) ok <4>
2 1
f/8 —_= -5/3 - _
S L T
dyl _lisel 1
dtf_, 4 t=a 842
The slope of y = /X at X = Xg is

dy 1
Ay 2050
Thus, the equation of the tangent line is
= /X0 + ! (X — Xo), that is _X+X
y = /X0 2% 0), Ly = ok
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44,

45,
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1 . 1 1
SIopeofy:;atx:aus-E =3
X=a

. 1
Normal has slope a2, and equation y — 3= a’(x — a),
1
ory=a?x—a%+ =
a
The intersection points of y = x2 and x + 4y = 18 satisfy

4x? +x—18=0
Ax+9xx —2)=0.

9

Therefore x = —3 or x = 2.

The slope of y = x? ismy = j—z = 2X.

Atx:—%, mlz—g. Atx =2, m; =4.

The slope of x + 4y = 18,ie. y = —3x + & is
mp = —%.

Thus, at x = 2, the product of these slopes is

4) —%) = —1. So, the curve and line intersect at right
angles at that point.

Let the point of tangency be (a, a?). Slope of tangent is

ix2 =2a

dx  |y_a

This is the slope from (a, a2) to (1, —3), so
a2 +3

= 2a, and

a’?+3=2a’-2a
a?—-2a-3=0
a=3o0r -1
The two tangent lines are
(fora=3): y—9=6(x—3)or6x —9
(fora=-1): y—1=-2(x+1)ory=-2x—-1
yk

2 (@,a%)

1,-3)

Fig. 2.2.45

1
46. The slope of y = " atx =ais

dy 1

5
dX |y_a a

47.

48.

SECTION 2.2 (PAGE 105)

1 1
If the slope is —2, then i -2, ora = £—.

Therefore, the equations of the two straight lines are
1 1
:f—Z(x——)and :—ﬁ—Z(x+—>,
’ 2) " N
ory = —2x £+ 2/2.

Let the point of tangency be (a, +/a)

d 1
Slope of tangent is — /X =
P g VX _ToA
1 -0
Thus—:—\/— ,s0a+2=2a,and a=2.
2./a a+2
The required slope is !
232

y

(a,/a)
/

y=vX
2 X
Fig. 2.2.47

If a line is tangent to y = x? at (t, t2), then its slope is
dy
ax {y_¢
its slope satisfies

= 2t. If this line also passes through (a, b), then

t2—b 5
=2t, thatist®—2at+b=0.
t—a
2a + v/4aZ — b
Hencet:%:ai a2 —b.

Ifb < a2, ie. a2 —-b > 0,thent = a++/a2—b
has two real solutions. Therefore, there will be two dis-
tinct tangent lines passing through (a, b) with equations
y=b+2(ai«/a2—b)(x —a). Ifb=2a? thent =a.
There will be only one tangent line with slope 2a and
equation y = b + 2a(x — a).

If b > a2, then a2 —b < 0. There will be no real solution
for t. Thus, there will be no tangent line.
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49. Suppose f is odd: f(—x) = —f(x). Then
f(—=x +h)— f(=x)
h
Im_f(x—h)— f(x)
h—0 h

£/(=x) = i
=0 =%

(let h = —k)
—lim fx+k) — f(x)
k—0 k
Thus f’ is even.

Now suppose f is even: f(—x) = f(x). Then
f(—x +h) — f(=x)

= f'(x)

r—x) — li
P = i

h
— lim f(x—=h)—fXx)
h—0 h
— lim fx+k)— f(x)
k—0 —k
=—f'(x)
so f’ is odd.
50. Let f(x) =x~". Then
T O D
oo = hlino h
T hooh \(x+m)M xn
_ X" — (x +h)"
" h=0 hx"(x +h)"
X — (X +h)

20 hxn (X + h)n
(x”’l + X" 2(x +h) 4+ (X + h)”*1>

1
- _ x nx" 1 = —_nx—(+D)
in

51. fx)=xY3
(X 4+ h)/3 —x1/3

f'(x) = li
*) erH) h
L (xR 13
= Jim, h

(X + M3 4 (x + )33 4 x2/3
X X T2+ (X + h)IAxIB § X273
— lim X—+h—x
h—0 h[(x + h)2/3 4 (x + h)1/3x1/3 4 x2/3]
i 1
= (X +h)2/3 + (x + h)1/3x1/3 4 x2/3
1 1 —2/3

T 3x23 " 3

48

R. A. ADAMS: CALCULUS

52. Let f(x) = x¥". Then

(x + h)l/n —x/n

/ — i _an __ pn
o) = lim H (let x +h =a", x =b")
=M=
. 1
= lim
a—b anfl +an72b +an73b2 4+t bnfl
1 1
_ _ (1/n)—1
_nbnfl_ﬁx/ '
d (X ) —xn
53, —x"=Ilim ——M—
dx h—0 h
e on a1 o
_h'i"oh[x P TS
n(n—1n -2 n—3p3 n n
1x2x3 XThT e+ h X

= lim (nx“‘l +h [n(n — D -2y
h—0 1x2

nn-1Hn-2 n—3n2 n—-1
Ty X hP o th
=an—1

54. Let

f@+h) - f(@

, o
Fah = hLIr(r)]Jr h

/ . f@a+h - f@
(o = iy HOE

If f/(a+) is finite, call the half-line with equation

y = f@a) + f'(a+)(x — a), (x > a), the right tangent
line to the graph of f at x = a. Similarly, if f'(a—)

is finite, call the half-line y = f(a) + f'(a—)(x — a),

(x < a), the left tangent line. If f/'(a+) = oo (or —c0),
the right tangent line is the half-line x =a, y > f(a) (or
x=a,y< f() If f'(@a—) = oo (or —o0), the right
tangent line is the half-line x = a, y < f(a) (or x = a,
y = f(@).

The graph has a tangent line at x = a if and only if
f’(a+) = f’(a—). (This includes the possibility that both
quantities may be 4+oo or both may be —oc0.) In this
case the right and left tangents are two opposite halves of
the same straight line. For f(x) = x?/3, f/(x) = $x~1/3.
At (0, 0), we have f'(0+) = +o00 and f/(0—) = —o0.
In this case both left and right tangents are the positive
y-axis, and the curve does not have a tangent line at the
origin.

For f(x) = |x|, we have

Fegy _[1 ifx>0
oo =snoo={2, 37,
At (0,0), f’(0+) = 1, and f'(0—) = —1. In this case
the right tangent is y = X, (x > 0), and the left tangent is
y = —X, (x < 0). There is no tangent line.



10.

11.

12.

13.

14.

15.

16.

17.
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Section 2.3 Differentiation Rules
(page 113)

y=3x?-5x-7, y =6x—5.

y = 4X1/2 _ ; y/ — 2X—l/2 + 5X—2

f(x) = AX2+Bx+C, f'(x)=2AX+B.
6 2 18 4
f(X)ZF-FF—Z, I”(X):—F—F
s5—s3 dz 1 1
2 =082
15 dx 3 5
y — X45 _ x—45 y/ — 45X44 + 45X—46

gt) = tY/3 4 2t1/4 4 3tl/5

1=

1 1 3
"ty = Zt2/3 L Zt=3/4 oL 24—4/5
gt 3 + 2 + £

3 2 2/3 —-3/2
y=3V12 - = =328 oY
NG

dy 1
—= =273 3752
at +
_ /3 —-3/5
u=-x°—-x
5 3

du — x2/3 4 x~8/5
dx

F(x) = (3x —2)(1 — 5x)

F’/(x) = 3(1 —5x) + (3x — 2)(—=5) = 13 — 30x
x? 32 1. sp

y=vx|5-x-=5 =5x —x¥ —gx/

5 3 Soap

y_Zﬁ 2‘/; 5

2

1 Jen
gt) = =——=, ¢ (t)——m

2t —3
_ 1
" x245x

1

y
2X +5
(X2 +5%)2

4
T B-x)72

!/

T

2 —mt

f/ _ b3 . b
V=" T T ey

18.

19.

20.

21.

22.

23.

24.

25.

SECTION 2.3 (PAGE 113)

-3
uy/u —u-l2 _gy-2

gu) = 2
12 —u/u
2u3

1
gu) = —zu*3/2 +6u% =

24t 412
y="T U o2y g2

Jt
dy _ sp, 1 3 5 3+t-2
T +2ﬁ+2“/f_ 2t /t
x—1 _
:W:Xm_x 2/3
dz _ 1 o3, 2 53 _X+2
ax 3" + 3" T 3x5/8
3 —4x
f(X)=3—|—4x
fon  B+A)(=4) - 3B -4x)4)
Feo = @+ 4x)2
___ A
T 3+4x)2
P4
T t2-1
o (t2 =12t +2) — (12 4+ 21)(20)
Bl (2 —1)?
_ 28 +4t+1D)
(t2 —1)2
S_1+\/f
=1
(1—ﬁ)i—(1+\/f>(—i>
ds 2/t 2/t
dt 1- 1?2
1
IRVATENGY
3_
oo = x+1
2\ (3 _
F/x) = X +1)(3x%) — (x H(1)
(X + 1)?
23 +3x% +4
T (x+1)2
ax +b
100 =5d
, _(cx+d)a—(ax+b)c
Foo = (cx +d)?
. ad — bc
T (ex +d)?

49



SECTION 2.3 (PAGE 113) R. A. ADAMS: CALCULUS

2478 _ WX=DR-x0A-x?)
P - EotHD@ D - @+ Tt -9t - 1) (g L) 2mx 224
(t2 —t+1)? - NG 3+ 2x
—8t° + 18t - 1 1 2—x —2x2 +x3 1
— / _ [ =y-3/2 _
o= (B )
27. () =1 4+x)1+2x)(1+3x)(1 + 4%) 8 B+ 2)(=1—4x +3x%) — (2 —x — 2x2 +x3)(2)
/) = (1 4+ 2x)(1 +3x)(L 4+ 4x) + 2(1 + x)(1 + 3x)(1 + 4x) (34 2x)2
+30+X)A+2X)A +4x) + 41 +x)(1 +2x)(1 + 3x) _@2=-x1- x2)
OR T 2x3/2(3 4 2x)
f(x) = [(1+x)(L + 4] [(1 + 2x)(L + 3x)] N (1 B i) 4x3 4 5x% —12x — 7
= (1 +5X + 4x®)(L1 + 5% + 6x?) NG3 (3 + 2x)2
_ 2 2 4
= 1 + 1gx + §5x2 + 1gx3(1 ;—45)2) + 24x " d ( 2 ) @0 — )
/ =1+ 10x 4 35x 4;5x 4; X " dx —f(x) x=2_ [FOOP s
28. fO)=024+r3-r?+ri+1 [f@7P 4
Tiey — (_or=3 _ ar—dyr2 4 3
rn =2 3r2 a 3+r +D ) d /fx) x2£/(x) — 2xf (x)
+(r c4+r—2—4)(2r 4+3r°) 34. d_X 2 2:X—4 ,
X= X=,
or 42 —4f@2 4 1
fy=—24r14r24r 3 4r—4r2—4rd =~ 1% " 16 1
f/iry=—r2—2r=—-3r*4+1—8r—12r2
d
29, y=0C+HWX+ D6 - 2) 3. —(x*f00) = (2xF 00 +x21'(0)) »
Y =2X+DEXE -2 —4f@ +41'(2) =20
1 2 2/3
+ %+ 4(x*% -2
2% 35 4 ( fx) )
+%0x‘1/3(x2+4)(ﬁ+1) Codx X2+ 0 /o
P e 0 = FO0Rx + /(X))
30 _ 4D +2) a (X2 + f(x))? x=2
x2+2(x3+1) Gri)f'@ - f@Q@E+ @) 18-14 1
_X5+X3+2X2+2 = (4+f(2))2 = 62 :§
x5+ 2x3 +x242
;O3 +2x3 4 X% 4+ 2)(5x* + 3x? 4 4x) - d /x2—4 . d 8
y= (X5 +2x3 4+ x2 4 2)2 Coax bara) e m g e x=—2
B (X5 + x3 4 2x2 4+ 2)(5x* + 6x2 + 2x) 8
(X5 +2x3 + x2 4 2)? B W(ZX) x=—2
_2x7 —3x® —3x* — 6x? + 4x 2 1
(X5+2X3+X2+2)2 :—a:—E
_2x7 —3x® — 3x* — 6x% + 4x
T 2+ 12 5g 4 [td+VD
3x2 ' dt | 5-t =4
31, y= X = XX d [t+t32
% + 1 6x2 4+ 2x +1 :E[ﬁ}
3x+1 - t=4
y - (6X2 4 2x 4+ 1)(6X + 1) — (3x2 + X)(12X + 2) _6-va+ 3t1/2) — (t +t3/2)(-1)
- (6X2 + 2x + 1)2 (5-1)? {4
B 6x +1 D@ -A)(-1) 16
T (6X2 +2x + 1)2 N (1)2 N
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39.

40.

41.

42,

43.

44,

INSTRUCTOR’S SOLUTIONS MANUAL

WK
foo = X +1
1
o0 = X+ 1)m - \/;(1)
- (X +1)2
3
2 s
9 18V2

di[(l + 0 +20)(1 + 3t)(1 +40)]
t t=0

= (D)@ +2t)(L + 3t)(L +4t) + (1 + )(2)(L + 3t)(L + 4t)+

Q1+HA+20)BF) A +4t) + 1+ ) +2t)(1 + 3t)(4)

t=0
=142+34+4=10

Y=y : ( : )

= Y= -5 =
3-4yx (3 B 4ﬁ> 2%

Slope of tangent at (1, —2) is m = ﬁ =4

Tangent line has the equation y = —2 + 4(x — 1) or
y=4x —6

x+1
Fory = x—+1 we calculate

XD -x+DHA) 2
B (x —1)? o x=1%
Atx = 2wehavey = 3and y = —2. Thus, the

equation of the tangent lineisy = 3 — 2(x — 2), or
y = —2x + 7. The normal line is y = 3 + J(x — 2), or

y=3x+2

1 1
=X —, ! = 1 _—
y TV x2 .
For horizontal tangent: 0 =y =1 — 2 so x2 =1 and
x==%£1
The tangent is horizontal at (1,2) and at (—1, —2)

If y = x2(4 — x?), then
y = 2X(4 — x?) 4+ x?(—=2x) = 8x — 4x3 = 4x(2 — x?).

The slope of a horizontal line must be zero, so

4% (2 — x2) = 0, which implies that x = 0 or x = ++/2.
Atx=0,y=0and at x = ++2,y = 4.

Hence, there are two horizontal lines that are tangent to
the curve. Their equations are y =0 and y = 4.

45,

46.

47.

48.

SECTION 2.3 (PAGE 113)

_ 1 ;L 2x +1
BT T (X2 + X + 1)2
For horizon- x4 1
X
tal tangent we want 0 =y = —————— . Thus
: y (X2 +x +1)2
2x+l=0andx=—1
2 14
The tangent is horizontal only at (_5’ 5).
X+1
If y=——,th
y X+2 o
, X+ - x+DH(A) 1
y= (X +2)2 T X122

In order to be parallel to y = 4x, the tangent line must
have slope equal to 4, i.e.,

1

— =4 22 =1
X122 , or (x+2) 7

3
.AtXZ—E,

Nlo

Hence x +2 = £3, and x = —3 or —
y =—1, and atx:—g, y = 3.
Hence, the tangent is parallel to y = 4x at the points

(-3,-1) and(—%,?a).

Let the point of tangency be (a, %). The slope of the
1

-3 2
tangent is —— = & Thusb—i=1anda=-_.
g a2 0-a a a b
b2 b2
Tangent has slope vy so has equation y =b — ZX'
y 1

y=;

Fig. 2.3.47

1
Since — =y = x2 = x%2 = 1, therefore x = 1 at
N i

the intersection point. The slope of y = x% at x = 1 is

1
2X =2.Thes|opeofy=—xatx=lis

x=1 \/—

dy
dx

1

1
—ox7¥2 5

2

x=1

x=1

The product of the slopes is (2) (—3) = —1. Hence, the
two curves intersect at right angles.
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SECTION 2.3 (PAGE 113)

49, The tangent to y = x3 at (a, a%) has equation
y = a3 + 3a%(x — a), or y = 3ax — 2a3. This line
passes through (2, 8) if 8 = 6a% — 2a8 or, equivalently, if
a®—3a2+4 =0. Since (2,8) lieson y = x%, a = 2 must
be a solution of this equation. In fact it must be a double
root; (a — 2)2 must be a factor of a® — 3a2 + 4. Dividing
by this factor, we find that the other factor is a + 1, that
is,

a®—3a’°+4=(a-2%@+1).

The two tangent lines to y = x3 passing through (2, 8)
correspond to a = 2 and a = —1, so their equations are
y=12x —16 and y = 3x + 2.

50. The tangent to y = x2/(x —1) at (a, a?/(a—1)) has slope

C(x=D2x —x3(D) _a’-2a

(x — 1)2 s (@—1)72°

The equation of the tangent is

a2 _a2—2a(x 2
Y i 1T a-12 '

This line passes through (2, 0) provided

a? aZ—Za(2 2
a—1" (a—-1)72 ’

or, upon simplification, 3a2 — 4a = 0. Thus we can have
either a = 0 or a = 4/3. There are two tangents through
(2,0). Their equations are y =0 and y = —8x + 16.

VIG+ - VT
h

d .

dx
i S - f0 1
" h—=0 h JIXFh) +/TX)
NG
T 2/TX)
d 21— 2X X
dx N RN

3 -
52. fx)=|x3 = X 3 !f Xz 0. Therefore f is differen-
—x° ifx<0
tiable everywhere except possibly at x = 0, However,

fO+h—f© _

lim ——— " — |im h?=0
h—0+ h h—0+

f h) — f
lim FOEM=TO _ i h2y =0
h—0— h h—0—

Thus f’(0) exists and equals 0. We have

2 .
£(x) = 3x ifx>0
®) {—sz if x <0.

52

53.

54.

R. A. ADAMS: CALCULUS

d n
To be proved: —x"%2 = —x"2"1forn=1,23, ....
Proof: It is already known that the case n = 1 is true:
the derivative of x1/2 is (1/2)x~1/2,
Assume that the formula is valid for n = k for some
positive integer k:

d k
/2 _ (k/2)-1
xe = =x .
dx 2

Then, by the Product Rule and this hypothesis,

d
dx

2 ktD/2 _ ixl/zxk/Z
dx

_ %Xfl/zxk/Z T ;XI/ZX(k/Z)fl _k 42‘ 1 /21

Thus the formula is also true for n = k 4+ 1. Therefore it
is true for all positive integers n by induction.

For negative n = —m (where m > 0) we have
dne_4d4 1
dx dx xm/2
_Zimim
xm 2
m n
—(m/2)-1 _ (n/2)—-1
——=X ==X .
2 2

To be proved:

(frfa--- fp)
= f/fpeefot fifyeoe fytoo g frfpeee f]

Proof: The case n = 2 is just the Product Rule. Assume
the formula holds for n = k for some integer k > 2.
Using the Product Rule and this hypothesis we calculate

(fofo- i fegn)’
=[(frf2- - fi) fia]
=(f1f2---fk)/fk+1+(f1f2---fk)fk/+1
=(f{fo- fo+ fify o fic+ o+ frfae o £) fi
+ (fofa-- fi) feyg
= £ fp fifiqn + LB fifign + -
+ fifpeo fifiga 4+ fufae fofey

so the formula is also true for n = k + 1. The formula is
therefore for all integers n > 2 by induction.

Section 2.4 The Chain Rule (page 118)

y=@2x+3)°% y =6@x+3)°2=122x +3)°

v=(1-3

(D)= sy

y'=99(

X

>99



10.

11.

12.

13.

14.

INSTRUCTOR’S SOLUTIONS MANUAL

f(X) = (4 — x?)10

f’(x) =10(4 — x2)9(—2x) = —20x(4 — x%)?
d 3x
_ /1 —3x2 = —
Nl 3x2 V1 =3x?2

—10
F(t) = (2 + %)

3\t -3 30 3\ U
F')=-10(2+2 —=="(2+:
®© <+t> t2 t2<+t>

7= (14 x%3%?

S = %(1 i x2/3)1/2(%x*1/3) = x~13(1 4 x2/3)1/2

3
-
.3 . 12
V=2 Y T 5wz
y=(1-2t3%2
y =—31 - 2t)72(—4t) = 6t (1 — 2t}
2x3 — 2x
_ 2 _
y=[1-x%, y =-2xsgn(1—x%) = T
f(t) =12+t
3t2(2 +t9)
! — 3 2\ _
f'(t) = [sgn (2 4+ t5)](3t%) = e

y =4x + [4x — 1]
y =4+ 4(sgn (4x — 1))
8 ifx>
={0 if x <

Bl

y =@+
y =12+ x®) 733 1P)sgn (x)

|MQ+MUZB(—

||>=MMQ+M®4“

1
y= 24+ 3+ 4
1

3
e
3
23X T 4(2 V3 4)2

4
X —2
f(x):(1+ 3)
3
oo x—2\> (13 \/1
f(X)_4(1+V 3 ) <§Vx—2)(§>
_2 3 (. =2y
_§\/><—2(Jr 3

SECTION 2.4 (PAGE 118)

1 5/3
15. (U+Tl>
dz _ 5 1 )8/3 (1 1 )
du 3 u-—1 u—-1)2
5 1 1\
RENSEATH
16. y_7(4+x2)3
1 3x°
= — @ +x%3|5x*V/3+x6 +x°
y (4 +x2)8 <( ) [ V3+x8
—x5\/3+x5[3(4+x2)2(2x):|>
@+ x2)[5x4(3 +x%) + 3x1°] —x>(3 4 x5)(6x)
B (4 +x2)4y/3 + x5
_ 60x* —3x° 4 32x10 4 2x*2
B (4 +x2)*/3+xb
17.
y A
y=[2+t3
_91/3 t'
18.
y A
slope 8
y=4x+|4x—1|
slope 0|
(1) R
\47) X
d d 1 1 1
19, —xM= /X =~ x s =
o T mVY 2/_ﬁx2ﬂ 2
d 34 d 3. 14
20. dxX = X XA/X = W f+ 4x
21, ddx 32 - d \/—— vz

22. %f(2t+3)=2f’(2t+3)

23, dd—x f(5x — x2) = (5 — 2x) f'(5x — x?)

53



24.

25.

26.

217.

28.

29.

30.

3L

32.

33.

SECTION 2.4 (PAGE 118)

T[T )
SNETIE)

d o2t
V320 = s T AT etoo
d , 2
1
_ ! twErm
N e

4 B 420%) = = /34 20X
dx @+ )—W G+ )

%f(ﬂ(Bf(x)))
- f’<2f(3f(x))> .2f’(3f(x)) 3f/(x)
- 6f’(x)f’(3f(x)) f’<2f(3f(x)))

dd—xf(2—3f(4—5t))
- f’(z _3f4— 5t)) (—3f’(4 - 5t))(—5)

—15f/(4 — 5t)f’<2 —3f4 —5t))

d [Vx2-1
dx \ x2+1 )|,
x2+1 X x2—12x
o= VX2 —1(2x)
(x2 4 1)2 e
2
5(-——=)—3(-4
:<>< v§> H
25 253
dm—l -3 | _3
dt e 2Bt —Tleg 22
f(x) =
X 2x +1
1 1
fl)=——" | =—=
@ x +1)32|,_, 27
y = (x3 4+ 9)172
y = E(x3 + 9)15/23x2 = 2(12) =102
X=—2 2 X=—2 2

54

34.

35.

36.

37.

38.

39.

R. A. ADAMS: CALCULUS

FX) =1+ +x2C+x°%4 +x*
F'x)=Q2+x)2@+x)%¢@+x)*+
20+ X2+ X))@+ x)°%@ +x)*+
3L+ X2+ x)2B+X)2(4 + x)*+
41+ )2 +x*G+x3@E+x)?
F'(0) = )3 @ + 203 @ahH+
3(DRHEHE +4(1)(2H) (3 (4%
= 4(2% . 3% . 4% = 110, 592

= (er (o9
y = —6(x + ((3x)5 - 2)1/2>_7
x (1 - %((3x)5 = 2)73/2 (5(3x)43>)
— —6(1 - %(3x)4((3x)5 = 2)73/2>

x (x + ((3X)5 - 2)_1/2)7

The slope of y = V1 +2x2 at x =2 is

dy _ 4x 4
dX X=2 - 2\/1+2X2 X=2 B 3

Thus, the equation of the tangent line at (2, 3) is
y=3+2(x—2),0ry=4x+1.

Slope of y = (1 +x%/3)32 at x = -1 is
§(1+x2/3)1/2 EX71/3 — 2

2 3 X

The tangent line at (—1, 2%/2) has equation
y =232 - /2(x + 1).

b
The slope of y = (ax +b)8 at x = s

dy

= 1024ab’.
dx

x=b/a

= 8a(ax + b)’
x=h/a

The equation of the tangent line at x = g and
y = (2b)8 = 25608 is
y = 256b8+1024ab’ (x - g) or y = 21%bh"x—3x28b8.

Slope of y =1/(x> —x +3)%2 at x = -2 is

3 5
—E(xz—x+3)*5/2(2x—1>‘

_ 3052y Ey 2
= 2(9 )( 5)_162

Xx=—2

. 1 .
The tangent line at (-2, E) has equation

1 5
y=§+@(x+2).



40.

41.
42.
43.
44.
45.

46.

10.
11.

INSTRUCTOR’S SOLUTIONS MANUAL

Given that f(x) = (x —a)™(x —b)" then

o0 =mx —a)™ tx —b)"+nx —a)mx —b)"t
=X —a)"1x — )" I(mx — mb + nx — na).

If x #£a and x # b, then f'(x) =0 if and only if
mx —mb +nx —na =0,

which is equivalent to

n
X = a+

= b.
m4n

m-+n

This point lies lies between a and b.
x(x* +2x2 — 2)/(x? 4+ 1)%/?

4(7x* — 49x? + 54)/x’

857, 592

5/8

The Chain Rule does not enable you to calculate the
derivatives of |x|2 and |x2| at x = O directly as a compo-
sition of two functions, one of which is |x|, because |x|
is not differentiable at x = 0. However, |x|? = x2 and
Ix2] = x2, so both functions are differentiable at x = 0
and have derivative O there.

It may happen that k = g(x +h) — g(x) = 0 for values
of h arbitrarily close to 0 so that the division by k in the
“proof” is not justified.

Section 2.5 Derivatives of Trigonometric

Functions (page 123)
— CSCX = 4.1 = _SX _ _csexcotx
dx dx sinx sinZ x
d d cosx  —cos?x — sin?x 9
dx cotx = dx sinx sin2 x = e
y =cos3x, Yy = —3sin3x
y=sini, y/=lcosi.
5 5 5
y =tanwx, Yy =msec’nx
y =secax, Yy’ =asecaxtanax.
y =cot(4 —3x), Y =3csc?(4— 3x)
—sinn—_X =—1 cosﬂ_X
dx 3 3 3

f(x) =cos(s —rx), f'(x)=rsin(s —rx)

y =sin(Ax + B), y’ = Acos(Ax + B)

;—X sin(rx?) = 27 x cos(mx?)

12.

13.

14.

15.

16.

17.
18.
19.

20.

21.

22.

23.

24.

25.

26.

217.

28.

29.

30.

SECTION 2.5 (PAGE 123)

d 1 .

aCOS(ﬂ) =2k sin(v/x)
=+1+cosx, Yy = —sinx

y= Y ~ 2J/1+cosx

i sin(2.cosx) = cos(2cosx)(—2sinx)

dx
= —25sinx cos(2 cos x)

f(X) = cos(x + sinx)
f'(x) = —(1 + cosx) sin(x + sinx)

g(0) =tan(0sinH)
g'(0) = (sin6 + 6 cosH) sec?(0 sin )

u=sin®(rx/2), U = 3% cos(mx/2) sin®(xx/2)

y =sec(l/x), y = —(1/x2) sec(1/x) tan(1/x)
1
F(t) =sinatcosat (= 2 sin 2at)
F’(t) = acosat cosat — asinat sinat
(= acos2at)
sinad

G@®) =

©) cos ho

, acoshe cosad + bsinad sinbo
G'(v) = 5

cos® bo

i (sin(2x) — cos(2x)) = 2c0s(2x) + 25sin(2x)
dx

d 2 .o . d
d—x(cos X —sin“Xx) = ax €0S(2x)
= —25sin(2x) = —4sin X cos X

2 2

d
d—x(tanx + cotX) = sec” x — €sc- X

d
——(SeCX — CSCX) = Sec X tan x + CSc X cot X

dx

i(tanx —Xx) =sec’x — 1 = tan’x

dx

d d

ax tan(3x) cot(3x) = d—X(l) =0

%(t cost —sint) = cost —tsint —cost = —tsint

d . . .
a(t sint 4+ cost) =sint +-tcost —sint =tcost

d sinx (14 cosx)(cosx) — sin(x)(—sinx)
dx 1+cosx (1 + cos x)2
_cosx+1 1
T (14cosx)?2 1+cosx
d cosx (1 4 sinx)(—sinx) — cos(x)(cos x)
dx1+sinx (14 sinx)?2
—sinx —1 -1

T @+sinx)?  1+sinx
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31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

42,

43.

SECTION 2.5 (PAGE 123)

d
—x2¢0s(3%) = 2x cos(3x) — 3xZsin(3x)

dx
gt) =/ (sint)/t
‘= 1 9 tcost —sint
g = 2/Gint)/t t2
_ tcost —sint
T 2132, /sint

v = sec(x?) tan(x?)
v = 2x sec(x?) tan®(x?) + 2x sec3(x?)

S sin /X
1+ cos /X
S (1 4 €05 4/X)(€0S /X /2/X) — (5iN /X)(— SiN /X /2/X)
- (1 + cos /X)?
_ l+cosyx 1
T 2UX(L+c0sX)2 T 2X(1 4 €os4/X)

%sin(cos(tant)) = —(sec?t)(sin(tant)) cos(cos(tant))
f(s) = cos(s + cos(s + €oss))

f/(s) = —[sin(s + cos(s + coss))]

x [1 — (sin(s 4 coss))(1 — sins)]

Differentiate both sides of sin(2x) = 2sinx cosx and
divide by 2 to get cos(2x) = cos? x — sin® x.

Differentiate both sides of cos(2x) = cos? x — sin?x and
divide by —2 to get sin(2x) = 2sinx cos x.

Slope of y = sinx at (;r, 0) is cosm = —1. Therefore
the tangent and normal lines to y = sinx at (z, 0) have
equations y = —(x — ) and y = X — 7, respectively.

The slope of y = tan(2x) at (0, 0) is 2sec?(0) = 2.
Therefore the tangent and normal lines to y = tan(2x) at
(0, 0) have equations y = 2x and y = —x/2, respectively.

The slope of y = +/2cos(x/4) at (, 1) is
—(v/2/4)sin(r/4) = —1/4. Therefore the tangent and
normal lines to y = +/2cos(x/4) at (i, 1) have equations
y=1-—(x—m)/4 and y =1+ 4(x — ), respectively.

The slope of y = cos? x at (r/3, 1/4) is

—sin(2r/3) = —+/3/2. Therefore the tangent and normal
lines to y = tan(2x) at (0, 0) have equations

y = (1/4) = (V3/2)(x — (x/3)) and

y = (1/4) + (2/+/3)(x — (;r/3)), respectively.

TX
sl fy = sinx®) = sin(—)i

ope of y = sinGxt) = si (355)
y Z.@COS (@) At x = 45 the tangent line has
equation

1 T

= —— 4+ (x — 45).

V=7 " 1s0vz
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44,

45,

46.

47.

48.

49,

50.

51.

52.

53.

54.

55.

R. A. ADAMS: CALCULUS

X
For y = sec (x°) = sec (r;)) we have

j—i = sec (X0 Yan (X1,

.o /3
At x = 60 the slope is W(Z\/ﬁ) = OW
Thus, the normal line has slope R and has equation
T

90
y=2 nﬁ(x 60).
The slope of y = tanx at x = a is sec?a. The tan-
gent there is parallel to y = 2x if sec?a = 2, or
cosa = =+1/+/2. The only solutions in (—x/2, 7/2)
are a = =+ /4. The corresponding points on the graph
are (r/4,1) and (—x/4,1).

The slope of y = tan(2x) at x = a is 2sec?(2a). The
tangent there is normal to y = —x/8 if 2sec?(2a) = 8, or
cos(2a) = +1/2. The only solutions in (—x /4, 7 /4) are
a = £ /6. The corresponding points on the graph are
(/6. +/3) and (—7/6, —v/3).

dd_x sinx = cosx = 0 at odd multiples of 7 /2.

d . .

ax cosx = —sinx = 0 at multiples of .

ax secx = secx tanx = 0 at multiples of .

—cscx = —cscx cotx = 0 at odd multiples of 7 /2.

X
Thus each of these functions has horizontal tangents at
infinitely many points on its graph.

d

— tanx = sec? x = 0 nowhere.
dx

Ix cotx = —csc? X = 0 nowhere.

Thus neither of these functions has a horizontal tangent.

y = x +sinx has a horizontal tangent at x = & because
dy/dx =1+ cosx = 0 there.

y = 2x + sinx has no horizontal tangents because
dy/dx = 2 + cosx > 1 everywhere.

y = X + 2sinx has horizontal tangents at x = 27/3 and
X = 4m/3 because dy/dx = 14 2cosx = 0 at those
points.

y = X 4+ 2cosx has horizontal tangents at x = /6 and
X = 5m/6 because dy/dx = 1 — 2sinx = 0 at those
points.

tan(2 in(2 2

lim B0E) _ i, SINEX) —1x2=2
x=0 X x—0 2X  €0S(2x)

Xlim sec(l +cosx) =sec(l—1)=sec0=1

—> 71T

. 2 . X 2 2
lim x“cscx cotx = lim (— ) cosx=1x1=1
X—0 x—0 \sin X
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x—0 X2 x—0

_ in2 i 2
lim 1—cosh i 2sin“(h/2) — lim 1 sin(h/2) _ 1
h—0 h2 h—0 h2 h—0 2 h/2

f will be differentiable at x = 0 if

2sin0+3cos0 = b, and

d .
d—x(25|nx + 3cosx)

x=0
Thus we need b =3 and a = 2.

There are infinitely many lines through the origin that
are tangent to y = cosx. The two with largest slope are
shown in the figure.

Y 4
- b 27X
y = COS X
Fig. 2.5.59

The tangent to y = cosx at X = a has equation
y = cosa — (sina)(x — a). This line passes through

the origin if cosa = —asina. We use a calculator with
a “solve” function to find solutions of this equation near
a = —m and a = 27 as suggested in the figure. The

solutions are a ~ —2.798386 and a ~ 6.121250. The
slopes of the corresponding tangents are given by —sina,
so they are 0.336508 and 0.161228 to six decimal places.

1
—/ 27 + 3(27t3/2 —4x +3)/n

a) As suggested by the figure in the problem,
the square of the length of chord AP is
(1 — cos6)2 + (0 — sin#)?, and the square of the
length of arc AP is #2. Hence

(1 +c0s6)? +sin 6 < 62,

and, since squares cannot be negative, each term in
the sum on the left is less than 62. Therefore

0<]l—cosf| <|0], 0<|sinf| <|B|.
Since limg_0|0| = 0, the squeeze theorem implies
that
liml—cosf® =0, limsingd =0.
6—0 6—0

From the first of these, limy_.gcosd = 1.

. 7 — 7 C0S% X . sinx 2
limcos| ————— ) = limcosm <T) =cosm = —1

SECTION 2.6 (PAGE 131)

b) Using the result of (a) and the addition formulas for
cosine and sine we obtain

hIimO cos(fp + h) = r!imo(cos 0o cosh — sinfg sinh) = cos

hIimosin(eo +h) = hIimo(sin 0o cosh + cosfg sinh) = sinby.

This says that cosine and sine are continuous at any
point 6.

Section 2.6 The Mean-Value Theorem
(page 131)

fx) =x2, f/(x)=2x
b2—aZ f(b)— f(a)
b+a= b—a  b-a
= f'(c)=2c :>c=b¥

If f(x)= % and f'(x) = —X—12 then

fo-fw 1 1 1
Too1 Tz tTaTeso

where ¢ = +/2 lies between 1 and 2.

fx)=x3—3x+1 f'x)=3x2—-3,a=-2,b=2
foy—f@ fQ@-f(-2

b—a 4
 8-6+1—(—8+6+1)
- 4
4
:—:1
4
f'(c)=3c2—3

2
32-3=1=3%=4=>c=+—
(Both points will be in (-2, 2).)

If f(X) = cosx + (x2/2), then f'(x) = x —sinx > 0
forx > 0. By the MVT, if x > 0, then

f(x) — f(0) = f'(c)(x — 0) for somec > 0, so
f(x) > f(0) = 1. Thus cosx + (x2/2) > 1 and
cosx > 1 — (x2/2) for x > 0. Since both sides of
the inequality are even functions, it must hold for x < 0
as well.

Let f(x) =tanx. If 0 < x < 7/2, then by the MVT
f(x) — f(0) = f'(c)(x —0) for some c in (0, 7/2).
Thus tanx = x sec?¢ > X, since secc > 1.

Let f(x) = @A +x)" —1—rx where r > 1.

Then f'x) =r(1+x)"t —r.

If —1 <x <0then f'(x) <0; if x >0, then f’(x) > 0.
Thus f(x) > f(0O)=0if -1 <x <O0orx>0.

Thus 1+x)" >14+rxif -1 <x <O0orx>0.
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Let f(x) = (1 4+x)" where 0 <r < 1. Thus,
f/(x) = r(1 + x)"~1. By the Mean-Value Theorem, for
x > —1, and x # 0,

f(x) — f(0)
x—0
1-xF-1
:>7
X

= f'(c)
=r(l+o!
for some ¢ between 0 and x. Thus,

QL+x)" =1+rx@+o)f 1
If -1<x<0,thenc<0and 0 <1+c < 1. Hence

Q+0t>1  (sincer —1<0),
rx(l+c) ! <rx  (since x < 0).
Hence, (1 4+ x)" < 14+rx.
If x > 0, then
c>0
l+c>1
AL+co)t<1

rx(L+co) ! <rx.

Hence, (14 x)" <14 rx in this case also.

Hence, (14+x)" < 1+rx for either —1 <x <0 or x > 0.

If f(x) =x2+2x +2then f/(x) =2x +2 = 2(x + 1).

Evidently, f'(x) >0if x > —1and f'(x) <0 if x < —1.

Therefore, f is increasing on (—1, co) and decreasing on
(—o0, —1).

fo)=x3—4ax+1

f'(x)=3x2 -4 )

f'(x) > 0if |x| > z@

f'(x) <0 if |x|<\/—§ ,

f is increasing on (—oo, _ﬁ) and (7§, 00).
f is decreasing on (_ﬁ’ %).

If f(x) = x3 +4x + 1, then f/(x) = 3x2 + 4. Since
f’(x) > 0 for all real x, hence f(x) is increasing on the
whole real ling, i.e., on (—o0, 00).

f(x) = (x2 — 4)2

f/(X) = 2x2(x% — 4) = 4x(x — 2)(X + 2)
f’(x) >0ifx>20r —2<x <0

f'x) <0ifx <—-20r0<x <2

f is increasing on (—2, 0) and (2, c0).

f is decreasing on (—oo, —2) and (0, 2).

1 -2
If f(x) = 1 then f'(x) = — X . Evidently,

+1 (X2 +1)2
f’x) >0if x <0and f'(x) <0 if x > 0. Therefore, f
is increasing on (—oo, 0) and decreasing on (0, co).

58

13.

14.

15.

16.

17.

18.

19.

20.

R. A. ADAMS: CALCULUS

f(x) =x3(5 — x)?
f/(x) = 3x2(5 — x)2 + 2x3(5 — x)(~1)
=x2(5 — x)(15 — 5X)
=5x2(5 - X)(3 = X)
f’x) >0ifx<0,0<x<3,0orx>5
f'x) <0if3<x <5
f is increasing on (—o0, 3) and (5, 00).
f is decreasing on (3, 5).

If f(x) = x —2sinx, then f'(x) = 1—2cosx = 0 at
X ==£r/3+2nzforn=0,+1, £2,....

f is decreasing on (—n/3 4 2nx, w + 2nx).

f is increasing on (/3 4 2nmw, —7/3 4+ 2(n 4+ L)x) for
integers n.

If f(x) =x+sinx, then f/(x) =1+cosx >0
f’(x) = 0 only at isolated points x = +m, +3mx,....
Hence f is increasing everywhere.

If X1 < X2 <...< Xy belong to I, and f(xj) =0,
(1 <i < n), then there exists y;j in (Xj, Xj+1) such that
f'(yi) =0, A <i<n-1) by MVT.

There is no guarantee that the MVT applications for f
and g yield the same c.

For x # 0, we have f/(x) = 2xsin(1/x) — cos(1/x)
which has no limit as x — 0. However,

f/(0) = limp_o f(h)/h = limy_ohsin(l/h) = 0

does exist even though f’ cannot be continuous at 0.

If f/ exists on [a,b] and f’(a) # f’(b), let us assume,
without loss of generality, that f'(a) > k > f’(b). If
g(x) = f(x) — kx on [a, b], then g is continuous on
[a, b] because f, having a derivative, must be contin-
uous there. By the Max-Min Theorem, g must have a
maximum value (and a minimum value) on that interval.
Suppose the maximum value occurs at c. Since g'(a) > 0
we must have ¢ > a; since g’(b) < 0 we must have

¢ < b. By Theorem 14, we must have g’(c) = 0 and so
f’(c) = k. Thus f’ takes on the (arbitrary) intermediate
value k.

F(x) = {x +2x%sin(1/x) if x #0
0 if x=0.
L fO+h) — (0
2 f(o)_hli%T
2 -
_ lim h +2h<sin(1/h)
h—0 h

= r!irr})(l + 2hsin(1/h) =1,
because |2hsin(1/h)| < 2lh| - 0 as h — 0.
b) For x # 0, we have

f/(x) = 1 4 4xsin(1/x) — 2cos(1/x).
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There are numbers x arbitrarily close to 0 where
f’(x) = —1; namely, the numbers x = +1/(2nx),
where n =1, 2, 3, .... Since f’(x) is continuous at
every X # 0, it is negative in a small interval about
every such number. Thus f cannot be increasing on
any interval containing x = 0.

Section 2.7 Using Derivatives (page 136)
If y = x?, then Ay ~ 2x Ax. If Ax = (2/100)x, then
Ay ~ (4/100)x% = (4/100)y, so y increases by about
4%.

If y = 1/x, then Ay ~ (—=1/x%) Ax. If Ax = (2/100)x,
then Ay ~ (—2/100)/x = (—2/100)y, so y decreases by
about 2%.

If y = 1/x2, then Ay ~ (—2/x3) Ax. If Ax = (2/100)x,
then Ay ~ (—4/100)/x2 = (—4/100)y, so y decreases by
about 4%.

If y = x3, then Ay ~ 3x2 Ax. If Ax = (2/100)x, then
Ay =~ (8/100)x3 = (6/100)y, so y increases by about
6%.

If y = /X, then Ay =~ (1/2/X) Ax. If Ax = (2/100)x,
then Ay ~ (1/100),/x = (1/100)y, so y increases by
about 1%.

If y =x=%/3, then Ay ~ (=2/3)x~%3 Ax. If
AX = (2/100)x, then Ay ~ (—4/300)x%/® = (—4/300)y,
so y decreases by about 1.33%.

IfVv = %nrs, then AV = 4zr2 Ar. If r increases by
2%, then Ar = 2r/100 and AV = 87r3/100. Therefore
AV /V ~ 6/100. The volume increases by about 6%.

If V is the volume and x is the edge length of the cube
then V = x3. Thus AV ~ 3x2 Ax. AV = —(6/100)V,
then —6x3/100 = 3x2 AX, s0 AX ~ —(2/100)x. The
edge of the cube decreases by about 2%.

Rate change of Area A with respect to side s, where

A
A =52 is ((jj_s = 2s. When s = 4 ft, the area is changing
at rate 8 ft2/ft.

If A = s? thens = vAand ds/dA = 1/(2V/A).
If A = 16 m?, then the side is changing at rate
ds/dA = 1/8 m/mZ,

The diameter D and area A of a circle are related by
D = 2/A/x. The rate of change of diameter with re-
spect to area is dD/dA = /1/( A) units per square
unit.

Since A = 7 D?/4, the rate of change of area with re-
spect to diameter is dA/dD = w D/2 square units per
unit.
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4 . . )
Rate of change of V = 57”3 with respect to radius r is

\
?i_r = 47r?. When r = 2 m, this rate of change is 167

m3/m.
Let A be the area of a square, s be its side length and L
be its diagonal. Then, L2 = s2? + s2 = 252 and

dA
A=5s2= %Lz, 0 = L. Thus, the rate of change of
the area of a square with respect to its diagonal L is L.

If the radius of the circle is r then C = 2zr and
A=nr2,
A
Thus C =27,/ — = 2./mv/A.
s
Rate of change of C with respect to A is

dc /7 1

dA ~ JA

Let s be the side length and V be the volume of a cube.
ds

ThenV =s® = s = V¥3 and — = 2V %3. Hence,

the rate of change of the side length of a cube with re-
spect to its volume V is 3V ~2/3,

If f(x) =x2—4, then f/(x) = 2x. The critical point of
f isx =0. f isincreasing on (0, co) and decreasing on
(—o00, 0).

If f(x) = x3 —12x + 1, then f/(x) = 3(x%2 — 4).
The critical points of f are x = +2. f is increasing on
(—o00, —2) and (2, oo) where f’(x) > 0, and is decreas-
ing on (—2, 2) where f’(x) < 0.

If y = x% +6x?, then y/ = 3x? + 12x = 3x(x + 4).
The critical points of y are x = 0and x = —4. y is
increasing on (—oo, —4) and (0, co) where y’ > 0, and is
decreasing on (—4, 0) where y’ < 0.

If y=1—x—x5 then y' = —1—5x* < 0 for all x. Thus
y has no critical points and is decreasing on the whole
real line.

f(x) = x3 is increasing on (—o0, 0) and (0, co) because
f/(x) = 3x2 > 0 there. But f(x1) < f(0) =0 < f(x2)
whenever x; < 0 < Xp, so f is also increasing on inter-
vals containing the origin.

If f(x) = x + 2sinx, then f’(x) = 1+ 2cosx > 0
if cosx > —1/2. Thus f is increasing on the intervals
(—(@4m/3) + 2nm, (4 /3) + 2nmr) where n is any integer.

CPs x = 0.535898 and x = 7.464102

CPs x = —1.366025 and x = 0.366025

CPs x = —0.518784 and x =0

CP x = 0.521350

Volume in tank is V (t) = 350(20 — t)2 L at t min.
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a) Att =5, water volume is changing at rate

dav

T = —700(20 —t)

t=5

= —10, 500.
t=5

Water is draining out at 10,500 L/min at that time.
At t = 15, water volume is changing at rate

dav

— = —700(20 —t
it ( )

t=15

= —3, 500.
t=15

Water is draining out at 3,500 L/min at that time.
b) Average rate of change between t =5 and t = 15 is

V(15) —V(5) 350 x (25 —225)
15—-5 10 = —7, 000

The average rate of draining is 7,000 L/min over that
interval.

Flow rate F = kr#, so AF =~ 4kr3 Ar. If AF = F/10,

then
F kr4

Ars — = —
40kr3  40kr3

The flow rate will increase by 10% if the radius is in-
creased by about 2.5%.

= 0.025r.

F = k/r? implies that dF/dr = —2k/r3. Since
dF/dr = 1 pound/mi when r = 4,000 mi, we have
2k = 4,000%. If r = 8,000, we have

dF/dr = —(4,000/8,000)> = —1/8. Atr = 8,000
mi F decreases with respect to r at a rate of 1/8
pounds/mi.

If price = $p, then revenue is $R = 4, 000p — 10p2.

a) Sensitivity of R to p is dR/dp = 4,000 — 20p. If
p = 100, 200, and 300, this sensitivity is 2,000 $/$,
0 $/$, and —2, 000 $/$ respectively.

b) The distributor should charge $200. This maximizes
the revenue.

Cost is $C(x) = 8,000 + 400x — 0.5x2 if x units are
manufactured.

a) Marginal cost if x = 100 is
C’(100) = 400 — 100 = $300.

b) C(101) — C(100) = 43,299.50 — 43, 000 = $299.50
which is approximately C’(100).

Daily profit if production is x sheets per day is $P(x)
where
P(x) = 8x — 0.005x2 — 1, 000.

a) Marginal profit P’(x) = 8 — 0.01x. This is positive
if x < 800 and negative if x > 800.
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b) To maximize daily profit, production should be 800
sheets/day.

dcC 80, 000 n
ﬁ = _T + 4+ %
dcC .
(@ n = 100, s —2. Thus, the marginal cost of
production is —$2.
(b) n = 300, i—i = %2 ~ 9.11. Thus, the marginal cost
of production is approximately $9.11.
2
Daily profit P = 13x — Cx = 13x — 10x — 20

~ 1000
2
=3><—20——X—0
Graph of P is a parabola opening downward. P will be
maximum where the slope is zero:

_9P 52X —1500
dx

0 1000

Should extract 1500 tonnes of ore per day to maximize
profit.

One of the components comprising C(x) is usually a
fixed cost, $S, for setting up the manufacturing opera-
tion. On a per item basis, this fixed cost $S/x, decreases
as the number x of items produced increases, especially
when x is small. However, for large x other components
of the total cost may increase on a per unit basis, for
instance labour costs when overtime is required or main-

tenance costs for machinery when it is over used.

cto

Let the average cost be A(x) = . The minimal av-

erage cost occurs at point where the graph of A(x) has a
horizontal tangent:

0= d_A _ XxC’'(x) — C(x)
T dx x2 ’

Hence, XxC'(xX) —C(x) =0 = C'(x) = @ = A(X).

Thus the marginal cost C’(x) equals the average cost at
the minimizing value of x.

If y=Cp~', then the elasticity of y is

_bkdy___p
Cp—'

(-ncpt=r
y dp P
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Section 2.8 Higher-Order Derivatives

(page 140)

y=@3-2x)

y = —14(3 — 2x)°
y” = 168(3 — 2x)°
y"” = —1680(3 — 2x)*

2
_y2_ = "n_o__ “
y=x" - y'=2-3
y/_2X+_ y///_E
- x2 T ox4
6
= — —=6(x—-172
y *x—1)2 x-1
y =—12(x —1)73
y' =36(x — 1)~
y” = —144(x —1)™°
2
a
=+ax+b M=
% ;— y 4(ax + b)3/2
=< 3
y 2/ax +b y" 3a

- 8(ax + b)5/2
y=x3_x13

1 1
x—2/3 —4/3

I
=z =x
y=3x g
2 4
" _ __X—5/3 _ _X—7/3
' =73 9
10 28
mo_ _x—8/3 _x—lO/S
yoE Tty
y = x4 2x8 y” = 90x8 + 112x°

y’ = 10x° + 16x’ y" = 720x" + 672x°

y = (X2 +3)/x = x5/2 4 3x1/2

5 3
1o 232, 3 ap
Y=
15 3
" _ _x1/2 _ _x73/2
=73 2
15 9
mo_ _x—l/2 _X—5/2
=3 *3
_X= 1 0 4
| y = (x 4+ 1)3
yo 2 1
(X + 1)? T X+ 14
y=tanx y” =2sec’xtanx

y =sec?x y” =2sec’x + 4sec® x tan® x

y = Secx y” = secx tan x + sec® x

y'=secxtanx y” = secxtan®x + 5sec’ x tanx

y = cos(x?) y”
y = —2xsinx?) y" =

= —2sin(x?) — 4x2 cos(x?)
= —12x cos(x?) + 8x°3sin(x?)

13.
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_sinx
y= X .
, _cosx _sinx
== x2
. (2—=x%sinx 2cosx
y = X3 T2
» (6—x?)cosx N 3(x? — 2)sinx
y' = X3 A
1
f(x) = - = x~1
f/(x) = —x 2
f7(x) = 2x 3
f7(x) = —3Ix 4
f@(x) = 41x >

Guess: f™(x) = (=1)"nix~ "D ()

Proof: (*) is valid for n =1 (and 2, 3, 4).

Assume f®(x) = (=D)*kIx~*+D for some k > 1

Then f®+D (x) = (—1)kk!(—(k + 1))x*(k+1)*1

= (=¥ Kk + DIx~&+D+D which is (*) for n =k + 1.
Therefore, (*) holds for n = 1,2, 3, ... by induction.

1 -2
f(x)=p=x

f/(x) = —2x~3

f7(x) = —2(=3)x 4 =3Ix*

fOx) = —2(=3)(—4)x > = —4Ix >
Conjecture:

fO) = =D"n+DIx ™2 forn=1,2,3, ...

Proof: Evidently, the above formula holds forn = 1, 2
and 3. Assume it holds for n =k,
e, TOx) = (LXK + 1Ix=*+2 Then

f(k+1)(X) — % f(k)(X)

= DRk + DI[(=1)(k + 2)]x~ k21
= (~D)}* L (k + 2)ix~[FD+2,

Thus, the formula is also true for n = k + 1. Hence it is
true forn =1, 2, 3, ... by induction.

f(x) = 1X=(2—x>*l

2 —
') =4+@2—-x)72
f/(x) =22 —x)"°
f///(x) — +3|(2 _ X)—4
Guess: fM(x) =n!@2 —x)"M+D (5
Proof: (*) holds for n =1, 2, 3.
Assume O (x) = k12 — x)~*D (i, (*) holds for
n =k)
Then 0 (0) = k1 (—(k + (2 — )~k D2 (-1)

= (k + 1! — x)~ D+,
Thus (*) holds for n = k + 1 if it holds for k.
Therefore, (*) holds for n =1, 2, 3, ... by induction.
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f(x) = X = x1/2

f/(x) = 3x71/2

F70x) = 3(=3)x %2

() = (=3 (=x /2
FO0) = 3(=DEHE3x7
Conjecture:

-1 1-3-5---@2n—3) x—(2n—1)/2

FW0 = (-1 o

(n>2).

Proof: Evidently, the above formula holds for n = 2,3
and 4. Assume that it holds for n =Kk, i.e.

1000 = (cpr 232 @@y

ok
Then
oDy = 9 f0
=g M®
11:3:5-2k=3) [—=@k—DT _rok_1)/21—
= (=1)k1 ) [(2k-1)/2]-1
b X [ 2 )
_ Cybern-11:3:5 @k IR+ D) — 3] _pociny-ny2
2k+1 ’

Thus, the formula is also true for n = k + 1. Hence, it is
true for n > 2 by induction.

1 -1
b (@ + bx)
f'(x) = —b(a+bx)~2
(x) = 2b%(@a + bx)~3
f7(x) = —3tb%@ + bx)™*
Guess: f™(x) = (=1)"ntb"(a + bx)~"+D
Proof: (*) holds forn=1,2,3
Assume (*) holds for n = k:
fO(x) = (=1)*Kk!Ib* (a + bx)~k+D
Then
£ kD (x) = (—1)kk1bk (—(k + l))(a 4 bx)~k+D=1 ()

= (=) (k + 1)1 @ + bx) (k+D+D
So (*) holds for n =k + 1 if it holds for n = k.
Therefore, (*) holds for n = 1,2, 3,4, ... by induction.

f(x) = x2/3

f/(x) = $x7113

F700 = 2(=g)x 3
700 = (= (=x "7
Conjecture:

fM(x) = 2(=1"-1
n>2.

Proof: Evidently, the above formula holds for n = 2 and
3. Assume that it holds for n =k, i.e.

f(x):a

()

1.4.7...

(30— 5)x*(3“*2)/3 for
3n

= 1-4.7----3k— 5 ~@k-2)/3

fRx) =2(-1 =
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Then,

f D (x) = dd—x £ 00 (x)

41-4.7--.-Bk=5) [-Bk—=2)T] _ra_ _
k-1 (3k—2)/3]—1
2(=1) = . [ 3 ! /3]

2 1)(k+1)_11.4.7...~(3k—5)[3(k+1)—5]X_[3(k+l)_2]/3.

3k +1)

Thus, the formula is also true for n = k 4+ 1. Hence, it is
true for n > 2 by induction.

19. f (x) = cos(ax)
f/(x) = —asin(ax)
f(x) = —a? cos(ax)
£7(x) = a%sin(ax)
f@x) = a*cosax) = a*f (x)
It follows that ™ (x) = a*f™=*(x) for n > 4, and
a" cos(ax) if n = 4k
M,y ) —a"sin(@ax) ifn=4k+1
R0 = —a"cos(ax) ifn=4k+2 k=012 ..)
a"sin(ax) ifn=4k+3

Differentiating any of these four formulas produces the
one for the next higher value of n, so induction confirms
the overall formula.

20. f(X) = x cosx

f/(X) = cosx — x sinx
f7(X) = —2sinx — X COS X
f”(x) = —3cosx + x sinx

f@(x) = 4sinx + x cos x

This suggests the formula (for k =0, 1, 2, ...)
nsinx + X cosx if n =4k

£ (x) = ncosx —xsinx  ifn=4k+1

"] —nsinx —xcosx ifn=4k+2

—ncosx +xsinx ifn=4k+3

Differentiating any of these four formulas produces the
one for the next higher value of n, so induction confirms
the overall formula.

21. f (X) = x sin(ax)

f/(x) = sin(ax) + ax cos(ax)

f”(x) = 2a cos(ax) — a’x sin(ax)
f(x) = —3a? sin(ax) — a®x cos(ax)

£9(x) = —4a° cos(ax) + a*x sin(ax)
This suggests the formula

—na"1cos(ax) + a"xsin(ax) if n = 4k
FO) () = na"lsin(ax) +a"x cos(ax) ifn=4k+1

na"lcos(ax) —a"xsin(ax)  ifn=4k +2

—na"lsin(ax) —a"x cos(ax) if n =4k +3
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fork = 0, 1, 2, .... Differentiating any of these four
formulas produces the one for the next higher value of n,
so induction confirms the overall formula.

1 d
f(x) = — = |x|"1. Recall that —|x| = sgn x, so
(x) ™ [X] dxl | =sg

f/(x) = —|x|~2sgn x.

If x # 0 we have

d

—sgnx =0 and (sgnx)® = 1.

dx

Thus we can calculate successive derivatives of f using
the product rule where necessary, but will get only one
nonzero term in each case:

f7(x) = 2|x| 3 (sgnx)? = 2|x| 3
@ (x) = —31)x|"*sgn x
f@x) = 41x|7°.

The pattern suggests that

if n is odd

£ (x) = —n!|x|~Dsgnx
if n is even

n!|x|—(ﬂ+1)

Differentiating this formula leads to the same formula
with n replaced by n + 1 so the formula is valid for all
n > 1 by induction.

f(X) =+/1—=3x = (1-3x)2
P00 = (31— 302

o0 =3 (—%) (=3)2(1 — 3032

" _l _E _§ _ 231 _ -5/2
f (X)—Z( 2)( 2)( 371 =3x)

1 1 3 5
@y — LN (3N (L2 (Lavdq _ 2y 7/2
=3 ( 2)( 2)( 2>( =30

1 e on —
Guess: f™(x) = — x3x5x - X (2n 3)3n
(1—3x)"@-D/2 (4
Proof: (*) is valid for n = 2, 3,4, (but not n = 1)
Assume (*) holds for n = k for some integer k > 2
e, F00(x) = _l x3x5 ><2k x (2k —3)3k
(1 — 3x)~@-D/2

Then f0+D(x) = - 1X3% 5X2'i;' X (K =3) g

(_ 2(k2— 1)) (1 — 3x)~@&-D/2-1(_3

l><3><5><~~~(2(k+1)—1)
- 2k+1
a- 3X)—(2(k+l)—l)/2
Thus (*) holds for n =k + 1 if it holds for n = k.
Therefore, (*) holds for n = 2, 3, 4, ... by induction.

3k+1

24.

25.

26.

217.
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If y =tan(kx), then y’ = k sec?(kx) and

y” = 2k?sec?(kx)tan (kx)
= 2k?(1 + tan?(kx)) tan(kx) = 2k?y(1 + y?).

If y = sec(kx), then y’ = k sec(kx) tan(kx) and

y” = k2 (sec? (kx) tan? (kx) + sec3(kx))
=k?y(2sec?(kx) — 1) = k?y(2y? — 1).

To be proved: if f(x) =sin(ax + b), then

if n =2k

_1\kan qj
f(n)(x):{( D*a" sin(ax +b) IR

(=1)*a" cos(ax + b)

fork =0, 1, 2, ... Proof: The formula works for k =0
hM=2x0=0andn=2x0+4+1=1):

fOx) = f(x) = (—=1)%sin(ax + b) = sin(ax + b)
fOx) = f'(x) = (=1)%l cos(ax + b) = acos(ax +b)

Now assume the formula holds for some k > 0.
If n =2k + 1), then

d d
f(n)(X) — I f(n—l)(x) — I f(2k+1)(x)

= dd_x ((—1)ka2‘“rl cos(ax + b))

= (=1 a%+2 sin(ax + b)

and if n =2k + 1) + 1 =2k + 3, then

fM(x) = dd_x ((—l)k+182k+2 sin(ax + b)
= (=1)¥t1aZ+3 cos(ax + b).

Thus the formula also holds for k + 1. Therefore it holds
for all positive integers k by induction.

If y =tanx, then
y =sec?x = 1+tan’x = 1+ y? = Po(y),

where P, is a polynomial of degree 2. Assume that

y™ = Py,1(y) where Py,1 is a polynomial of degree
n + 1. The derivative of any polynomial is a polynomial
of one lower degree, so

d d
YO = —Pra(y) = Pn(y)d—i = Pa(y)(1+Yy2) = Posa(y),

a polynomial of degree n + 2. By induction,
(d/dx)"tanx = Pnii(tanx), a polynomial of degree
n+1intanx.

63



SECTION 2.8 (PAGE 140)

28. (fg)// — (f/g + fg/) f//g_"_ f/g/_"_ f/g/_"_ fg//

=f//g+2f/g/+fg//
d
29. (fg)® = —(fg)”
9. (fg OIX( 9)

— %[f//g+2f/g/+ fg//]

g+ 19 +21"g' +2f'g" + f'g" + fg©
= t®g+3f"g +3f'g" + fg©.
d
(fg® = —(fg)®
= %[f(s)g +3f"g +3f'g" + fg¥]
— f(4)g_|_ f(3)g/+3f(3)g/+3f//g//+3f//g//

+3f'g® + fg® 4 fg@
= f@g+4f®g 1 6f"g" +4fg® 4 fg@.

I
(fg)™ = fMg +nf(n—1)g + L f-2g7

21(n — 2)!
n!
g T f0=3g® ... 4 nfig=b 4 g™
n nl
-y ~_ fkgh,
= kl(n —k)!

30. Leta, b, and c be three points in | where f vanishes;
that is, f(a) = f(b) = f(c) = 0. Suppose a < b < c.
By the Mean-Value Theorem, there exist points r in
(a,b) and s in (b, ¢) such that f’(r) = f'(s) = 0. By
the Mean-Value Theorem applied to f’ on [r, s], there
is some point t in (r,s) (and therefore in 1) such that
f7(t) = 0.

31. If ™ exists on interval | and f vanishes at n + 1 dis-
tinct points of I, then f™ vanishes at at least one point
of I.
Proof: True for n = 2 by Exercise 8.
Assume true for n = k. (Induction hypothesis)
Suppose n = k + 1, i.e., f vanishes at k 4+ 2 points of |
and f*+D exists,
By Exercise 7, f’ vanishes at k + 1 points of 1.
By the induction hypothesis, f&+D = ()& vanishes at
a point of | so the statement is true for n = k + 1.

Therefore the statement is true for all n > 2 by induction.

(case n =1 is just MVT.)
32. Giventhat f(0)=f@1)=0and f(2) =1:
a) By MVT,

f@Q-f0 1-0 1

f@=—3 2-0 2
for some a in (0, 2).
b) By MVT, for some r in (0, 1),
f(l)—f0) 0-0

1-0 10

f'(r) =
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Also, for some s in (1, 2),

f@-f@_1-0_,

’ _ _
PO=—7 =77°%

Then, by MVT applied to f’ on the interval [r, s],
for some b in (r,s),

f'(s) — f/(r) . 1-0

" _
by = s—r T s—r

N =

= — >
S—r

since s —r < 2.

c) Since f”(x) exists on [0, 2], therefore f’(x) is con-
tinuous there. Since f’(r) = 0 and f’(s) = 1, and

since 0 < % < 1, the Intermediate-Value Theorem

assures us that f/(c) = % for some ¢ between r and
s.

Section 2.9 Implicit Differentiation
(page 145)

Xy—x+2y=1

Differentiate with respect to x:
y+xy —14+2y' =0

y

Thus y' =

x2+yd=1
2

X
3x2+3y%y' =0,50 y = —y

x24+xy =y3
Differentiate with respect to x:
2X +y + xy’ = 3y?y’

L xty
T 3y2 —x
X3y +xy® =2
3x%y + x3y' +y5 + 5xyty’ =0
/ _3X2y - y5
~ X34 5xy4
x2y3 =2x —y
2xy3 +3x2y2y =2 — y/
y = 2 —2xy?
3x2y2 41

X2 +4y —1)2 =4

2x+8(y —1)y' =0,s0y = X

41-y)
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11.

12.

13.

INSTRUCTOR’S SOLUTIONS MANUAL

X—y X2 x2+y

X+y y
Thus xy —y? = x3+x2y +xy+y?, or x3+x2y+2y2 =0
Differentiate with respect to x:
3x2 4+ 2xy + X2y +4yy’ =0
3x% 4 2xy

x2 4 4y

!/

XA/X + _8—xy
VX +Y +X —( +Y)=—y—xy

2(x+y)+x(1+y)——24/x+ y(y + xy’)
y,__3x+2y+2y~/x+y

X+ 2X /X +y
2x? 4+3y? =5
4x +6yy' =0

2
At (1,1): 446y =0,y = ~3

2
Tangent line: y —1 = —§(x —1lor2x+3y=5

X2y3 _ x3y2 —12
2xy3 + 3x2y2y’ — 3x2y2 — 2x3yy' =0
At (—-1,2): —16 + 12y’ — 12 4+ 4y’ = 0, so the slope is
12 +16 28 7

164
Thus, the equatlon of the tangent line is
y_2+4(x+1), or 7x —4y +15=0.

/

X y\3
g+(;) =2
x4 +y4=2x3y

4x3 + 4y3y’ = 6x%y + 2x3y’

at (—1,-1): —4—-4y' = —-6-2y

2y =2,y =1

Tangent line: y+1=1x+1) ory=x.

2

oy

x+2y+1_x_1 2
, (x=D2yy' —y*(D)

1+2y = x_ 17

At (2,—1) we have 1+2y' = -2y’ —1s0y = —3.
Thus, the equation of the tangent is
y=-1-2(x—2),0rx+2y=0.

2X 4y — V/2sin(xy) = /2

24y — V2cos(xy)(y +xy) =0

At (z/4,1): 2+ Yy — (1 + (z/4)y) = 0,s0
y' = —4/(4 — ). The tangent has equation

y:1_4jn(x_%)'

14.

15.

16.

17.

18.

19.

SECTION 2.9 (PAGE 145)

tan(xy?) = (2/m)xy
(sec?(xy?))(y2 + 2xyy') = (2/7)(y +xY)).
At (=7, 1/2): 2(1/4) —ny') = (1/7) — 2y, 50
= (r — 2)/(n(w — 1)). The tangent has equation

_1 T —2 «
y= 74 o )( + 7).

xsin(xy —y?) =x%2 -1

sin(xy — y2) + x(cos(xy — y2)(y + Xy’ — 2yy’) = 2x.

At (1,1): 0+ Q)(A—Yy') =2, s0 y = —1. The tangent
has equation y =1—(x — 1), ory =2 — x.

y 2 ,
(5] B

! _
At 3.1): —? 7”(33’9 Do _6_oy,

s0 y' = (108 — +/37)/(162 — 3+/37). The tangent has
equation
108 — /37

—14+— Y x-3
y 162 — 3«/_7'[( )

(ny) x2 17

Xy=X+Yy

/:1 ! /:
y+xy =14y =y =1—

y/ + y/ + Xy// — y//
2y’ 2(y-1

Therefore, y” = T X~ @ _x7?

x244y2 =4, 2x+8yy'=0, 2+8(y)2+8yy’=0.
Thus, y' = ;—; and
p_ 228007 1 x2 4yt 1
Y =Ty T a6y T 16y ayd
x3—y2+y3=x
1—3x?
2 _oyy +3y2y =1 r_
Xy Y =1y = g
6x —2(y)7 —2yy" + By(y)* +3y%y" =0
(1 —3x9)
2-6y)— " —
y_ 2-6y)(y) —6x _ STE Y
3y2 -2y 3y2 -2y
_ 2-6y)A-3x*)*  6x
o By?-2y)3 3y2 -2y
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21.

22.

23.

24,

25.

26.

SECTION 2.9 (PAGE 145)

x3—3xy+y3=1

3x2 — 3y — 3xy’ 4+ 3y2y’ =0

6x — 3y’ — 3y’ — 3xy” 4+ 6y(y)2 +3y?y" =0
Thus

T i
y2 —x
s =X+ 2y = 2y(y)?
y' = 2 x
2 y — x2 y —x2\?
=y2—XPX+(W—X>_y(W—X>]
2 —2xy 4xy
T Y2 x [(yZ—X)Z] T Xy
x2 4 y2 = a2

2x +2yy’ =050 x +yy' =0 and y’=—§

1+y'y' +yy”=0s0
2

X
l —
yu__l+(y/)2__ %
y y
y2+X2 aZ
Ty Ty
Ax2 +By?=C
2AX +2Byy' =0 = oA
=0y =g

2A +2B(y")? + 2Byy” =0.
Thus,

(5)
_B(=2
By

y// — —A- B(y/)z _ a

By By
—A(By? + Ax?) AC
= BZy3 T T BYyE

Maple gives 0 for the value.
. 206
Maple gives the slope as =

Maple gives the value —26.

855, 000

Maple gives the value ~371.203°
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Ellipse: x% +2y? =2
2X +4yy' =0
Slope of ellipse: yp = ——

2y

Hyperbola: 2x*> — 2y?> =1

4x —4yy' =0
X

Slope of hyperbola: yj, = "

. . , x242y2 =2

At intersection points {sz a2 o1

3x2 =350 x? =1, y2=§
2
X X X

Thus yLyl, = ——-=——— =—1

us yeyy 2y y 2y2 -

Therefore the curves intersect at right angles.

. ox2 o y? )

The slope of the ellipse 2 + vl 1 is found from
2x 2y ) b2x
g-‘rﬁy/zo, l.e. y/=—aTy

X2 y?

Similarly, the slope of the hyperbola g 1 at

(X, y) satisfies

2x 2y B2x
) =0 Y=g

If the point (x, y) is an intersection of the two curves,

then

2 2 2

2
X X
<L y_x Y
a b2 A? B2

ﬁ(i_i>:¢65+i)
A2 a2 B2  Db?
2 2 2 2.2
Thus, % = bB—:ibf . %.
Since 532 - b22:2 A? + B2, therefore B? + b? = a2 — A?,
and % = BZ—EZ' Thus, the product of the slope of the
two curves at (X, y) is
b2x B2x b2BZ AZa?

TaZy A2y~ aZA? BZ
Therefore, the curves intersect at right angles.
If z =tan(x/2), then
1dx 1+tan’(x/2) dx 1422 dx
2dz 2 dz = 2 dz’
Thus dx/dz = 2/(1 4 z%). Also

1.

1 = sec?(x/2)

2
COSX = 2C082(X/2) — 1= — -~ —
*/2) sec2(x/2)
2 1-2
T 1422 T 1422
2tan(x/2) 2z

sinx = 2sin(x/2) cos(x/2) = 1T 2x/2) =1 T2
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10.

11.

12.

13.

INSTRUCTOR’S SOLUTIONS MANUAL

X—y X 2 _ 2 2
=—-—+1& Xy -y =X"+Xy+xy+
Xty y-y y+Xxy+y

s x24+2y2 +xy=0
Differentiate with respect to x:

2x +y
4y +x°

2X+4yy' +y+xy =0 = y =-—
However, since x? + 2y? + xy = 0 can be written

12,72 Yo, T 2_
XXy 4y + 7y =0, or(x+§) +7Y =0,

the only solution is x =0, y = 0, and these values do not
satisfy the original equation. There are no points on the

given curve.

Section 2.10 Antiderivatives and
Initial-Value Problems (page 151)

/5dx:5x+C
/xzdx=%x3+c
2 3
\/;dngx +C
/xlzdx =HxB4c
1
3 4
x*dx = —x C
/ 7
2
/(x—i—cosx)dx:?—i—sinx—i—c

/tanxcosxdx:/sinxdx:—cosx+C

1+ cos® x .
/7 dx = /(sec2x+cosx)dx = tanx+sinx+C

cos2 x

1
/(az—xz)dx:azx—§x3+c

/(A+ Bx+Cx2)dx:Ax+§x2+%x3+K

4 9
/(2x1/2 +3x3dx = §x3/2 + Zx“/3 +C

6(x —1
‘/\%dx :/(Gx_l/3—6X_4/3)dX

=9x?3y18x Y3 4 C

8 x? 1 1 1
/(X——x—+x—1> dx = —=x*—2x®+ 2x2—x+C

3 2 12 6 2

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.
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105/(1+t2 +t4 + %) dt
=105(t + 3t° + £t° + 2t 4+ C
= 105t 4 35> + 21t° + 15t + C

/cos(Zx)dx = %sin(Zx) +C
/sin (g) dx = —2cos (g) +C

/ dx _ 1 e
1+x)2 1+x

/sec(l —x)tan(l —x)dx = —sec(1 —x) +C

1
/«/Zx +3dx = 3(2x +3°%24+cC

, therefore

d
Since —+/Xx+1=
dx 2Vx+1

4
———dx=8+/x+1+C.
[ m=sy

/Zx sin(x®) dx = —cos(x?) + C

Since i\/x2 +1= , therefore
dx xZ+1
/de =2Vx2+1+C
X2 +1 '

/tanzxdx:/(seczx—l)dx:tanx—x+c

/sinxcosxdx = f %sin(Zx)dx = —%cos(zx) +C

/c052de=/1+LS(2X)dX=§+sm(2x)

C
2 2 4 +

/Sinzde:/1—cgs(2x)dxzi_sm(2x) Lc
1,
:>y:§x —2x+C

2 4
{y’:x—z
y(0) =3 = 3 =0+ C therefore C =3
1
Thus y = §x2—2x+3for all x.

Given that
i y/ — X72 _ x73
y(-=1) =0,
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30.

31.

32.

33.

34.

SECTION 2.10 (PAGE 151)

then y = /(X_2 —xdx = —xt+Ix2+C
and0=y(-D)=—(-D1+3-D2+CsoC=-3.
1 1
H = -4
_ ence, y(x) 5
interval (—oo, 0).
y=3/X = y=2x%24cC
y4@=1= 1=16+CsoC=-15
Thus y = 2x3/2 — 15 for x > 0.

— g which is valid on the

Given that
{ y/ — X1/3
y(0) =5,
theny = [ x¥3dx = 3x*3 4+ C and 5 = y(0) = C.

Hence, y(x) = 3x%/3 45 which is valid on the whole real
line.
Since y’ = Ax? + Bx + C we have

A B .
y = §x3 + Exz + Cx 4 D. Since y(1) = 1, therefore

A B
l=yM=7+5+C+D. ThisD=1- 2 - - - c,
and
A B ,

y:§(x _1)+E(X —1)+C(xx—1)+1 for all x
Given that

{y/zxffm

y(@) = —4,

Also, =4 = y(1) = —% +C,s0C = —3. Hence,
y = —4x72/7 — 1, which is valid in the interval (0, c0).
y’ = cosx
For , we have
{ y(r/6) =2

y=/cosxdx=sinx+c

1 3
2=sin%+C=—+C — C=

2 2
y =sinx + g (for all x).
y’ = sin(2x)
For , we have
{ y(/2)=1

. 1
y = /sm(Zx)dx =3 cos(2x) + C

1 1 1
1:—§c05n+C:§+C == CZE

y = 1(1 - cos(2x))

> (for all x).
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/ 2
For H(O_)s_eclx’ we have

y:/seczxdx:tanx+C

l=tan0+C=C = C=1
y=tanx+1 (for —m/2 < X < 7/2).

— cpp2
For {){(n—) SEClX, we have

y:/seczxdx:tanx+C

l=tanr+C=C = C=1
y=tanx +1 (for m/2 < x < 37/2).

Since y” = 2, therefore y’ = 2x + Cj.

Since y’(0) = 5, therefore 5 =0+ Cy, and y’ = 2x + 5.
Thus y = x2 + 5x + C».

Since y(0) = -3, therefore —3 = 0 + 0 + Cp, and
Co=-3.

Finally, y = x2 +5x — 3, for all x.

y// — x74
y') =2
y) =1,

Given that

then y’ = /x‘4dx =-Ix72+cC

Since 2 = y'(1) = —§ + C, therefore C = ,
and y' = —3x 3+ Z. Thus

y=/(—%x*3+ %)dx =Ix2+ Ix+D,

and1 = y(1) =  + £+ D, so that D = —3. Hence,
y(x) = x72 + Ix — 3, which is valid in the interval
(0, 00).

. 1
Since y” = x3 — 1, therefore y’ = Zx“ — X+ Cq.
Since y’(0) = O, therefore 0 = 0 — 0 + C4, and

1
y = Zx“—x.

1 1
Thus y = %xs - EXZ + Co.
Since y(0) = 8, we have 8 =0 — 0+ C».

_ S5 T2
Hencey_zox 2X + 8 for all x.
Given that

y// — 5X2 _ 3X—1/2

y'(1) =2

y(®) =0,
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we have y' = /5X2 —3xY2dx = 3x3 —6x¥?2 + C.

19
Also,2 = y'(1) = 3 -6+ Csothat C = 3 Thus,

y =3x8 —6x/2+ 1 and

y = /<§x3—6x1/2+1@9)dx = x4 —4x32 4 Ux + D.

Finally, 0 = y(1) = 5 —4+ % + D so that D = 2.
Hence, y(x) = 5x* — 4x%2 + ¥x — 1L,

y” = cos x
For §{ y(0)=0 we have
y'0) =1

y/=/cosxdx=sinx+C1
1=sin0+C; = C;=1
y=/(sinx+1)dx=—cosx+x+cz

0=—-cos0+0+Cy
y =1+ X —COSX.

—> C2:1

y’ =X +sinx
For { y(0) =2 we have
y'(0) =0
X2
y’=/(x +sinx)dx=7—cosx+cl
0=0—-cos0+C; — C1=1

x? x3
y:/(7—COSX+1> dx:g—sinx+x+cz

2=0-sin0+0+C, = Cyp=2
X3
yzg—sinx—i—x—i—Z.

B B 2B

Lety = A —. Th "= A—-—,and y’ = —.

y X + ” eny 2 and y 3
Thus, for all x # 0,

2B B B

2., ’

X Xy —y=—+AX— ——Ax — —=0.
y'+Xxy =y x+ X X

We will also have y(1) =2 and y’(1) = 4 provided
A+B=2, and A-B=4

These equations have solution A = 3, B = —1, so the
initial value problem has solution y = 3x — (1/x).

44,

45,

46.
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Let r1 and rp be distinct rational roots of the equation
ar(r—1)+br+c=0

Let y = Ax" 4 Bx" (x > 0)

Then y’ = Aryx"t~1 4 Brox"2—1,

and y” = Ary(ry — 1)x"=2 + Bra(ro — 1)x"272, Thus

ax?y” + bxy’ +cy

= ax?(Ary(ry — Dx" =2 4 Bra(rp, — 1)x2 2
+ bx(Arix™ ™ 4+ Brox"2 71y 4 c(Ax™ + Bx"?)
= A(arl(rl —1)+br; + c)xrl

+BQMQ—D+mﬁ4y“

=0x"T4+0x2=0 (x>0
4x%y" +4xy' —y =0 (x) = a=4b=4c=-1
y4) =2
y'@) =-2
Auxilary Equation: 4r(r —1)+4r—1=0
4r2 —1=0
1
r==+-
By #31, y = AxY2 4+ Bx~1/2 solves () for x > 0.
Now y' = Zx 12 — —x=3/2

Substitute the initial conditions:

B B
2=2A+ — 1=A+—
+2 = +4
A B B
2= _— —_8=A—-—
2 1. 8 2
B 7
Hence 9= —,s0 B=18, A= ——.
2 2

7
Thus y = —Exl/z + 18x Y2 (for x > 0).

Consider
XZy// _ 6y =0
y =1
y'(@) = 1.

Lety =x", y' =rx"1, y’"=r(r —1)x"~2. Substituting
these expressions into the differential equation we obtain

X2[r(r —x"?]—6x" =0
[r(r—1)—6]x" =0.

Since this equation must hold for all x > 0, we must
have

rc—1)—-6=0
r2—r—6=0
(r—3)(r+2 =0.
There are two roots: ri = —2, and rp = 3. Thus the

differential equation has solutions of the form

y = Ax~2 4+ Bx3. Then y’ = —2Ax~3 4+ 3Bx?. Since
l=y(1)=A+Band 1=y (1) = —2A + 3B, therefore
A=2and B=23. Hence, y = 2x2+ x5
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Section 2.11 Velocity and Acceleration
(page 157)

dx dv
=12 — 4t =—=2t-4a=—=2
X +3,v T ,a at

a) particle is moving: to the right for t > 2
b) to the left for t < 2
¢) particle is always accelerating to the right
d) never accelerating to the left
e) particle is speeding up for t > 2
f) slowing down for t < 2
g) the acceleration is 2 at all times
h) average velocity over 0 <t <4 is
X@4) —x(@0) 16-16+3-3 _

= 0
4-0 4

X=4+5t-t?, v=5-2t,a=-2
a) The point is moving to the right if v > 0, i.e., when
t < %
b) The point is moving to the left if v < 0, i.e., when
t> 2.
2

¢) The point is accelerating to the right if a > 0, but
a = —2 at all t; hence, the point never accelerates to
the right.

d) The point is accelerating to the left if a < 0, i.e., for
all t.

e) The particle is speeding up if v and a have the same
sign, i.e., for t > 3.

f) The particle is slowing down if v and a have oppo-
site sign, i.e., for t < 3.

g) Sincea=—2atallt,a=—-2att=3 when v =0.

h) The average velocity over [0, 4] is
Xx(4) — x(0) _ 8—-14

=1.
4 4
dx dv
3 _4t+1,v=-—-=3t2—4,a=- =6t
X +1, v it 3 ,a it 6

a) particle moving: to the right for t < —2/4/3 or
t > 2/\/5,
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b) to the left for —2/v/3 <t < 2/+/3
c) particle is accelerating: to the right for t > 0
d) to the left fort <0

e) particle is speeding up fort > 2/+/3 or for
—2//3<t<0

f) particle is slowing down for t < —2/4/3 or for
0<t< 2/«/?;

g) velocity is zero at t = +2/+/3. Acceleration at these
times is +12/4/3.

h) average velocity on [0, 4] is
B _4x441-1

4-0 =1
ot @+ -m@y 11—t
“err T @+n2 @+

Ao P+ D%(=2) — 1 -tHQE* + D(2t)  2t(t* —3)

(t2 4+ 1)4 T2+ 13

a) The point is moving to the right if v > 0, i.e., when
1—-t2>0,0r-1<t <1

b) The point is moving to the left if v < 0, i.e., when
t<—-lort>1

c) The point is accelerating to the right if a > 0, i.e.,
when 2t(t2 — 3) > 0, that is, when

t>+30r—+v/3<t<0.

d) The point is accelerating to the left if a < 0, i.e., for

t<—+/30r0<t<+3.

e) The particle is speeding up if v and a have the same
sign, e, fort < —+/3,0or =1 <t<0or
1<t<+3

f) The particle is slowing down if v and a have oppo-
site sign, i.e., for —v/3 <t < -1, 0or0 <t < 1lor

t>\/§.

-2(-2) 1

=0att=+1. Att=—-1,a= ==,

gv=0a ,a 27 7
Att—=1a=22__1
T @ T2

h) The average velocity over [0, 4] is
X@—x©0 _ -0 _1
4 T4 T
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y = 9.8t — 4.9t2 metres (t in seconds) 9.

velocity v = (;—i/ =9.8-9.8t

. d
acceleration a = d—: =-98
The acceleration is 9.8 m/s?2 downward at all times.
Ball is at maximum height when v =0, i.e., att = 1.
Thus maximum height is y = 9.8 — 4.9 = 4.9 metres.

Ball strikes the ground whertﬂl/ =0, (t>0),i.e,
0=t(9.8—-49t)sot =2

Velocity at t = 2 is 9.8 — 9.8(2) = —9.8 m/s.

Ball strikes the ground travelling at 9.8 m/s (downward).

10.

Given that y = 100 — 2t — 4.9t2, the time t at which
the ball reaches the ground is the positive root of the
equation y = 0, i.e., 100 — 2t — 4.9t2 = 0, namely,

| _ —2+ /AT 4@ (100)

~ 4.318 s.
9.8

-1
The average velocity of the ball is % = —23.16 m/s. 11.

Since —23.159 = v = —2 — 9.8t, then t ~ 2.159 s.

D = t2, D in metres, t in seconds
. dD
velocity v = — =2t

Aircraft becomes zzi(i)ré)oor&e) if 500 12.
v =200 km/h = 3600 = o m/s.

. . . . 250
Time for aircraft to become airborne ist = o s, that

is, about 27.8 s.
Distance travelled during takeoff run is t2 ~ 771.6 me-
tres.

Let y(t) be the height of the projectile t seconds after it
is fired upward from ground level with initial speed w.
Then

y'(t) = —9.8, Y'(0) = v, y(0) =0.

Two antidifferentiations give

13.

y = —4.9t2 + vt = t(vo — 4.91).

Since the projectile returns to the ground att = 10 s,
we have y(10) = 0, so vop = 49 m/s. On Mars, the
acceleration of gravity is 3.72 m/s? rather than 9.8 m/s?,
so the height of the projectile would be

y = —1.86t? + vpt = t(49 — 1.86t).

The time taken to fall back to ground level on Mars
would be t =49/1.86 ~ 26.3 s.

SECTION 2.11 (PAGE 157)

The height of the ball after t seconds is

y(t) = —(g/2)t2 + vt m if its initial speed was vp
m/s. Maximum height h occurs when dy/dt = 0, that is,
att = vg/g. Hence

2 2
g g V0 Vg
h=-=.= ==
2 @ "y T2
An initial speed of 2ug means the maximum height will
be 4v5/2g = 4h. To get a maximum height of 2h an

initial speed of ~/2vg is required.

To get to 3h metres above Mars, the ball would have to
be thrown upward with speed

Since gm = 3.72 and g = 9.80, we have v ~ 1.067vg
m/s.

If the cliff is h ft high, then the height of the rock t sec-
onds after it falls is y = h — 16t2 ft. The rock hits the
ground (y = 0) at time t = /h/16 s. Its speed at that
time is v = —32t = —8v/h = —160 ft/s. Thus vh = 20,
and the cliff is h = 400 ft high.

If the cliff is h ft high, then the height of the rock t sec-
onds after it is thrown down is y = h —32t — 162 ft. The
rock hits the ground (y = 0) at time

[ 32+ V3 yeah _
- - -

1
-1+ -4/16+hs.
+7V16+hs
Its speed at that time is
v=—-32—-32t = -8/16 + h = —160 ft/s.

Solving this equation for h gives the height of the cliff as
384 ft.

Let x(t) be the distance travelled by the train in
the t seconds after the brakes are applied. Since

d2x/dt2 = —1/6 m/s? and since the initial speed is
vo = 60 km/h = 100/6 m/s, we have
X(t) = L2 + 100,
12 6

The speed of

the train at time t is v(t) = —(t/6) + (100/6) m/s, so
it takes the train 100 s to come to a stop. In that time it
travels x(100) = —100?/12 + 100?/6 = 100?/12 ~ 833
metres.
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X = At?> + Bt + C, v = 2At 4 B.

The average velocity over [t1, to] is

X(t2) — x(t1)

-1

_ AtZ+Bti+C— A2 —Bt; —C

- -1

_AB -t)+ Btz —t)

B (tp —t1)

_ A+t —t) + Bz — 1)
(t2 —t1)

= A(to +t1) + B.

The instantaneous velocity at the midpoint of [t;, t2] is

t 4+t t +t
2“;1 :2A(2“2Ll +B=A®+1)+ B.

Hence, the average velocity over the interval is equal to
the instantaneous velocity at the midpoint.

t2 0<t<2
S=144t-4 2<t<8

—68+20t —t2 8<t<10
Note: s is continuous at 2 and 8 since 22 = 4(2) — 4 and
4(8) — 4 = —68 + 160 — 64

2t ifo<t<?2
Velocityv:—:{4 if2<t<8
dt {o0_2t if8<t<10
Since 2t — 4 as t — 2—, therefore, v is continuous at 2
(v2) =4).

Since 20 — 2t — 4 ast — 8+, therefore v is continuous
at 8 (v(8) = 4). Hence the velocity is continuous for

0<t<10 .
2 ifO<t<?2

. v .
accelerationa=— =10 if2<t<8

-2 if8<t<10
is discontinuous att =2 and t = 8

Maximum velocity is 4 and is attained on the interval
2<t<8.

This exercise and the next three refer to the following
figure depicting the velocity of a rocket fired from a
tower as a function of time since firing.

vt (4, 96)

(14, —224)
Fig. 2.11.16
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The rocket’s acceleration while its fuel lasted is the slope
of the first part of the graph, namely 96/4 = 24 ft/s.

The rocket was rising for the first 7 seconds.

As suggested in Example 1 on page 154 of the text, the
distance travelled by the rocket while it was falling from
its maximum height to the ground is the area between the
velocity graph and the part of the t-axis where v < 0.
The area of this triangle is (1/2)(14 — 7)(224) = 784 ft.
This is the maximum height the rocket achieved.

The distance travelled upward by the rocket while it was
rising is the area between the velocity graph and the part
of the t-axis where v > 0, namely (1/2)(7)(96) = 336 ft.
Thus the height of the tower from which the rocket was

fired is 784 — 336 = 448 ft.

Let s(t) be the distance the car travels in the t seconds
after the brakes are applied. Then s”(t) = —t and the
velocity at time t is given by

t2
s'(t) = /(—t) dt = —5 +C1,

where C