HOW

l TEU ATE
11

A Practical Guide to
Finding Elementary Integrals

SEAN M. STEWART




How to Integrate It
A Practical Guide to Finding Elementary Integrals

While differentiating elementary functions is merely a skill, finding their integrals is
an art. This practical introduction to the art of integration gives readers the tools and
confidence to tackle common and uncommon integrals.

After a review of the basic properties of the Riemann integral, each chapter is
devoted to a particular technique of elementary integration. Thorough explanations
and plentiful worked examples prepare the reader for the extensive exercises at the end
of each chapter. These exercises increase in difficulty from warm-up problems,
through drill examples, to challenging extensions that illustrate such advanced topics
as the irrationality of 7 and e, the solution of the Basel problem, Leibniz’s series, and
Wallis’s product.

The author’s accessible and engaging manner will appeal to a wide audience,
including students, teachers, and self-learners. It can serve as a complete introduction
to finding elementary integrals, or as a supplementary text for any beginning course in
calculus.
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Preface

Calculus occupies an important place in modern mathematics. At its heart it
is the study of continuous change. It forms the foundation of mathematical
analysis while the immense wealth of its ideas and usefulness of the tools to
have emerged from its development make it capable of handling a wide variety
of problems both within and outside of mathematics. Indeed, the sheer number
of applications that the calculus finds means it continues to remain a central
component for any serious study of mathematics for future mathematicians,
scientists, and engineers alike.

The material presented in this volume deals with one of the major branches
of calculus known as the integral calculus — the other being the differential, with
the two being intimately bound. The integral calculus deals with the notion of
an integral, its properties, and method of calculation. Our word for ‘integrate’ is
derived from the Latin infegratus meaning ‘to make whole’. As calculus deals
with continuous change, integration, then, is a general method for finding the
whole change when you know all the intermediate (infinitesimal) changes.

A precursor to the concept of an integral dates back to the ancient Greeks, to
Eudoxus in the fourth century BCE and Archimedes in the third century BCE, and
their work related to the method of exhaustion. The method of exhaustion was
used to calculate areas of plane figures and volumes of solids based on approx-
imating the object under consideration by exhaustively partitioning it into ever
smaller pieces using the simplest possible planar figures or bodies, such as rect-
angles or cylinders. Summing its constituent parts together then gave the area
or volume of the whole. Integration thus renders something whole by bring-
ing together all its parts. Its modern development came much later. Starting
in the late seventeenth century with the seminal work of Newton and Leibniz,
it was carried forward in the eighteenth century by Euler and the Bernoulli
brothers, Jacob and Johann, and in the nineteenth century most notably by
Cauchy before the first rigorous treatment of the integral was given by Riemann

vii



viii Preface

during the middle part of that century. Since this time many other notions for
the integral have emerged. In this text we focus exclusively on the first and
perhaps simplest of these notions to emerge, that of the Riemann integral.

Unlike differentiation, which once learnt is merely a skill where a set of rules
are applied, as there is no systematic procedure for finding an integral, even for
functions that behave ‘nicely’, many look upon integration as an ‘art’. Finding
an integral tends to be a complicated affair involving a search for patterns and
is hard to do. The unavailability of a mechanical approach to integration means
many different techniques for finding integrals of well-behaved functions in
terms of familiar functions have been developed. This makes integration hard
and is exactly how it is perceived by most beginning students. When encoun-
tering integration for the first time one is often bewildered by the number of
different methods that need to be known before the problem of integration can
be successfully tackled.

This book is an attempt at taking some of the mystery out of the art of inte-
gration. The text provides a self-contained presentation of the properties of the
definite integral together with many of the familiar, and some not so famil-
iar, techniques that are available for finding elementary integrals. Prerequisites
needed for the proper study of the material presented in the text are minimal.
The reader is expected to be familiar with the differential calculus including
the concept of a limit, continuity, and differentiability, together with a working
knowledge of the rules of differentiation.

The book takes the reader through the various elementary methods that can
be used to find (Riemann) integrals together with introducing and developing
the various properties associated with the definite integral. The focus is primar-
ily on ideas and techniques used for integrating functions and on the properties
associated with the definite integral rather than on applications. By doing so the
aim is to develop in the student the skills and confidence needed to approach
the general problem of how to find an integral in terms of familiar functions.
Once these have been developed and thoroughly mastered, the student should
be in a far better position to move onto the multitude of applications the inte-
gral finds for itself. Of course this is not to say applications for the integral are
not to be found in the text. They are. While the text makes no attempt to use
integration to calculate areas or volumes in any schematic way, applications
developed through the process of integration that lead to important results in
other areas of mathematics are given. As examples, the proof of the irrationality
of the numbers 7 and e is presented, as are the solutions to the Basel problem,
Leibniz’s series, and Wallis’s product.

Most chapters of the book are quite short and succinct. Each chapter is self-
contained and is structured such that after the necessary theory is introduced
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and developed, a range of examples of increasing level of difficulty are pre-
sented showing how the technique is used and works in practice. Along the way,
various strategies and sound advice are given. At the conclusion of each chapter,
an extensive set of exercises appear. The text can serve as a complete introduc-
tion and guide to finding elementary integrals. Alternatively, it can serve as a
resource or supplemental text for any beginning course in calculus by allowing
students to focus on particular problem areas they might be having by working
through one or more relevant chapters at a time.

In contemplating the material presented it cannot be overstated how impor-
tant it is for one to attempt the exercises located at the end of each chapter. For
those hoping to become fluent in the art of integration, this proficiency is best
gained through perseverance and hard work, and in the practice of answering as
many different and varied questions as possible. Indeed, a large portion of the
text is devoted to such exercises and problems; they are a very important com-
ponent of the book. To help aid students in their endeavours an attempt has been
made to divide the exercises that appear at the end of the chapters into three
types: (i) warm-ups, (ii) practice questions, and (iii) extension questions and
challenge problems. The warm-ups are relatively simple questions designed to
gently ease the student into the material just considered. The practice questions
consolidate knowledge of the material just presented, allowing the student to
gain familiarity and confidence in the workings of the technique under consid-
eration. Finally, the extension questions and challenge problems contain a mix
of questions that are either simply challenging in nature or that extend, in often
quite unexpected ways, the material just considered. It is hoped many of the
questions found in this last group will not only challenge the reader but pique
their interest as more advanced results are gradually revealed. Of course, judg-
ing the perceived level of difficulty is often in the eye of the beholder so one
may expect some overlap between the various categories. For problems consid-
ered more difficult, hints are provided along the way in the form of interrelated
parts that it is hoped will help guide the student towards the final solution. In
all, well over 1,000 problems relating to finding or evaluating integrals or prob-
lems associated with properties for the definite integral can be found dispersed
throughout the end-of-chapter exercise sets.

Chapter 1 introduces formally what we mean by an integral in the Riemann
sense. The approach taken is one via Darboux sums. The fundamental theo-
rem of calculus, which we divide in two parts, is also given. Properties for the
definite integral are given in three chapters (Chapters 2, 4, and 16). Sixteen
chapters (Chapters 3 and 5-19) are then devoted to either a particular method
that can be used to find a given integral or a particular class of integrals. Here
methods including standard forms, integration by substitution, integration by
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parts, trigonometric and hyperbolic substitutions, a tangent half-angle substi-
tution, trigonometric and hyperbolic integrals, integrating rational functions
using partial fractions, integrating inverse functions, and reduction formulae
can be found. The penultimate chapter, Chapter 20, introduces the improper
integral. The field of improper integrals is immense and all we can do here is
touch upon this important area. The final chapter, Chapter 21, is devoted to con-
sidering two very important improper integrals that arise in applications known
as the Gaussian integral and the Dirichlet integral.

While all the familiar techniques of integration one would normally expect
to find in any standard introductory calculus text are to be found here, the
approach we take is somewhat different. Other treatments tend to be brief and
hurried while the questions asked are often repetitive and uninteresting. In the
present volume, as each chapter is devoted to a particular technique our focus is
more concentrated and allows one to methodically work through each of these
techniques. At the same time an abundance of detailed worked examples are
given, and different and varied question types are asked. We also offer other
useful methods not typically found elsewhere. These include integrating ratio-
nal functions using the Heaviside cover-up method and Ostrogradsky’s method
(Chapter 11), tabular integration by parts (Chapter 7), and the rules of Bioche
(Chapter 15). Finally, we provide two appendices. The first, Appendix A, on
partial fractions is given for anyone who has either not encountered this topic
before or is in need of a brief review. The second, Appendix B, contains answers
to selected questions asked.

The genesis of this book grew from the large number of requests the author
received over the years from students he taught introductory calculus to. Many
students wanted additional material and questions to consolidate and test their
growing skills in finding integrals and asked if a short text could be suggested to
meet such a need. These many requests drove the author to seek out and create
ever more varied and interesting problems, the result of which you now hold
before you.

Inspiration for many of the exercises found in the text has been drawn
from a wide variety of sources. Articles and problems relating to integration
found in the journals The American Mathematical Monthly, Mathematics Mag-
azine, The College Mathematics Journal, and The Mathematical Gazette have
proved useful, as have online question-and-answer sites devoted to mathe-
matics such as Mathematics Stack Exchange and The Art of Problem Solv-
ing. Joseph Edwards’s A Treatise on the Integral Calculus (Volume 1), G. H.
Hardy’s A Course of Pure Mathematics, Michael Spivak’s Calculus, and the
Soviet text Problems in Mathematical Analysis edited by Boris Demidovich
have also proved useful sources for questions. Answers to almost all exercises
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appearing in the text are given in Appendix B. While every care has been
taken to ensure their accuracy, errors are regrettably unavoidable and the author
would be most grateful if any errors found, could be brought to his attention.

In closing perhaps something needs to be said about why one should bother
to learn any of the techniques of integration at all. After all, powerful computer
algebra systems now exist that can find almost all of the integrals appearing in
this text. Such a question is of course a bit like asking why bother to learn to add
when all of arithmetic can be handled by a calculator. Understanding why things
are the way they are is important. If nothing else, integration is incredibly use-
ful. It is a standard topic in any introductory course on calculus and an impor-
tant gateway to many areas of more advanced applied mathematics. Many of
the techniques of integration are important theorems in themselves about inte-
grable functions, providing a foundation for higher mathematics. While having
the ability and the insight to see into an integral, and turn it from the inside
out, may not be a very convincing reason for many, intellectually it is the most
compelling reason of them all.
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The Riemann Integral

There are subjects in which only what is trivial is easily and generally
comprehensible. Pure mathematics, I am afraid, is one of them.
— G. H. Hardy

There are many ways of formally defining an integral, not all of which are
equivalent. The differences exist mostly to deal with special cases for functions
that may not be integrable under other definitions. The most commonly used
definition for the integral is the so-called Riemann integral.' It is the simplest
integral to define and is the type of integral we intend to consider here. The
central idea behind the concept of a definite integral is its connection to an area
defined by a region Q2 bounded between the graph of a function y = f(x),
the x-axis, and the vertical lines x = a and x = b. As this idea is central to
the concept of the definite integral, we begin by carefully considering it in some
detail.

The integrability of a function depends on a property of functions known as
boundedness. What we exactly mean by this is given in the following definition.

Definition 1.1 (Boundedness) A function f is said to be bounded if there
exists a number M > 0 such that —M < f(x) < M forall x € [a, b].

Geometrically, the graph of a bounded function on the interval [a, b] will
lie between the graphs of the two constant functions having values —M and
M , respectively (see Figure 1.1). A function that is bounded then has all of its
values lying between two finite limits.

Consider a non-negative ( f(x) > 0) bounded function defined on the inter-
val [a, b]. If we assume the area of a rectangle is given by its length multi-
plied by its height, the problem of finding the area of the region Q2 enclosed
by the graph of the function and the x-axis between x = a and x = b can
be approached by subdividing the interval [a,b] into a finite number of
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LW B

Figure 1.1. An example of a bounded function f to the left and an unbounded
function g to the right.

sub-intervals. On summing the areas of each of the rectangles together, an
approximation to the area of the region can be found. Choosing rectangles
that are inscribed within the region and that circumscribe the region, as in
Figure 1.2, and then summing their areas, one should expect the areas of the
inscribed rectangles to be less than the expected area of the region €2 while the
sum of the circumscribing rectangles ought to be larger than it. As the size of
the subdivisions is made ever smaller, these two sums will come ever closer to
the expected value for the area of the region 2.

Now consider that the interval [a, b] (b > a) is subdivided or partitioned
into a finite number of sub-intervals I = [xx_1, xx] such that the end-points
of each sub-interval is given by

aAa=X9<X] <Xp <+ +<Xp_1<Xp,=>.

The size of each sub-interval need not be the same. The partition J can be
denoted by either its sub-intervals

e(/j ={11,12,---,In}:

y ¥y

a Xk—1 Xk b a Xk—1 Xk b

Figure 1.2. Approximating the area under a curve by means of inscribed (left) and
circumscribing (right) rectangles.
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or by the set of end-points that define the sub-intervals of the partition, that is
by

E(/j = {.X(), X1,X2,... ,xn—l,xn}~

The length of the interval I = [a, b] is given by b — a. You should also notice
that the sum of the lengths of each sub-interval in a partition {/y, I>, ..., I}

of an interval [ is equal to the length of the total interval as
n

Z(xk — Xg—1) = (x1 — X0) + (x2 —x1) + -
k=1
st (Xp—1 — Xp—2) + (Xn — Xn—1)

=x,—Xxo=b—a.

We now try to put in place an appropriate mathematical structure that will
help guide us towards a definition for the area under the graph of a function. We
do this by introducing the notion of Darboux sums.? Let f : [a,b] — R be a
bounded function and let My (/) denote the maximum value of the function f
on the kth sub-interval [xx_1, xx] and my (/) denote the minimum value of the
function f on the kth sub-interval [x;_;,x%].> We define the upper Darboux
sum U(f; P) for the function f with respect to the partition J by

n
U(f: ) =) M (f)(xk — Xp—1).
k=1
Likewise, we define the lower Darboux sum L( f; ) for the function f with
respect to the partition & by

n
L(f:P) =Y me(f) 0k = Xk—1).
k=1
To understand these sums, geometrically if f is non-negative we see that the
lower Darboux sum corresponds to the sum of the areas of the inscribed rect-
angles while the upper Darboux sum corresponds to the sum of the areas of the
circumscribing rectangles depicted in Figure 1.2.

We are now in a position to give the definition for the Riemann integral. To
help motivate this definition, if a bounded function f : [a,b] — R is positive,
we can see that if we wish to define the area of the region enclosed between
the curve of the graph y = f(x), the x-axis, and the lines x =a and x = b
using inscribed and circumscribing rectangles, then this area must be at least
L(f; ) and at most U( f; P). Thus one would expect the lower Darboux sum
to correspond to the greatest lower bound for the area of the required region we
seek, while the upper Darboux sum should correspond to the least upper bound
for the area of this region. If the two are equal, thatis, if L(f; P) = U(f; P),
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then it would seem reasonable to define the area of the required region to be
this common value and to define Riemann integrability of a bounded function
by this equality.

Definition 1.2 (Definition of the Riemann integral) Suppose that a function
f is bounded on the interval [a, b]. If there exists a unique real number / such
that

L(f:P)<I<Uf:P),

for every partition & on [a, b] then f is said to be Riemann integrable on the
interval [a, b].

The unique real number [ is called a definite integral and is denoted by

I = /abf(x)dx.

The function f is called the integrand of the definite integral while a and b
correspond to the lower and upper limits of integration, respectively.

If f is non-negative the area of the region enclosed by the curve given by
y = f(x) and the x-axis from x = a to x = b is defined to be the Riemann
integral of f. From this definition, a number of basic properties for the Riemann
integral can be found. These we, however, defer until Chapters 2 and 4.

We now apply the definition of the Riemann integral to a number of simple
functions.

Example 1.1 Show that the constant function f(x) = 1 on the interval [a, b]

b
is Riemann integrable, and [ f(x)dx =b—a.
a

Solution To show this let  be any partition of [a, b] with end-points
{a = x0,x1,X2, ..., Xp—1,Xn = b}.

Since f is constant we have mg(f) = My (f) = 1 for every k (that is, for
every sub-interval) between 1 and n. Thus

U(f:P) =) M(f)(xk — xk-1)
k=1

= (% — Xk1)
k=1

= (x1 —xo) + (x2 —x1) + (X3 —x2) + -
cee (xnfl - xn72) + (xn - xnfl)

=Xx,—Xxo=b—a.
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A similar calculation for L( f; ) also leads to a value of » — a. Since P is an
arbitrary partition of [a, b], we have

U(fiP)=b—a=L([:P),

for every partition of & of [a, b]. Thus f is integrable and its Riemann integral
is equal to b — a, as is required to show. >

In this example we see the answer agrees with what one intuitively expects to
find if the definite integral is interpreted as corresponding to the area of the
region enclosed by the curve and the x-axis between x = a and x = b. Here
the region is a rectangle, of unit height and of length (b — a), which has an area
of (b — a) units squared.

Example 1.2 Consider the identity function f(x) = x on the interval [a, b].
We will try to show this function is Riemann integrable from the definition of
the Riemann integral.

Solution Let P be any partition of [a, b] with end-points
{a = Xx0,X1,X2,...,Xp—1, Xy = b}.

Since f is the identity function, we have my(f) = f(xx—1) = xp—1 and
M (f) = f(xx) = xi for every k (that is, for every sub-interval) between 1
and n. Thus

U(f:P) =Y Mi(f)k — Xi—1) = Y xp(xk — Xie—1),
k=1 k=1
and

L(f:P) =Y Mc(f)(xk —Xim1) = Y xp—1(xk — Xpe—1)

k=1 k=1
Finding these sums, as we are about to see, is no easy task.

Subtracting the upper and lower Darboux sums, one has

U(f;P) = L(f: ) = ) Dok — xu—1) = Xe—1 (xk — xx-1)]

k=1

= Z(xk — Xp—1)(Xk — Xp—1)

k=1

n
= ( —x1),
k=1
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while adding

U(f:P) + L(f;P) = Y Ik Ok = xu—1) + X1 (xk — x5-1)]
k=1

=Y (X% + Xk—1) (X — Xg—1)

k=1

n
2 2
- Z(.xk - .xk_l).
k=1

As the latter series telescopes, a simple expression for this sum can be found.
On writing the terms out in the sum we have

U(f:P)+L(f:P) = (x] —x3) + (x5 —x7) + (x] —x3) + -
e (X — X)) (= xp_y)
2

222
=x,—Xx; =b"—a".

It therefore follows that

virey = 22 s Y
s = ) 5 Xk Xk—1
k=1
and
b2 —a? 1 ¢ )
L(f;P) == —E;uk—xk_l).

As no simple closed form is known for the sum that appears in the above expres-

sions for the lower and upper Darboux sums, the best one can do is to try and

bound each sum using inequalities. While it will not be formally shown here, it

can be seen that as the size of the sub-intervals approaches zero the sum can be

made as small as we wish while remaining positive. In this case it follows that
b2 _ g2 2_ 2

b2 —
and L(f;P) > 2a

But from the definition of the Riemann integral we must have L(f;P) <
U(f; ). This shows that

U(f:#P) <

b2— 2
U(f:P) = =5 = L(f: ).

b b
and thus f is integrable and / f(x)dx =
a
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The answer found here agrees with what one intuitively expects to find if
the definite integral is interpreted as corresponding to the area of the region
enclosed by the curve y = x and the x-axis between x = a and x = b. Here
the region is a trapezium, with parallel sides of lengths @ and b and separated
by a distance (b — a), the area of which, according to the well-known formula
for the area of a trapezium, is

2_ 2
-
agreeing with the value found for the definite integral.

What the foregoing example shows is that determining whether a bounded
function on the interval [a, b] is integrable from the definition of the Riemann
integral is no easy task. In a moment we will show how considerable progress
in determining the integrability of a bounded function, and in finding the value
for its definite integral, can be made.

It turns out there are a wide class of functions that are Riemann integrable.
Throughout most of this text we restrict ourselves to functions from one of
the largest and most useful classes — the class of functions that are bounded
and piecewise continuous. Recall that geometrically a function is said to be
continuous if in the whole of its domain for which the function is defined the
graph of the function consists of a single, unbroken curve with no ‘holes’ or
‘gaps’ in it. More formally, a function f is defined to be continuous at a point
as follows.

Area = %(b —a)a+b) =

Definition 1.3 (Continuity at a point) Suppose f is defined on some open
interval containing the point a. Then f is continuous at the point ¢ in the open
interval if

lim f(x) = /(@

The formal notion of continuity at a point can be extended to continuity on an
interval if the function is continuous at every point in the interval. Piecewise
continuity in a function can then be defined as follows.

Definition 1.4 (Piecewise continuity) A function f : [a,b] — R is said to
be piecewise continuous if it is continuous on the interval [a, b] at all except
perhaps a finite number of points.

A piecewise continuous function is therefore a function that is continuous at
all but a finite number of points within its domain. Geometrically a piece-
wise continuous function will be made up of a finite number of curves or
‘pieces’, with each piece being continuous. In Figure 1.3 we illustrate piecewise
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S(x) g(x)

x . : . X
a b a b

Figure 1.3. Example of two piecewise continuous functions on the interval [a, b].
The function f to the left is bounded while the function g to the right is
unbounded.

continuity in two functions f and g on the interval [a, b]. To the left the function
[ is both bounded and piecewise continuous, while to the right, the function g
is piecewise continuous but is not bounded.

We are now in a position to give a very important theorem that tells us exactly
under what circumstances we have integrability in a function. By integrability
we mean a function is integrable, that is, it can be integrated in the Riemann
sense.

Theorem 1.1. Let f :[a,b] — R be a bounded and piecewise continuous
function. Then f is integrable on the interval [a, b].

As the proof of this theorem is rather technical and involved, it will not be given
here. The bounded and piecewise continuous functions cover a large and very
important class of useful functions, examples of which are those functions you
have already encountered in your previous mathematics studies. What Theorem
1.1 shows us is integrability is a far less restrictive condition on a function than
differentiability. Recall that differentiability in a function at a point requires the
function to not only be continuous at the point but also to be ‘smooth’ there,
that is, the graph of the curve of the function should not contain any sharp edges
or points where it is to be differentiated.

What Example 1.2 showed is that proving a function is Riemann integrable
from the definition using Darboux sums is often a very difficult task, while the
calculation of its definite integral is usually all but impossible. However, from
Theorem 1.1, knowing in advance when a function f is Riemann integrable on
[a, b] often means the calculation of its definite integral becomes a far easier
proposition. This is the case due to the following theorem.
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Theorem 1.2. Suppose f : [a,b] — R is a bounded function that is Riemann
integrable. Then there is a sequence of partitions { P, } of [a, b] such that

nli)ngo[U(f’ Pn) = L(f;Pn)] = 0.

In this case
b
lim L(f§<7)n)=[ f(x)dx = lim U(f;Py).
n—>o00 a n—>o0

The proof of this theorem will not be given here. What this result shows us is as
the maximum size s, of the sub-intervals generated by &, goes to zero, that is,
as lim, .~ s, = 0, the definite integral becomes ‘squeezed’ between the lower
and upper Darboux sums.

Example 1.3 Show that the function f(x) = x on the interval [0, 1] is Rie-
mann integrable and fol fx)dx = 1.

Solution Note that f is integrable on [0, 1] since it is bounded and continuous
on [0, 1].

To find the value for the definite integral we are free to partition the interval
[0, 1] in any manner we wish. For convenience the interval will be partitioned
into n equally sized sub-intervals each of length 1/n.

23 n—2 n-—1

— e, R .1
n n n

)

1
Pn =40, —, -

nn
Since f(x) = x is increasing on [0, 1], the minimum value of f on any partic-
ular sub-interval is given by its starting point, while the maximum value of f

is given by its end-point. For the kth sub-interval in #,, since the starting point
is xy—1 = (k — 1)/n and the point at the end is x; = k/n, we have

k— k
() = fls) = and Mi(f) = (w0 =

Thus the lower Darboux sum on the partition $, is given by

L(f:Pn) =Y me(f) (Xk — xk—1)

k=1
k—1 (k k-1
— n n n

n
=
k=1

“ k-1 1 1 &
2P O Rraiirialrep DUl
k=1 k=1
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The sum of the first n integers is given by the well-known formula ) ; _; k =
w, a result that can be readily established using induction on n. Thus

L(fiP) = [—(” _2””] =3 (1 - %)

Similarly, for the upper Darboux sum we have

“ "k (k k-1 1 &
U(f;‘?n)ZZMk(f)‘(Xk_xk—l)ZZ;(;— p )=n—22k.
k=1

k=1 k=1

And since Y p_ k = "("TH), we have

U(F: ) = %[@} =1(1+1).

It is not too hard to see that
L(f;Pn) <

Alsonotice that U( f'; #,) — L(f; #,) = 1/n can be made as small as we like
as n becomes as large as we like. So in the limit of #n becoming very large, that
is as n — 0o, one has

lim L(f;Pp) =
n—>o0oo

1
< U(f;Pn), foralln.

N

_ 1 . D
—nll)ngoU(fv'jn)y

= N =

1
and we conclude that / f(x)dx = =. >
0

What the foregoing example shows is that even when the integrability of a func-
tion is known in advance, finding the value for the Riemann integral is still a
rather lengthy process. In Chapter 3 the problem of evaluating Riemann inte-
grals will be taken up once more where it will be shown how the process can
be significantly sped up and simplified.

§ The Definite Integral and Area

Currently the only way we have of finding the value for a definite integral is to
use upper and lower Darboux sums. However, from the geometric interpretation
of the Riemann integral as corresponding to the area beneath the curve, the x-
axis, and the two bounding vertical lines given by the limits of integration, under
very special circumstances it may be possible to find its value by calculating an
appropriate area using known area formulae. We now consider two examples
where the values for the definite integral are found in this way.

1
Example 1.4 Evaluate [ (x + 1)dx.
-1
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Py ) =x+1

Figure 1.4. Sketch of the required area, which is triangular.

Solution A sketch of the area beneath the graph of the function f(x) = x + 1
(a straight line) and the x-axis between the vertical lines x = —1 and x = 1 is
shown in Figure 1.4.

As the enclosed area is that of a triangle of base 2 units and height 2 units, the
value of the definite integral is

1

1
/(x+1)dx=5-2-2=2. >
-1

3
Example 1.5 Evaluate / V9 —x2dx.
0

Solution Figure 1.5 a sketch of the area beneath the graph of the function
f(x) = V9 — x2 (a semicircle lying above the x-axis, centre at the origin, and
of radius 3 units) and the x-axis between the vertical lines x = Oand x = 11is
shown.

Figure 1.5. Sketch of the required area, which is a quarter of a circle.
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As the enclosed area is a quarter of the area of a circle of radius 3 units, the
value of the definite integral is

3 1 9
/ \/9—X2d)€=z'7f‘32=T. | 2
0

§ The Fundamental Theorems of Calculus

From Example 1.3 we see that the business of evaluating definite integrals
from the definition for the Riemann integral using Darboux sums, even for the
simplest of functions, is at best, difficult, while at worst is all but impossible.
If this were the only way to calculate definite integrals for functions that are
Riemann integrable, then progress would be slow and would place real lim-
its on the usefulness and usability of the definite integral. Fortunately there is
another, far simpler way to calculate definite integrals for those functions that
are integrable. It is done using what is the most fundamental and perhaps most
important theorem in all of the calculus — the fundamental theorem of calculus.

By now you should be very familiar with the process of differentiation. It
is a local process in that the value of the derivative at a point depends only
on the values of the function in a small interval about that point. Integration,
on the other hand, is a global process in the sense that the integral of an inte-
grable function depends on the values of the function on the entire interval.
Each of these processes, at least initially, appears to be very different, with no
apparent connection between them. From the geometric point of view, differen-
tiation corresponds to finding gradients of tangents to curves, while integration
corresponds to finding areas under these curves. Why each of these different
geometric notions should be intimately related is not at all obvious.

We now present a result (we actually will break it up and present two results)
that indicates a strong connection between integration and differentiation.
Recall that if f : [a, b] — R is differentiable, then one obtains a new function
1’ :[a,b] — R, called the derivative of f. Likewise, if f : [a,b] — R s inte-
grable in the Riemann sense, then one obtains a new function F : [a,b] — R,
which we call a primitive or antiderivative of f, defined by

F(x) = /x f@)dt, forall x € [a,b].

Geometrically, if f is positive, the primitive function F can be interpreted as
an ‘area function’ for the graph of the function y = f(x) bounded by the curve
and the x-axis on the interval [a, x] (see Figure 1.6).

We are now in a position to present the central result of the calculus
known as the fundamental theorem of calculus. It states that differentiation and
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S@)

F(x)

a x b

X
Figure 1.6. The area function F (x) = [ f(@)de.
a

integration are (nearly) inverse operations of each other. Roughly speaking, the
fundamental theorem of calculus says that differentiation undoes what integra-
tion does to a function. That is, if one integrates a function and differentiates the
result, then one gets back the original function. Similarly, integration undoes
what differentiation does to a function up to an arbitrary additive constant. That
is, if one differentiates a function and then integrates the result, to within an
arbitrary additive constant, one again gets back the original function. We now
state the theorem in two parts and give some of their consequences.

Theorem 1.3 (The first fundamental theorem of calculus). If f is a contin-
uous function defined on the interval [a, b] and therefore integrable, then the
function F : [a,b] — R defined by

F(x) = / £,

is continuous on the closed interval [a, b), is differentiable on the open interval
(a,b), and has a derivative F’ given by

d X
Fw=5 [ rod= 1w

for all x € (a,b).

As the proof requires ideas outside the scope of this text it will be omitted.
From the first fundamental theorem of calculus we see that every continu-
ous function f on [a, b] has an antiderivative F. This is demonstrated by the
fact that F satisfies the equation F’ = f on (a, b). Secondly, since any two
antiderivatives of a function f differ by at most a constant, as every antideriva-
tive of f takes on the form of F plus an additivity constant, one sees that the
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processes of integration and antidifferentiation are essentially the same thing;
this suggests that integration and differentiation are inverse operations. Thus
if one takes a function f, integrates it, and then differentiates the result, one
gets back the original function f. Differentiation therefore undoes what inte-
gration does to the function f. Whether or not the converse is true will be taken
up shortly. The first fundamental theorem of calculus therefore suggests there
may be an alternative way of calculating the area under a curve given by the
graph of f. Instead of integrating via applying Darboux sums, one may instead
try to integrate a function via antidifferentiation.

It is clear from the first fundamental theorem of calculus that if f is a con-
tinuous function on the interval [a, b] (and hence Riemann integrable) and has
a primitive given by F', then one must have

F(x) = /x f(@)dt + F(a), forallx € [a,b].

F is called the indefinite integral of f.1f we have no particular interest in the
interval [a, x] and merely want to indicate that F' is an indefinite integral of f,
then we write

/f(x)dx = F(x)+ C.

Here C denotes an arbitrary constant and indicates that a primitive function of
f is unique only up to an arbitrary additive constant. The indefinite integral on
an interval is a collection of all its primitives F on that interval whose deriva-
tives are the given function f; it is the reason why the indefinite article ‘a’ is
used when referring to the primitive of an indefinite integral rather than the
definite article ‘the’: to do otherwise would suggest the primitive is something
that can be uniquely specified, which it cannot be.

X t2
Example 1.6 If g(x) = / sin® (HT) dt, find the value of g’(1).
%

Solution Applying the first fundamental theorem of calculus to the function g

gives
d X 12 2
gx) = %[{ sin® (%) dt = sin® (%) .

And when x = 1, we have
g'(1) = sin® (%) =1 >

If the first fundamental theorem of calculus says that the processes of inte-
gration and antidifferentiation are essentially the same, the second fundamental
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theorem of calculus (see Theorem 1.4 (highlighted)) gives a fast way of calcu-
lating integrals by exploiting this similarity.

Theorem 1.4 (The second fundamental theorem of calculus). Suppose that
f is a continuous function on the interval [a, b] and therefore integrable. If F
is a primitive of f on (a, b), then

b
f F(t)di = F(b) — F(a)

Proof To prove the result we make use of the following property for the def-
inite integral |, : f(t)dt =0, a property to be considered in Chapter 4 (see
page 40).

Suppose that f is continuous on [a, b] and that F' is a primitive of f on (a, b).
From the first fundamental theorem of calculus, we have

dF d [~
525/[1 f(f)dt

Rearranging, we have

d p
- [F(x) —/; f(t)dt} = 0.

So there is a constant C such that
X
Fo - [ fwdr=c.
a

for all x € [a, b]. Writing this as

F(x) = / " fwdi+C,

and setting x = a we have

F(a) =/af(t)dt+C =C,
since /a f(t)dt = 0. Thus

[ " () di = F(x) - Fla).

which on setting x equal to b becomes

b
/ £ di = F(b) - F(a).

as required to prove. |
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The second fundamental theorem of calculus is a truly remarkable result.
It says that in order to calculate the area beneath the graph of a continuous
function all one needs to know is the value of any primitive function of f at
its end-points. It recasts the problem of evaluating definite integrals to that of
finding an explicit primitive of f, and while an explicit primitive cannot always
be found, as we shall see soon it can be found for a wide class of relatively
elementary integrands f.

The second part of the fundamental theorem of calculus provides the most
widely used method for evaluating Riemann integrals. As a basic tool it allows
one to find the integral of a function f if we can find a primitive function F
such that F/ = f'. Of course, using the method relies on being able to conjure
up a function whose derivative is the given function, something that at least
in the case of simple functions, you are by now already familiar with doing.
Compared to the rules of differentiation that provide a mechanical algorithm for
the calculation of the derivative of a function, there is no systematic procedure
for finding primitives, which means that the task of finding an integral of a
function is, in general, not the easiest of things to do.

Finally, we return to the question of whether integration and differentiation
are inverse operations of each other. The first fundamental theorem shows that
if one integrates a function f and differentiates the result one obtains f again.
As for the converse, the result is not true, for if a function f is differentiated
and the result is integrated, one does not obtain f. Instead one obtains f to
within an arbitrary additivity constant.

Taken together the two fundamental theorems of calculus show that differ-
entiation and integration are intimately related to each other. They provide the
link between the differential calculus (the calculus of change) and the integral
calculus (the calculus of accumulation). The consequences of the fundamental
theorem of calculus are, on the one hand, deeply profound while on the other
are extremely versatile and useful.

Exercises for Chapter 1

" Warm-ups

1. Compare the following two expressions:

d [ [* *
E[/ f(t)dt] and /az[f(t)]dt.

Are they the same? Carefully explain your answer.
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X Practice questions
2. Consider the function f(x) = x2.

(a) Show that f is increasing on the interval [0, 1].

(b) By considering a partition on [0, 1] with n equally sized sub-intervals
of length 1/n, thatis £, = {0, rll fl, ..., 1}, calculate lower and upper
Darboux sums for f.

nn+1)2n+1)

6

n
To do this, the formula Z k% =
k=1

will be needed.

1
(c) By taking the limit as n — oo, calculate / f(x)dx.
0
3. Consider the function f(x) = x3.

(a) Show that f is increasing on the interval [0, 1].

(b) By considering a partition on [0, 1] with n equally sized sub-intervals
of length 1/n, thatis , = {0, 1,2 ... 1}, calculate lower and upper
Darboux sums for f.

n%(n + 1)?

n
To do this, the formula Z k3= will be needed.

k=1
1
(c) By taking the limit as n — oo, calculate f f(x)dx.
0
4. For each given definite integral | ab f(x) dx, (i) sketch the area between the

graph of the function y = f(x), the x-axis, and the vertical lines x = @ and
x = b, and (ii) using known area formulae, evaluate each integral:

3 2
(a) / xdx (b) / (x+1)dx
0 0
1 2
©) / (1—-x)dx (d) / V4 —x2dx
—1 0
3 2
(e)/ V9 —x2dx (f)/ |x|dx
-3 -2

5. Using the first fundamental theorem of calculus, evaluate the following
expressions:

(a) —/ tsint dt (b) —/ et dt

2 2 _
©) a[g cos(t”) dt (d) ﬁ/l (t* —cost) dt
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6. Evaluate /3 f'(x)dx if f(1) =5and f(3) = 11.
1

7. If f(x) = x/x sin(z3) dt, show that x f/(x) — f(x) = x2sin(x3) for
0
x #0.

X t
8. If F(x) =/ f@)dt and f(¢) :/ v 1+ u?du, find the value of
1 1
F(1).

9. A special function known as the error function erf(x) is defined in terms
of a definite integral as follows:

2 X
erf(x) = ﬁ/(; e du, forall x.

d
(a) Using the first fundamental theorem of calculus, find ox (erf (x)).
x

(b) Show that the error function is an increasing function for all x € R.

I Extension questions and Challenge problems

T

2
10. In this question the definite integral / sin x dx will be evaluated directly
0
using Darboux sums.

Suppose that f : [0, Z] — R is defined by f(x) = sinx.

(a) Show that f is increasing on the interval [0, Z].
(b) Show that the lower and upper Darboux sums for f* with respect to the

partition P, = {0, =, %—’;, e %, %} of [0, Z] are given, respec-

tively, by

L(f; %) = % Z sin ((k;%) , and

k=1
o T < [(kn
U(f;Jn)=EZsm 5 )
k=1

(c) The sums given in (b) can be found and expressed in simple form. Let

Sy(a) =sina + sin2« + -+ + sin(n — 1) + sinno.
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By multiplying Sy () by the term 2sin 5 and summing the resulting

telescoping series, show that
n—+1 . (71)
7 |sin|—
4n 4

n sin |:(
Sn(a) = Zsink(x =

/7

k=1 Sin (E)

(d) Hence deduce that
1
- sin I:(n: ) n:| sin (%)
U(f:Pm) = o n = , and
sin (E)
DY — - P _i 1 n_n
L(f:P0) = U(f: ) = 3-sin (5 )

(f) Asn — oo, recognising that

1
lim U(f;Py) = 2sin (f) lim sin [(1 + _) f}
n—o00 4 ) n=o0 .

A
X lim dn___
e sin ()
, , . k/n .
if you are given that lim ———— = 1 forall k # 0, use this to show

n—oo sin (k /n)
that lim U(f; %) = 1.
n—>00
(f) Hence deduce that lim L(f;%,) = 1.
n—0o0
(g) Explain why f is integrable on the interval [0, Z] and hence deduce

7
that/ sinxdx = 1.
0

Endnotes

1. The integral is so named after the nineteenth-century German mathematician Georg
Friedrich Bernhard Riemann (1826-1866) who was the first to give a rigorous
formulation of the integral in 1854 in his habilitation.

2. So named after the French mathematician Jean-Gaston Darboux (1842-1917), who
introduced the idea in 1875.

3. In a strict technical sense the maximum value of f should be replaced with the
supremum of f on the interval (the least upper bound for f on the interval), while
the minimum value for f should be replaced with the infimum of f on the interval
(the greatest lower bound of f on the interval).
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Basic Properties of the Definite Integral: Part I

‘Ignorance of Axioms’, the Lecturer continued, ‘is a great drawback
in life. It wastes so much time to have to say them over and over again.’
— Lewis Carroll, Sylvie and Bruno Concluded

In this chapter we give some basic properties of the definite integral. Each prop-
erty to be given should seem obvious if the definite integral is interpreted geo-
metrically as an area under a curve.

The properties for the definite integral we give apply to any bounded,
piecewise continuous function on the closed interval [a,b]. According to
Theorem 1.1 on page 8 of Chapter 1, such functions are integrable in the Rie-
mann sense with the definite integral existing.

Property 1 — Additive Property
The additive property states that the definite integral of the sum of two inte-
grable functions is equal to the sum of the definite integrals of these functions.

b

b b
/ [f@) + g()] dx = / F) dx + / g(x) dx

As the proof of this property depends on the definition of the integral, it will
not be given here.

Property 2 — Homogeneous Property

The homogeneous property states that if all the function values are multiplied
by a constant k and then integrated, this is equal to the definite integral of the
original function multiplied by the constant k, namely

/abk-f(x)dx=k/abf(x)dx

20
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Once again the proof of this property depends on the definition of the definite
integral and is therefore omitted.

Property 3 — Linearity Property
The first two properties for the definite integral can be combined into a single
formula known as the linearity property. If k1, k> € R, then

b b b
/ 1 £() + kag(0)] dx = ki / £ dx + ks / g(x) dx

This property shows us that the definite integral of a sum is equal to the sum of
the definite integrals.

8 8
Example 2.1 If/ f(x)dx =11 and/ g(x)dx =7, find the value of
0 0

8
/0 2/ (x) + 5g(x)] dx.

Solution From the linearity property we can write

8 8 8

/ [2f(x) +5g(x)]dx =2/ f(x)dx—i—S/ g(x)dx

0 0 0
=2-114+5-7=57. >

Example 2.2 If f is an integrable function, use the linearity property to show
that

b b b
/[f(x)—g(x)]d)c:/ f(x)dx—/ g(x)dx.

Solution Writing f(x) —g(x) = f(x) + (=1)g(x), from the linearity
property (here ky = 1,k, = —1) we have
b b
[ e - genar = [ 1 + geas

b b
=/ f(x)dx—i—(—])/ g(x)dx

=/;b f(x)dx—/bg<x>dx,

a

as required to show. >
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Property 4 — Signed Property
If a function f is positive throughout the interval [a, b], then its definite integral
will also be positive. That is, if f(x) > 0 for all x € [a, b] then

b
/ f(x)dx >0

The proof of this property again depends on the definition of the definite integral
and is omitted.

Similarly, if a function g is negative throughout the interval [a, b], then its
definite integral will also be negative. That is, if g(x) < 0 for all x € [a, b]
then

b
/ g(x)dx <0

Proof Let f(x) > Oforall x € [a, b] and define g(x) = — f(x). Thus g(x) <
0 for all x € [a, b] since f(x) > O for all x € [a, b]. Now for the definite inte-
gral of g one has

/jg(x)dx:—/jf(x)dx <0,

b
since by the signed property / f(x)dx > 0, as required to prove. |
a

The signed property can be interpreted geometrically. For the case where
f(x) > 0 for all x € [a, b] the graph of the curve of f lies above the x-axis,
meaning the area of the region bounded by the curve and the x-axis between
x = a and x = b is positive (see Figure 2.1). The definite integral, representing
the area under the curve, will also be positive.

1

Example 2.3 Show that the definite integral f e " Inx dx is negative.
1

2
Solution Notingthate™ > Oforx € (1/2, 1) whilelnx < Oforx € (1/2,1),
for the product we have e ™ In x < 0 forx € (1/2, 1). So from the signed prop-
erty for the definite integral one has

1
/1 e *Inxdx <0.
2

Thus the definite integral is negative, as required to show. >
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’ S
S S S S S

a b

Figure 2.1. Graphical illustration of the signed property for the definite integral.

Exercises for Chapter 2

"X Practice questions

2 2
1. If/ f(x)dx = 7and / g(x) dx = 3, find the value of the following:
-1 -1
2 2
@ [ srwdr o [ (F0-g)ds

2
© [_ (/00 + 3g()

2. Without attempting to evaluate the integral, determine if the following
definite integrals are positive or negative:

2 1
(a) / x°(1—x?)%dx (b) f x(x—1)(x —2)dx
0 0
kg 3
(© / sin® x dx @ f [(x — D(x —2) —2]dx
0 0
2 dx
(6)/1 x(x—=3)—-2 ® 1 Inx—2
1
(2) cos’ x dx (h) / Inxdx
-3 :

3. The graph for the function f(x) = x — 1 is given below.
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) =x-1

Find
3 3 4
(@ fl fyde  ®) /2 2Wdx (© /2 F(0)dx

b
1
4. If / fx)dx =1- 5 where b > 1, find the value of the following
1

integrals:

3 6
@ /1 2f() + 1]dx (b) /1 [6/(x) — 4] dx

©) /14f(x)dx+/15f(x)dx+/16f(x)dx
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Some Basic Standard Forms

No one can be a good mathematician who cannot differentiate

acosx +b . . L .
arccos | ———— |, or show a little ingenuity in devices of
a-+bcosx

integration.
— G. H. Hardy

Integration is hard. Very hard. Compared to finding the derivative of a function
the process of integration is a complex and subtle affair. As was shown in
Chapter 1, every continuous function f on a closed interval [a, x] has a primi-
tive. Our job in this chapter is to establish some basic primitives for commonly
encountered functions that can be written in terms of familiar functions, such
as polynomials, roots, and the trigonometric, logarithmic, and exponential
functions.

Table 3.1 lists a number of basic elementary primitives. The list can be
obtained by simply differentiating each of the various functions and noting the
result. Many more primitives for other commonly encountered functions will
be given as we progress through the text, so the list given here should be thought
of as the simplest and most basic. Each of the eleven integrals listed in the table
needs to be known and represents the basic building blocks to be drawn upon
when we later attempt to find more difficult integrals by reducing them to a
known, standard form. For brevity, the arbitrary constant of integration in the
table has been omitted.

We now give a number of examples that make use of the integrals found
in Table 3.1. At times, in some of the integrals to be considered, the integrand
will need to be either expanded or factorised, or may first require a change
in form by exploiting some particular property of the function under consid-
eration. Extensive use of the linearity property for the integral will also be
made. In the first three examples to be considered, application of the first of the

25
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Table 3.1. Table of standard integrals. For brevity the
arbitrary constant of integration has been omitted.

Table of Standard integrals

1
1./x”dx= +1x"+1,n7é—1; x#0ifn <0
n

dx

2. =Inx, x>0

1
3./e“xdx= %, a#0

a
1
4. /cosaxdx = —sinax, a#0
a
. 1
5. | sinaxdx = ——cosax, a#0
a
5 1
6. | seccaxdx = —tanax, a #0
a

1
7./secaxtanax dx = —secax, a#0
a

dx 1 _/x
8./a2+—xz—;tan <Z), 61750

dx L1 /X
9. ﬁ = Sin (Z), Cl>0, |x| <a
zln)x—l—\/xz—az), 0O<a<x

=ln‘x+ \/xz-l-az‘

10/ dx
’ 2 —a2
1 / dx

) VxTtaz

integrals appearing in the table will be made. Known as the index law it applies
to a simple monomial term in x raised to a power n # —1.

Example 3.1 Find / 4x*dx.

Solution From the linearity property for the integral we can write

/4x4dx :4/x4dx.

Now from the index law a primitive is

1 1 4
4x*dx =4 —x*"TpCc=4. x5+ C ==x°+C.
/x X 4+1x + 5x+ Sx—i-
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As a simple check of the answer found, you should notice that

d (4 s 4
2 (2 =4
dx(Sx +C) X7,

the integrand of the integral, as expected. >
Example 3.2 Find / x%/xdx.
Solution We begin by first rewriting the integral as

/xzﬁdx = /xs/zdx.

Now on applying the index law, a primitive can be found. Here

2
/xzﬁdx:§x7/2+C. >

Example 3.3 Find / (4x3 +2x + 5) dx.
Solution We begin by applying the linearity law first. Doing so yields
/(4x3+2x+5)dx =4/x3dx+2/xdx+5/dx.
Now applying the index law to each of the integrals gives
[(4x3+2x+5)dx=x4+x2+5x+C. >

In future examples the linearity for the integral will be implicitly assumed,
allowing us to write down the primitive in a single step without having to split
up the integral.

Example 3.4 Find / (2x + 3)% dx.
Solution Expanding the term appearing in the integrand, we have
/(2x +3)dx = /(4x2 +12x + 9) dx.

Now applying the index law (where the linearity of the integral has been implic-
itly assumed) we have

/(2x+3)2dx:gx3+6x2+9x+c. >

1
Example 3.5 Evaluate [ (¥/x — V/x) dx.
0
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Solution Rewriting the integral as

/01 (¥/x = V/x) dx =/01 <x1/4—x1/2) dx,

on applying the index law to find a primitive for the integral together with the
second fundamental theorem of calculus, we have

[[@r-vmar=[fen-dor] <4222

4x* + 1
X

dx.

Example 3.6 Find /
Solution The rational function in the integrand can be simplified to

4
/4x LN /(4x + )dx
X

To find the primitive the index law is applied to the first term, while the second
entry in the table of standard integrals is applied to the second term. Thus

4x* + 1
/ abins dx =x*+Inx+C. >
X

1
Example 3.7 Find / ( 5 _sin(5x) + ) dx.
[

Solution Rewrite the integral as

/ (e —sin(5x) + \}_) dx = / (esx —sin(5x) + x_l/s) dx.

From the first, third, and fifth entries appearing in the table of standard integrals,
a primitive can be found. The result is

1 1 1 5
/ (6’ — sin(5x) + J_) dx = § * 4+ z cos(5x) + Zx4/5 +C. »

In the next example properties of the sine function will be used to help put
the integrand into a standard form before a primitive can be found.

Example 3.8 Find / sin(7x — 2) dx.

Solution Making use of the difference identity for the sine function, namely
sin(A — B) = sin Acos B — cos A sin B,

the sine term can be written as

sin(7x — 2) = sin7x cos 2 — cos 7x sin 2.
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Thus

/ sin(7x —2) dx / (sin7x cos 2 — cos 7x sin2) dx

:cos2/sin7xdx—sin2/cos7xdx

1 1
= —3 cos2cos7x — ﬁsin2sin7x + C.

Recognising that cos 7x cos 2 + sin 7x sin 2 = cos(7x — 2), the primitive may
be rewritten as

1
/sin(7x —2)dx = —5 cos(7x —2) + C. >

Example 3.8 suggests the following generalisations. If @, b € R, a # 0 then

1
/cos(ax 4+ b)dx = —sin(ax + b) + C
a

and

1
fsin(ax +b)dx = ——cos(ax +b)+ C
a

These results will be proved in the exercise set at the end of the chapter. A
similar result for the exponential function with an argument that is linear can
also be readily proved (see Exercise 6).

We now provide a few more examples that make use of some of the other
standard integrals listed in Table 3.1.

dx
11+ x2°

Example 3.9 Find /

Solution Writing the integral as

/ dx _/ dx
H+x2 ] (V112 422

from the eighth entry in the table of standard integrals one immediately has

/—dx L (—x )+C >
= an .
I1+x2 /11 V11
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dx

Example 3.10 Find / —_—.
1+ 16x2

Solution Factoring out a factor of 16 from the denominator one has

/ dx _ 1/ dx _ 1/‘ dx
1+16x2 16 %—{-xz 16 (%)2_‘_)(2’

which again from the eighth entry in the table of standard integrals gives

dx 1 1
" 4tn '@ C=-tan"'(4 C. >
/1—|—16x2 1o dtan T () + € = tan () +

Having a number of known primitives at hand allows a particularly profitable
interaction between Darboux sums considered in Chapter 1 and antidifferenti-
ation to be found.

1
VI—x2

(a) Show that f is increasing on the interval [0, %].
(b) Find the upper Darboux sum for f with respect to the partition

Example 3.11 Consider the function f(x) =

1 2 3 n
j)n - Oa ’ ) IR )
2n 2n 2n 2n

% of [0, %].

(c) Hence show that

1 1 1 T
lim + +~--+—)=—.
n—>00 («/4112 — 12 42 -22 4n2 — n2 6
Solution (a) As

fl(x) = ﬁ > 0 for x € [0, %]

we see f is an increasing function on the interval [0, %] as required to
show.

(b) Since f is increasing on [0, %], the maximum value of f on any particular
sub-interval is given by its end-point. So for the kth sub-interval in £,

since the end-point is x; = o we have
n

k 1 2n
M) = ) = 1 (52 ) = e
4n2
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So for the upper Darboux sum on the partition J, we have

U(f:Pn) = Z My (f) - (Xk = Xk—1)

k=1

kK k-1
_kz=:1 «/4n2—k2'(ﬂ_ 2n )
n

ZZL 2n

1
=1 2 NaAn? =k _I; Van? — k2

(c) Since f is bounded and continuous on [0, %] it is integrable on this interval
and

hm U(f;Pn) = /
V11— x2

As a primitive for the integral is known, which corresponds to the inverse

sine function, from the second fundamental theorem of calculus we have

1

D
[sm lx]g =5

[

Hence

1 1
lim Y ———— = lim + +
Hoo,; Van2 k2 n—oe (¢4n2 — 12 V4n2-22

+ 1 .
a2 —n2) 6

as required to show.

Exercises for Chapter 3

Y Warm-ups
1. Find / cos(ax)dx if (a)a = 0, and (b) a # 0.

"I Practice questions

2. Using the index law, find the following:

(a) /x3dx (b) /xﬁdx
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dx
© | —

3x°

(e)/x + 3x2 +1
(2) /x(x—6)dx
1) /(x—6)(x—3)dx

(k) / (x +3)%dx

. Evaluate the following:
1
(a) / Vx(x? —4)dx
0
2
(©) / x(x2 —1)dx
-2

1
(e)fo(f/_—i‘/f)dx

. Find the following:

©) /(4(34" —2sin2x) dx

(e) / sin(3x + 2) dx

(g)/ sec +cos(;>] dx

1) / (3tan x sec x + sin3x) dx

(d) /(3x2—2x+ 1) dx
(f) /(2x—1)2dx

(h)ff/?(x+1)dx

(h)/d—x
V1—4x2
) /‘\/l—9xz+l+9x2

dx
(14 9x2)+/1 —9x2
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. Evaluate the following:

1 T
(a) / (x + D2(x®> + 1) dx (b) / cos3x dx
0 0
© [ & !
) 3% (d) /0 cos(2x + 5) dx
> dx 314 7+ dmx?
© [ s o [
3 dx 7 dx
] h
(g)/o o0 ( )/0 T ox2

. If a, b € R such that a # 0, prove the following extensions for arguments
that are linear:

1
(a) /eax+b d.x — _eax+b + C
a
1
(b) /cos(ax 4+ b)dx = —sin(ax + b) + C
a

1
(¢) / sin(ax + b)dx = ——cos(ax + b) + C
a

() Show that d ! o
. (a) Show tha =— )
(Bx 4+ 1)3 Bx + 1)*
1
d
(b) Hence evaluate /0 ﬁ.

. (a) Show that

dx 2

(b) Hence ﬁnd/ («/tanx + \/cotx) dx.

I(M+@)

. (a) Using the binomial theorem or otherwise, expand (x — 1)°.
2

(b) Hence evaluate / (x — 1)%dx.
1
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10.

11.

12.

13.

14.

15.

How to Integrate It

By making use of trigonometric identities, find

@) / sin x ®) / cos x
a
1 — sin? x 1 —cos? x
X d X
Evaluate/ t3 dt and verify that —/ 2dt = x3.
1 dx Ji

Let f(x) = /x(et + cost) dt.

(a) Verify by direct integration and differentiation that f’(x) = e* +
COS X.

(b) Does the result found in (a) agree with the result that would be found
by applying the first fundamental theorem of calculus to the integral
directly?

Un—1
Ifug = landu, = / 1- x)4_" dx forn = 1,2, 3, find the value of
Uus. 0
Suppose that f(x) = sinx.

(a) Show that f"is increasing on the interval [0, 5
(b) Find the upper Darboux sum for f with respect to the partition

2
Po=10, 2 M0 orp0, 7).
2n 2n 2n

(c) Hence show that

N B 1 % . (NT 2
lim — sm(—) +sin| — +---+51n<—) = —.
n—>ocopn 2n 2n 2n b4
1
1+ x2
(a) Show that f is increasing on the interval [0, 1].
(b) Find the upper Darboux sum for f with respect to the partition

2 —1
z .t ,n}of[o,l].
n n n

Suppose that f(x) =

1
<(Pn = {0»_5
n

(c) Hence show that

y n_ Py b4
im et ——— ) ==
n—oco\n? +12  n? 422 n? + n? 4
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1
16. Suppose that f(x) = —.
X
(a) Show that f is decreasing on the interval [1, 2].
(b) Find the lower Darboux sum for f with respect to the partition

I nt2 2
°,,=%’1n+ nE —"} of [1,2].
n

s P
n n n

(c) Hence show that

2 dx i 1 N 1 ey 1 N 1
pe— 1m e —_— .
1 X nb»oo\n+1 n+2 2n—1 2n

(d) Show that for all integers n > 1

L U U U S TS B
2 3 4 2n—1 2n n+1 n+2
1 1
et T T
P . 1 1 1
(e) Hence deduce that the infinite series 1 — 3 + 371 + --- has a sum

equal to In 2.
I Extension questions and Challenge problems

17. Suppose f is a continuous function for all real x that satisfies the equation
12 16

foxf(’)d’Z—/lxt4f(t)dt+x?+%+k,

where k is a constant. Find an explicit formula for f(x) and find the value
of the constant k.
18. A special function known as the digamma function vy (x) is defined by
1 1— lx_l
v(x) =—y —I—/ —dt.
o 1

—1

Here y is a mathematical constant known as the Euler—Mascheroni con-
stant (y = 0.577215664 .. .). Show that the digamma function satisfies the
following functional relation:

v(x+1) =1/f(x)+§, x#0,—1,-2,...



4
Basic Properties of the Definite Integral: Part II

I could never resist the challenge of a definite integral.
— G. H. Hardy

Now that we know how to find a number of basic integrals for several com-
monly encountered functions, in this chapter we continue our discussion of
basic properties for the definite integral.

Following on from where we left off in Chapter 2, the first property given
here is labelled Property 5.

Property 5 — Comparison Property I

If one function is larger than or equal to another function throughout the interval
[a, b], then its definite integral will also be larger. That is, if f(x) > g(x) for
all x € [a, b] then

[abf<x>dx>/abg(x)dx

This property shows us that integration preserves inequalities between
functions.

Proof By the assumption f(x) > g(x), we have f(x) —g(x) = 0. So from
the signed property, we have

b
/ () — g(x)] dx > 0.

From the linearity property we can write this as
b b b b
/ f(x)dx — / gx)dx >0 or / f(x)dx > / g(x)dx,
a a a a
as required to prove. |

36
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o~
=

Figure 4.1. Graphical illustration of the comparison property for the definite integral.

Once again this property can be interpreted geometrically. If f(x) > g(x) >
0, then the property says that the graph of the curve of g lies beneath the graph
of the curve of f, meaning the area of the region bounded by the graph of
the curve g and the x-axis between x = a and x = b will be less than the
corresponding area of the region bounded by the graph of the curve f and the
x-axis between x = a and x = b (see Figure 4.1).

sin x
Example 4.1 Given that —— > cos x for (0, Z), use this to show that
X

7 si 1
/ mx dx > —.
F4 X 2

6

sin x

Solution Let f(x) = t cosx for

and g(x) = cosx. Since

i . .
0<x< 7 from the first comparison property for definite integrals we have

T T

2 sinx 2 .
dx > cosx dx = sinx

pi4 X bu

6

=1— - =

1
2 2

[ CISE]
—

6
as required to show. >
Property 6 — Comparison Property I1

The first comparison property can be extended to a comparison property
between three (or more) functions. If g(x) < f(x) < h(x) for all x € [a, b],



38 How to Integrate It

then

/abg(x)dx </abf<x)dx</;bh(x>dx

Proof By the assumption, as f(x) > g(x), from the first comparison property

we have
b b
/ F()dx > / g(x) dox.

Also from the assumption, since 2(x) > f(x), again from the first comparison

property we have
b b
/ h(x)dx > / f(x)dx.
a a

On combining these two results the desired result follows. ]

% tanx
Example 4.2 Show that / <32
Solution Since tan x is an increasing function on the interval [%, 7] we have

1
tan (%) < tanx < tan (%) or ﬁ <tanx < V3.

As x > 0 for all x € [n/6, /3], on dividing the inequality by x we have

1 tan x 1 T b4
— < <V3--, for —<x<=.
X X X 6

[a—y

where k = +/3 or —. Note that

V3
2 %d b4 b4
[és(x)dx—k/s T—k[lnx] =k[1n(§)—1n(€>]=kln2.
Setting g(x) L] d h(x)=+3-
ettin X) = —-+-— an X) =

gg 5 x
property, namely

/fg(x)dx < /ab F)dx < /abh(x)dx,

1 3 dx ?tanx
_ =< f/
ﬁ[g X /1 X

6

Now let s(x) =

><|a~ S

[ EENE]

, from the second comparison

><I»—‘

we have
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or

kR’
g/ anx dx < V/31n2,
X

_
S|:
D o

6

as required to show. >

Property 7 — Absolute Value Property

The absolute value property states that if f is integrable then | | is also inte-
grable, and the absolute value of the definite integral of the function f is less
than or equal to the definite integral of the absolute value of this function,
namely

/ab f(x)dx

Proof From the properties of the absolute value we have —| f(x)| < f(x) <
| f(x)| for all x € [a, b]. Since f is integrable, | /| is also integrable as it is
bounded and piecewise continuous. Therefore, on applying the second com-
parison property to the inequality one has

b
</ |£()| dx

b b b
—[ |f(x>|dx</ f(x)dx</ ()] dox.

Note the negative sign in the left integral can be moved outside the integral sign
using the homogeneous property. Also, from properties of the absolute value,
since —b < a < b can be written as |a| < b, then

/abf(x)dx <[ab|f(x)|dx,

as required to prove. ]

3
2

T
Example 4.3 Show that / Jxsinxdx < w2,
0

W N

Solution First we note that as 4/x sinx > 0 for x € [0, 7], the first of the com-
3

parison properties for definite integrals gives Jx sinx dx > 0. Thus
0

T
f Jxsinx dx
0

4
/ Jxsinxdx =
0

Next, on applying the absolute value property to the integral we have

T g T
‘/ X sinx dx </ |V/x sinx| dx =/ Vx| sinx| dx.
0 0 0
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Now since | sin x | < 1 for all x, one has /x | sin x| < 4/x for x € [0, 7]. So
from the first comparison property one has

T . T 2 37" 2 3
/ Jxsinx dx </ Jxdx = |:—x2i| = -2,
0 0 3 0 3
™ . 2 3 .
Thus ﬁsmx < §n2, as required to show. >
0

Property 8 — Interchanging the Limits of Integration Property
This property states that if the limits of integration in the definite integral are
interchanged then the sign of the definite integral also changes.

/abf(x)dx =—/baf(x)dx

Proof While the proof of this property depends on the formal definition for the
integral, we can at least give a justification that shows the result is true. If f is

continuous the integral / f(x) dx exists and has a primitive given by F(x).

From the second fundamental theorem of calculus we have

b
/ F(x)dx = F(b) — F(a),
and
- /b F(x) dx = —(F(a) — F(b)) = F(b) — F(a).

clearly showing the two results are the same. |

Property 9 — Equal Limits of Integration Property

The equal limits of integration property states that if the lower and upper limits
of integration of the definite integral are the same, the definite integral will be
equal to zero.

/aaf(x)dx:O

Proof If the limits of integration are interchanged, from Property 8 we have

f: f(X)dx=—/aa fx) d.

or

Z/I;af(x)dx=0,

from which the assertion follows. [ |
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The next result is an important property that relates definite integrals over dif-
ferent intervals.

Property 10 — Additivity with Respect to the Interval of Integration
Property
If ¢ € R is any number that is either inside or outside the interval [a, b], then

/ab f(x)dx = [ f(x)dx—}—/cb f(x)dx

This property tells one how to integrate over adjacent intervals [a, ¢] and [c, b],
where ¢ need not be between a and b.

Proof While the proof of this property depends on the formal definition for the
integral, we can at least give a justification that shows the result is true. If f
is continuous the integral | f(x) dx exists and has a primitive given by F(x).
From the second fundamental theorem of calculus we have

b
/ f(x)dx = F(b) — F(a).

Also

c b
/ f(x)dx +/ f(x)dx = (F(c) — F(a)) + (F(b) — F(c))
= F(b) — F(a),
and we see the two results are the same. [ |

Geometrically, for a < ¢ < b this property can be understood as follows. If
we consider that the region 2 between the curve y = f(x) and the x-axis from
X = ato x = b splits into two non-overlapping regions between the curve and
the x-axis, the first, 21, from x = a to x = ¢, and the second, 2,, from x = ¢
to x = b, then the (signed) area of 2 is equal to the sum of the (signed) areas
of 2; and Q5. This is shown in Figure 4.2.

Example 4.4 If fos f(x)dx = 16 and f04 f(x)dx = 12, find the value of
[7 f(x)dx.

Solution From the additivity property with respect to the interval of integration
we can write

/Osf(x)dx =/(;4f(x)dx+/;5f(x)dx.
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=

T
a Cc

S

Figure 4.2. Graphical illustration of the additivity property with respect to the
interval of integration for the definite integral.

So

5 5 4
dx = dx — dx = — = 4.
Af(x) x /Of(x) x /Of(x) A= 16—12=4 »

Example 4.5 Consider the piecewise continuous function

+
=
N
=

N
w

X
flx)y=43
5

5
Evaluate [ f(x)dx.
0

Solution From the additivity property with respect to the interval of integration
we can write

5 3 5
dx = d d
/Of(x) x /()f(x) x+/3 F(x) dx

3 X 5

2/0 (§+1) dx+/3(5—x)dx
X2 3 xz 5

Z[Zﬂ}ﬁ[”‘fl
3 25 9 13
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a b
Figure 4.3. Graphical illustration of the bounded property for the definite integral.

Property 11 — Bounded Property
If m and M are real numbers such that m < f(x) < M for all x € [a, b], then

b
m(b—a) </ £ dx < M(b —a)

This property tells us that if m and M are the smallest and largest values of the
function f in the interval [a, b], respectively, then the definite integral of f is
bounded between the product of these two numbers with the size of the interval
width (b — a).

Proof Applying the second of the comparison properties to the assumption,
namely tom < f(x) < M forall x € [a, b], one has

b b b
m/ dx</ f(x)dng/ dx
a a a

b
S b= < [ f@dr < Mb-a).
a
as required to prove. ]

Let us interpret the property geometrically. If f(x) > O then the property
says that, since the graph of the curve of f lies between the lines y = m and
y = M ontheinterval [a, b], the area of the region between the curve y = f(x)
and the x-axis is greater than the area of the rectangle of height m but less than
the area of the rectangle of height M (see Figure 4.3).

T

2 d
Example 4.6 Suppose that / al
%

2+3cosx’
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(a) Show that f(x) = 3

1 . . . . .
———— is an increasing function on the interval
+ 3cosx

T T
(5.3

T 4
(b) Hence deduce that z < / @ < i
21 z 24+ 3cosx 12

3sinx

Solution (a) Since f'(x) = 2 3cos )
cos X

as sinx > 0 for all x € [5, 3],
we have
3sinx b4 T

0, for—<x<—.

S0 = (2 + 3 cos x)? ~ 3 2

Thus f is an increasing function on the interval [, 7], as required to show.
(b) As f is an increasing function on [, 7] the least value of f occurs at the
end-point, x = /3. Thus
b4 1 2
n=t(3) = e = 7
+3cos(3)

while the greatest value of f occurs at the opposite end-point of x = /2.
Thus

1 1
M=1(3)= 55em 7

So from the bounded property for definite integrals, namely

b
m(b —a) g/ f(x)dx < M(b —a),

we have
2/ 7 /75 dx 1l /7 =«
e ]
7\2 3 z 2+43cosx 2\2 3
or
b4 [75 dx T
— < — < —,
21 T 2+ 3cosx 12
as required to show. >

As a final comment, it should be clear the variable used in a definite inte-
gral is of no consequence. For example, the following definite integrals are all
equivalent:

/abf(x)dx=[abf(u)du=/abf(t)dt=/abf(y)dy=,__
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()

Figure 4.4. The definite integral and signed area.

As such, the variable that appears in a definite integral is often referred to as a
dummy variable of integration since it plays no part in the final answer found.

§ Signed Area

The linearity property of the integral together with the additivity with respect to
the interval of integration property allows one to interpret more general definite
integrals in terms of areas. If a function f is integrable on an interval [a, b], the
definite integral

Leﬂﬂdx

is interpreted as the area under the graph of f and the x-axis from a to b if
f(x) > 0forall x € [a,b]. An obvious question to ask is how to interpret the
definite integral if the sign of f switches at a finite number of points within the
interval. For example, suppose a < ¢ < b suchthat f(x) > Owhena < x <c¢
and f(x) < Owhenc < x < b with f(c) = 0asis shown in Figure 4.4. In this
case, how is the definite integral on the interval [a, b] to be interpreted?

From the geometric interpretation of the definite integral, the definite
integral

[ rewar=a..

gives the area of the region 24 beneath the graph of the function f and the x-
axis bounded between the lines x = a and x = c. Also, as f(x) < Oon [c, D],
then — f(x) > O on this interval, and so from the geometric interpretation for
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J(x)

Figure 4.5. Shaded region corresponding to the signed area.

the definite integral we have

[ﬂﬁﬂmwx=—[bﬂde

The definite integral thus gives the area of the region above the x-axis and
below the graph of — f bounded by the lines x = ¢ and x = b. But this is just
the reflection about the x-axis of the region below the x-axis and above the
graph of f bounded between the lines x = ¢ and x = b. Denoting the area of
this region by ©2_, we have

[%ﬂ@dx=—9ﬂ

and it follows that

b
/ f(x)dx =Q4 —Q_.
a
This quantity is known as the signed area under the graph of f from a to b.

Example 4.7 Calculate the area of the region bounded by the function f(x) =
x2 — 4x + 3, the x-axis, and the lines x = 0 and x = 3.

Solution Since f(x) = (x — 1)(x — 3) we see the graph of the function cuts
the x-axis at x = 1 and x = 3. The signed area of the required region is shown
shaded in Figure 4.5.

The area # of the required region therefore corresponds to the following signed
area:

1 3
eA:/()cz—4x+3)alx—[()cz—4x—+—3)dx.
0 1
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Evaluating each of these integrals, we have

x3 ! x3 3
A:[——2x2+3x] —|:——2x2+3xi|
3 0 3 1

oo (sG]S

Exercises for Chapter 4

X Practice questions
3 0 5
1. (a) If / f(x)dx = 3,/ f(x)dx = -7, and/ f(x)dx =1, find
0 —1 3

5
the value of/ f(x)dx.
-1

2

1 2
(b) If/ g(x)dx = -89 and/ g(x)dx = 87, ﬁnd/ gx)dx.
0 0 1

pe
2. Suppose F : [0,12] — R is defined by F(x) = / f(t)dt where f isa
0
piecewise continuous function given by

4t
4-=. 0

f@) = 3

t—10, 6<1<12.

N

r<6

(a) Calculate the value of F(6) and F(12).
(b) Find all values of x for which F(x) = 0.
(c) Find all stationary points for F and determine their nature.

3. (a) Calculate the area of the region bounded by the function f(x) = x? —
5x + 6, the x-axis, and the lines x = 1 and x = 3.
(b) Calculate the area of the region bounded by the function f(x) = x3 —
6x2 + 2x + 2, the x-axis, and the lines x = 0 and x = 2.
(c) Calculate the area of the region bounded by the function f(x) = x2 —
6x + 8, the x-axis, and the lines x = 0 and x = 5.

. ) .
4. Given that 1 — x2 < e ™ for 0 < x < 1, use this result to show that

1
/ e~ dx > z
0 3

5. Suppose f is a function that is continuous everywhere such that f(1) = 8

and[1 f@)dr =3.
0
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10.

11.

12.
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Let g(x) = %/Ox(x —0)%f(t)dt.

X X
(a) Show that g’(x) =x/ f(t)dt—/ tf(t)dt.
0 0
(b) Hence find values for g”(1) and g”’(1).

2 .
. Jordan’s inequality states that —x < sinx < x for [0, T].
b4

o . 7 sinx T
Use this inequality to show that 1 < / dx < 7
0 X

. Each of the following statements is either true or false. Answer each state-

ment with either TRUE or FALSE and give a brief reason for your answer.

2 b4
(a) / e dx =0 (b) [ cos*xdx >0
—2 0
T L dx L dx
c sin® x —cos® x)dx =0 d [ /
()A ( ) (d) o) e

. (a) For 0 < x < 1, starting with x(1 4+ x) > 0, show that

1 1
< .
JT+x  J1-x2

1

dx b4
b) Use the inequality given in (a) to show that < —.
(b) quality g (a) A T2

1 1 5
. If/‘0 f(x)a’x:&/_1 f(x)dx =3, and /0 f(x)dx =13, find the

5
value of / f(x)dx.
-1
If / is a bounded continuous function such that | /(x)| < M for all x in the

b
interval [a, b], show that / f(x)dx| < M(b—a). Here M is a positive
a

constant.

For 0 < x < 1, starting with x(1 — x) > 0, by applying the first compari-
son property to a suitable inequality, show that In(1 + x) < tan~!(1 + x?)
for0 <x < 1.

1
. . T dx
If n is a positive integer such that n > 2, show that — < / —_— <
4 0 1 + xn
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2
13. Find all continuous functions ¢(x) that satisfy ¢(x) = x + / o(u)du.
0

14. (a) Evaluate f_22 @(x) dx if (x) = max{1, x2}. Here max{ f, g} denotes
the maximum of the two functions f and g, which is the function whose
value at any x is the larger of f(x) and g(x).
(b) Evaluate f_31 x¢(x) dx if p(x) = min{1, x2}. Here min{ f, g} denotes
the minimum of the two functions f and g, which is the function whose
value at any x is the smaller of f(x) and g(x).

1 1, u>
15. Evaluate / F(sinmx)dx if F(u) =
0 0, u<

W= =

16. Using properties for the definite integral, prove the following bounds for
the given definite integral:
72

d -
(a) / xsinx dx < 3

2w 2w
(b) '/ f(x)sin(2x) dx /0 | f(x)|dx

17. The graph of the derivative of f, thatis f’, is shown in the figure below.

y

f/

If £(0) =5, find the value of f(6).
sec x + tanx

18. Suppose that f : [0, /2] — Ris given by f(x) = ———— .
2secx +3tanx

(a) Show that f is a decreasing function for 0 < x < %

(V2 -1) </Z sec x + tan x
4 0

x <
2secx + 3tanx 8

(b) Hence show that
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19. Using properties for the definite integral, establish the following integral
bounds:

| —

1 X
a < dx <
) 372 ”/0 1+ x2 3

(b) 1</2 «/sinxdxé%
0

1
3 2 1-— 3
(c) —</ \/ xdx £
8 1+x 4
() / Y <]
x\—
10f «/l—i-x 10
1/1 1 e? dx 1 1
===« dx < - ——
(6)4(6 62) /e x21n? x ST

<2- \/_and[ «/1+—X - V2.

—> —
V1 +x3 /1 x+/1T+x

" Extension questions and Challenge problems

20. (a) Show that [
1 V1 +x3

(b) Hence deduce that 2 — V2> f
1

4w b4

21. If I = / e'(sin®t 4+ cos®t)dt and J = / e’ (sin® ¢ + cos® 1) dt,
0 0
find the value of 1/J.

22. Assume the following result: fab f(x)ydx = [ f(x)dx + fcb f(x)dx,
where f is a continuous function on some interval / such thata < b and ¢
is any point inside the interval (a, b), that is, ¢ € (a, b).
Show that this result is true for any choice in ¢ € I by extending the above
result to any choice in c that is either inside, on, or outside of the interval
(a, b). Here one needs to consider four separate cases: ¢ = a,¢ = b,c < a,
and b < c.

23. In this question increasingly ‘sharper’ polynomial bounds (inequalities)
will be found for the sine and cosine functions on the interval 0 < x < 1
by repeated application of the second of the comparison properties.

(a) Start with the well-known result of 0 < cost < 1 for ¢ € [0, x] such
that x € [0, 1].
By applying the second of the comparison properties for definite inte-
grals to the above inequality, show that

0<sinx <x, x€][0,1].
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(b) From the inequality in (a), writing this as 0 < sin¢ < ¢ for ¢ € [0, x]
such that x € [0, 1], on applying once more the second of the compari-
son properties for definite integrals to the inequality, show that

x2

1—§<cosx<1, x €[0,1].
(2
(c) From the inequality in (b), writing this as 1 — 1 <cost < 1fort e
[0, x] such that x € [0, 1], on applying for the third time the second of
the comparison properties for definite integrals to the inequality, show
that

X3

x—? <sinx < x, x €[0,1].
/3
(d) From the inequality in (c), writing this as ¢ — ol <sint <t fort e
[0, x] such that x € [0, 1], on applying for the fourth time the second of
the comparison properties for definite integrals to the inequality, show
that

x?2 x%  x*

I—Egcosxgl—a—i—m, x €10,1].

Note that we may continue to repeat the above process as many times
as we wish. In doing so, increasingly sharper and sharper polynomial
bounds for the sine and cosine functions on the interval [0, 1] will be
found.

24. Let f and g be two continuous bounded functions on some interval [a, b]
such thatfab | f(x) — g(x)| dx = 0. Show thatfab | f(x) — g(x)|2 dx = 0.

25. Find all continuous positive functions f that are bounded on the interval
0 < x < 1 such that

1 1 1
/0f(x)dx:l,/oxf(x)dx:a,/oxzf(x)dxzaz.
Here @ € R.

26. Suppose that f and g are two continuous bounded functions on [a, b].

(a) Prove the Cauchy—Schwarz inequality'

b 2 b b
(f f(x)g(x)dx) < / F20x) dx - / ¢2(x) dx.

Hint: Consider the function 2(x) = (f(x) + Ag(x))? where A € R.
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(b) What is the condition for equality to hold?
1 2 1
(¢) Hence show that (/ f(x) dx) < / f2(x)dx.
0 0

27. In this question the following inequality involving the tangent function will
be proved:

dx —

T —2x

Xtanx >

, forx e (0,2).
We will have a need for this inequality in a later chapter.

(a) Show the inequality is obviously true for 0 < x < Z. So we need only

. L r
prove the inequality is true for x € (7, 7).

(b) By performing the change of variable x + 7 — x, show that under this
change the inequality becomes
-2
tanx < M, for x € (0, %).
T —4x
x(m —2x)

(c) Letg(x) =
T —4x
(1) Show that g(0) = 0.
(ii) Show that g’(x) — g2(x) —1 =

x(m —=2x)(2x% —wx + 4)

(r — 4x)2 '

(iii) Let h(x) = 2x? — wx + 4. By showing that /& has an absolute

minimum at x = 7, use this to conclude that (x) > 0 for all
x €(0,%2).

(iv) Hence deduce that g’(x) > 1 4+ g2(x) for x € (0, Z).

X / t

(d) Show that/o #:72)0) dt = tan"!(g(x)).

(e) By applying the inequality found in (c)(iv) to the integral given in (d),
using the first comparison property for the definite integral, show that
tan~!(g(x)) > x for x € (0, Z).

X—7

4
(f) Hence deduce that x tan x >
T —2x

for x € (0, %).

Endnote

1. The inequality is named after the French mathematician Augustin-Louis Cauchy
(1789-1857) and the German mathematician Karl Hermann Amandus Schwarz
(1843-1921).
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Standard Forms

As an inverse operation, [integration] requires a great deal of pattern-

recognition skill and experience.
— Jonathan Borwein and Keith Devlin, The Computer as Crucible:
An Introduction to Experimental Mathematics

In this chapter we will begin to extend those ideas first introduced in Chapter 3
for finding primitives of functions that while initially may not be in standard
form can be brought into such a form through either manipulation of the
integrand or by making use of standard identities for the function under con-
sideration. In all cases we only consider integrals whose primitive can be found
in terms of familiar functions such as polynomials, roots, the trigonometric
functions and their inverses, and the logarithmic and exponential functions.

Function which can be written in this way are said to be elementary. An
1

2

elementary function is one built up from polynomial and rational functions,
exponential, logarithmic, and the trigonometric functions and their inverses,
and obtained by addition, multiplication, division, root extraction, and the
operation of repeated composition. Finding an elementary primitive means the
integral has been found in elementary terms. For most elementary functions, it
is rare to find a primitive in terms of elementary functions. For example, there
is no elementary function F such that F'(x) = e*” for all x.3

In this chapter we will confine our attention to those cases where elementary
primitives for the elementary functions can be found. And while the examples
and problems considered here may give the impression an elementary primitive
for any elementary function that is continuous and bounded on some closed
interval can always be found, it is worth keeping in mind that in general this is
very far from being the case.

The general approach to finding an integral in elementary terms largely con-
sists of trying to reduce the integral to a well-known form for which a primitive

53
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is known. The list of primitives that we take as being known are those given in
Table 3.1 on page 26 of Chapter 3. As primitives for a larger class of functions
are slowly found, these will be added to our ever-expanding list of ‘standard’
integrals.

We commence by extending the list of standard integrals we gave in
Table 3.1. For the second of the integrals appearing in the table, namely

d
/—x:lnx—i—C,
x

it is defined for all positive values of x, but can be readily extended to all real
x other than x = 0 as follows. Suppose that x is negative. Then —x will be

positive and so In(—x) is defined. Also, as

d — 1

—In(—x) = — = —,
—Xx

dx

so that when x is negative

/d_x =In(—x), x <O.
X

One can of course combine the two results and write
dx
/— =In(£x) =In|x|, x #O0,
X

a result that holds for all real x other than x = 0, with the ambiguous sign in
the argument of the natural logarithmic function chosen so that -x is positive.
An important extension of the logarithmic result is the following. Recalling

J'(x)
fx)’

d
7y () =

it is immediate that

S'x)
AS)

The definite integral for the tangent and cotangent functions can now be
readily found. For the tangent function we have

sin x —sin x
/tanxdx:/ dx:—/ dx,
cos X coS X

/tanxdx = —In|cosx| + C

dx=In|f(x)|+C

or
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Similarly, for the cotangent function we have
cos X
/cotxdxz[ —dx,
sin x

[cotxdx =In|sinx| + C

or

We now give a number of examples where either manipulation of the inte-
grand or making use of known identities can reduce an integral into standard
form before being readily found.

dx.

Example 5.1 Find /

x—3

Solution Notice in the integrand that the numerator is almost identical to the
denominator, except the constant term of negative three in the numerator is
missing. We can therefore add a term of three followed by subtracting it out.
Doing so produces

/‘ /(x 3)+3 =/x_3dx+/ 3 dx
x—3 x—3 x—3 x—3

=/dx+3[—x3=x+3ln|x—3|+c. >
x_

2
dx.

Example 5.2 Find / al
1+ x2

Solution Again note that the numerator of the integrand is almost the same
as the form of the denominator, except for the missing constant term of one.
Manipulating the integrand we have

/ /(1+x2)—1 /dx_/
1+x2 14+ x2 14+ x2

=x—tan 'x 4+ C. >

Example 5.3 Find / a® dx where a is a constant such thata > 0 and a # 1.

Solution We begin by noting that as the variable x appears in the index, the
normal power rule does not apply. From properties of the exponential function
one can write

X
a = eln(a ): exlna.
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So

1 a*
/axdx=/exm“dx=—eXI““+C=—+C. >
Ina Ina
Integrals containing trigonometric functions have plenty of scope for simpli-
fication, given the many identities that exist for these functions. To demonstrate
this, we consider three examples.
sin? x

Example 5.4 Find / _—
1+ cosx

Solution Recalling sin? x = 1 — cos? x, we are able to rewrite the integrand

as
/‘ sin? x dx:/ l—coszxdx: (1 —cos x)(1 + cos x) dx
1 + cosx 1+ cosx 1 + cosx
=/(1—cosx)dx=x—sinx+C. >

(sinx + cos x)?

Example 5.5 Find -
1 + sin2x

Solution In the denominator of the integrand, rewriting sin? x + cos? x for 1
and 2 sin x cos x for sin 2x, we have
(sin x + cos x)3 (sin x + cos x)3

- x = — - dx
1 + sin2x (sin® x 4 cos? x) + 2sinx cos x

. 3

= —cosx + sinx + C. >

For our final example involving only trigonometric functions in the inte-
grand, the angle sum identity for the tangent function will be used in a clever
way.

Example 5.6 Find / tan 2x tan 3x tan 5x dx.

Solution From the angle sum identity for the tangent function, we can write

tan2x + tan 3x

tan5x = tan(2x +3x) = —————— .
an5x = tan(2x + 3x) 1 — tan 2x tan 3x
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giving

tan 5x — tan 2x tan 3x tan 5x = tan 2x + tan 3x,
or

tan 2x tan 3x tan 5x = tan 5x — tan 3x — tan 2x.
Thus

/ tan 2x tan 3x tan 5x dx = /(tan 5x —tan3x — tan 2x) dx

:/tanSxdx—/tanSxdx—/tan2xdx

1 1
= ——1In|cos 5x —1In|cos3x
5 In Jeos Sx| + = Incos 3x|
1
+§ln|0052x|+C. >

As our final example we show how it is possible to find an integral through
the clever manipulation of the integrand.

e* +sinx +4cosx + 3
e* +5sinx +3cosx + 6

Example 5.7 Find /

e’ +sinx +4cosx +3

e* + 5sinx +3cosx + 6
The presence of an exponential, and sine and cosine terms in both the denom-

Solution Let I = /

inator and numerator of the integrand leads one to suspect it may be possible
to write the numerator of the integrand as the derivative of the denominator.
Attempting to do so, we have

I:/ex+5cosx—3sinx+(—cosx+4sinx+3) dx
e* + 5sinx +3cosx 4+ 6
_ e* 4+ 5cosx —3sinx 4sinx —cosx + 3
_/ex+55inx+3cosx+6 +/ex+55inx+3cosx+6
4sinx —cosx + 3
e* + 5sinx +3cosx 4+ 6

=ln|ex+5sinx+3005x+6|+/

Initially, this does not have seem to have taken us very far, but do not despair
just yet. Next, returning to the original integral, if we rewrite the numerator so
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the term from the denominator appears, one has

7 [e"+5sinx+3cosx+6+(—4sinx+cosx—3)d
= X
e* +5sinx +3cosx + 6

4sinx —cosx + 3
= [ dx — . dx
eX + 5sinx +3cosx + 6

/‘ 4sinx —cosx + 3
= X —
e* +5sinx +3cosx + 6

dx.

Adding the two results for I together, the integrals appearing in each expression
cancel out and we are left with

I+1=2=x+Inl|e* 4+ 5sinx +3cosx + 6|+ C,

or
X i 4 3 1
/ ¢ +Slflx+ cosx + x = —1Inle* 4+ 5sinx + 3cos x + 6]
e* 4+ 5sinx 4+ 3cosx 4+ 6 2
X
—+C. >
+5+
Exercises for Chapter 5
" Warm-ups

1. Find / X Sin x COs X tan x cosec x sec x cot x dx.

X Practice questions

2. By either manipulating the integrand or employing identities, find the
following integrals.

()/ ¥
V) xys ™
sinx — cos x
© / V2V3ﬁdx @ /cosx—i—sinxdx
© /x2+x— () /(tan_1x+tan_1 %) dx, x >0

(2) / sin® x dx (h) /tan(x — 5)tan(x + 5) tan2x dx
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@) /21” dx G) /0032 [tan™" (sin(cot™" x))] dx
x6—1 / sin2x + sin4x — sin 6x
1
(k)/ X — dx @ cos2x + cos4x + cos6x + 1 x
(m) / sin3x cos2x dx (n) / sin® x cos® x dx
x3=3x24+x-3 sm(x—2)
© [ O
()] /(cotx —tan x)? dx / [/ 1 d
(r) x x4+ . X
tan x — tan 2 x%—1
d - - -
()/1+tan2tanx o (t)/x4+x3_x_1dx
3. Evaluate
1 1
(a) / x" dx (b) / ¥ dx
0 0
t Ly 7
©) /8 anx + (d) /lzsec 3x(sec3x + tan3x) dx
1—tanx tanx 0
1 3 In2 ex 2x 3x
(e)/ al dx (f)/ —l—e te —dx
0o X — 2
) /‘2 dx J
X
1 V/x+14+V/x—1
4. Find
(a) / Sec X cosec X cot x dx (b) / sin x cos x tan x dx

d
5. (a) By finding I [tan_1 (\/ 2+ x2)], use this to evaluate
X

1
/ al dx
0o B+ x2)v/2+ x2
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d X
(b) By finding — [tan_1 (—)j|, use this to evaluate
Y £ dx V2 + x2

/1 dx

dx.
o (1+x2)v2+ x2
6. (a) If « > O such thata # l,ﬁnd/a"e" dx.

1
(b) Ifa > 0 such that a # —, ﬁnd/a'“xdx.
e

/4 1
7. Show that —)=— — sin x).
(a) Show that cos (x + 4) ﬁ(cosx sin x)
2
(b) Hence find / ——dx.
(cos x — sin x)2
2 (X T 2
8. (a) Show that sec (— — —) = —.
%z’ 4 1+ sinx
(b) Hence find / —x
1+ sinx

NN

3 sin x COS X
9. Suppose that / =/ ———dxand J :/ _
o 3sinx 4 cosx o 3sinx 4 cosx

(a) Show that 31 + J = % and3J — I =1In3.
(b) Hence find values for I and J.

10. In this question a primitive for the secant function will be found. Later,
a different method for finding the integral for the secant function will be
given (see page 112 of Chapter 8).

(a) By writing sec x as the reciprocal of cos x before multiplying through-
out by cos x/ cos x, show that the integral for secant can be rewritten
as

cos X
dx = dx.
/secx * (1 —sinx)(1 + sinx) *

(b) Verify that

cos X _ _cosx  cosx
(1 —=sinx)(1 +sinx) 2(1—sinx) 2(1 +sinx)’

1 .
4+ sin x Lc.

1
(c) Hence show that / secxdx = -In|———
2 1 —sinx
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(d) Show that the primitive for secant given in (c) can be rewritten in the
equivalent form of

/secxdx = In|secx + tan x| + C.

2

P
/ tan 6¢ dt |.
Jx

1
12. Suppose that F(x) = [ t(t> + 1) dt. Find all stationary points for F and

X

d
11. Find —
n dx|:

determine their nature.

13. (a) Verify that the function f(x) = e* — 1 satisfies the following integral
equation*

f(x)—x—/0 f@)dr =0.

(b) Verify that the function ¢(x) = cos x + sinx satisfies the following
integro-differential equation’

o' (x) +[T @(t)dt = 0.

4

14. If n is a positive integer, find

x2n x2n
(a)/l_xza’x (b)/1+x2dx

15. The formula for the arc length £ of a simple curve lying in the plane
described by the equation y = y(x) between the points x = @ and x = b

(b > a) is given by
b 2
dy
= 1 — ) dx.
[ () o
In x

Using this formula, find the arc length of the curve given by y = x? — e

between the points x = 1 and x = e.

16. Solve for f(x) and g(x) the system given by

X 1
f(x):l—}-/o g()dt and g(x):x(x—l)—i—[_l f(t)de.
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17. If]—/ (sin? @ + cos* 0) d6 and J—/ (cos? 0 + sin* 0) d6, find

the value of I — J.

2 X"

18. (a) Letf(x)—l—i—x—i—;—i— +— n € N. Show that

n

f&) = f')=—

(b) Hence show that

xﬂ
=n!
/1+x+§+...+ﬂdx n!ln

n!

: x2 X"
xS

—n!lx+C.

. . 2n!sinx + x"
19. Consider the following integral . dx, where
e* +sinx + cos x + Py (x)

n € Nand P, (x) is the polynomial given by

2 n—1 n

X
P(x)—1+1'+§+ +(—1)!+W
xn
(a) Show that P, (x) = P,(x) — T
(b) Let f(x) = e* 4+ cosx + sinx + P,(x). Show that
/ 2n!sinx + x" dx — nl flx)y—f' (x)
e* +sinx + cos x + Py (x) f(x)

(c) Hence find the integral.

e2x —e* + 1
(e* cosx —sinx)(e* sinx + cos x)

20. Consider the integral /

(a) Let f(x) = e* cosx —sinx and g(x) = e* sinx + cos x. Show that

f'(0)g(x) — f(x)g'(x) = e* —e* + 1.
(b) From (a) we note the integral can be rewritten as

L) FR 0 g [ (L0 _£0))
F)g() FO) e

Use this to find the integral.

"I Extension questions and Challenge problems

2016 — x™
21. Ifn € N, ﬁnd/ 016—xdx.

— X
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22. Find

Rl et
(a) /$(3x10 +2x% —2)dx

) /s1nx+4sm3x—|—6sm5x+3sm7xd
X
sin2x + 3sin4x + 3 sin 6x

23. Assuming that it is permitted to interchange the infinite sum and the
T

o0 T
3
integral, find Z / sin* x dx.

In2 3x 4 ,2x

2e°* + -1

24. Ify _—/ 3 ¢ > ¢ dx find the value of e?.
0o e*+e¥—eX¥+1

Endnotes

. Polynomials and rational functions are examples of algebraic functions.

2. The exponential, logarithmic, the trigonometric functions and their inverses are
examples of transcendental functions.

3. The fact that exp(x2) has no primitive in terms of the elementary functions is a
very famous example of such a case. It was first proved to be so by the French
mathematician Joseph Liouville (1809-1882) in his paper ‘Suite du émoire sur la
classification des Transcendantes, et sur I’'impossibilité d’exprimer les racines de
certaines équations en fonction finie explicite des coefficients’, published in 1838.
For a relatively modern description and proof of this result see pages 59 and 60 of
G. H. Hardy’s The Integration of Functions of a Single Variable, 2nd edition
(Cambridge University Press, Cambridge, 1916).

4. An integral equation is an equation that involves integrals of a function.

5. An integro-differential equation is an equation that involves both integrals and

derivatives of a function.
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Integration by Substitution

I almost wish I hadn’t gone down the rabbit-hole...
— Lewis Carroll, Alice in Wonderland

The substitution method is by far the most important of all the methods that
can be used to find an integral. In a large number of cases, when the form of
the integral is not directly obvious, it can enable one to reduce an integral to
standard form. The idea behind the method is that, by employing a substitution,
one is led to a simpler integral that can be readily found. It achieves this by using
the function of a function rule for differentiation in reverse. Of course, not all
substitutions lead to a simpler integral, and in many cases no such substitution
may exist that leads to a simpler integral. Knowing when to use a substitution
and what form the substitution should be is not always immediately obvious,
and is a skill best acquired through long and careful practice. We start with
relatively simple and obvious substitutions to find an integral before moving
onto substitutions that are slightly more sophisticated and often require more
insight to be spotted before being used.

Theorem 6.1 (Integration by substitution). If f(x) and g’'(x) are continu-
ous, then

g(b) b
f Fu)du = / Flg(0) - ¢'(x) dx
g(a) a

Proof 1f F is a primitive of f, then the left side is

g(b)

g()
fu)du = F(U)‘ = F(g(b)) — F(g(a)).
g(a) g(a)

On the other hand, from the function of a function rule, we have
d
o [F(g(x)] = F'(g(x))- &' (x) = f(g(x))- &' (x).

64
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as F is a primitive of f, thatis F/ = f. So we see F(g(x)) is a primitive of
f(g(x)) - g'(x) and the right side is

b b
/ f(g(x)-g'(x)dx = F(g(x)| = F(g(b) — F(g(@)),
as required. |

The simplest use of the substitution method depends on recognising that the
integrand is of the form f(g(x)) - g’(x).

2
Example 6.1 Evaluate / cos x sin® x dx.
0
Solution Let f(x) = x> and g(x) = sinx. So f(g(x)) = sin® x and g'(x) =
cosx. Also g(0) =0and g (%) = 1. So from the substitution formula

g)

b
[ Fle)-g@dr= [ f)du.

g(a)

we have
1

% 1 4 1
/ cosx sin® x dx = / wddu = [u—i| = —. >
0 0 41, 4

Having to work formally with the substitution formula, as we have done in our
first example, takes considerable time and effort. Fortunately the method can
be streamlined in the following manner. First, note that # can be substituted
for g(x) and du for g’(x) dx followed by a change in the limits of integration.
The substitutions are therefore performed directly on the original integrand and
account for the name of the method. As the variable changes, the method is
sometimes called the change of variable method. We now redo the previous
example using this more streamlined approach.

T

2
Example 6.2 Evaluate / cos x sin® x dx.
0

Solution Let u = sinx, du = cos x dx while for the limits of integration we
have

when x = 0, u=20
b4
andwhenx:z, u=1.
So we have
% 1 471 1
/ cosxsin3xdx=/ u3du=[u—} = —,
0 0 41, 4

as before. >
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As a second example, consider the following.
1
Example 6.3 Evaluate / xv1—x2dx.
0

Solution Letu = 1 — x2, du = —2x dx so that —%du = x dx. For the limits
of integration we have

when x = 0, u=1
and when x = 1, u=20.
Thus
1 1[0 1 ! 1r2 7' 1
/xvl—xzdxz——/ ﬁdu:—f Judu = = 2w =2 »
0 2 )1 2 Jo 213 o 3

If the definite integral |, : f(x)dx can be found for all @ and b, then the
indefinite integral | f(x) dx can certainly be found on some interval of x for
which the function f is bounded and continuous; this means the change of
variable method can be equally applied to the indefinite case. We now con-
sider a variety of indefinite integrals that can be found using the substitution
method.

Example 6.4 Find / x2(1 + x)100 gx.
Solution Letu =1+ x or x = u — 1 giving du = dx. Thus

/x2(1 + x)1%%dx = /(u — 1D)2u'% qu
= /(u2 —2u + Du'du

Z/(u102_2u101 +u100) du

1 103 1 102 ] 101
= — 103 _ — c
103" st Tt T

1 1
- 1 03 _ 1 102
TR TR

1
— ot 4 o
+101( + )% 4 C,

sinceu =1+ x. >
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IMPORTANT: In applying the substitution method to indefinite integrals, one
should not forget to substitute back the original variable you started out with.

Example 6.5 Find

[ G

Solution Letu = x* + 4. Sodu = 4x3dx or %du = x3dx. Thus

/ X J du 1/ 1y
— —dx = — _— = - u u
Jxr+1 4 ﬁ 4

1 1
:Z.zu%+C=§\/x4+l+C. >
Eamle66F'd/ 22 +1
X 6 Find | ——
P x3+3x+38
Solution Let u=x>+3x+8. So du=@x*>+3)dx or idu=
(x2 4+ 1) dx. Thus
241 1 d 1
/dez— —u=—1n|u|+C
x3+3x+8 3 u 3
1
=§ln|x3+3x+8|+C. >

Of course, in the previous example no substitution was necessary. Simple
manipulation of the numerator appearing in the integrand into the exact form
for the derivative of the denominator and recognising it as of the logarithmic
form, namely f %d x, are all that is needed in this case.

Often an integral can be performed by inspection. In those cases, the sub-
stitution is simple enough it can be done mentally in one’s head as the next
example illustrates.

Example 6.7 Find / xe* dx.
Solution Immediately writing down the answer for the integral one has
x2 1 x2
xe* dx = € + C.

The mental substitution used here was u = x?2 giving %d u=uxdx. >

We complete this section by considering several more examples that make
use of a few different types of substitutions and approaches.
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Example 6.8 Find / .
xInx

dx
Solution Letu = Inx, so du = —. Thus
X

d du
/ A u =Inju|+ C =In|lnx| + C.
xInx u

Example 6.9 Find / Sx dx.
x5 49

Solution First, we begin by writing

/x8+9 /(x4>2+9 -

Now letu = x4, so du = 4x3dx or idu = x3dx. Thus

x3 1 du 1 (U
/x8+9dx_1/u2+9_4_1.§tan <§)+C

dx
Example 6.10 Find | ——.
xamp in /l—i-ﬁ

Solution Let x = u? (here x > 0), dx = 2u du. Thus

/ dx _ > U o (1+u)—1du
1+ /x 1+u 1+u

d
=2/du—2/—”=2u—21n|1+u|+c
1+u

=2Vx—2In|l + Vx| + C.

Example 6.11 Find / dx.
V1 —e2x

Solution Begin by writing

Y g —
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Now let u = e*, du = e* dx. Thus

/ e J / du w4 C
—F—daX = —— = SIn u
V1 —e?* V1 —u?
=sin"!(e*) + C. >
d
Example 6.12 Find / — 2 dx
I + sin” x

Solution Before a substitution is made we begin by manipulating the inte-
grand into a form where the choice of the substitution to be made will become
obvious.

/ dx . dx . / dx
1+sin2x  J (cos?x +sin®x) +sin®x J cos?x + 2sin® x

/ dx /‘ sec? x
= = dx
cos? x(1 + 2tan? x) 1+ 2tan? x

The ‘obvious’ substitution to make is therefore u = +/2tanx. So du =
/2 sec? x dx and we have

/ dx _ 1/ du 1 @ w4 C
1+sin2x_ﬁ 1+M2_\/§

= %tan_1 («/Etanx) +C. >

Exercises for Chapter 6

" Warm-ups

1. Find the following integrals by inspection. That is, try to find the integrals
mentally in your head by simply looking at them.

(a) /cos(Zx) dx (b) /seczxtanxdx
©) /2x(1 + x?)3dx (d) [cosxeSinxdx
(e) /cossxsinxdx (f)/SiI:/%/E dx
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X Practice questions

2. By using an appropriate substitution find the following integrals.

(a) / Vix+7dx (b) / x2e™* dx ©) / medx

tan~! x 2x3
(d)/1+x2dx (e)/—1+x4dx (f)/xlnx

eV x4 )/ sin x
© [T o [ =i 0[5

sin x eX — 32X
(1)/ _Cosx k) [—1+e2x d
x° Yx -1 [x3 -3
——d —d —
(m) / A25 — x2 W / Ix2—x o / x1 dx
o [ Tax @ [rsinGe)ent dy
cos

© / ®) / sin x + cos x dx
3* -8 Jsinx — cos x
O /[ln 2] dx (u) /(1 + sin 2x)3 cos 2x dx

3. Evaluate the following integrals.

6
(a) / xV36—x2dx
0

V2 ¢ eX+x
(c)/ /X2 + x4 dx (d)/(; e dx
1

In2 er % 5 5
d .
(e)/l o 11 X (f)/(; sin“ x cos” x dx

Xz 1
©® /Z%dx (h)/o(l—ﬁ)”*ldx, p>0
1
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4. (a) If/ f(x)dx —6ﬁnd/ f(3x)dx.

(b) If/0 gx)dx =5 ﬁnd/ [g(x) + g(x + 1)] dx.

k COos x

5. Find the value of k if / 2T _ax=Z.
o 14 sin“x 4

6. (a) Let f be a continuous function satisfying

fx)=f (?) for all x > 0.

10 100
J) dx = 5, find the value of & d
X 1 X

1
(b) Let f be a continuous function satisfying

If

f(%) + x2 f(x) =0 forall x # 0.

cosec 6

Find the value of / f(x)dx. Here 0 is a constant.

sin 6

In(ax)
x In(bx)

7. If a, b, x > 0, by using the substitution ¥ = In x, find /

1
8. Suppose that I, = / (1 — /x)"dx.Here n € N.
0

2

(n + 1 +2)
(b) By applying the binomial theorem to the integrand of I,, before inte-

(a) By using an appropriate substitution, show that [,

n k
. n\ (—=1)*2
ting, show that I,, = ( ) .
grating, show that [, Zk )
100 100\ (<1 )k
(c) Hence find a value for the sum Z( ) as a simple fraction.
fat k+2

X

1
9. If f(x) = / cos?(2x —2t) — 7 dt such that [0, 7], find the maxi-
0

mum and minimum value(s) of f(x).

10. I [ f(x)dx =5, [1, f(x)dx =3, [§ f(x)dx = 8, and [ f(x)dx =

11, evaluate
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2 T
(a) / f(2x)dx (b) / f(cos x)sinx dx
0 0

3
©) /; xf(8 —x?)dx

11. LetO < a,b < %

b
(a) Find I = / ﬂ dx in terms of a and b.
e 1+sinx

b .
(b) Find J = / _Smx dx in terms of a and b.
a 1+cosx

(¢) Show that if @ + b = %,then I=1.

1 42
12. Find/”—’idx
(1—x2)3

13. (a) Using a suitable substitution, show that

/1 dx /clt dx
= ,a>0.
a 1+X2 1 1+.X2

1
(b) Hence show that tan" ' a + tan”! (—) = % a > 0.
a
14. Find the value of a such that the identity,
* dt
In(In(1 = _
n(ln(ln x)) /a tIntIn(Int)

holds. Here x > a.

15. By using an appropriate substitution find the following integrals.

x+1
()/x(lnx+1)

e x+2 In(cosec x) dx

(c) /sin12(7x) cos>(7x) dx
(d) /secxtanxvl + secx dx

16. If a and b are real numbers, show that

1 1
/ x4(1=x)bdx = / xP(1=x)%dx.
0 0
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o ab bei —e%
17. If 0 < a < b, use the substitution x = — to evaluate —dx.
u a X
1)+/ 1
18. (a) Find/ (’2‘+ Wxthx o
xIn*x 4+ 2x2Inx + x3
(b) Hence show that
/‘ln X +2xInx + x? +(x+1)«/x+lnx I
=Inx
xIn?x +2x2Inx + x3
2
Vx+Inx

1—

19. By ‘rationalising the numerator’ first, find / ‘/ i dx

20. If y is a function of x such that y(x — y)? = x, by letting t = x — y, find
dx

/ x =3y’

. . ¢ dt 1—x

21. Consider the integral 52 Here « = ——— such that |x| < 1.

1

V1 —x2

(a) Find the value of the integral by directly evaluating it.

1—u
(b) Find the value of the integral after the substitution t = —— has
V1 —u?
been made.
(c) Hence deduce that tan™! - _r_1 sin~! x for x| < 1
Vi—x2) 4 2 '
x2+1
22. S ——dx.
uppose/ T —— X

(a) By rearranging the integrand, show that

x2+1 =+l
/—x4_x2+1dx=/—x12 dx.

1
(b) Hence find the integral by using the substitution ¥ = x — —.
X

1
23. Evaluate x(x + 1) dx for all the different cases that arise according

0
to the value of m € R.

24. By making wuse of the substitution u =e* +2e™* find

2e
4 4 8e2% 4 e4x dx.
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2x3 —1 P
X
x6 4+ 2x3 +9x2 41

25. Suppose /

(a) By rearranging the integrand, show that

23_1 ZX_L
S N S
x64+2x3 4+ 9x2 41 (x2+%) +9

1
(b) Hence find the integral by using the substitution u = x> + —.

X
. x+2 X
26. (a) Fmd/ v/ dx and/ A/ dx.
X x+2
dx

(b) Hence find / _—

Vx(x +2).

dx
27. Find .
/ (#/sinx + +/cos x)*
1 (x—1)3
———dx.
0 ()C + 1)4

(a) By using the substitution u = x + 1, evaluate the integral.

28. Suppose

(b) By using the substitution ¥ = , evaluate the integral.

X
(c) Do your answers found in (a) and (b) agree?

29. By using a substitution of x = 1/u, evaluate

b4 t —1 2 1
(a) / M X x (b) / (1 + —2) tan™! x dx
L X ! X

S
30. (a) Evaluate / _nr dx.

114 x2

73
31 3In3

(b) Hence show that/ B gy = 7+/3In )

L 3+ x2 36

V241 dx

31. Suppose [ = .
PP /:/5_1 (1 + x2)(1 + 5m%)

(a) Using the substitution x = 1/u, show that
V241 dx

I = .

/ﬁ—l (I +x2)(1 +57x)

Note here the dummy variable has been changed back to x.




32,

33.

34.
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(b) By adding the integral in (a) to the original integral, deduce that
1 =m/8.

2sin! x 4+ 2cos7! x
Consider the integral + dx.

V1 —x2

(a) By using appropriate substitutions, find

@ /ZSln d ( )/2005
X ii
V1—x2 Sz
(b) Hence deduce that

2sin"! x +2cos ! x

V1 —x2

(c) By recalling sin™! x 4+ cos™' x = %, show that

dx = (sin"! x)? — (cos™' x)% + C;.

2sin"!x + 2cos™ 1 x

V1 —x2
(d) Using (b) and (c), show that

dx = wsin ' x + C,.

(sinT'x)? —(cos ' x)? =x (sin_1 X — %) .

Two special functions known as the error function erf(x) and the cumu-
lative distribution function for the standard normal distribution ®(x) are
defined in terms of definite integrals as follows:

2 x 1 1 x
erf(x) = ﬁ/o e_uz du and ®(x) = 3 + E/O 6—22/2 dt.

By using a suitable substitution, show that the two functions are related to
each other by showing that erf(x) = 2®(+/2x) — 1.
-1

. . Utan~! x
Consider the definite integral /
0 1 + x

(a) By writing down the angle sum identity formula for tan(« 4+ ), show

that
a —_—
tan ! o —tan™! B = tan™! ( P ) .
1+ af

(b) By making use of the result in (a), together with the substitution u =
(1 =x)/(1 + x), show that

1 ap—1
[ an xdx=zln2.
0 1+x 8
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and J By making a substitution

35 Letl—/l dx —/1 dx
) 0 2«/1—i—x4 0o V1—x*
— 1

u- . 1
of x = —— in J, show that — =
1+ u? J

2x3 —3x2 4+ 1
36. Consider the integral [ * i dx.
X6 —2x34x2—-2x+42

(a) After factoring, show that the integral can be rewritten as

/ 2x3 —3x2 4+ 1 / 2x + 1
dx = dx.
x6 —2x3 4+ x2-2x+2 (xX24+x+1D)2+1

(b) Hence find the integral.

1 1—(1 — n
37. Suppose H, =/ de where n € N.

0 X
“1
(a) Using an appropriate substitution, show that H, = Z T The

k=1
numbers H,, are known as the harmonic numbers.

(b) Hence write down values for the first five harmonic numbers.
(c) By expanding the term (1 — x)” using the binomial theorem before
integrating, deduce that

m= X)L

k=1 k=1
1 2
38. Let] = / ((1 —xHle _ x) dx where a > 0.
0

(a) By using the substitution u = (1 — x%)/%, show that

(b) By adding the two forms for the integral / together (the original form
together with the one found in (a)) show that

B 1 1 xa(l_xa)l/a anl/a 2
]—5/(; (w—kl)(x—(l—x) ) dx.

(c) Now use the substitution u = (1 — x?)'/¢ — x in the integral given in
(b), and deduce that / = % forall a > 0.
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A= In
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In this question a method for finding the following two integrals
1+x*  dx x2 dx
l=| —— ad J=| ————,
I —x* T+ x4 I—x* /14 x4

will be developed.

1+x2  dx 1—-x2 dx
(a) IfA:/ l_xzﬁandB:/H—xzﬁ,showthat

1 1
I=§(A+B)andJ=Z(A—B).

(b) The integrals A and B can be evaluated using the substitution u =
~/1 4+ x*#/x. By using this substitution, show that

V1+x% 4+ V2x
272 | VT 4+ x% = V2x

(c) Hence find I and J.

1

1 V1 4
+Cand B=———tan™! i + C.
V2 V2x

I Extension questions and Challenge problems

40.

41.

42,

43.

44.

dx n nl x%
If n eN,showthat/W =nl|l - \/}|+nk§17+c'

6
Evaluate/ |:\/x+\/12x—36+\/ —«/12x—36]dx.
3

Find / (x” + x2" +x3") V2x2n 4+ 3x" + 6dxifn € Nand x > 0.

By using a suitable substitution, show that
“In(x +a
/ gdx = lln(2az), a>0.
o Xx%+a? 8a

A so-called Euler substitution is a substitution method used for finding
integrals of the form

/JQ (x, vax? +bx + c) dx,

where R is a rational function of x and ~ax? + bx + ¢. In such cases
the integrand may be changed into a rational function using one of three
broadly similar substitution types. In what is known as the third type of
substitution, if the polynomial ax? 4 bx + ¢, where a, b, ¢ € R, has real
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roots & and S8, one may choose a substitution ¢ of the form

vax?+bx+c=+ax—a)(x—B)=(x—a) =(x—p)t.

Note here that either of the real roots may be chosen in the substitution.
dx

V2~ x — 2

1 n
2
45. Let I = / ( —-x— 1) dx where n is a positive even integer.
0 X + 1

Using an Euler substitution of the third type, find /

(a) By expanding the integrand using the binomial theorem, show that
when evaluated in this way the integral can be expressed as

n _1\kon—k
]:];)(Z)%<22k—n+l_l)‘

2
(b) By using the substitution u = P 1, show that the integral can be
X

I—/l 2 2 lnd
“Jo wrnzlur1 " "

(c) By adding the two forms for the integral / together (the original form
together with the one found in (b)), show that

1 : / 1 2 +1 2 1 " d
== Ty —_— =X - X.
2 Jo \(x +1)2 x+1
(d) Now using the substitution u = P x — 1 in the integral given in
x
(c), show that

L7 2 " 1
/ —x—1) dx = .
o \x+1 n—+1

(e) Hence deduce a simple expression for the sum given in (a).

rewritten as

46. Let In'(x) = x and In"™(x) = In <ln[”_1](x)), n € N. Using induction,
prove that

_dx ") + €
[Tizo 0™ (x) '



7
Integration by Parts

‘Begin at the beginning,” the King said, very gravely, ‘and go on till
you come to the end: then stop.’
— Lewis Carroll, Alice in Wonderland

After integration by substitution, the next most important technique is what is
known as integration by parts. There is no counterpart for the product rule for
the derivative when it comes to integration. Integration by parts, however, is
a consequence of the product rule for differentiation. We first state and give a
proof for this very important result before giving a number of examples that
make use of the rule.

Theorem 7.1 (Integration by parts). If f'(x) and g'(x) are continuous
functions then

/ F)g @) dx = f(x) - g(x) — / F1()g () dx

Proof From the product rule for the derivative we have

(f()g(x)) = f'(x)g(x) + f(x)g'(x).

Rewriting this as

f)g'(x) = (f(x)g(x) = f'(x)g(x),

one has

/ F()g' (x) dx = / (g dx — [ F1(0g(x) dx
= f(x) - g(x) — / £/()g(x) dx.

which completes the proof. |

79
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For a definite integral on the interval [a, b] the corresponding result will be

b b b
[ rogwan= 1w gl - [ rmseods

It is possible to write the rule more compactly. If u(x) (for f(x)) and v(x)
(for g(x)) are two continuously differentiable functions of x, we can write
du = u'(x)dx and dv = v/(x) dx, and the rule for integration by parts can
be written more compactly as

/udv:uv—/vdu

At first sight, using integration by parts may not seem very useful as it
appears that one integral on the left side has simply been replaced with another
integral on the right side. While this is true, the real power of the rule comes
about from this exact change. In many instances the integral on the right side
will be more amenable to integration than the integral one started out with.
In many commonly encountered cases this is exactly what one finds. Also, to
apply the rule, the function g’(x) to be integrated needs to be relatively simple
to begin with. A common example of a situation is in the integration where
the integrand consists of a product between a polynomial and either a sine or
cosine function or the exponential function.

To apply integration by parts, the overall strategy is to divide the integrand
into a product between two functions before carefully choosing which to inte-
grate and which to differentiate, the goal being to end up with an integral that is
simpler and can be more readily found. Knowing what choice to make comes
with practice. In general, when deciding on possible choices for u and d v, one
tries to choose u = f(x) as the function that becomes simpler when differen-
tiated, provided a primitive for d v can still be readily found. We now consider
a number of examples to show how the method of integration by parts works
in practice.

Example 7.1 Using integration by parts, find / X cosx dx.

Solution For our first few examples we will slowly work our way through the
process of carefully applying the rule for integration by parts. As one becomes
more familiar with the workings of the rule, the formula can be dispensed with
altogether as one integrates one part and differentiates the other to arrive at the
expression for the new integral.
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By differentiating x we will be left with a constant so the following choices for
u and d v are made:
U =Xx dv =cosxdx

du = dx v:/cosxdx:sinx

Note here that we can take any primitive function for v we like (usually the
simplest), so in general the arbitrary constant of integration is set equal to zero
(though see the example on page 84 where a nonzero constant is selected).

Integrating by parts we have
/xcosx dx = xsinx — / sinx dx.

Notice the choice made for u and v has led to a far simpler integral compared
to the original. Integrating we have

/XCOSXdXZXSinX+COSX+C. >

What would have happened if instead we had chosen cos x for u and x for v?
Well, let us see. In this case one would have

U = COS X dv =xdx
. 1,
du = —sinx dx v = xdxzzx,
and integrating by parts gives

1
/xcosxdx :—xsinx+§/x2sinxdx.

While the above result is certainly true, as we have ended up with an integral
that is more difficult to find compared to the original one, it has not taken us any
closer to a solution. This is often what will happen if an inappropriate choice
for u and dv is made.

Example 7.2 Using integration by parts, find / x2e ™  dx.

Solution As we are about to see, integration by parts may be applied more than
once to find an integral.
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We set

u=x? dv=e"dx

du =2xdx v=/e‘xdx=—e_x.
Integrating by parts leads to
/xze_x dx = —x%e™ — / 2x - (—e ¥)dx = —x%e* + 2/ xe *dx.

To evaluate the integral [ xe™* dx that has appeared, integration by parts can
be applied again. Here we set

du = dx v:/e_xdx:—e_x.

Integrating by parts leads to

/xe_x dx = —xe ™ — / —e*dx

=—xe ¥ + /e_x dx = —xe ¥ —e* 4+ C.
So for the original integral one has
fxze_x dx = —x%e™* +2(—xe ™ —e ™)+ C

X

=—x%2e* —2xe ¥ -2+ C

=—(x2+2x +2)e "+ C. >

This example shows that there is no reason why integration by parts cannot
be used multiple times to find an integral. To help streamline the computa-
tions involved when such a situation arises, shortly we will introduce a method
referred to as tabular integration by parts. We now give an example where the
method of integration by parts is applied to a definite integral.

[SE]

Example 7.3 Using integration by parts, evaluate / xsin2x dx.
0

Solution Set

U=x dv =sin2x dx

1
du = dx v = [sin2x dx = —3 cos 2x.
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Integrating by parts leads to

(SE]
(NE]

Z 1
/ xsin2x dx = [—icos2x]2 + —/ cos2x dx
0 2 o 2Jo

n+l 1,2 z T >
= — + — | =sin2x = —.
4 212 0 4

The first three examples show that integration by parts is particularly suited
to removing powers of x in products involving either the sine or cosine function
or the exponential function. In the next two examples we show how integration
by parts is also particularly suited to removing logarithms.

Example 7.4 Using integration by parts, find [ x3Inxdx.

Solution Set

u=Inx dv=x>dx
1 4
du = —dx v:/x3dx:x—.
X 4
Integrating by parts leads to

1 1 1
/x3lnxdx = —x41nx——/x4-—dx
4 4

4 12

3Inx —1
4
= - C. »
x( D )+

1 1 1 1
= —x4lnx—Z/x3dx = Zx4lnx——x4+C

Example 7.5 Using integration by parts, find / 2x In(x + 12) dx.

Solution Set
u =In(x + 12) dv=2xdx

1
U= dx v=/2xdx=x2.
x+ 12
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Integrating by parts leads to

1
/len(x—i— 12) dx = x*In(x + 12)—/)62- dx
x+12
2
5 (x2 — 144) + 144
=x“1 12) —
x“In(x + 12) / P

d 2144
len(x+12)—144/ al /x dx

x+12 ) x+12
—12 12
= In(x+12)—1441In x4 12| [ EZDEFLD 5
x+12

(x%2 — 144) In(x + 12) — /(x —12)dx

2
— (22— 144) In(x + 12) — % +12x 4 C. >

§ The Intermediate Constant of Integration in v

So far when performing integration by parts, you may have noticed that in all
cases we have set the arbitrary constant of integration in the function integrated
leading to v(x) equal to zero. While a value of zero is invariably chosen on the
assumption that it is the simplest, this need not be the case. As the constant
of integration is arbitrary, any value one may care to consider can be selected.
Often a judicious choice of this value can lead to a significant simplification in
the integral to be found.

As an example, consider the last example we gave. Instead of choosing zero
for the constant of integration in v, consider what would happen if a value of
—144 is selected instead. Why a choice of —144 for the constant is made in the
first place should become obvious in a moment’s time. In this case for v we
would have

v=/2xdx:x2—144,

and on applying integration by parts to the integral we now have

2 _ 144
/2x In(x + 12) dx = (x* — 144) In(x + 12) — / T
x+12

:(x2_144)1n(x+12)_/%dx

’

which immediately reduces to

2
/2x In(x 4+ 12) dx = (x% — 144) In(x + 12) — % +12x 4 C,
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as expected, but with considerably less effort compared to when the ‘automatic’
choice of zero for the arbitrary constant in v was made.

Integration by parts can also be used to integrate certain trigonometric func-
tions, such as the square of the sine or cosine functions, without the need to
recall any double-angle identities, as the following example shows.

Example 7.6 Using integration by parts, find / sin” x dx.

Solution We begin by writing the integrand as a product as follows:
/ sin® x dx = / sinx - sinx dx.

u =sinx dv =sinxdx

Set

du = cosx dx v:/sinxdx:—cosx.
So by parts one has

/Sinzxdx =—sinxcosx+/cos2xdx
= —sinxcosx+/(1—sin2x)dx
=—sinxcosx+/dx—/sin2xdx

= —sinxcosx + x —/sinzxdx.

At this point we notice the integral we started out with has reappeared. The
integral can now be finished off using algebra alone. Doing so yields

Z/Sinzxdx = —sinxcosx +x + C

1 X
:>/sin2xdx:—Esinxcosx—i-z—i-C. >

What the previous example shows is a useful trick. Often when perform-
ing integration by parts the integral you started out with reappears. The next
example gives a common situation for this kind of reappearance.

Example 7.7 Using integration by parts, find / e>* sin3x dx.

Solution To speed up the process, we now proceed by applying the rule for
integration by parts directly without first writing down what u and d v are (this
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step can now be done mentally in one’s head). For this example, it is not impor-
tant which function one chooses to initially integrate and which function one
chooses to differentiate. We will chose to integrate the exponential function
first. Doing so yields

1 1
[ezx sin3x dx = Eezx sin3x — / Eez" -3cos3xdx (by parts)

1 3

= —¢*sin3x — = / e>* cos3x dx
2 2
1 3/(1

= —e*sin3x — = [ =e** cos 3x
2 2\2

1 2x . .

- Ee -—3sin3x dx (by parts again)

1 3 9
= —e**sin3x — ~e** cos 3x — — / e?* sin3x dx.
2 4 4
As the integral we started out with has reappeared, move it to the left side:
13 1 3
— / e?*sin3x dx = —e** sin3x — ~e* cos 3x + C,
4 2 4
or

2x
/ezxsin3xdx=61—3(2sin3x—3cos3x)+C. >
Example 7.8 Using integration by parts, find / sec® x dx.

Solution

/sec3xdx = /secz'secxdx

= tanx secx—/tanx-secxtanx dx (by parts)
=tanxsecx—/secxtan2xdx
=tanxsecx—/secx(se02x—l)a’x

=tanxsecx+/secxdx—/sec3xdx.
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Recalling
/secxa’x =In|secx +tanx| + C,

one has

/sec3xdx =tanxsecx+ln|secx+tanx|—/sec3xdx.

As the integral we started out with has reappeared, moving it to the left side
and completing the problem using algebra alone give

1 1
/sec3xdx=Etanxsecx—i—§1n|secx+tanx|+C. >

One can use the method of integration by parts to find the indefinite integral
for many of the inverse elementary transcendental functions such as the loga-
rithm and the inverse trigonometric functions. While this may appear strange
at first, since the integrand appearing in such integrals is not a product, the
integrand can always by multiplied by unity, thereby turning it into a product
between two functions. Indefinite integrals for the remainder of the elementary
transcendental functions that have not yet been given can therefore be found in
this way. We give two examples that demonstrate the method.

Example 7.9 Using integration by parts, find / Inxdx.

Solution Since we can write

/lnxdxzfl-lnxdx,

integrating by parts, one has
1
/lnxdx=xlnx—fx-—dx=xlnx—/dx=xlnx—x+C. >
X

1

Example 7.10 Using integration by parts, find / sin” " xdx.

Solution Again, since we can write
/sin_l xdx = / 1-sin”! xdx,
integrating by parts, one has

1
. 1 .1
sin” " x dx = x sin x—/x-—dx.
/ V1 —x2
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The second integral can be found using a substitution of ¥ = 1 — x2. Since
du = —2x dx, for this integral one has

/‘ X J 1 du
_—adx = —— _
V1 —x2 2) Ju

So finally for the integral of the inverse sine function we have

/sin_lxdx=xsin_1x+v1—x2+C. >

=—Vu+C=-v1-x2+C.

§ Tabular Integration by Parts

When the method of integration by parts needs to be applied more than once, the
work and effort involved can become quite tedious. As a way of organising and
arranging everything when integration by parts is performed multiple times, a
method known as tabular integration by parts' can be used. As we will see, it
is not a new technique; rather it is a way of organising in a systematic fashion
the mechanics of applying integration by parts multiple times.

As its name suggests, a table is used. It consists of two columns that we
will label D for ‘differentiate’ (the function to be differentiated) and I for
‘integrate’ (the function to be integrated). The entries in the first row are the
functions selected to be differentiated u, and integrated dv. Each successive
entry in the D column is the derivative of its previous column entry, while each
successive entry in the / column is the integral of its previous column entry.
While the table can be terminated at any time, the real usefulness of the tabular
method is brought to the fore when the table is terminated when one of the four
following cases arise.

(a) The entry in the first column D is zero.

(b) The functions found in the first row, to within a constant multiple, reappear
in a subsequent row.

(c) The product of the two functions in any given row becomes an easy integral
to find.

(d) The rows continue without end in which case a series will be developed.

When the table is terminated, the integral is written down as the sum of the
products of the function in the nth row of the first column (column D) with the
function in the (n + 1)th row of the second column (column /), with the sign
of the products alternating after starting with a plus sign. To help remember
the technique, the appropriate products between the functions are formed by
drawing a diagonal arrow in the table while its corresponding sign is placed
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just above each arrow. We now give a number of examples showing the tabular
method in action.

Example 7.11 Find[xzezx dx.

Solution Choosing u = x? and dv = e2* dx, and constructing the table of
derivatives and integrals we have

D(differentiate) I (integrate)
X2 er
\
2x % e?*
\
0 ge**

Note the table is terminated as a zero appears in the first column. The integral is

now equal to the sum of the appropriate products indicated along the diagonal
arrows. Thus

62

1 1 1 *

/xzer dx=x%.-e** 2x- e 4 2. —e*4+C=—(2x*-2x+1)+C.
2 2 8 4

>

To see how the tabular form is nothing more than integration by parts per-
formed multiple times, if the table in the previous example were to be termi-
nated after the first row, one would have

[xzezx dx,

that is, one has yet to perform any integration by parts. Terminating the table
after the second row, we would have one product only and an integral of the
product between the two functions in the second row, namely

2

1 1
/xzezx dx = x? - —e** — / 2x - —e** dx = x—ezx —/xezx dx,
2 2 2

a result corresponding to a single application of integration by parts. Finally,
terminating the table after the third row, a result corresponding to two
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applications of integration by parts, one has the following sum between two
products and an integral of a product between the two functions in the third
row of

1 1 1
/xzezx dx = x? = —2x - -e* + / 2.~ dx
2 4 4

:x_Zer_erx_i_l/erdx.
2 2 2
The tabular method used in Example 7.11 was thus a convenient way of stream-
lining the process of performing integration by parts three times.

The next example demonstrates the real efficiency of the tabular method
for finding an integral that would otherwise have to be found by performing
integration by parts no less than four times.

Example 7.12 Find /(3)(3 +2x — e ™ dx.

Solution Choosing to differentiate 3x3+2x—1 and integrate e~ *, and
constructing the table of derivatives and integrals we have

D I
3x3 +2x—1 >

9x2 +2 \i —e*
18x T~ e

18 T — e
. T

/(3x3 +2x— e ¥dx=—e"-Bx*4+2x—1)—e - (9x? +2)
—e . 18x —e ¥ 18+ C
= —¢ " (3x> + 9x% +20x + 19) + C. >

It is not always possible to end with a zero appearing in the derivative
column. The next example illustrates the termination of the table when the
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functions in the first row, to within a constant multiple, reappear in a later
TOW.

Example 7.13 Find / e>* cos3x dx.

Solution Choosing to differentiate ¢>* and integrate cos 3x, and constructing
the table of derivatives and integrals we have

D 1

e cos 3x

SeSx \ ;
2565)6 \

As the entries in the third row are a constant multiple of those found in the first
row, the table is terminated after three rows. The integral is

1 1
/esx cos3x dx = e>* - 3 sin3x — 5¢°* - —= cos 3x

1
+ / 25¢7% . (—§ cos 3x) dx

1 5
= gesx sin3x + §e5x cos 3x

25
— == | e>*cos3xdx,
9
giving
eSx
/esxcos3xdx: §(3sin3x+50033x)+c. >

The next example illustrates the termination of the table when the product
between the two functions in a given row becomes an easily found integral. Typ-
ically in such cases only a single application of integration by parts is needed,
so the tabular method may not give any particular advantage over normal inte-
gration by parts.
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Example 7.14 Find / xtan~! x dx.

Solution Choosing to differentiate tan~! x and integrate x, and constructing
the table of derivatives and integrals we have

D 1
tan~! x X
+
1 x2
1+ x2 — 2

The table is terminated after the second row as we observe the product between
the two functions in the second row leads to an integral that is relatively easy
to find. Failure to spot this would result in the table going on without end.
Thus

2 1 2
[xtan_lxdx=x—tan_1x——/x—dx
2 2/ 1+x2

X2 /(1+x2)—1
14+ x2

xzt 1 /d +1/ dx
= —tan X — —
2 2 2/ 14+ x2

X X 1
= Ttan_lx—z—i—ztan_lx—l—C

I
|
-t
%

1
E(x2+l)tan_1x—%+C. >

As our last example of the tabular method we give a situation where the rows
continue without end.

Example 7.15 By applying the method of tabular integration by parts to the
X

integral / e~ " dt, show that
0

x2 X3 x"

—1+X+—+§+ +—+Rn+1,

1 X
where R, = —/ et dt.
n' 0
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Solution Ordinarily one would not use integration by parts at all to find the
integral, preferring instead to directly integrate. Doing so yields

X x
/ e ldt =—et| =1—¢7*,
0 0

If, however, we consider the integrand as a product with unity, differentiating
e~! and integrating 1, we have

D I
e! 1
+
_e—t \ t
~ 2
e_t \ t_
21
\ 3
e r
3 31
4
. \ t_
41
) , tn—l
— n— - _
( 1) e (_l)n 1 (n—l)!
\ P
(e =
(_l)n n!
So one has
X 2 3 " x
/ e tdt = [te_t + 5e_t + ﬁe_t + .4+ Ee_ti|
0 . ! ! 0
x "
—t
2 3 n
X e X LN e N x X
=1l—-e" =xe ~|—2!e ~|—3!e + +n!e
1 x
+—' e 't dt.
n:Jo
or
. 2 x3 x" X —ton
e =1+X+2—!+§+"'+E+E e t" dt,

0
after multiplying both sides by e* and rearranging, as required to show. >
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Exercises for Chapter 7

Y Warm-ups

1. Let f(x) = x and g(x) = x2.

(a) Find/f(x)g(x) dx.

(b) Find / f(x)dx- / g(x)dx.
(c) Do you expect the integrals in (a) and (b) to be equal to each other? If
not, why not?

2. A paradox resulting from integration by parts.”

d
Suppose the integral / aad is to be found using integration by parts. Setting
X

u=— dv =dx
X

1
du = —— dx V=X,
X
and integrating by parts one has
dx
X

. dx

On cancellation of the two integrals, one obtains 0 = 1! Briefly explain how
this paradox is resolved.

"X Practice questions

3. Use integration by parts to find

(a) /xsinxdx (b) /lenxdx
(©) / X sec x tan x dx (d) / x sec? x dx
(e) / In (%) dx () / In(x?) dx
(2) / tan~! x dx (h) / (Inx)?dx

@) /cos4x sin3x dx Q) /cos(lnx) dx



10.

. If n # 0 show that/ x%cos(nx)dx = —-.

7 Integration by Parts

) /e_3x cos2x dx 1)) /(x + De¥lnxdx
(m) / —dx > (n) /ln(l + x?)dx
x + xIn” x
(0) /xln(xzexz) dx (p) [x3ex2 dx
. Evaluate the following integrals using integration by parts.
i 2 Inx
(a) /4 xsin2x dx (b) / —zdx
0 1 X
7 e?
(c) / X sin x cos x dx (d) / VxIn(y/x) dx
0 1
3 1 )
(e) / sin(ln x) dx ® /0 In(l + x%) dx
1

2
. (a) If/ xInxdx = a + 1, find the value of a € R.
1

T

2 1
(b) Iff e?* cosx dx = —(e™ — 2), find the value of n € N.
0 n

. Find/ln(x2 —1)dx.

2 4
0 n?

. Use integration by parts to show that

1
/coszxdx = Esinxcosx + ; + C.

(OB

LIF T, = [ x" sin” x dx, evaluate I, I1, and I,.
0

Using the substitution x = u? followed by integration by parts, find

/(eﬁJr 1) dx.

95
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11.

12.

13.

14.

15.

16.

17.

18.

How to Integrate It

Suppose that f is differentiable on the interval [1,4] such that
ffxf/(x)dx =12. If f(1) =3 and f(4) =10, find the value of

[ f(x)dx.

1
Let f(x) = x and g(x) = Trams If ¢ € (0, %) such that

T

% J T X J % dx
/0 J(x)g(x) x-/o 1 + tan? x x-f(c)/o 1+ tan? x’

find the value for c.

4 2

VI+x—A1—x dx
I+ x+/1T-x '

V3 2x T
. -1 -
sin (1+x2) dx—%.

If h is a continuous, twice-differentiable function such that 4(0) = 1,
1

h(2) = 3,and i'(2) = 5, find the value of/ xh"(x)dx.
0

V1 — 1= 1
(a) Show that tan™ ! ( X al ) il -1

= — — =cos  X.
Vi x+ /1 —x

(b) Hence find / tan™! (

Using integration by parts, show that /
0

X un
Suppose that F, (x) = / —du.
o e

(a) Find, as a function of x, expressions for F;(x) and F5(x).

> Fi(x) ?
(b) Evaluate/2 [exp (/ Fz(x)) dx:| dx.

Suppose that for a certain function f(x), it is known that

Fx) = co;x’ f(%) =2andf(37n) =4,

3
2
Using integration by parts, evaluate f f(x)dx.
3

In this question two alternative ways for finding / tan~! x dx will be

given.

(a) Using integration by parts, show that

1
/tan_lxdx = xtan ' x — Eln(x2 +1)+C.
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(b) (i) By using integration by parts, show that
2
/—xdx = 2xtan_1x—2/tan_1xdx +C.
1+ x2

(ii) By finding the indefinite integral appearing on the left side in (b)(i)
directly, deduce that

1
/tan*1 xdx = xtan ! x — Eln(x2 + 1)+ C.

! dx
19. Suppose that I, = | m forn e N.

. . 1 boox?
(a) Using integration by parts, show that I, = o +2n /o W dx.
(b) Find values for A and B for which

x2 A B

(1 4 xz)n+1 - (1 + x2)n + (1 4 x2)n+1'

1 2n — 1
(c) Hence deduce that 1,11 = o1 + ( n ) In-

1
20. Consider the integral / In (vl +x+v1- x) dx.
0

(a) Show that
d 1 VI—x—4J1+x
— [In (/1 V1= = . .
dx[n( e x)] 2V/1—x2 JT+x+/1—x

(b) By ‘rationalising the numerator’ of the second term appearing in (a),
show that the expression for the derivative can be rewritten as

d 1 1
— [In(+/1 V1 - ] =—-—
dx[n< e x) 2x  2x/1—x2

(c) Using integration by parts together with the result in (b), evaluate the

integral.

21. (a) If f(a) = f(b) = 0, show that

b 1 b
[ s rmar == [ P ax

/4

(b) Using the result in (a), evaluate / xsin2x dx.
0
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22,

23.

24,

25.

26.

27.

28.

How to Integrate It

If £(0) = g(0) =0, f” and g” are continuous, and a > 0, use integration
by parts to show that

/0 F)g" () dx = fla)g' @) — f(@)g(a) + /0 £ (g (x) dx.

a
1
Find the value of ¢ > 0 such that/ x"Inxdx = ——=,neN.
1 (I’l + 1)2
Let f and g be twice-differentiable functions such that f”(x) = af(x)
and g’ (x) = bg(x) where a and b are constants such that a # b.

S — f1x)gkx)

b—a
(b) If m? # n? use the result given in (a) to show that

(a) Show that / fx)g(x)dx =

. nsinmx sinnx + m cos mx cos nx
sinmx cosnx dx = + C.
n? —m?2

2w

(c) Hence deduce that/ sinmx cosnxdx =0, whenm # n.
0

1 1
It I =/ (1—x")?"dx and J =/ (1 —x")?"*1dx where n € N,
0 0

1
show that — = —n(2n +h+1
J n(2n + 1)

F4 % .
Ify= / _Cosx dx, find the value of / S Y cosx dx in terms
0o (x+2)? o x +1
of y.

Find the following integrals by applying the method of tabular integration
by parts.

(a) /x3sinxdx (b) /ﬁdx (©) /1;);4—36
(d) /x sec? x dx (e) /eQ’x(x3 +6x2 4 11x + 6) dx

By performing integration by parts, find the following integrals.

(@) / In(1 + +/x) dx (b) / In(x + +/x)dx

(©) /ln(x + m) dx
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30.

31.

32.

33.

34.
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X
xZ2+1

Let F(x) = ¢* (a In(x? + 1) +

the value of «.

1

).If/ F(x)dx = $1n2, find
A 2

Find

(a) /xtanzxdx (b) /xcotzxdx

By making an appropriate substitution followed by integration by parts,
find

(a) /xcos(\/})dx (b) /ezxcos(ex)dx (c) /xsin(lnx)dx

By making an appropriate substitution followed by integration by parts,

4

evaluate / cos ! (tan x) dx.
IT
-1

The lower incomplete gamma function y(x, &) is defined by the following
integral:

o
y(x,a) = / e ldx, x>0, a>0.
0

(a) By performing tabular integration by parts, express v (4, o) in the sim-
plest form in terms of elementary functions.
(b) Hence show that

/ (4, x)dx = e (x* + 4x3 + 12x2 + 24x + 24) + xy(4,x) + C.

(c) By using integration by parts, show that the lower incomplete gamma
function satisfies the following functional relation:

X

y(x + La) = xy(x,a) —e *a”.

dx
(a) By using an appropriate substitution, find / (+—
X

1)2°
(b) Using the result found in (a) together with integration by parts, find
xe*
——— dx.
o+ 12t
Using the substitution x = u? followed by tabular integration by parts, find

/ x2 sin(v/X) dx.
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p
36. Find all values of x for which / t2sin(x — 1) dt = x>
0

37. If f is a twice-differentiable function on [O 1] such that f”(x) + (4x —
2)f'(x) + f(x) =0, find the value of / (x%2 — x) f(x) dx in terms of
f(0) and f(1).

38. (a) Using integration by parts, show that

L x1n?2(1 2 1
/ i+ ) = L),
0 1+X2 6

(b) Using the substitution ¥ = tan x together with the result given in (a),
deduce that

T n3(2
/ tan x In?(cos x) dx = n( ).
0 24

x
39. (a) By using an appropriate substitution, find / ——dx
Va4 + x*

(b) Using the result found in (a) together with integration by parts, find
3

——dx
/ Va4 + x?

x3

40. Consider the integral / (6x*Inx +2) dx.

(a) By applying the method of integration by parts, show that

x3

/e—dx = 1nx—/3x2ex3 Inxdx.
X

3
(b) Hence deduce that/ (6x Inx + 2) dx = 26" Inx + C.
X

41. Find
1 X — sinx cos x
(a) /xln (x+ ) dx b) / dx
sin? x
1 1 .:..—1
4. Showthatz——</ M <
4 2 o 1+x8 2
3 dx 3 dx
43. Given ——— =k, find the value of / ————— in terms
x4+ x 1 x3J/1+x

of k.
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n

X
44, SHPPOSeI = / m
by parts, show that

1 X n+1
/] = —— e —1[(+C.
n+1 1+ x

I Extension questions and Challenge problems

dx where n € Z1. Using tabular integration

1 1
45. If I =/ (1—x°%1gxand J =/ (1 — x99 gx, find the value of
0 0
1/J.

46. Let u(x) and v(x) be n-times continuously differentiable functions where
n is a positive integer. Using tabular integration by parts, show that

n—1
/u(x)v(n)(x) dx = Z(_])ku(k)(x)v(n—l—k)(x)
k=0

+ (—1)”[u(")(x)v(x) dx.

Here u®) (x) denotes the kth order derivative of u with respect to x while
u@(x) = u(x).

47. Find

(a) / (xltj—n e dx (b) [ln(l + x?)tan~ ' x dx

(X“Fﬂ t
48. Let I = / cos™! ( anot) sinx cos x dx.
o

tan x

(a) Using integration by parts, show that

_l .2 —1 tai
I = 5 sin (o + B) cos [tan(a +,3):|

sin x

1 a+pB
- —tana/ dx.
2 o \/1 _ 2

(cosx/cosa)

(b) Hence deduce that

1 t 1
I = —sin*(a 4 B)cos™! _ane - sina cos™! M .
2 tan(o + B) 2 cosa

e
49. (a) If f satisfies x = f(x)e/ ™ for all x, evaluate / f(x)dx.
0
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In2
(b) Suppose thata = 1,b% =1 + HT where b > 0 and f is given implic-
itly by the equation x> + f(x)ef(x) = 1 such that f(x) > —1. Evalu-

b
ate / xf(x)dx.

50. The Bessel function of the first kind of orders zero Jy(x) and one J; (x) is
known to satisfy the following relations:

Jo(x) =—Ji1(x) and J{(x) = Jo(x)— %Jl(x).

Using these relations, where needed, together with integration by parts,
show the following results.

(a) /Jo(x)Jl(x) dx = —%J(%(x) +C

(b) / Jo(x)cosx dx = xcosxJy(x) + xsinxJy(x) + C

2
(c) /xJoz(x) dx = %(Joz(x) +J3(x)) +C

1 x
51. If / [(1 + f(x))x +/ f@) dt] dx =1, find the value of
0 0

/Olf(t)dt.

52. Integration by parts is an integration rule corresponding to the product rule
for differentiation. In this question we will find an integration rule corre-
sponding to the quotient rule for differentiation.

(a) By the quotient rule, if f(x) and g(x) are differentiable functions, then

d [f(X)} _ g1 = f(0)Eg'(x)
dx [ g(x) [ '

Letu = g(x) and v = f(x). By integrating both sides of the quotient

rule, show that
d
dv _v / Y .
u u u

This has been called the integration by parts quotient rule formula.>
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(b) Show that the integration by parts quotient rule formula can be obtained
from the standard integration by parts formula by considering the
integral

1
/@, with U = — and dV = dv.
u u

53. Let f be a differentiable function such that

X

f(x) =—(x2—x + 1)e* +/0 e f(u) du.

(a) Show that f(0) = —1.
(b) Hence show that/ e f(u)du = x* — x.

0
(c) Hence verify that f(x) = e*(2x + 1) is a solution to the integral
equation.

X
54. Consider the integral f f'(t) dt. Clearly,
a

[ rwar= sl = s - s,
(a) By rewriting the integral as
f £ty di = f (—f'@) - (=1,

and choosing to differentiate the function — f’(¢) and integrate the func-
tion —1, after one application of tabular integration by parts we have

D 1
—f'() —1
—f"(t) x—t

Notice in the second row of the column 7, on integrating —1 the term
Xx — t has been written. Normally one would just write —¢ with the arbi-
trary constant of integration being set equal to zero. Instead, for reasons
that will become apparent in a moment, for the first integration we have
chosen to set the constant equal to x.
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By continuing the above table, show using tabular integration by parts

that
F0) = fla) + f @) —a) + %(x —ay
" (n)
f3('a)( ay 4ot L (a)( —ay’

+E/ (x — )" £V () dt

*) x
= Z / ( Lo —a)f + %/ (x —1)" fOHV (@) dr.

Here ™ denotes an nth order derivative while f© = f.

This result is known as Taylor’s theorem with integral remainder. It
is an important result in the calculus and has many, very important
applications.

(b) () If f(x) = x3and a = 2, use the result in (a) to show that

3 =84 12(x —2) + 6(x —2)% + (x —2)>.

I
(ii) Hence find 7 dx.
(c) If f(x) = e* and a = 0, use the result in (a) to show that
X2 3 X" 1 X w1
Endnotes

1. The method seems to have been first explicitly stated by Karl W. Folley
(1905-1991) in 1947. See: K. W. Folley, ‘Integration by parts’, The American
Mathematical Monthly, 54(9), 542-543 (1947).

2. The paradox is attributed to J. L. Walsh who first proposed it 1927. See: J. L.
Walsh’, ‘A paradox resulting from integration by parts’, The American
Mathematical Monthly, 34(2), 88 (1927).

3. Jennifer Switkes, ‘A quotient rule integration by parts formula’, The College
Mathematics Journal, 36(1), 58-60 (2005).
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Trigonometric Integrals

The essence of mathematics is not to make simple things complicated,
but to make complicated things simple.
— Stan Gudder

We now focus our attention on integrals involving only trigonometric functions.
We structure this chapter by considering each of the main commonly encoun-
tered types. In Chapter 15 not-so-common integrals involving trigonometric
functions will be considered.

§ Powers of Sine or Cosine

Consider integrals of the form

/cos”xdx or /sin”xdx,

where 1 is a non-negative integer. We will do this for the case of the sine func-
tion where n = 1,2, 3, 4, 5. Later, in Chapter 18, we will show how one deals
with the general case when 7 is a positive integer of any order when reduction
formulae are introduced.

Caseof n = 1: /sinxdx =—cosx +C

Case of n = 2: Using the well-known double-angle formula for the cosine
function, namely cos 2x = 1 — 2sin? x, the sine squared term appearing in the
integral can be written as

1 1 1
in2 = — — = — — —si
/sm xdx = 2/(1 cos2x) dx 7 (x 2sm2x) +C.

An alternative way to integrate sin? x without the need for having to recall an
appropriate double-angle formula uses integration by parts (see Example 7.6

on page 85 of Chapter 7).

105
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Case of n = 3: Manipulating the integral we have
/sin3xdx = / sinx - sin x dx
= / sin x (1 — cos? x) dx

= /(sinx — sinx cos® x) dx

=/sinxdx—/sinxcoszxdx

=—cosx—/sinxcoszxdx.
In the last integral if we let x = cos x, then dx = —sin x dx. Thus
- 3 _ 2
/sm xdx——cosx—i-/u du
15
= —cosx + §u +C
1 3 .
= —cosx + gcos x + C. (since u = cos Xx).

Case of n = 4: Application of the double-angle formula for cosine involving
first a sine squared term followed by a cosine squared term leads to

/sin4xdx = /(sin2 x)?dx

1 —cos2x\? . .2 1 —cos2x
— dx, since sin®x = —

1
= Z[(l —2cos2x + cos? 2x) dx

1 1 4
= é_l/ (1 —2cos2x + %) dx,

cosdx —1

since cos?2x = >

3 1
/ — —2cos2x + —cosdx | dx
2 2

1
4
1/3 1

1 (Tx —sin2x + gsin4x) + C.
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Case of n = 5: Manipulating the integral, we have
/ sin® x dx = /sinx - (sin? x)? dx = / sinx (1 — cos? x)2 dx.
Now letting u = cos x, du = —sinx dx. Thus
/sinsxdx = —/(1 —u?)?du
= —/(1 —2u® +u*)du
=—(u—§u3+éu5)+c
2 3 1 s :
=— (cosx — gcos X+ gcos x) + C (since u = cos x).
For powers of cosine, similar strategies to those just applied to sine can be used.

§ Products of Powers of Sine and Cosine

Now consider integrals of the form

/ cos™ x -sin” x dx,
where m and n are non-negative integers. In performing such integrals two
possible cases arise and are best handled separately: (i) either m or n or both

are odd; or (ii) both m and n are even. As we shall see, each requires a different
strategy in its solution.

Case (i): Suppose that m is odd. Then the substitution ¥ = sin x along with the
identity sin® x 4+ cos? x = 1 can be used.

Example 8.1 Find / cos® x sin* x dx.

Solution Note that

/ cos xsin* x dx = / cos? x sin* x cos x dx

= /(1 — sin? x) sin* x cos x dx.
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Now letu = sinx, du = cosx dx.Then

/cos3xsin4xdx = /(1 —uP)ut du = /(u4 —u®)du
u’ 7 1

1
Z?_%+C=§sin5x—§sin7x+0 >

If n is odd, we use the substitution u = cos x and follow the same strategy as
presented above. If both m and n are odd, then one can use a substitution of
either ¥ = sinx or u = cos x. If m and n are both even, then neither of these
substitutions will work, meaning a different approach is needed.

Case (ii): As indicated, the case where m and n are both even requires an
entirely different approach. In such cases the identities

5 I + cos2x .9 I —cos2x
cos"Xx = ——— and sin“x = ———

2 2
are used to change the integral into a sum of integrals of the form

/ cos(2x)dx, where k is a positive integer.

One then repeats the methods of either Case (i) or Case (ii) until each integral
in the sum is easy to find.

Example 8.2 Find / sin? x cos* x dx.
Solution As both indices are even, we begin by writing

/ sin? x cos* x dx = / sin? x (cos? x)? dx

[(1 —cost) (l +0052x)2
= d.x
2 2

1
3 /(1 — cos 2x)(1 + cos 2x)?dx

1
3 /(1 —cos2x)(1 + 2cos 2x + cos? 2x) dx

1
= 3 /(1 + cos 2x — cos? 2x — cos® 3x)dx

in2 1 1
= £+_sm i ——/00522xdx——/cos32xdx.
8 16 8 8
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Now the first integral is an even power of cos 2x so

X sin4x

1
/COSZZxdx = Ef(1+cos4x)dx= 5—}— g

The second integral is an odd power of cos 2x. So

+ C.

1
/cos3 2xdx = /cos2 2xcos2x dx = 3 /(l — sin® 2x)2 cos 2x dx,

and using the substitution u = sin2x, du = 2 cos 2x dx, one has
3

1 U u
32xd :-/1— Hdu = - — — +C
/cos x dx 3 (1 —u*)du 7 6+z

1 1
= > sin2x — 3 sin®2x 4+ C, (since u = sin 2x).

Combining all the pieces together yields

x sin2x 1 (x sindx
/sinzxcos4dx:—+ ! __(__|_ ! +C1)

8 16 g\ 2 8
1 [sin2x  sin32x
- - C
8( 2 6 T 2)
Y 1 Gng + L in®2 +C >
= — — —sin — sin .
16 64 T T g Sy

§ Products of Multiple Angles of Sine and Cosine

The next class of trigonometric integrals consists of integrals of the form

/cosmxsinnxdx, /cosmxcosnxdx or /sinmxsinnxdx,

where m and n are real numbers. Integrals of these forms are often found in
applications. In evaluating them one of the following three prosthaphaeresis
formulae (product-to-sum identities) is used:

1

1. sinAcos B = E[sin(A + B) + sin(A — B)]
1

2. cosAcos B = E[COS(A — B) 4 cos(4 + B)]
1

3. sin4sinB = E[cos(A — B) —cos(A + B)]

After application of the prosthaphaeresis formulae the resulting integral will
consist of single sine and/or cosine terms, which can be readily found.
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Example 8.3 Find / cos 5x cos 3x dx.
Solution Noting that

1 1
cos5x cos3x = E[cos(Sx —3x) + cos(5x + 3x)] = E(cos 2x + cos 8x),

the integral becomes

1 1 1
/cosSx cos 3x dx:z /(cos2x + cos 8x)dx = Zsian + T sin8x+C.

>

As an alternative to integrating multiple angles of sine and cosine using
prosthaphaeresis formulae, see Exercise 24 on page 98 of Chapter 7.

§ Powers of Tangent or Cotangent

Consider integrals of the form

/tan"xdx or /cot"xdx,

where n is a non-negative integer. We will do this for the case of the tangent
function where n = 1, 2, 3,4, 5. The general case when 7 is a positive integer
of any order will be dealt with in Chapter 18 after reduction formulae have been
introduced.

Case of n = 1: /tanxdx =/ MY gx = —In|cosx|+ C.
cos X

Case of n = 2: For the square of the tangent, the identity 1 + tan®? x = sec® x
is used:

/tanzxdx = /(seczx— 1)dx =tanx —x + C.
Case of n = 3: Manipulating the integral we have
/tan3xdx = [tanx ‘tan® x dx = /tanx(seczx —1)dx
= /tanxseCZ)cdx —/tanxdx

= /tanxseczxdx +In|cosx| + C.
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In the first of the integrals, set ¥ = tan x, du = sec? x dx; Thus

2
/tan3xdx=/udu+ln|cosx|+c = u?+ln|cosx|+C

%tanzx +1In|cosx|+ C (since u = tan x).
Case of n = 4: Again manipulating the integral we have
/tan4x dx = /tanzx tan® x dx = /tanzx(seczx —1)dx
= / tan® x sec? x dx — / tan® x dx
= / tan” x sec® x dx — (tan x — x).
In the first integral, set u = tan x, du = sec? x dx, thus

1
[tan4xdx=/u2du—tanx+x = §u3—tanx+x+C

3 tan® x —tanx + x + C (since u = tan x).
Case of n = 5: Once more, manipulating the integral we have
/tan5 xdx = /tan3 x-tan’ x dx = /tan3 x(sec® x — 1) dx
= /tan3 xsec? x dx — / tan> x dx
3 2 L5
= | tan” x sec” x dx — ztan x +In|cosx|].
In the first integral we again set u = tan x, du = sec? x dx. Thus

1
/tansxdx =/u3dx—§tan2x—1n|cosx|

1, 1,
=-u"——tan“x —In|cosx| + C
4 2

1 1
= Ztan“x - Etanzx —In|cosx|+ C (since u = tanx).
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§ Powers of Secant or Cosecant

Consider integrals of the form

/sec” xdx or /cosec" xdx,

where 7 is a non-negative integer.
For the integral of secant, we can write this as

sec x + tanx sec? x 4+ sec x tan x
secxdx = | secx ———— dx = dx,
secx + tan x secx + tan x

giving

/secxdx =In|secx +tanx| + C

For an alternative method for finding this integral, see Exercise 10 on page 60
of Chapter 5. The integral for cosecant is done in a similar way. Here

cosec x + cotx
cosecxdx = [ cosecx - —— dx
cosec x + cotx

cosec? x + cosec x cot x
cosec x + cotx

giving

/cosecxdx = —In|cosecx + cotx| + C

The integrals for the secant and cosecant squared can be readily found. Their
results are

/seczxdxztanx~|—C and /coseczxdxz—cotx~|—C.

Integrals for secant and cosecant for integer powers greater than two can be
found using integration by parts in combination with the application of the iden-
tities 1 + tan? x = sec? x or 1 + cot? x = cosec? x. For example, the integral
of sec x was found in Example 7.8 on page 86 of Chapter 7. As an example
of the method, consider the case of the cosecant function raised to the power of
four.
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Example 8.4 Find / cosec* x dx.
Solution We begin by rewriting the integral as follows:

/ cosec* x dx = / cosec? x - cosec? x dx.

Integrating by parts we have

/cosec4 x dx = —cot x cosec? x —/— cotx - 2cosec x - (—cosec x cotx) dx

= —cot x cosec? x — 2 / cot? x cosec? x dx

= —cotx cosec’ x — 2 /(008602 x — 1) cosec? x dx,
(since 1 + cot? x = cosec? x)

= —cot x cosec? x — 2/ cosec* x dx + 2 / cosec? x dx.
As the original integral has reappeared we have

3 / cosec* x dx = — cot x cosec® x — 2 cot x,
or finally

1 2
/cosec4xdx:—gcotxcoseczx—gcotx—kc. >

§ Products of Powers of Secant and Tangent

Suppose now we need to find integrals of the form
/ sec™ x - tan” x dx,

where m and n are non-negative integers. As was the case for integrals consist-
ing of products of powers of sine and cosine, it is best if the problem is divided
into the following three separate cases: (i) when m is even; (ii) when m and n
are both odd; and (iii) when m is odd and # is even.

Case (i): When m is even. The substitution ¥ = tan x along with the identity

2

1 + tan? x = sec? x can be used.
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Example 8.5 Find / sec* x tan® x dx.

Solution As the power for the secant function is even (m = 4), we begin by

rewriting the integral as
[ sec* x tan® x dx = / sec? x - sec? x - tan> x dx
= /(1 + tan? x) tan® x - sec? x dx,
(since 1 + tan® x = sec? x)

= /(tan3 x + tan® x) - sec”® x dx.

On setting = tanx, du = sec? x dx and we see that

6

4
/sec4xtan3xdx = /(u5+u3)du = %_{_MI

+C
1, .
= —tan x—l—ztan x+ C (sinceu =tanx). »

6

Case (ii): When m and n are both odd. The substitution ¥ = sec x along with
the identity 1 + tan? x = sec? x can be used.

Example 8.6 Find / sec® x tan® x dx.
Solution As both powers are odd, we begin by rewriting the integral as
[ sec® x tan’> x dx = /(S€C4 x - sec x)(tan x - tan x) dx
_ 4 2
= / sec” x tan” x - sec X tan x dx

:/sec4x(seczx—1)-secxtanxdx,
. 2 a2
(since 1 + tan” x = sec” x)

= /(5606 x —sec* x) - sec x tan x dx.
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On setting u = sec x, du = sec x tan x dx, we see that

u’  w
/sec5xtan3xdx=/(u6—u4)du = 7_?4_(;

1 1
= 7 sec’ x — 3 sec® x + C (since u = secx). »

Case (iii): When m is odd and 7 is even. Here we can write n = 2k where
k € N. Then

/ sec™ x - tan” x dx = /secm -tan?* x dx = / sec™ x(sec® x — 1)* dx,
where the identity 1 4 tan? x = sec? x has been used. Expanding the (sec? x —

1)* term, after multiplying it by sec™ x, gives a sum of powers of secant, which
can then be found.

Example 8.7 Find / sec? x tan® x dx.
Solution Rewriting the integral we have

/secxtanzx dx = /secx(seczx —1)dx, (since 1+ tan® x = sec? x)

= /(sec3x —secx)dx = / sec® x dx — / secx dx.
These two integrals have already been calculated earlier. The results are
3 1 1
sec’ xdx = 3 sec x tanx + 3 In|secx + tan x| + Cq,
(see Example 7.8 on page 86 of Chapter 7) and
/secx dx =In|secx + tan x| + Cs.
Thus

1 1
/secxtanzxdxzEsecxtanx—51n|secx+tanx|+C. >

As integrals of the form / cosec™ x cot” x dx can be handled in a manner

analogous to how integrals of the form / sec™ x tan” x dx were handled, they

will not be considered here.
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Exercises for Chapter 8

Y Warm-ups
1. The answers to the following integrals should be obvious. Write them
down.
dx
@ [ 25 (b) /
cos? x sin” x
sin x cos X
© [ —5—dx @
cos sin? x

2. Of the two integrals given below, which one do you think takes the least
effort to find? Give a reason for your choice.

/cossoxdx or /coslooxsinx dx.

"X Practice questions
3. (a) Letc, = /cos”xdx.Find cpwhenn =1,2,3,4,5.
(b) Lett, = /cot”xdx. Find ¢, whenn = 1,2,3,4,5.

4. Find the following trigonometric integrals involving powers of sine and

cosine.
(a) / cos* x sin® x dx (b) / sin® x cos® x dx
(©) / cos? x sin? x dx (d) / sin* x cos? x dx
(e) / cos® x sin® x dx ® / cos* x sin® x dx
5. Find the following trigonometric integrals involving powers of tangent and
secant.
(a) / sec x tan? x dx (b) / sec? x tan’ x dx

(©) / sec x tan* x dx (d) / sec> x tan® x dx
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6. Evaluate

% .5 H 42
(a) / cos x sin” x dx (b) / cos” x sin” x dx
0 0

© 3 2 H 4 2
(©) sec” x tan” x dx (d) cosec” x cot” x dx
0 13

i 3 .3 3m
7. Show that (cos® x —sin” x) cos x dx = e
0

8. (a) Find / cosec* x cot® x dx.

T
2
(b) Hence evaluate / cosec* x cot® x dx.

T

IN

9. Find
cos? x sin? x cos* X
@ [ o [ oo © [
sin x cos sin? x
) /sec © /cosec x ® /cosec x
dx e
cot? cot?
10. Find
(a) /sin 9x cos3x dx (b) /sin7x sin5x dx
(©) /cos 4x cos8x dx (d) [cosx sin2x dx
7 ) 1
11. (a) Show that/ sin“” xcosx dx = .
0 2n + 1

(b) By writing cos®” x = (1 — sin® x)", show that

/0 cos2 T x Z =¥ /n ( )

(c) Hence evaluate / cos’ x dx.
0

[SE]

[SE]
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I Extension Questions and Challenge problems

12. Function composition, that is a function of a function, between two func-
tions f and g can be written as f(g(x)) = (f o g)(x).

Suppose that /(fofo---of)(cosx) dx, where f(x + 1) = 8x* +
~—_———

n times

32x3 + 40x2 + 16x + 1.

(a) Show that f(x)= f[(x—=1)+1]=8x*—-8x2+1, so that
f(cos@) = 8cos*H —8cos? + 1.

(b) Show that cos(40) = 8cos* 6 — 8cos? 6 + 1.

(¢) By induction on 7, prove that (f o f o---0 f)(cosx) = cos(4"x).

(d) Henceﬁnd/(fOfO---Of)(cosx)dx.
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Hyperbolic Integrals

The principal advantage arising from the use of hyperbolic functions
is that they bring to light some curious analogies between the integrals
of certain irrational functions.

— W. E. Byerly, Integral Calculus

Integrals containing hyperbolic functions proceed largely in an exactly analo-
gous matter to the integration of trigonometric functions. One important dif-
ference is that hyperbolic functions are defined in terms of exponentials; this
allows for the possibility to reduce such integrals to rational functions of e*.
And as we shall see all hyperbolic functions are rational functions of the expo-
nential function. However, it is often not desirable to reduce an integral con-
taining hyperbolic functions to an integral consisting of a rational function in
terms of the exponential function as many of the properties that exist between
the hyperbolic functions can be taken advantage of in order to simplify other-
wise difficult-looking integrals.

We begin by first reviewing the definition for the hyperbolic functions and
some of their associated properties that will prove useful when integrating inte-
grals containing hyperbolic functions.

§ The Hyperbolic Functions

You may recall that trigonometric functions are known as circular functions
since sine and cosine can be defined as the coordinates of points on the unit
circle x2 + y? = 1. By analogy, the hyperbolic functions are constructed by
replacing the unit circle with the right-hand branch of the unit hyperbola x2 —
y2=1.

The two most common hyperbolic functions, the hyperbolic cosine and the
hyperbolic sine functions are defined as follows:

119
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y
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-2 —1 1 2 cosech x 1 1 2
1+ +—1
-2 T F—2
-3+ 1-3

sinh x

Figure 9.1. Graphs for the six hyperbolic functions sinh x, cosh x, and tanh x
(left) and coth x, sech x, and cosech x (right).

Definition 9.1 The hyperbolic cosine function cosh : R — R is defined by

e¥ +e*
2

coshx =

Definition 9.2 The hyperbolic sine function sinh : R — R, often pronounced
as ‘shine’, is defined by

X_e—

2

sinhx =

The remaining four hyperbolic functions, namely the hyperbolic tangent func-
tion tanh, the hyperbolic cotangent function coth, the hyperbolic secant func-
tion sech, and the hyperbolic cosecant function cosech, are defined in an exactly
analogous manner to their trigonometric counterparts. Thus

sinh x 1 1 1
, cothx = , sechx = , cosechx = — .
osh x tanh x cosh x sinh x

From the definition for sinh and cosh, each of the four latter hyperbolic
functions can be expressed as a rational function in terms of the exponential

tanh x =

function. Graphs for all six of the hyperbolic functions are given in Figure 9.1.

§ Hyperbolic Identities

Just as the trigonometric functions have a rich structure in terms of the number
of identities that exist between the functions, so too do the hyperbolic functions.
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This should come as no surprise given the analogous nature of the two sets of
functions.

The most important and famous of all the identities involving hyperbolic
functions is the Pythagorean identity

‘coshzx —sinh®x = 1 ‘

To prove this result, from the definition for cosh and sinh we have

x —x\ 2 x _ ,—x\2
coshzx—sinhzxz(e —;e ) —(e 26 ) =1.

As is the case with the trigonometric functions, two other Pythagorean identities
for the hyperbolic functions can be found. Factoring out cosh? x and moving
this term to the right-hand side gives

1 — tanh? x = sech? x,

while factoring out sinh? x and moving this term to the right-hand side
gives

coth? —1 = cosech? x.

We now list other important results without proof analogous to those familiar
for the trigonometric functions. Each can be verified by appealing to the defi-
nition for the hyperbolic functions involved. The sum and difference formulae
for sinh, cosh, and tanh are

sinh(x & y) = sinh x cosh y &+ cosh x sinh y
cosh(x + y) = cosh x cosh y + sinh x sinh y

tanh x &£ tanh y

tanh(x £ y) = ———
anh(x + ) 1 &+ tanh x tanh y

The double-angle formulae are

sinh(2x) = 2 sinh x cosh x
cosh(2x) = cosh? x + sinh? x = 2cosh®? x — 1 = 1 + 2sinh® x

2 tanh x

tanh(2x) = ———
(2x) 1 + tanh? x
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while the half-angle formulae are

X coshx —1

sinh — = &/ —
2 2
X coshx + 1

cosh — = ,/—
2 2

tanhi _ 1 fcoshx — 1 _ sinh x .
2 coshx + 1 coshx + 1

In the half-angle formulae the positive sign is selected when x > 0 while the
negative sign is chosen when x < 0.

You have perhaps noticed that all of these identities for the hyperbolic func-
tions, at least in appearance, are very similar to those identities found for the

trigonometric functions. Given it is more than likely that what one will actually
remember are those identities relating to the trigonometric functions, the close
analogy between the two sets of identities allows for a useful mnemonic to
be introduced whereby the latter hyperbolic identities can be arrived at from
the former trigonometric ones. Known as Osborn’s rule' it states that any
trigonometric identity can be converted into a corresponding hyperbolic iden-
tity by expanding it completely in terms of integral powers of sines and cosines,
exchanging trigonometric functions with their hyperbolic counterparts, and
then switching the sign of every term that contains a product of 2, 6, 10, 14, . ..
hyperbolic sines. As a simple example, from the trigonometric identity

cos(x + y) = cos x cos y — sin x sin y,
application of Osborn’s rule gives the corresponding hyperbolic identity
cosh(x + y) = cosh x cosh y + sinh x sinh y,

the sign of the second term on the right being switched as the identity con-
tains the product of two hyperbolic sine terms. In another example, from the
trigonometric identity

tan x + tan

tan(x + y) = —y
1 —tanxtany

since the term tan x tan y consists of a product of sines, namely

sinx siny

tanx -tany =

COSX COSy
application of Osborn’s rule gives

tanh x 4 tanh y

tanh =,
anh(x + ) 1 + tanh x tanh y
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§ Derivatives of the Hyperbolic Functions

123

As cosh and sinh are linear combinations of exponential functions, each is dif-

ferentiable. So

d
1. 5(c0shx) = — (

2. dd_x (sinh x)

for their derivatives we have,
d [e¥ +e™* e¥ —e ¥
dx 2

d (e¥—e™* eX +e™*
= = 5 = 5 = cosh x.

From the derivatives for cosh and sinh, the derivatives for the four other hyper-

bolic functions

d
3. I (tanh x)

d
4, I (coth x)

quickly follow. They are

_ d (sinhx
" dx \coshx
cosh x - cosh x — sinh x - sinh x

= 5 (by the quotient rule)
cosh” x

cosh? x — sinh? x

cosh?
=0 (since cosh? x — sinh?> x = 1)
cosh? x
= sech? x.

_ d (coshx
" dx \ sinhx
sinh x - sinh x — cosh x - cosh x

= — (by the quotient rule)
sinh” x

cosh? x — sinh? x

sinh? x
1 : 2 )
= o . (since cosh® x —sinh“ x = 1)
sinh” x

= —cosech? x.

d d 1
5. —(sechx) = — = —(cosh x) 2 sinh x
dx dx

d
6. Ir (cosech

cosh x

1 sinh x
=— . = —sech x tanh x.
cosh x fosh X
X)=— ) = —(sinh x) "2 cosh x

dx \ sinhx

. 1 cosh x

= —cosech x coth x.

sinhx sinhx
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§ Standard Integrals Involvng Hyperbolic Functions

From the derivatives for the hyperbolic functions this immediately gives us six
standard forms for integrals involving hyperbolic functions. These are sum-
marised in Table 9.1.

In addition to the indefinite integrals already found for cosh and sinh, indefi-
nite integrals for the four remaining hyperbolic functions can be found. Finding
these we have

inh
(a) /tanhxdxz/ s xdx=1n|coshx|+C.
cosh x

h
(b) /cothxdxz/c?s xdx=1n|sinhx|+C.

sinh x

(©) /sechxdx :/ dx =/ _coshx
cosh x coshx coshx

cosh x cosh x
= — dx = P dx,
cosh” x 1 + sinh” x

since cosh? x — sinh? x = 1. Now let u = sinh x, du = cosh x dx. Thus

d
/sechx dx = / L tan"'u + C = tan"!(sinhx) + C.
1+ u?

Table 9.1. Six standard integrals involving
hyperbolic functions.

Six standard hyperbolic integrals

1./coshxdx =sinhx + C
2./sinhxdx =coshx + C
3./sech2xdx =tanhx + C
4. | cosech? xdx = —cothx + C
5.

sech x tanh x dx = —sechx + C

6. | cosechx cothx dx = —cosechx + C

—_—— —
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1 1 inh
(d) /cosechxdx =/ - dx =/ - 's?n al dx
sinh x sinh x sinhx

sinh x sinh x
:/, 2 dxz/lz—dx,
sinh” x cosh“x — 1

since cosh? x — sinh? x = 1. Now let u = cosh x, du = sinh x dx. Thus
d
/sechxdx =/2—u
u?—1

1 1 1 1
w2—1 (@w—-Du+1) 2w-1) 2u+1)

1 1
/cosechxdx:/[z(u_l)—2(u+]):| dx

1 1

Eln|u—1|—51n|u+1|~|—C
coshx — 1

=In ,/— +
coshx +1

And since tanh 5 = £,/ coshx—1 "the expression for the indefinite integral

By writing

we have

C.

coshx+1~
for cosech can be further reduced to

/cosechx dx = In|tanh(x/2)| + C.

Note that the general method of decomposing a rational function into a par-
tial fraction, as was done in (d), will be taken up in Chapter 11. The indefinite
integrals for the six hyperbolic functions are summarised in Table 9.2.

§ Integrals Involving Hyperbolic Functions

For the remainder of the chapter we give examples of integrals containing
hyperbolic functions.

Example 9.1 Find / sech?(5x + 2) dx.

Solution |
/sechz(Sx +2)dx = 3 tanh(5x + 2) 4+ C. >
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Table 9.2. Integrals for the six
hyperbolic functions.

Integrals for the six hyperbolic functions

1./coshx dx = sinhx + C

2. / sinhx dx = coshx + C

3. /tanhxdx =In|coshx|+ C
4.fcothxdx =In|sinhx| + C

5. / sechx dx = tan"!(sinh x) + C

6. / cosechx dx = In|tanh(x/2)| + C

Example 9.2 Find / sinh x cosh* x dx.
Solution Let u = cosh x, du = sinh x dx. Thus
1 1
[sinhxcosh4xdx=[u4du=gus—i—C:gcoshsx—i—C. >
Example 9.3 Find / cosh? x dx.

Solution Using the hyperbolic identity cosh 2x = 2 cosh? x — 1, we have

1 1
/coshzxdxz5/(1+cosh2x)dx=§+Zsinh2x+C. >

Example 9.4 Find / x sinh3x dx.
Solution Using integration by parts we have

. X 1
/xs1nh3x dx = gcosh3x — §/cosh3x dx

1
=§cosh3x—§sinh3x+c. >
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Example 9.5 Find / e” sinhx dx.

Solution As the integrand involves a product between an exponential function
and a hyperbolic function, in this case the integral will be more easily found by
converting sinh to its exponential form. Doing so yields

X _ ,—x 1
/exsinhxdx = /ex (%) dx = 5/(62x—1)dx

12x X
— et >
2 27t

cosh(x —a)

Example 9.6 If a € R find / —dx.
cosh(x + a)

Solution In this example the term appearing in the denominator can be
removed by taking advantage of the difference formula for cosh. Observing
that
cosh(x —a) = cosh[(x + a@) — 2a] = cosh(x + @) cosh2a
— sinh(x + a) sinh 2a,

we have
/ cosh(x — a) J / cosh(x + a) cosh2a — sinh(x + «) sinh 2a J
= X
cosh(x + a)

cosh(x + a) r =
inh
= coshZafdx — sinhZa/ wdx
cosh(x + a)

= x cosh2a — sinh 2a / tanh(x + a) dx

= x cosh2a — sinh2a In | cosh(x + a)| + C. >
) cosh x
Example 9.7 Find | ————dx.
2cosh”x — 1

Solution With a cosh x term appearing in the numerator, it being the derivative
of sinh x, we try to rewrite the denominator as a function of sinh x only. From
the identity cosh? x — sinh? x = 1, the cosh? x term appearing in the denomi-
nator can be replaced with 1 4 2 sinh? x. Doing so yields

cosh x cosh x cosh x
2cosh”x — 1 2(1 + sinh” x) — 1 1 + 2sinh” x
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Now letting ¥ = sinh x, du = cosh x dx. Thus

cosh x du 1
— " dx=| —— = —tan ' (V2u) + C
/2C0$h2X—1 /1+2u2 V2 (vV2u)

1 1
= — tan"!(+/2sinh x + C. >
N )

dx

Example 9.8 Find / _
tanhx — 1

Solution We begin by manipulating the integrand.

dx 1 1 + tanh x tanhx + 1
= . dx = | —— dx
tanh x — 1 tanhx —1 14 tanhx tanh? x — 1

But since tanh? x + sech? x = 1 we have

dx tanh x + 1 1 1
_ = —zdx=— tanh x - >— + 5 dx
tanhx — 1 sech” x sech“x  sech” x

inh
=—/ (sm s -cosh2x+cosh2x) dx

cosh x

= —/sinhxcoshxdx—/coshzxdx.

From the two hyperbolic identities sinh2x = 2 sinh x coshx and cosh2x =
2 cosh? x — 1, the integral can be rewritten as

d 1 1
/ﬁ =—§/sinh2xdx—§/(cosh2x+ 1)dx

— L oshox — Linnox - Y 4 >
= 4COS X 4Sln X 2 .

As an alternative to the ‘hyperbolic’ method presented for Example 9.8, one
could have proceeded by writing tanh in terms of its exponential definition.

In our last example we will introduce as a simple trick one of the hyperbolic
identities into the integrand.

dx

Example 9.9 Find / ——————dx.
4 4 13sinh” x

Solution Taking advantage of the hyperbolic identity cosh? x — sinh? x = 1,
this identity can be introduced into the integrand as rewriting the 4 appearing
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in the denominator as 4 cosh? x — 4 sinh? x. Thus

/ dx _ dx
4+ 13sinh®x (4 cosh? x — 4sinh? x) 4+ 13 sinh? x

. / dx . /‘ dx
) 4cosh®x + 9sinh>x ) cosh? x(4 + 9tanh? x)

/ sech? x
= . 2 dx.
4 + 9sinh” x

Let ¥ = tanh x, du = sech? x dx. Thus

[iisams = [avse =5 [ @i
4+ 13sinh®x 4+9u2_ ()2+u2

1 3u 3tanh x
—gtan (2)+C—8tan ( 5 )+C. >

Exercises for Chapter 9

" Warm-ups

1. Find / x2 sinh x cosh x tanh x cosech x sech x coth x dx.

2. Consider the integral / e* coshx dx.

Integrating by parts twice, one obtains

/ex coshx dx = e* coshx — [ e* sinhx dx

= ¢”* coshx — e* sinhx + / e* coshx dx.

Thus 0 = e*(coshx —sinhx) = e* -e™ = 1.

Briefly explain what is wrong with the above reasoning.

"X Practice questions

3. (a) Show that sinh x + coshx = e¢* and sinh x — coshx = —e™*.

d d
(b) Find | — al and [ —— .
(sinh x + cosh x)? (sinh x — cosh x)?2

. sinh x — cosh x
(¢) Find | —— dx
sinh x + cosh x
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4. Find
(a) /cosech2(2x 4+ 5)dx (b) /x sinh x dx
h tdnhx
© / SOV X 4 @ / )
Jv1—x cosh” x
(e) / sinh? x dx ® / cos x sinh x dx
sinh x cosh x
x cosech? x dx h / dx
® / sinh? x + cosh? x
dx
i sinh 2x sinh 3x dx j
® / 0 / sinh? x + cosh? x
dx 1+ coshx
o [t [ Lo
® /SCosth—l O sinh x
5. Evaluate
% In2
(a) / ~ sech?(3x) dx (b) /(; tanh x dx
0
1 e
©) / (1 — x) cosh x dx (d) / sinh(In x) dx
0 1
¢ cosh(In x 2
(e) / ;) dx (f) e* coshx dx
1 X 1
x2—1
6. (a) For x > 0, show that tanh(Inx) = — .
x%+1

(b) Hence find / tanh(In x) dx.
7. If a® # b? use integration by parts to show that
1
/ cosh(ax) cosh(bx) dx = pray (a sinh(ax) cosh(bx)
a —

— b sinh(bx) cosh(ax)).
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7 1
8. (a) Show that 3sinhx + 4coshx = Eex + Ee_x

(b) Hence show that

@ /3smhx+4coshx -

2
- tan~' (v/7e*) + C

2
+C

(@) / (3sinh x + 4coshx)2 N

9. Ifa € R, find
@ / sinh(x —a)
cosh(x + a)

C7(7e2 + 1)

®) /‘ sinh(x +a)

sinh(x — a)

10. Using tabular integration by parts, find / x* cosh(2x) dx.

11. Find

(a) / tanh® x dx

(b) / sech* x dx

(©) /cosh4 xdx

12. (a) Show that sinh 3x = 3sinh x + 4sinh® x

(b) Hence find / sinh® x dx.

13. Find

(a) / sinh® x cosh* x dx

(©) / sinh? x cosh* x dx

14. If n € N, find

1 h
()/'( + tan x) Ix
1 —tanh x

15. Find

/smh2x
(a) sinh(%)

(b) f sinh® x cosh® x dx

(d) / sech x tanh? x dx

1 h
) /( + cot x) Ix
1 —cothx

dx

) / 1 + sinh x + cosh x
1 — sinh x — cosh x
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dx

16. Consider the integral / _—
1 —coshx

1 —coshx
1 —coshx

/ 1 —iz)cshx = coth <§> + G

(b) By first converting the hyperbolic cosine term into its exponential form
before integrating, show that

/‘ dx 2 Lc
l—coshx ex—1 z

(a) By multiplying the integrand by the factor , before integrat-

ing, show that

(c) The results found in (a) and (b) appear to be different. Show that they
are indeed equivalent.

I Extension questions and Challenge problems
17. Find / cosh x cosh 2x cosh4x dx.

18 (The Gudermannian function). The Gudermannian function
gd: R — (=%, %), named after the German mathematician Christoph
Gudermann (1798-1852), relates the circular and hyperbolic functions in
the real domain without the need for complex numbers. It is defined by

X
gdxz/ secht dt.
0

.. d

(a) Find Ir (gd x).

(b) Show that gd x = tan~!(sinh x). Hence tan(gd x) = sinh x and shows
how a hyperbolic function (in this case the hyperbolic sine function) is
related to a trigonometric function (in this case the tangent function).

(c) Hence deduce that gd x = 2tan™! (tanh %) = sin~!(tanh x).

(d) By making a substitution of u = e’ in the definition for gd, show that
gdx = 2tan"!(e¥) — T

(e) Using the resultin (d), find lim gdx and lim gdx.

X—>—00 X—>00
sinh(2n + 1)x

19. In this question we will find the integral / ——~ dx, where
sinh x
n € N.

(a) From the sum and difference formulae for sinh(x + y) and sinh
(x — y), show that 2 cosh x sinh y = sinh(x + y) — sinh(x — y).
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1 I
(b) Let f,(x) = ED"(X) =3 +I;coshkx.
By multiplying f,(x) by 2sinh 3 and evaluating the resulting finite
sum, show that
sinh(n + %)x

n
Dy(x)=1+2 Zcoshkx = —m @)

k=1
sinh(2n + 1)x
———dx

(c) Using the result given in (b), find / -
sinh x

sinh 7x

(d) Hence find / dx.

sinh x

Endnote

1. The rule is named after George Osborn who first introduced it in 1902. See: G.
Osborn, ‘Mnemonic for hyperbolic formulae’, The Mathematical Gazette, 2(34),
189 (1902).
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Trigonometric and Hyperbolic Substitutions

Nature laughs at the difficulties of integration.
— Pierre-Simon Laplace

As we have already seen, using an appropriate substitution to find an integral
is a very powerful technique of integration. Unfortunately, no systematic
procedure for employing such a method to find a given integral exists. Instead,
often a great deal of practice and insight is needed to recognise when to apply
a substitution and what its form should be.

Integrals containing square roots of quadratics can be transformed into a
sum or difference of squares, which then often yield to either a trigonometric
or hyperbolic substitution. That is, integrals of the form

/R (x, vax?+bx + c) dx,

where R is a rational function of x, can be reduced to integrals of the form
/R (u, Vtu? £+ m2) du,

where R is now a rational function of the variable u and can be found using
one of three trigonometric or hyperbolic substitutions as listed in Table 10.1.
It should be pointed out that the use of either a trigonometric or hyperbolic
substitution may not always turn out to be the best substitution to make, but
it can at least be tried for integrals of the form listed in Table 10.1. A further
complication is to determine which of the two types of substitutions ought to
be used. If either will work and will deliver an answer, which of the two types,
either trigonometric or hyperbolic, is the easiest or best to use? In general, one
tends to use the substitution corresponding to the functions one is most familiar
with and comfortable in using. Occasionally one type of substitution may prove

134



10 Trigonometric and Hyperbolic Substitutions 135

Table 10.1. Standard types of trigonometric and hyperbolic
substitutions used.

Trigonometric  Hyperbolic
Integral type substitution substitution

1. /R(u, mz—xz)dx u =msin0 u = mtanht
2. /R(u,\/mz—f—xz)dx U =mtan6 u = msinht

3. /ﬁ(u, x2—m2>dx u = msecH u = mcosht

to be slightly easier to use, and knowing which is easier is something that can
only be gained through experience in working with both substitution types.

We now consider a number of examples where we make use of various
trigonometric and hyperbolic substitutions.

Example 10.1 Find / Va4 —x2dx.

Solution As the expression in the integrand is of the form of an integral of
the first type, we try the trigonometric substitution x = 2sin 6. Since dx =
2cos § dO we have

/V4—x2dx = / V4 —4sin®6-2cos6dh = 2/v400529 -cos0do,
where the result cos? 6 + sin? @ = 1 has been used. On simplifying we have

/V4—x2dx=4/cos€-cos@d0:4/c0529d9 :4/_1+C20529 do

1
=26+§sin26+C =26 +sinfcosb + C.

Of course, the final answer for the indefinite integral needs to be written in
terms of x. To find cos 6 in terms of x, it is easiest if a right-angled triangle

containing the angle 6 such that sin 6 = 7 is drawn.

"L From the triangle we see that

x 4 — x2
cosf = i
2
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And as = sin™! (%) we finally have

/\/4—x2dx=25in_1 (g)+§\/4—x2+c. >
X
Example 10.2 Find [ ——dx.
Vx2—4

Solution As the expression in the integrand is of the form of an integral of
the third type, we try the hyperbolic substitution x = 2cosh¢. Since dx =
2sinht dt we have

2cosht

X
——dx = | ————-2sinht dt
/Vx2—4 V4dcosh®>t — 4
ht
:2/ C?Sht -sinht dt,
sin

where the result cosh?  — sinh? 1 = 1 has been used. On simplifying we have

X
—————dx =2 | coshtdt = 2sinht + C.
/ VxZ2—4 /

Writing the indefinite integral in terms of x, as x = 2 cosh ¢, for sinh# we have

/%2
) x4 —4
sinht = Vcosh?t —1 = ——.
2
Thus
x
/—dszx2—4+C. >
Vx2—4
Note that this example is a case where it is not necessary to use either a trigono-

metric or hyperbolic substitution. Instead, a substitution of u = x? — 4 could
have been used.

d
Example 10.3 Find / S
(- 1)3

Solution As the expression in the integrand is of the form of an integral of
the third type, we try the trigonometric substitution x = sec 6. Since dx =
sec 0 tan 0 d6 we have

dx sec 0 tan 0 sec 0 tan 0
/ L S / _ a9 / Y.
(x2-1)2 (sec2 0 —1)2 (tan? 0)2
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where the result tan @ + 1 = sec? 0 has been used. On simplifying we have

/ dx 2dx=/8609;an0dx=/ sec29 40
(x2—1)2 tan> 0 tan® 0

1 cos? 6 cos 0
/ cos@ sin% 6 / sin? 6

Now let u = sin 0, du = cos 0 df, which gives

d d 1 1
/—xgdx: —Z =——+4+C=———+C (sinceu =sinb).
(x2—1)2 u u sin 0

To find sin 6 in terms of x, we once again draw a right-angled triangle contain-
ing the angle 6 such that sec 6 = x.

% From the triangle we see that
x2—1 . Vx2 -1
sinf = .
5 x
1
dx X
Thus/—3dx=——+c. >
x2—-1)2 x2 -1

JXZ5 0
Example 10.4 Find / N2
X

Solution As the expression in the integrand is of the form of an integral of
the second type, we try the trigonometric substitution x = 3 tan 6. Since dx =
3sec? 6 df we have

/VX2+9dx_/v9tan29+9
X - 3tan 0

0 30
= 3/ i sec2 6 = 3] i dx.
tan 6 tan 6

Rewriting the secant term in terms of cosine, and the tangent term in terms of
sine and cosine, one has

2
/_deﬂ/; Mwﬁ/;d@.
X

3sec’0do

cos3 0 sinf cosZsin 6
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If in the numerator of the last integral we write unity as cos? @ + sin® 6, the
integral becomes

/«/x2+9dx_3/'c0529+sin29
X

cos2 0 sin 6
cos? @ sin 6
=3 —d0+3 | —————db
/00529sin9 + /COSZBSinG
deo sin 6
3/sin9+3/00529d9

:3/coseCGd0+3/ sin 0 deo.

do

cos2 0

The first integral is well known. The result is

/cosec@d@ = —In |cosec O + cotO| + C;.

In the second integral, let u = cos 6, du = —sin 6 df. So
in 6 d 1 1
/ = do = — —u=—+C2=—+C2 (since u = cos ).
cos2 0 uz  u cos 6
Thus

/X219 3
/x—+dx = —3In|cosecd + cotf| + — + C.
x cos 6

Astan 0 = x/3,cotf = 3/x,to find cosec 0 in terms of x, we once again draw
a right-angled triangle containing the angle 6 such that tan 6 = 3.

From the triangle we see that

1 Vx2+9

cosec) = —— = .
sin 6 x

3
VX249 34+ 4/x249
Thus/x—+dx= x2+9—3lnu+C. >
X X
d

Example 10.5 Find / al .
(x+1)2/x242x+5

Solution We begin by first completing the square for the quadratic term appear-
ing under the root. Here

24 2x+5=(x+1)72+4.
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So the integral can be written as

dx dx
/(x+1)2s/x2+2x+5_ (x+1)2/(x + )2 +4

As the expression in the integrand is now of the form of an integral of the second
type (in this case u = x + 1), we try the trigonometric substitution x + 1 =
2tan 0. Thus dx = 2sec? 0 df) and we have

/’ dx _/‘ 2sec? d 20
(x+1D2V/x2+2x+5 (2tan 0)24/4tan? 6 + 4
1 sec? 6 1 sec 6
4 [ tan2 0 sec § 4 [ tanZ 6

1 1 1
:_/‘cosé’dez )

4 sinZ @ - Z sin @
To find sin 6 in terms of x, we once again draw a right-angled triangle contain-
x+1
ing the angle 6 such that tan § = %

From the triangle we see that
x+1
x+1 sinf = ;
Vx24+2x4+5

d VxZ+2x+5
Thus/ a =Y tex +C. >
(x +1)2V/x2+2x +5 4(x +1)

Exercises for Chapter 10

Y Warm-ups

1
1. Consider the integral / V1 —x2dx.
0

The integral can be found using either the substitution x = sinu or x =
tanh u. It is, however, far easier to find the value of the integral by sketching
the region in the plane bounded by the curve, the x-axis, and the lines x = 0
and x = 1 and finding the corresponding area. Find the value of the integral
using this latter geometric approach.
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X Practice questions

2. By applying a suitable trigonometric or hyperbolic substitution, find the
following integrals.

(@) /\/25+x2dx (b) /\/x2—3dx © [d_x23
(1-x2)2

X2 JIT2 / dx
O [ @ [T 0| 5

EE PN R SEPA
o [T e O Emt 0 G

. x2 x+8 /X2 —1
_ k —d
(])/(1+X2)2dx ()/v64—x2 * (D/ x2+xdx

x3 d )C3 x3 d
Sl e G o= S et

3. Evaluate

@) /ﬁd—xdx ®) /z(xz—l)wt—dex
1 x24/x%2+38 1

1 dx 1 X2 d
e d _r
«:)fo o @ [ s

4. By completing the square first before using an appropriate trigonometric
or hyperbolic substitution, find the following integrals.

_ x+3 N/

(a)/mdx (b)/x 6x —x2 —8dx

(c)/d—x d /—x2 d
(2x2 + 4x —2)3 @ SZ—axt3

5. Using the indicated hyperbolic substitution, find the following integrals.

3
(a) /\/ﬁdx (x = 4cosht)
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(b) /x3\/16x2 +9dx (x = 3sinht)

(x = 2tanh?t)

Vio

6. Using the indicated trigonometric substitution, find the following
integrals.

(a) / dx (x = tan6)
1+ 2)«/1+x2 B
=tan0
— sinf
()/(2 x)\/l—xz (x=sin®)

(d) /ﬂdx (x = sin )
V1 —x2 -

7. If —1 < a < 1, use the substitution x = sin 8 to show that

[ dx _ 2
(1 +ax)V1—x2 V1—a?

1 X
x tan~ ! +a)i| + C.
|:«/1—a2 (l—i—«/l—x2

d
8. Consider the integral / ﬁ

(a) Find the integral using the hyperbolic substitution x = /2 sinh u.

(b) Find the integral using the trigonometric substitution x = /2 tan 6.

(c) Of the two substitutions, which do you consider made it slightly easier
to find the integral?

9. Using the substitution x = sin @, evaluate

@ fl =1 1—x dx
a an V— | —

-1 1+x) V1 =x2

1
X

(b) /

-1 (1 +x2)vV1—x2

1 2
10. Using the substitution x = tan 6, find / + s (1 + ) dx.
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X Extension questions and Challenge problems

11 (Gunther’s hyperbolic substitutions). This question develops a method
for finding integrals of the form

/ cos™ x sin” x dx,
where m and n are integers and m + n is an odd negative integer employing

one of two different hyperbolic substitutions.'

Depending on the form for this trigonometric integral, one of the following
two hyperbolic substitutions can be made.

TypE I: Let tan x = sinhu. Then d(tan x) = sec? x dx = coshu du, and

secx = 1 +tan2 x = V1 +sinh?y = coshu,

for —m/2 < x < /2. Also, since e* = coshu + sinhu it follows that
u = In(coshu + sinhu) = In [secx + tanx|. As the substitution is one-
to-one on the interval (—m/2, /2), it is only valid on this interval. The
substitution will, however, produce the correct antiderivative outside of
this interval provided absolute values with logarithms are used.

TypE II: Let cot x = sinhu. Then d(cotx) = — cosec? x dx = coshu du,
and

cosecx = \/1 +cot?2x = \/1 + sinh? u = coshu,

for 0 < x < /2. Also, since e* = coshu + sinhu it follows that u =
In(coshu + sinhu) = In|cosec x 4 cotx|. As the substitution is one-
to-one on the interval (0,7/2), it is valid only on this interval. The
substitution will, however, again produce the correct antiderivative outside
of this interval provided absolute values with logarithms are used.

As an example of the method, let us find the integral / sec x dx. We begin

/secxdx = /(cosx)_1 dx,

where m = —1 and n = 0. As m + n = —1 is a negative odd integer, a
Gunther hyperbolic substitution may be used. Write the integral as

sec x sec? x d(tan x)
secxdx = | secx - dx = dx = | ———.
sec x sec x sec x

by noting that
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Let tan x = sinhu, d(tan x) = cosh u, and sec x = sinh u. Thus

/secxdx:/COShuduzfdu=u+C
coshu

= In(coshu + sinhu) + C = In|tanx + sec x| + C,

since sinh ¥ = tan x and coshu = sec x, as expected.

Using a Gunther hyperbolic substitution, find the following integrals.
(a) / sec3 x dx (b) / tan x sec> x dx

(©) / tan®> xsecx dx  (d) / tan? x sec> x dx

(e) / cosec x dx () / cot? x cosec x dx

dx dx
=~ h s
® / sin? x cos x M / cos? x sin> x

A special function known as the complete elliptic integral of the first kind
is defined by

3 d
J((k)z/ MM o<k<l
0 1 —k2sin’u
(a) Find the value of K (0).
sin 260
k + kcos20°
For this substitution it can be shown that the limits of integration
change in the following manner. Whenu = 0,6 = 0, and whenu = %,
0=2z.
2

(b) Consider the following substitution of tanu =

2 2k
Using this substitution, show that K (k) = ——K | —— |.
sing this substitution, show that X (k) Tk (l—i—k)

Endnote

The method is so named after the American mathematician Charles O. Gunther
who first popularised it in his book, Integration by Trigonometric and Imaginary
Substitutions (D. van Nostrand, New York, 1907). See also: William K. Viertel,
‘Use of hyperbolic substitution for certain trigonometric integrals’, Mathematics
Magazine, 38(3), 141-144 (1965).
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Integrating Rational Functions by Partial
Fraction Decomposition

Unlike simple arithmetic, to solve a calculus problem — and in par-
ticular to perform integration — you have to be smart about which
integration technique should be used: integration by partial fractions,
integration by parts, and so on.

— Marvin Minsky

In this section we show how every rational function has a primitive among the
elementary functions. And what is truly amazing, there is a systematic way
of finding the primitive. We begin by recalling that a rational function f is a
function that can be written of the form

_ P
T o)’

f(x)

where P (x) and Q(x) are polynomials in x. The function f is said to be proper
if deg P < deg Q. Here deg P is the degree of the polynomial appearing in
the numerator, while deg Q is the degree of the polynomial appearing in the
denominator. If, on the other hand, deg P > deg Q the rational function is said
to be improper. If f is improper, synthetic division or polynomial long division
can be used to write the rational function as

_ P(x)
f(x) = A(x) + @

where A(x) is a polynomial and P(x)/Q(x) is a rational function that is now
proper.

We now consider the general problem of how to integrate any rational func-
tion that is proper. In Appendix A we show how every rational function that is

144
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proper can be decomposed into a partial fraction of the form

f(x) Lo Bijx + Cjj
g(x) ;Z(a1x+b)f ZZ(‘X x2+,31x+)/1)J

Any partial fraction decomposition then consists of a sum of terms of the

form
4
(ax + b)m’
and
Bx+C Bx C

@21 pr iy @i Br ) @it Br i)y

So the integral of any rational function that is proper reduces to finding integrals
of the following three forms:

A X C
/ (ax + b)m dx, / (ax? + Bx + y)" dx, and / (ax? + Bx + y)" dx

By completing the square, using a substitution, or performing simple algebraic
manipulations, each of these integrals can be put into one of the following stan-
dard forms (see Exercise 31 on page 260 of Chapter 18 for details):

n+1 /
/x”dx: Y +C, n#—1, g(x)dx=1n|g(x)|+C,
n—+1 g(x)

or

/ % = l tan_l (i) + C,
x<+a a a
which, as we can see, can all be readily integrated.

The integral of a rational function therefore yields rational functions, and
logarithmic and inverse tangent functions. The first is what we call the rational
part of the integral, while the second is known as the transcendental parts of
the integral.!

Recall that for any rational function that is proper, only one of four separate
cases need be considered to find a partial fraction decomposition. If you are not
familiar with this topic it is highly recommended you read through Appendix A
before proceeding any further.
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x
Example 11.1 Find | ———dx.
P /(x—2)(2x+7)
Solution Denote the integrand by f(x). As it is a proper rational function we
begin by finding the partial fraction decomposition for f. Since the denomina-
tor consists of two distinct linear factors, the form of its partial fraction decom-
position is
X A . B
(x=2)2x+7) x—-2 2x+7

The two unknown coefficients can be quickly found by applying the Heaviside
cover-up method (see Appendix A starting on page 321). When this is done one
finds

[

;
X 1 11

G- tT) x—2 T mt7

—

To integrate f, instead of being required to integrate the rational function
directly, we need only integrate each term appearing in the partial fraction
decomposition separately. Thus

/ X 2 dx 7 2
———dx = — + = X
(x—=2)2x +7) 11 ) x—=2 22 ) 2x+7

2 7
=ﬁ1n|x—2|+iln|2x~l—7|+C. >

3 4x -1
Example 11.2 Find f iy Y

x(x—1)3
Solution Denote the integrand by f(x). As it is a proper rational function we
begin by finding the partial fraction decomposition for f. Since the denomina-
tor consists of two distinct linear factors, one of which is repeated, the form of
its partial fraction decomposition is

x3—4x—-1 4 B C D

o1} x T xcit oo T ey

Clearing the denominator by multiplying throughout by x (x — 1)3 and collect-
ing like terms in x we arrive at

x?—dx—1=(A+B)x>+(-34-2B+ C)x*>+(B3A+ B-C + D)x — A.
After equating equal coefficients for x and solving, one finds

A=1,B=0,C=3,D=—-4.
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So the partial fraction decomposition for the rational function is

x3—4x—1_1+ 3 4
x(x—1D3  x  (x—-12 (x—13

/%“:/i—x”[wixmf“/(xixm
3 2

— In|x| - C. >
n - Tt e T

Thus

7

Example 11.3 Find | —dx.
P /(x+2)(x2 ¥3)

Solution The integrand is the partial fraction considered in Example A.4 on
page 318 of Appendix A where it was found that

7 1 x—2
(x+2)x2+3) x+2 x2+3

On rewriting the integral we have
7 d -2
/ ———dx = / * / il dx
(x +2)(x2+3) x+2 x2+3

dx 1 2x dx
= - = dx =2
x+2 2J) x243 x2+3

1 2
=In|x+2| - Eln|x2 + 3] - %tan_l (%)—i—C.

>

2x* —5x3 —3x — 1
Example 11.4 Find / al al al dx.
(x=2)(x2+1)

Solution Denote the integrand by

2x4 —5x3 —3x—1

IO ==+

As the degree of the numerator is greater than the degree of the denomina-
tor, the rational function is improper. Performing polynomial long division first
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we have

2x —1

x3—=2x2+x—2) 2x*—5x3 —3x—1
—2x* +4x3 —2x% 4+ 4x

—x3-2x2 +x-1
x3—2x2 +x-2

—4x?% 4 2x - 3.
f can therefore be rewritten as

4x% —2x +3
(x=2)(x2+1)°
For the remaining rational function, which is now proper, as the denominator
contains one distinct linear factor and one distinct irreducible quadratic factor,
its partial fraction decomposition will be of the form

4x%2 —2x +3 _ A +Bx+C
(x=2)(x24+1) x—-2 x241°
where A, B, and C are three unknown constants to be determined. To

find the constants, clearing the denominator by multiplying throughout by
(x —2)(x? + 1) yields

f(x)=2x—-1

4x2 —2x+3=A>+ 1)+ Bx(x —2) + C(x — 2).

Substituting obvious values for x the constants A, B, and C can be readily
found.

x=2:42)?%-2Q)+3=42*°+1) =A4=3

x=0: 3=4-2C =C=14-3=0

x=1:41)?-2(1)+3=24—B—-C =>B=24-C-5=1
The complete partial fraction decomposition for f is given by

2x* —5x3 —3x—1 3 X
=2x-1-—— —.
(x=2)(x2+1) x—=2 x241

So the integral becomes
2x4 —5x3 —3x—1 d 1 2
/x o dx=/(2x—1)dx—3/ x——/—xdx
(x=2)(x2+1) x—=2 2J x2+1

1
:xz—x—1n|x—2|—§1n|x2+1|+C. >
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§ Ostrogradsky’s Method

One of the greatest difficulties in integrating rational functions comes from
having to find a factorisation for the denominator of the rational function. A
method that finds the rational part of

P(x)
Q(x)
without having to find a factorisation for Q(x) and without having to decom-
pose the integrand into partial fractions, is known as Ostrogradsky’s method.”
If P(x) and Q(x) are polynomials such that deg P < deg Q then
PR, _ P [ Pa(x)

0(x) " Qi(x) 02(x)
Here Q1(x) is the greatest common factor of Q(x) and its derivative
Q'(x), while Q»(x) = Q(x)/Q1(x). The polynomials P;(x) and P»(x) have
degrees that are one less than the degrees of polynomials Q1 (x) and Q,(x),
respectively.

X,

dx. (%)

4x3 —3x2 -2
Example 11.5 Use Ostrogradsky’s method to find | ———— dx.
(2 +1)
Solution Here Q(x) = (x3 +1)2, Q'(x) = 6x2(x> + 1) so Q1(x) = x> +
1 is the greatest common factor for Q(x) and Q'(x). Also

O(x) (P +1)* 4
o - g1 oV Th

In addition, the degree of P;(x) will be at most 2, while the degree of P,(x)
will also be at most 2. So for this particular example we can write () as

02(x) =

/4x3—3x2—2 Ax2 4+ Bx +C /Dx2+Ex+F

———dx = dx.
(x3+1)2 x3+1 x3+1

Here A, B, ..., F are six unknown constants to be determined. Finding these

constants, and differentiating the above integral with respect to x, by the first
fundamental theorem of calculus we have

4x3 —3x2 -2 d (Ax2+Bx+C) Dx2+ Ex+ F

B3+ 12 dx X341 X3+ 1
_ (2Ax + B)(x* + 1) — 3x%(Ax? 4+ Bx + C)
N (x3 4 1)2
Dx?>+Ex+F

x34+1
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Multiplying through by (x3 + 1)? and collecting terms with equal coefficients
for x, one has

4x3 —3x2 -2 = Dx® 4+ (E — A)x* + (F —=2B)x*> + (D — 3C)x?
+QRA+E)x+(B+F).
After equating equal coefficient for x we find
A=0,B=-2,C=1,D=0,E=0,F =0.

So the integral we seek can now be expressed as

[4x3—3x2—2d 2x—1+/ 0 J 2x—l+c >
—_— X = — X = ——- .
(x3 4+ 1)2 x3 41 x3 41 x3 41

Exercises for Chapter 11

Y Warm-ups

1. Even if the integrand of an integral is a rational function, a partial fraction
decomposition may not always be necessary nor desirable in order to find
the integral. Integrate the following rational functions using methods other
than performing a partial fraction decomposition.

2x+1 X

"I Practice questions
2. (a) Find real numbers A, B, and C such that
13 A + Bx +C
(x+2)(x24+9) x+2  x2+4+4°

(b) Hence ﬁnd/ md}(

3. By employing a partial fraction decomposition first, find the following
integrals.

2x+3
”/(x+s>(x—2) ”/( i

10 X2—2x-3
4
(C)/(x—l)(x2+9) * (d)/x3+2x2+x+2dx
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4 5
(e)/ﬁdx (ﬂ/x+
x? —|—x+1
()/ x+1 ()/x4+1
) 5 x> + 36
—  d
() /(x2+4)(X2+9) X ()] fx2+36
4. Find

dx

x4 —5x3 + 12x2 = 21x + 35
@ [ .
x3 —3x24+4x—12
) /‘ dx
x4+ Dx+2)(x+3)(x+4)

x4

© / =0 =201 =301 =401 —5x) °*

2
2
5. If/ ———— dx = Ink, find the exact value of k.
0 x2 + 9x + 20

dx
6. By first performing the substitution u2 = 1 + e*, find / _—
yHP £ JTtex
7. By first performing integration by parts followed by a substitution, find the
following integrals.

(a) / In(1 + ¥/x)dx (b) / In(x + ¥/x)dx

1
1+ x

1 1 1 3(1 — x)3 1
—/ x3(1—x)3dx </ uabc </ x3(1—x)3dx.
2 Jo o l+x 0

1552 1553
(b) Hence deduce that <In2 < ——.
2240 2240

1
8. (a) By first showing that 3 < < 1for0 < x < 1, deduce that
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Ux4(1 —x)* 22
9. (a) Showthat/ a-0T, 2
0 1+X2 7

22
(b) Hence deduce that - > 7.

1
(c) By first showing that — < < 1for 0 < x < 1, deduce that

2 714 x2

x4(1—x)* 3 x*(1—x)*
2 T4 x2

<x*1—x)t

22 1 22 1
(d) Hence show that — — — <7 < — — ——.
7 630 7 1260

* Int 1 1
10. If j(x) = / ln—dt,x > 0, show that j(x) + j (—) = —In%x.
1 + 1 X 2

11. Rather than performing synthetic division or polynomial long division, by

. . . x2+1
manipulating the integrand instead, find 1 dx.
X
. . 5 x*+1
12. By adding and subtracting the term x“ to the numerator, find o1 dx
by

without having to use partial fractions.

13. Writing x* as [1 — (1 — x)]*, by expanding this term using the binomial
4
theorem, show that this can be used to find / (1)6—)3 dx without the need
—x

to use partial fractions.

14. Use Ostrogradsky’s method to find the following integrals.

Xy (b) [ dx
@ / (2 t+2x+22 (x2 + 1D*
dx 5x3 +3x —1
c — dx
()/(x3—1)2 ()/(x 343x + 1)3
. . . 3x —4
15. If f is a continuous function such that f (3 n 4) =x + 2, find
X

ff(x) dx.
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dx

16. Using the substitution ¥ = sinh x, ﬁnd/ _
cosh x + coth x

I Extension questions and Challenge problems

17. For a rational function of the form
1
[(x —a)(x = D)]*
where 7 is a positive integer greater than one, repeated application of the
identity

1 o 1 1
(x—a)(x—b) b—ua (x—a_x—b)’

may be preferred compared to the standard partial fraction decomposition
method for repeated linear factors, particularly when the order of the index
is low.

(a) As an example of this method, use it to show

1 1 2
(x2-1)2 [(x— D(x + 1)}

1 1 1 n 1 n 1
T4l (x—=D2 x—1 x+1 (x+D2]
dx
(b) Hence find m
18. In Exercise 44 of Chapter 6 an Euler substitution of the third type was used

to find an integral of the form / R (x, vax? +bx + c) dx, where R is

a rational function of x and v/ax? + bx + c. In this question we consider
an Euler substitution of the first type.

If the polynomial ax? + bx + c is such that a > 0, one may choose a sub-

stitution of the form vax2? + bx + ¢ =t £+ +/ax. Note here that either
sign may be selected.
dx

X+ VX2 +2x+2

19. A class of special functions known as the polylogarithmic function Lig(x)
can be defined recursively as follows:

e
Liss1(x) = / Lis@) 4,
0 u

Using an Euler substitution of the first type, find /
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Here s, known as the order of the polylogarithm, is any real number.

(a) Given that Li_»(x) = x(1 4+ x)/(1 — x)3, use the recursive definition
for the polylogarithms to find expressions for Li_; (x) and Lig(x), and
to show that

Li;(x) = —In(1 — x).

As Lij (x) is related to the natural logarithm, the polylogarithms can be
thought of as one of the simplest generalisations of the natural logarith-
mic function.

(b) Show that when s = 2 we have

Liz(x) = —/(;x Mdu.

u

This is the so-called dilogarithm function. Unlike the integrals that were
used to evaluate Li_j (x), Lig(x), and Lij (x), this integral cannot be
found in elementary terms.

20. Consider the integral / (p-|(-—xz))6' Here p(x) is a polynomial of degree at
X

most 5.

(a) Since p(x) is a polynomial of degree at most 5, the form for the par-
tial fraction decomposition for the rational function appearing in the
integrand will be

plx) A n Az n Az N Aq
x+2°% x+2 x+2?2 (x+2)3 (x+2)4
As Ag
+ (x +5)° + (x +2)8°

Here Ay, ..., Ag are constants. After multiplying through by (x + 2)°®
one obtains

p(x) = A1 (x +2)° + Aa(x +2)* + A3(x +2)°
+ As(x +2)* + As(x +2) + As. ()
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Show that on equating equal coefficients for x on both sides of the above
identity one obtains

XSIAl
4 5 1
Xl 1 2A1+A2
5 4
Xal 22A1+ 21A2+A3
2 1
5 4 3
XZZ 23A1+ 22A3+ 21A3+A4
3 2 1
5 4 3 2
1 4 3 2 1
: 27 A 2°A 274 2°A A
X (4 1+(3 2+<2> 3+<1) 4+ As
5 4 3 2
0 5 2 3 2
: 2°A 2°A 2°A 2°A
X (5 1+(4 z+<3> 3+<2) 4

1
+ <1>2‘A5 + Ag.

(b) If the degree of p(x) is small, the linear system for A4; (1 <i < 6)
found in (a) is relatively simple to solve.
5x 4+3

If p(x) = 5x + 3, use (a) to find mdx.

(c) If, on the other hand, p(x) is large (recall p is a polynomial of degree
at most 5), then the work required to solve for the six unknown coeffi-
cients is considerable. As an alternative to solving the linear system of
equations, if x = —2 is substituted into () one immediately finds

As = p(=2).

The question now is whether the other five unknown coefficients can be
found in a similar, simple way. The answer is yes. If one differentiates
(), followed by substituting x = —2, one finds

As = p'(=2).

By repeating the process of differentiating followed by substituting
x = —2, show that the four remaining unknown coefficients can be
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expressed as

@ (-2 3 (=2 (Coye)
PR G S e e SR i e
2! 31 41
AN C))
-5
(d) If p(x) = x> + 2x* + 3x + 1 use (c) to find

/x5+2x4+3x+1
(x +2)°6

Aq

dx.

Endnotes

1. Recall that a transcendental function is a function that does not satisfy a polynomial
equation, in contrast to an algebraic function. A transcendental function is
therefore said to ‘transcend’ algebra in that it cannot be expressed in terms of a
finite sequence of the algebraic operations of addition, multiplication, and root
extraction. Examples of transcendental functions include the exponential and
trigonometric functions and their associated inverse functions.

2. The method is named after the Ukrainian mathematician, mechanician, and
physicist Mikhail Ostrogradsky (1801-1862) who first formulated the method in
1845. The method is sometimes also known as the Ostrogradsky—Hermite method
after the French mathematician Charles Hermite (1822—-1901) who independently
rediscovered the method in 1872.
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Six Useful Integrals

Why, sometimes I’ve believed as many as six impossible things before
breakfast.
— Lewis Carroll, Alice in Wonderland

We now give six useful integrals with quadratics appearing in their denomina-
tors that are of the following two types:

/ dx / dx

—_ or —_—

ax?+bx +c vJax? +bx +c

Here a, b, and ¢ take on various values from the reals with a # 0. The six useful

integrals we wish to consider here in standard form are listed in Table 12.1.
It should be noted the first of these integrals may be written as

[t = () e () s

as can be readily verified by differentiating the expression containing the
inverse cosine function. The second and third integrals can be found using
trigonometric substitutions as follows. In the second integral, let x =
asecH,dx = asecOtanb db. Thus

asecBtan6 40 sec 0 tan 0

dx
= | ———— " _ = ————df
/«/xz—a2 a?sec? 0 —a? Vsec2 6 —1
=/sec9d9=ln|sec€ +tan 0| + Cy

X x2 —qg?
_+—
a a

=1In x—{—«/xz—az‘—lna—i—Cl
=In x+Vx2—a2’+C,

=1In + C;

157
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Table 12.1. Six particularly useful integrals.

Six useful integrals

a>0, |x|<a

G Q)

dx
2./—=1n‘x+ x24+a?%2, a>0
Vx? +a?
dx
3./—=ln‘ x2—a?|, 0<a<x
/%2 — a2

dx 1 _y/x
4./az+—xz—5tan (5), a;éO
5/ dx 11
] ——===—In

a?—x2 2a

dx 1
6. | =22 —
/xz—a2 2a n

as required. Here the constant term of Ina has been absorbed into the constant
of integration. For the third integral a substitution of x = a tan 6 can be used,
but as it is very similar to what we have just done for the second integral, it
will not be given here. Finally, the fifth and sixth integrals can be found using
a partial fraction decomposition.

We now consider some examples that make use of these six useful integrals.
The general strategy is to bring the integrand into a form of one of the six useful
integrals found in Table 12.1.

a-—+x
a—x

, a>0, |x|<a

xX—a
a>0, |x|>a

x+al

Example 12.1 Find /
P vz 9x2

Solution Writing the integrand in standard form before integrating, we have
dx dx 1 dx

/ Vitoe f o =3 / V@3 22

x + ‘/g—i—xz +C = %ln‘Bx—i—m‘—FC.

>

=—-In
3




12 Six Useful Integrals 159

The real utility of these six useful forms is for any integral containing a
quadratic term in its denominator that is of the type

/ dx / dx

—— or _

ax? +bx +c Vax? +bx +c

where a, b, ¢ € R such that a # 0 can be put into standard form by first ‘com-
pleting the square’. The method was already touched upon in one of the exam-
ples considered in Chapter 10 (see Example 10.5 on page 138). We now
consider this method more fully in the examples that follow.

d
Example 12.2 By completing the square, find / —x
VX2 —x)
Solution First, consider the quadratic term that appears in the denominator.
Completing the square we have

x2—-x)=2x—x>=—(x?>-2x)=—[x—-1D*>=1]=1—-(x—1)>2

So for the integral, we can write it as

dx . dx I i c
Se-n J oo =D+ g
Example 12.3 Find / _dx

(x+4(x +2)

Solution First, consider the quadratic term that appears in the denominator.
Completing the square we have

x+DHx+2)=x>+6x+8=(x+32-9+8=(x+3)>—1.

So for the integral it can be written as

dx dx
/ (x+4)(x+2)Z/m=ln‘x+3+m‘+c
=In|x+3+ VX2 +ox+8+C. R

dx
VaxTax +5

Solution For the quadratic term that appears in the denominator, on completing
the square we have

Example 12.4 Find /

1\? 1
4x2—4x+5=4(x2—x)+5=4|:(x—§) —Z:|+5=(2x—1)2+4.
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So for the integral one has

/‘ dx _/ dx
Va2 "4ax +5 Jex—1)2+4
Now letu = 2x — 1 so du = 2dx. Thus
ln‘u+\/u2 ‘+C
/s/4x2 4x +5 /\/u2+22 2
51n‘2x—1Jm/(2x—1)2+4(+c

1
Eln’2x—l+\/4x2—4x+5‘+C. >

dx
9x2 4+ 12x + 11°

Solution Again for the quadratic term that appears in the denominator, on com-
pleting the square one has

4 2\? 4
9x2+12x+11=9(x2+§x)~|—11=9|:(x+§) —§:|+11

=0Bx+2)%+7.

Example 12.5 Find /

So for the integral, it can be written as

/ dx B X
X2+ 12x+11 ) Bx+2)24+7
Now let u = 3x + 2 so du = 3dx. Thus

1 1 —1(")
= - = tan — | +C
/«/9x2+12x—|—11 3/ (e 37 V7

L 1(3x+2)+c S
= ——tan e .
37 V7

The six useful integrals in standard form can readily be extended to integrals
that contain a linear factor in the numerator, namely, forms of the type:

Ax + B Ax + B
z—dx or —dx,
ax?+bx +c Jax? +bx +c

with a, A # 0. In this case the linear term Ax + B is written in the form
a(2ax + b) + B, where o and B are two constants to be found. The idea here is
to make the numerator equal to the derivative of the quadratic term that appears
in the denominator. Doing so leads to two integrals. The first can be found using
a substitution while the second reduces to a standard form for one of the six
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useful integrals. We now consider a number of examples that demonstrate this
case.
5x —2

Example 12.6 Find / -
54 2x —x2

Solution We begin by rewriting the integral as
5x—2 5 3 —2x 5 (@2-2x)-¢
/X—dxz——/s—dx=—— gdx
54 2x —x2 2 /) 5+ 2x—x2 2) 5+ 2x—x2
5/ 2 —2x J +3/ dx
= —— ——dx -
2) 54 2x—x2 54 2x — x2
= 51 + 31
=50 2.
In the first integral, set u = 5 4+ 2x — x2, du = (2 — 2x) dx, so that
d
11=/—u=ln|u|+C1=1n|5+2x—x2|+C1,
u

since u = 5 + 2x — x2. The second integral can be reduced to a standard form
corresponding to one of the six useful integrals as follows.

542 —x2=—x2-2x—5]=—[(x—1)>—=1-5]=6—(x — 1)
Thus
I = / dx _/ dx _/ dx
2T s+ —x2 Je-x—-12 ) (Vor—(x-1)
f+ (x—1) V6+x—1
= 2 In 2.
—(x—1) —x+1
So for the original integral one has
5x—2 5 3 «/_~I-x—1
—— " _dx=—->In|5+2x —x?| + +C.»
/5+2x—x2 2 | | f V6—x+1
3 4
Example 12.7 Find _oxts
\/x2 +2x+5
Solution We begin by rewriting the integral as
3x + 4 dx—3 2x+3 (2x—i—2)—i—3
VxZ+2x+5 VX2 4+2x+5 VX2 +2x +5

3 2x + 2 / dx

) ——dx 4+ | ——
VX2 4+2x+5 VX2 4+2x+5

=1+ I,.
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In the first integral, set u = x2 4+ 2x + 5,du = (2x + 2) dx, so that

d
I = }_3I+cl_3\/x2+2x+ +Cy.

In the second integral it can be reduced to a standard form for one of the six
useful integrals as follows. By first completing the square in the denominator,

X2H2x+5=x+1)2—-14+5=(x+1)2+4.

Thus

X X
12: _—_—m —_——m—
VxZ+2x +5 (x + 1)2 422
=ln‘x+1+\/22—|—(x+1)2‘+C2
=ln‘x+1+\/x2+2x+5‘+C2.

So for the integral we started with, one has

3x + 4
%de=3\/x2+2x+5
Vx4 2x 4+

+1n‘x+1+\/x2+2x+5‘+C. >

4 —
Example 12.8 Find / \/ al dx
2+x

Solution Rationalising the numerator first, we have

/ / —x 4 —x I St
V 2 V2+x 4—x x 24+x)4—x)

v8+2x—x2

Now rearranging the numerator in the integral we have

/ 4—x 1 8 —2x 1 2-2x)+6
dx == | ——— —dx == | ———
X V8 4+ 2x —x2 2) 8+ 2x—x2

1 2—2x dx
| ——dx+3 | ——
V8 4+ 2x —x2 V8 4+ 2x —x2

=11+ I».
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In the first integral, setting u = 8 4+ 2x — x2, du = (2 — 2x) dx we have

I = ——\/_+C1 V8 4+ 2x —x2 4+ Cy,
\/_

since u = 8 + 2x — x2. In the second integral it can be reduced to a standard
form for one of the six useful integrals by first completing the square in the
denominator. Here

84+ 2x —x2=—[x2—2x—8=—[(x—1)>2=1-8]=9—(x — 1)?,
giving
d d -1
:3/—x=3/—x=38m—1(x_)+c2.
V8 4+ 2x — x2 V32— (x—1)2 3

So for the original integral one has

i —1
/ xd}C:\/8+2x—xz+3sin_1 = + C. >
2+ x 3

Example 12.9 If a # b, show that

2 . [+Aa—btanZ
- tan ' ———2 | +C, a > |b|
/ dx vaz—bz Va+b
a + bcosx 1 | Vb—atan3 + Vb +a L C |
n , a<|b|.
Vb2 —a? x/b—atan%—«/b—l—a

2 2

X x X x
Solution As 1 = sin® 3 + cos 5 and cos x = cos 5~ sin? > the integral

can be rewritten as

/ dx _/ dx
a+bcosx a(sm —+coszx)+b(coszi—sm2%)
dx

(a +b)cos? % + (a—b)sin® %

2x
sec 2

dx
(a+b)+ (a—b)tan* 3

Letting u = tan 5, du = % sec? 5 dx we have

/‘ dx du
a—l—bcosx_ (a+b)+ (a—bu?



164 How to Integrate It

Now if a > |b|, then the term (¢ — b) will be positive and the integral is

/ dx 2 / du
= du
a+bcosx a-—b NZEws 2
—— | +u?
2 va—=b _,[fuva—-b
= . tan ——— | +C
a—>b a+b vJa+b
2 _, [va—btanZ
= ———tan —_—= |+ C
va? —b? va+b

And if a < |b|, the term (a — b) will be negative so we write it as —(b — a)
where the term in the brackets is now positive. For the integral we now have

dx 2 du
/a+bc0sx=b—a[ 2 du
(«/b+a) 2

Vb —a
2 Vb —a In uvb—a -+ /b+a LC
b—a 2Jb+a |uvb—a—+b+a
1 | Vb—atani + Vb +a N
= n )
Vb2 —a? |Vb—atani — /b +a
and the result follows. >

Exercises for Chapter 12

Y Warm-up

1. By completing the square, write down all possible standard forms that the
integral

/ dx
Vax2 tbx +c¢
can be reduced to for various nonzero values of the coefficient @, b, and c.

I Practice questions

2. By completing the square where needed, find

dx dx
@ / 9_25x2 ®) / 4x2 36
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(c)/ dx ) /d—x
Vx2 -7 A3 —5x2
© / _dx © / _dx
V1 + 4x2 Vx(@—2x)
(2) /d—x (h) /d—x
Y] Brre ST
0) / _dx 0) / S
1 —3x —x2 J3x2—5x + 4
V5x 4 3x2 x24+2x+5
(m) / _ dx ) / 4
5+ 8x —4x2 /(x 4+ 3)(x + 4)
©) / _dx ®) [ _dx
S t3)(x=4) P G-
dx dx
@ /2— @) /—
x%+6x + 2 V/x2—6x + 13
3. Evaluate
@ / o dx ®) / . dx
0 V(x+1D(x+3) -1 4/1—=2x —x2
1 dx 0 dx
© /_1 2x2—3x+3 @ /_3 22x2+6x + 15

. [ dx
4. Find the value of « if /

b4
, xX2—4x+5 4

5. If a > 0 evaluate

2a 2a dx
(a)/ —2+a2 ()/ e (c)/a a2
X

6. (a) Using the substitution x = u?2, find / ————dx
x4 +2x2 413
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1
(b) Using the substitution x = —,

dx
ﬁnd/—.
U xvVx24+x—6

/1T— x2
7. By rationalising the numerator first, find / —x
- X
8. Ifa,b,c > 0 and 4ac — b? # 0 find
dx dx
@ | ——— b | V—
va+ bx + cx? va+ bx —cx?
© / dx @ / dx
a+ bx + cx? a4+ bx —cx?
9. Find
2—3x
b
(a)f492 ()/2+4x
1+ 2x / 1+ x
c d dx
()/v9x2+1 @ 1+ x2
2x — 2x +1
(e)/1+4x dx (f)[x2+2x+2
x—1 2x + 3
(&) f —————dx (h) /
VxZ24+2x -1 Vx2+2x 43
. x+1 . [ X
i ——dx
()/«/2x2+3x+ 0 x2+6x+15
10. Find the value of « that satisfies the equation
3
1
/ _oex+l T
2 — 6.X + 10 4
1 1 1
11. Using the substitution x = —, evaluate / - nr dx.
3u 1 —3x2+3x—1

12. By making use of the substitution x = 7w — u, find in terms of n

- .
/ X sin x —dx. n#0.
o m—1)n+1)+sin“x
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13. By making use of the substitution ¥ = tanh x, find

dx
/ sinh? x — 4 sinh x cosh x + 9cosh? x

2
14. (a) Find/ JEEZ
3—x
1
2
(b) Hence evaluate / v/ X dx
0 3—x

—? 4x where b #a,p,q.1f g =(a+b)/2 and
—Xx

q
15. Suppose that [
P

v [x- b—a)(r—6+33
p=Ga+b)4, showthat/ [x=a, _(-a)@-6+3V3)

I Extension questions and Challenge problems

16. (a) Use a suitable substitution to show that

X X
/ 1+ x2)J/T+x2  2+x)J/1+x2 *

(b) Using the result in (a) together with integration by parts, evaluate

/1 tan~!(+/1 + xz)
o (I1+x2)4/1 +x2

17. Let o € (0, 7).

1 _
(2) Find / YOY g
1 —2xcosa + x2

(b) Eval t/l dx
valuate .
11 —2xcosa + x2

18. If a # b, show that

2 —l(atan§+b)+c jal > |b|
an , a
i /a2 — b2 /a2 — b2
/a+bsinx 1 . atan—+b /bz_az +C. 1o <
. lal < |b].
b? —a? |atan3 + b+ Vb% —

19. In integral calculus texts from the nineteenth century a trigonometric func-
tion that was often found was the versed sine function. Denoted by vers x the
function was principally used in the field of navigation. Once considered an
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important trigonometric function, since the advent of electronic computers
and scientific calculators it has become much less significant.

The versed sine function is defined as vers x = 1 — cos x.
(a) Show that 0 < vers x < 2 for all x.

d
(b) Find Ir Vers Xx.

b
(¢) On the interval [0, ] an inverse to the versed sine function can be
defined, denoted by vers~! x. Show that

d L (X 1
el ()= — 0.
S vers (a) > > or a #

(d) Hence deduce that

/ dx )+ a#o
———— = vers - , a .
V2ax — x? a !

(e) By completing the square, show that

—a

dx L1 (X
[ Gz = () w e aro

(f) From (d) and (e) deduce that vers™ (i) = cos™! <a — x)-
a a




13

Inverse Hyperbolic Functions and Integrals
Leading to Them

Common integration is only the memory of differentiation ... the dif-
ferent artifices by which integration is effected, are changes, not from
the known to the unknown, but from forms in which memory will not
serve us to those in which it will.

— Augustus de Morgan

In this chapter the inverse hyperbolic functions are briefly reviewed before var-
ious standard types of integrals that lead to inverse hyperbolic functions are
considered.

§ The Inverse Hyperbolic Functions

From Chapter 9 you may recall that since the functions sinh : R — R and
tanh : R — (—1, 1) are both increasing functions on their domain, both are
one-to-one functions and accordingly will have well-defined inverses. Those
inverses are denoted by sinh™!x and tanh™! x, respectively. The function
cosh : R — [1, 00), however, is not one-to-one on its domain. To obtain an
inverse its domain must be restricted. By convention the domain of the hyper-
bolic cosine function is restricted to the interval [0, 00).

Since the hyperbolic functions are defined in terms of the exponential func-
tion, one would expect it would be possible to write each of the inverse hyper-
bolic functions in terms of the logarithmic function, the logarithmic function
being the inverse of the exponential function. This is indeed possible. For exam-
ple, to find an expression for the inverse hyperbolic sine function in terms of
the logarithmic function, set y = sinh™! x, then sinh y = x, or

ey —e Y

sinhy = — = X.

169
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Table 13.1. The six inverse hyperbolic functions.

Function Formula Domain Range
sinh™! x In(x + Vx24+1)  (—00,00) (—00, 00)
cosh™! x In(x + vVx2-1) [1,00) [0, 00)
1 1
anh ' x  —n (-1 (1.1 (=00, 0)
2 1—x
1 1 x+1
coth™ x 3 In 1 (—o0,—1) U (1,00) (—00,0) U (0,00)
X —
14+ +1—x2
sech™ x In (M) (0,1] [0, 00)
x
1+ 41 2
cosech ' x In (—H) (—00,0) U (0, 00) (—00,0) U (0, 00)
X

After multiplying throughout by 2e” and rearranging, the following equation
results:

X —2xe? —1=0,

which is quadratic in e”. On applying the quadratic formula, solving for e”
gives

e’ =x+vVx2+1.

Here, since e” > 0, the positive square root is taken. Taking the natural loga-
rithm of both sides of the equation gives

y =sinh ' x = In(x + vx2 + 1).

Inverses for the other five hyperbolic functions can be found in a similar
manner. These, together with each function’s associated domain and range, are
summarised in Table 13.1. In the table, where a plus and minus sign appear,
the positive sign is used for x > 0, while the negative sign is used for x < 0.
Graphs for all six inverse hyperbolic functions are shown in Figure 13.1.

Since the inverse hyperbolic functions can be expressed in terms of loga-
rithms, their derivatives can be readily found. For example, for the derivative
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y y
A A
3 tanh_l X 3 .
coth™ " x
2 2
1 cosh~! x 1
- X I - X
-2 —1 1 2 sech™ " x 2
1 —1
sinh™! x 2 2
-3 cosech™Lx |[ —3

Figure 13.1. The six inverse hyperbolic functions: sinh™!x, cosh™! x, and
tanh™! x (left) and coth™! x, sech™! x, and cosech™! x (right).

of the inverse hyperbolic sine function,

d _ d 1+x/V/x2+1 1

— (sinh ' x =—[ln(x+\/x2+l]= = .
ax )= & ) L+ Vx2+1  Vx2+1

The other five derivatives for the inverse hyperbolic functions follow in a similar
manner, the results of which are summarised in Table 13.2.

§ Integrals Leading to Inverse Hyperbolic Functions

From the list of derivatives for the six inverse hyperbolic functions it should
now be readily apparent which integrals lead to inverse hyperbolic functions.
For example, since

1
V142

j—x (sinh™' x) =

then

dx
——— =sinh'x+C =1n(x+ 1—|—x2>+C.
/ V1 + x2
More generally, for the first four derivatives for the inverse hyperbolic func-
tions, we summarise in Table 13.3 four important integrals that lead to inverse
hyperbolic functions. For brevity, the arbitrary constant of integration has not
been given.
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Table 13.2. Derivatives for the six inverse
hyperbolic functions.

Derivatives for the inverse hyperbolic functions

d 1
l.— (sinh™'x) = ——, xeR
Zx )=
d 1
2. — (cosh_lx) =—, x>1
dx x2_1
d
3. a(tamh_1 x) = T x| <1
d 1
4. Ix (COth_1 x) = T2 x| > 1
d 1
5. —(sech™'x) = ————=, 0<x<l1
dx( ) xv/1—x2
d 1
6. — (cosech™! x = x#0
dx( ) |x]|+/1 + x2 7

Comparing this table with Table 12.1 given on page 158 of Chapter 12, it
is quickly apparent each of the four integrals given in Table 13.3 that lead to
inverse hyperbolic functions provide alternative forms for the second, third,
fifth, and sixth integrals given in Table 12.1. Of course the final form given is
one of personal preference, as either form is correct. We now give a number of
examples of integrals that lead to inverse hyperbolic functions.

Table 13.3. Four important integrals leading to inverse hyperbolic
Sfunctions.

Integrals leading to inverse hyperbolic functions

= sinh™! (i) = ln(x + Va2 +x2), a>0
a

1/’ dx
) /a2 + x2
2/d—xzcosh*1(f>=1n(x+ x2—a2) O<a<x
. ,—-xz_Cl2 a K

d 1 1
3_/_xz=_tanh—1(f)=_m(““), a>0, |x| <a

a’?—x a a a—x

dx 1 1 (X 1 X—a
4. | ——— = ——coth <_>:_1n ., a>0,[x|>a
x2 —¢g2 a a 2a X+a
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Example 13.1 Find /
P V14 4x2

Solution Writing the integrand in standard form before integrating we have

X 1 X
/«/1+4x2 _5/,/(1/2)2+x2’

from which it immediately follows that

1
= —sinh~ ! (2x) + C. >

f\/1+4x2 2
dx

JEx+2)(x +4)

Solution For the term (x + 2)(x + 4), on completing the square we can write

Example 13.2 Find f

x+2)(x+4) =x>+6x+8=(x+3)>%—-1.

Setting v = x + 3, du = dx, we have

/ dx = / du _ _ cosh™lu 4+ C
VvV +2)(x+4) vu? —1
=cosh™!(x +3) + C. >

Example 13.3 (a) Find, expressed in terms of an inverse hyperbolic function,

X
the integral | ———.
elnegra[x2+4x_5

3 dx
(b) Hence evaluate / _.
5 X2+ 4x -5

Solution (a) On completing the square in the denominate, we have

/x2+4x— /(x—i—2)2

whose integral in terms of inverse hyperbolic functions we can write as

1 2
—gtanh_l( —3|_ )+C |x +2| <3

[ dx _
244x-5 )1 2
A 5coth—l(X;r )+c x +2| > 3.

(b) Since |x 4+ 2| < 3 corresponds to the interval —5 < x < 1, as this falls
within the interval of integration for our definite integral, the integral in terms
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of the inverse hyperbolic tangent function is chosen and gives
1 1
2 d 1 2112
/ st (2
X2 4+4x -5 3 3 5
1 5 1 1 5
=—tanh™' [ =) + =tanh ™' (0) = —=tanh™' [ = ],
3an (6)+3an (0) 3an c

since tanh™!(0) = 0. >

An inverse hyperbolic function may also arise from finding an integral when
a hyperbolic substitution is used. The next example gives an illustration of this.

Example 13.4 Find /
P V4 +x2

Solution Use a hyperbolic substitution of x = 2sinhu. As dx = 2coshu du,
we have

x2 4sinh? u - 2 coshu sinh? u - cosh u
——dx = du =4 | —— du,
V4 +x2 V4 + 4sinh? u coshu

since cosh? u = 1 + sinh? u, or

sinh? u du.

X2
x4 |

/ V4 + x?
Making use of the hyperbolic identity cosh2u = 1 + 2sinh? u, we have

%2
——dx = 2/(cosh2u —1)du = sinh2u —u + C.

/ V4 + x?

Writing this in terms of x, as sinh 2u = 2sinhu coshu from sinhu = 7 we

have

1
coshu = \/1 + sinh?u = 5\/4+x2,

and u = sinh~! (3)- Thus

/m 2\/4+x2—smh (;)—i—C. >

§ Integrals Involving Inverse Hyperbolic Functions

Integrals for the inverse hyperbolic functions can also be found. As was the case
with inverse trigonometric functions, they can be found using integration by
parts. In the next example, the integral for the inverse hyperbolic sine function
is given, with all other integrals for the inverses being found in a similar fashion.
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Example 13.5 Find / sinh™! x dx.
Solution Integrating by parts, one has

1
sinh‘xdxzxsinh_lx—/x-—dx
/ 1+ x2

The integral on the right can be found using the substitution u = 1 4 x2. As
du = 2x dx this gives

X

—dx— —«/_—i—C V14 x2+C.
V14 x2 «/_

Thus

/sinh_lxdx=xsinh_1x—\/1+x2+C. >

Exercises for Chapter 13

"I Practice questions

1. Find, in terms of inverse hyperbolic functions, the following integrals.

@ / _dx ®) / _dx
Vx2 =3 2+ 3x2

© / _dx @ / _dx
x24+6x+5 VX2 =2x +5

dx dx

©) /— () /—
Vx2 — 6x /x2% + 6x
) dx

2. (a) Flnd/m
5 dx
(b) Hence evaluate /0 o1

3. Show that

= tanh™ !
(a) / an (2)

(b) / 5 = coth™"(3) — coth™(2)
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1

d
4. (a) Show that — [tanh™'(Inx)] = —————.
(a) Show tha dx[an (Inx)] TR

dx

b) Hence find | ———.
®) /x(l—lnzx)

5. By using a suitable hyperbolic substitution, find

@ /¢x2+1dx ®) //;—Z_dx
x2 -1

V1 — %2
(c) / Vi +2)(x +4)dx ) /gdx
X
4
(e)/xzx/4x2+ldx (f)[x—dx
V14 x2
6. (a) Using the substitution 2x = 5 sinh ¢, show that
25 2
/ Vax2 + 25dx = §\/4x2 +25+ — sin”! (?x) e
(b) Using the substitution 2x = 5tan #, show that

25
/ Vax? + 25dx = > \/ax2 + 25 + Fin ‘Zx T Vax2 + 25‘ el

2

(c) The results in (a) and (b) appear to be different. Show that they are
indeed equivalent.

7. Find
(a) /tanhflxdx (b) /sechflxdx
© /xcosh_l xdx (d) /)ctanh_1 xdx,if x| <1

8. Using the substitution x = sinh? u, find / In (ﬁ + Vx + 1) dx.
9. Using a suitable substitution, show that

sinh x 1
— = dx=———coth ' (~/2coshx) + C.
/ 2cosh?x — 1 V2 ( )
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10. By making use of the substitution ¥ = tanh x, show that

! dx 1 (2
— 5 = tanh —tanh(1) ).
o 9+ 5sinh*x 6 3

1 dx a
11. If a # 0 show that = — .
o X2+4+2xcosha+1 2sinha

12. (a) Suppose x +a > 0,x + b > 0, and b > a. Find
d b
— cosh™! (x + ) .
dx X +a

(b) Use the result in (a) to find /
(x+1)

W
13. Find / sin(cosh™' x 4 1) dx.

" Extension questions and Challenge problems

14. Show that/ tanh (ln ﬁ) dx = Vx2—1—cosh™' x + C.

15 (The inverse Gudermannian function). The inverse Gudermannian func-
tion gd™! : (=%, %) — Ris defined by

X
gd_1x=/ secx dx.
0

(a) By using a Gunther hyperbolic substitution (see Exercise 11 on

page 142 of Chapter 10 for details), show that gd™! x = sinh™!(tan x).

(b) By showing that sinh™! 4 = tanh™! (%), use this to deduce
+u

that gd~! x = tanh™!(sin x).
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Tangent Half-Angle Substitution

The world’s sneakiest substitution is undoubtedly ¢ = tan 3.
— Michael Spivak, Calculus

Recall in Chapter 11 that a systematic method was given for finding any inte-
gral consisting of a rational function using the method of partial fractions. By
extension, any integral that is rational in any of the six trigonometric functions
can always be found by the use of a rationalising substitution that converts a
rational function of sine and cosine (only these two trigonometric functions
need be considered as the four remaining trigonometric functions can all be
expressed in terms of sine and cosine) into a rational function in terms of the
substitution variable used.

The standard rationalising substitution used to convert the integral of a
rational function consisting of sine and cosine into a rational function in terms
of the substitution variable is a ‘tangent half-angle substitution’. Other com-
monly used names for the substitution are a ‘Weierstrass substitution” and a
‘t-substitution’. The former is so named after the great German mathematician
Karl Weierstrass (1815-1897), though the substitution pre-dates him and was at
least known to Euler, while the latter takes its name from ¢ = tan %, the form of
the substitution typically used. The idea behind the method is that it allows one
to convert an integral for any rational function in terms of sine and cosine in the
variable x into an integral consisting of a rational function in the substitution
variable 7, which, as we know from Chapter 11, can always be found.

We should, however, add a word of caution. While a tangent half-angle sub-
stitution is always guaranteed to work,' leading to a rational function expres-
sion in terms of 7, the resulting integral often requires cumbersome partial frac-
tion decompositions. Consequently, a z-substitution should only be used as a
method of last resort in the event no other simpler alternative method or strategy
is found.

178
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Consider the substitution ¢ = tan 5. To find expressions for cos x and sin x
in terms of ¢ consider the following right-angled triangle.

From the figure we see that

X 1 X t
cos (—) = —— and sin (—) = —.
2 V1+12 2 V1+1?
From the double-angle formula cos 26 = cos? # — sin? 6 for the cosine func-
tion, if 6 is replaced with x /2, one has

cosx—cosz(x> sinz(x)—( ! )2 ( ! )2— -
- 2 2/ \Vi¥e2 Vi+iz) 14
And from the double-angle formula sin 260 = 2 sin 6 cos 6 for the sine function,
if 6 is replaced with x /2, one has

sin x —25in(£)cos(£) —2( ! )( ! ) = 2
2 2 VI+2) \ V1 +12 1412

Finally, for the differential dx, differentiating r = tan 5 with respect to x we
have

4 ()= (e (3) = e

d 2 2 2

giving
2
dx = dt.
1+ 12

So, in summary, if # = tan % then

. 2t 1—1¢2 2

sinx = ——, cosx = , =

1412 1412 1412

We now apply the ¢-substitution method to a number of integrals that are ratio-
nal functions in terms of the trigonometric functions.
dx

Example 14.1 Find / _
1+ sinx
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2t

Solution Using a ¢-substitution, namely ¢ = tan 5, we have sinx = e and
dx = 1+t2 dt.So
[l =2
l+sinx ) 14 -2 1+z2 t+ 12

14122

Evaluating the resulting integral, which is now a rational function of #, can be
done either by inspection or by using the substitution ¥ = 1 + ¢. The result is

dx 2 2
/ : = - +C=————-+C >
1 +sinx 1+t 1+tan5

dx

Example 14.2 Find / R —
2 4 sinx + cos x

2t

Solution Using a t-substitution, namely ¢ = tan 7, we have sinx = T

and dx =

cosx = dt. So the integral becomes

1+t2’ 1+t2

dx 1 2 dt
24 sinx +cosx t2'l-l—lzdt=2 242t +3°
2+ 1+z2+ 1+t2

after simplifying. Completing the square of the denominator one has

dx dt 2 (t+1
- =2 = ——tan — |+ C
2+ sinx + cosx t+D2+2 2 V2

t +1
= \/Etan_l (anT) + C. »

dx

Example 14.3 Find / T S———
3sinx —4cosx

Solution Once again when the ¢- substitution t = tan 5 isused we have sinx =
and dx =

cosx = —=dt. So the 1ntegra1 becomes

1+z2’ 1+z2 ’ 1+t2

/ dx / 1 2
- = . dt
3sinx —4cosx 3( 2t ) 4(1—[2) 1+

1+1¢2 1+ 12
_2/ di _/ di
N 32t) —4(1—12) ) 21243t -2

=/@p4m+a'
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Using the Heaviside cover-up method it can be readily shown that

1
Qt—1)(t+2) 2

Thus

dx 2 1 1 1
_ = = dt — - | ——dt
3sinx —4cosx 5 2t — 1 5 t+2

1 1
=—_-In)2t-1|—-Injt +2|+C
SInf2r — 1] =z Injr +2|+

11 2t —1 LC 11 2tan(3) — 1 e »
= —1In =—-In|——————— .
5 t+2 5 tan(3) + 2
Example 14.4 Find / Y
1+ sinx
. o . . 2t
Solution When the ¢-substitution ¢ = tan % is used, we have sin x = 52
2
and dx = —— dt so that the integral becomes
1 +¢2

2t

sin x 132 2 / t
—  dx = . dt =4 dt
/1+sinx * /1+1J2r’t2 1 +1¢2 (14124 2t(1 +¢£2)

t t
- 4/(1 e raTn YT 4/(:2 e

The partial fraction decomposition for the rational function appearing in the
integrand in terms of ¢ can be found. The result is

t 1 1

@+ D+ 202+1) 20+ 1)

Thus
sin x dt dt 2
—dx =2 -2 =2tan 'tr+ —+C
/1+Sinx . /12+1 (t+1)2 an th+1Jr
-1 X 2 2
= 2tan (tan—)—i——x—l- =x+—+C
2 1 + tan 5 1 +tan 5
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Exercises for Chapter 14

Y Warm-ups

1. Express the remaining four trigonometric functions tan x, cot x, sec x, and
cosec x in terms of ¢ if the substitution ¢ = tan % is used.

2. Using a purely algebraic method, as opposed to the partially geometric
method that was used in the chapter, find expressions for sin x and cos x in
terms of 7 when the substitution # = tan 3 is used.

"X Practice questions

3. By using a z-substitution find the following integrals.

(a) / cosec x dx (b) / d—x
sinx + tanx

(©) / d—x (d) / secx dx
1 4 sinx 4 cosx
4. (a) By using a z-substitution, show that

LR 2
/ e Ztan"1(3).
o S5—4cosx 3

ks
2 COS X

(b) Hence find the value of / S
o S—4dcosx

5. Use a t-substitution to find the following integrals.

dx dx
(a) — (b) _
34+ 4cosx 44+ 3cosx
cos X dx
C X d -_
()f3+4cosx ()/4sinx+3cosx
1+cosx sec x + tan x
()/ (f)/
l—l—smx 2secx + 3tanx
6. Evaluate
dx

T X + sinx 2
(a) dx (b) -
1+cosx 0 +/1 4+ cosx/sinx + cos x
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7. Using a t-substitution, if |a| > |b| show that
/’z’ d 2 Ja=b
= an —_—.
o a-+bsind a2 — b2 a+b
sin x

8. In this question we will evaluate the integral / ———dx in two dif-
34 4cosx

ferent ways.

(a) By using a simple substitution, show that

sin x 1
—dx=—In(3+ 4 C.
/3~|—4cosx X 2 n(3 + 4cosx) +

(b) Using a z-substitution, show that

si 1
/ Ld x=-In
3+ 4cosx 4
(c) The results found in parts (a) and (b) appear to be different. Show that
they are in fact equivalent.

2
1 + tan*(3)

- C.
7 — tan*(3) +

9. Use a z-substitution to find the following integrals.

secx + tan x x+51nx
(@) / dx (b) [

cosec X + cotx 1+ cosx

dx X+ cosx ,
© / 1 4+ tanx + sec x @ / 1+s1nx
1
3+2cosx
(a) Show that f is a monotonically increasing function on the interval
53l
(b) Using the result of (a), deduce that

10. Suppose that f : R — R is given by f(x) =

T /75 dx T
— < — < —.
24 I 3+ 2cosx 18

[SE]

d
(c) By using a ¢-substitution, find the exact value for / —x
z 3+ 2cosx

11 (The inverse Gudermannian function). The inverse Gudermannian func-
tion gd™! : (=%, %) — Ris defined as

X
gd_1x=/ sect dt.
0
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12.

How to Integrate It

By making use of a ¢-substitution, show that
-1 -1 x
gd™" x = 2tanh (tan 5) .

Consider an integral of the following form involving rational functions of
sine and cosine:

P(sin 0, cos 6)

QO(sinf,cos6)

When the ¢-substitution ¢ = tan g is made the above integral can always be
turned into an integral of a rational function of 7 as

_42
P(sin@,cos@)de_/ P(ﬁiz,ﬁ) o) 0
0

O(sinf,cosf) ( 2t 1—:2) 1412

1412 1442

As already noted in the chapter, the integral can always be solved, at least
in principle, using the method of partial fractions. Often the effort required
to do so may be considerable, depending on the work needed to perform
the partial fraction decomposition.

As an example of the considerable work that can arise as a result of directly
applying a ¢-substitution, consider the following integral

1_/ a6
] cos36 +2sin20 —5cos6’

which is a rational function of sine and cosine.

(a) By applying a 7-substitution, show that the above integral can be written
as

1 (1+13)?
I_Z/kﬂ—lﬂﬂ—t+02

Performing the partial fraction decomposition here would take consid-
erable effort.

(b) Instead of applying a ¢-substitution, show that the integral can be rewrit-
ten as

cos 0

I = ) . ) d
(—sin“ 6 + 4sin 6 — 4)(1 — sin” 6)

’

by manipulating terms in the integrand.



14 Tangent Half-Angle Substitution 185

(c) By using the substitution u = sin 6, show that the integral appearing in
(b) reduces to

1
=— | ————du,
/ 2—u)?(1—u?)
and is a far simpler partial fraction to decompose compared to the one
that would have needed to be done in (a) if a #-substitution was applied
directly to the integral.
(d) Find the integral.

I Extension questions and Challenge problems

13. Given the analogous nature of the trigonometric functions and the hyper-
bolic functions it should come as no surprise to learn that an analogous
hyperbolic tangent half-argument substitution can be applied to integrals
consisting of rational functions of hyperbolic functions. In this instance
the ‘hyperbolic z-substitution’ of # = tanh 3 is used.

(a) Show that for the hyperbolic #-substitution, we have

2t 1+ 12 2
sinhx = ——, coshx = +—, X = dt.
1—12 1—1¢2 1—12
(b) By using a hyperbolic ¢-substitution, show that
. sinh x (cosh x + 2

o [ _ sinhx( L
(1 + cosh x)? 3(coshx + 1)2
1 h 2 tanh 2

(i) / + sin Y dx = tanh~! 2 ) +1In(coshx +2)+ C
24+ coshx V3 V3

o+ Bcosx —l—ysmxd
a+bcosx + csinx

14. Consider the following integral I = f

When evaluated directly using a 7-substitution, integrals of this form can
be extremely tedious, as one can easily end up with a rational function of
degree four in the denominator.

As an alternative to a direct evaluation using a ¢-substitution, begin by writ-
ing the numerator as

o+ Bcosx + ysinx = p(a + bcosx + ¢ sinx)
d .
+qd—(a+bcosx+csmx)~|—r.
X

Here p, g, and r are constants to be determined and are found by equating
equal coefficients for cos x, sin x, and the constant term.
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15.

With the numerator in this form the integral can be rewritten as

dx

d
q —(a + bcosx + csinx)

a-+bcosx +csinx

r
+/ — dx,
a-+bcosx + csinx

and can be evaluated far more easily compared to a direct approach using a
t-substitution. The last of the terms appearing in the above integral is still
typically evaluated using a standard #-substitution.

As an example let us apply the method to the evaluation of the integral

i 2
/ sin x + dx.

cosS X + sinx
(a) Show that the numerator of the integral can be written as
sinx+2=(p+g)cosx + (p—gq)sinx +r,

where p =1/2,q = —1/2,and r = 2.
(b) Hence find the integral.

1 /1 — x2
Suppose that fr_; = —xdx, k e N.
-1 Vk—x
(a) Show that fo = 7.
1—x2
(b) By multiplying the integrand of f;_; by ——— show that
V1 —x2

Jfrc1=J1—(k—1)J2, k=22,

1 k _x2
where J; = / dx and
' 1 (WVk —x)v/1—=x2

! dx
Jr = .
g /—1 (Vk —x)V/1—x2

(c) Hence show that J; = 7 vk.
(d) By using the substitution x = sin 6 followed by a ¢-substitution, show

that
Jo = 2 tan~! k-1 + tan™! k41
2T k=1 k-1 Jk=1)|
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Vi —1
(e) Letu = .
vk —1
1 k+1
(i) Show that — = vkt , and
u k—1

(i) tan™! vk~ 1 +tan~! M -
V=1 Vi=1]

X
(f) Hence show that fy_, = 7vk — vk — 1 fork > 2.
100

(g) Hence find Z fre—1-

k=1

Endnote

1. A proof as to why this is the case can be found on pages 5658 of G. H. Hardy’s

The Integration of Functions of a Single Variable (Cambridge University Press,
Cambridge, 1916).
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Further Trigonometric Integrals

Integration is hard. Very hard.
— Words of warning given by the author to students
on meeting integration for the first time

The wealth of identities that exist for the trigonometric functions provide one
with plenty of scope in which to integrate expressions containing such func-
tions. Integrals containing trigonometric functions have already been consid-
ered briefly as particular examples arising from other integration techniques
and more systematically in Chapter 8. In this chapter we consider integrals of
this type in greater detail. Their evaluation depends on making use of known
trigonometric identities, coupled to, where needed, any of the methods of inte-
gration we have considered so far. We also introduce a set of rules, known as
Bioche’s rules, that can be used to help decide if an integral consisting of a ratio-
nal function of sine and cosine can be integrated using one of the trigonometric
substitutions of f = cosx,¢ = sinx, or f = tan x.

We begin by considering three examples whose integrals consist of trigono-
metric functions, which show some of the ideas and techniques that can be used
to find such integrals.

dx

Example 15.1 Find / _
1+ sinx

Solution In Example 14.1 on page 179 of Chapter 14 a ¢-substitution was used
to find the integral. Here we will instead show how it is possible to find the
integral by a combination of manipulating the integrand and using a number of
trigonometric identities.

d 1 1 —si 1 —si
/—x_dx=/ — S%nxdxzfﬂdx
1 +sinx 1+sinx 1-—sinx 1 —sin®x

188
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1 —sinx 1 1 sin x
= —— dx = 5= — . dx
cos? x COSZX COSX COSX

=/(seczx—secxtanx) dx =tanx —secx +C. »

i dx
Example 15.2 Evaluate —————dx.
o 9—5sin“x
Solution Taking advantage of the trigonometric identity sin? x + cos? x = 1,
the first term appearing in the denominator can be rewritten as 9sin® x +

9cos? x. Thus

T

4 dx 4 dx
) dx = ) . 5
o 9—5sin“x o (9sin” x 4+ 9cos? x) — 5sin’ x

_/Z dx _/Z dx
~Jo 4sin?x +9cos2x Jo cos?x(4tan?x + 9)

fﬁ sec? x
= —d.x.
o 94 4tanZx

Letu = tanx, du = sec? x dx while for the limits of integration we have when

x =0,u = 0and when x = %,u = 1. Thus

T dx U du 1 (' du
ez = | oS =0| Gua
o 9—sin“x o 9+ 4u 4Jo (5)?+u?

1T (2T 1 (2
= — | tan —_— = —tan =1. >
6 3 )], 6 3

.3 .2 .
-2 -2
Example 15.3 Find [ SIS X 2SN 2
sin“x 4+ 2sinx + 1
Solution We will initially proceed by factorising as far as possible before

manipulating the integrand. Doing so we have

/‘sin3x+sin2x—25inx—2d /sinzx(sinx—}— 1) —2(sinx + 1) J
_ . X
sin? x + 2sinx + 1 (sinx + 1)2

[ (sinx + 1)(sin x — 2)

d
(sinx + 1)2 o
) )
-2 —1)—1
2./51'11 X dx— (sm.x ) dx
sinx—+1 sinx+1

[ inx —D)(sinx + 1) — 1

; dx
sinx + 1
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d
:/(sinx—l)dx—/—x,
1 + sinx

=1 —1I,.
The first integral is readily found. The result is
I = —cosx —x + Cy.

The second integral was considered previously in Example 15.1 where it was
found:

I, = —secx +tanx + C,.
Thus
/sin3x+sin2x—2sinx—2d

— - X =—x—cosx +secx —tanx + C. »
sin“ x 4+ 2sinx + 1

§ Regles de Bioche (The Bioche Rules)

For integrals consisting of rational functions of sine and cosine (one only need
consider rational functions of sine and cosine as the four other trigonometric
functions can be written in terms of sine and cosine), it may be possible to find
such integrals using a substitution ¢ = ¢(x) where ¢(x) = {sin x, cos x, tan x}.
However knowing which substitution to use may not always be immediately
obvious.

In cases where the substitution to be used is not forthcoming, a set of rules
known as Bioche’s rules can be used to guide one towards the most effective
substitution to use.!

Writing the integral as

/ f(sinx,cos x) dx,

and referring to the term f(sin x, cos x) dx as a differential form, we test to
see whether or not the differential form remains invariant (unchanged) under
one of the three substitutions: x — —x, 7 — x, 7 + x. For the substitution
where the differential form is invariant one sets t = ¢(x), where ¢(x) is the
function cos x, sin x, or tan x that also remains invariant under the same sub-
stitution. That is, set t = cosx when x — —x since cos(—x) = cos x; set
t = sinx when x + 7 — x since sin(;x — x) = sin x; and set 1 = tan x when
X — 1 + x since tan(r + x) = tan x. The rules of Bioche are summarised in
Table 15.1.
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Table 15.1. The Bioche rules.

Change of  Resulting invariant Substitution
variable differential form to be used
X > —X f (sin(=x), cos(—x)) - (—dx) t =cosx

XH>mT—x f(sin(n — x),cos(m — x)) -(—dx) t=sinx

x>+ x  f(sin(r+x),co8(r + x)) - (dx) ¢ =tanx

Note it is the differential form, and not just the function corresponding to the
integrand, which must be invariant under the change of variable. One then
writes the integrand as a product between a term consisting of a rational func-
tion of only terms containing the substitution ¢(x) and its derivative ¢’(x). To
check these conditions the following trigonometric identities will need to be

recalled:
sin(—x) =—sinx, sin(wr —x) =sinwx, sin(r 4+ x) = —sinx
cos(—x) = cosx, cos(w —x)=—cosx, cos(mw + X)=—cosx.

In the event that more than one of the initial substitutions leaves the differ-
ential form unchanged, the differential form will be unchanged under all three
substitutions. In this case while any one of the substitutions # = cos x,t =
sinx, or ¢t = tanx can be used, it is usually more efficient to use the sub-
stitution ¢ = cos 2x since in all cases all three of the initial substitutions of
X — —x, T — x,and w 4 x leave cos 2x unchanged. On the other hand, if none
of the substitutions work, and in the event that no other alternative method or
strategy can be found, as a last resort a z-substitution can always be used. We
now give several examples that make use of Bioche’s rules.

. 1 —rcosx
Example 154 Find | ———
(1 + cos x) sin x

Solution We first observe that the integrand is a rational function of sine and
cosine. In this example the differential form is

1—cosx
sinx,cosx)dx = —— dx,
/ ) (1 + cosx)sinx

so on applying the Bioche rules we have the following:
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Change of variable Resulting differential form Invariant?

1 — cos(—x)
v (1 + cos(—x)) sin(—x) (=dx) Yes

1 —cosx

=——dx
(1 + cosx)sinx

1 —cos(wr — x)
v (1 4 cos(w — x)) sin(w — x) - (=dx) No

14 cosx

- _(l — cos x) sin x
1 —cos(m + x)

(1 + cos(m + x)) sin(r + x)
1 4+ cosx

X—=>m+x

- (dx) No

- (1 —cosx)sinx

We are therefore led to try a substitution of the form ¢ = cosx. As dt =
—sin x dx we rewrite the integrand as the product between a rational function
consisting of cos x terms and a single sine term. Thus

/ 1—cosx 1 —cosx sin x
x = — . ——dx
(1 + cosx)sinx (1 +cosx)sinx sinx
(1 —cos x) sin x
(1 + cos x) sin” x
. (1 —cosx)sinx
(1 4+ cos x)(1 — cos? x)
(1 —cosx)sinx
(1 + cosx)%(1 — cos x)
sin x
=] ——d
/(1+COSX)2 Y
Now lett = cos x, dt = —sinx dx so that
1-— dt 1 1
/ cosx o _ di 1oL o,
(1 4 cos x) sinx 2t 1 + cos x
. dx
Example 15.5 Find [ ————.
1+ sin”x
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Solution In this example the integrand is a rational function of sine only, with
a differential form given by

dx

sinx,cosx)dx = ————.
s ) 1 + sin® x

Applying the Bioche rules to this differential form we have the following:

Change of Resulting differential form Invariant?
variable
1 1
X = —X — S (dx)=———5—dx No
1 4 sin“(—x) 1 4 sin” x
1 1
X 1T—X (—dx) = ———dx No

1+ sin2(r — x) 1 + sin® x
1 1

——— - (dx) = d Yes
1 + sin®(7 + x) (@x) *

XH—>m+x =——
1+ sin” x

We are therefore led to try a substitution of the form ¢ = tanx. As dt =
sec? x dx we rewrite the integrand as the product between a rational function
consisting of tan x terms and a sec? x term. So

dx 1 sec? x sec? x
T T =
1 + sin” x 1 +sin®x sec?x sec? x + tan® x

sec? x /‘ sec? x
= dx = | ———dx.
(1 + tan? x) + tan? x 1 + 2tan? x

Now let f = tan x, dt = sec? ¢ dt so that

/ dx [ dt 1 / dt
= d_x = - _—
1 + sin® x 1+ 212 2) (1/V2)2 + 12

L
V2

1
= — tan_l(tx/z) +C = tan_l(x/ztanx) +C. »

V2

2
Example 15.6 Find / _kex
sec x + tanx

Solution The integrand can be converted into a function consisting of sines
and cosines only. Noting that

sec? x 1 1 1

secx +tanx cos2x 1/cosx +sinx/cosx  cosx(l 4+ sinx)’
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the integrand is therefore a rational function of sine and cosine. In this case the
differential form is given by

dx

inx, dx = ————.
f(sinx,cos x) dx cosx (1 sinx)

Applying the Bioche rules to the differential form we have the following:

Change of variable Resulting differential form Invariant?
1 (~dx) N
X > —X - (—dx 0
cos(—x)(1 + sin(—x))
B dx
cos x(1 —sinx)
1
— - (—d Yo
vy cos(r — x)(1 + sin(wr — x)) (=dx) e
. dx
~ cosx (1 + sinx)
1
-(d N
Xy cos (1 T s+ 1) @ 0
dx

_cosx(l — sin x)

We are therefore led to try a substitution of the form ¢ = sinx. As dt =
cos x dx we rewrite the integrand as the product between a rational function
consisting of sin x terms and a single cosine term. So

/ sec” x d / dx / 1 cos x
—_— —dx = — .
sec X + tan x cos x(1 + sin x) cosx(l +sinx) cosx

COS X cos x
—/ 5 / — - dx
cos x(1+s1nx) (1—sin” x)(14sinx)

/ COS X d
= .x
(1 —sinx)(1 + sinx)?

Now lett = sinx, dt = cost dt so that

/ sec? x / dt
—dx = — .
secx + tanx (1=0)(1 +1)?
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The resultant integral can be found by employing a partial fraction decompo-
sition. For the integrand, using partial fractions, it can be readily shown that
1 1 1 1
= + + .
1-0Q+0%2 40 -1 40 +1) 201412

Thus

/ sec? x 1/‘ dt 1/ dt 1/‘ dt

—_ dx = - _ 4 = —_ 4+ - [

sec X + tan x 41—t 4) 1+t 2J) (1+1)?
1

1 1
=——MIn[l—t|+-In[l+t[—-—+C
gt gt = sa==s +
1 1+ sinx 1 i, >
= —In — .
4 |1—sinx 2(1 + sinx)

The final two examples give situations where the differential form is not
invariant under any of the transformations and then where it is invariant under
all three transformations.

. sin x
Example 15.7 Find / —_—
1 +sinx

Solution The integrand is a rational function of sine only with differential form
sin x

f(sinx,cosx)dx = ———

1 4 sinx

Applying Bioche’s rules to the differential form we have the following:

Change of Resulting differential form Invariant?
variable
sin(—x) sin x

X > —X ———— (—dx) = ———dx No

1 + sin(—x)) 1 —sinx
iy @0 gy oo sinx No

1 + sin(wr — x)) 1+ sinx
XH>m+x sin(z + x) (dx) = Sy dx No

1 + sin(w + x)) ' 1 —sinx

As the differential form is not invariant under any of the transformations,
Bioche’s rules tell us the integral cannot be found using any of the substitutions
t =cosx,t =sinx, or t = tan x. In the event no other alternative method is
seen, as the integral is a rational function of sine, it can always be solved using
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a tangent half-angle substitution (as was done in Example 14.4 on page 181 of
Chapter 14). >

cos x sin> x

Example 15.8 Find / ————dx.

1 — sin® x cos? x
Solution As the integrand consists of a rational function of sine and cosine,
Bioche’s rules can be applied. On doing so we have

Change of variable Resulting differential form Invariant?

cos x sin® x

X > —X — dx Yes
1 — sin” x cos? x
cos x sin® x
XH—>mT—x ——————dx Yes
1 —sin” x cos? x
cos x sin® x
X7+ x —dx Yes

1 — sin? x cos? x

As the differential form is invariant under all three change of variables, the
substitution # = cos 2x can be used. As dt = —2 sin 2x dx we rewrite the inte-
grand as the product between a rational function consisting of cos 2x terms and
a single sin 2x term. In doing so we start by writing the integral as

cos x sin x sin? x - sin x cos x
————dx = dx

1 — sin® x cos? x 1 — sin? x cos? x
Recalling
. sin 2x .5 1 —cos2x 5 1+ cos2x
sinx cos x = > sin“ x = — and cos”x = —

the integral can be rewritten as

. 3 1 1—cos2x
[y g L[ ) dteosn)

1— sin2 X cos2 x 4 1— (1—c§s2x) (1+c§s2x)

Setting ¢ = cos 2x gives
.3
1 1—¢ 1 1—1t
/—Cofxzsm = dx =——/ dt =——/ _di
1 — sin® x cos? x 2) 4—Q-=0)(1+1) 2) 3+1¢

_1/ dt+1/ L
T2 342 2) 3427
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Each of these integrals is now in standard form and can be readily found. The
result is

.3
cos X sin” x 1 cos2x 1
—  dx=———tan ' == ) + ~1In(3 + cos?2x) + C.
/1—sin2xcoszx 23 ( V3 ) 4 ( )

To finish this section we give a few more miscellaneous examples of inte-
grals containing only trigonometric functions that illustrate other possible ideas
for tackling such integrals not considered so far.

ind ins
Example 15.9 Find / SIAX A sin>x dx.
2cos3x + 1

Solution In finding the integral we will make use of the following sum-to-
product identity:

. . . (0—¢ O+¢
sinf —sin¢@ = 2sin 2 cos —

To find this integral our general strategy is to try and remove the term in the
denominator. We will do this through a suitable factorisation. As the denomi-
nator contains a cos 3x term, we need to add such a term into the numerator.
Observing that (54 1)/2 = 3 and (4 4+ 2)/2 = 3, as each of the numerical
factors of 3, 4, and 5 appear in the arguments of the trigonometric functions, it
suggests that the following two sum-to-product identities be used:

sin5x —sinx = 2sin2xcos3x and sin4dx —sin2x = 2sinx cos 3x.

Now, on rewriting the integral I we have

/ /’ (2sinx cos 3x + sin2x) + (2sin2x cos 3x 4+ sin x) d
= x

2cos3x + 1
/ 2 cos 3x(sin x 4 sin2x) + (sin x + sin2x) J
= X
2cos3x + 1
2cos3 1)(si in2
:/( cos 3x + 1)(sin x + sin2x) dx:f(sinx+sin2x)dx,
2cos3x + 1

giving

/ sin4x 4+ sin 5x

1
2cos3x 1 dx:—cosx—50082x+C. >
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Example 15.10

1 1 <
(a) Let f(x) = ED" (x) = > + Z cos kx. By multiplying f, (x) by 2sin 5
k=1
and evaluating the resulting finite sum, show that

sin(n + %)x

Dy(x) =1 +2Zcoskx = ()

k=1

The collection of functions D,,(x) is known as the Dirichlet kernel® and has
many, very important applications in the field of mathematical analysis.
sin(2n + 1)x

—dx.

(b) Using the result given in (a), find / -
sin x

Solution (a) On multiplying f, (x) by the term 2 sin 5 one has
X X X
2 sin Ef,,(x) = sin > + 2sin 0 ,; coskx

n
= sin% +kZIZCoskxsin;

= sin > + [2cos xsin > + 2cos 2 sin 5. +

_sm2 coS X sm2 cos xsm2
X

---+2cosnxsm5].

On applying the following prosthaphaeresis formula
2cos Asin B = sin(A + B) —sin(4A — B),

to each term appearing in the square brackets, one has

2 sin al Ju(x) = sin al + | { sin 3 sin al + [ sin >x sin 3
- = sin — in — — sin — — —sin —
27" 2 2 2

2 2

n . Ix . 5x n

sin — — sin —
2 2

4 (sin (nx — %) — sin (nx — 3%))
+ (sin (nx + ;) — sin (nx — %))] .

The type of sum we have here is an example of a felescoping series. Here we
can see that all the terms in the square brackets will cancel out, except for the
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—sin 5 term in the first bracket and the sin(nx + 3) term in the last bracket.
Thus

25in £ (6) = sinZ + [ —sin + sin (0 + 2 = sin(n+
Sln2 n(X —Sln2 Sln2 sy n 5 X|=Ssm{|n 5 X

sin (n + 3)x

: X
2s1n5

= fu(x) =

)

or
sin(n + %)x

X
SlIl2

n
Dy(x) =1 —i—ZZcoskx =
k=1

as required to show.
(b) Letting u = 2x in the integral, as du = 2 dx we have

/‘ sin2n + 1)x 1 / sin(n + 1)u

sin x 2 sin %

du

1 n
5/ |:1 +ZZcosku:| du

k=1

(using the result from (a))
1 n
=§[du+2/coskudu
k=1
u "1
= §+kz_:zsmku+c

n
1
:x+ZESin2kx+C. >
k=1

Exercises for Chapter 15

Y Warm-ups
. L Z sin(2017x)
1. Using the result given in Example 15.10, evaluate ——dx.
0 S x
2. By exploiting double-angle formulae for sine and cosine, find

/ 4cos? x +cosx —2
sin® x (1 4 2 cos x)2




200 How to Integrate It

X Practice questions

3. Find the following trigonometric integrals.

(a) / dx cosec? x
14 cosx (b) cot? x
©) / d_xz (d) f sin® x tan x dx
sec x tan” x
cos 2x cosZ x
©) / /
cos? x ® 1+ Smx
. cos 3x
(g) [ tanxsin2x dx (h) g
cos
sec x . dx
() / )] / _—
secx+1 sin x + tan x
(3] / sec x sec 2x dx 0 / sec? *d
tan2 x
sin 8x
| o [
sin x sinx + 2cosx
cOs” X sin x
—d
©) /1+sm X ®) /(l—l—smx)cosx .
tan? x COS X
d
@ / —tan? x © / (sinx + cos x)2 x
5 4
(s / COSOX F COs X dx ) f sec 2x cosec 4x dx
1 —2cos3x

) / tan” ! x + tan"*! x) dx,n#0

sin? x — 4sinx cos x + 3cos? x
()/ dx

sinx + cos x

4. (a) Find / _ Y

2sin?x — 1
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(b) Using the substitution x = sec 6, together with the result found in (a),
show that

/ dx 1 ] V2Vx2—1—x L C
= n .
(2=2)Vx2—1 2v2 |[V2V/x2—1+x
. 2
. Consider the integral / de.
sin x + Ccos x

s . CcOos X — sinx .
By multiplying the integrand by the term —————, use this to show
hat cos X — sinx
tha

sin? x cos x 1 1 .
———dx = —In|sec2x + tan 2x| — — sin 2x
sinx + cos x 8 8

1 1
+ §1n|0052x| — gCOSZX + C.

. (a) If a # b, find real numbers A and B such that
sin x _ A " B
sin(x —a)sin(x —b)  sin(x —a)  sin(x —b)’

(b) Use the result found in (a) to find / - sm)'c dx.
sin(x — a) sin(x — b)

. Find the following trigonometric integrals using the indicated trigonomet-
ric substitution. Note it may be necessary to manipulate the integrand first
before the substitution is made.

(a) / o5y dx (u = sin x)

6 + 2sinx — cosZ x

sec? x
(b) —_— (u = sec x + tan x)
(secx + tanx)2
sin? x
/ 3—dx (u = tan x)
cos* x + cos x sin” x
sin 2x .
(d / (u = sinx)
1 —sin® x
cos? x
e) / dx (u = cotx)
sin? x + 4sin x cos x
(f) | sinx sec? (2x)dx (u = cosx)
1007
. Evaluate V1 —cos2xdx.
0
E dx

. Consider the integral / - — -
0o cos2x +sin2x + 5sin” x
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(a) Using the substitution ¥ = tan x, show that

T

4 dx 1 —1 (1
- —— = 5 |tan (3) —tan —11.
0o cos?2x +sin2x + 5sin“x 2 2

(b) Letz = (1 +2i)- (1 + 3i) where z € C.
(i) Express z in the form a + ib where a,b € R.

3
(ii) By finding arg(z), show that tan~!(2) + tan"!(3) = Tn
T dx T
(c) Hence deduce that - —— =5
o cos?2x +sin2x +5sin“x 8

10. Let / =/«/tanxdx and J =/«/cotxdx.

(a) Show that
I +J = +/2sin""(sinx — cosx) + C,
and
I —J = —+/21n|+/sin2x + sinx + cos x| + C.

(b) Hence deduce that

1
Jtanx dx = —
/ V2
1
— — In|«/sin2x +sinx +cosx| + C,
V2

sin~ ! (sin x — cos x)

and
1
V2

1
+ Eln +/sin2x + sinx + cosx| + C.

sin~!(sin x — cos x)

/ Jeotx dx =

11. (a) Find / tan(x — a) tan(x — b) dx, a # b.
(b) Hence find / tan®(x — a) tan?(x — b) dx, a # b.

12. In Example 15.8 the integral was found using Bioche’s rules. In this exam-
ple the differential form was invariant under all three of the initial sub-
stitutions of x — x, 7w — x, and & + x. In such a case it is usually more
efficient to find such an integral using a substitution of # = cos 2x as the
rational function in ¢ that the rationalising substitution produces tends to
lead to integrals that are less tedious to find. However, as was pointed
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out, integrals where the three initial substitutions remain unchanged can be
found using any of the three substitutions # = cos x,t = sinx,or¢ = tan x.
Find the integral in Example 15.8 using each of the three substitutions of
t =cosx,t =sinx,andt = tan x.

13. If a € R find

()/sm(x ) /‘cost—cos2a dx

sin(x + a) cosx —cosa
© / sinx — sin 2a dx ) / tana — tan x dx
sinx — sina tana + tanx
() / cos(x +a) ® / sin(x —a)
cos(x — a) sm(x T a)

14. Using a substitution of u = cot x, find the value of

T

2 dx

x sin? x(sin? x + 1)(sin® x +2)

S

3 sin(2n + 1
15. Let [, = / W—+))Cdx where n € N.
0 sin x
(a) Show that I,, — I,,_; = 0.
z sin(2n + 1)x T

(b) Hence show that / ——dx = —.
0 sin x 2

16. Let [ —/nwdxwherenel\l
. n = — .
0 SIH(E)

(a) Show that I, — I,, = 0.

7 sin(nx) cos (%)
—————22dx =m.

(b) Hence deduce that /0 “n ( % )
17. If a — b # nwk,k € 7Z, show that

dx 1 sin(x + a)

/ sin(x + a) sin(x + b) - sin(a — b) n sin(x + b)

cos(2k — 2)x — cos 2kx

+C.

18. (a) Show that sin x sin(2k — 1)x = > ,k eN.
n .2
(b) Use the result in (a) to show that Z sin2k — )x = SH? nx.
sin x

k=1
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-2
(c) Using the result in (b), ﬁnd/ SH? ™ dx.
sin x

™ sin? 4x
(d) Hence deduce that / -
o sinx

1— 2
19. (a) Ifa # 0, find / ¢

dx.
1 —2acosx + a?
(b) Hence find / ¥ TCosX

dx.
1 — 20 cosx + o2

352
X=—.
105

T

. . 2 dx
20. Consider the integral /
0

1 + cosasinx’
(a) Evaluate the integral if « = 2nm, where n € Z.
(b) Evaluate the integral if o« # nmw, where n € Z.

d
21. 1f J, =/—)C

sin” x + cos” x

22. Given that /
0

J

23. In this question we will find the value for the definite integral

find J, whenn = 1,2,3,4, and 6.

B

tan™ ! (sin® x) dx = y, find the value of

[SE]

tan~ ! (1 — sin” x cos? x) dx, in terms of y.

2
/ x cot x dx and consider one consequence stemming from this result.
0

(a) Begin by writing the integral as

I

Z I z
/ xcotxdxz/ xcotxdx-i—/
0 0

xcotxdx.

Bl

4
. o T . .
By making a substitution of x = — — u in the second integral on the
right, show that

T

2 T
/ xcotxdx=—1n2+/
0 4

T
T T
xcotxdx — / Xtanx dx.
0 0
%
(b) Hence deduce that

xcotxdx = zln2.

(c) Starting with the result given in (b), using a suitable substitution,
Lgin™!x
evaluate
0

dx.
X
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24. (a) By using integration by parts, show that
-1 -1 1 2
cot " xdx = xcot x+§1n(l+x)+C.

(b) By writing down the angle sum identity formula for tan(c + ), show
that

cotacotf — 1

t =
cot(er + f) cota + cot 8

1
(c) Use the result in (b) to show that cot ' a—cot™! B= cot™! (a'B +,3 )
a —_—
(d) Hence find f cot '(x? + x + 1) dx.

X Extension Questions and Challenge problems

20082 X +2
25. Find / 2OSXEZ

sin” x
dx

26. For all values of a € R, ﬁnd/ _
1 +a?tan? x

27. Using sum-to-product identities for the trigonometric functions, find

cos5x —cosdx sin5x — sin4x
(a) / dx (b) / dx

1 —cos3x 1+ cos2x

28. Use an appropriate substitution to evaluate

/§ (sin® x — cos® x — cos? x)(sinx + cos x + cos? x)° 4
x

z sin’ x cos? x

sin® x cos3 x

29. Letlz/‘ﬁdxansz/ﬁdx.
Sin” X — COS” X SIn” X — COs° X

(a) Show that I — J = x + Cj.
(c) By making use of the substitution ¥ = sin x — cos x, show that

sinx — cos x
+ C,.

1
I+J=-1
+ 3n

[3 — (sin x — cos x)2]?

(d) Hence deduce that

+C7

/ sin® x X 1 I sin x — cos x
sin3

x —cos3 x ) + 3 |[3 = (sinx — cos x)2]2
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and

/ cos? x J X n 11 sin X — cos X
——dx=——+-In y
sin® x — cos3 x 2 3 |[3—(sinx —cosx)2]?

+C.

(a) Let Sp(x) = sinx + sin2x + sin3x + --- + sin(n — 1)x.
By multiplying S, (x) by the term 2sin 5 and summing the resulting
telescoping series, show that

n—1
-1
Sn(x) = Zsinkx:Zsin%sin (n )x.

2
k=1
(b) Let C,,(x) = cosx + cos2x + cos3x + --- 4+ cos(n — 1)x.

By multiplying C,,(x) by the term 2sin 5 and summing the resulting
telescoping series, show that

n—1
—1
Cu(x) = Zcoskx = ZCos%sin (n )x.

2
k=1
(c) Hence deduce that

/ sinx + sin2x + -+ 4 sin(n — 1)x
cosx + cos2x + --+ +cos(n — 1)x

2
dx = —ln‘secg‘ + C,
n 2

where n € N.

10 sinx + sin2x + sin 3x + sin4x

(d) Using (c), evaluate /
0 COSX 4+ cos2x + cos3x + cos4x

Let Py(x) = x* — 2 and Pi(x) = Pi(Pr—1(x)) fork =2,3,....n.

(a) Find f P,(x)dx.Heren € N.
2 4
(b) Hence deduce that /0 Py(x)dx = o

Suppose that / : R — R is the function defined by
T
I(x) = f In(1 — 2x cos 6 + x?2) db.
0

(a) Show that 7(0) = 0.
(b) Show that I is an even function, namely that /(x) = I(—x).

1
(c) If x # O show that I(x) =27 In|x| + 1 (—)
X
1
(d) Show that I(x) = El(xz).

1 n
(e) Hence deduce that I(x) = 2_"1 (x2 ) forn € N.
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(f) Use the result in (d) to show that /(1) = I(—1) = 0.

(g) For |x| < 1, show I(x) = 0. Show this by showing that from (e), as
n — oo, I(x) — O forall |x| < 1.

0, |x] <1

27 In|x|, |x| > 1.

(i) Use the result in (h) to show that

(h) Hence deduce that I(x) = §

/ In(sin 6) d6 :/ In(cos 0) df = —m In2.
0 0

33. (a) By using the substitution x = 2cos¢, find

/\/2+\/2+~~+~/mdx.

n terms

(b) By using the substitution x = cos?, find

/1+1 R I
27 2\2 2V 2

n terms

34. (a) Show that tan x = cotx — 2cot2x.
(b) Use the result in (a) to show that 2tan2x = 2 cot2x — 4 cot4x.
(c) Hence deduce that

tan(x) = cot(x) — 2 cot(2x)
2tan(2x) = 2 cot(2x) — 2% cot(2x)
22 tan(22x) = 22 cot(2%x) — 23 cot(23x)

23 tan(23x) = 23 cot(23x) — 2% cot(2*x)

2" tan(2"1x) = 2" L cot (2" Lx) — 2" cot(2"x).
(d) By summing the first n terms given in (c) together, show that
tanx 4+ 2tan2x + --- + 2" tan(2" " 1x) = cotx — 2" cot(2" x).

(e) Using the result in (d), find

/(tanx + 2tan2x + 4tan4x + 8tan 8x) dx.



208 How to Integrate It

Endnotes

1. The rules are named after the French mathematician Charles Bioche (1859-1949)
who first developed them in 1902 in connection with solving a certain class of
trigonometric equations. See Charles Bioche, ‘Sur les équations trigonométriques’,
Journal de Mathématiques Elémentaires 26(13), 105 (1902).

2. Itis named after the German mathematician Johann Peter Gustav Lejeune Dirichlet
(1805-1859) who did important work in the areas of mathematical analysis and
analytic number theory.
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Further Properties for Definite Integrals

So what’s the point of calculating definite integrals since you can’t
possibly do them all?...Well, what’s next — you can’t possibly add
together all possible pairs of the real numbers, so why bother learning
to add?

— Paul J. Nahin, Inside Interesting Integrals

In Chapters 2 and 4 a number of basic properties for the definite integral were
given. In this chapter we consider a number of other important properties for
the definite integral. As we will see, in certain situations these properties may
prove to be very useful since they may allow one to find the value for a definite
integral, even though it may not be possible to express the primitive for the
corresponding indefinite integral in elementary terms.

Property 1 — Invariance Under Translation

If the set of ordinates of a function f are shifted or translated by an amount k,
the resulting set of ordinates is another function g related to f by the equation
g(x) = f(x — k). If f is defined on the interval [a, b], then g will be defined
on the interval [a + k, b + k], and the fact that their sets of ordinates are the
same means their definite integrals will also be the same, namely

b+k

b
/ f(x)dx = f(x—k)dx
a a+k

Proof Let x = u —k,dx = du while for the limits of integration, when
x =b,u = b+ k while when x = a,u = a + k. On substituting into the

209
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f(x) fx—k)

— x  — x
a b a+k b+k

Figure 16.1. Illustration of the translational property of the definite integral.
integral on the left, one has

b b+k b+k
/ f(X)dx=/ fu—k)du = f(x—k)dx,
a a+k k

+ a+
on changing the dummy variable u back to x, as required to prove. |

The translational property for the definite integral is illustrated in Figure 16.1.

Property 2 — Change in the Interval of Integration

The homogeneous property given in Chapter 2 explains what happens to a def-
inite integral resulting from a change of scale on the y-axis. A change of scale
on the x-axis (either an ‘expansion’ or a ‘contraction’) corresponds to a change
in the interval of integration. Here one has

/abf(x)dx=%[kjbf(;€—c)dx, k #0

u du . . .
Proof Letx = —,dx = — where k # 0. For the limits of integration, when

x = b,u = kb and when x = a,u = ka. On substituting into the integral on
the left, one has

b kb kb
1 U 1 X
f(x)dx = —/ f (—) du=- [ f (—) dx,
/z; k ka k k ka k
on changing the dummy variable u back to x, as required to prove. |

Property 3 — Reflectivity Property

A special case of Property 2 occurs when k = —1. It is referred to as the reflec-
tivity property for the definite integral since the graph of the function g given
by g(x) = f(—x) is obtained from that of f by a reflection about the y-axis.
It states that

—a

b
/f(x)dx: . f(=x)dx
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a b —b —a

Figure 16.2. Illustration of the reflective property of the definite integral.

Proof On setting k = —1 in Property 2 we have
—b —a

b
/ fwdr==[ fexar= [ e,

—a —

on interchanging the limits of integration, as required to prove. ]
The reflectivity property for the definite integral is illustrated in Figure 16.2.

Property 4 — Odd and Even Functions

The next two properties exploit symmetry in the function to be integrated.
Knowing if a function is odd or even can often lead to a relatively simple def-
inite integral to be evaluated. Let f be a function whose domain contains —x
whenever it contains x. Recall that f is said to be even if

S(=x) = fx),
and odd if
f(=x) =—f(x),

for all x in the domain of f.If f is a continuous function on [0, a] where a > 0,
then

_a f(x)dx =2/Oaf(x)dx, if f iseven

and

a
f(x)dx =0, if fisodd
—a

Proof Suppose that f is an even function on the interval [—a, a], namely
f(=x) = f(x) for x € [—a, a]. Write the integral as

a 0 a
f(x)dx = f(x)dx—i—/ f(x)dx.
—a —a 0
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Yy y
/\/\ a
X x
—a a —a
f even f odd

Figure 16.3. Graphical illustration of the even (left) and odd (right) function
properties for the definite integral between symmetric limits.

Now substituting x = —u into the first integral, we have
a 0 a
f(x)dxz—/ f(—u)du+/ f(x)dx
—a a 0
0 a
= —/ fu)du + / f(x)dx, since f iseven
a 0

=/Oaf(u)du+/0af(x)dx=2/0af(>c)dx,

where the dummy variable u in the first integral has been changed back to x,
as required to prove. As the proof for the case of an odd function is done in a
similar manner, it will not be given here. ]

Geometrically these two results can be easily seen to be true from a consid-
eration of the signed area that each definite integral represents. For example,
in the case of a function f that is odd, integrating f over the interval [—a, a],
by symmetry one sees the positive area is exactly equal to the negative area,
leading to a cancellation. Consequently the integral will be zero. For an even
function f, integrating f over the interval [—a, a], by symmetry, the area of
the region on the interval [—a, 0] is exactly equal to the area of the region on
the interval [0, a]. Consequently the integral is equal to twice the value of the
integral on the interval [0, a]. Both these properties for the definite integral of
odd and even functions between symmetric limits are illustrated in Figure 16.3.

T
Example 16.1 Evaluate / x2sin® x dx.
-7

Solution Let f(x) = x?sin> x. Since

f(=x) = (—x)?sin®*(—x) = —x?sin’ x = — f(x),
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the function is odd. Thus between symmetric limits we have for the integral
T
/ x?sin® x dx = 0. >
4

%
Example 16.2 Evaluate /

(cosx + V1 + x2sin? x cos® x) dx.

ENE

Solution Rewrite the integral as
* -3 3
/ (cosx + V1 + x2sin” x cos x) dx

-/

Observe the integrand of the first integral is even while the second is odd. As
one is integrating between symmetric limits, the integral therefore reduces to

ENE

INE]

%
cosxdx—i—/ V14 x2sin? x cos® x dx.

AN
INE)

K 4 3 F
/ (cosx+ 1 + x2sin” x cos x) dx =2/ cosx dx
- 0

INE

= 2. >

= 2sinx

S aN

Property 5 — Periodic Functions
A function f is said to be periodic with period a if

fx+a)= f(x),

for all x in the domain of f. Two well-known examples of periodic functions
are the sine and cosine functions. Here each function has a period of 27 since
sin(x + 27) = sinx and cos(x 4+ 27) = cos x. If f is a continuous bounded
function that is periodic with period a for all x in the domain of f', then

b+a

f(x)dx = fouf(x)dx

Proof Suppose that f is a periodic function with period a for all x in its
domain, namely f(x + a) = f(x). Using the additivity property with respect
to the integral of integration (see Property 10 on page 41 of Chapter 4) the
integral fé’ ta f(x) dx can be rewritten as

b+a b+a

a b
/ f(x)dx + f(x)dx = / f(x)dx + f(x)dx.
0 a 0 b
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In the second integral on the left, on making a substitution of x = u 4+ a we
see that dx = du and the limits of integration become x = a,u = 0 and x =
b+ a,u = b. So one has

b+a

a b b
/ f(x)dx+/ f(u+a)du=/ f(x)dx + f(x)dx
0 0 0 b

b+a

a b b
/ £ dx + / Fu)du = / fedet [ fedx,
0 0 0 b
since f(u + a) = f(u)

b+a

= f(x)dx:/af(x)dx,
b 0

as required to prove. ]

F+2n

Example 16.3 Evaluate / sin® x dx.

T

3

Solution 1f f(x) = sin® x we begin by noting that f is both odd and periodic
with a period equal to 27r. Thus
Z+on 2 T
/ sin® x dx = / sin® x dx, (Property 5 with b = E)
0

T

3

—n+2m
= / sin® x dx, (Property 5 with b = —)

4

b

:/ sin® x dx = 0. >
-7

Property 6 — Symmetric Border Flip

The symmetric border flip property is an extremely useful result that can often

be used to evaluate a definite integral by exploiting a reflective property. By pre-

serving the interval of integration, a border flip changes the form of the inte-

grand, which then may be either more amenable to being integrated directly

or can be added to the original integral, resulting in an integral that is more

amenable to being integrated.

Suppose f is a continuous function on the interval [a,b] (b > a), and
consider the graph of the function f(a + b — x). The graph of the function
f(a + b —x) is a reflection of f(x) about the vertical line passing through
the mid-point of the interval. So in a sense the graph of f(a + b — x) has
been ‘flipped’ (reflected) about the line y = (a + b)/2 compared to the graph
of f(x). On integrating, the area of the region under the curve f(x) and
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S x)

a ! b
a+b a+b

2 2

Figure 16.4. Graphical illustration of the symmetric border flip property for the
definite integral.

the x-axis between x = a and x = b is the same as the area of the region
under the curve f(a + b — x) and the x-axis from x = a to x = b with its
‘border’ (its interval of integration) reversed. The property is therefore area
preserving.

An illustration depicting the border flip property is shown in Figure 16.4. As
the ‘centre of symmetry’ for each function is about the mid-point of the interval
of integration, geometrically each region bounded by its corresponding curve
and the x-axis between x = a and x = b has been reversed but the area remains
unchanged. Thus it is readily seen that one must have

/abf(x)dx :/;bf(a—i-b—x)dx

We now give a simple proof of the symmetric border flip property.

Proof Letx = a + b —u,dx = —du while for the limits of integration, when
x =b,u = a and when x = a,u = b. Thus

b a b
faf(x)dx=—/b f(a+b—u)du=/‘; fla+b—x)dx,

where the dummy variable of integration has been changed back to x after
interchanging the limits of integration, as required to prove. ]
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4
Example 16.4 Evaluate / x2/5 — x dx.
1

b b
Solution On applying the result / f(x)dx = / fla+b—x)dx, to the
a a

integral we have

4 4
/ x2v5—xdx=/(1+4—x)2\/5—(1+4—x)dx
1 1

4 4
=/ (S—x)zﬁdx:/ Vx (25 —10x + x?) dx
1 1

4
=/ (25x% - IOX% —l—x%) dx
1
2
7

2 3 2 s 21
=125-=x2—-10-=x2 + =x2
50 2 50 2 608
=2 4.2+ 2 ([Z—44+2)=—.
3 + 3 + 7 21
3 sin® x
Example 16.5 Evaluate / —————dx.
7 sin” x + cos3 x
sin® x

%
Solution Let] = / dx. On applying the symmetric border

z sin® x + cos3 x
flip property to the integral I we have

T

z in3(Z —
1= [

sin®(Z — x) + cos3(Z — x)

6

Recalling that sin (% - x) = cos x and cos (% — x) = sin x, the above integral

reduces to
T
z 3
3 cos” x
z  cos3 x + sin® x
Adding the above result for I to the original integral we obtain

3 sin® x 3 cos3 x
z sin®x + cos3 x z  cos3 x + sin’ x

T .3 3
3 sin” X 4 cos” x

21 = —dx,
T

x sin® x + cos3 x
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giving

zl@_z)zz_ >

/dx_—

As a special case, when the lower limit of integration is zero, namely a = 0,
the symmetric border flip property reduces to

/(;bf(x)dxz/obf(b—x)dx

We refer to this special form as the reduced symmetric border flip property.

5
Example 16.6 Evaluate / L dx
0 V5—x+4/x
Solution Let I /5 VX dx.O lying the reduced tri
olution Let] = ———— dx. On applying the reduced symmetric
0 V5—x+/x
border flip property to the integral, we have
I 5 «/5 —X
«/_ + V5- x
Adding the above result for / to the original integral one obtains
[+1= / / 2 ax
/ —x + J_ [ + / —x
2 = \/_ + V5 - x
o ViEEoa

which reduces to

5
d =3 = —.
/ X 5 | 2

3 sin?x + sinx
Example 16.7 Evaluate / _—
o sinx +cosx + 1

il ) .

. 2 sIn”x + sinx
Solution Let [ = [ _—_—
o sinx +4cosx +1

symmetric border flip property to the integral, we have

dx. On applying the reduced

’

1_/‘75 sin®(%Z — x) + sin(Z — x) _/‘75 cos? x + cos x
—Jo s1n(5—x)+cos(%—x)+l ~ Jo cosx +sinx 41
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upon recalling that sin (% — x) = cos x and cos (% — x) = sin x. Adding the

above result for / to the original integral, one has

(OB

sin? x + sinx 3 cos?x + cosx
o sinx +cosx + 1 0 Cosx +sinx + 1

5y — /75 sin® x + sinx + cos? x + cos x
—Jo sinx + cosx + 1
Y, _/JZT sinx + cosx + 1
~Jo sinx +cosx+1
giving
1 [z 1 |3
I=—/ dx = ~-x|> =2, >
2 Jo 2 o 4
A second special case occurs when one sets a = —b. With the limits of inte-

gration written in terms of @ (instead of b), one has

af(x)dx: af(—x)dx

We refer to this special form as the symmetric interval border flip property.

1
d
Example 16.8 Evaluate / @ dx.
—1 (e + D>+ 1)

1
d
Solution Let I = / . —
—1 (X + D(x*+1)
interval border flip property to the integral, we have

dx. On applying the symmetric

[ / ! dx
e+ D2+’
Adding the above result for [ to the original integral gives

1+1—/1—dx dx—i—/l dx
S @+ D2+ 1) e+ D(x2+1)

21_/1 L1 dx
S Jaler+1 0 e 411 +x2

_/1ex+e_x+2 dx _/1 dx _2/1 dx

e e 4214x2 J g 14+x2 0 Ty 1+x2
1

=2tan71x‘ =2-£,
0 4

giving I = m /4. >
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§ Definite Integrals Involving Absolute Values

Evaluating definite integrals that involve the absolute value of a function in the
integrand requires special care. Extra attention needs to be paid to the interval
of integration, which depends on whether the value for the function is either
positive or negative. The integral is broken up into a number of parts, and for
each there is a separate part where the value of the function within the absolute
value sign is either positive or negative. As an aid to evaluating such integrals,
sketching a diagram is often very useful.

Before proceeding with a number of examples illustrating the techniques
involved, recall that the absolute value function is defined by

X, x=0
x| =
—x, x<0O.

9
Example 16.9 Evaluate / |x —3|dx.

-1

Solution Replacing x with x —3 in the definition for the absolute value
function gives

x—3, x >3

|x = 3| = .
—x+3, x<3

Since the interval of integration is from —1 to 9 we need to consider two
separate intervals. Thus

9 3 9
/ |x—3|dx=/ |x—3|dx+/ |x —3|dx
-1 -1 3

3 9
=/ (—x+3)dx+/ (x — 3) dx
—1 3

5] o [5-+]
=|—— x — —3x

2 L2 R

81 9

——27—(--9)=26. »
77(3)

Il
|
N o
+
o
|
|
| =
|
w
~—

1

Example 16.10 Evaluate/ x{2x + 4} dx.
—4
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Solution Replacing x with 2x 4+ 4 in the definition for the absolute value
function gives

2x+4, 2x+4>0

2x + 4| =
—2x—4, 2x+4<0

2x + 4, > —
—2x—4, x < -=2.

=

Since the integral of integration is from —4 to 1 we again need to consider two
separate intervals. Thus

1 -2 1
/ x|2x + 4| dx :/ x|2x—|—4|dx+/ x|2x + 4| dx
—4 —4 -2

-2 1
=/ x(—2x—4)dx+/ x(2x + 4) dx
2

—4 —
-2

1
= (—2x2 —4x)dx + / (2x2 + 4x) dx
4 -2

2x3 oy’ !
SR NE

|:3 x_4+ 3~|—x_2
22 (e (=2 e (e
22 (5 -2 )

2

+—+2—(§-(—2)3+2-(—2)2) S

3 3

5
Example 16.11 Evaluate / | —x% 4 6x — 8| dx.
-2

Solution Let g(x) = —x2 + 6x —8 = —(x —2)(x — 4) for x € [-2,5]. The
roots of g are 2 and 4. Now determine the sign of g on the interval [-2, 3].

I. For [-2,2], since x —2 < 0,x — 4 < 0, g will be negative.
II. For [2,4], since x —2 > 0, x — 4 < 0, g will be positive.
1. For [4,5], since x —2 > 0,x — 4 > 0, g will be negative.

_g(x)v -
Thus [g(x)] = { g(x),
—g(x),
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So for the integral we have

5 2 4 5
/;|mwndx=i[a—guodx+3L g@»dx+;£ _g(x) dx

2 4
:/ (x2—6x+8)dx+/ (—x? 4+ 6x — 8) dx
-2 2

5
+/ (x2 —6x + 8) dx
4

2

x3 x3 4
2 2
= [——3x —8x:| + |:—— + 3x —8xi|
3 _ 3 5

5

x3 >
4+ | —— +3x°—8x| = 40. >
3 4

Exercises for Chapter 16

X Warm-ups

1. Each of the following statements is either true or false. Answer each
statement with either TRUE or FALSE and give a brief reason for your

answer.
1 2
(a) / xV4—x2dx >0 (b) f tan" ' xdx =0
-1 -2
T 3
() (|2x| + 3) dx >0 @ / 1 dx <0
_,, 3

2. If f is a continuous periodic function with period a, show that the function
f(x + na) with n € N is also a periodic function with period a.

3. Evaluate

T
100 _: x2sinx
a x Usinxdx b d
() - ()/1X4 2X2—1 .

3 X 2
—d d i d
@[“+Mx m[fmmnx
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X Practice questions

4. If f is a continuous function on the interval where it is to be integrated,
prove the following results.

b+k b
@ [ rwar= [Creria
(b)/ f(c—x)dx—/_; f(x)dx
kb
(©) / f(x)dx —k/ flkx)dx

5. If f is a continuous function on the interval [a, b], prove the following
results.

(a) Conversion to a unit interval:

b 1
/ f(x)dx:(b—a)/ fla+ (b —a)x]dx
a 0

(b) Conversion to a symmetric unit interval about the origin:

b b—a (' [b b—
/af(x)dxz zaf_lf[ +a+( a)x]dx.

2

(c) Centring about the origin:

/abf(x)dx=/_tza)f(a;b—x) dx.

(d) Centring about the mid-point of the interval:

b—a

b 2" a+b a+b
/af(x)dx:/o |:f( 5 —x)—i—f( 5 +x)i|dx.

6. Evaluate the following integrals using the reduced symmetric border flip
property for the definite integral.

@) / sin? x _ sty ®) / 4/sin x _ Vsinx

sinx + cos x A/sinx + 1/cos x
X sin x T (2x + 3)sinx
© [ dx @ [ @Iy,
1 +sin®x o 1+4cos?x

z dx _In(l4+x)
= dx
© /0 1 + tanV2 x ® f In(2 +x — xz)
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z X 0 /‘” X tan x
(g)/o sinx~|—cosxdx ™) 0 secx +cosx
@) /7 (x/sinx—«/cosx) dx (])/

0

3 sin x COS X
k X + dx
()/; (1+cos2x 1+sin2x)

%
() / (cos* 2x + sin* 2x) In(1 + tan x) dx
0

VxZ—2x 2

7. Evaluate the following integrals using the symmetric border flip property
for the definite integral.

2017 ﬁ J b 32 420d
@ | mw;x ® [ P

(c)/ VOoX (d)/g—dx
Yo—x+ Ix—2 z 1+ tandx

(e) Lj In («/gtanx — 1) dx ) /? In(tan x) dx
3 g

(tan x)cotx

* d
(g) /g (tanx)cotx+(cotx)tanx X

2
(h) / (3x% = 3x + 1) cos(x® — 3x% + 4x — 2) dx
0

8. Evaluate the following integrals using the symmetric interval border flip
property for definite integrals.

3 cos”x +x
d
(a) /—’2’ P X (b)/écosxln( x) dx

©) /’2’ _dx (d i tan~ ! (%) dx

% 1+esinx —r

4 .X2

1
(e) / cos '(x*)dx (P dx
-1 —nl—i—sinx—l—\/l—i—sinzx
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9. Evaluate

T tan"lx 1 2—
- d 1
(a) X (b) /;1 n(2+

Xt —x24+4

x)dx
X

2
10. Using the substitution ¥ = x — 1, evaluate / xv2x —x2dx.
0

7 acosx + bsinx
11. Evaluate/ ; dx.Herea,b € R.
0 COSX + sInx

12. Using only properties for the definite integral, show that

2m
/ sinx(l —cosx)v/1 —cosxdx = 0.
0

T sin(nx)
—x (1 +2%)sinx

14. Let f be a continuous function on the interval [0, a]. Here a > 0.

13. Evaluate dx foralln € Z7T.

a
(a) Show that ¢ dx = ‘—l.
o S(x)+ fla—x) 2
(b) Use the result in (a) to evaluate
2 x? sin x
i ——dx —d
()/0 x2—2x+2 (H)/ sin x + cos x ~

x4+ 1
p
(i) /0 23t —4x3 4 6x2 dx +3

15. Let f be a continuous function on the interval [0, a]. Here a > 0.

(a) Show that /a xf(x)dx = E/a f(x)dx.
0 2 Jo

T

. . X sin x
(b) Using the result in (a), evaluate / R E——
o 1+cos?x

16. Let f be a continuous function on the interval [—a, a]. Here a > 0.

(a) Show that _a f(x)dx = /: (f(x) + f(—x)) dx

e* cos? x

1+ e*

(OB

(b) Using the result in (a), evaluate /

[SE



17.

18.

19.

20.

21.

22,

23.
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Suppose f : R — R is a continuous function satisfying

3 0
/f(x)dxzé and / f(x)dx = 14.

3
Find/ f(x)dx if:
2

(a) f(x) =—-3forall x € [0,2].
(b) f isan odd function.
(¢) f is aperiodic function such that f(x) = f(x + 2) for all x.

T

T
If f(x) = / In(1 + x tant) dt, x > —1, find the value of
0

s (%) +f(§).

1
Evaluate / ¥/2x3 —3x2 — x + 1 dx by first centring the integral about
0

the origin. Centring the integral about the origin is done by using the result
already proved in Exercise 5 (c).

(a) If f is a continuous function on the interval [0, 1], by centring the inte-
gral about the origin, evaluate fon f(sinx) cos x dx.

T
(b) Hence deduce that / (sin )0 F509) 0o x dx = 0.
0

2 dx

1
X

Evaluate/ .

-1 (L+x%) VT —x4

Let f be a continuous function on the interval [a, b].
b
bh—
(a) Show that/ Jx) dx = 2—4.
a fla+b—x)+ f(x) 2

(b) Hence evaluate
4 VIn(9 — x) .
2 /In(9—x) + /In(3 + x)

For a continuous function f on the interval [1, a] where a > 1, the Wol-
stenholme transformation' states that

a a?\ dx a a®\ dx
[l )=o)

Prove this result.
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Un(1
24. Serret’s integral? is given by / Ind +x) ;C) dx.
o l+x

(a) By employing the substitution x = tanu, show that Serret’s integral
becomes

1 T

In(1 4

/ udx = / In(1 4 tanu) du.
0 1+ x2 0

(b) By applying a symmetric border flip to the integral found in (a), use this

to show that
1
In(1
/ A +X T
0 1+.X2 8

(c) By integrating the integral appearing in (b) by parts, show that

. L tan=1 x T B Leot™1 x 3
6] dx = —In2 (ii) dx = —1In2
o 14+x 8 o l+x 8

(d) If a > 0, in a similar manner as to what was done in (a) and (b), find

) . % In(a + x)
the value for the generalised Serret integral —_—
0o a*+x?

25. The Bessel function of the first kind of order zero, denoted by Jo(x), is
defined by

1 2m
Jo(x) = E/o cos(x sin 8) d6.

(a) By exploiting the periodicity of sin 8, show that

] g
Jo(x) = ;/0 cos(x sin 8) d6.

(b) If f is a continuous function on the interval [0, 2a] where a > 0, show
that
2a

f(x)dx:/o (f(x)+f(2a—x))dx.

0
(c) By applying the result given in (b) to the integral given in (a), show that

Jo(x) = %/02 cos(x sin 8)d0.

26. Let f be a continuous function on the interval [0, a]. Here a > 0.

(a) Showthat[oa f(x)dx = /(;7 (f(x) + f(a—x))dx.
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(b) If f(a —x) = f(x), use the result in (a) to show that

/Oa f(x)dx =2/0l£ f(x)dx.

i T gsin®x + bcos? x
(c) Use the result in (b) to evaluate / — dx. Here
o a?sin®x + b%cos?x
a,b eR.

27. Let p and ¢ be two continuous functions on the interval [—a, a].

(a) If p is even and ¢(x) - ¢(—x) = 1, show that

“ px) [
/_a [+ dx_/o px)dx.

! dx
b) Using th It i , evaluat .
(b) Using the result in (a), eva uae/_1 (o 2)(1 + tanx + secn)

28. (a) Show thatif f is continuous on [a, b] such that f(x) + f(a + b — x)
is constant for all x € [a, b], then

b
[ rwax=0-ar (“5) = e -avw+ son

(b) Using the result in (a), evaluate the following integrals.

1 2 dx 4 dx
. ~1(3y4 . / ‘ /
(1) /_ 1 cos (x7)dx (ii) | TFomr (iii) ey

T COS X 2 T (sinx +cosx\?
29, Ifu = / (—) dx andv = / (—) dx, find
0 Sin X + Cos X 0 COS X

the value of u /v.

30. Let f be a continuous even function on the interval [—a, a]. Here a > 0.

AC)) ¢
_a1+exdx:/0 f(x)dx.

(b) Using the result in (a), evaluate the following integrals.

2 2

. X 3 cos2x
d

() /_21+ex X (11)/ 1+ex

(a) Show that
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(c) The result given in (a) can be generalised. If f is a continuous even

function on the interval [—a, a] while g is a continuous function on the
same interval such that g(x) + g(—x) = 1, show that

[_ 50 /() dx = / ) dx.

(d) Using the result given in (c), evaluate the following

1 1
(i) / tan~!(e*) dx (i) / x2cos H(x3) dx
-1 -1

* gin? x esin"x iv) /1“2 cosh x
(iif) / x In2 2sinhx + 1 + e=*

31.

Let g be a continuous odd function on the interval [

—a,a). Here a > 0.

(a) Show that tan “1(eE®) dx = a@

(b) Using the result in (a), evaluate the following integrals

2 3 —Xx
(i)/ tan" ' (e*) dx (11)/ tan~ 1( )dx
-2

3+ x

32. Evaluate
1

@ dx _
o (Z=x+ D> 1+1)
) Vin3 x sin(x?)

d
Jinz sin(x2) + sin(In 6 — x2) x
33. Let f be a continuous function on the interval [—%, %] such that
f(x) f(=x) = lforall x € [-F, ] and f(£x) + 1 # 0. Evaluate

& dx
_ in2

z (1+2sin” x)(1 + f(x)

34. Evaluate
4 3

@ [ (224 +1)dx ® [ 220110
0 -2

1
(c) /1 x —3|x|)x? dx (d)/1\/|x|+xdx
1 _
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4 T
(e)/ }ﬁ—l|dx 6i) /2 |sinx—cos2x|dx

0 0

3 — 1]

4y h / X

(g>/0 [~ 4] dx L R TR
o3y 2
1) /;11+|x|dx G) /_5‘|2x—2|+4x‘dx

nmw

35. Evaluate/ ‘x sinx| dx ifn € N.
0

s

2
36. In this question a value for the definite integral / In(sin x) dx will be
0
found and some consequences stemming from this result explored.
- 3
(a) Show that/ In(sinx) dx = [ In(cos x) dx.

0 0
(b) On adding the two integrals in (a) together before making an appropri-
ate substitution and simplifying, show that

z big 1 [~
/ In(sinx)dx = ——1n2 + —/ In(sinx) dx.
0 4 4 Jo

(c) By writing the integral appearing in (b) as

/ In(sin x) dx = /7 In(sinx) dx + / In(sin x) dx,
0 0 z

2

. . T . .
and after using the substitution x = 7 + u in the integral farthest to
the right, deduce that

% 2 T
/ In(sinx) dx = / In(cos x) dx = —5 In2.
0

0

T

2
(d) Hence deduce that / In(tanx) dx = 0.
0
g

In(sinx) dx = / In(1 + cosx)dx = —m In2.
0

T

(e) Show that /

0
T 2

(f) Hence deduce that/ xIn(sinx) dx = —% In2.
0
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37. Let f be a continuous function on the interval [0, 1]. Find the value of k if

/”xf(sinx)dx =k/7 f(sinx)dx.
0 0

38. (a) Let f be acontinuous function on [0, 1] and f(x) + f(1 — x) # O for
all x € [0, 1]. Show that

b fw ]

o fA—x)+f(x) = 2

(b) Let g be a continuous function on [v/5,+/7] and g(+~/9—x) +
g(x/x +3) £ Oforall x € [2,4]. Show that

/4 g(v9—x) dr = 1
2 g(WI—x)+g(vx+3)

39. By using a substitution of x = tan 6 before applying the symmetric border
flip property to the definite integral, show that

3In(x — 1 In2 1
[ de:n_tan_l - .
2 X2+1 2 7

P .
2 sin?" x dx

40. Ifn e Na > 0, evaluate/ — .
—7 sin "x 4+cos2nx 14+ a*

a dx
41. If a # 0, evaluate / .
# —a 1+ x%+V1+x10

dx

NeEn e

b
42, (a) If 0 < a < b, show that/
a
(b) Hence deduce that

B dx _ _Ol+,3)
/.; T —o) —nexp( — ) a < B.

I Extension Questions and Challenge problems
2 16 — 2
43. Evaluate / X ) dx.
0 16—x2+ /(16 — x2)(12 + x2)
44. Suppose f is a continuous function such that f(2+x) = f(2—

2
x) and f(4+x)= f(4d—x). If f f(x)dx =5, find the value of
0
50

f(x)dx.

10
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45. The floor function, denoted by | x |, gives the greatest integer less than or
equal to the real number x. So, forexample, | 14| = 14, |e| = 2, |-5.1] =
—6. When contained in the integrand, as we shall see, the floor function

turns continuous integration problems into discrete problems.
3
As an example, consider the problem of / | x| dx. On applying the defi-

0
nition for the floor function on the interval [0, 3], we have

0, 0<x<1
x]={1, 1<x<2.
2, 2<x<3

So for the integral one has

3 1 2 3
ijdx:/Oa’x—i-/ 1dx+/ 2dx = 3.
0 0 1 2

Evaluate the following integrals that contain floor functions in their
integrands.

5 5
(a) /0 x|x]dx (b) fo (x — [x])*dx

5 5
@)[;(1+pr3dx (mtﬁ{%de

a
(e) / 26l gx, aeN
0
46. Evaluate
@) / 7+ 2x3
—z 2—cos |x|+ )

3 -1 (%m x)
(b) f tan_l(smx) + etan1(cos x) dx

(©)

x sin x tan~!(e%)
———~dx
_x Ll +cos?2x

(d) /l [(e —1)/In(l 4+ ex —x) + exz] dx
0

a
47. For —/2 <a < 7 /2, evaluate/ . S
o cosxcos(a—x)
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48. Define u;(x) = |x| and for integers n > 2, u,(x) = |x + up—1(x)|. Let

1

Vi, = / Uy (x) dx for n € N. To evaluate V,, we first find an expression

-1

for u, (x).

(a) For x > 0, using induction, show that u, (x) = nx.

(b) For x < 0 and n even, namely n = 2m where m € N, using induction
show that u,(x) = 0.

(c) For x < 0 and n odd, namely n = 2m + 1 where m € N, using induc-
tion show that u, (x) = —x.

n even

’

(d) Hence deduce that V,, =

S NS

1
+ , n odd.

49. Let f be a bounded continuous function on the interval [0, 1].
T T 4
(a) Show that / xf(sinx)dx = 7 / f(sinx)dx.
0 0
4

(b) Hence evaluate / -
o 1+sinx

T ox3 —3gx? 273
(c) Hence deduce that —  _dx=—"—"-
o (1+sinx)? 3

a+b b 2n
50. Suppose/ ( +a-— x) dx wherea,b € Randn € N.

a+l \X—d
By using the substitution u = —— + a@ — x show that
a+b b 2n b — 1)2nt1
/ +a—x dx = ;
a+1 \x—a 2n +1
Endnotes

1. Named after the English mathematician Joseph Wolstenholme (1829-1891).

2. The integral is named after the French mathematician Joseph-Alfred Serret
(1819-1885) who first evaluated such an integral in 1844. See J.-A. Serret, ‘Sur

Lol +x)

T2 dx’, Journal de Mathématiques Pures et Appliquées 9,
by

Iintégrale

0
436 (1844).
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Integrating Inverse Functions

Anyone who has taken a calculus course at high school or college has
read the instruction: ‘Evaluate the following integral’. For many stu-
dents, the words fill them with dread, for others they bring a shiver of
excited anticipation. For both groups the reason is the same: integra-

tion is hard.
— Jonathan Borwein and Keith Devlin, The Computer as Crucible:
An Introduction to Experimental Mathematics

An application of integration by parts (see Chapter 7) is to find integrals involv-
ing inverse functions such at the logarithmic function and the inverse trigono-
metric and hyperbolic functions. As a technique for integrating relatively sim-
ple expressions containing inverse functions this ‘standard’ method is more
than adequate. However, for the integration of more complicated expressions
containing inverse functions, use of the standard method can often prove diffi-
cult. To help overcome such difficulties, in this chapter we introduce a general
method for finding and evaluating integrals for the inverse of the function, pro-
vided the function satisfies certain given conditions.

Theorem 17.1 (Definite integral of an inverse function). Let f be a strictly
monotonic function (meaning the function is either increasing or decreasing)
with continuous derivative on the interval [a, b]. Then

b f(®)
/ Fx) dx + [ £ ) dx = bf(b) — af @)
a f(a)

Proof Since f is a strictly monotonic function on some interval, it has
an inverse f~! on this interval. Integrating the function f by parts one

233
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f®)

f(a)

| ' x
a b

Figure 17.1. Graph of the function y = f(x) and various areas.

has

/a " ey dx = x| - / () dx

b
= bf(b) —af(a) - / xf(x) dx.

a

Sety = f(x).dy = f'(x)dx and x = f~!(y). For the limits of integration,
when x = b,y = f(b) and when x = a,y = f(a). Thus

b f(®)
/ F(x) dx = bf(b) —af@) - [ £ ) dy,
a f(a)

or
b f®
[ reravs [ dx = bro) - af@.
a Sf(a)
on changing the dummy variable back to x and rearranging, as required to

prove. ]

The result can be given a very simple geometric meaning. Consider the graph
of the function y = f(x) between x = a and x = b shown in Figure 17.1.
If

b - f(b) = area of big rectangle, a - f(a) = area of small rectangle,

b f(®)
/ f(x)dx = area and / 7Y (x)dx = area .
a f(@)



17 Integrating Inverse Functions 235

from the figure, in terms of areas, one can immediately see that
area = area of big rectangle — area of small rectangle — area .

or
b f®)

/ F(x)dx = bf(b) — af (@) — [ £ @) do,

a f(a)

as expected.

Example 17.1 As a simple example, we apply the result directly to the inverse
sine function on the interval [0, 1].

Solution As is well known, the inverse sine function on the interval [0, 1] has
an inverse, namely the sine function on the interval [0, Z]. So from the result

b f(®)
/ F(x) dx + / £ ) dx = bf(b) — af (@),
a f(a)

(a

setting f~!(x) =sin"!x so that f(x) =sinx and a =0,b = 7 giving

fla) = f(0) =0and f(b) = f(5) = 1, we see that

1 Z
/ sin_lxa’xzz—/ sinxdxzz—l. >
0 2 Jo 2

2(\/1+x3—|— %/x2+2x) dx.

Example 17.2 Evaluate /

0
3 , x2
Solution Let f(x) = +/1 + x3. Since X) = ———>0forx €[0,2

f is strictly increasing and will therefore have an inverse on this interval. On
finding this inverse we have f~!(x) = ¥/x2 — 1. If we now set a = 0 so that
f(a) = f(0) =1and b = 2sothat f(b) = f(2) = 3, on applying the result

b f®)
/ Fx)dx + / £ ) dx = bf(b) —af(a).
a f(a)

we have
2 3,
[ \/1+x3dx+[ Vx2—-1dx=2-3—-0-1=6.
0 1

In the second integral, setting x = u + 1, we have dx = du while the limits
of integration are x = 1,4 = 0 and x = 3,u = 2. Thus

2 2
/ \/1+x3dx+/ Y+ 1)2—1du=6,
0 0
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or

2
/ (\/1+x3+ 3/x2+2x) dx =6,
0

where the dummy variable appearing in the second integral has been changed
back to x. >

A result for the indefinite integral of an inverse function can also be readily
found, which we give as a theorem in the next result.

Theorem 17.2 (Indefinite integral of an inverse function). Let f be a strictly
monotonic function with continuous derivative on some given interval. Then

/f(x)dx:xf(x)—/f_l(u)du where u = f(x)

This result is often written more conveniently as
x f(x)
[ edu=xre- [ adu.

The upper limits of x and f(x) appearing in the integrals are used to remind
one that the variable needs to be changed back to x after the integration with
respect to u has been performed.

Proof Since f is a strictly monotonic function on some interval, it has an
inverse given by f~!. Integrating the function f by parts, one has

/f(x) dx = xf(x) —/xf/(x) dx.
As f~1(f(x)) = x, the integral on the right can be written as
[ rwrax = s - [ 0w
Setting u = f(x),du = f'(x)dx gives
[ rwrax=sxreo - [ 1w du.
as required to prove. m
Example 17.3 Find / (cos™! x)?dx.

Solution Let f(x) = (cos™! x)2. Since f is a strictly decreasing func-
tion on its domain, its inverse will exist. On finding this inverse we have



17 Integrating Inverse Functions 237

f~1(x) = cos «/x. Using the result for the indefinite integral of an inverse
function, namely

/f(x)dx:xf(x)—/f_l(u)du where u = f(x),
one has

/(cos_1 x)?dx = x(cos™! x)? — / cos /u du,

where u = f(x) = (cos™! x)2. In the integral appearing to the right, if we let
u = t? then du = 2t dt. So for this integral we have

/cos Vudu = 2/tcostdl = 2¢sint — 2/ sint dt  (by parts)
=2tsint +2cost + C = 2/usin/u + 2cos Vu + C.
But as u = (cos™! x)? one has
/(cos_1 x)2dx = x(cos™! x)? — 2sin(cos ™! x) cos™! x
—2cos(cos tx) +C
=x(cos 'x)2 —2vV1—x2cos'x—2x+C. »
Note in this case the integral could have just as conveniently been found by

applying integration by parts directly.

Exercises for Chapter 17

" Warm-up

1. By applying directly the result for the definite integral of an inverse func-
tion to the inverse tangent function on the interval [0, 1], show that

1

In2

/ tan_lxa’xzz—n—.
0 4 2

" Practice questions

2. Evaluate

(a) /01(3/1—X7—z/1—x3) dx

(b) /01 |:sin3 (%) + ;sin_l (E/E)} dx
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3. Suppose that f is a strictly monotonic, continuous function on the interval
[0, 1].

1
1
If f(0)=0,f()=1, and / f(x)dx:§, find the value of
0

fl N (x)dx.
0

4. Suppose that g is a continuous function that is strictly monotonic on the
interval [1, 5].

5
If g(1)=0,g(5 =10, and /g(x)dx=7, find the value of
10 !
/ g Y(x)dx.
0

1 1
5. If n € N, show that/ N1 x"dx = / 21— " gy
0 0
6. (a) Byreversing the roles of f and f !, show that the result for the definite

integral of an inverse function can be written as

A

b
[ rimar=prtor-ar @ [ ean

(b) By reversing the roles of f and f !, show that the result for the indef-
inite integral of an inverse function can be written as

x )
/ f_l(u)du:xf_l(x)—/ f(u)du.

7. Let f : [0, 1] — [0, 1] be a continuous, monotonically increasing function.

1 1
(a) Show that/ flx)dx =1 —/ f(x)dx.
0 0

(b) Give a simple, graphical illustration of this result.

8. Suppose that f(x) = sin™! (‘/ a ) where a > 0.
a+x

On the interval [0, a], notice that f" increases monotonically as the argument

. . . Y Y .
of the inverse sine function runs from 1 to 7 Thus f has an inverse on

this interval.
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(a) Show that the inverse of f is given by f~1(x) = a cot? x.
(b) Using the result for the definite integral of an inverse function, show

that
a
/ sin_l( a )dx:a.
0 a—+x

9. Let f(x) = x3+3x + 4.

(a) Show that f is an increasing function on the interval [—1, 1] and there-
fore has an inverse on this interval.
(b) Denoting the inverse of f by f~!, show that

1 4 . 23
/ f(x)dx—i—/ T (x)dx = —.
149
10. (a) Let f(x) = x> — 2x2 + 5. Find the value of 7l (x) dx.

37

2w
(b) Let g(x) = x + cos x — 1. Find the value of/ g '(x)dx.
0
I Extension Questions and Challenge problems

1 X _ 1—x
11. Evaluate/ al — (1—x) dx.
o \(I—x)l== x*

12. Suppose f is astrictly monotonic, continuous function on the interval [, b]
(b > a).

(a) If a and b are fixed points, that s, if f(a) = a and f(b) = b, show that

b
/ (f(x) —i—f_l(x))dx = b%—da>.

(b) Let f(x) = x + sin x on the interval [0, r].
(i) Show that f is a monotonically increasing function on the interval
[0, 7] and x = 0 and x = 7 are fixed points for the function.
(i1) Even though no explicit formula for the inverse of f can be found,
using the result given 1;1 (a) it is still possible to find the value for

the definite integral / f71(x) dx. Find its value.
0

) 4 G =n
13. It is known that[ In(cos x) dx = >~ 7 In2.
0

Here G is a mathematical constant known as Catalan’s constant (its value,
correct to nine decimal places, is G = 0.915 965 594). Use this result to
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show that

1 2
-1 .32 4 T
tan” " x)“dx = — + —In2—-G.
/0 ( ) 16 4
14. In this question an inequality known as Young’s inequality will be proved.
It is named after the English mathematician William Henry Young (1863—
1942), who first proved the result in 1912.!

(a) Suppose that f is a continuous increasing function with f(0) = 0. If
a,b > 0 then Young’s inequality states that

a b
/ f(x)dx + / Y (x)dx > ab,
0 0

with equality holding only if b = f(a).
To prove this result it is easiest if the three cases of f(a) > b, f(a) < b,

and f(a) = b are considered separately. For the first case of f(a) > b,
start by writing the left-hand side of Young’s inequality as

a b L)
d -1 dx = d
‘qu>x+Akf<w x L F(x) dx

a b
w L rwars [ @,
A ) 0

and apply the result of Exercise 6 (a) with a set equal to zero in the
above expression before using one of the integral comparison prop-
erties. A similar thing can then be done for f(a) < b while the case
of f(a) = b will follow immediately from either of the previous two
cases.

(b) Illustrate Young’s inequality graphically using separate graphs showing
the separate cases when f(a) > b, f(a) < b, and f(a) = b.

(c) Young’s inequality is so general that many interesting inequalities can
be derived from it.
(i) When f(x) = f~!(x) = x, show that the following inequality is

obtained:

«/abéa;b.

This is a very famous and important inequality known as the arith-
metic mean—geometric mean inequality (AM—-GM inequality) for
two positive numbers.
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(i) Show that if the particular function of f(x) = x?~! for p > 1is

taken in Young’s inequality, one obtains
a? bl
ab< —+ — for p,q>1 suchthat
p q

with equality occurring when a? = b9.

+ :1’

1
q

SR

Endnote

1. W. H. Young, ‘On the multiplication of successions of Fourier constants,’
Proceedings of the Royal Society A 87(596), 331-339 (1912).
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Reduction Formulae

Human science fragments everything in order to understand it.
— Leo Tolstoy, War and Peace

A very useful technique of integration that is often employed comes from estab-
lishing what is known as a reduction formula. For expressions containing an
integer parameter that is usually in the form of a power of one of the elemen-
tary functions, a reduction formula involves a recurrence relation in terms of the
parameter that is reduced in a step-wise manner. Any of the common integration
techniques discussed so far, be it integration using a substitution, integration by
parts, integration using a trigonometric or hyperbolic substitution, integration
using the method of partial fractions, and so on, can be used to reduce the origi-
nal integral to an integral of the same or a very similar type with a lower integer
parameter. This ‘smaller’ integral can be further reduced in a similar manner
until one finally arrives at an integral that can be relatively easily found.

So what does the reduction technique actually do to the integral? It takes an
integral of the form

= [ fxmax.

where n is the parameter and reduces it to an integral of the form

u=[fwme

where k < n. In many instances reduction formulae are established using inte-
gration by parts, but as we have already mentioned, that method is by no means
the only way of creating reduction formulae. To better understand the process
of establishing a reduction formula from a given integral, as well as typical
applications to which such formulae can be put, we now consider examples
that make use of a variety of different techniques.

242
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Example 18.1 Suppose that / sin” x dx, forn > 0.

n—1 5

. 1 e e
(a) Show / sin” xdx = ——cosxsin” ' x + —— [ sin" 2 x dx.
n n

(b) Hence find / sin® x dx.

Solution

(a) We start by rewriting the integrand as
/ sin” x dx = / sinx - sin” ! x dx.

Integrating by parts, one has

/sin" xdx = —cosx-sin" ! x
_ /(—cosx) -(n—1)sin" 2 x - cosx dx
= —cosxsin" x4+ (n—1) / cos? x sin 2 x dx
= —cosxsin” ' x +(n—1) /(1 —sin? x) sin" "2 x dx
= —cosxsin” 'x +(n—1) / sin" 2 x dx

—(n— 1)/sin”xdx.

After collecting terms and rearranging, one finally has

. 1 e n—1 e
fsm"xdx:——cosxsm” Ty + sin" 2 x dx,
n n

as required to show.
(b) Setting n = 5 in the reduction formula found in (a), we have

1 4
/Sinsxdx = —3 cos x sin* x + §/sin3xdx.

To find the last integral we set n = 3 in the reduction formula. Thus

1 2
fsin3xdx = —gcosxsin2x+§/sinxdx

2

2
= ——=cosXxsin“ x — §cosx + C.
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So finally we have
. 5 1 _n 4 .2 8
sin> x dx = —=cosxsin" x — —cosxsin“x — —cosx +C. »
5 15 15

/4
Example 18.2 Suppose that [, is defined by /,, = / tan” x dx, whenever

0
n=0.

(a) Find the value for I.

1
(b) Show that I, = 1 1, foralln > 2.
n —

/4
(c) Using the result in (b), evaluate [ tan* x dx.
0

Solution

(a) When n = 0 we have

/4 /4
Iy = / (tan x)°dx = [ dx =x
0 0

(b) In this part of the question we will need to make use of the identity tan® x =
sec x — 1.

/4

i
0 4°

/4 /4
I, = / tan” x dx = / tan” 2 x tan? x dx
0 0
/4
= / tan" 2 x (sec? x — 1)dx
0

/4 /4
= / tan" 2 x sec® x dx — / tan" 2 x dx
0 0

/4
= / tan" "2 x sec® x dx — I_s.
0
Now evaluating the integral using a substitution. If we let
u = tanx, du = sec*> x dx

while for the limits of integration, x = 0,u = Oandx = 7/4,u = 1. Thus

/4 1 Mn_l 1 1
[ tan" 2 x sec® x dx = [ W 2du = = .
0 0 n—1 0 n—1




18 Reduction Formulae 245

So finally we have

1
In:n_l_ n—2,

as required to show.
(c) Substituting n = 4 into the reduction formula found in (b) we have

/4 1 1
/ tan4xdx:I4=——12:——12.
0 4—1 3
So we see that we need to find I, first. Now
1 b4
ILh=———Ipg=1——.
7o 4
Hence
/4 1 2
/ tan4xdx=——(l—z)=z——. >
0 3 4 4 3
, U dx
Example 18.3 Suppose that [, is defined by I, = ———forn e N.
o (1+x2)"
(a) Find the value for I;.
1 2n—1 <
(b) Show that In+1 = W + Tln, for all n = 1.

1

d
(c) Using the result in (b), evaluate/o —(1 +);2)3 dx.
Solution

(a) Setting n = 1 we have

/1 dx IR 4
I = — = tan x‘ = —.
0 1+X2 0 4

(b) Integrating by parts we have

X 1 1 x2
I, =| — 2 —d
" [(1+x2)n]o+ ”/o (1 +xymit 4F

1 Lad+xyH -1
on 0 (1+x)n+

1 +2n/1 dx 2n/1 dx
T oon o (14 x2)n o (14 x2)ntl

1
= > +2nl, —2nl,44.
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Rearranging we have

1 2n—1

n2"+1+ 2n In,

Iyy1 =

as required to show.

(c) To find the required integral, set » = 2 in the reduction formula. Thus

=143
T 06 4™

Now in order to find /5, set n = 1 in the reduction formula. Thus

1 1 1 T
Iy=-—+ -1, = -+ —,
2= =gty

and for the integral we have

/1 de 1 3(1 m\_1 37
o (1+x2)3 16 4\4 8) 4 327

T
1_
Example 18.4 Let ] =L/ SO i forn = 0,1,2, ...
o 1l—cosx

(a) Show that 1,45 — 21,41 + I, = 0.
(b) Evaluate Iy and 1.
(c) Using induction, prove that [,, = nm foralln =0,1,2,...

Solution

(a) We show this result by direct substitution.

T (1 —cos(n +2)x) J

Inyo —2Ih41 + 1 = /

0 1 —cosx
_y T (1 —cos(n+ 1)x) J
1 —cosx

/ (1 —cosnx)
1 —cosx

_ / 2cos(n + 1)x —cos(n + 2)x — cosnx
0

1 —cosx

Now using the following sum-to-product result of

0 60—
cos0+cosgo:2cos( —;qp)cos( 2<p),

on setting 6 = nx + 2x and ¢ = nx, we have

cos(n + 2)x + cosnx = 2cos(n + 1)x cos x.

dx.



(b)

(©
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Thus

dx

T 2cos(n + 1)x —2cos(n + 1)x cosx
Inyo =201 + I = / ) 1 (
0 —cosx

[” 2cos(n + 1)x - (1 — cos x)
= dx
0 1—cosx

T 2
= / 2cos(n + xdx =
0 n

T
+1sin(n+ 1)x . =0,

as required to show. >
Setting n = 0 we have

I /”1—cos(O~x)d 0
= —_— X = .
0 0 1—cosx

and setting n = 1 we have

Tl k4
11=/ ﬂdx:/ dx = .
o 1—cosx 0

Whenn =0,lp =0-7 =0and whenn =1, I = 1.7 = &, which as
seen from part (b) are both true. Assume the statement is true forn = k — 1
and n = k, that is,

Iy—y=(k -1 and [y =km,

respectively. Now prove the statement is true for n = k + 1. From the
reduction formula proved in (a), setting n = k — 1 one has

Ik+1 —Zlk + Ik—l = 0.
Thus
Iy =20 — Iy =2kn —(k— D) = (k+ )m.

So the statement is true for n = k + 1. So by induction the statement must
be true for n = 0 and all positive integers n. Hence proven. >

1
Example 18.5 Let I, =/ x"s/1—=xdxforn=0,1,2,...
0

(a)
(b)
(©)

2n
Show that I,, = ———1,,_4.
2n +3

Evaluate /.
22"+ 2p1(n 4+ 1)!

Hence deduce that 7,, =
(2n + 3)!
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Solution

(a) Integrating by parts we have

2 1 o2n !
I, =x"-—§(1—x)% O—I—?n/ x"il(l—x)%dx
0

2 1
:?n X101 —x)V1 —xdx

0
2n (! 2n (1
:?n/ x”_lx/l—xdx—?n/ x"1—xdx
0 0
2n

2n
= ? n—1— ?Iny

which, after collecting like terms and rearranging, gives

as required to show.
(b) Setting n = 0 we have

1
IO=/ V1 —xdx.
0

Now let x = sin? 6, dx = 2sin 6 cos 6 d6 while for the limits of integra-
tion, when x = 0,60 = 0 while for x = 1,0 = n/2. So we have

T

2 2 Z 2
IO=2/ sinfcos?0df = = cos>0|” = =.
0 3 0 3

(c) From the reduction formula for I, repeated application gives

2n

I, = I,
n 2n_i_?,nl
2n 2n—2
= : 'In—2
2n+3 2n+1

_ 2 21-2 24 42
T o433 41 2m—1 75"
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Factoring out a factor of two in each term appearing in the numerator, as
there are n of these terms, we have

_ 2"[n(n—=1)---2-1] 2
" 2n+3)2n+1)---7-5 3
2n+1n!
T @n+3)2n+1)-7-53
_ 2"t n12n 4+ 2)2n(2n —2)-+-6-4-2
T @2n+3)2n+2)2n+1)---5-4-3-2
2n+1n!2n+1(n+1)!
B (2n + 3)!
22" 2p0(n + 1))
T (2n+3)!

’

as required to show. >

For our last example, while a reduction formula is not explicitly asked for,
we give an application that makes use of one as part of the solution to a partic-
ular problem.

% 1 —sin®
Example 18.6 Evaluate / $ dx.
o cos? x

Solution

T . T . T .
6 1—sin®x 6 1—sin®x 6 sin®x —1
—zdxz —de= Z—dx
0 cos® X o 1—sin“x o sin“x—1

/]61 (sin? x — 1)(sin® x 4 sin* x 4 sin® x + 1) d
= X
0

2

sin“x — 1

T

3
= / (sin® x + sin* x + sin? x + 1) dx.
0

T
6

Now consider I,, = / sin” x dx wheren = 0, 1,2, ... So we have
0

T

3
I, / sinx sin” ! x dx
0

= —cosxsin" ! x

S oy

o 2 in—2
~|—(n—1)/ cos” xsin" " x dx,
0
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after integrating by parts. Evaluating the first term and rewriting the cosine
squared term in the integrand in terms of sine squared, one has

3 %
I, = _2£n +(n— 1)/ (1 —sin® x) sin" "2 x dx
0
3 3 3
— _£ +(n—1)/ sin" 2 xdx — (n — 1)/ sin” x dx
on 0 0
V3
=5t (n=DIh—m—(n—=1ly,
V3 on—1
=1, =— + Iy
n2n n

2.22 72 8 12
3 3 3 3 3
4.24 4 64 4 8 12
7\/5 T
=V
64 16
V3 .5 V3 5( 13 o«
n=6:1s=— 4+ L =— 4+ -4+ =
6-26 6 384 6 64 16
_ 3V3 5w
32 9%
So one has
6 1 —sin® %
/ #dx:[ (sin® x + sin* x + sin? x + 1) dx
0 cos2 x 0

I
6

4 .6 . 4
= sin® x dx + sin® x dx
0

+/

=Is+ 14+ I + Ip,

ol

. 5
sin“ x dx + dx
0
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which we see are just the four integrals we already found using our reduction
formula for 7,. Thus

§ 1 —sin® 3W3 5 743
/ Iosinfx | 3V3 St | TV3 m
o cos2 x 32 96 64 16

357 2143
9% 64

Exercises for Chapter 18

X Warm-up

1. The reduction formula

2

cotx-cosec" *x n-—2 _
/ cosec” xdx = — 0 + A cosec” 2 x dx,
n— n—

is valid for all n > 2. Use this to find the integrals

/ cosec® x dx and / cosec* x dx.

X Practice questions

2. (a) If/cos" dx,n =0,1,2,...show that

1 —1
fcos" dx = —sinx-cos" ' x + " /cosn_zxdx,
n n
wheren = 2,3,4, ...
(b) Hence find | cos* x dx.

(c) There is no reason why the result found in (a) cannot be applied to
negative integers as well. By rearranging the result in (a), show that

_ | _ n
/cos” 2xdx = — lsmxcos" Ty + 1 cos" x dx,
n— n—

wheren = —1,-2,-3,...

(d) Hence find f cos 3 x dx and / cos *xdx.
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1

3. Suppose that I, :/ x"e " dx.
0

1
(a) Show that I,, = nl,—1 — —.
e

1

(b) Hence evaluate / x3e " dx.
0

1

4. Suppose I, = / sinh” x dx,n € N.
0

(a) Show that nl, + (n — 1)1, = cosh(1) sinh” ! (1).
1

(b) Hence evaluate / sinh® x dx.
0

5. (a) Show that

tanx-sec” 2x n—2 _
/sec"xdxz 1 + 1/sec” 2xdx,n>2.
n— n—

(b) Hence find / sec x dx.

1
6. Consider the integral/ (1 —xH"dx,n >0.
0

1
(a) Show thatf (1—xH"dx =
0

where n > 1.

1
(b) Hence evaluate / (1 —x%3dx.
0

4 1
- / (1 —xHndx,
4I’l + 1 0

(OB

7. Suppose 1 =/ x"cosx dx forn € Z*.
0

T\
(a) Show that I, = (3) —nn—1)I,—, forn > 2.
z

(b) Hence evaluate / x®cos x dx.
0

1

2
8. Let 541 =f X2l dx. ne 77 .
0

e
(a) Show that I5,41 = E —nlyy—1.
1

(b) Hence evaluate / xse"2 dx.
0
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X

9. (a) Evaluate / secht dt.
0
X

(b) If J,, = / sech” t dt for n € N, show that
0

1 -2
J, = N tanh x sech” 2 x + " 1J,,_z,n > 2.
— n —
(c) Hence find expressions for J3 and J4.
g
10. Suppose that I, = / de forn > 0.
0o 5—4cosx

(a) By calculating directly, find expressions for Iy and /;.

(b) Show that I 41 + I,—1 — 21, =0 foralln > 1.

(c) Hence find expressions for /I, and /3.

(d) Based on the expressions found for /Iy, I, I, and I3 conjure a closed-
form expression for I,, where n € Z*.

(e) Use induction to prove the conjure you gave in (d).

.
2 SlIl2 nx

dx forn e ZT.

11. Suppose [ =/ -
0 sSin x

(a) Evaluate .
(b) Prove that cos2nx — cos(2n + 2)x = 2sin(2n + 1)x sin x.
1

(c) Show that I;,41 — I,

BT ES
(d) Hence ded tht/gsmznxd f: 1
ence deauce a = —_—.
B o sinx ~ fomt 2k — 1

1
12. Let [ = / xk(l —x)"_k dx where k =0,1,2,...,nsuchthatn > k.
0

(a) Find .
(b) Show that I =

_k
n—k+1

-1
(c) Deduce that I, = [(Z) (n+ 1):| .

Tt

1 (212) x8(1 — x)?%* dx.

(d) Hence evaluate / g

0
13. Suppose S, = /(sin_1 x)" dx where n € N.

(a) For n > 2, show that

Sy = x(sin"' x)" + nv1—x2G6sin" ' x)" ' —n(n — ) 1,_5.
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1 3
(b) Hence deduce that | (sin™'x)3dx = 6 — 37 + %
0

1

14. Let V, = / x(1 — x3)" dx where n € Z*. Show that

15.

16.

17.

18.

0
3
3n+2

Vi = n—1-

(a) If I, = /x" sinax dx where a # 0 and n € Z™, show that

1 noo_q . nn—1)
I, = ——x"cosax + —x""lsinax - ——21,_,.
a a? a?

b)) IfU, = / cosax dx wherea € Randn = 3,4,5, ..., show that
xn

U — asinax cosax a? U
T —Dm=2x"2 (m—Dx"! (n—Dm—2) "
pe un n
Leth:/ ———du,aecR,neZ".
"0 0o Vu?+a?

(a) Show that nV;,(x) = x" 'Vx2 + a2 — (n — 1)a?V,_»(x), forn > 2.

et

Let 1,,:/n2"'2‘30”—005("—l)X—Zcosnx—cos(n+1)x i
0

1 —cos2x
forn e Zt.

(b) Using (a), evaluate

(a) Find values for the integral whenn = 0 andn = 1.

(b) Show that 1,41 = 21, — I,,—;.

(c) Hence conclude that I,,+1 — I,, = I, — I,—1 and that the terms in the
sequence for 7,, form an arithmetic progression.

(d) By finding the common difference between the terms in the arithmetic
sequence, show that I, = nm.

a
Let I, = / (a®> — x?)" dx such thata e Randn € Z7.
0

(a) Evaluate /.

(b) Show that I na> |
ow al = — -1.
m+1 !

a on !2
(c) Hence deduce that/ (a®> —x*)"dx = &az'ﬁl.
0

2n + 1!
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1
(d) Using (c), evaluate / (1 —x?)" dx wheren € ZF.

0
(e) By making use of the binomial theorem to find the integral given in (d)
directly, show that

Doy (D" (2"n))?
];(k)szrl T @en+

T sinnx

19. (a) Let u, =/ — —dx,neZ".
sin x

0
(i) Evaluate 1y and u;.
(ii) Show that u, 1, = u, forn € Z+.

T sinnx , dd
(iii) Hence deduce that / - dx = {n no
o sinx 0, neven.
T sin? nx
(b) Let U, :/ — dx,neZ".
0 sin°Xx
(i) Using the result found for u,,, show that U, — U,—; = m.
. T sin? nx
(ii) Hence deduce that - dx =nm.
0o sin“x

T

2
20. Suppose J, = / sin” u cos™ u du forn € N.
0

_
(a) Show that J,, = n4—J,,_2 forn > 2.
n

(b) Through the use of a suitable substitution, use the reduction formula

2
given in (a) to evaluate / 4- xz)%x4 dx.
0

T sin(nx)

21. Suppose that I, = / dx,n e N.

o sinx

(a) By using the following prosthaphaeresis formula for the trigonometric

functions
. . . (A—B A+ B
sin A —sin B = 2sin 3 cos 3 ,

show that sinnx — sin(n — 2)x = 2sinx cos(n — 1)x.
(b) Hence show that I, = I,,_».

T o3 0
(c) Hence deduce that I, = / sm'(nx) dx = { o reven
o sinx m, nodd.

22. In this question we will find the value for the definite integral

T 32
/ w dx, foralln € N.
0

sin” x
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(a) Find values for the integral whenn = O andn = 1.
(b) If f is continuous and bounded on the interval [0, 2a] where a > 0,

show that
02a fx)dx = /(;a f(x)dx—}-/oa fQa—x)dx.

T i b4
1—
(c) Use (b) to show that / M dx = / M dx.
o sin’x o 1—cosx

T
1_
) Let I, =/ 1 —cos(nx)
o 1—cosx

dx where n € N.

Show that 1,11 + I, = 21,.
(e) Hence conclude that 1,1 — I, = I, — I,,—; and that the terms in the

sequence for I, form an arithmetic progression.
(f) By finding the common difference between the terms in the arithmetic

sequence, show that

T a2 k14
I =/ dezf Lzcoso) oy
0 0

sin? x 1 —cosx

"I Extension Questions and Challenge problems

1 !
23. If m,n € N, show that/ X" = x)"dx = L.
ﬂ J—
24. Let I, =/ wdx,y eRnezt.
0 COSX —COSYy

(a) Evaluate I; and I,.
(b) Show that I,,4+1 —2I,cosy + I—1 = 0 neN.

sinn
(c) Using induction on n, show that I,, = —; Y 7w forn € N.
S

iny

T

2
25. Suppose I, = [ cos” x dx where n is a non-negative integer.
0

n

(a) Show that 1,4, = 7 I,—1.
n
(b) Hence show that (n + 1)1,411, is independent of n. Find its value.
(c) Prove that I,,4+1 < I, < I,,—1.
=1.

(d) Hence show that lim
n—=00 Ip41

(e) Hence deduce that

%
lim (Vn + 1/ cos"xdx) = \/z
n—00 0 2



18 Reduction Formulae 257

26 (Leibniz’s series).

1 x2n
Let [, = / 5 dx where n € Z*.
o 1+x

(a) Show that Ip = %.

1
(b) Show that I, + I, = 3 ] forn > 1.
n_
(c) Hence deduce that
1 1 1 b4
I, = —— — e (=D 2 (=D)L S U
"E w1 =3 + =D 3+( ) + =D 4

(d) Show that the expression for I, given in (c) can be rewritten as
n k+1
T (=1
I,=+D)"-- —.
n=1 [4 Z 2k — 1 }

2n
<x?"foralln >0and 0 < x < 1.

X
Show that 0 <
(e) Show tha T

1
Son4 1

(_1)k+1 o

2% —1 4

n (_1)k+1

g
Z_Z 2k — 1

k=1

(f) Hence deduce that 0 <

o0

(g) Hence show that as n — oo one has Z

k=1

This series is what is known as the Leibniz series, it being named after

one of its independent co-discoverers, the German polymath Gottfried
Wilhelm von Leibniz (1646-1716).!

(B

27 (Wallis’s product). Suppose that /,, = / sin” x dx,n € N.
0

(a) Evaluate Iy and I;.

2n — 1
(b) Show that I, = —
(c) Hence deduce that

2n—2-

2n—1 2n=-3 3 1 7 7wy 2k—1

Iy = ——— .22 AL | e

2n 2n—2 4 2 2 211 9o
(d) Show that I 2n_,
OW thal = — -1.
2n+1 2I’l+12n1
(e) Hence deduce that
Lo m-2 4 1_” 2k
LT o m—1 5 30 Ml
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(f) Show that I2,4+1 < Ion < I2p-1.

(g) Hence show that — lasn — oo.

2n41
(h) Use the results fromn(c), (d), and (g) to show that

2k—12k+1 1 33557
“ﬁ%n -

This product is known as Wallis’s product after the English mathemati-
cian John Wallis (1616-1703) who first gave the result in 1655.

28 (The Basel problem). Suppose that

T T
5 z
A, = / cos?” xdx and B, = / x2cos?” xdx forn € Z7.
0 0

3

T
(a) Show that Ay = g andlBO =
(b) Show that A, = nz_ A,y forn > 1.
n

(c) By integrating A, twice by parts, show that A, = 2n — 1)nB,—; —
2n2B, forn > 1.

By 2B, 1

(d) From the results given in (b) and (c), deduce that

forn > 1.
(e) Use the result given in (d) to show the following telescoping sum:

Z Z (ZBk 1 ZBk) 2By 2By
A1 Ak Ao Ap
(f) Hence deduce that for all n > 1, we have
n
1 2 B
e
k=1 "

(g) By observing that the linear function 2x /7 coincides with sin x at the
points x = 0 and x = 7/2, and as sin x is concave up on the interval
[0, 7t /2], one has

n—1 Ay n?

. 2x 7
sinx > — forall 0 <x < —.

b4 2

By replacing n with n 4+ 1 in the reduction formula given in (b),
together with the above inequality for sine, use this to show that

B, = |
0

NE]

2

A
x2cos? x dx < T L —
4 20+ 1)
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(h) Using the result in (f) together with the inequality in (g), show that

72 "1 2
0 —— — < —.
6 ZkZ 4dn+1)

oo
. . 1 2
(i) From the result in (h), deduce that as n — oo one has Z =il
k=1
This identity is a well-known result known as the Basel problem.?

1

29 (Irrationality of e¢). Let E,, = / x"e ™ *dx,n=0,1,2,...
0

1
(a) Show that Eyg = 1 — —.
e
1
(b) Using integration by parts, show that £, = —— +nE,_; forn > 1.
e
(c) Hence deduce that
1
En=—[14+n+nn—-1)+---nl] +nlEy.
e
(d) By considering the integrand in the definition for E,,, show that
1
n+1

1
0 </ x"e ¥ dx <
0

(e) From the result given in (c), substituting for the value of E¢y from (a)
and dividing by n!, one has

E, 1 1 1 1 |
ol (1+=F=F-==)=1=-=) —.
n! e( +1!+2'+ n!) e];)k!

Using this result together with the result given in (d), show that as
n — 0o

i (1 L] 1) |
e—nl)ngo +1—!+§+"'+E = On—!.
n=

(f) We will now show the number e is irrational. Let ¢ = p/q where p
and ¢ are positive integers that are relative prime (no common factors)
and choose n such that n > max{q, e} (n is greater than or equal to the
larger of the two, g or e).

From the expression given in (c), it can be rewritten as

nle—1)—(04+n+nn—1)+---+n!) =ekE,.
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Briefly explain why the expression on the left side must reduce to an
integer.

(g) Show that the right side of the expression given in (f) is between zero
and one for the choice made for n, which is a contradiction, implying
the number e must be irrational.

30 (Irrationality of 7). Suppose g is a positive integer. For each n € N define
the integral 7, by

2n % 2 n

b4

Inzq— — —x?) cosxdx.
n! -z 4

(a) Show that Io = 2 and I; = 44>.
(b) Using integration by parts twice, show that

In=(@4n—-2)q*I,_1 —¢*n?l,_5, n>2.

(c) Suppose that m = p/q where p and ¢ are positive integers that are
relative prime. Using induction on n prove that [, is an integer for every

value of n.
w2 " z2\"
0<|— —x2 cosx<|— ) ,
4 4

(d) Observe that
whenever n > 0 and —7/2 < x < /2. Using this result, by consider-
ing the integrand in the definition of /,,, show that

_ W

0<1I, '
n!

(e) It can be shown that if ¢ > 0 then lim a"/n! = 0. Use this result

together with the result given in (d;l_{oooshow that as n — oo, then
0<1I, <l

(f) Based on the result given in (e), what can one conclude about the
number 7?7

31. In this question we show how the integral of any rational function that is
proper can always be expressed in terms of rational functions and logarith-
mic and inverse tangent functions.

Recall the partial fraction decomposition for any rational function that is
proper can be expressed as a sum of linear and irreducible quadratic terms
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of the form (see page 145 of Chapter 11)
A
(ax + b)ym’
and
Bx+C Bx C
@2 4 px+y) @t prt ) | @+ px k)

Here m,n € N, A, B,C € R while a, b, «, B and y are constants such that
a,a # 0and B2 < 4ay since the quadratic factor appearing in the denom-
inator of the second term is irreducible.

(a) Integrating the linear term, show that

—_—

A
—Injax +b|+C m
a

A
/(ax+b)’"dx_ 4 1
a(m—1) (ax + b)ym~1

+C m>1.

This shows that the integral of all linear factors of a rational function
yields rational functions and/or logarithmic functions depending on the
value of the positive integer m.
(b) Now consider the expression of the irreducible quadratic term.
(i) Show that

Bx +C 1 Bx +C
(ax2+ﬁx+y)”dx=a_” BN (v _ B 7
(&) (- 5)

(i) By employing the substitution u = x + 2£, show that the integral
o

in (b)(i) can be rewritten as

Bx +C /
(ax? + Bx + y)" (u? + k2)
1 du
o (C _Z)/ (U2 + k2"
2

Y P S 0since B2 < day.

Here k2 =

(iii) For the ﬁrst of thg integrals appearing to the right in (b)(ii), by
letting u? = ¢, show that such a substitution reduces the integral
to an integral of the form given in (a), an integral that has already
been solved for.
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1v) For the second of the integrals appearing to the right in 11),
(iv) For th d of the integrals appearing to the right in (b)(ii)
writing it as
/ (k% +u?) —u?
————du
(u2 k2) kZ (M2 + kZ)n

= k_Z[ (U2 + k2)n—1

1 /‘ u d
— = | ————du,
k2 ] (u?+k?)"
and using integration by parts on the right-most integral, show

the above integral can be converted into the following reduction
formula

1 u
W2+ k2 (2n—2) U2+ k2)n—1
2n -3 /
METISEY e k2)" r

wheren = 2,3, ....

(v) The reduction formula gives the integral for all positive integer
orders greater than or equal to two. Here one sees that all such
integrals give rational functions except for the n = 2 term itself.
Finding this integral explicitly, we see it is equal to an inverse tan-
gent function as

du 1 L U
s =t (Z)+C
/ iz ke gt
(c) From the results found for each of the integrals in (a) and (b) one is able
to conclude that any rational function that is proper, when integrated,

consists of only rational functions and logarithmic and inverse tangent
functions.

32. The set of polynomials known as the Legendre polynomials,’ denoted by
P,(x) forn =0,1,2,..., are known to satisfy the following recurrence
relation

(n+DPry1(x) —2n + DxPy(x) + nPy—1(x) =0, n>=1,

and the integral relation known as an orthogonality condition

1
/ Pp(x)P,(x)dx =0, m #n.
-1



18 Reduction Formulae 263

In this question we will show that when m = n one has

1
[I[Pn(x)]zdx =TT

1
Start by defining 4, = [ [P, (x)]* dx.
-1

(a) If Py(x) = 1 show that Ay = 2.
(b) By replacing n with n — 1 in the recurrence relation for P, (x) and rear-
ranging, show that

2n—1

P,(x) = xP,_1(x) — nn;an_z(x).

(c) Using the result from (b), show that A,, can be expressed as

2n—1 !
4, =2 f XPy(x) Poy (x) dx.
n -1

(d) By making the x P, (x) term the subject in the recurrence relation for
P, (x), on substituting this expression into the integral for A4,, given in
(c), show that

_2n—1

S 2n+1

n n—1, n =1

1
(e) Hence deduce that A4, = / [P, (x)]?dx = .
-1 27’l + 1

Endnotes

1. Other earlier independent co-discoverers of the formula were the Scottish
mathematician James Gregory (1638—1675) who discovered it in 1667 and the
Indian mathematician Kerla Gargya Nilakantha who discovered it circa 1500.

2. The Basel problem was first posed by the Italian mathematician Pietro Mengoli
(1625-1686) in 1644. It remained an open problem (that is, unsolved) for 90 years,
until the Swiss mathematician Leonhard Euler (1707-1783) made his first waves in
the mathematical community by solving it. During his life, Euler would present
three different solutions to the problem, which asks for an evaluation of the infinite
series Z,?;l k2. Euler’s first solution to the problem in 1735 at the age of 28
brought him immediate fame within the mathematical community. The name of the
problem itself comes from the location of the publisher of Jakob Bernoulli’s text
Tractatus de Seriebus Infinitis, published posthumously in 1713 in Basel, which
first asked for a solution to the problem.

3. The Legendre polynomials are named after the French mathematician
Adrien-Marie Legendre (1752-1833). They have very important applications in
applied mathematics and physics.
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Some Other Special
Techniques and Substitutions

An idea which can only be used once is a trick. If you can use it more
than once it becomes a method.
— George Pdélya and Gédbor Szego,
Problems and Theorems in Analysis

In this last chapter on proper integrals before we move onto what are known as
improper integrals, we present a number of other special techniques one often
finds used to integrate a function, or other special types of substitutions. Each
takes advantage of the particular form taken by the integrand.

§ Product of an Exponential Term with the Sum of
a Function and Its Derivative

A useful method of integration presents itself if the integrand consists of a
product of an exponential term with the sum of a function and its deriva-
tive. If f and g are differentiable functions, recognising that from the product
rule

d
= (WVe@) = O [/ g () + &)

one immediately has

/ e/ (f'()g(x) + £'(x) dx = e/ Dg(x) + C

As we see in the examples that follow, the trick is to be able to correctly identify
the function g.

264
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x3

-2 1 2
Solution Since /ex (x 3 ) dx = /ex (—2 — —3) dx, observing that
X X X

—2
Example 19.1 Find / o (x ) dx.

g(x) =1/x2,g'(x) = =2/x3, as f(x) = x from the result

/ T (f'(0)g(x) + &' (1) dx = e/ Pg(x) + C,

_9 x
/ex(xx3)dx=i—2+c. >

it is immediate that

2
x<(2 3 _ 2 2 _ 1
Example 19.2 Find / e (x il ) dx.
(x—1)2
Solution , s
/ eX (2x3 —2x2 1) I = / e [2x2(x — 1) —1] i
(x—1)? a (x—1)2

X2 2x2 1
Z/e [x—l‘(x—l)z}dx

X2 X 1
=/€ [ZX'XTl—m}dX

Here we have f(x) = x2, f/(x) = 2x and g(x) = x/(x — 1), giving g’(x) =
—1/(x — 1)? as needed. So from the result

/ e/ (f'(0)g(x) + g'(x) dx = e/ Dg(x) + C,

one has
2

G _1)2 xzx_1+C. >

/ e x3-2x2-1) xe*

§ Reverse Product Rule

It is apparent that the method given above is just a special case of the more gen-
eral technique one can use to integrate a function known as the reverse product
rule. If f and g are differentiable functions, from the product rule

d
T &) g = f(x) - g+ f1(x) g,
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we see immediately that

/ @) ') + £/(x) - g(@)] dx = / [f) - g ()] dox.

or

/ () g0+ £1() - g(0)] dx = f(x) - g(x) + C

Once again the trick to using this technique depends on being able to recognise
that the function to be integrated is the derivative of a product.

1
Example 19.3 Find/ex (lnx + —) dx.
X

Solution |
/ex (lnx+—) dx:/(ex-lnx)’dx:exlnx+c. >
x

Example 19.4 Find / (sin(ln x) + cos(In x)) dx.

Solution
/ (sin(Inx) + cos(Inx)) dx = / (xsin(Inx)) dx = xsin(Inx) + C. »

§ Reverse Quotient Rule

A reverse quotient rule may also be used to integrate a function. If # and v are
differentiable functions, from the quotient rule

uy'  uv—vu
v T w2

it is immediate that

u'v—vu u
/—zdx=—+C
v v

Integrands that consist of a quotient where the term appearing in the denomi-
nator is squared may be amenable to the method of the reverse quotient rule.
As shall be seen, it is often more difficult to apply the method employing the
reverse quotient rule than the method that employs the reverse product rule.
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SINX — X COS X — COS X

sin? x

Example 19.5 Find /

Solution The appearance of a squared term in the denominator of the inte-
grand suggests that a reverse quotient rule method may work. Setting v(x) =
sin x, v'(x) = cos x. For the term in the numerator we have

wWv—v'u=u-sinx —u-cosx = sinx — x cosx — cos x.

By inspection (this is the hard part!) one can see that if u(x) = x + 1, then
u’(x) = 1, and the term in the numerator will follow. Thus

Sin X — X COS X — COS X x+1Y\ x+1
/ « dxzf(,+)dx= * e
sin” x sin x sin x

Note that often you may find it easier to find the integral using a method
other than the one that relies on the reverse quotient rule.

§ Symmetric Substitution

A symmetric substitution is a substitution of the form

1
u=x*+—, a#o0

xa’

The substitution is applied to integrals where terms in the integrand consist of
a term in the form of the symmetric substitution for u, together with a term of
the form

1
xat+1’

xafl

corresponding to the differential of the substitution itself. More often than not,
one will be required to manipulate the integrand into such a form. As the fol-
lowing examples demonstrate, such a substitution proves to be surprisingly use-
ful, particularly with certain types of integrals involving rational functions. As
with any technique of integration, the ability to recognise and know when to
use such a substitution is only gained after having seen and worked through

many different types of examples.
21
Example 19.6 Find / m dx

Solution In this case, as the integrand is a rational function of X, it suggests
a symmetric substitution may just work (of course, remember that it is just as



268 How to Integrate It

likely not to work).
1

2_1 2_1 _ 1
/%d.x:/ i d.X:/z—lxde
X%+ 3x- + xl(x2+xlz+3) x+x—2+3

1— -1
2
(x+;) +1

With the integrand in this final form, the following symmetric substitution can

be used:
1
u=x+—,du=(1——2)dx
X
Thus
2
x*—1 du 1 1 1
/mdx:/mztan u+C=tan (X+;)+C,
sinceu:x—i—%. >

x> —x

dx.
x84+1 x

Example 19.7 Find /

Solution

X2 —x x> —x X—=3
[Eotye [_ror g [ih,
x8+1 x4(x4+xl4) xt+ 4

With the integrand in this final form, the following symmetric substitution can
be used:

1 1
u:x2+—2,du=2(x——3) dx.
X X

Thus
/xs—xdx_I/ du _1/ du
102 wr-2 0 2 ) w2 (V2)2
1 ~ V2 1 |+ 5-V2
=—lnM+C= In "12 +C
4V2  lu+ V2 42 |2+ L+ V2
1 x*—x2V2+1
= 11’1 >
42 |x*+x22 41
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-1

Example 19.8 Find
P X/ x4

Solution

x2—1 x2—1
/ T / dx— —dx
XA/ X x /x2 X2 4 x2 /xz_i_xlz
1— L
=/—x22dx
Vs 2y -2

With the integrand in this final form, the following symmetric substitution can

be used:
1 1
Uu=x+—,du = (1——) dx.
X x2

Thus
x2—1

du du
el = | Jo—
= sin”! (%) +C =sin™! (% (x—i—%)) +C

2
X +1)
= sin + C. >
()C\/E

Exercises for Chapter 19

Y Warm-up

1. By applying the reverse quotient rule, find by inspection
/ COs X — X sin x d
———dx
(x cos x)?
X Practice questions

2. Find the following integrals using

/ SO f1(0)g(x) + g ()] dx = e’ Pg(x) + C.

xe* x(x —2x+1)
@ [T o [ S
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x 1 1 (x* + De*
(c) /e (2lnx+;+x—2) dx  (d) de

()/ e*d (f)/(1+x—l)ex+idx
(l—x)\/l—x2 X

x sin® x + cos x
(g) / COS X dx
sin? x

1—si
3. Consider the integral / (ﬂ) e*dx.

1 —cosx
. 1 —si
(a) Let g(x) = Y Show that gx)+¢g'(x) = sy
cosx — 1 1 —cosx
1—si
(b) Hence ﬁnd/ (ﬂ) e*dx.
1 —cosx
4. By applying the reverse product rule, find the following integrals.
(a) /(x sec® x + tan x) dx (b) /(2 Inx + In? x) dx
©) /xx(lnx + 1)dx (d) /(2x tan" ! x + 1) dx
1 ,
(e) / (1— + ln(lnx)) dx () /esmx cos(x — cosx) dx
nx

5. (a) Using the reverse product rule, show that

1
/ sin(mx + x)sin”™ ! xdx = — sinmxsin™ x + C, m # 0.
m

(b) Hence find / sin(101x) sin”® x dx.

6. Evaluate the following integral by first using a suitable substitution before
applying the reverse product rule.

T(A=x)In(1 +x2) + (1 +x2)—(1—x)In(1 —x?)
/0 (1—=xMH(1 + x2)

7. Suppose that g’(x) = f(x) for all x. Evaluate

e P
1
/xe + f(e* +1Inx)dx.
1 X

dx.
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8. By applying the reverse quotient rule, find the following integrals.
()/‘ 4x°> —1 (b)/‘x—?)x—d
x
CEEET n?
© / Inx dx @ / sin? x dx
x2(1 = Inx)? (x cos x — sinx)?
© / tan'x \’ d >
e _ x
x —tan~lx ® / x+1 dx
x2
9. In this question we will find dx using three different

10.

(x sinx + cos x)?
methods.

(a) Method I: Use the method of the reverse quotient rule.
(b) Method II: Use a substitution of x = tanu followed by a substitution
of t =tanu —u.

d
(c) Method III: By first observing that ox (x sinx + cos x) = x cos x, use
x

integration by parts.

Find the following integrals using an appropriate symmetric substitution.
x“ =1 I+ x
a ——dx b
()/x4+x2+1 ()/(l—xz)«/l—kx“
© / & o [y
c T Yt — S
X 1201632 1 1 ()/x/—1+x4 X
x4t +1 x2—1
(e) / ® / 2
X244 — x2+1 /x4

()/ 1—x dx
£ x2—x+1/x* 4+ x2+1

x2 41
h d
()/x4+3x3+3x2—3x~|—1 o
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x2+1
11. (a) Using a symmetric substitution, find / 4—+ dx.
x*+1
2

(b) Using a symmetric substitution, find / dx.

x4+ 1

(c) Using (a) and (b), ﬁnd/ Tt

12. By using a substitution of u = x2 followed by a symmetric substitution,

show that
2x(x* +1)? af . 1
/deztan X—; +C
x3n71
13. LetPn :/mdx,n 750

(a) Using a symmetric substitution, show that

P L P —1(x2n_1)+1
= ——|2tan T — n
" 4n\2 x"\2

17

X
(b) Hence find / T dx.

X2 —x"V2 + 1
X2 4 X124 1

|+

X Extension questions and Challenge problems

2w
14. Suppose that I(x) = / e* 9 cos(x sin 0) d6.
0

(a) Evaluate 1(0).
(b) Show that

d

Tx [ex c0s6 ¢os(x sin 9)] = i% [ex €086 gin(x sin 9)] .

(c) If we assume that when (x) is differentiated with respect to x, the x-
derivative can be moved under the integral sign of the definite integral

as follows:

dl mod

i / o [e’“"sg cos(x sin 9)] deo.
X 0 X

Using the above result together with the result given in (b), show that
dl

— =0
dx
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(d) Hence find an expression for /(x) and deduce the value for the definite
integral

2r
/ €% cos(sin 0) d6.
0
15. The substitution ¥ = (1 — x)/(1 + x) is an example of what is known as

a self-similar substitution.!

When solving for x, one finds x = (1 —u)/(1 + u). As the functional
forms for x and u are identical, each is equal to its own inverse, which
is why such a substitution is said to be self-similar.

Find or evaluate the following integrals using a self-similar substitution.

dx 1+ x dx
_— b
(a)/(l—x)\/l—x2 ()/ ( )1—X2

In(1 + x) x) 2 tanlx
d ——d
()[ 1+x2 ()/_éxz—f-x—f-z x
© /‘ In(x + 2)
-1 (x + D [In(x +3) + In(x +2) — In(x + 1)]
16. Without using a partial fraction decomposition, find / W Atsome

stage a symmetric substitution should be used.

17. Find

1—x
@ / (1 4+ x)a/x + x2 +x3
b [ D= D2V
( (X2 4+ 1)2(x6-1)

18. Using the reverse quotient rule, or otherwise, find

dx

x? +20
(xsinx + 5cosx)?

Endnote

1. Sean M. Stewart, ‘Finding some integrals using an interesting self-similar
substitution’, The Mathematical Gazette, 101(550), 103—-108 (2017).
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Improper Integrals

So what we do when calculating integrals from a to infinity is we take
a look forward, we take a look into the abyss, and then we decide, no.
We don’t want to deal with that.

— Anonymous

Almost all the definite integrals considered in the preceding chapters have been
proper integrals. Recall that the definite integral

/ " .

is said to be proper if both (i) the interval of integration [a, b] is bounded, and
(ii) in the interval [a, b] the integrand f is defined at every point x, is bounded,
and has at most a finite number of discontinuities. At times it is convenient
to relax either of these boundedness conditions found in (i) or (ii). Integrals
that result when either or both of these boundedness conditions are relaxed are
known as improper integrals and have wide-ranging applications in areas such
as applied mathematics, physics, and engineering.

For convenience an improper integral can be said to be of one of two types.
When the interval of integration becomes unbounded, condition (i) fails and the
resulting integral is known as a fype I improper integral. When the integrand
becomes unbounded, condition (ii) fails and the resulting integral is known as a
type Il improper integral. Some improper integrals can be of both types, where
the interval of integration and the integrand are both unbounded.

Improper integrals of either type can be readily handled by extending
our definition of the proper definite integral. As the extension to the proper
definite integral definition depends on type, we now consider each of these
separately.

274
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§ Type I Improper Integrals

An improper integral with an unbounded interval of integration is defined as
follows.

Definition 20.1 (Improper integral of the first type)

o
(a) If / f(x) dx exists for every number & > a, then
a

/:of(x)dx =ali)n;o/;af(x)dx,

provided the limit exists. In this case f is said to be integrable over [a, 00)
with the integral said to be convergent. If the limit does not exist, the integral
is said to be divergent.

b
(b) If [ f(x) dx exists for every number a < b, then
o

[ rwax= im_ [ reoax

provided the limit exists. In this case f is said to be integrable over (—o0, b]
with the integral said to be convergent. If the limit does not exist, the integral
is said to be divergent.

Just as with definite integrals, for convergent improper integrals the property
of linearity holds.

Theorem 20.1 (Linearity for improper integrals). If faoo f(x)dx and
[ g(x) dx both exist, then for any o, B € R, [[af (x) £ Bg(x)] dx is con-
vergent and converges to o [, f(x)dx £ B [ g(x) dx.

Proof Since

o0 b
| s £ peconax = fim [ fareo = pecoldx,

from linearity for the definite integral and the limit, one can write
00 b b
/ [ef(x) £ Bg(x)]dx = a lim / f(x)dx £ lim / g(x)dx
a b—o0 Jgq b—>00 J,4

=a/aoof(x)dxiﬁ/:og(x)dx,

which converges as both the improper integrals for f and g converge. |
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o0
Example 20.1 Determine if the improper integral [ —)26 converges or
1 X

diverges. If it converges, find its value.

Solution
> d o 17 1

/ Z = tim [ x%dx = lim [——} = lim [—— + 1] =1 < 0.
1 X a—o0 [q a—>00 b P a—>00 o

Thus the improper integral converges and has a value equal to 1. >

(o)
Example 20.2 Determine if the improper integral / 1_:6—2 dx converges
0 X

or diverges. If it converges, find its value.

Solution
o0 o
x 1 2x 1y 2,7
/0 —l+x2dx—2all)rr;o | 1+xzdx—za1220[1“(1+x)]o
— 1y 2 —
= Ealgrgo[ln(l + )—0] = oo.
Thus the improper integral diverges to infinity and has no value. >

We now consider improper integrals whose interval of integration is the
entire real line.

Definition 20.2 f is said to be integrable over (—o0, 00), and hence converges,
if f is integrable over both (—oo, ¢) and (c, 00). Here ¢ € R. In this case we
write

/_:f(X)dx =/_;f(x)dx+/coof(x)dx.

If f is not integrable on either of the intervals (—oo, ¢) or (¢, o0) then the
improper integral diverges.

For convenience one typically sets ¢ = 0, though this is not necessary as the
next example shows.

©  dx
32

Example 20.3 Determine if the improper integral / converges or

—00
diverges. If it converges, find its value.

Solution We begin by writing the improper integral as

/°° dx _/c dx +[°° dx
oo L+ x2 7 o 14+x2 ). 1+x2
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where ¢ € R. Considering the first of these improper integrals we have

¢ d ¢ d
[ al lim s = lim [tan_lx]z

oo 1 +x2 am—0o J, 1+x2 a>—o

= lim [tan_1 ¢ —tan~! Ol]
o—>—00

1

—tan_lc—<—z) = tan~ c—i—z
- 2/ 2’

And considering the second of the improper integrals, we have

®©  dx ) ¢ dx ) 1 @
5 = lim 5 = lim [tan x]c
c l+x a—oo J. 1+ x a—00

= ali)rgo [tan_1 o —tan~! c] = % —tan"lec.
Thus
/oo d_x = (tanflc-i- z) + (z—tanflc) = .
oo 1+ x2 2 2
So the improper integral converges and has a value equal to 7. >

All the rules we have considered in this text for finding proper integrals may
be extended so as to apply to improper integrals. Thus a change of variable,
integration by parts, a 7-substitution, and so on can all be used to evaluate a
convergent improper integral.

o

xtan~!x
Example 20.4 Evaluate ——dx.
P /0 1+ x2)2

Solution Let x = 1/u, then dx = —1/u? du, and the limits of integration
become x — 07, u — oo and x — oo, u — 0. Thus

/°° xtan~!x Jy - /°° %tan_l (%)d_u _ /°° u tan™! (%) I
0 0 0

1t+x22 (1 N L)2 w2 (1 + u2)?
u2

Now since u > 0, taking advantage of the following property for the inverse

tangent function
-1 (1
tan " u + tan -] =
u

we can rewrite the improper integral as

% xtan~!x T [ X ® ytan~!x
_— dx = — —_— dx — R d-x»
o (1+x2)? 2 Jo (1+4x2)2 o (1+x2)?

’

b4
2
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where the dummy variable u has reverted back to x, or

® xtan~lx T [ X
———dx = — ———dx
0 (1 + x2)2 4 0 (1 + X2)2

The improper integral that now remains can be readily evaluated using a substi-
tution of u = 1 + x2. Here du = 2x dx while the limits of integration become
x=0,u=1;x = oco,u — oo. Thus

® ytan~! x 7 (®du =« 17 = . 1 s
——dx=-— —==1lim |[——| == lim |1—-—|==.

o (L+x2)? 8J1 u? Ba—woco| ul, 8a>x o 8
| 2

§ Comparison Tests

Often it is difficult to determine the convergence or divergence of a given
improper integral since it is not always possible to find a primitive for the inte-
gral. This is the case for many important improper integrals found to arise in
applications. We would therefore like to have a way of testing for the conver-
gence of an improper integral without having to explicitly evaluate it.

One can gain information about the convergence or divergence of an
improper integral by making a comparison with other improper integrals of
known behaviour. A number of tests are available for such a purpose. Here we
introduce two comparison tests. While neither test gives the value for a conver-
gent integral, each can be used to establish the convergence or divergence of an
improper integral.

Theorem 20.2 (The direct comparison test for improper integrals). Sup-
pose f and g are integrable functions with 0 < f(x) < g(x) forall x >

(i) If/ g(x) dx converges, then / f(x)dx also converges.

(ii) If[ f(x) dx diverges, then / g(x) dx also diverges.

Proof We give the proof for (i). The proof for (ii) is similar. Suppose f
and g are integrable functions such that 0 < f(x) < g(x) for all x > a and
faoo g(x) dx converges. For o > a, let

o

F(a):/a f(x)dx and G(x) :/ g(x)dx.

a
From the given hypotheses, by the comparison property for the definite integral
one has

ngaf(x)dngag(x)dx or 0< F(o) <G(a).
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g
S

X

a

Figure 20.1. Geometric interpretation for the direct comparison test as
corresponding to an area (either finite or infinite) beneath a curve.

Thus both of these functions are increasing as « increases. Furthermore, F (o)
is bounded above by |, a°° g(x) dx as, from the hypothesis, the improper integral
for g converges. That is to say G(«) tends to a limit L as « — oo. It follows
that

0< F(e) <G(o) < L.

Since F(«) is increasing and bounded above by L it must also converge
to a limit as « — co. Thus the improper integral [ aoo f(x)dx converges, as
required to prove. u

Thinking geometrically in terms of areas beneath the curves for f and g
and the x-axis, the results for the direct comparison test for improper integrals
are immediately obvious. Suppose 0 < f(x) < g(x) for all x > a. This we
illustrate in Figure 20.1.

Clearly the area under the graph of g is greater than the area under the graph
of f. So if the area under g is finite, so is the area under f, while if the area
under f is infinite, so is the area under g. Put simply, a useful way to recall
the results of the direct comparison test for improper integrals is as follows. If
the BIG one converges, then so too does the SMALL one. If the SMALL one
diverges, then so too does the BIG one.

The most difficult part of applying the direct comparison test is deciding
which improper integral to compare with. Often properties of the functions
found in the integrand may help you make that decision. Dominant term anal-
ysis on the integrand as x becomes large in an absolute sense may also prove
useful.
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2

* cos
Example 20.5 Determine if the improper integral / dx converges or
1

4
diverges.

Solution Since 0 < cos?x < 1forall x > 1,as x* > 0 forall x > 1, one has

< = for all x > 1.

o
X
So a comparison with the improper integral / —- will be made.
1

X4
e°] d o 1 o
f —f = lim x*dx = lim |——
. X a—oo [y a—>00 3x3 1

. 1 1
=a&fﬁo[‘m—s+§]—§<°°-

As the improper integral | 1°° i—ff converges, by the direct comparison test the

improper integral [,

2
€7 X x also converges. >
X
Even though Example 20.5 shows that the improper integral converges, find-
ing its value is far from easy as no primitive for [ €5+ dx in terms of the
elementary functions exists.

Example 20.6 Determine if the improper integral converges or

/ *®  dx
RV
diverges.

Solution In deciding what improper integral the comparison should be made
against, dominant term analysis on the function appearing in the integrand will
be used. Dominant term analysis suggests

1 1
- :
x+1 Vx°

when x is large. As x° + 1 > x° for x > 1, one has v/x° + 1 > +/x9 for x >
1, giving
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Thus

o
= lim x 9 2dx

/°° dx </°° dx
1 Vx2+1 1 Vx% e—oo )y

2 o
- alggo [_7 /x7i|1

. [ 2 2i| 2
= lim |— +§ = - <o

a>oo | 7./a7 7
. . . . *® dx
So by the direct comparison test the improper integral 9—1dx
1 x” +
converges. >

o0

Example 20.7 Determine if the improper integral / PR converges or
2 X7 =

diverges.

Solution Dominant term analysis suggests that

1 1
BB 1 B

when x is large. So we compare
*° 1 J h ® dx
. o1 x  wi TR
o0 d o 3 o
/ oo lim/ x73Pdx = lim |———
5 X33 a—oo J, a—oo | 2x2/3 )

3 3 3
= lim |— + = .
a*oo[ 202 2%} 234

Thus the improper integral f2°° x‘i-% converges. But it is clear that

Since

1 1

—_— > =, X =2
¥5/3 -1 x5/3° ==
so we cannot immediately apply the direct comparison test. However, if we

note that
X33 1 >x5/2—lx5/3 = %xsﬁ, x =2,

then

x3/3 — 1 x5/3°
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Now as

* 2 dx =2 ® dx
5 x5/3 X = ) x5/3°

which converges, by the direct comparison test the improper integral

oo dx
5 <5757 also converges. >

As the previous example shows, dominant term analysis is not always
straightforward and at times may not even be useful. An alternative approach to
constructing a comparison to test for the convergence or divergence of improper
integrals can, however, be done using what is known as the limit comparison
test.

Theorem 20.3 (The limit comparison test for improper integrals). Suppose
a € R and that f and g are non-negative and integrable on [a, c0). If

. fx)
xli{lgo g(x) =L

’

where 0 < L < oo, then

(o) o0
[ f(x)dx and / g(x)dx,
a a
both converge or both diverge.

The proof of this theorem is not given here. The main advantage of the limit
comparison test over the direct comparison test is that it overcomes the diffi-
culties often associated with finding an appropriate inequality needed to apply
the latter test.

& d
Example 20.8 Determine if the improper integral / .
1 V1l4+x+x?

converges or diverges.

Solution Let f(x) = . We need to find a suitable function g to

1
V1 4+ x + x2

compare f with. From dominant term analysis we see that for large x

1 1 1
— = —,
V14 x+ x2 Vx2oox

f(x) =

Solet g(x) = 1/x. Now

/ g(x)dx = lim — = lim [Inx]{ = lim Ina = oo.
1 oa—>00 1 X a—>00 oa—>00
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Thus the improper integral || 1°° g(x) dx diverges. Next we consider the limit

i f(x) y x i x?2
m —— = llIm ————— = lim e
x—>00 g(x) x=>00 /T + x + x2 x—oo \ 1 4+ x + x2
. 1
X—>00 = —+ * + 1

Since this limit is a positive real number, from the limit comparison test we
conclude the improper integral | 100 f(x) dx diverges. >

§ Absolute Convergence

In the preceding examples we have only considered integrands that were
positive on their interval of integration. For integrands that become negative,
the integrand needs to be at least bounded if the improper integral is to have
any chance of converging; thus one needs to test for what is known as the
absolute convergence of an improper integral. When the improper integral for
| f| converges, we say the improper integral for f is absolutely convergent.

Theorem 20.4 (Absolute convergence test). Suppose f is integrable on any
interval [a,x) and [;° | f(x)| dx converges. Then so does [,° f(x)dx.

Proof From properties of the absolute value we know that
=)< fx) < fX)],
for all x > a. Hence
0< f(x)+ /)] <2 /()]

after adding the term | f(xx)| to both sides of the inequality. Since [ a°° | f(x)| dx
converges, so does | a°° 2| f(x)|dx by the linearity property for improper
integrals, and therefore by the direct comparison test so does [ aoo[ S(x)+
| f(x)|] dx. By the linearity property for improper integrals, since

/ f@ﬁh=i/ [(FG) + £ D) — | £ dx

=f(ﬂm+ugmM—/ (o)l dx.

the improper integral on the left converges as both the improper integrals on
the right converge, and completes the proof. |
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Theorem 20.4 tells us that absolute convergence implies convergence,
though it does not necessarily hold true when reversed. That is, if the improper
integral of f converges, that of | /| may not converge at all.' As an example of
how the test is applied, consider the following.

*® sinx

Example 20.9 Determine if the improper integral / dx converges

0 1 + X2
or diverges.

Solution Here the absolute convergence test in conjunction with the direct
comparison test will be used. We begin by bounding the integrand.

/°° /°°|sinx|
x = de
0 o l+x

® dx . *  dx
< = lim
o 1+ x2 a—soo Jo 14 x2

sin x
1+ x2

. — o . —
= lim [tan lx]o = lim tan '«
oU—>00 o—>00
T
= < oo.
2

. o0 | sinx
Since [, e

by the absolute convergence test [,

dx < oo (and follows from the direct comparison test), then

sin x
1+x2

dx converges. >

§ Type II Improper Integrals

For the second type of improper integral the integrand becomes unbounded
(blows up) at one or more points. This can occur if the integrand becomes infi-
nite (unbounded) at either one or both of the end-points or at one or more points
within the interval of integration.

Definition 20.3 (Improper integral of the second type)

(a) If f is continuous on [a, b) and is unbounded (has an infinite discontinuity)
at the end-point b, then

[ feds = tim [ rwa

if the limit exists. In this case f is said to be integrable over [a, b] with the
integral said to be convergent. If the limit does not exist, the integral is said
to be divergent.
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(b) If f is continuous on (a, b] and is unbounded (has an infinite discontinuity)
at the end-point a, then

b b
/a feydx = Tim, / £(0) dx.

if the limit exists. In this case f is said to be integrable over [a, b] with the
integral said to be convergent. If the limit does not exist, the integral is said
to be divergent.

(c) Suppose f is unbounded at point ¢ within the interval [a, b]. f is said to
be integrable over [a, b], and hence converges, if f is integrable over both
[a,c] and [c, b]. In this case we write

/abf(x)dx:/acf(x)dx+/;bf(x)dx.

If f is not integrable on either of the intervals [a,c] or [c, b] then the
improper integral diverges.

From the definition of a type Il improper integral we see that if the integrand
has infinite discontinuities at both of its end-points or at one or more interior
points within the interval of integration, one must first partition the interval of
integration so that each integral has exactly one end-point infinite discontinuity.

1
Example 20.10 Determine if the improper integral / T converges or
0 — X

diverges. If it converges, find its value.

Solution The integral is improper since the integrand becomes unbounded as
x — 17. Now

L @« g
/ = lim/ = lim [—In(1—x)]°
0 1—x a—>17 Jo 1—x a—>1" 0

= — lim In(1 —a) = oo.
a—>1"

So the improper integral diverges to infinite and has no value. >

1

Example 20.11 Determine if the improper integral / converges or

dx
141 +x

diverges. If it converges, find its value.
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Solution The integral is improper since the integrand becomes unbounded as
x — —17. Now

1 d 1
/ r o lim / 1+ x)_1/2dx
1 /1 +x a—>—11 Jqy

= lim [2«/1—}—_)6]1: lim [2&—2\/@]

a—>—11 a a——1+

=22 < 0.
So the improper integral converges and has a value equal to 2+/2. >

The next example shows how important it is to always check that the integrand
is bounded at all points within the interval of integration — a fact if overlooked
will be to your peril!

4

Example 20.12 Determine if the improper integral / converges or

X
o (x—3)*
diverges. If it converges, find its value.

Solution The integral is improper since the integrand becomes unbounded at
the point x = 3. We therefore write the integral as

4 dx 3 dx 4 dx
/0 (x—3)4‘/0 (x—3>4+/3 a3

Consider the first of the improper integrals.
3 4 1 o
=1 —3) "dx = 1 _—
[} o= [yt i |-

1 1
= lim |-—— — — | = .
a—>3" |: 3(ax —3)3 34:|
So the improper integral diverges to infinite and has no value. >

Comparison tests for type II improper integrals analogous to those given
for type I improper integrals exist. For each test the type I improper integral is
simply replaced with a type II improper integral.

4
Example 20.13 Given that x tan x > al

for x € (0, Z), use this to deter-
T —2x

T

2
mine if the improper integral [ x tan x dx converges or diverges.

0
The inequality given above is proved in Exercise 27 on page 52 of
Chapter 4.
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Solution Observe the integral is improper since the integrand becomes
unbounded at x = 7/2. So

% 4x —
/ xtanxdx>f al ndx
0 0 T —2Xx

2/07 [_2+nf2x] dx

o

= lim [—2 +
0

T—
oa—>5

R

| ax

T —2x

) 7
= lim_ [—2x ) In(z — 2x)]

o
a—>75 0
— lim_ [—201 _ %ln(n ~2a) + gln(n)]

T
a—>Z

= 00,

and diverges by the direct comparison test. >

Exercises for Chapter 20

Y Warm-ups

1. Briefly explain why the following integrals are improper.

o0 I
(fﬂl)/1 xte™ dx (b) /2 sec x dx
0

2 X pap—
" 4 (d)[ x*e™ dx
(C)/O x2—-5x+6 o 1

® dx 1 d
©) / ) / _dx
o x—1 -1 (2 =14
2. If f and g are both integrable such that [° f(x) dx and [,° g(x) dx both
diverge, does |, a°° ( fx) + g(x)) dx diverge as well?

I Practice questions

3. Determine whether each of the following improper integrals converges or
diverges. If it converges, find its value.
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*° dx 1 .
(a)/l m (b) /;003 dx
o0 sy o0 X
(c)/0 xe ¥ dx (d) /_OOH—xzd
3 dx
(e)/0 NG (ﬂflxz

0

(g)/ T2 (h) /_1
lnx o0 dx

(l)/ (])/ x1In?x

® /°° tan~ 0 /75 J
cotx dx
14 x2 o
U odx ()/w dx
n —
(m) /_1 ] o 2sinhx + 1
o0 o0
(0)/ e Xldx (p)/ sech x dx
—o0 —00

Oo dx U+ x
@ |, TreaTe o [ i
o0 dx o0
—— inx d
(s)/1 TR T (t)/0 xsinx dx

® tan~l x Inx
(u)/1 2 dx ()/ (1+x)2

4. (a) Find

/ al dx
(1 4+x)(1+ x2)

o0
(b) Hence deduce that

X J T
—_—  dx=—.
o (14+x)1+ x2) 4

5. The integral fo T is improper in two distinct ways: (i) the interval
of integration is unbounded, and (ii) the integrand is unbounded.
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_dx
If we rewrite the integral as fo ﬁ(l = T fl NeTTESSE we have. tv&fo
improper integrals such that in the first the integrand is unbounded while in
the second the interval is unbounded.

Show that each of these improper integrals converge, and by finding their
respective values, find the value for the initial improper integral.

. Use the direct comparison test to determine whether the following improper
integrals converge or diverge.

COS X
(a)/l S ()1 e

1 ] 1
(© / (d) / sin (—) dx
X sin x o X

o0
63 / x"sinhxdx,n € N
0

o X
(e)/o 1+ x3

()/ sin x _ sinx ()/ 08X
X
& 1+ cosx + e* l—i—x2
o0
. ~(tx-4) g /' Inx
(1)/0 e x 0| ad

. Use the limit comparison test to determine whether the following improper
integrals converge or diverge.

(a)/ _X (b)/ _dx
2 2031 1 14+ x+x*
* dx 1 COS X
©f v= @ [ R

oo 2 2
. Find the value of a if/ M —1|dx=1.
1 x(2x +a)

 gin? x
dx.

. Consider the improper integral / >
2m X

(a) Show that the improper integral converges.

00 Lin2 1
(b) Hence show that /

s~ X
dx < —.
27 X 2
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1 .
sin
10. Consider the integral / 1_2x dx.
0o X
(a) Briefly explain why the integral is improper.
(b) Show that for0 < x < 1, sinx > f
(b) By making use of the inequality given in (b), show that the improper
integral diverges.

> d
11. Consider the improper integral / —);. Here p € R.
1 X
Improper integrals of this type are often call ‘ p-integrals’.

(a) Find the values of p for which the improper integral converges.
(b) Find the value of the improper integral for those values of p where it
converges.

o

. o xInx
12. By using the substitution x = 1/u, show that / 0.

o (+x2 7
3
13. Suppose f(x) = T where T > 0.

e} u3 (o]
If/ "1 du =0, where o is a constant, show that/ f(x)dx=0T"
0o € — 0

where 7 is a positive integer that needs to be determined.

14. Supposen = 0, 1,2, ... Show that

00 1
(a) /0 t"e7tdt = n! (b) / (Inx)"dx = (=1)"n!
0

o0
15. In this question we will show that the improper integral / sin(x?) dx
0

converges.

(a) By writing the improper integral as

0o 1 0o
/ sin(x?) dx = / sin(x?) dx + / sin(x?) dx,
0 0 1

briefly explain why the first of the integrals appearing on the right
converges.

(b) For the second of the integrals appearing on the right in (a), by using
the substitution ¢ = x? followed by integration by parts, show that

o0 1 1 [ cost
) _ 1 _ ! cost
/1 sin(x“) dx = 2cos(l) 2/1 =R dt.
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(c) By applying the direct comparison test to the improper integral appear-
ing in (b), show that it converges, thereby showing that fooo sin(x?) dx

converges.
. . . ) * sin x
(d) Using this result, show that the improper integral NG dx
X
converges. 0
® Inx
16. (a) Show that/ ——dx =0.
0 1 + x 2
*®  Inx
(b) Hence evaluate 5 - Herea > 0.
0

17. (a) If a > 0, show that

¢ sinhx 1 1
dx = — coth™}(v/2) — — coth™}(+/2 cosh
/0 v X ﬁco (\/_) ﬁco (\/—cos a)

and

¢ coshx 1
———— dx = —tan" !(+/2sinha).
/(; p— X 7 an~!(+v/2sinha)

(b) Hence deduce that
/°° cosh x — sinh x T 1
0

= — — coth™1(+/2).
cosh 2x ~ 24/2 ﬁco V2

(c) By making use of the substitution ¥ = e* in the integral appearing in
(b), use this to show that

®  dx F11 1
= - coth™1(+/2).
/1 I+x* 42 22 2

18. Using the result

/:of(x—i- 1+x2)dx=%/;oo(l+%)f(x)dx,

show that /oo dx 3
W _ = —
0o (x++1+4+x2)3 8
® dx T
19. (a) Show that —=—,a>0.
o a*+x%* 2a

oo

d
(b) Hence show that / al a > 0.

o (a2 4 x2)2 Ve,

20. (a) If o, B > 0, show that

/°° dx . b4
o (2+a2)(x2+p%)  20B@+p)
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o0 d
(b) If a > 0, using the result in (a), find / al .
o XxX*+2x2cosha +1
. . 3 de
21. Consider the integral _—.
0o 3+ +/5c0s26

(a) Though this integral is not an improper integral, show that it becomes
improper when a substitution of ¥ = tan 6 is used.
(b) Hence find the value of the integral.

oo o0
22. (a) Show that / e(x?)dx =2 [ @(x?) dx provided the improper
0

—00

integral / @(x?) dx converges.
0

o0 oo
(b) Show that if/ x¢@(x?) dx converges, then/ xp(x?)dx = 0.
0 —00
o0
23. Let J, = / sech” x dx, where n € N.
0
n
(a) Show that Jy,4, = Jy.
n—+1
(b) Hence find the value of J4.
24. Find the value of the i int 1/00 dx for all val
. Find the value of the improper integra ——— forall values
1 (x+a)vx2—1

ofa > —1.

25. (a) If f is a continuous function on [0, 1], show that

/ﬂ xf(sinx)dx = 71/7 f(sinx)dx.
0 0

T X ﬂ2
(b) Using the result in (a), show that / — dx = —.
0 @ —cos?x 2
Here ¢ = (1 + +/5)/2 is the golden ratio.
nm X n2n2
(c) Hence deduce that if n € N, then / — dx =
0o @ —cos?x 2

26. (a) Using a symmetric substitution (see page 267 of Chapter 19) show that

/°° 1+ x2 T

———dx = —.
o 1 +4x2+4 x4 V6
(b) Hence show that

/"’o dx /'°° x? P T
_—m _— X = ——.
o 1 +4x2+ x* o 1+4x2+ x4 2/6
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(c) Using a substitution of x = 1/u together with the result found in (a),
show that

dx = 2.
T+t T4/

/°° (14+x)tan'(x?) 72
0

(2)()4 /«oo (2x)4
—d dJ = —dx.
(1—x2+x4)3 v an o (I—x24x%* .

(a) If f is an integrable function such that ffzo f(x) dx exists, show that

/_Zf(x)dxzf_j;f(x—%) dx.

(b) By making use of the substitution x = 1/u, together with the result in
(a), show that I = 3.

(c) By considering J — I, show that J = 1.

o0
27. Suppose I = /
0

U lnx

dx.

28. Consider the improper integral / ]
0 — X

(a) By recalling the infinite sum formula for a geometric series, namely

1 o0
— = Zx”, [x] <1,
1—x o

if this term in the integrand is replaced with the above infinite sum,
and assuming the order of the summation and integration can be inter-
changed, one can write [} 1% gy = 3% /1 x" Inx dx.

1—x
1 00

1 1
Using integration by parts, show that / oY dx = — Z —-
o 1—x i

(b) Recalling that the infinite sum found in (a) is the Basel problem (see
Exercise 28 on page 258 of Chapter 18), deduce that

1 2
1
/ B ="
0 l—x 6
29. If n € N, show that

/Oo dx _2n—-3 2n-5
o (14+x2)" 2n—2 2n—4

1
2

3 T
4 2"

o0
30. Let / f(x + vV 1+ x2)dx where f is any function for which the
0

improper integral exists.

(a) Showthat/oof(x+ V1+x2)dx = 1/00 (1+)%) f(x)dx.
0 1

2
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° dx
(b) Using (a), evaluate / .
£ 0 2x24+1+4+2x+4/x2+1

(c) Using (a) together with the substitution x = tan 6, evaluate

/’5 do
o (1+sin)3

dx converges.

o0
31. (a) Show that / cosx
1

* sin x
(b) Hence show that / —— dx converges.
1 X

32. (a) Show that/ In(sinx) dx = —— 1n2
(b) If f is an integrable function, show that

SPAC))

A ﬁd 2[)7 f(sinx)dx.

b4
(c) Hence deduce that / =——1n2.
m 2

° dx
33. Let [, = ——— wheren € N.
0 (1 =+ x2)n

1
(a) Show that I, — I,,+1 = — I,.
2n

@2n)'w

(b) Hence deduce that /,4 = 22+ ()2

(o) 1 2
(c) If / f |:(x — —) :| dx where f is any function for which the
0 X

improper integral exists, show that

[T [ | (- 1) ] o

e} x2n—2

(d) Hence evaluate /(; m where n € N.

o0 xm
34. Let ] = ——— dx where m and n — 1 are positive integers.
mon /0 A xym X w m n positive integ

(a) Show that Iy, = —— L 10,
’ m+n—1 | ’ |
I(n —2)!
(b) Hence deduce that I,,, ,, = M, m=>=0,n
’ (m+n-1)!

WV
)
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35. If a? + b2 = ¢2 such that » > 0, show that

foo b dx 4
oo 1 4+ 2ax +¢2x2 1—2ax +c2x2 2’

dx < 1.

1 2
3% 4 2x + 1
36. Show that / cos@x” + 2x + 1)
0 Vx+ Yx

37. Show

= m,where b > a

()/ \/(b—x)(x—a
1

b _— = — - —), 0

o) (xz+az)z (7)o

(c)/zxcotxdx=%1n2

(d) / ﬁdx = —2mIn2

1 dx
(e) In x+ 1+x2—7r1n2

= id ,0<a<b

® /wa51nhx+bcoshx Vb2 = g2
(g)/ tan™~ 1(—) dx =2 —V2)n
V1=x2

(h) / _
o (1+ x)(ln x+1) 2
© X 4

@ X X241 /3
. * dx o
W) eFias 12

. . . * Jx , .
38. (a) Consider the improper integral T+ 22 dx. By using the substitu-
0 X

tion x = tan 0, show that

© Jx
A 1_+_xzd)c—/ +/tan 0 d@—ﬁ

(b) If f is an integrable function, show that

/(;Oof(x)dxzfo1 |:f(x)+xizf (i)} dx.
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Jx
(c) Let f(x) = - Show that
1 1 1+x
xX)+ — — ) =—.
700 xzf (x) Vx(1 4 x2)
1
1
(d) Hence find the value of _tx dx.
0 Vx(1+x2)
[oe] xp—l
39. Find the values of p for which the improper integral / T dx
1 X

converges.
I Extension questions and Challenge problems

40. Using the result e® > 1 + x for all x € R, where required, show that

1 xs—l
f dx converges for all s > 1.
0 er —1

41. Let P(x) be a polynomial of degree n with real coefficients and o > 0.

(a) Show that

/0 e *P(x)dx= —e_xP(x)‘: — e_xP’(x)‘: —e— e P (x) :

00 n
(b) Hence show that/ e *P(x)dx = Z P®(0).
0 k=0

42 (The Laplace transform). For any suitable function f, the Laplace trans-
form of the function f'(¢) is the function F(s) defined by

L)) = F(s) = /0 et F( . s > 0.
(a) Show that

1 1
() {1} =~ (i) isint} = ——

(b) If a, @ > 0, show that

0 LSOy =F+0) G o fan) = L F (i)
a a

(¢) Use the results given in (a)(ii) and (b)(ii) to find £{sin(at)}.
(d) Show that £{f'(t)} = sF(s) — f(0).
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(e) Use the results given in (a)(ii) and (d) to find £{cost}.
(f) Hence find £{e~' cost}.

43. Evaluate / cosec 1 (v/1 + cotx) dx.

0

[SE]

Endnote

1. In such cases we say the improper integral is conditionally convergent, but we do
not consider these cases any further here.
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Two Important Improper Integrals

‘Do you know what a mathematician is?’, Lord Kelvin once asked a
class. He stepped to the blackboard and wrote [°C e dx = J7.
Putting his finger on what he had written, he turned to the class. ‘A
mathematician is one to whom that is as obvious as that twice two
makes four is to you.’

— Lord Kelvin

In this our final chapter we present evaluations for two important improper
integrals that arise in applications. Each evaluation is made using elementary
means based on ideas at a level not beyond those encountered and used
throughout this text. The two improper integrals to be considered are

o o0 L1
.2 sin x
/ e dx and / dx,
0 0 X

which are known as the the Gaussian integral' and the Dirichlet integral®,
respectively. What makes the evaluation of these integrals particularly trou-
blesome is that in neither case do the corresponding indefinite integrals admit
expressions in elementary terms. By a remarkable stroke of luck, values in

terms of known mathematical constants can, however, be found for each of
these two improper integrals.

§ The Gaussian Integral

We start by showing the Gaussian integral converges. We write it as

00 1 0o
/ e dx = / e dx + / e dx.
0 0 1

298
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—x? is continuous for all x € [0,1]

the integral exists and is Riemann integrable. For the second integral appearing
on the right, as x2 > x for x > 1, multiplying both sides of the inequality by
negative one and exponentiating, as the exponential function is monotonic, the

For the first of the integrals on the right, as e

. o . _x2 _ .
inequality is equivalent to e™*" < e~ for all x > 1. Since
[es) oo 1
/ eFdx=[—-e"]] =- <00
1

converges, by the direct comparison test || 1°° e dx also converges, thereby
showing that the Gaussian integral converges.

In evaluating the Gaussian integral the tools to be used are reduction formu-
lae, two inequalities, and the squeeze theorem for limits. While the approach
to be used is quite involved,® importantly it does not rely on techniques beyond
the scope of this text.* Let

1 [e'e} dx
n=[ (1-x*)"d dk,,:/ _—
Jj /0( x)"dx an . (tax2p

where n € N. In the first of these integrals, if we let x sin 8, dx = cos 6 df
while for the limits of integration, when x = 0,6 = 0 and when x = 1,0 =
/2. Thus

5 z
Jn = / (1 —sin®6)" cos 6 df = / cos?" 1 0dl = I,41,
0 0

T

7
where I, = cos” 6d6.

0
Similarly, for the second of the integrals, if we let x =tan6,dx =
sec2 0 df while for the limits of integration, when x = 0,6 = 0 and when
X — 00,6 — 7/2. Thus

3 sec2 9 3 n—2
— — = n = ] —2.
kn /o 1+ anZ )y do /0 cos 0do 2

Now we find a reduction formula for 7,,. Writing

z z
I, = / cos” §do = [ cos” 1 6 cos b dob,
0 0
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integrating by parts gives

z 7
I, =sinf-cos" 16 02 + (n— 1)/ cos" 2@ sin? 6 db
0

%
=(n-— 1)/ cos" 2 6(1 —cos? 6)db
0

:(n—l)/2cos”_29d9—(n—1)/2 cos™ 6 d6
0 0
= (1= Dlyn — (n— DIy,

or

after rearranging. We also note that

5 P 3
IO=/ df = — and 11=[ cosfdb =1.
0 2 0

Now shifting the index in the reduction formula for /,, by n — 2n we have

-1, -1 2m-3 31,
2 "7 Ton an—2 a2 "

I2n =

and by n — 2n 4 1 we have

2n 2n 2n —2 4 2
on—1 — T T T [1.
2n +1 2n+1 2n—1 4 3

Ipy1 =

Taking their product and using the values found for /¢ and /;, we have

1
2n +1

Lylpy1 =

’

|

foralln = 0, 1, . ... Shifting the index in the product by n +> n — 1 gives

1
2n—1

s
Iy 2l = 7

foralln =1,2,....
Putting aside these reduction formulae for the moment, we now develop
some inequalities that will be needed. The first is

2
l+x2<e™, for0<x < 1.
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To prove this, consider the function f(x)=1—x2— e fx) =
2x(e_x2 — 1) <0 for all x € [0, 1] since e < 1. Thus f is a decreasing
function and f(x) < f(0) = 0, and the required inequality follows.

The second inequality we need is

1
e < ——, forx > 0.
1+ x2
To prove this inequality, consider the function g(x) = e — 1/(1 + x?).
Now,

(0 +xPe =1 h(x)
N 1 + x2 14 x2

g'(x)

where h(x) = (1 + xz)e_"2 —1.As 1 + x2 > 0 for all x, we need only con-
sider the behaviour of the function 4. As h'(x) = 23~ < Oforallx > 0,
h is a decreasing function. This implies g is a decreasing function and g(x) <
g(0) = 0, and the required inequality follows.

If we now integrate the nth (positive) power of these inequalities, the first
from O to 1, the second from O to oo we have, respectively,

1 1
/ (1—-x3)"dx < / e gy
0 0

o0 x
/ e dx < / d—x
0 o (1+x2)n

Noting that "% > 0 for all X,

o 2 1 2 o0 2 1 2
/ e ™ dx :/ e X dx+/ e ™ dx >/ e " dx,
0 0 1 0

the two inequalities can be combined

1 1 [ele] o]
d
[ (1—-x>)"dx < / e dx < / e dx < / —x
0 0 0 o (1+x2)n

or as

and

1
2
—nx
Ipy1 < / e dx < Irp_»,
0

in terms of the reduction formula /,,. Under the change of variable x > x/+/n
this becomes

ﬁ 2
Vil </ e dx < nly—s. (*)
0
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Finally we find the ratio between the reduction formulae in the limit as n —
00. Since cos 8 < 1 for 6 € (0, w/2), on repeatedly multiplying this inequality

by the positive term cos 8 we find for the integrals

Ipy1 < Izp < Iop-y,

or
12n 12n—1
| <2 o 2l
Dnt1 Danta
_ _2n
= mlzn_l.ThUS

since [, is positive for all n. But it was shown that /5,4

the above inequality becomes
Loy, 2n+1 1 1
2n 2n’

Iopy1

1<

Asn — oo,
<1,

1 < lim
n—>00 Ippiq

so from the squeeze theorem for limits we have

I
lim —2 = 1.
n—00 Iopiq

1

_ T e T .
= 5,47 ' 2 this limit can be written as

lim 27 + 11y, = ,/%.

=1 or
n—>oo

Furthermore, since 155,41 125

2
lim 2n + 1)=13,
n—00 T

A change of the variable in the limit to n +>n — 1 and n + n + 1/2 gives,

respectively,
[ [m
lim v2n — 11, = /= and lim ~2n 4 2,41 = / =.
n—o00 2 n—00 2

In the limit, as n — 0o (*) becomes

i
lim vnlrny1 < lim / e dx < lim Vil (%)
n—>0o0 n—>00 0 n—o00
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The two limits appearing in () can be found. Here

. . Jn
nll)ngox/ﬁlznﬂ—nll)ngom V2n + 2l 41

. Jn
T s i, V2 2

. [ n
= lim .
n—oo \ 2n 4+ 2
T 1
=,/—-lim | ——
V2 nooo\242/n
N N R/
V2 2 27

lim nlap—p = lim L-«/zn— 1zpn
n—>00

and

- nlgl;)lo «/2}1—— nILII;o 2n - 112n—2

= lim ‘/
n—oo 2n—1
[
= ,/—- lim
2 n—oo —]/n

| _

b4
2

N

Thus () reduces to

Recognising
ﬁ 2 *° 2
lim e ¥ dx = e dx,

by the squeeze theorem the value for the Gaussian integral is

/ooe_xzdxz ﬁ
0 2
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This is a truly remarkable result. Not only can a value for the Gaussian inte-
gral be found, but the unexpected appearance of & makes it all the more
astounding.

Using this result, values for certain types of improper integrals related to
the Gaussian integral can be found by reducing the integral to the Gaussian
integral. Consider the following example.

Example 21.1 By reducing the integral to a Gaussian integral, find the value
oo el—x
of / dx.
1 Vx—1
Solution Let x — 1 = u?, dx = 2u du while for the limits of integration we
have x = 1,u = 0 and x — oo, u — oo. Thus

0o ,l—x oo ,—u? )
/ ° dx:/ ¢ -2udu:2/ e_uzduzz-ﬁ:ﬁ.
1 x—1 0 u 0

2
>

§ The Dirichlet Integral

The second of our important improper integrals is the Dirichlet integral. While
there are many, mostly advanced, methods that can be used to evaluate this
integral the approach to be used here is via the Dirichlet kernel.® It is considered
to be largely elementary in that it does not require anything beyond the scope
of the material presented in this text.

You may recall in Example 15.10 on page 198 of Chapter 15 it was shown
that the Dirichlet kernel can be expressed as a finite sum as follows:

sin(n + %)x 1 "
—_— == kx.
2sin(d) 2 ]; cosfx

At x = 0 the left-hand side is understood to correspond to its limiting value of
n—+ % as x — 0. The integral of the Dirichlet kernel between the limits O to
will be needed. It is

7 sin(n + %)x /” 1 n
———dx = =+ ) coskx | dx
/0 2Sll’l(§) 0 2 ];
_[f]ﬂ_i_znz sinkx ”_z
“L2Jo k 27

0
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We first show the Dirichlet integral converges. We write the Dirichlet inte-

gral as
00 3 1 o 00 i
/ smxdx:f sin x dx—l—/ s1nxdx' )
0 X 0 X 1 X

sin x
X
zero by assigning it a value of one at x = 0. As the function in the integrand is
now continuous for all x in the interval [0, 1], the integral exists and is Riemann

integrable.

For the second of the integrals, we integrate by parts:

/Oosmx dx = lim [_cosx]a_/‘x’cosxdx =COS(1)—/OOCOSde.
1 1 x2 1 x2

For the first of the integrals, continuity of the function x > is extended at

X oa—>00 X 1

For the integral on the right

| cos x > | cos x|
> | dx = 2
1 X 1 X

® dx ) * dx
< — = lim
1

x2 a—o00 [ x2

« 1
lim [——] = lim —
a—o X 11 a—00 (f

=1<o0.

Since [,
verges. Thus the second of the integrals in (1) converges and shows that the
Dirichlet integral converges.

We next turn our attention to considering the rather unusual function

o0
€551 dx < 00, by the absolute convergence test, [, <%* dx con-
x 1 x

1
f@O)=-——.0<t<m

t  2singz
Att = 0 the value for the function is understood as its limiting value as t — 0%
so in this case we have f(0) = lim,_ ¢+ f(¢) = 0; this means f is continuous
for all ¢ € [0, x]. Its derivative f’ can also be shown to be continuous on the
interval [0, r]. Why we consider such a function at all will become clear in a

moment’s time. For now, consider the integral

[Tsin((n+3)) (5= 537) @
0 ® " 2 t Zsin% '
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Integrating by parts, we have

/onsm ((n - %)t) (% a ZSiln%) dt = [Onsm((” + %) f) - f(t)dt
-[yee(e+4)) m}j
e

As f(0) = 0 and cos(n + %)n = 0, this integral reduces to

T 1 1 1 1 T 1
/(;sm((n—l—i)l)<;—2Sin%)dl=n+%/(-)cos((n—i- )) f@)dt.

As f'(t) is continuous on [0, ], | f/(¢)| will be bounded by some constant

M > 0. Thus | f/(t)| < M. So
</0n cos((n+%)t)’-|f’(t)|dl

/ncos((n—l—l)t)f’(t)dt

o 2
~ T[ / d?
</0 @] di

since | cos(n + %)t| 1 forall . Butas | f/(t)] < M we have

/Oncos((n+ ) )f(t)dt

or after dividing both sides by the positive term n + %

l_il_%/oﬂcos((n—f- ) )f(t)dt

In the limit as n — oo, we see that

lil/.”cos((n—i- ))f(t)dt — 0,
+ Jo

and can therefore conclude that®

. T 1 1 1
lim sin({{n+ <z )t)|-——5]dt=0.
n—o0 [y 2 t  2sing

/ Mdt = M,

_I_

D=
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Now from the linearity of the definite integral, one has

T sin(n 4+ 1) ¢ T sin(n 4+ )¢
lim [/ Mdt—/ (,—f)dx}zo.
n—oo | Jo t 0 2sin 5

2

Since the second integral was shown to have a value of Z, we have

™ gin(n + 1) ¢
i [0 5]
n—oo | Jo t 2

; 1
- /”wm:z
0

n—o00 t 2

or

Let x = (n + %)t, dx = (n+ %) dt while for the limits, when t = 0,x =0
and whent =, x = (n + %)n. Thus
(+H7 Gin x T

lim X =—,
n—o0 Jo X 2

or finally

As was the case with the Gaussian integral, values for certain types of
improper integrals related to the Dirichlet integral can be found by reducing
the integral to the Dirichlet integral. Consider the following example.

Example 21.2 By reducing the integral to two Dirichlet integrals, find the value
* sin> x
of dx.
0

X

Solution Recalling that 4sin®x = 3sinx —sin3x, the integral can be
rewritten as

 gin? 1 [ 3sinx —sin3
/‘ 1 xdx:—/ in x 1 xdx
0 X 4 0 X

3 [ si 1 (% sin3
=_/ smxdx__/ sin xdx.
4 0 X 4 0 X

As the first integral is just the Dirichlet integral, it has a value equal to 7 /2.
The second integral can be made equal to the Dirichlet integral. Setting u =
3x,du = 3 dx while the limits of integration remain unchanged, we have

/ sin xdx:/ smudMZZ.
0 X 0 u 2
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Thus

% gin3
0 X

How to Integrate It

Exercises for Chapter 21

X Practice questions

1. Find the value for the following integrals by reducing each integral to the

Gaussian integral.

(a) /oo e dx
o0 e—x
(©) /0 de

o 2
(e) / efx +2x dx
—00

[ele] el—x d
(g)/l Nk

o 2
@) / x2e ™ dx
0

® /1 dx
0 ~—Inx

(m) /Oo(l — x)e_"2 dx
0

© 2
(b)/ e 2 dx
—00

oo ,—1/x2
(d)/ ¢ —dx
0

X

oo 2
(f) / efx +8)C716 dx
—0o0
(h) / 27 dx
0
oo 2
(j)/ xte™ dx
0

1
0 f V—Inxdx
0

o [ -

2. Find the value for the following integrals by reducing each integral to the

Dirichlet integral.
*° sinx

(a) / —dx
oo X

© /°° sin(mx) dx
0 X

T

(b) /oo l sin (l) dx
0 X X

)
—1
(d) / —cosx2 dx
0 X
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® ¢in x — sin(x2 * cos x sin 5x
© / sin x — sin(x )dx ® / dx
0 X 0 X
o0 o1 n
. (a) If n € N find the value of the integral / sin(x") dx.
0 X

* sin(ax)

(b) If a # 0 find all values for the integral / dx.

0 X

o0
. Show that/ X gy = Ve,

0
o0
1
. (a) If a > 0 show that/ e dx = E.
0 2 a
0 2
(b) Ifa > 0 and b € R show that/ emAXHbX g — ola ‘lz.
oo a
% cos 4x — cos 6
. Show that/ wmc = 7.
0 X
x
t
. The sine integral’ Si (x) is defined by Si (x) = / % dt. It is found to
0

have important applications in many areas of electrical engineering, includ-
ing signal processing.

A function closely related to the sine integral is the function
* sint
si(x) = —/ —dt.
.t

Show that Si (x) = si (x) 4 5 and find values for Si (0), Si (00), Si (—00),
si (0), si (00), and si (—00).

o0
. Find/ e cosh(2x) dx.
—0Q

. In the theory of probability the cumulative distribution function for the
standard normal distribution ®(x) is defined by

D(x) = 1212 gy,

1 X
— e
V21 [_oo
A closely related function is the error function erf(x) defined by

2 X
erf(x) = ﬁ/o e du.
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(a) Using the substitution u = —t/+/2, show that ®(x) can be written in
terms of the error function as

1 1 X
d(x) = 5 + Eerf (E) .
(b) Show that the error function can be written in terms of the standard
normal cumulative distribution function as erf(x) = 2®(x~/2) — 1.
(¢) Find values for erf(0), erf(c0), erf(—o0), ®(0), and ®(oc0).
(d) A closely related function to the error function is the complementary
error function erfc(x) defined by

erfc(x) = 2 /ooe_“z du
VT s '

Show that erfc(x) =1—erf(x) and hence find values for
erfc(0), erfc(oo), and erfc(—o0).

. . . % gin® x
10. (a) By integrating the integral
0

5— dx by parts, use this to show
X
® gin? x T
) dx = E
0 X
(b) By setting x = 2u in the integral appearing in (a), use this to show
® gin* x T
that —2 dx = Z
0 X
(c) By integrating the integral appearing in (b) by parts, use this to show
® gin* x b4
that / T dx = .
0 X 3
® gin x sin £

(d) Hence deduce that / — 3 dx = E.
0 X2 6

that

11. Suppose f is an integrable function such that f_ozo f(x) dx exists.

(a) By writing

/;:f(x)dx=/_(;f(x)dx+/:of(x)dx,

and using a substitution of x = —e™’ in the first of the integrals
appearing on the right and a substitution of x = e’ in the second of the

integrals appearing on the right, show that

/:f(x)dxzf(:f(x—%) dx.
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(b) Using the result in (a), evaluate

o [eo]-(+- )]

(e 9] 2 _ -1 2
(ii) / exp |:_(x;]+)j| dx,p>0,q €R.
—00

I Extension questions and Challenge problems

12. The function si (x) was defined in Exercise 7. Using integration by parts,
show that

o b/
sinxsixdx = ——.
0 4

13. The complementary error function erfc(x) was defined in Exercise 9.

d 2
(a) Show that —erfc(x) = e

dx T
(b) Using I’Hopital’s rule for limits, show that li)m x erfc(x) = 0.

X—>00
o0
1
(c) Using integration by parts, show that / erfc(x) dx = —.
0 VT

[ 2

o 1
14. Show that/ (1 — x sin (—)) dx = —.
0 X 4

15. (a) Using properties for the hyperbolic functions, show that

)
sinh”(37rx) _ leSnx _ le—Snx + leSnx _ le—Snx + lenx _ le—rrx
sinh(7rx) 2 2 2 2 2
o0 T2 4 02
(b) If a € R, show that xe AXTHAX gy = —o'r

_ T
(c) Using the results from %21) and (b), deduce that

/00 —Zx2 Sinh2(3ﬂx) dx = 4(e™ + 3e97 4+ 56257[).

oo e sinh(7rx)
0 | _ . Dxe--
16. Suppose I = / cosx cos2 X CoSnY dx,where n € N.
oo X

(a) Show that I1 = w, I, = 2m,and I3 = 37.
(b) Based on the results found in (a) it is tempting to conjure /, = nx for
all n € N. Show that this is not true by showing that /4 = 97 /2.
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Endnotes

1. The Gaussian integral, which is also known as the probability integral, is named in
honour of the German mathematician and physicist Carl Friedrich Gauss
(1777-1855), though it was first explicitly evaluated by the French mathematician
Pierre-Simon Laplace (1749-1827) in his paper ‘Mémoire sur la probabilité des
causes par les évenments’ of 1774. It is an important integral as it is often
encountered in applications. For example, it plays a fundamental role in the theory
of probability where it is related to the cumulative distribution function for the
standard normal distribution (see Exercise 9).

2. The Dirichlet integral is named in honour of the nineteenth-century German
mathematician Johann Peter Gustav Lejeune Dirichlet (1805-1859), though the
result for the integral had been known to the great Swiss mathematician Leonhard
Euler (1707-1783) by 1781.

3. The method we intend to follow seems to have been first presented by Michael
Spivak as an exercise on page 329 of the first edition of his 1967 text Calculus
(W. A. Benjamn, Menlo Park, California).

4. Many methods for finding the Gaussian integral are known, but almost all of these
depend on one being familiar with more advanced techniques. For a selection of
such methods see, for example, the article by Hirokazu Iwasawa, ‘Gaussian integral
puzzle’, The Mathematical Intelligencer, 31(3), 38—41 (2009).

5. We follow the method first suggested by Waclaw Kozakiewicz. See: Waclaw
Kozakiewicz, ‘A simple evaluation of an improper integral’, The American
Mathematical Monthly, 58(3), 181-182 (1951).

6. In fact this result is a particular case of a more general result known as the
Riemann—Lebesgue lemma, which states that if f is Riemann integrable on the
interval [a, b], then

b
Ali)moo/a f(t)sin(At)dt = 0.

It is, respectively, named after the German and French mathematicians Georg
Friedrich Bernhard Riemann (1826-1866) and Henri Léon Lebesgue (1875-1941).

7. The sine integral was first introduced by the Italian mathematician Lorenzo
Mascheroni (1750- 1800) in 1790, though the value for the Dirichlet integral was
already known to the great Swiss mathematician Leonhard Euler (1707-1783) by
1781.



Appendix A

Partial Fractions

The miraculous powers of modern calculation are due to three inven-
tions: the Arabic Notation, Decimal Fractions and Logarithms.
— F. Cajori, History of Mathematics

In this appendix an overview for the method of partial fractions is given. In the
same way that rational numbers are formed from the integers, rational functions
may be constructed from polynomials. A rational function is an expression that
can be written in the form

P(x)

fx) = 00

Here P(x) is a polynomial and Q(x) is a nonzero polynomials of x.!
Two rational functions P (x)/Q1(x) and P>(x)/Q»(x) are said to be equal,
that is

Pi(x) _ Pr(x)
01(x)  02(x)

if upon cross-multiplying, the two polynomials P;(x)Q>(x) and P>(x)Q1(x)
are equal, that is P;(x)Q2(x) = P»(x)Q1(x). Addition and multiplication of
rational functions are defined in a natural manner using the same rules for
fractions:

Px) AKX _ P()B(X) +AX)0()  Px) Alx) _ P(x)A(x)
O(x)  B(x) O(x)B(x) T 0() B(x)  Q()B(x)

Note that any polynomial P(x) may be viewed as a rational function by
thinking of it as P(x)/1 where Q(x) = 1.

313
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Example A.1 Show that the following two rational function expressions

p(x)  x+2 an P(x) 2x2—x—10
g(x)  x24+x+1 O(x) 2x3-3x2-3x-5

)

are equal.

Solution For the two expressions to be equal we require p(x)Q(x) =
q(x)P(x). Now

P(X)0(x) = (x +2)(2x3=3x2 —=3x —=5) = (x + 2)2x — 5) (x> + x + 1),
and

gX)P(x) = 2x2 —x —10)(x> + x + 1) = (x + 2)2x — 5)(x*> + x + ).
Thus p(x)Q(x) = ¢(x) P (x) so the two expressions are equal. >

The method of partial fractions is a way of decomposing a rational function
P(x)/Q(x) into a sum of terms with denominators of degrees less than Q(x)
when a factorisation of Q(x) is known. In cases where P(x)/Q(x) is a ratio-
nal function with real coefficients, when viewed as a real-valued function the
method of partial fractions becomes a very important integration technique that
can be used to find primitives for rational functions (see Chapter 11).

A rational function P(x)/Q(x) is said to be proper if the degree of the
numerator is less than the degree of the denominator, that is, deg P < deg Q.
If deg P > deg Q the rational function is said to be improper. Consider the
rational function A(x)/B(x) where deg A > deg B. As it is improper the divi-
sion algorithm for polynomials (polynomial long division) can be used to write
A(x) as

A(x) = B(x)Q(x) + R(x).

where Q(x) is the quotient and R(x) the remainder such that deg R < deg B.
So any improper rational function can be written as
A(x) R(x)

I A 15

Here Q(x) is a polynomial while R(x)/B(x) is a new rational function that is
now proper. What this shows us is every rational function can be written as a
sum of a polynomial and a proper rational function with the same denominator
that appeared in the original improper fraction.
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To give some definiteness to the idea we are trying to develop here, consider
the following. For the partial fraction
2 n 1
x+3 x-7

)

a common denominator can be found by cross-multiplying, expanding, and
simplifying. Doing so yields
2 I 3x-—11 Al

13 X7 a2l A-D
Algebraically this is a relatively simple operation to perform. The question is,
if given the right-hand side of (A.1) to start with, is it possible to perform the
operation in reverse in order to arrive at the left-hand side? The central chal-
lenge here is how to decompose any given proper fraction into a sum of partial
fractions consisting of simpler (read, of lower degree) denominators? That it
can be done, and in a unique way, is contained in the following theorem and is
referred to as a partial fraction decomposition.

Theorem A.1 (Partial fraction decomposition). Let f(x) and g(x) be poly-
nomials over R[x] such that deg f < deg g and where g(x) can be written as
a product of distinct linear and irreducible quadratic factors that may repeat,
namely

m n

g(x) = [ Jaix +b)% - [ J(e;x® + Bjx + ).

i=1 j=1

where a;,b;,a;,B;,v; €R and k;,s; € N; then there exists unique real
constants A;j, Bij, and C;; such that

g(x)

JS(x) Gl Bijx~|—C,-j
Zz(a x+b)J +;; (i x2 + Bix + yi)/

As the proof of this theorem is rather technical, it will be omitted. The impor-
tance of the theorem is that it furnishes a method for actually finding the partial
fraction decomposition of a rational expression provided the irreducible factori-
sation of the denominator is known; further, the uniqueness property shows that
one never has to consider multiple solutions for the coefficients in the decom-
position. One should also notice that, provided the fraction is proper, the f(x)
appearing in the numerator plays no role in how a partial fraction decomposi-
tion is formed.
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Using the general expression for the partial fraction decomposition can be
tedious. Streamlining the application of the final form found for the decom-
position of a rational function into partial fractions is best done by handling
one factor at a time for each of the factors appearing in the denominator of the
rational function. Depending on whether the factors appearing in the denomi-
nator of the rational function are either linear or irreducible quadratic, and are
repeated (contain multiplicities) or not (are distinct), at most only four separate
cases need be considered. The final form for the partial fraction decomposition
is then just the sum of the individual partial fractions found for each factor.
We now consider how to find each of the four separate cases used in finding a
partial fraction decomposition for a rational function.

Case I - Q(x) is a product of a distinct linear factor
If Q(x) can be written as a product of distinct linear factors, namely

O(x) = (a1x + by)(azx + b2) --- (anx + by),

each linear factor can be written in the form ﬁ so that for the n distinct

linear factors for the partial fraction decomposition one writes
P(x A A A
(x) _ 1 2 O el
O(x) aix+by axx+by anpx + by,

Here Aq, A,,...,A, are constants to be determined. The number of these con-
stants to be found is determined by the degree of Q (x); observe that the numer-
ator P(x) has no bearing on the identity of the partial fraction decomposition
formed.

3x —11
x2—4x =21
Solution We have seen the answer to this question already as it just corre-
sponds to (A.1). We now apply the procedure of partial fractions to show how
the decomposition is achieved.

First observe that the degree of the numerator is less than the degree of the
denominator so the rational function is proper. Factoring the denominator of

Example A.2 Find the partial fraction decomposition for

the rational function as far as possible over the reals, we have

3x —11 _ 3x+1
x2—4x—-21 (x+3)x-7)

As the denominator contains two distinct linear factors, its partial fraction
decomposition will be of the form
3x—11 A n B
x2—4x—-21 x+3 x-7
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The most general way to find the two unknown constants that is always guaran-
teed to work is to multiply through by the common denominator before equat-
ing for equal coefficients for x in the resulting polynomial equation. Doing so,
we find

3x—11=Ax-7)+B(x+3)=(A+ B)x + (—74A + 3B).
On equating equal coefficients for x we have

coefficient for x! : 3=A+B
coefficient for x° : —11 = —74 + 3B.

Solving the pair of simultaneous equations we find A = 2 and B = 1, which
gives

3x—11 2 N 1
x2—4x—-21 x+4+3 x-—7

for the partial fraction decomposition, as expected. >

From this example the first thing you may have noticed is that the effort required
in finding a partial fraction decomposition for a rational function is considerable
compared to its reverse operation of summing together the partial fractions.
The general method used in Example A.2 to find the unknown constants can,
however, be considerably sped up by using appropriate substitutions for values
of x.

3x — 11

Example A.3 Find the partial fraction decomposition for ——
x2 —4x —21

using
the quicker method of substitution.
Solution As in Example A.2 we have

3x — 11 _ 3x —11 _ A n B
x2—4x-21 (x+3)x-7) x+4+3 x-7

’

which after multiplying through by (x + 3)(x — 7) gives
3x =11 = A(x —7) + B(x + 3).

As this identity is true for all x, the values of A and B can be more easily
determined by choosing suitable values for x. The values of x selected should
lead to cancellation in one of the terms:

x=7: 3()—-11=B(7+3) =B=1
x=-3:3(-3)—11=A(-3-7) = A=2
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giving
3x —11 2 1
2 == + 9
x2—4x-21 x4+3 x-7
as before. By employing the substitution method, the need to solve a pair of
simultaneous equations has been avoided. >

Case II - Q(x) contains some repeated linear factors

If the linear factor (ax + b) appears in the factorisation of Q(x) k-times,
A

instead of writing the part of the partial fraction as ———— itis instead written
(ax +b)
as
A A A
1 + 2 ) + cee _|_ —kk
(ax+b) (ax+b) (ax + b)
2x

Example A.4 Find the partial fraction decomposition for —( T
X

Solution First observe that the degree of the numerator is less than the denomi-

nator so the rational function is proper. As the denominator contains one distinct

linear factor that is repeated, its partial fraction decomposition will be of the

form

2x A B

(x+1)2_x+1+(x+1)2’

where A and B are two unknown constants to be determined. To find the con-
stants we clear the denominator by multiplying through by (x + 1)? to obtain

2x+1=Ax+1)+ B.
Substituting obvious values for x, values for A and B can be quickly found.
x=—-1:2(-1)+1=8B = B =-1
x=0: 204+1=A4A+B =>A=1-B=2.

Hence we obtain for the partial fraction decomposition

2x4+1 2 1 R
(x+D2 x+1 (x4 12

x2 4+ 6x + 11
(x —D(x +2)2
Solution First observe that the degree of the numerator is less than the denom-
inator so the rational function is proper. As the denominator contains two linear

Example A.5 Find the partial fraction decomposition for
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factors, one of which is repeated, its partial fraction decomposition will be of
the form

x2 4+ 6x + 11 A B C

oD +2? x—1 x12 Gro2

where A, B, and C are three unknown constants to be determined. To find the
constants we multiply through by (x — 1)(x + 2)? to obtain

x2 4+ 6x + 11 = A(x +2)* + B(x — 1) + C(x — I)(x +2).
Substituting obvious values for x, values for A and B can be quickly found:
x=1: 1?2 +6(1)+11=A41+2)? =>A4=2
x=-2:(=2?+6(-2)+11=B(-2-1) = B=—1.
To determine C, as A and B are already known, we can substitute any other

value of x we wish. It is, however, best to choose a small integer to keep the
arithmetic manageable. We choose x = 0.

x=0:11=44-B-2C = C=24-ip-U =-1.
Hence we obtain for the partial fraction decomposition
x2 4+ 6x + 11 2 1 1

G-DE12? -1 x+2 G+27 >

Case III — Q(x) contains an irreducible quadratic factor that is not repeated

If the irreducible quadratic factor (ax? + Bx + y) appears in the factorisation
of Q(x), the form of its partial fraction decomposition will be
Ax + B
ax2 +Bx+y’
7
(x +2)(x2+3)°
Solution First observe that the degree of the numerator is less than the denomi-
nator so the rational function is proper. As the denominator contains one distinct
linear factor and one distinct irreducible quadratic factor, its partial fraction
decomposition will be of the form
7 A N Bx+C
(x+2)(x2+3) x+2  x24+3°
where A, B, and C are three unknown constants to be determined. To
find the constants by clearing the denominator by multiplying through by

Example A.6 Find the partial fraction decomposition for
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(x 4+ 2)(x2 + 3), one obtains
7=Ax%+3)+ Bx(x +2) + C(x + 2).

Substituting obvious values for x, values for A, B, and C can be readily found.

x==-2:T7=7A4 = A=1
x=0:7=34+2C =>C=7-34=2
x=1:7=44+3B+3C = B=4—-%4-C=-1

Hence we obtain for the partial fraction decomposition

7 . 1 x—2
(x+2)(x24+3) x+2 x243

Case IV — Q(x) contains an irreducible quadratic factor that is repeated

If the irreducible quadratic factor (a«x? + Bx + y) appears in the factorisa-

tion of Q(x) k-times, instead of writing the part of the partial fraction as

Ax + B . .
it is instead written as

ax?+ Bx+y
A1x + By Arx + B> 4ot Agx + By
ax2+Bx+y  (ax2+ Bx +y)? (ax2 + Bx + p)k-
. . . .. 3x* +5
Example A.7 Find the partial fraction decomposition for ——————.
x(x2 4+ 1)2

Solution First observe that the degree of the numerator is less than the denom-
inator so the rational function is proper. As the denominator contains one dis-
tinct linear factor and one irreducible quadratic factor that is repeated, its partial
fraction decomposition is of the form

3x*+5 A Bx+C Dx+E

et T eri tere

To find the five unknown constants the most direct method is to multiply
through by the common denominator before equating for equal coefficients for
x in the resulting polynomial equation found. Doing so, after some algebra, we
find

3x*4+5=(A+B)x* +Cx>+ (2A+ B+ D)x> + (C + E)x + A.
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On equating equal coefficients for x we have

coefficient for x*: 3 =A+ B
coefficient for x3: 0 = C

coefficient for x2: 0 =24+ B + D
coefficient for x : 0 =C + D

coefficient for x° : 5= A.

As A and C are known, the other three constants can be quickly found.
We have A =5,B=-2,C =0,D = -8, E =0, and the required partial
fraction decomposition is

x4+ 5 5 2x 8x

- = — . |
x(x24+ 12 x x241 (x241)?

Example A.8 Write down the form of the partial fraction decomposition for
the rational function
2x3 —x2+7
(x +5)x—1)3(x2+x + 1)(x2 +4)2°
You are not required to evaluate any of the constants that appear in the expres-
sion for the partial fraction decomposition.

Solution First observe that the degree of the numerator is less than the denom-
inator so the rational function is proper. As the denominator contains two linear
factors, one of which is repeated, and two irreducible quadratic factors, one of
which is repeated, its partial fraction decomposition is of the form

2x3 —x2 47 A N B N C
X+ —D32+x+DE2+42 x+5 x—1 (x—1)2
n D Ex+ F Gx+ H Ix+J

(x—1)3+x2+x+1 x2+4 0 (x2+ 4%

where A4, B, ..., J are real constants. >

§ Heaviside Cover-Up Method

Finding a partial fraction decomposition for proper rational functions using the
clearing of fractions method, while always guaranteed to work, can be very
time consuming and slow. While the substitution method is faster, it is still
often tedious to apply. For the case where the denominator contains distinct
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linear factors, a much faster way to find a partial fraction decomposition is to
use what is known as the Heaviside cover-up method.>

If the denominator of a rational function can be factorised into n distinct
linear factors, none of which are repeated, as we have seen one can write

P(x) P(x) T
00) G-aDG—a) - (—an) x—a x—a i
(A.2)

To find A; cover up the (x — a;) factor appearing in the denominator of the
left-hand side by pretending it is not there and evaluate the left-hand side at
Xx = aj. All other unknown constants are found in a similar way. For example,
to find A, cover up the (x — ay) factor appearing in the denominator of the
left-hand side and evaluate the left-hand side at x = a5, and so on.

Example A.9 Using the Heaviside cover-up method, find the partial fraction
1

d ition f .
ecomposition for DG t)a =D

Solution First observe that the degree of the numerator is less than the denom-
inator so the rational function is proper. As the denominator contains four dis-
tinct linear factors its partial fraction decomposition will be of the form

1 A] A2 A3 A4
= + + + .
x—Dx+2)x—-3)(x+4) x—-1 x+2 x—-3 x+4

To find A, after the factor (x — 1) on the left-hand side of the equation is
covered up, evaluating at x = 1 gives

1

(kx5%)(x +2)(x = 3)(x +4) |,y =41
! =A
kx0)(1+2)(1-3)1+4
1
= A = —%.

To find A3, on the left-hand side of the equation we cover up the factor (x + 2)
before evaluating it at x = —2.

1 1
(x =D *#)(x —3)(x +4) |, =4, = A, = =
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To find A3, on the left-hand side of the equation we cover up the factor (x — 3)
before evaluating it at x = 3.
1
(x=1D(x +2)(k*xx)(x +4)
Finally, to find A4, on the left-hand side of the equation we cover up the factor
(x + 4) before evaluating it at x = —4.

1
—A; = A3=—.
3 3 70

x=3

1 1
(x = D(x +2)(x = 3)(x * %) x=_4:A4 = A=
Thus
1 - . | 1
G-DE G-+ G-  0x+2 | T0x-3)
1
S 70(x+4) >

It is not too hard to see why the method works the way it does. Clearing the
denominator of (A.2) we see that
P(x) = A1(x —az)(x —az) -+ (x —an) + Ao(x —ar1)(x —az) -~ (x —ay)
+o+ Ap(x —a)(x —az) - (x —ap-1).
As this identity is true for all x on evaluating it at x = a; we see all terms on

the right after the first is cancelled out, leaving

P(ay) = Ar(ar —az)(ar —as) -~ (a1 — an),
or
= P(a1)
(a1 —az)(a1 —az)--- (a1 —an)’
which is exactly the term one obtains from the cover-up process. Repeating

the process by setting in turn x = as, ..., d,, all other constants appearing in
Equation (A.2) can be found.

§ Distinct Linear Factors — A Special Method

So far in our determination to find the unknown constants that appear in the par-
tial fraction expression when a rational function is decomposed, purely alge-
braic methods have been used. We now consider one special case where meth-
ods from analysis, that is techniques from the calculus such as limits and dif-
ferentiation, can be used to find the unknown constants.
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We now show how if the denominator appearing in the expression for a
rational function can be factored into n distinct linear factors, the » unknown
coefficients in the partial fraction expansion can be determined by applying
differentiation to the term appearing in the denominator.

Theorem A.2. If P(x) is a nonzero polynomial and Q(x) is a polynomial that
can be factored into n distinct linear factors,

O(x) = (x —a)(x —az) -+ (x —an),

such that deg P < n, the partial fraction decomposition for the rational
Sfunction P(x)/Q(x) is given by

P(x) = Plag) 1
0(x) ,; O’ (o) x — o

Proof We now give a simple proof of this result. Since Q(x) consists of n
distinct linear factors, using the product notation it can be written as

n

0(x) = (x—a)(x —) - (x—an) = [ [(x— ),

k=1
and the partial fraction decomposition for the expression P(x)/Q(x) can be
written as
P(x A A
W _ A A _ Z
O(x) x—o1 x—o0p x—ozn x—otk

Taking the natural logarithm of Q(x) and differentiating with respect to x, the
logarithm turns products into sums

0'(x) — |
o(x) Z X —ay

k=1

= 0'(x) =

Note the i = k term in the product for Q'(x) is not included as it cancels. Also,
for P(x) it can be rewritten as

n

P =003 A —ZAk]‘[x_z;

i=1
i#k
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Evaluating P(x) and Q’(x) at x = oy, except for the kth term, all terms in
each sum cancel to give

Q' (ax) = [ [ (ex — ),

i=1
i#k
and
n
P(ax) = Ax [ J(ax — i) = A4x Q' ().
7k
Thus Ay = P(ar)/Q’(ax) and the result follows. |

Example A.10 Use the formula given in Theorem A.2 to find the partial
fraction decomposition for
6x2
x4+ Dx+2)(x +3)(x+4)°

Solution In this example we have P(x) = 6x2, Q(x) = (x + I)(x + 2)(x +
3)(x +4) where vy = —1,0p = —2,a3 = 3,04 = —4. So

P(-1)=6(-1)>=6
P(=2) = 6(=2)* =24
P(-3) = 6(-3)> = 54
P(—4) = 6(—4)> = 9.
Finding Q’(x) using the product rule we have
O'(xX)=x+2)(x+3)(x+4)+ (x+ D(x+3)(x+4)
+(x+ D(x +2)(x +4) + (x + D(x +2)(x + 3).

Evaluating gives

Q') =MH@B)=6
0'(=2) = (-H(H(2) = -2
Q'(=3) = (-2(-H(1) =2

0'(—4) = (-3)(=2)(-1) = -6,
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and the partial fraction decomposition becomes

6x2 . P(-1) P(-2)
x+DE+2)x+3)x+4)  OQDx+1)  0(-2)(x+2)
n P(=3) P(-4)
0'(-3)(x+3)  Q'(-4(x+4)
1 12 27 16

x+1_x+2+x+3_x+4'
Remark: Finding a partial fraction decomposition using Theorem A.2 is usually
quite long and slow compared to the Heaviside cover-up method and for this
reason would not be used. Its real utility is as an important theoretical tool rather
than as a practical algorithmic tool.

Exercises for Appendix A

" Warm-ups
1. Show that the following two rational function expressions
p(x) x—3 P(x) 2x% —5x -3
= an =
qg(x) 2x2+4+x+1 O(x) 4x3+4x2+3x+1
are equal.

2. For the following proper rational functions write down the number of con-
stants that would need to be found if each were decomposed into a sum of
partial fractions.

x—1 x2+1

@ (x +2)(x—3) ®) (x—13x+7)
x2+1 1
© EroreD) @D eyt 12

"X Practice questions

3. Write out the form of the partial fraction decomposition for the following
rational functions. Do NOT attempt to find values for any of the unknown
constants you give in the partial fraction sums.

@) 2x b 1
a (x+3)Bx+1) ()x3+2x2+x
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(© 2

C —_—

x2+3x—4
3

© x*—1

X2

(x—Dx24+x+1)

(d)

x*+x2 41

O @ r e

4. Resolve each of the following proper rational function expressions into

partial fractions.

1
@ o he-o
Tx —1
© 2x2 —x—1
© x2 4+ 15x—4
x4+ Dx+2)(x—798)
1
) x3 + 10x2 + 25x
. 11x 4+ 18
O e+
(k >

) (x + 1)(x2 + 4)2

1
o YRR

(

x° —dx* +3x2 -2
(x2 —x +2)3

(0)

5x + 4

b)) T
()x2+x—2

25

d
@ 18x3 —9x2 —11x + 2

48

® (x2-1)(x2-9)

X

®

) 17x
2x+1)(x2+4)

@

x3=3x24+4x-6

O (x24+1D(x2+4)

2x — 1
P Ly ——

(

2
(xZ—x+Dx2+x+1)

(P

5. Resolve each of the following improper rational function expressions into

partial fractions.

20x3
@ S IahGeon
x3 —2x

© x(x2+4)

2x3 —27x2 4+ 89x — 66
x2 —12x +27

(b)

6x* —4x3 +3x2—x-2
2x2 +1

()
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6. If f(x) is a polynomial of degree at most 3 and «, b, ¢, and d are distinct
numbers, find expressions for the constants A, B, C, and D in terms of
values for f and the numbers a, b, ¢, and d if

S (x) A B C D
x—a)x—b)(x—c)(x—d) x—a +x—b+x—c+x—d'

7. In this question a partial fraction decomposition for 1 will be found.

x* +

(a) Find the four complex roots of the equation x* 4+ 1 = 0.
(b) Using (a), show that over the reals the term x* + 1 can be factored as

x4+1:(x2+\/§x+1)(x2—\/§x+1).

(c) Using the result in (b), show that the partial fraction decomposition for
the rational function is

r x+ 2 B x—2
X1 222+ V2x 4 1) 2V2(2—V2x+ 1)

8. Consider the following rational function f(x) = ;Cz—: By finding a par-
tial fraction decomposition for £, use it to find £ 199 (x), the 100th order

derivative of f.

X Extension questions and Challenge problems

9. A simple and quick method that can be used to find a partial fraction decom-
position when the denominator consists of a single repeated linear factor of
the form (ax + b)" is to use the substitution x = ¢/a — b. The resulting
expression for the rational function in terms of ¢ is then readily resolved
into partial fractions before back-substituting for x.

As an example, consider the following rational function expression
x?—3x+4
x—2)
If we set t = x — 2, then x = ¢ + 2, and on substituting into the rational

function expression for x one has

(t+2?-30+2)+4 *4+:r-2 1 1 2

=4 - — .
13 13 t 12 13
So it follows that the original partial function expression has
x2—-3x+4 1 n 1 2
x—23  x—=2 (x-22 x-2%

as its partial fraction decomposition.




10.

11.
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By applying this method, find partial fraction decompositions for the fol-
lowing rational function expressions.

x+3 x247
@ —— b) —————
(x—1)2 ®) (x +1)*
x34+x2-2x-3 x2—6x+5
© ; (@ ——=
(x —3) (x+2)
In addition to arithmetic and geometric series that have simple formulae

for their sums, another type of series where simple formulae for their sums
can be readily found are known as telescoping series. Here the series can
be summed by first decomposing the summand appearing in the series into
partial fractions.

For the following telescoping series, by finding a partial fraction decompo-
sition for the summand first, find a simple expression for the sum of each
series.

" 1 " 1
(a);kz-i-k (b)k;4k2—1

()Zk4+k2+1

A telescoping series is a special type of series where most of the terms in
the series cancel out, leaving a very simple sum. If you have ever seen an
old-fashioned telescope made of two or more tubes that slide inside one
another, allowing it to be compactly stored, you will begin to understand
where the series derives its name from. Like one of these old-fashioned
telescopes, a telescoping series similarly ‘collapses’ down to a very simple
sum.

Another special technique in finding a partial fraction decomposi-
tion applies to rational functions that contain a nonrepeated irreducible
quadratic factor of the form (x? + ax + b) in the denominator. It is due
to Rear Admiral John P. Merrel (1846 1916), an officer who served in the
United States Navy for over 40 years.? After clearing all denominators one
replaces all x? terms by —ax — b as often as is necessary and simplifies
until at most only linear terms in x remain, allowing the unknown constants
to be found by equating equal coefficients for x.
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As an example of the method we find the partial fraction decomposition for
x2 42
x+Dx2—x+1)°

As the denominator consists of a linear and an irreducible quadratic factor
its partial fraction decomposition will be of the form

x2+2 Ax + B c

x+Dx2—=x+1) T2 _x i1 +x+1.

The constant C can be immediately found using the Heaviside cover-up
method. Here C = 1. Next, clearing denominators one has

X242=A*+x)+Bx+ 1) +CEx2—x+1).

Replacing all x? that appear with x — 1 gives
x=D*4+2=A(x-D+x)+Bx+D+C((x—1)—x+1)
x+1=A2x—-1)+B(x+1)
x+1=Q2A+B)x—-A+B.
On equating equal coefficients for x we find2A + B =1land —A + B =

1, which when solved gives A = 0 and B = 1. Thus the required partial
fraction decomposition is

x* 42 _ 1 1
x+DE2—x+1) x2—x+1 +x~|—1'
By applying Merrel’s method, find partial fraction decompositions for the
following rational function expressions.

x2+3
@) (2
(x+1)2(x2+x+1)
x3 —8x2 —10x — 30
(X2 +x+3)(x2+2x+5)

12. If n € N show that the partial fraction decomposition for the rational

(b)

function ——— is given by

x"(1—x)




14.

15.

16.
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where P(x) =x" and Q(x) = (1 —x)(1—-2x)(1 =3x)---(1 —rx).
Here r € N.

(a) Since deg P = deg Q, f is improper. After performing polynomial
long division it can be shown that
- X=X -x)1-2x)---(1—rx
PREG) L= x)(1=2%) (1= rx)
r! 1-x)1-2x)---(1—-rx)

Prove this result by using induction on r.
(b) Using (a), show the partial fraction decomposition for f is given by

=53 () e

Hint: Find an expression for the kth coefficient A in the partial fraction
sum.

Let f(x) = aox™ + a1 x™ ' 4+ -+ ap and g(x) = box™ + by x" ! +
-+« + b, where deg f < degg — 1 and ag, by # 0. If g(x) has n distinct

roots a1, &z, . . . , & such that the decomposition of f(x)/g(x) into partial
fractions is given by
b A A A
fo) _ A, A A
g(x) X —0 X — 0 X — 0oy
show that

0 ifdegf <degg—1

Av+ A2+ +An=1ay .
— if deg f =degg—1.

If n €e Nand a > 0 prove

(Zk—l)n)
2n

1 1 n a—xcos(

2n 2n 2n—1 _ :
X ta na k=1 X2 —2ax cos (%) +a?

Hint: Factor x2" + a" into 2n distinct linear factors over C before apply-
ing the result of Theorem A.2.

In this question we will show the logarithmic function In : (0, c0) — R is
not a rational function. That is, there do not exist polynomials p(x), g(x)
for x > 0 that do not contain any factors in common such that g(x) # 0 for
all x > 0and Inx = p(x)/q(x) forall x > 0.
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(a)

(b)

©

How to Integrate It

Suppose to the contrary that there are polynomials p(x), g(x) that are
relatively prime (do not contain any nonconstant common factors) such
that g(x) # Oforall x > OandInx = % forall x > 0. FromInx =
p(x)/q(x), by taking the derivative of both sides of the equation, show
that

q(x)* = x[p'(x)q(x) = p(x)q'(x)].

Note that both sides of this equation are polynomials as it must be true
for all x > 0 is an identity of polynomials.

From (a) observe that the polynomial x divides the polynomial g(x).
Now let ¢(x) = x¥g;(x) where k € N and ¢, (x) is a polynomial in x
that is not divisible by x, that is, g1 (0) # 0. Show that the polynomial
equation in (a), in terms of g1 (x), can be written as

kp()a1(0) = x [ P01 () = p)g () = 7 ga(1)?]

The polynomial identity given in (b) implies that the polynomial x
divides the polynomial p(x). This is a contradiction since p(x) and
q(x) were assumed to have no nonconstant factors in common (they
were assumed to be relatively prime), from which we conclude the
logarithmic function is not a rational function.

Endnotes

1. The term ‘rational function’ is somewhat misleading. As P (x) and Q (x) are
polynomials, the formal symbol x is an indeterminate so the fraction P (x)/Q (x) is
not a function at all, but is instead a formal expression in the same sense as
polynomials are. The term, however, is an old one and is the conventional term used
in connection with expressions of this type.

The method is named after the self-taught English electrical engineer,

mathematician, and physicist Oliver Heaviside (1850-1925) who popularised the
method.

L. S. Johnston, ‘A note on partial fractions,” The American Mathematical Monthly,

43(7), 413-414 (1936).
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Answers to Selected Exercises

Chapter 1

1. In general the two are not equal. The first is equal to f(x) while the second is equal

to f(x) = f(a).

2.© 3%
3.1
4 @3 M4 ©2 Dr @37 D4
5. @xsinx (b e (©)cos(x?)  (d) x2 — cos x
6. 16
8. V2
9. (a) %e_xz
Chapter 2
1. @35 (4 (c)16
2. (a) positive (b) positive (c) positive (d) negative
(e) negative (f) negative (g) positive (h) negative
3.6 (13 ()4
4. @R ®-15 ©i
Chapter 3
L. @x+C () Lsin(ax)+C
2. @ jx*+C (b) 2x°/2+C © —fzx*+C
d x> —x2+x+C e 2x°2 4+ 8x52 12 /x+C

333
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10.
11.
12.

13.

17.
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) 4322 4 x4+ C (@ 3% -3x2+C
() 2x7/3 4+ 3x43 4 ¢ () $x3 32+ 18x +C
() ixt+x14cC () gx*+3x3 + Fx% +27x 4+ C

M 3xJ/x+2/x+C

L@-33 ¥ ©0 % ©F o2

. @ +lnx+C ® x3+Inx+C
(©) e** +cos2x + C G [tan (%) +C
(e) —3cos(3x +2) + C ® Ltan~12x)+C
(g) 2tan 5 4+ 2sin§ + C (h) %sin_12x—|—C
@) 3secx — %cos3x +C G %tan_1 I+ %Sin_1
. (a) % (b) 0 © 2
(d) % cos(5) — 4 sin(5) () ¥ ) 37
@ % () F
()&

(b) \/Etan_l («/tanx — \/COt)C)

/2

S @x®—6x% + 15x% —20x3 + 15x2 —6x +1  (b) 1

(@)secx + C (b) —cosecx + C

1
f(x)=2x"andk = -5

Chapter 4

. @-3 (b)176

(a) F(6) =0,F(12) = -6 (b) x =0,6
(c) x = 3is alocal maximum while x = 10 is a local minimum.

L@l 3 ©F
. (@ f(1)=3and /(1) =8

X

3



13.

14.

15.

17.

21.

25.

26.
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. (a)False (b) True (c)True (d) False

. 8

p(x)=x+1
@% b4

wIN

13
l+e”+ezn+e3”
There are no such functions.

(b) Equality holds when f(x) = Ag(x), g(x) # 0.

Chapter 5

. %x2—|—C

(@ x—5hn|x+5+C
(c) éx6+%x5+%x4+%x3+%x2+x+C
@ 8xy23/x+C
) In|x +3|+C
(h) 3x2-3x+C

() —%cosx— 11—0c035x—|—C

(b) 2x —4tan~1 (3) + C

() —In|cosx +sinx|+ C

(2) %nx +C

k) L (%x—gsin4x+ %SinSX—%sinux) +C

29

0 —3 cosx + ﬁcos3x +C

(m) In|cos(x + 5)| + In|cos(x — 5)| — %ln|cos2x| +C

() ﬁlenx +C (0) x — %tan_1 (%) +C
(p) —cotx +tanx —4x + C ) %%(x2+17)+c
() —In|cos(x —2)| + C (s) %xz’—%xz—l—x—l—c

(t) —%ln|cos3x| + %ln|sin2x| +In|sinx| 4+ C

335

(1) xcos2 —sin2lIn|sinx| 4+ C
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1
3@

11.

12.

14.

15.

16.
17.
19.

20.

21.

22.
23.
24.

. (a)

d) 32

(@) 2%

Ina

.1

2x tan(6x2) —

. (@ —cotx +C

. (b) tan (x +

+1

L4
1
. (b)tan(%—%)-{—C

37 In3

20 10
1

2x

. (a) %n —tan~ 1 (v2)
a*e* +C (b)

)+ C

How to Integrate It

1
(b) e (-1
nmw

©)]

15 —8mn(2)

0 3-2+3

b %

tan(6+/x)

x = 01is a local maximum.

(a) 3

n
(b) —tan~'x +
k=1

e? —

fx)
0

o
—1In

7
8

1+ x

1—

1+ -3 + X andg(x) =x(x— 1)+ 3

k=1

2

(_1)k+1x2k—1

2k — 1

3

Ina + 1

(b) %x —%sian +C

xlna—l—l +C

n
X
+22k_1+c

+C

(©)n!x —n!lnle* + cosx + sinx + P, (x)| + C

(b) In

e¥ sinx + cos x

e* cosx —sinx

nook
~2015In|x| + 3 % e

k=1

(a) %(x6 + x4+ x‘”“)g +C

3

11
)

—

(b) 2sinx + x

(®

(¢c) —In (cos g —sin %)

173

192
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Chapter 6

1. (@ Lsin@2x)+C (b) 3tan?x + C © Fa+xH*+cC

(d) esn¥ 4 C e _% cos®x + C (f) —2cos/x +C
2. () AGx+7)2 ) —Le¥’ 4+ © iin?x+cC

@ -3 x)2+C (e VI+xt+C ) —px +C

(g) 2eV* + C (h) —2V1-x5+C (i) $sec>x+C

() In(2—cosx) + C (k) tan~!(e¥) — $In(e?* + 1) + C

1+/x
) —2ﬁ+ln‘l_ﬁ e
(m) —15+/25 — x2(3x* + 100x2 + 5000) + C
3

M) 2J3+C (0) Zx12 (x;;3)2 +C

(p) etanx +C (q) _%ecosx2 +C

() ﬁln‘y;—;g +C (s) %(sinx—cosx)%—FC

Inx

) lx—i[—thZ(]an)—{_C (w) %sian—%sin6x—%cos4x+&cosSx—{—C
3. (@) 72 (b) V21 (©) V3- 22

d e —e () 2—e—1In3+In(1 +e)

2
o & (g e —1 (h) ————
16 £ p(p+1)

4. @2 ®)5

5. k=%ﬂ:2nnwheren=0,1,2,...

6. ()10 (b)0O

7. Inx + (Ina —Inb) In(In(bx)) + C
1

8- © 1530

9. fuux (3) = 5+ fuin(® =0

10. @112 ()3 ()3
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11.

12.

14.
15.

17.

18.

19.
20.

21.

22.

23.

24.

25.

26.

27.

28.
29.

How to Integrate It

@1 =In (%) () J = 1n(cosa)

cos b
sin™! x ! +C
1 —
i
a=e°
(@ In(lnx + x) + C (b) —e®x 4 C

(©) % sin!3(7x) — W%S sin!?(7x) + C

(d) %(1 + secx)% +C

0
(a)—#—f-C
Vx4 Inx

sin'x +v1—-x24+C

sn|(x—y)?2—1]+C

(a)tan_l( -~ )—% (b)—%sin_lx

V1 —x2

(b) tan~! (x — l) +C

X

m2m+1 41

1 m+1Dm+2)’
m . _
/0 x(x+1D)"dx = 1 —1n2.

1
11’12_7,

1 fer+2e7F
— 1 _ C
> an ( 3 ) +

1 x3+1
b) = tan"! C
(b) 5 tan ( 3x )+

m#—1,-2
m=-1
m=-=2

(@) Vx(x+2)+2In|v/x+2+ x|+ C,and

VX(x +2)=2In|V/x+2+ x|+ C

(b) 2In|vx 4+ 2+ /x|
S + 2 +C
(1+ Vtanx)2 = 3(1 + Vtanx)3

(@and (b)In2—2  (c) Yes

@37z (b) 37



30.
32.
36.

37.

39.

41.

42.

44.

45.

Appendix B: Answers to Selected Exercises

(a) 0
(a)(@) (sin™' x)2 + C; (ii) —(cos™! x)% + C

®tan !x2Z+x+1)+C

‘ N
W

(b) Hy =1, Hy = 3, Hy = ¢, Ha = 33, Hs = °g]

2
1+ x4 1 _1
(©) 1—— tan
42 [T+ x* —xf 22
1+ x4 " 1 ran~!
an
8«[ V14 x4 —xf 42
6+/3
n+1
(2x3" 4 3x21 4 6x7) 7 e
6(n+1)
1—
—Ztan_l( x)—}-C
x+2
() !
e
n+1
Chapter 7
. (a) x4+C (®) g Lys 41 C1x + C2x + C3

(7).
(

1+ x4
1+ x4
T )+
xv2

339

(c) They are not equal, which is to be expected since there is no such thing as

a product rule for integrals.

The arbitrary constant of integration needs to be included.

(a) sinx —xcosx + C (b) %x3lnx—

(c) xsecx —In|secx + tanx| + C
(d) xtanx + In|cosx| + C
() x—xInx+C ) 2x(Inx —-1)+C
(g) xtan™ x—fln(1+x2)+C

(h) xIn2x —2xInx +2x+C

1) % sin4x sin3x + % cos4xcos3x + C

Q) %x(sin(ln x) 4+ cos(Inx)) + C

%x3—|—C



340 How to Integrate It

4.

10.

11.

12.

13.

15.

16.

17.

19.

20.

21.

23.

26.

k) %e_z'x (2sin2x —3cos2x) + C

O e*(xnx-1)+C (m) In(lnx + 1)+ C
() xIn(1 +x2)—2x +2tan"1x +C

(0) %xz ln(xzexz) — %xz — %x“ +C

P L (x2-1)+C

@ (b) 3(1-1n2) (© %
@ 3(1+2¢% © 3(1+e™/?) hn2-2+73
S@h4-1 ®5
1
CxIn(x2=1)—2x+1n +x’+c
1—x
b 73 + 67
==L =11 =
0= 2 48
20V (Jx—1)+x+C
25
7% +4r -8
8(7 +2)
1
(b)n—x—f—f(\/l—xz—xcos_lx)—i—C
4 2
4

(@ Fi(x) =—(x + De ™, Fo(x) = —(x%2 4+ 2x 4+ 2)e™*
(b) 66k, where k is a constant.
S5m+2
b)A=1,B=-1
1

©Inva-lyz
b -3

1
a =entl




27.

28.

29.

30.

31.

32.

34.

35.

36.

37.

39.

41.

43.

45.

47.

Appendix B: Answers to Selected Exercises

(a) 3(x2 —2)sinx —x(x2 —6)cosx + C
1 X3 30 X2 6 x 6 1
4(14+x)* 1204+x)3 24(1+x)2 241+x

© (5x2 +15)(3x +2)*/5 = 30x(3x +2)°/5 + B3x +2)1#/5 + ¢

(b) +C

(d) xtanx + In|cosx| + C
(e) 57¢3¥(9x3 + 45x% 4+ 69x +31) + C

@ (x—DIn(l + yx)—3x+ Jx+C
) xInjx + /x| —x+/x—In|/x+1]+C
© xInlx +V/x2+1|-vV/x2+1+C

(a) xtanx + In | cos x| — %xz 4+ C (b) —xcotx + In|sinx| — %xz +C
(a) 24/xsin(4/x) + 2cos(4/x) + C  (b) e* sin(e*) + cos(e*) + C
©) % (2sin(In x) — cos(Inx)) + C

72

A=

X

+C

1 e
W57t O

2cos /X (—x5/2 +20x3/2 — 120) + sin /x (5x2 = 60x + 120/X) + C
x =2nm,n €’

—Fr (/O + £(1)

@VaZ+4+C ) I62-8)VaZ+4d+C

(a)%len xxj +%x—%ln|l+x|+C (b) —x cotx + C
7 V2 1

—sk+ 7 e

5051

5050

(a) —%u costu + % sin 2u + llﬁ sin4u + %u + C where u = tan"1 x
(b) —%v2+v+xuv—2xu+u2+c

where u = tan~! x and v = In(1 + x2).

341



342 How to Integrate It

49

51.

54

2

3

C@e—1 (03— sM2- Lom2—

V2 42 242
1
2

. (b)) $x3 +x2 +4x +8In(x —2) + C

Chapter 8
.@tan?x+C  (b)—cotx +C (c)secx +C (d) —cosecx + C

. The second as it can be readily solved using a substitution of ¥ = cos x.
. (@ cyp=sinx+C

1 1
62=5x+1sin2x+C

1
c3 =sinx—§sin3x+C

_3x+ls_2 +1s‘4 iC
C4—8 41nx 321HX

2 1
cs =sinx—§sin2x+§sin4x+C
(b) t1 =In|sinx|+ C

th =—cotx —x +C
. |
t3=—ln|smx|—§cot x+C
13
t4=—§c0tx+cotx+x+C

1 1
15 = _ZCOt4x+ 5c0t2x+ln|Siﬂx| +C

6. L ME ©fF-fh3 @43

. (a)—%cot“x—écot‘sx—f—c (b) %

9. (a) —In|cosecx + cotx|+ cosx + C

(b) cosx +secx + C

(©) —%x—%sian—}—cotx—}—C

(d) %tanx—cotx—{—%tanxseczx—}—c
(e) tanx —cotx + C

(f) secx —In|cosecx + cotx|



10.

11.

12.

10.

Appendix B: Answers to Selected Exercises 343

(a) —%cos@c—ﬁcolex—I-C
(b) §sin2x — 2 sin12x + C
(c) gsindx + 5zsinl2x + C
(d) —%cosx—%cos3x+c

128
© 315

[
) e sin(4"x) + C

Chapter 9

. %xS +C
. The arbitrary constant of integration needs to be included.
. (b) —%e‘zx + C and %ezx +C (0 %e_zx +C

. (a) —% coth(2x +5) +C (b) xcoshx —sinhx + C

(c) 2sinhV/T—x +C ) p2hx ¢

(e) %sinth—%x—f—C ) %cosxcoshx—f—%sinxsinhx—i—C
(g) —xcothx + In|sinhx| 4+ C (h) %1n|cosh2x|+C
@) % sinh 2x cosh 3x — % cosh2x sinh3x + C

() % tan~1(sinh2x) + C

® %tan_l (tanhx) +C () 2In|sinh 5|+ C
2
D@ (b) In (g) (©) cosh(1) — 1
@ 3e?—3 (e) sinh(1) (H) 2—e> +et)/4

. x—2tan"lx+C

. (a) cosh2aIn(cosh(x 4+ a)) — x sinh2a + C

(b) xcosh2a + sinh2aln|sinh(x —a)| + C

7(2x* 4 6x2 4 3) sinh 2x — 2x(2x2 + 3) cosh 2x + C

. (a) In|tanh x| +%sech2x +C

(b) tanh x — % tanh3 x + C
(c) %sinh2x + J5sinhdx + 3x + C



344 How to Integrate It

12. %cosh3x — %coshx +C

13. (a) %cosh7 X — %cosh5 x+C
(b) %cosh8 X — %cosh6 x+C
(©) & sinh 4x + % sinh3 2x — %x +C
(d) %tan_1 (sinh x) — % sech x tanh x + C
14. (@ e ¢ ) Sl 4 ¢
15. (a) 18sinh3 () + 8sinh (3) + C  (b) —2In|sinh(3)| + C
17. sinhx + 2 sinh3 x + 2% sinh® x + L sinh7 x + C
18. (a)sechx (e)—% and 5

n
1
19. (©) x + Z A sinh2kx + C  (d) x + sinh2x + § sinh4x + £ sinh6x + C
k=1

Chapter 10

—
INE]

2. (@ 3V25+x24+ 2 In|x +V25+ 2+ C
() vx2-3-3In|[vVx2-3+x|+C

© ﬁ+c @ Zsin! (2)-2V9-x2+C
Vi (=)
7 - —t ——)+cC
(e Inx 4+ /1 + x2| - +c (O —tan N
(g) V4—x2-2In|v4—x2+2|+2Inx+C
2
M V2 _1+C (i)%nLC
O) gt x5+ C (k) 8sin~! (¥) ~ V64 —xZ + C
2
2 _ _ —1 l X +2
M Injx + VX2 — 1] — cos (x)+c m =+ C
m V2141212 +cC (©) 32 =8)Vx2+4+C
3. (@) gB—V5) (b) 23
(© L=+ +2) @ %

el



10.

11.

12.

Appendix B: Answers to Selected Exercises

2
(@) —v/5—4x —x2 +sin~! (%) +C

® 2(x—3)Vox —x2—8+ 3sin " (x—3) + L(6x—x2—8)3 + C

x+1
© ——=F————=+C
4252 +2x — 1

@ (x+3)VxZ-2x+3+C

(@) 16vx2 =16 + 18 (x2 - 16)% L
(®) 5(Bx2 =39+ 16x%)3 +C

(© i

X
—|+c
«/4—x2—|—2‘

X
——+C
W =

(b)%1n|x+1|—%f21n|~/2x2+2—x+1\+c
2—x—2v1—x2
(©) 2 tan~! e +C
NE x/3

1+ V=2
@) VT=x2(1 —Inx)—In | Y1 | ¢
X

(a) and (b) ——— + —L_an~1 (i e
’ a2 ™\

(c) The trigonometric substitution used in (b).

(a) 172

1
® 757
2(1 +x2)3/2

— [1 +1In (ﬁ)] +C

(a) %ln|secx + tan x| + %tanx secx + C

(b) %sec3x—|—C

(©) %tanxsecx—%ln|secx+tanx|+C

(d) §tanxsecx(l 4+ 2tan?x) — £ In|tanx + secx| + C
(e) —In|cosecx + cotx|+ C

) —%cotxcosecx—i— %ln|cosecx +cotx|+ C

(g) In|secx + tanx| —cosecx + C

(h) secx — %cotx cosec X — %ln|c0tx + cosecx| + C

(a)

[SEl

345



346 How to Integrate It

Chapter 11
. @h|x24+x+1|+C @®x—-3In|x+3]+C
(©) %1n(x2 + 1) +7tan x4+ C

2
2. @A=1B=-1,C=2 (b)2tan! (§)+1n(L)+C
9

3. (@ 2In|x +5|—In|x—-2|+C

1
b) 21 I|l-—— <+ C
(b) 2In|x + 1] +l+
© e~ 1]~ Line 19~ it () 4 €

(d) In|x +2|—-2tan"l x4+ C

(e) x + Ln x|
vyl

4 x+1
(f) $x2 —x+5In|x] —4Injx + 1|+ C

—%tan_lx—i—C

2x —1
2 _ 2 -1
(g x+1Inj|x x+1|+ﬁtan ( 7 )+C
1 2
(h) ”[” f ot (22 ) o
4[ xf-l—xz [ 1—X2
(i) % tan™! (%)—gtan_ (3)+cC
() 3x2—18In]x? 4+ 36| + 6tan~! (%) + C

4. (@) $x(x—4) +2Injx—3|—Ftan"1(3) +C
(b)%ln|x+1|—11n|x+2|+%ln|x+3|—1ln|x+4|+C
© —pagIn|l— x| + g5 In|1 —2x| — & In|1 — 3x| + 5 In|1 — 4x|

120ln|1—5x|—i—C

__ 225
5.k—m
JIT et —1
6. |t e
V1 +e* +1

7. @ (x4 DInfl+ ¥x| = 3x + 3(¥x)? = ¥x+C
®) xIn|x + ¥x|—x+23x —2tan"1(3/x) + C

11 2x?2—x+2In|x+ 1|+ C
12. tan~ ! x + %tan_l(x3) +C

x(x3 +4x2 - 18x + 12)
2(x —1)2

13. —6ln|l—x|+C



14.

15.

16.

17.

18.

19.

20.

Appendix B: Answers to Selected Exercises 347

(a) m—ktan_](x—kl)—}—c
15x° + 40x3 4 33
®) x484(rx2i1?3 -+
(©) —ﬁ—k%ln xi;r_ixl;l +327tan—1 (2x£1)+c
@ —m+c
%x—%ln|x—1|+c

1 cosh x 1o —1,
5 In Smhx 1 1’+§tan (sinhx) + C
x+1 X
b) L1n - C
®) g x—l’ 2(x2_1)+
WA Rk 2§+ |[Va F 2k 2-x 2

—4in VAT wr2-x—1|+C

(a) Li_1 (x) = ﬁ,uo - lf—x,Lil(x) = —In(1 —x)
0 ——
dx +4H*  5(x+2)°

8 12 24 32 19 5
@ Inlx+2+ x5 - o T i’ Gaof T Ges  Groe 1€

C

Chapter 12

3+ 5x

C
3 —5x +

(a) %ln‘

3_
7)(‘4_(/‘
3+x

(© Inlx +vVx2-7+C

(@ Jzsin”! (if) e

(e FIn2x + VaxZ+1|+C
(f) /2sin™! (%)—i—C
(@ 2In|/x+ 8+ x|+ C

(h) sin~! (23%3) e

(b) 5 1n




348 How to Integrate It

2x+\/13+3

- - C
® 7 V1 —2x+\/ -3 *
Q)fln|6x—5+2f«/3x2 5x +4|+C

k) = ln|«/3x +/5+3x|+C

0 2tan_1( ;Ll)+c

(m) ﬁln|2x+1|—$ln|5—2x|+c
() 2In|x +3+ vx2+6x+10+C
(0) 2In|v/x -4+ Vx+3|+C

(p) sin~! (72)67_ 1) +C

V7-3-
1

@ Zf f+3+x *
@ Injx =3+ +V/x2—6x+13|+C

V242 7T T 1 3
3. 21 b) — e d) —— tan~!
(a) n(ﬁ+1) ()4 (C)ﬁ ()mtan (@)
4, o =3

2445 1 ~1
5. (a)ln ( +ﬁ) (b) In(2 + V/3) (© - (r —4an'(2))

1 x2+1 1 12— x
6. () —tan ' [=—— ] +C (b) —=cos! (7)+C
()4J§ <2\/§) ()\f6 5x
7. sin ' x—vV1-x24C
8. (a) Lln‘Zcx—f—b—|—2\/2‘\/a—i—bx—}—ch’—f—C
Je
o L (222 )
Ve V4ac + b2

1 n2cx+b—vb2—4ac
b2 —dac |2cx + b+ Vb% —4dac

2 2ex + b
tan_l( et )+C,if4ac—b2>0
dac — b2 dac — b2

1 n Vb2 +4dac —b + 2cx
Vb2 +4ac | Vb2 +dac+b—2cx

(c) +C,if4ac—b% <0

(d)

+C

9. (@ imp3x+2/+C
(b) 2In|x? +4|—dtan"1 3 4+ C
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© 3 2./9x2+ 16 ln|3x+v16+9x |+C

(d) %ln|1+x2|+tan x+C
(e)ﬁli_()u)ln|\f5+2—x|—%ln|\/§—2+x|+c

) In|x2+2x +2| —tan ' (x + 1)+ C

(@ VxZ+2x—1—2Injx+1+xZ2+2x—1|+C

(h) 2m+1n|x+1+m|+c

) V222 +3x +3+ - 1n|4x+3+2f«/m|+c

10.
11.

12.

14.

16.

17.

3
() 3In(x? + 6x +15) — %tan—l (i) +C

NG
oa=2
wln3
24/3
b4 n+1
— In
2n n—1

1 _; (tanh(x —2)
. ﬁ tan (T +C

(a) (x—3) —|—5sm ( X:Z)—FC
(b) 5cosec_1(5)

(b) Ttan 1(V2) = V2tan™! (\%) + %
(a) sina tan”! (m

(b)

sin o
b4

2sina

Chapter 13
. (a) cosh™1 (%) +C
(b) f sinh ™! (\/gx) +C
—Ltann~! X—Jf +C |x+3<2

(c) 3
~1 coth™? % £C |x+3]>2

(d) sinh™! (x ; 1) e

1
) - Ecosozln(l —2xcosa +x2) 4+ C



350 How to Integrate It

2.

12.

13.

(e) cosh™! (XT_?’) +C

(f) cosh™? (XTH) +C

—L tanh~1(V2x) + C, |x| < L

V2 V2 b) —-L tanh~! (L
@ —% coth_l(ﬁx) +C, |x|> \k ®) ﬁtan (
. (b)2tanh~!(Inx) + C

. (a) %xx/l +x2 + %sinh_lx—i—C

(b) %xm + %cosh_1 x+C

(c) %(x +3)y/(x +2)(x +4) —cosh™!(x +3) + C
(d) sech™! x — Vi—x2+C

(e) éx(8x2 + D1+ 4x2 — 61—4 sinh™1(2x) + C
(® Zsinh ™l x + Ixv/T+x2(2x2-3)+C

. (a) xtanh™lx + %ln|1—x2| +C

(b) xsech 1 x +sin"lx+C
(c) % cosh™! x — VX2 —1- %cosh_1 x+C
@ 2?2 -Dtanh x4+ % +C

. (x + %) sinh ™1 (yx) = L /XX +1+C

1
_(x+a)\/2x+a+b

(a)

x+1

%x sin(cosh™! x + 1) — %x/xz —lcos(cosh™lx+1)+C

Chapter 14
1—12 1412
. tanx = ——— ,Ccotx = ———,8eCX = —=, COSEC X =
1—1¢2 2t 1—1¢2
. (a) In|tan(x/2)| + C

(b) In|tan(x/2)| — % tan?(x/2) + C
(¢) In|sin(x/2) + cos(x/2)| —In|cos(x/2)| + C
(d) In|secx +tanx| + C

(b)) Ztan"'(3) - %

(b) —+/2 cosh™! (X—’LS) e




10.

12.

14.

15.

Appendix B: Answers to Selected Exercises

1 7 + tan >
. (@) 71112
Ng «ﬁ—tan%
2 1
(b) —~ tan~! (—tan )+C
N V12
© X 3 n V7 +tan 3
4 47 ﬁ—tan%
1 3tanx + 1
d) —In[ —2—)+C
@ 5 n( 3—tan3 )+
. 2
(e) ln|1—|—smx|—m+c
(f)i 1 n 2tan§+3+ﬁ
3 345 ﬁ—3—tan%

.@Ztwn(E) b iryv2

. (@ —x—2Inftan¥ — 1|+ C

(b) xtan3 4+ C
(c) %+ln|cos§|+C

) ln|1—|—sinx|—mnz,ﬁ+21n‘sin% +cosy|+x+C

2 =1 (LY _yn—1(_1_
© Zs [ ()~ ()]
(d)—m—gln|sinx—2|+%ln|sinx—1|—%ln|sinx+IH—C

x 1 tanX — 14+ /2
(b) — — = In|sin x + cos x +V2m|—2— "4+ C

2 2 | | tan%—l—«/ﬁ
() 107

Chapter 15
T
2
1
sin x + sin2x
. (@) —cotx +cosecx + C

(b) tanx + C

(c) —cosecx —sinx + C
(d) %cost—ln|cosx|+C
(e) 2x —tanx + C
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352 How to Integrate It

) x +cosx +C
(g) x —sinxcosx + C
(h) 4x —3tanx + C

(i) —cotx + cosecx + C
1

. 1
———— — > In|cosec cot C

0 2(cosx 4+ 1) 2 | X + cotx| +
1 l+ﬁsinx 1 1 +sinx

&) —In|———|—=In|—
V2 | 1—=4/2sinx| 2 |1—sinx

(1) —cosec x sec? x + tan x sec x + In [sec x + tan x| + C
(m) 2 (sinx + %sin?)x + %sinSx + %Sin7x) +C

(n) —% cosx — % sinx — 5%:'5 In }cosec(x + tan"1(2)) + cot(x + tan_1(2))| +C
(0) V2tan"1(v2tanx) —x + C

®) _1—|—sinx
1 —tanx
1 1
D VRN U T Pt
@ —3¥—3 ‘l—i—tanx
@ —— 1 B 1 In \/Ej{—cosx—sinx i
2(sinx +cosx) 2.2 sin x + cos x
(s) —sinx —sinxcosx + C
t) %se02x+%ln|tanx|+C
(u) %tan”x—i—C
2+ sinx —
(v) 3cosx —sinx + 2+/21n m +C
Sin X + cos x
1 2 s8i —1
4 @ | Y2
22 |V/2sinx +1
6. () A sina B sin b
. (a = ,B=—
sin(a — b) sin(b — a)
. inb
(b) —,S& 1n|cosec(x—a)—|—cot(x—a)|—_Llnkosec(x—b)
sin(a — b) sin(b — a)

+cot(x —b)| + C
i 1
7. (2 §tan”! (%) +C
1 -3 _2 -3
(b) —7(secx +tanx)”"2 — F(secx +tanx)”"2 + C

(c) %ln|1 +tand x|+ C

2sinx + 1
1 : 1 2 : 1 -1
(d) zIn|sinx — 1| — ¢ In|sin x—i—smx+1|+ﬁtan (7)+C

V&)



13.

14.

Appendix B: Answers to Selected Exercises

(e) —%x + %ln|sinx| - %1n|sinx +4cosx|+C

(f) cosx+/sec2x + C

. 20042

11.

cos(x — b)

(a) —x 4+ cot(b —a)ln +C

cos(x —a)
cos(x —b)

cos(x —a)
+cot? (b —a) [tan(x —a) + tan(x — b)] + C

() x —2cot(h — a) cosec’(h — a) In

(a) cos2a(x +a) —sin2aln|sin(x +a)| + C

(b) 2sinx + 2xcosa + C
+a

(c) 4sinaln|cos X

’—}—Zsinx—i—C

(d) sin2aln|sin(x 4+ a)| — x cos2a + C
(e) xcos2a + sin2aln|cos(x —a)| + C

. _q /COSX . . B :
(f) —cosasin 1( )—smaln’smx—f— \/smzx—smza‘ +C

cosa

e ) (1)

1

n
18. (c) — Z T cos(2k —1)x +C
k=1
qf1+ta  x x 1 _4(l+a
19. (a) 2tan —tan= | +C (b)— — —tan
2 20 « -«
20. (@)1 (b) ——
sin o
1
21. J; :—\—[21n|cosec(x+%)+c0t(x+%)|+c
Jo=x+C
2 2 2— i
J3 = Ztan"!(sinx —cosx) + —=In w
3 342 Sin X + cos x
1 2 tan x
Ji= —tan 1| 22" )+ C
4 V2 an (1—tan2x)+
Je = —tan71(200t2x)+C
22. n2/4 -2y

23. (¢) %7[ In2

tan
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354 How to Integrate It

24. (dxcot 1 (x2 +x + 1) +cot L (x + 1) + FIn(x? +2x +2) — dIn(x2 + 1) + C

2
25, 29055 ¢
sin® x
26. — (x—atan_l(atanx))+Cfora7£il,and
—a
Y ldnov s e +1
= + —sin =
5+ sin2x ora
V34 tan %
27. (a) 2sinx —sin2x — /3In|——2
«/g—tan%

(b) 4cosx + cos2x — %cos3x —2In|cosx|+ % secx + C

28. 2 [(1 + @)6 -(4+ \/5)6]

30. (d) 2 In(v/2)

2 n 1
31. (@) —— T2 cos[(l+2 )cos™

BIRE

cos [(1 2")cos™! (g)] +C

(
2n+1 |:2n+1 1(

x ol 2" —1 _yx
33. (a) 71 cos 5)] + cos [7 cos (2):| +C
2n—1 on + 1 on— 1 om _ .
(b) cos 1y cos cos” x|+C
2" 4+ 1 on
34. (e)In | 0¥
sin 16x

Chapter 16
1. (a)False (b) True (c) True (d) False

3. All are equal to zero.

6. (a ﬁln@ +242) (b) 7/4

(©) fln(f-l-l) ) 37 (7 +3)
(e) m/4 0 3

n V2+1 h) 72/4
(g)mln(ﬁfl) (h) 72/
(ORY G 1

k) 72/8 " 3mIn2




10.

11.

13.

14.

15.

16.

17.

19.
20.
21.
22.
24.

26.

27.
28.

29.

30.

Appendix B: Answers to Selected Exercises

3462376907 846
(a) 1008 by ——— "
5313
(©) 2 (d) m/12
(e) imin2 (f) 0
(g) m/12 (h) 2sin(2)
@ 3% (b) 0 © % @ % © 7
@0 MmO
T
2
w(a +b)
4
w if n is odd; O if n is even.

@2 () E (i) 5

T2

®) 7

T

®

(a—-2 ()6 (c)—22

T2

) 1
(©) — In(2a2)

8a

a+b w
Oz
(b) /4
oG G (i) §
u
v

A=

®@ § (o i 7 G F i) F

@(iv) 3
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356 How to Integrate It

31. @) 7 (i) 37/2

32. (a) 3% (b) $(In3 —1n2)
b

33,
33

34, (@) 14 (b) 25 (c) —33—2 (d) %
®F-1 ©% o §in(3)

(i) 2—1In2 G) 27
35. n’n

37. k==x

40. = /4

41. a

43. 1

44. 100

45. @35 B3 (©225 D ©2¢-1

46. @ Zanl (4) Br ©OF @e

47.

a In(seca)
a

49. b) @

Chapter 17
2. @0 (b)1

el
wIN

4. 43
10. @In16—13 () 2x(x +1)
11. 0

12. (b)Gii) 372 -2

(e) 2



10.
11.

12.

16.

17.

19.
20.
22.

Appendix B: Answers to Selected Exercises

Chapter 18
1 1
/cosec3 xdx = -3 cot x cosec x — > In|cosec x + cotx| + C, and
4 1 2 2
cosec” x dx = 3 cot x cosec” x — 3 cotx +C

. (b) %sinxcos3x + %sinxcosx +

1 1
(d) /cosf3xdx =3 sinx cos 2 x + §1n|secx +tanx| + C

%x—l—C

1 2
/cos_4xdx = 3 sinxcos ™3 x + gtanx +C

(b)6— 18

(b) %cosh(l) sinh2(1) — %cosh(l) + %

(b) %tanx sec? x + %tanx +C

128

. (b)) —

195

w)(%)6—30(%)4+360<%)2—720

11 15
(b) Fe—7

. (a) tan"!(sinhx)

1 1
(c) J3 = 3 tanh x sech x + 3 tan_l(sinh X)

1 2 2
J4 = gtanhxsech X+ gtanhx

®m=§ﬁ=% ©h=%
(@) Io =0
(); (d)L
Yo 213

168 404/5
s
(3)1020,11271

_ (2"n1)?
.(a)lo—a (d)m

@@ up =0,u; =m
(b) 37

(a) O whenn = 0 and w whenn = 1.

1_7T
3T 04

@ In = 53,

n
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358 How to Integrate It

25. (b) /2

30. (f) Itis irrational

Chapter 19
1. — !
X COS X
ex
2.
(@) T x
ex
(b) T2 g +C
1
(c) e* (21nx — 7) +C
X
2e*
X J—
d) e T +C
14+ x
(e) e +C
V1 —x2
(f) xe¥tx
(g) _eCOSX (X+ 1 )+C
sin x
e* sinx
3. (b) v +C

4. (a) xtanx + C
() xIn?>x +C
@) x*+C
d 2+ Dtan'x+C
(e) xIn(lnx) + C
() eS"X cos(cosx) + C

5. (b) ﬁ sin(100x) sin'%% x + C

6 11 16 — 2 16 — 72
. ——In €X —_——
4 N\ 16172 )P\ "6 22

7. ge®+1)—g(e)

X

xS+ x+1
1—2x

b) ———+C
(b) x3+l+

8. (a) +C



Appendix B: Answers to Selected Exercises

Cos x

()

X COS X

1
(d)

(e)

tan—!
24

®

sinx — x
xsinx +

10. (a) % In

x3—x+1

—sinx

—+C
x(1 —1Inx) +
14+ xtan~1x

+C
X=X

3x — 26
> +cC

Cos x
COos X

x2—x+1
xX24+x+1

1—x2
b) —sec™! C
(b) —sec (x\/i)+

©)

(@ In

(e

X

1
(f) —=co

/2

x4 —1

x2 -1

! -1
—— tan
24/2018 (x«/2018
X241+ V1+ x4
X

+C

24+x+1

(2)

2
()

———=tan
V11

——= T 4cC
Vxt 4 xZ2 41

1 (2x2 +3x —

)

+C
2

sl();f)—i-C
x* 41

A2
xV/11

11. (a —=tan"! E +C
’ 2 xﬂ

1
bi
Uzﬁ

1
© A

1
13. (b) ——
()24J§

14. (a) 1(0) = 27

tan~ ! x? 1 +
xv/2

=1 x2—1 L
an — | ———=1n
X2 42

1

42

2tan~! ﬁ +1
an i n

1 S X2+
tan
V2014 x~/2014

C

X2 —xx+1
X2 +xv/241
x2V2+ 1
x2+xy2+1

xlz—xsﬁ—f—l
x12 4 X624+ 1

@) I(x) =27, I(1) = 27

) e

|+
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360 How to Integrate It

I 1
15. (@ 1tj+c (b)%an(lt—i)Jrc

© L2 (d)#tan_l (7ﬁ) (e)%an

8 13
3 x—1 3 X
16. ——1 Ztanlx—-————+C
16nx+1‘+8an iy T
1 1
17. (a) —2tan x+—+1]+C
X

X 24/x4 4+ x2 + 1
b -1 C
(b) cos (x2+1)+ poa +

5sinx — x cos x

" xsinx + 5cosx

Chapter 20

1. (a) Interval is unbounded.
(b) Integrand is unbounded at x = 7/2.
(c) Integrand is unbounded at x = 2.
(d) Interval is unbounded.
(e) Interval is unbounded and the integrand is unbounded at x = 1.

(f) The integrand is unbounded at x = +1.
2. No

1
3. (a) converges, 15
3

(b) converges, =5
(c) converges, %
(d) diverges

(e) converges, 2.3
(f) diverges

(g) diverges

(h) converges, —2/e
(i) diverges

(j) converges, 1

(k) converges, 2/8
(1) diverges

(m) converges, 4

2 -1(_3
(n) converges, ﬁcoth ( ﬁ)



Appendix B: Answers to Selected Exercises

(o) converges, 2

(p) converges,

(q) converges, 1

(r) converges, 5 + 1
(s) converges, 3%/5

(t) diverges

(u) converges, (7 +21n2)/4

(v) converges, In2

/1 2
4. (a)%ln % +%tan_1x+C
5.n
6. (a) converges (b) converges (c) diverges
(e) converges (f) diverges (g) converges
(i) converges (j) converges
7. (a) converges (b) converges (c) converges
8. a=2(e-1)

10. (a) The integrand is unbounded at x = 0.
1. @p>1 ()5
13. n=4

16.

T
20. (®) 4cosh &
21. (b) /4
23. (b) J4 = 3

1—a

«/l—a2 1+

1, whena = 1.

,when —1 <a < 1.

a—1

tanh~!
1 a+1

30. M3 (0%

2n)lx

,whena > 1.

33. (d)

361

(d) converges

(h) converges

(d) converges
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38.

39.

42.

43.

11.

How to Integrate It

@ 7
p <l
s s+2
®s2+1 “)@+a2+1
72/8
Chapter 21

L () JT (b) V27 (©) V7
(@ ey 0 V7 (@ V7

i) fv7 G) 34/ &) 7
m) 37— 3 () 37
L@ ® % © 3 @ -5

. (2 % (b) 5 whena > 0, —Z whena < 0.

. Si(0) = 0,Si(c0) = Z,Si(—00) = —Z,5i(0) = - Z,

si(00) = 0,si(—00) = —7

(d) erfc(0) = 1, erfc(oo) = 0, erfc(—o0) = 2
(b)) V7 (b)) /p7

Appendix A
@2 ®mM4 @©5 (@6
@) A n B
. (a
x+3 3x +1
w2y B ¢
x x+1 (x+1)2
© A B
c
x+4 x-1
A Bx +C
d
()x—l x2+x+1
© A N B +Cx+D
e
x—1 x+1 x2 41
® Ax+B Cx+D Ex+ F
x2 +1 x2+4  (x2+44)2

() &

(d)

(b

®

. (c) erf(0) = 0,erf(c0) = 1,erf(—00) = —1, ®(0) = 1, P(c0) =1

VT

1 b4

2y In2

VT

(®

[SIE]



4. (a)

Appendix B: Answers to Selected Exercises

1 1
x—2 x-1
2 3
b
()x+2 x—1
© -2
c
2x + 1 x—1
(d & 12 + !
3x+2 6x-—1 x—1
(e) 2 3 + 2
x+1 x+2 x-8
3 3 1 1
®

x+1_x—1+x—3_x+3
1 1 1
25x  25(x+5) 5(x+5)2
1 4
(x+42 (x+43
1 3 2
x+2_x+3+x—2
x+38 2
x2+4 2x+1
1 x—1 x—1
S5x+ 1) 5(x2+4) (x2+4)2
x—1 2
RS R
1 x+2
3x—1) 3(x2+x+1)
3(x —2) 3x 42
16(x2 —x+2) 4(x2—-x+42)2
2(7x = 5) x—=2
(x2—x+4+2)3 x2-x+2
x+1 x—1
24+x+1 x2—x+1

€9]

(b

®

@

(]

®

(m)

()

(0)

(P

(a) 10 5+ 4 + 27
. (a X — —_—
x—1 2x +3

(b) 2 34 ] 2
X — -
x—9 x-3
6

x2 44

() 1—
x—2

d) 3x%2 —2x + ——
(@ 3" =2x+ 5

S )

_ f(a)
6. A= (@a—b)a—-c)a—-d)
f(c)

T h-—ab-ob-d)
f(d)

€= o _be_d

T d—a)d-b)d—o)
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364 How to Integrate It

1 i 1 i1 1
7@ —=+———+——7—-——=—-—
WAt AR AT AR BTV
100! 100! 100!
100 _
8. /¢ )(x)__xwl (x+1)101+(x_1)101
1 4
% @ x—1+(x—1)2
(b) L2 + 8
x+D2 (x+D3  (x+14
P S (R | B
3T 32 T 33 (3
@ 10 oo
x+2 (x+22 (x+2)3
n n nz—n
0@ ®O57 Oz
2 4 2x 43 2x—5

x+3

11. (a)

x+l+(x+1)27x2+x+1 )x2+2x+5_x2+x+3



Index

absolute convergence test, 283
absolute value, 219
antiderivative, 12
arc length, 61
area, 1, 10

signed, 45, 46

Basel problem, 258, 293
history of, 263
Bernoulli, Jakob, 263
Bessel function, 102, 226
Bioche, Charles, 208
Bioche rules, 190
border flip properties
reduced symmetric, 217
symmetric, 214
symmetric interval, 218
boundedness, 1

Cauchy, Augustin-Louis, 52
Cauchy-Schwarz inequality, 51
comparison tests, 278
direct comparison test, 278
limit comparison test, 282
complementary error function, 310, 311
continuity, 7
piecewise, 7
cumulative distribution function for the
standard normal distribution, 75,
309

Darboux, Jean-Gaston, 19
Darboux sums, 3, 30
definite integral properties
absolute value, 39

additive, 20

additivity with respect to interval of
integration, 41
bounded, 43
change in the interval of integration,
210
comparison, 36, 37
equal limits, 40
homogeneous, 20
interchanging the limits, 40
invariance under translation, 209
linearity, 21
odd and even functions, 211
periodic functions, 213
reflectivity, 210
signed, 22
symmetric border flip, 214
digamma function, 35
dilogarithm function, 154

Dirichlet, Johann Peter Gustav Lejeune, 208,

312
Dirichlet integral, 304-308
Dirichlet kernel, 198, 304
hyperbolic form, 133
dominant term analysis, 279, 280,
282
dummy variable, 45

elementary functions, 53

in elementary terms, 53, 298
elliptic integral

of the first kind, 143
error function, 18, 75, 309
Euler, Leonhard, 263, 312

fixed points, 239
floor function, 231

365
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function
algebraic, 156
circular, 119
even, 211
floor, 231
hyperbolic, 119
odd, 211
periodic, 213
transcendental, 156
fundamental theorem of calculus, 12
first, 13
second, 15

gamma function
lower incomplete, 99
Gauss, Carl Friedrich, 312
Gaussian integral, 298-304
golden ratio, 292
Gregory, James, 263
Leibniz’ series, 257
Guderman, Christoph
Gudermannian function, 132
inverse, 177, 183
Gunther, Charles O., 143
Gunther hyperbolic substitutions, 142

harmonic numbers, 76
Heaviside, Oliver, 332

Heaviside cover-up method, 321
Hermite, Charles, 156

Ostrogradsky—Hermite method, 149
hyperbolic functions, 119

cosh, 120

derivatives, 123

graphs of, 120

integrals involving them, 125, 126

inverse, see inverse hyperbolic functions

Osborn’s rule, 122
others, 120
sinh, 120

improper integrals, 274-287
absolute convergence, 283
conditional convergence, 297
linearity, 275
type I, 275
type II, 284

inequalities
AM-GM, 240
Cauchy-Schwarz, 51
Jordan, 48
Young, 240

Index

integrability, 4
integral

definite, 4, 10, 20
improper, 274
indefinite, 14
proper, 274

integral equation, 61, 63, 103
integral for

cosecx, 112
cotx, 55
Inx, 87

sec x, 60, 112
sec3 X, 86
sin—1 x, 87
sinh~! x, 175
tan x, 54

integrals (named)

complementary error function, 311

complete elliptic integral of the first kind,
143

Dirichlet integral, 304

error function, 18, 75, 309

Gaussian integral, 298

probability integral, 312

Serret’s integral, 226

sine integral, 309

integrals involving

absolute values, 219-221

floor functions, 231

hyperbolic functions, 124—129
inverse functions, 233-237
inverse hyperbolic functions, 174
rational functions, 144—150

trigonometric functions, 105-115, 178-181,

188-199

integrand, 4
integration by parts, 79-93

a paradox, 94, 129

intermediate constant of integration, 84
quotient rule formula, 102

tabular, 82, 88-93

integration techniques

by inspection, 67

by parts, 79-93

change of variable, 65
completing the square, 159
partial fractions, 144—150
reverse product rule, 265
reverse quotient rule, 266
self-similar substitution, 273
standard forms, 25-31, 53-58
substitution, 64—69



symmetric substitution, 267

tabular integration by parts, 88-93

tangent half-angle substitution, 178-181

the rules of Bioche, 190-197
integro-differential equation, 61, 63
inverse hyperbolic functions

derivatives, 172

graphs of, 171

integrals involving them, 174

logarithmic representations, 170
irrational number

7, 260

©,292

e, 259

I’Hopital’s rule, 311
Laplace, Pierre-Simon, 312
Laplace transform, 296
Lebesgue, Henri Léon, 312
Riemann-Lebesgue lemma, 312
Legendre, Adrien-Marie, 263
Legendre polynomials, 262
orthogonality, 262
recurrence relation, 262
Leibniz,Gottfried Wilhelm
Leibniz’s series, 257

Mascheroni, Lorenzo, 312
mathematical constants
Catalan’s constant, 239
Euler—-Mascheroni constant, 35
golden ratio, 292
Mengoli, Pietro, 263
Merrel, John P.
Merrel’s method, 329

Nilakantha, Kerla Gargya, 263
Leibniz’s series, 257

Osborn’s rule, 122
Ostrogradsky, Mikhail, 156
Ostrogradsky’s method, 149
Ostrogradsky—Hermite method, see
Ostrogradsky’s method

p-integrals, 290
partial fraction decompositions, 315
distinct irreducible quadratic factors, 319
distinct linear factors, 316, 323
Heaviside cover-up method, 146, 181,
321
Merrel’s method, 329, 330

Index

367

repeated irreducible quadratic factors, 320
repeated linear factors, 318
partial fractions, 313-326
period, 213
polylogarithmic function, 153
primitive, 12
probability integral, see Gaussian integral
products
Wallis, 257

rational function, 144, 313
improper, 144, 314
proper, 144, 314
reduction formulae, 105, 110, 242-251
regles de Bioche, see Bioche rules
Riemann, Georg Friedrich Bernhard, 19, 312
Riemann integrable, 4
Riemann integral, 4
Riemann-Lebesgue lemma, 312

Schwarz, Karl Hermann Amandus, 52
Cauchy—-Schwarz inequality, 51
series
Basel problem, 258, 263, 293
Leibniz, 257
telescoping, 198, 206, 258, 329
Serret, Joseph-Alfred, 232
Serret’s integral, 226
generalised, 226
sine integral, 309
special functions
Bessel function, 102, 226
complementary error function, 310
digamma function, 35
dilogarithm function, 154
error function, 18, 75, 309
Gudermannian function, 132
inverse Gudermannian function, 177, 183
inverse versed sine function, 168
lower incomplete gamma function, 99
polylogarithmic function, 153
versed sine function, 167
substitutions
Euler, 77
first type, 153
third type, 77
Gunther hyperbolic, 142, 177
hyperbolic, 134-139
hyperbolic #-substitution, 185
hyperbolic tangent half argument, 185
symmetric, 267, 292
t-substitution, 178, 191
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substitutions (cont.)
tangent half-angle, 178-181
trigonometric, 134-139
Weierstrass, 178

Taylor’s theorem, 104

versed sine function, 167
inverse, 168

Index

Wallis, John
Wallis’s product, 257
Weierstrass, Karl, 178
Weierstrass substitution, 178
Wolstenholme, Joseph, 232
Wolstenholme transformation, 225

Young, William Henry, 240
Young’s inequality, 240
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