WOELFEL'S

DentalAnatomy

Rickne C. Scheid
A. Wolters Kluwer Gabriela Weiss

WOELFEL'S

IPATR AMRtOMy

WOELFEL'S

Dental Anatomy

NINTH EDITION

Rickne C. Scheid, DDS, MEd

Associate Professor Em eritus
The Ohio State University College of Dentistry
Columbus, Ohio

Gabriela Weiss, DDS

Associate Professor
The Ohio State University College of Dentistry Columbus, Ohio

Wolters Kluwer

Acquisitions Editor: Jonathan Joyce
Product Development Editor: John Larkin
Editorial Assistant: Tish Rogers
Marketing Manager: Leah T omson
Production Project Manager: David Saltzberg
Design Coordinator: Steve Druding
Manufacturing Coordinator: Margie Orzech
Prepress Vendor: SPi Global

Ninth Edition

Copyright © 2017 Wolters Kluwer

Copyright © 1998, 2002, 2008, 2012 Wolters Kluwer Health / Lippincott Williams \& Wilkins. All rights reserved. T is book is protected by copyright. No part of this book may be reproduced or transmitted in any form or by any means, including as photocopies or scanned-in or other electronic copies, or utilized by any information storage and retrieval system without written permission from the copyright owner, except for brief quotations embodied in critical articles and reviews. Materials appearing in this book prepared by individuals as part of their official duties as U.S. government employees are not covered by the above-mentioned copyright. To request permission, please contact Wolters Kluwer at Two Commerce Square, 2001 Market Street, Philadelphia, PA 19103, via email at permissions@lww.com, or via our website at lww.com (products and services).

987654321

Printed in China (or the United States of America)

```
Library of Congress Cataloging-in-Publication Data
Names: Scheid, Rickne C., author. | Weiss, Gabriela (Gabriela Alejandra), author.
Title: Woelfel's dental anatomy / Rickne C. Scheid, Gabriela Weiss.
Other titles: Dental anatomy
    Description: Ninth edition. | Philadelphia : Wolters Kluwer, [2016] | Includes bibliographical
references and index
    Identifiers: LCCN 2015038917 | ISBN 9781496320223 (paperback)
    Subjects:| MESH:Tooth - anatomy \& histology - Outlines. | Jaw—anatomy \& histology—Outlines. |
Mouth-anatomy \& histology-Outlines.
    Classification: LCC QM311 | NLM WU 18.2 | DDC 611/.314 -dc23 LC record available at http://
lcen.loc.gov/2015038917
```

T is work is provided "as is," and the publisher disclaims any and all warranties, express or implied, including any warranties as to accuracy, comprehensiveness, or currency of the content of this work.

T is work is no substitute for individual patient assessment based upon healthcare professionals' examination of each patient and consideration of, among other things, age, weight, gender, current or prior medical conditions, medication history, laboratory data and other factors unique to the patient. T e publisher does not provide medical advice or guidance and this work is merely a reference tool. Healthcare professionals, and not the publisher, are solely responsible for the use of this work including all medical judgments and for any resulting diagnosis and treatments.

Given continuous, rapid advances in medical science and health information, independent professional verification of medical diagnoses, indications, appropriate pharmaceutical selections and dosages, and treatment options should be made and healthcare professionals should consult a variety of sources. When prescribing medication, healthcare professionals are advised to consult the product information sheet (the manufacturer's package insert) accompanying each drug to verify, among other things, conditions of use, warnings and side effects and identify any changes in dosage schedule or contraindications, particularly if the medication to be administered is new, infrequently used or has a narrow therapeutic range. To the maximum extent permitted under applicable law, no responsibility is assumed by the publisher for any injury and/or damage to persons or property, as a matter of products liability, negligence law or otherwise, or from any reference to or use by any person of this work.

LWW.com

About the Authors

Ricknec. Scheid, dd S, Med

Dr. Rickne Scheid received his DDS in 1972 at T e Ohio State University and was inducted into the dental honorary fraternity, Omicron Kappa Upsilon. After serving in the U.S. Navy Dental Corps, he practiced part-time practice and taught at his alma mater from 1974 until 2006 when he retired with Emeriti status. His appointments at the College of Dentistry were in the Division of Dental Hygiene, the Section of Restorative and Prosthetic Dentistry, and the Section of Primary Care. While teaching, he earned his Masters in Education with honors in 1980. T roughout his teaching career, he authored or coauthored nearly 50 scientific papers and abstracts and developed and directed 12 courses, including the Dental Anatomy course. He directed this course for 10 years, lecturing to both dental and dental hygiene students. Further, he helped develop and annually co-direct numerous continuing education courses including a review course for dental hygienists returning to practice, a dental anatomy review course for dentists and dental auxiliaries, and an expanded functions course for dental auxiliaries. He was inducted into the dental hygiene honorary, Sigma Phi Alpha, in 1989 and has received numerous dental and dental hygiene student teaching awards as well as the peerevaluated Postle Teaching Award in 1996. In retirement, he has presented continuing education courses at the university and has served as an evaluator for the Commission on Dental Testing for Expanded Functions Dental Auxiliaries in Ohio.

GabRiel a WeiSS, d d S

Dr. Gabriela Weiss received her DDS in 1986 from the National University of Tucuman, Argentina, where she graduated as Valedictorian. After graduation, she completed a clinical fellowship in Occlusion and Oral Rehabilitation in Argentina. T e following year she was awarded the F.A.M.U., an honor given to the Outstanding Professional Female. In 1988, she moved to California in the United States where she worked in a private practice. T en, in 1994, she moved to Michigan to pursue her passion for teaching at the University of Michigan Dental School where she taught Operative and Prosthetic Dentistry courses and became director of Dental Anatomy and Occlusion. She continued teaching these courses and directing dental anatomy at two other dental schools, first at University of Pittsburgh and later at T e Ohio State University College of Dentistry where she is currently an Associate Professor. She recently developed a course designed to improve the hand skills of prospective dental students. Students have recognized her passion and talent for teaching by presenting her with 14 Student Government Teaching Awards over the years.

Reviewers

- Nancy Andrews, RDH, BSHRP, MEd, Assistant Professor, William Rainey Harper College, Palatine, Illinois
- Kimberly Beistle, PhD, RDH, CDA, Program Coordinator, Professor, Dental Hygiene and Medical Imaging, Ferris State University, Big Rapids, Michigan
- Amy Booth, CDA, RDH, MEd, School of Dental Hygiene, Quinsigamond Community College, Worcester, Massachusetts
- Lynn Ann Bryan, BSDH, RDH, MEd, Clinical Associate Professor, School of Dentistry, Marquette University, Milwaukee, Wisconsin
- Joanna Campbell, RDH, MA, MA, Associate Professor, Health Professions Division, Dental Hygiene, Bergen Community College, Paramus, New Jersey
- Alison Collins, CDA, MS, Director, Dental Assistant Program, Northwestern Michigan College, Traverse City, Michigan
- Daniel Collins, DDS, Instructor, Allied Health Professions, Dental Hygiene Program, Columbus State Community College, Columbus, Ohio
- Deborah Corning-Hamilton, RDH, Ontario Dental Education Institute, Ancaster, Ontario, Canada
- Michelle Cummins, RDH, BSDH, Faculty Instructor, Department of Health Professions, Lane Community College, Eugene, Oregon
- Pam Davidson, RDH, MEd, Executive Director, Dental Hygiene Program, University of Arkansas-Fort Smith, Fort Smith, Arkansas
- Indu Dhir, AAS, BS, RDH, MS, Dip Dist Educ, Program Director, Canadian Academy of Dental Hygiene, Mississauga, Ontario, Canada
- Ann Dickinson, CDA, RDH, BS, MS, School of Dental Hygiene, Remington College, Nashville, Tennessee
- Candida Ditzler, CDA, RDA BBA, Dental Assistant Program Coordinator/instructor, Cape May County Technical School, Cape May, New Jersey
- Eric Dixon, DMD, Dental Assisting and Dental Hygiene Integrated Program, Big Sandy Community and Technical College, Prestonsburg, Kentucky
- Donna Eastabrooks, CDA, RDH, MA, PhD, College of Heath Science \& Public Health, Dental Hygiene, Eastern Washington University, Cheney, Washington
- Cinda Fife, LDH, BGS, Clinical Assistant Professor, Dental Education, College of Health and Human Services, Indiana University Northwest, Gary, Indiana
- Tammy Fisher, RDH, BS, Concorde Career College, Dallas, Texas,
- Deborah Holexa, RDH, BS, MAEd, Dental Hygiene Program Director, Mesa Community College, Mesa, Arizona
- T eresa Roma Jasinevicius, DDS, MEd, Associate Professor, School of Dental Medicine, Case Western Reserve University, Cleveland, Ohio
- Marlaina Lantzy, RDH, BAS, MSDH, Instructor, Dental Programs Department, Hagerstown Community College, Hagerstown, Maryland
- Judith E. Romano-DiLorenzo, RDH, BS, MA, Department Chair, Dental Hygiene Program, Hudson Valley Community College, Rochester, New York
- Jose Vivas, DDS, Clinical Associate Professor, School of Dentistry, University Of Michigan, Ann Arbor, Michigan

Preface to the Ninth Edition

Woelfel's Dental Anatomy is primarily intended as a study guide for dental students, dental hygiene students, dental assistants, and dental laboratory technicians as they master the details of tooth morphology and their usefulness in the dental office. T e book provides dental and dental hygiene students with basic knowledge required when answering dental anatomy questions on the national board examinations, but it goes well beyond by discussing the application of tooth morphology and terminology as it relates to the practice of dentistry. Five chapters provide an introductory overview to periodontics, endodontics, occlusion, restorative dentistry, and forensic dentistry. T e book with its Power Point lecture slides and test items for teachers and its many learning exercises was designed for instructors of dental anatomy courses as a teaching manual during lectures, discussion periods, and laboratory sessions, as well as during early clinical experiences. It is also useful as a reference in the dental office.

n eW in Th iS ediTio n

Over 120 new color illustrations were added in this edition, especially in the first six chapters where unique traits of each type of each tooth are best learned by visualizing multiple examples of teeth from different views. Further, to facilitate learning, many existing illustrations were reorganized and improved by adding new labels, arrows, color highlights, and tooth numbers.

Chapters that provide the introduction to the specialty areas of dentistry were updated to include the most current terminology and new topics including the description of healthy tissues surrounding dental implants. T e chapter on forensic dentistry was expanded to include more current examples of the relevance of forensic dentistry. Further, several new examples of anomalies were added, as well as several new anatomical structures of the head including the location and clinical relevance of paranasal sinuses.

Finally, the authors developed numerous critical thinking exercises that require the learner to search the Internet for specific images and answer questions that serve to expand the learner's appreciation of topics covered within the book.

book FeaTu ReS

T e book is organized into three parts. Part I, Comparative Tooth Anatomy, includes six chapters. T e first chapter begins with an introduction to terminology and concepts related to tooth morphology that provides the foundation for the next four chapters on adult tooth traits. In these chapters, the authors present similarities and differences using drawings, photographs, and many summary tables. Primary teeth and their eruption patterns are discussed in Chapter 6.

Part II, Application of Tooth Anatomy in D ental Practice, has seven chapters. T e first two chapters include a discussion of roots of the adult teeth related to the external surfaces and supporting tissues involved in periodontal therapy and the internal anatomy of the roots involved in endodontic therapy. Other chapters include a contemporary overview of ideal occlusion, operative and restorative dentistry, and forensic dentistry. Finally, there is an extensive discussion about many commonly encountered dental anomalies as well as a chapter designed to help students draw, carve, and sketch teeth.

Part III, Anatomical Structures of the Or al Cavity, includes two chapters. One chapter presents the relationship of the teeth to landmarks of the skull, the temporomandibular joints, and the muscles, nerves, blood supply, and lymph drainage associated with the oral cavity. T e other chapter includes a description of normal oral structures observed during a head and neck cancer screening examination and shows sites for injections for local anesthetic relative to the underlying nerve locations.

Each chapter includes methods designed to help you, the reader, master the content, and put it to practice immediately.

- Topic list: Each chapter begins with a list of topics presented in the same order as the sections within that chapter.
- Learning objectives: In each chapter, learning objectives are presented to help you appreciate what you can expect to learn as you read and that you can reference after you study to ensure that you have mastered the specified knowledge and skills.
- New terms: As each new term is encountered for the first time, it is highlighted in bold print and is defined within the text at that time, often with references to figures, diagrams, and tables to improve understanding. T e bold print is helpful when searching for important terms that are listed alphabetically in the index at the end of the book.
- Glossary: New in this edition is an extensive glossary providing brief definitions of all important terms presented in this edition. However, many terms in dentistry are best appreciated by referring to illustrations or photographs for a complete understanding. Terms in the index include the page where you can find the term (in bold) along with its definition, and often, a reference to an associated illustration for the best learning.
- Pronunciations: New terms that may be difficult to pronounce have phonetic suggestions placed within brackets [like this] immediately after the word is first encountered.
- Review questions with answers: Many chapters or sections end with a series of review questions to test the learner's mastery of the objectives. T ese questions, in
many cases, cover concepts similar to those included on past dental and dental hygiene national examinations. For the convenience of quick and convenient feedback, the answers are presented immediately following the questions.
- Learning exercises: Most chapters include a number of learning exercises. T ese exercises are presented at intervals where the authors feel an active learning experience would be helpful for you to understand and/ or apply the topic. T ese exercises may suggest that you examine extracted teeth or tooth models, or skulls (or skull models), or perform specific self- or partner examinations. New in this edition are many guided searches on the Internet designed to expose the learner to many examples of concepts discussed in that chapter. More advanced exercises (as in Chapter 13) provide methods for drawing and sketching teeth, and carving teeth from wax, thus helping you to become intimately familiar with tooth shape and terminology.
- Summary tables: T roughout the text, the authors have included numerous tables to summarize the many facts presented within the text. T ese tables are helpful when reviewing the highlights of content found within each section.
- Original illustrations and drawings: For complete understanding and clinical application of each topic, the authors have included a variety of photographs, illustrations, and original colorized drawings selected and designed to illustrate key points and improve learning. Over 120 new color illustrations have been added to this edition. Also, on thePoint companion Web site, there is an image bank for instructors containing all of the illustrations and drawings in the text that can be used when lecturing.
- Appendix of comparative dental anatomy: T is text's unique Appendix is designed to help the learner visualize the many tooth similarities and differences that are often difficult to understand with words alone. Each adult tooth class is referenced on two separate appendix pages. T e first page includes traits (each trait is identified with a different letter) that are common to all teeth within that class. T e second page is devoted to the differences (each identified with a letter) between the types of teeth within each class and differences between teeth in each arch. In addition, two appendix pages illustrate the unique characteristics of anterior and posterior primary teeth. T e layout on these pages makes it easy to compare the differences between teeth because views of each tooth type are lined up on the same page next to other teeth in that class. As each tooth characteristic is described within the chapters on tooth morphology (Chapters 1 to 6), reference is frequently made to the illustrated representation of that characteristic on an appendix page as follows: T e word "Appendix" is followed by the page number and letter denoting items being discussed (e.g., "Appendix 1a" refers you to the Appendix, page 1, item "a"). T e authors recommend that you copy each

Appendix page (front and back sides) or print out these pages from the online source thePoint provided for this book, and place them in a separate loose-leaf notebook to facilitate study and minimize page turns as you read chapters two through six. When used in this fashion, these pages provide you with increased convenience (since fewer page turns are required when referencing all of the tooth characteristics within each chapter), easier learning (since the complex terminology used to describe each characteristic is best learned by visualizing that characteristic and comparing it to other similar teeth), and a separate study guide (since all lettered traits for each type of tooth are described on the back of each appendix page).

- Research data: T is text is unique since it includes both original and reviewed research findings based on the study of thousands of teeth, casts, and mouths. Information on crown and root dimensions was obtained from measurements of a convenient sample of 4572 teeth extracted by Ohio dentists and studied by Dr. Julian Woelfel and his dental hygiene students at T e Ohio State University between 1974 and 1979. T e data from these studies are presented throughout the text by using superscript letters like this (data ${ }^{A}$) that refer to the data listed by letters at the end of the chapters. For example, the text states that a mesial marginal groove is a distinguishing characteristic of the maxillary first premolar, ${ }^{\text {A }}$ and at the end of the chapter under A, you are told that this occurred in 97% of the 600 premolars studied, which means that, on the average, 3% may not have this groove, whereas only 37% of maxillary second premolars are likely to have this groove.

Su GGeSTio n S Fo R STu d yin G TeeTh

Spend time thinking about and comprehending each new concept as you read. After all, you are learning the "foreign" language of dental anatomy that you will be using for the rest of your professional lives. Have fun looking at teeth as though you were a tooth detective. Take notes, sketch different views of each tooth, and take advantage of all learning exercises, references to figures, and the appendix. Ask questions until your curiosity is satisfied. T e authors hope this book will stimulate your interest and involvement in the wonderful and fascinating field of dentistry and that you will consider this book to be a worthwhile addition to your library even after your formal education is complete.

As you begin learning the characteristics that differentiate each type of tooth as described in Part I, you need to be aware of the considerable variation in tooth morphology that can occur from one person to the next. Keep in mind that tooth sizes and characteristics cited within the text do not apply to all patients' teeth but are based on average sizes or particular morphology occurring with the greatest frequency. Observe the similarities and differences between each type of tooth by comparing the many photos of teeth included in this book.

Since a picture is worth a thousand words, it is very important that you refer to all figures whenever they are referenced in order to maximize learning. In most cases, important traits are emphasized or clarified in the illustration legends, so read the legends as you study each figure. Also, try covering the labels on each illustration in order to test yourself on the terms you are learning. Be sure to test your knowledge by participating in all learning exercises, and answer all test items included in each chapter to make sure you do not need to review the material before proceeding. When studying each table, try to list as many traits as you can for each tooth and see how many traits you have not remembered. Finally, it is imperative that you refer to the Appendix items as they are discussed to make sure that you can visualize each trait that is being discussed, and later, review the traits listed on the back of each appendix page to assure that you understand each concept. If a description of a trait is not clear, turn the page over in order to visualize the trait. After studying each chapter, refer back to the objectives presented at the beginning of the chapter and ask yourself if you have mastered each one. As you become familiar with the many similarities and differences of tooth morphology, you can later apply your knowledge during patient treatment, evaluation, and education.

As you read the description of tooth morphology, it would be ideal to use a dental explorer on an actual tooth or model to "feel" the contours being described since you will eventually be required to evaluate, reproduce, and/or clean the surfaces of these tooth contours with specific dental instruments. T e best resource for learning about teeth is a collection of as many intact extracted teeth as you are able to acquire. A dentist, if presented with a quart jar of bleach, will remember his or her own student days and will probably be glad to put extracted teeth in the jar. Do not expect these teeth to be clean or sorted out; sorting is your job. While handling these teeth, it is critical to follow the guidelines for infection control presented here:

Gu id el in eS Fo R STeRil izin G and STu dyin G exTRac Ted TeeTh

Using protective gloves and a mask, tooth specimens should be scraped clean with a knife. Soaking for several hours in
hydrogen peroxide before scraping is helpful. After scraping to remove hard deposits and soft tissue, tooth specimens should be further cleansed by soaking for 20 minutes in 4 ounces of household bleach containing 2 tablespoons of Calgon (a water softener). Teeth can then be placed in water (in a beaker covered with tin foil) to be autoclaved for 40 minutes at $121^{\circ} \mathrm{C}$ and 15 psi (Pantera E, Schuster G. J Dent Ed 1990;54(5):284). Once prepared, teeth should be kept moist, either by soaking in water or, as suggested by Dr. Kim Loos, DDS, by soaking in 25% glycerin and 75% water (parentsplace.com, February 28, 2001).

addiTional ReSo uRceS

Woelfel's Dental Anatomy includes additional resources for both instructors and students that are available on the book's companion Web site at http://thePoint.lww.com/Scheid9e

instructor Resources

Approved adopting instructors will be given access to the following additional resources:

- PowerPoint Presentations
- Interactive image bank with the option of displaying images with or without labels
- Test Generator
- Answers to end-of-chapter Critical T inking Questions

Student Resources

Students who have purchased Woelfel's Dental Anatomy have access to the following additional resources:

- Image labeling exercises
- Interactive image bank with the option of displaying images with or without labels
- PowerPoint Presentations

In addition, purchasers of the text can access the searchable Full Text Online by going to the Woelfel's Dental Anatomy Web site at http://thePoint.lww.com/Scheid9e

See the inside front cover of this text for more details, including the passcode you will need to gain access to the Web site.

Acknowledgments

During my first year teaching at T e Ohio State University College of Dentistry in 1974, I was fortunate to be assigned to teach in a laboratory for dental anatomy where I worked with and was mentored by, Dr. Julian Woelfel. He asked me to contribute the chapter on Operative Dentistry in the third edition in 1984. Little did I realize that in 1994, he would select me to coauthor the fifth edition of a text on the very topic I began teaching in 1974: dental anatomy. During the preparation for the fifth and sixth editions, Julian permitted me great latitude in reorganizing the text to ref ect my teaching style since I used this text as I taught over 135 dental and dental hygiene students each year. During this major reorganization, I was careful to maintain the unique aspects that he had incorporated into previous editions. T is includes the results of his personal, science-based research, which formed the basis for many of the conclusions presented within this text: on everything from the average mandibular hinge opening to the frequency of Carabelli cusp formation and the comparative sizes of primary and permanent teeth. In the seventh edition, Dr. Woelfel entrusted me to take over the text.

I would like to express my appreciation to all of the contributors to this and previous editions of this book. My thanks goes to Dr. Woelfel for selecting me to take over the book and teaching me to be meticulous, and for his many contributions to this text; to his wife, Marcile, who helped tremendously in typing and editing previous editions; and to the following colleagues who updated chapters in this edition: Dr. Binnaz Leblebicioglu and Dr. Lewis Claman (Periodontal anatomy), Dr. D. Stanley Sharples, II (Restorative dentistry), and Dr. Shereen Azer (Occlusion), Dr. John Nusstein (Endodontics), and Dr. Daniel Jolly (Forensic Dentistry) and Dr. Burak Yilmaz (who helped with the photography for this edition). I would also like to recognize Ms. Dorothy Permar, who conceived and wrote the first edition in 1974, and Dr. Robert Rashid, Dr. T eodore Berg, Jr., Dr. Al Reader, and Ms. Connie Sylvester, who contributed to previous editions. Finally, a special thanks goes to my co-author, Dr. Gabriela Weiss, who collaborated with me to incorporate the many improvements and additional teaching exercises and test items, and in the daunting task of editing and proofing each chapter.

Rickne C. Scheid, DDS, MEd

abouTdR. Julian Wo el Fel

Professor Emeritus Julian Woelfel, known primarily for his expertise in complete dentures, research, and occlusion, has taught clinical dentistry for 40 years in the College of Dentistry at T e Ohio State University, Columbus, Ohio. He served as an Army prosthodontist in Texas for 2 years, conducted clinical research for the American Dental Association at the National Bureau of Standards in Washington, District of Columbia, for 3 years, and was a visiting professor in Japan, Taiwan, England, and Brazil. Dr. Woelfel has lectured in 18 foreign countries. He has published 85 scientific articles, 8 editions of this Dental Anatomy textbook, and chapters in 5 other dental books. Dr. Woelfel also has published scientific dental articles in Japan, Bulgaria, and Brazil. He holds patents on two inventions that are used in Europe and the United States for accurately recording jaw relation. In addition to Dr. Woelfel's love for students and teaching, he had a part-time dental practice limited to partial and complete dentures for 33 years. One of his proudest accomplishments has been this textbook. In 1967, he was the first recipient of the International Association of Dental Research Award for Research in Prosthodontics and was awarded a Life Membership in the Japanese Nihon University Dental Alumni Association. In 1972, the New York Prosthodontic Society selected him for the Jerome and Dorothy Schweitzer Award for Outstanding and Continuing Research in Prosthodontics. In 1992, the Ohio Dental Association chose Dr. Woelfel for the prestigious Callahan Award, and in 2004, he was the recipient of the Distinguished Alumnus Award from the Ohio Dental Alumni Association. He is a Life Member of Sigma Xi, the International Association for Dental Research, the American Prosthodontic Society, Sigma Phi Alpha Dental Hygiene Honor Society, and the ADA, AES, FDI, FICD, and FACD.

Comments or suggestions may be submitted to Dr. Scheid on e-mail (scheid.2@osu.edu).

Contents

About the Authors v
Reviewers vi
Preface to the Ninth Edition vii
Acknowledgments x
Part 1 comPaRaTiVe To o Th a n a To My 1
1 Basic Terminology for Understanding Tooth Morphology 3
2 Morphology of the Permanent Incisors 49
3 Morphology of the Permanent Canines 78
4 Morphology of Premolars 96
5 Morphology of Permanent Molars 135
6 Primary (and Mixed) Dentition 182
Part 2 aPPl ic aTio n of To o Th anaTo My in den Tal PRac Tice 213
7 Periodontal Anatomy 215
8 Application of Root and Pulp Morphology Related to Endodontic Therapy 249
9 Functional Occlusion and Malocclusion 268
10 Treating Decayed, Broken, and Missing Teeth 304
11 Dental Anomalies 336
12 Forensic Dentistry 358
13 Guidelines for Drawing, Sketching, and Carving Teeth 375
Part 3 an a To Mic STRuc Tu ReS o F The o Ral caViTy 389
14 Structures That Form the Foundation for Tooth Function. 391
15 Oral Examination: Normal Anatomy of the Oral Cavity 449
Appendix 481
Glossary for Woelfel's Dental Anatomy 503
Index 523

PART

1

Comparative

 Tooth AnatomyThe six chapters in this part of the book provide a detailed description of each type of tooth in an adult and in a child.

Basic Terminology for Understanding Tooth Morphology

The background terminology and tooth morphology concepts presented in this chapter are divided into 10 sections as follows:
I. Naming teeth based on location within the normal, complete human dentition
A. Complete primary dentition
B. Complete permanent dentition
II. Tooth identif cation systems: Universal, World Dental Federation (International), and Palmer Numbering Systems
III. Termin ology used to describe the tissues of a tooth (and def nition of anatomic crown and root)
IV. Introduction to the periodontium (and def nition of clinical crown and root)
V. Terminology used to def ne tooth surfaces
A. Terms that identify outer surfaces (toward the cheeks or lips) of anterior versus posterior teeth
B. Terms that identify inner surfaces (toward the tongue) of maxillary versus mandibular teeth
C. Terms that differentiate biting surfaces of anterior versus posterior teeth
D. Terms that differentiate approximating surfaces of teeth
E. Terms to denote tooth surface junctions or dimensions
F. Divisions (thirds) of the crown or root (for purposes of description)
G. Root-to-crown ratio
VI. Te rminology used to describe the morphology of a tooth
A. Morphology of an anatomic crown
B. External morphology of the anatomic root
C. Cervical line (cementoenamel junction or CEJ) curvature
D. Relative size
VII. Terminology related to the ideal tooth alignment of teeth in dental arches
A. Midroot axis line and tooth alignment
B. Crest of curvature (height of contour) on the facial and lingual surface
C. Contact areas (or proximal crests of curvature)
D. Embrasure spaces
VIII. Ideal Occlusion: inter (between) arch relationship of teeth
IX. Tooth development from lobes
X. Interesting variations in animal teeth compared to human teeth using dental formulae

Objectives

This chapter is designed to prepare the learner to perform the following:

- Based on location in the normal, complete primary dentition, name all 20 teeth by arch, quadrant, type (when applicable), and class.
- Based on location in the normal, complete permanent dentition, name all 32 teeth by arch, quadrant, type (when applicable), and class.
- Use the Universal Numbering System to identify permanent and primary teeth.
- Use the Palmer and International Tooth Numbering Systems to identify teeth, and "translate" them to the Universal System.
- Identify and describe the supportive structures of the teeth (periodontium).
- Identify and describe the four tissues of a tooth and the ir location, mineral content, and function.
- Differentiate an anatomic crown and root from a clinical crown and root.
- Name each tooth surface on anterior and posterior teeth.
- From all views, divide a tooth crown and root into thirds and label each third.
- Define terms used to describe a specific dimension of a tooth.
- Describe and identify (by name) common tooth rounded elevations, ridges, depressions, and grooves for each type of tooth.
- Describe and recognize the parts of a root.
- Describe and identify the attributes of ideal tooth alignment and embrasure spaces relative to other teeth within the arch, including the cusp or incisal edge position relative to the tooth's midroot axis line (proximal views), location of crests of curvature and proximal contacts (facial or lingual views), and re lative sizes of embrasure spaces (facial, lingual, or occlusal/ incisal views).
- Describe and identify the ideal interarch relationship of teeth in class I occlusion, especially the relationship of first molars and canines.
- Identify the number of developmental lobes that form each tooth, and recognize the anatomic landmarks of a tooth that form from these lobes.

Just as you need to learn a new vocabulary before you can speak a foreign language, you need to learn a new vocabulary before you can begin to understand the "foreign language" of dental anatomy. T erefore, you need to understand each new word defined in this introductory chapter (highlighted in bold) in order to be able to discuss and appreciate the numerous traits that differentiate each type of tooth that are presented in the next five chapters. Without this understanding, you can neither understand others nor make yourself
understood when discussing teeth. Do you comprehend what is meant when someone says "In ideal class I occlusion, the mesiobuccal cusp of the maxillary first molar occludes with the mesiobuccal groove of the mandibular first molar"? If not, study each term in this chapter, carefully analyze each figure when it is referenced, perform all of the learning exercises, and answer each study question. T en you should be able to comprehend and picture exactly what was said in that statement.

SECTION I

NamINg TEETh BaSEd ON LOCaTION w ITh IN Th E NOr maL, COmpLETE h u maN d ENTITION

T is section is designed to introduce you to terms used when naming teeth based on their normal location in the mouth. All of the teeth in the mouth together are referred to as our dentition [den TISH un]. Humans have two sets of teeth throughout life: one during childhood, called the primary dentition, and one that will hopefully last throughout adulthood, called the permanent (also known as secondary) dentition.

T e teeth in the upper jawbones (called the maxillae [mak SIL ee]) collectively form an arch shape known as the maxillary [MACK si lair ee] arch, and those teeth in the lower jawbone (called the mandible) collectively form the mandibular [man DIB yoo ler] arch. Each arch can further be divided into the left and right halves, also known as left and right quadrants since each quadrant contains one fourth of all teeth in that dentition.

a. COmpLETE pr Imar y d ENTITION

T ere are 20 teeth in the complete primary dentition (shown in Fig. 1-1). T ere are ten in the upper (maxillary) arch and ten in the lower (mandibular) arch. T e complete primary
dentition has five teeth in each quadrant. T e primary teeth in each quadrant are further divided into three classes based on their unique shape and function during chewing. Incisors [in SI zerz] are shaped to incise and cut off pieces of food, canines are shaped to pierce and hold on to food, and molars are shaped to grind food. Starting on either side of the arch midline, that is, the demarcation between the right and left quadrants, the two front teeth in each quadrant of the primary dentition are incisors, followed by one canine, and then two molars.

Two classes of primary teeth, incisors and molars, contain more than one tooth per quadrant and are subdivided into types within each class. Each type can be defined by its normal location within the complete quadrant. T e type of primary incisor closest to the arch midline separating the right and left quadrants is called a central incisor. T e type of incisor next to, or lateral to, the central incisor is called a lateral incisor. Next in each quadrant is a canine, followed by two types of molars: a durst molar behind the canine and then a second molar (Fig. 1-1).

PRIMARY TEETH

RIGHT
LEFT

Flg ur E 1-1. Maxillary and mandibular primary dentition. The midline of each arch is denoted by a line between the right and left central incisors.

T e primary dentition is also called the deciduous [de SIDJ oo us] dentition, referring to the fact that all of these teeth are eventually shed (like a deciduous tree loses its leaves), being replaced by teeth of the permanent dentition. T e mixed dentition is the term used to describe the dentition where there is a mix of secondary and primary teeth visible in the mouth at the same time, during that time after permanent teeth have begun to replace primary teeth, but before all primary teeth have been lost.

LEARNING EXERCISE

Using either models of the complete primary dentition or Figure 1-1 while covering up the labels, identify each primary tooth based on its location in the arch. Include, in order, the dentition (primary), arch (maxillary or mandibular), quadrant (right or left), type (if applicable), and class. For example, the tooth next to the midline in the lower left quadrant would be identified as the primary mandibular left central incisor.

B. COmpLETE pEr ma NENT d ENTITION

T e complete permanent (or secondary) dentition is present in the adult. It is composed of 32 teeth: 16 in the upper maxillary arch and 16 in the lower mandibular arch (shown in Fig. 1-2). T e permanent dentition has eight teeth in each quadrant, which are divided into four classes: incisors that incise food; canines that pierce and hold food; premolars, a new class for permanent teeth shaped to chew food; and molars, also shaped to chew food. Based on location, the two permanent front teeth in each quadrant are incisors, followed by one canine, then two premolars, and finally three molars.

T e classes of permanent teeth containing more than one tooth per quadrant (namely, incisors, premolars, and molars) are subdivided into types within each class. Each type can be identified by its normal location within the quadrant. As in the primary dentition, the permanent incisor closest to the midline between the right and the left quadrants is called a central incisor; the incisor next to, or lateral to, the central incisor is called a lateral incisor. Next in the arch is a canine,

PERMANENT TEETH

Flg ur E 1-2. Maxillary and mandibular permanent dentition. The midline of each arch is denoted by a line between the right and left central incisors.
followed by a örst premolar, and then a second premolar. Continuing around toward the back in each quadrant are three molars: a first molar, a second molar, and finally a third molar (sometimes referred to as a wisdom tooth).

In summary, when comparing the teeth in primary and permanent dentitions, be sure to notice the differences. Although central incisors and lateral incisors and canines are similarly positioned in both dentitions, permanent dentitions have a new class of teeth called premolars, which are located between permanent canines and permanent molars. Premolars erupt into the spaces left where the primary molars were located earlier in life. Also, there are three permanent molars in each quadrant, whereas there are only two primary molars in each quadrant. T ese three permanent molars erupt behind the premolars where no primary teeth were previously located.

T ere are two other terms used to categorize or distinguish groups of teeth by their location: anterior and posterior
teeth. Anterior teeth are those teeth in the front of the mouth, specifically, the incisors and the canines. Posterior teeth are those in the back of the mouth, specifically, the premolars and the molars.

LEARNING EXERCISE

Using either models of the complete permanent dentition or Figure 1-2 while covering up the labels, identify each permanent tooth based on its location in the arch. To identify each tooth accurately, include, in order, the dentition (permanent), arch (maxillary or mandibular), quadrant (right or left), type (if applicable), and the class. For example, the last adult tooth in the lower right quadrant is correctly identified as the permanent mandibular right third molar.

r EvIEw Questions

T ese questions were designed to help you confirm that you understand the terms and concepts presented in this section. Select the one best answer.

1. How many teeth are present in one quadrant of a complete adult (permanent) dentition?
a. 5
b. 8
c. 10
d. 20
e. 32
2. What class of teeth is present in the permanent dentition that is NOT present in the primary dentition?
a. Incisors
b. Canines
c. Premolars
d. Molars
3. In a permanent dentition, the fifth tooth from the midline is a
a. Canine
b. Premolar
c. Molar
d. Incisor
4. T e posterior teeth in the permanent dentition include which of the following?
a. Premolars only
b. Molars only
c. Premolars and molars only
d. Canines, premolars, and molars
5. Which permanent tooth erupts into the space previously held by the primary second molar?
a. First molar
b. Second molar
c. First premolar
d. Second premolar
6. How many teeth are present in one arch of the adult dentition?
a. 5
b. 8
c. 10
d. 12
e. 16
7. How many teeth are present in one arch of the primary dentition?
a. 5
b. 8
c. 10
d. 16
e. 20
8. How many incisors are present in the complete adult dentition?
a. 2
b. 4
c. 6
d. 8
e. 12
9. How many molars are present in the primary dentition?
a. 2
b. 4
c. 8
d. 10
e. 1
10. How many molars are present in each arch of the adult dentition?
a. 2
b. 3
c. 6
d. 8
e. 12
11. What is the fourth tooth from the midline in the primary dentition?
a. Canine
b. First premolar
c. Second premolar
d. First molar
e. Second molar

SECTION II
 TOOTh Id ENTIFICaTION SySTEm S: u NIvEr Sa L, w Or Ld d ENTa L FEd Er a TION (INTEr NaTIONaL), a Nd pa LmEr Nu mBEr INg SySTEmS

Documenting patient treatment with accurate dental records is an important task in any dental practice. To do so expeditiously, it is necessary to adopt a code or numbering system for teeth. Otherwise, for each tooth being charted, one must record the dentition, arch, side, type (if applicable), and class. For example, describing a permanent maxillary right second molar requires five words, but it can be simplified by using the Universal Numbering System, identifying this same tooth with the number 2 (only one number).

T e Universal Numbering System was first suggested by Parreidt in 1882 and officially adopted by the American Dental Association in 1975. It is accepted by third-party providers in the United States and is endorsed by the American Society of Forensic Odontology. Basically, the Universal Numbering System uses numbers 1 through 32 for the 32 teeth in the permanent dentition, starting with 1 for the
maxillary right third molar, going around the arch to the maxillary left third molar as 16 ; dropping down on the same side, the left mandibular third molar becomes 17 , and then the numbers increase around the lower arch to 32 , which is the lower right third molar. T is numbering system is used for each permanent tooth in the illustration in Figure 1-3 and seen in the mouth in Figure 1-4.

For the 20 teeth in the primary dentition, 20 letters of the alphabet are used from A through T. T e letter A represents the maxillary right second molar, sequentially around the arch and through the alphabet to J for the maxillary left second molar, then dropping down on the same side to K for the mandibular left second molar, and then clockwise around the lower arch to T for the mandibular right second molar. T is system is used to identify each primary tooth in Figure 1-5 and in the mouth in Figure 1-6.

PERMANENT TEETH

RIGHT LEFT

Flg ur E 1-3. The numbers 1 through 32 on the permanent teeth identify each tooth using the Universal Numbering System, which is commonly used for record keeping in the United States and used in this book.

FIg ur E 1-4. In the mouth of an adult, the permanent teeth that are visible are numbered using the Universal Numbering System.

T ere are also two other numbering systems: the World Dental Federation (International) System used in other countries and the Palmer Tooth Notation System. T e World Dental Federation notation (also known as the Federation Dentaire Internationale or FDI System) uses two digits for each permanent or primary tooth. T e $\dot{\alpha}$ rst digit denotes a specific quadrant (right or left), arch (maxillary or mandibular), and dentition (permanent or primary) as follows:

PERMANENT DENTITION

1 = Permanent dentition, maxillary, right quadrant
2 = Permanent dentition, maxillary, left quadrant
$3=$ Permanent dentition, mandibular, left quadrant
4 = Permanent dentition, mandibular, right quadrant

PRIMARY TEETH

RIGHT
 LEFT

MANDIBULAR
FIg ur E 1-5. The letters A to T on the primary teeth identify each tooth using the Universal Syste m, which is commonly used for record keeping in the United States.

Flg ur E 1-6. In the mouth of a child, the primary teeth that are visible are identified using letters as used in the Universal Syste m.

PRIMARY DENTITION

$5=$ Primary dentition, maxillary, right quadrant
$6=$ Primary dentition, maxillary, left quadrant
$7=$ Primary dentition, mandibular, left quadrant
$8=$ Primary dentition, mandibular, right quadrant
T e second digit denotes the tooth position in each quadrant relative to the midline, from closest to the midline to farthest away. T erefore, in the permanent dentition with 8 teeth in each quadrant, 1 is a central incisor closest to the midline, 2 is a lateral incisor, 3 is a canine, and so forth through 8 , the permanent third molar, farthest from the midline. In the primary dentition with only 5 teeth in each quadrant, the number 1 represents the tooth closest to the midline or the primary central incisor, and the number 5 represents the tooth farthest from the midline or the primary second molar. In summary, each adult quadrant is numbered 1 through 4 and each adult tooth within that quadrant is numbered 1 to 8 (Fig. 1-7), while

Flgur E 1-7. Two methods are shown for denoting each quadrant in the permanent dentition. The Palmer Syste m uses a different "bracket" shape for each quadrant as you face the person, whereas the FDI International Syste \mathbf{m} uses the numbers 1 through 4 to denote each adult quadrant. The numbers on each tooth denote the method for identifying teeth within each quadrant beginning at the midline with number 1 for the central incisors, number 2 for lateral incisors, etc.

FIg ur E 1-8. When identifying each primary tooth using the World Dental Federation or FDI International Syste m, each quadrant is numbered 5 through 8 as indicated, and each tooth within that quadrant is identified using numbers 1 though 5 with number 1 for the central incisors, number 2 for lateral incisors, etc.
each primary quadrant is numbered 5 to 8 and each tooth within that quadrant is numbered 1 to 5 (Fig. 1-8). (Using this system, tooth numbers within the range 11 through 48 represent permanent teeth, whereas tooth numbers within the range 51 through 85 represent primary teeth.) To cite an example, 45 is a permanent mandibular right second premolar since the first digit, 4, indicates the mandibular right quadrant in the permanent dentition, and the second digit, 5 , indicates the fifth tooth from the midline in that quadrant, namely, the second premolar. Using this numbering system for the primary dentition, tooth 63 is a primary maxillary left canine since the first digit, 6 , indicates maxillary left quadrant in the primary dentition, and the second digit, 3 , indicates the third tooth from the midline, namely, the canine. To cite another example, 51 is a primary maxillary right central incisor since the first digit, 5 , indicates the maxillary right quadrant for a primary tooth, and the second digit, 1 , indicates the first tooth from the midline in that quadrant, namely, the central incisor. Finally, if the Universal number for a tooth was 32, the World Dental Federation number would be 48. If the Universal letter for a primary tooth was A, the World Dental Federation number would be 55 . All tooth numbers and letters using both systems are shown in Table 1-1.

T e Palmer Notation System is used by many orthodontists and other practitioners especially in the United Kingdom. It utilizes four different bracket shapes ($-\downarrow,\llcorner, 7$, and Γ) to denote each of the four quadrants. T e specific bracket surrounds a number (or letter), which denotes the specific tooth within that quadrant. T e specific brackets are designed to represent each of the four quadrants of the dentition, as if you were facing the patient as seen in Figure 1-7.

- is upper right quadrant.
\llcorner is upper left quadrant.
\neg is lower right quadrant.
Γ is lower left quadrant.

Ta BLE 1-1 major Tooth Identif cation Systems

To o TH	UNIVERSAL		PALm ER No TATIo N		INTERNATIo NAL (FDI)	
	RIGHT	LEFT	RIGHT	LEFT	RIGHT	LEFT
Central incisor	E	F	A	LA	51	61
Lateral incisor	D	G	B	B	52	62
Canine	C	H	C	\underline{C}	53	63
First molar	B	I	D	(D)	54	64
Second molar	A	J	E	E	55	65
Central incisor	P	O	A	$\sqrt{\text { A }}$	81	71
Lateral incisor	Q	N	B	$\sqrt{\text { B }}$	82	72
Canine	R	M	C	$\stackrel{\text { C }}{ }$	83	73
First molar	S	L	D	D	84	74
Second molar	T	K	E	E	85	75
Central incisor	8	9	1)	$\lfloor 1$	11	21
Lateral incisor	7	10	2]	$\underline{1}$	12	22
Canine	6	11	3]	$\underline{3}$	13	23
First premolar	5	12	4	$\underline{4}$	14	24
Second premolar	4	13	5	$\underline{5}$	15	25
First molar	3	14	6	$\underline{6}$	16	26
Second molar	2	15	7	$\underline{7}$	17	27
Third molar	1	16	8	$\underline{8}$	18	28
Central incisor	25	24	17	1	41	31
Lateral incisor	26	23	2	$\sqrt{2}$	42	32
Canine	27	22	31	$\sqrt{3}$	43	33
First premolar	28	21	4	$\sqrt{3}$	44	34
Second premolar	29	20	5	$\sqrt{5}$	45	35
First molar	30	19	6	$\sqrt{6}$	46	36
Second molar	31	18	7	$\sqrt{7}$	47	37
Third molar	32	17	81	$\sqrt{8}$	48	38

T e permanent tooth in each quadrant is numbered from 1 (nearest to the arch midline) to 8 (farthest from the midline) as in the International System. To record a specific tooth, place the correct number of the tooth in that quadrant within the bracket shape that identifies the correct quadrant (Fig. 1-7). For example, the lower left central incisor would be $\sqrt{1}$, the lower left second premolar would be $\sqrt{5}$, and the upper right canine would be 3 3. For primary teeth, the same four brackets are used to denote the quadrants, but five letters of the alphabet, A through E, represent the primary teeth in each quadrant (with A being a central incisor, B a lateral incisor, C a canine, etc.) (Fig. 1-9). For example, the primary upper right first molar would be D. Comparing the Universal System with the Palmer System, the permanent maxillary right second molar would be tooth 2 using the Universal System, but would be 7$]$ using the Palmer System. If you are confused, study Table 1-1 and the figures that illustrate the quadrant brackets.

Unless otherwise stated, the Universal System of tooth numbering is used throughout this text. To master the Universal System, it may be helpful to memorize the
number or letters for key teeth, possibly the central incisors (numbers $8,9,24$, and 25) or the first molars (numbers 3 , 14,19 , and 30).

FIg ur E 1-9. When identifying each primary tooth using the Palmer Syste \mathbf{m}, each quadrant is denoted by bracket shapes as indicated, and each tooth within that quadrant is identified using letters A though B with letter A for the central incisors, letter B for lateral incisors, etc.

r EvIEw Questions about Tooth Notation

T ese questions were designed to help you confirm that you understand the terms and concepts presented in this section. More than one answer may be correct.

1. If you read an article in a British dental journal that refers to tooth number 48 , you would suspect that the authors were using the International Numbering System. What Universal number (or letter) would they be talking about?
a. 25
b. J
c. 30
d. T
e. 32
2. Using the Universal Numbering System, what numbers are used to identify maxillary canines?
a. 6
b. 8
c. 10
d. 11
e. 27
3. If you read an article in a British dental journal that refers to tooth number 55 , you would suspect that the authors were using the International Numbering System. What Universal number (or letter) would they be talking about?
a. A
b. 5
c. E
d. T
e. 1
4. If an orthodontist wrote about tooth $\underline{5}$, what would the Universal number be?
a. 3
b. 4
c. 5
d. 12
e. 13
5. What are the Universal numbers of the permanent mandibular first molars? \qquad
a. 3
b. 14
c. 19
d. 24
e. 30
6. Fill in the blanks: If you are referring to the Universal tooth 27, what is its position from the midline? What is its arch? \qquad In which quadrant is it located? \qquad
thgr re wd , ral ubi dna m dr 3-6;e, c-5;e-4; a-3; d, a-2;e-1: Srews Na

SECTION III
 TEr mINOLOg y u SEd TO d ESCr IBE Th E TISSu ES OF a TOOTh (aNd d EFINITION OF a NaTOmICaL Cr Ow N aNd r OOT)

Each tooth is made up of four tissues: enamel, dentin, cementum, and pulp. T e first three of these (enamel, dentin, and cementum) are relatively hard since they contain considerable mineral content, especially calcium (so these tissues can also be described as calcified). Only two of these tissues are normally visible on an intact extracted tooth: enamel and cementum. Enamel covers the portion of the tooth known as the anatomic crown, and cementum covers the portion of the tooth known as the anatomic root. T e other two tissues (dentin and pulp) are usually not visible on an intact tooth. Refer to Figure $1-10$ while reading about each tissue.

Enamel [ee NAM el] is the relatively white, protective external surface layer of the anatomic crown. It is highly calcified or mineralized and is the hardest substance in the body. Its mineral content is 95% calcium hydroxyapatite (which is calcified).

Cementum [se MEN tum] is the dull yellow external layer of the anatomic root. T e cementum is very thin, especially next to the part of the root where the crown joins with the root. Its thickness can be compared to the thickness of a human hair (only 50 to $100 \mu \mathrm{~m}$ thick where $1 \mu \mathrm{~m}$ is one millionth of a meter). Cementum is 65% mineralized. (Another

Flg ur E 1-10. A maxillary anterior tooth is sectioned faciolingually through the middle to show the distribution of the tooth tissues and the shape of the pulp cavity (made up of pulp chamber and root canal). On the right is a close-up of the root tip depicting the usual expected constriction of the root canal near the apical foramen. The layer of cementum covering the root of an actual tooth is proportionately much thinner than seen in these drawings.

author, Melfi, states that the mineral content of cementum is about 50%.) Cementum is about as hard as bone but considerably less hard than enamel.

T e cementoenamel [se MEN toe ehn AM el] junction (also called the CEJ or cervical line) is the junction between the enamel covering the anatomic crown and the cementum covering the anatomic root. T is junction is also known as the cervical [SER vi kal] line, denoting that it surrounds the neck or cervix [SER viks] of the tooth.

Dentin [DEN tin] is the hard yellowish tissue underlying the enamel and cementum, and makes up the bulk of the inner portion of each tooth crown and root. It extends outward from the pulp cavity (located in the center of the tooth) to the inner boundary of the enamel (covering the crown) or cementum (covering the root). Dentin is not normally visible except on a dental radiograph, or when the enamel or cementum has been worn away, or cut away when preparing a tooth with a bur, or destroyed by decay. Mature dentin is composed of about 70\% mineralized calcium hydroxyapatite making it less hard (and less brittle) than enamel, but harder than cementum.

T e dentinoenamel [DEN tin o ehn AM el] junction is the inner surface of the enamel where enamel joins dentin. T is junction can be best seen on a radiograph (Fig. 1-11). T e cementodentinal [se MEN toe DEN tin al] (or dentinocemental) junction is the inner surface of cementum where cementum joins dentin. Cementum is so thin that it is difficult to identify this junction on a radiograph.

Pulp is soft, nonmineralized connective tissue containing a rich supply of blood vessels and nerves located in the cavity or space in the center of the crown and root called the pulp cavity. T e pulp cavity has a coronal portion toward the crown called a pulp chamber and a portion within the roots called a pulp canal or root canal. T e pulp cavity is surrounded by dentin, except at a hole (or holes) near the root tip (apex) called an apical [APE i kal] foramen [fo RAY men] (plural foramina [fo RAM i na]). Nerves and blood vessels enter the pulp canals through these apical foramina. Like dentin, the pulp is normally not visible, except on a dental radiograph (Fig. 1-11) or on a sectioned tooth. Functions of the dental pulp are as follows:

Flgur E 1-11. A radiographs (x-ray) shows tooth crowns covered with enamel, and the tooth roots embedded within the alveolar bone. You can distinguish the whiter outer enamel shape from the darker inner dentin. The pulp chamber in the middle of the tooth is the darkest. The very thin, dark periodontal ligament can also be seen between the root and the bone, but the cementum is so thin it cannot be seen.

- Formative: Dentin-producing cells (odontoblasts) produce dentin throughout the life of a tooth. T is normally maturing dentin is called secondary dentin.
- Sensory: Nerve endings in the pulp relay the sense of pain caused from heat, cold, drilling, sweet foods, decay, trauma, or infection to the brain, so we feel it. However, the nerve fibers in a dental pulp are unable to distinguish the cause of the pain.
- Nutritive: Blood vessels transport nutrients from the bloodstream to cells of the pulp and the cells that produce
dentin (odontoblasts). Surprisingly, blood being pumped into the tooth pulp had passed through the heart only 6 seconds previously.
- Defensive or protective: Pulp responds to injury or decay by forming reparative dentin (by the odontoblasts).

Some advanced information on the embryology of tooth tissues that had been included in this chapter in previous editions is now presented at the end of the chapter in a section called "Advanced Topics."

r EvIEw Questions about Tooth Tissues

T ese questions were designed to help you confirm that you understand the terms and concepts presented in this section. More than one answer may be correct.

1. Which tooth junctions are NOT normally visible on a handheld intact tooth?
a. Cementoenamel junction
b. Dentinoenamel junction
c. Dentinocemental junction
d. Dentinopulpal junction
2. Which mineralized tissue is the hardest?
a. Cementum
b. Pulp
c. Dentin
d. Enamel
e. Alveolar bone
3. What tissue forms the outer boundary of almost all of a pulp chamber?
a. Enamel
b. Dentin
c. Cementum
d. Alveolar bone
e. Periodontal ligament
4. Which of the following is (are) NOT functions of the pulp?
a. Taste sweet and sour
b. Sense pain
c. Provide nutrition to dentin
d. Produce new dentin
e. Produce new enamel
e, $a-4 ; b-3 ; d-2 ; d, c, b-1: S r E w S N a$

SECTION Iv

INTr Od u CTION TO Th E pEr IOd ONTIu m (aNd d EFINITION OF CLINICa L Cr Ow N a Nd r OOT)

T e periodontium [pair ee o DON she um] is defined as the supporting tissues of the teeth in the mouth, including surrounding alveolar bone, the gingiva, the periodontal ligament, and the outer, cementum layer of the tooth roots (Fig. 1-12). Alveolar bone is the portion of the upper (maxillary) or lower (mandibular) bones that surrounds the roots of the teeth. T e gingiva is the part of the soft tissue in the mouth that covers the alveolar bone of the jaws and is the only part of the periodontium that is visible in a healthy mouth. Part of it is firmly bound to the underlying alveolar bone and is called attached gingiva. T e other part is free gingiva (or marginal gingiva), which is a collar of thin gingiva that surrounds each tooth and, in health, adapts to the tooth but provides access into the potential space between the free gingiva and the tooth, which is called a gingival sulcus (crevice). T e gingival margin (or free gingival margin)
is the edge of the gingiva closest to the biting or chewing surfaces of the teeth (Fig. 1-13).

T e gingival sulcus is not seen visually but can be evaluated with a thin probe (periodontal probe), since it is actually a space (or potential space) between the tooth surface and the narrow unattached cervical collar of free gingiva. If you insert a periodontal probe into this sulcus, it should extend only 1 to 3 mm deep in a healthy person (Fig. 1-14). T e interdental (interproximal) papilla [pah PILL ah] (plural is papillae [pa PILL ee]) is that part of the collar of free gingiva that extends between the teeth. A healthy papilla conforms to the space between two teeth (interproximal space), so it is very thin and easy to damage near where the adjacent teeth contact. T e papilla also has a hidden sulcus where dental f oss can fit once it passes between the teeth (Fig. 1-15). T e foss must curve around the tooth to avoid cutting into the interdental papilla.

FIg ur E 1-12. This diagram is a tooth supported within the periodontium. The periodontium is made up of alve olar bone, which surrounds the anatomic root; gingiva (gum tissue), which covers the bone; cementum, which covers the tooth root; and the periodontal ligament, which attaches the cementum of the tooth root to the bone.

Although the term ligament is most often defined as a tough fibrous band of tissue that connects two bones, a periodontal ligament (abbreviated PDL) is a very thin ligament that connects a tooth to its surrounding bone. It is composed of many microscopic tissue fibers that attach the outer layer of the tooth root (covered with cementum) to the thin layer of dense alveolar bone surrounding each tooth. T e fibers of the periodontal ligament represented in Figure 1-12 are greatly enlarged. T e average thickness of a
healthy periodontal ligament is only about one to four times thicker than the diameter of an average healthy human hair.

CLINICAL CROWN AND ROOT: As mentioned previously, the anatomic crown is that part of the tooth (in the mouth or handheld) normally covered by an enamel layer, and the anatomic root is the part of a tooth covered by cementum (recall Fig. 1-10). However, when the tooth is in the mouth, the amount of the tooth that is visible in the oral cavity (i.e., not covered with gingiva) is called the clinical

Flg ur E 1-14. A periodontal probe is carefully placed into the gingival sulcus.
crown, and the portion of the tooth that is not visible since it is covered with gingiva is called the clinical root. When the gingival margin in a 25 -year-old patient with healthy gingiva approximately follows the curvature of the cervical line, the clinical crown is almost the same as the anatomic crown (Fig. 1-16A). However, throughout life, the gingival margin is not always at the level of the cervical line because of the eruption process. For example, the gingiva on a partially erupted tooth of a 10-year-old covers much of the enamel of the anatomic crown of the tooth, resulting in a clinical crown (exposed in the mouth) that is much shorter than the anatomic crown (Fig. 1-16B). T e clinical root (the part of the tooth not visible in the mouth) would be longer than the anatomic root, since it includes all of the anatomic root plus the part of the anatomic crown covered with gingiva.

In contrast, the gingival margin of an older person may exhibit gingival recession, especially after having periodontal

Flgur E1-15. Dental foss must adapt around the curved surface of each tooth when entering the gingival sulcus in order to clean the proximal surface of the tooth and avoid damaging the free gingiva.
disease or periodontal therapy, exposing more of the anatomic root. In this case, the clinical crown is longer than the anatomic crown since the clinical crown in this mouth consists of the entire anatomic crown plus the part of the anatomic root that is exposed (Fig. 1-16C). In this situation, the clinical root is shorter than the anatomic root.

LEARNING EXERCISE

Examine the mouths of several persons of different ages to see if the cervical line of each anatomic tooth is visible or hidden. As the individual grows older, the location of the margin of the gingiva may recede toward the root tip (apically) because of periodontal disease or injury. Of course, the location of the cervical line on the tooth remains the same. In other words, the distinction between the anatomic crown and root does not change over a lifetime.

C

Flg ur E 1-16. A. On a young adult with healthy gingiva, the entire anatomic crown is all that can be seen, so the clinical crown is approximately the same as the a natomic crown. B. Since this canine is partially erupted, the anatomic crown is only partially exposed, so there is a short clinical crown. C. This maxillary molar has a very long clinical crown since all of the anatomic crown and much of the anatomic root are exposed due to recession of the gingiva and loss of bone.

r EvIEw Questions about the Periodontium

T ese questions were designed to help you confirm that you understand the terms and concepts presented in this section. More than one answer may be correct.

1. Which statement(s) is (are) likely to be true on a person with a barely erupted tooth 9 ?
a. T e clinical crown is larger than the anatomic crown.
b. T e clinical crown is smaller than the anatomic crown.
c. T e clinical root is larger than the anatomic root.
d. T e clinical root is smaller than the anatomic root.
2. Which statement(s) is (are) true regarding a tooth on a person who has lost most of the bone and gingiva surrounding the tooth?
a. T e clinical crown is larger than the anatomic crown.
b. T e elinical crown is smaller than the anatomic crown.
c. T e clinical root is larger than the anatomic root.
d. T e clinical root is smaller than the anatomic root.
3. Which of the following structures is (are) NOT part of the periodontium?
a. Alveolar bone
b. Periodontal ligament
c. Gingival margin
d. Cementodentinal junction
e. Attached gingiva
4. T e periodontal ligament attaches the alveolar bone to what tooth tissue?
a. Dentin
b. Enamel
c. Cementum
d. Pulp

SECTION v TEr mINOLOg y u SEd TO d EFINE TOOTh Su r Fa CES

All teeth have surfaces that are named according to their normal, ideal alignment within the dental arch. Refer to Figure 1-17 when studying the terms to denote tooth surfaces.

a. TEr mS Th a T Id ENTIFy Ou TEr Sur Fa CES (TOward Th E Ch EEkS Or LpS) OF a NTEr IOr vEr Su S pOSTEr IOr TEETh

T e facial surface of a tooth is the surface toward the face, that is, the surface of a tooth in the mouth resting against or next to the cheeks or lips. Facial may be used to designate this surface of any tooth, anterior or posterior. Another name for the facial surface of posterior teeth is buccal [BUCK $\left.\mathrm{k}^{\prime} 1\right]$, located next to the cheek (labeled on tooth 3 in Fig. 1-17). Dental terms that begin with "bucc" refer to a relationship or proximity to the cheek. It is incorrect to use the term buccal when speaking about the incisors or canines because the facial surface of these teeth does not approximate the cheeks. T e facial surface of anterior teeth is properly called a labial [LAY bee al] surface, located next to the lips (labeled on tooth 6 in Fig. 1-17). T e term labial should not be used when referring to the premolars or the molars.

B. TEr mS Th a T Id ENTIFy INNEr Su r Fa CES (TOward Th E TONguE) OF maxILLary vEr Su S maNd IBu Lar TEETh

T e lingual [LIN gwal] surface is the surface of a maxillary or mandibular tooth nearest to the tongue (labeled on tooth

5 in Fig. 1-17). In the maxillary arch, this surface can also be called the palatal surface due to its proximity with the palate.

C. TEr mS Th aT d IFFEr ENTIaTE BITINg Sur Fa CES OF aNTEr IOr vEr Su S pOSTEr IOr TEETh

T e occlusal [ahk KLOO zal] surface is the chewing surface of a posterior tooth (labeled on tooth 2 in Fig. 1-17). Anterior teeth (incisors and canines) do not have an occlusal surface but do have a cutting incisal edge or ridge (labeled on tooth 8 in Fig. 1-17).

d. TEr mS Th aT d IFFEr ENTIaTE a ppr OxImaTINg Sur FaCES OF TEETh

T e proximal [PROCK se mal] surfaces are the sides of a tooth next to an adjacent tooth. Depending on whether the proximal tooth surface faces toward the arch midline between the central incisors or away from the midline, it is either a mesial [MEE zi al] surface (closer to the midline) or a distal [DIS tal] surface (farther from the midline). Mesial and distal surfaces are labeled on tooth 1 in Figure 1-17. Note that the mesial surface of a tooth touches, or is closest to, the distal surface of an adjacent tooth EXCEPT between the central incisors where the mesial surface of the right central incisor faces the mesial surface of the left central incisor. Also, the distal surface of the last (third) molar in each arch does not approximate another tooth.

FIgur E 1-17. Maxillary dental arch of teeth with various tooth surfaces labeled. Remember that the labial surface of an anterior tooth and the buccal surface of a posterior tooth are both referred to as facial surfaces. Also, the mesial and distal sides or surfaces are both correctly called proximal surfaces.

Soft debris and food particles on proximal surfaces are not easily cleaned by the action of the cheeks, lips, and tongue when compared to most of the facial or lingual surfaces, which are considered more self-cleansing, that is, more easily able to be cleaned by the rubbing action of the cheeks, lips, and tongue.

E. TEr mS TO d ENOTE TOOTh Sur Fa CE Ju NCTIONS Or d ImENSIONS

T e junction line where two tooth surfaces meet is called an external line angle. To name a line angle, combine the names of the two surfaces, but change the "al" ending of the first surface to an "o." (A guideline has been suggested for the order used when combining terms. Use the following order: mesial is used first; then distal, facial, [buccal or labial] or lingual; and lastly occlusal or incisal. Using this guideline, it is better to say mesio-occlusal than occlusomesial, and it
is better to say distolingual than linguodistal.) Examples of external line angles of a molar crown include mesio-occlusal, mesiolingual, mesiofacial, disto-occlusal, distolingual, distofacial, bucco-occlusal, and linguo-occlusal. Point angles are the junctions of three tooth surfaces at a point, such as a mesiobucco-occlusal point angle. Examples of these external line angles and point angles are seen in Figure 1-18.

To describe a dimension of a tooth, terms can be combined to denote the direction over which a dimension is taken. For example, the length of an incisor crown from the incisal edge to the cervical line is called the incisocervical dimension or the dimension incisocervically, and the width of the buccal surface of a molar crown from the mesial surface to the distal surface is the mesiodistal dimension (Fig. 1-18). Other examples of terms used to describe a crown dimension include mesiodistal, faciolingual or buccolingual, and occlusocervical. T e length of a root could be described as its cervicoapical dimension.

r EviEw Questions about Dimensions

1. What surface(s) of a tooth would you be looking at in order to determine the mesiodistal dimension of a molar?
2. What surface(s) of a tooth would you be looking at when measuring the buccolingual dimension of a molar?

FIg ur E 1-18. Diagrammatic representations of an incisor and a molar crown have several examples of line angles and point angles labeled in red. Three examples describing dimensions are labeled in green.

F. d Iv ISIONS (Th Ir d S) OF Th E Cr Ow N Or r OOT (FOr purpOSES OF d ESCr Ip TION)

A tooth can be divided into thirds in order to define more precisely the location of its specific landmarks such as proximal contacts. When viewing a tooth from the facial, lingual, mesial, or distal surface, horizontal lines can divide the tooth crown into the following thirds: cervical, middle, and occlusal (or incisal) (Fig. 1-19). Similarly, horizontal lines can divide the root into thirds: cervical, middle, and apical (toward the root tip or apex).

When viewing the facial or lingual surfaces of a tooth, vertical lines can be used to divide the crown or root into
mesial, middle, and distal thirds. When viewing proximal (mesial or distal) surfaces, vertical lines can be used to divide the crown or root into facial, middle, and lingual thirds. When viewing a tooth from the occlusal (or incisal) surface, lines running mesiodistally can be used to divide the crown into facial, middle, and lingual thirds, and lines running faciolingually can be used to divide the tooth into mesial, middle, and distal thirds.

g. r OOT-TO-Cr Ow N r a TIO

If we know the length of a tooth root from the cervical line to the tip of the root, and the length of the crown (as defined at the end of this chapter in Dr. Woelfel's original research data), we can calculate a root-to-crown ratio. T e root-to-crown

Division of teeth in thirds

ratio is the root length divided by crown length. Since almost all tooth roots are longer than their crowns, the root-to-crown ratios for teeth are normally greater than 1.0. For example, the average root length of a maxillary central incisor is only 13.0 mm and the crown length is 11.2 mm . T e root-to-crown ratio is 13 divided by 11.2 , which equals 1.16. When this number is close to 1 , it indicates that the root is not much longer than the crown. Compare this with a maxillary canine, where the average root is much longer, at 16.5 mm , but the crown is only 10.6 mm , for a much larger root-to-crown ratio of 1.56 T is larger ratio indicates that the root is over one and a half times (1.56 times) longer than the crown. T e obvious difference between the root-to-crown ratio on these two teeth is apparent in Figure 1-20. T e ratio can be clinically significant, since a tooth with a small root-to-crown ratio (closer to 1) is not the best choice for attaching and supporting false teeth, because the additional attached teeth would apply even more force on a tooth that already has a short root compared to its crown length. T erefore, the long-term success of attaching false teeth to a tooth like the maxillary canine with a large root-to-crown ratio of 1.56 would be better than attaching it to a tooth like the maxillary central incisor with a small root-to-crown ratio of 1.16.

FACIAL VIEWS
Right maxillary canine
Right maxillary central incis or

FIg ur E 1-20. Compare the root-to-crown ratio of a maxillary central incisor where the root is not much longer than the crown and the ratio is 13 mm of crown length divided by 11.2 mm of root length, or only 1.16 , with a maxillary canine where the root is considerably longer than the crown so the ratio is much larger: 16.5 mm crown length divided by 10.6 mm root length, or 1.56 .

revIEw Questions about Tooth Terminology

T ese questions were designed to help you confirm that you understand the terms and concepts presented in this section. More than one answer may be correct.

1. Which tooth surface(s) face(s) the lips or cheeks?
a. Facial
b. Distal
c. Buccal
d. Occlusal
e. Labial
2. Which pairs of teeth have a mesial surface touching a mesial surface?
a. 25 and 26
b. 16 and 17
c. 7 and 8
d. 1 and 32
e. 8 and 9
3. Which teeth have a distal surface that does not normally contact another tooth?
a. 1
b. 3
c. 8
d. 17
e. 24
4. T e ererm labial refers to association with or proximity to the lips, and the term \qquad refers to association with or proximity to the cheeks.
a. Facial
b. Buccal
c. Labial
d. Proximal
e. Palatal
5. When viewing tooth 8 from the distal view, it can be divided into thirds from the incisal to the cervical and from the facial to the lingual. Which third is NOT possible to see from the distal view?
a. Facial
b. Cervical
c. Middle
d. Mesial
e. Incisal
6. When viewing tooth 19 from this one view, it can be divided into thirds from the buccal to lingual and from the mesial to the distal. From which view is this possible?
a. Buccal
b. Lingual
c. Mesial
d. Distal
e. Occlusal
7. If you were observing the faciolingual dimension of a tooth, what surface(s) could you be viewing?
a. Mesial
b. Occlusal
c. Proximal
d. Labial
e. Distal
8. If the root-to-crown ratio of a maxillary molar (tooth 14) is 1.72 and that of a maxillary incisal (tooth 8) is 1.16 , which tooth has the longest root relative to its shorter crown?
a. Tooth 14 .
b. Tooth 8 .
c. More information is required in order to answer this question.
9. Which of the following phrases are correct?
a. Buccal surface of tooth 10
b. Labial surface of tooth 19
c. Palatal surface of tooth 29
d. Occlusal surface of tooth 27
e. Facial surface of tooth 1
10. Which term does NOT refer to a tooth crown line angle?
a. Mesio-occlusal
b. Mesiofacial
c. Mesiodistal
d. Distofacial
e. Linguo-occlusal

SECTION vi
 TEr m INOLOg y u SEd TO d ESCr IBE Th E mOr ph OLOg y OF a TOOTh

a. mOr ph OLOgy OF aN a Na TOm IC Cr Own

Teeth are made up of many rounded elevations, ridges, depressions, and grooves. Specific tooth structures that occur with some frequency on teeth within a class have been assigned specific names. To identify the following anatomic structures, reference will be made to representative drawings of various teeth seen in figures throughout this book.

(1.) Elevations: pointed Cusps and Linear r idges

a. Cusps: Cusp Names and Numbers

A cusp is a pyramidal elevation with a peak called a cusp tip. Cusps are located on the occlusal surfaces of molars and premolars and on the incisal surfaces of canines. Canines have one cusp, premolars normally have two or three cusps, and most molars have from three to five cusps. On teeth with multiple cusps, each cusp is named according to its location on the tooth. For example, on a two-cusped premolar, the two cusps are named after the surface adjacent to each cusp: a buccal
cusp and a lingual cusp. T ree-cusped premolars have one buccal and two lingual cusps, and the two lingual cusps are named after the adjacent line angles, that is, mesiolingual cusp and distolingual cusp. A four-cusped molar has four cusps named after the adjacent line angles: mesiobuccal, distobuccal, mesiolingual, and distolingual. A three-cusped maxillary molar has two buccal cusps (mesiobuccal and distobuccal) and one lingual cusp. On a five-cusped molar, the three buccal cusps are called mesiobuccal, distobuccal, and the smallest distal cusp. Refer to Figure 1-21 for examples of cusp names on posterior teeth with two, three, four, and five cusps.

b. Cusp Ridges

Many cusps can be thought of as having four cusp ridges (linear prominences of enamel) converging toward the cusp tip. T ese four ridges form the shape of a four-sided pyramid with rounded surfaces. If you draw a line along the greatest linear bulge of each of these four ridges, the lines would intersect at the cusp tip indicated by the " X " on Figure 1-22. On this example of a buccal cusp on a

VIEWED FROM OCCLUS AL

VIEWED FROM BUCCAL

Flg ure 1-21. Cusp names on teeth having two, three, four, and five cusps, viewed from the occlusal and buccal views. Notice that the cusps are named after the adjacent surface or line angle EXCEPT on five-cusped mandibular first molars with three buccal cusps. On fivecusped molars, the two larger buccal cusps are named mesiobuccal and distobuccal cusps, as on the four-cusped molar, but the smallest cusp is called the distal cusp.

These cusps are basically a gothic pyramid:

Two-cusped premolar

One-cusped canine

FIgur E 1-22. The four-cusped ridges of the buccal cusp of a two-cusped premolar have a somewhat pyramidal design (actually, a pyramid with rounded sides called a gothic pyramid). The cusp ridges are numbered 1 to 4 and converge at the cusp tip (at the " X '). Ridge 1 is the mesial cusp ridge of the buccal cusp; ridge 2 is the distal cusp ridge of the buccal cusp; ridge 3 is the more subtle buccal ridge of the buccal cusp; and 4 is the triangular ridge of the buccal cusp. (Courtesy of Drs. Richard W. Huffman and Ruth Paulson.) Cusp ridges on the single cusp of a maxillary canine also have a mesial cusp ridge labeled 1 and distal cusp ridge labeled 2 , the same as on the premolar, but 5 is the labial ridge of the canine cusp (similar to a buccal ridge on a premolar), and 6 is the lingual cusp ridge.

FIg ur E 1-23. A rounded buccal ridge can be seen on the buccal surface of many premolars.
premolar, three of the ridges are named after the circumferential tooth surface they extend toward: the more subtle buccal ridge extends onto the buccal surface, the mesial cusp ridge extends from the cusp tip toward the mesial surface, and the distal cusp ridge extends from the cusp tip toward the distal surface. T e fourth ridge extends from the cusp tip toward the faciolingual middle of the tooth and is called a triangular ridge.

T e buccal ridges that run cervico-occlusally on the buccal surfaces of premolars or molars are often the least distinct of the four ridges that emanate from the cusp tip, although they may be more prominent on some types of teeth (Fig. 1-23). Lingual cusps do not normally have prominent lingual ridges running cervico-occlusally from the cusp tips.

T e mesial and distal cusp ridges are also known as cusp slopes or cusp arms. T ey are most evident when viewing teeth from the facial or lingual aspect where they can be seen as inclined ridges that converge toward the cusp tip to form an angle (seen in green on a buccal cusp of a premolar and on a buccal cusp of a molar in Fig. 1-24). For some teeth, the sharpness or bluntness of a cusp angle can be an defining trait. T ese ridges are more difficult to discern when viewing
teeth from the occlusal, denoted in green on the two cusps of a premolar in Figure 1-25.

Triangular ridges are located on the major cusps of posterior teeth. Each triangular ridge extends from a cusp tip toward the depression (sulcus) near the middle of the occlusal surface faciolingually, most easily identified when viewing a proximal surface as on Figure 1-26, but also evident when viewing the occlusal surface as on Figure 1-25. When a triangular ridge from a buccal cusp joins with a triangular ridge from a lingual cusp, these two ridges together form a longer ridge called a transverse ridge. A transverse ridge crosses the occlusal surface of posterior teeth in a more or less buccolingual direction, running between the buccal and lingual cusps on a premolar (seen from an occlusal view and a proximal view in Figs. 1-25 and 1-26) or connecting the buccal and lingual cusps that are lined up across from one another on a molar (seen on a mandibular molar in Fig. 1-27 and on the two-cusped premolar). An oblique ridge is found only on maxillary molars. It crosses the occlusal surface obliquely (diagonally) and is made up of one ridge on the mesiolingual cusp joining with the triangular ridge of the distobuccal cusp (seen in Fig. 1-27 on the maxillary molar). According to Ash, ${ }^{1}$ the ridge of the mesiolingual cusp that forms the lingual half of the oblique ridge is the distal cusp ridge of the mesiolingual cusp.

T e single cusp of many canines may also have four ridges emanating from its cusp tip (Fig. 1-22): a mesial cusp ridge and a distal cusp ridge, a labial ridge similar to a buccal ridge running cervicoincisally from the cusp tip, and sometimes a fourth ridge called a lingual ridge that extends lingually toward the cervical bulge (cingulum). T ese ridges can be prominent on maxillary canines (Fig. 1-28A and B).

c. Marginal Ridges and Cingulum

On the lingual of all anterior teeth, a cingulum [SING gyoo lum] (plural cingula) is the prominence or bulge in the cervical third of the lingual surface of the crown (incisors and canines) (seen on the lingual view in Fig. 1-29 and seen as a prominence in the cervical third of the crown on the proximal view in Fig. 1-30). On anterior teeth, mesial and distal

FIg ur E 1-24. Cusp ridges (cusp slopes) are labeled on the buccal cusp of a mandibular premolar and on the mesiobuccal cusp of a four-cusped mandibular molar.

FIgure 1-25. On this two-cusped maxillary premolar, the mesial and distal cusp ridges of the buccal and lingual cusps are shaded green. The triangular ridges of the buccal and lingual cusps are shaded blue and together are called a transverse ridge. The buccal ridge of the buccal cusp is shaded green.
marginal ridges form the mesial and distal borders of the lingual surface, and these ridges converge toward a rounded elevation or bulge in the cervical third called a cingulum, as seen on an incisor in Figures 1-29 and 1-30. When distinguishing a mesial from a distal marginal ridge on anterior teeth, it can be useful to remember that the mesial marginal ridge is normally longer than the distal. When determining which marginal ridge is longer, think of the length of a marginal ridge as extending from the incisoproximal line angle to its junction with the cingulum (as on Fig. 1-29 where the mesial marginal ridge appears slightly longer than the distal marginal ridge).

On posterior teeth, marginal ridges form the mesial and distal borders of the occlusal surface. T e mesial marginal ridge on a premolar is shaded red in Figure 1-31.

d. Occlusal Table Outline versus Crown Outline

When viewing posterior teeth from the occlusal view, it is important to distinguish the entire crown outline of the tooth from the occlusal table of that tooth. T e occlusal crown outline is the outer outline of the entire tooth crown from the occlusal view, whereas the occlusal table is the occlusal surface that is bounded by the continuous cusp ridges and marginal ridges. On the premolar in Figure 1-31, the occlusal table is bounded by a mesial marginal ridge joined with the mesial and distal cusp ridges of the buccal cusp, then the distal marginal ridge, and the cusp ridges of the lingual cusp.

T is would be a good time to refer to Figure 1-32 and perform the learning exercise to test your knowledge of cusp ridges.

Flg ur E1-26. When seen from the mesial view on this maxillary two-cusped premolar, the outlines of two triangular ridges form a " V " shape and join at the depth of the occlusal sulcus to form one transverse ridge.

A Premolar, two cusp type

FIg ur E 1-27. Three posterior teeth show transverse and oblique ridges.
A. Two triangular ridges on a twocusped premolar form one transverse ridge. B . Two pairs of triangular ridges on a mandibular molar join to form two transverse ridges. C. One pair of triangular ridges on a maxillary molar is aligned buccolingually and forms one transverse ridge in blue, and another pair of ridges is aligned obliquely (diagonally) to form an oblique ridge in purple

B

Maxillary molar

LEARNING EXERCISE

The diagram in this Figure $1-32$ the ridges seen from the occlusal view that bound the occlusal table of a two-cusped premolar. Name each ridge next to its corresponding number. (Note that ridges labeled 1, 3, 4, 5, 6, and 7 form a continuous outline on the occlusal surface. The area inside of this line is called the occlusal table.)

Flg ur E 1-28. A. On this maxillary canine, a labial ridge can be seen running from the cusp tip cervically along the labial surface. B. On this maxillary canine, a prominent lingual ridge is visible running from the cusp tip cervically to the cingulum.

e. Other Bulges and Ridges

Other bulges or ridges can be seen on the cervical third of certain teeth facially or lingually. On the facial surface of permanent molars, the ridge or bulge running mesiodistally in the cervical one third of the facial surface of a crown is called the cervical ridge. T is ridge forms the greatest bulge on the buccal surface, which is known as the crest of curvature (or height of contour) (Fig. 1-33A and B). T is ridge is most evident on mandibular second molars where the

Flg ur E 1-29. The mesial and distal marginal ridges are shaded red, and the cingulu \mathbf{m} is shaded green on the lingual surface of a maxillary incisor. If you think of the length of a marginal ridge as running from the proximal incisal line angles to the cingulum, you can see that this mesial marginal ridge is slightly longer than the distal marginal ridge.

Flgure 1-30. This maxillary canine demonstrates that the cingulum bulge in green is located in the cervical third of the lingual surface. One visible marginal ridge is shaded red.
occlusal outline of the mesiobuccal cusp appears to bulge (Fig. 1-33C).

Mamelons are three small bulges or tubercles on the incisal edges of newly erupted incisors (Fig. 1-34). Usually, mamelons are not evident on adult dentition since they are

Flg ur E 1-31. Occlusal view of a two-cusped premolar shows the difference between the occlusal outline of the tooth (the black outline surrounding the entire tooth from this view) and the smaller red occlusal table (or occlusal chewing surface) bounded by six ridges: the two cusp ridges of the buccal cusp (green), the two cusp ridges of the lingual cusp (green), and the two marginal ridges (red).
worn off after the tooth comes into functional contact with its opposing teeth. If you have the opportunity, observe a 7 -year-old smile to see these mamelons on newly erupted permanent incisors. When mamelons remain on the incisors of an adult, it is because maxillary and mandibular anterior teeth do not touch together to wear away the enamel. When a patient desires, the dentist can reduce the mamelons to make the incisal edge more uniformly curved.

Finally, perikymata [pear i KY mah tah] are the numerous, minute horizontal ridges on the enamel of newly erupted permanent teeth (Fig. 1-35). T ey form from the overlapping of layers of enamel laid down during tooth formation. T ese lines are closer together in the cervical third of the crown than in the incisal third. Perikymata are more prominent on the teeth of young people than on the teeth of older persons because perikymata, like mamelons, wear away from
1.
\qquad
3.
\qquad
5. \qquad
6.
\qquad
8.
\qquad

. ps ucl augril fo egdr ral ugnairt 9 ; ps ucl acc ubfo egdr ral ugnairt -8 ; egdrl an gra m 1 atsi d -7 ; ps ucl augnil fo egdr psucl atsi d -6 ; psucl augril fo egdr psucl aise $m-5$; egdr 1 an gra m aise $\mathrm{m}-4$; ps uc 1 accubfo egdr psuclaise $m-3$; egdr) psuc(1 accub -2 ; psuclaccubfo egdr psuc 1 atsid -1 : Sre wS Na

Flg ur E 1-33. A. On this mandibular first molar from the buccal view, a buccal cervical ridge is the rounded prominence located in the cervical third of the crown. B. From the proximal view, the buccal cervical ridge forms the greatest bulge or crest of curvature in the cervical third of this molar. C. From the occlusal view on this four-cusped mandibular second molar, the buccal cervical ridge forms a prominent bulge on the mesiobuccal outline.
ongoing abrasion due to eating and even tooth brushing with abrasive toothpastes.

depressions and g rooves of an anatomic Crown

An occlusal sulcus [SUL kuss] (plural sulci [SUL sye]) of a tooth is the broad V-shaped depression or valley on the occlusal surface of each posterior teeth running mesiodistally between the buccal and lingual cusps. T e sulcus is formed by the sloping of the buccal and lingual triangular ridges that converge toward the developmental grooves located in the depth of the sulcus on each posterior tooth (Fig. 1-36). Although a sulcus is a linear depression, there is much variation to the anatomy within the sulcus of each tooth. For example, there are triangular and marginal ridges (discussed previously) and grooves (channels) within the sulcus, as well as multiple depressions, each called a fossa [FAH sah] (plural, fossae [FAH see].

GROOVES: A groove is a linear channel often found between cusps in the depth of the sulcus and between ridges. T ey serve as important escape ways for food morsels when the teeth of the lower jaw move from side to

FIg ur E 1-34. Three distinct unworn mamelons are evident on the incisal edge of this mandibular incisor.
side and forward against the upper teeth during chewing. Partially chewed food squirts out through grooves toward the tongue and cheeks. Each tooth has major developmental grooves, which are often consistent in location for teeth of the same type, and other minor, supplemental grooves, which can vary greatly from tooth to tooth. Developmental grooves separate cusps and other major portions of a tooth formed from the developmental lobes (described later in Section IX of this chapter). On most posterior teeth like the premolar in Figure 1-37A, a central groove is a developmental groove that separates the buccal from the lingual cusps and is located near the buccolingual center of the tooth sulcus. Other developmental grooves are named according to their location. For example, on mandibular molars with two buccal cusps, a buccal groove separates the mesiobuccal and distobuccal cusps and is likely to extend onto the buccal surface. On mandibular molars with three buccal cusps, there are two grooves separating the three buccal cusps, so they are called a mesiobuccal groove that separates the mesiobuccal cusp from the distobuccal cusp, and a distobuccal groove that separates the distobuccal cusp from the smallest distal cusp (Fig. 1-37B). Both of these grooves are likely to extend onto the buccal surface. Mandibular molars also have a lingual groove between the mesiolingual and distolingual cusp, but these grooves are not likely to extend onto the lingual surface. Most maxillary molars have a lingual groove that often extends onto the lingual surface between the mesiolingual and distolingual cusps, and a buccal groove between the mesiobuccal and distobuccal cusps that does not normally extend onto the buccal surface (Fig. 1-37).

Additional occlusal grooves that are not developmental grooves are called supplemental grooves. T ese small irregular (extra) grooves do not occur at the junction of the lobes or major portions of the tooth and do not occur at the same location on teeth of the same type, so these extra grooves are normally not assigned a specific name.

FIgure 1-35. A. Perikymata are the small ridges visible on the labial surface of this incisor. B. Magnified cross section of enamel shows perikymata ridges on the tooth surface (on the right half). C. Higher magnification ($220 \times$) shows the enamel rods that make up enamel ending on the perikymata waves. (These scanning electron micrographs were provided by Dr. Ruth B. Paulson, Associate Professor Emeritus, Division of Oral Biology, the Ohio State University.)

FOSSAE: Located at the mesial and distal ends of the central groove on each posterior tooth within the occlusal table and next to the mesial and distal marginal ridges, there are shallow depressions called a mesial fossa and distal fossa (sometimes called a mesial and distal triangular fossa) (Fig. 1-38). Fossa grooves (also called fossa developmental grooves or triangular fossa grooves) may be found within these fossae splitting off of the ends of the central groove directed toward the line angles of the tooth. T ese grooves can be named for the line angles of the tooth toward

FIg ur E 1-36. This two-cusped premolar has a sulcus between the buccal and lingual cusps.
which they aim, for example, in Figure 1-38, the distobuccal developmental groove (more precisely called the distobuccal triangular or fossa groove) runs toward the distobuccal line angle of the tooth. A pit may form at the depth of a fossa where central groove joins the fossa grooves. For example, within the distal fossa on a premolar, there is a distal pit at the junction of the central groove with the distobuccal and distolingual fossa grooves (Fig. 1-38). Most molars and three-cusped premolars have an additional central fossa seen in Figure 1-39.

Many anterior teeth have a shallow, broad lingual fossa that is located on the lingual surface between the mesial and distal marginal ridges and just incisal to the cingulum (particularly on maxillary incisors, Fig. 1-40). T e lingual ridge of some maxillary canines may divide the lingual surface into two fossae: a mesial fossa bounded by the mesial marginal ridge and the lingual ridge and a distal fossa bounded by the distal marginal ridge and the lingual ridge (Fig. 1-41).

Deep, defective pits and $\dot{\alpha} s s u r e s ~ m a y ~ b e ~ f o u n d ~ a t ~ t h e ~$ depth of fossae and grooves caused by the incomplete fusion of enamel during tooth development (at the white arrow in Fig. 1-42). Because it is very difficult to remove food debris from these inaccessible fissures, tooth decay (also called dental caries [CARE eez]) often begins in the deepest part of a fissure or pit (seen spreading out within dentin as the

Central deve lopmental groove (C)
Fossa developmental grooves (F)
Supplemental grooves (S)
Marginal ridge groove (M)

A

Mandibular molars

B

Flgure 1-37. A. This two-cusped premolar has developmental (major) and supple mental (extra) occlusal grooves. (Courtesy of Drs. Richard W. Huffman and Ruth Paulson.) B. Grooves are labeled on a mandibular four-cusped molar (upper left and center), a mandibular five-cusped molar (upper right) and a maxillary molar with four major cusps (lower row). The buccal, lingual, and central grooves are considered developmental grooves. The buccal groove extends between the two buccal cusps onto the buccal surface on mandibular molars, and the lingual groove extends between the two lingual cusps onto the lingual surface of maxillary molars. Fivecusped mandibular first molars have three buccal cusps, so there are two developmental grooves: a mesiobuccal groove between the mesiobuccal and distobuccal cusps and a distobuccal groove between the distobuccal and distal cusps.

Flgure 1-38. The mesial and distal fossae are outlined in red on this maxillary two-cusped premolar.

FOSSAE AND PITS

FIg ur E 1-39. Fossae and pits are labeled on teeth with two, three, and four cusps. Two-cusped teeth have two fossae (a mesial and a distal fossa), while three- or four-cusped teeth also have a third fossa called a central fossa.
dark area between the two black arrows) and described in more detail in Chapter 10. T ese carious pits and fissures are most likely to be located in four areas: at the depth of deep grooves and pits on the occlusal surface of posterior teeth, in buccal grooves that extend onto the buccal surface of mandibular molars, in lingual grooves that extend onto the lingual surface of maxillary molars, and on the lingual surface of maxillary incisors where the lingual fossa joins the cingulum (Fig. 1-43).

In summary, if you compare tooth morphology to a mountain range, the mountain peak would be the cusp tip. Ridges emanating from the mountain peak are like the cusp ridges and triangular ridges. T e depression between the mountains is a valley, like the depressions between cusps is a sulcus. T e dried river bed at the bottom of the valley is like a groove at the bottom of the sulcus. If the riverbed is cracked

FIg ur E 1-40. The lingual surface of this maxillary lateral incisor shows the shallow lingual fossa and an adjacent lingual pit.

FIg ur E 1-41. This maxillary canine has a lingual ridge that divides the lingual surface into a mesial fossa and a distal fossa.
open, it is like a fissured groove. Where two rivers converge (as when grooves or fissures converge), the whirlpools and eddies may have formed a depression, like a fossa, possibly with a pit at its depth. Needless to say, it is difficult to define exactly where a mountain stops and the valley begins, just as it would be difficult to define exactly where a tooth cusp stops and a sulcus or fossa begins. Just realize that these terms are not precise, but that they are helpful when learning how to reproduce tooth form during construction of crowns and placement of fillings or when learning to finish and polish an existing filling.

B. ExTEr NaLmOr ph OLOg y OF Th E a NaTOmIC r OOT

Recall that the anatomic root is the part of a tooth that is covered with cementum. T e apex of the root is the tip or peak at the end of the root, often with visible openings called

Flgur E 1-42. A cross section of a mandibular molar shows an occlusal groove (white arrow), which actually has a f ssure (cracklike fault) extending through the outer enamel and into the dentin. The black arrows show how the dental decay spreads out once it reaches softer dentin at the depth of this fissure.

FIg ur E 1-43. Caries-prone pits and fissures are located in four places (arrows). A. The occlusal surfaces of posterior teeth. B. The lingual surfaces of maxillary molars. C. The buccal surfaces of mandibular molars. D. The lingual surfaces of maxillary incisors.
apical foramina, where the nerves and blood vessels enter into the tooth pulp canals. T e cervix [SUR viks] or neck of the tooth is the slightly constricted region surrounding the junction of the crown and the root (Fig. 1-44B).

Some new terms apply to multirooted teeth (Fig. 1-44B). T e root trunk or trunk base is the part of the root of a multirooted molar or two-rooted premolar next to the cementoenamel junction that has not yet split (like a stubby tree trunk before it gives off branches). T e furcation [fur CAY shun] is the place on multirooted teeth where the root trunk divides into separate roots (called a bifurcation on two-rooted teeth and a trifurcation on
three-rooted teeth). T e furcal region or interradicular space is the region or space between two or more roots, apical to the furcation where the roots divide from the root trunk.

C. CEr vICa L LINE (CEmENTOENa mEL Ju NCTION Or CEJ Cur vaTur E

When viewed from the mesial or distal aspect, the cervical line of a tooth curves (is convex) toward the incisal or occlusal surface (Fig. 1-44). In general, the amount of curvature is greater on the mesial surface than on the distal surface of

Figure 1-44.
A. Root anatomy on a single-rooted canine. B. Root anatomy of a bifurcated (split) root on a maxillary
first premolar.

Ta BLE 1-2 Summary of Curvatures of the Cementoenamel Junction

Proximal surfaces: mesial curvature vs. distal curvature

Proximal surfaces: anterior teeth vs. posterior teeth

Posterior teeth: facial vs. lingual surface

Generally, teeth have a greater proximal cervical line curvature on the mesial than the distal.

Proximal cervical line curvatures are greatest on the mesial surfaces of central incisors and, for most teeth, tend to get smaller when moving from the anterior teeth toward the last molar where there may be no curvature at all.

On many posterior teeth, the cervical line is in a more occlusal position on the lingual than on the facial.
the same tooth, and the amount of curvature is greatest for central incisors and diminishes in size for each tooth when moving distally around each quadrant (Table 1-2).

d. r ELaTlvE SIzE

In order to document the relative sizes of tooth crowns and roots, Dr. Woelfel studied a convenient sample of 4572 extracted teeth. His findings are presented in Table 1-7 at the end of this chapter. T is table should not be memorized, but it can be useful when comparing the average dimensions of each tooth and in order to appreciate the wide range of dimensions for each tooth. A summary of the most important highlights of that data is presented in Table 1-3.

Ta BLE 1-3	Important Tooth d imensions to memorize
Tooth with longest crown	Mandibular canine (Woelfel research: maxillary incisor)
Longest tooth overall	Maxillary canine
Longest root	Maxillary canine
Widest crown mesiodistally	Mandibular first molar
Widest crown buccolingually	Maxillary first molar
Narrowest crown mesiodistally	Mandibular central incisor
Greatest cervical line curve	Mesial of maxillary incisor

TEr m INOLOg y r ELaTEd TO Th E Id Ea L TOOTh a Lig NmENT OF TEETh IN d ENTaLar Ch ES

When viewed from the occlusal aspect, the alignment of teeth within each dental arch is somewhat U shaped or parabolic like the famous landmark in Missouri, the St. Louis Arch (Fig. 1-45). T e incisal edges and the buccal cusp tips follow a curved line around the outer edge of the dental arch; the lingual cusp tips of the posterior teeth follow a curved line nearly parallel to the buccal cusp tips. Between the buccal and lingual cusps of posterior teeth is the sulcular groove (occlusal sulcus), a V-shaped depression that extends anteroposteriorly through all of the posterior teeth in each quadrant. T is sulcular groove is made up of the occlusal sulcuses of adjacent posterior teeth in each quadrant (Fig. 1-45).

a. mId r OOT axIS LINE aNd TOOTh a Ug NmENT

T e midroot axis line (or root axis line) is an imaginary line through the center of the tooth root. When viewing the facial or lingual surface, it can be visualized as a line that divides

FIg ur E 1-45. This model of the maxillary dentition with ideal alignment form an arch shape and the rope of blue wax on the left half falls within the occlusal sulcus.

FIg ur E 1-46. The midroot axis line is drawn on two views of a canine. A. When viewed from the facial (or lingual), the greatest bulges on the mesial and distal surfaces (crests of curvature) on this canine are the widest points on the crown that touch lines parallel to the midroot axis line. These crests of curvature are essentially the same as the contact areas of teeth when they are aligned ideally in the mouth. Notice that these contact areas are positioned more incisally on the mesial surface than on the distal. B. When viewed from the proximal, the greatest bulges on the facial and lingual surfaces (crests of curvature) are the points on the facial and lingual crown outline that touch lines that are parallel to the midroot axis line. They are located in the cervical third on both the facial surface and on the lingual surface (on the cingulum shaded green) for all anterior teeth.
the bulk of the root into mesial and distal halves (Fig. 1-46A). When viewing the mesial or distal surface, it divides the bulk of the root into facial and lingual halves (Fig. 1-46B). It is an important reference line for describing the location of tooth landmarks. For example, you will learn that the incisal ridge
(or cusp tip) of a maxillary canine is more likely to be labial to the midroot axis line (as seen in Fig. 1-46B).

When the posterior teeth in each arch are viewed from the buccal aspect as in Figure 1-47, notice that posterior teeth are not aligned exactly parallel to one another and all cusp

FIg ur E 1-47. A wax strip placed between stone models of the maxillary and mandibular teeth demonstrates the anteroposterior curve (curve of Spee), which is concave in the mandibular arch but convex in the maxillary arch. Note the difference in the axial alignment of the teeth within each arch demonstrated by the axial lines placed on the third molars and on the first premolars.

Flg ur E 1-48. Dental stone casts viewed from the distal with a wax strip used to demonstrate the mediolateral curve (of Wilson). It is convex in the maxillary arch, but concave in the mandibular arch. Note the red lines that denote posterior tooth alignment within each arch: maxillary molar crowns tilt toward the facial, and mandibular molar crowns tilt toward the lingual.
tips in a quadrant do not normally fall along a ruler-straight line. T e axial alignment changes gradually from posterior to anterior teeth, which is evident when you compare the alignment of the mandibular third molar (tipped noticeably more to the mesial) than on the first premolar. Subsequently, if you were to connect the buccal cusp tips with a line, a gradual anteroposterior curve (curve of Spee) is evident (see Fig. 1-47). T is curve is convex in the maxillary arch, while the curve is concave in the mandibular arch.

When viewed from the distal, maxillary posterior teeth are axially tilted facially within the maxillary arch, whereas mandibular posterior teeth are tilted lingually within the mandibular arch (Fig. 1-48). T erefore, in the mouth, lingual cusps of maxillary posterior teeth appear longer than the buccal cusps, while the lingual cusps of mandibular posterior teeth appear shorter than the buccal cusps due to the lingual tilting within the mandible. However, to avoid confusion, you need to realize that later in the book, you will learn that when you hold a mandibular molar in your hand with the midroot axis aligned vertically, the lingual cusps of mandibular molars are actually slightly longer than buccal cusps (Fig. 1-49). When a line connects the buccal and lingual cusps of the same type of molars and premolars on opposite sides of the arch, this side-to-side curve is the mediolateral curve (of Wilson). T e

FIg ur E 1-49. This mandibular second molar with its mid-root axis aligned vertically (left drawing) has lingual roots that appear longer, whereas the same tooth with the midroot axis tipped lingually, as it would be in the mandible, has lingual cusps that appear shorter.
mediolateral curve of the maxillary arch is convex, whereas that of the mandibular arch is concave (Fig. 1-48).

B. Cr EST OF Cur vaTur E (h Elg h T OF CONTOur) ON Th E Fa Cla LaNd LNg uaL Sur Fa CE

T e shape and extent of the greatest bulge on the facial and lingual crown surfaces help determine the direction that food particles are def ected as they are crushed between tooth surfaces when chewing. When we chew food, these natural tooth convexities divert food away from the thin free gingiva and gingiva sulcus surrounding the cervix of the tooth and toward the firmer tissues of the mouth, thus minimizing trauma to the gingiva. If teeth were f at facially and lingually, food could more likely damage the gingiva (Fig. 1-50). Needless to say, it is best for the dentist, dental hygienist, and/or dental technician to reproduce and maintain these natural convexities when restoring a tooth, when finishing and polishing fillings near the gum line, or when contouring a replacement tooth crown.
T e facial or lingual crest of curvature (height of contour) is the point on a crown outline where a line drawn parallel to the midroot axis line touches the greatest bulge on the crown (Fig. 1-51). It is usually located in either the cervical third or the middle third, normally not in the occlusal or incisal third. When viewed from the proximal, the location of the crest of curvature on the facial surface on both anterior and posterior tooth crowns is normally located in the cervical third. T e location of the lingual crest of curvature depends on whether the tooth is anterior or posterior. T e lingual crest of curvature on anterior teeth is in the cervical third, on the cingulum (Fig. 1-46B). T e lingual crest of curvature on posterior teeth is most often located in the middle third (Fig. 1-51). Refer to Table 1-4 for a summary of the location of the facial and lingual heights of contour for anterior teeth compared to posterior teeth.

C. CONTaCT ar EaS (Or pr OxImaLCr ESTS OF CurvaTur E)

When the teeth are in normal, ideal alignment within an arch and viewed directly toward the facial or lingual surfaces, the location of the mesial or distal greatest bulges or crests

FIg ur E 1-50.
A. Normal facial and lingual crests of curvature help divert food away from the gingival sulcus. B. When crests of curvature are not adequate, food can more readily damage the gingival sulcus.

A

B
 most posterior teeth.

Ta BLE 1-4 $\quad \begin{aligned} & \text { Summary of the } \\ & \text { (Best Seen from }\end{aligned}$	Summary of the Location of Facial and Lingual heights of Conto ur (g reatest Bulge) of the Crown (Best Seen from the proximal view)	
	FACIAL (HEIGHT o F Co NTo UR)	LINGUAL (HEIGHT o F Co NTo UR)
Anterior teeth (incisors and canines)	Cervical third	Cervical third (on cingulum)
Posterior teeth (premolars and molars)	Cervical third	In or near middle third
General learning guide lines: 1. Facial crest of curvature for all teeth is in 2. Lingual crest of curvature for all a nterior 3. Lingual crest of curvature for p osterior te crown).	cervical third (on the cingulum). middle third (slightly more occlusal in	teeth due to the lingual tilt of the

Flg ur E 1-52. The mesial and distal contact areas seen on the occlusal view of this two-cusped maxillary premolar are located buccal to the center of the tooth buccolingually, which is typical of most posterior teeth.
of curvature is essentially the same location as contact areas where two adjacent teeth touch (labeled on a canine from the facial view in Fig. 1-46A and on a premolar from the occlusal view in Fig. 1-52).

In a young person, contacts between teeth start off between recently erupted teeth as contact points. T en, as the teeth rub together during function, these points become somewhat fattened and truly become contact areas. (It has been shown by careful measurements that by age 40 in a healthy mouth with a complete dentition, a total of 10 mm of enamel has been worn off the contact areas of all teeth in an entire arch. T is averages 0.38 mm per contact area on each tooth and certainly emphasizes the amount of proximal wear that occurs. T erefore, we would expect contact areas on teeth of older people to be large and somewhat fattened.)

T e proximal contact of each tooth with the adjacent teeth has several important functions:

- T e positive contact of all teeth within each dental arch stabilizes the position of teeth within each arch.
- When chewing, tooth contacts help prevent food from being forced between the teeth where it could contribute to decay and gum and bone disease (periodontal disease). Further, you must be able to pass foss through each contact area in order to clean the proximal surfaces, which are otherwise inaccessible to the toothbrush.
- Contact protects the thin interdental papillae of the gingiva by diverting food buccally and lingually.
A diastema [di ah STEE mah] is a space that exists between two adjacent teeth in the same arch that is not the result of a missing tooth. It is most commonly seen between the maxillary right and left central incisors, but can occur between any teeth (Fig. 1-53A and B).

When learning the normal location of the proximal contacts for each type of tooth, it will be helpful to learn the following general guidelines that apply to most permanent teeth. Exceptions to these general rules will be presented in later chapters.

FIg ur E 1-53. A. This stone model has a space between maxillary central incisors called a diaste ma. B. On these primary teeth, there is an obvious diastema between the maxillary central incisors.

FIgur E 1-54. A. These maxillary teeth are aligned to demonstrate the location of proximal contacts: contacts are more incisal (near the incisal edge) on the central incisor, but are located progressively more cervical as you move posteriorly to the third molars. B. Proximal contacts between the central incisors are very close to the incisal edge at the midline (most incisal between the mandibular incisors), but more cervical as you move posteriorly.

A

B

- When viewing teeth from the facial, contact areas are located in one of three places: in the incisal (or occlusal) third, at the junction of the incisal (or occlusal) and middle thirds, or in the middle third of the crown. Contact areas are not normally located in the cervical third.
- On most teeth, the mesial contact is more incisal or occlusal than its distal contact (Fig. 1-54A).
- In general, proximal contacts are closer to the biting/ chewing surface on anterior teeth than are posterior teeth. T e mesial contact areas on central incisors are positioned near the incisal edge, closest to the biting/ chewing surfaces (Fig. 1-54B), while contacts on molars are located closer to the middle of the crown, the farthest from the chewing surface.
- When viewing posterior teeth from the occlusal view, contacts are often located slightly to the facial of the tooth midline buccolingually (Fig. 1-55).
- When viewing anterior teeth from the incisal view, contacts are nearly centered faciolingually (Fig. 1-55).

d. EmBr a Sur E Spa CES

When adjacent teeth contact, the continuous space that surrounds each contact area can be divided into four somewhat triangular embrasure spaces. T ese spaces are narrowest closest to the contact area where the teeth are in tight contact, but due to the tapered shape and rounded corners of most teeth, these spaces widen facially to form a buccal or labial embrasure space and lingually to form a lingual embrasure space and widen occlusally (or incisally) to form a small occlusal or incisal embrasure space. T e fourth space, cervical to the contact area, is properly called the interproximal space.

T e lingual embrasure is ordinarily larger or longer than the facial embrasure because most teeth are narrower (have less bulk) in the lingual half than on the facial half and because their contact points are most often located facial to the faciolingual midline of the crown. See the difference in the embrasure space sizes in Figure 1-56.

[^0]

Flgure 1-56. When viewed from the occlusal, the lingual e mbrasure spaces of posterior teeth are larger than the buccal embrasure spaces due to the taper of the teeth narrower toward the lingual and the location of the proximal contacts buccal to the midline faciolingually.

T e occlusal or incisal embrasure is usually shallow from the occlusal surface or incisal edge to the contact areas and is narrower faciolingually on anterior teeth but broader on posterior teeth. T e occlusal embrasure on posterior teeth is the small area between the marginal ridges of adjacent teeth
but occlusal to their contact area. T is is the space where we place the dental foss before passing it through the contact area to clean tooth surfaces in the interproximal space.

When viewed from the facial or lingual, the triangularshaped interproximal space is bounded by the proximal surfaces of adjacent teeth, with the apex of the triangle at the contact between two teeth (Fig. 1-57A a nd B). In a mouth with healthy periodontium, this space is completely filled with the interdental papilla (Fig. 1-57C). Sometimes, this interproximal space is referred to as the cervical or gingival embrasure.

Excellent proximal contacts and well-formed crown contours forming the proximal embrasure spaces serve to direct food away from the gingiva. When the embrasures are incorrectly shaped (as with a poorly contoured dental restoration), or when there is a space between the teeth, fibrous food may readily lodge in the interproximal spaces requiring frequent use of dental foss or toothpicks for its removal. T is food impaction is not only an annoyance, but it can contribute to the formation of periodontal disease (bone loss) and dental decay.

FIgur E 1-57. A. The mandibular teeth are aligned to demonstrate the interproximal spaces (or cervical embrasure spaces) located between each pair of contacting teeth. B. This close-up of mandibular incisors in a skull (without tissue) shows the interproximal space cervical to the proximal contact (gingival embrasure space). The very small triangular space above the proximal contact is the incisal embrasure space. C. The interproximal spaces between these maxillary teeth are filled with healthy gingiva called interdental papillae.

r EvIEw Questions

T ese questions were designed to help you confirm that you understand the terms and concepts presented in this section. More than one answer may be correct.

1. Which of the following bumps or ridges is NOT likely to be found on a maxillary premolar?
a. Oblique ridge
b. Cingulum
c. Mesial marginal ridge
d. Transverse ridge
e. Triangular ridge
2. Which ridges help to surround the perimeter of the occlusal surface (occlusal table) of a two-cusped premolar?
a. Mesial marginal ridge
b. Distal marginal ridge
c. Mesial cusp ridge of the buccal cusp
d. Distal cusp ridge of the lingual cusp
e. Transverse ridge
3. On a two-cusped premolar, which ridges meet to form a transverse ridge?
a. Buccal ridge of the buccal cusp
b. Triangular ridge of the lingual cusp
c. Triangular ridge of the mesiolingual cusp
d. Triangular ridge of the buccal cusp
e. Cervical ridge of the buccal cusp
4. Which of the following is (are) NOT a cusp found on three-cusped type premolars?
a. Mesiobuccal
b. Distobuccal
c. Buccal
d. Mesiolingual
e. Distolingual
5. What is the correct order of anatomic landmarks of a tooth with two roots from the cementoenamel junction to the root tip?
a. Cervix, trunk, furcation, apex
b. Trunk, cervix, furcation, apex
c. Trunk, furcation, cervix, apex
d. Cervix, trunk, apex, furcation
e. Furcation, trunk, cervix, apex
6. When viewed from the proximal views, what is the location of the greatest bulge (crest of curvature or height of contour) on the facial surface of all teeth?
a. Occlusal third
b. Lingual third
c. Buccal third
d. Middle third
e. Cervical third
7. Which space(s) contain(s) the part of the gingiva known as the interdental papilla?
a. Buccal embrasure
b. Occlusal embrasure
c. Lingual embrasure
d. Cervical embrasure
e. Interproximal space
$e, d-7 ; e-6 ; a-5 ; b, a-4 ; d, b-3 ; d, c, b, a-2 ; b, a-1: S r E$ wS Na

Occlusion [ah KLOO zhun] in dentistry refers to the relationship of the upper and lower teeth when they close together or contact one another during function or rest. T erefore, occlusion involves the contacting of occlusal and incisal surfaces of opposing maxillary and mandibular teeth. T e word occlude literally means to close up or shut, as in closing your teeth together.

It is important to learn the relationships of teeth in ideal occlusion in order to identify malocclusions that could contribute to dental problems. T e importance of proper occlusion cannot be overestimated. It is essential for both dental health and general health and for a patient's comfort and ability to speak, chew, and enjoy food. Understanding occlusion requires a knowledge not only of the relation of the lower jaw to the upper jaw but also of the jaw joints, their complexities, and the muscles, nerves, ligaments, and soft tissues that affect the position of the mandible. T ese topics will be covered in much more depth in Chapter 9. T e arrangement of teeth within the dental arches (alignment, proximal contacts, and embrasure spaces) has been discussed in the previous section of this chapter, and the ideal relationship of the
mandibular teeth to the maxillary teeth will be presented in this section.

Tooth relationships were described and classified as classes I, II, and III in the early 1900s by Edward H. Angle. He classified ideal occlusion as class I and defined it based on the relationship between the maxillary and mandibular dental arches. When defining class I occlusion, the teeth should be closed together in their maximum intercuspal position, or best fitting together of the teeth, as shown in Figure 1-58. T is relationship can be achieved on handheld models when the maxillary teeth fit as tightly as possible against the mandibular teeth (i.e., are most stable). T e following specific tooth relationships define class I ideal occlusion in the adult dentition:

- Horizontal overlap of anterior teeth: T e incisal edges of maxillary anterior teeth horizontally overlap the mandibular teeth such that the incisal edges of maxillary teeth are labial to the incisal edges of mandibular teeth (best seen in Fig. 1-58).
- Vertical overlap of anterior teeth: T e incisal edges of the maxillary anterior teeth extend below (overlap

Anteroposterior curve (curve of Spee)

Abstract

FIg ur E 1-58. Dental stone casts with adult teeth fitting together in the maximum intercuspal position (tightest fit). Notice that, from this view, each tooth has the potential for contacting two opposing teeth except the maxillary third molar. The vertical red line marks the relationship of first molars in class I Occlusion: the mesiobuccal cusp of the maxillary first molar occludes in the mesiobuccal groove of the mandibular first molar. Also, the maxillary canine fits into the facial embrasure between the mandibular canine and first premolar.

that, when viewed from the facial, part of the incisal portion of mandibular incisors is hidden from view by the overlapping maxillary incisors (Fig. 1-59).

- Relationship of posterior teeth:Maxillary posterior teeth are positioned slightly buccal to mandibular posterior teeth (Fig. 1-60) so that:
- T e buccal cusp tips and buccal surfaces of the maxillary teeth are buccal to those in the mandibular arch.
- T e lingual cusps of maxillary teeth rest in occlusal sulcuses and fossae of the mandibular teeth.
- T e buccal cusps of the mandibular teeth rest in the occlusal sulcuses and fossae of the maxillary teeth.

FIgurE1-59. Maxillary and mandibular teeth of the permanent dentition are in the maximum intercuspal position. Observe the interproximal spaces filled with the interdental papillae between each pair of teeth. Notice how each tooth is in contact with its adjacent teeth, and how the midline between proximal contacts of the maxillary central incisors lines up with the midline between proximal contacts of the mandibular central incisors. Also, note how the incisal edges of maxillary anterior teeth overlap (vertical overlap) and hide the incisal edges of the mandibular anterior teeth, and how each of the relatively wide maxillary central incisors overlaps not only the narrow mandibular central incisor but also part of the mandibular lateral incisor (e.g., tooth 9 overlaps tooth 24 and part of 23).

- T e lingual cusp tips and lingual surfaces of the mandibular teeth are lingual to those in the maxillary arch.
- Relative alignment: The vertical (long) axis midline of each maxillary tooth is slightly distal to the vertical axis of its corresponding mandibular tooth type so that:
- T e tip of the mesiobuccal cusp of the maxillary first molar is aligned directly over the mesiobuccal groove (the mesial of two buccal grooves) on the mandibular first molar (the mesiobuccal cusp of tooth 14 fits into the mesiobuccal groove of tooth 19 in Fig. 1-61). T is relationship of first molars (the first permanent teeth to erupt) is a key factor in the deanition of class I occlusion. Further, the maxillary canine fits into the facial embrasure between the mandibular canine and first premolar.
- Most teeth in an ideal dental arch have the potential for occluding with two teeth in the opposing arch. For example, the distal surface of the maxillary first

Flg ure 1-60. This proximal view of a maxillary and mandibular molar in normal interarch alignment reveals the alignment and position of buccal and lingual cusps in ideal occlusion.

Flgure 1-61. The left cheek has been drawn back to reveal how each of these maxillary teeth occludes with two opposing mandibular teeth. Tooth 19 has two buccal grooves: mesiobuccal (with a buccal filling) and distobuccal (not visible). Note that the mesiobuccal cusp of the maxillary first molar (tooth 14) occludes with the mesiobuccal groove on the mandibular first molar (19) and that the maxillary canine (11) fits into the facial embrasure between the mandibular canine (22) and the first premolar (21).
premolar (tooth 12 in Fig. 1-61) is posterior to the distal surface of the mandibular first premolar (tooth 21), and therefore, tooth 12 occludes with both the mandibular first and second premolar (teeth 20 and 21). Exceptions to this rule include the mandibular central incisor, which, due to its size and location, only occludes with the maxillary central incisor (as seen in Fig. 1-59), and the maxillary third molar, which only occludes with the mandibular third molar (Fig. 1-58).
To summarize, ideal occlusion involves a class I relationship between the maxillary and mandibular first molars in maximum intercuspal position. Also, ideally, there should be no large fattened chewing surfaces (facets) and no tooth grinding (bruxing) habits, bone loss, crooked teeth, loose teeth, or joint pain. ${ }^{1}$ Classes II and III of occlusion and malocclusion (literally meaning bad occlusion) will be discussed in detail in Chapter 9.

r EvIEw Questions about occlusion

T ese questions are to help you confirm that you understand the terms and concepts presented in this section. More than one answer may be correct.

1. Ideal class I occlusion involves an important first permanent molar relationship where the mesiobuccal cusp of the maxillary first molar is located within the
a. Mesiobuccal groove of the mandibular first molar.
b. Distobuccal groove of the mandibular first molar.
c. Buccal groove of the mandibular second molar.
d. Mesiobuccal groove of the mandibular second molar.
e. Distobuccal groove of the mandibular second molar.
2. Where do lingual cusps of maxillary teeth occlude in ideal class I occlusion?
a. In the buccal embrasure space between mandibular teeth
b. In the lingual embrasure space between mandibular teeth
c. In occlusal fossae of mandibular teeth

SECTION Ix TOOTh d EvELOpmENT Fr Om LOBES

Tooth crowns develop from lobes or primary growth centers (Fig. 1-62). Most normal teeth show evidence of having developed from three to five lobes. As a general rule, the facial portion of anterior teeth (incisors and canines) forms from three lobes, and the lingual cingulum area forms from one lobe. Evidence of three facial lobes can sometimes be seen as a labial ridge separated from the rest of the facial surface by two shallow depressions dividing the facial surface into three parts (seen clearly on a maxillary central incisor in Fig. 1-63A) or three mamelons on an incisal edge (Fig. 1-63B). To summarize, anterior teeth normally develop
from four lobes: three facial lobes and one lingual lobe forming the cingulum.

As on anterior teeth, the facial portion of the facial cusp of a premolar forms from three lobes, often evident by a buccal ridge and a depression on either side dividing the facial surface into three parts. Each lingual cusp forms from one lobe. T erefore, a two-cusp-type premolar forms from four lobes: three facial and one lingual, the same as for an anterior tooth. However, a three-cusp-type premolar with two lingual cusps forms from five lobes: three facial and two lingual, one for each lingual cusp.

Flg ur E 1-62. Lobes or primary anatomic divisions on teeth. Drawings (A), (b), and (c) show the facial, mesial, and incisal views of a maxillary central incisor that, like all anterior teeth, forms from four lobes. The lingual cingulum develops from one lobe (labeled 4) seen in views (b) and (c). Mamelons may appear on the incisal edge of newly erupted incisors, an indication of the three labial lobes. Drawings (D) and (G) are the mesial and occlusal view of a two-cusped premolar that also forms from four lobes. As with anterior teeth, the facial cusp forms from three lobes, and one lingual lobe forms the lingual cusp. The divisions between the facial and lingual lobes are evidenced by the marginal ridge developmental grooves. Each cusp of a molar is formed by one lobe. Drawing (e) is a mandibular first molar with five lobes, three buccal, and two lingual, which is one lobe per cusp. Drawing (\mathbf{F}) is a maxillary first molar with three larger lobes and one smaller lobe, or one per cusp. A very small fifth (Carabelli) cusp, when large enough, may have formed from a separate lobe.

As a general rule, each molar cusp forms from one lobe. For example, maxillary or mandibular molars with five cusps form from five lobes, and those with four cusps form from four lobes. Some maxillary molars have as few as three cusps and form from three lobes. A small fifth cusp (of Carabelli) may also be present on some maxillary molars, and when it is large, it may have formed from a separate lobe.

Two types of tooth unusual occurrences (called anomalies), peg-shaped maxillary lateral incisors (seen later in Chapter 11) and some extra teeth (also called supernumerary teeth), form from less than three lobes. Guidelines for determining the number of lobes that form each tooth are presented in Table 1-5.

FIg ur E 1-63. A. The light refecting off of this maxillary central incisor reveals the three bulges refecting the formation of the facial surface by three facial lobes. The three bulges are separated by two depressions. B. This mandibular incisor with three mamelons refects its formation from three facial lobes.

Ta BLE 1-5 guidelines for determining the Number of Lobes Forming a dult Tooth

toOt He LAs s	NO. LiNGUALc Us Ps OR ciNGULUM	NO. OF LObes (FAc iAL AND LiNGUAL)
All anterior teeth	1 Cingulum	$3+1=4$
Two-cusped premolars	1 lingual	$3+1=4$
Three-cusped premolars	2 lingual	$3+2=5$

Guide line for determining the number of lobes for anterior teeth and premolars:
Number of lobes $=3$ facial lobes +1 lobe per lingual cusp or cingulum

MOLAR bY NUMbeR OF c Us Ps	NO. tOtAL \mathbf{c} Us Ps	NO. OF LOb es
Three-cusped molars	3	3
Four-cusped molars	4	4
Five-cusped molars (including	5	5

Guideline for determining the number of molar lobes:
Number of molar lobes $=1$ per cusp (including Carabelli if large)

r EvIEw Questions about Lobes

T ese questions were designed to help you confirm that you understand the terms and concepts presented in this section. More than one answer may be correct.

1. How many developmental lobes form a premolar with two cusps (one buccal cusp and one lingual cusp)?
a. 1
b. 2
c. 3
d. 4
e. 5
2. How many developmental lobes form a maxillary molar with three cusps (two buccal cusps and one lingual cusp)?
a. 1
b. 2
c. 3
d. 4
e. 5
3. How many developmental lobes form a three-cusped premolar with one buccal cusp and two lingual cusps?
a. 1
b. 2
c. 3
d. 4
e. 5
4. How many developmental lobes form a mandibular lateral incisor?
a. 1
b. 2
c. 3
d. 4
e. 5
5. What separates the portions of tooth formed by different lobes?
a. Supplemental grooves
b. Mamelons
c. Cusp ridges
d. Transverse ridges
e. Developmental grooves

SECTION x

INTEr ESTINg var Ia TIONS IN a NIma L TEETh COmpar Ed TO humaN TEETh u SINg d ENTaL FOr muLaE

A dental formula for the human primary dentition can be represented by placing the abbreviation for incisors (I) followed by an upper number representing the number of incisors in an upper quadrant over a bottom number representing the number of incisors in a lower quadrant (I $2 / 2$), then the number of canines (C) in an upper and lower quadrant $(\mathrm{C} 1 / 1)$, and then the number of molars (M) in an upper and lower quadrant (M2/2). T e formula used to represent teeth in the human primary dentition is as follows:

$$
\begin{aligned}
\mathrm{I} \frac{2}{2} \mathrm{C} \frac{1}{1} \mathrm{M} \frac{2}{2}= & 5 \text { upper and } 5 \text { lower teeth in each quadrant; } \\
& 20 \text { teeth in all four quadrants }
\end{aligned}
$$

T e dental formula for the human permanent dentition, adding the new abbreviation for premolars (PM), is as follows:

$$
\begin{aligned}
& \mathrm{I} \frac{2}{2} \mathrm{C} \frac{1}{1} \mathrm{PM} \frac{2}{2} \mathrm{M} \frac{3}{3}= 8 \text { upper and } 8 \text { lower teeth in each } \\
& \text { quadrant, } 32 \text { teeth in all four quadrants }
\end{aligned}
$$

It is interesting to note that the dentition of animals can be represented by the same type of formula as described above. Look at the formulas for animals in Table 1-6, and note that cows have no upper incisors or upper canines. They have three upper and three lower premolars on each side. Did you know that dogs have twice as many premolars as humans if you include uppers and lowers, as well as the right and left sides? Did you know that the tusks on an elephant are maxillary central incisors? Elephants have the largest diastema in the world, large enough for the massive trunk between their central incisors. Ta BLE 1-6 Some dental Formulae (Order of Teeth per Quadrant) and Interesting Facts about Teeth in animals ${ }^{2-4}$

Humans, Old World monkeys, and apes	$\mathrm{I} \frac{2}{2} \mathrm{C} \frac{1}{1} \mathrm{P} \frac{2}{2}$	$\mathrm{M} \frac{3}{3}$	Porcupines and beavers	$\mathrm{I} \frac{1}{1} \mathrm{C} \frac{0}{0} \mathrm{P} \frac{1}{1}$	$\mathrm{M} \frac{3}{3}$
New World monkeys	$\mathrm{I} \frac{2}{2} \mathrm{C} \frac{1}{1} \mathrm{P} \frac{3}{3}$	$\mathrm{M} \frac{3}{3}$	Bears and pandas	$\mathrm{I} \frac{3}{3} \mathrm{C} \frac{1}{1} \mathrm{P} \frac{4}{4}$	$\mathrm{M} \frac{2}{3}$
Dogs, wolves, and foxes	$\mathrm{I} \frac{3}{3} \mathrm{C} \frac{1}{1} \mathrm{P} \frac{4}{4}$	$\mathrm{M} \frac{2}{3}$	Squirrels	$\mathrm{I} \frac{1}{1} \mathrm{C} \frac{0}{0} \mathrm{P} \frac{2}{1}$	$\mathrm{M} \frac{3}{3}$
Cats	$\mathrm{I} \frac{3}{3} \mathrm{C} \frac{1}{1} \mathrm{P} \frac{3}{2}$	$\mathrm{M} \frac{1}{1}$	Rabbit ${ }^{\ddagger}$	$\mathrm{I} \frac{2}{1} \mathrm{C} \frac{0}{0} \mathrm{P} \frac{3}{2}$	$\mathrm{M} \frac{3}{3}$
Cows	$\mathrm{I} \frac{0}{3} \mathrm{C} \frac{0}{1} \mathrm{P} \frac{3}{3}$	$\mathrm{M} \frac{3}{3}$	Mice and rats	$\mathrm{I} \frac{1}{1} \mathrm{C} \frac{0}{0} \mathrm{P} \frac{0}{0}$	$\mathrm{M} \frac{3}{3}$
Horses and zebra*	$\mathrm{I} \frac{3}{3} \mathrm{C} \frac{1}{1} \mathrm{P} \frac{4}{4}$	$\mathrm{M} \frac{3}{3}$	Moles	$\mathrm{I} \frac{3}{3} \mathrm{C} \frac{1}{1} \mathrm{P} \frac{4}{4}$	$\mathrm{M} \frac{3}{3}$
Walruses	$\mathrm{I} \frac{1}{0} \mathrm{C} \frac{1}{1} \mathrm{P} \frac{3}{3}$	$\mathrm{M} \frac{0}{0}$	Vampire bats	$\mathrm{I} \frac{1}{2} \mathrm{C} \frac{1}{1} \mathrm{P} \frac{2}{3}$	$\mathrm{M} \frac{0}{0}$
Elephants ${ }^{\dagger}$	$\mathrm{I} \frac{1}{0} \mathrm{C} \frac{0}{0} \mathrm{Dm}^{\dagger} \frac{3}{3}$	$\mathrm{M} \frac{3}{3}$	Shrews	$\mathrm{I} \frac{3}{1} \mathrm{C} \frac{1}{1} \mathrm{P} \frac{3}{1}$	$\mathrm{M} \frac{3}{3}$

*Pigs and hippopotami have the same formula, except that they have two or three upper and two or three lower incisors.
${ }^{\dagger}$ Elephants have deciduous molars (Dm) but no premolars. An elephant's skull is not larger than necessary to house its brain. The size is needed to provide mechanical support for the tusks (one third of their length is embedded in the skull) and the enormous molars. Each molar weighs about 9 pounds and is nearly a foot long mesiodistally on the occlusal surface. Tusks (the central incisors) can be as long as $1 \frac{1}{2}$ feet and weigh 440 pounds. ${ }^{5}$
*Guinea pigs have the same formula, except that they have only one maxillary incisor.
The beaver has four strong curved incisors. They have very hard, bright orange enamel on the labial surface and much softer exposed dentin on the lingual surface. As the dentin wears off, this leaves very sharp cutting edges of enamel. The incisors continue to grow throughout life. The posterior teeth have fat, rough edges on the occlusal surface, and they stop growing at 2 years of age. There is a large diastema immediately posterior to the incisors, and faps of skin fold inward and meet behind the incisors to seal off the back part of the mouth during gnawing.
Therefore, splinters are kept out. The faps of skin relax for eating and drinking.
The shrew has two hooked cusps on the upper first incisor. Its primary dentition is shed in utero. The shrew's 1 - to $1 \frac{1}{2}$-year life span is limited by the wear on the ir molars. Death occurs by starvation once the molars wear out. Also, their small body can store only enough food for 1 to 2 h , so they must feed almost continually. Their diet consists of small invertebrates, woodlice, and fruit.
The vampire bat has large canines, but its highly specialized upper incisors, which are Vshaped and razor edged, are what remove a piece of the victim's skin. The bat's saliva contains an anticoagulant, and its tongue rolls up in a tube to suck or lap the exuding blood.
Some vertebrates do not have any teeth (complete anodontia) but have descended from ancestors that possessed teeth. Birds have beaks but depend on a gizzard to do the grinding that molars would usually perform. Turtles have heavy jaw coverings, which are thin edged in the incisor region and wide posteriorly for crushing. The duck-billed platypus has its early-life teeth replaced by keratinous plates, which it uses to crush aquatic insects, crustaceans, and mollusks. The whalebone whale and anteaters also have no teeth, but their diets do not require chewing.

LEARNING EXERCISE 1

Sketch a tooth and adjacent gingiva in cross section, and label the following structures: enamel, dentin, cementum, root canal, pulp chamber, apical foramen location, dentinoenamel junction, cementoenameljunction, dentinocemental junction, periodontal ligament space, alveolar bone, gingiva, gingival sulcus, anatomic crown, and anatomic root. Use Figures 1-10 and 1-12 as a guide.

LEARNING EXERCISE 2

Identify the teeth visible in Figure 1-64 using the Universal Numbering System. Remember that as you are viewing this mouth, the left side of the photograph is the right side of the mouth. Begin with the second molar in the maxillary arch and continue to the central incisor. Then drop to the mandibular central incisor and continue numbering back to the mandibular second molar. Compare your responses to the answers that follow. Then identify the same teeth using the International System and finally the Palmer System.

FIgure 1-64. As per the directions for this learning exercise, identify all visible teeth using the Universal number. Then identify the same teeth using the International System, then the Palmer System.

Answers.

Universal tooth numbers for teeth in order:
$2,3,4,5,6,7,8 ; 25$ for central incisor, $26,27,28,29$, 30,31 . The correct numbers using the International System are $17,16,15,14,13,12,11 ; 41$ for central incisor, 42, 43, 44, 45, 46, 47. Then, use Table 1-1 to confrm the correct method for identifying each of these teeth using the Palmer System.

LEARNING EXERCISE 3

Identify the teeth visible in Figure 1-65 using the Universal Numbering System, beginning with the maxillary first molar on the left side of the photograph, and continue numbering through the maxillary first molar on the right side. Then drop down to the mandibular first molar and continue numbering through the first molar on the other side (Fig. 1-66).

LEar NINg ExEr CISE 3 (continued)

Flgure 1-65. As per the directions for this learning exercise, name each structure. Then identify the same teeth using the International System, then the Palmer System.

FIg ur E 1-66. As per the directions for this learning exercise, name each structure on this mandibular left second premolar with three cusps (cusp tips denoted by three small circles) and this mandibular left first molar with five cusps (cusp tips denoted by five small circles).

Answers.

Universal tooth numbers for teeth in order:
$3,4,5,6,7,8,9,10,11,12,13,14$; then 19 for mandibular frst molar, 20, 21, 22, 23, 24, 25, 26, 27, $28,29,30$. The correct numbers using the International System are as follows: $16,15,14,13,12,11,21,22$, 23, 24, 25, 26; then 36 for mandibular left frst molar, $35,34,33,32,31,41,42,43,44,45,46$. Then use Table 1-1 to confrm the correct method for identifying each of these teeth using the Palmer System.

LEARNING EXERCISE 4

One tooth in Figure 1-66 is a mandibular left second premolar with three cusps (cusp tips are indicated by the three small circles), and the other tooth is a mandibular left first molar with five cusps (cusp tips indicated by five small circles). Based on this information, you should be able to identify each of the structures (except maybe i) indicated in Figure 1-66. Confirm your answers below.

Answers: (a) Lingual groove; (b) mesial pit; (c) mesial marginal ridge; (d) mesial cusp ridge of the buccal cusp; (e) triangular ridge of the buccal cusp; (f) distal cusp ridge of the mesiobuccal cusp; (g) mesiobuccal groove; (h) distobuccal groove; (i) distal cusp tip; (j) transverse ridge made up of the triangular ridges of the distobuccal cusp and the distolingual cusp; (k) mesial marginal ridge groove.

Cr ITICaL Thinking

1. A. Using good light source (like a small fashlight), a large mirror (magnifying if possible), and a small, clean disposable dental mirror (which can be purchased from most drug stores), evaluate the facial and lingual surfaces of a maxillary right lateral incisor in your own mouth. Describe the tooth in as much detail as possible trying to use as many of the terms presented in this chapter as possible. Underline each term you use. For example, "T ere is a pit on the lingual or palatal surface in the cervical or gingival third in the lingual fossa adjacent to the cingulum that is deeply stained."
B. Repeat this exercise for the maxillary left lateral incisor, then the maxillary right central incisor, and finally the maxillary left central incisor.
2. T is exercise is designed to assure student mastery of the three common systems used to identify teeth.
A. In the chart that follows, record the Universal tooth number to identify each of the four permanent first molars. Next, identify each of these teeth using the International System. Finally, use the Palmer System.

	Maxillary Right First Molar	Maxillary Left First Molar	Mandibular Left First Molar	Mandibular Right First Molar
Universal				
International				
Palmer				

B. In this chart, record the correct answers for each of the four permanent central incisors.

	Maxillary Right Central Incisor	Maxillary Left Central Incisor	Mandibular Left Central Incisor	Mandibular Right Central Incisor
Universal				
International				
Palmer				

3. Obtain a model of someone's complete adult dentition from your dentist or orthodontist. Evaluate the shape of each tooth to confirm which teeth are present. On this model, answer each of the following questions: Do all incisors have marginal ridges and lingual fossa? Do the maxillary canines have distinct facial ridges? Do they have a distinct lingual ridge? Do mandibular canines have distinct marginal ridges and lingual fossae? Do any of the premolars have three cusps? If so, are they mandibular second premolars? Do any premolars have a lingual cusp that is so short it is almost nonexistent? If so, are they mandibular first premolars? Do all first molars have five cusps? What are their Universal numbers?

REFERENCES

1. Ash MM. Wheeler's dental anatomy, physiology, and occlusion. 7th ed. Philadelphia, PA: W.B. Saunders, 1993.
2. Osborn JR, ed. Dental anatomy and embryology. Oxford, UK: Blackwell Scientific Publications, 1981:133.
3. Palmer RS. Elephants. In: Richard Harmon, ed. World book encyclopedia. Vol. 6. Chicago, IL: World Book, Inc., 1979:178C.
4. Brant D. Beavers. In: Richard Harmon, ed. World book encyclopedia. Vol. 2. Chicago, IL: World Book, Inc., 1979:147.
5. Zoo books: elephants. Wildlife Education Limited. San Diego, CA: Frye \& Smith, 1980:14.

GENERAL REFERENCES

Jordan R, Abrams L, Kraus B. Kraus' dental anatomy and occlusion. St. Louis, MO: Mosby Year Book, 1992.
Melfi RC. Oral embryology and microscopic anatomy, a textbook for students in dental hygiene. 10th ed. Philadelphia, PA: Lippincott Williams \& Wilkins, 2000.
Renner RP. An introduction to dental anatomy and esthetics. Chicago, IL: Quintessence Publishing, 1985.

(1.) advanced Topics about the Embryology and mineral Content of Tooth Tissues

When you study tooth embryology, you will learn that there are three cell layers in the forming embryo: the outer ectoderm, the middle mesoderm, and the inner endoderm. Some outer ectodermal cells form an enamel organ. Enamel develops from the enamel organ (ectoderm) and is a product of specialized epithelial cells called ameloblasts [ah MEL o blasts]. Some mesodermal cells form a dental sac with specialized cells called cementoblasts [se MEN toe blasts] that produce cementum. Other mesodermal cells form a dental papilla with specialized cells called odontoblasts [o DON tow blasts] that produce dentin. Odontoblasts, dentinbuilding cells, are located at the junction between the pulp
and dentin. Odontoblasts can continue to form new dentin over a lifetime (called secondary dentin), and when a tooth is traumatized (as from decay), the odontoblasts can form a type of dentin called reparative dentin.
T e three tooth tissues differ in their hardness since each contains a different amount of mineral content, primarily hydroxyapetite. Enamel, the hardest tissue, is 95% calcium hydroxyapetite (mineralized and calcified) and only 5% water and enamel matrix. Mature dentin is composed of about 70% calcium hydroxyapetite, 18% organic matter (collagen fibers), and 12% water. Cementum is composed of 65% calcium hydroxyapetite, 35% organic matter (collagen fibers), and 12% water. (Another author, Melfi, states that the mineral content of cementum is only about 50%.)

> Dr. Woelfel's Original research Data

Data obtained from Dr. Woelfel's original research on tooth dimensions were used to draw conclusions throughout this book. Average measurements obtained on a sample of 4572 extracted teeth obtained from dentists in Ohio from 1974 through 1979 are presented here in Table 1-7. Root lengths were measured from the cervical line to the apex of the root.

On maxillary molars with two buccal and one lingual root, the measurements were taken to the tip of the longest buccal root, usually the mesiobuccal. On mandibular molars with two roots, a mesial and distal, the measurement was taken to the apex of the longest root, usually the mesial root. On two-rooted premolars, measurements were taken to the apex of the buccal root.

Morphology of the Permanent Incisors

Topics covered within the six sections of this chapter include the following:

I. General description of incisors

A. Location of incisors in the mouth
B. Functions of incisors
C. Studying tooth morphology
II. Class traits that apply to most incisors
A. Class traits of most incisors from the facial view
B. Class traits of most incisors from the lingual view
C. Class traits of most incisors from the proximal views
D. Class traits of most incisors from the incisal view
III. Arch traits that differentiate mandibular from maxillary incisors
A. Mandibular incisors are smaller and look more alike
B. Contacts positioned more incisally on mandibular incisors
C. Mandibular incisor crowns are wider faciolingually
D. Maxillary incisors have prominent lingual anatomy
E. Mandibular incisor roots are relative ly longer
F. Mandibular incisal ridges are more lingual
G. Incisal edge wears labially on mandibular incisors

IV. Type traits that differentiate maxillary central from lateral incisors (from all views)

A. Type traits of maxillary incisors from the labial view
B. Type traits of maxillary incisors from the lingual view
C. Type traits of maxillary incisors from the proximal views
D. Type traits of maxillary incisors from the incisal view
V. Type traits that differentiate mandibular central from lateral incisors (from all views)
A. Type traits of mandibular incisors from the labial view
B. Type traits of mandibular incisors from the lingual view
C. Type traits of mandibular incisors from the proximal views
D. Type traits of Mandibular incisors from the incisal view
VI. Interesting variations and ethnic differences in incisors

Chapter 2 focuses on class traits and type traits of permanent incisors. T e authors recommend that you copy Appendix pages 1 and 2 (front and back pages) located at the end of this book, or print out these pages from the online source thePoint ${ }^{\circ}$ provided for this book, to facilitate study and minimize page turns as you read this chapter. On page 1 of the Appendix, the maxillary right lateral incisor is used as a representative example for all incisors when listing incisor class traits, but be aware that there may be exceptions to the common incisor traits presented here, and these are emphasized with capital letters ("EXCEPT"). Appendix page 2 includes arch and type traits that differentiate all four types of incisors.

As you read this chapter, the word "Appendix" followed by a number and letter (e.g., Appendix 1a) is used to denote the appendix page (page 1) and trait being referenced (trait a). Notice that the trait being summarized after each letter on an appendix page is summarized on the back of that Appendix page. As you study the traits of each type of human tooth, be aware that these traits can vary considerably from mouth to mouth just as facial features vary considerably from one person to another. One study of a collection of 100 maxillary central incisors showed considerable difference in such characteristics as size, relative proportions, and color. ${ }^{1}$

It would be ideal if you could learn the similarities and differences of all incisors while comparing models or extracted specimens of all four types of incisors from the views indicated. Remember when studying the maxillary incisors to hold them with their crowns down and roots up. For mandibular incisors, hold the crowns up and the roots
down. In this manner, the teeth will be oriented as they were in the mouth.

Finally, the statistics from Dr. Woelfel's original research that were used to draw conclusions throughout this chapter are referenced with superscript letters like this (data ${ }^{\mathrm{A}, \mathrm{B}, \text { etc. }}$) and refer to data presented at the end of this chapter.

section i gener ALdescription of incisors

Objectives fOr sectiOns i, ii, and iii

These sections are designed to prepare the learner to perform the following:

- Describe the location of incisors in the mouth.
- Describe the functions of incisors.
- List class traits common to all incisors.
- List arch traits that can be used to distinguish maxillary from mandibular incisors.
- From a selection of all teeth, select and separate out the incisors (using class traits).
- Divide a selection of all incisors into maxillary and mandibular (using arch traits).

A. LocAtion of incisors in the Mouth

Refer to Figure 2-1 or, better yet, to a model of the complete set of permanent teeth while becoming familiar with the location and u niversal number of each incisor. T ere are four maxillary incisors: two central incisors (u niversal numbers 8 and 9) and two lateral incisors (7 and 10). T ere are four mandibular incisors: two central incisors (teeth 24 and 25) and two lateral incisors (23 and 26).

Central incisors are located on either side of their respective arch (maxillary or mandibular) with their mesial surfaces next to one another at the midline, normally in contact. T eir distal surfaces contact the mesial surfaces of the adjacent lateral incisors. Lateral incisors are therefore just distal to central incisors, with their mesial surfaces in contact with the distal surfaces of the adjacent central incisors. T eir distal surfaces contact the mesial surfaces of the adjacent canines. Incisors in the mouth are identified with u niversal numbers in Figure 2-2.

B. functionsof incisors

Mandibular incisors function with the maxillary incisors to (a) cut food (mandibular incisors are moving blades against the maxillary incisors), (b) enable articulate speech (consider the enunciation of a toothless person), and (c) help to support the lip and maintain an esthetic appearance. By current standards, a person lacking one or more incisors has an undesirable appearance (Fig. 2-3). (Did you ever hear the song "All I want for Christmas are my two front teeth"?) T eir fourth function, by fitting the incisal edges of the mandibular incisors against the lingual surfaces of the maxillary incisors,
is to (d) help guide the mandible posteriorly during the final phase of closing just before the posterior teeth contact.

LEAr n In G Ex Er CIs E

Begin with your front teeth touching together edge to edge, and then begin to close your back teeth together. If you have ideal occlusion, when you move posteriorly, you should feel your upper incisors touching (and guiding) your mandibular incisors as your mandible moves posteriorly and your teeth close together.

c. studying to oth Mor phoLogy

T e morphology or anatomy of incisors can best be studied by considering the unique shape and specific contours of each type of incisor. When discussing traits, the external morphology of an incisor is usually described from each of five views: (a) facial (or labial), (b) lingual (tongue side), (c) mesial, (d) distal, and (e) incisal. Due to similarities between the mesial and distal, these surfaces will be discussed together in this text under the heading of proximal surfaces. T e shape (outline) and commonly occurring contours (ridges, grooves, convexities, and concavities) on each tooth surface should be memorized so you can describe and identify teeth by arch, class, type, and side of the mouth; reproduce tooth contours when constructing crowns, bridges, and fillings; skillfully remove deposits (tartar and calculus) from all contours of crowns and roots; or finish and polish existing restorations.

RIGHT

LEFT
figure 2-1. Adult dentition with
Universal numbers on the incisors
highlighted in red.

figure 2-2. relative size and shape of incisors in the mouth show that maxillary central incisors are the widest, followed by maxillary laterals, then mandibular laterals, and, finally, the narrowest teeth in the mouth, the mandibular central incisors.

section ii

c LAss tr Aits that AppLy to Most incisors

First, consider the class traits of incisors, that is, traits that apply to most incisors.

Developmental lobes: Recall from Chapter 1 that the facial surface of all anterior teeth forms from three labial lobes: the mesial, middle, and distal lobes. T e facial surface of incisors often has two shallow, vertical developmental depressions separating the crown into three portions that formed from three facial lobes (Fig. 2-4A). T e three lobes also contribute to three rounded elevations on the incisal edge called mamelons, located on the incisal edges of newly erupted incisor teeth (Fig. 2-4B). Finally, remember that a fourth (lingual) lobe forms the lingual bulge called a cingulum. See Table 2-1 for a summary of the number of lobes forming each type of incisor.
A. c LAs str Aits of Most in cisors from
the fAc iALView

Refer to page 1 of the Appendix while studying the class traits (similarities) of most incisors. Note that there may be exceptions to the common incisor traits presented here, and these are emphasized with capital letters ("EXCEPT").

All incisor crowns, when viewed from the facial, have a relatively straight or slightly curved incisal edge (vs. all other types of teeth that have one or more pointed cusp tips). T eir crowns are relatively rectangular and longer incisogingivally than wide mesiodistally (Appendix 1a). T ey taper from the widest mesiodistal areas at the proximal contacts, becoming narrower toward the cervical line (Appendix 1b).

Incisor crown outlines are more convex on the distal than on the mesial surfaces EXCEPT on mandibular central incisors, which are symmetrical (Appendix 1c). Incisor mesioincisal angles are more acute (sharper) than
distoincisal angles EXCEPT on the symmetrical mandibular central incisors, where the angles are not noticeably different (Appendix 1d). Incisor crown contact areas at the greatest proximal heights of contour on mesial surfaces are located in the incisal third. On the distal surfaces, the contact areas are more cervical than the mesial EXCEPT on the distal of the mandibular central, which is at the same level as the mesial due to its symmetry (Appendix 1e). Before wear, the incisal edges of incisors slope cervically toward the distal EXCEPT on the symmetrical mandibular central (Appendix 1s). Finally, the cervical line curves toward the apex in the middle of the facial (and lingual) surfaces (Appendix 11).

Incisor roots, when viewed from the facial, taper (become more narrow) from the cervical line to the apex (Appendix 1f). T ey are wider faciolingually than mesiodistally EXCEPT on maxillary central incisors, where the mesiodistal width is approximately the same as the faciolingual thickness (observe this difference in root widths by comparing the facial and mesial root views in Appendix 1g). Incisor roots may bend in the apical one third EXCEPT on maxillary central incisor roots, which are not as likely to bend. T is root bend varies, but is more often toward the distal (Appendix 1h). All incisor roots are longer than the crowns (Appendix 1i).
B. cLAsstr Aits of Most incisorsfrom the LinguALView

Incisor crowns, when viewed from the lingual, have less bulk in the lingual half because the mesial and distal surfaces converge lingually (best appreciated from the incisal view, Appendix 1j). T e mesial and distal marginal ridges converge

A
figure 2-4. A. A maxillary central incisor crown shows two facial depressions separating three facial portions formed by three lobes. B. This crown of a left maxillary central incisor, lingual view, shows three rounded protuberances on its incisal edge called mamelons (arrows). Also, notice the very deep lingual pit next to the cingulum.

t ABLe $2-1$	g uideline for d etermining the n umber of Lobes for incisors		
To o TH n Am E	FACIAL Lo BEs	CIn GULUm Fr o m o n E LIn GUAL Lo BE?	To TAL n o \cdot o F Lo BEs
Maxillary central incisor	3	Yes	$3+1=4$
Maxillary lateral incisor	3	Yes	$3+1=4$
Mandibular central incisor	3	Yes	$3+1=4$
Mandibular lateral incisor	3	Yes	$3+1=4$

General rule for incisors: Number of lobes $=3$ facial lobes +1 lobe for the cingulum.
toward the lingual cingulum (Appendix 1k). A lingual fossa is located between the marginal ridges and just incisal to the cingulum and is more prominent on maxillary incisors.

c. c LAsstr Aits of Most inc isors fromthe proxiMAL Views

Incisor crowns, when viewed from the proximal (mesial or distal), are wedge shaped or triangular (Appendix 1 m). T ey have a facial outline that is more convex cervically than incisally, and the facial crest of curvature is in the cervical third, just incisal to the cervical line (Appendix 1n). T e lingual crest of curvature is also convex and located in the cervical third on the cingulum, but the contours of the incisal two thirds of the lingual surface and the marginal ridges are concave from the cingulum area to the incisal edge. T erefore, the lingual outline is S shaped, being convex over the cingulum and concave or nearly flat from the cingulum to the incisal edge (Appendix 1p). T e concave portion of the lingual surface on a maxillary anterior tooth is an important guiding factor in the closing movements of the lower jaw because the mandibular incisors glide along this concavity as the mandibular teeth move into maximum closure. T erefore, when restoring lingual contours of maxillary incisors, it is
important to develop proper lingual contours that are in harmony with the occlusion.

T e cervical line on the proximal surfaces curves toward the incisal edge. T e resultant curve is greater on the mesial surface than on the distal (compare the mesial and distal views in Appendix 10).

T e incisor roots, when viewed from the proximal, are widest in the cervical third and gradually taper to a rounded apex (Appendix 1f).

d. c LAss tr Aits of Most incisors fromthe inc is AL View

Incisor crowns, when viewed from the incisal, have a lingual fossa that is concave just incisal to the cingulum and between the mesial and distal marginal ridges (Appendix 1t). T ey have an incisal ridge that terminates mesiodistally at the widest portion of the crown (Appendix 1q). T e labial outline is convex but less curved than the more convex lingual outline (Appendix 1r). Marginal ridges converge from the mesial and distal incisal angles toward the cingulum (Appendix 1k), and the crown outline tapers from proximal contact area toward the cingulum (Appendix 1 j) resulting in a narrower lingual than labial surface.

section iii

Arch tr Aits that differentiAte Mandibular from Maxillary in cisors

Refer to page 2 of the Appendix while reading about these arch traits that can be used to differentiate mandibular from maxillary incisors.

A. MAn diBuLAr in c is or s Ar e sMALLer An d Look More ALike

Both types of mandibular incisors are generally smaller than either of the maxillary incisors (Appendix 2p). Mandibular central and lateral incisors look more alike and are more nearly the same size in the same mouth, compared to the larger sizes and greater differences between
maxillary central and lateral incisors (best seen in the mouth in Fig. 2-2).
B. contActs posit ioned More in c is ALly o n MAn diBu LAr in c is or s

From the facial view, the mesial and distal outlines are flatter on mandibular incisor crowns than on maxillary incisor crowns (compare maxillary to mandibular incisors in Appendix 2q) and have contact areas located closer to the incisal ridge than on maxillary incisors (Appendix 2 i and $2 r$).

c. MAn diBuLAr in c is or crowns Are wider fAc io Ling u ALy

From the incisal view, mandibular incisor crowns are relatively wider faciolingually than mesiodistally compared to maxillary central incisors, which are wider mesiodistally ${ }^{\circ}$ (compare incisal views in Appendix 2-h to 2-s).

d. MAxiLLAr y in c is ors h AVe promin ent Ling u AL An Ato My

Mandibular incisor crowns have smoother lingual surfaces with less prominent anatomy than do maxillary crowns, which have deeper fossae and more pronounced marginal ridges (Appendix 2 m and Fig. 2-5A and B).
e. MAn diBuLAr in cisor roots Are reLAt iVeLy Lo nger

Mandibular incisor roots are longer in proportion to their crowns than are maxillary incisor roots, so mandibular incisors have larger root-to-crown ratios.

f. MAn diBu LAr in c is AL r id ges Ar e More LinguAL

From the proximal view, incisal ridges of mandibular incisors are usually positioned lingual to the midroot axis line, whereas the incisal ridges of maxillary incisors are more often on or labial to the root axis line (best seen from the proximal views on Appendix 20).

A

B
fig ure 2-5. A. The lingual anatomy of a right maxillary central incisor is typical for maxillary incisors, with prominent marginal ridges and cingulum, and a deep fossa. B. The lingual anatomy of this mandibular central incisor is typical of mandibular incisors since it has very faint marginal ridges and cingulum and a shallow fossa.

figure 2-6. A. Proximal view of the ideal relationship between maxillary and mandibular incisors when posterior teeth are biting tightly together. B. The arrow indicates the direction of movement of mandibular incisors when the mandible moves forward (protrudes) with the incisors touching until they align edge to edge. The resultant wear pattern or facets on the incisal edges of maxillary incisors occur more on the lingual surface on the incisal edge, whereas wear occurs more on the facial surface of the incisal edge on mandibular incisors.

g. in c is ALedge we Ar s LABiALly on MAn diBuLAr in c is ors

Tooth wear (attrition) on the incisal ridges of incisors that occurs when shearing or incising food results in tooth wear that is in a different location on maxillary incisors compared to mandibular incisors (Fig. 2-6). T is wear occurs when the labial part of the incisal edges of mandibular incisors slides forward and downward while contacting the lingual surface and part of the incisal edge of opposing maxillary incisors. T e wear results in a shiny, flat, polished surface of enamel on the incisal edge called a facet [FAS it]. Assuming a normal tooth relationship, wear facets on mandibular incisors form on the labial surface next to the incisal edge. In contrast, wear facets on maxillary incisors form on the lingual surface next to the incisal edge, possibly extending to the lingual marginal ridges.

LEAr n In G Ex Er CIs E

Refer to Table 2-2 for a summary of the noticeable arch traits that distinguish maxillary from mandibular incisors, and see how many of them can be used to differentiate the rows of maxillary and mandibular incisors from various views in Figures 2-7, 2-9, 2-13, 2-17, 2-19, 2-22, 2-24, and 2-26.

t ABLe 2-2 Major Arch traits that distinguish Maxillary from Mandibular incisors

m Ax ILLAr y In CIs or s
Wider crowns mesiodistally
Less symmetrical crown
More rounded mesial and distal incisal angles
Contact areas more cervical
Lingual anatomy more distinct:
Pronounced marginal ridges
Deeper lingual fossa
Sometimes lingual pits
Larger cingulum
m An DIBULAr In CIs or s

Narrower crowns mesiodistally
More symmetrical crowns
More square mesial and distal incisal angles
Contact areas very incisal
Lingual surface smoother:
Almost no marginal ridges
Shallower lingual fossa
No pits
Smaller cingulum

Incisal edge on or labial to midroot axis line
Facets on lingual slope of incisal edge

Incisal edge on or lingual to midroot axis line Facets on labial slope of incisal edge

Crowns wider mesiodistally than faciolingually
Crowns wider faciolingually than mesiodistally Plus traits seen from lingual view can also be seen from the incisal view.

Objectives fOr sectiOn iv

This section is designed to prepare the learner to perform the following:

- Describe the type traits that can be used to distinguish the permanent maxillary central from lateral incisor.
- Describe and identify the labial, lingual, mesial, distal, and incisal surfaces for all maxillary incisors.
- Assign a Universal number to maxillary incisors present in a mouth (or on a model) with complete dentition.

If possible, repeat this on a model with one or more maxillary incisors missing.

- Select and separate maxillary incisors from a selection of all teeth on a bench top.
- Holding a maxillary incisor, determine whether it is a central or a lateral and right or left. Then assign a Universal number to it.

Within this section, type traits are presented that distinguish maxillary central from lateral incisors. Other traits will be helpful when distinguishing right maxillary incisors from left maxillary incisors. T ese traits are presented for each view of the tooth: facial, lingual, proximal (includes mesial and distal traits), and incisal.

A. typetr Aits of MAxiLLAry incisors froMthe LABiAL View

Ideally, examine several extracted maxillary central and lateral incisors or tooth models as you read the following. Hold
these teeth root up and crown down, as they are positioned in the mouth. Also, refer to Appendix page 2 and refer to Figure 2-7 as you study the labial traits of incisors.

1. c rown s hape of Maxillary incisors (Labial View)

Based on Woelfel's studies, the crown of the maxillary central incisor is the longest of all human tooth crowns (although at least two other authors describe the mandibular canine crown as the longest crown overall ${ }^{2,3}$). T e maxillary central also has the widest crown of all incisors. T e crown is usually longer (incisogingivally) than wide (mesiodistally) ${ }^{\mathrm{A}}$ (Appendix 2a).

Maxillary central and lateral incisors, labial view \mathbf{s}, with type traits that distinguish maxillary central from lateral incisors and traits that distinguish right and left sides.

MAXILLARY INCIS ORS: LABIAL VIEWS

traits tOdistin GUis H Maxillarycentral frOMlateral incis Or: labial vie W

centralincis Or
lateral incis Or
Larger crown, wider cervically
Mesial incisal angle is nearly a right angle
Distal contact at junction incisal/middle thirds
Less likely root tip bend to distal
Smaller crown, narrower cervically Mesial incisal angle is rounder
Distal contact is near middle third
Root tip often bends to distal
Incisal edge slopes cervically toward distal
traits tOdifferent Maxillary riGHt frOMleft incis Or: labial vieW
central incis Or and lateral incis Or
Mesial crown outline fatter, distal more rounded
Distoincisal angle more rounded than mesioincisal angle
Distal contact more cervical than mesial contact
Incisal edge slopes shorter toward the distal

T e crown of the maxillary lateral incisor is also longer incisocervically, but it is considerably narrower mesiodistally than the crown of the maxillary central incisor. Since its root is longer, the entire lateral has a longer, more slender look ${ }^{B}$ (Appendix 2a). T e crown outline is less symmetrical than on the central incisor. Normally, the contour of the labial surface of the maxillary lateral incisor is more convex mesiodistally compared to the maxillary central. T is may be best appreciated from the incisal view. Mamelons, and particularly labial depressions, are less prominent and less common on the maxillary lateral incisor than on the central incisor.

2. proxim oincisal Line Angles of the Maxillary incisor (Labial View)

On the outline of maxillary central incisors, the angle formed by the mesial and incisal surfaces (called the mesioincisal angle) is close to a right angle. T e distoincisal angle is more rounded, and the angle is slightly obtuse or greater than a right angle (Appendix 2b).

On maxillary lateral incisors, both the mesioincisal and distoincisal angles are more rounded than on the central incisor (Appendix 2b). T e mesioincisal angle is more acute (sharper) than the distoincisal angle, accentuated by the incisal edge sloping cervically toward the distal, more so than on the maxillary central incisor (Appendix 2c).

3. proximal c ontact Most cervical on distal of Laterals (Labial View)

T e mesial contacts of both the maxillary central and lateral incisors are in the incisal third, very near the incisal edge for the central and slightly more cervical on the lateral. T e distal contacts of both incisors are more cervical than the mesial. For a maxillary central incisor, the distal contact is near the junction of the incisal and the middle thirds; for the maxillary lateral incisor, it is even more cervical, often in the middle third (making this distal contact the most cervical for any incisor, seen clearly on a lingual view in Fig. 2-8).
4. Maxillary c entral incisors h ave r elatively s horter
r oots (Labial View)

On a maxillary central incisor, the root is only slightly longer than the crown resulting in a root-to-crown ratio that is the smallest of any permanent tooth (Appendix 2d). T e maxillary lateral incisor root is longer than on the central. ${ }^{\text {C }}$ T is results in a root that appears longer in proportion to the crown than on the maxillary central incisor.

5. r oot t hinner and Longer on Lateral incisors (Labial View c ompared with the proximal View)

T e root of the maxillary central incisor is thick in the cervical third and narrows through the middle to a blunt apex. Its outline and shape is similar to an ice cream cone. An apical bend is not common in the maxillary central incisor. T e

figure 2-8. Location of proximal contacts: Typical of maxillary lateral incisors, the mesial proximal contact area is located in the incisal third while the distal contact is in the middle third.
Also typical of maxillary lateral incisors is a deep lingual fossa with a caries-prone pit next to the cingulum.
central incisor root is the only maxillary tooth that is as thick at the cervix mesiodistally as faciolingually. Compare the root width seen on the mesial view to the root width seen on the labial view in Appendix 2n. All other types of maxillary teeth have roots that are thicker faciolingually than mesiodistally. ${ }^{\text {D }}$ Because of its shortness (a small root-to-crown ration) and conical shape, the maxillary central incisor root may be a poor choice to support a replacement tooth as part of a dental bridge, that is, a replacement tooth crown attached to, and supported by, two adjacent teeth.

T e root of a maxillary lateral incisor is wider faciolingually than mesiodistally. It tapers evenly toward the rounded apex, and the apical end is commonly bent distally (seen in 12 of the 14 maxillary lateral incisors in Fig. 2-7, lower row). T is potential for distal (or mesial) bend on most roots must be confirmed on radiographs and considered when extracting an incisor.

B. typetr Aits of MAxiLLAry incisors

 from the Lingual ViewRefer to Figure 2-9 while studying the lingual traits of maxillary incisors.

(1. Lingual fossae d eeper on Maxillary Lateral incisors (Lingual View)

On maxillary incisors, large lingual fossae are located immediately incisal to the cingulum and bounded by two marginal

Maxillary central and lateral incisors, lingual views, with type traits that distinguish maxillary central from lateral incisors and traits that distinguish right and left sides. Several circles highlight the more distally placed cingulum on many maxillary central incisors compared to maxillary lateral incisors.

MAXILLARY INCIS ORS: LINGUAL VIEWS

traits tOdistin GUis H Maxillarycentral frOMlateral incis Or: lin GUal vieW

central incis Or	lateralincis Or
Larger shallow lingual fossa	Deep but small fossa
Cingulum distally positioned	Cingulum centered
Less frequent lingual pit	More common lingual pit

Plus outline characteristics seen from facial apply to lingual outline
traits tOdifferentiate Maxillary riGHt frOMleft incis Or: lin GUal vie W
central incis Or
lateral incis Or
Cingulum toward distal
Longer and straighter mesial marginal ridge
Distal marginal ridge more curved than mesial
Both have longer mesial marginal ridge
Plus outline characteristics from facial also apply for lingual outline
figure 2-10. A. A maxillary lateral incisor has a lingual pit with beginning decay (arrow). B. An unusual lingual root groove crosses the cingulum and extends on to the root and contributed to periodontal disease.

A

B
ridges. T e lingual fossa of the maxillary lateral incisor, although smaller in area, is often even more pronounced than on the central incisor, and it is more likely to have a pit in the deep fossa that is prone to decay (Fig. 2-10A). Note the deeper lingual fossae on many maxillary lateral incisors compared to central incisors in Figure 2-9. Although not common, accessory grooves may extend from the lingual fossa around the cingulum and onto the root surface resulting in an increased risk of decay and gingival disease (Fig. 2-10B).

2. c ingulum of Maxillary incisors (Lingual View)

T e cingulum on the maxillary central incisor is usually well developed and is located off-center, distal to the root axis line that bisects the root longitudinally. (T is can also be seen from the incisal view.) T e cingulum on the maxillary lateral incisor is narrower than on the central, and it is almost centered on the root axis line. T is difference in location of the cingula, more distal on the central and more centered over the root on the lateral, is best seen incisally in Appendix 2e and is highlighted on many teeth in Figure 2-9.

Marginal r idges of Maxillary incisors (Lingual View)
T e mesial and distal marginal ridges vary in prominence on all maxillary incisors from one person to another. T ey may be prominent or inconspicuous, possibly worn smooth from attrition. One type of maxillary incisor with a deep lingual fossa and prominent mesial and distal marginal ridges is called "shovel-shaped incisors" ${ }^{\mathrm{E}}$ (Fig. 2-11). ${ }^{4-8}$

figure 2-11. The crown of this left maxillary lateral incisor has such prominent marginal ridges that it may be called "shovel shaped." The straighter mesial marginal ridge is longer than the curved distal marginal ridge, which is typical of most incisors EXCEPT mandibular centrals. Hint: Think of the length of a marginal ridge on an anterior tooth as the distance from where the ridge meets the cingulum to where it disappears (between the proximal contact and the incisal edge).

On the both types of maxillary incisors, mesial marginal ridges (from the incisal edge to the cingulum) are longer than the distal marginal ridges due in part to the taper of the incisal edge from mesial to distal (Appendix 2 f and Fig. 2-11). T is is also accentuated on the maxillary central incisor because its cingulum is off center toward the distal. Further, the shorter distal marginal ridges are more curved compared to the mesial marginal ridges that are straighter incisocervically (seen in Fig. 2-11 and on most incisors in Fig. 2-9).

4. pits on Maxillary incisors (Lingual View)

On both types of maxillary incisors, but more frequently in lateral incisors, a lingual pit may be detectable at the incisal border of the cingulum where the mesial and distal marginal ridges converge. T is pit may need to be restored or sealed in order to prevent or arrest decay. (Notice the deep lingual pits in Fig. 2-10A and on several maxillary lateral incisors in Fig. 2-9.)

5. Accessory r idges and g rooves on Maxillary incisors (Lingual View)

Small, narrow accessory lingual ridges separated by subtle grooves may extend vertically from the cingulum toward the center of the lingual fossa in both types of maxillary incisors (fewer in maxillary laterals). T ere could be from one to four accessory ridges. Tooth 9 in Figure 2-12 shows these accessory ridges most clearly. Tiny grooves separate these ridges. ${ }^{\mathrm{FG}}$
6. r oot c ontour of Maxillary incisors (Lingual View)

T e root contour of all maxillary incisors, like all anterior teeth, is convex and tapers, becoming narrower toward the lingual surface so that some of the proximal surfaces are visible from the lingual view (Fig. 2-9).

figure 2-12. The light refecting on the lingual surfaces of these maxillary incisors reveals acce ssory ridges, especially on tooth 9 (at the arrow).

c. type tr Ait s of MAxiLLAr y in c is or s fromthe proxiMAL Views

Refer to Figure 2-13 while studying the proximal traits of maxillary incisors.
(1.) incisal edges Labial to r oot Axis: Maxillary c entral h as s light d istolingual twist (proximal Views)

On both maxillary incisors, the incisal edge is commonly just labial to the root axis line or may be on the root axis line (Appendix 20). From the mesial side, the slight distolingual twist of the incisal ridge of the maxillary central incisor places the distal portion at the ridge even somewhat more lingual than on the mesial (best appreciated from the incisal view in Appendix 2g and Fig. 2-14).

2. c ervical Line of Maxillary incisors (proximal Views)

As on all anterior teeth, the cervical line of both types of maxillary incisors curves incisally on the mesial and distal tooth surfaces, and this curvature is greater on the mesial surface than on the distal surface, as can be seen on the lingual surface of a central incisor in Figure 2-15. To confirm this difference in curvature, it is often necessary to turn the tooth slightly to view the amount of curvature on the mesial and then turn it the other way to confirm the amount of curvature on the distal. T is difference is most pronounced on anterior teeth. T e amount of curvature of the cervical line on the mesial of the maxillary central incisor is larger than for any other tooth, extending incisally one fourth or more of the crown length (Fig. 2-16), whereas the distal cervical line curves less. T e curvature of the mesial cervical line of the maxillary lateral incisor is also considerable but slightly less than on the central. ${ }^{\mathrm{H}}$

3. r oot s hape and r oot depressions of Maxillary incisors (proximal Views)

T e root of the maxillary central incisor is wide faciolingually at the cervix and tapers to a rounded apex. T e lingual root outline is nearly straight in the cervical third and then curves labially toward the tip in the middle and apical thirds. T e entire labial root outline is even straighter. From the proximal view, this flatter facial root outline and more convex lingual root outline are evident in many central incisors in Figure 2-13. In contrast, the root of the maxillary lateral incisor tapers more evenly throughout the root toward the blunt apex.

T e mesial root surfaces of both types of maxillary incisors could have a slight depression in the middle third cervicoapically, slightly lingual to the center faciolingually, but the distal

Maxillary central and lateral incisors, proximal vie ws, with type traits that distinguish maxillary central from lateral incisors and traits that distinguish right and left sides.

Central (Right) Mesial View

Lateral (Right) Mesial View

MAXILLARY INCIS ORS: PROXIMAL VIEWS

Right Central (Distal)

Right Lateral (Distal)

traits tOdistin GUis H Maxillary central frOMlateral incis Or: Pr OxiMal vie Ws

central incis Or	lateral incis Or
More concave lingual crown outline	Less concave lingual crown outline
Root outline more convex on lingual than facial	More even root taper facially and lingually
traits tOdifferentiate Maxillary riGHt frOMleftincis Or:cOMParinGPrOxiMal vieWs	

central incis Or and lateral incis Or

Cervical line curvature more pronounced on mesial than distal Flatter mesial root surface contour than distal contour

figure 2-14. This left maxillary central incisor shows a subtle distolingual twist of the incisal edge, which is more lingual on the distal half than on the mesial half.

figure 2-15. On the lingual of this right maxillary central incisor, you can just see that the curve of the cementoenamel junction or cervical line (marked with red pencil) is greater (extends more incisally) on the mesial than on the distal, a trait for most teeth in the mouth.

figure 2-16. Mesial view of this maxillary central incisor
shows the greatest amount of curvature of the cementoenamel junction (CEJ) on any tooth: the amount of curvature is one fourth or more of the crown length.
root surfaces are likely to be convex. A slight mesial root depression is discernible in the shaded line drawings in Figure 2-13.

d. type tr Ait s of MAxiLLAry in cisor s

 fromthe inc is AL ViewRefer to Figure 2-17 when studying the incisal view. To follow this description, a maxillary incisor should be held in such a position that the incisal edge is toward you, the labial surface is at the top, and you are looking exactly along the root axis line. You should see slightly more lingual surface than labial surface if the incisal ridge is located somewhat labial to the root axis line (as in many teeth, especially the lateral incisors, in Fig. 2-17).
(1.) c rown proportion faciolingually versus Mesiodistally for Maxillary incisors (incisal View)
T e incisal outline of the maxillary central incisor is noticeably wider mesiodistally than faciolingually (Appendix 2h). T e mesiodistal measurement of the lateral incisor crown is also most often greater than the labiolingual measurement but less so than on the central incisor. ${ }^{1}$ On some lateral incisors, the two dimensions of the crown are almost the same size faciolingually as mesiodistally. Notice this difference in the proportion of maxillary central incisors (relatively wider mesiodistally) compared to lateral incisors in Figure 2-17.
2. c rown o utline shape and cingulum Location of Maxillary incisors (incisal View)
Te incisal outline of the maxillary central incisor is somewhat triangular. T e labial outline is broadly curved (on some

L

Lateral (Right)

L

Central (Right)

MAXILLARY INCIS ORS: INCIS AL VIEWS

traits tOdistin GUis H Maxillary central fromlateral incis Or: incisal vie W

central incis Or

Crown noticeably wider mesiodistally than faciolingually Crown outline roughly triangular Cingulum off center to distal Incisal edge curves mesiodistally
lateral incis Or
Crown minimally wider mesiodistally than faciolingually
Crown outline more round or oval
Cingulum centered
Incisal edge straighter mesiodistally

traits tOdifferentiate Maxillary riGHt frOMleft incis Or: incisal vie W

central incis Or	lateral incis Or
Cingulum more distal	Best to use other views

teeth, the middle third may be nearly flat) forming the base of the triangle, and the other two sides of the triangle converge toward the cingulum (Fig. 2-18). As was seen from the lingual view, the cingulum of the maxillary central incisor is slightly off-center to the distal, resulting in the mesial marginal ridge measuring longer than the distal marginal ridge (seen best from the lingual view in Appendix 2f).

T e crown of the lateral incisor resembles the central incisor from this aspect, but its outline is more round or oval than triangular since the labial outline is noticeably more convex than on the central incisor. T e cingulum of the lateral incisor is nearly centered mesiodistally. Compare the triangular shape of the maxillary central incisor to the more round or slightly oval shape of the maxillary lateral incisor in Figure 2-18. T ese differences in outline shapes are also evident in all teeth in Figure 2-17.

INCIS AL VIEWS
Right maxillary lateral incis or

Right maxillary central incisor
figure 2-18. The outline of the maxillary lateral incisor (on the left) is almost round or slightly oval, whereas the outline of the maxillary central incisor is somewhat triangular in shape due to its fatter labial surface.

Maxillary central incisor May have a Very slight d istolingual twist (incisal View)
T e incisal ridge or edge of the maxillary central incisor is thick faciolingually (1.5 to 2 mm) and is slightly curved from mesial to distal, the convexity being on the labial side. It terminates mesially and distally at the widest portion of the crown (Appendix 1q). T e position of the distoincisal angle may be slightly more lingual than the position of the mesioincisal angle, which then gives the incisal edge its slight distolingual twist as though someone took the distal half of the incisal edge and twisted it to the lingual (Appendix 2g and Fig. 2-14). Be aware that for maxillary central incisors, the two traits just discussed (the cingulum displaced to the distal and the distolingual twist of the incisal edge) are dependent on how the tooth is held. When viewed from the incisal, the distolingual twist of the incisal edge is more obvious when the cingulum is aligned vertically (Appendix 2g), whereas the displacement of the cingulum to the distal is more obvious when the incisal edge is aligned horizontally (Appendix 2e). T is is why these two traits are shown on page 2 of the Appendix, showing two views of the same tooth, each having a slightly different alignment to accentuate the trait being discussed.

T e incisal ridges on lateral incisors are straighter mesiodistally than on the central incisors.

LEAr n In G Ex Er CIs E

In determining a right from a left maxillary central incisor when it is not in the mouth (such as on the operatory table with other incisors after multiple extractions), you need to distinguish the mesial from the distal surface. If you look at the facial surface of a tooth with its root aligned correctly for the correct arch and are able to identify the mesial or distal surface, you can place the tooth in its correct quadrant (right or left) and assign its Universal number. Evaluate the rows of maxillary incisors in the figures in this chapter, and, using the chart in each figure, see how many "right from left" traits can be used to differentiate the mesial from the distal surfaces and therefore right from left incisors. For example, in Figure 2-7, look at the labial surfaces for the shape of the incisal angles (more rounded on distal) and the position of the contact areas (more cervical on distal), or look at the proximal surfaces in Figure 2-13 for the amount of cervical line curvature on the mesial and distal sides (more curved on mesial). From the lingual view, look at Figure 2-9 for the length of the marginal ridges (mesial is longer), and from the incisal view on the maxillary central (Fig. 2-17), look for the distal location of the cingulum on many maxillary central incisors.

Objectives

This section is designed to prepare the learner to perform the following:

- Describe the type traits that can be used to differentiate the permanent mandibular central from the lateral incisor.
- Describe and identify the labial, lingual, mesial, distal, and incisal surfaces for mandibular lateral incisors and the labial, lingual, and incisal surfaces for the symmetrical mandibular central incisor (where the mesial may be difficult to distinguish from the distal).
- Assign a Universal number to mandibular incisors present in a mouth (or on a model) with complete
dentition. If possible, repeat this on a model with one or more mandibular incisors missing.
- Select and separate mandibular incisors from a selection of all teeth on a bench top.
- Holding a mandibular incisor, determine whether it is a central or a lateral and right or left. Then, assign a Universal number to it (which may not be possible for the symmetrical mandibular central incisor, which you could identify as tooth 24 or 25).

Within this section, type traits are presented that distinguish mandibular central incisors from lateral incisors. Other traits will be helpful when distinguishing right from left mandibular incisors. T ese traits are presented for each view of the tooth: facial, lingual, proximal (including mesial and distal), and incisal.

A. type tr Aits of MAn diBuLAr in c is or s fromthe LABiAL View

Examine several extracted teeth and/or models as you read. Also, refer to page 2 of the Appendix and Figure 2-19 while you study the labial surface of mandibular incisors. Hold

Mandibular central and lateral incisors, labial views, with type traits that distinguish mandibular central from lateral incisors and traits that distinguish right and left sides.

Lateral (Right)

Central (Right)

MANDIBULAR INCISORS: LABIAL VIEWS

traits t Odistin GUis H MandibUlarcentral frOMlateral incis Or: labial vieW

central incis Or	lateral incis Or
More symmetrical crown	Less symmetrical crown
Minimal distal and mesial bulge of crown	Obvious distal bulge on crown, crown appears to tilt distally
Proximal contacts on same level mesial and distal	Mesial proximal contact more incisal
Smaller than lateral in the same mouth	Larger than central in the same mouth

traits tOdifferentiate MandibUlar riGHt fromleft incis Or: labial vieW

central incis Or	I ater al incis Or
Very symmetrical: cannot easily tell right from left	Distal crown outline bulges more than mesial Distal proximal contact more cervical
	Distal incisal line angle more rounded

mandibular teeth with the root down and crown up, the position of the teeth in the mouth.

(1.) c rown s hape of Mandibular incisors (Labial View)

T ree mamelons are often present on newly emerged mandibular incisors and reflect the formation of the facial surface from three labial lobes (Fig. 2-20). In most persons, they are soon worn off by functional contacts against the maxillary incisors (a process called attrition).

All mandibular incisor crowns are quite narrow relative to their crown length, but the mandibular central incisor crown is the narrowest crown in the mouth and is considerably narrower than the maxillary central incisor. ${ }^{\text {J }}$ u nlike maxillary incisor crowns in the same mouth where the central is larger than the lateral, the mandibular lateral incisor crown is a little larger in all dimensions than the mandibular central incisor in the same mouth, as seen in Figure 2-21. Further, the mandibular central incisor is so symmetrical that it is dif cult to tell lefts from rights unless in place in the mouth or on full arch models. About the only notable difference to be found is the greater mesial than distal curvature of the cervical line, but this is not a trait that can be seen in the mouth.

T e crown of the mandibular lateral incisor resembles that of the mandibular central incisor, but it is slightly wider and is not as bilaterally symmetrical. Its crown appears to tilt slightly distally on its root, giving the impression that the tooth has been bent at the cervix (Appendix 21). T is tilt, plus the sloping of the incisal edge shorter on the distal (Appendix 1s), makes the curved distal outline of the crown from proximal contact area to cervical line shorter than the straighter mesial crown outline. Look at the inci-

figure 2-20. These mandibular incisors have remnants of three mamelons that refect the formation of the labial surface of incisors from three labial lobes (plus one lingual lobe forms the cingulum). These mamelons are partially worn away due to these teeth biting against maxillary incisors.

figure 2-21. When considering the re lative size of each type of incisor, it becomes obvious on this model that the maxillary central incisors are widest and largest, followed by the maxillary laterals, then the mandibular laterals, and finally the smallest and narrowest mandibular central incisors.
sors in Figure 2-19, and notice the lack of symmetry of the outline of most mandibular lateral incisors compared to the symmetry of the central incisors. When comparing these teeth, be aware that the incisal edges may have worn unevenly.

T e labial surfaces of both types of mandibular incisors are most often smooth, but could have two shallow developmental depressions in the incisal third if you examine the surface closely. ${ }^{\text {K }}$

2. incisal proximal Angles of Mandibular incisors (Labial View)

T e crown of the mandibular central incisor is nearly bilaterally symmetrical, so the mesioincisal and distoincisal angles are very similar, forming nearly right angles (Appendix 2j). T e distoincisal angle may barely be more rounded than the mesioincisal angle. T e distoincisal angle of the mandibular lateral incisor, however, is noticeably more rounded than the mesioincisal angle (Appendix 2 j). T is helps to distinguish right mandibular lateral incisors from lefts prior to incisal tooth wear.

3. proximal c ontact Areas of Mandibular incisors (Labial View)

T e mesial and distal contact areas of the mandibular central incisor are at the same level: in the incisal third (Appendix 2i) almost level with the incisal edge. T e mesial and distal contact areas of the lateral incisor are not at the same level (Appendix 2i). Although both the mesial and distal contacts are in the incisal third fairly close to

t ABLe 2-3
 Location of proximal c ontacts (proximal height of contour) on incisors (Best seen from facial View)

```
m Es IAL s Ur FACE
DIs TAL s Ur FACE
(WHICH THIr D o r JUn CTIo n?) (WHICH THIr D o r JUn CTIo n ?)
```

DIs TAL s Ur FACE
(WHICH THIr D or JUn CTIo n ?)

Central incisor Lateral incisor

Incisal third (near incisal edge) Incisal third

Central incisor
Lateral incisor

Incisal third (near incisal edge)
Incisal third (near incisal edge)

Incisal third (near incisal edge; same as mesial) Incisal third (but more cervical)

General learning guidelines for incisors:

1. On the same incisor, the distal proximal contact is more cervical than the mesial contact EXCEPT on mandibular central incisors, where the mesial and distal contacts are at the same height.
2. All contacts for both types of mandibular incisors are in the incisal third, as are the mesial contacts on maxillary incisors. Distal contacts of maxillary central incisors are near the incisal/ middle junction, and the distal contacts on maxillary lateral incisors are most cervical: in the middle third.
the incisal edge, the distal contact is noticeably more cervical than the mesial contact on lateral incisors. Refer to Table 2-3 for a summary of the location of proximal contacts for all incisors.

4. r oot-t o-c rown proportions of Mandibular incisors (Labial View)

Mandibular incisor roots are long incisocervically and appear proportionally longer compared to their crown length than on the maxillary incisors. T erefore, the root-to-crown ratio is larger for both mandibular incisors compared to maxillary central and lateral incisors. ${ }^{\text {L }}$

5. r oot shape of Mandibular incisors (Labial View)

T e roots of both types of mandibular incisors appear very narrow mesiodistally but wide faciolingually (ribbon-like) (compare proximal to labial surfaces in Appendix 2n) and taper uniformly on both sides from the cervical line to the apex. T e apical end may curve slightly to the distal (seen in some incisors in Fig. 2-19).
B. type tr Aits of MAn diBuLAr in cisors froMthe LinguALView

Refer to Figure 2-22 while studying the lingual surface of mandibular incisors.

1. c ingulum of Mandibular incisors (Lingual View)

As seen from the lingual view (or from the incisal view in Appendix 2k), the cingulum of the mandibular central incisor is convex, small, and centered on the axis line of the root. T e cingulum of the lateral incisor lies slightly distal to the axis line of the root (similar to the maxillary central incisor). T is distal location of the cingula on mandibular lateral incisors is highlighted in Figure 2-22.

2. Lingual Anatomy (Marginal ridges and fossae) of Mandibular incisors (Lingual View)

T e lingual fossae of both types of mandibular incisors are barely visible, smooth (without grooves, accessory ridges, or pits), and shallow, just slightly concave in the middle and incisal thirds (Appendix 2m). T e marginal ridges of mandibular incisors are often scarcely discernible, unlike on maxillary incisors, where they are more likely to be quite prominent (Fig. 2-23). Since the length of the incisal edge slopes cervically toward the distal on mandibular lateral incisors, and the cingulum is located toward the distal, the mesial marginal ridge on these teeth appears longer than the distal marginal ridge (Appendix 2k).

3. r oot c ontours of Mandibular incisors (Lingual View)

As with other incisor roots, the lingual root surfaces of both types of mandibular incisors are mostly convex, and slightly

Mandibular central and lateral incisors, lingual views, with type traits that distinguish mandibular central from lateral incisors and traits that distinguish right and left sides. Circles highlight the distal placement of most cingula on these mandibular lateral incisors.

MANDIBULAR INCIS ORS: LINGUAL VIEWS

Lateral (Left)

Lateral (Right)

traits tOdistin GUis H MandibUl ar central fromlateral incis Or: lin GUal vie W

figure 2-23. You can see the mesial root depression of this mandibular central incisor even from the lingual view. Notice that the lingual surface of the crown is smooth with little evidence of marginal ridges or lingual fossa: typical of most mandibular incisors.
narrower on the lingual side than on the labial side. You may see evidence of mesial and distal longitudinal root depressions from this view (Fig. 2-23).

c. type tr Aits of MAn diBuLAr in cisors fromthe proxiMAL Views

Refer to Figure 2-24 while studying the proximal surfaces of mandibular incisors.

1. incisal edge on Mandibular incisors (proximal Views)

T e incisal edges of both types of mandibular incisors are normally located on or lingual to the midroot axis (Appendix 20). From the mesial side, the distolingual twist of the incisal ridge of the mandibular lateral incisor places the distal portion at the ridge even somewhat more lingual than on the mesial (seen clearly in Fig. 2-25), unlike the mandibular central that has no twist. Recall that the maxillary central incisor might also exhibit a slight distolingual twist
of the incisal edge, but it is much less obvious than on most mandibular laterals.

2. c ervical Line on Mandibular incisors (proximal Views)

T e cervical line on the mesial of both types of mandibular incisors normally has a relatively pronounced curvature that extends incisally almost one fourth of the crown length. As on all other anterior teeth, the curvature on the distal is less. ${ }^{M}$

3. c rest of c urvature of Mandibular incisors (proximal Views)

As on the labial outline of maxillary incisors, the labial crests of curvature (heights of contour) on both types of mandibular incisors are in the cervical third, just incisal to the cervical line. T e labial outline becomes nearly flat in the incisal third. T e lingual outlines are " S " shaped, and the heights of contour are also in the cervical third, on the cingulum.
(4. r oot shape and d epressions of Mandibular incisors (proximal Views)

T e relatively wide faciolingual dimension of the roots at the cervix on both types of mandibular incisors is very apparent from the proximal view. T e facial and lingual outlines of the roots of all mandibular incisors are nearly straight from the cervical line to the middle third; then, the root tapers with its apex on the midroot axis line (seen in most roots in Fig. 2-24). Recall that the cervical portion of the roots of mandibular incisors is considerably wider faciolingually than mesiodistally (ribbon-like). ${ }^{\mathrm{N}}$

T ere is usually a slight longitudinal depression on the middle third of the mesial and distal root surfaces of both types of mandibular incisors. T e distal depressions are somewhat more distinct. See Table 2-4 for a summary of incisor root depressions. See Figure 2-25 for a slight mesial surface depression on the root of a mandibular lateral incisor.

d. type tr Ait s of MAn diBu LAr in cisors

 fromthe in c is AL ViewTo follow this description, the tooth should be held in such a position that the incisal edge is toward the observer, the labial surface is up, and the observer is looking exactly along the root axis line as in Figure 2-26. You will see slightly more of the labial than the lingual surface if the incisal ridge is just lingual to the root axis line.

Mandibular central and lateral incisors, proximal views, with type traits that distinguish mandibular central from lateral incisors and traits that distinguish right and left sides.

MANDIBULAR INCIS ORS : PROXIMAL VIEWS

Left Central (Distal)

Left Lateral (Distal)

Right Central (Mesial)

Right Lateral (Mesial)

traits tOdistin GUis H MandibUlarcentral frOMlateral incis Or: Pr OxiMal vieWs

central incis Or	lateral incis Or
No distolingual twist	Distal of incisal ridge may be more lingual
traitstOdifferentiate MandibUlar riGHt frOMleft incis Or: comParin G Pr OxiMal vie Ws	
central incis Or	lateral incis Or
Distal of incisal ridge even with mesial of incisal ridge	Distal of incisal ridge may be more lingual Mesial cervical line curve greater than distal on both central and lateral incisors

figure 2-25. It is clear from the mesial view of this mandibular left lateral incisor that there is a pronounced distolingual twist (i.e., the distal portion of the incisal edge curves lingually) so that some of the lingual surface is visible from this mesial view. Also, notice the slight root depression on the mesial surface.

1. c rown o utline and incisal r idge Alignment on Mandibular incisors (incisal View)

T e mandibular central incisor is practically bilaterally symmetrical with little to differentiate the mesial half from the distal half. T e labial and lingual crests of curvature are
centered, and the lingual crest of curvature is centered on the smooth, narrow cingulum. T e thick (2 mm) incisal ridge of this symmetrical incisor runs in a straight line mesiodistally toward both contact areas and is at right angles to the labiolingual root axis plane.

T e mandibular lateral incisor is not bilaterally symmetrical. If you align the incisal edge of the lateral incisor exactly horizontal, the cingulum of the mandibular lateral incisor is located distal to the mesiodistal midline (Appendix 2 k). Recall that this was also seen on the maxillary central incisor. Looked at another way, if you were to align a mandibular lateral incisor with its lingual cingulum directed exactly downward or vertically (represented roughly by the dotted vertical line with the arrow in Appendix 2k), the distal half of the incisal edge would be perceived as twisted lingually (called a distolingual twist) (Fig. 2-27). T is twist is evident in most mandibular lateral incisors in Figure 2-26 and is an excellent way to distinguish mandibular central from lateral incisors and to distinguish the right from left mandibular lateral incisors.

2. incisal r idge is on or Lingual to r oot Axis on Mandibular incisors (incisal View)

Incisal ridges of both types of mandibular incisors are on or lingual to the midroot axis. If you hold an extracted mandibular incisor with the root facing directly away from your sight line, slightly more of the labial than lingual surface would be visible if the incisal ridge is lingual to the root axis, especially on the distal half of mandibular lateral incisors due to the distolingual twist.

presence and r elative d epth of Longitudinal r oot d epressions ("r oot g rooves") on incisors		
To o TH	m Es IAL r o o T DEPr Es s Io n ?	DIs TAL r o o T DEPr Es s Io n ?
Maxillary central incisor Maxillary lateral incisor	Not likely Variable	No (convex) No (convex)
Mandibular central incisor Mandibular lateral incisor	$\begin{aligned} & \text { Yes } \\ & \text { Yes } \end{aligned}$	Yes (deeper) Yes (deeper)

[^1]Mandibular central and lateral incisors, incisal views, with type traits that distinguish mandibular central from lateral incisors and traits that distinguish right and left sides.

Central (Right)

Lateral (Right)

MANDIBULAR INCIS ORS : INCIS AL VIEWS

Central (Left)

Central (Right)

traits tOdistin GUis H MandibUlarcentral frOMlateral incis Or : incisal vieW

central incisor	Iateral incis Or
No distolingual twist of incisal edge Cingulum is centered	Distolingual twist of incisal edge Cingulum is off center to distal
traits tOdifferentiate MandibUlar riGHt fr OMleft incis Or: incisal vie W	

figure 2-27. The distolingual twist of this right mandibular lateral incisor is quite evident.

figure 2-28. shovel-shaped permanent incisors from a young Native American dentition (incisal views). Note the prominent marginal ridges on the lingual surface.

section Vi

in ter esting VAr iAt ions And ethnic differences in incisor s

T ere is great morphologic variation in the maxillary lateral incisor. It may be missing altogether; it may resemble a small slender version of a maxillary central incisor; it may be quite asymmetrical; or it may be peg shaped (as seen later in the chapter on anomalies).

Racial differences in the maxillary incisor teeth have been reported in dental literature. Shovel shape is the term commonly used to designate incisor teeth that have prominent marginal ridges and a deep fossa on their lingual surfaces (Fig. 2-28). A high incidence of shovel-shaped incisors has been observed in Mongoloid people, including many groups of American Indians. ${ }^{4,6,7,9}$ (Mongoloid pertains to a major racial division marked by a fold from the eyelid over the inner canthus, prominent cheekbones, straight black hair, small nose, broad face, and yellowish complexion. Included are Mongols, Manchus, Chinese, Koreans, Arctic coastal populations, Japanese, Siamese, Burmese, Tibetans, and American Indians.) White and black people are reported to have less frequent occurrences of this characteristic.

A study of the skulls of American Indians who lived in Arizona about 1100 ad has disclosed the occurrence of incisor teeth that have a mesial marginal ridge on the labial surface and a depression, or concavity, on the mesial part of the labial surface just distal to this ridge. ${ }^{10}$ In these teeth, the distal part of the labial surface is rounded in an unusual manner. Such teeth have been referred to as "three-quarter double shovel shaped," a descriptive, if ponderous, term. Labial "shoveling" has also been reported in some Arctic coastal populations.

T ere is more uniformity of shape in the mandibular incisor teeth than in other teeth. In some Mongoloid people, the cingulum of mandibular incisors is characteristically marked by a short deep groove running cervicoincisally. T is groove is often a site of dental caries.

Later, in the chapter on anomalies, you will read about more variations: peg-shaped incisors, fused mandibular incisors, congenitally missing central incisors, and even a lateral incisor merged distally to the canine.

LEAr n In G Ex Er CIs E

Assign a Universal number to a handheld incisor: Suppose a patient just had all of his or her permanent teeth extracted. Imagine being asked to find tooth 8 from among a pile of 32 extracted teeth on the oral surgeon's tray because you wanted to evaluate a lesion seen on the radiograph on the root of that incisor. How might you go about it? Only after you have written down your own ideas, then consider the following steps:

- From a selection of all permanent teeth (extracted teeth or tooth models), select only the incisors (based on class traits).
- Determine whether each incisor is maxillary or mandibular using arch traits. Review Table 2-2 if needed. You should never rely on only one characteristic difference between teeth to name them; rather, make a list of many traits that apply to a maxillary incisor, as opposed to only one trait that makes you think it belongs in the maxilla. This way, you can act as a detective and become an expert at recognition at the same time.
- Once you determine that the tooth is maxillary, position the root up; if it is mandibular, position the root down.
- Use appropriate traits in order to identify the facial surface. This will permit you to view the tooth as though you were looking into a patient's mouth.
- Next, using type traits, determine the type of incisor you are holding (central or lateral). Refer to the tables and teeth in the figures throughout this chapter as needed.
- Next, determine which surface is the mesial. Refer to figures throughout this chapter as needed. While viewing the incisor from the facial and picturing it within the appropriate arch (upper or lower), the mesial surface can be positioned toward the midline in only one quadrant, the right or left.
- Once you have determined the quadrant, assign the appropriate Universal number for the incisor in that quadrant. For example, the central incisor in the upper right quadrant is tooth 8 .

? r eView Questions about Incisors

For each of the traits listed below, select the letter(s) of the permanent incisor(s) that normally exhibit(s) that trait. More than one answer may apply.
a. Maxillary central incisor
b. Maxillary lateral incisor
c. Mandibular central incisor
d. Mandibular lateral incisor

1. Mesiodistal dimension of the crown is larger than the labiolingual dimension.
2. T e incisal ridge exhibits a distolingual twist.
3. T e root is very narrow mesiodistally with mesial and distal root depressions.
4. T e incisal edge is positioned more to the lingual of the root axis line.
5. T e distal proximal crest of curvature is more cervical than the mesial height of contour.
6. T is tooth has the widest (mesiodistally) incisor crown.
7. T is tooth has the shortest root relative to its crown.
8. T is tooth is the most symmetrical incisor.
a bll
a b c d
a bll
a b c d
a \quad b $\quad c \quad d$
9. T is tooth has the largest curvature of the mesial cervical line.
10. T is tooth has the narrowest incisor crown (mesiodistally).

Thinking

1. T e only way to master the many traits of the incisors presented in this chapter is to be able to picture each trait in your mind for each type of incisor and for each side of the mouth. T erefore, even though you have probably already looked carefully at each illustration in this chapter, at this time, reread the legends and study each figure in this chapter. If any facts are unclear, review the portion of the chapter that referred to that figure. Also, use the front and back of Appendix pages 1 and 2 to review all identified traits of incisors.
2. While you are recording which teeth are present in the mouth of Mrs. Jenny James, you notice that she has only three mandibular incisors. How might you determine which specific mandibular incisors are still present? T ink of things you have learned about incisors, and try to recall facts you may already know about landmarks in the mouth.
3. Look at your mouth in the mirror while you place your anterior maxillary and mandibular teeth edge to edge, and align the arch midlines (the proximal contacts between central incisors) over one another. If your teeth are of average shape and alignment, notice that the distal outline of each maxillary central incisor extends distal to its opposing mandibular central incisor because the maxillary central is wider. Also, notice that the maxillary central incisors are wider and larger than the maxillary lateral incisors and that the maxillary central incisors and maxillary lateral incisors are wider than either the mandibular central or lateral incisors. Finally, note that the mandibular central incisors appear slightly narrower and smaller than the adjacent mandibular lateral incisors.
4. u sing a good light source (like a small flashlight), a large mirror (magnifying if possible), and a small, clean disposable dental mirror, carefully compare the maxillary and mandibular incisors in your own mouth while referring to the traits in Table 2-2 from the labial view and lingual view that can be used to differentiate maxillary from mandibular incisors. Write down each trait that can be useful to differentiate the maxillary from the mandibular incisors in your own mouth, and also make note of any of the traits in the text book that do not apply in your mouth.
5. Perform a computer search for images of "close-ups of celebrity teeth," and answer the following questions for at least five of the images. Remember that many of these celebrities have had major cosmetic dental work, so you may not be viewing their original teeth.
a. Are their maxillary central incisors wider than their maxillary lateral incisors?
b. Can you see evidence of formation from three facial lobes on any of their anterior teeth?
c. Try to find at least one picture where you can see the mandibular incisors, and answer these questions. Are the mandibular incisors narrower than the maxillary incisors? Are their mandibular centrals narrower than the laterals? Do you see any spaces (diastemas) between teeth? If not, try looking for images of Madonna, the early years, for the diastema between her central incisors (which she had closed during her later years).
6. Search the Internet for images of "orthodontics before and ader," and answer the same questions as in exercise \#4 above for the "before" pictures and for the "after" pictures.

r EFEr En CEs

1. Hanihara K. Racial characteristics in the dentition. J Dent Res 1967;46:923-926.
2. Ash MM, Nelson SJ. Wheeler's dental anatomy, physiology and occlusion. Philadelphia, PA: Saunders, 2003.
3. Kraus RE, Abrams L. Kraus' dental anatomy and occlusion. Oxford, u K: Wolfe Publishing, Ltd., 1992.
4. Carbonelli VM. Variations in the frequency of shovel-shaped incisors in different populations. In: Brothel DR, ed. Dental anthropology. London, u K: Pergamon Press, 1963:211-234.
5. Brabant H. Comparison of the characteristics and anomalies of the deciduous and the permanent dentitions. J Dent Res 1967;48:897-902.
6. De Voto FCH. Shovel-shaped incisors in pre-Columbian Tastilian Indians. J Dent Res 1971;50:168.
7. De Voto FCH, Arias NH, Ringuelet S, et al. Shovel-shaped incisors in a northwestern Argentine population. J Dent Res 1968;47:820.
8. Taylor RMS. Variations in form of human teeth: I. An anthropologic and forensic study of maxillary incisors. J Dent Res 1969;48:5-16.
9. Dahlberg AA. T e dentition of the American Indian. In: Laughlin WS, ed. T e physical anthropology of the American Indian. New York, NY: T e Viking Fund, 1949.
10. Snyder RG. Mesial marginal ridging of incisor labial surfaces. J Dent Res 1960;39:361.

GEn Er AL r EFEr En CEs
Goose DH. Variability of form of maxillary permanent incisors. J Dent Res 1956;35:902.

Statistics obtained from Dr. Woelfels's original research on teeth have been used to draw conclusions throughout this chapter and were referenced with superscript letters that refer to the data stated here. Data from his original research are presented in Tables 2-5A and 2-5B.
A. T e crown of the maxillary central incisor averages 11.2 mm long incisocervically, making it the longest incisor crown. T is crown averages 2.6 mm longer incisogingivally than mesiodistally.
B. T e crown of the maxillary lateral incisor averages about 2.0 mm narrower mesiodistally than on the central incisor, and the root is 0.4 mm longer.
C. T e maxillary lateral incisor root is 0.4 mm longer than on the maxillary central. T e average root-tocrown ratio for 295 maxillary lateral incisors was 1.37 . T e average root-to-crown ratio for 398 maxillary central incisors was 1.16.
D. T e maxillary central incisor root at the cervix averages about 6.4 mm wide mesiodistally and faciolingually.

2-5 A size of Maxillary incisors (Millim eters)				
	398 CEn Tr ALs		295 LATEr ALs	
DIm Ens Io n m EAs Ur ED	AVEr AGE	r An GE	AVEr AGE	r An GE
Crown length	11.2 longest incisor crown	8.6-14.7	9.8	$7.4-11.9$
Root length	13.0	6.3-20.3	13.4	9.6-19.4
Overall length	23.6	16.5-32.6	22.5	17.7-28.9
Root-to-crown ratio	1.16		1.37	
Crown width (mesiodistal)	8.6	7.1-10.5	6.6	5.0-9.0
Root width (cervix)	6.4	5.0-8.0	4.7	3.4-6.4
Faciolingual crown size	7.1	6.0-8.5	6.2	5.3-7.3
Faciolingual root (cervix)	6.4	5.1-7.8	5.8	4.5-7.0
Mesial CEJ curve	2.8 greatest CEJ curve	1.4-4.8	2.5	1.3-4.0
Distal CEJ curve	2.3	0.7-4.0	1.9	0.8-3.7

BLe 2-5 B size of Mandibular incisors (Millim eters)				
	226 CEn Tr ALs		234 LATEr ALs	
DIm Ens Ion m EAs Ur ED	AVEr AGE	r An GE	AVEr AGE	r An GE
Crown length	8.8	6.3-11.6	9.4	$7.3-12.6$
Root length	12.6	$7.7-17.9$	13.5	$9.4-18.1$
Overall length	20.8	16.9-26.7	22.1	18.5-26.6
Crown width (mesiodistal)	5.3 narrowest adult crown	4.4-6.7	5.7	4.6-8.2
Root width (cervix)	3.5	2.7-4.6	3.8	3.0-4.9
Faciolingual crown size	5.7	4.8-6.8	6.1	5.2-7.4
Faciolingual root (cervix)	5.4	4.3-6.5	5.8	4.3-6.8
Mesial CEJ curve	2.0	$1.0-3.3$	2.1	1.0-3.6
Distal CEJ curve	1.6	0.6-2.8	1.5	0.8-2.4

All other types of maxillary teeth have roots that are thicker faciolingually than mesiodistally by 1.1 to 3.4 mm .
E. Dr. Woelfel examined the maxillary incisors on casts of 715 dental hygiene students and found that 32% of the central incisors and 27% of the lateral incisors have some degree of shoveling. T e rest had smooth concave lingual surfaces without prominent marginal ridges or deep fossae.
F. Inspection of 506 maxillary central incisors by Dr. Woelfel revealed 36% with no accessory lingual ridges, 27% with one small ridge, 28% with two accessory ridges, 9% with three ridges, and only three teeth with four small ridges.
G. Inspection of 488 maxillary lateral incisors by Dr. Woelfel revealed 64% with no lingual accessory lingual ridges, 32% with one small accessory ridge, and only 4% with two ridges.
H. T e largest curvature of a proximal cervical line averages 2.8 mm on the mesial of a maxillary central incisor, and the distal curve is only 2.3 mm . T e curvature of the mesial of the maxillary lateral incisor averages 2.5 mm or one fourth of the crown length.
I. T e crown of the maxillary central incisor averages 1.5 mm wider mesiodistally than faciolingually. T e crown of the maxillary lateral incisor averages only 0.4 mm wider mesiodistally than faciolingually.
J. T e narrowest tooth in the mouth is the mandibular central incisor and averages only five eighths, or 62% as wide as the maxillary central incisor.
K. Dr. Woelfel found two shallow labial developmental depressions on 48% of 793 mandibular central incisors and on 51% of 787 mandibular lateral incisors.
L. T e root-to-crown ratio for both types of mandibular incisors is 1.43 compared to 1.16 for the maxillary central incisor and 1.37 for the maxillary lateral.
M. T e curve of the CEJ on the mesial of the mandibular central incisor averaged 2.0 mm , which is 0.4 mm greater than on the distal. On the mandibular lateral incisor, the mesial CEJ curvature is 0.6 mm greater than the distal.
N. T e cervix of the root of the both types of mandibular incisor averages 2.0 mm wider faciolingually than mesiodistally.
O. Both types of mandibular incisor crowns average 0.4 mm wider labiolingually than mesiodistally.

2 Morphology of the Permanent Canines

Topics covered within the four sections of this chapter include the following:
I. General de scription of canines
A. Location of canines in the mouth
B. Functions of canines
II. Class traits of canines (both maxillary and mandibular)
A. Size of canines
B. Canine traits that are similar to incisor traits
C. Incisal ridges and cusp tips of canines
D. Labial contour of canines
E. Crown proportions of canines
III. Arch traits that differentiate maxillary from mandibular canines (from each view)
A. Canines from the labial view
B. Canines from the lingual view
C. Canines from the proximal views
D. Canines from the incisal view
IV. Interesting facts and variations in canine teeth

Chapter 3 focuses on class traits and arch traits of permanent canines. T e authors recommend that you copy Appendix pages 3 and 4 (front and back pages) located at the end of this book, or print out these pages from the online source (on thePoint') provided for this book, to facilitate study and minimize page turns. On page 3 of the Appendix, the maxillary right canine is used as a representative example for both types of canines when listing canine class traits, but be aware that there may be exceptions to the common incisor traits presented here, and these are emphasized with capital letters ("EXCEPT"). Appendix page 4 includes arch traits that differentiate maxillary from mandibular canines.

As you read this chapter, the word "Appendix" followed by a number and letter (e.g., Appendix 3a) is used
to denote the appendix page (page 3) and trait being referenced (trait a). Notice that the trait being summarized after each letter on an appendix page is summarized on the back of that Appendix page. Be aware these traits can vary considerably from mouth to mouth. It would be ideal if you could learn the similarities and differences of all canines while comparing models or extracted specimens of both maxillary and mandibular canines from the views indicated.

Finally, the statistics from Dr. Woelfel's original research that were used to draw conclusions throughout this chapter are referenced with superscript letters like this (data ${ }^{\mathrm{A}, \mathrm{B}}$, etc.) and refer to data presented at the end of this chapter.

sect ion i GeneRALDesc Ript io nof c An in es

Objectives fOr sectiOns iandii

These sections are designed to prepare the learner to perform the following:

- Describe the location of canines in the mouth.
- Describe the functions of canines.
- List the class traits that apply to all canines. Include the incisor class traits that also apply to the canines.

A. Lo cat ion of c An in es in the Mouth

Ideally, use a cast of all permanent teeth and Figure 3-1 while studying about the position of the canines within the arch. T ere are four canines: one on either side in the maxillary arch (Universal numbers 6 and 11) and one on either side of the mandibular arch (numbers 22 and 27). T ey are the longest of the permanent teeth. ${ }^{\mathrm{A}} \mathrm{T}$ e canines are distal to the lateral incisors and are the third teeth from the midline.

- From a selection of all permanent teeth (or from drawings or photographs of all teeth from various views), select and separate out the canines.

T e mesial surface of the canine is in contact with the distal surface of the lateral incisor. T e distal surface of each canine contacts the mesial surface of the first premolar. T e four canines are numbered in the mouth in Figure 3-2.

T e four canines are justifiably considered cornerstones of the arches, as they are located at the corners of the mouth or dental arches. T ey are often referred to as cuspids (having one cusp), but also as eyeteeth or fangs, both slang nicknames that should be discouraged. Frequently, the canines

RIGHT
LEFT

fiGu Re 3-2. Adult dentition in the mouth with the four canines labeled with their Universal numbers.
are often the last teeth to be lost from decay and periodontal disease. Have you known or seen an elderly person who is edentulous (toothless), except for one or more of the canines?

B. functions of c An in es

In dogs, cats, and other animals with long, prominent canine teeth, the functions of these teeth are for catching and tearing food and for defense. As a matter of fact,
caninus in Latin means "dog." Canines are essential to their survival. In human beings, these teeth usually function with the incisors (a) to support the lips and the facial muscles and (b) to cut, pierce, or shear food morsels. A steep overlap of the maxillary and mandibular canines, when present, serves as (c) a protective mechanism since, when the mandible moves to the side during function, the overlapping canines cause the posterior teeth to separate. T is is called canine guidance, and it relieves the premolars and molars from potentially damaging horizontal forces while chewing.

LEARn In G Ex ERCIs E

Touch your back teeth into the position where they best fit tightly together. Then move your lower jaw to the right. Not all people have canine guidance, but if you do, your back teeth should separate as you move the lower jaw to the right or left side. Do they? If they do, can you tell if it is the overlap of the canines that cause them to come apart? As you begin to move your lower jaw to the side, are the canines the only teeth that touch?

Refer to page 3 of the Appendix while studying the class traits (similarities) of most canines. Note that there may be exceptions to the common canine traits presented here, and these are emphasized with capital letters ("EXCEPT").

A. size of c An in es

On average, canines are the longest teeth in each arch. T e maxillary canine is the longest tooth in the mouth (Fig. 3-3), even though the mandibular canine crown is longer than the maxillary canine crown. (As for which crown is the longest in the mouth, there are two opinions. Authors Ash and Kraus state that the mandibular canine crown is the longest crown in the mouth, ${ }^{1,2}$ but Dr. Woelfel's study found that the maxillary incisor crown is longest.) Canines have particularly long roots $^{\mathrm{A}}$ and thick roots (faciolingually) that help to anchor them securely in the alveolar process. Because of their large, long roots, canines are good anchor teeth or abutments to attach replacements for lost teeth. As such, they often continue to function as a solid support for the replacement teeth for many years.

Table 3-4 at the end of this chapter provides all canine dimensions.

B. c An in e t RAit s th At ARe siMiLAR to in c is o Rt RAit s

Similar to most incisors (EXCEPT the symmetrical mandibular central, where contacts are at the same level), the distal contact area is more cervical in position than is the mesial contact area (Appendix 3g), and the crown outline is more convex on the distal than on the mesial surface (Appendix 3f). From the proximal views, canine crowns are wedge, or triangular, shaped (Appendix 30). Viewed from the proximal, the height of contour on the facial surface is in the cervical third and on the lingual surface is also in the cervical third on the cingulum (Appendix 3p). T e entire lingual outline is somewhat S shaped as on other anterior teeth, that is, convex in the cervical third over the cingulum and concave or fatter more incisally (Appendix 3q).

Further similarities with incisors include the following: crowns taper, narrowing from the contact areas toward the cervix (Appendix 3e); cervical lines on the facial and lingual curve toward the apex (Appendix 3m); cervical lines curve more incisally on the mesial than on the distal surface (compare mesial and distal views in Appendix 3n); and marginal ridges (as well as crowns) taper lingually from the contact areas toward the cingulum (Appendix 31), so the crown is
fiGu Re 3-3. This radiograph shows that the maxillary canines are the longest of all maxillary teeth. They are, in fact, the longest teeth in the mouth.

less bulky on the lingual half than on the facial half. From the incisal view, facial outlines are more broadly rounded than are lingual outlines (Appendix 3s), and the incisal edges extend from mesial to distal contact areas (Appendix 3r). Further, roots taper narrower from the facial toward the lingual, and taper narrower from the cervix toward the apex (Appendix 3h). If the root tip or apex bends, it is more often toward the distal (Appendix 3j). Roots are also longer than crowns ${ }^{\mathrm{C}}$ (Appendix 3 k).

T e location of incisal edge tooth wear on canines is similar to wear on incisors. Facets on the mandibular canine cusp tip and cusp ridges normally form more on the labial border, not the lingual border of the cusp ridge as occurs on the maxillary canine (Fig. 3-4). If you find wear facets on the lingual surface of a mandibular canine or on the labial surface

fiGu Re 3-4. A right mandibular canine has a very large wear facet on the labial surface, indicating that wear occurred from its contact with the opposing maxillary canine.
of a maxillary canine, it is probably because the teeth were not aligned with the normal overlapping of anterior teeth described in Chapter 1. If needed, refer back to Figure 2-6 for an illustration of this concept on incisors. In addition, maxillary canines viewed incisally often have a unique dia-mond-shaped wear pattern as seen in Figure 3-5 that does not occur on other anterior teeth.

c. incis AL RiDGes An Dcusptips of c An in es

Unlike incisors, which have a relatively straight, horizontal incisal ridge, the incisal ridge of a canine is divided into two inclines called a mesial and distal cusp ridge (also called cusp slopes or cusp arms). T ese two cusp ridges meet at an angle to form a cusp. Subsequently, the shape of canine crowns from the facial view resembles a five-sided pentagon (Appendix 3a). On both maxillary and mandibular canines, the mesial cusp ridge is shorter than the distal cusp ridge (Appendix 3b), although in older individuals, the lengths of the cusp ridges may be altered by wear. Canine teeth do not ordinarily have mamelons but may have a notch on either cusp ridge, as seen clearly in Figure 3-6.

fiGu Re 3-5. Maxillary canine (incisal view) showing a dia mondshaped pattern of incisal wear that is often found on this tooth.

fiGu Re 3-6. The labial view of this maxillary right canine has a prominent labial ridge with adjacent, subtle mesial and distal depressions, as well as notches on mesial and distal cusp ridges.

D. LABiAL contou R of c An in es

T e labial surface of a canine is prominently convex, often with a vertical, subtle labial ridge (Appendix 3c and Fig. 3-7). Canines are the only teeth with a labial ridge, although premolars have a similar-looking ridge called a buccal ridge.

fiGu Re 3-7. This right maxillary canine has a labial ridge, and also has the characteristic convex distal contact located in the middle third of the crown (the most cervical of all anterior teeth), and a slight concave outline just cervical to the distal contact.

e. c Rown pRo po Rt ions of c An in es

When viewed from the incisal, both types of canine crowns, maxillary and mandibular, are wider labiolingually than mesiodistally ${ }^{\mathrm{B}}$ (Appendix 3d). Recall that this proportion (greater labiolingually than mesiodistally) also applied to both types of mandibular incisors (but not maxillary incisors). T e root cervix measurements are proportionally even longer faciolingually than mesiodistally when compared to the crowns. ${ }^{B}$ Compare the root widths on the facial and mesial views in Appendix 3i.

ARch tRAitsthAt DiffeRentiAte Maxillary fRoM Mandibular c An in es (fRo MeAch View)

Objectives

This section is designed to prepare the learner to perform the following:

- Describe the arch traits that can be used to distinguish the permanent maxillary canines from mandibular canines.
- Describe and identify the labial, lingual, mesial, distal, and incisal surfaces for all canines.
- Assign Universal numbers to canines present in a mouth with a complete permanent dentition (or on a model or in an illustration) based on their shape and position in the quadrant.
- Select and separate canines from a selection of all teeth on a bench top.
- Holding a canine, determine whether it is a maxillary or mandibular and whether it belongs on the right or left side. Then picture it within the appropriate quadrant and assign a Universal number to it.

Unlike incisors where there are two types (a central and a lateral), there is only one type of canine. Therefore, type traits do not apply to canines, but arch traits are useful to distinguish maxillary from mandibular canines.

Have Appendix pages 3 and 4 available, and ideally have several extracted canines or models to study, and refer to Figure 3-8 as you read this section. Hold maxillary canines with crowns down and mandibular canines with crowns up. T is is the way they are oriented in the mouth.
fiGu Re 3-8. Labial views of canines with traits to distinguish maxillary from mandibular canines, and traits to distinguish rights from lefts. Several lines have been added to accentuate the continuous mesial contour of mandibular canines from crown to root, and the short, almost horizontal mesial cusp ridges of most mandibular canines.

CANINES: LABIAL VIEWS

traits tOdistin GUis H Ma XiLLarYfrOM MandibULar canine: LabiaLvieW

Ma XiLLar Ycanine
Crown wider mesiodistally
Cusp angle sharper, more acute (105 degrees)
Mesial cusp ridge shorter than distal

Mesial, distal proximal contacts more cervical
Mesial of crown bulges beyond root outline
More pronounced labial ridge
More pointed root tip

MandibULar canine
Crown narrower mesiodistally
Cusp angle more blunt (120 degrees)
Mesial cusp ridge much shorter than distal
Mesial cusp ridge almost horizontal
Mesial, distal proximal contacts more incisal
Mesial crown outline almost continuous with root with little or no bulge Less pronounced labial ridge
More blunt root tip
traits tOdifferentiate Ma XiLLarYriGHt fr OM Left canine: LabiaLvie W

Ma XiLLarYcanine	MandibULar canine
Crown outline more convex on distal	Crown outline more convex on distal, mesial crown outline aligns with root
	Mesial cusp ridge almost horizontal

Both have distal crown outline more convex than mesial crown outline.
Both have distal contact more cervical than mesial contact.
Both have mesial cusp ridge shorter than distal.

t ABLe 3-1	Guideline for Determining the n umber of Lobes for c anines		
To o TH n Am E	FACIAL Lo BEs	CIn GULUm FRo m o n E LIn GUAL Lo BE	To TAL no. o F Lo BEs
Maxillary canine	3	Yes	$3+1=4$
Mandibular canine	3	Yes	$3+1=4$

Rule: Number of lobes $=3$ facial lobes +1 lingual lobe for the cingulum, the same as for incisors.

A.
 c An in es fRo Mthe LABiAL View c anine Morphology (Labial View)

T e facial side of any canine crown is formed from three labial lobes like the incisors. (T e cingulum on the lingual side of the crown forms from the fourth lobe.) T e middle lobe on the facial forms the labial ridge (Appendix 3c), which can be quite prominent on the maxillary canine. T e labial ridge runs cervicoincisally near the center of the crown in the middle and incisal thirds. Shallow depressions may be evident mesial and distal to the labial ridge (recall Fig. 3-6). See Table 3-1 for a summary of the number of lobes that form canines.

The labial surface of a mandibular canine is more smooth and convex. A labial ridge may be present but not as pronounced as on the maxillary canines. In the incisal third, the labial crown surface is convex but slightly f attened mesial to the labial ridge and even a little more f attened distal to the ridge (best seen from the incisal view, but can be felt on the labial surface).

2. c anine s hape and size (Labial View)

When viewed from the labial, the mesial outline of the maxillary canine crown is broadly convex in the middle third, becoming nearly f at in the cervical third (Appendix 4b). T e outline of the distal portion of the maxillary canine crown may have a shallow S shape, being convex in the middle third
(over the height of contour or proximal contact area) and slightly concave in the cervical third (Fig. 3-7).

T e mandibular canine crown appears longer and narrower than does the crown of the maxillary canine ${ }^{D}$ (Appendix 4a). When viewed from the facial, the mesial outline of the mandibular crown is almost f at to slightly convex, nearly in line with the mesial outline of the root, and may not bulge or project beyond the mesial root outline (Appendix $4 b$ and Fig. 3-9A a nd B). T is conspicuous feature is also quite evident in most mandibular canines in Figure 3-8 but is not seen on maxillary canines. T e distal side of the crown may be slightly concave in the cervical third (Fig. 3-9B); it is convex in the incisal two thirds. T ere is noticeably more of the crown distal to the root axis line than mesial to it. T is often makes the lower canine crown appear to be tilted or bent distally when the root is held in a vertical position (similar to the mandibular lateral incisor just mesial to it).

3. canine cusp tip and incisal Ridges (Labial View)

Recall that the mesial cusp ridges are normally shorter than the distal ridges for all canines. T e cusp and cusp ridges of the maxillary canine make up nearly one third of the cervicoincisal length of the crown, because the angle formed by the cusp ridges is relatively sharp, slightly more than a right angle (105 degrees) (Appendix 4c). Compare this to the cusp tip of the mandibular canine, where cusp ridges form a less sharp, more obtuse (blunt) angle (120 degrees) (Appendix 4c).

A

B
fiGu Re 3-9. A. This right mandibular canine has the characteristic nearly horizontal mesial cusp ridge, and a mesial crown outline that is almost in line with the mesial root outline with practically no mesial crown convexity. B. This right mandibular canine has the characteristic nearly horizontal mesial cusp ridge, and a mesial crown outline that is in line with the mesial root outline and curved so that the crown actually appears to be tipped distally.

t ABLe 3-2 Location of proximal contacts (proximal height of contour) on canines (Best seen from facial View)

m Es IAL s URFACE (WHICH THIRD o R JUn CTIo n ?) DIs TAL s URFACE (WHICH THIRD o R JUn CTIo n ?)

Incisal/middle junction
Middle third (most cervical of anterior teeth)

Incisal third (just cervical to mesioincisal angle) Incisal/middle junction

General learning guidelines:

1. Distal proximal contacts for canines are more cervical than are mesial contacts.
2. Contacts of most anterior teeth are in the incisal third or incisal/middle junction EXCEPT the distal of maxillary canines (and maxillary lateral incisors), which are in or near the middle third.

Sharper maxillary canine cusps and less sharp mandibular cusps are evident in almost all canines in Figure 3-8. T e mesial cusp ridge of the mandibular canine is also almost horizontal compared to its longer distal cusp ridge, which slopes more steeply in an apical direction. Shorter, more horizontal mesial cusp ridges are seen clearly in Figure 3-9A and B and on most mandibular canines in Figure 3-8.

4. c anine proximal c ontact Areas (Labial View)

T e mesial contact area of the maxillary canine is located at the junction of the incisal and middle thirds. T e distal contact area of the maxillary canine, like all anterior teeth, is in a more cervical location on the distal side than on the mesial side. It is located in the middle third, often just cervical to the junction of the incisal and middle thirds (recall Appendix 3g and Fig. 3-7). T is is the only canine proximal contact area (mesial or distal) located in the middle third, and it is the most cervical contact of all anterior teeth.

T e mesial contact area of the mandibular canine is in a more incisal position than on the maxillary canine due to the more incisal, nearly horizontal mesial cusp ridge on the mandibular canine. It is in the incisal third just cervical to the mesioincisal angle. T e distal contact area is, as expected, more cervical than is the mesial, at the junction of the middle and incisal thirds (Fig. 3-9B). See Table 3-2 for a summary of the location of contact areas on canines.

5. c anine tooth proportions (Labial View)

T e maxillary canine is, on average, the longest tooth in the mouth, and has the longest root in the mouth. ${ }^{\mathrm{E}} \mathrm{T}$ e mandibular canine is, on average, the longest tooth in the mandible, and some authors state that it has the longest crown in the mouth (although Woelfel's research found that the maxillary central incisor has the longest crown). T e mandibular canine is considerably larger than either of the mandibular incisors, particularly in length and mesiodistal width. ${ }^{\text {F }}$

6. canine Root contour from the Labial View

T e labial surfaces of all canine roots are normally convex. T e root of the maxillary canine is slender, conical, and long (the longest root in the mouth). T e apical third is narrow mesiodistally, and the apex may be pointed or sharp. T e apical third of the root often bends distally (Appendix 3j). ${ }^{\text {G }}$ Most maxillary canine roots in Figure 3-8 are seen bending distally.

T e mandibular canine roots are, on average, shorter than the roots of maxillary canines. ${ }^{I}$ T ey taper apically to a somewhat more blunt apex that is more often straight rather than curving toward the mesial or distal. ${ }^{H}$ T erefore, on mandibular canines, the root curvature should not be used to differentiate rights and lefts.

B. c An in es fRo M the Lin Gu AL View

Refer to Figure 3-10 while studying similarities and differences of canines from the lingual view.

(1.) c a anine Lingual Ridges and fossae (Lingual View)

T e maxillary canine often has a prominent lingual ridge running cervicoincisally from the cusp to the cingulum that divides the lingual surface into two shallow fossae: a mesial fossa and a lingual fossa (Appendix 4d and Fig. 3-11). However, the lingual surface of the maxillary canine may also be naturally smooth or worn smooth from attrition so that the lingual ridge and the two fossae on either side of it are less prominent.

With normal occlusion, the lingual surface of the mandibular canine is not subject to lingual wear as on the maxillary canine, but even without wear, the marginal ridges, and lingual ridge and fossae (if present), are normally inconspicuous.

2. canine c ingulum (Lingual View)

T e maxillary canine cingulum is large. Its incisal border is sometimes pointed in the center, resembling a small cusp or

traits tOdistin GUis H Ma XiLLarYfr OM MandibULar canines: Lin GUaLvie W

Ma XiLLarycanine

 MandibULar canineMore prominent anatomy on lingual: Smoother lingual surface:

Lingual marginal ridges less pronounced
Less prominent lingual ridge and fossae
Prominent lingual ridge and fossae
Cingulum centered and prominent
traits tOdifferentiateriGHt fr OM Left canines: Lin GUaLvieW
MaXiLLarYcanine MandibULarcanine

fiGu Re 3-11. The lingual surface of this right maxillary canine has a prominent lingual ridge with adjacent mesial and distal fossae. The next most prominent ridge is the mesial marginal ridge, and the least prominent is the distal marginal ridge.
tubercle (seen in the second from the left maxillary canine in Fig. 3-10). T e cingulum and the tip of the cusp are usually centered mesiodistally (seen best from the incisal view in Appendix 4e). T e cingulum of the mandibular canine is low, less bulky, and less prominent than on maxillary canines. Unlike maxillary canines, the cingulum lies just distal to the root axis line. T is is most apparent from the incisal view in Appendix 4e. (Recall that the distal-to-midline location of the cingulum is also apparent on mandibular lateral incisors and on some maxillary central incisors.)
c a nine Marginal Ridges (Lingual View)
T e elevated mesial and distal marginal ridges of the maxillary canines are usually of moderate size. Prior to tooth wear, the lingual ridge is often most prominent, followed by the distal marginal ridge, and then the least prominent mesial marginal ridge (Fig. 3-11). ${ }^{\mathrm{J}} \mathrm{T}$ e mesial marginal ridge (extending from near the proximal contact area to the cingulum) is longer than the distal marginal ridge because of the more incisally located mesial contact area.

T e marginal ridges and lingual ridge of mandibular canines are not prominent, and much of the lingual surface appears smooth when compared to that of the maxillary canines (an arch trait). T e somewhat inconspicuous mesial marginal ridge may be longer and straighter than the shorter, more elevated, and curved distal marginal ridge. T e indistinct lingual ridge (if present) is seldom the most prominent ridge. ${ }^{\text {K }}$

4. Root c ontours of canines (Lingual View)

Maxillary and mandibular canine roots are usually convex on the lingual surface and are narrower mesiodistally on the
lingual half than on the labial half. T erefore, it is often possible to see both mesial and distal sides of the root and one or both of the proximal longitudinal root depressions from this view.

c. c An in es fRo Mthe pRoxiMAL Views

Refer to Figure 3-12 while studying the similarities and differences of canines from the mesial or distal views.

(1.) c anine o utline (proximal Views)

T e wedge-shaped or triangular-shaped maxillary canine crown from this view has a bulky (thick) cusp because of the prominent labial and lingual ridges. T e mandibular canine crown is also wedge shaped but thinner in the incisal portion than is the crown of the maxillary canine because of a less bulky lingual ridge (Fig. 3-12).

2. Location of c usp Ridges and c usp t ip of c anines (proximal Views)

T e incisal ridge and cusp tip of a maxillary canine are usually located labial to the mid-root axis line. T e incisal ridge and cusp tip of the mandibular canine are most often located slightly lingual to the root axis line, but they may be centered over it (Appendix 4h). T is is a good distinguishing trait between mandibular and maxillary canines. Observe this difference in cusp tip location (more labial on maxillary canines and more lingual on mandibular canines) in a majority of canines in Figure 3-12. Further, the distoincisal angle of the mandibular canine is slightly more lingual in position than the cusp tip because of the distolingual twist of the crown so that more of the lingual surface is visible from the mesial aspect, similar to the adjacent mandibular lateral incisors (seen in Fig. 3-13A but most easily appreciated from the incisal view on Appendix 4f).

(3. canine height of c ontour (proximal Views)

As with all teeth, the facial height of contour of the maxillary canine is in the cervical third of the crown, but it may not be as close to the cervical line as the corresponding curvature on the incisor teeth or on the mandibular canine. T e labial surface is much more convex than on the incisors. (Feel it and compare the curvatures of the incisors and the canines.)

T e height of contour of the facial surface of the mandibular canine crown is closer to the cervical line than on a maxillary canine, and may be almost nonexistent. There is an almost continuous crown-root outline on mandibular canines with minimal facial or lingual (cingulum) crown bulge when viewed from the proximal aspects (Fig. 3-13A and B). T is lack of discernible cervical crown bulge beyond the root facially and lingually is clearly evident in many mandibular canines in Figure 3-12. T is feature can be helpful when distinguishing mandibular from maxillary canines.
fiGu Re 3-12. Proximal views of canines with traits to distinguish maxillary from mandibular canines and traits to distinguish rights from lefts. Red lines indicate the root axis lines of a few teeth to show that maxillary canine cusp tips are likely to be located facial to this line, while the mandibular canine cusp tips are not.

Maxillary (Right) Mesial View

Mandibular (Right) Mesial View

CANINES: PROXIMAL VIEWS

Mandibular Right (Distal)

traits t Odistin GUis H Ma XiLLarYfrOMMandibULar canines: Pr OXiMaLvieWs

Ma XiLLarycanine

Cingulum more prominent
Cusp tip labial to root axis line Labial height of contour less cervical Labial height of contour more pronounced Incisal wear is more lingual, even in fossae Cusp tip appears thicker faciolingually

MandibULar canine
Cingulum less prominent
Cusp tip lingual to root axis line or centered
Labial height of contour closer to cervical line
Labial height of contour less pronounced, almost continuous with root Incisal wear more labial
Cusp tip appears less thick faciolingually
traits tOdifferentiateriGHt from Left canines: comparin GPr OXiMaLvieWs
MandibULar canine

Cervical line curves more on the mesial than distal surface
Distal root depression is more distinct than mesial
fiGu Re 3-13. A. The mesial surface of this right mandibular canine reveals a slight bit of the distal cusp ridge indicating a distolingual twist of the incisal edge. Typical of many canine roots, the lingual outline is more convex than is the labial. B . This proximal view of this mandibular canine shows the characteristic minimal amount of facial or lingual cervical bulge of the mandibular canine crown outline beyond the root outline.

A

B

As with all anterior teeth, the lingual heights of contour of all canines are usually in the cervical third, on the cingulum.

4. c a nine c ervical Line (proximal Views)

T e cervical lines of all canines from the proximal views normally curve incisally quite a bit. As on incisors, the curvature for all canines is greater on the mesial surface than on the distal surface, but the difference is less on canines than on incisors. ${ }^{\text {LM }}$

T e cervical line on mandibular canines appears to curve more incisally than on maxillary canines, which is accentuated by the fact that mandibular canine crowns are narrower faciolingually than are maxillary canines. However, the amount of curvature of the cervical lines of the mandibular canines varies considerably.
5. c anine Root shape and Depressions (proximal Views)

The labial outline of the roots of maxillary and mandibular canines is often slightly convex with the lingual outline more convex, although this varies. Both maxillary and mandibular canine roots most often have vertical longitudinal (cervicoapical) depressions on the mesial and distal surfaces, and the distal depressions are usually more distinct (deeper), especially on the lowers ${ }^{\text {N }}$ (seen in Fig. 3-13A and most evident when comparing the mesial and deeper distal surfaces of mandibular canine roots in Fig. 3-12). A summary of the location and relative depth of root depressions on canines is presented in Table 3-3.

t ABLe $3-3$	presence and Relative Depth of Longitudinal Root Depressions
m Es IAL Ro o T DEPREs s Io n?	DIs TAL Ro o T DEPREs s Io n?
Yes	Yes (deeper)
Yes Yes (deeper)	

[^2]fiGu Re 3-14. Incisal views of canines with traits to distinguish maxillary from mandibular canines and traits to distinguish rights from lefts. Arrows on many of these teeth indicate the characteristic concavity or fatness on the distal half of the facial surfaces.

Maxillary (Right)

CANINES: INCIS AL VIEWS

traits t Odistin GUis H Ma XiLLarYfrOM Mandib ULar canines : incisaLvie W

Ma XiLLarYcanine	MandibULar canine
More asymmetrical crown outline	More symmetrical crown outline
Slightly greater faciolingually than mesiodistally	Much greater faciolingually than mesiodistally
Distal half of crown pinched in faciolingually	Distal crown faciolingual pinch minimal
Cingulum centered	Cingulum to distal (or centered)
Incisal edge more horizontal mesiodistally	Incisal edge with distolingual twist
Facets on lingual-incisal or lingual surface	Facets on labial-incisal of cusp ridge
traits tOdifferentiateriGHt fr OM Left canines: incisaLview	
Ma XiLLar Y canine	MandibULar canine
More faciolingual bulk in mesial half	Cingulum often to distal Incisal ridge more lingual on distal half
Distal half of crown pinched faciolingually	Distal half of crown less likely pinched faciolingually

D. c An in es fRo Mthe in cis AL View

Refer to Figure 3-14 for a comparison of similarities and differences of canines from the incisal view. To follow this description, the tooth should be held so that the incisal edge (cusp tip) is toward the observer, the labial surface is at the top, and the observer is looking exactly down the mid-root axis line. You should see more of the lingual surface of the maxillary canine if, as usual, the cusp tip and the cusp ridges are labial to the mid-root axis line, and you should see more of the labial surface of mandibular canines if the cusp ridges are lingual to the mid-root axis line, as seen on most canines in Figure 3-14.

(1.) canine c rown proportions (incisal View)

On both maxillary and mandibular crowns, the faciolingual dimension is greater than the mesiodistal dimension (recall

Appendix 3d). However, the labiolingual dimension of the mandibular canine crown is more noticeably greater than on maxillary canines, resulting in a more oval appearance. ${ }^{\circ}$ T is characteristic oblong outline (noticeably longer labiolingually) is evident on most mandibular canines in Figure 3-14.
2. canine incisal edge (c usp tip) c ontour (incisal View)

T e incisal edge (made up of the cusp tip and mesial and distal cusp ridges) of the maxillary canine is located slightly labial to the labiolingual center of the root, and this edge is aligned almost horizontally (Appendix 4f).
T e cusp tip of the mandibular canine is near the center labiolingually, or it may be lingual to the center. When the tooth is held with the faciolingual axis of the cervix of the root exactly vertical, the distal cusp ridge is directed slightly

fiGu Re 3-15. The incisal view of this mandibular left canine has a slight distolingual twist of the incisal edge characteristic of many mandibular canines.
lingually from the cusp tip, placing the distoincisal angle in a position somewhat lingual to the position of the cusp tip resulting in a slight distolingual twist (similar to the adjacent mandibular lateral incisor and to some maxillary central incisors) (seen in Fig. 3-15 and Appendix 4f). T is distolingual twist appears to "bend" the distal cusp ridge to follow the curvature of the dental arch.

3. c anine c ingulum and Lingual Ridge (incisal View)

T e maxillary canine cingulum is large and is located in the center mesiodistally (Appendix 4e). On the lingual outline of the mandibular canine, the height (crest) of contour of the cingulum is centered or slightly distal to the centerline (Appendix 4e).

T e lingual ridge of the maxillary canine divides the lingual surface in half with a shallow fossa on each side (Appendix 4d). T is ridge and these fossae are less evident on the mandibular canine.

4. c anine Labial c ontour (incisal View)

T e labial outline of the maxillary canine is convex, more than either type of maxillary incisor, since the labial ridge is often quite prominent, but the crown outline is not symmetrical. T e mesial half of the labial outline is quite convex, whereas the distal half of the labial outline is frequently somewhat concave or f at, giving this distal portion of the crown the appearance that it has been "pinched in" on the facial surface, making it almost fat or concave (Appendix 4 g and Fig. 3-16). T is observation is most helpful and is a reliable guide in determining right from left maxillary canines and is highlighted on many upper canines in Figure 3-14.

T e outline of the mandibular canine crown is more symmetrical than is that of a maxillary canine crown. However, the labial crown outline mesial to the centerline is noticeably more convex, whereas the labial outline distal to the center is more f at.

fiGu Re 3-16. This maxillary canine has a concavity on the distal half of the facial outline ("pinched in") making the distal half of many canines, especially maxillary canines, thinner faciolingually than the mesial half.

LEARn In G Ex ERCIs E

Assign a Universal number to a handheld tooth:
A patient just had all of his permanent teeth extracted. Imagine being asked to find tooth 6 from among a pile of 32 extracted teeth on the oral surgeon's tray because you want to evaluate a lesion on the root of that canine that was seen on the x-rays. How might you go about it? Try the following steps:

- From a number of extracted teeth or tooth models, select the canines based on class traits.
- Determine whether the canine is maxillary or mandibular. You should never rely on only one characteristic difference between teeth to name them; rather, make a list of many arch traits that suggest the tooth is a maxillary canine as opposed to only one trait that makes you think it belongs in the mandible. Refer to the arch traits in Figures 3-8, $3-10,3-12$, and 3-14 as needed.
- If you determine that the tooth is maxillary, position the root up; if it is mandibular, position the root down.
- With the tooth aligned correctly, use characteristic traits for each surface to identify the facial surface. This will permit you to view the tooth as though you were looking into a patient's mouth.
- Finally, determine which surface is the mesial. (Refer to the right/left traits in Figures 3-8, 3-10, 3-12, and 3-14 as needed.) While viewing the tooth from the facial and picturing it within the appropriate arch (upper or lower), the mesial surface can be positioned toward the midline in only one quadrant, the right or left.
- Once you have determined the quadrant, assign the appropriate Universal number for the canine in that quadrant. For example, the canine in the upper right quadrant is tooth 6 .

section iV
 in teRest in G fActs An D VARiAt io $n s$ in c An in e teet h

T e name canine is of Greek origin and is found in the writings of Hippocrates and Aristotle of 2350 years ago. Aristotle first described canine anatomy, stressing the intermediate nature of it between incisors and molars. About 2000 years ago, Celsus was the first writer to mention the roots of teeth, saying the canine was monoradicular (i.e., normally having one root). ${ }^{3,4}$

A conspicuous but rare variation in canine teeth is found in a mandibular canine tooth with the root divided into labial and lingual roots. T ese roots may be split only in the apical third, or the split may extend into the cervical third of the root (Fig. 3-17).

Although the maxillary and mandibular canines are most often the longest teeth in their respective arches, observe the enormous variation in size and shape among several maxillary and mandibular canines in Figure 3-18. ${ }^{\text {P }}$

fiGu Re 3-17. Two unusual mandibular canines, each with a split (bifurcated) root that has a facial and lingual root tip.

fiGu Re 3-18. Canines of differing size reveal tremendous
variation in the length of canines.

A maxillary canine with an unusual notch on its mesial cusp slope is seen in Figure 3-19. An unusual canine with a shovel-shaped lingual surface is evident on tooth 11 in Figure 3-20. Other anomalies will be described in Chapter 11.

Perhaps the most unique canines of all occur on the male Babirusa (type of wild boar) seen in Figure 3-21. Its two enormous maxillary canines curve backward, piercing the bony snout on each side. T en, they curve in a large arc upward, backward, and finally down toward the forehead. T ese unusual maxillary canines serve only to protect the boar's eyes and upper face. T e Babirusa's mandibular canines are also very large and tusk-like, and curve up and back, possibly serving to protect the side of the face and for fighting or piercing food when the jaw is opened wide.

fiGu Re 3-19. Maxillary right canine with an unusual deep notch in the mesial cusp ridge.

fiGu Re 3-20. Maxillary left canine (arrow) with unusual shovelshaped lingual anatomy (very prominent marginal ridges).

fiGu Re 3-21. A male Babirusa (type of wild boar) with extremely unique canines that actually pierce the upper lip and bony snout on each side.

ReView Questions

For each trait described below, indicate the letter of the best response from the five selections provided. Each trait has only one best answer.
a. Maxillary central incisor
b. Maxillary canine
c. Mandibular canine
d. All of the above
e. None of the above

1. T is tooth exhibits less cervical line curvature on the distal aspect than on the mesial aspect.
2. T e cingulum is centered mesiodistally.

a	b	c	d	e
a	b	c	d	e
a	b	c	d	e
a	b	c	d	e
a	b	c	d	e
a	b	c	d	e
a	b	c	d	e
a	b	c	d	e

9. T e mesial and distal marginal ridges are aligned more vertically than horizontally on the lingual surface.
10. T e teeth (tooth) develop(s) from four lobes.
$\begin{array}{lllll}a & b & c & d & e\end{array}$
11. T e teeth (tooth) develop(s) from three lobes.
12. T ere is an almost continuous crown-root outline on the mesial surface of this tooth.
13. T e mesial contact area is located more incisally than is the distal contact area on the same tooth.
14. T e cusp tip is positioned lingual to the mid-root axis line from the proximal view.
15. Mamelons could be observed on this tooth.
16. On which tooth is the cusp angle most acute?
17. T e mesiodistal width of this tooth is greater than its labiolingual width.
b c d e
$\mathrm{e}-11 ; \mathrm{d}-01 ; \mathrm{d}-9 ; \mathrm{a}-8 ; \mathrm{b}-7 ; \mathrm{a}-6 ; \mathrm{c}-5 ; \mathrm{d}-4 ; \mathrm{c}-3 ; \mathrm{b}-2 ; \mathrm{d}-1$: s Re ws nA

Rit ic AL Thinking

1. T e only way to master the many traits of the canine presented in this chapter is to be able to picture each trait in your mind for maxillary and mandibular canines, and for each side of the mouth. T erefore, even though you have probably already looked carefully at each illustration in this chapter, at this time reread the legends and study each figure in this chapter. If any facts are unclear, review the portion of the chapter that referred to that figure. Also, use the front and back of Appendix pages 3 and 4 to review all identified traits of canines.
2. While viewing a model or a picture of the facial surface of a mandibular le $\dot{\alpha}$ canine, list as many traits as possible that you can use to differentiate the right side of the tooth from the left side within two columns labeled right side and left side. For example, under left side of the tooth as you view the mouth from the facial, you could write that the left (mesial) cusp ridge is almost horizontal. T en repeat all of the traits using the terms mesial and distal.
3. Repeat exercise $\# 2$ when viewing the lingual view of the maxillary right canine.
4. Search on a computer for images of "people with tribal tooth sharpening," and select five images to answer the following questions:

- What are the Universal tooth numbers of the teeth you think have been reshaped? Do you think that the reshaping has added to the beauty of the person?

5. Search on a computer for images of "people with fangs," and select five images in order to answer the following questions.

- What teeth are exaggerated in sharpness? Can you tell if the pointy teeth are real or fake? Perhaps the term "fang" is not a good word to use when speaking of canines.

6. Search on a computer for images of "people with missing lateral incisors," and select five images in order to answer the following questions.

- Are the spaces where the lateral incisors would normally be located still present? T ese spaces could have been "filled in" by using braces to reposition the canines into the spaces, or by replacing the lost teeth with artificial teeth (like a bridge or an implant). If there are no spaces, does the tooth in place of the lateral incisor look more like a lateral incisor or a canine? Also, be aware that canines can be made to look somewhat like lateral incisors by reshaping some of the hard outer enamel, or a canine could have a crown that is shaped more like a lateral incisor. Can you tell if the teeth in place of the missing laterals have been reshaped or crowned?

REFEREn CEs

1. Ash MM, Nelson SJ. Wheeler's dental anatomy, physiology and occlusion. Philadelphia, PA: Saunders, 2003.
2. Kraus RE, Abrams L. Kraus' dental anatomy and occlusion. Oxford, UK: Wolfe Publishing Ltd, 1992.
3. Cootjans G. T e cuspid in Greaco-Latin literature. Rev Belge Med Dent 1971;26(3):387-392.
4. Year book of dentistry. Chicago, IL: Year Book Medical Publishers, 1973:354.

GEn ERAL REFEREn CEs

Taylor RMS. Variations in form of human teeth:II. An anthropologic and forensic study of maxillary canines. J Dent Res 1969;48: 173-182.

Statistics obtained from Dr. Woelfel's original research on teeth have been used to draw conclusions throughout this chapter and were referenced with superscript letters that refer to the data stated here. Table 3-4 has the data for canines from the original research by Dr. Woelfel.
A. Maxillary canines averaged 26.3 mm long, and mandibular canines averaged 25.9 mm long. Canine roots averaged 16.2 mm long.
B. Based on 637 teeth, maxillary canine crowns averaged longer faciolingually than mesiodistally by 0.5 mm , and for mandibular canines, by 0.9 mm . At the cervix
of the root, this difference was 2.0 mm on maxillary canines and 2.3 mm on mandibular canines.
C. T e root-to-crown ratio on maxillary canines averaged 1.56, and for mandibular canines, averaged 1.45.
D. T e mandibular canine crown averaged 0.4 mm longer and 0.8 mm narrower than the maxillary canine crown based on averages from 637 teeth.
E. T e root of the maxillary canine averaged 3.5 mm longer than the root of the maxillary central incisor based on 719 teeth.
F. The mandibular canine averaged 4.4 mm longer than the mandibular incisors and 1.3 mm wider mesiodistally.
G. On 100 maxillary canine roots examined by Dr. Woelfel, 58% bent distally, 24% were straight, and 18% had the apical end of their roots bending slightly toward the mesial.
H. On 100 mandibular canines inspected by Dr. Woelfel, 45% had absolutely straight roots, 29% had the apical third bending mesially, and 26% bent slightly toward the distal.
I. Based on 637 teeth, maxillary canine roots averaged 0.6 mm longer than mandibular canine roots.
J. Dr. Woelfel's dental hygiene students inspected 455 maxillary canines on dental stone casts. T e lingual ridge was found to be the most elevated of the three lingual ridges 46% of the time, the distal ridge was most elevated 36% of the time, and the mesial marginal ridge was most elevated only 18% of the time.
K. Of 244 mandibular canines on dental stone casts inspected by dental hygiene students, the distal marginal ridge was the most prominent of the three lingual ridges on 63% of the teeth and the mesial marginal ridge was the most prominent on only 18%. T e lingual ridge was most prominent only on 19% of these unworn lingual surfaces.
L. Of the 321 maxillary canines measured by Dr. Woelfel's dental hygiene students, the mesial CEJ (cementoenamel junction) curvature averaged 2.1 mm , with a range from 0.3 to 4.0 mm ; the distal CEJ curvature averaged 1.4 mm , with a range of 0.2 to 3.5 mm . Such wide variability is not unusual.
M. Based on 637 canines, mandibular canine crowns average 0.4 mm narrower faciolingually than maxillary canine crowns. Cervical line curves on mandibular canines varied from 0.2 mm (almost fat) to 4.8 mm . Based on 316 mandibular canines, the mesial
curvature averaged 2.4 mm while the distal curve averaged only 1.6 mm , making the curve 0.8 mm less on the distal surface.
N. Based on 100 maxillary canines examined by Dr. Woelfel, 70% had a longitudinal depression on the mesial root surface (six fairly deep), 23% were f at, and only 8% had convex mesial middle third root surfaces with no depression. On the distal, 90% had a longitudinal depression on the distal surface (20% were rather deep), and only 10% had no distal root depression. On 100 mandibular canines examined, 88% had a longitudinal mesial root depression (28% were fairly deep), 8% were f at, and 4% were considered to be convex. On the distal, 97% had a longitudinal depression on the distal surface (40% were fairly deep), and only 3% had fat distal root surfaces. None of the distal root surfaces was judged to be convex on the middle third of the root.
O. Based on 316 teeth, the crown of the maxillary canine averages 0.5 mm longer faciolingually than mesiodistally, and the crown of the mandibular canine averages 0.9 mm wider faciolingually than mesiodistally.
P. Referring to the measurements of 637 canines in Table 3-4 under the range column, maxillary canine crowns from shortest to longest varied by 5.4 mm , root length differed by 17.7 mm , and overall length differed by 18.4 mm . In the 1962 issue of the Journal of the North Carolina Dental Society (46:10), there was a report of an extraction, without incident, of a maxillary left canine 47 mm long. On mandibular canines, crown length, root length, and overall length ranges varied by $9.6,12.7$, and 18.4 mm , respectively. Can you imagine one mandibular canine with a crown 9.6 mm longer than another one? T e shortest mandibular canine (cusp tip to root apex) was only 16.1 mm long. Two of the mandibular canine crowns in Figure 3-18 are that long. See if you can spot these teeth.
t ABLe 3-4 size of canines (Measured by Dr. w oelfel and h is Dental h ygiene students, 1974-1979)

DIm Ens Ion m EAs URED	321 m Ax ILLARy CAn In Es		316 m An DIBULAR CAn In Es	
	AVERAGE (mm)	RAn GE (mm)	AVERAGE (mm)	RAn GE (mm)
Crown length	10.6	8.2-13.6	$11.0^{\text {a }}$	6.8-16.4
Root length	16.5 longest root in mouth	10.8-28.5	15.9	$9.5-22.2$
Overall length	26.4 longest tooth in mouth	20.0-38.4	25.9	16.1-34.5
Crown width (mesiodistal)	7.6	6.3-9.5	6.8	5.7-8.6
Root width (cervix)	5.6	3.6-7.3	5.2	4.1-6.4
Faciolingual crown size	8.1	6.7-10.7	7.7	6.4-9.5
Faciolingual root (cervix)	7.6	6.1-10.4	7.5	5.8-9.4
Mesial cervical curve	2.1	0.3-4.0	2.4	0.2-4.8
Distal cervical curve	1.4	0.2-3.5	1.6	0.2-3.5

[^3]
4
 Morphology of Premolars

Topics covered within the five sections of this chapter include the following:
I. General description of premolars
A. Location of premolars in the mouth
B. Functions of premolars
II. Class traits that apply to most premolars
A. Class traits of most premolars that are similar to anterior teeth
B. Class traits of most premolars that differ from anterior teeth
III. Arch traits that differentiate maxillary from mandibular premolars
A. Lingual crown tilt in mandibular, not maxillary premolars
B. Distal crown tilt in mandibular premolars
C. Cusp size and location
D. Buccal ridge prominence
E. Crown proportions

IV. Type traits that distinguish maxillary frst from second premolars

A. Type traits of maxillary premolars from the buccal view
B. Type traits of maxillary premolars from the lingual view
C. Type traits of maxillary premolars from the proximal views
D. Type traits of maxillary premolars from the occlusal view
V. Type traits that differentiate mandibular frst from second premolars
A. Type traits of mandibular premolars from the buccal view
B. Type traits of mandibular premolars from the lingual view
C. Type traits of mandibular premolars from the proximal views
D. Type traits of mandibular premolars from the occlusal view

Chapter 4 focuses on class traits and type traits of permanent premolars. On page 5 of the Appendix, the right maxillary second premolar is used as a representative example for all premolars when listing premolar class traits, but be aware that there may be exceptions to the common premolar traits presented here, and these are emphasized with capital letters ("EXCEPT"). Appendix page 6 includes arch and type traits that differentiate both types of premolars in each arch.

As you read this chapter, the word "Appendix" followed by a number and letter (e.g., Appendix 5a) is used to denote the Appendix page (page 5) and trait being referenced (trait a). Notice that the trait being summarized after each letter on an appendix page is summarized on the back of that Appendix page.
T ere is a great amount of variation in the morphologic details of mandibular premolars, so to list all of the frequent variations would lead to confusion rather than to clarification. Bear in mind while studying these teeth that one description will not exactly fit every tooth. ${ }^{1-3}$ Descriptions in this chapter are for unworn teeth. Most extracted tooth specimens will have signs of attrition, and some will show evidence of tooth decay. It would be ideal if you could learn the similarities and differences of all premolars while comparing models or extracted specimens of both types of premolars from each arch.

Finally, the statistics from Dr. Woelfel's original research that were used to draw conclusions throughout this chapter are referenced with superscript letters like this (data ${ }^{\mathrm{A}, \mathrm{B}, \text { etc. }}$) and refer to data presented at the end of this chapter.

SECTION I GENEr al DESCr Ip TION Of pr EmOl ar S

Objectives fOr sectiOns i, ii, and iii

These three sections are designed to prepare the learner to perform the following:

- Describe the location of premolars in the mouth.
- Describe the functions of premolars.
- List class traits common to all premolars.
- List arch traits that can be used to distinguish maxillary from mandibular premolars.
- From a selection of all teeth, select and separate out the premolars using class traits.
- Divide a selection of all premolars into maxillary and mandibular using arch traits.

a. 10CaTION Of pr EmOl ar S IN Th E mOu Th

Since the prefix "pre-" means "before" or "in front of," premolar is the term used to designate the teeth in the permanent dentition that are positioned just in front of the molars (and
posterior to canines). T ere are eight premolars: four in the maxillary arch and four in the mandibular arch (Fig. 4-1). T ey are the fourth and fifth teeth from the midline in each quadrant. Maxillary premolars can be identified by the Universal Numbering System as teeth numbers 5 and 12 (maxillary right and left first premolars, respectively) and teeth 4 and 13

RIGHT

LEFT

fIGur E 4-2. With the cheek pulled back, these teeth on the left side reveal the maxillary first and second premolars (teeth 12 and 13) and the mandibular first and second premolars (teeth 21 and 20).
(maxillary right and left second premolars, respectively). T e mandibular right and left first premolars are teeth 28 and 21, respectively, and the mandibular right and left second premolars are teeth 29 and 20, respectively. Premolars are numbered on the right side of the mouth in Figure 4-2.

T e mesial surfaces of first premolars contact the distal surfaces of adjacent canines, whereas distal surfaces contact the mesial surfaces of adjacent second premolars. T e distal surfaces of second premolars are in contact with the mesial surfaces of adjacent first molars.

fIGur E 4-3. A missing premolar can affect the esthetics of a big smile.

B. fu NCTIONS Of pr EmOl ar S

Premolars (upper and lower) function with molars (a) to chew food and (b) to maintain the vertical dimension of the face (between the nose and chin). First premolars (c) assist the canines in shearing or cutting food morsels, and all premolars (d) support the corners of the mouth and cheeks to keep them from sagging. T is is more discernible in older people. Patients who unfortunately have lost all of their molars can still chew adequately if they still have four to eight occluding premolars. However, it is very noticeable when a person smiles if one or more maxillary premolars are missing (Fig. 4-3).

SECTION II ClaSS Tr a ITS ThaT apply TO mOST pr EmOl ar S

a. ClaSS Tr a ITS Of mOST pr EmOl ar S Th a T ar E SIm Il ar TO a NTEr IOr TEETh
(1. most anterior Teeth and premolars Develop from four lobes

Like all anterior teeth, the facial surfaces of all premolars develop from three facial lobes, usually evidenced by three prominences: a central buccal ridge (Appendix 5a) and a mesial and distal portion separated by two shallow, vertical depressions (Fig. 4-4). T e prominent buccal ridge on the maxillary first premolar is similar to the pronounced labial ridge on the maxillary canine. Also, the lingual surfaces of most premolars (like all anterior teeth) develop from one lingual lobe. In premolars, this lobe forms one lingual cusp; in anterior teeth, it forms the cingulum (recall Fig. 1-62). An EXCEPTION is a common variation of the mandibular second premolar, the three-cusp type, which has one buccal and two lingual cusps. T e facial cusp still develops from three facial lobes, but the two lingual cusps form from two lingual lobes, one lobe for each lingual cusp. Due to this variation of the mandibular second premolar with three cusps, the term bicuspid (referring to two cusps) is hardly appropriate for this group of teeth. See Table 4-1 for a summary of the number of lobes forming each type of premolar.

fIGur E4-4. Mandibular right premolar with a prominent buccal ridge showing evidence of formation by three buccal lobes.

E 4-1 Guideline for Determining the Number of lobes for premolars ${ }^{a}$			
To o TH NAm E	No. of BUCCAl 1 obEs	No. o F 1 INGUAl CUs Ps	To TAl No. o F lo BEs
Maxillary first premolar	3	1 lingual	$3+1=4$
Maxillary second premolar	3	1 lingual	$3+1=4$
Mandibular first premolar	3	1 lingual	$3+1=4$
Mandibular second premolar, two-cusp type	3	1 lingual	$3+1=4$
Mandibular second premolar, three-cusp type	3	2 lingual	$3+2=5$

${ }^{\text {a }}$ Number of lobes $=3$ facial lobes form the facial cusp +1 lobe per each lingual cusp.
2. Crown Shape Similarities to anterior Teeth
a. Crowns Taper Narrower toward the Cervical

From the facial, all premolar and anterior crowns are narrower in the cervical third than more occlusally or incisally (Appendix 5 m). T is is because the widest proximal crests (height) of contour (or contact areas) are located in the occlusal or the middle thirds on posterior teeth (similar to the location on anterior teeth in the incisal to middle thirds).

b. Crowns Taper Narrower to the Lingual

When viewed from the occlusal or incisal, there is less bulk in the lingual half than in the facial half (Appendix 5r). Said another way, premolar and anterior crowns are narrower mesiodistally in the lingual half than in the facial half, EXCEPT some three-cusped mandibular second premolars (with two lingual cusps) where the lingual half is equal to, or wider than, the buccal half (seen later in Fig. 4-33).

c. Distal Contacts Are More Cervical Than Are Mesial Contacts

When viewed from the facial, both mesial and distal sides of the crown are convex around the contact areas. As on most anterior teeth, the distal contacts of most premolars are more cervical than are the mesial contacts (Appendix 5e). Two EXCEPTIONS are the mandibular central incisor where the mesial and distal contacts are at the same level due to the crown symmetry and the mandibular first premolar, where mesial contacts are more cervical than are distal contacts.

3. Cervical 1 ine Curvature

As on all anterior teeth, cervical lines of all premolars, when viewed from the proximal, curve toward the biting surfaces (occlusal or incisal) (Appendix 5o), and the amount of curvature is slightly greater on the mesial than
on the distal surface. However, the amount of curvature is less on posterior teeth than on anterior teeth. When viewed from the facial or lingual, cervical lines of all anterior teeth and premolars are curved toward the apex (Appendix 5n).

4. r oot Shape

Like on all anterior teeth, the root surfaces of premolars with one root are convex on the facial and on the lingual and taper apically (Appendix 5q). Also, these roots taper toward the lingual, resulting in a narrower lingual bulk of the root mesiodistally compared to its buccal bulk (or, in the case of the two-rooted maxillary premolar, the lingual root is less bulky than the buccal root). When the apical third of the root is bent, it is most often bent distally (Appendix 5p). Notice the similarities in root and crown taper and cervical line curvature on incisors, canines, and premolars when the incisal/ occlusal third has been removed in Figure 4-5.

fIGur E4-5. Facial views of an incisor, canine, and premolar with the incisal/ occlusal thirds of the crowns removed. Notice the similarities in crown taper toward the cervical line, root taper toward the apex, and cervical line contour on these three classes of teeth.

B. Cl a SS Tr a ITS Of mOST pr EmOl ar S

 Th aT DIffer fr Om aNTEr IOr TEETh Tooth Surface TerminologyCompared to the anterior teeth, the facial surfaces of the posterior teeth can be called buccal (resting against the cheeks) instead of labial, although this surface on all teeth could be called the facial surface. Further, posterior teeth (premolars and molars) have occlusal surfaces instead of incisal ridges. T ese occlusal surfaces have multiple cusps, ridges, fossae, and grooves.

2. premolars have Cusps versus Incisal Edges

Unlike anterior teeth with incisal edges (or cusp ridges on canines) and a lingual cingulum, premolars have one buccal cusp, and most have one lingual cusp (Appendix 5b). The EXCEPTION is the more common form of mandibular second premolars, which has two lingual cusps. ${ }^{\text {A }}$

3. Crown and root length

Premolar crowns in both arches are on average shorter than crowns of anterior teeth, ${ }^{\text {B }}$ but first premolar crowns are slightly longer than second premolars. In other words, there is a gradation in size in each quadrant from the longer canine crown to the shorter first premolar and then the even shorter second premolar crown.

Roots on maxillary and mandibular premolars are considerably shorter than on canines in the same arch. ${ }^{\text {C }}$ Complete data on premolar crown and root dimensions can be found in Tables 4-5A and 4-5B at the end of this chapter.

4. Crown Shape

a. Pentagon Crown Outline

Similar to canines, the outline of a premolar crown from the facial view is shaped like a five-sided pentagon: with two cusp ridges that join at the cusp tip and mesial and distal crown outlines that are nearly straight or slightly convex and taper narrower from contact areas to the cervical line (Appendix 5g).

b. Location and Shape of Premolar Cusp Tips

As on canines, when viewed from the facial, the tip of the facial cusp of a premolar is most often slightly mesial to the vertical root axis line of the tooth (Appendix 5h). Consequently, the mesial cusp ridge is shorter than the distal cusp ridge (Appendix 5i). T e EXCEPTION to this general rule is on the maxillary first premolar where the
facial cusp tip is located slightly to the distal of the root axis line so the mesial cusp ridge is longer than the distal. T e lingual cusp tips on most premolars are located mesial to or on the root axis line EXCEPT on mandibular first premolars where it may be positioned distal or mesial to the root axis line.

c. Proximal Contacts and Tooth Proportions from the Occlusal View

Proximal contacts from the occlusal view are either on or most often slightly buccal to the faciolingual midline of the crown (Appendix 5f). When viewed from the occlusal, all types of premolars are normally wider faciolingually than mesiodistally ${ }^{\text {D }}$ (Appendix 5k), just like the majority of anterior teeth from the incisal view (EXCEPT maxillary central and lateral incisors).

d. Proximal Contacts and Marginal Ridges Are Most Often More Cervical on the Distal

When viewed from the buccal, both proximal contact areas on premolars are generally more cervically located and broader than on anterior teeth. As on most anterior teeth, distal contacts of most premolars are more cervical than mesial contacts (Appendix 5e) EXCEPT on mandibular first premolars, where mesial contacts are more cervical than distal contacts. Mesial proximal contacts of most premolars are located in the middle third or at the junction of the occlusal and middle thirds, and the distal contacts are located more cervically, in the middle third EXCEPT on mandibular first premolars where the distal contacts are in the occlusal third, more occlusal than on the mesial.

T e relative height of the mesial and distal marginal ridge on most premolars is similar to the relative height of the proximal contact areas. T e mesial marginal ridge is more occlusally positioned than the distal marginal ridge, so if you first look at the mesial side and compare it to the distal side of this tooth, you would see less of the occlusal surface and triangular ridges from the mesial view (compare mesial and distal surfaces in Appendix 5j). An EXCEPTION is, once again, on mandibular first premolars where the distal marginal ridge is in a more occlusal position than the mesial marginal ridge.

e. Facial and Lingual Crests of Curvature

From both mesial and distal aspects, the buccal crests of curvature of premolar crowns are in the cervical third, like on anterior teeth. However, the crests of curvature are farther from the cervical line than the corresponding crests of curvature on the anterior teeth (Appendix 5d). In other words, the greatest facial bulge is farther from the cervical line on premolars. An EXCEPTION is the buccal crest of curvature of the mandibular first premolar, which may be located as

fIGur E 4-6. maxillary and mandibular second premolars. A. Typical two-cusp-type maxillary second premolar with two triangular ridges, one on the buccal cusp and one on the lingual cusp, joining to form one longer transverse ridge. The adjacent mesial triangular fossa is bounded by these triangular ridges on one side and the mesial marginal ridge on the other. B. The mandibular second premolar, three-cusp type, is UNIQUE since it is the only premolar that has three triangular ridges (one per cusp), and these ridges do NOT join to form a transverse ridge.
far cervically as on anterior teeth. T e location of the lingual crest of curvature for premolars is most often located in the middle third occlusocervically compared to the cervical third on anterior teeth.

5. r idges and Grooves

a. Marginal Ridge Orientation

T e marginal ridges of most premolars are oriented in a somewhat horizontal plane versus a more vertical, lingually sloping plane on anterior teeth (Appendix 5c). However, an EXCEPTION is the mesial marginal ridge of the mandibular first premolar that is aligned almost halfway between horizontal and vertical (Appendix 6s).
b. Cusp Ridges and Marginal Ridges Bound the Occlusal Table

Like canine cusps, premolar cusps (buccal and lingual) have mesial and distal cusp ridges. On premolars, the cusp ridges of buccal and lingual cusps merge with the marginal ridges to surround the portion of the tooth known as the occlusal table or occlusal surface (inside of the dotted lines on Appendix 51).

c. Most Triangular Ridges Join to Form Transverse Ridges

Recall that most cusps on posterior teeth have a triangular ridge that slopes toward the occlusal sulcus. On premolars with only two cusps, the two triangular ridges, one on the buccal cusp and one on the lingual cusp, converge at the central groove to join together to form a transverse ridge, which can be best observed from the occlusal aspect (Fig. 4-6A). EXCEPTION: Note that on three-cusped
mandibular second premolars, the three triangular ridges do not line up and so do not form a transverse ridge (Fig. 4-6B).

d. Grooves and Fossae

A groove runs mesiodistally across the occlusal surface from a mesial fossa to a distal fossa on most premolars. A central groove is labeled in Figure 4-6A. An EXCEPTION is the mandibular first premolar, which has a pronounced transverse ridge and no central groove crossing it (Figs. 4-7 and 4-8A). Mesial and distal fossae are bounded on one side by the buccal and lingual triangular ridges (or transverse ridge) and on the other side by a marginal ridge.

fIGur E 4-7. This left mandibular first premolar has a pronounced transverse ridge but no central groove connecting the mesial and distal fossae.

A

B
fiGur E4-8. A. Two first mandibular premolars with pronounced transverse ridges but with no central grooves. Note the obvious lingual tilt of the crown relative to the root, which is a trait for all mandibular premolars. B. The crown of this maxillary premolar is aligned directly over the root, a trait of all maxillary premolars.

Refer to Appendix page 6 while reading about differences between maxillary and mandibular premolars.

In the same mouth, maxillary first and second premolars appear more alike than do first and second mandibular premolars.

a. 1 INGual Cr OwN TilT IN maNDIBular, NOT maxill ary pr EmOl ar S

Mandibular premolar crowns from the proximal view appear to be tilted lingually relative to their roots (the first premolar noticeably more than the second) (Appendix 6a and Fig. 4-8A). T is lingual tilting of the crown is characteristic of all mandibular posterior teeth and enables their buccal cusps to fit and function into the sulcus of the opposing maxillary teeth. Due to the crown tilt to the lingual on both types of mandibular premolars, they are shaped like a rhomboid from the proximal view (Appendix 6b). A rhomboid is a four-sided figure with opposite sides parallel to one another, like a parallelogram.

Maxillary premolar crowns are aligned more directly over their roots and well within the boundary of the root outline, an important relationship imparting good functional support for a large chewing area (Fig. 4-8B). T is difference is easy to recognize when comparing the proximal views of
maxillary and mandibular premolars in Appendix 6a. Both types of maxillary premolars are shaped like a trapezoid from the proximal view (Appendix 6b). A trapezoid is a four-sided figure with two parallel sides (occlusal and cervical sides) and two nonparallel sides.

B. DISTal Cr OwN TIIT IN maNDIBu 1 ar pr EmOlar S

Viewed from the buccal, mandibular premolar crowns have more distal than mesial bulge beyond the root outline, which makes mandibular premolar crowns appear to tilt slightly to the distal relative to the root (Fig. 4-9). T is is a very subtle tilt that is not always easy to discern.

C. Cu Sp SIzE a ND 1OCaTION

T e buccal cusp is longer than the lingual cusp (or cusps) on all premolars, but the difference is minimal on maxillary premolars, especially on the maxillary seconds, whereas the difference is considerable on mandibular first premolars (compare Appendix 6c, maxillary, and 6p, mandibular).

Most premolar lingual cusp tips are positioned off center to the mesial (seen from lingual views in Appendix 6 i

fIGur E 4-9. A mandibular premolar with more crown bulge distal to the root giving the impression that the crown is slightly tilted distally relative to the root.
and 6 q), EXCEPT on mandibular first premolars where the lingual cusp tip may be centered or to the distal and on some mandibular second premolars where the lingual cusp tip may be centered. On three-cusp-type mandibular second premolars, the longer lingual cusp tip, the mesiolingual, is most often positioned more to the mesial.

D. Bu CCal r IDGE pr Om INENCE

T e buccal ridge near the middle of the buccal surface of premolars is more prominent on maxillary than mandibular premolars.

E. Cr Ow N pr OpOr TIONS

From the occlusal view, maxillary premolars are more oblong or rectangular (considerably wider faciolingually than mesiodistally), whereas mandibular premolars, though usually wider faciolingually, are closer to equal dimension faciolingually compared to mesiodistally (Fig. 4-10). T is difference may be even more apparent when comparing the outline of the occlusal table (the area bounded by a perimeter of ridges: mesial and distal cusp ridges of each cusp and mesial and distal marginal ridges). T is difference is apparent when comparing the dimensions of the occlusal views of maxillary and mandibular premolars in Appendix 6d.

扉 1 EARNING Ex ERCIs E

Before learning about traits that distinguish first premolars from second premolars, make sure you can distinguish maxillary premolars from mandibular premolars. Looking at tooth models, extracted teeth or pictures consisting of a selection of both types of premolars from both arches, separate out the maxillary premolars from the mandibular premolars. To do this, review the major differences between maxillary and mandibular premolars highlighted in Table 4-2.

fIGur E 4-10. Arch differences in the outline of premolars. Notice that even though dimensions of the tooth outline (the outer boxes surrounding these teeth) for all maxillary and mandibular premolars are wider faciolingually than mesiodistally, maxillary premolars are obviously longer faciolingually compared to the nearly square shape of mandibular premolars. This is even more evident when considering the proportions of the occlusal table (the inner boxes).

MAXILLARY PREMOLARS (Occlus al)

Mandibular right first premolar

Three-cusp type

Two-cusp type

Mandibular right second premolar

Ta B1 E 4-2 major arch Traits That Distinguish maxillary from mandibular premolars

m Ax Il 1 ARy PREmol ARs m ANDIBUl AR PREmol ARs

Buccal ridge is more prominent
No distal crown tilt relative to root

Buccal ridge is less prominent
Crown exhibits slight distal tilt on root due to greater distal bulge

Less difference between heights of buccal and lingual cusps (especially seconds)

More difference between heights of buccal and lingual cusps (especially firsts)

Central groove centered over root
Lingual cusp is just slightly shorter than buccal

Crown tilts to lingual so buccal cusp tip almost centered over root
Lingual cusp is much shorter than buccal

Crown shape oval or rectangular
Crown considerably wider faciolingually than mesiodistally

Crown shape closer to square or round
Crown less oblong faciolingually

TypE Tr a ITS Th aT DISTINGu ISh Maxillary FiRST fr Om SeCOND pr EmOlar S

Objectives

This section prepares the reader to perform the following:

- Describe the type traits that can be used to distinguish the permanent maxillary frst from the second premolar.
- Describe and identify the buccal, lingual, mesial, distal, and occlusal surfaces for all maxillary premolars.
- Assign a Universal number to maxillary premolars present in a mouth (or on a model of the teeth) with
complete dentition. If possible, repeat this on a model with one or more maxillary premolars missing.
- Holding any maxillary premolar, determine whether it is a first or a second, and right or left. Then, assign a Universal number to it.

a. TypE Tr a ITS Of maxll lary pr EmOlar S fr Om Th E Bu CCal VIEw

From the buccal view, compare the maxillary first and second premolars in Figure 4-11. Compare tooth models and/ or extracted maxillary premolars as you read the following characteristics, holding the crowns down and roots up, just as they are oriented in the mouth.

(1.) pentagon-Shaped Crowns (Buccal View)

T e pentagon-shaped crowns of maxillary frst premolars are larger than on maxillary second premolars in all
dimensions, but the root is shorter overall. ${ }^{\text {E }}$ On maxillary urst premolars, the mesial and distal sides of maxillary premolar crowns converge more noticeably from the contact areas to the cervical line than on maxillary second premolars, so the cervical portion of the crown of maxillary first premolars appears relatively narrower. T is increased convergence of first premolar crowns is due in part to the more prominent bulk on first premolars where the cusp ridges join the proximal surfaces (called shoulders), especially on the mesial (Fig. 4-12). Observe the more angular mesio-occlusal bulk (shoulders) and increased crown taper on many maxillary first premolars when compared to second premolars in Figure 4-11.

Buccal views of maxillary premolars with type traits to distinguish maxillary first from second premolars and traits to distinguish rights from lefts. Lines highlight the midroot axis on many maxillary frst premolars to show that the ir buccal cusps are positioned uniquely to the distal.

MAXILLARY PREMOLARS: BUCCAL VIEWS

TRAITs To DIs TINGUIs H m Ax Il 1 ARy FIRs T FRom s ECo ND PREm o 1 AR: BUCCAl VIEWs
m Ax Il 1 ARy FIRs T PREm o 1 AR
Sharper buccal cusp angle
Mesial cusp ridge of buccal cusp longer than distal (UNIQUE)
Prominent buccal ridge
Bulging shoulders and angular outline
More crown taper from contacts to cervix
Depression more common mesial to buccal ridge
m Ax Il 1 ARy s ECo ND PREm o 1 AR
More blunt buccal cusp angle Distal cusp ridge longer than mesial Less prominent buccal ridge Narrow, more rounded shoulders Less crown taper from contacts cervically Depression more common distal to buccal ridge
traits tOdifferentiate Maxillary riGHt fromleft PreMOl ars:bUcal vieWs

```
m AxIl l ARy FIRs T PREm o 1 ARs
m Ax Il l ARy s ECo ND PREm o l ARs
```

Mesial cusp ridge longer than distal (UNIQUE)
Depression more common mesial to buccal ridge

Mesial cusp ridge shorter than distal
Depression more common distal to buccal ridge

Root often, but not always, curves to distal on both types of maxillary premolars
Mesial contact more occlusal than distal contact on both types of maxillary premolars

fIGur E 4-12. A maxillary first premolar with prominent shoulders (junctions between the cusp slopes and the proximal contour of the crown). The cusp tip is uniquely distal to the midroot axis.
2.
mesial Cusp ridges Shorter Than Distal on maxillary premolars (Buccal View)

Maxillary second premolars, like canines and mandibular premolars, have the mesial cusp ridge of the buccal cusp shorter than the distal cusp ridge. T e maxillary örst premolar is UNIQUE because it is the only premolar (or canine) that has its mesial cusp ridge longer than the distal cusp ridge. T is results in a cusp tip of the maxillary first premolar that is uniquely distal to the vertical midroot axis (Appendix 6e and highlighted with midroot axis lines on most maxillary first premolars in Fig. 4-11).

3. Buccal Cusp Sharper on maxillary first premolars

 (Buccal View)T e buccal cusp of the maxillary ourst premolar is relatively long and pointed or sharp (Appendix 6f), resembling the adjacent, pointed maxillary canine, with the mesial and distal slopes meeting at almost a right angle (average 105°), compared to the second premolar, which is less pointed and more obtuse (average over 120° to 125°), as seen when comparing first and second premolars in Figure 4-11.

(4. Buccal r idge more prominent on maxillary first premolars (Buccal View)

T e buccal ridge is more prominent on maxillary first premolars than on maxillary second premolars (Appendix 6 g). Shallow vertical depressions adjacent to the buccal ridge in the occlusal third are most commonly located mesial to the buccal ridge on maxillary frst premolars and distal to the buccal ridge on maxillary second premolars (depicted in the drawings on the top of the page in Figure 4-11). ${ }^{\text {F }}$
5. roots of maxillary premolars (Buccal View)

T e apical end of the root of all single-rooted premolars frequently bends distally, but these roots may also be straight
or bend mesially. ${ }^{\mathrm{I}, \mathrm{G}}$ Most of the time, the maxillary ourst premolar is divided into a buccal and lingual root splitting off of a common trunk in the apical third ${ }^{\mathrm{H}}$ (seen best from the proximal view in Appendix 6h). Even though the buccal root is normally longer than the lingual root, the buccal root frequently curves distally near the apex, so you might see the tip of the lingual root if it is straighter than the buccal root or curves mesially. Both roots are visible in several maxillary first premolars in Figure 4-11.

T e single root of the maxillary second premolar is longer than on the first premolar. ${ }^{I} \mathrm{~T}$ e root is nearly twice as long as (1.8 times longer than) the crown, which gives this tooth the greatest root-to-crown ratio of any maxillary tooth.

B. TypE Tr a ITS Of maxll ar y pr EmOlar S fr Om Th EliNGual VIEw

Compare the lingual view of maxillary first and second premolars in Figure 4-13.

(1.) 1 ingual Cusps Slightly Shorter Than Buccal on maxillary premolars (1 ingual View)

T e lingual cusp is shorter than the buccal cusp on both types of maxillary premolars, but considerably more so on the maxillary $\dot{\alpha}$ rst premolar. T e buccal and lingual cusps of the maxillary second premolar are closer to the same length. ${ }^{\mathrm{J}} \mathrm{T}$ is difference in cusp height is seen when comparing almost all first and second premolars in Figure 4-13 and is evident on the lingual views of maxillary premolars on Appendix page 6.
2. 1 ingual Cusp Tip mesial to midline on maxillary
premolars (l ingual View)

T e mesial and distal ridges of the lingual cusp of the maxillary ürst premolar meet at the cusp tip at a somewhat rounded angle. T e tip of the lingual cusp of the second premolar is relatively sharper. T e tips of the unworn lingual cusps of both types of maxillary premolars are consistently positioned to the mesial of the midroot axis line (Appendix 6i). T is trait is an excellent way to tell rights from lefts, especially for the maxillary second premolar, which is, in many other ways, nearly symmetrical.
3. maxillary premolar mesial marginal r idge more Occlusal Than on Distal (1 ingual View)

From the lingual view of maxillary premolars, differences in marginal ridge heights are apparent on handheld teeth when rotating the tooth just enough one way to see the mesial ridge height, then just enough in the opposite direction to compare the distal ridge height. T e mesial marginal ridges of both types of maxillary premolars are more occlusal in position than the distal marginal ridge (recall Appendix 5j).

1 ingual views of maxillary premolars with type traits to distinguish maxillary first from second premolars and traits to distinguish rights from lefts. Notice that most lingual cusp tips are located mesial to the midroot axis.

Second (Right)

MAXILLARY PREMOLARS: LINGUAL VIEWS

First Premolar (Left)

Second Premolar (Left)

First Premolar (Right)

Second Premolar (Right)

TRAITs To DIs TINGUIs H m Ax Il 1 ARy FIRs T FRom s ECo ND PREm o 1 AR: 1 INGUAl VIEWs

m Ax Il 1 ARy FIRs T PREm o 1 AR	m AxIl 1 ARy s ECo ND PREm o 1 AR
Lingual cusp obviously shorter: two cusps visible	Lingual cusps very slightly shorter than buccal
Crown tapers toward lingual	Slightly less taper toward lingual
TRAITs To DIFFERENTIATE m Ax Il I ARy RIGHT FRo m 1 EFT PREm o 1 ARs : UNIQUE FRo m	
I INGUAl VIEWs	

m Axll 1 ARy FIRs T PREm o 1 AR m AxIll ARy s ECo ND PREmol AR

Mesial cusp ridge longer than distal on buccal cusp
Mesial cusp ridge shorter than distal on buccal cusp Lingual cusp tip is mesial to midline for both types of maxillary premolars.

fIGur E4-14. A. On the lingual view of this maxillary first premolar with two roots, you can see part of the wider, longer buccal root behind the shorter, narrower lingual root. B. From the proximal views of these maxillary first premolars, the longer buccal roots are clearly evident.
(4.) r oots of maxillary premolars (1 ingual View)

T e lingual root of a two-rooted maxillary ürst premolar is usually shorter, and narrower mesiodistally, than the buccal root. ${ }^{\mathrm{K}} \mathrm{T}$ erefore, both the narrow lingual root and the broader and longer buccal root are visible from the lingual view (Fig. 4-14A). Both first and second single-rooted premolar roots taper narrower to the lingual.

C. TypE Tr a ITS Of maxll lary pr EmOlar S from Th Epr OxImal VIEw S

Compare the proximal views of maxillary first and second premolars in Figure 4-15 and Appendix page 6.
(1. mesial Crown Concavity u nique on maxillary first premolars (proximal Views)
Maxillary ùrst premolars have a UNIQUE prominent mesial crown concavity just cervical to the contact area, whereas maxillary second premolars (and mandibular premolars) do not (Appendix 6 j). T is unique mesial crown concavity can be seen in almost all maxillary first premolars and not on any others, so it is a consistent and obvious trait that confirms the mesial surface of a maxillary first premolar. It is important to remember the presence of this unique mesial crown concavity when restoring correct restoration contours on this surface or when detecting and removing calcified deposits from this concave crown surface.

2. Buccal Cusp Slightly 1 onger on maxillary premolars (proximal Views)

From this view, as from the lingual, the buccal cusp is noticeably longer than the lingual cusp on maxillary ärst
premolars, compared to the second premolar, which has two cusps of nearly equal length (Appendix 6c). T is difference is obvious when comparing first and second premolars in Figure 4-15. From the proximal view, it is often a challenge telling buccal from lingual on the maxillary second premolar based solely on the cusp heights, since the cusp heights are so similar. Differences in the crests of curvature, however (described next), will be useful for distinguishing buccal from lingual surfaces on these teeth.

T e average distance between the buccal and lingual cusp tips of maxillary first and second premolars is about the same. ${ }^{\text {L }}$

3. Crest (h eight) of Curvature on maxillary premolars (proximal Views)

Like all teeth, the facial crest of curvature of maxillary premolars is located in the cervical third. Specifically, it is near the junction of the middle and cervical third. Lingually (like other posterior teeth), it is more occlusal, in the middle third (near the center of the crown) (Fig. 4-16). When holding the midroot axis exactly vertical, this trait helps distinguish the buccal from lingual surfaces on the majority of maxillary premolars from the proximal views. Try it for the teeth in Figure 4-15.
(4. marginal r idge Grooves on maxillary premolars (proximal Views)

Marginal ridge (developmental) groove serves as a spillway for food during mastication (seen extending across the marginal ridge and onto the mesial surface of a maxillary first premolar in Figure 4-17 and on an occlusal view in Appendix 6k). T e mesial marginal ridge of the maxillary ürst premolar is almost always crossed by a mesial marginal

Proximal views of maxillary premolars with type traits to distinguish maxillary first from second premolars and traits to distinguish rights from lefts. Notice the minimal difference in cusp length on seconds compared to the greater difference on firsts.

First (Right)
Mesial View

Second (Right) Mesial View

MAXILLARY PREMOLARS: PROXIMAL VIEWS

TRAITs To DIs TINGUIs H m Ax Il 1 ARy FIRs T FRo m s ECo ND PREm o 1 AR: PRox Im Al VIEWs
m Ax Il 1 ARy FIRs T PREm o 1 AR m Ax Il 1 ARy s ECo ND PREm o 1 AR

Two roots or deeply divided single root Buccal cusp longer than lingual Mesial crown and root depression Mesial root depression deeper than distal Almost always mesial marginal ridge groove

Single root
Buccal and lingual cusps similar length Mesial root but not crown depression Distal root depression deeper than mesial Less likely mesial marginal groove

TRAITs To DIFFERENTIATE m Ax Ill ARy RIGHT FRom 1 EFT PREm ol ARs:
 UNIQUE FRom PRo xIm Al VIEWs

Pronounced mesial crown (and adjacent root) depression Deeper mesial than distal root depression
Almost always mesial marginal ridge groove

No mesial crown depression
Deeper distal than mesial root depression
Mesial marginal ridge groove less common
Distal marginal ridge is more cervical than mesial for both types of maxillary premolars
Greater mesial than distal cervical line curvature for both types of maxillary premolars

fIGur E 4-16. When aligning the midroot axis of this maxillary second premolar exactly vertically, the crest of curvature on the buccal surface is more cervical (in the cervical third) than the lingual crest of curvature, which is more occlusal (in the middle third). Also, note that although lingual cusp is only slightly shorter than the buccal cusp.
ridge groove that may extend from the mesial fossa or pit onto the mesial crown surface. ${ }^{\mathrm{M}} \mathrm{T}$ e distal marginal ridge of this tooth, and the mesial and distal marginal ridges of the maxillary second premolars, are less likely to have marginal ridge grooves, and, when present, these grooves are less likely to extend onto the proximal surfaces.

fIGur E4-17. A right maxillary first premolar with an obvious marginal ridge groove that extends over the marginal ridge and into the mesial crown concavity. Notice that this mesial crown concavity is continuous with the adjacent deep mesial root depression.
5. Cervical 1 ine Curve 1 arger on mesial when Comparing proximal Views

T e cervical line on the mesial side of both types of maxillary premolars curves occlusally in a broad, but shallow, arc. As on anterior teeth, the mesial curvature is slightly greater than the distal curvature. ${ }^{\mathrm{N}} \mathrm{T}$ e cervical line on the lingual surface on a maxillary premolar may be in a more occlusal position than on the buccal surface, especially on maxillary first premolars. T is would accentuate the appearance that the lingual cusp is shorter than the buccal cusp.
6. roots and root Depressions of maxillary premolars (proximal Views)

T e roots of both types of maxillary premolars are likely to have both mesial and distal root depressions of varying depths. Knowledge of the relative location and depth of these depressions can be helpful clinically when using dental instruments along the root surface into deep gingival sulci to detect and remove calcified deposits that contribute to periodontal disease and when identifying areas of decay on the root surfaces that are covered with gingiva.

Recall that maxillary ürst premolars most often have two roots with the buccal root slightly longer than the lingual root. T e split into two roots (bifurcation) usually occurs in the middle or apical third of the root. As stated previously, this is the only premolar with a UNIQUE crown concavity on the mesial surface of its crown, and this depression continues across the CEJ to become a prominent mesial root surface depression whether there is one root or two roots ${ }^{\mathrm{O}}$ (Fig. 4-17). T is important type trait is seen clearly on the mesial views of all five maxillary first premolars in Figure 4-15. T ere is also a less distinct distal root depression found on both double- and single-rooted first premolars, but it does not normally extend up to the cervical line. T e root of the maxillary first premolar is UNIQUE in that it is the only premolar (maxillary or mandibular) where the longitudinal root depression on the mesial surface is deeper than on the distal.

T e maxillary second premolar usually has one root with longitudinal midroot depressions located in the middle third of the mesial and distal root surfaces. However, neither midroot depression on this tooth extends onto the crown. ${ }^{\mathrm{P}} \mathrm{T}$ e distal root depression is usually deeper than on the mesial root surface. T is feature is the opposite from the maxillary first premolar, where the mesial root depression is deeper.

D. TypE Tr a ITS Of maxll lary pr EmOl ar S fr Om Th E OCCl u Sal VIEw

Compare occlusal views of maxillary first and second premolars. To follow this description, the teeth or tooth models you are using should be held as those displayed in Figure 4-18, so that the buccal surface is at the top and you are sighting directly down along the midroot axis.
o cclusal views of maxillary premolars with type traits to distinguish maxillary first from second premolars and traits to distinguish rights from lefts. Small circles denote cusp tip locations to illustrate that lingual cusps of both types of maxillary premolars are mesial to the midline of the crown, and the location of the buccal cusps of maxillary second premolars is also mesial to the middle. This differs from the buccal cusp location on maxillary frst premolars, which are distal to mid line (UNIQUE to all other adult premolars and canines).

MAXILLARY PREMOLARS : OCCLUS AL VIEWS

First Premolar (Right)

First Premolar (Left)

Second Premolar (Right)

Second Premolar (Left)

TRAITs To DIs TINGUIs H m Ax ll 1 ARy FIRs T FRom sECo ND PREm ol AR: o CCl Us Al VIEWs

m Ax Il 1 ARy FIRs T PREm o 1 AR
m Ax Il 1 ARy s ECo ND PREm o 1 AR
Crown asymmetrical, more hexagonal
Crown symmetrical and more oval
Mesial surface concave or fat
Mesial surface more convex
Proximal surfaces converge lingually
Longer central groove so mesial and distal fossae are closer to marginal ridge
Almost always mesial marginal ridge groove
More prominent buccal ridge
Fewer supplemental grooves

Little tapering toward lingual
Shorter central groove so mesial and distal fossae closer to tooth center
Mesial marginal ridge much less common
Less prominent buccal ridge
More supplemental grooves

TRAITs To DIFFERENTIATE m Ax Il 1 ARy RIGHT FRo m 1 EFT PREm o 1 ARs : UNIQUE FRo m o CCl Us Al VIEWs

$$
\text { m Ax Il } 1 \text { ARy FIRs T PREm o } 1 \text { AR }
$$

```
m Ax Il l ARy s ECo ND PREm o l AR
```

Mesial crown outline is concave or fat
Mesiobuccal line angle is a right angle
Almost always mesial marginal ridge groove
Proximal contact on distal more buccal than on mesial
Proximal contact on mesial is more buccal than on distal Lingual cusp tip mesial to center for both types of maxillary premolars Curved distal marginal ridge longer than mesial for both types of maxillary premolars

```
maxillary first premolars l arger Than Second (Occlusal View)
```

In the same mouth, maxillary first premolars are most often larger in most dimensions than adjacent second premolars. ${ }^{Q}$

2. Central Groove longer on maxillary first premolars (Occlusal View)

Characteristically, central developmental grooves run mesiodistally across the center of both types of maxillary premolars extending from a mesial pit to a distal pit. T e length of the central groove of the maxillary ürst premolar is relatively longer (more than one third of the mesiodistal crown width) compared to the shorter groove on the maxillary second premolar (less than one third of the width). T is is obvious when comparing maxillary first and second premolar grooves in Figure 4-18 and in Appendix 61. ${ }^{R}$ Because the central groove on the maxillary first premolar is longer, the pits are farther apart and are relatively closer to the marginal ridges than on maxillary second premolars. T is longer central groove on the maxillary first premolar is accentuated by its continuation with the mesial marginal ridge groove that almost always crosses the mesial marginal ridge (Fig. 4-19). Marginal ridge grooves are much less common on the other marginal ridges of maxillary first and second premolars.

(3. Triangular fossae (Occlusal View)

Mesial and distal fossae on maxillary premolars are traditionally called triangular fossae. T e base of the triangular shape is along the marginal ridge, and the other two sides roughly

fIGur E4-19. An occlusal view of a right maxillary first premolar showing a relatively long central groove that appears even longer since it is continuous with the mesial marginal ridge groove.
parallel the fossa grooves. On most maxillary premolars, the distal triangular fossa appears larger than, or equal in size to, the mesial triangular fossa. ${ }^{\text {S }}$
(4. more Supplemental Grooves on maxillary Second premolars (Occlusal View)

T ere are more supplemental grooves on maxillary second premolars than on maxillary first premolars giving them a more wrinkled appearance. T ese supplementary grooves radiate buccally and lingually from the pits at the depth of each triangular fossa (Fig. 4-20B).
5. maxillary premolars wider Buccolingually (Occlusal View)

T e oblong (oval or rectangular) crown outlines of both types of maxillary premolars are noticeably greater buccolingually than mesiodistally. ${ }^{\mathrm{T}} \mathrm{T}$ is is obvious for all maxillary premolars in Figure 4-18.
6. maxillary first premolar Is more a symmetrical (Occlusal View)

On both types of maxillary premolars, the lingual half of the tooth is narrower mesiodistally than the buccal half, more so on first premolars. From the occlusal aspect, the buccal outline of the maxillary $\boldsymbol{u} r s t$ premolar is almost V shaped because of the prominent buccal ridge, but this ridge is less prominent on the second premolar as seen on some teeth in Figure 4-18. On both types, the tip of the lingual cusp is slightly mesial to the center of the tooth.

Seen from the occlusal aspect, the maxillary second premolar is typically quite symmetrical (similar shape for the mesial and distal halves). Its occlusal outline is smoother and less angular than that of the first premolar (Fig. 4-20B compared to Fig. 4-20A).

An asymmetrical occlusal outline is a distinguishing feature of the maxillary òrst premolar that distinguishes it from second premolars (compare outline shapes in Appendix 6m). T is asymmetry is due, in part, to the location of the lingual cusp tip mesial to the midline, whereas the buccal cusp tip is actually located distal to the midline, a position UNIQUE to the maxillary first premolar with its mesial cusp ridge longer than its distal cusp ridge (Fig. 4-20A). Further, the mesial marginal ridge joins the mesial cusp ridge of the buccal cusp at an almost right angle (not so on second premolars), and the mesial surface forms a nearly straight or concave outline buccolingually rather than a more uniform convexity on the second premolar. T is mesial out line concavity may be accentuated by the depression of the mesial marginal ridge groove and mesial crown concavity next to the root. T is straighter mesial marginal ridge appears shorter buccolingually than

fIGur E 4-20. maxillary second premolars are more symmetrical than maxillary first premolars. A. Note the asymmetrical outline of the maxillary left frst premolar and the location of the buccal cusp tip distal to the tooth midline. This buccal cusp tip location is UNIQUE compared to other premolars and canines. Also, the mesial cusp ridge is nearly at right angles to the mesial marginal ridge, and the mesial outline is concave. B. The maxillary left second premolar is almost symmetrical, making it a challenge to tell rights from lefts from this view, but the slight mesial placement of the buccal and lingual cusp tips is helpful. The mesial cusp ridge meets the mesial marginal ridge at a less acute angle, and the mesial outline is convex. Finally, many supplemental grooves are characteristic of maxillary second premolars. The mesial triangular fossa shape is outlined. C. In this mouth, the asymmetry of the maxillary frst premolar (tooth 5) is obvious compared to the adjacent oval, symmetrical second premolar (tooth 4). D. Buccal cusp ridge alignment reveals another example of symmetry on maxillary second premolars compared to firsts.
the more convex distal marginal ridge. Note this characteristic on the occlusal surfaces of most maxillary first premolars in Fig. 4-18.

Compare the symmetrical outline of the maxillary second premolar to the asymmetrical outline of the maxillary second premolar in Figure 4-20C.

7. Contact a reas on maxillary premolars (Occlusal View)

Mesial contacts for both types of maxillary premolars are at or near the junction of the buccal and middle thirds (slightly more buccal on first premolars). Recall that one third of the tooth from this aspect means one third of the total buccolingual measurements of the crown outline, rather than one third of the occlusal surface measurement. Distal contacts are in the middle third on maxillary second premolars, located
more lingually than mesial contacts. Just the opposite is true on örst premolars with their asymmetry, where the distal contact is more buccal than the mesial contact (Fig. 4-21). Picture this asymmetry when viewing the hexagon outline presented in Appendix 6 m for the maxillary first premolar and then to the examples of most maxillary first premolars in Figure 4-18.

1 EARNING Ex ERCIs E

See how many traits you can list that differentiate the maxillary first from second premolars and maxillary right from left premolars. When you have finished, compare your list with traits listed in the figures in this chapter.

fIGur E 4-21. maxillary right frst premolar, occlusal surface. Notice the proximal contact locations (the distal contact of this tooth is more buccal than the mesial), the relative length of the marginal ridges (mesial is shorter), and the location of the cusp tips where the buccal tip is distal to the middle, making the mesial cusp ridge of the buccal cusp longer than the distal cusp ridge (UNIQUE to maxillary first premolars). The lingual cusp tip is mesial to the middle.

SECTION V

TypE Tr a ITS Th a T DIf fer ENTIaTE Mandib Ul ar FiRST from SeCOND pr EmOlar S

Objectives

This section prepares the reader to perform the following:

- Describe the type traits that can be used to distinguish the permanent mandibular frst from second premolar.
- Describe and identify the buccal, lingual, mesial, distal, and occlusal surfaces for all mandibular premolars on a photograph, model, or extracted tooth.
- Assign a Universal number to mandibular premolars present in a mouth (or on a model of the teeth)
with complete dentition. If possible, repeat this on a model with one or more mandibular premolars missing.
- Holding a mandibular premolar, determine whether it is a first or a second and right or left. Then assign a Universal number to it.

1 EARNING Ex ERCIs E

Look in your own mouth, and determine whether you have a first and second premolar on both sides of the mandibular arch. If you have each of your four mandibular second premolars, try to determine if each has two or three cusps. Then compare it to the data in Table 4-6 at the end of this chapter to see how common your findings are.

While reading this section, examine several extracted mandibular premolars or premolar models. Hold these mandibular teeth with the crowns up and the roots down.

To appreciate differences in mandibular first and second premolars, it is first important to remember that there are two common types of mandibular second premolars ${ }^{3}$: a twocusp type with one buccal and one lingual cusp and a slightly more common three-cusp type with one buccal and two lingual cusps (seen from the occlusal sketches in Fig. 4-22).
fIGur E 4-22. Occlusal views of three types of mandibular premolars.

L
Mandibular right first premolar

L
Three-cusp type Mandibular right second premolar

L

Two-cusp type

Buccal views of mandibular premolars with type traits to distinguish mandibular first from second premolars and traits to distinguish rights from lefts.

MANDIBULAR PREMOLARS : BUCCAL VIEWS

TRAITs To DIs TINGUIs H m ANDIBUl AR FIRs T FRo m s ECo ND PREm o 1 AR: BUCCAl VIEWs

m ANDIBUl AR s ECo ND PREm o 1 AR

Shorter wider crown

Less crown taper from contacts to cervix
Less pointed cusp (130°)
Less prominent buccal ridge
Longer root with blunt apex
Distal cusp ridge depression more common

TRAITs To DIFFERENTIATE m ANDIBUl AR RIGHT FRo m 1 EFT PREmol ARs: BUCCAl VIEWs

m ANDIBUl AR FIRs T PREm o 1 AR	m ANDIBUl AR s ECo ND PREm o 1 AR
Mesial cusp ridge notch more common	Distal cusp ridge notch more common
Lower mesial than distal contact	Lower distal than mesial contact

Mesial cusp ridge is shorter than distal on both mandibular premolars

a. TypE Tr a ITS Of maNDIBular pr EmOlar S fr Om Th EBu CCal VIEw

Refer to views from the buccal of mandibular first and second premolars in Figure 4-23.
1.
pentagon Shape of Both mandibular premolars (Buccal View)

As with all other premolars and canines, the shape of mandibular premolar crowns (two-cusp or three-cusp type) from the buccal view is roughly a five-sided pentagon (Appendix 5g).
2. relative Size of mandibular premolars (Buccal View)

T e crown of the mandibular örst premolar bears considerable resemblance from this aspect to the second premolar, but mandibular first premolars are slightly longer overall than second premolars with a noticeably longer crown (more like the adjacent canine), but a slightly shorter root. ${ }^{\mathrm{U}}$
3. mesial Cusp ridge Shorter Than Distal Cusp r idge (Buccal View)

From this view, both types of mandibular premolars appear nearly symmetrical except for the shorter mesial than distal cusp ridge of the buccal cusp and a greater distal bulge of the crown. T is greater distal bulge may give the appearance of a slight distal tilt of the crown relative to the midroot axis.
4. Buccal Cusp of mandibular first Is Sharper Than Second (Buccal View)
Just like on maxillary premolars, the buccal cusp on a mandibular örst premolar is relatively sharper (110°) than on a
second $\left(130^{\circ}\right)$. T e crown of the mandibular second premolar appears closer to square than the first premolar because it is somewhat wider in the cervical third (is less tapered), is shorter overall, and has a buccal cusp that is less pointed than on the mandibular first premolar, with cusp slopes meeting at an angle of about 130° (Appendix 6n and Fig. 4-24A and B).

5. location of proximal Contacts on mandibular premolars (Buccal View)

Because of the steeper angle formed by the cusp ridges of the buccal cusp, the contact areas on the mandibular ürst premolar appear more cervical from the cusp tip than they are on mandibular second premolars where cusp ridges are less steep. Mesial contacts of both types of mandibular premolars are near the junction of the occlusal and middle thirds (slightly more occlusal on second premolars). T e distal contact of the mandibular second premolar follows the general rule: the distal contact is more cervical than the mesial contact area. T e distal contact area of the mandibular örst premolar is an EXCEPTION to most other teeth: the mandibular first premolar is the only adult tooth where the mesial contact is more cervical than the distal contact (Appendix 60). A summary of the location of proximal contact areas in all types of premolars is presented in Table 4-3.
6. Cusp r idge Notches and Vertical Depressions of mandibular premolars (Buccal View)
Vertical crown depressions in the occlusal third of the buccal surface on either side of the buccal ridge are not common on either type of mandibular premolars, but, when present, they are less discernible than on the maxillary premolars. However, shallow notches are commonly seen on both the mesial and distal cusp ridges of the buccal cusp of

A

B
fIGure 4-24. A. mandibular left frst and second premolars as they might be seen in a mouth: On this first premolar, the buccal cusp is relatively sharp (like on a canine) and has more taper cervically, whereas on this second premolar, the cusp is less sharp and the crown is relatively wider in the cervical third compared to the first premolar. B. The difference is cusp sharpness, and cervical crown width is even more evident when comparing these mandibular first and second premolars.

Ta BlE 4-3 premolars: location of proximal Contacts (proximal height of Contour) in premolars (Seen Best from Buccal View ${ }^{a}$

m Es IAl s URFACE (WHICH THIRD o R JUNCTIo N?) DIs TAl s URFACE (WHICH THIRD o R JUNCTIo N?)

First premolar
Second premolar

Middle third or occlusal/middle junction
Middle third (near occlusal/middle junction)

Middle third (but more cervical than on mesial)
Middle third (but more cervical than on mesial)

First premolar
Second premolar

Middle third or occlusal/middle junction
Occlusal/middle junction

Occlusal third (more occlusal than on mesial $=$ EXCEPTION to the rule)
Middle third (which is more cervical than on the mesial)
${ }^{\mathrm{a}}$ General learning guidelines:

1. For premolars, the mesial and distal contacts are closer to the middle of the tooth and are more nearly at the same level compared to anterior teeth.
2. Distal proximal contacts of premolars are more cervical than mesial contacts EXCEPT for mandibular first premolars where the mesial contact is more cervical than is the distal.
mandibular premolars. T ese notches (and vertical crown depressions when they are present) are more frequently located on the shorter mesial cusp ridge of mandibular first premolars and on the longer distal cusp ridge of mandibular second premolars ${ }^{\mathrm{V}, \mathrm{W}}$ as seen in Figure 4-25. Dr. Peter K. T omas recommended developing notches (called T omas notches) on certain cusp slopes when shaping large occlusal restorations and crowns because they permit smooth movement of teeth from side to side and are important as spillways for food during chewing.

(7.) r oots of mandibular premolars (Buccal View)

Both types of mandibular premolars have single roots that gradually taper to the apex. T e roots apices are noticeably more blunt on mandibular second premolars than on first premolars. As with most roots, there is a tendency for the apical third of the root to bend distally, but note that as many as one fifth may bend mesially. ${ }^{X}$

T e roots of mandibular ürst premolars are almost as thick but slightly shorter than the roots of the second

fIGur E 4-25. mandibular right f rst and second premolars depicting the most common location of buccal cusp ridge notches and adjacent longitudinal buccal surface depressions: on the mesial cusp ridge of the mandibular frst premolar (tooth 28) and on the distal cusp ridge of the mandibular second premolar (tooth 29) (see arrows).
premolar. ${ }^{\mathrm{Y}} \mathrm{T}$ e roots of mandibular second premolars (like maxillary second premolars) are nearly twice as long as the crowns. In both arches, second premolars have a larger root-to-crown ratio than on firsts.

B. TypE Tr a ITS Of maNDIBular premOlarS from Th EliNGual VIEw

For the lingual aspect, refer to lingual views of mandibular first and second premolars in Figure 4-26.

1. 1 ingual Cusp width of mandibular premolars (1 ingual View)

On mandibular örst premolars, as on most teeth, the crown is much narrower mesiodistally on the lingual half than on the buccal half. T is can also be seen on mandibular second premolars with one lingual cusp. However, the width of the lingual half of a 3-cusp type of second premolar with two lingual cusps is UNIQUE since it is the only type of premolar where the lingual half is likely to be wider mesiodistally than the buccal half.
2. 1 ingual Cusps 1 ength on mandibular premolars (1 ingual View)

T e lingual cusp of a mandibular ärst premolar is quite small and very short but is often pointed at the tip. It is nonfunctional and could be considered a transition between the canine cingulum and more prominent lingual cusp (or cusps) of the second premolar (best appreciated from the proximal views). Much of the occlusal surface of this tooth can be seen from the lingual aspect because of the most obvious shortness of the lingual cusp. T e location of the lingual cusp tip is variable: it may be mesial or distal to the middle of the tooth.

1 ingual views of mandibular premolars with type traits to distinguish mandibular first from second premolars and traits to distinguish rights from lefts.

MANDIBULAR PREMOLARS: LINGUAL VIEWS

First Premolar (Left)

First Premolar (Right)

Second Premolar (Right)

TRAITs To Dis TINGUIs H m ANDIBUI AR FIRs T FRom sECo ND PREmol AR: 1 INGUAI VIEWs

m ANDIBUl AR FIRs T PREm o 1 AR

$$
\text { m ANDIBUl AR s ECo ND PREm o } 1 \text { AR }
$$

One lingual cusp
Crown much narrower on lingual
Lingual cusp very short, nonfunctional
Mesiolingual groove
Mesial marginal ridge lower than distal

Most have two lingual cusps
Crown quite wide on lingual when three-cusp type
Lingual cusp (or mesiolingual cusp) not as short as on firsts Lingual groove between two lingual cusps
Distal marginal ridge lower than mesial

TRAITs To DIFFERENTIATE mANDIBUI AR RIGHT FRom 1 EFT PREm ol ARs: UNIQUE o N 1 INGUAl VEWs

m ANDIBUl AR FIRs T PREm o 1 AR	m ANDIBUl AR s ECo ND PREm o 1 AR
Mesial marginal ridge lower than distal	Distal marginal ridge lower than mesial
Mesiolingual groove often present	If two-cusp type, mesiolingual cusp is longer, larger
	Lingual (or mesiolingual) cusp tip is positioned to the mesial

On mandibular second premolars with one lingual cusp, the single lingual cusp is still shorter and narrower than the buccal cusp, but it is relatively larger (longer and wider) than the lingual cusp of the first premolar. T e single lingual cusp tip is most often just mesial to the center line of the root (Appendix 6q), which is similar to both types of maxillary premolars. In the three-cusp type, there is one large buccal and two smaller lingual cusps. T e mesiolingual cusp is almost always larger and longer than the distolingual cusp, but this difference may be little or great. ${ }^{\mathrm{AA}}$ T e more prominent mesiolingual cusp tip is mesial to the midline of the root, similar to the lingual cusp of a twocusp premolar.

3. marginal r idge and Contact h eights of mandibular premolars (1 ingual View)

From the lingual view, differences in marginal ridge heights are apparent on handheld teeth when rotating the tooth first enough in one direction to see the mesial marginal ridge height and then enough in the opposite direction to compare the distal ridge height. As with most other posterior teeth, the mesial marginal ridges of the mandibular second premolars are slightly more occlusally located than the distal marginal ridges as is evident on all mandibular second premolars in Figure 4-26. T is is also true of the proximal contacts on mandibular second premolars: mesial contacts are more occlusal than distal contacts. An EXCEPTION to all other posterior adult teeth is the mandibular ürst premolar, the only adult tooth where the mesial marginal ridge is more cervically located than the distal marginal ridge as is evident in Figure 4-26 for many mandibular first premolars. T is is similar to the UNIQUE relative location of the proximal contacts on the mandibular ürst premolar where the mesial proximal contact is more cervical than the distal contact.
4.
mesiolingual versus 1 ingual Grooves on mandibular premolars (1 ingual View)

Unlike maxillary premolars, which have no grooves visible from the lingual view, both types of mandibular premolars may have a groove that could be visible from the lingual view (best appreciated on occlusal views in Fig. 4-27). On mandibular örst premolars, there is frequently a mesiolingual groove separating the mesial marginal ridge from the mesial slope of the small lingual cusp. ${ }^{\text {BB }}$ (Rarely, a similar groove might also be present between the distal marginal ridge and the distal slope of the lingual cusp.) On mandibular second premolars with two lingual cusps, a lingual groove passes between the mesiolingual and distolingual cusps and may extend lingually slightly beyond the occlusal table.

5. r oots of mandibular premolars (1 ingual View)

T e single root of both types of mandibular premolars is tapered toward the apex, and the roots are close to the same length. ${ }^{\text {CC }}$

C. TypE Tr a ITS Of maNDIBu 1 ar pr EmOlar S fr Om Th EprOxImal VIEw S

When studying the proximal views of mandibular first and second premolars, refer to Figure 4-28.

(1.) 1 ingual Tilt and Shorter 1 ingual Cusps of mandibular premolars (proximal Views)

Recall that the crowns of the mandibular ürst premolars tilt noticeably toward the lingual surface at the cervix (much more than any other premolar). T is tilt places the tip of the

fIGur E 4-27. The three-cusp-type mandibular second premolar has a lingual groove that separates the two lingual cusps, and the mandibular frst premolar most often has a mesiolingual groove that separates the mesial marginal ridge from the lingual cusp and extends onto the "pushed-in" mesiolingual portion of the tooth.

Proximal views of mandibular premolars with type traits to distinguish mandibular first from second premolars and traits to distinguish rights from lefts.

First (Right) Mesial View

Second (Right) Mesial View

MANDIBULAR RIGHT PREMOLARS: PROXIMAL VIEWS

TRAITs To DIs TINGUIs H m ANDIBUl AR FIRs T FRom s ECo ND PREm o 1 AR: PRox Im Al VIEWs
m ANDIBUl AR FIRs T PREm o 1 AR
m ANDIBUl AR s ECo ND PREm o 1 AR
Mesial marginal ridge lower and parallel to buccal triangular ridge
Severe lingual crown tilt
Lingual cusp much shorter than buccal cusp
Can see much of occlusal from mesial
Mesiolingual groove most seen from mesial

Mesial marginal ridge higher and more horizontal
Less lingual crown tilt
Lingual cusp somewhat shorter than buccal cusp Cannot see much of occlusal from mesial Two lingual cusps most visible from distal

TRAITs To DIFFERENTIATE m ANDIBUl AR RIGHT FRo m 1 EFT PREm o 1 ARs : PRox Im Al VIEWs

Mesial marginal ridge is lower than distal
Mesial marginal ridge parallel to buccal triangle ridge
More occlusal surface is visible from mesial

Distal marginal ridge is lower than mesial
Mesiolingual cusp larger than DL on three-cusp type
More occlusal surface is visible from distal
buccal cusp almost over the midroot axis line, and the lingual cusp tip is so lingually positioned that it may be aligned directly over the lingual outline of the cervical portion of the root (Fig. 4-29A and on all mandibular first premolars in Fig. 4-28). As was also seen from the lingual aspect, the lingual cusp of the mandibular first premolar is considerably shorter than the buccal cusp, more obviously than on other premolars. ${ }^{Z}$ Since it is so short, it is considered a nonfunctioning cusp (Appendix 6p) with a very short, almost horizontal triangular ridge.

T e mandibular second premolar crowns (both twocusp and three-cusp types) also tip lingually, but not as much as on the mandibular first premolar. T e tip of the buccal cusp of the mandibular second premolar is usually located at the junction of the buccal and middle thirds. As with the first premolar, the tip of the lingual cusp (or of the mesiolingual cusp) of this second premolar is usually about on a vertical line with the lingual surface of the root at the cementoenamel junction. A comparison of the lingual tilt of a mandibular first and second premolar is seen in Figure 4-29.

T e lingual cusps (or mesiolingual cusps for three-cusp types) of mandibular second premolars are closer in length to the buccal cusp than on first premolars. ${ }^{\text {DD }}$ When the threecusp type is viewed from the mesial, the longer mesiolingual cusp conceals the shorter distolingual cusp, but when it is viewed from the distal, part of the longer mesiolingual cusp is usually visible behind the shorter distolingual cusp (as seen on several mandibular second premolars viewed from the distal in Fig. 4-28).

fIGur E 4-29. Mesial views of two mandibular premolars showing the obvious lingual tilt of the crown on both teeth. A. The tilt is greater on the mandibular frst premolar, and the lingual cusp is so short that it is functionless. The lingual cusp tip is aligned over the lingual root outline (arrow). B. There is less lingual tilt on the mandibular second premolar, and the lingual cusp is not as short as on the first premolar.
2.
marginal r idge a lignment of mandibular premolars (proximal Views)
T e mesial marginal ridge of the mandibular $\dot{\alpha}$ rst premolar slopes cervically from the buccal toward the center of the occlusal surface at nearly a 45° angle and is nearly parallel to the triangular ridge of the buccal cusp (Fig. 4-30 and Appendix 6s). When comparing the height of mesial and distal marginal ridges from the lingual view, the distal marginal ridge is aligned more horizontally and therefore more occlusally than the sloped mesial marginal ridge, a trait UNIQUE to this tooth. T e difference in marginal ridge angle and height is most helpful in differentiating right mandibular first premolars from lefts (by identifying the more downward sloping and more cervical mesial marginal ridge).

Similar to maxillary premolars, the more horizontal mesial marginal ridge of the mandibular second premolar is more occlusally located than the distal marginal ridge (compare mesial and distal views in Fig. 4-28).
3. marginal r idge Grooves and mesiolingual Grooves on mandibular premolars (proximal Views)

When viewed from the mesial, a mesiolingual groove on the mandibular örst premolar ${ }^{\mathrm{BB}}$ may be seen separating the mesial marginal ridge from the mesial slope of the lingual cusp (Appendix 6r). When viewed from the distal, it would be rare to see a groove between the distal marginal ridge and the distal slope of the lingual cusp. ${ }^{\mathrm{BB}}$

fIGur E 4-30. Mesial view of a left mandibular frst premolar shows the steep angle of the mesial marginal ridge (about 45°), almost parallel to the steep triangular ridge of the buccal cusp. Also, notice the very cervical location of the buccal crest of curvature and that the cervical line on the lingual is positioned more occlusally than on the buccal.

Mesiolingual grooves are not present on mandibular second premolars, but the marginal ridges on these teeth may infrequently be crossed by a marginal ridge groove (very rarely on the distal marginal ridge). ${ }^{\text {EE }}$

4. Buccal and 1 ingual Crests of Curvature of mandibular premolars (proximal Views)

As on the both types of maxillary premolars (and anterior teeth), the facial crest of curvature on both types of mandibular premolars is located in the cervical third. On most premolars, it is located close to the junction of the cervical and middle thirds, but on the mandibular örst premolar, it is positioned more cervically than on other premolars: very close to the cervical line as on the adjacent mandibular canine (Fig. 4-30). T e buccal contour in the occlusal two thirds of this crown is flatter than that on the mandibular second premolar (seen on most first premolars in Fig. 4-28).

For all mandibular premolars, the crests of curvature of the lingual surface of the crown are in the middle third, about in the center of the total crown length. On the mandibular orst premolar, this is not far from the cusp tip of the very short lingual cusp (clearly seen on mandibular first premolars in Fig. 4-28). Because of the extreme lingual tilting of the crowns, the lingual surfaces of both types of mandibular premolar crowns bulge lingually, often well beyond the lingual surface of the root (Fig. 4-29).

5. Cervical 1 ines of mandibular premolars (proximal Views)

Similar to other teeth, the occlusal curve of the cervical line on the proximal surfaces of all premolars is slightly greater on the mesial surface than on the distal. ${ }^{\text {FF }} \mathrm{T}$ e cervical line is also located more occlusally on the lingual than on the buccal (Fig. 4-30). T is makes the crowns appear to be shorter on the lingual side.
6. roots of mandibular premolars (proximal Views)

T e single roots of both types of mandibular premolars taper apically, with the least taper in the cervical third.

7. r oot Depressions of mandibular premolars (proximal Views)

Mandibular àrst premolars often have a shallow longitudinal depression in the apical and middle thirds of the mesial root surface but are more likely to have a longitudinal depression on the distal root surface, and this distal depression is most often deeper than on the mesial. ${ }^{\text {GG }}$ Most mandibular second premolars have no depression on the mesial root surface but are likely to have a longitudinal depression in the middle third of the distal root surface.

To summarize, all types of mandibular and maxillary premolars are, on average, likely to have a more prominent root depression on the distal root surfaces than on the mesial EXCEPT the maxillary first premolar, which is more likely to have its more prominent root depression (and unique mesial crown depression) on the mesial surface. See Table 4-4 for a summary of the location and relative depth of root depressions on all types of premolars.

D. TypE Tr a ITS Of maNDIBular pr EmOl ar S from Th E OCCluSal VIEw

To follow this description, the teeth or tooth models should be held with the occlusal surface toward the observer and the buccal surface up and the observer looking exactly along the midroot axis line. Much of the buccal surface is visible from this view since the tip of the buccal cusp is only slightly buccal to tooth center from this view (clearly seen in almost all mandibular first premolars in Fig. 4-31). Ta B1 E 4-4 Occurrence and relative Depth of longitudinal r oot Depressions ("r oot Grooves") in premolars"

To o TH TyPE mEsIAl Ro o T DEPREs s Io N? DIs TAl Ro o T DEPREs s Io N?

Maxillary first premolar	Yes (deeper, extends onto mesial of crown,	Yes
which is UNIQUE to this premolar)	Yes (deeper)	

Mandibular first premolar
Mandibular second premolar

Yes (deeper)
Yes (deeper)

[^4]o cclusal views of mandibular premolars with type traits to distinguish mandibular first from second premolars and traits to distinguish rights from lefts. Red lines have been added along the mesiolingual surface of some mandibular first premolars to highlight the fat or "pushed-in" surface. Also, a triangular outline has been used to emphasize the symmetrical occlusal table on the far right first premolar.

First (Right)

L
Second (Right) Three-Cusp Type

L

Two-Cusp Type

MANDIBULAR PREMOLARS: OCCLUSAL VIEWS

Left First Premolars

Left Seconds (Three-Cusped)

Right First Premolars

Right Seconds (Three-Cusped)

Right Seconds (Two-Cusped)

TRAITs To DIs TINGUIs H m ANDIBUl AR FIRs T FRo m s ECo ND PREm o 1 AR: o CCl Us Al VIEWs

$$
\text { m ANDIBUl AR FIRs T PREm o } 1 \text { AR m ANDIBUl AR s ECo ND PREm o } 1 \text { AR }
$$

Outline diamond shaped
Smaller occlusal table
Outline converges toward lingual, especially on mesial
Mesiolingual groove common
Two fossae (mesial and distal)
Definite transverse ridge
Groove unlike ly across transverse ridge
Lingual cusp smaller than buccal

Outline nearly square or round/oval
Larger occlusal table
Outline may be wider on lingual on three-cusp type
Lingual groove on three-cusp type
Two fossae (mesial and distal) on two-cusp type but three fossae on three-cusp type
Three-cusp type has no transverse ridge
' Y ' groove pattern on three-cusp type
"H" or "U" groove pattern on two-cusp type
Lingual half larger than buccal if two lingual cusps

TRAITs To DIFFERENTIATE m ANDIBUl AR RIGHT FRo m 1 EFT PREm o 1 ARs : o CCl Us Al VIEWs

m ANDIBUl AR FIRs T PREm o 1 AR
m ANDIBUl AR s ECo ND PREm o 1 AR

Crown convex on distal but mesiolingual portion is fat (or concave/pushed in)
Mesiolingual groove common
Distal fossa larger than mesial fossa

Often wider faciolingually on distal than mesial

Mesiolingual cusp larger than distolingual (three cusp)
Lingual cusp tip more mesial (two-cusp type)
Distal fossa larger (two-cusp type)
Distal fossa smallest (three-cusp type)

1. Outline Shape and Contacts of mandibular premolars (Occlusal View)

T ere is much variation in the occlusal morphology of mandibular ürst premolars. ${ }^{2}$ Usually, the outline of the crown is not symmetrical (more bulk in the distal half) as seen in practically all mandibular first premolars in Figure 4-31. It often looks as though the mesiolingual portion of the crown outline has been "pushed in" resulting in a somewhat diamond-shaped outline (Appendix 6 u). T is "pushed-in" mesiolingual portion, sometimes crossed by a mesiolingual groove, is a reliable trait to identify a mandibular first premolar and its mesial surface (Fig. 4-32). On these asymmetrical mandibular first premolars, the distal marginal ridge forms close to a right angle with the distal cusp ridge of the buccal cusp, whereas the mesial marginal ridge meets the mesiobuccal cusp ridge at a more acute (sharper) angle (Fig. 4-32). Sometimes, however, the mesial and distal marginal ridges of a mandibular first premolar may converge symmetrically toward the lingual cusp in such a way that the occlusal table (surface) is triangular with the base of the triangle formed by the straight alignment of the mesial and distal cusp ridges of the buccal cusp, and the apex is on the lingual cusp tip. T is triangular shape is outlined on the last mandibular first premolar on the right in Figure 4-31. On this symmetrical type of mandibular first premolar, it is more dif cult to determine right from left by only looking at the occlusal design.

T e mesial and distal contact areas on the mandibular $\dot{\boldsymbol{\alpha}}$ rst premolar, as seen from the occlusal view, are at the point of broadest mesiodistal dimension just lingual to the line formed by the buccal cusp ridges. T e buccal ridge is not prominent, and the buccal crest of contour, like the buccal cusp tip, is slightly mesial to crown center mesiodistally. T e crest of contour of the lingual surface is often distal to the middle mesiodistally of the tooth.

On the two-cusped mandibular second premolars, the crown outline is round or oval shaped. T e crown outline tapers to the lingual, so the crown outline is more broadly curved on the buccal side than on the lingual side. T e lingual cusp tip is most often off center toward the mesial half of the crown.

fIGure 4-32. On this mandibular right frst premolar, the "pushed-in" outline on the mesial half of the lingual outline (arrow) and an overall diamond-shaped crown outline and occlusal table are both traits of many mandibular first premolars.

On the three-cusped second premolars, the occlusal outline is closer to square with less taper than since there are two lingual cusps. When the lingual cusps are large, the occlusal surface may be broader mesiodistally on the lingual half than on the buccal half (Fig. 4-33). T is is an EXCEPTION to all types of two-cusped premolars in both arches that normally taper narrower toward the lingual. Further, more than half of the time, three-cusped premolar teeth have greater faciolingual bulk in the distal half than the mesial half of the crown (tapering smaller from distal to mesial), which is an EXCEPTION to the normal taper to the distal ${ }^{\text {HH }}$ (Fig. 4-33). Examples of differences in crown taper are seen on mandibular second premolars in Figure 4-31.

A summary of the geometric outline shapes of premolars is presented in Figure 4-34.

2. Occlusal morphology of mandibular premolars (Occlusal View)
 a. Mandibular First Premolars: Ridges, Fossae, and Grooves (Occlusal View)

Due to the much longer and larger buccal than lingual cusp on the mandibular örst premolar, the triangular ridge of the buccal cusp is long and slopes lingually from the cusp tip to where it joins the very short triangular ridge of the lingual cusp. Most often, the two triangular ridges unite smoothly near the center of the occlusal surface and form an uninterrupted, very prominent transverse ridge that completely separates the mesial and distal fossae (recall Fig. 4-8A). T e mesial fossa is somewhat linear buccolingually, and the distal fossa is more frequently larger or deeper. ${ }^{\text {II }} \mathrm{T}$ e mesial and distal fossae on the mandibular first premolar are not traditionally called triangular fossae, just mesial and distal fossae. Each fossa is likely to have a pit. Both of these deep pits are susceptible to decay (caries) and are therefore often restored with two separate restorations (Fig. 4-35).

fIGure 4-33. mandibular left second premolar (three-cusp type) tooth 20 that is wider mesiodistally in the lingual half than in the buccal half and wider buccolingually in the distal half than in the mesial half, both UNIQUE traits of this three-cusped premolar. Note that the distolingual cusp on this second premolar appears almost as wide as the mesiolingual cusp (which is not common) and that this tooth is larger than the first premolar (a common occurrence on mandibular premolars unlike maxillary premolars). Also, observe the pronounced mesiolingual groove on the first premolar (tooth 21).

Diamond outline
Occlusal views of mandibular first premolars

Mandibular right first premolar

Three-cusp type

Two-cusp type

Mandibular right second premolar

Mandibular right second premolar

Close to square outline:
Occlusal views (or especially
occlusal table) of mandibular premolars
Y-shaped groove pattern:
On three-cusp type mandibular second premolars
U-shaped groove pattern:
On two-cusp type mandibular second premolars
fIGur E 4-34. Examples of ge ometric
outlines used to describe premolars from the occlusal and proximal views.

Maxillary right first premolar

Rhomboid (paralle logram)-shaped outline
Proximal view of mandibular
premolars
Trapezoid-shaped outline:
Proximal view of maxillary
premolars

fIGur E 4-36. Triangular-shaped occlusal table of a right mandibular frst premolar with common landmarks. Notice the fatter (almost concave) mesiolingual outline compared to the more convex distolingual outline.

Only rarely is the pronounced transverse ridge of the mandibular first premolar crossed by a fissured central groove, which may extend from the mesial pit across the transverse ridge to the distal pit. More commonly, there are mesial and distal developmental grooves running in a nearly buccolingual direction, flaring buccally from the mesial and distal fossae (Fig. 4-36). From this view, the mesiolingual groove (when present) may appear to be continuous with this mesial groove.
b. Two-Cusped Mandibular Second Premolars: Ridges, Fossae, and Grooves (Occlusal View)

On the two-cusp type mandibular second premolar, as on the mandibular first premolar (and both types of
maxillary premolars), the lingual cusp is normally shorter and smaller than the buccal cusp. T ere is a large triangular ridge on the buccal cusp and a correspondingly smaller one on the lingual cusp that join to form a transverse ridge. On this two-cusped second premolar, there is a central developmental groove that extends mesiodistally across the occlusal surface from the larger distal triangular fossa to the mesial triangular fossa, but there is no lingual groove. Sometimes this central groove is short and nearly straight, with mesial and distal fossa grooves that together form an "H" shape (Fig. 4-37B). Sometimes the curved central groove ends in a mesial and distal fossa, where it often joins a mesiobuccal and distobuccal groove to form a "U" shape (Fig. 4-37A).

fIGure 4-37. Variations in groove patterns, and similarities in lingual cusp location, on mandibular second premolars (Occlusal views). All types of mandibular second premolars are more likely to have the lingual cusp tip (or longest lingual cusp tip) located mesial to the crown center. A. This mandibular left second premolar (two-cusp type) has a single lingual cusp that is mesial to the center line, and the central groove is U shaped. B. This mandibular left second premolar (two-cusp type) with the lingual cusp mesial to the center line and an H-shaped groove pattern. C. This mandibular right second premolar (three-cusp type) has a larger mesiolingual cusp tip mesial to the center line and a Y -shaped groove pattern.
fIGur E 4-38. Mandibular right second premolar (three-cusp type) showing common occlusal landmarks. Note that the three triangular ridges donot join to form a transverse ridge. Also, the groove that runs between the mesial and distal pits joins the lingual groove at a central pit, so the longer groove mesial to the central pit may be called a mesial groove and the shorter groove distal to the central pit may be called the distal groove.

Mandibular second premolars (two-cusp type), similar to maxillary second premolars, have more numerous supplemental grooves on their occlusal surfaces than do first premolars. ${ }^{4}$

c. Three-Cusped Mandibular Second Premolar: Ridges, Fossae, and Grooves (Occlusal View)

T e three-cusped mandibular second premolar has a mesial and distal fossa like all other premolars, but it is the only premolar to also have a central fossa, which is located quite distal to the middle of the occlusal surface mesiodistally, and is nearly centered on the occlusal surface buccolingually. T is tooth appears to have a central groove, but it may be more precisely called a mesial groove (mesial to the central fossa) and a distal groove (distal to the central fossa). T e longer mesial groove extends from a small mesial triangular fossa to the largest central fossa. ${ }^{. J} \mathrm{~T}$ e shorter distal groove continues from the largest central fossa to the minute distal triangular fossa (Fig. 4-38). T e distal triangular fossa is so small that it may appear to be at the outer edge of the central fossa (Fig. 4-37C).

T e three-cusp type of mandibular second premolar is the only premolar to have a lingual groove. T is lingual groove begins in the central fossa at the junction of the mesial and distal grooves and extends lingually between the mesiolingual and distolingual cusps and sometimes over the cusp ridges. T e mesial, distal, and lingual grooves join to form a Y-shaped occlusal groove pattern UNIQUE to this tooth (Fig. 4-39B). Differences in occlusal groove patterns on mandibular premolars are highlighted in Figure 4-39.

T ere are three triangular ridges: one on each of the two lingual cusps and one on the buccal cusp. T ese three ridges converge somewhat toward the central fossa but do not join to form a transverse ridge (Fig. 4-38).

d. Marginal Ridge Grooves of All Mandibular Premolars from the Occlusal View

On both the two-cusped and three-cusped second premolar types, grooves crossing the marginal ridges (i.e., marginal ridge grooves) are not common. ${ }^{\text {KK }} \mathrm{T}$ e first premolar is much more likely to have a mesiolingual groove.

MANDIBULAR PREMOLARS (OCCLUSAL)

fIGurE4-39. Red lines accentuate differences in groove patterns and lingual taper found on different types of mandibular premolars. A. The mandibular frst premolar has a lack of symmetry on the lingual half because the mesiolingual portion is "pushed in" or fattened, and is often crossed by a mesiolingual groove. It often has two separate pits that are not joined by a central groove due to a prominent transverse ridge. B. The three-cusp-type mandibular second premolar can be as wide in the lingual half (or even wider) compared to the buccal half since it has two lingual cusps. The groove pattern is Yshaped with the mesial, distal, and lingual grooves intersecting in the central fossa. C and D. The two-cusp-type mandibular second premolar is the most symmetrical of the three types and may have a groove pattern that is U shaped or H shaped.

1 EARNING Ex ERCIs E

Suppose a patient just had all of his or her permanent teeth extracted and you were asked to find tooth 4 from among a pile of 32 extracted teeth on the oral surgeon's tray because you wanted to evaluate a lesion on the root of that premolar that had been seen on the radiograph. Without looking
at the suggestions listed below, write down the steps you would use for identifying this tooth.

Then compare your thoughts to the following suggestions:

- From a selection of all permanent teeth (extracted teeth or tooth models), select only the premolars (based on class traits).
- Determine whether each premolar is maxillary or mandibular (based on arch traits). Make a list of many traits that suggest the tooth is a maxillary premolar, as opposed to only one trait that makes you think it belongs in the maxillary arch.

1 Ear NING ExEr CISE (continued)

- If you determine that the tooth is maxillary, position the root up; if it is mandibular, position the root down.
- Use traits to identify the buccal surface. This will permit you to view the tooth as though you were looking into a patient's mouth.
- Next, using type traits, determine the type of premolar you are holding (first or second).
- Finally, determine which surface is the mesial. While viewing the premolar from the facial and picturing it within the appropriate arch (upper or lower), the mesial surface can be positioned toward the midline in only one quadrant, the right or left.
- Once you have determined the quadrant, assign the appropriate Universal number for the premolar in that quadrant. For example, the second premolar in the upper right quadrant is tooth 4 .

r EVIEw Questions

For each of the following traits or statements, circle the letter (or letters) of the premolars (if any) that apply. More than one answer may be correct.
a. Maxillary first premolar
b. Maxillary second premolar
c. Mandibular first premolar
d. Mandibular second premolar (two-cusp type)
e. Mandibular second premolar (three-cusp type)

1. Mesial cusp ridge of the buccal cusp is longer than the distal cusp ridge.
a
b
c
d
e
2. Has a nonfunctioning lingual cusp.
a
b
c
d
e
3. Two premolars that most frequently have a groove crossing the mesial marginal ridge or one groove just lingual to it.
a
b
c
d
e
4. Has a depression in the cervical one third of the mesial side of the crown and root.
a
b
c
d
e
5. Maxillary premolar that has the longer sharper buccal cusp.
a
b
c
d
e
6. Largest maxillary premolar.
a
b
c
d
e
7. Mandibular premolar with the longest and sharpest buccal cusp.
a
b
c
d
e
8. Maxillary premolar that is most symmetrical (occlusal view).
a
b
c
d
e
9. Two premolars without a central groove.
a
b
c
d
e
10. Crowns tipped lingually with respect to the root axis line (proximal view).
a
b
c
d
e
11. From buccal view, crown is tipped distally from the root axis.
a
b
c
d
e
12. Mesial marginal ridge is more cervically located than its distal marginal ridge.
a
b
c
d
e
13. Has no transverse ridge.
a
b
c
d
e
14. Has the longer central groove.
a
b
c
d
e
15. Has two major cusps almost the same size and length.
a
b
c
d
e
16. Has a central fossa.
a
b
c
d
e
17. Premolars with only two fossae: both are triangular fossae.
a
b
c
d
e
18. Has a central fossa and two triangular fossae.
a
b
c
d
e
19. Has a lingual groove.
a
b
c
d
e
$; e-61 ; b-51 ; a-41 ; e-31 ; c-21 ; e, d, c-11 ; e, d, c-01 ; e, c-9 ; b-8 ; c-7 ; a-6 ; a-5 ; a-4 ; c, a-3 ; c-2 ; a-1$: SrE uS Na

Cr ITICal Thinking

1. T e only way to master the many traits of the premolars presented in this chapter is to be able to picture each trait in your mind for each type of premolar and for each side of the mouth. T erefore, even though you have probably already looked carefully at each illustration in this chapter, at this time, reread the legends and study each figure in this chapter. If any facts are unclear, review the portion of the chapter that referred to that figure. Also, use the front and back of Appendix pages 5 and 6 to review all identified traits of premolars.
2. During an oral examination, you are charting the teeth that are present in Heather's mouth. Heather is a 24 -year-old dental hygiene student. All of her teeth are present, except on her left side; there is only one mandibular premolar, not two as expected. How can you go about determining whether this premolar is a first or second? Identify all premolar traits that could be helpful in making this decision. What follow-up procedure may be needed?
3. Name as many traits as possible that distinguish a mandibular second premolar (two-cusp type) from a mandibular first premolar in the same quadrant. State the views that best show each trait.
4. Using Figure 4-23, identify how many mandibular frst premolars have notches or buccal depressions on the mesial cusp ridge and how many mandibular second premolars have them on the distal cusp ridge.
5. LEARNING EXERCISE on premolar ridges.
6. LEARNING EXERCISE applying knowledge of tooth shape and alignment.
7. LEARNING EXERCISE applying knowledge of tooth shapes.

1 EARNING Ex ERCIs E

A. Name the ridges

B. Name the ridges
\qquad
fIGur E 4-40. 1 EARNING Ex ERCIs E: Name each ridge on the mandibular second premolar, two-cusp type, in (A). Also, name each ridge on the mandibular second premolar, three-cusp type, in (B).

1 Ear NING ExEr CISE (continued)

ANSWER: A. Ridges for two-cusp type: 1-mesial cusp ridge of buccal cusp; 2-buccal ridge; 3-distal cusp ridge of buccal cusp; 4-distal marginal ridge; 5-distal cusp ridge of lingual cusp; 6-m esial cusp ridge of lingual cusp; 7-mesial marginal ridge, 8-triangular ridge of buccal cusp; 9-triangular ridge of lingual cusp; 10-transverse ridge.
ANSWER: B. Ridges for three-cusp type: 1-mesial cusp ridge of buccal cusp; 2-buccal ridge; 3-distal cusp ridge of buccal cusp; 4-distal marginal ridge; 5-distal cusp ridge of distolingual cusp; 6-mesial cusp ridge of distolingual cusp; 7-distal cusp ridge of mesiolingual cusp; 8-mesial cusp ridge of mesiolingual cusp; 9-mesial marginal ridge; 10-triangular ridge of buccal cusp; 11-triangular ridge of distolingual cusp; 12-triangular ridge of mesiolingual cusp.

fIGur E4-41. 1 EARNING ExERCIs E: What is wrong with the teeth in this photograph? ANs WER: The maxillary second prem olar appears rotated so that its lingual surface is facing in a buccal direction. in this person, the buccal half of this maxillary second premolar is narrower mesiodistally than the lingual half, but in both types of maxillary premolars, the lingual half should be narrower mesiodistally (as seen on the adjacent frst prem olar).

fIGur E4-42. 1 EARNING Ex ERCIs E: All of the adult teeth are present in this panoramic radiograph except the mandibular third molars. Based on your knowledge of the size and shape of teeth, what is wrong with the location of premolars in this person? ANs WER: Based on crown shape and tooth length alone, you can see that the maxillary canines, which are often the longest teeth in the mouth, are in the wrong position. They should be between the maxillary lateral incisors and the first premolars, not between the first and second premolars.

REFERENCEs

1. Morris DH. Maxillary premolar variations among Papago Indians. J Dent Res 1967;46:736-738.
2. Kraus BS, Furr ML. Lower first premolars. Part I. A definition and classification of discrete morphologic traits. JDent Res 1953;32:554.
3. Ludwig FJ. T e mandibular second premolar: morphologic variations and inheritance. J Dent Res 1957;36:263-273.
4. Brand RW, Isselhard DE. Anatomy of orofacial structures. St. Louis, MO: C.V. Mosby, 1998.

GENERAl REFERENCEs

Grundler H. T e study of tooth shapes: a systematic procedure. (Weber L, trans.) Berlin, Germany: Buch-und ZeitschriftenVerlag "Die Quintessenz", 1976.
Oregon State System of Higher Education. Dental anatomy: a selfinstructional program. 9th ed. East Norwalk, CT: Appleton-Century-Crofts, 1982.
Renner RP. An introduction to dental anatomy and esthetics. Chicago, IL: Quintessence Publishing, 1985.

Statistics obtained from Dr. Woelfel's original research on teeth have been used to draw conclusions throughout this chapter and were referenced with superscript letters that refer to the data stated here. Tables 4-5A and 4-5B include the original data obtained by Dr. Woelfel.
A. Fifty-four percent of mandibular second premolars have three cusps (two lingual cusps).
B. Maxillary premolar crowns average 0.8 to 3.5 mm shorter than anterior tooth crowns, and mandibular premolars average 0.3 to 2.5 mm shorter than anterior tooth crowns.
C. Based on measurements on 1472 teeth, maxillary premolar roots average within 1 mm of maxillary incisor roots, but were 2.5 to 3.1 mm shorter than maxillary canine roots. Mandibular premolar roots average 1 to 1.9 mm longer than mandibular incisor roots but average 1.3 mm shorter than mandibular canine roots.
D. Measuring 923 premolars, all types of premolar crowns average 1.2 mm wider faciolingually than mesiodistally, and their roots average 2.8 mm wider faciolingually than mesiodistally.
E. Based on 458 maxillary premolars, the crowns of firsts average 0.5 mm wider mesiodistally and 0.9 mm longer than on seconds, but the roots of firsts average 0.6 mm shorter.
F. Buccal longitudinal crown depressions in the occlusal third were more prominent mesial to the buccal ridge on 52% of 452 maxillary first premolars, but distal to the buccal ridge only 2% of the time. On 506 maxillary second premolars, crown depressions were found only
27% of the time, occurring more frequently distal to the buccal ridge.
G. On 343 maxillary second premolars, 58% of the roots bent distally. On 426 maxillary first premolars, 66% of the roots bent distally.
H. On 200 maxillary first premolars, 61% had two roots, 38% had one root, and 1% had three roots.
I. T e single root on maxillary second premolars averages 0.6 mm longer than the root length on maxillary first premolars.
J. On 317 maxillary first premolars, lingual cusps average 1.3 mm shorter than buccal cusps (ranging from 0.3 to 3.3 mm shorter). On 300 maxillary second premolars, lingual cusps average only 0.4 mm shorter than buccal cusps.
K. On 93 two-rooted maxillary first premolars, the lingual root averaged 0.8 mm shorter than the buccal root.
L. On 243 maxillary premolars, the average distance between the buccal and lingual cusp tips of firsts is 5.9 mm , and 5.7 mm on seconds, or about two thirds of the faciolingual dimension.
M. On 600 maxillary first premolars, 97% of the mesial marginal ridges had a marginal ridge groove, but only 39% of the distal marginal ridges had a groove. On 641 maxillary second premolars, only 37% of mesial marginal ridges and 30% of distal marginal ridges had a groove.
N. On 234 maxillary first premolars, the cervical line curvature on the mesial averaged 1.1 mm and, on the distal, averaged 0.4 mm less. On maxillary second

Ta B1 E 4-5 a $\begin{aligned} & \text { Size } \\ & 1974\end{aligned}$	Size of Maxillary premolars (millimeters) (measured by Dr. woelfel and h is Dental h ygiene Students, 1974-1979)			
DIm ENs Io N m EAs URED	234 FIRs T PREmo 1 ARs		224 s ECo ND PREmol 1 ARs	
	AVERAGE	RANGE	AVERAGE	RANGE
Crown length	8.6	7.1-11.1	7.7	$5.2-10.5$
Root length	13.4	8.3-19.0	14.0	8.0-20.6
Overall length	21.5	15.5-28.9	21.2	15.2-28.4
Crown width (mesiodistal)	7.1	5.5-9.4	6.6	5.5-8.9
Root width (cervix)	4.8	3.6-8.5	4.7	$4.0-5.8$
Faciolingual crown size	9.2	6.6-11.2	9.0	6.9-11.6
Faciolingual root (cervix)	8.2	5.0-9.4	8.1	5.8-10.5
Mesial cervical curve	1.1	0.0-1.7	0.9	0.4-1.9
Distal cervical curve	0.7	0.0-1.7	0.6	0.0-1.4

Ta B1 E 4-5 B Size of Mandibular premolars (millimeters) (measured by Dr. woelfel and his Dental hygiene Students, 1974-1979)

DIm ENs Io N m EAs URED	238 FIRs T PREm o 1 ARs		227 s ECo ND PREmo 1 ARs	
	AVERAGE	RANGE	AVERAGE	RANGE
Crown length	8.8	5.9-10.9	8.2	6.7-10.2
Root length	14.4	9.7-20.2	14.7	9.2-21.2
Overall length	22.4	17.0-28.5	22.1	16.8-28.1
Crown width (mesiodistal)	7.0	5.9-8.8	7.1	5.2-9.5
Root width (cervix)	4.8	3.9-7.3	5.0	4.0-6.8
Faciolingual crown size	7.7	$6.2-10.5$	8.2	$7.0-10.5$
Faciolingual root (cervix)	7.0	5.5-8.5	7.3	6.1-8.4
Mesial cervical curve	0.9	0.0-2.0	0.8	0.0-2.0
Distal cervical curve	0.6	0.0-1.6	0.5	0.0-1.3

premolars, the difference between mesial and distal curvature averages 0.3 mm .
O. T ere was an obvious mesial crown depression (that is continuous with a mesial root depression) on 100% of 100 teeth, whether single or double rooted.
P. On maxillary second premolars, 78% had a mesial root depression (none extending onto the crown surface).
Q. When 1392 dental stone casts were studied, maxillary first premolars were judged larger than second premolars 55% of the time and smaller only 18% of the time.
R. On 408 maxillary first premolars, the central groove averaged 2.7 mm long and on 818 second premolars, 2.1 mm (shorter than on firsts by 0.6 mm).
S. T e distal triangular fossa was judged larger on 55% of the 184 maxillary first premolars and 53% of 209 maxillary second premolars. T e mesial triangular fossa was judged larger on 27% of first premolars and 17% of second premolars.
T. T e crown outline of 234 maxillary premolars measured greater buccolingually than mesiodistally: by 2.1 mm on firsts and by 2.4 mm on seconds.
U. On 465 mandibular premolars, crowns were longer on firsts by 0.6 mm , but roots were shorter on firsts by 0.3 mm .
V. Of 285 mandibular first premolars, 80% had a smooth buccal surface in the occlusal third without depressions, 17% had a deeper depression in the occlusal third of the crown on the mesial side of the buccal ridge, and only 3% had a deeper distal depression. Of mandibular second premolars, 74% had no discernible depressions, 25% had a deeper distal than mesial depression, and only 1% had a deeper mesial depression.
W. On 1348 mandibular first premolars, the buccal cusp is likely to have a notch on the mesial cusp ridge 65%
of the time and on the distal cusp ridge 46% of the time. On 1522 mandibular second premolars, the buccal cusp is likely to have a notch on the distal cusp ridge 66% of the time and on the mesial cusp ridge 43% of the time.
X. On 424 mandibular first premolars, roots bent distally 58% of the time, and on 343 mandibular second premolars, 62% bent to the distal; the tendency for a mesial bend was 23% and 17% on first and second premolars, respectively.
Y. Roots of mandibular second premolars average 0.2 mm wider mesiodistally and 0.3 mm longer than roots on mandibular first premolars.
Z. On 321 mandibular first premolars, lingual cusps averaged 3.6 mm shorter than buccal cusps (ranging from 1.7 to 5.5 mm shorter).
AA. On 818 mandibular second premolars, 90% had the mesiolingual cusp larger and longer than the distolingual cusp; the two lingual cusps were equal in size on 3%, and the distolingual cusp was larger on only 7%.
BB. On 609 mandibular first premolars, 67% had a mesiolingual groove; 8% had a similar groove between the distal marginal ridge and the distal slope of the lingual cusp.
CC. On 465 mandibular premolars, the roots on seconds averaged 0.3 mm longer than on firsts.
DD. On 317 mandibular second premolars, the lingual cusp (or mesiolingual cusp) averaged 1.8 mm shorter than the buccal cusp, ranging from 0.1 to 3.8 mm .
EE. On 100 mandibular second premolars, 21% had a mesial marginal ridge groove, and 4% had a distal marginal ridge groove.
FF. On 238 mandibular first premolars, the cervical line curvature on the mesial averaged 0.9 mm versus 0.6 mm on the distal. On 227 mandibular second
premolars, the cervical line curvature on the mesial averaged 0.8 mm versus 0.5 mm (almost flat) on the distal. T e cervical line may be located as much as 2 mm more occlusal on the lingual surface than on the buccal.
GG. On 100 mandibular first premolars, 45% had mesial root depressions and 86% had distal root depressions that were deeper than on the mesial 69% of the time. On 100 mandibular second premolars, 81% had no mesial root depression and 73% had a noticeable distal root depression.

HH. On 229 mandibular three-cusped second premolars, 56% have greater faciolingual bulk in the distal half, but 38% have greater bulk in the mesial half.
II. II. On 100 mandibular first premolars, 82% had a larger distal fossa and 8% had a larger mesial fossa.
JJ. On 200 mandibular three-cusped second premolars, 65% had a largest central fossa; only 25% had a largest mesial fossa.
KK. On 200 mandibular second premolars, 24% had mesial marginal ridge grooves, and 11% had distal marginal ridge grooves.

Ta B1 E 4-6 Occurrence of 1 ingual Cusps on mandibular Second premolars (808 females, 1532 Teeth)

NUm BER AND FREQUENCy	PERCENTAGE	Comment
Two lingual cusps on both sides	44.2\%	Almost half
One lingual cusp on both sides	34.2\%	One third
Two lingual cusps on one side	18.2\%	One fifth
Three lingual cusps on both sides	1.7\%	1 in 29
Three lingual cusps on one side	1.7\%	
Overall frequency	$\left.\begin{array}{l} 3 \text {-cusp type } 54.2 \% \\ 2 \text {-cusp type } 43.0 \% \\ \text { 4-cusp type } 2.8 \% \end{array}\right\}$	1532 teeth
Same type on both sides	80.1\%	702 comparisons
Different type on each side	19.9\% ${ }^{\text {\% }}$	

5 Morphology of Permanent Molars

Topics covered within the seven sections of this chapter include the following:

I. General description of molars

A. Location of molars in the mouth
B. Functions of molars
II. Class traits that apply to most molars
A. Crown shape for molars
B. Crown size for molars
C. Taper from buccal to lingual for most molars
D. Taper to the distal for most molars
E. Crest (height) of curvature for all molars
F. Contact areas for all molars
III. Arch traits that differentiate maxillary from mandibular molars
A. Crown outline to differentiate maxillary from mandibular molars
B. Numbers of cusps (and number of lobes) that differentiate maxillary from mandibular molars
C. Crown tilt that distinguishes maxillary from mandibular molars
D. Number of roots distinguish maxillary from mandibular molars
IV. Type traits that differentiate mandibular second from frst molars
A. Type traits of mandibular molars from the buccal view
B. Type traits of mandibular molars from the lingual view
C. Type traits of mandibular molars from the proximal views
D. Type traits of mandibular molars from the occlusal view
V. Type traits that differentiate maxillary second from frst molars
A. Type traits of the maxillary molars from the buccal view
B. Type traits of maxillary molars from the lingual view
C. Type traits of maxillary molars from the proximal views
D. Type traits of maxillary molars from the occlusal view
VI. Maxillary and mandibular third molar type traits
A. Number and location of third molars
B. Size and shape of third molars
C. Type traits of maxillary third molars that are similar to first and second molars
D. Type traits of mandibular third molars that are similar to mandibular first and second molars
E. Type traits that differentiate third molars from first and second molars
F. Should all third molars be extracted?
VII. Interesting variations and ethnic differences in molars

Chapter 5 focuses on class traits and type traits of permanent molars. On page 7 of the Appendix, the right second mandibular molar is used as a representative example for all molars when listing molar class traits. Exceptions to the common molar traits presented here are emphasized with capital letters ("EXCEPT"). Appendix page 8 includes arch and type traits that differentiate two types of molars: first molars and second molars in each arch. òir d molars vary considerably, often resembling a first or a second molar while still having
their own unique traits that will be discussed toward the end of this chapter in Section VI.

As you read this chapter, the word "Appendix" followed by a number and letter (e.g., Appendix 7a) is used to denote the appendix page (page 7) and trait being referenced (trait a). Notice that the trait being summarized after each letter on an appendix page is summarized on the back of that appendix page. As you study the traits of each type of human tooth, be aware these traits can vary considerably from mouth to
mouth. It would be ideal if you could learn the similarities and differences of all molars while comparing models or extracted specimens of the first and second molars from the views indicated.

Finally, the statistics from Dr. Woelfel's original research that were used to draw conclusions throughout this chapter are referenced with superscript letters like this (data ${ }^{\mathrm{A}, \mathrm{B}, \text { etc. }}$) and refer to data presented at the end of this chapter.

SECTION I GENERal DESCRIp TION OF MOl a RS

Objectives fOr sectiOns i, ii, and iii

This section is designed to prepare the learner to perform the following:

- Describe the location of molars in the mouth.
- Describe the functions of molars.
- List class traits common to all molars.
- List arch traits that can be used to distinguish maxillary from mandibular molars.
- From a selection of all teeth, select and separate out all molars using class traits.
- Divide a selection of all molars into maxillary and mandibular using arch traits.

a. 1OCaTION OF MOl a RS IN Th E MOUTh

Study a cast of all permanent teeth, or Figure 5-1, while learning the position of molars in the arch. T ere are 12 permanent molars: six maxillary and six mandibular. T e three types of permanent molars in each quadrant are the first molars (sixth
from the midline), second molars (seventh from the midline), and third molars (eighth from the midline). T ey are the sixth, seventh, and eighth teeth from the midline. Using the Universal Numbering System, the maxillary right molars are numbers 1, 2 , and 3 for the third, second, and first molars, respectively, and maxillary left molars are numbers 14,15 , and 16 for the first,

RIGHT
LEFT

FIGURE 5-2. Adult molars visible in a mouth when retracting a cheek are numbered.
second, and third molars, respectively. T e mandibular left molars are numbers 17,18 , and 19 for the left third, second, and first molars, respectively, and mandibular right molars are numbers 30,31 , and 32 for the right first, second, and third molars, respectively. First and second molars that are visible are numbered on one side of the mouth in Figure 5-2.

In the adult dentition, first molars are distal to second premolars. T e permanent first molars are located near the center of each arch, anteroposteriorly. T is is one reason that their loss is so devastating to arch continuity allowing movement and tipping of the teeth on either side. T ey are the largest and strongest teeth in each arch. T e second molars are distal to the first molars, and the third molars are distal to the second molars. Said another way, in the complete adult dentition, the mesial surface of the first molar contacts the distal surface of the second premolar, the mesial surface of the second molar contacts the distal of the first molar, and the mesial surface of the third molar contacts the distal of the second molar. T e third molar is the last tooth in the arch, and its distal surface does not contact any other tooth.

B. FUNCTIONS OF MOl a RS

T e permanent molars, like the premolars, (a) play a major role in the mastication of food (chewing and grinding to pulverize) and (b) are most important in maintaining the vertical dimension of the face (preventing the jaws from closing too far, which could reduce the vertical dimension between the chin and the nose, resulting in a protruding chin and a prematurely aged appearance as in Fig. 5-3). Molars are also (c) important in maintaining continuity within the dental arches, thus keeping other teeth in proper alignment. Further, molars have (d) at

FIGURE 5-3. A. This woman with missing posterior teeth has a reduced distance between her nose and chin resulting in deep facial skin folds around the lips, and a slightly protruding chin. B. Missing posterior teeth in this woman resulted in a depression between the lower lip and chin and a lowering of the corners of the mouth resulting in a frown.
least a minor role in esthetics or keeping the cheeks normally full or supported. You may have seen someone who has lost all 12 molars (six upper and six lower) and has sunken cheeks.

T e loss of a first molar is really noticed and missed by most people when it has been extracted. More than $80 \mathrm{~mm}^{2}$ of efficient chewing surface is gone; the tongue feels the huge space between the remaining teeth; and during the chewing of coarse or brittle foods, the attached gingiva in the region of the missing molar often becomes abraded and uncomfortable. Loss of many molars could even lead to pain in the jaw joints.

SECTION II ClaSS TRa ITS ThaT apply TO MOST MOla RS

Refer to Appendix page 7 while reading about the following class traits of all molars.

a. CROw N Sh a pE FOR MO1 a RS

From the buccal or lingual views, both maxillary and mandibular molars are wider mesiodistally than occlusocervically
(Appendix 7a), and from the proximal views, they are both wider faciolingually than occlusocervically (Appendix 7h).

B. CROw N SIzE FOR MOl a RS

Molars have an occlusal (chewing) surface with three to five cusps, and their occlusal surfaces are larger than the other
teeth in their respective arches. T ey have broader occlusal surfaces than do premolars, both faciolingually and mesiodistally. ${ }^{\mathrm{A}} \mathrm{T}$ e combined mesiodistal width of the three mandibular molars in one quadrant makes up over half of the mesiodistal dimension of their quadrant. T e maxillary molars constitute 44% of their quadrant's mesiodistal dimension, still a significant portion. In contrast, both mandibular and maxillary molar crowns are shorter occlusocervically than all other adult crowns and have cusps before wear that are usually less sharp than premolar cusps.

C. TapER FROM BUCCal TO 1 INGUa 1 FOR MOST MOl a RS

From the occlusal view, molar crowns taper (get narrower) from the buccal to the lingual. T at is, the mesiodistal dimension is wider on the buccal half than on the lingual half (Appendix 7b) EXCEPT on some maxillary first molars with large distolingual cusps, where crowns are actually wider mesiodistally in the lingual half.

D. TapER TO Th E DISTal FOR MOST MOl a RS

For both arches, molar crowns from the occlusal view tend to taper distally, so that the distal third is narrower buccolingually than the mesial third (Appendix 7c). T is
taper may be less apparent on some mandibular first molars where the tooth may be widest buccolingually in the middle third. Also, from the buccal (or lingual) views, since the distal cusps on molars are shorter than mesial cusps, the occlusal surfaces usually slope shorter toward the cervix from mesial to distal (Appendix 7d). T is, along with the more cervical placement of the distal marginal ridge, makes more of the occlusal surface visible from the distal aspect than from the mesial aspect (compare mesial to distal views in Appendix page 7).

E. CREST (h EIGh T) OF CURva TURE FOR all MOlaRS

As with premolars, the crest of curvature on the buccal of molars viewed from the proximal is in the cervical third; on the lingual, it is most often in the middle third (Appendix 7e).

F. CONTa CT a REa S FOR all MOl a RS

When molars are viewed from the buccal (or lingual), mesial proximal contact areas are more occlusal (at or near the junction of the occlusal and middle thirds) than distal contact areas (near the middle of the tooth) (Appendix 7f).

a RCh TRa ITS Th a T DIFFERENTIa TE Maxil lary FROM Mandibular MOl a RS

Compare extracted maxillary and mandibular molars and/or tooth models while reading about these differentiating arch traits. Also refer to page 8 in the Appendix.

a. CROw N OUTl INE TO DIFFERENTIaTE Ma xIl 1 a Ry FROM Ma NDIBUl a R MOl a RS

From the occlusal view, the crowns of mandibular molars are oblong: they are characteristically much wider mesiodistally than faciolingually. ${ }^{\mathrm{B}} \mathrm{T}$ is is just the opposite of the maxillary molars, which have their greater dimension faciolingually (Appendix 8a).

B. NUMBERS OF CUSpS (a ND NUMBER OF 1OBES) Th aT DIFFERENTIaTE Ma xIll a Ry FROM Ma NDIBUl a R MOl a RS

Both mandibular first and second molars have four cusps of similar size (two buccal and two lingual), but most mandibular first molars have an additional smaller fifth distal cusp located
on the buccal surface just distal to the other two larger buccal cusps (see occlusal views of molars in Appendix page 8).

Most maxillary first and second molars also have four larger cusps (two buccal and two lingual), but the distolingual cusp varies in size: it is often considerably smaller, especially on maxillary second molars. On some maxillary second molars, this distolingual cusp is not present resulting in the only threecusped molar. Further, maxillary first molars often have a functionless fifth cusp (cusp of Carabelli) on its lingual surface (the only tooth to have this sort of cusp) (Appendix 8i).

T e number of lobes forming all molars is one per cusp, including the cusp of Carabelli if it is large. See Table 5-1 for a summary of the number of lobes forming first and second molars.

C. CROw N Tll T Th a T DISTINGUISh ES Ma xIl 1 a Ry FROM Ma NDIBUl a R MOl a RS

When mandibular molar crowns are examined from the proximal views, the crowns appear to be tilted lingually on the root trunk (as is true for mandibular premolars), whereas

Ta B1 E 5-1 Molars: Guidelines for Determining Number of lobes for Molars

MOLAR NAME	NO. OF CUSPS	NO. OF LOBES
Maxillary first molar	4 (or 5 if large fifth cusp)	4 (or 5 if large fifth cusp)
Maxillary second molar	4 (or 3)	4 (or 3)
Mandibular first molar	5	5
Mandibular second molar	4	4

Number of lobes = 1 per cusp including a large fifth cusp of (Carabellii).

FIGURE 5-4. Buccal views of mandibular molars with type traits to distinguish mandibular first from second molars and traits to distinguish rights from lefts.

Second (Right)

First (Right)

MANDIBULAR MOLARS : BUCCAL VIEWS

Second Molars (Right)

Second Molars (Left)

TRAITS TO DISTINGUISH MANDIBULAR FIRST MOLARS FROM SECOND MOLARS: BUCCAL VIEW

MANDIBULAR FIRST MOLAR

Three buccal cusps: mesiobuccal, distobuccal, and distal Two buccal grooves: mesiobuccal and distobuccal
Wider root spread, shorter trunk
Roots more curved

MANDIBULAR SECOND MOLAR
Two buccal cusps: mesiobuccal and distobuccal One buccal groove
Less root spread, longer trunk Straighter roots
traits tOdistin GUis H MandibULar riGHt fr OM Left MOLars: bUccaLvie W
MANDIBULAR FIRST MOLAR
MANDIBULAR SECOND MOLAR
Distal cusp is smallest buccal cusp
Distobuccal cusp is smaller than mesiobuccal
Crown tapers and is shorter toward distal for both mandibular first and second molars
Distal contact is more cervical than mesial contact for both types
Crown has more distal bulge beyond root than on mesial for both types
Mesial root is longer than distal root for both types
the crowns and cusps of maxillary molars are centered over their roots (Appendix 8b). Also, when mandibular molars are viewed from the buccal, they may appear to tip distally relative to the midroot axis due to the considerable bulge of the distal crown outline beyond the cervix of the root, and the slope of the occlusal surface shorter on the distal. (T e greater distal crown bulge and distal crown tilt can be seen on most mandibular molars in Fig. 5-4.)

D. NUMBER OF ROOTS DISTINGUISh Ma xIl 1 a Ry FROM Ma NDIBUl a R MOl a RS

Perhaps the most reliable trait to differentiate extracted maxillary from mandibular molars is the number of roots.

Maxillary molars normally have three relatively long roots: two on the buccal called a mesiobuccal and distobuccal, and one lingual (palatal) root. Mandibular molars have only two roots: a mesial and distal root (see Appendix 8c). The root trunk on mandibular molars is shorter than on the maxillary molars since the furcation is closer to the cervical line, especially on mandibular first molars. Mandibular molars have the longest roots relative to crown length (greatest root-to-crown ratio) of any adult teeth. ${ }^{\text {C }}$

Table 5-2 includes a summary of arch traits that can be used to differentiate maxillary from mandibular molars. Some of these traits will be discussed in more detail in Sections IV and V.

Ta B1 E 5-2

 a rch Traits to Distinguish Mandibular from Maxillary Molars
MAXILLARY MOLARS

Two buccal cusps:
Mesiobuccal and distobuccal
Mesiolingual cusp tip visible from buccal
One buccal groove (usually not onto buccal surface)
Three roots (two buccal and one lingual)
Root trunk longer
Crown centered over root
Lingual groove off center (toward distal)
Mesiolingual cusp larger than distolingual cusp, more than on mandibular molars
Cervix of crown tapers more to lingual
Fifth cusp (of Carabelli) or groove common on first molars ${ }^{U}$

MANDIBULAR MOLARS

Two or three buccal cusps:

Mesiobuccal, distobuccal, and distal (on firsts)
Both lingual cusp tips visible from buccal
Two buccal grooves on most first molars
Two roots (one mesial and one distal)
Root trunk shorter
Crown appears tipped distally on root
Lingual groove nearly centered
Mesiolingual and distolingual cusps' size and height more equal
Cervix of crown tapers less to lingual
No Carabe lli cusp

Crown more centered over root
Smaller distolingual cusp on most second molars or no distolingual cusp

Crown tipped more lingually over root
Smallest distal cusp seen from distal on most first molars

Crowns wider faciolingually than mesiodistal
Oblique ridge present from mesiolingual to distobuccal
One transverse ridge mesiobuccal to mesiolingual
Parallelogram (or square) shape crown for four-cusped type
Three-cusped seconds are heart shaped
Four fossae: including large central and cigar-shaped distal
Central groove in mesial half does not cross oblique ridge
First molars have four cusps plus many have fifth
(Carabelli) cusp/ groove. ${ }^{\mathrm{U}}$
First molars wider on lingual than buccal
Second molars have four cusps or three cusps (heart shaped)
Mesiolingual cusp much larger than distolingual

Crowns wider mesiodistally than faciolingual
No oblique ridge
Two transverse ridges mesiobuccal to mesiolingual and distobuccal to distolingual
Pentagon shape crown on firsts
Rectangular-shaped crown on seconds
Three fossae: central fossa is large
Central fossa with zigzag or + groove pattern
Five cusps on firsts ${ }^{G}$ (distal cusp is fifth cusp)
First molars wider on buccal than lingual
Second molars have four cusps
Mesiolingual cusp slightly larger than distolingual

SECTION Iv

TypE TRa ITS Th aT DIFFERENTIaTE Ma n dib ULa r

 Second FROM Fir St MOlaRS
Objectives

This section prepares the reader to perform the following:

- Describe the type traits that can be used to distinguish the permanent mandibular first molar from the mandibular second molar.
- Describe and identify the buccal, lingual, mesial, distal, and occlusal surfaces for all mandibular molars.
- Assign a Universal number to mandibular molars present in a mouth (or on a model) with complete
dentition. If possible, repeat this on a model with one or more mandibular molars missing.
- Holding a mandibular molar, determine whether it is a first or a second, and right or left. Then, assign a Universal number to it.

Mandibular first and second molars have specific traits that can be used to distinguish one from the other. As you study the mandibular first and second molars, hold the crowns up and roots down as they are positioned in the mouth, and refer to Appendix page 8 while making the following comparisons.

When considering relative differences in cusp size, it is important to distinguish between cusp height and cusp size. Cusp height refers to the relative length of each cusp tip: whether it is longer or shorter, best appreciated when viewing a tooth from the buccal, lingual or proximal. Cusp size refers to the relative area of each cusp: whether it is bigger or smaller, best appreciated when viewing a tooth from the occlusal.

a. TypE TRa ITS OF Ma NDIBUl a R MOl a RS FROM Th E BUCCal vIEw

Refer to Figure 5-4 for similarities and differences between mandibular first and second molars.

1. Crown proportions (Buccal view)

For both types of mandibular molars, the crowns are wider mesiodistally than high cervico-occlusally but more so on the larger first molars. ${ }^{\text {D }}$

2. Taper of Mandibular Molars (Buccal view)

T ere is proportionally more tapering of the crown from the contact areas to the cervical line on mandibular $\dot{\alpha} r s t$ molars than on second molars because of the bulge of the distal cusp (Appendix 8g). T erefore, the crown of the second molar appears to be wider at the cervix than on the first molar.

Also, from the buccal view, the occlusal outlines of both the first and second mandibular molars taper shorter cervically from mesial to distal since the cusps get shorter from mesial to distal (Appendix 7d). T is distal taper combined with a greater distal crown outline bulge beyond the root, especially on mandibular first molars, results in the perception that the crown is tipped distally on its roots.

3. Number and Relative height of Mandibular Molar Buccal Cusps and Grooves That Separate Them (Buccal view)

Most mandibular first molars have five cusps, and most mandibular second molars have four cusps. T e mandibular first molar has the largest mesiodistal dimension of any tooth. ${ }^{\mathrm{EF}}$ It most often has $\dot{\alpha} v e$ cusps: three buccal cusps (named mesiobuccal, distobuccal, and distal) and two lingual cusps (named mesiolingual and distolingual) (Fig. 5-5). However, the smallest distal cusp may be absent (about a fifth of the time according to Woelfel's research), ${ }^{G}$ so do not be surprised when you see a mandibular first molar with only four cusps (Fig. 5-6).

When considering the relative height of the most common five-cusped mandibular first molar, the lingual cusps are generally longer than buccal cusps, and both lingual and buccal cusps get shorter toward the distal. T erefore, the mesiolingual cusp is the longest, followed by the distolingual, then the mesiobuccal cusp followed by the distobuccal, and finally, when present, the shortest distal cusp (located on the buccal surface near the distobuccal angle). Relative to other buccal cusps on this tooth, the mesiobuccal cusp is the largest, widest, and highest, ${ }^{\text {H }}$ although the distobuccal cusp may be sharper than the mesiobuccal cusp. ${ }^{\text {I }}$

When a handheld mandibular first molar is oriented vertically and viewed from the buccal, the mesiolingual cusp, which is the longest cusp, is just visible behind the

MANDIBULAR MOLAR CUSP AND GROOVE NAMES

Mandibular (five-cusped) first molar (right side)

FIGURE 5-5. Cusps of a mandibular first (five-cusped) molar and a mandibular second (four-cusped) molar are labeled to show the relative location and size of cusps and grooves.
mesiobuccal cusp, and the shorter distolingual cusp tip is just visible behind the shorter distobuccal cusp. T e shortest distal cusp is also visible almost like a buccal extension of the marginal ridge. T is is clearly seen in Figure 5-7 and in the first molars in Figure 5-4. Even though the lingual cusps are higher than buccal cusps when viewing a handheld tooth with the root axis held vertically, the lingual cusp tips in the mouth are at a lower level than the buccal cusps due to the lingual tilt of the root axis in the mandible, creating the mediolateral curve (of Wilson) illustrated previously in Figure 1-49.

When there are three buccal cusps on the mandibular first molar, there are two buccal grooves: the mesiobuccal and shorter distobuccal. T e longer mesiobuccal groove separates the mesiobuccal cusp from the distobuccal cusp, and the shorter ${ }^{5}$ distobuccal groove separates the distobuccal cusp from the distal cusp. Both of these grooves are likely to extend onto the buccal surface and may end in a pit that is sometimes a site of decay (Fig. 5-7). Six of the mandibular first molars in Figure 5-4 have pits at the end of the mesiobuccal groove, and a seventh has a filling, and one of the

FIGURE 5-6. A less common form of mandibular right first molar (tooth 30) with only four cusps, two buccal and two lingual, the same as the second molar (tooth 31) just distal to it. Recall that most mandibular first molars have five cusps, three buccal and two lingual.

FIGURE 5-7. A mandibular first molar showing the longest mesiolingual cusp and second longest distolingual cusp both visible behind the shorter mesiobuccal and distobuccal cusps. The distal cusp is the smallest. Decay may be forming at the end of the mesiobuccal groove.
mandibular first molars has a pit at the end of the distobuccal groove; can you find it?

T e mandibular second molar most often has four cusps: two buccal and two lingual (Fig. 5-5 lower drawings). T e cusp heights are in the same order as for the four larger cusps of the mandibular first molar: the mesiolingual is longest, then the distolingual, mesiobuccal, and smallest distobuccal. As on the mandibular first molar, the lingual cusp tips are visible from the buccal view of a handheld tooth behind the shorter buccal cusps (seen in most teeth in Fig. 5-4). As on the mandibular first molar, the mesiobuccal cusp is often wider mesiodistally than the distobuccal cusp. ${ }^{\text {K }}$

Mandibular second molars have only one buccal groove that separates the mesiobuccal from the distobuccal cusp. T is buccal groove may end on the buccal surface in a pit that is sometimes a site of decay (seen in 2 of the 10 second molars in Fig. 5-4). T ere is no distobuccal groove as on the five-cusped first molar.

4. proximal Contacts of Mandibular Molars (Buccal view)

Both types of mandibular molars (in fact, all molars) normally have the mesial proximal contact located more occlusally than the distal. T e mesial contact is close to the junction of the middle and occlusal thirds of the crown while the distal contact is located more cervically, in the middle third (near the middle of the tooth cervico-occlusally). T is difference in proximal contact height can be seen in most mandibular molars in Figure 5-4.

5. Cervical 1 ines of Mandibular Molars (Buccal view)

T e cervical lines of both mandibular first and second molars are often nearly straight across the buccal surface

FIGURE 5-8. Enamel extension (arrow) downward into the buccal furcation of a mandibular right second molar on a skull. (Courtesy of Charles Solt, D.D.S., and Todd Needhan, D.D.S.)
with little curve. On mandibular molars, cementum often covers the root bifurcation surface, ${ }^{1}$ but sometimes there is a point of enamel that dips down nearly into the root bifurcation (Fig. 5-8). T ere may even be a dipping down of enamel on both the buccal and the lingual surfaces, and these extensions may meet in the root bifurcation. ${ }^{2,3}$ An area with these enamel extensions may contribute to a deep gingival sulcus since cementum is required for the periodontal ligament to attach the tooth root to the bone in a healthy periodontium.

6. Roots of Mandibular Molars (Buccal view)

Both mandibular first and second molars have two roots, one slightly longer mesial root and one distal root (Appendix 8c). ${ }^{\text {L }}$ Both roots are nearly twice as long as the crown.

T e roots of a mandibular first molar are more widely separated than on the seconds, so the root bifurcation is closer to the cervical line and the root trunks are relatively shorter compared to seconds. T is considerable divergence is evident when the curved mesial root bows out beyond the mesial crown outline and then curves back distally placing its apex in line with the mesiobuccal groove of the crown (seen on Fig. 5-9). T e mesial root is twisted, so it may be possible to see the distal surface of this root from the buccal view (seen on Fig. 5-9 and on some first molars in Fig. 5-4). T e more pointed apex of the straighter distal root often lies distal to the distal crown outline.

T e tapered, pointed roots of mandibular second molars are less widely separated, or more parallel, than on first molars (Appendix 8f), so the root trunk is often longer than that of the mandibular first molar. Often, the apices of both roots are directed toward the centerline of the tooth, similar in shape to the handle of pliers, and a buccal root depression extends occlusally from the furcation to the cervical line (Fig. 5-10 and on 2 of the 10 mandibular molars in Fig. 5-4; see if you can find them), or both roots may curve distally.

FIGURE 5-9. A five-cusped mandibular first molar with widely separated roots, and a curved mesial root with its apex almost lined up with the mesiobuccal groove on the crown. The distal root apex is distal to the distal crown outline.

B. TypE TRa ITS OF Ma NDIBUl a R MOl a RS FROM Th E 1 INGUal vIEw

Refer to Figure 5-11 for similarities and differences between mandibular molars from the lingual view.
(1. Number and Relative Size of Mandibular Cusps and the 1 ingual Groove (1 ingual view)

Since the lingual cusps of both types of mandibular molars are both slightly longer (and more pointed ${ }^{\mathrm{N}}$) than the buccal cusps, only the two longer lingual cusps are visible from the lingual aspect (not evident in Fig. 5-11 because of the camera angle). T e mesiolingual cusp is most often slightly longer and wider than the distolingual cusp. ${ }^{M}$

A lingual groove separates the mesiolingual from the distolingual cusp, but it is unlikely to extend onto the lingual surface.
2. Narrower Crown 1 ingually on Mandibular Molars (l ingual view)
As with most teeth, mandibular first and second molar crowns taper from buccal to lingual and thus are narrower mesiodistally in the lingual half, permitting more view of the

FIGURE 5-10. A four-cusped mandibular second molar with a very long root trunk and the shape of its two roots resembling the handles of a pliers.
mesial and distal surfaces from the lingual view than from the buccal.
(3. Cervical 1 ine of Mandibular Molars (l ingual view)
T e cervical line on the lingual surface is relatively straight (mesiodistally) but may rarely dip cervically toward the root bifurcation between the mesial and distal roots as may also be seen on the buccal surface.

4. Roots of Mandibular Molars (1 ingual view)

On mandibular first molars, the root trunk appears longer on the lingual than on the buccal side because the cervical line is more occlusal in position on the lingual than on the buccal surface. Both roots are narrower on the lingual side than they are on the buccal side, and the mesial root is twisted making it possible to see the mesial surface of the mesial root (seen on five mandibular first molars in Fig. 5-11).

On both first and second mandibular molars, the lingual surface of the root trunk has a depression between the bifurcation and the cervical line just as on the buccal root trunk.

C. TypE TRa ITS OF Ma NDIBUl a R MOl a RS FROM Th EpROxIMa 1 vIEw S

For proper orientation, as you study each trait, hold the crown so that the root axis line is in a vertical position as seen in Figure 5-12.

Lingual views of mandibular molars with type traits to distinguish mandibular first from second molars and to help distinguish rights from lefts.

First (Right)

Second (Right)

MANDIBULAR MOLARS: LINGUAL VIEWS

Second Molars (Left)

traits tOdistin GUis H Mandib ULar first MOLars fr OM sec Ond MOLars : Lin GUa Lvie W

Mandib ULar first MOLar	MandibULar second MOLar
Wider root spread, shorter trunk	Less root spread, longer trunk
Roots more curved	Straighter roots
More crown taper to lingual	Less crown taper to lingual
traits t Odistin GUis H MandibULar riGHt fr OM Left MOLars : Lin GUaLvie W	
Mandibular first MOLar	MandibULar second MOLar

Same outline traits as from buccal view are seen from the lingual view for both types Mesiolingual cusp is the longest for both types
Distal marginal ridge is more cervical than is the mesial marginal ridge for both types
(1.) Crown Shape and Tilt (proximal views)

Recall that both types of mandibular molar crowns are relatively shorter cervico-occlusally and wider faciolingually (Appendix 7h) and that the crowns of both types of
mandibular molars are tilted lingually from the root trunk (Fig. 5-13). Remember that this lingual tilt is an arch trait characteristic of all mandibular posterior teeth and is nature's way of shaping them to fit beneath and lingual to the maxillary buccal cusps (recall Fig. 1-60).

Proximal views of mandibular molars with type traits to distinguish mandibular first from second molars and to help distinguish rights from lefts. The buccal and lingual crests of curvature have been marked on the mesial views to emphasize the more cervical location on the buccal than on the lingual.

First (Right)
Mesial View

Second (Right)
Mesial View

MANDIBULAR MOLARS: PROXIMAL VIEWS

traits t Odistin GUis H MandibULar first MOLars fr OMsec Ond MOLars: Pr OXiMaLvieWs

MandibULar first MOLar
MandibULar sec Ond MOLar
Mesial root is wide faciolingually with blunt tip
Mesial root less wide faciolingually with curved tip Crown is wider faciolingually than occlusocervically Crown is less wide faciolingually
traits tOdistin GUis H MandibULar riGHt fr OM Left MOLars: Pr OXiMaLvie Ws
MandibULar first MOLar
MandibULar sec Ond MOLar
Mesial root is broader buccolingually, so distal root is not seen from mesial view for both types Distal marginal ridge is more cervical than mesial marginal ridge for both types (also seen from lingual view)

FIGURE 5-13. Mesial view of a mandibular first molar shows the lingual tilt of its crown relative to its midroot axis line. Also, the buccal crest of curvature is obviously in the cervical third, while the lingual crest of curvature is in the middle third. These traits are characteristic of all mandibular posterior teeth. Due to the high mesial marginal ridge, most of the occlusal surface is hidden from view.
2. Number and Relative Size of Mandibular Molar Cusps (proximal views)

Mandibular molar cusps (and marginal ridges) are shorter on the distal than on the mesial, so much of the occlusal surface and all cusp tips (including the distal cusp when present on mandibular first molars) can be seen from the distal aspect (as seen in Fig. 5-14 and on the distal surfaces of most mandibular molars in Fig. 5-12). Since the lingual cusps of both mandibular first and second molars are longer and more pointed than the buccal cusps, the longer triangular ridges of these lingual cusps are evident from this distal view. From the mesial aspect, only the mesiobuccal and mesiolingual cusps are visible, and most of the occlusal anatomy is hidden behind the prominent mesial marginal ridge (Fig. 5-13).

FIGURE 5-14. The distal view of a five-cusped mandibular first molar has a short, V-shaped, low, distal marginal ridge that permits viewing the ridges of all five cusps. The distal marginal ridge is just lingual to the distal cusp.

FIGURE 5-15. The rounded cervical ridge is marked on this mandibular first molar. It contributes to the shape of the crown buccal outline from the occlusal view, and it makes up the buccal crest of curvature in the cervical third of the crown.
3. Crest (h eight) of Contour of Mandibular Molars (proximal views)

T e buccal crest of contour is actually formed by a buccal cervical ridge that runs mesiodistally near the cervical line (Fig. 5-15). T is cervical ridge is more prominent on mandibular second molars than on firsts. As with all molars (and premolars), the convex buccal crest of contour or greatest bulge is in the cervical third (Fig. 5-13), whereas the lingual crest of curvature is in the middle third. T is difference in crests of curvature heights is useful to distinguish buccal from lingual surfaces on molars.

4. Taper Toward Distal of Mandibular Molars (proximal views)

On both types of mandibular molars, the crown is narrower in the distal third than in the mesial third. T erefore, from the distal aspect, some of the lingual and the buccal surfaces can be seen (demonstrated clearly on the distal views of mandibular second molars in Fig. 5-12). Proximal contact areas may be seen as f attened areas (facets) caused from wear due to the rubbing of adjacent teeth during functional movements of the jaws. On mandibular first molars, the distal contact is centered on the distal surface cervical to the distal cusp.
5. Cervical 1 ines of the Mandibular Molars when Comparing proximal views

Mesial cervical lines on both first and second molars slope occlusally from buccal to lingual and curve very slightly toward the occlusal surface. ${ }^{\circ} \mathrm{T}$ e distal cervical lines curve less and sometimes are so slightly curved that they are nearly straight.

FIGURE 5-16. A. When the two roots of this
mandibular molar are viewed from the mesial, only the wider, longer mesial root is visible. B. When the two roots of this mandibular molar are viewed from the distal, two roots are visible: a portion of the wider mesial root can be seen behind the narrower, shorter distal root.
6. Marginal Ridge heights of Mandibular Molars when Comparing proximal views

Differences in mesial and distal marginal ridge heights are apparent on handheld teeth when viewing the crown from the lingual and rotating the tooth, first just enough in one direction to see the mesial marginal ridge height, and then enough in the opposite direction to compare it to the distal marginal ridge height. On mandibular molars, as with all posterior teeth (EXCEPT the mandibular first premolar), mesial marginal ridges are more occlusally located than distal marginal ridges so that from the mesial view, the triangular ridges of the cusps are mostly hidden from view (compare a mesial view in Fig. 5-13 with a distal view in Fig. 5-14).

Mesial marginal ridges are concave buccolingually. Distal marginal ridges of the first molar are short and V shaped, located just lingual and distal to the distal cusp (Fig. 5-14).

7. Roots and Root Depressions of Mandibular Molars (proximal views)

T e mesial root of both first and second mandibular molars is longer and broader buccolingually than the shorter more pointed distal root. T erefore, from the distal view, the longer, broader mesial root is usually visible behind the shorter, narrower and more pointed distal root, and from the mesial view, the narrower distal root is hidden behind the wider, longer mesial root (seen in Fig. 5-16 and on all but one mandibular second molar from the distal view in Fig. 5-12). Further, the mesial root of the mandibular darst molar is larger (broader buccolingually with a wider apex) than the mesial root of the mandibular second molar.

ROOT DEPRESSIONS: On both mandibular first and second molars, the mesial root usually has a deep longitudinal depression on its mesial surface and an even deeper longitudinal depression on its distal surface. T ese depressions indicate the likelihood of two root canals in this broad root, one buccal and one lingual (as seen in cross-section views in Fig. 5-17). Infrequently, this mesial root might even be divided into two
separate roots called a mesiobuccal and mesiolingual root ${ }^{3}$ (seen in the partially divided mesial root of two mandibular first molars in Fig. 5-12). On the distal root, the likelihood of a longitudinal depression on the distal surface is variable and the mesial surface may be more evident, but this root most often has only one root canal. Notice that the root surfaces with the deeper depressions face one another: the distal surface of the mesial root and the mesial surface of the distal root.

D. TypE TRa ITS OF Ma NDIBUl a R MOl a RS FROM Th E OCCl USal vIEw

To follow this description, the tooth should be held in such a position that the observer is looking exactly along the root axis line. Because of the lingual inclination of the crown, more of the buccal surface should be visible than the lingual surface when the tooth is properly held in this position, similar to mandibular premolars. Refer to Figure 5-18 and

Tooth \#31
FIGURE 5-17. Cross sections through the root of a mandibular second molar: the cervical section shows the shape of the pulp chamber located in the root trunk near the cervical line and the other cross section is in the middle third of the bifurcated roots. The mesial root, with two root canals, has root depressions on both its mesial and distal surfaces, while the distal root with little or no root depressions has only one canal.

Occlusal views of mandibular molars with type traits to distinguish mandibular first from second molars and to help distinguish rights from lefts. Most of these molars have the cusp tips identified with small circles.

L
First (Right)

L
Second (Right)

MANDIBULAR MOLARS: OCCLUS AL VIEWS

traits tOdistin GUisH MandibULar first MOLars fromsecOnd MOLars: OceLUsaLvieW

MandibULar first MOLar MandibULar secOnd MOLar

Usually five cusps: three buccal and two lingual Usually four cusps (two buccal and two lingual)
Less prominent buccal cervical ridge Buccal ridge more prominent (mesially)
Pentagon shape (likely)
More crown taper from buccal to lingual
More rectangular shape
Less crown taper from buccal to lingual
Fewer secondary grooves
Central groove zigzags mesially to distally
Mesiobuccal and distobuccal grooves do not align with lingual groove

More secondary grooves
Central groove straighter
Buccal and lingual grooves intersect with central groove like a"+"

traits tOdistin GUis H MandibULar riGHt fr OM Left MOLars: Occ LUs a LvieW

MandibULar first MOLar
Crown tapers narrower in distal third

MandibULar second MOLar
Crown wider on mesial due to buccal cervical ridge Large mesiolingual and mesiobuccal cusps for both types

Appendix page 8 for similarities and differences of mandibular molars from the occlusal view.

(1.) Relative Size of Cusps of Mandibular Molars (Occlusal view)

As stated earlier, the mandibular first molar crown has the largest mesiodistal dimension of any tooth in the mouth. To review, most mandibular first molars have five cusps: three on the buccal (mesiobuccal, distobuccal, and the smallest distal cusp closest to the distal marginal ridge) and two on the lingual (mesiolingual and distolingual). Most mandibular second molars have four cusps: two on the buccal (mesiobuccal and distobuccal) and two on the lingual (mesiolingual and distolingual). On most mandibular first and second molars,
the mesiobuccal cusp is larger in area than the distobuccal, and the mesiolingual cusp is larger in area than the distolingual (Fig. 5-19), and the fifth distal cusp, when present on first molars, is the smallest in area. T is is consistent with the taper of mandibular molar crowns narrower toward the distal (Appendix 7c).

2. Outline Shape and Taper of Mandibular Molars (Occlusal view)

As stated previously, both types of mandibular molars are wider mesiodistally than faciolingually. ${ }^{\mathrm{Q}} \mathrm{T}$ e mandibular second molar outline is roughly a four-sided rectangle, whereas on the five-cusped first molar, the widest portion of the tooth may be located in the middle third on the

FIGURE 5-19. A. Mandibular right second molar with its three fossae. Notice the outline bulge on the mesial portion of the buccal surface formed by the buccal cervical ridge, and note that both mesial cusps are larger in area than the adjacent distal cusps. Crests of curvature on the buccal and lingual are indicated by arrows. B . The buccal cervical ridge on this mandibular left second molar is also most prominent on the buccal outline of the mesiobuccal cusp. The " + " pattern of grooves is very obvious on this tooth. In both (A) and (B), the mesial and distal crests of curvature would normally coincide with proximal contact areas in the mouth. The mesial contacts are more buccal than the distal contacts, but both proximal contacts are buccal to the buccolingual middle of the crown.
prominent buccal bulge of its distobuccal cusp, so the outline would be more like a five-sided pentagon (Appendix 8 e and Fig. 5-20).

T e crown outlines of both types of mandibular molars taper lingually, so they have more bulk mesiodistally in the buccal half than in the lingual half (recall Appendix 7b). Mandibular second molar crown outlines (and outlines of four-cusped first molars) are wider buccolingually on the mesial half than on the distal half (Appendix 7c) due primar-

FIGURE 5-20. The outline of this mandibular first molar is pentagon shaped because the buccal bulge on the distobuccal cusp is greater than on the mesiobuccal or distal cusps. However, the tooth is narrower buccolingually through the distal cusp than through the mesiobuccal cusp, giving the sense of a crown tapering to the distal.
ily to the prominent buccal cervical ridge on the mesiobuccal cusp outline. T is ridge is a consistent landmark useful for identifying the mesiobuccal cusp on the otherwise nearly symmetrical mandibular second molar in Figure 5-19B. T is mesiobuccal cervical ridge is evident on most mandibular second molars in Figure 5-18. On five-cusped mandibular first molars, even when the outline is pentagon shaped due to the prominent distobuccal cusp bulge, there is still an appearance of tapering narrower from mesial to distal since the width buccolingually through the mesiobuccal cusp (in the mesial third) is wider than through the distal cusp (in the distal third) (Fig. 5-20).

3. Ridges of Mandibular Molars (Occlusal view)

On both first and second mandibular molars, the triangular ridges of the mesiobuccal and mesiolingual cusps join to form one transverse ridge on the mesial half of the crown, and the triangular ridges of the distobuccal and distolingual cusps form a second transverse ridge on the distal half of the crown (Fig. 5-21).

(4. Fossae of Mandibular Molars (Occlusal view)

T ere are three fossae on both types of mandibular molars: the largest central fossa (approximately in the center of the tooth), a smaller mesial triangular fossa (adjacent to the mesial marginal ridge), and the smallest distal triangular fossa (adjacent to the distal marginal ridge; it is very small on second molars). T ese fossae are shaded red in Figure 5-19A (on a second molar) and Figure 5-22A (on a first molar). T ere may be a pit at the intersection of grooves in the deepest portion of any of these fossae.

B

Mandibular right first molar
FIGURE 5-21. Mandibular right first molar, occlusal view, showing how the triangular ridges of the mesiobuccal (MB) and mesiolingual (ML) cusps align to form one transverse ridge in the mesial half of the mandibular molar, and two other triangular ridges of the distobuccal (DB) and distolingual (DL) cusps align to form a second transverse ridge in the distal half.

FIGURE 5-22. A. A five-cusped mandibular right first molar; occlusal view. Observe that the buccal crest of curvature is located close to the middle mesiodistally (compared to on a second molar where it is located in the mesial third). There are three fossae, with the central fossa the largest. Note that the central groove zigzags in its course from mesial to distal pit, and the mesiobuccal and lingual grooves are not continuous from buccal to lingual. This pattern is quite common on first molars. B. Occlusal anatomy and outline of a five-cusped mandibular right first molar with five cusps where the mesiobuccal groove does line up with the lingual groove. Note the arrows pointing to the mesial and distal crests of curvature (contact areas).

Grooves of Mandibular Molars (Occlusal view)

T e pattern of major grooves on mandibular second molars is simpler than that on first molars. It is made up of three major grooves: a central groove running mesiodistally, plus a buccal and a lingual groove (Fig. 5-19A). T e central groove starts in the mesial triangular fossa, passes through the central fossa, and ends in the distal triangular fossa. Its mesiodistal course is straighter than on mandibular first molars. T e buccal groove separates the mesiobuccal and distobuccal cusps and extends onto the buccal surface. T e lingual groove separates the mesiolingual and the distolingual cusps but does not usually extend onto the lingual surface. T e buccal and lingual grooves line up to form an almost continuous groove running from buccal to lingual that intersects with the central groove in the central fossa (Fig. 5-19B). T e resultant groove pattern resembles a cross (or +).

Major grooves on most mandibular first molars separate five cusps instead of four, so the pattern is slightly more complicated (Fig. 5-22). As on second molars, the central groove passes from the mesial triangular fossa through the central fossa to the distal triangular fossa. T e central groove may be more zigzag or crooked in its mesiodistal course. T e lingual groove starts at the central groove in the central fossa and extends lingually between the mesiolingual and the distolingual cusps, but does not normally extend onto the lingual surface. Instead of one buccal groove, the mandibular first molar has two. Like the buccal groove on mandibular second molars, the mesiobuccal groove separates the mesiobuccal and distobuccal cusps. It starts in or just mesial to the central fossa (Fig. 5-22A and B) and extends from the buccal groove onto the buccal surface. T is groove may be nearly continuous with the lingual groove, or it may not join with it. T e distobuccal groove, UNIQUE to the first molar, starts at the central groove between the central fossa and the distal triangular fossa and extends between the distobuccal and the distal cusps often onto the buccal surface.

On both first and second mandibular molars, marginal ridge grooves are more likely to be present on mesial marginal ridges than distal marginal ridges. ${ }^{R}$ Some mandibular first molars in Figure 5-18 have mesial marginal ridge grooves, but fewer have distal marginal ridge grooves.

On mandibular first and second molars, there may be supplemental (secondary, extra, minor) grooves, more likely on mandibular second molars than first molars. ${ }^{4} \mathrm{~T}$ ese grooves provide important escape ways for food as it is crushed. Supplemental ridges are located between supplemental and major grooves and serve as additional cutting blades. Grooves and ridges increase efficiency of food crushing.

6. proximal Contact a reas and Embrasures of Mandibular Molars (Occlusal view)

T e mesial and distal contact areas (crests of curvature) of mandibular first and second molars are normally slightly buccal to the middle of the tooth (Fig. 5-22B). T erefore, when molars are in contact with adjacent teeth, the lingual embrasure space is usually longer and larger than the space buccal to the contact. T is becomes clinically relevant when restoring proximal surface contours on posterior teeth since access is better through the larger lingual embrasure than through the smaller buccal embrasure.

Also, mesial contacts are usually slightly buccal in position relative to distal contacts. Mesial contact areas on fivecusped mandibular first molars are slightly buccal to the center buccolingually, whereas distal contacts are just lingual to the distal cusp (Fig. 5-22). On mandibular second molars, mesial contacts are near the junction of the middle and buccal thirds, whereas the distal contacts are just buccal to the center buccolingually (Fig. 5-19B).

LEARNING EXERCISE

Take a break and find a small fashlight and possibly a small mirror to perform this exercise.

Clean your hands, and using the fashlight, visually examine your mouth to determine if your mandibular first molars have four or five cusps and if your second molars have four cusps. Also, try to determine if your first molars are larger than your seconds and if your seconds are larger than your thirds (which may be difficult to see). Then, if you can look into the mouth of a friend or family member without putting your hands in their mouth, look at the ir mandibular molars and answer the same questions.

FIGURE 5-23. A. List all 19 ridges that are seen from the occlusal view of a five-cusped mandibular first molar as represented in Molar A. B. List all 17 ridges that can be seen from the occlusal view of a four-cusped mandibular second molar as represented in Molar B. In case you wondered, ridge 17 on the second molar is the buccal cervical ridge (sometimes evident, sometimes not).
ans Wer: A Mandibular frst molar ridges: 1, mesial cusp ridge of mesiobuccal cusp; 2, distal cusp ridge of mesiobuccal cusp; 3 , mesial cusp ridge of distobuccal cusp; 4, distal cusp ridge of distobuccal cusp; 5, mesial cusp ridge of distal cusp; 6, distal cusp ridge of distal cusp; 7 , distal marginal ridge; 8 , distal cusp ridge of distolingual cusp; 9 , mesial cusp ridge of distolingual cusp; 10 , distal cusp ridge of mesiolingual cusp; 11, mesial cusp ridge of mesiolingual cusp; 12 , mesial marginal ridge; 13, tria ngular ridge of mesiobuccal cusp; 14, triangular ridge of distobuccal cusp; 15, triangular ridge of distal cusp; 16, triangular ridge of distolingual cusp; 17, triangular ridge of mesiolingual cusp; 18, transverse ridge (mesial); 19, transverse ridge (distal).
answer: B. Mandibular second molar ridges: 1, mesial cusp ridge of mesiobuccal cusp; 2, distal cusp ridge of mesiobuccal cusp; 3 , mesial cusp ridge of distobuccal cusp; 4 , distal cusp ridge of distobuccal cusp; 5, distal marginal ridge; 6 , distal cusp ridge of distolingual cusp; 7, mesial cusp ridge of distolingual cusp; 8 , distal cusp ridge of mesiolingual cusp; 9 , mesial cusp ridge of mesiolingual cusp; 10 , mesial marginal ridge; 11 , triangular ridge of mesiobuccal cusp; 12 , triangular ridge of distobuccal cusp; 13, triangular ridge of distolingual cusp; 14, triangular ridge of mesiolingual cusp; 15, transverse ridge (mesial); 16, transverse ridge (distal); 17, mesial (mesiobuccal) cervical ridge.

? REvIEw Questions on Mandibular Molars

Answer questions 1 through 10 by circling the best answer(s). More than one answer may be correct. Questions 11 and 12 require a written answer.

1. Which of the following grooves radiate out from the central fossa in a mandibular second molar?
a. Central
b. Mesiobuccal
c. Distobuccal
d. Lingual
e. Buccal
2. Which cusp is the largest and longest on a mandibular second molar?
a. Mesiobuccal
b. Distobuccal
c. Mesiolingual
d. Distolingual
e. Distal
3. Which cusp may be absent on a mandibular first molar?
a. Mesiobuccal
b. Distobuccal
c. Mesiolingual
d. Distolingual
e. Distal
4. When this cusp is absent in question no. 3 above, which groove(s) would not be present?
a. Buccal
b. Lingual
c. Mesiobuccal
d. Distobuccal
e. Lingual
5. Which fossae are found on a mandibular first molar?
a. Mesial triangular
b. Distal triangular
c. Buccal
d. Lingual
e. Central
6. Which developmental groove connects with the lingual groove running in the same direction on a mandibular second molar?
a. Mesiobuccal
b. Distobuccal
c. Buccal
d. Mesiolingual
e. Distolingual
7. From which view is only one root visible on a mandibular first molar?
a. Mesial
b. Distal
c. Buccal
d. Lingual
e. Apical
8. Which root may occasionally be divided or bifurcated on a mandibular first molar?
a. Buccal
b. Lingual
c. Mesial
d. Distal
e. Mesiobuccal
9. On a five-cusped molar, which cusp does not have a triangular ridge that forms part of a transverse ridge?
a. Mesiobuccal
b. Distobuccal
c. Mesiolingual
d. Distolingual
e. Distal
10. Which ridges form the boundaries of the mesial triangular fossa of a mandibular molar?
a. Triangular ridge of mesiobuccal cusp
b. Triangular ridge of mesiolingual cusp
c. Mesial marginal ridge
d. Buccal cusp ridge of mesiobuccal cusp
e. Lingual cusp ridge of mesiolingual cusp
11. Which two pairs of cusp triangular ridges make up or join to form the two transverse ridges on a mandibular second molar?
12. List in sequential order the longest to shortest cusps on the mandibular first molar.

1 atsi d neht dna, 1 accubasi d,l acc ubdise ml augnil đsi d neht, 1 augnil ase ntsegnoL-21;1 augnil asi d dnal accubasi d S ULPl augril dise mdnal accubdise $\mathrm{M} 11 ; \mathrm{c}, \mathrm{b}, \mathrm{a}-01 ; \mathrm{e}-9 ; \mathrm{c}-8 ; \mathrm{a}-7 ; \mathrm{c}-6 ; \mathrm{e}, \mathrm{b}, \mathrm{a}-5 ; \mathrm{d}, \mathrm{c}-4 ; \mathrm{e}-3 ; \mathrm{c}-2 ; \mathrm{e}, \mathrm{d}, \mathrm{a}-1$: SRE uS Na

TypE TRa ITS Th aT DIFFERENTIaTE Ma XiLLary Sec o nd FROM Fir St MOl a RS

Objectives for sectiOn v

This section prepares the reader to perform the following:

- Describe the type traits that can be used to distinguish the permanent maxillary first from second molar.
- Describe and identify the buccal, lingual, mesial, distal, and occlusal surfaces for all maxillary molars.
- Assign a Universal number to maxillary molars present in a mouth (or on a model) with complete dentition.

If possible, repeat this on a model with one or more maxillary molars missing.

- Holding a maxillary molar, determine whether it is a first or a second and right or left. Then assign a Universal number to it.

a. TypE TRa ITS OF Th E Maxil 1 a Ry MOl a RS FROM Th E BUCCal vIEw

Examine a maxillary first and second molar as you read. Hold the roots up and the crowns down, with the two somewhat parallel buccal roots closest to you.

FIGURE 5-24. A. A five-cusped type of maxillary right first molar, occlusal view, showing the cusp names and relative sizes of the five cusps. B. Athree-cusped type of maxillary second molar with its three cusps named.
(1.) Number and Relative height and Size of Cusps on Maxillary Molars and a ssociated Grooves (Buccal view)

In review, both first and second maxillary molars most often have four prominent cusps: mesiobuccal, distobuccal, mesiolingual, and the smaller (in area) distolingual cusp (best seen on an occlusal view in Fig. 5-24A). On some maxillary second molars, the smaller distolingual cusp may be missing resulting in only three cusps: mesiobuccal, distobuccal, and lingual (Fig. 5-24B). On some maxillary first molars, there may be a small fifth cusp (of Carabelli) seen on its lingual surface.
 From the buccal view of this maxillary first molar, the longest mesiolingual cusp is visible behind the shorter buccal cusps. The root trunk is relatively short, and the three divergent roots are all visible. Arrows point to the more occlusal mesial contact area and the more cervical distal contact areas.

Buccal views of maxillary molars with type traits to distinguish maxillary first from second molars and to help distinguish rights from lefts.

MAXILLARY MOLARS: BUCCAL VIEWS

First Molars (Right)

Second Molars (Right)

First Molars (Left)
 Second Molars (Left)

traits tOdistin GUis H Ma XiLLary first MOLars fr OM sec Ond MOLars: buccaLvie W

Ma XiLLary first MOLar	Ma XiLLary sec Ond MOLar
Roots more spread out, shorter trunk	Root less spread out, longer trunk
Roots with less distal bend	Roots with more distal bend
Buccal cusps almost same size	Mesiobuccal cusp larger than distobuccal
traits tOdistin GUis H Ma XiLLary riGHt frOM Left MOLars:bUceaLvie W	
Ma XiLLary first MOLar	MaXiLLary secOnd MOLar

Distobuccal cusp shorter than wider mesiobuccal cusp for both maxillary first and second molars Mesiobuccal root longer than distobuccal root for both types
Crown tilts distally on its root base with the occlusal surface shorter on distal for both types

T e relative heights of the four prominent cusps of four-cusped maxillary molars are the longest mesiolingual cusp, followed by the mesiobuccal, distobuccal, and the shortest distolingual cusp (if present). T erefore, from the buccal view, the two buccal cusps are prominently visible, but the mesiolingual cusp tip may also be visible because it is longer than the buccal cusps (and even the short distolingual cusp tip might be visible because the lingual cusps are positioned slightly to the distal of the buccal cusps) (Fig. 5-25). On both types of maxillary molars, but especially on maxillary second molars, the mesiobuccal cusp is somewhat wider than the distobuccal cusp (Fig. 5-26). ${ }^{\text {s }}$ A buccal groove lies between the buccal cusps, but this groove is unlikely to be fissured and form decay on the buccal surface.

2. Crown proportion, Shape, and Taper (Buccal view)

Both maxillary first and second molars are wider mesiodistally than high occlusocervically, similar to mandibular molars. T e maxillary first molar is normally the widest tooth in the upper arch. T e crown height tapers shorter on the distal than on the mesial because the distobuccal cusps are shorter than mesiobuccal cusps. T is trait is most helpful in distinguishing mesial from distal and therefore rights from lefts. Maxillary molar crowns may appear to tip distally relative to its root trunk (Fig. 5-25).
3. proximal Contacts of Maxillary Molars (Buccal view) (Same for all Molars)
On maxillary (and mandibular) first and second molars, the distal contact area is normally located more cervically
than the mesial contact (Fig. 5-25). Mesial contacts are located near the junction of occlusal and middle thirds, whereas distal contacts are in the middle third of the crown. A summary of the location of the proximal contacts of maxillary and mandibular molars is found in Table 5-3, and a summary for all adult teeth (except thirds) is presented in Table 5-4.

4. Roots of Maxillary Molars from the Buccal view

T ere are three roots on both types of maxillary molars: a mesiobuccal, distobuccal, and a lingual root. T e three roots are close to the same length, ${ }^{\mathrm{T}}$ but the lingual (palatal) root is the longest, followed by the mesiobuccal root, and then the shortest distobuccal root. All three are usually visible from the buccal view (Fig. 5-25).

T ere is much variation in the shapes of the three roots. On maxillary first molars, the more blunt mesiobuccal root and distobuccal root are often well separated (Appendix 8 j). Both buccal roots often bend distally, or they may bend in such a way that they look like pliers handles. In some of these teeth, the mesiobuccal root may bow out mesially in the cervical half before it curves toward the distal, placing its apex distal to the line of the buccal groove on the crown. Root trunks are relatively long with the furcation (in this case a trifurcation denoting a split of three cusps) often near the junction of the cervical and middle thirds.

In contrast, on maxillary second molars, roots are often less curved and less separated and more nearly parallel so the root trunks are usually longer than on firsts. Both buccal roots often bend toward the distal in their apical third. Find the two maxillary second molars in Figure 5-26 that are exceptions.

Ta B1 E 5-3 Molars: location of proximal Contacts ${ }^{a}$ (proximal Crest of Curvature) Seen Best from Buccal

MESIAL SURFACE (WHICH THIRD OR JUNCTION?) DISTAL SURFACE (WHICH THIRD OR JUNCTION?)

First molar	Occlusal/middle junction	Middle of crown
Second molar	Occlusal/middle junction	Middle of crown

First molar	Occlusal/middle junction	Middle of crown
Second molar	Occlusal/middle junction	Middle of crown

[^5]| Ta B1 E 5-4 | Summary of location of proximal Contacts on all Teeth ${ }^{a}$ (proximal Crests of Curvature) Seen Best from Facial view | |
| :---: | :---: | :---: |
| | MESIAL SURFACE (WHICH THIRD OR JUNCTION?) | DISTAL SURFACE (WHICH THIRD OR JUNCTION?) |
| Central incisor | Incisal third (near incisal edge) | Incisal/middle junction |
| Lateral incisor | Incisal third | Middle third (most cervical of incisor contacts) |
| Canine | Incisal/middle junction | Middle third (most cervical of anterior teeth contacts) |
| First premolar | Middle third or occlusal/middle junction | Middle third (but more cervical) |
| Second premolar | Middle third (near occlusal/middle junction) | Middle third (but more cervical) |
| First molar | Occlusal/middle junction | Middle of crown |
| Second molar | Occlusal/middle junction | Middle of crown |
| Central incisor | Incisal third (near incisal edge) | Incisal third (near incisal edge; same as mesial) |
| Lateral incisor | Incisal third (near incisal edge) | Incisal third (but more cervical) |
| Canine | Incisal third (just apical to mesioincisal angle) | Incisal/middle junction |
| First premolar | Occlusal/middle junction or middle third | Occlusal third (more occlusal than on mesial $=$ EXCEPTION to the rule) |
| Second premolar | Occlusal/middle junction | Middle third (which is more cervical than on mesial) |
| First molar | Occlusal/middle junction | Middle of crown |
| Second molar | Occlusal/middle junction | Middle of crown |

${ }^{\text {a }}$ General learning guide lines:

1. On any adult tooth, distal proximal contacts are more cervical than mesial contacts EXCEPT for mandibular central incisors, where the mesial and distal contacts are at the same height, and mandibular first premolars, where the mesial contact is more cervical than the distal.
2. Proximal contacts become more cervical when moving from anterior to posterior teeth.
a. For anterior teeth, most contacts are in the incisal third EXCEPT the distal of maxillary lateral incisors and canines, which are likely in the middle third.
b. For posterior teeth, the mesial and distal contacts are closer to the middle of the tooth and are more nearly at the same level.
3. No proximal contact is cervical to the middle of the tooth.

B. TypE TRa ITS OF Ma xIl 1 a Ry MOl a RS FROM Th E 1 INGUal vIEw

Refer to Figure 5-27 for similarities and differences.

(1.) Relative Size and Taper of Maxillary Molars (1 ingual view)

On the crowns of most maxillary first molars, little or no mesial or distal crown surface is visible from the lingual view (except in the cervical third) since these teeth may be as wide (or even wider) in the lingual half compared to the buccal half due to a relatively wide distolingual cusp. T is is an EXCEPTION (along with the three-cusped mandibular second premolar) to the normal crown taper toward the lingual for most other posterior teeth. Maxillary second molars are narrower in the lingual half due to the relatively smaller or nonexistent distolingual cusp so some of the mesial or distal surfaces may be visible from the lingual view. T e lingual outline of the crown on both types of maxillary molars tapers
cervically to join the single palatal root (seen clearly in the maxillary molars in Fig. 5-27).
2. Number and Relative Size of 1 ingual Cusps and 1 ingual Groove on Maxillary Molars (l ingual view)

On maxillary first molars, there are two well-defined cusps on the lingual surface, the larger mesiolingual cusp and the smaller, but still sizable, distolingual cusp. T e mesiolingual cusp is almost always the longest and largest (in area) cusp on any maxillary molar (seen on most first molars in Fig. 5-27). Additionally, over two thirds of maxillary first molars have a small depression or fifth cusp (cusp of Carabelli) located on the lingual surface of the mesiolingual cusp ${ }^{\mathrm{U}}$ (Appendix 8i). T is cusp was named after the Austrian dentist who described it, Georg von Carabelli (1787-1842). T is cusp varies greatly in shape but is considered to be a nonfunctioning cusp because it is usually about 2 to 3 mm shorter than the mesiolingual cusp tip. Examples of a large cusp of

Lingual views of maxillary molars with type traits to distinguish maxillary first from second molars and to help distinguish rights from lefts.

MAXILLARY MOLARS: LINGUAL VIEWS

Second Molars (Left)

First Molars (Right)

Second Molars (Right)

traits tOdistin GUis H Ma XiLLary first MOLars fr OM sec Ond MOLars : Lin GUaLvie W

MaXiLLary first MOLar
Buccal roots spread out behind lingual root Lingual cusps nearly the same width

Ma XiLLary sec Ond MOLar
Buccal roots less spread out
Distolingual cusp narrower than mesiolingual or absent

traits t Odistin GUis H MandibULar riGHt fr OM Left MOLars : Lin GUaLvie Ws

Ma XiLLary first MOLar
Cusp of Carabelli present on mesiolingual
Mesiolingual cusp a little larger than distolingual

Ma XiLLary secOnd MOLar
Cusp of Carabelli absent
Mesiolingual cusp even larger re lative to smaller distolingual The distal half of the crown is shorter than the mesial half for both maxillary first and second molars The distal marginal ridge is located more cervically than the mesial marginal ridge for both types

Carabelli (or a slight depression in the same area) are seen from an occlusal view in Figure 5-28.

T ere are two types of maxillary second molars based on the number of cusps: four or three. Most maxillary second molars have four cusps: two buccal and two lingual cusps. T e mesiolingual cusp is normally considerably wider than the distolingual cusp, compared to maxillary first molars
where the size of the lingual cusps is closer to the same size. Over one third of maxillary second molars have only three cusps, which is called a tricuspid form (Fig. 5-24B). ${ }^{V}$ On these teeth, the distolingual cusp is missing, so it has just one large lingual cusp and two buccal cusps. It would be rare, but not impossible, to find a fifth cusp (of Carabelli) on maxillary second molars.

FIGURE 5-28. Two maxillary right first molars with differences on the mesiolingual cusp: molar A has a very large fifth cusp (of Carabelli), but molar B has a slight depression in the same location. Also, notice the prominent lingual roots showing from this view due to the large spread of roots on these maxillary first molars.

On the lingual surfaces of both first and second maxillary molars with two lingual cusps, there is a lingual groove seen separating the mesiolingual and distolingual cusps. T is lingual groove may line up with the longitudinal depression on the lingual surface of the lingual root. On three-cusped maxillary second molars with one large lingual cusp, there is no distolingual cusp so there is no lingual groove. See if you can identify the several maxillary second molars with only one lingual cusp in Figure 5-27.

Roots of Maxillary Molars (1 ingual view)

On both the maxillary first and second molars, the broad, longest lingual root ${ }^{W}$ does not appear curved when seen from the lingual view, but it does taper apically to a blunt or rounded apex. On maxillary first molars, there is usually a longitudinal root depression on the lingual side of the lingual root (seen aligned with the lingual groove of the crown on many lingual roots of maxillary first molars in Fig. 5-27). T e buccal roots often spread out far enough that they are visible behind the lingual root from this view, especially on first molars.

C. TypE TRa ITS OF Ma xIl 1 a Ry MOI a RS FROM Th EpROxIMal vIEwS

Refer to Figure 5-29 for similarities and differences of maxillary molars from the proximal views.

1. Crown Shape of Maxillary Molar Cusps

 (proximal views)Like on crowns of mandibular molars, maxillary molar crowns are broader buccolingually than occlusocervically from the proximal view (Appendix 7h).
2. Number and Relative Size of Maxillary Molar Cusps (proximal views)
Recall that the cusps of the maxillary first molar from longest to shortest are mesiolingual, mesiobuccal, distobuccal, and distolingual, followed by the functionless fifth cusp (of Carabelli) if present. T is fifth cusp is located on the lingual surface of the largest mesiolingual cusp, but is 2 to 3 mm shorter than the height of that cusp. T erefore, from the distal view, the distobuccal cusp and smallest distolingual cusp are prominent in the foreground, while the cusp tips of the longer mesiobuccal and longest mesiolingual cusp can be seen behind them. In contrast, from the mesial view, only the longer mesiolingual and mesiobuccal cusps are visible. From the mesial or distal views, if the fifth cusp (of Carabelli) is prominent, it might be visible projecting out from lingual surface of the mesiolingual cusp (Fig. 5-29 drawing). From the proximal views, the crown of the maxillary second molar looks much like that of the first molar, but there is no fifth cusp, and about one third of the time, there may be no distolingual cusp.
3. Crest of Curvature for Maxillary Molars (proximal views) (Same for all posterior Teeth)
As on all posterior teeth, the crest of curvature of the buccal surface of both first and second maxillary molar crowns is in the cervical third, usually close to the cervical line. T e crest of curvature of the lingual surface of the crown is more occlusal, usually in or near the middle third of the crown. However, the lingual crest of curvature may be located even more occlusally on teeth with a large fifth cusp (of Carabelli) (Fig. 5-30).

4. Taper Toward Distal of Maxillary Molars (Distal view)

From the distal view on both maxillary first and second molars, a little of the buccal surface and the lingual surface of the crown can be seen because the crown tapers toward the distal, so the crown is narrower buccolingually on the distal surface than on the mesial surface (seen on many distal views in Fig. 5-29).

5. Marginal Ridges of Maxillary Molars (proximal views)

As on mandibular molars, both first and second maxillary molars have a concave distal marginal ridge that is located more cervically than its mesial marginal ridge, permitting a better view of the occlusal surface (including the triangular ridges) from the distal view than from the mesial view. (Compare mesial and distal views in Fig. 5-29.) T is marginal ridge height difference is very helpful in differentiating right from left sides.

Marginal ridge grooves are found more often on mesial marginal ridges than on distal marginal ridges ${ }^{\mathrm{x}}$ and are

Proximal views of maxillary molars with type traits to distinguish maxillary first from second molars and to help distinguish rights from lefts.

First (Right)
Mesial View

Second (Right)
Mesial View

MAXILLARY MOLARS: PROXIMAL VIEWS

more common on first molars than on seconds. Also, on the unworn marginal ridges of the maxillary molars, there may be one or more projections of enamel called tubercles. Like marginal ridge grooves, they are more common on mesial
marginal ridges than on the distal, are more common on first molars than on seconds ${ }^{\mathrm{Y}}$, and are seen clearly on the mesial marginal ridges of the maxillary first and second molars in Figure 5-31.

FIGURE 5-30. Maxillary right first molar, mesial view, with an unusually large fifth cusp (of Carabelli) and a lingual crest of curvature positioned quite occlusally. Also, note that the wide mesiobuccal root hides the narrower distobuccal root from this mesial view.
6. Cervical 1 ines of Maxillary Molars (proximal views)

On both types of maxillary molars, the slight curvature of the mesial cervical line is greater than on the distal cervical

FIGURE 5-31. Dental stone cast of the maxillary dentition demonstrating decreasing size from first to second molars. Both right and left second molars (teeth 2 and 15) are three-cusped types with only one lingual cusp (tricuspid form). Also note the tubercles on the mesial marginal ridges of the first molars (teeth 3 and 2). Tooth 16 is missing.
line curvature, which is almost f at 2 (compare Fig. 5-32A and B), but this difference may be hardly discernible since both proximal cervical lines often have very little curvature.
7. Roots and Root De pressions of Maxillary Molars (proximal views)

Roots visible from the mesial view: On both maxillary first and second molars from the mesial view, only two roots can be seen: the lingual root and the mesiobuccal root, which is considerably wider buccolingually and longer than the hidden distobuccal root (Fig. 5-32A). On first maxillary molars, the convex buccal outline of the mesiobuccal root often extends a little buccal to the crown outline, but the apex of this root is in line with the tip of the mesiobuccal cusp (Fig. 5-32A). T e lingual outline of the mesiobuccal root is often more convex especially near the apex. T e longest lingual root is bent somewhat like a curved banana (concave on its buccal surface and convex on its lingual surface), and it extends conspicuously beyond the crown lingually (Fig. 5-32B). On maxillary second molars, the lingual root is straighter and the roots spread out less than on first molars so that all three roots are usually confined within the crown width outline. Compare the differences in root f are in Figure 5-29.

Roots visible from the dis tal view: From the distal view of both maxillary first and second molars, you can see all three of the roots: the lingual root, the distobuccal root, and the longer, less pointed and wider the mesiobuccal root behind it (evident in Fig. 5-32B and on most distal views in Fig. 5-29).

Root depressions: On both maxillary first and second maxillary molars, the mesiobuccal root has a longitudinal depression on its mesial surface and possibly a depression on its distal surface dividing the root into buccal and lingual halves indicating the likelihood of two root canals within this mesiobuccal root: one buccal and one lingual. T e distobuccal root is most often convex on its distal surface without a longitudinal depression and the chance of a mesial depression is variable (indicating the likelihood of only one root canal). T ere is often a slight concavity on the distal root trunk of maxillary first molars located between the distobuccal root and the cervical line. ${ }^{1,4} \mathrm{~T}$ is concavity may be difficult to keep clean resulting in the buildup of calcified debris called calculus, which contributes to periodontal disease (see Fig. 5-32B). A summary of the presence and relative depth of root depressions for all teeth is presented in Table 5-5.

D. TypE TRa ITS OF Ma xll 1 a Ry MOl a RS FROM Th E OCCl USal vIEw

To follow the description of traits from the occlusal view, the tooth should be held in such a position that the observer is looking exactly along the midroot axis line. Because of the spread of the $\dot{\text { rrst molar roots, some of each of the three roots }}$ (particularly the lingual root) may be visible when the tooth is in this position (characteristic of many maxillary $\dot{0}$ rst molars in Fig. 5-33).

A

B

FIGURE 5-32. A. Two roots are visible from the mesial view of this maxillary first molar: the palatal root and the wide mesiobuccal root, which hides the smaller, shorter distobuccal root. Also notice that the curvature of the CEJ is greater on this mesial side than on the distal side (compare to B). B. Three roots are visible from the distal view of this right maxillary first molar: the "banana-shaped" palatal root, the wide mesiobuccal root that can be seen behind the smaller, shorter distobuccal root. Also, a root concavity is visible on the distal surface of the root trunk between the distobuccal root and cervical line where a hard deposit of calcified debris has formed that contributes to periodontal disease (arrow).

Ta B1 E 5-5 Summary of	Summary of presence and Relative Depth of longitudinal Root Depressions ("Root Grooves") ${ }^{\text {a }}$	
TOOTH	MESIAL ROOT DEPRESSION?	DISTAL ROOT DEPRESSION?
Maxillary central incisor	Not likely	No (convex)
Maxillary lateral incisor	Variable	No (convex)
Maxillary canine	Yes	Yes (deeper)
Maxillary first premolar	Yes $($ deeper $=$ UNIQUE, extends onto mesial of crown); often 2 roots	Yes
Maxillary second premolar	Yes	Yes (deeper)
Maxillary first and second molars	Mesiobuccal root: Yes	Variable
	Distobuccal root: variable	No (convex) but root trunk on many firsts may have concavity between cervical line and distobuccal root ${ }^{5,6}$
	Lingual root: lingual surface depression	
Mandibular central incisor	Yes	Yes (deeper)
Mandibular lateral incisor	Yes	Yes (deeper)
Mandibular canine	Yes	Yes (deeper)
Mandibular first premolar	Yes (or no: about 50\%)	Yes (deeper)
Mandibular second premolar	No (unlikely)	Yes (deeper)
Mandibular first and second molars	Mesial root: Yes	Yes (deeper)
	Distal root: variable, but deeper than distal surface	Variable

[^6]1. Maxillary incisors are less likely to have root depressions.
2. All mandibular incisors, all canines, and premolars (EXCEPT maxillary first premolars) are likely to have deeper distal surface root depressions.

Occlusal views of maxillary molars with type traits to distinguish maxillary first from second molars and traits to distinguish rights from lefts. The cusp tips of most teeth are labeled with small circles.

MAXILLARY MOLARS: OCCLUS AL VIEWS

traits tOdistin GUis H Ma XiLLary first MOLars frOMsecOnd MOLars: Occ LUsaLvieW

Ma XiLLary first MOLar
Distolingual cusp slightly smaller than mesiolingual cusp
Crowns often wider on lingual half
Crown outline a nearly square paralle logram
Crown larger (in same mouth)
More prominent oblique ridge
Less prominent mesiobuccal cervical ridge

Ma XiLLary second MOLar

Distolingual cusp much smaller than mesiolingual cusp or distolingual absent
Crowns narrower on lingual half
Crown outline more twisted paralle logram
Crowns smaller (in same mouth)
Smaller oblique ridge
More prominent mesiobuccal cervical ridge
traits tOdistin GUis H Ma XiLLary riGHt fr OM Left MOLars: Occ LUs a Lvie W

Ma XiLLary first MOLar

Cusp of Carabelli is on mesiolingual
Mesiobuccal and distolingual angles of crown are more acute for both maxillary first and second molars
Distolingual cusp is smaller than mesiolingual cusp for both types
Amesiobuccal cervical ridge is visible for both types
The distal half of the crown is smaller faciolingually for both types Oblique ridge goes from largest mesiolingual diagonally to distobuccal cusp for both types

Numbers and Size of Cusps on Maxillary Molars (Occlusal view)

As stated earlier in this chapter, most first maxillary molars usually have four relatively large cusps and many have a fifth cusp (of Carabelli). Most second molars have three relatively
large cusps and a noticeably smaller distolingual cusp (and no fifth cusp), while some second molars have only three cusps when the distolingual cusp is absent. T is variation in size of the distolingual cusp is evident on several maxillary molars in Figure 5-34. T e relative cusp size (area) on the four-cusped type of both maxillary first and second molars is in the same

FIGURE 5-34. Three maxillary left molars showing variation in the size (or absence) of the distolingual cusp. A. Maxillary molar with a moderate sized distolingual cusp. B. Maxillary second molar with small distolingual cusp. C. Maxillary second molar with only one lingual cusp.

BUCCAL

B
LINGUAL

C
order as for the cusp heights: from largest to smallest, the largest cusp is the mesiolingual, then mesiobuccal, distobuccal, and the smallest distolingual cusp (and, when present, the even smaller, functionless cusp of Carabelli). ${ }^{\mathrm{AA}}$

Use Figure 5-35 when comparing the relative size (area) of lingual cusps for maxillary first and second molars. On maxillary first molars, the distolingual cusp is smaller than the mesiolingual cusp, but is still relatively large compared to the distolingual cusp of maxillary second molars that is considerably smaller than the mesiolingual cusp (or not present).

T e triangular shape formed by the three cusps found on a three-cusped-type maxillary second molar (namely, the mesiolingual, mesiobuccal, and distobuccal cusps) is collectively known as the maxillary molar primary cusp triangle (Fig. 5-35).
2. Outline Shape and Taper of Maxillary Molars
(Occlusal view)

Maxillary first molars have the largest occlusal outline of all maxillary teeth followed closely by the maxillary second molars in the same mouth. (T ird molars are generally the smallest molar.)

Maxillary first molar crowns are usually slightly wider buccolingually than mesiodistally (arch trait for maxillary
molars) although the outline gives the general impression of squareness when compared to other teeth (Appendix 8a). More specifically, these crowns are shaped somewhat like a parallelogram, with two acute (sharper) angles and two obtuse (blunter) angles (Appendix 8k). T e acute angles are the mesiobuccal and distolingual. T is trait is helpful in differentiating rights from lefts and is vividly apparent on the second molars in Figure 5-35 and on many maxillary molars in Figure 5-33. Also, on many maxillary first molars, the mesiodistal dimension of the lingual half of the crown may often be slightly wider mesiodistally than the buccal half due to a relatively large distolingual cusp (a trait UNIQUE to maxillary first molars and mandibular three-cusped second premolars). In Figure 5-33, try to locate one or two maxillary first molars that are not wider on the lingual than on the buccal sides. T ey are a minority.

When compared to firsts, maxillary second molar crowns are even less wide mesiodistally compared to buccolingually. Also, when compared to the firsts, the fourcusp type of maxillary second molar has a parallelogram shape with an even more acute, sharper mesiobuccal angle due in part to a prominent mesial (or mesiobuccal) cervical ridge (Fig. 5-35). T e three-cusped-type outline is heart shaped (Fig. 5-36), or if you consider the shape of the occlusal table, the outline is somewhat triangular with the apex of

FIGURE 5-35. A. Notice how this maxillary right first molar (without a fifth cusp) is quite wide on the lingual half with a re latively large distolingual cusp. B. This maxillary right second molar tapers more toward the lingual surface with a parallelogram outline that has more acute mesiobuccal and distolingual angles than on the first molar. On both of these maxillary molars, cusps connected by the red triangle make up a primary cusp triangle.

FIGURE 5-36. This maxillary three-cusped second molar has three fossae (mesial, central, and distal) and two major grooves (central and buccal).
the triangle being the lingual cusp (like the shape of the primary cusp triangle discussed earlier). Four maxillary second molars in Figure 5-33 have no distolingual cusps.

See Figure 5-37 for a summary of the geometric outlines for all molars.

3. Ridges of Maxillary Molars (Occlusal view)

On the four-cusped type of maxillary molars, the larger mesiobuccal, distobuccal, and mesiolingual cusps each have a definite triangular ridge running from the cusp tip toward the buccolingual middle of the tooth. T e triangular ridges of the two mesial cusps (mesiobuccal and mesiolingual) cusps

LEARNING EXERCISE

Match the geometric shape for an occlusal outline with the correct tooth.

Geometric Shape of Occlusal Outline:
a. Trapezoid (tapered rectangle)
b. Paralle logram (rhomboid)
c. Heart shaped or triangular
d. Pentagon

Tooth:

1. Maxillary first molar
2. Maxillary second molar (four-cusped type)
3. Maxillary second molar (three-cusped type)
4. Mandibular first molar
5. Mandibular second molar
```
answers
```

$1-b, 2-b, 3-c, 4-d, 5-a$

FIGURE 5-37. Geometric outlines of the occlusal surfaces of molars, top to bottom. Five-cusped mandibular first molars often have a pentagon outline. Four-cusped mandibular second molars have a trapezoid (tapered rectangular) outline with a "+"-shaped groove pattern. Maxillary molars have a rhomboid or parallelogram outline with the mesiobuccal and distolingual "corners" forming acute angles. Maxillary molars, three-cusped type, have a heart-shaped (or somewhat triangular) outline.
join to form one transverse ridge. T e largest mesiolingual cusp also has a second, more distal ridge similar to a triangular ridge, but two texts refer to this ridge as the distal cusp ridge of the mesiolingual cusp. ${ }^{7,8}$ (T ere may be a groove or

FIGURE 5-38. Occlusal surface of a maxillary right first molar including fifth cusp (of Carabelli) with many major landmarks labeled. The five major grooves are labeled in red. The landmarks are the same for maxillary four-cuspedtype maxillary second molars, except it would be rare for seconds to have a fifth cusp.

depression between these two ridges on the mesiolingual cusp, originally called the Stuart groove named after the late Dr. Charles E. Stuart.) T e distal cusp ridge on the mesiolingual cusp crosses the occlusal table obliquely or diagonally to join the triangular ridge of the distobuccal cusp to form an oblique ridge (Fig. 5-38 and Appendix 8d)..$^{7,8} \mathrm{~T}$ is oblique ridge connecting the mesiolingual and distobuccal cusps is an important arch trait on most maxillary molars. Oblique ridges are less prominent on maxillary second molars than on maxillary first molars. ${ }^{9}$ T e three-cusped type of maxillary molar has no oblique ridge.

4. Fossae of Maxillary Molars (Occlusal view)

On four-cusped-type maxillary molars, there are four fossae on the occlusal surface (Fig. 5-39). T ree of these, the mesial triangular, distal triangular, and central fossae, are similar in location to those on mandibular molars. A small mesial triangular fossa is just distal to the mesial marginal ridge. T e smallest, distal triangular fossa, is

Maxillary right first molar
FIGURE 5-39. Maxillary first molar (with five cusps) showing the relative size and location of the four fossae: mesial triangular, central, distal triangular, and distal ("cigar shaped").
just mesial to the distal marginal ridge. T e largest central fossa is near the center of the occlusal surface. In maxillary molars, this central fossa is bounded distally by the elevation of the oblique ridge, mesially by the transverse ridge, and buccally by the buccal cusp ridges (Fig. 5-38). A fourth fossa, or cigar-shaped depression, is the distal fossa that extends between the mesiolingual and distolingual cusps (Fig. 5-40).

On three-cusped-type maxillary (second) molars, when the distolingual cusp is missing, the distal (cigarshaped) fossa is also missing and there are only three fossae remaining (one large central and two very small triangular fossae) (Fig. 5-36).

FIGURE 5-40. This maxillary molar has an obvious distal triangular fossa plus a cigar-shaped distal fossa. The groove in the distal fossa is the deeply fissured distal oblique groove that parallels the direction of the oblique ridge. This groove continues on to the lingual surface where it is called the lingual groove.

5. Grooves on Maxillary Molars (Occlusal view)

Refer to Figure 5-38 while studying these grooves. On the fouror five-cusped type of maxillary molar, the prominent oblique ridge plays an important role in defining the pattern of the developmental grooves. T is type of maxillary molar may have five major grooves: the central, buccal, lingual, distal oblique, and sometimes the transverse groove of the oblique ridge. Unlike the mandibular molar where a central groove extends from the mesial fossa to the distal fossa, the central groove on the maxillary molar extends from the mesial fossa over the transverse ridge and ends in the central fossa. T e buccal groove extends buccally from the central fossa between the two buccal cusps. It may extend beyond the cusp ridges of the buccal cusps, but it is unlikely to develop decay on the buccal surface.

Distal to the central groove is the prominent oblique ridge, which usually has no distinct groove crossing it, but when it does, the groove appears to be a continuation of the central groove and is called the transverse groove of the oblique ridge. (One author calls these two grooves the mesial and distal groove, respectively, ${ }^{4}$ while another combines these grooves and calls them the central groove. ${ }^{10}$)

On four-cusped (or five-cusped) types of maxillary molars, a groove begins in the distal triangular fossa and extends onto the lingual surface of the crown. T is groove is made up of two parts: the distal oblique groove and the lingual groove. T e distal oblique groove, on the occlusal surface, begins in the distal triangular fossa and parallels the oblique ridge to pass obliquely between the large mesiolingual and smaller distolingual cusps through the cigarshaped distal fossa. Once it passes onto the lingual surface, it becomes the lingual groove. One author calls these two grooves combined as the distolingual groove. ${ }^{4}$ (Recall that the lingual groove on a mandibular molar begins in the central fossa and is aligned at a right angle to the central groove.) When there is a groove separating the fifth cusp (Carabelli) from the mesiolingual cusp, it is called the fifth cusp groove.

As on many premolars and mandibular molars, maxillary molars may have short grooves that extend from the
mesial and distal pits toward the corners (line angles) of the tooth. T e short grooves off of the mesial pit are called the mesiobuccal and mesiolingual fossa grooves (or triangular grooves), and the short grooves off of the distal pit are called the distobuccal and distolingual fossa grooves (or triangular) grooves. Maxillary second molars are likely to have more supplemental grooves and pits than on first molars. ${ }^{9}$

On the three-cusped maxillary second molar, the distolingual cusp, the oblique ridge, and the cigar-shaped distal fossa are absent, so the grooves normally found within that fossa are also missing, namely, the distal oblique, lingual and, transverse groove of the oblique ridge. T e only major grooves on the three-cusped maxillary molar are a central groove (connecting the mesial, central, and distal fossae) and a buccal groove (Fig. 5-36).

Review of sites for decay on molars: Deep grooves may be fissured, so they can become the sites of dental decay. On the relatively smooth buccal and lingual surfaces of molars, deeply fissured grooves are only likely to be found on the lingual surfaces of maxillary molars in fissured lingual grooves or in grooves associated with the fifth cusp (of Carabelli) and on the buccal surfaces of mandibular molars in fissured buccal, mesiobuccal, or distobuccal grooves. It is rare to find fissured grooves on the buccal surfaces of maxillary molars or on the lingual surfaces of mandibular molars. Further, since the transverse groove of the oblique ridge is usually not fissured, decay on the occlusal surfaces of maxillary molars is more likely to develop mesially and distally to the oblique ridge. T e result may be two separate occlusal fillings and possibly even a separate lingual filling as seen in Figure 5-41A and B. Recall that this is similar to two separate occlusal fillings found on mandibular first premolars where a prominent transverse ridge separates mesial and distal pit decay.

6. proximal Contacts of Maxillary Molars

 (Occlusal view)Mesial and distal contact areas of maxillary molars are all slightly to the buccal of the center of the tooth but are near

FIGURE 5-41. A. Occlusal surface of a maxillary right first molar with two restorations prepared separately to avoid crossing over the pronounced oblique ridge that has no fissured groove crossing over it. B. This maxillary molar has three restorations: two on the occlusal separated by the oblique ridge and one in the lingual groove.

FIGURE 5-42. This first molar is aligned to show the location of the proximal contacts: both mesial and distal contacts are slightly to the buccal of the buccolingual midline, but the mesial contact is more buccal than the distal.
the center buccolingually. T e mesial contact is normally more buccal than the distal contact, and the distal contact on maxillary first molars is nearly centered buccolingually (Fig. 5-42).

LEARNING EXERCISE

Time for another study break?
Using a good light source and a clean mirror and clean hands, visually examine your maxillary first molars and try to see if you have cusps of Carabelli. This little cusp has intrigued many people. It may be somewhat prominent and pointed, small and blunt, or absent, or you may even see a slight depression in that part of the mesiolingual cusp where the cusp of Carabelli would be found. If you cannot see it, you might be able to feel it. Even more challenging, can you see if your second molars have a distolingual cusp?

1 Ea RNING ExERCISE

Lingual

FIGURE 5-43. Maxillary molar (circles denote cusp tips and lines denote ridges). Write the names of each of the 17 ridges next to the number corresponding to its location. Answers follow.
ans Wers: Maxillary molar ridges: 1 , mesial cusp ridge of mesiobuccal cusp; 2, distal cusp ridge of mesiobuccal cusp; 3 , mesial cusp ridge of distobuccal cusp; 4 , distal cusp ridge of distobuccal cusp; 5, distal marginal ridge; 6 , distal cusp ridge of distolingual cusp; 7 , mesial cusp ridge of distolingual cusp; 8 , distal cusp ridge of mesiolingual cusp; 9 , mesial cusp ridge of mesiolingual cusp; 10 , mesial marginal ridge; 11 , triangular ridge of mesiobuccal cusp; 12 , triangular ridge of distobuccal cusp; 13, triangular ridge of distolingual cusp; 14, distal cusp ridge (or triangular ridge) of mesiolingual cusp; 15, (mesial) triangular ridge of mesiolingual cusp; 16 , transverse ridge; 17 , oblique ridge.
? REvIEw Questions on Maxillary Molars

For questions 1 to 10, circle the correct answer(s) that apply. More than one answer may be correct.

1. Which three grooves radiate out from the central fossa in a maxillary first molar?
a. Central
b. Distolingual
c. Transverse groove of oblique ridge (when present)
d. Buccal
e. Lingual
2. Which cusp on a maxillary first molar has two ridges: one that forms part of a transverse ridge and the other that forms part of an oblique ridge?
a. Mesiobuccal
b. Mesiolingual
c. Distobuccal
d. Distolingual
e. Cusp of Carabelli
3. Which cusp is the largest and longest on a maxillary second molar?
a. Mesiobuccal
b. Mesiolingual
c. Distobuccal
d. Distolingual
e. Cusp of Carabelli
4. Which cusp is most likely to be absent on a maxillary second molar?
a. Mesiobuccal
b. Mesiolingual
c. Distobuccal
d. Distolingual
e. Distal
5. When the cusp is absent in question 4 above, which groove(s) would not be present?
a. Central
b. Buccal
c. Distal oblique
d. Lingual
6. Of the four fossae on a maxillary first molar, which is the largest?
a. Mesial triangular
b. Distal triangular
c. Central
d. Distal
7. From which view are only two roots visible on a maxillary first molar?
a. Mesial
b. Distal
c. Buccal
d. Lingual
8. Which grooves are likely to radiate out of the mesial triangular fossa on the maxillary first molar?
a. Mesiobuccal fossa groove
b. Mesiolingual fossa groove
c. Mesial marginal ridge groove (when present)
d. Central
e. Buccal
9. Which two cusps have the ridges that make up or join to form the oblique ridge on a maxillary molar?
a. Mesiobuccal
b. Distobuccal
c. Mesiolingual
d. Distolingual
e. Cusp of Carabelli
10. Which two cusps have a triangular ridge that make up or join to form a transverse (not oblique) ridge on most maxillary molars?
a. Mesiobuccal
b. Distobuccal
c. Mesiolingual
d. Distolingual
e. Cusp of Carabelli
11. List in sequential order the largest to smallest cusp area on the maxillary first molar (occlusal view).

SECTION vI Maxll laRy aND Ma NDIBUl a $\mathrm{R} t h$ ir d MOl a R TypE TRa ITS

Objectives

After studying this section, the reader should be able to perform the following:

- List the type traits that are unique to all third molars that can be used to distinguish them from first or second molars.
- From a selection of all types of molars, select the mandibular and maxillary third molars and assign each a Universal number.
- In mouths (or casts) of mandibular and maxillary arches with only one or two molars per quadrant, identify which molars are present and which are absent based on crown anatomy and position in the arch. (Remember that molars can change positions in the arch if they drift forward after the extraction of a first or second molar or are moved during orthodontic treatment, so arch position should not be the only way to confirm which molars are present.)

a. NUMBER a ND IOCaTION OF Th IRD MOl a RS

Most often, there are four third molars in the mouth, one at the distal position in each quadrant. However, nearly one fifth of the population may have one or more of their third molars congenitally missing (they never developed). ${ }^{\mathrm{BB}} \mathrm{T}$ e mesial surfaces of third molars contact the distal surfaces of second molars, but the distal surfaces of third molars are not in proximal contact with any other tooth. In ideal alignment of teeth between arches, maxillary third molars are UNIQUE since they bite against (occlude with) only one tooth, the mandibular third molar; all other teeth EXCEPT mandibular central incisors have the potential for occluding with two teeth.

B. SIzE a ND Sh apE OF Th IRD MOl a RS

Both maxillary and mandibular third molars vary considerably in size, but they are, on average, the shortest teeth in the mouth. Mandibular thirds are the shortest of all mandibular teeth, ${ }^{C C}$ and maxillary thirds are the shortest of all permanent teeth. T e roots of third molars are, on average, shorter than the roots of the first or second molars, ${ }^{\mathrm{DD}}$ and their root trunks are proportionally longer than the root trunks of the firsts and seconds. ${ }^{\text {EE }}$

C. TypE TRa ITS OF Maxill lary
 Th IRD MOl a RS Th aT a RE SIMIl a R
 TO FIRST a ND SECOND MOl a RS

Crowns: Although the crown of a maxillary third molar may exhibit great variance in size and shape and look like no other tooth, its crown may resemble a maxillary first molar (complete with fifth cusp of Carabelli) or second molar (without the fifth cusp and perhaps without the distolingual cusp). Many maxillary thirds have the same relative cusp size from
largest to smallest as on first and second molars: the largest and longest mesiolingual cusp is followed by the mesiobuccal cusp, which is wider and usually longer than the distobuccal cusp, followed by the smallest distolingual cusp (if present). T ere could be an oblique ridge (but it may be poorly developed or even absent) (Fig. 5-46). From the occlusal view, the maxillary third molar crown outline may taper from buccal to lingual, being narrower on the lingual side, and may taper from mesial to distal, being considerably larger faciolingually in its mesial half due to a prominent mesiobuccal cervical ridge and large mesiolingual cusp. Also, the buccal surface can be distinguished from the lingual because the buccal surface is relatively more f at.

Roots: Maxillary third molars usually have three roots: mesiobuccal, distobuccal, and lingual as on the first and second molars, although they may be so fused together that they are difficult to distinguish.

D. TypE TRa ITS OF Mand ibular Th IRD MOl a RS Th a T a RE SIMIl a R TO Ma NDIBUl a R FIRST a ND SECOND MOl a RS

Crowns: Although the crown of a mandibular third molar may exhibit great variance in size and shape and look like no other tooth (as seen in Fig. 5-44), its crown could resemble a four-cusped mandibular second molar or a five-cusped mandibular first molar. For example, the occlusal outlines of many mandibular third molar crowns are somewhat rectangular, wider mesiodistally than buccolingually. ${ }^{\mathrm{FF}} \mathrm{T}$ e relative cusp size from largest to smallest may be the same as on first and second molars: the mesiolingual is largest (and longest) followed by the distolingual, then the mesiobuccal is wider and longer than the distobuccal, and, when present, the distal cusp is the smallest. Also, from the occlusal view, the crown of the four-cusped type tapers from mesial to distal and from buccal to lingual (but only slightly). ${ }^{\mathrm{EE}}$

FIGURE 5-44. Unusual third molars. Six unusual mandibular third molars, many with extra cusps or roots that may be due to the fusion of third molars with adjacent extra (fourth) molars.

Roots: Mandibular third molars usually have two roots: mesial and distal as on mandibular first and second molars, but they may be fused together.

E. TypE TRa ITS Th a T DIFFERENTIa TE Th IRD MOl a RS FROM FIRST a ND SECOND MOl a RS

Although third molars may have a number of traits in common with first or second molars, they all have certain type traits in common that set them apart from the first and second molars in their arches. Maxillary third molars have the greatest morphologic variation in shape of all teeth, which makes a general description difficult. T e crown may have only one cusp or as many as eight. ${ }^{11}$ Sometimes, the form of the third molar crowns are so irregular that it is difficult to distinguish identifiable cusps. Mandibular third molars may have one or more extra roots.

T e following third molar traits can be used to differentiate a third molar from a first or second molar:

1. Normally, third molars are smaller than first or second molars in the same mouth (Fig. 5-45). A common

EXCEPTION is the five-cusped third molar, which may have a crown somewhat larger and more bulbous than the second molar.
2. T ird molar crowns are bulbous with fatter peripheral contours.
3. Occlusal tables of third molars are relatively smaller than on first and seconds since the buccal cusp tips are closer to the lingual cusp tips.
4. Occlusal surfaces of third molars are quite wrinkled due to numerous supplemental grooves and ridges (Fig. 5-46). Recall that many second molars have more supplemental grooves than first, but thirds are the most wrinkled.
5. Roots of both maxillary and mandibular third molars are noticeably shorter than on firsts or seconds ${ }^{\mathrm{DD}, \mathrm{GG}}$ so third molars have a small root-to-crown ratio compared to first and second molars in the same mouth (Fig. 5-47).
6. Roots are frequently fused together for most of their length resulting in very long root trunks with the furcation located only a short distance from the apices of the roots (Fig. 5-47).
7. Roots are pointed, crooked, and frequently curve distally in the apical third.
 Dental stone casts of maxillary and mandibular teeth (facial view) showing the decrease in size of molars from first to third molar that is typical in most people. (Model courtesy of Ms. Colleen Seto.)

MAXILLARY THIRD MOLARS (OCCLUS AL VIEWS)
Right
Left

MANDIBULAR THIRD MOLARS (OCCLUS AL VIEWS)
Left

FIGURE 5-46. Occlusal views of mandibular and maxillary third molars. The buccal surfaces of all of these third molars are facing up. Observe the wrinkled occlusal anatomy of these third molars, and try to recognize the similarities to first and second molars in each respective arch. For example, most of the maxillary third molars are wider buccolingually than mesiodistally in contrast to the mandibular third molars, whose greater dimension is mesiodistally.

MAXILLARY THIRD MOLARS (BUCCAL VIEWS)

Right

Left

MANDIBULAR THIRD MOLARS (BUCCAL VIEWS)

FIGURE 5-47. Buccal views of maxillary and mandibular third molars. Notice the relatively short roots with long root trunks and many fused roots. Also, note the similarity of the third molars with the first and second molars within their respective arches such as three (sometimes fused) roots on maxillary molars but only two roots on mandibular molars and two buccal cusps on all maxillary molars but two and often three buccal cusps (with a smallest distal cusp) on mandibular molars.

F. Sh OUl D all Th IRD MOl a RS BE ExTRa CTED?

T ird molars, known to many as wisdom teeth, have gotten a bad reputation for not serving any function, having soft enamel, readily decaying, and causing crowding of the anterior teeth and other dental problems. T e truth is that the posterior location of third molars in the mouth makes it more difficult to keep them clean, and their wrinkled, fissured occlusal surfaces make them more prone to developing decay than other teeth. Further, mandibular third molars often erupt so far distally that there may not be room to completely erupt, which compromises the health of the surrounding tissue (gingiva), so dentists often suggest that these teeth be removed to prevent future problems. Inf ammation of the tissue around these teeth (called pericoronitis) can be a cause of acute pain and spread of infection, resulting in the need for gingival surgery or extraction. T is infection is even more likely to occur if the f ap of tissue overlying the erupting third molar, called an operculum, becomes irritated (Fig. 5-48). However, it is not true that third molars have soft enamel, are useless, or should be routinely extracted. If the dental arches are of sufficient length to permit full eruption of third molars and a person's oral hygiene is good, third molars can function for a lifetime without problems. Also, healthy third molars can serve as the posterior attachment (abutment) when replacing lost or missing first or second molars.

Some oral surgeons recommend that when third molars have to be extracted, they be removed at an early age (under 25 years old) to facilitate an easier, less traumatic removal and a quicker, more comfortable recovery period than if they were extracted later in life. ${ }^{5}$ If these third molars are extracted before the roots are completely formed, the pulp within the open ends of the root canal apices may be clearly visible (Fig. 5-49).

FIGURE 5-48. An operculum is a fap of tissue that may cover the crown of the most posterior, erupting mandibular molar (especially when there is no room for it to erupt completely). This fap is subject to irritation and infection surrounding the crown known as pericoronitis. (Photo courtesy of Carl Allen, D.D.S., M.S.D.)

FIGURE 5-49. The apical foramen of these two roots on a mandibular molar is quite large because this tooth was extracted before the roots had a chance to completely form. When it was extracted, the pulp tissue could be seen within these openings.

LEARNING EXERCISE

Suppose a patient just had all of his or her permanent teeth extracted and you were asked to find tooth 15 from among a pile of thirty-two extracted teeth on the oral surgeon's tray because you wanted to evaluate a lesion on the root of that molar that had been seen on the radiograph. before
reading the recommended steps below, write out your plan. You have done this before in previous chapters, so you should be able to do it. How might you go about it? After writing your list, compare it to the following:

- From a selection of all permanent teeth (extracted teeth or tooth models), select only the molars (based on class traits).
- Determine whether each molar is maxillary or mandibular (based on arch traits). You should never rely on only one characteristic difference between teeth to name them; rather, make a list of many traits that suggest the tooth is a maxillary molar, as opposed to only one trait that makes you think it belongs in the maxillary arch. This way, you can play detective and become an expert at recognition at the same time.
- If you determine that the tooth is maxillary, position the root up; if it is mandibular, position the root down.
- Use traits for each surface to identify the buccal surface. This will permit you to view the tooth as though you were looking into a patient's mouth.
- Next, using type traits, determine the type of molar you are holding (first, second, or third).
- Finally, determine which surface is the mesial. While vie wing the molar from the facial and picturing it within the appropriate arch (upper or lower), the mesial surface can be positioned toward the midline in only one quadrant, the right or left.
- Once you have determined the quadrant, assign the appropriate Universal number for the molar in that quadrant. For example, the second molar in the upper left quadrant is tooth 15.

INTERESTING va RIaTIONS a ND ETh NIC DIFFERENCES
 IN MOl a RS

T is section is included in this chapter to give the reader an appreciation of the variation that can occur compared to the average (ideal) molars that have been discussed already in this chapter. Also, it should provide the reader with insight into the variations of teeth from ethnic populations that differ from persons in central Ohio in the 1970s whose teeth data served as the basis for many of the statements made in this book.

Var iation in the n umber of Cusps
As mentioned earlier, nearly a fifth of mandibular first molars have only four cusps. ${ }^{G}$ From the occlusal view, this four-cusped type of mandibular first molar does not taper as much from buccal to lingual as a four-cusped mandibular second molar (occlusal aspect), but it often tapers from distal to mesial, which is unusual.

Mandibular first, second, and, most frequently, third molars may have an extra cusp on the buccal surface of the mesiobuccal cusp, about in the middle third of the crown (Fig. 5-50). Studies show this is common in the Pima Indians of Arizona ${ }^{12,13}$ and in Indian (Asian) populations. ${ }^{14,15}$

Some mandibular first molars have a sixth cusp, which is named tuberculum sextum (too BUR kyoo lum SEKS tum) when located on the distal marginal ridge between the distal cusp and distolingual cusp; it is named tuberculum intermedium (too BUR kyoo lum in ter MEE di um) when located between the two lingual cusps (Fig. 5-51). ${ }^{11}$ Six cusps (three on the lingual) are common among the Chinese people.

Five-cusped mandibular second molars (shaped just like five-cusped first molars with a distal cusp) are not

FIGURE 5-50. Unusual extra cusp. This four-cusped mandibular right third molar has a bulbous crown and the extra cusplet on the buccal surface of the mesiobuccal cusp. This extra cusp or cusplet is not called a Carabelli cusp.
uncommon among the Chinese and Black populations. ${ }^{11}$ In Figure 5-52, one is shown from a Caucasian dentition.
fifth Cusp (of Carabelli)
It is possible, but rare, to see a fifth cusp on maxillary second molars (Fig. 5-53). A number of studies have been done concerning the occurrence and size of the fifth cusp. ${ }^{16-20}$ One investigator reported that it is extremely rare in the East Greenland Eskimo. In European people, it is usually present. T e fifth-cusp trait was absent on 35.4% of the teeth in 489 Hindu children. ${ }^{21}$ On first molars, the presence of a groove in the location of the fifth cusp was more common (35\%) than tubercles (26%). ${ }^{20}$

Research data by Dr. Woelfel on the occurrence and type of fifth-cusp (of Carabelli) formation on 1558 maxillary first molars of dental hygienists from 1971 to 1983 are presented in Table 5-6.

Cusp position

In Mongoloid peoples, the fifth distal cusp on mandibular first molars is often positioned lingually. T is cusp may also be split into two parts by a fissure. ${ }^{22}$

Groo Ves

Studies on both ancient and modern man on the pattern of the grooves on the occlusal surface of the mandibular molars show considerable variation. T ree principal types of occlusal groove patterns have been described: type Y, in which the zigzag central groove forms a Y figure with the lingual groove (seen in Fig. 5-22); type + , in which the central groove forms $\mathrm{a}+$ figure with the buccal and lingual grooves (common in four-cusped type of first molars) (Fig. 5-19B); and type X, in which the occlusal grooves are somewhat in the form of an X..23

A deep pit at the cervical end of the mesiobuccal groove of mandibular first molars is common in Mongoloid peoples.

FIGURE 5-51. Extra cusps. Mandibular first and second molars each with a third lingual cusp (tuberculum intermedium). If an extra cusp is found on the distal marginal ridge, it is called tuberculum sextum.

FIGURE 5-53. Unusual cusp of Carabelli. These maxillary first and second molars each have a fifth cusp (of Carabelli) on the mesiolingual cusp. It is rare to have this fifth cusp on a second molar. (Courtesy of Dr. Jeff Warner.)

Ta B1 E 5-6 Frequency of Occurrence and Type of Fifth (Carabelli) Cusp Formation on 1558 Maxillary First Molars ${ }^{a}$
$\left.\begin{array}{ll}\text { Large fifth cusp } & 19 \% \\ \text { Small fifth cusp } & 27.5 \% \\ \text { Slight depression (groove) } & 24 \%\end{array}\right\} \quad 70.5 \%$ some type of Carabe lli formation
${ }^{a}$ Observations from dental stone casts of Ohio dental hygienists made by Dr. Woelfel and his students, 1971-1983.

FIGURE 5-54. Unusual molar shapes. Buccal aspects of two unusual maxillary third molars (top row) and five unusual mandibular molars (bottom row; left to right: third, second, two firsts, and third molar) have severe bending of the roots is called fexion.

FIGURE 5-55. Unusual roots. A. Mandibular left second molar with an extra small root; buccal view. (Courtesy of Drs. John A Pike and Lewis J. Claman.) B. Radiographs of a right and left mandibular first molar from the mouth of a Caucasian male with unusual, large third roots located between the divergent mesial and distal roots. First molars normally have only two roots. (Brought to Dr. Woelfel's attention by Joshua Clark, dental student.)

relatiVe Crown Size
In one study, second mandibular molars were larger than first molars in 10% of Ohio Caucasians but in 19% of Pima Indians. ${ }^{24}$ It is reported that in the Bantu people in Africa, and sometimes in Arctic coastal populations, the mandibular molars often increase in size from first to third so that the third molar is the largest and the first molar is the smallest. T is is reported to also occur in Pima Indians. ${ }^{24} \mathrm{~T}$ is is not the most frequent order of size found in Western European populations.

Studies on the variability in the relative size of molars revealed that maxillary second molars were larger than first maxillary molars in 33% of a sample of an Ohio Caucasian population and in 36% of a Pima Indian population. ${ }^{23}$ In contrast, Dr. Woelfel found only two casts of young dental hygienists' mouths, from more than 600 sets of complete dentition casts, in which maxillary second molars were larger than the first molars.

Var iations in roots

Observe the wide variation from the normal in the roots with extreme distal root curvature seen in Figure 5-54, lower row. T is condition is called \mathbf{f} exion (FLEK shen) or dilaceration.

Occasionally, the mesial root on mandibular first molars is divided into a mesiobuccal and a mesiolingual root, forming three roots. T is condition is found in 10% to 20% of the mandibular first permanent molars in Arctic coastal populations. ${ }^{25}$

Ten percent of mandibular first molars of Mongoloid people have an additional distolingual root, and sometimes, the mesial root is bifurcated, resulting in a fourrooted first molar. ${ }^{3}$ It is reported that in both primary and permanent dentitions, three-rooted mandibular molars occur frequently in Mongoloid (Chinese) people but rarely in European groups. ${ }^{6,22, \mathrm{~A}} \mathrm{~A}$ small, third root can be seen in Figure $5-55 \mathrm{~A}$. T is peduncular-shaped extra root is approximately 6 mm long. Also, in Figure 5-55B, a right and left bitewing radiograph from a Caucasian male revealed an
unusual long third root bilaterally between normal mesial and distal roots.

In a Japanese study of root formation on 3370 maxillary second molars, 50% had three roots, 49% were split equally between single and double roots, and 1% had four roots. In the three-rooted second molars, 75% had complete separation of roots (no fusion). T e tendency to fuse was higher in the roots of teeth extracted from females. Lingual roots were straight in half of the three-rooted teeth. ${ }^{26}$

A point of enamel dipping into the root furcation is reported to occur in 90% of Mongoloid people studied. ${ }^{22}$

In Mongoloid people, mandibular molars have a long root trunk, and maxillary first molars sometimes have no furcation at all. ${ }^{22}$ See the last maxillary first molar on the upper row, right side, in Figure 5-26.

animal Molars

Elephants molars weigh about 11 lb each and are about a foot long (Fig. 5-56). As one set of molars literally fall apart in pieces, they are replaced by new ones six times in their life. After the sixth set is lost, the elephant will probably die of starvation around the age of 50 years old.

FIGURE 5-56. Each of this elephant's molars were about 12 inches long mesiodistally.

CRITICal Thinking

1. T e only way to master the many traits of the molars presented in this chapter is to be able to picture each traits in your mind for each type of tooth and for each side of the mouth. T erefore, even though you have probably already looked carefully at each illustration in this chapter, at this time, reread the legends and study each figure in this chapter. If any facts are unclear, review the portion of the chapter that referred to that figure. Also, use the front and back of Appendix pages 7 and 8 to review all identified traits of molars.
2. List the cusps in order from longest to shortest for the most common form of an extracted mandibular first molar with the long axis of the root exactly vertical. Name the cusp tips that would normally be seen when viewing this tooth from each of the following views: buccal view, mesial view, distal view, lingual view, and occlusal view. Do the same thing for the mandibular second molar. Would the longest cusp on the handheld tooth appear to be the longest when the teeth are aligned ideally within a mouth. If not, why not?
3. List the cusps in order from longest to shortest for the most common form of an extracted maxillary first molar with a cusp of Carabelli (with the long axis of the roots exactly vertical). Name the cusp tips that would normally be seen when viewing this tooth from each of the following views: buccal view, mesial view, distal view, lingual view, and occlusal view. Do the same thing for the three-cusped maxillary second molar. Would the longest cusp on this handheld tooth appear to be the longest when the teeth are aligned ideally within a mouth. If not, why not?
4. Search your computer for images of "maxillary or mandibular molar x-rays." Do you see two roots on mandibular molars and three roots on maxillary molars? Be aware that one root may overlap another (especially for the three roots of maxillary molars) or multiple roots may be fused together making it difficult to determine this precisely. You can appreciate the problem with overlap in x-ray images by trying to identify all cusps on each molar, which may not be very easy. Now search for computer images of teeth with "molar root canals." Filled root canals appear as white lines within each root. Can you see some roots that have two, three, or four canals? For roots with severe curvature, can you appreciate that it may be difficult to access and fill these curved canals?
5. Use or borrow a cell phone camera or digital camera to take a selfie of yourself with the biggest smile possible. Enlarge the image as much as you can and determine how many molars you can see in each quadrant. Can you see the first, second, and third molars (if present) in the maxillary arch on each side? Can you see mandibular molars? Which of these teeth would be of most esthetic concern if you needed large fillings or full crowns on any of these teeth? Take another selfie while yawning as large as possible and answer the same questions. Would a professional actor or singer be more concerned about the esthetics of their back teeth?

REFERENCES

1. Everett FG, Jump EG, Holder TD, et al. T e intermediate bifurcation ridge: a study of the morphology of the bifurcation of the lower first molar. J Dent Res 1958;37:162.
2. Masters DH, Hoskins SW. Projection of cervical enamel into molar furcations. J Periodontol 1964;35:49-53.
3. Tratman EK. T ree-rooted lower molars in man and their racial distribution. Br Dent J 1938;64:264-274.
4. Brand RW, Isselhard DE. Anatomy of orofacial structures. 6th ed. St. Louis, MO: C.V. Mosby, 1998:438.
5. Chiles DG, Cosentino BJ. T ird molar question: report of 522 cases. J Am Dent Assoc 1987;115:575-576.
6. Turner CG. T ree-rooted mandibular first permanent molars and question of American Indian origin. Am J Phys Anthropol 1971;34:239-242.
7. Ash MM, Nelson SJ. Wheeler's dental anatomy, physiology and occlusion. Philadelphia, PA: Saunders, 2003.
8. Lundeen HC. Introduction to occlusal anatomy. Gainesville, FL: L\&J Press, 1973.
9. Brand RW, Isselhard DE. Anatomy of orofacial structures. Vol. 159. St. Louis, MO: C.V. Mosby, 1982:163.
10. Bath-Balogh M, Fehrenbach MJ. Illustrated dental embryology, histology, and anatomy. Philadelphia, PA: W.B. Saunders, 2011.
11. Jordan R, Abrams L. Kraus's dental anatomy and occlusion. St. Louis, MO: Mosby Year Book, 1992.
12. Dahlberg AA. T e evolutionary significance of the protostylid. Am J Phys Anthropol 1950;8:15.
13. Dahlberg AA. T e dentition of the American Indian. In: Laughlin WS, ed. T e physical anthropology of the American Indian. New York, NY: T e Viking Fund, 1949.
14. Dahlberg AA. Geographic distribution and origin of dentitions. Int Dent J 1965;15:348-355.
15. Hellman M. Racial characters of human dentition. Proc Am Philos Soc 1928;67(2), 157-174.
16. Carbonelli VM. T e tubercle of Carabelli in the Kish dentition, Mesopotamia, 3000 B.C. J Dent Res 1960;39:124.
17. Garn SM, Lewis AB, Kerewsky RS, et al. Genetic independence of Carabelli's trait from tooth size or crown morphology. Arch Oral Biol 1966;11:745-747.
18. Kraus BS. Carabelli's anomaly of the maxillary molar teeth. Observations on Mexican and Papago Indians and an interpretation of the inheritance. Am J Hum Genet 1951;3:348.
19. Kraus BS. Occurrence of the Carabelli trait in the Southwest ethnic groups. Am J Phys Anthropol 1959;17:117.
20. Meredith HV, Hixon EH. Frequency, size, and bilateralism of Carabelli's tubercle. J Dent Res 1954;33:435.
21. Joshi MR, Godiawala RN, Dutia A. Carabelli trait in Hindu children from Gujurat. J Dent Res 1972;51:706-711.
22. Tratman EK. A comparison of the teeth of people. IndoEuropean racial stock with Mongoloid racial stock. Dent Rec 1950;70:31-53, 63-88.
23. Jorgensen KD. T e Dryopithecus pattern in recent Danes and Dutchmen. J Dent Res 1955;34:195.
24. Garn SM, Lewis AB, Kerewsky RS. Molar size sequence and fossil taxonomy. Science 1963;142:1060.
25. Scott JH, Symons NBB. Introduction to dental anatomy. London, UK: E \& S Livingstone, Ltd., 1958.
26. Matsumoto Y. Morphological studies on the roots of the Japanese maxillary second molars. Shikwa Gukuho 1986;86:249-276.

GENERAL REFERENCES

Oregon State System of Higher Education. Dental anatomy: a selfinstructional program. East Norwalk, CT: Appleton-CenturyCrofts, 1982:403-414.
Proskaves C, Witt F. Pictorial history of dentistry (Cave P, trans.). Köln, Germany: Verlag M. Dumont Schauberg, 1962.
Renner RP. An introduction to dental anatomy and esthetics. Chicago, IL: Quintessence Publishing, 1985.
Ring ME. Dentistry: an illustrated history. St. Louis, MO: C.V. Mosby, 1985.

Dr. Woelfel's Original research Data

Statistics obtained from Dr. Woelfel's original research on teeth have been used to draw conclusions throughout this chapter and were referenced with superscript letters that refer to the data stated here. Refer to Tables 5-7 and 5-8 for the average and range in sizes of maxillary and mandibular molars in all dimensions obtained by Dr. Woelfel.
A. Maxillary molars average 2.2 mm wider faciolingually than maxillary premolars and 3.0 mm wider mesio-
distally, and mandibular molars average 2.1 mm wider faciolingually and 3.2 mm wider mesiodistally.
B. On 839 mandibular molars, crowns averaged 1.2 mm wider mesiodistally than faciolingually. On 920 maxillary molars, crowns averaged 1.2 mm wider faciolingually than mesiodistally.
C. T e average root-to-crown ratio is 1.72 and 1.70 for the maxillary first and second molars, respectively. T e average root-to-crown ratio for mandibular molars is

Ta B1 E 5-7 $\quad \begin{aligned} & \text { Sizes of } \\ & 1974-1\end{aligned}$	Sizes of Maxillary Molars (Millimeters) (Measured by Dr. woelfel and h is Dental hygiene Students, 1974-1979)					
	308 FIRST MOLARS		309 SECOND MOLARS		303 THIRD MOLARS	
DIMENSION MEASURED	AVERAGE	RANGE	AVERAGE	RANGE	AVERAGE	RANGE
Crown length ${ }^{\text {a }}$	7.5	6.3-9.6	7.6	6.1-9.4	7.2	5.7-9.0
Root length						
Mesiobuccal ${ }^{\text {a }}$	12.9	8.5-18.8	12.9	$9.0-18.2$	10.8	7.1-5.5
Distobuccal	12.2	8.9-15.5	12.1	$9.0-16.3$	10.1	6.9-14.5
Lingual	13.7	10.6-17.5	13.5	9.8-18.8	11.2	$7.4-15.8$
Overall length ${ }^{\text {a }}$	20.1	17.0-27.4	20.0	$16.0-26.2$	17.5	$14.0-22.5$
Crown width (M-D)	10.4	8.8-13.3	9.8	8.5-11.7	9.2	7.0-11.1
Root width (cervix)	7.9	6.4-10.9	7.6	6.2-8.4	7.2	5.3-9.4
Faciolingual crown size	11.5	9.8-14.1	11.4	9.9-14.3	11.1	8.9-13.2
Faciolingual root (cervix)	10.7	7.4-14.0	10.7	8.9-12.7	10.4	$7.5-12.5$
Mesial cervical line curvature	0.7	0.0-2.1	0.6	0.0-2.2	0.5	0.0-2.0
Distal cervical line curvature	0.3	0.0-1.4	0.2	0.0-1.0	0.2	0.0-1.7

[^7]| Ta B1 E 5-8 $\quad \begin{aligned} & \text { Sizes of } \\ & \text { 1974-1 }\end{aligned}$ | Sizes of Mandibular Molars (Millimeters) (Measured by Dr. woelfel and his Dental hygiene Students, 1974-1979) | | | | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | 281 FIRST MOLARS | | 296 SECOND MOLARS | | 262 THIRD MOLARS | |
| DIMENSION MEASURED | AVERAGE | RANGE | AVERAGE | RANGE | AVERAGE | RANGE |
| Crown length ${ }^{\text {a }}$ | 7.7 | 6.1-9.6 | 7.7 | 6.1-9.8 | 7.5 | 6.1-9.2 |
| Root length | | | | | | |
| Mesial ${ }^{\text {a }}$ | 14.0 | 10.6-20.0 | 13.9 | $9.3-18.3$ | 11.8 | 7.3-14.6 |
| Distal | 13.0 | 8.1-17.7 | 13.0 | 8.5-18.3 | 10.8 | 5.2-14.0 |
| Overall length ${ }^{\text {a }}$ | 20.9 | 17.0-27.7 | 20.6 | 15.0-25.5 | 18.2 | 14.8-22.0 |
| Crown width (M-D) | 11.4 | $9.8-14.5$ | 10.8 | 9.6-13.0 | 11.3 | 8.5-14.2 |
| Root width (cervix) | 9.2 | 7.7-12.4 | 9.1 | $7.4-10.6$ | 9.2 | 6.4-10.7 |
| Faciolingual crown size | 10.2 | 8.9-13.7 | 9.9 | 7.6-11.8 | 10.1 | 8.2-13.2 |
| Faciolingual root (cervix) | 9.0 | 7.3-11.6 | 8.8 | 7.1-10.9 | 8.9 | $7.0-11.5$ |
| Mesial cervical line curvature | 0.5 | $0.0-1.6$ | 0.5 | 0.0-1.4 | 0.4 | 0.0-1.4 |
| Distal cervical line curvature | 0.2 | 0.0-1.2 | 0.2 | 0.0-1.2 | 0.2 | $0.0-1.0$ |

${ }^{\text {a }}$ Overall length from mesial root apex to tip of mesiobuccal cusp. Root length is from cervical line center to root apex. Crown length is from cervical line to
tip of mesiobuccal cusp.
the greatest of all teeth: 1.83 and 1.82 for the first and second molars, respectively.
D. Mandibular first molar crowns are 3.7 mm wider mesiodistally than occlusocervically, and mandibular second molar crowns are 3.1 mm wider.
E. Dr. Woelfel examined more than 600 sets of complete dentition casts of young dental hygienists' mouths and found only a few where mandibular second molars were slightly larger than the first molars. T ere were a few more in which the mandibular third molar crowns were as large as the first molars and larger than the mandibular second molars.
F. Based on measurements of 2392 maxillary teeth and 2180 mandibular teeth, the widest tooth is the mandibular first molar averaging 11.4 mm wide.
G. On dental stone casts of 874 dental hygiene students at the Ohio State University College of Dentistry (1971 to 1983), 81% of 1327 mandibular first molars without restorations had five cusps, and 19% had only four cusps. Seventy-seven percent of the females had fivecusp first molars on both sides, 16% had four-cusped first molars on both sides, and 3% had one four-cusped and one five-cusped mandibular first molar.
H. On 1367 mandibular first molars, the mesiobuccal cusp was widest 61% of the time compared to only 17% where the distobuccal cusp was widest.
I. On 430 teeth, the distobuccal cusp was sharper than the mesiobuccal cusp 55% of the time, compared to only 17% for the mesiobuccal cusp. T e rest were equally sharp.
J. On 720 molars, 70% of the time, the distobuccal groove was shorter than the mesiobuccal groove.
K. On 1514 mandibular second molars examined on dental stone casts, the mesiobuccal cusp was considered wider than the distobuccal cusp on 66%, compared to only 19% with a wider distobuccal cusp.
L. On 281 mandibular first molars, the mesial root averaged 1 mm longer than the distal root, and on 296 mandibular second molars, 0.9 mm longer. T e root-to-crown ratio of mandibular first molars is 1.83 to 1 , the highest ratio of any adult tooth.
M. On 58% of 256 mandibular first molars, the mesiolingual cusp was wider than the distolingual cusp, while on 33%, the distolingual cusp was wider. On mandibular second molars, the mesiolingual cusp was wider on 65% of 263 of these teeth, compared to only 30% with a wider distolingual cusp.
N. When evaluating the lingual cusps of mandibular first molars, 48% had more pointed mesiolingual cusps versus 47% had more pointed distolingual cusps; on mandibular second molars, 44% had more pointed mesiolingual cusps versus 51% had the distolingual cusps wider.
O. T e mesial CEJ curves 0.5 mm on first molars, 0.2 mm on second molars.
P. Marginal ridge grooves were found crossing the mesial marginal ridge on 68% of 209 mandibular first molars and 57% of 233 mandibular second molars. T ey were found crossing distal marginal ridges on 48% of 215 first molars and 35% of 233 second molars.
Q. Mandibular molar crowns were wider mesiodistally than faciolingually by 1.2 mm on 281 mandibular first molars and by 0.9 mm for 296 mandibular second molars.
R. On 233 mandibular second molars, marginal ridge grooves were found on 57% on the mesial and 35% of the distal marginal ridges. On 209 mandibular first molars, marginal ridge grooves were found on 68% on the mesial and 35% of the distal marginal ridges.
S. On 1539 maxillary first molars, the mesiobuccal cusp was wider than the distobuccal cusp 64% of the time; on 1545 second molars, the mesiobuccal cusp was wider 92% of the time. On 468 first molars, the distobuccal cusp was sharper 72% of the time, whereas on 447 second molars, the sharpness of buccal cusps was equal.
T. T e three maxillary molar roots are within 1.5 mm in length.
U. As data show in Table 5-6, 46.5\% of 1558 maxillary first molars had some form of Carabelli cusp (large or small), 24% had a depression in this location, and 29.5% were without any type of Carabelli formation.
V. On 1396 unrestored maxillary second molars from 808 students' casts examined by Dr. Woelfel, 37% of maxillary second molars had only three cusps.
W. On 308 maxillary first molars, the longest lingual root averaged 13.7 mm long.
X. On maxillary first molars: 78\% of 69 teeth had mesial marginal grooves, but only 50% of 60 had distal marginal ridge grooves; on second molars, 67% of 75 teeth had mesial marginal ridge grooves, but only 38% of 79 teeth had distal marginal ridge grooves.
Y. On maxillary first molars: 86% of 64 teeth had mesial ridge tubercles, but only 18% had distal ridge tubercles. On maxillary second molars: 38% of 79 teeth had mesial marginal ridge tubercles, but only 9% of 79 teeth had distal ridge tubercles.
Z. On 308 maxillary first molars, the mesial CEJ curvature averaged only 0.7 and 0.6 mm on the mesial CEJ of maxillary second molars.
AA. On stone casts of 1469 maxillary first molars, the mesiolingual cusp was largest 95% of the time and the distolingual cusp was smallest 72% of the time.
BB. Among 710 Ohio State University dental hygiene students, there were 185 maxillary third molars and 198 mandibular third molars congenitally absent. Many students were missing more than one third molar, so the percentage of the population missing one or more third molars might be close to 20%.
CC. Mandibular third molars average only 18.2 mm long.

DD. On 303 maxillary third molars, the buccal roots averaged 2.0 mm shorter than on firsts and seconds and the lingual root averaged 2.5 mm shorter.
EE. On 920 molars, the root trunks on maxillary third molars are, on average, 2.0 mm longer than on maxillary first or second molars.
FF. On 262 mandibular third molars, the crowns of the four-cusped type were wider mesiodistally than faciolingually by 1.2 mm .
GG. On 839 mandibular molars, the roots of thirds averaged over 2 mm shorter than on firsts and seconds combined. T e average root-to-crown ratio on mandibular third molars is 1.6 compared to 1.8 on mandibular first and second molars.

Primary (and Mixed) Dentition

Topics covered within the six sections of this chapter include the following:
I. Basic concepts about primary teeth
A. Definitions
B. Naming primary teeth based on location within the arch
C. Primary tooth identification systems
D. Functions of the primary dentition
II. Developmental data for primary and secondary teeth
A. Important times for tooth eruption
B. Crown and root development
III. Traits of most anterior and posterior primary teeth compared to permanent teeth
IV. Class and type traits of primary anterior teeth
A. Traits of crowns of most primary anterior teeth
B. Traits of roots of most primary anterior teeth
C. Traits that differentiate each type of primary incisor
D. Traits that differentiate primary canines
V. Class and type traits of primary molars
A. Traits of crowns of most primary molars
B. Traits of roots of most primary molars
C. Traits that differentiate each type of primary molar
VI. Pulp cavities of primary teeth

Objectives

This chapter is designed to prepare the learner to perform the following:

- Describe the important functions of the primary dentition and the problems that can occur from premature loss of primary teeth.
- List the time ranges for eruption of primary and secondary teeth.
- List the time ranges for crown and root formation for primary and secondary teeth.
- List the order of eruption of primary and secondary teeth.
- Describe the dentition (set) traits that differentiate primary from secondary teeth.
- Describe class traits that distinguish the primary incisors, canines, and molars.
- Describe type traits that distinguish the primary central and lateral incisors and first and second molars.
- Describe the size and shape of primary tooth pulp chambers.
- Using the Universal Identification System, identify permanent and primary teeth present in the mouth with mixed dentition.
- Establish the estimated "dental age" of a person by studying his or her mixed dentition.

Statements that reference specific dates and dimensions related to primary teeth are highlighted with superscript letters throughout this chapter like this (data ${ }^{\mathrm{A}}$). T e letters refer to data presented at the end of this chapter.

a. DEFINITIONS

Primary teeth are often called deciduous [dee SIJ oo es] teeth. Deciduous comes from the Latin word decidere
meaning to fall off. Deciduous teeth fall off or are shed like leaves from a deciduous tree and are replaced by the adult teeth that succeed them. Common nicknames for them are "milk teeth," or "temporary teeth," which unfortunately denote a lack of importance. T e dentition that follows the primary teeth is called the permanent dentition but may also be called the secondary dentition (or adult dentition).

B. NamINg pr Imar y TEETh Ba SED ON LOCaTION wiTh IN Th E ar Ch

As stated in Chapter 1, the number and type of primary teeth in each half of the mouth are represented by this formula:

$$
\text { Incisors } \frac{2}{2} \text { Canines } \frac{1}{1} \text { Molars } \frac{2}{2}=\frac{5 \text { maxillary teeth }}{5 \text { per quadrant }} \begin{gathered}
5 \text { mandibular teeth } \\
\text { per quadrant }
\end{gathered}
$$

Compare this formula to that for the permanent teeth, and you will be able to draw some interesting conclusions:

$$
\begin{aligned}
& \text { Incisors } \frac{2}{2} \text { Canines } \frac{1}{1} \text { Premolars } \frac{2}{2} \\
& \text { Molars } \frac{3}{3}=\frac{8 \text { maxillary teeth per quadrant }}{8 \text { mandibular teeth per quadrant }}
\end{aligned}
$$

Notice that there are no primary premolars. When permanent teeth replace the 20 primary teeth, the primary molars are replaced by permanent premolars. T e 20 permanent teeth that replace or succeed their primary tooth predecessors are called succedaneous [suck si DAY nee ous] teeth. T e 12 permanent molars, however, have no predecessors in the primary dentition and erupt distal to the primary molars. T erefore, in the strict sense, permanent molars are not succedaneous teeth.

C. pr Imar y TOOTh IDENTIFICaTION SySTEmS

Primary teeth exhibit an arch form similar to permanent teeth. Recall from Chapter 1 that the 20 primary teeth can be identified using the Universal Identification System by assigning letters A for the primary right maxillary second molar through T for the primary right mandibular second molar (Fig. 6-1). Another method that can be used to identify

PRIMARYTEETH

RIGHT
LEFT

Figur E 6-1. The letters A through T represent the Universal Numbering System for primary teeth commonly used for record keeping in the United States.

MANDIBULAR

Right
Left

Figure 6-2. Another numbering system for primary teeth uses the numbers 1 (for the right maxillary second molar) through 20 (the right mandibular second molar) followed by "D" for deciduous teeth.
these teeth uses the numbers 1 through 20 followed by the letter " D " to denote deciduous teeth. T erefore, tooth 1D is the primary right maxillary second molar through 20D is the primary right mandibular second molar (Fig. 6-2). Two other methods for numbering primary teeth were presented in Table 1-1.

FIgure 6-3. This crowded mandibular permanent dentition was caused by the premature loss of primary molars. Notice that the left lateral incisor (\#23) almost contacts the right central incisor (\#25) and that the left first premolar (\#21) is only 2.5 mm from contacting the first molar (\#19).

D. Fu NCTIONS OF Th E pr Imar y DENTITION

Some parents do not consider the care of the primary teeth of their children to be a priority since they consider them as "temporary" or "baby" teeth, but it is important to remember that primary teeth are the only teeth that children have until approximately their sixth birthday, and some primary teeth continue to function until age 12 . Mandibular central incisors function for almost 6 years, while maxillary canines function for almost 10 years. ${ }^{\mathrm{A}}$ When people live to be 70 years of age, they will have spent 6% of their life chewing only with primary teeth. T is small proportion of time should not infer a lack of importance of primary teeth, however, because they play a very important role in "reserving" space for the permanent teeth, which ensures proper alignment, spacing, and occlusion of the permanent teeth. Consider the following functions of primary teeth in order to confirm the importance of keeping them healthy:

- Primary teeth are needed for efficient chewing (mastication) of food.
- T ey provide support for the cheeks and lips, maintaining a normal facial appearance and smile.
- T ey are necessary for the formulation of clear speech.
- T ey are critical for maintaining the space that is required to provide room for the eruption of permanent teeth.

FIgure 6-4. Extreme crowding of maxillary teeth in a 12 -year-old child: the maxillary canines (\#6 and \#11), the last succedaneous teeth to erupt, are positioned too facially. The left primary canine (tooth H at the arrow) was not shed because its successor emerged labially to it. Both 12 -year molars (three-cusp type) are in the process of emerging.

When primary teeth are lost prematurely or are not shed on time, the results on tooth alignment can be devastating (Figs. 6-3 and 6-4). Improving tooth alignment in these children would involve placement of orthodontic appliances or braces for over two years. Children with these crowded teeth may reject nutritious foods that are difficult to chew, and may be more susceptible to forming decay due to the difficulty in cleaning crowded teeth. Deep decay can lead to infection of the pulp of the primary tooth that can result in a disruption in the formation of enamel (called enamel hypoplasia) in the developing permanent tooth forming beneath it. T is can result in a discolored spot on the permanent tooth known as Turner hypoplasia (Fig. 6-5).

FIgure 6-5. Enamel hypoplasia (Turner hypoplasia), visible as a defect on this permanent lateral incisor, resulted from an infection (abscess) on the primary lateral incisor that preceded it.

SECTION II
 DEvELOpmENTaLDaTa FOr pr Imar y aND SECONDar y TEETh

Dental students and dental hygiene students should become familiar with the eruption dates of primary and secondary teeth in order to adequately and correctly inform worried parents and patients about the normal times when teeth emerge or erupt. Tooth development and eruption dates for permanent teeth presented by the American Dental Association are in Table 6-1, and dates for primary teeth are in Table 6-2. T e eruption time for a primary tooth can be considered normal if it is within 4 to 5 months (earlier or later) of the dates in these tables. Permanent tooth eruption can be within 12 to 18 months (early or late) of those dates and still be of no real concern. Early eruption of these teeth usually presents no problems other than a concern about instituting oral hygiene measures earlier.

When a tooth has not emerged when expected, dental radiographs (x-ray films) are the best means for determining if the tooth is either unerupted or missing, particularly when it is considerably overdue (Fig. 6-6).

a. ImpOr Ta NT TImES FOr TOOTh Er upTION

Instead of memorizing the specific times of eruption of each tooth (which would be a daunting task), first divide the development of teeth into four time periods: (1) when there are no teeth, (2) when primary teeth are erupting and are the only visible teeth, (3) when the dentition is a mixed dentition (i.e., both primary and permanent teeth are visible), and (4) when there are only adult teeth. If you learn what happens during these important time periods, you will be well on your way to understanding the schedule for tooth eruption in both dentitions.

1. NO TEETH (EDENTULOUS)

- From birth to 6 months old (approximately): T ere are no teeth visible within the mouth.

2. PRIMARY DENTITION ONLY

- 6 months to 2122 y ears old (approximately): Over this time, the primary teeth are erupting into the child's mouth.
- $21 / 2$ to 6 years old (approximately): All 20 primary teeth are present; no permanent teeth are yet visible in the mouth.

3. MIXED DENTITION

From ages 6 through 12, primary teeth are being lost or shed (a process known as exfoliation) allowing room for the permanent teeth to erupt. During this time, the dentition is mixed with some primary teeth and some permanent teeth.

- 6 years old (approximately): Permanent teeth start to appear, beginning with the first molars (also called 6 -year molars) just distal to the primary second molars. T ese are followed closely by the loss of the primary mandibular central incisors, which are soon replaced by the permanent mandibular central incisors. During mixed dentition from 6 years old through 12 years old, there are most often 24 teeth visible (20 primary teeth or their permanent (succedaneous) replacement, plus the 4 secondary first molars).
- 6 to 9 y ears old: All eight permanent incisors are replacing primary incisors that are exfoliated (shed).
- 9 to $\mathbf{1 2}$ y ears old: All four permanent canines and eight premolars are replacing primary canines and molars.

4. ADULT DENTITION ONLY

- Ad̉er 12 years: All primary teeth have been exfoliated and replaced, and second molars (also called 12-year molars) have emerged distal to the permanent first molars. After the eruption of the 12-year molars, there are normally only permanent teeth in the mouth, 28 of them.
- $\mathbf{1 7}$ to 21 years old: T ird molars (if present) emerge, resulting in all 32 teeth visible in the mouth.

To o TH	HARD TISSUE Fo Rm ATlo N BEg INS	CRo WN Co m Pl ETED	ERUPTIo N	Ro o T Co m Pl ETED
m AXII 1 ARY TEETH				
Central incisor	3-4 mo	4-5 y	7-8 y	10 y
Lateral incisor	10-12 mo	$4-5 \mathrm{y}$	8-9 y	11 y
Canine	4-5 mo	6-7 y	11-12 y	13-15 y
First premolar	$11 / 2-13 / 4 \mathrm{y}$	5-6 y	10-11 y	$12-13 \mathrm{y}$
Second premolar	$2-21 / 4$ y	6-7 y	10-12 y	$12-14 \mathrm{y}$
First molar	Birth (f rst secondary to begin)	$21 / 2-3 \mathrm{y}$	$6-7$ y	$9-10$ y
Second molar	$21 / 2-3 \mathrm{y}$	7-8 y	12-13 y	$14-16$ y
Third molar	$7-9 \mathrm{y}$	$12-16$ y	$17-21 \mathrm{y}$	$18-25$ y
m ANDIBUl AR TEETH				
Central incisor	3-4 mo	4-5 y	6-7 y	9 y
Lateral incisor	3-4 mo	$4-5 \mathrm{y}$	7-8 y	10 y
Canine	$4-5 \mathrm{mo}$	6-7 y	9-10 y	$12-14$ y
First premolar	$13 / 4-2 \mathrm{y}$	5-6 y	10-12 y	$12-13 \mathrm{y}$
Second premolar	$21 / 4-21 / 2$ y	6-7 y	$11-12 \mathrm{y}$	$13-14 \mathrm{y}$
First molar	Birth	21/2-3 y	6-7 y	9-10 y
Second molar	$21 / 2-3 \mathrm{y}$	$7-8 \mathrm{y}$	11-13 y	$14-15 \mathrm{y}$
Third molar	$8-10$ y	$12-16$ y	17-21 y	$18-25$ y

Chart based on Logan WH, Kronfield R. Development of the human jaws and surrounding structures from birth to age fifteen. JADA 20:379-424, 1933/1935. Modified by McCall and Schour: Schour I, McCall JO. Chronology of the human dentition. In: Orban B, ed. Oral histology and embryology. St. Louis, MO: C.V. Mosby, 1944:240.

Ta BLE 6-2 Tooth Development and Eruption: primary Teeth

HARD TISSUE
Fo Rm ATIo N BEg INS (WEEk S IN UTERo)

ENAmEl Co mPl ETED (mo NTHS AFTER BIRTH)

ERUPTIo N (mo NTHS)

Ro o T
Co m Pl ETED
(YEARS)

m AXII 1 ARY				
Central incisor	14	$11 / 2$	$10(8-12)$	$11 / 2$
Lateral incisor	16	$21 / 2$	11 (9-13)	2
Canine	17	9	19 (16-22)	$31 / 4$
First molar	$15^{1 / 2}$	6	$\begin{aligned} & 16 \text { (13-19 boys) } \\ & (14-18 \text { girls }) \end{aligned}$	$21 / 2$
Second molar	19	11	29 (25-33)	3
m ANDIBUl AR				
Central incisor	14	$21 / 2$	8 (6-10)	$11 / 2$
Lateral incisor	16	3	13 (10-16)	$11 / 2$
Canine	17	9	20 (17-23)	$31 / 4$
First molar	$15^{1 / 2}$	51/2	16 (14-18)	$21 / 4$
Second molar	18	10	$\begin{aligned} & 27 \text { (23-31 boys) } \\ & (24-30 \text { girls }) \end{aligned}$	3

From Lunt RC, Law DB. A review of the chronology of eruption of deciduous teeth. J Am Dent Assoc 1974;10:872-879. Copyright © 1974 American Dental Association. All rights reserved. Adapted 2010 with permission.

FIg ur E 6-6. Maxillary (top) and mandibular (bottom) dental radiographs of an 8 -year-old child shows the first and second primary molars (I, J and K, L) and the adjacent first adult molars (14 and 19) erupted in the mouth. Notice the premolar crowns (12, 13 and 20,21) are forming between the partially resorbed roots of the maxillary and mandibular primary molars. The smaller size, thinner enamel, and re latively larger pulp cavities are evident in the primary molars compared to the newly erupted, larger permanent molars just distal to them. The pulp chambers of these permanent molars will get even smaller as these teeth mature and the roots are completed. (Courtesy of Professor Donald Bowers, the Ohio State University.)

B. Cr Ow N a ND r OOT DEvELOpmENT

With these basic time periods in mind, one must keep in mind that much more is taking place during the development of human teeth than just the eruption and exfoliation of primary teeth, or the eruption of permanent teeth. Prior to eruption, primary tooth crowns are forming and calcifying within the jawbones. As crown calcification is completed, each tooth root begins to form and the tooth moves through bone toward the surface and eventually through the oral mucosa into the oral cavity (eruption or emergence). After eruption, the root continues to form until root formation is completed. At the same time that primary teeth are forming and erupting, permanent teeth are already beginning to form within the jawbones. T ese permanent teeth develop and calcify, and their roots form as they move occlusally to replace the primary teeth, or erupt distal to the primary teeth.

Now let us look at this entire process in more detail, discussing it step by step. All of the following information is derived from Tables 6-1 and 6-2.

1. Crown Calcif cation of primary Teeth

T e crowns of all 20 primary teeth begin to calcify between 4 and 6 months in utero (seen developing in Fig. 6-7). Crown completion of all primary teeth occurs within the first year after birth, taking an average of 10 months from the beginning of tooth calcification. ${ }^{B}$

2. r oots Form and primary Teeth Erupt

Root formation for primary (and permanent) teeth begins once the enamel on the crown is formed, and at this time, the tooth starts its occlusal movement through bone toward the oral cavity. After the primary tooth crowns erupt into the oral cavity from age 6 months to 24 to 30 months (about 2 to $2 \frac{1}{2}$ years), ${ }^{\mathrm{C}}$ they continue to erupt until eventually they reach the level of an ideal occlusal plane. T ese teeth also continue to erupt slightly to compensate for wear (attrition) on the incisal or occlusal surface and/or when there are no opposing teeth.

FIg ur E 6-7. Deve loping human primary molars illustrating that the mesiobuccal cusps of both the maxillary and mandibular molars are the first to form and mineralize. A. Occlusal view of an in utero 19 -week maxillary right first molar that already has a well-developed mesiobuccal cusp, which is covered with a mineralized enamel cap (original magnification $36 \times$). B. Buccal view of an in utero 20 -week mandibular right first molar with its mesiobuccal cusp dominating the mesial portion of the tooth. The mesiolingual cusp is the second to differentiate and shows incipient mineralization (original magnification $36 \times$).
3. Order of Emergence of primary Teeth (from 6 months to about 2 years Old)
According to data currently distributed by the American Dental Association (summarized in Table 6-3), the first primary teeth likely to erupt are the mandibular central incisors, at about 6 to 10 months of age (Fig. 6-8), followed by the maxillary central incisors, then maxillary lateral incisors, and finally the mandibular lateral incisors (Fig. 6-9). (Note that in previous editions of this book, a

FIg ur E 6-8. This 6-month-old baby shows only the first two primary teeth beginning to erupt: the mandibular central incisors.
second study was also cited where the mandibular central incisors are likely to erupt first, but they are followed by the mandibular lateral incisors, then the maxillary central incisors, and finally the maxillary lateral incisors.) Next to erupt through about 19 months are the primary first molars (Fig. 6-10), then canines, and finally second molars. Thus, the last primary teeth to emerge, thereby completing the primary dentition, are the maxillary second molars, at about 2 to $2 \frac{1}{2}$ years (24 to 33 months) of age.
(4. primary Tooth r oot Complete by 3 years

After primary teeth erupt, their roots are completed between the ages of 18 months and 3 years. ${ }^{\text {D }}$

5. maintaining Space for permanent Teeth

T e combined mesiodistal arch space occupied by the primary canines and molars in each quadrant is greater than that occupied by the permanent canines and premolars since the primary molars are wider than the premolars that will replace them. T is difference in space is called the leeway space. Refer to Table 6-4 for differences in sizes between primary and permanent teeth. Also, as primary teeth erupt, spaces often occur between anterior teeth, especially as the maxillae and the mandible bones grow larger. Primate spaces are most likely to occur just mesial to the maxillary canines and just distal to the mandibular canines. ${ }^{1} \mathrm{~T}$ ese spaces frequently concern parents but are perfectly natural and even beneficial since they provide room for the secondary incisors and canines, which are considerably wider than their predecessors.

| Ta BLE 6-3 | Chart representing Order of primary Tooth Eruption Based on Data in Table 6-2 | | | | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| | CENTRA1 INCISo R | 1 ATERA1 INCISo R | CANINE | FIRST mol AR | SECo ND mol AR |
| m AXIl 1 ARY | Second $(8-12 \mathrm{mo})$ | Third $(9-13 \mathrm{mo})$ | Seventh $(16-22 \mathrm{mo})$ | Fifth $(13-19 \mathrm{mo})$ | Tenth $(25-33 \mathrm{mo})$ |
| m ANDIBUl AR | First $(6-10 \mathrm{mo})$ | Fourth $(10-16 \mathrm{mo})$ | Eighth $(17-23 \mathrm{mo})$ | Sixth $(14-18 \mathrm{mo})$ | Ninth $(23-31 \mathrm{mo})$ |

FIg ur E 6-9. This baby shows the normal eruption for primary teeth in a 1-year-old child: mandibular and also maxillary central incisors are fully erupted, with possibly one mandibular and one maxillary lateral incisor beginning to show.

Soon after the 6-year first molars erupt, their eruptive forces, along with their tendency to drift toward the mesial, push the primary teeth forward. If this were to continue, there would be insufficient space for the premolars to come in. T e f ared roots of the primary molars, however, resist the mesial displacement (seen in Fig. 6-11). T is primary molar root f are, primary molar crown size wider mesiodistally than their premolar successors, and primate spaces all help to preserve sufficient space for the premolars and secondary canines. ${ }^{2}$
6. Exfoliation (Shedding) of primary Teeth Followed
by the Eruption of the permanent Teeth

T e roots of primary teeth are complete for only a short time since primary tooth roots begin to resorb only about 3 years after completion. Root resorption of a primary tooth root is the gradual breakdown and loss of root structure that permits room for the eruption of the underlying succedaneous tooth that will replace it. It usually begins at the apex or on one side near the apex and continues as the succedaneous tooth moves closer to the surface (Fig. 6-12), becomes loose, and is shed or lost. Recall that this process of shedding is called exfoliation. Once a primary tooth is shed, the crown of the succedaneous tooth is close to the surface and nearly ready to erupt.

mixed Dentition (from about 6 to 12 years Old)

Mixed dentition, with both primary and permanent teeth visible in the mouth, begins at about age 6 years old when the

FIgur E6-10. The mandibular teeth seen in this baby show the normal eruption for an 18 -month-old: all four incisors and the mandibular first molars appear fully erupted, followed by the tips of the mandibular canines beginning to erupt.
first (6-year) permanent molars emerge. Next, the primary incisors are gradually replaced by their larger, permanent successors. T e mixed dentition ends at about age 12 when all primary teeth have been replaced by their permanent (succedaneous) teeth.

8. Crown Formation of permanent Teeth

Permanent tooth crowns begin to form at birth (with the permanent first molars) and continue to form through about age 16 when third molar crowns are completed. As a guideline, crown formation of most permanent tooth crowns takes about 3 (or 4) years (from the beginning of hard tissue formation until its crown is completed), and crown completion occurs about 3 (or 4) years later, prior to its eruption into the mouth. ${ }^{\text {E }}$

9. Order of Emergence for permanent Teeth

Table 6-5 summarizes the sequence of eruption for permanent teeth. Succedaneous teeth erupt soon (within a year) after the exfoliation of the primary teeth they replace. If you know the time range for eruption of incisors (between 6 and 9 years old), or for canines and premolars (between 9 and 12 years old), plus the sequence of eruption within that time range, you can estimate the eruption time for any succedaneous (permanent) tooth within about 1 year.

Sequence of eruption of permanent incisors between 6 and 9 years: After the eruption of the 6-year molars, permanent centrals normally erupt before laterals, and mandibular incisors erupt before their maxillary counterpart. T erefore, the $\dot{\alpha}$ rst permanent incisor to erupt is the mandibular central incisor (close to 6 years old), and the last incisor to erupt is the maxillary lateral incisor (closer to 9 years old). Maxillary centrals and then mandibular laterals erupt from 7 to 8 years old.

Sequence of eruption of permanent teeth between 9 and 12 years: Mandibular canines replace primary mandibular canines (closer to 9 years old), and then, premolars replace primary molars (between 10 and 12 years old). Finally, maxillary canines are the last primary teeth to be replaced (closer to 12 years old). T is is often evident when the permanent maxillary canines are crowded facially as they erupt (as seen previously in Fig. 6-4). Note in Table 6-5 that for the adult dentition, most succedaneous teeth in the mandibular arch are likely to erupt at the same time or slightly earlier than their maxillary counterparts; the only mandibular tooth likely to emerge after its maxillary counterpart is the mandibular second premolar, the last premolar to erupt. Knowing the range and sequence of eruption of canines and premolars, you can estimate the eruption time of mandibular canines as close to 9 years, while maxillary canines (and mandibular second premolars) emerge at about 12 years of age.

As a guideline, roots of secondary teeth are completed about 3 years after their emergence into the oral cavity.

Flgur E 6-11. models depicting the stage of development of the dentitions of a 3 -year-old child. All primary teeth have emerged into the oral cavity, and they have full roots, prior to resorption. Notice the various amounts of crown development and locations of the partially formed premolar crowns (\#'s $12,13,20$, and 21) between the fully formed roots of the primary molars (teeth I, J, K, and L).
(Models courtesy of 3M Unitek, Monrovia, CA)

Figur E 6-12. Tooth development of a 9-year-old child with mixed dentition. The permanent central and lateral incisors and first molars have emerged into a functional level. The primary canines (H and M) and molars (I, J and K, L) are still functioning, although part of their roots have resorbed. You can appreciate why the maxillary canines (11 and 22) are often the last permanent succedaneous teeth to erupt by their position deep within the bone. (Models courtesy of 3M Unitek, Monrovia, CA.)

Ta BLE 6-5	Chart r e presenting the u sual Order of permanent Dentition Tooth Eruption Based on Data from Table 6-1							
	CENTRAI INCISo R	1 ATERAI INCISo R	CANINE	FIRST PREmolAR	SECo ND PREmolAR	FIRST molAR	$\begin{aligned} & \text { SECo ND } \\ & \text { mol } 1 \text { AR } \end{aligned}$	$\begin{aligned} & \text { THIRD } \\ & \text { mol } \end{aligned}$
Ag E RANg E	6-9 Y		9-12 Y			6 Y	12 Y	
Maxillary	2nd (t)	3 rd	6th (t)	5th (t)	5th (t)	1 st (t)	7th (t)	8th (t)
	(7-8 y)	(8-9 y)	(11-12 y)	($10-11 \mathrm{y}$)	($10-12 \mathrm{y}$)	(6-7 y)	(12-13 y)	(17-21 y)
Mandibular	1 st (t)	2nd (t)	4th	5th (t)	6th (t)	1 st (t)	7th (t)	8th (t)
	(6-7 y)	(7-8 y)	(9-10 y)	(10-12 y)	(11-12 y)	(6-7 y)	(11-13 y)	(17-21 y)

1 st, first tooth to erupt; 2nd, second, etc., same number with a " t)" denotes essentially a tie in eruption time. Mandibular anterior teeth and first and second molars usually precede their maxillary counterpart within the time ranges given. Mandibular first molars are normally the first secondary teeth to erupt.

SECTION III

Tr a ITS OF mOST a NTEr IOr a ND pOSTEr IOr pr Imar y TEETh COmpar ED TO pEr maNENT TEETh

Your best specimens for the study of crown morphology of primary teeth can be found in the mouth of a 2- to 6-year-old who is willing to open his or her mouth wide, long, and often enough to permit your examination. Extracted or exfoliated primary teeth with complete crowns and roots are difficult to find since most of these have resorbed roots and severe attrition (occlusal wear). Plastic tooth models, if available, are most helpful and have the added advantage of complete roots.

To begin, learn the following traits that apply to most primary teeth, both anterior and posterior, and that set them apart from the permanent teeth:

1. Primary teeth are smaller in size than the permanent teeth with the same type name. In other words, primary central and lateral incisors and canines are smaller than permanent central and lateral incisors and canines, respectively, and primary first and second molars are smaller than permanent first and second molars, respectively.

FIgure 6-13. Comparison of the proximal views of a larger permanent maxillary frst molar and a smaller primary maxillary second molar. Notice that the primary second molar is lighter in color, constricted at the CEJ, and bulbous in the cervical third of the crown and has roots that are quite divergent.
2. T e crowns and roots of primary teeth have a marked constriction at the cervix, appearing as if they are being squeezed in around the CEJ. T us, primary tooth crowns bulge close to the cervical line forming a more prominent facial cervical ridge and lingual bulge (or cingula) ${ }^{3}$ compared to permanent teeth. T is is especially evident from the proximal views in Appendix 9a and 10e and when comparing maxillary molars in Figure 6-13 and mandibular molars in Figure 6-14.

FIg ur E 6-14. Comparison of the proximal views of a larger permanent right mandibular frst molar and a smaller primary right mandibular frst molar. Notice that the primary molar is lighter in color and constricted at the CEJ and has a buccal crown contour that is very bulbous in the cervical third, but fat in the occlusal half. Also, note that the mesial root appears bifurcated, possibly due to some root resorption.
3. Primary teeth have relatively longer roots than their crowns compared to permanent teeth (Fig. 6-15).
4. Primary teeth are less mineralized and so become very worn (Fig. 6-15). ${ }^{3,4} \mathrm{~T}$ ese teeth are prone to considerable attrition [at TRISH en] (tooth wear from tooth-to-tooth contact), which is made worse by the shifting relationship of the upper and lower teeth due to expanding growth of the jaws in young children. Attrition, therefore, is not really a dentition trait but a normal occurrence due to function. ${ }^{3}$
5. T e layers of enamel and dentin of primary teeth are thinner than on secondary teeth, so the pulp cavities are proportionally larger and therefore closer to the surface (seen earlier in the radiographs in Fig. 6-6). T erefore, decay can progress to the pulp more quickly through this thinner enamel and dentin than through the thicker adult enamel and dentin, and the dentist must take care not to expose the tooth pulp when preparing primary teeth for restorations since the pulp is closer to the surface.
6. Primary teeth are whiter in color (Figs. 6-13 and 6-14).
7. Primary teeth have more consistent shapes than do the permanent teeth (have fewer anomalies). ${ }^{2}$

FIg ur E6-15. Comparison of the proximal views of a smaller primary maxillary central incisor and a larger permanent maxillary central incis or. Notice that the primary central incisor has an incisal edge that is worn quite fat from attrition but is positioned facial to the midroot axis, has quite a long root relative to its crown, and has a bulbous cingulum that takes up more than half of its lingual surface.

SECTION Iv CLaSS a ND TypE Tr a ITS OF pr Imary Anter ior TEETh

a. Tr a ITS OF Crowns OF mOST pr Imary An terior TEETh

Now, consider the traits that apply to most crowns of all types of primary anterior teeth. Refer to Appendix page 9 while studying these traits.

1. Prominent cervical ridges on facial surfaces run mesiodistally in the cervical third (Appendix 9a, facial surfaces).
2. T e prominent lingual cingula seem to bulge and occupy about one third of the cervicoincisal length (Appendix 9a, lingual surfaces, and Fig. 6-16).
3. Similar to their successors, incisal ridges of primary anterior maxillary teeth are located labial to the root axis line (considerably so on maxillary primary canines), whereas incisal ridges of mandibular incisors are located on the root axis line or slightly lingual to the root axis line (seen on some anterior teeth in Fig. 6-17).
4. Usually, there are no depressions, mamelons, or perikymata on the labial or incisal surfaces of the crowns of the primary incisors. T ese surfaces are smoother than on their successors.
5. Cervical lines of all primary anterior teeth curve incisally more on the mesial side than on the distal side,
just like on permanent anterior teeth. Also, the cervical lines are positioned more apical on the lingual than on the labial.
6. From the incisal view, primary anterior tooth crowns taper narrower toward the lingual and have a relatively thick incisal edge that curves mesiodistally.

FIgure 6-16. Comparison of the proximal surfaces of a smaller primary maxillary canine and a larger permanent maxillary canine. Notice that this primary tooth exhibits considerable incisal we ar and very large cervical bulges on the facial and lingual crown surfaces.

PRIMARY DENTITION (proximal)

Flgure 6-17. Primary dentition,
proximal views. As on permanent teeth, the incisal edges of maxillary anteriors are positioned labial to the midroot axis, and mandibular anteriors are either centered or lingual. Further, on the molars, more of the occlusal surfaces are visible from the distal views than from the mesial views. Finally, notice that the apical third of the roots of anterior teeth bends labially (red lines).
B. Tr a ITS OF roots OF mOST pr Imary Anterior TEETh

T e following traits apply to the roots of all types of primary anterior teeth.

1. T e roots of primary anterior teeth are long in proportion to crown length (Appendix 9f and Fig. 6-15) and are relatively narrow mesiodistally (Appendix 9b).
2. T e roots of most primary anterior teeth bend labially in their apical one third to one half by as much as 10° (Appendix 9c and Fig. 6-17). T is apical bend provides space for the developing succedaneous incisors, which form just lingual and apical to the primary root.

C. Tr a ITS Th a T DIFFEr ENTIaTE EaCh TypE OF pr Imary in Cis or

(1.) primary Incisors from the Labial view
a. o utline shape of Prim ary incisor Crowns from the Labial View

T e crown of the primary maxillary central incisor is somewhat symmetrical, and the incisal edge is relatively straight, but as on permanent maxillary central incisor crowns, the distoincisal angle of the incisal edge of the primary, before wear, is more rounded than the mesioincisal angle. However, the primary maxillary central incisor is the ONLY anterior tooth (primary or secondary) whose crown is wider mesiodistally than incisocervically (Appendix 9e and Fig. 6-18). T e crown of the primary maxillary lateral incisor is similar in shape to the central incisor but is smaller, less symmetrical with distoincisal angles even more rounded, and longer incisocervically than wide mesiodistally. Note this difference between these teeth in Figures 6-19 and 6-20.

T e crowns of the primary mandibular incisors resemble their adult replacement incisor crowns but are much smaller. Compared to the symmetrical primary central incisors, primary mandibular lateral incisor crowns are
less symmetrical with more rounded distoincisal angles (Fig. 6-19) and are a little larger than the adjacent crowns of the mandibular central incisors in the same mouth. At age 6 when the permanent mandibular central incisors erupt, the much smaller, smoother, whiter primary lateral incisors contrast greatly with the much larger, yellower permanent centrals with prominent mamelons.

T e relative locations of proximal contact areas on primary incisors are comparable to those of their successors.
b. surface Morphology of Prim ary incisors from the Labial View

Although the labial surfaces of most maxillary central incisors are smooth, mandibular incisors may have very shallow depressions on their labial surfaces in the incisal third.

FIg ur E 6-18. Comparison of the facial surfaces of a smaller primary left central incis or (with incisal wear) and a permanent left central incisor. Notice that this primary central incisor crown is UNIQUE among all primary and permanent incisors since it is wider mesiodistally than incisocervically. It also has a more rounded distal than mesial surface and a root (before resorption) that is quite long compared to its crown.

PRIMARY DENTITION (facial)

FIg ur E 6-19. Primary dentition, facial views.
c.
root-to-Crown Proportion of Prim ary incisors from the Labial View

Prior to root resorption, primary incisor roots are relatively quite long, often about twice the length of the crown (Appendix $9 f$ and Fig. 6-18), and even longer on maxillary lateral incisors.
2. primary Incisors from the Lingual view

Refer to Figure 6-21.
T e cingulum and marginal ridges of primary maxillary central incisors are often prominent with a distinct lingual fossa, whereas the lingual surfaces of mandibular incisors have a more subtle cingulum, lingual fossa, and marginal ridges.

Flgure 6-20. Primary maxillary incisors. A. The primary maxillary right lateral incisor crown is less symmetrical and is longer (incisocervically) than it is wide. B. The primary maxillary right central incis or crown is UNIQUELY wider (mesiodistally) than it is high (incisocervically). There has been some resorption of the root tips on both teeth (more so on the central incisor), but even so, the roots are twice as long as the crowns.
(3. primary Incisors from the proximal views (mesial and Distal)
a. Crown o utlines of Prim ary incisors from the Proxim al Views

Te relatively thin crowns of primary incisors are widest labiolingually in their cervical third because of the prominent, convex labial cervical ridges and lingual cingula (Fig. 6-17).
b. root shape of Prim ary incisors from the Proximal Views

Although the roots of both maxillary and mandibular incisors curve labially in the apical half by as much as 10° (Appendix 9c and Fig. 6-17), ${ }^{4,5}$ maxillary incisor roots in the cervical half also curve lingually in the cervical third whereas mandibular incisor roots are straight in the cervical third (Appendix 9d).
(4.) primary Incisors from the Incisal view

Crowns of primary maxillary central incisors are much wider mesiodistally than faciolingually compared to maxillary lateral incisors ${ }^{\mathrm{F}}$ (Fig. 6-22), whereas crowns of mandibular incisors have the mesiodistal closer to the same as the faciolingual dimensions.
D. Tr a ITS Th a T DIFFEr ENTIa TE pr Imar y Ca NINES

1. primary Canines from the Labial view
a. o utline shape of Prim ary Canines from the Labial View

Mandibular canine crowns, like permanent canines, are longer incisocervically than wide mesiodistally and are narrower mesiodistally than maxillary canine crowns that are closer to the same width mesiodistally as they are long (Appendix 9g and Fig. 6-23). ${ }^{\text {G }}$ Primary maxillary canines have convex mesial and distal outlines, with rounded distal contours but more angular mesial contours (Fig. 6-23).

Flgure 6-21. Primary dentition,
lingual views. Notice on maxillary molars that the lingual cusps are not as long as the mesiobuccal cusps.

Cusp Shape: Both maxillary and mandibular canines have very sharp cusps, with the mandibular canine pointed like an arrow. T e cusps of primary mandibular canines have a mesial cusp ridge shorter than the distal cusp ridge, similar to permanent canines (Appendix 9h, mandibular canine, and Fig. 6-23A). Maxillary canine cusps are UNIQUE in that the mesial cusp ridge is longer than the distal cusp ridges (similar to only the permanent maxillary first premolars, but just the
opposite of all other premolars and canines, permanent and primary) (Appendix 9h, maxillary canine, and Fig. 6-23B). T e mesial cusp ridges are less steeply inclined ${ }^{6}$ than the shorter distal ridges.

Contact areas: Distal contact areas of primary canines rest against the mesial surfaces of primary first molars since there are no primary premolars. Mesial and distal contact areas of primary maxillary canines are in the middle third of

FIgur E 6-22. Primary dentition, incisal and Occlusal views. Notice that the occlusal anatomy of the primary second molars is quite similar to that of permanent first (6-year) molars.

FIg ur E6-23. Primary canines, labial views. A. Primary mandibular right canine. The crown is quite thin mesiodistally with a sharp cusp tip (like an arrow), and the root tip has begun to resorb. B. Primary maxillary right canine. Notice the UNIQUE traits: the mesial cusp ridge is longer than the distal cusp ridge, and the mesial contact area is more cervical than the distal contact.
the crown cervicoincisally, with the mesial contact more cervically located than the distal contact, a condition UNIQUE to this tooth and the permanent mandibular first premolar (Appendix 9i and Fig. 6-23B).

b. Cervical Lines of Prim ary Canines from the Labial View

Cervical lines on maxillary canines are often nearly straight on the labial surface.

c. roots of Prim ary Canines from the Labial View

Maxillary canine roots prior to resorption are the longest roots in the primary dentition. T e roots of mandibular canines are shorter, but more tapered and pointed. ${ }^{\mathrm{H}}$

2. primary Canines from the Lingual view

T e lingual anatomy on a primary maxillary canine is pronounced: the cingulum is bulky, and the mesial and distal marginal ridges are well developed (but not as prominent as on permanent canines, Fig. 6-21), and there is often a lingual ridge that separates a broader and shallower mesial fossa from a narrower and deeper distal fossa. ${ }^{5,6}$ In contrast, the lingual anatomy on a primary mandibular canine is barely discernible: faint lingual ridges and marginal ridges and usually a single, subtle concavity or fossa. ${ }^{7}$
3. primary Canines from the proximal (mesial and Distal) views

Both maxillary and mandibular canines are much thicker faciolingually than primary incisors due to their prominent labial cervical ridges. T e S-shaped lingual crown outline of maxillary canines is more pronounced than on permanent canines.

T e roots of both maxillary and mandibular canines are bulky in the cervical and middle thirds, tapering mostly in the apical third where the apex is bent labially (Appendix 9c and Fig. 6-17).

(4.) primary Canines from the Incisal view

Both primary maxillary and mandibular canine crowns are broader faciolingually than primary incisor crowns, but are wider mesiodistally than faciolingually ${ }^{1}$ especially on maxillary canines. Recall that most permanent canines are wider faciolingually than mesiodistally. From the incisal aspect, the crown of the maxillary canine has a centered cingulum and a crown with its distal half thinner faciolingually than its slightly bulkier mesial half (similar to permanent maxillary canines). In contrast, the mandibular canine crown has a thicker distal half than mesial half and a cingulum that is either centered or just distal to the center. Its outline is diamond shaped, nearly symmetrical except for the mesial position of the cusp tip, and a slightly bulkier distal half (Fig. 6-22).

SECTION v CLa SS a ND TypE Tr a ITS OF pr Imar y Mo LAr s

a. Tr a ITS OF Crowns OF mOST pr Imary Mo LAr s

Now, consider the traits that apply to most primary molar crowns. Refer to Appendix page 10 while studying these traits.

1. The prominent mesiobuccal cervical ridge (or mesial bulge on the buccal surface) is exaggerated by the curve of the cervical line apically (best seen when
viewed from the buccal view [Fig. 6-24]), and by the constriction near the cervical line (best viewed from the proximal, Appendix 10e). This mesiobuccal cervical bulge makes it easy to distinguish right from left primary molars.
2. Due to the taper of the crown from the cervical bulges toward the occlusal surface, primary molar crowns have a narrow occlusal table ${ }^{4}$ (Recall, the occlusal table is the chewing surface inside the line formed by the continuous

Flg ur E 6-24. Comparison of the buccal surfaces of the larger permanent right mandibular frst molar and the smaller primary right mandibular second molar. Notice that the primary molar has a cervical line than dips apically around the prominent mesiobuccal crown ridge and that the thin roots are quite widely divergent with practically no root trunk.
mesial and distal cusp ridges for all cusps and the mesial and distal marginal ridges.) (Appendix 10c and proximal views Fig. 6-25 and especially in Fig. 6-26).
3. As on permanent molars from the buccal view, all molar crowns are wider mesiodistally than cervico-occlusally (Appendix 10a). ${ }^{\mathrm{N}}$
4. In the primary dentition, primary second molars are decidedly larger than primary first molars. T is is different in the permanent dentition where first molars are usually larger than seconds (Appendix page 10, compare firsts to seconds).
5. Both maxillary and mandibular primary second molars are considerably wider than the second premolars that will replace them. ${ }^{\mathrm{J}, \mathrm{K}, \mathrm{O}, \mathrm{P}}$
6. T e primary molar occlusal anatomy is not pronounced. In other words, the cusps are short (not pointed or sharp, almost f at) (Appendix 10d and Fig. 6-27), occlusal ridges are minimal, and fossae and sulci are correspondingly not as deep as on secondary molars.
7. T ere are few grooves or depressions in the crowns. (When studying the histology of teeth, you will also learn that the enamel rods at the cervix slope occlusally, unlike in permanent teeth where these rods slope cervically.)

B. Tr alTS OF roots OF mOST pr Imary

 Mo LAr sT e roots are thin mesiodistally and slender, have little or no root trunks, and spread out beyond the outlines of the crown, more widely on primary second molars than the first molars (the opposite of the adult molars) ${ }^{5}$ (Appendix 10 g and f, Figs. 6-27 and 6-28). T is root divergence makes room for the developing succedaneous premolars. Extraction of a primary molar when roots are complete and before they have started to resorb may cause the developing portion of the premolar to be removed along with the primary molar. ${ }^{7}$

Recall that primary $\dot{\alpha}$ rst molars are located over the crowns of developing $\dot{\alpha}$ rst premolars, just distal to primary canines and just mesial to primary second molars. Primary second molars form over the crowns of developing second premolars, just distal to primary first molars and, after age 6, just mesial to 6-year first molars.

FIgure 6-25. Proximal views of all eight primary molars. Each tooth is identified with its Universal letter. Notice the bulbous facial and lingual contours and small occlusal table of the crowns on all of these teeth. On mesial views, the wider mesiobuccal root of the maxillary molars hides the narrower distobuccal root, just as in adult maxillary molars. Also, observe the widely divergent root on the maxillary molars.

Mesial Surface
FIg ur E 6-26. This mesial view of a primary mandibular right first molar shows how the taper of the buccal and lingual walls can result in a very narrow occlusal table.

C. Tr a ITS Th a T DIFFEr ENTIaTE Ea Ch TypE OF pr Imar y Mo LAr

When distinguishing maxillary from mandibular primary molars, first consider arch traits such as the number of roots. Like permanent molars, primary maxillary molars normally have three roots: the palatal (longest), mesiobuccal, and distobuccal (shortest), whereas mandibular molars have only two roots: the mesial (longest) and distal (shorter and narrower buccolingually). Also, like permanent molars, maxillary primary molars tend to be wider buccolingually than mesiodistally, whereas mandibular primary molars tend to be wider mesiodistally than buccolingually. Compare the occlusal outlines of primary molars in the Appendix on page 10.

FIg ur E 6-27. A comparison showing the similarity of the buccal view of the larger permanent mandibular left frst molar compared to the smaller primary left second molar. Both of these teeth have three buccal cusps, but on the primary molar, they are less defined and more equal in width. Also, the primary molar has roots that are thinner and more divergent.

FIg ur E 6-28. All eight primary molars, buccal views. Each tooth is identified with its Universal letter. Notice the bulbous crowns and the prominent mesial marginal ridge of the mandibular first molars (especially on tooth S).

Each type of primary molar will be discussed at this time to emphasize the traits that further differentiate each type. Discussion begins with primary second molars since they are so similar in shape to the permanent first molars that were described previously in Chapter 5.

Type Traits of primary second molars

Both maxillary and mandibular primary second molars resemble the permanent $\dot{\alpha}$ rst molars that erupt just distal to them, with cusp ridges and fossae corresponding to those of permanent first molars. Maxillary primary second molars may even have a cusp of Carabelli. Since these teeth are adjacent to one another during the time of mixed dentition, it is important to distinguish between a primary second molar and the permanent 6-year first molar that erupts just distal to it. First, consider the tooth position from the midline as an important clue for tooth identification. If there are no missing teeth, the primary second molar is the fifth tooth from the midline, and the permanent first molar is the sixth tooth from the midline. Also, a primary second molar is smaller in all dimensions than the 6-year first molar found just distal to it. ${ }^{\mathrm{LM}} \mathrm{T}$ e differences in size and position between primary maxillary second molars and permanent maxillary first molars are evident in Figures 6-29A and B and 6-30.

a. traits t hat Distinguish Prim ary Mandibular second Molars

As on permanent mandibular first molars, primary mandibular second molars have five cusps: three buccal (mesiobuccal, distobuccal, and distal) separated by mesiobuccal and distobuccal grooves. However, the three buccal cusps of the primary mandibular second molars are of nearly equal size (Appendix 10 j and Figs. 6-27 and 6-30) with the middle buccal cusp (called the distobuccal) often the largest (Fig. 6-29B, tooth K). The two lingual

Flg ur E6-29. mixed dentition. A. In this maxillary arch, the fifth tooth from the midline on the left side of the photograph is a second premolar. On the right side, a retained primary canine (tooth H) is still present and the permanent canine (\#11) has erupted quite labial to the arch, but if you consider that the third position from the midline is reserved for the permanent canine, then the fifth tooth on the right side is a primary second molar (tooth J). Notice the similarity of the primary second molar (J) with the larger 6-year molar (\#14) just distal to it. Also, notice that the permanent maxillary canine (\#11), which is normally the last succedaneous tooth to erupt, is positioned just labial to the retained primary canine. B. In this mandibular arch, the fifth teeth from the midline on both the left and right sides are primary second molars (teeth Kand T). Notice the similarity in morphology with the larger 6-year molar just distal to it (sixth from the midline). (Models courtesy of Dr. Brad Woodford, Ohio State University.)

Flg ur E 6-30. Similarity of the occlusal morphology of primary second molars compared to permanent frst molars. The permanent first molars are located just distal to the primary second molars from about age 6 through 11 or 12 years old. Top. The larger permanent maxillary frst molar is larger but otherwise similar to the primary maxillary second molar in overall shape, number of cusps (maybe even a cusp of Carabelli), grooves, ridges (including oblique), and fossae. Bottom. The larger permanent mandibular frst molar is larger but otherwise similar to the primary mandibular second molar in overall shape, number of cusps, grooves, ridges, and fossae. The three buccal cusps, however, are more equal in size on the primary mandibular molar, whereas the distal cusp on the secondary first molar is obviously the smallest.
cusps (mesiolingual and distolingual) are separated by a lingual groove. These lingual cusps are about the same size and height but slightly shorter than the buccal cusps. ${ }^{5}$ From the proximal views, the mesial marginal ridge of a primary mandibular second molar is high and is crossed by a groove that may extend about one third of the way down the mesial surface. ${ }^{8}$ The contact area with the primary first molar is located just below the groove (notch) of the marginal ridge. ${ }^{8}$ Since the crown is shorter on the distal side and the distal marginal ridge is lower (more cervical) than the mesial marginal ridge, all five cusps may be seen from the distal aspect (Fig. 6-25). The distal contact with the mesial side of the 6 -year first molar is located just buccal and cervical to the distal marginal groove (Fig. 6-31B). ${ }^{8}$
traits that Distinguish Prim ary Maxillary s econd Molars

As on permanent maxillary ởrst molars, primary maxillary second molars have four major cusps and sometimes a cusp of Carabelli (Fig. 6-32B and C). T e distolingual cusp is the smallest (unless there is a cusp of Carabelli), but the mesiobuccal cusp may be almost the same size as, or larger than, the mesiolingual cusp (Appendix 10i) compared to the permanent maxillary first molar where the mesiolingual cusp is largest. Also, from the occlusal view, crowns of primary maxillary second molars taper narrower toward the lingual, especially due to the pronounced taper of the mesial surface, which displaces the mesiolingual cusp more distally than on the permanent first molars (Appendix 10h). T is

Flg ure 6-31. Primary right mandibular second molar. A. Buccal surface. The short root trunk and the widespread roots, as well as the small size, distinguish this tooth from the secondary mandibular first molar. The mesiobuccal, distobuccal, and distal cusps are often about the same size. B. Distal surface. The distal contact was located just occlusal to the stained area of beginning decay. C. Occlusal surface is similar to the permanent mandibular first molar.
also results in an oblique ridge that is straighter in its course buccolingually ${ }^{5}$ and a smaller, oblong distal fossa buccolingually (Fig. 6-33).

2. Type Traits of primary First molars

Although the shapes of the primary maxillary and mandibular first molars are quite different, there are a few similarities that apply to both arches. From the buccal view, their crowns are longer occlusocervically in the mesial half than in the distal half due, in part, to the prominent mesiobuccal cervical ridge and in part due to the shorter distobuccal cusps compared to the longer mesiobuccal cusps (Appendix 10e buccal views). Further, from the occlusal view, primary first
molars are also much wider buccolingually in their mesial half because of the very prominent mesial buccal cervical ridge. From the mesial view, this prominent ridge causes the cervical line to slope apically toward the buccal (Fig. 6-34).

Primary $\dot{\alpha}$ rst molar crowns are noticeably narrower in the lingual half than in the buccal half (Fig. 6-35) due primarily to the taper of the mesial surface, which does not run straight toward the lingual but rather tapers obliquely toward the lingual (Appendix 10s and 10n) forming an acute angle with the buccal cusp ridges. T is taper is similar to that on the primary maxillary second molar (Appendix 10h). T e distal surface does not taper. ${ }^{2}$

Following are the traits that differentiate primary maxillary and mandibular first molars:

Flgur E 6-32. Primary right maxillary second molar. A. Buccal surface. B. Mesial surface. Notice the spread of the roots. The crown of the maxillary second premolar develops in the space bounded by these roots. Some root resorption has occurred (especially on the lingual root). C. Occlusal surface. From this aspect, the primary maxillary second molar resembles a miniature 6 -year first molar (even with a Carabe lli cusp).

FlgurE 6-33. Comparison of the larger permanent right maxillary frst molar to a primary right maxillary second molar. They are similar in shape, but the primary molar has a mesial surface that is more convergent toward the lingual and an oblique ridge (dotted line) that is aligned closer to straight from buccal to lingual compared to the permanent first molar.
a. traits that Distinguish Prim ary Maxillary First Molars

Primary maxillary $\dot{\alpha}$ rst molar crowns are quite unique in appearance (Fig. 6-36). According to one author, they do not resemble any other molars. ${ }^{9}$ According to another author, from the occlusal view, they resemble maxillary $\dot{\alpha}$ rst premolars that replace them (Fig. 6-37). ${ }^{8}$

Cusp size and shape on primary maxillary f rst molars: Primary maxillary first molars usually have four cusps, but

Mesial Surface
FIg ur E 6-34. The cervical line on the mesial surface of this primary mandibular frst molar dips apically around the prominent mesiobuccal cervical ridge.
they appear similar to maxillary premolars from the occlusal view since they have only two prominent cusps, a wide mesiobuccal cusp and a narrower, slightly sharper, more distinct, mesiolingual cusp. T e mesiobuccal cusp is the longest cusp. ${ }^{5}$ T e mesiolingual cusp is the second longest, but sharpest, cusp. T e other two cusps, the distobuccal and distolingual, are relatively small and indistinct. T e distolingual cusp may blend into the distal marginal ridge (Fig. 6-36C), or, as on permanent maxillary second molars, it may be absent.

FIgure 6-35. Complete primary dentition,
Occlusal and incisal views. Notice the groove patterns and outlines of the primary molars from this view.

FIg ur E 6-36. Primary right maxillary frst molar. A. Buccal surface. The mesiobuccal root is less resorbed than the distobuccal and barely visible lingual roots. There is no obvious distobuccal cusp. B. Distal surface. Note the very prominent buccal cervical bulge. C. Occlusal surface. The prominent mesiobuccal cervical ridge gives the buccal outline a very asymmetrical appearance. Notice the 'H"-shaped groove pattern somewhat resembling the two-cusped maxillary first premolar. Also, notice how the very small distolingual cusp appears as an extension of the distal marginal ridge. The three fossae are identified.

Occlusal outline of primary maxillary frst molars: T e occlusal outline is wider faciolingually than mesiodistally, as on all maxillary primary and maxillary permanent molars and on all premolars. ${ }^{\mathrm{Q}}$ Although the mesial surface tapers obliquely toward the lingual, the distal surface and marginal ridge run in a straight direction buccolingually at nearly right angles to the buccal cusp ridges ${ }^{7}$ (best seen in Fig. 6-36C, occlusal view).

Fossae, ridges, and grooves on primary maxillary frst molars: T e four-cusp type has three fossae: a large and deepest mesial triangular fossa, a medium-sized central fossa, and a minute distal triangular fossa, each with a pit: central, mesial, and distal, respectively (Appendix 100). T e occlusal grooves of the four-cusp-type primary maxillary first molars usually form an "H" pattern (seen in Fig. 6-36C). T e crossbar of the " H " is the central groove that connects the central and mesial triangular fossae. (Some textbooks say there is no

FIg ur E 6-37. Comparison of the occlusal views of a larger permanent right maxillary frst premolar and a smaller primary right maxillary frst molar. Notice that the occlusal table of the primary first molar looks quite similar to the maxillary first molar. The biggest differences are the distortion of the primary molar outline due to the bulging mesiobuccal ridge and the presence of the very small, sometimes imperceptible, distobuccal and distolingual cusps.
central groove and that the crossbar is made up of a mesial and distal groove instead. ${ }^{8}$) Grooves running buccolingually just inside of the mesial marginal ridge form the mesial side of the "H." T e indistinct buccal groove (or notch) is seen on Appendix 10-1 separating the two buccal cusps.

b. traits that Distinguish Prim ary Mandibular First Molars

Primary mandibular f rst molars do not resemble any other primary or secondary tooth (Figs. 6-38 and 6-39). According to one author, the chief differentiating characteristic may be an overdeveloped mesial marginal ridge (Appendix 10q and Fig. 6-39A). ${ }^{8}$

Occlusal outline of primary mandibular frst molars: From the occlusal view, the entire occlusal outline and the occlusal table are somewhat oval or rectangular and wider mesiodistally than faciolingually as seen in Figure 6-39C and Appendix 10r. ${ }^{8}$ Also, the entire tooth outline from the

FIgur E 6-38. Comparison of a larger permanent right mandibular frst molar and a primary right frst molar. Notice that this primary first molar does not look anything like the permanent first molar. This primary first molar has a distorted outline due to its pronounced mesiobuccal ridge, an occlusal table (outlined in green) that is uniquely wider in its distal half with a prominent central fossa, and a pronounced transverse ridge (dotted red line) in its mesial half.

FIg ur E 6-39. Primary right mandibular frst molar. A. Buccal surface. The distal root has been considerably shortened by resorption. Notice the dip of the cervical line around the prominent mesiobuccal cervical ridge and the prominent, high marginal ridge. B. Mesial surface. The mesiobuccal cervical ridge is very prominent tapering to a very narrow occlusal surface. The crown appears to tilt lingually so far that the buccal cusp (arrow) is aligned over the midroot axis (red line). If the root apex was not partially resorbed, the root would appear to taper to a widely more blunt end. C. Occlusal surface. The mesiobuccal cervical ridge is conspicuous, making the total occlusal outline of the crown wider buccolingually in the mesial half, but the occlusal table (green line) is actually wider buccolingually in the distal half, a trait unique to this molar. The prominent transverse ridge is identified with a red dotted line. The two occlusal fossae are labeled.
occlusal view appears to be wider faciolingually in the mesial half due to the prominent mesial cervical ridge. T e tapered mesial crown outline is nearly fat buccolingually, whereas the distal surface outline is more convex.

Cusp size and shape on primary mandibular frst molars: T e unworn primary mandibular first molar has four indistinct cusps: the largest and longest mesiobuccal, next largest mesiolingual, then distobuccal, and the smallest (also shortest) distolingual cusp (Appendix 10 t and Fig. 6-39). T e mesiobuccal cusp is characteristically compressed buccolingually, and its two long cusp ridges extend mesially and distally, serving like a blade when occluding with the maxillary canine. ${ }^{5}$

Ridges, grooves, and fossae of the primary mandibular frst molars: T e mesial marginal ridge is very prominent ${ }^{2}$ and is positioned much more occlusally than the shorter distal marginal ridge. (Compare mesial and distal views in Figure 6-25 for marginal ridge heights and lengths.) T ere is also a prominent transverse ridge between the mesiobuccal and mesiolingual cusps (Appendix 10u and Fig. 6-39C).

A central groove separates the mesiobuccal and mesiolingual cusps and may connect with a shallow mesial marginal ridge groove. A short buccal depression (not really a distinct groove) separates the larger mesiobuccal cusp from the smaller distobuccal cusp but does not extend onto
the buccal surface. T ere are also shallow triangular fossa grooves and a slight groove between these two lingual cusps that extends onto the lingual surface as a shallow depression near the cervix. ${ }^{6}$

T e outline of the distal half of the occlusal table is UNIQUELY wider than the mesial half (Appendix 10v). T ere are two fossae: a small mesial triangular fossa (with a mesial pit and shallow triangular grooves ${ }^{6}$) and a larger central fossa that extends into the center of the occlusal surface. T ere is no distal fossa, but there may be a very small distal pit near the distal marginal ridge (Fig. 6-39).

Proximal view contours: From the proximal views, the buccal crown contour is nearly (but not quite) fat from the buccal crest of curvature to the occlusal surface and cervicoocclusally (Fig. 9-39B). T e lingual surface is more convex cervico-occlusally. T ere is a slight curve of the mesial cervical line. On the distal or lingual surface, the cervical line is practically f at or horizontal.

Accentuated lingual tilt of the ma ndibular frst molar: T is primary mandibular first molar crown appears to lean decidedly toward the lingual, even more so than on permanent mandibular molars, so the buccal cusp tips are aligned almost over the root axis line (recall Fig. 6-39B). ${ }^{6}$ T e lingual cusp tip may even be outside the lingual margin of the root.

SECTION vI

Primary anterior teeth have pulp cavities that are similar in shape to the pulp cavities of the secondary teeth but are relatively much larger than in permanent molars due to the thinner primary tooth enamel and dentin. On anterior primary teeth, the pulp may have slight projections on the incisal
border corresponding to the lobes, but there is usually no demarcation or constriction between the single canal and the pulp chamber except on the mandibular central incisor. ${ }^{8}$

Primary molar teeth have little or almost no root trunk, so the pulp chambers are mostly in the tooth crown, compared
to permanent molars where much of the pulp chamber is located in the root trunk (Fig. 6-40A). T e pulp chambers of primary molars have long and often very narrow pulp horns extending beneath the cusps. T e mesiobuccal pulp horn (and cusp) of the primary maxillary second molar is the longest in that tooth, compared to the mesiolingual horn (and cusp) in the permanent maxillary first molar.

1 EARNINg EXERCISES

If you are fortunate to have a collection of actual primary teeth, study the morphology for variations. Observe for differences in the amount of root resorption, examine the occlusal surface for wear facets due to attrition, and evaluate the interior pulp chamber (after sectioning) for size, pulp horns, and thickness of enamel and dentin. Use the distinguishing characteristics in Tables 6-6 and 6-7 to identify each tooth within your collection of primary teeth. Next, try to recognize each of these traits as seen in the tooth figures in this chapter.

Flgur E 6-40. Pulp cavities of primary molars. A. Primary mandibular right second molar, cross section (buccal side ground off to expose the pulp cavity). Notice that the pulp chamber is located mostly within the crown and has pronounced pulp horns that extend considerably toward the enamel. B. Primary maxillary first molar, cross section (mesial side removed). The root canals of the mesiobuccal root and the lingual root (right side of picture) are exposed. An extensive area of decay beneath the enamel of the lingual cusp has reached the prominent pulp horn. Notice the thin enamel.

Ta BLE 6-6 a rch Traits That Distinguish primary maxillary from mandibular Teeth

MAXiLLARY ce Nt RAL iNc is OR

Short, wide, symmetrical crown (facial)
Root bends facially in apical third and labially in cervical third (proximal)
Root long and bulky
Large, elevated cingulum
MAXi LLARY LAt e RALiNc is OR
Crown narrow and oblong (facial)
Root bends facially in apical third and labially in cervical third (proximal)

MAXILLARY cANiNe

Wide crown mesiodistally (facial)
Cusp tip sharp and centered (facial)
Mesial cusp ridge is UNIQUELY longer, steeper than distal (facial)
Cingulum centered (incisal)
Mesial contact UNIQUELY more cervical than distal (facial)
Root bends facially in apical one third (proximal)

MAXi LLARY Fi Rs t MOLAR

3 roots (if intact): mesiobuccal (MB), distobuccal (DB), and lingual
3 to 4 cusps: MB largest, DB , mesiolingual (ML), and distolingual (DL) may be absent
Crown wider faciolingually than mesiodistally; tapers to lingual (occlusal)
H-shaped occlusal grooves
Unique crown shape but similar to permanent maxillary first premolar (occlusal)

MAXiLLARY sec OND MOLAR

3 roots (if intact): MB, DB, and lingual
Crown resembles small permanent maxillary first molar

MANDib ULAR cent RALiNc is OR

Long, narrow, symmetrical, very small (facial)
Root straighter but still bends facially in apical third (proximal)
Root long and thin
Smaller, less prominent cingulum
MANDib ULAR LAt e RAL inc is OR

Smaller cingulum

Root bends facially in apical one half (proximal)

MANDib ULAR c ANiNe

Crown longer, narrower, less symmetrical (facial)
Cusp tip toward mesial (facial)
Mesial cusp ridge shorter than distal (facial)
Cingulum distally located (incisal)
Distal contact more cervical than mesial (facial)
Root with less facial bend in apical one half (proximal)
MANDib ULAR FiRs t MOLAR
2 roots (if intact): mesial and distal
4 cusps: MB, DB, ML, and DL
Crown much wider mesiodistally than faciolingually (occlusal)
Occlusal table has small mesial triangular fossa; large central fossa Well-developed mesial marginal ridge and strong transverse ridge Unique crown shape (like no other)

MANDib ULAR s ec OND MOLAR

2 roots (if intact): mesial and distal
Crown resembles small permanent mandibular first molar

Ta BLE 6-7 how to Tell right from Left primary Teeth

MAXiLLARY cent RALiNc is OR

90° mesioincisal angle (facial)
Distal contact more cervical than mesial (facial)
Distoincisal angle more rounded (facial)
Crown outline fatter on mesial (facial)
More cervical line curvature on mesial (proximal)

MAXiLLARY LAt eRAL iNc is OR

Flat mesial and rounded distal outline (facial)
Distal contact more cervical than mesial (facial)
More rounded distoincisal angle (facial)
More cervical line curvature on mesial (proximal)

MAXiLLARY c ANiNe

UNIQUE longer mesial cusp ridge (facial)
Deeper and narrower distal than mesial fossa (lingual)
UNIQUE mesial contact more cervical than distal (facial)
Flat mesial crown outline (facial)
More cervical line curvature on mesial (proximal)
MAXiLLARY FiRst MOLAR
Crown longer on mesial than distal (facial)
Crown wider (faciolingually) on mesial than distal (occlusal)
Mesiobuccal cervical crown bulge (facial and occlusal)
Distal marginal ridge more cervical than mesial (proximal)
Distobuccal root (if roots intact) is smallest; shortest
Mesiobuccal cusp is longest

MAXILLARY sec OND MOLAR

Mesiobuccal cervical crown bulge (occlusal)
Crown longer on mesial than distal (facial)
Large mesiolingual cusp vs. distolingual
Distal marginal ridge more cervical than mesial (compare proximal views)
Distobuccal root shortest and smallest

MANDib ULAR cent RALiNc is OR
Difficult to discern rights from lefts
都
\qquad
Diffich -

LEar NINg ExEr CISES: Ca SE STu DIES (continued)

Answer: Let us look at the facts. First, all primary teeth have erupted (which can be deduced based on their relatively small size, thin roots, and the fact that all permanent succedaneous teeth are forming apical to their primary tooth predecessors). Therefore, the child is at least 2 years old. Next, the frst permanent molars are not even close to emerging, so the child must be considerably younger than 6 years old. Finally, no resorption has begun on the primary tooth roots, so we can conclude that the child is closer to 3 or 4 years old, rather than to 5 or 6 , since primary teeth roots begin to resorb about 3 years after eruption, which for the mandibular central incisors would be about 3 and $1 / 2$ years old.
CASE 2: Estimate the dental age of the child based on the shapes of teeth in the radiographs shown in Figure 6-42. Then read the answer.

Flg ur E 6-42. 1 earning Case 2: Based on these radiographs of mixed dentition, estimate the dental age of this child. (Radiographs courtesy of Professor Donald Bowers, Ohio State University.)

Answer: We see two mandibular premolar-shaped crowns (with no roots) forming under the roots of two primary molars (evidenced by the ir divergent roots). Distal to the primary second molars are the larger, erupted 6-year molars with incomplete roots. The permanent maxillary canine and maxillary second molar crowns (only partially visible) are still within the bone. By deduction, the child should be over 6 but not yet 12 . Since the primary molars' roots are partially resorbed, the succedaneous premolars are close to emerging, making the child closer to 8 or 9 years old. If you could confrm that the succedaneous incisors were all erupted, you could estimate the age at just over 9 years old.

CASE 3: Using the logic of deduction, look at this model of erupted and unerupted teeth in Figure 6-43, and see if you can estimate the dental age before reading the answer here.

FIgure 6-43. 1earning Case 3: Estimate the dental age of the child with this mixed dentition.

Answer: The permanent frst molars have emerged into the mouth, making the child at least 6 years old. The relatively large size of the anterior incisor crowns and lack of succedaneous teeth apical to the roots indicate that the erupted incisors are permanent, which places the age at 9 years old or older. The 12 -year molar has not emerged, so the child is between 9 and 12 years old. Since none of the succedaneous canines or premolars have yet emerged, the dental age is around 9 .

LEar NINg ExEr CISES: Ca SE STu DIES (continued)

CASE 4: Examine the unusual dentition in this model in Figure 6-44 to determine which teeth are present and which teeth are absent. Use the position from the midline as a guide to look for each tooth you expect to occupy that position, but always remember that the space could be occupied by the primary tooth OR its succedaneous tooth. Also, realize that spaces are not always present when a tooth is missing. The teeth on either side of the space may move together and close the space either due to a common tendency for teeth distal to a space to move (drift) into, and close, the space, or through orthodontic treatment. Therefore, if a space is not occupied by the expected primary or secondary tooth, it may be because the tooth has been extracted or is missing, and you will have to adjust your positioning from the midline accordingly. Refer to Table 6-8.

Flgur E 6-44. 1 earning Case 4: Identify each visible tooth in the unique dentition of this 15 -year-old. Use the chart to guide your decision, but notice that some teeth are missing with the spaces filled in by adjacent teeth.

Ta BLE $6-8 \quad$ Expected Teeth Based on Normal position from the midline	
Po SITIo N FRo m m IDl INE	To o TH EXPECTED IN THAT Po SITIo N (IF THERE ARE No m ISSINg o R EXTRA TEETH)
First tooth from midline	Primary central incisor OR Permanent central incisor
Second tooth from midline	Primary lateral incisor OR Permanent lateral incisor
Third tooth from midline	Primary canine OR Permanent canine
Fourth tooth from midline	Primary first molar OR Permanent first premolar
Fifft tooth from midline	Primary second molar OR
Sermanent second premolar	

Answer: In this case, beginning at the midline, the large incisors appear to be permanent central incisors, but the next teeth from the midline do not resemble lateral incisors. Instead, these teeth look like permanent canines, followed distally by frst premolars. We, therefore, need to suspect that the lateral incisors are missing or still unerupted (impacted) within the maxillae. The teeth distal to the frst premolars, which in an adult dentition should be the second premolars, instead resemble small

LEar NINg ExEr CISES: Ca SE STu DIES (continued)

maxillary frst molars, followed by larger maxillary frst molars. This leads us to conclude that the smaller molars taking the place of the maxillary second premolars are primary second molars (resembling the larger emerged 6-year frst molars just distal to them). Since the 12 -year second molars are also present (though partially cut off in the photo), the patient would be at least 12 years old. If that is true, we need to ask why there are no secondary lateral incisors or second premolars and why the primary second molars are still present. You would need to obtain a good history (to determine which teeth have been extracted or have been confrmed as missing) along with excellent radiographs to see whether the permanent lateral incisors or second premolars are still unerupted within the bone (impacted). If the lateral incisors are not present and never formed, they would be considered congenitally absent (i.e., as a result of factors existing at birth). If the primary second molars were maintained into the adult dentition (usually because the second premolars were congenitally absent), the primary teeth in an adult would be called retained deciduous teeth. More on the topic of missing teeth will be presented in the chapter on dental anomalies.
CASE 5: Only four teeth can be seen in the photograph in Figure 6-45. The person is 28 years old. Identify each tooth.

Flgure 6-45. 1earning Case 5: Identify each tooth.
Answer: These teeth appear to be on the mandibular left side. The shape of the molar on the right side of this photograph looks like a mandibular left frst (or second) permanent molar, and the tooth on the left side has the length and shape of a mandibular canine. The tooth distal to the canine appears to be a premolar, and the next tooth appears to be a molar but is much shorter and smaller than the molar distal to it. Therefore, the smaller molar appears to be a primary second molar that is retained in the place of the second premolar. Based on their shape and position from the midline, these teeth, from left to right, are $22,21, \mathrm{~K}$, and 19 .

CASE 6: Identify each of these teeth in Figure 6-46, and then compare your answers to the answer presented here.

FIgure 6-46. 1 earning Case 6: Identify each tooth.
Answer: This appears to be a maxillary arch of adult teeth, but there are several problems. One of the lateral incisors (on the left side of the fgure) is much smaller than you would expect in this arch leading one to consider a retained primary lateral in place of a permanent lateral incisor. Further, there are only two anterior teeth on the right side of the fgure that, based on shape compared to the left side, appear to be a central incisor and a canine: the lateral incisor on that side is also missing but there is no retained lateral. Also, there is only one premolar on the left side, which looks similar to the frst premolar on the right side. Therefore, the teeth from left to right are part of $2,3,(4$ is missing $), 5,6, D, 8,9,(10$ is missing $), 11,12,13$ and 14 , and part of 15 .

revIEw Questions

Circle the correct answer(s). More than one answer may be correct. Unless otherwise stated, teeth are identified using the Universal Identification System.

1. Which primary teeth have crowns that are wider mesiodistally than they are long inciso- or occlusocervically?
a. Maxillary central incisor
b. Maxillary first molar
c. Mandibular lateral incisor
d. Mandibular first molar
e. Mandibular canine
2. Which one tooth is adjacent and distal to the primary maxillary second molar in a 7 -year-old?
a. Maxillary first premolar
b. Maxillary second premolar
c. Permanent maxillary first molar
d. Permanent maxillary second molar
e. Primary maxillary first molar
3. How many teeth should be visible in the mouth of a 3-year-old?
a. None
b. 10
c. 20
d. 24
e. 28
4. How many teeth should be present in the mouth of a 13-year-old?
a. 10
b. 20
c. 24
d. 28
e. 32
5. Which primary molar most resembles a permanent maxillary right first molar?
a. Tooth A
b. Tooth E
c. Tooth F
d. Tooth T
e. Tooth B
6. What would you estimate to be the dental age of a child with the following teeth: all primary maxillary incisors, canines, and molars and permanent mandibular central incisors and first molars?
a. 2 to 4 years
b. 5 to 7 years
c. 8 to 9 years
d. 10 to 11 years
e. Over 12 years
7. Which teeth (primary or secondary) have the mesial proximal contact positioned more cervically than the distal proximal contact?
a. Mandibular first premolar
b. Maxillary first premolar
c. Primary maxillary canine
d. Primary mandibular canine
e. Mandibular second premolar
8. Which teeth (secondary or primary) have the mesial cusp ridge of the facial cusp longer than the distal cusp ridge of the facial cusp?
a. Mandibular first premolar
b. Maxillary first premolar
c. Primary maxillary canine
d. Primary mandibular canine
e. Mandibular second premolar
9. Which succedaneous tooth erupts beneath tooth J?
a. 1
b. 5
c. 10
d. 13
e. 16
10. Which of the following traits can be used to differentiate primary teeth from secondary teeth?
a. Primary teeth have greater facial cervical bulges.
b. Primary teeth have relatively thinner and longer roots.
c. Primary teeth are whiter.
d. Primary anterior teeth are larger than their successors.
e. Primary teeth have relatively larger pulps.
11. Which of the following permanent teeth would you expect to be erupted in the average 9 - to 10 -year-old?
a. Maxillary lateral incisor
b. Maxillary central incisor
c. Mandibular canine
d. Maxillary canine
e. Mandibular second molar
12. Which traits apply to a primary mandibular first molar?
a. Its roots are resorbed due to the eruption of the 6-year mandibular first molar.
b. It resembles a mandibular 6-year first molar.
c. It has a prominent buccal cervical bulge.
d. It has a prominent mesial marginal ridge.
e. It has a prominent transverse ridge.
f. It has an occlusal table larger in the mesial half than in the distal half.

Cr ITICa L Thinking

1. Ashley, a 9-year-old child who is almost 10 years old, has 24 teeth in her mouth, some primary and some permanent. Describe in detail how you would go about confirming the identity of the six teeth in one of her maxillary quadrants. T at is, how would you identify each tooth in this quadrant of mixed dentition?
2. Use a computer to search for at least five images of "babies with teeth," and see if you can estimate their age based on the teeth you can see. At least try to determine a minimum age. Are their maxillary central incisors all wider mesiodistally than incisocervically? Repeat the search for five images of "children with teeth," and estimate their minimum age.
3. Perform a computer search for five images of "retained baby teeth in teenagers." Notice the degree of malocclusion that exists in many of these people, especially if they have not had orthodontic treatment.
4. Perform a computer search for images of "children with mixed dentition." Find five kids where you can see a mix of permanent and primary incisors. Are the permanent incisors obviously more yellow (less white) than the primary incisors?
5. Use the computer to search for five "panoramic radiographs of mixed dentition." See if you can estimate the child's age within a year or so.
6. Perform a computer search for "Turner hypoplasia." Examine the damage on these permanent teeth to realize the importance of keeping primary teeth clean and healthy.

REFERENCES

1. Pinkham JR, Casamassino PS, Fields HW Jr. Pediatric dentistry, infancy through adolescence. 4th ed. St. Louis, MO: Elsevier Saunders, 2005:191.
2. Brand RW, Isselhard DE. Anatomy of orofacial structures. St. Louis, MO: C.V. Mosby, 1998:462-490.
3. Osborn JW, ed. Dental anatomy and embryology. Oxford, UK: Blackwell Scientific Publications, 1981:144-151.
4. Huang L, Machida Y. A longitudinal study of clinical crowns on deciduous anterior teeth. Bull Tokyo Med Dent Univ 1987;28:75-81.
5. Jorgensen KD. T e deciduous dentition - a descriptive and comparative anatomical study. Acta Odontol Scand 1956; 14(Suppl 20):1-192.
6. Pagano JL. Anatomia dentaria. Buenos Aires: Editorial Mundi S.A., 1965:471-540.
7. DuBrul EL. Sicher's oral anatomy. 7th ed. St. Louis, MO: C.V. Mosby, 1980:238-244.
8. Finn S. Clinical pedodontics. Philadelphia, PA: W.B. Saunders, 1957:54-80.
9. Kraus B, Jordan R, Abrams L. Dental anatomy and occlusion. Baltimore, MD: Lippincott Williams \& Wilkins, 1969: 115-131.
10. Hellman M. Nutrition, growth and dentition. Dental Cosmos 1923;65:34-49.

$$
\text { Dr. Woelfe } 1^{\prime} \text { s ADDitionAl reseArch DAtA }
$$

Specific data presented below have been referenced throughout this chapter by using superscript letters like this (data ${ }^{A}$).
A. Primary maxillary teeth function in the mouth for an average of 8 years and 7.6 years for mandibular teeth. ${ }^{10}$
B. T e time from the beginning of hard tissue formation until complete enamel calcification ranges from a minimum of 9 months for primary incisors to a maximum of 13 months for primary second molars.
C. T e time from completion of primary crown calcification until eruption ranges from about 3 months for mandibular central incisors to about 13 months after calcification for maxillary second molars.
D. T e time from primary tooth eruption until the completion of root ranges from about 10.5 months for maxillary central incisors to about 21 months for upper canines.
E. T e span from the completion of permanent crown calcification until the tooth erupts ranges from 2.7 years for the lower anterior teeth to 4 to 7 years for the lower posterior teeth.
F. Crowns of primary maxillary central incisors are 2.4 mm wider mesiodistally than faciolingually compared to maxillary lateral incisors that are only 0.9 mm wider mesiodistally.
G. Primary mandibular canine crowns are 2.1 mm longer incisocervically than wide mesiodistally and are 1.3 mm narrower mesiodistally than primary maxillary canine crowns.
H. Maxillary canine roots are 13.5 mm long and are 1.8 mm longer than mandibular canine roots.
I. Primary maxillary canine crowns are 2 mm wider mesiodistally than faciolingually. Mandibular canine crowns are only 0.4 mm wider mesiodistally than faciolingually.
J. Primary maxillary second molars crowns are 47\% wider mesiodistally than the maxillary second premolars that will replace them.
K. Primary mandibular second molar crowns are wider mesiodistally by 45% than the mandibular second premolars that will replace them.
L. Primary maxillary second molars are smaller than permanent maxillary first molars by 13.2% when all dimensions are averaged.
M. Primary mandibular second molars are smaller than permanent mandibular first molars by 17.3% when all dimensions are averaged.
N. Crowns of primary mandibular first molars are 1.6 mm wider mesiodistally than cervicoocclusally.
O. Primary maxillary first molars are 14% wider than the premolars that will replace them.
P. Primary mandibular first molars are 24% wider mesiodistally than the mandibular first premolars that will replace them.
Q. Primary maxillary first molars are 1.4 mm wider faciolingually than mesiodistally.

PART

2

Application of Tooth Anatomy in Dental Practice

7 Periodontal Anatomy

First contributing author of this chapter: Dr. Binnaz Leblebicioglu, D.D.S., M.S., Ph.D., is a Professor of Periodontology at the Ohio State University, College of Dentistry, Division of Periodontology. She is a diplomate of the American Academy of Periodontology and currently teaches Periodontology at both predoctoral and graduate levels. Her research is related to periodontal/peri-implant pathogenesis and wound healing.

Contributing author of this chapter: Dr. Lewis Claman, D.D.S., M.S., is an Associate Professor, Emeritus at the Ohio State University College of Dentistry where he taught full time for 35 years and was the Predoctoral Director of Periodontology from 1997 to 2009 , and also had a private practice limited to periodontics. He has continued to teach part-time since 2009. He is a diplomate of the American Board of Periodontology and an examiner for the American Board of Periodontology. Dr. Claman, who teaches dental photography, has contributed the majority of photographs in this chapter.

The periodontal considerations related to external morphology and surrounding structures are presented in ten sections:

I. Definitions of basic period ontal terms

II. The healthy periodontium

A. Alveolar bone
B. Tooth root surface
C. Periodontal ligament (abbre viated PDL)
D. Gingiva
III. Anatomy of diseased periodontium
A. Gingivitis
B. Periodontitis
C. Gingival recession
IV. Periodontal measurements: indicators of disease and conditions
A. Tooth mobility
B. Probe depths
C. Gingival margin level (gingival recession or nonrecession)
D. Clinical attachment loss (same as clinical attachment level)
E. Bleeding on probing
F. Furcation involvement
G. Lack of attached gingiva (previously called a mucogingival defect)
H. The plaque score (index)
V. Relationship of periodontal disease and restorations (fillings)
VI. Relationship of tooth support and root morphology
VII. Inf uence of root anatomy and a nomalies on the progression of periodontal disease

VIII. Periodontal disease therapies

IX. The inf uence of tooth a natomy on periodontal instrumentation, oral hygiene instruction, and periodontal maintenance
X. Dental implants

Objectives

This chapter is designed to prepare the learner to perform the following:

- Identify the components of a healthy periodontium.
- List the functions of gingiva, the periodontal ligament, alveolar bone, and cementum.
- Describe and recognize the signs of gingivitis, periodontitis, and gingival recession.
- Describe the periodontal measurements that can be used to differentiate periodontal diseases from periodontal health and record these findings on a dental chart.
- Describe the relationship of periodontal disease with restorations placed close to the gingival attachment (dentogingival junction).
- Describe the relationship of root morphology with tooth support.
- List contemporary methods of periodontal therapy.
- Describe differences between peri-implant and periodontal tissues.

While the anatomy of the crown is significant to tooth function, the root morphology and healthy surrounding structures determine the actual support for the teeth. T is chapter focuses on how external root morphology affects the prevention and progression of disease of the supporting structures called the periodontium, and how tooth support and stability are affected when the supporting structures of the tooth become diseased. An emphasis is placed on
periodontal disease initiation, the measurements and descriptions that can be used to differentiate periodontal health from disease, and the therapies that can be used to arrest or prevent the disease. T e important relationship of periodontal disease relative to the placement of fillings and crowns and the relevance of root anatomy to the removal of harmful deposits that can form on the roots are also introduced.

SECTION I

 DEf INITIONS Of Ba SIC PEr IODONTa 1 TEr mST e following definitions are important to the understanding of periodontal disease and related therapies. Complete definitions can be found in the Glossary of Periodontal Terms ${ }^{1}$ located on the Web site http://www.members.perio.org/ glossary?ssopc=1.

1. Periodontium [pair ee o DON she um] (or Periodontal ligament apparatus): T e tissues that surround, envelop, or embed the teeth (Fig. 7-1) including the gingiva, cementum (covering the tooth root), periodontal ligament, the supporting (alveolar) bone, and the alveolar mucosa.
2. Gingivitis [jin ji VIE tis]: Inflammation (disease) of the gingiva.
3. Periodontitis [pair ee o don TIE tis]: Inflammation (disease) of the supporting tissues of the teeth called the periodontium. (A spread of inflammation of the gingiva into the adjacent bone and periodontal ligament usually results in a progressively destructive change leading to loss of bone and periodontal ligament.)
4. Periodontal diseases: T ose pathologic processes affecting the periodontium, most often gingivitis and periodontitis.
5. Dental plaque [PLACK] (also known as bioòlm): An organized layer consisting mainly of microorganisms that adhere to teeth (and other oral structures) and contribute to the development of gingival and periodontal diseases, as well as to tooth decay (dental caries).
6. Dental calculus [KAL kyoo les] (tartar): A hard mass that forms on teeth (or tooth substitutes) due to calcification of dental plaque.
7. Periodontics: T at specialty of dentistry that encompasses the prevention, diagnosis, and treatment of diseases of the supporting tissues of the teeth or their substitutes (dental implants); the maintenance of the health, function, and esthetics of these structures and tissues; and the replacement of lost teeth and supporting structures by grafting or implantation of natural and synthetic devices and materials.
8. Periodontist: A dental practitioner who, by virtue of special knowledge and training in the field, limits his or her practice or activities to periodontics and dental implants.

fIGUr E 7-1. Cross section of a tooth within its periodontium. Mesial side of a mandibular left first premolar suspended in its alveolus by groups of fibers of the periodontal ligament. Periodontal ligament fibers include the apical, oblique, horizontal, and alveolar crest fibers. Other fibers include free gingival fibers, and a sixth group (not visible in this view) called transseptal fibers that run directly from the cementum of one tooth to the cementum of the adjacent tooth at a level between the free gingiva and alveolar crest fibers. The fibers of the periodontal ligament are much shorter than depicted here, averaging only 0.2 mm long.

SECTION II Th E h EalTh y PEr IODONTIUm

T e periodontium is defined as the supporting tissues of the teeth including surrounding alveolar bone, the gingiva, the periodontal ligament, and the outer layer of the tooth roots (all identified in Fig. 7-1).

a. alvEOlar BONE

T e right and left maxillae bones together, and the mandible, both have a process of bone called the alveolar [al VEE o lar] process that surrounds the roots of all healthy teeth in that arch. T e root of each erupted tooth is embedded in an individual alveolus [al VEE o lus] (plural alveoli) or tooth socket whose shape corresponds closely with the shape of the roots of the tooth it surrounds. Each alveolus is lined with a thin compact layer of bone called alveolar bone proper (or bundle bone). T is compact bone is seen on a radiograph (x-ray) as the lamina dura.

B. TOOTh r OOT SUr faCE

Tooth roots are covered by a thin layer of cementum.

C. PEr IODONTa 11 IGa mENT (a BBr Ev Ia TED PDl)

T e periodontal ligament is a very thin ligament composed of many fibers that connects the outer layer of the tooth root (which is covered with cementum) with the alveolar bone proper that lines each alveolus. T e groups of fibers of the periodontal ligament represented in Figure 7-1 are greatly enlarged. T e entire thickness of the ligament would normally be less than one fourth of a millimeter (0.25 mm).

D. GINGIva

T e gingiva [JIN je va] is a part of the oral tissue (oral mucosa) covered by keratinized tissue (epithelium). T is keratinized tissue contains keratin, a fibrous protein found in skin and hair that provides surface toughness. Gingiva covers the alveolar processes of the jaws and surrounds the portions of the teeth near where the root and crown join (cervical portion). T e gingiva is the only visible part of the periodontium that can be seen in the mouth during an oral examination.

(1.) Description of healthy Gingiva and Oral mucosa

Healthy gingiva varies in appearance from individual to individual and in different areas of the same mouth. It is usually pink or coral pink (Fig. 7-2), but in many persons with darkly colored and black skin, and in many persons of Mediterranean origin, healthy gingiva may have brown masking pigmentation (melanin pigmentation) (Fig. 7-3). Healthy gingiva is also resilient and firm and does not bleed when probed. Its surface texture is stippled, similar to that of an orange peel. T e margins of healthy gingiva are thin in profile and knife edged. T e gingival margin is the edge of gingiva closest to the chewing or incising surfaces of the teeth, and, in health, it is somewhat parallel to the cementoenamel junction (CEJ), so it is shaped like a parabolic arch (similar in shape to the McDonald arches). Surface stippling and the parabolic arch pattern around each anterior tooth are evident in Figure 7-4. Characteristics of normal gingiva are listed later in Table 7-1 along with the traits of diseased gingiva.

Gingiva can be divided into free gingiva, interdental papillae, and attached gingiva, all of which contain keratinized tissue (Fig. 7-5).

Free Gingiva
Free gingiva is the tissue that is not firmly attached to the tooth or alveolar bone. It surrounds each tooth to form

fIGUr E 7-2. Healthy gingiva showing stippling (orange peel texture), knife-edge border of the free gingiva that is scalloped in shape, and interproximal papillae that fill the lingual embrasures (interproximal spaces). Also, notice the labial frenum in the midline, and the two buccal frenums that extend from the alveolar mucosa of the cheeks to the attached gingiva buccal to the maxillary premolars.

fIGUr E 7-3. Gingiva with heavy mela nin (brownish) pigmentation, normal for many ethnic groups. (Note that there is evidence of slight gingival disease.)
a collar of tissue with a potential space or gingival sulcus (crevice) hidden between it and the tooth. Free gingiva extends from the gingival margin to the free gingival groove (visible in about one third of adults) that separates free gingiva from attached gingiva. T e interdental papilla or gingival papilla [pah PILL ah] (plural is papillae [pa PILL ee]) is that part of the free gingiva that, in health, conforms to and fills the interproximal space between two teeth, so it is very narrow (comes to a point) near where the adjacent teeth contact. T ere is a depression in the gingival tissue of the interproximal papilla just apical to the tooth contact called a col. T e papilla "hides" the interproximal portion of the gingival sulcus that surrounds each tooth. Once dental floss is passed through an interproximal contact, it must first be slipped into the sulcus around one tooth in order to remove plaque from its root and then must be adapted around the adjacent tooth in order to clean its root (recall Fig. 1-15). Care must be taken to avoid damaging the papilla in the process.

T e gingival sulcus is not seen visually but can be evaluated with a periodontal probe since it is actually a

fIGUr E 7-4. Close-up view of healthy maxillary gingiva.
Note the ideal scalloped contours, knife edges, and stippled (orange peel) surface texture that is usually most noticeable on the maxillary labial attached gingiva.

Ta B1 E 7-1 Characteristics of Normal Gingiva Compared to Diseased Gingiva

GIn GIVAI CHARACTERIs TICs	n o Rm Al / HEAl THy TRAITs	no T n o RmAl / Dis EAs E TRAITs
Size and shape		
Papillae	Fill embrasures, thin	Blunted; bulbous; cratered
Margins	Knife edged in profile	Rolled (thickened) in profile
Scallops	Present and normal, parabolic	Flattened; exaggerated; reversed; clefted
Color	Coral pink, or pink with masking melanin pigmentation	Red, bluish-red cyanotic
Consistency	Resilient, firm, not retractable with air	Soft and spongy, air retractable
Surface texture	Stippled (orange peel); matte (dull)	Smooth and shiny (glazed); pebbled (coarse texture)
Bleeding	None	Upon probing or spontaneous
Mucogingival defect	None (adequate zone of keratinized tissue)	Pockets traverse mucogingival junction; lack of keratinized tissue; frenum inserts on marginal gingiva
Suppuration (purulent exudate or pus)	None	Exudate is expressed when the gingival pocket wall is compressed; exudate streams out of the pocket after probing

potential space between the tooth surface and the narrow unattached cervical collar of free gingiva (Fig. 7-6). T e gingival sulcus is lined with the sulcular epithelium and extends from the free gingival margin to the junctional epithelium. ${ }^{2}$

Clinically, the healthy gingival sulcus ranges in probing depth from about 1 to 3 mm and should not bleed when correctly probed. T e periodontal probe usually penetrates slightly into the junctional epithelium, hence the difference between the depth determined through clinical probing and the depth seen on a microscopic cross section. ${ }^{3}$ (At the end of this chapter, there are data on sulcus depths obtained by Dr. Woelfel.)

Sometimes, during the process of eruption of the mandibular last molar through the mucosa, a flap of tissue may
remain over part of the chewing surface called an operculum (Fig. 7-7). T is operculum can easily be irritated during chewing and become infected (called pericoronitis).

b. Attached Gingiva

Attached gingiva is a band or zone of coral pink, keratinized mucosa that is $\dot{\alpha} r m l y$ bound to the underlying tooth surface and bone (Fig. 7-5). It extends from the free gingiva (at the free gingival groove if present) to the readily movable alveolar mucosa. T e width of attached gingiva normally varies from 3 to 12 mm . Attached gingiva is most often widest on the facial aspect of maxillary anterior teeth and on the lingual aspect of mandibular molars. It is narrowest on the facial aspect of mandibular premolars. ${ }^{4}$

fIGUr E 7-5. Clinical zones of the gingiva. Note that the interdental papillae fill the interproximal spaces. The more heavily keratinized, lighter (pinker) attached gingiva can be distinguished from the darker (redder), less keratinized alve olar mucosa.

fIGUr E 7-6. Periodontal probe in place in the gingival sulcus. Note that the free gingiva is so thin that the probe can be seen behind the tissue.

c.
 Alveolar Mucosa

T e mucogingival junction (or line) (Fig. 7-5) is a scalloped junction between attached gingiva and the looser, redder alveolar mucosa. Alveolar mucosa is dark pink to red due to its increased blood supply and a thinner epithelial covering. It is more delicate, nonkeratinized, and less firmly attached to the underlying bone than the attached gingiva, so it is more displaceable. If you palpate these two types of tissues in your own mouth, you will feel the difference in firmness. T is movable alveolar mucosa is found apical to the keratinized attached gingiva on both the facial and lingual aspects of

[^8]mandibular teeth, but only on the facial aspect of maxillary teeth since the hard palate has attached keratinized tissue continuous with the lingual gingiva. T erefore, a mucogingival junction is present on the facial and lingual aspects of mandibular gingiva, but only on the facial aspect of maxillary gingiva.

2. functions of healthy Gingiva

In health, the gingiva provides support and protection to the dentition, as well as esthetics and proper speech (phonetics).
a. Support from Gingiva

Healthy gingiva supports the tooth by means of attachment from tooth to gingiva called the dentogingival junction located coronal to the crest of the alveolar bone near the CEJ. ${ }^{5} \mathrm{~T}$ is junction includes a band of tissue at the most apical portion of the gingival sulcus called the junctional epithelium (average width almost 1 mm wide) and the more apical connective tissue attachment (average width slightly $>1 \mathrm{~mm}$ wide) (Fig. 7-1). Junctional epithelium attaches gingiva to the tooth by cell junctions called hemidesmosomes or half desmosomes, while several gingival fiber groups from the connective tissue attachment insert into the cementum coronal to the crest of alveolar bone.
b.

Protection from Gingiva
T e gingiva protects underlying tissue because it is composed of dense fibrous connective tissue covered by a relatively tough tissue layer called keratinized epithelium. ${ }^{6}$ It is resistant to bacterial, chemical, thermal, and mechanical irritants. Keratinized tissue helps prevent the spread of inflammation to deeper underlying periodontal tissues. However, the sulcular lining and junctional epithelium of the marginal gingiva and interdental papillae provide less protection since these areas are not keratinized. T ey are more permeable to bacterial products, providing only a weak barrier to bacterial irritants, and may even allow bacterial penetration in aggressive forms of periodontal diseases.

Healthy gingiva is protected by ideally positioned and contoured natural teeth and well-contoured dental restorations. Ideal proximal tooth contours and contacts help prevent food from impacting between teeth and damaging the interdental papilla or contributing to interproximal periodontal disease. Further, well-formed anatomic heights of contour help to minimize injury from food during mastication (chewing) since food is diverted away from the thin gingival margin and the nonkeratinized sulcus (recall Fig. 1-50). However, poor tooth or restoration contours, especially overcontoured restorations, contribute to the retention of bacteria-laden dental plaque that may put adjacent tissue at risk for gingival and periodontal diseases that will be described in more detail later in this chapter. Be aware, however, that even ideal tooth contours do not prevent the formation of bacterial plaque and development of periodontal disease.

fIGUr E 7-8. severe gingival recession on a patient with previous periodontal disease. The gingival margin no longer covers the CEJ, so there is considerable root exposure. Interproximally, the interdental papillae no longer fill the interdental embrasures. Recession may result in tooth sensitivity, poor esthetics, and alteration in speech (phonetics).

c. Esthetics of Healthy Gingiva

In health, gingiva covers the roots of teeth, and the interdental papillae normally fill the gingival embrasure areas between adjacent teeth (Figs. 7-2 and 7-4). T e gingival margin of each anterior tooth is curved (almost parabolic in shape). T e shape of healthy gingiva contributes to what we consider to be an esthetic smile. ${ }^{7}$ Symmetry, especially between the maxillary central incisors, is essential. On ideally aligned maxillary anterior teeth, the highest curvature of the gingival margins on central incisors and canines lines up at about the same level, whereas the level for the lateral incisors is about 1 mm shorter (does not extend as far apically in part because the lateral incisors are on average shorter than the centrals by about 1 mm) (seen in Fig. 7-4). Viewed another way, when the patient smiles, the upper lip should ideally be at about the level of the free gingival margin of the maxillary central incisors and canines with slight gingiva showing above the lateral incisors. T e lower lip should just cover the incisal edges. An example of gingiva that is not esthetic is seen in Figure 7-8.

d. Phonetics

Phonetics pertains to the articulation of sounds and speech. Gingival tissues should cover the roots of the

fIGUr E 7-9. Radiograph of healthy bone levels showing interproximal (crestal) bone about 1 to 2 mm apical to the CEJ of adjacent teeth. Also, note the thin, whiter (more dense) layer of bone surrounding each tooth root called the lamina dura.
teeth, but if exposure of the roots occurs, especially interproximally, speech may be affected as air passes through the open embrasure spaces. Figure $7-8$ shows a patient who has had past periodontal disease with severe tissue loss that contributes to poor phonetics as well as poor esthetics.
3. functions of the healthy Periodontal 1 igament, alveolar Bone, and Cementum

T e entire periodontal ligament consists of numerous collagen fiber bundles, which attach the cementum of the tooth root to the alveolar bony sockets. T ese fibers, from alveolar crest to the apex, include alveolar crest fibers and horizontal, oblique, and apical fibers (refer back to Fig. 7-1). Free gingival fibers attach the free gingiva to the cementum. T e periodontal ligament, especially the oblique fibers, provides the majority of support for the teeth and resistance to forces such as those encountered during chewing. T is ligament is a viable structure that, in health, is capable of adaptation and remodeling. Healthy bone levels can be best appreciated on radiographs. Observe in Figure 7-9 that, in health, the level of the interproximal alveolar bone is 1 to 2 mm apical to the level of the CEJs of the adjacent teeth.

a. GINGIv ITIS

Traditionally, periodontal disease (inflammation in the periodontium) begins as gingivitis, an inflammatory condition confined to and altering the gingival tissues. Alterations in the
gingiva may reflect gingivitis alone, active slight periodontitis, more severe periodontitis, or evidence of previous periodontal disease that has been arrested. Gingival inflammation results over time from the response of the body to the harmful metabolic products of bacterial colonies within dental plaque that
are in close proximity to gingival tissues. T e earliest indication of gingivitis on a microscopic level involves an increase in inflammatory cells and breakdown of the connective tissue (collagen) in the gingiva. T is leads to an increase in tissue fluids (edema, i.e., swelling), proliferation of small blood vessels (redness), inflammatory cells, and some loss of the integrity of the epithelium (seen as ulceration). As this breakdown progresses, changes in the tissues can be clinically observed.

Clinically, gingival characteristics that should be evaluated as indicators of gingival health (vs. disease) include its shape and size, color, consistency, surface texture, and the presence or absence of bleeding and/or suppuration (also called purulence, purulent exudate, or pus). Visually, the inflammation and edema of dental plaque-induced gingivitis can result in redness; rolled, swollen margins; smooth and shiny surface texture or loss of stippling (Fig. 7-10A and B);
and loss of resiliency where gingival tissue can be depressed and free gingiva can be deflected from the tooth when a stream of air is directed toward it. Additionally, gingivitis can result in pronounced bleeding upon probing (Fig. 7-10B and especially D), spontaneous bleeding without probing (Fig. 7-10E), and, in some cases, suppuration that can be expressed (squeezed out) from the sulcus. See Table 7-1 for normal gingival characteristics compared to descriptions of tissue exhibiting gingivitis. ${ }^{8-12}$

B. PEr IODONTITIS

In the classic model for development of periodontal disease, gingivitis, if untreated, may progress to periodontitis. As with the gingiva, the adjacent periodontal ligament, bone, and cementum are at risk for breakdown during

A

C

E

B

D
fIGUr E 7-10. Gingivitis. With gingivitis, there are changes from the normal architecture and consistency of gingiva. A. Slight-tomoderate gingival changes with red color, rolled gingival margins, and bulbous papillae, especially around mandibular anterior teeth. B. Same area after probing. There is very slight bleeding on probing (Bo P) visible interproximally. C. Gingival sulcus being probed between canine and first premolar. D. Obvious Bo P. E. severe gingivitis with severely rolled margins, bulbous papillae, smooth and shiny surface texture, and spontaneous bleeding (without even probing). Air from the air-water syringe would easily retract tissues.

fIGUr E 7-11. Radiographic bone loss. A. Radiograph showing normal bone levels relative to the CEJ. B. This radiograph shows advanced periodontal disease as indicated by loss of bone (especially around teeth \# 29 and \# 31; note, tooth \# 30 is missing). Healthy bone level would normally be surrounding all teeth to a level much closer (within 2 mm) to the CEJ.
inflammation with resultant loss of bone height and periodontal ligament. T is occurs when inflammatory breakdown extends from the gingiva to the periodontal ligament and bone and when the junctional epithelium (which normally attaches to tooth at the CEJ) migrates apically onto the root because the connective tissue attachment has broken down. Alveolar bone loss associated with periodontal disease is best appreciated in dental radiographs. Although the immune system normally protects the periodontium, a person's immune response against bacteria can also result in the production of host products that stimulate bone loss (breakdown) known as bone resorption. T e crestal alveolar bone height in a person with advanced periodontal disease (Fig. 7-11B) is no longer at predisease levels (Fig. 7-11A).

Chronic periodontitis is the most common form of periodontal disease. It usually progresses slowly, is most prevalent in adults, and is associated with plaque and dental calculus. A second form of periodontal disease is aggressive periodontitis that usually has an earlier age of onset. Features may include rapid attachment loss and bone destruction, a familial pattern, and abnormalities in the immune system. Both forms of periodontitis can result in pocket formation and/or exposure of the cementum (which is less mineralized than enamel) making the root susceptible to dental decay.

factors Contributing to Periodontitis

In addition to the primary role of bacteria, there are other factors that contribute to periodontal disease development and progression. ${ }^{12,13}$ To date, only two risk factors are proven to increase the odds of periodontal disease progression and tooth loss: smoking ${ }^{14}$ and diabetes. ${ }^{15}$ Other factors that may contribute to this disease include specific bacterial pathogens, alterations in the tooth form and surface that influence the accumulation and retention of dental plaque, systemic illnesses or conditions (including genetics and emotional
stress) that modify or impair the immune response, and injury to the periodontium resulting from heavy forces during tooth function (such as bruxism or tooth grinding habits).

Breakdown of the periodontium resulting in attachment loss and bone loss usually begins in inaccessible areas (such as interproximal surfaces of molars) that are neither self-cleansing nor easy for a patient to reach unless the patient properly uses dental floss or other interproximal oral hygiene aids. T erefore, it is paramount that both the dentist and the dental hygienist be thoroughly familiar with root anatomy as they perform a periodontal examination in order to detect periodontal disease in these inaccessible locations that are at greatest risk to breakdown. Further, an essential objective in treating periodontal disease involves using special instruments to remove deposits (plaque and calculus) and to smooth or remove cementum on root surfaces that have become affected by periodontal disease. Knowledge of root morphology also helps to identify sites that are difficult or impossible to reach, or sites that have not responded to treatment, and when providing instructions to patients for the appropriate use of oral hygiene aids.

Periodontitis itself may be a risk factor for several systemic diseases including cardiovascular disease, stroke, and the control of existing diabetes, as well as contributing to low birth weight and preterm babies when the pregnant mother has periodontal disease. ${ }^{16-18}$

C. GINGIval 1 ECESSION ${ }^{19}$

Gingival recession is a loss of gingival tissue (usually with loss of underlying bone) resulting in the exposure of root surface (Fig. 7-12A and B). In gingival recession, the gingival margin is apical to the CEJ, and the papillae may be blunted and/or rounded, and no longer fill the interproximal embrasure. Gingival recession is often seen in older individuals,

A

B
fIGUr E 7-12. Gingival recession. A. Area of gingival recession. On the central incisors, the gingiva no longer covers the CEJ, so the root surface is exposed (and for this patient is covered with dental calculus). There is no keratinized tissue over the roots of central incisors compared with lateral incisors. B. Severe gingival recession. There is very little keratinized tissue and no attached gingiva over the canine root. The root prominence, thin tissue, and lack of attached gingiva are factors that may have contributed to the recession. (Courtesy of Alan R. Levy, D.D.S.)
hence the reference to an older person as being "long in the tooth." It may be part of an active process of periodontal disease or may reflect previous disease that is now under control. However, destruction of the periodontium (including gingival recession) should not be regarded as a natural consequence of aging. ${ }^{19,20}$

Conditions that contribute to gingival recession around individual teeth, especially in the presence of plaque, are poorly aligned teeth within an arch resulting in abnormal tooth and root prominence (the canines in Figs. 7-12B and 7-13), a lack of attached gingiva, ${ }^{21}$ or aggressive tooth brushing. Abnormal tooth positions do not necessarily indicate disease, but they do contribute to variations in tissue thickness such as flattened or exaggerated contours. Additionally, patients may exhibit thin or thick periodontal tissues (overlying bone and gingiva). Patients with thin periodontal tissues may have prominent roots that are not

figUr E 7-13. Effects of tooth position (alignment) within the arch on gingival shape. Examples of contour variations caused by tooth malpositions. Tooth \# 11 is too labial, showing exaggerated scalloping and thin gingiva with recession. Tooth \# 10, which is in lingual version and crossbite, has fattened gingival contours and thicker tissue. Rotated tooth \#7 shows V-shaped gingival margin contour on the labial gingiva.

fIGUr E 7-14. Person with thin periodontal tissues. The patient has thin gingival tissues, and a considerable portion of the incisor roots is exposed. (Photo courtesy of Dr. Kourosh Harandi.)

figUr E 7-15. Person with thick periodontal tissues. The gingival tissues are generally thick, and there is very thick underlying bone. This thick bone can be called an exostosis of bone.

fIGUr E 7-16. n ormal bony architecture. The alveolar crest is normally between 1 and 2 mm apical to the CEJ. The only obvious exception is tooth \#28 (arrow, mandibular right first premolar), which shows a slight bony dehiscence. (Courtesy of Charles Solt, D.D.S. and Todd Needham, D.D.S.)
completely covered with bone (Fig. 7-14). Patients with thick periodontal tissues have thicker plates of bone or gingival tissues. T e very thick ledges of bone in Figure 7-15 are called exostoses [eck sos TOE sis]. Patients with thin periodontal tissues are more at risk for gingival recession. T e risk for gingival recession is more apparent when viewing alveolar bone of a skull. Normally, the bone is 1 to 2 mm apical to the

fIGUr E 7-17. Root dehiscence. This maxillary first premolar root (arrows) is buccal to the alveolar process. There is no bone over most of the buccal aspect of the root, although the bone over the other tooth surfaces is at a normal level. Teeth with prominent roots are prone to gingival recession. (Courtesy of Charles Solt, D.D.S. and Todd Needham, D.D.S.)

CEJ (Fig. 7-16). In prominent teeth, such as canines, there may be no bone covering much of the root, although the patient may not have signs of periodontal disease or gingival recession. An isolated area of tooth root denuded of its bony covering is called root dehiscence [dee HISS enss] (seen on the first premolar in Fig. 7-17). In the mouth, a tooth with root dehiscence may or may not be covered with soft tissue.

SECTION Iv
 PEr IODONTa 1 mEa SUr EmENTS: INDICaTOr S Of DISEa SE a ND CONDITIONS

Several clinical measurements are critical when evaluating overall periodontal status. T ese measurements can be used to describe a tooth's stability and loss of support and a patient's degree of inflammation and pattern of disease. T ey also help to establish a diagnosis, guide the development of a treatment plan, and document changes following active therapy. T roughout this discussion, references will be made to documenting this information using the clinical chart obtained from the Ohio State University College of Dentistry (Fig. 7-18).

a. TOOTh mOBII ITy

Tooth mobility is the movement of a tooth in response to applied forces. ${ }^{22}$ Teeth may become mobile due to repeated excessive occlusal forces, inflammation, and weakened periodontal support (often associated with a widened periodontal ligament space as noted on radiographs). T e healthy periodontal ligament is about 0.25 mm wide, decreasing to only 0.1 mm with advanced age. When a tooth is subjected to forces from chewing (mastication) or bruxism (grinding),
movements are minimal at the rotational middle of the tooth root (cervicoapically) and greater at either the cervical or apical end of the root. T us, there is a functional difference in the width of the periodontal ligament in these three regions. At any age, the ligament is wider around both the cervix and the apex than around the middle of the root, depending upon the amount of rotational movements to which the tooth is subjected. Further, the periodontal ligament of a natural tooth in occlusal function is slightly wider than in a nonfunctional tooth because the nonfunctional tooth does not have an opposing tooth to stimulate the periodontal ligament nor bone cells to remodel. ${ }^{23}$

Injury to the periodontium from occlusal forces is known as occlusal trauma. It may contribute to destructive changes in the bone, widening of the periodontal ligament, and root shortening (resorption), all of which may contribute to increased tooth mobility. Some of the changes are reversible, meaning that the periodontium can adapt. ${ }^{24}$ Occlusal trauma is a condition that does not initiate, but may influence, the course of inflammatory periodontal disease under specific circumstances. ${ }^{25}$

Clinical Charting:
Fremitus (F/Mobility (1-3) $\frac{\text { PIP }}{\text { INIT }}$ PIP Probe Depths Initial Probe Depths

MARK IN RED
 BOP

Gingival Margin ($-10 /+\mathrm{mm}$) Furcation

Class I	V
Class II	∇
Class III	∇

Mucogingival Defect
Caries
Defective Restorations
Periapical Pathosis

Initial Probe Depths
PIP Probe Depths

A

\qquad

C
fIGUr E 7-18. Charting periodontal findings (on a partial reproduction of the form used at the Ohio State University College of Dentistry). This form provides a logical method for documenting periodontal findings (as well as other findings). A. The left column provides the key for recording the following: fremitus is recorded as F as on tooth \#5; mobility is denoted by 1 for tooth \#2, 2 for tooth \#5, and 0 (no mobility) for teeth \#3 and \#4. Probe depths (six per tooth) are recorded during the initial examination (initial probe depths) in the three boxes for three facial depth locations on each facial surface and three boxes for three lingual depth locations. After initial periodontal therapy has been completed, probe depths should ideally be recorded again in 4 to 6 weeks. They should also be recorded at regular periodontal maintenance therapy appointments. This permits easy comparison to identify sites that respond to treatment and those that do not respond. Bleeding on probing (Bo P) is denoted by a red dot over the probe depth readings as on the facial surfaces of teeth \#2 (mesial, midfacial, and distal), \#3 (distal), and \#5 (mesial and distal) and lingually on all mesial and distal surfaces. Gingival margin position is recorded as numbers in red on the root of teeth as follows: +1 (1 mm apical to the CEJ) on the facial of teeth \#2 and \#3, +2 on the facial of tooth $\# 5,-1(1 \mathrm{~mm}$ occlusal to the CEJ) on the lingual of teeth \#3 and \#4, and 0 (located at the level of the CEJ) on all other surfaces. Furcation classes are seen as red triangular shapes (incomplete, outlined, or solid). Class I involvement is evident on the midfacial of tooth \#3. Class II involvement is noted midfacial on \# 2, as well as on the mesial (from the lingual) on \# 2, and the distal (from the lingual) on \#3. Class III involvement is noted on a mandibular molar discussed below. 1 oss of attached gingiva (mucogingival defect) is recorded as a red wavy line seen on the facial of tooth \#5. B. A mandibular molar (\#30) showing a class III furcation evident from the facial and lingual views. Note that the triangle point is directed up toward the furcation in the mandibular arch but was directed down toward the furcation in the maxillary arch as shown in (A). C. Calculation of plaque index $\%$ and BOP $\%$. The plaque index $\%$ can be calculated by dividing the number of surfaces with plaque by the total number of surfaces (four per tooth). When considering only the four teeth in this figure, nine surfaces had plaque divided by 16 possible surfaces $=56 \%$. The BOP $\%$ is the number of tooth surfaces that bleed on probing divided by the total number of surfaces (six per tooth). When considering only the four teeth in this figure, 14 surfaces bled divided by 24 total surfaces $=58 \%$.

A

B
fIGUrE 7-19. method for determining tooth mobility. A. Two rigid instrument handles are applied to the tooth to see if it can be displaced either buccolingually or mesiodistally. For teeth with severe mobility, the tooth can be depressed or rotated (which is category 3 mobility). B. Technique for determining buccolingual mobility. Light, alternating (reciprocating) buccolingual forces are applied and movement observed relative to adjacent teeth.

Technique to Determine Tooth movement
To determine tooth mobility, first, stabilize the patient's head to minimize movement. Next, view the occlusal surfaces and observe movement of the marginal ridges of the tooth being tested relative to adjacent teeth as you use two rigid instruments (such as the mirror and probe handles) to apply light forces alternating fairly rapidly first one way and then another. Observe the tooth for movement in a buccolingual or mesiodistal direction, as well as for vertical "depressibility." Figure 7-19A and B illustrates the technique to determine tooth mobility. Numbers assigned to denote the extent of mobility are presented in Table 7-2. For simplicity, tooth mobility can be recorded as " 0 " for no mobility, " 1 " for slight mobility, " 2 " for moderate mobility, or " 3 "
for extreme mobility that includes depressing the tooth. See Figure 7-18 for charting examples of mobility (categories 0 , 1,2 , or 3).

Fremitus is the vibration of a tooth during occlusal contact. It is determined by placing the nail of the gloved index finger at right angles to the facial crown surface using a light force while the patient is asked to tap his or her teeth, or clench and move the mandible from right to left (excursive movements). If definite vibration is felt, fremitus is confirmed and could be noted as an "F" on a patient's chart for that tooth (as seen for tooth \#5 in Fig. $7-18$). If tooth displacement is detected, functional mobility is confirmed. Functional mobility (biting stress mobility) occurs when teeth move other teeth during occlusal function.

Ta B1 E 7-2 Numbers a ssigned to mobility Categories

mo BIl ITy CATEGo Ry	Cl In ICAl o Bs ERVATIo n	m AGn ITu DE
0	No observed movement	
1	Slight movement	$<1 \mathrm{~mm}$
2	Moderate movement	$>1 \mathrm{~mm}$
3	Extreme movement	Depressible

B. Pr OBE DEPTh S

Probing the depth of the potential space between the tooth and gingiva (called the gingival sulcus or crevice) is a critical periodontal finding that is routinely performed in dental offices and may indicate the presence of periodontal disease. ${ }^{26,27}$ A blunt-tipped instrument with millimeter markings called a periodontal probe (Fig. 7-20) is inserted into the gingival sulcus (seen on anterior teeth in Fig. 7-21 and posterior tooth in Fig. 7-22). In the presence of periodontal disease, this gingival sulcus may be called a periodontal pocket. Probing depth (referred to as pocket depth if periodontal disease is present) is the distance from the gingival margin to the apical portion of the gingival sulcus. Probing depths in healthy gingival sulci normally range from 1 to 3 mm . A depth of greater than 3 mm is a possible cause for concern. However, if gingival tissues are overgrown (as may be seen during tooth eruption, or as a side effect from some medications), a pocket depth reading of 4 mm or greater (called a pseudopocket) may be present even in the absence of periodontitis. On the other hand, if there is gingival recession where the gingival margin is apical to the CEJ, there may be shallow probing depths in the presence of true periodontal disease. T erefore, the critical determinant of whether periodontitis has occurred is measured by the amount of attachment loss (to be described shortly).

(1.) Probing Technique

T e intent is to probe carefully into a sulcus just to the attachment, although in reality the probe usually impinges on some of the attachment, even in health. T e probe should be "walked around" the tooth with a light force to ensure a tactile sense and to minimize probing beyond the base of the pocket. When the depth of the sulcus/pocket

fIGUr E 7-20. A standard, frequently used period ontal probe. To make measurements easier, there are dark bands at $1,2,3,5,7$, 8,9 , and 10 mm .
has been reached, resilient resistance is encountered. T e probe should be angled slightly toward the crown or root surface to prevent it from engaging or being impeded by the pocket wall (seen best midfacially in Fig. 7-22A). Probing depths are generally recorded as the deepest measurement for each of the six areas around each tooth. On the facial surface, three areas are recorded while moving in very small steps within the sulcus starting in the distal interproximal, stepping around to the midbuccal, and finally stepping around to the mesial interproximal (seen when probing the facial surface of tooth \#7 in Fig. 7-21 from B to C to D). Interproximally, when the teeth are in proximal contact, the probe should progress toward the contact until it touches both adjacent teeth before angling it approximately 10 to 15 degrees buccal (or lingual) to the tooth axis line (seen most clearly in Figs. 7-21A and D and $7-22 \mathrm{~B}$). When there is no adjacent tooth, the probe is not angled. T e three facial readings to record are the deepest readings for mesial interproximal, midbuccal, and distal interproximal. Similarly, three areas are recorded while probing around the palatal or lingual aspects of the tooth.

C. GINGIval mar GIN 1 EvEl (GINGIval r ECESSION Or NONr ECESSION)

Before any periodontal disease has occurred, the gingival margin level of a young healthy person is slightly coronal to the CEJ, which is the reference point. If the gingival margin is apical to the CEJ, there has been gingival recession, and the root is exposed (seen most obviously in Fig. 7-12B).

By convention, the following denotes the gingival margin level:

- Negative (-) numbers denote that the gingival margin is coronal to the CEJ. Normally, after tooth eruption is complete, the gingival margin is slightly coronal to the CEJ (about 1 mm on the labial and lingual aspects and about 2 mm interproximally). If the gingival margin is more coronal to the CEJ than those dimensions, there is an excess (overgrowth) of gingiva or the tooth is partially erupted.
- Zero (0) denotes that the gingiva is at the CEJ. T ere is no gingival recession.
- Positive (+) numbers denote recession (the gingival level is apical to the CEJ).

(1.) Technique to Determine the Gingival margin 1 evel

When recession has occurred, the distance between the CEJ and the gingival margin can be visually measured with the periodontal probe. If the gingival margin covers the CEJ,

A

B
fIGUr E 7-22. Period ontal probe placement technique on models. A. Buccal view: Technique for facial (or lingual) probe placement. The probe is guided along the tooth surface, and care is taken not to engage the sulcular gingival tissues. B. Palatal view: Interproximal probe placement. The probe is angled slightly distally on the mesial surface of tooth \#3 as it is guided along the tooth surface, so it is not impeded by the interproximal papilla. Although not easily appreciated from this view, it is also angled 10 to 15 degrees to reach the most direct proximal area.
the distance from the gingival margin to the CEJ may be estimated by inserting the probe in the sulcus and feeling for the CEJ. T e junction between enamel and cementum can usually be felt with the probe, but if this junction is difficult to detect or is subgingival, the probe should be aligned at a 45° angle. Gingival margin levels are charted as " 0 " (margin is at the CEJ) or a " + " number (apical to the CEJ or recession) or a "-" number (coronal to the CEJ), in red on the roots near the CEJ as seen on the chart in Figure 7-18.

D. Cl INICal aTTa Ch mENT IOSS (SamE aS Cl INICal aTTa Ch mENT 1 EvEl)

Clinical attachment loss (clinical attachment level) refers to the distance from the CEJ to the apical extent (depth) of the periodontal sulcus. It is a measurement that indicates how much support has been lost and is, therefore, a critical determinant of whether periodontal disease has occurred.

(1.) Technique to Determine Clinical attachment loss

Add the probing depth and the gingival margin level measurements together to obtain the clinical attachment loss. A patient with a 3 mm pocket and a gingival level of +2 (i.e., 2 mm of recession) has 5 mm of attachment loss. A patient with a 3 mm pocket and a gingival level of -2 mm (the gingiva covers the CEJ by 2 mm) has only 1 mm of attachment loss. Study the example of clinical attachment calculation on the tooth in Figure 7-23 where the sulcus depth is 1 mm (Fig. 7-23A) and the gingiva has receded $1 \mathrm{~mm}(+1 \mathrm{~mm}$ loss in Fig. 7-23B), so the total attachment loss is +2 mm .

Clinical attachment loss can be severe even with minimal pocket depths if there is considerable gingival recession. On the other hand, there may be no attachment loss even with deep pockets if pseudopockets are present, that is, pockets due to an enlargement of gingiva possibly caused by plaque accumulation next to ill-fitting restoration margins, as a side effect of certain medications, or due to hormonal changes.

Periodontists also make interproximal measurements of the gingival margin level that is a more challenging task. T e severity of periodontal disease can therefore be accurately determined at the six sites around each tooth by measurements.

E. Bl EEDING ON Pr OBING

Bleeding on probing occurs when bacterial plaque affects the gingival sulcular epithelium, resulting in inflammation in the underlying connective tissue. Bleeding visible from the gingival margin after probing is an important indicator of inflammation (Figs. 7-24A and B and 7-10B and D).

(1.) Technique to Document Bleeding on Probing

When bleeding is noted after probing several teeth, teeth that exhibit bleeding can be recorded at each probing site on the chart as a red dot above the probe depth. T e percentage of sites that bleed can be calculated by dividing the number of bleeding sites by the number of total sites (where total sites equal the number of teeth present times six probe sites per tooth). Bleeding sites are charted in Figure 7-18, and a percentage has been calculated for four teeth.

fIGUrE 7-23. measurements to determine clinical attachment loss (level). A. First, the sulcus is probed (at 1 mm). B. Next, the level of the gingiva is determined with a positive number indicating gingival recession (at +1 mm from the dotted line, which is the CEJ). When the two numbers are added together, the amount of attachment loss is determined. In this case, the probing depth of 1 mm and the gingival level of +1 (1 mm recession) result in an attachment loss of 2 mm .

fIGUrE 7-24. Clinical example of probe placement and bleeding on probing (Bo P). A. Midlingual (midpalatal) probe placement on tooth \#13 showing 3 mm sulcus depth. B. Mesial probe placement on tooth \#13 probed into the lingual embrasure. Note a 5 mm pocket at the site, which shows BOP.

f. fUr CaTION INvOlvEmENT

A furcation is the branching point between roots on a multirooted tooth. In the absence of existing or previous periodontal disease, furcations cannot be clinically probed because they are filled in with bone and periodontal attachment. With advancing periodontal disease, however, attachment loss and bone loss may reach a furcation area resulting in a furcation involvement. ${ }^{28,29}$ Pockets that extend into the furcation create areas with difficult access for the dentist and dental hygienist to clean during regular office visits and are a real challenge for patients to reach and clean during their normal home care. T erefore, these areas of furcation involvement readily accumulate soft plaque deposits and mineralized calculus (seen on an extracted teeth in Fig. 7-25). T ese deposits frequently become impossible to remove and may provide a pathway for periodontal disease to continue to progress.

Initially, there may be an incipient (initial or beginning) furcation involvement. As disease progresses into the furcation (interradicular) area, attachment loss and bone loss will begin to progress horizontally between the roots. At that point, a furcation probe (such as a Nabor's probe with a blunt end and curved design seen in Fig. 7-26B) can probe into a subgingival furcation area. It can be used to detect the concavity between roots (Fig. 7-26A). The first sign of detectable furcation involvement is termed grade I and can progress to a grade II involvement when the probe can hook the furcation roof (the part of the root forming the most coronal portion of the furcal area) as demonstrated in Figure 7-27A. In the most extreme circumstances, the furcation probe may actually extend from the furcation of one tooth aspect to the furcation on another tooth aspect. This is referred to as a through-and-through (grade III) furcation involvement
(Fig. 7-27B). (A summary of the grades of furcation involvement is presented later in Table 7-4.)

It is important to remember where to insert a probe in order to confirm furcation involvement (summarized in Table 7-3). Recall that mandibular molar furcations are located between mesial and distal roots near the middle of the buccal surface (midbuccal) and middle of the lingual surface (midlingual) as illustrated in Figure 7-28A and B. Maxillary molar furcations are identified by probing midbuccal (between mesiobuccal and distobuccal) roots (as

fIGUr E 7-25. Calculus in the furcation area and root
depressions. This extracted molar has mineralized deposits (calculus) in the furcation. Once disease progresses into the furcation area, access for removal by the dentist or dental hygienist becomes exceedingly difficult.

fIGUr E 7-26. Probing to check for furcation involve ment. A. Severe buccal furcation involvement on a mandibular second molar. The furcation probe is able to engage far into the interradicular area because of periodontal destruction. (Note the arrow pointing to an abscessed area indicating infection.) B. The furcation (Nabor's) probe has a rounded point and is curved to allow negotiation into furcations. It frequently has markings at 3 mm intervals (as shown here). This allows estimation of how far the probe horizontally penetrates into the furcation.

A

B
fIGUr E 7-27. Confirming furcation involvement. A. The furcation probe is engaging the roof of a furcation but does not completely penetrate to the lingual entrance of the furcation. This would represent a grade II furcation involvement. B. The furcation probe engages the mesial furcation on a maxillary first molar. Note how close the furcation is to the mesiolingual (mesiopalatal) line angle of the tooth due to the wide mesiobuccal root.

Ta Bl E 7-3	Normal location of furcations
To o TH TyPE	Po TEn TIAl Fu RCATIo n s
Maxillary molars	Midbuccal Mesiopalatal (accessed from the lingual [or palatal]) Distopalatal (accessed from the lingual [or palatal])
Mandibular molars	Midbuccal Midlingual
Maxillary premolars (with buccal and lingual roots)	Midmesial

fIGUr E 7-28. Two locations used to confirm mandibular molar furcation involve ment. A. Buccal view: The mandibular buccal furcation is probed midbuccally. The probe is shown at the apical and horizontal extent of the penetration into the facial furcation. B. Lingual view: The mandibular lingual furcation is probed near the midlingual.
seen in Fig. 7-29A), mesially in the palatal (lingual) embrasure between the palatal and mesiobuccal roots as seen in Figure 7-29B and distally between the palatal and distobuccal roots as seen in Figure 7-29C. T e mesial furcation on a maxillary molar is accessed through the palatal embrasure since the mesiobuccal root is wider buccolingually than the palatal root. T e distal furcation on a maxillary molar

A
fIGUr E 7-29. Three locations used to confirm maxilla ry molar furcation involvement. A. Buccal view: Buccal furcation is probed midbuccal. The furcation probe is shown as it enters the potential furcation near the middle of the facial surface of this maxillary molar. B. Palatal view: The mesial furcation on a maxillary molar is accessed through the palatal embrasure since the mesiobuccal root is wider than the palatal root. It is close to the mesiopalatal line angle. C. Palatal view: The distal furcation on a maxillary molar is mid-distal since the distobuccal root is about as wide as the palatal root, but it is usually probed through the palatal embrasure.
is mid-distal since the distobuccal root is about as wide as the palatal root, but it is usually probed through the palatal embrasure.

Clinically, furcations located closer to the CEJ will become involved with periodontal disease more readily than more apically located furcations since less bone destruction is required to expose the more cervical furcation. However,

B

C

fIGUr E 7-30. Variations in furcation location for maxillary
molars. A. Divergent roots with the furcation in the coronal one third of the root with a short root trunk. B. Convergent roots with the furcation in the middle one half of the root with a longer root trunk. C. Very convergent roots. D. Fused roots with the furcation in the coronal one third of the root.
more cervically positioned furcations are more easily treated by traditional periodontal therapy due in part to better access. Recall that furcations are closer to the CEJ on first molars (since their root trunks are shorter) than on second molars and closer to the CEJ on second molars than on third molars (Fig. 7-30). Once involved, the more apical the furcation, the more complex the treatment will become. T e maxillary first premolar provides a good example of a furcation that is located nearer to the apex (Fig. 7-31). Proximal furcations, once they are involved with disease, are particularly difficult to gain access to because of vertical longitudinal depressions coronal to the furcation and close approximation to adjacent teeth (proximal bone loss is visible in the radiograph in Fig. 7-32).

fIGUr E 7-31. Calculus deposit (arrow) in the longitudinal depression on the mesial side of the root of a maxillary first premolar.

fIGUr E 7-32. Radiograph showing close root approximation between the distal root surface of the maxillary first molar and the mesial root surface of the second molar (arrows). Furcations and concavities like these are virtually inaccessible when destruction occurs at those locations.

(1.) Technique to Document furcation Involvement

When probing into a potential furcation area, the furcation probe should be positioned into the gingival sulcus at the location around the tooth where the furcation is suspected. T e probe should first be directed apically. When the base of the pocket is reached, the probe should be directed toward the tooth to see if it will engage the roof of the furcation. Figure 7-27A shows a probe engaging the roof of a furcation area. Deep horizontal penetration of the furcation probe indicates severe periodontal disease. T e notation used to record each grade of furcation is summarized in Table 7-4, and examples of charting the degree of furcation involvement are presented in Figure 7-18. A caret (or) denotes beginning (incipient) involvement, an open triangle (Δ or) denotes moderate involvement, and a solid triangle (Δ or v) over the areas of the root denotes a through-and-through furcation involvement.

G. 1 aCk Of aTTa Ch ED GINGIva (Pr EvIOUSly Call ED a mUCOGINGIval DEfECT)

In health, it is desirable to have at least a minimal width of keratinized tissue that is firmly bound (attached) to the underlying tooth and/or bone. T is band of attached keratinized tissue normally extends from the gingival groove (at the most apical extent of the gingival sulcus) to the mucogingival junction (recall Fig. 7-5). Alveolar mucosa apical to the mucogingival junction can be distinguished since it is readily moveable, more vascular (redder), less firm, and not keratinized. Lack of attached gingiva may place a tooth at risk for progressive gingival recession and is confirmed in the following three circumstances ${ }^{30}$:

Ta Bl E 7-4	Notations for Three Categories of furcation Involvement			
Fu RCATIo n GRADE	n o TATIo n	Bon E/ ATTACHm En Tlo os	Cl In ICAl FIn DIn G	Cl In ICAl EXP1 An ATIo n
Grade I: incipient	Caret: or	No real bone loss and no attachment loss in furcation	Probe engages concavity	Probe locks horizontally; does not catch furcation roof
Grade II: moderate	Open triangle: Δ or	Definite bone loss or attachment loss	Probe catches furcation roof	Probe hooks onto roof of furcation and must be rotated to disengage, but probe cannot be passed to another tooth aspect
Grade III: (through and through)	Solid triangle: Δ or	Complete bone loss with clinical attachment loss under the furcation roof	Probe can pass from one tooth aspect to another	

1. Keratinized tissue is present, but there is no attached gingiva. T is condition is confirmed when the periodontal probe depth of the gingival sulcus reaches or exceeds (traverses) the level of the visible mucogingival junction indicating an absence of attached gingiva (Fig. 7-33A and B). In this case, keratinized tissue may form part of the pocket wall, but it is not attached to the underlying structures as confirmed by the sulcus depth.
2. T ere is a visual lack of keratinized tissue.
3. A flap of tissue (called a frenum seen in Fig. 7-2) that connects the tongue, lips, or cheeks inserts into the gingival tissues. T ere is a lack of attached gingiva around the tooth if there is movement or blanching at the gingival margins when tension is applied to the frenum (Fig. 7-34B).

Lack of attached gingiva can only occur on the surfaces of teeth where the keratinized tissue is normally adjacent to movable alveolar mucosa-in other words, on the facial aspects of maxillary teeth and on the facial and lingual aspects
of mandibular teeth. It is not likely for mucogingival defects to be present on the palatal aspects of maxillary teeth because the entire hard palate is keratinized and there is no alveolar mucosa. T e only exception is when teeth are positioned so far posteriorly that they are near the mucosa of the soft palate.

(1.) Technique for Determining 1 ack of a ttached Gingiva

Both visual observations and measurements are required for detecting a lack of attached gingiva. In the visual method, a mucogingival defect is confirmed when a periodontal probe is moved incisocervically (or occlusocervically) as it is pressed gently against the tissue surface at the mucogingival line, and movement or blanching occurs at the margin (Fig. 7-34B). When using measurements, first measure the width of keratinized tissue from the gingival margin to the mucogingival junction. T en place the periodontal probe within the gingival sulcus, and if the periodontal probe

fIGUr E 7-33. Measuring to determine a lack of attached gingiva. A. The width of keratinized tissue is measured at 2 mm . B. The probe depth is measured at 1 mm indicating no mucogingival defect. In this case, if the probe depth had reached or exceeded 2 mm (the mucogingival junction), this would confirm that there is no attached gingiva.

fIGUr E 7-34. Visual test for a mucogingival defect. A. A loss of attached gingiva is suspected at tooth \#24, which has a very narrow zone of keratinized tissue. B. The periodontal probe is positioned at the mucogingival junction and moved incisocervically against the mucosa. Blanching or movement at the gingival margin is indicative of a mucogingival defect.
depth reaches or exceeds the width of keratinized tissue, a mucogingival defect is confirmed. See a clinical example using measurements to confirm a mucogingival defect in Figure 7-33A and B. T is can be charted as a horizontal wavy line placed over the root apical to recession readings (seen in the chart in Fig. 7-18).

h. Th E Pl aq UE SCOr E (INDEx)

Bacterial dental plaque (biofilm) is a thin, almost invisible layer containing organized microorganisms that loosely adheres to teeth. T is layer accumulates on teeth in the absence of excellent oral hygiene, but it can be removed with proper toothbrushing and flossing. T erefore, utilizing a mechanism to identify the location of this nearly invisible plaque can be helpful when teaching plaque removal techniques and when monitoring a person's success using specific oral hygiene techniques designed to reduce and eliminate his or her plaque.

T e metabolism of these attached, organized colonies of microorganisms contributes to the inflammation of gingival tissue associated with gingivitis, the destruction of bone and periodontal ligament associated with periodontitis, and the destruction of mineralized tooth structure during the formation of dental decay (dental caries). Many factors contribute to plaque retention, including tooth malpositions and malformations, the irregular surface of advancing dental caries (decay), defective restorations, and accumulation of calculus (tartar).

(1.) Technique to Determine (Calculate) a Plaque Score (Index) ${ }^{31}$

Plaque can be stained with disclosing solution, a dye that is absorbed by bacterial plaque (Fig. 7-35). When this solution
is swished in the mouth, four tooth surfaces of each tooth can be evaluated for the presence of the stained plaque: mesial, facial, distal, and lingual. T e plaque index is calculated as the percentage of sites with plaque divided by the total sites (number of teeth times four). Note: Disclosing solutions should not be used until periodontal measurements and the oral physical exam have been made and reviewed since the color change to oral tissues from the solution may influence the ability to observe the initial findings. A charting example of plaque score calculation is presented for four teeth in Figure 7-18.

fIGUr E 7-35. Dental plaque. This photograph shows dental plaque after staining with disclosing solution. The patient had voluntarily ceased oral hygiene measures for 4 days. Plaque is most prominent at interproximal sites and the cervical third of crowns, areas that are not self-cleaning (i.e., are not easily cleaned by the natural rubbing action of the cheeks, lips, and tongue). Also, note the heavy plaque accumulations on the mandibular anterior teeth that are slightly malpositioned.

SECTION v

r El a TIONSh IP Of PEr IODONTal DISEa SE a ND r ESTOr a TIONS (fIl 1 INGS)

A healthy biologic width ${ }^{32}$ of attached gingiva (known as the dentogingival junction) includes the junctional epithelium (about 1 mm wide), as well as a band of connective tissue fibers (about 1 mm wide) attaching the gingiva to the cementum. Care must be taken when restoring teeth to protect this biologic width of attachment. If a restoration encroaches into the attachment, it could be a factor in initiating periodontal disease (periodontitis, bone loss, or attachment loss), gingival recession, or chronically inflamed gingival tissue. Further, it is usually recommended that the margins of artificial crowns and onlays be kept at least 3 mm from the crest of alveolar bone. T erefore, if a restoration is to be placed to restore an area of decay that has destroyed tooth structure very close to bone, it is advisable to perform a surgical
procedure called crown lengthening to ensure that the margins of the restoration do not impinge on the biologic width. T is is especially critical on teeth where esthetics is a factor. Clinical crown lengthening is a procedure that increases the extent of supragingival tooth structure by removing gingival tissue or apically positioning gingival tissue and usually removing some supporting bone.

Further, a defective restoration, especially one that is overcontoured or is not flush with the tooth structure, may retain bacterial plaque more readily, so it could be an initiating factor for periodontal disease. T erefore, when restoring teeth, it is always important to reproduce ideal tooth contours that have been discussed in the earlier chapters of this book.

SECTION vI
 r El a TIONSh IP Of TOOTh SUPPOr T a ND r OOT mOr Ph OlOGy ${ }^{33}$

T e area of root attachment is of primary importance to the stability and health of a tooth. Root attachment area depends on root length, the number of roots, and the crosssectional diameter of the root from the CEJ to the apex. It also depends on the presence or absence of concavities and other root curvatures (Fig. 7-36). T ese features greatly influence the resistance of a tooth to occlusal and other forces, particularly when they are applied in a lateral (buccolingual) direction.

In health, prior to periodontal disease, connective tissue fibers insert into cementum on the entire root surface. This attachment includes the insertion of the gingival fibers (coronal to the bone level) near the CEJ and periodontal ligament fiber insertions along the majority of the root. Long roots and wide cross-sectional tooth diameters increase support. Concavities and other root curvatures increase periodontal support in two ways. First, they increase the total surface area. Second, the concave configuration provides multidirectional fiber orientation, which makes the tooth more stable and resistant to occlusal forces. For example, a root with a mesial concavity is more resistant to buccolingual forces than a tooth that is conical or convex (Fig. 7-36). Vertical and longitudinal depressions and concave areas occur commonly on the mesial and distal root surfaces of many anterior and most
posterior teeth (as described in earlier chapters). More coronally located root depressions are also found on the mesial surface of maxillary first premolars (both on the root and crown) and on molar root surfaces just coronal to furcations.

Likewise, multirooted teeth have increased support and resistance to applied forces. For those teeth, the location of the furcation is important; the more coronal it is, the more stability is afforded. Additionally, convergence or divergence of roots influences support. Divergent roots increase stability and allow for more interradicular bone support (recall Fig. 7-30).

Another important factor for determining tooth stability is the degree of root taper. Teeth with conical roots, such as mandibular first premolars, tend to have the majority of their root area $(>60 \%)$ in the coronal half of the root and much less area (only about 40%) in the apical half of the root (Fig. 7-37). ${ }^{34} \mathrm{~T}$ e degree of root taper influences the support once periodontal disease has occurred. A conical root that has lost only 50% of the bone height may have lost more than 60% of its periodontal ligament. T is is because a smaller proportion of the root area is present near the apex. For severely conical roots, the apical half of the root may account for even less attachment area than seen in Figure 7-37.

fIGUr E 7-36. Series of stained cross sections of a root of a lower first molar from the crown to near the apices. For each section, the mesial aspect is left, the lingual aspect is at the top, the distal aspect is right, and the buccal aspect is toward the bottom. There is a 10 mm scale between the top and the middle section on the left. A. Cross section through the cervical of the crown showing enamel, dentin, and pulp. (Decay is evident distally on the right.) B. Cross section near the CEJ. Note the shape of the pulp chamber. C. Cross section of the root trunk slightly coronal to the bifurcation (furcation). Buccal and lingual depressions are coronal to the entrances to the bifurcation. D. Cross section of mesial and distal roots slightly apical to the bifurcation. Note the root canals in both roots. Thickened cementum (darkly stained) is apparent on the furcal aspect (between the roots). E. Cross section of roots 4 mm apical to the bifurcation. There are pronounced concavities on the mesial aspect of the mesial root and the furcal aspects of both roots. F. Cross section of the roots near the apex. The mesial (left) root is longer. The complex shape of molar roots helps provide a greater surface area of attachment and greater tooth stability but becomes a problem to treat during progressive periodontal disease.

fIGUr E 7-37. Relationship between the area of attachment and root length for a mandibular first premolar. Approximately 60% of the root area is present in the coronal 50% (one half) of the root, with only 40% of the area present in the apical one half of the root. These determinations were made by measuring the areas of many serial cross sections of tooth roots similar to those shown in Figure 7-36. (Courtesy of Alan R. Levy, D.D.S.)

Based on root area alone, one would generally expect to find the maxillary canine to be the most stable single-rooted tooth and the mandibular central incisors to be the least stable. For posterior teeth, one would expect maxillary first molars, with their three divergent roots, to be more stable than third molars, which frequently have fused roots. While these rules generally apply, additional factors, such as the presence or absence of inflammatory periodontal disease and excessive occlusal forces, may greatly influence tooth stability. Also, the density and structure of the supporting bone have an influence on tooth stability.

Although furcations, concavities, vertical depressions (grooves), and other root curvatures tend to increase the area of attachment thereby improving the tooth resistant to occlusal forces, these root contours may also become areas
where forces are concentrated. T is occurs because the root curvature and the corresponding bone and periodontal ligaments that conform to these areas permit the tooth to compress against periodontal ligament and bone in a variety of

B
fIGUr E 7-38. Anomalies on roots that may contribute to increased plaque retention and subsequent bone loss and furcation involvement. A. Enamel pearl (arrow) in the mesial furcation of a maxillary molar. B. Enamel extension (arrow) downward into the buccal furcation of a lower second molar. (Courtesy of Charles Solt, D.D.S., and Todd Needham, D.D.S.)
directions. Furthermore, these areas are more plaque retentive and more difficult to clean once periodontal disease progression reaches them.

T ere are several types of defects in the root structure that weaken periodontal attachment and are potential areas for periodontal disease to develop. ${ }^{35}$ Enamel pearls are present most often on maxillary molars, and enamel extensions frequently occur on mandibular molars (Fig. 7-38). Both
prevent a normal connective tissue attachment and may channel disease into the furcation area. Palatal root (radicular) grooves (palatal gingival grooves) occur on maxillary incisors and readily collect and retain plaque, which can frequently lead to periodontal destruction (Fig. 7-39). Root fractures also predispose periodontal destruction (loss of attachment of the periodontal ligament) along the fracture line.
figUr E 7-39. Radicular palatal grooves (palatal gingival grooves). A. Indentation on the lingual surface of both maxillary lateral incisors. B. Periodontal probe in place showing a deep periodontal pocket formed where the groove extends apically on the root. C. Groove extending apically on the midpalatal aspect of a maxillary canine. The tooth was extracted because of severe periodontal disease on the palatal aspect. (Courtesy of Leonard K. Ebel, D.D.S.)

SECTION vIII PEr IODONTal DISEa SE Th Er a PIES ${ }^{36-38}$

Currently, a wide range of techniques is available to treat periodontal problems. Nonsurgical periodontal therapy traditionally requires effective periodontal scaling and root planing [PLAY ning] (i.e., removal of calculus and some cementum to smooth the root using specially designed dental instruments), oral hygiene instructions, and the use of systemically administered antibiotics. Sustained-release antimicrobial and antibiotic agents can be locally administered to affected sites. Additionally, agents that prevent breakdown in connective tissue (anticollagenases) are being prescribed for systemic use.

When moderate to severe periodontal disease or lack of attached gingiva is confirmed, periodontal surgery may be indicated. T ere are several surgical approaches used to treat periodontal disease. Conservative surgical therapy is designed to gain access to the root surface for debridement, that is, the removal of inflamed or contaminated tissue and foreign matter. ${ }^{39}$ Resective periodontal surgery is a surgery involving the removal and/or recontouring of the gingiva, supporting bone or root, and is performed to correct some of the results of periodontal diseases by removal of soft and hard tissue components of the pocket wall. Resective techniques include gingivectomy (i.e., removal of some gingiva by using either the conventional scalpel or, more recently, the laser ${ }^{40)}$, root resection to remove periodontally involved roots on multirooted teeth, ${ }^{41}$ and periodontal flaps with osseous (bone) surgery. ${ }^{42}$ Resective periodontal surgery usually results in
gingival recession with improved access to previously diseased sites. Regenerative periodontal surgery is intended to form new cementum, new bone, and a new functionally oriented periodontal ligament. Recent advances in the area of periodontal regeneration involve three basic strategies. In guided tissue regeneration, a resorbable or nonresorbable membrane (barrier) is placed over periodontal defect to provide a matrix for regenerative cells to migrate from the periodontal ligament and bone. Bone graf ing materials, both synthetic and from the patient or from donors, create a scaffolding for new bone and may provide growth factors that induce bone regeneration. Chemical treatment of the root detoxifies the root surface and may allow the application of growth factors that induce the formation of new cementum.

Periodontal plastic surgery includes soft tissue reconstructive techniques such as connective tissue graf s designed to treat loss of attached gingiva and to cover roots that have been exposed through gingival recession ${ }^{43}$ and clinical crown lengthening techniques to create esthetic tooth lengths and ideal gingival contours and to allow for restoration. ${ }^{44,45}$

T e specialty of periodontics also includes preimplant surgery, which includes augmentation and regeneration of hard or soft tissues prior to dental implant placement, placement of dental implants, and treatment of inflammation of tissues surrounding the implant (peri-implant mucositis and peri-implantitis) discussed later in Section X.

$$
\begin{array}{ll}
& \text { Th E INf1 UENCE Of TOOTh a Na TOmy ON PEr IODONTa } 1 \\
\text { SECTION Ix } & \text { INSTr UmENTa TION, Or a } 1 \mathrm{~h} \text { yGIENE INSTr UCTION, a ND } \\
\text { PEr IODONTa } 1 \text { ma INTENa NCE }
\end{array}
$$

Bacterial plaque that has just formed can easily be removed from accessible crown and root surfaces with a toothbrush and dental floss. However, if it is not removed frequently, it can calcify to form a hard, complex mineral layer called dental calculus (also called tartar) that firmly attaches to the tooth. In the supragingival environment (coronal to the gingival margin), saliva is the calcium source forming a yellowwhite mineralized deposit on the teeth (Fig. 7-40).

In the subgingival environment, products from blood and tissue fluids contribute to the calcification process and the deposits are dark brown (Fig. 7-41). It is the job of the dental professional to remove these calcified deposits, both supragingivally and subgingivally, and to teach patients how to prevent formation of these deposits by using excellent oral hygiene techniques.

fIGUr E 7-40. s upragingival calculus (coronal to the gingival margin) has saliva as the calcium source forming a yellow-white mineralized deposit on the teeth. maxillary first molar, calculus that formed in the subgingival environment is dark brown because elements of blood were incorporated during calcification. Additionally, some of the bacteria that are formed in calculus produce pigment. It can be seen here on surfaces where it most commonly forms and is often missed during periodontal instrumentation: near the CEJ, at line angles, in grooves (the concavity just coronal to the buccal furcation), and in furcations. B. Calculus at and apical to the CEJ on a premolar.

A

B

CALCULUS ON THE ANATOMIC CROWN: T e objective of instrumentation of the anatomical crown (called a dental prophylaxis) is to use specifically designed dental instruments (such as scalers [SKAY lerz] and curettes [kyoo RETS]) to remove dental calculus, bacterial plaque, and stain that form on tooth surfaces. Supragingival calculus that forms on the anatomic crown of the tooth is easier to remove than subgingival deposits on roots for several reasons. First, hard deposits on crown surfaces are more visible and are readily accessible when using dental instruments. Crown surfaces where calculus forms near the gingiva are mostly convex, which are easier to clean than the complex contours of roots, especially those on posterior teeth that are multirooted. Finally, crowns are covered with enamel that is the hardest substance in the body (95% calcified). Enamel is nonporous, so damage or removal of this tissue during instrumentation is not as likely as removal of cementum that is much less hard (less than about 65% calcified) and more porous.

SUBGINGIVAL CALCULUS: When periodontal disease progresses to a point where there is attachment loss, the normal insertion of connective tissue fibers into cementum is lost. In this subgingival environment, bacteria and their products, including plaque, dental calculus, and bacterial products, absorb into irregularities on the root surface and hold onto the biofilm, increasing the chance for plaque retention and periodontal disease activity. Loss of periodontal support of the bone and ligament exposes complex root surfaces, creating a challenge for dental professionals to clean (instrument) and for patients to maintain. Areas of deep pocketing are difficult to access, and a tight (fibrotic) pocket may impede access to the deepest sites. Instrumentation on the root surface requires the removal of calculus, plaque, and bacterial products that were deposited into the irregularities in cementum exposed to the oral environment during periodontal disease. T e technique required is called periodontal scaling and root planing [PLAY ning], which may involve
the removal of some, but not all, of the cementum resulting in a cleaner and smoother surface. T e intent is to remove cementum or surface dentin that is rough, impregnated with calculus, or contaminated with toxins or microorganisms. While root planing makes the root clean, care must be taken, especially on exposed root surfaces, to avoid overinstrumenting the root resulting in a compromise in root structure as happened in the mouth shown in Figure 7-8.

T e irregularities in cementum and dentin provide a challenge during instrumentation. T is challenge is generally addressed by using ultrasonic instrumentation, that is, instruments that use high-frequency vibrations to dislodge calculus and break apart bacterial cell walls. A combination of hand instruments and ultrasonic instruments can be used to remove a small portion of the affected cementum.

T e following areas of the root have been identified as the most difficult to instrument and as common areas for dental calculus to be left following periodontal instrumentation. ${ }^{31}$

1. T e CEJ is difficult to instrument because, although accessible, the irregularities in the surface where enamel and cementum come together make it plaque retentive. Due to these irregularities, calculus is frequently confused with the CEJ (Fig. 7-41A and B)
2. Concavities (grooves) that appear at numerous locations on the root surface are challenging areas for periodontal instruments to access. Concavities are most prominent on the mesial aspect of the crown and root of maxillary first premolars (Fig. 7-31), the mesial aspects of mandibular first molars, and root areas just coronal to all furcations (Fig. 7-42). Grooves can also be the result of unusual tooth formation (Fig. 7-39).
3. Furcations present very unusual challenges to instrument. Before periodontal disease begins on multirooted teeth,

fIGUr E 7-42. mandibular first molar showing concavities (arrows) on the distal surface of the distal root, the furcal (interior) aspect, and the root trunk just coronal to the furcation.
the periodontal attachment is intact so furcations are not exposed to the oral environment. As periodontal disease continues and bone is lost, furcations deep within gingival pockets can become exposed to plaque. It is frequently impossible to reach molar furcal areas with inaccessible root concavities using dental instruments, and even ultrasonic instruments may not be able to negotiate into deep furcations. T is is especially true for maxillary trifurcation areas (Fig. 7-43) and between roots of multirooted teeth that are in close approximation (Fig. 7-44A). Reaching all accessible root surfaces with instruments in order to remove deposits and clean root surfaces that have furcation involvement and concavities requires a special knowledge of root anatomy and advanced clinical skills. Imagine following the sequence and angulations required for thoroughly

fIGUr E 7-43. View of the furcation of a maxillary first molar from the root apices. With severe periodontal disease, calculus can form in the trifurcation and would be impossible to remove.
removing deposits on the roots of a mandibular molar as demonstrated in Figure 7-45 when the furcation contours and root concavities are "hidden" from view within deep pockets. Periodontal surgery is recommended for teeth with deep periodontal furcations.
4. Tooth contours at the line angles are also difficult to access.

Follow-up for patients who have had p eriodontal disease: Patients who have had periodontal disease are at risk for having recurrent periodontal disease. After periodontal therapy or as a consequence of periodontal disease progression, there may be substantial gingival recession. Periodontal maintenance therapy procedures (formerly referred to as supportive periodontal therapy [SPT], preventive maintenance, and recall maintenance) are performed by dental professionals at selected intervals (usually 3 months) to assist the periodontal patient in maintaining oral health. ${ }^{1}$

fIGUr E 7-44. molars showing varying degrees of divergence. A. Maxillary molars with divergent and convergent roots. B. Mandibular molars from left to right: roots divergent, straighter roots, convergent roots, and fused roots. When the distance between roots is less than 1 mm , it is impossible to negotiate into the furcation areas with hand instruments. Ultrasonic instruments are more effective for instrumenting into furcation areas.

fIGUr E 7-45. Instrumentation of complex root surfaces on mandibular first molar. (Ultrasonic scalers are more effective in furcation areas.) Imagine cleaning these areas thoroughly if they were hidden deep within a gingival pocket. A. Mesial surface of mesial root (using a Gracey $15 / 16$ curette). B. Facial aspect of mesial root (Gracey $15 / 16$ curette). C. Furcal aspect of distal root (Gracey $15 / 16$ curette). D. Facial aspect of distal root (Gracey $15 / 16$ curette). E. Furcal aspect of distal root (Gracey 13/14). F. Distal aspect of distal root (Gracey 13/14).

Once exposed to the oral environment, complex root surfaces require more time for dental professionals to clean and a greater challenge for patients to keep clean between periodontal maintenance appointments. Exposed root surfaces are more plaque retentive than enamel surfaces and a greater tooth surface area that must be cleaned.

Once periodontal disease has occurred, the patient's ability to clean root surfaces also presents a special challenge. T e toothbrush and dental floss cannot reach into deep pockets, tooth concavities, and furcations. Special oral hygiene aids, such as interproximal brushes, end-tufted brushes, and rubber tips, must supplement the basic oral hygiene aids of toothbrush and floss (Fig. 7-46). Even with appropriate aids, patients frequently do not have the motivation or dexterity to maintain these difficult to access areas.

Patients may have tooth sensitivity due to conduction of sensations through the dentinal tubules to the nerves in the pulp (especially through foods and liquids that are cold). T erefore, desensitizing agents may need to be used during periodontal maintenance. Additionally, exposed root surfaces are prone to root decay (caries), a problem common in older patients, especially those on medications that make the mouth dry and reduce the amount of saliva, a condition known as xerostomia.

fIGUr E 7-46. Interproximal brush. When periodontal disease or gingival recession results in loss of interdental papillae, special brushes may be used to cleanse the interproximal areas and help clean tooth concavities.

Dental implants are an intriguing and ever-growing aspect of dentistry ${ }^{46}$ and are now an integral and increasingly important part of dental treatment. All dental students and dental hygiene students will evaluate and treat patients who have, or will have, implant-supported dental restorations. ${ }^{47}$ A dental implant (or dental implant $\dot{\boldsymbol{x} x t u r e}$) is an artificial root that is placed in the jaw bone to hold a replacement tooth or bridge (as defined on the Web site Perio.org) (Fig. 7-47A and B). T e dental implant fixture is designed to support a dental restoration, which, when attached, is then called an implant-supported dental restoration. T ese are used to replace teeth that were congenitally missing or were extracted due to dental caries, periodontal disease, or physical injury. T ey provide function (occlusion with the opposing teeth) and esthetics (seen in radiographs in Fig. 7-48 and in the mouth in Fig. 7-49).

T e properties that hold dental implants in the mouth differ greatly from teeth. ${ }^{48}$ Recall that support for a natural tooth is provided by the periodontium with a periodontal ligament, which provides attachment of alveolar bone to cementum, as well as a dentogingival junction that includes both the junctional epithelium and the connective tissue attachment through fibers that insert into viable cementum.

On the other hand, a dental implant $\dot{\alpha} x t u r e ~ i s ~ u s u a l l y ~$ made of titanium alloy, an inert and biocompatible metal. A successful implant fixture is supported by being mostly encased in bone. When an implant fixture is placed, during its initial healing it is retained and made stable by the implant threads, which provide mechanical retention by

fIGUr E 7-47. A. This titanium alloy implant fixture by Dentsply has a polished collar (not on all implant systems) and a threaded, roughened surface designed to maximize bonding of bone to implants. B. This cross section of the special post is used to hold the crown into the implant fixture. http:// www.dentsplyimplants.us/
engaging the bone. Eventually, during healing, the process of osseointegration occurs, which results in direct contact between living bone tissue and the roughened surface of the implant fixture, which becomes directly fused (ankylosed) to bone. ${ }^{49-51} \mathrm{~T}$ ere is no ligament present. T e keratinized tissue attaches to the coronal polished collar of the implant fixture solely through a junctional epithelium. T ere are no connective tissue fibers that insert into the implant.

Implants and natural teeth differ in other ways. Healthy natural teeth have some mobility, although it may not be clinically detectable, and even with increased mobility, natural teeth are able to adapt and function. By comparison, because implant fixtures are fused to bone, there should be no mobility. A mobile implant is a failed implant. Natural teeth and implants also differ in how they tolerate and respond to occlusal forces. ${ }^{52}$ Further, although there are some similarities between the inflammatory conditions around natural teeth and implants, the disease process, mechanism for disease progression, bacteria, and treatment modalities are different. ${ }^{53,54} \mathrm{~T}$ e soft and hard tissues surrounding the dental implant are called peri-implant tissues. Inflammation in the keratinized tissue around an implant is termed peri-implant mucositis, which can be compared (is analogous) to gingivitis. Inflammation with destruction of supporting bone around an implant is termed peri-implantitis, which can be compared (is analogous) to periodontitis. T e health of peri-implant tissue around a dental implant-supported restoration should be confirmed by assuring that the following clinical and radiographic parameters are met ${ }^{55}$:

1. T ere is no clinical mobility.
2. Bone loss does not exceed $0.2 \mathrm{~mm} /$ year following the first year.

fIGUr E 7-48. These radiographs show that two missing teeth (\#30 and \#31) were replaced with two implant-supported dental restorations.

fIGUr E 7-49. A. Buccal view of two implant-supported dental restorations used to replace teeth \# 30 and \# 31 . B. Lingual view of the same mouth: Notice from the lingual view that, during implant placement surgery, the implant fixtures were embedded into alveolar bone up to the polished collar.
3. T ere should be no pain, patient complaints, or infection.
4. T e patient and dentist agree that the function and esthetics of the implant-supported restoration are acceptable.

Patients who have lost alveolar bone due to periodontal disease or injury may require preimplant surgery in order to build up bone prior to implant placement. T is surgery may involve use of graft materials and membranes (guided bone regeneration), biologically active materials, and even augmentation of the maxillary sinus floor. ${ }^{56}$

revIEw Questions

Unless stated otherwise, each item may have more than one correct answer.

1. Which of the following descriptors apply (applies) to normal, healthy gingiva?
a. Coral pink or pink with masking melanin
b. Resilient
c. Stippled
d. Spongy
e. Knife edged in profile
2. Which of the following surfaces is likely to have a root furcation?
a. Buccal of the root of the maxillary molar
b. Buccal of the root of the mandibular molar
c. Mesial of the root of a maxillary molar
d. Distal of the root of a mandibular molar
e. Lingual of the root of a mandibular molar
3. Which maxillary tooth has its furcation closest to the cervical line of the tooth (only one correct answer)?
a. First premolar
b. Second premolar
c. First molar
d. Second molar
e. T ird molar
4. What is the clinical attachment loss of a tooth with +2 mm of gingival recession and a 4 mm pocket? (T ere is only one correct answer.)
a. +2 mm
b. +6 mm
c. 6 mm
d. 2 mm
5. Which of the following periodontal fibers attach to cementum and alveolar bone?
a. Horizontal
b. Oblique
c. Transseptal
d. Apical
e. Alveolar crest
6. Which of the following are likely indications of periodontal disease?
a. Bleeding gums
b. Loss of bone
c. Category 3 mobility
d. Mucogingival stress
e. Gingival sulcus readings of 3 mm
7. T e furcations are likely to be farthest away from the cervical portion of the tooth in which ONE of the following teeth?
a. Mandibular first molar
b. Mandibular second molar
c. Mandibular third molar
d. Maxillary first molar
e. Maxillary second molar
8. Which of the following is (are) considered as root anomalies?
a. Furcation
b. Cingulum
c. Radicular palatal groove
d. Occlusal fissure
9. What phrase best defines a pseudopocket?
a. Gingival margin is located coronal to the CEJ.
b. Gingival margin is located apical to the CEJ.
c. T e distance between the gingival margin and CEJ.
d. T e distance between the gingival margin and furcation.
10. Which of the following may occur with clinical attachment loss?
a. Loss of bone
b. Exposed root surface
c. Furcation involvement
d. Exposed root concavities
11. What is (are) included into nonsurgical periodontal therapy?
a. Scaling
b. Root planing
c. Oral hygiene instructions
d. Application of local antibiotic agents
12. Healthy periodontal tissues differ from healthy periimplant tissues in that only periodontal tissues have which of the following? (Select the one best answer.)
a. Mobility
b. Periodontal ligament
c. Blood supply
d. All of the above
$d-21 ; d, c, b, a-11 ; d, c, b, a-01 ; a-9 ; c-8 ; c-7 ; d, c, b, a-6 ; e, d, b, a-5 ; b-4 ; c-3 ; e, c, b, a-2 ; e, c, b, a-1: S r E m S N a$

Cr ITICal Thinking

1. Describe the traits you would expect in a person with gingival health (vs. one with gingival disease) around natural teeth and also around implant-supported restorations. You are looking in their mouth, and have access to their radiographs. Use as many terms as possible used in the chapter.
2. A. Describe as many conditions as you can that indicate the presence of periodontal disease around natural teeth and then describe conditions that may contribute to a worsening of periodontal disease. B. Describe as many conditions as you can that indicate the presence of disease around an implant.
3. Search the Internet for images of "severe periodontal disease" to see how this disease can affect the esthetics of a smile.
4. Search the Internet for images of "rampant decay", a term used to describe decay that is uncontrolled. How many of the mouths also exhibit severe gingival inflammation? Remember, dental plaque can cause both decay and gingival and periodontal disease.
5. Search the Internet for images of "severe calculus buildup." How long do you imagine it took for some of these people to form the amount of calculus that you see? Can you find any images where calculus has completely covered the lingual surfaces of all mandibular incisors?

REFEREn CEs

1. American Academy of Periodontology. Glossary of periodontal terms. 4th ed. Chicago, IL: T e American Academy of Periodontology, 2013. (Now only available to members.) Web site http://www.perio.org/resources-products/Perio-TermsGlossary.pdf
2. Gargiulo A, Wentz F, Orban B. Dimensions and relationships of the dentogingival junction in humans. J Periodontol 1961;32:261.
3. Polson A, Caton J, Yeaple R, et al. Histological determination of probe tip penetration into gingival sulcus of humans using an electronic pressure-sensitive probe. J Clin Periodontol 1980;7:479.
4. LangN,LoeH.T erelationship between the width of keratinized gingiva and gingival health. J Periodontol 1972;43:623.
5. Stern IB. Current concepts of the dentogingival junction: the epithelial and connective tissue attachments to the tooth. J Periodontol 1981;52(9):465-476.
6. Squier CA. T e permeability of oral mucosa. Crit Rev Oral Biol Med 1991;2(1):13-32. Review.
7. Langer L. Enhancing cosmetics through regenerative periodontal procedures. Compend Suppl 1994;(18):S699-S705; quiz S714-S717.
8. 1999 International Workshop for a Classification of Periodontal Diseases and Conditions. T e Annals of Periodontology. Chicago, IL: T e American Academy of Periodontology, October 30-November 2, 1999.
9. Savage A, Eaton KA, Moles DR, et al. A systematic review of definitions of periodontitis and methods that have been used to identify this disease. J Clin Periodontol 2009;36(6):458-467.
10. Armitage GC. Classifying periodontal diseases-a longstanding dilemma. Periodontol 2000 2002;30:9-23.
11. Hugoson A, Norderyd O. Has the prevalence of periodontitis changed during the last 30 years? J Clin Periodontol 2008; 35(8 Suppl):338-345.
12. Offenbacher S, Barros SP, Beck JD. Rethinking periodontal inflammation. J Periodontol 2008;79(8 Suppl):1577-1584.
13. Kinane DF, Mark Bartold P. Clinical relevance of the host responses of periodontitis. Periodontol 2000 2007;43:278-293.
14. Laxman VK, Annaji S. Tobacco use and its effects on the periodontium and periodontal therapy. J Contemp Dent Pract 2008;9(7):97-107.
15. Yuen HK, et al. Oral health knowledge and behavior among adults with diabetes. Diabetes Res Clin Pract 2009;86:239-246.
16. Bahekar AA, Singh S, Saha S, et al. T e prevalence and incidence of coronary heart disease is significantly increased in periodontitis: a meta-analysis. Am Heart J2007;154(5):830-837. Epub August 20, 2007.
17. Ebersole JL, Novak MJ, Michalowicz BS, et al. Systemic immune responses in pregnancy and periodontitis: relationship to pregnancy outcomes in the Obstetrics and Periodontal T erapy (OPT) study. J Periodontol 2009;80(6):953-960.
18. Radnai M, Pal A, Novak T, et al. Benefits of periodontal therapy when preterm birth threatens. J Dent Res 2009;88(3):280-284.
19. Wennström JL. Mucogingival therapy. Ann Periodontol 1996;1(1):671-701.
20. Huttner EA, Machado DC, de Oliveira RB, et al. Effects of human aging on periodontal tissues. Spec Care Dentist 2009;29(4):149-155.
21. Kennedy J, Bird W, Palcanis K, et al. A longitudinal evaluation of varying widths of attached gingiva. J Clin Periodontol 1985; 12:667.
22. Hallmon WW, Harrel SK. Occlusal analysis, diagnosis and management in the practice of periodontics. Periodontol 2000 2004;34:151-164.
23. Renner RP. An introduction to dental anatomy and esthetics. Chicago, IL: Quintessence Publishing, 1985:162.
24. Zander H, Polson A. Present status of occlusion and occlusal therapy in periodontics. J Periodontol 1977;48:540.
25. Ericsson I, Lindhe J. Effect of long-standing jiggling on experimental marginal periodontitis in the beagle dog. J Clin Periodontol 1982;9:497.
26. Greenstein G. Current interpretations of periodontal probing evaluations: diagnostic and therapeutic implications. Compend Contin Educ Dent 2005;26(6):381-382, 384, 387-390.
27. Mombelli A. Clinical parameters: biological validity and clinical utility. Periodontol 2000 2005;39:30-39.
28. Müller HP, Eger T. Furcation diagnosis. J Clin Periodontol 1999;26(8):485-498.
29. Renvert S, Persson GR. A systematic review on the use of residual probing depth, bleeding on probing and furcation status following initial periodontal therapy to predict further attachment and tooth loss. J Clin Periodontol 2002;29 (Suppl 3):82-89; discussion 90-91.
30. American Academy of Periodontology. Parameter on mucogingival conditions. J Periodontol 2000;71(5 Suppl): 861-862.
31. Lightner LM, O'Leary TJ, Drake RB, et al. T e periodontal status of incoming Air Force Academy cadets. J Am Dent Assoc 1967;75(1):111-117.
32. Padbury A Jr, Eber R, Wang HL. Interactions between the gingiva and the margin of restorations. J Clin Periodontol 2003;30(5):379-385.
33. Leknes KN. T e influence of anatomic and iatrogenic root surface characteristics on bacterial colonization and periodontal destruction: a review. J Periodontol 1997;68(6):507-516.
34. Levy A, Wright W. T e relationship between attachment height and attachment area of teeth using a digitizer and digital computer. J Periodontol 1978;49:483.
35. Blieden TM. Tooth-related issues. Ann Periodontol 1999; 4(1):91-97.
36. Van Dyke TE. T e management of inflammation in periodontal disease. J Periodontol 2008;79(8 Suppl):1601-1608.
37. Godberg PV, Higginbottom FL, Witson TG. Periodontal considerations in restorative and implant therapy. Periodontol 2000 2001;25:100-109.
38. Umeda M, Takeuchi Y, Noguchi K, et al. Effects of nonsurgical periodontal therapy on the microbiota. Periodontol 2000 2004; 36:98-120.
39. Ramf ord SP, Nissie R. T e modified Widman flap. JPeriodontol 1974;45:601.
40. Zakariasen KL. New and emerging techniques: promise, achievement and deception. J Am Dent Assoc 1995; 126(February):163.
41. Basaraba N. Root amputation and tooth hemisection. Dent Clin N Am 1969;13:121.
42. Oschenbein C. Current status of osseous surgery. J Periodontol 1977;48:577.
43. Langer B, Langer L. Subepithelial connective tissue flap for root coverage. J Periodontol 1985;56:715.
44. Esthetics and plastic surgery in periodontics. Periodontol 2000 1996;11:1-111.
45. Allen E. Surgical crown lengthening for function and esthetics. Dent Clin N Am 1993;37:163-179.
46. Flemmig TF, Beikler T. Economics of periodontal care: market trends, competitive forces and incentives. Periodontol 2000 2013;62(1):287-304.
47. Davis DM. T e shift in the therapeutic paradigm: osseointegration. J Prosthet Dent 1998;79(1): 37-42.
48. Dhir S, Mahesl L, Kurtzman GM, et al. Peri-implant and periodontal tissues: a review of differences and similarities. Compend Contin Educ Dent 2013;34(7):69-75.
49. Wennenberg A, Albrektsson T. On implant surfaces: a review of current knowledge and opinions. Int J Oral Maxillofac Implants 2010;25(1):63-74.
50. T alji G, Cooper LF. Molecular assessment of osseointegration in vitro: a review of current literature. Int J Oral Maxillofac Implants 2014;29(2):171-199.
51. T alji G, Cooper LF. Molecular assessment of osseointegration in vivo: a review of current literature. Int J Oral Maxillofac Implants 2013;28(6):521-534.
52. Naert I, Duyck J, Vandamme K. Occlusal overload and bone/ implant loss. Clin Oral Implants Res 2012;23(Suppl 6):95-107.
53. Belibasakis GN. Microbiological and immune-pathological aspects of peri-implant diseases. Arch OralBiol 2014;59(1):66-72.
54. American Academy of Periodontology Task Force. Peri-implant mucositis and peri-implantitis: a current understanding of their diagnosis and clinical implications. J Periodontol 2013; 84(4):436-443.
55. Smith DE, Zarb GA. Criteria for success of osseointegrated endosseous implants. J Prosthet Dent 1989;62(5):567-572.
56. Al-Nawas B, Schiegnitz E. Augmentation procedures using bone substitute materials or autogenous bone: a systematic review and meta-analysis. Eur J Oral Implantol 2014;7(Suppl 2):219-234.

REs o u RCEs An D Au THo RITIEs Fo R PERIo Do n TICs
T e American Academy of Periodontology, Suite 800, 737 North Michigan Avenue, Chicago, IL. Website: http://www.perio.org

T e American Dental Association, 211 East Chicago Avenue, Chicago, IL. Website: www.ada.org

ADDITIo n Al In TERn ET REs o u RCEs
www.dental-learninghub.com
http://www.perio.org/consumer/patient-resources

BAs IC TEXTBo o ks

Lindhe J, Lang N, Karring T. Clinical periodontology and implant dentistry, 2 Vols. 5th ed. Malden, MA: Blackwell Munksgaard, 2008.

Newman M, Takei H, Klokkevold P, et al. Carranza's clinical periodontology. 10th ed. St. Louis, MO: Elsevier Health Sciences Publishing, W.B. Saunders Company, 2006.

REs o u RCEs Fo R THE PATHo GEn Es Is, DIAGn os Is, An D RIsk FACTo Rs Fo R PERIo Do n TAl DIs EAs Es An D PERIo Do n TAl THERAPy
Periodontal literature reviews: a summary of current knowledge. Chicago, IL: The American Academy of Periodontology, 1996.

Proceedings of the 1996 World Workshop in Periodontics, 1996. T e Annals of Periodontology. Chicago, IL: T e American Academy of Periodontology, 1996.

REs o u RCE Fo R PERIo Do n TAl DIs EAs E Cl As s IFICATIo n
1999 International workshop for a classification of periodontal diseases and conditions. T e Annals of Periodontology. Chicago, IL: T e American Academy of Periodontology, 1999.

In a survey by Dr. Woelfel, 267 dental hygiene students measured their gingival sulcus depths with a calibrated periodontal probe. T e average gingival sulcus depths for mandibular first molars midbuccal were $1.5 \pm 0.5 \mathrm{~mm}$; midlingual, $1.7 \pm 0.6 \mathrm{~mm}$; and mesiolingual and distolingual, $2.5 \pm 0.5 \mathrm{~mm}$. T ese measurements indicate that the gingival
sulcus is usually deeper interproximally. Similar measurements made on the mesiofacial aspect of mandibular canines $(1.9 \pm 0.8 \mathrm{~mm})$, maxillary canines $(1.8 \mathrm{~mm})$, maxillary first premolars $(1.9 \pm 0.7 \mathrm{~mm})$, and maxillary first molars $(2.1 \pm 0.7 \mathrm{~mm})$ indicate sulci slightly deeper on posterior teeth than those on anterior teeth.

8
 Application of Root and Pulp Morphology Related to Endodontic Therapy

This chapter was contributed and updated by John M. Nusstein, D.D.S., M.S., Professor and Chair, Division of Endodontics, the Ohio State University. He received his D.D.S. from the University of Illinois at Chicago College of Dentistry in 1987. He joined the Air Force and completed a GPR program at Scott AFB in 1988 and his endodontic training at the Ohio State University in 1995, earning his certificate in endodontics and an M.S. for research involving intraosseous anesthesia. Dr. Nusste in became a diplomate of the American Board of Endodontics in 1999. After 12 years of military service and 1 year of private practice, he became a full-time educator at the Ohio State University College of Dentistry in 2000 where he is now the graduate endodontic clinic director. He received the Edward Osetek Award for Outstanding Young Educator from the AAE in 2006 and was named as the William J. Meyers Endowed Chair in Endodontics.
Topics within the three sections of this chapter include the following:
I. Internal pulp cavity morphology related to endodontic and restorative therapy
A. The shape of pulp cavities and configuration of pulp canals
B. Shape of pulp cavities in sound young teeth
C. Why pulp cavities get smaller in older teeth
D. Clinical application of pulp morphology re lated to restorative dentistry
E. Clinical application of pulp morphology re lated to endodontics
II. Location of root and cervical crown concavities, furcations, depressions, and canals
B. Maxillary lateral incisors
C. Mandibular central and lateral incisors
D. Maxillary canines
E. Mandibular canines
F. Maxillary first premolars
G. Maxillary second premolars
H. Mandibular first premolars
I. Mandibular second premolars
J. Mandibular first and second molars
K. Maxillary first and second molars
III. Eth nic variations in pulp and root canal morphology
A. Maxillary central incisors

Objectives

This chapter is designed to prepare the learner to perform the following:

- Describe the four types of root canal configurations I to IV.
- Describe the normal shape and location of the pulp chamber for each class of tooth.
- Identify the number of pulp horns most frequently found within each type of permanent (adult) tooth.
- Identify the number of canals most frequently found within the roots of each type of permanent (adult) tooth.
- Describe the scope of responsibility for a dentist who is an endodontist.
- Describe endodontic therapy.

SECTION I

INTERNal PUl P CavITy MORPh Ol OGy REl aTEd TO ENd Od ONTIC a Nd RESTORaTIvE Th ERa Py

T roughout this chapter, specific statistics are referenced with superscript letters like this $\left(\right.$ data $\left.^{\mathrm{A}}\right)$. T e statistics are then listed with the referencing letters at the end of this chapter.

a. Th E Sh a PE OF PUl P CavITIES aNd CONFIGURaTION OF PUl P CaNalS

T e pulp cavity is the cavity in the inner portion of the tooth containing the nerves and blood supply to the tooth. It is divided into the pulp chamber (more coronal) and the root canals (in the roots).

1. Pulp Chamber and Pulp horns

T e pulp chamber is the most occlusal or incisal portion of the pulp cavity. T ere is one pulp chamber in each tooth. It may be located partly in the crown of anterior teeth, but in posterior teeth, it is mostly in the cervical part of the root. Its walls are the innermost surface of the dentin. Each pulp chamber has a roof at its incisal or occlusal border often with projections called pulp horns, and the pulp chambers of multirooted teeth have a floor at the cervical portion with an opening (oriàce) for each root canal (Fig. 8-1). T e number of pulp horns found within each cusped tooth (molars, premolars, and canines) is normally one horn per sizeable cusp, and in young incisors, it is three (one horn in each of the three facial lobes, which is the same as one lobe per mamelon). An exception is one type of maxillary lateral incisor (called a peg lateral with an incisal edge that somewhat resembles one cusp) that has only one pulp horn. Refer to Table 8-1 for a summary of the number of pulp horns related to the number of cusps normally found within different tooth types.

FIGURE 8-1. Parts of a pulp cavity. The pulp cavity of this mandibular second molar is made up of a coronal pulp chamber with pulp horns and two root (pulp) canals.

2. Root Canals (Pulp Canals)

Root canals (pulp canals) are the portions of the pulp cavity located within the root(s) of a tooth. Root canals connect to the pulp chamber through canal oriàces on the floor of the pulp chamber, and pulp canals open to the outside of the tooth through openings called apical foramina (singular foramen), most commonly located at or near the root apex (Fig. 8-1). T e shape and number of root canals in any one root have been divided into four major anatomic configurations or types (Fig. 8-2). T e type I configuration has one canal, whereas types II, III, and IV have either two canals or one canal that is split into two for part of the root. T e four canal types are defined as follows:
Type I-one canal extends from the pulp chamber to the apex.
Type II-two separate canals leave the pulp chamber, but they join short of the apex to form one canal apically and one apical foramen.
Type III- two separate canals leave the pulp chamber and remain separate, exiting the root apically as two separate apical foramina.
Type IV-one canal leaves the pulp chamber but divides in the apical third of the root into two separate canals with two separate apical foramina.

Accessory (or lateral) canals also occur, located most commonly in the apical third of the root (Fig. 8-3A and B) and, in maxillary and mandibular molars, are common in the furcation area. ${ }^{A}$

B. Sh a PE OF PUl P CavITIES IN SOUNd yOUNG TEETh

LEAr n In G Ex Er CIs E

Section extracted teeth to expose the pulp cavity: the size, shape, and variations of pulp cavities are best studied by the interesting operation of grinding off one side of an extracted tooth. Extracted teeth should always be sterilized as described in the introduction of this text and kept moist. Wearing a mask and gloves, you can use a dental lathe equipped with a fine-grained abrasive wheel about 3 inches in diameter and $3 / 8$ inch thick to remove any part of the tooth. Simply decide which surface is to be removed, hold the tooth securely in your fingers, and apply this surface firmly to the fat surface of the abrasive wheel. Operating the lathe at a fairly high speed is less apt to fip the specimen from your fingers than operating it at a low speed. If you can devise an arrangement by which a small stream of water is

1 Ea RNING EXERCISE (continued)

run onto the surface of the wheel as the tooth is ground, you will eliminate fying tooth dust and the bad odor of hot tooth tissue. If such an arrangement is not feasible, keep the tooth moist by frequently dipping the surface being ground in water or by dripping water onto the wheel with a medicine dropper. Look often at the tooth surface you are cutting, and adjust your applied pressure to attain the plane in which you wish the tooth to be cut. A high-speed dental handpiece and bur will greatly facilitate your exploration of the insides of teeth.

As you examine different sides of each kind of tooth, notice how the external contours of the pulp chamber are similar to the external morphology of the tooth. On incisors and canines, you can remove either the facial or lingual side from some teeth to view the mesiodistalplane (as seen in Fig. 8-4Aand E) and remove the mesial or distal side from others to view the faciolingual plane (as seen in Fig. $8-4 \mathrm{~B}-\mathrm{D}$). On premolars and molars, the removal of either the mesial or distal side will expose the outline of the roof of the pulp chamber where pulp horns can be seen extending beneath the cusps (as seen in premolars in Fig. 8-4C and D). When the buccal or lingual sides are removed to the level of the buccal and lingual cusp tips, pulp cavities can be seen in a mesiodistal plane (as seen in Fig. 8-4E), the view similar to that seen on a dental radiograph. Finally, on molars, the removal of the occlusal surface will reveal the openings (orifices) to the root canals on the foor of the pulp chamber (as seen later in the diagram in Fig. 8-9 and the close-up view in Fig. 8-13).
(1.) Pulp Shape in anterior Teeth (Incisors and Canines)

a. Pulp Chamber and Pulp Horns of Anterior Teeth

When an incisor is cut mesiodistally and viewed from the facial (or lingual) (similar to the view on dental radiographs), the pulp chambers are broad and may appear as three pulp horns. Only two horns can be seen in the maxillary central incisors in Figure 8-5. However, the incisal border of the pulp wall (roof of the chamber) of a young tooth may show the configuration of three mamelons, that is, has developed with three pulp horns: located mesially, centrally, and distally. (Recall, however, that there is an unusual peg lateral incisor that only has one pulp horn.) Knowing the number and location of these pulp horns becomes important when the tooth is fractured or badly decayed and must be prepared for an incisal restoration. When an anterior tooth is cut labiolingually and viewed from the proximal, the pulp chambers taper to a point toward the incisal edge (Fig. 8-6). In maxillary and mandibular canines, the incisal wall or roof of the pulp chamber is often less pointed, having only one pulp horn (Fig. 8-7).
b. Root Canal(s) of Anterior Teeth

Recall that all anterior teeth are most likely to have one root. T e number of root canals in each type of anterior tooth is also most frequently one. Maxillary central incisors, lateral

Ta B1 E 8-1 Guidelines for Numbers of Pulp horns in a dult Teeth

	n O. OF CUs Ps	n O. OF PULP HOr n s
Maxillary central incisor	-	3
Maxillary lateral incisor	-	3 (but only 1 in a peg lateral)
Maxillary canine	1	1
Maxillary first premolar	2	2
Maxillary second premolar	2	2
Maxillary first molar	4 (or 5 if Carabelli)	4 (Carabelli is too small)
Maxillary second molar	3 or 4	3 or 4
Mandibular central incisor	-	3
Mandibular lateral incisor	-	3
Mandibular canine	2	1
Mandibular first premolar	$2-3$	1 or 2 (lingual cusp may be too small)
Mandibular second premolar	5	$2-3$
Mandibular first molar	4	5
Mandibular second molar	4	

[^9]1. Incisors have three pulp horns (except maxillary lateral, which could be peg = 1).
2. Cusped teeth have one pulp horn under each functional cusp.

FIGURE 8-3. Acce ssory canals. A. A scanning electron photomicrograph of an instrumented (cleaned) root canal of a maxillary central incisor. After cleaning the root canal, the tooth was split and mounted for viewing with the scanning electron microscope. This view shows the apex of the tooth at the top of the picture and includes the apical third of the root. Near the bottom of the picture (right wall of canal), an accessory canal can be seen at the arrow. This canal contains blood vessels. B. A scanning electron photomicrograph at a higher power of the accessory canal is observed in (A). The blood vessel can be seen emerging from the dentin. This vessel appears to be a vein due to its thin walls and large size. The adherent "stringy" extensions around the blood vessels are supporting collagen fiber bundles. The dentinal tubules can be observed on the right side of photomicrograph. (Courtesy of Dr. Dennis Foreman, Department of Oral Biology, College of Dentistry, Ohio State University.)

FIGURE 8-4. Sectioned teeth showing pulp cavity shapes relative to the external tooth surface. A. Mesiodistal section of a maxillary central incisor showing only two of its three pulp horns. B. Faciolingual section of a maxillary incisor. C. Faciolingual section of a maxillary first premolar with two roots and two obvious pulp horns, one under each cusp. D. Faciolingual section of mandibular first premolar. E. A mandibular first molar sectioned mesiodistally through its three buccal cusps.

FIGURE 8-5. Maxilla ry ce ntral incisors sectioned mesiodistally. A. Maxillary central incisor (young tooth), facial side removed. The high pulp horns (only two are visible in this tooth section) and the broad root canal indicate that this is a young tooth. This outline of the pulp cavity may be seen on a dental radiograph. B. Maxillary central incisor (old tooth), facial side removed. The pulp chamber of this older tooth is partially filled with secondary dentin, and the root canal is narrower than in the tooth shown in (A). Also, the incisal edge is worn to a straight line. (The damage to the cervical part of the root on the distal [left] side of the tooth has been there for some time because the underlying dentin has been altered by a defense mechanism of the pulp tissues.)
incisors, and canines almost always have one canal (type I), whereas mandibular anterior teeth, although most likely to have one canal, may have two canals (one facial and one lingual) with the frequency varying depending on the study cited. ${ }^{1-3, \mathrm{~B}} \mathrm{~T}$ e mandibular canine is the anterior tooth most likely to have two roots (though still uncommon), one facial
and one lingual, and this configuration would have two root canals, one in each root.

2. Pulp Shape in Premolars

a. Pulp Chambers and Pulp Horns in Premolars

When premolars are cut mesiodistally and viewed from the facial (or lingual) similar to the view on dental radiographs (Fig. 8-8A), the occlusal border or roof of the pulp chamber is curved beneath the cusp similar to the curvature of the occlusal surface. When cut buccolingually and viewed from the proximal, the pulp chamber often has the general outline of the tooth surface, sometimes including a constriction near or apical to the cervix (seen in Fig. 8-8C). T e pulp horns on the roof are visible beneath each cusp, and their relative lengths are similar to the relative heights of the cusps. T us, the buccal horns are longer than the lingual horns.

In general, premolars have one pulp horn per sizeable cusp. T erefore, the premolars that are the two-cusp type most often have two pulp horns (Fig. 8-4C), but mandibular second premolars that are the three-cusp type have three pulp horns, and the mandibular first premolars that have a functionless lingual cusp may have only one pulp horn (Fig. 8-4D), similar to a canine.

b. Root Canal(s) and Orif ces of Premolars

Maxillary òrst premolars most often have two roots (one buccal and one lingual) and two canals (one in each root as seen in Fig. 8-8B and C). Even maxillary first premolars with a single root almost always have two canals. T e average incidence of two canals, one in the buccal root and one in the lingual root, is $90 \%{ }^{\text {C }}$ although there is a small incidence of three roots. ${ }^{\text {D }}$ T e dentist must know the location of each canal opening on the pulp chamber floor in order to remove diseased pulpal tissue from the entire pulp cavity. T e buccal canal orifice in the

FIGURE 8-6. Incisors sectioned faciolingually. A. Maxillary central incisor, mesial side removed. The root canal is moderately wide. As commonly occurs, much of the pulp chamber is located in the cervical third of the root. It is not possible to see this view of the pulp cavity on a dental radiograph. There is wear (attrition) on the incisal edge, and secondary dentin has begun to fill in the incisal part of the pulp chamber. B. Mandibular lateral incisor, mesial side removed (young tooth). Curvature of the root prevented cutting the pulp cavity in one plane so that the apical portion of the root canal was lost. Notice how the pulp cavity extends in a narrow point toward the incisal edge. Even extensive attrition on the incisal edge would not likely expose the pulp since secondary dentin would form in the incisal part of the pulp chamber and the pulp would be additionally protected.

FIGURE 8-7. Ca nines sectioned faciolingually. A. Maxillary canine, mesial side removed (young tooth). There is no attrition evident on the incisal edge, and the pulp cavity is still large. B. Mandibular canine, mesial side removed (young tooth). The pulp cavity is large. Only at the incisal tip is there a little evidence of secondary dentin formation. The roof of the chamber is slightly more rounded than on incisors.
maxillary first premolar (viewed through the prepared access opening and the roof of the pulp chamber removed in Fig. 8-9) is located just lingual to the buccal cusp tip. T e lingual canal orifice is located just lingual to the central groove.

Maxillary second premolars most often have one root and one canal, but two canals are frequently present. ${ }^{\text {E }}$ When
there is one canal, its orifice on the pulp chamber floor is located in the exact center of the tooth (Fig. 8-9). If the orifice is located toward the buccal or the lingual, it probably means that there are two canals in the root.

Mandibular örst and second premolars most frequently have one root and one root canal (type I) (Fig. 8-10), but mandibular first premolars may have two canals, which are type IV. ${ }^{\mathrm{F}} \mathrm{T}$ e single canal orifice is located on the floor of the pulp chamber just buccal to the center of the occlusal surface (Fig. 8-9).

3. Pulp Shape in Molars

a. Pulp Chambers and Pulp Horns in Molars

T e pulp chamber of maxillary $\dot{\boldsymbol{a}}$ rst and second molars is broader buccolingually than mesiodistally (like the crown shape) and is often constricted near the floor of the chamber (seen in Fig. 8-11A and B). On mandibular àrst and second molars, the chamber is broader mesiodistally than buccolingually (like the crown shape). T is difference in shape of pulp chambers for maxillary versus mandibular molars can be appreciated by studying the openings used to access the pulp chambers for molars in Figure 8-9. As in all cusped teeth, molars have one pulp horn per functional cusp, and they are located in the roof of the pulp chamber well beneath each cusp. T erefore, if we consider the cusps of Carabelli to be functionless, all four-cusp types of molars have four pulp horns, three-cusp maxillary molars have three pulp horns, and the mandibular first molar with five cusps is the only type of molar to have five pulp horns. T ree pulp horns are visible under the three buccal cusps in Figure 8-12A. T e pulp chamber is normally
 A. radiograph of a mandibular left second premolar showing the shape of the root canal as though sectioned mesiodistally. B. radiograph of a maxillary first premolar reveals the two root canals (filled with a filling material that makes the canals appear whiter). This is a similar view as a premolar sectioned mesiodistally. C. Maxillary first premolar sectioned faciolingually, mesial side removed (young tooth). The curvature of the tips of the roots prevented cutting the root canals in one plane. The two pulp horns are sharp; there is little, if any, secondary dentin, and the foor of the pulp chamber is rounded. The buccal pulp horn is considerably longer than the lingual horn. Notice the foor of the pulp chamber, which has two openings, one for each canal. Also, note the constriction of the pulp chamber near the cervix.

FIGURE 8-9. Access preparations into pulp chambers showing orifices to canals. Ideally shaped openings provide access into the pulp chamber for endodontic treatment. Pulp canal orifices on the foor of each pulp chamber correspond with the number and location of pulp canals in each tooth. The left half of the arch shows maxillary teeth; the right half shows mandibular teeth.
deep to, or some distance from, the occlusal surface, actually located within the cervical part of the root trunk (Fig. $8-12$). Surprisingly, the dentist does not often penetrate the pulp chamber on a maxillary molar until the drill reaches

FIGURE 8-10. Mandibular first premolars sectioned faciolingually. A. Mandibular first premolar, distal side removed. Root curvature prevented cutting the root canal in one plane. The pulp horn in the buccal cusp is large; in the lingual cusp, it is very small, almost nonexistent. It is unusual to observe much of a pulp horn beneath the nonfunctional lingual cusp on mandibular first premolars. B. Mandibular first premolar, mesial side removed, with root and root canal divided near the apex (type IV). Only one pulp horn is evident in this sectioned tooth.

A

B

FIGURE 8-11. Maxilla ry first molars sectioned buccolingually. A. Young maxillary molar with mesial side removed; lingual side (with cusp of Carabelli) is on the right. The tooth is sectioned through the center of the lingual root canal but not through the center of the mesiobuccal canal. The pulp chamber opens into the lingual root canal in this view. The foor of the pulp chamber is relatively fat as it often is on young teeth. B. Young maxillary molar with mesial side removed; lingual side is on the right. The tooth is sectioned through the mesiobuccal and lingual root canals. The pulp chamber is mostly in the root trunk. Only mesiobuccal and mesiolingual pulp horns extend a little into the anatomic crown. There is an area of dental decay (caries) appearing darker in the groove where the small cusp of Carabelli is attached to the mesiolingual cusp.
the level of the gum line. One exception might be the long pulp horn of the longest mesiolingual cusp of the maxillary molars (Fig. 8-11A). T e floor of the pulp chamber is considerably apical to the cervical line; it is located in the root trunk. T e pulp floor has multiple openings (orifices), one for each root canal. T e floor is level or flat in young teeth. It may become convex in older teeth with the deposition of additional dentin over time.

b. Root Canal(s) and Orif ces of Molars

Maxillary ürst molars most frequently have three roots (mesiobuccal, distobuccal, and palatal), but four canals: one each in the distobuccal and palatal root and two in the mesiobuccal root. In the palatal root, a single canal is larger and more easily accessible from the floor of the pulp chamber than for the other two roots, ${ }^{\text {G }}$ but this root and its canal often curve toward the buccal in the apical third, requiring skillful procedures to clean and treat it. On maxillary first molars, there are therefore four orifices on the floor of the pulp chamber: one for each canal (Fig. 8-13). Maxillary second molars, like maxillary first molars, most frequently have three roots and four canals. T e mesiobuccal root usually has two canals. ${ }^{\mathrm{H}} \mathrm{T}$ e distobuccal and palatal roots each have one canal. T e location of the orifices in the maxillary second molar is similar to the maxillary first molar, except that they are closer together (Fig. 8-9).

FIGURE 8-12. Mandibular first molars sectioned mesiodistally. A. Buccal side removed (old tooth). The apical foramen of the distal root is on the distal side of the root, not at the root tip. Notice the three pulp horns (at arrows) under the three buccal cusps shown in this section. (The unusual thickening of cementum on the roots is hypercementosis.) B. Old tooth (exhibiting considerable occlusal wear) with lingual side removed. Notice that the roof of the pulp chamber is about at the level of the cervical line. Two pulp horns extend occlusal to the cervical line. The rest of the pulp chamber is in the root trunk. The foor of the pulp chamber is convex (a condition founded in older teeth) because of the deposition of secondary dentin. (There appears to be caries in the enamel above the mesiolingual pulp horn, but it has penetrated only slightly into the dentin.)

Both mandibular ùrst and second molars most frequently have two roots (mesial and distal) and three canals. T e wider mesial roots most often have two canals: mesiobuccal and mesiolingual. ${ }^{1}$ T e narrower distal roots most often have only one canal. ${ }^{\mathrm{J}} \mathrm{T}$ e roof of the pulp chamber is often at the same level as the cervical border of the enamel, with only the pulp horns extending into the anatomic crown (Fig. 8-12). Most of the pulp chamber is located within the root trunk. Location of the orifices of mandibular molars is shown in Figure 8-9. ${ }^{\text {K }}$

Maxillary third molars usually have three root canals, and mandibular third molars usually have two. However,
they do vary considerably in root form. T ird molars are 9 to 11 years younger biologically than first molars, completing their development later in life than do first and second molars. T erefore, on radiographs (x-ray films), their pulp chambers and root canals are generally larger than in the other molars in the same mouth, especially for persons between the ages of 15 and 35 years.

Refer to Table 8-2 for a summary of the number of root canals related to the number of roots normally found within different tooth types.

4. Pulp Shape in Primary Teeth

Primary teeth generally have thinner amounts of dentin and enamel, so their pulp cavities are proportionally larger than are those on permanent teeth, and their pulp horns are closer to the incisal or occlusal surfaces.

C. Wh y PUl P CavITIES GET SMa11ER IN Old ER TEETh

In a young tooth, the pulp chamber is large and resembles the shape of the crown surface. It has projections called horns extending beneath the cusps or mamelons in the roof of the chamber and is usually constricted somewhat at the cervix. As teeth get older, the pulp chamber becomes smaller and is more apically located because of deposits of secondary (additional) dentin produced by specialized cells called odontoblasts lining the pulp chamber. Dentin formation normally continues as long as the pulp is intact or vital. T at is, as dentin forms on the walls of the pulp cavity, the dentin gets thicker, making the pulp chamber smaller. T e floor of the pulp chamber in molars is nearly flat in young teeth, but later becomes more convex. ${ }^{\text {L }}$ In some cases, the pulp chamber may become entirely filled. T is reduction in size makes finding and accessing the pulp chamber more dif cult in an older patient than in the younger patient where the teeth still have larger chambers.

T erefore, it is normal that the diameter of a root canal decreases in size with age, getting small in older teeth because of the gradual addition of dentin on the internal walls. On the other hand, teeth (other than third molars) that exhibit

FIGURE 8-13. s sanning electron photomicrograph of the pulp chamber foor of a maxillary molar with four canal orifices identified for orientation: the palatal (P), distobuccal (DB), and the two orifices into the mesiolingual root called mesiobuccal (MB) and mesiolingual (ML a rrow). (Original magnification $20 \times$.) (Courtesy of Dr. James Gilles and Dr. Al Reader.)

Ta Bl E 8-2 Most Common Numbers of Roots and Canals in a dult Teeth		
TOOTH n AME	n O. OF r OOTs	n O. OF r OOT CAn ALs
Maxillary central incisor	1	1
Maxillary lateral incisor	1	1
Maxillary canine	1	1
Maxillary first premolar	2 (buccal and lingual) or 1	2 (even if 1 root)
Maxillary second premolar	1	1 (or 2)
Maxillary first molar	3 (mesiobuccal, distobuccal, and lingual)	4 (2 in mesiobuccal root)
Maxillary second molar	3 (mesiobuccal, distobuccal, and lingual)	4 (2 in mesiobuccal root)
Mandibular central incisor	1	1
Mandibular lateral incisor	1	1
Mandibular canine	1 (but has 2 roots more often than other anterior	1
Mandibular first premolar	1	1
Mandibular second premolar	1	1
Mandibular first molar	2 (mesial and distal)	3 (2 in mesial)
Mandibular second molar	2 (mesial and distal)	3 (2 in mesial)

unusually large pulp chambers on dental radiographs are immediately suspected of having necrotic pulps, that is, pulps that no longer have vital nerve or blood supply. Without vital pulp tissue, dentin formation ceases, and the pulp chamber size remains constant (once the pulp died) rather than continuing to decrease in size as is normal for vital teeth. Necrotic pulps can be a possible source of infection.

When the tooth is subjected to attrition (wear), trauma, or tooth decay, or when a dental material called calcium hydroxide is applied on the pulp, additional dentin forms even more quickly and in greater quantity. A pulp cap is a term describing a procedure where the dentist places calcium hydroxide on very thin dentin that covers the pulp (an indirect pulp cap) or over a small bit of exposed healthy pulp (a direct pulp cap) in order to stimulate the formation of a new layer of dentin to help the tooth heal.

d. Cl INICal a PPl ICaTION OF PUl P MORPh Ol OGy REl aTEd TO RESTORaTIvE d ENTISTRy

T e dentist's knowledge of normal pulp shape, size, and depth beneath the enamel is important to him or her when preparing teeth that have deep decay. When the dentist determines that the tooth can be restored without the need to remove the pulp, he or she must prepare the tooth in such a way to avoid disturbing or injuring the pulpal tissues. Whenever possible, the goal is to leave some sound (undecayed) dentin on the floor of the cavity preparation to provide support for the restoration (such as a filling using composite resin or
amalgam) and to avoid exposing any part of the pulp cavity with a cutting bur or hand instrument. T is is accomplished through knowledge of the shape of the pulp chamber and canals and a careful evaluation of the patient's radiographs to determine the location of the pulp relative to the decay and external surface of the tooth. An example of deep decay that has reached the pulp is seen in Figure 8-14. Also, the dentist must avoid overheating or drying out (desiccating) the tooth during preparation by using water to reduce the heat that is generated when using cutting burs in a high-speed handpiece.

Sometimes, however, signs (what is seen), symptoms (what the patient feels), and diagnostic tests may indicate that a pulp inflammation (pulpitis) is irreversible, that is, cannot be resolved without removing the pulp tissue. When these signs, symptoms, and diagnostic test results indicate a pulp is not likely to respond well by placing just a filling (dental restoration of amalgam or composite), the pulp tissue must be removed and a root canal àlling placed (endodontic therapy must be performed). T e implications of dental anatomy on restorative dentistry are discussed in more detail in Chapter 10.
E. Cl INICal a PPl ICaTION OF PUl P MORPh Ol OGy REl a TEd TO ENd Od ONTICS

1. Endodontics defned

Endodontics is a specialty branch of dentistry concerned with the morphology, physiology, and pathology of human dental pulp and periapical tissues. Its study and practice

FIGURE 8-14. Dental decay (caries) reaches the pulp. Radiograph of a lower left first molar with a very large distal decay (seen as an area of lost enamel and darkened dentin) that has reached (exposed) the pulp. There is also mesial decay on this tooth that does not appear to have reached the pulp.
encompass the related basic and clinical sciences, including biology of the normal pulp; the cause (etiology), diagnosis, prevention, and treatment of diseases and injuries of the pulp; and resultant pathologic conditions that occur around the root.

An endodontist is a dentist who specializes in endodontics (root canal therapy). An endodontist is specially trained to provide root canal therapy, including treating patients with more dif cult and complex endodontic situations who may be referred from a general dentist. Treatment may involve dif cult root canal anatomy, medically compromised patients, and/or surgical treatments of periapical pathosis and infection.

2. d iagnosis of Pulpal and Periapical d ise ase

Irreversible pulpitis (inflammation of the pulp that cannot be healed) is a condition of the pulp tissue where the pulp will not heal and root canal treatment is indicated. Teeth with irreversible pulpitis are unusually sensitive to cold or hot, and sometimes, either stimulus may cause an exaggerated response and prolonged pain. T e patient may also experience spontaneous pain in the tooth (i.e., pain felt without provocation of stimuli such as heavy chewing or exposure to hot or cold). T e usual cause of irreversible pulpitis is deep caries [CARE eez] (decay), although deep or poorly adapted restorations may also contribute. T e proximity of caries to the pulp can often be evaluated best using dental radiographs (Fig. 8-14). As the caries approaches the pulp, a normal defense reaction will occur involving inflammation and eventually the formation of additional dentin called reparative dentin. However, when the caries reaches or exposes the pulp, bacteria can overwhelm the defenses, and the tooth usually becomes painful. T is prompts the patient to seek emergency dental treatment. Access to and removal of affected pulp tissue will provide
relief from the pain. T e pulp tissue cannot be successfully treated with medications alone once the pulp is irreversibly damaged.

Periapical disease occurs when the pulp has died (has become necrotic). When the disease process in the crown has overwhelmed the pulp, the pulp tissue in the root canals gradually dies. Once the bacteria and products of pulpal breakdown contained within the root canals reach the apical foramen, the periapical tissue beyond the apical foramen will begin to react to this insult. A chronic inflammatory response in the bone can lead to the formation of a granuloma (i.e., a mass of chronic inflammatory tissue enclosed within a fibrous capsule). Since a granuloma is less dense than bone, a radiograph will usually reveal radiolucency (a periapical radiolucency is the dark area at the end of the root; Fig. 8-15). In some cases, the granuloma undergoes degeneration, and a cyst is formed. A cyst is an epitheliumlined sac filled with liquid or semiliquid material. T e difference between a granuloma and a cyst cannot be determined on a radiograph. When the bacteria from the root canal overwhelm the defenses of the periapical tissues or the patient's immune system is compromised, bacteria invade through the bone to the surrounding soft tissue, resulting in facial swelling and/or severe pain. Cleaning the root canals and draining the area of infection will usually provide relief within 2 to 3 days.

Another result of pulpal trauma (like being hit in the mouth with a baseball) is the discoloration of the tooth crown to a gray or brownish color, which indicates damage to the pulp and the need to evaluate the tooth for possible endodontic treatment. After the root canal, the discoloration can be greatly reduced by using an intracoronal bleaching technique where the bleaching material is placed within the pulp chamber for a period of time. See the change of tooth color in Figure 8-16.

FIGURE 8-15. Pe riapical radioluce ncy. Radiograph of a maxillary first premolar with the dark area (red arrows) surrounding the root apices indicating the pulp has become necrotic. A granuloma or cyst has developed in the bone, probably as a result of the exposure of the pulp to deep decay that was removed and restored with a large amalgam filling (seen as a white outline) that covers the distal and occlusal surfaces of this tooth.

Endodontic Therapy

T e goal of endodontic therapy is to relieve pain, control infection, and preserve the tooth so that it may function normally during mastication. Endodontic treatment is normally preferred to extraction because if the tooth were extracted, the patient would be without the tooth throughout the healing process and during the time required to construct and place the replacement tooth. Further, endodontic therapy is less expensive than having a tooth extracted and subsequently replaced with a dental prosthesis (bridge) or an implant.

T e first step of the endodontic procedure is for the dentist to gain access to the pulp chamber and the root canals of teeth through an access opening in the crown of the tooth. On anterior teeth, the opening is made on the lingual surface and on posterior teeth through the occlusal surface. T ese access openings vary considerably from cavity preparations used in operative dentistry. T e shape (outline form), size, and position of the access opening are determined by studying ideal openings of maxillary and mandibular teeth shown in Figure 8-9 and then modifying them to conform to what

A

B
FIGURE 8-16. Color as an indicator of pulpal pathology. A. Discolored tooth with pulp tissue damaged (tooth is devital) after tooth trauma (such as being hit in the mouth with a baseball). B. The same tooth after bleaching techniques were used to lighten this devital tooth.
is evident on the initial radiograph of the tooth. Finding the pulp may be dif cult in older teeth, or teeth that have large or deep restorations, since the formation of secondary or reparative dentin may obliterate the pulp chamber, making endodontic access dif cult. Further, if the tooth is covered with a metal crown, the pulp chamber will not be visible on the radiograph.

Once the access opening is complete, the dentist locates the root canal oriaces on the floor of the pulp chamber. Knowledge of the number of root canals present in teeth is critically important to successful endodontic treatment. Not locating and cleaning all the canals may result in continued discomfort for the patient or unsuccessful endodontic treatment with ensuing periapical disease. When the canal orifices have been located, endodontic files are used to remove the diseased pulp tissue and to begin cleaning the canals. In order to approximate the file length, the lengths of the corresponding root and crown are measured using a preoperative radiograph. T en, with the files carefully inserted into

FIGURE 8-17. Endodontic files seen on a radiograph. Radiograph of a lower left first molar where endodontic files have been placed within the root canals approaching the cementodentinal junction apically.
the root canals, a radiograph is made with the files in the root (Fig. 8-17). T e positions and lengths of the files are adjusted to extend to approximately 1 mm short of the radiographic apex of the root (which corresponds to the natural constriction of the canal at the cementodentinal junction). T e canals are then cleaned and shaped at this length using incrementally larger diameter files until the root canal system is ready to be filled.

Following this cleaning procedure, the root canals may be d̀lled with gutta-percha (a rubber-type material) and a sealer (Fig. 8-18). Examples of sealers used today include resin, glass ionomer, zinc oxide and eugenol, and bioceramic materials. When there is suf cient tooth structure remaining, the opening through the crown used to access the pulp may be restored with a tooth-colored composite or silver amalgam restorative material. Since teeth
requiring endodontic treatment usually have large restorations or are weakened by extensive decay, tooth structure may be restored with a crown. In some instances, a metal filling called a post and core can be used for additional retention and crown support. T e post is the part that fits into the prepared root canal space, and the core reproduces lost tooth structure in order to provide adequate retention for the crown (Fig. 8-19).

Once a tooth has had endodontic therapy and the pulp has been removed, it should not be considered a "dead tooth" even though it no longer has a vital pulp. Although it cannot respond to stimuli like hot or cold, and cannot form reparative dentin, the periodontal support is the same as if it never had endodontic treatment. T erefore, if the periodontium remains healthy, the treated tooth generally can last for the lifetime of the patient.

FIGURE 8-18. r adiograph of completed
endodontic treatment. A lower left first molar where the root canals have been filled with gutta-percha and sealer. The part of the crown that was lost has also been restored with a temporary filling. Both the guttapercha and the temporary filling appear whiter than does enamel or dentin on the radiograph.

SECTION II

1OCaTION OF ROOT a Nd CERvICal CROWN CONCavITIES, FURCaTIONS, d EPRESSIONS, a Nd CaNa 1 S

T e purpose of this section is to summarize the shape of the external root surface and the internal pulp shape at the level of the cementoenamel junction and halfway down the root toward the apex. T e following tooth drawings are labeled with M for mesial, D for distal, F for facial, and L for lingual.

a. Ma XIl 1 a Ry CENTRal INCISORS

- T e cross section of the root at the cervix is somewhat triangular with the mesial side longer than the distal side, consistent with the slight distal placement of the cingulum.
- T ere are no root grooves (depressions) on this incisor, though the mesial surface may
be flattened or have a slight longitudinal depression. T e distal root surface is convex.
- It has one root canal close to 100% of the time.

B. Ma XIl 1 a Ry 1 a TERa 1 INCISORS

- T e cross section of the root at the cervix is "egg shaped" or ovoid, with the widest mesiodistal portion on the labial.
- A shallow longitudinal root depression is sometimes found on the middle of the mesial root surface extending about half of the
 root length but not on the distal surface.
- T ere is one root canal close to 100% of the time.

C. MaNd IBUl a R CENTRal aNd 1aTERal INCISORS

- In cross section, the cervical portion of the root is ovoid, considerably broader labiolingually than mesiodistally.
- Longitudinal root depressions are present on both proximal sides with the distal depression more distinct than the mesial.
- Most often, there is one root canal. ${ }^{\mathrm{M}}$

d. Ma XIl 1 a Ry Ca NINES

- The cervical cross section is broad labiolingually and appears ovoid.
- Developmental grooves (depressions) are present on both sides, often deeper on the distal.
- As in other maxillary anterior teeth, there is one root canal almost 100% of the time.

E. MaNd IBUl a R CaNINES

- Roots are wide labiolingually in the cervical half.
- Roots have prominent longitudinal root depressions on both sides, often deeper on the distal, or sometimes clearly separated roots (one labial and one lingual).
- There is most often one root canal. ${ }^{\text {N }}$

F. Ma XIl 1 a Ry FIRST PREMO1 a RS

- T ere are most often two canals. ${ }^{0}$
- Most maxillary first premolars have two roots (one buccal and one lingual) and two canals, and even when only one root is present, two pulp canals are usually found.
- Mesial and distal root depressions occur on both one- and two-rooted first premolars (between the buccal
 and lingual roots or between the buccal and lingual halves of the single root).
- T e prominent mesial depression of the crown continues across the cervical line to join the deep mesial root depression.
- When considering all premolars, the maxillary first premolar is UNIQUE since it has the only root where the mesial root depression is deeper than the distal root depression.
- When two roots are present, the bifurcation occurs in the apical third to half of the root.

G. Ma XIl 1 a Ry SECONd PREMO1 a RS

- Although there is normally only one root, there may be two roots as well. ${ }^{\mathrm{P}}$
- T ere may be a shallow depression (sometimes called a developmental groove) on the mesial side of the root, but it does not extend onto the crown, as was seen on the maxillary first premolar. A root depression can usually be found on the distal side,
 often deeper than on the mesial.
- T ere is most often one root canal. ${ }^{Q}$

h. Ma Nd IBUl a R FIRST PREMOl a RS

- In cross section, the cervical portion of the root is ovoid and is widest buccolingually.
- Longitudinal depressions are often present on both sides, deeper on the distal. Sometimes these depressions may be quite deep and end in a buccolingual apical bifurcation.

- T ere is usually one root canal. ${ }^{R}$

I. Ma Nd IBUl a R SECONd PREMO1 a RS

- The cross section of the cervical portion of the root is ovoid buccolingually.
- Longitudinal depressions are not common on the mesial root surface but are frequent on the distal surface in the middle third.
- T e cervical cross section of the root of the three-cusp premolars is

Tooth \#29 particularly wide on the lingual, more so than on twocusp types.

- T e root is rarely bifurcated and almost always has one root canal. ${ }^{\text {S }}$

J. Ma Nd IBUl a R FIRST a Nd SECONd MOl a RS

- Mandibular molars normally have two roots: mesial (broader and longer) and distal. Both roots are broad buccolingually.
- Mandibular first and second molars normally have three root canals, two in the mesial root and one in the distal root.
- T e mesial root of both molars commonly has prominent root depressions on the mesial and distal surfaces, and there are usually two root canals nearly 100% of the time. T is root may even be divided into a buccal and lingual part. T e distal root surface contours are more variable.
- T e distal roots in the mandibular first and second molars most often have one canal. ${ }^{\mathrm{T}}$
- Access to the root bifurcations in the mouth is located near the midbuccal and midlingual root surfaces.
- T e root trunk is shorter on first molars than on second molars; the furcation is nearest to the cervical line on the buccal of first molars. T e cervical line is more occlusal on the lingual of first molars. Buccal and lingual depressions are seen on the relatively short root trunk, extending from the cervical lines to buccal and lingual furcations. (Recall that enamel at the buccal and lingual cementoenamel junction may extend into the bifurcation.)
- First molar roots are broader and more widely separated than second molar roots, which may exhibit a distal inclination.

Tooth \#31

K. Ma XIl 1 a Ry FIRST a Nd SECONd MOl a RS

- T ere are normally three roots: mesiobuccal, distobuccal (shortest), and lingual (longest).
- Maxillary first and second molars usually have four root canals: two in the wide mesiobuccal root and one each in the distobuccal and lingual roots.
- T e mesiobuccal root has mesial and distal side root depressions (and usually has two root canals).
- T e distal contour of the distobuccal root varies but is normally convex (and normally has one canal).
- T ere is usually a slight longitudinal depression on the lingual side on the lingual root of the maxillary first molar. T e lingual root has one canal.
- Access to furcations between the roots is located in the cervical third of the root: on the buccal surface, near the center mesiodistally, and on the mesial and distal surfaces, located slightly lingual to the center buccolingually.
- Often, a depression extends from the trifurcation to the cervical line and sometimes into the enamel of the crown on first molars. A distal crown depression is often noted on the distal surfaces of maxillary first molars.
- Separation between roots is more pronounced on first molars than on second molars; on second molars, the buccal roots are more nearly parallel and inclined distally in their apical third.
- T e root trunk is broader (longer) than on mandibular molars, so the furcation between the mesiobuccal and distobuccal root may be at the junction of the cervical and middle thirds of the mesiobuccal root, especially on second molars.

A summary of the presence and relative depth of longitudinal root depressions is presented in Table 8-3.

Ta B1 E 8-3	Summary: Presence and Relative depth of longitudinal Root depressions ("Root Grooves")		
	TOOTH	MEs IALr OOT DEPr Ess IOn?	DIs TAL r OOT DEPr Es s IOn?
MAxILLAr Y TEETH	Maxillary central incisor	Not likely	No (convex)
	Maxillary lateral incisor	Variable	No (convex)
	Maxillary canine	Yes	Yes (deeper)
	Maxillary first premolar	Yes (deeper + UNIQUE, extends onto mesial of crown); often two roots	Yes
	Maxillary second premolar	Yes	Yes (deeper)
	Maxillary first and second molars	Mesiobuccal root: Yes	Variable
		Distobuccal root: variable	No (convex) but root trunk on firsts has a concavity between cervical line and distobuccal root
		Lingual root: lingual surface depression	
MAn DIBULAr TEETH	Mandibular central incisor	Yes	Yes (deeper)
	Mandibular lateral incisor	Yes	Yes (deeper)
	Mandibular canine	Yes	Yes (deeper)
	Mandibular first premolar	Yes (or no: about 50\%)	Yes (deeper)
	Mandibular second premolar	No (unlikely)	Yes (deeper)
	Mandibular first and second molars	Mesial root: Yes	Yes (deeper)
		Distal root: variable but often is deeper on mesial	Variable

General learning guidelines:

1. Maxillary incisors are less likely to have root depressions.
2. All canines and premolars (EXCEPT maxillary first premolars) and mandibular incisors are likely to have deeper distal surface root depressions.

SECTION III

ETh NIC va RIa TIONS IN PUl P a Nd ROOT Ca Nal MORPh Ol OGy

Research on root canal and pulp morphology has shown that ethnic variations exist. Root canal variations are more prevalent in maxillary and mandibular premolars and molars, especially in Asian, Pacific, sub-Saharan, Australian, Middle Eastern, and subpopulations within these larger ethnic groups. One of the most frequent variations reported is the incidence of C-shaped root canals in the maxillary and mandibular molars and mandibular premolars in the Asian population. ${ }^{4}$ A C-shaped canal is named for the ribbon-shaped, 180-degree arc morphology viewed in the cross section of a root that replaces the discrete, separate canal openings normally seen.

Another common variation is the incidence of bifurcated root canal systems in mandibular ürst premolars. A review of the literature shows a higher incidence of bifurcated root canals in African Americans (16\% to 33\%), Turkish populations (36% to 40%), Kuwaiti populations (40%), and Chinese populations (22% to 36%) as compared to Caucasians (6% to 14%). ${ }^{5}$ T ese variations need to be identified (usually using radiographs) prior to endodontic therapy so that appropriate adjustments to the access opening can be made, and thorough debridement of the root canals can be accomplished.

REvIEW Questions

Each of the following questions may have more than one correct answer.

1. Which teeth are NOT likely to have root depressions on both the mesial and distal surfaces of the root?
a. Maxillary central and lateral incisor
b. Maxillary canine
c. Maxillary second premolar
d. Mandibular second premolar
2. Maxillary anterior teeth are most likely to have how many root canals?
a. One
b. Two
c. T ree
d. One or two
3. Maxillary first molars are most likely to have \qquad roots and \qquad root canals.
a. Two, two
b. Two, three
c. Two, four
d. T ree, three
e. T ree, four
4. T e one premolar most likely to have two roots (and two root canals) is the
a. Maxillary first premolar.
b. Maxillary second premolar.
c. Mandibular first premolar.
d. Mandibular second premolar.
5. T e two roots of a maxillary first premolar are called
a. Mesial and lingual.
b. Mesial and distal.
c. Buccal and mesial.
d. Buccal and lingual.
e. Mesiobuccal and distobuccal.
6. On a tooth with severe bone loss due to periodontal disease, a probe can access the root furcation of a maxillary first molar on which of the following surfaces?
a. Buccal surface
b. Lingual surface
c. Mesial surface
d. Distal surface
d, c, a-6; d-5; a-4;e-3;a-2; d, a-1: SRE WS Na

CRITICal Thinking

1. Jeremiah Smith requires endodontic therapy on a maxillary first molar. How can the dentist determine how many canals this tooth has that require filling? Optional for a take home assignment: the student may ask a dentist for advice.
2. Search on the computer for images of "radiographs of molar root canals," and see how many maxillary molars appear to have three canals and how many appear to have four. Be aware that sometimes the root canal fillings can be superimposed over one another, so the count may not be accurate. T en look at mandibular molars to see how many appear to have two canals as opposed to three. You may even find more canals than you expect.

r EFEr En CEs

1. Benjamin KA, Dowson J. Incidence of two root canals in human mandibular incisor teeth. Oral Surg Oral Med Oral Pathol 1974; 38:123-126.
2. Rankine-Wilson RW, Henry P. T e bifurcated root canal in lower anterior teeth. J Am Dent Assoc 1965;70:1162-1165.
3. Bellizzi R,Hartwell G. Clinical investigation of in vivo endodontically treated mandibular anterior teeth. J Endod 1983;9:246-248.
4. Jafazadeh H, Wu YN. T e C-shaped root canal configuration: a review. J Endod 2007;33:517-523.
5. Cleghorn B, Christie W, Dong C. The root and root canal morphology of the human mandibular first premolar: a literature review. J Endod 2007;33:509-516.
6. Perlich MA, Reader A, Foreman DW. A scanning electron microscopic investigation of accessory foramens on the pulpal floor of human molars. J Endod 1981;7:402-406.
7. Vertucci FJ, Gegauff A. Root canal morphology of the maxillary first premolar. J Am Dent Assoc 1979;99:194-198.
8. Bellizzi R, Hartwell G. Radiographic evaluation of root canal anatomy of in vivo endodontically treated maxillary premolars. J Endod 1985;11:37-39.
9. Vertucci FJ. Root canal anatomy of the human permanent teeth. Oral Surg Oral Med Oral Pathol 1984;58:589-599.
10. Gilles J, Reader A. An SEM investigation of mesiolingual canal in human maxillary first and second molars. Oral Surg Oral Med Oral Pathol 1990;70:638-643.
11. Neaverth EJ, Kotler LM, Kaltenbach RF. Clinical investigation (in vivo) of endodontically treated maxillary first molars. J Endod 1987;13:506-512.
12. Skidmore AE, Bjorndal AM. Root canal morphology of the human mandibular first molar. Oral Surg Oral Med Oral Pathol 1971;32:778-784.
13. Shaw L, Jones AD. Morphological considerations of the dental pulp chamber from radiographs of molar and premolar teeth. J Dent 1984;12:139-145.

OTHEr GEn Er AL r EFEr En CEs

Estrela C, Pereira HL, Pecora JD. Radicular grooves in maxillary lateral incisor: case report. Braz Dent J 1995;6(2): 143-146.

Pecora JD, Saquy PC, Sousa Neto MD, et al. Root form and canal anatomy of maxillary first premolars. Braz Dent J 1991;2(2): 87-94.
Pecora JD, Sousa Neto MD, Saquy PC, et al. In vitro study of root canal anatomy of maxillary second premolars. BrazDent J 1992;3(2):81-85.
Pecora JD, Woelfel JB, Sousa Neto MD. Morphologic study of the maxillary molars. Part I: external anatomy. Braz Dent J 1991; 2(1):45-50.
Pecora JD, Woelfel JB, Sousa Neto MD, et al. Morphologic study of the maxillary molars. Part II: internal anatomy. Braz Dent J 1992;3(1):53-57.
Walton RE, Torabinejad M. Principles and practice of endodontics. 3rd ed. Philadelphia, PA: W.B. Saunders Company, 2002.
Web site: http://www.aae.org/media/index.html-American Association of Endodontists (with information for the professional and for media/public).

Specific facts are referenced throughout this chapter by using superscript letters like this (data ${ }^{\mathrm{A}}$). T e referenced facts are listed here after each letter.
A. On the underneath surface of the root in the furcation, accessory canals occur 64% of the time. ${ }^{6}$
B. Mandibular central and lateral incisors have one root canal 60% of the time. Mandibular central incisors may have two canals with two separate apical foramina (type III) 3% of the time and two canals converging to one foramen (type II) from 17% to 43% of the time. Mandibular lateral incisors may have two canals from 20% to 45% of the time (usually type II with one foramen or type III with two separate foramina about 3% of the time). Mandibular canines may have two canals from 4% to 22% of the time. When two canals are present, one is facial and one is lingual, often with type IV formation.
C. Approximately 57% of maxillary first premolars have two roots, but only 39% have one root. When two roots are present, the canals in both roots exhibit a type I configuration, and, when one root is present, the canal configuration is either a type II or type III. ${ }^{7}$
D. T e incidence of three roots in maxillary first premolars is approximately $4 \%{ }^{7}$
E. According to one researcher, the average incidence of two canals in a maxillary second premolar is close to 50% (type II or type III). T ree canals occur about 1% of the time. ${ }^{8}$
F. Mandibular first premolars have one root and one canal (type I) 70% of the time (Fig. $9-10 \mathrm{~A}$) and 98% of the time in second premolars. Mandibular first premolars may have two canals (type IV) 24% of the time (Fig. 9-10B), but mandibular second premolars have two canals only 2.5% of the time. ${ }^{9}$
G. T e mesiobuccal root of the maxillary first molar has two canals 90% of the time, one located more buccally within this root called mesiobuccal canal and one located more lingually within this root called the mesiolingual canal. Type III canal systems have been reported to occur 33% to 60% of the time. ${ }^{10}$ Opening into the palatal root canal, the palatal orifice on the floor of the pulp chamber is located beneath the mesiolingual cusp (Fig. 8-9). Opening into the mesiobuccal root, the mesiobuccal orifice is located slightly mesial to and beneath the mesiobuccal cusp tip. T e mesiolingual orifice is located slightly to the palatal aspect of the mesiobuccal orifice. Usually, this orifice is dif cult to locate because of an overhanging dentin shelf. Opening into the distobuccal root, the distobuccal canal orifice is located on a line between the palatal orifice and the buccal developmental groove at a point just short of the angle formed by the buccal and distal walls of the pulp chamber.
H. T e mesiobuccal root of the maxillary second molar has two canals 70% of the time. ${ }^{10}$
I. T e mesial roots of mandibular $\dot{\alpha}$ rst molars have two canals virtually all of the time: a type III canal system is present 60% of the time, and a type II canal system is present 40% of the time. ${ }^{11} \mathrm{~T}$ e mesial roots of mandibular second molars have two canals 64% of the time: a type II canal system 38% of the time and a type III canal system 26% of the time, but one canal 27% of the time. ${ }^{9}$
J. In the distal roots of mandibular $\dot{\alpha}$ rst molars, there are two canals approximately 35% of the time, usually type II configuration, ${ }^{12}$ whereas the distal roots of mandibular second molars have one canal 92% of the time. ${ }^{9}$
K. In both mandibular first and second molars, the mesiobuccal canal orifice on the chamber floor is located slightly mesial but close to the mesiobuccal cusp tip (Fig. 8-9). T e mesiolingual canal orifice is just lingual to the mesial developmental groove of the mesial marginal ridge. It is not under the mesiolingual cusp tip but is in a more central location. If the distal root has one canal, the distal canal orifice is large and located just distal to the center of the crown. When two canals are present, the distolingual orifice is small and is located centrally just lingual to the central fossa. Careful inspection of the chamber floor toward the buccal will successfully locate the distobuccal orifice.
L. In a radiographic study of 259 children in England, from their 11th to 14th birthdays, the mesiodistal and roof-to-floor pulp dimensions were recorded with a Lysta-Dent Digitizer. Mesiodistal reduction in size in mandibular first molars over 3 years was minimal (1% to 3.5%) compared to a considerable height reduction
(15%) of the pulp chambers. T is was mostly the result of secondary dentin deposition on the floor, not the roof, of the chamber. ${ }^{13}$
M. Mandibular incisors have one canal about 70% of the time for centrals and 55\% for laterals.
N. Mandibular canines have one root canal about 70% of the time.
O. Maxillary first premolars have two canals about 90% of the time.
P. Maxillary second premolars have two roots 11% of the time.
Q. T ere are two root canals in maxillary second premolars about 50% of the time. ${ }^{8}$
R. Mandibular first premolars have one root canal 70\% of the time.
S. Mandibular second premolars have one root canal 96% of the time.
T. T e distal roots of mandibular molars have one root canal 65% of the time in the first molar and 92% of the time in the second molar.

- Functional Occlusion and Malocclusion

Acknowledgment

This chapter was updated for content and terminology by Dr. Shereen S. Azer, B.D.S., M.Sc., M.S. He graduated from the College of Dentistry, Ale xandria University, Egypt, where he obtained a Master's Degree in Conservative Dentistry. He received his Advanced Combined Prosthodontics Certificate and M.S. Degree from the University of lllinois at Chicago and is currently an Associate Professor at the Ohio State University College of Dentistry where he directs the Occlusion and TMD course.

Topics covered within the seven sections of this chapter include the following:
I. Ideal occlusion versus malocclusion
A. Ideal class I occlusion
B. Dental malocclusions of teeth
C. Class II malocclusion
D. Class III malocclusion
II. Movements within the temporomandibular joint
A. Anatomy of the temporomandibular joint
B. Movements within the lower joint space
C. Movements within the upper joint space
D. Total joint movement
E. Dislocation of the mandible
III. Terms used to describe jaw relationships between the mandible and the maxillae
A. Maximal intercuspal position
B. Centric relation
C. Physiologic rest position
D. Jaw relationships during horizontal movements of the mandible
IV. Functional movements when eating: chewing and swallowing
A. Incising
B. Mastication (chewing)
C. Swallowing (deglutition)
V. Parafunctional movements and heavy tooth contacts: signs and symptoms
VI. Treatment methods related to malocclusion
A. Patient education and behavior therapy
B. Stress management and muscle relaxation
C. Changing jaw relationships with an occlusal device
D. Changing teeth shapes to tre at symptoms of malocclusion
E. Changing tooth location to treat malocclusion
VII. Advanced topics in occlusion
A. Envelope of motion
B. Accurate recording of the centric relation jaw position
C. Long centric articulation

An introduction to ideal occlusion was discussed earlier in Chapter 1, Section VIII. T is chapter includes a more in-depth discussion of occlusion including tooth and jaw relationships during function, as well as the terminology and concepts
associated with malocclusion (which literally means "bad" occlusion). Research findings and advanced topics are referenced throughout this chapter using superscript letters like this $\left(d^{2} a^{A}\right) . T$ e referenced data are listed at the end of this chapter.

Objectives

This chapter is designed to prepare the learner to perform the following:

- Define Angle's class I, II, and III re lationships.
- List and describe types of tooth and jaw malocclusions.
- Describe and locate (on a skull) the articulating parts of the temporomandibular joint (TMJ).
- Describe the location and functions of the articular disc.
- Palpate the lateral and posterior surfaces of the condyle of the mandible during movement of the jaws.
- Describe and demonstrate mandibular movement within the lower joint space (rotation) and within the upper joint space (translation).
- Describe mandibular dislocation (luxation) and demonstrate how to alle viate this problem with appropriate mandibular manipulation.
- List and describe signs and symptoms of malocclusion (including the possible effects of premature contacts and parafunctional movements).
- Describe and recognize the following jaw relationships: maximal intercuspal position (MIP), centric jaw relation, and occlusal vertical dimension.
- Describe and recognize the following horizontal eccentric movements: protrusive movement (including the effect of horizontal and vertical overlap on incisal
guidance) and lateral movement (including the effect of canine overlap on canine-protected occlusion).
- Define and recognize tooth relationships during lateral movements on the working and nonworking articulation.
- Describe the relationship of teeth and adjacent oral structures during eating.
- Describe (and sketch) an ideal envelope of motion from the facial and sagittal views and label mandibular tooth positions or movements for each segment of the enve lope.
- Define and provide examples of parafunctional movements.
- List and describe possible methods of treatment for bruxing, myofunctional trigger points (pain), and temporomandibular disorders (TMDs) including the steps for construction of an occlusal device (bite guard).
- Describe a method for accurately recording a centric relation (CR) position of the mandible.
- Sketch, from memory, the tooth crown outlines on one side of the mouth in ideal class I occlusion.

SECTION I Id Eal OCCl u SION VEr Su S Ma OCCl u SION

Ideal occlusion is the harmonious static and dynamic relationship of teeth and jaws that dentists would like to reproduce when restoring a patient's entire mouth to good form and function. Malocclusion, on the other hand, is literally a "bad" occlusion, or a deviation from the ideal. Malocclusion can be due to an improper alignment of the teeth within an arch or a lack of harmony between the size and shape of the jaws that prevents teeth from fitting together ideally.

Dr. Edward Angle first defined three classes of jaw relationships in 1887. An ideal or normal front-to-back (anteroposterior) relationship between the upper and lower jaws is known as class I occlusion. In contrast, persons with class II or class III jaw relationships have a malocclusion because of a considerable difference in size, or the abnormal positional relationship, of the mandible relative to the maxillae. Each class of occlusion is defined by the relationship of the first teeth to erupt in the adult dentition, namely, the maxillary and mandibular first molars, or, if the first molars are absent, by the relationship between the maxillary and mandibular canines.

a. Id Eal Cl a SS I OCCl u SION

T e teeth of a person with ideal occlusion are aligned within each arch so that they fit together and function harmoniously, and the jaws are in a class I relationship. Recall from Chapter 1 that class I occlusion (also called neutroclusion or normal occlusion) is defined as the relationship of permanent first molars where the tip of the mesiobuccal cusp on the maxillary $\dot{\alpha} r s t$ molar is aligned with the mesiobuccal groove on the mandibular $\dot{\alpha}$ rst molar (Fig. 9-1A and B) and the maxillary canine fits into the facial embrasure between the mandibular canine and the first premolar (Fig. 9-1A). (T is class I relationship occurs in approximately 72% of the population.)
T e facial profile of a person with class I occlusion tends to form a rather straight line from the top half of the face to the anterior border of the mandible (chin) and is called orthognathic [OR thog NA thik], where "gnathic" pertains to the jaw and "ortho" means a straight or normal jaw profile in Figure 9-1D. Compare the word orthognathic that refers to a straight jaw profile and orthodontics that means tooth

Class I (72\%)

straightening. T is profile may also be called mesognathic (not mesiognathic) and is characterized by the position of the resting mandible relative to the maxillae: no obvious protrusion (the lower jaw is not positioned anteriorly to the normal) and no obvious retrusion (the lower jaw is not positioned posteriorly to the normal).

Ideal occlusion also required the perfect and maximal fitting together (interdigitation) of the upper and lower teeth as described here.

- T e incisal edges of maxillary teeth are labial to the incisal edges of mandibular teeth. T e amount of this normal horizontal overlap (also called normal overjet) is noted by the horizontal arrow in Figure 9-2A.
- T e incisal edges of mandibular incisors are hidden from view by the overlapping maxillary incisors. T e amount of this normal vertical overlap (also called normal overbite) is noted by the vertical arrow in Figure 9-2B.
- Buccal cusps and buccal surfaces of the maxillary posterior teeth are buccal to those in the mandibular arch, whereas the lingual cusps and lingual surfaces of the mandibular posterior teeth are lingual to those in the maxillary arch (Fig. 9-3A).
- Lingual cusps of maxillary posterior teeth rest in occlusal fossae of the mandibular teeth, whereas the buccal cusps

FIGur E 9-2. Angle's class I occlusion: Incis or relationship, horizontal and vertical overlap. A. Normal horizontal overlap has the incisal edge of the maxillary incisors anterior to the incisal edge of the mandibular incisors, also known as normal overjet (denoted by the horizontal arrow). B. Normal vertical overlap has the incisal edge of the maxillary incisors overlapping (hiding from view) the incisal third of the mandibular incisor, also known as normal overbite (denoted by the vertical arrow).

FIGur E 9-1. Angle's class I occlusion. A. Lateral view of tooth models with the teeth aligned in class I occlusion. B. The first molar relationship showing the mesiobuccal cusp of the maxillary first molar aligned with the mesiobuccal groove of the mandibular first molar. C. Normal anterior re lationship of incisors. D. The normal, orthognathic profile of a person having class I tooth relationships.
of the mandibular teeth rest in occlusal fossae of the maxillary teeth (Fig. 9-3B).

- T e vertical long axis midline of each maxillary tooth is positioned slightly distal to the vertical axis of the corresponding mandibular tooth (due, in part, to the

FIGur E 9-3. Normal molar relationship in cross section. A. The buccal cusps of maxillary molars are facial to the buccal cusps of the mandibular molars, and the lingual cusps of the mandibular molars are lingual to the lingual cusps of the maxillary molars. B. The lingual cusps of maxillary molars occlude with the fossae in mandibular molars, and the buccal cusps of mandibular molars occlude with fossae in maxillary molars.

FIGur E 9-4. Ideal tooth alignment in Angle's class I occlusion. The center axis of each tooth in the maxillary arch is aligned just distal to the center axis of the same type of tooth in the mandibular arch. For example, look at the two opposing canines: \# 11 is just distal to \#22.
wider maxillary than mandibular incisors). For example, in Figure 9-4, the center of the maxillary canine (\#11) is distal to the mandibular canine (\#22), the center of the maxillary first premolar (\#12) is distal to the mandibular first premolar (\#21), and so forth.

- Ideal occlusion also requires that teeth within the arch align to form an ideal arch shape and occlusal plane. ${ }^{1}$ T erefore, a person with a class I jaw relationship does not have ideal occlusion if one or more teeth are not aligned with others to form an ideal arch shape. Examples of poor alignment within the arch are described next.

B. d ENTal Mal OCCl u SIONS OF TEETh

Malocclusion can be detrimental if it adversely affects appearance, comfort, or function. Dental malocclusion of individual teeth can occur in mouths with class I, II, or III jaw relationships.

(1.) Terms defining Poor a lignment of Teeth within an a rch

Malocclusion can occur when individual teeth or groups of teeth within an arch are not aligned to fit into an ideal parabolic arch form and/or do not form a level occlusal plane.

- A tooth that is out of alignment to the labial or buccal compared to the ideal arch form of other teeth is in labioversion (also labial version), a term used for an anterior tooth like tooth \#24 in Figure 9-5, or buccoversion (also buccal version) if referring to a posterior tooth.
- A tooth that is out of alignment to the lingual compared to other teeth in the arch is in linguoversion (also lingual version), a term used to describe teeth \#7 and \#10 in Figure 9-5.
- A tooth that is twisted (rotated) around its tooth axis is described as torsiversion, a term used to describe tooth \#8 in Figure 9-6.
- A tooth that is overerupted is abnormally long relative to the rest of the occlusal surfaces, and it exhibits

FIGur E 9-5. Crowding of anterior teeth. Notice that the mandibular left central incisor (\#24) is in labial version (positioned labial to the normal arch form), whereas the maxillary lateral incisors (\#7 and \#10) are in lingual version. This poor alignment has resulted in these three teeth being in a crossbite relationship with their opposing teeth.
supraeruption or extrusion, terms that can be used to describe the maxillary third molar in Figure 9-7A.

- If a tooth is abnormally short relative to the rest of the occlusal plane, it is in infraocclusion (or infraversion). This may occur when a short primary tooth is retained into adulthood (Fig. 9-7B) or when a primary or permanent tooth loses its periodontal ligament and the cementum of the root fuses with the surrounding alveolar bone preventing further eruption. This fusion of cementum to bone is called ankylosis [ANG ki lo sis].
- When adjacent teeth within an arch do not contact one another correctly, open proximal contacts can contribute to food impaction, gingivitis, and periodontal disease if not kept clean.

FIGur E 9-6. Torsiversion (twisting) of tooth \#8, the maxillary right central incisor. Also, notice that the posterior teeth on the patient's right side (left side of photo) are in crossbite, and on the patient's left side, the premolars in the shadows appear to be in an end-to-end relationship.

FIGur E 9-7. A. Supraeruption (extrusion) of the maxillary third molar, \# 1. Arrows point to facets (fattened areas) caused by heavy tooth contacts that occur when the posterior teeth come together and function. B. This retained primary tooth is in infraversion relative to the surrounding permanent teeth.

Terms r elated to Tooth-to-Tooth Malocclusion

When opposing arches of teeth do not align together ideally when they come together into their best interlocking or best fitting together (called maximal intercuspation), the following variations can occur:

- When buccal cusps of maxillary posterior teeth line up directly over mandibular buccal cusps, the relationship is called an end-to-end occlusion. An end-to-end occlusal relationship is seen between first premolars in the shadows on the right side of the photograph in Figure 9-6.
- Posterior crossbite (reverse articulation) occurs when mandibular posterior teeth are positioned too far buccally so that the lingual cusps of mandibular teeth (and not the buccal cusps) are positioned in the central fossae of the maxillary teeth as seen between molars in Figure 9-8C and on the left side of the photograph in Figure 9-6. Mandibular posterior teeth are also in crossbite if both
cusps are positioned to the lingual of the opposing maxillary teeth. T is is the case in Figure $9-8 \mathrm{~B}$ where the mandibular molars are so lingual (or maxillary molars are so buccal) that they are in crossbite.
- When mandibular anterior teeth are facial to maxillary anterior teeth, this is called an anterior crossbite (reverse articulation) as seen in Figure 9-9. Compare this to the ideal anterior relationship where mandibular incisors are lingual to maxillary incisors.
- When viewed from the facial, normal overbite is when maxillary incisors vertically overlap only the incisal third of mandibular incisors (recall Fig. 9-2). An anterior overbite is considered to be a severe overbite when maxillary incisors overlap mandibular incisors down to the level of the cervical lines of the mandibular incisors hiding them from view (Fig. 9-10A). In some persons, mandibular incisors in severe overbite may actually impinge upon the tissue of the roof of the mouth (hard palate) and result in

FIGur E 9-8. Molar relationships in cross section. A. Views of the normal occlusion with the buccal surfaces of maxillary molars facial to mandibular molars. B. Maxillary molars exhibit posterior crossbite (with mandibular molars totally to the lingual of the maxillary molars). This condition is common in persons with class II malocclusion where the mandible is small relative to the maxillae. C. Posterior crossbite (reverse articulation) with the buccal cusps of maxillary molars and lingual cusps of mandibular molars occluding into opposing fossae. This condition is common in persons with class III malocclusion, where the mandible is large relative to the maxillae.

FIGur E 9-9. Anterior crossbite. A. Dental arches showing the shift in alignment of jaws (Angle's class III occlusion) resulting in anterior teeth in crossbite (mandibular incisors are anterior to maxillary incisors). B. Close-up of the incisors in anterior crossbite.
an imprint in, or damage to, that tissue. In people with a severe overbite, jaw joint problems can occur since the mandible cannot move freely forward without dropping down considerably before it can move forward.

FIGur E 9-10. Three types of anterior tooth relationships. A. Severe overbite with maxillary incisors completely overlapping (covering up) the mandibular incisors. Note that the maxillary incisors are tipped inward relative to the lateral incisors, which are fared normally outward. This is a common relationship in patients with Angle's class II occlusion with division 2 anterior relationship. B. Edge-to-edge bite where the incisal edges of the maxillary incisors line up directly over the incisal edges of mandibular incisors. This anterior relationship is common in persons with class III occlusion. C. Anterior open bite where the incisal edges of the maxillary incisors neither overlap vertically nor touch the incisal edges of mandibular incisors.

FIGur E 9-11. Severe Overjet relationship of incisors. Notice the overjet and fare of the maxillary incisors, which is common in persons with class II occlusion and division 1 anterior relationship. Class II occlusion is confirmed since the mesiobuccal groove of the mandibular first molar is distal to the mesiobuccal cusp of the maxillary first molar.

- If the posterior teeth are in maximal intercuspation and maxillary incisal edges line up touching mandibular incisal edges with no vertical overlap, the result is an edge-to-edge relationship (Fig. 9-10B).
- An anterior open bite occurs when the posterior teeth occlude, but there is a space between opposing incisal edges (also called an open occlusal relationship) (Fig. 9-10C). In persons with this relationship, the posterior teeth occlude as the mandible moves forward but not the anterior teeth.
- T e amount of horizontal overlap between these teeth is called the overjet. It is normal for the incisal edges of mandibular incisors to come close to occluding with the lingual surfaces of maxillary incisors when a person closes the posterior teeth together. A severe overjet is seen in Figure $9-11$ where the maxillary incisors are considerably anterior to the mandibular incisors. T is overjet may contribute to crepitation, a crackly or grating sound within the jaw joint during function. ${ }^{\text {A }}$

Poorly aligned teeth that occlude before other teeth in the mouth are said to have premature contacts (or to be in heavy occlusion). T ese teeth are exposed to heavier forces than other teeth, especially in persons who exhibit bruxism [BRUCKS iz em], that is, who involuntarily grind their teeth, especially at night. T ese premature contacts could also be called dedective occlusal contacts if, upon closing in a posterior position, the teeth do not close directly into best or tightest fit but instead hit the prematurity, which deflects the mandible (changes direction of the mandible) before it can reach its tightest fit. T is deflective closure is different than the way the relaxed chewing muscles and anatomy of the jaw joint would guide the jaws together if there were no teeth. T is could eventually contribute to the wearing away of enamel forming a facet [FAS it] or flat spot, clearly evident on the occlusal surfaces of the mandibular premolars and first molar in Figure 9-7. Under certain circumstances, this imbalance can cause muscle pain.

C. Cl a SS II Ma OCCl u SION

A class II relationship (or disto-occlusion) is a skeletal type of malocclusion where a person may have a mandible that is

A

FIGur E9-12. Angle's class II occlusal relationship. A. Lateral view of tooth models with the teeth aligned in class II occlusion. B. The first molar relationship showing the mesiobuccal groove of the mandibular first molar distal to the mesiobuccal cusp of the maxillary first molar. C. Two divisions of anterior relationship of incisors: division 1 is where maxillary and mandibular incisors fare labially. Division 2 is where the maxillary incisors (especially central incisors) are fared (tipped) to the lingual. D. The retrognathic profile associated with a person having class II tooth relationships.
too small, maxillae that are too large, or both. T e result is a mandible that is distal to (retruded from) where it is located in a person with class I occlusion.

T at is, the mandible is in disto-occlusion, and the person has a receded chin. T is profile (with a retruded mandible) is convex and is called retrognathic [ret ro NATH ik] (Fig. 9-12D). In a person with class II occlusion, the mandibular teeth are in a distal (or posterior) relationship with their normal maxillary opponents (Fig. 9-12A), so the mesiobuccal groove of the mandibular first molar is distal to the mesiobuccal cusp of the maxillary first molar by a distance at least the width of a premolar (Fig. 9-12A and B). If the alignment differs by less distance than the width of a premolar, it is called a tendency toward class II occlusion. T ere are two subdivisions of this type of skeletal malocclusion based on the inclination and overlap of the maxillary incisors. T ey are known as division 1 and division 2 (as seen in Fig. 9-12C).

- Class II, division 1 is an incisor relationship where maxillary incisors labial inclination is similar to incisors found in normal classI occlusion (seen in Fig. 9-11). People with this relationship often exhibit a severe horizontal overjet of maxillary incisors labial to mandibular incisors and supraeruption of mandibular incisors. ${ }^{B}$
- Class II, division 2 is an incisor relationship where the maxillary central incisors are retruded with a severe lingual inclination, often with the lateral incisors inclined labially compared to the centrals. T is is evident in Figure 9-10A where maxillary central incisors tilt quite a bit to the lingual, especially relative to the adjacent labially flared lateral incisors. T ese people are likely to have very little horizontal overjet but a severe vertical overbite. ${ }^{\text {C }}$

d. Cl a SS III Ma OCCl u SION

Persons with a class III relationship or mesio-occlusion have a skeletal type of malocclusion where the mandibular dental arch is anterior (or mesial) to the maxillary dental arch. Persons with this relationship have a relatively large mandible compared to their maxillae, so their facial profile is concave with a very prominent chin. T is profile (with a protruded mandible) is called prognathic [prog NA thik] (Fig. 9-13D).

For persons with a class III molar relationship, the mesiobuccal groove of the mandibular first molar is mesial to the mesiobuccal cusp of the maxillary first molar by at least the

FIGur E 9-13. Angle's class III Occlusal relationship. A. Lateral view of tooth models with the teeth aligned in class III occlusion. B. The first molar relationship showing the mesiobuccal groove of the mandibular first molar mesial to the mesiobuccal cusp of the maxillary first molar. C. Anterior relationship of incisors: anterior crossbite. D. The prognathic profile associated with a person having class III tooth relationships.
width of a premolar (Fig. 9-13A and B). T at is, the mandible is mesial to where it is located in a person with class I occlusion. If the difference in alignment is less distance than the width of a premolar, it is called a tendency toward class III occlusion. People with class III occlusion often exhibit unique traits including anterior teeth that are in an edge-toedge or in a crossbite relationship where mandibular teeth are facial to maxillary teeth. An edge-to-edge anterior relationship is seen in Figure 9-10B, and an anterior crossbite is seen in Figures 9-13C and 9-14. ${ }^{\text {D }}$

It is possible that the classification of occlusion for a person may be described as one class on the right side and a different class on the left side. Class I malocclusions are most common, and class III malocclusions are least common. ${ }^{\text {E }}$

FIGure 9-14. Severe anterior crossbite in a person with class III occlusion.

SECTION II MOVEMENTS WITh IN Th E TEMPOr OMa Nd IBu lar JOINT

T e human temporomandibular joint (TMJ) is unique to mammals in that movement of this joint includes a combination of both hinge and gliding movements. ${ }^{\mathrm{F}} \mathrm{T}$ is unique, complex type of joint may be called ginglymoarthrodial [JIN gli mo ar THRO de al], where ginglymus refers to a joint that allows the mandible to rotate like a hinge against the base of the skull, whereas arthrodia refers to the capability of the entire mandible to bodily move or glide a bit forward or from side to side (called translational movement). In order to understand how this complex joint works, you first need to understand how the jaw joint is put together.

a. a NaTOMy OF Th E TEMPOr OMaNd IBu 1 ar JOINT

This introduction to the anatomy of the jaw joint is brief. A more complete discussion of this joint relative to the other structures of the skull (other bones plus muscles, ligaments, nerves, and blood vessels) can be found in Chapter 14.

A joint, or articulation, is a connection between two separate parts of the skeleton. T e temporomandibular joint or TMJ (or craniomandibular articulation ${ }^{2}$) is the articulation between the mandible and the two bones on the base of the skull called the temporal bones. T is joint is the only visible, free moving articulation in the head. All other bones of the skull are connected by sutures and are immovable. ${ }^{3} \mathrm{~T}$ e TMJ is a bilateral articulation, that is, the right and left sides work as a unit. T ere are three parts to each half of the TMJ: the process of the mandible called the mandibular condyle [KON dile], the shallow concavity on the base of the skull in the temporal bone called the articular (glenoid) fossa with its adjacent articular eminence
(ridge) (Fig. 9-15), and the articular disc interposed between these two bony parts. T ese three parts are enclosed by a f brous connective tissue capsule. ${ }^{3-5}$

(1. Mandibular Condyle

T e horizontal portion of the mandible that contains the teeth is called the body of the mandible. T ere are two broad vertical parts on each side of the body called rami [RAY my] (singular is ramus). T e mandibular condyles are the most superior processes of the rami and are rounded from front to back and from side to side (Fig. 9-15). T e rounded end (head) of each condyle fits into a concave fossa on the base of the skull called an articular fossa (seen on the skull in Fig. 9-16).

2. a rticular Fossa and a rticular Eminence

A transverse bony ridge called the articular eminence forms the anterior border of the articular fossa (Fig. 9-15 and on the right side of Fig. 9-16 where half of the mandible has been removed). T e fossa is considered to be a nonfunctioning portion of the joint because, when the teeth are in tight occlusion, there is no forceful contact between the head of the condyle and the concave part of the articular fossa. T e functional region of each condyle and eminence is padded with a thick layer of tough fibrous tissue, an area that has no blood vessels or nerves (shaded in red in Fig. 9-17 on a magnified section of a TMJ in the position it would occupy when the teeth come together as tightly and as comfortably as possible). ${ }^{6} \mathrm{~T}$ is fibrous tissue is particularly thick on the surfaces where function occurs: between the superior and anterior surfaces of the condyle and the posterior surface of the articular eminence. T is contact is only indirect, however,

Abstract

FIGur E 9-15. Human skull, left side. This lateral view shows the articulation of the bones of the TMJ, namely, the temporal bones and the mandible. The head of the condyle of the mandible is shaded light red, and the red line on the inferior border of a process of the temporal bone clearly outlines the concave articular fossa and the convex articular eminence just anterior to it. For the mandibular to move forward, the condyles move the mandible down under the articular eminence, so the mandible is lowered.

FIGur E 9-16. Human skull: inferior surface with half of the mandible removed on the right side of the drawing. Parts of the mandible and temporal bone that make up the TMJ are highlighted in red. On the left side, the mandibular condylar process of the mandible is shaded red, and on the right side with the mandible removed, the articular fossa of the temporal bone is shaded light red and the articular eminence just anterior to the fossa is red.

FIGur E 9-17. TMJ, lateral a spect, magnified section. The anterior of the skull (the face) is toward the right of the picture. The arrows indicate the contours of the concave articular fossa and convex articular eminence of the temporal bone. The white area across the top of this photograph is the space of the braincase. Notice the thicker fibrous covering (highlighted in red) and underlying compact bone on the functional part of the posterior inferior articular eminence and superior anterior part of the mandibular condyle. (Courtesy of Professor Rudy Melfi.)

loosely into the articular fossa. T ere should be a visible space between the mandibular condyle and the articular fossa that in life was occupied by the articular disc. T e disc is not present in a prepared dry skull because the disc is not bone. T e disc (Fig. 9-18) is a tough pad of dense fibrous connective tissue that acts as a shock absorber between the mandibular condyle and the articular fossa and articular eminence.

FIGur E 9-18. TMJ, sagittal section. The anterior surface of the skull (face) is to the left. The sectioned temporal bone (with articular fossa and articular eminence) forms the superior part of the joint, and the sectioned head of the condyle forms the inferior part. The articular disc in between is shaded red. The upper and lower synovial cavities surround the disc and secrete synovial fuid. (Reproduced by permission from Clemente CD, ed. Gray's anatomy of the human body. 30th ed. Philadelphia, PA: Lea \&Febiger, 1985:340.)

FIGur E 9-19. Fibrous capsule (and ligament) of the TMJ, lateral aspect (in red), encloses the joint. (Reproduced by permission from Clemente CD, ed. Gray's anatomy of the human body. 30th ed. Philadelphia, PA: Lea \&Febiger, 1985:339.)

It stabilizes the condyle by filling the space between the different contours of the condyle and the articular fossa and articular eminence. ${ }^{7}$

T e articular disc divides the space between the head of the condyle and the articular fossa into upper and lower joint spaces (upper and lower synovial cavities seen in Fig. 9-18), which permit complex functional movements of the mandible. ${ }^{7}$ When the mandible moves during function, the right and left discs normally move at the same time because the muscles that pull the jaw forward are attached to the mandibular condyles as well as to the discs. Proprioceptive [PRO pri o SEP tiv] nerve fibers in the peripheral portions of each disc allow us to sense the position of the mandible, thereby helping to regulate movements of the mandible.

Fib rous Capsule

A fibrous tube of tissue called the f brous capsule encloses the joint and limits its movement, best seen in Figure 9-19. T e internal surface of the fibrous capsule is lined with a synovial membrane that secretes very slippery synovial òuid that lubricates and nourishes the fibrous covering of the articulating surfaces and center of the disc that lack a blood supply.

B. MOVEMENTS WITh IN Th E 1OWEr JOINT SPa CE

Movement between the heads of the condyles of the mandible and the inferior surface of the discs occurs within the lower joint (synovial cavity) spaces. In the lower joint space, only a hinge-type or rotary motion occurs around a hinge axis line (also called a transverse horizontal axis or terminal
hinge axis). T at is, the body of the mandible rotates around an imaginary horizontal axis line that connects both condyles. T is purely rotational (hinge-type) movement of the two condyles around a horizontal axis can be compared to a playground swing with two supporting chains (similar to the supporting rami) that rotates front to back around a supporting pole (the swing's horizontal bar, or the hinge axis line that passes through the right and left mandibular condyles). T e seat of the swing, like the body of the mandible, moves quite a bit, whereas the highest chain links (like the heads of the condyles) move little since they are at the axis of rotation. T is purely rotational movement is possible only when opening the mandible up to about halfway. ${ }^{\text {G }}$ Further, the rotation of the mandible around this hinge axis is possible only when the mandible is not being pulled forward.

C. MOVEMENTS WITh IN Th E u PPEr JOINT SPa CE

Movement between the superior surfaces of the discs and the articular fossa (and eminence) occurs within the upper joint (synovial cavity) spaces. When you open and close the mouth beyond about halfway (i.e., beyond the limit of the purely hinge-like movement), the mandibular condyles and discs together translate or glide forward (when opening) and backward (when closing). Translation is the bodily movement of the entire mandible (and discs) downward and forward onto the articular eminences. During translation, the horizontal axis between the condyles actually moves forward as the condyles and discs slide from the articular fossae onto the adjacent eminences. T ink of this translatory movement as taking the entire playground swing set with its horizontal
bar (hinge axis line) in the previous example and moving it forward, which moves the swing (condyles and body of the mandible) bodily forward. If the swing is still swinging, a hinge movement is now combined with translation, similar to most movements within the jaw.

Both translatory and rotational opening movements occur when a person continues opening beyond about halfway, beginning when the jaw exceeds the maximum hinge opening limit and continuing until the jaw is opened all of the way (Fig. 9-20).

When the condyles and discs do not move forward simultaneously, the result may be crepitation. Crepitation (crepitus) is the crackling or snapping sound or noise emitted from the TMJ because of a disharmonious movement of the mandibular condyles against the articular discs, sometimes erroneously thought to be caused by the rubbing together of the dry synovial surfaces of joints. When the crackling noise is heard, the articular disc may be snapping in or out of position or it may become locked in the wrong position. ${ }^{1,8-12, \mathrm{H}}$ Crepitation is not a rare occurrence and does not normally require treatment unless it is accompanied by pain, limited jaw opening, or trismus [TRIZ mus] (i.e., a spasm of chewing muscles associated with dif culty opening or locking of the jaw). ${ }^{10,13} \mathrm{~T}$ e noise

FIGur E 9-20. Range of opening for hinge and translation movements. A. Maximal intercuspal position. B. Maximum opening for hinge movement. C. Maximum normal total opening. Note: Movement from positions (B) to (C) would include both hinge and translatory movement.
may disappear with time, or it may persist for many years being no more than a noisy annoyance. With practice, if a person who has crepitus on one or both sides can learn to open the jaw like a hinge without protruding it forward, the condyles will be able to rotate beneath the discs and the noise will stop.

LEARNINg ExERCISE

Place your fingers in front of your ears, and open and close your jaw to palpate the lateral heads of the mandibular condyles. When you open widely (as in yawning), you will now be rotating and translating your mandible. You may feel a bump, or hear a click or popping sound, or hear a grating noise (called crepitation) as the condyles move (translate) forward and slide down onto the articular eminences. These sounds could be a sign of dysfunction within the joint such as a disc that does not follow the movements of the condyle. How far are you able to open in the incisor region before you feel the condyles begin to slide forward (translation in the upper part of the joints)?

d. TOTa 1 JOINT MOVEMENT

Normal day-to-day functional mandibular movement required for eating, swallowing, yawning, and talking involves hinge-like rotation simultaneously with some translation of the mandible that occurs in both the upper and lower spaces of the TMJ. T e combined hinge and translatory motion follows a curved path primarily dictated by the movement of the condyle against the posterior and inferior surface of the articular eminence because no conscious effort is being made to open in a retruded manner. ${ }^{14,15}$

Poor occlusal relationships of any type can contribute to a variety of joint problems. ${ }^{1,9-11,16,17, I}$

E. d ISl OCaTION OF Th E MaNd IBl E

When widely opening the mandible, the disc and head of the condyle may move forward so far that they slip out of the articular fossa and move forward beyond the articular eminence. T us, the mandible will be partially dislocated (luxation or condylar subluxation). T is dislocation occurs in the upper joint compartment where translation occurs. T e mandibular condyle can also come off of the disc, causing the jaw to lock open. If the closing muscles suddenly contract, the mandible could become painfully locked open. A person's jaw-opening muscles are not nearly as powerful as the closing muscles, and therefore, we may not be able to unlock a mandibular dislocation in our own mouth without help. (Perhaps, you have seen an alligator trainer hold the alligator's jaws closed with only one hand since their opening muscles are so weak.)

A subluxed position may be released when another person depresses the mandible with heavy force downward and backward to slip the mandibular condyles and discs under the articular eminences and back into the articular fossae. In order to avoid having the person bite down on the fingers of the rescuer as the muscles are released from their state of contraction,
the rescuer's thumbs should be placed not on the mandibular teeth but bilaterally on the bony shelf (buccal shelf) of the mandible just lateral to the molars. T e disc is loosely attached
to the condyle and normally travels with it. T ere could be a lot of pain until the contracted muscles relax after the mandible is depressed and repositioned by the thumbs of the rescuer. SECTION III

TEr MS u SEd TO d ESCr IBE Ja W r El aTIONSh IPS BETWEEN Th E MaNd IBl E aNd Th E MaxIllaE

Jaw relation (or the maxillomandibular relationship) refers to the position of the mandible (lower jaw) relative to the two maxillae (upper jaw) and can be described as a tooth-totooth relationship between maxillary and mandibular teeth or as a bone-to-bone relationship between the maxillae and mandible. Several terms describing different tooth and jaw relations are discussed in this section.

a. MaxIMal INTEr Cu SPal POSITION

Maximal intercuspal position (MIP) or maximal intercuspation is a tooth-to-tooth relationship that is not dependent on where the jaw muscles or joint anatomy would like to position the mandible. It is the tightest or best fit between maxillary and mandibular posterior teeth and can be demonstrated on handheld casts of the upper and lower arches without looking into the mouth (Figs. 9-21B and 9-22B).

B. CENTr IC r El aTION

Centric relation (CR) or centric jaw relation is the relationship of the mandible to the maxillae where healthy muscles and joint anatomy can comfortably guide the mandible if there were no teeth. It is an important reproducible and repeatable relationship of the mandible to the maxillae because it is normally the relationship people return to each time after they chew and swallow, and it is the relationship that dentists use when they mount diagnostic casts of the mouth prior to major restorative procedures. T is jaw relationship is not af ected by the presence (or absence) of teeth, so
it does not change due to tooth malocclusion. It includes the range of positions of the mandible during a hinge-like opening and closing without moving bodily forward and without teeth touching, or just until the first two teeth initially just touch but do not yet begin to close more tightly into MIP. ${ }^{18-20, J}$

It is a relatively rare but ideal occurrence when CR coincides with the MIP. T is occurs when the mandible closes in its CR position and there is simultaneous even contact of teeth in maximal intercuspation when the teeth first touch. ${ }^{8,19-22}$ T is type of ideal occlusal relationship results in a harmony between the guidance afforded by jaw muscles, the position of condyles against the discs and fossae, and the maximum fitting together of the teeth. T is condition does not occur in most people unless they have just had a well-executed occlusal reshaping (equilibration) where small amounts of interfering occlusal enamel were removed by the dentist to equalize occlusal stress, ${ }^{22}$ have a well-made removable denture, or have had a complete dental arch rehabilitation replacing or reorienting all occlusal surfaces (described later in this chapter).

When centric jaw relation does not coincide with the MIP, a prematurity or deduective occlusal contact exists. Most people have deflective malocclusion to some degree. Premature or deflective occlusal contacts refer to the teeth that are the $\dot{\alpha}$ rst to contact as the mandible closes into its most retruded position in CR. T ese deflective occlusal contacts result in a mandibular deviation away from its relaxed, CR closure in order for the teeth reach MIP. T e direction of the deviation of the mandible is usually forward (about 1 to 2 mm) and upward, with or without simultaneous lateral movement. ${ }^{18,20,21,23,24} \mathrm{~T}$ is is illustrated in Figure 9-21 where premature contacts deflected the

FIGur E 9-22. MIP compared to centric jaw relation on a patient with severe def ective tooth contacts. A. Patient's casts (left side and right side) mounted in centric jaw relation. An articulator mounting of these casts in centric jaw relation using a leaf gauge revealed the severe defective left second molar contact that was impossible to correct by just reshaping the enamel (an equilibration). This person's mandible defected forward 2 mm and to the right 1 mm as the teeth closed into MIP. B. Same patient's casts (left side and right side) mounted in MIP.
mandible forward and to the left as the teeth move from CR into MIP (from A to B) and in Figure 9-22 where the mandible was deflected forward 2 mm (from A to B). In Figure 9-22, compare the short vertical pencil lines on two pairs of opposing maxillary and mandibular teeth that line up when the teeth are in their MIP but reveal how distally the mandible was positioned in its centric jaw relation. A prematurity is most obvious on the skull in Figure 9-23 where the supraerupted maxillary third molar occluded before any other teeth when the mandible closed in its CR. T is deflective occlusal contact forced the mandible to move considerably forward and superiorly in order to reach MIP.

Edentulous people (with no teeth) who wear complete dentures or false teeth are provided with denture teeth where CR coincides with MIP because they can learn to pull the mandible back and close into a stable and repeatable position of CR during jaw closure. T is enables the tight occlusion

FIGur E9-23. Centric prematurity: initial contact of a supraerupted maxillary third molar. When the mandible is positioned comfortably as it closes in centric relation, the first tooth to contact in this dentition is the third molar. The mandible must then shift forward and upward (arrows) in order for all teeth to come together in the MIP.
of denture teeth to coincide with the repeatable centric jaw position, so the dentures will remain tightly secured against the mucosa and not rock loose when functioning.

An articulator is a mechanical device that holds casts of the two arches, permitting a close duplication of the patient's opening and closing centric jaw relations. Notice the fit of the ball of the lower (mandibular) part fitting into a concavity on the upper (maxillary) part (Fig. 9-24A and B). T is design simulates the heads of the condyles fitting into their articular fossae. It is easier to study tooth relationships with the patient's dental arches (dental stone casts) on the articulator in your hands, rather than with your hands in the patient's mouth. What better way is there to determine whether or not the maxillary and mandibular lingual cusps fit together tightly or properly in the maximal intercuspal relationship?

LEARNINg ExERCISE

With your jaw muscles relaxed, open your mouth so that your teeth are slightly apart, and close very slowly in a hinge motion without sliding the jaw forward until the first teeth initially touch gently. The relationship of your jaws prior to your first gentle tooth contacts is your centric jaw relation. The relation of this pure hinge opening is a most important one to record when making extensive dental restorations for a patient. If your mandible is defected (hits and slides) forward as you continue to close your teeth together into their MIP where they fit together most tightly, you are experiencing def ective or premature occlusal contacts, and you are among the majority of people whose CR does not coincide with the MIP. The mandible will almost always slide forward from CR into MIP, either straight forward or to one side. More than likely, your own defective tooth contacts will not be as severe as that shown in Figure 9-22. Can you determine in which direction your premature tooth contacts defect your mandible? Compare the location of your first (premature) tooth contact in CR with those in Table 9-1. Less than 1\% of this group had MIP coincide with CR , yet most were asymptomatic.

FIGur E 9-24. Casts mounted on an articulator. A. This articulator (Denar, Anaheim, CA) can be used to mount casts of the patient's dentition in order to reproduce the position and movements of mandibular teeth relative to maxillary teeth. This mounting was used to design the tooth anatomy and occlusion for a fixed dental prosthesis (bridge) from teeth \# 18 to \#20 (replacing tooth \#19) and a removable partial dental prosthesis replacing teeth \# 12 through \# 15. (Mounting courtesy of Dr. Lisa Knobloch, Ohio State University.) B. Skull superimposed over an articulator to show how tooth models mounted on an articulator can reproduce the movements of the teeth relative to the TMJ. (Photo compiled by Dr. Julie Holloway, University of Iowa.)

C. Ph ySIOL OGIC r EST POSITION

Vertical dimension of occlusion refers to the distance between a selected point on the mandible and a selected point on the maxillae. T is dimension can be measured with the jaws positioned in CR or in MIP. T e physiologic rest position (or vertical dimension of rest position) is the position of the mandible when all of its supporting muscles are in their resting posture. ${ }^{25}$ Physiologic rest position is further defined as the mandibular position when the person's head is upright, the muscles of mandibular movement are in equilibrium, and
the condyles are in an unstrained position. Unless we are nervous, eating, talking, yawning, or using our muscles to perform other less natural functions (such as playing a clarinet), the mandible is in this comfortable resting position most of the time (over 23 hours each day). When a person with an erect posture is totally relaxed and makes no conscious effort to open or close the mouth, the mandible is in its physiologic rest position and there is a space between the occlusal surfaces of the maxillary and mandibular teeth called the interocclusal rest space (or freeway space). T is space is normally 2 to 4 mm between the maxillary and mandibular teeth. Of

Ta B1 E 9-1 defective Centric r elation Tooth Contact data from 811 dental hygienists

Lo CATIo N o F FIRST CENTRIC RELATIo N To o TH Co NTACT	Nu MBER o F Hyg IENISTS	PERCENT
Premolars one side	232	28.6
Premolars both sides	90	11.1
Molars one side	328	40.5
Molars both sides	113	13.9
Molar one side; premolar one side	38	4.7
Canine	4	0.5
MIP = centric jaw relation (no prematurity)	6^{a}	0.7
TyPE AND PLACE o F DEFLECTIVE Co NTACT	PERCENT	
Premolars only	39.7	
Molars only	54.4	
Unilateral prematurity	69.2	
Bilateral prematurity: same tooth	25.8	4.7
Bilateral prematurity; premolar-molar	4.7	

[^10]

FIGur E 9-25. Physiologic rest position: effects of posture. A. This man assumes a normal posture with his mandible in physiologic rest position (RP). Posterior teeth, though not visible, are not occluding. B. Now, the man is looking up and his mandible is again in physiologic RP with his posterior teeth separated but more so than in (A) because of the stretch of fascia, skin, and muscles. The resting position of the mandible varies with factors such as body posture, fatigue, and stress.
course, when the teeth are missing (in an edentulous person), there would be a much larger distance between the residual toothless ridges when the mandible is resting. ${ }^{26}$

A simple change in posture, such as looking up at the sky or stretching the neck back in the reclined dental chair, will change the resting position of the jaw, pulling the mandible back and separating the teeth farther than when in a comfortable upright position (Fig. 9-25). T is change is due to the pull on the mandible by stretching skin and underlying tissue (fascia). T erefore, when a dentist places a restoration (filling) for a patient who is reclined in the dental chair, a final assessment and possible adjustment of the occlusion on this new restoration should take place with the patient in a relaxed upright position.

d. Ja Wr El a TIONSh IPS dur ING h Or IzONTal MOVEMENTS OF Th E Ma Nd IBI E

Relationships between the mandible and the maxillae can be defined and documented as the mandible moves horizontally out of its centric relationship into other positions. Eccentric jaw relationships are any deviation of the mandible from the CR position. T ese relationships occur when the lower jaw moves anteriorly (protrusion), laterally (mandibular lateral translation or excursion), or a combination of both.

1. Protrusive Jaw relation and Occlusion

Protrusive movement occurs when the mandible moves anteriorly (as when incising food between the anterior teeth). Both mandibular condyles and discs move forward together in their articular fossa, functioning against and beneath the articular eminences whose sloping morphology guides the mandible downward as it moves forward. As protrusion occurs, the movement of the mandible is also influenced by the amount of overlap of the anterior teeth. When teeth are positioned in MIP, upper incisors and canines overlap lower incisors (Fig. 9-26) and canines. As stated ear-
lier in this chapter, this overlap can be described in terms of a horizontal overlap where maxillary incisal edges are labial to the mandibular incisal edges and a vertical overlap where maxillary incisal edges overlap (and facially hide from view) part of the mandibular incisor crowns. (T e average amount of overlap and range of variations on 1114 dental and dental hygiene students is presented in Table 9-2.) When a person with normal horizontal and vertical overlap of the incisors moves the mandible forward, the incisal edges of the mandibular anterior teeth glide against the lingual surfaces of the maxillary anterior teeth, also guiding the mandible downward when protruding (Fig. 9-27). T is is known as incisal guidance, which is a type of anterior guidance, or anterior protected articulation. It is influenced by the angle at which the lower incisors and mandible must move

FIGu r E 9-26. Incis Or relationship and guidance. Lateral view of maxillary and mandibular incisors shows the normal vertical and horizontal overlap of incisors when the posterior teeth are in maximal intercuspation. The incisal guidance angle is the angle formed between the occlusal plane (horizontal ruler line on illustration) and a line connecting the upper and lower incisal edges. It is only 37° in this illustration, which is less steep than in many dentitions.

Ta Bl E 9-2	Incisor and Canine Overlap of 1114 Students						
		INCISo R o VERLAP		CANINE Ho RIzo NTAL o VERLAP		CANINE VERTICAL o VERLAP	
		Ho RIzo NTAL (mm)	VERTICAL (mm)	$\mathrm{RIg} \mathrm{HT}(\mathrm{mm})$	LEFT (mm)	RIg HT (mm)	LEFT (mm)
	Average	2.78	3.27	2.01	2.02	3.23	3.19
	Low	2.5	1.0	1.0	1.0	1.0	1.0
	High	9.0	13.0	6.2	6.2	11.0	9.0
	Average	2.88	3.60	4.05	4.25	-	-
	Low	$\begin{gathered} 6.5 \\ \text { (prognathic) } \end{gathered}$	$\begin{gathered} 2.0 \\ \text { (open bite) } \end{gathered}$	0.0	0.0	-	-
	High	10.0	8.0	8.5	9.0	-	-

Research conducted by Dr. Woelfel at the Ohio State University, 1974-1986.
downward and forward from the MIP to reach the edge-toedge incisor relationship. Anterior guidance is a desirable relationship since, when the mandible protrudes or moves to either side a small distance as in chewing, the incisor overlap causes the mandible to move downward resulting in the separation (disocclusion) of the posterior teeth. ${ }^{27,28, \mathrm{~K}}$ In other words, the posterior teeth only occlude in CR but not during protrusion. When the mandible is fully protruded, the incisal edges of the mandibular incisors move in front of the maxillary anterior teeth (Fig. 9-28). ${ }^{\text {L }}$ When the mandible moves posteriorly toward its MIP, jaw movement is known as retrusion (retraction).

2. lateral Mandibular r elation and Occlusion

During mandibular lateral translation, the mandible moves to the right or left side and slightly downward as

FIGur E 9-27. Movement of incis ors during protrusive movement. Notice how the normal overlap (in A) causes the incisors to direct the mandible downward as it moves forward (the red arrow in B), a movement that normally separates posterior teeth. This is called anterior guidance or anterior protected articulation.
when chewing food. During maximum lateral translation, the mandible can move almost twice as far from side to side as it can directly forward. ${ }^{M}$

When the mandible moves laterally, the working side is the side of the mouth toward which the mandible moves (seen in Fig. 9-29), and it is also the side where the "work" of chewing occurs. T e opposite side is called the nonworking side. T ese terms are dependent upon which way the mandible is moved. For example, when the mandible moves to the right, the right side is the working side and the left is the nonworking, whereas when the mandible moves to the left, the left side is the working side and the right is the nonworking side. As a person with an ideal occlusal relationship moves the mandible laterally, the occlusal ridges of mandibular teeth on the working side move over the opposing maxillary tooth ridges until maxillary buccal cusps line up over mandibular buccal cusps and maxillary lingual cusps line up over mandibular

FIGur E 9-28. Maximum protrusive jaw relationship. This is the relationship of mandibular to maxillary central incisors when the mandible is maximally protruded. This mandible has protruded 11 mm because the mandibular central incisor was 3 mm lingual to the maxillary incisor in centric occlusion.

FIGur E 9-29. Canine-protected articulation. When the mandible moves to the patient's right side (in the direction of the red arrow), the overlap of canines results in the separation (disocclusion) of his posterior teeth on the right side. This is the patient's working side since the mandibular buccal cusps are lining up directly under the maxillary buccal cusps (as during chewing or working).

lingual cusps (seen in Fig. 9-29). When the working side cusps are lined up end to end, the maxillary lingual cusps of the nonworking side are aligned over the mandibular buccal cusps.

When the mandible moves to one side, both condyles do not move equally toward that side. T e condyle on the working side does not move much: it rotates on its vertical axis moving laterally only about 1 to 2 mm (called laterotrusion or Bennett's movement). On the other hand, the condyle and disc on the nonworking side move forward, downward, and medially within the articular fossa.

Canine-protected articulation is the desirable occlusal relationship in which the vertical overlap of the maxillary and mandibular canines produces a disocclusion (separation) of all of the posterior teeth when the mandible moves to either side. Disocclusion refers to the separation of opposing posterior teeth during eccentric movements of the mandible. ${ }^{27,28} \mathrm{~T}$ at is, when the person in Figure $9-29$ moved the mandible to the right (working) side, the steep canine guidance resulted in no posterior tooth contacts on the working side and, although you cannot see this in the figure, there were also no nonworking posterior tooth contacts. (A canine guidance (rise) angle of 60° or more is necessary to provide canine-protected articulation or canine guidance.) Many dentists consider canine-protected occlusion to be a desirable or healthy relationship to have. One study of 500 persons indicated that there was a lesser tendency toward bruxism (grinding the teeth together) with canine-protected occlusion. ${ }^{29}$ Another study found posterior tooth mobility
to be higher in dentitions with canine protection than those with group function. ${ }^{30}$ When canine-protected articulation is not present, it may be achieved through orthodontic treatment or by adding length or lingual thickness to the maxillary canines (by placing restorations).

Nonworking side interferences refer to the tooth contacts on the nonworking side, which are considered undesirable. ${ }^{\mathrm{N}}$ If the nonworking side interferences are heavy and frequent, they may actually be destructive to the supportive structures of the involved teeth and can possibly cause TMJ pain on the opposite side because of the pivoting of the mandible and the stretching of opposite side ligaments and muscles.

Group function (or unilateral balanced occlusion) is an occlusal relationship in which multiple teeth on a working side contact evenly as the jaw is moved toward that side. ${ }^{0}$

T e occlusion between an upper and lower complete denture false teeth is different from natural teeth. ${ }^{\text {P }}$

LEARNINg ExERCISE

Place a finger just in front of your ears or in your ear openings while you move the mandible to the right side. Do you feel more movement of the condyle on the right side or on the left side? How do you account for this difference? Repeat while moving the jaw to the left side. (See Ref. 2 for interesting information on this subject.)

$$
\begin{array}{ll}
\text { SECTION IV } & \begin{array}{l}
\text { Fu NCTIONa } 1 \text { MOVEMENTS Wh EN EaTING: } \\
\text { Ch EWING a Nd SWa } 11 \text { OWING }
\end{array}
\end{array}
$$

Functional movements of the jaws are the normal movements of the mandible during speech, eating (chewing), yawning, and swallowing. Tooth contacts during normal function (called functional occlusion) normally only occur during eating (chewing) and swallowing. You may think that your teeth need to touch when speaking, but go through the alphabet to see if
teeth need to touch for any sound. You will find that, for most persons, teeth do not actually touch, although they must come close during sounds like "sss." since if the incisors are moved very far apart, the result is more of an "sh" or whistling sound.

Eating involves the intake of food by placing it in the mouth, incising (bringing incisors together) to bite off a
manageable size piece of food, chewing (also called mastication [mas ti KA shun]), and swallowing (also called deglutition [deg loo TISH un]). T e following descriptions of incising, chewing, and swallowing apply to persons with ideal class I occlusion eating a piece of chicken.

a. INCISING

Incising is the articulation of the anterior teeth performed to cut food into chewable pieces. Eating begins as the mandible drops downward to open the mouth, and the mandible is protruded as food is placed between the opposing anterior teeth. The mandible then closes in this protrusive position until the incisal edges of the anterior teeth meet the food. The mandible is then moved up and posteriorly with the mandibular incisors against lingual surfaces of the maxillary incisors, thus cutting off a small portion of the food.

B. Ma STICa TION (Ch EWING)

Next, the tongue transfers food to the posterior teeth. It is held in position on the teeth of the working side by the cheek muscles and the action of the tongue. T e teeth are brought together, engaging the food with the mandible in a slightly lateral position toward the side where food is located (working side). T e upper buccal cusps are directly over the lower buccal cusps with the mandible in this lateral position. T e closing motion slows as the mandible is forcibly closed ${ }^{31}$ while the canine overlap and inclines of posterior tooth cusps guide the mandible into maximal intercuspation of the posterior teeth for chewing. Tooth cusp slopes and triangular ridges act as cutting blades, whereas major and supplemental grooves serve as escape pathways (spillways or sluiceways) for crushed food to squeeze out through the buccal and lingual embrasures and over the tooth curvatures toward the cheek and onto the tongue. T ere, it can be tasted, mixed with saliva, placed back over the teeth, and chewed some more. T is process significantly reduces lateral forces applied to the teeth that could be damaging to the teeth and their

LEARNINg ExERCISE

Look in a mirror and move your jaw as far as possible in all directions (wide open and from right to left) to discover exactly how wide and long your total range of motion is. Then, chew some sugarless gum and notice that you use perhaps only half of this overall range of motion. Observe the pattern of movement of your mandible from the facial view during chewing to see if you move your mandible in a tear drop or circle shape similar to the pattern of chewing. Your side or sagittal view could also be viewed using a second mirror placed at 45°.
supporting bone. After the posterior teeth contact in MIP, there is a slight pause ${ }^{Q}$ before the mandible opens and moves laterally to commence the next chewing cycle. We usually chew like this on one side for several cycles and then switch the food over to the opposite side where a similar chewing cycle occurs. T is process is called mastication.

C. SWa 11 OWING (d EGl u TITION)

Swallowing begins as a voluntary muscular act (when we decide to) but is completed involuntarily by reflex action. T e mechanics are as follows:

- T e anterior part of the mouth is sealed (lips closed).
- T e teeth are closed into their MIP.
- T e soft tissue in the back of the roof of the mouth (soft palate) is raised, so food cannot enter the nasal passageway.
- T e bone above the voice box (hyoid bone) is raised as we close off the trachea (windpipe). T is prevents food from passing into the lungs.
- T e posterior part of the tongue is engaged in a pistonlike thrust causing the small mass of chewed food (bolus) to be pushed into the throat (oral pharynx [FAR inks]).
- T e act of swallowing, also known as deglutition, takes place.
- Once the bolus is in the pharynx, the superior portion of the posterior wall presses forward to seal the pharynx, and then, the esophageal phase of swallowing commences. T is is accomplished by involuntary peristalsis (waves of contraction), which moves the food bolus through the entire length of the digestive tract.
- T en, the mandible usually drops open, assuming its physiologic resting posture where relaxed muscles permit a slight space between upper and lower teeth. Several swallows are necessary to empty the mouth of a given food mass. However, even without food or drink, we swallow saliva a number of times every hour without thinking about it.

LEARNINg ExERCISE

Bite off a piece of firm food and analyze your jaw movements by looking in a mirror as you prepare the food for swallowing. This process is called mastication followed by deglutition (swallowing). Observe and feel the hyoid bone above the voice box move as you swallow. During swallowing, feel the bulge of the muscles located inferior to the mandible but superior to the hyoid bone, near the midline. Also, notice how difficult it is to swallow with your lips and teeth apart. Dental professionals must remember this fact as they keep patients' mouths open for extended periods of time without providing an opportunity for them to close their teeth together and swallow!

Par a Fu NCTIONal MOVEMENTS a Nd h Ea Vy TOOTh CONTa CTS: SIGNS a Nd SyMPTOMS

Functional tooth contacts occur during the normal day-to-day processes of mastication (chewing) and deglutition (swallowing). Some forces between teeth are actually necessary for maintaining a healthy periodontium. Parafunctional contacts, on the other hand, are those tooth contacts not involving chewing or swallowing like when teeth contact a hard object, soft tissue, or other teeth. For example, tooth-to-hard object contacts occur when smoking a pipe if the smoker chews on the pipe stem, or when playing a reed instrument such as a clarinet, or when chewing on a pencil. Tooth-to-soft tissue contacts occur during cheek biting or lip biting that can be confirmed during an oral examination as raw or thickened mucosa of the cheek or lip. Parafunctional tooth-to-tooth contacts occur when clenching (squeezing the teeth together without jaw movement), bruxing (grinding the teeth back and forth during movements other than chewing), or playing a violin (where tooth contacts occur when supporting the instrument with the chin). Bruxing can be particularly damaging to teeth and to the TMJ.

Tooth contacts during parafunctional movements may be nothing more than an annoyance, but if these contacts involve considerable force and frequency beyond which the tooth and muscles are able to withstand, they can be potentially damaging to teeth, to tooth supportive structures, and to the TMJ. When a person develops a bruxing habit, these heavy and potentially damaging tooth contacts may be exercised almost constantly under stressful situations. In a healthy person without occlusal problems, functional tooth contacts including eating three meals will total only 7 to 8 minutes over a 24 -hour period. Parafunctional tooth contacts, in contrast, may occur several hours per day or night. Also, biting strength in bruxers or clenchers can be as much as six times higher than in the nonbruxers, so it takes little imagination to understand why parafunctional habits like bruxing can be an undesirable and damaging habit. ${ }^{14, \mathrm{~S}}$ Bruxing can be confirmed by the noise it produces that can be heard by others and can result in sore chewing muscles. Bruxing may be worse if a person has malocclusions, anxiety or stress, and suppressed anger; is hyperactive; and uses caffeine, tobacco, or drugs like cocaine and amphetamines. (See general reference for the Mayo Clinic.)

Teeth in heavy occlusion often exhibit flattened tooth contours seen as tooth facets, or chipped enamel and exposed dentin. T ese teeth may become sensitive when chewing forcefully or when tapped on with a dental instrument, a condition known as sensitivity to percussion. Heavy occlusion on a tooth may also contribute to fremitus, a palpable or visible movement or vibration of the tooth when subjected to heavy occlusal forces. Fremitus is not necessarily an unhealthy condition but may be an indication of a premature CR tooth contact or of interferences during sideway (lateral) movements of the mandible.

Heavy occlusion can also result in the following changes visible on a radiograph: a widened periodontal ligament, angular bone loss or loss of bone in the furcation (which could result in a loose tooth), a thickened lining of the tooth socket (alveolar bone proper), and root resorption, that is, the shortening of a root due to the activation of cells that destroy root structure. In the presence of factors contributing to periodontal disease, heavy occlusion can worsen the disease process.

Parafunctional contacts like bruxing can also negatively impact on the ability to open and close the mouth due to tired muscles, or trismus, a disturbance of the fibers of the nerve to the chewing muscles (the trigeminal nerve) resulting in spasms of the chewing muscles and limited jaw opening. Myofascial [my o FASH i el] trigger points are areas of hypersensitive fascia and muscles that can result from overuse of the jaw muscles. ${ }^{9,16}$ "Myofascial" refers to muscle and fascia, which is the thin connective tissue covering that connects muscles. Symptoms include tenderness and pain of the muscles of the face and head and even the neck and back. Other symptoms associated with heavy occlusion include migraine-type headaches, sinus pain, and jaw joint pain. T e pain can sometimes be severe. $1,9,16,17,26,32,33$

Joint pain can result from heavy premature or undesirable contacts, ${ }^{26}$ but joint pain can also be due to disease, such as arthritis, or injury. Temporomandibular disorders (TMDs) can result from abnormal functioning of the TMJ due to tooth wear, tooth loss, or loss of posterior tooth support, which causes a loss of vertical dimension. Vertical dimension of occlusion can be thought of as the distance from a point on the mandible to a point on the maxillae when the teeth are in maximal intercuspation. Symptoms of TMD include headaches, ringing of the ears (tinnitus [ti NI tis]), ear pain, and impaired hearing. Symptoms can be made worse when the force or frequency of clenching and grinding increases, as might occur in persons under psychological stress or in persons with poor posture (such as those who frequently rest one side of their jaw on their hand).

Some tooth contacts are less desirable than others because they are less capable of withstanding heavy forces and more likely to result in an increase of muscle or tooth pain. For example, signs and symptoms from heavy occlusion are more likely when only two posterior teeth occlude during heavy or repeated contacts. Canines, on the other hand, are more capable of withstanding heavy occlusal forces, which is why canine-protected occlusion is desirable since posterior teeth separate during protrusive and lateral jaw movements. Also, tooth contacts on the nonworking side are not tolerated well, and heavy forces that are not along the vertical axis of the tooth are more likely to be destructive.

Fortunately, we have a natural mechanism that helps to protect teeth from heavy tooth contacts. Our fifth cranial nerve (trigeminal nerve) provides nerve branches to the
periodontal ligaments of each tooth (especially canines). T ese nerve fibers send messages to the brain from sensory end organs called proprioceptors [PRO pree o SEP ters] that can sense the location of heavy or deflective tooth contacts so
muscles that move the mandible can protect these teeth. ${ }^{R}$ By virtue of this complex protective mechanism, traumatic or deflective tooth contacts are most often avoided during normal functioning (chewing, talking, and swallowing). ${ }^{8,18-20,22}$

SECTION VI Tr EaTMENT METh Od S r El aTEd TO MalOCCl u SION

T ere are many methods to treat patients who are symptomatic due to heavy bruxing, myofascial pain, and TMDs. ${ }^{29,30,32-34}$ It is appropriate to begin with therapies that are reversible (do not result in permanent changes to the teeth or supportive structures) or diagnostic (i.e., therapies used to confirm that the symptoms are caused by malocclusion) before irreversibly moving, restoring, or reshaping teeth or jaw bones.

a. PaTIENT Ed u CaTION a Nd BEh a VIOr Th Er a Py

It is important to educate a person on self-treatments that help alleviate muscle pain or tooth pain related to undesirable or premature occlusion. To begin with, they need to know that their pain may be due to their tooth grinding. Just knowing that clenching and bruxing may cause their pain can help the patient to stop bruxing, at least during the day when they notice it. T ey need to know that keeping their teeth apart and resting the muscles for a while may help. It is better to eat foods that are easy to chew (like pasta and soups), to avoid foods that require considerable force to chew (like candy-coated peanuts or taco chips) and to avoid foods that increase the frequency of tooth contacts (like chewing gum). Also, limit alcohol, tobacco, and caffeine, all of which may worsen the problem. T ey should be made aware that bad posture might contribute to muscle pain in the neck and jaws. Biofeedback (from monitors charting muscle activity) may also be helpful to provide patients with printouts that confirm when they are tightening their muscles so that they can learn how to avoid these actions.

B. STr ESS MaNa GEMENT aNd MuSClE r El axaTION

Since persons under psychological stress are more likely to clench and brux more frequently or with more force, therapies that can reduce stress may help. Self-therapies include yoga, meditation, deep breathing, and visualization of a peaceful scene. Referral for psychological counseling may also be necessary. T e dentist may prescribe pain medications initially to reduce the pain, tranquilizers to help the patient relax, or muscle relaxants to help reduce muscle tension, but side effects like drowsiness or dry mouth may be undesirable. Botulinum toxin (Botox) has been shown to be helpful for some persons with severe bruxism who have not responded to other therapies. ${ }^{35}$ New research has actually shown that taking some antidepressant medications (like
serotonin-specific reuptake inhibitors) may have the side effect of bruxing. ${ }^{36} \mathrm{~T}$ erapies that help relieve muscle pain elsewhere in the body could also be used to reduce pain in the muscles of mastication, and these include applying ice for several minutes followed by moist heat to relax muscles. Jaw muscle exercise may also be helpful once the muscle pain has been eliminated.

C. Ch a NGING Ja W r El aTIONSh IPS WITh a N OCCluSal d EVICE

To successfully correct a patient's unfortunate parafunctional bruxing habit is not an easy task and takes time, skill, and patience at best. A basic principle for treating occlusal dysfunction is to get the teeth to come together evenly (without premature on undesirable contacts) while the mandible is in its most comfortable position. When a patient suffers from pain due to malocclusion, extensive dental work (multiple restorations, bridges, equilibration, orthodontics, etc.) should be postponed until the patient has remained comfortable for several weeks after wearing and adjusting an occlusal device like a bite guard. A bite guard (or night guard, slang) is a removable artificial occlusal surface that can be used to stabilize occlusion, treat the pain from TMDs, or prevent tooth wear. A detailed description of the method for constructing a maxillary occlusal device is presented in Figure 9-30. T is type of occlusal device is constructed of a thin, horseshoeshaped layer of transparent plastic that fits over the upper teeth to provide a smooth surface for the mandibular teeth to contact without a deflective prematurity. A properly constructed occlusal device reduces deflection of the mandible by preventing the input to proprioceptive sensors around the teeth that are in heavy occlusion, thereby providing a noninvasive, reversible therapy. ${ }^{1,8,18-20,22,37}$ Its use permits the mandible to close into a centric jaw relation, which is the most comfortable and stable position. Patients are advised to wear the occlusal device 24 hours each day except when eating, and the device should be periodically evaluated and adjusted as needed. After a few days, the patient may experience tremendous relief from severe facial muscle pain, headaches, or even some backaches that are related to an imbalance of the TMJ and tooth occlusion. For example, the patient in Figure 9-22 exhibited trismus and limited jaw opening over a 4-year period. He was only able to open 35 mm at the incisors, but after he wore a maxillary occlusal device for 18 months, his mandible stabilized into a comfortable CR position, and he was able to open at the incisors 55 mm .

FIGur E 9-30. Stages of construction and adjustment of a maxillary occlusal device (also called a bite guard). A. A thin plastic sheet is heated and vacuum molded (sucked down) onto a clean, dry, accurate cast of the maxillary teeth to form a template. Excess is trimmed away leaving only a $3-\mathrm{mm}$ overlap on the facial surfaces of the teeth. B. An anterior ramp of acrylic resin is added lingually between the central incisors to maintain vertical dimension and to guide the mandible posteriorly. C. Contact with the anterior ramp shows an excessive increase of the vertical dimension, so this is adjusted leaving only a point of contact with the mandibular incisors, so they will contact at an incline of about 45° upward and posteriorly. D. A roll of softened acrylic resin is adapted over the roughened occlusal and incisal portion of the template with the anterior portion slightly longer and thinner than the posterior part. E. The template with the softened acrylic resin is placed in the mouth, and the patient closes gently two or three times in the terminal hinge position and just far enough upward so that the mandibular incisors are stopped and the mandible is guided posteriorly by the previously adjusted anterior hard resin ramp. F. After the acrylic resin is hard, return the occlusal device or bite plane to the cast, mark the cusp indentations with a red felt marker, and then grind off all excess acrylic except the imprints of only the tips of the cusps resulting in a fat plane. g. Relieve the anterior portion of all tooth imprints and slope it sharply upward toward the lingual to provide a ramp for disocclusion during lateral jaw movement. The posterior imprints are correct for initial placement of the device. H. Place the lightly polished maxillary occlusal device in the mouth so the patient can close in centric relation. The mandibular posterior teeth should contact uniformly (without defections) on a fat smooth plane. The mandibular anterior teeth are just barely out of contact until the jaw moves forward or to either side. I. When the patient slides the mandible to the right, all teeth on the right side disocclude as the lower left canine slides up the lingual ramp. (Courtesy of Dr. Richard W. Huffman, Professor Emeritus, Ohio State University.)

d. Ch a NGING TEETh Sh a PES TO Tr EaT SyMPTOMS OF Ma IOCCl u SION

Occlusal equilibration is the process by which a dentist modifies the occlusal or incisal form of the teeth by using revolving burs or stones in a dental handpiece to remove very small amounts of enamel at the sites of the tooth prematurities. ${ }^{22}$ An occlusal equilibration should never be attempted without first having the patient wear a maxillary occlusal device for 1 to 6 weeks, which ensures natural and comfortable repositioning of the mandible and its TMJ. After equilibration, the teeth
should be in harmony with physiologically relaxed joints. T e occlusal equilibration should be re-evaluated at appropriate intervals to confirm the need for follow-up treatment.

Another technique that can be used to perfect the contours and occlusion of teeth that are not too badly out of alignment is to reconstruct the occluding surfaces of all or most teeth by constructing large, stress-bearing restorations such as crowns or bridges (fixed partial dentures). T is technique is called a full mouth rehabilitation where teeth are restored with crowns that change and perfect the occlusion. An example of the stages of a full mouth rehabilitation is presented in Figure 9-31. T is

FIGur E 9-31. Stages of a full mouth rehabilitation. A. Pretreatment: facial surfaces of teeth in maximal intercuspal position. Notice the anterior deep overbite. B. Pretreatment: facial surfaces of teeth with the mandible protruded so the incisors are now in an edge-to-edge position. Notice the translucency of the maxillary central incisors, indicating very thin enamel due to severe lingual erosion. Also, notice the gingival irritation related to a bulbous existing crown on the mandibular left central incisor (\#24). C. Pretreatment: incisal/occlusal view of the mandibular teeth. Notice the thinness of the mandibular anterior teeth due to severe lingual erosion. D. During treatment: incisal view of maxillary anterior teeth revealing temporary (interim) restorations on the lingual surface of each of these teeth covering the openings that were required to access and remove the pulp from each tooth (endodontic therapy). E. During treatment: all maxillary anterior teeth (that had been treated with endodontic therapy) were prepared for crowns and, due to the reduction of remaining tooth structure, had custom cast post and cores placed within each anterior tooth (refer back to Fig. 8-19). F. Posttreatment photograph of the mandibular teeth showing complete cast metal crowns on both second molars (\#s. 18 and 31), metal ceramic crowns on both first molars (\#s. 19 and 30), and metal ceramic crowns (metal is not visible) on all premolars (\#s. 20, 21, 28, and 29), as well as replacing an overcontoured crown on the mandibular left central incisor (\#24). All other mandibular anterior teeth were veneered lingually with indirect composite veneers (\#s. 22, 23, 25, 26, and 27). g. Posttreatment of the maxillary teeth showing metal ceramic restorations (porce lain fused to metal crowns) on first and second molars (\#s.2,3,14, and 15), metal ceramic crowns (metal is not visible) on the two remaining premolars (\#s. 4 and 13), and all-ceramic crowns on the anterior teeth (\#s. $6,7,8,9,10$, and 11). H. Posttreatment: facial view of all teeth in intercuspal position (which now is the same as centric relation) showing improved esthetics. (Provided by Julie Holloway, D.D.S., M.S., University of Iowa.)
patient presented to the dentist with a history of severe gastric (acid) reflux, which contributed to erosion of lingual enamel and much dentin on the lingual surfaces of the anterior teeth. He complained of tooth pain (due to exposed dentinal tubules), muscle pain, and TMJ pain. He exhibited a deviation between CR and MIP of about 2 mm . After preliminary diagnostic procedures were completed, the decision was made to restore all posterior teeth with crowns to correct the deviation and place all-ceramic crowns or lingual indirect composite veneers to improve contours and cover exposed dentin on all anterior teeth. Figure 9-31 shows the teeth before, during, and after the full mouth rehabilitation. After therapy, the patient reported no symptoms, and esthetics was improved.

E. Ch a NGING TOOTh 1 OCaTION TO Tr EaT Mal OCCl u SION

When teeth are so poorly aligned that the amount of tooth structure to be removed during an equilibration or a full mouth rehabilitation would result in exposure of sensitive dentin or even exposure of pulpal tissue, the dentist needs to consider other treatment options. Orthodontic treatment can be used to bodily move the teeth into an improved alignment. Figure 9-22 shows the results of a severe unilateral molar prematurity in the centric relation position. T is patient underwent over 2 years of orthodontic therapy to correct
the enormous discrepancy between centric jaw relation and MIP. Other alternatives would have been surgery (intrusion of molars) or possibly root canal therapy on the molars followed by eight cast crowns (reducing molar cusp height). Ordinarily, a centric relation prematurity is not as severe as this and often can be corrected when necessary with minimal occlusal equilibrations or minor orthodontic tooth movement.

Treatment of class II and class III malocclusions using orthodontics (including braces) usually requires much longer correction time and often involves surgical intervention compared to treatment of class I malocclusions. T is is due to the greater disparity from an ideal relationship of the corresponding teeth in the maxillae and mandible. When the jaws are so poorly aligned or so different in size that it is impossible to perfect tooth contour using only restorations or orthodontics, surgical techniques can be used to reshape and realign jaw bones, usually followed by orthodontic treatment to perfect tooth alignment. Orthognathic surgery [or thog NATH ik] is the surgical reshaping of the jawbones and may be used in conjunction with orthodontics to correct severe class II and class III skeletal malocclusions. T is technique dramatically and quickly improves appearance and provides better tooth relationships and, eventually, better function as well. T e change in profile and occlusion from this surgery can clearly be seen in Figure 9-32.

FIGur E 9-32. Comparis on of jaw alignment before and after orthognathic surgery. A. Pretreatment patient prognathic profile. B. Pretreatment class III molar alignment with anterior crossbite. C. Posttreatment orthognathic profile. D. Posttreatment class I (almost) molar alignment. (Slide courtesy of Dr. Guillermo E. Chacon, D.D.S., The Ohio State University.)

SECTION VII ad Va NCEd TOPICS IN OCCl u SION

a. ENVEl OPE OF MOTION

A helpful method for analyzing a patient's mandibular movement is to obtain an outline of their jaw movement called an envelope of motion. T is is done by attaching a marking device (stylus) to the mandibular teeth that can trace on paper the movements of the mandible as viewed from the front (a frontal view) or from the side (a sagittal view). Figure 9-33 shows examples of these two tracings, both reproducing the outer border movements during maximal movement of the mandible. When facing a person, the frontal envelope is the outline formed (traced) by a marker located between the mandibular central incisors while the mandible moves maximally in all directions. Beginning with teeth in their most intercuspal position (MIP), the mandible (with teeth lightly touching) moves the maximum distance to the right; then, in its maximal right position, depresses to its most open position; from there closes in its most left position until teeth lightly touch; and finally returns (with teeth lightly touching) to the MIP.

Now, analyze an actual tracing of a frontal envelope in Figure $9-33 \mathrm{~A}$ in order to appreciate what it reveals. Begin in the MIP at the top and follow clockwise. T e mandible with the teeth in light contact first slides laterally to the patient's left (our right) as far as possible. T e outline reveals the amount of canine overlap resulting in the mandible initially moving down as it moves to the side until the canines are end to end and then moves upward as the canines move laterally beyond their end-to-end alignment. Next, the jaw opens downward in its most left lateral position until open about 30 mm and then begins veering toward the center to a maximum opening of 51 mm . From this point, the jaw moves to the patient's right
(our left) as far as possible as it begins to close. Finally, from the closed maximum right side position, the teeth slide into MIP as the jaw slowly moves back and upward (due to the canine overlap) into the starting point (MIP).

T e sagittal envelope can be visualized, when viewing a person from the side, as an outline formed (traced) by a dot located between the mandibular central incisors while the mandible begins in the centric relation (CR) position, just before the teeth move forward into the MIP. Next, with teeth lightly together, the mandible moves into its most anterior (protruded) position, then to its most open position, and from there, the mandible closes in its most posterior position into CR until teeth lightly touch. Finally, the mandible returns (with teeth lightly touching) to the MIP. To analyze the tracing of a sagittal envelope of motion in Figure 9-33B, begin at the centric relation or CR. Due to a slight deflective (premature) contact, the mandible is directed forward and slightly upward into the MIP. With the teeth held together lightly as the mandible continues to protrude maximally, the initial downward movement of the mandible is due to incisal overlap (normal overbite) where the lingual surfaces of maxillary incisors guide the mandible downward as it goes forward, followed by an upward and forward movement as mandibular incisors move beyond the edge-to-edge position into the most protruded position. With the mandible protruded, it moves down to the maximum opening of 51 mm . From this point, the jaw closes while firmly retruded, which develops the curved translation portion of closure, followed by the straighter hinge-opening boundary (with rotary motion only), and finally back to the starting point (MIP). We can tell from this envelope of motion that upon opening, this person

FIGur E 9-33. Frontal and sagittal maximum envelopes of motion with chewing strokes. A. Frontal vie w: Four chewing strokes are shown within the large envelope of motion as the patient chewed on 3 -g portions of peanuts, first on the left side and then on the right side (arrows denote direction of chewing strokes). B. Sagittal view of same patient during chewing.

Frontal enve lopes of motion for three young men

FIGur E 9-34. Enve lopes of
motion that reveal variations in movement and canine guidance (canine-protected articulation): The frontal envelopes of motion of three men (A, B, and C), demonstrating the wide range of variability between the movement capabilities and their canine guidance.

MIP $=$ maximum intercuspal position $R P=$ rest position

C
can rotate his retruded mandible open 30 mm at the incisors with a hinge movement before it begins to translate forward.

Now, study Figure 9-34 to compare the uppermost portions of the frontal envelopes of motion of three subjects in order to visualize differences in the superior portion related to the amount of canine guidance (overlap). Subject \mathbf{A} has the smallest and narrowest range of movement for his mandible (32 mm vertically, 21 mm sideways). No lowering of the mandible on either side of the MIP indicates that he did not have canine protection (i.e., there are no deeply overlapping canines) to lower the mandible and disocclude the posterior teeth. Subject \mathbf{B} can open his mandible 53 mm and move it laterally 31 mm . He has a canine-protected occlusion as indicated by the steep portion where the mandible drops on either side of the MIP. Subject \mathbf{C} has a medium-sized envelope of motion with canine protection on his right side (left side of envelope C) and group function occlusion with shallow canine rise on his left. T is patient preferred to chew mostly on his left side where his envelope is lopsided.

To appreciate the amount of mandibular movement during chewing relative to the entire envelope of motion, once again, analyze Figure 9-33A. Focus on the smaller pattern of lines with arrows (enclosed within the larger frontal envelope of motion) of that person chewing peanuts on the right and left sides. T e lines traced during the opening stroke (denoted by opening arrows pointing downward) are somewhat straight, whereas the closing stroke lines are considerably convex (or bulge) as the mandible moves toward the working side to obtain working side tooth contacts. T e chewing cycles occupy only 25 mm of the maximum 51 mm opening range for this man. T e chewing strokes on peanuts in a lateral direction utilize only 12 mm of the total side-toside range of mandibular movement.

On the sagittal view (Fig. 9-33B), note that the chewing stroke begins at the MIP and that the opening stroke is more posterior than the closing stroke. T e opening stroke is only

7 mm anterior to the hinge-opening boundary, whereas the closing stroke is 10 mm anterior to that boundary. However, as the jaws are closed to crush the food bolus, the mandible is slightly more retruded than the MIP. Crushing of the food bolus (a rounded mass of food) occurs at this MIP.

B. a CCur aTE r ECOr d ING OF Th E CENTr IC r El aTION Ja W POSITION

T e process of obtaining an accurate centric relation jaw registration or occlusal record is seen in Figure 9-35. First, a leaf wafer ${ }^{19,24,38}$ is selected and deformed in the mouth as the patient bites into it. T en, an anterior deprogrammer ${ }^{18,22,24,38-42}$ is inserted at an upward angle between the incisors as the patient arcs the mandible open and then closes (hinge type or rotational opening) until the incisors engage the leaf gauge of suf cient thickness so all other teeth separate slightly (Fig. 9-35C). Anterior deprogramming ${ }^{18,22,24,38-46}$ is the process of getting the TMJ into a relaxed or comfortable neuromuscular position (centric relation) by interrupting or negating the proprioceptors surrounding the teeth in the periodontal ligaments. T ese proprioceptors would otherwise automatically or subconsciously direct the mandible into the habitual or acquired intercuspal position. Anterior deprogramming is usually accomplished in 10 to 15 minutes by interposing something between the anterior teeth ${ }^{20,38,40,41,44,45}$ (such as a leaf gauge, Lucia jig, or sliding guide) while the patient retrudes the mandible and squeezes slightly on the centered anterior fulcrum (see Fig. 9-35C). In this manner, the mandible is "tripodized" (stabilized by two condyles and the leaf gauge) by the patient's nerves and muscles, and the patient is momentarily unable to aim the jaw into the acquired or habitual occlusion because no signals can be sent to the brain from the proprioceptors in the separated teeth. ${ }^{37}$ Otherwise, the teeth could cause the mandible to deflect forward from the centric relation position. T e posterior teeth

FIGur E 9-35. Procedure for making a centric relation jaw registration. This jaw relation registration (interocclusal record) is used for mounting casts in centric jaw relation on an articulator for analysis and possible tooth alteration or orthodontic movement. A. A Woelfel leaf wafer used to carry a leaf gauge (in B) of predetermined thickness and the registration medium into the mouth. B. Paper leaf gauges above (color coded for thickness) and below, a numbered plastic leaf gauge. C. Patient, with head tipped back, is arching his mandible in the hinge position and closing on the leaf gauge of minimal but sufficient thickness to separate all teeth to negate any learned habitual closure. D. The recording material, polyether rubber, was applied to tooth indentations on the wafer. E. The patient closes firmly onto the leaf gauge as the recording material sets. F. The centric relation registration with leaf gauge. g. The leaf wafer registration is used to orient the lower to upper cast for assembly on an articulator. A brittle, strong sticky wax (shaded areas on drawing) is used to maintain the relationship of the maxillary and mandibular casts until the mounting plaster attaches the casts to the articulator sets.
must remain separated several minutes for deprogramming to occur. ${ }^{20,42}$ Once it has occurred, the patient will feel as if the posterior teeth occlude (contact) improperly or in a strange way (with deflective contacts). In some instances, the deprogramming will not occur until the patient has worn an occlusal device for several weeks and has maintained a stable and comfortable mandibular position for at least 1 week. ${ }^{42}$

Next, the leaf gauge is inserted in the wafer, and an impression material is thinly spread over tooth indentations in the leaf wafer (Fig. 9-35D). T en, the entire assembly is carried to the mouth (Fig. 9-35E), and the patient closes firmly, as previously, onto the leaf gauge until the recording medium sets. T e imprints of the upper and lower teeth in this centric relation registration (Fig. 9-35F) are used to relate casts of each arch mounted on the articulator (Fig. 9-35G). T is diagnostic mounting procedure should always be accomplished prior to
attempting any type of tooth equilibration in the mouth. ${ }^{18,19,22}$ T ese dental stone casts, mounted in their relaxed centric relation position, can be used to determine the extent of tooth reshaping required in order to decide the best treatment. T e dental stone teeth with interfering or premature contacts can be reshaped (reduced) in order to predict the amount of tooth reduction that will be required during the equilibration. If the amount of tooth structure that must be removed during the equilibration would likely expose dentin or pulp, then orthodontics or surgical procedures must be considered.

Another device used for anterior deprogramming of the mandible and for recording centric jaw relation is the sliding guiding inclined gauge or sliding guide ${ }^{39-43}$ (Fig. 9-36). It comes in three maximum thicknesses, and the thickness used is dependent on the severity of the malocclusion (Fig. 9-36A). T e thickness gradually increases from tip to handle, and

FIGur E 9-36. o btaining centric relation jaw registrations. A. Three sliding guiding inclined gauges. The millimeter scales denote the amount of incisal separation between overlapping incisors (left sliding guide 16 mm , center one 9 mm , right one 4 mm). B. A $4-\mathrm{mm}$ sliding guide is held between the incisors at a steep angle to the occlusal plane separating them by 2.5 mm , just enough to keep all of the posterior teeth from touching. C. A $9-\mathrm{mm}$ sliding guide is placed in the mouth so that the incisors are separated by 6.5 mm during the muscular deprogramming period. D. A centric relation jaw registration made with a $4-\mathrm{mm}$ sliding guide inserted into a previously constructed custom 'bite deformed Woelfel leaf wafer.' The minimal amount of incisal separation (2.5 mm) was determined prior to the centric relation registration that was used to mount diagnostic casts of the patient on an articulator in centric jaw relation. E. The curvature of the sliding guide and its proper angle above the occlusal plane are seen. F. Maxillary side of the registration showing the tooth indentations and the $3.5-\mathrm{mm}$ incisal separation. g. Inferior view with mandibular tooth imprints in the registration media and pertinent patient information written with a Sharpie fine point marker.
the curvature of the sliding guide is critical, so that it can be placed in the mouth between overlapping incisors at a relatively steep angle relative to the plane of occlusal without injuring the tissue of the roof of the mouth (Fig. 9-36B). T e exact thickness between the incisors is read on the millimeter scale (Fig. 9-36C). Minimal incisal separation is the goal for deprogramming and jaw position registration, just so long as no posterior teeth touch, thus avoiding proprioceptive impulses. T is is particularly important for the centric jaw relation registration to minimize errors between the articulator and the patient. T e sliding guide is made of a nonbrittle autoclavable plastic and works well with a custom bite deformed Woelfel leaf wafer for centric relation jaw registrations (Fig. 9-36D and E). ${ }^{39-42}$

C. 1 ONG CENTr IC ar TICu 1 aTION

Long centric articulation or the intercuspal contact area is actually a range of mandibular movement where a person can smoothly (without interferences) move the mandible from centric relation directly forward in a horizontal plane to the position of maximum intercuspation. T ere is no upward or lateral component. T is range of movement is often the goal during an equilibration to provide the patient with a long centric relationship by relieving all deflective or premature tooth contacts that had previously caused the mandible to deviate either sideways or upward from centric relation to the MIP. T e patient with a long centric articulation will have a small anteroposterior range (0.5 to 2.0 mm) of uniform posterior tooth contact occurring at the same vertical dimension of occlusion.

LEARNINg ExERCISE

Evaluate your own jaw mobility or mandibular movement capability.
It should be an educational and interesting experience for you to complete this simple exercise in order to increase your awareness of your own jaw movements. It will take about 20 minutes to do this exercise.

Obtain a clean, plastic millimeter ruler cut off even with the zero mark. Make the following measurements as described while observing your tooth relationship in a mirror.

1. Horizontal overlap (H) of incisors and canines

Using a mirror, measure the horizontal overlap (H in Fig. 9-37) in the following three locations while holding your teeth together in MIP (or on handheld tooth models with teeth tightly closed).
1.a. \qquad $\mathrm{mm}=$ horizontal overlap between the labial surfaces of central incisors at the midline
1.b._ $\mathrm{mm}=$ horizontal overlap between labial surfaces of left canines
1.c. $\mathrm{mm}=$ horizontal overlap between labial surfaces of right canines
2. Protrusive overlap (P) = \qquad mm
Measure the protrusive overlap (P in Fig. 9-37) with your lower jaw moved forward as far as possible (like a bulldog), between the labial surface of the maxillary central incisors and the labial surface of the mandibular incisors.

FIGur E 9-37. H is the horizontal overlap of central incisors with the teeth in maximum intercuspation, and P is the horizontal overlap with the mandible protruded as far as possible.

1 Ear NING ExEr CISE (continued)

3. Horizontal overlap of canines during lateral excursions (right and left sides)
Measure the horizontal distance between the facial surfaces of the upper and lower canines during maximum movements in lateral excursions (arrow on Fig. 9-38A), first with the lower jaw moved to the left as far as possible. This is just like the measurement P in Figure 9-37, only between the facial surfaces of the maxillary and mandibular left canines.
3.a. \qquad $\mathrm{mm}=$ left horizontal overlap of canines

Next, measure the horizontal distance between the facial surfaces of the upper and lower canines during a maximum lateral movement of the jaw to the right side as far as possible (red arrow in Fig. 9-38B).
3.b. \qquad $\mathrm{mm}=$ right horizontal overlap of canines
4. Vertical overlap of central incisors $(V)=\ldots \mathrm{mm}$

Measure the vertical overlap (V in Fig. 9-39) at the midline between the incisal edges of your central incisors while holding your back teeth tightly closed or on your tooth models in MIP.
5. o pening movements (hinge opening and total opening)

The hinge opening is the distance between incisal edges at the maximum hinge-only opening. Practice opening your jaw slowly as far as possible with a hinge movement in centric relation. Hinge opening is usually only half or less than half of the maximal opening (first portion of o in Fig. 9-39, and represented in Fig. $9-20 \mathrm{~B}$ as the limit of the hinge opening). If you open properly, there should not be any crepitation because the articular discs and condyles are fixed posteriorly.
5.a. __ mm = hinge opening

Now, open as widely as you can and measure the maximum opening (o in Fig. 9-39) between the incisal edges (usually you can fit four fingers between your incisors). If you noticed a noise near one or both ears when you opened widely, it is probably caused by a disharmony between the movement of the jaw and the movement of the disc that fits between the jaw condyle and the skull on either side. It is usually not a serious problem, and many people experience crepitation for a while during the ir lifetime.
5.b. _ $\mathrm{mm}=$ maximum opening $(\mathrm{O}$ in Fig. 9-39)

FIGur E 9-38. Lateral jaw movements of the mandibular moved as far as possible to the left (A) and to the right (B).

A

FIGur E 9-39. is the vertical overlap of central incisors in maximum intercuspation, and O denotes the maximum opening distance between incisors.

B

1 Ear NING ExEr CISE (continued)

6. Calculate maximum movements
6.a. Add measurements 4 plus 5b to obtain total incisor Opening = \qquad mm .
6.b. Add 4 and 5a to obtain maximum hinge Opening at incisOrs = \qquad mm .
6.c. Add measurements 1 b and 3 a to obtain maximum left lateral movement = \qquad mm .
6.d. Add measurements 1 c and 3 b to obtain maximum right lateral movement $=$ \qquad mm .
6.e. Add measurements 1 a and 2 to obtain maximum protrusion $=$ \qquad mm .
6.f. Add totals 6 c and 6 d to obtain total lateral movement (from right to left) $=$ \qquad mm .

Are you surprised that you can move your mandible farther from side to side than you can move it directly forward? Usually, your jaw can move about twice as far sideways (laterally) as it can protrude or move directly forward. Compare the results of your own jaw movement capability with that of 796 dental hygienists and 318 dental students in Table 9-3.

Ta B1 E 9-3 Capability of Mandibular Movement of 1114 Students

	MAx IMu M JAw o PENINg (mm)	RIg HT MAx IMu M LATERAL JAw Mo VEMENT (mm)	LEFT MAx IMu M LATERAL JAw Mo VEMENT (mm)	MAxIMu M JAw PRo TRu SIo N (mm)	ENTIRE LATERAL JAw Mo VEMENT (mm)
Average	51.01	7.68	7.71	8.44	15.39
Low	27.0	2.5	2.0	3.0	7.0
High	68.5	14.0	15.2	16.0	28.4
Average	50.99	9.12	9.32	7.95	18.44
Low	35.5	2.0	3.0	2.5	6.0
High	71.0	14.0	15.4	13.5	32.0
Total average (1114 students)	50.29	8.09	8.17	8.30	16.26

[^11]
LEARNINg ExERCISE

Sketch, by memory, the teeth on the right side of the mouth in ideal class I re lationship. (Third molars do not need to be included.)

To appreciate the alignment of maxillary and mandibular teeth in ideal class Iocclusion, use the following directions to sketch all teeth on the right side of the mouth several times until you can repeat the sketch by memory. Precise anatomic form is not as critical as developing the correct proportions and shape of each tooth (incisal edges vs. one, two, or three facial cusps) and correct alignment between arches.

1. Use a model of maxillary and mandibular teeth, or a typodont, with teeth in ideal alignment as a guide. First, hold the teeth together in maximal intercuspation, but then separate them only enough so that from the facial view, you can see all maxillary and mandibular facial cusp tips and incisal edges.
2. To make your job easier, do not attempt to reproduce the anteroposterior curve of Spee. On your paper, place two horizontal, slightly separated, parallel lines that can be used to align the chewing edges of all teeth. Also, place vertical lines to denote the midline of both arches (Fig. A).

A
3. Sketch (very lightly) the right maxillary and mandibular central incisors. View the anterior teeth from the facial view with the midlines lined up. The mesial surfaces of each tooth should touch the midline, the incisal edge should touch the parallel horizontal lines, and the maxillary central should be wider than the mandibular incisor.
4. Next, sketch (very lightly) the relative shape and width of each incisal edge or cusp in the maxillary arch using the top horizontal line as a guide for placing the incisal and occlusal surfaces. Note that the models or typodonts must be rotated when viewing more posterior teeth so that each tooth is viewed directly from the facial. Recall that the maxillary lateral incisor is narrower than the central, but the canine and two premolar cusps are about equal in width (except the canine, which is often slightly longer [beyond the horizontal line]). The first and second molars each have two facial cusps of approximately the same width, neither of which is as wide as the premolars or canine (Fig. B).

B
5. Now, sketch (lightly) the incisal edge or cusp of each tooth in the mandibular arch. Try to correctly align mandibular cusps relative to maxillary cusps. For example, the cusp tip of the mandibular canine is aligned with the embrasure between the maxillary lateral incisor

1 Ear NING ExEr CISE (continued)

and the canine, the cusp tip of the mandibular first premolar is aligned with the embrasure between the maxillary canine and first premolar, and so forth. Recall that the mandibular first molar most often has three buccal cusps; keep the distal cusp quite small in order to maintain the proper alignment between arches. Begin to form the occlusal/ incisal embrasure spaces by rounding the mesial and distal "corners" of each tooth (more so for posterior teeth).
6. Sketch (very lightly) the proximal and cervical contours of each tooth. Remember to form the rounded incisal/occlusal embrasures that contour to form proximal contacts with the adjacent tooth, and then taper narrower toward the convex cervical line (which, in health, parallels the free gingival margin) (see Fig. C).

C
7. Evaluate the overall shape and proportion of each tooth to see if changes are required. If you sketched lightly up to this point, it should be easy to erase and make corrections. Self-e valuate your light sketches using the following criteria:

- Crown shapes are recognizable as facial views of each type of tooth.
- Proportions for each tooth are reproduced (i.e., approximate width vs. height).
- Relative sizes of teeth are correct.
- Proximal contacts are in the incisal or middle thirds but never in the cervical half of the tooth.
- Embrasure spaces are reproduced.
- Cervical line contours approximate the junction of gingiva and tooth.
- Correct class I Occlusion is reproduced (i.e., mesiobuccal cusp tip of the maxillary first molar aligns with the mesiobuccal groove of the mandibular first molar, and the cusp tip of the maxillary canine aligns with the embrasure between the mandibular canine and first premolar).

8. Then, finally, neatly perfect the contours with a darker line in order to produce the final, distinct shapes for each tooth. Two drawings sketched from memory by two dental students during a final dental anatomy examination are presented in Figure D.

D

r EVIEW Questions

Answer the following questions with the one best answer based on this sketch of teeth in class I occlusion.

1. In the maximal intercuspal position (MIP), which two teeth occlude with the maxillary first premolar?
a. Mandibular canine and first premolar
b. Mandibular first premolar and second premolar
c. Mandibular second premolar and first molar
2. In MIP, which two teeth occlude with the mandibular second molar?
a. Maxillary first premolar and second premolar
b. Maxillary second premolar and first molar
c. Maxillary first molar and second molar
3. Which two teeth would occlude with the incisal edge of the right mandibular lateral incisor during protrusion of the mandible?
a. Maxillary right central incisor and left central incisor
b. Maxillary right central incisor and right lateral incisor
c. Maxillary right lateral incisor and canine
d. Maxillary right canine and first premolar
4. In MIP, with what landmark would the lingual cusp of the maxillary second premolar occlude?
a. T e mesial marginal ridge of the mandibular second premolar
b. T e mesial fossa of the mandibular second premolar
c. T e distal marginal ridge of the mandibular second premolar
d. T e mesial fossa of the mandibular first molar
5. If this person did not have class I occlusion but had class II occlusion (where the mandible was positioned one full tooth distal to its class I position), which tooth or teeth would contact the maxillary second premolar?
a. Mandibular canine and first premolar
b. Mandibular first premolar and second premolar
c. Mandibular second premolar only
d. Mandibular second premolar and first molar
e. Mandibular first molar only
6. If this person did not have class I occlusion but had class III occlusion (where the mandible was positioned one full tooth mesial to its class I position), which tooth or teeth would contact the maxillary second premolar?
a. Mandibular canine and first premolar
b. Mandibular first premolar and second premolar
c. Mandibular second premolar only
d. Mandibular second premolar and first molar
e. Mandibular first molar only
e-6; b-5;)enil d mn worc

Cr ITICal Thinking

1. It has been determined that Randy Matthews, a 45 -year-old stock broker since 2005, has a third molar, tooth $\# 1$, that occludes before any other teeth in the mouth. Using two columns, one for signs (that can be seen) and one for symptoms (that are felt), list as many signs and symptoms that might be associated with this tooth, especially if Mr. Matthews is a bruxer.
2. Search the computer for images of "class II occlusion facial prof les" to see if these facial profiles give clues to their malocclusion. Do their chins look too short? Do their upper lips look too big? Are their maxillary incisors clearly visible when the mouth appears relaxed?
3. Search the computer for images of "class III occlusion facial prof les" to see if their facial profiles are clues to their malocclusion. Do their chins look too long? Do their lower lips seem too big?

REFERENCES

1. Ramjford SP, Ash MM Jr. Occlusion. Philadelphia, PA: W.B. Saunders, 1966:142-159.
2. Sicher H, DuBrul EL. Oral anatomy. 7th ed. St. Louis, MO: C. V. Mosby, 1975:174-209.
3. Edwards LF, Gaughran GRL. Concise anatomy. 3rd ed. New York, NY: McGraw-Hill, 1971.
4. Clemente CD, ed. Gray's anatomy of the human body. 30th ed. Philadelphia, PA: Lea \& Febiger, 1985.
5. Woelfel JB, Hickey JC, Rinear L. Electromyographic evidence supporting the mandibular hinge axis theory. J Prosthet Dent 1957;7:361-367.
6. Melfi RC. Permar's oral embryology and microscopic anatomy. 8th ed. Philadelphia, PA: Lea \& Febiger, 1988:247-257.
7. Ricketts RM. Abnormal function of the temporomandibular joint. Am J Orthod 1955;41:425, 435-441.
8. Williamson EH. Occlusion: understanding or misunderstanding. Angle Orthod 1976;46:86-93.
9. American Dental Association. Temporomandibular disorders. JADA Guide to Dental Health Special Issue 1988:45-46.
10. Seligman DA, Pullinger AG, Solberg WD.T eprevalence ofdental attrition and its association with factors of age, gender, occlusion, and TMJ symptomatology. J Dent Res 1988;67:1323-1333.
11. Turell J, Ruiz GH. Normal and abnormal findings in temporomandibular joints in autopsy specimens. J Craniomandibular Disord Facial Oral Pain 1987;1:257-275.
12. Renner RP. An introduction to dental anatomy and esthetics. Chicago, IL: Quintessence Publishing, 1985:162.
13. Lindblom G. On the anatomy and function of the temporomandibular joint. Acta Odontol Scand 1960;17(Suppl 28):1-287.
14. Gibbs CH, Mahan PE, Mauderli A, et al. Limits of human bite strength. J Prosthet Dent 1986;56:226-240.
15. Guernsey LH. Biting force measurement. Dent Clin North Am 1966;10:286-289.
16. Locker D, Grushka M. T e impact of dental and facial pain. J Dent Res 1987;66:1414-1417.
17. Gross A, Gale EN. A prevalence study of the clinical signs associated with mandibular dysfunction. J Am Dent Assoc 1983;107:932-936.
18. Williamson EH, Steinke RM, Morse PK, et al. Centric relation: a comparison of muscle determined position and operator guidance. Am J Orthod 1980;77:133-145.
19. Woelfel JB. New device for accurately recording centric relation. J Prosthet Dent 1986;56:716-727.
20. Carroll WJ, Woelfel JB, Huffman RW. Simple application of anterior jig or leaf gauge in routine clinical practice. J Prosthet Dent 1988;59:611-617.
21. Posselt U. T e physiology of occlusion and rehabilitation. Philadelphia, PA: F.A. Davis, 1962.
22. Huffman RW. A cusp-fossa equilibration technique using a numbered leaf gauge. J Gnathol 1987;6:23-36.
23. Rosner D, Goldberg G. Condylar retruded contact position correlation in dentulous patients. Part I: three-dimensional analysis of condylar registrations. J Prosthet Dent 1986;56:230-237.
24. Fenlon MR, Woelfel JB. Condylar position recorded using leaf gauges and specific closure forces. Int J Prosthodont 1993;6(4):402-408.
25. Williamson EH, Woelfel JB, Williams BH. A longitudinal study of rest position and centric occlusion. Angle Orthod 1975; 45:130-136.
26. Winter CM, Woelfel JB, Igarashi T. Five-year changes in the edentulous mandible as determined on oblique cephalometric radiographs. J Dent Res 1974;53(6):1455-1467.
27. Brose MO, Tanquist RA. T e influence of anterior coupling on mandibular movement. J Prosthet Dent 1987;57:345-353.
28. Kohno S, Nakano M. T e measurement and development of anterior guidance. J Prosthet Dent 1987;57:620-630.
29. Barghi N. Clinical evaluation of occlusion. Tex Dent J 1978; 96(Mar):12-14.
30. O'Leary J, Shanley D, Drake R. Tooth mobility in cuspidprotected and group function occlusions. J Prosthet Dent 1972; 27(Jan):21-25.
31. Woelfel J, Hickey JC, Allison ML. Effect of posterior tooth form on jaw and denture movement. J Prosthet Dent 1962;12:922-939.
32. Green CS. A critique of nonconventional treatment concepts and procedures for TMJ disorders. Comp Cont Educ 1984;5: 848-851.
33. Pierce CJ, Gale EN. A comparison of different treatments for nocturnal bruxism. J Dent Res 1988;67:597-601.
34. Young JL. Successful restorative dentistry for the internal derangement patient. Mo Dent J 1987;67:21-26.
35. Tan EK, Jankovik J. Treating severe bruxism with botulinum toxin. J Am Dent Assoc 2000;131(2):211-216.
36. Gerber PE, Lynd LD. Selective serotonin reuptake inhibitor induced movement disorders. Ann Pharmocother 1998;32: 692-698.
37. Crum RJ, Loiselle RJ. Oral perception and proprioception. A review of the literature and its significance to prosthodontics. J Prosthet Dent 1972;28:215-230.
38. Paltaleao JF, Silva-Netto CR, Nunes LJ, et al. Determination of the centric relation. A comparison between the wax prepared method and the Leaf Gauge-Leaf Wafer System. RGO 1992; 40(5):356-360.
39. Woelfel JB. New device for deprogramming and recording centric jaw relation: the sliding guiding inclined gauge. Advanced Prosthodontics Worldwide, Proceedings of the World Congress on Prosthodontics, Hiroshima, Japan, September 21-23, 1991:218-219.
40. Woelfel JB. A new device for mandibular deprogramming and recording centric relation: the sliding guiding inclined gauge. Protesi occlusionone ATM a cura di Giorgio Vogel FDI 1991. Milan, Italy: Monduzzi Editore III, 1991:35-40.
41. Woelfel JB. Sliding and guiding the mandible into the retruded arc without pushing. Compend Contin Educ Dent 1991(Sept);12(9):614-624.
42. Woelfel JB. An easy practical method for centric registration. Jpn J Gnathol 1994;15(3):125-131.
43. Tsolka P, Woelfel JB, Man WK, et al. A laboratory assessment of recording reliability and analysis of the K6 diagnostic system. J Craniomandib Disord Facial Oral Pain 1992;6: 273-280.
44. Donegan SJ, Carr AB, Christensen LV, et al. An electromyographic study of aspects of "deprogramming" of human jaw muscles. JOral Rehabil 1990;17:509-518.
45. Carr AB, Donegan SJ, Christensen LV, et al. An electrognathographic study of aspects of "deprogramming" human jaw muscles. J Oral Rehabil 1991;18:143-148.
46. Christensen LV, Carr AB, Donegan SJ, et al. Observation on the motor control of brief teeth clenching in man. J Oral Rehabil 1991;18(1):15-29.
47. Kruger L, Michel F. A single neuron analysis of buccal cavity representation in the sensory trigeminal complex of the cat. Arch Oral Biol 1962;7:491-503.
48. Kawamura Y, Nishiyama T. Projection of dental afferent impulses to the trigeminal nuclei of the cat. Jpn J Physiol 1966; 16:584-597.
49. Jerge CR. Comments on the innervation of the teeth. Dent Clin North Am 1965;(3):117-127.

g ENERAL REFERENCES

Web site: http://www.academyofprosthodontics.org/_ Library/ap_articles_download/GPT8.pdf-the glossary of prosthodontic term.
Web site: http://www.mayoclinic.org/diseases-conditions/ bruxism/basics/definition/con-20029395

Interesting research Data of Dr. Woelfel andothers

Interesting research fudings and facts related to topics found within this chapter were referenced using superscript letter throughout the chapter like this ($\mathrm{data}^{\mathrm{A}}$) and are described here.
A. Some evidence indicates that people with severe overjet exhibit more crackling or grating noise in their joint (called crepitus or crepitation) because of the frequent necessity to protrude the jaw considerably forward in order to properly enunciate and to incise.
B. People with a class II, division 1 malocclusion often have a long face, a narrow maxillary arch with high palate, diminished muscle tone in the upper lip, and an overactive lower lip. ${ }^{12}$
C. People with class II, division 2 malocclusion often exhibit unique oral traits including a short, wide face, square arch, severe anteroposterior curve (of Spee), anterior crowding, and well-developed chin musculature. ${ }^{12}$
D. In addition to a massive mandible, people with class III occlusion have a long narrow face, a tapered upper arch with a high vaulted palate, increased activity of their upper lip, and decreased activity of their lower lip. Crepitus is not common with class III malocclusion since little, if any, protrusion is required to clearly enunciate or to incise.
E. From eight unrelated surveys of the prevalence of malocclusion treated by orthodontists on 21,328 children, ages 6 to 18, in the United States, between 1951 and 1971, Dr. Woelfel averaged the results and derived the following information:

- 71.7% had malocclusion (range: 31% to 95%).
- 28.3% had acceptable occlusion.
- 72.3% of those with malocclusion had Angle's class I malocclusion (range: 62% to 88%).
- 22.0% of those with malocclusion had Angle's class II malocclusion (range: 8% to 32%).
- 5.7% of those with malocclusion had Angle's class III malocclusion (range: 2% to 12%).
F. Even in the highest order of apes (chimpanzee), the mandible can only drop open in a simple hinge movement.
G. T e maximum separation of the incisors for a pure hinge opening (maximum hinge opening in Fig. 9-20) averages only 22.4 mm or 44% of maximum opening on 352 subjects (Table 9-4).
H. T e frequency of crepitation among 1099 dental hygiene and dental students was presented in Table 9-5. Over one third of these students had some crepitus while opening widely; it was slightly more prevalent on the right side than on the left side and was more common in women than in men.
I. An exhaustive study on the TMJ by Turell includes color pictures of many human TMJs-some healthy, some with displaced discs, and others diseased with osteoarthritis. ${ }^{11} \mathrm{~T}$ is project involved dissection and analysis of joints from 100 cadavers (dead for <12 hours). Joint conditions were found to be directly related to existing occlusal relationships. Older people with their teeth and natural occlusion had normal joints. Internal joint changes were determined to be

Ta B1 E 9-4 Terminal hinge (r otary) Opening Capability of 352 dental hygiene Students ${ }^{a}$

TyPE o FAw o PENINg AVERAg E RANg E (AVERAg E IN DEg REES) Ro TATIo N (IN DEg REES)

Maximum opening at incisors	$51.0 \pm 6.3 \mathrm{~mm}$	$27.0-68.5 \mathrm{~mm}$	NA^{b}	NA^{b}
Hinge opening at incisors	$22.4 \pm 5.7 \mathrm{~mm}$	$9.5-40.5 \mathrm{~mm}$	12.7	$4.4-24.2$
Percentage of maximum incisor opening	44.0%	$18.9 \%-50.6 \%$	-	-

[^12]	Ta B1 E 9-5	Prevalence of Crepitus d uring Maxim um Opening ${ }^{a}$				
	No NE (\%)	Bo TH SIDES (\%)	RIg HT SIDE (\%)	LEFT SIDE (\%)	o NE SIDE (R o R L) (\%)	
594 dental hygiene students	52.0	13.3	18.2	16.8	35.0	
505 dental students	72.0	4.2	15.9	7.9	23.8	
Percentage of all 1099 students	61.2	9.1	17.1	12.7	29.8	

${ }^{\text {a }}$ Determinations by Dr. Woelfel, 1970-1986. More than 20% of these professional students had or were undergoing orthodontic treatment.
more common in the elderly only because of occlusal interferences, loss of teeth, heavy attrition, and uncorrected malposition of teeth. It was concluded that many of the alterations seen in osteoarthritic TMJs had been caused by abnormal, heavy forces within the joints from poor occlusion. ${ }^{11}$ Try to find a copy of reference ${ }^{13}$ in your library. It has a glossary, a review of significant research on the TMJ, and 488 references and contains original research on the joints of 318 oral rehabilitation patients compared to those of 61 other patients. It is a fascinating treatise.
J. Posselt found the distance between centric relation and MIP to average $1.25 \pm 1 \mathrm{~mm}$ with a range of 0.25 to $2.55 \mathrm{~mm} .{ }^{21}$
K. T e average incisal guidance angle for 1114 dental hygiene and dental students is 50° as shown in Table 9-6. Many of these people did not have ideal class I occlusion.
L. T e average maximum forward protrusion for 1114 young men and women was 8.3 mm with a range from 2.5 to 16.0 mm (Table 9-3). T ese extremes included a very tight TMJ compartment that exhibited the smallest protrusion and a very large jaw with loose ligament attachments that exhibited $16-\mathrm{mm}$ protrusion.
M. T e maximum average movement to either the right or left side was about 8.1 mm . T erefore, the entire lateral movement from right to left averaged 16.2 mm compared to an average forward protrusion of only 8.3 mm (Table 9-3).
N. T e nonworking side mandibular condyle moves medially, downward, and forward perhaps 5 to 12 mm . As seen in Table 9-7, of 342 dental hygiene students examined, 26.8% had nonworking side interferences in at least one side.
O. Group function is much different from disocclusion because multiple posterior teeth contact along with the canines on the working side. ${ }^{1,8}$ As seen in Table 9-6, the average canine guidance angle was a little steeper (at 56° and 57°) than the anterior guidance (at 50°). To have a canine-protected articulation where the overlap of the canine teeth disengages the posterior teeth during excursive movements of the mandible, it is usually necessary to have a canine angle of over 60°. Dr. Woelfel found canine-protected articulation with posterior disocclusion in 60.2% of the natural dentitions of dental hygiene students (Table 9-7).
P. Complete denture occlusion: T e desirable type of relationship in a patient who has no teeth and must wear a set of complete dentures is bilateral balanced occlusion. T is occurs when all of the posterior teeth contact on the working side and one or more teeth on the balancing side contact simultaneously. With complete dentures, the bilateral balancing contacts help to prevent the dentures from tipping and coming loose. It is considered undesirable for a patient with natural teeth, however, to have any tooth contact on the nonworking side.
Q. T ere is a pause of about 0.16 second (silent period) between chewing into MIP and commencing the net chewing stroke. T e duration of each chewing cycle varies from 0.7 to 1.2 seconds in most people. ${ }^{31}$
R. Several animal studies using cats have found that canines are more richly represented by neuron units (mechanoreceptors in the periodontal ligament) than any other teeth. ${ }^{37,47,48}$ Another study reported that the periodontal ligament proprioceptors were directionally sensitive to forces of a just few grams. ${ }^{49}$ Such

Ta Bl E 9-6

 Incisal and Canine Guidance angles of 1114 Students| Average | 50° | 56° | 57° |
| :--- | ---: | ---: | ---: |
| Low | -26° | 0° | 0° |
| High | 86° | 84.2° | 83° |

Ta B1 E 9-7 Eccentric Occlusal Contacts of 342 hygiene Students

Co NDITIo N

IN RIg HT Qu ADRANT IN LEFT Qu ADRANT To TAL PERCENT

Canine-protected articulation	207	205	412	60.2
Group function	135	137	272	39.8
No contact	250	251	501	73.2
Interference	92	91	183	26.8
Co NDITIo N	STu DENTS	PERCENT		
Bilateral canine-protected articulation without nonworking side interference ${ }^{\text {a }}$	129	37.7		
Bilateral canine-protected articulation with nonworking side interference	29	8.5		
Bilateral croup function without nonworking side interference	58	17.0		
Bilateral group function articulation with nonworking side interference	34	9.9		
Different relationships on each side	92	26.9		

${ }^{a}$ Considered to be the best type of relationship.
Survey conducted by Dr. Woelfel and his carefully trained staff. He personally re-e xamined suspicious recordings for their validity (1980-1986). More than 30% of these 342 dental hygiene students had undergone orthodontic treatment
evidence lends credence to the canine protection theory. ${ }^{8,27,28}$
S. Natural dentition chewing forces are well below maximum bite force on average foods, ranging from 0.5 to 33 lb , seldom exceeding $100 \mathrm{lb} .{ }^{15} \mathrm{~T}$ e human jaw mus-
cles are very powerful, however. T e largest maximum bite strength ever recorded was that of a 37-year-old man who maintained a force of 975 lb for 2 seconds. ${ }^{14}$ T e average maximum biting force for 20 subjects was 192 lb (range: 55 to 280 lb).

10 Treating Decayed, Broken,

 and Missing Teeth

This chapter was reviewed for terminology and updated by D. Stanley Sharples II, DDS, MS. He is an assistant professor-Clinical in the Division of General Practice and Materials Science at the Ohio State University College of Dentistry where he had received his DDS degree in 1983. His MS degree in Mathematics was received at Brigham Young University in 1975.

Topics covered within the six sections of this chapter include the following:
I. Overview of dental decay (carious lesions)
II. Operative dentistry, restorative dentistry, and prosthodontics: def nitions
III. Dental materials used to restore teeth
A. Amalgam
B. Esthetic restorative materials
C. Cast metal restorations
D. Porcelain: inlays, onlays, crowns, and veneers
V. Restoring each class of caries
A. Class I caries
B. Class II caries
C. Class III caries
D. Class IV caries
E. Class V caries
F. Class VItype of dental caries
VI. Restoring large tooth defects and tooth replacement
IV. Principles of tooth preparation
A. Initial tooth preparation
B. Final tooth preparation

Objectives

This chapter is designed to prepare the learner to perform the following:

- Describe the process of dental decay (caries) formation and the importance of prevention.
- List types of procedures involved in operative dentistry, restorative dentistry, and prosthodontics.
- Classify dental caries according to pit and fissure versus smooth surface, and describe (and sketch) the pattern
of spread of each within enamel, and then once it spreads into dentin.
- List and describe characteristics of commonly used restorative materials.
- List and describe the principles of conventional and modified tooth preparation.

Objectives (Continued)

- Define and identify root caries.
- Describe and identify each G.V. Black class of dental caries clinically and radiographically.
- Describe the indications for restoring a tooth for each class of caries.
- For each class of caries, describe the unique application of the principles of tooth preparation dependent upon the material used.
- For each class of caries, define terms used to describe cavity walls, cavosurfaces, line angles, and point angles.
- Describe and identify the types of restorations used to restore large tooth defects.
- Describe and identify the restorations used to replace lost teeth.

Tooth destruction can occur from dental decay, attrition (from tooth-to-tooth wear), abrasion (from improper toothbrushing with abrasive toothpaste), erosion (from acids), and fracture. Dental caries [CARE eez] (always plural, never a carie), known more commonly as tooth decay, is the most common cause of tooth destruction. Caries (which literally means "rotten") results from the loss of mineralized tooth structure from enamel, dentin, and cementum. T is loss of minerals is called demineralization. Caries formation on a tooth requires the following:

1. BACTERIA: Specific caries-producing bacteria like Streptococcus mutans and lactobacilli must firmly adhere to the tooth in a layer called dental plaque [PLAK], which is a type of microbial bioólm.
2. CARBOHYDRATES/SUGARS: Certain carbohydrates, especially sugar-containing food such as candy, honey, pastries, and especially nondiet, sugar-containing soft drinks, react with certain bacteria in dental plaque to form acids (such as lactic acid) that act upon hard tooth structure resulting in the loss of minerals. ${ }^{1}$ Caries formation is greatly influenced by the acidity of the biofilm, which, in turn, is influenced by the acidity of ingested foods and acidic beverages. T erefore, sports drinks, soda (diet and nondiet), and any drink with an acidic pH below 5.5 , if frequently consumed, will increase the demineralization process. (T e pH is the numerical range from 1 to 14 used to denote the amount of acidity or alkalinity: pH of 7 is neutral, lower than 7 becomes more acidic, and higher than 7 is more alkaline.)
3. TIME: As enough minerals are lost over time (demineralization), a hole (or cavity) can form.

Patient education and prevention techniques taught in dental offices and presented in the media are important aspects of dental patient care. Demineralization can be reduced if a person removes dental plaque by using good oral hygiene measures like toothbrushing and flossing.

Further, since acids can begin to damage a tooth every time it is exposed to snacks and acidic beverages, patients must be educated to reduce the amount and frequency of certain carbohydrates like sweets and acidic drinks in the diet. Frequent intake of carbonated, nondiet soft drinks can be especially damaging since these drinks not only contain sugar but are also mildly acidic due to the carbonation.

T e decay process can actually be reversed if certain minerals, especially calcium and fluoride, are available for uptake into the softer demineralized tooth when the pH is less acidic than 5.5. T is uptake of minerals into a preciously demineralized tooth is called remineralization. A healthy saliva f ow bathes the teeth in minerals like calcium, which improves remineralization. When saliva flow is reduced from damage to the salivary glands due to radiation therapy or as a side ef ect of certain medications, the dry teeth become more susceptible to tooth decay. Artificial saliva, or sugarless chewing gum that stimulates saliva flow, can be used to alleviate this problem. Also, the mineral fuoride [FLOOR ide] applied to teeth in appropriate concentrations can reduce dental caries incidence by increasing the tooth's resistance to breakdown by caries-forming acids. T erefore, daily use of fluoride-containing toothpaste and fluoride-containing mouthwashes (either prescription or over the counter), as well as office-applied fluoride and fluoride varnishes, can help reduce dental decay.

Over time, the removal of minerals from the tooth due to acid formation can alternate with the replacement of minerals into the tooth from healthy saliva and fluoride, which becomes a tug-of-war between demineralization and remineralization. Since it is possible for teeth with beginning decay to actually remineralize, the treatment of carious teeth should be based on a personalized risk-based assessment of each patient's caries history, which includes their history of fluoride use, their salivary flow rate, frequency of drinking acidic beverages, and the frequency of sugar uptake (especially snacks). ${ }^{2,3}$ A discussion of dental caries research, especially related to caries frequency in the

FIGur E 10-1. Caries-prone pits and f ssures are located in four places (at arrows): (A) the occlusal surfaces of posterior teeth, (B) the lingual surfaces of maxillary molars, (C) the buccal surfaces of mandibular molars, and (D) the lingual surfaces of maxillary incisors.
population and longevity of restorations, is found at the end of this chapter.

T ere are two broad classifications of tooth decay based on the anatomy of the tooth surface involved: pit and fissure decay and smooth surface decay. Pit and òssure decay begins in caries-prone pits and fissures where there is incomplete fusion of enamel lobes during tooth development. T ese pits and fissures are often nearly impossible to keep clean. Remember that fissures are located most often in the grooves on the occlusal surfaces of posterior teeth (molars and premolars), as well as in the lingual surface grooves of maxillary molars and in the buccal surface grooves of mandibular molars. Pits are most likely to form in the lingual fossae of maxillary incisors next to the cingulum, especially maxillary lateral incisors, as well as at the junction of grooves
on occlusal surfaces, and at the ends of buccal grooves on mandibular molars and at the end of lingual grooves on maxillary molars (Fig. 10-1).

In contrast to pit and fissure caries, smooth surface carious lesions occur on the smooth surfaces of the anatomic crown of a tooth in locations that are not readily accessible to the natural cleansing action of the lips, cheeks, and tongue. T ese areas include the inaccessible proximal surfaces of crowns just cervical to the proximal contact (seen on posterior teeth in Fig. 10-2) and on the gingival third of the facial and lingual surfaces, cervical to the crest of curvature of the crown and just coronal to the gingiva (Fig. 10-3). Root surface caries is another type of smooth surface caries that begins when cementum, which is much less mineralized than enamel or dentin, is exposed to caries-forming plaque (Fig. 10-4).

FIGur E 10-2. Smooth surface caries on the mesial surface of a mandibular second premolar (arrow) is clearly visible because the adjacent first premolar was broken off at the cervical line. Notice the location of the lesion (just cervical to where the proximal contact had been) and the color: a darkly stained hole surrounded by discoloration and chalkiness. This lesion would have been difficult to detect clinically when the adjacent first premolar was intact. Bite wing radiographs are most useful for confirming these lesions.

FIGur E 10-3. Smooth surface demineralization in the cervical third of this maxillary lateral incisor appearing as a chalky white area (at arrows) is evidence of the first stages of dental caries. If this demineralization continued and did not reverse itself (through excellent oral hygiene, diet, and use of topical fuoride), this area could develop a cavitation (hole) that would need to be restored. Also, notice the infammation of the adjacent gingiva (gingivitis), which, like dental caries, is caused by long-standing bacterial plaque.

FIGur E 10-4. Root caries (arrow) is visible on an area of exposed cementum after gingival recession.

T ere are several branches of dentistry that include treatment or replacement of carious, broken, malformed, or missing teeth: operative dentistry, restorative dentistry, and prosthodontics. T ere is some overlap in the definitions of these terms, but they are useful when grouping courses within a dental curriculum and are used in dental journals and textbooks when discussing types of dental treatments. For example, these three dental journals address research for each of these branches of dentistry: Prosthetic Dentistry, Operative Dentistry, and Journal of Esthetic and Restorative Dentistry.

Operative dentistry is the branch of clinical dentistry that includes the diagnosis and restoration of defects of the hard tissues of individual teeth. Most of this chapter is devoted to the concepts of operative dentistry required when restoring teeth with small carious lesions that have progressed only slightly deeper than the dentinoenamel junction (DEJ). Operative dentistry also may include placement of larger restorations that cover all or part of the tooth such as porcelain or cast metal onlays and, according to some definitions, may include crowns (also known by many as "caps"). Operative dentistry does not include replacement of lost teeth. T e goal of the dentist when placing both large and small tooth restorations is to reproduce proper tooth form, function, and esthetics while maintaining a harmonious relationship with the adjacent hard and soft tissues,
all of which enhance the general health and welfare of the patient. ${ }^{4}$

Restorative dentistry is the branch of clinical dentistry that involves the restoration of defective hard tooth structure of individual teeth (very similar in scope to the branch of operative dentistry) plus, according to some authors, the replacement of lost or missing teeth with the ultimate goal of establishing a healthy, functioning, and comfortable dentition. T erefore, it may include the placement of crowns and may include bridgework.

A prosthesis [pros THEE sis] is defined as an artificial replacement of a missing part of the human body. T erefore, it follows that prosthodontics [pros tha DON tiks] is the branch of dentistry that involves the treatment of patients with missing or deficient (as well as misaligned or malformed) teeth. Fixed prosthodontics is the branch of prosthodontics concerned with the replacement of lost teeth and/or placement of restorations that cannot be readily removed from the mouth. An example is a dental bridge (more appropriately called a fixed dental prosthesis) where artificial teeth are cemented into place using adjacent teeth for support. Removable prosthodontics involves the replacement of teeth with devices that can be readily removed. Examples include a complete denture (also called a complete removable dental prosthesis but known to the public as false teeth or a denture) or a removable partial
denture prosthesis (also called a partial denture), both of which can, and should, be removed often for easy cleaning and to maintain tissue health. Prosthodontics is the only one of these three branches recognized by the American Dental Association as a dental specialty and requires 3 years of specialty training at an accredited graduate program. T e
graduate curriculum in prosthodontics can include placement of implants, crowns, bridges, veneers, and complete and partial dentures, as well as other restorations required to restore the mouth to health and function. Removable and fixed prostheses will be described briefly in the last section of this chapter.

SECTION III DENTal MaTEr Ial S u SED TO r ESTOr E TEETh

Pits and fissures that appear caries prone can be treated with dental sealants before the caries process has begun and without any surgical or cutting procedures. When it is deemed necessary to use surgical techniques to restore small carious defects, conservative tooth preparations are most often filled with dental amalgam or esthetic restorative materials like composite resin, glass ionomer, or resin-modified glass ionomer. T e materials of choice for restoring larger defects that require protection of thin remaining tooth structure include cast gold or semiprecious or nonprecious metals, porcelain, and more recently zirconia.

a. a Mal GaM

Dental amalgam has been a widely used restorative material for well over a century owing to its ease of placement and relatively low cost. It is silver in color and is condensed (packed) into a preparation in successive, small increments that becomes hard enough within several hours to withstand chewing forces. T erefore, amalgam is often used for restorations on the occlusal surfaces of posterior teeth and for restoring posterior proximal surfaces when esthetics is not a factor (Fig. 10-5).

FIGur E 10-5. An amalgam restoration on a right maxillary first premolar was used to restore a tooth after the removal of distal smooth surface decay and occlusal fissures. It can be abbreviated here as \# 5 DO-A.

B. ESTh ETIC r ESTOr aTIvE MaTEr Ia 1 S

Esthetic restorative materials such as composite resin, glass ionomer, and resin-modified glass ionomer are being increasingly used due to patients' demands for esthetic restorations. Composite resin is a tooth-colored restorative material. When it is applied directly into a preparation, it has a dough-like consistency and it hardens quickly when exposed to a light source. Historically, in the 1980s, due to initial concerns about the strength and abrasion resistance of composite resins, ${ }^{5,6}$ it was used primarily for restoring the proximal surfaces of anterior teeth and the facial surfaces of teeth on which esthetics was a chief concern (Fig. 10-6A). Newer generations of esthetic restorative materials developed in the 1990s and 2000s perform well in posterior areas, so composite is steadily replacing amalgam as the restoration of choice for many small class I and II lesions (Fig. 10-6B). ${ }^{910}$

Tooth-colored composite resin (or porcelain restorations) can also be constructed outside the mouth and then cemented in place using an adhesive but researchers are debating whether these small, conservative indirect restorations are worth the additional cost for each filling when compared to direct composite restorations. ${ }^{11,12}$ However, when restoring teeth with large cavities, an indirect composite restoration that has adequate wear resistance can be used to protect and strengthen the remaining tooth structure. ${ }^{4}$

Glass ionomer and related materials such as resinmodidied glass ionomer are recommended for the treatment of caries on the root surface or over erosion lesions. ${ }^{7} \mathrm{~T}$ ese materials bond chemically to exposed dentin, are reasonably esthetic, and contain fluoride, which protects the tooth against future caries.

A brief summary of research data related to esthetic restorations is presented at the end of this chapter.

C. CaST METa 1 r ESTOr aTIONS

When the tooth structure is weak and needs to be protected from occlusal forces, a cast metal restoration (gold or semiprecious metal) may be the treatment of choice when esthetics is not a factor. Metal crowns can be used to cover the

FIGur E 10-6. Composite resin restorations. A. This composite resin restoration that replaces a lost corner on this maxillary central incisor can be abbreviated \#8 DIFLC. B. The composite resin restoration on this left mandibular second premolar can be abbreviated \# 20 MOC.

entire tooth crown, or, less often today, metal onlays can be used, that is, restorations that cover cusp tips but not most of the buccal or lingual surfaces. Since these indirect restorations are constructed outside of the mouth (not directly in the mouth), they can be contoured more perfectly than an amalgam or composite restoration that must be contoured within the mouth. Further, since cast metal is stronger than amalgam, it can be used to restore an entire stress-bearing occlusal surface using a thinner layer than required for an amalgam restoration, and therefore requiring less occlusal tooth removal to make room for the restoration. Also, cast metal restorations have excellent marginal stability over time. However, cast restorations are much more expensive for the patient since they require considerably more office and laboratory time when compared to composite resin or amalgam restorations that are placed the same day the tooth is prepared. A cast gold onlay is seen on tooth \#3 in

Figure $10-7 \mathrm{~A}$, and a complete cast metal crown is seen on tooth \#31 in Figure 10-7B.

D. pOr CEl a IN: INl ayS, ONl ayS, Cr OwNS, aND vENEEr S

Porcelain (ceramic) restorations are esthetic alternatives to cast metal inlays, onlays, and crowns due to advanced processing methods and bonding techniques that have improved fit. ${ }^{8,13}$

Porcelain veneers are conservative restorations that require minimal or no tooth reduction in order to veneer the labial surface of an anterior tooth in order to improve esthetics (seen on tooth \#7 in Fig. 10-7A). Porcelain can also be used to construct all ceramic restorations (crowns) (seen on maxillary incisors in Fig. 10-8), zirconia crowns, or metal ceramic restorations, that is, crowns where porcelain

FIGur E 10-7. Cast metal and ceramic (porcelain) restorations. A. Tooth \# 3 has a cast gold onlay that covers the entire occlusal surface. It can be abbreviated \#3 MOD On. Tooth \#7 has a porcelain laminate ve neer. B. Tooth \#31 has a complete cast metal (gold) crown. Tooth \#30 has a metal ceramic restoration (porcelain fused to metal crown). Both mandibular premolars (\#28 and \#29) also have metal ceramic crowns (the metal is not visible). (Photos courtesy of Dr. Julie Holloway.)

FIGur E 10-8. All of these maxillary anterior teeth are covered with all ceramic restorations.
is fused to underlying metal in order to provide an esthetic result (teeth \#s 28, 29, and 30 in Fig. 10-7B).

One advancement used to construct some ceramic restorations is CAD/CAM technology, that is, computeraided design and computer-aided manufacturing. ${ }^{14,15}$ Using this technology, the tooth is prepared and then a digital picture is taken of the prepared tooth. Next, computer software converts the picture into a 3D virtual model, and that model is used to form the actual restoration from a block of ceramic or processed composite on a milling machine so it can be perfected and adhered into the tooth preparation.

SECTION Iv pr INCIp1 ES OF TOOTh pr Epar aTION

In order to restore a tooth that has dental decay, or defective or injured tooth structure, a tooth preparation is required that involves removing the defective tooth structure while maintaining adequate functional tooth structure and restorative material that will function in the mouth as long as possible. Early principles of tooth preparation were developed by Dr. G.V. Black in the early 1900s when only a few dental materials were available. When restoring teeth with these materials, tooth preparations required a precise depth, outline shape, and internal shape for the filling material. T ese principles still apply today when restoring with amalgam, cast metal, and ceramic restorations because of the unique physical properties of these materials. T ese precise, conservative preparations can be called conventional preparations. In contrast, with the introduction of dental materials like composites and glass ionomers that can adhere to tooth structure, tooth preparation requires less precision. Preparations for these materials can be called modiảed preparations. Both conventional and modified preparations require the removal of caries; defective, injured, or unsupported tooth structure; and defective restorative material, but modified preparations may not require a precise depth or internal or external shape and do not normally require mechanically formed obvious retentive features. Most of the following section describes the principles of conventional tooth preparations for each class of decay.

When forming a conventional tooth preparation, the dentist first considers the principles (or steps) important for forming the initial tooth preparation and then addresses the f nal tooth preparation steps. Many of these steps can be accomplished simultaneously by an experienced dentist.

a. INITIal TOOTh pr EparaTION

T e initial tooth preparation involves removing the least amount of tooth structure to a specified, limited depth and shape in order to provide access to any remaining caries
(or defects), reach peripheral sound tooth structure, retain the restorative material, and resist fracture of the remaining tooth and restorative material from chewing forces.

Step 1. Establish an outline form and initial depth.
T e outline form of a preparation is the external shape of the preparation where prepared tooth meets unprepared tooth. It is developed by removing the least amount of tooth structure possible so that the margins extend to enamel that has no signs of active decay, and the initial depth is minimally into dentin (only 0.2 to 0.5 mm beyond the DEJ). T e dentist usually prepares the initial tooth preparation with a high-speed dental handpiece using carbide or diamond burs that cut quickly, minimizing the potentially damaging heat by use of an ef ective water coolant spray.

Step 2. Provide primary resistance form.
T e preparation shape must assure room for an adequate thickness of restorative material since some materials, if too thin, can easily break under occlusal forces. T e preparation depth must be deep enough for the restorative material to be thick enough to withstand occlusal forces. T is is known as resistance form. Further, remaining enamel, which is brittle, must be thick enough and supported by sound, noncarious dentin in order to withstand the forces required when placing and condensing the restoration, and the forces applied during tooth function. If the remaining tooth structure is too thin or undermined, or is not sufficiently supported by solid dentin and/or bonding techniques, the unsupported enamel could fracture and leave a gap between the tooth and the restorative material.

Step 3. Provide primary retention form.
Primary retention form is the design of a preparation that prevents the restoration from falling out. T e methods for providing retention dif er depending on the restorative material and on the location of the carious lesion. Retention for conventional amalgam restorations may be provided by converging some opposing preparation walls and by developing internal retentive features such as retentive grooves.

A

B

FIGur E 10-9. The effect of etching enamel. A. Magnified view of a nonetched enamel surface (3260 times bigger). B. Magnified view of an etched enamel surface (3600 times bigger) after application of 50% phosphoric acid. This etched surface allows the fowable resin bonding agent of the composite systems to fow into the irregular microscopic undercuts, thus affording mechanical retention for the material. (Courtesy of Dr. Ruth Paulson, Ohio State University.)

Retention in the modif ed preparation for composite resin restorations is provided by acid etching the enamel to produce microscopic irregularities (minute undercuts) on the surface (Fig. 10-9B). Subsequently, the dentist can apply a layer of f owable resin (bonding agent) that flows into the microscopic irregularities of the etched enamel and forms tiny retentive resin tags. When hardened, these resin tags mechanically lock into the microscopic retentive features of the etched enamel much like pieces of a jigsaw puzzle fitting together (called mechanical retention). Next, thicker layers of the stronger composite resin can subsequently be chemically bonded to the initial flowable resin layer to complete the restoration. Some adhesive agents use chemical bonds to attach the resin to the tooth (called chemical retention).

Step 4. Provide convenience form.
An extremely small, narrow initial cut through the enamel might not permit the dentist to confirm the removal of all caries that spreads laterally once it reaches dentin. T erefore, convenience form involves developing a restoration outline that is large enough for the dentist to insure that all decay has been removed and that instruments used by the dentist to insert the filling material can completely fill the preparation without voids.

B. FINal TOOTh pr Epar aTION

Developing the final tooth preparation form involves removing any addition caries or defects that are deeper than just beyond the DEJ, protecting the pulp if needed, and reevaluating the preparation to confirm that all of the criteria for a good tooth preparation have been met.

Step 5. Remove remaining infected dentin, defective pits and fissures, and defective restorative material.

When removing deeper caries that has progressed deeper than just beyond the DEJ, the dentist can use hand instruments or a slowly rotating round bur in a slow-speed handpiece in order to more easily dif erentiate between the
softer carious dentin and the harder, healthy, or noncarious dentin, thereby removing the least amount of healthy tooth structure. After removing infected carious dentin, the dentist removes any adjacent defective restorative material and removes or seals any adjacent caries-prone enamel pits or fissures.

Step 6. Protect the pulp if needed.
When caries extends close to the pulp, it may be advisable to place dental liners or cement bases that, when used in the appropriate combination and in the correct order, can prevent bacteria from penetrating deeper into the tooth, provide thermal insulation for the pulp, sedate or sooth an irritated pulp tissue, or even stimulate the odontoblasts to produce new, secondary dentin (Fig. 10-10).

FIGur E 10-10. This model of an amalgam preparation illustrates how three areas of a preparation had caries deeper than ideal and were filled with a dental cement base (shown in green) before the amalgam would be placed.

Step 7. Provide secondary resistance and retention form.
After all remaining enamel pits or fissures, infected dentin, and old restorative material have been removed, and appropriate liners and bases have been placed, the dentist may need to add secondary resistance and retention features to the preparation using mechanical features such as slots and grooves, placement of pins, or adhesive materials.

Step 8. Finish the external walls.
T e dentist may use a handpiece with appropriate burs or chisel-type hand instruments to smoothly plane the walls in order to remove any remaining unsound enamel that is crazed or cracked or not supported by sound dentin.

Step 9. Final procedures: clean and inspect the preparation, and desensitize.

Prior to the restoration of any cavity preparation, the operator must clean of all tooth debris, hemorrhage, saliva, and any excess cement base. In this way, the restorative material at the preparation margins will contact only sound, clean tooth structure. T en, it is critical to inspect the finished preparation to reconfirm that all of the principles of cavity preparation have been addressed. At that time, the dentist may also want to treat the final preparation with a desensitizing material when tooth sensitivity is a possible concern.

SECTION v r ESTOr ING EaCh Cl a SS OF Car IES

In 1908, Dr. G.V. Black developed a comprehensive method for preparing and restoring teeth by defining five classes of carious lesions using Roman numerals I through V. ${ }^{16}$ All lesions that begin in defective pits and fissures are in class I, whereas classes II, III, IV, and V include dif erent types of smooth surface caries. His five classifications are still appropriate when considering principles of cavity preparation for conventional tooth preparations, although now these principles may be modified depending on the restorative material used. For the most part, the terminology and principles to consider when restoring each of Black's classes of decay presented and illustrated in this section relate to conventional tooth preparations. However, a few modif ed preparation principles for restoring with composite resin will also be discussed. Before treating each tooth, keep in mind that the dentist has confirmed that the tooth has a healthy periodontium with adequate bony support and that the maintenance of the tooth is an integral part of the overall patient treatment.

a. ClaSS I Car IES

(1.) Class I Caries: Defned and Diagnosed

Class Ic arious lesions can form in deep enamel pits and fissures that are difficult or impossible to keep clean (Fig. $10-11 \mathrm{~A}, \mathrm{~B}, \mathrm{D}$, and E). Detecting class I lesions clinically requires visual inspection and tactile evaluation, that is, feeling for a soft spot. Careful visual analysis of a clean, dry, well-lighted occlusal surface will reveal this type of caries as a carious fissure or pit if it is surrounded by chalky enamel that has lost its translucency compared to the adjacent enamel (Fig. 10-11A). Some dentists prefer to confirm caries within these suspicious defects by probing with a very sharp explorer. When the dentist presses the explorer into the defect with moderate to firm pressure, and upon removal, senses a resistance known as tug-back, this helps to confirm the presence of softness and therefore caries
within the defect. However, the firm use of the explorer for the detection of pit and fissure caries should be used with caution. One study suggests that the confirmation of decay based on tug-back may not always be accurate (there might not be decay, just a deep groove), and excessive force could actually damage fragile enamel rods on the tooth. ${ }^{17}$ Also, the explorer tip may inoculate caries-free teeth with harmful bacteria. Besides, even in the absence of obvious tug-back, loss of translucency of enamel around a pit or fissure may be considered to be reliable evidence of caries. It is especially important to avoid undue pressure with the explorer point into an obvious large lesion with exposed dentin as seen in Figure 10-11B and E since it could be quite painful.
T e shape of a class I lesion in cross section within enamel is somewhat triangular in shape with the apex of the triangle barely visible on the enamel surface and its wide base located along the DEJ. Once into dentin, the decay spreads out at the DEJ because dentin is less mineralized than enamel. T e spread within dentin forms a triangular shape with its wide base along the DEJ and its apex toward the pulp following the dentinal tubules (Fig. 10-12A and B). T at is, the shape of the spread of class I caries through enamel and into dentin is like two triangles with their bases touching at the DEJ.

A class I lesion is usually not detectable on a radiograph until it has spread considerably into dentin because the lesion is superimposed between the thick buccal and lingual surfaces of enamel, which show up whiter (radiopaque), thereby masking the darker color of caries. By the time the cavity is visible on the radiograph (Fig. 10-12C), the size of the preparation required to remove all of the decay would be considerably deeper (toward the pulp) than if the decay had been detected during a good clinical examination when the lesion was smaller. T us, early class I decay is best diagnosed during a thorough, systematic clinical examination of clean, dry teeth using good lighting and the judicious use of a sharp exploring point. T ere are new technologies designed to detect caries, but researchers disagree about their accuracy and ef ectiveness.

FIGur E 10-11. Class I caries. A. Class I caries visible as a stained pit and groove with adjacent demineralization seen as a chalky whiteness (arrow). b. This maxillary molar has class I decay in a small hole in the central pit and in the lingual groove (arrows). C. The dentist removed the decay in the maxillary molar seen in "B," and since the decay spread out considerably at the DEJ, the outline has gotten quite wide. D. These deeply stained occlusal grooves need to be evaluated for decay by cleaning debris and using air and good light. E. This class I decay is so large that it might be best to restore this tooth with a crown.

FIGur E 10-12. Spread pattern of class I decay. A. The occlusal lesion at the arrow (class I, pit and fissure) is small externally and widens within enamel toward the depth of the enamel as it approaches the DEJ. Once within dentin, the caries spreads out laterally, as it progresses toward the pulp. B. In this cross section of a tooth, class I decay spreads out as it approaches dentin, and once into dentin, it spreads out. C. Radiograph of a class I lesion (arrow) on tooth \#31. By the time the lesion appeared this deep on the radiograph, the caries had destroyed dentin to such a depth that the preparation may end up being as large and deep as in Figure 10-11C and require a dental cement base. This decay caries should have been detected earlier with a good clinical examination.

Class I Caries: when to restore or a pply Sealants
Some class I lesions are difficult to dif erentiate from noncarious, deep enamel defects. If there is a hole with obvious tugback, or the enamel surrounding the defect is chalky or less translucent, a restoration is indicated. However, if tug-back is slight but there is no accompanying evidence, the dentist might consider periodically reevaluating the area during recall appointments, especially if the patient is older and has a low caries rate, since tug-back can occur when probing in deep fissures even when caries is not present.

An alternative to waiting is to apply a dental sealant. A sealant is a "flowable" resin that is applied over noncarious but caries-prone, unprepared pits and fissures. Pit and fissure sealants can be used to prevent class I caries in deep caries-prone pits and fissures, especially on recently erupted teeth of a young patient, such as the permanent molars as they erupt around 6 and 12 years of age. T ese sealants have been shown to be an ef ective means of preventing caries from forming in these pits and fissures. ${ }^{18-20} \mathrm{An}$ initial sealant application on all permanent molars and premolars requires only 15 to 20 minutes per child. ${ }^{21}$

T e dentist should not wait until class I caries is obvious on a radiograph since by that time the lesion would be quite large.

3. Class I preparation and restoration: Terminology

After removing occlusal decay, the conventional class I preparation using amalgam can be compared to a room with no ceiling that has four vertical walls and a horizontal floor (sometimes called a fifth wall). T e four vertical walls are named after the closest tooth surfaces, namely, buccal, mesial, lingual, and distal; the horizontal floor is called the pulpal foor (or wall) because it is over the pulp (abbreviated as $\mathrm{B}, \mathrm{M}, \mathrm{L}, \mathrm{D}$, and P in Fig. 10-13A). T e term that describes the junction of the walls of the preparation with the unprepared tooth structure is called the cavosurface. T e cavosurface, therefore, is the outline that encircles the preparation.

A line angle in the preparation is the junction or line formed where two walls join. T ere are eight internal line angles in a conventional class I preparation (if the preparation is confined to the occlusal surface and is not extended into a carious buccal or lingual groove). T ese are named by combining the terms for the two walls that join to make up each line angle, changing the suffix of the first word from "al" to "o." T e junction of the pulpal floor and distal wall is the distopulpal line angle. All possible line angles in a class I occlusal preparation include four that are horizontal (distopulpal, mesiopulpal, buccopulpal, and linguopulpal) and

FIGur E 10-13. Three drawings of a conventional class I cavity preparation for amalgam on tooth \# 31. A. This occlusal preparation outline included all major occlusal grooves. B. Mesiodistal cross section of the same tooth showing the ideal depth of the pulpal foor (red), just into dentin (about 0.5 mm). The lingual cavosurface is also identified where the lingual wall of the preparation joins the unprepared surface of the tooth. C. Buccolingual cross section of the same tooth shows the convergence of the vertical buccal and lingual walls toward the occlusal for retention and resistance form. Key for nomenclature: B, buccal wall; L, lingual wall; M, mesial wall; D, distal wall; P, pulpal wall or foor (red). Example of a line angle: LP is the linguopulpal line angle. Example of a point angle: M-B-P is the mesiobuccopulpal point angle.

FIGurE10-14. Amalgam restorations for conservative class I caries. A. An occlusal amalgam on a maxillary second premolar (abbreviated \#4 OA) and two occlusal amalgams on a maxillary first molar that are separated by the oblique ridge since the transverse groove of the oblique ridge is rarely carious (abbreviated \#3 OA, OA). B. An occlusal amalgam on a mandibular first molar (abbre viated \# 19 OA). If this restoration needed to be replaced, the buccal groove would have to be evaluated carefully to see if it should be included in the new restoration or protected with a sealant. C. Class I caries was restored on a maxillary first molar with a preparation that included the distal pit and the lingual groove. It is abbre viated \#14, OLA.
four that are vertical (mesiobuccal, distobuccal, mesiolingual, and distolingual).

Finally, there are four point angles in a class I preparation, each formed by the junction of three walls (as in the corner of a room where two walls meet the floor). Point angles are named after the three walls that form them: mesiobuccopulpal (abbreviated M-B-P in Fig. 10-13A), mesiolinguopulpal, distolinguopulpal, and distobuccopulpal. Since the junction of walls in a preparation is often rounded, line angles and point angles are most often areas rather than distinct, sharp points.

A class I restoration is properly identified by naming the surfaces involved and material used. For example, an amalgam on tooth \#14 involving the occlusal surface with a lingual extension would be abbreviated OL-A, \#14 (Fig. 10-14C). T e letter O represents the occlusal portion of the preparation, the L represents the lingual extension, and the letter A represents the restorative material, amalgam. If composite had been used, the representation would have been OL-C, \#14. A lower right third molar with an occlusal amalgam and buccal extension would be an OB-A, \#32. A buccal or lingual pit restored with composite would be a B-C or L-C, followed or preceded by the tooth number.

LEARn Ing ExERCISE

Identify tooth preparations in Figures 10-14 and 10-23 by using the correct abbreviations. Then refer to the legends of these figures for the answers.

4. Class I: a pplied principles of Initial Tooth preparation

If there is a only a minute amount of decay in a groove, the dentist may make a very small preparation, possibly confined to enamel and not extending into adjacent, noncarious grooves, which can be restored with a small amount of composite resin followed by a sealant to protect abutting deep grooves. T is restoration is called a conservative resin restoration (previously called a preventive resin restoration). A sealant and a conservative resin preparation are shown in Figure 10-15. Conservative modified preparations can also be formed using an air abrasion system where abrasive particles are blown forcefully toward the tooth to remove a minimal amount of tooth structure. Some principles of cavity

FIGur E 10-15. Conventional preparation for class I decay. A. Atypical groove pattern for a mandibular second molar. B. Asealant place over the grooves of a mandibular second molar would normally be almost invisible, so this sealant was outlined. C. A preparation for a conventional conservative resin restoration.
preparation apply to this modified tooth preparation such as providing retention, obtaining access to the decay, and extending to sound enamel. Retention is obtained by flowing an initial layer of bonding agent, similar to a sealant, into the irregularities of the microscopically roughened enamel. ${ }^{22,23}$

Amalgam may also be chosen to restore larger, stressbearing class I preparations on occlusal surfaces (Fig. 10-14).
a. Outline Form and Initial Depth (Class I)

When using amalgam, the outline form may be extended to include those pits and fissures adjoining the defects with suspected decay, especially when the patient is young, has a high caries rate, and/or exhibits poor oral hygiene. However, sealants may also be used to protect adjacent pits and fissures. Examples of several amalgam preparations that have been extended into all major grooves can be seen in Figure 10-16.
b. Primary Resistance Form (Class I)

When amalgam is used on a stress-bearing surface, a minimum total preparation depth (of 1.5 to 2 mm) is recommended due to the brittleness of amalgam in thinner layers (Fig. 10-13B). T e buccal and lingual cavity walls each form almost a right angle with the uncut tooth at the cavosurface that permits a good bulk of amalgam that abuts against a strong enamel surface (Fig. 10-13C). When restoring with composite, a modified preparation does not require a flat, evenly deep pulpal floor.

c. Retention (Class I)

Retention for amalgam in an occlusal preparation is provided by forming a slight convergence of the buccal and lingual preparation walls toward the occlusal surface (Fig. 10-13C). For modified composite preparations, retention is also provided by acid etching the enamel to produce microscopic irregularities on the surface that can be filled with a first layer of flowable bonding agent.

FIGur E 10-16. Class I amalgam preparations showing common outlines for many maxillary and mandibular molars. A. Tooth \#3 with an occlusal and an occlusal-lingual preparation (OA, OLA, typical of many maxillary molars). The preparations are separate since in this case, there was no need to cross the oblique ridge. B. An occlusal amalgam preparation of tooth \#31 (OA). C. An occlusobuccal amalgam preparation on tooth \#30 (OBA, typical of many mandibular molars).

B. Cl a SS II Car IES

Amalgam may be chosen for larger stress-bearing class II restorations using a conventional preparation, but when esthetics are important, composite resins can be chosen using modified preparations, possibly in conjunction with sealants to protect, rather than cut into, adjacent susceptible pits and fissures.

(1.) Class II Caries: Defned and Diagnosed

Class II decay forms on the smooth proximal surface of posterior teeth just cervical to the proximal contact (Fig. 10-17A and B). It forms due to inadequate plaque removal in the hard-to-reach interproximal surfaces. Judicious use of dental floss to frequently remove bacterial plaque between posterior teeth is one method for preventing (and with fluoride, possibly reversing) class II caries.

Clinical detection of a small class II lesion in the mouth without the aid of radiographs is often difficult due to the inability to visualize or probe the areas where it forms. A loss of translucency of the enamel on the overlying marginal ridge may be the first clinical evidence of class II caries (Fig. 10-18). As a carious lesion increases in size, it may appear as a dark, cavitated area (hole) that can be detected by a using a thin probe (explorer) into the interproximal space. A very large class II lesion may actually undermine the marginal ridge, causing the entire ridge of enamel to break of during mastication (Fig. 10-17D).

Radiographic detection of an incipient class II lesion (i.e., a lesion that is just beginning and still quite small) is most predictably accomplished by using bitewing radiographs because a class II lesion is normally visible on the radiograph before it can be detected clinically. A class II lesion is seen as a narrow triangular shadow within enamel just cervical to the proximal contact (Fig. 10-19A and the distal of tooth \#20 in Fig. 10-19B). Unlike the spread pattern of class I caries, the wide base of its triangular shape is located at the enamel surface, and it tapers to its apex toward the DEJ. When the lesion gets large enough to spread into dentin, the spread pattern is the same as for class I caries: it is triangular in shape with a base that spreads out along the DEJ and an apex that follows the dentinal tubules toward the pulp (seen on the distal of tooth \#12 in Fig. 10-19C and in cross section in Fig. 10-19A and D).

2. Class II Caries: when to r estore

Class II lesions that are clinically obvious with a break or hole in the surface (called a cavitation) should normally be restored (Fig. 10-17B, C, and D). T e radiographic indication for restoring a small lesion is when the lesion has penetrated to the DEJ and begins to spread out into dentin (teeth \#s 12 distal and 19 distal in Fig. 10-19C). If the lesion is small enough to be confined to enamel on the radiograph, the dentist must consider the patient's previous history of carious activity, oral hygiene, and age in order to decide whether to

FIGur E 10-17. Class II lesions. A. Class II caries on the mesial surface of a mandibular second premolar (arrow) is clearly visible just cervical to where the proximal contact had been. It is a darkly stained hole surrounded by discoloration and chalkiness. B. This small lesion with a small hole (arrow) on the mesial surface of tooth \# 14 would probably not be visible in the mouth if an adjacent tooth were present but would be visible on a radiograph. C. A larger class II lesion with cavitation (arrow) on the mesial surface of tooth \# 15, with color changes and a cavitation that would probably be visible beyond the proximal contact area in the mouth. D. A very large class II lesion on the mesial surface of tooth $\# 30$, which resulted in the collapse of the entire mesial marginal ridge of enamel.
restore now or to reevaluate at subsequent recall intervals. T e use of fluoride and fluoride varnishes has improved the potential to arrest small lesions. However, the dentist might consider restoring the tooth in a young patient with a carious

FIGur E 10-18. Class II caries is suspected when the area of the marginal ridge over the proximal contact of this posterior tooth shows a change in translucency appearing like a brown or gray shadow (arrows) beneath the surface of the enamel. Inspection of the tooth surrounding the proximal contact and evaluation of bite wing radiographs would be useful to confirm this area of decay.
lesion that is only just beyond two thirds of the way through enamel if that patient also has many other deeper lesions and poor oral hygiene that is not improving, especially since research has confirmed that a lesion extends deeper in the actual tooth than it appears on the radiograph. ${ }^{24}$

3. Class II: Terminology

To reach and remove class II caries (which form just cervical to the proximal contact), the dentist must normally access the decay by preparing a proximal box through the marginal ridge that extends cervically. Also, the dentist may extend the preparation across the occlusal surface to remove adjacent deep caries-prone pits and fissures. In order to reach all of the proximal decay, the proximal box must be extended to a level that is more gingival than the pulpal floor of the occlusal (class I) portion of the preparation so that the entire preparation resembles a stair step descending further gingivally than the pulpal floor (Fig. 10-20A and B).

Each proximal box has three vertical walls and one horizontal wall (or floor). T e three vertical walls are the buccal and lingual walls, just as in occlusal preparations, and an axial wall over the pulp but along the long axis of the tooth (like the riser on a stairway). T e new horizontal wall of the proximal box is the gingival wall (or floor), which is parallel to, but at a more gingival level, than the pulpal floor of the occlusal portion of the preparation. All of these walls are labeled with abbreviations in Figure 10-21. T e line angles that are present in a mesial or distal proximal box are axiopulpal, axiogingival, buccogingival, linguogingival, axiobuccal, and axiolingual. T e point angles in each box include axiolinguogingival (A-L-G in Fig. 10-21B), axiobuccogingival, axiobuccopulpal, and axiolinguopulpal.

Since obtaining access to remove a proximal lesion normally requires breaking through a marginal ridge on the

FIGur E 10-19. Spread pattern of class II lesions. A. The spread pattern of class II smooth surface caries (arrow) is broad externally, narrowing toward the DEJ. Once within dentin, this lesion spreads out laterally at the DEJ (like in a class I lesion) as well as progresses toward the pulp. B. Radiographic evidence of a class II lesion that has barely spread into dentin on the distal surface of tooth \#20 (arrow). Note the location of the lesion just cervical to the proximal contacts and that the lesion is wider at the surface of enamel than at the DEJ. C. Several class II lesions (arrows), some of which are confined to enamel and two (\# 12 distal and \# 19 distal) that have spread out in dentin. (Note the existing class II amalgam on tooth \# 13 with a deep base close to the pulp and a large undesirable overhang, i.e., excess bulk of amalgam beyond the gingival cavosurface margin.) D. Tooth cross section showing class II decay spreading out once it reaches the dentin.

FIGur E 10-20. Models of conventional class II amalgam preparations. A. Occlusal views: \#30 MO-A (mesioocclusal amalgam); \#3 MO-A, DO-A (mesioocclusal and distoocclusal amalgam) with the oblique ridge intact: \#5 MOD-A (mesioocclusodistal amalgam); \#28 DO-A (distoocclusal amalgam) with the transverse ridge intact. B. Proximal views of two class II amalgam preparations showing their "stair-step" preparations. Note the convergence of the buccal and lingual walls toward the occlusal for retention and resistance form.
occlusal surface, these restorations extend minimally onto two surfaces: mesial and occlusal, abbreviated MO, or distal and occlusal, abbreviated DO. When there is decay on both the mesial and distal surfaces, two proximal boxes are prepared so the restoration extends onto three surfaces: mesial, occlusal, and distal, abbreviated MOD. Class II preparations for amalgam involving only two surfaces, such as mesioocclusal or distoocclusal, are traditionally abbreviated as MO-A or DO-A (not OM-A or OD-A). A mesioocclusodistal amalgam preparation is traditionally abbreviated as MOD-A (not DOM-A). A class II preparation for composite material involving only two surfaces would be abbreviated similarly, with the abbreviation of "C" such as MO-C or DO-C.

When identifying walls or line angles within an MOD preparation where there are two proximal boxes, each wall or angle in the box must be identified as being "of the mesial box" or "of the distal box." For example, there are two axial walls in an MOD preparation: an axial wall of the mesial box and an axial wall of the distal box.

4. Class II: a pplied principles of Initial Tooth preparation

When preparing teeth with conservative class II carious lesions, teeth may be restored with amalgam or composite.

FIGurE10-21. Conventional class II preparation for amalgam on tooth \#30. A. Occlusal view showing the proximal box extending just through the proximal contact buccally and lingually. B. The mesial view shows the slight convergence toward the occlusal of the buccal and lingual walls of the box and axiobuccal ($A-B$) and axiolingual (A-L) line angles where retentive grooves are placed. An example of a point angle: A-L-G for axiolinguogingival is labeled. C. A cross section of this prepared tooth in the middle third of the crown showing the placement of the retentive grooves entirely within dentin at the axiobuccal (A-B) and axiolingual (A-L) line angles. Key for nomenclature: Walls, B, buccal; P, pulpal (red); L, lingual; A, axial (blue); G, gingival (green). Example of line angles: A-B, axiobuccal; A-L, axiolingual (location of retentive grooves).

However, since the 1990s, improvements in composite resin restorative materials and techniques have resulted in the increased use of this tooth-colored material for class II restorations, especially when esthetics is an important factor. Indirect techniques involving porcelain or cast metal inlays or onlays will be mentioned at the end of this section.

a. Outline Form and Initial Depth (Class II)

T e portion of a class II preparation that extends across the occlusal surface to include adjacent defective or carious occlusal pits and fissures follows the principles for class I caries already discussed. Since only carious grooves are removed, maxillary molar preparations do not normally extend over the oblique ridge since this ridge is seldom crossed by a defective groove (tooth \#3 in Fig. 10-20A). Also, the DO-A preparation on the mandibular frst premolar (tooth \#28 in Fig. 10-20A) does not normally cross the transverse ridge since this ridge seldom has a defective groove, nor does it include the mesial pit if it is not deeply fissured or carious. When proximal decay is present but there are no carious fissures on the occlusal surface, the dentist may prepare a slot preparation. T is preparation only includes the proximal box of the traditional class II amalgam preparation with no extension across the occlusal surface (Fig. 10-22).

T e gingival floor of the proximal box must extend far enough gingivally in order to remove all proximal decay. T e buccal and lingual walls of the proximal box of class II preparations are often prepared into the buccal and lingual embrasures just slightly beyond the proximal contact areas (Fig. 10-23A). In this way, the margins of the restoration can be better evaluated by the dentist and kept clean by the patient. When placing composites, especially with slot preparations, this extension beyond the proximal contact areas is not necessary.

b. Primary Retention Form (Class II)

T e buccal and lingual walls of the occlusal portion and the proximal boxes for amalgam are prepared so that they converge slightly toward the occlusal to prevent the restoration from dislodging occlusally (seen clearly in Fig. 10-20B). In the proximal box, retentive grooves may be prepared as buccal and lingual extensions of the vertical axial wall. T ese retentive grooves are designed to prevent the amalgam restoration from dislodging in a proximal direction. T e grooves are located at the axiobuccal (A-B) and axiolingual (A-L) line angles seen best in Figure 10-21C. Modified preparations for resin restorations are generally prepared in a similar fashion to amalgam; however, there is no need for internal retention grooves due to the microscopic retention gained from the enamel etching and bonding.

5. Class II: preparations for Indirect r estorations

Since both amalgam and composite restorations are placed directly in the mouth right after preparing the tooth, they

FIGur E 10-22. Conservative slot preparation involving the distal and occlusal surfaces of typodont tooth \#21, and an MO-A was placed using a similar slot preparation outline. This conservative preparation may be preferred to reach interproximal caries when there is proximal caries without any occlusal involvement.

FIGure 10-23. Class II a malgam restorations. A. A polished class II amalgam on a maxillary first premolar (\#12 DOA). B. This class II amalgam restoration on a tooth with no adjacent tooth shows how the dentist had to extend this preparation into the gingival sulcus in order to remove all decay.
are called direct restorations. In comparison, cast gold inlays or onlays or porcelain and composite inlays (like those that are prepared using CAD/CAM technology) are indirect restorations since they are constructed outside of the mouth and then cemented or bonded into the tooth preparation. An inlay is an indirect restoration that does not cover any cusps. An onlay is similar to an inlay only it also covers and protects at least one of the remaining thin cusps of the tooth (compare the inlay on tooth \#29 to the onlay on tooth \#31 in Fig. 10-24). When a cast metal onlay is used to protect thin tooth structure, less occlusal reduction of tooth is required compared to amalgam in order to withstand occlusal forces. When using abbreviations to denote inlays (Inl) or onlays (Onl), examples include MO-Inl, DO-Inl, and MOD-Inl; and MO-Onl, DO-Onl, and MOD-Onl.

T e technique for constructing a cast metal inlay or onlay involves the following: after the dentist prepares the tooth, an impression of the prepared tooth is made in order to obtain an accurate dental stone reproduction of the prepared tooth called a die (Fig. 10-25). T en, the restoration is shaped on the die using wax which is then cast into gold and perfected on the die (Fig. 10-24) so it can be cemented into the tooth preparation.

Since indirect restorations require moving the restor ation on and then of of the tooth (or a die) prior to cementation or bonding, modifications of the retentive features are needed compared to direct restorations. For these class II preparations, opposing buccal and lingual walls must diverge slightly toward the occlusal (Fig. 10-26A), whereas the two axial walls in a mesioocclusodistal inlay preparation must converge slightly toward the occlusal (Fig. 10-26B). T is shape allows the indirect restoration to be seated snugly within the tooth,

FIGur E10-24. Three gold cast restorations were constructed on stone dies. There is an inlay on tooth \#29 (MOD-Inl), an occlusal inlay on \#30 (O-Inl), and an onlay on tooth \# 31 (MOD-Onl).
somewhat like a glass stopper fitting snugly in the opening of the decanter (providing retention) but it is still removable. T e dental cement (or resin cements for porcelain and composite inlays) placed between the inlay and the tooth also provides retention by sealing the margins and by setting to hardness at the interface between the slight irregularities of the enamel walls of the preparation and those of the inlay/ onlay. Some types of dental cements chemically bond to the calcium of the tooth and can be mechanically attached to the etched surface of metal castings.

Further, when preparing a tooth for a cast metal restoration, the angle of the junction between the walls of the preparation with the unprepared tooth (called the cavosurface margin) may be reduced to form a bevel. T is shape of a beveled margins permits the outer edge of the inlay or onlay to gradually taper to a thin, knife edge so that the dentist can better adapt the metal to the tooth, thereby minimizing any cavosurface gap between metal and tooth (Figs. 10-25 and $10-26$). T e remaining minute gap is filled with a dental cement, but the cement is neither as strong nor as durable as the metal.

FIGur E 10-25. A die of a tooth prepared for a cast metal onlay that covers the mesial, occlusal, and distal surfaces (MOD On). The line on the die marks the cavosurface margin that ends with a continuous bevel. The buccal and lingual walls of the preparation diverge toward the occlusal (red lines) so that the restoration can be removed from the die and then placed in the prepared tooth in the mouth.

FIGur E 10-26. Class II MOD cast metal onlay preparation. A. Retentive form (similar to porcelain inlay) is provided by opposing buccal and lingual walls diverging very slightly (only 5° to 7°) so that the inlay fits snuggly like a stopper in a wine decanter bottle. Also, note that this cast metal inlay preparation design includes bevels that permit thin metal to be burnished or adapted more closely to the enamel. B. Axial walls of a cast inlay or onlay preparation converge toward the occlusal.

C. Cl a SS III Car IES

1. Class III Caries: Defned and Diagnosed

Class III lesions are smooth surface lesions located on the proximal surfaces of anterior teeth, just cervical to the proximal contact, but not involving the incisal angle (or corner) of the tooth (Fig. 10-27).

An incipient (small or beginning) class III lesion can often be detected clinically by carefully examining the enamel facially or lingually for changes in translucency just cervical to the proximal contact (Fig. 10-28). T e underlying lesion causes the overlying enamel to appear slightly darker or more opaque than the surrounding, sound enamel. T ese changes are most evident when a source of light (such as fiber optics) is placed lingually against the proximal enamel of the tooth,
revealing the loss of translucency facially over the proximal decay (Fig. 10-29). T is method of clinical detection is called transillumination.

Radiographs of the anterior teeth can also be used to confirm a class III lesion (Fig. 10-30). T e location, just cervical to the proximal contact, and pattern of spread are both similar to smooth surface class II lesions.

2. Class III Caries: when to restore

T e indications for restoring a class III lesion are the same as for a class II lesion. T at is, when the surface has a detectable hole (is cavitated), or when decay has reached the dentin as seen on the radiograph or through transillumination, a restoration is indicated.

FIGur E 10-27. Class III lesions. A. A class III lesion on the mesial of tooth $\# 6$ with an area of obvious cavitation (or hole) in the enamel surface. B. Most of these mandibular anterior teeth have large class III lesions. The decay on the distal surfaces of the maxillary central incisors may be class IV decay since the extensive decay will probably require removing the very thin incisal enamel at the incisal angle.

FIGur E 10-28. Tooth \#6 lingual view. Class III caries is suspected when the area of the marginal ridge lingual to the proximal contact of this anterior tooth shows a change in translucency (arrows) appearing like a brown or gray shadow beneath the surface of the enamel. Inspect the tooth surrounding the proximal contact for a break in the enamel, and use transillumination or radiographs to determine the size of the caries when deciding whether or not to restore the tooth.
3. Class III preparation and r estoration: Terminology

Since the class III resin restoration obtains retention in most cases from the bonding of resin to etched enamel and to dentin, the final shape of a resin class III preparation can be modified and somewhat amorphous, removing only carious tooth structure while conserving as much healthy tooth structure as possible. Sometimes, however, a more defined, conventional preparation may be desirable.

T e outline for conventional class III preparations is dependent on whether the proximal decay is accessed through the lingual marginal ridge, an approach that preserves the intact, esthetic facial enamel, or the decay is accessed through the facial enamel since the cavity already extends onto the facial surface. T e conventional preparation

FIGur E 10-29. Transillumination. A light source is directed through the proximal surfaces of these anterior teeth to reveal a change in translucency just cervical to the proximal contact area, indicating the presence and size of class III caries.

FIGur E 10-30. Radiograph of a class III lesion (arrow) on the mesial of tooth $\# 8$. Note the location of this decay just cervical to the proximal contact and the characteristic spread or widening of the decay within dentin at the DEJ.
for the lingual approach for a class III composite is represented in Figure 10-31A. T e shape of the lingual approach preparation is similar to the slot preparation of a class II preparation, which is also cut through a marginal ridge. However, due to the more horizontal alignment of the box in a class III preparation on an anterior teeth, the names assigned to the walls dif er from the class II preparation. Here, the four walls are called gingival, facial, incisal, and axial (as abbreviated in Fig. $10-32 \mathrm{~A}$ and B). T ere are only five internal line angles: gingivofacial, incisofacial, gingivoaxial, facioaxial, and incisoaxial. T ere are only two internal point angles: gingivofacioaxial and incisofacioaxial.

When decay is already visible from the facial, preparation design can be more variable in order to remove minimum sound tooth structure. However, one type of conventional class III composite preparation with a facial approach may be somewhat triangular in shape (with its base near the gingiva). It has three walls and a floor (Fig. 10-31B, tooth \#7). T e three walls are the facial, lingual, and gingival walls, and the fourth wall (or floor) is the axial (Fig. 10-32C). Subsequently, this preparation has six internal line angles: facioaxial, linguoaxial, gingivoaxial, faciolingual, linguogingival, and gingivofacial. T ere are only three internal point angles: faciolinguoaxial (abbreviated F-L-A in Fig. 10-32C), linguogingivoaxial, and faciogingivoaxial.

Class III composite restorations may be abbreviated by identifying the proximal surface, as well as the surface through which access was gained, and the material used. For example, the class III composite on the mesial surface of tooth \#10 in Figure 10-31C with access to the decay through the lingual enamel would be identified as M-C, \#10, lingual approach, or more precisely, ML-C, \#10. An

FIGur E 10-31. Conventional class III cavity preparations. A. A composite resin preparation with lingual approach on tooth $\# 8$ DLC. Note the axioincisal retentive feature. (The axiogingival retentive feature is less visible here.) B. A class III composite resin preparation with labial approach can be seen in the facial embrasure (\#7 DFC preparation). Note that there is also a class Vpreparation on the facial of the canine, \#6. (This tooth was prepared by Gregory Blackstone, second-year dental student.) C. Two teeth with class III restorations: tooth \# 10 was restored with a mesial composite restoration with a lingual approach (ML-C, \# 10), and tooth \# 11 was restored with a distal amalgam with a lingual approach (DLA, \# 11).
existing class III restored with amalgam approached from the lingual on the distal of tooth \#11 would be identified as DA, \#11, lingual approach, or DLA, \#11 in Figure 10-31C. In Figure $10-31 \mathrm{~B}$, the composite with a facial approach on the distal of tooth $\# 7$ would be identified as DF-C, \#7. (Note that instead of using "L" to denote the labial surface, " F " is used to denote the facial surface in order to avoid confusion with "L," which is used to denote the lingual surface.)

4. Class III: applied principles of Initial Tooth preparation

Since class III caries occur in a low stress-bearing area that is most often of esthetic concern to the patient, a toothcolored composite resin is most often the restoration of choice.

a. Outline Form and Initial Depth: Class III

Outline form and initial depth are minimal in the class III composite preparation since the dentist wants to preserve as much enamel as possible for esthetic reasons. T e approach for removing the decay, whenever possible, is from the lingual through the marginal ridge, so the facial plate of enamel is preserved for maximum esthetic ef ect (Fig. 10-31A). However, when the decay is visible and accessible from the facial, a facial approach can be used (Fig. 10-31B, tooth \#7).

b. Prim ary Retention: Class III

When restoring teeth with larger carious lesions, retention form may be obtained by simply removing the decay that has spread out at the DEJ, resulting in a preparation that is wider internally than externally. Historically, retentive pits or grooves were used as extensions of the axial wall in order to

FIGur E 10-32. Conventional class III preparations. A. The lingual view of the class III amalgam preparation, lingual approach, on the distal of tooth \#6. Retentive grooves are evident at the cavosurface of the gingivoaxial ($\mathrm{G}-\mathrm{A}$) and incisoaxial (I-A) line angles. B. The distal view of a class III composite preparation, lingual approach. Note the slight convergence of the incisal and gingival wall toward the lingual for retention. This preparation also has a retentive groove (in the shadow between G and A) at the gingivoaxial line angle, but it does not extend to the cavosurface. C. The mesial view of a class III composite preparation, labial approach. Note the triangular shape. Retentive features are found internally at the axiogingival line angle and the faciolinguoaxial point angle. Key for nomenclature: for lingual approach (A and B): G, gingival; A, axial (blue); F, facial; I, incisal. Examples of the angles are the retentive features G-A and I-A for the gingivoaxial and incisoaxial line angles, respectively. Key for the facial approach (C): F, facial; A, axial (blue); G, gingival; L, lingual.

FIGur E 10-33. Class IV caries. A. An enormous class IV carious lesion involves the mesioincisal angle of tooth \#26. B. The left maxillary central incisor (\#9) has extensive class IV caries and could be restored with an MIFL-C).
improve retention for either a composite or amalgam class III preparation (seen at the gingivoaxial and incisoaxial line angles in Fig. 10-32A). However, the modified method of af ording retention and reducing leakage at the cavosurface margin of a composite restoration is by bonding the composite resin to an acid-etched, beveled enamel surface. T e preparation shape therefore can be more conservative, without the need for internal retentive grooves or pits.

D. Cl a SS Iv Car IES

1. Class Iv Caries: Defned and Diagnosed

A class IV lesion involves the proximal surface of an anterior tooth (as does a class III lesion), but, in addition, it involves the destruction of the incisal angle (or corner) of the tooth (Fig. 10-33). T e class IV lesion is frequently the result of a class III lesion that became so large that the undermined tooth angle broke of. A similar-shaped defect occurs when the tooth corner fractures of due to a blow to the mouth. T e loss of an incisal angle is plainly visible upon clinical examination. Radiographs are not needed to detect the class IV lesion but may be useful to determine the proximity of the lesion relative to the pulp chamber (Fig. 10-34).
(2. Class Iv Caries: when to restore

T e class IV restoration is indicated when soft, active caries is detected. Important factors to consider when deciding whether or not to restore a noncarious, fractured tooth include the extent of the fracture, the proximity of the exposed tooth structure to the pulp chamber, sensitivity to temperature changes, and the patient's concern for esthetics. If the fracture is not into the dentin and the patient is not concerned about the appearance of the tooth, smoothing the rough edges of the tooth may suffice. If, however, dentin is involved or if there is evidence of decay, a restoration is indicated to prevent discomfort from the exposed dentin and to stop the spread of decay.
(3. Class Iv preparation and restoration: Terminology

Depending on the degree of involvement, this preparation may have only one flat wall (as in a fracture; similar to the shape seen in Fig. 10-35A) or may have two surfaces: a gingival surface and a more axial surface. T ese two portions may join at an angle called the axiogingival line angle. T ere are no point angles.

A composite restoration that restores one incisal angle actually restores parts of four surfaces, so it may be abbreviated as either an MIFL-C (or DIFL-C as seen on tooth \#8 in

FIGur E 10-34. Radiograph of a class IV lesion (arrows) shows the close proximity of the decay to the pulp on tooth $\# 10$.

FIGur E 10-35. A. This view of a class IV lesion shows the gingival and axial portions of the defect. B. A long bevel beyond the margins of the preparation provides room for a thin layer (sleeve) of bonded resin that overlaps a large area of etched enamel, thus establishing maximum retention while enhancing (blending) the color match.

Fig. 10-36) to denote the involvement of all surfaces of either the mesioincisal or the distoincisal angle of the tooth. If both proximal surfaces were involved, the restoration would be designated as MIDFL-C. As usual, the tooth number can be added before the abbreviation, for example, \#9 MIDFL-C.

4.
 Class Iv: a pplied principles of Initial Tooth preparation

If a class IV preparation is conservative, a composite resin, particularly one that utilizes an acid-etching technique, is the restoration of choice. An alternative treatment is a veneer of porcelain bonded to the facial surface of the tooth, replacing the fractured incisal area (seen previously on tooth \#7 in Fig. 10-7A). If the preparation is extensive or if the whole incisal edge of the tooth and both proximal surfaces are involved but there is sufficient remaining tooth structure, it may be better to restore the tooth with a full crown that has a tooth-colored facial surface, or an all-ceramic or zirconia crown, for the best esthetics and longevity.

FIGur E 10-36. This class IV composite resin restoration on a maxillary central incisor can be abbreviated \#8 DIFLC.

Caries removal and smoothing extremely rough or unsupported enamel may be all that is needed to prepare the tooth for a class IV composite. T e occlusion, as always, must be analyzed to be sure that there is room for the restoration when the patient chews and incises, especially in a protrusive direction. Retention is most commonly achieved by acid-etched techniques that permit resin tags to bond the composite to the etched enamel. T e dentist modifies some cavosurfaces of a composite preparation with a long bevel in order to provide a greater surface for obtaining etched enamel (Fig. 10-35B) and an overlapping sleeve of resin that provides improved esthetics due to the gradation of color from that of the thicker resin to that of the enamel covered with only a thin layer of resin.

E. Cla SS v Car IES

1. Class v Caries: Defned and Diagnosed

Class Vdecay is smooth surface decay that develops in the cervical one third of the facial or lingual surface of any anterior or posterior tooth crown (Fig. 10-37) just coronal to the gingiva, where the tooth is susceptible to plaque

FIGur E 10-37. Class V lesions. A. This incipient (beginning) facial lesion that is seen as chalky and discolored and is faking away. B. An obvious cavitated class V facial lesion that has destroyed much of the enamel on the buccal surface of the crown and adjacent cementum and dentin of the root. C. Class V demineralization: a chalky white area (arrows) seen in the cervical third of a maxillary lateral incisor (with incisal wear) is evidence of the first stages of dental caries. Also, notice the infammation of the adjacent gingiva (gingivitis), which is also caused by bacterial plaque.
accumulation and exposure to acidic foods and drinks and where the natural cleansing actions of the lips, tongue, and cheeks are inef ective.

As a class V lesion begins to form, it appears as a chalky white or stained surface (Fig. 10-37C). In these beginning (incipient) lesions, care should be taken with the explorer not to break through an area of beginning demineralization that has not yet cavitated since excellent oral hygiene and fluoride have been shown to reverse the caries process. T ese lesions may also be hidden slightly apical to the level of inflamed gingiva so that the use of the tactile sense obtained through the light touch with an explorer is critical for distinguishing between a cavitated carious lesion ${ }^{24}$ (felt as a hole) and a calcified buildup of calculus (which is felt as a bump).

Root caries is another form of smooth surface decay that af ects the cementum and dentin of the root (Fig. 10-38). Recall that cementum and dentin are much less mineralized than enamel, so the root is more susceptible to caries than is enamel. An increasing number of older adults are especially at risk for root caries due to many factors including gingival recession that exposes more cementum, changes in diet, an increased lack of dexterity, and a reduction in saliva flow, which is made worse when taking certain medications. Root caries may not require a restoration if there is only minimal involvement. ${ }^{24}$ Treatment in these cases can include polishing the root, applying fluoride (topical or fluoride-containing varnishes), and keeping the roots clean through excellent oral hygiene.

Other causes of cavitation or depressions located in the cervical portion of the tooth that must be distinguished from dental decay include erosion, caused by acids such as sucking on lemons (Fig. 10-39A), and abrasion, most commonly caused by abrasive toothpastes and improper toothbrushing (Fig. 10-39B). Similar in appearance to abrasion, abfraction is cervical enamel cracking and loss thought to be caused by heavy occlusal forces that flex or bend the tooth. Caries may develop at the depth of these defects, and when the defects are deep enough or sensitive enough, the dentist may place a restoration even without decay.

FIGur E 10-38. Root caries (arrow) on an area of exposed cementum after gingival recession.

FIGur E 10-39. A. Cervical erosion caused by repeated exposure to acids (like sucking on lemons) is visible on these mandibular posterior teeth (at arrows). B. Maxillary anterior teeth showing cervical abrasion, possibly due to poor toothbrushing technique and abrasive pastes. These areas are prone to caries and often become sensitive.

As with a radiograph of a class I lesion, the class V lesion is superimposed over a facial or lingual enamel that show up whiter (radiopaque), thereby masking the darker (radiolucent) caries (Fig. 10-40). By the time a class V lesion is evident

FIGur E 10-40. Radiograph of a class V defect (arrow) on tooth \#22. It is impossible to tell from the radiograph whether it is on the buccal or lingual surface or whether it is decay or an old type of radiolucent composite restoration that looks dark on a radiograph.

FIGure 10-41. Conventional conservative class Vpreparation for amalgam on tooth \#29. A. Buccal view showing the trapezoidal outline form. Example of a point angle is the axio-occlusodistal (A-O-D) point angle. B. Buccolingual cross section of the same tooth revealing axio-occlusal (AO) and axiogingival (AG) line angles and retentive grooves. C. Cross section showing the convex axial wall (A) just minimally into dentin (0.5 mm). Key for nomenclature: O, occlusal; M, mesial; A, axial (blue); D, distal; G, gingival.
on radiographs, it has progressed far beyond the incipient stage and would require a much larger restoration than if it were clinically diagnosed and restored in its earliest stages. T erefore, the examiner should not depend on radiographs for detection of these lesions. Also, when suspecting that a cervically located shadow or radiolucency on a radiograph is class V caries, the dentist must confirm the caries with a clinical exam in order to rule out other cervical defects that can look like caries on a radiograph, such as severe abrasion or erosion, or certain older types of restorative materials that appear radiolucent on radiographs.

2. Class v Caries: when to restore

Not all areas at the cervical of the tooth that are chalky or darkly stained require a class V restoration (Fig. 10-37A or C) since areas of beginning (incipient) decay can respond to fluoride and improved oral hygiene and actually remineralize so that no restoration is required. Class V lesions require restorations when tooth structure is cavitated and soft (Fig. 10-37B). Restorations should also be considered to protect noncarious defects (like abrasion defects seen in

Fig. 10-39B) that occur in this part of the tooth if the defect is very deep or the tooth is sensitive and does not respond to desensitizing agents.

3. Class v preparation and restoration: Terminology

T e conventional class V preparation for amalgam is somewhat box shaped and consists of five walls: distal, occlusal, mesial, gingival, and axial (Fig. 10-41A). T ese preparations have eight line angles: axiomesial, axiogingival, axiodistal, axio-occlusal, mesiogingival, distogingival, mesio-occlusal, and disto-occlusal. T e axio-occlusal and axiogingival line angles may be prepared with retentive grooves labeled as A-O and A-G in Figure 10-41B. T ere are four point angles: axio-occlusodistal (A-O-D in Fig. 10-41A), axio-occlusomesial, axiodistogingival, and axiomesiogingival.

T e restoration is identified by surface and material. For example, in Figure 10-42, a buccal amalgam on tooth \#30 is B-A, \#30, and a facial composite on tooth \#27 is F-C, \#27. Also, a glass ionomer on the facial surface of tooth \#11 would be F-GI, \#11. Typically, the term facial (F) is applied to anterior teeth, whereas buccal (B) is applied to posterior teeth.

FIGur E 10-42. Class V restorations. A. Two buccal amalgams on teeth \# 29 and 30 (abbreviated BA). The extent of these amalgams is usually dictate by the extent of the caries. B. Class Vbuccal composite (arrows) on tooth \# 27 (abbreviated FC). When the shade of the material is excellent, these restorations are difficult to detect, and their surface grittiness felt by a dental instrument might be confused for incipient calculus formation. (Restorations by Gregory Blackstone, second-year dental student.)

Class v: a pplied principles of Initial Tooth preparation

Since a class V lesion occurs in non-stress-bearing areas, when esthetics is a factor, a composite may be used, even though it may be less resistant to abrasion than amalgam (Fig. 10-42B). In gingival abrasion lesions and areas of root caries, the dentist may restore the tooth with a glass ionomer or resin-modified glass ionomer because they both bond to dentin and contain fluoride. Amalgam may be used when the esthetics are not of prime concern (Fig. 10-42A). In rare cases, primarily at the patient's request, a cast metal inlay (or porcelain inlay) could be used to replace lost tooth contour.

T e outline for a conventional class V composite restoration is kept as conservative as possible (Fig. 10-42B), with a convex axial wall that is just into dentin (Fig. 10-41C). Prevention of future caries occurs through patient education in oral hygiene techniques and from periodic application of topical fluoride. Amalgam restorations may require retentive features formed by preparing retentive grooves that are extensions of the axial wall in an occlusal and gingival direction (labeled A-O and A-G in Fig. 10-41B). When using composite, similar retentive grooves could be used, but more often, retention is dependent on beveled enamel surfaces that have been acid etched. A glass ionomer restoration in an area of deep cervical abrasion (V shaped or notched) may require no preparation, only a treatment with a dentin conditioner or primer that aids in the chemical bond between dentin and a glass ionomer restoration.

F. Cl a SS vI TypE OF DENTal Car IES

A class VI type of dental caries or restoration is not one of Black's original classifications. In Baum's text, it is defined

FIGur E 10-43. Class VI dental caries (arrow) may be found on the cusp tips of posterior teeth.
as the cavity or defect found on the tips of cusps or along the incisal edges of incisors. ${ }^{24}$ In Sturdevant's text, class VI caries includes lesions on the cusp tips of posterior teeth. ${ }^{4}$ T e resultant preparation for a class VI lesion conservatively follows Black's principles of cavity preparation, and the restoration of choice depends on size and location of the lesion and the need for strength and esthetics (Fig. 10-43).

r ESTOr ING lar GE TOOTh DEFECTS aND TOOTh r Epla CEMENT

When a tooth is too badly broken down to be restored with a conventional restoration and only a thin shell of enamel remains, it may be necessary to protect the remaining tooth structure with a crown. Before preparing a tooth for a crown, the dentist first removes decay and then restores some or all of the lost tooth structure with amalgam or composite. T is restoration that replaces defective and carious tooth structure prior to preparing a tooth for a crown may be called a restoration under crown (RUC) or crown buildup. When there is too little remaining tooth, particularly on an anterior tooth, a custom cast metal core (resembling a tooth prepared to receive a crown) with a metal post can be designed. T e post provides the retention by fitting snugly into a previously endodontically treated and prepared root canal. T is restoration is called a cast post and core (Fig. 10-44). Prefabricated
posts are also available in metal, or esthetic materials (such as fiber posts), which can be cemented into the prepared canal and then be bonded with a composite crown buildup.

On posterior teeth, a crown can be constructed entirely of cast metal and is called a complete cast metal crown (Fig. 10-45B). To prepare a tooth for a complete crown, the previously restored anatomic tooth crown (or prepared crown buildup) is externally reduced with specially shaped burs in a dental drill to make room for the required thickness of the cast metal crown (Fig. 10-45A). Crowns obtain retention from the nearly parallel preparation walls that slightly converge toward the occlusal, an accurate fit, and the cement. T e preparation ideally extends gingivally beyond the margins of the cast post and core or crown buildups so that the crown margins end on sound tooth

FIGur E 10-44. Cast post and core. A. On a cast metal post and core before cementation, you can distinguish the post, which fits snugly in the prepared root canal (after endodontic treatment), and the core, which is the portion that the crown will cover. B. The visible portion of the gold post and core is the core that can be seen forming the missing part of the crown preparation. C. The post can be seen on this radiograph extending well down within the root to provide retention for the crown that will be placed over the post and core.
D. Almost all of this tooth crown is now a core that has been prepared for a replacement crown.
 gingival cavosurface is called a chamfer (at arrow). B. The complete cast metal crown cemented in place.

FIGur E 10-46. Proximal views: crown preparations with their facial surface toward the right. A. Full cast metal crown (no porcelain veneer) preparation on a mandibular premolar. B. Preparation on a maxillary canine that will have a facial fused porcelain veneer over metal to provide esthetics. Greater facial tooth reduction was necessary (arrow).
structure. Full cast metal crown preparations end at the gingival cavosurface with a rounded shape called a chamfer (Figs. 10-45A and 10-46A).

When esthetics is important, especially on anterior teeth and maxillary premolars, one option is a metal crown covered facially with porcelain. T e preparation for this type of crown requires more reduction of facial tooth structure to make room not only for the thin cast metal but also for an additional thickness of a tooth-colored porcelain veneer, which is fused onto the facial surface of the metal (Fig. 10-46B). T is restoration is called a metal ceramic restoration (also called a porcelain fused to metal crown) and is seen on tooth \#30 in Figure 10-47. Another esthetic solution for a full coverage restoration is an all-ceramic restoration. Since there is no internal metal support under the porcelain, the resultant increased translucency more closely resembles a natural tooth (seen on the maxillary incisor teeth in Fig. 10-48). Zirconia is a newer esthetic restorative material that is ideal for crowns since it is translucent and

FIGur E 10-47. Types of crowns. Tooth \#31 is restored with a complete cast metal crow $\mathbf{n}, \# 30$ is restored with a metal ceramic restoration (porcelain fused to metal crown), and \#28 and \#29 both have metal ceramic crowns (metal is not visible). (Photographs courtesy of Dr. Julie Holloway.)
biocompatible, less susceptible to fracture than porcelain, and requires less tooth reduction than porcelain. ${ }^{25}$

Even when little or no caries or breakdown is evident, a crown may be recommended if the tooth is cracked or when needed to support an adjacent false tooth that replaces a missing tooth. T e replacement tooth crowns can be attached to other crowns that cover the adjacent supporting teeth, and this is called a $\boldsymbol{\alpha} x e d$ dental prosthesis (also called a fixed partial denture [FPD] or a bridge by many people) (Fig. 10-49). T e false tooth is called a pontic, and the teeth that support the pontic are called the abutment teeth.

FIGur E 10-48. A. Thin, badly damaged maxillary incisors. B. Same incisors after placing all ceramic restorations. (Photographs courtesy of Dr. Julie Holloway.)

FIGur E 10-49. Fixed dental prosthesis, also called a "bridge" by many persons. A. Buccal view of tooth abutments: tooth \#3 is prepared for a full crown and \#5 is prepared for a crown veneer abutment. B. The completed three-tooth f xed dental prosthesis (fixed partial denture or bridge) is cemented on the prepared teeth: The retainer for abutment tooth \#5 and pontic replacing \#4 are restored with porcelain fused to metal. The retainer for \#3 is covered with a complete cast metal crown. C. This porcelain fused to metal fixed dental prosthesis is ready to cement in the mouth. It is refected in a mirror so you can see the space in the molar retainer that will fit over the prepared molar abutment. (This photo was provided by Burak Yilmaz, DDS, PhD, the Ohio State University College of Dentistry.)

FIGur E 10-50. A dental implant. Tooth \#29 was lost and was replaced with a dental implant. A. A radiograph of the implant with the screw-retained component and porcelain crown. B. The screwretained component (crown support) is attached to the implant and extends above the tissue prior to placement of the crown. C. The porcelain crown is cemented on the screw-retained component of the implant. (Photographs courtesy of Ed McGlumphy, D.D.S., M.S., Ohio State University, College of Dentistry.)

Abutment teeth are covered by crowns called retainers that are attached to the pontic. In Figure 10-49B, a fixed dental prosthesis is used to replace tooth \#4 by attaching it to an abutment metal ceramic crown on tooth $\# 5$ and a complete cast metal crown on tooth \#3. T e metal pontic replacing \#4 is veneered with porcelain. A fixed dental prosthesis is seen before cementation in Figure 10-49C.

Lost teeth can also be replaced with dental implants (Fig. 10-50). A dental implant involves embedding an artificial root into the bone. T ree to six months after surgical placement, the embedded implant can be used to provide retention for a crown or provide retention as an abutment for a screw-retained fixed dental prosthesis or to provide support for a removable partial denture. See Chapter 7, Section X, for more discussion about dental implants.

Groups of lost teeth can also be replaced with multiple implants, a longer fixed dental prosthesis, or a removable
dental prosthesis, which is also called a removable partial denture. One type of removable dental prosthesis is made with an acrylic saddle that adapts comfortably over the edentulous area, artificial replacement tooth crowns on the acrylic saddle, and a framework (usually metal) with parts that adapts around adjacent teeth to provide stability and retention (Fig. 10-51A). T e part of the framework that connects the left and right sides of the prosthesis is called a major connector. T e framework has clasps, which surround and contact abutment teeth just cervical to the height of contour facially or lingually to provide retention, and rests that fit into small depressions (rest seats) prepared mostly into occlusal enamel in order to keep the partial denture from seating too firmly against the mucosa.

When all teeth have been lost, a complete removable dental prosthesis (also called a complete denture or false teeth) can be constructed (Fig. 10-51B).

FIGur E 10-51. A. Removable partial dental prosthesis (also known as a removable partial denture) on a teaching model (typodont) replacing teeth \#30 and \#31 and attached to abutment teeth \# 19 and \#29 using clasps (a) and rests (b) that retain and position the prosthesis in the mouth. The major connector (c) of the metal framework that connects the left and right sides of the prosthesis has a lingual plate that adapts to the lingual surfaces of all of the mandibular anterior teeth, providing additional stability. B. Complete removable dental prosthesis (also known as a complete denture). The upper denture on the left is designed to cover the palate, while the lower denture on the right is designed to maintain room for the tongue.

LEARnIng Ex ERCISE

Without looking at the key for each photograph of restorations in this chapter, identify the material used, the surfaces involved, and the abbreviation that could be used to denote the restoration. Do the same with clean extracted teeth that have existing restorations. Look into your mouth using an excellent light source, and identify the classification of any existing restorations (according to Dr. G.V. Black). Repeat this when looking into the mouth of a friend as they retract their lips and cheeks. Do you suspect any areas of decay? If so, check with a dentist.

Br IEF OvEr vIEw OF DENTal Car IES aND r ESTOr a TION 1ONGEvITy r ESEar Ch

In a 1979 to 1980 survey representing 45.3 million US school children between the ages of 5 and 17 years, the estimated prevalence of breakdown in permanent dentition was 4.77 decayed, missing, or filled surfaces per child. ${ }^{26}$ Comparing data from two studies conducted for the Centers for Disease Control and Prevention, the number of carious permanent teeth (both treated and untreated) in children from 6 to 18 years old decreased by 57% from 1971 to 1974 through 1988 to 1994 (decreasing from 4.44 to 1.9 carious teeth). ${ }^{27} \mathrm{~T}$ ese studies also showed a 40% decline in the number of primary teeth with caries in 2 to 10 year olds (from 2.29 to 1.38). T ese and other reports have shown a worldwide decrease in the incidence of coronal caries, especially in children and adolescents, ranging from 10% to 60% depending on the
article cited. However, the number of adults older than 65 is expected to double by 2025, and people are keeping their teeth longer (53% of persons older than 65 still have at least 20 natural teeth). ${ }^{28}$ Further, the prevalence of root caries in the elderly is increasing, with one study reporting 75% of elderly women with clinically detectable root caries. ${ }^{29,30}$ T erefore, the restoration of damaged teeth (from caries and other reasons) will continue to be a part of the practice of general dentistry for some time to come. Additionally, with improvements in the properties of contemporary esthetic restorative materials, the decline in caries rate is being of set by the increased number of patients who ask for dental procedures that improve esthetics.

In a 1979 to 1980 survey of US school children aged 5 to 17 years, 54% of all carious lesions were found on the occlusal surfaces. ${ }^{26}$ In 2000, studies of teeth at risk showed that the occlusal surfaces of the first molars are at greatest risk for initial caries, followed by the occlusal surfaces of lower, and then upper second molars. ${ }^{31}$

One longitudinal study rated composite restorations after 10 years (using a U.S. Public Health system of evaluation) to be over 90% satisfactory when considering color stability, surface smoothness, anatomic form, lack of recurrent caries, and pulp response. ${ }^{32}$ Only marginal adaptation was scored below 90%, with a score of 81%. With recent physical property improvements, ${ }^{33}$ a new generation of dentin bonding agents that can etch enamel and dentin simultaneously, ${ }^{34}$ and a new generation of packable composite-based resins, these esthetic restoration materials are being used more frequently.

Ten-year success rates of 91% for dental implants in the mandible have been reported. ${ }^{35}$

r EvIEw Questions

Answer each of the following test items by selecting the correct answer, or answers, for each item.

1. What is the class of decay found in the buccal pit of tooth \#19?
a. Class I
b. Class II
c. Class III
d. Class IV
e. Class V
2. Which material is more likely to be used for a conservative class III restoration (mesial and facial surfaces) on tooth \#8?
a. Amalgam
b. Cast metal crown
c. Composite resin
d. Cast porcelain inlay
e. Cast metal onlay
3. Caries in the lingual fossa of tooth $\# 7$ is an example of which class of caries?
a. Class I
b. Class II
c. Class III
d. Class IV
e. Class V
4. T roughout the end of the 20th century, has occurrence of dental caries in children increased, decreased, or stayed about the same?
a. Increased
b. Decreased
c. Stayed about the same
5. Which class(es) of caries occur(s) in posterior teeth but not in anterior teeth?
a. Class I
b. Class II
c. Class III
d. Class IV
e. Class V
6. Which class(es) of caries occur(s) in anterior teeth but not in posterior teeth?
a. Class I
b. Class II
c. Class III
d. Class IV
e. Class V
7. A point angle is the junction of how many cavity preparation walls?
8. Which of the following are point angles in a conser vative class I preparation (if it has not extended onto the buccal or lingual surfaces to include buccal or lingual grooves)?
a. Gingivobuccoaxial
b. Occlusobuccoaxial
c. Mesiobuccopulpal
d. Distolinguopulpal
e. Buccolinguopulpal
9. Which of the following are line angles within a DO-A preparation?
a. Axiobuccal
b. Axiopulpal
c. Distopulpal
d. Distoaxial
e. Mesiopulpal
a. One
b. Two
c. T ree
d. Four
e. Five

$$
e, b, a-9 ; d, c-8 ; c-7 ; d, c-6 ; b-5 ; b-4 ; a-3 ; c-2 ; a-1: S r E w S N a
$$

Cr ITICal Thinking

1. List as many types of restorations (and materials involved) as possible that could be used to restore small, and then large, defects on a maxillary incisor. First, start with as many combinations of surfaces and materials that might be used to restore the smallest areas of decay for each G.V. Black class of decay. Use words to describe the surfaces and materials and then the abbreviations. Second, list the largest types of restorations appropriate to restore or replace these teeth. Add abbreviations where applicable.
2. Search the computer for images of "Diastema closure using composite or porcelain crowns." Evaluate the change in width of the central incisors before and after the diastema was closed. Do some look too wide afterwards? Recall that adult central incisors are normally longer incisocervically than wide mesiodistally.
3. Search the computer for images of "Appearance of edentulous person." Note the sunken and wrinkled appearance of the upper lip and protruding lower lip for many of these people. T en, search images for "Edentulous people before and after dentures." Do these people look better with the dentures in place? Do some people look like their denture teeth are too big or too small for their mouth and face?
4. Search the computer for images of "people with rampant decay" (rampant means uncontrolled). Do any of these people also have severely inflamed and enlarged gingiva? For teeth that appear to be restorable with amalgam or composite, determine what G.V. Black class or type of restoration might be used to restore each area of decay.

REFEREn CES

1. DiOrio LP. Clinical preventive dentistry. East Norwalk, CT: Appleton-Century-Crofts, 1983.
2. Newbrun E. Problems in caries diagnosis. Int Dent J 1993;43: 133-142.
3. Powell LV. Caries risk assessment: relevance to the practitioner. J Am Dent Assoc 1998;129:349-353.
4. Robertson T. Sturdevant's art and science of operative dentistry. 4th ed. St. Louis, MO: C.V. Mosby, 2002.
5. Leinfelder KF. Posterior composite resins. J Am Dent Assoc 1988;11(Special Issue):21E-26E.
6. Roulet JF. T e problems associated with substituting composite resins for amalgam: a status report on posterior composites. J Dent 1988;16:101-113.
7. Shaw K. Root caries in the older patient. Dent Clin N Am 1997;41(4):763-793.
8. Nathanson D, Riis D. Advances and current research on ceramic restorative materials. Curr Opin Cosmet Dent 1993:34-40.
9. Manhart J, Chen H, Hamm G, et al. Buonocore Memorial Lecture. Review of the clinical survival of direct and indirect restorations in posterior teeth of the permanent dentition. Oper Dent 2004;29(5):481-508.
10. Demarco FF, Corrêa MB, Cenci MS, et al. Longevity of posterior composite restorations: not only a matter of materials. Dent Mater 2012;28(1):87-101.
11. van Dijken JW. Direct resin composite inlays/onlays: an 11 year follow-up. J Dent 2000;28:299-306.
12. Lange RT, Pfeif er P. Clinical evaluation of ceramic inlays compared to composite restorations. Oper Dent 2009;34(3): 263-272.
13. Leinfelder KF. Porcelain esthetics for the 21st century. J Am Dent Assoc 2000;131:47S-51S.
14. Leinfelder KF. Advances in biorestorable materials. J Am Dent Assoc 2000;131:35-41.
15. Davidowitz G, Kotick PG. T e use of CAD/CAM in dentistry. Dent Clin N Am 2011;55(3):559-570.
16. Black GV. A work on operative dentistry. Vol. 1. Chicago, IL: Medico-Dental Publishing Company, 1908;203-234.
17. Radike AW.Criteria for diagnosis of dental caries. In:Proceedings of the Conference on the Clinical Testing of Cariostatic Agents. Chicago, IL: American Dental Association, 1972.
18. Simonsen RJ. T e clinical ef ectiveness of a colored sealant at 36 months. J Dent Res 1980;59:406.
19. Simonson RJ. Preventive resin restorations: three-year results. J Am Dent Assoc 1980;100:535.
20. Craig RG, O’Brien WJ, Powers JM. Dental materials properties and manipulation. 3rd ed. St. Louis, MO: C.V. Mosby, 1983:33-44.
21. Harris NO, Cristen G. Primary preventive dentistry. Reston, VA: Reston Publishing, 1982.
22. Guirguis R, Lee J, Conry J. Microleakage evaluation of restorations prepared with air abrasion. Pediatr Dent 1999;21,6:311-315.
23. Hegde VS, Khatavkar RA. A new dimension to conservative dentistry: air abrasion. J Conserv Dent 2010;13(1):4-8.
24. Baum L, Phillips RW, Lund MR. Textbook of operative dentistry. Philadelphia, PA: Saunders, 1995.
25. Vagkopoulou T, Koutayas SO, Koidis P, et al. Zirconia in dentistry: Part 1. Discovering the nature of an upcoming bioceramic. Eur J Esthet Dent 2009;4(2):130-151.
26. National Caries Program.T e prevalence of caries in U.S. children, 1979-1980. NIH Publication No. 82-2245, December 1981.
27. Brown JL, Wall TP, Lazar V. Trends in total caries experience: permanent and primary teeth. J Am Dent Assoc 2000;131: 223-231.
28. American Dietetic Association. Position of the American Dietetic Association: oral health and nutrition. Available at www.eatright.org/aoral.html
29. Hicks MJ, Flaitz CM. Epidemiology of dental caries in the pediatric and adolescent population: a review of past and current trends. J Clin Pediatr Dent 1993;18:43-49.
30. Heinrich R, Heinrich J, Kunzel W. Prevalence of root caries in women. Z Stomatol 1989;86:241-247.
31. Hannigan A, O'Mullane DM, Barry D. Caries susceptibility classification of tooth surfaces by survival time. Caries Res 2000;34:103-108.
32. Ishikawa A. 10-Year clinical evaluation of a posterior composite resin [Abstract 2178]. J Dent Res 1996;75:290.
33. Leinfelder KF. Posterior composite resins: the materials and their clinical performance. J Am Dent Assoc 1995;126: 663-676.
34. Kugel G, Ferrari M. T e science of bonding: from first to sixth generation. J Am Dent Assoc 2000;131:20S-25S.
35. Rosenstiel S, Land M, Fujimoto J. Contemporary fixed prosthodontics. 3rd ed. St. Louis, MO: Mosby, Inc., 2001.
g En ERAL REFEREn CE
Heymann HO, Swift EJ, Ritter AV, et al. Sturdevant's art and science of operative dentistry. 6th ed. St. Louis, MO: Elsevier/Mosby, 2012.

II Dental Anomalies

Acknowledgments

This chapter was originally contributed by Connie Sylvester, R.D.H., B.A, M.S., former faculty of the Ohio State University and the University of Texas Schools of Dental Hygiene. Special thanks to Drs. C.C. Dollens, Rudy Melfi, and Donald Bowers for their gracious assistance in obtaining several of the photographs and radiographs used in this chapter. Also, special thanks to the first-year dental hygiene students at Ohio State University, who brought in numerous anomalies and casts depicting such unusual teeth.

Topics covered within this chapter include the following.
I. Anod ontia: Absence of Teeth
A. Total Anodontia
B. Partial Anodontia
II. Extra Or Supernumerary Teeth
A. Maxillary Incisor Area
B. Third Molar Area
C. Mandibular Premolar Area
III. Abnormal Tooth Morphology
A. Abnormal Crown Morphology
B. Abnormal Root Morphology
C. Anomalies in Tooth Position
D. Additional Tooth Developmental Malformations (and Discoloration)
E. Changes in Tooth Shape due to Injury after Tooth Eruption
F. Unusual Dentitions

Objectives

This chapter is designed to help the learner perform the following:

- Identify variations from the normal (known as anomalies) for the number of teeth in an arch.
- Identify anomalies in crown morphology and, when applicable, identify the anomaly by name and give a possible cause (etiology).
- Identify anomalies in root morphology and, when applicable, identify the anomaly by name and give a possible cause (etiology).
- Identify anomalies in the alignment of teeth within an arch.
- Identify common discoloration abnormalities and give a possible cause (etiology).

An anomaly [ah NOM ah lee] is a deviation from normal, usually related to embryonic development that may result in the absence, excess, or deformity of body parts. ${ }^{1}$ Dental anomalies are abnormalities of teeth that range from such "common" occurrences as malformed permanent maxillary lateral incisors that are peg shaped to such rare occurrences as complete anodontia [an oh DON she ah] (no teeth at all). Dental anomalies are most often caused by hereditary factors (gene related) or by developmental or metabolic disturbances. While
more anomalies occur in the permanent than primary dentition and in the maxilla than in the mandible, it is important to remember that their occurrence is rare. (For example, only 1% to 2% of the population have some form of anodontia (one or more missing teeth), while another 1% to 2% have supernumerary [su per NOO mir a ree] (extra) teeth. ${ }^{2-4}$) When specific deformities or abnormal formations of teeth occur with greater frequency, it is difficult to say whether the deviation is a "true" anomaly or simply a variation in tooth morphology.

Familiarity with dental anomalies is essential to the clinical practice of dentistry and dental hygiene. Recognition and correct identification of anomalies are important when communicating with other dental team members, especially in the case of referral to or from another dental office. Additionally, a dental professional's communication with the patient (or, in the case of a child, the parent) should ref ect knowledge of abnormal oral conditions. Your assurance to a parent that the fused anterior teeth of their 4 -year-old child occur with 0.5% frequency but rarely affect the number of teeth in the permanent dentition will go a long way to promote the patient's confidence in you and the office. Likewise, the informed patient who understands
why the accessory cusp on the buccal of his/her maxillary or mandibular molar is more prone to decay than normal will likely be more receptive to home care instructions that are specific to his mouth and his needs. Finally, understanding the etiology (cause) of a specific anomaly is important in determining the course of treatment, if any. Additional information related to the etiology of the following anomalies is found in the study of oral histology, embryology, and oral pathology.

Note that within this chapter, the frequency of anomalies is included in brackets [like this]. T ese facts do not need to be committed to memory but are useful references when considering how common each anomaly is.

SECTio n i An o do n TiA: ABSEn CE o F TEETh

A. To TAl An o do n TiA

True anodontia (or total anodontia) is the total congenital absence of the entire primary or secondary dentitions and is extremely rare. It is most often associated with a generalized congenital deformation (a sex-linked genetic trait) involving the abnormal development of the ectoderm or outer embryonic cell layer. Faulty ectodermal development further affects such structures as hair, nails, sebaceous and sweat glands, and salivary glands.

B. PAr TiAl An o don TiA

Partial anodontia, also referred to as hypodontia, involves one or more congenitally missing teeth from a dentition. Now thought to be a hereditary trait, the tendency for missing the same teeth does run in families. Radiographs are required to assure that missing teeth are, in fact, missing and not just unerupted.

1. Most Comm only Missing Permanent Teeth

T e most commonly missing permanent teeth are third molars, with the maxillary third molars absent from the dentition more often than the mandibular thirds.

2. Second Most Commonly Missing Teeth

T e permanent maxillary lateral incisors are the next most commonly missing teeth (Fig. 11-1). [Approximately 1\% to 2% of the population are missing one or both of these maxillary incisors. ${ }^{4,5}$]

3. Third Most Commonly Missing Teeth

T e mandibular second premolars are the third most frequently missing permanent teeth as seen on a radiograph in Figure 11-2 [with 1% of the population missing one or both]. ${ }^{4}$

FiGUr E 11-1. Partial anodontia. Mouths with congenitally missing maxillary lateral incisors. A. Notice that maxillary canines have moved into the spaces normally reserved for the missing lateral incisors. B. Maxillary lateral incisors are missing.

FiGUr E 11-2. Partial a nodontia. A radiograph reveals a missing mandibular second premolar (\#29). A routine radiographic examination of a 10 -year-old female revealed that both mandibular right and left second premolars were missing. The first premolar is erupting between the roots of the primary first molar. The primary second molar is functional, and its roots will probably not resorb resulting in a retained primary tooth. (Notice the fully erupted permanent first molar (\#30) and the unerupted second molar (\#31) partially visible at the extreme left.)

Some studies indicate the order of most commonly missing teeth to be third molars, maxillary and mandibular premolars, and then maxillary lateral incisors. ${ }^{6}$ T e most stable teeth in the permanent dentition, the canines, are the least likely to be absent from the dentition. ${ }^{6}$

FiGUr E 11-3. Partial anodontia. A. One primary mandibular central incisor is congenitally missing so the remaining incisor could be tooth O or tooth P . B. One congenitally missing permanent mandibular central incisor.

Other congenitally missing permanent and primary teeth are evident in Figure 11-3.

SECTio n ii ExTr A o r SUPEr n UMEr Ar y TEETh

Supernumerary teeth are teeth that form in excess of the normal number of teeth for each quadrant. [They occur in 0.3% to 3.8% of the population. ${ }^{7}$] They are found in both permanent and primary dentitions [with 90% of all occurrences in the maxilla]. ${ }^{8}$ Specifically, the most frequent supernumerary specimens are found in one of two locations: maxillary incisor area or maxillary third molar region. One report states that supernumerary teeth occur eight times more often in the maxillary than mandibular regions and twice as frequently in men than in women. ${ }^{9}$ [Another study of 50 patients from 16 months to 17 years of age found 20% of the supernumerary teeth to be inverted. ${ }^{10}$ Fourteen percent of these patients had multiple supernumerary teeth, and 80% of the extra teeth were in a lingual position relative to the dental arch.] Supernumerary teeth can vary considerably in size and shape.

A. MAxill Ar y in CiSor Ar EA

T e most common location of supernumerary teeth in the permanent dentition is located at the maxillary midline (called a mesiodens). A mesiodens [ME zee o denz] is a small supernumerary tooth that forms between central
incisors. It has a cone-shaped crown (Fig. 11-4A and B) and short root. It may be visible in the oral cavity or remain unerupted. If unerupted, a diastema (space) may be present. ${ }^{11}$ One study of 375 children with mesiodens reports that they are often in an inverted position and rarely erupt into the oral cavity (Fig. 11-4C). ${ }^{9}$ [T e prevalence of mesiodens in the permanent dentition in the Caucasian populations is 0.15% to $1.9 \% .^{12}$] Less frequently, supernumerary teeth may be positioned between central and lateral incisors or between lateral incisors and canines. An unusual occurrence of a person with what appears to be three maxillary central incisors is seen in Figure 11-5. T e occurrence of supernumerary teeth in the primary dentition is low $[\sim 0.5 \%] .{ }^{12}$

B. Th ir d Mol Ar Ar EA

The presence of supernumerary teeth distal to the third molars is more common in the maxillary arch but does occur in the mandible. These supernumerary teeth are often called distomolars, paramolars, or fourth molars. These extra teeth rarely erupt into the oral cavity and, thus, are usually discovered through radiographs (Fig. 11-6).

FiGUr E 11-4. Supernumerary mesiodens. A. Radiograph showing a mesiodens next to the fully erupted permanent maxillary central incisor. B. Fully erupted mesiodens (facial and incisal views) that has a peg shape. It is an extra, peg-shaped tooth located between \#8 and \#9. C. A impacted mesiodens is visible on this radiograph between the root apices of $\# 8$ and $\# 9$. It appears to be inverted (seen at arrow).

C. MAn diBUl Ar Pr EMo 1 Ar Ar EA

T e most common location for supernumerary teeth in the mandible is between the first and second premolar regions (Fig. 11-7). Supernumerary teeth appearing in this area generally resemble normal premolars in size and shape. ${ }^{13}$

FiGUr E 11-5. Supernumerary tooth. Maxillary dentition with three incisors shaped like central incisors at the three arrows (and only one shaped like a lateral incisor).

FiGUr E 11-6. Paramolars, distomolars, or fourth (supernumerary) molars. A. Radiograph showing a maxillary (4th) distomolar (at arrow). B. Mandibular (4th) distomolar (at arrow) just distal to the unerupted permanent third molar.

FiGUr E 11-7. Supernumerary teeth in mandibular premolar region. A. View of an extra mandibular first premolar (at arrow on the left side of the mouth) fully erupted but crowded. (Courtesy of Dr. L Claman.) B. Extra mandibular first premolars (at arrows) on each side of the mandibular arch are positioned lingually.

FiGUr E 11-8. Supernumerary mandibular central incisor.
Radiograph of the mandibular incisor region with two lateral incisors and three (not two) central incisors. There are no fused roots, and the pulp cavities appear normal.

Extra teeth may also form in other locations in the mouth. For example, a most unusual instance of three mandibular central incisors is seen in the radiograph in Figure 11-8.

SECTio n iii ABn o r MAl To o Th Mor Pho lo Gy

A. ABn or MAl Cr o wn Mor Pholo Gy

Crown malformations may be seen clinically upon visual inspection of the oral cavity.

1. Third Molar Malformations

Maxillary third molars have the most variable crown shape of all permanent teeth followed by mandibular thirds. T ese anomalies can range in shape from a small peg-shaped crown to a multicusped, malformed version of either the first or second molar.

2. Peg-Shaped 1 ateral incisors

T e most common anomaly in tooth shape in the anterior region of the permanent dentition is the peg-shaped (or cone-shaped) lateral incisor (Fig. 11-9) [which occur in 1% to 2% of the population]. ${ }^{4} \mathrm{~T}$ e tooth is somewhat conical in shape and broadest cervically and tapers toward the incisal to a blunt point. Several studies of identical twins seem to
indicate that peg-shaped maxillary lateral incisor teeth may be a varied expression of the same genetic trait as missing maxillary lateral incisors. ${ }^{14,15}$ A most unusual occurrence is that of peg-shaped maxillary central incisors (Fig. 11-10). Recall that peg-shaped teeth develop from one lobe, instead of the four lobes, which would be normal for anterior teeth.

3. Gemination or Twinning

Gemination or twinning results from the splitting (or twinning) of a single forming tooth. Since the tooth division is incomplete, the twinned crown appears doubled in width compared to a single tooth (Fig. 11-11) and notched. T e single root is not split and has a common pulp canal. If the doubled tooth is counted as two teeth, the dental arch containing the geminated tooth will have an extra tooth beyond the normal number of teeth. Gemination occurs more frequently in the primary dentition than in the permanent dentition and most commonly in the region of the maxillary incisors and canines. ${ }^{3}$ [Gemination occurs in $<1 \%$ of the population.] Note in Figure 11-12 that the wide, notched crowns of the

FiGUr E 11-9. Peg-shaped maxillary lateral incisors. A. Incisal view on a plaster model. B. A peg-shaped lateral incisor seen in the mouth. C. Four extracted peg-shaped lateral incisors.
anterior maxillary incisors of this Native American resemble teeth that have geminated.

4. Fusion

Fusion is the union of two adjacent tooth germs, always involving the dentin. Upon clinical examination, this condition appears similar to gemination since the two fused teeth have one crown that appears doubled in width. However, unlike gemination, they usually reveal two separate but fused roots (seen in Fig. 11-13) with separate pulp chambers as seen on radiographs. Another way to differentiate fusion from gemination is to count the teeth in the arch. If the fused teeth are counted as two, the total number of teeth will ref ect

FiGUr E 11-10. Peg-shaped maxillary central incisors, a very rare occurrence. A. Facial view. B. Incisal view showing both canines, one lateral incisor and the two peg-shaped central incisors.
the normal number of teeth in that arch (Fig. 11-14A and B). Like geminated teeth, fused teeth occur more commonly in the anterior portion of the mouth [but in $<1 \%$ of the population] and more often in the primary dentition than in the permanent dentition. T e mandibular incisor area is affected more often than the maxilla. ${ }^{2,3}$ Look at the primary dentition in Figure 11-14C and determine what condition you suspect.

It is thought that fusion is caused by pressure or force during development of adjacent roots. Many of the reports of fusion involve a supernumerary tooth joining with an adjacent tooth, such as the fusion of a mandibular third and fourth molar seen in Figure 11-15A-C or the fusion of a maxillary lateral incisor and anterior supernumerary tooth. ${ }^{16-18}$

5. hutchinson incisors and Mulberry Molars

When an infected mother passes syphilis on to her unborn baby, the child's teeth in both dentitions may develop with unique shapes. Maxillary and mandibular incisors may be screwdriver shaped, broad cervically, and narrowing incisally, with a notched incisal edge. T ese teeth are referred to as Hutchinson incisors. Note in Figure 11-16A that the crowns of Hutchinson incisors resemble somewhat the notched crowns of fused incisors seen in Figure 11-14A and B. Also, first molars in these dentitions may have occlusal anatomy made up of multiple tiny tubercles with poorly developed indistinguishable cusps. Because of the berry-like shape on the occlusal surfaces, these molars are called mulberry molars (Fig. 11-16B). Other manifestations of congenital syphilis may include scarring of the skin around the mouth, bone pain, and swelling of the joints.

FiGUr E 11-11. Gemination

(twinning). It appears that the tooth germ for tooth \#23 split or divided into two since, if that tooth is counted as two, there are five incisors (fve arrows), one more than expected. The geminated tooth will generally have a single root and common pulp canal. The facial view is seen in (A), and the incisal view of the same mouth is shown in (B).

Accessory Cusps, Tubercles, or r idges

Accessory enamel projections may result from developmental localized hyperplasia (increase in volume of tissue caused by growth of new cells), or crowded conditions prior to eruption may result in fusion of a supernumerary tooth, which can appear similar to an extra cusp (Fig. 11-17A-C). A third lingual cusp may develop on mandibular molars on the lingual surface and is called a tuberculum [too BER ku lum] intermedium (Fig. 11-18). If this extra cusp were located on the distal marginal ridge, it would be called a tuberculum sextum.

A talon cusp (like a "claw of bird of prey") is a small projection on the lingual surface of maxillary or mandibular

FiGUr E 11-12. Deep labial grooves on all four maxillary central incisor crowns and four canine roots (maxillary and mandibular) of a Native American. Notice the similarity in morphology of these wide, notched incisor crowns with the crowns of geminated teeth.
anterior permanent teeth (Fig. 11-19A). Frequently, the cusp has a pulp horn so that on a radiograph, it may be mistaken for a supernumerary tooth superimposed over an anterior tooth or a dens in dente (described later in this chapter). Removal of this cusp is often necessary because of its interference in jaw closure in the maximum intercuspal position. Since the pulp horn is present, endodontic treatment is usually required when this cusp is removed. ${ }^{2,19} \mathrm{~T}$ e malformed marginal ridge that extends over much of the lingual surface on the anterior tooth in Figure 11-19B resembles a talon cusp.

Recall that mandibular second premolars most often have three cusps (one buccal and two lingual). However, the number of lingual cusps can range from one to three, so occlusal morphology can vary greatly in terms of groove and fossa patterns established by the number of lingual cusps. ${ }^{20}$

FiGUr E 11-13. Fusion. Two teeth appear to be fused together. Buccal aspect (A) and lingual aspect (B). Some separation between the roots is visible. There are two pulp canals.

FiGUr E 11-14. Fusion. A. If the tooth that is twice as wide as it should be is counted as two, the number of incisors is four (four arrows) the expected number. Therefore, we suspect that the maxillary right lateral and central incisor have fused. Another possibility is the fusion of the central incisor and a supernumerary mesiodens, and the lateral incisor is congenitally absent. B. Four teeth (four arrows) appear like three crowns due to the fusion of a mandibular central and lateral incisor. C. What condition do you suspect in this mouth? Answer: Teeth N and O appear normal, but the double-wide remaining "incisor" appears to be the result of the fusion of tooth P and Q .

FiGUr E 11-16. Two effects of congenital syphilis on the teeth. A. Hutchinson incis ors are notched on these maxillary central incisors of a 9-year-old female. (Model courtesy of Dmitri J. Harampopoulos, D.D.S.) B. Each mulberry molar (at arrows) resembles the shape of a mulberry with many tubercles.

Teeth may also exhibit extra small enamel projections called tubercles (Fig. 11-20), or extra accessory cusps. Finally, an unusual prominent ridge is seen on the facial surface of a maxillary central incisor in Figure 11-21.

7. Variations in Tooth Size

Microdontia (very small, but normally shaped teeth) and macrodontia (very large, but normally shaped teeth) may occur as a single tooth, several teeth, or all teeth in a

FiGUr E 11-15. Fusion. A. Unusual maxillary third molar with a supernumerary paramolar fused to its distal surface. B. Paramolar fused to the buccal surface of a maxillary third molar. C. Paramolar fused to the lingual surface of a maxillary third molar.

FiGUr E 11-17. Extra cusps. A. Extra buccal cusp (or a fused paramolar) seen on the buccal surface of a maxillary second molar. B. Two extra cusps (or two fused paramolars) on the buccal surface of a maxillary molar. C. Extra buccal cusp on a mandibular molar.

FiGUr E 11-18. Tuberculum intermedium (arrows). Mandibular first and second molars with extra, midlingual cusps, each called a tuberculum intermedium.

FiGUr E 11-19. Talon cusps. A. Lingual view of two maxillary central incisors with talon cusps. B. Lingual view of a maxillary left lateral incisor shows an enamel prominence in the lingual fossa that appears similar to a talon cusp. The lingual defects in all three of these teeth could affect the occlusion.

FiGUr E 11-20. Tubercles. A. Elevations or tubercles (or cusplets) on the cingula of a canine and lateral incisor. B. Pronounced tubercles on the cingula of maxillary anterior teeth, most noticeable (due to lighting) on the patient's left central and lateral incisor and canine. C. Proximal views of both mandibular first premolars from a young Native American showing tubercles emanating from the triangular ridges of the buccal cusps.

FiGUr E 11-21. Unusually promine nt labial ridge on a secondary maxillary central incisor.
dentition. ${ }^{21}$ Macrodontia most frequently involves incisors and canines, whereas microdontia affects maxillary lateral incisors and third molars. ${ }^{11,22,23}$ Some examples of variation in size of teeth are shown in Figure 11-22A and B. One report described a maxillary canine 39 mm long and a maxillary first molar 31 mm long (compared to average lengths of 26.3 and 20.1 mm , respectively), both removed from a pituitary giant. ${ }^{21}$

8. Shovel-Shaped Maxillary incisors

Possibly not a true anomaly, shovel-shaped incisors are a frequently occurring trait that ref ect biologic differences between races. ${ }^{4} \mathrm{~T}$ e lingual anatomy includes a pronounced

FiGUr E 11-22. Variation in tooth size from macrodontia (very large) to microdontia (very small). A. Macrodontia of two very long incisors (one 34 mm long). B. Microdontia of three very short central incisors with dwarfed roots.

FiGUr E 11-23. A. Shovel-shaped permanent incis ors from a young Native American dentition (incisal view). Note the prominent marginal ridges on the lingual surface. B . The range of prominent labial ridges on double-shovel-shaped incis ors varies from labial ridges (barely discernible) on the left to more prominent labial ridges on the right.
cingulum and marginal ridges that resemble the shape of a "shovel" (Fig. 11-23A). T ese teeth occur most frequently in Asian, Mongoloid, Arctic, and Native American populations. Double shoveling refers to the pronounced lingual marginal ridges as well as prominent ridges on the mesial and distal portions of the labial surface as seen in Figure 11-23B.

B. ABn o r MAl r o o T Mo r Ph o lo Gy

Root malformations are normally only obvious on radiographs, although close examination of extracted teeth reveals much variation.

(1.) Enamel Pearls

Enamel pearls are small, round nodules of enamel with a tiny core of dentin. Since they are covered with enamel, they prevent the normal connective tissue attachment, may be felt with a probe, and, consequently, may lead to periodontal problems in this region.

T ey are found most frequently on the distal of third molars and near the buccal root furcation of molars ${ }^{24}$ (Fig. 11-24). On a radiograph, enamel pearls appear as small round radiopacities (i.e., areas appearing light or white on the exposed film).

2. Taurodontia

In taurodontia, or so-called bull or prism teeth, the pulp chamber is very long, without a constriction near the cementoenamel junction (Fig. 11-25). T is occurs only in permanent teeth [with a frequency of less than 1 in 1000

FiGUr E 11-24. Enamel pearls on maxillary molar roots, many located near the furcation.
among American Indians and some Arctic populations]. ${ }^{25}$ Taurodontia is caused by a disorganization of the calcified tissues and possibly occurs in dentitions subjected to heavy use.

3.
 dilaceration

Dilaceration [die lass er A shun] is a severe bend or angular distortion of a tooth root (Fig. 11-26). ${ }^{26}$ This unusual occurrence may be the result of a traumatic injury or of insufficient space for development, as is often the case with third molars (Fig. 11-27). Dilaceration is often observed in teeth with accessory roots. Historically, flexion is another term that has been used to describe a sharp curvature or bend of a tooth root. This condition makes it challenging to extract the tooth without breaking the root.

(4.) dens in dente

Dens in dente [denz in DEN tee] (literally 'tooth within a tooth") is a developmental anomaly resulting from the invagination of the epithelium of the enamel organ before the formation of hard tissue (seen in Fig. 11-28A). Clinically, it appears most often as a deep crevice near the cingulum

FiGUr E 11-25. Taurodontia. Photograph of extracted tooth on left; radiographic shape outlined on right. (Courtesy of Professor Rudy Me lfi, D.D.S.)
region of incisors, and on a radiograph, it appears like a tooth forming within a tooth (Fig. 11-28B). Although most commonly found in maxillary lateral incisors, this condition has also been noted in maxillary central incisors and in mandibular incisors. Usually, it appears in the coronal third of the tooth but may extend apically into the root. Often pegshaped lateral incisors, with failure of mesial and distal lobes to develop, are found to have dens in dente upon radiographic examination. [T eir occurrence is from 1% to 5% of the population. ${ }^{2}$]

Concrescence

Concrescence [kon KRESens] involves the superficial fusion or growing together of only the cementum of two adjacent tooth roots (Fig. 11-29). Unlike fusion, these teeth usually become joined after eruption into the oral cavity due to the close proximity of the roots and excessive cementum deposition. ${ }^{6} \mathrm{~T}$ is anomaly occurs most frequently in the maxillary molar region.

FiGUr E 11-26. Dilaceration. A-C. Three teeth with dilaceration (orfexion) of the root.

FiGUr E 11-27. Extra root and dilaceration (severe) of a mandibular molar with three instead of two roots.

6. d warfed r oots

Maxillaryteeth often exhibit normal-sized crownswith abnormally dwarfed (short) roots (seen earlier in Fig. 11-22B). T e incisal edges of maxillary teeth with dwarfed roots are often displaced lingually (as also occurs on mandibular incisors). T is condition is often hereditary; however, isolated or generalized dwarfing of roots may also result from orthodontic movement of the teeth (with braces) when the movement has occurred too rapidly.

hypercementosis

Hypercementosis is the formation of excess cementum around the root of a tooth after the tooth has erupted (Fig. 11-30). It may be caused by trauma, metabolic dysfunction, or periapical inf ammation. Excess cementum may actually form a thin layer that connects adjacent roots, similar to the thin tissue that connects the "toes" on the webbed foot of a duck.

FiGUr E 11-28. Dens in dente ("tooth within a tooth").
A. A faciolingual, very thin cross section of a maxillary lateral incisor with a dens in dente. The defect within the tooth that connects with the lingual pit is seen here and may be an area where dental decay can occur. B. Radiograph of a dens in dente on a maxillary right central incisor. (Courtesy of Professor Rudy Melfi, D.D.S.)

FiGUr E 11-29. Concrescence is the junction or joining of cementum between adjacent teeth. Here, the cementum of a maxillary first molar is joined to the cementum of an adjacent second molar. Left: Lingual view. Right: Disto-occlusal aspect with the buccal toward the right.

Extra (Accessory) r oots

Usually occurring in teeth whose roots form after birth, accessory roots are probably caused by trauma, metabolic dysfunction, or pressure. Third molars are the multirooted teeth most likely to exhibit accessory roots (Fig. 11-31A). ${ }^{2}$ Other molars may also develop extra roots, as seen on a mandibular molars in Figure 11-31B and C. The single-rooted teeth most likely to have an extra root are the mandibular canines followed by mandibular premolars. Two roots on a mandibular canine (one facial and one lingual) are found rarely enough to be interesting but frequently enough not to be amazing (Fig. 11-32A). Mandibular first premolars may also exhibit a bifurcated root, one buccal, and one lingual (Fig. 11-32B), a condition less common for these teeth than for mandibular canines. A rare occurrence of two roots on mandibular premolars, one mesial and one distal like on mandibular molars, is evident in the radiographs in Figure 11-32C and on an extracted mandibular first premolar in Figure 11-32D. [A Japanese study of 500 mandibular first premolars found that this type of bifurcation occurred in 1.6% of Japanese teeth. These researchers also found one very rare specimen with three roots, two buccal and one lingual. ${ }^{27}$]

A very unusual maxillary first premolar with three roots (two buccal and one lingual) similar to the roots of a maxillary molar is seen in Figure 11-33. T ere have also been a number of reports of bifurcated roots on primary maxillary canines: five discovered from routine radiographic examination and the sixth on a routine dental recall examination (as seen in Fig. 11-34). ${ }^{21,28-33}$

FiGUr E11-30. Hypercementosis or excess cementum thickness is evident on a variety of teeth.

C. An o MAl iES in To o Th Po SiTio n

(1.) Unerupted (impacted) Teeth

Unerupted teeth are embedded teeth that fail to erupt into the oral cavity because of a lack of eruptive force. Impacted teeth, on the other hand, fail to erupt due to mechanical obstruction, often related to the evolutionary decreasing size of modern man's jaw. T e most common teeth to be impacted are maxillary and mandibular third molars (Fig. 11-35A and B) and maxillary canines. ${ }^{2,4,34}$ [At least 10% of the population have impacted teeth.]
2. Misplaced Teeth (Ectopic Eruption or Transposition)

Occasionally, the cells that form a tooth (tooth buds) seem to get out of place, causing teeth to emerge in unusual locations. T e most common tooth involved is the maxillary canine seen in Figure 11-36A [20 of 25 cases reported], ${ }^{35}$ followed by the mandibular canine (Fig. 11-36B). Maxillary canines can even be transposed to the central incisor region. ${ }^{36,37}$ Other abnormalities in the alignment of teeth within an arch were mentioned in Chapter 9: labioversion is when a tooth is located too far to the labial like tooth \#24 in Figure 11-37A,

FiGUr E 11-31. Extra roots. A. Three examples of extra (accessory) roots in a young Native American: The two larger teeth are permanent contralateral first mandibular molars, and the smaller tooth (in the center) is a primary second molar. B. Permanent mandibular left second molar with extra rootlike appendage in the furcation area. C. Two radiographs showing a right and left mandibular first molar, each with three (instead of two) roots.

FiGUr E 11-32. Unusual bifurcated roots.
A. Two mandibular canines with a bifurcated root (one facial and one lingual). B . Two mandibular right first premolars with bifurcated roots, a condition that is less common on this tooth than on mandibular canines.
C. Radiograph showing both first and second mandibular premolars with mesial and distal roots. This mesiodistal split is quite rare. A more common occurrence is for mandibular first premolars to have their root divided buccolingually (as in B). D. A rare mandibular first premolar with a mesial and distal root.

Mesial

FiGUr E 11-33. Unusual trifurcation on a maxillary
premolar. Three views of a maxillary right first premolar with a normal-looking crown but with three roots: two buccal and one lingual root (mesiobuccal, distobuccal, and lingual). These roots somewhat resemble those found on maxillary molars. (A) is the mesial view, (B) is the distal view, and (C) is the occlusal view.

FiGUr E 11-34. Unusual bifurcation seen on buccal views of primary maxillary canines. ${ }^{28}$ The left tooth was extracted from a 9-year-old African American child (mesial surface is to the right). The middle and right teeth came from a 5 -year-old Native American child in Woods County, Ohio, believed to have lived over 2500 years old. Mesial sides face each other. (Courtesy of Dr. Ruth B. Paulson.)

FiGUr E 11-35. Impacted mandibular third molar. A. Because of its horizontal position, this third molar is mechanically locked beneath the distal bulge on the second molar and cannot erupt. B. A horizontally impacted third molar (\#32) has its occlusal surface in contact with the occlusal surface of a fully formed impacted 4th molar (at arrow).

linguoversion is when a tooth is too lingual like teeth \#7 and \#10 in Figure 11-37A, supraeruption when a tooth is erupted beyond the occlusal plane like tooth \#1 in Figure 11-37B, and infraversion when a tooth is shorter than the occlusal plane like retained deciduous tooth K in Figure 11-37C).

3. Tooth r otation

Slight rotation of a tooth is called torsiversion like tooth \# 8 in Figure 11-38A. Complete rotation, where a tooth is rotated on its axis by 180°, is a rare anomaly, most common for the maxillary second premolar (Fig. 11-38B), sometimes the maxillary incisor, first premolar, or mandibular second premolar. ${ }^{38}$

(4. Ankylosis

Ankylosis [ang ki LO sis] may be initiated by an infection or trauma to the periodontal ligament, resulting in the loss of its periodontal ligament space so the tooth root is truly fused to the alveolar process or bone. T ese teeth erupt into the oral cavity but, after ankylosis, fail to reach occlusion with the opposing arch and appear shorter than adjacent teeth in its arch. Many times, ankylosis of a primary tooth occurs when the permanent successor is missing. Primary mandibular second molars most often fail to continue erupting as the jaw grows. Consequently, the ankylosed tooth will be 2 to 4 mm short of occluding with an opposing tooth (as in Fig. 11-37C).

FiGUr E 11-36. A. Switched positions for the permanent left maxillary lateral incisor and canine (top photo has these teeth labeled with arrows on a facial view, and the bottom view has the same teeth labeled on an incisal view). B. Unusual Order of teeth. Bilaterally switched mandibular canines and lateral incisors, a rare occurrence. Also note the small, retained left primary lateral incisor (tooth N).

FiGUr E 11-37. A. Tooth \#24 is in labioversion, \#s 7 and 10 are in linguoversion. B. Tooth \# 1 is in supracoclusion (is extruded). C. Tooth K, a retained primary tooth, is in infraocclusion.

FiGUr E 11-38. A. A slight rotation of this tooth \#8 is called torsiversion (indicated by arrow). B. Complete rotation of a permanent maxillary second premolar with its buccal surface rotated 180° so that it is now facing the lingual (at arrow).
d. Ad diTio n Al To o Th d EVEl o PMEn TAl MAl Fo r MATio n S (An d diSCo lo r ATio n)

Other tooth malformations may be related to heredity or injury during formation and therefore may affect many teeth rather than just one or two specific teeth. T ese conditions are not anomalies, but dental professionals should be able to distinguish them from other anomalies.
T ere are several terms you need to be familiar with in order to understand this section. First, the suffix "-plasia" refers to formation or development. Dysplasia is a generic term that indicates abnormal development. Dysplasia can result from too little mineral content being incorporated (hypomineralization) or too little calcium (hypocalciảcation) incorporated into enamel or dentin. Hypoplasia is a form of dysplasia that refers to an incomplete formation of a tissue. Dysplasia of the enamel or dentin can result from a number of factors during tooth formation, such as exposure to excessive amounts of f uoride, exposure to tetracycline antibiotics, congenital syphilis, or injury to the tooth.

Enamel dysplasia

Enamel dysplasia is a term used to describe a disturbance in the enamel-forming cells (ameloblasts) during early enamel
formation. Enamel dysplasia may be hereditary (as with amelogenesis imperfecta) or could result from systemic causes during early tooth formation (such as exposure to a high fever, nutritional deficiencies, or an excess amount of fuoride) or local disturbances (such as trauma or periapical infection of adjacent primary teeth). Generally, variations in color (from white to yellow and brown) or variations in morphology (such as pitting or roughened enamel) can result. Several examples of enamel disturbances are presented here.
a. Amelogenesis Imperfecta

Amelogenesis imperfecta [ah mel o JEN e sis im per FEC ta] is a hereditary disorder that affects the enamel formation of both dentitions (Fig. 11-39). ("Amelo-" refers to the ameloblasts or enamel-forming cells, and "genesis" refers to the beginning formation of these cells. T e word "imperfecta" means imperfect.) T e partial or complete lack of enamel results in rough yellow to brownish crowns that are susceptible to decay. T is condition is rare [with an incidence in the United States of 1 in 15,000$]$. ${ }^{2}$

b. Fluorosis

Fluorosis [foor O sis] is a condition caused during enamel formation by the ingestion of a high concentration of ingested fuoride compounds in drinking water that greatly exceeds the concentration recommended for controlling decay. T e amount of fuoride compounds in some naturally occurring mineral water that causes this condition is many times greater than the one part per million that is added to drinking water to effectively reduce the prevalence of decay. T ese teeth can exhibit a color change from white to yellow/brown spots called mottled enamel, and if severe, the tooth enamel can undergo a morphologic change resulting in the formation of pits within the enamel (pitted enamel) (seen on erupting secondary central incisors in Fig. 11-40). Clinically, all permanent teeth may be involved depending on the length of time that the person

FiGUr E 11-39. Amelogenesis imperfecta is a here ditary disorder affecting enamel formation. (Courtesy of Carl Allen, D.D.S., M.S.D.)

FiGUr E 11-40. FluOrOsis. This condition is most evident on the maxillary and mandibular central incisors. It is seen as white coloration or mottling of color and some pitting (on partially erupted tooth \# 9). (Courtesy of Carl Allen, D.D.S., M.S.D.)
was ingesting high levels of fuoride. T ese teeth are most often resistant to decay.

c. Enamel Damage Due to High Fever

Pitted enamel on permanent teeth may result from a very high fever during early childhood due to diseases such as measles. ${ }^{4}$ Usually, the tooth crowns that are developing at the time of the fever are affected. For example, a high fever at about age 2 years and 3 months can damage the enamel forming at that time on mandibular second premolars and second molars (Fig. 11-41).

d. Focal Hypoplasia (or Hypomaturation)

Focal hypoplasia is an incomplete development of enamel seen as a localized discolored spot or deformed area on a tooth. During enamel formation, this condition may result from trauma, a local infection of an adjacent abscessed primary tooth, or some other interference in enamel matrix maturation, most likely to occur in succedaneous teeth

FiGUr E 11-41. Enamel dysplasia (hypoplasia). This tooth damage resulted from the disruption of enamel formation on the mandibular second premolar and second molar (at arrows) at about 2 years of age when these crowns were forming. (Courtesy of Carl Allen, D.D.S., M.S.D.)

FiGUr E 11-42. Enamel hypoplasia (focal hypomaturation) caused by a disturbance during the formative stage of the enamel matrix. A defect on the labial surface of the maxillary central incisor (a so-called Turner hypoplasia) could be caused by an infection (abscess) on the primary central incisor that preceded it.
(called a Turner hypoplasia) seen in Figure 11-42. Unlike decalcification (early decay), which can usually be seen in the cervical thirds of teeth or on occlusal surfaces of posterior teeth, this form of hypomaturation generally appears in the middle third of the smooth crown surfaces (facial and lingual surfaces). T e underlying enamel may be soft making the area susceptible to decay.

2. dentin dysplasia

Dysplasias of dentin occur twice as often as those in enamel [1 in 8000]. ${ }^{39}$ Abnormal development of the dentin includes hereditary and systemic conditions as follows.

a. Dentinogenesis Im perfecta

Dentinogenesis [den ti no JEN e sis] imperfecta is a hereditary disorder that affects the dentin formation of both dentitions. Clinically, all teeth have an unesthetic light blue-gray to yellow, somewhat opalescent appearance (Fig. 11-43A), hence the term hereditary opalescent dentin. On a radiograph, there may be a partial or total absence of pulp chambers and root canals since the pulp chambers and root canals may calcify (Fig. 11-43B). T ese teeth may be weak because of a lack of support in the dentin, so they may be susceptible

FiGUr E 11-44. Tetracycline staining in this permanent dentition resulted from the administration of tetracycline antibiotic during the time that teeth are forming. Teeth have the appearance of yellow to gray-brown horizontal bands across the crowns. (The staining on tooth $\# 8$ has been covered with a tooth-colored restorative material such as composite resin.) (Courtesy of Carl Allen, D.D.S., M.S.D.)
to severe attrition. [T is condition occurs in only about one in every 8000 persons.]

b. Tetracycline Stain

When the antibiotic tetracycline is taken by a pregnant woman, an infant, or a child during the time of tooth formation and calcification, it can affect developing dentin. T e result is a change in tooth color depending on the dose of the drug, to a yellow or gray-brown (Fig. 11-44). T e resultant staining may be generalized in the primary dentition but may also affect some permanent teeth, depending on the age at which tetracycline was administered. Since only the teeth that are calcifying during the tetracycline therapy are stained, it is possible to confirm this condition by noting the age when tetracycline was given and comparing this to the teeth that were calcifying at that age. Some persons have erroneously blamed the staining from tetracycline antibiotic therapy during tooth formation on fuoridated community drinking water, which is beneficial for both teeth and general health.

FiGUr E 11-43. Dentinogenesis imperfecta (opalescent dentin) is a hereditary disorder that affects the dentin and external appearance of all teeth. A. The teeth take on a gray or yellow opalescent appearance. B. Radiographs reveal the total or partial lack of pulp chambers and canals. (Courtesy of Carl Allen, D.D.S., M.S.D.)

E. Ch An GES in To o Th Sh APE d UE To in jUr y AFTEr To o Th Er UPTio n

Reactions to injury are not really anomalies but are unique changes in tooth morphology associated with a specific cause. It is important to recognize these conditions so that their etiology (causes) can be identified and modified, when possible, to avoid the causative factor(s) that could worsen the condition.

1.
 Attrition

Attrition is the wearing away of enamel (and eventually dentin) due to the movement of mandibular teeth against maxillary teeth during normal function and is made worse by excessive grinding together of teeth known as bruxism. Two examples of severe attrition are shown in Figure 11-45A and B. Stress greatly increases bruxism. Attrition should be distinguished from other forms of tooth damage such as abrasion and erosion since the cause of each condition, and therefore the therapy to prevent further damage, is quite different. (Recall from the discussion on bruxism in Chapter 9 that normal tooth-to-tooth contacts per day in a healthy person without occlusal problems may be as little as 7 to 8 minutes per day during mastication of food with a force that is normally less than 33 lb . Imagine, on the other hand, the potential damage to teeth (as well as muscles and the TMJ) if a bruxer bites together for 5 hours per night at pressures exceeding 190 lb !)

FiGUr E 11-45. Attrition results from prolonged bruxism or grinding of the teeth. A. These anterior teeth have been worn down almost to the level of the gingival margin. B. These permanent mandibular incisors are worn down to a level where the pulp chamber had been at one time many years previously. Note the darker circular and oval areas of exposed secondary or reparative dentin visible on the incisal ridges.

Abrasion

T e wearing away of tooth structure by mechanical means is called abrasion. A common example of abrasion (sometimes called toothbrush abrasion) results in the loss of enamel near the cementoenamel junction of the facial surfaces of crowns, especially on premolars and canines, due to improper tooth brushing techniques (Fig. 11-46). It can be caused by using a hard bristle toothbrush, a horizontal brushing stroke, and/or a gritty dentifrice. Another contributing factor to the loss of tooth structure near the cementoenamel junction is known as abfraction [ab FRAC shun], which is the bending (f exure) of the tooth caused by heavy occlusal forces. T is condition is thought to result in loss of tooth structure due to separation of enamel rods near the CEJ.

Occlusal abrasion results from chewing or biting hard foods or objects or from chewing tobacco and results in fattened cusps on all posterior teeth and worn incisal edges (appearing similar to attrition). An unusual type of abrasion, caused by the use for many years of a toothpick between the maxillary central incisors, has been reported by Melfi (Dr. Rudy Melfi, personal communication circa 1983). T e same type of proximal abrasion has been reported from the use of a straight pin for the same purpose over many years.

(3.) Erosion

Erosion is the loss of tooth structure from chemical (not mechanical) means and affects smooth and occlusal surfaces. Erosion can be the result of excessive intake or use of citric acid (like in lemons) and carbonated beverages or the result of regurgitated stomach acids (seen in bulimic individuals who habitually induce vomiting, as in the "binge and purge" syndrome). ${ }^{2}$ Erosion can also occur from an unknown cause (idiopathic). Severe erosion of the lingual enamel of all maxillary anterior teeth is evident in Figure 11-47A. Careful inspection of the tooth damage evident in the figure reveals that at least one pulp horn has been exposed on the maxillary left lateral incisor. Erosion caused by sucking on lemons between the buccal mucosa and adjacent posterior teeth is seen in Figure 11-47B.

FiGUr E 11-46. Abrasion (sometimes called toothbrush abrasion) is due in part to incorrect horizontal tooth brushing over areas of cementum that are exposed due to the recession of the gingiva. Flexing of the teeth during heavy occlusal forces and subsequent enamel loss (called abfraction) may contribute to and appear similar to abrasion.

FiGUr E 11-47. Erosion. A. Severe erosion is evident on the lingual surfaces of these maxillary teeth, especially the anterior teeth. This pattern of tooth destruction is typically associated with someone with severe acid refux or repeated regurgitation in bulimic persons. Note the exposure of one pulp chamber on tooth \#10. (Courtesy of Carl Allen, D.D.S., M.S.D.) B. Erosion of facial enamel (at arrows) may be caused by holding pieces of acidic fruit like lemons next to the teeth and sucking on them for an extended period of time, a habit practiced by some persons in Southeast Asia.

F. Un USUAl d En TiTio n S

Careful examination of the casts of the dentition of a 23-year-old man reveals that the mandibular left first molar (\#19) closely resembles a maxillary first molar, complete with
what appears to be an oblique ridge and a cusp of Carabelli (Fig. 11-48). On closer examination, the first and second mandibular premolars and first, second, and third mandibular molars on both sides also appear remarkably similar morphologically to maxillary posterior teeth. T e mandibular

A MOS T UNUS UAL MANDIBULAR DENTITION
 particularly on the left side. Notice that tooth \# 19 appears to have a cusp of Carabe lli and an oblique ridge. B . The teeth as they fit together well into the maximum intercuspal position. C. Both dentitions are seen from the occlusal aspect, maxillary in the top photo and mandibular in the bottom photo. Lower premolar crowns look more like maxillary premolars. However, the six mandibular anterior teeth appear truly mandibular. The mandibular right first molar has three buccal cusps but otherwise seems to be a mixture of both maxillary and mandibular first molars: oblong mesiodistally like a lower, but with a much larger mesiolingual cusp and a Carabe lili-like cusp similar to upper first molars. The mandibular left three molars seem to have only morphologic characteristics of maxillary molars. This man's maxillary dentition seems entire ly normal. It is most interesting to note that the lower left posterior teeth (particularly the premolars) have the morphology of maxillary right-side teeth. Like wise, the lower right teeth appear similar to those found in an upper left quadrant.
FiGUr E 11-48. A most unusual mandibular dentition. A. Aclose-up of the mandibular dentition of a 23-year-old man who has premolars and molars with crown morphology more similar to maxillary premolars and molars,

B

six anterior teeth unquestionably belonged to the mandibular dentition. T e occlusion of the young man's teeth was remarkably good considering the fact that maxillary posterior teeth were occluding against practically identical maxillary teeth on both sides!

Another most unusual dentition of a foreign exchange student from Africa is seen in Figure 11-49. T is maxillary dentition has a total of 24 erupted or partially erupted teeth. T ere appear to be 4 incisors, 1 canine, 6 premolars, and 13 molars (5 of which somewhat resemble mandibular molars).

FiGUr E 11-49. Very unusual permanent maxillary dentition with 24 teeth, including 13 molars. This cast was furnished courtesy of J. Andrew Stevenson (D.T.L) and Dr. Robert Stevenson, Columbus, OH.

r EViEw Questions

Circle the correct answer(s).

1. What condition may result when a forming succedaneous tooth is located next to an abscess on an adjacent primary tooth?
a. Turner hypoplasia
b. Fluorosis
c. Tetracycline staining
d. Dentinogenesis imperfecta
e. Amelogenesis imperfecta
2. An adult has only three maxillary incisor crowns, but one of the crowns is doubled in width and notched. What do you suspect?
a. Fusion
b. Twinning
c. Gemination
d. Concrescence
e. Cementosis
3. Which condition may be caused by habitually sucking on lemons (which are quite acidic)?
a. Attrition
b. Erosion
c. Abrasion
d. Amelogenesis imperfecta
e. Hypoplasia
4. Which three of the following locations are most likely to have supernumerary teeth form?
a. Mandibular premolar area
b. Maxillary premolar area
c. Maxillary incisor area
d. Mandibular incisor area
e. T ird molar area
5. Which one of the following teeth that are normally single rooted are most likely to have a bifurcated root?
a. Maxillary central incisors
b. Maxillary lateral incisors
c. Mandibular canines
d. Mandibular first premolars
e. Mandibular second premolars
6. Which two of the following are most likely to exhibit unusually formed crown morphology?
a. Maxillary central incisors
b. Maxillary lateral incisors
c. Mandibular canines
d. Maxillary third molars
e. Maxillary first molars
7. List and describe as many anomalies as you can that you are likely to see in the maxillary incisor area of the mouth.
8. Search on the computer for images of "tooth anomalies" to see if you can find any other condition not already mentioned in this book.

REFEREn CES

1. Dorland WA. Dorland's pocket medical dictionary. Philadelphia, PA: W.B. Saunders, 1965.
2. Smith RM, Turner JE, Robbins ML. Atlas of oral pathology. St. Louis, MO: C.V. Mosby, 1981.
3. Croll TP, Rains JR, Chen E. Fusion and gemination in one dental arch: report of case. ASDC J Dent Child 1981;48:297.
4. Rowe AHR, Johns RB, eds. A companion to dental studies: dental anatomy and embryology. Vol. 1, Book 2. Boston, MA: Blackwell Scientific Publications, 1981.
5. McDonald TP. An American Board of Orthodontics case report. Am J Orthod 1981;80:437-442.
6. Fuller JL, Denehy GE. Concise dental anatomy and morphology. Chicago, IL: Year Book Publishers, Inc., 1984:264-265.
7. McKibben DR, Brearley LJ. Radiographic determination of the prevalence of selected dental anomalies in children. J Dent Child 1971;28:390-398.
8. Jones AW. Supernumerary mandibular premolars. Report of a case in a patient of mongoloid origins. Br J Oral Surg 1981;19:305-306.
9. Rothberg J, Kopel M. Early versus late removal of mesiodens: a clinical study of 375 children. Compend Contin Educ Pract 1984;5:115-120.
10. Nazif MM, Ruffalo RC, Zullo T. Impacted supernumerary teeth: a survey of fifty cases. JADA 1983;106:201-204.
11. Robinson HB, Miller AS. Colby, Kerr and Robinson's color atlas of oral pathology. Philadelphia, PA: J.B. Lippincott, 1983:38.
12. Primosch RE. Anterior supernumerary teeth-assessment and surgical intervention in children. Pediatr Dent 1981;3:204-215.
13. Ranta R, Ylipaavalniemi P. Developmental course of supernumerary premolars in childhood: report of two cases. ASDC J Dent Child 1981;48:385-388.
14. Rubin MM, Nevins A, Berg M, et al. A comparison of identical twins in relation to three dental anomalies. Multiple supernumerary teeth, juvenile periodontosis, and zero caries incidence. Oral Surg 1981;52:391-394.
15. Zvolanek JW. Maxillary lateral incisor anomalies in identicaltwins. Dent Radiogr Photogr 1981;54:17-18.
16. Hemmig SB. T ird and fourth molar fusion. Oral Surg 1979; 48:572.
17. Good DL, Berson RB. A supernumerary tooth fused to a maxillary permanent central incisor. Pediatr Dent 1980;2: 294-296.
18. Powell RE. Fusion of maxillary lateral incisor and supernumerary tooth. Oral Surg 1981;51(3):331.
19. Myers CL. Treatment of a talon-cusp incisor: report of case. ASDC J Dent Child 1980;47:119-121.
20. Speiser AM, Bikofsky VM. Premolars with double occlusal surfaces. JADA 1981;103:600-601.
21. Goldman HM. Anomalies of teeth (part 1). Compend Contin Educ Pract 1981;2:358-367.
22. Hayward JR. Cuspid gigantism. Oral Surg 1980;49:500-501.
23. Ruprecht A, Singer DL. Macrodontia of the mandibular left first premolar. Oral Surg 1979;48:573.
24. Melfi RC, Alley KE. Permar's oral embryology and microscopic anatomy: a textbook for students in dental hygiene. Philadelphia, PA: Lippincott Williams \& Wilkins, 2000.
25. Hamner JE, Witkop CJ, Metro PS. Taurodontism. Oral Surg 1964;18:409-418.
26. Pindborg JJ. Pathology of the dental hard tissues. Philadelphia, PA: W.B. Saunders, 1970:15-73.
27. Takeda Y. A rare occurrence of a three-rooted mandibular premolar. Ann Dent 1988;44:43-44.
28. Paulson RB, Gottlieb LJ, Sciulli PW, et al. Doublerooted maxillary primary canines. ASDC J Dent Child 1985;52:195-198.
29. Bimstein E, Bystrom E. Birooted bilateral maxillary primary canines. ASDC J Dent Child 1982;49:217-228.
30. Kelly JR. Birooted primary canines. Oral Surg 1978;46:872.
31. Brown CK. Bilateral bifurcation of the maxillary deciduous cuspids. Oral Surg 1975;40:817.
32. Kroll SO. Double rooted maxillary primary canines. Oral Surg 1980;49:379.
33. Bryant RH Jr, Bowers DF. Four birooted primary canines: report of a case. ASDC J Dent Child 1982;49:441-442.
34. Becker A, Smith P, Behar R. T e incidence of anomalous maxillary lateral incisors in relation to palatally-displaced cuspids. Angle Orthod 1981;51:24-29.
35. Schachter H. A treated case of transposed upper canine. Dent Rec 1951;71:105-108.
36. Jackson M, Leeds LD. Upper canine in position of upper central. Br Dent J 1951;90:243.
37. Curran JD, Baker CG. Roentgeno-oddities. Oral Surg 1973;41: 906-907.
38. DeJong TE. Rotatio dentis. Gegenbaurs Morphologisches Jahrbuch 1965;108:67-70.
39. Schulze C. Developmental abnormalities of the teeth and jaws. In: Gorlin RJ, Goldman HM, eds. T oma's oral pathology. 6th ed. St. Louis, MO: C.V. Mosby, 1970:138-140.

WEB SITE o F n o TE

T e Ohio State University College of Dentistry is one of many participating dental treatment centers of the National Foundation for Ectodermal Dysplasia. T e vision of the foundation includes helping individuals and families benefit from early diagnosis and care and for spearheading research that ultimately develops a cure. Go to $<$ nfwed.org $>$ for more information.

12 Forensic Dentistry

Acknowledgments

This chapter was contributed by Daniel E. Jolly, D.D.S., D.A.B.S.C.D., retired Professor of Clinical Dentistry and Director of the General Practice Residency Program at the College of Dentistry and University Medical Center of the Ohio State University and currently in part-time practice as a general dentist in the Columbus, Ohio area. He is a diplomate of the American Board of Special Care Dentistry; Chief Forensic Odontologist for the Franklin County Coroner's Offce in Columbus, Ohio; core team member of the Ohio Dental Association's Forensic and Mass Disaster Team; member of the American Society of Forensic Odontology; and member of the American Academy of Forensic Sciences.

Most illustrations shown in this chapter are from cases where Dr. Jolly was directly involved as part of his duties with the Franklin County Coroner's Offce and other agencies in Ohio. The fnal three fgures are from Dr. Theodore Berg, the author of this chapter in previous editions, and are used with permission.

Topics covered in this chapter include the following:
I. Forensic dentistry def ned
A. Preparation and training
II. Dentistry and human identif cation
B. Initial response
C. Morgue and forensic dental identif cation operations
III. Civil litigation (including human abuse and neglect)
D. Forensic anthropology
E. Mass disaster case studies
IV. Bite marks
V. Mass disasters and human identif cation
VI. Importance of forensic dentistry to practicing dentists

Objectives

This chapter is designed to prepare the reader to perform the following:

- Cite examples of the importance of dentistry in human identif cation and crime investigation.
- Recognize the role of the dentist in identifying and reporting cases of abuse.

T is chapter provides an overview and introduction to forensic dentistry, while illustrating its elemental dependence on dental anatomy. T is textbook is cited in the American

Society of Forensic Odontology Manual as the prime dental anatomy reference on this subject.

sectlon $n \quad$ Forens Ic dent Istry deFIn ed

Forensic dentistry, or forensic odontology, is the area of dentistry that encompasses concepts and practices related to the oral and maxillofacial structures in the context of the legal or judicial system. Forensic odontology is a part of the much larger field of forensic sciences, which includes all the areas of practice and activity used in a judicial setting. T e forensic sciences are accepted by the legal system as well as by the scientific community as the means of separating truth and untruth.

Forensic dentistry as a science is represented in the United States by numerous forensic dentistry teams on local levels, including the Odontology Section of the American Academy of Forensic Sciences (AAFS, which is the largest forensic professional organization in the world with over 5600 member, http://www.aafs.org), the American Board of Forensic Odontology (ABFO), and the American Society of Forensic Odontology (ASFO). Each year, more dentists become involved as law enforcement becomes increasingly aware of dentistry's potential and reliable contribution. T e AAFS recognizes 10 areas of forensic endeavors as noted below:

1. Forensic anthropology is the study of skeletal evidence in a manner similar to the field of archeology. T e forensic anthropologist examines evidence such as bones, teeth, hair, clothing, artifacts, and other aspects of the scene of a legal matter such as the crime of murder. T is person addresses considerations such as time of death, age, sex, race, ethnicity, culture, body size and weight, and cause and manner of death.
2. Forensic pathology and biology is the field that uses autopsy techniques and the analysis of tissues in the investigation of a crime or suspicious death such as homicide, suicide, and accidental death or if the subject is unidentified. T is duty is legally the responsibility of a coroner or medical examiner with specialized training in pathology and forensic sciences. A forensic pathologist attempts to determine the cause and manner of death
(e.g., a gunshot wound to the chest resulting in laceration of the left ventricle, which resulted in cardiac arrest as a result of a homicide).
3. Criminalistics is the forensic science that analyzes fingerprints, ballistics, tool marks (as from a knife, saw, or hammer), and other physical evidence from the investigated scene to reconstruct the crime (or other event) and to confirm or eliminate the connection between suspects and victims.
4. Toxicology uses chemistry, photography, and biology to identify harmful substances in the victim such as medications, poisons, and illegal drugs.
5. Forensic psychiatry and behavioral sciences examine and provide legal opinions regarding such matters as sanity, human motivation, and personality profiles that are relevant to the investigation of an event such as a crime.
6. Forensic engineering investigates events such as airplane and other vehicular accidents, as well as structural collapse as part of the legal process.
7. Questioned documents is a field where technicians study and provide legal testimony about printing, handwriting, typewriting, ink, paper, and other features of a document.
8. General forensics involves other specialists who are qualified to analyze specific evidence such as designers, photographers, and technical experts. T ey might report, for example, in a case of product liability associated with death or injury.
9. Forensic jurisprudence involves criminal and civil lawyers using the earlier described specialists, reports, and testimony to pursue their case in our system of justice.
10. Forensic odontology is divided into five major areas: (a) human dental identification, (b) mass disaster human dental identification, (c) bite mark analysis, (d) human abuse, and (e) legal issues such as the standard-of-care considerations in personal injury cases.

sectIon II dentIstry And HumAn Ident IFIc At Io n

Teeth are the most durable parts of the body, and dentitions are as individual as fingerprints. T erefore, individual tooth morphology as well as the restorations that exist in teeth are useful for human identification. Situations involving decomposition and skeletal remains may yield no recognizable facial features or fingerprints. Postmortem (after death) teeth, jaws, prostheses, and appliances can yield a positive identification if accurate antemortem (before death) records are available. Even DNA, a popular and valuable identification tool, relies on accurate and complete antemortem (before death) records. T erefore, accurate, comprehensive, and current radiographs and dental charting are critical to the successful confirmation or elimination of an individual as a victim.

A real test of the value of dental identification is found in the case of John Wayne Gacy of Chicago, convicted of 33 counts of murder. Only five of the human remains found still had soft tissue, making the identification process a challenge. However, 20 of the 33 known victims were identified through their dental records. In another case, a landslide in the State of Washington in 2014 resulted in mass fatalities where 27 of the 43 victims were positively identified using dental records. Several cases were reported at AAFS in 2015 where the morphology of a single tooth was critical to victim identification. Identification of a severe burn victim was made based on the visual similarity of the root canal filling and the dilaceration of the root on tooth \#11. T e mangled victim of a train collision was identified

Flgure 12-1. This is a DNA collection kit as used by the FBI to obtain swabbings of bite marks or other human tissues for comparison to antemortem records.
based on the unique root and pulp chamber morphology of one molar. Yet another identity was confirmed by superimposing antemortem and postmortem radiographs of tooth \#32.

One well-publicized case in 2006 involved mistaken identity of two young female college students who were involved in a motor vehicle accident in Indiana. One woman was deceased at the scene, and the other was unable to communicate due to head trauma. Based on physical evidence found near their bodies, the deceased victim was erroneously identified. One family held funeral services for their presumed deceased child while the other family held bedside vigil for their presumed surviving daughter. T e error was not discovered for over 5 weeks when the surviving woman recovered enough to confirm her own identity. T is situation might have been avoided had a dental identification been utilized for the deceased victim instead of reliance on visual and circumstantial evidence.

Accurate, comprehensive, and current antemortem radiographs and dental charting are critical to the successful confirmation or elimination of an individual as a victim. Several presentations at the Annual Session of the American Academy of Forensic Sciences Odontology Section in 2015 reported on the importance of accurate charting of existing teeth and res-
torations. As one example, all dental professionals must determine whether the tooth just distal to the second premolar is a first molar or a second molar that has drifted or has been orthodontically moved into that space. As stated earlier in this book, this decision must be based on careful examination of the anatomy of the crown (and the root on radiographs) and patient knowledge of extractions or missing teeth.

Even with the lack of antemortem records, evaluation of the dentition is a worthwhile aid for investigators to provide information regarding the age, sex, and estimated socioeconomic (sometimes called race or cultural heritage) grouping. T is information is derived from tooth and dental arch morphology and anatomy, restorative materials, attrition patterns, periodontal status, eruption patterns, skeletal features, and serology (the study of body fluids like blood).

DNA can be recovered from periodontal and pulpal tissues, as well as the hard tissues, of the teeth. Although DNA analysis has become an important tool in the forensic science armamentaria, its limitations include high costs and lengthy processing times. And like all methods, the use of DNA requires antemortem information. A DNA collection kit is shown in Figure 12-1. Forensic dentistry techniques retain a valuable place in the scope of forensic sciences because of the accuracy, low cost, generally available antemortem records, and speed with which a conclusion can be reached.

Forensic dental techniques most commonly include collection and preservation of dental and jaw remains, dental radiographs, photographs, impressions and casts, antemortem and postmortem charting, and the comparison of these records. Points of comparison (specific features) include (a) the number, class, and type of teeth; (b) tooth rotation, spacing, and malposition; (c) anomalies and general morphology (Fig. 12-2); (d) restorations (Fig. 12-3) and prostheses or appliances (Fig. 12-4); (e) caries and other pathology; (f) endodontic treatment; (g) implants and surgical repairs; (h) bony trabecular patterns; and (i) occlusion, erosion, and attrition. T e literature and scientific presentations at AAFS and ASFO meetings also emphasize the importance of panoramic radiographs (panorex and cone-beam tomography) for comparing sinus morphology when verifying human identity.

Flgure 12-2. Comparison of antemortem and postmortem photographs looking for similarities in general morphology. A. Antemortem dental photograph showing gingival clefting. B. Postmortem photograph showing similar clefting found in the victim at autopsy. Similar dental arch form is observed as is the overall morphology of the dental coronal structure.

FIgure 12-3. Comparison of antemortem and postmortem radiographs looking for similarities of restorations and general morphology. A. Antemortem radiographs of the same victim shown in Figure 12-2 demonstrate multiple dental restorations, unique root and sinus morphology, pulp chamber shape, interdental bone height, and trabecular patterns. B. Po $\boldsymbol{s t m o r t e m}$ radiographs show consistency in some restorations when compared to the antemortem radiographs, but note that several teeth have had restorations placed after the antemortem radiographs were obtained. For example, an MOA was placed on tooth \#13, a crown was placed on tooth \#19, an MOA on tooth \#20 was replaced with an MODA, and third molars numbers 16 and 17 were extracted. Also noted are identical matching restorations that had not been replaced as well as the unique root and sinus morphology, pulp chamber shape, interdental bone height, and trabecular patterns. This was suffcient to prove positive identifcation of this individual.

Flgure 12-4. Comparison of antemortem radiographs with postmortem fndings (photographs). A. These radiographs show antemortem (top) and postmortem (bottom) radiographs of a homicide victim with orthodontic appliances in place, which are identical to actual postmortem fndings (seen in B and C) and served to confrm the identity. Note also the restoration of tooth \# 10, a peg lateral that matches as well. B. This postmortem photograph shows the orthodontic retainer in the mandibular arch as evident in the antemortem radiographs. C. This postmortem photograph shows the orthodontic retainer in the maxillary arch as evident in the antemortem radiographs.

A forensic dentist must carefully organize all evidence so it is analyzed in a well-organized, thorough, systematic manner using consistent and standardized methods that are accurate, easily understood by other professionals, and defensible in a legal action. The examiner should
record each feature of the postmortem teeth, jaws, and radiographs on a standardized dental chart (Fig. 12-5B). The same is done for antemortem records, radiographs, casts, and pictures on a separate, but identical, chart (Fig. 12-5A). Antemortem records vary widely in quality

Height: ___ Weight:___
Team Member: Daniel E. Jolly, DDS

- Confirmed by: William Baldwin, DDS

Type, Date, and Number of X-Rays \qquad
Panorex and 2 bitewings 11/10/04

A:
B: \qquad
ID As: \qquad

Hair: ___ Blood Type: ___

				Description	Code
1	18				OS
2	17				OS
3	16				MODFS
4	15	A	55		V
5	14	B	54	ORTHO EXT	X
6	13	C	53		V
7	12	D	52		V
8	11	E	51		V
9	21	F	61		V
10	22	G	62		V
11	23	H	63		v
12	24	1	64	ORTHO EXT	X
13	25	J	65		V
14	26				OFS
15	27				OFS
16	28				OS
17	38				05
18	37				OS
19	36				MOS
20	35	K	75		V
21	34	L	74	ORTHO EXT	X
22	33	M	73		V
23	32	N	72		V
24	31	0	71		V
25	41	P	81		V
26	42	Q	82		V
27	43	R	83		V
28	44	S	84	ORTHO EXT	X
29	45	T	85		OS
30	46				OS
31	47				05
32	48			? OFS	OS

Comments:

Copyright © 2001 James McGivney, DMD
A. An antemortem dental chart using the WinID format and coding.

Postmortem Dental Record
Date: _3/15/05 \qquad Sex: \qquad
\qquad Race: C \qquad
Eye:
\qquad
Hair: \qquad Blood Type \qquad

Code	Description				
OS				18	$\mathbf{1}$
OS				17	$\mathbf{2}$
MODFS				16	$\mathbf{3}$
V		55	A	15	$\mathbf{4}$
X		54	B	14	$\mathbf{5}$
V		53	C	13	$\mathbf{6}$
V		52	D	12	$\mathbf{7}$
V		51	E	11	$\mathbf{8}$
V		61	F	21	$\mathbf{9}$
V		62	G	22	$\mathbf{1 0}$
V		63	H	23	$\mathbf{1 1}$
X		64	I	24	$\mathbf{1 2}$
V		65	J	25	$\mathbf{1 3}$
OFLS				26	$\mathbf{1 4}$
OFS				27	$\mathbf{1 5}$
OS				28	$\mathbf{1 6}$
OS				38	$\mathbf{1 7}$
OFS				37	$\mathbf{1 8}$
MOFS				36	$\mathbf{1 9}$
V		75	K	35	$\mathbf{2 0}$
X		74	L	34	$\mathbf{2 1}$
DE		73	M	33	$\mathbf{2 2}$
V		72	N	32	$\mathbf{2 3}$
V		71	O	31	$\mathbf{2 4}$
V		81	P	41	$\mathbf{2 5}$
V		82	Q	42	$\mathbf{2 6}$
V		83	R	43	$\mathbf{2 7}$
X		84	S	44	$\mathbf{2 8}$
OS		85	T	45	$\mathbf{2 9}$
OFS				46	$\mathbf{3 0}$
OFS				47	$\mathbf{3 1}$
OFS				48	$\mathbf{3 2}$
O					

Comments: \qquad A:
$\mathrm{A}:$
$\mathrm{B}:$
$\mathrm{C}:$ \qquad
Body ID As: \qquad

B
Flgure 12-5. (Continued) B. Apostmortem dental chart using the WinID format and coding. Notice how the two forms can be placed side by side for easy comparison.
and completeness. Some dentists mount radiographs as viewed from the front of the patient (with the film bump facing toward the viewer), which is the standard in forensic dentistry, while others still prefer mounting them as viewed from the lingual (film bump facing away from the
viewer). Charting tooth identification in dental offices (the antemortem record) is not always done using the universal system. (See Chapter 1 for other tooth identification systems such as Palmer and the FDI or International systems.)

Civil litigation (violations of the standard of care or malpractice) and human abuse and/or neglect are two distinct areas of endeavor for the forensic dentist. Due to the focus of this text (the relevance of dental anatomy), only brief comments will be made about these topics.

In civil litigation cases, a person might claim that improper dental care was rendered (malpractice) as illustrated in the radiographs in Figure 12-6; damage was sustained at the hands of another person (called criminal assault and battery); damage was sustained due to food contaminated with a foreign body (glass, shell, etc.) (product or corporate liability); or a dentist failed to provide specific treatment that had been billed to the patient and/or thirdparty payer (fraud). Investigators of these situations often require examinations, comparisons, and testimony by expert witnesses including the forensic dentist. T is may involve examining a person and studying records and radiographs from prior dentists. All of the techniques and careful comparisons described previously are useful.

In the field of jurisprudence, the accuracy of testimony and evidence is considered critical by the courts. T e 1923 federal case of Frye v. United States set the precedent that for a technique to be admissible in testimony as validating evidence, there must be general acceptance of the technique by the scientific community. T is was most useful when accepting dental testimony. T is is known as the Frye rule. However, the U.S. Supreme Court case of Daubert v. Merrell Dow Pharmaceuticals (1993) mandated that scientific testimony be derived by the scientific method rather than by generally held opinion or even widely accepted professional knowledge and practice. T is ruling has led to challenges for bite mark evidence but so far has not led to challenges to dental identification or dental abuse and neglect cases.

FIg ur e 12-6. These bitewing radiographs were used in a standard-of-care case. One can see marginal discrepancies between tooth contours and restoration contours (especially on the mesial crown margin on tooth \#3) and poor endodontic procedures that are the basis for the malpractice claim.

Flg ure 12-7. A. This is a panorex (panoramic) radiograph of a 14 -year-old girl showing rampant caries that progressed over many years resulting in a treatment recommendation to extract all teeth. This evidence of parental neglect was reason for the dentist to contact legal authorities for suspected child abuse/neglect. B. This is a photograph of this same 14 -year-old girl showing rampant dental caries.

sectIon Iv b It e mArks

Bite marks are in the category described as pattern injuries. Pattern injuries can result from teeth, belt buckles, and other blunt objects such as a hammer or pipe. Homicides and assault and battery cases have been solved by bite mark identification, analysis, and comparison. Many bites are severe and leave telltale marks long after an assault. One of several techniques of comparison and analysis is shown here, comparing bite mark tracings to the tooth imprint pattern tracings of the suspect or defendant. Dental casts and photographs from the suspect or suspects are made after obtaining a court-ordered search warrant (Fig. 12-8A and B). Infrared photography can be used to identify subcutaneous evidence of damage from a bite mark that is not visible on the surface of the skin. Ultraviolet photography can reveal a bite mark in an area with extraneous other marks such as tattoos and skin damage.

T e job of a forensic dentist is to first establish the mark as a human bite mark, and not an animal bite, a self-bite of the victim, or marks from foreign objects that might be mistaken for a bite mark. Next, if possible, the specific teeth involved in the mark should be determined. In all cases of bite mark analysis, the forensic dentist must have a thorough knowledge and understanding of normal tooth morphology, occlusion, dental arch characteristics, and the physiology of jaw function in order to identify any aberrations. Aberrations include teeth that are missing, not in occlusion, chipped, extruded (supererupted), hypoerupted or ankylosed, rotated (torsiversion), or tilted, all of which would not leave the same mark on a victim as teeth that are in ideal alignment. Such an aberration from normal (or differences from one suspect to another) could benefit the forensic dentist in analysis and identification. T e anomalies described in Chapter 11 of this book should be reason enough to remain open-minded and diligent when considering bite marks!

Although these findings can be useful in solving some child abuse, assault, or homicide cases, bite marks cannot generally be used to a level of absolute certainty in suspect identification. A potential suspect is either "ruled out or eliminated" as the perpetrator of the crime or "included" as
a suspect (see Fig. 12-8C and D). Additional evidence is usually required to obtain a firm conviction. However, in this author's experience, suspects often admit their guilt prior to trial when faced with a forensic dentist who would testify in court regarding the bite mark.

Law enforcement agencies have becoming increasingly aware of potential identifications from the dental profession. T e first documented bite mark case was in Texas in 1952 (Doyle v. State, an appeal of a conviction) where James A. Doyle left indentations in a block of cheese during a burglary. Another landmark case was in Texas in 1974 (Patterson v. State, an appeal of a conviction), which was a bite mark on human skin. In a 1975 landmark bite mark case (People [of California] v. Marx), Dr. G. Vale, a forensic dentist, recognized bite marks on the autopsy photograph of a nose. After alerting investigators, the body was exhumed and studied with the resultant identification and conviction of the murderer based on the victim's nose bite mark and the suspect's dentition. An appeal was made to the Supreme Court on the grounds that the dental techniques were unique, untested, and not scientific. T e appeal was denied, making this the first U.S. bite mark case to withstand the appellate process. T us, the reliability of this method of identification was legally verified. Since the outcome of the decision in this landmark case, it has been cited many times in most state, federal, and military courts. T e notorious mass murderer Ted Bundy (executed January 1989) was positively identified as the perpetrator by his bite marks found on the buttocks of one of his young female victims.

An important development in forensic sciences was the report of the National Academy of Sciences in 2009 titled Strengthening Forensic Science in the United States, A Path Forward. T is was an exhaustive report on all the forensic sciences and focused on the improvement of the entire field. T is report is most applicable to forensic dentistry in the area of bite marks. T e reported noted that (a) the uniqueness of the human dentition has not been scientifically established, (b) the ability of the teeth to transfer a truly unique pattern to skin

Flgure 12-8. Bite mark evidence. A. A photograph of the dentition of the perpetrator of child abuse of a 2 -year-old girl resulting in her death. B. Models of the suspect show a distinct dental pattern that matches well to the injuries depicted in C. C. This photograph shows the bite marks on the victim depicting the relationship of the maxillary teeth as shown in (A) and (B). D. This photograph shows the bite marks of the mandibular teeth.
has not been scientifically established, (c) the analysis of the distortion of bite mark patterns has not been demonstrated, (d) the effect of distortion on different comparison techniques is not fully understood and has not been quantified, and (e) a standard for the type, quality, and number of individual characteristics required to make a bite mark valid for evidentiary value has not been scientifically established. As a result, the field of forensic dentistry is now working toward establishing increased scientific validity for human bite marks so that
the evidentiary value is adequate for jurisprudence purposes. However, in the mean time, bite marks continue to remain a serious and important tool in criminal investigations.

Today, it is also possible to obtain the DNA of the biter from the bite marks of a victim. When this DNA can be collected and analyzed using standard accepted methods (e.g., polymerase chain reaction of mitochondrial or nuclear DNA), it is possible to quantify the numerical probability of the association between the biter and the bite mark injury.

sectIon v mAss d Is Asters And HumAn Ident IFIc At Io n

Both natural and man-made mass disasters of various forms are relatively common occurrences in our world. Natural disasters include the August and September 2005 hurricanes (Katrina, Rita, and Wilma) affecting the Gulf Coast of the United States, the December 2004 tsunami in Indonesia and the Indian Ocean, and other hurricanes, earthquakes, floods, and tornados. Man-made mass disasters include the various forms of terrorist acts, armed conflicts, building collapses, large freeway motor vehicle accidents, industrial accidents, airplane crashes, and train wrecks. If we are old enough, we vividly recall the mass disaster that occurred on September 11, 2001, at the World Trade Center in New York City as well as at the Pentagon and in Pennsylvania. However, there are many natural disasters that cause mass fatalities.

T e role of the forensic dentist in mass disasters is primarily to identify human remains. Knowledge of dental anatomy is crucial to this role. Human fatalities in mass disasters can number from a relative handful of individuals to thousands or hundreds of thousands. Management of small disasters can be relatively easily managed while larger disasters are more complex. T e management of any-size disaster must include considerations for harmful chemicals or other biologic agents (such as in bioterrorism). In order to coordinate and function well in these situations from the initial occurrence of the disaster, the forensic dentist and the dental team must be well trained, led by experienced individuals who are completely integrated into the operation.

A. Pr ePAr At Io n An d tr AIn In g

A forensic dental team must be trained at the individual level and as a team. T e Southwest Symposium on Forensic Dentistry is offered biannually at the University of Texas Health Sciences Center at San Antonio (http://www.uthscsa. edu). T e University of Detroit Mercy School of Dentistry in association with the Wayne County Medical Examiner's Of ce (Michigan) offer annually a course in forensic dentistry including a daylong mass disaster exercise. Additionally, the ASFO (http://www.asfo.org) offers annual training, scientific programs, and information on other courses nationally and internationally. T e ASFO (www.asfo.org) and the AAFS (www.aafs.org) offer course listings of available training programs in forensic dentistry. All forensic dentists and teams who were initially called to New York City for the World Trade Center attack on November 9, 2001, were required to be Armed Forces Institute of Pathology (AFIP) trained and/ or board certified by the ABFO.

b. In It IAl resPonse

In the event of a mass disaster, local law enforcement agencies and emergency medical teams respond first. Legal authority and jurisdiction is by the legal entity such as city or
county in which the disaster occurs. Rescue of injured individuals is the first priority for emergency medical services (EMS) personnel. Site security is the first priority for the law enforcement agency. T e initial response may include the mobilization of federal and statewide assistance. Responding agencies may include the National Transportation Safety Board (NTSB), the Federal Emergency Management Agency (FEMA), the Disaster Mortuary Operational Response Team (DMORT), the FBI, the National Disaster Medical System (NDMS), the Department of Homeland Security, and related state agencies.

It is critical that a dentist with excellent knowledge of dental anatomy be available at the disaster site during the entire search and recovery operation in order to identify dental components of human remains that may not be recognizable by a non-dental-trained person. A general recommendation is to have a forensic dentist accompany each body recovery team to ascertain that all relevant dental information necessary for identification is retained in a useful and trackable manner. All body parts are initially flagged on site and in situ and then photographed in place prior to removal. Extreme burn cases may require stabilization of the dentition with a spray lacquer such as polyurethane or even hair spray. T is will stabilize the fragile dental evidence from damage during transport.

All body parts are given separate identification numbers, which means that several parts of a single individual's dentition may possess different and unique identifiers that will ultimately be connected to a single identified body. A single tooth found separated from a portion of a jaw or body could have a different number than the jaw part from which it is later associated. In New York City after the World Trade Center disaster, as many as 200 individually identified and numbered body parts were later associated with a single victim. A tracking method uses a site grid to locate the original location of each body and part that can be useful when determining the cause and method of progression of the disaster event.

c. morgue And ForensIc dentAl Id ent IFIc At Io n o Per At Io n s

For mass disasters, the dental section of the morgue operation is divided into three spaces: a space for antemortem examination, one for postmortem examination, and one where comparisons take place. Each of the three major spaces has a team of two forensic dentists, at least one of whom is experienced. A team coordination leader, often with secretarial support, generally functions in a supervisory capacity as a shift commander. Figure 12-9 depicts the dental radiographs and actual dissected jaws with dentition used to identify an actual aircraft incident victim for which a dental identification was required.

A critical component for dental identification procedures is the computer-based WinID program developed by Dr. James McGivney. An example of the document used for gathering information for this program is seen in Figure 12-9D. It is a database program that utilizes specific codes of antemortem and postmortem dental findings and identifies records that have a possible identification match. T e forensic dental team then examines hardcopy records for final verification. T is program can be downloaded at no cost from http://www.winid.com.

T e personnel in charge of antemortem records obtain antemortem dental records from dentists of likely victims. T ese records must include copies of all dental chart information and notations as well as original dental radiographs that are identified by name, date, and position
(left, right, etc.). T e antemortem team verifies and inputs this information into the WinID program to create a digital database.

T edental radiographs alone are not adequate to complete antemortem charting. One must also consider the time span between antemortem information and the presumed time of death. Additional dentists may have provided dental care, and therefore, additional antemortem records may exist. T e dental chart must be reviewed in detail to determine what additional restorations or other treatments (such as extractions) were provided subsequent to the date of the radiographs. For example, even though there is no antemortem radiographic evidence of a new mesio-occlusal amalgam, the postmortem charting can still be considered consistent with the antemortem radiographs if the radiographs were

Flg ure 12-9. A. Ante mortem f Ims from the victim of an aircraft crash and severe burning. Original flms must always be provided to the forensic dentist so that appropriate anatomic orientation can be made. Bitewings are the most helpful images for use in comparison of restoration morphology and pulpal conditions such as recession, pulp stones, etc. The antemortem charting of this individual's dentition can be seen in Figure 12-5A. B. For this victim, the jaws had to be resected to permit appropriate detailed clinical and radiographic examination. When properly dissected and cleaned, all tooth surfaces can be directly visualized, examined, photographed, and radiographed. (The forensic dentist must have appropriate permission from the medical examiner or coroner to remove body parts such as the jaws. Only when the victim is not viewable in a funeral home open casket setting, can this procedure be permitted.) C. The postmortem dental radiographs are shown here and can be easily compared to the antemortem records found in (A). Close attention must be paid to tooth and root morphology, sinuses, trabecular patterns, bone levels, and restorations.

Flgure 12-9. (Continued) D. Antemortem and postmortem information is transferred from the paper charts shown in Figure 12-5A and B to the WinID database. The database can then be used to search all unidentifed victims for possible matches to antemortem records. The computer will provide a report as shown here in graphic fashion. The forensic dentist is still required to visually compare the dental radiographs and other examination information to ascertain identity, which was "positive" in this case.
obtained prior to the placement of this more recent restoration and if all other findings match. A paper record is filed in the antemortem file area. (See Fig. 12-3 for a comparison of antemortem and postmortem radiographs to illustrate the changes that can occur between the antemortem and postmortem radiographs.)

Dental records could be provided in a language other than English, so translation may be necessary. When reviewing the antemortem chart, it is important, as noted earlier, to convert any numbering systems used by the dentist of record (Palmer, FDI, etc.) to the Universal Numbering System common in the United States (numbered 1 to 32 for permanent teeth and A to T for primary teeth). One should also be attentive to esthetic treatments (composites, veneers, etc.) that could be missed on postmortem examination of remains that are covered with debris or damaged by fire and trauma. Finally, in reviewing dental records, the quality of the handwriting and/or completeness of the record may pose significant barriers to determining accurate antemortem information.

To reduce the chance of errors, a thorough postmortem examination is performed by a team of two forensic dentists who verify each other. In severe burn cases, resection of the jaws may be required to accurately observe and take radiographs of the dental conditions (Fig. 12-9B). T e victim's condition is recorded photographically, radiographically, and in written notes as received in the morgue area. T e process of postmortem dental examination, both clinical and radiographic, must consider numerous factors. On clinical examination, the forensic personnel
must prepare the specimens by careful cleaning of debris, with care taken not to destroy fragile tooth fragments or the relation of teeth and tooth fragments to the rest of the dental arch. T is is most critical in the burned victim. As noted earlier, the preservation of fragile dentition can be aided with spray lacquer or hair spray. Failure to do so can cause enamel to separate from the dentin, restoration loss, and/or destruction of porcelain restorations. T e use of disclosing solution or transillumination can aid in the identification of composite restorations or other esthetic restorations.

T e postmortem examination must also take into account the following: (a) identification of existing and missing teeth; (b) developmental and eruption stage; (c) estimated dental age; (d) occlusion and alignment of teeth; (e) structure of tooth crown (basic dental anatomy, anthropologic features, restorations, wear patterns, appliances, etc.); (f) root structure (such as apical development, dilacerations, root numbers, and endodontic therapy); (g) pulpal anatomy (pulp stones, recession of pulp chamber); (h) pathologic changes; (i) retained primary and supernumerary teeth, impactions, and retained root tips; (j) anatomy of sinuses; (k) bony architecture and trabeculation as seen on a radiograph; (l) bony pathology (exostoses, cysts, tumors, periodontal condition, periapical pathology, fractures, and foreign objects); (m) bone plates, screws, and wires, etc.; and (n) evidence of systemic diseases and conditions as well as congenital abnormalities.

At this time, the postmortem record can be completed according to the appropriate coding as shown on the forms.

Coding used in the WinID program is slightly different from that used in the average dental practice. Failure to use the appropriate codes will prevent the comparison feature of WinID from functioning properly. As a result, a match may not be found and a victim may not be properly identified.

T e final step is comparison of the antemortem and postmortem records. In cases of individual identifications or the review of a few charts, this may be done manually. However, in large disasters, the use of a comparison program such as WinID is critical. In the management of a disaster on the scale of the World Trade Center disaster in 2001 involving the analysis of several thousand antemortem records and over 1000 postmortem dental examination records, WinID and computerized assistance are mandatory.

In the comparison process, there are three outcomes possible. Ideally, a positive identification is obtained. T e other possible outcomes are either "consistent with" or "not a match or unidentified." If any of the following conditions exist in the antemortem record but not in the postmortem record, there is an immediate nonmatch: missing teeth, restored tooth surfaces, unusual root morphology, or chronic pathology. However, it is possible for teeth to be removed, restored, or even orthodontically moved between the date of antemortem information and time of death (recall Fig. 12-3A compared to B). T ese postmortem findings would not rule out a match between a person and an unknown victim. Pathology present in antemortem information could have been treated, or pathology present in the postmortem condition may not have existed in antemortem information. All of these situations must be readily and reliably explained.

Final "sign-off" of the comparison is legally the responsibility of a licensed dentist with appropriate forensic odontology credentials.

d. For ens Ic An t Hr o Pology

Another component of forensic identification may involve determining the age, race (cultural heritage), and sex of the victim.

Using teeth to estimate the age of an unknown victim can be a helpful piece of information in forensic dentistry of missing persons. Also, the U.S. Immigration and Naturalization Service uses age estimation to help confirm if an individual is a minor (under 18 years old) or an adult, which makes a difference in legal decisions. One way to estimate the age is by using standard charts of normal eruption patterns (as included in Chapter 6), but at this time, eruption patterns are only useful for assigning broad developmental milestones for persons with mixed dentition or incompletely formed adult teeth prior to age 21 . For example, a young child with only primary dentition is normally up to age 5 or 6 , an older child with mixed dentition is age 6 to 12 , an adolescent with only 28 teeth is age 12 to 18 (or 21), and an adult with third molars is normally age 18 to 21 and over. Once all primary teeth are exfoliated and third molars are
fully developed, whether impacted or erupted, the ability to gauge age by dental development is no longer reliable.

One must understand dental anatomy, including growth and development, but dental development as a general guideline for aging cannot be considered a conclusive finding. When considering the amount of root development and eruption, be aware that differences in nutrition and ethnicity can affect the speed of dental development and eruption, and the expected pattern of eruption may occur in one dental arch but not the other. For example, in a homicide case, a Caucasian female had an erupted tooth \#16, which suggested a developmental age of over 18 years, but also an impacted tooth \#17 with minimal root formation, which suggested a developmental age of at least 15 years (Fig. 12-10). It turned out that the victim was actually 20 years old. Other factors that increase as teeth age are wear patterns and pulp chamber changes such as pulp stones and pulpal recession. However, this author worked with a forensic case where dental wear and pulpal recession appeared to indicate a person of 35 to 50 years of age when in reality, the victim was in their early 20s.

Researchers are currently evaluating other laboratory factors such as cementum deposition for confirming age. T e AAFS, ABFO, and ASFO are currently focusing on dental development studies and training activities to better estimate age based on the teeth.

Other anthropologic aspects of the dentition can provide indicators of racial or cultural backgrounds. Shovel-shaped incisors may indicate a person of Asian or Mongolian background. Other indicators of this ancestry include prominent zygomatic processes, moderate prognathism, rotation of the incisors, buccal pitting, an elliptical dental arch form, a straight mandibular border, and a wide and vertical ascending ramus. T e presence of a cusp of Carabelli is most often an indicator of Caucasian ancestry. Other traits of Caucasian ancestry include a parabolic dental arch form, bilobate (twolobed) and/or prominent chin, slanted and pinched vertical ramus, canine fossae, retreating zygomatic bones, and lack of prognathic mandible. T e African American population may show vertical zygomatic bones, a noticeably prognathic mandible, molar crenelations (scalloped or notched), hyperbolic dental arch form, blunt and vertical chin, and a pinched and slanting ascending ramus. However, one must be cautious when making an ancestral determination due to the increasing number of mixed racial and ethnic backgrounds that can blur these findings.

Anthropologic determinants also include overall skull characteristics for ethnic as well as sexual determination. T e cranial sutures will ossify and obliterate as a person ages and can be used for age determination.

e. mAss dIs Aster c Ase studIes

Several disasters highlight the value of a forensic dental team in the accurate identification of bodies. On the July 17, 1996, off East Moriches, New York, TWA flight 800 (a Boeing 747 aircraft) bound for Paris, France, exploded with

Flgure 12-10. Dentalaging can be variable as shown in this same homicide victim case depicted in Figure 12-4. The development of the root of tooth \#17 appears to be of a person around 15 years of age as shown in dental growth and development charts elsewhere in this textbook. However, tooth \#16 appears to be of an individual at least 18 years of age. The actual victim's age was 20 years. Although dental growth, eruption patterns, tooth apex development, and closure patterns are well documented, the reality of human variations can still be problematic in accurately assessing an individual's age.

230 passengers aboard. Within the first 12 hours, a team of 30 dentists began the painstaking work of identifying the recovered bodies, which were devoid of clothing. Two and a half weeks later, 208 of the 210 recovered bodies and body parts had been positively identified. Ninety-five bodies were identified by dental records alone and another 60 by dental records along with medical records (radiographs, magnetic resonance images, etc.), medical anomalies, and fingerprints.

For the first time ever, all relatives were screened for DNA samples to compare with the more than 400 recovered body parts, enabling the return of each to the families for an appropriate resting place. Nuclear DNA samples were extracted from both bone and dental pulps (which was all that remained after the first week). Mitochondrial DNA was also extracted from ground tooth structure, but it is only effective in matching maternal family connections. One victim was identified by examining DNA on toothbrushes in his home (Columbus Dispatch, Columbus, Ohio, April 1, 1997) since, during toothbrushing, microscopic bits of tissue from the gums and mucosa are scrubbed off and collect on the brush bristles. In all, seven people were identified by DNA alone because no other method was available.

One month later, Norwegian researchers were able to identify 139 of 141 people who died in a plane crash in Spitsbergen, Norway, in August 1996 (Journal of Nature

Flgure 12-11. The dental stone cast of an upper denture (A) was obtained in evidence collection for investigation of an airliner crash. A denture fragment (B) recovered from the crash site, with teeth numbers 2,3 , and 4 present, matches the antemortem cast. The impact broke off a distal piece of tooth \#2. Unique horizontal grooves in the buccal resin of the denture precisely match those seen in the antemortem cast. (This photograph was provided by Dr. Theodore Berg.)

Genetics, April 1997). T ey proved that 257 recovered body parts belonged to 141 people. T ey collected DNA samples from close relatives. When relatives were not available, investigators collected DNA from hairbrushes, dirty laundry, and toothbrushes in the victims' homes.

On September 11, 2001, both towers of the World Trade Center in New York City were destroyed by terrorist hijacked aircraft, and 2726 people were killed in the disaster, more than those who died at the attack of Pearl Harbor by the Japanese Navy in 1941. T e dental identification team consisted of over 200 dental personnel working for more than 1 year to identify bodies and body parts by dental records. Approximately 50% of all known victims (<1500) were identified, about half of those by dental records and half by DNA means. On November 12, 2001, American Airlines flight 587 crashed in Queens on Long Island due to mechanical failures and air turbulence. All 265 victims were processed for dental identification through the same facility serving the victims of the World Trade Center disaster. T e identification process was completed in approximately 1 month and attention returned to World Trade Center victims by the Dental Identification Unit of the Of ce of the Chief Medical Examiner of New York City.

Flgure 12-12. Although one or two teeth might seem scant evidence for identif cation, they should be thoroughly examined and radiographed. The labial laminate bonded veneer (arrow) made this specimen especially unique since this was in the early period of such technique. Also useful can be crown, root, and pulp shape; tooth positions; other restorations; pin and base buildups; endodontic therapy; posts; and bone trabecular patterns. (This photograph was provided by Dr. Theodore Berg.)

On December 26, 2004, the tsunami struck many communities around the Indian Ocean, causing an estimated death toll in excess of 212,000 people. T e challenges for dental identification in this situation included the loss of dental records from destroyed dental of ces and the socioeconomic and cultural situation that precluded many people from visiting a dentist and having antemortem information available for comparison.

On August 29, 2005, Hurricane Katrina, which had slightly weakened from a Category 5 to Category 4 storm, struck the New Orleans, Louisiana area of the Gulf Coast of the United States. At least 1386 people lost their lives. T e primary challenge for the dental identification teams was obtaining antemortem records. Many dental of ces had been destroyed in the hurricane, and records were either lost entirely or too damaged by water to be usable. Only a minority of victims has been identified by any of the available techniques.

Figures 12-11 through 12-13 provide three additional examples of dental evidence that were useful for identifying the victim of a mass disaster. Figure 12-11 shows a denture, Figure 12-12 shows a two-tooth jaw fragment with a unique restoration, and Figure 12-13 shows a radiograph of a uniquely impacted tooth.

FIg ure 12-13. Even an edentulous jaw might provide a big clue to identif cation with some unique feature such as the dentigerous cyst shown in the maxillary canine region. Each case challenges the investigator to carefully consider all possibilities and to make no premature assumptions. (This photograph was provided by Dr. Theodore Berg.)

Forensic dentistry is a large area of special interest. T is short chapter could only provide a brief overview of the importance of dental anatomy as a foundation for the effective practice of the specialty. All dental professionals must maintain accurate and comprehensive dental records for legal, standard-of-care, and forensic purposes. T is includes written records, radiographs, and models that accurately describe or reproduce the oral anatomic and anthropologic forms in detail. T e weakest link in the dental identification process (subsequent to locating the antemortem dentist of record) is the quality of the dental written and radiographic record. T ese records are the first step in the practice of forensic dentistry by every dental professional.

Even if the average dentist does not intend to be involved in forensic dentistry, the probability is that eventually he or she will be contacted regarding questions about quality of care or observed injuries (such as suspected child or spousal abuse) or from law enforcement agencies requesting help. A valuable contribution can be made by understanding the role of dentistry in forensic science, by recognizing dental evidence or a bite mark, and by helping to properly preserve crucial evidence for later analysis.

T e dental professional must understand how dental anatomy knowledge is valuable in forensic procedures. Other chapters of this text describe in more detail some of these anatomic features. T e presence of a cusp of Carabelli on a maxillary first molar will identify a person as Caucasian heritage. Shovel-shaped incisors will identify a person of Mongoloid or Asian origin. Tooth root apex development is an age indicator. Cusp contours of lower premolars assist in the orientation of bites in a bite mark case when one understands cusp anatomy of lower versus upper premolars. Root dilacerations, pulp stones, pulpal recession in the elderly or bruxing patient, maxillary sinus morphology, and virtually all aspects of dental anatomy are useful in the forensic identification of an individual or for assessing standard-ofcare issues. In some cases, as in the World Trade Center disaster, the ability to identify a single tooth as a maxillary versus mandibular premolar was the key to the ability to search the database of antemortem records and confirm identification.

You will find dental anatomy the foundation or basis for any forensic dentistry investigation. T e references offered within this chapter were selected to give the novice a practical and representative introduction to the field and techniques of forensic dentistry.

GENERAl REFERENCEs

Seven concise articles with an overview introduction on bite marks, crime investigation, child abuse, photographic computers, and mass
disasters are presented in the May 1996 Journal of the California Dental Association.

American Board of Forensic Odontology. Guidelines for bite mark analysis. J Am Dent Assoc 1986;112(3):383-386. Available at: http://www.abfo.org
American Society of Forensic Odontology's information source via the Internet: http://www.asfo.org
Bowers CM. Forensic dental evidence. Boston, MA: Elsevier Academic Press, 2004
Bowers CM, Bell GL, eds. Manual of forensic odontology. 3rd rev. ed. Saratoga Springs, NY: American Society of Forensic Odontology, 1997. T is manual can be obtained from the American Society of Forensic Odontology at http://www.asfo.org
Clark DH, ed. Practical forensic odontology. Boston, MA: Wright (Butterworth-Heinemann Ltd), 1992.
Cottone JA, Standish SM. Outline of forensic dentistry. Chicago, IL: Year Book Medical Publishers, Inc., 1982.
deVilliers CJ, Phillips VM. Person identification by means of a single unique dental feature. J Forensic Odontostomatol 1998;16(1): 17-19.
Dorion RB. Bitemark evidence. New York, NY: Marcel Dekker, 2005.
Gill GW, Rhine S. Symposium ed: Skeletal attribution of racemethods for forensic anthropology. Albuquerque, NM: Manual available from Maxwell Museum of Anthropology at the University of New Mexico, 1990.
Guidelines for bite mark analysis by the American Board of Forensic Odontology. J Am Dent Assoc 1986;112:383-386.
Gupta P, Harsaminder K, Shankari M, et al. Human age estimation from tooth cementum and dentin. J Clin Diagn Res 2014;8(4): 7-10.
Harvey W. Dental identification and forensic odontology. London, UK: Henry Kimpton Publishing, 1976.
Krogman W. T e human skeleton in forensic medicine. Springfield, IL: Charles C. T omas Publishers, 1973.
Lampe H, Roetzcher K. Age determination from adult human teeth. Med Law 1994;13(7-8):623-628.
Luntz L, Luntz P. Handbook for dental identification. Philadelphia, PA: J.B. Lippincott, 1973.
Melia E, Carr M. Forensic odontology and the role of the dental hygienist. Access 2005;19(3):15-23.
Nuckles DB, Herschaft EE, Whatmough LN. Forensic odontology in solving crimes: dental techniques and bite mark evidence. Gen Dent 1994;42(3):210-214.
Rothwell BR. Bite marks in forensic dentistry: a review of legal, scientific issues. J Am Dent Assoc 1995;126(2):223-232.
Senn DR, Weems RA, eds. Manual of forensic odontology. 5th ed. American Society of Forensic Odontology, 2013. T is manual can be obtained from the American Society of Forensic Odontology at http://www.asfo.org and from www. amazon.com
Sopher M. Forensic dentistry. Springfield, IL: Charles C. T omas, 1976.

Standish SM, Stimson PG. Symposium on forensic dentistry: legal obligations and methods of identification for the practitioner. Dent Clin North Am 1977;21(1):145-158.

Committee on Identifying the Needs of the Forensic Sciences Community; Committee on Applied and T eoretical Statistics, National Research Council. Strengthening Forensic Science in the United States: A Path Forward. 2009 (ISBN: 0-309-13131-6, 24 pages).
Stimson PG, Mertz CA. Forensic dentistry. Vol. 21(1). Boca Raton, FL: CRC Press, 1997.

Wood JD, Gould G. Mass fatality incidents: are California dentists ready to respond. J Calif Dent Assoc 2004;32(8):681-688.
Wright FD. Integrating new technologies in bite mark analysis. Am Soc Forensic Odontol News 1999; Winter.
Wright FD. Forensic dentistry: an introduction. Columbus, OH : Ohio Dental Association, 2005.

${ }^{13}$
 Guide lines for Drawing, Sketching, and Carving

 TeethI. Drawing teeth
A. Materials needed
B. How to accurately reproduce a tooth outline
C. Example: accurately reproduce the shape of a mandibular canine (copying an actual tooth or tooth model)
II. Sketch teeth recognizably from memory
III. Carving teeth
A. Materials needed
B. How to carve a tooth
C. Example: how to carve a maxillary central incisor from a block of wax
D. Advice

Objectives

This chapter is designed to prepare the learner to perform the following:

- Carefully draw a tooth to reproduce its contours precisely from various views.
- From memory, sketch (quickly) teeth from various views so that the sketch is recognizable as the tooth is being sketched.
- Reproduce the contours of a tooth in wax.

SECTION I
 Dr aw INg TEETh

a. MaTEr Ia 1 S NEEDED

- Graph paper ruled eight squares to the inch
- Drawing pencil, sharpened to a fine point
- Eraser
- Ruler with millimeter scale
- Boley gauge
- Teeth or tooth model
- Chart with dimensions of tooth to be drawn (such as Table 1-7)
B. h Ow TO a CCu r aTEly r Epr ODu CE a TOOTh Ou Tl INE

To accurately reproduce the outline of any object, not only must you look at the object but you must also study and visualize it. Rarely is there a person, however, lacking in artistic skill, who cannot make a reasonably good drawing of a human tooth. Those who are not skilled in accurate drawing (extensive art training does not necessarily result in accuracy of outline) may find a solution in using graph paper ruled

flgure 13-1. A. Facial side of a maxillary right canine tooth model showing how measurements of a tooth may be made to assist in drawing and carving. B. Mesial side of the same maxillary canine showing how tooth measurements can be made and how the incisal portion is positioned relative to the root axis line.
eight squares to the inch. The tooth specimen is measured in millimeters with a Boley gauge, and the measurements are transferred to the graph paper, allowing one square to equal 1 mm . Drawings may be made to scale of each type of tooth: maxillary and mandibular incisors, canines, premolars, and molars. All drawings should depict maxillary teeth with crowns down and mandibular teeth with crowns up, the same orientation they have in the mouth.

Using an undamaged extracted tooth or a tooth model for a specimen, make the following six measurements with the Boley gauge (Fig. 13-1A and B):

- Root length
- Mesiodistal crown width
- Faciolingual crown width
- Mesiodistal cervix
- Faciolingual cervix

Using a consistent method of measurement avoids confusion. On anterior teeth, measure the crown length on the facial side from the cervical line to the incisal edge. On premolars, measure the crown length on the facial side from the cervical line to the tip of the buccal cusp. On molars, which have more than one buccal cusp, crown length is always to the mesiobuccal cusp tip. Make the other cusps their proper length relative to the measured cusp, that is, either longer or shorter. With more than one root, the overall tooth length is measured from the mesial or mesiobuccal root apex to the mesiobuccal cusp (refer to Table 1-7).

Plan how you want to place your drawings on the graph paper. One convenient arrangement is facial aspect, upper left corner; lingual aspect, upper right; mesial aspect, lower left; distal aspect, lower right; and incisal aspect, center (Figs. 13-2 and 13-3). These views will be centered nicely if you allow a four square border on all sides of the paper, as shown in the same illustrations.

Exa Mple: aCCuraTEly r Epr ODuCE Th E Sh apE Of a Mandibular Can ine (COpyINg aN aCTual TOOTh Or TOOTh MODEl)

1. facial Views

Use the measurements you have made of the tooth specimen you intend to draw. Begin with the outlines for the facial view of the tooth in the upper left corner of the page and count down from the upper four square border the number of squares and fraction thereof equal to the crown length in millimeters and draw a horizontal line. From this line, count down the number of squares equal to the root length in millimeters and draw a second horizontal line. From the inside of the left four square border, count to the right the number of squares equal to the mesiodistal crown measurement and draw a vertical line. You will draw the facial aspect of the tooth inside the box. Make your lines very light at first so that corrections can be made easily. Remember to begin from the four square margin (top and side), as seen in Figure 13-2.

Before you start to draw the crown from the facial view, make a light mark at the locations of the mesial and distal contact areas of the crown. (A pencil or straight edge held vertically against the side of the tooth parallel to the root axis line will help you determine where to put these light marks.) Then, mark the location of the apex of the root. Also, mark the mesiodistal width of the cervix of the tooth on the horizontal line that separates the crown from the root. When you fit the crown into the box, if you remember to keep the root vertical, the midroot axis will not always be an equal distance from the mesial and distal sides because the crowns of some teeth are tilted distally. Mark off the mesiodistal cervical measurement very lightly.

f Ig ur E 13-2. A precise drawing on graph paper of a model of a mandibular right canine by a frst-year dental hygiene student.

Now, draw in the curvature of the crown at the contact areas (you marked the location) and draw in a portion of the cervical line and the incisal cusp ridges. Draw the root apex and the cervical part of the root. Correct any errors in location or shape, and then, connect the lines you have drawn. You have a drawing of a tooth. You may be pleasantly surprised how natural and morphologically correct this first sketch appears. Many professional artists are unable to depict natural teeth accurately because they are unfamiliar with tooth morphology, and they do not have the proportions that were dictated by your measurements.

2. 1 ingual Views

In the upper right corner of the page (Fig. 13-2), use the same set of measurements to make the box in which to draw the lingual aspect of the tooth. Remember that almost all teeth taper toward the narrower lingual surface, but the overall outline from the lingual is the same width as from the facial view. The cingulum is narrower than the cervical portion on the labial sketch, and it should be drawn centered or a little toward the distal.

Mesial and Distal Views

Draw these two boxes in the lower left and right corner of the page (Fig. 13-2) using the same root and crown lengths. However, use the faciolingual crown measurement instead of the mesiodistal measurement. Before you start to draw the tooth, lightly mark the locations of the incisal edge, the labial crest of curvature (i.e., where the curve or greatest convexity of the labial surface will touch the line of the box), and the crest of curvature on the cingulum (Fig. 13-1B) and the root tip. Mark the faciolingual width of the cervix. Then, draw the tooth. Remember to leave the four square border at each side and below these views.
4. Incisal View

Near the center of the page, draw a box with the distance between the upper and lower horizontal lines the exact number of squares for the faciolingual measurement of the crown in millimeters. The distance between right and left vertical lines of this box should equal the number of the squares of the mesiodistal crown measurement in millimeters. Hold the tooth facial side down and in such a position that you are looking exactly in line with the root axis line. Be sure that the tooth crown is not tilted up or down. On the sides of the box, mark the places where you are going to locate the mesial and distal contact points of the crown. The
incisal edge of the tooth will normally have a slight lingual twist of the distoincisal corner (not evident in Fig. 13-2) and will lie either in the center of the box faciolingually or slightly lingual to the center (in the same position it is shown on your drawings of the mesial and distal aspects). The cingulum is normally centered on, or slightly distal to, the root axis line.

Do you find any straight lines (as on a straight ruler) on any tooth other than those lines that have been produced by attrition? This would be most unusual.

Using the same approach, you will be able to draw other types of teeth. Labeling the grooves, the fossae, and the ridges on the occlusal surfaces of the posterior teeth will help to fix the morphology in your mind.

SECTION II SkETCh TEETh r ECOg NIza Bly fr OM MEMOr y

The extremely precise and accurate drawings described in Section I of this chapter have the value of developing skills to accurately visualize and reproduce the subtle outlines and exact grooves of a specific tooth from various views. However, this time-consuming method of copying teeth may have limited value in helping the student to quickly sketch a tooth from memory for a specified view as might be expected during a conversation with an instructor or a patient. Therefore, this section includes guidelines that can be useful for dental and dental hygiene students when learning how to quickly sketch a specific tooth and view from memory.

In order to sketch a facial view of a recognizable tooth from memory, the drawer must have knowledge of the following characteristics related to the tooth being drawn: (a) approximate crown-to-root ratio (i.e., how much longer is the root compared to the crown), (b) approximate crown proportions (i.e., which is wider: the crown width or its length), (c) location of the crown heights of contour (crests of curvature), (d) crown shape (taper, incisal edge shape or number and relative size of cusps, and cementoenamel junction [CEJ] shape), and (e) root shape (taper and number of roots) when drawing the entire tooth. If one considers each of these tooth characteristics in the appropriate order, sketching a tooth becomes a relatively easy task and is an excellent exercise to apply all of the knowledge of dental morphology that was presented in Section I of this text: Comparative Tooth Anatomy.

As an example, consider a sketch of a right maxillary central incisor from the facial view. Follow along with Figure 13-4 as you read about each step.

Step A: Consider the root-to-crown ratio. It is not expected that a student will remember the exact ratio of this tooth (1.16 to 1), but rather he or she should recall that all roots are normally longer than the crown. On maxillary central incisors, the root is only slightly longer than the crown. Based on this fact, three parallel horizontal lines can be drawn to denote the distance of the crown length from incisal edge to the cervical line relative to the root length from cervical line to root apex (only slightly longer). Position the smaller crown length on top for the mandibular teeth and on the bottom for maxillary teeth. For this maxillary central incisor, the crown length is on the bottom.
Step B: Consider the proportions of the crown, that is, the crown height (incisocervically) compared to its width (mesiodistally). Again, you do not need to memorize that the average crown width for this tooth is 8.6 mm and its average length is 11.2 mm , but you should recall that the maxillary central incisor crown is slightly longer than it is wide. Using this knowledge, two parallel vertical lines can be placed perpendicular to the horizontal lines to establish the proportion for the tooth crown. Extending these vertical lines along the entire tooth length results in the formation of two boxes: a crown box that will surround the crown and a root box that will enclose the root. At this time, label the mesial (M) and distal (D) surfaces of the crown box that is dependent on whether you are viewing a right or left incisor. For this right incisor, the mesial surface is on the right side of the box, and the distal is on the left side, as if you were facing the patient.

fIgure 13-4. Five steps involved in sketching the facial view of a tooth (in this case, a right maxillary central incisor).

Step C: Consider the heights of contour (crests of curvature) on the mesial and distal surfaces. Since these two points are the widest parts of the tooth crown where the mesial and distal surfaces bulge out the most, they are therefore the points where the crown outline touches the crown box established in the previous step. When the teeth are in ideal alignment, they are the location of the proximal contacts. On all incisors, the proximal heights of contour (contacts) occur in the incisal one third (EXCEPT on the distal of a maxillary lateral incisor, which is in the middle third) and are located more incisally on the mesial surface than on the distal surface (EXCEPT on the symmetrical mandibular central incisor). With this knowledge, a dot can be placed on the mesial and distal crown box outline at the appropriate levels. It is not until this step is complete that you actually begin sketching the tooth crown shape (outline).
Step D: Begin sketching the crown outline. Use as many of the criteria presented in the Appendix as you can recall in order to sketch a recognizable tooth. For example, on a maxillary central incisor, we know that the areas immediately surrounding all contact areas are convex, mesial and distal crown walls taper slightly toward the root, and the incisal edge is almost flat or slightly convex and is a little shorter toward the distal. We also know that the cervical line from the facial view is broad and curves toward the apex. Based on this knowledge, begin sketching the crown outline by placing subtle convexities that touch the crown box at the heights of contact points (dots). These convexities blend apically to become the mesial and distal crown walls, and these walls converge (just slightly) toward the cervical line. The proximal convexities also curve incisally to blend with the relatively straight incisal
edge that touches the incisal line of the crown box in the mesial half and tapers shorter (farther from the box outline) toward the distal. Finally, the cervical line appears as a continuation of the mesial and distal walls and curves toward the apex, just touching the cervical line of the crown box. If a sketch of the crown were all that you are reproducing, you would be finished. If, however, you wish to add the root, proceed to the final step.
Step E: Sketch the root. We know that the apex of the root is near the center of the tooth root axis (a vertical line in the center ofthe root at the cervix). We also know that roots are broadest in the cervical third (but not very much narrower than the width of the crown), may be nearly parallel in the cervical third, and taper toward the rounded apex. Based on this knowledge, you can finish the sketch. Be aware that part of the root outline where it joins the CEJ is actually visible within the crown box, and the rounded apex just touches the apical line of the root box.

When sketching other teeth from the facial views, use steps A through C as described earlier for developing the "boxes" and crests of curvature, and refer to the appendix pages for tooth traits when sketching the actual tooth outlines. With practice, teeth can be sketched without the boxes in less than a minute while still maintaining the approximate proportions and heights of contour. See the student sketch of a recognizable mandibular second molar from the buccal view in Figure 13-5A.

The steps used to sketch the lingual view of all teeth are the same as for the facial view EXCEPT the outline is a mirror image of the facial view. Also, on this surface of anterior teeth, there is normally evidence of a narrower crown cingulum, marginal ridges, a lingual fossa, and a cervical line that often

fIgurE13-5. Four sketches of teeth by frstquarter dental and dental hygiene students: although not perfectly drawn, each sketch is recognizable as the tooth being drawn. A. Right mandibular second molar, facial (buccal) view. B. Right mandibular frst molar, mesial view. C. A right mandibular frst molar, occlusal view. D. A right maxillary frst molar, occlusal view. Sketches (A) and (B) would look nicer if the lines were not so wide and dark.
includes a partial view of the proximal CEJ due to the taper of teeth toward the lingual (as seen in Fig. 13-2, lingual view). On maxillary molars, the lingual root is now in the foreground.

When sketching the proximal view of teeth, the first two steps are similar to steps A and B above except that the crown outline box is developed for this view by using the faciolingual and inciso- or occlusocervical crown proportions. The facial crest of curvature is similar for all teeth: in the cervical third. Lingually, the crest of curvature is in the cervical third on the cingulum for anterior teeth but in the middle third for most posterior teeth. Develop a crown and root shape according to guidelines in the Appendix. See the student sketch of a mandibular second molar from the mesial view in Figure 13-5B.

Posterior teeth from the occlusal view are viewed looking directly down along the axis of the root. Crown-to-root ratios do not apply from this view. The crown outline box is developed for this view by using the mesiodistal and faciolingual crown proportions. On mandibular premolars, the crown proportions are slightly longer buccolingually than mesiodistally, but close to square. Maxillary premolars from the occlusal view are similar to mandibular premolars except crown proportions are less square, more rectangular: proportionally wider buccolingually than mesiodistally. Mandibular molars from the occlusal view are wider mesiodistally than buccolingually, whereas maxillary molars are slightly wider buccolingually than mesiodistally. The crests of curvature on molars and premolars on the mesial and distal surfaces are located in the center or slightly to the buccal of the buccolin-
gual midline. The buccal and lingual crests of curvature for molars are located mesial to the middle, except on the buccal of the mandibular first molar where it is close to the middle. After the outline "box" is sketched and crests of curvature have been noted, sketch the crown outlines using descriptions from the appendix pages.

An additional challenge on these views involves reproducing the location of the cusp tips, grooves, and pits (as must be accomplished by dental personnel every time a restoration is placed on an occlusal surface, finished and polished, or constructed or carved in wax in the laboratory).

Cusp tips can be identified by placing small dots (or small circles) on the sketches at these locations. It may be helpful to remember these basic guidelines regarding pits and grooves. Most premolars have a mesial and distal pit connected by a groove running mesiodistally between buccal and lingual cusps. Most molars (and three-cusped mandibular second premolars) have three pits (mesial, central, and distal) that are also connected by a groove passing mesiodistally between buccal and lingual cusps. Molars also have one or two buccal grooves that separate the two or three buccal cusps, respectively. On mandibular molars, the lingual groove comes off near the central pit, but on maxillary molars, a lingual (distolingual) groove comes off of the distal pit and parallels the oblique ridge. Developmental triangular or fossa grooves or supplemental grooves may angle off from the mesial and distal pits of most posterior teeth, directed toward the "corners" of the tooth. See the student sketches of the occlusal views of two recognizable molars in Figure 13-5C and D.

SECTION III Car VINg TEETh

a. MaTEr Ia 1 S NEEDED

- Blocks of carving wax ($34 \mathrm{~mm} \times 17 \mathrm{~mm} \times 17 \mathrm{~mm}$ for molars or $32 \mathrm{~mm} \times 12 \mathrm{~mm} \times 12 \mathrm{~mm}$ for other teeth)
- Boley gauge (Vernier caliper)
- Millimeter ruler
- Office knife and sharpening stone
- Roach carver, No. 7 wax spatula, and PKT-1 (for melting and adding wax)
- No. 3, No. 5 to 6, 6C, and PKT-4 carvers
- Sharpened drawing pencil
- Large or small tooth model and its measurements

B. h Ow TO Car VE a TOOTh

Carving a tooth helps you to see the tooth in three dimensions and also to develop considerable manual skill and dexterity. Examples of carvings by dental hygiene students are shown in Figure 13-6. While eventually you may be able to carve a tooth from a block of wax without
preliminary measurement, the beginner can only do well by approaching the carving systematically in the same way you approached the drawings: first, by drawing a box on the wax block; second, by sketching an outline of the tooth in the box; and third, by carving around the sketch or outline, one view or aspect at a time (sequence is shown in Fig. 13-7).

When approaching the task of carving a tooth, consider Michelangelo who conceived of his task of producing a marble statue by "liberating the figure from the marble that imprisons it." And remember that he, too, sometimes made mistakes and had to discard a half-finished statue. The same can happen to your tooth carving. To minimize this, as you cut away wax, repeatedly examine your carving from all sides; turn it around and around and compare it with your specimen from each view. Where it is too bulbous, the fault is easily correctable by further reductions. Where too much wax has been removed, you have one of three choices: add molten wax to the deficient region, make the entire carving proportionally smaller, or start with a new block of wax.

fIg ur E 13-6. Maxillary central incisor wax carvings by frstyear dental hygiene students as seen from the mesial (M), lingual (L), incisal (I), facial (F), and mesial-facial (M, F) aspects. The crown and half of the root were carved to specifc dimensions that were proportional to the tooth model they viewed during the carving. These excellent carvings were each done in less than 3 hours as a required skill test.

fIg ure 13-7. The sequential method described in this chapter for carving a tooth from a block of wax. The fnal product should look like those shown in Figure 13-6. The large letter M denotes the mesial aspect of the carving. Like wise, F indicates the facial side of the block.
C. ExaMp1E: h Ow TO Car VE a Maxillary CENTral INCISOr fr OM a BloCk Of wax

Use the measurements you used for drawing. (Again, use the measurement of the buccal cusp on premolars for the crown length and of the mesiobuccal cusp and mesiobuccal or mesial root on molars for the root length.) This consistency of method prevents confusion. Allowance is made for the greater length of some lingual cusps, which are longer than the measured buccal cusp. Refer to Figure 13-7 as you follow the following guidelines:
Step 1: Shave the sides of the block flat and make all angles right angles.
Step 2: Measure 2 mm from one end of the block, and draw a line at this level, encircling the block (on all four sides). (This end of the block will be the incisal or occlusal end of the tooth, and the $2-\mathrm{mm}$ allowance here is to provide for the extra length of the lingual cups on molars that are longer than the mesiobuccal cusp that established crown length. Although it is convenient to allow the 2 mm on all carvings, it is essential only for molars.)
Step 3: From the $2-\mathrm{mm}$ line, measure the crown length and draw a second line around the block at this level. This line is the location of the cervical line on the facial, mesial, distal, and lingual sides of the tooth (Fig. 13-7A).
Step 4: From this cervical line, measure one-half of the length of the root and draw a third line around the block. (The end of the block beyond this line will be referred to now as the base.)
Step 5: On the base of the block, carve, on appropriate sides, F (facial), L (lingual), M (mesial), and D (distal). Be sure to put M and D in the proper relation to F and L so that you will carve a right or a left tooth, whichever you intend.
Step 6: Using a very sharp pencil, draw a shallow line lengthwise on the block in the center of the mesial surface. Do the same on the distal surface and be sure that these lines are exactly opposite.
Step 7: Add 0.5 mm to the faciolingual measurement of the crown. Divide this number by 2 . Using this measurement, draw a line this distance on either side of the center line on the mesial and distal sides of the block (Fig. 13-7A). These two outer lines should be parallel to the center line and extend from the top of the block to the base. These two lines form a box whose dimension faciolingually is equal to the crown dimension plus 0.5 mm . The extra 0.5 mm is an allowance for safety in carving. Do not make trouble for yourself by allowing more than this extra 0.5 mm .
Step 8: On the mesial side of the block marked M, draw, within the box, an outline of the mesial side of the tooth as you drew it on the graph paper. Be careful to place the incisal edge and the labial and lingual crests of curvature accurately. Your carving will probably be no better than this drawing.

Step 9: Draw a similar outline on the distal side of the block. Be sure that on both sides, the drawings are oriented so that the facial surface of the tooth is toward the side of the block you have marked F (facial). (It is easy to make a mistake here.) These drawings of the crown may appear slightly fat due to the extra $0.5-\mathrm{mm}$-width allowance confining the crown size faciolingually.
Step 10: Carve away the shaded portions of wax in Figure 13-7B from the facial, lingual, and incisal sides of the block so that it is now shaped like Figure 13-7C. At this time, do not carve around the outline of the tooth, but rather carve up to the straight vertical lines that form the box in which the tooth picture is drawn.
Step 11: Check the distance between the two opposite carved surfaces carefully with your Boley gauge. Be sure they are perfectly flat and smooth. Be sure the thickness of the column of wax between these parallel surfaces exactly equals the given faciolingual crown dimension plus 0.5 mm .
Step 12: Now, carve away the shaded regions seen in Figure 13-7C around and down to the facial and lingual outlines of the tooth. Follow the drawing carefully, making the tooth shape the same all the way through the block. Keep the carving surface smooth; if it becomes chopped up, it will be impossible to smooth it without losing both the shape and the size of the carving.
Step 13: With a sharp pencil, very lightly draw center lines on the curved facial and lingual sides of the carving as in Figure 13-7D. Be sure they are exactly opposite.
Step 14: Add 0.5 mm to the mesiodistal crown measurement, and draw two lines one-half this distance on either side of the center line. This makes a box on the curved surface as wide as the greatest mesiodistal crown measurement plus 0.5 mm (Fig. 13-7D).

Step 15: Redraw a horizontal line the exact crown length distance from the incisal edge on the facial and lingual sides (since the original line was carved away). Then, draw the facial outline of the crown and half of the root on the curved facial side of the block (Fig. 13-7D).
Step 16: On the lingual surface of the block, draw an outline the same shape as the one on the facial surface except, of course, that it is a mirror image; the distal side of the tooth must be toward the same side of the block in each case. Check the crown length on the lingual surface too, so the crown will not be too long.
Step 17: Carve away all the wax outside the drawing box, removing all the shaded portions as shown in Figure 13-7E. On some first molars, their spreading roots may extend beyond the box lines, and these roots should be carved accordingly. Check your measurements again.
Step 18: Shape the tooth by carefully carving the mesial and distal contours by removing the shaded portions of Figure $13-7 \mathrm{~F}$ so that it resembles your tooth specimen outline from the facial and lingual sides.
Step 19: Now, it is time to round off the corners, narrow the lingual surface, shape the cingulum (it is distal to the

flgure 13-8. Maxillary canine wax carvings viewed from the distal (D), lingual (L), incisal (I), and facial (F) aspects. First-year dental hygiene students carved these during a skill test (2 hours, 50 minutes time limit).
center line, and the mesial marginal ridge is longer than the distal), and carve out the lingual fossa. Be sure to look at all aspects of the tooth as you are finishing the carving. Include, of course, the incisal view (seen in Fig. 13-6) or the occlusal view. Four nice carvings of maxillary canines, made by dental hygiene students at the Ohio State University, are shown in Figure 13-8. Five aspects of another very fine carving by a dental student are seen in Figure 13-9.

figure 13-9. Maxillary right canine carving done by senior dental student Keith Schmidt: observe the nearly perfect contours from all aspects and that the root is not becoming narrower as it joins the crown (a very common carving error in attempting to refne the cervical line).

fIgure 13-10. Outlines within which you may draw three views of a maxillary canine: the boxes are proportional to the natural tooth average measurements in Table 3-2. The widest portions of the crown (mesial and distal contacts) should touch the sides of the wider lower box. Only the widest part of the root should touch the sides of the narrower box above with the root apex touching the top of this box. On the incisal view, be sure to position the incisal ridge just labial to the faciolingual middle of this box. Drawing these three views will be helpful to you when you outline similar contours on a block of wax for carving a maxillary canine.

Step 20: Carve your initials on the bottom of the base of the block. Be an honest critic of your work, constantly looking for regions where the carving could be improved.

You can work toward becoming proficient in drawing teeth by sketching outlines (lightly at first) in the blank boxes that are proportionally the correct size for the view and tooth listed in Figures 13-10 and 13-11. You should have a tooth model or extracted tooth specimen to view as you make these sketches. An example of how to sketch teeth into the blank boxes of Figure 13-12 is shown in Figure 13-13.

D. a DVICE

Practice makes perfect, or at least you will see pronounced improvement in your later carvings. Therefore,
do not discard your first ones, but keep them for future comparisons. The most difficult task is to begin for the very first time. We have found from many years of experience, however, that the inexperienced people who follow these or similar directions and proceed step-by-step often end up with some of the best carvings in the class. Do not be afraid to begin. When you become skillful at carving teeth, it may surprise you that it is possible to carve the contours of a tooth from memory, possibly aided only by several important dimensions. Average measurements from 4572 extracted teeth are given in Table 1-7. Should you draw or carve a tooth to these average dimensions, it might surprise you how normal it looks. You may find the General References helpful in perfecting your carving techniques.

Emergence dates

1st premolar _yrs.
2nd premolar \qquad yrs.

1st molar \qquad yrs.
2nd molar \qquad yrs.

Proximal view (mesial aspect)

Proportionally outlined boxes for drawing the lower right f rst and second premolars and frst molar in their usual relationship to one another: select three nice tooth specimens or tooth models and go to work.

Maxillary premolars

flgure 13-13.
These drawings within the outlined boxes are examples to help you with your drawings in the blank boxes in Figure 13-12. Study these and perhaps you can make even better drawings. For example, in the lingual view, the maxillary frst premolar's lingual cusp is too long. It is the correct length in the drawing of the mesial aspect.

GEn ERAl REFEREn CES
Ash MM Jr. Wheeler's atlas of tooth form. Philadelphia, PA: W.B. Saunders, 1984.
Beaudreau DE. Tooth form and contour. J Am Soc Prev Dent 1973;3:36-37.

Burch JG. Coronal tooth contours: didactic, clinical and laboratory. 3rd ed. Worthington, OH: James G. Burch, 1980.
Grundler H. The study of tooth shapes: a systematic procedure. Berlin, Germany: Buch- und Zeitschriften-Verlag "Die Quintessenz", 1976.
Linek HA. Tooth carving manual. Pasadena, CA: Wood and Jones Printers, 1948.

PART

3

Anatomic
Structures of the
Oral Cavity

14 Structures That Form the Foundation for Tooth Function

Topics covered within the six sections of this chapter include the following:
I. Bones of the Human Skull (with Emphasis on the Sphenoid, Temporal, Maxilla, and Mandible Bones)
A. Bones that Cover the Superior Portion of the Braincase
B. Bones that Form the Floor of the Braincase
C. Large Bones of the Face and Temporomandibular Joint (TMJ)
D. Small Bones of the Face
E. Hyoid Bone
II. The Temporomandibular Joint (TMJ)
A. Anatomy of the Temporomandibular Joint
B. Ligaments that Support the Joint and Limit Joint Movement
C. Development of the Temporomandibular Joint
D. Advanced Topics: Dimensions Related to the TMJ
III. Muscles of the Mouth
A. Muscles Involved in Mastication (Chewing)
B. Other Muscles Affecting Mandibular Movement
C. Other Factors Affecting Tooth Position or Movement
D. Summary of Muscles that Move and Control the Mandible
E. Advanced Topics
IV. Nerves of the Oral Cavity
A. Trigeminal Nerve (Fifth CN)
B. Facial Nerve (Seventh CN)
C. Glossopharyngeal Nerve (Ninth CN)
D. Hypoglossal Nerve (12 th CN)
E. Summary of Nerve Supply to the Tongue, Salivary Glands, Facial Skin, and Facial Muscles
V. Vessels Associated with the Oral Cavity (Arteries, Veins, and Lymph Vessels)
A. Arteries
B. Veins
C. Lymph Vessels
VI. Structures Visible on a Panoramic Radiograph

T is chapter introduces the reader to the structures that form the foundation for the functions of the oral cavity. Emphasis is placed on structures that relate to the functioning of the jaws and teeth. T e chapter begins with the gross anatomy of the bones of the skull including the identification of important foramen where nerves pass from the brain and blood vessels pass from the heart to the oral structures
of the mouth, the location for attachments of the muscles and tendons that support and move the mandible, and the anatomy of the temporomandibular joint (TMJ). Next, the attachments and functions of the major chewing muscles are described, followed by a description of the passageway and function of the nerves, blood supply, and lymph vessels that supply the face and mouth.

Objectives Of this sectiOn

This section is designed to prepare the learner to perform the following:

- Describe and identify each bone seen on an intact human skull.
- Describe and identify each bony structure highlighted in bold in this chapter. (Emphasis is placed on structures of the mandible, maxillae, temporal, and sphenoid bones.)
- Describe and identify the location of the attachment of chewing muscles and ligaments that are attached to the bones of the skull.
- Describe and identify the foramen of the nerves and arteries that supply the teeth and oral cavity.

T ere are 206 distinct bones in our skeleton, 28 of which are in the skull if we count the malleus, stapes, and incus bones of each ear. To obtain a clear understanding of the bones of the skull and their relationship to one another and to the teeth, it is best to have a skull or skull model at hand to examine while reading this chapter. If you touch and trace each bone with your fingers as you read, you are not likely to forget its characteristics. Also, as you study this section, you should relate the location of each bony structure on the skull to its location on your own head, that is, where it is located under the skin of the face or under the mucosa of the mouth. T is is important in order to fully appreciate where muscles attach and how they can move the lower jaw (mandible) in all directions and to figure out where to apply local anesthetic along the path of the nerves to the teeth and oral cavity, as described in more detail in Chapter 15.

When reading the description of each bone, there are many descriptive terms that are used to describe the bumps, depressions, holes, and relative location of important landmarks. Many terms have similar definitions, so they are defined here in groups to facilitate learning. Since anatomy terms are often similar to common familiar words, the new terms are compared to familiar words whenever possible.

BUMPS-TERMS USED TO DESCRIBE CONVEXITIES ON BONES AND/OR TEETH

Crest: a projecting ridge along a bone Eminence: a prominence or elevation of bone Process: a projection or outgrowth from a bone Protuberance [pro TU ber ahns]: a prominence of bone Ridge: linear, narrow, elevated portion of bone or tooth Tubercle [TOO ber k'l]: a small rounded projection on a bone or tooth

DEPRESSIONS-TERMS USED TO DESCRIBE CONCAVITIES IN BONES AND/OR TEETH

Alveolus [al VEE o lus] (plural: alveoli [al VEE o lie]): small hollow space or socket where the tooth root fits within the jaw bones

Cavity: a hollow place within the body of bone (or within a tooth)
Fissure [FISH er]: a cleft or groove (crack) between parts
Fossa [FOS ah] (plural: fossae [FOS ee]): a small hollow or depressed area
Fovea [FO ve ah]: small pit or depression
Groove: linear depression or furrow
Sinus: hollow, air-filled cavity or space within skull bones, or a channel for venous blood

OPENINGS-TERMS USED TO DESCRIBE HOLES IN BONES AND/OR TEETH

Aperture: an opening; compare a camera lens aperture
Foramen [fo RAY men] (plural: foramina [fo RAM i nah]): a small hole through bone or tooth for passage of nerves and vessels
Foramen ovale [o VAL ee]: a specific oval or egg-shaped foramen
Foramen rotundum: a specific round foramen; recall the Capitol's rotundum or dome is round when viewed from above
Meatus [me A tus]: a natural passage or opening in the body
TERMS USED TO DESCRIBE RELATIVE LOCATION-
Figure 14-1 will be helpful in understanding terms with an asterisk (*).

Anterior*: toward the front of the body
Buccal [BUCK al]: related to or near the cheek; the buccal nerve innervates the cheek; the buccinator muscle is within the cheek; the buccal surface of a tooth is the side toward the cheek.
Cervix: of the neck or neck-like; compare cervical vertebrae in the neck
External: toward the outside of the body; seen from the outside
Facial*: toward the face; seen when viewing the face side
Inferior* or the prefix infra: located below or beneath; lower than

Lateral*: pertaining to, or situated at, the side
Medial*: the surface toward, or closest to, the midline (median) plane of the body; do not confuse medial with mesial.
Median plane*: a longitudinal plane that divides the body into relatively equal right and left halves
Midsagittal plane* [mid SAJ it'l]: same as median plane
Posterior*: toward the rear of the mouth or body
Retro (prefix): back or behind
Sub (prefix): under or beneath; compare to infra
Superàcial: closer to the surface
Superior* or the prefix supra: located above or over; higher or upper

GENERAL TERMS RELATED TO BONES

Acoustic [ah KOOS tik]: referring to sounds or hearing; near the ear
Cervical [SER vi kal]: related to the neck; like cervical vertebrae
Condyle [KON dile]: an articular prominence of a bone resembling a knuckle
Coronoid: where the king's coronation crown fits or the shape of a crown (compare coronation); for example, the coronoid process of the mandible is shaped like the point of a coronation crown; or a coronoid suture is where the crown fits.
Dura: hard, not soft (compare durable)
Glenoid [GLE noyd]: socket-like

Glosso: a prefix referring to the tongue
Labial [LAY bee al]: related to the lips; toward the lips
Lacrimal [LAK ri mal] (also spelled lachrymal): referring to the tears (compare lacrimosa)
Lamina: a thin layer (compare laminated wood)
Lingula [LING gyoo la]: tongue-shaped structure (compare to the word "lingual")
Malar [MAY lar]: referring to the cheek or cheek bone (not to be confused with molar)
Meatus [mee A tus]: a pathway or opening
Palpebral [PAL pe bral]: referring to the eyelid
Piriform [PEER i form]: pear shaped
Septum: a partition (compare separate)
Suture [SOO chur] line: the line of union of adjoining bones of the skull
Symphysis [SIM fi sis]: fibrocartilaginous joint or connection where opposed bony surfaces are joined (a suture line may not be evident)
Trochlea [TROK lee ah]: pulley shaped
T e skull bones can be divided into two broad categories: the bones of the neurocranium [NOOR o CRAY ne um] surrounding the brain and the facial bones that make up the face and mouth and are involved in respiration and eating. T e neurocranium is the portion of the skull that supports, encloses, and protects the brain. T e eight bones of the neurocranium are four single bones (sphenoid, occipital, ethmoid, and frontal) and two paired bones (one on each side): temporal and parietal.

a. BONES Th aT COvEr Th E SupEr IOr pOr TION Of Th E Br a INCaSE

Study Figure 14-2 while reading about the frontal and temporal bones. T e frontal bone is a single, large midline bone that forms the "forehead" and eyebrow region. It contains two frontal sinuses just above the eyes (seen later in Fig. 14-13). Two parietal bones are large, paired bones that protect the brain superiorly, laterally, and posteriorly. A small portion of these bones make up a part of the large and shallow temporal fossa region (outlined in Fig. 14-2), which serves as part of the attachment for the superior end of one of the major muscles of chewing called the temporalis muscle.

Suture lines are lines of fibrous connective tissue that join two bones of the skull immovably together as seen in Figure 14-2. T e coronal suture is located between the frontal and two parietal bones. T e sagittal suture (best seen on the superior surface of the skull) joins the right and left parietal bones along the midsagittal plane of the skull.

B. BONES Th a T fOr m Th E floOr Of Th E Br a INCaSE

T e occipital bone, sphenoid bone, ethmoid bone, and two temporal bones support the base of the brain. T ey all have holes (foramen) for the passage of nerves to the face and
mouth. However, the temporal bones play a most important part in the functioning of the jaw, so they will be discussed separately when discussing the TMJ.

T e floor of the braincase can be divided into three large depressions or fossae, anterior, middle, and posterior (seen later in Fig. 14-4B), which house various portions of the brain. T e shallowest anterior cranial fossa extends anteriorly from the lesser wing of the sphenoid bone (and houses the frontal lobes of the brain). T e deeper middle cranial fossa extends from the lesser wing of the sphenoid bone posteriorly to the petrous portion of the temporal bone (and houses the temporal lobes of the brain and the pituitary gland). T e largest and deepest posterior cranial fossa extends posteriorly from the petrous portion of the temporal bone (and houses the cerebellum).

1. Occipital Bone

T e occipital bone provides the articulating surface between the skull and vertebral column at the occipital condyles [ahk SIP eh tal KON diles] (seen on the inferior surface in Fig. 14-3). T e large foramen magnum serves as the passageway for the spinal cord that connects the peripheral nervous system with the brain. T e hypoglossal canals are located on the right and left lateral walls of the foramen magnum. T ese canals are the passageways of the hypoglossal

fIGurE 14-2. Human skull, left side. The following are large bones of the neurocranium: the single frontal bone (blue) forms the anterior superior portion, the parietal bones (yellow) form the lateral and superior surfaces, the occipital bone (light green) forms the posterior inferior portion, and the greater wing of the sphenoid bone (light red) forms part of the temporal fossa. Note the outline of the shallow temporal fossa, which includes portions of temporal, parietal, sphenoid, and frontal bones.
fIGur E 14-3. Human skull: inferior surface with half of the mandible removed on the right side of the drawing. The occipital bone is highlighted light green. Note the location of the hypoglossal canals (in the lateral walls of the foramen magnum) and the jugular foramen just adjacent to the occipital bone.

nerves (CN XII). Lateral to the foramen magnum (between the occipital and temporal bones) are the large jugular [JUG you lar] foramen (Fig. 14-3), the passageway of blood draining from the brain to the internal jugular vein, and the passageway of the glossopharyngeal nerve (CN IX).

T e lambdoid [LAM doid] suture joins the occipital bone with the parietal bones (Fig. 14-2). Its shape from the posterior view resembles an upside-down " V " and can be compared to the shape of the Greek letter lambda (λ).

2. Ethmoid Bone

T e ethmoid bone is a single, hollow bone that is located on the midline inferior to the anterior part of the brain and contains ethmoidal sinuses (also called air sacs) located between the eye orbits (seen later in Fig. 14-13). T e superior aspect of this bone is visible within the braincase as the sievelike cribriform [KRIB ri form] plate (Fig. 14-4A) surrounding the triangular projection called the crista galli [KRIS ta GAL li, meaning rooster comb]. T e cribriform plate is full of holes providing the passage from the brain into the nasal cavity for the fibers of CN I, the olfactory nerve (the nerve for smell).

Inferior to the cribriform plate, the hollow ethmoid bone balloons out around its ethmoid sinuses to form part of the
medial aspect of each eye orbit (the orbital lamina of the ethmoid bone is visible in Fig. 14-5 and later in Fig. 14-7). It also has scrolled processes extending into the nasal cavity similar in appearance to the inferior nasal concha described later in this section. Finally, a vertical midline plate of the ethmoid bone extends downward into the nasal cavity (along with the separate single vomer bone) to form the nasal septum (seen later in Fig. 14-7), which separates the right and left nasal cavities. T e scrolled portions and midline plate of the ethmoid bone are visible through the piriform opening (anterior opening of the nasal passageways).

3. Sphenoid Bone

T e sphenoid [SFE noid] bone is a single, irregularly shaped, midline bone that cradles the base of the brain (and forms the posterior part of the orbit or eye socket as seen later in Fig. 14-7). T e complex shape of the sphenoid bone can only be appreciated by looking at it from several different views (seen from above in Fig. 14-4A, from below in Fig. 14-6, and seen later in the lateral surface of the orbit in Fig. 14-7). T e sphenoid bone is important to dental professionals because it has processes that serve as part of the attachment for three of the four pairs of major chewing muscles. T e sphenoid bone also has foramina (holes)

fIGur E 14-4. Human skull: bones lining the inside of the neurocranium, superior view. A. The sphenoid bone is shaded light red in this figure. Also, notice the portion of the midline ethmoid bone (green) that is visible in the anterior braincase. B. The foor of the neurocranium is divided into three large fossae: anterior cranial fossa, middle cranial fossa, and posterior cranial fossa.

fiGur E 14-5. Part of human skull, lateral view, with the lateral wall of the left maxilla removed, exposing the large maxillary sin us. Note the lateral surface of the lateral pterygoid plate of the sphenoid bone (shaded light red) just behind the maxilla. The pterygoid hamulus of the medial pterygoid plate is also visible and is just posterior (and slightly medial) to the third molars. Also, note the part of the midline ethmoid bone (green) that balloons out between the right and left eye orbits to form part of their medial walls and the part of the palatine bone (light green) that extends superiorly from the palate to form part of the maxillary sinus (and part of the pterygopalatine space). (Reproduced from Clemente CD, ed. Gray's anatomy of the human body. 30th ed. Philadelphia, PA: Lea \& Febiger, 1985:166, with permission.)

fIGur E 14-6. Human skull:

 inferior surface with half of the mandible removed on the right side of the drawing to permit easier viewing of the sphenoid bone, which is shaded light red. Notice the relative location of the medial and lateral pterygo id plates and fossae just posterior to the bones of the hard palate.fIGur E 14-7. Human skull, frontal aspect. The left maxilla is shaded red (on the right side of the drawing), and the right zygomatic bone is shaded purple (on the left side of the drawing). Also, the facial surfaces of the arch-shaped alveolar process of the left maxilla (process that surrounds the tooth roots) and the alveolar process of the entire mandible are shaded blue. Also, forming part of the right eye orbit, the orbital lamina of the ethmoid bone is shaded green on the medial surface, and part of the sphenoid bone is shaded light red in the right eye orbit (left side of drawing).

that are the passageway for branches of the important fifth CN (trigeminal nerve) that supply all teeth and surrounding structures.

T e hollow, midline body of the sphenoid bone contains sphenoidal sinuses located posterior to the ethmoidal sinuses (seen later in Fig. 14-13). It has a depression on the superior surface called the hypophyseal fossa or sella turcica [SELL a TER si ka] (meaning Turkish chair or saddle) that cradles the pituitary gland (Fig. 14-4A). T is gland secretes hormones, which regulate many body functions. T ere are two pairs of processes or wings (greater and lesser wings) that project off of the body laterally and superiorly. T e greater wings are visible internally in Figure 14-4A but are best viewed externally in Figure 14-2. If you put your thumb on the external surface of the greater wing, you can place your forefinger opposite to your thumb on the inner surface to confirm the location of the greater wing on the inner surface of the braincase. T ese wings extend superiorly from the body, posterior to the upper jawbones (maxillae), and medial to the lower jawbone and cheekbones. T e external surface of the greater wing (along with part of the temporal, frontal, and parietal bones) forms part of each temporal fossa (outlined in Fig. 14-2), where a muscle of mastication, the temporalis muscle, attaches to the neurocranium. T e lesser wings are located superior to a fissure in the posterior surface of the eye socket (seen in the braincase in Fig. 14-4A and on the posterior surface of the eye sockets seen in Fig. 14-7). T e fissure between the greater wing and the lesser wing is called the superior orbital $\dot{\alpha} s-$ sure, which is the passageway of the ophthalmic nerve (one part of the trigeminal nerve). Look at this fissure on the inside of the braincase, and then, look at the front of the skull to see this fissure on the posterior superior surface of the eye socket.

The sphenoid bone also has two important processes that project inferiorly from the base of the skull adjacent to the posterior surface of the upper jawbones (maxillae). These are called pterygoid [TER i goid] processes and are best seen in the lateral view of Figure 14-5. (Hint: To remember the name of this process, note that each has a scalloped border somewhat resembling the wings of a pterodactyl flying dinosaur.) When each pterygoid process is viewed from below (or posteriorly), you can see that it is made up of two thin plates of bone (a lateral pterygoid plate or lamina and a medial pterygoid plate or lamina) that surround a concavity about the size of your little finger called the pterygoid fossa (Fig. 14-6). This fossa is where one end of another major muscle of mastication, the medial pterygoid muscle, attaches. The lateral surface of the lateral pterygoid plate (visible in Fig. 14-5) is where one end of yet another muscle of mastication (the lateral pterygoid muscle) attaches. The medial plate has a hook-like projection just posterior and medial to the third molars and behind the palate, called the pterygoid hamulus (Figs. 14-5 and 14-6). The space just lateral to and posterior to the lateral plate and inferior to the temporal bone is called the infratemporal space
(Fig. 14-5), and it is filled with muscles, ligaments, vessels, and nerves, which will be described later. Note that all of the terms presented here that contain "ptery" relate to the pterygoid process of the sphenoid bone, and the closest you can come to touching this process on your own head is by placing a clean finger in the mouth and sliding it posterior, superior, and medial to the maxillary third molars. Confirm this by looking at a skull.

Two pairs of foramina in the sphenoid bone are important to dental professionals: the foramen rotundum and the foramen ovale. T e oval, more posterior foramen ovale is the passage of the important mandibular nerve (part of the trigeminal nerve) that passes from the brain to the mandibular teeth and jaw and the muscles of mastication. T e foramen ovale is best seen internally in Figure 14-4 and externally in Figure 14-6. On a skull, if you carefully pass a pipe cleaner through this foramen, you will see that it drops inferiorly through the infratemporal space (beneath part of the temporal bone) toward the lower jaw (mandible). T e foramen ovale can be easily identified by its proximity to the much smaller foramen spinosum [spy NO sum] that is located just posterior to it. Just posterior to the foramen spinosum on the inferior surface is a thorn-shaped bony prominence called the sphenoidal [SFE noid al] spine (or angular spine) (Fig. 14-6). T is spine is the superior attachment of the sphenomandibular ligament, which extends inferiorly from the spine toward the medial surface of the lower jaw (mandible).

T e foramen rotundum [ro TUN dum] is visible only internally in Figure 14-4 and is round, anterior, and just slightly medial to the foramen ovale. It is the opening for the passage of another important branch of the trigeminal nerve called the maxillary nerve that supplies all maxillary teeth. If you are able to carefully pass a pipe cleaner from the braincase through this foramen, it will be somewhat hidden in a space between the pterygoid process and upper jawbone (maxilla). T is space between the pterygoid process and the posterior wall of the maxilla (which is covered in part by vertical projections of the palatine bones) is known as the pterygopalatine [TER i go PAL eh tine] space (also called the pterygomaxillary space) labeled in Figure 14-5. T e maxillary nerve that exits the skull through the foramen rotundum proceeds through this pterygopalatine space as it gives off branches to the upper jaw (maxillae) and teeth.

At this time, look inside the braincase to review the location for the openings of the three branches of the trigeminal nerve on each half of the skull (Fig. 14-4). T e trigeminal nerve begins within the braincase as one cranial nerve (CN) but splits to exit the neurocranium in three nerve branches through three openings. T e most anterior opening is the superior orbital fissure for the ophthalmic branch. Posterior to it is the foramen rotundum for the maxillary branch, and the more posterior (and slightly lateral) foramen ovale is for the mandibular branch. Recall that the much smaller foramen spinosum is just posterior to the foramen ovale.

C. 1 ar GE BONES Of Th E faCE aNd TEmpOr OmaNd IBu lar JOINT (TmJ)

T e form of 14 facial bones gives us our appearance. T ey function in both respiration and digestion. T e facial bones are located inferior to the forehead and make up most of the anterior part of the skull. Five large bones of the face are the mandible, two maxillae, and two zygomatic (cheek) bones. T e smaller bones of the face are the vomer, two palatines, two nasals, two lacrimal bones, and two inferior nasal conchae [KONG kee] (also called turbinates). T e mandible and maxillae are most important when considering the foundation for teeth and tooth function, so they will be discussed in most detail. Although the temporal bones are not considered facial bones, they are being discussed here due to their importance in our understanding of the TMJ.

1. maxilla

One maxilla is shaded red in Figure 14-7. Each maxilla [mak SILL a] (right or left) consists of one large, hollow, central mass called the body and four projecting processes or extensions of bone. T e plural of maxilla is maxillae [mack SILL ee]. T e two maxillae contain all of the maxillary teeth.
a. Body of the Maxilla (Structures Seen in Fig. 14-7)

T e body of the maxilla is shaped like a four-sided, hollow pyramid with its base oriented vertically next to the nasal cavity and the apex or peak extending laterally to join the zygomatic bone, part of the cheekbone. T e superior portion of the maxilla forms the floor of the orbit of the eye where an infraorbital àssure is located. T is fissure disappears anteriorly to become the infraorbital canal (hidden within the bone in Fig. 14-7). Important branches of the fifth CN and vessels enter this fissure and canal and give off branches within the canal, which supply some of the maxillary teeth and surrounding tissue. T e infraorbital nerves and vessels exit the infraorbital canal onto the face through the infraorbital foramen. T is foramen is on the anterior surface of the body of the maxilla, inferior to the eye orbit and superior to the canine fossa, which is a shallow depression superior and lateral to the canine.

b. Maxillary Sinus or Antrum (and Other Paranasal Sinuses)

T ere are four pairs of paranasal sinuses (hollow spaces) located within bones surrounding the nasal cavity (nasal passages), and they all connect with the nasal cavity. T ree pairs have been mentioned already: the sphenoidal, ethmoidal, and frontal sinuses (within the bones of the same names). T e fourth pair are the maxillary sinuses, one located in each maxilla. T e relative location of these paranasal sinuses are shown later in Figure 14-13. T e maxillary sinuses are the largest of these sinuses and, together with the other paranasal sinuses, they function to (a) lighten the skull, (b) give resonance to the voice, (c) warm the air we breathe, and (d) moisten the
nasal cavity. (T e average capacity of each maxillary sinus in an adult is about 15 mL or about 1 tablespoon. ${ }^{1}$)

Refer to Figure 14-8 while reading about the maxillary sinus. T is large, four-sided, pyramid-shaped cavity located within the body of each maxilla is important to dental health professionals because of the close relationship it has to the teeth. T e sinus cavity floor extends inferiorly onto the superior portion of the maxillary alveolar process where projections of the apices of the molar roots, and sometimes premolar roots, may be found. T is intimate relationship between the teeth and maxillary sinus space can be appreciated in Figure 14-9A and B. Only very thin bone lies between the floor of the sinus and the apices of the roots of the maxillary molars. In rare cases, no bone separates the root apices from the sinus, but there is always soft tissue between the root and the space of the cavity, made up of the periodontal ligament on the tooth root and the mucous membrane lining the sinus cavity. Sometimes, when a dentist extracts a molar and the root breaks off, he or she is unjustly accused of pushing the root into the sinus. It may have been located in the maxillary sinus prior to the extraction. T e other three walls of the pyramid-shaped sinus are toward the orbit of the eye, toward the face, and, posteriorly and laterally, next to the infratemporal space.

T e nerves to the maxillary molars (posterior superior alveolar [PSA] nerves) enter the maxilla and sinus lining through very small foramina called the alveolar [al VEE o lar] canals located posterior and superior to the maxillary third molars (Fig. 14-8). T ese nerves pass just beneath the membrane lining of the sinus or through bony canals within the walls of the sinus. An infection in either the sinus or these teeth can spread to the other. Pain caused by a maxillary sinus infection can be mistaken for pain originating in any one or all of the molars or premolars on that side. Unfortunately, healthy teeth are sometimes extracted in a futile attempt to alleviate pain that was caused by a chronic maxillary sinus infection.

All of the paranasal sinuses drain directly or indirectly into the nasal cavity, so an infection into the nose may spread into these sinuses. T e opening from each maxillary sinus to the nasal cavity is located on its anterosuperior wall (Fig. 14-8). T e maxillary sinus is lined with specialized cells (ciliated columnar epithelium) similar to those found in the respiratory tract. T e lining secretes mucous that moves spirally and upward (against gravity) across the membrane toward the opening of the sinus, which is located on the anterosuperior wall (Fig. 14-8), where secretions can drains into the nasal cavity. If humans walked on all fours with the head forward like many animals, this opening for drainage would be on the floor of the sinus, not near the roof, and humans would have fewer sinus problems. Persons with a congested maxillary sinus may get pain relief by placing their head with the face downward for several minutes to permit more rapid drainage of the maxillary sinuses.

Bony Processes of Each Maxilla
T ere are four processes extending out from the body of the maxillae. T e first three described below are best viewed in Figure 14-7.

fIGur E 14-8. Part of human skull, lateral view, with the lateral wall of the left maxilla removed, exposing the large maxillary $\sin \mathbf{u s .}$. Note that the foor of this sinus is in proximity to the maxillary posterior teeth but does not extend forward as far as the maxillary anterior teeth. The opening of this sinus (into the nasal chamber) is located superiorly on the medial wall of the sinus. Aportion of the palatine bone on the posterior wall of the sinus (shaded light green) is the vertical process of the palatine bone located adjacent to the pterygopalatine space. (Reproduced from Clemente CD, ed. Gray's anatomy of the human body. 30th ed. Philadelphia, PA: Lea \& Febiger, 1985:166, with permission.)

fIGur E 14-9. A. Three views of part of the left alveolar process of the maxilla surrounding the roots of the maxillary first and second molar and second premolar. Note the root tips (apices) shown by arrows extending out of the maxilla into what would have been the foor of the maxillary $\sin \mathbf{u s}$ space in an intact skull. B. Radiograph of the maxillary molar region showing the roots of the first molar several millimeters deep into the maxillary sinus (dark area surrounded by white border). Parts of the roots of the second molar are also within the sinus cavity. The root tip of the second premolar root is in the sinus as well. This is a common relationship.

Frontal (or nasofrontal) Process
T e frontal (or nasofrontal) process derives its name from the fact that its medial edge joins with the nasal bone, extending superiorly to also articulate with the frontal bone. T e medial surface forms part of the lateral wall of the nasal cavity and half of the opening of the nasal cavity (called the piriform aperture because of its pear shape).

Zygomatic Process
T e bulky zygomatic process forms part of the anterior or facial surface of each maxilla. It extends laterally to join with the maxillary process of the zygomatic bone.

alveolar Process

T e horseshoe-shaped alveolar [al VEE o lar] processes of the right and left maxillae (also found on the mandible, described later) extend from the body of the maxillae to surround the roots of all maxillary teeth. T e extension of these process from the body of each maxilla is best appreciated by viewing the maxillary from below since, when viewed laterally, the alveolar process appears to be continuous with the body of the maxilla (seen shaded on the right maxilla and the entire lower jaw or mandible in Fig. 14-7 and identified in cross-section in Fig. 14-10). Within each alveolar process, the roots of each tooth are embedded in an individual
alveoli (or tooth sockets) that are visible in the mouth after a recent tooth extraction. T e shape of each alveolus or thin bony socket naturally corresponds closely with the shape of the roots of the tooth it surrounds. Alveolar eminences are raised ridges of bone externally overlying prominent tooth root convexities. T e alveolar eminence over the canine tooth on each side is called the canine eminence (Fig. 14-7). Medial to the canine eminence is a shallow fossa over the root of the maxillary lateral incisor called the incisive [in SI siv] fossa. Lateral and superior to the canine eminence is a fossa over the roots of maxillary premolars named the canine fossa.

T e alveolar process is made up of several bony layers (seen in cross-section of the mandible in Fig. 14-10). T e mandibular bone is made up of the thickened inner (lingual) and outer (facial) dense cortical plate with less dense trabecular [trah BEK u lar] bone sandwiched in between. Trabecular bone is composed of many plate-like bone partitions that separate the irregularly shaped marrow spaces located within this bone. Synonyms for trabecular bone include cancellous or spongy bone. Small nerve branches and vessels actually pass through this spongy bone to enter all teeth through their apical foramen. A thin, compact bony layer called alveolar bone proper or bundle bone lines the wall of each tooth socket (or alveolus) and shows up on radiographs as a white line called the lamina dura. Other

fIGur E 14-10. A buccolingual cross-section (about $30 \mu \mathrm{~m}$ thick) of a human mandible and a molar. To the left of the mandible is the soft facial tissue of the cheek. Note the extent of the alveolar process (denoted by a red bracket) the part of the mandible that surrounds the teeth roots. The thick cortical plate surrounds the entire facial (left) and medial (right, inner) surfaces of the mandible, while the very thin layer of bone lines the socket that surrounds the tooth root called alveolar bone proper. A very thin periodontal ligament extends between the alveolar bone proper that lines the socket and outer layer of tooth root. It supports the tooth within its socket. Note that much of this mandible has the texture of a sponge with many hollow spaces (bone marrow cavities), allowing nerves and blood vessels, after entering the bone through foramen, to pass through this trabecular (spongy) bone on their way to each tooth and adjacent bony structures. (Tooth enamel was destroyed by the decalcification of the specimen with nitric acid preparatory to embedding and sectioning.) For further information on the histology of these structures, refer to references. ${ }^{2-8}$
terms used to describe this bony layer include bundle bone, alveolar bony socket, true alveolar bone, and cribriform plate of the alveolar process. T e only space between the outer layer of tooth root (which is covered with cementum) and this alveolar bone is occupied by a periodontal ligament that suspends each tooth within its alveolus by attaching the circumference of each tooth root to the surrounding alveolar bony socket. T e periodontal ligament is very thin (less than a third of a millimeter).

Palatine Process of the maxilla

T eright and left palatine [PAL a tine] processes (Fig. 14-11) join to form the anterior three quarters of the bony roof of the mouth called the hard palate. T e separate paired palatine bones, discussed later in this chapter, form the posterior one quarter of the hard palate. T e palatine process of each maxilla is a thin, bony shelf that projects horizontally to join the process from the opposite side. T e entire hard palate separates the nasal passageways from the oral cavity. T at is, the hard palate forms the roof the mouth and the floor of the nasal passageways. T e shape and relative location of these processes can be best appreciated by viewing
them posteriorly between the two pterygoid processes of the sphenoid bone.

T e anteroposterior line of fusion between the right and left palatine processes of the maxillae (and the horizontal plates of the palatine bones) is the intermaxillary (or midpalatine) suture. It is located on the midline running posteriorly from the incisive foramen (Fig. 14-11). T e incisive foramen is a centrally located opening at the most anterior part of this suture, just posterior to the central incisors. It transmits branches of the nasopalatine nerve and artery that supply adjacent palatal mucosa. Just posterior to the maxillary alveolar process of the most posterior maxillary molar is a bulge of bone called the maxillary tuberosity. A notch that separates the maxillary tuberosity of each maxilla from the adjacent pterygoid process of the sphenoid bone is called the hamular notch. Recall that the pterygoid hamulus, the hook-like projection of the medial plate of the pterygoid process, is located just posterior to the hamular notch. In your mouth, the pterygoid hamulus might be felt with your tongue (or clean fingers) under the mucosa of the soft palate posterior to the hard palate and slightly medial to the maxillary tuberosity.

fIGurE 14-11. Inferior view of the hard palate with maxillary teeth. The palatine process of the left maxilla is shaded red (on the right side of the drawing), and the horizontal process of the right palatine bone is shaded light green on the left side of the drawing. Note the important foramen where nerves and vessels can pass through to supply the palatal tissue: the greater palatine foramen in the palatine bones and the incisive foramen anteriorly between the palatine processes of the two maxillae. Also, notice the location of the junction of the hard palate and alveolar process.

An embryonic premaxilla cannot normally be distinguished in the adult skull. It is the anterior part of the maxillary bone, which contains the incisors. When visible, a suture line separates the premaxilla from the palatine processes of the two maxillae.

2. palatine Bones

Refer to Figure 14-11 while reading about the palatine bone. T e horizontal processes of the paired palatine bones form the posterior one fourth of the hard palate. T e entire hard palate is made up of these palatine bones, along with the right and left palatine processes of the maxillae. A palatomaxillary [PAL ah toe MACK si lar ee] (transverse palatine) suture, at right angles to the intermaxillary suture, is the junction between the palatine processes of the maxillae and the horizontal processes of the palatine bones. T e shape of the palate and the shape of the maxillary arch vary in length, width, and height. T e hard palate blends smoothly with the palatal portion of the maxillary alveolar process. Part or all of the palatine processes are absent in a person who was born with a cleft palate.

T e greater palatine [PAL ah tine] foramina (Fig. 14-11) are located posteriorly on each side near the angle where the
right and left palatine bones meet the alveolar processes of the hard palate. T ey transmit the descending palatine vessels and greater (anterior) palatine nerves to the palate. T e lesser palatine foramina are located on the palatine bone just behind and lateral to the greater palatine foramen. T ey transmit the middle and posterior palatine nerves.

T e palatine bones also have vertical processes that are practically hidden from view on the intact skull. T ese vertical processes form part of the posterior wall of the maxillary sinus in Figure 14-8. T ese vertical processes of the palatine bones are separated from the pterygoid process of the sphenoid bone by a space called the pterygopalatine [TER i go PAL ah tine] space, mentioned earlier when discussing the maxillae. Recall that this space is an important passageway of the maxillary nerve branches of CN V that exited from the cranium via the foramen rotundum on their way to the maxillary teeth and surrounding structures.

3. Zygomatic Bones

T e zygomatic bones (also called malar bones) form the prominence of each cheek (one on each side of the face, shaded purple in Fig. 14-12). T e temporal process of the zygomatic bone forms an arch along with the adjoining

fiGur E 14-12. Human skull, left side. The lateral view of the mandible is shaded yellow, and the left zygomatic bone (of the cheek) is shaded purple. In this view, the vertical ramus and its two processes (condylar and coronoid processes) are evident. Also, the zygoma bone, the zygomatic process of the temporal bone, and the zygomatic process of the maxilla form the zygomatic arch.
zygomatic process of the temporal bone. T is zygomatic arch is where another muscle of mastication (the masseter muscle) attaches to the skull.

4. mandible: forming the Inferior portion of the Temporomandibular Joint

T e single horseshoe-shaped mandible [MAN de b'l], seen anteriorly in Figure 14-13, is the largest and strongest bone of the face. Generally speaking, it is bilaterally symmetrical, and it contains all of the mandibular teeth. It is attached by ligaments and muscles to the relatively immovable bones of the temporal bone. T e temporomandibular joint (TMJ) between the mandible and the temporal bones are movable articulations, the only visible movable articulations in the head. T erefore, the mandible is the only bone of the skull that can move. T e other bones of the skull move only when the whole head is moved, and then, they move in unison.

T e mandible has three parts: one horizontal, horseshoeshaped body and two vertical rami [RAY mee] (singular, ramus [RAY mus]) (see Fig. 14-13). T e landmarks of the
mandible will be discussed according to their location: first those seen on the external surface of the body, then those on each ramus, and then those seen on the internal surface.

a. Body of the Mandible: External Surface

As with the maxillae, a horseshoe-shaped alveolar [al VEE o lar] process surrounds the tooth roots (shaded in Fig. 14-7), and alveolar eminences are visible as vertical elevations over tooth roots on the facial surface. T e prominent elevations overlying the roots of the canines are called the canine eminences.

T e symphysis [SIM fi sis] is the line of fusion of the right and left sides at the midline where the two halves of the mandible fused (joined together) during the first year after birth. It is therefore usually not visible. Near the symphysis, two mental tubercles and one mental protuberance make up the human chin (Fig. 14-13). No other mammal has a chin. Two mental tubercles lie on either side of the midline near the inferior border of the mandible. T e mental protuberance is centered on the midline between the two

fIGur E 14-13. Human skull, frontal aspect. The mandible is shaded yellow. The bulky body of the mandible is the horizontal portion including the alveolar process that surrounds the mandibular teeth, and the two vertical processes extending to the base of the neurocranium (to the temporal bones) are called the rami (single is ramus). Also, the relative locations of the four pairs of paranasal sin uses are outlined: frontal, ethmoid (also called air cells), sphenoid (more posterior than ethmoid), and maxillary.
mental tubercles but is about 10 mm superior. T e protuberance and the tubercles are more prominent on men than on women.

An external oblique [ob LEEK] ridge (Fig. 14-12) extends from the anterior border of the ramus toward the canine region. T e nearly horizontal ledge of bone in the molar region between the external oblique ridge and alveolar process is named the buccal shelf. T e buccal (or buccinator) nerve is located in the cheek just superior to this shelf.

T e mental foramen is located near the root end (apex) of the second premolar (Fig. 14-12). T e nerve within the mandible (inferior alveolar nerve) gives off a branch (mental branch of the inferior alveolar nerve) that exits through this mental foramen to supply skin on that side of the chin. T e mental nerve exits the mandible in an outward, upward, and posterior direction before it spreads anteriorly. Place a flexible probe carefully into this canal of the mandible to confirm the direction of this canal. T e mental foramen is located at practically the same level on most humans: 13 to 15 mm superior to the inferior border of the mandible. (In a study of 40 skulls, ${ }^{9}$ the mental foramen was found most often to be directly under the second premolar (42.5\% of the time) or between the apices of the first and second premolars (40%). Infrequently, it was located distal to the apex of the second premolar (17.5\%) and was never found under the apex of the first premolar.) On dental radiographs (x-rays), this foramen appears as a small dark circle next to the premolar root and must be distinguished from a periapical abscess (infection destroying bone near the root apex), which may appear very similar to the normal mental foramen.

T e bulky, curved, horizontal body and each flattened vertical ramus join at the angle of the mandible on either side. T e angle of the mandible is where the inferior border of the body joins the posterior border of the ramus (Fig. 14-12). T e roughened portion of the lateral surface near the angle of the mandible is where the inferior end of the powerful masseter muscle attaches. T e posterior border of the ramus is the location of the attachment of one end of the stylomandibular ligament (whose other end attaches to the styloid process of the temporal bone).
b. Ramus of the Mandible: Lateral Surfaces

Refer to Figure 14-12 while reading about this surface. T ere are two processes on the superior end of each ramus. T e coronoid [KOR o noyd] process is the more pointed, anterior process on the upper border. T e second more rounded and posterior process of the ramus is the condyloid [KON di loyd] process (also called the mandibular condyle). T is process is composed of a bulky condyle head and a narrow neck that attaches the head to the ramus. T e sigmoid notch (also called the mandibular or semilunar notch) is located between the coronoid process and the condyloid process. An important muscle of mastication, the lateral pterygoid, attaches to the front of the neck of the condyloid process in a depression called the pterygoid fovea (Fig. 14-14). T e head of the mandibular condyle fits into and functions beneath the articular (glenoid) fossa of the temporal bone (which is discussed in more detail later in this chapter).

c. Internal or Medial Surface of Mandible

Refer to Figure 14-14 while reading about this surface of the mandible. T e mandibular foramen is a prominent opening located on the medial surface of the ramus inferior to the sigmoid notch near the middle of the ramus anteroposteriorly. It is the entrance into the mandibular canal where the inferior alveolar vessels and nerves pass from the infratemporal space into the mandible. T e mandibular lingula [LING gu lah] is a tongue-shaped projection of bone just anterior and slightly superior to the mandibular foramen. T is is where the inferior end of the sphenomandibular ligament attaches to the mandible. T e superior end attaches to the angular (sphenoidal) spine on the sphenoid bone. T e mylohyoid groove is a small groove running inferior and anterior from the mandibular foramen. T e mylohyoid nerve rests in this groove.

T e temporal crest is a ridge of bone extending from the tip of the coronoid process onto the medial surface of the ramus and terminating near the third molar. T e tendon from the fibers of the wide, flat, fan-shaped temporalis muscle attaches here. T e inferior one fourth of the temporal crest

fIGur E 14-14. Mandible, medial surface. Notice the important mandibular foramen, as well as ridges, fossa, and processes.
is called the internal oblique line. It is most important as a radiographic, rather than an anatomic, landmark. It appears on radiographs as a short, curved line somewhat inferior to the image of the external oblique line.

T e retromolar fossa is a roughened shallow fossa distal to the last molar and bounded medially by the lowest portion of the temporal crest and laterally by the external oblique ridge. T e retromolar triangle is in the lowest most anterior, and only horizontal, portion of the retromolar fossa. T e most posterior fibers of the buccinator muscle (a pouchshaped cheek muscle) attach within this retromolar triangle on a slight ridge of bone called the buccinator crest.

Genial [JEE ne al] and mental spines or tubercles are located on either side of the midline on the internal surface of the mandible. Two large muscles (the genioglossus and the geniohyoid) attach to these spines and the elevated, roughened bone near them.

T e mylohyoid ridge extends downward and forward from the molar region to the genial tubercles. It is not synonymous with the internal oblique line as incorrectly stated in some radiographic textbooks. T e mylohyoid muscle, which forms part of the floor of the mouth, attaches from the mylohyoid ridge on the right medial side of the mandible to the ridge on the left medial side (somewhat like a hammock). T e mylohyoid ridge separates two fossae, one above and one below. A very broad, shallow sublingual [sub LING gwal] fossa is found just superior to the mylohyoid ridge and lateral to the genial tubercles on each side. T e sublingual salivary gland rests in this fossa. A shallow submandibular fossa is found just inferior to the mylohyoid ridge
in the premolar and molar regions. T is is where the large submandibular salivary gland rests. On the inferior border of the mandible, a shallow notch (called the antegonial [an te GO nee al] notch seen in Fig. 14-14) is located anterior to the angle of the mandible and is where the facial arteries and veins pass from the neck to the face. You should be able to feel a pulse at this location of your own lower jaw.

5. Te mporal Bones: forming the Superior part of the Temporomandibular Joint

T e temporal bones are a pair of complex bones that form part of the sides and base of the neurocranium (braincase) (best seen laterally in Fig. 14-15 where one is shaded blue). Laterally, the temporal fossa (outlined in Fig. 14-15) is a large, very shallow depression in the temple region of the face formed primarily by the lateral part of the temporal bone (also called the squamous part because it is shaped like a large fish scale) and also by the greater wing of the sphenoid bone and parts of the parietal and frontal bones that were discussed earlier. T e temporal fossa is where the superior end of the major muscle of mastication (the temporalis muscle) attaches. Squamosal [skwa MO sal] sutures join the temporal bones to the parietal bones.

T e paired temporal bones are especially important to dental professionals since each has a mandibular fossa (one is labeled on the right side of Fig. 14-16) located on the inferior aspect of the temporal bones. It is within these fossae that the mandibular condyles articulate with the temporal bones on the base of the neurocranium. T is jaw joint (actually a joint

fIGur E 14-15. Human skull, left side. The lateral surface of the left temporal bone is shaded blue. Note its squamous part, as well as its processes: mastoid, styloid, and zygomatic.

fiGure 14-16. Human skull, inferior surface, with half of the mandible removed on the right side of the drawing. The right and left temporal bones are shaded blue. Note the zygomatic process forming part of the zygomatic arch and the mandibular and articular fossa and articular eminence. The small portion of the midline vomer bone (shaded yellow) is seen separating the right and left halves of the nasal passage ways.
on each side) is called the temporomandibular joint (commonly abbreviated TMJ) where the temporal bone and mandible articulate. Each mandibular fossa can be divided into two parts by the petrotympanic ássure (Fig. 14-16). T e anterior two thirds of each mandibular fossa (that portion anterior to the petrotympanic fissure) is the important articular fossa (or glenoid fossa). Each articular fossa has a ridge of bone forming its anterior border, which is called the articular eminence.

Each temporal bone has several processes. T e zygomatic [zy go MAT ik] process (Fig. 14-15) is the finger of bone extending anterior and lateral to the mandibular fossa of the TMJ. It joins with the temporal process of the zygomatic bone (and the zygomatic process of the maxillae) to form an arch called the zygomatic arch. T is arch shape of bones, seen from beneath in Figure 14-16, is the attachment of one end of the large muscle of mastication (masseter muscle). T e prominent mastoid process or portion (Fig. 14-15), seen inferiorly and posteriorly to the mandibular fossa, is the attachment for one end of a major neck muscle, the sternocleidomastoid muscle. You can feel the bump of the mastoid process behind your earlobe. Also, on the inferior surface of the temporal bones but more medial is the styloid process (Fig. 14-15), shaped like a small skinny pencil (or stylus). It is the attachment for one end of a ligament (stylomandibular ligament) that extends to the mandible.

Several paired foramina are of importance on this bone. Laterally, the large external acoustic meatus [a KOO stik me A tus] or auditory meatus is the entrance into the ear canal (Fig. 14-15). Note the proximity of the TMJ to the ear canal opening. T is petrous portion of the temporal bone contains the auditory canal with the minute bones of hearing known as the malleus, incus, and stapes. T e facial nerve (CN VII) exits the braincase by entering this petrous portion of the temporal bone through the internal acoustic meatus (Fig. 14-17) and exits the temporal bone into the infratemporal space through the stylomastoid foramen (Fig. 14-16), which is located between the styloid and mastoid processes. T e carotid canal is the passageway of the internal carotid artery into the braincase, and the jugular foramen (between the temporal and occipital bones) is where the glossopharyngeal nerve (CN IX) passes out of the braincase (seen externally in Fig. 14-16 and internally in Fig. 14-17).

d. Small BONES Of Th E faCE

T e vomer bone is a midline bone that, along with the vertical projection of the ethmoid bone, forms the nasal septum. T e vomer is visible posteriorly between the two halves of the nasal passageways in Figure 14-16, and the nasal septum is visible anteriorly in Figure 14-18. T e nasal septum separates

fIGur E 14-17. Part of human skull: bones lining the inside of the neurocranium with the temporal bones in blue. The thick petrous portion of these bones contains the very small bones of the inner ear (incus, stapes, and malleus). Important nerves and vessels pass through the foramen labeled on this diagram. (Reproduced from Clemente CD, ed. Gray's anatomy of the human body. 30 th ed. Philadelphia, PA: Lea \&Febiger, 1985:166, with permission.)
 surfaces of the eye socket are shaded light red, the inferior nasal conchae or turbinate bones on the lateral sides of the nasal passageway are shaded blue, and the midline nasal septum is shaded yellow. The septum is made up of two bones: the vomer bone and the midline plate of the ethmoid bone.
the right and left halves of the nasal cavity. A deviated septum may limit breathing and require surgery.

T e two nasal bones form the bony bridge of the nose (Fig. 14-18). T ese nasal bones along with the two maxilla bones, surround the opening (piriform aperture) to the nasal cavity, also known as the nasal passages.

T e lacrimal [LAK ri mal] bones (also spelled lachrymal) are small rectangular bones at the medial corner of each orbit that contain a depression for tear glands (Fig. 14-18).

T e inferior nasal conchae [CONG kee] or singular concha [KONG kah] (or turbinates) are scrolled bones (like the cross-section scroll shape of a conch shell) in the nasal cavity forming part of the maxillary sinus wall. T ese are best seen through the piriform aperture (Fig. 14-18). Along with other scrolled processes of the ethmoid bone described ear-
lier, they increase the area of mucous membrane inside the nasal cavity to warm and moisten air that we breathe.

E. h yOId BONE

T e hyoid [HI oid] bone (see later in Fig. 14-35) is not really a bone of the skull but is located in the neck above the laryngeal prominence of the thyroid cartilage (known to many as the Adam's apple or voice box). T e hyoid bone is not connected to the bones of the skull except via soft tissue. A group of muscles that extend from the hyoid bone superiorly to attach to the mandible are called suprahyoid muscles (such as the geniohyoid muscles that also attach to the genial tubercles), and another group that extend inferiorly from the hyoid bone to attach to the sternum (breastbone) or clavicle (collar bone) are called infrahyoid muscles.

r EvIEw Questions

Select the one best answer.

1. Which of the following bones does not form part of the temporal fossa?
a. Parietal
b. Frontal
c. Sphenoid
d. Temporal
e. Occipital
2. T e mental foramen is located where?
a. On the external surface of the mandible
b. On the internal surface of the mandible
c. On the palatal surface of the maxilla
d. On the external surface of the maxillae
e. On the sphenoid bone
3. What space does the maxillary nerve pass through immediately after exiting the foramen rotundum?
a. Nasopalatine canal
b. Mandibular canal
c. Maxillary sinus
d. Infraorbital canal
e. Pterygopalatine space
4. What bony process of the maxilla surrounds tooth roots?
a. Nasofrontal process
b. Frontal process
c. Alveolar process
d. Zygomatic process
e. Palatine process
5. Which structure is not located on the sphenoid bone?
a. Foramen ovale
b. Foramen rotundum
c. Greater wing
d. Pterygoid process
e. Articular fossa
6. Which teeth are most likely to have the roots in proximity with the maxillary sinus?
a. Maxillary molars and premolars
b. Maxillary canines
c. Maxillary incisors
d. Mandibular posterior teeth
7. T e suture line joining the two parietal bones is called the
a. Squamosal suture.
b. Coronoid suture.
c. Sagittal suture.
d. Intermaxillary suture.
e. Lambdoid suture.
8. Which of the following is not a bone that contains paranasal sinuses?
a. Zygomatic
b. Sphenoid
c. Ethmoid
d. Maxilla
e. Frontal

LEARNINg ExERCISES

Each of the following bony landmarks can be seen or felt underneath the soft tissue on the face or in the mouth and could be used to describe the location of abnormalities during a clinical examination. First, describe the location; then, identify each of the following landmarks on your own face and on an actual skull (or figures within this text). Use the referenced figures to confirm that you have correctly located each landmark. Use clean fingers when palpating structures within the mouth.

- Canine eminence of the mandible and maxillae-Figure 14-7
- Mental protuberance-Figure 14-13
- Maxillary tuberosity-Figure 14-11
- External auditory meatus-Figure 14-12

Each of the following landmarks is the attachment of a major muscle or ligament of importance to the dental professional. First, describe the location; then, identify each of the following landmarks on an actual skull (or figures within this text). Use the referenced figures to confirm that you have correctly described the location of the attachment on the skull. When possible, also feel or point to the landmark's location on your own head or within your mouth (using clean fingers).

- Angle of the mandible, lateral surface (lower end of masseter muscle) -Figure 14-12
- Zygomatic arch (upper end of masseter muscle)-Figure 14-12
- Angle of the mandible, medial surface (lower end of medial pterygoid muscle)-Figure 14-14
- Medial surface of the lateral pterygoid plate and adjacent pterygoid fossa of the sphenoid bone (upper end of medial pterygoid muscle)-Figure 14-6
- Temporal fossa (upper end of temporalis muscle)-Figure 14-15
- Coronoid process and temporal crest of mandible (lower end of temporalis muscle)-Figure 14-14
- Lateral surface of the lateral pterygoid plate of the sphenoid bone (anterior end of lateral pterygoid muscle) Figure 14-5

1 Ear NING ExEr CISE (continued)

- Pterygoid fovea: anterior neck of mandibular condyle (posterior end of lateral pterygoid muscle)-Figure 14-14
- Angular spine of the sphenoid (upper end of sphenomandibular ligament)-Figure 14-6
- Lingula of the mandible (lower end of sphenomandibular ligament)-Figure 14-14
- Styloid process of the temporal bone (upper end of stylomandibular ligament)-Figure 14-15
- Mastoid process of the temporal bone (upper end of sternocleidomastoid muscle)-Figure 14-15
- Mylohyoid ridge of the mandible (mylohyoid muscle) Figure 14-14
- Genial spines of the mandible (upper end of some suprahyoid muscles)-Figure 14-14
Each of the following foramen or spaces is the passageway for nerves and blood vessels of importance to the dental professional. First, describe the location; then, identify each of the following foramina or spaces on an actual skull (or figures within this text). Use the referenced figures to confirm that you have correctly located the foramen, canal, or space on the skull. Then, try to place your finger as close as possible to that opening, realizing that sometimes you cannot get very close with your finger but might get closer with the needle of a hypodermic syringe.
- Foramina rotundum in the sphenoid bone (for the maxillary division of trigeminal nerve)-Figure 14-4
- Pterygopalatine space (for the maxillary division of trigeminal nerve) -Figure 14-5
- Foramina ovale in the sphenoid bone (for the mandibular division of trigeminal nerve) -Figures 14-4 and 14-6
- Mandibular foramina in the mandible (for the inferior alveolar nerve)-Figure 14-14
- Mental foramina in the mandible (for the mental nerve)Figure 14-12
- Greater palatine foramina in the palatine bones (for the greater palatine nerve)-Figure 14-11
- Incisive foramen between the maxillary bones (for the nasopalatine nerve) Figure 14-11
- Infraorbital foramina in the maxillae (for the infraorbital nerve)-Figure 14-7

SECTION II Th E TEmpOr OmaNd IBu 1 ar JOINT (Tm J)

Objectives

The objectives for this section are to prepare the reader to perform the following:

- Describe and locate (on a skull) the articulating parts of the TMJ.
- Describe the location and functions of the articular disc.
- Palpate the lateral and posterior surfaces of the condyle of the mandible during movement of the jaws.
- On a skull, describe and locate the attachments of the ligaments of the TMJ.

An introduction to the TMJ was presented in Chapter 9 on Occlusion, but this chapter goes into more detail regarding the anatomy of this joint. A joint, or articulation, is a connection between two separate bones of the skeleton. T e TMJ is the articulation between the two condyles of the mandible and the two temporal bones. For that reason, some authors state that we have two TMJs, but since it is a bilateral articulation where the right and left sides work as one unit, the authors of this book will refer to the joint as one TMJ. T is articulation may also correctly be termed the craniomandibular articulation since it is the articulation between the movable mandible and the stationary cranium or skull. ${ }^{10}$ It is the only visible free-moving articulation in the head; all others are sutures and are immovable. ${ }^{11}$

T e coordinated movements of the right and left joints are complex and usually controlled by reflexes. Within some limit or range, the great adaptability of the joints permits the freedom of movement of the mandible required during speech and mastication (chewing). One can learn, however, to move the mandible voluntarily into specific, well-defined positions or pathways. ${ }^{12-16}$ Both the maxillae and mandible support teeth whose shape and position greatly influence mandibular movements. ${ }^{10}$ Proper functioning of the TMJs has a profound effect on the occlusal contacts of teeth, which involve nearly all phases of dentistry.

a. aNaTOmy Of Th E TEmpor OmaNd IBu 1 ar JOINT

T ere are three articulating parts to each side of the TMJ: the mandibular condyle, the articular fossa of the temporal bone (with its adjacent eminence), and the articular disc
interposed between the bony parts (Figs. 14-19 and 14-20). T ese parts are enclosed by a fibrous connective tissue capsule. ${ }^{1,11,14}$

(1.) mandibular Condyle

Each mandibular condyle [KON dile] is about the size and shape of a large date pit with the greater dimension mediolaterally than anteroposteriorly, evident when comparing the width of the condyle mediolaterally in Figure $14-20$ to the narrower width anteroposteriorly seen from the side in Figure 14-19. From the posterior (or anterior) aspect, it is wide mediolaterally with a narrow neck. The superior surface of the mandibular condyle is strongly convex anteroposteriorly and mildly convex mediolaterally.

Carefully examine the photomicrograph of a human TMJ seen in Figure 14-21. T e condyle is in the position it would occupy when the teeth fit together as tightly as possible (maximum intercuspal position). T e functioning regions are covered with fibrous connective tissue. T e fibrous layers of the condyle are avascular (devoid of blood vessels and nerves). ${ }^{2} \mathrm{~T}$ is fibrous, avascular type of connective tissue is adapted to resist pressure. It is particularly thick on the superior and anterior surfaces of the condyle (seen as the red-shaded structure in Fig. 14-21) over the region where most function occurs when the condyle is forward from its resting position, as when we bring our incisors together. (Notice in Fig. 14-21 that this same type of fibrous covering also lines the posterior articulating surfaces of the articular eminence and adjacent fossa, as well as the center portion of the disc.)
fIGur E 14-19. Human skull, left side. This lateral view shows the articulation of the bones of the temporomandibular joint, namely, the temporal bones and the mandible. The head of the condyle of the mandible is shaded yellow, and the blue line on the inferior border of the zygomatic process of the temporal bone outlines the concave mandibular (with its articular) fossa. A red line just anterior to it outlines the convex articular eminence. For the mandibular to move forward, the condyles guide the mandible down onto the articular eminence, so the mandible is depressed and the mouth opens.

fIGur E 14-20. Human skull: inferior surface with half of the mandible removed on the right side of the drawing. On the left side of the drawing, the condylar process of the mandible is shaded yellow, and on the right side with the mandible removed, the mandibular (and articular) fossa of the temporal bone is shaded blue, and the more anterior articular eminence is shaded light red.

2.
 articular fossa (Nonfunctioning portion) and articular Eminence (functioning portion)

Study the right side of Figure 14-20 where half of the mandible has been removed, exposing the maxillary teeth and articular fossa and eminence of the temporal bone. T e articular (glenoid) fossa is the portion of the mandibular fossa that is anterior to the petrotympanic $\dot{\alpha} s s u r e$. It is considered to be a nonfunctioning portion of the joint because, when the teeth are in tight occlusion, there is no tight contact from the head of the condyle through the disc to the concave part of the articular fossa.

T e articular eminence or transverse bony ridge is located just anterior and inferior to the articular fossa (Fig. 14-19). As stated previously, its posterior inferior surface is padded or lined with a thickened layer of fibrous connective tissue, more than the rest of the articular fossa (Fig. 14-21), indicating that this is the functional portion of the joint that take the force when we are chewing food with the mandible in a slightly protruded and/or lateral position. T is is where the anterior superior portion of the mandibular condyle rubs against the eminence, but only indirectly since the articular disc is normally interposed between the two functioning bony elements.

(3. a rticular disc

Examine a skull with the posterior teeth fitting together (in tight occlusion) and study how the mandibular condyle fits loosely into the articular fossa. T e disc is not present in a prepared dry skull because the disc is not bone. T ere should be a visible space between the mandibular condyle and the articular fossa that, in life, was occupied by the disc.

T e articular disc (Figs. 14-21 and 14-22) is a tough oval pad of dense fibrous connective tissue acting as a shock absorber between the mandibular condyle and the articular fossa and articular eminence. T e disc surfaces are very smooth. Each disc is thinner in the center than around the edges. T is shape provides one natural wedge anterior to the condyle head and a second wedge posterior to the condyle. Rarely, it may become perforated. T e center of the disc has no blood supply ${ }^{2}$; however, it is richly supplied elsewhere. T e upper surface of the disc is concave anteriorly to conform to the convex articular eminence, and it is convex posteriorly, conforming to the concave shape of the articular fossa that it loosely rests against. T e lower surface of the disc is concave anterior to posterior, thus adapting to the upper surface of the convex mandibular condyle.

fIGur E 14-21. Temporomandibular joint, photomicrograph of the lateral aspect. The anterior of the skull (the face) is toward the right of the picture. The white area across the top is the space of the braincase. Notice the thicker fibrous covering (shaded red) and underlying compact bone on the functional part of the posterior inferior articular eminence and superior anterior part of the mandibular condyle. Also, notice the arrows indicating the contours of the concave articular fossa, and convex articular eminence, of the temporal bone. (Courtesy of Professor Rudy Melfi.)

As the mandible moves forward, the discs move forward with the mandible due, in part, to the thickened borders of each disc, which conforms to the shape of the condyles, and because the muscles that pull the mandible forward (lateral pterygoids) are attached to the neck of each condyle (in the pterygoid fovea) as well as to the discs. When the thicker peripheral portions of the discs become flattened or the center of the disc thickens, the disc fails to move synchronously with the condyle, resulting in a popping or grating noise (crepitus), which is quite an annoying yet a fairly common occurrence. T e frequency of this occurrence is presented in Table 14-1. With an elastic posterior attachment, the disc can move with the head of the condyle during function.

T e articular disc has many functions. ${ }^{17,18}$ It divides the space between the head of the condyle and the articulating fossa into upper and lower spaces (synovial cavities seen in Fig. 14-22), which permits complex functional movements of the mandible. ${ }^{18} \mathrm{~T}$ e anterior and posterior portions of the disc contain specialized nerve fibers called proprioceptive [PRO pri o SEP tiv] übers, which help to unconsciously determine the position of the mandible and therefore help regulate movements of the condyle. It stabilizes the condyle by filling the space between incongruous articulating surfaces of the convex condyle and concave-convex articular fossa and articular eminence. ${ }^{18} \mathrm{~T}$ e disc cushions the articulating bones of the joint at the areas of contact (like a shock absorber). T e cushioning and lubrication reduce physical wear and strain on joint surfaces.

fIGurE 14-22. Temporomandibular joint, sagittal section. The anterior surface of the skull (face) is to the left. The sectioned (blue) temporal bone (with mandibular fossa and articular eminence) forms the superior part of the joint, and the sectioned head of the mandibular condyle (yellow) forms the inferior part. The articular disc is shaded light red. The upper and lower synovial spaces surround the disc. (Reproduced from Clemente CD, ed. Gray's anatomy of the human body. 30th ed. Philadelphia, PA: Lea \& Febiger, 1985:340, with permission.)

B. 1 IGa mENTS ThaT Su ppOr T Th E JOINT a Nd 1 ImIT JOINT mOvEmENT

Ligaments are slightly elastic bands of tissue. T ey do not move the joint; muscles move the joint. T ey do support and confine the movement of the mandible to protect muscles from being stretched beyond their capabilities.

fibrous Capsule (Capsular 1 igament)

The fibrous (or articular) capsule is a fibrous tube of tissue that encloses the joint, best seen laterally in Figure 14-23 and medially in Figure 14-24. It is fairly thin, except laterally, where the thicker lateral (formerly temporomandibular) ligament is located. ${ }^{19}$ The upper border of the capsule is attached to the temporal bone around the circumference of the articular fossa and the articular eminence. The lower border is attached around the neck of the condyloid process, thus enclosing the condyle and completing the tube.

T e internal surface of the fibrous capsule is lined with a synovial membrane that surrounds the bones and their
articulating surfaces. T is thin membrane secretes a fluid, synovial fluid, which lubricates the joint. T is fluid is three times more slippery than ice. T e synovial fluid both lubricates and nourishes the fibrous covering of the articulating surfaces and center of the disc that lack a blood supply. In a normal joint space, there is only a small amount of fluid (one or two drops).

T e articular disc is attached anteriorly to the fibrous capsule, and posteriorly, it is connected by a thick pad of loose elastic, vascular connective tissue called the bilaminar zone (Fig. 14-21). Laterally and medially, each disc is tightly attached to the lateral and medial sides of the mandibular condyle but not to the capsule. T erefore, the discs can follow the movement of each condyle when the muscles (lateral pterygoid muscles attached to the necks of the condyles and the discs) move the mandible and discs forward. T is design of attachments gives each disc freedom to move anteriorly but limits it from excessive forward movement that could result in its displacement anterior to the head of the condyle. ${ }^{20} \mathrm{~T}$ e anterior part of this fibrous capsule prevents excessive movement of the condyle of the mandible on wide openings as it becomes taut.

Ta B1 E 14-1 prevalence of Crepitus during maximum Opening ${ }^{a}$

| | NONE (\%) | BOTH SIDES (\%) | RIg HT SIDE (\%) | LEFT SIDE (\%) | ONE SIDE (R OR L) (\%) |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: |
| 594 Dental hygiene students | 52.0 | 13.3 | 18.2 | 16.8 | 35.0 |
| 505 Dental students | 72.0 | 4.2 | 15.9 | 7.9 | 23.8 |
| Percentage of all 1099 students | 61.2 | 9.1 | 17.1 | 12.7 | 29.8 |

[^13]fIGur E 14-23. Fibrous capsule surrounding the TMJ is shaded green, and the thickened outer lateral ligament is shaded red. (Reproduced from Clemente CD, ed. Gray's anatomy of the human body. 30 th ed. Philadelphia, PA: Lea \& Febiger, 1985:339, with permission.)

2. 1 ate ral 1 igament (formerly TmJ 1 igament)

T e outer layer of the fibrous capsule is a thicker layer of fibrous tissue that is reinforced by accessory ligaments, which strengthen it. T e lateral ligament of this joint is the strong reinforcement of the anterior lateral wall of the capsule (Fig. 14-23). It attaches to the zygomatic arch and is directed obliquely down and posterior to the lateral and posterior neck of the condyle. T is ligament keeps the condyle close to the fossa and helps to prevent excessive lateral and posterior displacement of the mandible. It has no counterpart medially, and seemingly, none is needed since the right and left temporomandibular articulations work together as
a unit. T e lateral ligament on the opposite side, by failing to stretch, prevents excess medial displacement on the side moving medially.

3. Styloman dibular 1 igament

T e stylomandibular [STY lo man DIB yoo lar] ligament is posterior to the joint but also gives support to the mandible (Fig. 14-24). It is relaxed when the mouth is closed but becomes tense on extreme protrusion of the mandible. ${ }^{19}$ It is attached above to the styloid process of the temporal bone and below to the posterior border and angle of the mandible.

fIGurE 14-24. Ligaments of the

 temporomandibular joint limit mandibular movement. The fibrous capsule (capsular ligament) shaded green surrounds the joint, the stylomandibular ligament (red) connects the styloid process of the temporal bone to the posterior surface of the mandible near the angle, and the sphenomandibular (or spinomandibular) ligament (yellow) connects the spine of the sphenoid bone with the medial surface of the mandible near the lingula (tongue shaped process) adjacent to the mandibular foramen. (Reproduced from Clemente CD, ed. Gray's anatomy of the human body. 30th ed. Philadelphia, PA: Lea \&Febiger, 1985:339, with permission.)

fiGur E 14-25. Skull at birth shows fontanelles (membranecovered openings between bones). Notice that the mandibular condyle is barely higher than the crest of the mandibular ridge.

Sphenomandibular 1 igament

T e sphenomandibular [SFE no man DIB yoo lar] ligament is medial to the joint (Fig. 14-24). It gives some support to the mandible and may help limit maximum opening of the jaw. It is attached superiorly to the angular (sphenoidal) spine of the sphenoid bone and fans out inferiorly to attach on the lingula of the mandible near the mandibular foramen.

C. d EvEl OpmENT Of Th E TEmpOr OmaNd IBu 1 ar JOINT

In infants, the articular fossa, the articular eminence, and the condyle are rather flat. T is flatness allows for a wide range of sliding motions in the TMJ. Also, this joint is at about the same level as the occlusal plane at birth with relatively no ramus height (Fig. 14-25). During growth, the articular fossa deepens, the articular eminence becomes prominent, the condyle becomes rounded, and the shape of the disc changes to conform to the change in shape of the fossa and condyle. T ere is also a lengthening of the ramus. T e condyle contains cartilage beneath its surface, and the condyloid process and ramus lengthen until a person is 20 to 25 years old. As a result of growth in the condyle area, the body of the mandible is lowered from the skull, and the occlusal plane is located about 1 in . below the level of the condyles in an adult.

d. ad va NCEd TOp ICS: d ImENSIONS r El a TEd TO Th E TmJ

T e average width of the condyle and its depth beneath the skin is illustrated in Figure 14-26. T e condyle is a large solid structure, about 10 mm thick anteroposteriorly and 20.4 mm wide mediolaterally. Although the average depth of the outer surface of the condyle is 15 mm beneath the skin, it is readily palpated, and its movements are visible (seemingly just

fIGur E 14-26. Depth (beneath the skin) of the landmarks of the head of the mandibular condyle and relative direction of the lateral pterygoid muscle fibers (red arrows) from the insertion on the neck of the condyle toward the origin (not seen, but on the lateral surface of the lateral plate of the sphenoid bone). (To obtain these measurements, metal markers were placed on the skin and some teeth on 25 men prior to taking submental vertex cephalometric radiographs for analysis, tracing, and measuring. The location of the center of rotational opening of the mandible [the hinge axis] was found to pass through or near the center of the heads of the condyles. The functional axes were determined from pantographic recordings. Resultant articular settings were found to be wider than the outer poles of the condyles. This means that lateral and protrusive excursions are controlled by ligaments and muscles, rather than by bone, as previously reported. This research was conducted by Drs. Woelfel and Igarashi and supported by the Ohio State University College of Dentistry and Nihon University School of Dentistry in Tokyo.)
beneath the skin) when eating. Research by Drs. Woelfel and Igarashi on 25 men found the average depth of the outer surface of the mandibular condyle on each side to be 15.0 mm ; the range was 10.3 to 21.4 mm beneath skin.

T e size of the mandibular fossa averages about 23 mm mediolaterally and extends 15 mm posteriorly from the emi-
nence. T e intracapsular surface area is two to three times greater than on the very mobile mandibular condyle. T e anterior part of the capsule that surrounds the entire mandibular fossa and articular eminence attaches 10 mm in front of the crest of the articulating eminence. ${ }^{17}$

1 Ear NING ExEr CISE (continued)

entire mandible moves bodily (translates) forward and downward as the condyles are pulled forward over the articular eminence. Next, move your jaw to the right and left sides. You are feeling the movement of the outer (lateral) surface of each mandibular condyle. Finally, place your little finger gently inside either ear opening, and then, open and close your mouth and pull your jaw back or posteriorly. You are feeling the upper and posterior portion of the mandibular condyle, especially when you close or retrude (pull back) your mandible.
2. Search on your computer for a video on "TMJ Examination" that is less than 5 minutes long. Observe the techniques used to identify problems with the joint.
3. Search on your computer for a video on 'Normal TMJ and disc function" that is less than 5 minutes long. As you watch, identify all terms that you learned in this chapter.

r EvIEw Questions

Select the one best answer.

1. What two structures articulate with the disc in the TMJ?
a. T e coronoid process of the mandible and the mandibular fossa of the temporal bone
b. T e condyloid process of the mandible and the mandibular fossa of the temporal bone
c. T e coronoid process of the mandible and the mandibular fossa of the sphenoid bone
d. T e condyloid process of the mandible and the mandibular fossa of the sphenoid bone
e. T e condyloid process of the mandible and the mandibular fossa of the maxillae
2. T e ligament that limits the amount of movement of the mandible and attaches from the inferior surface of the neurocranium to the lingula of the mandible is the
a. Lateral (TMJ) ligament.
b. Stylomandibular ligament.
c. Sphenomandibular ligament.
d. Sternocleidomastoid ligament.
3. Where on the temporal bone does the mandible function?
a. In the anterior three quarters of the mandibular fossa called the articular fossa
b. In the posterior quarter of the mandibular fossa called the articular fossa
c. On the posterior inferior portion of the articular eminence
d. On the anterior inferior position of the articular eminence

SECTION III

Objectives

The objectives for this section are to prepare the reader to perform the following:

- Identify the four pairs of major muscles of mastication.
- Describe and identify the origin and insertion of each of these muscles of mastication on a skull and be able to palpate each (if possible) on yourself or a partner.
- Describe and demonstrate the function of each of these muscles.
- List other factors that contribute to the position of teeth and movement of the mandible.
- Describe the location and list the functions of the groups of muscles that contribute to facial expression.

T e following general terms relate to muscles and will be helpful to know as you read this section:

Anguli [AN gyoo lie]: triangular area or angle of a structure
Depressor: acts to depress or make lower
Insertion (of a muscle of mastication): place of attachment of muscles to the bone that moves, such as muscle attachments on the movable mandible
Labial [LAY bee al]: related to, or toward, the lips; like the labial surface of a tooth
Levator [le VA tor]: acts to raise (compare elevator)
Lingual [LIN gwal]: related to the tongue; for example, the lingual nerve innervates the tongue; the lingual muscle is within the tongue; and the lingual surface of a tooth is the side toward the tongue.
Mental: referring to the chin; the mental foramen is the hole in the mandible where the mental nerve passes out of the mandible to the chin; the mentalis muscle inserts into the chin. ${ }^{1}$
Orbicularis [or BIK u lar is]: round; compare an orbit
Origin (of am uscle of mastication): is the source, beginning, or fixed proximal end attachment of a muscle as compared to its insertion, which is a muscle's more movable attachment or distal end. ${ }^{1}$
Oris: referring to the edge of the mouth; compare oral
Procerus [pro SE rus]: long and slender

a. mu SCl ES INvOlvEd IN maSTICaTION (Ch Ew ING)

Muscles of mastication or chewing move the mandible. T ey include four pairs of muscles (right and left): masseter, temporalis, medial pterygoid, and lateral pterygoid muscles. T ese muscles have the major control over the movements of the mandible. Each of these muscles has one end identified as its origin and the other end identified as its insertion. T e origin end of each of the muscles of mastication is the source, beginning, or fixed proximal attachment located, in
this case, on the bones of the neurocranium that are relatively immovable. T e insertion end is the attachment on the movable bone that for each of these muscles is attached to, and moves, the mandible.

T ere are five different ways in which the mandible moves. We can elevate the mandible (closing the mouth), depress it (opening the mouth), retrude it (retracting or pulling back the mandible), protrude it (protracting or moving the mandible anteriorly), and move it into lateral excursions (moving the mandible sideways, as when chewing).

masseter muscle

T e masseter [ma SEE ter] muscle (Fig. 14-27) is the most superficial, bulky, and powerful of the muscles of mastication. It is four sided in shape.

Origin: T e masseter arises from the inferior and medial surfaces of the zygomatic arch that is made up of the zygomatic bone, the zygomatic process of the maxillae, and the temporal process of zygomatic bone (seen in Fig. 14-28). From here, it extends inferiorly and posteriorly toward its insertion.
Insertion: T e masseter inserts on the inferior lateral surface of the ramus and angle of the mandible (Fig. 14-28).
Action: It elevates the mandible (closes the mouth) and applies great power in crushing food. ${ }^{13,15,16}$

LEARNINg Ex ERCISE

As you clench your teeth several times, feel the contraction of the masseter by placing a finger on the outside of your cheek posterior to the third molar region. The muscle will produce a noticeable bulge beneath your finger each time. The part felt just inferior to the cheekbone (anterior to the earlobe) is near the origin, and the bulge felt over the angle of the mandible is near the insertion.
fIGur E 14-27. Masseter muscle (shaded red)
(Reproduced from Clemente CD, ed. Gray's anatomy of the human body. 30 th ed. Philadelphia, PA: Lea \& Febiger, 1985:450, with permission.)

fIGur E 14-28. Human skull, left side, showing muscle attachments. This lateral view shows the origin of the fan-shaped temporalis muscle (within the shallow temporal fossa outlined with a blue dotted line) and the origin of the masseter (light red area on the zygomatic arch) as well as the insertion of the masseter muscle (light red area on the lateral surface of the angle of the mandible). The red arrows indicate the slope of the posterior surface of the articular eminence and the subsequent downward (opening) movement of the mandible when it is pulled forward by both lateral pterygoid muscles.

fIGur E 14-29. Temporalis muscle (blue and purple). The zygomatic process of the temporal bone and temporal process of the zygomatic bone have been removed. When studying this drawing, you should understand why the contraction of the anterior vertical fibers (purple) of the temporal muscle acts to close the jaw while contraction of the posteriorly horizontal fibers (purple) acts to pull the jaw back or to retract (retrude) the mandible. (Reproduced from Clemente CD, ed. Gray's anatomy of the human body. 30 th ed. Philadelphia, PA: Lea \& Febiger, 1985:449, with permission.)

Temporalis muscle
T e temporalis [tem po RA lis] muscle is a fan-shaped, large but flat muscle with both vertical anterior (and middle) fibers and more horizontal posterior fibers. Vertical and horizontal fibers are shaded darker in Figure 14-29.
Origin: T e temporalis arises from the entire temporal fossa (Fig. 14-28) (composed of the squamous part of temporal bone, the greater wing of the sphenoid bone, and the adjacent portions of the frontal and parietal bones). From
here, its anterior (and middle) d̀bers are directed vertically downward while its posterior àbers are directed more horizontally, mostly anteriorly and somewhat inferiorly, passing medial to the zygomatic arch.
Insertion: T e temporalis inserts on the coronoid process of the mandible, the medial surface of the anterior border of the ramus, and the temporal crest of the mandible (Fig. 14-30) via one common tendon.
Action: Te anterior (and middle) vertical fibers contract to act to elevate the mandible (close the jaw) especially when great power is not required, and the

fIGur E 14-30. Mandible, medial surface, with the location of the muscle insertions of the temporalis, medial pterygoid, and lateral pterygoid muscles. The insertion of the temporalis $\mathrm{m} \mathbf{u s c l e}$ (blue) is located on the anterior medial ridge (temporal crest) of the mandibular ramus. The insertion of the medial pterygoid muscle (green) is on the internal surface of the angle of the mandible. The insertion of the lateral pterygoid muscle (yellow) is on the anterior surface of the neck of the condyle in the pterygoid fovea (as well as the articular disc, which is not shown).
posterior horizontal fibers retrude or pull the mandible posteriorly. ${ }^{13,15,16} \mathrm{~T}$ is muscle can position the mandible slightly more anteriorly or more posteriorly while also closing the teeth together.

LEARNINg ExERCISE

Feel contraction of the origin of the temporalis by placing several fingers above and in front of your ear to feel the vertical fibers contract as you firmly close your teeth together several times. Then, feel the nearly horizontal fibers just above and behind your ears contract as you retrude or pull your mandible posteriorly. This may be more difficult to feel since the bulge is less evident.
medial pterygoid muscle
T e medial pterygoid [TER i goid] muscle is located on the medial surface of the ramus (Figs. 14-31 and 14-32).

Origin: T e medial pterygoid muscle arises mainly from the medial surface of the lateral pterygoid plate and the pterygoid fossa between the medial and lateral pterygoid plates (Fig. 14-33) of the sphenoid bone. (Also, there are fibers attached to the posterior surface of the maxilla and to the adjacent vertical processes of the palatine bones and
to the maxillary tuberosity. ${ }^{10}$) Similar to the masseter, the fibers pass from their origin inferiorly and posteriorly (but laterally) toward their insertion.
Insertion: T e medial pterygoid muscle inserts on the medial surface of the mandible in a triangular region at the angle and on the adjacent portions of the ramus just above the angle (Fig. 14-30). Along with the masseter located on the lateral surface, these two muscles serve as a sling with the medial pterygoid attached on the medial side and the masseter attached on the lateral side of the angle of the mandible. T ey have similar actions.
Action: It elevates the mandible (closes jaw) like the masseter and the anterior (and middle) fibers of the temporalis muscles. Although not as large or powerful, it works together with the larger masseter muscle in helping to apply the power or great force upon closing the teeth together.

Attempt to palpate the insertion of the medial pterygoid muscle in your mouth by bending the head forward to relax the skin on the neck and placing the forefinger medial to the internal angle of the mandible while gently pressing your finger upward and outward. When the teeth are squeezed together, you should feel the bulge of this muscle.
fIGur E 14-31. The skull from the inferior view. The medial pterygoid muscle (shaded green) and masseter muscles (red) form a sling that supports the mandible. Also, from this view, it is clear that the lateral pterygoid muscle (yellow) has its origin (on the base of the cranium) more medial than its insertion (on the anterior portion of the neck of the condyle and the articular disc). If this muscle contracts only on the right side as shown by the arrow, that condyle of the mandible moves toward its origin, thus bodily moving the mandible toward the left or opposite side. (Reproduced from Clemente CD, ed. Gray's anatomy of the human body. 30 th ed. Philadelphia, PA: Lea \&Febiger, 1985:452, with permission.)

fIGur E 14-32. A lateral view of two heads of the lateral pterygoid muscle (shaded yellow) and the medial pterygoid muscle (shaded green) with the zygomatic arch and the anterior part of the ramus removed. The upper head of the lateral pterygoid muscle has its origin on the infratemporal surface of the sphenoid bone, and the lower head has its origin on the lateral surface of the lateral pterygoid plate of the sphenoid bone (covered by the muscle in this drawing). The insertion of both heads of the lateral pterygoid muscle is on the fovea of the neck of the condyle of the mandible and on the articular disc. Notice the horizontal orientation of the lateral pterygoid fibers in direct contrast to the vertical direction of the medial pterygoid fibers. Simultaneous contraction of both lateral pterygoid muscles guides the condyles (and discs) forward, which causes the mandible to protrude and the mouth to open. Contraction of the medial pterygoid muscle in harmony with the masseter elevates the mandible (closes the mouth). (Reproduced from Clemente CD, ed. Gray's anatomy of the human body. 30th ed. Philadelphia, PA: Lea \&Febiger, $1985: 451$, with permission.)

(4. lateral pterygoid muscle

T e lateral pterygoid muscle, unlike the other three pairs of muscles where most fibers are oriented mostly vertically, has its fibers aligned mostly horizontally (Fig. 14-32). T e lateral pterygoid muscle is a short, thick, somewhat conical muscle located deep in the infratemporal fossa (inferior to the temporal bone and posterior to the maxillae) and is the prime mover of the mandible except for closing the jaw.

Origin: T e lateral pterygoid muscle has two parts (two heads), both attached to the sphenoid bone. T e smaller superior head is attached to the infratemporal surface of the greater wing of the sphenoid bone; the larger inferior head is attached to the adjacent lateral surface of the lateral pterygoid plate on the sphenoid bone (Figs. 14-32 and 14-34). Fibers pass posteriorly and laterally in a horizontal direction toward their insertion. When viewed from below, the direction of these fibers from their insertion on the anterior surfaces of the mandibular condyles is represented by the arrow in Figure 14-33.
Insertion: T e lateral pterygoid muscle inserts on the depression on the front of the neck of the condyloid process called the pterygoid fovea (Figs. 14-30 and 14-32) and into the anterior margin of the articular disc. Contractions of the upper head pull the disc forward working in concert with the stretching of the elastic band of tissues behind the disc (retrodiscal tissues) and permit the disc to accompany the mandible as it moves forward, preventing posterior displacement of the disc. ${ }^{20}$
Actions: When both lateral pterygoids contract simultaneously, the action is:

- To protrude the mandible. No other muscle or groups of muscles are capable of doing this but can only assist in this action as stabilizers or by controlling the degree of jaw opening during the protrusion. ${ }^{12,13,15,16,21}$
- To depress the mandible. T e lateral pterygoids do this by pulling the articular discs and the condyles forward and down onto the articular eminences, which moves the mandible inferiorly and helps rotate it, thereby opening the mouth (illustrated by arrows in Figure 14-28 that indicate the incline of the articular eminence and the same downward direction that condyles and the mandible take when pulled forward under the bump of the eminence). T e lateral pterygoids are assisted somewhat in this task by two groups of muscles in the neck: the suprahyoid muscles and the infrahyoid muscles.

When only one lateral pterygoid contracts, it pulls the condyle on that side toward the midline (medially) and anteriorly, moving the body of the mandible and its teeth toward the opposite side (since the origin of the lateral pterygoid muscle is medial to its insertion as seen by the arrow in Fig. 14-33). For example, contraction of the right lateral pterygoid muscle draws the right condyle medially (to the left) and forward, causing the mandible to move toward the left side (into left lateral excursion). Conversely, the contraction of the lef lateral pterygoid muscle causes the mandible to move to the right side (right lateral excursion). ${ }^{15}$ No other muscle is capable of moving the mandible sideways, although synergistic (in harmony with) unilateral contraction of the posterior fibers of the temporalis muscle occurs on the side toward which the jaw moves. ${ }^{15}$

fIGur E 14-33. Human skull, inferior surface. As you study this drawing, notice the arrow that connects the insertion of the lateral pterygoid muscle (on the anterior neck of the condyle of the mandible) with its origin (on the lateral surface of the lateral pterygoid plate denoted by a yellow line). When only one lateral pterygoid muscle contracts and pulls the insertion end toward its origin, the mandible moves medially, toward the opposite side, as shown by the second arrow near the anterior part of the mandible. The location of the origin of the medial pterygoid muscle is shaded green on the right side of the drawing in the pterygoid fossa.
fIGur E 14-34. Part of human skull, lateral vie w, has the lateral wall of the maxilla removed to expose the maxillary sinus. Posterior to the maxilla, note the location of the origin of the two heads of the lateral pterygoid muscle: the lateral surface of the lateral pterygoid plate (shaded yellow) just posterior to the maxilla and the roof of the infratemporal space on the base of the cranium. (Reproduced from Clemente CD, ed. Gray's anatomy of the human body. 30 th ed. Philadelphia, PA: Lea \&Febiger, 1985:166, with permission.)

LEARNINg ExERCISE

Viewing the inferior surface of a skull with a movable mandible, imagine elastic bands attached from the location of the origins to the insertions of the lateral pterygoid muscles, right and left sides. Since the origin on the base of the skull stays stationary, but the mandible at the insertion attachment can move, confirm that the mandible moves anterior and inferior if both elastic bands were contracted (shortened). Next, see what would happen if only one band was shortened (contracted). If only the right side is shortened, the right condyle moves medially (to the left), closer to its origin on the lateral pterygoid plate, so the body of the mandible and its teeth also move toward the left side. Practice this until you understand why the jaw moves the way it does when one lateral pterygoid muscle works. Next, attempt to palpate the origin of the lateral pterygoid muscle in your mouth. Slip a clean little finger into your mouth along the lateral surface of the maxillary alveolar process. Then, gently move the finger posteriorly and medially, around to the posterior surface of the maxilla, and superiorly toward the lateral surface of the lateral pterygoid plate where the lateral pterygoid muscle attaches. Moving the mandible toward the side you are palpating will give your finger more room to reach the muscle. This palpation may be slightly uncomfortable.

B. OTh Er mu SCl ES affECTING maNd IBular mOvEmENT

Other muscles affecting mandibular movement include the suprahyoid and infrahyoid group of muscles. T e suprahyoid [SOO prah HI oid] muscle group extends superiorly from the hyoid bone to the mandible, whereas the infrahyoid muscle group extends inferiorly from the hyoid bone to the clavicle (collarbone) and sternum (breastbone) and adjacent structures (Fig. 14-35). T e infrahyoid muscle group must stabilize the hyoid bone and keep it from rising, so when the suprahyoid muscles contract, they can move the mandible and not just move the hyoid bone. T ese muscle groups act together with both lateral pterygoid muscles to help depress the mandible (open the mouth) and act with the posterior (horizontal) fibers of the temporalis muscles to retrude (pull back) the mandible.

T e suprahyoid muscles include the stylohyoid [STY lo HI oid] (which arise on the styloid process), digastric [di GAS trik] (the anterior belly of the digastric attaches in the digastric fossa near the genial spines or tubercles), mylohyoid (arising from the mylohyoid ridges on each half of the medial surface of the mandible and found in the tissue that forms the floor of the mouth), and geniohyoid

fiGur E 14-35. Muscles of the neck, anterior view, with the superficial, thin platysma muscle and some other muscles removed. Note the hyoid bone with a group of muscles superior to the hyoid (called the suprahyoid muscle group) and another group of muscles inferior to the hyoid bone (called the infrahyoid muscle group). The suprahyoids generally attach the hyoid bone to the mandible and include the digastric muscles (one is shaded red over the mylohyoid muscle, which is shaded yellow) and the geniohyoid muscle (one is shaded red). The infrahyoids generally attach the hyoid bone to the clavicle (collarbone) and stemum (breastbone) and include the omohyoid muscle (shaded blue). When both muscle groups work together, they can help open and retrude the mandible. The sternocleidomastoid muscle is shaded green. (Reproduced from Clemente CD, ed. Gray's anatomy of the human body. 30th ed. Philadelphia, PA: Lea \&Febiger, 1985:451, with permission.)
[JEE ni o HI oid] muscles (arising from the genial tubercles). T e infrahyoid muscles include the omohyoid, sternohyoid, sternothyroid, and thyrohyoid.

Another neck muscle, the sternocleidomastoid, attaches from the mastoid process of the temporal bone to the sternum (breastbone) and clavicle (collarbone). T e area around this muscle is palpated during a cancer-screening exam since the chain of cervical (neck) lymph nodes surrounds this muscle (Fig. 14-35).

C. OTh Er faCTOr S affecting TOOTh pOSITION Or mOvEmENT

Other factors affecting relative tooth positions and movements include the ligaments, fascia, and, to a certain extent, the muscles of facial expression. T e ligaments, including the capsular, temporomandibular, stylomandibular, and sphenomandibular ligaments (recall Figs. 14-23 and 14-24), provide
some limits to protrusive, lateral, and opening movements of the mandible.

Fascia [FASH e ah] is also thought to limit movement of the mandible to some extent. Fascia is a connective tissue that forms sheets or bands between anatomic structures. It attaches to bones and surrounds muscles, glands, vessels, nerves, and fat.

Some muscles of facial expression (especially in the lips and cheeks) and the tongue muscles are thought to influence development, position, and shape of the dental arches. T e muscles of facial expression are shown in Figure 14-36 and include the following:

- Orbicularis oris [or BIK u LAR is O ris] is located within the lips around the opening of the mouth and acts to close or purse the lips (as around a straw or around a saliva ejector within the dental of ce).
- Buccinator [BUCK si na tor] attaches on the buccinator crest (posterior to the mandibular third molar) and

fIGur E 14-36. The muscles of facial expression. Note the shaded muscles superior to the upper lip, which help raise the lip or help us smile: the zygomaticus major (red) and minor, levator labii superioris (green), and levator anguli oris (blue) and the muscles inferior to the lower lip, which help lower the lip or frown: depressor anguli oris (blue) and the depressor labii inferioris (not shaded). The risorius (yellow) helps to widen the mouth, the mentalis (green) is in the chin, the buccinator (yellow) is in the cheek, and the orbicularis oris (red) surrounds the lips for puckering. The platysma is a thin layer of muscle covering deeper neck muscles. (Reproduced from Clemente CD, ed. Gray's anatomy of the human body. 30 th ed. Philadelphia, PA: Lea \&Febiger, $1985: 444$, with permission.)
adjacent soft tissue, forming a pouch in the cheeks. When contracting, it pulls the cheek inward to keep food on the chewing surfaces of teeth during chewing.
- Upper oral group includes the zygomaticus [ZI go MAT i kus] major and minor, levator labii [LAB e e] superioris, and levator anguli oris. All contribute to raising the upper lip and/or angle, as in smiling. T e risorius [ri SO ri us] retracts (spreads) the angle of the mouth. (T e levator labii superioris alaeque [a LY kwe] nasi dilates the nostrils, as in contempt.)
- Lower oral group (including the depressor labii inferior and depressor anguli oris) contracts to lower the lower lip or angle, as in a frown. T e mentalis [men TA lis] is located in the chin and raises or protrudes the chin as in a pout.
Other muscles that influence facial expression include the following:
- Nose muscles include the nasalis [na SA lis], which flares the nostrils; the depressor septi nasi (not shown in figure), which pulls the nares down, thereby constricting the opening of the nose (nares); and the procerus [pro SE rus] superior from the bridge of the nose, which lowers the medial eyebrow and wrinkles the nose.
- Eye muscles include the orbicularis oculi [or BIK u lar is AHK u li], which surrounds the eye and acts to squint the eye, and the corrugator supercilii [COR u gay tor su per SIL e e], which draws the medial end of the eyebrow down, as in a frown.
- Ear muscles include the posterior, superior, and anterior auricular [aw RIK u lar] muscles (not shown), which act to move the ears and/or scalp. Can you wiggle your ears by contracting these muscles? Give it a try.
- T e broad occipitofrontalis [ahk SIP i toe fron TAL is] (or epicranial) muscle draws back the scalp, wrinkling the forehead and raising the eyebrows, as in surprise.
- T e platysma [plah TIZ mah] muscle is a broad muscle that extends from the mouth to the anterior and lateral surfaces of the neck and contracts during a grimace.

T e posterior and deep muscles of the neck, as well as the overlying fascia and skin, all have a slight postural influence on the physiologic resting position of the mandible. Other than this, the numerous facial muscles, including the buccinator, do not influence any movements of the mandible. However, a person's posture, state of mind, stress, health, and physical and mental fatigue each have a decided effect on the resting posture of the mandible at any given time. ${ }^{22}$

d. Summary Of mu SCl ES ThaT mOvE a Nd CONTr Ol Th E maNd IBl E

T ere are five specifically different ways that we can voluntarily move our mandible. T ere are limitless combinations of these movements that occur throughout any 24 hours. In review, here are the muscles that contribute to each movement:

(1.) Elevation of the mandible

Elevation (elevates the mandible and closes the mouth) results from the bilateral contraction of three pairs of muscles. T e temporalis muscles (vertical fibers) bring the mandible upward into position for crushing food. T e temporalis muscles are primarily the positioning muscles as they elevate the mandible upward until it is in position to have the real force applied by the other two pairs of closing muscles. T e masseter muscles and the medial pterygoid muscles act together to apply the power for forceful jaw closures, as in crushing food, such as biting through a carrot.

2. depression of the mandible

Depression (depresses the mandible and opens the mouth) results primarily from the bilateral contraction of both lateral pterygoid muscles, assisted by suprahyoid and infrahyoid muscles, especially the anterior bellies of the digastric muscles, and the omohyoid (infrahyoid) muscles, which help fix or hold the hyoid bone.

(3. retrusion

Retrusion (retracts the mandible) results from the bilateral contraction of the posterior $\dot{\alpha} b e r s$ of the temporalis muscles assisted by the suprahyoids, especially the digastric muscles (anterior and posterior bellies seen in Fig. 14-35).

(4.) protrusion

Protrusion (or protraction, protrudes the mandible) results from the simultaneous contraction of both lateral pterygoid muscles.

1 ate ral Excursion

Lateral excursion (moves sideways) results from the contraction of one lateral pterygoid muscle. T e mandible is moved bodily to the left by the contraction of the right lateral pterygoid muscle. ${ }^{15,23}$

E. ad vaNCEd TOpICS
 (1.) how muscles work

T e muscles of the body contribute 40% to 50% of the total body weight. ${ }^{24}$ Muscles produce the desired action by pulling or by shortening, never by pushing or by lengthening. Skeletal or voluntary muscles are made up of specialized cells that contract. Skeletal muscles are very active metabolically and therefore require a rich blood supply. ${ }^{24} \mathrm{~T}$ ere are two other kinds of muscles we are unable to control or direct: cardiac and smooth (involuntary) muscles.

Individual muscle cells are small, elongated contractile fibers, each enclosed in a delicate envelope of loose connective tissue. Many individual parallel muscle fibers make up a
bundle, and various numbers of bundles comprise a muscle. T e longest muscle fibers are 300 mm (11.4 inch) long. Each contractile bundle of cells can contract about 57% of its fully stretched length. ${ }^{25} \mathrm{~T}$ e all-or-none law states that any single muscle fiber always contracts to its fullest extent. ${ }^{17}$ When a weak effort or contraction is required of the whole muscle, then only a few fibers contract (each to the fullest extent). Many fibers contracting produce greater power as needed. Further, no single muscle acts alone to produce a movement or to maintain posture. Many muscles must work in perfect coordination to produce a steady, well-directed motion of a body part.

When a muscle becomes shorter as it moves a structure, the movement is called an isotonic contraction. When a muscle maintains its length as it contracts to stabilize a part, this movement is called isometric contraction. As you close your jaw until all teeth contact, the closing muscles work isotonically because they become shorter as the mandible moves superiorly. If you maintain contact of all of your teeth but squeeze them together hard, these same muscles are contracting isometrically because they cannot shorten any more once your teeth are together.

A few or more individual muscle fibers of all of our voluntary muscles are continually or alternately contracting during consciousness. T is minimal amount of contraction needed to maintain posture is called muscle tone or tonus, and the muscles involved are named "antigravity" muscles. As you read this, the muscles of mastication are probably in a state of minimal tonic contraction or balance with each other, with the neck muscles, and with gravity, enabling a restful position for your mandible with the teeth apart. T is normal resting jaw position varies slightly according to whether you are sitting, lying on your back, or standing up and depending on how tense or stressed you are. When you fall asleep at your desk, antigravity muscles relax and, as you may have seen on others, the mouth drops open.

2. Size of the masseter muscle

T e average volume of the masseter muscle is over twice that of the medial pterygoid muscle (on 25 males is $30.4 \pm 4.1 \mathrm{~cm}^{3}$, which is 2.6 times larger than the medial pterygoid muscle at $11.5 \pm 2.1 \mathrm{~cm}^{3}$). ${ }^{26}$

r EvIEw Questions

1. Which muscle has its origin in the pterygoid fossa?
a. Medial pterygoid muscle
b. Lateral pterygoid muscle
c. Masseter muscle
d. Temporalis muscle
2. T e masseter muscle elevates the mandible. Which other muscles are involved in elevating the mandible?
a. Temporalis (anterior fibers) and lateral pterygoid muscles
b. Lateral pterygoid muscles and medial perygoid muscles
c. Temporalis (posterior and anterior fibers) and medial pterygoid muscles
d. Medial pterygoid muscles and temporalis (anterior fibers)
e. Lateral pterygoid muscles and temporalis (posterior fibers)
3. In which direction do the fibers of the lateral pterygoid muscles travel from their origin to their insertion?
a. Medial and posterior
b. Medial and anterior
c. Lateral and anterior
d. Lateral and posterior
4. Which of the following muscles of facial expression does not contribute to moving the lips?
a. Orbicularis oris
b. Risorius
c. Levator labii superioris
d. Depressor labii inferioris
e. Orbicularis oculi
5. Which of the following would you palpate anterior and 1 to 2 inches superior to the ear?
a. Masseter, the origin
b. Masseter, the insertion
c. Temporalis, posterior fibers
d. Temporalis, anterior fibers
e. Temporalis, the insertion
6. Which muscle, when contracting, moves the mandible to the right?
a. T e left medial pterygoid muscle
b. T e right medial pterygoid muscle
c. T e left temporalis muscle, horizontal fibers
d. T e right lateral pterygoid muscle
e. T e left lateral pterygoid muscle

SECTION Iv NEr vES Of Th E Or al CavITy

Objectives

The objectives for this section are to prepare the reader to perform the following:

- List the 12 CNs and briefy describe the ir function.
- Describe the important branches of the trigeminal nerve and trace the route of each important branch from the brain to the structures that they innervate in the oral cavity.
- Describe the pathway to the oral cavity of the facial nerve and identify the oral structure(s) it innervates.
- Describe the pathway to the oral cavity of the glossopharyngeal nerve and identify the oral structure (s) it innervates.
- Describe the pathway to the oral cavity of the hypoglossal nerve and identify the oral structure(s) it innervates.

T ere are three types of nerve fibers based on their function: afferent, efferent, and secretory. Af erent [AF er ent] (or sensory) fibers convey impulses (such as feeling, touch, pain, taste) from peripheral organs (like the skin or surface of the tongue) to the central nervous system. (Hint: Afferent: where "a" (as in approach) means sending impulses toward the brain, i.e., from an organ receiving sensory input, so the brain can "feel" it; therefore, these impulses are sensory, related to the senses of feeling, touch, pain, taste, etc.)

Ef erent [EF er ent] (or motor) nerve fibers convey impulses from the central nervous system to the peripheral organs, such as to muscle fibers to initiate contraction. T ey supply the four pairs of muscles of mastication and other muscles in the region of the mouth. (Hint: Efferent: where "e" (as in exit) means sending an impulse from the brain, which could contract a muscle and move a bone in the intended direction (or could increase force on that bone without movement); therefore, these impulses are motor.)

Secretory fibers are specialized efferent nerve fibers that, upon stimulation, can send messages to glands, such as the salivary and lacrimal (tear) glands to produce and secrete saliva or tears.

T ere are 12 cranial nerves (CNs) that all supply the area of the head. Table 14-2 lists the 12 CNs (indicated by Roman numerals I to XII) that are responsible for the specific functions. $1,3,11,27-30$

a. Tr IGEmINal NEr vE (fIf Th CN)

When discussing the function of the oral cavity, probably the most important nerve is the trigeminal. T e trigeminal nerve or fifth $\mathbf{C N}$ is the largest of the CNs and is the major sensory nerve of the face and scalp. It originates in the large semilunar or trigeminal ganglion, a group of nerve cell bodies located on the superior surface of the petrous portion of the temporal bone in a small depression (the semilunar fossa) medial to the foramen ovale. T e trigeminal nerve
divides into three major divisions (or three nerve branches). (Hint: "tri"' in trigeminal refers to the nerves three divisions.) Division I (the ophthalmic [ahf THAL mik] nerve) and Division II (the maxillary nerve) are only afferent (sensory). Division III (the mandibular nerve) is both afferent (sensory) and efferent (motor). Its efferent fibers supply the muscles of mastication. T is is the only CN with sensory (touch and pain) innervation to the skin of the face, and the divisions or branches are distributed to the face as shown in Figure 14-37.

T e maxillary and mandibular divisions of the trigeminal nerve also supply afferent or sensory neurons that provide the brain with information about the position of the teeth and jaws at all times. T e interpretation of postural information by the brain (sense of position) is called proprioception. Proprioceptive nerve receptors are located in muscles and ligaments, including the periodontal ligaments, and in the lateral aspects of the TMJ. T e periodontal ligament around each tooth is well supplied with proprioceptive neurons from the maxillary and mandibular divisions of the trigeminal nerve. T ese branches send messages to the brain as to the relative position of the mandibular to maxillary teeth. T is has a tremendous influence on relative jaw position, movement, and occlusion (the fitting together) of the teeth. Canines are reported to have the richest supply of proprioceptive nerve endings.

T e TMJ also has proprioceptive neurons in the capsule and disc that are innervated by a branch of the mandibular division of the trigeminal nerve. To a great extent, proprioceptive information, especially from the teeth, determines the subconscious but well-coordinated function of the two complex TMJ. ${ }^{28,29}$ Otherwise, we could experience many unpleasant tooth interferences or frequent joint pain.

Each of the three divisions is divided into many branches. T e branches of the maxillary nerve and the mandibular nerve are those that innervate the region of, and around, the oral cavity and will be discussed in the most depth in this section.

Ta Bl E 14-2 The Twelve Cranial Nerves		
NERVE NO.	CRANIAL NERVE	Fu NCTION
I	Olfactory [ol FAK toe ree]	Smell
II	Optic	Sight
III	Oculomotor [AHK u lo MO tor]	Orbital muscles for eye movement
IV	Trochlear [TROK le ar]	Orbital muscles for eye movement
V	*Trigeminal [tri JEM i nal]	Motor: movement of the jaws and muscles of mastication Sensory: sensation of feeling for the face, teeth, and periodontal ligaments and anterior two thirds of the tongue
V	Abducens [ab DOO senz]	Orbital muscles for eye movement
VII	*Facial	Motor: to the muscles of facial expression Sensory: taste to anterior two thirds of tongue Secretory: to submandibular and sublingual glands
VIII	Auditory (or acoustic)	Sense of hearing, position, and balance
Ix	*g lossopharyngeal [g LOSS o feh rin JI al]	Secretory: to parotid gland and pharyngeal movements Sensory: feeling to pharynx and posterior one third of the tongue and taste to posterior one third of the tongue
X	Vagus [VAY gus]	Pharyngeal and laryngeal movements: digestive tract
X	Spinal accessory	Neck movements: sternocleidomastoid and trapezius muscles
x II	*Hypoglossal	Motor: tongue movement (muscles)

*The asterisked nerves in bold are most important when discussing the function of the oral cavity. A detailed discussion of these nerves will include the major branches to structures of the mouth, including teeth, periodontal ligaments and alveolar processes, gingiva (gums), the palate and foor of the mouth, and muscles of mastication, of facial expression, and of the tongue (for both muscular action and our sense of taste). Also, a pneumonic that may help you remember the cranial nerves (where the first letter of each word is the same as the first letter of each cranial nerve) is "On Old Olympus' Towering Top, A Finn and German Viewed Some Hops."
fIGur E 14-37. General distribution to the skin of the three sensory divisions of the trigeminal nerve. Pain in these areas is felt by impulses sent through the ophthalmic (yellow), maxillary (green), and mandibular branches (red) or divisions of this nerve. These three branches are distributed to the face as indicated in this drawing. (Reproduced from Clemente CD, ed. Gray's anatomy of the human body. 30 th ed. Philadelphia, PA: Lea \&Febiger, 1985:1164, with permission.)

d ivision I (Ophthalmic Nerve) of the Trige minal Nerve

T e ophthalmic [of THAL mik] nerve exits from the skull by way of the superior orbital àssure on the superior surface of the orbit (Fig. 14-38). It has three main branches: the smallest lacrimal nerve, the largest frontal nerve, and the nasociliary nerve. T e distribution of these sensory branches that supply the skin of the face is shown in Figure 14-37. T e ophthalmic nerve and its branches supply general sensations (of touch, pain, pressure, and temperature) to the skin of the upper third of the face including the skin of the forehead and anterior scalp, and the skin around the eyeballs, upper eyelids, and nose, and part of the nasal mucosa and maxillary sinus. T e ophthalmic nerve does not supply the oral cavity. (Hint: "Ophthalmic" is related to the eye; compare ophthalmologist, a physician who specializes in eyes.)
2.

d ivision II (maxillary Ne rve) of the Trigeminal Nerve

T e maxillary nerve provides general sensations (of touch, pain, pressure, and temperature) to the skin of the middle third of the face and the palate (Fig. 14-37) plus provides sensory branches to the pulp of all maxillary teeth. It exits the braincase of the skull through the foramen rotundum (Fig. 14-38). After passing through the foramen rotundum, the maxillary nerve passes into the pterygopalatine space and eventually splits into four branches: the pterygopalatine, PSA, infraorbital, and zygomatic nerves.

a. First Branch of the Maxillary Nerve: Pterygopalatine Nerve

T e first branch of the maxillary nerve, the pterygopalatine nerve, splits off closest to the foramen rotundum. A branch of this nerve, called the descending palatine nerve, passes through the greater palatine foramen to become the greater palatine nerve (anterior palatine nerve). T e greater palatine nerve spreads anteriorly to supply the part of the hard palate and palatal gingiva that is medial to the posterior teeth (molars and premolars) (posterior red lines in Fig. 14-39). Just posterior to the greater palatine foramen, the middle and posterior (lesser) palatine nerves enter the palate through the lesser palatine foramen to spread posteriorly to supply the tonsils and mucosa of the soft palate.

Another long branch of the pterygopalatine nerve, the nasopalatine nerve, runs along the roof of the nasal cavity, then diagonally downward and anteriorly along the nasal septum where it enters the bone of the palate to emerge onto the anterior palate through the incisive foramen. T is branch innervates the soft tissue of the nasal septum and gingiva and palatal soft tissue lingual to the anterior teeth (anterior red lines in Fig 14-39). T e right and left nasopalatine nerves combined with the greater palatine nerves innervate the soft tissue of the entire hard palate (shown as all red lines in Fig. 14-39).

b. Second Branch of the Maxillary Nerve: Posterior Superior Alveolar (PSA) Nerve

Just before the maxillary nerve branch enters the infraorbital fissure and canal on the floor of the orbit, it gives off its second branch, the PSA nerve. T is branch descends to enter

figure 14-38. Human skull: foramen of the branches of the trigeminal nerve (CN V) (shaded red on right side). The superior orbital fissure for the ophthalmic branch, the foramen rotundum for the maxillary branch, and the foramen ovale for the mandibular branch.

fIGur E 14-39. Human skull: inferior surface including the palate, showing the foramina for branches of the trigeminal nerve that innervates the mucosa of the palate: the greater palatine foramen (for the greater palatine nerve) and the incisive foramen (for the nasopalatine nerve). The more posterior red lines indicate the diagrammatic distribution of the branches of the greater palatine nerves as they spread out along the junction of the alveolar processes with the palatine processes of the maxillae to the tissues (mucosa) of the palate located between the posterior teeth. The more anterior red lines indicate the nasopalatine nerve branches spreading out to the mucosa between the anterior teeth.
the alveolar canals on the infratemporal portion of the maxilla (Fig. 14-40). Once within the trabecular (spongy) bone of the maxilla and the maxillary sinus, its dental branches enter small openings in the tooth roots to supply the maxillary molars (except for one root, the mesiobuccal root of the maxillary first molars). It also innervates the supporting alveolar bone, periodontal ligaments, and facial gingiva next to the maxillary molars, the mucosa of part of the maxillary sinus, and cheek mucosa next to maxillary molars.

Third Branch of the Maxillary Nerve: Infraorbital Nerve

In the pterygopalatine space, a third branch of the maxillary nerve splits off and passes through the inferior orbital fissure on the floor of the orbit and enters the infraorbital canal, where it becomes the infraorbital nerve (Fig. 14-40). While within this canal, the infraorbital nerve gives off two branches, the middle superior alveolar (MSA) and the anterior superior alveolar (ASA) nerves (shown in Fig. 14-40).

T e MSA nerve passes forward along the lining of the maxillary sinus. It gives off small dental branches that enter premolars through their root openings (apical foramina) to supply the maxillary premolars (and the mesiobuccal root
of the maxillary first molar), supporting alveolar bone, periodontal ligaments, and facial gingiva in the maxillary premolar region and part of the maxillary sinus. It is important to realize that the nerve supplying primary teeth is the same as that to the permanent teeth that replace them. T erefore, the nerve branch to the primary molars is the MSA, the same one that supplies their successors, the permanent premolars.

T e second branch given off of the infraorbital nerve while in the infraorbital canal is the ASA nerve. Its small dental branches supply the pulp, supporting alveolar bone, periodontal ligaments, and facial gingiva of the maxillary anterior teeth and part of the maxillary sinus.

Notice that three superior alveolar branches of the maxillary nerve of CN V (PSA, MSA, and ASA) innervate all maxillary teeth. A comparison of the descriptions of these three nerves indicates a great lack of uniformity in their distribution. Sometimes, the MSA nerve is missing, and the function is taken over by the anterior and posterior alveolar nerves.

After exiting from the infraorbital foramen, the infraorbital nerve splits into its end (terminal) branches innervating the skin and mucosa of the side of the nose (nasal nerve), skin and mucosa of the lower eyelids (palpebral [PAL pe bral] nerve), and skin and mucosa of the upper lip, facial

fIGure 14-40. Maxillary division of the trige minal nerve: branches seen as red lines (dotted red lines when within the trabecular bone) that innervate the maxillary teeth. The lateral wall of the left maxilla has been removed exposing the large maxillary sinus. One nerve branch (the PSA nerve) exits the pterygopalatine space and goes down the posterior surface of the maxilla before entering the maxilla through the alveolar canals on its way to most maxillary molar roots. Another branch, the infraorbital nerve, passes from the pterygopalatine space to the foor of the eye orbit (which also forms the roof of the maxillary sinus) where it enters the infraorbital canal (not shown). Within the infraorbital canal, two branches split off to pass downward along the walls of the maxillary $\sin \mathbf{u s}$ and into the maxilla. The MSA nerve passes through the spongy bone of the maxilla to the maxillary premolars (and the mesiobuccal root of the first molar on each side), and the ASA passes to the roots of the maxillary anterior teeth. The infraorbital branch continues through the infraorbital canal to exit the maxilla through the infraorbital foramen, which provides feeling to the skin on the side of the nose, the anterior part of the cheek, and the upper lip on that side.
gingiva of maxillary premolars, and facial gingiva of anterior teeth (labial [LAY bee al] nerve) (Fig. 14-40).

Fourth Branch of the Maxillary Nerve: Zygom atic Nerve
T e zygomatic nerve arises in the pterygopalatine fossa, enters the orbit via the inferior orbital fissure, and then divides into two branches: the upper zygomaticotemporal and lower zygomaticofacial nerves (Fig. 14-37). T ese branches supply the skin of the temporal region and lower part of the orbit.

3. division III (mandibular Nerve) of the Trigeminal Nerve

T e mandibular nerve is a mixed nerve; that is, it contains both sensory (afferent) and motor (efferent) fibers. It is the only motor portion of the trigeminal nerve. T ese motor fibers of the mandibular nerve supply the eight muscles of mastication, plus the mylohyoid muscle and the anterior belly of the digastric muscles, which help to retract the man-
dible (Fig. 14-35). Sensory fibers provide general sensations (of touch, pain, pressure, and temperature) to the skin of the lower third of the face (as seen in Fig. 14-37) and the floor of the mouth and anterior two thirds of the tongue (not taste). Other branches enter all mandibular teeth.

T e mandibular nerve exits the neurocranium through the foramen ovale (Fig. 14-38). It passes into a space just medial to the zygomatic arch and mandibular ramus and inferior to the temporal bone, called the infratemporal space. As it passes inferiorly toward the mandibular foramen in the mandible, it divides into four sensory branches: the auriculotemporal, buccal, lingual, and inferior alveolar nerves.

a. Auriculotemporal Nerve

T e first branch of the mandibular division, the auriculotemporal [aw RIK u lo TEM po ral] nerve, comes off the main trunk immediately below the base of the skull, turning backward to supply pain and proprioception fibers to the TMJ and to supply the skin of the outer ear and the lateral aspect of the skull and cheek (Fig. 14-41).

fIGur E 14-41. Mandibular division of the trigeminal nerve branches (yellow). The external wall of the right mandible has been removed to expose the inferior alveolar nerve within the mandible, where it gives off the many small dental branches to each mandibular tooth. (From this view, the buccinator muscle hides the teeth.) Within the mandible near the premolar area, the inferior alveolar nerve splits into two end (terminal) branches. One branch, the mental nerve, exits through the mental foramen to innervate the skin of the chin and lip on that side, while the other branch is really a continuation of the inferior alveolar nerve anteriorly within the mandible where it is called the incisive nerve (not visible here). Also, note the other major branches of the mandibular division: the lingual nerve, which is in close proximity to the inferior alveolar nerve posteriorly but then diverges anteriorly to enter the tongue, and the buccal nerve, which innervates the cheek and tissue next to mandibular molars. Other nerve branches (not shaded) are motor branches of the mandibular nerve supplying the muscles of mastication (shaded light red). The maxillary artery is shaded red. (Motor branches can be seen entering the masseter and temporalis muscles.) (Reproduced from Clemente CD, ed. Gray's anatomy of the human body. 30th ed. Philadelphia, PA: Lea \&Febiger, 1985:1166, with permission.)

b. Buccal (Buccinator) Nerve

Another branch is the buccal (buccinator [BUCK sin a tor] or long buccal) nerve, which comes off just below the foramen ovale and passes through the infratemporal space between the two heads of the lateral pterygoid muscles and then down and forward to the buccinator muscle (Fig. 14-41) where it innervates the mucosa and skin of the cheek up to the corner of the mouth and the buccal gingiva in the area of the mandibular molars and sometimes the second premolars. T e best place to anesthetize the tissue supplied by the buccinator nerve is to inject inside the cheek to deposit the anesthetic into the buccinator muscle near the mandibular molars (Fig. 14-42).

Lingual Nerve
T e next branch of the mandibular nerve, given off inferior to the foramen ovale, is the lingual nerve branch that goes to the tongue (Figs. 14-41 and 14-42). It passes downward, medial to the ramus but lateral to the medial pterygoid muscle, to the mucous membrane just lingual to the last molar. T e lingual nerve provides general sensation (touch, pain, pressure, and
temperature, but not taste) to the top (dorsal) and bottom (ventral) surfaces of the anterior two thirds of the tongue and adjacent tissues. T e adjacent tissues include the soft tissue (mucosa) on the floor of the mouth and inner surface of the mandible and the lingual gingiva of the entire mandible.

d. Inferior Alveolar Nerve

Finally, the inferior alveolar nerve comes off the mandibular nerve on the medial side of the lateral pterygoid muscle (Fig. 14-41). T is large nerve roughly parallels the direction of the lingual nerve to descend between the sphenomandibular ligament and ramus to the mandibular foramen, where it gives off the mylohyoid nerve and then enters the mandible through the mandibular foramen (represented on the medial surface of the mandible in Fig. 14-42). T e mylohyoid nerve (efferent) pierces the sphenomandibular ligament and travels forward in the mylohyoid groove to supply the mylohyoid muscle.

Once the inferior alveolar nerve enters the mandible through the mandibular foramen, it is in the mandibular canal within the body of the mandible, where it gives off the

fIGurE14-42. Location of the branches of the mandibular division of the trigeminal nerve (mandibular nerve) (in red). As the mandibular nerve passes through the infratemporal space, it gives off the buccal nerve to the cheek (lateral to the ramus). Before entering the mandibular foramen, the mandibular nerve (medial to the ramus) gives off a lingual nerve branch that passes to the tongue. The inferior alveolar nerve enters the mandibular foramen (and canal) where it and its terminal incisal branch give off branches through the spongy bone to all mandibular teeth.
many small dental branches that spread through trabecular (spongy) bone of the mandible in order to enter the apical foramen of all mandibular molars and premolars. It also innervates the periodontal ligaments and alveolar processes of these teeth. While within the mandibular canal, the inferior alveolar nerve splits near the roots of the premolars to become the mental nerve and the incisive nerve. T e incisive nerve (Fig. 14-43) branch continues forward within
the mandibular canal to supply the mandibular incisor and canine teeth, their periodontal ligaments, and surrounding alveolar process. T e mental nerve branch of the inferior alveolar nerve exits from the body of the mandible through the mental foramen (Fig. 14-41) and supplies the facial gingiva of the mandibular incisors, canines, and premolars and the mucosa and skin of the lower lip and chin on that side up to the midline (Fig. 14-37).

1. External nasal nerve
2. Pterygopa latine ganglion
3. Posterior superior

Alve olar nerve
A. Gingival branch
4. Alve olar cana
5. Middle superior alve olar nerve
6. Anterior superior alve olar nerve
7. Infraorbital nerve
B. Palpebral branches
C. Nasal branches
D. Labial branches
8. Buccinator nerve to cheek (in front of ramus)
9. Lingual nerve (behind ramus)
10. Inferior alve olar nerve (behind ramus)
11. Mandibular foramen
12. Mental nerve (branch of inferior alveolar)
13. Incisive nerve (branch of inferior alveolar)
fIGure 14-43. Trigeminal nerve distribution of the branches of the maxillary and mandibular divisions. The ophthalmic branches are shaded green, the maxillary nerve and branches are shaded red, and the mandibular nerve and branches are shaded blue. Note that the buccinator (long buccal) branch (labeled No. 8) of the mandibular division passes superficial to the ramus to enter the cheek, whereas the lingual nerve (labeled No. 9) and inferior alveolar nerve (labeled No. 10) pass medial to the ramus as they go to the tongue and mandible, respectively. Also, note that the infraorbital branch of the maxillary division gives off the MSA (labeled No. 5) and ASA branches (labeled No. 6) while in the infraorbital canal on the foor of the eye orbit (roof of the maxillary sinus).

Note that if an anesthetic solution is deposited next to the opening of the mandibular foramen, it could block the passage of sensory nerve signals from all mandibular teeth on that side (by blocking the inferior alveolar and its terminal incisive branch) and also the skin of the chin and lip area (because another terminal branch, the mental nerve, has also been blocked). Further, since the lingual nerve is in close proximity to the mandibular foramen, its fibers may also be blocked, causing that side of the floor of the mouth, lingual gingiva, and anterior two thirds of the tongue to lose feeling. T e only part of the mandible that would not be numb would be the tissue buccal to the molars, which requires some additional anesthetic solution in the cheek to block the buccal nerve.

Figures 14-43 and 14-44 and Table 14-3 can be used to help summarize the distribution of the mandibular and maxillary sensory nerve branches to all teeth and surrounding tissues of the mouth.

Motor (efferent) branches of the mandibular nerve supply the muscles of mastication: the masseteric nerve to the masseter muscle, as well as to the TMJ, the posterior and anterior temporal nerves to the temporalis muscle, the medial pterygoid nerve to the medial pterygoid muscle, and the lateral pterygoid nerve to the lateral pterygoid muscle.

LEARNINg Ex ERCISE

Referring to Table 14-3, cover one column at a time, and see how many branches of the trigeminal nerve you can recall that innervate the pulps, gingiva, periodontal ligaments and alveolar processes, and hard palate in each area of the mouth. These are the nerves any dental student, dental hygiene student, or graduate of either profession should be most familiar with. You should also be able to determine the location of each nerve.
fIGur E 14-44. A summary of the distribution of branches of the trigeminal nerve (CN V) that innervate the tissues of the mouth. Nerves listed on the left side of the diagram supply facial gingiva on both the right and the left side of the face; nerves listed on the right side of the diagram supply the teeth, tooth pulps, periodontal ligaments, and alveolar processes on both sides of the face. Nerves to the lingual and palatal mucosa are identified medial to the teeth.

Ta Bl E 1	d istribution of Branches of Trigeminal Nerve to the Teeth and Surrounding Structures			
TEETH	TOOTH Pu LP	g INg IVA	PERIODONTAL LIg AMENT AND ALVEOLAR PROCESS	
		MAxILLARy ARCH		PALATE
Anterior teeth	ASA nerve	Palatal: nasopalatine nerve Labial: infraorbital and ASA nerves	ASA nerve ${ }^{\text {a }}$	Nasopalatine nerve
Premolars	MSA nerve	Palatal: anterior palatine nerve Buccal: MSA and infraorbital nerves	MSA nerve ${ }^{\text {a }}$	Anterior palatine nerve
Molars	PSA nerve except mesiobuccal root of first (supplied by MSA nerve)	Palatal: anterior palatine nerve Buccal: PSA nerve	PSA nerve ${ }^{a}$	Anterior palatine nerve Soft palate: middle and posterior palatine nerve
		MANDIBu LAR ARCH		FLOOR OF MOu TH
Anterior teeth	Incisive branch of the inferior alveolar nerve	Lingual: lingual nerve Labial: mental nerve	Incisive nerve	Lingual nerve
Premolars	Dental branch of inferior alveolar nerve	Lingual: lingual nerve Buccal: mental nerve	Dental branch of inferior alveolar nerve	Lingual nerve
Molars	Dental branch of inferior alveolar nerve	Lingual: lingual nerve Buccal: buccinator nerve (long buccal nerve)	Dental branch of inferior alveolar nerve	Lingual nerve

${ }^{a}$ Also supply the maxillary sinus.

B. faClal NEr vE (SEvENTh CN)

T e facial nerve is a mixed nerve (sensory and motor). From the brain, the facial nerve penetrates the petrous portion of the temporal bone through the internal acoustic meatus (Fig. 14-45) and exits from the skull between styloid and mastoid processes through the stylomastoid foramen (in blue on Fig. 14-46). It passes through the parotid gland. Ef erent motor [EF er ent] ג̈bers innervate muscles of facial expression (including the orbicularis oris) and visual expression of the face and the scalp. Other muscles supplied by the facial nerve include the posterior belly of the digastric muscle and stylohyoid muscle (in blue on Fig. 14-35), the platysma muscle (a broad, thin superficial muscle that covers much of the anterior part of the neck, seen in Fig. 14-36), and the stapedius muscle (in middle ear cavity). None of these muscles has any influence on moving the mandible. Efferent secretory àbers stimulate secretions from two pairs of salivary glands: the sublingual glands located just under the mucosa in the floor of the mouth superior to the mylohyoid muscle and the submandibular glands located in the submandibular fossae on the medial surface of the mandible inferior to the mylohyoid muscle.

Af erent sensory [AF er ent] d̈bers of the facial nerve (chorda tympani branch) branch off within the petrous portion of the temporal bone (in blue on Fig. 14-46). T ey course through the tympanic cavity eventually exiting of the skull by way of the petrotympanic [PET ro tim PAN ik] ùssure. T ese chorda tympani fibers of the facial nerve join with the lingual nerve (branch of the mandibular division of the trigeminal nerve) and supply the sense of taste to the anterior two thirds of the tongue (the body and the tip of the tongue).

Advanced topics about taste buds: T ere are approximately 8000 to 9000 taste buds in the young adult, more in children, and fewer with advancing age. Originally, four primary tastes were identified: sour (acid), sweet, salty, and bitter. ${ }^{31}$ Some authors add alkaline and metallic to the taste senses. (Others are currently citing a unique taste associated with monosodium glutamate [amino acids] called umami. ${ }^{32}$) Early research on taste was interpreted by mapping the tongue for the quality of taste sensed in each area: the tip of the tongue is where one best distinguishes sweet, salty, or alkaline substances, and the sides of the tongue are most sensitive to sour (acidic) substances. ${ }^{31}$ However, newer research has shown that cells within each taste bud may respond to multiple tastes, but the sense of taste in each area

fIGur E 14-45. Foramen for CNs VII (facial), Ix (glossopharyngeal), and xII (hypoglossal) that exit the braincase through bones lining the neurocranium. Arrows indicate the location of the facial nerve that passes through the internal acoustic foramen (blue), the glossopharyngeal nerve that passes through the jugular foramen (green), and the hypoglossal nerve branches that pass through the hypoglossal canals (red) (not visible but on the lateral walls of the foramen magnum).

fIGur E 14-46. Foramen for CNs VII (facial), Ix (glossopharyngeal), and xII (hypoglossal) viewed on the inferior surface of the neurocranium. One part of the facial nerve exits through the stylomastoid foramen (blue) and another small branch exits through the petrotympanic fissure (blue) where it joins up with the lingual branch of the trigeminal nerve to provide the anterior two thirds of the tongue with feeling (trigeminal nerve neurons) and taste (facial nerve neurons). The glossopharyngeal nerves exit through the jugular foramen (green). The hypoglossal nerves exit through the hypoglossal canals (red). Also, note the carotid canal where the internal carotid artery enters the braincase.
of the tongue is dependent upon the intensity of each taste. (An excellent discussion of taste is found in the chapter by Travers and Travers in the text edited by Cummings that is cited at the end of this chapter.)

Gl OSSOph ar yNGEal NEr vE (NINTh CN)

T e glossopharyngeal [GLOSS o feh rin JI al] nerve exits from the skull via the jugular [JUG yoo lar] foramen (in green on Figs. 14-45 and 14-46). It then passes down and forward to enter the tongue. It is a mixed nerve (sensory and motor) and supplies parts of the tongue and pharynx.

T e af erent fibers of this nerve supply the sense of taste and sensation of feeling (touch and pain) to the posterior one third of the tongue and general sensation to the mucosa of the pharynx and tonsils. (Bitter sensations are prominent on the dorsal [top] surface in the region of the circumvallate papillae on the posterior third of the tongue. Additional taste buds can be found in other structures in the back of the mouth, such as the pillars of the fauces, hard and soft palate, epiglottis, and pharynx. ${ }^{31,33}$) T e motor fibers of the glossopharyngeal nerve innervate the stylopharyngeus muscle of the pharynx.

Other secretory fibers innervate the parotid gland, influencing secretion. T is gland is located in front of each earlobe in the cheek tissues just inferior to the zygomatic arch (seen later in Fig. 14-48). (Hint: Glossopharyngeal means glosso [tongue] + pharyngeal [pharynx or throat]).

d. hypOGl OSSal NEr vE (12 Th CN)

T e hypoglossal nerves exit from the skull through the hypoglossal canals just above the occipital condyles near the anterior border of the large foramen magnum visible inside the walls of the foramen magnum (in red on Fig. 14-46). T is motor nerve descends steeply to the muscles that move the tongue. (T ese are genioglossus, styloglossus, hyoglossus, longitudinal, vertical, and transverse.) If this nerve becomes damaged from injury or tumor, the tongue will deviate noticeably toward the affected side. (Hint: Hypoglossal means hypo [beneath; like a hypodermic needle] + glossal [tongue].)
E. Summary Of NEr vE Supply TO Th E TONGu E, Sal Ivar y GlaNd S, fa Cla 1 SkIN, aNd faCla 1 muSCles
(1.) Nerves providing General Sensation (Touch and pain) to the Tongue

- Trigeminal nerve (fifth CN): T e lingual nerve branch of the mandibular division provides general sensation of touch and pain to the anterior two thirds (body) of the tongue.
- Glossopharyngeal nerve (ninth CN) is responsible for general sensation (touch, pain) in the posterior one third (or root) of the tongue.

Nerves for Taste in the Tongue

- Facial nerves (seventh CN): Chorda tympani branches provide taste sensation to anterior two thirds (body) of tongue.
- Glossopharyngeal nerve (ninth CN) is responsible for taste in the posterior one third (or root) of the tongue.

Nerves to the Tongue muscles

- Hypoglossal nerve (twelfth CN) supplies motor fibers to the muscles of the tongue.

4. Nerves to the major muscles of mastication

- Trigeminal nerve (fifth CN): T e motor branches of the mandibular division supply the masseter (masseteric nerve), the temporalis (temporalis nerves), and the medial and lateral pterygoid (pterygoid nerve branches).

Nerves to most muscles of facial Expression

- Facial nerve (seventh CN) supplies most muscles of facial expression.

6. Secretory fibers to Salivary Glands

- Facial nerves (seventh CN) supply the submandibular and sublingual salivary glands.
- Glossopharyngeal nerve (ninth CN) supplies the parotid salivary glands.

Nerves to the Skin of the face

- Trigeminal (fifth CN) supplies all sense of feeling (touch/ pain) to the skin of the face through branches of the ophthalmic division (upper face), maxillary division (middle face), and mandibular division (lower face).

LEARNINg Ex ERCISES

- Describe the pathway of the branches of the mandibular division of the fifth CNs as they pass from the brain toward their target organs (especially the teeth and surrounding soft tissue). Name the location where branches split off of the main nerves, and name the foramina through which each branch passes. Then, if it is possible on your study skull, take a pipe cleaner and carefully pass it through the foramina to show the passageway of these nerves. Think about where these nerves might be reached by an anesthetic syringe needle and what structures would be anesthetized if anesthetic deposited in that location blocked nerve impulses from all branches of that nerve that are farther away from the brain.
- Repeat the previous exercise for the branches of the maxillary division.
- Sketch the dorsal view of the tongue and label which nerves innervate the anterior two thirds and posterior one third for general sensation, taste, and movement (muscles).
- List all 12 CNs in order and state the ir functions.
- Review all words in bold that have phonetic spelling to confirm that your pronunciation is correct.

r EvIEw Questions

Select the one best answer.

1. T e branches of which nerve cause the masseter muscle fibers to contract, thus squeezing the teeth together?
a. CN V: maxillary division
b. CN V: mandibular division
c. CN V: ophthalmic division
d. Facial nerve
e. Lingual nerve
2. Which of the following nerve branches does not need to be anesthetized in order to block the sensation of pain to the pulp and all surrounding bone and gingiva of tooth \#27 prior to an extraction?
a. Buccal nerve
b. Mental nerve
c. Incisive nerve
d. Inferior alveolar nerve
e. Lingual nerve
3. Which two nerves branch off the infraorbital nerve while it is in the infraorbital canal?
a. MSA and PSA
b. ASA and MSA
c. PSA and ASA
d. MSA and nasopalatine
e. Nasopalatine and greater palatine
4. Anesthetizing nerve fibers of what nerve results in numbness in half of the anterior two thirds of the tongue?
a. Hypoglossal nerve
b. Glossopharyngeal nerve
c. Lingual nerve branch of the trigeminal nerve
d. Lingual nerve branch of the facial nerve
5. T e nerve branch of the trigeminal that provides pain sensation to the mandibular teeth exits the skull through what foramen?
a. Foramen ovale
b. Foramen rotundum
c. Mandibular foramen
d. Mental foramen
e. Infraorbital foramen

$$
\mathrm{a}-5 ; \mathrm{c}-4 ; \mathrm{b}-3 ; \mathrm{a}-2 ; \mathrm{b}-1: \mathrm{Sr} \mathrm{E} \text { wS Na }
$$

Cr ITICal Thinking

Bell palsy is a condition that causes weakness or paralysis of the seventh cranial nerve (CN VII), which affects the muscles of facial expression on one side of the face. Imagine what might happen to the face with this condition, and then, search the computer for images of "Bell palsy" to observe the effect of damage to the motor part of this nerve.

SECTION v

vESSEl S a SSOCIa TEd wITh Th E Or al CavITy (ar TEr IES, vEINS, aNd lymph vESSEIS)

Objectives

The objectives for this section are to prepare the reader to perform the following:

- Trace blood through the major blood vessels (arteries) from the heart to the teeth and back (through major veins) to the heart.
- Describe the pathway (fossa, spaces, etc.) of the key arteries that supply the teeth and, where possible, feel the pulse.
- Trace the route of infection from teeth and associated oral structures as it passes through the lymph system.
- Palpate the location of lymph nodes associated with the spread of infection of the oral cavity.

Arteries that move blood from the heart to the face and oral cavity meet up with nerves from the brain that innervate the face and oral cavity. Arteries and nerves of the same name begin to parallel one another somewhere in the neck or on the face. T ey may pass through the same foramen and canals within bones after they meet. Generally, arteries of the face and jaw run a more wiggly or corkscrew course than do veins.

a. ar TEr IES

Refer to the pathway of blood from the heart to the teeth in Figure 14-47. Blood courses from the left ventricle of the heart through the aorta to the common carotid artery, which ascends in the neck and divides into the external carotid [kah ROT id] artery (Fig. 14-48) and internal carotid artery. T e external carotid artery gives off the maxillary branches

*Think in terms of a drop of blood making this round trip.
fIGure 14-47. Pathway of blood from the heart to the teeth and back to the heart.
fIGur E 14-48. Facial vessels. The parotid gland (yellow) is split apart to show the external carotid artery, with the maxillary artery coming off and passing deep to this gland. Arteries are shaded red; veins are blue.

supplying structures in the mouth (maxillary and mandibular), and the internal carotid artery enters the skull through the carotid canal and does not supply the mouth. You can feel the pulse of the external carotid just in front of the sternocleidomastoid muscle as required during cardiopulmonary resuscitation training.

As the external carotid passes superiorly, it gives off three important branches to the mouth: the lingual, facial, and maxillary arteries. First, the lingual artery (not seen on Fig. 14-48) comes off near the hyoid bone and then enters the tongue. Like the lingual nerve, this artery supplies the floor of the mouth, adjacent gingiva, and the sublingual gland.

Second, the facial artery (Fig. 14-48) comes off near the lingual artery. It then passes forward obliquely inferior to the submandibular gland and then laterally around the lower border of the mandible. T e facial artery and facial nerve pass together through a shallow notch on the inferior border of the mandible just anterior to the insertion of the masseter muscle. T is notch is called the antegonial notch (recall Fig. 14-14). T is is an important landmark to be aware of so that you will be able to stop the flow of blood to the lower part of the face in an emergency. Try to find the facial artery in the antegonial notch with your finger or thumb. You should feel the pulse of the facial artery if you are in the correct spot. From here, the facial artery goes upward over the outer surface of the mandible to the face.
T ere are four branches of the facial artery. Two branches come off before it passes onto the face. First, the ascending palatine artery ascends to supply structures adjacent to the pharynx (including the soft palate, the pharyngeal muscles, the mucosa of the pharynx, and the palatine tonsil), and second, the submental artery converges with the mylohyoid nerve to supply structures in the floor of the mouth (such as the mylohyoid muscle, anterior belly of the digastric muscle, and lymph nodes inferior to the mylohyoid muscle). After
passing onto the face, the inferior and superior labial arteries (branches) (Fig. 14-48) surround and supply the lips and the orbicularis oris muscle, and finally, lateral nasal and angular arteries are the terminal branches of the facial arteries.

T ere is considerable merging at the midline of the arteries from both sides of the face, rather than the more conventional system whereby an artery terminates with many small capillaries. T is merging of small arteries from opposite sides is called an end-to-end anastomosis [a NAS te MO sis]. One example is where the right and left superior and inferior labial arteries join at the midline. As one might guess, such an anastomosis can cause problems in arresting hemorrhage on the face.

MAXILLARY ARTERY: T e third branch of the external carotid artery is the maxillary artery, which is probably the most important artery to the dentist and dental hygienist. It arises from the external carotid within the parotid gland (Fig. 14-48). T e branches of this artery can be considered in three parts as shown in Figure 14-49. T e branches of the mandibular and pterygopalatine part (or first and third parts) are directly involved with the blood supply to the mandibular and maxillary teeth, respectively. T e branches of the pterygoid part (or middle part) provide blood to the four pairs of muscles of mastication. Study Figure 14-49 as you read about the following branches of each part of the maxillary artery. Also, notice the similarity between the names of the vessels and the names of the nerves that supply the same structures.

- Mandibular Part of the M axillary Artery: Arteries labeled in red in Figure 14-49

Branches coming off of the mandibular (or first) part of the maxillary artery supply the mandibular teeth and their periodontal ligaments. You read correctly: branches of the maxillary artery supply the mandible. T e inferior alveolar artery, which, like the inferior alveolar nerve, enters the mandible through the mandibular foramen,

fIGur E 14-49. Maxillary artery and the branches of its three major parts. The branches of the mandibular part (red print) supply blood to the mandible and teeth, the pterygoid part (blue print) supplies the muscles of mastication, and the pterygopalatine part (green print) supplies the maxillae and teeth. Vessels labeled with $\left(^{*}\right.$) are branches to the TMJ. Branches labeled with (\#) supply blood to muscles of mastication.
supplies branches to the mandibular molars and premolars. It then divides into two branches: the mental artery, which exits from the mental foramen to the lower lip and chin, and the incisive artery, which continues forward within the mandible to supply the anterior teeth (similar to the path of nerves of the same name seen in the mandible in Fig. 14-43).

- Pterygoid Part of the Maxillary Artery: Arteries to the muscles labeled in blue in Figure 14-49

Branches coming off of the pterygoid (or second) part of each maxillary artery are not involved directly with the teeth but supply blood to the muscles of mastication (posterior and anterior deep temporalis, masseteric, and pterygoid branches labeled with (\#) in Fig. 14-49) and a buccinator branch.

- Pterygopalatine Part of the Maxillary Artery: Arteries to the maxillae labeled green in Figure 14-49

Branches that come off of the pterygopalatine (or third) part of the maxillary artery supply the maxillary teeth and their periodontal ligaments. T e PSA artery traverses the maxillary sinus and, like the PSA nerve, supplies the maxillary molars. While within the infraorbital canal, the infraorbital artery, like the infraorbital nerve, gives off the MSA artery that supplies the premolars and the ASA artery, which supplies the anterior teeth. Each descending palatine branch of the maxillary artery supplies part of the nasal cavity before it emerges onto the palate through the greater palatine foramen (Fig. 14-39) like the nerves to supply the mucosa of the hard and soft palate and the lingual gingiva. Its terminal part ascends through the incisive canal into the nasal cavity.
T e TMJ is supplied with oxygenated blood from five branches labeled with $\left({ }^{*}\right)$ in Figure 14-49: the ascending pharyngeal (not visible in figure) and superficial temporal branches of the external carotid artery and by the anterior
tympanic, masseteric, and middle meningeal branches of the maxillary artery (Fig. 14-49).

B. vEINS

Veins tend to be straighter than arteries. ${ }^{11,34}$ In many instances, they travel almost the same course as arteries. Veins that drain blood from the face on its way back to the heart are shown in Figure 14-50.

Numerous deep veins drain blood from the upper part of the face, the tissue of the lips and muscles around the mouth, the posterior part of the nasal cavity, the palate, the maxillary alveolar process, and maxillary teeth into a pterygoid [TER i goid] plexus of veins. Also, inferior alveolar veins carry blood to the pterygoid plexus from the mandible and its teeth, that is, from the area of the oral cavity supplied by the inferior alveolar artery (and the area innervated by the inferior alveolar nerve). T e pterygoid plexus is a network of thin-walled veins medial to the upper part of the ramus of the mandible, located between the temporal and lateral pterygoid muscles or between the lateral and medial pterygoids. ${ }^{34} \mathrm{~T}$ e dense venous plexus that surrounds the maxillary artery helps protect the artery from becoming flattened when the masticatory muscles contract. During muscle contractions, however, blood is driven from the veins. ${ }^{34}$

It was previously thought that an infection in the face could travel through veins in either direction because of the lack of valves in these veins. Now, we know that facial veins do have valves, but infection of the teeth and associated oral structures can spread due to the interconnection of superficial and deep veins of the face into the pterygoid plexus of veins and then to other tissues and organs. Also, the pterygoid plexus of veins connects with another collection of thinwalled veins called the cavernous sinus located on the base of the brain. If infection reaches the cavernous sinus, it can spread to the brain with life-threatening effects.

fIGure 14-50. Venous drainage of the face (blue). The dotted light blue lines represent deeper (less superficial) vessels. Notice how many veins come together in the pterygoid plexus of veins, an area prone to bleeding if the anesthetic syringe cuts any vessel wall within this plexus.

T e veins of the pterygoid plexus empty into the short maxillary vein. While within the parotid gland, blood from the maxillary vein (and from the superficial temporal vein) passes into the retromandibular vein to drain those areas that had received blood through the maxillary and superficial temporal arteries. T e retromandibular vein drains into the facial vein where it becomes the short common facial vein that then empties into the internal jugular vein.

An important superficial vein that also drains blood from the face is the facial vein, which roughly follows the course of the facial artery but, of course, carries blood in the opposite direction. T e facial vein receives blood from the area around the eyes and nose (via the angular and lateral nasal veins) and receives blood from the lips (via the superior and inferior labial veins). It can also receive blood from the muscles of mastication. Just like the retromandibular vein, the facial vein empties through the common facial vein into the internal jugular vein. Blood from the tongue drains through lingual veins (not visible on Fig. 14-50) that also empty into the internal jugular vein (possibly via the common facial vein).

Venous drainage of the face becomes even more complex when you consider that there is a deep facial vein, which connects the deeper pterygoid plexus with the more superficial facial vein. T erefore, blood from the head can make its way down to the internal jugular vein either through the pterygoid plexus and retromandibular vein or through the facial vein and its branches.

Once blood reaches the internal jugular vein, it passes into the brachiocephalic vein to the superior vena cava and then through the heart and lungs to become oxygenated before being pumped back to the mouth (Fig. 14-47).

LEARNINg ExERCISES

Draw the route of a drop of blood from the heart to both maxillary and mandibular teeth and then back to the heart as shown in Figure 14-47. Name each vessel along the way. Try to visualize this interesting round trip, which takes place about every 10 to 15 seconds. Remember, the maxillary artery and its branches are probably the most important to the dentist or dental hygienist.

C. lymph vESSEl S

T e lymph system is somewhat more complex ${ }^{35}$ since it serves to collect tissue fluid that got outside of blood capillary beds and then return this fluid to the vascular system. In the arterial side of a capillary bed, blood pressure exceeds osmotic pressure, so fluid escapes into the tissue spaces. On the venous side of each capillary bed, the blood pressure is lower, and the osmotic pressure becomes higher, forcing 90% of the tissue fluid back into the venous capillary bed. ${ }^{36} \mathrm{~T}$ e major bulk of the remaining 10% of the fluid is the lymph, which passes into the lumen of lymph capillaries and is then collected in the nodes (shown in Fig. 14-51) and returned to the blood vascular system.

During times of infection, trauma, or cancerous growth, abnormal amounts of fluids escape (along with specialized cells to fight infection, etc.), and this results in swollen lymph glands. Since lymph nodes form chains that are then connected by lymph vessels, infection spreads predictably from the site of infection to a specific lymph node, which then drains to another until the lymph system empties back into the veins. Refer to Figure 14-51 while studying the spread pattern described here.

fIGurE 14-51. Lymph nodes of the head and neck. These areas should be palpated during a head and neck examination. Submental nodes are green, submandibular nodes are blue, and superficial cervical nodes are yellow. (Reproduced from Clemente CD, ed. Gray's anatomy of the human body. 30 th ed. Philadelphia, PA: Lea \& Febiger, 1985:880, with permission.)

Infection in the area of the chin and adjacent structures including the tip of the tongue and tissues surrounding the mandibular incisors - anterior floor of the mouth, lower lip, and adjacent gingiva (gum tissue) - all drain into the submental nodes just lingual to the mandibular symphysis area. When enlarged, these nodes can be palpated just posterior to the symphysis area of the mandible.
T e submandibular chain of nodes is located over the surface of the submandibular salivary gland and can be palpated medial but anterior to the angle of the mandible, with the most prominent node in this chain located over the facial artery medial to the antegonial notch. T e submental nodes drain into the submandibular nodes. Also, the submandibular nodes collect fluid from most other intraoral structures, including all maxillary and mandibular teeth, facial and palatal gingiva or gum tissue (except around the mandibular anterior teeth), posterior floor of the mouth, sides of the tongue anteriorly (but not the tip), cheek and side of the nose, and upper lip and lateral lower lip; the maxillary sinus drains into the submandibular nodes.

Parotid [pa ROT id] (or preauricular) nodes, located over the parotid gland in front of the ear, receive lymph from the area around the parotid gland, including the adjacent scalp, ear, prominence of the cheek, and eyelids. T e parotid and submandibular nodes, as well as excess lymph resulting from a sore throat (inflamed tonsils and pharynx), drain into the deep and superöcial cervical chain of nodes. T ese are
located along the large sternocleidomastoid neck muscles. To cite an example of the spread of infection, if an infection like a pimple or aphthous ulcer formed on the lower lip, it would drain into the mental nodes, which would in turn drain into the submandibular nodes, which in turn, along with parotid nodes from the side of the face, would drain into the cervical nodes. An enlarged cervical node could be the result of the lower lip infection.

From here, the lymph returns via the venous drainage of the cardiovascular system. On the left side, drainage is through the thoracic [tho RAS ik] duct, which empties into veins at the junction of the left subclavian [sub CLAY vi an] and internal jugular veins, which ultimately form the brachiocephalic [BRAY ki o se FAL ik] vein. On the right side, lymph empties into the junction of the right subclavian and internal jugular veins.

LEARNINg ExERCISES

- Describe the pathway by which an infection (or cancer cells) might spread from a maxillary tooth to the neck through the lymph system and then through the venous system.
- Describe the pathway by which an infection might spread from a mandibular anterior tooth to the neck through the lymph system and then through the venous system.

revIEw Questions

Select the one best answer.

1. Which node would first show enlargement from an infection of a mandibular incisor?
a. Submental
b. Submandibular
c. Parotid
d. Cervical
e. Preauricular
2. At what location would you palpate the cervical lymph node chain?
a. Around the sternocleidomastoid muscle
b. Near the symphysis of the mandible
c. Over the submandibular gland
d. Behind the ear
e. Over the parotid gland
3. Branches of what artery supply blood to the mandibular teeth?
a. Maxillary artery
b. Masseteric artery
c. Pterygoid artery
d. Pterygopalatine artery
e. Superficial temporal artery
4. Branches of what artery supply blood to the maxillary teeth?
a. Maxillary artery
b. Masseteric artery
c. Pterygoid artery
d. Pterygopalatine artery
e. Superficial temporal artery

SECTION vI STr uCTur ES vISIBl E ON a paNOr amIC rad IOGr aph

Objectives

The objective for this section is to prepare the reader to perform the following:

- Based on relative location and shape, identify key structures already discussed in this text as they appear on a panoramic radiograph.

Now that you have learned the location and shape of many bony structures within the head, it is possible to look at a radiograph and identify many of these structures based on their shape and location. In order to do this, you need to know that the denser structures in the head (i.e., the bones and teeth) will appear on the radiograph as whiter (or radiopaque). Further, the least dense structures in the head (like foramina passing through bones, sinuses, and nerve canals)
will appear on the radiograph as darker structures (called radiolucent). A panoramic radiograph can be taken with a device that rotates around the jaws so that the operator can view structures from the right, front, and left on one film. It is as though you could take the horseshoe-shaped mandible with its teeth and rami and flatten it out with its inner surface lying flat on a table and the outer (lateral) surface visible as one flat object.

LEARNINg ExERCISES

With this simple background, and your knowledge of the shape and location of structures in the skull, study the radiograph in Figure 14-52 and see how many of the following structures you can identify without looking at the answers. MATCH the following lettered items with the corresponding number and arrow on the radiograph. use the clues only if needed.

A Mandibular teeth. Note that each tooth has one or more roots embedded into the bony (opaque) alveolar processes. How many teeth there? If you know that all anterior teeth are present, count the premolars in each quadrant. Are they all there? Can you see the radiolucent, very thin (almost invisible) periodontal ligaments around each root?
B. Maxillary teeth. Note that each tooth has one or more roots embedded into the bony (opaque) alveolar processes. How many are there?
C. Body of the mandible
D. Angle of the mandible
(Clue: It is the inferior posterior corner of the horizontal body of the mandible where it joins the vertical ramus.)
E. Ramus
(Clue: It is the vertical part of the mandible.)
F. Coronoid process
(Clue: It is shaped like the point of a king's crown.)
G. Condylar process
(Clue: It articulates within the concavity of the temporal bone called the mandibular [articular] fossa).
H. Sigmoid notch
(Clue: This notch is between the coronoid and condyloid processes.)
I. Mandibular canal
(Clue: It is a radiolucent canal with its mandibular foramen where the inferior alveolar nerve enters the mandible.)

fIGur E 14-52. Apanoramic radiograph (Panorex) shows many of the structures of the skull. Test your ability to identify these structure based on their shape and relative location by matching the letter of a description (A-S) with the number of each structure (1-19). (Radiograph courtesy of Dr. R. M. Jaynes, DDS, Assistant Professor at Ohio State University.)

1 Ear NING ExEr CISE (continued)

J. Mental foramen

(Clue: It is a radiolucent circle near the ends of the premolar roots where the mental nerve branch of the inferior alveolar nerve splits off and exits the mandible to innervate the lower lip and chin on that side.)
K. Maxillary tuberosity
(Clue: It is the bump of bone behind the last maxillary molar.)
L. Maxillary $\sin \mathbf{u s}$
(Clue: It is the radiolucent area in proximity to the roots of the maxillary molars and premolars.)
M. Hard palate composed of the palatal processes of maxillae and palatine bones.
N. Mandibular (articular) fossa
(Clue: It is the depression on the base of the cranium in the temporal bone where the condyle of the mandible fits.)
O. Articular eminence
(Clue: It is the opaque bump of temporal bone anterior to the mandibular fossa that defects the condyles and the mandible downward [opening the mouth] as it moves forward.)
P. Articular disc space
(Clue: It is a radiolucency between the condyle and the fossa.)
Q. Nasal passageway (also called nasal fossa)
(Clue: This hollow radiolucent space is located superior to the maxillary anterior teeth.)
R. Nasal septum: VOMER and vertical plate of ETHMOID bone
(Clue: The septum separates the right and left halves of the nasal passageways.)
S. Hyoid bone
(Clue: This bone appears to foat below the mandible since the infra- and suprahyoid muscles attached to it are radiolucent and are not visible.)

ANSWERS: A 18 (there are 14 mandibular teeth; two premolars are missing), B-2 (there are 14 maxillary teeth; two premolars are missing), C-16, D-14, E-13, F-7, G-12, H-8, $-19, \mathrm{~J}-17, \mathrm{~K}-\mathrm{L}, \mathrm{3}, \mathrm{M}-6, \mathrm{~N}-10$, $\mathrm{O}-9, \mathrm{P}-11, \mathrm{Q}-5, \mathrm{R}-4, \mathrm{~S}-15$
14. Woelfel JB, Hickey JC, Rinear L. Electromyographic evidence supporting the mandibular hinge axis theory. J Prosthet Dent 1957;7:361-367.
15. Woelfel JB, Hickey JC, Stacy RW. Electromyographic analysis of jaw movements. J Prosthet Dent 1960;10:688-697.
16. Woelfel JB, Hickey JC, Allison ML. Effect of posterior tooth form on jaw and denture movement. J Prosthet Dent 1962;12:922-939.
17. Sharry JJ. Complete denture prosthodontics. New York, NY: McGraw-Hill, 1962:45-86.
18. Ricketts RM. Abnormal function of the temporomandibular joint. Am J Orthod 1955;41:425, 435-441.
19. Burch JG. Activity of the accessory ligaments of the temporomandibular joint. J Prosthet Dent 1970;24:621-628.
20. Turell J, Ruiz HG. Normal and abnormal findings in temporomandibular joints in autopsy specimens. JCraniomandib Disord Facial Oral Pain 1987;1:257-275.
21. Montgomery RL. Head and neck anatomy with clinical correlations. New York, NY: McGraw-Hill, 1981:202-214.
22. Winter CM, Woelfel JB, Igarashi T. Five-year changes in the edentulous mandible as determined on oblique cephalometric radiographs. J Dent Res 1974;53(6):1455-1467.
23. Kraus B, Jordan R, Abrams L. Dental anatomy and occlusion. Baltimore, MD: Williams \& Wilkins, 1969:203-222.
24. Osborn JW, ed., Armstrong WG, Speirs RL. Anatomy, biochemistry and physiology. Oxford, UK: Blackwell Scientific Publications, 1982:324-343.
25. Haines RW. On muscles of full and of short action. J Anat 1934;69:20-24.
26. Gionhaku N, Lowe AA. Relationship between jaw muscle volume and craniofacial form. J Dent Res 1989;68:805-809.
27. Basmajian JV. Grant's medical method of anatomy. 9th ed. Baltimore, MD: Williams \& Wilkins, 1975.
28. Crum RJ, Loiselle RJ. Oral perception and proprioception. A review of the literature and its significance to prosthodontics. J Prosthet Dent 1972;28:215-230.
29. Jerge CR. Organization and function of the trigeminal mesencephalic nucleus. J Neurophysiol 1963;26:379-392.
30. Renner RP. An introduction to dental anatomy and esthetics. Chicago, IL: Quintessence Publishing, 1985:162.
31. Jenkins GN.T ephysiology of the mouth.3rded. Revised reprint. Oxford, UK: Blackwell Scientific Publications, 1970:310-328.
32. Kawamura Y, Kare MR. Umami: a basic taste. New York, NY: Marcel-Dekker, 1987.
33. Osborn JW, ed. Anatomy, biochemistry and physiology. Oxford, UK: Blackwell Scientific Publications, 1982:542.
34. Sicher H, DuBrul EL. Oral anatomy. 7th ed. St. Louis, MO: C.V. Mosby, 1980:351-376.
35. Montgomery RL. Head anatomy with clinical correlations. New York, NY: McGraw-Hill, 1981:75-82.
36. Paff GH. Anatomy of the head and neck. Philadelphia, PA: W.B. Saunders, 1973.

g ENERAL REFERENCES

Ash MM. Wheeler's dental anatomy, physiology and occlusion. 7th ed. Philadelphia, PA: W.B. Saunders, 1993.
Clemente CD, ed. Gray's anatomy of the human body. 30th ed. Philadelphia, PA: Lea \& Febiger, 1994.
Clemente CD. Anatomy: a regional atlas of the human body. 4th ed. Baltimore, MD: Williams \& Wilkins, 1997.
Dorland's illustrated medical dictionary. 28th ed. Philadelphia, PA: W.B. Saunders, 1985.

Fehrenbach MJ, Herring SW. Illustrated anatomy of the head and neck. Philadelphia, PA: W.B. Saunders, 1996.
Reed GM, Sheppard VF. Basic structures of the head and neck. Philadelphia, PA: W.B. Saunders, 1976.
Travers JB, Travers SP. Physiology of the oral cavity. In: Cummings CW, ed. Otolaryngology head and neck surgery, vol. 2, 4th ed. Philadelphia, PA: Elsevier Mosby, 2005.
Web site: http://education.yahoo.com/reference/gray/-Bartleby. com edition of Gray's Anatomy of the Human Body

Oral Examination: Normal Anatomy of the Oral

 CavityTopics covered within the two sections of this chapter include the following:
I. Extraoral examination: normal structures
A. General appearance
B. Head
C. Skin and underlying muscles of mastication
D. Eyes
E. Temporomandibular joint
F. Neck
G. Lymph nodes
H. Salivary glands (extraoral)
I. Lips
II. Intra oral examination: normal structures as well
as landmarks used for placing local anesthetic
A. Labial and buccal mucosa: vestibule and cheeks
B. The Palate: roof of the mouth
C. Oropharynx: fauces, palatine arches, and tonsils
D. Tongue
E. Floor of the mouth
F. Salivary glands (intraoral)
G. Alveolar process (of underlying bone)
H. Gingiva
I. The teeth (count them)

Objectives

This chapter is designed to prepare the learner to perform the following:

- While systematically following all of the steps suggested for a thorough head and neck (cancer screening) examination, identify and describe all normal structures found during an extraoral and intraoral examination.
- Describe the location and palpate (examine by touching), if possible, the major muscles of mastication.
- Describe the location of the temporomandibular joint, and palpate the joint posteriorly and laterally to the condyles.
- Describe the location of the lymph nodes that drain the face and neck and palpate these areas.
- Describe the location of the major salivary glands and palpate these areas.
- Describe the location for injecting anesthetic in order to anesthetize the teeth and surrounding structures.

Note: Specific research data and some of Dr. Woelfel's original research findings related to material covered in this chapter are referenced throughout by using superscript letters (like this ${ }^{A}$) and are then presented at the end of the chapter.

ANATOMIC TERMS: Familiarize yourself with the following anatomic terms before reading this chapter:

Circumvallate [sir kum VAL ate]: circum (around), vallate (valley or trench)

Filiform: shaped like a thread or filament
Fornix: referring to a vault-like space
Frenum [FREE num] (also frenulum; pl. frena): small fold of tissue that limits movement

Fungiform [FUN ji form]: shaped like a fungi or mushroom

Linea alba [LIN e a AL ba]: the white (alba) line (linea)
Mastication [MAS ti KA shen]: chewing food
Vestibule: entrance to the mouth; like an anteroom, known as a vestibule in an old house
During a head and neck (cancer screening) examination, the dental professional should evaluate all oral and surrounding structures for evidence of pathology. T is examination begins with an evaluation of the patient's general health and then involves an assessment of extraoral structures of the head and neck, followed by an intraoral examination that includes an evaluation of all structures from the lips to the throat. T e purpose of a complete and thorough extraoral and intraoral examination is to identify any areas of pathology that might require follow-up or treatment. T e primary purpose of this
section is to describe normal structures that can be identified within the mouth so that deviations from normal can be distinguished. It should also help the reader describe the location of abnormal lesions relative to the location of normal adjacent structures, which is necessary when following the progression of changes of a lesion or when referring a patient for a lesion biopsy. A secondary purpose of this chapter is to highlight landmarks that are helpful when injecting local anesthetic prior to dental treatment.

You should try to perform an examination on a partner after studying the description and location of each normal landmark. Keep in mind that soft tissue structures cover the bones of the skull and are supplied by the nerves and blood vessels that were discussed in Chapter 14. As you study this material and examine the mouth, recall the location of the underlying bony landmarks, nerves, and vessels.

Section i extrAor Al exAMin At ion: nor MAl Str Uct UreS

A. Gen er Al AppeAr Ance

T e first thing to notice during an initial meeting with a patient is his or her general appearance. You can obtain clues regarding possible health problems that have not yet been diagnosed, and you can begin to predict how well the patient will tolerate dental treatment. Notice the posture, gait, breathing, and general well-being during your greeting.

B. He Ad

A close look at the head may reveal asymmetry of the head or a discrepancy in the relationship of the upper and lower jawbones. T is could be important to identify swelling that could be a sign of pathology or infection and when determining how to identify and treat problems with the occlusion.

c. Skin And Un der lyin G MUSc 1 eS of MASt ic At io n

Observe the skin for any unusual lesions and describe each lesion by location (relative to adjacent normal landmarks), size, and the person's knowledge of its history. T e evaluator's knowledge of pathology is necessary when distinguishing benign lesions from those requiring follow-up pathology consult and/or biopsy.

Muscles of the head and neck may be palpated to identify pain or tenderness that could be related to problems with the temporomandibular joint or an imbalance in the occlusion of the teeth (made worse when the person habitually clenches or squeezes the teeth together). For this reason, it is important to be able to locate and palpate these muscles where possible. You can palpate each muscle pair bilaterally by lightly massaging an area with the middle finger of each hand while using the index and fourth finger to palpate surrounding soft tissue
to feel for unusual lumps or tenderness. Palpate these muscles on a partner while using Figure 15-1 as a guide.

- Masseter: Feel the body of the masseter by palpating the bulge over the lateral surface of the mandible near the angle while your partner clenches the jaws together. Move your finger down toward the angle of the mandible to feel the insertion (labeled No. 4 on Fig. 15-1), and move

fiGUr e 15-1. Sites for palpation of temporomandibular joint and muscles of mastication (origin and insertion locations).

1. Lateral surface of mandibular condyle. 2. Posterior surface of mandibular condyle. 3. Masseter (origin). 4. Masseter (insertion).
2. Temporalis (anterior vertical fibers that close mandible).
3. Temporalis (posterior horizontal fibers that re tract mandible).
4. Medial pterygoid. 8. Lateral pterygoid (palpated intra orally).
up toward the zygomatic arch (inferior border of the zygomatic bone and zygomatic process of the temporal bone) to feel the origin (labeled No. 3).

- Medial pterygoid: Feel the bulge when your partner clenches while palpating the medial surface of the angle of the mandible at the insertion (labeled No. 7). It may help to have your partner lean the head forward to relax the skin of the neck as you gently palpate upward and outward against the medial surface of the mandible near the angle, using the tips of your middle finger and forefinger. T is may cause some discomfort.
- Temporalis, anterior ábers: Palpate the origin of the anterior (vertical) fibers on the forehead just above a line between the eyebrow and superior border of the ear (labeled No. 5). Since these muscle fibers help close the mouth, see if you feel the bulge when your partner clenches the teeth.
 posterior (horizontal) fibers of the temporalis just above and posterior to the superior border of the ear (labeled No. 6). Since these muscle fibers are involved in retruding the mandible, see if you can feel a bulge when your partner retrudes (pulls back) the mandible.
- Lateral pterygoid (intraoral palpation): T e lateral pterygoid can only be palpated intraorally. Feel this muscle by placing your little finger in the vestibule of the mouth behind the maxillary tuberosity (labeled No. 8). (Use a skull to see how to reach the lateral plate of the pterygoid process of the sphenoid bone.) With your partner's mouth slightly open and the mandible moved slightly toward the side being palpated, slide your little finger back toward the lateral pterygoid plate for the origin of the lateral pterygoid muscle. T is may be uncomfortable to a patient even if the muscle is not sore. T e anterior surface of the neck of the condyloid process is the location of part of the insertion of this muscle, but it cannot be palpated.

d. eyeS

T e normally white part of the eyes (sclera) should be white and clear, not bloodshot, and not yellow (a possible indication of jaundice from liver disease). T e thin layer of tissue covering the eyeball and reflected onto the inner surfaces of the eyelids (called the conjunctiva) should appear healthy and not be severely inflamed (red) or irritated (a possible sign of allergy or disease). T e pupil (dark center opening surrounded by the colored iris) should not be severely pinpoint or dilated, both of which may be signs of disease or drug use.

e. t eMpor o MAn diBUl Ar Jo in t

Locate and palpate the lateral aspects of both mandibular condyles simultaneously by standing behind your partner and pressing your middle fingers over the skin just anterior to the external opening of the ear and inferior to the zygomatic arch while your partner opens wide and closes
(Fig. 15-1, labeled No. 1). Feel the head of the condyle move as your partner opens and closes the mandible and moves the mandible from side to side. Movement of the condyles during minimal opening of the mandible cannot be felt as easily as when the mouth is opened wide since the condyles and mandible only rotate around a line connecting the condyles (like a swing) during minimal opening, but the condyles and mandible move bodily (translate forward and downward over the articular eminences) when opening wide. Also, feel the condyles during lateral movement to see if you discern differences in movement on the right side versus the left side during movement to the right, then movement to the left. Sometimes, you may feel a jerky movement accompanied by a clicking or popping sound. T is is likely due to the head of the condyle slipping off of the articular disc.

Palpate the posterior surface of the mandibular condyle by placing your little fingers into each external auditory meatus (ear canal openings) and press anteriorly forward (Fig. 15-1, labeled No. 2). Feel the posterior surface of the condyles as your partner opens, closes, and moves the mandible laterally from side to side.

f. neck

T e neck should be evaluated for symmetry and to confirm that there are no lumps or bumps. T e thyroid gland (a major gland that secretes the thyroid hormone, which is responsible for controlling much of the metabolism of the body) is located in the neck. It is just inferior to the voice box (larynx or laryngeal prominence), and it is shaped somewhat like a butterfly with wings extending laterally on either side of the larynx (Fig. 15-2, labeled No. 17). T is gland should be evaluated visually and palpated (as in Fig. 15-3) to ensure that there is no swelling (a possible goiter), which could be a sign of dysfunction of this gland and its output of thyroid hormone. Also, in the neck, lymph nodes that are located around the sternocleidomastoid muscles are described next.

G. 1 yMpH n o d eS

T e evaluation of lymph nodes during a dental exam is important since enlarged nodes may indicate infection from sites that drain into them or may be an indicator of the spread of cancer. Healthy nodes are normally not palpable, but infection or malignancies may cause them to become enlarged. When infection drains into a node, it is more likely to be firm, tender, enlarged, and warm, and adjacent skin may be reddened. In this case, look for the site of infection based on your knowledge of the spread pattern within the nodes discussed in the previous chapter. Even after the infection is resolved, the nodes may remain enlarged but would be nontender and rubbery in consistency. If a node becomes enlarged due to the effect of a malignancy, it is more likely to feel firm and nontender, but it also feels like it is attached to the underlying tissue, so it is relatively immovable, and it will continue to get larger.

fiGUre 15-2. Structures in the head and neck that can be identified (or palpated) during a head and neck examination.

fiGUr e 15-3. Palpation of the tissue in the neck surrounding the thyroid gland and laryngeal promine nce, feeling for asymmetry or swe lling.

Nodes, when enlarged, can be felt by passing the sensitive fleshy part of the fingertips over the location of each node location. Using Figure 14-51 in the last chapter as your guide, palpate the skin located over the submental nodes (just inferior and posterior to the chin), the submandibular nodes (inside the angle of the mandible and over the submandibular glands), the superficial parotid and the retroauricular nodes (anterior and posterior to the ear, respectively), and the cervical nodes (surrounding the large sternocleidomastoid neck muscle, as demonstrated in Fig. 15-4).

H. SAl ivAr y Gl An d S (extr Ao r Al)

Two pairs of major salivary glands can be palpated extraorally: the submandibular glands and the parotid glands. T e submandibular glands are located just medial to the inferior border of the mandible within the shallow submandibular fossae (Fig. 15-2, labeled No. 11). T ey are positioned just anterior to where the facial artery passes over the inferior surface of the mandibular on its way from the neck to the face. Palpate this vessel on the inferior border of the mandible in the antegonial notch (you may feel its pulse) and move medially in order to locate the submandibular gland. T ese glands produce almost two thirds of our saliva, mostly the thinner (serous) type but also some thicker (mucous) types. ${ }^{1}$

T e large parotid glands (labeled No. 13 in Fig. 15-2) are located just anterior and inferior to each ear lobe (lateral to the ramus and extending posteriorly to the sternocleidomastoid
fiGUr e 15-4. Palpation of tissue of the neck that surrounds the sternocleidomastoid muscle in order to detect any enlarged cervical lymph nodes that are located around this muscle.

muscle). T ey produce 23% to 33% or our saliva (the serous or thinner type). ${ }^{1} \mathrm{~T}$ ese glands may become enlarged during mumps or a duct blockage.

i. 1 ipS

Use Figure $15-5$ as a guide while studying the lips. T e lips are the two fleshy borders of the mouth (an upper and a lower) that join at the labial commissure. T e upper lip is bounded laterally by the cheeks at the nasolabial groove and superiorly by the nose. T e nasolabial groove runs diagonally downward and laterally from the side of the nostrils toward an area near the commissure of the mouth. T e lower lip is also bounded laterally by the cheeks and is bounded inferiorly
by the chin at a horizontal groove called the labiomental groove. Recall that the underlying orbicularis oris muscle is the muscle within the lips surrounding the mouth opening that permits us to close our lips around a straw. T e upper lip has a small rounded nodule of tissue in the center of its lowest part called the tubercle, and the skin superior to the tubercle has a broad depression running from the tubercle toward the center of the nose called the a philtrum [FIL trum].

T e vermilion border (also margin or zone) is the red zone of the lips, which is really a transitional zone between the skin of the face and the mucous membrane or mucosa [mu KO sah] (tissue lining the mouth). It is the area where many women apply lipstick. T e lips are redder in younger persons than in older persons, and in some individuals, the

fiGUr e 15-5. Structures of the lips. The margin of the lips is also called the vermilion zone or border. The mucocutane ous junction is the junction of the skin of the face with the vermilion zone.

fiGUr e 15-6. Lower lip:
vermillion border, wet
(wet-dry) line and
mucocutane ous junction.
lip color is reddish brown due to the presence of brown melanin pigment. T e vermilion border is bounded externally on the face by the mucocutaneous [MYOO koe kyoo TAY nee us] junction, the junction between the skin of the face and the vermilion border of the lips. T e vermilion border is bounded internally in the mouth by the wet line where labial mucosa begins. T e wet line (or wet-dry line) is the junction
between the outer vermilion border, which is usually dry, and the inner smooth and moist mucosa (Fig. 15-6). T e wet line is located about 10 mm back from the skin or mucocutaneous junction. T e vermilion border and mucocutaneous junction are important in the head and neck examination because changes here may be caused by exposure to the sun and could lead to skin cancer.

T e oral cavity is bounded anteriorly by the lips, laterally by the cheeks, superiorly by the palate, and inferiorly by the floor of the mouth. T e oral cavity can be divided into two parts: the oral vestibule and the oral cavity proper. T e outer oral vestibule is the space between the teeth with the supporting alveolar processes and the lips or cheeks. T e inner oral cavity proper is the space bounded anteriorly and laterally by the teeth and alveolar processes.

Mucous membrane (mucosa) lines any body cavity opening out to where it joins the skin on the outside of the body. Oral mucous membrane lines the oral cavity. It resembles the skin covering the outside of the body, except that it is moist. Some areas subjected to the most wear, such as the roof the mouth (over the hard palate) and the gingiva, are covered by a toughened outer tissue called a keratin [KER ah tin] layer. As wear occurs, this keratinized tissue may take on a grayish appearance. Other areas of the oral mucous membrane have no keratin layer so are more delicate in structure, such as the cheeks and floor of the mouth. T is mucosa lining may be so thin that the blood vessels located in the underlying connective tissue may easily be seen, giving it a reddish or bluish color.

Many of the nerves that innervate the teeth and adjacent oral structures can be reached with the anesthetic syringe
needle by penetrating the labial and buccal mucosa. T e landmarks that are helpful for locating these injection sites will be described throughout this section.

A. 1 ABiAl An d BUc c Al MUc o SA: veSt iBUle And cHeekS

T e vestibule space between the teeth and the lips or cheeks can be divided into the labial vestibule next to the anterior teeth and the buccal vestibule next to the posterior teeth (premolars and molars). It extends superiorly into a mucosalined space next to maxillary teeth and inferiorly next to mandibular teeth. It is covered with dark pink-colored alveolar mucosa and is rich in blood vessels and minor salivary glands. T e tip of your tongue can reach into each vestibule to assist in cleaning the facial surfaces of the teeth and, while chewing, to lift food back for additional chewing. T e vestibular fornix (Fig. 15-7) is the lowest part of the vestibule next to the mandible or the highest part next to the maxillae. T e vestibular fornix next to the cheeks is where food may collect in patients especially after nerve damage to the cheek (as with unilateral loss of function of the facial nerve from Bell palsy or from a stroke).

fiGUr e 15-7. Structures of the vestibule and adjacent cheek mucosa.

Refer to Figure 15-7 as a guide while studying the following structures. T e labial frenum [FREE num] (plural: frena [FREE nah]) is the thin sheet of tissue at the midline that attaches each lip (upper and lower) to the mucosa covering the maxillae or mandible between the central incisors. T e buccal frenum loosely attaches the cheek to the mucosa of the jaw in the area of the premolars (maxillary and mandibular). T ese buccal frena can be seen by pulling the lip and cheek out and upward and the lip and cheek out and downward. Facial muscles move the buccal frena forward and backward and upward and downward during eating to help, along with the tongue, place our food back over the chewing surfaces of our teeth while eating. Movement of these frena can dislodge complete dentures if the denture border is designed improperly.

Usually 4 to 6 mm posterior to the commissure of the lips, a slight bulge of mucous membrane called the commissural papule is commonly seen and may be palpated (Fig. 15-7). T e parotid papilla [pa ROT id pah PILLe] is a rounded flap of tissue on the mucosa of the cheek next to the maxillary first and second molars at or just superior to the occlusal plane (Fig. 15-7). T is papilla covers the opening to the parotid duct (Stensen duct). ${ }^{\text {A }}$

T e lining of the buccal mucosa on the inside of the cheeks is shiny, but in spots may be rough. Often, there is a horizontal white line extending anteroposteriorly on each side at the level where the upper and lower teeth come together, called the linea alba [LIN e ah AL ba] buccalis (Fig. 15-8). (Hint: "Linea" means line; "alba" means white.) It may extend from the commissural area to the third molar region at a level of the occlusal surfaces of the posterior teeth. T is area may become irritated by trauma from biting the cheek. Fordyce granules or spots are small, yellowish irregular areas and may be conspicuous in some persons. T ey are most commonly located on the buccal mucosa inside the cheeks posterior to the corner of the mouth (Fig. 15-8). T ey are really the manifestation of intraoral sebaceous glands-glands normally associated with hair follicles on the skin outside of the mouth. T eir presence here may be the result of fusion of the upper and lower parts of the cheek during embryonic development. Such glands have also been found, however, on other parts of the oral mucosa.

Palpation of the cheeks (or lips) for lumps or bumps can be accomplished by pressing with the thumb on one side against the forefinger on the other side (called bidigital palpation), as seen in Figure 15-9.

fiGUr e 15-8. Buccal mucosa adjacent to posterior teeth showing a linea alba and Fordyce granules (spots). (Courtesy of Carl Allen, D.D.S., M.S.D.)

fiGUr e 15-9. Bidigital palpation is used to feel for lumps or bumps within the soft tissue of the cheeks by pressing with the thumb on the one of the cheek and forefinger on the other side.

TECHn Iq u E Fo R In jECTIn G Lo CAL An ESTHETIC To n u m B o RAL STRu CTu RES: BACk GRo u n D

In order for you to "feel" pain in a tooth, the tooth or surrounding tissue that is being "hurt" must pass the signal to the brain by way of the branches of the trigeminal nerve. In order for the anesthetic to block the signal of oral pain being sent along these nerve branches that pass from each tooth to the brain, a sufficient concentration of anesthetic must enter the nerve cells along their passageway from the tooth to the brain to block the nerve. In order to accomplish this, anesthetic is applied as close as possible to a nerve before it enters the bone, or, if the bone is porous enough or thin enough, it may be applied outside of the bone where it can pass (infiltrate) through the bone directly to the dental nerve branches in the bone before they enter the tooth root. The maxillae bones are less dense than the mandible, permitting anesthetic to infiltrate more readily from adjacent soft tissue into bone and reach nerve branches that enter the tooth pulps. In the mandible, nerves supplying the pulps can be blocked more effectively by applying the anesthetic near the mandibular nerve before it enters the mandible (the inferior alveolar nerve) or into the mental foramen (which permits the solution to enter the mandible and block only the inferior alveolar nerve branches to the premolars and possibly the anterior teeth but not the molars).

Recall that most nerves parallel arteries and veins. In order to avoid injecting local anesthetic into these vessels where it can produce an exaggerated undesirable effect on the heart (systemic effect), an aspirating syringe is used. This type of syringe permits the operator to pull back on the stopper of the anesthetic cartridge and apply a negative pressure through the solution and needle. Therefore, if the needle tip is in a blood vessel, the negative pressure can aspirate (suck in) blood into the glass anesthetic cartridge where it can be seen. When blood is observed, the operator can reposition the needle prior to injecting the anesthetic and aspirate again to ensure that the anesthetic will not enter the vessel where it would quickly reach the heart, resulting in an increased chance of undesirable side effects.

In j ECTIo n S Fo R THE PSA, mSA, An D ASA n ERvES

Consider the nerves that must be blocked in order to anesthetize the teeth and surrounding tissues of the upper jaw. These are all branches of the maxillary division of the fifth cranial (trigeminal) nerve. In order to anesthetize the pulp of one or two teeth, or the soft tissue in a specified area, it is necessary to block the appropriate individual branches of the posterior superior alveolar (PSA), middle superior alveolar (MSA), or ASA nerve branches that innervate these tissues.

In jECTIo n S Fo R THE PSA, mSA, An D ASA n ERvES (Continued)

If you want to anesthetize only the maxillary second or third molar and adjacent tissue, you can reach the PSA(Fig. 15-10) before it enters the alveolar canals (Fig. 15-11) by directing the anesthetic toward the posterior surface of the maxilla, just superior, distal, and slightly medial to the apex of the third molar. Entry to this site is through the mucosa at the height of the buccal vestibule (vestibular fornix) superior to the maxillary tuberosity (Fig. 15-12). The cheek can be stretched slightly outward to permit an angle that is directed superiorly and medially. Specific dental branches of the PSA can also be blocked by depositing the anesthetic next to the maxilla as close as possible to the apex of the tooth being anesthetized, and the solution will infiltrate through the maxillary bone to block the dental branches to these molars. When using this technique to anesthetize a maxillary first molar, the anesthetic will reach not only the dental branches of the PSA that enter two of its roots but also the MSA branches that enter the third root.

For all other maxillary teeth and adjacent facial gingiva, you need to block branches of the MSA or ASA Since you cannot easily reach the MSA and ASA nerves as they pass from the brain through the base of the orbit and maxillary sinus, you can deposit the solution in the soft tissue of the vestibular fornix adjacent to the maxillae, at a level of the tooth root tips of the teeth you want to get numb (Figs. 15-13 for the MSA and Fig. 15-14 for the ASA). The anesthetic can infiltrate through the soft tissue and bone to reach dental nerve branches of the ASA (supplying the pulps of anterior teeth, Fig. 15-15) or MSA (supplying the pulps of premolars and one root [mesiobuccal] of the maxillary first molar, Fig. 15-16) in order to block pain. As stated previously, the anesthetic placed to block the MSA nerve branches may also infiltrate through the bone to block some of the PSA nerve branches, thereby numbing the entire first molar.

End branches of the infraorbital nerve branches that supply the soft tissue facial to premolars and anterior teeth can be anesthetized using the infiltration technique described above. However, blocking all of the terminal branches of the infraorbital nerve may also be helpful. This nerve can be reached by applying the anesthetic near the opening of the infraorbital foramen (Fig. 15-17). This foramen may be palpated with the forefinger through the skin just below the inferior border of the eye socket. Then, using the thumb in the facial vestibule to raise the upper lip, you can pass the needle into tissue at the height (fornix) of the vestibule near the premolars (similar to the MSA injection) and continue to move the tip parallel to the facial surface of the maxilla until reaching the level of the infraorbital foramen (Fig. 15-18).

fiGUr e 15-10. PSA nerve location: human skull with maxilla painted red, the palatine bone (barely visible) is green, and the sphenoid bone is yellow. A pipe cleaner, representing the PSA nerve, passes out of the pterygomandibular space and passes inferiorly toward the alveolar canals on the posterior surface of the maxilla.

fiGUre 15-11. PSA nerve location: anesthetic syringe needle aimed toward the alveolar canals where the PSA nerve branch enters the maxilla on its way to the maxillary molar roots.

fiGUr e 15-12. PSA nerve injection: penetration of the needle through the oral mucosa at the height of the maxillary vestibular fornix just posterior to the maxillary tuberosity is directed medially and superiorly toward the alveolar canals where the PSA nerve enters the maxilla. This injection location should reduce pain sensation to the maxillary molars (except the mesiobuccal root of the maxillary first molar) and adjacent facial soft tissue and gingiva.

fiGUre 15-13. mSA (and adjacent PSA) nerve location: human maxilla has the location of the maxillary first molar and premolar roots outlined on the maxilla. The anesthetic syringe needle is aimed parallel to the contour of the maxilla to reach the level of the root ends of the maxillary premolar or molar teeth to be anesthetized. The anesthetic can infltrate through the bone of the maxilla to reduce pain sensation to these teeth (and adjacent facial soft tissue and gingiva) by simultaneously blocking the mSA nerve and branches of the adjacent PSA nerve.

fiGUr e 15-14. ASA nerve location: human maxilla with a pencil line indicating the approximate level of the end of the maxillary tooth roots. The anesthetic syringe needle is aimed parallel to the contour of the maxilla to reach the level of the root ends of the maxillary anterior teeth in order to block the dental branches of the ASA nerve.

fiGUr e 15-15. ASA nerve injection: the anesthetic syringe needle penetrates through the oral mucosa at the height of the maxillary vestibular fornix adjacent to the maxillary lateral incisor until the needle tip reaches the estimated level of the root tip. This injection location should reduce sensation to the maxillary incisors by infiltrating through the maxilla to block the ASA nerve.

fiGUr e 15-16. m SA (and adjacent PSA) injection: the anesthetic syringe needle penetrates through the oral mucosa at the height of the maxillary vestibular fornix (near the buccal frenum) adjacent to the maxillary premolars until the needle tip reaches the estimated level of the root tips. This injection location should reduce sensation to the maxillary premolars and adjacent first molar by infiltrating through the maxilla to block the mSA nerve and the adjacent branches of the PSA nerve.

fiGUr e 15-17. Infra Orbital nerve location: the anesthetic syringe needle is aimed parallel to the contour of the maxilla to reach the level of the infra orbital nerve. Anesthetic can block the infraorbital nerve where it exits the infraorbital foramen to reduce pain sensation in the tissues of the upper lip and facial gingiva (and part of the nose and lower eyelid) that are supplied by the infraorbital nerve branches.

fiGUr e 15-18. Infra Orbital nerve injection: the anesthetic syringe needle penetrates through the oral mucosa at the height of the maxillary vestibular fornix adjacent to the maxillary canine or first premolar (similar in location and syringe angulation to an MSA or an ASA block), but the needle penetrates farther, beyond the level of the root tips, to the level of the infra orbital nerve (felt by palpating to find the depression of the infraorbital foramen and marking the level with the finger as in the photograph).

Lo n G Bu CCAL In jECTIo n

The buccinator (long buccal) nerve is a branch of the mandibular nerve that does not pass through the mandibular foramen but is located in the soft tissue of the cheek. The anesthetic can be applied just beneath the buccal mucosa and just superior to the buccal shelf next to the mandibular molars that require facial tissue numbness (Figs. 15-19 and 15-20).

fiGUr e 15-19. Buccal nerve location: location on the skull for blocking the end branches of the (long) buccal nerve facial to the mandibular molars and superior to the buccal shelf.

fiGUr e 15-20. Buccal nerve injection: anesthetic syringe used to block the (long) buccal nerve by penetrating the mucosa into the cheek just buccal to the maxillary molars. This anesthetic should reduce pain sensation to the facial soft tissue and gingiva of the mandibular molars.

B. t He pAl At e: roof of t He Mo Ut H

T e hard palate is the firm anterior part of the roof of the mouth with mucosa over the underlying bone (namely, the horizontal plates of the palatine bones and palatine processes of the maxillae). T e sof palate is the posterior movable part of the roof of the mouth without underlying bony support. T e vibrating line is the junction between the hard and soft palate (Fig. 15-21).

1. Hard palate Structures

Refer to Figures 15-21 and 15-22 while studying the structures of the hard palate. T e hard palate is covered by keratinized, grayish-red to coral pink tissue. T e incisive papilla is the small rounded elevation of tissue on the midline of the palate just lingual to the central incisors. T is papilla is located over the incisive foramen, where the nasopalatine nerve passes from the nasal cavity onto the palate to innervate the anterior portion of the hard palate. It is the location for injecting anesthetic to numb palatal tissue in this area. ${ }^{B}$

T e palatine raphe [RAY fee] is the slightly elevated ridge of firm tissue running anteroposteriorly along the midline of the hard palate (over the intermaxillary suture attachment between the palatine processes of the right and left maxillae) (Fig. 15-22). T e mucosa over the raphe is firmly attached to the underlying bone without intervening fat or gland cells. T e rest of the tissue on both sides of the raphe has fat or salivary gland tissue beneath the surface, so it is softer. T is spongy tissue at the junction of the hard palate and alveolar process next to premolars and molars is the location of the greater palatine nerve. T ere are more than 350 very small palatine glands in the posterior third of the hard palate. ${ }^{2} \mathrm{~T}$ ey secrete thick but slippery saliva.

Palatine rugae [ROO guy] or [ROO jee] are a series of palatal tissue elevations, or wrinkles, located on the palate just posterior to the maxillary anterior teeth (Fig. 15-22). T ey form a pattern like branches on a tree, coming off of the common midline "trunk," the palatine raphe. ${ }^{\mathrm{C}}$ Rugae function in two important ways: in tactilely sensing objects or food position and in aiding the tongue's proper placement for the production of certain speech sounds. ${ }^{3} \mathrm{~T}$ is part of the palate is often burned by eating pizza when it is too hot or becomes abraded from chewing too much popcorn.

fiGUr e 15-22. Structures of the hard palate: note the prominent palatine rugae (ridges) and incisive papilla (anterior midline), and the palatine raphe, which is located over the intermaxillary suture line between the right and left maxillary palatine processes. The two tiny depressions on either side of the posterior portion of the raphe are called fove a palatini.

n ASo PALATIn E n ERvE In jECTIo n

In order to anesthetize the tissues of the palate, you need to block one or two nerves. The greater (anterior) palatine nerve innervates most of the palate (all tissue covering the hard palate lingual to molars and premolars) and the nasopalatine nerve for tissue lingual to the anterior teeth. Recall that both of these nerve branches split off of the maxillary nerve while in the pterygopalatine space and then pass through the nasal passageways before entering the palatal tissue. The nasopalatine nerve passes from the pterygopalatine space along the nasal septum in the nasal cavity and into palatal mucosa through the incisive foramen (Fig. 15-23), which is located immediately under the bump of very firm tissue called the incisive papilla (Fig. 15-24). This papilla is located on the palate just lingual to the midline between the maxillary central incisors. Since this tissue is very firm, only a small amount of anesthetic can be applied into this tissue, and this injection can be most painful. Applying pressure over the injection site with the handle of a mirror or with the end of a cottontipped applicator for 15 to 20 seconds prior to injecting can minimize this discomfort.

fiGUr e 15-23. n as opalatine nerve location: the anesthetic syringe needle is directed toward the nasopalatine canal opening (incisive foramen) where it can block the nasopalatine nerve, which enters the palate at this location. (On this skull, the palatine process of the one maxilla is painted red, and one palatine bone is painted green.) the incisive papilla overlying the opening to the incisive foramen in order to block the nasopalatine nerve. This should reduce pain sensation to the palatal soft tissues lingual to the anterior teeth. Since this injection site is so sensitive (it has been known to bring tears to the eyes), it is recommended to place pressure over the incisive papilla with a mirror handle or cotton-tipped applicator for a brief time prior to injecting with the needle.

GREATER PALATIn E n ERvE In jECTIo n

The greater palatine nerve passes from the nasal cavity to palatal tissue through the greater palatine foramen located just lingual to the third molars at the junction of the most posterior part of the horizontal bone of the hard palate and the more vertical alveolar process surrounding the maxillary posterior teeth (Fig. 15-25). The greater palatine nerve spreads anteriorly toward the tissue lingual to the first premolar along the junction of the alveolar process and palate covered by tissue that is softer and more spongy than the tissue covering the midline of the hard palate. When locating or palpating this location, care must be taken to avoid touching the soft plate (posterior to the underlying bones of the palate) since this may elicit a gag refex causing the patient to vomit. A small amount of anesthetic may be placed into this spongy tissue, resulting in numbness of tissues adjacent to and anterior to the injection site (Fig. 15-26).

Note: It is also possible to reach the entire maxillary branch of the trige minal nerve just after it exits the cranium through the foramen rotundum while it is still within the pterygopalatine space and anesthetize all of the maxillary branches (called a second division block). This location is superior to the location of the PSA block already discussed. Anesthetic deposited in this location reduces pain to the structures supplied by the PSA, MSA, ASA, greater palatine, and nasopalatine nerves. Caution must be taken in this area because the pterygoid plexus of vessels is located here, and cutting a vessel wall could result in bleeding under the skin called a hematoma.

fiGUr e 15-25. Greater palatine location: the anesthetic syringe needle is directed toward the greater palatine foramen opening where it can block the greater palatine nerve (represented here by yellow wires), which enters the palate at this location. The branches of this nerve supply half of the hard palate tissue located between the posterior teeth.

fiGUr e 15-26. Greater palatine injection: the anesthetic syringe needle penetrates the relatively spongy palatal mucosa near the junction of the vertical alveolar process and horizontal palatine process of the right maxilla near the third molar to reach the greater palatine nerve where it enters the palate through the greater palatine foramen. This injection should reduce pain sensation on the right side to the palatal soft tissues lingual to the posterior teeth up to the midpalatine suture.

2. the Soft palate

T e sof palate (Fig. 15-27) is located posterior to the hard palate. Along with the hard palate, it separates the mouth from the nasal passage. It is sometimes redder than the hard
palate because of its slightly increased vascularity. Its anterior border extends between the right and left third molars. Unlike the hard palate, there is no bone beneath the surface of the soft palate. If you forcefully say "ah, ah, ah," you can see the soft palate move (or vibrate) up and down whereas the

fiGUr e 15-27. Structures surrounding the fauces (oropharynx): the pterygomandibular fold is green.
hard plate does not. T e place where you observe the beginning movement of the soft palate is the vibrating line. Fovea palatini [FO ve ah pal a TEEN ee] are a pair of pits in the soft palate located on either side of the midline, near but just posterior to the vibrating line (Fig. 15-22). T ey are openings of ducts of minor palatine mucous glands. ${ }^{3}$ T e uvula [YOU view la] is a small fleshy structure hanging from the center of the posterior border of the soft palate (Fig. 15-27).

T e soft palate functions during swallowing and speech. T e pharynx [FAR inks] is the superior part of the digestive tube between the nasal passageways, oral cavity, and esophagus. During swallowing, the soft palate raises to close off the nasal portion of the pharynx from the oral pharynx (oropharynx) to prevent upward movement of food into the nasal cavity. T e soft palate is raised to seal the oral cavity from the nasal cavity during blowing or when producing explosive consonants (like "b" and "p").

c. or o pHAr yn x : fAUce S , pAl At in e Ar c HeS, An d to n Sil S

Refer to Figure 15-27 while studying the fauces and surrounding structures. T e fauces [FAW seez] is the posterior boundary of the oral cavity. It is the opening from the mouth into the oropharynx (throat) for air when breathing through the mouth to reach the lungs and for food since the oropharynx leads to
the esophagus and stomach. T e fauces is bounded inferiorly by the dorsum (upper surface) of the tongue, laterally by palatal arches or pillars, and superiorly by the soft palate. Examine the fauces and palatine arches by having a partner open wide and say "ahhh...." You may have to gently push the tongue down with a tongue depressor. Be careful: patients may gag.

Two pillars make up each of the two arches. Identify the anterior palatine arch (two pillars) that descends from the soft palate. T e smaller posterior palatine arch is visible behind it (anterior and posterior pillars seen in Fig. 15-27). T e anterior arch is also named the glossopalatine [GLOSS o PAL a tine] arch, and the posterior arch is also called the pharyngopalatine [fah RING go PAL a tine] arch, after the muscles beneath them. (Hint to remember these terms: T e arch from the tongue [glosso] to the palate [the glossopalatine anterior arch] is more anterior than the arch from the pharynx or throat posterior to it [pharyngopalatine posterior arch].) (See Fig. 15-28.) T e palatine tonsils, when present, are located between the anterior and posterior pillars. T ese tonsils may become enlarged and inflamed during infections of the respiratory system. Patients may have had these surgically removed.

Although not part of the oropharynx, there are several landmarks just posterior to the last molars that will be presented here. Immediately posterior to the maxillary last molar is a firm tissue bulge over the bone of the alveolar ridge called the maxillary tuberosity (Fig. 15-27). T is tuberosity
fiGUr e 15-28. o ropharynx showing the retromolar pad and pterygomandibular fold extending upward from the last mandibular molars as well as structures surrounding the fauces: uvula (retracted), anterior pillars (making up glossopalatine arch), and posterior pillars (making up pharyngopalatine arch).

is present even after all of the teeth have been lost and is included in an impression of the upper arch when constructing a maxillary complete denture. A similar, less prominent elevation of movable tissue distal to the mandibular last molar is the retromolar pad (Fig. 15-28). (Hint: "Retro" means behind, or distal, to the last molar.) When a person has fully erupted third molars, the maxillary tuberosity and mandibular retromolar pad on each side are small because of the proximity of these adjacent teeth. T e pterygomandibular [TER i go mand DIB you lar] fold gets its name since it is a fold of tissue that connects the retromolar pad of the mandible with the pterygoid process just distal to the maxillary tuberosity. T is is easy to see when the mouth is
opened wide as this action stretches this fold (Fig. 15-27). T is fold is an important landmark for the anesthetic syringe needle to enter when aiming toward the mandibular foramen in order to block the inferior alveolar nerve just before it enters the mandibular canal. T e retromylohyoid [REH tro my lo HI oid] curtain is a curtain of mucous membrane along the medial, posterior portion of the mandible near the floor of the mouth, extending between the anterior pillar of the fauces and the pterygomandibular fold. An arrow points to the location of this curtain (but it is not visible) in Figure 15-27. It is an important limiting structure when forming the lingual border (flange) of a mandibular complete denture.

The nerves being blocked here are branches of the third division or mandibular branch of the fifth cranial (trige minal) nerve. Since the bone of the mandible is more dense than in the maxillae, to reduce pain for all structures supplied by the entire inferior alveolar nerve, the anesthetic is deposited next to the mandibular nerve before it enters the mandibular foramen. Recall that the mandibular foramen is located on the medial surface of the ramus of the mandible, a little over halfway from the anterior to the posterior border of the ramus (Fig. 15-29). On most adults, the foramen is also located a small distance (on average about 5 mm or $1 / 4$ to $1 / 2 \mathrm{inch}$) superior to the level of the occlusal surfaces of the posterior teeth. In order to reach the mandibular foramen, the needle penetrates the mucosa of the pterygomandibular fold about $1 / 2$ inch above the occlusal plane (Fig. 15-30). (On an edentulous patient, use the landmark of the retromolar pad and inject just slightly superior to it.) After penetration into the mucosa, continue moving the needle tip parallel to the medial surface of the ramus until you reach the location of the inferior alveolar nerve, that is, slightly beyond halfway from the anterior to the posterior border of the ramus. Recall that the internal surface of each ramus, when viewed from above, diverges wider as it goes posteriorly, so the handle of the syringe must be angled across the premolars on the opposite side in order to parallel the medial surface of the ramus. This angle is evident in Figure 15-31 and can also be seen in the mouth in Figure 15-30. If bone is touched before reaching the estimated depth of the foramen, or if the bone is not reached when you are well beyond the foramen, you need to pull back the needle, reangle the syringe, and try again. If bone is reached at the estimated location of the inferior alveolar nerve, pull back the needle very slightly to avoid damaging the bone, then aspirate to ensure you are not in a vessel, and inject the anesthetic.

Anesthetic can be placed in small amounts at intervals while entering through the mucosa toward the mandibular foramen (reaspirating each time) in order to reach the lingual nerve branch, which is next to the inferior alveolar nerve. Because the lingual nerve is located within the tissue adjacent to the mandibular nerve (Fig. 15-32), the anesthetic can infiltrate through tissue to reach the lingual nerve and result in numbness to the anterior half of the tongue and adjacent lingual mucosa of the foor of the mouth on the side being injected. Blocking the inferior alveolar nerve and lingual nerve should reduce pain in all mandibular teeth and almost all surrounding tissues but should also numb half of the tongue and half of the lip on that side. The only area not numb would be the tissue just buccal to the molars, which is innervated by the buccinator (long buccal) nerve (described earlier).

If only tissue or pulps of mandibular premolars or anterior teeth need to be anesthetized, the anesthetic solution can be applied at the location of the mentalforamen (Fig. 15-33). At this location in the mandible, the mental nerve branches off the inferior alveolar nerve and exits the mandible to spread anteriorly and innervate the lower lip and adjacent labial tissue. Just inside of this foramen, the inferior alveolar nerve continues forward within the mandible as incisive branches to innervate the pulps of anterior teeth. This foramen is normally palpable (and evident on radiographs) at a level between or near the root tips of the mandibular premolars. The injection enters mucosa at the depth (fornix) of the buccal vestibule extending to the level of the palpated foramen. Due to the posterior superior direction of the canal inside of the mental foramen, it is best to direct the needle inferiorly and slightly from the distal (Fig. 15-33). An advantage of this injection is that it does not numb any of the tongue, so it does not affect the ability of the person to speak as might occur with an inferior alveolar block that numbs the tongue on the side of the injection.

Note: It may also be possible to anesthetize only mandibular incisors by placing the anesthetic just labial to the alveolar bone facial to the root tips of the mandibular anterior teeth. Even though the mandibular bone is dense, this may be successful if the bone overlying these roots is quite thin. Using this technique, one can numb the mandibular facial tissue and anterior teeth, but neither this mandibular facial infiltration technique nor the mental nerve block will numb the lingual tissue or tongue.

fiGUr e 15-29. Inferior alve olar nerve location: anesthetic syringe needle tip placed at the location on the mandible for blocking the inferior alve olar nerve before it enters the mandibular foramen and canal. Note the position of the mandibular foramen about halfway between the anterior and posterior border of the ramus and the foramen location relative to the occlusal plane of the mandibular teeth (which is slightly superior to the plane by about 5 mm).

fiGUr e 15-30. Inferior alve olar nerve injection: anesthetic syringe needle tip aiming toward the inferior alve olar nerve by penetrating the oral mucosa at the location of the pterygomandibular fold just occlusal to the retromolar pad. By angling the syringe cartridge over the premolars on the opposite side, the needle can be directed toward the inferior alveolar nerve where it enters the mandible through the mandibular canal. For the average-sized person, a long needle penetrates to about half of its total length in order to reach the ramus and foramen, but this depth may be deeper for a very large-boned person or less deep for a very small-boned person.

fiGUr e 15-31. Inferior alve olar nerve location: a superior view of the mandible and ramus showing the angle of the syringe required to reach the opening of the mandibular canal. The syringe cartridge must be directed over the premolars on the opposite side in order to parallel the internal surface of the ramus (which diverges considerably posteriorly).

fiGUr e 15-32. Inferior alve olar nerve and lingual nerve location: two wires represent the inferior alve olar nerve (touched by the needle) and a cut portion of the lingual nerve branch (which goes to the tongue). Notice that the lingual nerve would be anesthetized if some anesthetic were applied prior to reaching the inferior alveolar nerve.

fiGUr e 15-33. mental nerve location: the syringe needle tip is located adjacent to the mental foramen. Note its location near the estimated root tips of the mandibular premolars. Applying anesthetic here can reduce pain to the soft tissue of the chin and lower lip on that side by blocking the mental nerve, which splits off the inferior alveolar nerve and exits the mandibular at this location. If enough concentration of anesthetic makes its way into the opening of the mental foramen, it can also reduce pain to premolar teeth and adjacent gingiva (and possibly anterior teeth by blocking the incisive branches of the inferior alveolar nerve that supply the anterior teeth). This injection would not numb the tongue.

d. to n GUe

T e tongue is the principal organ of taste and is invaluable during speech, mastication (keeping the food between the teeth), and deglutition (swallowing). It is a broad, flat organ largely composed of muscle fibers and glands. It rests in the floor of the mouth within the curved body of the mandible. T e tongue changes its shape with each functional movement. T e anterior two thirds is called the body (the part that is most visible during an intraoral examination of the tongue), and the posterior one third is the tongue base or root (which is dif cult to see in most mouths since it is back so far). Recall that the body of the tongue is innervated for touch and pain by cranial nerve V (the trigeminal nerve) and for taste by cranial nerve VII (chorda tympani branches) of the facial nerve. T e base or root of the tongue is innervated for taste and feeling by cranial nerve IX (the glossopharyngeal nerve). T e part we see when someone sticks out their tongue is the dorsal (upper) surface. T e part we see when someone raises their tongue to touch the palate is called the ventral (lower) surface.

d orsum of the tongue

Use Figure 15-34 as a guide for landmarks on the dorsum (dorsal or superior surface) of the tongue, but realize that most people are unable to stick their tongue as far forward as in this illustration. T e dorsum of the tongue is grayishred and is rough. It is covered by two kinds of papillae [pah PILL e] or projections. T e fine hair-like àliform papillae, which are quite numerous, cover the anterior two thirds of the dorsal surface of the tongue. T e more sparse, scattered, and shorter fungiform papillae are easy to identify because of their larger round shape and deep red color (Fig. 15-35). Fungiform papillae get their name because they have a mushroom [fungus] shape when viewed in cross-section from the side. Fungiform papillae are most concentrated near the tip of the tongue. ${ }^{2}$

A third type of papilla is found near the junction of the body and root of the tongue. T e circumvallate [ser kum VAL ate] papillae are 8 to 12 prominent, flat, mushroomshaped papillae forming a V -shaped row on the dorsum near the posterior third of the tongue (Fig. 15-35). T eir walls

fiGUr e 15-35. Dorsal surface of the tongue: structures include the row of prominent circumvallate papillae, numerous hair-like filiform papillae (which are normally not this long), and a few small round, red fungiform papillae. The uvula is above the tongue. (Photo courtesy of Carl Allen, D.D.S., M.S.D.)
contain numerous taste buds. T e terminal sulcus is a shallow groove located just posterior to the circumvallate papillae, and it separates the body of the tongue from the root of the tongue (Fig. 15-34). T e foramen cecum [SEE kum] is a small circular opening in the center of the terminal sulcus immediately posterior to the circumvallate papillae. T is foramen is the remnant of the thyroglossal duct from which the thyroid gland developed. Posterior to the terminal sulcus, the smoother posterior one third of the dorsum contains numerous mucous-producing glands and lymph follicles (or

fiGUr e 15-36. Lateral surface of the tongue: prominent foldlike foliate papillae must be distinguished from oral cancer that may develop in this area. (Photo courtesy of Carl Allen, D.D.S., M.S.D.)
nodules) referred to as the lingual tonsil (not visible on Fig. 15-34). Because of the extremely posterior location of the circumvallate papillae and their neighboring structures, you need to hold the tongue quite firmly with a damp gauze pad and gently pull it forward. T e tongue muscles that may fight you in this endeavor are innervated by cranial nerve XII (hypoglossal nerve).

In order to view the lateral surfaces of the tongue, use the damp gauze pad to gently pull the tongue first to one side, then to the other. A fourth type of papillae visible on these lateral surfaces of the tongue are large, red, leaf-like projections known as foliate [FO li ate] papillae (Fig. 15-36). T ey contain some taste buds.

2. ventral Surface of the tongue

T e ventral or undersurface of the tongue is shiny, and blood vessels are visible. Refer to Figure 15-37. T e lingual frenum is a thin sheet of tissue at the midline that attaches the undersurface of the tongue to the floor of the mouth. Look in a mirror and raise your tongue to watch how this tissue fold limits the amount of tongue movement. ${ }^{\text {D }}$ In a person who is tongue tied, the lingual frenum is attached to mucosa on the lingual surface of the mandible perhaps only 3 or 4 mm inferior to the gingival margins of the central incisors. Further, as the tongue moves, this frenum could pull on the attached gingiva, contributing to loss of attached gingiva and subsequent periodontal problems. A simple surgical procedure can change this area of attachment.

Plica ámbriata [PLY kah fim bri AH tah] (also called àmbriated folds) are delicate fringes of mucous membrane on each side of the frenum on the ventral surface of the tongue. T e free edge of this fold may have a series of fringe-like processes. T ese are very delicate and often dif -

fiGUr e 15-37. Structures of the ventral (under) surface of the tongue and foor of the mouth: some mucosa was dissected away on one side of the tongue and foor of the mouth to reveal the sublingual salivary gland (seen on the right side of the drawing in yellow), which is located just beneath the sublingual fold (seen intact in green on the left side of the drawing). The submandibular duct (blue) passes from the submandibular gland (not visible) to the openings on the sublingual caruncles (green structures on the midline where the right and left sublingual folds join).
cult to see unless gently moved by a tongue blade or mirror. In some animals, these fringes of tissue serve to keep the teeth clean.

e. floor oft He Mo Ut H

Visually examine the floor of the mouth by having a partner raise the tongue. Also, feel for unusual lumps by palpating the floor of the mouth with the forefinger of one hand pressing against the floor and opposed outside of the mouth by a

fiGUr e 15-38. Bimanual palpation (using the opposing fingers of two hands) in order to feel for lumps or bumps (like a salivary duct blockage) within the foor of the mouth.
finger of the other hand. T is method of palpation is called bimanual palpation since it requires two hands (Fig. 15-38).

Like the ventral surface of the tongue, the tissues of the floor of the mouth are shiny, and some large blood vessels may be seen near the surface. T e alveololingual sulcus (Fig. 15-37) is the broad, valley-shaped space between the mandibular alveolar bone and the tongue. You can gently place your finger in this broad sulcus and press laterally to confirm whether there are any bony ridges on the medial surface of the mandible. A prominent bump in this area might be a relatively common occurrence: a mandibular torus.

A mandibular torus (plural tori) (Fig. 15-39) is a bulbous protuberance of bone beneath a thin mucous membrane covering on the medial side of the mandible that may be found in the premolar region (Fig. 15-40). Mandibular tori may be inherited as a genetic trait and are not uncommon. T ey usually cause no problems but may be irritated during chewing of coarse foods or when mandibular dental impressions are made. After all lower teeth have been lost and removable dentures are to be made, it may be necessary to surgically remove mandibular tori. A similar torus may also occur in the middle of the palate and is called a palatine torus or torus palatinus (Fig. 15-41). Exostosis [ek sos TOE sis, plural is exostoses] is the general term used to describe any excess bony growth projecting outward from the bone surface, such as a torus palatinus or mandibular torus, but can also be used to describe bony ridges that may form on the facial (cheek) surface of the alveolar processes of the mandible or maxillae.

fiGUr e 15-39. mandibular tori (bulbous elevations of bone) on the lingual surface of a stone cast of the mandible. (Also, note that the mandibular first molars have six, instead of the usual five, cusps. The extra lingual cusp is called a tuberculum intermedium.)

Only three mandibular incisors
figUr e 15-40. Floor of the mouth:
the sublingual folds (plica sublingualis) lie over the sublingual glands. The sublingual caruncles are located on either side of the lingual fre num where the submandibular gland ducts empty into the mouth (via Wharton ducts). Also, note the very prominent lingual tori under the mucosa projecting off of the lingual surface of the mandible.
fiGUr e 15-41. A maxillary torus palatinus or palatal torus.

f. SAl iv Ar y Gl An d S (in tr Aor Al)

Refer to Figure 15-37 while studying these landmarks on the floor of the mouth. On the floor, the sublingual folds called the plica sublingualis [PLY ka sub ling GWAL is] extend anteriorly on each side of the floor of the mouth from the first molar region to the lingual frenum. Along these folds are many small openings of ducts from underlying sublingual salivary glands located in this region. T ese sublingual glands secrete purely mucous saliva (ropy type), producing only 5% to 8% of our saliva. ${ }^{1}$

On the midline at the junction between the right and left sublingual folds, on either side of the lingual frenum, is a pair of bulges called sublingual caruncles (Fig. 15-40), each with an opening from the submandibular ducts (also called Wharton ducts). T ese ducts transport saliva into the mouth from the mandibular salivary glands, which are located in the submandibular fossae on the internal surface of the mandible. T ese glands produce about two thirds of our saliva. ${ }^{1} \mathrm{~T}$ eir secretions are primarily serous (two-thirds serous cells, one-third mucous cells ${ }^{4}$). A person normally secretes over a pint of saliva during 24 hours. ${ }^{\mathrm{E}}$ If you use bimanual palpation and gently move one finger in the floor of the mouth (opposing another outside of the mouth) from posterior to anterior over the sublingual folds and the underlying submandibular ducts, saliva may flow out of the gland openings in the caruncles. Saliva may even squirt out of the mouth through the openings in the caruncles when the patient opens wide (like when you yawn during a boring lecture), and the surrounding muscles apply pressure to the duct. It is possible for saliva to calcify within the ducts and block the flow of saliva. T is could cause symptoms that get worse when eating since the saliva cannot make its way out of the ducts. T is calcified blockage (called a sialolith [si AL o lith]) may be palpated, confirmed with a radiograph, and surgically removed.

G. Alveol Ar proceSS (of Under lyin G Bo ne)

T e bone surrounding the roots of the teeth should be palpated for bony growths (exostosis) or lesions.

H. Gin Giv A

T e periodontium [per e o DON she um] was discussed in detail in Chapter 7 but is reviewed here in order to emphasize the landmarks that can be identified in the mouth of a healthy person (Fig. 15-42). Recall that the periodontium is comprised of the supporting tissues of the teeth, including surrounding alveolar bone, the gingiva, the periodontal ligaments, and the outer layer of the tooth roots (covered with cementum).

T e gingiva is the only visible part of the periodontium that is seen in the initial oral examination. It is the part of the oral mucosa covered by keratinized epithelium that covers the alveolar processes of the jaws and also surrounds the portions of the teeth near where the root and crown join (cervical portion). As discussed in detail in Chapter 7 (Periodontics), healthy gingiva varies in appearance from individual to individual and in different areas of the same mouth. It should be resilient and firm, stippled (i.e., textured with many small depressions, like an orange peel), and coral pink in persons with light skin pigmentation (Fig. 15-43), or in persons with dark coloring of the hair and skin, the gingiva may be brown or spotted with brown (melanin pigmentation). T e margins of healthy gingiva are thin in profile and knife edged. T e shape of the facial gingival margin around each tooth somewhat parallels the CEJ, so it is shaped like a parabolic arch (similar in shape to the McDonald arches). T is repeated parabolic arch pattern around each tooth is evident in Figure 15-43. Refer to Table 7-1 in Chapter 7 for a list of all characteristics of healthy gingiva.

Gingiva can be visually divided into zones as shown in Figure $15-44$. T e zone closest to the tooth crown is unattached gingiva, which includes the free gingiva and the interdental papillae. Free gingiva (or marginal gingiva) is the tissue that is not attached to the tooth or alveolar bone. It surrounds each tooth to form a collar of tissue with a potential space or gingival sulcus (crevice) hidden between it and the tooth. Free gingiva extends from the free gingival margin (the edge of gingiva closest to the chewing or incising surfaces of the teeth) to the free gingival groove (visible in about one third of adults) that separates free gingiva from attached gingiva. T e interdental papilla (interproximal papilla) [pah PILL ah] (plural is papillae [pa PILL ee]) is

fiGUre 15-42. Periodontium including zones of gingiva and periodontal fiber groups: a mandibular left first premolar is suspended in its alveolus by the five groups of periodontal ligament fibers: apical, oblique, horizontal, alveolar crest, and free gingival fbers are visible. A sixth group, called transseptal fbers, not visible in this drawing, attaches from the cementum of one tooth to the cementum of the adjacent tooth at a level between the free gingival and alveolar crest fibers. The fibers of the periodontal ligament are much shorter than depicted here, averaging less than $1 / 4$ of a millimeter.
that part of the unattached gingiva between adjacent teeth. A healthy papilla conforms to the space between two teeth (interproximal space), so from the facial view, it comes to a point near where the adjacent teeth contact. T e papilla also has the hidden sulcus (potential space) next to each tooth where dental floss can fit once it passes between the teeth.

Attached gingiva is a band or zone of gray to light or coral pink (possibly with melanin pigmentation) keratinized masticatory mucosa that is firmly bound to the underlying bone (Fig. 15-44). It extends between the free gingiva (at the

fiGUr e 15-43. Healthy gingiva, close-up. Note the ideal contours and stippled (orange peel) surface texture that is usually most noticeable on the maxillary labial attached gingiva.
free gingival groove if present) and the more movable alveolar mucosa. T e amount or width of attached gingiva varies normally from 3 to 12 mm .

T e mucogingival line (junction) (Fig. 15-44) is a scalloped junction between attached gingiva and the looser, redder alveolar mucosa. Alveolar mucosa is movable mucosa, dark pink to red, due to increased vascularity and more delicate nonkeratinized tissue just apical to the mucogingival line. It is more delicate and less firmly attached to the underlying bone than the attached gingiva and is more displaceable as well because of the underlying vessels and connective tissue. Palpate these two types of tissues and you will feel the difference in firmness. T is movable alveolar mucosa is found in three places: in the maxillary and mandibular facial vestibule and in the mandibular lingual aspects (alveololingual sulcus) but not on the palate, which has firm, attached keratinized tissue for almost the entire surface. T erefore, the mucogingival line is present on the facial aspects of the maxillary and mandibular gingiva but only on the lingual aspect of mandibular gingiva.

Keratinized gingiva is the general term used to describe both the free and attached gingivae. It is widest on the facial (vestibular) aspect of maxillary anterior teeth and the lingual aspect of mandibular molars. It is narrowest on the facial aspect of mandibular premolars. ${ }^{5}$

T e gingival sulcus is not seen visually but can be evaluated with a periodontal probe since it is actually a space (or potential space) between the tooth surface and the narrow

fiGUr e 15-44. Clinical zones of the gingival. (Photo courtesy of Lewis J. Claman, D.D.S., M.S.)
unattached cervical collar of free gingiva (Fig. 15-45). T e gingival sulcus is lined with the sulcular epithelium. It extends from the free gingival margin to the junctional epithelium. Clinically, the healthy gingival sulcus ranges in probing depth from about 1 to 3 mm and should not bleed when correctly probed. Junctional (or attached) epithelium (seen in cross-section in Fig. 15-42) is a band of tissue at the most apical portion of the gingival sulcus that attaches the gingiva to the tooth. It is about 1 mm in width. ${ }^{6} \mathrm{~T}$ ere is also a $1-$ to $1.5-\mathrm{mm}$ connective tissue attachment to the root above the crest of bone. T e periodontal probe usually penetrates into the junctional epithelium, hence the difference between the depth determined through clinical probing and the depth seen on a microscopic cross-section. ${ }^{7, ~ F}$ Sometimes, during the process of eruption of the mandibular last molar through the mucosa, a flap of tissue may remain over part of the chewing surface called an operculum (seen previously in Fig. 7-7). T is operculum can easily be irritated during chewing and become infected.

fiGUr e 15-45. Periodontal probe in place in the gingival sulcus: the end of the probe can actually be seen here through the thin layer of unattached gingiva.

Evaluation of the thickness of the periodontal ligament and the amount of alveolar bone surrounding each tooth requires appropriate radiographs. Recall that the periodontal ligament is a very thin ligament composed of many fibers that connects the outer layer of the tooth root with the thin layer of dense bone called alveolar bone proper (seen on a radiograph as a white line called lamina dura) lining each alveolus or tooth socket seen in Figure 15-42. T e fibers of the periodontal ligament represented in this figure are greatly enlarged; the actual width of this ligament is less than $1 / 4 \mathrm{~mm}$. T e periodontal ligament is made up of four groups of fibers with differing directions and attachments and different names. T e apical, oblique, horizontal, and alveolar crest òbers connect different parts of the tooth root (cementum) to the dense bone lining the tooth socket. T e oblique fibers provide the major support to the tooth during function. Free gingival $\dot{\boldsymbol{\alpha}}$ bers are directed from tooth root (cementum) into free gingiva. A sixth group, the transseptal $\dot{\alpha} b e r s$, is not seen on Figure 15-42 since these fibers run directly from the root (cementum) of one tooth to the cementum of the adjacent tooth at a level between the free gingival and alveolar crest fibers.

i. t He teet H (co Unt t HeM)

An important part of the oral examination is to determine which teeth are erupted in the mouth, identify them by name or universal number, and determine which teeth are missing. When the number of teeth is fewer than expected for a patient, a careful history can confirm tooth loss by disease or accident or teeth removed prior to orthodontic treatment. When history does not confirm such reasons for tooth loss, radiographs are recommended to rule out the possibility of unerupted (impacted) teeth beneath the mucosa or surrounded by bone (impacted teeth) or to confirm that a tooth never formed. It is also possible for the patient to have extra (supernumerary) teeth or unexpected teeth (such as retained primary teeth in a 30 -year-old). T ese factors impact treatment planning decisions and should be documented.

T e total number of teeth depends on the age of the individual and the stage of development of the teeth. Recall that the

PART 3 - Anatomic Structures of the Oral Cavity
complete primary dentition consists of 20 teeth. From about 2 years old until almost 6 years old, most children have all 20 primary teeth present in the mouth but no permanent teeth. For the next 6 years, there is normally a mix of some primary and some permanent teeth (called mixed dentition with 24 teeth including the 4 permanent first molars) until about 12 years of age, when all primary teeth have been lost and only permanent teeth are present. At age 12, there would normally be 28 permanent teeth (all but the unerupted third molars). Eventually (by the late teens or early 20s), the complete permanent (or secondary) dentition consists of 32 teeth, including the four third molars that erupt (become visible) into the mouth.

LEARn In G Ex ERCISE

Examine a partner (using infection control procedures) and identify each of the structures listed on this modified Head and Neck examination form. (The order of structures listed on this form is the same order as that encountered within the chapter, so it should be easy to follow the text as you perform the exam.) Use a tongue depressor or a mouth mirror to retract the lips and cheeks. A good light is needed, and a mouth mirror is useful for refecting light into remote areas and for holding the tongue or cheek out of the way during your examination.

n o Rm AL STRu CTu RES Fo un D
 Du RIn G THE HEAD An D n ECk Ex Am
 (Key: * = not found on all patients)

Extraoral Examination:

General appearance: healthy walk and posture; normal breathing
Head: symmetrical (or not); upper and lower jaw midlines lined up (or not)
Skin: evaluate for lesions, palpate underlying muscles: masseter (origin, insertion); temporalis (anterior and posterior fibers: origin); medial pterygoid (insertion)

Eyes: clear sclera; pupil not considerably dilated or constricted
Te mporomandibular joint: palpate lateral surface of condyle during function; posterior surface of the condyle (in internal auditory meatus)
neck: palpate thyroid gland; submandibular salivary gland
n odes: palpate for submental; Submandibular; parotid (preauricular); postauricular; cervical (around sternocle idomastoid muscle)
Salivary glands: palpate parotid gland and submandibular gland (bimanual for sublingual [intraoral])
Lips: commissure; nasolabial fold; labiomental groove; tubercle; philtrum; vermilion zone; mucocutaneous junction; wet line

Intra Oral Examination:

mucosa: Labial: labial frenum; fornix
Buccal: buccal frenum; commissural papule; *linea alba; parotid papilla from parotid gland (Stensen duct: press along it for saliva); *Fordyce granules (orange-colored spots)
Palate: Hard palate: incisive papilla; palatine raphe; rugae; *torus palatinus; pterygoid hamulus
Soft palate: vibrating line (say "ah"); fovea palatini; uvula
Tonsils/ oropharynx: fauces; glossopalatine (anterior) arch; pharyngopalatine (posterior) arch; *palatine tonsils; pterygomandibular fold; retromylohyoid curtain
Tongue: Dorsum: filiform, fungiform, and circumvallate papillae (way back); foramen cecum and terminal sulcus (probably too far back to see)

Lateral: foliate papillae
ventral: lingual frenum; plica fimbriata (can "separate" from tongue with mirror handle)
Floor of mouth: alveololingual sulcus; *mandibular torus, palpate bimanual: sublingual folds over sublingual glands; sublingual caruncles with Wharton ducts of submandibular gland (may squirt)
Salivary glands: buccal mucosa: parotid papilla ("milk" Stensen duct to see saliva drip out) foor of mouth: sublingual folds over sublingual glands with caruncle and opening to submandibular gland (may squirt)

Alve olar process: *exostosis (particularly on buccal aspect); maxillary tuberosity (pterygoid hamulus)
Gingiva: free gingiva (has sulcus; would confirm with probe); *free gingival groove: interdental papilla; attached (keratinized) gingiva; mucogingival junction; retromolar pad (mandibular), *tissue overlapping last molar = operculum
Teeth: count all erupted teeth; note retained primary teeth: *impacted (on radiographs), malformations, etc.
o cclusion (circle one): class I II III: evaluate first molar and canine relationships

revieW questions

Test your newly acquired knowledge by matching the forty landmarks with their descriptions. Place the appropriate letter or letters on line on left.

- 1. Dorsum of tongue

2. Hard palate
3. Pharynx
_ 4. Elevated midline of hard palate

- 5. Stensen parotid duct
__ 6. Alveolar mucosa
- 7. Fordyce spots
- 8. Melanin
_ 9. Gingiva between teeth
_10. Palatal tissue bump between teeth Nos. 8 and 9
_ 11. Vibrating line
_ 12. Wharton submandibular duct openings
__ 13. Labial frenum
_ 14. Ventral surface of tongue
_ 15. Oral cavity
_ 16. Retromolar pad
_17. Maxillary tuberosity
__ 18. Filiform papillae
_ 19. Torus mandibularis
__ 20. Attached gingiva
_ 21. Fauces
__ 22. Nasolabial groove
__ 23. Labiomental groove
__ 24. Sublingual gland
__ 25. Submandibular gland
__ 26. Plica sublingualis
_ 27. Uvula
__ 28. Plica fimbriata
__ 29. Foliate papilla
_ 30. Circumvallate papillae
__ 31. Alveololingual sulcus
_ 32. Palatine tonsils
_ 33. Retromylohyoid curtain
_ 34. Fungiform papillae
_ 35. Fovea palatini
_ 36. Parotid gland
__ 37. Philtrum
_ 38. Commissure
_ 39. Exostosis
a. Mouth
b. Dark pigment on attached gingiva
c. On the anterior floor of mouth where the plica sublingualis meet
d. Underside of tongue
e. Hair-like papillae covering two thirds of dorsum of tongue
f. Top side of tongue
g. Sebaceous glands on inside of cheek
h. Interdental papillae
i. Opens on inside of cheek near maxillary molars
j. Palatine raphe
k. Attaches lip to mucosa covering jaw (upper and lower)

1. Behind soft palate
m . Incisive papilla
n. Lines floor of vestibule, loosely attached
o. Firm, covered by gingiva, has rugae
p. Ridge of bone lingual to mandibular premolars
q. Elevation of tissue distal to mandibular last molar
r. Elevation of tissue distal to maxillary last molar
s. Junction of hard and soft palate
t. Tightly attached—pink color
u. Mucous salivary glands beneath anterior third of tongue
v. Large serous salivary gland beneath posterior third of tongue
w. At the corners of mouth where lips join
x. Diagonal grooves from nostrils to corner of mouth
y. Horizontal depression below lower lip
z. Vertical depression on upper lip
aa. Opening from oral cavity to pharynx
bb. Serous salivary gland just in front of ear
cc. Located just posterior to vibrating line
dd. Fold in floor of mouth beneath tongue
ee. Delicate fold on each side of ventral surface of tongue
ff. Hangs downward in center of soft palate
gg. On lateral surfaces of tongue near posterior third
hh. Space between mandibular teeth and tongue
ii. 8 to 12 circular papillae arranged in a "V" shape
jj. Mucous membrane between anterior pillar and pterygomandibular fold
kk. Located between anterior and posterior pillars in throat
2. Bulbous protuberance of bone on facial side of mandible in premolar region
mm . Sparse round mushroom-shaped papillae on dorsum of tongue
ll-93; w-83; z-73; bb-63; cc-53; mm $43 ; j \mathrm{j}-33 ; \mathrm{kk}-23 ; \mathrm{hh}-13 ; \mathrm{ii}-03 ; \mathrm{gg}-92 ;$ ee-82; f-72; dd-62; v-52; u-42; y-32; x-22 ; aa-12; t-02; p-91;e-81r-71; q-61; a-51; d-41; k-31;c-21; s-11; m-01; h-9; b-8;g-7; n-6;i-5;j-4;1-3; o-2;f-1: Sre WSnA

Thinking

1. Mrs. Huay requires the extraction of tooth $\# 31$ due to a severe tooth fracture. A. State each nerve branch that needs to be blocked with anesthetic in order for her not to feel any pain in the tooth or surrounding oral tissues during the extraction. B. Describe in as much detail as possible exactly where the anesthetic should be placed. C. T en, trace each nerve branch that supplies this tooth and surrounding structures back to the brain where it exited the brain case.
2. Discuss the tongue. A. First, list as many structures on it as possible (describing the locations of each). B. List the nerves that innervate the tongue for movement, feeling (pain), and taste; the artery that supplies blood; and the lymph nodes where infections of the tongue would drain. (T is requires knowledge obtained when reading Chapter 14 as well as Chapter 15.)

REFEREn CES

1. Jenkins GN. T e physiology of the mouth. 3rd ed., Revised reprint. Oxford, UK: Blackwell Scientific, 1970:310-328.
2. Osborn JW, Armstrong WG, Speirs RL, eds. Anatomy, biochemistry and physiology. Oxford, UK: Blackwell Scientific, 1982:535.
3. Renner RP. An introduction to dental anatomy and esthetics. Chicago, IL: Quintessence Publishing, 1985.
4. Brand RW, Isselhard DE. Anatomy of orofacial structures. 5th ed. St. Louis, MO: C.V. Mosby, 1994.
5. LangN,LoeH.T e relationship between the width of keratinized gingiva and gingival health. J Periodontol 1972;43:623.
6. Gargiulo A, Wentz F, Orban B. Dimensions and relationships of the dentogingival junction in humans. JPeriodontol 1961;32:261.
7. Polson A, Caton J, Yeaple R, et al. Histological determination of probe tip penetration into gingival sulcus of humans using an electronic pressure-sensitive probe. J Clin Periodontol 1980;7:479.
8. Foley PF, Latta GH. A study of the position of the parotid papillae relative to the occlusal plane. J Prosthet Dent 1985;53:124-126.
9. Simmons JD, Moore RN, Errickson LC. A longitudinal study of anteroposterior growth changes in the palatine rugae. J Dent Res 1987;66:1512-1515.

GEn ERAL REFEREn CES

10. Beck EW. Mosby's atlas of functional human anatomy. St. Louis, MO: C.V. Mosby, 1982.
11. Clemente CD. Anatomy: a regional atlas of the human body. 4th ed. Baltimore, MD: Lippincott Williams \& Wilkins, 1997.
12. Clemente CD, ed. Gray's anatomy of the human body. 30th ed. Philadelphia, PA: Lea \& Febiger, 1985.
13. DuBrul EL. Sicher and DuBrul's oral anatomy. St. Louis, MO: C.V. Mosby, 1988.
14. Dunn MJ, Shapiro CZ. Dental anatomy/head and neck anatomy. Baltimore, MD: Lippincott Williams \& Wilkins, 1975.
15. Montgomery RL. Head and neck anatomy with clinical correlations. New York, NY: McGraw-Hill, 1981:236-240.
16. Web site: http://education.yahoo.com/reference/gray/

Dr. Woelfe 1^{\prime} s O riginal research Data

Specific research data and some of Dr. Woelfel's original research findings related to material topics in this chapter were referenced throughout by using superscript letters (like this ${ }^{\mathrm{A}}$) and are presented here.
A. In 1971 and 1972, Dr. Woelfel and Dr. Igarashi supervised 331 dental students as they recorded the position of the right and lef parotid papilla on each other. Of 662 parotid papillae, 78% were located between the maxillary first and second molar or by the second molar. Only 22% were by the first molar. In height, 87% of these same papillae were located level with (34%) or above the level (53%) of the occlusal plane. Only 13% were found below the level of the occlusal plane. T e widest variation in location among these dental students was in two men, one having his parotid papilla on each side 11 mm above the occlusal plane and the other man with his 8 mm below the level of the occlusal plane. In a similar study
of 293 adult men and 114 adult women (258 White, 11 Black, 9 Hispanic), the parotid papilla averaged 3.3 mm above the occlusal plane (right 3.0 mm , left 3.5 mm). ${ }^{8}$
B. T ere is a relatively constant $8.5-\mathrm{mm}$ distance from the facial surface of the maxillary central incisors to the center of the incisive papilla. On 326 casts measured by Dr. Woelfel, the average distance was 8.4 mm , with a range of 5.5 to 12 mm .
C. Among casts from 939 hygiene students, rugae "trees" had three, four, or five branches on each side in 87% of the students. T e first main branch was aligned lingual to the canine in 72%. T e rugae were well elevated in 85% of the students and flattened in only 14%. Rugae are more distinct in young persons than in older persons. However, a longitudinal study of 20 females and 21 males, from age 4 to 22 years, indicated a slight but steady growth in the length of rugae during this period
(average: 1.4 to 2.3 mm). Rugae growth occurred earlier in females, but the males had more branches. ${ }^{9}$
D. Measurements on 333 casts by Dr. Woelfel indicated the frenum attachment to be $8.03 \pm 1.5 \mathrm{~mm}$ below the gingival sulcus of the mandibular central incisors, range 5.4 to 11 mm . Assuming an average-length mandibular central incisor (8.8 mm), the lingual frenum attaches about 17 mm below the incisal edge of these teeth.
E. (Not Woelfel research) Daily saliva secretion: A person normally secretes an average of 300 mL of saliva between meals, 300 mL while eating, and only 20 mL while sleeping, based on averages from 600 people. ${ }^{1}$
F. In a survey by Dr. Woelfel, 267 dental hygiene students measured their gingival sulcus depths with a calibrated periodontal probe. T e average gingival sulcus depths for mandibular first molars midbuccal were $1.5 \pm 0.5 \mathrm{~mm}$; midlingual, $1.7 \pm 0.6 \mathrm{~mm}$; and mesiolingual and distolingual, $2.5 \pm 0.5 \mathrm{~mm}$. T ese measurements indicate that the gingival sulcus is usually deeper interproximally. Similar measurements made on the mesiofacial aspect of mandibular canines $(1.9 \pm 0.8 \mathrm{~mm})$, maxillary canines $(1.8 \mathrm{~mm})$, maxillary first premolars ($1.9 \pm 0.7 \mathrm{~mm}$), and maxillary first molars ($2.1 \pm 0.7 \mathrm{~mm}$) indicate sulci slightly deeper on posterior teeth than those on anterior teeth.

Appendix

T is Appendix includes drawings of permanent and primary teeth, which are labeled (with letters) to highlight features of each tooth. Traits represented by each letter are described on the back of each page following the same letter used on the drawings.

T e authors recommend that you copy each Appendix page (front and back sides) or print out these pages from the online source thePoint provided for this book, to facilitate study and minimize page turns as you read chapters two through six. For example, while reading about the morphology of incisors in Section I of Chapter 2, when you see the word "Appendix" followed by a number and letter (e.g., Appendix 1a), refer to the appendix page (page 1) and item (letter a). Find that letter on the line drawings, and it will illustrate the concept being described in the text.

Clas straits of Most Incis ors

 (using the maxillary right lateral incisor \#7 as an example)

General Cl ass Tr aiTs of Most Per Man en Tin Cisors

a. Crown shapes are rectangular, longer incisogingivally than mesiodistally (facial views).
b. Crowns taper from the contact areas to cervical lines (facial views).
c. Crown outlines on the distal are more convex than on the mesial (facial views) EXCEPT on mandibular central incisors, which are known for their symmetry.
d. T e mesioincisal angles are more square (or acute) than the distoincisal angles, which are more obtuse (facial views) EXCEPT on mandibular central incisors.
e. Mesial contact areas are in the incisal third; distal contact areas are more cervical than the mesial (facial view) EXCEPT on mandibular central incisors, where mesial and distal contacts are at the same height (facial views).
f. Roots taper from the cervical line toward the apex (facial and mesial views) and from the facial toward the lingual (best seen on an actual tooth or model).
g. Roots are wider faciolingually than mesiodistally (comparing proximal to facial view) EXCEPT maxillary central incisors, where dimensions are almost equal.
h. When bent, roots often bend to the distal in the apical third (facial views).
i. Roots are slightly to considerably longer than crowns (facial and proximal views).
j. Crowns taper from proximal contact areas toward the lingual (incisal views).
k. T e mesial and distal marginal ridges converge toward the lingual cingulum (incisal and lingual views).

1. Cervical lines on the facial (and lingual) surfaces are convex (curve) toward the apex (facial and lingual views).
m . Proximal outlines are wedge shaped or triangular (proximal views).
n. Facial and lingual crests of curvature are in the cervical third (proximal views).
o. Proximal cervical lines are convex (curve) toward the incisal AND curve more so on the mesial than on the distal surfaces (compare mesial to distal views).
p. Lingual outlines are S-shaped with a concave lingual fossa and marginal ridges and convex cingulum. T e lingual outlines of the marginal ridges are more vertical than horizontal (proximal views).
q. Incisal edges terminate mesially and distally at the widest portion of the tooth crown (incisal views).
r. Facial outlines are more broadly rounded than lingual outlines due to lingual convergence (incisal views).
s. Incisal edges slope shorter toward the distal EXCEPT on symmetrical mandibular central incisors, which have no slope (facial views).
t . A lingual fossa is located between marginal ridges, more evident on maxillary incisors (incisal views).

Arch and Type Traits of Incisors

Maxillary

Lateral (\#7)

Central (\#8)

Lingual

Mesial

Lingual

Lingual

Refer to letters a-s on back, which describe these features.

TyPe Tr aiTs ThaT Dis Tin Gu ish The Maxillary Cen Tr al in Cisor from The MaxillarylaTer al in Cisor
a. Although the crowns of both types of maxillary incisors are longer cervicoincisally than mesiodistally, maxillary central incisors are closer to square. Lateral incisors are more oblong cervicoincisally (facial views).
b. On both maxillary incisors, the mesioincisal angles are close to 90 degrees; the distoincisal angles are more rounded (facial views), but both angles are more rounded on the lateral compared to the central incisor (facial views).
c. Incisal edges on maxillary incisors slope cervically toward the distal (facial views), more so on lateral incisors (facial views).
d. Maxillary central incisors have crowns and roots closer to the same length. Lateral incisors have proportionately longer roots relative to crowns (facial views).
e. When the incisal edges of maxillary incisors are aligned horizontally, cingula of maxillary central incisors are off-center to the distal versus cingula of lateral incisors, which are centered (incisal views).
f. Mesial marginal ridges of maxillary incisors are longer than the distal marginal ridges (in central incisors due to the distally displaced cingulum and in lateral incisors due to the cervical slope of the incisal edge to the distal) (lingual views).
g. From the incisal view, when the crest of curvature of the cingulum is positioned directly downward, the incisal edge of maxillary central incisors has a slight distolingual twist with the distoincisal corner more lingual than the mesioincisal corner. T e incisal ridges of maxillary lateral incisors run mesiodistally with no twist (incisal and mesial views).
h. Mesiodistal dimensions on maxillary central incisors are considerably wider than faciolingual dimensions (rectangular shaped). On maxillary lateral incisors, these dimensions are more nearly equal (closer to square) (incisal views).

TyPe Tr aiTs ThaT Dis Tin Gu ish The Man Dibular Cen Tr al in Cisor from The Man Dibular laTer al in Cisor
Mandibular central incisors are very symmetrical versus lateral incisors, which are not. T e following are examples of the relative lack of symmetry in lateral incisors:
i. Mandibular lateral incisors have the distal proximal contacts more apical than the mesial contacts. Central incisor contacts are at the same level (facial views).
j. Lateral incisors have the distoincisal angles more rounded than the mesioincisal angles. On central incisors, the mesioincisal and distoincisal angles are quite similar (facial views).
k. Incisal edges of mandibular lateral incisors have a slight distolingual twist (relative to a line bisecting the cingulum). Central incisors have their incisal edges at right angles (with no twist) to this bisecting line (incisal and mesial views). T e cingulum is positioned distal to the center (incisal views) and the mesial marginal ridge appears longer than the distal (lingual views).

1. T e crowns of the mandibular lateral incisor tip slightly to the distal relative to the root accentuated by the fact that the incisal edges slope cervically toward the distal (facial views).

ar Ch Tr aiTs ThaT Dis Tin Gu ish Maxillary from Man Dibular in Cisors

m . Lingual fossae are more pronounced on maxillary incisors (often with a lingual pit, especially on the maxillary lateral incisor). Mandibular incisors have smoother lingual anatomy without grooves and pits (lingual views).
n. Maxillary incisors have roots that are closer to round in cross-section. Mandibular incisors have roots that are more ribbon-like (i.e., are thin mesiodistally and much wider faciolingually). Compare proximal views to facial views.
o. Incisal edges of maxillary incisors are often labial to the root axis line. Mandibular incisal edges are often lingual to the root axis line (proximal views).
p. Mandibular crowns are smaller and narrower mesiodistally relative to the length compared to maxillary incisors, which are relatively wider (facial views).
q. Mandibular crowns have outlines mesially and distally that are flatter than on maxillary incisors (facial views).
r. (r compared to i). Proximal contact points (crests of curvature or heights of contact) are closer to the incisal edge on mandibular incisors (i) than on maxillary incisors (r) (although incisor proximal contacts are in or close to the incisal third of the crowns [EXCEPT distal of maxillary laterals, which are in the middle third], and distal contacts are more cervically positioned than mesial contacts [EXCEPT mandibular centrals]) (facial views).
s. Mandibular incisors are usually wider faciolingually than mesiodistally compared to h where maxillary central incisors are wider mesiodistally and maxillary laterals are about the same dimension (incisal views).

Class Traits of Most Canines (using the maxillary right canine \#6 as an example)

Facial View Mesial View

Incis al View

Distal View

Gener al Cl ass Tr aiTs of Most Can in es

a. Crowns are pentagon shaped (facial views).
b. Cusps have mesial cusp ridges shorter than distal cusp ridges (facial views).
c. Vertical labial ridges are prominent (more so on maxillary canines) (facial views).
d. Crowns are wider faciolingually than mesiodistally (similar to mandibular incisors) (incisal views).

General Canine Characteristics similar to incisors

e. Crowns taper from contact areas toward the cervical line (facial views).
f. Crown outlines are more convex on the distal and less convex (flatter) on the mesial (facial views).
g. Mesial contact areas are located in the incisal third of the crown (or at the junction of the incisal and middle thirds); distal contact areas are more cervically positioned (facial views).
h. Roots taper from the cervical line toward the apex (facial and proximal views) and from facial toward lingual (which is best viewed on an actual tooth or model).
i. Roots are wider faciolingually than mesiodistally (compare proximal to facial views).
j. If roots are bent, they more often bend toward the distal in the apical third on maxillary canines (facial views), but mandibular canine roots are more likely to be straight.
k. Roots are considerably longer than crowns (facial views).

1. Crowns taper from the proximal contacts toward the lingual (incisal views), so the mesial and distal marginal ridges converge toward the cingulum (incisal views).
m . Cervical lines on the facial (and lingual) surfaces curve toward the apex (facial and lingual views).
n. Proximal cervical lines curve toward the incisal, more so on the mesial than on the distal surface (compare proximal views).
o. Canines (like incisors) are wedge shaped (triangular) when viewed from the proximal.
p. Facial and lingual crests of curvature are in the cervical third (proximal views).
q. Lingual outlines are S-shaped with a concave lingual fossa and convex cingulum; the marginal ridges are oriented more vertically than horizontally (proximal views).
r. Incisal edges run from the mesial to the distal contact areas (incisal views).
s. Facial outlines are more broadly rounded than lingual outlines due to lingual convergence (incisal views).

Arch Traits of Canines

ar Ch Tr aiTs ThaT Dis Tin Gu is h

The Maxillary Can ine from The Man Dibular Can ine
a. Both maxillary and mandibular canine crowns are oblong (rectangular) with the mesiodistal dimension less than the incisocervical dimension, but the mesiodistal dimension is narrower on mandibular canines than on maxillary canines (facial views).
b. Maxillary canines have a mesial crown outline convex (to nearly flat cervically) versus mandibular canines, which have a mesial crown outline that is less convex and aligned closely with the outline of the root. T e distal outline of maxillary canine crowns is often slightly concave in the cervical third (facial views).
c. T e angle formed by the cusp ridges (slopes) of maxillary canines is more pointed or acute (averaging about 105 degrees), resulting in a sharper cusp, compared to the broader (less pointed or obtuse) angle on the mandibular canine,
which averages 120 degrees (facial views). T e mesial cusp ridge of the mandibular canine is often close to horizontal when the tooth is held with the long axis vertically.
d. Lingual ridges that separate mesial and distal fossae are more prominent on maxillary canines than on mandibular canines (lingual views).
e. Cingula on maxillary canines are large and centered mesiodistally. On mandibular canines, they are often slightly to the distal (incisal views).
f. Incisal ridges on maxillary canines are straighter mesiodistally. On mandibular canines, the distal cusp ridge bends distolingually (incisal views).
g. T e distal half of the crown of maxillary canines is compressed (squeezed) faciolingually more than on mandibular canines (incisal views).
h. T e cusp tip of the maxillary canine is most likely on or labial to the root axis line, whereas the mandibular cusp tip is lingual to or on this root axis line (proximal views).

Clas Traits of Most Premolars

Appendix Page 5 (using the maxillary right second premolar \#4 as an example)

Refer to letters a-r on back, which describe these features.

General Cl ass Tr aiTs of MosT PreMolars

a. Buccal ridges are present (similar to canine labial ridges) (facial and occlusal views).
b. Usually, premolars have two cusps: one buccal and one lingual (EXCEPTION is the mandibular second premolar, which often has three cusps: one buccal and two lingual) (proximal views).
c. Marginal ridges are aligned relatively horizontally (EXCEPT on mandibular frst premolars, where the mesial marginal ridge is closer to a 45 -degree angle from horizontal) (proximal views).
d. Buccal and lingual crests of curvature are more occlusal than on anterior teeth (still in cervical third on the facial but in the middle third on the lingual) (proximal views).
e. Mesial proximal contacts (crests or heights of contour) are near the junction of the occlusal and middle thirds, and the distal contacts are often slightly more cervical in the middle third (EXCEPT on mandibular frst premolars, where mesial contacts are more cervical than the distal contacts) (facial views).
f. Proximal contacts (crests of curvature) from the occlusal view are most often buccal to the center faciolingually (occlusal views).
g. From the facial, premolars are roughly pentagon shaped (similar to canines) (facial view).
h. T e buccal cusp tip is mesial to the midroot axis (EXCEPT on the maxillary f rst premolar, where the cusp tip is distal to the midroot axis) (facial views).
i. T e mesial cusp ridge of the buccal cusp is shorter than the distal cusp ridge (EXCEPT on the maxillary f rst premolar, where the mesial cusp ridge is longer) (facial views).
j. Mesial marginal ridges are generally more occlusal than distal marginal ridges, which are more cervical (EXCEPT on mandibular frst premolars, where mesial marginal ridges are in a more cervical position) (compare the proximal views).
k. Crowns are oblong from the occlusal view and wider faciolingually than mesiodistally (maxillary premolars are decidedly oblong or rectangular, but mandibular premolars are closer to square [or round] in shape) (occlusal views).

1. Cusp ridges (or slopes) and marginal ridges join to form the boundary of the occlusal surface or occlusal table (occlusal views).
m. Crowns taper from proximal contact areas toward the cervical (facial views).
n. Cervical lines curve apically on the facial and lingual surfaces (facial and lingual views).
o. Cervical lines curve occlusally on the proximal surfaces, with the mesial cervical line more convex than the distal (compare mesial to distal proximal views).
p. T e apical third of roots bend distally more often than mesially (facial views).
q. Roots taper toward the apex (both proximal and facial views).
r. Premolar crowns taper narrower from the contact areas toward the lingual (occlusal views) EXCEPT three-cusp-type mandibular second premolars.

Arch and Type Traits of Premolars

Maxillary

Refer to letters a-u on back, which describe these features (t is not shown)
ar Ch Tr aiTs of PreMolars ThaT
Dis Tin Gu ish Maxillary from
Man Dibular PreMolars
a. Mandibular premolar crowns tilt to the lingual, so mandibular lingual cusp tips may be lingual to the root (proximal views). Maxillary crowns do not tip noticeably.
b. T e outline of the mandibular premolars are rhomboid in shape (four-sided with all opposite sides parallel), and the maxillary premolars are trapezoidal (four-sided with only two opposite walls parallel) (proximal views).
c. (compared to p) Although lingual cusps are shorter than buccal cusps for all premolars, the mandibular lingual cusps are relatively much shorter than buccal cusps (p) compared to maxillary lingual cusps, which are closer to the same length (c) (maxillary second premolar cusps are almost equal in length) (proximal views).
d. Mandibular premolars are slightly wider buccolingually but closer to square or round from the occlusal view; maxillary premolars are more rectangular or oblong (relatively wider buccolingually) (occlusal views).

TyPe Tr aiTs Dis Tin Gu ish in G Maxillary

firsTfrom Maxillary seConD
PreMolars
e. Buccal cusp tips of maxillaryơrst premolars are positioned more to the distal, and mesial cusp ridges are longer than distal cusp ridges. T ese are the ONLY type of premolars with this trait (facial and occlusal views).
f. Buccal cusps of maxillary frst premolars are more pointed (average 105 degrees) than on second premolars, where they are more obtuse (120 to 125 degrees) (facial views).
g. Buccal ridges are more prominent on maxillary frst premolars (occlusal and facial views).
h. Maxillary frst premolars are the ONLY type of premolar most likely to have a divided root versus all other types of premolars, which usually have one root (proximal views).
i. Maxillary premolars have their lingual cusp tips positioned more toward the mesial (lingual and occlusal views).
j. Both maxillary premolars have mesial and distal root depressions, but ONLY the maxillary frst premolars exhibit a mesial crown concavity (mesial views).
k. Mesial marginal ridge grooves are almost always present on maxillary frst premolars and are less common on second premolars (occlusal and mesial views).

1. T e central developmental grooves on maxillary frst premolars are longer (from mesial to distal pit) than those of second premolars, where they are only one third or less of the mesiodistal dimension (occlusal views).
m . Occlusal outlines of maxillary frst premolars are more asymmetrical with the lingual cusp tip positioned more to the mesial and the buccal cusp tip more to the distal, versus second premolars, which are more symmetrical overall (occlusal views).

TyPe Tr aiTs Dis Tin Gu ish in G Man Dibu 1 ar firsTfrom Man Dibular seConD PreMolars
n. Mandibular frst premolar buccal cusps are more pointed (110 degrees) versus on second premolar, where they are more obtuse or blunt (130 degrees) (facial views).
o. Mesial proximal contacts (and marginal ridges) of mandibular second premolars are more occlusal than distal contacts (following the general rule), whereas the reverse is true on mandibular frst premolars (EXCEPTION), where mesial contacts (and marginal ridges) are more cervical (facial views).
p. Lingual cusps of mandibular frst premolars are very small and nonfunctional. On second premolars, the lingual cusps function and are relatively longer (proximal views).
q. Lingual cusp tips of mandibular second premolars are most often positioned to the mesial (or, if there are two lingual cusps, the mesiolingual is the more prominent) (lingual views).
r. Mandibular frst premolars have a mesiolingual groove separating the mesial marginal ridge from the lingual cusp. Second premolars (three-cusp type) have a lingual groove separating the two lingual cusps (lingual and mesial views).
s. Mesial marginal ridges of mandibular frst premolars slope cervically toward the lingual at about 45 degrees from horizontal. On second premolars, they are more horizontal (mesial views).
t. T e mesial root surfaces of mandibular second premolars are the only premolar root surface (maxillary and mandibular, mesial and distal) not likely to have a midroot depression (best seen on models or actual teeth, not labeled in drawings).
u. Mandibular frst premolars are the only premolars that have the mesiolingual corner, with its mesiolingual groove and low marginal ridge pinched or squeezed in, forming about a 45 -degree angle with the lingual surface. T is makes the occlusal outline somewhat diamond shaped (occlusal views).

Class Traits of Most Molars
(using the right second mandibular molar \#31 as an example)

Refer to letters $a-h$ on back, which describe these features.

Gener al Class TraiTs for MosTMolars

a. Molar crowns are wider mesiodistally than cervicoocclusally (facial views).
b. Crowns taper (get narrower) from the buccal to the lingual; that is, the mesiodistal width on the buccal half is wider than on the lingual half (EXCEPT some maxillary frst molars with large distolingual cusps, where crowns taper to the buccal so that the mesiodistal dimension on the lingual is greater than on the buccal) (occlusal view).
c. Crowns taper (get narrower) from the mesial to the distal; that is, the buccolingual width is less on the distal third than on the mesial third (occlusal view).
d. Crowns taper (get shorter) from mesial to distal; that is, the crown height on the distal half is less than on the mesial half (facial view).
e. As with premolars, the buccal crests of curvature (heights of contour) of crowns are in the cervical one third, and the lingual crests of curvature are in the middle third (proximal views).
f. Proximal contacts (heights of contour) on the mesial are at or near the junction of the occlusal and middle thirds, and distal proximal contacts are more cervical, in the middle third near the middle of the tooth (facial views).
g. Lingual cusps on mandibular molars (and mesiolingual cusps on maxillary molars) are longer than buccal cusps when molars are oriented on a vertical axis (facial, mesial, [and distal] views).
h. Molar crowns are wider buccolingually than cervicoocclusally (proximal views).

Maxillary

Second (\#2)

Lingual

Lingual

Mandibular
Second (\#31) First (\#30)

Lingual

Lingual

Refer to letters a-k on back, which describe these features.

ar Ch Tr aiTs ThaT Dis Tin Gu ish Maxillary from Man Dibular Molars

a. Mandibular crowns are wider mesiodistally than faciolingually, resulting in a more rectangular or pentagon outline (e). Maxillary molar crowns have the faciolingual dimension slightly greater than the mesiodistal dimension and are more square or rhomboid in outline (k) (occlusal views).
b. Mandibular molar crowns tilt lingually at the cervix (like mandibular premolars), whereas maxillary crowns are aligned directly over the roots (proximal views).
c. Mandibular molars usually have two roots (a longer mesial and a shorter distal root) versus maxillary molars, which have three roots (the longest lingual, the shorter mesiobuccal, and the shortest distobuccal root) (facial or lingual views).
d. Maxillary molars have oblique ridges that run diagonally across the tooth from the mesiolingual to the distobuccal cusp, compared to mandibular molars, which primarily have two transverse ridges that run directly buccolingually (occlusal views).

TyPe Tr aiTs ThaT Dis Tin Gu ish Man Dibular firsTfrom Man Dibular seCon D Molars
e. Mandibular second molars have four cusps (mesiobuccal $=1$, distobuccal $=2$, mesiolingual $=3$, and distolingual $=4)$ with a "cross" pattern of occlusal grooves compared to frst molars, which most often have fve cusps (the same four cusps as on the second molar, plus a smaller distal cusp $=5$) with a more zigzag central groove pattern (occlusal views; see corresponding numbered cusps, not labeled as "e"). T e occlusal outline of four-cusped
mandibular second molars is rectangular and wider mesiodistally than buccolingually, whereas the outline of the fve-cusped mandibular frst molar is often somewhat pentagon shaped due to the prominence of the distobuccal cusp outline (labeled e at bottom of page).
f. First molar roots are more divergent and widely separated compared to second molar roots, which are more parallel and closer together (facial and lingual views).
g. T ere is more taper (narrowing) from the distal proximal contact to the cervical line on frst molars than on second molars due to the presence of the distal cusp on frst molars (facial views).

TyPe Tr aiTs ThaTDisTin Gu ish Maxillar y firsTfroM Maxillary seConD Molars

h. T ere is more taper (narrowing) from the buccal to lingual on second molars due to their smaller distolingual cusp compared to less taper on maxillary frst molars with their wider, prominent distolingual cusps (occlusal views).
i. First molars are more likely to have a ffth cusp, the cusp of Carabelli (located on the mesiolingual cusp), compared to second molars, which do not normally have a cusp of Carabelli (lingual, mesial, and occlusal views).
j. Roots of frst molars are more spread apart than those of second molars (similar to mandibular molars) (facial and proximal views).
k. T e parallelogram outline shape of maxillary molars (with more acute or sharper mesiobuccal and distolingual angles and more obtuse or less sharp distobuccal and mesiolingual angles) is more twisted on second molars than on frst molars (i.e., acute angles are more acute and obtuse angles are more obtuse on maxillary second molars) (occlusal views).

Primary Anterior Teeth

Maxillary

Maxillary	
Canine (C)	Lateral Incisor (D)

Mandibular
Lateral Incisor (Q)
Central Incisor (P)
 !e!sew
Mə!^ ןe!pe」

Refer to letters a-i on back, which describe these features.
unique Pr o Per Ties of an Ter io r PriMary TeeTh
a. Primary anterior tooth crowns have bulges in the cervical third of the labial and lingual surfaces. T e lingual bulge is seen as a relatively large cingulum that occupies up to one third of the cervicoincisal crown length, and the labial bulge is seen as a prominent convex cervical ridge (proximal views).
b. Roots are long in proportion to crown length and narrower (thinner) mesiodistally than on permanent anterior teeth (facial view).
c. Roots of maxillary and mandibular primary anterior teeth bend as much as 10 degrees labially in their apical third, less so in mandibular canines (proximal views).
d. Roots of maxillary incisors bend (bow) lingually in the cervical third to half, whereas the mandibular incisors are straighter in their cervical third (proximal views).
e. Primary maxillary central incisors are the ONLY type of incisors, primary or permanent, where the crown is wider mesiodistally than incisocervically (facial views).
f. Primary incisor crowns are shorter relative to the root length compared to permanent teeth (facial views).
g. Primary maxillary canines are about as wide mesiodistally as they are long incisogingivally. Mandibular canines are longer incisocervically and narrower mesiodistally (facial views).
h. Primary mandibular canines have their distal cusp ridges longer than their mesial cusp ridges (as do all permanent canines and premolars EXCEPT permanent maxillary f rst premolars) (facial views). Primary maxillary canines have their mesial cusp ridges longer than the distal cusp ridges (which is UNIQUE to only this tooth and maxillary frst premolars).
i. Primary maxillary canines have mesial proximal contacts more cervical than the distal (which is UNIQUE to this tooth and permanent mandibular frst premolars) (facial views). All other primary and permanent teeth have the distal contact area more cervically located than on the mesial.

Primary Molars

General Char aCTer is TiCs of all

PriMary Molars

a. Primary molar crowns are wider mesiodistally and shorter cervico-occlusally, as on permanent molars (buccal views).
b. Primary frst molars are decidedly smaller than primary second molars compared to permanent or secondary molars, where the frst molars are larger (compare all views, not labeled as " b ").
c. Primary molar crowns have a narrow chewing surface, or occlusal table, buccolingually compared to the entire tooth width buccolingually (proximal views).
d. Buccal cusps are not sharp; cusp ridges meet at a wide (obtuse) angle (buccal views).
e. Buccal cervical ridges are prominent, especially mesially (proximal views), so the facial cervical lines curve more apically in the mesial half of the buccal surface (buccal views).
f. Root furcations are nearer to the crown with little or no root trunk compared to secondary molars (buccal views).
g. Roots are thin, slender, and widely spread (buccal views).

additional Characteristics u nique to Primary Maxillary second Molars (Which Most Closely r esemble the Perm anent Maxillary first Molars)

h. T e mesial surface outline tapers toward the lingual (occlusal views).
i. Primary mesiobuccal cusp is about equal in size to the mesiolingual cusp compared to permanent or secondary teeth, where the mesiolingual cusp is larger than the mesiobuccal cusp (occlusal views).

additional Characteristics u nique to Prim ary Mandibular second Molars (Which Most Closely
 r esem ble the Perm anent Mandibular first Molars)

j. T e three buccal cusps are of nearly equal size versus permanent f rst molars, where the distal cusp is usually considerably smaller (occlusal views).
additional Characteristics u nique to Prim ary
Maxillary first Molars (Which, from the o cclusal View, som ewhat r esemble Perm anent Maxillary Prem olars)
k. T ere are often four cusps: two larger cusps (like a maxillary premolar) (the mesiobuccal cusp (1) widest and longest and the mesiolingual cusp (2) the smaller but sharpest) and two smaller cusps (the distobuccal (3) and the inconspicuous, sometimes absent, distolingual (4)) (occlusal views; see corresponding numbered cusps).

1. A buccal groove (notch) located distal to center divides the large mesiobuccal cusp from the indistinct distobuccal cusp (buccal views).
m . T e crown is wider faciolingually than mesiodistally like a maxillary premolar (occlusal views).
n. T e mesial surface outline and marginal ridge converge toward the lingual (occlusal views).
o. T ere are three fossae: a large mesial triangular fossa, a medium central fossa, and a minute distal fossa (occlusal views).
p. T e grooves form an "H" pattern (somewhat similar to a maxillary premolar) (not labeled with a letter; seen on occlusal views).
additional u nique Characteristics of Primary
Mandibular first Molars (r esembling no o ther Tooth)
q. T e mesial marginal ridge is overdeveloped, almost resembling a cusp (buccal and occlusal views).
r. T e occlusal table is wider mesiodistally than buccolingually like secondary mandibular molars (occlusal views).
s. T e mesial surface outline converges to the lingual with an acute and prominent mesiobuccal angle of the occlusal table (occlusal views).
t. T e mesiobuccal cusp is the largest and longest cusp, covering nearly two thirds of the buccal surface (occlusal views), but is not wide buccolingually (occlusal views).
u. A pronounced transverse ridge runs between the mesiobuccal and mesiolingual cusp (occlusal views).
v. T e occlusal table is larger distal to the transverse ridge with a larger distal fossa and a smaller mesial triangular fossa (no central fossa) (occlusal views).

Glossary for Woelfel's Dental Anatomy

A

Abducens nerve [ab DOO senz]: CN VI, controls eye movement.
Abfraction [ab FRAK shun]: Cervical loss of enamel theoretically thought to be due to tooth bending of the tooth under heavy occlusal forces.
Abrasion [ah BRA zhun]: Wearing away of tooth due the action of abrasive substances (like some toothpastes).
Abutment teeth: Teeth that support the false teeth (called pontics) of a fixed dental prosthesis (or bridge).
Access opening (root canal therapy): T e opening made by the dentist through the crown of a tooth in order to gain access to the diseased pulp.
Accessory canals: Small, extra pulp canals.
Accessory roots: (Anomaly) Development of extra roots.
Acid etching: Roughening of enamel by using an acid thereby permitting mechanical attachment of flowable resin into the remaining tooth irregularities.
Acoustic [ah KOOS tik]: Referring to sounds or hearing or near the ear.
Acoustic meatus [ah KOO stik me A tus]: External acoustic meatus is the passageway into the ear canal of the temporal bone. Internal acoustic meatus is the passage for the facial nerve (CN VII) from the brain into the petrous part of temporal bone.
Adult dentition: All of the teeth of an adult; normally 32 of them.
Aduerent (sensory) nerves: Type of nerves that convey impulses such as feeling, touch, and pain from peripheral organs like skin or oral mucosa to the brain.
Aggressive periodontitis: Fast progressing, young-adult form of periodontal disease.
Air abrasion system: Abrasive particles are blown forcefully toward tooth to remove decay, forming a modified tooth preparation.
All ceramic restoration: Restoration that completely covers the crown of a tooth and is made entirely of porcelain.
Alveolar [al VEE o lar]: Related to the bone surrounding the roots of teeth.
Alveolar bone: Bone that surrounds the tooth roots.
Alveolar bone proper: T in layer of compact bone lining the tooth socket, seen on an x-ray as the white line called lamina dura. Also called bundle bone.
Alveolar canals: Small passageways in the maxillae located superior and posterior to third molar region; is where the posterior superior alveolar nerves and accompanying vessels pass.
Alveolar eminences: Raised ridges of bone overlying prominent root convexities.
Alveolar mucosa: Loose, nonkeratinized gingiva apical to attached gingiva that is not firmly attached to bone or tooth.
Alveolar process: T e horseshoe-shaped process of the upper or lower jawbones that surrounds all of the roots of healthy teeth.
Alveolingual sulcus [AL vee o LIN gwal]: Broad, valley-shaped space between mandibular alveolar bone and the tongue.
Alveolus [al VEE o lus] (plural alveoli [al VEE o lye]): Tooth cavity or socket surrounding each tooth in bone; shape resembles the root it surrounds.
Amalgam, restoration material [ah MAL gam]: Silver-colored restorative filling material used to restore tooth preparations after decay removal.

Ameloblasts [ah MEL o blasts]: Specialized cell that forms enamel.
Amelogenesis imperfecta [ah mel o JEN e sis im per FEC ta]: Hereditary disorder that affects enamel formation; occurs in both dentitions.
Anastomosis [a NAS te MO sis]: Connection between blood vessels, such as between the smallest arteries on the right and left sides of the lips.
Anatomic crown: Portion of the tooth covered with enamel.
Anatomic root: Portion of the tooth covered with cementum.
Angle, Edward H.: Dentist who defined three classes of occlusion in 1887: classes I, II, and III.
Angle of the mandible: Junction of inferior border of the mandible and the posterior border of the ramus; medially is attachment of internal pterygoid chewing muscle; laterally is attachment of masseter muscle.
Angular artery: Along with lateral nasal arteries, are end branches of the facial arteries supplying blood to the side and bridge of the nose.
Angular spine: Pair of thorn-shaped bony prominences on the inferior surface of the sphenoid bones; attachment of sphenomandibular ligament. Also called sphenoidal spine.
Ankylosis [ANG ki LO sis]: Loss of periodontal ligament resulting in fusion of cementum to bone due to trauma or infection; results in infraocclusion.
Anodontia [an oh DON she ah]: (Anomaly) Absence of teeth; can be total (total congenital absence of the entire primary or secondary dentitions) or partial (partial congenital absence of teeth from primary or secondary dentitions).
Anomaly [ah NOM ah lee]: Deviation from normal.
Antegonial notch: Shallow notch located on inferior border of mandible, anterior to mandibular angle; where facial vessels and nerves pass from neck to face.
Antemortem dental records [an te MOR tem]: Dental charts and radiographs recording the condition of the mouth, collected prior to death.
Anterior: Toward the front of the body.
Anterior deprogramming: Process of getting the TMJ into a relaxed neuromuscular position by interrupting signals from proprioceptors in the periodontal ligaments.
Anterior fibers (of temporalis muscle): T e anterior vertical fibers that help to elevate the mandible and close the mouth.
Anterior guidance or anterior protected articulation: T e beneficial overlapping of maxillary over mandibular incisors that causes posterior teeth to separate during forward movements of the mandible.
Anterior superior alveolar nerve abbreviated ASA (and vessels): Branches of maxillary division of CN V that branch off of the infraorbital nerve while within the inferior orbital canal; pass through maxillary sinus toward maxillary anterior teeth and surrounding structures. Accompanied by ASA vessels.
Anterior teeth: Teeth in the front of the mouth, namely, incisors and canines.
Anteroposterior curve: T e curve formed by connecting all buccal cusps in a quadrant; the curve is convex in the upper arch and concave in the lower arch. Also called curve of Spee.
Antrum [AN trum]: Natural cavity within bone such as a sinus.
Aperture [AP er chur]: An opening, as in bone.

Apex: Tip, of a root.
Apical foramen [APE i kal fo RAY men] (plural foramina [fo RAM in na]): Hole(s) near the root tip where nerves and vessels enter the pulp.
Arch (dental): Refers to the arch-shaped alignment of all teeth in either the upper or lower jaw.
Arch traits: Characteristics that apply to classes of teeth in the same arch.
Articular capsule: Fibrous tube of tissue enclosing the condyles, disc, and mandibular fossa on each side of the temporomandibular joint; includes the thickened lateral or TMJ ligament. Also called fibrous capsule.
Articular disc: In the TMJ, a tough, oval pad of connective tissue that is between each mandibular condyle and the articular fossa of a temporal bone; a shock absorber.
Articular eminence: Ridge of bone forming the anterior border for each articular fossa.
Articular fossa: In the TMJ, anterior two thirds of the mandibular fossa in each temporal bone (the portion of the mandibular fossa anterior to the petrotympanic fissure) where the mandibular condyle articulates. Also called glenoid fossa.
Articulation, long centric: Range of mandibular movements where a person can smoothly move the mandible horizontally from centric relation to maximal intercuspal position.
Articulator: Mechanical device that holds casts of teeth in positions that duplicate the patient's relationship between maxillary and mandibular arches, and his or her functional movements.
ASA: Abbreviation for anterior superior alveolar nerves or vessels.
Ascending palatine artery: Branch of facial artery that supplies blood to structures adjacent to the pharynx.
Aspirating syringe: Syringe design that permits the application of negative pressure to pull in (aspirate) blood into the glass cartridge if the needle is within a blood vessel. T e dentist can then move the needle tip before injecting the anesthetic into the vessel, which might cause detrimental side effects.
Attached gingiva: Keratinized gingiva firmly bound to underlying bone; extends from the free gingival groove to the mucogingival junction.
Attachment level, clinical: Measured as the distance from the cementoenamel junction to the apical extent of the periodontal sulcus (or pocket).
Attrition [ah TRISH en]: T e wearing away of tooth structure due to heavy occlusal contacts between maxillary and mandibular teeth.
Auditory nerves: CN VIII for sense of hearing, position, and balance. Also called acoustic nerves.
Auricular muscles [aw RIK yu lar]: Muscles that move the ear and/ or adjacent scalp.
Auriculotemporal nerve [aw RIK yu lo TEM po ral]: Branch of mandibular division of CN V to skin of outer ear. Accompanied by associated vessels.

B

Bennett movement: T e lateral movement or shift of the entire mandible during movement to the working side.
Bevels (on preparation): In a tooth prepared for a cast restoration, the angle established by the dentist of the junction between the prepared tooth with the unprepared tooth surfaces designed for improved adaptation of the restoration.
Bidigital palpation: Using two opposing fingers of one hand (thumb and forefinger) to feel for tissue lumps.
Bifurcation [bi fur KAY shun]: A tooth root that has split into two roots.
Bilaminar zone [bi LA min ar]: Posterior attachment of articular disc by loose elastic, vascular connective tissue.

Bimanual palpation: Using opposing fingers from two hands to feel for tissue lumps.
Biofeedback: Using monitors of muscle activity to improve patient awareness of TMJ muscle overuse.
Biofilm: Organized layer mostly of microorganisms that adhere to teeth and contribute to gingival and periodontal diseases as well as tooth decay. Also known as dental plaque.
Biologic width, of gingiva: An area of attachment of gingiva to cementum that includes junctional epithelium plus a band of connective tissue attachment. Also known as dentogingival junction.
Bite guard or bite plane: Removable artificial occlusal surface used to stabilize occlusion, treat pain from TMDs, and prevent tooth wear. Also called occlusal devise or night guard.
Bite mark analysis: Study of the shape of bite marks after a crime in order to identify the biter.
Black, G.V: One of the fathers of modern dentistry who developed classes of tooth preparation.
Bleaching, intracoronal: Temporary placement of bleach within a pulp chamber whose pulp has been removed; in order to lighten a darkened tooth.
Bleeding on probing (abbreviated BOP): Condition where bleeding is visible after probing the gingival sulcus due to inflammation of gingival sulcular epithelium.
Body of the t ongue: Anterior two thirds of tongue, the part normally visible during an oral exam.
Bolus [BOW lus]: Small mass of chewed food.
Bonding agents: A flowable dental material designed to adhere to prepared dentin or enamel in order to attach (bond) the subsequent layers of restorative material.
Bone grafting materials: Donor bone or synthetic material that can create a scaffold for inducing new bone regeneration.
BOP: Abbreviation for bleeding on probing; blood is visible upon probing a periodontal sulcus or pocket due to inflammation of the gingival sulcular epithelium.
Bruxism [BRUCKS iz em]: Undesirable, heavy tooth-to-tooth grinding of teeth back and forth other than chewing, may result in tooth wear or TMJ dysfunction.
Buccal [BUCK k'l]: Related to, or in proximity with, the cheeks; also words beginning the preface "bucc."
Buccal cervical ridge: Subtle crown ridge on the buccal surface of some molars located near the cervical line that is the location of the buccal crest of curvature.
Buccal cusp ridge: Subtle ridge on posterior teeth extending from the cusp tip toward the buccal surface.
Buccal cusps: Cusps on multicusped teeth located toward the buccal on the occlusal surface.
Buccal embrasure: T e portion of the space (embrasure) surrounding the proximal contact of two adjacent teeth that is buccal to the contact.
Buccal frenum: Fold of mucous membrane that attaches the cheek to the mucosa of the alveolar ridge near the premolars; separates labial from buccal vestibule.
Buccal groove: A developmental groove on four-cusp mandibular molars located between the two buccal cusps.
Buccal nerve (and vessels): Nerve branch of mandibular division of CN V to buccinator muscle and adjacent cheek mucosa and skin. Also called long buccal or buccinator nerve. Accompanied by associated vessels.
Buccal shelf: Nearly horizontal ledge of bone between the external oblique ridge and the alveolar process of the mandible; buccal nerve to the cheek is located superior to it.
Buccal surface: Surface of posterior teeth closest to the cheeks. Also called facial surface.

Buccinator crest [BUCK sin a tor]: Small elevation of bone within the retromolar triangle; attachment of posterior fibers of the buccinator muscle.
Buccinator muscle [BUCK sin a tor]: Cheek muscle, keeps food on chewing surfaces of teeth during chewing.
Buccinator nerve [BUCK sin a tor]: Buccal nerve branch of the mandibular division of CV V ; to the cheek. Also called buccal nerve or long buccal nerve.
Buccoversion [BUCK o VER zhun]: Tooth that is buccally positioned relative to the ideal parabolic arch form of other teeth.
Bulimia [bu LEE mee ah]: Serious eating disorder where persons overeat followed by self-induced vomiting; acids in vomit can destroy tooth structure.

C

Calcification: Process of taking up calcium into the calcified tissue of a tooth.
Calculus [KAL kyoo les]: Calcified mass that forms on teeth due to calcification of dental plaque. Also called tartar.
Canal orifice (root): On multirooted teeth, the opening on the floor of a pulp chamber into the root canals.
Canines [KAY nines]: T e class of teeth located third from the midline in each quadrant.
Canine eminence: Raised ridge of alveolar bone over the prominent canine roots.
Canine fossa: Depression in bone just posterior and superior to canine eminences; over area of premolar roots.
Canine guidance: T e beneficial overlapping of canines that causes posterior teeth to separate during movements of the mandible from right to left. Also called canine-protected articulation.
Canine-protected articulation or occlusion: Desirable occlusal relationship where vertical overlap of opposing canines produces a separation of posterior teeth when the mandible moves laterally. Also called canine guidance.
Capsular ligament: Fibrous tube of tissue enclosing the condyles, disc, and mandibular fossa on each side of the temporomandibular joint; includes the thickened lateral or TMJ ligament. Also called fibrous capsule.
Carabelli cusp [care a BELL ee]: A fifth, relatively small, functionless cusp on many maxillary first molars located on the lingual surface of the mesiolingual cusp. Also called a fifth cusp.
Caries (dental caries) [CARE eez]: Dental decay, literally means "rotten."
Carotid artery: Vessel carrying blood from the aorta to the head; external branches supply the teeth and surrounding structures; internal carotid passes into braincase.
Carotid canal: Passageway of internal carotid artery into braincase.
Cast metal restorations: Restorations made outside of the mouth; are cast in metal.
Cavernous sinus: Collection of thin-walled vessels on the base of brain where infection can spread into the brain.
Cavity preparation: T e procedure for removing diseased hard tooth tissue while developing an acceptable form to place and retain the restoration.
Cavosurface margins [KAY vo SUR fes]: T e junction of a tooth preparation and adjacent uncut tooth; also called the outline of the preparation.
Cement base or liner: Dental materials designed to be placed under restorative filling materials to improve patient comfort and restoration success.
Cementoblasts [se MEN toe blasts]: Specialized cells that produce cementum.

Cementodentinal junction [se MEN toe DEN tin al]: Junction between cementum and dentin, cannot be seen on an intact tooth.
Cementoenamel junction [se MEN toe ehn AM el]: Junction between enamel and cementum; also called cervical line and abbreviated CEJ.
Cementum [se MEN tum]: External layer of calcified tissue that covers the tooth root.
Central: Located in the center.
Central incisor: A type of incisor located next to the midline in each quadrant.
Central fossa [FAH sah]: A shallow depression between cusps near the center of the occlusal surface on most molars and three-cusp premolars.
Central groove: A developmental groove in enamel that separates buccal and lingual cusps.
Centric relation (abbreviated CR): Relationship of the mandible to the maxillae where healthy muscles and bony joint contours comfortably guide the mandible into its most posterior position as if there were no teeth to guide the mandible. Also called centric jaw relation.
Ceramic restorations: Restorations made entirely out of ceramic, a type of porcelain, an esthetic material that resembles enamel.
Cervical [SER vi k'l]: Related to the neck (cervix) of the body, or on a tooth, the area surrounding the cementoenamel junction.
Cervical chain of lymph nodes: Deep and superficial cervical lymph nodes are located along the sternocleidomastoid muscle in the neck; they collect lymph from the submental, submandibular and parotid nodes.
Cervical curvature: T e curve taken on by the CEJ: curved apically on the facial and lingual surfaces and curved occlusally or incisally on the proximal surfaces.
Cervical line: Junction between enamel and cementum; also called cementoenamel junction.
Cervical ridge: Subtle ridge on the buccal crown surface of some molars located in the cervical third.
Cervix of tooth [SER viks]: Portion of tooth crown and root adjacent to the cervical line.
Chamfer [SHAM fur]: Rounded finish line of the preparation used for a cast metal crown; finish line is the portion of the preparation where the prepared tooth meets unprepared tooth.
Chronic periodontitis [PAIR ee o don TIE tis]: Slowly progressing, adult form of periodontal disease.
Cingulum [SING gyoo lum]: Bulge in the cervical third of the lingual surface of anterior teeth; forms the lingual height of contour.
Circumvallate papilla [sir kum VAL ate pah PILL ah], plural papillae [pah PILL ee]: Eight to twelve prominent, flat, mushroom-shaped projections forming a V-shaped row on the dorsum of the tongue anterior to the terminal sulcus; they contain taste buds.
Civil litigation, forensic dentistry: Court case involving a violation of the standards of care, human abuse and neglect, or malpractice.
Clasps, of removable dental prosthesis: Flexible arms of the framework for a removable prosthesis that engage into undercuts on the tooth to provide retention.
Class of carious lesions (and their tooth preparations): Developed by Dr. GV Black.
Class I: Pit and fissure type of lesion located on the occlusal surfaces of posterior teeth, lingual of maxillary molars, buccal of mandibular molars, and lingual of some incisors.

Class II: Smooth surface decay located on proximal surfaces of posterior teeth.
Class III: Smooth surface decay located on proximal surfaces of anterior teeth.
Class IV: Smooth surface lesions involving proximal surfaces of anterior teeth AND adjacent proximal incisor angles.
Class V: Smooth surface lesions located in the gingival one third of facial or lingual crown surfaces.
Class I occlusion: An ideal occlusal relationship where the mesiobuccal cusp of the maxillary first molar occludes against the mesiobuccal groove of the mandibular first molar. Also called neutroclusion or normal occlusion.
Class II o cclusion: Skeletal type of malocclusion where the mandible is too small or the maxillae are too large, or both. T is results in a retruded or retrognathic chin profile. Also called disto-occlusion.
Class III o cclusion: Skeletal type of malocclusion where the mandible is too large or the maxillae are too small, or both. T is results in a protruded or prognathic chin profile. Also called mesio-occlusion.
Class (of teeth): Four categories or groups of teeth based on similar shape and function, namely, incisors, canines, premolars, and molars.
Clavicle [KLAV i k'l]: Collar bone.
Clench (teeth): Squeezing together opposing teeth without jaw movement; seen as a bulge of some chewing muscles.
Clinical crown: Portion of a tooth that is visible in the mouth, and in a tooth with bone and tissue loss, this includes part of the exposed anatomic root.
Clinical root: Portion of a tooth that is not visible in the mouth; in a partially erupted tooth, this includes part of the anatomic crown, which is not visible.
Col [KOL]: Notch in the interproximal papilla conforming to the teeth just apical to the adjacent tooth contact.
Commissural papule [COM i SHUR al]: Slight bulge of mucous membrane in the oral cavity 4 to 6 mm posterior to the commissure of the lips.
Commissure, labial [COM i shur]: Junctions of the two fleshy borders of the upper and lower lips, where they come together on the right and left sides.
Common facial vein: Vessels that drain blood from the face and empty into the internal jugular vein.
Complete removable dental prosthesis [pros THEE sis]: A full denture replacing all teeth, which can be removed.
Composite resin: An esthetic tooth-colored restorative material used to place into preparations after removing dental decay.
Conchae [KONG kee]: Paired scroll-shaped bones in the nasal cavities that increase surface area of mucosa for warming and moistening breath. Also called turbinates.
Concrescence [kon KRES ens]: (Anomaly) Superficial fusion of two adjacent tooth roots; fused only by cementum.
Condyloid process [KON di loyd] or mandibular condyle [KON dile]: Rounded process on superior posterior border of mandibular ramus; part of temporomandibular joint.
Congenitally absent or missing teeth: Teeth that never developed.
Connective tissue attachment: Band of tissue apical to the junctional epithelium that attaches gingiva to cementum via gingival fibers. Together, the connective tissue attachment and junctional epithelium form the dentogingival junction.
Connective tissue graft: Technique used to cover an exposed root after gingival loss using a piece of donor tissue.
Conservative resin restoration: Restoration requiring a very conservative preparation and restored with resin and sealant.

Contact areas, proximal: T e area on a tooth where it touches an adjacent tooth in the mouth.
Convenience form (of tooth preparation): Design (shape) of preparation that permits access to remove decay and place the filling.
Coronal suture [kor O nal]: Immovable junction between the frontal and parietal bones (near where a coronation crown might fit).
Coronoid process [KOR o noyd]: Pointed (like a crown) anterior border of mandibular ramus.
Corrugator supercilii muscle [SOO per SILL ee eye]: Facial expression muscle that pulls the medial eyebrow down, as in a frown.
Cortical plate: T in layer of bone covering the medial and lateral surfaces of the mandible. Sandwiched in between is trabecular bone.
Cranial fossae [FAH see]: Large depressions along the internal floor of the braincase: Anterior fossa houses the frontal lobes of the brain, middle fossa houses the temporal lobes of brain, and posterior fossa houses the cerebellum.
Cranial nerves (abbreviated CN): Twelve pairs of nerves that pass through bony openings in the skull directly from the brain; abbreviated CN I through XII (in Roman numerals).
Crepitation or crepitus [KREP i tes]: Grating or popping sound within temporomandibular jaw joint due to joint irregularities.
Crest of curvature: Greatest bulge of a crown contour where a line drawn parallel to the midroot axis line touches the crown outline. Also called height of contour or crest of contour.
Cribriform plate [CRIB ri form]: Sievelike plate in the ethmoid bone with many holes where the branches of the olfactory nerve (CN I, for smell) pass to the brain.
Crista galli [Kris ta GAL lee]: Triangular, superior projection of the ethmoid bone.
Crossbite: A malocclusion where a tooth has a much more buccal or lingual relationship with its opposing teeth compared to the ideal relationship. Also called reverse articulation.
Anterior crossbite: Mandibular anterior teeth are facial to opposing maxillary anterior teeth.
Posterior crossbite: Mandibular posterior teeth are considerably too far buccal or too far lingual compared to opposing maxillary posterior teeth.
Crown (metal): Gold or semiprecious metal restorations made outside of the mouth and used to cover and protect an entire tooth crown. One example is complete cast metal crown. If metal is partially covered with porcelain, it is a metal ceramic restoration.
Crown lengthening, clinical: Procedure that increases amount of supragingival tooth structure by removing or apically positioning gingival tissue.
Curettes, dental [kyoo RETS]: Dental instruments designed to remove hard deposits from teeth.
Curve of Spee: Curve formed by connecting all buccal cusps in a quadrant; the curve is convex in the upper arch and concave in the lower arch. Also called the anteroposterior curve.
Curve of Wilson: Curve formed by connecting the buccal and lingual cusps of posterior teeth of the same type on the right and left sides of an arch; the curve is convex in the upper arch and concave in the lower arch. Also called the mediolateral curve.
Cusp: Somewhat pyramidal elevation on the occlusal surface (or incising surface on a canine).
Cusp of Carabelli [Care a BELL ee]: Small, functionless fifth cusp located on the lingual surface of the mesiolingual cusp of many maxillary first molars. Also called a fifth cusp.

Cusp ridges or cusp slopes or cusp arms: Linear elevations extending both mesially and distally from a cusp tip; each cusp has a mesial and distal cusp ridge.
Cusp tip: T e peak, or highest point, of a cusp.
Cyst [SIST]: Epithelium-lined sac filled with liquid or semiliquid material.

D
Debridement [di BREED ment]: Removal of inflamed or contaminated tissue and foreign matter.
Deciduous dentition (teeth) [de SIDJ oo us]: T e first set of 20 teeth that erupt between about 6 months and 2 years. Also called primary dentition.
Deep facial vein: Vessels that connect the deeper pterygoid plexus with the more superficial facial vein.
Def ective tooth contacts (occlusal contacts): Tooth contacts of opposing teeth that touch before any others when closing the mandible in a relaxed posterior position causing the mandible to deflect from its relaxed closing path. Also called a prematurity or premature contact.
Deglutition [de gloo TISH un]: Process of swallowing.
Dehiscence, root [dee HISS enss]: Isolated area of exposed tooth root with no bony covering.
Demineralization: Loss of minerals from mineralized tooth structure, as occurs during dental decay.
Dens in dente [denz in DEN tee]: (Anomaly) Invagination of epithelium of the enamel organ before the formation of hard tissue; literally means "tooth within a tooth."
Dentin [DEN tin]: Tooth tissue underlying the enamel and cementum; surrounds the pulp cavity.
Dentin dysplasia [dis PLAY zhah]: Abnormal development of the dentin.
Dentinoenamel junction [DEN tin o ehn AM el]: Junction between enamel and dentin.
Dentinogenesis imperfecta [den tin o JEN e sis im per FEC ta]: Hereditary disorder that affects the dentin formation of both dentitions; may result in gray or brown discoloration of teeth.
Dentistry: Branch of medicine involving study, diagnosis, prevention, and treatment of diseases and disorders of the teeth and adjacent structures in the oral cavity.
Dentition [den TISH un]: All of the teeth in the mouth: primary, permanent or mixed.
Dentogingival junction: Attachment of tooth to gingiva, coronal to the crest of alveolar bone; includes junctional epithelium and connective tissue attachment. Also called biological width.
Depress: Make lower (such as the mandible when opening the mouth).
Depressor anguli oris: Pair of the lower oral group of facial expression muscles that lower the angle of the lips, as in a frown.
Depressor labii inferior: Pair of the lower oral group of facial expression muscles that lower the lower lip.
Depressor septi nasi muscle: Muscle of facial expression that pulls down the nostrils.
Descending palatine nerve: Branch of maxillary division of CN V to nasal cavity and palatal tissues via greater palatine foramen.
Desensitizing agents: Chemicals designed to reduce the sensitivity from exposed dentin.
Developmental grooves: Primary grooves (major grooves) that separate cusps or other major portions of a tooth that were formed by developmental lobes.
Developmental lobes: Primary growth centers of the tooth that form major morphological structures of the crown.

Diastema [die a STEE mah]: Space between adjacent teeth that is not the result of a missing tooth.
Die (dental): Accurate dental stone reproduction of a prepared tooth, used to construct indirect cast restorations.
Digastric muscles [die GAS trik]: Suprahyoid muscles that aid in retruding and depressing the mandible.
Dilaceration [die lass uh RAY shun]: (Anomaly) Severe curvature of a root. Also called flexion.
Disocclusion: Separating of posterior teeth.
Distal (and preface disto): Related to the tooth surface farther from the arch midline; on the opposite side from the mesial tooth surface. Distal cusp: Small, fifth cusp found on most mandibular first molars located near the junction of the buccal and distal surfaces.
Distal oblique groove: Groove on the occlusal surface of fourcusped maxillary molars that extends from the distal pit to between the two lingual cusps. It may continue onto the lingual surface as a lingual groove.
Distobuccal root or cusp: Cusp or root closest to the junction of the distal and buccal surfaces.
Distobuccal (developmental) grooves: Developmental groove on five-cusp molars located between the distobuccal and distal cusps.
Distolingual root or cusp: Cusp or root closest to the junction of the distal and lingual surfaces.
Distolingual twist: Twisting of the incisal edge of some teeth where, when viewed incisally, the distal part is twisted more lingual than the mesial part.
Distomolar: (Anomaly) An extra (fourth) molar forms distal to the third molar. Also called a paramolar or fourth molar.
Disto-occlusion: Skeletal type of malocclusion where the mandible is too small or the maxillae are too large, or both. T is results in a retruded or retrognathic chin profile. Also generally considered the same as Angle's class II occlusion.
Divisions of trigeminal nerve ($\mathbf{C N} \mathbf{V}$): T ree divisions: division I is ophthalmic passing from brain via superior orbital fissure to skin of upper face; division II is maxillary via foramen rotundum to palate and upper teeth and surrounding structures; and III is mandibular via foramen ovale to lower teeth and surrounding structures.
DNA analysis: Comparison of DNA found in an unidentified person with DNA from a known person (as obtained from epithelial cells found on their used toothbrush, hair cells, or pulp tissue).
Dorsum of tongue: T e superior surface of the tongue.
Dwarf root: (Anomaly) Tooth root that is much shorter than normal.
Dysplasia [dis PLAY zhah]: Generic term that indicates abnormal tissue development. Can be of the enamel or of the dentin.

E
Eccentric jaw relationships: Any deviation of the mandible from the relaxed centric relation position.
Edge-to-edge occlusion: Maxillary incisal edges line up touching mandibular incisal edges with no vertical overlap when posterior teeth are closed together.
Eג̉erent (motor) nerves: Type of nerve fibers that convey impulses from the brain to peripheral organs like muscles, to initiate contraction.
Elevate the mandible: Raise the mandible to close the lower and upper teeth together.
Embrasure spaces [em BRAY zhur]: Continuous space(s) that surrounds the contact areas between adjacent teeth. T is space can be subdivided into four smaller spaces: a facial, lingual, and
occlusal (or incisal) embrasure space and a cervical or gingival embrasure space (also called an interproximal space), which is filled with gingiva in a healthy person.
Enamel [ee NAM el]: Hard, mineralized outer layer of a tooth crown.
Enamel dysplasia [dis PLAY zhah]: Abnormal development of the enamel.
Enamel extension: (Anomaly) A thin projection of enamel that spreads toward the root furcation.
Enamel pearls: (Anomaly) Small, round spheres of enamel with a core of dentin; attached to the tooth.
Endodontics [en doe DON tiks]: Dental specialty concerned with diagnosis and treatment of pathology of dental pulp and associated periapical tissues.
Endodontist [en doe DON tist]: Dentist who specializes in endodontics, especially root canal therapy.
End-to-end occlusion: When maxillary buccal cusps line up over mandibular buccal cusps.
Envelope of motion: Paper record of the outline of the limits of the movement of the lower jaw from different views.
Epithelium [ep I THE lee um]: Cellular layer covering of internal mucosa and external skin surfaces of the body.
Erosion [e RO zhun]: Loss of tooth structure from the action of acidic substances, like citric acid in lemons, stomach acids, and carbonated beverages.
Eruption: Process of a tooth development when the tooth enters the mouth and becomes visible.
Esthetic restorative materials: Filling materials that have a similar color and translucency to the tooth being restored.
Ethmoid bone: Single, sinus-filled bone located at the midline between the eye orbits; contains cribriform plate and part of nasal septum.
Exfoliation [eks fo lee EY shun]: Process of shedding (loss) of the primary teeth.
Exostosis [eck sos TOE sis]: Benign growth (bump) of bone. Also seen as a torus on the palate or tori on the mandible.
External (and preface extra): Toward the outside of the body, or seen from the outside.
External acoustic meatus [a COO stik me A tus]:Pair of openings into the ear canal on the lateral surface of the temporal bones; also called auditory meatus.
External carotid artery: Vessel directing blood from aorta to the head, gives off maxillary branches to all teeth and surrounding structures.
External oblique ridge or line [ob LEEK]: Linear prominence on the external surface of the mandible extending from anterior border of the ramus toward the canine region.
Extracoronal restoration: [EX tra COR o nal]: Dental restoration that fits around the tooth crown; covers cusps and buccal and/ or lingual surfaces. Examples include crowns.
Extraoral examination: Exam of structures of the head and neck outside of the oral cavity.
Extrusion of a tooth: Overeruption of a tooth (beyond the occlusal plane): longer than adjacent teeth in the ideal arch. Also called supraeruption.

F
Facet [FAS it] or [fah SET] (on a tooth): Polished, smooth flat area of enamel due to tooth-to-tooth wearing away of enamel.
Facial [FAY shal]: Associated with, or toward, the face.
Facial artery: Branch of external carotid artery with four branches to the face and oral structures: ascending palatine to soft palate, pharynx, and palatine tonsil, submental artery
to floor of mouth, labial arteries to lips, and lateral nasal and angular arteries to face near nose and lips.
Facial bones: Bones of the skull that underlie the skin of the face.
Facial nerves and vessels: CN VII has sensory (chorda tympani) branches providing taste to anterior two third of tongue, motor branches to most muscles of facial expression, and secretory fibers to sublingual and submandibular salivary glands. Accompanied by facial vessels via antegonial notch.
Facial surface: Surface of a tooth toward the face, or toward the cheeks (also called buccal) or lips (also called labial surface).
Facial view: View of the facial surface of a tooth.
Fascia [FASH e ah]: Bands of connective tissue between anatomic structures like muscles, glands, and fat.
Fauces [FAW seez]: Opening from the mouth to the oropharynx; posterior boundary of the oral cavity.
Federation Dentaire Internationale (FDI notation system): System used in many countries to identify each tooth: using numbers 1 to 8 to denote each of the eight permanent and primary quadrants, plus 1 to 8 to denote each tooth within the quadrant. Also called World Dental Federation notation.
Fibrous capsule: Tube of connective tissue enclosing the mandibular condyle, disc, and articular fossa, thereby limiting the movement of the TMJ.
Filiform papilla [FIL i form pah PILL a]: Fine hairlike projections found on the dorsal surface of the anterior two thirds of the tongue.
First premolars: Type of premolar located closest to the midline in each quadrant.
First molars: Type of molar located closest to the midline in each quadrant.
Fissure: Cleft at the depth of some tooth grooves, which is a site for future decay.
Fixed dental prosthesis [pros THEE sis]: Tooth restoration that replaces missing teeth and cannot be readily removed from the mouth. Also called a bridge.
Flexion [FLEK shen]: Extreme curvature of a root. Also called dilaceration.
Floor of mouth: Mucosal covered, inferior boundary of the oral cavity.
Flowable resin: Flowable form of resin that mechanically attaches to microscopic irregularities formed after roughening (etching) the enamel with acid.
Fluoride [FLOOR ide]: Mineral that, when taken up into enamel in appropriate concentrations, increases resistance to breakdown of mineralized tooth surfaces by caries-forming acids.
Fluorosis [Floor O sis]: Condition caused by exposure of forming enamel to excessive amounts of fluoride (such as found in some drinking water); results in discolored or pitted enamel surfaces.
Focal hypoplasia [hi poe PLAY zhah]: Incomplete development of enamel in a localized area, possibly due to an infection of the pulp and surrounding tissues of the primary tooth it replaces; results in discolored spot on the enamel. Also called Turner hypoplasia.
Foliate papillae [FO li et pah PILL eye]: Large red, leaflike projections on the lateral surfaces of the tongue; they contain taste buds.
Foramen [fo RAY men]; plural foramina [fo RAM in ah]: Opening, hole, or passage, especially through bone, or into the pulp of a tooth.
Foramen cecum [SEE cum]: Pair of small circular openings in the center of the terminal sulcus on the top surface of the tongue; is remnant of thyroglossal duct.

Foramen magnum [MAG num]: Large opening for passage of spinal cord through occipital bone from brain.
Foramen ovale [o VAL ee]: Oval-shaped opening in sphenoid bone for passage of mandibular division branches of CN V.
Foramen rotundum: Round opening for passage of maxillary division branches of CN V.
Fordyce granules [FOR dice]: Small yellowish, irregular spots in some persons on the buccal mucosa posterior to the commissure; are misplaced intraoral sebaceous glands.
Forensic [for EN sik]: Branch of medicine using scientific knowledge for solving crimes.
Forensic anthropology: Involves studying evidence similar to that studied by an anthropologist.
Forensic dentistry: Branch of forensic medicine that deals with oral structures including teeth in the legal or judicial system. Also called forensic odontology.
Forensic engineering: Involves studying vehicles (cars, planes) involved in a crime.
Forensic jurisprudence: Applying medical knowledge to questions of civil and criminal law.
Forensic odontology [o don TOL e jee]: Branch of forensic medicine that deals with oral structures including teeth in the legal or judicial system. Also called forensic dentistry.
Forensic pathology: Using analysis of tissues for solving crimes.
Forensic psychiatry: Using legal opinions obtained from psychiatric experts for solving crimes.
Fornix, vestibular [FOR niks]: Lowest part of the vestibule of the oral cavity that is next to the mandible and the highest part next to the maxillae, where food may collect.
Fossa [FAH sah](plural fossae [FAH see]): Small depressions, as seen on the occlusal surfaces of posterior teeth.
Fourth molar: (Anomaly) An extra (fourth) molar forms distal to the third molar. Also called a paramolar or a distomolar.
Fovea palatini [FO ve ah pal a TEEN ee]: Pair of pits in soft palate near the midline, just posterior to vibrating line; are openings of minor palatine mucous glands.
Framework, of removable dental prosthesis [pros THEE sis]: Portion of the prosthesis that adapts to adjacent tooth structure to provide stability and retention. Includes a major connector, clasps and rest seats.
Free gingiva: Collar of tissue that surrounds each tooth with a potential space (sulcus) between it and the tooth; includes free gingiva and interdental papillae. Also called unattached gingiva.
Free gingival fibers: Tissue fibers that are directed from cementum into free gingiva.
Free gingival groove: Subtle groove visible in some persons that separates free gingiva from attached gingiva.
Free gingiva margin: Most coronal crest of the free gingiva; in a healthy mouth, forms a scalloped appearance.
Freeway space: Space normally occurring between opposing upper and lower teeth when a person in an erect posture makes no conscious effort to open or close the mouth. Also called interocclusal rest space.
Fremitus [FREM i tus]: Palpable or visible movement of a tooth during occlusal contact.
Frenum [FREE num] or frenulum: Flap of tissue connecting gingival tissues to the tongue (lingual frenum), lips (labial frenum), or cheeks (buccal frenum).
Frontal bone: Skull bone with sinuses that forms the forehead and eyebrow region.
Full mouth rehabilitation: Dental treatment involving restoration of all teeth with new occlusal surfaces (like crowns) to improve occlusion.

Functional occlusion, of the jaws: Tooth contacts during normal function, that is, chewing and swallowing.
Fungiform papilla [FUN ji form pa PILL a]: Scattered, deep red projections on the dorsal surface of the tongue, especially near the tip; appear mushroomlike in cross-section.
Furcal region [FUR cal]: Space (in health filled with bone) between multiple roots.
Furcation [fur CAY shun]: Part of a multirooted tooth where the trunk divides into separate roots. Called a bifurcation between two roots and a trifurcation between three roots.
Furcation involvement: Advancement in the depth of gingival pockets that extend into the root furcation, an area extremely dif cult to keep clean. Grade I furcation involvement is barely detectable; grade II is when a probe can hook the furcation roof; and grade II is where the probe can pass through the furcation.
Fusion (of teeth) [FYOO zhen]: (Anomaly) Union of two adjacent forming teeth; tooth crown is doubled in width, but the root has separate pulp chambers and root canals.

G
Gemination [jem e NAY shen]: (Anomaly) Splitting of a single forming tooth; tooth crown is doubled but there is a common root canal. Also called twinning.
Genial spines [JEE ne al]: Pair of small bony spines on either side of the midline on the internal surface of the mandible; is attachment of genioglossus muscle (to tongue) and geniohyoid muscle (to hyoid bone).
Geniohyoid muscle [JEEN I o HI oyd]: Pair of suprahyoid muscles that help depress and retract the mandible. Attach from genial tubercles of mandible to hyoid bone.
Gingiva [JIN ji vah]: Soft tissue overlying the bone that surrounds tooth roots.
Gingival embrasure: Space between teeth, in health filled with the interdental papilla. Also called interproximal space.
Gingival f oor (of tooth preparation): Floor of a proximal box; wall closest to the gingiva.
Gingival margin: Edge of gingiva closest to the biting surface of the tooth, also called free gingival margin.
Gingival recession: Loss of gingival tissue usually with loss of underlying bone resulting in exposure of anatomic root.
Gingival sulcus [SUL kuss]: Potential space between free gingiva and the tooth.
Gingivectomy [jin ni VEK tah me]: Removal of gingiva using a scalpel or laser.
Gingivitis [jin ji VIE tis]: Inflammation (disease) of the gingiva.
Ginglymoarthrodial joint [Jing gle mo ar THRO di al]: Movement of the temporomandibular joint that combines both hinge (rotational) and gliding (translational) movements.
Glass ionomer [eye ON a mer]: Tooth-colored restorative filling material used to restore preparations made when removing dental decay especially on the root; it bonds chemically to dentin and contains fluoride.
Glenoid fossa: Articular fossa where head of condyle articulates with the disc in the TMJ.
Glossopalatine arch [GLOS o PAL a tine]: An arch of tissue with pillars around the fauces in the back of the oral cavity; extends from the palate toward the tongue. Also called the anterior arch.
Glossopharyngeal nerve [GLOS oh fa rin JEE al]: CN IX leaves skull via jugular foramen; provides taste and general sensation to the posterior one third of the tongue, motor fibers to pharynx muscles, and secretory fibers to the parotid gland.

Grade I, II, o r III fur cation involvement: Grade I furcation involvement is barely detectable; grade II is when a probe can hook the furcation roof; and grade III is where the probe can pass through the furcation.
Granuloma: Mass of chronic inflammatory tissue enclosed within a fibrous capsule.
Greater palatine foramen: Passage through posterior hard palate for greater palatine nerves to provide feeling to the mucosa between posterior teeth.
Greater palatine nerve: Branch of maxillary division of CN V enters palate via greater palatine foramen to provide feeling to the posterior palatal tissues.
Groove: Linear channel in enamel, often found in the depth of a sulcus.
Group function: Occlusal relationship where multiple teeth (not just canines) contact evenly when the mandible moves laterally toward that side.
Guided tissue regeneration: Treating a periodontal defect with a membrane or matrix for regenerative cells to migrate from the periodontal ligament and bone.
Gutta-percha [GUT ta PERCH a]: Filling material used to fill root canals after removal of diseased pulp.

H
Hamular notch: Depression between the maxillary tuberosity and adjacent pterygoid process of the sphenoid bone (with its projection called the pterygoid hamulus).
Hard palate: Portion of palate with underlying bone (of the maxillae and palatine bones).
Height of contour: Greatest bulge of a crown contour where a line drawn parallel to the midroot axis line touches the crown outline. Also called crest of curvature.
Hinge axis line: Imaginary line around which the two condyles of the mandible rotate. Also called horizontal axis or terminal hinge axis.
Hinge movement, of TMJ: Rotary movement of the TMJ that occurs around a hinge axis line.
Horizontal overlap: Incisal edges of maxillary incisors are labial to edges of mandibular incisors. Also called normal overjet.
Hutchinson incisor: Abnormal incisor shape resulting from exposure to congenital syphilis during incisor formation. Incisors are shaped like a screwdriver, broad cervically and narrowing incisally, with a notched incisal edge.
Hyoid bone [HI oid]: Single U-shaped bone in neck above the laryngeal prominence (Adam's apple); is attachment of supraand infrahyoid muscles.
Hypercementosis [HI per see men TOE sis]: (Anomaly) Excessive formation of cementum on a tooth root after eruption.
Hyperplasia [HI per PLAY zhah]: Abnormal increase in the number of normal cells resulting in increased volume.
Hypodontia [HI po DON shia]: Partial congenital absence of teeth, primary or permanent.
Hypoglossal nerves [HI po GLOS al]: CN XII exits brain via hypoglossal canals; motor branches to muscles of the tongue.
Hypophysial fossa [hi po FIZ ee al]: Depression on superior surface of sphenoid bone where body of the pituitary gland (called the hypophysis) fits. Also called sella turcica.
Hypoplasia [HI poe PLAY zhah]: Form of dysplasia; incomplete formation of a tissue (tooth).

I
Impacted tooth: Tooth fails to erupt due to a mechanical obstruction; can be confirmed using radiographs.

Implant (dental): Artificial root embedded in the jawbone for an implant-supported dental restoration.
Incipient decay: Early stages of decay formation.
Incisal [in SIGH sal]: Referring to the cutting edge of anterior teeth.
Incisal cusp tip: Tip of the cusp of a canine, the only type of tooth with an incisal edge and a cusp.
Incisal edge or ridge: Cutting surface or edge of anterior teeth.
Incisal embrasure [em BRAY zhur]: Space between adjacent anterior teeth that is incisal to the proximal contact; where the floss fits before using it.
Incisal guidance: Ideal relationship of overlapping anterior teeth where, during protrusion of the mandible, the incisal edges of mandibular incisors glide against the lingual surfaces of maxillary incisors resulting in a separation of posterior teeth. Is a type of anterior guidance or anterior protected articulation.
Incisal view: View of the tooth looking toward the incisal surface, viewing along the midroot axis.
Incising: Contacting of incisal edges together as when biting off a piece of food.
Incisive nerve (and vessels): Terminal branch of inferior alveolar nerve branches of the mandibular division of $\mathrm{CN} V$; nerves to mandibular anterior teeth. Accompanied by incisive vessels.
Incisive fossa: Shallow depression over maxillary lateral incisors, just medial to canine eminence.
Incisive foramen:Opening located on anterior part of intermaxillary suture for passage of branches of the incisal branches of the maxillary division of CN V to the palatal tissue between anterior teeth; along with incisive vessels.
Incisive papilla: Small rounded elevation of tissue on the midline of the palate just lingual to the central incisors; covers the incisive foramen where nasopalatine nerve enters the mouth.
Incisors [in SIGH serz]: Class of teeth designed to incise food; located first and second from the midline in each quadrant: central incisor and then a lateral incisor.
Inferior (and preface infra): Located below or beneath; lower than.
Inferior alveolar nerves (and associated vessels): Branches of mandibular division of CN V enter mandible via mandibular foramen and canal to reach mandibular teeth and associated structures. Accompanied by inferior alveolar vessels.
Inferior nasal conchae bone [CONG kee], singular concha [KONG kah]: Pair of scroll-shaped bones in nasal cavity that increase mucous membrane area in nose for warm, moist air.
Infrahyoid muscle: Group of muscles attaching to, and/or inferior to, the hyoid bone. Include omohyoid, sternohyoid, sternothyroid, and thyrohyoid muscles.
Infraocclusion:Tooth that is abnormally short relative to the occlusal plane of adjacent teeth in the ideal arch. Also called infraversion.
Infraorbital fissure, canal, and foramen: Passageway in floor of the eye orbit for infraorbital branches of the maxillary division of CN V. Branches into MSA and ASA branches.
Infraorbital nerve: Branches of the maxillary division of CN V; passes via intraorbital canal where the MSA and ASA branches go to part of the first molar, premolars, and anterior teeth; terminal branches exit through infraorbital foramen onto the face.
Infratemporal space: Space inferior to temporal bones and lateral to lateral pterygoid plate.
Infiltration, of anesthetic: Spreading out of numbing solution from the site of injection to adjacent tissue and even into some bones.
Infraversion [in fra VER zhun]: Tooth with occlusal surface positioned below the occlusal plane of adjacent teeth.

Inlay: Restoration constructed outside of the mouth; fits within the tooth preparation, but does not cover the cusp tips (as opposed to an onlay, which covers some cusps).
Insertion (of a muscle): Attachment of muscle to the bone that moves (such as its attachment to the moveable mandible).
Interdental papilla [pa PILLah], plural papillae [pa PILL ee]: Collar of free gingiva which, in health, fills the interproximal space or gingival embrasure. Also called gingival papilla.
Intermaxillary suture: Immovable connection between the horizontal right and left palatine processes of the maxillae and horizontal plates of the palatine bones. Also called midpalatine suture.
Internal acoustic meatus [a KOO stik me A tus]: Passage of the facial nerve (CN VII) from brain into the petrous portion of the temporal bone.
Internal jugular vein [JUG yoo lar]: Vessels that drain blood from the face and jaws.
Internal oblique line [ob LEEK]: Inferior one fourth of the temporal crest; seen as an opaque line on a radiograph.
International numbering system: System used in many countries to identify each tooth: using numbers 1 to 8 to denote each of the 8 permanent and primary quadrants, plus 1 to 8 to denote each tooth within the quadrant. Also called World Dental Federation notation.
Interproximal space or embrasure: Space between teeth, in health filled with the interdental papilla. Also called gingival embrasure.
Intracoronal restoration [IN tra COR o nal]: Dental filling that is placed within a tooth preparation and does not cover cusps and does not cover buccal or lingual surfaces.
Intraoral examination: Examination of the structures within the oral cavity.
Irreversible pulpitis: Inflammation of the pulp that cannot be treated conservatively and requires removal of the pulp (such as with a root canal) to eliminate symptoms.
Isometric contraction: Muscle contraction while maintaining the muscle length; as when teeth touch but closing muscles continue to contract but can get no shorter.
Isotonic contraction: Muscles that become shorter in order to move a structure, such as muscles that are moving (raising) the mandible when closing the mouth.

J

Jaw relation: Bone-to-bone position of the mandible relative to the maxillae not influenced by the teeth touching. Also called maxillomandibular relationship.
Jugular foramen [JUHG yuh ler]: Passageway located lateral to the foramen magnum, between temporal and occipital bones, where blood from brain drains from brain through internal jugular vein; and the glossopharyngeal nerve (CN IX) passes.
Jugular vein, internal [JUHG yuh ler]: Vessels that carry blood from the brain toward heart; exits via jugular foramen.
Junctional epithelium: Band of tissue at the most apical portion of the gingival sulcus that attaches gingiva to cementum with specialized epithelial cells. Along with the connective tissue attachment, forms the dentogingival junction.

K

Keratinized epithelium or gingiva: Oral mucous membrane (gingiva and palate) that is covered by a dense fibrous connective tissue called keratin, which provides toughness.

L
Lactobacillus [LAK tow bah SIL us]: Type of acid-forming bacteria found in dental plaque.
Labial [LAY bee al]: Related to, or in proximity with, the lips.

Labial approach (of a tooth preparation): Removing proximal decay between anterior teeth by gaining access through the labial surface.
Labial nerves (and vessels): Nerve branches of CN V to the lips; accompanied by labial vessels.
Labial embrasure [em BRAY zhur]: Space between anterior teeth facial to the proximal contact.
Labial frenum [FREE num]: T in sheet of tissue at the midline that attaches the upper and lower lip to the mucosa covering the maxillae and mandible.
Labial surface: Anterior tooth surface closest to the lips. Also called facial surface.
Labiomental groove: Horizontal tissue groove between the lower lip and the chin; is the inferior border of the lower lip.
Labioversion [LAY bee o VER zhun]: Tooth that is positioned labially relative to the ideal parabolic arch form of other teeth.
Lacrimal bones [LAK ri mal]: Pair of small rectangular facial bones with depressions that hold tear glands next to inner eye orbit. Also spelled lachrymal.
Lambdoid suture: Immovable connection between the occipital and parietal bones shaped like the Greek letter lambda (λ).
Lamina dura: T e radiopaque (white) lining of the alveolus seen on a radiograph; is the compact bony layer called alveolar bone proper.
Laryngeal prominence [la RIN jee al] or [la rin JEE al]: In the neck, the bulge over the voice box.
Larynx [LAR inks]: Upper part of the air passage through the mouth to pharynx to lungs (through trachea) that contains the vocal cords; underlies the laryngeal prominence.
Lateral: Pertaining to, or situated at, the side.
Lateral excursion or translation: Mandible moves to the right or left (and slightly downward) as when chewing food.
Lateral incisor: Type of incisor located lateral to the central incisor in each quadrant.
Lateral ligament: T ickened ligament on lateral surface of fibrous capsule of TMJ that helps limit movement of the TMJ. Also called TMJ ligament.
Lateral pterygoid muscles: Chewing muscles that help move the mandible laterally when working one at a time; and when working together, they help protrude and depress the mandible; origin attaches to sphenoid bone, insertion on pterygoid fovea and articular disc.
Leeway space: Space normally provided for the smaller permanent premolars due to the wider primary molars they replace.
Leaf gauge: Device of varying thickness useful for stabilizing the mandible in a reproducible, neuromuscularly relaxed position.
Lesser palatine foramina: Pair of openings in palatal bones just lateral and posterior to the greater palatine foramen; passage for lesser palatine nerves to tonsils and soft palate. Also called middle and posterior palatine nerves.
Lesser palatine nerves: Pair of branches of the maxillary division of CN V that pass via lesser palatine foramina to the tonsils and soft palate.
Levator [le VA tor]: Acts to raise or elevate.
Levator anguli oris muscles: Pair of upper oral group of facial expression muscles that raise the angle of the lips, as in a smile.
Levator labii muscles: Pair of upper oral group of facial expression muscles that raise the upper lip.
Ligaments: Tough fibrous bands that connect bones; are pliant but cannot be stretched so they serve to prevent excessive movement in joints like the TMJ.
Linea alba [LIN e a AL ba]: Horizontal white line in some people on the mucosa of the cheeks at the level where the upper and
lower teeth occlude, often ending at the commissural papule. May be associated with biting the cheek.
Line angle: Linear junction between two external tooth surfaces, or two cavity preparation walls.
Lingual [LIN gwal]: Related to, or in proximity with, the tongue.
Lingual approach (of a tooth preparation): Removing proximal decay between anterior teeth by gaining access through the lingual surface.
Lingual cusps: On multicusped teeth, the lingually positioned cusp(s).
Lingual embrasure [em BRAY zhur]: T e lingual portion of the space that surrounds the contact of two adjacent teeth.
Lingual fossa: Shallow, broad depression between the mesial and distal marginal ridges on the lingual surfaces of many anterior teeth.
Lingual frenum [FREE num]: T in sheet of tissue at the midline attaching the undersurface of the tongue to the floor of the mouth; may limit tongue movement.
Lingual groove: Developmental groove located between two lingual cusps.
Lingual nerve (and vessels): Branch of mandibular division of CN V provides general sensation of touch and pain to anterior two thirds of tongue. Accompanied by lingual vessels.
Lingual ridge: On the cusps of some canines, a ridge extending from its cusp tip onto its lingual surface; divides lingual surface into mesial and distal fossae.
Lingual root: Most lingually positioned root on some teeth with multiple roots.
Lingual surface: Tooth surface closest to the tongue. On teeth in upper arch next to the palate, also called palatal surface.
Lingula [LING gyoo la]: Tongue-shaped projection of bone just anterior and slightly superior to the mandibular foramen; attachment of sphenomandibular ligament.
Linguoversion [LING gwo VUR zhun]: Tooth that is positioned lingually relative to the ideal parabolic arch form of other teeth.
Lips: Two fleshy parts of the face that surround the opening of the mouth; together form the anterior boundary of the oral cavity.
Lobes, developmental: Primary growth centers of the tooth that form major morphological structures of the crown.
Local anesthetic [AN es THET ik]: Drug that can be injected into tissues or around nerves to prevent feeling pain by inhibiting nerve conduction.
Long buccal nerve: Branch of mandibular division of CN V; provides feeling to the cheek and gingiva buccal to mandibular molars. Also called buccinator nerve.
Luxation, of mandible [luk SAY shun]: When opening the mouth too far, the condyles of the mandible and discs may slip out of the articular fossae forward beyond the articular eminences; if muscles contract, the mouth may lock open and in pain. Also called condylar subluxation.
Lymph nodes [LIMF]: Small nodules where tissue fluids outside of blood vessels are collected and filtered and returned to blood vessels via the lymph system.

M
Macrodontia [MAK re DON sha]: Very large but normally shaped teeth.
Major connector: Portion of the framework that connects the right and left halves of a removable dental prosthesis.
Malar [MAY lar]: Related to cheek or cheek bone.
Malocclusion [mal ahk KLOO zhun]: Literally "bad" occlusion; a deviation from ideal occlusion due to improper alignment of
teeth within an arch, or lack of harmony between sizes of the upper and lower jaws.
Mamelons [MAM ah lonz]: T ree bumps of enamel found on the incisal ridges of many newly erupted incisors; form from three facial developmental lobes.
Mandible [MAN di b'l]: Lower jawbone.
Mandibular [man DIB yoo ler]: Referring to the lower jawbone or mandible.
Mandibular arch: Teeth in the lower jawbones that form an arch shape.
Mandibular condyle [KON dile]: In the TMJ, the two rounded superior processes of the mandible that articulate into the articular fossae of the temporal bones in the TMJ.
Mandibular deviation: Direction that the mandible takes when closing from a relaxed position into a maximal intercuspal position after premature contacts deflect the mandible.
Mandibularforamen:Prominent opening on medial surface of the mandibular ramus inferior to the sigmoid notch and centered anteroposteriorly; passage for inferior alveolar branches of the mandibular division of CN V (and accompanying inferior alveolar vessels) to all lower teeth and some adjacent gingiva.
Mandibular fossa: In the TMJ, a shallow concavity in each temporal bone that includes the articular fossa where the mandibular condyles articulate.
Mandibular lateral translation: Bodily movement of the mandible from side to side.
Mandibular nerve (and vessels): Division III nerve branches of CN V that exit the skull via foramen ovale; sensory branches to lower teeth and surrounding structures; motor branches to muscles of mastication (masseteric, posterior and anterior temporal nerves, and medial and lateral pterygoid nerves). Vessels accompany these nerves.
Mandibular torus, plural tori [TOR eye]: Bulbous enlargement of bone seen as a mass beneath thin mucous membrane on the medial sides of the mandible near the premolar roots; may be inherited. Is a type of exostosis.
Marginal ridges: Ridges that form the mesial and distal borders of the lingual surfaces on anterior teeth and the mesial and distal borders of occlusal surfaces on posterior teeth.
Marginal ridge grooves: Grooves that cross over some marginal ridges, often appearing as a continuation of the central groove.
Masseter muscle [MASSse ter] or [mass SEEter]:A pair of superficial muscles of mastication that powerfully close the mouth; origin on zygomatic arch and insertion on the lateral surface of mandibular angle.
Mastication [mass ti KAY shun]: Chewing of food.
Mastoid process: Process of temporal bone located inferiorly and posteriorly to each mandibular fossa; is attachment of sternocleidomastoid muscle of the neck.
Maxilla [mak SILL a], plural maxillae [MACK si lee]: Paired facial bones with sinuses that contain the upper teeth in alveolar processes. Also, each has a nasofrontal process (of nose), zygomatic process (of cheek bone), and palatal process (forming part of hard palate).
Maxillary [MACK si lair ee]: Related to the upper jawbones.
Maxillary arch: Teeth in the upper jawbones (maxillae) that form an arch shape.
Maxillary artery: Branch of external carotid artery whose branches provide blood to the upper and lower teeth and surrounding structures.
Maxillary nerves: Division II nerve branches of CN V exit skull via foramen rotundum; then accompanied by maxillary vessel branches to upper teeth and surrounding structures.

Maxillary sinus: Hollow space within each maxilla that opens into the nasal cavity.
Maxillary tuberosity [too be ROSS i tee]: Firm tissue over a bulge of bone posterior to maxillary third molar.
Maxillary vein: Vessels that drain blood from the pterygoid plexus.
Maximal intercuspal position (abbreviated MIP): Tooth-totooth relationship of teeth when they come together into their best fitting together of cusps into opposing tooth fossae. Also called maximal intercuspation. Used to be called centric occlusion.
Medial [ME dee al]: Surface toward the midline (or median) plane of the body. Do not confuse with mesial, which is toward the midline of the dental arch.
Medial pterygoid muscles: Pair of muscles of mastication that elevate the mandible; origin is mostly on medial surface of lateral pterygoid plate and insertion on medial surface of mandibular angle.
Median plane: Longitudinal plane that divides the body into right and left halves. Also called midsagittal plane.
Mediolateral curve: Curve formed by connecting the buccal and lingual cusps of posterior teeth of the same type on the right and left sides of an arch; the curve is convex in the upper arch and concave in the lower arch. Also called the curve of Wilson.
Melanin pigmentation [MEL a nin]: Dark brown to black pigment found in the gingiva (and skin) of persons with dark colored skin.
Mental: Associated with the chin.
Mental nerves and vessels: Terminal branch of inferior alveolar nerve that exits mandible via mental foramen to facial gingiva of anterior teeth and of premolars and skin of lower lip and chin where it is accompanied by mental vessels.
Mental foramen: Hole in the external surface of the mandible near the root apex of the second premolar; passage of mental nerve to chin.
Mentalis muscles [men TA lis]: Lower oral group of facial expression muscles in the chin.
Mental protuberance: Single small bulge of bone centered on the midline of the external surface of the mandible; between and superior to the two mental tubercles.
Mental spines: Slight projections in the middle, internal surface of the mandible, attachment of the genioglossus, and geniohyoid (suprahyoid) muscles.
Mental tubercles: Pair of bulges located on the external, inferior surface of the mandible on either side of the midline.
Mesial [MEE zi al] or preface mesio-: Related to the tooth surface nearer to the center of the dental arch; on the opposite side from the distal tooth surface.
Mesial cusp ridge: Cusp ridge that extends from a cusp tip toward the mesial.
Mesial root: On some two-rooted teeth, the root that is more mesial.
Mesial root depression: Depression on the mesial surface of a root.
Mesiobuccal (developmental) groove [MEE zee o BUCK k'l]: Developmental groove on five-cusp mandibular molars located between the mesiobuccal and distobuccal cusps.
Mesiobuccal root or cusp [MEE zee o BUCK k'l]: Root or cusp near the junction of the mesial and buccal surfaces.
Mesiolingual root or cusp [MEE zee o LING gwal]: Root or cusp near the junction of the mesial and lingual surfaces.
Mesiolingual groove: On mandibular first premolars, the groove between the mesial marginal ridge and the mesial ridge of the lingual cusp (or a triangular fossa groove that is directed toward the mesiolingual line angle).
Mesiodens [MEE zi oh denz]: Supernumerary tooth located between the maxillary central incisors; may be impacted.

Mesio-occlusion: Skeletal type of malocclusion where the mandible is too large or the maxillae are too small, or both. T is results in a protruded or prognathic chin profile. Also generally considered the same as Angles class III occlusion.
Mesognathic occlusion [MEZ ug NATH thik]: Facial profile of person with class I occlusion where top half of face and mandible form a rather straight line. Same as orthognathic.
Metal ceramic restorations: Crowns that are made from cast metal and covered in part with tooth-colored ceramic porcelain to improve esthetics.
Microdontia [MIE kro DON sha]: Very small but normally shaped teeth.
Middle superior alveolar nerves abbreviated MSA (and vessels): Branches of maxillary division of CN V that branch off of the infraorbital nerve while within the inferior orbital canal; pass through maxillary sinus toward maxillary premolars and part of the first molar and surrounding structures. Accompanied by MSA vessels.
Midline (of the dental arch): Location between right and left central incisors (separating right and left quadrants).
Midpalatine suture: Immovable connection between the horizontal right and left palatine processes of the maxillae and horizontal plates of the palatine bones. Also called intermaxillary suture.
Midroot axis line: Imaginary line through the center of the tooth root.
Midsagittal plane [mid SAJ i t^{\prime}]: Longitudinal plane that divides the body into right and left halves. Also called median plane.
Mixed dentition: Dentition with a mix of permanent and primary teeth; normally occurs between the ages of about six through twelve.
Molars [MO lerz]: Class of teeth designed to chew food: located sixth, seventh, and eighth from the midline in each quadrant of the permanent dentition, a first molar, second molar then third molar, and located fourth and fifth from the midline in the primary dentition: a first molar, then second molar.
MSA: Abbreviation for middle superior alveolar nerves or vessels.
Mucocutaneous junction [MYOO koe kyoo TAY nee us]: External boundary of the vermilion border of the lips; the line denoting a junction between skin of the face and the vermilion border of the lips.
Mucogingival defects [MYOO ko JIN ji val]: Now identified as lack of attached keratinized gingiva, which can put the tooth at risk for accelerating gingival recession.
Mucogingival junction or line [MYOO ko JIN ji val]: Scalloped junction between attached gingiva and loosely attached alveolar mucosa.
Mucosa, oral [myoo KO za]: Moist mucous membrane that lines the oral cavity; some may be keratinized.
Motor nerve fibers: Type of efferent nerves fibers that provide stimulus from the brain to contract muscles.
Mulberry molars: Molars with occlusal surfaces shaped like a mulberry due to congenital syphilis during molar formation.
Muscles of facial expression: Muscles that move parts of the face to result in unique expressions of emotion; innervated by motor branches CN VII.
Muscles of mastication: Chewing muscles.
Mylohyoid [MY lo HI oyd]: Related to the molar region and the hyoid bone.
Mylohyoid groove: Small groove running inferior and anterior from the mandibular foramen for mylohyoid nerve.
Mylohyoid muscles: Pair of suprahyoid muscles that help to depress and retrude the mandible and elevate the floor of the mouth. T ey attach along the mylohyoid ridge on the internal surface of the mandible and the hyoid bone.

Mylohyoid nerve: Branch of mandibular division of CNV with motor fibers to the mylohyoid muscle.
Mylohyoid ridge: Ridge running inferior and anterior from the mandibular foramen; attachment of mylohyoid muscle.
Myofascial trigger points [MY o FASH i el]: Areas of hypersensitive
fascia and muscles that can result from overuse of jaw muscles.
N
Nasal: Related to the nose.
Nasal nerves and vessels: Branches of the maxillary division of CN V to the nose accompanied by nasal vessels.
Nasal bones: Pair of facial bones forming the bridge of the nose.
Nasal conchae bone, inferior [CONG kee]: Pair of scroll-shaped bones within the nasal cavities that increase the surface area of mucosa to warm and moisten the air we breathe. Also called nasal turbinates.
Nasal septum: Bone separating the right and left halves of the nasal cavity; made up of vomer bone and a vertical process of the ethmoid bone.
Nasal turbinates, inferior: Pair of scroll-shaped bones within the nasal cavities that increase the surface area of mucosa to warm and moisten the air we breathe. Also called nasal conchae.
Nasofrontal process: Process of each maxilla that extends toward the frontal bone and helps form the bony support for the nose.
Nasolabial groove: Groove on the skin of the face between the side of the nostrils of the nose and the commissure of the lips; is the lateral border of the upper lip.
Nasopalatine nerve: Branch of maxillary division of CN V that enters the palate via incisive foramen to supply anterior palatal tissue.
Necrotic pulp: Death of pulpal tissue due to injury or disease; requires treatment that may include a root canal.
Nerves: Bundle of fibers that can transmit sensations (such as pain) to the central nervous system and brain, called afferent fibers, or can send messages from the brain (such as to move a muscle or for a gland to secrete) called efferent fibers.
Neurocranium [NOOR o CRAY ne um]: Bones of the skull that surround the brain.
Neutroclusion [NOO tro KLOO zhun]: Ideal class I occlusion.
Nonworking side: Side opposite that which the mandible moves toward when it moves laterally; when the mandible moves to the right, the left side is the nonworking side.

0

Oblique ridge [OB leek]: Ridge on the occlusal surface of most maxillary molars running diagonally (obliquely) from mesiolingual cusp toward the distobuccal cusp.
Occipital bone [ahk SIP eh tal]: Bone on posterior and inferior surface of braincase providing the articulating surface with uppermost vertebra of the spinal cord.
Occipital condyle: Articulating surface of occipital bone with vertebral column.
Occipitofrontalis muscle [ahk SIP I toe fron TAL is]: Muscle that draws back the scalp, wrinkling the forehead and raising eyebrows, as in surprise.
Occlusal [ahk KLOO zal]: Related to the chewing surfaces of posterior teeth.
Occlusal table: Chewing surface of posterior teeth bounded by continuous marginal ridges and mesial and distal cusp ridges. Also called occlusal surface.
Occlusal crown outline: Entire outline of a posterior tooth when viewed from the occlusal view, larger than the occlusal surface or occlusal table.

Occlusal device: Removable artificial occlusal surface used to stabilize occlusion, reduce pain from TMDs, and prevent tooth wear. Also called bite guard or night guard.
Occlusal embrasure [em BRAY zhur]: Occlusal part of the space that surrounds the proximal contacts between adjacent teeth; where the floss fits before using it.
Occlusal equilibration: Process where dentist modifies occlusal and incisal surfaces by grinding away enamel at sites of undesirable tooth contact prematurities.
Occlusal surface: Chewing surface of posterior teeth bounded by the joining of two marginal ridges and all mesial and distal cusp ridges. Also called occlusal table.
Occlusal trauma: Injury to the periodontium from damaging occlusal forces.
Occlusion [ah KLOO zhun] (of teeth): Relationship of upper and lower teeth when they come in contact.
Oculomotor nerves [AHK yu lo MO tor]: CN III, to orbital muscles for eye movement.
Odontoblasts [oh DON toe blasts]: Specialized cells lining the pulp chamber that produce dentin.
Olfactory nerve [ol FAk toe ree]: CN I; for smell; passes through cribriform plate of ethmoid bone.
Omohyoid muscle [O mo HY oyd]: Pair of infrahyoid muscles that help to depress the mandible by stabilizing the hyoid bone.
Onlay: Restoration constructed outside of the mouth and covers some or all cusps. An inlay does not cover cusps.
Open bite: When posterior teeth are closed tightly together, there is a vertical space between opposing anterior teeth.
Operative dentistry: Branch of dentistry that includes diagnosis and restoration of defects of hard tissues of individual teeth.
Operculum [o PUR kyuh lum]: Flap of tissue overlying a partially erupted tooth, especially third molars. When irritated, can cause pericoronitis.
Ophthalmic nerve: Division 1 of CN V, exits skull via superior orbital fissure to skin of forehead and eyebrows.
Optic nerves: CN II, for sight.
Oral cavity: Space of the mouth bounded anteriorly by the lips, laterally by the cheeks, superiorly by the palate, inferiorly by the floor of the mouth, and posteriorly by the fauces; can be divided into oral vestibule and oral cavity proper.
Oral cavity proper: Only the inner part of the oral cavity: bounded anteriorly and laterally by the teeth and alveolar processes.
Oral vestibule [VEST i byool]: Only the outer part of the oral cavity: between the teeth with alveolar processes and the lips or cheeks.
Orbicularis [or BIK u LAR is]: Round, surrounding, like an orbit.
Orbicularis oculi muscle [AH kyoo le]: Muscle of facial expression surrounding the eye, squints the eyes.
Orbicularis oris muscle: Muscle of facial expression surrounding the mouth; closes the lips around a straw.
Origin, of muscle: Fixed end of attachment of a muscle, to the bone that does not move (opposite end from the insertion).
Oropharynx [Or o FAR inks]: Part of the throat (behind the fauces) where air passes to the lungs and food passes to the esophagus.
Orthodontic treatment: Bodily movement of teeth to improve tooth alignment, function and esthetics.
Orthognathic profile [OR thog NATH ik]: Facial profile of person with class I occlusion where top half of face and mandible form a rather straight line. Same as mesognathic.
Orthognathic surgery [OR thog NATH ik]: Surgical reshaping of jawbones to correct severe skeletal malocclusions.

Osseointegration, of dental implant: [AH see o in te GRAY shun]: Process whereby living bone and implant root become fused.
Outline form: External shape of a tooth preparation where prepared tooth meets unprepared tooth.
Overbite, normal: When posterior teeth are in tightest occlusion, less than one third of the incisal edges of mandibular incisors are hidden from view by overlapping maxillary incisors. Also called normal vertical overlap.
Overbite, severe: Excess overlap of maxillary incisors beyond the incisal edges of mandibular incisors by well over one third. Also called deep bite.
Overjet, normal: When posterior teeth are in tightest occlusion, incisal edges of maxillary incisors are labial to edges of mandibular incisors. Also called normal horizontal overlap.
Overjet, severe: When posterior teeth are in tightest occlusion, maxillary incisors are considerably anterior to mandibular incisors as in class II occlusal relationships.

P
Palatal root (gingival) grooves: (Anomaly) Deep groove extending onto the lingual root surface.
Palatal surface: Surface of upper teeth closest to the palate. Also called lingual surface.
Palate: Roof of the oral cavity; can be divided into hard palate (with underlying bone) and soft palate (with no underlying bone).
Palatine [PAL a tine]: Related to the palate.
Palatine arches: Two arches of tissue supported by pillars in the back of the oral cavity: posterior palatine arch (called pharyngopalatine arch from the palate to pharynx) and anterior palatine arch (called glossopalatine arch from the palate to tongue).
Palatine bones: Paired bones that form the posterior one fourth of the hard palate; (anterior portion formed by the horizontal palatine processes of the maxillae).
Palatine process: Bony plates of each maxilla that, with the palatine bone, form the hard palate.
Palatine raphe [RAY fee]: Slightly elevate ridge of firm tissue running anteroposteriorly along the midline of the hard palate, over the intermaxillary suture.
Palatine rugae [ROO guy] or [ROO jee]: Series of palatal tissue elevations or wrinkles located just posterior to the maxillary anterior teeth.
Palatine tonsils: Two lymphatic tissue masses located between the anterior and posterior pillars in the back of the oral cavity.
Palatine torus: Smooth, benign, hereditary, rounded bulge of bone near the midline on the palate.
Palatomaxillary space [PAL ah toe MACK si lar ee]: Space between the pterygoid process of sphenoid bone and posterior wall of the maxillae that includes vertical processes of the palatine bone; also called pterygopalatine space.
Palatomaxillary suture [PAL ah toe MACK si lar ee]: Immovable connection between the palatal processes of the maxillae and the palatal bones. Also called transverse palatine suture.
Palmer Notation System: System used to identify each tooth used in many orthodontic of ces: using different bracket shapes to denote each quadrant and numbers 1 to 8 or letters A to E to denote each tooth in that permanent or primary quadrant.
Palpebral nerve [PAL pe bral]: Branches of maxillary division of CN V to the eyelid.
Panoramic radiograph: Radiograph that obtains an image of the entire jawbones and surrounding structures. Also called a Panorex.

Panorex, of the mouth: Single large x-ray of the maxillae and mandible and their teeth.
Parafunctional contacts of teeth: Undesirable opposing tooth contacts not involved in chewing or swallowing.
Paramolar [PAIR a MO lar]: (Anomaly) Extra or supernumerary molar.
Paranasal sinuses: Hollow spaces located within bones around the nasal passages: maxillae, frontal, ethmoid, and sphenoid bones.
Parietal bone [par EYE i $\left.\mathrm{t}^{\prime} l\right]$: Paired bones that surround the brain superiorly, laterally, and posteriorly.
Parotid [pah RAH tid]: Related to the parotid gland.
Parotid duct: Duct of the parotid salivary gland that empties through the parotid papilla on each cheek. Also called Stensen duct.
Parotid salivary glands: Located anterior and inferior to each ear lobe; produce watery (serous) saliva.
Parotid nodes: Lymph nodes located over the parotid gland that drain fluid from the adjacent scalp, ear, cheek, and eyelids.
Parotid papilla [pa ROT id pah PILL a]: Rounded flap of tissue on the mucosa of the cheek next to the maxillary first and second molars; it covers the opening of the parotid duct (Stensen duct).
Partial anodontia [an oh DON she ah]: (Anomaly) Partial congenital absence of teeth.
Peg-shaped lateral incisors: (Anomaly) Maxillary lateral incisor crowns shaped like a cone.
Percussion sensitivity: Diagnostic test that confirms tooth sensitivity by tapping on the occlusal surface with a dental instrument.
Periapical disease: Spread of infection from the dental pulp through the apical foramina into the tissues surrounding the apex.
Periapical radiolucence: Dark area surrounding the root apex on a radiograph indicating bone destruction.
Pericoronitis [pair i KOR o ni tis]: Inflammation of the tissue around the crown (including operculum) of a partially erupted third (last) molar.
Peri-implant tissues: Hard and soft tissues surrounding a dental implant.
Peri-implant mucositis: Inflammation of the keratinized tissue around an implant (compare to gingivitis around a tooth).
Peri-implantitis: Inflammation with destruction of supporting bone around an implant (compare to periodontitis around a tooth).
Perikymata [pear ee KY mah tah]: Minute horizontal ridges seen on the enamel of newly the erupted teeth, formed by layers of enamel formation.
Periodontal [Pair ee o DON tal]: Refers to tissues surrounding and supporting the tooth.
Periodontal disease: Pathologic processes affecting the periodontium, most often gingivitis and periodontitis.
Periodontal ligament: T in band of tissue connecting cementum of the tooth root and alveolar bone. Abbreviated PDL. Includes apical, oblique, horizontal, and alveolar crest fibers.
Periodontal charting: Part of the patient's dental record that includes measurements considered critical for evaluating the periodontal health of a patient.
Periodontal fap: Surgery involving folding back a superficial layer of tissue to provide access to treat deeper diseased tissues and bone.
Periodontal pocket: Pathological deepening of a gingival sulcus in the presence of periodontal disease.
Periodontal probe: Instrument designed to measure the depth of a gingival sulcus.

Periodontal scaling and root planing [PLAY ning]: Removal of calculus and some cementum to smooth the root using specially designed dental instruments.
Periodontics [Pair ee o DON tix]: Dental specialty that includes the prevention, diagnosis, and treatment of diseases of supporting tissues of teeth or their substitutes (dental implants).
Periodontist: Dentist who specializes in the prevention, diagnosis, and treatment of periodontal disease and in the placement of dental implants.
Periodontitis [Pair ee o don TI tis]: Inflammation of the tissues of the periodontium.
Periodontium [pair ee o DON she um]: T e tissues that surround, envelop, or embed the teeth.
Peristalsis [Pair i STOL sis]: Waves of contraction of the walls of the digestive tract that move food through for digestion.
Permanent dentition [den TISH un]: The adult set of teeth that begin erupting around age six. Also called secondary dentition.
Petrotympanic fissure [PEE tro tim PAN ik]: Fissure that separates the mandibular fossa into the anterior $2 / 3$ called the articular fossa and the posterior $1 / 3$. Is the passage of the chorda tympani branch for CN VII providing taste to anterior $2 / 3$ of tongue.
Petrous portion: Part of temporal bone containing the auditory canal and bones of inner ear: malleus, incus, and stapes. Contains openings for CV VII (facial nerve) from brain via internal acoustic meatus and out into infratemporal space through the stylomastoid foramen.
Pharyngopalatine arch [fah RING go PAL a tine]: Arch of tissue with pillars next to the fauces in the back of the oral cavity; extends from the palate toward the pharynx. Also called the posterior arch.
Pharynx [FAR inks]: Superior part of digestive tube between the nasal passageways or oral cavity and the esophagus.
Philtrum [FIL trum]: Depression in the midline of the upper lip running from the nose to the tubercle of the upper lip.
Phonetics [fo NE tiks]: Articulation of sounds and speech.
Physiological rest position: Position of the mandible when all of its supporting muscles are in their resting position. Also called vertical dimension of rest position.
Piriform [PEER I form]: Pear-shaped opening in the skull into the nasal passageways.
Pit: A pinpoint depression, often found at the junction or end of grooves on tooth enamel. When defective, it is the site for decay.
Pit and fissure decay (caries): Decay that begins in caries-prone enamels defects (pits and fissures) where enamel is incompletely fused.
Planes of the he ad: Midline sections of the head: midsagittal (median) plane runs anteroposteriorly; frontal plane runs mediolaterally.
Plaque, dental [PLAK]: Organized layer mostly of microorganisms that adhere to teeth and contribute to gingival and periodontal diseases as well as tooth decay. Also known as biofilm.
Plaque index or score [PLAK]: Using a disclosing solution or dye to stain plaque in order to determine the percentage of sites on a tooth crown with plaque divided by the total number of sites measured.
Platysma muscle [pla TIZ mah]: Broad muscle over the anterior and lateral neck; contracts during a grimace.
Plica fimbriata [PLY kah fim bri AH tah]: Delicate fringes of mucous membrane on each side of the frenum on ventral surface of tongue.
Point angle: Point formed at the junction of three external tooth surfaces, or three adjacent cavity preparation walls.

Pontic: False tooth (teeth) that is part of a fixed partial denture that is attached to the crowns (retainers) on adjacent (abutment) teeth.
Porcelain [PORS e lin]: Tooth-colored, ceramic material used to construct inlays, onlays, and crowns.
Porcelain veneer [ven NEER]: Tooth-colored material that covers the facial surface of a tooth.
Post and core restorations: Restoration consisting of a post that fits snuggly into a prepared root canal and a core that reproduces a crown preparation in order to retain an artificial crown.
Posterior: Toward the rear of the mouth, head, or body.
Posterior fibers, temporalis muscle: Horizontal fibers of the temporalis chewing muscles that retrude the mandible.
Posterior superior alveolar nerves (and vessels), abbreviated PSA: Branches of maxillary division of CN V via alveolar canals to the pulp of most adult maxillary molar roots and adjacent tissues. Accompanied by PSA vessels.
Posterior teeth: Teeth in the back of the mouth, namely, premolars and molars.
Postmortem examination: Record made of the condition of the oral structures and teeth (including restorations) on a deceased person: used to identify an unrecognizable body.
Premature contact:Teeth that occlude before other teeth in the mouth.
Premaxilla: Embryonic part of the maxillae that contain the incisors; may be separated from the rest of the maxillae by suture lines in some adults.
Premolars: Class of permanent teeth designed to chew food, located fourth and fifth from the midline in each quadrant, anterior to molars: a first premolar and second premolar.
Preparation (of a tooth): Tooth structure removed from a tooth in order to remove decay and place a dental restoration.
Prevention, patient education: Teaching a person about techniques used to prevent dental disease including brushing, flossing, and diet, in an effort to reduce dental disease in that person.
Primary cusp triangle: Triangular shape formed by connecting the cusp tips of the three largest cusps of maxillary molars: the mesiolingual (or lingual), mesiobuccal, and distobuccal.
Primary dentition (teeth): First set of 20 teeth that erupt between about 6 months and 2 years, also called deciduous dentition.
Primate spaces: Space provided for permanent premolars due to growth of jawbones and wider primary molars compared to their replacement teeth, permanent premolars.
Probing depth: Depth of a gingival sulcus, or of the pocket depth in the presence of periodontal disease as determined with a measuring device called a periodontal probe.
Procerus [pro SE rus]: Muscle from bridge of nose that lowers the medial eyebrow and wrinkles the nose.
Prognathic profile [prog NATH ik]: Facial profile of person with class III occlusion where the mandible is forward relative to the upper part of the face.
Prophylaxis, dental [pro fi LAX es]: Professional cleaning of the teeth; in order to prevent gingivitis and decay.
Proprioceptive nerve fibers [PRO pree o SEP tiv]: Nerve fibers that permit the unconscious perception of posture and position in space; they help to coordinate jaw movement.
Prosthesis [pros THEE sis]: Artificial replacement of a missing body part.
Prosthodontics [pros tha DON tiks]: Branch of dentistry involves the treatment of patients with missing or deficient teeth; can be fixed or removable prosthodontics.
Protrude; protrusive movement or protrusion: Moving the mandible anteriorly relative to the maxillae.

Protuberance [pro TOO ber ahns]: Bulge, as of a bone.
Proximal [PROK si mal]: Related to the tooth surfaces where adjacent teeth normally touch one another; includes both mesial and distal surfaces.
Proximal box (of tooth preparation): Boxlike design of a tooth preparation between posterior teeth.
Proximal contact areas: Area on a tooth where it touches an adjacent tooth in the arch.
Proximal height of contour: Greatest bulge of the proximal contour, which, in ideal alignment, is the location of the proximal contact area.
Proximal surface: Tooth surface (mesial or distal) that, in ideal alignment, touches an adjacent tooth.
Proximal views: View of the surface of a handheld tooth that in the mouth would contact an adjacent tooth.
PSA: Abbreviation for posterior superior alveolar nerves or vessels.
Pseudopocket [SOO doe pah ket]: Literally a "false" pocket. A gingival sulcus depth of 4 mm or deeper due to an overgrowth of gingiva, even in the absence of periodontitis.
Pterygoid [TER i goyd]: Related to the processes of bone that extend inferiorly from the body of the sphenoid bone and are posterior to the maxillae.
Pterygoid fossa: Depression between the two pterygoid plates (lateral and medial); attachment for medial pterygoid muscles.
Pterygoid fovea: Small depression on the anterior neck of the ramus just inferior to the condyle; is area of attachment for each lateral pterygoid muscle.
Pterygoid hamulus: Hooklike projection off of the medial pterygoid plates.
Pterygoid muscles: Two pairs of muscles of mastication that move the mandible: medial pterygoids elevate the mandible; lateral pterygoids move the mandible forward (protrude) or move the mandible laterally.
Pterygoid processes: Paired projections of bone off of the sphenoid bone inferiorly; one is medial and one is lateral.
Pterygoid plates or lamina: Two thin plates of each pterygoid process: lateral plates are the attachment of lateral pterygoid muscles, and the medial plates, surrounding a pterygoid fossa, are the attachment for medial pterygoid muscles.
Pterygoid plexus of veins: Network of thin-walled veins medial to the upper ramus of the mandible and susceptible to being hit by a syringe needle during certain injections. Collect blood from the face and jaws.
Pterygomandibular fold [TER I go man DIB you lar]: Fold of tissue that connects the retromolar pad of the mandible with the pterygoid process just posterior to the maxillary tuberosity; a landmark for anesthetic placement.
Pterygopalatine nerve: First branch of the maxillary division of CN V; its branches go to posterior and anterior palatal tissues and adjacent gingiva.
Pterygopalatine space: Space between the pterygoid process of sphenoid bone and posterior wall of the maxillae that includes vertical processes of the palatine bone; also called palatomaxillary space.
Pulp: Tissue in the middle of the tooth containing nerves and vessels and surrounded by dentin.
Pulp canal: Portion of the pulp cavity located within the roots of teeth, also called root canal.
Pulp canal configurations: Shapes of pulp cavities: type I, one canal and one foramen; type II, two canals join into one foramen; type III, two canals and two foramina; and type IV, one canal but splits into two foramina.

Pulp cap: Dental procedure using a dental material (calcium hydroxide) designed to stimulate the formation of new dentin. T e dental material can be placed directly over exposed pulp (a direct pulp cap) or over a thin layer of remaining dentin (called an indirect pulp cap).
Pulp cavity: Space in the inner portion of the tooth filled with nerves and blood supply to the tooth made up of pulp canal(s) and a pulp chamber.
Pulp chamber: Wider portion of the pulp cavity closer to the crown.
Pulp horns: Incisal or occlusal extensions on the roof of the pulp chamber under cusps or mamelons.
Pulpal f oor: Horizontal floor (or wall) of a tooth preparation that is over the pulp.
Pulpitis, irreversible: Inflammation of the pulp that cannot be resolved or reversed; is often painful and requires removal of the diseased pulp tissue (endodontics).

Q
Quadrant: One quarter of the teeth in the mouth, that is, the teeth in the right or left side of each arch.

R
Radiograph (of a tooth or jaw): X-ray image that shows internal structures. Can be a bitewing (showing coronal part of tooth), periapical (showing crowns and roots), or panoramic (Panorex) showing structures within the entire jaws.
Radiolucent [ray dee o LOOS ent]: Relatively dark areas on an x-ray image indicating an area of lower density, soft tissue-like pulp and gingiva.
Radiopaque [ray dee o PAKE]: Relatively whiter areas on an x-ray image indicating areas of higher density, hard tissues like enamel and bone.
Ramus [RAY mus], plural rami [RAY mie]: Two broad vertical processes of the mandible that include the mandibular condyles and coronoid processes.
Recession, gingival: Loss of gingiva usually with loss of underlying bone resulting in exposure of the anatomic root.
Rehabilitation, full mouth: Extensive dental treatment requiring that all teeth are restored with new occlusal surfaces in order to improve the occlusion.
Remineralization: Uptake of minerals into tooth tissues that had previously lost minerals.
Removable dental prosthesis [pros THEE sis]: Tooth restoration that replaces missing teeth and can be readily removed from the mouth; like a removable partial denture or a complete denture.
Regenerative periodontal surgery: Surgery intended to form new cementum, bone, and a new functionally oriented ligament.
Reparative dentin: Irregular dentin laid down in response to an irritant like decay or drilling to remove decay. Also called tertiary dentin.
Resective periodontal surgery: Surgery involving removal and/ or recontouring of gingiva, supporting bone or root.
Resistance form (of at ooth preparation): Design of the preparation that assures resistance to breaking of remaining tooth and restorative material.
Resorption of bone: Bone loss.
Restorations (in at ooth): Using dental materials (such as amalgam or composite) to fill in tooth preparations that were designed when decay was removed. Restorations can be direct (placed directly in a tooth preparation) or indirect (formed outside of mouth and then attached/cemented to the tooth.

Restorative dentistry: Branch of dentistry that involves diagnosis and restoration of defects of hard tooth structure of individual teeth plus replacement of lost teeth.
Rest seats (of removable dental prosthesis): Part of framework that adapts into small occlusal crown depressions to keep the denture from seating too firmly into soft tissue.
Rest space, interocclusal: Space between the mandibular and maxillary teeth when all of its supporting muscles are in their resting position. T is space occurs when the mandible is in physiological rest position. Vertical dimension of rest position is the distance between a selected point on the mandible and one on the maxilla during physiological rest.
Retained deciduous or primary tooth: Primary tooth that is not lost at the expected time and is kept in the mouth into adulthood, which often happens when no replacement tooth is forming to replace it.
Retainer: Crown restoration that covers the supporting teeth (abutment teeth) and is attached to the replacement tooth (pontics) for a fixed dental prosthesis.
Retention form (of a tooth preparation): Design of the preparation that prevents the restoration from dislodging.
Retentive grooves: Linear depressions within line angles of a tooth preparation; designed to keep the restoration from being dislodged.
Retro (as prefix): Back or behind.
Retrognathic profile [RET rog NATH ik]: Facial profile of person with class II occlusion where the mandible is posterior relative to the upper part of the face.
Retromolar fossa: Roughened, shallow bony depression distal to the last mandibular molar and bounded medially by the temporal crest and laterally by the external oblique ridge.
Retromolar pad: Elevation of moveable tissue distal to the mandibular third molar; landmark for placing anesthetic.
Retromolar triangle: Lowest, most anterior, horizontal part of the retromolar fossa; attachment of cheek (buccinator) muscle.
Retromylohyoid curtain [REH tro my lo HI oid]: Wall of mucous membrane along the medial posterior mandible; extends between the anterior pillar of the fauces and the pterygomandibular fold; important landmark when constructing a complete mandibular denture.
Retrude; retrusive movement: Retracting or pulling back; mandible moves posteriorly.
Reverse articulation: Mandibular posterior teeth are considerably too far buccal or too far lingual compared to opposing maxillary posterior teeth. Also called posterior crossbite.
Risorius muscle: Pair of upper oral group of facial expression muscles that retract or spread the angles of the mouth.
Root: Anatomic root of a tooth.
Root axis line: Imaginary line through the middle of a tooth root.
Root canal: Portion of the pulp cavity located within the roots of teeth. Also called pulp canal. Also refers to the filling placed within the pulp canals by a dentist.
Root depression: Longitudinal depressions found on the surfaces of some root; if deep, may indicate two pulp canals within that root.
Root resection: Removal of periodontally involved root on a multirooted tooth.
Root resorption: Gradual loss of root structure. In primary teeth, this provides room for eruption of the underlying permanent tooth.
Root surface decay: Decay that forms on the cementum of the anatomic root.

Root-to-crown ratio: Root length divided by crown length; is an indicator for the usefulness of that tooth as an abutment for a bridge.
Root of the tongue: Posterior third of tongue, not usually visible during an oral exam.
Root trunk: T e part of a multirooted tooth closest to the crown that has not yet split.

S
Sagittal suture: Immovable attachment between the right and left parietal bones along the midsagittal line.
Salivary glands: Glands with ducts that secrete saliva: thin serous saliva; or thick, mucous saliva; or mixed.
Scalers, dental [SKAY lerz]: Dental instruments designed to remove hard deposits off of teeth.
Scaling and root planing [SKA ling] [PLAY ning]: Removal of calculus and plaque from the crown and root as well as smoothing of the root to remove bacterial toxins; done in a dental of ce, using specially designed instruments.
Sclera [SKLER a]: Tough fibrous covering of the white portion of the eyeball.
Sealant: A flowable restorative material that flows into and then hardens to attach into the roughened acid-etched enamel around pits and fissures; used to prevent decay.
Second molars: Type of molar located one tooth behind (distal to) the first molar in each quadrant.
Second premolars: Type of premolar located just behind (distal to) the first premolar.
Secondary dentin: Normally maturing dentin laid down throughout life.
Secondary dentition: Adult set of teeth that begin erupting around age six. Also called permanent dentition.
Secretory nerves: Specialized efferent nerves that can send messages to glands to secrete, such as salivary glands to secrete saliva.
Self cleansing: Parts of a tooth exposed to the natural rubbing action of the lips, cheeks, and tongue.
Sella turcica [SELL a TER si ka]: Depression on superior surface of sphenoid bone where pituitary gland fits. Also called hypophyseal fossa.
Septum: Partition that separates, such as the nasal septum that separates the right and left nasal cavities.
Shovel-shaped incisors: Incisors with prominent lingual marginal ridges resembling a shovel; occur most frequently in Asian, Mongoloid, Arctic, and Native American populations.
Sialolith [si AL o lith]: Calcified blockage in a salivary gland duct.
Sigmoid notch [SIG moyd]: Depression between the condylar and coronoid processes of each mandibular ramus. Also called semilunar or mandibular notch.
Skull: Bones of the face and neurocranium.
Slot preparation: Box-shaped conservative tooth preparation designed to remove decay located between adjacent posterior teeth; does not extend into occlusal grooves.
Sluiceways: Depressions and grooves on the occlusal surfaces of teeth that allow food to squeeze out to maximize chewing. Also called spillways.
Smooth surface decay: Decay that occurs on smooth surfaces of the anatomic.
Soft palate: Posterior, moveable part of palate with no underlying bone; separated from hard palate by the vibrating line.
Sphenoidal spine: Two projection of bone on the inferior surface of the sphenoid bone where the sphenomandibular ligaments attach.

Sphenoid bone: Complex singular bone with sinuses forming part of the floor and walls of braincase, has areas of attachment for three major pairs of muscles of mastication, and has passageways for branches of the important fifth cranial nerve to the teeth.
Sphenomandibular ligament [SFE no man DIB yoo lar]: Ligament from angular spine of sphenoid bone to the lingula of mandible; helps limit movement of TMJ.
Spillways: Depressions and grooves on the occlusal surfaces of teeth that allow food to squeeze out to maximize chewing. Also called sluiceways.
Spinal accessory nerves: CN XI helps with neck movements.
Squamosal suture [skwa MO sal SOO chur]: Junction of squamous (fish scale-shaped) portion of the temporal bones and the parietal bones.
Stensen duct:Duct of the parotid salivary gland that empties through the parotid papilla on each cheek. Also called parotid duct.
Sensory nerve fibers: Type of afferent nerve fibers that convey impulses such as felling, touch, and pain from peripheral organs like skin or mucosa.
Sternocleidomastoid muscle [stur no kly doe MAS toyd]: Neck muscle attaching from mastoid process of temporal bone to the sternum (breast bone) and clavicle (collarbone). Many lymph nodes surround the area of this muscle.
Sternohyoid muscle: Pair of infrahyoid muscles that help to depress and retract the mandible; attaches on hyoid bone and sternum.
Sternothyroid muscle: Pair of neck muscles below the hyoid bone attaching from the thyroid cartilage to the sternum; acts to depress the larynx.
Sternum [STUR num]: Breast bone.
Streptococcus mutans [strep tah KOK us MU tanz]: Type of acidforming bacteria prevalent in dental plaque (or biofilm) that contributes to dental decay.
Stuart groove: Groove or depression located between the transverse ridge and the portion of the oblique ridge located on the mesiolingual cusp of a four-cusped maxillary molar.
Stylohyoid muscle: Pair of suprahyoid muscles that help to depress and retract the mandible; attach from hyoid bone to the styloid process of the temporal bone.
Styloid process: T in bony processes on inferior surface of temporal bone; attachment of stylomandibular ligament and stylohyoid muscle.
Stylomandibular ligament [STY lo man DIB you lar]: Ligament from styloid process of temporal bones to the posterior border of the angle of the mandible; limits movement of TMJ.
Stylomastoid foramen [STY lo MAS toyd]: Passageway of facial nerve (CN VII) out of petrous portion of temporal bone into infratemporal space.
Sub (prefix): Under or beneath; similar to infra.
Subgingival: Located within the gingival sulcus or pocket. Sublingual: Under the tongue.

Sublingual caruncle [KAR ung k'l]: Pair of bulges on either side of the lingual frenum at junction of right and left sublingual folds; has opening of submandibular duct, carrying saliva from mandibular salivary glands.
Sublingual folds: Fold of tissue on each side of the floor of the mouth from the first molar region to the lingual frenum; contain duct openings from underlying sublingual salivary gland.
Sublingual fossa: Broad shallow depression on medial surface of mandible, superior to mylohyoid ridge; location of sublingual salivary glands.

Sublingual salivary gland: Located under sublingual fold; secretes predominantly thick, mucous saliva.
Subluxation, condylar [sub luk SA shun]: When opening the mouth too far, the condyles of the mandible may slip out of the articular fossae beyond the articular eminences; if muscles contract, may cause the mouth to lock open. Also called luxation.
Submandibular: Beneath or lower part of the mandible.
Submandibular fossa: Broad shallow fossa on medial surfaces of the mandible just inferior to the mylohyoid ridge; location of submandibular salivary gland.
Submandibular nodes: Chain of lymph nodes over the submandibular gland, medial and anterior to the angle of the mandible, that drain fluid from all maxillary and mandibular teeth, and much of the oral cavity.
Submandibular salivary glands: Pair of salivary glands located just inferior to mylohyoid ridge in a submandibular fossa producing mostly thinner (serous) and some mucous type of saliva via Wharton duct or submandibular duct.
Submental artery: Blood vessels that accompany the mental nerve through the mental foramen of the mandible to the chin and lower lip.
Submental nodes: Group of lymph nodes located just lingual to the mandibular symphysis area (midline); drains into the submandibular nodes.
Succedaneous teeth [suk seh DAY nee ous]: T e 20 permanent teeth (incisors, canines, and premolars) that replace (succeed) the 20 primary teeth.
Sulcular groove: V-shaped depression formed by the continuation of the sulcuses of adjacent posterior teeth in a quadrant.
Sulcus [SUL kuss]: V-shaped depression or valley evident between buccal and lingual cusps of a posterior tooth.
Superior orbital fissure: Passageway in superior surface of eye orbit for the ophthalmic nerve branch of CN V.
Supernumerary tooth [soo per NOO mir a ree]: (Anomaly) Tooth that forms in excess to the normal number of teeth in that quadrant.
Suppuration [sup ur RAY shun]: Formation or discharge of pus, which is also called exudate.
Supplemental grooves: Secondary, shallow, irregular grooves in the enamel that vary greatly from tooth to tooth.
Supra (prefix): Located above or over, higher or upper.
Supraeruption: Tooth that is overerupted: with a higher occlusal surface than adjacent teeth in the ideal arch. Also called extrusion.
Supragingival: Coronal to the gingiva; not in the gingival sulcus. Suprahyoid muscles: Group of muscles attaching to, and superior to, the hyoid bone, including stylohyoid, digastric, mylohyoid, and geniohyoid muscles.
Suture line [SOO chur]: Line of immoveable union of adjoining skull bones.
Symphysis [SIM fi sis]: Fibrocartilaginous joint connecting opposing bony surfaces that grew together.
Synovial fuid [si NO vee al]: Slippery fluid that lubricates and nourishes the fibrous covering surrounding the TMJ.
Synovial cavities [si NO vee al]: In the TMJ, upper (above the disc) and lower (below the disc) joint spaces lubricated by synovial fluid.

T
Talon cusp: (Anomaly) Maxillary or mandibular anterior tooth crown has a projection on its lingual surface shaped like the claw of a bird of prey.
Tartar: Another name for dental calculus.

Taurodontia [TOR o DON shah]: (Anomaly) Molar that has a very long pulp chamber without constriction near the cementoenamel junction.
Temporal: Region of the skull above the ear.
Temporal bones: Paired skull bones over the ears that form part of the cheek bone, part of the TMJ, and attachment of temporalis chewing muscle.
Temporal crest: Ridge of bone on the mandible from tip of coronoid process extending onto the medial surface of the ramus toward the third molar region; attachment of temporalis muscle.
Temporal fossa: Large, shallow depression located primarily in the temporal bone where the temporalis muscles attach.
Temporalis muscle [tem po RA lis]: Fan-shaped muscle of chewing with anterior (vertical) fibers that elevate the mandible and posterior (horizontal) fibers that retrude the mandible; origin is the temporal fossa and insertion is ramus and temporal crest of mandible.
Temporomandibular joint (abbreviated TMJ) [TEM po ro man DIB yu lar]: Articulation between the mandible and the two temporal bones; the only free movement articulation in the head.
Temporomandibular disorders (abbreviated TMDs): Dysfunction of the TMJ.
Terminal hinge axis: T e imaginary line around which the two condyles of the mandible rotate. Also called hinge axis line or horizontal axis.
Terminal sulcus (of tongue): Shallow groove, just posterior to the circumvallate papillae, that separates the body of the tongue (anterior two thirds) from the root (posterior one third).
Tetracycline [te tra SY kleen] stain: Discoloration of teeth caused by exposure to tetracycline antibiotics during time of tooth formation: by the mother during pregnancy, or by the young child during enamel formation of adult teeth.
T ird molars: Type of permanent tooth located eighth from the midline (last) in each arch, also called a wisdom tooth.
T yroid gland: Butterfly-shaped gland near midline of neck below the Adam's apple; produces regulating hormones.
Tinnitus [ti NI tis]: Ringing in the ears.
Tongue [TUNG]: Moveable organ in the floor of mouth that functions in eating, tasting, and speaking; it can be divided into a body (visible during an oral examination) and a root.
Torsiversion [TOR si VUR zhun]: Tooth that is twisted or rotated around its axis relative to ideal alignment.
Torus (palatine or mandibular): Smooth, benign, hereditary, rounded bulge of bone. Palatine torus is near the midline on the palate; mandibular is on the medial surface of the mandible.
Trabecular bone: Less dense bone of the mandible sandwiched between the more dense outer and inner layers of cortical plates. Also called cancellous or spongy bone.
Transillumination: Use of a light source directed through proximal anterior tooth structure to detect decay.
Translational movement (of TMJ): Bodily movement of the entire mandible forward or from side to side.
Transverse groove of the \boldsymbol{o} blique ridge: Groove that extends across the oblique ridge of some maxillary molars connecting the central pit to the distal pit.
Transverse palatine suture: Immovable connection between the palatal processes of the maxillae and the palatal bones. Also called palatomaxillary suture.
Transverse ridge: Ridge transversing the tooth from a buccal cusp to a lingual cusp, comprised of two connecting triangular ridges.

Triangular fossa [FAH sah]: Somewhat triangular-shaped depressions surrounding mesial and distal pits on some posterior teeth; may also contain small triangular grooves.
Triangular ridge: Ridge of a posterior tooth that extends from a cusp tip toward the depression or sulcus near the middle of the occlusal surface.
Trifurcation, root: Separation of a root into three roots.
Trigeminal nerve [tri JEM i nal]: Fifth cranial nerve (CN V) is the major sensory nerve of the face and scalp; with maxillary and mandibular branches to all of the teeth and surrounding periodontium. It has three divisions: I (ophthalmic), II (maxillary), and III (mandibular).
Trismus [TRIZ mus]: Spasm of chewing muscles associated with dif culty opening the mouth or locking of the jaws.
Trunk, of tooth: Coronal portion of a tooth root that has not yet split into multiple roots.
Tubercle [TOO ber kl]: (Anomaly) Small rounded projection (or small extra cusp) on a tooth; also a nodule of tissue in the center of the fleshy part of the upper lip.
Tuberculum intermedium [too BUR kyoo lum - in ter MEE di um]: An anomaly where an accessory enamel projection appears like a sixth cusp, on a mandibular first molar located between the two lingual cusps.
Tuberculum sextum [too BUR kyoo lum - SEKS tum]: An anomaly where an accessory enamel projection appears like a sixth cusp on a mandibular first molar, located on the distal marginal ridge between the distal cusp and distolingual cusp.
Tug-back: Perceived resistance of the tip of an explorer when removed from a carious pit or fissure.
Turner hypoplasia (Turner's tooth) [hi poe PLA zhah]: Defect in a permanent tooth formation usually caused from an infection of the pulp and surrounding tissues of the primary tooth it replaces. Also called focal hypoplasia.
Twinning: (Anomaly) Splitting of a single forming tooth; tooth crown is doubled but there is a common root canal. Also called gemination.
Types of teeth: Classification that distinguishes different teeth within a class: incisors have two types, a central and lateral; premolars have a first and second; and molars have a first, second, and third.

U
Ultrasonic instrumentation: Instruments with high-frequency vibrations used to dislodge calculus and break apart bacterial cell walls.
Unattached gingiva: Collar of tissue that surrounds each tooth with a potential space (sulcus) between it and the tooth; includes free gingiva and interdental papillae. Also called free gingiva.
Unerupted tooth: Tooth that is not yet visible in the mouth, but has been confirmed to be present in the jawbones using radiographs.
Universal Numbering System: System endorsed by the American Dental Association to identify each tooth: using numbers 1 to 32 for permanent tooth and letters A to T for primary teeth.
Uvula [YOU view la]: Small fleshy structure hanging from the center of the posterior border of the soft palate.

V
Vagus [VAY gus] nerve: CN X to pharynx and laryngeal movements and digestive tract.
Ventral of tongue: Inferior or undersurface surface of the tongue.

Vermilion border: Reddish-colored zone of the lips where traditionally women placed lipstick; this zone of tissue is bounded internally by the wet line and externally by the mucocutaneous junction.
Vertical dimension of occlusion: Vertical distance between a selected point on the mandible and a selected point on a maxilla.
Vertical overlap, normal: When viewed facially, a small portion of the incisal edges of mandibular incisors are hidden from view by overlapping maxillary incisors. Also called normal overbite.
Vestibule [VEST I byool]: Part of the oral cavity between the teeth with supporting alveolar bone and the lips or cheeks.
Vibrating line: Junction of the hard and moveable soft palate; seen when a person forcefully says "AH", which moves the soft but not the hard palate.
Vomer bone: Single midline bone separating right and left nasal cavities; forms nasal septum along with vertical plate of ethmoid bone.

W

Wet line: Junction between the outer vermilion borders of the lips, which are usually dry, and the inner, smooth, moist mucosa. Also called wet-dry line.
Wharton duct: Ducts of the submandibular salivary gland that empty into the mouth through openings in the caruncles next to the lingual frenum. Also called submandibular ducts.
WinID program: Computer-based program used to compare postmortem (after death) and antemortem (before death) dental findings for identifying unknown victims of a crime or accident.
Wisdom teeth: Another name for third molars, located eighth from the midline (last) in each arch of the permanent dentition.

Working side: T e side toward which the mandible moves when it moves laterally; when the mandible moves to the right, the right side is the working side since cusps of opposing teeth line up cusp tip to cusp tip. T e opposite side is the nonworking side.
World Dental Federation Notation: System used in many countries to identify each tooth: using numbers 1 to 8 to denote each of the 8 permanent and primary quadrants, plus 1 to 8 to denote each tooth within the quadrant. Also called Federation Dentaire Internationale System or International Numbering System.

X

Xerostomia [zir e STO me a]: Dry mouth due to reduced enamel flow.

Z
Zirconia: New generation of tooth-colored, translucent, and biocompatible dental material used to construct crowns.
Zygomatic [ZIE go MA tik]: Related to the cheek bone.
Zygomatic arch: Arched "cheek" bone formed by the zygomatic bone and processes of the temporal bones and maxillae. Is attachment of the masseter chewing muscle.
Zygomatic bones: Paired facial bones that form part of the prominence of each cheek. Also called malar bones.
Zygomatic nerve: Paired branches of the maxillary division of CN V with branches to the skin of the temporal region and lower part of orbit.
Zygomatic process: Processes of the temporal bone and of the maxillae that joins each zygomatic bone to form the zygomatic arch (of cheek).
Zygomaticus muscle: Two pairs of upper oral group muscles of facial expression; major and minor: help to deepen the nasolabial fold in sadness.

A

Abducens nerve, 429t
Abfraction, 326
Abnormal crown morphology
accessory cusps, 342-343, 344, 345
fusion, 341, 342, 343
gemination/twinning, 340, 342
Hutchinson's incisors, 341, 343
peg-shaped lateral incisors, 340, 341
shovel-shaped incisors, 345,345
third molar malformations, 340
variations, 343, 345, 345
Abnormal root morphology
concrescence, 346,347
dens in dente, 346, 347
dilaceration, 346, 346, 347
dwarfed roots, 347
enamel pearls, 345, 346
extra (accessory) roots, 347, 348, 349
hypercementosis, 347, 348
taurodontia, 345-346, 346
Abrasion, 354, 354
Abuse and neglect, forensic dentistry
in, 364, 364, 365
Abutment teeth, defined, 330
Access openings, for endodontics, 259
Accessory, 347, 348
Acoustic, defined, 393
Acoustic meatus
external, 406, 407
internal, 436, 437
Aduld dentitions, 183 (See also Permanent teeth)
Afferent (sensory) nerves
facial nerve, 436
glossopharyngeal nerve, 438
trigeminal nerve, 428
Air-abrasion system, 315
Alveolar artery
anterior superior, 431
middle superior, 431
Alveolar bone, 14, 15
Alveolar canals, 431, 432
Alveolar eminences, 401, 404
Alveolar mucosa, 219, 219, 220
Alveolar nerve
anterior superior, 431, 432
inferior alveolar, 433, 433-435, 434, 435
middle superior, 431, 432
posterior superior, 430-431, 432
Alveolar process, 400, 401, 401-402
Alveolar vein, inferior, 442
Alveolingual sulcus, 471
Alveolus (alveoli), 217
Amalgam, restoration materials, 308, 308
Ameloblasts, 47, 351
Amelogenesis imperfecta, 352, 352
American Academy of Forensic Sciences
(AAFS), 359
Anatomic crown
definition, 15
morphology
depression and grooves, 27-30, 28-31
elevation and ridges, 21-27, 22-28
Anatomic root, morphology, 30-31, 31
Anesthetic injections
anterior superior alveolar nerve, 431, 432
greater palatine foramina, 430
inferior alveolar nerve, 433, 433-435, 434, 435
long buccal nerve, 433
middle superior alveolar nerve, 431, 432
nasopalatine nerve, 430, 462
posterior superior alveolar nerve, 430-431, 432
technique, 456
Angle, Edward H, 269
Angular artery, 441
Angular spine, 397, 398, 405
Ankylosis, 350, 351
Anodontia
partial, 337, 337-338, 338
total, 337
Anomalies (See also Dental anomalies)
anodontia, 337-338, 337-338
crown
accessory cusps, 342-343, 344, 345
fusion, 341, 342, 343
gemination/twinning, 340, 342
Hutchinson's incisors, 341, 343
peg-shaped lateral incisors, 340, 341
shovel-shaped incisors, 345,345
third molar malformations, 340
variations, 343, 345, 345
dentin dysplasia, 353, 353
enamel dysplasia, 352, 353
root
accessory roots, $347,347,348$
concrescence, 346, 347
dens in dente, 346
dilaceration, 346, 346, 347
dwarfed, 347
hypercementosis, 347,348
supernumerary teeth (extra teeth), 338-340, 339, 340
in tooth positions
ankylosis, 350, 351
impacted, 348, 350
rotation, 350, 351
transposition, 348, 350, 350
tooth size, 343, 345
unusual dentitions, 355, 355-356
Antemortem records
for human identification, 362, 362
in mass disasters, 368,368
Anterior arch, 465
Anterior cranial fossa, 394
Anterior deprogramming, 293, 294
Anterior fibers (of temporalis muscle), 421
Anterior guidance, 283
Anterior protected articulation, 283
Anterior superior alveolar nerve, 431, 432
Anterior teeth, 436t
Anteroposterior curve, 33, 34
Anthropology, forensic, 359, 370, 371
Antrum, 399, 400
Aperture, defined, 401
Apical foramen, 256
Apical foramina, 31
Arteries, 405, 431, 434, 440-442, 440-442
to mandible, 441
to maxillae, 442
to muscle, 442
Articular disc, 412-413, 413, 414
Articular eminence, 407, 411, 412, 412, 416

Articular fossa, 407, 411, 412, 412, 413, 416, 416
Articulation, long centric, 296
Articulator, 281
Ascending palatine artery, 441
Attached gingiva, 14, 15
Attachment loss
defined, 228
technique for measuring, 230, 230
Attrition, 354, 354
Auditory nerves, 429 t
Auriculotemporal nerve, 432, 433

B

Behavior therapy, 288
Bennett's movement, 285
Bevels, 320
Bifurcation, root, 143
Bilaminar zone, 413, 414
Biofeedback, 288
Biologic width, of gingiva, 237
Bite mark analysis, 365-366, 366
Black, G.V., 310, 312, 333, 334
Bleeding on probing (BOP), 226-227, 230, 231
Bolus, 286
Bonding agents, 311
Bone (See Skull)
BOP (See Bleeding on probing (BOP))
Bruxism, 273
Buccal cusps, 270
Buccal, defined, 433
Buccal embrasure, 38
Buccal frenum, 455, 459
Buccal mucosa, 455, 456
Buccal nerve, local anesthetic technique, 433, 433, 434
Buccal ridge, 105, 106, 116
Buccal shelf, 405
Buccal surface, 270
Buccinator crest, 406, 425-426
Buccinator muscle, 433, 433
Buccinator nerve, local anesthetic technique, 433, 433

C

Calculus, defined, 216
Canal orifice, 250
Canine eminence, 397, 401
Canine fossa, 401
Canine guidance angle, 302 t
Canine-protected articulation, 285
Canine-protected occlusion, 285
Canines
arch traits, 82-85, 83, 85t-86t
class traits, $80-82$
crown proportions, 82
functions, 80
general description, 78-95
incisal ridges and cusp tips, 81-82, 82
incisal view
cingulum and marginal ridges, 91
crown proportions, 90, 90
incisal edge (cusp tip) contour, 90-91
labial contour, 90, 91
lingual ridge, 91

Canines (Continued)
labial contour, 82
labial view
canine morphology, $82,84,84$ t
cusp tip and incisal ridges, 83-84, 84-85
proximal contact areas, $84,85,85 \mathrm{t}$
root contour, 85
shape and size, $84,84-85$
tooth proportions, 85
lingual view
cingulum, $85,86,87$
marginal ridges, 87,87
ridges and fossae, 85,87
roots, 87
location of, 79-80
primary teeth
incisal view, 196, 197
labial view, 195-197, 197
lingual view, 195-197
proximal views, 194, 197
proximal views
canine outline, 87
cervical lines, 89
height of contour, $87,88-89$
incisal ridge and cusp tip, 87,89
root shape and depressions, $88,89,89,89$ t
roots, $81,85,89$
size, 80
variations in, 92-93, 92-93
Capsular ligament, 414, 415
Carabelli cusp, 158, 162, 175, 176t, 254, 370, 373
Caries (See Dental caries)
Carotid artery, external, 441
Carotid canal, 407
Carving teeth
advice, 384
materials for, 381
maxillary central incisor, 382, 382-384, 383-386 wax carvings, 381, 382
Cast metal restorations, 308-309, 309
Cavosurface margins, 320, 324
Cementoblasts, 47
Cementodentinal junction, 13, 260, 260
Cementoenamel junction, 13
Cementum, 12-13
Centric relation (CR), 280-282, 280-282
Centric relation jaw recording, 293-296, 294, 295
Ceramic restorations, 309-310, 310, 330
inlay, 309-310
onlay, 309-310
Cervical chain of lymph nodes, 444
Cervical curvature, 179t, 180t
Cervical line
canines, 89, 197, 204
incisors
mandibular, 63, 69
maxillary, 61,63
molar, 143, 143, 144, 147, 157
premolars, 99, 110, 122
primary teeth, 192, 193, 197, 202, 204
Cervical ridge, 25
Cervix of tooth, 34,376
Chamfer, 330
Cheeks, oral examination of, 453, 454, 455
Chewing, 418-423 (See also Mastication)
Cingulum, incisors, 59, 67
Circumvallate papilla (papillae), $469,470,470$
definition, 469
Civil litigation, forensic dentistry, 364, 364, 365
Clasps, of dental prosthesis, 332
Class I occlusion, 39, 40, 269-271, 270, 271, 274, 286
Class II occlusion, 273, 273-274, 274
Class III occlusion, 273-275, 274-275
Clavicle, 409, 424
Clenching, 287
Clinical attachment loss, 230, 230
Clinical crown, definition, 15

Clinical root, 15-16
Commissural papule, 455
Commissure, 453
Common facial vein, 443
Complete removable dental prosthesis, 307, 332, 332
Composite resin, 308
Concrescence, 346, 347
Condylar subluxation, 279
Condyle, defined, 393
Condyloid process, 405
Congenitally absent, 209
Connective tissue attachment, 220, 475
Conservative resin restoration, 315
Contact areas, proximal
canines, 84, 85, 196-197
incisors
mandibular, 66-67, 67t
maxillary, 57
molars
mandibular, 139, 143
maxillary, 157, 157t-158t
premolars, 100, 104, 113, 116
Conventional preparation, 310
Coronal sutures, 394
Coronoid, defined, 393
Coronoid process, 403
Corrugator supercilii muscle, 426
Cortical plate, 401, 401
Cranial nerves
abducent, 429t
auditory, 429t
facial, 429t
glossopharyngeal, 429t
hypoglossal, 429t
oculomotor, 429 t
olfactory, 429 t
optic, 429 t
spinal accessory, 429t
trigeminal, 429t (See also Trigeminal nerve)
trochlear, 429 t
vagus, 429 t
Crepitation, 279
Crepitus, 302 t
defined, 413
prevalence of, 414 t
Crest, defined, 392
Crest of contour (See Height of contour)
Crest of curvature, 34-37, 35, 35t, 69
Cribriform plate, 395
Criminalistics, defined, 359
Crista galli, 395
Crossbite
anterior, 272, 272, 275, 275
posterior, 272, 272
Crown
anomalies
accessory cusps, 342-343, 344, 345
fusion, 341, 342, 343
gemination/twinning, 340, 342
Hutchinson's incisors, 341, 343
peg-shaped lateral incisors, 340, 341
shovel-shaped incisors, 345,345
third molar malformations, 340
variations, 343, 345, 345
primary teeth
calcification, 187, 188
formation, 189
Crown calcification, primary teeth, 187, 188
Crown lengthening, 237
Curve of Spee, 33, 34, 298
Curve of Wilson, 34, 34, 142
Cusp of Carabelli, 158, 162, 175
Cusp ridges, 21, 22, 23
Cusp slopes, 81
Cusps (buccal), 270

D
Deciduous definition, 182-183
Deciduous teeth, 209 (See also Primary teeth)
Deep facial vein, 443
Definition (buccal), 433
Deglutition, 286
Dehiscence, root, 225, 225
Demineralization, 305
Dens in dente, 346, 347
Dental anomalies (See also Anomalies)
abrasion, 354, 354
accessory cusps, 342-343, 344, 345
ankylosis, 350, 351
attrition, 354, 354
dentin dysplasia
dentinogenesis imperfecta, 353, 353
tetracycline stain, 353, 353
enamel dysplasia
amelogenesis imperfecta, 352, 352
fever, 352,352
fluorosis, 352, 352
focal hypoplasia, 352-353, 353
erosion, 354, 355
fusion, 341, 342, 343
gemination/twinning, 340, 342
Hutchinson incisors, 341, 343
mandibular premolar area, 326, 327, 327
maxillary incisor area, 338, 339
partial anodontia, 337, 337-338, 338
peg-shaped lateral incisors, 340, 341
shovel-shaped incisors, 345,345
third molar area, 326, 326
third molar malformations, 340
tooth rotation, 350, 351
total anodontia, 337
transposition, 348, 350, 351
unerupted (impacted) teeth, 348, 350
unusual dentitions, 355, 355-356, 356
variations, $343,345,345$
Dental calculus (tartar), defined, 240
Dental caries
class I, 312-316, 313-315
class II, 316-320, 317-321
class III, 321-323, 321-324
class IV, 324, 324-325, 325
class V, 325-327, 325-328
class VI, 328
Dental caries, spread pattern, 313
Dental formulae, 183
Dental implants, 244-245, 331, 332
Dental plaque, 305
defined, 216
in dental caries, 216
plaque index, 236
Dental prosthesis
complete removable, 332
fixed, 307, 330, 331
removable, 332
Dentin, 13
Dentin dysplasia
dentinogenesis imperfecta, 353, 353
tetracycline stain, 353, 353
Dentinoenamel junction, 13
Dentinogenesis imperfecta, 353, 353
Dentistry
operative, 307-308
restorative, 257, 258, 307-308
Dentition
mixed, 185
permanent (See Permanent teeth)
primary (See Primary teeth)
Depressor, defined, 418
Depressor septi nasi muscle, 426
Descending palatine artery, 403, 442
Developmental groove, 27, 28
Developmental lobes, canines, 41
Developmental lobes, incisors, 52

Developmental lobes, molars, 42
Developmental lobes, premolars, 98
Diastema, 36
Digastric muscles, 424, 426
Dilaceration, 346, 346, 347
Disasters, forensic dentistry antemortem records, 359 case studies, 370-372, 371-372, 382
dental identification, 367-370, 368-369
forensic anthropology, 370, 371
initial response, 367
morgue operation, 367-370, 368-369
Dislocation, 279-280
Distal surface (defined), 33
Distal views, 376, 377, 378
Distobuccal root, 140, 160, 162, 162, 163, 231, 263
Distomolar, 338, 339
DNA analysis for humans, 360
Dorsum of tongue, 469-470, 469-470
Drawing teeth
distal views, 376, 377, 378
facial views, 376-377, 377
incisal view, 377, 378-379
lingual views, 377,377
materials needed, 375
from memory, 379, 379-381
mesial, 376, 377, 378
outline, 375-376, 376-378
Dura, defined, 393
Dwarf root, 345, 347
Dysplasia
dentin dysplasia, 353
enamel dysplasia, 351-353

E

Eccentric occlusal, 303t
Efferent (motor) nerves, 428, 432, 436
Embrasure (buccal), 38
Embrasure spaces, 37-38, 38, 221
Eminence (defined), 392
Enamel, 12
Enamel dysplasia
amelogenesis imperfecta, 352,352
fever, 352,352
fluorosis, 352, 352
Enamel extension, 143, 143, 239, 239
Enamel pearls, 239, 345, 346
Endodontics, 257-261
Endodontist, 258
End-to-end occlusion, 272
Envelope of motion, 292-293
Epithelium, 219, 220, 346, 473, 475
Erosion, 291, 305, 308, 326, 327, 354, 355
Eruption order, 189
Eruption, timing, 185
Esthetic restorative materials, 308, 309
Ethmoid bone, 395, 395-397
Exfoliation, 187, 189, 191
Exostosis, 224, 471
External acoustic meatus, 407, 451
External carotid artery, 440, 441, 441, 442
External oblique ridge, 405, 406
Extraoral examination
eyes, 451
general appearance, 450
head, 450
lips, 453-454, 454
lymph nodes, 451-452, 453
muscles of mastication, 450, 450-451
neck, 451, 452
salivary glands, 452,452
temporomandibular joint, 450, 451
Extruded, 365
Eyes, oral examination, 451

F
Facet, 54, 81, 147, 272, 273, 287
Facial artery, 441, 443, 444
Facial bones
conchae (inferior nasal), 409
hyoid, 409, 424
lacrimal, 409
mandible, 397, 403-405, 404-406
maxillae, 397, 399-403, 400-402
nasal, 408, 409
palatine, 400, 402, 403
vomer, 407, 407, 408
zygomatic, 403, 403-404
Facial, defined, 17, 32
Facial expression, muscles of, 425, 425, 436, 438
Facial nerve, 424, 425, 429t, 436-438, 437
Facial veins, 442-443
Facial views, 376-377, 377
Fascia, 283, 287, 425
Fauces, 464, 465-466
Federation Dentaire Internationale
(FDI system), 9, 10
Fibrous capsule, 278
Filiform papillae, 469, 470
Filling materials, 311, 328, 330
Final tooth preparation, 311, 311-312
Fissure, 28, 306, 306, 313, 392, 398, 399, 407, 412, 430, 436
Fixed dental prosthesis, 282, 307, 330, 331
Flexion, 177, 177
Floor of mouth, oral examination, 471-473, 471-473
Fluoride, 305, 307, 308, 316, 326-328, 352
Fluorosis, 352, 352
Focal hypoplasia, 353, 353-353
Foliate papillae, 470, 470
Foramen cecum, 470
Foramen magnum, 394, 438
Foramen ovale, 392, 398, 430, 432
Foramen rotundum, 392, 398, 430
Foramen spinosum, 398
Fordyce granules, 455, 456
Forensic anthropology, defined, 359
Forensic dentistry
bite marks, 365-366, 366
civil litigation, 364, 364, 365
defined, 359
forensic anthropology, 370, 371
human identification, 359-360, 360-363, 362-363
importance, 373
mass disasters
case studies, 370-372, 371-372
initial response, 367
preparation and training, 367
morgue operations, 367-370, 368-369
Forensic engineering, defined, 359
Forensic jurisprudence, defined, 359
Forensic odontology, defined, 359
Forensic pathology, defined, 359
Forensic psychiatry, defined, 359
Forensics, general, 359
Fornix, defined, 449
Fossa (fossae)
articular, 407, 411, 412, 412, 413
canine, 401
defined, 392
hypophysial, 396, 398
incisive, 401
mandibular, 412, 414
mandibular molars, 150, 150, 151
maxillary molars, $166,167,167$
pterygoid, 397, 398
retromolar, 406
sublingual, 406
submandibular, 406
of teeth, incisors, 57, 59, 67
temporal, 406, 406
Fourth molar, 338, 339
Fovea, defined, 392
Fovea palatini, 462, 465
Framework, of dental prosthesis, 332
Free gingiva, 14
Free gingiva margin, 14
Free gingival groove, 473
Freeway space, 282
Fremitus, 287
Frenum (buccal), 455, 459
Frenum, defined, 235, 449
Frontal bone, 394
Frontal envelope, 292
Frontal process, 401
Full-mouth rehabilitation, 289
Functional movements, of temporomandibular joint incising, 286
masticating (chewing), 286
swallowing (deglutition), 286
Fungiform papillae, 469, 470
Furcal region, 31
Furcation, 31
Furcation involvement, 231-234, 231-234, 232t, 235t
Fusion, 341, 342, 343

G

Gemination, 340, 342
General forensics, 359
Genial spines, 406, 424
Geniohyoid muscle, 409, 424
Gingiva
attached, 14, 219, 234-236
biologic width, 237
keratinized, 219, 220
oral examination, 473-475, 474-475
recession, 221, 223-225, 224-225
thin tissue, 224
Gingival embrasure, 38
Gingival margin, 14,15
Gingival recession, 16, 16, 221, 223-225, 224-225,
228-229, 240, 306, 326
Gingival sulcus, 218-219, 227, 248, 474-475
Gingivitis, 216, 221-222, 222
Ginglymoarthrodial joint, defined, 275
Glass ionomer, 308
restorations, 328
Glenoid, defined, 275, 393, 407, 412
Glossopharyngeal nerve, 429t, 437, 438, 441
Granuloma, 258, 259
Greater palatine foramina, 430, 467
Greater palatine nerve, 430
Grooves
molar
mandibular, 149-150, 151, 152
maxillary, 166, 168
premolars
mandibular, 119, 119
maxillary, 108, 110, 112
Group function, 285, 302
Gutta percha, 260

H
Hamular notch, 402
Hard palate, oral examination, 461, 461-464
Head, oral examination, 450
Height of contour
canines, $80,84,85 \mathrm{t}, 87$
in drawing teeth, 379,380
molars
mandibular, 147, 147
maxillary, 160, 162
premolars, mandibular, 120, 121, 122

Human identification, forensic dentistry for antemortem records, 359
DNA analysis, 360
postmortem examination, 359, 360, 361
techniques for, 359
Hutchinson incisors, 341, 343
Hutchinson teeth, 341, 343
Hyoid bone, 409, 424
Hypercementosis, 347, 348
Hypoglossal canals, 437, 438
Hypoglossal nerve, 394-395, 437, 438
Hypophysial fossa, 396, 398

I
Ideal occlusion
class I occlusion, 269-271, 270, 271
definition, 269
Identification of human teeth
antemortem records, 359
DNA analysis, 360
postmortem examination, 359, 360, 361
techniques for, 359
Impacted (unerupted) tooth, 348, 350
Incisal edge, maxillary incisors, 60, 62
Incisal embrasure, 38, 38
Incisal guidance, 283, 302t
Incisal view, 377, 378-379
Incising, 285, 286
Incisive artery, 442
Incisive foramen, 402, 402, 430, 461, 462
Incisive fossa, 401
Incisive nerve, 433, 434
Incisive papilla, 461
Incisor(s)
arch traits, 53-55
central, 4
crowns, 52, 53
functions, 50
general description, 50, 51
lateral, 4
mandibular
incisal view, 59, 71, 72
labial view, 64-67, 65, 66, 67t
lingual view, 67, 69
proximal views, 59, 60, 71
size of, 76
maxillary
incisal view, 62-64
labial view, 55, 57
lingual view, 57-60
proximal views, 60-62, 61, 62
size of, 76
morphology, 50
primary teeth
crowns, 194, 194, 195
incisal view, 195, 196
labial view, 194, 194-195, 195
lingual view, 195, 196
marginal ridges, 195, 196
maxillary vs mandibular, 205t
proximal views, 194, 195
root-to-crown, 195
roots, 52, 53
variations and differences, 72
Index, plaque, 236, 236
Inferior alveolar artery, 441
Inferior alveolar nerve, 405, 433-435
Inferior alveolar vein, 442
Inferior, defined, 392
Inferior nasal conchae bone, 409
Infrahyoid muscle, 409
Infraorbital artery, 442
Infraorbital canal, 399, 432
Infraorbital fissure, 399
Infraorbital foramen, 399, 459

Infraorbital nerve, 399, 431-432, 459
Initial tooth preparation, 310-311, 311
Injections, anesthetic (See Anesthetic injections)
Injury, 225
Inlay, cast metal restorations, 308-309
Insertion, defined, 418, 420
Interdental papilla, 14, 15
Intermaxillary suture, 462
Internal acoustic meatus, 407, 436
Internal jugular vein, 395, 443, 444
Internal oblique line, 406
International numbering system, 8-11
Interproximal space, 38, 38
Intracoronal restoration, 258
Intraoral examination
alveolar process, 473
floor of mouth, 471-473, 471-473
gingiva, 473-475, 474-475
hard palate, 461, 461-464
oropharynx, 464-468, 465-466
salivary glands, 472, 473
sof palate, 464, 464-465
teeth, 475-476
tongue, 469-470, 469-471
vestibule and cheeks, 454-460, 455-460
Irreversible pulpitis, 258
Isometric contraction, 427
Isotonic contraction, 427

J
Jaw relation
centric relation, 280-282, 280-282
horizontal movements
mandibular lateral translation, 284-285, 285
protrusive, 283, 283-284, 284, 284t
maximal intercuspal position, 280, 280, 281
Jugular foramen, 407, 437
Jugular vein, internal, 395, 443, 444
Junctional epithelium, 219, 220
Jurisprudence, forensic, 359

K

Keratin layer, 454
Keratinized epithelium, 218
Keratinized gingiva, 219, 235, 474

L
Labial arteries, 441
Labial, defined, 17
Labial embrasure, 37
Labial frenum, 455
Labial mucosa, oral examination, 454
Labial nerve, 432
Labiomental groove, 453
Labioversion, 271
Lacrimal bones, 409
Lacrimal, defined, 393, 409
Lambdoid suture, 395
Lamina, defined, 393
Lamina dura, 217, 221, 475
Laryngeal prominence, oral examination, 452
Larynx, oral examination of, 451
Lateral ligament, 415, 415
Lateral mandibular movement, 284-285
Lateral mandibular relation, 284-285
Lateral pterygoid muscles, oral examination of, 413, 414, 418, 421, 422, 451
Laterotrusion, 285
Leaf gauge, 294
Leaf wafer, 293
Lesser palatine foramina, 403
Lesser palatine nerve, 430
Levator anguli oris muscles, 425, 426

Levator labii muscles, 426
Ligaments of temporomandibular joint, 414-416, 415
Line angle, 18,57
Linea alba, 455
Lingual artery, 441
Lingual cusps, 270
Lingual embrasure, 37,38
Lingual frenum, 472
Lingual nerve, 433, 433, 434
Lingual root, 263
Lingual surface, defined, 17
Lingual veins, 443
Lingula, 393, 405
Linguoversion, 271
Lips, oral examination, 453-454, 454
Lobes, developmental
canines, 41
incisors, 52
of incisors, $52,53 \mathrm{t}$
molars, 42, 138, 139t
premolars, 98
Local anesthetic technique, buccal nerve, 433, 433, 434
Long buccal nerve, 433, 460
Long centric articulation, 296
Luxation, of mandible, 279
Lymph nodes, oral examination, 451-452, 453

M

Macrodontia, 343, 345
Major connector, of dental prosthesis, 332, 332
Malar, defined, 393
Malocclusion
anterior crossbite, 272, 272, 275
buccoversion, 271
class II, 273-274, 274
class III, 274-275, 275
definition, 269
deflective occlusal contacts, 273, 280-281
edge-to-edge bite, 273
vs. ideal occlusion, 269-275
infraocclusion, 271
jaw relation (See Jaw relation)
labioversion, 271
linguoversion, 271
open bite, 273, 273
overbite, 270, 270, 272, 273
posterior crossbite, 272, 272
premature contacts, 273
supraeruption, 271, 272
teeth poor alignment, 271, 271
tooth-to-tooth malocclusion, 272-273
treatment
occlusal device, 288, 289
patient education and behavior therapy, 288
stress management and muscle
relaxation, 288
teeth shapes, 289-291, 290
tooth location, 281, 291, 291
Mamelons, in incisors, 52
Mandible, 397, 403-405, 404-406
angle of, 405
body, 404
internal surface, 405, 405-406
ramus (rami), 404, 405, 405
Mandibular arch, 97, 97
Mandibular branch, 398, 429
Mandibular canine crown, 55, 57
Mandibular canines
facial view, 376-377
incisal view, 378-379
cingulum, 91
crown proportions, 90,90
incisal edge, 90-91
labial outline, 90, 91
lingual ridge, 91
labial view
canine morphology, 82, 84, 84t
crown shape and size, $84,85-85$
cusp tip and incisal ridges, 83-84, 84-85
proximal contact areas, $84,85,85$ t
root contour, 85
tooth proportions, 85
lingual view, 377
canine roots, 87
cingulum, $85,86,87$
lingual ridges and fossae, 85,87
marginal ridges, 87,87
mesial and distal view, 378
proximal views
canine outline, 87
cervical lines, 89
height of contour, 87, 88-89
incisal ridge and cusp tip, 87,89
roots, $88,89,89,89$ t
Mandibular central and lateral incisors, 262
Mandibular condyle, 275
Mandibular deviation, 280
Mandibular foramen, 405, 405
Mandibular fossa, 412, 414
Mandibular incisors
incisal view
crown outline and incisal ridge alignment, 71
incisal ridge contour, 71
labial view
crown shape, $65,66,66$
incisal proximal angles, 66
proximal contact area, $66-67,67 \mathrm{t}$
root shape, 65,67
root-to-crown proportions, 67
lingual view
cingulum, 67
marginal ridges and fossae, 67
root contours, 67,69
proximal views
cervical line, 69
crest of curvature, 69
incisal edge, 69, 71
root shape and depressions, 69
size of, 76
Mandibular lateral translation, 284
Mandibular molars
buccal view
cervical lines, 143, 143
crown proportions, 141
proximal contacts, 139, 143
relative number and height, 141-143,
142-143
roots, $139,143,144$
taper, 141
lingual view
cervical line, 144
narrower lingual crown, 144
relative size, 144,145
roots, 144,145
occlusal view
fossae, 150, 150, 151
grooves, 149-151, 152
numbers and size of cusps, 149,150
outline shape and taper, 149, 149-150, 150
proximal contact areas, $150,151,152$
ridges, 150, 151
proximal views
cervical lines, 147
crown shape and tilt, 145
height (crest) of contour, 147, 147
marginal ridges, 147,148
numbers and size of cusps, 146-147, 147
roots and root depressions, 146, 148, 148
tapers, 146, 147

Mandibular nerves, 398, 428, 460
auriculotemporal nerve, 432, 433
buccal nerve, 433, 433, 434
distribution of, 436t
inferior alveolar nerve, 433, 433-435, 434
lingual nerve, 433, 433, 434
Mandibular premolars
buccal view
crown size and shape, 115,116
cusp ridge notches and depressions, 117
location of, 116, 117t
roots, 117
lingual view
crown shape, 117
cusps and grooves, $117,119,121,134 \mathrm{t}$
grooves, 119, 119
marginal ridges, 118, 119
roots, 119
occlusal view
occlusal morphology, 124-127
outline shape, 124, 124
proximal views
cervical lines, 122
crown shape, $119,120,121,121$
height (crest) of contour, 120, 121
marginal ridge grooves and mesiolingual grooves, 120, 121-122
ridges, 120, 121, 121
roots and root depressions, 122, 122
size of, 133t
Mandibular torus, 471
Marginal ridges
incisors, 59-60, 67
molar
mandibular, 148
maxillary, 147, 148
Mass disasters, forensic dentistry in
antemortem records, 359
case studies, 370-372, 371-372
dental identification, 367-370, 368-369
forensic anthropology, 370, 371
initial response, 367
morgue operation, 367-370, 368-369
postmortem examination, 368, 369
preparation and training, 367
Masseter muscle, 418, 419
attachments, 404, 405, 419
oral examination of, 407
Masticating (chewing), 286
Mastication
defined, 286
muscles of
lateral pterygoid, 421, 422, 422, 423
masseter, 418, 419
medial pterygoid, 421, 421-423
oral examination of, 438
temporalis, 419, 420, 420-421
Mastoid process, 406, 407
Maxilla (maxillae)
body, 397, 399
maxillary sinus, 399,400
processes of
alveolar, 401, 401-402
frontal, 401
palatine, 402, 402-403
zygomatic, 401
Maxillary arch, 270, 270, 271
Maxillary artery, 441-442
Maxillary canines, 262
incisal view
cingulum, 91
crown proportions, 90,90
incisal edge (cusp tip) contour, 90-91
labial contour, 90, 91
lingual ridge, 91
labial view
canine morphology, $82,84,84$ t
cusp tip and incisal ridges, 83-84, 84-85
proximal contact areas, $84,85,85$ t
root contour, 85
shape and size, 84, 84-85
tooth proportions, 85
lingual view
canine roots, 87
cingulum, $85,86,87$
lingual ridges and fossae, 85,87
marginal ridges, 87,87
proximal views
canine outline, 87
cervical lines, 89
height of contour, 87, 88-89
incisal ridge and cusp tip, 87,89
roots, $88,89,89,89$ t
Maxillary incisors
incisal view
crown proportion faciolingually vs. mesiodistally, 62, 63
incisal ridge contour, 64
outline shape and cingulum location, 62-63, 63
labial view
crown shape, 55,57
proximal contact areas, 57
proximoincisal line angles, 57
root thinner and longer, 57
root-to-crown ratio, 57
lingual view
accessory ridges, 58, 60, 60
cingulum, 59
lingual fossae, 57, 59
marginal ridges, 59-60
pits, 58,60
root shape, 58, 60
proximal views
cervical line, 60, 62
incisal edge, 60, 61, 62
root shape and root depressions, 60-62, 61
size of, 76
Maxillary molars
buccal view
numbers and size of cusps, $155,155,157$
proximal contacts, $157,157 \mathrm{t}-158 \mathrm{t}$
relative crown size and shape, 155,157
roots, 155,157
lingual view
molar roots, 159,160
numbers and lingual cusps, 158-160, 159
relative size and taper, 158, 159
occlusal view
fossae, 166, 167, 167
grooves, 168, 168
numbers and cusp size, 164-165, 165
proximal contacts, 168-169, 169
ridges, 166-167, 167
proximal views
cervical lines, 162, 163
crest of curvature, 160,161
marginal ridges, 160-161, 161
molar cusps, 160
relative number and size of, 160, 161
roots, 162,163
taper, 160, 161
Maxillary nerve, 398, 403, 428
anterior superior alveolar nerve, 431
infraorbital nerve, 431-432, 432
middle superior alveolar nerve, 431
posterior superior alveolar nerve,
430-431, 432
pterygopalatine nerve, 430, 431
zygomatic nerve, 429, 432

Maxillary premolars
buccal view
buccal cusp shape, 105, 106
buccal ridge and adjacent depressions, 105, 106
location, 105, 106
pentagon-shaped crown, 104, 106
roots, 106
lingual view
cusp ridges, 106
lingual cusp position, 106
marginal ridges, 106
relative cusp size, 106, 107
roots, 108
occlusal view
contact areas and heights of contour, 113, 114
grooves and fossae, 112
outline, 111, 112-113, 113
relative proportions, 111,112
relative size, 112
proximal views
cervical lines, 110
crown shape and morphology, 108
height (crest) of contour, 108, 109
marginal ridge grooves, 108, 110
relative cusp height, 108
roots and root depressions, 110
size of, 132 t
Maxillary sinus, 399, 400
Maxillary tuberosity, 402, 465
Maxillary vein, 443
Maximal intercuspal position (MIP), 280, 280, 281
Meatus, defined, 392
Medial pterygoid muscles, 421
attachments, 398
oral examination of, 426
Median plane, defined, 393
Mediolateral curve, 34, 34
Melanin pigmentation, 218, 473
Mental artery, 441-442
Mental foramen, 405, 433
Mental nerve, 433, 434
Mental protuberance, 404
Mental spines, 406
Mental tubercles, 404
Mentalis muscles, 425, 426
Mesial cusp ridges, 23, 84, 85
Mesial root, 148, 177, 199
Mesial root depression, 163t
Mesial surface, 80
Mesiobuccal root, 157, 162, 255, 263, 431
Mesiobuccal root, molar, 157, 162
Mesiodens, 338
Mesio-occlusion, 274
Mesognathic occlusion, 269-270
Metal ceramic restorations, 309, 330, 330
Microdontia, 343, 345
Middle cranial fossa, 394
Middle superior alveolar artery, 442
Middle superior alveolar nerve, 431, 432
Mid-root axis, 32-34, 33-34
Midsagittal plane, defined, 393
Misplaced tooth, 348, 350, 351
Mixed dentition
defined, 185
tooth emerge timing, 189
Mobility of teeth
charting, 226-227
functional mobility, 227
Modified preparation, 310
Molars
arch traits, 138-140, 139, 139t, 140t
class traits, 137-138
functions, 137, 137
general description, 136-137, 136-137
mandibular
buccal view, 141-144
lingual view, 144
occlusal view, 148-152
proximal views, 144-147
maxillary
buccal view, 155-157
lingual view, 158-160
occlusal view, $162-169$
proximal views, 160-162
molar crowns, 171, 173
molar roots, 171
primary teeth
first molar mandibular, 201-204
first molar maxillary, 202, 202-203, 203
second molar mandibular, 199-200, 200
second molar maxillary, 199-201, 200
pulp shape, 254-256, 255, 256
size and shape, 171
type traits, 171-174, 172, 173
variations of, 175-177
Morgue operation, in mass disaster, 367-370, 368-369
Mouth, floor of, oral examination, 406
Movement of jaw
functional of temporomandibular joint, 285-286
parafunctional, 287-288
Mucocutaneous junction, 453
Mucogingival defects
charting, 226-227
circumstances for, 235
technique for measuring, 235-236
Mucogingival line, 474
Mucosa, 218-220, 219, 235, 431, 433, 453,
455, 456, 461, 466, 473, 474
Mucosa (buccal), 455, 456
Mulberry molars, 341
Muscle(s)
advanced topics, 426-427
affecting mandibular movement, 424-425
of facial expression, 425, 425-426, 438
of mastication
lateral pterygoid, 421, 422, 422, 423
masseter, 418, 419
medial pterygoid, 421, 421-423
oral examination of, 438, 450, 450-451
temporalis, 419, 420, 420-421
mouth
buccinato, 425-426
depression of mandible, 426
elevation of mandible, 426
fascia, 425
lateral excursion, 426
lateral pterygoid muscle, 419-423, 422
lower oral group, 426
masseter muscle, 418, 419
medial pterygoid muscle, 421, 421-423
occipitofrontalis, 426
orbicularis oris, 425
platysma, 426
protrusion, 426
retrusion, 426
suprahyoid muscles, 424
temporalis muscle, 419, 420, 420-421
upper oral group, 426
of the neck, 424
Muscle relaxation, 272, 288
Muscle tone, 427
Muscles of mastication, oral examination, 438, 450, 450-451
Mylohyoid groove, 405
Mylohyoid muscle, 406
Mylohyoid nerve, 433
Mylohyoid ridge, 406
Myofacial trigger points, 287

N
Nasal artery, 441
Nasal bones, 409
Nasal conchae bone, inferior, 399, 409
Nasal nerve, 431
Nasal septum, 395, 397
Nasal turbinates, inferior, 399
Nasofrontal process, 401
Nasolabial groove, 453
Nasopalatine nerve, 430, 462
Neck
lymph nodes of, 424, 425, 444
muscles of the, 424
oral examination, 451, 452
Necrotic pulp, 257
Nerves
afferent (sensory), 428
cranial
abducent, 429t
auditory, 429t
facial, 429t
glossopharyngeal, 429t
hypoglossal, 429t
oculomotor, 429 t
olfactory, 429 t optic, 429t spinal accessory, 429t trigeminal, 429t (See also Trigeminal nerve) trochlear, 429 t vagus, 429 t
efferent (motor), 428
Neurocranium
defined, 393
ethmoid bone, 396
frontal bones, 394
occipital bone, 394
parietal bones, 394
sphenoid bone, 394, 396
temporal bones, 406
Neutroclusion, 269
Nonworking side, 285

O

Oblique ridge, 23
Occipital bone, 394, 394-395, 395
Occipital condyle, 438
Occipitofrontalis muscle, 426
Occlusal devices, 288, 289
Occlusal embrasure, 38, 38
Occlusal equilibration, 289
Occlusal surface, 17
Occlusal trauma, 225
Occlusal vertical dimension, 282
Occlusion, 39 (See also Malocclusion)
class I occlusion, 39, 40
ideal, 39-41, 40-41
Oculomotor nerves, 429 t
Odontoblasts, 14
Odontology, forensic, 359
Olfactory nerve, 395
Omohyoid muscle, 424
Onlay
cast metal restoration, 309, 309
porcelain restoration, 309-310
Open bite, 273, 273
Open occlusal relationship, 273
Operative dentistry, 307-308
Operculum, 174, 174
Ophthalmic nerve, 429, 430, 430
Optic nerves, 429 t
Oral cavity, 454
Oral cavity proper, 454
Oral examination
extraoral
eyes, 451
general appearance, 450
head, 450
lips, 453-454, 454
lymph nodes, 451-452, 453
muscles of mastication, 450, 450-451
neck, 451, 452
salivary glands, 452,452
temporomandibular joint, 450, 451
intraoral
alveolar process, 473
floor of mouth, 471-473, 471-473
gingiva, 473-475, 474-475
hard palate, 461, 461-464
oropharynx, 464-468, 465-466
salivary glands, 472, 473
sof palate, 464, 464-465
teeth, 475-476
tongue, 469-470, 469-471
vestibule and cheeks, 454-460, 455-460
Oral mucous membrane, 454
Oral vestibule, 454
Orbicularis, 426
Orbicularis oculi muscle, 424
Orbicularis oris muscle, 441
Origin, of muscle, 418, 420, 421, 422
Oris, 425
Oropharynx, oral examination, 464-468, 465-466
Orthodontic treatment, 291
Orthognathic profile, 270
Overbite
normal, 270, 270, 272
severe, 272, 273
Overjet
normal, 270, 270
severe, 273, 273

P

Palatal surface, 17
Palate
hard, 402, 461, 461-464
sof , 464, 464-465
Palatine arches, oral examination of, 465
Palatine artery
ascending, 441
descending, 442
Palatine bones, 400, 402, 403
Palatine foramina greater, 403
lesser, 403
Palatine nerve
greater, 463, 464
lesser, 430
Palatine process, 402, 402-403
Palatine raphe, 461, 462
Palatine rugae, 461, 462
Palatine suture, transverse, 403
Palatine tonsils, oral examination, 465
Palatine torus, 471, 473
Palatomaxillary suture, 403
Palmer Notation System, 10, 10
Palpebral, defined, 393
Palpebral nerve, 431
Panoramic radiograph, of the mouth, 446
Panorex, of the mouth, 365, 446
Papilla
circumvallate, 438
circumvallate, 469, 470, 470
filiform, 469, 470
foliate, 470,470
fungiform, 469, 470
Parafunctional movement
bruxing, 287
clenching, 287
defined, 287

Paramolar, 338, 339
Parietal bones, 394, 394
Parotid duct, 455
Parotid glands, oral examination of, 438, 441, 441
Parotid nodes, 444
Parotid papilla, 455
Partial anodontia, 337, 337-338, 338
Pathology, forensic, 359
Patient education
prevention and, 305
related to malocclusion, 288
Peg-shaped lateral incisors, 340, 341
Periapical disease, 258, 259
Periapical radiolucency, 258, 259
Peri-implant mucositis, 244
Perikymata, 26, 28
Periodontal anatomy
alveolar bone, 217
bleeding on probing, 226, 230, 231
clinical attachment loss, 230, 230
dental implants, 244-245, 244-245
furcation involvement, 231-234, 231-234, 232t, 235t
gingiva, 218-221, 218-221, 219t
gingival margin level, 228, 230
gingival recession, 223-225, 224-225
gingivitis, 221-222, 222
mucogingival defect, 234-236, 235, 236
oral hygiene instruction, 240-243, 240-243
periodontal disease, 237, 240
periodontal ligament, 217, 217
periodontitis, 222-223, 223
plaque score, 236, 236
root anatomy and anomalies, 238-239, 239
root morphology, 237-238, 238
tooth mobility, 225-227, 227, 228t
tooth root surface, 217
tooth support, 237-238, 238
Periodontal disease
bone loss and, 223, 223
defined, 216
gingival recession, 223-225, 224-225
gingivitis, 219t, 221-222, 222
periodontitis, 222-223, 223
restoration (fillings) and, 237
root anatomy and, 238-239, 239
root attachment and, 237
Periodontal ligament, 15, 15
Periodontal measurements
bleeding on probing (BOP), 226-227, 230, 231
charting, 226-227
clinical attachment loss, 230, 230
fremitus
charting, 226-227
defined, 227
furcation involvement
categories for, 235 t
charting, 226-227
defined, 231
location of, 232 t
mandibular molar, 231, 233
maxillary molar, 231, 233, 233
probing for, 231, 232
gingival margin position, 224, 228, 230 charting, 226-227
mucogingival defects, 234-236, 235, 236 charting, 226-227
circumstances for, 234-235
technique for determination, 235-236
plaque index
charting, 226-227, 236
technique for determination, 227, 236
probe depths
charting, 226-227
technique, 227-228, 228, 229
tooth mobility
charting, 226-227
functional mobility, 227
technique for determination, 226-227, 227, 228t
Periodontal pocket, defined, 228, 239
Periodontal probe, 219, 220, 228, 228
Periodontics
defined, 216
root planning, 240, 241
surgical procedures, 237
Periodontist, defined, 216
Periodontitis
aggressive, 223
bone loss and, 223
chronic, 223
defined, 216
Periodontium (See also Gingiva)
alveolar bone, 217, 217, 221
cementum, 217, 221
defined, 14, 216, 217
diseased
characteristics of, 218, 219t
gingival recession, 223-225, 224-225
gingivitis, 219t, 221-222, 222
periodontitis, 222-223, 223
gingiva zones, 218-220, 219, 220
healthy, characteristics of, 218, 219t
periodontal ligament, 217, 217, 221
Peristalsis, 286
Permanent dentition, 5-6, 6
Permanent incisors (See Incisor(s))
Permanent teeth (See also specific tooth)
classes, 5
complete, 50
crown formation, 189
number of, 10
primary teeth compared to, 192, 192-193
Petrotympanic fissure, 407, 407
Petrous portion, 407, 408
Pharyngopalatine arch, 465
Pharynx, 286, 465
Piriform, defined, 393
Pit caries, 306, 306, 313
Pits, maxillary incisors, 58, 60
Planes of the head, 393
Plaque, dental
defined, 216
in dental caries, 236
Plaque index
charting, 226-227, 236
technique for determination, 227, 236
Platysma muscle, 424, 436
Plica fimbriata, 470
Point angles, 18
Pontic, defined, 330
Porcelain, 309-310
Porcelain restorations, 309, 369
Porcelain veneer crown, 331
Post and core restorations, 328
Posterior arch, 465
Posterior cranial fossa, 394
Posterior fibers, temporalis muscle, 420
Posterior superior alveolar artery, 456
Posterior superior alveolar nerve,
430-431, 432
Posterior teeth, 6, 17, 18
Postmortem examination
for human identification, 360, 362-363
in mass disasters, 368, 369
Posture, jaw relation and, 293-296, 294, 295
Premature contact, 273, 280, 280-281, 294, 296
Premaxilla, 403

Premolars, 41

arch traits, 102-104, 103
class traits, 98-102
crown shape, 99
functions, 98, 98
location of, 97, 97-98, 98
mandibular
buccal view, 116-117
lingual view, 117-119
occlusal view, 122-127
proximal views, 119-122
maxillary
buccal view, 104-106
occlusal view, 110-114
proximal views, $108-110$
orifices, 253-254, 254, 255
pulp horns, 253, 254
pulp shape, 253-254, 254, 255
roots, $99,100,122 \mathrm{t}$
Prevention, patient education and, 305
Preventive resin restoration (PRR), 315
Primary dentition, 4-5,5
Primary teeth
canines
incisal view, 196, 197
labial view, 195-197, 197
lingual view, 197
proximal views, 194, 197
classes
primary canine traits, 195-197
primary incisor traits, 194-195
primary molar traits, 197-204
compared to permanent teeth, 192, 192-193
crown and root development, 187-192
crown calcification, 187, 188
definitions, 182-183
dental formulae, 183
erupt, 187
exfoliation, 187, 189, 191
first molars
mandibular, 201-204
maxillary, 202, 202-203, 203
formulae, 183
functions, 184, 184-185
general characteristics
anterior, 193, 194
identification systems, 183, 183-184, 184
incisors
crowns, 194, 194, 195
incisal view, 195, 196
labial view, 194, 194-195, 195
lingual view, 195, 196
marginal ridges, 195, 196
maxillary vs. mandibular, 205t
proximal views, 194, 195
root-to-crown, 195
pulp cavities, 204-205, 205
root development, 188, 189
second molars
mandibular, 199-200, 200
maxillary, 199-201, 200
tooth emergence, 188, 188t
tooth eruption, 185
traits of, 192-193
Primate spaces, defined, 188
Probing
for attachment loss, 230, 230
bleeding on, 226-227, 230
for furcation involvement, 231
for gingival recession, 230
for mucogingival defects, 235
Probing depths
charting, 226-227
technique, 227-228, 228, 229
Procerus, 426
Prognathic profile, 274

Proprioception, 428
Proprioceptive fibers, 278
Proprioceptors, 293
Prosthodontics, 307-308
Protrusion, 426
Protrusive movement, 283
Protuberance, 392
Proximal contact areas
canines
mandibular, 85
maxillary, 85
incisors
mandibular, 66-67, 67t
maxillary, 57
molars
mandibular, 139, 141, 149-150
maxillary, 157, 157t-158t
premolars
lingual view, 106-108
mandibular, 116 maxillary, 104
Proximal height of contour, 67t, 117t, 157t-158t
Proximal surface, 17, 18, 316, 321
Pseudopocket, 228
Psychiatry, forensic, 359
Pterygoid fossa, 421, 423
Pterygoid fovea, 405
Pterygoid hamulus, 398
Pterygoid muscles
lateral
attachments, 396, 398, 405, 405, 413
examination of, 421-423, 422
medial
attachments, 421
examination of, 421, 421-423
Pterygoid plate
lateral, 396, 398
medial, 398
Pterygoid plexus of veins, 442
Pterygomandibular fold, 466, 467
Pterygopalatine nerve, 430
Pterygopalatine space, 430, 431
Pulp
cavity, 13
dental pulp functions, 13-14
Pulp canal, 250, 250-251 (See also Root canal (pulp canal))
Pulp cap, 257
Pulp chamber
canines, 251, 253, 254
incisors, 251, 253, 253
molar, 254-256, 255-256
premolar, 253-254, 254
primary teeth, 204
Pulp horns
canines, 251, 253, 254
incisors, 251, 253, 253
molar, 254-256, 255-256
premolar, 253-254, 254
Pulp morphology
endodontics, 257-261, 258-261
ethnic variations, 264
mandibular
canines, 262
central and lateral incisors, 262
first and second molars, 262-263
first premolars, 262
second premolars, 262
maxillary
canines, 262
central incisors, 261
first and second molars, 263, 264t
first premolars, 262
lateral incisors, 261
second premolars, 262
pulp cavities
older teeth, 256-257
shape, $250,250-256,251 \mathrm{t}, 252-256,257 \mathrm{t}$
restorative dentistry, 257,258
Pulpitis, irreversible, 257, 258
Pupil, of eye, 451

Q
Questioned documents, 359

R

Radiograph, panoramic, of the mouth, 446
Ramus (rami), 275
Recession, gingival, 221, 223-225, 224-225
Rehabilitation, full mouth, 289
Remineralization, 305
Removable dental prosthesis, 332
Resin restorations, conservative, 308, 309
Resistance form
class I, 316
class II, 318-319, 320
Rest position
physiologic, 282-283, 283
vertical dimension of, 282
Rest seats, 332
Rest space, interocclusal, 282
Restoration materials
amalgam, 308, 308
cast metal, 308-309, 309
composite resin, 308
glass ionomer, 308
porcelain, 309-310
Restoration outline, 311
Restorations
all ceramic, 330
cast restorations, 308-309, 319, 320
cavity preparation
outline, 310
resistance form, 310, 312
retention form, 310-311, 311, 312
class I
cavity preparation, 315, 315-316, 316
indications for, 314
class II
cavity preparation, 318-319, 318-321
indications for, 316
indirect, 319-321, 320, 321
class III
cavity preparation, 323, 323-324
indications for, 321
class IV
cavity preparation, 325,325
indications for, 324
class V
cavity preparation, 327, 328
indications for, 326
filling materials
amalgam, 308, 308
cast metal, 309, 309
composite resin, 308
glass ionomer, 308
porcelain, 309-310
Restorative dentistry, 257, 258, 307-308
(See also Restorations)
Retained deciduous teeth, 209
Retainer, 332
Retention form
class I, 316
class II, 319, 319
class III, 323-324
Retentive grooves, 319
Retraction, defined, 284
Retro, defined, 393
Retrognathic profile, 274

Retromolar fossa, 406
Retromolar pad, 465, 466
Retromolar triangle, 406
Retromylohyoid curtain, 466
Retrusion (retraction), defined, 284
Reverse articulation, defined, 272
Ridge (buccal), 105, 106, 116-117
Risorius muscle, 426
Root (See also specific tooth)
definition of, 15
Root axis line, 32
Root canal (pulp canal)
accessory canals, 250, 252
anterior teeth, 251, 253
canines, 262
incisors, 261
molars, 254-256, 255, 256, 262
premolars, 253-254, 254, 262
types of, 250, 252
Root dehiscence, 225
Root depression, 89
Root planing, 240
Root restoration, 328, 333, 361
Root surface caries, 306
Root trunk, 31
Root-to-crown ratio, 19-20, 20, 379
Rotation, tooth, 350, 351

S

Sagittal envelope, 292
Sagittal suture, 394
Salivary glands, oral examination, 452,
$452,472,473$
Sclera, 451
Sealant, 314
Secondary dentition, 5
Secretory nerves, 429t, 436, 438
Sella turcica, 398
Septum, defined, 393
Shelf (buccal), 405
Shovel-shaped incisors, 73
Sigmoid notch, 405
Silent period, 302
Sinus, maxillary, 396, 399
Skull
facial bones
hyoid, 409, 424
inferior nasal conchae, 409
lacrimal, 409
mandible, 397, 403-405, 404-406
maxillae, 397, 399-403, 400-402
nasal, 408, 409
palatine, 400, 402, 403
vomer, 407, 407, 408
zygomatic, 403, 403-404
neurocranium
ethmoid bone, 396
frontal bone, 394
occipital bone, 394
parietal bones, 394
sphenoid bone, 394, 396
temporal bones, 406
Sliding guide, 294
Slot preparation, 319, 319
Sluiceways, 286
Smooth surface restorations, $312,321,325,333$
Sof palate, oral examination of, 464, 464-465
Sphenoid bone, 395-398, 397
Sphenoidal spine, 405, 416
Sphenomandibular ligament, 415, 416
Spillways, 117, 286
Spinal accessory nerves, 429t
Squamosal suture, 406
Stensen duct, 455
Sternocleidomastoid muscle, 407, 453

Sternohyoid muscle, 425
Sternothyroid muscle, 425
Sternum, 424
Stress management, 288
Stuart groove, 167
Stylohyoid muscle, 424, 436
Styloid process, 406, 407
Stylomandibular ligament, 405
Stylomastoid foramen, 436, 437
Sublingual caruncles, 471
Sublingual fold, 472
Sublingual fossa, 406
Sublingual salivary gland, 406
Subluxation, condylar, 279
Submandibular chain of nodes, 444
Submandibular fossa, 406
Submandibular nodes, 444, 444
Submandibular salivary glands, oral examination, 406
Submental artery, 441
Submental nodes, 444
Succedaneous teeth, 184
Sulcular groove, 32
Sulcus
alveolingual, 471, 471
gingival, 14, 218-219, 220, 248
terminal, 470
of tooth, 27
Superficial, defined, 393
Superior, defined, 393
Superior orbital fissure, 398
Superior position, 394, 394
Supernumerary teeth, 42, 338-340, 339-340
Supplemental grooves, 27
Supraeruption, 271, 274
Suprahyoid muscles, 409
Surface (buccal), 40, 201-204, 270
Suture line, defined, 393
Sutures
coronal, 394
intermaxillary, 403
lambdoid, 395
palatomaxillary, 403
sagittal, 394
squamosal, 406
transverse palatine, 403
Swallowing (deglutition), 286
Symphysis, 393
Synovial fluid, temporomandibular joint, 278
Synovial membrane, 414
Syringe, aspirating, 454

T

Talon cusp, 342
Tartar, defined, 216
Taurodontia, 345-346, 346
Teeth (See also specific tooth)
carving
advice, 384
materials for, 381
maxillary central incisor, 382, 382-384, 383-386
wax carvings, 381,382
counting, 475-476
drawing
distal views, 376, 377, 378
facial views, 376-377, 377
incisal view, 377, 378-379
lingual views, 377,377
materials needed, 375
measurements for, 376, 376
from memory, 379, 379-381
mesial views, 376, 377, 378
occlusal views, 381
outline, 375-376, 376-378
proximal view, 381
oral examination, 475-476
Temporal bones, 406-407, 406-408
Temporal crest, 405
Temporal fossa, 394, 394
Temporalis muscle
attachments, 398
oral examination of, 419-420, 420-421
Temporomandibular disorders, 287
Temporomandibular joint
advanced topics, 416, 416-417
articular disc, 277, 277-278, 412-413, 413, 414, 414t
articular fossa, 275-277, 276, 411, 412, 412, 413
development, 416, 416
fibrous capsule, 278, 278, 414, 415
lateral ligament, 415, 415
mandible dislocation, 279-280
mandibular condyle, 275, 276, 411, 411-413
movements
lower joint space, 278
total, 279
upper joint space, 278-279, 279
oral examination, 450, 451
sphenomandibular ligament, 415, 416
stylomandibular ligament, 415, 415
Temporomandibular ligament, 414
Terminal hinge, 301t
Terminal sulcus, 470
Tetracycline stain, 353, 353
T yrohyoid muscle, 425
T yroid gland, oral examination of, 452
Tinnitus, defined, 287
Tongue, oral examination, 469-470,
469-471
Tooth
preparation
clean, 312
convenience form, 311
dental cement base, 311, 311
final evaluation, 312
outline form, 310
resistance form, 310, 312
retention form, 310-311, 311, 312
sound enamel, 312
walls, 312
restoration of (See Restoration)
restoration preparation
class I, 315, 315-316, 316
class II, 318-319, 318-320
class III, 323, 323-324
class IV, 325, 325
class V, 327, 328
outline, 310
resistance form, 310, 312
retention form, 310-311, 311, 312
Tooth development
permanent
crown formation, 189
emergence order and timing, 186t
primary
crown formation, 187, 188
eruption, 186t
tooth emergence timing, 188, 188t
Tooth dimension, 18
Tooth eruption, 185
Tooth identification systems
International Numbering System, 8-11
Palmer Notation System, 10, 10
Universal Numbering System, 8, 8-9, 11
Tooth mobility
charting, 226-227
functional mobility, 227
technique for determination, 226-227, 227, 228t

Tooth morphology
anatomic vs. clinical crown and root, 15-16
cervical line (CEJ) curvature, 31-32, 32t
complete permanent dentition, 5-6,6
complete primary dentition, 4-5,5
contact areas, 34, 36-37, 36-37
depressions and grooves, 27-30, 28-31
elevations and ridges, 21-27, 22-28
embrasure spaces, 37-38, 38
heights of contour, $33,34,35,35$ t
human vs. animal teeth, $44,44 \mathrm{t}$
ideal occlusion, 39-41, 40-41
mid-root axis line, 32-34, 33-34
periodontium, 14-15, 15
relative sizes, $32,32 \mathrm{t}$, 48 t
tooth development, lobes, 41-42, 42, 43t
tooth identification systems, 8-11
tooth root external morphology, 30-31, 31
tooth surfaces
anterior vs. posterior teeth, 17,18
approximate surfaces, 17-18, 18
crown/root divisions, 19, 19
junctions/dimensions, 18, 19
maxillary vs. mandibular teeth, 17,18
root-to-crown ratio, 19-20, 20
tooth tissues, 12-14
Tooth replacement, 328-332, 328-332
Tooth rotation, 350, 351
Torus palatinus, 471, 473
Total anodontia, 337
Toxicology, defined, 359
Trabecular bone, 401
Transillumination, 321
Translation, defined, 278
Transposition, tooth, 348, 350, 351

Transverse palatine suture, 403
Transverse ridge, 23
Triangular ridges, 23
Trifurcation, root, 31
Trigeminal nerve
mandibular nerve
auriculotemporal nerve, 432, 433
buccal nerve, 433, 434
inferior alveolar nerve, 433, 433-435, 434, 436t
lingual nerve, 433, 433, 434
maxillary nerve
infraorbital nerve, 431-432, 432
posterior superior alveolar nerve, 430-431, 432
pterygopalatine, 430, 431
zygomatic nerve, 429, 432
ophthalmic nerve, 429, 430, 430
Trismus, 279
Trochlea, defined, 393
Trochlear nerve, 429t
Trunk, of tooth, 31
Tubercles, 161
Tuberculum intermedium, 175
Tuberculum sextum, 175
Tug-back, 312
Turner's tooth, 353
Twinning, 340, 342

U
Unerupted tooth, 348, 350
Universal Numbering System
for permanent teeth, 8
for primary teeth, 8
Uvula, 465, 465

V
Vagus nerve, 429t
Veins, 440, 442-443 of face, 443
flow of blood from teeth, 442
Veneer crown, complete, 331
Vermilion border, 454
Vertical overlap, 39
Vestibular fornix, 454, 457
Vestibule
defined, 454
oral examination, 454-460, 455-460
Vibrating line, 465
Vomer bone, 395, 407, 407, 408

W

Wet line, 454
Wharton's ducts, 473
WinID program, 368
Wisdom teeth, 174
Working side, 284, 285
World Dental Federation, 9, 10

X
X-ray, panoramic, of the mouth, 446

Z
Zygomatic arch, 403, 404, 407
Zygomatic bone, 403, 403-404
Zygomatic nerve, 429, 432
Zygomatic process, 401
Zygomaticus muscle, 426

[^0]: Flg ur E 1-55. These maxillary teeth are aligned to demonstrate the location of proximal contacts when viewed from the occlusal. Between posterior teeth, the contacts are located buccal to the middle of the teeth buccolingually. Between anterior teeth, the contacts are located near the center of the teeth faciolingually.

[^1]: General learning guide lines for incisors:

 1. maxillary incisors are not likely to have distal root depressions but could have mesial depressions.
 2. mandibular incisors usually have mesial and distal (deeper) root depressions.
[^2]: General learning guidelines:

 1. Canines have root depression on mesial and distal surfaces.
 2. Canines are likely to have deeper distal surface root depressions.
[^3]: ${ }^{a}$ Kraus and Ash call this the longest crown in the mouth.

[^4]: ${ }^{a}$ General learning guide line:
 Premolars are likely to have deeper distal surface root depressions (EXCEPT maxillary first premolars).

[^5]: ${ }^{a}$ General learning guidelines:

 1. For molars, the mesial and distal contacts are closer to the middle of the tooth and are more nearly at the same level than on premolars or anterior teeth.
 2. Distal proximal contacts are slightly more cervical than mesial contacts.

 Source: Brand RW, Isselhard DE. Anatomy of orofacial structures. 6th ed. St. Louis, MO: C.V. Mosby, 1998.

[^6]: ${ }^{\text {a }}$ General learning guidelines:

[^7]: ${ }^{\text {a }}$ Overall length from mesiobuccal root apex to tip of mesiobuccal cusp. Root length is from cervical line center to root apex. Crown length is from cervical
 line to tip of mesiobuccal cusp.

[^8]: fIGUr E 7-7. o perculum is a fap of tissue over a partially erupted last mandibular molar. This fap is subject to irritation and infection surrounding the crown known as pericoronitis. (Courtesy of Dr. Carl Allen.)

[^9]: General learning guidelines:

[^10]: ${ }^{\text {a }}$ Three of the six recently had an equilibration by their dentists.
 Research conducted by Dr. Woelfel at the Ohio State University, 1974-1986.

[^11]: Research conducted by Dr. Woelfel at the Ohio State University, 1974-1986.

[^12]: ${ }^{\text {a Results obtained by Dr. Woelfel (1980-1986). }}$
 ${ }^{\mathrm{b}}$ Unknown because translation has taken place in upper compartment.

[^13]: ${ }^{\text {a }}$ Determinations by Dr. Woelfel, 1970-1986. More than 20% of these professional students had or were undergoing orthodontic treatment.

