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PREFACE 

This book is intended as supplementary material for enhancing teaching/learning of first-year uni­
versity courses in calculus. It can also be used in upper secondary school. Chapters 1 and 2 explore 
pedagogical aspects of working with counter-examples. Chapter 3 consists of carefully constructed 
incorrect mathematical statements for students to puzzle over and to try to create their own counter­
examples in order to disprove them. Chapter 4 provides well illustrated solutions to the practical 
exercises of Chapter 3 and offers new challenges in the form of questions for discussion. Many of 
the statements have been chosen because they reflect common misconceptions that students pick up 
or construct. Some of the false statements are converses of famous theorems or true facts, some are 
created by omitting or changing conditions of the theorems, some are incorrect definitions and most 
appear at first glance to be correct. The following major topics from a typical course on Calculus of 
a single variable are considered: Functions, Limits, Continuity, Differential Calculus and Integral 
Calculus. 

The book offers much more than a collection of prompts to stimulate students to construct 
counter-examples. It promotes an approach to teaching which sees stimulating learners to use their 
own natural powers as both motivating and empowering. Even where students are taking calculus 
for purely pragmatic purposes, we believe that their interest and involvement can be enhanced by 
engaging them in the activity of example construction. If they do not appreciate the scope and 
range of the mathematical objects they are supposed to be learning about, then they are ill prepared 
to use the techniques in other situations. The book offers advice for students on how to go about 
constructing counter-examples, and advice on what to do with examples when they are provided, 
encountered, or discovered. 

The thrust of the book follows proposals of Watson and Mason (2005) inspired by authors such 
as George Polya, Paul Halmos and others. They advocate getting learners to construct not just 
one but classes of examples for themselves in order both to extend and enrich their own example 
spaces, and to develop a full appreciation of concepts, definitions and techniques that they are 
taught. The book therefore offers the reader stimulation to work on their own mathematics together 
with pedagogic advice on how to make best possible use of examples and counter-examples. Each 
statement in Chapter 3 is associated with one or more counter-examples in Chapter 4, and many also 
have indications of how these counter-examples can be generalised to a broader class. At a deeper 
level, the book provides an array of strategies for exposing learners to the role of counter-examples 
and to their construction. A by-product is a collection of useful functions for learners to use as test 
items when they meet new assertions. 

This book follows in the footsteps of books with similar titles, but it is at once more elementary 
in the mathematics it presents, and more sophisticated in its pedagogical constructs and ways of 
working. For example, the well-known book on counter-examples in Calculus: "Counter-examples 
in Analysis" by B. R. Gelbaum and J. M. H. Olmsted (Holden-Day, Inc., San Francisco, 1964) is an 
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VI Using Counter-Examples in Calculus 

excellent resource for teaching/learning of Calculus at an advanced level but it is well beyond the 
scope of a basic first-year university Calculus course. Other similar titles are at upper undergraduate 
and graduate level. None of them say anything about what a student might do with the counter­
examples provided so as to develop their mathematical thinking. There is no overlap between this 
book and "Counter-examples in Analysis" in either statements or examples. This book fills a gap 
in the teaching of first-year university Elementary or Introductory Calculus, providing both tasks 
and pedagogy to enhance and enrich student's appreciation of topics. It can be useful for: 

— upper secondary school teachers and university lecturers as a teaching resource; 
— upper secondary school and first year university students as a learning resource; 
— upper secondary school teachers for their professional development in both mathematics and 

mathematics education. 

Many of the examples used here as counter-examples actually arise in engineering or scientific 
situations. They are neither weird nor outlandish. For mathematics students the examples used 
contribute a valuable addition to their example-spaces, and the strategies suggested add to their 
toolkit of ways of working on mathematics. For teachers and lecturers of engineering, science and 
mathematics students, they provide a valuable resource on which to draw while teaching. 
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INTRODUCTION 

Many students are quite happy to apply techniques to situations in which the necessary conditions 
for the appropriate use of those techniques fail to hold. A reasonable conjecture is that students 
focus on numerical or computational aspects of techniques and overlook verbal conditions. This 
is especially the case where the conditions appear highly technical, or are identified with "what is 
always the case anyway". 

Many students are unused to thinking about problems before diving in and doing whatever comes 
to mind first. They make a wide range of slips and errors without even noticing them, often because 
they are not in the habit of thinking first, nor of checking their ideas and conjectures on examples 
and using this experience to modify and correct their intuitions. 

Many students have limited example spaces available to them for seeking inspiration, for testing 
out conjectures, or for use in applications. Lacking familiarity with all but a very few examples, they 
have little appreciation of the scope of mathematical objects to which the theorems and techniques 
apply- . 

This book provides an antidote to these phenomenona. Focusing student attention directly on 
necessary conditions, and getting them to construct or locate counter-examples when the conditions 
are adjusted, serves to illuminate the need for those conditions. Naturally enough, being directed to 
seek counter-examples has been found to focus learner attention on relevant features of examples 
(Wilson, 1986). 

Helping learners appreciate that single counter-examples are representative of infinite classes 
of examples means that learners are less likely to "monster-bar" in the sense of Lakatos (1976): 
ignore the example as being isolated and irrelevant to their real concerns. As a result, learners are 
more likely to appreciate that these examples are neither isolated nor pathological, but part of the 
extensive domain of generality to which the theorems and techniques apply. By using the strategies 
suggested, teachers can enculturate learners into checking that necessary conditions are satisfied 
before using the technique or applying the theorem, as well as alerting them to check their work for 
slips and errors. 

There is an ongoing vibrant argument between those who advocate exposing students to "patho­
logical examples" and those who advocate keeping things as simple as possible for their students. 
The issue is a complex one and is taken up in Chapter 2. While acknowledging some of the reasons 
for the other position, our aim is to provide in the intervening chapters a convincing pedagogical 
case for extending students' example spaces. We hope that in this way our arguments in favour of 
the use of counter-examples will be found more convincing. 

IX 
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Examples and Counter-Examples 

Examples are used to illustrate; counter-examples are used to disprove. But every counter-example 
can be seen as an example of a slightly different statement, and every example can be seen as a 
counter-example to at least one associated conjecture. Thus a mathematical object, whether number, 
function, or the result of applying operations to these, is in itself neither an example nor a counter­
example. It all depends on context, setting, and intention. It can be an example of a range of different 
statements and a counter-example to a range of different conjectures. 

There is a long and ancient history (some 4000 years!) of teachers using examples in order 
to help students appreciate and understand concepts being defined, theorems being proved, and 
techniques being demonstrated. However there is an equally long history of students using worked 
examples as mere templates for doing exercises, and for treating examples as single items rather 
than representatives of classes of objects. For example it is common for students to be shown the 
function \x\ as an example of a function which is continuous, and differentiable everywhere except 
at a single point. As Des McHale (1980) pointed out, students often treat this as a singularity and 
"monster bar" it. Since it is not a familiar object they can dismiss it as being irrelevant. However it 
is neither singular nor irrelevant, since it is intended to illustrate one of several things that can go 
wrong at a single point in the relation between continuity and differentiability. 

Zazlavsky and Ron (1998) found in their study that "students' understanding of the role of 
counter-examples is influenced by their overall experiences with examples. The status of a counter­
example is so powerful compared to the status of other examples". But those students have to have 
made a commitment to seeking what is true, what is the case. 

Peled and Zazlavsky (1997) make useful distinctions between counter-examples, according to 
the degree of generality they display. They use the adjective specific for counter-examples which 
contradict the claim, but which give no indication as to how one might construct similar or related 
counter-examples; semi-general if it provides some idea of how one might generate similar or 
related counter-examples, but does not tell "the whole story" or does not generate the whole space 
of counter-examples; general if it provides insight as to why a conjecture is false and suggests a 
way to generate an entire counter-example space. These latter examples have the property of being 
relatively transparent counter-examples. But transparency has to do not with the example itself, 
nor even with how it is presented, but with how the student perceives the example (for example as 
singular or as generative of a class). If the presentation does little or nothing to draw attention to 
the aspects which make the example exemplary or which make it a counter-example, students are 
likely to miss the point and dismiss the example, as MacHale suggested. 

Sometimes a conjecture has a single or a restricted class of counter-examples. In this case it 
makes sense to adjust the conjecture in order to rule out the examples. "Monster barring" can be 
a constructive activity in the struggle to find a succinct but elegant and effective statement of a 
definition so as to make desirable theorems easy to prove. For example, the definition of a fraction 
as the ratio of two integers has to include a clause which excludes division by zero; the function xy 

has to exclude values of x < 0. Conversely, theorems are most powerful when they include as wide 
a range of objects as possible. For example, a theorem about the area or perimeter of a trapezium 
already includes the special case of a triangle. Seeing a triangle as a special case of a trapezium 
is an important perception to develop, just as at other times in school it is important to see both 
fractions (well, the value of fractions) and decimals as numbers, and to see squares as rectangles 
and rectangles as parallelograms. 
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If students are to appreciate the range and power of the techniques they are shown, then it is 
vital that they appreciate the possible objects which they admit by accepting definitions as stated. 
They also benefit from appreciating why definitions are framed the way they are, including the sorts 
of features which are desirable and the sorts which are to be excluded in order to prove theorems. 
\s Lakatos suggested, the history of mathematics is replete with adjustments to definitions. A 
classic example of this is the definition of function. For Leonard Euler any relationship between 
two quantities x and y which could be expressed as a formula, constituted a function. Thus both 
y = 2x + 3 and y2x = 2x + 3 expressed functions. Then there is the issue of glued functions such as 

fjc i f x > 0 
y~\-x i f x < 0 

which can also be expressed as a formula using the absolute value, y = \x\. Many students prefer 
their functions to be specified by a single formula, and historically they are in good company! In order 
to become comfortable with functions formed by gluing formulae together at points, students can 
be asked to construct such functions so as to meet specified constraints. This strategy is developed 
in the next chapter. 

Dahlberg and Housman (1997) also noted that their undergraduate subjects had trouble with the 
underlying concepts, e.g., function and root, making it hard to generate examples and non-examples 
of a made-up family of "fine functions" defined as functions which have a root at each integer. 
One student identified "root" with "continuity", three others initially thought the graph of the zero 
function was a point, and one did not believe the zero function was periodic. In addition, most 
students' initially thought in terms of functions which were non-constant polynomials or continuous 
(Selden and Selden, 1998). 

Example Spaces 

Most people, when they encounter a technical term, immediately look for a familiar example on 
which to test out what is being said. This is highly mathematical activity, but it is severely hampered 
if there are only a few examples to hand, or if the examples available do not display all relevant 
features. Even when you are fairly confident with specific concepts, theorems and techniques under 
normal conditions, when the weather turns rough and unfamiliar aspects are highlighted, it is really 
useful to be able to turn to familiar confidence inspiring examples in order to get a sense of what 
is happening. If the only examples to hand are relatively trivial, then they may not be sufficiently 
sophisticated to illustrate the difficulties. One of the reasons why students often do not pay attention 
to the conditions of a theorem or a technique is that the only examples with which they have 
any familiarity "naturally" fulfil all the conditions. If they have never encountered more extreme 
examples of the concepts involved, they may never appreciate why those conditions are required, 
in which case, the whole enterprise is likely to remain mysterious! 

Watson and Mason (2005) found it helpful to think in terms of situations triggering access to a 
space of examples. Certain examples come to mind immediately. If these are individual and specific 
then the example space is rudimentary. If, instead, individual examples trigger awareness of ways 
in which those examples can be modified to produce whole classes of examples, the space is more 
richly interconnected. Ference Marton and colleagues (Marton and Booth, 1997; Runesson, 2005) 
speak of dimensions of variation to refer to aspects of examples which can be varied and still they 
remain examples. Watson and Mason observed that a single example gives access to whole classes 
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of similar or related examples when the person is aware of the possibility of varying certain features. 
They also noted that lecturers and students often have different dimensions of possible variation 
in mind when pondering an example. Furthermore, even when the same dimensions are being 
considered, lecturers and students may differ in the range of permissible change of each dimension 
which they are allowing. For example, the lecturer may be thinking "any real number" while students 
are subconsciously restricting attention to integers, unaware even that they are making restrictive 
assumptions. 

Example spaces are largely idiosyncratic and situation dependent. Over time the differences 
begin to iron out so that an expert is likely to develop strongly habituated examples that come to 
mind whenever a technical term is used. It is probably the case that different experts share certain 
examples in common, and these become the canonical examples offered in textbooks and in lectures. 
To be useful, it is vital that canonical examples are not allowed to be isolated, but rather provide 
access to broader classes through awareness of dimensions of possible variation and corresponding 
ranges of change (Goldenberg and Mason, 2008). 

Edwina Rissland (nee Michener, 1978) distinguished several uses for examples: 

Start-up examples used to initiate study of a topic; 

Reference examples used canonically for testing conjectures and illustrating techniques; 

Model examples used to illustrate aspects and features, for example, x(x2 + 1) and x(x2 - 1) for cubics, \x\ 
for non-differentiability at a point, and sin(l/x) for discontinuity at a point and (x2 - a)/(x - a) (x ^ a) for 
a continuous function whose domain can be extended continuously to the whole of R. 

Counter-examples used to demonstrate why conditions are required to be satisfied in theorems and techniques; 

There is considerable slippage between some of these categories. In this book we concentrate on 
counter-examples because they are under used in teaching, thereby not only impoverishing students' 
experience and appreciation of the calculus but also making it difficult for them to appreciate what 
mathematics itself is about, and restricting their perception of the range of mathematical objects. 

Mathematics as Constructive Activity 

When mathematics is presented as a series of technical terms, theorems and techniques, students 
develop the impression that everything is worked out and that there is no room for creativity in 
mathematics. Yet every mathematical problem can be viewed as an opportunity to construct a 
mathematical object which resolves the problem, whether it be a set of numbers, a set of functions, 
or something even more sophisticated. Seen in this light, techniques are devices for making the 
construction, rather than handles to turn which pop out required answers. This view of mathematics 
as creative and constructive is even more important for those who are "only" going to use it in their 
own subjects. 

For students studying calculus as a tool for use in their subject of interest, the situation is 
compounded because they tend to focus on the techniques in order to pass the assessment, without 
realising that an important feature of tools and techniques is knowing when to use them. Recognising 
routine situations is an easy matter. What is really useful is recognising their relevance in novel 
situations. To use the calculus effectively in constructing solutions to problems of interest, the 
mathematical techniques have to be used constructively and creatively. Where students have come 
to see mathematics as a creative and constructive endeavour, they are in a much more powerful 
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position to use their knowledge creatively and effectively, either by exploring for themselves or 
seeking the assistance of an expert. 

Students who have engaged in constructing mathematical objects meeting certain constraints, 
who have adopted a constructive view of mathematical thinking and problem solving will have 
much richer example spaces than colleagues who see mathematics as a collection of procedures, 
and are in a much better position to make effective use of mathematics in their own subject. 

Students who have worked on the statements of theorems to discover what is sharp about the 
theorem, that is, why conditions are included, are more likely to check conditions before applying 
theorems and using techniques. 

Reasons for Encouraging Students to Work with Counter-examples 

We encourage students to work with counter-examples with the following purposes: 

1. For deeper conceptual understanding 
Many students have become used to concentrating on techniques, manipulations and familiar pro­
cedures, often under the direction of their teachers. They do not pay much attention to the concepts, 
conditions of the theorems, properties of the functions, or to reasoning and justification. 

"When students come to apply a theorem or technique, they often fail to check that the conditions 
for applying it are satisfied. We conjecture that this is usually because they simply do not think of 
it, and this is because they are not fluent in using appropriate terms, notations, properties, or do not 
recognise the role of such conditions" (Mason and Watson, 2001). Paying attention to the conditions 
of theorems helps engineering students develop the good habit of considering the extreme conditions 
new devices will be subjected to. Aircraft are designed to fly in storms and turbulence, not just in 
perfect weather! The ability to pay attention to the conditions of a sale offer is essential in everyday 
life. We all know the importance of reading the fine print on advertisements "special conditions 
apply". A recent case study done in New Zealand (Klymchuk, 2005) indicated that the usage of 
counter-examples in teaching could significantly contribute to improving the students' performance 
on test questions that required conceptual understanding. 

2. To reduce or eliminate misconceptions 
Over recent years, partly due to extensive use of modern technology, the proof component of 
the traditional approach in teaching Calculus (definition-theorem-proof-example-application) has 
almost disappeared. Students are used to relying on technology and sometimes lack logical thinking 
and conceptual understanding. Sometimes Calculus courses are taught in such a way that special 
cases are avoided and students are exposed only to "nice" functions and "good" examples, especially 
at school level. This approach can create many misconceptions that can be explained by Tail's 
generic extension principle: "If an individual works in a restricted context in which all the examples 
considered have a certain property, then, in the absence of counter-examples, the mind assumes the 
known properties to be implicit in other contexts." (Tall, 1991). 

In Chapter 3 of this book many false statements, given to disprove by counter-examples, are 
related to students' common misconceptions. There is a difference between students' misconceptions 
in basic algebra and in Calculus. There are no textbooks where "properties" like *Ja + b = Ja+Jb 
can be found, and nobody teaches such "rules" either. Some introductory Calculus textbooks on 
the other hand, especially those at school level, contain incorrect statements. For example: "If the 
graph of a function is a continuous and smooth curve (no sharp corners) on (a, b) then the function 
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is differentiable on (a, b)9\ and "a tangent line to a curve is a line that just touches the curve at 
one point and does not cross it there". Some students actually learn Calculus this way. Practice in 
creating counter-examples can help students reduce or eliminate such misconceptions before they 
become second nature. 

3. To advance mathematical thinking 
Creating examples and counter-examples is neither algorithmic nor procedural. It may require 
advanced mathematical thinking which is rarely experienced at school. "Coming up with examples 
requires different cognitive skills from carrying out algorithms since it is necessary to switch 
perspective and look at mathematical objects in terms of their properties. At first, to be asked for 
an example can be disconcerting, when students have not been exposed to example construction in 
action, and so have no pre-learned algorithms to show the "correct way" (Selden and Selden, 1998). 
Practice in constructing their own examples and counter-examples can help students enhance their 
creativity and advance their mathematical thinking. 

4. To enhance generic critical thinking skills 
Creating counter-examples to wrong statements has a big advantage over constructing examples 
of functions satisfying certain conditions, because counter-examples deal with disproving, justi­
fication, argumentation, reasoning and critical thinking, which are the essence of mathematical 
thinking. These skills will benefit students not only in their university study but also in other areas 
of life. 

5. To expand the "example space" 

After creating or being exposed to many functions with interesting properties students will expand 
their "example space", allowing them to better communicate their ideas in mathematics and in 
practical applications. While creating counter-examples students learn a lot about the behaviour of 
functions and can later apply their knowledge to solving real life problems. 

For example, the counter-examples to Statement 2.2 and Statement 4.32 from Chapter 4 are the 
functions 

«\ sin* \x2 c o s - , i f x ^ O 
f(x) = and f(x) = \ I x\ ^ 

x 10, ifx = 0 
respectively, which are used for modelling vibration processes in mechanical engineering; the 
counter-example to Statement 5.12 from Chapter 4 is the Fresnel function 

F(x) = / sin t2dt 
Jo 

which apart from being important in optics has recently been applied to motorway design. 
As Henry Pollak from Bell Laboratories, USA pointed out "society provides time for mathematics 

to be taught in schools, colleges and universities not because mathematics is beautiful, which it is, 
or because it provides a great training for the mind, but because it is so useful". 

6. To make learning more active and creative 

Experience of colleagues and our own teaching experience shows that the usage of counter-examples 
as a pedagogical strategy in lectures and assignments can create a discovery learning environment 



Introduction XV 

and make learning more active. A recent international study involving more than 600 students from 
10 universities in different countries (Gruenwald and Klymchuk, 2003) showed that the vast majority 
of the participating students (92%) found the use of counter-examples to be very effective. They 
reported it helped them to understand concepts better, prevent mistakes, develop logical and critical 
thinking, and that they were more actively involved in lectures. Many commented that creating a 
variety of counter-examples enhanced their critical thinking skills in general, skills useful in other 
areas of life that have nothing to do with mathematics. 

There are different ways of using counter-examples in teaching apart from disproving false 
statements: 
• giving the students a mixture of correct and incorrect statements 
• making a deliberate mistake in the lecture 
• asking the students to spot an error on a certain page of their textbook 
• giving the students bonus marks towards their final grade for providing excellent counter­

examples to hard questions during the lecture 
• revealing student confusions to inform future teaching 
• as a form or aspect of assessment. 



Chapter 1 

WORKING WITH COUNTER-EXAMPLES 

We take the view that technical terms and theorem statements trigger access to an example-space: A 
collection of illustrative examples and useful counter-examples associated with the technical term 
and-or theorem. The richer that space, the richer and more sophisticated your appreciation and 
understanding of the technical term. Example spaces accumulate and develop over time. They do not 
suddenly appear as the result of reading or attending a lecture. They need to be worked on and with. 

A useful way of thinking about example-spaces is in terms of a pantry (Watson & Mason, 
2004). Towards the front there are familiar examples used frequently. When an unusual object is 
encountered it may be stored away further back on the shelf in case it proves useful in the future. 
The important feature of an example-space is that the more familiar examples provide access to 
the less familiar objects stored further back on the shelf, so it is vital that examples are connected 
and related to each other when they are encountered. That is why it is important to do something 
with examples when they are encountered so as to forge links with other more familiar objects in 
the pantry. In this way, more extreme and less familiar examples can come to mind as part of an 
enriched example-space. 

The mark of the expert is knowing what to do with examples and counter-examples. In this 
chapter we demonstrate some of the fruitful ways of exploiting counter-examples so as to get the 
most from them. 

Case Study: Bigger Values Means Bigger Slope? 

These are notes assembled by one of the authors (John Mason) as a case study in constructing 
counter-examples. The idea is to illustrate some of the ways that counter-examples are constructed, 
and the playfulness of mathematical exploration which can enrich students' appreciation of concepts. 

Consider Conjecture 4.1 from Chapter 3 that if both functions f(x) and g(x) are differentiable 
on an open interval (a, b) and if at each point x in the interval f(x) > g(x)9 then the derivatives are 
similarly related: f(x) > g'{x) on (a, b). 

Casting this in terms of slope, it says that if at every point x9 the value of / is greater than the 
value of g, then at every point JC, the slope of / is greater than the slope of g as well. The counter­
example offered is two straight lines. Why? 

The simplest slope is a constant slope (rather than a slope which is changing as x changes), and 
the very simplest is a slope of 0. Since this is to be a counter-example, we specify / as having slope 
0, and then we look for a second function g whose slope is greater than 0, say 1. The functions 
f(x) = 1 and g(x) = x will serve, as long as the interval (a, b) is to the left of the point x = 1 

1 
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where the two curves cross. If the interval (a, b) has been specified in advance, the function g can 
be translated so that its graph is always below the graph of / on {a, b). 

Since one counter-example defeats the conjecture, the task is completed. However, to stop here 
would be to miss the power and value of working with counter-examples. Notice first that implicitly 
we have constructed an infinite class of counter-examples. You can alter the function g by adding 
suitable constants; you can alter / similarly; you can adjust / and g to be more complicated or 
sophisticated. You can adjust the functions to cope with any interval (a, b) or indeed [a, b]. But a 
great deal can be gained by probing further. What might other examples look like? Is it possible to 
characterise all possible counter-examples in some way? To achieve this will be to fully appreciate 
what is wrong about the conjecture, and hence to appreciate the difference between function values 
and slopes at points. 

Take some function which is familiar and confidence inspiring but not too simple. For example 
f(x) = x2. What must a function g look like, and over what intervals, in order to produce a counter­
example? Strictly we need only one point where the derivatives reverse their order, but if it happens 
at a single point, it will happen on some subinterval because of the differentiability of both functions. 
A few moments looking at a sketch of f(x) = x2 suggests that g needs to lie below / but to have 
a steeper slope. Since the slope of / is given by f'(x) = 2x, g\x) needs to be greater than 2x on 
some subinterval of the specified interval. Suitable slopes might be 2x + 1, or 3x as long as the 
subinterval is suitably chosen where the functions do not cross, for example, on [0, 1]. 
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~^C< 
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T 
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Translating the corresponding g downwards achieves the counter-example. Notice how probing 
beyond a first simple counter-example provides access not just to more examples, but to a sense of 
what makes the counter-example work. 

Is there anything special about having the functions specified on a finite interval rather than 
on the whole of R? In other words, are there functions specified on the whole of R which are 
counter-examples everywhere? A first attempt might be to look for polynomials. Resorting to a 
familiar example, f(x) = x3 might be a fruitful place to start. It has a slope of 3x2 which is always 
non-negative, so a slope of 6x2 would be greater everywhere. This leads to trying g(x) = 2x3. 
Unfortunately, while working well for x < 0 (in the sense that / > g but f < g'), the functions 
cross at x — 0 and then g > / for x > 0. 
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It turns out that the task is impossible when confined solely to polynomials on the whole of R! 
The polynomials f{x) = x3 and g(x) = 2x3 serve as counter-examples on (—00, 0), but there are 
no polynomials on (0, 00) that serve as counter-examples on the whole interval. The reason is that 
if you put F = f — g, then you want F(x) > 0 but Ff{x) < 0 on the whole interval, and this is not 
possible for polynomials. 

Before giving up, perhaps it is possible to make use of this function where it does work, and 
piece it together with something that works on the rest of R. Take x = 0 as a glue point. Glue 
the polynomials to some functions that do work for non-negative x. Moving beyond polynomials, 
rational polynomials offer more opportunities. When I eventually realised polynomials would not 
work and tried using reciprocals, I found 

/ ( * ) = 

g(x) = 

x* + l 

x + 
1 

for x < 0 

for x> 0 
x+ 1 

2x3 + x for x < 0 
x for x > 0 

/ ' ( * ) = 

g\x) 

3x2 

1 -
1 

( J C + 1 ) 2 

6x2 + 1 for x < 0 
1 f o r j t > 0 . 

for x < 0 

f or x > 0 
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These functions provide a counter-example everywhere on R. 
For a slightly different approach, a little algebraic simplification can also help. Let F(x) = 

/(*) - g(*)- Then a counter-example would have F(x) > 0 on R, but F\x) < 0 on R. Is this 
possible? At least the thinking has been reduced to one function rather than trying to cope with two! 

If we want to extend to other functions beyond powers and rational polynomials on R, then 
f(x) = e~x and g(x) = 0 work on R, and f(x) = e~2x or e~x + 2 or 2e~x or 2~x will all work with 
g(x) = 0 as counter-examples. 

On Constructing Examples and Counter-Examples 

On the face of things, it would seem difficult to construct a counter-example without already appre­
ciating and understanding what the assertion means. Consequently constructing counter-examples 
might not even be possible, much less relevant, to a student who does not yet understand. This view 
point was considered by Selden & Selden (1998): 

"If I Don't Know What It Says, How Can I Find an Example of It?" 
This hypothetical quote, illustrates the chicken-and-egg quandary some students might typically face when 
encountering a formal definition, whether of "fine function" or quotient group. A definition asserts the existence 
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of something having certain properties. However, the student has often never seen or considered such a 
thing. To give an example or non-example, he/she would need at least some understanding of the concept. 
But how can he/she obtain such understanding? A good, and possibly the best, way seems to be through 
an examination of examples. Thus, the student is faced with an epistemological dilemma: Mathematical 
definitions, by themselves, supply few (psychological) meanings. Meanings derive from properties. Properties, 
in turn, depend on definitions. [This is a paraphrase from Richard Noss' plenary address to the September 1996 
Research in Collegiate Mathematics Education Conference, as reported in Focus 17 (1), 1 &3, February (1997)]. 

The next case study highlights ways in which counter-examples arise and are constructed, usually 
by using examples already encountered, or by tinkering with known examples in a process known 
as bricolage. The study goes beyond mere construction through reflecting on general principles and 
ways of thinking that have proved fruitful in the past. 

Case Study: Limits of Derivatives Are Not Derivatives at Limits 

Take for example the conjecture that 

If a function is differentiable on [—1, 1] and if its derivative is 0 at x = 0 then as x approaches zero, the 
derivative must also approach 0. 

If the derivative were continuous, the conjecture would have to be true. But the derivative need 
not be continuous so a counter-example must be sought amongst functions whose derivative is not 
continuous (e.g. x1/3 which is counter-example 4.5). The conjecture being false is tantamount to 
saying that the limit of the derivative at a sequence of points converging to 0 is not necessarily the 
derivative at the limit 0. In symbols, 

for some sequences {xn}, lim f(xn) ^ f{ lim (JC„)). 
« - > 0 0 ft—>00 

How might a counter-example be constructed to illustrate this, that is to act as counter-example 
to the conjecture that the two limits are always equal? 

Contemplating differentiable functions whose derivative is not continuous leads to the obser­
vation that the discontinuity cannot be because of a sudden jump in values. A function like 

if JC > 0 

cannot be the derivative of any function on an interval which includes 0 because derivatives always 
satisfy the intermediate value property, and so cannot involve such a jump discontinuity. It does 
however match the derivative of |JC| everywhere except at x = 0, where the discontinuity of the 
derivative of |JC| appears. 

So what might be useful would be functions which fail to have a derivative at a point for other 
reasons, such as being undefined (unbounded) there. The functions 

rn(x) = \ 
I 

X* if JC > 0 
i 

— (—X)n if X < 0 

where n is a positive integer, are made by gluing together root-functions for positive x with its 
rotation through 180° about the origin. They come to mind as tinkerings with the root functions so 
as to create differentiable functions (apart from at 0). These functions have the property that as n 
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gets large, they get closer and closer to s(x). Here are rn(x) for n = 1 to 20, and nooO)- They are 
differentiable everywhere except at x = 0, but because the derivative of rn(x) is 

i f x > 0 1 i - i 
-X" 

n 
undefined if* = 0 
1 - l 

l n 
(-X)n~l if X < 0 

and for each n > 1, the derivative becomes unbounded as x approaches zero. 

-hO-ry I I 1 H h £ -
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jcioo 0< x 

- ( - JC )TOO J C < 0 

Each of the rn (JC) is differentiable everywhere except at x = 0. Integrating the rn gives the functions 

Rn(x) = { n + 1 
n 

n + 1 

-Xl + ln if JC > 0 

( - J C ) 1 + » if JC < 0 

whose derivatives are of course the rn(x). Here is /?2oC*0-
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It looks very much like y = \x\ on the interval [ -1 , 1]. However its derivative at JC = 0 is actually 
0, because it is ever so slightly rounded near x = 0. So we have a family of differentiable functions 
whose pointwise limit (limit for each value of JC) is a function which is not itself differentiable 
everywhere. This is not exactly what we were looking for, but it illustrates how it is possible to trip 
over useful functions for other purposes, and how it is worthwhile exploring in order to accumulate 
examples which might be useful elsewhere. If you keep your attention single-mindedly on the task, 
you may miss encountering examples to store in your pantry for future use. 

Back to the drawing board. In order to get a derivative of 0 at JC = 0, it is useful to squeeze some 
function between two differentiable functions both of which have the same value (say 0, at JC = 0) 
and also have derivative zero at x = 0. For example, JC2 and -JC2. Pausing to reflect for a moment on 
the choice of index brings to mind that for differentiability, all that is required is JC1+' for positive t. 
The picture so far is an envelope as shown for t = 1, for t = 0.5, and for t = 0.1. 

j.O A 

1 • 
| / / / / 
£ 

| h&-

0 5 

L5 ^ ^ S 
S 

0 5 

-4£-

# 

> 

5 1 

\ ! :\-\ \ \ \ 
X 

(-x)L5 x< 0 
J C 1 5 0 < x 

- ( - J C ) 1 5 * < 0 

-xh5 0< x 

( - J C ) 1 1 J C < 0 

JC11 0 < J C 

- ( - J C ) 1 1 J C < 0 

- JC 1 1 0 < J C 

The last does not look as though it has zero derivative at JC = 0, but does if you zoom in far enough. 
To create a sequence of points approaching 0 but where the derivative is not approaching 0, you can 
go for a constant derivative different from zero, or for a rapidly increasing derivative. 

A rapidly increasing derivative would come from a function which oscillates more and more 
rapidly as x approaches 0, which brings to mind sin(i). This is an off-the-shelf classic function, just 
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one of an infinite class which oscillates more and more wildly as it approaches x = 0. To squeeze 
it between differentiable functions, consider xx+t s in(^) . For t positive, this will be differentiate 
everywhere. At JC = £ it will be 0. Its derivative is (1 + i)xl s in(^) - ^ ^ cos(^) which at x = ± 
is 0 - 27tnl~x. For t less than 1, t - 1 is negative, so ^ - 1 gets smaller and smaller in absolute value 
as n gets larger. The case of t = j is shown in the plot below. 

_ y 4 / 3 r 4 / 3 . (27ul 

Note that the function is assembled from two familiar pieces, sin(i) and x1_K. This is an example 
of bricolage. 

The rest of this case study is a demonstration of what can happen when you allow yourself to 
be playful, or perhaps self-indulgent. It is much more interesting and satisfying to do the exploring 
yourself than it is to read the results of someone else's exploration. 

Not being satisfied with one class of counter-examples, consider constructing a function for 
which the derivative is constant on some sequence approaching x = 0. 

The quadratic a(x - b)(x - c) is zero when x = b and c and has slopes of ± a(b -c)atb and c 
respectively. We can therefore glue together a sequence of quadratics which are alternately facing 
upwards and downwards, so that their slopes match at their zeros. For example, taking the interval 
[a, b] to be [^y, £] then let an(n = 1, 2, . . . ) be positive constants to be determined later, and put 

/„=„„<-!)" ( * - i ) ( * - ^ ) 
/ , In + 1 1 \ 

For positive coefficients a„, this is a sequence of quadratics alternately facing upwards and down­
wards and going through 0 at x = \ for n = 1, 2, 3 , . . . . The slopes of these functions at their 
zeros are found from the derivative 

Dfn=an(-l)n [2x-
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which takes the value 

a„ ( - l ) " 1 a„ ( - l ) " + 1 1 
at x = - and at x — . 

n(n + 1) n n{n + 1) n + 1 

Consequently, choosing a„ to be n(n + l)fi will make the slope of /„ at x — £ take the value (— l)n/jL 
while at ^j-j- it is (— l)n+V> both of which are independent of n except for sign. Consequently the 
functions all glue together smoothly and we are even free to choose the slope at the joins. When 
jx = 1 the functions then simplify to: 

1 1 
/„ = (-l)"(nx + x - \){nx - 1) for < x < -

n + 1 n 
and the first six are shown here with [i = 1. 

0.2 -p 1 | 1 1 1 0.2-T? 1 1 1 r-y 
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_0.2-l 1 1 1 ' 1 -0.2-1 1 1 1 1—̂4 

Now it turns out that these functions are all bounded by the functions ±/JLXX2 as long as A. > | so 
the compound or glued function must be differentiable at 0 despite having a slope of ±^u, arbitrarily 

2 2 

close to 0. In fact it so happens that the functions g+(x) = ^ - and g~(x) = ^ ^ are tangent to 
the curves and so bound them tightly. 

Thus the function / specified by 

[O if x = 0 
f(X)= \(-l)n(nx + x-\)(nx-l) i f ^ < x < i 

is bounded by ±x2/4, so it is differentiable at x = 0. However, at \/n the derivative is always 
(—1)". Thus this function is a counter-example to the conjecture. 

By reflecting on the construction (making a function oscillate but maintain slopes), the way is 
open to infinitely many other examples which might be more difficult to state explicitly, but which 
have similar properties: Oscillating more and more rapidly but with repeating slopes, or as in the 
case of the first example, slopes getting steeper and steeper as x approaches 0. 

Using the same oscillating idea, cubics passing thorough (£, 0) and ( l / (n + 1), 0) and their 
midpoint can be glued together at the outside zeros so as to have matching slopes there. This produces 
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another class of counter-examples to the conjecture, because again there are points arbitrarily close 
to 0 at which the derivative is arbitrarily large. 

Altering the interval widths on which the quadratics and cubics are assembled is another 
dimension of possible variation, but it turns out to be problematic! Attempting to use intervals of 
width \n on which to glue cubics and quadratics runs up against problems: Having matched the 
derivatives at the end points it is difficult to get unboundedness of the derivative in the interior or else 
to get differentiability at the limit when x = 0. Instead, the curves get flatter and flatter. However, 
using intervals between reciprocals, everything works out beautifully. 

Extending Further 
The basic idea is to squeeze an oscillating function which is differentiable almost everywhere, 
between two functions, both differentiable at the special points. But why not glue together such 
functions on each interval [ ^ , £]? By arranging each to be differentiable with slope 0 at the end 
points, the result is a function like those constructed above but on each of a countable number of 
intervals. 

First, here is a function which has the oscillations at both ends of the interval [0,1]: 

-r? 

id pi 
j 

** 
S 

s 

a; 
V 

^—-**. 

/ V 

^ . *4 

V 
V 

6 / °, 
^ / * 
r 

lw} r\ 

xHx-l)2 x\x-\)2 

X2u_, )2s in |_i_j 

Now the x is scaled so as to have the same appearance but on [0, ^ r i ) ] . Then it is translated 
so as to be on the interval [£, \ - 1]: 

n2(n _ l}2(nx _ X)l{nx _ 1 _ x)2 s i n (n{n_l)(nx_\)(nx_l_x)) ■ 

Notice that the squares on the outside factor could be replaced by 1 + t for positive t and still 
generate an example. The outside indices form two independent dimensions of possible variation. 

The function then looks like the picture on the first when two pieces are glued together on each 
interval, and on the second, the same function with a scaling of ̂ r y j on the interval [-, -^\]. 
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0.10-r^ 

0.05 

-0.05 

-0.10 

Both have arbitrarily large slope arbitrarily close to \ for n = 1, 2 , . . . , and are differentiable 
everywhere. Further tinkering with coefficients can produce other variations. 

Useful Strategies 

The strategies described in this section have a two-fold purpose. On the one hand they are useful for 
getting learners to engage deeply with the theorems and techniques they need to encounter, and the 
underlying concepts. On the other hand they are excellent for illuminating learner misconceptions, 
inappropriate constraints and assumptions. 

Constraint Adjustment 

Removing or adjusting a constraint on a true statement and then finding a counter-example to the 
revised statement not only enriches appreciation of the role of the constraint, but forces learners to 
examine that role in more detail. 
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When seeking an example or counter-example meeting several constraints, it is often useful to 
begin with no constraints at all, and to try to get a sense of the most general class of objects being 
considered. Constraints can be added sequentially, looking for the most general class of examples 
that meet one set of conditions before including the next constraint. 

Generalising 
Extending one or two examples to classes of examples extends learners' appreciation of the scope 
and significance of the counter-example(s). This counteracts the tendency to isolate and monster-bar 
(Lakatos, 1976) awkward examples, and so lead learners to appreciate the class of objects admitted 
as functions. A very useful prompt for extending classes of both examples and counter-examples 
is to look out for dimensions-of-possible-variation (Watson & Mason, 2005): What can be varied 
and still the object remains an example (or counter-example). Furthermore, with each aspect that 
can be varied, considering the range-of-permissible-change often reveals that learners have a very 
restricted sense of permissible change. 

Starting from a mathematical object (in this case probably a function), learners can be invited to 
find as many theorems that it illustrates as they can. They can also construct some "conjectures" that 
others might think are true, to which it is a counter-example. As learners begin to see mathematical 
functions not as isolated objects but as representatives of classes, their appreciation of theorems 
improves. 

Asking learners to describe, even to characterise all other examples (counter-examples) like one 
that is given is another way to get them to consider what can be altered or varied, and to what extent, 
and still preserve the property of being an example (or counter-example). 

Bricolage and Tinkering 
At first, learners are diffident about tinkering with mathematical objects, and particularly with 
functions. They tend to see them as unassailable wholes. For example, since gluing functions 
together caused several famous mathematicians some considerable concern as to whether the result 
really is a function (their sense had been of a formula rather than a relationship), it is reasonable 
to expect that learners have similar concerns. Therefore, getting them to glue functions together 
themselves can support them in gaining a sense of mastery over a space of functions which goes 
well beyond the polynomials, rational polynomials, exponentials and trigonometric functions. More 
generally, as Seymour Papert (1993) emphasised, the French notion of bricolage, of tinkering with 
components of familiar objects to make new constructions, is a central component of expertise, and 
an important contribution to learning. 

Asking learners what minimal change can be made to an example to make it into a counter­
example, or to a counter-example to make it into an example not only extends learners' appreciation 
of the conditions and constraints involved, but also contributes to their sense that they have the 
power to tinker and alter. This in turn enriches their whole sense of example space. 

Working with Counter-Examples 
Learners can be given a list of statements and a list of functions, and asked which functions are 
examples, and which counter-examples of which statements. For example, \ is a counter-example 
to the conjecture that whole numbers have a whole-number multiplicative inverse; that the mean 
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of two integers is always an integer; that every number has a unique name; that every fraction is 
represented by an infinite decimal. Similarly ± on (0, 1) is a counter-example to the conjecture that 
a continuous function on an open interval attains its maximum; that the integral of a power of x is 
a power of x, and so on. 

Same & Different 

When introducing a new concept, or a theorem, learners can be engaged by offering them three or 
more objects, and asking them to say what is the same and what is different about them. In this way 
their attention is directed to details which they might otherwise overlook. By carefully choosing 
the examples to offer, attention can be directed to critical features of the concept or the conditions 
of the theorem. Very often learners apparent overlooking of conditions and assumptions is because 
their attention has not previously been directed to make appropriate distinctions (Mason, 2003). 

Extending Your Accessible Example Space (the Pantry) 

Achieving one counter-example is sufficient to show that the conjecture is false. It may even suggest 
how the conjecture needs to be modified in order to be correct and justifiable. Extending one example 
to a class of examples enriches your appreciation of why the conjecture is false and how it needs 
modifying, as well as shifting from thinking that there are only a few "monsters" that could be 
barred specifically, to appreciating underlying structural reasons for the modified conjecture. By 
taking a theorem and finding counter-examples to strengthened versions in which a hypothesis or 
imposed condition is removed, the necessity of each condition can be appreciated. It is then more 
likely that you will think to check the conditions and hypotheses before trying to apply the theorem 
in the future. 

By not being satisfied by a single example, even by a class of examples, but by seeking other 
ways in which a counter-example might be constructed you further enrich your appreciation. You 
may also encounter some objects which can be stored at the back of the pantry for use in the future, 
not necessarily directly connected with the initial conjecture. For example, in the case study, despite 
having been aware of the standard examples previously, it had not come to mind to explore the 
Dimensions of Possible Variation of the power of x in front of sin(±). The family jc1+'sin(-) was 
an addition to the example space, and becomes available as an idea to use in other situations. Thus, 
when constructing the compound function h, the idea came to mind again to extend the class. 

Case Study from Teaching Practice 

Below are some experiences of using counter-examples with students in a tutorial. Statement 3.14 
from Chapter 3 is considered as an example: 

If a function y = f(x) is defined on [a, b] and continuous on (a, b) then for any N e (f(a), f(b)) there is 
some point c e (a, b) such that f(c) = N. 

The only difference between this statement and the Intermediate Value Theorem is that continuity 
of the function is required only on an open interval (a, b), instead of a closed interval [a, b]. In 
other words, one-sided continuity of the function at the point x = a from the right and at the point 
x = b from the left is not required. When students were asked to disprove the statement they came 
up with something like this: 
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To generate discussion and create other counter-examples they were invited to consider: 
In the above graph the statement's conclusion is not true for any value ofNe (/(a), f(b)). 

Modify the graph in such a way that the statement's conclusion is true for: 

(a) one value ofiVG (/(a), /(/?)), 
(b) infinitely many but not all values ofiVe (/(a), f(b)). 

The students came up with the following sketches: 

Ab) + 

Ka) -U 

Ab) + 

f(a) 4 -

This raises the question of whether it is possible for the conclusion to be true, say for exactly 2 
values of N. Another challenge was presented: 

Give a counter-example for which the graph does not have white circles. 
Eventually students may came up with: 
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Some students find such problems very new and challenging. After learning calculus at school 

many come to university with a strong preference for performing calculations, manipulations and 
techniques, ignoring conditions of the theorems and properties of the functions they are dealing with. 
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It is often not their fault: They may not be familiar with the role of conditions, and they may be 
enculturated into mathematics as the carrying out of procedures. 

To illustrate the above point, below is a real example from a final year high-school mathematics 
exam (university entrance) that deals with the Intermediate Value Theorem as well. 

Question. "Show that the equation x2 - ^/x - 1 = 0 has a solution between x = 1 and x = 2. 
Model Solution. If /(*) = x2 - Jx - 1 then / ( l ) = - 1 < 0 and /(2) = 1.58 > 0. So the 
graph of / crosses the x-axis between 1 and 2." 

This model solution was given to examiners as a complete solution, one for which students 
would get full marks. It was based on the special case of the Intermediate Value Theorem which has 
2 conditions: The continuity of f(x) on [a, b] and the condition f(a) x f(b) < 0. Only the second 
condition was checked, and the first was ignored as if it was "not essential". The question came 
from a written exam where all working had to be shown. The fact that the condition of continuity 
of the function f(x) was not required by the examiners to award full marks for the solution is very 
dangerous. The message is clear: Calculations are important but the function's properties are not. 
No wonder students do not consider all theorem conditions and properties of functions when even 
experts sometimes fail to require it! 



Chapter 2 

THE PATHOLOGICAL DEBATE 

Each generation of lecturers and teachers re-opens the debate between those who advocate keeping 
things as simple as possible for students so as not to confuse or overwhelm them, and those who 
advocate exposing them to "pathological examples" which might extend and enrich their awareness 
of the scope of definitions, theorems and techniques. 

Pro-Pathology 

Lecturers who choose to expose students to unusual functions make the sorts of claims that we 
are making in this book: That if you do not appreciate the scope and range of what functions are 
possible, the necessary conditions on techniques and theorems will be treated as inessential frills. 
There are several published accounts of people using formulae and software to design things which 
have failed because necessary assumptions and conditions were ignored or overlooked. 

It may very well turn out that what is unusual now will become commonplace in applications or 
in new contexts, so it is best to expose students to more than a narrow range of "nice" functions. The 
last thing we want to have happen is people with only the vaguest notion of what they are doing, 
applying theorems and techniques inappropriately in contexts where the result really matters. 

A third stance is cultural. It argues that the whole enterprise of studying familiar functions, 
indeed, in studying familiar numbers, is only possible if the scope of enquiry is broadened to all real 
(or even complex) numbers, all functions, all continuous functions, all differentiable functions, and 
so on. There is not only a very rich cultural heritage which is valuable for students to experience, 
but also a significant principle at stake: In order to study one thing and to understand it fully, you 
may (you will) have to extend your view to include other things as well. 

Anti-Pathology 

Lecturers who choose not to expose students to unusual functions take the stance that students 
find things difficult enough without having to cope with the unfamiliar and unusual. Most of these 
students will never encounter any "nasty" functions, and are only learning calculus as a mathematical 
basis for some other discipline. They require only the minimum understanding and facility with 
techniques in order to pass the course. The trouble is that whenever teachers make decisions about 
what students can and cannot handle, the students respond in kind. Only by challenging students 
are they likely to rise to that challenge. 

15 
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The desire to minimise student disturbance, for fear of loss of engagement and motivation usually 
leads to "dumbing down". This in turn leads to continued student dissatisfaction. Where challenge 
is reduced or eliminated, students are reaffirmed in their desire to be told only what they really need 
to "know" in order to pass exams. Where challenge is maintained and expectations are reasonable, 
students rise to meet them. Furthermore, the more often students can make significant choices for 
themselves, the more they will enjoy their studies. Example and counter-example construction feeds 
just such choice making. 

Meta-Pathology 

Perhaps the disagreement rests in part on the emotive content of the word pathology. Mathematicians 
use the term to indicate examples which are extreme and unexpected. It tends to be used when 
people come across objects which challenge their intuition. Thus, what is "pathological" at one time 
or to one group may become familiar and even generative for others. By labelling certain examples 
as "pathological" we may be doing students a disservice. 

In the introduction, under the heading of example spaces, we suggested that impoverished 
example spaces could be a root cause for students' reluctance to check conditions and hypotheses 
before applying techniques and theorems in unfamiliar settings. The point was made that if you 
have only ever encountered "simple" objects, then the entire meaning and purpose of conditions 
and assumptions may be lost. Thinking and speaking of example spaces could bypass the debate 
entirely and focus attention on more pedagogically relevant issues to do with what it is that students 
are expected to appreciate about the space of objects to which theorems and techniques apply. 

We are by no means the first to promote the use of examples, and example construction: 

Alfred North Whitehead 

The progress of science consists in observing... interconnexions and in showing with a patient ingenuity that 
the events of this ever-shifting world are but examples of a few general connexions or relations called laws. 
To see what is general in what is particular and what is permanent in what is transitory is the aim of scientific 
thought. (Whitehead, 1911, p. 4) 

Paul Halmos 

Let me emphasize one thing... the way to begin all teaching is with a question. I try to remember that precept 
every time I begin to teach a course, and I try even to remember it every time I stand up to give a lecture 

Another part of the idea of the method is to concentrate attention on the definite, concrete, the specific. Once 
a student understands, really and truly understands, why 3 x 5 is the same as 5 x 3, then he quickly gets the 
automatic but nevertheless exciting and obvious conviction that "it goes the same way" for all other numbers. 
(Halmos, 1994, p. 852) 

The best way to learn is to do; the worst way to teach is to talk. (Halmos, 1975, p. 466) 
A good stock of examples, as large as possible, is indispensible for a thorough understanding of any concept, 

and when I want to learn something new, / make it my first job to build one. 
. . . Counter-examples are examples too, of course, but they have a bad reputation: They accentuate the 

negative, they deny not affirm. ... the difference... is more a matter of emotion. (Halmos, 1983, p. 63) 
If I had to describe my conclusion [as to a method of studying] in one word, Fd say examples. They are to me 

of paramount importance. Every time I learn a new concept I look for examples... and non-examples The 
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examples should include wherever possible the typical ones and the extreme degenerate ones. (Halmos, 
1985, p. 62) 

Richard Feynman 

I can't understand anything in general unless I'm carrying along in my mind a specific example and watching 
it go. (Feynman, 1985, p. 244) 

George Polya 

When discussing the issue of whether to try to prove a statement or to find a counter-example, Polya 
suggests a two-pronged approach: 

A good scheme [when tackling a problem] is to work alternately, now in one direction, then in the other. When 
the hope to attain the end in one direction fades, or we get tired of working in that direction, we turn to the 
other direction, prepared to come back if need be, and so, by learning from our work in both directions, we 
may eventually succeed. (Polya, 1962, pp. 2-51) 

He goes on to suggest that sometime you can prove a weaker statement, or even a stronger 
statement, and sometimes you can disprove a stronger statement (because you have more to work 
conditions to defeat). He gives an illuminating case study in the construction of counter-examples 
involving convergent series. (Polya, 1962, pp. 2-49-51) 

Annie & John Selden 
Since success in mathematics, especially at the advanced undergraduate and graduate levels appears to be 
associated with the ability to generate examples and counter-examples, what is the best way to develop this 
ability? One suggestion... is to ask students at all levels to "give me an example of...". Granted the inherent 
epistemological difficulties of finding examples for oneself, are we, in a well-intentioned attempt to help 
students understand newly defined concepts, ultimately hobbling them, by providing them with predigested 
examples of our own? Are we inadvertently denying students the opportunity to learn to generate examples 
for themselves? (Selden & Selden, 1998) 

Anne Watson & John Mason 

Extreme examples, therefore, confound our expectations, encourage us to question beyond our present expe­
rience, and prepare us for new conceptual understandings. (Watson & Mason, 2005, p. 7) 

By pushing parameters to extremes, surface features can sometimes be confounded (even "multiplication 
makes bigger" is confounded by multiplication by 1), but sometimes such extreme examples are less rather than 
more problematic, and certainly not always convincing. Students simply try to "monster bar" such extreme 
examples away. (Watson & Mason, 2005, p. 11) 

If learners are to be adventurous in extending their example spaces, they will inevitably meet the extremes of 
ranges of permissible change and, hence, bump into non-examples that may at first sight appear to be examples 
or that demonstrate the importance of qualifying conditions. In other words, working with non-examples helps 
delineate the example space. Deliberate searching for counter-examples seems an obvious way to understand 
and appreciate conjectures and properties more deeply. Such a search could be within the current example 
space or could promote extension beyond. (Watson & Mason, 2007, p. 67) 

Sometimes searching for extreme examples (hardest, most complex, or most complicated or tricky) leads 
to the conclusion that they are all, in fact, easy. This reflects the learners' extension of their example-space 
and their growing confidence through that extended space. (Watson & Mason, 2005, p. 157) 



Chapter 3 

BONES TO CHEW: COLLECTION OF FALSE STATEMENTS 

This chapter contains incorrect statements from the five major topics found in Introductory Calculus 
courses: Functions, Limits, Continuity, Differential Calculus and Integral Calculus. The statements 
from each topic are arranged in order of increasing difficulty. Some statements, especially those in 
the beginning of each topic, are related to students' regular misconceptions. In the more challenging 
cases statements often appear to be correct, and many students will be hard-pressed to find counter­
examples to them. 

3.1. Functions 

1.1 The tangent to a curve at a point is the line which touches the curve at that point but does not 
cross it there. 

1.2 The tangent line to a curve at a point cannot touch the curve at infinitely many other points. 
1.3 A quadratic function of x is one in which the highest power of x is two. 
1.4 If both functions y = f(x) and y = g(x) are continuous and monotone on R then their sum 

f(x) + g(x) is also monotone on R. 
1.5 If both functions y = f(x) and y = g(x) are not monotone on R then their sum f(x) + g(x) 

is not monotone on R. 
1.6 If a function y = f(x) is continuous and decreasing for all positive x and if f{\) is positive, 

then the function has exactly one root. 
1.7 If a function y = f(x) has an inverse function x = f~l(y) on (a, b) then the function f(x) is 

either increasing or decreasing on {a, b). 
1.8 A function y — f(x) is bounded on R if for any x e R, there is M > 0 such that \f(x)\ < M. 
1.9 If g{a) = 0 then the function F(x) = 4 4 has a vertical asymptote at the point x = a. 

1.10 If g(a) = 0 then the rational function R(x) = j& (both f(x) and g(x) are polynomials) has 
a vertical asymptote at the point x = a, 

1.11 If a function y = f(x) is unbounded and non-negative for all real x, then it cannot have roots 
xn such that xn -> oo as n -> oo. 

1.12 A function y = f{x) defined on [a, b] such that its graph does not contain any pieces of a 
horizontal straight line cannot take its extreme value infinitely many times on [a, b\. 

1.13 If a function y = f(x) is continuous and increasing at the point x = a then there is a 
neighbourhood (x — 8, x + 5), S > 0 where the function is also increasing. 

1.14 If a function is not monotone then it does not have an inverse function. 
1.15 If a function is not monotone on (a, b) then its square cannot be monotone on {a, b). 
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3.2. Limits 

2.1 If f{x) < g(x) for all x > 0 and both Hindoo fix) and limx_^oo g(x) exist then 

lim f(x) < lim g(x). 

2.2 The following definitions of a non-vertical asymptote are equivalent: 

(a) The straight line y = mx + c is called a non-vertical asymptote to a curve fix) as x tends 
to infinity if linijt-̂ ooC/C*) — (mx + c)) = 0. 

(b) A straight line is called a non-vertical asymptote to a curve as x tends to infinity if the curve 
gets closer and closer (as close as we like) to the straight line as x tends to infinity without 
touching or crossing it. 

2.3 The tangent line to a curve at a certain point that touches the curve at infinitely many other 
points cannot be a non-vertical asymptote to this curve. 

2.4 The following definitions of a vertical asymptote are equivalent. 

(a) The straight line x = a is called a vertical asymptote for a function y = f(x) if 
l i m ^ ^ f{x) = ±oo or limx_>fl- f(x) = ±oo. 

(b) The straight line x = a is called a vertical asymptote for the function y = fix) if there are 
infinitely many values of f(x) that can be made arbitrarily large in absolute value as x gets 
closer to a from either side of a. 

2.5 If limx^a fix) exists and lim*.^ gix) does not exist because of oscillation of g{x) near x — a 
then ]imx^aifix) x gix)) does not exist. 

2.6 If a function y = fix) is not bounded in any neighbourhood of the point x = a then either 
limx^fl+ |/(*)| = oc or l i m ^ a - \fix)\ = oo. 

2.7 Ifafunctiony = fix) is continuous for all real x and lim^-^oo fin) = A then Hindoo fix) = A. 

3.3. Continuity 

3.1 If the absolute value of the function y = fix) is continuous on (a, b) then the function is also 
continuous on (a, b). 

3.2 If both functions y = fix) and y = gix) are discontinuous at x = a then fix) + gix) is also 
discontinuous at x = a. 

3.3 If both functions y = fix) and y = gix) are discontinuous at x = a then /(JC) x g(x) is also 
discontinuous at x = a. 

3.4 A function always has a local maximum between any two local minima. 
3.5 For a continuous function there is always a local maximum between any two local minima. 
3.6 If a function is defined in a certain neighbourhood of point x = a including the point itself 

and is increasing on the left from x = a and decreasing on the right from x — a, then there is 
a local maximum at x — a. 

3.7 If a function is defined on [a, b] and continuous on (a, b) then it takes its extreme values on 
[a,b\. 

3.8 Every continuous and bounded function on (—oo, oo) takes on its extreme values. 
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3.9 If a function y — f{x) is continuous on [a, b]9 the tangent line exists at all points on its graph 
and f(a) = f(b) then there is a point c in (a, b) such that the tangent line at the point (c, f{c)) 
is horizontal. 

3.10 If on the closed interval [a, b] a function is bounded, takes its maximum and minimum values 
and takes all its values between the maximum and minimum values then this function is 
continuous on [a, b]. 

3.11 If on the closed interval [a, b] a function is bounded, takes its maximum and minimum values 
and takes all its values between the maximum and minimum values then this function is 
continuous at one or more points or subintervals on [a, b]. 

3.12 If a function is continuous on [a, b] then it cannot take its absolute maximum or minimum 
value infinitely many times. 

3.13 If a function y = f(x) is defined on [a, b] and f(a) x f(b) < 0 then there is some point 
c e (a, b) such that f(c) = 0. 

3.14 If a function y = f(x) is defined on [a, b] and continuous on (a, b) then for any TV e 
(/(fl)> fQ>)) there is some point c e (a, b) such that f(c) — N. 

3.15 If a function is discontinuous at every point in its domain then the square and the absolute 
value of this function cannot be continuous. 

3.16 A function cannot be continuous at only one point in its domain and discontinuous everywhere 
else. 

3.17 A sequence of continuous functions on [a, b] always converges to a continuous function on 
[a, b\. 

3.4. Differential Calculus 

4.1 If both functions y = f(x) and y = g(x) are differentiable and f(x) > g(x) on the interval 
(a, b) then/'(jc) > g'(x) on {a, b). 

4.2 If a non-linear function is differentiable and monotone on (0, oo) then its derivative is also 
monotone on (0, oo). 

4.3 If a function is continuous at a point then it is differentiable at that point. 
4.4 If a function is continuous on R and the tangent line exists at any point on its graph then the 

function is differentiable at any point on R. 
4.5 If a function is continuous on the interval {a, b) and its graph is a smooth curve (no sharp 

corners) on that interval then the function is differentiable at any point on (a, /?). 
4.6 If the derivative of a function is zero at a point then the function is neither increasing nor 

decreasing at this point. 
4.7 If a function is differentiable and decreasing on (a, b) then its gradient is negative on (a, b). 
4.8 If a function is continuous and decreasing on (a, b) then its gradient is non-positive on {a, b). 
4.9 If a function has a positive derivative at every point in its domain then the function is increasing 

everywhere in its domain. 
4.10 If a function y = f(x) is defined on [a, b] and has a local maximum at the point c e (a, b) 

then in a sufficiently small neighbourhood of the point x = c the function is increasing on the 
left and decreasing on the right from x = c. 

4.11 If a function y = f(x) is differentiable for all real x and /(0) = f(0) = 0 then f(x) = 0 for 
all real x. 
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4.12 If a function y = f(x) is differentiable on the interval (a, b) and takes both positive and 
negative values on it then its absolute value |/(JC)| is not differentiable at the point(s) where 
f(x) = 0, e.g. \f(x)\ = \x\ or | /(*)| = | sin*|. 

4.13 If both functions y = f{x) and y = g(x) are differentiable on the interval (a, b) and intersect 
somewhere on (a, b) then the function max{/(x), g(x)} is not differentiable at the point(s) 
where f(x) = g(x). 

4.14 If a function is twice differentiable at a local maximum (minimum) point then its second 
derivative is negative (positive) at that point. 

4.15 If both functions y = f{x) and y = g(x) are non-differentiable at x = a then f(x) + g(x) is 
also not differentiable at x = a. 

4.16 If a function y = /(JC) is differentiable and a function y = g(x) is not differentiable at x = a 
then f(x) x g(x) is not differentiable at x = a. 

4.17 If both functions y = f(x) and y = g(x) are not differentiable at x = a then f{x) x g(x) is 
also not differentiable at x = a. 

4.18 If a function y = g(x) is differentiable at x = a and a function y = f{x) is not differentiable 
at g(a) then the function F(x) = f(g(x)) is not differentiable at x = a. 

4.19 If a function y = g(x) is not differentiable at x = a and a function y = f{x) is differentiable 
at g(a) then the function F(x) = f(g(x)) is not differentiable at x = a. 

4.20 If a function y = g(x) is not differentiable at x = a and a function y = /(JC) is not differentiable 
at g(a) then the function F(x) = f(g(x)) is not differentiable at x = a. 

4.21 If a function y — f(x) is defined on [a, b]> differentiable on (a, b) and f(a) = f(b), then there 
exists a point c e (a, b) such that f(c) = 0. 

4.22 If a function is twice-differentiable in a certain neighbourhood of the point x = a and its 
second derivative is zero at that point then the point (a, f(a)) is a point of inflection for the 
graph of the function. 

4.23 If a function y = f(x) is differentiable at the point x = a and the point (a, f(a)) is a point of 
inflection on the function's graph then the second derivative is zero at that point. 

4.24 If both functions y = f(x) and y = g(x) are differentiable on R then to evaluate the 
limit lim^oo 4 4 in the indeterminate form of type [^] we can use the following rule: 
nm^oo g(x) - nrn^oo gf(x). 

4.25 If a function y = f(x) is differentiable on (a, b) and limJC_^+ / '(JC) = oo then 
l i m ^ ^ f{x) = oo. 

4.26 If a function y = f(x) is differentiable on (0, oo) and lim^oo f(x) exists then lim^oo f'(x) 
also exists. 

4.27 If a function y = f(x) is differentiable and bounded on (0, oo) and lim^oo / '(JC) exists then 
lim^^oo f(x) also exists. 

4.28 If a function y = f(x) is differentiable at the point x = a then its derivative is continuous at 
x = a. 

4.29 If the derivative of a function y = f(x) is positive at the point x = a then there is a neigh­
bourhood about x = a (no matter how small) where the function is increasing. 

4.30 If a function y = f(x) is continuous on (a, b) and has a local maximum at the point c e (a, b) 
then in a sufficiently small neighbourhood of the point JC = c the function is increasing on the 
left and decreasing on the right from JC = c. 
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4.31 If a function y — f(x) is differentiable at the point x = a then there is a certain neighbourhood 
of the point x = a where the derivative of the function y = f(x) is bounded. 

4.32 If a function y = f(x) at any neighbourhood of the point x = a has points where f'(x) does 
not exist then f\a) does not exist. 

4.33 A function cannot be differentiable only at one point in its domain and non-differentiable 
everywhere else in its domain. 

4.34 A continuous function cannot be non-differentiable at every point in its domain. 
4.35 A function cannot be differentiable at just one point without being continuous in a certain 

neighbourhood of that point. 

3.5. Integral Calculus 

5.1 If the function y = F(x) is an antiderivative of a function y = f(x) then fa f(x)dx = 
F{b) - F(a). 

5.2 If a function y = f(x) is continuous on [a, b] then the area enclosed by the graph of y = /(JC), 
OX, x = a and x = b numerically equals f f(x)dx. 

5.3 If f% f(x)dx > 0 then f(x) > 0 for all x e [a, b]. 
5.4 If y = f{x) is a continuous function and k is any constant then: f kf(x)dx = k f f(x)dx. 
5.5 A plane figure of an infinite area rotated about an axis always produces a solid of revolution 

of infinite volume. 
5.6 If a function y = f{x) is defined for any x e [a, b] and fa \f(x)\dx exists then fa f(x)dx 

exists. 
5.7 If neither of the integrals fa f(x)dx and fa g(x)dx exist then the integral fa (/(*) + g(x))dx 

does not exist. 
5.8 If Hindoo f(x) = 0 then f^° f(x)dx converges. 
5.9 If the integral f™ f{x)dx diverges then the function y = f(x) is not bounded. 

5.10 If a function y = f(x) is continuous and non-negative for all real x and Y^T=\ f^ *s ^n^ te 

then ff° f(x)dx converges. 
5.11 If both integrals f™ f(x)dx and f™ g(x)dx diverge then the integral J^° (f(x) + g(x))dx also 

diverges. 
5.12 If a function y = f(x) is continuous and f™ f(x)dx converges then Hindoo f(x) = 0. 
5.13 If a function y = f(x) is continuous and non-negative and f£° f(x)dx converges then 

lim^oo f(x) = 0. 
5.14 If a function y = f(x) is positive and not bounded for all real x then the integral f™ f(x)dx 

diverges. 
5.15 If a function y = f(x) is continuous and not bounded for all real x then the integral f™ f(x)dx 

diverges. 
5.16 If a function y = f(x) is continuous on [1, oc) and f™ f(x)dx converges then f™ \f(x)\dx 

also converges. 
5.17 If the integral f™ f{x)dx converges and a function y = g(x) is bounded then the integral 

ir f(x)g(x)dx converges. 



Chapter 4 

SUGGESTED SOLUTIONS AND NEW CHALLENGES 

This chapter is the collection from the previous chapter augmented by counter-examples with 
reference to pedagogic aspects which might arise when learners try to construct examples for 
themselves. Questions are offered to prompt the reader to appreciate general classes of counter­
examples, not just particular ones. Comments are offered about how the examples might have arisen, 
and how they can be tinkered with. 

4.1. Functions 

Counter-Example 4.1.1 
The tangent to a curve at a point is the line which touches the curve at that point but dose not cross 
it there. 

(a) The jc-axis is the tangent line to the curve y = x3 but it crosses the curve at the origin. 

(b) In the second figure, the three straight lines just touch and do not cross the curve at a point but 
none of them is the tangent line to the curve at that point. 

What other functions like y = x3 have a similar "crossing tangent"? Can you make the tangent 
line which crosses the curve have any specified slope, or must it be horizontal? What other possi­
bilities are there for a cusp point at which there are multiple "touching" lines? 

25 



26 Using Counter-Examples in Calculus 

Counter-Example 4.1.2 

The tangent line to a curve at a point cannot touch the curve at infinitely many other points. 
The tangent line to the graph of the function y = sin x touches the curve at x = | and infinitely 

many other points. 

What other functions like y = sin A: can you think of with similar tangents? Can you make up 
a function which is not based on trigonometric functions? Try assembling a function by gluing 
together copies of one function, or a class of functions. For example copies of the following function 
could be translated to the intervals [2, 4], [4, 6 ] , . . . , and also into the negatives to produce a periodic 
function. Notice that the glued function would be differentiable everywhere. 

_ JJC(JC- 1) i fO<jc< 1 
y~\-(x- 1)(JC - 2) if 1 < x < 2. 

More elaborately, y = x sin x or even xn sin x with non-trigonometric counterparts like 

y = 2nx(x - l)(x2 + 1) if n < x < n + 1. 

Lots of examples can be drawn freehand, even though their formulae cannot be written down. 

Counter-Example 4.1.3 

A quadratic function of x is one in which the highest power of x is two. 
In both functions y = x2 + ^/x and y = x2 + x - \ the highest power of x is two but neither 

is quadratic. What alterations could you make to the counter-example and still produce a counter­
example? 
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Counter-Example 4.1A 
If both functions y = f(x) and y = g(x) are continuous and monotone on R then their sum 
f(x) + g(x) is also monotone on R. 

f(x) = x + sinx, g(x) = —x. 

Both functions f(x) and g(x) are monotone on R but their sum f{x) + g(x) = sin* is not 
monotone on R. 

What is it about the example offered which makes it work? Perhaps you thought of monotone 
as increasing, rather than as either non-decreasing or non-increasing? How could you exploit the 
same idea with other functions? The function y = k (constant) is also monotone: How could you 
make use of this to produce a counter-example? For example, you can use zigzag functions such as 

/ ( * ) = 
x + 2 f or x < — 1 
-x for - 1 < x < 1 
x — 2 for 1 < x 

and write them as the sum of two monotone functions. 
How obscure can you make two functions and yet have their sum monotone? 
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Counter-Example 4.1.5 

If both functions y = f{x) and y = g(x) are not monotone on R then their sum f(x) + g(x) is not 
monotone on R. 

Both functions f(x) = x + x2 and g(x) = x - x2 are not monotone on R but their sum 
/(*) + g(x) = 2x is monotone on R. 
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What is the relation between this statement and statement 1.4? In what ways are the examples 
used to construct the counter-example the same, and in what ways different? Can you exploit a 
constant function to make a counter-example? What is the most general counter-example you can 
construct? Did you think of using Pythagoras (e.g. x sin2(jt) and x COS2(JC))? 
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Counter-Example 4.1.6 
If a function y = f(x) is continuous and decreasing for all positive x and if f(X) is positive, then 
the function has exactly one root. 

The function y = ± is continuous and decreasing for all positive x and y(l) = 1 > 0 but has no 
roots. 
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What is it that makes the counter-example work? Was that a surprise? Why can you not make an 
example which has two roots when x > 0? What other functions can you construct which behave 
like y = -? What about adding such functions together? Can you make one which oscillates but 
still fails to cross the x-axis? 

Counter-Example 4.1.7 
If a function y = f(x) has an inverse function x = f~x (y) on (a, b) then the function f(x) is either 
increasing or decreasing on (a, b). 

The function below is a one-to-one function and has an inverse function on (0, 3) but it is neither 
increasing nor decreasing on that interval. 

What is it about the counter-example offered which makes it work? Did you assume it had to be 
continuous? How complicated an example can you make using the same idea? 
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Counter-Example 4.1.8 

A function y = f(x) is bounded on R if for any x e R there is a number M > 0 such that | f(x) \ < M. 
For the function y — x2, for any value of x chosen in R, there is a number M > 0 

(M = x2 + s where s > 0) such that |/(x)| < M. 

Comments. The order of words in this statement is very important. The correct definition of a 
function bounded on R differs only by the order of words: A function y = f(x) is bounded on R if 
there is 

M > 0 such that for any x e R |/(JC)| < M. 

What is the same and what is different about the following two statements and the original 
statements? 

For all x e R there exists a y e R such that x < y 

and 

There exists y e R such that for all x e R, x < y. 

What other examples of statements can you find where interchanging the order of the existence 
and the for-all makes a difference? 

Counter-Example 4.1.9 

If g(a) = 0 then the function F(x) = ^ has a vertical asymptote at the point x = a. 
The function y = ^ - does not have a vertical asymptote at the point x = 0. 
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What is it that makes the example work as a counter-example? 
What about y = %* and y = ^ ? What about y = 4^ f ? Generalise! 
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Counter-Example 4.1.10 
If g(a) = 0 then the rational function R(JC) = jj& (both f(x) and g(x) are polynomials) has a 
vertical asymptote at the point x = a. 

The rational function y = ^-=p does not have a vertical asymptote at the point x=l. 
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The function given does not even have a value at x = 1, though it is very like y = x + 1. How 
could the function be altered so that the value of x of interest in the statement was x = al How 
could the function be altered so as to be a rational polynomial and not one which is an ordinary 
polynomial in disguise? 

Specifying a value at JC = 1 other than 2 makes the given example discontinuous. Specifying a 
value of 2 at JC = 1 makes it continuous. Generalise to other rational functions which are continuous 
at the value of JC you are considering. 

Counter-Example 4.1.11 
If a function y = f(x) is unbounded and non-negative for all real x then it cannot have roots xn 

such that xn —► oo as n —► oc. 
The function y = \x sin x\ has infinitely many roots xn such that xn -► oo as n -> oc. 

What role does the absolute value play in the example, in terms of being a counter-example to 
the statement? What other functions could you use as counter-example? What would be the effect 
on the zeros of using y — \x sin(x2)|? 
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Counter-Example 4.1.12 

A function y = f{x) defined on [a, b] such that its graph does not contain any pieces of a horizontal 
straight line cannot take its extreme value infinitely many times on [a, b]. 

The function 

{ sinj , if x ^ 0 
0, if x = 0 

takes its absolute maximum value (=1) and its absolute minimum value (=—1) infinitely many 
times on any closed interval containing zero. 
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Counter-Example 4.1.13 

If a function y = f(x) is continuous and increasing at the point x = a then there is a neighbourhood 
(x - 8,x + 8),8 > 0 where the function is also increasing. 

The function 
f ? 2 

„ . I JC + JC sin —, i f x ^ O 
/(*) = 1 x 

[0, if x = 0 
is increasing at the point x = 0 but it is not increasing in any neighbourhood (—8, 5), where 8 > 0. 

Comments. The definition of a function increasing at a point is: 
A function y = f(x) is said to be increasing at the point x = a if in a certain neighbourhood 

(a - 8, a + 5), 8 > 0 the following is true: 

if JC < a then /(JC) < f(a) and if * > a then /(*) > f(a). 
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Counter-Example 4.1.14 

If a function is not monotone then it does not have an inverse function. 
The function 

y = 
x, if x is rational 
-x, if x is irrational 

is not monotone but it has the inverse function 
f y, if y is rational 

—y, if y is irrational. x = 

It is impossible to draw the graph of such a function but a rough sketch gives an idea of its 
behaviour. We use fine dots to indicate that some but not all points on the implied curve are actually 
on the graph: 
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Counter-Example 4.1.15 
If a function is not monotone on (a, b) then its square cannot be monotone on {a, b). 

The function 
J x, if x is rational 
| —x, if x is irrational 

defined on (0, oo) is not monotone but its square f2(x) = x2 is monotone on (0, oo). 
It is impossible to draw the graph of the function y = f(x) but the sketch below gives an idea of 

its behaviour. 
4-

3-

2-
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Comments. The functions in counter-examples 4.1.14 and 4.1.15 may seem artificial and without 
practical use at first. Nevertheless, the Dirichlet function 

1, if x is rational 
0, if x is irrational 

which is very similar to the functions in counter-examples 4.1.14 and 4.1.15, can be represented 
analytically as a limit of cosine functions that have many practical applications: 

fix) = lim lim (cosCfcljrjc))2". 
k-^oon-+oo 

-*rr 

H4 

—2™ 

For k and n much bigger than 2, the graph becomes too dense to draw! 
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4.2. Limits 

Counter-Example 4.2.1 

If f(x) < g(x) for all x > 0 and both lim^oo f(x) and Hindoo g(x) exist then Hindoo f(x) < 
lim^oogix). 

For the functions f(x) = —A and gO) = A, /(JC) < g(x) for all x > 0 but lim^oo /(JC) = 
lim^oog(x) = 0 . 

L-' 
*~r 110 is 20 

,1 

What is it that makes this example work as a counter-example? How could the conjecture be 
modified to make it correct? 
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Counter-Example 4.2.2 
The following definitions of a non-vertical asymptote are equivalent: 

(a) The straight line y = mx + c is called a non-vertical asymptote to a curve f{x) as x tends to 
infinity if limJC_),oo(/(.x) — (mx + c)) = 0. 

(b) A straight line is called a non-vertical asymptote to a curve as x tends to infinity if the curve 
gets closer and closer to the straight line (as close as we like) as x tends to infinity but does not 
touch or cross it. 

As x tends to infinity the function y = ^ ^ gets closer to the x-axis from above and below and 
lim> >(* 0) = 0. According to the first definition the x-axis is the non-vertical asymptote of 
the function y = ^ , but its graph crosses the x-axis infinitely many times, so the definitions (a) 
and (b) are not equivalent. 

Comments. The correct definition is (a). The idea of an asymptotic behaviour is getting closer to a 
(non-vertical) straight line but this does not exclude touching or crossing it. Note that the function 
has not been specified at x = 0. 

How could the example be modified to use y = mx as the asymptote for m ^ 0? 
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Counter-Example 4.2.3 

The tangent line to a curve at a certain point that touches the curve at infinitely many other points 
cannot be a non-vertical asymptote to this curve. 

The tangent line y = 0 to the curve y = ŝ L* at x = n touches the curve at infinitely many other 
points and is a non-vertical asymptote to this curve. Note that the function has not been specified 
at x = 0. 

P^v ■CU 

What role is played in this example by the square-function and by £? Modify the example so 
that the asymptote is any line y = mx. Could a function be both tangent to and cross the asymptote 
infinitely often? 
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Counter-Example 4.2.4 
The following definitions of a vertical asymptote are equivalent: 

(a) The straight line x = a is called a vertical asymptote for a function y = f(x) if limJC_>fl+ f(x) = 
±oc or lim^fl- f(x) = ±00. 

(b) The straight line x = a is called a vertical asymptote for the function y = f(x) if there are 
infinitely many values of f(x) that can be made arbitrarily large in absolute value as x gets 
closer to a from either side of a. 

There are infinitely many values of the function y = £ sin £ that can be made arbitrarily large in 
absolute value as x gets closer to 0 (for example, when x = nn+\)n^ ^u t ^ e stTaight l in e -̂  = 0 is 
not a vertical asymptote of this function because there are also places arbitrarily close to 0 where 
the value is not large in absolute value (for example when x = ^ ) . 

Comments. The correct definition is (a). 
What is it about the example which makes it a counter-example? Must all counter-examples 

oscillate infinitely often? Can you construct a function with finitely many (infinitely many) vertical 
asymptotes? 
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Counter-Example 4.2.5 

If limx-^a f(x) exists and l im*^ g{x) does not exist because of oscillation of g(x) near x = a then 
limx^a(f(x) x g(x)) does not exist. 

For the function f{x) = x the limit l im^o x — 0 and for the function g(x) = sin - the 
1 x 

limit l im^o sin ± does not exist because of increasingly rapid oscillation of g(x) near x = 0, but 
lim^oC/C*) x g(x)) = limjc-^oC^sin ±) = 0. Note that in the second graph, the function is not 
specified at x = 0. 

...^ y. 0:2Ty 

What functions could replace f(x) in the counter-example? 

Counter-Example 4.2.6 

If a function y = f(x) is not bounded in any neighbourhood of the point x = a then either 
l i m ^ a + \f(x)\ = oo or l im*^- | /(*)| = oo. 

The function f(x) = £ cos A is not bounded in any neighbourhood of the point x = 0 but neither 
limx_>0+ 11 cos i I nor l i m ^ o - 17 ^ cos ± I exist. 

w 

' 2 

1 &n 
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/ ^ ' 1 ^ ffl 
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i 

Why has the sine function of 2.5 been replaced by the cosine function for this counter-example? 
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Counter-Example 42.7 
If a function y = fix) is continuous for all real x and limn^oo fin) = A then lim^oo fix) = A. 

For the continuous function y=cos(2Ttx) the limit lim„^ooCOs(2;nz) equals 1 because 
cos(27ra) = 1 for any natural n but lim^oo cos(27rx) does not exist. 

81 / \ J -6I / 11" 41 1 I I -

2-~| 

. ^ — J ^ J 

21 1 

^--

y 

I | j f y 

1 / 1 I I 1 I M1 1 v 141 / I p 

cos(27u:) 

Comments. Statement 7 is the converse of the true statement: 

lim /(ft) = A. lim /(JC) = A 
Ai->-00 

The example offered has a countable number of points (the integers) at which it takes the value 
A. Could a function take the value A on an even larger set, still meet the conditions, and yet be a 
counter-example? Modify the example so that limx_>fl fin) = A but / is not constant on ft, and 
still gives a counter-example. 
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4.3. Continuity 

Counter-Example 4.3.1 

If the absolute value of the function y = f{x) is continuous on {a, b) then the function is also 
continuous on (a, b). 

The absolute value of the function 

, x f - 1 , i f * < 0 
y(x) = [h if*>o 

is \y(x)\ = 1 for all real x and it is continuous, but the function y{x) is discontinuous. 

3 2 

-2-

_ . j . . H 

1 0 

™uou™ h~* 

y 

: i 

-1 x < 0 
1 0 < ^ 

What is it about the example which makes it work as a counter-example? If f(x) is continuous 
on an interval (a, b), must |/(JC)| be continuous? What about /( |JC|)? 
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Counter-Example 4.3.2 
If both functions y = f(x) and y = g(x) are discontinuous at x = a then f(x) + g(x) is also 
discontinuous at x = a. 

fix) = , 
x — a 

1 
g(x) =x+ 

if x ^ a 

, if x ^ a 
x — a 

f{x) = g(x) = - , ifx = a. 

Both functions f{x) and g{x) are discontinuous at x = a but the function 

JC, if x ^ a 
/(*) + *(*) = 

is continuous at x = a. For example, if a = 2: 

a, if x = a 

Let h{x) be any continuous function on an interval (a,'b)9 and d{x) a function discontinuous at 
x = c in that interval. Then /i(jc) - d{x) is discontinuous at x = c as is /i(x) + d(x)9 and their sum 
is continuous at x = c. How might this construction be generalised? 
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Counter-Example 4.3.3 

If both functions y = f{x) and 3; = g(x) are discontinuous at x = a then f(x) x g(x) is also 
discontinuous at x = a. 

Both functions 

/ ( * ) = 
smjc :, if JC ̂  0 

X 

2, ifjc = 0 

and 

g(x) = { 

smjc :, if JC ̂  0 

1 
I 2 ' 

if JC = 0 

are discontinuous at the point JC = 0 but their product 

f{x) x g(x) = 

is continuous at the point JC = 0. 

sin2jc 

1, 

: , i f j c ^ O 

if JC = 0 

10 ^ 

_J__ 

'Z'"1 

T^ 0 

2™ 
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* 1 0 

..,3 T 

sin(;c) 

-10 

3 T T 
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What is it about the example which makes it work as a counter-example? How might you 
generalise the example? For example, let F(x) and G(x) be any functions discontinuous at x = a 
but continuous elsewhere. 

Let 
c if x = a 
F{x) elsewhere fix) ■t 

where l i m ^ ^ F(x) ^ c and let 

g(x) = 
r F(x)G(x) 
hm if x = a 
x^a c 
G(x) otherwise. 

Then f(x)g(x) is also a counter-example to the conjecture. 
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Counter-Example 4.3.4 

A function always has a local maximum between any two local minima. 
The functions y = x +2

ai and y = sec2 x have no maximum between two local minima: 
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What if the function is also continuous? What if it is bounded on the interval? Is there any other 
form of discontinuity which would work as a counter-example? For instance, does 

fix) = \ in ( — ) i f * # 0 sin 

0 if x = 0 
work as a counter-example? 

There are functions which have a local maximum at every rational: Consider 

[ 0 if x is irrational 

/(*)={ 1 . p 
I - if x is — in lowest terms. 
[q q 

If you are at x = p/q, then any rational within 1/10#, say, must have smaller value, and at 
irrationals the value is 0. Is this a counter-example to the conjecture? 
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Counter-Example 4.3.5 
For a continuous function there is always a local maximum between any two local minima. 

The continuous function below does not have a local maximum between its two local minima. 

2 i 

( J C - 1 ) 2 + 1 

2 

( x - 4 ) 2 + l 

x<2 
2<;cand;c<3 

3 < J C 

Comments. A strict inequality in the definition of a local maximum is accepted here: A function 
y = f(x) has a local maximum at the point x = a if f(a) > f(x) for all x within a certain 
neighbourhood (a - 8, a + 5), 8 > 0 of the point x - a. Otherwise in the above graph we have to 
treat each point of the line segment as a local maximum. 
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Counter-Example 4.3.6 

If a function is defined in a certain neighbourhood of point x = a including the point itself and 
is increasing on the left from x = a and decreasing on the right from x = a, then there is a local 
maximum at x = a. 

The function 
1 

y = ( * - 3 ) 2 ' if JC ̂  3 

if JC = 3 

is defined for all real x, increasing on the left from the point x = 3 and decreasing on the right from 
the point x = 3 but has no a local maximum at the point x = 3. 

-W-jr 

1 
U-3)2 otherwise 

What could be changed in the example and still it is a counter-example? What has to be done to 
convert local maxima to local minima? 
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Counter-Example 4.3.7 

If a function is denned on [a, b] and continuous on (a, b) then it takes its extreme values on [a, b\. 
The function 

1 / 7t 7T\ 
tanjc, if x e I — , — I 

V 2 2 / 
0, ifx = ± -

2 
is defined on [—|, | ] and is continuous on (—f, f) but it has no extreme values on [—f, f ]• 

— I • • ■ - | ■ ■ ■ ■ i ■ ^ > „ < * r i ■ r * 
-1.5 -1.0 -j^*"^Q 0J5 1J0 15 

0 X=±K 

0 ' = - }» 
1 1 

tan(jc) - — n < A: and x < — K 

Use the function f(x) = l/x to construct a similar counter-example. 
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Counter-Example 4.3.8 

Every continuous and bounded function on (—00, 00) takes on its extreme values. 
The function f(x) = tan_1(x) is continuous and bounded on (—00, 00) but takes no extreme 

values. 

~^jy 

-10 
• arctan(jc) 

Why is f(x) = 4/x not a counter-example? Is the function 

1 
- 1 i f j c < 0 [ l - x 

a counter-example? What distinguishes it from tan -1x as a counter-example? 

1 -
1 

JC+ 1 
i f j c > 0 
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Counter-Example 4.3.9 
If a function y = f(x) is continuous on [a, b], the tangent line exists at all points on its graph 
and f{a) == f(b) then there is a point c in (a, &) such that the tangent line at the point (c, /(c)) is 
horizontal. 

The function y = f(x) below is continuous on [ -1 , 1], the tangent line exists at all points on 
the graph and / ( - 1 ) = / ( l ) but there is no point c in ( - 1 , 1) such that the tangent line at the point 
(c, /(c)) is horizontal. 

Must there be a point at which the tangent line is either horizontal or vertical in order to be a 
counter-example? In other words, are there other types of counter-examples? 
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Counter-Example 4.3.10 
If on the closed interval [a, b] a function is bounded, takes its maximum and minimum values and 
takes all its values between the maximum and minimum values then this function is continuous 
on [a, b], 

The function f(x) = x for 0 < x < 2, but /(0) = 2, f{2) = 0 satisfies the three conditions 
above, but is not continuous on [0, 2]. 

2.0 

1.5 

1.0 

0.5 

i y | i | yf 

\s I n 
* ' • ' ■ I ■ ' ' ' 1 ■ ■ ■ ■ i ■ ' ■ ■ 4 

0.5 1.0 1.5 2.0 

What if the function satisfies all three conditions on every subinterval? 
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Counter-Example 4.3.11 
If on the closed interval [a,b]a function is bounded, takes its maximum and minimum values and 
takes all its values between the maximum and minimum values then this function is continuous at 
some points or subintervals on [a, b\. 

The function 

1, 
X, 

-X, 

0, 

if JC = 0 
if x is rational, 
if x is irrational, 
i f * = 1 

x^ 1 
x ^ 1, x ^ / ( * ) = 

satisfies all three conditions above but it is discontinuous at every point on [—1, 1]. It is impossible 
to draw the graph of the function y = f(x) but the sketch below gives an idea of its behaviour. 
Again, fine dots indicate that some but not all points on the implied line are present. 

-i-$™fr 

~G5-

■1.0 0.5 

-fbS-

• ™ H h * ' 

0i5 ljO 

What could replace rational/irrational as a distinction between the specified values? Why is the 
condition imposed that f{x) = 0 if x = 1 in the counter-example? 
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Counter-Example 4.3.12 

If a function is continuous on [a, b] then it cannot take its absolute maximum or minimum value 
infinitely many times. 

The function below takes its absolute maximum value (3) and its absolute minimum value (1) 
an infinite number of times on the interval [—1,4]. 

4-n 

, !>... 
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~ . . .1 
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~~y 

1 1 
X 

1 1 I ■ I i I I j i I i j 
- 1 0 1 2 3 4 

What about having the same local maximum (or minimum) infinitely many times? 
Would x sin2 x be a counter-example? 

3 *<1 
5 - 2 x l<xand;c<2 

1 2<x 
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Counter-Example 4.3.13 
If a function y = f{x) is defined on [a, b] and f(a) x f(b) < 0 then there is some point c e (a,b) 
such that /(c) = 0. 

The function 
1 

/ ( * ) = 
-, i f x ^ O 

x 
1, if JC = 0 

is defined on [—1, 1] a n d / ( - l ) x / ( l ) = (-1) x (1) = - 1 < 0 but there is no point c on [ -1 , 1] 
such that f(c) = 0. 
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What is the key to making this counter-example work? How does that inform other choices of 
counter-example? 
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Counter-Example 4.3.14 

If a function y = f(x) is defined on [a, b] and continuous on (a, b) then for any TV € (f(a), f(b)) 
there is some point c e (a, b) such that f(c) — N. 

The function below is defined on [1, 3] and continuous on (1, 3) but for no N between f(l) and 
/(3) is there a corresponding c for which f(c) = N. In other words, for any N e (f(l), /(3)) there 
is no point c € (1, 3) such that f(c) = N. 

-

y 

Jf 
* i 

What can you vary in this example and still defeat the conjecture? How could you modify the 
conjecture so as to defeat this counter-example and make the conjecture true? 
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Counter-Example 4.3.15 
If a function is discontinuous at every point in its domain then the square and the absolute value of 
this function cannot be continuous. 

The function 
I 1, if x is rational 
I — 1, if x is irrational 

is discontinuous at every point in its domain but both the square and the absolute value f2(x) = 
| f(x) | = 1 are continuous. It is impossible to draw the graph of the function y = f(x) but the sketch 
below gives an idea of its behaviour. 

1 ' 1 
H8 6 4 
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What can be changed and still preserve the counter-example? For example, rationals could be 
replaced by any dense subset of R with dense complement. 
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Counter-Example 4.3.16 

A function cannot be continuous at only one point in its domain and discontinuous everywhere else. 
The function 

*(*) = 
x, if x is rational 
—x, if x is irrational 

is continuous at the point x = 0 and discontinuous at all other points on R. It is impossible to draw 
the graph of the function y = g(x) but the sketch below gives an idea of its behaviour. 
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What can be changed without losing the counter-example? What properties do the rationals and 
irrationals share which make the counter-example work? 
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Counter-Example 4.3.17 
A sequence of continuous functions on [a, b] always converges to a continuous function on [a, b\. 

The sequence of continuous functions fn{x)=xn,neN on [0, 1] converges to a discontinuous 
function when n —► oo: 

,. (0 , if* € [0,1) 
}Toof»iX)= 1, i f * = l . 
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What about f(x) = xn for various nl 
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4.4. Differential Calculus 

As differentiation is usually presented as a phenomenon occurring at a point (a function is differ-
entiable at a point c, in the interval (a, b), perhaps even at every such point in the interval) there 
are general strategies for constructing and then modifying counter-examples. If a counter-example 
is based on something going wrong at just one point, then you can try to modify it so that it goes 
wrong at finitely many points, then infinitely many, then at every point in an interval. If a counter­
example is based on a whole interval, then you can try to modify it so that it goes wrong on every 
subinterval, or on some specific subinterval only. 

Counter-Example 4.4.1 

If both functions y = f(x) and y = g(x) are differentiable and f(x) > g(x) on the interval (a, b) 
then f{x) > g\x) on (a, b). 

Both functions f(x) = x/5 + 2 and g(x) = x/2 + 1 are differentiable on (0, 3) and f(x) > g(x) 
on that interval but fix) < g'(jc) on (0, 3). 

■jr + 2 ' T ' + 1 

In order to appreciate the generality of which this counter-example is only a single instance, 
construct examples which are counter-examples on subintervals only, or at a single point only. Given 
fix) differentiable on (a, b) construct families of g(x) for which f(x) > g(x) but fix) < g\x) on 
ia, b) or on some specified subinterval. 

What about a converse conjecture: If fix) > g\x) on (a, b), then f(x) > g(x) on that interval. 
The counter-examples to 4.4.1 can be modified to be counter-examples to this as well. However, 
if the interval is the whole of R, is there a counter-example valid for every point x9 or must there 
always be some interval on which fix) > gix)l 
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Counter-Example 4.4.2 
If a non-linear function is differentiable and monotone on (0, oo) then its derivative is also monotone 
on (0, oo). 

The non-linear function y = x + sin x is differentiable and monotone on (0, oo) but its derivative 
/ = 1 + cosx is not monotone on (0, oo). 

x + sin(jc) 

Tinker with the example given to try to find the essential idea which makes the example into a 
counter-example. What conditions must a differentiable function g(x) satisfy if g(x) is not monotone, 
but g(x) + ax is monotone for some constant al 
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Counter-Example 4.4.3 

If a function is continuous at a point then it is differentiable at that point. 
The function y= \x\ is continuous at the point x = 0 but it is not differentiable at that point. 
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Use \x\ to construct continuous functions which are not differentiable at n points (for n = 
2, 3,. . .) , and at countably many points. 

What changes could be made to \x\ and still provide a counter-example? For example what about 
the function 

/ ( j c ) = p i i f * > 0 ? 
— (—JC)2 if x < 0 
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Counter-Example 4.4.4 
[f a function is continuous on R and the tangent line exists at any point on its graph then the function 
is differentiable at any point on R. 

The function y = \fx?\s continuous on R and the tangent line exists at any point on its graph 
but the function is not differentiable at the point x = 0. 
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What can you change in y = x* and still have a counter-example? Do you need to have the same 
function on both sides of the origin? What is special about the origin? 
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Counter-Example 4.4.5 

If a function is continuous on the interval {a, b) and its graph is a smooth curve (no sharp comers) 
on that interval then the function is differentiable at any point on (a, b). 

(a) The function y = %fx is continuous on R and its graph is a smooth curve (no sharp comers), 
but it is not differentiable at the point x = 0. Since computer algebra systems require x to 
be non-negative when fractional indices are involved, the specification of the function is more 
complicated than might be expected. 
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(b) The function below is continuous on R and its graph is a smooth curve (no sharp comers), but 
it is non-differentiable at infinitely many points on R. 
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Constructing functions which are non-differentiable at infinitely many points on a finite interval 
such as [0, 1] can be achieved by scaling and translating the individual components. 
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Counter-Example 4.4.6 
If the derivative of a function is zero at a point then the function is neither increasing nor decreasing 
at this point. 

The derivative of the function y = x3 is zero at the point x = 0 but the function is increasing at 
this point. 
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Increasing at x means that for some 8 > 0, / ( * + 0 > /(*) for all f e (0, 5) and /(x - f) < /(*) 
for all t€ (0,5). 

Counter-Example 4.4.7 
If a function is differentiable and decreasing on (a, b) then its gradient is negative on (a, b). 

The function y = -x3 is differentiable and decreasing on R but its gradient is zero at the point 
x = 0. 
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Modify the conjecture (and prove it) in order to avoid this type of counter-example. Is it just that 
f(x) = 0 for some x which makes this a counter-example? 
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Counter-Example 4.4.8 

If a function is continuous and decreasing on (a, b) then its gradient is non-positive on {a, b). 
The function below is continuous and decreasing on R but its gradient does not exist at the point 

x= 1. 

— " 3 - j r A < I 
5 - 3 x I < x 

What is missing in the conjecture which allows the counter-examples? 

Counter-Example 4.4.9 

If a function has a positive derivative at every point in its domain then the function is increasing 
everywhere in its domain. 

The derivative of the function y = -±(x / 0) is / = j s , which is positive for all x ^ 0. 
According to the definition, a function is increasing in its domain if for any x\,x2 from its domain 

from x\ < x2 it follows that f(x\) < f(x2). If we take x\ = - 1 and x2 = l(x\ < x2) then in this 
case/(*i) > f(x2). 
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What if the function is specified on an interval, so there are no gaps in its domain? 
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Counter-Example 4.4.10 
If a function y = f(x) is defined on [a, b] and has a local maximum at the point c e (a, b) then 
in a sufficiently small neighbourhood of the point x = c the function is increasing on the left and 
decreasing on the right from x = c. 

The function below is defined on [0, 2] and has a maximum at the point 1 in [0, 2] but it is neither 
increasing on the left nor decreasing on the right from the point x = 1. 
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Comments. The definition of a local maximum requires neither differentiability nor continuity of 
a function at the point of interest: A function y = f(x) has a local maximum at the point x = c if 
f(c) > f(x) for all x within a certain neighbourhood (c — 5, c + 8), 8 > 0 of the point x = c. 

What additional assumptions about / are needed to make the conjecture valid? 
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Counter-Example 4.4.11 
If a function y = f(x) is differentiable for all real x and /(0) = f(0) = 0 then f(x) = 0 for all 
real x. 

Both the function y = x2 and its derivative y' = 2JC equal zero at the point x — 0 but the function 
is not zero for all real x. 
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There are functions for which f^n\0) = 0 for all positive integers n, and yet f(x) ^ 0. For 
- i 

example, f(x) = e^(x ^0) and /(0) = 0 has all its derivatives at 0 being 0, without itself being 
identically 0. 
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Counter-Example 4.4.12 
If a function y = f(x) is differentiable on the interval (a, b) and takes both positive and negative 
values on (a, b) then its absolute value |/(JC)| is not differentiable at the point(s) where f(x) = 0, 
e.g. \f(x)\ = \x\ or | /(*)| = | sin*|. 

The function y = x3 is differentiable on R and takes both positive and negative values but its 
absolute value y = \x3\ is differentiable at the point x = 0 where the function equals zero. 
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Comments. To make the statement true it should conclude: "...then its absolute value \f(x)\ is not 
differentiable at the points where both f(x) = 0 and f(x) ^ 0." 

Counter-Example 4.4.13 

If both functions y = f(x) and y = g(x) are differentiable on the interval (a, b) and intersect 
somewhere on {a, b) then the function max{/(jc), g(x)} is not differentiable at the point(s) where 
fix) = g(x). 

The function max{x3, x4} on (—1, 1) is differentiable at the point x = 0 where the functions 
y = x3 and y = x4 intersect. 
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Comments. To make the statement true it should conclude: "...then the function max{/0), g(x)} 
is not differentiable at the point(s) where both f(x) = g(x) and f{x) ^ g!(x)" 
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Counter-Example 4.4.14 

If a function is twice differentiable at a local maximum (minimum) point then its second derivative 
is negative (positive) at that point. 

The function y = —x4 is twice differentiable at its maximum point x = 0 but the second 
derivative is zero at this point. 
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The function y = x4 is twice differentiable at its minimum point x = 0 but the second derivative 
is zero at that point. 

What do these counter-examples say about seeking the maximum and minimum of differentiable 
functions? 
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Counter-Example 4.4.15 
If both functions y = f(x) and y = g(x) are non-differentiable at x == a then f{x) + g(x) is also 
not differentiable at x = a. 

Both functions f(x) = |JC| andg(x) — — |JC| + 1 are not differentiable at x = Obutf(x)+g(x) = 1 
is differentiable at every x including x = 0. 

~*-rr-

-M + i —-11 

Comments. More generally, f{x) = A(x) and g(x) = B(x) — A(x), where A(x) is not differentiable 
and B(x) is differentiable at JC = a. Both /(JC) and g(x) are not differentiable, but f(x)+g(x) = B(x) 
is differentiable at x = a. 

Start with any differentiable function and represent it as the sum of two functions which are not 
differentiable at a single point; at a finite number of points; at infinitely many points; at any points. 
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Counter-Example 4.4.16 

If a function y = f(x) is differentiable and a function y = g(x) is not differentiable at x = a then 
f{x) x g{x) is not differentiable at x = a. 

The function f(x) = x is differentiable at x = 0 and the function g(x) = |JC| is not differentiable 
at x = 0, but the function f{x) x g(jt) = JC|JC| is differentiable at the point x = 0 (the derivative 
equals zero). 
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What is the same and what is different about this conjecture and the previous one, and about 
their counter-examples? 

Counter-Example 4.4.17 

If both functions y = f(x) and y = g(x) are not differentiable at x = a then f(x) x g(x) is also not 
differentiable at x == a. 

Both functions f(x) = \x\ and g(x) = —\x\ are not differentiable at the point x = 0 but the 
function f(x) x g(jc) = —\x\2 = — x2 is differentiable at JC = 0. 
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What is the same and what is different between 4.15 and 4.17? 
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Counter-Example 4.4.18 
If a function y = g(x) is differentiable at x = a and a function y = f(x) is not differentiable at 
g(a) then the function F(JC) = f(g(x)) is not differentiable at x = a. 

The function g(jc) = JC2 is differentiable at JC = 0, and the function /(JC) = |x| is not differentiable 
at g(0) = 0, but the function F(x) = f(g(x)) = \x2\ = x2 is differentiable at x = 0. 

What makes this counter-example work? How could it be altered and still be a counter-example? 

Counter-Example 4.4.19 

If a function y = g(x) is not differentiable at x = a and a function y = f(x) is differentiable at 
g(a) then the function F(JC) = f(g(x)) is not differentiable at x = a. 

The function g(jt) = |JC| is not differentiable at JC = 0, the function /(*) = x2 is differentiable 
at g(0) = 0, but the function F(x) = f(g(x)) = \x\2 — x2 is differentiable at x = 0. 

Note that if g is differentiable at a point JC = a, and / is differentiable at g(a) then f(g(x)) is 
also differentiable at JC = a. 
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Counter-Example 4.4.20 

If a function y = g(x) is not differentiable at x = a and a function y = f(x) is not differentiable at 
g(a) then the function F(JC) = f(g(x)) is not differentiable at x = a. 

The function g(x) = | x — j |x| is not differentiable at x = 0 and the function /(JC) = 2x+ |x| is 
not differentiable at g(0) = 0, but the function F(x) = /(#(*)) == 2 (|JC — j |x | ) + |§x - ±|x|| is 
differentiable at JC = 0. 
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It is instructive to show this using the definition of the derivative. 

F ' ( 0 ) = l i m
F ( A j : ) - F ( 0 ) 

Ax^o AX 

= lim 
A J C - > 0 

2 (§Ax - 5 | Ax|) + |§AJC - \ \Ax\\ 

Ax 
If Ax -> 0~ then 

2 ( f A x + ± A x ) + |Ax + ±Ax t. 2 A x - A x 
hm —— - - - L = hm = 1. 

AJC->O- AX AJC->O- AX 

If Ax -> 0+ then 

2 (^Ax - ±Ax) + NTAX - ±Ax | A X + \Ax 
lim —— — = lim - ■ J 

A J C - > 0 + 
= 1. 

Ax AJC^O+ A X 

Therefore F'(0) = 1. (Another way is to show that F(x) = x). 
How has the counter-example been constructed? How might others be found? 
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Counter-Example 4.4.21 
If a function y = f(x) is defined on [a, b], differentiable on (a, b) and f(a) = f(b), then there 
exists a point c e (a, b) such that f(c) = 0. 

The function shown below is defined on [0, 3], differentiable on (0, 3) and /(0) = /(3) = 2 but 
there is no point c in (0, 3) such that f(c) — 0. 
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What if / was differentiable (from the appropriate side) at one of the end points: Would there 
still be a counter-example? 
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Counter-Example 4.4.22 

If a function is twice-differentiable in a certain neighbourhood around x = a and its second derivative 
is zero at that point then the point (a, f(a)) is a point of inflection for the graph of the function. 

The function y = x4 is twice differentiate on R and its second derivative is zero at the point 
x = 0 but the point (0, 0) is not a point of inflection. 
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What conditions are necessary to be sure of an inflection point? What other functions share the 
same property as the example given? What is the most general function you can construct with this 
property? 
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Counter-Example 4.4.23 
If a function y = f(x) is differentiable at the point x = a and the point (a, f(a)) is a point of 
inflection on the function's graph then the second derivative is zero at that point. 

The function y = x x \x\ is differentiable at JC = 0 and the point (0, 0) is a point of inflection but 
the second derivative does not exist at x = 0. Although it looks a bit like y = x3, when the two are 
juxtaposed, the difference is evident. 
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What is it about the example which allows it to be a counter-example? What general class of 
functions could be used in place of this particular example as a counter-example? 
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Counter-Example 4.4.24 

If both functions y = f(x) and y = g(x) are differentiable on R then to evaluate the limit 
liin^oo ^ in the indeterminate form of type [^] we can use the following rule: 

r fix) f(x) 
lim = hm g'ix) 

6jc+sin x then: If we use the above "rule" to find the limit Hindoo 2 x + s i n x 

6x + sinx roon 6 + COSJC 
— I = hm 

-00 

is undefined. 
*^oo 2x + sinjc LooJ ^->oo 2 + COSJC 

6x+sin x But the limit lim^oo g ^ f exists and equals 3: 

,. 6;c + sinjc 6 + ^ 
lim : — = hm A- = 3. 

x^oo 2x + sin x x^oo 2 + ^ * 
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3.5 

3.0 

2.5 

2.0 
10 20 30 40 50 

6 x + sin(jc) 
2x + sin(x) 

Comments. To make the above "rule" correct we need to add "if the limit lim^oo 4 T § exists or 
equals ±oo". This is the well-known 1'Hospital's Rule for limits. 

What is it about x and sin x which makes the example work as a counter-example? Can the 
example be modified to produce a counter-example to the corresponding conjecture when the limit 
is to some point c which is finite? 
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Counter-Example 4.4.25 
If a function y = f(x) is differentiable on (a, b) and \\mx_>a+ f(x) = oo then limx^a+ f(x) = oo. 

The function y = f/x is differentiable on (0, 1) and limJC_>0+ / (* ) = limJc^o+ ^ f = °° b u t 

limx^0+ y(x) = limx^0+ yfi = °-
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What other functions would serve as counter-examples? 

Counter-Example 4.4.26 

If a function y = /(*) is differentiable on (0, oo) and lim^oo /(*) exists then limx_^oo / '(*) also 
exists. . 2 

The function /(*) = ^ ^ is differentiable on (0, oo) and lim^oo s-^ = 0 but 
Hindoo / '(*) = lim^oo *?«*(&-**& does not exist. 
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What role is played by the x2 in this example? What else could it be? What does the counter­
example say about slopes of functions tending to 0? Could the value 0 be altered to something else 
and still produce a counter-example? 
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Counter-Example 4.4.27 

f{x) exists then If a function y = f(x) is differentiable and bounded on (0, oo) and limx 
lirn^oo f(x) also exists. 

The function f(x) = cos(lnx) is differentiable and bounded on (O.oo) and the limit of its 
derivative exists: l im^oo/ ' (*) = hmx^oo-sm(^x) = 0. However, the limit of the function 
Hindoo cos (In x) does not exist because cosine continues to oscillate between its extreme values 
of ±1 and all values in between. 
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What role is played by In xl what functions could replace it and still be counter-examples? What 
needs to be changed to make the conjecture true? 
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Counter-Example 4.4.28 

If a function y = f(x) is differentiable at the point x = a then its derivative is continuous at x = a. 
The function 

1 

/(*) = 

is differentiable at x — 0 but its derivative 

is discontinuous at x = 0. 

JC sin - , if x 7̂  0 

0, if JC = 0 

2;csin cos - , if x ^ 0 
x x 

0, if JC = 0 

2 * s i n ( | ) -cos(JL) 

Could a counter-example be found which did not depend on rapid oscillation for its discontinuity 
at a point? Can the example be modified to produce counter-examples at finitely many points, and 
at infinitely many points? 
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Counter-Example 4.4.29 

If the derivative of a function y = f(x) is positive at the point x = a then there is a neighbourhood 
about x = a (no matter how small) where the function is increasing. 

The function 

/ ( * ) = 
9 1 

x + 2x s in- , i f x ^ O 
x 

0, if JC = 0 

has the derivative 

/'(*)={ 1 +4xsin 2cos - , ifx ^ 0 
x x 

1, if JC = 0 

which is positive at x = 0 but it takes positive and negative values in any neighbourhood of the point 
x = 0. This means the function y = f(x) is not monotone in any neighbourhood of the point x = 0. 

0.2 ,y 
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Counter-Example 4.4.30 
f a function y = f(x) is continuous on (a, b) and has a local maximum at the point c e (a, fc) then 
n a sufficiently small neighbourhood of the point x = c the function is increasing on the left and 
iecreasing on the right from x = c. 

The function 

/(*) = 
2-

2, 

(2 + sin I ) if A; # 0 

if JC = 0 

is continuous on R. Since x2(2 + sin ±) is positive for all * # 0 then 2 > 2 - x (2 + sin - ) . 
Therefore the function y = f(x) has a local maximum at the point x = 0. But it is neither increasing 
on the left nor decreasing on the right in any neighbourhood of the point x = 0. To show this we 
can find the derivative / '(*) = -Ax - 2x sin \ + cos ±; x ^ 0. The derivative takes both positive 
and negative values in any interval (-8,0) U (0, 8) and therefore the function is not monotone in 
any interval (-8, 0) U (0, 8), where 8 > 0. 
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Counter-Example 4.4.31

If a function y = f(x) is differentiable at the point x = a then there is a certain neighbourhood of
the point x = a where the derivative of the function y = f(x) is bounded.

The function

f(x) = x2 sin ^ if x ^ 0

0, ifx=0

is differentiable at the point x = 0. Its derivative is

2x sin 2 - cos 2 , ifx 0
x2 x x2

ifx=00,

1 2 1

The derivative of the function y = f(x) is unbounded in any neighbourhood of the point x = 0.

1.,0.

- x2 sin (T]
......... 2x sin 1

x2 x
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Counter-Example 4.4.32

If a function y = f(x) at any neighbourhood of the point x = a has points where f'(x) does not
exist then f'(a) does not exist.

The function

f
(
x
) _

x2 ' cos x I , if x ^ 0

0 , if x = 0

in any neighbourhood of the point x = 0 has points where f'(x) does not exist, however [(0) = 0.

x-x 2 cos (
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Counter-Example 4.4.33 

A function cannot be differentiable only at one point in its domain and non-differentiable everywhere 
else in its domain. 

The function 

{ 1 + JC2, if x is rational 
1, if JC is irrational 

is defined for all real x and differentiable only at the point x = 0. It is impossible to draw the graph 
of the function y = f{x) but the sketch below gives an idea of its behaviour, where the fine dots 
indicate that some but not all of the points suggested are included. 
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Counter-Example 4.434 

A continuous function cannot be non-differentiable at every point in its domain. 
The Weierstrass function can be defined as: 

00 / l V 

n=0 V L' 

If we take the first 3 and the first 7 terms in the sum we can begin to visualise the function: 

Comments. The Weierstrass function is the first known fractal. Another good example of a con­
tinuous curve that has a sharp corner at every point is the Koch's snowflake. We start with an equi­
lateral triangle and build the line segments on each side according to a simple rule and repeat this 
process infinitely many times. The resulting curve is called Koch's curve and it forms the so-called 
Koch's snowflake. The first four iterations are shown below: 
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Counter-Example 4.4.35 

A function cannot be differentiable at just one point without being at least continuous in a certain 
neighbourhood of that point. 

Based on the function in 4.3.16, 

J ;c2 if x is rational 
{ — x2 if x is irrational 

is differentiable at 0 but continuous nowhere else. 
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Modify the example to produce functions which are differentiable at a finite (or infinite) set of 
points but discontinuous at every other point. 
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4.5. Integral Calculus 

We assume that by now readers are ready and eager to prompt themselves to develop, extend and 
vary the suggested counter-examples by asking questions similar to the questions from Sections 4.1-
4.4. For example: What is it about the counter-example offered which makes it work? What alter­
ations could you make to the counter-example and still produce a counter-example? How could 
the statement be modified to make it correct? Can you use another type of function as a counter­
example? Can you construct the most general class of counter-examples? And others... 

Counter-Example 4.5.1 

If the function y = F(x) is an antiderivative of a function y = f(x) then fb
a f(x)dx = F(b) - F(a). 

The function F(x) = In \x\ is an antiderivative of the function f(x) — - but the (improper) 
integral f_x \dx does not exist. 

Comments. To make the statement true we need to add that the function y = f(x) must be continuous 
on [a, b]. 

Counter-Example 4.5.2 

If a function y = f(x) is continuous on [a, b] then the area enclosed by the graph of y = f(x), OX, 
x — a and x = b numerically equals f f(x)dx. 

For any continuous function y = f(x) that takes only negative values on [a, b] the integral 
fa f(x)dx is negative, therefore the area enclosed by the graph of /(JC), OX, x = a and x = b is 
numerically equal to — fa f(x)dx, or | fa f(x)dx\. 

Counter-Example 4.5.3 

If fb
a f(x)dx > 0 then f(x) > 0 for all x e [a, b]. 

f_x xdx — | > 0 but the function y = x takes both positive and negative values on [—1, 2]. 
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Counter-Example 4.5.4 
If y = f{x) is a continuous function and k is any constant then: 

/ kf(x)dx = k j f(x)dx. 

If k = 0 then the left-hand side is: 

j 0f(x)dx = j Odx = C, 

where C is an arbitrary constant. The right-hand side is: 

0 j f{x)dx = 0. 

This suggests that C is always equal to zero, but this contradicts the nature of an arbitrary constant. 

Comments. The property is valid only for non-zero values of the constant k. 

Counter-Example 4.5.5 

A plane figure of infinite area rotated around an axis always produces a solid of revolution of infinite 
volume. 

The figure enclosed by the graph of the function y — j , the x-axis and the straight line x = 1 is 
rotated about the *-axis. 

The area is infinite: 

/ 

1 
-dx = lim (In b — In 1) = oo 

l X &->oo 

(square units), but the volume is finite: 

f°° 1 / I \ n I -izdx = —7t lim I 1 I = 7r (cubic units). 
Ji xl fc->oo \b ) 
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1, if x is rational 
— 1, if x is irrational 

Counter-Example 4.5.6 
If a function y = f(x) is defined for any x e [a, b] and fa \f(x)\dx exists then fa f{x)dx exists. 

The function 

/ ( * ) = 

is defined for any real x. 
\f(x)\ = 1 and therefore fa \f(x)\dx = b - a but fa f(x)dx does not exist. Let us show this 

using the definition of the definite integral. 
Let [a, b] be any closed interval. We divide the interval into n subintervals and find the limit of 

the integral sums: 
n-\ 

S = lim / f(ci)Ax(. 
max A J C / ^ - 0 ^ - ^ 

i = 0 

If on any subinterval we choose q equal to a rational number then S = b—a. If on any subinterval 
we choose q equal to an irrational number then S = a - b. So, the limit of the integral sums depends 
on the way we choose Q and for this reason the definite integral of f(x) on [a, b] does not exist. 

Counter-Example 4.5.7 

If neither of the integrals / j 7 f{x)dx and / j 7 g{x)dx exist then the integral J \ (f(x) + g(x))dx does 
not exist. 

For the functions 
_ f !» if * is rational f - 1 , if x is rational 

JW — I _ j i f ^ i s jrratjonai § ^ J ~ { 1, if x is irrational 

the integrals / j 7 f(x)dx and / j 7 gOOdx do not exist (see the previous example 4.5.6) but the integral 
fa (/(*) + g{x))dx exists and equals 0. 
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Counter-Example 4.5.8 

If limj^oo f(x) = 0 then f^° f{x)dx converges. 
The limit Hindoo i = 0 but the integral f™ \dx diverges. Note that the divergence cannot be 

"seen" in the graph. 

m—mm*m 
10 15 2b 

Counter-Example 4.5.9 

If the integral f™ f(x)dx diverges then the function y = f(x) is not bounded. 
The integral of a non-zero constant f™ k dx is divergent but the function y = k is bounded. 

Counter-Example 4.5.10 

If a function y = f(x) is continuous and non-negative for all real x and YlnLi f(n) is finite then 
f\° f(x)dx converges. 

The function y = | sin nx\ is continuous and non-negative for all real x and J2T=\ I sin 7ra| = 0 
but f™ | sin 7tx\dx diverges. Note that the divergence can be "seen" because of a constant area 
repeated infinitely often. 

I I I I I I I T I I ! f I ! I ! 
'|sin(7CJc)| 
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Counter-Example 4.5.11 
If both integrals f™ f(x)dx and f™ g(x)dx diverge then the integral f™ (f(x) + g{x))dx also 
diverges. 

Both integrals ff° \dx and f™ ^—£dx diverge but the integral f™ (£ + ^)dx = ff° \dx 
converges. 

Counter-Example 4.5.12 

If a function y = f(x) is continuous and f™ f(x)dx converges then Hindoo f(x) = 0. 
The Fresnel integral /0°° sin x2dx converges but lim^oo sin*2 does not exist. Note that the 

convergence cannot be "seen" in the graph, and regions below the axis contribute a negative amount 
to the integral. 

sin (.x2) 
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Counter-Example 4.5.13 

If a function y = f(x) is continuous and non-negative and f™f(x)dx converges then 
lim^oo f{x) = 0. 

We will use the idea of area. Over every natural n we can construct triangles of area \ so that 
the total area equals YlT=a ~r> which is a finite number. The height of each triangle is n and the 
base is -4. 

The integral f™ f(x)dx converges since it is numerically equal to the total area YlT=a ~r- As one 
can see from the graph below the function (in bold) is continuous and non-negative but lim^oo f(x) 
does not exist. 

n n+\ n+2 

Counter-Example 4.5.14 

If a function y = f(x) is positive and unbounded for all real x then the integral f£° f(x)dx diverges. 
We will use the idea of area. Over every natural n we can construct a rectangle with the height n 

and the base \ so the area is \ . Make the function 0 elsewhere. Then the total area equals J2T=a ~r» 
which is a finite number. The positive and non-bounded function equals n on the interval of length 
3 around x = n, where n is a natural number. Since the integral f^°f(x)dx numerically equals the 
total area Yl^La "T ^ converges. 
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Counter-Example 4.5.15 

If a function y = f(x) is continuous and not bounded for all real x then the integral /0°° f(x)dx 
diverges. 

The function y = jcsinx4 is continuous and unbounded for all real JC, but the integral 
/0°° x sin x4dx converges (making the substitution t — x2 yields the Fresnel integral \ /0°° sin 12dt 
which is convergent). Note that the convergence cannot be "seen" in the graph. 

Counter-Example 4.5.16 

If a function y — f(x) is continuous on [1, oo) and f™f(x)dx converges then j^° \f(x)\dx also 
converges. 

The function y = ^ is continuous on [1, oo) and f™ ^f-dx converges but f™ \^\dx 
diverges. Note that the convergence and divergence cannot be "seen" in the graphs. 

1.0-| 

0.8-

0.6-

0.4-

0.2-

0.0-

-0? J 

J 

2 4 20 

sin(jr) 1 
x 1 



96 Using Counter-Examples in Calculus 

Counter-Example 4.5.17 

If the integral f™f(x)dx converges and a function y = g(x) is bounded then the integral 
f™f(x)g(x)dx converges. 

The integral f™—f-dx converges and the function g(x) = sinjc is bounded but the integral 
fo° ^r^dx diverges. Note that the convergence and divergence cannot be "seen" in the graph. 

-&— 

1.0 

0.8 

0.6 

0.4 

0.2 

0.0-

-0.2 

■ 

„y 

..J.................J 4 t S 1 ) 1 I 1 J 1 L...............I...............I L„.X_2b 

sin(jc) 1 
x \ 

Comments. Statements 4.5.10, 4.5.13 and 4.5.14 in this section were supplied by Alejandro 
S. Gonzalez-Martin, University La Laguna, Spain. 
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